]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/stack/stack.c
Copyright year updates
[thirdparty/openssl.git] / crypto / stack / stack.c
1 /*
2 * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include "internal/cryptlib.h"
12 #include "internal/numbers.h"
13 #include "internal/safe_math.h"
14 #include <openssl/stack.h>
15 #include <errno.h>
16 #include <openssl/e_os2.h> /* For ossl_inline */
17
18 OSSL_SAFE_MATH_SIGNED(int, int)
19
20 /*
21 * The initial number of nodes in the array.
22 */
23 static const int min_nodes = 4;
24 static const int max_nodes = SIZE_MAX / sizeof(void *) < INT_MAX
25 ? (int)(SIZE_MAX / sizeof(void *)) : INT_MAX;
26
27 struct stack_st {
28 int num;
29 const void **data;
30 int sorted;
31 int num_alloc;
32 OPENSSL_sk_compfunc comp;
33 };
34
35 OPENSSL_sk_compfunc OPENSSL_sk_set_cmp_func(OPENSSL_STACK *sk,
36 OPENSSL_sk_compfunc c)
37 {
38 OPENSSL_sk_compfunc old = sk->comp;
39
40 if (sk->comp != c)
41 sk->sorted = 0;
42 sk->comp = c;
43
44 return old;
45 }
46
47 OPENSSL_STACK *OPENSSL_sk_dup(const OPENSSL_STACK *sk)
48 {
49 OPENSSL_STACK *ret;
50
51 if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL)
52 goto err;
53
54 if (sk == NULL) {
55 ret->num = 0;
56 ret->sorted = 0;
57 ret->comp = NULL;
58 } else {
59 /* direct structure assignment */
60 *ret = *sk;
61 }
62
63 if (sk == NULL || sk->num == 0) {
64 /* postpone |ret->data| allocation */
65 ret->data = NULL;
66 ret->num_alloc = 0;
67 return ret;
68 }
69
70 /* duplicate |sk->data| content */
71 ret->data = OPENSSL_malloc(sizeof(*ret->data) * sk->num_alloc);
72 if (ret->data == NULL)
73 goto err;
74 memcpy(ret->data, sk->data, sizeof(void *) * sk->num);
75 return ret;
76
77 err:
78 OPENSSL_sk_free(ret);
79 return NULL;
80 }
81
82 OPENSSL_STACK *OPENSSL_sk_deep_copy(const OPENSSL_STACK *sk,
83 OPENSSL_sk_copyfunc copy_func,
84 OPENSSL_sk_freefunc free_func)
85 {
86 OPENSSL_STACK *ret;
87 int i;
88
89 if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL)
90 goto err;
91
92 if (sk == NULL) {
93 ret->num = 0;
94 ret->sorted = 0;
95 ret->comp = NULL;
96 } else {
97 /* direct structure assignment */
98 *ret = *sk;
99 }
100
101 if (sk == NULL || sk->num == 0) {
102 /* postpone |ret| data allocation */
103 ret->data = NULL;
104 ret->num_alloc = 0;
105 return ret;
106 }
107
108 ret->num_alloc = sk->num > min_nodes ? sk->num : min_nodes;
109 ret->data = OPENSSL_zalloc(sizeof(*ret->data) * ret->num_alloc);
110 if (ret->data == NULL)
111 goto err;
112
113 for (i = 0; i < ret->num; ++i) {
114 if (sk->data[i] == NULL)
115 continue;
116 if ((ret->data[i] = copy_func(sk->data[i])) == NULL) {
117 while (--i >= 0)
118 if (ret->data[i] != NULL)
119 free_func((void *)ret->data[i]);
120 goto err;
121 }
122 }
123 return ret;
124
125 err:
126 OPENSSL_sk_free(ret);
127 return NULL;
128 }
129
130 OPENSSL_STACK *OPENSSL_sk_new_null(void)
131 {
132 return OPENSSL_sk_new_reserve(NULL, 0);
133 }
134
135 OPENSSL_STACK *OPENSSL_sk_new(OPENSSL_sk_compfunc c)
136 {
137 return OPENSSL_sk_new_reserve(c, 0);
138 }
139
140 /*
141 * Calculate the array growth based on the target size.
142 *
143 * The growth factor is a rational number and is defined by a numerator
144 * and a denominator. According to Andrew Koenig in his paper "Why Are
145 * Vectors Efficient?" from JOOP 11(5) 1998, this factor should be less
146 * than the golden ratio (1.618...).
147 *
148 * Considering only the Fibonacci ratios less than the golden ratio, the
149 * number of steps from the minimum allocation to integer overflow is:
150 * factor decimal growths
151 * 3/2 1.5 51
152 * 8/5 1.6 45
153 * 21/13 1.615... 44
154 *
155 * All larger factors have the same number of growths.
156 *
157 * 3/2 and 8/5 have nice power of two shifts, so seem like a good choice.
158 */
159 static ossl_inline int compute_growth(int target, int current)
160 {
161 int err = 0;
162
163 while (current < target) {
164 if (current >= max_nodes)
165 return 0;
166
167 current = safe_muldiv_int(current, 8, 5, &err);
168 if (err != 0)
169 return 0;
170 if (current >= max_nodes)
171 current = max_nodes;
172 }
173 return current;
174 }
175
176 /* internal STACK storage allocation */
177 static int sk_reserve(OPENSSL_STACK *st, int n, int exact)
178 {
179 const void **tmpdata;
180 int num_alloc;
181
182 /* Check to see the reservation isn't exceeding the hard limit */
183 if (n > max_nodes - st->num) {
184 ERR_raise(ERR_LIB_CRYPTO, CRYPTO_R_TOO_MANY_RECORDS);
185 return 0;
186 }
187
188 /* Figure out the new size */
189 num_alloc = st->num + n;
190 if (num_alloc < min_nodes)
191 num_alloc = min_nodes;
192
193 /* If |st->data| allocation was postponed */
194 if (st->data == NULL) {
195 /*
196 * At this point, |st->num_alloc| and |st->num| are 0;
197 * so |num_alloc| value is |n| or |min_nodes| if greater than |n|.
198 */
199 if ((st->data = OPENSSL_zalloc(sizeof(void *) * num_alloc)) == NULL)
200 return 0;
201 st->num_alloc = num_alloc;
202 return 1;
203 }
204
205 if (!exact) {
206 if (num_alloc <= st->num_alloc)
207 return 1;
208 num_alloc = compute_growth(num_alloc, st->num_alloc);
209 if (num_alloc == 0) {
210 ERR_raise(ERR_LIB_CRYPTO, CRYPTO_R_TOO_MANY_RECORDS);
211 return 0;
212 }
213 } else if (num_alloc == st->num_alloc) {
214 return 1;
215 }
216
217 tmpdata = OPENSSL_realloc((void *)st->data, sizeof(void *) * num_alloc);
218 if (tmpdata == NULL)
219 return 0;
220
221 st->data = tmpdata;
222 st->num_alloc = num_alloc;
223 return 1;
224 }
225
226 OPENSSL_STACK *OPENSSL_sk_new_reserve(OPENSSL_sk_compfunc c, int n)
227 {
228 OPENSSL_STACK *st = OPENSSL_zalloc(sizeof(OPENSSL_STACK));
229
230 if (st == NULL)
231 return NULL;
232
233 st->comp = c;
234
235 if (n <= 0)
236 return st;
237
238 if (!sk_reserve(st, n, 1)) {
239 OPENSSL_sk_free(st);
240 return NULL;
241 }
242
243 return st;
244 }
245
246 int OPENSSL_sk_reserve(OPENSSL_STACK *st, int n)
247 {
248 if (st == NULL) {
249 ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER);
250 return 0;
251 }
252
253 if (n < 0)
254 return 1;
255 return sk_reserve(st, n, 1);
256 }
257
258 int OPENSSL_sk_insert(OPENSSL_STACK *st, const void *data, int loc)
259 {
260 if (st == NULL) {
261 ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER);
262 return 0;
263 }
264 if (st->num == max_nodes) {
265 ERR_raise(ERR_LIB_CRYPTO, CRYPTO_R_TOO_MANY_RECORDS);
266 return 0;
267 }
268
269 if (!sk_reserve(st, 1, 0))
270 return 0;
271
272 if ((loc >= st->num) || (loc < 0)) {
273 st->data[st->num] = data;
274 } else {
275 memmove(&st->data[loc + 1], &st->data[loc],
276 sizeof(st->data[0]) * (st->num - loc));
277 st->data[loc] = data;
278 }
279 st->num++;
280 st->sorted = 0;
281 return st->num;
282 }
283
284 static ossl_inline void *internal_delete(OPENSSL_STACK *st, int loc)
285 {
286 const void *ret = st->data[loc];
287
288 if (loc != st->num - 1)
289 memmove(&st->data[loc], &st->data[loc + 1],
290 sizeof(st->data[0]) * (st->num - loc - 1));
291 st->num--;
292
293 return (void *)ret;
294 }
295
296 void *OPENSSL_sk_delete_ptr(OPENSSL_STACK *st, const void *p)
297 {
298 int i;
299
300 if (st == NULL)
301 return NULL;
302
303 for (i = 0; i < st->num; i++)
304 if (st->data[i] == p)
305 return internal_delete(st, i);
306 return NULL;
307 }
308
309 void *OPENSSL_sk_delete(OPENSSL_STACK *st, int loc)
310 {
311 if (st == NULL || loc < 0 || loc >= st->num)
312 return NULL;
313
314 return internal_delete(st, loc);
315 }
316
317 static int internal_find(OPENSSL_STACK *st, const void *data,
318 int ret_val_options, int *pnum_matched)
319 {
320 const void *r;
321 int i, count = 0;
322 int *pnum = pnum_matched;
323
324 if (st == NULL || st->num == 0)
325 return -1;
326
327 if (pnum == NULL)
328 pnum = &count;
329
330 if (st->comp == NULL) {
331 for (i = 0; i < st->num; i++)
332 if (st->data[i] == data) {
333 *pnum = 1;
334 return i;
335 }
336 *pnum = 0;
337 return -1;
338 }
339
340 if (data == NULL)
341 return -1;
342
343 if (!st->sorted) {
344 int res = -1;
345
346 for (i = 0; i < st->num; i++)
347 if (st->comp(&data, st->data + i) == 0) {
348 if (res == -1)
349 res = i;
350 ++*pnum;
351 /* Check if only one result is wanted and exit if so */
352 if (pnum_matched == NULL)
353 return i;
354 }
355 if (res == -1)
356 *pnum = 0;
357 return res;
358 }
359
360 if (pnum_matched != NULL)
361 ret_val_options |= OSSL_BSEARCH_FIRST_VALUE_ON_MATCH;
362 r = ossl_bsearch(&data, st->data, st->num, sizeof(void *), st->comp,
363 ret_val_options);
364
365 if (pnum_matched != NULL) {
366 *pnum = 0;
367 if (r != NULL) {
368 const void **p = (const void **)r;
369
370 while (p < st->data + st->num) {
371 if (st->comp(&data, p) != 0)
372 break;
373 ++*pnum;
374 ++p;
375 }
376 }
377 }
378
379 return r == NULL ? -1 : (int)((const void **)r - st->data);
380 }
381
382 int OPENSSL_sk_find(OPENSSL_STACK *st, const void *data)
383 {
384 return internal_find(st, data, OSSL_BSEARCH_FIRST_VALUE_ON_MATCH, NULL);
385 }
386
387 int OPENSSL_sk_find_ex(OPENSSL_STACK *st, const void *data)
388 {
389 return internal_find(st, data, OSSL_BSEARCH_VALUE_ON_NOMATCH, NULL);
390 }
391
392 int OPENSSL_sk_find_all(OPENSSL_STACK *st, const void *data, int *pnum)
393 {
394 return internal_find(st, data, OSSL_BSEARCH_FIRST_VALUE_ON_MATCH, pnum);
395 }
396
397 int OPENSSL_sk_push(OPENSSL_STACK *st, const void *data)
398 {
399 if (st == NULL)
400 return -1;
401 return OPENSSL_sk_insert(st, data, st->num);
402 }
403
404 int OPENSSL_sk_unshift(OPENSSL_STACK *st, const void *data)
405 {
406 return OPENSSL_sk_insert(st, data, 0);
407 }
408
409 void *OPENSSL_sk_shift(OPENSSL_STACK *st)
410 {
411 if (st == NULL || st->num == 0)
412 return NULL;
413 return internal_delete(st, 0);
414 }
415
416 void *OPENSSL_sk_pop(OPENSSL_STACK *st)
417 {
418 if (st == NULL || st->num == 0)
419 return NULL;
420 return internal_delete(st, st->num - 1);
421 }
422
423 void OPENSSL_sk_zero(OPENSSL_STACK *st)
424 {
425 if (st == NULL || st->num == 0)
426 return;
427 memset(st->data, 0, sizeof(*st->data) * st->num);
428 st->num = 0;
429 }
430
431 void OPENSSL_sk_pop_free(OPENSSL_STACK *st, OPENSSL_sk_freefunc func)
432 {
433 int i;
434
435 if (st == NULL)
436 return;
437 for (i = 0; i < st->num; i++)
438 if (st->data[i] != NULL)
439 func((char *)st->data[i]);
440 OPENSSL_sk_free(st);
441 }
442
443 void OPENSSL_sk_free(OPENSSL_STACK *st)
444 {
445 if (st == NULL)
446 return;
447 OPENSSL_free(st->data);
448 OPENSSL_free(st);
449 }
450
451 int OPENSSL_sk_num(const OPENSSL_STACK *st)
452 {
453 return st == NULL ? -1 : st->num;
454 }
455
456 void *OPENSSL_sk_value(const OPENSSL_STACK *st, int i)
457 {
458 if (st == NULL || i < 0 || i >= st->num)
459 return NULL;
460 return (void *)st->data[i];
461 }
462
463 void *OPENSSL_sk_set(OPENSSL_STACK *st, int i, const void *data)
464 {
465 if (st == NULL) {
466 ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER);
467 return NULL;
468 }
469 if (i < 0 || i >= st->num) {
470 ERR_raise_data(ERR_LIB_CRYPTO, ERR_R_PASSED_INVALID_ARGUMENT,
471 "i=%d", i);
472 return NULL;
473 }
474 st->data[i] = data;
475 st->sorted = 0;
476 return (void *)st->data[i];
477 }
478
479 void OPENSSL_sk_sort(OPENSSL_STACK *st)
480 {
481 if (st != NULL && !st->sorted && st->comp != NULL) {
482 if (st->num > 1)
483 qsort(st->data, st->num, sizeof(void *), st->comp);
484 st->sorted = 1; /* empty or single-element stack is considered sorted */
485 }
486 }
487
488 int OPENSSL_sk_is_sorted(const OPENSSL_STACK *st)
489 {
490 return st == NULL ? 1 : st->sorted;
491 }