]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/rand/rand_lib.c
143dfb0f1934e29cb03ef124f5612c4070ca66be
[thirdparty/openssl.git] / crypto / rand / rand_lib.c
1 /*
2 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include <time.h>
12 #include "internal/cryptlib.h"
13 #include <openssl/opensslconf.h>
14 #include "internal/rand_int.h"
15 #include <openssl/engine.h>
16 #include "internal/thread_once.h"
17 #include "rand_lcl.h"
18 #ifdef OPENSSL_SYS_UNIX
19 # include <sys/types.h>
20 # include <unistd.h>
21 # include <sys/time.h>
22 #endif
23 #include "e_os.h"
24
25 /* Macro to convert two thirty two bit values into a sixty four bit one */
26 #define TWO32TO64(a, b) ((((uint64_t)(a)) << 32) + (b))
27
28 /*
29 * Check for the existence and support of POSIX timers. The standard
30 * says that the _POSIX_TIMERS macro will have a positive value if they
31 * are available.
32 *
33 * However, we want an additional constraint: that the timer support does
34 * not require an extra library dependency. Early versions of glibc
35 * require -lrt to be specified on the link line to access the timers,
36 * so this needs to be checked for.
37 *
38 * It is worse because some libraries define __GLIBC__ but don't
39 * support the version testing macro (e.g. uClibc). This means
40 * an extra check is needed.
41 *
42 * The final condition is:
43 * "have posix timers and either not glibc or glibc without -lrt"
44 *
45 * The nested #if sequences are required to avoid using a parameterised
46 * macro that might be undefined.
47 */
48 #undef OSSL_POSIX_TIMER_OKAY
49 #if defined(_POSIX_TIMERS) && _POSIX_TIMERS > 0
50 # if defined(__GLIBC__)
51 # if defined(__GLIBC_PREREQ)
52 # if __GLIBC_PREREQ(2, 17)
53 # define OSSL_POSIX_TIMER_OKAY
54 # endif
55 # endif
56 # else
57 # define OSSL_POSIX_TIMER_OKAY
58 # endif
59 #endif
60
61 #ifndef OPENSSL_NO_ENGINE
62 /* non-NULL if default_RAND_meth is ENGINE-provided */
63 static ENGINE *funct_ref;
64 static CRYPTO_RWLOCK *rand_engine_lock;
65 #endif
66 static CRYPTO_RWLOCK *rand_meth_lock;
67 static const RAND_METHOD *default_RAND_meth;
68 static CRYPTO_ONCE rand_init = CRYPTO_ONCE_STATIC_INIT;
69
70 int rand_fork_count;
71
72 #ifdef OPENSSL_RAND_SEED_RDTSC
73 /*
74 * IMPORTANT NOTE: It is not currently possible to use this code
75 * because we are not sure about the amount of randomness it provides.
76 * Some SP900 tests have been run, but there is internal skepticism.
77 * So for now this code is not used.
78 */
79 # error "RDTSC enabled? Should not be possible!"
80
81 /*
82 * Acquire entropy from high-speed clock
83 *
84 * Since we get some randomness from the low-order bits of the
85 * high-speed clock, it can help.
86 *
87 * Returns the total entropy count, if it exceeds the requested
88 * entropy count. Otherwise, returns an entropy count of 0.
89 */
90 size_t rand_acquire_entropy_from_tsc(RAND_POOL *pool)
91 {
92 unsigned char c;
93 int i;
94
95 if ((OPENSSL_ia32cap_P[0] & (1 << 4)) != 0) {
96 for (i = 0; i < TSC_READ_COUNT; i++) {
97 c = (unsigned char)(OPENSSL_rdtsc() & 0xFF);
98 rand_pool_add(pool, &c, 1, 4);
99 }
100 }
101 return rand_pool_entropy_available(pool);
102 }
103 #endif
104
105 #ifdef OPENSSL_RAND_SEED_RDCPU
106 size_t OPENSSL_ia32_rdseed_bytes(unsigned char *buf, size_t len);
107 size_t OPENSSL_ia32_rdrand_bytes(unsigned char *buf, size_t len);
108
109 extern unsigned int OPENSSL_ia32cap_P[];
110
111 /*
112 * Acquire entropy using Intel-specific cpu instructions
113 *
114 * Uses the RDSEED instruction if available, otherwise uses
115 * RDRAND if available.
116 *
117 * For the differences between RDSEED and RDRAND, and why RDSEED
118 * is the preferred choice, see https://goo.gl/oK3KcN
119 *
120 * Returns the total entropy count, if it exceeds the requested
121 * entropy count. Otherwise, returns an entropy count of 0.
122 */
123 size_t rand_acquire_entropy_from_cpu(RAND_POOL *pool)
124 {
125 size_t bytes_needed;
126 unsigned char *buffer;
127
128 bytes_needed = rand_pool_bytes_needed(pool, 8 /*entropy_per_byte*/);
129 if (bytes_needed > 0) {
130 buffer = rand_pool_add_begin(pool, bytes_needed);
131
132 if (buffer != NULL) {
133
134 /* If RDSEED is available, use that. */
135 if ((OPENSSL_ia32cap_P[2] & (1 << 18)) != 0) {
136 if (OPENSSL_ia32_rdseed_bytes(buffer, bytes_needed)
137 == bytes_needed)
138 return rand_pool_add_end(pool,
139 bytes_needed,
140 8 * bytes_needed);
141 }
142
143 /* Second choice is RDRAND. */
144 if ((OPENSSL_ia32cap_P[1] & (1 << (62 - 32))) != 0) {
145 if (OPENSSL_ia32_rdrand_bytes(buffer, bytes_needed)
146 == bytes_needed)
147 return rand_pool_add_end(pool,
148 bytes_needed,
149 8 * bytes_needed);
150 }
151
152 return rand_pool_add_end(pool, 0, 0);
153 }
154 }
155
156 return rand_pool_entropy_available(pool);
157 }
158 #endif
159
160
161 /*
162 * Implements the get_entropy() callback (see RAND_DRBG_set_callbacks())
163 *
164 * If the DRBG has a parent, then the required amount of entropy input
165 * is fetched using the parent's RAND_DRBG_generate().
166 *
167 * Otherwise, the entropy is polled from the system entropy sources
168 * using rand_pool_acquire_entropy().
169 *
170 * If a random pool has been added to the DRBG using RAND_add(), then
171 * its entropy will be used up first.
172 */
173 size_t rand_drbg_get_entropy(RAND_DRBG *drbg,
174 unsigned char **pout,
175 int entropy, size_t min_len, size_t max_len,
176 int prediction_resistance)
177 {
178 size_t ret = 0;
179 size_t entropy_available = 0;
180 RAND_POOL *pool;
181
182 if (drbg->parent && drbg->strength > drbg->parent->strength) {
183 /*
184 * We currently don't support the algorithm from NIST SP 800-90C
185 * 10.1.2 to use a weaker DRBG as source
186 */
187 RANDerr(RAND_F_RAND_DRBG_GET_ENTROPY, RAND_R_PARENT_STRENGTH_TOO_WEAK);
188 return 0;
189 }
190
191 pool = rand_pool_new(entropy, min_len, max_len);
192 if (pool == NULL)
193 return 0;
194
195 if (drbg->pool) {
196 rand_pool_add(pool,
197 rand_pool_buffer(drbg->pool),
198 rand_pool_length(drbg->pool),
199 rand_pool_entropy(drbg->pool));
200 rand_pool_free(drbg->pool);
201 drbg->pool = NULL;
202 }
203
204 if (drbg->parent) {
205 size_t bytes_needed = rand_pool_bytes_needed(pool, 8);
206 unsigned char *buffer = rand_pool_add_begin(pool, bytes_needed);
207
208 if (buffer != NULL) {
209 size_t bytes = 0;
210
211 /*
212 * Get random from parent, include our state as additional input.
213 * Our lock is already held, but we need to lock our parent before
214 * generating bits from it. (Note: taking the lock will be a no-op
215 * if locking if drbg->parent->lock == NULL.)
216 */
217 rand_drbg_lock(drbg->parent);
218 if (RAND_DRBG_generate(drbg->parent,
219 buffer, bytes_needed,
220 prediction_resistance,
221 (unsigned char *)drbg, sizeof(*drbg)) != 0)
222 bytes = bytes_needed;
223 rand_drbg_unlock(drbg->parent);
224
225 entropy_available = rand_pool_add_end(pool, bytes, 8 * bytes);
226 }
227
228 } else {
229 if (prediction_resistance) {
230 /*
231 * We don't have any entropy sources that comply with the NIST
232 * standard to provide prediction resistance (see NIST SP 800-90C,
233 * Section 5.4).
234 */
235 RANDerr(RAND_F_RAND_DRBG_GET_ENTROPY,
236 RAND_R_PREDICTION_RESISTANCE_NOT_SUPPORTED);
237 return 0;
238 }
239
240 /* Get entropy by polling system entropy sources. */
241 entropy_available = rand_pool_acquire_entropy(pool);
242 }
243
244 if (entropy_available > 0) {
245 ret = rand_pool_length(pool);
246 *pout = rand_pool_detach(pool);
247 }
248
249 rand_pool_free(pool);
250 return ret;
251 }
252
253 /*
254 * Find a suitable source of time. Start with the highest resolution source
255 * and work down to the slower ones. This is added as additional data and
256 * isn't counted as randomness, so any result is acceptable.
257 *
258 * Returns 0 when we weren't able to find any time source
259 */
260 static uint64_t get_timer_bits(void)
261 {
262 uint64_t res = OPENSSL_rdtsc();
263
264 if (res != 0)
265 return res;
266 #if defined(_WIN32)
267 {
268 LARGE_INTEGER t;
269 FILETIME ft;
270
271 if (QueryPerformanceCounter(&t) != 0)
272 return t.QuadPart;
273 GetSystemTimeAsFileTime(&ft);
274 return TWO32TO64(ft.dwHighDateTime, ft.dwLowDateTime);
275 }
276 #elif defined(__sun) || defined(__hpux)
277 return gethrtime();
278 #elif defined(_AIX)
279 {
280 timebasestruct_t t;
281
282 read_wall_time(&t, TIMEBASE_SZ);
283 return TWO32TO64(t.tb_high, t.tb_low);
284 }
285 #else
286
287 # if defined(OSSL_POSIX_TIMER_OKAY)
288 {
289 struct timespec ts;
290 clockid_t cid;
291
292 # ifdef CLOCK_BOOTTIME
293 cid = CLOCK_BOOTTIME;
294 # elif defined(_POSIX_MONOTONIC_CLOCK)
295 cid = CLOCK_MONOTONIC;
296 # else
297 cid = CLOCK_REALTIME;
298 # endif
299
300 if (clock_gettime(cid, &ts) == 0)
301 return TWO32TO64(ts.tv_sec, ts.tv_nsec);
302 }
303 # endif
304 # if defined(__unix__) \
305 || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
306 {
307 struct timeval tv;
308
309 if (gettimeofday(&tv, NULL) == 0)
310 return TWO32TO64(tv.tv_sec, tv.tv_usec);
311 }
312 # endif
313 {
314 time_t t = time(NULL);
315 if (t == (time_t)-1)
316 return 0;
317 return t;
318 }
319 #endif
320 }
321
322 /*
323 * Generate additional data that can be used for the drbg. The data does
324 * not need to contain entropy, but it's useful if it contains at least
325 * some bits that are unpredictable.
326 *
327 * Returns 0 on failure.
328 *
329 * On success it allocates a buffer at |*pout| and returns the length of
330 * the data. The buffer should get freed using OPENSSL_secure_clear_free().
331 */
332 size_t rand_drbg_get_additional_data(unsigned char **pout, size_t max_len)
333 {
334 RAND_POOL *pool;
335 CRYPTO_THREAD_ID thread_id;
336 size_t len;
337 #ifdef OPENSSL_SYS_UNIX
338 pid_t pid;
339 #elif defined(OPENSSL_SYS_WIN32)
340 DWORD pid;
341 #endif
342 uint64_t tbits;
343
344 pool = rand_pool_new(0, 0, max_len);
345 if (pool == NULL)
346 return 0;
347
348 #ifdef OPENSSL_SYS_UNIX
349 pid = getpid();
350 rand_pool_add(pool, (unsigned char *)&pid, sizeof(pid), 0);
351 #elif defined(OPENSSL_SYS_WIN32)
352 pid = GetCurrentProcessId();
353 rand_pool_add(pool, (unsigned char *)&pid, sizeof(pid), 0);
354 #endif
355
356 thread_id = CRYPTO_THREAD_get_current_id();
357 if (thread_id != 0)
358 rand_pool_add(pool, (unsigned char *)&thread_id, sizeof(thread_id), 0);
359
360 tbits = get_timer_bits();
361 if (tbits != 0)
362 rand_pool_add(pool, (unsigned char *)&tbits, sizeof(tbits), 0);
363
364 /* TODO: Use RDSEED? */
365
366 len = rand_pool_length(pool);
367 if (len != 0)
368 *pout = rand_pool_detach(pool);
369 rand_pool_free(pool);
370
371 return len;
372 }
373
374 /*
375 * Implements the cleanup_entropy() callback (see RAND_DRBG_set_callbacks())
376 *
377 */
378 void rand_drbg_cleanup_entropy(RAND_DRBG *drbg,
379 unsigned char *out, size_t outlen)
380 {
381 OPENSSL_secure_clear_free(out, outlen);
382 }
383
384 void rand_fork()
385 {
386 rand_fork_count++;
387 }
388
389 DEFINE_RUN_ONCE_STATIC(do_rand_init)
390 {
391 int ret = 1;
392
393 #ifndef OPENSSL_NO_ENGINE
394 rand_engine_lock = CRYPTO_THREAD_lock_new();
395 ret &= rand_engine_lock != NULL;
396 #endif
397 rand_meth_lock = CRYPTO_THREAD_lock_new();
398 ret &= rand_meth_lock != NULL;
399
400 return ret;
401 }
402
403 void rand_cleanup_int(void)
404 {
405 const RAND_METHOD *meth = default_RAND_meth;
406
407 if (meth != NULL && meth->cleanup != NULL)
408 meth->cleanup();
409 RAND_set_rand_method(NULL);
410 #ifndef OPENSSL_NO_ENGINE
411 CRYPTO_THREAD_lock_free(rand_engine_lock);
412 #endif
413 CRYPTO_THREAD_lock_free(rand_meth_lock);
414 }
415
416 /*
417 * RAND_poll() reseeds the default RNG using random input
418 *
419 * The random input is obtained from polling various entropy
420 * sources which depend on the operating system and are
421 * configurable via the --with-rand-seed configure option.
422 */
423 int RAND_poll(void)
424 {
425 int ret = 0;
426
427 RAND_POOL *pool = NULL;
428
429 const RAND_METHOD *meth = RAND_get_rand_method();
430
431 if (meth == RAND_OpenSSL()) {
432 /* fill random pool and seed the master DRBG */
433 RAND_DRBG *drbg = RAND_DRBG_get0_master();
434
435 if (drbg == NULL)
436 return 0;
437
438 rand_drbg_lock(drbg);
439 ret = rand_drbg_restart(drbg, NULL, 0, 0);
440 rand_drbg_unlock(drbg);
441
442 return ret;
443
444 } else {
445 /* fill random pool and seed the current legacy RNG */
446 pool = rand_pool_new(RAND_DRBG_STRENGTH,
447 RAND_DRBG_STRENGTH / 8,
448 DRBG_MINMAX_FACTOR * (RAND_DRBG_STRENGTH / 8));
449 if (pool == NULL)
450 return 0;
451
452 if (rand_pool_acquire_entropy(pool) == 0)
453 goto err;
454
455 if (meth->add == NULL
456 || meth->add(rand_pool_buffer(pool),
457 rand_pool_length(pool),
458 (rand_pool_entropy(pool) / 8.0)) == 0)
459 goto err;
460
461 ret = 1;
462 }
463
464 err:
465 rand_pool_free(pool);
466 return ret;
467 }
468
469 /*
470 * Allocate memory and initialize a new random pool
471 */
472
473 RAND_POOL *rand_pool_new(int entropy, size_t min_len, size_t max_len)
474 {
475 RAND_POOL *pool = OPENSSL_zalloc(sizeof(*pool));
476
477 if (pool == NULL) {
478 RANDerr(RAND_F_RAND_POOL_NEW, ERR_R_MALLOC_FAILURE);
479 goto err;
480 }
481
482 pool->min_len = min_len;
483 pool->max_len = max_len;
484
485 pool->buffer = OPENSSL_secure_zalloc(pool->max_len);
486 if (pool->buffer == NULL) {
487 RANDerr(RAND_F_RAND_POOL_NEW, ERR_R_MALLOC_FAILURE);
488 goto err;
489 }
490
491 pool->requested_entropy = entropy;
492
493 return pool;
494
495 err:
496 OPENSSL_free(pool);
497 return NULL;
498 }
499
500 /*
501 * Free |pool|, securely erasing its buffer.
502 */
503 void rand_pool_free(RAND_POOL *pool)
504 {
505 if (pool == NULL)
506 return;
507
508 OPENSSL_secure_clear_free(pool->buffer, pool->max_len);
509 OPENSSL_free(pool);
510 }
511
512 /*
513 * Return the |pool|'s buffer to the caller (readonly).
514 */
515 const unsigned char *rand_pool_buffer(RAND_POOL *pool)
516 {
517 return pool->buffer;
518 }
519
520 /*
521 * Return the |pool|'s entropy to the caller.
522 */
523 size_t rand_pool_entropy(RAND_POOL *pool)
524 {
525 return pool->entropy;
526 }
527
528 /*
529 * Return the |pool|'s buffer length to the caller.
530 */
531 size_t rand_pool_length(RAND_POOL *pool)
532 {
533 return pool->len;
534 }
535
536 /*
537 * Detach the |pool| buffer and return it to the caller.
538 * It's the responsibility of the caller to free the buffer
539 * using OPENSSL_secure_clear_free().
540 */
541 unsigned char *rand_pool_detach(RAND_POOL *pool)
542 {
543 unsigned char *ret = pool->buffer;
544 pool->buffer = NULL;
545 return ret;
546 }
547
548
549 /*
550 * If every byte of the input contains |entropy_per_bytes| bits of entropy,
551 * how many bytes does one need to obtain at least |bits| bits of entropy?
552 */
553 #define ENTROPY_TO_BYTES(bits, entropy_per_bytes) \
554 (((bits) + ((entropy_per_bytes) - 1))/(entropy_per_bytes))
555
556
557 /*
558 * Checks whether the |pool|'s entropy is available to the caller.
559 * This is the case when entropy count and buffer length are high enough.
560 * Returns
561 *
562 * |entropy| if the entropy count and buffer size is large enough
563 * 0 otherwise
564 */
565 size_t rand_pool_entropy_available(RAND_POOL *pool)
566 {
567 if (pool->entropy < pool->requested_entropy)
568 return 0;
569
570 if (pool->len < pool->min_len)
571 return 0;
572
573 return pool->entropy;
574 }
575
576 /*
577 * Returns the (remaining) amount of entropy needed to fill
578 * the random pool.
579 */
580
581 size_t rand_pool_entropy_needed(RAND_POOL *pool)
582 {
583 if (pool->entropy < pool->requested_entropy)
584 return pool->requested_entropy - pool->entropy;
585
586 return 0;
587 }
588
589 /*
590 * Returns the number of bytes needed to fill the pool, assuming
591 * the input has 'entropy_per_byte' entropy bits per byte.
592 * In case of an error, 0 is returned.
593 */
594
595 size_t rand_pool_bytes_needed(RAND_POOL *pool, unsigned int entropy_per_byte)
596 {
597 size_t bytes_needed;
598 size_t entropy_needed = rand_pool_entropy_needed(pool);
599
600 if (entropy_per_byte < 1 || entropy_per_byte > 8) {
601 RANDerr(RAND_F_RAND_POOL_BYTES_NEEDED, RAND_R_ARGUMENT_OUT_OF_RANGE);
602 return 0;
603 }
604
605 bytes_needed = ENTROPY_TO_BYTES(entropy_needed, entropy_per_byte);
606
607 if (bytes_needed > pool->max_len - pool->len) {
608 /* not enough space left */
609 RANDerr(RAND_F_RAND_POOL_BYTES_NEEDED, RAND_R_RANDOM_POOL_OVERFLOW);
610 return 0;
611 }
612
613 if (pool->len < pool->min_len &&
614 bytes_needed < pool->min_len - pool->len)
615 /* to meet the min_len requirement */
616 bytes_needed = pool->min_len - pool->len;
617
618 return bytes_needed;
619 }
620
621 /* Returns the remaining number of bytes available */
622 size_t rand_pool_bytes_remaining(RAND_POOL *pool)
623 {
624 return pool->max_len - pool->len;
625 }
626
627 /*
628 * Add random bytes to the random pool.
629 *
630 * It is expected that the |buffer| contains |len| bytes of
631 * random input which contains at least |entropy| bits of
632 * randomness.
633 *
634 * Return available amount of entropy after this operation.
635 * (see rand_pool_entropy_available(pool))
636 */
637 size_t rand_pool_add(RAND_POOL *pool,
638 const unsigned char *buffer, size_t len, size_t entropy)
639 {
640 if (len > pool->max_len - pool->len) {
641 RANDerr(RAND_F_RAND_POOL_ADD, RAND_R_ENTROPY_INPUT_TOO_LONG);
642 return 0;
643 }
644
645 if (len > 0) {
646 memcpy(pool->buffer + pool->len, buffer, len);
647 pool->len += len;
648 pool->entropy += entropy;
649 }
650
651 return rand_pool_entropy_available(pool);
652 }
653
654 /*
655 * Start to add random bytes to the random pool in-place.
656 *
657 * Reserves the next |len| bytes for adding random bytes in-place
658 * and returns a pointer to the buffer.
659 * The caller is allowed to copy up to |len| bytes into the buffer.
660 * If |len| == 0 this is considered a no-op and a NULL pointer
661 * is returned without producing an error message.
662 *
663 * After updating the buffer, rand_pool_add_end() needs to be called
664 * to finish the udpate operation (see next comment).
665 */
666 unsigned char *rand_pool_add_begin(RAND_POOL *pool, size_t len)
667 {
668 if (len == 0)
669 return NULL;
670
671 if (len > pool->max_len - pool->len) {
672 RANDerr(RAND_F_RAND_POOL_ADD_BEGIN, RAND_R_RANDOM_POOL_OVERFLOW);
673 return NULL;
674 }
675
676 return pool->buffer + pool->len;
677 }
678
679 /*
680 * Finish to add random bytes to the random pool in-place.
681 *
682 * Finishes an in-place update of the random pool started by
683 * rand_pool_add_begin() (see previous comment).
684 * It is expected that |len| bytes of random input have been added
685 * to the buffer which contain at least |entropy| bits of randomness.
686 * It is allowed to add less bytes than originally reserved.
687 */
688 size_t rand_pool_add_end(RAND_POOL *pool, size_t len, size_t entropy)
689 {
690 if (len > pool->max_len - pool->len) {
691 RANDerr(RAND_F_RAND_POOL_ADD_END, RAND_R_RANDOM_POOL_OVERFLOW);
692 return 0;
693 }
694
695 if (len > 0) {
696 pool->len += len;
697 pool->entropy += entropy;
698 }
699
700 return rand_pool_entropy_available(pool);
701 }
702
703 int RAND_set_rand_method(const RAND_METHOD *meth)
704 {
705 if (!RUN_ONCE(&rand_init, do_rand_init))
706 return 0;
707
708 CRYPTO_THREAD_write_lock(rand_meth_lock);
709 #ifndef OPENSSL_NO_ENGINE
710 ENGINE_finish(funct_ref);
711 funct_ref = NULL;
712 #endif
713 default_RAND_meth = meth;
714 CRYPTO_THREAD_unlock(rand_meth_lock);
715 return 1;
716 }
717
718 const RAND_METHOD *RAND_get_rand_method(void)
719 {
720 const RAND_METHOD *tmp_meth = NULL;
721
722 if (!RUN_ONCE(&rand_init, do_rand_init))
723 return NULL;
724
725 CRYPTO_THREAD_write_lock(rand_meth_lock);
726 if (default_RAND_meth == NULL) {
727 #ifndef OPENSSL_NO_ENGINE
728 ENGINE *e;
729
730 /* If we have an engine that can do RAND, use it. */
731 if ((e = ENGINE_get_default_RAND()) != NULL
732 && (tmp_meth = ENGINE_get_RAND(e)) != NULL) {
733 funct_ref = e;
734 default_RAND_meth = tmp_meth;
735 } else {
736 ENGINE_finish(e);
737 default_RAND_meth = &rand_meth;
738 }
739 #else
740 default_RAND_meth = &rand_meth;
741 #endif
742 }
743 tmp_meth = default_RAND_meth;
744 CRYPTO_THREAD_unlock(rand_meth_lock);
745 return tmp_meth;
746 }
747
748 #ifndef OPENSSL_NO_ENGINE
749 int RAND_set_rand_engine(ENGINE *engine)
750 {
751 const RAND_METHOD *tmp_meth = NULL;
752
753 if (!RUN_ONCE(&rand_init, do_rand_init))
754 return 0;
755
756 if (engine != NULL) {
757 if (!ENGINE_init(engine))
758 return 0;
759 tmp_meth = ENGINE_get_RAND(engine);
760 if (tmp_meth == NULL) {
761 ENGINE_finish(engine);
762 return 0;
763 }
764 }
765 CRYPTO_THREAD_write_lock(rand_engine_lock);
766 /* This function releases any prior ENGINE so call it first */
767 RAND_set_rand_method(tmp_meth);
768 funct_ref = engine;
769 CRYPTO_THREAD_unlock(rand_engine_lock);
770 return 1;
771 }
772 #endif
773
774 void RAND_seed(const void *buf, int num)
775 {
776 const RAND_METHOD *meth = RAND_get_rand_method();
777
778 if (meth->seed != NULL)
779 meth->seed(buf, num);
780 }
781
782 void RAND_add(const void *buf, int num, double randomness)
783 {
784 const RAND_METHOD *meth = RAND_get_rand_method();
785
786 if (meth->add != NULL)
787 meth->add(buf, num, randomness);
788 }
789
790 /*
791 * This function is not part of RAND_METHOD, so if we're not using
792 * the default method, then just call RAND_bytes(). Otherwise make
793 * sure we're instantiated and use the private DRBG.
794 */
795 int RAND_priv_bytes(unsigned char *buf, int num)
796 {
797 const RAND_METHOD *meth = RAND_get_rand_method();
798 RAND_DRBG *drbg;
799 int ret;
800
801 if (meth != RAND_OpenSSL())
802 return RAND_bytes(buf, num);
803
804 drbg = RAND_DRBG_get0_private();
805 if (drbg == NULL)
806 return 0;
807
808 ret = RAND_DRBG_bytes(drbg, buf, num);
809 return ret;
810 }
811
812 int RAND_bytes(unsigned char *buf, int num)
813 {
814 const RAND_METHOD *meth = RAND_get_rand_method();
815
816 if (meth->bytes != NULL)
817 return meth->bytes(buf, num);
818 RANDerr(RAND_F_RAND_BYTES, RAND_R_FUNC_NOT_IMPLEMENTED);
819 return -1;
820 }
821
822 #if OPENSSL_API_COMPAT < 0x10100000L
823 int RAND_pseudo_bytes(unsigned char *buf, int num)
824 {
825 const RAND_METHOD *meth = RAND_get_rand_method();
826
827 if (meth->pseudorand != NULL)
828 return meth->pseudorand(buf, num);
829 return -1;
830 }
831 #endif
832
833 int RAND_status(void)
834 {
835 const RAND_METHOD *meth = RAND_get_rand_method();
836
837 if (meth->status != NULL)
838 return meth->status();
839 return 0;
840 }