]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/poly1305/poly1305_ieee754.c
PPC assembly pack: add POWER9 results.
[thirdparty/openssl.git] / crypto / poly1305 / poly1305_ieee754.c
1 /*
2 * Copyright 2016-20018 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 /*
11 * This module is meant to be used as template for non-x87 floating-
12 * point assembly modules. The template itself is x86_64-specific
13 * though, as it was debugged on x86_64. So that implementor would
14 * have to recognize platform-specific parts, UxTOy and inline asm,
15 * and act accordingly.
16 *
17 * Huh? x86_64-specific code as template for non-x87? Note seven, which
18 * is not a typo, but reference to 80-bit precision. This module on the
19 * other hand relies on 64-bit precision operations, which are default
20 * for x86_64 code. And since we are at it, just for sense of it,
21 * large-block performance in cycles per processed byte for *this* code
22 * is:
23 * gcc-4.8 icc-15.0 clang-3.4(*)
24 *
25 * Westmere 4.96 5.09 4.37
26 * Sandy Bridge 4.95 4.90 4.17
27 * Haswell 4.92 4.87 3.78
28 * Bulldozer 4.67 4.49 4.68
29 * VIA Nano 7.07 7.05 5.98
30 * Silvermont 10.6 9.61 12.6
31 *
32 * (*) clang managed to discover parallelism and deployed SIMD;
33 *
34 * And for range of other platforms with unspecified gcc versions:
35 *
36 * Freescale e300 12.5
37 * PPC74x0 10.8
38 * POWER6 4.92
39 * POWER7 4.50
40 * POWER8 4.10
41 * POWER9 3.14
42 *
43 * z10 11.2
44 * z196+ 7.30
45 *
46 * UltraSPARC III 16.0
47 * SPARC T4 16.1
48 */
49
50 #if !(defined(__GNUC__) && __GNUC__>=2)
51 # error "this is gcc-specific template"
52 #endif
53
54 #include <stdlib.h>
55
56 typedef unsigned char u8;
57 typedef unsigned int u32;
58 typedef unsigned long long u64;
59 typedef union { double d; u64 u; } elem64;
60
61 #define TWO(p) ((double)(1ULL<<(p)))
62 #define TWO0 TWO(0)
63 #define TWO32 TWO(32)
64 #define TWO64 (TWO32*TWO(32))
65 #define TWO96 (TWO64*TWO(32))
66 #define TWO130 (TWO96*TWO(34))
67
68 #define EXP(p) ((1023ULL+(p))<<52)
69
70 #if defined(__x86_64__) || (defined(__PPC__) && defined(__LITTLE_ENDIAN__))
71 # define U8TOU32(p) (*(const u32 *)(p))
72 # define U32TO8(p,v) (*(u32 *)(p) = (v))
73 #elif defined(__PPC__)
74 # define U8TOU32(p) ({u32 ret; asm ("lwbrx %0,0,%1":"=r"(ret):"b"(p)); ret; })
75 # define U32TO8(p,v) asm ("stwbrx %0,0,%1"::"r"(v),"b"(p):"memory")
76 #elif defined(__s390x__)
77 # define U8TOU32(p) ({u32 ret; asm ("lrv %0,%1":"=d"(ret):"m"(*(u32 *)(p))); ret; })
78 # define U32TO8(p,v) asm ("strv %1,%0":"=m"(*(u32 *)(p)):"d"(v))
79 #endif
80
81 #ifndef U8TOU32
82 # define U8TOU32(p) ((u32)(p)[0] | (u32)(p)[1]<<8 | \
83 (u32)(p)[2]<<16 | (u32)(p)[3]<<24 )
84 #endif
85 #ifndef U32TO8
86 # define U32TO8(p,v) ((p)[0] = (u8)(v), (p)[1] = (u8)((v)>>8), \
87 (p)[2] = (u8)((v)>>16), (p)[3] = (u8)((v)>>24) )
88 #endif
89
90 typedef struct {
91 elem64 h[4];
92 double r[8];
93 double s[6];
94 } poly1305_internal;
95
96 /* "round toward zero (truncate), mask all exceptions" */
97 #if defined(__x86_64__)
98 static const u32 mxcsr = 0x7f80;
99 #elif defined(__PPC__)
100 static const u64 one = 1;
101 #elif defined(__s390x__)
102 static const u32 fpc = 1;
103 #elif defined(__sparc__)
104 static const u64 fsr = 1ULL<<30;
105 #elif defined(__mips__)
106 static const u32 fcsr = 1;
107 #else
108 #error "unrecognized platform"
109 #endif
110
111 int poly1305_init(void *ctx, const unsigned char key[16])
112 {
113 poly1305_internal *st = (poly1305_internal *) ctx;
114 elem64 r0, r1, r2, r3;
115
116 /* h = 0, biased */
117 #if 0
118 st->h[0].d = TWO(52)*TWO0;
119 st->h[1].d = TWO(52)*TWO32;
120 st->h[2].d = TWO(52)*TWO64;
121 st->h[3].d = TWO(52)*TWO96;
122 #else
123 st->h[0].u = EXP(52+0);
124 st->h[1].u = EXP(52+32);
125 st->h[2].u = EXP(52+64);
126 st->h[3].u = EXP(52+96);
127 #endif
128
129 if (key) {
130 /*
131 * set "truncate" rounding mode
132 */
133 #if defined(__x86_64__)
134 u32 mxcsr_orig;
135
136 asm volatile ("stmxcsr %0":"=m"(mxcsr_orig));
137 asm volatile ("ldmxcsr %0"::"m"(mxcsr));
138 #elif defined(__PPC__)
139 double fpscr_orig, fpscr = *(double *)&one;
140
141 asm volatile ("mffs %0":"=f"(fpscr_orig));
142 asm volatile ("mtfsf 255,%0"::"f"(fpscr));
143 #elif defined(__s390x__)
144 u32 fpc_orig;
145
146 asm volatile ("stfpc %0":"=m"(fpc_orig));
147 asm volatile ("lfpc %0"::"m"(fpc));
148 #elif defined(__sparc__)
149 u64 fsr_orig;
150
151 asm volatile ("stx %%fsr,%0":"=m"(fsr_orig));
152 asm volatile ("ldx %0,%%fsr"::"m"(fsr));
153 #elif defined(__mips__)
154 u32 fcsr_orig;
155
156 asm volatile ("cfc1 %0,$31":"=r"(fcsr_orig));
157 asm volatile ("ctc1 %0,$31"::"r"(fcsr));
158 #endif
159
160 /* r &= 0xffffffc0ffffffc0ffffffc0fffffff */
161 r0.u = EXP(52+0) | (U8TOU32(&key[0]) & 0x0fffffff);
162 r1.u = EXP(52+32) | (U8TOU32(&key[4]) & 0x0ffffffc);
163 r2.u = EXP(52+64) | (U8TOU32(&key[8]) & 0x0ffffffc);
164 r3.u = EXP(52+96) | (U8TOU32(&key[12]) & 0x0ffffffc);
165
166 st->r[0] = r0.d - TWO(52)*TWO0;
167 st->r[2] = r1.d - TWO(52)*TWO32;
168 st->r[4] = r2.d - TWO(52)*TWO64;
169 st->r[6] = r3.d - TWO(52)*TWO96;
170
171 st->s[0] = st->r[2] * (5.0/TWO130);
172 st->s[2] = st->r[4] * (5.0/TWO130);
173 st->s[4] = st->r[6] * (5.0/TWO130);
174
175 /*
176 * base 2^32 -> base 2^16
177 */
178 st->r[1] = (st->r[0] + TWO(52)*TWO(16)*TWO0) -
179 TWO(52)*TWO(16)*TWO0;
180 st->r[0] -= st->r[1];
181
182 st->r[3] = (st->r[2] + TWO(52)*TWO(16)*TWO32) -
183 TWO(52)*TWO(16)*TWO32;
184 st->r[2] -= st->r[3];
185
186 st->r[5] = (st->r[4] + TWO(52)*TWO(16)*TWO64) -
187 TWO(52)*TWO(16)*TWO64;
188 st->r[4] -= st->r[5];
189
190 st->r[7] = (st->r[6] + TWO(52)*TWO(16)*TWO96) -
191 TWO(52)*TWO(16)*TWO96;
192 st->r[6] -= st->r[7];
193
194 st->s[1] = (st->s[0] + TWO(52)*TWO(16)*TWO0/TWO96) -
195 TWO(52)*TWO(16)*TWO0/TWO96;
196 st->s[0] -= st->s[1];
197
198 st->s[3] = (st->s[2] + TWO(52)*TWO(16)*TWO32/TWO96) -
199 TWO(52)*TWO(16)*TWO32/TWO96;
200 st->s[2] -= st->s[3];
201
202 st->s[5] = (st->s[4] + TWO(52)*TWO(16)*TWO64/TWO96) -
203 TWO(52)*TWO(16)*TWO64/TWO96;
204 st->s[4] -= st->s[5];
205
206 /*
207 * restore original FPU control register
208 */
209 #if defined(__x86_64__)
210 asm volatile ("ldmxcsr %0"::"m"(mxcsr_orig));
211 #elif defined(__PPC__)
212 asm volatile ("mtfsf 255,%0"::"f"(fpscr_orig));
213 #elif defined(__s390x__)
214 asm volatile ("lfpc %0"::"m"(fpc_orig));
215 #elif defined(__sparc__)
216 asm volatile ("ldx %0,%%fsr"::"m"(fsr_orig));
217 #elif defined(__mips__)
218 asm volatile ("ctc1 %0,$31"::"r"(fcsr_orig));
219 #endif
220 }
221
222 return 0;
223 }
224
225 void poly1305_blocks(void *ctx, const unsigned char *inp, size_t len,
226 int padbit)
227 {
228 poly1305_internal *st = (poly1305_internal *)ctx;
229 elem64 in0, in1, in2, in3;
230 u64 pad = (u64)padbit<<32;
231
232 double x0, x1, x2, x3;
233 double h0lo, h0hi, h1lo, h1hi, h2lo, h2hi, h3lo, h3hi;
234 double c0lo, c0hi, c1lo, c1hi, c2lo, c2hi, c3lo, c3hi;
235
236 const double r0lo = st->r[0];
237 const double r0hi = st->r[1];
238 const double r1lo = st->r[2];
239 const double r1hi = st->r[3];
240 const double r2lo = st->r[4];
241 const double r2hi = st->r[5];
242 const double r3lo = st->r[6];
243 const double r3hi = st->r[7];
244
245 const double s1lo = st->s[0];
246 const double s1hi = st->s[1];
247 const double s2lo = st->s[2];
248 const double s2hi = st->s[3];
249 const double s3lo = st->s[4];
250 const double s3hi = st->s[5];
251
252 /*
253 * set "truncate" rounding mode
254 */
255 #if defined(__x86_64__)
256 u32 mxcsr_orig;
257
258 asm volatile ("stmxcsr %0":"=m"(mxcsr_orig));
259 asm volatile ("ldmxcsr %0"::"m"(mxcsr));
260 #elif defined(__PPC__)
261 double fpscr_orig, fpscr = *(double *)&one;
262
263 asm volatile ("mffs %0":"=f"(fpscr_orig));
264 asm volatile ("mtfsf 255,%0"::"f"(fpscr));
265 #elif defined(__s390x__)
266 u32 fpc_orig;
267
268 asm volatile ("stfpc %0":"=m"(fpc_orig));
269 asm volatile ("lfpc %0"::"m"(fpc));
270 #elif defined(__sparc__)
271 u64 fsr_orig;
272
273 asm volatile ("stx %%fsr,%0":"=m"(fsr_orig));
274 asm volatile ("ldx %0,%%fsr"::"m"(fsr));
275 #elif defined(__mips__)
276 u32 fcsr_orig;
277
278 asm volatile ("cfc1 %0,$31":"=r"(fcsr_orig));
279 asm volatile ("ctc1 %0,$31"::"r"(fcsr));
280 #endif
281
282 /*
283 * load base 2^32 and de-bias
284 */
285 h0lo = st->h[0].d - TWO(52)*TWO0;
286 h1lo = st->h[1].d - TWO(52)*TWO32;
287 h2lo = st->h[2].d - TWO(52)*TWO64;
288 h3lo = st->h[3].d - TWO(52)*TWO96;
289
290 #ifdef __clang__
291 h0hi = 0;
292 h1hi = 0;
293 h2hi = 0;
294 h3hi = 0;
295 #else
296 in0.u = EXP(52+0) | U8TOU32(&inp[0]);
297 in1.u = EXP(52+32) | U8TOU32(&inp[4]);
298 in2.u = EXP(52+64) | U8TOU32(&inp[8]);
299 in3.u = EXP(52+96) | U8TOU32(&inp[12]) | pad;
300
301 x0 = in0.d - TWO(52)*TWO0;
302 x1 = in1.d - TWO(52)*TWO32;
303 x2 = in2.d - TWO(52)*TWO64;
304 x3 = in3.d - TWO(52)*TWO96;
305
306 x0 += h0lo;
307 x1 += h1lo;
308 x2 += h2lo;
309 x3 += h3lo;
310
311 goto fast_entry;
312 #endif
313
314 do {
315 in0.u = EXP(52+0) | U8TOU32(&inp[0]);
316 in1.u = EXP(52+32) | U8TOU32(&inp[4]);
317 in2.u = EXP(52+64) | U8TOU32(&inp[8]);
318 in3.u = EXP(52+96) | U8TOU32(&inp[12]) | pad;
319
320 x0 = in0.d - TWO(52)*TWO0;
321 x1 = in1.d - TWO(52)*TWO32;
322 x2 = in2.d - TWO(52)*TWO64;
323 x3 = in3.d - TWO(52)*TWO96;
324
325 /*
326 * note that there are multiple ways to accumulate input, e.g.
327 * one can as well accumulate to h0lo-h1lo-h1hi-h2hi...
328 */
329 h0lo += x0;
330 h0hi += x1;
331 h2lo += x2;
332 h2hi += x3;
333
334 /*
335 * carries that cross 32n-bit (and 130-bit) boundaries
336 */
337 c0lo = (h0lo + TWO(52)*TWO32) - TWO(52)*TWO32;
338 c1lo = (h1lo + TWO(52)*TWO64) - TWO(52)*TWO64;
339 c2lo = (h2lo + TWO(52)*TWO96) - TWO(52)*TWO96;
340 c3lo = (h3lo + TWO(52)*TWO130) - TWO(52)*TWO130;
341
342 c0hi = (h0hi + TWO(52)*TWO32) - TWO(52)*TWO32;
343 c1hi = (h1hi + TWO(52)*TWO64) - TWO(52)*TWO64;
344 c2hi = (h2hi + TWO(52)*TWO96) - TWO(52)*TWO96;
345 c3hi = (h3hi + TWO(52)*TWO130) - TWO(52)*TWO130;
346
347 /*
348 * base 2^48 -> base 2^32 with last reduction step
349 */
350 x1 = (h1lo - c1lo) + c0lo;
351 x2 = (h2lo - c2lo) + c1lo;
352 x3 = (h3lo - c3lo) + c2lo;
353 x0 = (h0lo - c0lo) + c3lo * (5.0/TWO130);
354
355 x1 += (h1hi - c1hi) + c0hi;
356 x2 += (h2hi - c2hi) + c1hi;
357 x3 += (h3hi - c3hi) + c2hi;
358 x0 += (h0hi - c0hi) + c3hi * (5.0/TWO130);
359
360 #ifndef __clang__
361 fast_entry:
362 #endif
363 /*
364 * base 2^32 * base 2^16 = base 2^48
365 */
366 h0lo = s3lo * x1 + s2lo * x2 + s1lo * x3 + r0lo * x0;
367 h1lo = r0lo * x1 + s3lo * x2 + s2lo * x3 + r1lo * x0;
368 h2lo = r1lo * x1 + r0lo * x2 + s3lo * x3 + r2lo * x0;
369 h3lo = r2lo * x1 + r1lo * x2 + r0lo * x3 + r3lo * x0;
370
371 h0hi = s3hi * x1 + s2hi * x2 + s1hi * x3 + r0hi * x0;
372 h1hi = r0hi * x1 + s3hi * x2 + s2hi * x3 + r1hi * x0;
373 h2hi = r1hi * x1 + r0hi * x2 + s3hi * x3 + r2hi * x0;
374 h3hi = r2hi * x1 + r1hi * x2 + r0hi * x3 + r3hi * x0;
375
376 inp += 16;
377 len -= 16;
378
379 } while (len >= 16);
380
381 /*
382 * carries that cross 32n-bit (and 130-bit) boundaries
383 */
384 c0lo = (h0lo + TWO(52)*TWO32) - TWO(52)*TWO32;
385 c1lo = (h1lo + TWO(52)*TWO64) - TWO(52)*TWO64;
386 c2lo = (h2lo + TWO(52)*TWO96) - TWO(52)*TWO96;
387 c3lo = (h3lo + TWO(52)*TWO130) - TWO(52)*TWO130;
388
389 c0hi = (h0hi + TWO(52)*TWO32) - TWO(52)*TWO32;
390 c1hi = (h1hi + TWO(52)*TWO64) - TWO(52)*TWO64;
391 c2hi = (h2hi + TWO(52)*TWO96) - TWO(52)*TWO96;
392 c3hi = (h3hi + TWO(52)*TWO130) - TWO(52)*TWO130;
393
394 /*
395 * base 2^48 -> base 2^32 with last reduction step
396 */
397 x1 = (h1lo - c1lo) + c0lo;
398 x2 = (h2lo - c2lo) + c1lo;
399 x3 = (h3lo - c3lo) + c2lo;
400 x0 = (h0lo - c0lo) + c3lo * (5.0/TWO130);
401
402 x1 += (h1hi - c1hi) + c0hi;
403 x2 += (h2hi - c2hi) + c1hi;
404 x3 += (h3hi - c3hi) + c2hi;
405 x0 += (h0hi - c0hi) + c3hi * (5.0/TWO130);
406
407 /*
408 * store base 2^32, with bias
409 */
410 st->h[1].d = x1 + TWO(52)*TWO32;
411 st->h[2].d = x2 + TWO(52)*TWO64;
412 st->h[3].d = x3 + TWO(52)*TWO96;
413 st->h[0].d = x0 + TWO(52)*TWO0;
414
415 /*
416 * restore original FPU control register
417 */
418 #if defined(__x86_64__)
419 asm volatile ("ldmxcsr %0"::"m"(mxcsr_orig));
420 #elif defined(__PPC__)
421 asm volatile ("mtfsf 255,%0"::"f"(fpscr_orig));
422 #elif defined(__s390x__)
423 asm volatile ("lfpc %0"::"m"(fpc_orig));
424 #elif defined(__sparc__)
425 asm volatile ("ldx %0,%%fsr"::"m"(fsr_orig));
426 #elif defined(__mips__)
427 asm volatile ("ctc1 %0,$31"::"r"(fcsr_orig));
428 #endif
429 }
430
431 void poly1305_emit(void *ctx, unsigned char mac[16], const u32 nonce[4])
432 {
433 poly1305_internal *st = (poly1305_internal *) ctx;
434 u64 h0, h1, h2, h3, h4;
435 u32 g0, g1, g2, g3, g4;
436 u64 t;
437 u32 mask;
438
439 /*
440 * thanks to bias masking exponent gives integer result
441 */
442 h0 = st->h[0].u & 0x000fffffffffffffULL;
443 h1 = st->h[1].u & 0x000fffffffffffffULL;
444 h2 = st->h[2].u & 0x000fffffffffffffULL;
445 h3 = st->h[3].u & 0x000fffffffffffffULL;
446
447 /*
448 * can be partially reduced, so reduce...
449 */
450 h4 = h3>>32; h3 &= 0xffffffffU;
451 g4 = h4&-4;
452 h4 &= 3;
453 g4 += g4>>2;
454
455 h0 += g4;
456 h1 += h0>>32; h0 &= 0xffffffffU;
457 h2 += h1>>32; h1 &= 0xffffffffU;
458 h3 += h2>>32; h2 &= 0xffffffffU;
459
460 /* compute h + -p */
461 g0 = (u32)(t = h0 + 5);
462 g1 = (u32)(t = h1 + (t >> 32));
463 g2 = (u32)(t = h2 + (t >> 32));
464 g3 = (u32)(t = h3 + (t >> 32));
465 g4 = h4 + (u32)(t >> 32);
466
467 /* if there was carry, select g0-g3 */
468 mask = 0 - (g4 >> 2);
469 g0 &= mask;
470 g1 &= mask;
471 g2 &= mask;
472 g3 &= mask;
473 mask = ~mask;
474 g0 |= (h0 & mask);
475 g1 |= (h1 & mask);
476 g2 |= (h2 & mask);
477 g3 |= (h3 & mask);
478
479 /* mac = (h + nonce) % (2^128) */
480 g0 = (u32)(t = (u64)g0 + nonce[0]);
481 g1 = (u32)(t = (u64)g1 + (t >> 32) + nonce[1]);
482 g2 = (u32)(t = (u64)g2 + (t >> 32) + nonce[2]);
483 g3 = (u32)(t = (u64)g3 + (t >> 32) + nonce[3]);
484
485 U32TO8(mac + 0, g0);
486 U32TO8(mac + 4, g1);
487 U32TO8(mac + 8, g2);
488 U32TO8(mac + 12, g3);
489 }