]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/i915/gt/intel_execlists_submission.c
Merge drm/drm-next into drm-intel-gt-next
[thirdparty/linux.git] / drivers / gpu / drm / i915 / gt / intel_execlists_submission.c
1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2014 Intel Corporation
4 */
5
6 /**
7 * DOC: Logical Rings, Logical Ring Contexts and Execlists
8 *
9 * Motivation:
10 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
11 * These expanded contexts enable a number of new abilities, especially
12 * "Execlists" (also implemented in this file).
13 *
14 * One of the main differences with the legacy HW contexts is that logical
15 * ring contexts incorporate many more things to the context's state, like
16 * PDPs or ringbuffer control registers:
17 *
18 * The reason why PDPs are included in the context is straightforward: as
19 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
20 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
21 * instead, the GPU will do it for you on the context switch.
22 *
23 * But, what about the ringbuffer control registers (head, tail, etc..)?
24 * shouldn't we just need a set of those per engine command streamer? This is
25 * where the name "Logical Rings" starts to make sense: by virtualizing the
26 * rings, the engine cs shifts to a new "ring buffer" with every context
27 * switch. When you want to submit a workload to the GPU you: A) choose your
28 * context, B) find its appropriate virtualized ring, C) write commands to it
29 * and then, finally, D) tell the GPU to switch to that context.
30 *
31 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
32 * to a contexts is via a context execution list, ergo "Execlists".
33 *
34 * LRC implementation:
35 * Regarding the creation of contexts, we have:
36 *
37 * - One global default context.
38 * - One local default context for each opened fd.
39 * - One local extra context for each context create ioctl call.
40 *
41 * Now that ringbuffers belong per-context (and not per-engine, like before)
42 * and that contexts are uniquely tied to a given engine (and not reusable,
43 * like before) we need:
44 *
45 * - One ringbuffer per-engine inside each context.
46 * - One backing object per-engine inside each context.
47 *
48 * The global default context starts its life with these new objects fully
49 * allocated and populated. The local default context for each opened fd is
50 * more complex, because we don't know at creation time which engine is going
51 * to use them. To handle this, we have implemented a deferred creation of LR
52 * contexts:
53 *
54 * The local context starts its life as a hollow or blank holder, that only
55 * gets populated for a given engine once we receive an execbuffer. If later
56 * on we receive another execbuffer ioctl for the same context but a different
57 * engine, we allocate/populate a new ringbuffer and context backing object and
58 * so on.
59 *
60 * Finally, regarding local contexts created using the ioctl call: as they are
61 * only allowed with the render ring, we can allocate & populate them right
62 * away (no need to defer anything, at least for now).
63 *
64 * Execlists implementation:
65 * Execlists are the new method by which, on gen8+ hardware, workloads are
66 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
67 * This method works as follows:
68 *
69 * When a request is committed, its commands (the BB start and any leading or
70 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
71 * for the appropriate context. The tail pointer in the hardware context is not
72 * updated at this time, but instead, kept by the driver in the ringbuffer
73 * structure. A structure representing this request is added to a request queue
74 * for the appropriate engine: this structure contains a copy of the context's
75 * tail after the request was written to the ring buffer and a pointer to the
76 * context itself.
77 *
78 * If the engine's request queue was empty before the request was added, the
79 * queue is processed immediately. Otherwise the queue will be processed during
80 * a context switch interrupt. In any case, elements on the queue will get sent
81 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
82 * globally unique 20-bits submission ID.
83 *
84 * When execution of a request completes, the GPU updates the context status
85 * buffer with a context complete event and generates a context switch interrupt.
86 * During the interrupt handling, the driver examines the events in the buffer:
87 * for each context complete event, if the announced ID matches that on the head
88 * of the request queue, then that request is retired and removed from the queue.
89 *
90 * After processing, if any requests were retired and the queue is not empty
91 * then a new execution list can be submitted. The two requests at the front of
92 * the queue are next to be submitted but since a context may not occur twice in
93 * an execution list, if subsequent requests have the same ID as the first then
94 * the two requests must be combined. This is done simply by discarding requests
95 * at the head of the queue until either only one requests is left (in which case
96 * we use a NULL second context) or the first two requests have unique IDs.
97 *
98 * By always executing the first two requests in the queue the driver ensures
99 * that the GPU is kept as busy as possible. In the case where a single context
100 * completes but a second context is still executing, the request for this second
101 * context will be at the head of the queue when we remove the first one. This
102 * request will then be resubmitted along with a new request for a different context,
103 * which will cause the hardware to continue executing the second request and queue
104 * the new request (the GPU detects the condition of a context getting preempted
105 * with the same context and optimizes the context switch flow by not doing
106 * preemption, but just sampling the new tail pointer).
107 *
108 */
109 #include <linux/interrupt.h>
110 #include <linux/string_helpers.h>
111
112 #include "i915_drv.h"
113 #include "i915_trace.h"
114 #include "i915_vgpu.h"
115 #include "gen8_engine_cs.h"
116 #include "intel_breadcrumbs.h"
117 #include "intel_context.h"
118 #include "intel_engine_heartbeat.h"
119 #include "intel_engine_pm.h"
120 #include "intel_engine_regs.h"
121 #include "intel_engine_stats.h"
122 #include "intel_execlists_submission.h"
123 #include "intel_gt.h"
124 #include "intel_gt_irq.h"
125 #include "intel_gt_pm.h"
126 #include "intel_gt_regs.h"
127 #include "intel_gt_requests.h"
128 #include "intel_lrc.h"
129 #include "intel_lrc_reg.h"
130 #include "intel_mocs.h"
131 #include "intel_reset.h"
132 #include "intel_ring.h"
133 #include "intel_workarounds.h"
134 #include "shmem_utils.h"
135
136 #define RING_EXECLIST_QFULL (1 << 0x2)
137 #define RING_EXECLIST1_VALID (1 << 0x3)
138 #define RING_EXECLIST0_VALID (1 << 0x4)
139 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
140 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
141 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
142
143 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
144 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
145 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
146 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
147 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
148 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
149
150 #define GEN8_CTX_STATUS_COMPLETED_MASK \
151 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
152
153 #define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE (0x1) /* lower csb dword */
154 #define GEN12_CTX_SWITCH_DETAIL(csb_dw) ((csb_dw) & 0xF) /* upper csb dword */
155 #define GEN12_CSB_SW_CTX_ID_MASK GENMASK(25, 15)
156 #define GEN12_IDLE_CTX_ID 0x7FF
157 #define GEN12_CSB_CTX_VALID(csb_dw) \
158 (FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID)
159
160 #define XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE BIT(1) /* upper csb dword */
161 #define XEHP_CSB_SW_CTX_ID_MASK GENMASK(31, 10)
162 #define XEHP_IDLE_CTX_ID 0xFFFF
163 #define XEHP_CSB_CTX_VALID(csb_dw) \
164 (FIELD_GET(XEHP_CSB_SW_CTX_ID_MASK, csb_dw) != XEHP_IDLE_CTX_ID)
165
166 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
167 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
168
169 struct virtual_engine {
170 struct intel_engine_cs base;
171 struct intel_context context;
172 struct rcu_work rcu;
173
174 /*
175 * We allow only a single request through the virtual engine at a time
176 * (each request in the timeline waits for the completion fence of
177 * the previous before being submitted). By restricting ourselves to
178 * only submitting a single request, each request is placed on to a
179 * physical to maximise load spreading (by virtue of the late greedy
180 * scheduling -- each real engine takes the next available request
181 * upon idling).
182 */
183 struct i915_request *request;
184
185 /*
186 * We keep a rbtree of available virtual engines inside each physical
187 * engine, sorted by priority. Here we preallocate the nodes we need
188 * for the virtual engine, indexed by physical_engine->id.
189 */
190 struct ve_node {
191 struct rb_node rb;
192 int prio;
193 } nodes[I915_NUM_ENGINES];
194
195 /* And finally, which physical engines this virtual engine maps onto. */
196 unsigned int num_siblings;
197 struct intel_engine_cs *siblings[];
198 };
199
200 static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
201 {
202 GEM_BUG_ON(!intel_engine_is_virtual(engine));
203 return container_of(engine, struct virtual_engine, base);
204 }
205
206 static struct intel_context *
207 execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
208 unsigned long flags);
209
210 static struct i915_request *
211 __active_request(const struct intel_timeline * const tl,
212 struct i915_request *rq,
213 int error)
214 {
215 struct i915_request *active = rq;
216
217 list_for_each_entry_from_reverse(rq, &tl->requests, link) {
218 if (__i915_request_is_complete(rq))
219 break;
220
221 if (error) {
222 i915_request_set_error_once(rq, error);
223 __i915_request_skip(rq);
224 }
225 active = rq;
226 }
227
228 return active;
229 }
230
231 static struct i915_request *
232 active_request(const struct intel_timeline * const tl, struct i915_request *rq)
233 {
234 return __active_request(tl, rq, 0);
235 }
236
237 static void ring_set_paused(const struct intel_engine_cs *engine, int state)
238 {
239 /*
240 * We inspect HWS_PREEMPT with a semaphore inside
241 * engine->emit_fini_breadcrumb. If the dword is true,
242 * the ring is paused as the semaphore will busywait
243 * until the dword is false.
244 */
245 engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
246 if (state)
247 wmb();
248 }
249
250 static struct i915_priolist *to_priolist(struct rb_node *rb)
251 {
252 return rb_entry(rb, struct i915_priolist, node);
253 }
254
255 static int rq_prio(const struct i915_request *rq)
256 {
257 return READ_ONCE(rq->sched.attr.priority);
258 }
259
260 static int effective_prio(const struct i915_request *rq)
261 {
262 int prio = rq_prio(rq);
263
264 /*
265 * If this request is special and must not be interrupted at any
266 * cost, so be it. Note we are only checking the most recent request
267 * in the context and so may be masking an earlier vip request. It
268 * is hoped that under the conditions where nopreempt is used, this
269 * will not matter (i.e. all requests to that context will be
270 * nopreempt for as long as desired).
271 */
272 if (i915_request_has_nopreempt(rq))
273 prio = I915_PRIORITY_UNPREEMPTABLE;
274
275 return prio;
276 }
277
278 static int queue_prio(const struct i915_sched_engine *sched_engine)
279 {
280 struct rb_node *rb;
281
282 rb = rb_first_cached(&sched_engine->queue);
283 if (!rb)
284 return INT_MIN;
285
286 return to_priolist(rb)->priority;
287 }
288
289 static int virtual_prio(const struct intel_engine_execlists *el)
290 {
291 struct rb_node *rb = rb_first_cached(&el->virtual);
292
293 return rb ? rb_entry(rb, struct ve_node, rb)->prio : INT_MIN;
294 }
295
296 static bool need_preempt(const struct intel_engine_cs *engine,
297 const struct i915_request *rq)
298 {
299 int last_prio;
300
301 if (!intel_engine_has_semaphores(engine))
302 return false;
303
304 /*
305 * Check if the current priority hint merits a preemption attempt.
306 *
307 * We record the highest value priority we saw during rescheduling
308 * prior to this dequeue, therefore we know that if it is strictly
309 * less than the current tail of ESLP[0], we do not need to force
310 * a preempt-to-idle cycle.
311 *
312 * However, the priority hint is a mere hint that we may need to
313 * preempt. If that hint is stale or we may be trying to preempt
314 * ourselves, ignore the request.
315 *
316 * More naturally we would write
317 * prio >= max(0, last);
318 * except that we wish to prevent triggering preemption at the same
319 * priority level: the task that is running should remain running
320 * to preserve FIFO ordering of dependencies.
321 */
322 last_prio = max(effective_prio(rq), I915_PRIORITY_NORMAL - 1);
323 if (engine->sched_engine->queue_priority_hint <= last_prio)
324 return false;
325
326 /*
327 * Check against the first request in ELSP[1], it will, thanks to the
328 * power of PI, be the highest priority of that context.
329 */
330 if (!list_is_last(&rq->sched.link, &engine->sched_engine->requests) &&
331 rq_prio(list_next_entry(rq, sched.link)) > last_prio)
332 return true;
333
334 /*
335 * If the inflight context did not trigger the preemption, then maybe
336 * it was the set of queued requests? Pick the highest priority in
337 * the queue (the first active priolist) and see if it deserves to be
338 * running instead of ELSP[0].
339 *
340 * The highest priority request in the queue can not be either
341 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
342 * context, it's priority would not exceed ELSP[0] aka last_prio.
343 */
344 return max(virtual_prio(&engine->execlists),
345 queue_prio(engine->sched_engine)) > last_prio;
346 }
347
348 __maybe_unused static bool
349 assert_priority_queue(const struct i915_request *prev,
350 const struct i915_request *next)
351 {
352 /*
353 * Without preemption, the prev may refer to the still active element
354 * which we refuse to let go.
355 *
356 * Even with preemption, there are times when we think it is better not
357 * to preempt and leave an ostensibly lower priority request in flight.
358 */
359 if (i915_request_is_active(prev))
360 return true;
361
362 return rq_prio(prev) >= rq_prio(next);
363 }
364
365 static struct i915_request *
366 __unwind_incomplete_requests(struct intel_engine_cs *engine)
367 {
368 struct i915_request *rq, *rn, *active = NULL;
369 struct list_head *pl;
370 int prio = I915_PRIORITY_INVALID;
371
372 lockdep_assert_held(&engine->sched_engine->lock);
373
374 list_for_each_entry_safe_reverse(rq, rn,
375 &engine->sched_engine->requests,
376 sched.link) {
377 if (__i915_request_is_complete(rq)) {
378 list_del_init(&rq->sched.link);
379 continue;
380 }
381
382 __i915_request_unsubmit(rq);
383
384 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
385 if (rq_prio(rq) != prio) {
386 prio = rq_prio(rq);
387 pl = i915_sched_lookup_priolist(engine->sched_engine,
388 prio);
389 }
390 GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine));
391
392 list_move(&rq->sched.link, pl);
393 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
394
395 /* Check in case we rollback so far we wrap [size/2] */
396 if (intel_ring_direction(rq->ring,
397 rq->tail,
398 rq->ring->tail + 8) > 0)
399 rq->context->lrc.desc |= CTX_DESC_FORCE_RESTORE;
400
401 active = rq;
402 }
403
404 return active;
405 }
406
407 struct i915_request *
408 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
409 {
410 struct intel_engine_cs *engine =
411 container_of(execlists, typeof(*engine), execlists);
412
413 return __unwind_incomplete_requests(engine);
414 }
415
416 static void
417 execlists_context_status_change(struct i915_request *rq, unsigned long status)
418 {
419 /*
420 * Only used when GVT-g is enabled now. When GVT-g is disabled,
421 * The compiler should eliminate this function as dead-code.
422 */
423 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
424 return;
425
426 atomic_notifier_call_chain(&rq->engine->context_status_notifier,
427 status, rq);
428 }
429
430 static void reset_active(struct i915_request *rq,
431 struct intel_engine_cs *engine)
432 {
433 struct intel_context * const ce = rq->context;
434 u32 head;
435
436 /*
437 * The executing context has been cancelled. We want to prevent
438 * further execution along this context and propagate the error on
439 * to anything depending on its results.
440 *
441 * In __i915_request_submit(), we apply the -EIO and remove the
442 * requests' payloads for any banned requests. But first, we must
443 * rewind the context back to the start of the incomplete request so
444 * that we do not jump back into the middle of the batch.
445 *
446 * We preserve the breadcrumbs and semaphores of the incomplete
447 * requests so that inter-timeline dependencies (i.e other timelines)
448 * remain correctly ordered. And we defer to __i915_request_submit()
449 * so that all asynchronous waits are correctly handled.
450 */
451 ENGINE_TRACE(engine, "{ reset rq=%llx:%lld }\n",
452 rq->fence.context, rq->fence.seqno);
453
454 /* On resubmission of the active request, payload will be scrubbed */
455 if (__i915_request_is_complete(rq))
456 head = rq->tail;
457 else
458 head = __active_request(ce->timeline, rq, -EIO)->head;
459 head = intel_ring_wrap(ce->ring, head);
460
461 /* Scrub the context image to prevent replaying the previous batch */
462 lrc_init_regs(ce, engine, true);
463
464 /* We've switched away, so this should be a no-op, but intent matters */
465 ce->lrc.lrca = lrc_update_regs(ce, engine, head);
466 }
467
468 static bool bad_request(const struct i915_request *rq)
469 {
470 return rq->fence.error && i915_request_started(rq);
471 }
472
473 static struct intel_engine_cs *
474 __execlists_schedule_in(struct i915_request *rq)
475 {
476 struct intel_engine_cs * const engine = rq->engine;
477 struct intel_context * const ce = rq->context;
478
479 intel_context_get(ce);
480
481 if (unlikely(intel_context_is_closed(ce) &&
482 !intel_engine_has_heartbeat(engine)))
483 intel_context_set_exiting(ce);
484
485 if (unlikely(!intel_context_is_schedulable(ce) || bad_request(rq)))
486 reset_active(rq, engine);
487
488 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
489 lrc_check_regs(ce, engine, "before");
490
491 if (ce->tag) {
492 /* Use a fixed tag for OA and friends */
493 GEM_BUG_ON(ce->tag <= BITS_PER_LONG);
494 ce->lrc.ccid = ce->tag;
495 } else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
496 /* We don't need a strict matching tag, just different values */
497 unsigned int tag = ffs(READ_ONCE(engine->context_tag));
498
499 GEM_BUG_ON(tag == 0 || tag >= BITS_PER_LONG);
500 clear_bit(tag - 1, &engine->context_tag);
501 ce->lrc.ccid = tag << (XEHP_SW_CTX_ID_SHIFT - 32);
502
503 BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
504
505 } else {
506 /* We don't need a strict matching tag, just different values */
507 unsigned int tag = __ffs(engine->context_tag);
508
509 GEM_BUG_ON(tag >= BITS_PER_LONG);
510 __clear_bit(tag, &engine->context_tag);
511 ce->lrc.ccid = (1 + tag) << (GEN11_SW_CTX_ID_SHIFT - 32);
512
513 BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
514 }
515
516 ce->lrc.ccid |= engine->execlists.ccid;
517
518 __intel_gt_pm_get(engine->gt);
519 if (engine->fw_domain && !engine->fw_active++)
520 intel_uncore_forcewake_get(engine->uncore, engine->fw_domain);
521 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
522 intel_engine_context_in(engine);
523
524 CE_TRACE(ce, "schedule-in, ccid:%x\n", ce->lrc.ccid);
525
526 return engine;
527 }
528
529 static void execlists_schedule_in(struct i915_request *rq, int idx)
530 {
531 struct intel_context * const ce = rq->context;
532 struct intel_engine_cs *old;
533
534 GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine));
535 trace_i915_request_in(rq, idx);
536
537 old = ce->inflight;
538 if (!old)
539 old = __execlists_schedule_in(rq);
540 WRITE_ONCE(ce->inflight, ptr_inc(old));
541
542 GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
543 }
544
545 static void
546 resubmit_virtual_request(struct i915_request *rq, struct virtual_engine *ve)
547 {
548 struct intel_engine_cs *engine = rq->engine;
549
550 spin_lock_irq(&engine->sched_engine->lock);
551
552 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
553 WRITE_ONCE(rq->engine, &ve->base);
554 ve->base.submit_request(rq);
555
556 spin_unlock_irq(&engine->sched_engine->lock);
557 }
558
559 static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
560 {
561 struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
562 struct intel_engine_cs *engine = rq->engine;
563
564 /*
565 * After this point, the rq may be transferred to a new sibling, so
566 * before we clear ce->inflight make sure that the context has been
567 * removed from the b->signalers and furthermore we need to make sure
568 * that the concurrent iterator in signal_irq_work is no longer
569 * following ce->signal_link.
570 */
571 if (!list_empty(&ce->signals))
572 intel_context_remove_breadcrumbs(ce, engine->breadcrumbs);
573
574 /*
575 * This engine is now too busy to run this virtual request, so
576 * see if we can find an alternative engine for it to execute on.
577 * Once a request has become bonded to this engine, we treat it the
578 * same as other native request.
579 */
580 if (i915_request_in_priority_queue(rq) &&
581 rq->execution_mask != engine->mask)
582 resubmit_virtual_request(rq, ve);
583
584 if (READ_ONCE(ve->request))
585 tasklet_hi_schedule(&ve->base.sched_engine->tasklet);
586 }
587
588 static void __execlists_schedule_out(struct i915_request * const rq,
589 struct intel_context * const ce)
590 {
591 struct intel_engine_cs * const engine = rq->engine;
592 unsigned int ccid;
593
594 /*
595 * NB process_csb() is not under the engine->sched_engine->lock and hence
596 * schedule_out can race with schedule_in meaning that we should
597 * refrain from doing non-trivial work here.
598 */
599
600 CE_TRACE(ce, "schedule-out, ccid:%x\n", ce->lrc.ccid);
601 GEM_BUG_ON(ce->inflight != engine);
602
603 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
604 lrc_check_regs(ce, engine, "after");
605
606 /*
607 * If we have just completed this context, the engine may now be
608 * idle and we want to re-enter powersaving.
609 */
610 if (intel_timeline_is_last(ce->timeline, rq) &&
611 __i915_request_is_complete(rq))
612 intel_engine_add_retire(engine, ce->timeline);
613
614 ccid = ce->lrc.ccid;
615 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
616 ccid >>= XEHP_SW_CTX_ID_SHIFT - 32;
617 ccid &= XEHP_MAX_CONTEXT_HW_ID;
618 } else {
619 ccid >>= GEN11_SW_CTX_ID_SHIFT - 32;
620 ccid &= GEN12_MAX_CONTEXT_HW_ID;
621 }
622
623 if (ccid < BITS_PER_LONG) {
624 GEM_BUG_ON(ccid == 0);
625 GEM_BUG_ON(test_bit(ccid - 1, &engine->context_tag));
626 __set_bit(ccid - 1, &engine->context_tag);
627 }
628 intel_engine_context_out(engine);
629 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
630 if (engine->fw_domain && !--engine->fw_active)
631 intel_uncore_forcewake_put(engine->uncore, engine->fw_domain);
632 intel_gt_pm_put_async(engine->gt);
633
634 /*
635 * If this is part of a virtual engine, its next request may
636 * have been blocked waiting for access to the active context.
637 * We have to kick all the siblings again in case we need to
638 * switch (e.g. the next request is not runnable on this
639 * engine). Hopefully, we will already have submitted the next
640 * request before the tasklet runs and do not need to rebuild
641 * each virtual tree and kick everyone again.
642 */
643 if (ce->engine != engine)
644 kick_siblings(rq, ce);
645
646 WRITE_ONCE(ce->inflight, NULL);
647 intel_context_put(ce);
648 }
649
650 static inline void execlists_schedule_out(struct i915_request *rq)
651 {
652 struct intel_context * const ce = rq->context;
653
654 trace_i915_request_out(rq);
655
656 GEM_BUG_ON(!ce->inflight);
657 ce->inflight = ptr_dec(ce->inflight);
658 if (!__intel_context_inflight_count(ce->inflight))
659 __execlists_schedule_out(rq, ce);
660
661 i915_request_put(rq);
662 }
663
664 static u32 map_i915_prio_to_lrc_desc_prio(int prio)
665 {
666 if (prio > I915_PRIORITY_NORMAL)
667 return GEN12_CTX_PRIORITY_HIGH;
668 else if (prio < I915_PRIORITY_NORMAL)
669 return GEN12_CTX_PRIORITY_LOW;
670 else
671 return GEN12_CTX_PRIORITY_NORMAL;
672 }
673
674 static u64 execlists_update_context(struct i915_request *rq)
675 {
676 struct intel_context *ce = rq->context;
677 u64 desc;
678 u32 tail, prev;
679
680 desc = ce->lrc.desc;
681 if (rq->engine->flags & I915_ENGINE_HAS_EU_PRIORITY)
682 desc |= map_i915_prio_to_lrc_desc_prio(rq_prio(rq));
683
684 /*
685 * WaIdleLiteRestore:bdw,skl
686 *
687 * We should never submit the context with the same RING_TAIL twice
688 * just in case we submit an empty ring, which confuses the HW.
689 *
690 * We append a couple of NOOPs (gen8_emit_wa_tail) after the end of
691 * the normal request to be able to always advance the RING_TAIL on
692 * subsequent resubmissions (for lite restore). Should that fail us,
693 * and we try and submit the same tail again, force the context
694 * reload.
695 *
696 * If we need to return to a preempted context, we need to skip the
697 * lite-restore and force it to reload the RING_TAIL. Otherwise, the
698 * HW has a tendency to ignore us rewinding the TAIL to the end of
699 * an earlier request.
700 */
701 GEM_BUG_ON(ce->lrc_reg_state[CTX_RING_TAIL] != rq->ring->tail);
702 prev = rq->ring->tail;
703 tail = intel_ring_set_tail(rq->ring, rq->tail);
704 if (unlikely(intel_ring_direction(rq->ring, tail, prev) <= 0))
705 desc |= CTX_DESC_FORCE_RESTORE;
706 ce->lrc_reg_state[CTX_RING_TAIL] = tail;
707 rq->tail = rq->wa_tail;
708
709 /*
710 * Make sure the context image is complete before we submit it to HW.
711 *
712 * Ostensibly, writes (including the WCB) should be flushed prior to
713 * an uncached write such as our mmio register access, the empirical
714 * evidence (esp. on Braswell) suggests that the WC write into memory
715 * may not be visible to the HW prior to the completion of the UC
716 * register write and that we may begin execution from the context
717 * before its image is complete leading to invalid PD chasing.
718 */
719 wmb();
720
721 ce->lrc.desc &= ~CTX_DESC_FORCE_RESTORE;
722 return desc;
723 }
724
725 static void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
726 {
727 if (execlists->ctrl_reg) {
728 writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
729 writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
730 } else {
731 writel(upper_32_bits(desc), execlists->submit_reg);
732 writel(lower_32_bits(desc), execlists->submit_reg);
733 }
734 }
735
736 static __maybe_unused char *
737 dump_port(char *buf, int buflen, const char *prefix, struct i915_request *rq)
738 {
739 if (!rq)
740 return "";
741
742 snprintf(buf, buflen, "%sccid:%x %llx:%lld%s prio %d",
743 prefix,
744 rq->context->lrc.ccid,
745 rq->fence.context, rq->fence.seqno,
746 __i915_request_is_complete(rq) ? "!" :
747 __i915_request_has_started(rq) ? "*" :
748 "",
749 rq_prio(rq));
750
751 return buf;
752 }
753
754 static __maybe_unused noinline void
755 trace_ports(const struct intel_engine_execlists *execlists,
756 const char *msg,
757 struct i915_request * const *ports)
758 {
759 const struct intel_engine_cs *engine =
760 container_of(execlists, typeof(*engine), execlists);
761 char __maybe_unused p0[40], p1[40];
762
763 if (!ports[0])
764 return;
765
766 ENGINE_TRACE(engine, "%s { %s%s }\n", msg,
767 dump_port(p0, sizeof(p0), "", ports[0]),
768 dump_port(p1, sizeof(p1), ", ", ports[1]));
769 }
770
771 static bool
772 reset_in_progress(const struct intel_engine_cs *engine)
773 {
774 return unlikely(!__tasklet_is_enabled(&engine->sched_engine->tasklet));
775 }
776
777 static __maybe_unused noinline bool
778 assert_pending_valid(const struct intel_engine_execlists *execlists,
779 const char *msg)
780 {
781 struct intel_engine_cs *engine =
782 container_of(execlists, typeof(*engine), execlists);
783 struct i915_request * const *port, *rq, *prev = NULL;
784 struct intel_context *ce = NULL;
785 u32 ccid = -1;
786
787 trace_ports(execlists, msg, execlists->pending);
788
789 /* We may be messing around with the lists during reset, lalala */
790 if (reset_in_progress(engine))
791 return true;
792
793 if (!execlists->pending[0]) {
794 GEM_TRACE_ERR("%s: Nothing pending for promotion!\n",
795 engine->name);
796 return false;
797 }
798
799 if (execlists->pending[execlists_num_ports(execlists)]) {
800 GEM_TRACE_ERR("%s: Excess pending[%d] for promotion!\n",
801 engine->name, execlists_num_ports(execlists));
802 return false;
803 }
804
805 for (port = execlists->pending; (rq = *port); port++) {
806 unsigned long flags;
807 bool ok = true;
808
809 GEM_BUG_ON(!kref_read(&rq->fence.refcount));
810 GEM_BUG_ON(!i915_request_is_active(rq));
811
812 if (ce == rq->context) {
813 GEM_TRACE_ERR("%s: Dup context:%llx in pending[%zd]\n",
814 engine->name,
815 ce->timeline->fence_context,
816 port - execlists->pending);
817 return false;
818 }
819 ce = rq->context;
820
821 if (ccid == ce->lrc.ccid) {
822 GEM_TRACE_ERR("%s: Dup ccid:%x context:%llx in pending[%zd]\n",
823 engine->name,
824 ccid, ce->timeline->fence_context,
825 port - execlists->pending);
826 return false;
827 }
828 ccid = ce->lrc.ccid;
829
830 /*
831 * Sentinels are supposed to be the last request so they flush
832 * the current execution off the HW. Check that they are the only
833 * request in the pending submission.
834 *
835 * NB: Due to the async nature of preempt-to-busy and request
836 * cancellation we need to handle the case where request
837 * becomes a sentinel in parallel to CSB processing.
838 */
839 if (prev && i915_request_has_sentinel(prev) &&
840 !READ_ONCE(prev->fence.error)) {
841 GEM_TRACE_ERR("%s: context:%llx after sentinel in pending[%zd]\n",
842 engine->name,
843 ce->timeline->fence_context,
844 port - execlists->pending);
845 return false;
846 }
847 prev = rq;
848
849 /*
850 * We want virtual requests to only be in the first slot so
851 * that they are never stuck behind a hog and can be immediately
852 * transferred onto the next idle engine.
853 */
854 if (rq->execution_mask != engine->mask &&
855 port != execlists->pending) {
856 GEM_TRACE_ERR("%s: virtual engine:%llx not in prime position[%zd]\n",
857 engine->name,
858 ce->timeline->fence_context,
859 port - execlists->pending);
860 return false;
861 }
862
863 /* Hold tightly onto the lock to prevent concurrent retires! */
864 if (!spin_trylock_irqsave(&rq->lock, flags))
865 continue;
866
867 if (__i915_request_is_complete(rq))
868 goto unlock;
869
870 if (i915_active_is_idle(&ce->active) &&
871 !intel_context_is_barrier(ce)) {
872 GEM_TRACE_ERR("%s: Inactive context:%llx in pending[%zd]\n",
873 engine->name,
874 ce->timeline->fence_context,
875 port - execlists->pending);
876 ok = false;
877 goto unlock;
878 }
879
880 if (!i915_vma_is_pinned(ce->state)) {
881 GEM_TRACE_ERR("%s: Unpinned context:%llx in pending[%zd]\n",
882 engine->name,
883 ce->timeline->fence_context,
884 port - execlists->pending);
885 ok = false;
886 goto unlock;
887 }
888
889 if (!i915_vma_is_pinned(ce->ring->vma)) {
890 GEM_TRACE_ERR("%s: Unpinned ring:%llx in pending[%zd]\n",
891 engine->name,
892 ce->timeline->fence_context,
893 port - execlists->pending);
894 ok = false;
895 goto unlock;
896 }
897
898 unlock:
899 spin_unlock_irqrestore(&rq->lock, flags);
900 if (!ok)
901 return false;
902 }
903
904 return ce;
905 }
906
907 static void execlists_submit_ports(struct intel_engine_cs *engine)
908 {
909 struct intel_engine_execlists *execlists = &engine->execlists;
910 unsigned int n;
911
912 GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));
913
914 /*
915 * We can skip acquiring intel_runtime_pm_get() here as it was taken
916 * on our behalf by the request (see i915_gem_mark_busy()) and it will
917 * not be relinquished until the device is idle (see
918 * i915_gem_idle_work_handler()). As a precaution, we make sure
919 * that all ELSP are drained i.e. we have processed the CSB,
920 * before allowing ourselves to idle and calling intel_runtime_pm_put().
921 */
922 GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
923
924 /*
925 * ELSQ note: the submit queue is not cleared after being submitted
926 * to the HW so we need to make sure we always clean it up. This is
927 * currently ensured by the fact that we always write the same number
928 * of elsq entries, keep this in mind before changing the loop below.
929 */
930 for (n = execlists_num_ports(execlists); n--; ) {
931 struct i915_request *rq = execlists->pending[n];
932
933 write_desc(execlists,
934 rq ? execlists_update_context(rq) : 0,
935 n);
936 }
937
938 /* we need to manually load the submit queue */
939 if (execlists->ctrl_reg)
940 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
941 }
942
943 static bool ctx_single_port_submission(const struct intel_context *ce)
944 {
945 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
946 intel_context_force_single_submission(ce));
947 }
948
949 static bool can_merge_ctx(const struct intel_context *prev,
950 const struct intel_context *next)
951 {
952 if (prev != next)
953 return false;
954
955 if (ctx_single_port_submission(prev))
956 return false;
957
958 return true;
959 }
960
961 static unsigned long i915_request_flags(const struct i915_request *rq)
962 {
963 return READ_ONCE(rq->fence.flags);
964 }
965
966 static bool can_merge_rq(const struct i915_request *prev,
967 const struct i915_request *next)
968 {
969 GEM_BUG_ON(prev == next);
970 GEM_BUG_ON(!assert_priority_queue(prev, next));
971
972 /*
973 * We do not submit known completed requests. Therefore if the next
974 * request is already completed, we can pretend to merge it in
975 * with the previous context (and we will skip updating the ELSP
976 * and tracking). Thus hopefully keeping the ELSP full with active
977 * contexts, despite the best efforts of preempt-to-busy to confuse
978 * us.
979 */
980 if (__i915_request_is_complete(next))
981 return true;
982
983 if (unlikely((i915_request_flags(prev) | i915_request_flags(next)) &
984 (BIT(I915_FENCE_FLAG_NOPREEMPT) |
985 BIT(I915_FENCE_FLAG_SENTINEL))))
986 return false;
987
988 if (!can_merge_ctx(prev->context, next->context))
989 return false;
990
991 GEM_BUG_ON(i915_seqno_passed(prev->fence.seqno, next->fence.seqno));
992 return true;
993 }
994
995 static bool virtual_matches(const struct virtual_engine *ve,
996 const struct i915_request *rq,
997 const struct intel_engine_cs *engine)
998 {
999 const struct intel_engine_cs *inflight;
1000
1001 if (!rq)
1002 return false;
1003
1004 if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
1005 return false;
1006
1007 /*
1008 * We track when the HW has completed saving the context image
1009 * (i.e. when we have seen the final CS event switching out of
1010 * the context) and must not overwrite the context image before
1011 * then. This restricts us to only using the active engine
1012 * while the previous virtualized request is inflight (so
1013 * we reuse the register offsets). This is a very small
1014 * hystersis on the greedy seelction algorithm.
1015 */
1016 inflight = intel_context_inflight(&ve->context);
1017 if (inflight && inflight != engine)
1018 return false;
1019
1020 return true;
1021 }
1022
1023 static struct virtual_engine *
1024 first_virtual_engine(struct intel_engine_cs *engine)
1025 {
1026 struct intel_engine_execlists *el = &engine->execlists;
1027 struct rb_node *rb = rb_first_cached(&el->virtual);
1028
1029 while (rb) {
1030 struct virtual_engine *ve =
1031 rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
1032 struct i915_request *rq = READ_ONCE(ve->request);
1033
1034 /* lazily cleanup after another engine handled rq */
1035 if (!rq || !virtual_matches(ve, rq, engine)) {
1036 rb_erase_cached(rb, &el->virtual);
1037 RB_CLEAR_NODE(rb);
1038 rb = rb_first_cached(&el->virtual);
1039 continue;
1040 }
1041
1042 return ve;
1043 }
1044
1045 return NULL;
1046 }
1047
1048 static void virtual_xfer_context(struct virtual_engine *ve,
1049 struct intel_engine_cs *engine)
1050 {
1051 unsigned int n;
1052
1053 if (likely(engine == ve->siblings[0]))
1054 return;
1055
1056 GEM_BUG_ON(READ_ONCE(ve->context.inflight));
1057 if (!intel_engine_has_relative_mmio(engine))
1058 lrc_update_offsets(&ve->context, engine);
1059
1060 /*
1061 * Move the bound engine to the top of the list for
1062 * future execution. We then kick this tasklet first
1063 * before checking others, so that we preferentially
1064 * reuse this set of bound registers.
1065 */
1066 for (n = 1; n < ve->num_siblings; n++) {
1067 if (ve->siblings[n] == engine) {
1068 swap(ve->siblings[n], ve->siblings[0]);
1069 break;
1070 }
1071 }
1072 }
1073
1074 static void defer_request(struct i915_request *rq, struct list_head * const pl)
1075 {
1076 LIST_HEAD(list);
1077
1078 /*
1079 * We want to move the interrupted request to the back of
1080 * the round-robin list (i.e. its priority level), but
1081 * in doing so, we must then move all requests that were in
1082 * flight and were waiting for the interrupted request to
1083 * be run after it again.
1084 */
1085 do {
1086 struct i915_dependency *p;
1087
1088 GEM_BUG_ON(i915_request_is_active(rq));
1089 list_move_tail(&rq->sched.link, pl);
1090
1091 for_each_waiter(p, rq) {
1092 struct i915_request *w =
1093 container_of(p->waiter, typeof(*w), sched);
1094
1095 if (p->flags & I915_DEPENDENCY_WEAK)
1096 continue;
1097
1098 /* Leave semaphores spinning on the other engines */
1099 if (w->engine != rq->engine)
1100 continue;
1101
1102 /* No waiter should start before its signaler */
1103 GEM_BUG_ON(i915_request_has_initial_breadcrumb(w) &&
1104 __i915_request_has_started(w) &&
1105 !__i915_request_is_complete(rq));
1106
1107 if (!i915_request_is_ready(w))
1108 continue;
1109
1110 if (rq_prio(w) < rq_prio(rq))
1111 continue;
1112
1113 GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
1114 GEM_BUG_ON(i915_request_is_active(w));
1115 list_move_tail(&w->sched.link, &list);
1116 }
1117
1118 rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
1119 } while (rq);
1120 }
1121
1122 static void defer_active(struct intel_engine_cs *engine)
1123 {
1124 struct i915_request *rq;
1125
1126 rq = __unwind_incomplete_requests(engine);
1127 if (!rq)
1128 return;
1129
1130 defer_request(rq, i915_sched_lookup_priolist(engine->sched_engine,
1131 rq_prio(rq)));
1132 }
1133
1134 static bool
1135 timeslice_yield(const struct intel_engine_execlists *el,
1136 const struct i915_request *rq)
1137 {
1138 /*
1139 * Once bitten, forever smitten!
1140 *
1141 * If the active context ever busy-waited on a semaphore,
1142 * it will be treated as a hog until the end of its timeslice (i.e.
1143 * until it is scheduled out and replaced by a new submission,
1144 * possibly even its own lite-restore). The HW only sends an interrupt
1145 * on the first miss, and we do know if that semaphore has been
1146 * signaled, or even if it is now stuck on another semaphore. Play
1147 * safe, yield if it might be stuck -- it will be given a fresh
1148 * timeslice in the near future.
1149 */
1150 return rq->context->lrc.ccid == READ_ONCE(el->yield);
1151 }
1152
1153 static bool needs_timeslice(const struct intel_engine_cs *engine,
1154 const struct i915_request *rq)
1155 {
1156 if (!intel_engine_has_timeslices(engine))
1157 return false;
1158
1159 /* If not currently active, or about to switch, wait for next event */
1160 if (!rq || __i915_request_is_complete(rq))
1161 return false;
1162
1163 /* We do not need to start the timeslice until after the ACK */
1164 if (READ_ONCE(engine->execlists.pending[0]))
1165 return false;
1166
1167 /* If ELSP[1] is occupied, always check to see if worth slicing */
1168 if (!list_is_last_rcu(&rq->sched.link,
1169 &engine->sched_engine->requests)) {
1170 ENGINE_TRACE(engine, "timeslice required for second inflight context\n");
1171 return true;
1172 }
1173
1174 /* Otherwise, ELSP[0] is by itself, but may be waiting in the queue */
1175 if (!i915_sched_engine_is_empty(engine->sched_engine)) {
1176 ENGINE_TRACE(engine, "timeslice required for queue\n");
1177 return true;
1178 }
1179
1180 if (!RB_EMPTY_ROOT(&engine->execlists.virtual.rb_root)) {
1181 ENGINE_TRACE(engine, "timeslice required for virtual\n");
1182 return true;
1183 }
1184
1185 return false;
1186 }
1187
1188 static bool
1189 timeslice_expired(struct intel_engine_cs *engine, const struct i915_request *rq)
1190 {
1191 const struct intel_engine_execlists *el = &engine->execlists;
1192
1193 if (i915_request_has_nopreempt(rq) && __i915_request_has_started(rq))
1194 return false;
1195
1196 if (!needs_timeslice(engine, rq))
1197 return false;
1198
1199 return timer_expired(&el->timer) || timeslice_yield(el, rq);
1200 }
1201
1202 static unsigned long timeslice(const struct intel_engine_cs *engine)
1203 {
1204 return READ_ONCE(engine->props.timeslice_duration_ms);
1205 }
1206
1207 static void start_timeslice(struct intel_engine_cs *engine)
1208 {
1209 struct intel_engine_execlists *el = &engine->execlists;
1210 unsigned long duration;
1211
1212 /* Disable the timer if there is nothing to switch to */
1213 duration = 0;
1214 if (needs_timeslice(engine, *el->active)) {
1215 /* Avoid continually prolonging an active timeslice */
1216 if (timer_active(&el->timer)) {
1217 /*
1218 * If we just submitted a new ELSP after an old
1219 * context, that context may have already consumed
1220 * its timeslice, so recheck.
1221 */
1222 if (!timer_pending(&el->timer))
1223 tasklet_hi_schedule(&engine->sched_engine->tasklet);
1224 return;
1225 }
1226
1227 duration = timeslice(engine);
1228 }
1229
1230 set_timer_ms(&el->timer, duration);
1231 }
1232
1233 static void record_preemption(struct intel_engine_execlists *execlists)
1234 {
1235 (void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
1236 }
1237
1238 static unsigned long active_preempt_timeout(struct intel_engine_cs *engine,
1239 const struct i915_request *rq)
1240 {
1241 if (!rq)
1242 return 0;
1243
1244 /* Only allow ourselves to force reset the currently active context */
1245 engine->execlists.preempt_target = rq;
1246
1247 /* Force a fast reset for terminated contexts (ignoring sysfs!) */
1248 if (unlikely(intel_context_is_banned(rq->context) || bad_request(rq)))
1249 return INTEL_CONTEXT_BANNED_PREEMPT_TIMEOUT_MS;
1250
1251 return READ_ONCE(engine->props.preempt_timeout_ms);
1252 }
1253
1254 static void set_preempt_timeout(struct intel_engine_cs *engine,
1255 const struct i915_request *rq)
1256 {
1257 if (!intel_engine_has_preempt_reset(engine))
1258 return;
1259
1260 set_timer_ms(&engine->execlists.preempt,
1261 active_preempt_timeout(engine, rq));
1262 }
1263
1264 static bool completed(const struct i915_request *rq)
1265 {
1266 if (i915_request_has_sentinel(rq))
1267 return false;
1268
1269 return __i915_request_is_complete(rq);
1270 }
1271
1272 static void execlists_dequeue(struct intel_engine_cs *engine)
1273 {
1274 struct intel_engine_execlists * const execlists = &engine->execlists;
1275 struct i915_sched_engine * const sched_engine = engine->sched_engine;
1276 struct i915_request **port = execlists->pending;
1277 struct i915_request ** const last_port = port + execlists->port_mask;
1278 struct i915_request *last, * const *active;
1279 struct virtual_engine *ve;
1280 struct rb_node *rb;
1281 bool submit = false;
1282
1283 /*
1284 * Hardware submission is through 2 ports. Conceptually each port
1285 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
1286 * static for a context, and unique to each, so we only execute
1287 * requests belonging to a single context from each ring. RING_HEAD
1288 * is maintained by the CS in the context image, it marks the place
1289 * where it got up to last time, and through RING_TAIL we tell the CS
1290 * where we want to execute up to this time.
1291 *
1292 * In this list the requests are in order of execution. Consecutive
1293 * requests from the same context are adjacent in the ringbuffer. We
1294 * can combine these requests into a single RING_TAIL update:
1295 *
1296 * RING_HEAD...req1...req2
1297 * ^- RING_TAIL
1298 * since to execute req2 the CS must first execute req1.
1299 *
1300 * Our goal then is to point each port to the end of a consecutive
1301 * sequence of requests as being the most optimal (fewest wake ups
1302 * and context switches) submission.
1303 */
1304
1305 spin_lock(&sched_engine->lock);
1306
1307 /*
1308 * If the queue is higher priority than the last
1309 * request in the currently active context, submit afresh.
1310 * We will resubmit again afterwards in case we need to split
1311 * the active context to interject the preemption request,
1312 * i.e. we will retrigger preemption following the ack in case
1313 * of trouble.
1314 *
1315 */
1316 active = execlists->active;
1317 while ((last = *active) && completed(last))
1318 active++;
1319
1320 if (last) {
1321 if (need_preempt(engine, last)) {
1322 ENGINE_TRACE(engine,
1323 "preempting last=%llx:%lld, prio=%d, hint=%d\n",
1324 last->fence.context,
1325 last->fence.seqno,
1326 last->sched.attr.priority,
1327 sched_engine->queue_priority_hint);
1328 record_preemption(execlists);
1329
1330 /*
1331 * Don't let the RING_HEAD advance past the breadcrumb
1332 * as we unwind (and until we resubmit) so that we do
1333 * not accidentally tell it to go backwards.
1334 */
1335 ring_set_paused(engine, 1);
1336
1337 /*
1338 * Note that we have not stopped the GPU at this point,
1339 * so we are unwinding the incomplete requests as they
1340 * remain inflight and so by the time we do complete
1341 * the preemption, some of the unwound requests may
1342 * complete!
1343 */
1344 __unwind_incomplete_requests(engine);
1345
1346 last = NULL;
1347 } else if (timeslice_expired(engine, last)) {
1348 ENGINE_TRACE(engine,
1349 "expired:%s last=%llx:%lld, prio=%d, hint=%d, yield?=%s\n",
1350 str_yes_no(timer_expired(&execlists->timer)),
1351 last->fence.context, last->fence.seqno,
1352 rq_prio(last),
1353 sched_engine->queue_priority_hint,
1354 str_yes_no(timeslice_yield(execlists, last)));
1355
1356 /*
1357 * Consume this timeslice; ensure we start a new one.
1358 *
1359 * The timeslice expired, and we will unwind the
1360 * running contexts and recompute the next ELSP.
1361 * If that submit will be the same pair of contexts
1362 * (due to dependency ordering), we will skip the
1363 * submission. If we don't cancel the timer now,
1364 * we will see that the timer has expired and
1365 * reschedule the tasklet; continually until the
1366 * next context switch or other preemption event.
1367 *
1368 * Since we have decided to reschedule based on
1369 * consumption of this timeslice, if we submit the
1370 * same context again, grant it a full timeslice.
1371 */
1372 cancel_timer(&execlists->timer);
1373 ring_set_paused(engine, 1);
1374 defer_active(engine);
1375
1376 /*
1377 * Unlike for preemption, if we rewind and continue
1378 * executing the same context as previously active,
1379 * the order of execution will remain the same and
1380 * the tail will only advance. We do not need to
1381 * force a full context restore, as a lite-restore
1382 * is sufficient to resample the monotonic TAIL.
1383 *
1384 * If we switch to any other context, similarly we
1385 * will not rewind TAIL of current context, and
1386 * normal save/restore will preserve state and allow
1387 * us to later continue executing the same request.
1388 */
1389 last = NULL;
1390 } else {
1391 /*
1392 * Otherwise if we already have a request pending
1393 * for execution after the current one, we can
1394 * just wait until the next CS event before
1395 * queuing more. In either case we will force a
1396 * lite-restore preemption event, but if we wait
1397 * we hopefully coalesce several updates into a single
1398 * submission.
1399 */
1400 if (active[1]) {
1401 /*
1402 * Even if ELSP[1] is occupied and not worthy
1403 * of timeslices, our queue might be.
1404 */
1405 spin_unlock(&sched_engine->lock);
1406 return;
1407 }
1408 }
1409 }
1410
1411 /* XXX virtual is always taking precedence */
1412 while ((ve = first_virtual_engine(engine))) {
1413 struct i915_request *rq;
1414
1415 spin_lock(&ve->base.sched_engine->lock);
1416
1417 rq = ve->request;
1418 if (unlikely(!virtual_matches(ve, rq, engine)))
1419 goto unlock; /* lost the race to a sibling */
1420
1421 GEM_BUG_ON(rq->engine != &ve->base);
1422 GEM_BUG_ON(rq->context != &ve->context);
1423
1424 if (unlikely(rq_prio(rq) < queue_prio(sched_engine))) {
1425 spin_unlock(&ve->base.sched_engine->lock);
1426 break;
1427 }
1428
1429 if (last && !can_merge_rq(last, rq)) {
1430 spin_unlock(&ve->base.sched_engine->lock);
1431 spin_unlock(&engine->sched_engine->lock);
1432 return; /* leave this for another sibling */
1433 }
1434
1435 ENGINE_TRACE(engine,
1436 "virtual rq=%llx:%lld%s, new engine? %s\n",
1437 rq->fence.context,
1438 rq->fence.seqno,
1439 __i915_request_is_complete(rq) ? "!" :
1440 __i915_request_has_started(rq) ? "*" :
1441 "",
1442 str_yes_no(engine != ve->siblings[0]));
1443
1444 WRITE_ONCE(ve->request, NULL);
1445 WRITE_ONCE(ve->base.sched_engine->queue_priority_hint, INT_MIN);
1446
1447 rb = &ve->nodes[engine->id].rb;
1448 rb_erase_cached(rb, &execlists->virtual);
1449 RB_CLEAR_NODE(rb);
1450
1451 GEM_BUG_ON(!(rq->execution_mask & engine->mask));
1452 WRITE_ONCE(rq->engine, engine);
1453
1454 if (__i915_request_submit(rq)) {
1455 /*
1456 * Only after we confirm that we will submit
1457 * this request (i.e. it has not already
1458 * completed), do we want to update the context.
1459 *
1460 * This serves two purposes. It avoids
1461 * unnecessary work if we are resubmitting an
1462 * already completed request after timeslicing.
1463 * But more importantly, it prevents us altering
1464 * ve->siblings[] on an idle context, where
1465 * we may be using ve->siblings[] in
1466 * virtual_context_enter / virtual_context_exit.
1467 */
1468 virtual_xfer_context(ve, engine);
1469 GEM_BUG_ON(ve->siblings[0] != engine);
1470
1471 submit = true;
1472 last = rq;
1473 }
1474
1475 i915_request_put(rq);
1476 unlock:
1477 spin_unlock(&ve->base.sched_engine->lock);
1478
1479 /*
1480 * Hmm, we have a bunch of virtual engine requests,
1481 * but the first one was already completed (thanks
1482 * preempt-to-busy!). Keep looking at the veng queue
1483 * until we have no more relevant requests (i.e.
1484 * the normal submit queue has higher priority).
1485 */
1486 if (submit)
1487 break;
1488 }
1489
1490 while ((rb = rb_first_cached(&sched_engine->queue))) {
1491 struct i915_priolist *p = to_priolist(rb);
1492 struct i915_request *rq, *rn;
1493
1494 priolist_for_each_request_consume(rq, rn, p) {
1495 bool merge = true;
1496
1497 /*
1498 * Can we combine this request with the current port?
1499 * It has to be the same context/ringbuffer and not
1500 * have any exceptions (e.g. GVT saying never to
1501 * combine contexts).
1502 *
1503 * If we can combine the requests, we can execute both
1504 * by updating the RING_TAIL to point to the end of the
1505 * second request, and so we never need to tell the
1506 * hardware about the first.
1507 */
1508 if (last && !can_merge_rq(last, rq)) {
1509 /*
1510 * If we are on the second port and cannot
1511 * combine this request with the last, then we
1512 * are done.
1513 */
1514 if (port == last_port)
1515 goto done;
1516
1517 /*
1518 * We must not populate both ELSP[] with the
1519 * same LRCA, i.e. we must submit 2 different
1520 * contexts if we submit 2 ELSP.
1521 */
1522 if (last->context == rq->context)
1523 goto done;
1524
1525 if (i915_request_has_sentinel(last))
1526 goto done;
1527
1528 /*
1529 * We avoid submitting virtual requests into
1530 * the secondary ports so that we can migrate
1531 * the request immediately to another engine
1532 * rather than wait for the primary request.
1533 */
1534 if (rq->execution_mask != engine->mask)
1535 goto done;
1536
1537 /*
1538 * If GVT overrides us we only ever submit
1539 * port[0], leaving port[1] empty. Note that we
1540 * also have to be careful that we don't queue
1541 * the same context (even though a different
1542 * request) to the second port.
1543 */
1544 if (ctx_single_port_submission(last->context) ||
1545 ctx_single_port_submission(rq->context))
1546 goto done;
1547
1548 merge = false;
1549 }
1550
1551 if (__i915_request_submit(rq)) {
1552 if (!merge) {
1553 *port++ = i915_request_get(last);
1554 last = NULL;
1555 }
1556
1557 GEM_BUG_ON(last &&
1558 !can_merge_ctx(last->context,
1559 rq->context));
1560 GEM_BUG_ON(last &&
1561 i915_seqno_passed(last->fence.seqno,
1562 rq->fence.seqno));
1563
1564 submit = true;
1565 last = rq;
1566 }
1567 }
1568
1569 rb_erase_cached(&p->node, &sched_engine->queue);
1570 i915_priolist_free(p);
1571 }
1572 done:
1573 *port++ = i915_request_get(last);
1574
1575 /*
1576 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
1577 *
1578 * We choose the priority hint such that if we add a request of greater
1579 * priority than this, we kick the submission tasklet to decide on
1580 * the right order of submitting the requests to hardware. We must
1581 * also be prepared to reorder requests as they are in-flight on the
1582 * HW. We derive the priority hint then as the first "hole" in
1583 * the HW submission ports and if there are no available slots,
1584 * the priority of the lowest executing request, i.e. last.
1585 *
1586 * When we do receive a higher priority request ready to run from the
1587 * user, see queue_request(), the priority hint is bumped to that
1588 * request triggering preemption on the next dequeue (or subsequent
1589 * interrupt for secondary ports).
1590 */
1591 sched_engine->queue_priority_hint = queue_prio(sched_engine);
1592 i915_sched_engine_reset_on_empty(sched_engine);
1593 spin_unlock(&sched_engine->lock);
1594
1595 /*
1596 * We can skip poking the HW if we ended up with exactly the same set
1597 * of requests as currently running, e.g. trying to timeslice a pair
1598 * of ordered contexts.
1599 */
1600 if (submit &&
1601 memcmp(active,
1602 execlists->pending,
1603 (port - execlists->pending) * sizeof(*port))) {
1604 *port = NULL;
1605 while (port-- != execlists->pending)
1606 execlists_schedule_in(*port, port - execlists->pending);
1607
1608 WRITE_ONCE(execlists->yield, -1);
1609 set_preempt_timeout(engine, *active);
1610 execlists_submit_ports(engine);
1611 } else {
1612 ring_set_paused(engine, 0);
1613 while (port-- != execlists->pending)
1614 i915_request_put(*port);
1615 *execlists->pending = NULL;
1616 }
1617 }
1618
1619 static void execlists_dequeue_irq(struct intel_engine_cs *engine)
1620 {
1621 local_irq_disable(); /* Suspend interrupts across request submission */
1622 execlists_dequeue(engine);
1623 local_irq_enable(); /* flush irq_work (e.g. breadcrumb enabling) */
1624 }
1625
1626 static void clear_ports(struct i915_request **ports, int count)
1627 {
1628 memset_p((void **)ports, NULL, count);
1629 }
1630
1631 static void
1632 copy_ports(struct i915_request **dst, struct i915_request **src, int count)
1633 {
1634 /* A memcpy_p() would be very useful here! */
1635 while (count--)
1636 WRITE_ONCE(*dst++, *src++); /* avoid write tearing */
1637 }
1638
1639 static struct i915_request **
1640 cancel_port_requests(struct intel_engine_execlists * const execlists,
1641 struct i915_request **inactive)
1642 {
1643 struct i915_request * const *port;
1644
1645 for (port = execlists->pending; *port; port++)
1646 *inactive++ = *port;
1647 clear_ports(execlists->pending, ARRAY_SIZE(execlists->pending));
1648
1649 /* Mark the end of active before we overwrite *active */
1650 for (port = xchg(&execlists->active, execlists->pending); *port; port++)
1651 *inactive++ = *port;
1652 clear_ports(execlists->inflight, ARRAY_SIZE(execlists->inflight));
1653
1654 smp_wmb(); /* complete the seqlock for execlists_active() */
1655 WRITE_ONCE(execlists->active, execlists->inflight);
1656
1657 /* Having cancelled all outstanding process_csb(), stop their timers */
1658 GEM_BUG_ON(execlists->pending[0]);
1659 cancel_timer(&execlists->timer);
1660 cancel_timer(&execlists->preempt);
1661
1662 return inactive;
1663 }
1664
1665 /*
1666 * Starting with Gen12, the status has a new format:
1667 *
1668 * bit 0: switched to new queue
1669 * bit 1: reserved
1670 * bit 2: semaphore wait mode (poll or signal), only valid when
1671 * switch detail is set to "wait on semaphore"
1672 * bits 3-5: engine class
1673 * bits 6-11: engine instance
1674 * bits 12-14: reserved
1675 * bits 15-25: sw context id of the lrc the GT switched to
1676 * bits 26-31: sw counter of the lrc the GT switched to
1677 * bits 32-35: context switch detail
1678 * - 0: ctx complete
1679 * - 1: wait on sync flip
1680 * - 2: wait on vblank
1681 * - 3: wait on scanline
1682 * - 4: wait on semaphore
1683 * - 5: context preempted (not on SEMAPHORE_WAIT or
1684 * WAIT_FOR_EVENT)
1685 * bit 36: reserved
1686 * bits 37-43: wait detail (for switch detail 1 to 4)
1687 * bits 44-46: reserved
1688 * bits 47-57: sw context id of the lrc the GT switched away from
1689 * bits 58-63: sw counter of the lrc the GT switched away from
1690 *
1691 * Xe_HP csb shuffles things around compared to TGL:
1692 *
1693 * bits 0-3: context switch detail (same possible values as TGL)
1694 * bits 4-9: engine instance
1695 * bits 10-25: sw context id of the lrc the GT switched to
1696 * bits 26-31: sw counter of the lrc the GT switched to
1697 * bit 32: semaphore wait mode (poll or signal), Only valid when
1698 * switch detail is set to "wait on semaphore"
1699 * bit 33: switched to new queue
1700 * bits 34-41: wait detail (for switch detail 1 to 4)
1701 * bits 42-57: sw context id of the lrc the GT switched away from
1702 * bits 58-63: sw counter of the lrc the GT switched away from
1703 */
1704 static inline bool
1705 __gen12_csb_parse(bool ctx_to_valid, bool ctx_away_valid, bool new_queue,
1706 u8 switch_detail)
1707 {
1708 /*
1709 * The context switch detail is not guaranteed to be 5 when a preemption
1710 * occurs, so we can't just check for that. The check below works for
1711 * all the cases we care about, including preemptions of WAIT
1712 * instructions and lite-restore. Preempt-to-idle via the CTRL register
1713 * would require some extra handling, but we don't support that.
1714 */
1715 if (!ctx_away_valid || new_queue) {
1716 GEM_BUG_ON(!ctx_to_valid);
1717 return true;
1718 }
1719
1720 /*
1721 * switch detail = 5 is covered by the case above and we do not expect a
1722 * context switch on an unsuccessful wait instruction since we always
1723 * use polling mode.
1724 */
1725 GEM_BUG_ON(switch_detail);
1726 return false;
1727 }
1728
1729 static bool xehp_csb_parse(const u64 csb)
1730 {
1731 return __gen12_csb_parse(XEHP_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */
1732 XEHP_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */
1733 upper_32_bits(csb) & XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE,
1734 GEN12_CTX_SWITCH_DETAIL(lower_32_bits(csb)));
1735 }
1736
1737 static bool gen12_csb_parse(const u64 csb)
1738 {
1739 return __gen12_csb_parse(GEN12_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */
1740 GEN12_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */
1741 lower_32_bits(csb) & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE,
1742 GEN12_CTX_SWITCH_DETAIL(upper_32_bits(csb)));
1743 }
1744
1745 static bool gen8_csb_parse(const u64 csb)
1746 {
1747 return csb & (GEN8_CTX_STATUS_IDLE_ACTIVE | GEN8_CTX_STATUS_PREEMPTED);
1748 }
1749
1750 static noinline u64
1751 wa_csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1752 {
1753 u64 entry;
1754
1755 /*
1756 * Reading from the HWSP has one particular advantage: we can detect
1757 * a stale entry. Since the write into HWSP is broken, we have no reason
1758 * to trust the HW at all, the mmio entry may equally be unordered, so
1759 * we prefer the path that is self-checking and as a last resort,
1760 * return the mmio value.
1761 *
1762 * tgl,dg1:HSDES#22011327657
1763 */
1764 preempt_disable();
1765 if (wait_for_atomic_us((entry = READ_ONCE(*csb)) != -1, 10)) {
1766 int idx = csb - engine->execlists.csb_status;
1767 int status;
1768
1769 status = GEN8_EXECLISTS_STATUS_BUF;
1770 if (idx >= 6) {
1771 status = GEN11_EXECLISTS_STATUS_BUF2;
1772 idx -= 6;
1773 }
1774 status += sizeof(u64) * idx;
1775
1776 entry = intel_uncore_read64(engine->uncore,
1777 _MMIO(engine->mmio_base + status));
1778 }
1779 preempt_enable();
1780
1781 return entry;
1782 }
1783
1784 static u64 csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1785 {
1786 u64 entry = READ_ONCE(*csb);
1787
1788 /*
1789 * Unfortunately, the GPU does not always serialise its write
1790 * of the CSB entries before its write of the CSB pointer, at least
1791 * from the perspective of the CPU, using what is known as a Global
1792 * Observation Point. We may read a new CSB tail pointer, but then
1793 * read the stale CSB entries, causing us to misinterpret the
1794 * context-switch events, and eventually declare the GPU hung.
1795 *
1796 * icl:HSDES#1806554093
1797 * tgl:HSDES#22011248461
1798 */
1799 if (unlikely(entry == -1))
1800 entry = wa_csb_read(engine, csb);
1801
1802 /* Consume this entry so that we can spot its future reuse. */
1803 WRITE_ONCE(*csb, -1);
1804
1805 /* ELSP is an implicit wmb() before the GPU wraps and overwrites csb */
1806 return entry;
1807 }
1808
1809 static void new_timeslice(struct intel_engine_execlists *el)
1810 {
1811 /* By cancelling, we will start afresh in start_timeslice() */
1812 cancel_timer(&el->timer);
1813 }
1814
1815 static struct i915_request **
1816 process_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
1817 {
1818 struct intel_engine_execlists * const execlists = &engine->execlists;
1819 u64 * const buf = execlists->csb_status;
1820 const u8 num_entries = execlists->csb_size;
1821 struct i915_request **prev;
1822 u8 head, tail;
1823
1824 /*
1825 * As we modify our execlists state tracking we require exclusive
1826 * access. Either we are inside the tasklet, or the tasklet is disabled
1827 * and we assume that is only inside the reset paths and so serialised.
1828 */
1829 GEM_BUG_ON(!tasklet_is_locked(&engine->sched_engine->tasklet) &&
1830 !reset_in_progress(engine));
1831
1832 /*
1833 * Note that csb_write, csb_status may be either in HWSP or mmio.
1834 * When reading from the csb_write mmio register, we have to be
1835 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
1836 * the low 4bits. As it happens we know the next 4bits are always
1837 * zero and so we can simply masked off the low u8 of the register
1838 * and treat it identically to reading from the HWSP (without having
1839 * to use explicit shifting and masking, and probably bifurcating
1840 * the code to handle the legacy mmio read).
1841 */
1842 head = execlists->csb_head;
1843 tail = READ_ONCE(*execlists->csb_write);
1844 if (unlikely(head == tail))
1845 return inactive;
1846
1847 /*
1848 * We will consume all events from HW, or at least pretend to.
1849 *
1850 * The sequence of events from the HW is deterministic, and derived
1851 * from our writes to the ELSP, with a smidgen of variability for
1852 * the arrival of the asynchronous requests wrt to the inflight
1853 * execution. If the HW sends an event that does not correspond with
1854 * the one we are expecting, we have to abandon all hope as we lose
1855 * all tracking of what the engine is actually executing. We will
1856 * only detect we are out of sequence with the HW when we get an
1857 * 'impossible' event because we have already drained our own
1858 * preemption/promotion queue. If this occurs, we know that we likely
1859 * lost track of execution earlier and must unwind and restart, the
1860 * simplest way is by stop processing the event queue and force the
1861 * engine to reset.
1862 */
1863 execlists->csb_head = tail;
1864 ENGINE_TRACE(engine, "cs-irq head=%d, tail=%d\n", head, tail);
1865
1866 /*
1867 * Hopefully paired with a wmb() in HW!
1868 *
1869 * We must complete the read of the write pointer before any reads
1870 * from the CSB, so that we do not see stale values. Without an rmb
1871 * (lfence) the HW may speculatively perform the CSB[] reads *before*
1872 * we perform the READ_ONCE(*csb_write).
1873 */
1874 rmb();
1875
1876 /* Remember who was last running under the timer */
1877 prev = inactive;
1878 *prev = NULL;
1879
1880 do {
1881 bool promote;
1882 u64 csb;
1883
1884 if (++head == num_entries)
1885 head = 0;
1886
1887 /*
1888 * We are flying near dragons again.
1889 *
1890 * We hold a reference to the request in execlist_port[]
1891 * but no more than that. We are operating in softirq
1892 * context and so cannot hold any mutex or sleep. That
1893 * prevents us stopping the requests we are processing
1894 * in port[] from being retired simultaneously (the
1895 * breadcrumb will be complete before we see the
1896 * context-switch). As we only hold the reference to the
1897 * request, any pointer chasing underneath the request
1898 * is subject to a potential use-after-free. Thus we
1899 * store all of the bookkeeping within port[] as
1900 * required, and avoid using unguarded pointers beneath
1901 * request itself. The same applies to the atomic
1902 * status notifier.
1903 */
1904
1905 csb = csb_read(engine, buf + head);
1906 ENGINE_TRACE(engine, "csb[%d]: status=0x%08x:0x%08x\n",
1907 head, upper_32_bits(csb), lower_32_bits(csb));
1908
1909 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
1910 promote = xehp_csb_parse(csb);
1911 else if (GRAPHICS_VER(engine->i915) >= 12)
1912 promote = gen12_csb_parse(csb);
1913 else
1914 promote = gen8_csb_parse(csb);
1915 if (promote) {
1916 struct i915_request * const *old = execlists->active;
1917
1918 if (GEM_WARN_ON(!*execlists->pending)) {
1919 execlists->error_interrupt |= ERROR_CSB;
1920 break;
1921 }
1922
1923 ring_set_paused(engine, 0);
1924
1925 /* Point active to the new ELSP; prevent overwriting */
1926 WRITE_ONCE(execlists->active, execlists->pending);
1927 smp_wmb(); /* notify execlists_active() */
1928
1929 /* cancel old inflight, prepare for switch */
1930 trace_ports(execlists, "preempted", old);
1931 while (*old)
1932 *inactive++ = *old++;
1933
1934 /* switch pending to inflight */
1935 GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
1936 copy_ports(execlists->inflight,
1937 execlists->pending,
1938 execlists_num_ports(execlists));
1939 smp_wmb(); /* complete the seqlock */
1940 WRITE_ONCE(execlists->active, execlists->inflight);
1941
1942 /* XXX Magic delay for tgl */
1943 ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
1944
1945 WRITE_ONCE(execlists->pending[0], NULL);
1946 } else {
1947 if (GEM_WARN_ON(!*execlists->active)) {
1948 execlists->error_interrupt |= ERROR_CSB;
1949 break;
1950 }
1951
1952 /* port0 completed, advanced to port1 */
1953 trace_ports(execlists, "completed", execlists->active);
1954
1955 /*
1956 * We rely on the hardware being strongly
1957 * ordered, that the breadcrumb write is
1958 * coherent (visible from the CPU) before the
1959 * user interrupt is processed. One might assume
1960 * that the breadcrumb write being before the
1961 * user interrupt and the CS event for the context
1962 * switch would therefore be before the CS event
1963 * itself...
1964 */
1965 if (GEM_SHOW_DEBUG() &&
1966 !__i915_request_is_complete(*execlists->active)) {
1967 struct i915_request *rq = *execlists->active;
1968 const u32 *regs __maybe_unused =
1969 rq->context->lrc_reg_state;
1970
1971 ENGINE_TRACE(engine,
1972 "context completed before request!\n");
1973 ENGINE_TRACE(engine,
1974 "ring:{start:0x%08x, head:%04x, tail:%04x, ctl:%08x, mode:%08x}\n",
1975 ENGINE_READ(engine, RING_START),
1976 ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR,
1977 ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR,
1978 ENGINE_READ(engine, RING_CTL),
1979 ENGINE_READ(engine, RING_MI_MODE));
1980 ENGINE_TRACE(engine,
1981 "rq:{start:%08x, head:%04x, tail:%04x, seqno:%llx:%d, hwsp:%d}, ",
1982 i915_ggtt_offset(rq->ring->vma),
1983 rq->head, rq->tail,
1984 rq->fence.context,
1985 lower_32_bits(rq->fence.seqno),
1986 hwsp_seqno(rq));
1987 ENGINE_TRACE(engine,
1988 "ctx:{start:%08x, head:%04x, tail:%04x}, ",
1989 regs[CTX_RING_START],
1990 regs[CTX_RING_HEAD],
1991 regs[CTX_RING_TAIL]);
1992 }
1993
1994 *inactive++ = *execlists->active++;
1995
1996 GEM_BUG_ON(execlists->active - execlists->inflight >
1997 execlists_num_ports(execlists));
1998 }
1999 } while (head != tail);
2000
2001 /*
2002 * Gen11 has proven to fail wrt global observation point between
2003 * entry and tail update, failing on the ordering and thus
2004 * we see an old entry in the context status buffer.
2005 *
2006 * Forcibly evict out entries for the next gpu csb update,
2007 * to increase the odds that we get a fresh entries with non
2008 * working hardware. The cost for doing so comes out mostly with
2009 * the wash as hardware, working or not, will need to do the
2010 * invalidation before.
2011 */
2012 drm_clflush_virt_range(&buf[0], num_entries * sizeof(buf[0]));
2013
2014 /*
2015 * We assume that any event reflects a change in context flow
2016 * and merits a fresh timeslice. We reinstall the timer after
2017 * inspecting the queue to see if we need to resumbit.
2018 */
2019 if (*prev != *execlists->active) { /* elide lite-restores */
2020 /*
2021 * Note the inherent discrepancy between the HW runtime,
2022 * recorded as part of the context switch, and the CPU
2023 * adjustment for active contexts. We have to hope that
2024 * the delay in processing the CS event is very small
2025 * and consistent. It works to our advantage to have
2026 * the CPU adjustment _undershoot_ (i.e. start later than)
2027 * the CS timestamp so we never overreport the runtime
2028 * and correct overselves later when updating from HW.
2029 */
2030 if (*prev)
2031 lrc_runtime_stop((*prev)->context);
2032 if (*execlists->active)
2033 lrc_runtime_start((*execlists->active)->context);
2034 new_timeslice(execlists);
2035 }
2036
2037 return inactive;
2038 }
2039
2040 static void post_process_csb(struct i915_request **port,
2041 struct i915_request **last)
2042 {
2043 while (port != last)
2044 execlists_schedule_out(*port++);
2045 }
2046
2047 static void __execlists_hold(struct i915_request *rq)
2048 {
2049 LIST_HEAD(list);
2050
2051 do {
2052 struct i915_dependency *p;
2053
2054 if (i915_request_is_active(rq))
2055 __i915_request_unsubmit(rq);
2056
2057 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2058 list_move_tail(&rq->sched.link,
2059 &rq->engine->sched_engine->hold);
2060 i915_request_set_hold(rq);
2061 RQ_TRACE(rq, "on hold\n");
2062
2063 for_each_waiter(p, rq) {
2064 struct i915_request *w =
2065 container_of(p->waiter, typeof(*w), sched);
2066
2067 if (p->flags & I915_DEPENDENCY_WEAK)
2068 continue;
2069
2070 /* Leave semaphores spinning on the other engines */
2071 if (w->engine != rq->engine)
2072 continue;
2073
2074 if (!i915_request_is_ready(w))
2075 continue;
2076
2077 if (__i915_request_is_complete(w))
2078 continue;
2079
2080 if (i915_request_on_hold(w))
2081 continue;
2082
2083 list_move_tail(&w->sched.link, &list);
2084 }
2085
2086 rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2087 } while (rq);
2088 }
2089
2090 static bool execlists_hold(struct intel_engine_cs *engine,
2091 struct i915_request *rq)
2092 {
2093 if (i915_request_on_hold(rq))
2094 return false;
2095
2096 spin_lock_irq(&engine->sched_engine->lock);
2097
2098 if (__i915_request_is_complete(rq)) { /* too late! */
2099 rq = NULL;
2100 goto unlock;
2101 }
2102
2103 /*
2104 * Transfer this request onto the hold queue to prevent it
2105 * being resumbitted to HW (and potentially completed) before we have
2106 * released it. Since we may have already submitted following
2107 * requests, we need to remove those as well.
2108 */
2109 GEM_BUG_ON(i915_request_on_hold(rq));
2110 GEM_BUG_ON(rq->engine != engine);
2111 __execlists_hold(rq);
2112 GEM_BUG_ON(list_empty(&engine->sched_engine->hold));
2113
2114 unlock:
2115 spin_unlock_irq(&engine->sched_engine->lock);
2116 return rq;
2117 }
2118
2119 static bool hold_request(const struct i915_request *rq)
2120 {
2121 struct i915_dependency *p;
2122 bool result = false;
2123
2124 /*
2125 * If one of our ancestors is on hold, we must also be on hold,
2126 * otherwise we will bypass it and execute before it.
2127 */
2128 rcu_read_lock();
2129 for_each_signaler(p, rq) {
2130 const struct i915_request *s =
2131 container_of(p->signaler, typeof(*s), sched);
2132
2133 if (s->engine != rq->engine)
2134 continue;
2135
2136 result = i915_request_on_hold(s);
2137 if (result)
2138 break;
2139 }
2140 rcu_read_unlock();
2141
2142 return result;
2143 }
2144
2145 static void __execlists_unhold(struct i915_request *rq)
2146 {
2147 LIST_HEAD(list);
2148
2149 do {
2150 struct i915_dependency *p;
2151
2152 RQ_TRACE(rq, "hold release\n");
2153
2154 GEM_BUG_ON(!i915_request_on_hold(rq));
2155 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
2156
2157 i915_request_clear_hold(rq);
2158 list_move_tail(&rq->sched.link,
2159 i915_sched_lookup_priolist(rq->engine->sched_engine,
2160 rq_prio(rq)));
2161 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2162
2163 /* Also release any children on this engine that are ready */
2164 for_each_waiter(p, rq) {
2165 struct i915_request *w =
2166 container_of(p->waiter, typeof(*w), sched);
2167
2168 if (p->flags & I915_DEPENDENCY_WEAK)
2169 continue;
2170
2171 if (w->engine != rq->engine)
2172 continue;
2173
2174 if (!i915_request_on_hold(w))
2175 continue;
2176
2177 /* Check that no other parents are also on hold */
2178 if (hold_request(w))
2179 continue;
2180
2181 list_move_tail(&w->sched.link, &list);
2182 }
2183
2184 rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2185 } while (rq);
2186 }
2187
2188 static void execlists_unhold(struct intel_engine_cs *engine,
2189 struct i915_request *rq)
2190 {
2191 spin_lock_irq(&engine->sched_engine->lock);
2192
2193 /*
2194 * Move this request back to the priority queue, and all of its
2195 * children and grandchildren that were suspended along with it.
2196 */
2197 __execlists_unhold(rq);
2198
2199 if (rq_prio(rq) > engine->sched_engine->queue_priority_hint) {
2200 engine->sched_engine->queue_priority_hint = rq_prio(rq);
2201 tasklet_hi_schedule(&engine->sched_engine->tasklet);
2202 }
2203
2204 spin_unlock_irq(&engine->sched_engine->lock);
2205 }
2206
2207 struct execlists_capture {
2208 struct work_struct work;
2209 struct i915_request *rq;
2210 struct i915_gpu_coredump *error;
2211 };
2212
2213 static void execlists_capture_work(struct work_struct *work)
2214 {
2215 struct execlists_capture *cap = container_of(work, typeof(*cap), work);
2216 const gfp_t gfp = __GFP_KSWAPD_RECLAIM | __GFP_RETRY_MAYFAIL |
2217 __GFP_NOWARN;
2218 struct intel_engine_cs *engine = cap->rq->engine;
2219 struct intel_gt_coredump *gt = cap->error->gt;
2220 struct intel_engine_capture_vma *vma;
2221
2222 /* Compress all the objects attached to the request, slow! */
2223 vma = intel_engine_coredump_add_request(gt->engine, cap->rq, gfp);
2224 if (vma) {
2225 struct i915_vma_compress *compress =
2226 i915_vma_capture_prepare(gt);
2227
2228 intel_engine_coredump_add_vma(gt->engine, vma, compress);
2229 i915_vma_capture_finish(gt, compress);
2230 }
2231
2232 gt->simulated = gt->engine->simulated;
2233 cap->error->simulated = gt->simulated;
2234
2235 /* Publish the error state, and announce it to the world */
2236 i915_error_state_store(cap->error);
2237 i915_gpu_coredump_put(cap->error);
2238
2239 /* Return this request and all that depend upon it for signaling */
2240 execlists_unhold(engine, cap->rq);
2241 i915_request_put(cap->rq);
2242
2243 kfree(cap);
2244 }
2245
2246 static struct execlists_capture *capture_regs(struct intel_engine_cs *engine)
2247 {
2248 const gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
2249 struct execlists_capture *cap;
2250
2251 cap = kmalloc(sizeof(*cap), gfp);
2252 if (!cap)
2253 return NULL;
2254
2255 cap->error = i915_gpu_coredump_alloc(engine->i915, gfp);
2256 if (!cap->error)
2257 goto err_cap;
2258
2259 cap->error->gt = intel_gt_coredump_alloc(engine->gt, gfp, CORE_DUMP_FLAG_NONE);
2260 if (!cap->error->gt)
2261 goto err_gpu;
2262
2263 cap->error->gt->engine = intel_engine_coredump_alloc(engine, gfp, CORE_DUMP_FLAG_NONE);
2264 if (!cap->error->gt->engine)
2265 goto err_gt;
2266
2267 cap->error->gt->engine->hung = true;
2268
2269 return cap;
2270
2271 err_gt:
2272 kfree(cap->error->gt);
2273 err_gpu:
2274 kfree(cap->error);
2275 err_cap:
2276 kfree(cap);
2277 return NULL;
2278 }
2279
2280 static struct i915_request *
2281 active_context(struct intel_engine_cs *engine, u32 ccid)
2282 {
2283 const struct intel_engine_execlists * const el = &engine->execlists;
2284 struct i915_request * const *port, *rq;
2285
2286 /*
2287 * Use the most recent result from process_csb(), but just in case
2288 * we trigger an error (via interrupt) before the first CS event has
2289 * been written, peek at the next submission.
2290 */
2291
2292 for (port = el->active; (rq = *port); port++) {
2293 if (rq->context->lrc.ccid == ccid) {
2294 ENGINE_TRACE(engine,
2295 "ccid:%x found at active:%zd\n",
2296 ccid, port - el->active);
2297 return rq;
2298 }
2299 }
2300
2301 for (port = el->pending; (rq = *port); port++) {
2302 if (rq->context->lrc.ccid == ccid) {
2303 ENGINE_TRACE(engine,
2304 "ccid:%x found at pending:%zd\n",
2305 ccid, port - el->pending);
2306 return rq;
2307 }
2308 }
2309
2310 ENGINE_TRACE(engine, "ccid:%x not found\n", ccid);
2311 return NULL;
2312 }
2313
2314 static u32 active_ccid(struct intel_engine_cs *engine)
2315 {
2316 return ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI);
2317 }
2318
2319 static void execlists_capture(struct intel_engine_cs *engine)
2320 {
2321 struct execlists_capture *cap;
2322
2323 if (!IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR))
2324 return;
2325
2326 /*
2327 * We need to _quickly_ capture the engine state before we reset.
2328 * We are inside an atomic section (softirq) here and we are delaying
2329 * the forced preemption event.
2330 */
2331 cap = capture_regs(engine);
2332 if (!cap)
2333 return;
2334
2335 spin_lock_irq(&engine->sched_engine->lock);
2336 cap->rq = active_context(engine, active_ccid(engine));
2337 if (cap->rq) {
2338 cap->rq = active_request(cap->rq->context->timeline, cap->rq);
2339 cap->rq = i915_request_get_rcu(cap->rq);
2340 }
2341 spin_unlock_irq(&engine->sched_engine->lock);
2342 if (!cap->rq)
2343 goto err_free;
2344
2345 /*
2346 * Remove the request from the execlists queue, and take ownership
2347 * of the request. We pass it to our worker who will _slowly_ compress
2348 * all the pages the _user_ requested for debugging their batch, after
2349 * which we return it to the queue for signaling.
2350 *
2351 * By removing them from the execlists queue, we also remove the
2352 * requests from being processed by __unwind_incomplete_requests()
2353 * during the intel_engine_reset(), and so they will *not* be replayed
2354 * afterwards.
2355 *
2356 * Note that because we have not yet reset the engine at this point,
2357 * it is possible for the request that we have identified as being
2358 * guilty, did in fact complete and we will then hit an arbitration
2359 * point allowing the outstanding preemption to succeed. The likelihood
2360 * of that is very low (as capturing of the engine registers should be
2361 * fast enough to run inside an irq-off atomic section!), so we will
2362 * simply hold that request accountable for being non-preemptible
2363 * long enough to force the reset.
2364 */
2365 if (!execlists_hold(engine, cap->rq))
2366 goto err_rq;
2367
2368 INIT_WORK(&cap->work, execlists_capture_work);
2369 schedule_work(&cap->work);
2370 return;
2371
2372 err_rq:
2373 i915_request_put(cap->rq);
2374 err_free:
2375 i915_gpu_coredump_put(cap->error);
2376 kfree(cap);
2377 }
2378
2379 static void execlists_reset(struct intel_engine_cs *engine, const char *msg)
2380 {
2381 const unsigned int bit = I915_RESET_ENGINE + engine->id;
2382 unsigned long *lock = &engine->gt->reset.flags;
2383
2384 if (!intel_has_reset_engine(engine->gt))
2385 return;
2386
2387 if (test_and_set_bit(bit, lock))
2388 return;
2389
2390 ENGINE_TRACE(engine, "reset for %s\n", msg);
2391
2392 /* Mark this tasklet as disabled to avoid waiting for it to complete */
2393 tasklet_disable_nosync(&engine->sched_engine->tasklet);
2394
2395 ring_set_paused(engine, 1); /* Freeze the current request in place */
2396 execlists_capture(engine);
2397 intel_engine_reset(engine, msg);
2398
2399 tasklet_enable(&engine->sched_engine->tasklet);
2400 clear_and_wake_up_bit(bit, lock);
2401 }
2402
2403 static bool preempt_timeout(const struct intel_engine_cs *const engine)
2404 {
2405 const struct timer_list *t = &engine->execlists.preempt;
2406
2407 if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT)
2408 return false;
2409
2410 if (!timer_expired(t))
2411 return false;
2412
2413 return engine->execlists.pending[0];
2414 }
2415
2416 /*
2417 * Check the unread Context Status Buffers and manage the submission of new
2418 * contexts to the ELSP accordingly.
2419 */
2420 static void execlists_submission_tasklet(struct tasklet_struct *t)
2421 {
2422 struct i915_sched_engine *sched_engine =
2423 from_tasklet(sched_engine, t, tasklet);
2424 struct intel_engine_cs * const engine = sched_engine->private_data;
2425 struct i915_request *post[2 * EXECLIST_MAX_PORTS];
2426 struct i915_request **inactive;
2427
2428 rcu_read_lock();
2429 inactive = process_csb(engine, post);
2430 GEM_BUG_ON(inactive - post > ARRAY_SIZE(post));
2431
2432 if (unlikely(preempt_timeout(engine))) {
2433 const struct i915_request *rq = *engine->execlists.active;
2434
2435 /*
2436 * If after the preempt-timeout expired, we are still on the
2437 * same active request/context as before we initiated the
2438 * preemption, reset the engine.
2439 *
2440 * However, if we have processed a CS event to switch contexts,
2441 * but not yet processed the CS event for the pending
2442 * preemption, reset the timer allowing the new context to
2443 * gracefully exit.
2444 */
2445 cancel_timer(&engine->execlists.preempt);
2446 if (rq == engine->execlists.preempt_target)
2447 engine->execlists.error_interrupt |= ERROR_PREEMPT;
2448 else
2449 set_timer_ms(&engine->execlists.preempt,
2450 active_preempt_timeout(engine, rq));
2451 }
2452
2453 if (unlikely(READ_ONCE(engine->execlists.error_interrupt))) {
2454 const char *msg;
2455
2456 /* Generate the error message in priority wrt to the user! */
2457 if (engine->execlists.error_interrupt & GENMASK(15, 0))
2458 msg = "CS error"; /* thrown by a user payload */
2459 else if (engine->execlists.error_interrupt & ERROR_CSB)
2460 msg = "invalid CSB event";
2461 else if (engine->execlists.error_interrupt & ERROR_PREEMPT)
2462 msg = "preemption time out";
2463 else
2464 msg = "internal error";
2465
2466 engine->execlists.error_interrupt = 0;
2467 execlists_reset(engine, msg);
2468 }
2469
2470 if (!engine->execlists.pending[0]) {
2471 execlists_dequeue_irq(engine);
2472 start_timeslice(engine);
2473 }
2474
2475 post_process_csb(post, inactive);
2476 rcu_read_unlock();
2477 }
2478
2479 static void execlists_irq_handler(struct intel_engine_cs *engine, u16 iir)
2480 {
2481 bool tasklet = false;
2482
2483 if (unlikely(iir & GT_CS_MASTER_ERROR_INTERRUPT)) {
2484 u32 eir;
2485
2486 /* Upper 16b are the enabling mask, rsvd for internal errors */
2487 eir = ENGINE_READ(engine, RING_EIR) & GENMASK(15, 0);
2488 ENGINE_TRACE(engine, "CS error: %x\n", eir);
2489
2490 /* Disable the error interrupt until after the reset */
2491 if (likely(eir)) {
2492 ENGINE_WRITE(engine, RING_EMR, ~0u);
2493 ENGINE_WRITE(engine, RING_EIR, eir);
2494 WRITE_ONCE(engine->execlists.error_interrupt, eir);
2495 tasklet = true;
2496 }
2497 }
2498
2499 if (iir & GT_WAIT_SEMAPHORE_INTERRUPT) {
2500 WRITE_ONCE(engine->execlists.yield,
2501 ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI));
2502 ENGINE_TRACE(engine, "semaphore yield: %08x\n",
2503 engine->execlists.yield);
2504 if (del_timer(&engine->execlists.timer))
2505 tasklet = true;
2506 }
2507
2508 if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
2509 tasklet = true;
2510
2511 if (iir & GT_RENDER_USER_INTERRUPT)
2512 intel_engine_signal_breadcrumbs(engine);
2513
2514 if (tasklet)
2515 tasklet_hi_schedule(&engine->sched_engine->tasklet);
2516 }
2517
2518 static void __execlists_kick(struct intel_engine_execlists *execlists)
2519 {
2520 struct intel_engine_cs *engine =
2521 container_of(execlists, typeof(*engine), execlists);
2522
2523 /* Kick the tasklet for some interrupt coalescing and reset handling */
2524 tasklet_hi_schedule(&engine->sched_engine->tasklet);
2525 }
2526
2527 #define execlists_kick(t, member) \
2528 __execlists_kick(container_of(t, struct intel_engine_execlists, member))
2529
2530 static void execlists_timeslice(struct timer_list *timer)
2531 {
2532 execlists_kick(timer, timer);
2533 }
2534
2535 static void execlists_preempt(struct timer_list *timer)
2536 {
2537 execlists_kick(timer, preempt);
2538 }
2539
2540 static void queue_request(struct intel_engine_cs *engine,
2541 struct i915_request *rq)
2542 {
2543 GEM_BUG_ON(!list_empty(&rq->sched.link));
2544 list_add_tail(&rq->sched.link,
2545 i915_sched_lookup_priolist(engine->sched_engine,
2546 rq_prio(rq)));
2547 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2548 }
2549
2550 static bool submit_queue(struct intel_engine_cs *engine,
2551 const struct i915_request *rq)
2552 {
2553 struct i915_sched_engine *sched_engine = engine->sched_engine;
2554
2555 if (rq_prio(rq) <= sched_engine->queue_priority_hint)
2556 return false;
2557
2558 sched_engine->queue_priority_hint = rq_prio(rq);
2559 return true;
2560 }
2561
2562 static bool ancestor_on_hold(const struct intel_engine_cs *engine,
2563 const struct i915_request *rq)
2564 {
2565 GEM_BUG_ON(i915_request_on_hold(rq));
2566 return !list_empty(&engine->sched_engine->hold) && hold_request(rq);
2567 }
2568
2569 static void execlists_submit_request(struct i915_request *request)
2570 {
2571 struct intel_engine_cs *engine = request->engine;
2572 unsigned long flags;
2573
2574 /* Will be called from irq-context when using foreign fences. */
2575 spin_lock_irqsave(&engine->sched_engine->lock, flags);
2576
2577 if (unlikely(ancestor_on_hold(engine, request))) {
2578 RQ_TRACE(request, "ancestor on hold\n");
2579 list_add_tail(&request->sched.link,
2580 &engine->sched_engine->hold);
2581 i915_request_set_hold(request);
2582 } else {
2583 queue_request(engine, request);
2584
2585 GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine));
2586 GEM_BUG_ON(list_empty(&request->sched.link));
2587
2588 if (submit_queue(engine, request))
2589 __execlists_kick(&engine->execlists);
2590 }
2591
2592 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2593 }
2594
2595 static int
2596 __execlists_context_pre_pin(struct intel_context *ce,
2597 struct intel_engine_cs *engine,
2598 struct i915_gem_ww_ctx *ww, void **vaddr)
2599 {
2600 int err;
2601
2602 err = lrc_pre_pin(ce, engine, ww, vaddr);
2603 if (err)
2604 return err;
2605
2606 if (!__test_and_set_bit(CONTEXT_INIT_BIT, &ce->flags)) {
2607 lrc_init_state(ce, engine, *vaddr);
2608
2609 __i915_gem_object_flush_map(ce->state->obj, 0, engine->context_size);
2610 }
2611
2612 return 0;
2613 }
2614
2615 static int execlists_context_pre_pin(struct intel_context *ce,
2616 struct i915_gem_ww_ctx *ww,
2617 void **vaddr)
2618 {
2619 return __execlists_context_pre_pin(ce, ce->engine, ww, vaddr);
2620 }
2621
2622 static int execlists_context_pin(struct intel_context *ce, void *vaddr)
2623 {
2624 return lrc_pin(ce, ce->engine, vaddr);
2625 }
2626
2627 static int execlists_context_alloc(struct intel_context *ce)
2628 {
2629 return lrc_alloc(ce, ce->engine);
2630 }
2631
2632 static void execlists_context_cancel_request(struct intel_context *ce,
2633 struct i915_request *rq)
2634 {
2635 struct intel_engine_cs *engine = NULL;
2636
2637 i915_request_active_engine(rq, &engine);
2638
2639 if (engine && intel_engine_pulse(engine))
2640 intel_gt_handle_error(engine->gt, engine->mask, 0,
2641 "request cancellation by %s",
2642 current->comm);
2643 }
2644
2645 static struct intel_context *
2646 execlists_create_parallel(struct intel_engine_cs **engines,
2647 unsigned int num_siblings,
2648 unsigned int width)
2649 {
2650 struct intel_context *parent = NULL, *ce, *err;
2651 int i;
2652
2653 GEM_BUG_ON(num_siblings != 1);
2654
2655 for (i = 0; i < width; ++i) {
2656 ce = intel_context_create(engines[i]);
2657 if (IS_ERR(ce)) {
2658 err = ce;
2659 goto unwind;
2660 }
2661
2662 if (i == 0)
2663 parent = ce;
2664 else
2665 intel_context_bind_parent_child(parent, ce);
2666 }
2667
2668 parent->parallel.fence_context = dma_fence_context_alloc(1);
2669
2670 intel_context_set_nopreempt(parent);
2671 for_each_child(parent, ce)
2672 intel_context_set_nopreempt(ce);
2673
2674 return parent;
2675
2676 unwind:
2677 if (parent)
2678 intel_context_put(parent);
2679 return err;
2680 }
2681
2682 static const struct intel_context_ops execlists_context_ops = {
2683 .flags = COPS_HAS_INFLIGHT | COPS_RUNTIME_CYCLES,
2684
2685 .alloc = execlists_context_alloc,
2686
2687 .cancel_request = execlists_context_cancel_request,
2688
2689 .pre_pin = execlists_context_pre_pin,
2690 .pin = execlists_context_pin,
2691 .unpin = lrc_unpin,
2692 .post_unpin = lrc_post_unpin,
2693
2694 .enter = intel_context_enter_engine,
2695 .exit = intel_context_exit_engine,
2696
2697 .reset = lrc_reset,
2698 .destroy = lrc_destroy,
2699
2700 .create_parallel = execlists_create_parallel,
2701 .create_virtual = execlists_create_virtual,
2702 };
2703
2704 static int emit_pdps(struct i915_request *rq)
2705 {
2706 const struct intel_engine_cs * const engine = rq->engine;
2707 struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(rq->context->vm);
2708 int err, i;
2709 u32 *cs;
2710
2711 GEM_BUG_ON(intel_vgpu_active(rq->engine->i915));
2712
2713 /*
2714 * Beware ye of the dragons, this sequence is magic!
2715 *
2716 * Small changes to this sequence can cause anything from
2717 * GPU hangs to forcewake errors and machine lockups!
2718 */
2719
2720 cs = intel_ring_begin(rq, 2);
2721 if (IS_ERR(cs))
2722 return PTR_ERR(cs);
2723
2724 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2725 *cs++ = MI_NOOP;
2726 intel_ring_advance(rq, cs);
2727
2728 /* Flush any residual operations from the context load */
2729 err = engine->emit_flush(rq, EMIT_FLUSH);
2730 if (err)
2731 return err;
2732
2733 /* Magic required to prevent forcewake errors! */
2734 err = engine->emit_flush(rq, EMIT_INVALIDATE);
2735 if (err)
2736 return err;
2737
2738 cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
2739 if (IS_ERR(cs))
2740 return PTR_ERR(cs);
2741
2742 /* Ensure the LRI have landed before we invalidate & continue */
2743 *cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
2744 for (i = GEN8_3LVL_PDPES; i--; ) {
2745 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
2746 u32 base = engine->mmio_base;
2747
2748 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
2749 *cs++ = upper_32_bits(pd_daddr);
2750 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
2751 *cs++ = lower_32_bits(pd_daddr);
2752 }
2753 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2754 intel_ring_advance(rq, cs);
2755
2756 intel_ring_advance(rq, cs);
2757
2758 return 0;
2759 }
2760
2761 static int execlists_request_alloc(struct i915_request *request)
2762 {
2763 int ret;
2764
2765 GEM_BUG_ON(!intel_context_is_pinned(request->context));
2766
2767 /*
2768 * Flush enough space to reduce the likelihood of waiting after
2769 * we start building the request - in which case we will just
2770 * have to repeat work.
2771 */
2772 request->reserved_space += EXECLISTS_REQUEST_SIZE;
2773
2774 /*
2775 * Note that after this point, we have committed to using
2776 * this request as it is being used to both track the
2777 * state of engine initialisation and liveness of the
2778 * golden renderstate above. Think twice before you try
2779 * to cancel/unwind this request now.
2780 */
2781
2782 if (!i915_vm_is_4lvl(request->context->vm)) {
2783 ret = emit_pdps(request);
2784 if (ret)
2785 return ret;
2786 }
2787
2788 /* Unconditionally invalidate GPU caches and TLBs. */
2789 ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
2790 if (ret)
2791 return ret;
2792
2793 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
2794 return 0;
2795 }
2796
2797 static void reset_csb_pointers(struct intel_engine_cs *engine)
2798 {
2799 struct intel_engine_execlists * const execlists = &engine->execlists;
2800 const unsigned int reset_value = execlists->csb_size - 1;
2801
2802 ring_set_paused(engine, 0);
2803
2804 /*
2805 * Sometimes Icelake forgets to reset its pointers on a GPU reset.
2806 * Bludgeon them with a mmio update to be sure.
2807 */
2808 ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2809 0xffff << 16 | reset_value << 8 | reset_value);
2810 ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2811
2812 /*
2813 * After a reset, the HW starts writing into CSB entry [0]. We
2814 * therefore have to set our HEAD pointer back one entry so that
2815 * the *first* entry we check is entry 0. To complicate this further,
2816 * as we don't wait for the first interrupt after reset, we have to
2817 * fake the HW write to point back to the last entry so that our
2818 * inline comparison of our cached head position against the last HW
2819 * write works even before the first interrupt.
2820 */
2821 execlists->csb_head = reset_value;
2822 WRITE_ONCE(*execlists->csb_write, reset_value);
2823 wmb(); /* Make sure this is visible to HW (paranoia?) */
2824
2825 /* Check that the GPU does indeed update the CSB entries! */
2826 memset(execlists->csb_status, -1, (reset_value + 1) * sizeof(u64));
2827 drm_clflush_virt_range(execlists->csb_status,
2828 execlists->csb_size *
2829 sizeof(execlists->csb_status));
2830
2831 /* Once more for luck and our trusty paranoia */
2832 ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2833 0xffff << 16 | reset_value << 8 | reset_value);
2834 ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2835
2836 GEM_BUG_ON(READ_ONCE(*execlists->csb_write) != reset_value);
2837 }
2838
2839 static void sanitize_hwsp(struct intel_engine_cs *engine)
2840 {
2841 struct intel_timeline *tl;
2842
2843 list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
2844 intel_timeline_reset_seqno(tl);
2845 }
2846
2847 static void execlists_sanitize(struct intel_engine_cs *engine)
2848 {
2849 GEM_BUG_ON(execlists_active(&engine->execlists));
2850
2851 /*
2852 * Poison residual state on resume, in case the suspend didn't!
2853 *
2854 * We have to assume that across suspend/resume (or other loss
2855 * of control) that the contents of our pinned buffers has been
2856 * lost, replaced by garbage. Since this doesn't always happen,
2857 * let's poison such state so that we more quickly spot when
2858 * we falsely assume it has been preserved.
2859 */
2860 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
2861 memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
2862
2863 reset_csb_pointers(engine);
2864
2865 /*
2866 * The kernel_context HWSP is stored in the status_page. As above,
2867 * that may be lost on resume/initialisation, and so we need to
2868 * reset the value in the HWSP.
2869 */
2870 sanitize_hwsp(engine);
2871
2872 /* And scrub the dirty cachelines for the HWSP */
2873 drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE);
2874
2875 intel_engine_reset_pinned_contexts(engine);
2876 }
2877
2878 static void enable_error_interrupt(struct intel_engine_cs *engine)
2879 {
2880 u32 status;
2881
2882 engine->execlists.error_interrupt = 0;
2883 ENGINE_WRITE(engine, RING_EMR, ~0u);
2884 ENGINE_WRITE(engine, RING_EIR, ~0u); /* clear all existing errors */
2885
2886 status = ENGINE_READ(engine, RING_ESR);
2887 if (unlikely(status)) {
2888 drm_err(&engine->i915->drm,
2889 "engine '%s' resumed still in error: %08x\n",
2890 engine->name, status);
2891 __intel_gt_reset(engine->gt, engine->mask);
2892 }
2893
2894 /*
2895 * On current gen8+, we have 2 signals to play with
2896 *
2897 * - I915_ERROR_INSTUCTION (bit 0)
2898 *
2899 * Generate an error if the command parser encounters an invalid
2900 * instruction
2901 *
2902 * This is a fatal error.
2903 *
2904 * - CP_PRIV (bit 2)
2905 *
2906 * Generate an error on privilege violation (where the CP replaces
2907 * the instruction with a no-op). This also fires for writes into
2908 * read-only scratch pages.
2909 *
2910 * This is a non-fatal error, parsing continues.
2911 *
2912 * * there are a few others defined for odd HW that we do not use
2913 *
2914 * Since CP_PRIV fires for cases where we have chosen to ignore the
2915 * error (as the HW is validating and suppressing the mistakes), we
2916 * only unmask the instruction error bit.
2917 */
2918 ENGINE_WRITE(engine, RING_EMR, ~I915_ERROR_INSTRUCTION);
2919 }
2920
2921 static void enable_execlists(struct intel_engine_cs *engine)
2922 {
2923 u32 mode;
2924
2925 assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
2926
2927 intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
2928
2929 if (GRAPHICS_VER(engine->i915) >= 11)
2930 mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE);
2931 else
2932 mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE);
2933 ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode);
2934
2935 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
2936
2937 ENGINE_WRITE_FW(engine,
2938 RING_HWS_PGA,
2939 i915_ggtt_offset(engine->status_page.vma));
2940 ENGINE_POSTING_READ(engine, RING_HWS_PGA);
2941
2942 enable_error_interrupt(engine);
2943 }
2944
2945 static int execlists_resume(struct intel_engine_cs *engine)
2946 {
2947 intel_mocs_init_engine(engine);
2948 intel_breadcrumbs_reset(engine->breadcrumbs);
2949
2950 enable_execlists(engine);
2951
2952 if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
2953 xehp_enable_ccs_engines(engine);
2954
2955 return 0;
2956 }
2957
2958 static void execlists_reset_prepare(struct intel_engine_cs *engine)
2959 {
2960 ENGINE_TRACE(engine, "depth<-%d\n",
2961 atomic_read(&engine->sched_engine->tasklet.count));
2962
2963 /*
2964 * Prevent request submission to the hardware until we have
2965 * completed the reset in i915_gem_reset_finish(). If a request
2966 * is completed by one engine, it may then queue a request
2967 * to a second via its execlists->tasklet *just* as we are
2968 * calling engine->resume() and also writing the ELSP.
2969 * Turning off the execlists->tasklet until the reset is over
2970 * prevents the race.
2971 */
2972 __tasklet_disable_sync_once(&engine->sched_engine->tasklet);
2973 GEM_BUG_ON(!reset_in_progress(engine));
2974
2975 /*
2976 * We stop engines, otherwise we might get failed reset and a
2977 * dead gpu (on elk). Also as modern gpu as kbl can suffer
2978 * from system hang if batchbuffer is progressing when
2979 * the reset is issued, regardless of READY_TO_RESET ack.
2980 * Thus assume it is best to stop engines on all gens
2981 * where we have a gpu reset.
2982 *
2983 * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
2984 *
2985 * FIXME: Wa for more modern gens needs to be validated
2986 */
2987 ring_set_paused(engine, 1);
2988 intel_engine_stop_cs(engine);
2989
2990 /*
2991 * Wa_22011802037:gen11/gen12: In addition to stopping the cs, we need
2992 * to wait for any pending mi force wakeups
2993 */
2994 if (IS_GRAPHICS_VER(engine->i915, 11, 12))
2995 intel_engine_wait_for_pending_mi_fw(engine);
2996
2997 engine->execlists.reset_ccid = active_ccid(engine);
2998 }
2999
3000 static struct i915_request **
3001 reset_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
3002 {
3003 struct intel_engine_execlists * const execlists = &engine->execlists;
3004
3005 drm_clflush_virt_range(execlists->csb_write,
3006 sizeof(execlists->csb_write[0]));
3007
3008 inactive = process_csb(engine, inactive); /* drain preemption events */
3009
3010 /* Following the reset, we need to reload the CSB read/write pointers */
3011 reset_csb_pointers(engine);
3012
3013 return inactive;
3014 }
3015
3016 static void
3017 execlists_reset_active(struct intel_engine_cs *engine, bool stalled)
3018 {
3019 struct intel_context *ce;
3020 struct i915_request *rq;
3021 u32 head;
3022
3023 /*
3024 * Save the currently executing context, even if we completed
3025 * its request, it was still running at the time of the
3026 * reset and will have been clobbered.
3027 */
3028 rq = active_context(engine, engine->execlists.reset_ccid);
3029 if (!rq)
3030 return;
3031
3032 ce = rq->context;
3033 GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
3034
3035 if (__i915_request_is_complete(rq)) {
3036 /* Idle context; tidy up the ring so we can restart afresh */
3037 head = intel_ring_wrap(ce->ring, rq->tail);
3038 goto out_replay;
3039 }
3040
3041 /* We still have requests in-flight; the engine should be active */
3042 GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
3043
3044 /* Context has requests still in-flight; it should not be idle! */
3045 GEM_BUG_ON(i915_active_is_idle(&ce->active));
3046
3047 rq = active_request(ce->timeline, rq);
3048 head = intel_ring_wrap(ce->ring, rq->head);
3049 GEM_BUG_ON(head == ce->ring->tail);
3050
3051 /*
3052 * If this request hasn't started yet, e.g. it is waiting on a
3053 * semaphore, we need to avoid skipping the request or else we
3054 * break the signaling chain. However, if the context is corrupt
3055 * the request will not restart and we will be stuck with a wedged
3056 * device. It is quite often the case that if we issue a reset
3057 * while the GPU is loading the context image, that the context
3058 * image becomes corrupt.
3059 *
3060 * Otherwise, if we have not started yet, the request should replay
3061 * perfectly and we do not need to flag the result as being erroneous.
3062 */
3063 if (!__i915_request_has_started(rq))
3064 goto out_replay;
3065
3066 /*
3067 * If the request was innocent, we leave the request in the ELSP
3068 * and will try to replay it on restarting. The context image may
3069 * have been corrupted by the reset, in which case we may have
3070 * to service a new GPU hang, but more likely we can continue on
3071 * without impact.
3072 *
3073 * If the request was guilty, we presume the context is corrupt
3074 * and have to at least restore the RING register in the context
3075 * image back to the expected values to skip over the guilty request.
3076 */
3077 __i915_request_reset(rq, stalled);
3078
3079 /*
3080 * We want a simple context + ring to execute the breadcrumb update.
3081 * We cannot rely on the context being intact across the GPU hang,
3082 * so clear it and rebuild just what we need for the breadcrumb.
3083 * All pending requests for this context will be zapped, and any
3084 * future request will be after userspace has had the opportunity
3085 * to recreate its own state.
3086 */
3087 out_replay:
3088 ENGINE_TRACE(engine, "replay {head:%04x, tail:%04x}\n",
3089 head, ce->ring->tail);
3090 lrc_reset_regs(ce, engine);
3091 ce->lrc.lrca = lrc_update_regs(ce, engine, head);
3092 }
3093
3094 static void execlists_reset_csb(struct intel_engine_cs *engine, bool stalled)
3095 {
3096 struct intel_engine_execlists * const execlists = &engine->execlists;
3097 struct i915_request *post[2 * EXECLIST_MAX_PORTS];
3098 struct i915_request **inactive;
3099
3100 rcu_read_lock();
3101 inactive = reset_csb(engine, post);
3102
3103 execlists_reset_active(engine, true);
3104
3105 inactive = cancel_port_requests(execlists, inactive);
3106 post_process_csb(post, inactive);
3107 rcu_read_unlock();
3108 }
3109
3110 static void execlists_reset_rewind(struct intel_engine_cs *engine, bool stalled)
3111 {
3112 unsigned long flags;
3113
3114 ENGINE_TRACE(engine, "\n");
3115
3116 /* Process the csb, find the guilty context and throw away */
3117 execlists_reset_csb(engine, stalled);
3118
3119 /* Push back any incomplete requests for replay after the reset. */
3120 rcu_read_lock();
3121 spin_lock_irqsave(&engine->sched_engine->lock, flags);
3122 __unwind_incomplete_requests(engine);
3123 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
3124 rcu_read_unlock();
3125 }
3126
3127 static void nop_submission_tasklet(struct tasklet_struct *t)
3128 {
3129 struct i915_sched_engine *sched_engine =
3130 from_tasklet(sched_engine, t, tasklet);
3131 struct intel_engine_cs * const engine = sched_engine->private_data;
3132
3133 /* The driver is wedged; don't process any more events. */
3134 WRITE_ONCE(engine->sched_engine->queue_priority_hint, INT_MIN);
3135 }
3136
3137 static void execlists_reset_cancel(struct intel_engine_cs *engine)
3138 {
3139 struct intel_engine_execlists * const execlists = &engine->execlists;
3140 struct i915_sched_engine * const sched_engine = engine->sched_engine;
3141 struct i915_request *rq, *rn;
3142 struct rb_node *rb;
3143 unsigned long flags;
3144
3145 ENGINE_TRACE(engine, "\n");
3146
3147 /*
3148 * Before we call engine->cancel_requests(), we should have exclusive
3149 * access to the submission state. This is arranged for us by the
3150 * caller disabling the interrupt generation, the tasklet and other
3151 * threads that may then access the same state, giving us a free hand
3152 * to reset state. However, we still need to let lockdep be aware that
3153 * we know this state may be accessed in hardirq context, so we
3154 * disable the irq around this manipulation and we want to keep
3155 * the spinlock focused on its duties and not accidentally conflate
3156 * coverage to the submission's irq state. (Similarly, although we
3157 * shouldn't need to disable irq around the manipulation of the
3158 * submission's irq state, we also wish to remind ourselves that
3159 * it is irq state.)
3160 */
3161 execlists_reset_csb(engine, true);
3162
3163 rcu_read_lock();
3164 spin_lock_irqsave(&engine->sched_engine->lock, flags);
3165
3166 /* Mark all executing requests as skipped. */
3167 list_for_each_entry(rq, &engine->sched_engine->requests, sched.link)
3168 i915_request_put(i915_request_mark_eio(rq));
3169 intel_engine_signal_breadcrumbs(engine);
3170
3171 /* Flush the queued requests to the timeline list (for retiring). */
3172 while ((rb = rb_first_cached(&sched_engine->queue))) {
3173 struct i915_priolist *p = to_priolist(rb);
3174
3175 priolist_for_each_request_consume(rq, rn, p) {
3176 if (i915_request_mark_eio(rq)) {
3177 __i915_request_submit(rq);
3178 i915_request_put(rq);
3179 }
3180 }
3181
3182 rb_erase_cached(&p->node, &sched_engine->queue);
3183 i915_priolist_free(p);
3184 }
3185
3186 /* On-hold requests will be flushed to timeline upon their release */
3187 list_for_each_entry(rq, &sched_engine->hold, sched.link)
3188 i915_request_put(i915_request_mark_eio(rq));
3189
3190 /* Cancel all attached virtual engines */
3191 while ((rb = rb_first_cached(&execlists->virtual))) {
3192 struct virtual_engine *ve =
3193 rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3194
3195 rb_erase_cached(rb, &execlists->virtual);
3196 RB_CLEAR_NODE(rb);
3197
3198 spin_lock(&ve->base.sched_engine->lock);
3199 rq = fetch_and_zero(&ve->request);
3200 if (rq) {
3201 if (i915_request_mark_eio(rq)) {
3202 rq->engine = engine;
3203 __i915_request_submit(rq);
3204 i915_request_put(rq);
3205 }
3206 i915_request_put(rq);
3207
3208 ve->base.sched_engine->queue_priority_hint = INT_MIN;
3209 }
3210 spin_unlock(&ve->base.sched_engine->lock);
3211 }
3212
3213 /* Remaining _unready_ requests will be nop'ed when submitted */
3214
3215 sched_engine->queue_priority_hint = INT_MIN;
3216 sched_engine->queue = RB_ROOT_CACHED;
3217
3218 GEM_BUG_ON(__tasklet_is_enabled(&engine->sched_engine->tasklet));
3219 engine->sched_engine->tasklet.callback = nop_submission_tasklet;
3220
3221 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
3222 rcu_read_unlock();
3223 }
3224
3225 static void execlists_reset_finish(struct intel_engine_cs *engine)
3226 {
3227 struct intel_engine_execlists * const execlists = &engine->execlists;
3228
3229 /*
3230 * After a GPU reset, we may have requests to replay. Do so now while
3231 * we still have the forcewake to be sure that the GPU is not allowed
3232 * to sleep before we restart and reload a context.
3233 *
3234 * If the GPU reset fails, the engine may still be alive with requests
3235 * inflight. We expect those to complete, or for the device to be
3236 * reset as the next level of recovery, and as a final resort we
3237 * will declare the device wedged.
3238 */
3239 GEM_BUG_ON(!reset_in_progress(engine));
3240
3241 /* And kick in case we missed a new request submission. */
3242 if (__tasklet_enable(&engine->sched_engine->tasklet))
3243 __execlists_kick(execlists);
3244
3245 ENGINE_TRACE(engine, "depth->%d\n",
3246 atomic_read(&engine->sched_engine->tasklet.count));
3247 }
3248
3249 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
3250 {
3251 ENGINE_WRITE(engine, RING_IMR,
3252 ~(engine->irq_enable_mask | engine->irq_keep_mask));
3253 ENGINE_POSTING_READ(engine, RING_IMR);
3254 }
3255
3256 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
3257 {
3258 ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
3259 }
3260
3261 static void execlists_park(struct intel_engine_cs *engine)
3262 {
3263 cancel_timer(&engine->execlists.timer);
3264 cancel_timer(&engine->execlists.preempt);
3265 }
3266
3267 static void add_to_engine(struct i915_request *rq)
3268 {
3269 lockdep_assert_held(&rq->engine->sched_engine->lock);
3270 list_move_tail(&rq->sched.link, &rq->engine->sched_engine->requests);
3271 }
3272
3273 static void remove_from_engine(struct i915_request *rq)
3274 {
3275 struct intel_engine_cs *engine, *locked;
3276
3277 /*
3278 * Virtual engines complicate acquiring the engine timeline lock,
3279 * as their rq->engine pointer is not stable until under that
3280 * engine lock. The simple ploy we use is to take the lock then
3281 * check that the rq still belongs to the newly locked engine.
3282 */
3283 locked = READ_ONCE(rq->engine);
3284 spin_lock_irq(&locked->sched_engine->lock);
3285 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
3286 spin_unlock(&locked->sched_engine->lock);
3287 spin_lock(&engine->sched_engine->lock);
3288 locked = engine;
3289 }
3290 list_del_init(&rq->sched.link);
3291
3292 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3293 clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
3294
3295 /* Prevent further __await_execution() registering a cb, then flush */
3296 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3297
3298 spin_unlock_irq(&locked->sched_engine->lock);
3299
3300 i915_request_notify_execute_cb_imm(rq);
3301 }
3302
3303 static bool can_preempt(struct intel_engine_cs *engine)
3304 {
3305 if (GRAPHICS_VER(engine->i915) > 8)
3306 return true;
3307
3308 /* GPGPU on bdw requires extra w/a; not implemented */
3309 return engine->class != RENDER_CLASS;
3310 }
3311
3312 static void kick_execlists(const struct i915_request *rq, int prio)
3313 {
3314 struct intel_engine_cs *engine = rq->engine;
3315 struct i915_sched_engine *sched_engine = engine->sched_engine;
3316 const struct i915_request *inflight;
3317
3318 /*
3319 * We only need to kick the tasklet once for the high priority
3320 * new context we add into the queue.
3321 */
3322 if (prio <= sched_engine->queue_priority_hint)
3323 return;
3324
3325 rcu_read_lock();
3326
3327 /* Nothing currently active? We're overdue for a submission! */
3328 inflight = execlists_active(&engine->execlists);
3329 if (!inflight)
3330 goto unlock;
3331
3332 /*
3333 * If we are already the currently executing context, don't
3334 * bother evaluating if we should preempt ourselves.
3335 */
3336 if (inflight->context == rq->context)
3337 goto unlock;
3338
3339 ENGINE_TRACE(engine,
3340 "bumping queue-priority-hint:%d for rq:%llx:%lld, inflight:%llx:%lld prio %d\n",
3341 prio,
3342 rq->fence.context, rq->fence.seqno,
3343 inflight->fence.context, inflight->fence.seqno,
3344 inflight->sched.attr.priority);
3345
3346 sched_engine->queue_priority_hint = prio;
3347
3348 /*
3349 * Allow preemption of low -> normal -> high, but we do
3350 * not allow low priority tasks to preempt other low priority
3351 * tasks under the impression that latency for low priority
3352 * tasks does not matter (as much as background throughput),
3353 * so kiss.
3354 */
3355 if (prio >= max(I915_PRIORITY_NORMAL, rq_prio(inflight)))
3356 tasklet_hi_schedule(&sched_engine->tasklet);
3357
3358 unlock:
3359 rcu_read_unlock();
3360 }
3361
3362 static void execlists_set_default_submission(struct intel_engine_cs *engine)
3363 {
3364 engine->submit_request = execlists_submit_request;
3365 engine->sched_engine->schedule = i915_schedule;
3366 engine->sched_engine->kick_backend = kick_execlists;
3367 engine->sched_engine->tasklet.callback = execlists_submission_tasklet;
3368 }
3369
3370 static void execlists_shutdown(struct intel_engine_cs *engine)
3371 {
3372 /* Synchronise with residual timers and any softirq they raise */
3373 del_timer_sync(&engine->execlists.timer);
3374 del_timer_sync(&engine->execlists.preempt);
3375 tasklet_kill(&engine->sched_engine->tasklet);
3376 }
3377
3378 static void execlists_release(struct intel_engine_cs *engine)
3379 {
3380 engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
3381
3382 execlists_shutdown(engine);
3383
3384 intel_engine_cleanup_common(engine);
3385 lrc_fini_wa_ctx(engine);
3386 }
3387
3388 static ktime_t __execlists_engine_busyness(struct intel_engine_cs *engine,
3389 ktime_t *now)
3390 {
3391 struct intel_engine_execlists_stats *stats = &engine->stats.execlists;
3392 ktime_t total = stats->total;
3393
3394 /*
3395 * If the engine is executing something at the moment
3396 * add it to the total.
3397 */
3398 *now = ktime_get();
3399 if (READ_ONCE(stats->active))
3400 total = ktime_add(total, ktime_sub(*now, stats->start));
3401
3402 return total;
3403 }
3404
3405 static ktime_t execlists_engine_busyness(struct intel_engine_cs *engine,
3406 ktime_t *now)
3407 {
3408 struct intel_engine_execlists_stats *stats = &engine->stats.execlists;
3409 unsigned int seq;
3410 ktime_t total;
3411
3412 do {
3413 seq = read_seqcount_begin(&stats->lock);
3414 total = __execlists_engine_busyness(engine, now);
3415 } while (read_seqcount_retry(&stats->lock, seq));
3416
3417 return total;
3418 }
3419
3420 static void
3421 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
3422 {
3423 /* Default vfuncs which can be overridden by each engine. */
3424
3425 engine->resume = execlists_resume;
3426
3427 engine->cops = &execlists_context_ops;
3428 engine->request_alloc = execlists_request_alloc;
3429 engine->add_active_request = add_to_engine;
3430 engine->remove_active_request = remove_from_engine;
3431
3432 engine->reset.prepare = execlists_reset_prepare;
3433 engine->reset.rewind = execlists_reset_rewind;
3434 engine->reset.cancel = execlists_reset_cancel;
3435 engine->reset.finish = execlists_reset_finish;
3436
3437 engine->park = execlists_park;
3438 engine->unpark = NULL;
3439
3440 engine->emit_flush = gen8_emit_flush_xcs;
3441 engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
3442 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
3443 if (GRAPHICS_VER(engine->i915) >= 12) {
3444 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
3445 engine->emit_flush = gen12_emit_flush_xcs;
3446 }
3447 engine->set_default_submission = execlists_set_default_submission;
3448
3449 if (GRAPHICS_VER(engine->i915) < 11) {
3450 engine->irq_enable = gen8_logical_ring_enable_irq;
3451 engine->irq_disable = gen8_logical_ring_disable_irq;
3452 } else {
3453 /*
3454 * TODO: On Gen11 interrupt masks need to be clear
3455 * to allow C6 entry. Keep interrupts enabled at
3456 * and take the hit of generating extra interrupts
3457 * until a more refined solution exists.
3458 */
3459 }
3460 intel_engine_set_irq_handler(engine, execlists_irq_handler);
3461
3462 engine->flags |= I915_ENGINE_SUPPORTS_STATS;
3463 if (!intel_vgpu_active(engine->i915)) {
3464 engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
3465 if (can_preempt(engine)) {
3466 engine->flags |= I915_ENGINE_HAS_PREEMPTION;
3467 if (CONFIG_DRM_I915_TIMESLICE_DURATION)
3468 engine->flags |= I915_ENGINE_HAS_TIMESLICES;
3469 }
3470 }
3471
3472 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
3473 if (intel_engine_has_preemption(engine))
3474 engine->emit_bb_start = xehp_emit_bb_start;
3475 else
3476 engine->emit_bb_start = xehp_emit_bb_start_noarb;
3477 } else {
3478 if (intel_engine_has_preemption(engine))
3479 engine->emit_bb_start = gen8_emit_bb_start;
3480 else
3481 engine->emit_bb_start = gen8_emit_bb_start_noarb;
3482 }
3483
3484 engine->busyness = execlists_engine_busyness;
3485 }
3486
3487 static void logical_ring_default_irqs(struct intel_engine_cs *engine)
3488 {
3489 unsigned int shift = 0;
3490
3491 if (GRAPHICS_VER(engine->i915) < 11) {
3492 const u8 irq_shifts[] = {
3493 [RCS0] = GEN8_RCS_IRQ_SHIFT,
3494 [BCS0] = GEN8_BCS_IRQ_SHIFT,
3495 [VCS0] = GEN8_VCS0_IRQ_SHIFT,
3496 [VCS1] = GEN8_VCS1_IRQ_SHIFT,
3497 [VECS0] = GEN8_VECS_IRQ_SHIFT,
3498 };
3499
3500 shift = irq_shifts[engine->id];
3501 }
3502
3503 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
3504 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
3505 engine->irq_keep_mask |= GT_CS_MASTER_ERROR_INTERRUPT << shift;
3506 engine->irq_keep_mask |= GT_WAIT_SEMAPHORE_INTERRUPT << shift;
3507 }
3508
3509 static void rcs_submission_override(struct intel_engine_cs *engine)
3510 {
3511 switch (GRAPHICS_VER(engine->i915)) {
3512 case 12:
3513 engine->emit_flush = gen12_emit_flush_rcs;
3514 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
3515 break;
3516 case 11:
3517 engine->emit_flush = gen11_emit_flush_rcs;
3518 engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
3519 break;
3520 default:
3521 engine->emit_flush = gen8_emit_flush_rcs;
3522 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
3523 break;
3524 }
3525 }
3526
3527 int intel_execlists_submission_setup(struct intel_engine_cs *engine)
3528 {
3529 struct intel_engine_execlists * const execlists = &engine->execlists;
3530 struct drm_i915_private *i915 = engine->i915;
3531 struct intel_uncore *uncore = engine->uncore;
3532 u32 base = engine->mmio_base;
3533
3534 tasklet_setup(&engine->sched_engine->tasklet, execlists_submission_tasklet);
3535 timer_setup(&engine->execlists.timer, execlists_timeslice, 0);
3536 timer_setup(&engine->execlists.preempt, execlists_preempt, 0);
3537
3538 logical_ring_default_vfuncs(engine);
3539 logical_ring_default_irqs(engine);
3540
3541 if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
3542 rcs_submission_override(engine);
3543
3544 lrc_init_wa_ctx(engine);
3545
3546 if (HAS_LOGICAL_RING_ELSQ(i915)) {
3547 execlists->submit_reg = uncore->regs +
3548 i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
3549 execlists->ctrl_reg = uncore->regs +
3550 i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
3551
3552 engine->fw_domain = intel_uncore_forcewake_for_reg(engine->uncore,
3553 RING_EXECLIST_CONTROL(engine->mmio_base),
3554 FW_REG_WRITE);
3555 } else {
3556 execlists->submit_reg = uncore->regs +
3557 i915_mmio_reg_offset(RING_ELSP(base));
3558 }
3559
3560 execlists->csb_status =
3561 (u64 *)&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
3562
3563 execlists->csb_write =
3564 &engine->status_page.addr[INTEL_HWS_CSB_WRITE_INDEX(i915)];
3565
3566 if (GRAPHICS_VER(i915) < 11)
3567 execlists->csb_size = GEN8_CSB_ENTRIES;
3568 else
3569 execlists->csb_size = GEN11_CSB_ENTRIES;
3570
3571 engine->context_tag = GENMASK(BITS_PER_LONG - 2, 0);
3572 if (GRAPHICS_VER(engine->i915) >= 11 &&
3573 GRAPHICS_VER_FULL(engine->i915) < IP_VER(12, 50)) {
3574 execlists->ccid |= engine->instance << (GEN11_ENGINE_INSTANCE_SHIFT - 32);
3575 execlists->ccid |= engine->class << (GEN11_ENGINE_CLASS_SHIFT - 32);
3576 }
3577
3578 /* Finally, take ownership and responsibility for cleanup! */
3579 engine->sanitize = execlists_sanitize;
3580 engine->release = execlists_release;
3581
3582 return 0;
3583 }
3584
3585 static struct list_head *virtual_queue(struct virtual_engine *ve)
3586 {
3587 return &ve->base.sched_engine->default_priolist.requests;
3588 }
3589
3590 static void rcu_virtual_context_destroy(struct work_struct *wrk)
3591 {
3592 struct virtual_engine *ve =
3593 container_of(wrk, typeof(*ve), rcu.work);
3594 unsigned int n;
3595
3596 GEM_BUG_ON(ve->context.inflight);
3597
3598 /* Preempt-to-busy may leave a stale request behind. */
3599 if (unlikely(ve->request)) {
3600 struct i915_request *old;
3601
3602 spin_lock_irq(&ve->base.sched_engine->lock);
3603
3604 old = fetch_and_zero(&ve->request);
3605 if (old) {
3606 GEM_BUG_ON(!__i915_request_is_complete(old));
3607 __i915_request_submit(old);
3608 i915_request_put(old);
3609 }
3610
3611 spin_unlock_irq(&ve->base.sched_engine->lock);
3612 }
3613
3614 /*
3615 * Flush the tasklet in case it is still running on another core.
3616 *
3617 * This needs to be done before we remove ourselves from the siblings'
3618 * rbtrees as in the case it is running in parallel, it may reinsert
3619 * the rb_node into a sibling.
3620 */
3621 tasklet_kill(&ve->base.sched_engine->tasklet);
3622
3623 /* Decouple ourselves from the siblings, no more access allowed. */
3624 for (n = 0; n < ve->num_siblings; n++) {
3625 struct intel_engine_cs *sibling = ve->siblings[n];
3626 struct rb_node *node = &ve->nodes[sibling->id].rb;
3627
3628 if (RB_EMPTY_NODE(node))
3629 continue;
3630
3631 spin_lock_irq(&sibling->sched_engine->lock);
3632
3633 /* Detachment is lazily performed in the sched_engine->tasklet */
3634 if (!RB_EMPTY_NODE(node))
3635 rb_erase_cached(node, &sibling->execlists.virtual);
3636
3637 spin_unlock_irq(&sibling->sched_engine->lock);
3638 }
3639 GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.sched_engine->tasklet));
3640 GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3641
3642 lrc_fini(&ve->context);
3643 intel_context_fini(&ve->context);
3644
3645 if (ve->base.breadcrumbs)
3646 intel_breadcrumbs_put(ve->base.breadcrumbs);
3647 if (ve->base.sched_engine)
3648 i915_sched_engine_put(ve->base.sched_engine);
3649 intel_engine_free_request_pool(&ve->base);
3650
3651 kfree(ve);
3652 }
3653
3654 static void virtual_context_destroy(struct kref *kref)
3655 {
3656 struct virtual_engine *ve =
3657 container_of(kref, typeof(*ve), context.ref);
3658
3659 GEM_BUG_ON(!list_empty(&ve->context.signals));
3660
3661 /*
3662 * When destroying the virtual engine, we have to be aware that
3663 * it may still be in use from an hardirq/softirq context causing
3664 * the resubmission of a completed request (background completion
3665 * due to preempt-to-busy). Before we can free the engine, we need
3666 * to flush the submission code and tasklets that are still potentially
3667 * accessing the engine. Flushing the tasklets requires process context,
3668 * and since we can guard the resubmit onto the engine with an RCU read
3669 * lock, we can delegate the free of the engine to an RCU worker.
3670 */
3671 INIT_RCU_WORK(&ve->rcu, rcu_virtual_context_destroy);
3672 queue_rcu_work(system_wq, &ve->rcu);
3673 }
3674
3675 static void virtual_engine_initial_hint(struct virtual_engine *ve)
3676 {
3677 int swp;
3678
3679 /*
3680 * Pick a random sibling on starting to help spread the load around.
3681 *
3682 * New contexts are typically created with exactly the same order
3683 * of siblings, and often started in batches. Due to the way we iterate
3684 * the array of sibling when submitting requests, sibling[0] is
3685 * prioritised for dequeuing. If we make sure that sibling[0] is fairly
3686 * randomised across the system, we also help spread the load by the
3687 * first engine we inspect being different each time.
3688 *
3689 * NB This does not force us to execute on this engine, it will just
3690 * typically be the first we inspect for submission.
3691 */
3692 swp = prandom_u32_max(ve->num_siblings);
3693 if (swp)
3694 swap(ve->siblings[swp], ve->siblings[0]);
3695 }
3696
3697 static int virtual_context_alloc(struct intel_context *ce)
3698 {
3699 struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3700
3701 return lrc_alloc(ce, ve->siblings[0]);
3702 }
3703
3704 static int virtual_context_pre_pin(struct intel_context *ce,
3705 struct i915_gem_ww_ctx *ww,
3706 void **vaddr)
3707 {
3708 struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3709
3710 /* Note: we must use a real engine class for setting up reg state */
3711 return __execlists_context_pre_pin(ce, ve->siblings[0], ww, vaddr);
3712 }
3713
3714 static int virtual_context_pin(struct intel_context *ce, void *vaddr)
3715 {
3716 struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3717
3718 return lrc_pin(ce, ve->siblings[0], vaddr);
3719 }
3720
3721 static void virtual_context_enter(struct intel_context *ce)
3722 {
3723 struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3724 unsigned int n;
3725
3726 for (n = 0; n < ve->num_siblings; n++)
3727 intel_engine_pm_get(ve->siblings[n]);
3728
3729 intel_timeline_enter(ce->timeline);
3730 }
3731
3732 static void virtual_context_exit(struct intel_context *ce)
3733 {
3734 struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3735 unsigned int n;
3736
3737 intel_timeline_exit(ce->timeline);
3738
3739 for (n = 0; n < ve->num_siblings; n++)
3740 intel_engine_pm_put(ve->siblings[n]);
3741 }
3742
3743 static struct intel_engine_cs *
3744 virtual_get_sibling(struct intel_engine_cs *engine, unsigned int sibling)
3745 {
3746 struct virtual_engine *ve = to_virtual_engine(engine);
3747
3748 if (sibling >= ve->num_siblings)
3749 return NULL;
3750
3751 return ve->siblings[sibling];
3752 }
3753
3754 static const struct intel_context_ops virtual_context_ops = {
3755 .flags = COPS_HAS_INFLIGHT | COPS_RUNTIME_CYCLES,
3756
3757 .alloc = virtual_context_alloc,
3758
3759 .cancel_request = execlists_context_cancel_request,
3760
3761 .pre_pin = virtual_context_pre_pin,
3762 .pin = virtual_context_pin,
3763 .unpin = lrc_unpin,
3764 .post_unpin = lrc_post_unpin,
3765
3766 .enter = virtual_context_enter,
3767 .exit = virtual_context_exit,
3768
3769 .destroy = virtual_context_destroy,
3770
3771 .get_sibling = virtual_get_sibling,
3772 };
3773
3774 static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
3775 {
3776 struct i915_request *rq;
3777 intel_engine_mask_t mask;
3778
3779 rq = READ_ONCE(ve->request);
3780 if (!rq)
3781 return 0;
3782
3783 /* The rq is ready for submission; rq->execution_mask is now stable. */
3784 mask = rq->execution_mask;
3785 if (unlikely(!mask)) {
3786 /* Invalid selection, submit to a random engine in error */
3787 i915_request_set_error_once(rq, -ENODEV);
3788 mask = ve->siblings[0]->mask;
3789 }
3790
3791 ENGINE_TRACE(&ve->base, "rq=%llx:%lld, mask=%x, prio=%d\n",
3792 rq->fence.context, rq->fence.seqno,
3793 mask, ve->base.sched_engine->queue_priority_hint);
3794
3795 return mask;
3796 }
3797
3798 static void virtual_submission_tasklet(struct tasklet_struct *t)
3799 {
3800 struct i915_sched_engine *sched_engine =
3801 from_tasklet(sched_engine, t, tasklet);
3802 struct virtual_engine * const ve =
3803 (struct virtual_engine *)sched_engine->private_data;
3804 const int prio = READ_ONCE(sched_engine->queue_priority_hint);
3805 intel_engine_mask_t mask;
3806 unsigned int n;
3807
3808 rcu_read_lock();
3809 mask = virtual_submission_mask(ve);
3810 rcu_read_unlock();
3811 if (unlikely(!mask))
3812 return;
3813
3814 for (n = 0; n < ve->num_siblings; n++) {
3815 struct intel_engine_cs *sibling = READ_ONCE(ve->siblings[n]);
3816 struct ve_node * const node = &ve->nodes[sibling->id];
3817 struct rb_node **parent, *rb;
3818 bool first;
3819
3820 if (!READ_ONCE(ve->request))
3821 break; /* already handled by a sibling's tasklet */
3822
3823 spin_lock_irq(&sibling->sched_engine->lock);
3824
3825 if (unlikely(!(mask & sibling->mask))) {
3826 if (!RB_EMPTY_NODE(&node->rb)) {
3827 rb_erase_cached(&node->rb,
3828 &sibling->execlists.virtual);
3829 RB_CLEAR_NODE(&node->rb);
3830 }
3831
3832 goto unlock_engine;
3833 }
3834
3835 if (unlikely(!RB_EMPTY_NODE(&node->rb))) {
3836 /*
3837 * Cheat and avoid rebalancing the tree if we can
3838 * reuse this node in situ.
3839 */
3840 first = rb_first_cached(&sibling->execlists.virtual) ==
3841 &node->rb;
3842 if (prio == node->prio || (prio > node->prio && first))
3843 goto submit_engine;
3844
3845 rb_erase_cached(&node->rb, &sibling->execlists.virtual);
3846 }
3847
3848 rb = NULL;
3849 first = true;
3850 parent = &sibling->execlists.virtual.rb_root.rb_node;
3851 while (*parent) {
3852 struct ve_node *other;
3853
3854 rb = *parent;
3855 other = rb_entry(rb, typeof(*other), rb);
3856 if (prio > other->prio) {
3857 parent = &rb->rb_left;
3858 } else {
3859 parent = &rb->rb_right;
3860 first = false;
3861 }
3862 }
3863
3864 rb_link_node(&node->rb, rb, parent);
3865 rb_insert_color_cached(&node->rb,
3866 &sibling->execlists.virtual,
3867 first);
3868
3869 submit_engine:
3870 GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
3871 node->prio = prio;
3872 if (first && prio > sibling->sched_engine->queue_priority_hint)
3873 tasklet_hi_schedule(&sibling->sched_engine->tasklet);
3874
3875 unlock_engine:
3876 spin_unlock_irq(&sibling->sched_engine->lock);
3877
3878 if (intel_context_inflight(&ve->context))
3879 break;
3880 }
3881 }
3882
3883 static void virtual_submit_request(struct i915_request *rq)
3884 {
3885 struct virtual_engine *ve = to_virtual_engine(rq->engine);
3886 unsigned long flags;
3887
3888 ENGINE_TRACE(&ve->base, "rq=%llx:%lld\n",
3889 rq->fence.context,
3890 rq->fence.seqno);
3891
3892 GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
3893
3894 spin_lock_irqsave(&ve->base.sched_engine->lock, flags);
3895
3896 /* By the time we resubmit a request, it may be completed */
3897 if (__i915_request_is_complete(rq)) {
3898 __i915_request_submit(rq);
3899 goto unlock;
3900 }
3901
3902 if (ve->request) { /* background completion from preempt-to-busy */
3903 GEM_BUG_ON(!__i915_request_is_complete(ve->request));
3904 __i915_request_submit(ve->request);
3905 i915_request_put(ve->request);
3906 }
3907
3908 ve->base.sched_engine->queue_priority_hint = rq_prio(rq);
3909 ve->request = i915_request_get(rq);
3910
3911 GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3912 list_move_tail(&rq->sched.link, virtual_queue(ve));
3913
3914 tasklet_hi_schedule(&ve->base.sched_engine->tasklet);
3915
3916 unlock:
3917 spin_unlock_irqrestore(&ve->base.sched_engine->lock, flags);
3918 }
3919
3920 static struct intel_context *
3921 execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
3922 unsigned long flags)
3923 {
3924 struct virtual_engine *ve;
3925 unsigned int n;
3926 int err;
3927
3928 ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
3929 if (!ve)
3930 return ERR_PTR(-ENOMEM);
3931
3932 ve->base.i915 = siblings[0]->i915;
3933 ve->base.gt = siblings[0]->gt;
3934 ve->base.uncore = siblings[0]->uncore;
3935 ve->base.id = -1;
3936
3937 ve->base.class = OTHER_CLASS;
3938 ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
3939 ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3940 ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3941
3942 /*
3943 * The decision on whether to submit a request using semaphores
3944 * depends on the saturated state of the engine. We only compute
3945 * this during HW submission of the request, and we need for this
3946 * state to be globally applied to all requests being submitted
3947 * to this engine. Virtual engines encompass more than one physical
3948 * engine and so we cannot accurately tell in advance if one of those
3949 * engines is already saturated and so cannot afford to use a semaphore
3950 * and be pessimized in priority for doing so -- if we are the only
3951 * context using semaphores after all other clients have stopped, we
3952 * will be starved on the saturated system. Such a global switch for
3953 * semaphores is less than ideal, but alas is the current compromise.
3954 */
3955 ve->base.saturated = ALL_ENGINES;
3956
3957 snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
3958
3959 intel_engine_init_execlists(&ve->base);
3960
3961 ve->base.sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
3962 if (!ve->base.sched_engine) {
3963 err = -ENOMEM;
3964 goto err_put;
3965 }
3966 ve->base.sched_engine->private_data = &ve->base;
3967
3968 ve->base.cops = &virtual_context_ops;
3969 ve->base.request_alloc = execlists_request_alloc;
3970
3971 ve->base.sched_engine->schedule = i915_schedule;
3972 ve->base.sched_engine->kick_backend = kick_execlists;
3973 ve->base.submit_request = virtual_submit_request;
3974
3975 INIT_LIST_HEAD(virtual_queue(ve));
3976 tasklet_setup(&ve->base.sched_engine->tasklet, virtual_submission_tasklet);
3977
3978 intel_context_init(&ve->context, &ve->base);
3979
3980 ve->base.breadcrumbs = intel_breadcrumbs_create(NULL);
3981 if (!ve->base.breadcrumbs) {
3982 err = -ENOMEM;
3983 goto err_put;
3984 }
3985
3986 for (n = 0; n < count; n++) {
3987 struct intel_engine_cs *sibling = siblings[n];
3988
3989 GEM_BUG_ON(!is_power_of_2(sibling->mask));
3990 if (sibling->mask & ve->base.mask) {
3991 DRM_DEBUG("duplicate %s entry in load balancer\n",
3992 sibling->name);
3993 err = -EINVAL;
3994 goto err_put;
3995 }
3996
3997 /*
3998 * The virtual engine implementation is tightly coupled to
3999 * the execlists backend -- we push out request directly
4000 * into a tree inside each physical engine. We could support
4001 * layering if we handle cloning of the requests and
4002 * submitting a copy into each backend.
4003 */
4004 if (sibling->sched_engine->tasklet.callback !=
4005 execlists_submission_tasklet) {
4006 err = -ENODEV;
4007 goto err_put;
4008 }
4009
4010 GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
4011 RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
4012
4013 ve->siblings[ve->num_siblings++] = sibling;
4014 ve->base.mask |= sibling->mask;
4015 ve->base.logical_mask |= sibling->logical_mask;
4016
4017 /*
4018 * All physical engines must be compatible for their emission
4019 * functions (as we build the instructions during request
4020 * construction and do not alter them before submission
4021 * on the physical engine). We use the engine class as a guide
4022 * here, although that could be refined.
4023 */
4024 if (ve->base.class != OTHER_CLASS) {
4025 if (ve->base.class != sibling->class) {
4026 DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
4027 sibling->class, ve->base.class);
4028 err = -EINVAL;
4029 goto err_put;
4030 }
4031 continue;
4032 }
4033
4034 ve->base.class = sibling->class;
4035 ve->base.uabi_class = sibling->uabi_class;
4036 snprintf(ve->base.name, sizeof(ve->base.name),
4037 "v%dx%d", ve->base.class, count);
4038 ve->base.context_size = sibling->context_size;
4039
4040 ve->base.add_active_request = sibling->add_active_request;
4041 ve->base.remove_active_request = sibling->remove_active_request;
4042 ve->base.emit_bb_start = sibling->emit_bb_start;
4043 ve->base.emit_flush = sibling->emit_flush;
4044 ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
4045 ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
4046 ve->base.emit_fini_breadcrumb_dw =
4047 sibling->emit_fini_breadcrumb_dw;
4048
4049 ve->base.flags = sibling->flags;
4050 }
4051
4052 ve->base.flags |= I915_ENGINE_IS_VIRTUAL;
4053
4054 virtual_engine_initial_hint(ve);
4055 return &ve->context;
4056
4057 err_put:
4058 intel_context_put(&ve->context);
4059 return ERR_PTR(err);
4060 }
4061
4062 void intel_execlists_show_requests(struct intel_engine_cs *engine,
4063 struct drm_printer *m,
4064 void (*show_request)(struct drm_printer *m,
4065 const struct i915_request *rq,
4066 const char *prefix,
4067 int indent),
4068 unsigned int max)
4069 {
4070 const struct intel_engine_execlists *execlists = &engine->execlists;
4071 struct i915_sched_engine *sched_engine = engine->sched_engine;
4072 struct i915_request *rq, *last;
4073 unsigned long flags;
4074 unsigned int count;
4075 struct rb_node *rb;
4076
4077 spin_lock_irqsave(&sched_engine->lock, flags);
4078
4079 last = NULL;
4080 count = 0;
4081 list_for_each_entry(rq, &sched_engine->requests, sched.link) {
4082 if (count++ < max - 1)
4083 show_request(m, rq, "\t\t", 0);
4084 else
4085 last = rq;
4086 }
4087 if (last) {
4088 if (count > max) {
4089 drm_printf(m,
4090 "\t\t...skipping %d executing requests...\n",
4091 count - max);
4092 }
4093 show_request(m, last, "\t\t", 0);
4094 }
4095
4096 if (sched_engine->queue_priority_hint != INT_MIN)
4097 drm_printf(m, "\t\tQueue priority hint: %d\n",
4098 READ_ONCE(sched_engine->queue_priority_hint));
4099
4100 last = NULL;
4101 count = 0;
4102 for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
4103 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
4104
4105 priolist_for_each_request(rq, p) {
4106 if (count++ < max - 1)
4107 show_request(m, rq, "\t\t", 0);
4108 else
4109 last = rq;
4110 }
4111 }
4112 if (last) {
4113 if (count > max) {
4114 drm_printf(m,
4115 "\t\t...skipping %d queued requests...\n",
4116 count - max);
4117 }
4118 show_request(m, last, "\t\t", 0);
4119 }
4120
4121 last = NULL;
4122 count = 0;
4123 for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
4124 struct virtual_engine *ve =
4125 rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
4126 struct i915_request *rq = READ_ONCE(ve->request);
4127
4128 if (rq) {
4129 if (count++ < max - 1)
4130 show_request(m, rq, "\t\t", 0);
4131 else
4132 last = rq;
4133 }
4134 }
4135 if (last) {
4136 if (count > max) {
4137 drm_printf(m,
4138 "\t\t...skipping %d virtual requests...\n",
4139 count - max);
4140 }
4141 show_request(m, last, "\t\t", 0);
4142 }
4143
4144 spin_unlock_irqrestore(&sched_engine->lock, flags);
4145 }
4146
4147 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4148 #include "selftest_execlists.c"
4149 #endif