]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/rsa/rsa_gen.c
b01f4cf62eddd91bb6531f449baee96e8442f6bc
[thirdparty/openssl.git] / crypto / rsa / rsa_gen.c
1 /*
2 * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 /*
11 * NB: these functions have been "upgraded", the deprecated versions (which
12 * are compatibility wrappers using these functions) are in rsa_depr.c. -
13 * Geoff
14 */
15
16 /*
17 * RSA low level APIs are deprecated for public use, but still ok for
18 * internal use.
19 */
20 #include "internal/deprecated.h"
21
22 #include <stdio.h>
23 #include <time.h>
24 #include "internal/cryptlib.h"
25 #include <openssl/bn.h>
26 #include <openssl/self_test.h>
27 #include "rsa_local.h"
28
29 static int rsa_keygen_pairwise_test(RSA *rsa, OSSL_CALLBACK *cb, void *cbarg);
30 static int rsa_keygen(OPENSSL_CTX *libctx, RSA *rsa, int bits, int primes,
31 BIGNUM *e_value, BN_GENCB *cb, int pairwise_test);
32
33 /*
34 * NB: this wrapper would normally be placed in rsa_lib.c and the static
35 * implementation would probably be in rsa_eay.c. Nonetheless, is kept here
36 * so that we don't introduce a new linker dependency. Eg. any application
37 * that wasn't previously linking object code related to key-generation won't
38 * have to now just because key-generation is part of RSA_METHOD.
39 */
40 int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb)
41 {
42 if (rsa->meth->rsa_keygen != NULL)
43 return rsa->meth->rsa_keygen(rsa, bits, e_value, cb);
44
45 return RSA_generate_multi_prime_key(rsa, bits, RSA_DEFAULT_PRIME_NUM,
46 e_value, cb);
47 }
48
49 int RSA_generate_multi_prime_key(RSA *rsa, int bits, int primes,
50 BIGNUM *e_value, BN_GENCB *cb)
51 {
52 #ifndef FIPS_MODE
53 /* multi-prime is only supported with the builtin key generation */
54 if (rsa->meth->rsa_multi_prime_keygen != NULL) {
55 return rsa->meth->rsa_multi_prime_keygen(rsa, bits, primes,
56 e_value, cb);
57 } else if (rsa->meth->rsa_keygen != NULL) {
58 /*
59 * However, if rsa->meth implements only rsa_keygen, then we
60 * have to honour it in 2-prime case and assume that it wouldn't
61 * know what to do with multi-prime key generated by builtin
62 * subroutine...
63 */
64 if (primes == 2)
65 return rsa->meth->rsa_keygen(rsa, bits, e_value, cb);
66 else
67 return 0;
68 }
69 #endif /* FIPS_MODE */
70 return rsa_keygen(NULL, rsa, bits, primes, e_value, cb, 0);
71 }
72
73 static int rsa_keygen(OPENSSL_CTX *libctx, RSA *rsa, int bits, int primes,
74 BIGNUM *e_value, BN_GENCB *cb, int pairwise_test)
75 {
76 int ok = -1;
77 #ifdef FIPS_MODE
78 if (primes != 2)
79 return 0;
80 ok = rsa_sp800_56b_generate_key(rsa, bits, e_value, cb);
81 pairwise_test = 1; /* FIPS MODE needs to always run the pairwise test */
82 #else
83 BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL, *tmp, *prime;
84 int n = 0, bitsr[RSA_MAX_PRIME_NUM], bitse = 0;
85 int i = 0, quo = 0, rmd = 0, adj = 0, retries = 0;
86 RSA_PRIME_INFO *pinfo = NULL;
87 STACK_OF(RSA_PRIME_INFO) *prime_infos = NULL;
88 BN_CTX *ctx = NULL;
89 BN_ULONG bitst = 0;
90 unsigned long error = 0;
91
92 if (bits < RSA_MIN_MODULUS_BITS) {
93 ok = 0; /* we set our own err */
94 RSAerr(0, RSA_R_KEY_SIZE_TOO_SMALL);
95 goto err;
96 }
97
98 if (primes < RSA_DEFAULT_PRIME_NUM || primes > rsa_multip_cap(bits)) {
99 ok = 0; /* we set our own err */
100 RSAerr(0, RSA_R_KEY_PRIME_NUM_INVALID);
101 goto err;
102 }
103
104 ctx = BN_CTX_new();
105 if (ctx == NULL)
106 goto err;
107 BN_CTX_start(ctx);
108 r0 = BN_CTX_get(ctx);
109 r1 = BN_CTX_get(ctx);
110 r2 = BN_CTX_get(ctx);
111 if (r2 == NULL)
112 goto err;
113
114 /* divide bits into 'primes' pieces evenly */
115 quo = bits / primes;
116 rmd = bits % primes;
117
118 for (i = 0; i < primes; i++)
119 bitsr[i] = (i < rmd) ? quo + 1 : quo;
120
121 rsa->dirty_cnt++;
122
123 /* We need the RSA components non-NULL */
124 if (!rsa->n && ((rsa->n = BN_new()) == NULL))
125 goto err;
126 if (!rsa->d && ((rsa->d = BN_secure_new()) == NULL))
127 goto err;
128 if (!rsa->e && ((rsa->e = BN_new()) == NULL))
129 goto err;
130 if (!rsa->p && ((rsa->p = BN_secure_new()) == NULL))
131 goto err;
132 if (!rsa->q && ((rsa->q = BN_secure_new()) == NULL))
133 goto err;
134 if (!rsa->dmp1 && ((rsa->dmp1 = BN_secure_new()) == NULL))
135 goto err;
136 if (!rsa->dmq1 && ((rsa->dmq1 = BN_secure_new()) == NULL))
137 goto err;
138 if (!rsa->iqmp && ((rsa->iqmp = BN_secure_new()) == NULL))
139 goto err;
140
141 /* initialize multi-prime components */
142 if (primes > RSA_DEFAULT_PRIME_NUM) {
143 rsa->version = RSA_ASN1_VERSION_MULTI;
144 prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, primes - 2);
145 if (prime_infos == NULL)
146 goto err;
147 if (rsa->prime_infos != NULL) {
148 /* could this happen? */
149 sk_RSA_PRIME_INFO_pop_free(rsa->prime_infos, rsa_multip_info_free);
150 }
151 rsa->prime_infos = prime_infos;
152
153 /* prime_info from 2 to |primes| -1 */
154 for (i = 2; i < primes; i++) {
155 pinfo = rsa_multip_info_new();
156 if (pinfo == NULL)
157 goto err;
158 (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);
159 }
160 }
161
162 if (BN_copy(rsa->e, e_value) == NULL)
163 goto err;
164
165 /* generate p, q and other primes (if any) */
166 for (i = 0; i < primes; i++) {
167 adj = 0;
168 retries = 0;
169
170 if (i == 0) {
171 prime = rsa->p;
172 } else if (i == 1) {
173 prime = rsa->q;
174 } else {
175 pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
176 prime = pinfo->r;
177 }
178 BN_set_flags(prime, BN_FLG_CONSTTIME);
179
180 for (;;) {
181 redo:
182 if (!BN_generate_prime_ex(prime, bitsr[i] + adj, 0, NULL, NULL, cb))
183 goto err;
184 /*
185 * prime should not be equal to p, q, r_3...
186 * (those primes prior to this one)
187 */
188 {
189 int j;
190
191 for (j = 0; j < i; j++) {
192 BIGNUM *prev_prime;
193
194 if (j == 0)
195 prev_prime = rsa->p;
196 else if (j == 1)
197 prev_prime = rsa->q;
198 else
199 prev_prime = sk_RSA_PRIME_INFO_value(prime_infos,
200 j - 2)->r;
201
202 if (!BN_cmp(prime, prev_prime)) {
203 goto redo;
204 }
205 }
206 }
207 if (!BN_sub(r2, prime, BN_value_one()))
208 goto err;
209 ERR_set_mark();
210 BN_set_flags(r2, BN_FLG_CONSTTIME);
211 if (BN_mod_inverse(r1, r2, rsa->e, ctx) != NULL) {
212 /* GCD == 1 since inverse exists */
213 break;
214 }
215 error = ERR_peek_last_error();
216 if (ERR_GET_LIB(error) == ERR_LIB_BN
217 && ERR_GET_REASON(error) == BN_R_NO_INVERSE) {
218 /* GCD != 1 */
219 ERR_pop_to_mark();
220 } else {
221 goto err;
222 }
223 if (!BN_GENCB_call(cb, 2, n++))
224 goto err;
225 }
226
227 bitse += bitsr[i];
228
229 /* calculate n immediately to see if it's sufficient */
230 if (i == 1) {
231 /* we get at least 2 primes */
232 if (!BN_mul(r1, rsa->p, rsa->q, ctx))
233 goto err;
234 } else if (i != 0) {
235 /* modulus n = p * q * r_3 * r_4 ... */
236 if (!BN_mul(r1, rsa->n, prime, ctx))
237 goto err;
238 } else {
239 /* i == 0, do nothing */
240 if (!BN_GENCB_call(cb, 3, i))
241 goto err;
242 continue;
243 }
244 /*
245 * if |r1|, product of factors so far, is not as long as expected
246 * (by checking the first 4 bits are less than 0x9 or greater than
247 * 0xF). If so, re-generate the last prime.
248 *
249 * NOTE: This actually can't happen in two-prime case, because of
250 * the way factors are generated.
251 *
252 * Besides, another consideration is, for multi-prime case, even the
253 * length modulus is as long as expected, the modulus could start at
254 * 0x8, which could be utilized to distinguish a multi-prime private
255 * key by using the modulus in a certificate. This is also covered
256 * by checking the length should not be less than 0x9.
257 */
258 if (!BN_rshift(r2, r1, bitse - 4))
259 goto err;
260 bitst = BN_get_word(r2);
261
262 if (bitst < 0x9 || bitst > 0xF) {
263 /*
264 * For keys with more than 4 primes, we attempt longer factor to
265 * meet length requirement.
266 *
267 * Otherwise, we just re-generate the prime with the same length.
268 *
269 * This strategy has the following goals:
270 *
271 * 1. 1024-bit factors are efficient when using 3072 and 4096-bit key
272 * 2. stay the same logic with normal 2-prime key
273 */
274 bitse -= bitsr[i];
275 if (!BN_GENCB_call(cb, 2, n++))
276 goto err;
277 if (primes > 4) {
278 if (bitst < 0x9)
279 adj++;
280 else
281 adj--;
282 } else if (retries == 4) {
283 /*
284 * re-generate all primes from scratch, mainly used
285 * in 4 prime case to avoid long loop. Max retry times
286 * is set to 4.
287 */
288 i = -1;
289 bitse = 0;
290 continue;
291 }
292 retries++;
293 goto redo;
294 }
295 /* save product of primes for further use, for multi-prime only */
296 if (i > 1 && BN_copy(pinfo->pp, rsa->n) == NULL)
297 goto err;
298 if (BN_copy(rsa->n, r1) == NULL)
299 goto err;
300 if (!BN_GENCB_call(cb, 3, i))
301 goto err;
302 }
303
304 if (BN_cmp(rsa->p, rsa->q) < 0) {
305 tmp = rsa->p;
306 rsa->p = rsa->q;
307 rsa->q = tmp;
308 }
309
310 /* calculate d */
311
312 /* p - 1 */
313 if (!BN_sub(r1, rsa->p, BN_value_one()))
314 goto err;
315 /* q - 1 */
316 if (!BN_sub(r2, rsa->q, BN_value_one()))
317 goto err;
318 /* (p - 1)(q - 1) */
319 if (!BN_mul(r0, r1, r2, ctx))
320 goto err;
321 /* multi-prime */
322 for (i = 2; i < primes; i++) {
323 pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
324 /* save r_i - 1 to pinfo->d temporarily */
325 if (!BN_sub(pinfo->d, pinfo->r, BN_value_one()))
326 goto err;
327 if (!BN_mul(r0, r0, pinfo->d, ctx))
328 goto err;
329 }
330
331 {
332 BIGNUM *pr0 = BN_new();
333
334 if (pr0 == NULL)
335 goto err;
336
337 BN_with_flags(pr0, r0, BN_FLG_CONSTTIME);
338 if (!BN_mod_inverse(rsa->d, rsa->e, pr0, ctx)) {
339 BN_free(pr0);
340 goto err; /* d */
341 }
342 /* We MUST free pr0 before any further use of r0 */
343 BN_free(pr0);
344 }
345
346 {
347 BIGNUM *d = BN_new();
348
349 if (d == NULL)
350 goto err;
351
352 BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME);
353
354 /* calculate d mod (p-1) and d mod (q - 1) */
355 if (!BN_mod(rsa->dmp1, d, r1, ctx)
356 || !BN_mod(rsa->dmq1, d, r2, ctx)) {
357 BN_free(d);
358 goto err;
359 }
360
361 /* calculate CRT exponents */
362 for (i = 2; i < primes; i++) {
363 pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
364 /* pinfo->d == r_i - 1 */
365 if (!BN_mod(pinfo->d, d, pinfo->d, ctx)) {
366 BN_free(d);
367 goto err;
368 }
369 }
370
371 /* We MUST free d before any further use of rsa->d */
372 BN_free(d);
373 }
374
375 {
376 BIGNUM *p = BN_new();
377
378 if (p == NULL)
379 goto err;
380 BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME);
381
382 /* calculate inverse of q mod p */
383 if (!BN_mod_inverse(rsa->iqmp, rsa->q, p, ctx)) {
384 BN_free(p);
385 goto err;
386 }
387
388 /* calculate CRT coefficient for other primes */
389 for (i = 2; i < primes; i++) {
390 pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
391 BN_with_flags(p, pinfo->r, BN_FLG_CONSTTIME);
392 if (!BN_mod_inverse(pinfo->t, pinfo->pp, p, ctx)) {
393 BN_free(p);
394 goto err;
395 }
396 }
397
398 /* We MUST free p before any further use of rsa->p */
399 BN_free(p);
400 }
401
402 ok = 1;
403 err:
404 if (ok == -1) {
405 RSAerr(0, ERR_LIB_BN);
406 ok = 0;
407 }
408 BN_CTX_end(ctx);
409 BN_CTX_free(ctx);
410 #endif /* FIPS_MODE */
411
412 if (pairwise_test && ok > 0) {
413 OSSL_CALLBACK *stcb = NULL;
414 void *stcbarg = NULL;
415
416 OSSL_SELF_TEST_get_callback(libctx, &stcb, &stcbarg);
417 ok = rsa_keygen_pairwise_test(rsa, stcb, stcbarg);
418 if (!ok) {
419 /* Clear intermediate results */
420 BN_clear_free(rsa->d);
421 BN_clear_free(rsa->p);
422 BN_clear_free(rsa->q);
423 BN_clear_free(rsa->dmp1);
424 BN_clear_free(rsa->dmq1);
425 BN_clear_free(rsa->iqmp);
426 }
427 }
428 return ok;
429 }
430
431 /*
432 * For RSA key generation it is not known whether the key pair will be used
433 * for key transport or signatures. FIPS 140-2 IG 9.9 states that in this case
434 * either a signature verification OR an encryption operation may be used to
435 * perform the pairwise consistency check. The simpler encrypt/decrypt operation
436 * has been chosen for this case.
437 */
438 static int rsa_keygen_pairwise_test(RSA *rsa, OSSL_CALLBACK *cb, void *cbarg)
439 {
440 int ret = 0;
441 unsigned int ciphertxt_len;
442 unsigned char *ciphertxt = NULL;
443 const unsigned char plaintxt[16] = {0};
444 unsigned char decoded[256];
445 unsigned int decoded_len;
446 unsigned int plaintxt_len = (unsigned int)sizeof(plaintxt_len);
447 int padding = RSA_PKCS1_PADDING;
448 OSSL_SELF_TEST *st = NULL;
449
450 st = OSSL_SELF_TEST_new(cb, cbarg);
451 if (st == NULL)
452 goto err;
453 OSSL_SELF_TEST_onbegin(st, OSSL_SELF_TEST_TYPE_PCT,
454 OSSL_SELF_TEST_DESC_PCT_RSA_PKCS1);
455
456 ciphertxt_len = RSA_size(rsa);
457 ciphertxt = OPENSSL_zalloc(ciphertxt_len);
458 if (ciphertxt == NULL)
459 goto err;
460
461 ciphertxt_len = RSA_public_encrypt(plaintxt_len, plaintxt, ciphertxt, rsa,
462 padding);
463 if (ciphertxt_len <= 0)
464 goto err;
465 if (ciphertxt_len == plaintxt_len
466 && memcmp(decoded, plaintxt, plaintxt_len) == 0)
467 goto err;
468
469 OSSL_SELF_TEST_oncorrupt_byte(st, ciphertxt);
470
471 decoded_len = RSA_private_decrypt(ciphertxt_len, ciphertxt, decoded, rsa,
472 padding);
473 if (decoded_len != plaintxt_len
474 || memcmp(decoded, plaintxt, decoded_len) != 0)
475 goto err;
476
477 ret = 1;
478 err:
479 OSSL_SELF_TEST_onend(st, ret);
480 OSSL_SELF_TEST_free(st);
481 OPENSSL_free(ciphertxt);
482
483 return ret;
484 }