]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/x509v3/v3_addr.c
Run util/openssl-format-source -v -c .
[thirdparty/openssl.git] / crypto / x509v3 / v3_addr.c
1 /*
2 * Contributed to the OpenSSL Project by the American Registry for
3 * Internet Numbers ("ARIN").
4 */
5 /* ====================================================================
6 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ====================================================================
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 */
57
58 /*
59 * Implementation of RFC 3779 section 2.2.
60 */
61
62 #include <stdio.h>
63 #include <stdlib.h>
64
65 #include "cryptlib.h"
66 #include <openssl/conf.h>
67 #include <openssl/asn1.h>
68 #include <openssl/asn1t.h>
69 #include <openssl/buffer.h>
70 #include <openssl/x509v3.h>
71
72 #ifndef OPENSSL_NO_RFC3779
73
74 /*
75 * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
76 */
77
78 ASN1_SEQUENCE(IPAddressRange) = {
79 ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
80 ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
81 } ASN1_SEQUENCE_END(IPAddressRange)
82
83 ASN1_CHOICE(IPAddressOrRange) = {
84 ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
85 ASN1_SIMPLE(IPAddressOrRange, u.addressRange, IPAddressRange)
86 } ASN1_CHOICE_END(IPAddressOrRange)
87
88 ASN1_CHOICE(IPAddressChoice) = {
89 ASN1_SIMPLE(IPAddressChoice, u.inherit, ASN1_NULL),
90 ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
91 } ASN1_CHOICE_END(IPAddressChoice)
92
93 ASN1_SEQUENCE(IPAddressFamily) = {
94 ASN1_SIMPLE(IPAddressFamily, addressFamily, ASN1_OCTET_STRING),
95 ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
96 } ASN1_SEQUENCE_END(IPAddressFamily)
97
98 ASN1_ITEM_TEMPLATE(IPAddrBlocks) =
99 ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
100 IPAddrBlocks, IPAddressFamily)
101 ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
102
103 IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
104 IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
105 IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
106 IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
107
108 /*
109 * How much buffer space do we need for a raw address?
110 */
111 # define ADDR_RAW_BUF_LEN 16
112
113 /*
114 * What's the address length associated with this AFI?
115 */
116 static int length_from_afi(const unsigned afi)
117 {
118 switch (afi) {
119 case IANA_AFI_IPV4:
120 return 4;
121 case IANA_AFI_IPV6:
122 return 16;
123 default:
124 return 0;
125 }
126 }
127
128 /*
129 * Extract the AFI from an IPAddressFamily.
130 */
131 unsigned int v3_addr_get_afi(const IPAddressFamily *f)
132 {
133 return ((f != NULL &&
134 f->addressFamily != NULL && f->addressFamily->data != NULL)
135 ? ((f->addressFamily->data[0] << 8) | (f->addressFamily->data[1]))
136 : 0);
137 }
138
139 /*
140 * Expand the bitstring form of an address into a raw byte array.
141 * At the moment this is coded for simplicity, not speed.
142 */
143 static int addr_expand(unsigned char *addr,
144 const ASN1_BIT_STRING *bs,
145 const int length, const unsigned char fill)
146 {
147 if (bs->length < 0 || bs->length > length)
148 return 0;
149 if (bs->length > 0) {
150 memcpy(addr, bs->data, bs->length);
151 if ((bs->flags & 7) != 0) {
152 unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
153 if (fill == 0)
154 addr[bs->length - 1] &= ~mask;
155 else
156 addr[bs->length - 1] |= mask;
157 }
158 }
159 memset(addr + bs->length, fill, length - bs->length);
160 return 1;
161 }
162
163 /*
164 * Extract the prefix length from a bitstring.
165 */
166 # define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7)))
167
168 /*
169 * i2r handler for one address bitstring.
170 */
171 static int i2r_address(BIO *out,
172 const unsigned afi,
173 const unsigned char fill, const ASN1_BIT_STRING *bs)
174 {
175 unsigned char addr[ADDR_RAW_BUF_LEN];
176 int i, n;
177
178 if (bs->length < 0)
179 return 0;
180 switch (afi) {
181 case IANA_AFI_IPV4:
182 if (!addr_expand(addr, bs, 4, fill))
183 return 0;
184 BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
185 break;
186 case IANA_AFI_IPV6:
187 if (!addr_expand(addr, bs, 16, fill))
188 return 0;
189 for (n = 16; n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00;
190 n -= 2) ;
191 for (i = 0; i < n; i += 2)
192 BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i + 1],
193 (i < 14 ? ":" : ""));
194 if (i < 16)
195 BIO_puts(out, ":");
196 if (i == 0)
197 BIO_puts(out, ":");
198 break;
199 default:
200 for (i = 0; i < bs->length; i++)
201 BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
202 BIO_printf(out, "[%d]", (int)(bs->flags & 7));
203 break;
204 }
205 return 1;
206 }
207
208 /*
209 * i2r handler for a sequence of addresses and ranges.
210 */
211 static int i2r_IPAddressOrRanges(BIO *out,
212 const int indent,
213 const IPAddressOrRanges *aors,
214 const unsigned afi)
215 {
216 int i;
217 for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
218 const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
219 BIO_printf(out, "%*s", indent, "");
220 switch (aor->type) {
221 case IPAddressOrRange_addressPrefix:
222 if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
223 return 0;
224 BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
225 continue;
226 case IPAddressOrRange_addressRange:
227 if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
228 return 0;
229 BIO_puts(out, "-");
230 if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
231 return 0;
232 BIO_puts(out, "\n");
233 continue;
234 }
235 }
236 return 1;
237 }
238
239 /*
240 * i2r handler for an IPAddrBlocks extension.
241 */
242 static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method,
243 void *ext, BIO *out, int indent)
244 {
245 const IPAddrBlocks *addr = ext;
246 int i;
247 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
248 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
249 const unsigned int afi = v3_addr_get_afi(f);
250 switch (afi) {
251 case IANA_AFI_IPV4:
252 BIO_printf(out, "%*sIPv4", indent, "");
253 break;
254 case IANA_AFI_IPV6:
255 BIO_printf(out, "%*sIPv6", indent, "");
256 break;
257 default:
258 BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
259 break;
260 }
261 if (f->addressFamily->length > 2) {
262 switch (f->addressFamily->data[2]) {
263 case 1:
264 BIO_puts(out, " (Unicast)");
265 break;
266 case 2:
267 BIO_puts(out, " (Multicast)");
268 break;
269 case 3:
270 BIO_puts(out, " (Unicast/Multicast)");
271 break;
272 case 4:
273 BIO_puts(out, " (MPLS)");
274 break;
275 case 64:
276 BIO_puts(out, " (Tunnel)");
277 break;
278 case 65:
279 BIO_puts(out, " (VPLS)");
280 break;
281 case 66:
282 BIO_puts(out, " (BGP MDT)");
283 break;
284 case 128:
285 BIO_puts(out, " (MPLS-labeled VPN)");
286 break;
287 default:
288 BIO_printf(out, " (Unknown SAFI %u)",
289 (unsigned)f->addressFamily->data[2]);
290 break;
291 }
292 }
293 switch (f->ipAddressChoice->type) {
294 case IPAddressChoice_inherit:
295 BIO_puts(out, ": inherit\n");
296 break;
297 case IPAddressChoice_addressesOrRanges:
298 BIO_puts(out, ":\n");
299 if (!i2r_IPAddressOrRanges(out,
300 indent + 2,
301 f->ipAddressChoice->
302 u.addressesOrRanges, afi))
303 return 0;
304 break;
305 }
306 }
307 return 1;
308 }
309
310 /*
311 * Sort comparison function for a sequence of IPAddressOrRange
312 * elements.
313 *
314 * There's no sane answer we can give if addr_expand() fails, and an
315 * assertion failure on externally supplied data is seriously uncool,
316 * so we just arbitrarily declare that if given invalid inputs this
317 * function returns -1. If this messes up your preferred sort order
318 * for garbage input, tough noogies.
319 */
320 static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
321 const IPAddressOrRange *b, const int length)
322 {
323 unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
324 int prefixlen_a = 0, prefixlen_b = 0;
325 int r;
326
327 switch (a->type) {
328 case IPAddressOrRange_addressPrefix:
329 if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00))
330 return -1;
331 prefixlen_a = addr_prefixlen(a->u.addressPrefix);
332 break;
333 case IPAddressOrRange_addressRange:
334 if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00))
335 return -1;
336 prefixlen_a = length * 8;
337 break;
338 }
339
340 switch (b->type) {
341 case IPAddressOrRange_addressPrefix:
342 if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00))
343 return -1;
344 prefixlen_b = addr_prefixlen(b->u.addressPrefix);
345 break;
346 case IPAddressOrRange_addressRange:
347 if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00))
348 return -1;
349 prefixlen_b = length * 8;
350 break;
351 }
352
353 if ((r = memcmp(addr_a, addr_b, length)) != 0)
354 return r;
355 else
356 return prefixlen_a - prefixlen_b;
357 }
358
359 /*
360 * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
361 * comparision routines are only allowed two arguments.
362 */
363 static int v4IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
364 const IPAddressOrRange *const *b)
365 {
366 return IPAddressOrRange_cmp(*a, *b, 4);
367 }
368
369 /*
370 * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
371 * comparision routines are only allowed two arguments.
372 */
373 static int v6IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
374 const IPAddressOrRange *const *b)
375 {
376 return IPAddressOrRange_cmp(*a, *b, 16);
377 }
378
379 /*
380 * Calculate whether a range collapses to a prefix.
381 * See last paragraph of RFC 3779 2.2.3.7.
382 */
383 static int range_should_be_prefix(const unsigned char *min,
384 const unsigned char *max, const int length)
385 {
386 unsigned char mask;
387 int i, j;
388
389 OPENSSL_assert(memcmp(min, max, length) <= 0);
390 for (i = 0; i < length && min[i] == max[i]; i++) ;
391 for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) ;
392 if (i < j)
393 return -1;
394 if (i > j)
395 return i * 8;
396 mask = min[i] ^ max[i];
397 switch (mask) {
398 case 0x01:
399 j = 7;
400 break;
401 case 0x03:
402 j = 6;
403 break;
404 case 0x07:
405 j = 5;
406 break;
407 case 0x0F:
408 j = 4;
409 break;
410 case 0x1F:
411 j = 3;
412 break;
413 case 0x3F:
414 j = 2;
415 break;
416 case 0x7F:
417 j = 1;
418 break;
419 default:
420 return -1;
421 }
422 if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
423 return -1;
424 else
425 return i * 8 + j;
426 }
427
428 /*
429 * Construct a prefix.
430 */
431 static int make_addressPrefix(IPAddressOrRange **result,
432 unsigned char *addr, const int prefixlen)
433 {
434 int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
435 IPAddressOrRange *aor = IPAddressOrRange_new();
436
437 if (aor == NULL)
438 return 0;
439 aor->type = IPAddressOrRange_addressPrefix;
440 if (aor->u.addressPrefix == NULL &&
441 (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
442 goto err;
443 if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
444 goto err;
445 aor->u.addressPrefix->flags &= ~7;
446 aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT;
447 if (bitlen > 0) {
448 aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
449 aor->u.addressPrefix->flags |= 8 - bitlen;
450 }
451
452 *result = aor;
453 return 1;
454
455 err:
456 IPAddressOrRange_free(aor);
457 return 0;
458 }
459
460 /*
461 * Construct a range. If it can be expressed as a prefix,
462 * return a prefix instead. Doing this here simplifies
463 * the rest of the code considerably.
464 */
465 static int make_addressRange(IPAddressOrRange **result,
466 unsigned char *min,
467 unsigned char *max, const int length)
468 {
469 IPAddressOrRange *aor;
470 int i, prefixlen;
471
472 if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
473 return make_addressPrefix(result, min, prefixlen);
474
475 if ((aor = IPAddressOrRange_new()) == NULL)
476 return 0;
477 aor->type = IPAddressOrRange_addressRange;
478 OPENSSL_assert(aor->u.addressRange == NULL);
479 if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
480 goto err;
481 if (aor->u.addressRange->min == NULL &&
482 (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
483 goto err;
484 if (aor->u.addressRange->max == NULL &&
485 (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
486 goto err;
487
488 for (i = length; i > 0 && min[i - 1] == 0x00; --i) ;
489 if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
490 goto err;
491 aor->u.addressRange->min->flags &= ~7;
492 aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT;
493 if (i > 0) {
494 unsigned char b = min[i - 1];
495 int j = 1;
496 while ((b & (0xFFU >> j)) != 0)
497 ++j;
498 aor->u.addressRange->min->flags |= 8 - j;
499 }
500
501 for (i = length; i > 0 && max[i - 1] == 0xFF; --i) ;
502 if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
503 goto err;
504 aor->u.addressRange->max->flags &= ~7;
505 aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT;
506 if (i > 0) {
507 unsigned char b = max[i - 1];
508 int j = 1;
509 while ((b & (0xFFU >> j)) != (0xFFU >> j))
510 ++j;
511 aor->u.addressRange->max->flags |= 8 - j;
512 }
513
514 *result = aor;
515 return 1;
516
517 err:
518 IPAddressOrRange_free(aor);
519 return 0;
520 }
521
522 /*
523 * Construct a new address family or find an existing one.
524 */
525 static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
526 const unsigned afi,
527 const unsigned *safi)
528 {
529 IPAddressFamily *f;
530 unsigned char key[3];
531 unsigned keylen;
532 int i;
533
534 key[0] = (afi >> 8) & 0xFF;
535 key[1] = afi & 0xFF;
536 if (safi != NULL) {
537 key[2] = *safi & 0xFF;
538 keylen = 3;
539 } else {
540 keylen = 2;
541 }
542
543 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
544 f = sk_IPAddressFamily_value(addr, i);
545 OPENSSL_assert(f->addressFamily->data != NULL);
546 if (f->addressFamily->length == keylen &&
547 !memcmp(f->addressFamily->data, key, keylen))
548 return f;
549 }
550
551 if ((f = IPAddressFamily_new()) == NULL)
552 goto err;
553 if (f->ipAddressChoice == NULL &&
554 (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
555 goto err;
556 if (f->addressFamily == NULL &&
557 (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
558 goto err;
559 if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
560 goto err;
561 if (!sk_IPAddressFamily_push(addr, f))
562 goto err;
563
564 return f;
565
566 err:
567 IPAddressFamily_free(f);
568 return NULL;
569 }
570
571 /*
572 * Add an inheritance element.
573 */
574 int v3_addr_add_inherit(IPAddrBlocks *addr,
575 const unsigned afi, const unsigned *safi)
576 {
577 IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
578 if (f == NULL ||
579 f->ipAddressChoice == NULL ||
580 (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
581 f->ipAddressChoice->u.addressesOrRanges != NULL))
582 return 0;
583 if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
584 f->ipAddressChoice->u.inherit != NULL)
585 return 1;
586 if (f->ipAddressChoice->u.inherit == NULL &&
587 (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
588 return 0;
589 f->ipAddressChoice->type = IPAddressChoice_inherit;
590 return 1;
591 }
592
593 /*
594 * Construct an IPAddressOrRange sequence, or return an existing one.
595 */
596 static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
597 const unsigned afi,
598 const unsigned *safi)
599 {
600 IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
601 IPAddressOrRanges *aors = NULL;
602
603 if (f == NULL ||
604 f->ipAddressChoice == NULL ||
605 (f->ipAddressChoice->type == IPAddressChoice_inherit &&
606 f->ipAddressChoice->u.inherit != NULL))
607 return NULL;
608 if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
609 aors = f->ipAddressChoice->u.addressesOrRanges;
610 if (aors != NULL)
611 return aors;
612 if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
613 return NULL;
614 switch (afi) {
615 case IANA_AFI_IPV4:
616 (void)sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
617 break;
618 case IANA_AFI_IPV6:
619 (void)sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
620 break;
621 }
622 f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
623 f->ipAddressChoice->u.addressesOrRanges = aors;
624 return aors;
625 }
626
627 /*
628 * Add a prefix.
629 */
630 int v3_addr_add_prefix(IPAddrBlocks *addr,
631 const unsigned afi,
632 const unsigned *safi,
633 unsigned char *a, const int prefixlen)
634 {
635 IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
636 IPAddressOrRange *aor;
637 if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen))
638 return 0;
639 if (sk_IPAddressOrRange_push(aors, aor))
640 return 1;
641 IPAddressOrRange_free(aor);
642 return 0;
643 }
644
645 /*
646 * Add a range.
647 */
648 int v3_addr_add_range(IPAddrBlocks *addr,
649 const unsigned afi,
650 const unsigned *safi,
651 unsigned char *min, unsigned char *max)
652 {
653 IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
654 IPAddressOrRange *aor;
655 int length = length_from_afi(afi);
656 if (aors == NULL)
657 return 0;
658 if (!make_addressRange(&aor, min, max, length))
659 return 0;
660 if (sk_IPAddressOrRange_push(aors, aor))
661 return 1;
662 IPAddressOrRange_free(aor);
663 return 0;
664 }
665
666 /*
667 * Extract min and max values from an IPAddressOrRange.
668 */
669 static int extract_min_max(IPAddressOrRange *aor,
670 unsigned char *min, unsigned char *max, int length)
671 {
672 if (aor == NULL || min == NULL || max == NULL)
673 return 0;
674 switch (aor->type) {
675 case IPAddressOrRange_addressPrefix:
676 return (addr_expand(min, aor->u.addressPrefix, length, 0x00) &&
677 addr_expand(max, aor->u.addressPrefix, length, 0xFF));
678 case IPAddressOrRange_addressRange:
679 return (addr_expand(min, aor->u.addressRange->min, length, 0x00) &&
680 addr_expand(max, aor->u.addressRange->max, length, 0xFF));
681 }
682 return 0;
683 }
684
685 /*
686 * Public wrapper for extract_min_max().
687 */
688 int v3_addr_get_range(IPAddressOrRange *aor,
689 const unsigned afi,
690 unsigned char *min,
691 unsigned char *max, const int length)
692 {
693 int afi_length = length_from_afi(afi);
694 if (aor == NULL || min == NULL || max == NULL ||
695 afi_length == 0 || length < afi_length ||
696 (aor->type != IPAddressOrRange_addressPrefix &&
697 aor->type != IPAddressOrRange_addressRange) ||
698 !extract_min_max(aor, min, max, afi_length))
699 return 0;
700
701 return afi_length;
702 }
703
704 /*
705 * Sort comparision function for a sequence of IPAddressFamily.
706 *
707 * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
708 * the ordering: I can read it as meaning that IPv6 without a SAFI
709 * comes before IPv4 with a SAFI, which seems pretty weird. The
710 * examples in appendix B suggest that the author intended the
711 * null-SAFI rule to apply only within a single AFI, which is what I
712 * would have expected and is what the following code implements.
713 */
714 static int IPAddressFamily_cmp(const IPAddressFamily *const *a_,
715 const IPAddressFamily *const *b_)
716 {
717 const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
718 const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
719 int len = ((a->length <= b->length) ? a->length : b->length);
720 int cmp = memcmp(a->data, b->data, len);
721 return cmp ? cmp : a->length - b->length;
722 }
723
724 /*
725 * Check whether an IPAddrBLocks is in canonical form.
726 */
727 int v3_addr_is_canonical(IPAddrBlocks *addr)
728 {
729 unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
730 unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
731 IPAddressOrRanges *aors;
732 int i, j, k;
733
734 /*
735 * Empty extension is cannonical.
736 */
737 if (addr == NULL)
738 return 1;
739
740 /*
741 * Check whether the top-level list is in order.
742 */
743 for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
744 const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
745 const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
746 if (IPAddressFamily_cmp(&a, &b) >= 0)
747 return 0;
748 }
749
750 /*
751 * Top level's ok, now check each address family.
752 */
753 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
754 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
755 int length = length_from_afi(v3_addr_get_afi(f));
756
757 /*
758 * Inheritance is canonical. Anything other than inheritance or
759 * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
760 */
761 if (f == NULL || f->ipAddressChoice == NULL)
762 return 0;
763 switch (f->ipAddressChoice->type) {
764 case IPAddressChoice_inherit:
765 continue;
766 case IPAddressChoice_addressesOrRanges:
767 break;
768 default:
769 return 0;
770 }
771
772 /*
773 * It's an IPAddressOrRanges sequence, check it.
774 */
775 aors = f->ipAddressChoice->u.addressesOrRanges;
776 if (sk_IPAddressOrRange_num(aors) == 0)
777 return 0;
778 for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
779 IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
780 IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
781
782 if (!extract_min_max(a, a_min, a_max, length) ||
783 !extract_min_max(b, b_min, b_max, length))
784 return 0;
785
786 /*
787 * Punt misordered list, overlapping start, or inverted range.
788 */
789 if (memcmp(a_min, b_min, length) >= 0 ||
790 memcmp(a_min, a_max, length) > 0 ||
791 memcmp(b_min, b_max, length) > 0)
792 return 0;
793
794 /*
795 * Punt if adjacent or overlapping. Check for adjacency by
796 * subtracting one from b_min first.
797 */
798 for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) ;
799 if (memcmp(a_max, b_min, length) >= 0)
800 return 0;
801
802 /*
803 * Check for range that should be expressed as a prefix.
804 */
805 if (a->type == IPAddressOrRange_addressRange &&
806 range_should_be_prefix(a_min, a_max, length) >= 0)
807 return 0;
808 }
809
810 /*
811 * Check range to see if it's inverted or should be a
812 * prefix.
813 */
814 j = sk_IPAddressOrRange_num(aors) - 1;
815 {
816 IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
817 if (a != NULL && a->type == IPAddressOrRange_addressRange) {
818 if (!extract_min_max(a, a_min, a_max, length))
819 return 0;
820 if (memcmp(a_min, a_max, length) > 0 ||
821 range_should_be_prefix(a_min, a_max, length) >= 0)
822 return 0;
823 }
824 }
825 }
826
827 /*
828 * If we made it through all that, we're happy.
829 */
830 return 1;
831 }
832
833 /*
834 * Whack an IPAddressOrRanges into canonical form.
835 */
836 static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
837 const unsigned afi)
838 {
839 int i, j, length = length_from_afi(afi);
840
841 /*
842 * Sort the IPAddressOrRanges sequence.
843 */
844 sk_IPAddressOrRange_sort(aors);
845
846 /*
847 * Clean up representation issues, punt on duplicates or overlaps.
848 */
849 for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
850 IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
851 IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
852 unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
853 unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
854
855 if (!extract_min_max(a, a_min, a_max, length) ||
856 !extract_min_max(b, b_min, b_max, length))
857 return 0;
858
859 /*
860 * Punt inverted ranges.
861 */
862 if (memcmp(a_min, a_max, length) > 0 ||
863 memcmp(b_min, b_max, length) > 0)
864 return 0;
865
866 /*
867 * Punt overlaps.
868 */
869 if (memcmp(a_max, b_min, length) >= 0)
870 return 0;
871
872 /*
873 * Merge if a and b are adjacent. We check for
874 * adjacency by subtracting one from b_min first.
875 */
876 for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) ;
877 if (memcmp(a_max, b_min, length) == 0) {
878 IPAddressOrRange *merged;
879 if (!make_addressRange(&merged, a_min, b_max, length))
880 return 0;
881 (void)sk_IPAddressOrRange_set(aors, i, merged);
882 (void)sk_IPAddressOrRange_delete(aors, i + 1);
883 IPAddressOrRange_free(a);
884 IPAddressOrRange_free(b);
885 --i;
886 continue;
887 }
888 }
889
890 /*
891 * Check for inverted final range.
892 */
893 j = sk_IPAddressOrRange_num(aors) - 1;
894 {
895 IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
896 if (a != NULL && a->type == IPAddressOrRange_addressRange) {
897 unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
898 extract_min_max(a, a_min, a_max, length);
899 if (memcmp(a_min, a_max, length) > 0)
900 return 0;
901 }
902 }
903
904 return 1;
905 }
906
907 /*
908 * Whack an IPAddrBlocks extension into canonical form.
909 */
910 int v3_addr_canonize(IPAddrBlocks *addr)
911 {
912 int i;
913 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
914 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
915 if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
916 !IPAddressOrRanges_canonize(f->ipAddressChoice->
917 u.addressesOrRanges,
918 v3_addr_get_afi(f)))
919 return 0;
920 }
921 (void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
922 sk_IPAddressFamily_sort(addr);
923 OPENSSL_assert(v3_addr_is_canonical(addr));
924 return 1;
925 }
926
927 /*
928 * v2i handler for the IPAddrBlocks extension.
929 */
930 static void *v2i_IPAddrBlocks(const struct v3_ext_method *method,
931 struct v3_ext_ctx *ctx,
932 STACK_OF(CONF_VALUE) *values)
933 {
934 static const char v4addr_chars[] = "0123456789.";
935 static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
936 IPAddrBlocks *addr = NULL;
937 char *s = NULL, *t;
938 int i;
939
940 if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
941 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
942 return NULL;
943 }
944
945 for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
946 CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
947 unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
948 unsigned afi, *safi = NULL, safi_;
949 const char *addr_chars;
950 int prefixlen, i1, i2, delim, length;
951
952 if (!name_cmp(val->name, "IPv4")) {
953 afi = IANA_AFI_IPV4;
954 } else if (!name_cmp(val->name, "IPv6")) {
955 afi = IANA_AFI_IPV6;
956 } else if (!name_cmp(val->name, "IPv4-SAFI")) {
957 afi = IANA_AFI_IPV4;
958 safi = &safi_;
959 } else if (!name_cmp(val->name, "IPv6-SAFI")) {
960 afi = IANA_AFI_IPV6;
961 safi = &safi_;
962 } else {
963 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
964 X509V3_R_EXTENSION_NAME_ERROR);
965 X509V3_conf_err(val);
966 goto err;
967 }
968
969 switch (afi) {
970 case IANA_AFI_IPV4:
971 addr_chars = v4addr_chars;
972 break;
973 case IANA_AFI_IPV6:
974 addr_chars = v6addr_chars;
975 break;
976 }
977
978 length = length_from_afi(afi);
979
980 /*
981 * Handle SAFI, if any, and BUF_strdup() so we can null-terminate
982 * the other input values.
983 */
984 if (safi != NULL) {
985 *safi = strtoul(val->value, &t, 0);
986 t += strspn(t, " \t");
987 if (*safi > 0xFF || *t++ != ':') {
988 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI);
989 X509V3_conf_err(val);
990 goto err;
991 }
992 t += strspn(t, " \t");
993 s = BUF_strdup(t);
994 } else {
995 s = BUF_strdup(val->value);
996 }
997 if (s == NULL) {
998 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
999 goto err;
1000 }
1001
1002 /*
1003 * Check for inheritance. Not worth additional complexity to
1004 * optimize this (seldom-used) case.
1005 */
1006 if (!strcmp(s, "inherit")) {
1007 if (!v3_addr_add_inherit(addr, afi, safi)) {
1008 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1009 X509V3_R_INVALID_INHERITANCE);
1010 X509V3_conf_err(val);
1011 goto err;
1012 }
1013 OPENSSL_free(s);
1014 s = NULL;
1015 continue;
1016 }
1017
1018 i1 = strspn(s, addr_chars);
1019 i2 = i1 + strspn(s + i1, " \t");
1020 delim = s[i2++];
1021 s[i1] = '\0';
1022
1023 if (a2i_ipadd(min, s) != length) {
1024 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
1025 X509V3_conf_err(val);
1026 goto err;
1027 }
1028
1029 switch (delim) {
1030 case '/':
1031 prefixlen = (int)strtoul(s + i2, &t, 10);
1032 if (t == s + i2 || *t != '\0') {
1033 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1034 X509V3_R_EXTENSION_VALUE_ERROR);
1035 X509V3_conf_err(val);
1036 goto err;
1037 }
1038 if (!v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
1039 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1040 goto err;
1041 }
1042 break;
1043 case '-':
1044 i1 = i2 + strspn(s + i2, " \t");
1045 i2 = i1 + strspn(s + i1, addr_chars);
1046 if (i1 == i2 || s[i2] != '\0') {
1047 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1048 X509V3_R_EXTENSION_VALUE_ERROR);
1049 X509V3_conf_err(val);
1050 goto err;
1051 }
1052 if (a2i_ipadd(max, s + i1) != length) {
1053 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1054 X509V3_R_INVALID_IPADDRESS);
1055 X509V3_conf_err(val);
1056 goto err;
1057 }
1058 if (memcmp(min, max, length_from_afi(afi)) > 0) {
1059 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1060 X509V3_R_EXTENSION_VALUE_ERROR);
1061 X509V3_conf_err(val);
1062 goto err;
1063 }
1064 if (!v3_addr_add_range(addr, afi, safi, min, max)) {
1065 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1066 goto err;
1067 }
1068 break;
1069 case '\0':
1070 if (!v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
1071 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1072 goto err;
1073 }
1074 break;
1075 default:
1076 X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1077 X509V3_R_EXTENSION_VALUE_ERROR);
1078 X509V3_conf_err(val);
1079 goto err;
1080 }
1081
1082 OPENSSL_free(s);
1083 s = NULL;
1084 }
1085
1086 /*
1087 * Canonize the result, then we're done.
1088 */
1089 if (!v3_addr_canonize(addr))
1090 goto err;
1091 return addr;
1092
1093 err:
1094 OPENSSL_free(s);
1095 sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
1096 return NULL;
1097 }
1098
1099 /*
1100 * OpenSSL dispatch
1101 */
1102 const X509V3_EXT_METHOD v3_addr = {
1103 NID_sbgp_ipAddrBlock, /* nid */
1104 0, /* flags */
1105 ASN1_ITEM_ref(IPAddrBlocks), /* template */
1106 0, 0, 0, 0, /* old functions, ignored */
1107 0, /* i2s */
1108 0, /* s2i */
1109 0, /* i2v */
1110 v2i_IPAddrBlocks, /* v2i */
1111 i2r_IPAddrBlocks, /* i2r */
1112 0, /* r2i */
1113 NULL /* extension-specific data */
1114 };
1115
1116 /*
1117 * Figure out whether extension sues inheritance.
1118 */
1119 int v3_addr_inherits(IPAddrBlocks *addr)
1120 {
1121 int i;
1122 if (addr == NULL)
1123 return 0;
1124 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
1125 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
1126 if (f->ipAddressChoice->type == IPAddressChoice_inherit)
1127 return 1;
1128 }
1129 return 0;
1130 }
1131
1132 /*
1133 * Figure out whether parent contains child.
1134 */
1135 static int addr_contains(IPAddressOrRanges *parent,
1136 IPAddressOrRanges *child, int length)
1137 {
1138 unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
1139 unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
1140 int p, c;
1141
1142 if (child == NULL || parent == child)
1143 return 1;
1144 if (parent == NULL)
1145 return 0;
1146
1147 p = 0;
1148 for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
1149 if (!extract_min_max(sk_IPAddressOrRange_value(child, c),
1150 c_min, c_max, length))
1151 return -1;
1152 for (;; p++) {
1153 if (p >= sk_IPAddressOrRange_num(parent))
1154 return 0;
1155 if (!extract_min_max(sk_IPAddressOrRange_value(parent, p),
1156 p_min, p_max, length))
1157 return 0;
1158 if (memcmp(p_max, c_max, length) < 0)
1159 continue;
1160 if (memcmp(p_min, c_min, length) > 0)
1161 return 0;
1162 break;
1163 }
1164 }
1165
1166 return 1;
1167 }
1168
1169 /*
1170 * Test whether a is a subset of b.
1171 */
1172 int v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
1173 {
1174 int i;
1175 if (a == NULL || a == b)
1176 return 1;
1177 if (b == NULL || v3_addr_inherits(a) || v3_addr_inherits(b))
1178 return 0;
1179 (void)sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
1180 for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
1181 IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
1182 int j = sk_IPAddressFamily_find(b, fa);
1183 IPAddressFamily *fb;
1184 fb = sk_IPAddressFamily_value(b, j);
1185 if (fb == NULL)
1186 return 0;
1187 if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
1188 fa->ipAddressChoice->u.addressesOrRanges,
1189 length_from_afi(v3_addr_get_afi(fb))))
1190 return 0;
1191 }
1192 return 1;
1193 }
1194
1195 /*
1196 * Validation error handling via callback.
1197 */
1198 # define validation_err(_err_) \
1199 do { \
1200 if (ctx != NULL) { \
1201 ctx->error = _err_; \
1202 ctx->error_depth = i; \
1203 ctx->current_cert = x; \
1204 ret = ctx->verify_cb(0, ctx); \
1205 } else { \
1206 ret = 0; \
1207 } \
1208 if (!ret) \
1209 goto done; \
1210 } while (0)
1211
1212 /*
1213 * Core code for RFC 3779 2.3 path validation.
1214 */
1215 static int v3_addr_validate_path_internal(X509_STORE_CTX *ctx,
1216 STACK_OF(X509) *chain,
1217 IPAddrBlocks *ext)
1218 {
1219 IPAddrBlocks *child = NULL;
1220 int i, j, ret = 1;
1221 X509 *x;
1222
1223 OPENSSL_assert(chain != NULL && sk_X509_num(chain) > 0);
1224 OPENSSL_assert(ctx != NULL || ext != NULL);
1225 OPENSSL_assert(ctx == NULL || ctx->verify_cb != NULL);
1226
1227 /*
1228 * Figure out where to start. If we don't have an extension to
1229 * check, we're done. Otherwise, check canonical form and
1230 * set up for walking up the chain.
1231 */
1232 if (ext != NULL) {
1233 i = -1;
1234 x = NULL;
1235 } else {
1236 i = 0;
1237 x = sk_X509_value(chain, i);
1238 OPENSSL_assert(x != NULL);
1239 if ((ext = x->rfc3779_addr) == NULL)
1240 goto done;
1241 }
1242 if (!v3_addr_is_canonical(ext))
1243 validation_err(X509_V_ERR_INVALID_EXTENSION);
1244 (void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
1245 if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
1246 X509V3err(X509V3_F_V3_ADDR_VALIDATE_PATH_INTERNAL,
1247 ERR_R_MALLOC_FAILURE);
1248 ret = 0;
1249 goto done;
1250 }
1251
1252 /*
1253 * Now walk up the chain. No cert may list resources that its
1254 * parent doesn't list.
1255 */
1256 for (i++; i < sk_X509_num(chain); i++) {
1257 x = sk_X509_value(chain, i);
1258 OPENSSL_assert(x != NULL);
1259 if (!v3_addr_is_canonical(x->rfc3779_addr))
1260 validation_err(X509_V_ERR_INVALID_EXTENSION);
1261 if (x->rfc3779_addr == NULL) {
1262 for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1263 IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1264 if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
1265 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1266 break;
1267 }
1268 }
1269 continue;
1270 }
1271 (void)sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr,
1272 IPAddressFamily_cmp);
1273 for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1274 IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1275 int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
1276 IPAddressFamily *fp =
1277 sk_IPAddressFamily_value(x->rfc3779_addr, k);
1278 if (fp == NULL) {
1279 if (fc->ipAddressChoice->type ==
1280 IPAddressChoice_addressesOrRanges) {
1281 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1282 break;
1283 }
1284 continue;
1285 }
1286 if (fp->ipAddressChoice->type ==
1287 IPAddressChoice_addressesOrRanges) {
1288 if (fc->ipAddressChoice->type == IPAddressChoice_inherit
1289 || addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
1290 fc->ipAddressChoice->u.addressesOrRanges,
1291 length_from_afi(v3_addr_get_afi(fc))))
1292 sk_IPAddressFamily_set(child, j, fp);
1293 else
1294 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1295 }
1296 }
1297 }
1298
1299 /*
1300 * Trust anchor can't inherit.
1301 */
1302 OPENSSL_assert(x != NULL);
1303 if (x->rfc3779_addr != NULL) {
1304 for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
1305 IPAddressFamily *fp =
1306 sk_IPAddressFamily_value(x->rfc3779_addr, j);
1307 if (fp->ipAddressChoice->type == IPAddressChoice_inherit
1308 && sk_IPAddressFamily_find(child, fp) >= 0)
1309 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1310 }
1311 }
1312
1313 done:
1314 sk_IPAddressFamily_free(child);
1315 return ret;
1316 }
1317
1318 # undef validation_err
1319
1320 /*
1321 * RFC 3779 2.3 path validation -- called from X509_verify_cert().
1322 */
1323 int v3_addr_validate_path(X509_STORE_CTX *ctx)
1324 {
1325 return v3_addr_validate_path_internal(ctx, ctx->chain, NULL);
1326 }
1327
1328 /*
1329 * RFC 3779 2.3 path validation of an extension.
1330 * Test whether chain covers extension.
1331 */
1332 int v3_addr_validate_resource_set(STACK_OF(X509) *chain,
1333 IPAddrBlocks *ext, int allow_inheritance)
1334 {
1335 if (ext == NULL)
1336 return 1;
1337 if (chain == NULL || sk_X509_num(chain) == 0)
1338 return 0;
1339 if (!allow_inheritance && v3_addr_inherits(ext))
1340 return 0;
1341 return v3_addr_validate_path_internal(NULL, chain, ext);
1342 }
1343
1344 #endif /* OPENSSL_NO_RFC3779 */