]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/x509/x509_vfy.c
free memory use on error in cert verify
[thirdparty/openssl.git] / crypto / x509 / x509_vfy.c
1 /*
2 * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include <time.h>
12 #include <errno.h>
13 #include <limits.h>
14
15 #include "crypto/ctype.h"
16 #include "internal/cryptlib.h"
17 #include <openssl/crypto.h>
18 #include <openssl/buffer.h>
19 #include <openssl/evp.h>
20 #include <openssl/asn1.h>
21 #include <openssl/x509.h>
22 #include <openssl/x509v3.h>
23 #include <openssl/objects.h>
24 #include "internal/dane.h"
25 #include "crypto/x509.h"
26 #include "x509_local.h"
27
28 /* CRL score values */
29
30 /* No unhandled critical extensions */
31
32 #define CRL_SCORE_NOCRITICAL 0x100
33
34 /* certificate is within CRL scope */
35
36 #define CRL_SCORE_SCOPE 0x080
37
38 /* CRL times valid */
39
40 #define CRL_SCORE_TIME 0x040
41
42 /* Issuer name matches certificate */
43
44 #define CRL_SCORE_ISSUER_NAME 0x020
45
46 /* If this score or above CRL is probably valid */
47
48 #define CRL_SCORE_VALID (CRL_SCORE_NOCRITICAL|CRL_SCORE_TIME|CRL_SCORE_SCOPE)
49
50 /* CRL issuer is certificate issuer */
51
52 #define CRL_SCORE_ISSUER_CERT 0x018
53
54 /* CRL issuer is on certificate path */
55
56 #define CRL_SCORE_SAME_PATH 0x008
57
58 /* CRL issuer matches CRL AKID */
59
60 #define CRL_SCORE_AKID 0x004
61
62 /* Have a delta CRL with valid times */
63
64 #define CRL_SCORE_TIME_DELTA 0x002
65
66 static int build_chain(X509_STORE_CTX *ctx);
67 static int verify_chain(X509_STORE_CTX *ctx);
68 static int dane_verify(X509_STORE_CTX *ctx);
69 static int null_callback(int ok, X509_STORE_CTX *e);
70 static int check_issued(X509_STORE_CTX *ctx, X509 *x, X509 *issuer);
71 static X509 *find_issuer(X509_STORE_CTX *ctx, STACK_OF(X509) *sk, X509 *x);
72 static int check_chain_extensions(X509_STORE_CTX *ctx);
73 static int check_name_constraints(X509_STORE_CTX *ctx);
74 static int check_id(X509_STORE_CTX *ctx);
75 static int check_trust(X509_STORE_CTX *ctx, int num_untrusted);
76 static int check_revocation(X509_STORE_CTX *ctx);
77 static int check_cert(X509_STORE_CTX *ctx);
78 static int check_policy(X509_STORE_CTX *ctx);
79 static int get_issuer_sk(X509 **issuer, X509_STORE_CTX *ctx, X509 *x);
80 static int check_dane_issuer(X509_STORE_CTX *ctx, int depth);
81 static int check_key_level(X509_STORE_CTX *ctx, X509 *cert);
82 static int check_sig_level(X509_STORE_CTX *ctx, X509 *cert);
83
84 static int get_crl_score(X509_STORE_CTX *ctx, X509 **pissuer,
85 unsigned int *preasons, X509_CRL *crl, X509 *x);
86 static int get_crl_delta(X509_STORE_CTX *ctx,
87 X509_CRL **pcrl, X509_CRL **pdcrl, X509 *x);
88 static void get_delta_sk(X509_STORE_CTX *ctx, X509_CRL **dcrl,
89 int *pcrl_score, X509_CRL *base,
90 STACK_OF(X509_CRL) *crls);
91 static void crl_akid_check(X509_STORE_CTX *ctx, X509_CRL *crl, X509 **pissuer,
92 int *pcrl_score);
93 static int crl_crldp_check(X509 *x, X509_CRL *crl, int crl_score,
94 unsigned int *preasons);
95 static int check_crl_path(X509_STORE_CTX *ctx, X509 *x);
96 static int check_crl_chain(X509_STORE_CTX *ctx,
97 STACK_OF(X509) *cert_path,
98 STACK_OF(X509) *crl_path);
99
100 static int internal_verify(X509_STORE_CTX *ctx);
101
102 static int null_callback(int ok, X509_STORE_CTX *e)
103 {
104 return ok;
105 }
106
107 /*-
108 * Return 1 if given cert is considered self-signed, 0 if not, or -1 on error.
109 * This actually verifies self-signedness only if requested.
110 * It calls X509v3_cache_extensions()
111 * to match issuer and subject names (i.e., the cert being self-issued) and any
112 * present authority key identifier to match the subject key identifier, etc.
113 */
114 int X509_self_signed(X509 *cert, int verify_signature)
115 {
116 EVP_PKEY *pkey;
117
118 if ((pkey = X509_get0_pubkey(cert)) == NULL) { /* handles cert == NULL */
119 X509err(0, X509_R_UNABLE_TO_GET_CERTS_PUBLIC_KEY);
120 return -1;
121 }
122 if (!x509v3_cache_extensions(cert))
123 return -1;
124 if ((cert->ex_flags & EXFLAG_SS) == 0)
125 return 0;
126 if (!verify_signature)
127 return 1;
128 return X509_verify(cert, pkey);
129 }
130
131 /* Given a certificate try and find an exact match in the store */
132 static X509 *lookup_cert_match(X509_STORE_CTX *ctx, X509 *x)
133 {
134 STACK_OF(X509) *certs;
135 X509 *xtmp = NULL;
136 int i;
137 /* Lookup all certs with matching subject name */
138 certs = ctx->lookup_certs(ctx, X509_get_subject_name(x));
139 if (certs == NULL)
140 return NULL;
141 /* Look for exact match */
142 for (i = 0; i < sk_X509_num(certs); i++) {
143 xtmp = sk_X509_value(certs, i);
144 if (!X509_cmp(xtmp, x))
145 break;
146 xtmp = NULL;
147 }
148 if (xtmp != NULL && !X509_up_ref(xtmp))
149 xtmp = NULL;
150 sk_X509_pop_free(certs, X509_free);
151 return xtmp;
152 }
153
154 /*-
155 * Inform the verify callback of an error.
156 * If B<x> is not NULL it is the error cert, otherwise use the chain cert at
157 * B<depth>.
158 * If B<err> is not X509_V_OK, that's the error value, otherwise leave
159 * unchanged (presumably set by the caller).
160 *
161 * Returns 0 to abort verification with an error, non-zero to continue.
162 */
163 static int verify_cb_cert(X509_STORE_CTX *ctx, X509 *x, int depth, int err)
164 {
165 ctx->error_depth = depth;
166 ctx->current_cert = (x != NULL) ? x : sk_X509_value(ctx->chain, depth);
167 if (err != X509_V_OK)
168 ctx->error = err;
169 return ctx->verify_cb(0, ctx);
170 }
171
172 /*-
173 * Inform the verify callback of an error, CRL-specific variant. Here, the
174 * error depth and certificate are already set, we just specify the error
175 * number.
176 *
177 * Returns 0 to abort verification with an error, non-zero to continue.
178 */
179 static int verify_cb_crl(X509_STORE_CTX *ctx, int err)
180 {
181 ctx->error = err;
182 return ctx->verify_cb(0, ctx);
183 }
184
185 static int check_auth_level(X509_STORE_CTX *ctx)
186 {
187 int i;
188 int num = sk_X509_num(ctx->chain);
189
190 if (ctx->param->auth_level <= 0)
191 return 1;
192
193 for (i = 0; i < num; ++i) {
194 X509 *cert = sk_X509_value(ctx->chain, i);
195
196 /*
197 * We've already checked the security of the leaf key, so here we only
198 * check the security of issuer keys.
199 */
200 if (i > 0 && !check_key_level(ctx, cert) &&
201 verify_cb_cert(ctx, cert, i, X509_V_ERR_CA_KEY_TOO_SMALL) == 0)
202 return 0;
203 /*
204 * We also check the signature algorithm security of all certificates
205 * except those of the trust anchor at index num-1.
206 */
207 if (i < num - 1 && !check_sig_level(ctx, cert) &&
208 verify_cb_cert(ctx, cert, i, X509_V_ERR_CA_MD_TOO_WEAK) == 0)
209 return 0;
210 }
211 return 1;
212 }
213
214 static int verify_chain(X509_STORE_CTX *ctx)
215 {
216 int err;
217 int ok;
218
219 /*
220 * Before either returning with an error, or continuing with CRL checks,
221 * instantiate chain public key parameters.
222 */
223 if ((ok = build_chain(ctx)) == 0 ||
224 (ok = check_chain_extensions(ctx)) == 0 ||
225 (ok = check_auth_level(ctx)) == 0 ||
226 (ok = check_id(ctx)) == 0 || 1)
227 X509_get_pubkey_parameters(NULL, ctx->chain);
228 if (ok == 0 || (ok = ctx->check_revocation(ctx)) == 0)
229 return ok;
230
231 err = X509_chain_check_suiteb(&ctx->error_depth, NULL, ctx->chain,
232 ctx->param->flags);
233 if (err != X509_V_OK) {
234 if ((ok = verify_cb_cert(ctx, NULL, ctx->error_depth, err)) == 0)
235 return ok;
236 }
237
238 /* Verify chain signatures and expiration times */
239 ok = (ctx->verify != NULL) ? ctx->verify(ctx) : internal_verify(ctx);
240 if (!ok)
241 return ok;
242
243 if ((ok = check_name_constraints(ctx)) == 0)
244 return ok;
245
246 #ifndef OPENSSL_NO_RFC3779
247 /* RFC 3779 path validation, now that CRL check has been done */
248 if ((ok = X509v3_asid_validate_path(ctx)) == 0)
249 return ok;
250 if ((ok = X509v3_addr_validate_path(ctx)) == 0)
251 return ok;
252 #endif
253
254 /* If we get this far evaluate policies */
255 if (ctx->param->flags & X509_V_FLAG_POLICY_CHECK)
256 ok = ctx->check_policy(ctx);
257 return ok;
258 }
259
260 int X509_verify_cert(X509_STORE_CTX *ctx)
261 {
262 SSL_DANE *dane = ctx->dane;
263 int ret;
264
265 if (ctx->cert == NULL) {
266 X509err(X509_F_X509_VERIFY_CERT, X509_R_NO_CERT_SET_FOR_US_TO_VERIFY);
267 ctx->error = X509_V_ERR_INVALID_CALL;
268 return -1;
269 }
270
271 if (ctx->chain != NULL) {
272 /*
273 * This X509_STORE_CTX has already been used to verify a cert. We
274 * cannot do another one.
275 */
276 X509err(X509_F_X509_VERIFY_CERT, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
277 ctx->error = X509_V_ERR_INVALID_CALL;
278 return -1;
279 }
280
281 if (!X509_add_cert_new(&ctx->chain, ctx->cert, X509_ADD_FLAG_UP_REF)) {
282 ctx->error = X509_V_ERR_OUT_OF_MEM;
283 return -1;
284 }
285 ctx->num_untrusted = 1;
286
287 /* If the peer's public key is too weak, we can stop early. */
288 if (!check_key_level(ctx, ctx->cert) &&
289 !verify_cb_cert(ctx, ctx->cert, 0, X509_V_ERR_EE_KEY_TOO_SMALL))
290 return 0;
291
292 if (DANETLS_ENABLED(dane))
293 ret = dane_verify(ctx);
294 else
295 ret = verify_chain(ctx);
296
297 /*
298 * Safety-net. If we are returning an error, we must also set ctx->error,
299 * so that the chain is not considered verified should the error be ignored
300 * (e.g. TLS with SSL_VERIFY_NONE).
301 */
302 if (ret <= 0 && ctx->error == X509_V_OK)
303 ctx->error = X509_V_ERR_UNSPECIFIED;
304 return ret;
305 }
306
307 /*
308 * Given a STACK_OF(X509) find the issuer of cert (if any)
309 */
310 static X509 *find_issuer(X509_STORE_CTX *ctx, STACK_OF(X509) *sk, X509 *x)
311 {
312 int i;
313 X509 *issuer, *rv = NULL;
314
315 for (i = 0; i < sk_X509_num(sk); i++) {
316 issuer = sk_X509_value(sk, i);
317 /*
318 * Below check 'issuer != x' is an optimization and safety precaution:
319 * Candidate issuer cert cannot be the same as the subject cert 'x'.
320 */
321 if (issuer != x && ctx->check_issued(ctx, x, issuer)) {
322 rv = issuer;
323 if (x509_check_cert_time(ctx, rv, -1))
324 break;
325 }
326 }
327 return rv;
328 }
329
330 /*
331 * Check that the given certificate 'x' is issued by the certificate 'issuer'
332 * and the issuer is not yet in ctx->chain, where the exceptional case
333 * that 'x' is self-issued and ctx->chain has just one element is allowed.
334 */
335 static int check_issued(X509_STORE_CTX *ctx, X509 *x, X509 *issuer)
336 {
337 if (x509_likely_issued(issuer, x) != X509_V_OK)
338 return 0;
339 if ((x->ex_flags & EXFLAG_SI) == 0 || sk_X509_num(ctx->chain) != 1) {
340 int i;
341 X509 *ch;
342
343 for (i = 0; i < sk_X509_num(ctx->chain); i++) {
344 ch = sk_X509_value(ctx->chain, i);
345 if (ch == issuer || X509_cmp(ch, issuer) == 0)
346 return 0;
347 }
348 }
349 return 1;
350 }
351
352 /* Alternative lookup method: look from a STACK stored in other_ctx */
353 static int get_issuer_sk(X509 **issuer, X509_STORE_CTX *ctx, X509 *x)
354 {
355 *issuer = find_issuer(ctx, ctx->other_ctx, x);
356
357 if (*issuer == NULL || !X509_up_ref(*issuer))
358 goto err;
359
360 return 1;
361
362 err:
363 *issuer = NULL;
364 return 0;
365 }
366
367 static STACK_OF(X509) *lookup_certs_sk(X509_STORE_CTX *ctx,
368 const X509_NAME *nm)
369 {
370 STACK_OF(X509) *sk = NULL;
371 X509 *x;
372 int i;
373
374 for (i = 0; i < sk_X509_num(ctx->other_ctx); i++) {
375 x = sk_X509_value(ctx->other_ctx, i);
376 if (X509_NAME_cmp(nm, X509_get_subject_name(x)) == 0) {
377 if (!X509_add_cert_new(&sk, x, X509_ADD_FLAG_UP_REF)) {
378 sk_X509_pop_free(sk, X509_free);
379 ctx->error = X509_V_ERR_OUT_OF_MEM;
380 return NULL;
381 }
382 }
383 }
384 return sk;
385 }
386
387 /*
388 * Check EE or CA certificate purpose. For trusted certificates explicit local
389 * auxiliary trust can be used to override EKU-restrictions.
390 */
391 static int check_purpose(X509_STORE_CTX *ctx, X509 *x, int purpose, int depth,
392 int must_be_ca)
393 {
394 int tr_ok = X509_TRUST_UNTRUSTED;
395
396 /*
397 * For trusted certificates we want to see whether any auxiliary trust
398 * settings trump the purpose constraints.
399 *
400 * This is complicated by the fact that the trust ordinals in
401 * ctx->param->trust are entirely independent of the purpose ordinals in
402 * ctx->param->purpose!
403 *
404 * What connects them is their mutual initialization via calls from
405 * X509_STORE_CTX_set_default() into X509_VERIFY_PARAM_lookup() which sets
406 * related values of both param->trust and param->purpose. It is however
407 * typically possible to infer associated trust values from a purpose value
408 * via the X509_PURPOSE API.
409 *
410 * Therefore, we can only check for trust overrides when the purpose we're
411 * checking is the same as ctx->param->purpose and ctx->param->trust is
412 * also set.
413 */
414 if (depth >= ctx->num_untrusted && purpose == ctx->param->purpose)
415 tr_ok = X509_check_trust(x, ctx->param->trust, X509_TRUST_NO_SS_COMPAT);
416
417 switch (tr_ok) {
418 case X509_TRUST_TRUSTED:
419 return 1;
420 case X509_TRUST_REJECTED:
421 break;
422 default:
423 switch (X509_check_purpose(x, purpose, must_be_ca > 0)) {
424 case 1:
425 return 1;
426 case 0:
427 break;
428 default:
429 if ((ctx->param->flags & X509_V_FLAG_X509_STRICT) == 0)
430 return 1;
431 }
432 break;
433 }
434
435 return verify_cb_cert(ctx, x, depth, X509_V_ERR_INVALID_PURPOSE);
436 }
437
438 /*
439 * Check a certificate chains extensions for consistency with the supplied
440 * purpose
441 */
442
443 static int check_chain_extensions(X509_STORE_CTX *ctx)
444 {
445 int i, must_be_ca, plen = 0;
446 X509 *x;
447 int proxy_path_length = 0;
448 int purpose;
449 int allow_proxy_certs;
450 int num = sk_X509_num(ctx->chain);
451
452 /*-
453 * must_be_ca can have 1 of 3 values:
454 * -1: we accept both CA and non-CA certificates, to allow direct
455 * use of self-signed certificates (which are marked as CA).
456 * 0: we only accept non-CA certificates. This is currently not
457 * used, but the possibility is present for future extensions.
458 * 1: we only accept CA certificates. This is currently used for
459 * all certificates in the chain except the leaf certificate.
460 */
461 must_be_ca = -1;
462
463 /* CRL path validation */
464 if (ctx->parent) {
465 allow_proxy_certs = 0;
466 purpose = X509_PURPOSE_CRL_SIGN;
467 } else {
468 allow_proxy_certs =
469 ! !(ctx->param->flags & X509_V_FLAG_ALLOW_PROXY_CERTS);
470 purpose = ctx->param->purpose;
471 }
472
473 for (i = 0; i < num; i++) {
474 int ret;
475
476 x = sk_X509_value(ctx->chain, i);
477 if (!(ctx->param->flags & X509_V_FLAG_IGNORE_CRITICAL)
478 && (x->ex_flags & EXFLAG_CRITICAL)) {
479 if (!verify_cb_cert(ctx, x, i,
480 X509_V_ERR_UNHANDLED_CRITICAL_EXTENSION))
481 return 0;
482 }
483 if (!allow_proxy_certs && (x->ex_flags & EXFLAG_PROXY)) {
484 if (!verify_cb_cert(ctx, x, i,
485 X509_V_ERR_PROXY_CERTIFICATES_NOT_ALLOWED))
486 return 0;
487 }
488 ret = X509_check_ca(x);
489 switch (must_be_ca) {
490 case -1:
491 if ((ctx->param->flags & X509_V_FLAG_X509_STRICT)
492 && (ret != 1) && (ret != 0)) {
493 ret = 0;
494 ctx->error = X509_V_ERR_INVALID_CA;
495 } else
496 ret = 1;
497 break;
498 case 0:
499 if (ret != 0) {
500 ret = 0;
501 ctx->error = X509_V_ERR_INVALID_NON_CA;
502 } else
503 ret = 1;
504 break;
505 default:
506 /* X509_V_FLAG_X509_STRICT is implicit for intermediate CAs */
507 if ((ret == 0)
508 || ((i + 1 < num || ctx->param->flags & X509_V_FLAG_X509_STRICT)
509 && (ret != 1))) {
510 ret = 0;
511 ctx->error = X509_V_ERR_INVALID_CA;
512 } else
513 ret = 1;
514 break;
515 }
516 /*
517 * Do the following set of checks only if strict checking is requrested
518 * and not for self-issued (including self-signed) EE (non-CA) certs
519 * because RFC 5280 does not apply to them according RFC 6818 section 2.
520 */
521 if ((ctx->param->flags & X509_V_FLAG_X509_STRICT) != 0
522 && num > 1) { /*
523 * this should imply
524 * !(i == 0 && (x->ex_flags & EXFLAG_CA) == 0
525 * && (x->ex_flags & EXFLAG_SI) != 0)
526 */
527 /* Check Basic Constraints according to RFC 5280 section 4.2.1.9 */
528 if (x->ex_pathlen != -1) {
529 if ((x->ex_flags & EXFLAG_CA) == 0)
530 ctx->error = X509_V_ERR_PATHLEN_INVALID_FOR_NON_CA;
531 if ((x->ex_kusage & KU_KEY_CERT_SIGN) == 0)
532 ctx->error = X509_V_ERR_PATHLEN_WITHOUT_KU_KEY_CERT_SIGN;
533 }
534 if ((x->ex_flags & EXFLAG_CA) != 0
535 && (x->ex_flags & EXFLAG_BCONS) != 0
536 && (x->ex_flags & EXFLAG_BCONS_CRITICAL) == 0)
537 ctx->error = X509_V_ERR_CA_BCONS_NOT_CRITICAL;
538 /* Check Key Usage according to RFC 5280 section 4.2.1.3 */
539 if ((x->ex_flags & EXFLAG_CA) != 0) {
540 if ((x->ex_flags & EXFLAG_KUSAGE) == 0)
541 ctx->error = X509_V_ERR_CA_CERT_MISSING_KEY_USAGE;
542 } else {
543 if ((x->ex_kusage & KU_KEY_CERT_SIGN) != 0)
544 ctx->error = X509_V_ERR_KU_KEY_CERT_SIGN_INVALID_FOR_NON_CA;
545 }
546 /* Check issuer is non-empty acc. to RFC 5280 section 4.1.2.4 */
547 if (X509_NAME_entry_count(X509_get_issuer_name(x)) == 0)
548 ctx->error = X509_V_ERR_ISSUER_NAME_EMPTY;
549 /* Check subject is non-empty acc. to RFC 5280 section 4.1.2.6 */
550 if (((x->ex_flags & EXFLAG_CA) != 0
551 || (x->ex_kusage & KU_CRL_SIGN) != 0
552 || x->altname == NULL
553 ) && X509_NAME_entry_count(X509_get_subject_name(x)) == 0)
554 ctx->error = X509_V_ERR_SUBJECT_NAME_EMPTY;
555 if (X509_NAME_entry_count(X509_get_subject_name(x)) == 0
556 && x->altname != NULL
557 && (x->ex_flags & EXFLAG_SAN_CRITICAL) == 0)
558 ctx->error = X509_V_ERR_EMPTY_SUBJECT_SAN_NOT_CRITICAL;
559 /* Check SAN is non-empty according to RFC 5280 section 4.2.1.6 */
560 if (x->altname != NULL && sk_GENERAL_NAME_num(x->altname) <= 0)
561 ctx->error = X509_V_ERR_EMPTY_SUBJECT_ALT_NAME;
562 /* TODO add more checks on SAN entries */
563 /* Check sig alg consistency acc. to RFC 5280 section 4.1.1.2 */
564 if (X509_ALGOR_cmp(&x->sig_alg, &x->cert_info.signature) != 0)
565 ctx->error = X509_V_ERR_SIGNATURE_ALGORITHM_INCONSISTENCY;
566 if (x->akid != NULL && (x->ex_flags & EXFLAG_AKID_CRITICAL) != 0)
567 ctx->error = X509_V_ERR_AUTHORITY_KEY_IDENTIFIER_CRITICAL;
568 if (x->skid != NULL && (x->ex_flags & EXFLAG_SKID_CRITICAL) != 0)
569 ctx->error = X509_V_ERR_SUBJECT_KEY_IDENTIFIER_CRITICAL;
570 if (X509_get_version(x) >= 2) { /* at least X.509v3 */
571 /* Check AKID presence acc. to RFC 5280 section 4.2.1.1 */
572 if (i + 1 < num /*
573 * this means not last cert in chain,
574 * taken as "generated by conforming CAs"
575 */
576 && (x->akid == NULL || x->akid->keyid == NULL))
577 ctx->error = X509_V_ERR_MISSING_AUTHORITY_KEY_IDENTIFIER;
578 /* Check SKID presence acc. to RFC 5280 section 4.2.1.2 */
579 if ((x->ex_flags & EXFLAG_CA) != 0 && x->skid == NULL)
580 ctx->error = X509_V_ERR_MISSING_SUBJECT_KEY_IDENTIFIER;
581 } else {
582 if (sk_X509_EXTENSION_num(X509_get0_extensions(x)) > 0)
583 ctx->error = X509_V_ERR_EXTENSIONS_REQUIRE_VERSION_3;
584 }
585 }
586 if (ctx->error != X509_V_OK)
587 ret = 0;
588 if (ret == 0 && !verify_cb_cert(ctx, x, i, X509_V_OK))
589 return 0;
590 /* check_purpose() makes the callback as needed */
591 if (purpose > 0 && !check_purpose(ctx, x, purpose, i, must_be_ca))
592 return 0;
593 /* Check pathlen */
594 if ((i > 1) && (x->ex_pathlen != -1)
595 && (plen > (x->ex_pathlen + proxy_path_length))) {
596 if (!verify_cb_cert(ctx, x, i, X509_V_ERR_PATH_LENGTH_EXCEEDED))
597 return 0;
598 }
599 /* Increment path length if not a self-issued intermediate CA */
600 if (i > 0 && (x->ex_flags & EXFLAG_SI) == 0)
601 plen++;
602 /*
603 * If this certificate is a proxy certificate, the next certificate
604 * must be another proxy certificate or a EE certificate. If not,
605 * the next certificate must be a CA certificate.
606 */
607 if (x->ex_flags & EXFLAG_PROXY) {
608 /*
609 * RFC3820, 4.1.3 (b)(1) stipulates that if pCPathLengthConstraint
610 * is less than max_path_length, the former should be copied to
611 * the latter, and 4.1.4 (a) stipulates that max_path_length
612 * should be verified to be larger than zero and decrement it.
613 *
614 * Because we're checking the certs in the reverse order, we start
615 * with verifying that proxy_path_length isn't larger than pcPLC,
616 * and copy the latter to the former if it is, and finally,
617 * increment proxy_path_length.
618 */
619 if (x->ex_pcpathlen != -1) {
620 if (proxy_path_length > x->ex_pcpathlen) {
621 if (!verify_cb_cert(ctx, x, i,
622 X509_V_ERR_PROXY_PATH_LENGTH_EXCEEDED))
623 return 0;
624 }
625 proxy_path_length = x->ex_pcpathlen;
626 }
627 proxy_path_length++;
628 must_be_ca = 0;
629 } else
630 must_be_ca = 1;
631 }
632 return 1;
633 }
634
635 static int has_san_id(X509 *x, int gtype)
636 {
637 int i;
638 int ret = 0;
639 GENERAL_NAMES *gs = X509_get_ext_d2i(x, NID_subject_alt_name, NULL, NULL);
640
641 if (gs == NULL)
642 return 0;
643
644 for (i = 0; i < sk_GENERAL_NAME_num(gs); i++) {
645 GENERAL_NAME *g = sk_GENERAL_NAME_value(gs, i);
646
647 if (g->type == gtype) {
648 ret = 1;
649 break;
650 }
651 }
652 GENERAL_NAMES_free(gs);
653 return ret;
654 }
655
656 static int check_name_constraints(X509_STORE_CTX *ctx)
657 {
658 int i;
659
660 /* Check name constraints for all certificates */
661 for (i = sk_X509_num(ctx->chain) - 1; i >= 0; i--) {
662 X509 *x = sk_X509_value(ctx->chain, i);
663 int j;
664
665 /* Ignore self-issued certs unless last in chain */
666 if (i && (x->ex_flags & EXFLAG_SI))
667 continue;
668
669 /*
670 * Proxy certificates policy has an extra constraint, where the
671 * certificate subject MUST be the issuer with a single CN entry
672 * added.
673 * (RFC 3820: 3.4, 4.1.3 (a)(4))
674 */
675 if (x->ex_flags & EXFLAG_PROXY) {
676 X509_NAME *tmpsubject = X509_get_subject_name(x);
677 X509_NAME *tmpissuer = X509_get_issuer_name(x);
678 X509_NAME_ENTRY *tmpentry = NULL;
679 int last_object_nid = 0;
680 int err = X509_V_OK;
681 int last_object_loc = X509_NAME_entry_count(tmpsubject) - 1;
682
683 /* Check that there are at least two RDNs */
684 if (last_object_loc < 1) {
685 err = X509_V_ERR_PROXY_SUBJECT_NAME_VIOLATION;
686 goto proxy_name_done;
687 }
688
689 /*
690 * Check that there is exactly one more RDN in subject as
691 * there is in issuer.
692 */
693 if (X509_NAME_entry_count(tmpsubject)
694 != X509_NAME_entry_count(tmpissuer) + 1) {
695 err = X509_V_ERR_PROXY_SUBJECT_NAME_VIOLATION;
696 goto proxy_name_done;
697 }
698
699 /*
700 * Check that the last subject component isn't part of a
701 * multivalued RDN
702 */
703 if (X509_NAME_ENTRY_set(X509_NAME_get_entry(tmpsubject,
704 last_object_loc))
705 == X509_NAME_ENTRY_set(X509_NAME_get_entry(tmpsubject,
706 last_object_loc - 1))) {
707 err = X509_V_ERR_PROXY_SUBJECT_NAME_VIOLATION;
708 goto proxy_name_done;
709 }
710
711 /*
712 * Check that the last subject RDN is a commonName, and that
713 * all the previous RDNs match the issuer exactly
714 */
715 tmpsubject = X509_NAME_dup(tmpsubject);
716 if (tmpsubject == NULL) {
717 X509err(X509_F_CHECK_NAME_CONSTRAINTS, ERR_R_MALLOC_FAILURE);
718 ctx->error = X509_V_ERR_OUT_OF_MEM;
719 return 0;
720 }
721
722 tmpentry =
723 X509_NAME_delete_entry(tmpsubject, last_object_loc);
724 last_object_nid =
725 OBJ_obj2nid(X509_NAME_ENTRY_get_object(tmpentry));
726
727 if (last_object_nid != NID_commonName
728 || X509_NAME_cmp(tmpsubject, tmpissuer) != 0) {
729 err = X509_V_ERR_PROXY_SUBJECT_NAME_VIOLATION;
730 }
731
732 X509_NAME_ENTRY_free(tmpentry);
733 X509_NAME_free(tmpsubject);
734
735 proxy_name_done:
736 if (err != X509_V_OK
737 && !verify_cb_cert(ctx, x, i, err))
738 return 0;
739 }
740
741 /*
742 * Check against constraints for all certificates higher in chain
743 * including trust anchor. Trust anchor not strictly speaking needed
744 * but if it includes constraints it is to be assumed it expects them
745 * to be obeyed.
746 */
747 for (j = sk_X509_num(ctx->chain) - 1; j > i; j--) {
748 NAME_CONSTRAINTS *nc = sk_X509_value(ctx->chain, j)->nc;
749
750 if (nc) {
751 int rv = NAME_CONSTRAINTS_check(x, nc);
752
753 /* If EE certificate check commonName too */
754 if (rv == X509_V_OK && i == 0
755 && (ctx->param->hostflags
756 & X509_CHECK_FLAG_NEVER_CHECK_SUBJECT) == 0
757 && ((ctx->param->hostflags
758 & X509_CHECK_FLAG_ALWAYS_CHECK_SUBJECT) != 0
759 || !has_san_id(x, GEN_DNS)))
760 rv = NAME_CONSTRAINTS_check_CN(x, nc);
761
762 switch (rv) {
763 case X509_V_OK:
764 break;
765 case X509_V_ERR_OUT_OF_MEM:
766 return 0;
767 default:
768 if (!verify_cb_cert(ctx, x, i, rv))
769 return 0;
770 break;
771 }
772 }
773 }
774 }
775 return 1;
776 }
777
778 static int check_id_error(X509_STORE_CTX *ctx, int errcode)
779 {
780 return verify_cb_cert(ctx, ctx->cert, 0, errcode);
781 }
782
783 static int check_hosts(X509 *x, X509_VERIFY_PARAM *vpm)
784 {
785 int i;
786 int n = sk_OPENSSL_STRING_num(vpm->hosts);
787 char *name;
788
789 if (vpm->peername != NULL) {
790 OPENSSL_free(vpm->peername);
791 vpm->peername = NULL;
792 }
793 for (i = 0; i < n; ++i) {
794 name = sk_OPENSSL_STRING_value(vpm->hosts, i);
795 if (X509_check_host(x, name, 0, vpm->hostflags, &vpm->peername) > 0)
796 return 1;
797 }
798 return n == 0;
799 }
800
801 static int check_id(X509_STORE_CTX *ctx)
802 {
803 X509_VERIFY_PARAM *vpm = ctx->param;
804 X509 *x = ctx->cert;
805 if (vpm->hosts && check_hosts(x, vpm) <= 0) {
806 if (!check_id_error(ctx, X509_V_ERR_HOSTNAME_MISMATCH))
807 return 0;
808 }
809 if (vpm->email && X509_check_email(x, vpm->email, vpm->emaillen, 0) <= 0) {
810 if (!check_id_error(ctx, X509_V_ERR_EMAIL_MISMATCH))
811 return 0;
812 }
813 if (vpm->ip && X509_check_ip(x, vpm->ip, vpm->iplen, 0) <= 0) {
814 if (!check_id_error(ctx, X509_V_ERR_IP_ADDRESS_MISMATCH))
815 return 0;
816 }
817 return 1;
818 }
819
820 static int check_trust(X509_STORE_CTX *ctx, int num_untrusted)
821 {
822 int i;
823 X509 *x = NULL;
824 X509 *mx;
825 SSL_DANE *dane = ctx->dane;
826 int num = sk_X509_num(ctx->chain);
827 int trust;
828
829 /*
830 * Check for a DANE issuer at depth 1 or greater, if it is a DANE-TA(2)
831 * match, we're done, otherwise we'll merely record the match depth.
832 */
833 if (DANETLS_HAS_TA(dane) && num_untrusted > 0 && num_untrusted < num) {
834 switch (trust = check_dane_issuer(ctx, num_untrusted)) {
835 case X509_TRUST_TRUSTED:
836 case X509_TRUST_REJECTED:
837 return trust;
838 }
839 }
840
841 /*
842 * Check trusted certificates in chain at depth num_untrusted and up.
843 * Note, that depths 0..num_untrusted-1 may also contain trusted
844 * certificates, but the caller is expected to have already checked those,
845 * and wants to incrementally check just any added since.
846 */
847 for (i = num_untrusted; i < num; i++) {
848 x = sk_X509_value(ctx->chain, i);
849 trust = X509_check_trust(x, ctx->param->trust, 0);
850 /* If explicitly trusted return trusted */
851 if (trust == X509_TRUST_TRUSTED)
852 goto trusted;
853 if (trust == X509_TRUST_REJECTED)
854 goto rejected;
855 }
856
857 /*
858 * If we are looking at a trusted certificate, and accept partial chains,
859 * the chain is PKIX trusted.
860 */
861 if (num_untrusted < num) {
862 if (ctx->param->flags & X509_V_FLAG_PARTIAL_CHAIN)
863 goto trusted;
864 return X509_TRUST_UNTRUSTED;
865 }
866
867 if (num_untrusted == num && ctx->param->flags & X509_V_FLAG_PARTIAL_CHAIN) {
868 /*
869 * Last-resort call with no new trusted certificates, check the leaf
870 * for a direct trust store match.
871 */
872 i = 0;
873 x = sk_X509_value(ctx->chain, i);
874 mx = lookup_cert_match(ctx, x);
875 if (!mx)
876 return X509_TRUST_UNTRUSTED;
877
878 /*
879 * Check explicit auxiliary trust/reject settings. If none are set,
880 * we'll accept X509_TRUST_UNTRUSTED when not self-signed.
881 */
882 trust = X509_check_trust(mx, ctx->param->trust, 0);
883 if (trust == X509_TRUST_REJECTED) {
884 X509_free(mx);
885 goto rejected;
886 }
887
888 /* Replace leaf with trusted match */
889 (void) sk_X509_set(ctx->chain, 0, mx);
890 X509_free(x);
891 ctx->num_untrusted = 0;
892 goto trusted;
893 }
894
895 /*
896 * If no trusted certs in chain at all return untrusted and allow
897 * standard (no issuer cert) etc errors to be indicated.
898 */
899 return X509_TRUST_UNTRUSTED;
900
901 rejected:
902 if (!verify_cb_cert(ctx, x, i, X509_V_ERR_CERT_REJECTED))
903 return X509_TRUST_REJECTED;
904 return X509_TRUST_UNTRUSTED;
905
906 trusted:
907 if (!DANETLS_ENABLED(dane))
908 return X509_TRUST_TRUSTED;
909 if (dane->pdpth < 0)
910 dane->pdpth = num_untrusted;
911 /* With DANE, PKIX alone is not trusted until we have both */
912 if (dane->mdpth >= 0)
913 return X509_TRUST_TRUSTED;
914 return X509_TRUST_UNTRUSTED;
915 }
916
917 static int check_revocation(X509_STORE_CTX *ctx)
918 {
919 int i = 0, last = 0, ok = 0;
920 if (!(ctx->param->flags & X509_V_FLAG_CRL_CHECK))
921 return 1;
922 if (ctx->param->flags & X509_V_FLAG_CRL_CHECK_ALL)
923 last = sk_X509_num(ctx->chain) - 1;
924 else {
925 /* If checking CRL paths this isn't the EE certificate */
926 if (ctx->parent)
927 return 1;
928 last = 0;
929 }
930 for (i = 0; i <= last; i++) {
931 ctx->error_depth = i;
932 ok = check_cert(ctx);
933 if (!ok)
934 return ok;
935 }
936 return 1;
937 }
938
939 static int check_cert(X509_STORE_CTX *ctx)
940 {
941 X509_CRL *crl = NULL, *dcrl = NULL;
942 int ok = 0;
943 int cnum = ctx->error_depth;
944 X509 *x = sk_X509_value(ctx->chain, cnum);
945
946 ctx->current_cert = x;
947 ctx->current_issuer = NULL;
948 ctx->current_crl_score = 0;
949 ctx->current_reasons = 0;
950
951 if (x->ex_flags & EXFLAG_PROXY)
952 return 1;
953
954 while (ctx->current_reasons != CRLDP_ALL_REASONS) {
955 unsigned int last_reasons = ctx->current_reasons;
956
957 /* Try to retrieve relevant CRL */
958 if (ctx->get_crl)
959 ok = ctx->get_crl(ctx, &crl, x);
960 else
961 ok = get_crl_delta(ctx, &crl, &dcrl, x);
962 /*
963 * If error looking up CRL, nothing we can do except notify callback
964 */
965 if (!ok) {
966 ok = verify_cb_crl(ctx, X509_V_ERR_UNABLE_TO_GET_CRL);
967 goto done;
968 }
969 ctx->current_crl = crl;
970 ok = ctx->check_crl(ctx, crl);
971 if (!ok)
972 goto done;
973
974 if (dcrl) {
975 ok = ctx->check_crl(ctx, dcrl);
976 if (!ok)
977 goto done;
978 ok = ctx->cert_crl(ctx, dcrl, x);
979 if (!ok)
980 goto done;
981 } else
982 ok = 1;
983
984 /* Don't look in full CRL if delta reason is removefromCRL */
985 if (ok != 2) {
986 ok = ctx->cert_crl(ctx, crl, x);
987 if (!ok)
988 goto done;
989 }
990
991 X509_CRL_free(crl);
992 X509_CRL_free(dcrl);
993 crl = NULL;
994 dcrl = NULL;
995 /*
996 * If reasons not updated we won't get anywhere by another iteration,
997 * so exit loop.
998 */
999 if (last_reasons == ctx->current_reasons) {
1000 ok = verify_cb_crl(ctx, X509_V_ERR_UNABLE_TO_GET_CRL);
1001 goto done;
1002 }
1003 }
1004 done:
1005 X509_CRL_free(crl);
1006 X509_CRL_free(dcrl);
1007
1008 ctx->current_crl = NULL;
1009 return ok;
1010 }
1011
1012 /* Check CRL times against values in X509_STORE_CTX */
1013
1014 static int check_crl_time(X509_STORE_CTX *ctx, X509_CRL *crl, int notify)
1015 {
1016 time_t *ptime;
1017 int i;
1018
1019 if (notify)
1020 ctx->current_crl = crl;
1021 if (ctx->param->flags & X509_V_FLAG_USE_CHECK_TIME)
1022 ptime = &ctx->param->check_time;
1023 else if (ctx->param->flags & X509_V_FLAG_NO_CHECK_TIME)
1024 return 1;
1025 else
1026 ptime = NULL;
1027
1028 i = X509_cmp_time(X509_CRL_get0_lastUpdate(crl), ptime);
1029 if (i == 0) {
1030 if (!notify)
1031 return 0;
1032 if (!verify_cb_crl(ctx, X509_V_ERR_ERROR_IN_CRL_LAST_UPDATE_FIELD))
1033 return 0;
1034 }
1035
1036 if (i > 0) {
1037 if (!notify)
1038 return 0;
1039 if (!verify_cb_crl(ctx, X509_V_ERR_CRL_NOT_YET_VALID))
1040 return 0;
1041 }
1042
1043 if (X509_CRL_get0_nextUpdate(crl)) {
1044 i = X509_cmp_time(X509_CRL_get0_nextUpdate(crl), ptime);
1045
1046 if (i == 0) {
1047 if (!notify)
1048 return 0;
1049 if (!verify_cb_crl(ctx, X509_V_ERR_ERROR_IN_CRL_NEXT_UPDATE_FIELD))
1050 return 0;
1051 }
1052 /* Ignore expiry of base CRL is delta is valid */
1053 if ((i < 0) && !(ctx->current_crl_score & CRL_SCORE_TIME_DELTA)) {
1054 if (!notify)
1055 return 0;
1056 if (!verify_cb_crl(ctx, X509_V_ERR_CRL_HAS_EXPIRED))
1057 return 0;
1058 }
1059 }
1060
1061 if (notify)
1062 ctx->current_crl = NULL;
1063
1064 return 1;
1065 }
1066
1067 static int get_crl_sk(X509_STORE_CTX *ctx, X509_CRL **pcrl, X509_CRL **pdcrl,
1068 X509 **pissuer, int *pscore, unsigned int *preasons,
1069 STACK_OF(X509_CRL) *crls)
1070 {
1071 int i, crl_score, best_score = *pscore;
1072 unsigned int reasons, best_reasons = 0;
1073 X509 *x = ctx->current_cert;
1074 X509_CRL *crl, *best_crl = NULL;
1075 X509 *crl_issuer = NULL, *best_crl_issuer = NULL;
1076
1077 for (i = 0; i < sk_X509_CRL_num(crls); i++) {
1078 crl = sk_X509_CRL_value(crls, i);
1079 reasons = *preasons;
1080 crl_score = get_crl_score(ctx, &crl_issuer, &reasons, crl, x);
1081 if (crl_score < best_score || crl_score == 0)
1082 continue;
1083 /* If current CRL is equivalent use it if it is newer */
1084 if (crl_score == best_score && best_crl != NULL) {
1085 int day, sec;
1086 if (ASN1_TIME_diff(&day, &sec, X509_CRL_get0_lastUpdate(best_crl),
1087 X509_CRL_get0_lastUpdate(crl)) == 0)
1088 continue;
1089 /*
1090 * ASN1_TIME_diff never returns inconsistent signs for |day|
1091 * and |sec|.
1092 */
1093 if (day <= 0 && sec <= 0)
1094 continue;
1095 }
1096 best_crl = crl;
1097 best_crl_issuer = crl_issuer;
1098 best_score = crl_score;
1099 best_reasons = reasons;
1100 }
1101
1102 if (best_crl) {
1103 X509_CRL_free(*pcrl);
1104 *pcrl = best_crl;
1105 *pissuer = best_crl_issuer;
1106 *pscore = best_score;
1107 *preasons = best_reasons;
1108 X509_CRL_up_ref(best_crl);
1109 X509_CRL_free(*pdcrl);
1110 *pdcrl = NULL;
1111 get_delta_sk(ctx, pdcrl, pscore, best_crl, crls);
1112 }
1113
1114 if (best_score >= CRL_SCORE_VALID)
1115 return 1;
1116
1117 return 0;
1118 }
1119
1120 /*
1121 * Compare two CRL extensions for delta checking purposes. They should be
1122 * both present or both absent. If both present all fields must be identical.
1123 */
1124
1125 static int crl_extension_match(X509_CRL *a, X509_CRL *b, int nid)
1126 {
1127 ASN1_OCTET_STRING *exta, *extb;
1128 int i;
1129 i = X509_CRL_get_ext_by_NID(a, nid, -1);
1130 if (i >= 0) {
1131 /* Can't have multiple occurrences */
1132 if (X509_CRL_get_ext_by_NID(a, nid, i) != -1)
1133 return 0;
1134 exta = X509_EXTENSION_get_data(X509_CRL_get_ext(a, i));
1135 } else
1136 exta = NULL;
1137
1138 i = X509_CRL_get_ext_by_NID(b, nid, -1);
1139
1140 if (i >= 0) {
1141
1142 if (X509_CRL_get_ext_by_NID(b, nid, i) != -1)
1143 return 0;
1144 extb = X509_EXTENSION_get_data(X509_CRL_get_ext(b, i));
1145 } else
1146 extb = NULL;
1147
1148 if (!exta && !extb)
1149 return 1;
1150
1151 if (!exta || !extb)
1152 return 0;
1153
1154 if (ASN1_OCTET_STRING_cmp(exta, extb))
1155 return 0;
1156
1157 return 1;
1158 }
1159
1160 /* See if a base and delta are compatible */
1161
1162 static int check_delta_base(X509_CRL *delta, X509_CRL *base)
1163 {
1164 /* Delta CRL must be a delta */
1165 if (!delta->base_crl_number)
1166 return 0;
1167 /* Base must have a CRL number */
1168 if (!base->crl_number)
1169 return 0;
1170 /* Issuer names must match */
1171 if (X509_NAME_cmp(X509_CRL_get_issuer(base), X509_CRL_get_issuer(delta)))
1172 return 0;
1173 /* AKID and IDP must match */
1174 if (!crl_extension_match(delta, base, NID_authority_key_identifier))
1175 return 0;
1176 if (!crl_extension_match(delta, base, NID_issuing_distribution_point))
1177 return 0;
1178 /* Delta CRL base number must not exceed Full CRL number. */
1179 if (ASN1_INTEGER_cmp(delta->base_crl_number, base->crl_number) > 0)
1180 return 0;
1181 /* Delta CRL number must exceed full CRL number */
1182 if (ASN1_INTEGER_cmp(delta->crl_number, base->crl_number) > 0)
1183 return 1;
1184 return 0;
1185 }
1186
1187 /*
1188 * For a given base CRL find a delta... maybe extend to delta scoring or
1189 * retrieve a chain of deltas...
1190 */
1191
1192 static void get_delta_sk(X509_STORE_CTX *ctx, X509_CRL **dcrl, int *pscore,
1193 X509_CRL *base, STACK_OF(X509_CRL) *crls)
1194 {
1195 X509_CRL *delta;
1196 int i;
1197 if (!(ctx->param->flags & X509_V_FLAG_USE_DELTAS))
1198 return;
1199 if (!((ctx->current_cert->ex_flags | base->flags) & EXFLAG_FRESHEST))
1200 return;
1201 for (i = 0; i < sk_X509_CRL_num(crls); i++) {
1202 delta = sk_X509_CRL_value(crls, i);
1203 if (check_delta_base(delta, base)) {
1204 if (check_crl_time(ctx, delta, 0))
1205 *pscore |= CRL_SCORE_TIME_DELTA;
1206 X509_CRL_up_ref(delta);
1207 *dcrl = delta;
1208 return;
1209 }
1210 }
1211 *dcrl = NULL;
1212 }
1213
1214 /*
1215 * For a given CRL return how suitable it is for the supplied certificate
1216 * 'x'. The return value is a mask of several criteria. If the issuer is not
1217 * the certificate issuer this is returned in *pissuer. The reasons mask is
1218 * also used to determine if the CRL is suitable: if no new reasons the CRL
1219 * is rejected, otherwise reasons is updated.
1220 */
1221
1222 static int get_crl_score(X509_STORE_CTX *ctx, X509 **pissuer,
1223 unsigned int *preasons, X509_CRL *crl, X509 *x)
1224 {
1225
1226 int crl_score = 0;
1227 unsigned int tmp_reasons = *preasons, crl_reasons;
1228
1229 /* First see if we can reject CRL straight away */
1230
1231 /* Invalid IDP cannot be processed */
1232 if (crl->idp_flags & IDP_INVALID)
1233 return 0;
1234 /* Reason codes or indirect CRLs need extended CRL support */
1235 if (!(ctx->param->flags & X509_V_FLAG_EXTENDED_CRL_SUPPORT)) {
1236 if (crl->idp_flags & (IDP_INDIRECT | IDP_REASONS))
1237 return 0;
1238 } else if (crl->idp_flags & IDP_REASONS) {
1239 /* If no new reasons reject */
1240 if (!(crl->idp_reasons & ~tmp_reasons))
1241 return 0;
1242 }
1243 /* Don't process deltas at this stage */
1244 else if (crl->base_crl_number)
1245 return 0;
1246 /* If issuer name doesn't match certificate need indirect CRL */
1247 if (X509_NAME_cmp(X509_get_issuer_name(x), X509_CRL_get_issuer(crl))) {
1248 if (!(crl->idp_flags & IDP_INDIRECT))
1249 return 0;
1250 } else
1251 crl_score |= CRL_SCORE_ISSUER_NAME;
1252
1253 if (!(crl->flags & EXFLAG_CRITICAL))
1254 crl_score |= CRL_SCORE_NOCRITICAL;
1255
1256 /* Check expiry */
1257 if (check_crl_time(ctx, crl, 0))
1258 crl_score |= CRL_SCORE_TIME;
1259
1260 /* Check authority key ID and locate certificate issuer */
1261 crl_akid_check(ctx, crl, pissuer, &crl_score);
1262
1263 /* If we can't locate certificate issuer at this point forget it */
1264
1265 if (!(crl_score & CRL_SCORE_AKID))
1266 return 0;
1267
1268 /* Check cert for matching CRL distribution points */
1269
1270 if (crl_crldp_check(x, crl, crl_score, &crl_reasons)) {
1271 /* If no new reasons reject */
1272 if (!(crl_reasons & ~tmp_reasons))
1273 return 0;
1274 tmp_reasons |= crl_reasons;
1275 crl_score |= CRL_SCORE_SCOPE;
1276 }
1277
1278 *preasons = tmp_reasons;
1279
1280 return crl_score;
1281
1282 }
1283
1284 static void crl_akid_check(X509_STORE_CTX *ctx, X509_CRL *crl,
1285 X509 **pissuer, int *pcrl_score)
1286 {
1287 X509 *crl_issuer = NULL;
1288 const X509_NAME *cnm = X509_CRL_get_issuer(crl);
1289 int cidx = ctx->error_depth;
1290 int i;
1291
1292 if (cidx != sk_X509_num(ctx->chain) - 1)
1293 cidx++;
1294
1295 crl_issuer = sk_X509_value(ctx->chain, cidx);
1296
1297 if (X509_check_akid(crl_issuer, crl->akid) == X509_V_OK) {
1298 if (*pcrl_score & CRL_SCORE_ISSUER_NAME) {
1299 *pcrl_score |= CRL_SCORE_AKID | CRL_SCORE_ISSUER_CERT;
1300 *pissuer = crl_issuer;
1301 return;
1302 }
1303 }
1304
1305 for (cidx++; cidx < sk_X509_num(ctx->chain); cidx++) {
1306 crl_issuer = sk_X509_value(ctx->chain, cidx);
1307 if (X509_NAME_cmp(X509_get_subject_name(crl_issuer), cnm))
1308 continue;
1309 if (X509_check_akid(crl_issuer, crl->akid) == X509_V_OK) {
1310 *pcrl_score |= CRL_SCORE_AKID | CRL_SCORE_SAME_PATH;
1311 *pissuer = crl_issuer;
1312 return;
1313 }
1314 }
1315
1316 /* Anything else needs extended CRL support */
1317
1318 if (!(ctx->param->flags & X509_V_FLAG_EXTENDED_CRL_SUPPORT))
1319 return;
1320
1321 /*
1322 * Otherwise the CRL issuer is not on the path. Look for it in the set of
1323 * untrusted certificates.
1324 */
1325 for (i = 0; i < sk_X509_num(ctx->untrusted); i++) {
1326 crl_issuer = sk_X509_value(ctx->untrusted, i);
1327 if (X509_NAME_cmp(X509_get_subject_name(crl_issuer), cnm))
1328 continue;
1329 if (X509_check_akid(crl_issuer, crl->akid) == X509_V_OK) {
1330 *pissuer = crl_issuer;
1331 *pcrl_score |= CRL_SCORE_AKID;
1332 return;
1333 }
1334 }
1335 }
1336
1337 /*
1338 * Check the path of a CRL issuer certificate. This creates a new
1339 * X509_STORE_CTX and populates it with most of the parameters from the
1340 * parent. This could be optimised somewhat since a lot of path checking will
1341 * be duplicated by the parent, but this will rarely be used in practice.
1342 */
1343
1344 static int check_crl_path(X509_STORE_CTX *ctx, X509 *x)
1345 {
1346 X509_STORE_CTX crl_ctx;
1347 int ret;
1348
1349 /* Don't allow recursive CRL path validation */
1350 if (ctx->parent)
1351 return 0;
1352 if (!X509_STORE_CTX_init(&crl_ctx, ctx->store, x, ctx->untrusted))
1353 return -1;
1354
1355 crl_ctx.crls = ctx->crls;
1356 /* Copy verify params across */
1357 X509_STORE_CTX_set0_param(&crl_ctx, ctx->param);
1358
1359 crl_ctx.parent = ctx;
1360 crl_ctx.verify_cb = ctx->verify_cb;
1361
1362 /* Verify CRL issuer */
1363 ret = X509_verify_cert(&crl_ctx);
1364 if (ret <= 0)
1365 goto err;
1366
1367 /* Check chain is acceptable */
1368 ret = check_crl_chain(ctx, ctx->chain, crl_ctx.chain);
1369 err:
1370 X509_STORE_CTX_cleanup(&crl_ctx);
1371 return ret;
1372 }
1373
1374 /*
1375 * RFC3280 says nothing about the relationship between CRL path and
1376 * certificate path, which could lead to situations where a certificate could
1377 * be revoked or validated by a CA not authorised to do so. RFC5280 is more
1378 * strict and states that the two paths must end in the same trust anchor,
1379 * though some discussions remain... until this is resolved we use the
1380 * RFC5280 version
1381 */
1382
1383 static int check_crl_chain(X509_STORE_CTX *ctx,
1384 STACK_OF(X509) *cert_path,
1385 STACK_OF(X509) *crl_path)
1386 {
1387 X509 *cert_ta, *crl_ta;
1388 cert_ta = sk_X509_value(cert_path, sk_X509_num(cert_path) - 1);
1389 crl_ta = sk_X509_value(crl_path, sk_X509_num(crl_path) - 1);
1390 if (!X509_cmp(cert_ta, crl_ta))
1391 return 1;
1392 return 0;
1393 }
1394
1395 /*-
1396 * Check for match between two dist point names: three separate cases.
1397 * 1. Both are relative names and compare X509_NAME types.
1398 * 2. One full, one relative. Compare X509_NAME to GENERAL_NAMES.
1399 * 3. Both are full names and compare two GENERAL_NAMES.
1400 * 4. One is NULL: automatic match.
1401 */
1402
1403 static int idp_check_dp(DIST_POINT_NAME *a, DIST_POINT_NAME *b)
1404 {
1405 X509_NAME *nm = NULL;
1406 GENERAL_NAMES *gens = NULL;
1407 GENERAL_NAME *gena, *genb;
1408 int i, j;
1409 if (!a || !b)
1410 return 1;
1411 if (a->type == 1) {
1412 if (!a->dpname)
1413 return 0;
1414 /* Case 1: two X509_NAME */
1415 if (b->type == 1) {
1416 if (!b->dpname)
1417 return 0;
1418 if (!X509_NAME_cmp(a->dpname, b->dpname))
1419 return 1;
1420 else
1421 return 0;
1422 }
1423 /* Case 2: set name and GENERAL_NAMES appropriately */
1424 nm = a->dpname;
1425 gens = b->name.fullname;
1426 } else if (b->type == 1) {
1427 if (!b->dpname)
1428 return 0;
1429 /* Case 2: set name and GENERAL_NAMES appropriately */
1430 gens = a->name.fullname;
1431 nm = b->dpname;
1432 }
1433
1434 /* Handle case 2 with one GENERAL_NAMES and one X509_NAME */
1435 if (nm) {
1436 for (i = 0; i < sk_GENERAL_NAME_num(gens); i++) {
1437 gena = sk_GENERAL_NAME_value(gens, i);
1438 if (gena->type != GEN_DIRNAME)
1439 continue;
1440 if (!X509_NAME_cmp(nm, gena->d.directoryName))
1441 return 1;
1442 }
1443 return 0;
1444 }
1445
1446 /* Else case 3: two GENERAL_NAMES */
1447
1448 for (i = 0; i < sk_GENERAL_NAME_num(a->name.fullname); i++) {
1449 gena = sk_GENERAL_NAME_value(a->name.fullname, i);
1450 for (j = 0; j < sk_GENERAL_NAME_num(b->name.fullname); j++) {
1451 genb = sk_GENERAL_NAME_value(b->name.fullname, j);
1452 if (!GENERAL_NAME_cmp(gena, genb))
1453 return 1;
1454 }
1455 }
1456
1457 return 0;
1458
1459 }
1460
1461 static int crldp_check_crlissuer(DIST_POINT *dp, X509_CRL *crl, int crl_score)
1462 {
1463 int i;
1464 const X509_NAME *nm = X509_CRL_get_issuer(crl);
1465 /* If no CRLissuer return is successful iff don't need a match */
1466 if (!dp->CRLissuer)
1467 return ! !(crl_score & CRL_SCORE_ISSUER_NAME);
1468 for (i = 0; i < sk_GENERAL_NAME_num(dp->CRLissuer); i++) {
1469 GENERAL_NAME *gen = sk_GENERAL_NAME_value(dp->CRLissuer, i);
1470 if (gen->type != GEN_DIRNAME)
1471 continue;
1472 if (!X509_NAME_cmp(gen->d.directoryName, nm))
1473 return 1;
1474 }
1475 return 0;
1476 }
1477
1478 /* Check CRLDP and IDP */
1479
1480 static int crl_crldp_check(X509 *x, X509_CRL *crl, int crl_score,
1481 unsigned int *preasons)
1482 {
1483 int i;
1484 if (crl->idp_flags & IDP_ONLYATTR)
1485 return 0;
1486 if (x->ex_flags & EXFLAG_CA) {
1487 if (crl->idp_flags & IDP_ONLYUSER)
1488 return 0;
1489 } else {
1490 if (crl->idp_flags & IDP_ONLYCA)
1491 return 0;
1492 }
1493 *preasons = crl->idp_reasons;
1494 for (i = 0; i < sk_DIST_POINT_num(x->crldp); i++) {
1495 DIST_POINT *dp = sk_DIST_POINT_value(x->crldp, i);
1496 if (crldp_check_crlissuer(dp, crl, crl_score)) {
1497 if (!crl->idp || idp_check_dp(dp->distpoint, crl->idp->distpoint)) {
1498 *preasons &= dp->dp_reasons;
1499 return 1;
1500 }
1501 }
1502 }
1503 if ((!crl->idp || !crl->idp->distpoint)
1504 && (crl_score & CRL_SCORE_ISSUER_NAME))
1505 return 1;
1506 return 0;
1507 }
1508
1509 /*
1510 * Retrieve CRL corresponding to current certificate. If deltas enabled try
1511 * to find a delta CRL too
1512 */
1513
1514 static int get_crl_delta(X509_STORE_CTX *ctx,
1515 X509_CRL **pcrl, X509_CRL **pdcrl, X509 *x)
1516 {
1517 int ok;
1518 X509 *issuer = NULL;
1519 int crl_score = 0;
1520 unsigned int reasons;
1521 X509_CRL *crl = NULL, *dcrl = NULL;
1522 STACK_OF(X509_CRL) *skcrl;
1523 const X509_NAME *nm = X509_get_issuer_name(x);
1524
1525 reasons = ctx->current_reasons;
1526 ok = get_crl_sk(ctx, &crl, &dcrl,
1527 &issuer, &crl_score, &reasons, ctx->crls);
1528 if (ok)
1529 goto done;
1530
1531 /* Lookup CRLs from store */
1532
1533 skcrl = ctx->lookup_crls(ctx, nm);
1534
1535 /* If no CRLs found and a near match from get_crl_sk use that */
1536 if (!skcrl && crl)
1537 goto done;
1538
1539 get_crl_sk(ctx, &crl, &dcrl, &issuer, &crl_score, &reasons, skcrl);
1540
1541 sk_X509_CRL_pop_free(skcrl, X509_CRL_free);
1542
1543 done:
1544 /* If we got any kind of CRL use it and return success */
1545 if (crl) {
1546 ctx->current_issuer = issuer;
1547 ctx->current_crl_score = crl_score;
1548 ctx->current_reasons = reasons;
1549 *pcrl = crl;
1550 *pdcrl = dcrl;
1551 return 1;
1552 }
1553 return 0;
1554 }
1555
1556 /* Check CRL validity */
1557 static int check_crl(X509_STORE_CTX *ctx, X509_CRL *crl)
1558 {
1559 X509 *issuer = NULL;
1560 EVP_PKEY *ikey = NULL;
1561 int cnum = ctx->error_depth;
1562 int chnum = sk_X509_num(ctx->chain) - 1;
1563
1564 /* If we have an alternative CRL issuer cert use that */
1565 if (ctx->current_issuer)
1566 issuer = ctx->current_issuer;
1567 /*
1568 * Else find CRL issuer: if not last certificate then issuer is next
1569 * certificate in chain.
1570 */
1571 else if (cnum < chnum)
1572 issuer = sk_X509_value(ctx->chain, cnum + 1);
1573 else {
1574 issuer = sk_X509_value(ctx->chain, chnum);
1575 /* If not self-issued, can't check signature */
1576 if (!ctx->check_issued(ctx, issuer, issuer) &&
1577 !verify_cb_crl(ctx, X509_V_ERR_UNABLE_TO_GET_CRL_ISSUER))
1578 return 0;
1579 }
1580
1581 if (issuer == NULL)
1582 return 1;
1583
1584 /*
1585 * Skip most tests for deltas because they have already been done
1586 */
1587 if (!crl->base_crl_number) {
1588 /* Check for cRLSign bit if keyUsage present */
1589 if ((issuer->ex_flags & EXFLAG_KUSAGE) &&
1590 !(issuer->ex_kusage & KU_CRL_SIGN) &&
1591 !verify_cb_crl(ctx, X509_V_ERR_KEYUSAGE_NO_CRL_SIGN))
1592 return 0;
1593
1594 if (!(ctx->current_crl_score & CRL_SCORE_SCOPE) &&
1595 !verify_cb_crl(ctx, X509_V_ERR_DIFFERENT_CRL_SCOPE))
1596 return 0;
1597
1598 if (!(ctx->current_crl_score & CRL_SCORE_SAME_PATH) &&
1599 check_crl_path(ctx, ctx->current_issuer) <= 0 &&
1600 !verify_cb_crl(ctx, X509_V_ERR_CRL_PATH_VALIDATION_ERROR))
1601 return 0;
1602
1603 if ((crl->idp_flags & IDP_INVALID) &&
1604 !verify_cb_crl(ctx, X509_V_ERR_INVALID_EXTENSION))
1605 return 0;
1606 }
1607
1608 if (!(ctx->current_crl_score & CRL_SCORE_TIME) &&
1609 !check_crl_time(ctx, crl, 1))
1610 return 0;
1611
1612 /* Attempt to get issuer certificate public key */
1613 ikey = X509_get0_pubkey(issuer);
1614
1615 if (!ikey &&
1616 !verify_cb_crl(ctx, X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY))
1617 return 0;
1618
1619 if (ikey) {
1620 int rv = X509_CRL_check_suiteb(crl, ikey, ctx->param->flags);
1621
1622 if (rv != X509_V_OK && !verify_cb_crl(ctx, rv))
1623 return 0;
1624 /* Verify CRL signature */
1625 if (X509_CRL_verify(crl, ikey) <= 0 &&
1626 !verify_cb_crl(ctx, X509_V_ERR_CRL_SIGNATURE_FAILURE))
1627 return 0;
1628 }
1629 return 1;
1630 }
1631
1632 /* Check certificate against CRL */
1633 static int cert_crl(X509_STORE_CTX *ctx, X509_CRL *crl, X509 *x)
1634 {
1635 X509_REVOKED *rev;
1636
1637 /*
1638 * The rules changed for this... previously if a CRL contained unhandled
1639 * critical extensions it could still be used to indicate a certificate
1640 * was revoked. This has since been changed since critical extensions can
1641 * change the meaning of CRL entries.
1642 */
1643 if (!(ctx->param->flags & X509_V_FLAG_IGNORE_CRITICAL)
1644 && (crl->flags & EXFLAG_CRITICAL) &&
1645 !verify_cb_crl(ctx, X509_V_ERR_UNHANDLED_CRITICAL_CRL_EXTENSION))
1646 return 0;
1647 /*
1648 * Look for serial number of certificate in CRL. If found, make sure
1649 * reason is not removeFromCRL.
1650 */
1651 if (X509_CRL_get0_by_cert(crl, &rev, x)) {
1652 if (rev->reason == CRL_REASON_REMOVE_FROM_CRL)
1653 return 2;
1654 if (!verify_cb_crl(ctx, X509_V_ERR_CERT_REVOKED))
1655 return 0;
1656 }
1657
1658 return 1;
1659 }
1660
1661 static int check_policy(X509_STORE_CTX *ctx)
1662 {
1663 int ret;
1664
1665 if (ctx->parent)
1666 return 1;
1667 /*
1668 * With DANE, the trust anchor might be a bare public key, not a
1669 * certificate! In that case our chain does not have the trust anchor
1670 * certificate as a top-most element. This comports well with RFC5280
1671 * chain verification, since there too, the trust anchor is not part of the
1672 * chain to be verified. In particular, X509_policy_check() does not look
1673 * at the TA cert, but assumes that it is present as the top-most chain
1674 * element. We therefore temporarily push a NULL cert onto the chain if it
1675 * was verified via a bare public key, and pop it off right after the
1676 * X509_policy_check() call.
1677 */
1678 if (ctx->bare_ta_signed && !sk_X509_push(ctx->chain, NULL)) {
1679 X509err(X509_F_CHECK_POLICY, ERR_R_MALLOC_FAILURE);
1680 ctx->error = X509_V_ERR_OUT_OF_MEM;
1681 return 0;
1682 }
1683 ret = X509_policy_check(&ctx->tree, &ctx->explicit_policy, ctx->chain,
1684 ctx->param->policies, ctx->param->flags);
1685 if (ctx->bare_ta_signed)
1686 (void)sk_X509_pop(ctx->chain);
1687
1688 if (ret == X509_PCY_TREE_INTERNAL) {
1689 X509err(X509_F_CHECK_POLICY, ERR_R_MALLOC_FAILURE);
1690 ctx->error = X509_V_ERR_OUT_OF_MEM;
1691 return 0;
1692 }
1693 /* Invalid or inconsistent extensions */
1694 if (ret == X509_PCY_TREE_INVALID) {
1695 int i;
1696
1697 /* Locate certificates with bad extensions and notify callback. */
1698 for (i = 1; i < sk_X509_num(ctx->chain); i++) {
1699 X509 *x = sk_X509_value(ctx->chain, i);
1700
1701 if (!(x->ex_flags & EXFLAG_INVALID_POLICY))
1702 continue;
1703 if (!verify_cb_cert(ctx, x, i,
1704 X509_V_ERR_INVALID_POLICY_EXTENSION))
1705 return 0;
1706 }
1707 return 1;
1708 }
1709 if (ret == X509_PCY_TREE_FAILURE) {
1710 ctx->current_cert = NULL;
1711 ctx->error = X509_V_ERR_NO_EXPLICIT_POLICY;
1712 return ctx->verify_cb(0, ctx);
1713 }
1714 if (ret != X509_PCY_TREE_VALID) {
1715 X509err(X509_F_CHECK_POLICY, ERR_R_INTERNAL_ERROR);
1716 return 0;
1717 }
1718
1719 if (ctx->param->flags & X509_V_FLAG_NOTIFY_POLICY) {
1720 ctx->current_cert = NULL;
1721 /*
1722 * Verification errors need to be "sticky", a callback may have allowed
1723 * an SSL handshake to continue despite an error, and we must then
1724 * remain in an error state. Therefore, we MUST NOT clear earlier
1725 * verification errors by setting the error to X509_V_OK.
1726 */
1727 if (!ctx->verify_cb(2, ctx))
1728 return 0;
1729 }
1730
1731 return 1;
1732 }
1733
1734 /*-
1735 * Check certificate validity times.
1736 * If depth >= 0, invoke verification callbacks on error, otherwise just return
1737 * the validation status.
1738 *
1739 * Return 1 on success, 0 otherwise.
1740 */
1741 int x509_check_cert_time(X509_STORE_CTX *ctx, X509 *x, int depth)
1742 {
1743 time_t *ptime;
1744 int i;
1745
1746 if (ctx->param->flags & X509_V_FLAG_USE_CHECK_TIME)
1747 ptime = &ctx->param->check_time;
1748 else if (ctx->param->flags & X509_V_FLAG_NO_CHECK_TIME)
1749 return 1;
1750 else
1751 ptime = NULL;
1752
1753 i = X509_cmp_time(X509_get0_notBefore(x), ptime);
1754 if (i >= 0 && depth < 0)
1755 return 0;
1756 if (i == 0 && !verify_cb_cert(ctx, x, depth,
1757 X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD))
1758 return 0;
1759 if (i > 0 && !verify_cb_cert(ctx, x, depth, X509_V_ERR_CERT_NOT_YET_VALID))
1760 return 0;
1761
1762 i = X509_cmp_time(X509_get0_notAfter(x), ptime);
1763 if (i <= 0 && depth < 0)
1764 return 0;
1765 if (i == 0 && !verify_cb_cert(ctx, x, depth,
1766 X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD))
1767 return 0;
1768 if (i < 0 && !verify_cb_cert(ctx, x, depth, X509_V_ERR_CERT_HAS_EXPIRED))
1769 return 0;
1770 return 1;
1771 }
1772
1773 /* verify the issuer signatures and cert times of ctx->chain */
1774 static int internal_verify(X509_STORE_CTX *ctx)
1775 {
1776 int n = sk_X509_num(ctx->chain) - 1;
1777 X509 *xi = sk_X509_value(ctx->chain, n);
1778 X509 *xs;
1779
1780 /*
1781 * With DANE-verified bare public key TA signatures, it remains only to
1782 * check the timestamps of the top certificate. We report the issuer as
1783 * NULL, since all we have is a bare key.
1784 */
1785 if (ctx->bare_ta_signed) {
1786 xs = xi;
1787 xi = NULL;
1788 goto check_cert_time;
1789 }
1790
1791 if (ctx->check_issued(ctx, xi, xi))
1792 xs = xi; /* the typical case: last cert in the chain is self-issued */
1793 else {
1794 if (ctx->param->flags & X509_V_FLAG_PARTIAL_CHAIN) {
1795 xs = xi;
1796 goto check_cert_time;
1797 }
1798 if (n <= 0)
1799 return verify_cb_cert(ctx, xi, 0,
1800 X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE);
1801 n--;
1802 ctx->error_depth = n;
1803 xs = sk_X509_value(ctx->chain, n);
1804 }
1805
1806 /*
1807 * Do not clear ctx->error=0, it must be "sticky", only the user's callback
1808 * is allowed to reset errors (at its own peril).
1809 */
1810 while (n >= 0) {
1811 /*
1812 * For each iteration of this loop:
1813 * n is the subject depth
1814 * xs is the subject cert, for which the signature is to be checked
1815 * xi is the supposed issuer cert containing the public key to use
1816 * Initially xs == xi if the last cert in the chain is self-issued.
1817 *
1818 * Skip signature check for self-signed certificates unless explicitly
1819 * asked for because it does not add any security and just wastes time.
1820 */
1821 if (xs != xi || ((ctx->param->flags & X509_V_FLAG_CHECK_SS_SIGNATURE)
1822 && (xi->ex_flags & EXFLAG_SS) != 0)) {
1823 EVP_PKEY *pkey;
1824 /*
1825 * If the issuer's public key is not available or its key usage
1826 * does not support issuing the subject cert, report the issuer
1827 * cert and its depth (rather than n, the depth of the subject).
1828 */
1829 int issuer_depth = n + (xs == xi ? 0 : 1);
1830 /*
1831 * According to https://tools.ietf.org/html/rfc5280#section-6.1.4
1832 * step (n) we must check any given key usage extension in a CA cert
1833 * when preparing the verification of a certificate issued by it.
1834 * According to https://tools.ietf.org/html/rfc5280#section-4.2.1.3
1835 * we must not verify a certifiate signature if the key usage of the
1836 * CA certificate that issued the certificate prohibits signing.
1837 * In case the 'issuing' certificate is the last in the chain and is
1838 * not a CA certificate but a 'self-issued' end-entity cert (i.e.,
1839 * xs == xi && !(xi->ex_flags & EXFLAG_CA)) RFC 5280 does not apply
1840 * (see https://tools.ietf.org/html/rfc6818#section-2) and thus
1841 * we are free to ignore any key usage restrictions on such certs.
1842 */
1843 int ret = xs == xi && (xi->ex_flags & EXFLAG_CA) == 0
1844 ? X509_V_OK : x509_signing_allowed(xi, xs);
1845
1846 if (ret != X509_V_OK && !verify_cb_cert(ctx, xi, issuer_depth, ret))
1847 return 0;
1848 if ((pkey = X509_get0_pubkey(xi)) == NULL) {
1849 ret = X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY;
1850 if (!verify_cb_cert(ctx, xi, issuer_depth, ret))
1851 return 0;
1852 } else if (X509_verify(xs, pkey) <= 0) {
1853 ret = X509_V_ERR_CERT_SIGNATURE_FAILURE;
1854 if (!verify_cb_cert(ctx, xs, n, ret))
1855 return 0;
1856 }
1857 }
1858
1859 check_cert_time:
1860 /* Calls verify callback as needed */
1861 if (!x509_check_cert_time(ctx, xs, n))
1862 return 0;
1863
1864 /*
1865 * Signal success at this depth. However, the previous error (if any)
1866 * is retained.
1867 */
1868 ctx->current_issuer = xi;
1869 ctx->current_cert = xs;
1870 ctx->error_depth = n;
1871 if (!ctx->verify_cb(1, ctx))
1872 return 0;
1873
1874 if (--n >= 0) {
1875 xi = xs;
1876 xs = sk_X509_value(ctx->chain, n);
1877 }
1878 }
1879 return 1;
1880 }
1881
1882 int X509_cmp_current_time(const ASN1_TIME *ctm)
1883 {
1884 return X509_cmp_time(ctm, NULL);
1885 }
1886
1887 int X509_cmp_time(const ASN1_TIME *ctm, time_t *cmp_time)
1888 {
1889 static const size_t utctime_length = sizeof("YYMMDDHHMMSSZ") - 1;
1890 static const size_t generalizedtime_length = sizeof("YYYYMMDDHHMMSSZ") - 1;
1891 ASN1_TIME *asn1_cmp_time = NULL;
1892 int i, day, sec, ret = 0;
1893 #ifdef CHARSET_EBCDIC
1894 const char upper_z = 0x5A;
1895 #else
1896 const char upper_z = 'Z';
1897 #endif
1898 /*
1899 * Note that ASN.1 allows much more slack in the time format than RFC5280.
1900 * In RFC5280, the representation is fixed:
1901 * UTCTime: YYMMDDHHMMSSZ
1902 * GeneralizedTime: YYYYMMDDHHMMSSZ
1903 *
1904 * We do NOT currently enforce the following RFC 5280 requirement:
1905 * "CAs conforming to this profile MUST always encode certificate
1906 * validity dates through the year 2049 as UTCTime; certificate validity
1907 * dates in 2050 or later MUST be encoded as GeneralizedTime."
1908 */
1909 switch (ctm->type) {
1910 case V_ASN1_UTCTIME:
1911 if (ctm->length != (int)(utctime_length))
1912 return 0;
1913 break;
1914 case V_ASN1_GENERALIZEDTIME:
1915 if (ctm->length != (int)(generalizedtime_length))
1916 return 0;
1917 break;
1918 default:
1919 return 0;
1920 }
1921
1922 /**
1923 * Verify the format: the ASN.1 functions we use below allow a more
1924 * flexible format than what's mandated by RFC 5280.
1925 * Digit and date ranges will be verified in the conversion methods.
1926 */
1927 for (i = 0; i < ctm->length - 1; i++) {
1928 if (!ascii_isdigit(ctm->data[i]))
1929 return 0;
1930 }
1931 if (ctm->data[ctm->length - 1] != upper_z)
1932 return 0;
1933
1934 /*
1935 * There is ASN1_UTCTIME_cmp_time_t but no
1936 * ASN1_GENERALIZEDTIME_cmp_time_t or ASN1_TIME_cmp_time_t,
1937 * so we go through ASN.1
1938 */
1939 asn1_cmp_time = X509_time_adj(NULL, 0, cmp_time);
1940 if (asn1_cmp_time == NULL)
1941 goto err;
1942 if (!ASN1_TIME_diff(&day, &sec, ctm, asn1_cmp_time))
1943 goto err;
1944
1945 /*
1946 * X509_cmp_time comparison is <=.
1947 * The return value 0 is reserved for errors.
1948 */
1949 ret = (day >= 0 && sec >= 0) ? -1 : 1;
1950
1951 err:
1952 ASN1_TIME_free(asn1_cmp_time);
1953 return ret;
1954 }
1955
1956 /*
1957 * Return 0 if time should not be checked or reference time is in range,
1958 * or else 1 if it is past the end, or -1 if it is before the start
1959 */
1960 int X509_cmp_timeframe(const X509_VERIFY_PARAM *vpm,
1961 const ASN1_TIME *start, const ASN1_TIME *end)
1962 {
1963 time_t ref_time;
1964 time_t *time = NULL;
1965 unsigned long flags = vpm == NULL ? 0 : X509_VERIFY_PARAM_get_flags(vpm);
1966
1967 if ((flags & X509_V_FLAG_USE_CHECK_TIME) != 0) {
1968 ref_time = X509_VERIFY_PARAM_get_time(vpm);
1969 time = &ref_time;
1970 } else if ((flags & X509_V_FLAG_NO_CHECK_TIME) != 0) {
1971 return 0; /* this means ok */
1972 } /* else reference time is the current time */
1973
1974 if (end != NULL && X509_cmp_time(end, time) < 0)
1975 return 1;
1976 if (start != NULL && X509_cmp_time(start, time) > 0)
1977 return -1;
1978 return 0;
1979 }
1980
1981 ASN1_TIME *X509_gmtime_adj(ASN1_TIME *s, long adj)
1982 {
1983 return X509_time_adj(s, adj, NULL);
1984 }
1985
1986 ASN1_TIME *X509_time_adj(ASN1_TIME *s, long offset_sec, time_t *in_tm)
1987 {
1988 return X509_time_adj_ex(s, 0, offset_sec, in_tm);
1989 }
1990
1991 ASN1_TIME *X509_time_adj_ex(ASN1_TIME *s,
1992 int offset_day, long offset_sec, time_t *in_tm)
1993 {
1994 time_t t;
1995
1996 if (in_tm)
1997 t = *in_tm;
1998 else
1999 time(&t);
2000
2001 if (s && !(s->flags & ASN1_STRING_FLAG_MSTRING)) {
2002 if (s->type == V_ASN1_UTCTIME)
2003 return ASN1_UTCTIME_adj(s, t, offset_day, offset_sec);
2004 if (s->type == V_ASN1_GENERALIZEDTIME)
2005 return ASN1_GENERALIZEDTIME_adj(s, t, offset_day, offset_sec);
2006 }
2007 return ASN1_TIME_adj(s, t, offset_day, offset_sec);
2008 }
2009
2010 int X509_get_pubkey_parameters(EVP_PKEY *pkey, STACK_OF(X509) *chain)
2011 {
2012 EVP_PKEY *ktmp = NULL, *ktmp2;
2013 int i, j;
2014
2015 if ((pkey != NULL) && !EVP_PKEY_missing_parameters(pkey))
2016 return 1;
2017
2018 for (i = 0; i < sk_X509_num(chain); i++) {
2019 ktmp = X509_get0_pubkey(sk_X509_value(chain, i));
2020 if (ktmp == NULL) {
2021 X509err(X509_F_X509_GET_PUBKEY_PARAMETERS,
2022 X509_R_UNABLE_TO_GET_CERTS_PUBLIC_KEY);
2023 return 0;
2024 }
2025 if (!EVP_PKEY_missing_parameters(ktmp))
2026 break;
2027 }
2028 if (ktmp == NULL) {
2029 X509err(X509_F_X509_GET_PUBKEY_PARAMETERS,
2030 X509_R_UNABLE_TO_FIND_PARAMETERS_IN_CHAIN);
2031 return 0;
2032 }
2033
2034 /* first, populate the other certs */
2035 for (j = i - 1; j >= 0; j--) {
2036 ktmp2 = X509_get0_pubkey(sk_X509_value(chain, j));
2037 EVP_PKEY_copy_parameters(ktmp2, ktmp);
2038 }
2039
2040 if (pkey != NULL)
2041 EVP_PKEY_copy_parameters(pkey, ktmp);
2042 return 1;
2043 }
2044
2045 /* Make a delta CRL as the diff between two full CRLs */
2046
2047 X509_CRL *X509_CRL_diff(X509_CRL *base, X509_CRL *newer,
2048 EVP_PKEY *skey, const EVP_MD *md, unsigned int flags)
2049 {
2050 X509_CRL *crl = NULL;
2051 int i;
2052 STACK_OF(X509_REVOKED) *revs = NULL;
2053 /* CRLs can't be delta already */
2054 if (base->base_crl_number || newer->base_crl_number) {
2055 X509err(X509_F_X509_CRL_DIFF, X509_R_CRL_ALREADY_DELTA);
2056 return NULL;
2057 }
2058 /* Base and new CRL must have a CRL number */
2059 if (!base->crl_number || !newer->crl_number) {
2060 X509err(X509_F_X509_CRL_DIFF, X509_R_NO_CRL_NUMBER);
2061 return NULL;
2062 }
2063 /* Issuer names must match */
2064 if (X509_NAME_cmp(X509_CRL_get_issuer(base), X509_CRL_get_issuer(newer))) {
2065 X509err(X509_F_X509_CRL_DIFF, X509_R_ISSUER_MISMATCH);
2066 return NULL;
2067 }
2068 /* AKID and IDP must match */
2069 if (!crl_extension_match(base, newer, NID_authority_key_identifier)) {
2070 X509err(X509_F_X509_CRL_DIFF, X509_R_AKID_MISMATCH);
2071 return NULL;
2072 }
2073 if (!crl_extension_match(base, newer, NID_issuing_distribution_point)) {
2074 X509err(X509_F_X509_CRL_DIFF, X509_R_IDP_MISMATCH);
2075 return NULL;
2076 }
2077 /* Newer CRL number must exceed full CRL number */
2078 if (ASN1_INTEGER_cmp(newer->crl_number, base->crl_number) <= 0) {
2079 X509err(X509_F_X509_CRL_DIFF, X509_R_NEWER_CRL_NOT_NEWER);
2080 return NULL;
2081 }
2082 /* CRLs must verify */
2083 if (skey && (X509_CRL_verify(base, skey) <= 0 ||
2084 X509_CRL_verify(newer, skey) <= 0)) {
2085 X509err(X509_F_X509_CRL_DIFF, X509_R_CRL_VERIFY_FAILURE);
2086 return NULL;
2087 }
2088 /* Create new CRL */
2089 crl = X509_CRL_new();
2090 if (crl == NULL || !X509_CRL_set_version(crl, 1))
2091 goto memerr;
2092 /* Set issuer name */
2093 if (!X509_CRL_set_issuer_name(crl, X509_CRL_get_issuer(newer)))
2094 goto memerr;
2095
2096 if (!X509_CRL_set1_lastUpdate(crl, X509_CRL_get0_lastUpdate(newer)))
2097 goto memerr;
2098 if (!X509_CRL_set1_nextUpdate(crl, X509_CRL_get0_nextUpdate(newer)))
2099 goto memerr;
2100
2101 /* Set base CRL number: must be critical */
2102
2103 if (!X509_CRL_add1_ext_i2d(crl, NID_delta_crl, base->crl_number, 1, 0))
2104 goto memerr;
2105
2106 /*
2107 * Copy extensions across from newest CRL to delta: this will set CRL
2108 * number to correct value too.
2109 */
2110
2111 for (i = 0; i < X509_CRL_get_ext_count(newer); i++) {
2112 X509_EXTENSION *ext;
2113 ext = X509_CRL_get_ext(newer, i);
2114 if (!X509_CRL_add_ext(crl, ext, -1))
2115 goto memerr;
2116 }
2117
2118 /* Go through revoked entries, copying as needed */
2119
2120 revs = X509_CRL_get_REVOKED(newer);
2121
2122 for (i = 0; i < sk_X509_REVOKED_num(revs); i++) {
2123 X509_REVOKED *rvn, *rvtmp;
2124 rvn = sk_X509_REVOKED_value(revs, i);
2125 /*
2126 * Add only if not also in base. TODO: need something cleverer here
2127 * for some more complex CRLs covering multiple CAs.
2128 */
2129 if (!X509_CRL_get0_by_serial(base, &rvtmp, &rvn->serialNumber)) {
2130 rvtmp = X509_REVOKED_dup(rvn);
2131 if (!rvtmp)
2132 goto memerr;
2133 if (!X509_CRL_add0_revoked(crl, rvtmp)) {
2134 X509_REVOKED_free(rvtmp);
2135 goto memerr;
2136 }
2137 }
2138 }
2139 /* TODO: optionally prune deleted entries */
2140
2141 if (skey && md && !X509_CRL_sign(crl, skey, md))
2142 goto memerr;
2143
2144 return crl;
2145
2146 memerr:
2147 X509err(X509_F_X509_CRL_DIFF, ERR_R_MALLOC_FAILURE);
2148 X509_CRL_free(crl);
2149 return NULL;
2150 }
2151
2152 int X509_STORE_CTX_set_ex_data(X509_STORE_CTX *ctx, int idx, void *data)
2153 {
2154 return CRYPTO_set_ex_data(&ctx->ex_data, idx, data);
2155 }
2156
2157 void *X509_STORE_CTX_get_ex_data(const X509_STORE_CTX *ctx, int idx)
2158 {
2159 return CRYPTO_get_ex_data(&ctx->ex_data, idx);
2160 }
2161
2162 int X509_STORE_CTX_get_error(const X509_STORE_CTX *ctx)
2163 {
2164 return ctx->error;
2165 }
2166
2167 void X509_STORE_CTX_set_error(X509_STORE_CTX *ctx, int err)
2168 {
2169 ctx->error = err;
2170 }
2171
2172 int X509_STORE_CTX_get_error_depth(const X509_STORE_CTX *ctx)
2173 {
2174 return ctx->error_depth;
2175 }
2176
2177 void X509_STORE_CTX_set_error_depth(X509_STORE_CTX *ctx, int depth)
2178 {
2179 ctx->error_depth = depth;
2180 }
2181
2182 X509 *X509_STORE_CTX_get_current_cert(const X509_STORE_CTX *ctx)
2183 {
2184 return ctx->current_cert;
2185 }
2186
2187 void X509_STORE_CTX_set_current_cert(X509_STORE_CTX *ctx, X509 *x)
2188 {
2189 ctx->current_cert = x;
2190 }
2191
2192 STACK_OF(X509) *X509_STORE_CTX_get0_chain(const X509_STORE_CTX *ctx)
2193 {
2194 return ctx->chain;
2195 }
2196
2197 STACK_OF(X509) *X509_STORE_CTX_get1_chain(const X509_STORE_CTX *ctx)
2198 {
2199 if (!ctx->chain)
2200 return NULL;
2201 return X509_chain_up_ref(ctx->chain);
2202 }
2203
2204 X509 *X509_STORE_CTX_get0_current_issuer(const X509_STORE_CTX *ctx)
2205 {
2206 return ctx->current_issuer;
2207 }
2208
2209 X509_CRL *X509_STORE_CTX_get0_current_crl(const X509_STORE_CTX *ctx)
2210 {
2211 return ctx->current_crl;
2212 }
2213
2214 X509_STORE_CTX *X509_STORE_CTX_get0_parent_ctx(const X509_STORE_CTX *ctx)
2215 {
2216 return ctx->parent;
2217 }
2218
2219 void X509_STORE_CTX_set_cert(X509_STORE_CTX *ctx, X509 *x)
2220 {
2221 ctx->cert = x;
2222 }
2223
2224 void X509_STORE_CTX_set0_crls(X509_STORE_CTX *ctx, STACK_OF(X509_CRL) *sk)
2225 {
2226 ctx->crls = sk;
2227 }
2228
2229 int X509_STORE_CTX_set_purpose(X509_STORE_CTX *ctx, int purpose)
2230 {
2231 /*
2232 * XXX: Why isn't this function always used to set the associated trust?
2233 * Should there even be a VPM->trust field at all? Or should the trust
2234 * always be inferred from the purpose by X509_STORE_CTX_init().
2235 */
2236 return X509_STORE_CTX_purpose_inherit(ctx, 0, purpose, 0);
2237 }
2238
2239 int X509_STORE_CTX_set_trust(X509_STORE_CTX *ctx, int trust)
2240 {
2241 /*
2242 * XXX: See above, this function would only be needed when the default
2243 * trust for the purpose needs an override in a corner case.
2244 */
2245 return X509_STORE_CTX_purpose_inherit(ctx, 0, 0, trust);
2246 }
2247
2248 /*
2249 * This function is used to set the X509_STORE_CTX purpose and trust values.
2250 * This is intended to be used when another structure has its own trust and
2251 * purpose values which (if set) will be inherited by the ctx. If they aren't
2252 * set then we will usually have a default purpose in mind which should then
2253 * be used to set the trust value. An example of this is SSL use: an SSL
2254 * structure will have its own purpose and trust settings which the
2255 * application can set: if they aren't set then we use the default of SSL
2256 * client/server.
2257 */
2258
2259 int X509_STORE_CTX_purpose_inherit(X509_STORE_CTX *ctx, int def_purpose,
2260 int purpose, int trust)
2261 {
2262 int idx;
2263 /* If purpose not set use default */
2264 if (purpose == 0)
2265 purpose = def_purpose;
2266 /* If we have a purpose then check it is valid */
2267 if (purpose != 0) {
2268 X509_PURPOSE *ptmp;
2269 idx = X509_PURPOSE_get_by_id(purpose);
2270 if (idx == -1) {
2271 X509err(X509_F_X509_STORE_CTX_PURPOSE_INHERIT,
2272 X509_R_UNKNOWN_PURPOSE_ID);
2273 return 0;
2274 }
2275 ptmp = X509_PURPOSE_get0(idx);
2276 if (ptmp->trust == X509_TRUST_DEFAULT) {
2277 idx = X509_PURPOSE_get_by_id(def_purpose);
2278 /*
2279 * XXX: In the two callers above def_purpose is always 0, which is
2280 * not a known value, so idx will always be -1. How is the
2281 * X509_TRUST_DEFAULT case actually supposed to be handled?
2282 */
2283 if (idx == -1) {
2284 X509err(X509_F_X509_STORE_CTX_PURPOSE_INHERIT,
2285 X509_R_UNKNOWN_PURPOSE_ID);
2286 return 0;
2287 }
2288 ptmp = X509_PURPOSE_get0(idx);
2289 }
2290 /* If trust not set then get from purpose default */
2291 if (!trust)
2292 trust = ptmp->trust;
2293 }
2294 if (trust) {
2295 idx = X509_TRUST_get_by_id(trust);
2296 if (idx == -1) {
2297 X509err(X509_F_X509_STORE_CTX_PURPOSE_INHERIT,
2298 X509_R_UNKNOWN_TRUST_ID);
2299 return 0;
2300 }
2301 }
2302
2303 if (purpose && !ctx->param->purpose)
2304 ctx->param->purpose = purpose;
2305 if (trust && !ctx->param->trust)
2306 ctx->param->trust = trust;
2307 return 1;
2308 }
2309
2310 X509_STORE_CTX *X509_STORE_CTX_new_with_libctx(OPENSSL_CTX *libctx,
2311 const char *propq)
2312 {
2313 X509_STORE_CTX *ctx = OPENSSL_zalloc(sizeof(*ctx));
2314
2315 if (ctx == NULL) {
2316 X509err(0, ERR_R_MALLOC_FAILURE);
2317 return NULL;
2318 }
2319
2320 ctx->libctx = libctx;
2321 if (propq != NULL) {
2322 ctx->propq = OPENSSL_strdup(propq);
2323 if (ctx->propq == NULL) {
2324 OPENSSL_free(ctx);
2325 X509err(0, ERR_R_MALLOC_FAILURE);
2326 return NULL;
2327 }
2328 }
2329
2330 return ctx;
2331 }
2332
2333 X509_STORE_CTX *X509_STORE_CTX_new(void)
2334 {
2335 return X509_STORE_CTX_new_with_libctx(NULL, NULL);
2336 }
2337
2338
2339 void X509_STORE_CTX_free(X509_STORE_CTX *ctx)
2340 {
2341 if (ctx == NULL)
2342 return;
2343
2344 X509_STORE_CTX_cleanup(ctx);
2345
2346 /* libctx and propq survive X509_STORE_CTX_cleanup() */
2347 OPENSSL_free(ctx->propq);
2348
2349 OPENSSL_free(ctx);
2350 }
2351
2352 int X509_STORE_CTX_init(X509_STORE_CTX *ctx, X509_STORE *store, X509 *x509,
2353 STACK_OF(X509) *chain)
2354 {
2355 int ret = 1;
2356
2357 ctx->store = store;
2358 ctx->cert = x509;
2359 ctx->untrusted = chain;
2360 ctx->crls = NULL;
2361 ctx->num_untrusted = 0;
2362 ctx->other_ctx = NULL;
2363 ctx->valid = 0;
2364 ctx->chain = NULL;
2365 ctx->error = 0;
2366 ctx->explicit_policy = 0;
2367 ctx->error_depth = 0;
2368 ctx->current_cert = NULL;
2369 ctx->current_issuer = NULL;
2370 ctx->current_crl = NULL;
2371 ctx->current_crl_score = 0;
2372 ctx->current_reasons = 0;
2373 ctx->tree = NULL;
2374 ctx->parent = NULL;
2375 ctx->dane = NULL;
2376 ctx->bare_ta_signed = 0;
2377 /* Zero ex_data to make sure we're cleanup-safe */
2378 memset(&ctx->ex_data, 0, sizeof(ctx->ex_data));
2379
2380 /* store->cleanup is always 0 in OpenSSL, if set must be idempotent */
2381 if (store)
2382 ctx->cleanup = store->cleanup;
2383 else
2384 ctx->cleanup = 0;
2385
2386 if (store && store->check_issued)
2387 ctx->check_issued = store->check_issued;
2388 else
2389 ctx->check_issued = check_issued;
2390
2391 if (store && store->get_issuer)
2392 ctx->get_issuer = store->get_issuer;
2393 else
2394 ctx->get_issuer = X509_STORE_CTX_get1_issuer;
2395
2396 if (store && store->verify_cb)
2397 ctx->verify_cb = store->verify_cb;
2398 else
2399 ctx->verify_cb = null_callback;
2400
2401 if (store && store->verify)
2402 ctx->verify = store->verify;
2403 else
2404 ctx->verify = internal_verify;
2405
2406 if (store && store->check_revocation)
2407 ctx->check_revocation = store->check_revocation;
2408 else
2409 ctx->check_revocation = check_revocation;
2410
2411 if (store && store->get_crl)
2412 ctx->get_crl = store->get_crl;
2413 else
2414 ctx->get_crl = NULL;
2415
2416 if (store && store->check_crl)
2417 ctx->check_crl = store->check_crl;
2418 else
2419 ctx->check_crl = check_crl;
2420
2421 if (store && store->cert_crl)
2422 ctx->cert_crl = store->cert_crl;
2423 else
2424 ctx->cert_crl = cert_crl;
2425
2426 if (store && store->check_policy)
2427 ctx->check_policy = store->check_policy;
2428 else
2429 ctx->check_policy = check_policy;
2430
2431 if (store && store->lookup_certs)
2432 ctx->lookup_certs = store->lookup_certs;
2433 else
2434 ctx->lookup_certs = X509_STORE_CTX_get1_certs;
2435
2436 if (store && store->lookup_crls)
2437 ctx->lookup_crls = store->lookup_crls;
2438 else
2439 ctx->lookup_crls = X509_STORE_CTX_get1_crls;
2440
2441 ctx->param = X509_VERIFY_PARAM_new();
2442 if (ctx->param == NULL) {
2443 X509err(X509_F_X509_STORE_CTX_INIT, ERR_R_MALLOC_FAILURE);
2444 goto err;
2445 }
2446
2447 /*
2448 * Inherit callbacks and flags from X509_STORE if not set use defaults.
2449 */
2450 if (store)
2451 ret = X509_VERIFY_PARAM_inherit(ctx->param, store->param);
2452 else
2453 ctx->param->inh_flags |= X509_VP_FLAG_DEFAULT | X509_VP_FLAG_ONCE;
2454
2455 if (ret)
2456 ret = X509_VERIFY_PARAM_inherit(ctx->param,
2457 X509_VERIFY_PARAM_lookup("default"));
2458
2459 if (ret == 0) {
2460 X509err(X509_F_X509_STORE_CTX_INIT, ERR_R_MALLOC_FAILURE);
2461 goto err;
2462 }
2463
2464 /*
2465 * XXX: For now, continue to inherit trust from VPM, but infer from the
2466 * purpose if this still yields the default value.
2467 */
2468 if (ctx->param->trust == X509_TRUST_DEFAULT) {
2469 int idx = X509_PURPOSE_get_by_id(ctx->param->purpose);
2470 X509_PURPOSE *xp = X509_PURPOSE_get0(idx);
2471
2472 if (xp != NULL)
2473 ctx->param->trust = X509_PURPOSE_get_trust(xp);
2474 }
2475
2476 if (CRYPTO_new_ex_data(CRYPTO_EX_INDEX_X509_STORE_CTX, ctx,
2477 &ctx->ex_data))
2478 return 1;
2479 X509err(X509_F_X509_STORE_CTX_INIT, ERR_R_MALLOC_FAILURE);
2480
2481 err:
2482 /*
2483 * On error clean up allocated storage, if the store context was not
2484 * allocated with X509_STORE_CTX_new() this is our last chance to do so.
2485 */
2486 X509_STORE_CTX_cleanup(ctx);
2487 return 0;
2488 }
2489
2490 /*
2491 * Set alternative lookup method: just a STACK of trusted certificates. This
2492 * avoids X509_STORE nastiness where it isn't needed.
2493 */
2494 void X509_STORE_CTX_set0_trusted_stack(X509_STORE_CTX *ctx, STACK_OF(X509) *sk)
2495 {
2496 ctx->other_ctx = sk;
2497 ctx->get_issuer = get_issuer_sk;
2498 ctx->lookup_certs = lookup_certs_sk;
2499 }
2500
2501 void X509_STORE_CTX_cleanup(X509_STORE_CTX *ctx)
2502 {
2503 /*
2504 * We need to be idempotent because, unfortunately, free() also calls
2505 * cleanup(), so the natural call sequence new(), init(), cleanup(), free()
2506 * calls cleanup() for the same object twice! Thus we must zero the
2507 * pointers below after they're freed!
2508 */
2509 /* Seems to always be 0 in OpenSSL, do this at most once. */
2510 if (ctx->cleanup != NULL) {
2511 ctx->cleanup(ctx);
2512 ctx->cleanup = NULL;
2513 }
2514 if (ctx->param != NULL) {
2515 if (ctx->parent == NULL)
2516 X509_VERIFY_PARAM_free(ctx->param);
2517 ctx->param = NULL;
2518 }
2519 X509_policy_tree_free(ctx->tree);
2520 ctx->tree = NULL;
2521 sk_X509_pop_free(ctx->chain, X509_free);
2522 ctx->chain = NULL;
2523 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_X509_STORE_CTX, ctx, &(ctx->ex_data));
2524 memset(&ctx->ex_data, 0, sizeof(ctx->ex_data));
2525 }
2526
2527 void X509_STORE_CTX_set_depth(X509_STORE_CTX *ctx, int depth)
2528 {
2529 X509_VERIFY_PARAM_set_depth(ctx->param, depth);
2530 }
2531
2532 void X509_STORE_CTX_set_flags(X509_STORE_CTX *ctx, unsigned long flags)
2533 {
2534 X509_VERIFY_PARAM_set_flags(ctx->param, flags);
2535 }
2536
2537 void X509_STORE_CTX_set_time(X509_STORE_CTX *ctx, unsigned long flags,
2538 time_t t)
2539 {
2540 X509_VERIFY_PARAM_set_time(ctx->param, t);
2541 }
2542
2543 X509 *X509_STORE_CTX_get0_cert(const X509_STORE_CTX *ctx)
2544 {
2545 return ctx->cert;
2546 }
2547
2548 STACK_OF(X509) *X509_STORE_CTX_get0_untrusted(const X509_STORE_CTX *ctx)
2549 {
2550 return ctx->untrusted;
2551 }
2552
2553 void X509_STORE_CTX_set0_untrusted(X509_STORE_CTX *ctx, STACK_OF(X509) *sk)
2554 {
2555 ctx->untrusted = sk;
2556 }
2557
2558 void X509_STORE_CTX_set0_verified_chain(X509_STORE_CTX *ctx, STACK_OF(X509) *sk)
2559 {
2560 sk_X509_pop_free(ctx->chain, X509_free);
2561 ctx->chain = sk;
2562 }
2563
2564 void X509_STORE_CTX_set_verify_cb(X509_STORE_CTX *ctx,
2565 X509_STORE_CTX_verify_cb verify_cb)
2566 {
2567 ctx->verify_cb = verify_cb;
2568 }
2569
2570 X509_STORE_CTX_verify_cb X509_STORE_CTX_get_verify_cb(const X509_STORE_CTX *ctx)
2571 {
2572 return ctx->verify_cb;
2573 }
2574
2575 void X509_STORE_CTX_set_verify(X509_STORE_CTX *ctx,
2576 X509_STORE_CTX_verify_fn verify)
2577 {
2578 ctx->verify = verify;
2579 }
2580
2581 X509_STORE_CTX_verify_fn X509_STORE_CTX_get_verify(const X509_STORE_CTX *ctx)
2582 {
2583 return ctx->verify;
2584 }
2585
2586 X509_STORE_CTX_get_issuer_fn X509_STORE_CTX_get_get_issuer(const X509_STORE_CTX *ctx)
2587 {
2588 return ctx->get_issuer;
2589 }
2590
2591 X509_STORE_CTX_check_issued_fn
2592 X509_STORE_CTX_get_check_issued(const X509_STORE_CTX *ctx)
2593 {
2594 return ctx->check_issued;
2595 }
2596
2597 X509_STORE_CTX_check_revocation_fn
2598 X509_STORE_CTX_get_check_revocation(const X509_STORE_CTX *ctx)
2599 {
2600 return ctx->check_revocation;
2601 }
2602
2603 X509_STORE_CTX_get_crl_fn X509_STORE_CTX_get_get_crl(const X509_STORE_CTX *ctx)
2604 {
2605 return ctx->get_crl;
2606 }
2607
2608 X509_STORE_CTX_check_crl_fn X509_STORE_CTX_get_check_crl(const X509_STORE_CTX *ctx)
2609 {
2610 return ctx->check_crl;
2611 }
2612
2613 X509_STORE_CTX_cert_crl_fn X509_STORE_CTX_get_cert_crl(const X509_STORE_CTX *ctx)
2614 {
2615 return ctx->cert_crl;
2616 }
2617
2618 X509_STORE_CTX_check_policy_fn
2619 X509_STORE_CTX_get_check_policy(const X509_STORE_CTX *ctx)
2620 {
2621 return ctx->check_policy;
2622 }
2623
2624 X509_STORE_CTX_lookup_certs_fn
2625 X509_STORE_CTX_get_lookup_certs(const X509_STORE_CTX *ctx)
2626 {
2627 return ctx->lookup_certs;
2628 }
2629
2630 X509_STORE_CTX_lookup_crls_fn
2631 X509_STORE_CTX_get_lookup_crls(const X509_STORE_CTX *ctx)
2632 {
2633 return ctx->lookup_crls;
2634 }
2635
2636 X509_STORE_CTX_cleanup_fn X509_STORE_CTX_get_cleanup(const X509_STORE_CTX *ctx)
2637 {
2638 return ctx->cleanup;
2639 }
2640
2641 X509_POLICY_TREE *X509_STORE_CTX_get0_policy_tree(const X509_STORE_CTX *ctx)
2642 {
2643 return ctx->tree;
2644 }
2645
2646 int X509_STORE_CTX_get_explicit_policy(const X509_STORE_CTX *ctx)
2647 {
2648 return ctx->explicit_policy;
2649 }
2650
2651 int X509_STORE_CTX_get_num_untrusted(const X509_STORE_CTX *ctx)
2652 {
2653 return ctx->num_untrusted;
2654 }
2655
2656 int X509_STORE_CTX_set_default(X509_STORE_CTX *ctx, const char *name)
2657 {
2658 const X509_VERIFY_PARAM *param;
2659
2660 param = X509_VERIFY_PARAM_lookup(name);
2661 if (param == NULL)
2662 return 0;
2663 return X509_VERIFY_PARAM_inherit(ctx->param, param);
2664 }
2665
2666 X509_VERIFY_PARAM *X509_STORE_CTX_get0_param(const X509_STORE_CTX *ctx)
2667 {
2668 return ctx->param;
2669 }
2670
2671 void X509_STORE_CTX_set0_param(X509_STORE_CTX *ctx, X509_VERIFY_PARAM *param)
2672 {
2673 X509_VERIFY_PARAM_free(ctx->param);
2674 ctx->param = param;
2675 }
2676
2677 void X509_STORE_CTX_set0_dane(X509_STORE_CTX *ctx, SSL_DANE *dane)
2678 {
2679 ctx->dane = dane;
2680 }
2681
2682 static unsigned char *dane_i2d(
2683 X509 *cert,
2684 uint8_t selector,
2685 unsigned int *i2dlen)
2686 {
2687 unsigned char *buf = NULL;
2688 int len;
2689
2690 /*
2691 * Extract ASN.1 DER form of certificate or public key.
2692 */
2693 switch (selector) {
2694 case DANETLS_SELECTOR_CERT:
2695 len = i2d_X509(cert, &buf);
2696 break;
2697 case DANETLS_SELECTOR_SPKI:
2698 len = i2d_X509_PUBKEY(X509_get_X509_PUBKEY(cert), &buf);
2699 break;
2700 default:
2701 X509err(X509_F_DANE_I2D, X509_R_BAD_SELECTOR);
2702 return NULL;
2703 }
2704
2705 if (len < 0 || buf == NULL) {
2706 X509err(X509_F_DANE_I2D, ERR_R_MALLOC_FAILURE);
2707 return NULL;
2708 }
2709
2710 *i2dlen = (unsigned int)len;
2711 return buf;
2712 }
2713
2714 #define DANETLS_NONE 256 /* impossible uint8_t */
2715
2716 static int dane_match(X509_STORE_CTX *ctx, X509 *cert, int depth)
2717 {
2718 SSL_DANE *dane = ctx->dane;
2719 unsigned usage = DANETLS_NONE;
2720 unsigned selector = DANETLS_NONE;
2721 unsigned ordinal = DANETLS_NONE;
2722 unsigned mtype = DANETLS_NONE;
2723 unsigned char *i2dbuf = NULL;
2724 unsigned int i2dlen = 0;
2725 unsigned char mdbuf[EVP_MAX_MD_SIZE];
2726 unsigned char *cmpbuf = NULL;
2727 unsigned int cmplen = 0;
2728 int i;
2729 int recnum;
2730 int matched = 0;
2731 danetls_record *t = NULL;
2732 uint32_t mask;
2733
2734 mask = (depth == 0) ? DANETLS_EE_MASK : DANETLS_TA_MASK;
2735
2736 /*
2737 * The trust store is not applicable with DANE-TA(2)
2738 */
2739 if (depth >= ctx->num_untrusted)
2740 mask &= DANETLS_PKIX_MASK;
2741
2742 /*
2743 * If we've previously matched a PKIX-?? record, no need to test any
2744 * further PKIX-?? records, it remains to just build the PKIX chain.
2745 * Had the match been a DANE-?? record, we'd be done already.
2746 */
2747 if (dane->mdpth >= 0)
2748 mask &= ~DANETLS_PKIX_MASK;
2749
2750 /*-
2751 * https://tools.ietf.org/html/rfc7671#section-5.1
2752 * https://tools.ietf.org/html/rfc7671#section-5.2
2753 * https://tools.ietf.org/html/rfc7671#section-5.3
2754 * https://tools.ietf.org/html/rfc7671#section-5.4
2755 *
2756 * We handle DANE-EE(3) records first as they require no chain building
2757 * and no expiration or hostname checks. We also process digests with
2758 * higher ordinals first and ignore lower priorities except Full(0) which
2759 * is always processed (last). If none match, we then process PKIX-EE(1).
2760 *
2761 * NOTE: This relies on DANE usages sorting before the corresponding PKIX
2762 * usages in SSL_dane_tlsa_add(), and also on descending sorting of digest
2763 * priorities. See twin comment in ssl/ssl_lib.c.
2764 *
2765 * We expect that most TLSA RRsets will have just a single usage, so we
2766 * don't go out of our way to cache multiple selector-specific i2d buffers
2767 * across usages, but if the selector happens to remain the same as switch
2768 * usages, that's OK. Thus, a set of "3 1 1", "3 0 1", "1 1 1", "1 0 1",
2769 * records would result in us generating each of the certificate and public
2770 * key DER forms twice, but more typically we'd just see multiple "3 1 1"
2771 * or multiple "3 0 1" records.
2772 *
2773 * As soon as we find a match at any given depth, we stop, because either
2774 * we've matched a DANE-?? record and the peer is authenticated, or, after
2775 * exhausting all DANE-?? records, we've matched a PKIX-?? record, which is
2776 * sufficient for DANE, and what remains to do is ordinary PKIX validation.
2777 */
2778 recnum = (dane->umask & mask) ? sk_danetls_record_num(dane->trecs) : 0;
2779 for (i = 0; matched == 0 && i < recnum; ++i) {
2780 t = sk_danetls_record_value(dane->trecs, i);
2781 if ((DANETLS_USAGE_BIT(t->usage) & mask) == 0)
2782 continue;
2783 if (t->usage != usage) {
2784 usage = t->usage;
2785
2786 /* Reset digest agility for each usage/selector pair */
2787 mtype = DANETLS_NONE;
2788 ordinal = dane->dctx->mdord[t->mtype];
2789 }
2790 if (t->selector != selector) {
2791 selector = t->selector;
2792
2793 /* Update per-selector state */
2794 OPENSSL_free(i2dbuf);
2795 i2dbuf = dane_i2d(cert, selector, &i2dlen);
2796 if (i2dbuf == NULL)
2797 return -1;
2798
2799 /* Reset digest agility for each usage/selector pair */
2800 mtype = DANETLS_NONE;
2801 ordinal = dane->dctx->mdord[t->mtype];
2802 } else if (t->mtype != DANETLS_MATCHING_FULL) {
2803 /*-
2804 * Digest agility:
2805 *
2806 * <https://tools.ietf.org/html/rfc7671#section-9>
2807 *
2808 * For a fixed selector, after processing all records with the
2809 * highest mtype ordinal, ignore all mtypes with lower ordinals
2810 * other than "Full".
2811 */
2812 if (dane->dctx->mdord[t->mtype] < ordinal)
2813 continue;
2814 }
2815
2816 /*
2817 * Each time we hit a (new selector or) mtype, re-compute the relevant
2818 * digest, more complex caching is not worth the code space.
2819 */
2820 if (t->mtype != mtype) {
2821 const EVP_MD *md = dane->dctx->mdevp[mtype = t->mtype];
2822 cmpbuf = i2dbuf;
2823 cmplen = i2dlen;
2824
2825 if (md != NULL) {
2826 cmpbuf = mdbuf;
2827 if (!EVP_Digest(i2dbuf, i2dlen, cmpbuf, &cmplen, md, 0)) {
2828 matched = -1;
2829 break;
2830 }
2831 }
2832 }
2833
2834 /*
2835 * Squirrel away the certificate and depth if we have a match. Any
2836 * DANE match is dispositive, but with PKIX we still need to build a
2837 * full chain.
2838 */
2839 if (cmplen == t->dlen &&
2840 memcmp(cmpbuf, t->data, cmplen) == 0) {
2841 if (DANETLS_USAGE_BIT(usage) & DANETLS_DANE_MASK)
2842 matched = 1;
2843 if (matched || dane->mdpth < 0) {
2844 dane->mdpth = depth;
2845 dane->mtlsa = t;
2846 OPENSSL_free(dane->mcert);
2847 dane->mcert = cert;
2848 X509_up_ref(cert);
2849 }
2850 break;
2851 }
2852 }
2853
2854 /* Clear the one-element DER cache */
2855 OPENSSL_free(i2dbuf);
2856 return matched;
2857 }
2858
2859 static int check_dane_issuer(X509_STORE_CTX *ctx, int depth)
2860 {
2861 SSL_DANE *dane = ctx->dane;
2862 int matched = 0;
2863 X509 *cert;
2864
2865 if (!DANETLS_HAS_TA(dane) || depth == 0)
2866 return X509_TRUST_UNTRUSTED;
2867
2868 /*
2869 * Record any DANE trust anchor matches, for the first depth to test, if
2870 * there's one at that depth. (This'll be false for length 1 chains looking
2871 * for an exact match for the leaf certificate).
2872 */
2873 cert = sk_X509_value(ctx->chain, depth);
2874 if (cert != NULL && (matched = dane_match(ctx, cert, depth)) < 0)
2875 return X509_TRUST_REJECTED;
2876 if (matched > 0) {
2877 ctx->num_untrusted = depth - 1;
2878 return X509_TRUST_TRUSTED;
2879 }
2880
2881 return X509_TRUST_UNTRUSTED;
2882 }
2883
2884 static int check_dane_pkeys(X509_STORE_CTX *ctx)
2885 {
2886 SSL_DANE *dane = ctx->dane;
2887 danetls_record *t;
2888 int num = ctx->num_untrusted;
2889 X509 *cert = sk_X509_value(ctx->chain, num - 1);
2890 int recnum = sk_danetls_record_num(dane->trecs);
2891 int i;
2892
2893 for (i = 0; i < recnum; ++i) {
2894 t = sk_danetls_record_value(dane->trecs, i);
2895 if (t->usage != DANETLS_USAGE_DANE_TA ||
2896 t->selector != DANETLS_SELECTOR_SPKI ||
2897 t->mtype != DANETLS_MATCHING_FULL ||
2898 X509_verify(cert, t->spki) <= 0)
2899 continue;
2900
2901 /* Clear any PKIX-?? matches that failed to extend to a full chain */
2902 X509_free(dane->mcert);
2903 dane->mcert = NULL;
2904
2905 /* Record match via a bare TA public key */
2906 ctx->bare_ta_signed = 1;
2907 dane->mdpth = num - 1;
2908 dane->mtlsa = t;
2909
2910 /* Prune any excess chain certificates */
2911 num = sk_X509_num(ctx->chain);
2912 for (; num > ctx->num_untrusted; --num)
2913 X509_free(sk_X509_pop(ctx->chain));
2914
2915 return X509_TRUST_TRUSTED;
2916 }
2917
2918 return X509_TRUST_UNTRUSTED;
2919 }
2920
2921 static void dane_reset(SSL_DANE *dane)
2922 {
2923 /*
2924 * Reset state to verify another chain, or clear after failure.
2925 */
2926 X509_free(dane->mcert);
2927 dane->mcert = NULL;
2928 dane->mtlsa = NULL;
2929 dane->mdpth = -1;
2930 dane->pdpth = -1;
2931 }
2932
2933 static int check_leaf_suiteb(X509_STORE_CTX *ctx, X509 *cert)
2934 {
2935 int err = X509_chain_check_suiteb(NULL, cert, NULL, ctx->param->flags);
2936
2937 if (err == X509_V_OK)
2938 return 1;
2939 return verify_cb_cert(ctx, cert, 0, err);
2940 }
2941
2942 static int dane_verify(X509_STORE_CTX *ctx)
2943 {
2944 X509 *cert = ctx->cert;
2945 SSL_DANE *dane = ctx->dane;
2946 int matched;
2947 int done;
2948
2949 dane_reset(dane);
2950
2951 /*-
2952 * When testing the leaf certificate, if we match a DANE-EE(3) record,
2953 * dane_match() returns 1 and we're done. If however we match a PKIX-EE(1)
2954 * record, the match depth and matching TLSA record are recorded, but the
2955 * return value is 0, because we still need to find a PKIX trust anchor.
2956 * Therefore, when DANE authentication is enabled (required), we're done
2957 * if:
2958 * + matched < 0, internal error.
2959 * + matched == 1, we matched a DANE-EE(3) record
2960 * + matched == 0, mdepth < 0 (no PKIX-EE match) and there are no
2961 * DANE-TA(2) or PKIX-TA(0) to test.
2962 */
2963 matched = dane_match(ctx, ctx->cert, 0);
2964 done = matched != 0 || (!DANETLS_HAS_TA(dane) && dane->mdpth < 0);
2965
2966 if (done)
2967 X509_get_pubkey_parameters(NULL, ctx->chain);
2968
2969 if (matched > 0) {
2970 /* Callback invoked as needed */
2971 if (!check_leaf_suiteb(ctx, cert))
2972 return 0;
2973 /* Callback invoked as needed */
2974 if ((dane->flags & DANE_FLAG_NO_DANE_EE_NAMECHECKS) == 0 &&
2975 !check_id(ctx))
2976 return 0;
2977 /* Bypass internal_verify(), issue depth 0 success callback */
2978 ctx->error_depth = 0;
2979 ctx->current_cert = cert;
2980 return ctx->verify_cb(1, ctx);
2981 }
2982
2983 if (matched < 0) {
2984 ctx->error_depth = 0;
2985 ctx->current_cert = cert;
2986 ctx->error = X509_V_ERR_OUT_OF_MEM;
2987 return -1;
2988 }
2989
2990 if (done) {
2991 /* Fail early, TA-based success is not possible */
2992 if (!check_leaf_suiteb(ctx, cert))
2993 return 0;
2994 return verify_cb_cert(ctx, cert, 0, X509_V_ERR_DANE_NO_MATCH);
2995 }
2996
2997 /*
2998 * Chain verification for usages 0/1/2. TLSA record matching of depth > 0
2999 * certificates happens in-line with building the rest of the chain.
3000 */
3001 return verify_chain(ctx);
3002 }
3003
3004 /* Get issuer, without duplicate suppression */
3005 static int get_issuer(X509 **issuer, X509_STORE_CTX *ctx, X509 *cert)
3006 {
3007 STACK_OF(X509) *saved_chain = ctx->chain;
3008 int ok;
3009
3010 ctx->chain = NULL;
3011 ok = ctx->get_issuer(issuer, ctx, cert);
3012 ctx->chain = saved_chain;
3013
3014 return ok;
3015 }
3016
3017 static int build_chain(X509_STORE_CTX *ctx)
3018 {
3019 SSL_DANE *dane = ctx->dane;
3020 int num = sk_X509_num(ctx->chain);
3021 X509 *cert = sk_X509_value(ctx->chain, num - 1);
3022 int self_signed;
3023 STACK_OF(X509) *sktmp = NULL;
3024 unsigned int search;
3025 int may_trusted = 0;
3026 int may_alternate = 0;
3027 int trust = X509_TRUST_UNTRUSTED;
3028 int alt_untrusted = 0;
3029 int depth;
3030 int ok = 0;
3031 int i;
3032
3033 /* Our chain starts with a single untrusted element. */
3034 if (!ossl_assert(num == 1 && ctx->num_untrusted == num)) {
3035 X509err(X509_F_BUILD_CHAIN, ERR_R_INTERNAL_ERROR);
3036 ctx->error = X509_V_ERR_UNSPECIFIED;
3037 return 0;
3038 }
3039
3040 self_signed = X509_self_signed(cert, 0);
3041 if (self_signed < 0) {
3042 ctx->error = X509_V_ERR_UNSPECIFIED;
3043 return 0;
3044 }
3045
3046 #define S_DOUNTRUSTED (1 << 0) /* Search untrusted chain */
3047 #define S_DOTRUSTED (1 << 1) /* Search trusted store */
3048 #define S_DOALTERNATE (1 << 2) /* Retry with pruned alternate chain */
3049 /*
3050 * Set up search policy, untrusted if possible, trusted-first if enabled.
3051 * If we're doing DANE and not doing PKIX-TA/PKIX-EE, we never look in the
3052 * trust_store, otherwise we might look there first. If not trusted-first,
3053 * and alternate chains are not disabled, try building an alternate chain
3054 * if no luck with untrusted first.
3055 */
3056 search = (ctx->untrusted != NULL) ? S_DOUNTRUSTED : 0;
3057 if (DANETLS_HAS_PKIX(dane) || !DANETLS_HAS_DANE(dane)) {
3058 if (search == 0 || ctx->param->flags & X509_V_FLAG_TRUSTED_FIRST)
3059 search |= S_DOTRUSTED;
3060 else if (!(ctx->param->flags & X509_V_FLAG_NO_ALT_CHAINS))
3061 may_alternate = 1;
3062 may_trusted = 1;
3063 }
3064
3065 /*
3066 * Shallow-copy the stack of untrusted certificates (with TLS, this is
3067 * typically the content of the peer's certificate message) so can make
3068 * multiple passes over it, while free to remove elements as we go.
3069 */
3070 if (ctx->untrusted && (sktmp = sk_X509_dup(ctx->untrusted)) == NULL) {
3071 X509err(X509_F_BUILD_CHAIN, ERR_R_MALLOC_FAILURE);
3072 ctx->error = X509_V_ERR_OUT_OF_MEM;
3073 return 0;
3074 }
3075
3076 /*
3077 * If we got any "DANE-TA(2) Cert(0) Full(0)" trust anchors from DNS, add
3078 * them to our working copy of the untrusted certificate stack. Since the
3079 * caller of X509_STORE_CTX_init() may have provided only a leaf cert with
3080 * no corresponding stack of untrusted certificates, we may need to create
3081 * an empty stack first. [ At present only the ssl library provides DANE
3082 * support, and ssl_verify_cert_chain() always provides a non-null stack
3083 * containing at least the leaf certificate, but we must be prepared for
3084 * this to change. ]
3085 */
3086 if (DANETLS_ENABLED(dane) && dane->certs != NULL) {
3087 if (sktmp == NULL && (sktmp = sk_X509_new_null()) == NULL) {
3088 X509err(X509_F_BUILD_CHAIN, ERR_R_MALLOC_FAILURE);
3089 ctx->error = X509_V_ERR_OUT_OF_MEM;
3090 return 0;
3091 }
3092 if (!X509_add_certs(sktmp, dane->certs, X509_ADD_FLAG_DEFAULT)) {
3093 sk_X509_free(sktmp);
3094 ctx->error = X509_V_ERR_OUT_OF_MEM;
3095 return 0;
3096 }
3097 }
3098
3099 /*
3100 * Still absurdly large, but arithmetically safe, a lower hard upper bound
3101 * might be reasonable.
3102 */
3103 if (ctx->param->depth > INT_MAX/2)
3104 ctx->param->depth = INT_MAX/2;
3105
3106 /*
3107 * Try to extend the chain until we reach an ultimately trusted issuer.
3108 * Build chains up to one longer the limit, later fail if we hit the limit,
3109 * with an X509_V_ERR_CERT_CHAIN_TOO_LONG error code.
3110 */
3111 depth = ctx->param->depth + 1;
3112
3113 while (search != 0) {
3114 X509 *x;
3115 X509 *xtmp = NULL;
3116
3117 /*
3118 * Look in the trust store if enabled for first lookup, or we've run
3119 * out of untrusted issuers and search here is not disabled. When we
3120 * reach the depth limit, we stop extending the chain, if by that point
3121 * we've not found a trust anchor, any trusted chain would be too long.
3122 *
3123 * The error reported to the application verify callback is at the
3124 * maximal valid depth with the current certificate equal to the last
3125 * not ultimately-trusted issuer. For example, with verify_depth = 0,
3126 * the callback will report errors at depth=1 when the immediate issuer
3127 * of the leaf certificate is not a trust anchor. No attempt will be
3128 * made to locate an issuer for that certificate, since such a chain
3129 * would be a-priori too long.
3130 */
3131 if ((search & S_DOTRUSTED) != 0) {
3132 i = num = sk_X509_num(ctx->chain);
3133 if ((search & S_DOALTERNATE) != 0) {
3134 /*
3135 * As high up the chain as we can, look for an alternative
3136 * trusted issuer of an untrusted certificate that currently
3137 * has an untrusted issuer. We use the alt_untrusted variable
3138 * to track how far up the chain we find the first match. It
3139 * is only if and when we find a match, that we prune the chain
3140 * and reset ctx->num_untrusted to the reduced count of
3141 * untrusted certificates. While we're searching for such a
3142 * match (which may never be found), it is neither safe nor
3143 * wise to preemptively modify either the chain or
3144 * ctx->num_untrusted.
3145 *
3146 * Note, like ctx->num_untrusted, alt_untrusted is a count of
3147 * untrusted certificates, not a "depth".
3148 */
3149 i = alt_untrusted;
3150 }
3151 x = sk_X509_value(ctx->chain, i-1);
3152
3153 ok = (depth < num) ? 0 : get_issuer(&xtmp, ctx, x);
3154
3155 if (ok < 0) {
3156 trust = X509_TRUST_REJECTED;
3157 ctx->error = X509_V_ERR_STORE_LOOKUP;
3158 search = 0;
3159 continue;
3160 }
3161
3162 if (ok > 0) {
3163 /*
3164 * Alternative trusted issuer for a mid-chain untrusted cert?
3165 * Pop the untrusted cert's successors and retry. We might now
3166 * be able to complete a valid chain via the trust store. Note
3167 * that despite the current trust store match we might still
3168 * fail complete the chain to a suitable trust anchor, in which
3169 * case we may prune some more untrusted certificates and try
3170 * again. Thus the S_DOALTERNATE bit may yet be turned on
3171 * again with an even shorter untrusted chain!
3172 *
3173 * If in the process we threw away our matching PKIX-TA trust
3174 * anchor, reset DANE trust. We might find a suitable trusted
3175 * certificate among the ones from the trust store.
3176 */
3177 if ((search & S_DOALTERNATE) != 0) {
3178 if (!ossl_assert(num > i && i > 0 && !self_signed)) {
3179 X509err(X509_F_BUILD_CHAIN, ERR_R_INTERNAL_ERROR);
3180 X509_free(xtmp);
3181 trust = X509_TRUST_REJECTED;
3182 ctx->error = X509_V_ERR_UNSPECIFIED;
3183 search = 0;
3184 continue;
3185 }
3186 search &= ~S_DOALTERNATE;
3187 for (; num > i; --num)
3188 X509_free(sk_X509_pop(ctx->chain));
3189 ctx->num_untrusted = num;
3190
3191 if (DANETLS_ENABLED(dane) &&
3192 dane->mdpth >= ctx->num_untrusted) {
3193 dane->mdpth = -1;
3194 X509_free(dane->mcert);
3195 dane->mcert = NULL;
3196 }
3197 if (DANETLS_ENABLED(dane) &&
3198 dane->pdpth >= ctx->num_untrusted)
3199 dane->pdpth = -1;
3200 }
3201
3202 /*
3203 * Self-signed untrusted certificates get replaced by their
3204 * trusted matching issuer. Otherwise, grow the chain.
3205 */
3206 if (!self_signed) {
3207 if (!sk_X509_push(ctx->chain, x = xtmp)) {
3208 X509_free(xtmp);
3209 X509err(X509_F_BUILD_CHAIN, ERR_R_MALLOC_FAILURE);
3210 trust = X509_TRUST_REJECTED;
3211 ctx->error = X509_V_ERR_OUT_OF_MEM;
3212 search = 0;
3213 continue;
3214 }
3215 self_signed = X509_self_signed(x, 0);
3216 if (self_signed < 0) {
3217 sk_X509_free(sktmp);
3218 ctx->error = X509_V_ERR_UNSPECIFIED;
3219 return 0;
3220 }
3221 } else if (num == ctx->num_untrusted) {
3222 /*
3223 * We have a self-signed certificate that has the same
3224 * subject name (and perhaps keyid and/or serial number) as
3225 * a trust anchor. We must have an exact match to avoid
3226 * possible impersonation via key substitution etc.
3227 */
3228 if (X509_cmp(x, xtmp) != 0) {
3229 /* Self-signed untrusted mimic. */
3230 X509_free(xtmp);
3231 ok = 0;
3232 } else {
3233 X509_free(x);
3234 ctx->num_untrusted = --num;
3235 (void) sk_X509_set(ctx->chain, num, x = xtmp);
3236 }
3237 }
3238
3239 /*
3240 * We've added a new trusted certificate to the chain, recheck
3241 * trust. If not done, and not self-signed look deeper.
3242 * Whether or not we're doing "trusted first", we no longer
3243 * look for untrusted certificates from the peer's chain.
3244 *
3245 * At this point ctx->num_trusted and num must reflect the
3246 * correct number of untrusted certificates, since the DANE
3247 * logic in check_trust() depends on distinguishing CAs from
3248 * "the wire" from CAs from the trust store. In particular, the
3249 * certificate at depth "num" should be the new trusted
3250 * certificate with ctx->num_untrusted <= num.
3251 */
3252 if (ok) {
3253 if (!ossl_assert(ctx->num_untrusted <= num)) {
3254 X509err(X509_F_BUILD_CHAIN, ERR_R_INTERNAL_ERROR);
3255 trust = X509_TRUST_REJECTED;
3256 ctx->error = X509_V_ERR_UNSPECIFIED;
3257 search = 0;
3258 continue;
3259 }
3260 search &= ~S_DOUNTRUSTED;
3261 switch (trust = check_trust(ctx, num)) {
3262 case X509_TRUST_TRUSTED:
3263 case X509_TRUST_REJECTED:
3264 search = 0;
3265 continue;
3266 }
3267 if (!self_signed)
3268 continue;
3269 }
3270 }
3271
3272 /*
3273 * No dispositive decision, and either self-signed or no match, if
3274 * we were doing untrusted-first, and alt-chains are not disabled,
3275 * do that, by repeatedly losing one untrusted element at a time,
3276 * and trying to extend the shorted chain.
3277 */
3278 if ((search & S_DOUNTRUSTED) == 0) {
3279 /* Continue search for a trusted issuer of a shorter chain? */
3280 if ((search & S_DOALTERNATE) != 0 && --alt_untrusted > 0)
3281 continue;
3282 /* Still no luck and no fallbacks left? */
3283 if (!may_alternate || (search & S_DOALTERNATE) != 0 ||
3284 ctx->num_untrusted < 2)
3285 break;
3286 /* Search for a trusted issuer of a shorter chain */
3287 search |= S_DOALTERNATE;
3288 alt_untrusted = ctx->num_untrusted - 1;
3289 self_signed = 0;
3290 }
3291 }
3292
3293 /*
3294 * Extend chain with peer-provided certificates
3295 */
3296 if ((search & S_DOUNTRUSTED) != 0) {
3297 num = sk_X509_num(ctx->chain);
3298 if (!ossl_assert(num == ctx->num_untrusted)) {
3299 X509err(X509_F_BUILD_CHAIN, ERR_R_INTERNAL_ERROR);
3300 trust = X509_TRUST_REJECTED;
3301 ctx->error = X509_V_ERR_UNSPECIFIED;
3302 search = 0;
3303 continue;
3304 }
3305 x = sk_X509_value(ctx->chain, num-1);
3306
3307 /*
3308 * Once we run out of untrusted issuers, we stop looking for more
3309 * and start looking only in the trust store if enabled.
3310 */
3311 xtmp = (self_signed || depth < num) ? NULL
3312 : find_issuer(ctx, sktmp, x);
3313 if (xtmp == NULL) {
3314 search &= ~S_DOUNTRUSTED;
3315 if (may_trusted)
3316 search |= S_DOTRUSTED;
3317 continue;
3318 }
3319
3320 /* Drop this issuer from future consideration */
3321 (void) sk_X509_delete_ptr(sktmp, xtmp);
3322
3323 if (!X509_up_ref(xtmp)) {
3324 X509err(X509_F_BUILD_CHAIN, ERR_R_INTERNAL_ERROR);
3325 trust = X509_TRUST_REJECTED;
3326 ctx->error = X509_V_ERR_UNSPECIFIED;
3327 search = 0;
3328 continue;
3329 }
3330
3331 if (!sk_X509_push(ctx->chain, xtmp)) {
3332 X509_free(xtmp);
3333 X509err(X509_F_BUILD_CHAIN, ERR_R_MALLOC_FAILURE);
3334 trust = X509_TRUST_REJECTED;
3335 ctx->error = X509_V_ERR_OUT_OF_MEM;
3336 search = 0;
3337 continue;
3338 }
3339
3340 x = xtmp;
3341 ++ctx->num_untrusted;
3342 self_signed = X509_self_signed(xtmp, 0);
3343 if (self_signed < 0) {
3344 sk_X509_free(sktmp);
3345 ctx->error = X509_V_ERR_UNSPECIFIED;
3346 return 0;
3347 }
3348
3349 /*
3350 * Check for DANE-TA trust of the topmost untrusted certificate.
3351 */
3352 switch (trust = check_dane_issuer(ctx, ctx->num_untrusted - 1)) {
3353 case X509_TRUST_TRUSTED:
3354 case X509_TRUST_REJECTED:
3355 search = 0;
3356 continue;
3357 }
3358 }
3359 }
3360 sk_X509_free(sktmp);
3361
3362 /*
3363 * Last chance to make a trusted chain, either bare DANE-TA public-key
3364 * signers, or else direct leaf PKIX trust.
3365 */
3366 num = sk_X509_num(ctx->chain);
3367 if (num <= depth) {
3368 if (trust == X509_TRUST_UNTRUSTED && DANETLS_HAS_DANE_TA(dane))
3369 trust = check_dane_pkeys(ctx);
3370 if (trust == X509_TRUST_UNTRUSTED && num == ctx->num_untrusted)
3371 trust = check_trust(ctx, num);
3372 }
3373
3374 switch (trust) {
3375 case X509_TRUST_TRUSTED:
3376 return 1;
3377 case X509_TRUST_REJECTED:
3378 /* Callback already issued */
3379 return 0;
3380 case X509_TRUST_UNTRUSTED:
3381 default:
3382 num = sk_X509_num(ctx->chain);
3383 if (num > depth)
3384 return verify_cb_cert(ctx, NULL, num-1,
3385 X509_V_ERR_CERT_CHAIN_TOO_LONG);
3386 if (DANETLS_ENABLED(dane) &&
3387 (!DANETLS_HAS_PKIX(dane) || dane->pdpth >= 0))
3388 return verify_cb_cert(ctx, NULL, num-1, X509_V_ERR_DANE_NO_MATCH);
3389 if (self_signed && sk_X509_num(ctx->chain) == 1)
3390 return verify_cb_cert(ctx, NULL, num-1,
3391 X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT);
3392 if (self_signed)
3393 return verify_cb_cert(ctx, NULL, num-1,
3394 X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN);
3395 if (ctx->num_untrusted < num)
3396 return verify_cb_cert(ctx, NULL, num-1,
3397 X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT);
3398 return verify_cb_cert(ctx, NULL, num-1,
3399 X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY);
3400 }
3401 }
3402
3403 static const int minbits_table[] = { 80, 112, 128, 192, 256 };
3404 static const int NUM_AUTH_LEVELS = OSSL_NELEM(minbits_table);
3405
3406 /*
3407 * Check whether the public key of ``cert`` meets the security level of
3408 * ``ctx``.
3409 *
3410 * Returns 1 on success, 0 otherwise.
3411 */
3412 static int check_key_level(X509_STORE_CTX *ctx, X509 *cert)
3413 {
3414 EVP_PKEY *pkey = X509_get0_pubkey(cert);
3415 int level = ctx->param->auth_level;
3416
3417 /*
3418 * At security level zero, return without checking for a supported public
3419 * key type. Some engines support key types not understood outside the
3420 * engine, and we only need to understand the key when enforcing a security
3421 * floor.
3422 */
3423 if (level <= 0)
3424 return 1;
3425
3426 /* Unsupported or malformed keys are not secure */
3427 if (pkey == NULL)
3428 return 0;
3429
3430 if (level > NUM_AUTH_LEVELS)
3431 level = NUM_AUTH_LEVELS;
3432
3433 return EVP_PKEY_security_bits(pkey) >= minbits_table[level - 1];
3434 }
3435
3436 /*
3437 * Check whether the signature digest algorithm of ``cert`` meets the security
3438 * level of ``ctx``. Should not be checked for trust anchors (whether
3439 * self-signed or otherwise).
3440 *
3441 * Returns 1 on success, 0 otherwise.
3442 */
3443 static int check_sig_level(X509_STORE_CTX *ctx, X509 *cert)
3444 {
3445 int secbits = -1;
3446 int level = ctx->param->auth_level;
3447
3448 if (level <= 0)
3449 return 1;
3450 if (level > NUM_AUTH_LEVELS)
3451 level = NUM_AUTH_LEVELS;
3452
3453 if (!X509_get_signature_info(cert, NULL, NULL, &secbits, NULL))
3454 return 0;
3455
3456 return secbits >= minbits_table[level - 1];
3457 }