]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/poly1305/poly1305.c
Copyright consolidation 05/10
[thirdparty/openssl.git] / crypto / poly1305 / poly1305.c
1 /*
2 * Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdlib.h>
11 #include <string.h>
12
13 #include "internal/poly1305.h"
14
15 typedef void (*poly1305_blocks_f) (void *ctx, const unsigned char *inp,
16 size_t len, unsigned int padbit);
17 typedef void (*poly1305_emit_f) (void *ctx, unsigned char mac[16],
18 const unsigned int nonce[4]);
19
20 struct poly1305_context {
21 double opaque[24]; /* large enough to hold internal state, declared
22 * 'double' to ensure at least 64-bit invariant
23 * alignment across all platforms and
24 * configurations */
25 unsigned int nonce[4];
26 unsigned char data[POLY1305_BLOCK_SIZE];
27 size_t num;
28 struct {
29 poly1305_blocks_f blocks;
30 poly1305_emit_f emit;
31 } func;
32 };
33
34 size_t Poly1305_ctx_size ()
35 {
36 return sizeof(struct poly1305_context);
37 }
38
39 /* pick 32-bit unsigned integer in little endian order */
40 static unsigned int U8TOU32(const unsigned char *p)
41 {
42 return (((unsigned int)(p[0] & 0xff)) |
43 ((unsigned int)(p[1] & 0xff) << 8) |
44 ((unsigned int)(p[2] & 0xff) << 16) |
45 ((unsigned int)(p[3] & 0xff) << 24));
46 }
47
48 /*
49 * Implementations can be classified by amount of significant bits in
50 * words making up the multi-precision value, or in other words radix
51 * or base of numerical representation, e.g. base 2^64, base 2^32,
52 * base 2^26. Complementary characteristic is how wide is the result of
53 * multiplication of pair of digits, e.g. it would take 128 bits to
54 * accommodate multiplication result in base 2^64 case. These are used
55 * interchangeably. To describe implementation that is. But interface
56 * is designed to isolate this so that low-level primitives implemented
57 * in assembly can be self-contained/self-coherent.
58 */
59 #ifndef POLY1305_ASM
60 /*
61 * Even though there is __int128 reference implementation targeting
62 * 64-bit platforms provided below, it's not obvious that it's optimal
63 * choice for every one of them. Depending on instruction set overall
64 * amount of instructions can be comparable to one in __int64
65 * implementation. Amount of multiplication instructions would be lower,
66 * but not necessarily overall. And in out-of-order execution context,
67 * it is the latter that can be crucial...
68 *
69 * On related note. Poly1305 author, D. J. Bernstein, discusses and
70 * provides floating-point implementations of the algorithm in question.
71 * It made a lot of sense by the time of introduction, because most
72 * then-modern processors didn't have pipelined integer multiplier.
73 * [Not to mention that some had non-constant timing for integer
74 * multiplications.] Floating-point instructions on the other hand could
75 * be issued every cycle, which allowed to achieve better performance.
76 * Nowadays, with SIMD and/or out-or-order execution, shared or
77 * even emulated FPU, it's more complicated, and floating-point
78 * implementation is not necessarily optimal choice in every situation,
79 * rather contrary...
80 *
81 * <appro@openssl.org>
82 */
83
84 typedef unsigned int u32;
85
86 /*
87 * poly1305_blocks processes a multiple of POLY1305_BLOCK_SIZE blocks
88 * of |inp| no longer than |len|. Behaviour for |len| not divisible by
89 * block size is unspecified in general case, even though in reference
90 * implementation the trailing chunk is simply ignored. Per algorithm
91 * specification, every input block, complete or last partial, is to be
92 * padded with a bit past most significant byte. The latter kind is then
93 * padded with zeros till block size. This last partial block padding
94 * is caller(*)'s responsibility, and because of this the last partial
95 * block is always processed with separate call with |len| set to
96 * POLY1305_BLOCK_SIZE and |padbit| to 0. In all other cases |padbit|
97 * should be set to 1 to perform implicit padding with 128th bit.
98 * poly1305_blocks does not actually check for this constraint though,
99 * it's caller(*)'s responsibility to comply.
100 *
101 * (*) In the context "caller" is not application code, but higher
102 * level Poly1305_* from this very module, so that quirks are
103 * handled locally.
104 */
105 static void
106 poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit);
107
108 /*
109 * Type-agnostic "rip-off" from constant_time_locl.h
110 */
111 # define CONSTANT_TIME_CARRY(a,b) ( \
112 (a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1) \
113 )
114
115 # if !defined(PEDANTIC) && \
116 (defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16) && \
117 (defined(__SIZEOF_LONG__) && __SIZEOF_LONG__==8)
118
119 typedef unsigned long u64;
120 typedef unsigned __int128 u128;
121
122 typedef struct {
123 u64 h[3];
124 u64 r[2];
125 } poly1305_internal;
126
127 /* pick 32-bit unsigned integer in little endian order */
128 static u64 U8TOU64(const unsigned char *p)
129 {
130 return (((u64)(p[0] & 0xff)) |
131 ((u64)(p[1] & 0xff) << 8) |
132 ((u64)(p[2] & 0xff) << 16) |
133 ((u64)(p[3] & 0xff) << 24) |
134 ((u64)(p[4] & 0xff) << 32) |
135 ((u64)(p[5] & 0xff) << 40) |
136 ((u64)(p[6] & 0xff) << 48) |
137 ((u64)(p[7] & 0xff) << 56));
138 }
139
140 /* store a 32-bit unsigned integer in little endian */
141 static void U64TO8(unsigned char *p, u64 v)
142 {
143 p[0] = (unsigned char)((v) & 0xff);
144 p[1] = (unsigned char)((v >> 8) & 0xff);
145 p[2] = (unsigned char)((v >> 16) & 0xff);
146 p[3] = (unsigned char)((v >> 24) & 0xff);
147 p[4] = (unsigned char)((v >> 32) & 0xff);
148 p[5] = (unsigned char)((v >> 40) & 0xff);
149 p[6] = (unsigned char)((v >> 48) & 0xff);
150 p[7] = (unsigned char)((v >> 56) & 0xff);
151 }
152
153 static void poly1305_init(void *ctx, const unsigned char key[16])
154 {
155 poly1305_internal *st = (poly1305_internal *) ctx;
156
157 /* h = 0 */
158 st->h[0] = 0;
159 st->h[1] = 0;
160 st->h[2] = 0;
161
162 /* r &= 0xffffffc0ffffffc0ffffffc0fffffff */
163 st->r[0] = U8TOU64(&key[0]) & 0x0ffffffc0fffffff;
164 st->r[1] = U8TOU64(&key[8]) & 0x0ffffffc0ffffffc;
165 }
166
167 static void
168 poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit)
169 {
170 poly1305_internal *st = (poly1305_internal *)ctx;
171 u64 r0, r1;
172 u64 s1;
173 u64 h0, h1, h2, c;
174 u128 d0, d1;
175
176 r0 = st->r[0];
177 r1 = st->r[1];
178
179 s1 = r1 + (r1 >> 2);
180
181 h0 = st->h[0];
182 h1 = st->h[1];
183 h2 = st->h[2];
184
185 while (len >= POLY1305_BLOCK_SIZE) {
186 /* h += m[i] */
187 h0 = (u64)(d0 = (u128)h0 + U8TOU64(inp + 0));
188 h1 = (u64)(d1 = (u128)h1 + (d0 >> 64) + U8TOU64(inp + 8));
189 /*
190 * padbit can be zero only when original len was
191 * POLY1306_BLOCK_SIZE, but we don't check
192 */
193 h2 += (u64)(d1 >> 64) + padbit;
194
195 /* h *= r "%" p, where "%" stands for "partial remainder" */
196 d0 = ((u128)h0 * r0) +
197 ((u128)h1 * s1);
198 d1 = ((u128)h0 * r1) +
199 ((u128)h1 * r0) +
200 (h2 * s1);
201 h2 = (h2 * r0);
202
203 /* last reduction step: */
204 /* a) h2:h0 = h2<<128 + d1<<64 + d0 */
205 h0 = (u64)d0;
206 h1 = (u64)(d1 += d0 >> 64);
207 h2 += (u64)(d1 >> 64);
208 /* b) (h2:h0 += (h2:h0>>130) * 5) %= 2^130 */
209 c = (h2 >> 2) + (h2 & ~3UL);
210 h2 &= 3;
211 h0 += c;
212 h1 += (c = CONSTANT_TIME_CARRY(h0,c));
213 h2 += CONSTANT_TIME_CARRY(h1,c);
214 /*
215 * Occasional overflows to 3rd bit of h2 are taken care of
216 * "naturally". If after this point we end up at the top of
217 * this loop, then the overflow bit will be accounted for
218 * in next iteration. If we end up in poly1305_emit, then
219 * comparison to modulus below will still count as "carry
220 * into 131st bit", so that properly reduced value will be
221 * picked in conditional move.
222 */
223
224 inp += POLY1305_BLOCK_SIZE;
225 len -= POLY1305_BLOCK_SIZE;
226 }
227
228 st->h[0] = h0;
229 st->h[1] = h1;
230 st->h[2] = h2;
231 }
232
233 static void poly1305_emit(void *ctx, unsigned char mac[16],
234 const u32 nonce[4])
235 {
236 poly1305_internal *st = (poly1305_internal *) ctx;
237 u64 h0, h1, h2;
238 u64 g0, g1, g2;
239 u128 t;
240 u64 mask;
241
242 h0 = st->h[0];
243 h1 = st->h[1];
244 h2 = st->h[2];
245
246 /* compare to modulus by computing h + -p */
247 g0 = (u64)(t = (u128)h0 + 5);
248 g1 = (u64)(t = (u128)h1 + (t >> 64));
249 g2 = h2 + (u64)(t >> 64);
250
251 /* if there was carry into 131st bit, h1:h0 = g1:g0 */
252 mask = 0 - (g2 >> 2);
253 g0 &= mask;
254 g1 &= mask;
255 mask = ~mask;
256 h0 = (h0 & mask) | g0;
257 h1 = (h1 & mask) | g1;
258
259 /* mac = (h + nonce) % (2^128) */
260 h0 = (u64)(t = (u128)h0 + nonce[0] + ((u64)nonce[1]<<32));
261 h1 = (u64)(t = (u128)h1 + nonce[2] + ((u64)nonce[3]<<32) + (t >> 64));
262
263 U64TO8(mac + 0, h0);
264 U64TO8(mac + 8, h1);
265 }
266
267 # else
268
269 # if defined(_WIN32) && !defined(__MINGW32__)
270 typedef unsigned __int64 u64;
271 # elif defined(__arch64__)
272 typedef unsigned long u64;
273 # else
274 typedef unsigned long long u64;
275 # endif
276
277 typedef struct {
278 u32 h[5];
279 u32 r[4];
280 } poly1305_internal;
281
282 /* store a 32-bit unsigned integer in little endian */
283 static void U32TO8(unsigned char *p, unsigned int v)
284 {
285 p[0] = (unsigned char)((v) & 0xff);
286 p[1] = (unsigned char)((v >> 8) & 0xff);
287 p[2] = (unsigned char)((v >> 16) & 0xff);
288 p[3] = (unsigned char)((v >> 24) & 0xff);
289 }
290
291 static void poly1305_init(void *ctx, const unsigned char key[16])
292 {
293 poly1305_internal *st = (poly1305_internal *) ctx;
294
295 /* h = 0 */
296 st->h[0] = 0;
297 st->h[1] = 0;
298 st->h[2] = 0;
299 st->h[3] = 0;
300 st->h[4] = 0;
301
302 /* r &= 0xffffffc0ffffffc0ffffffc0fffffff */
303 st->r[0] = U8TOU32(&key[0]) & 0x0fffffff;
304 st->r[1] = U8TOU32(&key[4]) & 0x0ffffffc;
305 st->r[2] = U8TOU32(&key[8]) & 0x0ffffffc;
306 st->r[3] = U8TOU32(&key[12]) & 0x0ffffffc;
307 }
308
309 static void
310 poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit)
311 {
312 poly1305_internal *st = (poly1305_internal *)ctx;
313 u32 r0, r1, r2, r3;
314 u32 s1, s2, s3;
315 u32 h0, h1, h2, h3, h4, c;
316 u64 d0, d1, d2, d3;
317
318 r0 = st->r[0];
319 r1 = st->r[1];
320 r2 = st->r[2];
321 r3 = st->r[3];
322
323 s1 = r1 + (r1 >> 2);
324 s2 = r2 + (r2 >> 2);
325 s3 = r3 + (r3 >> 2);
326
327 h0 = st->h[0];
328 h1 = st->h[1];
329 h2 = st->h[2];
330 h3 = st->h[3];
331 h4 = st->h[4];
332
333 while (len >= POLY1305_BLOCK_SIZE) {
334 /* h += m[i] */
335 h0 = (u32)(d0 = (u64)h0 + U8TOU32(inp + 0));
336 h1 = (u32)(d1 = (u64)h1 + (d0 >> 32) + U8TOU32(inp + 4));
337 h2 = (u32)(d2 = (u64)h2 + (d1 >> 32) + U8TOU32(inp + 8));
338 h3 = (u32)(d3 = (u64)h3 + (d2 >> 32) + U8TOU32(inp + 12));
339 h4 += (u32)(d3 >> 32) + padbit;
340
341 /* h *= r "%" p, where "%" stands for "partial remainder" */
342 d0 = ((u64)h0 * r0) +
343 ((u64)h1 * s3) +
344 ((u64)h2 * s2) +
345 ((u64)h3 * s1);
346 d1 = ((u64)h0 * r1) +
347 ((u64)h1 * r0) +
348 ((u64)h2 * s3) +
349 ((u64)h3 * s2) +
350 (h4 * s1);
351 d2 = ((u64)h0 * r2) +
352 ((u64)h1 * r1) +
353 ((u64)h2 * r0) +
354 ((u64)h3 * s3) +
355 (h4 * s2);
356 d3 = ((u64)h0 * r3) +
357 ((u64)h1 * r2) +
358 ((u64)h2 * r1) +
359 ((u64)h3 * r0) +
360 (h4 * s3);
361 h4 = (h4 * r0);
362
363 /* last reduction step: */
364 /* a) h4:h0 = h4<<128 + d3<<96 + d2<<64 + d1<<32 + d0 */
365 h0 = (u32)d0;
366 h1 = (u32)(d1 += d0 >> 32);
367 h2 = (u32)(d2 += d1 >> 32);
368 h3 = (u32)(d3 += d2 >> 32);
369 h4 += (u32)(d3 >> 32);
370 /* b) (h4:h0 += (h4:h0>>130) * 5) %= 2^130 */
371 c = (h4 >> 2) + (h4 & ~3U);
372 h4 &= 3;
373 h0 += c;
374 h1 += (c = CONSTANT_TIME_CARRY(h0,c));
375 h2 += (c = CONSTANT_TIME_CARRY(h1,c));
376 h3 += (c = CONSTANT_TIME_CARRY(h2,c));
377 h4 += CONSTANT_TIME_CARRY(h3,c);
378 /*
379 * Occasional overflows to 3rd bit of h4 are taken care of
380 * "naturally". If after this point we end up at the top of
381 * this loop, then the overflow bit will be accounted for
382 * in next iteration. If we end up in poly1305_emit, then
383 * comparison to modulus below will still count as "carry
384 * into 131st bit", so that properly reduced value will be
385 * picked in conditional move.
386 */
387
388 inp += POLY1305_BLOCK_SIZE;
389 len -= POLY1305_BLOCK_SIZE;
390 }
391
392 st->h[0] = h0;
393 st->h[1] = h1;
394 st->h[2] = h2;
395 st->h[3] = h3;
396 st->h[4] = h4;
397 }
398
399 static void poly1305_emit(void *ctx, unsigned char mac[16],
400 const u32 nonce[4])
401 {
402 poly1305_internal *st = (poly1305_internal *) ctx;
403 u32 h0, h1, h2, h3, h4;
404 u32 g0, g1, g2, g3, g4;
405 u64 t;
406 u32 mask;
407
408 h0 = st->h[0];
409 h1 = st->h[1];
410 h2 = st->h[2];
411 h3 = st->h[3];
412 h4 = st->h[4];
413
414 /* compare to modulus by computing h + -p */
415 g0 = (u32)(t = (u64)h0 + 5);
416 g1 = (u32)(t = (u64)h1 + (t >> 32));
417 g2 = (u32)(t = (u64)h2 + (t >> 32));
418 g3 = (u32)(t = (u64)h3 + (t >> 32));
419 g4 = h4 + (u32)(t >> 32);
420
421 /* if there was carry into 131st bit, h3:h0 = g3:g0 */
422 mask = 0 - (g4 >> 2);
423 g0 &= mask;
424 g1 &= mask;
425 g2 &= mask;
426 g3 &= mask;
427 mask = ~mask;
428 h0 = (h0 & mask) | g0;
429 h1 = (h1 & mask) | g1;
430 h2 = (h2 & mask) | g2;
431 h3 = (h3 & mask) | g3;
432
433 /* mac = (h + nonce) % (2^128) */
434 h0 = (u32)(t = (u64)h0 + nonce[0]);
435 h1 = (u32)(t = (u64)h1 + (t >> 32) + nonce[1]);
436 h2 = (u32)(t = (u64)h2 + (t >> 32) + nonce[2]);
437 h3 = (u32)(t = (u64)h3 + (t >> 32) + nonce[3]);
438
439 U32TO8(mac + 0, h0);
440 U32TO8(mac + 4, h1);
441 U32TO8(mac + 8, h2);
442 U32TO8(mac + 12, h3);
443 }
444 # endif
445 #else
446 int poly1305_init(void *ctx, const unsigned char key[16], void *func);
447 void poly1305_blocks(void *ctx, const unsigned char *inp, size_t len,
448 unsigned int padbit);
449 void poly1305_emit(void *ctx, unsigned char mac[16],
450 const unsigned int nonce[4]);
451 #endif
452
453 void Poly1305_Init(POLY1305 *ctx, const unsigned char key[32])
454 {
455 ctx->nonce[0] = U8TOU32(&key[16]);
456 ctx->nonce[1] = U8TOU32(&key[20]);
457 ctx->nonce[2] = U8TOU32(&key[24]);
458 ctx->nonce[3] = U8TOU32(&key[28]);
459
460 #ifndef POLY1305_ASM
461 poly1305_init(ctx->opaque, key);
462 #else
463 /*
464 * Unlike reference poly1305_init assembly counterpart is expected
465 * to return a value: non-zero if it initializes ctx->func, and zero
466 * otherwise. Latter is to simplify assembly in cases when there no
467 * multiple code paths to switch between.
468 */
469 if (!poly1305_init(ctx->opaque, key, &ctx->func)) {
470 ctx->func.blocks = poly1305_blocks;
471 ctx->func.emit = poly1305_emit;
472 }
473 #endif
474
475 ctx->num = 0;
476
477 }
478
479 #ifdef POLY1305_ASM
480 /*
481 * This "eclipses" poly1305_blocks and poly1305_emit, but it's
482 * conscious choice imposed by -Wshadow compiler warnings.
483 */
484 # define poly1305_blocks (*poly1305_blocks_p)
485 # define poly1305_emit (*poly1305_emit_p)
486 #endif
487
488 void Poly1305_Update(POLY1305 *ctx, const unsigned char *inp, size_t len)
489 {
490 #ifdef POLY1305_ASM
491 /*
492 * As documented, poly1305_blocks is never called with input
493 * longer than single block and padbit argument set to 0. This
494 * property is fluently used in assembly modules to optimize
495 * padbit handling on loop boundary.
496 */
497 poly1305_blocks_f poly1305_blocks_p = ctx->func.blocks;
498 #endif
499 size_t rem, num;
500
501 if ((num = ctx->num)) {
502 rem = POLY1305_BLOCK_SIZE - num;
503 if (len >= rem) {
504 memcpy(ctx->data + num, inp, rem);
505 poly1305_blocks(ctx->opaque, ctx->data, POLY1305_BLOCK_SIZE, 1);
506 inp += rem;
507 len -= rem;
508 } else {
509 /* Still not enough data to process a block. */
510 memcpy(ctx->data + num, inp, len);
511 ctx->num = num + len;
512 return;
513 }
514 }
515
516 rem = len % POLY1305_BLOCK_SIZE;
517 len -= rem;
518
519 if (len >= POLY1305_BLOCK_SIZE) {
520 poly1305_blocks(ctx->opaque, inp, len, 1);
521 inp += len;
522 }
523
524 if (rem)
525 memcpy(ctx->data, inp, rem);
526
527 ctx->num = rem;
528 }
529
530 void Poly1305_Final(POLY1305 *ctx, unsigned char mac[16])
531 {
532 #ifdef POLY1305_ASM
533 poly1305_blocks_f poly1305_blocks_p = ctx->func.blocks;
534 poly1305_emit_f poly1305_emit_p = ctx->func.emit;
535 #endif
536 size_t num;
537
538 if ((num = ctx->num)) {
539 ctx->data[num++] = 1; /* pad bit */
540 while (num < POLY1305_BLOCK_SIZE)
541 ctx->data[num++] = 0;
542 poly1305_blocks(ctx->opaque, ctx->data, POLY1305_BLOCK_SIZE, 0);
543 }
544
545 poly1305_emit(ctx->opaque, mac, ctx->nonce);
546
547 /* zero out the state */
548 memset(ctx, 0, sizeof(*ctx));
549 }
550
551 #ifdef SELFTEST
552 #include <stdio.h>
553
554 struct poly1305_test {
555 const char *inputhex;
556 const char *keyhex;
557 const char *outhex;
558 };
559
560 static const struct poly1305_test poly1305_tests[] = {
561 /*
562 * RFC7539
563 */
564 {
565 "43727970746f6772617068696320466f72756d2052657365617263682047726f"
566 "7570",
567 "85d6be7857556d337f4452fe42d506a8""0103808afb0db2fd4abff6af4149f51b",
568 "a8061dc1305136c6c22b8baf0c0127a9"
569 },
570 /*
571 * test vectors from "The Poly1305-AES message-authentication code"
572 */
573 {
574 "f3f6",
575 "851fc40c3467ac0be05cc20404f3f700""580b3b0f9447bb1e69d095b5928b6dbc",
576 "f4c633c3044fc145f84f335cb81953de"
577 },
578 {
579 "",
580 "a0f3080000f46400d0c7e9076c834403""dd3fab2251f11ac759f0887129cc2ee7",
581 "dd3fab2251f11ac759f0887129cc2ee7"
582 },
583 {
584 "663cea190ffb83d89593f3f476b6bc24d7e679107ea26adb8caf6652d0656136",
585 "48443d0bb0d21109c89a100b5ce2c208""83149c69b561dd88298a1798b10716ef",
586 "0ee1c16bb73f0f4fd19881753c01cdbe"
587 },
588 {
589 "ab0812724a7f1e342742cbed374d94d136c6b8795d45b3819830f2c04491faf0"
590 "990c62e48b8018b2c3e4a0fa3134cb67fa83e158c994d961c4cb21095c1bf9",
591 "12976a08c4426d0ce8a82407c4f48207""80f8c20aa71202d1e29179cbcb555a57",
592 "5154ad0d2cb26e01274fc51148491f1b"
593 },
594 /*
595 * self-generated vectors exercise "significant" lengths, such that
596 * are handled by different code paths
597 */
598 {
599 "ab0812724a7f1e342742cbed374d94d136c6b8795d45b3819830f2c04491faf0"
600 "990c62e48b8018b2c3e4a0fa3134cb67fa83e158c994d961c4cb21095c1bf9af",
601 "12976a08c4426d0ce8a82407c4f48207""80f8c20aa71202d1e29179cbcb555a57",
602 "812059a5da198637cac7c4a631bee466"
603 },
604 {
605 "ab0812724a7f1e342742cbed374d94d136c6b8795d45b3819830f2c04491faf0"
606 "990c62e48b8018b2c3e4a0fa3134cb67",
607 "12976a08c4426d0ce8a82407c4f48207""80f8c20aa71202d1e29179cbcb555a57",
608 "5b88d7f6228b11e2e28579a5c0c1f761"
609 },
610 {
611 "ab0812724a7f1e342742cbed374d94d136c6b8795d45b3819830f2c04491faf0"
612 "990c62e48b8018b2c3e4a0fa3134cb67fa83e158c994d961c4cb21095c1bf9af"
613 "663cea190ffb83d89593f3f476b6bc24d7e679107ea26adb8caf6652d0656136",
614 "12976a08c4426d0ce8a82407c4f48207""80f8c20aa71202d1e29179cbcb555a57",
615 "bbb613b2b6d753ba07395b916aaece15"
616 },
617 {
618 "ab0812724a7f1e342742cbed374d94d136c6b8795d45b3819830f2c04491faf0"
619 "990c62e48b8018b2c3e4a0fa3134cb67fa83e158c994d961c4cb21095c1bf9af"
620 "48443d0bb0d21109c89a100b5ce2c20883149c69b561dd88298a1798b10716ef"
621 "663cea190ffb83d89593f3f476b6bc24",
622 "12976a08c4426d0ce8a82407c4f48207""80f8c20aa71202d1e29179cbcb555a57",
623 "c794d7057d1778c4bbee0a39b3d97342"
624 },
625 {
626 "ab0812724a7f1e342742cbed374d94d136c6b8795d45b3819830f2c04491faf0"
627 "990c62e48b8018b2c3e4a0fa3134cb67fa83e158c994d961c4cb21095c1bf9af"
628 "48443d0bb0d21109c89a100b5ce2c20883149c69b561dd88298a1798b10716ef"
629 "663cea190ffb83d89593f3f476b6bc24d7e679107ea26adb8caf6652d0656136",
630 "12976a08c4426d0ce8a82407c4f48207""80f8c20aa71202d1e29179cbcb555a57",
631 "ffbcb9b371423152d7fca5ad042fbaa9"
632 },
633 {
634 "ab0812724a7f1e342742cbed374d94d136c6b8795d45b3819830f2c04491faf0"
635 "990c62e48b8018b2c3e4a0fa3134cb67fa83e158c994d961c4cb21095c1bf9af"
636 "48443d0bb0d21109c89a100b5ce2c20883149c69b561dd88298a1798b10716ef"
637 "663cea190ffb83d89593f3f476b6bc24d7e679107ea26adb8caf6652d0656136"
638 "812059a5da198637cac7c4a631bee466",
639 "12976a08c4426d0ce8a82407c4f48207""80f8c20aa71202d1e29179cbcb555a57",
640 "069ed6b8ef0f207b3e243bb1019fe632"
641 },
642 {
643 "ab0812724a7f1e342742cbed374d94d136c6b8795d45b3819830f2c04491faf0"
644 "990c62e48b8018b2c3e4a0fa3134cb67fa83e158c994d961c4cb21095c1bf9af"
645 "48443d0bb0d21109c89a100b5ce2c20883149c69b561dd88298a1798b10716ef"
646 "663cea190ffb83d89593f3f476b6bc24d7e679107ea26adb8caf6652d0656136"
647 "812059a5da198637cac7c4a631bee4665b88d7f6228b11e2e28579a5c0c1f761",
648 "12976a08c4426d0ce8a82407c4f48207""80f8c20aa71202d1e29179cbcb555a57",
649 "cca339d9a45fa2368c2c68b3a4179133"
650 },
651 {
652 "ab0812724a7f1e342742cbed374d94d136c6b8795d45b3819830f2c04491faf0"
653 "990c62e48b8018b2c3e4a0fa3134cb67fa83e158c994d961c4cb21095c1bf9af"
654 "48443d0bb0d21109c89a100b5ce2c20883149c69b561dd88298a1798b10716ef"
655 "663cea190ffb83d89593f3f476b6bc24d7e679107ea26adb8caf6652d0656136"
656 "812059a5da198637cac7c4a631bee4665b88d7f6228b11e2e28579a5c0c1f761"
657 "ab0812724a7f1e342742cbed374d94d136c6b8795d45b3819830f2c04491faf0"
658 "990c62e48b8018b2c3e4a0fa3134cb67fa83e158c994d961c4cb21095c1bf9af"
659 "48443d0bb0d21109c89a100b5ce2c20883149c69b561dd88298a1798b10716ef"
660 "663cea190ffb83d89593f3f476b6bc24d7e679107ea26adb8caf6652d0656136",
661 "12976a08c4426d0ce8a82407c4f48207""80f8c20aa71202d1e29179cbcb555a57",
662 "53f6e828a2f0fe0ee815bf0bd5841a34"
663 },
664 {
665 "ab0812724a7f1e342742cbed374d94d136c6b8795d45b3819830f2c04491faf0"
666 "990c62e48b8018b2c3e4a0fa3134cb67fa83e158c994d961c4cb21095c1bf9af"
667 "48443d0bb0d21109c89a100b5ce2c20883149c69b561dd88298a1798b10716ef"
668 "663cea190ffb83d89593f3f476b6bc24d7e679107ea26adb8caf6652d0656136"
669 "812059a5da198637cac7c4a631bee4665b88d7f6228b11e2e28579a5c0c1f761"
670 "ab0812724a7f1e342742cbed374d94d136c6b8795d45b3819830f2c04491faf0"
671 "990c62e48b8018b2c3e4a0fa3134cb67fa83e158c994d961c4cb21095c1bf9af"
672 "48443d0bb0d21109c89a100b5ce2c20883149c69b561dd88298a1798b10716ef"
673 "663cea190ffb83d89593f3f476b6bc24d7e679107ea26adb8caf6652d0656136"
674 "812059a5da198637cac7c4a631bee4665b88d7f6228b11e2e28579a5c0c1f761",
675 "12976a08c4426d0ce8a82407c4f48207""80f8c20aa71202d1e29179cbcb555a57",
676 "b846d44e9bbd53cedffbfbb6b7fa4933"
677 },
678 /*
679 * 4th power of the key spills to 131th bit in SIMD key setup
680 */
681 {
682 "ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
683 "ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
684 "ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
685 "ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
686 "ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
687 "ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
688 "ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
689 "ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff",
690 "ad628107e8351d0f2c231a05dc4a4106""00000000000000000000000000000000",
691 "07145a4c02fe5fa32036de68fabe9066"
692 },
693 {
694 /*
695 * poly1305_ieee754.c failed this in final stage
696 */
697 "842364e156336c0998b933a6237726180d9e3fdcbde4cd5d17080fc3beb49614"
698 "d7122c037463ff104d73f19c12704628d417c4c54a3fe30d3c3d7714382d43b0"
699 "382a50a5dee54be844b076e8df88201a1cd43b90eb21643fa96f39b518aa8340"
700 "c942ff3c31baf7c9bdbf0f31ae3fa096bf8c63030609829fe72e179824890bc8"
701 "e08c315c1cce2a83144dbbff09f74e3efc770b54d0984a8f19b14719e6363564"
702 "1d6b1eedf63efbf080e1783d32445412114c20de0b837a0dfa33d6b82825fff4"
703 "4c9a70ea54ce47f07df698e6b03323b53079364a5fc3e9dd034392bdde86dccd"
704 "da94321c5e44060489336cb65bf3989c36f7282c2f5d2b882c171e74",
705 "95d5c005503e510d8cd0aa072c4a4d06""6eabc52d11653df47fbf63ab198bcc26",
706 "f248312e578d9d58f8b7bb4d19105431"
707 },
708 /*
709 * AVX2 in poly1305-x86.pl failed this with 176+32 split
710 */
711 {
712 "248ac31085b6c2adaaa38259a0d7192c5c35d1bb4ef39ad94c38d1c82479e2dd"
713 "2159a077024b0589bc8a20101b506f0a1ad0bbab76e83a83f1b94be6beae74e8"
714 "74cab692c5963a75436b776121ec9f62399a3e66b2d22707dae81933b6277f3c"
715 "8516bcbe26dbbd86f373103d7cf4cad1888c952118fbfbd0d7b4bedc4ae4936a"
716 "ff91157e7aa47c54442ea78d6ac251d324a0fbe49d89cc3521b66d16e9c66a37"
717 "09894e4eb0a4eedc4ae19468e66b81f2"
718 "71351b1d921ea551047abcc6b87a901fde7db79fa1818c11336dbc07244a40eb",
719 "000102030405060708090a0b0c0d0e0f""00000000000000000000000000000000",
720 "bc939bc5281480fa99c6d68c258ec42f"
721 },
722 /*
723 * test vectors from Google
724 */
725 {
726 "",
727 "c8afaac331ee372cd6082de134943b17""4710130e9f6fea8d72293850a667d86c",
728 "4710130e9f6fea8d72293850a667d86c",
729 },
730 {
731 "48656c6c6f20776f726c6421",
732 "746869732069732033322d6279746520""6b657920666f7220506f6c7931333035",
733 "a6f745008f81c916a20dcc74eef2b2f0"
734 },
735 {
736 "0000000000000000000000000000000000000000000000000000000000000000",
737 "746869732069732033322d6279746520""6b657920666f7220506f6c7931333035",
738 "49ec78090e481ec6c26b33b91ccc0307"
739 },
740 {
741 "89dab80b7717c1db5db437860a3f70218e93e1b8f461fb677f16f35f6f87e2a9"
742 "1c99bc3a47ace47640cc95c345be5ecca5a3523c35cc01893af0b64a62033427"
743 "0372ec12482d1b1e363561698a578b359803495bb4e2ef1930b17a5190b580f1"
744 "41300df30adbeca28f6427a8bc1a999fd51c554a017d095d8c3e3127daf9f595",
745 "2d773be37adb1e4d683bf0075e79c4ee""037918535a7f99ccb7040fb5f5f43aea",
746 "c85d15ed44c378d6b00e23064c7bcd51"
747 },
748 {
749 "000000000000000b1703030200000000"
750 "06db1f1f368d696a810a349c0c714c9a5e7850c2407d721acded95e018d7a852"
751 "66a6e1289cdb4aeb18da5ac8a2b0026d24a59ad485227f3eaedbb2e7e35e1c66"
752 "cd60f9abf716dcc9ac42682dd7dab287a7024c4eefc321cc0574e16793e37cec"
753 "03c5bda42b54c114a80b57af26416c7be742005e20855c73e21dc8e2edc9d435"
754 "cb6f6059280011c270b71570051c1c9b3052126620bc1e2730fa066c7a509d53"
755 "c60e5ae1b40aa6e39e49669228c90eecb4a50db32a50bc49e90b4f4b359a1dfd"
756 "11749cd3867fcf2fb7bb6cd4738f6a4ad6f7ca5058f7618845af9f020f6c3b96"
757 "7b8f4cd4a91e2813b507ae66f2d35c18284f7292186062e10fd5510d18775351"
758 "ef334e7634ab4743f5b68f49adcab384d3fd75f7390f4006ef2a295c8c7a076a"
759 "d54546cd25d2107fbe1436c840924aaebe5b370893cd63d1325b8616fc481088"
760 "6bc152c53221b6df373119393255ee72bcaa880174f1717f9184fa91646f17a2"
761 "4ac55d16bfddca9581a92eda479201f0edbf633600d6066d1ab36d5d2415d713"
762 "51bbcd608a25108d25641992c1f26c531cf9f90203bc4cc19f5927d834b0a471"
763 "16d3884bbb164b8ec883d1ac832e56b3918a98601a08d171881541d594db399c"
764 "6ae6151221745aec814c45b0b05b565436fd6f137aa10a0c0b643761dbd6f9a9"
765 "dcb99b1a6e690854ce0769cde39761d82fcdec15f0d92d7d8e94ade8eb83fbe0",
766 "99e5822dd4173c995e3dae0ddefb9774""3fde3b080134b39f76e9bf8d0e88d546",
767 "2637408fe13086ea73f971e3425e2820"
768 },
769 /*
770 * test vectors from Hanno Böck
771 */
772 {
773 "cccccccccccccccccccccccccccccccccccccccccccccccccc80cccccccccccc"
774 "cccccccccccccccccccccccccccccccccccccccccccccccccccccccccecccccc"
775 "ccccccccccccccccccccccccccccccc5cccccccccccccccccccccccccccccccc"
776 "cccccccccce3cccccccccccccccccccccccccccccccccccccccccccccccccccc"
777 "ccccccccaccccccccccccccccccccce6cccccccccc000000afcccccccccccccc"
778 "ccccfffffff50000000000000000000000000000000000000000000000000000"
779 "00ffffffe7000000000000000000000000000000000000000000000000000000"
780 "0000000000000000000000000000000000000000000000000000719205a8521d"
781 "fc",
782 "7f1b0264000000000000000000000000""0000000000000000cccccccccccccccc",
783 "8559b876eceed66eb37798c0457baff9"
784 },
785 {
786 "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa0000000000"
787 "00000000800264",
788 "e0001600000000000000000000000000""0000aaaaaaaaaaaaaaaaaaaaaaaaaaaa",
789 "00bd1258978e205444c9aaaa82006fed"
790 },
791 {
792 "02fc",
793 "0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c""0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c",
794 "06120c0c0c0c0c0c0c0c0c0c0c0c0c0c"
795 },
796 {
797 "7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b"
798 "7b7b7b7b7b7b7a7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b"
799 "7b7b5c7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b"
800 "7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b6e7b007b7b7b7b7b7b7b7b7b"
801 "7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7a7b7b7b7b7b7b7b7b7b7b7b7b"
802 "7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b5c7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b"
803 "7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b7b"
804 "7b6e7b001300000000b300000000000000000000000000000000000000000000"
805 "f20000000000000000000000000000000000002000efff000900000000000000"
806 "0000000000100000000009000000640000000000000000000000001300000000"
807 "b300000000000000000000000000000000000000000000f20000000000000000"
808 "000000000000000000002000efff00090000000000000000007a000010000000"
809 "000900000064000000000000000000000000000000000000000000000000fc",
810 "00ff0000000000000000000000000000""00000000001e00000000000000007b7b",
811 "33205bbf9e9f8f7212ab9e2ab9b7e4a5"
812 },
813 {
814 "7777777777777777777777777777777777777777777777777777777777777777"
815 "7777777777777777777777777777777777777777777777777777777777777777"
816 "777777777777777777777777ffffffe9e9acacacacacacacacacacac0000acac"
817 "ec0100acacac2caca2acacacacacacacacacacac64f2",
818 "0000007f0000007f0100002000000000""0000cf77777777777777777777777777",
819 "02ee7c8c546ddeb1a467e4c3981158b9"
820 },
821 /*
822 * test vectors from Andrew Moon
823 */
824 { /* nacl */
825 "8e993b9f48681273c29650ba32fc76ce48332ea7164d96a4476fb8c531a1186a"
826 "c0dfc17c98dce87b4da7f011ec48c97271d2c20f9b928fe2270d6fb863d51738"
827 "b48eeee314a7cc8ab932164548e526ae90224368517acfeabd6bb3732bc0e9da"
828 "99832b61ca01b6de56244a9e88d5f9b37973f622a43d14a6599b1f654cb45a74"
829 "e355a5",
830 "eea6a7251c1e72916d11c2cb214d3c25""2539121d8e234e652d651fa4c8cff880",
831 "f3ffc7703f9400e52a7dfb4b3d3305d9"
832 },
833 { /* wrap 2^130-5 */
834 "ffffffffffffffffffffffffffffffff",
835 "02000000000000000000000000000000""00000000000000000000000000000000",
836 "03000000000000000000000000000000"
837 },
838 { /* wrap 2^128 */
839 "02000000000000000000000000000000",
840 "02000000000000000000000000000000""ffffffffffffffffffffffffffffffff",
841 "03000000000000000000000000000000"
842 },
843 { /* limb carry */
844 "fffffffffffffffffffffffffffffffff0ffffffffffffffffffffffffffffff"
845 "11000000000000000000000000000000",
846 "01000000000000000000000000000000""00000000000000000000000000000000",
847 "05000000000000000000000000000000"
848 },
849 { /* 2^130-5 */
850 "fffffffffffffffffffffffffffffffffbfefefefefefefefefefefefefefefe"
851 "01010101010101010101010101010101",
852 "01000000000000000000000000000000""00000000000000000000000000000000",
853 "00000000000000000000000000000000"
854 },
855 { /* 2^130-6 */
856 "fdffffffffffffffffffffffffffffff",
857 "02000000000000000000000000000000""00000000000000000000000000000000",
858 "faffffffffffffffffffffffffffffff"
859 },
860 { /* 5*H+L reduction intermediate */
861 "e33594d7505e43b900000000000000003394d7505e4379cd0100000000000000"
862 "0000000000000000000000000000000001000000000000000000000000000000",
863 "01000000000000000400000000000000""00000000000000000000000000000000",
864 "14000000000000005500000000000000"
865 },
866 { /* 5*H+L reduction final */
867 "e33594d7505e43b900000000000000003394d7505e4379cd0100000000000000"
868 "00000000000000000000000000000000",
869 "01000000000000000400000000000000""00000000000000000000000000000000",
870 "13000000000000000000000000000000"
871 }
872 };
873
874 static unsigned char hex_digit(char h)
875 {
876 int i = OPENSSL_hexchar2int(h);
877
878 if (i < 0)
879 abort();
880 return i;
881 }
882
883 static void hex_decode(unsigned char *out, const char *hex)
884 {
885 size_t j = 0;
886
887 while (*hex != 0) {
888 unsigned char v = hex_digit(*hex++);
889 v <<= 4;
890 v |= hex_digit(*hex++);
891 out[j++] = v;
892 }
893 }
894
895 static void hexdump(unsigned char *a, size_t len)
896 {
897 size_t i;
898
899 for (i = 0; i < len; i++)
900 printf("%02x", a[i]);
901 }
902
903 int main()
904 {
905 static const unsigned num_tests =
906 sizeof(poly1305_tests) / sizeof(struct poly1305_test);
907 unsigned i;
908 unsigned char key[32], out[16], expected[16];
909 POLY1305 poly1305;
910
911 for (i = 0; i < num_tests; i++) {
912 const struct poly1305_test *test = &poly1305_tests[i];
913 unsigned char *in;
914 size_t inlen = strlen(test->inputhex);
915
916 if (strlen(test->keyhex) != sizeof(key) * 2 ||
917 strlen(test->outhex) != sizeof(out) * 2 || (inlen & 1) == 1)
918 return 1;
919
920 inlen /= 2;
921
922 hex_decode(key, test->keyhex);
923 hex_decode(expected, test->outhex);
924
925 in = malloc(inlen);
926
927 hex_decode(in, test->inputhex);
928
929 Poly1305_Init(&poly1305, key);
930 Poly1305_Update(&poly1305, in, inlen);
931 Poly1305_Final(&poly1305, out);
932
933 if (memcmp(out, expected, sizeof(expected)) != 0) {
934 printf("Poly1305 test #%d failed.\n", i);
935 printf("got: ");
936 hexdump(out, sizeof(out));
937 printf("\nexpected: ");
938 hexdump(expected, sizeof(expected));
939 printf("\n");
940 return 1;
941 }
942
943 if (inlen > 16) {
944 Poly1305_Init(&poly1305, key);
945 Poly1305_Update(&poly1305, in, 1);
946 Poly1305_Update(&poly1305, in+1, inlen-1);
947 Poly1305_Final(&poly1305, out);
948
949 if (memcmp(out, expected, sizeof(expected)) != 0) {
950 printf("Poly1305 test #%d/1+(N-1) failed.\n", i);
951 printf("got: ");
952 hexdump(out, sizeof(out));
953 printf("\nexpected: ");
954 hexdump(expected, sizeof(expected));
955 printf("\n");
956 return 1;
957 }
958 }
959
960 if (inlen > 32) {
961 size_t half = inlen / 2;
962
963 Poly1305_Init(&poly1305, key);
964 Poly1305_Update(&poly1305, in, half);
965 Poly1305_Update(&poly1305, in+half, inlen-half);
966 Poly1305_Final(&poly1305, out);
967
968 if (memcmp(out, expected, sizeof(expected)) != 0) {
969 printf("Poly1305 test #%d/2 failed.\n", i);
970 printf("got: ");
971 hexdump(out, sizeof(out));
972 printf("\nexpected: ");
973 hexdump(expected, sizeof(expected));
974 printf("\n");
975 return 1;
976 }
977
978 for (half = 16; half < inlen; half += 16) {
979 Poly1305_Init(&poly1305, key);
980 Poly1305_Update(&poly1305, in, half);
981 Poly1305_Update(&poly1305, in+half, inlen-half);
982 Poly1305_Final(&poly1305, out);
983
984 if (memcmp(out, expected, sizeof(expected)) != 0) {
985 printf("Poly1305 test #%d/%d+%d failed.\n",
986 i, half, inlen-half);
987 printf("got: ");
988 hexdump(out, sizeof(out));
989 printf("\nexpected: ");
990 hexdump(expected, sizeof(expected));
991 printf("\n");
992 return 1;
993 }
994 }
995 }
996
997 free(in);
998 }
999
1000 printf("PASS\n");
1001
1002 # ifdef OPENSSL_CPUID_OBJ
1003 {
1004 unsigned char buf[8192];
1005 unsigned long long stopwatch;
1006 unsigned long long OPENSSL_rdtsc();
1007
1008 memset (buf,0x55,sizeof(buf));
1009 memset (key,0xAA,sizeof(key));
1010
1011 Poly1305_Init(&poly1305, key);
1012
1013 for (i=0;i<100000;i++)
1014 Poly1305_Update(&poly1305,buf,sizeof(buf));
1015
1016 stopwatch = OPENSSL_rdtsc();
1017 for (i=0;i<10000;i++)
1018 Poly1305_Update(&poly1305,buf,sizeof(buf));
1019 stopwatch = OPENSSL_rdtsc() - stopwatch;
1020
1021 printf("%g\n",stopwatch/(double)(i*sizeof(buf)));
1022
1023 stopwatch = OPENSSL_rdtsc();
1024 for (i=0;i<10000;i++) {
1025 Poly1305_Init(&poly1305, key);
1026 Poly1305_Update(&poly1305,buf,16);
1027 Poly1305_Final(&poly1305,buf);
1028 }
1029 stopwatch = OPENSSL_rdtsc() - stopwatch;
1030
1031 printf("%g\n",stopwatch/(double)(i));
1032 }
1033 # endif
1034 return 0;
1035 }
1036 #endif