]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/rsa/rsa_gen.c
Fix potential double free in rsa_keygen pairwise test.
[thirdparty/openssl.git] / crypto / rsa / rsa_gen.c
1 /*
2 * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 /*
11 * NB: these functions have been "upgraded", the deprecated versions (which
12 * are compatibility wrappers using these functions) are in rsa_depr.c. -
13 * Geoff
14 */
15
16 /*
17 * RSA low level APIs are deprecated for public use, but still ok for
18 * internal use.
19 */
20 #include "internal/deprecated.h"
21
22 #include <stdio.h>
23 #include <time.h>
24 #include "internal/cryptlib.h"
25 #include <openssl/bn.h>
26 #include <openssl/self_test.h>
27 #include "rsa_local.h"
28
29 static int rsa_keygen_pairwise_test(RSA *rsa, OSSL_CALLBACK *cb, void *cbarg);
30 static int rsa_keygen(OPENSSL_CTX *libctx, RSA *rsa, int bits, int primes,
31 BIGNUM *e_value, BN_GENCB *cb, int pairwise_test);
32
33 /*
34 * NB: this wrapper would normally be placed in rsa_lib.c and the static
35 * implementation would probably be in rsa_eay.c. Nonetheless, is kept here
36 * so that we don't introduce a new linker dependency. Eg. any application
37 * that wasn't previously linking object code related to key-generation won't
38 * have to now just because key-generation is part of RSA_METHOD.
39 */
40 int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb)
41 {
42 if (rsa->meth->rsa_keygen != NULL)
43 return rsa->meth->rsa_keygen(rsa, bits, e_value, cb);
44
45 return RSA_generate_multi_prime_key(rsa, bits, RSA_DEFAULT_PRIME_NUM,
46 e_value, cb);
47 }
48
49 int RSA_generate_multi_prime_key(RSA *rsa, int bits, int primes,
50 BIGNUM *e_value, BN_GENCB *cb)
51 {
52 #ifndef FIPS_MODULE
53 /* multi-prime is only supported with the builtin key generation */
54 if (rsa->meth->rsa_multi_prime_keygen != NULL) {
55 return rsa->meth->rsa_multi_prime_keygen(rsa, bits, primes,
56 e_value, cb);
57 } else if (rsa->meth->rsa_keygen != NULL) {
58 /*
59 * However, if rsa->meth implements only rsa_keygen, then we
60 * have to honour it in 2-prime case and assume that it wouldn't
61 * know what to do with multi-prime key generated by builtin
62 * subroutine...
63 */
64 if (primes == 2)
65 return rsa->meth->rsa_keygen(rsa, bits, e_value, cb);
66 else
67 return 0;
68 }
69 #endif /* FIPS_MODUKE */
70 return rsa_keygen(rsa->libctx, rsa, bits, primes, e_value, cb, 0);
71 }
72
73 #ifndef FIPS_MODULE
74 static int rsa_multiprime_keygen(RSA *rsa, int bits, int primes,
75 BIGNUM *e_value, BN_GENCB *cb)
76 {
77 BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL, *tmp, *prime;
78 int n = 0, bitsr[RSA_MAX_PRIME_NUM], bitse = 0;
79 int i = 0, quo = 0, rmd = 0, adj = 0, retries = 0;
80 RSA_PRIME_INFO *pinfo = NULL;
81 STACK_OF(RSA_PRIME_INFO) *prime_infos = NULL;
82 BN_CTX *ctx = NULL;
83 BN_ULONG bitst = 0;
84 unsigned long error = 0;
85 int ok = -1;
86
87 if (bits < RSA_MIN_MODULUS_BITS) {
88 ok = 0; /* we set our own err */
89 RSAerr(0, RSA_R_KEY_SIZE_TOO_SMALL);
90 goto err;
91 }
92
93 /* A bad value for e can cause infinite loops */
94 if (e_value != NULL && !rsa_check_public_exponent(e_value)) {
95 RSAerr(0, RSA_R_PUB_EXPONENT_OUT_OF_RANGE);
96 return 0;
97 }
98
99 if (primes < RSA_DEFAULT_PRIME_NUM || primes > rsa_multip_cap(bits)) {
100 ok = 0; /* we set our own err */
101 RSAerr(0, RSA_R_KEY_PRIME_NUM_INVALID);
102 goto err;
103 }
104
105 ctx = BN_CTX_new();
106 if (ctx == NULL)
107 goto err;
108 BN_CTX_start(ctx);
109 r0 = BN_CTX_get(ctx);
110 r1 = BN_CTX_get(ctx);
111 r2 = BN_CTX_get(ctx);
112 if (r2 == NULL)
113 goto err;
114
115 /* divide bits into 'primes' pieces evenly */
116 quo = bits / primes;
117 rmd = bits % primes;
118
119 for (i = 0; i < primes; i++)
120 bitsr[i] = (i < rmd) ? quo + 1 : quo;
121
122 rsa->dirty_cnt++;
123
124 /* We need the RSA components non-NULL */
125 if (!rsa->n && ((rsa->n = BN_new()) == NULL))
126 goto err;
127 if (!rsa->d && ((rsa->d = BN_secure_new()) == NULL))
128 goto err;
129 BN_set_flags(rsa->d, BN_FLG_CONSTTIME);
130 if (!rsa->e && ((rsa->e = BN_new()) == NULL))
131 goto err;
132 if (!rsa->p && ((rsa->p = BN_secure_new()) == NULL))
133 goto err;
134 BN_set_flags(rsa->p, BN_FLG_CONSTTIME);
135 if (!rsa->q && ((rsa->q = BN_secure_new()) == NULL))
136 goto err;
137 BN_set_flags(rsa->q, BN_FLG_CONSTTIME);
138 if (!rsa->dmp1 && ((rsa->dmp1 = BN_secure_new()) == NULL))
139 goto err;
140 BN_set_flags(rsa->dmp1, BN_FLG_CONSTTIME);
141 if (!rsa->dmq1 && ((rsa->dmq1 = BN_secure_new()) == NULL))
142 goto err;
143 BN_set_flags(rsa->dmq1, BN_FLG_CONSTTIME);
144 if (!rsa->iqmp && ((rsa->iqmp = BN_secure_new()) == NULL))
145 goto err;
146 BN_set_flags(rsa->iqmp, BN_FLG_CONSTTIME);
147
148 /* initialize multi-prime components */
149 if (primes > RSA_DEFAULT_PRIME_NUM) {
150 rsa->version = RSA_ASN1_VERSION_MULTI;
151 prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, primes - 2);
152 if (prime_infos == NULL)
153 goto err;
154 if (rsa->prime_infos != NULL) {
155 /* could this happen? */
156 sk_RSA_PRIME_INFO_pop_free(rsa->prime_infos, rsa_multip_info_free);
157 }
158 rsa->prime_infos = prime_infos;
159
160 /* prime_info from 2 to |primes| -1 */
161 for (i = 2; i < primes; i++) {
162 pinfo = rsa_multip_info_new();
163 if (pinfo == NULL)
164 goto err;
165 (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);
166 }
167 }
168
169 if (BN_copy(rsa->e, e_value) == NULL)
170 goto err;
171
172 /* generate p, q and other primes (if any) */
173 for (i = 0; i < primes; i++) {
174 adj = 0;
175 retries = 0;
176
177 if (i == 0) {
178 prime = rsa->p;
179 } else if (i == 1) {
180 prime = rsa->q;
181 } else {
182 pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
183 prime = pinfo->r;
184 }
185 BN_set_flags(prime, BN_FLG_CONSTTIME);
186
187 for (;;) {
188 redo:
189 if (!BN_generate_prime_ex(prime, bitsr[i] + adj, 0, NULL, NULL, cb))
190 goto err;
191 /*
192 * prime should not be equal to p, q, r_3...
193 * (those primes prior to this one)
194 */
195 {
196 int j;
197
198 for (j = 0; j < i; j++) {
199 BIGNUM *prev_prime;
200
201 if (j == 0)
202 prev_prime = rsa->p;
203 else if (j == 1)
204 prev_prime = rsa->q;
205 else
206 prev_prime = sk_RSA_PRIME_INFO_value(prime_infos,
207 j - 2)->r;
208
209 if (!BN_cmp(prime, prev_prime)) {
210 goto redo;
211 }
212 }
213 }
214 if (!BN_sub(r2, prime, BN_value_one()))
215 goto err;
216 ERR_set_mark();
217 BN_set_flags(r2, BN_FLG_CONSTTIME);
218 if (BN_mod_inverse(r1, r2, rsa->e, ctx) != NULL) {
219 /* GCD == 1 since inverse exists */
220 break;
221 }
222 error = ERR_peek_last_error();
223 if (ERR_GET_LIB(error) == ERR_LIB_BN
224 && ERR_GET_REASON(error) == BN_R_NO_INVERSE) {
225 /* GCD != 1 */
226 ERR_pop_to_mark();
227 } else {
228 goto err;
229 }
230 if (!BN_GENCB_call(cb, 2, n++))
231 goto err;
232 }
233
234 bitse += bitsr[i];
235
236 /* calculate n immediately to see if it's sufficient */
237 if (i == 1) {
238 /* we get at least 2 primes */
239 if (!BN_mul(r1, rsa->p, rsa->q, ctx))
240 goto err;
241 } else if (i != 0) {
242 /* modulus n = p * q * r_3 * r_4 ... */
243 if (!BN_mul(r1, rsa->n, prime, ctx))
244 goto err;
245 } else {
246 /* i == 0, do nothing */
247 if (!BN_GENCB_call(cb, 3, i))
248 goto err;
249 continue;
250 }
251 /*
252 * if |r1|, product of factors so far, is not as long as expected
253 * (by checking the first 4 bits are less than 0x9 or greater than
254 * 0xF). If so, re-generate the last prime.
255 *
256 * NOTE: This actually can't happen in two-prime case, because of
257 * the way factors are generated.
258 *
259 * Besides, another consideration is, for multi-prime case, even the
260 * length modulus is as long as expected, the modulus could start at
261 * 0x8, which could be utilized to distinguish a multi-prime private
262 * key by using the modulus in a certificate. This is also covered
263 * by checking the length should not be less than 0x9.
264 */
265 if (!BN_rshift(r2, r1, bitse - 4))
266 goto err;
267 bitst = BN_get_word(r2);
268
269 if (bitst < 0x9 || bitst > 0xF) {
270 /*
271 * For keys with more than 4 primes, we attempt longer factor to
272 * meet length requirement.
273 *
274 * Otherwise, we just re-generate the prime with the same length.
275 *
276 * This strategy has the following goals:
277 *
278 * 1. 1024-bit factors are efficient when using 3072 and 4096-bit key
279 * 2. stay the same logic with normal 2-prime key
280 */
281 bitse -= bitsr[i];
282 if (!BN_GENCB_call(cb, 2, n++))
283 goto err;
284 if (primes > 4) {
285 if (bitst < 0x9)
286 adj++;
287 else
288 adj--;
289 } else if (retries == 4) {
290 /*
291 * re-generate all primes from scratch, mainly used
292 * in 4 prime case to avoid long loop. Max retry times
293 * is set to 4.
294 */
295 i = -1;
296 bitse = 0;
297 continue;
298 }
299 retries++;
300 goto redo;
301 }
302 /* save product of primes for further use, for multi-prime only */
303 if (i > 1 && BN_copy(pinfo->pp, rsa->n) == NULL)
304 goto err;
305 if (BN_copy(rsa->n, r1) == NULL)
306 goto err;
307 if (!BN_GENCB_call(cb, 3, i))
308 goto err;
309 }
310
311 if (BN_cmp(rsa->p, rsa->q) < 0) {
312 tmp = rsa->p;
313 rsa->p = rsa->q;
314 rsa->q = tmp;
315 }
316
317 /* calculate d */
318
319 /* p - 1 */
320 if (!BN_sub(r1, rsa->p, BN_value_one()))
321 goto err;
322 /* q - 1 */
323 if (!BN_sub(r2, rsa->q, BN_value_one()))
324 goto err;
325 /* (p - 1)(q - 1) */
326 if (!BN_mul(r0, r1, r2, ctx))
327 goto err;
328 /* multi-prime */
329 for (i = 2; i < primes; i++) {
330 pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
331 /* save r_i - 1 to pinfo->d temporarily */
332 if (!BN_sub(pinfo->d, pinfo->r, BN_value_one()))
333 goto err;
334 if (!BN_mul(r0, r0, pinfo->d, ctx))
335 goto err;
336 }
337
338 {
339 BIGNUM *pr0 = BN_new();
340
341 if (pr0 == NULL)
342 goto err;
343
344 BN_with_flags(pr0, r0, BN_FLG_CONSTTIME);
345 if (!BN_mod_inverse(rsa->d, rsa->e, pr0, ctx)) {
346 BN_free(pr0);
347 goto err; /* d */
348 }
349 /* We MUST free pr0 before any further use of r0 */
350 BN_free(pr0);
351 }
352
353 {
354 BIGNUM *d = BN_new();
355
356 if (d == NULL)
357 goto err;
358
359 BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME);
360
361 /* calculate d mod (p-1) and d mod (q - 1) */
362 if (!BN_mod(rsa->dmp1, d, r1, ctx)
363 || !BN_mod(rsa->dmq1, d, r2, ctx)) {
364 BN_free(d);
365 goto err;
366 }
367
368 /* calculate CRT exponents */
369 for (i = 2; i < primes; i++) {
370 pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
371 /* pinfo->d == r_i - 1 */
372 if (!BN_mod(pinfo->d, d, pinfo->d, ctx)) {
373 BN_free(d);
374 goto err;
375 }
376 }
377
378 /* We MUST free d before any further use of rsa->d */
379 BN_free(d);
380 }
381
382 {
383 BIGNUM *p = BN_new();
384
385 if (p == NULL)
386 goto err;
387 BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME);
388
389 /* calculate inverse of q mod p */
390 if (!BN_mod_inverse(rsa->iqmp, rsa->q, p, ctx)) {
391 BN_free(p);
392 goto err;
393 }
394
395 /* calculate CRT coefficient for other primes */
396 for (i = 2; i < primes; i++) {
397 pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
398 BN_with_flags(p, pinfo->r, BN_FLG_CONSTTIME);
399 if (!BN_mod_inverse(pinfo->t, pinfo->pp, p, ctx)) {
400 BN_free(p);
401 goto err;
402 }
403 }
404
405 /* We MUST free p before any further use of rsa->p */
406 BN_free(p);
407 }
408
409 ok = 1;
410 err:
411 if (ok == -1) {
412 RSAerr(0, ERR_LIB_BN);
413 ok = 0;
414 }
415 BN_CTX_end(ctx);
416 BN_CTX_free(ctx);
417 return ok;
418 }
419 #endif /* FIPS_MODULE */
420
421 static int rsa_keygen(OPENSSL_CTX *libctx, RSA *rsa, int bits, int primes,
422 BIGNUM *e_value, BN_GENCB *cb, int pairwise_test)
423 {
424 int ok = 0;
425
426 /*
427 * Only multi-prime keys or insecure keys with a small key length will use
428 * the older rsa_multiprime_keygen().
429 */
430 if (primes == 2 && bits >= 2048)
431 ok = rsa_sp800_56b_generate_key(rsa, bits, e_value, cb);
432 #ifndef FIPS_MODULE
433 else
434 ok = rsa_multiprime_keygen(rsa, bits, primes, e_value, cb);
435 #endif /* FIPS_MODULE */
436
437 #ifdef FIPS_MODULE
438 pairwise_test = 1; /* FIPS MODE needs to always run the pairwise test */
439 #endif
440 if (pairwise_test && ok > 0) {
441 OSSL_CALLBACK *stcb = NULL;
442 void *stcbarg = NULL;
443
444 OSSL_SELF_TEST_get_callback(libctx, &stcb, &stcbarg);
445 ok = rsa_keygen_pairwise_test(rsa, stcb, stcbarg);
446 if (!ok) {
447 /* Clear intermediate results */
448 BN_clear_free(rsa->d);
449 BN_clear_free(rsa->p);
450 BN_clear_free(rsa->q);
451 BN_clear_free(rsa->dmp1);
452 BN_clear_free(rsa->dmq1);
453 BN_clear_free(rsa->iqmp);
454 rsa->d = NULL;
455 rsa->p = NULL;
456 rsa->q = NULL;
457 rsa->dmp1 = NULL;
458 rsa->dmq1 = NULL;
459 rsa->iqmp = NULL;
460 }
461 }
462 return ok;
463 }
464
465 /*
466 * For RSA key generation it is not known whether the key pair will be used
467 * for key transport or signatures. FIPS 140-2 IG 9.9 states that in this case
468 * either a signature verification OR an encryption operation may be used to
469 * perform the pairwise consistency check. The simpler encrypt/decrypt operation
470 * has been chosen for this case.
471 */
472 static int rsa_keygen_pairwise_test(RSA *rsa, OSSL_CALLBACK *cb, void *cbarg)
473 {
474 int ret = 0;
475 unsigned int ciphertxt_len;
476 unsigned char *ciphertxt = NULL;
477 const unsigned char plaintxt[16] = {0};
478 unsigned char decoded[256];
479 unsigned int decoded_len;
480 unsigned int plaintxt_len = (unsigned int)sizeof(plaintxt_len);
481 int padding = RSA_PKCS1_PADDING;
482 OSSL_SELF_TEST *st = NULL;
483
484 st = OSSL_SELF_TEST_new(cb, cbarg);
485 if (st == NULL)
486 goto err;
487 OSSL_SELF_TEST_onbegin(st, OSSL_SELF_TEST_TYPE_PCT,
488 OSSL_SELF_TEST_DESC_PCT_RSA_PKCS1);
489
490 ciphertxt_len = RSA_size(rsa);
491 ciphertxt = OPENSSL_zalloc(ciphertxt_len);
492 if (ciphertxt == NULL)
493 goto err;
494
495 ciphertxt_len = RSA_public_encrypt(plaintxt_len, plaintxt, ciphertxt, rsa,
496 padding);
497 if (ciphertxt_len <= 0)
498 goto err;
499 if (ciphertxt_len == plaintxt_len
500 && memcmp(ciphertxt, plaintxt, plaintxt_len) == 0)
501 goto err;
502
503 OSSL_SELF_TEST_oncorrupt_byte(st, ciphertxt);
504
505 decoded_len = RSA_private_decrypt(ciphertxt_len, ciphertxt, decoded, rsa,
506 padding);
507 if (decoded_len != plaintxt_len
508 || memcmp(decoded, plaintxt, decoded_len) != 0)
509 goto err;
510
511 ret = 1;
512 err:
513 OSSL_SELF_TEST_onend(st, ret);
514 OSSL_SELF_TEST_free(st);
515 OPENSSL_free(ciphertxt);
516
517 return ret;
518 }