]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/rsa/rsa_lib.c
Augment RSA provider to generate CRT coefficients on EVP_PKEY_fromdata()
[thirdparty/openssl.git] / crypto / rsa / rsa_lib.c
1 /*
2 * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 /*
11 * RSA low level APIs are deprecated for public use, but still ok for
12 * internal use.
13 */
14 #include "internal/deprecated.h"
15
16 #include <openssl/crypto.h>
17 #include <openssl/core_names.h>
18 #ifndef FIPS_MODULE
19 # include <openssl/engine.h>
20 #endif
21 #include <openssl/evp.h>
22 #include <openssl/param_build.h>
23 #include "internal/cryptlib.h"
24 #include "internal/refcount.h"
25 #include "crypto/bn.h"
26 #include "crypto/evp.h"
27 #include "crypto/rsa.h"
28 #include "crypto/security_bits.h"
29 #include "rsa_local.h"
30
31 static RSA *rsa_new_intern(ENGINE *engine, OSSL_LIB_CTX *libctx);
32
33 #ifndef FIPS_MODULE
34 RSA *RSA_new(void)
35 {
36 return rsa_new_intern(NULL, NULL);
37 }
38
39 const RSA_METHOD *RSA_get_method(const RSA *rsa)
40 {
41 return rsa->meth;
42 }
43
44 int RSA_set_method(RSA *rsa, const RSA_METHOD *meth)
45 {
46 /*
47 * NB: The caller is specifically setting a method, so it's not up to us
48 * to deal with which ENGINE it comes from.
49 */
50 const RSA_METHOD *mtmp;
51 mtmp = rsa->meth;
52 if (mtmp->finish)
53 mtmp->finish(rsa);
54 #ifndef OPENSSL_NO_ENGINE
55 ENGINE_finish(rsa->engine);
56 rsa->engine = NULL;
57 #endif
58 rsa->meth = meth;
59 if (meth->init)
60 meth->init(rsa);
61 return 1;
62 }
63
64 RSA *RSA_new_method(ENGINE *engine)
65 {
66 return rsa_new_intern(engine, NULL);
67 }
68 #endif
69
70 RSA *ossl_rsa_new_with_ctx(OSSL_LIB_CTX *libctx)
71 {
72 return rsa_new_intern(NULL, libctx);
73 }
74
75 static RSA *rsa_new_intern(ENGINE *engine, OSSL_LIB_CTX *libctx)
76 {
77 RSA *ret = OPENSSL_zalloc(sizeof(*ret));
78
79 if (ret == NULL)
80 return NULL;
81
82 ret->lock = CRYPTO_THREAD_lock_new();
83 if (ret->lock == NULL) {
84 ERR_raise(ERR_LIB_RSA, ERR_R_CRYPTO_LIB);
85 OPENSSL_free(ret);
86 return NULL;
87 }
88
89 if (!CRYPTO_NEW_REF(&ret->references, 1)) {
90 CRYPTO_THREAD_lock_free(ret->lock);
91 OPENSSL_free(ret);
92 return NULL;
93 }
94
95 ret->libctx = libctx;
96 ret->meth = RSA_get_default_method();
97 #if !defined(OPENSSL_NO_ENGINE) && !defined(FIPS_MODULE)
98 ret->flags = ret->meth->flags & ~RSA_FLAG_NON_FIPS_ALLOW;
99 if (engine) {
100 if (!ENGINE_init(engine)) {
101 ERR_raise(ERR_LIB_RSA, ERR_R_ENGINE_LIB);
102 goto err;
103 }
104 ret->engine = engine;
105 } else {
106 ret->engine = ENGINE_get_default_RSA();
107 }
108 if (ret->engine) {
109 ret->meth = ENGINE_get_RSA(ret->engine);
110 if (ret->meth == NULL) {
111 ERR_raise(ERR_LIB_RSA, ERR_R_ENGINE_LIB);
112 goto err;
113 }
114 }
115 #endif
116
117 ret->flags = ret->meth->flags & ~RSA_FLAG_NON_FIPS_ALLOW;
118 #ifndef FIPS_MODULE
119 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_RSA, ret, &ret->ex_data)) {
120 goto err;
121 }
122 #endif
123
124 if ((ret->meth->init != NULL) && !ret->meth->init(ret)) {
125 ERR_raise(ERR_LIB_RSA, ERR_R_INIT_FAIL);
126 goto err;
127 }
128
129 return ret;
130
131 err:
132 RSA_free(ret);
133 return NULL;
134 }
135
136 void RSA_free(RSA *r)
137 {
138 int i;
139
140 if (r == NULL)
141 return;
142
143 CRYPTO_DOWN_REF(&r->references, &i);
144 REF_PRINT_COUNT("RSA", r);
145 if (i > 0)
146 return;
147 REF_ASSERT_ISNT(i < 0);
148
149 if (r->meth != NULL && r->meth->finish != NULL)
150 r->meth->finish(r);
151 #if !defined(OPENSSL_NO_ENGINE) && !defined(FIPS_MODULE)
152 ENGINE_finish(r->engine);
153 #endif
154
155 #ifndef FIPS_MODULE
156 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_RSA, r, &r->ex_data);
157 #endif
158
159 CRYPTO_THREAD_lock_free(r->lock);
160 CRYPTO_FREE_REF(&r->references);
161
162 BN_free(r->n);
163 BN_free(r->e);
164 BN_clear_free(r->d);
165 BN_clear_free(r->p);
166 BN_clear_free(r->q);
167 BN_clear_free(r->dmp1);
168 BN_clear_free(r->dmq1);
169 BN_clear_free(r->iqmp);
170
171 #if defined(FIPS_MODULE) && !defined(OPENSSL_NO_ACVP_TESTS)
172 ossl_rsa_acvp_test_free(r->acvp_test);
173 #endif
174
175 #ifndef FIPS_MODULE
176 RSA_PSS_PARAMS_free(r->pss);
177 sk_RSA_PRIME_INFO_pop_free(r->prime_infos, ossl_rsa_multip_info_free);
178 #endif
179 BN_BLINDING_free(r->blinding);
180 BN_BLINDING_free(r->mt_blinding);
181 OPENSSL_free(r);
182 }
183
184 int RSA_up_ref(RSA *r)
185 {
186 int i;
187
188 if (CRYPTO_UP_REF(&r->references, &i) <= 0)
189 return 0;
190
191 REF_PRINT_COUNT("RSA", r);
192 REF_ASSERT_ISNT(i < 2);
193 return i > 1 ? 1 : 0;
194 }
195
196 OSSL_LIB_CTX *ossl_rsa_get0_libctx(RSA *r)
197 {
198 return r->libctx;
199 }
200
201 void ossl_rsa_set0_libctx(RSA *r, OSSL_LIB_CTX *libctx)
202 {
203 r->libctx = libctx;
204 }
205
206 #ifndef FIPS_MODULE
207 int RSA_set_ex_data(RSA *r, int idx, void *arg)
208 {
209 return CRYPTO_set_ex_data(&r->ex_data, idx, arg);
210 }
211
212 void *RSA_get_ex_data(const RSA *r, int idx)
213 {
214 return CRYPTO_get_ex_data(&r->ex_data, idx);
215 }
216 #endif
217
218 /*
219 * Define a scaling constant for our fixed point arithmetic.
220 * This value must be a power of two because the base two logarithm code
221 * makes this assumption. The exponent must also be a multiple of three so
222 * that the scale factor has an exact cube root. Finally, the scale factor
223 * should not be so large that a multiplication of two scaled numbers
224 * overflows a 64 bit unsigned integer.
225 */
226 static const unsigned int scale = 1 << 18;
227 static const unsigned int cbrt_scale = 1 << (2 * 18 / 3);
228
229 /* Define some constants, none exceed 32 bits */
230 static const unsigned int log_2 = 0x02c5c8; /* scale * log(2) */
231 static const unsigned int log_e = 0x05c551; /* scale * log2(M_E) */
232 static const unsigned int c1_923 = 0x07b126; /* scale * 1.923 */
233 static const unsigned int c4_690 = 0x12c28f; /* scale * 4.690 */
234
235 /*
236 * Multiply two scaled integers together and rescale the result.
237 */
238 static ossl_inline uint64_t mul2(uint64_t a, uint64_t b)
239 {
240 return a * b / scale;
241 }
242
243 /*
244 * Calculate the cube root of a 64 bit scaled integer.
245 * Although the cube root of a 64 bit number does fit into a 32 bit unsigned
246 * integer, this is not guaranteed after scaling, so this function has a
247 * 64 bit return. This uses the shifting nth root algorithm with some
248 * algebraic simplifications.
249 */
250 static uint64_t icbrt64(uint64_t x)
251 {
252 uint64_t r = 0;
253 uint64_t b;
254 int s;
255
256 for (s = 63; s >= 0; s -= 3) {
257 r <<= 1;
258 b = 3 * r * (r + 1) + 1;
259 if ((x >> s) >= b) {
260 x -= b << s;
261 r++;
262 }
263 }
264 return r * cbrt_scale;
265 }
266
267 /*
268 * Calculate the natural logarithm of a 64 bit scaled integer.
269 * This is done by calculating a base two logarithm and scaling.
270 * The maximum logarithm (base 2) is 64 and this reduces base e, so
271 * a 32 bit result should not overflow. The argument passed must be
272 * greater than unity so we don't need to handle negative results.
273 */
274 static uint32_t ilog_e(uint64_t v)
275 {
276 uint32_t i, r = 0;
277
278 /*
279 * Scale down the value into the range 1 .. 2.
280 *
281 * If fractional numbers need to be processed, another loop needs
282 * to go here that checks v < scale and if so multiplies it by 2 and
283 * reduces r by scale. This also means making r signed.
284 */
285 while (v >= 2 * scale) {
286 v >>= 1;
287 r += scale;
288 }
289 for (i = scale / 2; i != 0; i /= 2) {
290 v = mul2(v, v);
291 if (v >= 2 * scale) {
292 v >>= 1;
293 r += i;
294 }
295 }
296 r = (r * (uint64_t)scale) / log_e;
297 return r;
298 }
299
300 /*
301 * NIST SP 800-56B rev 2 Appendix D: Maximum Security Strength Estimates for IFC
302 * Modulus Lengths.
303 *
304 * Note that this formula is also referred to in SP800-56A rev3 Appendix D:
305 * for FFC safe prime groups for modp and ffdhe.
306 * After Table 25 and Table 26 it refers to
307 * "The maximum security strength estimates were calculated using the formula in
308 * Section 7.5 of the FIPS 140 IG and rounded to the nearest multiple of eight
309 * bits".
310 *
311 * The formula is:
312 *
313 * E = \frac{1.923 \sqrt[3]{nBits \cdot log_e(2)}
314 * \cdot(log_e(nBits \cdot log_e(2))^{2/3} - 4.69}{log_e(2)}
315 * The two cube roots are merged together here.
316 */
317 uint16_t ossl_ifc_ffc_compute_security_bits(int n)
318 {
319 uint64_t x;
320 uint32_t lx;
321 uint16_t y, cap;
322
323 /*
324 * Look for common values as listed in standards.
325 * These values are not exactly equal to the results from the formulae in
326 * the standards but are defined to be canonical.
327 */
328 switch (n) {
329 case 2048: /* SP 800-56B rev 2 Appendix D and FIPS 140-2 IG 7.5 */
330 return 112;
331 case 3072: /* SP 800-56B rev 2 Appendix D and FIPS 140-2 IG 7.5 */
332 return 128;
333 case 4096: /* SP 800-56B rev 2 Appendix D */
334 return 152;
335 case 6144: /* SP 800-56B rev 2 Appendix D */
336 return 176;
337 case 7680: /* FIPS 140-2 IG 7.5 */
338 return 192;
339 case 8192: /* SP 800-56B rev 2 Appendix D */
340 return 200;
341 case 15360: /* FIPS 140-2 IG 7.5 */
342 return 256;
343 }
344
345 /*
346 * The first incorrect result (i.e. not accurate or off by one low) occurs
347 * for n = 699668. The true value here is 1200. Instead of using this n
348 * as the check threshold, the smallest n such that the correct result is
349 * 1200 is used instead.
350 */
351 if (n >= 687737)
352 return 1200;
353 if (n < 8)
354 return 0;
355
356 /*
357 * To ensure that the output is non-decreasing with respect to n,
358 * a cap needs to be applied to the two values where the function over
359 * estimates the strength (according to the above fast path).
360 */
361 if (n <= 7680)
362 cap = 192;
363 else if (n <= 15360)
364 cap = 256;
365 else
366 cap = 1200;
367
368 x = n * (uint64_t)log_2;
369 lx = ilog_e(x);
370 y = (uint16_t)((mul2(c1_923, icbrt64(mul2(mul2(x, lx), lx))) - c4_690)
371 / log_2);
372 y = (y + 4) & ~7;
373 if (y > cap)
374 y = cap;
375 return y;
376 }
377
378
379
380 int RSA_security_bits(const RSA *rsa)
381 {
382 int bits = BN_num_bits(rsa->n);
383
384 #ifndef FIPS_MODULE
385 if (rsa->version == RSA_ASN1_VERSION_MULTI) {
386 /* This ought to mean that we have private key at hand. */
387 int ex_primes = sk_RSA_PRIME_INFO_num(rsa->prime_infos);
388
389 if (ex_primes <= 0 || (ex_primes + 2) > ossl_rsa_multip_cap(bits))
390 return 0;
391 }
392 #endif
393 return ossl_ifc_ffc_compute_security_bits(bits);
394 }
395
396 int RSA_set0_key(RSA *r, BIGNUM *n, BIGNUM *e, BIGNUM *d)
397 {
398 /* If the fields n and e in r are NULL, the corresponding input
399 * parameters MUST be non-NULL for n and e. d may be
400 * left NULL (in case only the public key is used).
401 */
402 if ((r->n == NULL && n == NULL)
403 || (r->e == NULL && e == NULL))
404 return 0;
405
406 if (n != NULL) {
407 BN_free(r->n);
408 r->n = n;
409 }
410 if (e != NULL) {
411 BN_free(r->e);
412 r->e = e;
413 }
414 if (d != NULL) {
415 BN_clear_free(r->d);
416 r->d = d;
417 BN_set_flags(r->d, BN_FLG_CONSTTIME);
418 }
419 r->dirty_cnt++;
420
421 return 1;
422 }
423
424 int RSA_set0_factors(RSA *r, BIGNUM *p, BIGNUM *q)
425 {
426 /* If the fields p and q in r are NULL, the corresponding input
427 * parameters MUST be non-NULL.
428 */
429 if ((r->p == NULL && p == NULL)
430 || (r->q == NULL && q == NULL))
431 return 0;
432
433 if (p != NULL) {
434 BN_clear_free(r->p);
435 r->p = p;
436 BN_set_flags(r->p, BN_FLG_CONSTTIME);
437 }
438 if (q != NULL) {
439 BN_clear_free(r->q);
440 r->q = q;
441 BN_set_flags(r->q, BN_FLG_CONSTTIME);
442 }
443 r->dirty_cnt++;
444
445 return 1;
446 }
447
448 int RSA_set0_crt_params(RSA *r, BIGNUM *dmp1, BIGNUM *dmq1, BIGNUM *iqmp)
449 {
450 /* If the fields dmp1, dmq1 and iqmp in r are NULL, the corresponding input
451 * parameters MUST be non-NULL.
452 */
453 if ((r->dmp1 == NULL && dmp1 == NULL)
454 || (r->dmq1 == NULL && dmq1 == NULL)
455 || (r->iqmp == NULL && iqmp == NULL))
456 return 0;
457
458 if (dmp1 != NULL) {
459 BN_clear_free(r->dmp1);
460 r->dmp1 = dmp1;
461 BN_set_flags(r->dmp1, BN_FLG_CONSTTIME);
462 }
463 if (dmq1 != NULL) {
464 BN_clear_free(r->dmq1);
465 r->dmq1 = dmq1;
466 BN_set_flags(r->dmq1, BN_FLG_CONSTTIME);
467 }
468 if (iqmp != NULL) {
469 BN_clear_free(r->iqmp);
470 r->iqmp = iqmp;
471 BN_set_flags(r->iqmp, BN_FLG_CONSTTIME);
472 }
473 r->dirty_cnt++;
474
475 return 1;
476 }
477
478 #ifndef FIPS_MODULE
479 /*
480 * Is it better to export RSA_PRIME_INFO structure
481 * and related functions to let user pass a triplet?
482 */
483 int RSA_set0_multi_prime_params(RSA *r, BIGNUM *primes[], BIGNUM *exps[],
484 BIGNUM *coeffs[], int pnum)
485 {
486 STACK_OF(RSA_PRIME_INFO) *prime_infos, *old = NULL;
487 RSA_PRIME_INFO *pinfo;
488 int i;
489
490 if (primes == NULL || exps == NULL || coeffs == NULL || pnum == 0)
491 return 0;
492
493 prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, pnum);
494 if (prime_infos == NULL)
495 return 0;
496
497 if (r->prime_infos != NULL)
498 old = r->prime_infos;
499
500 for (i = 0; i < pnum; i++) {
501 pinfo = ossl_rsa_multip_info_new();
502 if (pinfo == NULL)
503 goto err;
504 if (primes[i] != NULL && exps[i] != NULL && coeffs[i] != NULL) {
505 BN_clear_free(pinfo->r);
506 BN_clear_free(pinfo->d);
507 BN_clear_free(pinfo->t);
508 pinfo->r = primes[i];
509 pinfo->d = exps[i];
510 pinfo->t = coeffs[i];
511 BN_set_flags(pinfo->r, BN_FLG_CONSTTIME);
512 BN_set_flags(pinfo->d, BN_FLG_CONSTTIME);
513 BN_set_flags(pinfo->t, BN_FLG_CONSTTIME);
514 } else {
515 ossl_rsa_multip_info_free(pinfo);
516 goto err;
517 }
518 (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);
519 }
520
521 r->prime_infos = prime_infos;
522
523 if (!ossl_rsa_multip_calc_product(r)) {
524 r->prime_infos = old;
525 goto err;
526 }
527
528 if (old != NULL) {
529 /*
530 * This is hard to deal with, since the old infos could
531 * also be set by this function and r, d, t should not
532 * be freed in that case. So currently, stay consistent
533 * with other *set0* functions: just free it...
534 */
535 sk_RSA_PRIME_INFO_pop_free(old, ossl_rsa_multip_info_free);
536 }
537
538 r->version = RSA_ASN1_VERSION_MULTI;
539 r->dirty_cnt++;
540
541 return 1;
542 err:
543 /* r, d, t should not be freed */
544 sk_RSA_PRIME_INFO_pop_free(prime_infos, ossl_rsa_multip_info_free_ex);
545 return 0;
546 }
547 #endif
548
549 void RSA_get0_key(const RSA *r,
550 const BIGNUM **n, const BIGNUM **e, const BIGNUM **d)
551 {
552 if (n != NULL)
553 *n = r->n;
554 if (e != NULL)
555 *e = r->e;
556 if (d != NULL)
557 *d = r->d;
558 }
559
560 void RSA_get0_factors(const RSA *r, const BIGNUM **p, const BIGNUM **q)
561 {
562 if (p != NULL)
563 *p = r->p;
564 if (q != NULL)
565 *q = r->q;
566 }
567
568 #ifndef FIPS_MODULE
569 int RSA_get_multi_prime_extra_count(const RSA *r)
570 {
571 int pnum;
572
573 pnum = sk_RSA_PRIME_INFO_num(r->prime_infos);
574 if (pnum <= 0)
575 pnum = 0;
576 return pnum;
577 }
578
579 int RSA_get0_multi_prime_factors(const RSA *r, const BIGNUM *primes[])
580 {
581 int pnum, i;
582 RSA_PRIME_INFO *pinfo;
583
584 if ((pnum = RSA_get_multi_prime_extra_count(r)) == 0)
585 return 0;
586
587 /*
588 * return other primes
589 * it's caller's responsibility to allocate oth_primes[pnum]
590 */
591 for (i = 0; i < pnum; i++) {
592 pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i);
593 primes[i] = pinfo->r;
594 }
595
596 return 1;
597 }
598 #endif
599
600 void RSA_get0_crt_params(const RSA *r,
601 const BIGNUM **dmp1, const BIGNUM **dmq1,
602 const BIGNUM **iqmp)
603 {
604 if (dmp1 != NULL)
605 *dmp1 = r->dmp1;
606 if (dmq1 != NULL)
607 *dmq1 = r->dmq1;
608 if (iqmp != NULL)
609 *iqmp = r->iqmp;
610 }
611
612 #ifndef FIPS_MODULE
613 int RSA_get0_multi_prime_crt_params(const RSA *r, const BIGNUM *exps[],
614 const BIGNUM *coeffs[])
615 {
616 int pnum;
617
618 if ((pnum = RSA_get_multi_prime_extra_count(r)) == 0)
619 return 0;
620
621 /* return other primes */
622 if (exps != NULL || coeffs != NULL) {
623 RSA_PRIME_INFO *pinfo;
624 int i;
625
626 /* it's the user's job to guarantee the buffer length */
627 for (i = 0; i < pnum; i++) {
628 pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i);
629 if (exps != NULL)
630 exps[i] = pinfo->d;
631 if (coeffs != NULL)
632 coeffs[i] = pinfo->t;
633 }
634 }
635
636 return 1;
637 }
638 #endif
639
640 const BIGNUM *RSA_get0_n(const RSA *r)
641 {
642 return r->n;
643 }
644
645 const BIGNUM *RSA_get0_e(const RSA *r)
646 {
647 return r->e;
648 }
649
650 const BIGNUM *RSA_get0_d(const RSA *r)
651 {
652 return r->d;
653 }
654
655 const BIGNUM *RSA_get0_p(const RSA *r)
656 {
657 return r->p;
658 }
659
660 const BIGNUM *RSA_get0_q(const RSA *r)
661 {
662 return r->q;
663 }
664
665 const BIGNUM *RSA_get0_dmp1(const RSA *r)
666 {
667 return r->dmp1;
668 }
669
670 const BIGNUM *RSA_get0_dmq1(const RSA *r)
671 {
672 return r->dmq1;
673 }
674
675 const BIGNUM *RSA_get0_iqmp(const RSA *r)
676 {
677 return r->iqmp;
678 }
679
680 const RSA_PSS_PARAMS *RSA_get0_pss_params(const RSA *r)
681 {
682 #ifdef FIPS_MODULE
683 return NULL;
684 #else
685 return r->pss;
686 #endif
687 }
688
689 /* Internal */
690 int ossl_rsa_set0_pss_params(RSA *r, RSA_PSS_PARAMS *pss)
691 {
692 #ifdef FIPS_MODULE
693 return 0;
694 #else
695 RSA_PSS_PARAMS_free(r->pss);
696 r->pss = pss;
697 return 1;
698 #endif
699 }
700
701 /* Internal */
702 RSA_PSS_PARAMS_30 *ossl_rsa_get0_pss_params_30(RSA *r)
703 {
704 return &r->pss_params;
705 }
706
707 void RSA_clear_flags(RSA *r, int flags)
708 {
709 r->flags &= ~flags;
710 }
711
712 int RSA_test_flags(const RSA *r, int flags)
713 {
714 return r->flags & flags;
715 }
716
717 void RSA_set_flags(RSA *r, int flags)
718 {
719 r->flags |= flags;
720 }
721
722 int RSA_get_version(RSA *r)
723 {
724 /* { two-prime(0), multi(1) } */
725 return r->version;
726 }
727
728 #ifndef FIPS_MODULE
729 ENGINE *RSA_get0_engine(const RSA *r)
730 {
731 return r->engine;
732 }
733
734 int RSA_pkey_ctx_ctrl(EVP_PKEY_CTX *ctx, int optype, int cmd, int p1, void *p2)
735 {
736 /* If key type not RSA or RSA-PSS return error */
737 if (ctx != NULL && ctx->pmeth != NULL
738 && ctx->pmeth->pkey_id != EVP_PKEY_RSA
739 && ctx->pmeth->pkey_id != EVP_PKEY_RSA_PSS)
740 return -1;
741 return EVP_PKEY_CTX_ctrl(ctx, -1, optype, cmd, p1, p2);
742 }
743 #endif
744
745 DEFINE_STACK_OF(BIGNUM)
746
747 /*
748 * Note: This function deletes values from the parameter
749 * stack values as they are consumed and set in the RSA key.
750 */
751 int ossl_rsa_set0_all_params(RSA *r, STACK_OF(BIGNUM) *primes,
752 STACK_OF(BIGNUM) *exps,
753 STACK_OF(BIGNUM) *coeffs)
754 {
755 #ifndef FIPS_MODULE
756 STACK_OF(RSA_PRIME_INFO) *prime_infos, *old_infos = NULL;
757 #endif
758 int pnum;
759
760 if (primes == NULL || exps == NULL || coeffs == NULL)
761 return 0;
762
763 pnum = sk_BIGNUM_num(primes);
764
765 /* we need at least 2 primes */
766 if (pnum < 2)
767 return 0;
768
769 if (!RSA_set0_factors(r, sk_BIGNUM_value(primes, 0),
770 sk_BIGNUM_value(primes, 1)))
771 return 0;
772
773 /*
774 * if we managed to set everything above, remove those elements from the
775 * stack
776 * Note, we do this after the above all to ensure that we have taken
777 * ownership of all the elements in the RSA key to avoid memory leaks
778 * we also use delete 0 here as we are grabbing items from the end of the
779 * stack rather than the start, otherwise we could use pop
780 */
781 sk_BIGNUM_delete(primes, 0);
782 sk_BIGNUM_delete(primes, 0);
783
784 if (pnum == sk_BIGNUM_num(exps)
785 && pnum == sk_BIGNUM_num(coeffs) + 1) {
786
787 if (!RSA_set0_crt_params(r, sk_BIGNUM_value(exps, 0),
788 sk_BIGNUM_value(exps, 1),
789 sk_BIGNUM_value(coeffs, 0)))
790 return 0;
791
792 /* as above, once we consume the above params, delete them from the list */
793 sk_BIGNUM_delete(exps, 0);
794 sk_BIGNUM_delete(exps, 0);
795 sk_BIGNUM_delete(coeffs, 0);
796 }
797
798 #ifndef FIPS_MODULE
799 old_infos = r->prime_infos;
800 #endif
801
802 if (pnum > 2) {
803 #ifndef FIPS_MODULE
804 int i;
805
806 prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, pnum);
807 if (prime_infos == NULL)
808 return 0;
809
810 for (i = 2; i < pnum; i++) {
811 BIGNUM *prime = sk_BIGNUM_pop(primes);
812 BIGNUM *exp = sk_BIGNUM_pop(exps);
813 BIGNUM *coeff = sk_BIGNUM_pop(coeffs);
814 RSA_PRIME_INFO *pinfo = NULL;
815
816 if (!ossl_assert(prime != NULL && exp != NULL && coeff != NULL))
817 goto err;
818
819 /* Using ossl_rsa_multip_info_new() is wasteful, so allocate directly */
820 if ((pinfo = OPENSSL_zalloc(sizeof(*pinfo))) == NULL)
821 goto err;
822
823 pinfo->r = prime;
824 pinfo->d = exp;
825 pinfo->t = coeff;
826 BN_set_flags(pinfo->r, BN_FLG_CONSTTIME);
827 BN_set_flags(pinfo->d, BN_FLG_CONSTTIME);
828 BN_set_flags(pinfo->t, BN_FLG_CONSTTIME);
829 (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);
830 }
831
832 r->prime_infos = prime_infos;
833
834 if (!ossl_rsa_multip_calc_product(r)) {
835 r->prime_infos = old_infos;
836 goto err;
837 }
838 #else
839 return 0;
840 #endif
841 }
842
843 #ifndef FIPS_MODULE
844 if (old_infos != NULL) {
845 /*
846 * This is hard to deal with, since the old infos could
847 * also be set by this function and r, d, t should not
848 * be freed in that case. So currently, stay consistent
849 * with other *set0* functions: just free it...
850 */
851 sk_RSA_PRIME_INFO_pop_free(old_infos, ossl_rsa_multip_info_free);
852 }
853 #endif
854
855 r->version = pnum > 2 ? RSA_ASN1_VERSION_MULTI : RSA_ASN1_VERSION_DEFAULT;
856 r->dirty_cnt++;
857
858 return 1;
859 #ifndef FIPS_MODULE
860 err:
861 /* r, d, t should not be freed */
862 sk_RSA_PRIME_INFO_pop_free(prime_infos, ossl_rsa_multip_info_free_ex);
863 return 0;
864 #endif
865 }
866
867 DEFINE_SPECIAL_STACK_OF_CONST(BIGNUM_const, BIGNUM)
868
869 int ossl_rsa_get0_all_params(RSA *r, STACK_OF(BIGNUM_const) *primes,
870 STACK_OF(BIGNUM_const) *exps,
871 STACK_OF(BIGNUM_const) *coeffs)
872 {
873 #ifndef FIPS_MODULE
874 RSA_PRIME_INFO *pinfo;
875 int i, pnum;
876 #endif
877
878 if (r == NULL)
879 return 0;
880
881 /* If |p| is NULL, there are no CRT parameters */
882 if (RSA_get0_p(r) == NULL)
883 return 1;
884
885 sk_BIGNUM_const_push(primes, RSA_get0_p(r));
886 sk_BIGNUM_const_push(primes, RSA_get0_q(r));
887 sk_BIGNUM_const_push(exps, RSA_get0_dmp1(r));
888 sk_BIGNUM_const_push(exps, RSA_get0_dmq1(r));
889 sk_BIGNUM_const_push(coeffs, RSA_get0_iqmp(r));
890
891 #ifndef FIPS_MODULE
892 pnum = RSA_get_multi_prime_extra_count(r);
893 for (i = 0; i < pnum; i++) {
894 pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i);
895 sk_BIGNUM_const_push(primes, pinfo->r);
896 sk_BIGNUM_const_push(exps, pinfo->d);
897 sk_BIGNUM_const_push(coeffs, pinfo->t);
898 }
899 #endif
900
901 return 1;
902 }
903
904 #ifndef FIPS_MODULE
905 /* Helpers to set or get diverse hash algorithm names */
906 static int int_set_rsa_md_name(EVP_PKEY_CTX *ctx,
907 /* For checks */
908 int keytype, int optype,
909 /* For EVP_PKEY_CTX_set_params() */
910 const char *mdkey, const char *mdname,
911 const char *propkey, const char *mdprops)
912 {
913 OSSL_PARAM params[3], *p = params;
914
915 if (ctx == NULL || mdname == NULL || (ctx->operation & optype) == 0) {
916 ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
917 /* Uses the same return values as EVP_PKEY_CTX_ctrl */
918 return -2;
919 }
920
921 /* If key type not RSA return error */
922 switch (keytype) {
923 case -1:
924 if (!EVP_PKEY_CTX_is_a(ctx, "RSA")
925 && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
926 return -1;
927 break;
928 default:
929 if (!EVP_PKEY_CTX_is_a(ctx, evp_pkey_type2name(keytype)))
930 return -1;
931 break;
932 }
933
934 /* Cast away the const. This is read only so should be safe */
935 *p++ = OSSL_PARAM_construct_utf8_string(mdkey, (char *)mdname, 0);
936 if (evp_pkey_ctx_is_provided(ctx) && mdprops != NULL) {
937 /* Cast away the const. This is read only so should be safe */
938 *p++ = OSSL_PARAM_construct_utf8_string(propkey, (char *)mdprops, 0);
939 }
940 *p++ = OSSL_PARAM_construct_end();
941
942 return evp_pkey_ctx_set_params_strict(ctx, params);
943 }
944
945 /* Helpers to set or get diverse hash algorithm names */
946 static int int_get_rsa_md_name(EVP_PKEY_CTX *ctx,
947 /* For checks */
948 int keytype, int optype,
949 /* For EVP_PKEY_CTX_get_params() */
950 const char *mdkey,
951 char *mdname, size_t mdnamesize)
952 {
953 OSSL_PARAM params[2], *p = params;
954
955 if (ctx == NULL || mdname == NULL || (ctx->operation & optype) == 0) {
956 ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
957 /* Uses the same return values as EVP_PKEY_CTX_ctrl */
958 return -2;
959 }
960
961 /* If key type not RSA return error */
962 switch (keytype) {
963 case -1:
964 if (!EVP_PKEY_CTX_is_a(ctx, "RSA")
965 && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
966 return -1;
967 break;
968 default:
969 if (!EVP_PKEY_CTX_is_a(ctx, evp_pkey_type2name(keytype)))
970 return -1;
971 break;
972 }
973
974 /* Cast away the const. This is read only so should be safe */
975 *p++ = OSSL_PARAM_construct_utf8_string(mdkey, (char *)mdname, mdnamesize);
976 *p++ = OSSL_PARAM_construct_end();
977
978 return evp_pkey_ctx_get_params_strict(ctx, params);
979 }
980
981 /*
982 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
983 * simply because that's easier.
984 */
985 int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int pad_mode)
986 {
987 return RSA_pkey_ctx_ctrl(ctx, -1, EVP_PKEY_CTRL_RSA_PADDING,
988 pad_mode, NULL);
989 }
990
991 /*
992 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
993 * simply because that's easier.
994 */
995 int EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX *ctx, int *pad_mode)
996 {
997 return RSA_pkey_ctx_ctrl(ctx, -1, EVP_PKEY_CTRL_GET_RSA_PADDING,
998 0, pad_mode);
999 }
1000
1001 /*
1002 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1003 * simply because that's easier.
1004 */
1005 int EVP_PKEY_CTX_set_rsa_pss_keygen_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)
1006 {
1007 return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
1008 EVP_PKEY_CTRL_MD, 0, (void *)(md));
1009 }
1010
1011 int EVP_PKEY_CTX_set_rsa_pss_keygen_md_name(EVP_PKEY_CTX *ctx,
1012 const char *mdname,
1013 const char *mdprops)
1014 {
1015 return int_set_rsa_md_name(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
1016 OSSL_PKEY_PARAM_RSA_DIGEST, mdname,
1017 OSSL_PKEY_PARAM_RSA_DIGEST_PROPS, mdprops);
1018 }
1019
1020 /*
1021 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1022 * simply because that's easier.
1023 */
1024 int EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)
1025 {
1026 /* If key type not RSA return error */
1027 if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))
1028 return -1;
1029
1030 return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
1031 EVP_PKEY_CTRL_RSA_OAEP_MD, 0, (void *)(md));
1032 }
1033
1034 int EVP_PKEY_CTX_set_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, const char *mdname,
1035 const char *mdprops)
1036 {
1037 return
1038 int_set_rsa_md_name(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
1039 OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST, mdname,
1040 OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST_PROPS, mdprops);
1041 }
1042
1043 int EVP_PKEY_CTX_get_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, char *name,
1044 size_t namesize)
1045 {
1046 return int_get_rsa_md_name(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
1047 OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST,
1048 name, namesize);
1049 }
1050
1051 /*
1052 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1053 * simply because that's easier.
1054 */
1055 int EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD **md)
1056 {
1057 /* If key type not RSA return error */
1058 if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))
1059 return -1;
1060
1061 return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
1062 EVP_PKEY_CTRL_GET_RSA_OAEP_MD, 0, (void *)md);
1063 }
1064
1065 /*
1066 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1067 * simply because that's easier.
1068 */
1069 int EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)
1070 {
1071 return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT,
1072 EVP_PKEY_CTRL_RSA_MGF1_MD, 0, (void *)(md));
1073 }
1074
1075 int EVP_PKEY_CTX_set_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, const char *mdname,
1076 const char *mdprops)
1077 {
1078 return int_set_rsa_md_name(ctx, -1,
1079 EVP_PKEY_OP_TYPE_CRYPT | EVP_PKEY_OP_TYPE_SIG,
1080 OSSL_PKEY_PARAM_MGF1_DIGEST, mdname,
1081 OSSL_PKEY_PARAM_MGF1_PROPERTIES, mdprops);
1082 }
1083
1084 int EVP_PKEY_CTX_get_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, char *name,
1085 size_t namesize)
1086 {
1087 return int_get_rsa_md_name(ctx, -1,
1088 EVP_PKEY_OP_TYPE_CRYPT | EVP_PKEY_OP_TYPE_SIG,
1089 OSSL_PKEY_PARAM_MGF1_DIGEST, name, namesize);
1090 }
1091
1092 /*
1093 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1094 * simply because that's easier.
1095 */
1096 int EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)
1097 {
1098 return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
1099 EVP_PKEY_CTRL_RSA_MGF1_MD, 0, (void *)(md));
1100 }
1101
1102 int EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md_name(EVP_PKEY_CTX *ctx,
1103 const char *mdname)
1104 {
1105 return int_set_rsa_md_name(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
1106 OSSL_PKEY_PARAM_MGF1_DIGEST, mdname,
1107 NULL, NULL);
1108 }
1109
1110 /*
1111 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1112 * simply because that's easier.
1113 */
1114 int EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD **md)
1115 {
1116 return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT,
1117 EVP_PKEY_CTRL_GET_RSA_MGF1_MD, 0, (void *)(md));
1118 }
1119
1120 int EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX *ctx, void *label, int llen)
1121 {
1122 OSSL_PARAM rsa_params[2], *p = rsa_params;
1123 const char *empty = "";
1124 /*
1125 * Needed as we swap label with empty if it is NULL, and label is
1126 * freed at the end of this function.
1127 */
1128 void *plabel = label;
1129 int ret;
1130
1131 if (ctx == NULL || !EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx)) {
1132 ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1133 /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1134 return -2;
1135 }
1136
1137 /* If key type not RSA return error */
1138 if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))
1139 return -1;
1140
1141 /* Accept NULL for backward compatibility */
1142 if (label == NULL && llen == 0)
1143 plabel = (void *)empty;
1144
1145 /* Cast away the const. This is read only so should be safe */
1146 *p++ = OSSL_PARAM_construct_octet_string(OSSL_ASYM_CIPHER_PARAM_OAEP_LABEL,
1147 (void *)plabel, (size_t)llen);
1148 *p++ = OSSL_PARAM_construct_end();
1149
1150 ret = evp_pkey_ctx_set_params_strict(ctx, rsa_params);
1151 if (ret <= 0)
1152 return ret;
1153
1154 /* Ownership is supposed to be transferred to the callee. */
1155 OPENSSL_free(label);
1156 return 1;
1157 }
1158
1159 int EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX *ctx, unsigned char **label)
1160 {
1161 OSSL_PARAM rsa_params[2], *p = rsa_params;
1162 size_t labellen;
1163
1164 if (ctx == NULL || !EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx)) {
1165 ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1166 /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1167 return -2;
1168 }
1169
1170 /* If key type not RSA return error */
1171 if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))
1172 return -1;
1173
1174 *p++ = OSSL_PARAM_construct_octet_ptr(OSSL_ASYM_CIPHER_PARAM_OAEP_LABEL,
1175 (void **)label, 0);
1176 *p++ = OSSL_PARAM_construct_end();
1177
1178 if (!EVP_PKEY_CTX_get_params(ctx, rsa_params))
1179 return -1;
1180
1181 labellen = rsa_params[0].return_size;
1182 if (labellen > INT_MAX)
1183 return -1;
1184
1185 return (int)labellen;
1186 }
1187
1188 /*
1189 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1190 * simply because that's easier.
1191 */
1192 int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int saltlen)
1193 {
1194 /*
1195 * For some reason, the optype was set to this:
1196 *
1197 * EVP_PKEY_OP_SIGN|EVP_PKEY_OP_VERIFY
1198 *
1199 * However, we do use RSA-PSS with the whole gamut of diverse signature
1200 * and verification operations, so the optype gets upgraded to this:
1201 *
1202 * EVP_PKEY_OP_TYPE_SIG
1203 */
1204 return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG,
1205 EVP_PKEY_CTRL_RSA_PSS_SALTLEN, saltlen, NULL);
1206 }
1207
1208 /*
1209 * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
1210 * simply because that's easier.
1211 */
1212 int EVP_PKEY_CTX_get_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int *saltlen)
1213 {
1214 /*
1215 * Because of circumstances, the optype is updated from:
1216 *
1217 * EVP_PKEY_OP_SIGN|EVP_PKEY_OP_VERIFY
1218 *
1219 * to:
1220 *
1221 * EVP_PKEY_OP_TYPE_SIG
1222 */
1223 return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG,
1224 EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN, 0, saltlen);
1225 }
1226
1227 int EVP_PKEY_CTX_set_rsa_pss_keygen_saltlen(EVP_PKEY_CTX *ctx, int saltlen)
1228 {
1229 OSSL_PARAM pad_params[2], *p = pad_params;
1230
1231 if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) {
1232 ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1233 /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1234 return -2;
1235 }
1236
1237 if (!EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
1238 return -1;
1239
1240 *p++ = OSSL_PARAM_construct_int(OSSL_SIGNATURE_PARAM_PSS_SALTLEN,
1241 &saltlen);
1242 *p++ = OSSL_PARAM_construct_end();
1243
1244 return evp_pkey_ctx_set_params_strict(ctx, pad_params);
1245 }
1246
1247 int EVP_PKEY_CTX_set_rsa_keygen_bits(EVP_PKEY_CTX *ctx, int bits)
1248 {
1249 OSSL_PARAM params[2], *p = params;
1250 size_t bits2 = bits;
1251
1252 if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) {
1253 ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1254 /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1255 return -2;
1256 }
1257
1258 /* If key type not RSA return error */
1259 if (!EVP_PKEY_CTX_is_a(ctx, "RSA")
1260 && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
1261 return -1;
1262
1263 *p++ = OSSL_PARAM_construct_size_t(OSSL_PKEY_PARAM_RSA_BITS, &bits2);
1264 *p++ = OSSL_PARAM_construct_end();
1265
1266 return evp_pkey_ctx_set_params_strict(ctx, params);
1267 }
1268
1269 int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp)
1270 {
1271 int ret = RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_KEYGEN,
1272 EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP, 0, pubexp);
1273
1274 /*
1275 * Satisfy memory semantics for pre-3.0 callers of
1276 * EVP_PKEY_CTX_set_rsa_keygen_pubexp(): their expectation is that input
1277 * pubexp BIGNUM becomes managed by the EVP_PKEY_CTX on success.
1278 */
1279 if (ret > 0 && evp_pkey_ctx_is_provided(ctx)) {
1280 BN_free(ctx->rsa_pubexp);
1281 ctx->rsa_pubexp = pubexp;
1282 }
1283
1284 return ret;
1285 }
1286
1287 int EVP_PKEY_CTX_set1_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp)
1288 {
1289 int ret = 0;
1290
1291 /*
1292 * When we're dealing with a provider, there's no need to duplicate
1293 * pubexp, as it gets copied when transforming to an OSSL_PARAM anyway.
1294 */
1295 if (evp_pkey_ctx_is_legacy(ctx)) {
1296 pubexp = BN_dup(pubexp);
1297 if (pubexp == NULL)
1298 return 0;
1299 }
1300 ret = EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_KEYGEN,
1301 EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP, 0, pubexp);
1302 if (evp_pkey_ctx_is_legacy(ctx) && ret <= 0)
1303 BN_free(pubexp);
1304 return ret;
1305 }
1306
1307 int EVP_PKEY_CTX_set_rsa_keygen_primes(EVP_PKEY_CTX *ctx, int primes)
1308 {
1309 OSSL_PARAM params[2], *p = params;
1310 size_t primes2 = primes;
1311
1312 if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) {
1313 ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
1314 /* Uses the same return values as EVP_PKEY_CTX_ctrl */
1315 return -2;
1316 }
1317
1318 /* If key type not RSA return error */
1319 if (!EVP_PKEY_CTX_is_a(ctx, "RSA")
1320 && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
1321 return -1;
1322
1323 *p++ = OSSL_PARAM_construct_size_t(OSSL_PKEY_PARAM_RSA_PRIMES, &primes2);
1324 *p++ = OSSL_PARAM_construct_end();
1325
1326 return evp_pkey_ctx_set_params_strict(ctx, params);
1327 }
1328 #endif