]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/rand/rand_lib.c
Remove ambiguity in rand_pool_add[_end] return value
[thirdparty/openssl.git] / crypto / rand / rand_lib.c
1 /*
2 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include <time.h>
12 #include "internal/cryptlib.h"
13 #include <openssl/opensslconf.h>
14 #include "internal/rand_int.h"
15 #include <openssl/engine.h>
16 #include "internal/thread_once.h"
17 #include "rand_lcl.h"
18 #ifdef OPENSSL_SYS_UNIX
19 # include <sys/types.h>
20 # include <unistd.h>
21 # include <sys/time.h>
22 #endif
23 #include "e_os.h"
24
25 /* Macro to convert two thirty two bit values into a sixty four bit one */
26 #define TWO32TO64(a, b) ((((uint64_t)(a)) << 32) + (b))
27
28 /*
29 * Check for the existence and support of POSIX timers. The standard
30 * says that the _POSIX_TIMERS macro will have a positive value if they
31 * are available.
32 *
33 * However, we want an additional constraint: that the timer support does
34 * not require an extra library dependency. Early versions of glibc
35 * require -lrt to be specified on the link line to access the timers,
36 * so this needs to be checked for.
37 *
38 * It is worse because some libraries define __GLIBC__ but don't
39 * support the version testing macro (e.g. uClibc). This means
40 * an extra check is needed.
41 *
42 * The final condition is:
43 * "have posix timers and either not glibc or glibc without -lrt"
44 *
45 * The nested #if sequences are required to avoid using a parameterised
46 * macro that might be undefined.
47 */
48 #undef OSSL_POSIX_TIMER_OKAY
49 #if defined(_POSIX_TIMERS) && _POSIX_TIMERS > 0
50 # if defined(__GLIBC__)
51 # if defined(__GLIBC_PREREQ)
52 # if __GLIBC_PREREQ(2, 17)
53 # define OSSL_POSIX_TIMER_OKAY
54 # endif
55 # endif
56 # else
57 # define OSSL_POSIX_TIMER_OKAY
58 # endif
59 #endif
60
61 #ifndef OPENSSL_NO_ENGINE
62 /* non-NULL if default_RAND_meth is ENGINE-provided */
63 static ENGINE *funct_ref;
64 static CRYPTO_RWLOCK *rand_engine_lock;
65 #endif
66 static CRYPTO_RWLOCK *rand_meth_lock;
67 static const RAND_METHOD *default_RAND_meth;
68 static CRYPTO_ONCE rand_init = CRYPTO_ONCE_STATIC_INIT;
69
70 int rand_fork_count;
71
72 #ifdef OPENSSL_RAND_SEED_RDTSC
73 /*
74 * IMPORTANT NOTE: It is not currently possible to use this code
75 * because we are not sure about the amount of randomness it provides.
76 * Some SP900 tests have been run, but there is internal skepticism.
77 * So for now this code is not used.
78 */
79 # error "RDTSC enabled? Should not be possible!"
80
81 /*
82 * Acquire entropy from high-speed clock
83 *
84 * Since we get some randomness from the low-order bits of the
85 * high-speed clock, it can help.
86 *
87 * Returns the total entropy count, if it exceeds the requested
88 * entropy count. Otherwise, returns an entropy count of 0.
89 */
90 size_t rand_acquire_entropy_from_tsc(RAND_POOL *pool)
91 {
92 unsigned char c;
93 int i;
94
95 if ((OPENSSL_ia32cap_P[0] & (1 << 4)) != 0) {
96 for (i = 0; i < TSC_READ_COUNT; i++) {
97 c = (unsigned char)(OPENSSL_rdtsc() & 0xFF);
98 rand_pool_add(pool, &c, 1, 4);
99 }
100 }
101 return rand_pool_entropy_available(pool);
102 }
103 #endif
104
105 #ifdef OPENSSL_RAND_SEED_RDCPU
106 size_t OPENSSL_ia32_rdseed_bytes(unsigned char *buf, size_t len);
107 size_t OPENSSL_ia32_rdrand_bytes(unsigned char *buf, size_t len);
108
109 extern unsigned int OPENSSL_ia32cap_P[];
110
111 /*
112 * Acquire entropy using Intel-specific cpu instructions
113 *
114 * Uses the RDSEED instruction if available, otherwise uses
115 * RDRAND if available.
116 *
117 * For the differences between RDSEED and RDRAND, and why RDSEED
118 * is the preferred choice, see https://goo.gl/oK3KcN
119 *
120 * Returns the total entropy count, if it exceeds the requested
121 * entropy count. Otherwise, returns an entropy count of 0.
122 */
123 size_t rand_acquire_entropy_from_cpu(RAND_POOL *pool)
124 {
125 size_t bytes_needed;
126 unsigned char *buffer;
127
128 bytes_needed = rand_pool_bytes_needed(pool, 8 /*entropy_per_byte*/);
129 if (bytes_needed > 0) {
130 buffer = rand_pool_add_begin(pool, bytes_needed);
131
132 if (buffer != NULL) {
133 /* Whichever comes first, use RDSEED, RDRAND or nothing */
134 if ((OPENSSL_ia32cap_P[2] & (1 << 18)) != 0) {
135 if (OPENSSL_ia32_rdseed_bytes(buffer, bytes_needed)
136 == bytes_needed) {
137 rand_pool_add_end(pool, bytes_needed, 8 * bytes_needed);
138 }
139 } else if ((OPENSSL_ia32cap_P[1] & (1 << (62 - 32))) != 0) {
140 if (OPENSSL_ia32_rdrand_bytes(buffer, bytes_needed)
141 == bytes_needed) {
142 rand_pool_add_end(pool, bytes_needed, 8 * bytes_needed);
143 }
144 } else {
145 rand_pool_add_end(pool, 0, 0);
146 }
147 }
148 }
149
150 return rand_pool_entropy_available(pool);
151 }
152 #endif
153
154
155 /*
156 * Implements the get_entropy() callback (see RAND_DRBG_set_callbacks())
157 *
158 * If the DRBG has a parent, then the required amount of entropy input
159 * is fetched using the parent's RAND_DRBG_generate().
160 *
161 * Otherwise, the entropy is polled from the system entropy sources
162 * using rand_pool_acquire_entropy().
163 *
164 * If a random pool has been added to the DRBG using RAND_add(), then
165 * its entropy will be used up first.
166 */
167 size_t rand_drbg_get_entropy(RAND_DRBG *drbg,
168 unsigned char **pout,
169 int entropy, size_t min_len, size_t max_len,
170 int prediction_resistance)
171 {
172 size_t ret = 0;
173 size_t entropy_available = 0;
174 RAND_POOL *pool;
175
176 if (drbg->parent && drbg->strength > drbg->parent->strength) {
177 /*
178 * We currently don't support the algorithm from NIST SP 800-90C
179 * 10.1.2 to use a weaker DRBG as source
180 */
181 RANDerr(RAND_F_RAND_DRBG_GET_ENTROPY, RAND_R_PARENT_STRENGTH_TOO_WEAK);
182 return 0;
183 }
184
185 pool = rand_pool_new(entropy, min_len, max_len);
186 if (pool == NULL)
187 return 0;
188
189 if (drbg->pool) {
190 rand_pool_add(pool,
191 rand_pool_buffer(drbg->pool),
192 rand_pool_length(drbg->pool),
193 rand_pool_entropy(drbg->pool));
194 rand_pool_free(drbg->pool);
195 drbg->pool = NULL;
196 }
197
198 if (drbg->parent) {
199 size_t bytes_needed = rand_pool_bytes_needed(pool, 8);
200 unsigned char *buffer = rand_pool_add_begin(pool, bytes_needed);
201
202 if (buffer != NULL) {
203 size_t bytes = 0;
204
205 /*
206 * Get random from parent, include our state as additional input.
207 * Our lock is already held, but we need to lock our parent before
208 * generating bits from it. (Note: taking the lock will be a no-op
209 * if locking if drbg->parent->lock == NULL.)
210 */
211 rand_drbg_lock(drbg->parent);
212 if (RAND_DRBG_generate(drbg->parent,
213 buffer, bytes_needed,
214 prediction_resistance,
215 (unsigned char *)drbg, sizeof(*drbg)) != 0)
216 bytes = bytes_needed;
217 rand_drbg_unlock(drbg->parent);
218
219 rand_pool_add_end(pool, bytes, 8 * bytes);
220 entropy_available = rand_pool_entropy_available(pool);
221 }
222
223 } else {
224 if (prediction_resistance) {
225 /*
226 * We don't have any entropy sources that comply with the NIST
227 * standard to provide prediction resistance (see NIST SP 800-90C,
228 * Section 5.4).
229 */
230 RANDerr(RAND_F_RAND_DRBG_GET_ENTROPY,
231 RAND_R_PREDICTION_RESISTANCE_NOT_SUPPORTED);
232 return 0;
233 }
234
235 /* Get entropy by polling system entropy sources. */
236 entropy_available = rand_pool_acquire_entropy(pool);
237 }
238
239 if (entropy_available > 0) {
240 ret = rand_pool_length(pool);
241 *pout = rand_pool_detach(pool);
242 }
243
244 rand_pool_free(pool);
245 return ret;
246 }
247
248 /*
249 * Find a suitable source of time. Start with the highest resolution source
250 * and work down to the slower ones. This is added as additional data and
251 * isn't counted as randomness, so any result is acceptable.
252 *
253 * Returns 0 when we weren't able to find any time source
254 */
255 static uint64_t get_timer_bits(void)
256 {
257 uint64_t res = OPENSSL_rdtsc();
258
259 if (res != 0)
260 return res;
261 #if defined(_WIN32)
262 {
263 LARGE_INTEGER t;
264 FILETIME ft;
265
266 if (QueryPerformanceCounter(&t) != 0)
267 return t.QuadPart;
268 GetSystemTimeAsFileTime(&ft);
269 return TWO32TO64(ft.dwHighDateTime, ft.dwLowDateTime);
270 }
271 #elif defined(__sun) || defined(__hpux)
272 return gethrtime();
273 #elif defined(_AIX)
274 {
275 timebasestruct_t t;
276
277 read_wall_time(&t, TIMEBASE_SZ);
278 return TWO32TO64(t.tb_high, t.tb_low);
279 }
280 #else
281
282 # if defined(OSSL_POSIX_TIMER_OKAY)
283 {
284 struct timespec ts;
285 clockid_t cid;
286
287 # ifdef CLOCK_BOOTTIME
288 cid = CLOCK_BOOTTIME;
289 # elif defined(_POSIX_MONOTONIC_CLOCK)
290 cid = CLOCK_MONOTONIC;
291 # else
292 cid = CLOCK_REALTIME;
293 # endif
294
295 if (clock_gettime(cid, &ts) == 0)
296 return TWO32TO64(ts.tv_sec, ts.tv_nsec);
297 }
298 # endif
299 # if defined(__unix__) \
300 || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
301 {
302 struct timeval tv;
303
304 if (gettimeofday(&tv, NULL) == 0)
305 return TWO32TO64(tv.tv_sec, tv.tv_usec);
306 }
307 # endif
308 {
309 time_t t = time(NULL);
310 if (t == (time_t)-1)
311 return 0;
312 return t;
313 }
314 #endif
315 }
316
317 /*
318 * Generate additional data that can be used for the drbg. The data does
319 * not need to contain entropy, but it's useful if it contains at least
320 * some bits that are unpredictable.
321 *
322 * Returns 0 on failure.
323 *
324 * On success it allocates a buffer at |*pout| and returns the length of
325 * the data. The buffer should get freed using OPENSSL_secure_clear_free().
326 */
327 size_t rand_drbg_get_additional_data(unsigned char **pout, size_t max_len)
328 {
329 RAND_POOL *pool;
330 CRYPTO_THREAD_ID thread_id;
331 size_t len;
332 #ifdef OPENSSL_SYS_UNIX
333 pid_t pid;
334 #elif defined(OPENSSL_SYS_WIN32)
335 DWORD pid;
336 #endif
337 uint64_t tbits;
338
339 pool = rand_pool_new(0, 0, max_len);
340 if (pool == NULL)
341 return 0;
342
343 #ifdef OPENSSL_SYS_UNIX
344 pid = getpid();
345 rand_pool_add(pool, (unsigned char *)&pid, sizeof(pid), 0);
346 #elif defined(OPENSSL_SYS_WIN32)
347 pid = GetCurrentProcessId();
348 rand_pool_add(pool, (unsigned char *)&pid, sizeof(pid), 0);
349 #endif
350
351 thread_id = CRYPTO_THREAD_get_current_id();
352 if (thread_id != 0)
353 rand_pool_add(pool, (unsigned char *)&thread_id, sizeof(thread_id), 0);
354
355 tbits = get_timer_bits();
356 if (tbits != 0)
357 rand_pool_add(pool, (unsigned char *)&tbits, sizeof(tbits), 0);
358
359 /* TODO: Use RDSEED? */
360
361 len = rand_pool_length(pool);
362 if (len != 0)
363 *pout = rand_pool_detach(pool);
364 rand_pool_free(pool);
365
366 return len;
367 }
368
369 /*
370 * Implements the cleanup_entropy() callback (see RAND_DRBG_set_callbacks())
371 *
372 */
373 void rand_drbg_cleanup_entropy(RAND_DRBG *drbg,
374 unsigned char *out, size_t outlen)
375 {
376 OPENSSL_secure_clear_free(out, outlen);
377 }
378
379 void rand_fork()
380 {
381 rand_fork_count++;
382 }
383
384 DEFINE_RUN_ONCE_STATIC(do_rand_init)
385 {
386 int ret = 1;
387
388 #ifndef OPENSSL_NO_ENGINE
389 rand_engine_lock = CRYPTO_THREAD_lock_new();
390 ret &= rand_engine_lock != NULL;
391 #endif
392 rand_meth_lock = CRYPTO_THREAD_lock_new();
393 ret &= rand_meth_lock != NULL;
394
395 return ret;
396 }
397
398 void rand_cleanup_int(void)
399 {
400 const RAND_METHOD *meth = default_RAND_meth;
401
402 if (meth != NULL && meth->cleanup != NULL)
403 meth->cleanup();
404 RAND_set_rand_method(NULL);
405 #ifndef OPENSSL_NO_ENGINE
406 CRYPTO_THREAD_lock_free(rand_engine_lock);
407 #endif
408 CRYPTO_THREAD_lock_free(rand_meth_lock);
409 }
410
411 /*
412 * RAND_poll() reseeds the default RNG using random input
413 *
414 * The random input is obtained from polling various entropy
415 * sources which depend on the operating system and are
416 * configurable via the --with-rand-seed configure option.
417 */
418 int RAND_poll(void)
419 {
420 int ret = 0;
421
422 RAND_POOL *pool = NULL;
423
424 const RAND_METHOD *meth = RAND_get_rand_method();
425
426 if (meth == RAND_OpenSSL()) {
427 /* fill random pool and seed the master DRBG */
428 RAND_DRBG *drbg = RAND_DRBG_get0_master();
429
430 if (drbg == NULL)
431 return 0;
432
433 rand_drbg_lock(drbg);
434 ret = rand_drbg_restart(drbg, NULL, 0, 0);
435 rand_drbg_unlock(drbg);
436
437 return ret;
438
439 } else {
440 /* fill random pool and seed the current legacy RNG */
441 pool = rand_pool_new(RAND_DRBG_STRENGTH,
442 RAND_DRBG_STRENGTH / 8,
443 DRBG_MINMAX_FACTOR * (RAND_DRBG_STRENGTH / 8));
444 if (pool == NULL)
445 return 0;
446
447 if (rand_pool_acquire_entropy(pool) == 0)
448 goto err;
449
450 if (meth->add == NULL
451 || meth->add(rand_pool_buffer(pool),
452 rand_pool_length(pool),
453 (rand_pool_entropy(pool) / 8.0)) == 0)
454 goto err;
455
456 ret = 1;
457 }
458
459 err:
460 rand_pool_free(pool);
461 return ret;
462 }
463
464 /*
465 * Allocate memory and initialize a new random pool
466 */
467
468 RAND_POOL *rand_pool_new(int entropy, size_t min_len, size_t max_len)
469 {
470 RAND_POOL *pool = OPENSSL_zalloc(sizeof(*pool));
471
472 if (pool == NULL) {
473 RANDerr(RAND_F_RAND_POOL_NEW, ERR_R_MALLOC_FAILURE);
474 goto err;
475 }
476
477 pool->min_len = min_len;
478 pool->max_len = max_len;
479
480 pool->buffer = OPENSSL_secure_zalloc(pool->max_len);
481 if (pool->buffer == NULL) {
482 RANDerr(RAND_F_RAND_POOL_NEW, ERR_R_MALLOC_FAILURE);
483 goto err;
484 }
485
486 pool->requested_entropy = entropy;
487
488 return pool;
489
490 err:
491 OPENSSL_free(pool);
492 return NULL;
493 }
494
495 /*
496 * Free |pool|, securely erasing its buffer.
497 */
498 void rand_pool_free(RAND_POOL *pool)
499 {
500 if (pool == NULL)
501 return;
502
503 OPENSSL_secure_clear_free(pool->buffer, pool->max_len);
504 OPENSSL_free(pool);
505 }
506
507 /*
508 * Return the |pool|'s buffer to the caller (readonly).
509 */
510 const unsigned char *rand_pool_buffer(RAND_POOL *pool)
511 {
512 return pool->buffer;
513 }
514
515 /*
516 * Return the |pool|'s entropy to the caller.
517 */
518 size_t rand_pool_entropy(RAND_POOL *pool)
519 {
520 return pool->entropy;
521 }
522
523 /*
524 * Return the |pool|'s buffer length to the caller.
525 */
526 size_t rand_pool_length(RAND_POOL *pool)
527 {
528 return pool->len;
529 }
530
531 /*
532 * Detach the |pool| buffer and return it to the caller.
533 * It's the responsibility of the caller to free the buffer
534 * using OPENSSL_secure_clear_free().
535 */
536 unsigned char *rand_pool_detach(RAND_POOL *pool)
537 {
538 unsigned char *ret = pool->buffer;
539 pool->buffer = NULL;
540 return ret;
541 }
542
543
544 /*
545 * If every byte of the input contains |entropy_per_bytes| bits of entropy,
546 * how many bytes does one need to obtain at least |bits| bits of entropy?
547 */
548 #define ENTROPY_TO_BYTES(bits, entropy_per_bytes) \
549 (((bits) + ((entropy_per_bytes) - 1))/(entropy_per_bytes))
550
551
552 /*
553 * Checks whether the |pool|'s entropy is available to the caller.
554 * This is the case when entropy count and buffer length are high enough.
555 * Returns
556 *
557 * |entropy| if the entropy count and buffer size is large enough
558 * 0 otherwise
559 */
560 size_t rand_pool_entropy_available(RAND_POOL *pool)
561 {
562 if (pool->entropy < pool->requested_entropy)
563 return 0;
564
565 if (pool->len < pool->min_len)
566 return 0;
567
568 return pool->entropy;
569 }
570
571 /*
572 * Returns the (remaining) amount of entropy needed to fill
573 * the random pool.
574 */
575
576 size_t rand_pool_entropy_needed(RAND_POOL *pool)
577 {
578 if (pool->entropy < pool->requested_entropy)
579 return pool->requested_entropy - pool->entropy;
580
581 return 0;
582 }
583
584 /*
585 * Returns the number of bytes needed to fill the pool, assuming
586 * the input has 'entropy_per_byte' entropy bits per byte.
587 * In case of an error, 0 is returned.
588 */
589
590 size_t rand_pool_bytes_needed(RAND_POOL *pool, unsigned int entropy_per_byte)
591 {
592 size_t bytes_needed;
593 size_t entropy_needed = rand_pool_entropy_needed(pool);
594
595 if (entropy_per_byte < 1 || entropy_per_byte > 8) {
596 RANDerr(RAND_F_RAND_POOL_BYTES_NEEDED, RAND_R_ARGUMENT_OUT_OF_RANGE);
597 return 0;
598 }
599
600 bytes_needed = ENTROPY_TO_BYTES(entropy_needed, entropy_per_byte);
601
602 if (bytes_needed > pool->max_len - pool->len) {
603 /* not enough space left */
604 RANDerr(RAND_F_RAND_POOL_BYTES_NEEDED, RAND_R_RANDOM_POOL_OVERFLOW);
605 return 0;
606 }
607
608 if (pool->len < pool->min_len &&
609 bytes_needed < pool->min_len - pool->len)
610 /* to meet the min_len requirement */
611 bytes_needed = pool->min_len - pool->len;
612
613 return bytes_needed;
614 }
615
616 /* Returns the remaining number of bytes available */
617 size_t rand_pool_bytes_remaining(RAND_POOL *pool)
618 {
619 return pool->max_len - pool->len;
620 }
621
622 /*
623 * Add random bytes to the random pool.
624 *
625 * It is expected that the |buffer| contains |len| bytes of
626 * random input which contains at least |entropy| bits of
627 * randomness.
628 *
629 * Returns 1 if the added amount is adequate, otherwise 0
630 */
631 int rand_pool_add(RAND_POOL *pool,
632 const unsigned char *buffer, size_t len, size_t entropy)
633 {
634 if (len > pool->max_len - pool->len) {
635 RANDerr(RAND_F_RAND_POOL_ADD, RAND_R_ENTROPY_INPUT_TOO_LONG);
636 return 0;
637 }
638
639 if (len > 0) {
640 memcpy(pool->buffer + pool->len, buffer, len);
641 pool->len += len;
642 pool->entropy += entropy;
643 }
644
645 return 1;
646 }
647
648 /*
649 * Start to add random bytes to the random pool in-place.
650 *
651 * Reserves the next |len| bytes for adding random bytes in-place
652 * and returns a pointer to the buffer.
653 * The caller is allowed to copy up to |len| bytes into the buffer.
654 * If |len| == 0 this is considered a no-op and a NULL pointer
655 * is returned without producing an error message.
656 *
657 * After updating the buffer, rand_pool_add_end() needs to be called
658 * to finish the udpate operation (see next comment).
659 */
660 unsigned char *rand_pool_add_begin(RAND_POOL *pool, size_t len)
661 {
662 if (len == 0)
663 return NULL;
664
665 if (len > pool->max_len - pool->len) {
666 RANDerr(RAND_F_RAND_POOL_ADD_BEGIN, RAND_R_RANDOM_POOL_OVERFLOW);
667 return NULL;
668 }
669
670 return pool->buffer + pool->len;
671 }
672
673 /*
674 * Finish to add random bytes to the random pool in-place.
675 *
676 * Finishes an in-place update of the random pool started by
677 * rand_pool_add_begin() (see previous comment).
678 * It is expected that |len| bytes of random input have been added
679 * to the buffer which contain at least |entropy| bits of randomness.
680 * It is allowed to add less bytes than originally reserved.
681 */
682 int rand_pool_add_end(RAND_POOL *pool, size_t len, size_t entropy)
683 {
684 if (len > pool->max_len - pool->len) {
685 RANDerr(RAND_F_RAND_POOL_ADD_END, RAND_R_RANDOM_POOL_OVERFLOW);
686 return 0;
687 }
688
689 if (len > 0) {
690 pool->len += len;
691 pool->entropy += entropy;
692 }
693
694 return 1;
695 }
696
697 int RAND_set_rand_method(const RAND_METHOD *meth)
698 {
699 if (!RUN_ONCE(&rand_init, do_rand_init))
700 return 0;
701
702 CRYPTO_THREAD_write_lock(rand_meth_lock);
703 #ifndef OPENSSL_NO_ENGINE
704 ENGINE_finish(funct_ref);
705 funct_ref = NULL;
706 #endif
707 default_RAND_meth = meth;
708 CRYPTO_THREAD_unlock(rand_meth_lock);
709 return 1;
710 }
711
712 const RAND_METHOD *RAND_get_rand_method(void)
713 {
714 const RAND_METHOD *tmp_meth = NULL;
715
716 if (!RUN_ONCE(&rand_init, do_rand_init))
717 return NULL;
718
719 CRYPTO_THREAD_write_lock(rand_meth_lock);
720 if (default_RAND_meth == NULL) {
721 #ifndef OPENSSL_NO_ENGINE
722 ENGINE *e;
723
724 /* If we have an engine that can do RAND, use it. */
725 if ((e = ENGINE_get_default_RAND()) != NULL
726 && (tmp_meth = ENGINE_get_RAND(e)) != NULL) {
727 funct_ref = e;
728 default_RAND_meth = tmp_meth;
729 } else {
730 ENGINE_finish(e);
731 default_RAND_meth = &rand_meth;
732 }
733 #else
734 default_RAND_meth = &rand_meth;
735 #endif
736 }
737 tmp_meth = default_RAND_meth;
738 CRYPTO_THREAD_unlock(rand_meth_lock);
739 return tmp_meth;
740 }
741
742 #ifndef OPENSSL_NO_ENGINE
743 int RAND_set_rand_engine(ENGINE *engine)
744 {
745 const RAND_METHOD *tmp_meth = NULL;
746
747 if (!RUN_ONCE(&rand_init, do_rand_init))
748 return 0;
749
750 if (engine != NULL) {
751 if (!ENGINE_init(engine))
752 return 0;
753 tmp_meth = ENGINE_get_RAND(engine);
754 if (tmp_meth == NULL) {
755 ENGINE_finish(engine);
756 return 0;
757 }
758 }
759 CRYPTO_THREAD_write_lock(rand_engine_lock);
760 /* This function releases any prior ENGINE so call it first */
761 RAND_set_rand_method(tmp_meth);
762 funct_ref = engine;
763 CRYPTO_THREAD_unlock(rand_engine_lock);
764 return 1;
765 }
766 #endif
767
768 void RAND_seed(const void *buf, int num)
769 {
770 const RAND_METHOD *meth = RAND_get_rand_method();
771
772 if (meth->seed != NULL)
773 meth->seed(buf, num);
774 }
775
776 void RAND_add(const void *buf, int num, double randomness)
777 {
778 const RAND_METHOD *meth = RAND_get_rand_method();
779
780 if (meth->add != NULL)
781 meth->add(buf, num, randomness);
782 }
783
784 /*
785 * This function is not part of RAND_METHOD, so if we're not using
786 * the default method, then just call RAND_bytes(). Otherwise make
787 * sure we're instantiated and use the private DRBG.
788 */
789 int RAND_priv_bytes(unsigned char *buf, int num)
790 {
791 const RAND_METHOD *meth = RAND_get_rand_method();
792 RAND_DRBG *drbg;
793 int ret;
794
795 if (meth != RAND_OpenSSL())
796 return RAND_bytes(buf, num);
797
798 drbg = RAND_DRBG_get0_private();
799 if (drbg == NULL)
800 return 0;
801
802 ret = RAND_DRBG_bytes(drbg, buf, num);
803 return ret;
804 }
805
806 int RAND_bytes(unsigned char *buf, int num)
807 {
808 const RAND_METHOD *meth = RAND_get_rand_method();
809
810 if (meth->bytes != NULL)
811 return meth->bytes(buf, num);
812 RANDerr(RAND_F_RAND_BYTES, RAND_R_FUNC_NOT_IMPLEMENTED);
813 return -1;
814 }
815
816 #if OPENSSL_API_COMPAT < 0x10100000L
817 int RAND_pseudo_bytes(unsigned char *buf, int num)
818 {
819 const RAND_METHOD *meth = RAND_get_rand_method();
820
821 if (meth->pseudorand != NULL)
822 return meth->pseudorand(buf, num);
823 return -1;
824 }
825 #endif
826
827 int RAND_status(void)
828 {
829 const RAND_METHOD *meth = RAND_get_rand_method();
830
831 if (meth->status != NULL)
832 return meth->status();
833 return 0;
834 }