]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/sha/asm/sha512-armv8.pl
Update copyright year
[thirdparty/openssl.git] / crypto / sha / asm / sha512-armv8.pl
1 #! /usr/bin/env perl
2 # Copyright 2014-2020 The OpenSSL Project Authors. All Rights Reserved.
3 #
4 # Licensed under the Apache License 2.0 (the "License"). You may not use
5 # this file except in compliance with the License. You can obtain a copy
6 # in the file LICENSE in the source distribution or at
7 # https://www.openssl.org/source/license.html
8
9 # ====================================================================
10 # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
11 # project. The module is, however, dual licensed under OpenSSL and
12 # CRYPTOGAMS licenses depending on where you obtain it. For further
13 # details see http://www.openssl.org/~appro/cryptogams/.
14 #
15 # Permission to use under GPLv2 terms is granted.
16 # ====================================================================
17 #
18 # SHA256/512 for ARMv8.
19 #
20 # Performance in cycles per processed byte and improvement coefficient
21 # over code generated with "default" compiler:
22 #
23 # SHA256-hw SHA256(*) SHA512
24 # Apple A7 1.97 10.5 (+33%) 6.73 (-1%(**))
25 # Cortex-A53 2.38 15.5 (+115%) 10.0 (+150%(***))
26 # Cortex-A57 2.31 11.6 (+86%) 7.51 (+260%(***))
27 # Denver 2.01 10.5 (+26%) 6.70 (+8%)
28 # X-Gene 20.0 (+100%) 12.8 (+300%(***))
29 # Mongoose 2.36 13.0 (+50%) 8.36 (+33%)
30 # Kryo 1.92 17.4 (+30%) 11.2 (+8%)
31 # ThunderX2 2.54 13.2 (+40%) 8.40 (+18%)
32 #
33 # (*) Software SHA256 results are of lesser relevance, presented
34 # mostly for informational purposes.
35 # (**) The result is a trade-off: it's possible to improve it by
36 # 10% (or by 1 cycle per round), but at the cost of 20% loss
37 # on Cortex-A53 (or by 4 cycles per round).
38 # (***) Super-impressive coefficients over gcc-generated code are
39 # indication of some compiler "pathology", most notably code
40 # generated with -mgeneral-regs-only is significantly faster
41 # and the gap is only 40-90%.
42 #
43 # October 2016.
44 #
45 # Originally it was reckoned that it makes no sense to implement NEON
46 # version of SHA256 for 64-bit processors. This is because performance
47 # improvement on most wide-spread Cortex-A5x processors was observed
48 # to be marginal, same on Cortex-A53 and ~10% on A57. But then it was
49 # observed that 32-bit NEON SHA256 performs significantly better than
50 # 64-bit scalar version on *some* of the more recent processors. As
51 # result 64-bit NEON version of SHA256 was added to provide best
52 # all-round performance. For example it executes ~30% faster on X-Gene
53 # and Mongoose. [For reference, NEON version of SHA512 is bound to
54 # deliver much less improvement, likely *negative* on Cortex-A5x.
55 # Which is why NEON support is limited to SHA256.]
56
57 # $output is the last argument if it looks like a file (it has an extension)
58 # $flavour is the first argument if it doesn't look like a file
59 $output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef;
60 $flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef;
61
62 if ($flavour && $flavour ne "void") {
63 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
64 ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
65 ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or
66 die "can't locate arm-xlate.pl";
67
68 open OUT,"| \"$^X\" $xlate $flavour \"$output\""
69 or die "can't call $xlate: $!";
70 *STDOUT=*OUT;
71 } else {
72 $output and open STDOUT,">$output";
73 }
74
75 if ($output =~ /512/) {
76 $BITS=512;
77 $SZ=8;
78 @Sigma0=(28,34,39);
79 @Sigma1=(14,18,41);
80 @sigma0=(1, 8, 7);
81 @sigma1=(19,61, 6);
82 $rounds=80;
83 $reg_t="x";
84 } else {
85 $BITS=256;
86 $SZ=4;
87 @Sigma0=( 2,13,22);
88 @Sigma1=( 6,11,25);
89 @sigma0=( 7,18, 3);
90 @sigma1=(17,19,10);
91 $rounds=64;
92 $reg_t="w";
93 }
94
95 $func="sha${BITS}_block_data_order";
96
97 ($ctx,$inp,$num,$Ktbl)=map("x$_",(0..2,30));
98
99 @X=map("$reg_t$_",(3..15,0..2));
100 @V=($A,$B,$C,$D,$E,$F,$G,$H)=map("$reg_t$_",(20..27));
101 ($t0,$t1,$t2,$t3)=map("$reg_t$_",(16,17,19,28));
102
103 sub BODY_00_xx {
104 my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_;
105 my $j=($i+1)&15;
106 my ($T0,$T1,$T2)=(@X[($i-8)&15],@X[($i-9)&15],@X[($i-10)&15]);
107 $T0=@X[$i+3] if ($i<11);
108
109 $code.=<<___ if ($i<16);
110 #ifndef __AARCH64EB__
111 rev @X[$i],@X[$i] // $i
112 #endif
113 ___
114 $code.=<<___ if ($i<13 && ($i&1));
115 ldp @X[$i+1],@X[$i+2],[$inp],#2*$SZ
116 ___
117 $code.=<<___ if ($i==13);
118 ldp @X[14],@X[15],[$inp]
119 ___
120 $code.=<<___ if ($i>=14);
121 ldr @X[($i-11)&15],[sp,#`$SZ*(($i-11)%4)`]
122 ___
123 $code.=<<___ if ($i>0 && $i<16);
124 add $a,$a,$t1 // h+=Sigma0(a)
125 ___
126 $code.=<<___ if ($i>=11);
127 str @X[($i-8)&15],[sp,#`$SZ*(($i-8)%4)`]
128 ___
129 # While ARMv8 specifies merged rotate-n-logical operation such as
130 # 'eor x,y,z,ror#n', it was found to negatively affect performance
131 # on Apple A7. The reason seems to be that it requires even 'y' to
132 # be available earlier. This means that such merged instruction is
133 # not necessarily best choice on critical path... On the other hand
134 # Cortex-A5x handles merged instructions much better than disjoint
135 # rotate and logical... See (**) footnote above.
136 $code.=<<___ if ($i<15);
137 ror $t0,$e,#$Sigma1[0]
138 add $h,$h,$t2 // h+=K[i]
139 eor $T0,$e,$e,ror#`$Sigma1[2]-$Sigma1[1]`
140 and $t1,$f,$e
141 bic $t2,$g,$e
142 add $h,$h,@X[$i&15] // h+=X[i]
143 orr $t1,$t1,$t2 // Ch(e,f,g)
144 eor $t2,$a,$b // a^b, b^c in next round
145 eor $t0,$t0,$T0,ror#$Sigma1[1] // Sigma1(e)
146 ror $T0,$a,#$Sigma0[0]
147 add $h,$h,$t1 // h+=Ch(e,f,g)
148 eor $t1,$a,$a,ror#`$Sigma0[2]-$Sigma0[1]`
149 add $h,$h,$t0 // h+=Sigma1(e)
150 and $t3,$t3,$t2 // (b^c)&=(a^b)
151 add $d,$d,$h // d+=h
152 eor $t3,$t3,$b // Maj(a,b,c)
153 eor $t1,$T0,$t1,ror#$Sigma0[1] // Sigma0(a)
154 add $h,$h,$t3 // h+=Maj(a,b,c)
155 ldr $t3,[$Ktbl],#$SZ // *K++, $t2 in next round
156 //add $h,$h,$t1 // h+=Sigma0(a)
157 ___
158 $code.=<<___ if ($i>=15);
159 ror $t0,$e,#$Sigma1[0]
160 add $h,$h,$t2 // h+=K[i]
161 ror $T1,@X[($j+1)&15],#$sigma0[0]
162 and $t1,$f,$e
163 ror $T2,@X[($j+14)&15],#$sigma1[0]
164 bic $t2,$g,$e
165 ror $T0,$a,#$Sigma0[0]
166 add $h,$h,@X[$i&15] // h+=X[i]
167 eor $t0,$t0,$e,ror#$Sigma1[1]
168 eor $T1,$T1,@X[($j+1)&15],ror#$sigma0[1]
169 orr $t1,$t1,$t2 // Ch(e,f,g)
170 eor $t2,$a,$b // a^b, b^c in next round
171 eor $t0,$t0,$e,ror#$Sigma1[2] // Sigma1(e)
172 eor $T0,$T0,$a,ror#$Sigma0[1]
173 add $h,$h,$t1 // h+=Ch(e,f,g)
174 and $t3,$t3,$t2 // (b^c)&=(a^b)
175 eor $T2,$T2,@X[($j+14)&15],ror#$sigma1[1]
176 eor $T1,$T1,@X[($j+1)&15],lsr#$sigma0[2] // sigma0(X[i+1])
177 add $h,$h,$t0 // h+=Sigma1(e)
178 eor $t3,$t3,$b // Maj(a,b,c)
179 eor $t1,$T0,$a,ror#$Sigma0[2] // Sigma0(a)
180 eor $T2,$T2,@X[($j+14)&15],lsr#$sigma1[2] // sigma1(X[i+14])
181 add @X[$j],@X[$j],@X[($j+9)&15]
182 add $d,$d,$h // d+=h
183 add $h,$h,$t3 // h+=Maj(a,b,c)
184 ldr $t3,[$Ktbl],#$SZ // *K++, $t2 in next round
185 add @X[$j],@X[$j],$T1
186 add $h,$h,$t1 // h+=Sigma0(a)
187 add @X[$j],@X[$j],$T2
188 ___
189 ($t2,$t3)=($t3,$t2);
190 }
191
192 $code.=<<___;
193 #ifndef __KERNEL__
194 # include "arm_arch.h"
195 .extern OPENSSL_armcap_P
196 #endif
197
198 .text
199
200 .globl $func
201 .type $func,%function
202 .align 6
203 $func:
204 #ifndef __KERNEL__
205 adrp x16,OPENSSL_armcap_P
206 ldr w16,[x16,#:lo12:OPENSSL_armcap_P]
207 ___
208 $code.=<<___ if ($SZ==4);
209 tst w16,#ARMV8_SHA256
210 b.ne .Lv8_entry
211 tst w16,#ARMV7_NEON
212 b.ne .Lneon_entry
213 ___
214 $code.=<<___ if ($SZ==8);
215 tst w16,#ARMV8_SHA512
216 b.ne .Lv8_entry
217 ___
218 $code.=<<___;
219 #endif
220 .inst 0xd503233f // paciasp
221 stp x29,x30,[sp,#-128]!
222 add x29,sp,#0
223
224 stp x19,x20,[sp,#16]
225 stp x21,x22,[sp,#32]
226 stp x23,x24,[sp,#48]
227 stp x25,x26,[sp,#64]
228 stp x27,x28,[sp,#80]
229 sub sp,sp,#4*$SZ
230
231 ldp $A,$B,[$ctx] // load context
232 ldp $C,$D,[$ctx,#2*$SZ]
233 ldp $E,$F,[$ctx,#4*$SZ]
234 add $num,$inp,$num,lsl#`log(16*$SZ)/log(2)` // end of input
235 ldp $G,$H,[$ctx,#6*$SZ]
236 adr $Ktbl,.LK$BITS
237 stp $ctx,$num,[x29,#96]
238
239 .Loop:
240 ldp @X[0],@X[1],[$inp],#2*$SZ
241 ldr $t2,[$Ktbl],#$SZ // *K++
242 eor $t3,$B,$C // magic seed
243 str $inp,[x29,#112]
244 ___
245 for ($i=0;$i<16;$i++) { &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
246 $code.=".Loop_16_xx:\n";
247 for (;$i<32;$i++) { &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
248 $code.=<<___;
249 cbnz $t2,.Loop_16_xx
250
251 ldp $ctx,$num,[x29,#96]
252 ldr $inp,[x29,#112]
253 sub $Ktbl,$Ktbl,#`$SZ*($rounds+1)` // rewind
254
255 ldp @X[0],@X[1],[$ctx]
256 ldp @X[2],@X[3],[$ctx,#2*$SZ]
257 add $inp,$inp,#14*$SZ // advance input pointer
258 ldp @X[4],@X[5],[$ctx,#4*$SZ]
259 add $A,$A,@X[0]
260 ldp @X[6],@X[7],[$ctx,#6*$SZ]
261 add $B,$B,@X[1]
262 add $C,$C,@X[2]
263 add $D,$D,@X[3]
264 stp $A,$B,[$ctx]
265 add $E,$E,@X[4]
266 add $F,$F,@X[5]
267 stp $C,$D,[$ctx,#2*$SZ]
268 add $G,$G,@X[6]
269 add $H,$H,@X[7]
270 cmp $inp,$num
271 stp $E,$F,[$ctx,#4*$SZ]
272 stp $G,$H,[$ctx,#6*$SZ]
273 b.ne .Loop
274
275 ldp x19,x20,[x29,#16]
276 add sp,sp,#4*$SZ
277 ldp x21,x22,[x29,#32]
278 ldp x23,x24,[x29,#48]
279 ldp x25,x26,[x29,#64]
280 ldp x27,x28,[x29,#80]
281 ldp x29,x30,[sp],#128
282 .inst 0xd50323bf // autiasp
283 ret
284 .size $func,.-$func
285
286 .align 6
287 .type .LK$BITS,%object
288 .LK$BITS:
289 ___
290 $code.=<<___ if ($SZ==8);
291 .quad 0x428a2f98d728ae22,0x7137449123ef65cd
292 .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
293 .quad 0x3956c25bf348b538,0x59f111f1b605d019
294 .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
295 .quad 0xd807aa98a3030242,0x12835b0145706fbe
296 .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
297 .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
298 .quad 0x9bdc06a725c71235,0xc19bf174cf692694
299 .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
300 .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
301 .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
302 .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
303 .quad 0x983e5152ee66dfab,0xa831c66d2db43210
304 .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
305 .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
306 .quad 0x06ca6351e003826f,0x142929670a0e6e70
307 .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
308 .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
309 .quad 0x650a73548baf63de,0x766a0abb3c77b2a8
310 .quad 0x81c2c92e47edaee6,0x92722c851482353b
311 .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
312 .quad 0xc24b8b70d0f89791,0xc76c51a30654be30
313 .quad 0xd192e819d6ef5218,0xd69906245565a910
314 .quad 0xf40e35855771202a,0x106aa07032bbd1b8
315 .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
316 .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
317 .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
318 .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
319 .quad 0x748f82ee5defb2fc,0x78a5636f43172f60
320 .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
321 .quad 0x90befffa23631e28,0xa4506cebde82bde9
322 .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
323 .quad 0xca273eceea26619c,0xd186b8c721c0c207
324 .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
325 .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
326 .quad 0x113f9804bef90dae,0x1b710b35131c471b
327 .quad 0x28db77f523047d84,0x32caab7b40c72493
328 .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
329 .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
330 .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817
331 .quad 0 // terminator
332 ___
333 $code.=<<___ if ($SZ==4);
334 .long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
335 .long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
336 .long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
337 .long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
338 .long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
339 .long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
340 .long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
341 .long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
342 .long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
343 .long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
344 .long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
345 .long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070
346 .long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
347 .long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
348 .long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
349 .long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
350 .long 0 //terminator
351 ___
352 $code.=<<___;
353 .size .LK$BITS,.-.LK$BITS
354 .asciz "SHA$BITS block transform for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
355 .align 2
356 ___
357
358 if ($SZ==4) {
359 my $Ktbl="x3";
360
361 my ($ABCD,$EFGH,$abcd)=map("v$_.16b",(0..2));
362 my @MSG=map("v$_.16b",(4..7));
363 my ($W0,$W1)=("v16.4s","v17.4s");
364 my ($ABCD_SAVE,$EFGH_SAVE)=("v18.16b","v19.16b");
365
366 $code.=<<___;
367 #ifndef __KERNEL__
368 .type sha256_block_armv8,%function
369 .align 6
370 sha256_block_armv8:
371 .Lv8_entry:
372 stp x29,x30,[sp,#-16]!
373 add x29,sp,#0
374
375 ld1.32 {$ABCD,$EFGH},[$ctx]
376 adr $Ktbl,.LK256
377
378 .Loop_hw:
379 ld1 {@MSG[0]-@MSG[3]},[$inp],#64
380 sub $num,$num,#1
381 ld1.32 {$W0},[$Ktbl],#16
382 rev32 @MSG[0],@MSG[0]
383 rev32 @MSG[1],@MSG[1]
384 rev32 @MSG[2],@MSG[2]
385 rev32 @MSG[3],@MSG[3]
386 orr $ABCD_SAVE,$ABCD,$ABCD // offload
387 orr $EFGH_SAVE,$EFGH,$EFGH
388 ___
389 for($i=0;$i<12;$i++) {
390 $code.=<<___;
391 ld1.32 {$W1},[$Ktbl],#16
392 add.i32 $W0,$W0,@MSG[0]
393 sha256su0 @MSG[0],@MSG[1]
394 orr $abcd,$ABCD,$ABCD
395 sha256h $ABCD,$EFGH,$W0
396 sha256h2 $EFGH,$abcd,$W0
397 sha256su1 @MSG[0],@MSG[2],@MSG[3]
398 ___
399 ($W0,$W1)=($W1,$W0); push(@MSG,shift(@MSG));
400 }
401 $code.=<<___;
402 ld1.32 {$W1},[$Ktbl],#16
403 add.i32 $W0,$W0,@MSG[0]
404 orr $abcd,$ABCD,$ABCD
405 sha256h $ABCD,$EFGH,$W0
406 sha256h2 $EFGH,$abcd,$W0
407
408 ld1.32 {$W0},[$Ktbl],#16
409 add.i32 $W1,$W1,@MSG[1]
410 orr $abcd,$ABCD,$ABCD
411 sha256h $ABCD,$EFGH,$W1
412 sha256h2 $EFGH,$abcd,$W1
413
414 ld1.32 {$W1},[$Ktbl]
415 add.i32 $W0,$W0,@MSG[2]
416 sub $Ktbl,$Ktbl,#$rounds*$SZ-16 // rewind
417 orr $abcd,$ABCD,$ABCD
418 sha256h $ABCD,$EFGH,$W0
419 sha256h2 $EFGH,$abcd,$W0
420
421 add.i32 $W1,$W1,@MSG[3]
422 orr $abcd,$ABCD,$ABCD
423 sha256h $ABCD,$EFGH,$W1
424 sha256h2 $EFGH,$abcd,$W1
425
426 add.i32 $ABCD,$ABCD,$ABCD_SAVE
427 add.i32 $EFGH,$EFGH,$EFGH_SAVE
428
429 cbnz $num,.Loop_hw
430
431 st1.32 {$ABCD,$EFGH},[$ctx]
432
433 ldr x29,[sp],#16
434 ret
435 .size sha256_block_armv8,.-sha256_block_armv8
436 #endif
437 ___
438 }
439
440 if ($SZ==4) { ######################################### NEON stuff #
441 # You'll surely note a lot of similarities with sha256-armv4 module,
442 # and of course it's not a coincidence. sha256-armv4 was used as
443 # initial template, but was adapted for ARMv8 instruction set and
444 # extensively re-tuned for all-round performance.
445
446 my @V = ($A,$B,$C,$D,$E,$F,$G,$H) = map("w$_",(3..10));
447 my ($t0,$t1,$t2,$t3,$t4) = map("w$_",(11..15));
448 my $Ktbl="x16";
449 my $Xfer="x17";
450 my @X = map("q$_",(0..3));
451 my ($T0,$T1,$T2,$T3,$T4,$T5,$T6,$T7) = map("q$_",(4..7,16..19));
452 my $j=0;
453
454 sub AUTOLOAD() # thunk [simplified] x86-style perlasm
455 { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./;
456 my $arg = pop;
457 $arg = "#$arg" if ($arg*1 eq $arg);
458 $code .= "\t$opcode\t".join(',',@_,$arg)."\n";
459 }
460
461 sub Dscalar { shift =~ m|[qv]([0-9]+)|?"d$1":""; }
462 sub Dlo { shift =~ m|[qv]([0-9]+)|?"v$1.d[0]":""; }
463 sub Dhi { shift =~ m|[qv]([0-9]+)|?"v$1.d[1]":""; }
464
465 sub Xupdate()
466 { use integer;
467 my $body = shift;
468 my @insns = (&$body,&$body,&$body,&$body);
469 my ($a,$b,$c,$d,$e,$f,$g,$h);
470
471 &ext_8 ($T0,@X[0],@X[1],4); # X[1..4]
472 eval(shift(@insns));
473 eval(shift(@insns));
474 eval(shift(@insns));
475 &ext_8 ($T3,@X[2],@X[3],4); # X[9..12]
476 eval(shift(@insns));
477 eval(shift(@insns));
478 &mov (&Dscalar($T7),&Dhi(@X[3])); # X[14..15]
479 eval(shift(@insns));
480 eval(shift(@insns));
481 &ushr_32 ($T2,$T0,$sigma0[0]);
482 eval(shift(@insns));
483 &ushr_32 ($T1,$T0,$sigma0[2]);
484 eval(shift(@insns));
485 &add_32 (@X[0],@X[0],$T3); # X[0..3] += X[9..12]
486 eval(shift(@insns));
487 &sli_32 ($T2,$T0,32-$sigma0[0]);
488 eval(shift(@insns));
489 eval(shift(@insns));
490 &ushr_32 ($T3,$T0,$sigma0[1]);
491 eval(shift(@insns));
492 eval(shift(@insns));
493 &eor_8 ($T1,$T1,$T2);
494 eval(shift(@insns));
495 eval(shift(@insns));
496 &sli_32 ($T3,$T0,32-$sigma0[1]);
497 eval(shift(@insns));
498 eval(shift(@insns));
499 &ushr_32 ($T4,$T7,$sigma1[0]);
500 eval(shift(@insns));
501 eval(shift(@insns));
502 &eor_8 ($T1,$T1,$T3); # sigma0(X[1..4])
503 eval(shift(@insns));
504 eval(shift(@insns));
505 &sli_32 ($T4,$T7,32-$sigma1[0]);
506 eval(shift(@insns));
507 eval(shift(@insns));
508 &ushr_32 ($T5,$T7,$sigma1[2]);
509 eval(shift(@insns));
510 eval(shift(@insns));
511 &ushr_32 ($T3,$T7,$sigma1[1]);
512 eval(shift(@insns));
513 eval(shift(@insns));
514 &add_32 (@X[0],@X[0],$T1); # X[0..3] += sigma0(X[1..4])
515 eval(shift(@insns));
516 eval(shift(@insns));
517 &sli_u32 ($T3,$T7,32-$sigma1[1]);
518 eval(shift(@insns));
519 eval(shift(@insns));
520 &eor_8 ($T5,$T5,$T4);
521 eval(shift(@insns));
522 eval(shift(@insns));
523 eval(shift(@insns));
524 &eor_8 ($T5,$T5,$T3); # sigma1(X[14..15])
525 eval(shift(@insns));
526 eval(shift(@insns));
527 eval(shift(@insns));
528 &add_32 (@X[0],@X[0],$T5); # X[0..1] += sigma1(X[14..15])
529 eval(shift(@insns));
530 eval(shift(@insns));
531 eval(shift(@insns));
532 &ushr_32 ($T6,@X[0],$sigma1[0]);
533 eval(shift(@insns));
534 &ushr_32 ($T7,@X[0],$sigma1[2]);
535 eval(shift(@insns));
536 eval(shift(@insns));
537 &sli_32 ($T6,@X[0],32-$sigma1[0]);
538 eval(shift(@insns));
539 &ushr_32 ($T5,@X[0],$sigma1[1]);
540 eval(shift(@insns));
541 eval(shift(@insns));
542 &eor_8 ($T7,$T7,$T6);
543 eval(shift(@insns));
544 eval(shift(@insns));
545 &sli_32 ($T5,@X[0],32-$sigma1[1]);
546 eval(shift(@insns));
547 eval(shift(@insns));
548 &ld1_32 ("{$T0}","[$Ktbl], #16");
549 eval(shift(@insns));
550 &eor_8 ($T7,$T7,$T5); # sigma1(X[16..17])
551 eval(shift(@insns));
552 eval(shift(@insns));
553 &eor_8 ($T5,$T5,$T5);
554 eval(shift(@insns));
555 eval(shift(@insns));
556 &mov (&Dhi($T5), &Dlo($T7));
557 eval(shift(@insns));
558 eval(shift(@insns));
559 eval(shift(@insns));
560 &add_32 (@X[0],@X[0],$T5); # X[2..3] += sigma1(X[16..17])
561 eval(shift(@insns));
562 eval(shift(@insns));
563 eval(shift(@insns));
564 &add_32 ($T0,$T0,@X[0]);
565 while($#insns>=1) { eval(shift(@insns)); }
566 &st1_32 ("{$T0}","[$Xfer], #16");
567 eval(shift(@insns));
568
569 push(@X,shift(@X)); # "rotate" X[]
570 }
571
572 sub Xpreload()
573 { use integer;
574 my $body = shift;
575 my @insns = (&$body,&$body,&$body,&$body);
576 my ($a,$b,$c,$d,$e,$f,$g,$h);
577
578 eval(shift(@insns));
579 eval(shift(@insns));
580 &ld1_8 ("{@X[0]}","[$inp],#16");
581 eval(shift(@insns));
582 eval(shift(@insns));
583 &ld1_32 ("{$T0}","[$Ktbl],#16");
584 eval(shift(@insns));
585 eval(shift(@insns));
586 eval(shift(@insns));
587 eval(shift(@insns));
588 &rev32 (@X[0],@X[0]);
589 eval(shift(@insns));
590 eval(shift(@insns));
591 eval(shift(@insns));
592 eval(shift(@insns));
593 &add_32 ($T0,$T0,@X[0]);
594 foreach (@insns) { eval; } # remaining instructions
595 &st1_32 ("{$T0}","[$Xfer], #16");
596
597 push(@X,shift(@X)); # "rotate" X[]
598 }
599
600 sub body_00_15 () {
601 (
602 '($a,$b,$c,$d,$e,$f,$g,$h)=@V;'.
603 '&add ($h,$h,$t1)', # h+=X[i]+K[i]
604 '&add ($a,$a,$t4);'. # h+=Sigma0(a) from the past
605 '&and ($t1,$f,$e)',
606 '&bic ($t4,$g,$e)',
607 '&eor ($t0,$e,$e,"ror#".($Sigma1[1]-$Sigma1[0]))',
608 '&add ($a,$a,$t2)', # h+=Maj(a,b,c) from the past
609 '&orr ($t1,$t1,$t4)', # Ch(e,f,g)
610 '&eor ($t0,$t0,$e,"ror#".($Sigma1[2]-$Sigma1[0]))', # Sigma1(e)
611 '&eor ($t4,$a,$a,"ror#".($Sigma0[1]-$Sigma0[0]))',
612 '&add ($h,$h,$t1)', # h+=Ch(e,f,g)
613 '&ror ($t0,$t0,"#$Sigma1[0]")',
614 '&eor ($t2,$a,$b)', # a^b, b^c in next round
615 '&eor ($t4,$t4,$a,"ror#".($Sigma0[2]-$Sigma0[0]))', # Sigma0(a)
616 '&add ($h,$h,$t0)', # h+=Sigma1(e)
617 '&ldr ($t1,sprintf "[sp,#%d]",4*(($j+1)&15)) if (($j&15)!=15);'.
618 '&ldr ($t1,"[$Ktbl]") if ($j==15);'.
619 '&and ($t3,$t3,$t2)', # (b^c)&=(a^b)
620 '&ror ($t4,$t4,"#$Sigma0[0]")',
621 '&add ($d,$d,$h)', # d+=h
622 '&eor ($t3,$t3,$b)', # Maj(a,b,c)
623 '$j++; unshift(@V,pop(@V)); ($t2,$t3)=($t3,$t2);'
624 )
625 }
626
627 $code.=<<___;
628 #ifdef __KERNEL__
629 .globl sha256_block_neon
630 #endif
631 .type sha256_block_neon,%function
632 .align 4
633 sha256_block_neon:
634 .Lneon_entry:
635 stp x29, x30, [sp, #-16]!
636 mov x29, sp
637 sub sp,sp,#16*4
638
639 adr $Ktbl,.LK256
640 add $num,$inp,$num,lsl#6 // len to point at the end of inp
641
642 ld1.8 {@X[0]},[$inp], #16
643 ld1.8 {@X[1]},[$inp], #16
644 ld1.8 {@X[2]},[$inp], #16
645 ld1.8 {@X[3]},[$inp], #16
646 ld1.32 {$T0},[$Ktbl], #16
647 ld1.32 {$T1},[$Ktbl], #16
648 ld1.32 {$T2},[$Ktbl], #16
649 ld1.32 {$T3},[$Ktbl], #16
650 rev32 @X[0],@X[0] // yes, even on
651 rev32 @X[1],@X[1] // big-endian
652 rev32 @X[2],@X[2]
653 rev32 @X[3],@X[3]
654 mov $Xfer,sp
655 add.32 $T0,$T0,@X[0]
656 add.32 $T1,$T1,@X[1]
657 add.32 $T2,$T2,@X[2]
658 st1.32 {$T0-$T1},[$Xfer], #32
659 add.32 $T3,$T3,@X[3]
660 st1.32 {$T2-$T3},[$Xfer]
661 sub $Xfer,$Xfer,#32
662
663 ldp $A,$B,[$ctx]
664 ldp $C,$D,[$ctx,#8]
665 ldp $E,$F,[$ctx,#16]
666 ldp $G,$H,[$ctx,#24]
667 ldr $t1,[sp,#0]
668 mov $t2,wzr
669 eor $t3,$B,$C
670 mov $t4,wzr
671 b .L_00_48
672
673 .align 4
674 .L_00_48:
675 ___
676 &Xupdate(\&body_00_15);
677 &Xupdate(\&body_00_15);
678 &Xupdate(\&body_00_15);
679 &Xupdate(\&body_00_15);
680 $code.=<<___;
681 cmp $t1,#0 // check for K256 terminator
682 ldr $t1,[sp,#0]
683 sub $Xfer,$Xfer,#64
684 bne .L_00_48
685
686 sub $Ktbl,$Ktbl,#256 // rewind $Ktbl
687 cmp $inp,$num
688 mov $Xfer, #64
689 csel $Xfer, $Xfer, xzr, eq
690 sub $inp,$inp,$Xfer // avoid SEGV
691 mov $Xfer,sp
692 ___
693 &Xpreload(\&body_00_15);
694 &Xpreload(\&body_00_15);
695 &Xpreload(\&body_00_15);
696 &Xpreload(\&body_00_15);
697 $code.=<<___;
698 add $A,$A,$t4 // h+=Sigma0(a) from the past
699 ldp $t0,$t1,[$ctx,#0]
700 add $A,$A,$t2 // h+=Maj(a,b,c) from the past
701 ldp $t2,$t3,[$ctx,#8]
702 add $A,$A,$t0 // accumulate
703 add $B,$B,$t1
704 ldp $t0,$t1,[$ctx,#16]
705 add $C,$C,$t2
706 add $D,$D,$t3
707 ldp $t2,$t3,[$ctx,#24]
708 add $E,$E,$t0
709 add $F,$F,$t1
710 ldr $t1,[sp,#0]
711 stp $A,$B,[$ctx,#0]
712 add $G,$G,$t2
713 mov $t2,wzr
714 stp $C,$D,[$ctx,#8]
715 add $H,$H,$t3
716 stp $E,$F,[$ctx,#16]
717 eor $t3,$B,$C
718 stp $G,$H,[$ctx,#24]
719 mov $t4,wzr
720 mov $Xfer,sp
721 b.ne .L_00_48
722
723 ldr x29,[x29]
724 add sp,sp,#16*4+16
725 ret
726 .size sha256_block_neon,.-sha256_block_neon
727 ___
728 }
729
730 if ($SZ==8) {
731 my $Ktbl="x3";
732
733 my @H = map("v$_.16b",(0..4));
734 my ($fg,$de,$m9_10)=map("v$_.16b",(5..7));
735 my @MSG=map("v$_.16b",(16..23));
736 my ($W0,$W1)=("v24.2d","v25.2d");
737 my ($AB,$CD,$EF,$GH)=map("v$_.16b",(26..29));
738
739 $code.=<<___;
740 #ifndef __KERNEL__
741 .type sha512_block_armv8,%function
742 .align 6
743 sha512_block_armv8:
744 .Lv8_entry:
745 stp x29,x30,[sp,#-16]!
746 add x29,sp,#0
747
748 ld1 {@MSG[0]-@MSG[3]},[$inp],#64 // load input
749 ld1 {@MSG[4]-@MSG[7]},[$inp],#64
750
751 ld1.64 {@H[0]-@H[3]},[$ctx] // load context
752 adr $Ktbl,.LK512
753
754 rev64 @MSG[0],@MSG[0]
755 rev64 @MSG[1],@MSG[1]
756 rev64 @MSG[2],@MSG[2]
757 rev64 @MSG[3],@MSG[3]
758 rev64 @MSG[4],@MSG[4]
759 rev64 @MSG[5],@MSG[5]
760 rev64 @MSG[6],@MSG[6]
761 rev64 @MSG[7],@MSG[7]
762 b .Loop_hw
763
764 .align 4
765 .Loop_hw:
766 ld1.64 {$W0},[$Ktbl],#16
767 subs $num,$num,#1
768 sub x4,$inp,#128
769 orr $AB,@H[0],@H[0] // offload
770 orr $CD,@H[1],@H[1]
771 orr $EF,@H[2],@H[2]
772 orr $GH,@H[3],@H[3]
773 csel $inp,$inp,x4,ne // conditional rewind
774 ___
775 for($i=0;$i<32;$i++) {
776 $code.=<<___;
777 add.i64 $W0,$W0,@MSG[0]
778 ld1.64 {$W1},[$Ktbl],#16
779 ext $W0,$W0,$W0,#8
780 ext $fg,@H[2],@H[3],#8
781 ext $de,@H[1],@H[2],#8
782 add.i64 @H[3],@H[3],$W0 // "T1 + H + K512[i]"
783 sha512su0 @MSG[0],@MSG[1]
784 ext $m9_10,@MSG[4],@MSG[5],#8
785 sha512h @H[3],$fg,$de
786 sha512su1 @MSG[0],@MSG[7],$m9_10
787 add.i64 @H[4],@H[1],@H[3] // "D + T1"
788 sha512h2 @H[3],$H[1],@H[0]
789 ___
790 ($W0,$W1)=($W1,$W0); push(@MSG,shift(@MSG));
791 @H = (@H[3],@H[0],@H[4],@H[2],@H[1]);
792 }
793 for(;$i<40;$i++) {
794 $code.=<<___ if ($i<39);
795 ld1.64 {$W1},[$Ktbl],#16
796 ___
797 $code.=<<___ if ($i==39);
798 sub $Ktbl,$Ktbl,#$rounds*$SZ // rewind
799 ___
800 $code.=<<___;
801 add.i64 $W0,$W0,@MSG[0]
802 ld1 {@MSG[0]},[$inp],#16 // load next input
803 ext $W0,$W0,$W0,#8
804 ext $fg,@H[2],@H[3],#8
805 ext $de,@H[1],@H[2],#8
806 add.i64 @H[3],@H[3],$W0 // "T1 + H + K512[i]"
807 sha512h @H[3],$fg,$de
808 rev64 @MSG[0],@MSG[0]
809 add.i64 @H[4],@H[1],@H[3] // "D + T1"
810 sha512h2 @H[3],$H[1],@H[0]
811 ___
812 ($W0,$W1)=($W1,$W0); push(@MSG,shift(@MSG));
813 @H = (@H[3],@H[0],@H[4],@H[2],@H[1]);
814 }
815 $code.=<<___;
816 add.i64 @H[0],@H[0],$AB // accumulate
817 add.i64 @H[1],@H[1],$CD
818 add.i64 @H[2],@H[2],$EF
819 add.i64 @H[3],@H[3],$GH
820
821 cbnz $num,.Loop_hw
822
823 st1.64 {@H[0]-@H[3]},[$ctx] // store context
824
825 ldr x29,[sp],#16
826 ret
827 .size sha512_block_armv8,.-sha512_block_armv8
828 #endif
829 ___
830 }
831
832 $code.=<<___;
833 #if !defined(__KERNEL__) && !defined(_WIN64)
834 .comm OPENSSL_armcap_P,4,4
835 #endif
836 ___
837
838 { my %opcode = (
839 "sha256h" => 0x5e004000, "sha256h2" => 0x5e005000,
840 "sha256su0" => 0x5e282800, "sha256su1" => 0x5e006000 );
841
842 sub unsha256 {
843 my ($mnemonic,$arg)=@_;
844
845 $arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o
846 &&
847 sprintf ".inst\t0x%08x\t//%s %s",
848 $opcode{$mnemonic}|$1|($2<<5)|($3<<16),
849 $mnemonic,$arg;
850 }
851 }
852
853 { my %opcode = (
854 "sha512h" => 0xce608000, "sha512h2" => 0xce608400,
855 "sha512su0" => 0xcec08000, "sha512su1" => 0xce608800 );
856
857 sub unsha512 {
858 my ($mnemonic,$arg)=@_;
859
860 $arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o
861 &&
862 sprintf ".inst\t0x%08x\t//%s %s",
863 $opcode{$mnemonic}|$1|($2<<5)|($3<<16),
864 $mnemonic,$arg;
865 }
866 }
867
868 open SELF,$0;
869 while(<SELF>) {
870 next if (/^#!/);
871 last if (!s/^#/\/\// and !/^$/);
872 print;
873 }
874 close SELF;
875
876 foreach(split("\n",$code)) {
877
878 s/\`([^\`]*)\`/eval($1)/ge;
879
880 s/\b(sha512\w+)\s+([qv].*)/unsha512($1,$2)/ge or
881 s/\b(sha256\w+)\s+([qv].*)/unsha256($1,$2)/ge;
882
883 s/\bq([0-9]+)\b/v$1.16b/g; # old->new registers
884
885 s/\.[ui]?8(\s)/$1/;
886 s/\.\w?64\b// and s/\.16b/\.2d/g or
887 s/\.\w?32\b// and s/\.16b/\.4s/g;
888 m/\bext\b/ and s/\.2d/\.16b/g or
889 m/(ld|st)1[^\[]+\[0\]/ and s/\.4s/\.s/g;
890
891 print $_,"\n";
892 }
893
894 close STDOUT or die "error closing STDOUT: $!";