]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/mtd/nand/mxs_nand.c
mtd:mxs:nand calculate ecc strength dynamically
[people/ms/u-boot.git] / drivers / mtd / nand / mxs_nand.c
1 /*
2 * Freescale i.MX28 NAND flash driver
3 *
4 * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
5 * on behalf of DENX Software Engineering GmbH
6 *
7 * Based on code from LTIB:
8 * Freescale GPMI NFC NAND Flash Driver
9 *
10 * Copyright (C) 2010 Freescale Semiconductor, Inc.
11 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
12 *
13 * SPDX-License-Identifier: GPL-2.0+
14 */
15
16 #include <common.h>
17 #include <linux/mtd/mtd.h>
18 #include <linux/mtd/nand.h>
19 #include <linux/types.h>
20 #include <malloc.h>
21 #include <asm/errno.h>
22 #include <asm/io.h>
23 #include <asm/arch/clock.h>
24 #include <asm/arch/imx-regs.h>
25 #include <asm/imx-common/regs-bch.h>
26 #include <asm/imx-common/regs-gpmi.h>
27 #include <asm/arch/sys_proto.h>
28 #include <asm/imx-common/dma.h>
29
30 #define MXS_NAND_DMA_DESCRIPTOR_COUNT 4
31
32 #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE 512
33 #if defined(CONFIG_MX6)
34 #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT 2
35 #else
36 #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT 0
37 #endif
38 #define MXS_NAND_METADATA_SIZE 10
39
40 #define MXS_NAND_COMMAND_BUFFER_SIZE 32
41
42 #define MXS_NAND_BCH_TIMEOUT 10000
43
44 struct mxs_nand_info {
45 int cur_chip;
46
47 uint32_t cmd_queue_len;
48 uint32_t data_buf_size;
49
50 uint8_t *cmd_buf;
51 uint8_t *data_buf;
52 uint8_t *oob_buf;
53
54 uint8_t marking_block_bad;
55 uint8_t raw_oob_mode;
56
57 /* Functions with altered behaviour */
58 int (*hooked_read_oob)(struct mtd_info *mtd,
59 loff_t from, struct mtd_oob_ops *ops);
60 int (*hooked_write_oob)(struct mtd_info *mtd,
61 loff_t to, struct mtd_oob_ops *ops);
62 int (*hooked_block_markbad)(struct mtd_info *mtd,
63 loff_t ofs);
64
65 /* DMA descriptors */
66 struct mxs_dma_desc **desc;
67 uint32_t desc_index;
68 };
69
70 struct nand_ecclayout fake_ecc_layout;
71
72 /*
73 * Cache management functions
74 */
75 #ifndef CONFIG_SYS_DCACHE_OFF
76 static void mxs_nand_flush_data_buf(struct mxs_nand_info *info)
77 {
78 uint32_t addr = (uint32_t)info->data_buf;
79
80 flush_dcache_range(addr, addr + info->data_buf_size);
81 }
82
83 static void mxs_nand_inval_data_buf(struct mxs_nand_info *info)
84 {
85 uint32_t addr = (uint32_t)info->data_buf;
86
87 invalidate_dcache_range(addr, addr + info->data_buf_size);
88 }
89
90 static void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info)
91 {
92 uint32_t addr = (uint32_t)info->cmd_buf;
93
94 flush_dcache_range(addr, addr + MXS_NAND_COMMAND_BUFFER_SIZE);
95 }
96 #else
97 static inline void mxs_nand_flush_data_buf(struct mxs_nand_info *info) {}
98 static inline void mxs_nand_inval_data_buf(struct mxs_nand_info *info) {}
99 static inline void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info) {}
100 #endif
101
102 static struct mxs_dma_desc *mxs_nand_get_dma_desc(struct mxs_nand_info *info)
103 {
104 struct mxs_dma_desc *desc;
105
106 if (info->desc_index >= MXS_NAND_DMA_DESCRIPTOR_COUNT) {
107 printf("MXS NAND: Too many DMA descriptors requested\n");
108 return NULL;
109 }
110
111 desc = info->desc[info->desc_index];
112 info->desc_index++;
113
114 return desc;
115 }
116
117 static void mxs_nand_return_dma_descs(struct mxs_nand_info *info)
118 {
119 int i;
120 struct mxs_dma_desc *desc;
121
122 for (i = 0; i < info->desc_index; i++) {
123 desc = info->desc[i];
124 memset(desc, 0, sizeof(struct mxs_dma_desc));
125 desc->address = (dma_addr_t)desc;
126 }
127
128 info->desc_index = 0;
129 }
130
131 static uint32_t mxs_nand_ecc_chunk_cnt(uint32_t page_data_size)
132 {
133 return page_data_size / MXS_NAND_CHUNK_DATA_CHUNK_SIZE;
134 }
135
136 static uint32_t mxs_nand_ecc_size_in_bits(uint32_t ecc_strength)
137 {
138 return ecc_strength * 13;
139 }
140
141 static uint32_t mxs_nand_aux_status_offset(void)
142 {
143 return (MXS_NAND_METADATA_SIZE + 0x3) & ~0x3;
144 }
145
146 static inline uint32_t mxs_nand_get_ecc_strength(uint32_t page_data_size,
147 uint32_t page_oob_size)
148 {
149 int ecc_strength;
150
151 /*
152 * Determine the ECC layout with the formula:
153 * ECC bits per chunk = (total page spare data bits) /
154 * (bits per ECC level) / (chunks per page)
155 * where:
156 * total page spare data bits =
157 * (page oob size - meta data size) * (bits per byte)
158 */
159 ecc_strength = ((page_oob_size - MXS_NAND_METADATA_SIZE) * 8)
160 / (13 * mxs_nand_ecc_chunk_cnt(page_data_size));
161
162 return round_down(ecc_strength, 2);
163 }
164
165 static inline uint32_t mxs_nand_get_mark_offset(uint32_t page_data_size,
166 uint32_t ecc_strength)
167 {
168 uint32_t chunk_data_size_in_bits;
169 uint32_t chunk_ecc_size_in_bits;
170 uint32_t chunk_total_size_in_bits;
171 uint32_t block_mark_chunk_number;
172 uint32_t block_mark_chunk_bit_offset;
173 uint32_t block_mark_bit_offset;
174
175 chunk_data_size_in_bits = MXS_NAND_CHUNK_DATA_CHUNK_SIZE * 8;
176 chunk_ecc_size_in_bits = mxs_nand_ecc_size_in_bits(ecc_strength);
177
178 chunk_total_size_in_bits =
179 chunk_data_size_in_bits + chunk_ecc_size_in_bits;
180
181 /* Compute the bit offset of the block mark within the physical page. */
182 block_mark_bit_offset = page_data_size * 8;
183
184 /* Subtract the metadata bits. */
185 block_mark_bit_offset -= MXS_NAND_METADATA_SIZE * 8;
186
187 /*
188 * Compute the chunk number (starting at zero) in which the block mark
189 * appears.
190 */
191 block_mark_chunk_number =
192 block_mark_bit_offset / chunk_total_size_in_bits;
193
194 /*
195 * Compute the bit offset of the block mark within its chunk, and
196 * validate it.
197 */
198 block_mark_chunk_bit_offset = block_mark_bit_offset -
199 (block_mark_chunk_number * chunk_total_size_in_bits);
200
201 if (block_mark_chunk_bit_offset > chunk_data_size_in_bits)
202 return 1;
203
204 /*
205 * Now that we know the chunk number in which the block mark appears,
206 * we can subtract all the ECC bits that appear before it.
207 */
208 block_mark_bit_offset -=
209 block_mark_chunk_number * chunk_ecc_size_in_bits;
210
211 return block_mark_bit_offset;
212 }
213
214 static uint32_t mxs_nand_mark_byte_offset(struct mtd_info *mtd)
215 {
216 uint32_t ecc_strength;
217 ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
218 return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) >> 3;
219 }
220
221 static uint32_t mxs_nand_mark_bit_offset(struct mtd_info *mtd)
222 {
223 uint32_t ecc_strength;
224 ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
225 return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) & 0x7;
226 }
227
228 /*
229 * Wait for BCH complete IRQ and clear the IRQ
230 */
231 static int mxs_nand_wait_for_bch_complete(void)
232 {
233 struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
234 int timeout = MXS_NAND_BCH_TIMEOUT;
235 int ret;
236
237 ret = mxs_wait_mask_set(&bch_regs->hw_bch_ctrl_reg,
238 BCH_CTRL_COMPLETE_IRQ, timeout);
239
240 writel(BCH_CTRL_COMPLETE_IRQ, &bch_regs->hw_bch_ctrl_clr);
241
242 return ret;
243 }
244
245 /*
246 * This is the function that we install in the cmd_ctrl function pointer of the
247 * owning struct nand_chip. The only functions in the reference implementation
248 * that use these functions pointers are cmdfunc and select_chip.
249 *
250 * In this driver, we implement our own select_chip, so this function will only
251 * be called by the reference implementation's cmdfunc. For this reason, we can
252 * ignore the chip enable bit and concentrate only on sending bytes to the NAND
253 * Flash.
254 */
255 static void mxs_nand_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
256 {
257 struct nand_chip *nand = mtd->priv;
258 struct mxs_nand_info *nand_info = nand->priv;
259 struct mxs_dma_desc *d;
260 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
261 int ret;
262
263 /*
264 * If this condition is true, something is _VERY_ wrong in MTD
265 * subsystem!
266 */
267 if (nand_info->cmd_queue_len == MXS_NAND_COMMAND_BUFFER_SIZE) {
268 printf("MXS NAND: Command queue too long\n");
269 return;
270 }
271
272 /*
273 * Every operation begins with a command byte and a series of zero or
274 * more address bytes. These are distinguished by either the Address
275 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
276 * asserted. When MTD is ready to execute the command, it will
277 * deasert both latch enables.
278 *
279 * Rather than run a separate DMA operation for every single byte, we
280 * queue them up and run a single DMA operation for the entire series
281 * of command and data bytes.
282 */
283 if (ctrl & (NAND_ALE | NAND_CLE)) {
284 if (data != NAND_CMD_NONE)
285 nand_info->cmd_buf[nand_info->cmd_queue_len++] = data;
286 return;
287 }
288
289 /*
290 * If control arrives here, MTD has deasserted both the ALE and CLE,
291 * which means it's ready to run an operation. Check if we have any
292 * bytes to send.
293 */
294 if (nand_info->cmd_queue_len == 0)
295 return;
296
297 /* Compile the DMA descriptor -- a descriptor that sends command. */
298 d = mxs_nand_get_dma_desc(nand_info);
299 d->cmd.data =
300 MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
301 MXS_DMA_DESC_CHAIN | MXS_DMA_DESC_DEC_SEM |
302 MXS_DMA_DESC_WAIT4END | (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
303 (nand_info->cmd_queue_len << MXS_DMA_DESC_BYTES_OFFSET);
304
305 d->cmd.address = (dma_addr_t)nand_info->cmd_buf;
306
307 d->cmd.pio_words[0] =
308 GPMI_CTRL0_COMMAND_MODE_WRITE |
309 GPMI_CTRL0_WORD_LENGTH |
310 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
311 GPMI_CTRL0_ADDRESS_NAND_CLE |
312 GPMI_CTRL0_ADDRESS_INCREMENT |
313 nand_info->cmd_queue_len;
314
315 mxs_dma_desc_append(channel, d);
316
317 /* Flush caches */
318 mxs_nand_flush_cmd_buf(nand_info);
319
320 /* Execute the DMA chain. */
321 ret = mxs_dma_go(channel);
322 if (ret)
323 printf("MXS NAND: Error sending command\n");
324
325 mxs_nand_return_dma_descs(nand_info);
326
327 /* Reset the command queue. */
328 nand_info->cmd_queue_len = 0;
329 }
330
331 /*
332 * Test if the NAND flash is ready.
333 */
334 static int mxs_nand_device_ready(struct mtd_info *mtd)
335 {
336 struct nand_chip *chip = mtd->priv;
337 struct mxs_nand_info *nand_info = chip->priv;
338 struct mxs_gpmi_regs *gpmi_regs =
339 (struct mxs_gpmi_regs *)MXS_GPMI_BASE;
340 uint32_t tmp;
341
342 tmp = readl(&gpmi_regs->hw_gpmi_stat);
343 tmp >>= (GPMI_STAT_READY_BUSY_OFFSET + nand_info->cur_chip);
344
345 return tmp & 1;
346 }
347
348 /*
349 * Select the NAND chip.
350 */
351 static void mxs_nand_select_chip(struct mtd_info *mtd, int chip)
352 {
353 struct nand_chip *nand = mtd->priv;
354 struct mxs_nand_info *nand_info = nand->priv;
355
356 nand_info->cur_chip = chip;
357 }
358
359 /*
360 * Handle block mark swapping.
361 *
362 * Note that, when this function is called, it doesn't know whether it's
363 * swapping the block mark, or swapping it *back* -- but it doesn't matter
364 * because the the operation is the same.
365 */
366 static void mxs_nand_swap_block_mark(struct mtd_info *mtd,
367 uint8_t *data_buf, uint8_t *oob_buf)
368 {
369 uint32_t bit_offset;
370 uint32_t buf_offset;
371
372 uint32_t src;
373 uint32_t dst;
374
375 bit_offset = mxs_nand_mark_bit_offset(mtd);
376 buf_offset = mxs_nand_mark_byte_offset(mtd);
377
378 /*
379 * Get the byte from the data area that overlays the block mark. Since
380 * the ECC engine applies its own view to the bits in the page, the
381 * physical block mark won't (in general) appear on a byte boundary in
382 * the data.
383 */
384 src = data_buf[buf_offset] >> bit_offset;
385 src |= data_buf[buf_offset + 1] << (8 - bit_offset);
386
387 dst = oob_buf[0];
388
389 oob_buf[0] = src;
390
391 data_buf[buf_offset] &= ~(0xff << bit_offset);
392 data_buf[buf_offset + 1] &= 0xff << bit_offset;
393
394 data_buf[buf_offset] |= dst << bit_offset;
395 data_buf[buf_offset + 1] |= dst >> (8 - bit_offset);
396 }
397
398 /*
399 * Read data from NAND.
400 */
401 static void mxs_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int length)
402 {
403 struct nand_chip *nand = mtd->priv;
404 struct mxs_nand_info *nand_info = nand->priv;
405 struct mxs_dma_desc *d;
406 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
407 int ret;
408
409 if (length > NAND_MAX_PAGESIZE) {
410 printf("MXS NAND: DMA buffer too big\n");
411 return;
412 }
413
414 if (!buf) {
415 printf("MXS NAND: DMA buffer is NULL\n");
416 return;
417 }
418
419 /* Compile the DMA descriptor - a descriptor that reads data. */
420 d = mxs_nand_get_dma_desc(nand_info);
421 d->cmd.data =
422 MXS_DMA_DESC_COMMAND_DMA_WRITE | MXS_DMA_DESC_IRQ |
423 MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
424 (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
425 (length << MXS_DMA_DESC_BYTES_OFFSET);
426
427 d->cmd.address = (dma_addr_t)nand_info->data_buf;
428
429 d->cmd.pio_words[0] =
430 GPMI_CTRL0_COMMAND_MODE_READ |
431 GPMI_CTRL0_WORD_LENGTH |
432 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
433 GPMI_CTRL0_ADDRESS_NAND_DATA |
434 length;
435
436 mxs_dma_desc_append(channel, d);
437
438 /*
439 * A DMA descriptor that waits for the command to end and the chip to
440 * become ready.
441 *
442 * I think we actually should *not* be waiting for the chip to become
443 * ready because, after all, we don't care. I think the original code
444 * did that and no one has re-thought it yet.
445 */
446 d = mxs_nand_get_dma_desc(nand_info);
447 d->cmd.data =
448 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
449 MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_DEC_SEM |
450 MXS_DMA_DESC_WAIT4END | (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
451
452 d->cmd.address = 0;
453
454 d->cmd.pio_words[0] =
455 GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
456 GPMI_CTRL0_WORD_LENGTH |
457 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
458 GPMI_CTRL0_ADDRESS_NAND_DATA;
459
460 mxs_dma_desc_append(channel, d);
461
462 /* Execute the DMA chain. */
463 ret = mxs_dma_go(channel);
464 if (ret) {
465 printf("MXS NAND: DMA read error\n");
466 goto rtn;
467 }
468
469 /* Invalidate caches */
470 mxs_nand_inval_data_buf(nand_info);
471
472 memcpy(buf, nand_info->data_buf, length);
473
474 rtn:
475 mxs_nand_return_dma_descs(nand_info);
476 }
477
478 /*
479 * Write data to NAND.
480 */
481 static void mxs_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
482 int length)
483 {
484 struct nand_chip *nand = mtd->priv;
485 struct mxs_nand_info *nand_info = nand->priv;
486 struct mxs_dma_desc *d;
487 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
488 int ret;
489
490 if (length > NAND_MAX_PAGESIZE) {
491 printf("MXS NAND: DMA buffer too big\n");
492 return;
493 }
494
495 if (!buf) {
496 printf("MXS NAND: DMA buffer is NULL\n");
497 return;
498 }
499
500 memcpy(nand_info->data_buf, buf, length);
501
502 /* Compile the DMA descriptor - a descriptor that writes data. */
503 d = mxs_nand_get_dma_desc(nand_info);
504 d->cmd.data =
505 MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
506 MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
507 (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
508 (length << MXS_DMA_DESC_BYTES_OFFSET);
509
510 d->cmd.address = (dma_addr_t)nand_info->data_buf;
511
512 d->cmd.pio_words[0] =
513 GPMI_CTRL0_COMMAND_MODE_WRITE |
514 GPMI_CTRL0_WORD_LENGTH |
515 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
516 GPMI_CTRL0_ADDRESS_NAND_DATA |
517 length;
518
519 mxs_dma_desc_append(channel, d);
520
521 /* Flush caches */
522 mxs_nand_flush_data_buf(nand_info);
523
524 /* Execute the DMA chain. */
525 ret = mxs_dma_go(channel);
526 if (ret)
527 printf("MXS NAND: DMA write error\n");
528
529 mxs_nand_return_dma_descs(nand_info);
530 }
531
532 /*
533 * Read a single byte from NAND.
534 */
535 static uint8_t mxs_nand_read_byte(struct mtd_info *mtd)
536 {
537 uint8_t buf;
538 mxs_nand_read_buf(mtd, &buf, 1);
539 return buf;
540 }
541
542 /*
543 * Read a page from NAND.
544 */
545 static int mxs_nand_ecc_read_page(struct mtd_info *mtd, struct nand_chip *nand,
546 uint8_t *buf, int oob_required,
547 int page)
548 {
549 struct mxs_nand_info *nand_info = nand->priv;
550 struct mxs_dma_desc *d;
551 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
552 uint32_t corrected = 0, failed = 0;
553 uint8_t *status;
554 int i, ret;
555
556 /* Compile the DMA descriptor - wait for ready. */
557 d = mxs_nand_get_dma_desc(nand_info);
558 d->cmd.data =
559 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
560 MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
561 (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
562
563 d->cmd.address = 0;
564
565 d->cmd.pio_words[0] =
566 GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
567 GPMI_CTRL0_WORD_LENGTH |
568 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
569 GPMI_CTRL0_ADDRESS_NAND_DATA;
570
571 mxs_dma_desc_append(channel, d);
572
573 /* Compile the DMA descriptor - enable the BCH block and read. */
574 d = mxs_nand_get_dma_desc(nand_info);
575 d->cmd.data =
576 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
577 MXS_DMA_DESC_WAIT4END | (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
578
579 d->cmd.address = 0;
580
581 d->cmd.pio_words[0] =
582 GPMI_CTRL0_COMMAND_MODE_READ |
583 GPMI_CTRL0_WORD_LENGTH |
584 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
585 GPMI_CTRL0_ADDRESS_NAND_DATA |
586 (mtd->writesize + mtd->oobsize);
587 d->cmd.pio_words[1] = 0;
588 d->cmd.pio_words[2] =
589 GPMI_ECCCTRL_ENABLE_ECC |
590 GPMI_ECCCTRL_ECC_CMD_DECODE |
591 GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
592 d->cmd.pio_words[3] = mtd->writesize + mtd->oobsize;
593 d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
594 d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
595
596 mxs_dma_desc_append(channel, d);
597
598 /* Compile the DMA descriptor - disable the BCH block. */
599 d = mxs_nand_get_dma_desc(nand_info);
600 d->cmd.data =
601 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
602 MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
603 (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
604
605 d->cmd.address = 0;
606
607 d->cmd.pio_words[0] =
608 GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
609 GPMI_CTRL0_WORD_LENGTH |
610 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
611 GPMI_CTRL0_ADDRESS_NAND_DATA |
612 (mtd->writesize + mtd->oobsize);
613 d->cmd.pio_words[1] = 0;
614 d->cmd.pio_words[2] = 0;
615
616 mxs_dma_desc_append(channel, d);
617
618 /* Compile the DMA descriptor - deassert the NAND lock and interrupt. */
619 d = mxs_nand_get_dma_desc(nand_info);
620 d->cmd.data =
621 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
622 MXS_DMA_DESC_DEC_SEM;
623
624 d->cmd.address = 0;
625
626 mxs_dma_desc_append(channel, d);
627
628 /* Execute the DMA chain. */
629 ret = mxs_dma_go(channel);
630 if (ret) {
631 printf("MXS NAND: DMA read error\n");
632 goto rtn;
633 }
634
635 ret = mxs_nand_wait_for_bch_complete();
636 if (ret) {
637 printf("MXS NAND: BCH read timeout\n");
638 goto rtn;
639 }
640
641 /* Invalidate caches */
642 mxs_nand_inval_data_buf(nand_info);
643
644 /* Read DMA completed, now do the mark swapping. */
645 mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);
646
647 /* Loop over status bytes, accumulating ECC status. */
648 status = nand_info->oob_buf + mxs_nand_aux_status_offset();
649 for (i = 0; i < mxs_nand_ecc_chunk_cnt(mtd->writesize); i++) {
650 if (status[i] == 0x00)
651 continue;
652
653 if (status[i] == 0xff)
654 continue;
655
656 if (status[i] == 0xfe) {
657 failed++;
658 continue;
659 }
660
661 corrected += status[i];
662 }
663
664 /* Propagate ECC status to the owning MTD. */
665 mtd->ecc_stats.failed += failed;
666 mtd->ecc_stats.corrected += corrected;
667
668 /*
669 * It's time to deliver the OOB bytes. See mxs_nand_ecc_read_oob() for
670 * details about our policy for delivering the OOB.
671 *
672 * We fill the caller's buffer with set bits, and then copy the block
673 * mark to the caller's buffer. Note that, if block mark swapping was
674 * necessary, it has already been done, so we can rely on the first
675 * byte of the auxiliary buffer to contain the block mark.
676 */
677 memset(nand->oob_poi, 0xff, mtd->oobsize);
678
679 nand->oob_poi[0] = nand_info->oob_buf[0];
680
681 memcpy(buf, nand_info->data_buf, mtd->writesize);
682
683 rtn:
684 mxs_nand_return_dma_descs(nand_info);
685
686 return ret;
687 }
688
689 /*
690 * Write a page to NAND.
691 */
692 static int mxs_nand_ecc_write_page(struct mtd_info *mtd,
693 struct nand_chip *nand, const uint8_t *buf,
694 int oob_required)
695 {
696 struct mxs_nand_info *nand_info = nand->priv;
697 struct mxs_dma_desc *d;
698 uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
699 int ret;
700
701 memcpy(nand_info->data_buf, buf, mtd->writesize);
702 memcpy(nand_info->oob_buf, nand->oob_poi, mtd->oobsize);
703
704 /* Handle block mark swapping. */
705 mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);
706
707 /* Compile the DMA descriptor - write data. */
708 d = mxs_nand_get_dma_desc(nand_info);
709 d->cmd.data =
710 MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
711 MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
712 (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
713
714 d->cmd.address = 0;
715
716 d->cmd.pio_words[0] =
717 GPMI_CTRL0_COMMAND_MODE_WRITE |
718 GPMI_CTRL0_WORD_LENGTH |
719 (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
720 GPMI_CTRL0_ADDRESS_NAND_DATA;
721 d->cmd.pio_words[1] = 0;
722 d->cmd.pio_words[2] =
723 GPMI_ECCCTRL_ENABLE_ECC |
724 GPMI_ECCCTRL_ECC_CMD_ENCODE |
725 GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
726 d->cmd.pio_words[3] = (mtd->writesize + mtd->oobsize);
727 d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
728 d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
729
730 mxs_dma_desc_append(channel, d);
731
732 /* Flush caches */
733 mxs_nand_flush_data_buf(nand_info);
734
735 /* Execute the DMA chain. */
736 ret = mxs_dma_go(channel);
737 if (ret) {
738 printf("MXS NAND: DMA write error\n");
739 goto rtn;
740 }
741
742 ret = mxs_nand_wait_for_bch_complete();
743 if (ret) {
744 printf("MXS NAND: BCH write timeout\n");
745 goto rtn;
746 }
747
748 rtn:
749 mxs_nand_return_dma_descs(nand_info);
750 return 0;
751 }
752
753 /*
754 * Read OOB from NAND.
755 *
756 * This function is a veneer that replaces the function originally installed by
757 * the NAND Flash MTD code.
758 */
759 static int mxs_nand_hook_read_oob(struct mtd_info *mtd, loff_t from,
760 struct mtd_oob_ops *ops)
761 {
762 struct nand_chip *chip = mtd->priv;
763 struct mxs_nand_info *nand_info = chip->priv;
764 int ret;
765
766 if (ops->mode == MTD_OPS_RAW)
767 nand_info->raw_oob_mode = 1;
768 else
769 nand_info->raw_oob_mode = 0;
770
771 ret = nand_info->hooked_read_oob(mtd, from, ops);
772
773 nand_info->raw_oob_mode = 0;
774
775 return ret;
776 }
777
778 /*
779 * Write OOB to NAND.
780 *
781 * This function is a veneer that replaces the function originally installed by
782 * the NAND Flash MTD code.
783 */
784 static int mxs_nand_hook_write_oob(struct mtd_info *mtd, loff_t to,
785 struct mtd_oob_ops *ops)
786 {
787 struct nand_chip *chip = mtd->priv;
788 struct mxs_nand_info *nand_info = chip->priv;
789 int ret;
790
791 if (ops->mode == MTD_OPS_RAW)
792 nand_info->raw_oob_mode = 1;
793 else
794 nand_info->raw_oob_mode = 0;
795
796 ret = nand_info->hooked_write_oob(mtd, to, ops);
797
798 nand_info->raw_oob_mode = 0;
799
800 return ret;
801 }
802
803 /*
804 * Mark a block bad in NAND.
805 *
806 * This function is a veneer that replaces the function originally installed by
807 * the NAND Flash MTD code.
808 */
809 static int mxs_nand_hook_block_markbad(struct mtd_info *mtd, loff_t ofs)
810 {
811 struct nand_chip *chip = mtd->priv;
812 struct mxs_nand_info *nand_info = chip->priv;
813 int ret;
814
815 nand_info->marking_block_bad = 1;
816
817 ret = nand_info->hooked_block_markbad(mtd, ofs);
818
819 nand_info->marking_block_bad = 0;
820
821 return ret;
822 }
823
824 /*
825 * There are several places in this driver where we have to handle the OOB and
826 * block marks. This is the function where things are the most complicated, so
827 * this is where we try to explain it all. All the other places refer back to
828 * here.
829 *
830 * These are the rules, in order of decreasing importance:
831 *
832 * 1) Nothing the caller does can be allowed to imperil the block mark, so all
833 * write operations take measures to protect it.
834 *
835 * 2) In read operations, the first byte of the OOB we return must reflect the
836 * true state of the block mark, no matter where that block mark appears in
837 * the physical page.
838 *
839 * 3) ECC-based read operations return an OOB full of set bits (since we never
840 * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
841 * return).
842 *
843 * 4) "Raw" read operations return a direct view of the physical bytes in the
844 * page, using the conventional definition of which bytes are data and which
845 * are OOB. This gives the caller a way to see the actual, physical bytes
846 * in the page, without the distortions applied by our ECC engine.
847 *
848 * What we do for this specific read operation depends on whether we're doing
849 * "raw" read, or an ECC-based read.
850 *
851 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
852 * easy. When reading a page, for example, the NAND Flash MTD code calls our
853 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
854 * ECC-based or raw view of the page is implicit in which function it calls
855 * (there is a similar pair of ECC-based/raw functions for writing).
856 *
857 * Since MTD assumes the OOB is not covered by ECC, there is no pair of
858 * ECC-based/raw functions for reading or or writing the OOB. The fact that the
859 * caller wants an ECC-based or raw view of the page is not propagated down to
860 * this driver.
861 *
862 * Since our OOB *is* covered by ECC, we need this information. So, we hook the
863 * ecc.read_oob and ecc.write_oob function pointers in the owning
864 * struct mtd_info with our own functions. These hook functions set the
865 * raw_oob_mode field so that, when control finally arrives here, we'll know
866 * what to do.
867 */
868 static int mxs_nand_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
869 int page)
870 {
871 struct mxs_nand_info *nand_info = nand->priv;
872
873 /*
874 * First, fill in the OOB buffer. If we're doing a raw read, we need to
875 * get the bytes from the physical page. If we're not doing a raw read,
876 * we need to fill the buffer with set bits.
877 */
878 if (nand_info->raw_oob_mode) {
879 /*
880 * If control arrives here, we're doing a "raw" read. Send the
881 * command to read the conventional OOB and read it.
882 */
883 nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
884 nand->read_buf(mtd, nand->oob_poi, mtd->oobsize);
885 } else {
886 /*
887 * If control arrives here, we're not doing a "raw" read. Fill
888 * the OOB buffer with set bits and correct the block mark.
889 */
890 memset(nand->oob_poi, 0xff, mtd->oobsize);
891
892 nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
893 mxs_nand_read_buf(mtd, nand->oob_poi, 1);
894 }
895
896 return 0;
897
898 }
899
900 /*
901 * Write OOB data to NAND.
902 */
903 static int mxs_nand_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
904 int page)
905 {
906 struct mxs_nand_info *nand_info = nand->priv;
907 uint8_t block_mark = 0;
908
909 /*
910 * There are fundamental incompatibilities between the i.MX GPMI NFC and
911 * the NAND Flash MTD model that make it essentially impossible to write
912 * the out-of-band bytes.
913 *
914 * We permit *ONE* exception. If the *intent* of writing the OOB is to
915 * mark a block bad, we can do that.
916 */
917
918 if (!nand_info->marking_block_bad) {
919 printf("NXS NAND: Writing OOB isn't supported\n");
920 return -EIO;
921 }
922
923 /* Write the block mark. */
924 nand->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
925 nand->write_buf(mtd, &block_mark, 1);
926 nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
927
928 /* Check if it worked. */
929 if (nand->waitfunc(mtd, nand) & NAND_STATUS_FAIL)
930 return -EIO;
931
932 return 0;
933 }
934
935 /*
936 * Claims all blocks are good.
937 *
938 * In principle, this function is *only* called when the NAND Flash MTD system
939 * isn't allowed to keep an in-memory bad block table, so it is forced to ask
940 * the driver for bad block information.
941 *
942 * In fact, we permit the NAND Flash MTD system to have an in-memory BBT, so
943 * this function is *only* called when we take it away.
944 *
945 * Thus, this function is only called when we want *all* blocks to look good,
946 * so it *always* return success.
947 */
948 static int mxs_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
949 {
950 return 0;
951 }
952
953 /*
954 * Nominally, the purpose of this function is to look for or create the bad
955 * block table. In fact, since the we call this function at the very end of
956 * the initialization process started by nand_scan(), and we doesn't have a
957 * more formal mechanism, we "hook" this function to continue init process.
958 *
959 * At this point, the physical NAND Flash chips have been identified and
960 * counted, so we know the physical geometry. This enables us to make some
961 * important configuration decisions.
962 *
963 * The return value of this function propogates directly back to this driver's
964 * call to nand_scan(). Anything other than zero will cause this driver to
965 * tear everything down and declare failure.
966 */
967 static int mxs_nand_scan_bbt(struct mtd_info *mtd)
968 {
969 struct nand_chip *nand = mtd->priv;
970 struct mxs_nand_info *nand_info = nand->priv;
971 struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
972 uint32_t tmp;
973
974 /* Configure BCH and set NFC geometry */
975 mxs_reset_block(&bch_regs->hw_bch_ctrl_reg);
976
977 /* Configure layout 0 */
978 tmp = (mxs_nand_ecc_chunk_cnt(mtd->writesize) - 1)
979 << BCH_FLASHLAYOUT0_NBLOCKS_OFFSET;
980 tmp |= MXS_NAND_METADATA_SIZE << BCH_FLASHLAYOUT0_META_SIZE_OFFSET;
981 tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
982 << BCH_FLASHLAYOUT0_ECC0_OFFSET;
983 tmp |= MXS_NAND_CHUNK_DATA_CHUNK_SIZE
984 >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
985 writel(tmp, &bch_regs->hw_bch_flash0layout0);
986
987 tmp = (mtd->writesize + mtd->oobsize)
988 << BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET;
989 tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
990 << BCH_FLASHLAYOUT1_ECCN_OFFSET;
991 tmp |= MXS_NAND_CHUNK_DATA_CHUNK_SIZE
992 >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
993 writel(tmp, &bch_regs->hw_bch_flash0layout1);
994
995 /* Set *all* chip selects to use layout 0 */
996 writel(0, &bch_regs->hw_bch_layoutselect);
997
998 /* Enable BCH complete interrupt */
999 writel(BCH_CTRL_COMPLETE_IRQ_EN, &bch_regs->hw_bch_ctrl_set);
1000
1001 /* Hook some operations at the MTD level. */
1002 if (mtd->_read_oob != mxs_nand_hook_read_oob) {
1003 nand_info->hooked_read_oob = mtd->_read_oob;
1004 mtd->_read_oob = mxs_nand_hook_read_oob;
1005 }
1006
1007 if (mtd->_write_oob != mxs_nand_hook_write_oob) {
1008 nand_info->hooked_write_oob = mtd->_write_oob;
1009 mtd->_write_oob = mxs_nand_hook_write_oob;
1010 }
1011
1012 if (mtd->_block_markbad != mxs_nand_hook_block_markbad) {
1013 nand_info->hooked_block_markbad = mtd->_block_markbad;
1014 mtd->_block_markbad = mxs_nand_hook_block_markbad;
1015 }
1016
1017 /* We use the reference implementation for bad block management. */
1018 return nand_default_bbt(mtd);
1019 }
1020
1021 /*
1022 * Allocate DMA buffers
1023 */
1024 int mxs_nand_alloc_buffers(struct mxs_nand_info *nand_info)
1025 {
1026 uint8_t *buf;
1027 const int size = NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE;
1028
1029 nand_info->data_buf_size = roundup(size, MXS_DMA_ALIGNMENT);
1030
1031 /* DMA buffers */
1032 buf = memalign(MXS_DMA_ALIGNMENT, nand_info->data_buf_size);
1033 if (!buf) {
1034 printf("MXS NAND: Error allocating DMA buffers\n");
1035 return -ENOMEM;
1036 }
1037
1038 memset(buf, 0, nand_info->data_buf_size);
1039
1040 nand_info->data_buf = buf;
1041 nand_info->oob_buf = buf + NAND_MAX_PAGESIZE;
1042 /* Command buffers */
1043 nand_info->cmd_buf = memalign(MXS_DMA_ALIGNMENT,
1044 MXS_NAND_COMMAND_BUFFER_SIZE);
1045 if (!nand_info->cmd_buf) {
1046 free(buf);
1047 printf("MXS NAND: Error allocating command buffers\n");
1048 return -ENOMEM;
1049 }
1050 memset(nand_info->cmd_buf, 0, MXS_NAND_COMMAND_BUFFER_SIZE);
1051 nand_info->cmd_queue_len = 0;
1052
1053 return 0;
1054 }
1055
1056 /*
1057 * Initializes the NFC hardware.
1058 */
1059 int mxs_nand_init(struct mxs_nand_info *info)
1060 {
1061 struct mxs_gpmi_regs *gpmi_regs =
1062 (struct mxs_gpmi_regs *)MXS_GPMI_BASE;
1063 struct mxs_bch_regs *bch_regs =
1064 (struct mxs_bch_regs *)MXS_BCH_BASE;
1065 int i = 0, j;
1066
1067 info->desc = malloc(sizeof(struct mxs_dma_desc *) *
1068 MXS_NAND_DMA_DESCRIPTOR_COUNT);
1069 if (!info->desc)
1070 goto err1;
1071
1072 /* Allocate the DMA descriptors. */
1073 for (i = 0; i < MXS_NAND_DMA_DESCRIPTOR_COUNT; i++) {
1074 info->desc[i] = mxs_dma_desc_alloc();
1075 if (!info->desc[i])
1076 goto err2;
1077 }
1078
1079 /* Init the DMA controller. */
1080 for (j = MXS_DMA_CHANNEL_AHB_APBH_GPMI0;
1081 j <= MXS_DMA_CHANNEL_AHB_APBH_GPMI7; j++) {
1082 if (mxs_dma_init_channel(j))
1083 goto err3;
1084 }
1085
1086 /* Reset the GPMI block. */
1087 mxs_reset_block(&gpmi_regs->hw_gpmi_ctrl0_reg);
1088 mxs_reset_block(&bch_regs->hw_bch_ctrl_reg);
1089
1090 /*
1091 * Choose NAND mode, set IRQ polarity, disable write protection and
1092 * select BCH ECC.
1093 */
1094 clrsetbits_le32(&gpmi_regs->hw_gpmi_ctrl1,
1095 GPMI_CTRL1_GPMI_MODE,
1096 GPMI_CTRL1_ATA_IRQRDY_POLARITY | GPMI_CTRL1_DEV_RESET |
1097 GPMI_CTRL1_BCH_MODE);
1098
1099 return 0;
1100
1101 err3:
1102 for (--j; j >= 0; j--)
1103 mxs_dma_release(j);
1104 err2:
1105 free(info->desc);
1106 err1:
1107 for (--i; i >= 0; i--)
1108 mxs_dma_desc_free(info->desc[i]);
1109 printf("MXS NAND: Unable to allocate DMA descriptors\n");
1110 return -ENOMEM;
1111 }
1112
1113 /*!
1114 * This function is called during the driver binding process.
1115 *
1116 * @param pdev the device structure used to store device specific
1117 * information that is used by the suspend, resume and
1118 * remove functions
1119 *
1120 * @return The function always returns 0.
1121 */
1122 int board_nand_init(struct nand_chip *nand)
1123 {
1124 struct mxs_nand_info *nand_info;
1125 int err;
1126
1127 nand_info = malloc(sizeof(struct mxs_nand_info));
1128 if (!nand_info) {
1129 printf("MXS NAND: Failed to allocate private data\n");
1130 return -ENOMEM;
1131 }
1132 memset(nand_info, 0, sizeof(struct mxs_nand_info));
1133
1134 err = mxs_nand_alloc_buffers(nand_info);
1135 if (err)
1136 goto err1;
1137
1138 err = mxs_nand_init(nand_info);
1139 if (err)
1140 goto err2;
1141
1142 memset(&fake_ecc_layout, 0, sizeof(fake_ecc_layout));
1143
1144 nand->priv = nand_info;
1145 nand->options |= NAND_NO_SUBPAGE_WRITE;
1146
1147 nand->cmd_ctrl = mxs_nand_cmd_ctrl;
1148
1149 nand->dev_ready = mxs_nand_device_ready;
1150 nand->select_chip = mxs_nand_select_chip;
1151 nand->block_bad = mxs_nand_block_bad;
1152 nand->scan_bbt = mxs_nand_scan_bbt;
1153
1154 nand->read_byte = mxs_nand_read_byte;
1155
1156 nand->read_buf = mxs_nand_read_buf;
1157 nand->write_buf = mxs_nand_write_buf;
1158
1159 nand->ecc.read_page = mxs_nand_ecc_read_page;
1160 nand->ecc.write_page = mxs_nand_ecc_write_page;
1161 nand->ecc.read_oob = mxs_nand_ecc_read_oob;
1162 nand->ecc.write_oob = mxs_nand_ecc_write_oob;
1163
1164 nand->ecc.layout = &fake_ecc_layout;
1165 nand->ecc.mode = NAND_ECC_HW;
1166 nand->ecc.bytes = 9;
1167 nand->ecc.size = 512;
1168 nand->ecc.strength = 8;
1169
1170 return 0;
1171
1172 err2:
1173 free(nand_info->data_buf);
1174 free(nand_info->cmd_buf);
1175 err1:
1176 free(nand_info);
1177 return err;
1178 }