]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/net/e1000.c
imx: Get fec mac address from fuse
[people/ms/u-boot.git] / drivers / net / e1000.c
1 /**************************************************************************
2 Intel Pro 1000 for ppcboot/das-u-boot
3 Drivers are port from Intel's Linux driver e1000-4.3.15
4 and from Etherboot pro 1000 driver by mrakes at vivato dot net
5 tested on both gig copper and gig fiber boards
6 ***************************************************************************/
7 /*******************************************************************************
8
9
10 Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
11
12 This program is free software; you can redistribute it and/or modify it
13 under the terms of the GNU General Public License as published by the Free
14 Software Foundation; either version 2 of the License, or (at your option)
15 any later version.
16
17 This program is distributed in the hope that it will be useful, but WITHOUT
18 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
20 more details.
21
22 You should have received a copy of the GNU General Public License along with
23 this program; if not, write to the Free Software Foundation, Inc., 59
24 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25
26 The full GNU General Public License is included in this distribution in the
27 file called LICENSE.
28
29 Contact Information:
30 Linux NICS <linux.nics@intel.com>
31 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
32
33 *******************************************************************************/
34 /*
35 * Copyright (C) Archway Digital Solutions.
36 *
37 * written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
38 * 2/9/2002
39 *
40 * Copyright (C) Linux Networx.
41 * Massive upgrade to work with the new intel gigabit NICs.
42 * <ebiederman at lnxi dot com>
43 */
44
45 #include "e1000.h"
46
47 #define TOUT_LOOP 100000
48
49 #define virt_to_bus(devno, v) pci_virt_to_mem(devno, (void *) (v))
50 #define bus_to_phys(devno, a) pci_mem_to_phys(devno, a)
51 #define mdelay(n) udelay((n)*1000)
52
53 #define E1000_DEFAULT_PCI_PBA 0x00000030
54 #define E1000_DEFAULT_PCIE_PBA 0x000a0026
55
56 /* NIC specific static variables go here */
57
58 static char tx_pool[128 + 16];
59 static char rx_pool[128 + 16];
60 static char packet[2096];
61
62 static struct e1000_tx_desc *tx_base;
63 static struct e1000_rx_desc *rx_base;
64
65 static int tx_tail;
66 static int rx_tail, rx_last;
67
68 static struct pci_device_id supported[] = {
69 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542},
70 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER},
71 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER},
72 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER},
73 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER},
74 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER},
75 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM},
76 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM},
77 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER},
78 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER},
79 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER},
80 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER},
81 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER},
82 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER},
83 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM},
84 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER},
85 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF},
86 /* E1000 PCIe card */
87 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER},
88 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER },
89 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES },
90 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER},
91 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER},
92 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER},
93 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE},
94 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL},
95 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD},
96 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER},
97 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER},
98 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES},
99 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI},
100 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E},
101 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT},
102 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L},
103 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3},
104 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT},
105 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT},
106 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT},
107 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT},
108 {}
109 };
110
111 /* Function forward declarations */
112 static int e1000_setup_link(struct eth_device *nic);
113 static int e1000_setup_fiber_link(struct eth_device *nic);
114 static int e1000_setup_copper_link(struct eth_device *nic);
115 static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
116 static void e1000_config_collision_dist(struct e1000_hw *hw);
117 static int e1000_config_mac_to_phy(struct e1000_hw *hw);
118 static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
119 static int e1000_check_for_link(struct eth_device *nic);
120 static int e1000_wait_autoneg(struct e1000_hw *hw);
121 static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
122 uint16_t * duplex);
123 static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
124 uint16_t * phy_data);
125 static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
126 uint16_t phy_data);
127 static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
128 static int e1000_phy_reset(struct e1000_hw *hw);
129 static int e1000_detect_gig_phy(struct e1000_hw *hw);
130 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
131 static void e1000_set_media_type(struct e1000_hw *hw);
132
133 static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
134 static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
135 #define E1000_WRITE_REG(a, reg, value) (writel((value), ((a)->hw_addr + E1000_##reg)))
136 #define E1000_READ_REG(a, reg) (readl((a)->hw_addr + E1000_##reg))
137 #define E1000_WRITE_REG_ARRAY(a, reg, offset, value) (\
138 writel((value), ((a)->hw_addr + E1000_##reg + ((offset) << 2))))
139 #define E1000_READ_REG_ARRAY(a, reg, offset) ( \
140 readl((a)->hw_addr + E1000_##reg + ((offset) << 2)))
141 #define E1000_WRITE_FLUSH(a) {uint32_t x; x = E1000_READ_REG(a, STATUS);}
142
143 #ifndef CONFIG_AP1000 /* remove for warnings */
144 static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
145 uint16_t words,
146 uint16_t *data);
147 /******************************************************************************
148 * Raises the EEPROM's clock input.
149 *
150 * hw - Struct containing variables accessed by shared code
151 * eecd - EECD's current value
152 *****************************************************************************/
153 static void
154 e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
155 {
156 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
157 * wait 50 microseconds.
158 */
159 *eecd = *eecd | E1000_EECD_SK;
160 E1000_WRITE_REG(hw, EECD, *eecd);
161 E1000_WRITE_FLUSH(hw);
162 udelay(50);
163 }
164
165 /******************************************************************************
166 * Lowers the EEPROM's clock input.
167 *
168 * hw - Struct containing variables accessed by shared code
169 * eecd - EECD's current value
170 *****************************************************************************/
171 static void
172 e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
173 {
174 /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
175 * wait 50 microseconds.
176 */
177 *eecd = *eecd & ~E1000_EECD_SK;
178 E1000_WRITE_REG(hw, EECD, *eecd);
179 E1000_WRITE_FLUSH(hw);
180 udelay(50);
181 }
182
183 /******************************************************************************
184 * Shift data bits out to the EEPROM.
185 *
186 * hw - Struct containing variables accessed by shared code
187 * data - data to send to the EEPROM
188 * count - number of bits to shift out
189 *****************************************************************************/
190 static void
191 e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
192 {
193 uint32_t eecd;
194 uint32_t mask;
195
196 /* We need to shift "count" bits out to the EEPROM. So, value in the
197 * "data" parameter will be shifted out to the EEPROM one bit at a time.
198 * In order to do this, "data" must be broken down into bits.
199 */
200 mask = 0x01 << (count - 1);
201 eecd = E1000_READ_REG(hw, EECD);
202 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
203 do {
204 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
205 * and then raising and then lowering the clock (the SK bit controls
206 * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
207 * by setting "DI" to "0" and then raising and then lowering the clock.
208 */
209 eecd &= ~E1000_EECD_DI;
210
211 if (data & mask)
212 eecd |= E1000_EECD_DI;
213
214 E1000_WRITE_REG(hw, EECD, eecd);
215 E1000_WRITE_FLUSH(hw);
216
217 udelay(50);
218
219 e1000_raise_ee_clk(hw, &eecd);
220 e1000_lower_ee_clk(hw, &eecd);
221
222 mask = mask >> 1;
223
224 } while (mask);
225
226 /* We leave the "DI" bit set to "0" when we leave this routine. */
227 eecd &= ~E1000_EECD_DI;
228 E1000_WRITE_REG(hw, EECD, eecd);
229 }
230
231 /******************************************************************************
232 * Shift data bits in from the EEPROM
233 *
234 * hw - Struct containing variables accessed by shared code
235 *****************************************************************************/
236 static uint16_t
237 e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
238 {
239 uint32_t eecd;
240 uint32_t i;
241 uint16_t data;
242
243 /* In order to read a register from the EEPROM, we need to shift 'count'
244 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
245 * input to the EEPROM (setting the SK bit), and then reading the
246 * value of the "DO" bit. During this "shifting in" process the
247 * "DI" bit should always be clear.
248 */
249
250 eecd = E1000_READ_REG(hw, EECD);
251
252 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
253 data = 0;
254
255 for (i = 0; i < count; i++) {
256 data = data << 1;
257 e1000_raise_ee_clk(hw, &eecd);
258
259 eecd = E1000_READ_REG(hw, EECD);
260
261 eecd &= ~(E1000_EECD_DI);
262 if (eecd & E1000_EECD_DO)
263 data |= 1;
264
265 e1000_lower_ee_clk(hw, &eecd);
266 }
267
268 return data;
269 }
270
271 /******************************************************************************
272 * Returns EEPROM to a "standby" state
273 *
274 * hw - Struct containing variables accessed by shared code
275 *****************************************************************************/
276 static void
277 e1000_standby_eeprom(struct e1000_hw *hw)
278 {
279 struct e1000_eeprom_info *eeprom = &hw->eeprom;
280 uint32_t eecd;
281
282 eecd = E1000_READ_REG(hw, EECD);
283
284 if (eeprom->type == e1000_eeprom_microwire) {
285 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
286 E1000_WRITE_REG(hw, EECD, eecd);
287 E1000_WRITE_FLUSH(hw);
288 udelay(eeprom->delay_usec);
289
290 /* Clock high */
291 eecd |= E1000_EECD_SK;
292 E1000_WRITE_REG(hw, EECD, eecd);
293 E1000_WRITE_FLUSH(hw);
294 udelay(eeprom->delay_usec);
295
296 /* Select EEPROM */
297 eecd |= E1000_EECD_CS;
298 E1000_WRITE_REG(hw, EECD, eecd);
299 E1000_WRITE_FLUSH(hw);
300 udelay(eeprom->delay_usec);
301
302 /* Clock low */
303 eecd &= ~E1000_EECD_SK;
304 E1000_WRITE_REG(hw, EECD, eecd);
305 E1000_WRITE_FLUSH(hw);
306 udelay(eeprom->delay_usec);
307 } else if (eeprom->type == e1000_eeprom_spi) {
308 /* Toggle CS to flush commands */
309 eecd |= E1000_EECD_CS;
310 E1000_WRITE_REG(hw, EECD, eecd);
311 E1000_WRITE_FLUSH(hw);
312 udelay(eeprom->delay_usec);
313 eecd &= ~E1000_EECD_CS;
314 E1000_WRITE_REG(hw, EECD, eecd);
315 E1000_WRITE_FLUSH(hw);
316 udelay(eeprom->delay_usec);
317 }
318 }
319
320 /***************************************************************************
321 * Description: Determines if the onboard NVM is FLASH or EEPROM.
322 *
323 * hw - Struct containing variables accessed by shared code
324 ****************************************************************************/
325 static boolean_t e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
326 {
327 uint32_t eecd = 0;
328
329 DEBUGFUNC();
330
331 if (hw->mac_type == e1000_ich8lan)
332 return FALSE;
333
334 if (hw->mac_type == e1000_82573) {
335 eecd = E1000_READ_REG(hw, EECD);
336
337 /* Isolate bits 15 & 16 */
338 eecd = ((eecd >> 15) & 0x03);
339
340 /* If both bits are set, device is Flash type */
341 if (eecd == 0x03)
342 return FALSE;
343 }
344 return TRUE;
345 }
346
347 /******************************************************************************
348 * Prepares EEPROM for access
349 *
350 * hw - Struct containing variables accessed by shared code
351 *
352 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
353 * function should be called before issuing a command to the EEPROM.
354 *****************************************************************************/
355 static int32_t
356 e1000_acquire_eeprom(struct e1000_hw *hw)
357 {
358 struct e1000_eeprom_info *eeprom = &hw->eeprom;
359 uint32_t eecd, i = 0;
360
361 DEBUGFUNC();
362
363 if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
364 return -E1000_ERR_SWFW_SYNC;
365 eecd = E1000_READ_REG(hw, EECD);
366
367 if (hw->mac_type != e1000_82573) {
368 /* Request EEPROM Access */
369 if (hw->mac_type > e1000_82544) {
370 eecd |= E1000_EECD_REQ;
371 E1000_WRITE_REG(hw, EECD, eecd);
372 eecd = E1000_READ_REG(hw, EECD);
373 while ((!(eecd & E1000_EECD_GNT)) &&
374 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
375 i++;
376 udelay(5);
377 eecd = E1000_READ_REG(hw, EECD);
378 }
379 if (!(eecd & E1000_EECD_GNT)) {
380 eecd &= ~E1000_EECD_REQ;
381 E1000_WRITE_REG(hw, EECD, eecd);
382 DEBUGOUT("Could not acquire EEPROM grant\n");
383 return -E1000_ERR_EEPROM;
384 }
385 }
386 }
387
388 /* Setup EEPROM for Read/Write */
389
390 if (eeprom->type == e1000_eeprom_microwire) {
391 /* Clear SK and DI */
392 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
393 E1000_WRITE_REG(hw, EECD, eecd);
394
395 /* Set CS */
396 eecd |= E1000_EECD_CS;
397 E1000_WRITE_REG(hw, EECD, eecd);
398 } else if (eeprom->type == e1000_eeprom_spi) {
399 /* Clear SK and CS */
400 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
401 E1000_WRITE_REG(hw, EECD, eecd);
402 udelay(1);
403 }
404
405 return E1000_SUCCESS;
406 }
407
408 /******************************************************************************
409 * Sets up eeprom variables in the hw struct. Must be called after mac_type
410 * is configured. Additionally, if this is ICH8, the flash controller GbE
411 * registers must be mapped, or this will crash.
412 *
413 * hw - Struct containing variables accessed by shared code
414 *****************************************************************************/
415 static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
416 {
417 struct e1000_eeprom_info *eeprom = &hw->eeprom;
418 uint32_t eecd = E1000_READ_REG(hw, EECD);
419 int32_t ret_val = E1000_SUCCESS;
420 uint16_t eeprom_size;
421
422 DEBUGFUNC();
423
424 switch (hw->mac_type) {
425 case e1000_82542_rev2_0:
426 case e1000_82542_rev2_1:
427 case e1000_82543:
428 case e1000_82544:
429 eeprom->type = e1000_eeprom_microwire;
430 eeprom->word_size = 64;
431 eeprom->opcode_bits = 3;
432 eeprom->address_bits = 6;
433 eeprom->delay_usec = 50;
434 eeprom->use_eerd = FALSE;
435 eeprom->use_eewr = FALSE;
436 break;
437 case e1000_82540:
438 case e1000_82545:
439 case e1000_82545_rev_3:
440 case e1000_82546:
441 case e1000_82546_rev_3:
442 eeprom->type = e1000_eeprom_microwire;
443 eeprom->opcode_bits = 3;
444 eeprom->delay_usec = 50;
445 if (eecd & E1000_EECD_SIZE) {
446 eeprom->word_size = 256;
447 eeprom->address_bits = 8;
448 } else {
449 eeprom->word_size = 64;
450 eeprom->address_bits = 6;
451 }
452 eeprom->use_eerd = FALSE;
453 eeprom->use_eewr = FALSE;
454 break;
455 case e1000_82541:
456 case e1000_82541_rev_2:
457 case e1000_82547:
458 case e1000_82547_rev_2:
459 if (eecd & E1000_EECD_TYPE) {
460 eeprom->type = e1000_eeprom_spi;
461 eeprom->opcode_bits = 8;
462 eeprom->delay_usec = 1;
463 if (eecd & E1000_EECD_ADDR_BITS) {
464 eeprom->page_size = 32;
465 eeprom->address_bits = 16;
466 } else {
467 eeprom->page_size = 8;
468 eeprom->address_bits = 8;
469 }
470 } else {
471 eeprom->type = e1000_eeprom_microwire;
472 eeprom->opcode_bits = 3;
473 eeprom->delay_usec = 50;
474 if (eecd & E1000_EECD_ADDR_BITS) {
475 eeprom->word_size = 256;
476 eeprom->address_bits = 8;
477 } else {
478 eeprom->word_size = 64;
479 eeprom->address_bits = 6;
480 }
481 }
482 eeprom->use_eerd = FALSE;
483 eeprom->use_eewr = FALSE;
484 break;
485 case e1000_82571:
486 case e1000_82572:
487 eeprom->type = e1000_eeprom_spi;
488 eeprom->opcode_bits = 8;
489 eeprom->delay_usec = 1;
490 if (eecd & E1000_EECD_ADDR_BITS) {
491 eeprom->page_size = 32;
492 eeprom->address_bits = 16;
493 } else {
494 eeprom->page_size = 8;
495 eeprom->address_bits = 8;
496 }
497 eeprom->use_eerd = FALSE;
498 eeprom->use_eewr = FALSE;
499 break;
500 case e1000_82573:
501 eeprom->type = e1000_eeprom_spi;
502 eeprom->opcode_bits = 8;
503 eeprom->delay_usec = 1;
504 if (eecd & E1000_EECD_ADDR_BITS) {
505 eeprom->page_size = 32;
506 eeprom->address_bits = 16;
507 } else {
508 eeprom->page_size = 8;
509 eeprom->address_bits = 8;
510 }
511 eeprom->use_eerd = TRUE;
512 eeprom->use_eewr = TRUE;
513 if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
514 eeprom->type = e1000_eeprom_flash;
515 eeprom->word_size = 2048;
516
517 /* Ensure that the Autonomous FLASH update bit is cleared due to
518 * Flash update issue on parts which use a FLASH for NVM. */
519 eecd &= ~E1000_EECD_AUPDEN;
520 E1000_WRITE_REG(hw, EECD, eecd);
521 }
522 break;
523 case e1000_80003es2lan:
524 eeprom->type = e1000_eeprom_spi;
525 eeprom->opcode_bits = 8;
526 eeprom->delay_usec = 1;
527 if (eecd & E1000_EECD_ADDR_BITS) {
528 eeprom->page_size = 32;
529 eeprom->address_bits = 16;
530 } else {
531 eeprom->page_size = 8;
532 eeprom->address_bits = 8;
533 }
534 eeprom->use_eerd = TRUE;
535 eeprom->use_eewr = FALSE;
536 break;
537
538 /* ich8lan does not support currently. if needed, please
539 * add corresponding code and functions.
540 */
541 #if 0
542 case e1000_ich8lan:
543 {
544 int32_t i = 0;
545
546 eeprom->type = e1000_eeprom_ich8;
547 eeprom->use_eerd = FALSE;
548 eeprom->use_eewr = FALSE;
549 eeprom->word_size = E1000_SHADOW_RAM_WORDS;
550 uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw,
551 ICH_FLASH_GFPREG);
552 /* Zero the shadow RAM structure. But don't load it from NVM
553 * so as to save time for driver init */
554 if (hw->eeprom_shadow_ram != NULL) {
555 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
556 hw->eeprom_shadow_ram[i].modified = FALSE;
557 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
558 }
559 }
560
561 hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
562 ICH_FLASH_SECTOR_SIZE;
563
564 hw->flash_bank_size = ((flash_size >> 16)
565 & ICH_GFPREG_BASE_MASK) + 1;
566 hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
567
568 hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
569
570 hw->flash_bank_size /= 2 * sizeof(uint16_t);
571 break;
572 }
573 #endif
574 default:
575 break;
576 }
577
578 if (eeprom->type == e1000_eeprom_spi) {
579 /* eeprom_size will be an enum [0..8] that maps
580 * to eeprom sizes 128B to
581 * 32KB (incremented by powers of 2).
582 */
583 if (hw->mac_type <= e1000_82547_rev_2) {
584 /* Set to default value for initial eeprom read. */
585 eeprom->word_size = 64;
586 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
587 &eeprom_size);
588 if (ret_val)
589 return ret_val;
590 eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
591 >> EEPROM_SIZE_SHIFT;
592 /* 256B eeprom size was not supported in earlier
593 * hardware, so we bump eeprom_size up one to
594 * ensure that "1" (which maps to 256B) is never
595 * the result used in the shifting logic below. */
596 if (eeprom_size)
597 eeprom_size++;
598 } else {
599 eeprom_size = (uint16_t)((eecd &
600 E1000_EECD_SIZE_EX_MASK) >>
601 E1000_EECD_SIZE_EX_SHIFT);
602 }
603
604 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
605 }
606 return ret_val;
607 }
608
609 /******************************************************************************
610 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
611 *
612 * hw - Struct containing variables accessed by shared code
613 *****************************************************************************/
614 static int32_t
615 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
616 {
617 uint32_t attempts = 100000;
618 uint32_t i, reg = 0;
619 int32_t done = E1000_ERR_EEPROM;
620
621 for (i = 0; i < attempts; i++) {
622 if (eerd == E1000_EEPROM_POLL_READ)
623 reg = E1000_READ_REG(hw, EERD);
624 else
625 reg = E1000_READ_REG(hw, EEWR);
626
627 if (reg & E1000_EEPROM_RW_REG_DONE) {
628 done = E1000_SUCCESS;
629 break;
630 }
631 udelay(5);
632 }
633
634 return done;
635 }
636
637 /******************************************************************************
638 * Reads a 16 bit word from the EEPROM using the EERD register.
639 *
640 * hw - Struct containing variables accessed by shared code
641 * offset - offset of word in the EEPROM to read
642 * data - word read from the EEPROM
643 * words - number of words to read
644 *****************************************************************************/
645 static int32_t
646 e1000_read_eeprom_eerd(struct e1000_hw *hw,
647 uint16_t offset,
648 uint16_t words,
649 uint16_t *data)
650 {
651 uint32_t i, eerd = 0;
652 int32_t error = 0;
653
654 for (i = 0; i < words; i++) {
655 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
656 E1000_EEPROM_RW_REG_START;
657
658 E1000_WRITE_REG(hw, EERD, eerd);
659 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
660
661 if (error)
662 break;
663 data[i] = (E1000_READ_REG(hw, EERD) >>
664 E1000_EEPROM_RW_REG_DATA);
665
666 }
667
668 return error;
669 }
670
671 static void
672 e1000_release_eeprom(struct e1000_hw *hw)
673 {
674 uint32_t eecd;
675
676 DEBUGFUNC();
677
678 eecd = E1000_READ_REG(hw, EECD);
679
680 if (hw->eeprom.type == e1000_eeprom_spi) {
681 eecd |= E1000_EECD_CS; /* Pull CS high */
682 eecd &= ~E1000_EECD_SK; /* Lower SCK */
683
684 E1000_WRITE_REG(hw, EECD, eecd);
685
686 udelay(hw->eeprom.delay_usec);
687 } else if (hw->eeprom.type == e1000_eeprom_microwire) {
688 /* cleanup eeprom */
689
690 /* CS on Microwire is active-high */
691 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
692
693 E1000_WRITE_REG(hw, EECD, eecd);
694
695 /* Rising edge of clock */
696 eecd |= E1000_EECD_SK;
697 E1000_WRITE_REG(hw, EECD, eecd);
698 E1000_WRITE_FLUSH(hw);
699 udelay(hw->eeprom.delay_usec);
700
701 /* Falling edge of clock */
702 eecd &= ~E1000_EECD_SK;
703 E1000_WRITE_REG(hw, EECD, eecd);
704 E1000_WRITE_FLUSH(hw);
705 udelay(hw->eeprom.delay_usec);
706 }
707
708 /* Stop requesting EEPROM access */
709 if (hw->mac_type > e1000_82544) {
710 eecd &= ~E1000_EECD_REQ;
711 E1000_WRITE_REG(hw, EECD, eecd);
712 }
713 }
714 /******************************************************************************
715 * Reads a 16 bit word from the EEPROM.
716 *
717 * hw - Struct containing variables accessed by shared code
718 *****************************************************************************/
719 static int32_t
720 e1000_spi_eeprom_ready(struct e1000_hw *hw)
721 {
722 uint16_t retry_count = 0;
723 uint8_t spi_stat_reg;
724
725 DEBUGFUNC();
726
727 /* Read "Status Register" repeatedly until the LSB is cleared. The
728 * EEPROM will signal that the command has been completed by clearing
729 * bit 0 of the internal status register. If it's not cleared within
730 * 5 milliseconds, then error out.
731 */
732 retry_count = 0;
733 do {
734 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
735 hw->eeprom.opcode_bits);
736 spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
737 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
738 break;
739
740 udelay(5);
741 retry_count += 5;
742
743 e1000_standby_eeprom(hw);
744 } while (retry_count < EEPROM_MAX_RETRY_SPI);
745
746 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
747 * only 0-5mSec on 5V devices)
748 */
749 if (retry_count >= EEPROM_MAX_RETRY_SPI) {
750 DEBUGOUT("SPI EEPROM Status error\n");
751 return -E1000_ERR_EEPROM;
752 }
753
754 return E1000_SUCCESS;
755 }
756
757 /******************************************************************************
758 * Reads a 16 bit word from the EEPROM.
759 *
760 * hw - Struct containing variables accessed by shared code
761 * offset - offset of word in the EEPROM to read
762 * data - word read from the EEPROM
763 *****************************************************************************/
764 static int32_t
765 e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
766 uint16_t words, uint16_t *data)
767 {
768 struct e1000_eeprom_info *eeprom = &hw->eeprom;
769 uint32_t i = 0;
770
771 DEBUGFUNC();
772
773 /* If eeprom is not yet detected, do so now */
774 if (eeprom->word_size == 0)
775 e1000_init_eeprom_params(hw);
776
777 /* A check for invalid values: offset too large, too many words,
778 * and not enough words.
779 */
780 if ((offset >= eeprom->word_size) ||
781 (words > eeprom->word_size - offset) ||
782 (words == 0)) {
783 DEBUGOUT("\"words\" parameter out of bounds."
784 "Words = %d, size = %d\n", offset, eeprom->word_size);
785 return -E1000_ERR_EEPROM;
786 }
787
788 /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
789 * directly. In this case, we need to acquire the EEPROM so that
790 * FW or other port software does not interrupt.
791 */
792 if (e1000_is_onboard_nvm_eeprom(hw) == TRUE &&
793 hw->eeprom.use_eerd == FALSE) {
794
795 /* Prepare the EEPROM for bit-bang reading */
796 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
797 return -E1000_ERR_EEPROM;
798 }
799
800 /* Eerd register EEPROM access requires no eeprom aquire/release */
801 if (eeprom->use_eerd == TRUE)
802 return e1000_read_eeprom_eerd(hw, offset, words, data);
803
804 /* ich8lan does not support currently. if needed, please
805 * add corresponding code and functions.
806 */
807 #if 0
808 /* ICH EEPROM access is done via the ICH flash controller */
809 if (eeprom->type == e1000_eeprom_ich8)
810 return e1000_read_eeprom_ich8(hw, offset, words, data);
811 #endif
812 /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
813 * acquired the EEPROM at this point, so any returns should relase it */
814 if (eeprom->type == e1000_eeprom_spi) {
815 uint16_t word_in;
816 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
817
818 if (e1000_spi_eeprom_ready(hw)) {
819 e1000_release_eeprom(hw);
820 return -E1000_ERR_EEPROM;
821 }
822
823 e1000_standby_eeprom(hw);
824
825 /* Some SPI eeproms use the 8th address bit embedded in
826 * the opcode */
827 if ((eeprom->address_bits == 8) && (offset >= 128))
828 read_opcode |= EEPROM_A8_OPCODE_SPI;
829
830 /* Send the READ command (opcode + addr) */
831 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
832 e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
833 eeprom->address_bits);
834
835 /* Read the data. The address of the eeprom internally
836 * increments with each byte (spi) being read, saving on the
837 * overhead of eeprom setup and tear-down. The address
838 * counter will roll over if reading beyond the size of
839 * the eeprom, thus allowing the entire memory to be read
840 * starting from any offset. */
841 for (i = 0; i < words; i++) {
842 word_in = e1000_shift_in_ee_bits(hw, 16);
843 data[i] = (word_in >> 8) | (word_in << 8);
844 }
845 } else if (eeprom->type == e1000_eeprom_microwire) {
846 for (i = 0; i < words; i++) {
847 /* Send the READ command (opcode + addr) */
848 e1000_shift_out_ee_bits(hw,
849 EEPROM_READ_OPCODE_MICROWIRE,
850 eeprom->opcode_bits);
851 e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
852 eeprom->address_bits);
853
854 /* Read the data. For microwire, each word requires
855 * the overhead of eeprom setup and tear-down. */
856 data[i] = e1000_shift_in_ee_bits(hw, 16);
857 e1000_standby_eeprom(hw);
858 }
859 }
860
861 /* End this read operation */
862 e1000_release_eeprom(hw);
863
864 return E1000_SUCCESS;
865 }
866
867 /******************************************************************************
868 * Verifies that the EEPROM has a valid checksum
869 *
870 * hw - Struct containing variables accessed by shared code
871 *
872 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
873 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
874 * valid.
875 *****************************************************************************/
876 static int
877 e1000_validate_eeprom_checksum(struct eth_device *nic)
878 {
879 struct e1000_hw *hw = nic->priv;
880 uint16_t checksum = 0;
881 uint16_t i, eeprom_data;
882
883 DEBUGFUNC();
884
885 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
886 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
887 DEBUGOUT("EEPROM Read Error\n");
888 return -E1000_ERR_EEPROM;
889 }
890 checksum += eeprom_data;
891 }
892
893 if (checksum == (uint16_t) EEPROM_SUM) {
894 return 0;
895 } else {
896 DEBUGOUT("EEPROM Checksum Invalid\n");
897 return -E1000_ERR_EEPROM;
898 }
899 }
900
901 /*****************************************************************************
902 * Set PHY to class A mode
903 * Assumes the following operations will follow to enable the new class mode.
904 * 1. Do a PHY soft reset
905 * 2. Restart auto-negotiation or force link.
906 *
907 * hw - Struct containing variables accessed by shared code
908 ****************************************************************************/
909 static int32_t
910 e1000_set_phy_mode(struct e1000_hw *hw)
911 {
912 int32_t ret_val;
913 uint16_t eeprom_data;
914
915 DEBUGFUNC();
916
917 if ((hw->mac_type == e1000_82545_rev_3) &&
918 (hw->media_type == e1000_media_type_copper)) {
919 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
920 1, &eeprom_data);
921 if (ret_val)
922 return ret_val;
923
924 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
925 (eeprom_data & EEPROM_PHY_CLASS_A)) {
926 ret_val = e1000_write_phy_reg(hw,
927 M88E1000_PHY_PAGE_SELECT, 0x000B);
928 if (ret_val)
929 return ret_val;
930 ret_val = e1000_write_phy_reg(hw,
931 M88E1000_PHY_GEN_CONTROL, 0x8104);
932 if (ret_val)
933 return ret_val;
934
935 hw->phy_reset_disable = FALSE;
936 }
937 }
938
939 return E1000_SUCCESS;
940 }
941 #endif /* #ifndef CONFIG_AP1000 */
942
943 /***************************************************************************
944 *
945 * Obtaining software semaphore bit (SMBI) before resetting PHY.
946 *
947 * hw: Struct containing variables accessed by shared code
948 *
949 * returns: - E1000_ERR_RESET if fail to obtain semaphore.
950 * E1000_SUCCESS at any other case.
951 *
952 ***************************************************************************/
953 static int32_t
954 e1000_get_software_semaphore(struct e1000_hw *hw)
955 {
956 int32_t timeout = hw->eeprom.word_size + 1;
957 uint32_t swsm;
958
959 DEBUGFUNC();
960
961 if (hw->mac_type != e1000_80003es2lan)
962 return E1000_SUCCESS;
963
964 while (timeout) {
965 swsm = E1000_READ_REG(hw, SWSM);
966 /* If SMBI bit cleared, it is now set and we hold
967 * the semaphore */
968 if (!(swsm & E1000_SWSM_SMBI))
969 break;
970 mdelay(1);
971 timeout--;
972 }
973
974 if (!timeout) {
975 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
976 return -E1000_ERR_RESET;
977 }
978
979 return E1000_SUCCESS;
980 }
981
982 /***************************************************************************
983 * This function clears HW semaphore bits.
984 *
985 * hw: Struct containing variables accessed by shared code
986 *
987 * returns: - None.
988 *
989 ***************************************************************************/
990 static void
991 e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
992 {
993 uint32_t swsm;
994
995 DEBUGFUNC();
996
997 if (!hw->eeprom_semaphore_present)
998 return;
999
1000 swsm = E1000_READ_REG(hw, SWSM);
1001 if (hw->mac_type == e1000_80003es2lan) {
1002 /* Release both semaphores. */
1003 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1004 } else
1005 swsm &= ~(E1000_SWSM_SWESMBI);
1006 E1000_WRITE_REG(hw, SWSM, swsm);
1007 }
1008
1009 /***************************************************************************
1010 *
1011 * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1012 * adapter or Eeprom access.
1013 *
1014 * hw: Struct containing variables accessed by shared code
1015 *
1016 * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1017 * E1000_SUCCESS at any other case.
1018 *
1019 ***************************************************************************/
1020 static int32_t
1021 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1022 {
1023 int32_t timeout;
1024 uint32_t swsm;
1025
1026 DEBUGFUNC();
1027
1028 if (!hw->eeprom_semaphore_present)
1029 return E1000_SUCCESS;
1030
1031 if (hw->mac_type == e1000_80003es2lan) {
1032 /* Get the SW semaphore. */
1033 if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1034 return -E1000_ERR_EEPROM;
1035 }
1036
1037 /* Get the FW semaphore. */
1038 timeout = hw->eeprom.word_size + 1;
1039 while (timeout) {
1040 swsm = E1000_READ_REG(hw, SWSM);
1041 swsm |= E1000_SWSM_SWESMBI;
1042 E1000_WRITE_REG(hw, SWSM, swsm);
1043 /* if we managed to set the bit we got the semaphore. */
1044 swsm = E1000_READ_REG(hw, SWSM);
1045 if (swsm & E1000_SWSM_SWESMBI)
1046 break;
1047
1048 udelay(50);
1049 timeout--;
1050 }
1051
1052 if (!timeout) {
1053 /* Release semaphores */
1054 e1000_put_hw_eeprom_semaphore(hw);
1055 DEBUGOUT("Driver can't access the Eeprom - "
1056 "SWESMBI bit is set.\n");
1057 return -E1000_ERR_EEPROM;
1058 }
1059
1060 return E1000_SUCCESS;
1061 }
1062
1063 static int32_t
1064 e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1065 {
1066 uint32_t swfw_sync = 0;
1067 uint32_t swmask = mask;
1068 uint32_t fwmask = mask << 16;
1069 int32_t timeout = 200;
1070
1071 DEBUGFUNC();
1072 while (timeout) {
1073 if (e1000_get_hw_eeprom_semaphore(hw))
1074 return -E1000_ERR_SWFW_SYNC;
1075
1076 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1077 if (!(swfw_sync & (fwmask | swmask)))
1078 break;
1079
1080 /* firmware currently using resource (fwmask) */
1081 /* or other software thread currently using resource (swmask) */
1082 e1000_put_hw_eeprom_semaphore(hw);
1083 mdelay(5);
1084 timeout--;
1085 }
1086
1087 if (!timeout) {
1088 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1089 return -E1000_ERR_SWFW_SYNC;
1090 }
1091
1092 swfw_sync |= swmask;
1093 E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1094
1095 e1000_put_hw_eeprom_semaphore(hw);
1096 return E1000_SUCCESS;
1097 }
1098
1099 /******************************************************************************
1100 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1101 * second function of dual function devices
1102 *
1103 * nic - Struct containing variables accessed by shared code
1104 *****************************************************************************/
1105 static int
1106 e1000_read_mac_addr(struct eth_device *nic)
1107 {
1108 #ifndef CONFIG_AP1000
1109 struct e1000_hw *hw = nic->priv;
1110 uint16_t offset;
1111 uint16_t eeprom_data;
1112 int i;
1113
1114 DEBUGFUNC();
1115
1116 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1117 offset = i >> 1;
1118 if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
1119 DEBUGOUT("EEPROM Read Error\n");
1120 return -E1000_ERR_EEPROM;
1121 }
1122 nic->enetaddr[i] = eeprom_data & 0xff;
1123 nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
1124 }
1125 if ((hw->mac_type == e1000_82546) &&
1126 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
1127 /* Invert the last bit if this is the second device */
1128 nic->enetaddr[5] += 1;
1129 }
1130 #ifdef CONFIG_E1000_FALLBACK_MAC
1131 if ( *(u32*)(nic->enetaddr) == 0 || *(u32*)(nic->enetaddr) == ~0 ) {
1132 unsigned char fb_mac[NODE_ADDRESS_SIZE] = CONFIG_E1000_FALLBACK_MAC;
1133
1134 memcpy (nic->enetaddr, fb_mac, NODE_ADDRESS_SIZE);
1135 }
1136 #endif
1137 #else
1138 /*
1139 * The AP1000's e1000 has no eeprom; the MAC address is stored in the
1140 * environment variables. Currently this does not support the addition
1141 * of a PMC e1000 card, which is certainly a possibility, so this should
1142 * be updated to properly use the env variable only for the onboard e1000
1143 */
1144
1145 int ii;
1146 char *s, *e;
1147
1148 DEBUGFUNC();
1149
1150 s = getenv ("ethaddr");
1151 if (s == NULL) {
1152 return -E1000_ERR_EEPROM;
1153 } else {
1154 for(ii = 0; ii < 6; ii++) {
1155 nic->enetaddr[ii] = s ? simple_strtoul (s, &e, 16) : 0;
1156 if (s){
1157 s = (*e) ? e + 1 : e;
1158 }
1159 }
1160 }
1161 #endif
1162 return 0;
1163 }
1164
1165 /******************************************************************************
1166 * Initializes receive address filters.
1167 *
1168 * hw - Struct containing variables accessed by shared code
1169 *
1170 * Places the MAC address in receive address register 0 and clears the rest
1171 * of the receive addresss registers. Clears the multicast table. Assumes
1172 * the receiver is in reset when the routine is called.
1173 *****************************************************************************/
1174 static void
1175 e1000_init_rx_addrs(struct eth_device *nic)
1176 {
1177 struct e1000_hw *hw = nic->priv;
1178 uint32_t i;
1179 uint32_t addr_low;
1180 uint32_t addr_high;
1181
1182 DEBUGFUNC();
1183
1184 /* Setup the receive address. */
1185 DEBUGOUT("Programming MAC Address into RAR[0]\n");
1186 addr_low = (nic->enetaddr[0] |
1187 (nic->enetaddr[1] << 8) |
1188 (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24));
1189
1190 addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV);
1191
1192 E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1193 E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1194
1195 /* Zero out the other 15 receive addresses. */
1196 DEBUGOUT("Clearing RAR[1-15]\n");
1197 for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1198 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1199 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1200 }
1201 }
1202
1203 /******************************************************************************
1204 * Clears the VLAN filer table
1205 *
1206 * hw - Struct containing variables accessed by shared code
1207 *****************************************************************************/
1208 static void
1209 e1000_clear_vfta(struct e1000_hw *hw)
1210 {
1211 uint32_t offset;
1212
1213 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1214 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1215 }
1216
1217 /******************************************************************************
1218 * Set the mac type member in the hw struct.
1219 *
1220 * hw - Struct containing variables accessed by shared code
1221 *****************************************************************************/
1222 int32_t
1223 e1000_set_mac_type(struct e1000_hw *hw)
1224 {
1225 DEBUGFUNC();
1226
1227 switch (hw->device_id) {
1228 case E1000_DEV_ID_82542:
1229 switch (hw->revision_id) {
1230 case E1000_82542_2_0_REV_ID:
1231 hw->mac_type = e1000_82542_rev2_0;
1232 break;
1233 case E1000_82542_2_1_REV_ID:
1234 hw->mac_type = e1000_82542_rev2_1;
1235 break;
1236 default:
1237 /* Invalid 82542 revision ID */
1238 return -E1000_ERR_MAC_TYPE;
1239 }
1240 break;
1241 case E1000_DEV_ID_82543GC_FIBER:
1242 case E1000_DEV_ID_82543GC_COPPER:
1243 hw->mac_type = e1000_82543;
1244 break;
1245 case E1000_DEV_ID_82544EI_COPPER:
1246 case E1000_DEV_ID_82544EI_FIBER:
1247 case E1000_DEV_ID_82544GC_COPPER:
1248 case E1000_DEV_ID_82544GC_LOM:
1249 hw->mac_type = e1000_82544;
1250 break;
1251 case E1000_DEV_ID_82540EM:
1252 case E1000_DEV_ID_82540EM_LOM:
1253 case E1000_DEV_ID_82540EP:
1254 case E1000_DEV_ID_82540EP_LOM:
1255 case E1000_DEV_ID_82540EP_LP:
1256 hw->mac_type = e1000_82540;
1257 break;
1258 case E1000_DEV_ID_82545EM_COPPER:
1259 case E1000_DEV_ID_82545EM_FIBER:
1260 hw->mac_type = e1000_82545;
1261 break;
1262 case E1000_DEV_ID_82545GM_COPPER:
1263 case E1000_DEV_ID_82545GM_FIBER:
1264 case E1000_DEV_ID_82545GM_SERDES:
1265 hw->mac_type = e1000_82545_rev_3;
1266 break;
1267 case E1000_DEV_ID_82546EB_COPPER:
1268 case E1000_DEV_ID_82546EB_FIBER:
1269 case E1000_DEV_ID_82546EB_QUAD_COPPER:
1270 hw->mac_type = e1000_82546;
1271 break;
1272 case E1000_DEV_ID_82546GB_COPPER:
1273 case E1000_DEV_ID_82546GB_FIBER:
1274 case E1000_DEV_ID_82546GB_SERDES:
1275 case E1000_DEV_ID_82546GB_PCIE:
1276 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1277 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1278 hw->mac_type = e1000_82546_rev_3;
1279 break;
1280 case E1000_DEV_ID_82541EI:
1281 case E1000_DEV_ID_82541EI_MOBILE:
1282 case E1000_DEV_ID_82541ER_LOM:
1283 hw->mac_type = e1000_82541;
1284 break;
1285 case E1000_DEV_ID_82541ER:
1286 case E1000_DEV_ID_82541GI:
1287 case E1000_DEV_ID_82541GI_LF:
1288 case E1000_DEV_ID_82541GI_MOBILE:
1289 hw->mac_type = e1000_82541_rev_2;
1290 break;
1291 case E1000_DEV_ID_82547EI:
1292 case E1000_DEV_ID_82547EI_MOBILE:
1293 hw->mac_type = e1000_82547;
1294 break;
1295 case E1000_DEV_ID_82547GI:
1296 hw->mac_type = e1000_82547_rev_2;
1297 break;
1298 case E1000_DEV_ID_82571EB_COPPER:
1299 case E1000_DEV_ID_82571EB_FIBER:
1300 case E1000_DEV_ID_82571EB_SERDES:
1301 case E1000_DEV_ID_82571EB_SERDES_DUAL:
1302 case E1000_DEV_ID_82571EB_SERDES_QUAD:
1303 case E1000_DEV_ID_82571EB_QUAD_COPPER:
1304 case E1000_DEV_ID_82571PT_QUAD_COPPER:
1305 case E1000_DEV_ID_82571EB_QUAD_FIBER:
1306 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1307 hw->mac_type = e1000_82571;
1308 break;
1309 case E1000_DEV_ID_82572EI_COPPER:
1310 case E1000_DEV_ID_82572EI_FIBER:
1311 case E1000_DEV_ID_82572EI_SERDES:
1312 case E1000_DEV_ID_82572EI:
1313 hw->mac_type = e1000_82572;
1314 break;
1315 case E1000_DEV_ID_82573E:
1316 case E1000_DEV_ID_82573E_IAMT:
1317 case E1000_DEV_ID_82573L:
1318 hw->mac_type = e1000_82573;
1319 break;
1320 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1321 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1322 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1323 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1324 hw->mac_type = e1000_80003es2lan;
1325 break;
1326 case E1000_DEV_ID_ICH8_IGP_M_AMT:
1327 case E1000_DEV_ID_ICH8_IGP_AMT:
1328 case E1000_DEV_ID_ICH8_IGP_C:
1329 case E1000_DEV_ID_ICH8_IFE:
1330 case E1000_DEV_ID_ICH8_IFE_GT:
1331 case E1000_DEV_ID_ICH8_IFE_G:
1332 case E1000_DEV_ID_ICH8_IGP_M:
1333 hw->mac_type = e1000_ich8lan;
1334 break;
1335 default:
1336 /* Should never have loaded on this device */
1337 return -E1000_ERR_MAC_TYPE;
1338 }
1339 return E1000_SUCCESS;
1340 }
1341
1342 /******************************************************************************
1343 * Reset the transmit and receive units; mask and clear all interrupts.
1344 *
1345 * hw - Struct containing variables accessed by shared code
1346 *****************************************************************************/
1347 void
1348 e1000_reset_hw(struct e1000_hw *hw)
1349 {
1350 uint32_t ctrl;
1351 uint32_t ctrl_ext;
1352 uint32_t icr;
1353 uint32_t manc;
1354 uint32_t pba = 0;
1355
1356 DEBUGFUNC();
1357
1358 /* get the correct pba value for both PCI and PCIe*/
1359 if (hw->mac_type < e1000_82571)
1360 pba = E1000_DEFAULT_PCI_PBA;
1361 else
1362 pba = E1000_DEFAULT_PCIE_PBA;
1363
1364 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1365 if (hw->mac_type == e1000_82542_rev2_0) {
1366 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1367 pci_write_config_word(hw->pdev, PCI_COMMAND,
1368 hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1369 }
1370
1371 /* Clear interrupt mask to stop board from generating interrupts */
1372 DEBUGOUT("Masking off all interrupts\n");
1373 E1000_WRITE_REG(hw, IMC, 0xffffffff);
1374
1375 /* Disable the Transmit and Receive units. Then delay to allow
1376 * any pending transactions to complete before we hit the MAC with
1377 * the global reset.
1378 */
1379 E1000_WRITE_REG(hw, RCTL, 0);
1380 E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1381 E1000_WRITE_FLUSH(hw);
1382
1383 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
1384 hw->tbi_compatibility_on = FALSE;
1385
1386 /* Delay to allow any outstanding PCI transactions to complete before
1387 * resetting the device
1388 */
1389 mdelay(10);
1390
1391 /* Issue a global reset to the MAC. This will reset the chip's
1392 * transmit, receive, DMA, and link units. It will not effect
1393 * the current PCI configuration. The global reset bit is self-
1394 * clearing, and should clear within a microsecond.
1395 */
1396 DEBUGOUT("Issuing a global reset to MAC\n");
1397 ctrl = E1000_READ_REG(hw, CTRL);
1398
1399 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
1400
1401 /* Force a reload from the EEPROM if necessary */
1402 if (hw->mac_type < e1000_82540) {
1403 /* Wait for reset to complete */
1404 udelay(10);
1405 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1406 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1407 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1408 E1000_WRITE_FLUSH(hw);
1409 /* Wait for EEPROM reload */
1410 mdelay(2);
1411 } else {
1412 /* Wait for EEPROM reload (it happens automatically) */
1413 mdelay(4);
1414 /* Dissable HW ARPs on ASF enabled adapters */
1415 manc = E1000_READ_REG(hw, MANC);
1416 manc &= ~(E1000_MANC_ARP_EN);
1417 E1000_WRITE_REG(hw, MANC, manc);
1418 }
1419
1420 /* Clear interrupt mask to stop board from generating interrupts */
1421 DEBUGOUT("Masking off all interrupts\n");
1422 E1000_WRITE_REG(hw, IMC, 0xffffffff);
1423
1424 /* Clear any pending interrupt events. */
1425 icr = E1000_READ_REG(hw, ICR);
1426
1427 /* If MWI was previously enabled, reenable it. */
1428 if (hw->mac_type == e1000_82542_rev2_0) {
1429 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1430 }
1431 E1000_WRITE_REG(hw, PBA, pba);
1432 }
1433
1434 /******************************************************************************
1435 *
1436 * Initialize a number of hardware-dependent bits
1437 *
1438 * hw: Struct containing variables accessed by shared code
1439 *
1440 * This function contains hardware limitation workarounds for PCI-E adapters
1441 *
1442 *****************************************************************************/
1443 static void
1444 e1000_initialize_hardware_bits(struct e1000_hw *hw)
1445 {
1446 if ((hw->mac_type >= e1000_82571) &&
1447 (!hw->initialize_hw_bits_disable)) {
1448 /* Settings common to all PCI-express silicon */
1449 uint32_t reg_ctrl, reg_ctrl_ext;
1450 uint32_t reg_tarc0, reg_tarc1;
1451 uint32_t reg_tctl;
1452 uint32_t reg_txdctl, reg_txdctl1;
1453
1454 /* link autonegotiation/sync workarounds */
1455 reg_tarc0 = E1000_READ_REG(hw, TARC0);
1456 reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1457
1458 /* Enable not-done TX descriptor counting */
1459 reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1460 reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1461 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1462
1463 reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1464 reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1465 E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1466
1467 switch (hw->mac_type) {
1468 case e1000_82571:
1469 case e1000_82572:
1470 /* Clear PHY TX compatible mode bits */
1471 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1472 reg_tarc1 &= ~((1 << 30)|(1 << 29));
1473
1474 /* link autonegotiation/sync workarounds */
1475 reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1476
1477 /* TX ring control fixes */
1478 reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1479
1480 /* Multiple read bit is reversed polarity */
1481 reg_tctl = E1000_READ_REG(hw, TCTL);
1482 if (reg_tctl & E1000_TCTL_MULR)
1483 reg_tarc1 &= ~(1 << 28);
1484 else
1485 reg_tarc1 |= (1 << 28);
1486
1487 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1488 break;
1489 case e1000_82573:
1490 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1491 reg_ctrl_ext &= ~(1 << 23);
1492 reg_ctrl_ext |= (1 << 22);
1493
1494 /* TX byte count fix */
1495 reg_ctrl = E1000_READ_REG(hw, CTRL);
1496 reg_ctrl &= ~(1 << 29);
1497
1498 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1499 E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1500 break;
1501 case e1000_80003es2lan:
1502 /* improve small packet performace for fiber/serdes */
1503 if ((hw->media_type == e1000_media_type_fiber)
1504 || (hw->media_type ==
1505 e1000_media_type_internal_serdes)) {
1506 reg_tarc0 &= ~(1 << 20);
1507 }
1508
1509 /* Multiple read bit is reversed polarity */
1510 reg_tctl = E1000_READ_REG(hw, TCTL);
1511 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1512 if (reg_tctl & E1000_TCTL_MULR)
1513 reg_tarc1 &= ~(1 << 28);
1514 else
1515 reg_tarc1 |= (1 << 28);
1516
1517 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1518 break;
1519 case e1000_ich8lan:
1520 /* Reduce concurrent DMA requests to 3 from 4 */
1521 if ((hw->revision_id < 3) ||
1522 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1523 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1524 reg_tarc0 |= ((1 << 29)|(1 << 28));
1525
1526 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1527 reg_ctrl_ext |= (1 << 22);
1528 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1529
1530 /* workaround TX hang with TSO=on */
1531 reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1532
1533 /* Multiple read bit is reversed polarity */
1534 reg_tctl = E1000_READ_REG(hw, TCTL);
1535 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1536 if (reg_tctl & E1000_TCTL_MULR)
1537 reg_tarc1 &= ~(1 << 28);
1538 else
1539 reg_tarc1 |= (1 << 28);
1540
1541 /* workaround TX hang with TSO=on */
1542 reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1543
1544 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1545 break;
1546 default:
1547 break;
1548 }
1549
1550 E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1551 }
1552 }
1553
1554 /******************************************************************************
1555 * Performs basic configuration of the adapter.
1556 *
1557 * hw - Struct containing variables accessed by shared code
1558 *
1559 * Assumes that the controller has previously been reset and is in a
1560 * post-reset uninitialized state. Initializes the receive address registers,
1561 * multicast table, and VLAN filter table. Calls routines to setup link
1562 * configuration and flow control settings. Clears all on-chip counters. Leaves
1563 * the transmit and receive units disabled and uninitialized.
1564 *****************************************************************************/
1565 static int
1566 e1000_init_hw(struct eth_device *nic)
1567 {
1568 struct e1000_hw *hw = nic->priv;
1569 uint32_t ctrl;
1570 uint32_t i;
1571 int32_t ret_val;
1572 uint16_t pcix_cmd_word;
1573 uint16_t pcix_stat_hi_word;
1574 uint16_t cmd_mmrbc;
1575 uint16_t stat_mmrbc;
1576 uint32_t mta_size;
1577 uint32_t reg_data;
1578 uint32_t ctrl_ext;
1579 DEBUGFUNC();
1580 /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1581 if ((hw->mac_type == e1000_ich8lan) &&
1582 ((hw->revision_id < 3) ||
1583 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1584 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1585 reg_data = E1000_READ_REG(hw, STATUS);
1586 reg_data &= ~0x80000000;
1587 E1000_WRITE_REG(hw, STATUS, reg_data);
1588 }
1589 /* Do not need initialize Identification LED */
1590
1591 /* Set the media type and TBI compatibility */
1592 e1000_set_media_type(hw);
1593
1594 /* Must be called after e1000_set_media_type
1595 * because media_type is used */
1596 e1000_initialize_hardware_bits(hw);
1597
1598 /* Disabling VLAN filtering. */
1599 DEBUGOUT("Initializing the IEEE VLAN\n");
1600 /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1601 if (hw->mac_type != e1000_ich8lan) {
1602 if (hw->mac_type < e1000_82545_rev_3)
1603 E1000_WRITE_REG(hw, VET, 0);
1604 e1000_clear_vfta(hw);
1605 }
1606
1607 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1608 if (hw->mac_type == e1000_82542_rev2_0) {
1609 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1610 pci_write_config_word(hw->pdev, PCI_COMMAND,
1611 hw->
1612 pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1613 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1614 E1000_WRITE_FLUSH(hw);
1615 mdelay(5);
1616 }
1617
1618 /* Setup the receive address. This involves initializing all of the Receive
1619 * Address Registers (RARs 0 - 15).
1620 */
1621 e1000_init_rx_addrs(nic);
1622
1623 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1624 if (hw->mac_type == e1000_82542_rev2_0) {
1625 E1000_WRITE_REG(hw, RCTL, 0);
1626 E1000_WRITE_FLUSH(hw);
1627 mdelay(1);
1628 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1629 }
1630
1631 /* Zero out the Multicast HASH table */
1632 DEBUGOUT("Zeroing the MTA\n");
1633 mta_size = E1000_MC_TBL_SIZE;
1634 if (hw->mac_type == e1000_ich8lan)
1635 mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1636 for (i = 0; i < mta_size; i++) {
1637 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1638 /* use write flush to prevent Memory Write Block (MWB) from
1639 * occuring when accessing our register space */
1640 E1000_WRITE_FLUSH(hw);
1641 }
1642 #if 0
1643 /* Set the PCI priority bit correctly in the CTRL register. This
1644 * determines if the adapter gives priority to receives, or if it
1645 * gives equal priority to transmits and receives. Valid only on
1646 * 82542 and 82543 silicon.
1647 */
1648 if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
1649 ctrl = E1000_READ_REG(hw, CTRL);
1650 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
1651 }
1652 #endif
1653 switch (hw->mac_type) {
1654 case e1000_82545_rev_3:
1655 case e1000_82546_rev_3:
1656 break;
1657 default:
1658 /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
1659 if (hw->bus_type == e1000_bus_type_pcix) {
1660 pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1661 &pcix_cmd_word);
1662 pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1663 &pcix_stat_hi_word);
1664 cmd_mmrbc =
1665 (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1666 PCIX_COMMAND_MMRBC_SHIFT;
1667 stat_mmrbc =
1668 (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1669 PCIX_STATUS_HI_MMRBC_SHIFT;
1670 if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1671 stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1672 if (cmd_mmrbc > stat_mmrbc) {
1673 pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1674 pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1675 pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1676 pcix_cmd_word);
1677 }
1678 }
1679 break;
1680 }
1681
1682 /* More time needed for PHY to initialize */
1683 if (hw->mac_type == e1000_ich8lan)
1684 mdelay(15);
1685
1686 /* Call a subroutine to configure the link and setup flow control. */
1687 ret_val = e1000_setup_link(nic);
1688
1689 /* Set the transmit descriptor write-back policy */
1690 if (hw->mac_type > e1000_82544) {
1691 ctrl = E1000_READ_REG(hw, TXDCTL);
1692 ctrl =
1693 (ctrl & ~E1000_TXDCTL_WTHRESH) |
1694 E1000_TXDCTL_FULL_TX_DESC_WB;
1695 E1000_WRITE_REG(hw, TXDCTL, ctrl);
1696 }
1697
1698 switch (hw->mac_type) {
1699 default:
1700 break;
1701 case e1000_80003es2lan:
1702 /* Enable retransmit on late collisions */
1703 reg_data = E1000_READ_REG(hw, TCTL);
1704 reg_data |= E1000_TCTL_RTLC;
1705 E1000_WRITE_REG(hw, TCTL, reg_data);
1706
1707 /* Configure Gigabit Carry Extend Padding */
1708 reg_data = E1000_READ_REG(hw, TCTL_EXT);
1709 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
1710 reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
1711 E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
1712
1713 /* Configure Transmit Inter-Packet Gap */
1714 reg_data = E1000_READ_REG(hw, TIPG);
1715 reg_data &= ~E1000_TIPG_IPGT_MASK;
1716 reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1717 E1000_WRITE_REG(hw, TIPG, reg_data);
1718
1719 reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1720 reg_data &= ~0x00100000;
1721 E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1722 /* Fall through */
1723 case e1000_82571:
1724 case e1000_82572:
1725 case e1000_ich8lan:
1726 ctrl = E1000_READ_REG(hw, TXDCTL1);
1727 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
1728 | E1000_TXDCTL_FULL_TX_DESC_WB;
1729 E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1730 break;
1731 }
1732
1733 if (hw->mac_type == e1000_82573) {
1734 uint32_t gcr = E1000_READ_REG(hw, GCR);
1735 gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1736 E1000_WRITE_REG(hw, GCR, gcr);
1737 }
1738
1739 #if 0
1740 /* Clear all of the statistics registers (clear on read). It is
1741 * important that we do this after we have tried to establish link
1742 * because the symbol error count will increment wildly if there
1743 * is no link.
1744 */
1745 e1000_clear_hw_cntrs(hw);
1746
1747 /* ICH8 No-snoop bits are opposite polarity.
1748 * Set to snoop by default after reset. */
1749 if (hw->mac_type == e1000_ich8lan)
1750 e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
1751 #endif
1752
1753 if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1754 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1755 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1756 /* Relaxed ordering must be disabled to avoid a parity
1757 * error crash in a PCI slot. */
1758 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1759 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1760 }
1761
1762 return ret_val;
1763 }
1764
1765 /******************************************************************************
1766 * Configures flow control and link settings.
1767 *
1768 * hw - Struct containing variables accessed by shared code
1769 *
1770 * Determines which flow control settings to use. Calls the apropriate media-
1771 * specific link configuration function. Configures the flow control settings.
1772 * Assuming the adapter has a valid link partner, a valid link should be
1773 * established. Assumes the hardware has previously been reset and the
1774 * transmitter and receiver are not enabled.
1775 *****************************************************************************/
1776 static int
1777 e1000_setup_link(struct eth_device *nic)
1778 {
1779 struct e1000_hw *hw = nic->priv;
1780 uint32_t ctrl_ext;
1781 int32_t ret_val;
1782 uint16_t eeprom_data;
1783
1784 DEBUGFUNC();
1785
1786 /* In the case of the phy reset being blocked, we already have a link.
1787 * We do not have to set it up again. */
1788 if (e1000_check_phy_reset_block(hw))
1789 return E1000_SUCCESS;
1790
1791 #ifndef CONFIG_AP1000
1792 /* Read and store word 0x0F of the EEPROM. This word contains bits
1793 * that determine the hardware's default PAUSE (flow control) mode,
1794 * a bit that determines whether the HW defaults to enabling or
1795 * disabling auto-negotiation, and the direction of the
1796 * SW defined pins. If there is no SW over-ride of the flow
1797 * control setting, then the variable hw->fc will
1798 * be initialized based on a value in the EEPROM.
1799 */
1800 if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
1801 &eeprom_data) < 0) {
1802 DEBUGOUT("EEPROM Read Error\n");
1803 return -E1000_ERR_EEPROM;
1804 }
1805 #else
1806 /* we have to hardcode the proper value for our hardware. */
1807 /* this value is for the 82540EM pci card used for prototyping, and it works. */
1808 eeprom_data = 0xb220;
1809 #endif
1810
1811 if (hw->fc == e1000_fc_default) {
1812 switch (hw->mac_type) {
1813 case e1000_ich8lan:
1814 case e1000_82573:
1815 hw->fc = e1000_fc_full;
1816 break;
1817 default:
1818 #ifndef CONFIG_AP1000
1819 ret_val = e1000_read_eeprom(hw,
1820 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1821 if (ret_val) {
1822 DEBUGOUT("EEPROM Read Error\n");
1823 return -E1000_ERR_EEPROM;
1824 }
1825 #else
1826 eeprom_data = 0xb220;
1827 #endif
1828 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1829 hw->fc = e1000_fc_none;
1830 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1831 EEPROM_WORD0F_ASM_DIR)
1832 hw->fc = e1000_fc_tx_pause;
1833 else
1834 hw->fc = e1000_fc_full;
1835 break;
1836 }
1837 }
1838
1839 /* We want to save off the original Flow Control configuration just
1840 * in case we get disconnected and then reconnected into a different
1841 * hub or switch with different Flow Control capabilities.
1842 */
1843 if (hw->mac_type == e1000_82542_rev2_0)
1844 hw->fc &= (~e1000_fc_tx_pause);
1845
1846 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1847 hw->fc &= (~e1000_fc_rx_pause);
1848
1849 hw->original_fc = hw->fc;
1850
1851 DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
1852
1853 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
1854 * polarity value for the SW controlled pins, and setup the
1855 * Extended Device Control reg with that info.
1856 * This is needed because one of the SW controlled pins is used for
1857 * signal detection. So this should be done before e1000_setup_pcs_link()
1858 * or e1000_phy_setup() is called.
1859 */
1860 if (hw->mac_type == e1000_82543) {
1861 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1862 SWDPIO__EXT_SHIFT);
1863 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1864 }
1865
1866 /* Call the necessary subroutine to configure the link. */
1867 ret_val = (hw->media_type == e1000_media_type_fiber) ?
1868 e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic);
1869 if (ret_val < 0) {
1870 return ret_val;
1871 }
1872
1873 /* Initialize the flow control address, type, and PAUSE timer
1874 * registers to their default values. This is done even if flow
1875 * control is disabled, because it does not hurt anything to
1876 * initialize these registers.
1877 */
1878 DEBUGOUT("Initializing the Flow Control address, type"
1879 "and timer regs\n");
1880
1881 /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1882 if (hw->mac_type != e1000_ich8lan) {
1883 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1884 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1885 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1886 }
1887
1888 E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1889
1890 /* Set the flow control receive threshold registers. Normally,
1891 * these registers will be set to a default threshold that may be
1892 * adjusted later by the driver's runtime code. However, if the
1893 * ability to transmit pause frames in not enabled, then these
1894 * registers will be set to 0.
1895 */
1896 if (!(hw->fc & e1000_fc_tx_pause)) {
1897 E1000_WRITE_REG(hw, FCRTL, 0);
1898 E1000_WRITE_REG(hw, FCRTH, 0);
1899 } else {
1900 /* We need to set up the Receive Threshold high and low water marks
1901 * as well as (optionally) enabling the transmission of XON frames.
1902 */
1903 if (hw->fc_send_xon) {
1904 E1000_WRITE_REG(hw, FCRTL,
1905 (hw->fc_low_water | E1000_FCRTL_XONE));
1906 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1907 } else {
1908 E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1909 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1910 }
1911 }
1912 return ret_val;
1913 }
1914
1915 /******************************************************************************
1916 * Sets up link for a fiber based adapter
1917 *
1918 * hw - Struct containing variables accessed by shared code
1919 *
1920 * Manipulates Physical Coding Sublayer functions in order to configure
1921 * link. Assumes the hardware has been previously reset and the transmitter
1922 * and receiver are not enabled.
1923 *****************************************************************************/
1924 static int
1925 e1000_setup_fiber_link(struct eth_device *nic)
1926 {
1927 struct e1000_hw *hw = nic->priv;
1928 uint32_t ctrl;
1929 uint32_t status;
1930 uint32_t txcw = 0;
1931 uint32_t i;
1932 uint32_t signal;
1933 int32_t ret_val;
1934
1935 DEBUGFUNC();
1936 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
1937 * set when the optics detect a signal. On older adapters, it will be
1938 * cleared when there is a signal
1939 */
1940 ctrl = E1000_READ_REG(hw, CTRL);
1941 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
1942 signal = E1000_CTRL_SWDPIN1;
1943 else
1944 signal = 0;
1945
1946 printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal,
1947 ctrl);
1948 /* Take the link out of reset */
1949 ctrl &= ~(E1000_CTRL_LRST);
1950
1951 e1000_config_collision_dist(hw);
1952
1953 /* Check for a software override of the flow control settings, and setup
1954 * the device accordingly. If auto-negotiation is enabled, then software
1955 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1956 * Config Word Register (TXCW) and re-start auto-negotiation. However, if
1957 * auto-negotiation is disabled, then software will have to manually
1958 * configure the two flow control enable bits in the CTRL register.
1959 *
1960 * The possible values of the "fc" parameter are:
1961 * 0: Flow control is completely disabled
1962 * 1: Rx flow control is enabled (we can receive pause frames, but
1963 * not send pause frames).
1964 * 2: Tx flow control is enabled (we can send pause frames but we do
1965 * not support receiving pause frames).
1966 * 3: Both Rx and TX flow control (symmetric) are enabled.
1967 */
1968 switch (hw->fc) {
1969 case e1000_fc_none:
1970 /* Flow control is completely disabled by a software over-ride. */
1971 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1972 break;
1973 case e1000_fc_rx_pause:
1974 /* RX Flow control is enabled and TX Flow control is disabled by a
1975 * software over-ride. Since there really isn't a way to advertise
1976 * that we are capable of RX Pause ONLY, we will advertise that we
1977 * support both symmetric and asymmetric RX PAUSE. Later, we will
1978 * disable the adapter's ability to send PAUSE frames.
1979 */
1980 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1981 break;
1982 case e1000_fc_tx_pause:
1983 /* TX Flow control is enabled, and RX Flow control is disabled, by a
1984 * software over-ride.
1985 */
1986 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1987 break;
1988 case e1000_fc_full:
1989 /* Flow control (both RX and TX) is enabled by a software over-ride. */
1990 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1991 break;
1992 default:
1993 DEBUGOUT("Flow control param set incorrectly\n");
1994 return -E1000_ERR_CONFIG;
1995 break;
1996 }
1997
1998 /* Since auto-negotiation is enabled, take the link out of reset (the link
1999 * will be in reset, because we previously reset the chip). This will
2000 * restart auto-negotiation. If auto-neogtiation is successful then the
2001 * link-up status bit will be set and the flow control enable bits (RFCE
2002 * and TFCE) will be set according to their negotiated value.
2003 */
2004 DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
2005
2006 E1000_WRITE_REG(hw, TXCW, txcw);
2007 E1000_WRITE_REG(hw, CTRL, ctrl);
2008 E1000_WRITE_FLUSH(hw);
2009
2010 hw->txcw = txcw;
2011 mdelay(1);
2012
2013 /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
2014 * indication in the Device Status Register. Time-out if a link isn't
2015 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
2016 * less than 500 milliseconds even if the other end is doing it in SW).
2017 */
2018 if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2019 DEBUGOUT("Looking for Link\n");
2020 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2021 mdelay(10);
2022 status = E1000_READ_REG(hw, STATUS);
2023 if (status & E1000_STATUS_LU)
2024 break;
2025 }
2026 if (i == (LINK_UP_TIMEOUT / 10)) {
2027 /* AutoNeg failed to achieve a link, so we'll call
2028 * e1000_check_for_link. This routine will force the link up if we
2029 * detect a signal. This will allow us to communicate with
2030 * non-autonegotiating link partners.
2031 */
2032 DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2033 hw->autoneg_failed = 1;
2034 ret_val = e1000_check_for_link(nic);
2035 if (ret_val < 0) {
2036 DEBUGOUT("Error while checking for link\n");
2037 return ret_val;
2038 }
2039 hw->autoneg_failed = 0;
2040 } else {
2041 hw->autoneg_failed = 0;
2042 DEBUGOUT("Valid Link Found\n");
2043 }
2044 } else {
2045 DEBUGOUT("No Signal Detected\n");
2046 return -E1000_ERR_NOLINK;
2047 }
2048 return 0;
2049 }
2050
2051 /******************************************************************************
2052 * Make sure we have a valid PHY and change PHY mode before link setup.
2053 *
2054 * hw - Struct containing variables accessed by shared code
2055 ******************************************************************************/
2056 static int32_t
2057 e1000_copper_link_preconfig(struct e1000_hw *hw)
2058 {
2059 uint32_t ctrl;
2060 int32_t ret_val;
2061 uint16_t phy_data;
2062
2063 DEBUGFUNC();
2064
2065 ctrl = E1000_READ_REG(hw, CTRL);
2066 /* With 82543, we need to force speed and duplex on the MAC equal to what
2067 * the PHY speed and duplex configuration is. In addition, we need to
2068 * perform a hardware reset on the PHY to take it out of reset.
2069 */
2070 if (hw->mac_type > e1000_82543) {
2071 ctrl |= E1000_CTRL_SLU;
2072 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2073 E1000_WRITE_REG(hw, CTRL, ctrl);
2074 } else {
2075 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2076 | E1000_CTRL_SLU);
2077 E1000_WRITE_REG(hw, CTRL, ctrl);
2078 ret_val = e1000_phy_hw_reset(hw);
2079 if (ret_val)
2080 return ret_val;
2081 }
2082
2083 /* Make sure we have a valid PHY */
2084 ret_val = e1000_detect_gig_phy(hw);
2085 if (ret_val) {
2086 DEBUGOUT("Error, did not detect valid phy.\n");
2087 return ret_val;
2088 }
2089 DEBUGOUT("Phy ID = %x \n", hw->phy_id);
2090
2091 #ifndef CONFIG_AP1000
2092 /* Set PHY to class A mode (if necessary) */
2093 ret_val = e1000_set_phy_mode(hw);
2094 if (ret_val)
2095 return ret_val;
2096 #endif
2097 if ((hw->mac_type == e1000_82545_rev_3) ||
2098 (hw->mac_type == e1000_82546_rev_3)) {
2099 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2100 &phy_data);
2101 phy_data |= 0x00000008;
2102 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2103 phy_data);
2104 }
2105
2106 if (hw->mac_type <= e1000_82543 ||
2107 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2108 hw->mac_type == e1000_82541_rev_2
2109 || hw->mac_type == e1000_82547_rev_2)
2110 hw->phy_reset_disable = FALSE;
2111
2112 return E1000_SUCCESS;
2113 }
2114
2115 /*****************************************************************************
2116 *
2117 * This function sets the lplu state according to the active flag. When
2118 * activating lplu this function also disables smart speed and vise versa.
2119 * lplu will not be activated unless the device autonegotiation advertisment
2120 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2121 * hw: Struct containing variables accessed by shared code
2122 * active - true to enable lplu false to disable lplu.
2123 *
2124 * returns: - E1000_ERR_PHY if fail to read/write the PHY
2125 * E1000_SUCCESS at any other case.
2126 *
2127 ****************************************************************************/
2128
2129 static int32_t
2130 e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active)
2131 {
2132 uint32_t phy_ctrl = 0;
2133 int32_t ret_val;
2134 uint16_t phy_data;
2135 DEBUGFUNC();
2136
2137 if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2138 && hw->phy_type != e1000_phy_igp_3)
2139 return E1000_SUCCESS;
2140
2141 /* During driver activity LPLU should not be used or it will attain link
2142 * from the lowest speeds starting from 10Mbps. The capability is used
2143 * for Dx transitions and states */
2144 if (hw->mac_type == e1000_82541_rev_2
2145 || hw->mac_type == e1000_82547_rev_2) {
2146 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2147 &phy_data);
2148 if (ret_val)
2149 return ret_val;
2150 } else if (hw->mac_type == e1000_ich8lan) {
2151 /* MAC writes into PHY register based on the state transition
2152 * and start auto-negotiation. SW driver can overwrite the
2153 * settings in CSR PHY power control E1000_PHY_CTRL register. */
2154 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2155 } else {
2156 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2157 &phy_data);
2158 if (ret_val)
2159 return ret_val;
2160 }
2161
2162 if (!active) {
2163 if (hw->mac_type == e1000_82541_rev_2 ||
2164 hw->mac_type == e1000_82547_rev_2) {
2165 phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2166 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2167 phy_data);
2168 if (ret_val)
2169 return ret_val;
2170 } else {
2171 if (hw->mac_type == e1000_ich8lan) {
2172 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2173 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2174 } else {
2175 phy_data &= ~IGP02E1000_PM_D3_LPLU;
2176 ret_val = e1000_write_phy_reg(hw,
2177 IGP02E1000_PHY_POWER_MGMT, phy_data);
2178 if (ret_val)
2179 return ret_val;
2180 }
2181 }
2182
2183 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
2184 * Dx states where the power conservation is most important. During
2185 * driver activity we should enable SmartSpeed, so performance is
2186 * maintained. */
2187 if (hw->smart_speed == e1000_smart_speed_on) {
2188 ret_val = e1000_read_phy_reg(hw,
2189 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2190 if (ret_val)
2191 return ret_val;
2192
2193 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2194 ret_val = e1000_write_phy_reg(hw,
2195 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2196 if (ret_val)
2197 return ret_val;
2198 } else if (hw->smart_speed == e1000_smart_speed_off) {
2199 ret_val = e1000_read_phy_reg(hw,
2200 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2201 if (ret_val)
2202 return ret_val;
2203
2204 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2205 ret_val = e1000_write_phy_reg(hw,
2206 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2207 if (ret_val)
2208 return ret_val;
2209 }
2210
2211 } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2212 || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2213 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2214
2215 if (hw->mac_type == e1000_82541_rev_2 ||
2216 hw->mac_type == e1000_82547_rev_2) {
2217 phy_data |= IGP01E1000_GMII_FLEX_SPD;
2218 ret_val = e1000_write_phy_reg(hw,
2219 IGP01E1000_GMII_FIFO, phy_data);
2220 if (ret_val)
2221 return ret_val;
2222 } else {
2223 if (hw->mac_type == e1000_ich8lan) {
2224 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2225 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2226 } else {
2227 phy_data |= IGP02E1000_PM_D3_LPLU;
2228 ret_val = e1000_write_phy_reg(hw,
2229 IGP02E1000_PHY_POWER_MGMT, phy_data);
2230 if (ret_val)
2231 return ret_val;
2232 }
2233 }
2234
2235 /* When LPLU is enabled we should disable SmartSpeed */
2236 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2237 &phy_data);
2238 if (ret_val)
2239 return ret_val;
2240
2241 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2242 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2243 phy_data);
2244 if (ret_val)
2245 return ret_val;
2246 }
2247 return E1000_SUCCESS;
2248 }
2249
2250 /*****************************************************************************
2251 *
2252 * This function sets the lplu d0 state according to the active flag. When
2253 * activating lplu this function also disables smart speed and vise versa.
2254 * lplu will not be activated unless the device autonegotiation advertisment
2255 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2256 * hw: Struct containing variables accessed by shared code
2257 * active - true to enable lplu false to disable lplu.
2258 *
2259 * returns: - E1000_ERR_PHY if fail to read/write the PHY
2260 * E1000_SUCCESS at any other case.
2261 *
2262 ****************************************************************************/
2263
2264 static int32_t
2265 e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active)
2266 {
2267 uint32_t phy_ctrl = 0;
2268 int32_t ret_val;
2269 uint16_t phy_data;
2270 DEBUGFUNC();
2271
2272 if (hw->mac_type <= e1000_82547_rev_2)
2273 return E1000_SUCCESS;
2274
2275 if (hw->mac_type == e1000_ich8lan) {
2276 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2277 } else {
2278 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2279 &phy_data);
2280 if (ret_val)
2281 return ret_val;
2282 }
2283
2284 if (!active) {
2285 if (hw->mac_type == e1000_ich8lan) {
2286 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2287 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2288 } else {
2289 phy_data &= ~IGP02E1000_PM_D0_LPLU;
2290 ret_val = e1000_write_phy_reg(hw,
2291 IGP02E1000_PHY_POWER_MGMT, phy_data);
2292 if (ret_val)
2293 return ret_val;
2294 }
2295
2296 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
2297 * Dx states where the power conservation is most important. During
2298 * driver activity we should enable SmartSpeed, so performance is
2299 * maintained. */
2300 if (hw->smart_speed == e1000_smart_speed_on) {
2301 ret_val = e1000_read_phy_reg(hw,
2302 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2303 if (ret_val)
2304 return ret_val;
2305
2306 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2307 ret_val = e1000_write_phy_reg(hw,
2308 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2309 if (ret_val)
2310 return ret_val;
2311 } else if (hw->smart_speed == e1000_smart_speed_off) {
2312 ret_val = e1000_read_phy_reg(hw,
2313 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2314 if (ret_val)
2315 return ret_val;
2316
2317 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2318 ret_val = e1000_write_phy_reg(hw,
2319 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2320 if (ret_val)
2321 return ret_val;
2322 }
2323
2324
2325 } else {
2326
2327 if (hw->mac_type == e1000_ich8lan) {
2328 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2329 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2330 } else {
2331 phy_data |= IGP02E1000_PM_D0_LPLU;
2332 ret_val = e1000_write_phy_reg(hw,
2333 IGP02E1000_PHY_POWER_MGMT, phy_data);
2334 if (ret_val)
2335 return ret_val;
2336 }
2337
2338 /* When LPLU is enabled we should disable SmartSpeed */
2339 ret_val = e1000_read_phy_reg(hw,
2340 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2341 if (ret_val)
2342 return ret_val;
2343
2344 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2345 ret_val = e1000_write_phy_reg(hw,
2346 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2347 if (ret_val)
2348 return ret_val;
2349
2350 }
2351 return E1000_SUCCESS;
2352 }
2353
2354 /********************************************************************
2355 * Copper link setup for e1000_phy_igp series.
2356 *
2357 * hw - Struct containing variables accessed by shared code
2358 *********************************************************************/
2359 static int32_t
2360 e1000_copper_link_igp_setup(struct e1000_hw *hw)
2361 {
2362 uint32_t led_ctrl;
2363 int32_t ret_val;
2364 uint16_t phy_data;
2365
2366 DEBUGFUNC();
2367
2368 if (hw->phy_reset_disable)
2369 return E1000_SUCCESS;
2370
2371 ret_val = e1000_phy_reset(hw);
2372 if (ret_val) {
2373 DEBUGOUT("Error Resetting the PHY\n");
2374 return ret_val;
2375 }
2376
2377 /* Wait 15ms for MAC to configure PHY from eeprom settings */
2378 mdelay(15);
2379 if (hw->mac_type != e1000_ich8lan) {
2380 /* Configure activity LED after PHY reset */
2381 led_ctrl = E1000_READ_REG(hw, LEDCTL);
2382 led_ctrl &= IGP_ACTIVITY_LED_MASK;
2383 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2384 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2385 }
2386
2387 /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2388 if (hw->phy_type == e1000_phy_igp) {
2389 /* disable lplu d3 during driver init */
2390 ret_val = e1000_set_d3_lplu_state(hw, FALSE);
2391 if (ret_val) {
2392 DEBUGOUT("Error Disabling LPLU D3\n");
2393 return ret_val;
2394 }
2395 }
2396
2397 /* disable lplu d0 during driver init */
2398 ret_val = e1000_set_d0_lplu_state(hw, FALSE);
2399 if (ret_val) {
2400 DEBUGOUT("Error Disabling LPLU D0\n");
2401 return ret_val;
2402 }
2403 /* Configure mdi-mdix settings */
2404 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2405 if (ret_val)
2406 return ret_val;
2407
2408 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2409 hw->dsp_config_state = e1000_dsp_config_disabled;
2410 /* Force MDI for earlier revs of the IGP PHY */
2411 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2412 | IGP01E1000_PSCR_FORCE_MDI_MDIX);
2413 hw->mdix = 1;
2414
2415 } else {
2416 hw->dsp_config_state = e1000_dsp_config_enabled;
2417 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2418
2419 switch (hw->mdix) {
2420 case 1:
2421 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2422 break;
2423 case 2:
2424 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2425 break;
2426 case 0:
2427 default:
2428 phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2429 break;
2430 }
2431 }
2432 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2433 if (ret_val)
2434 return ret_val;
2435
2436 /* set auto-master slave resolution settings */
2437 if (hw->autoneg) {
2438 e1000_ms_type phy_ms_setting = hw->master_slave;
2439
2440 if (hw->ffe_config_state == e1000_ffe_config_active)
2441 hw->ffe_config_state = e1000_ffe_config_enabled;
2442
2443 if (hw->dsp_config_state == e1000_dsp_config_activated)
2444 hw->dsp_config_state = e1000_dsp_config_enabled;
2445
2446 /* when autonegotiation advertisment is only 1000Mbps then we
2447 * should disable SmartSpeed and enable Auto MasterSlave
2448 * resolution as hardware default. */
2449 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2450 /* Disable SmartSpeed */
2451 ret_val = e1000_read_phy_reg(hw,
2452 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2453 if (ret_val)
2454 return ret_val;
2455 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2456 ret_val = e1000_write_phy_reg(hw,
2457 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2458 if (ret_val)
2459 return ret_val;
2460 /* Set auto Master/Slave resolution process */
2461 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2462 &phy_data);
2463 if (ret_val)
2464 return ret_val;
2465 phy_data &= ~CR_1000T_MS_ENABLE;
2466 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2467 phy_data);
2468 if (ret_val)
2469 return ret_val;
2470 }
2471
2472 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2473 if (ret_val)
2474 return ret_val;
2475
2476 /* load defaults for future use */
2477 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2478 ((phy_data & CR_1000T_MS_VALUE) ?
2479 e1000_ms_force_master :
2480 e1000_ms_force_slave) :
2481 e1000_ms_auto;
2482
2483 switch (phy_ms_setting) {
2484 case e1000_ms_force_master:
2485 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2486 break;
2487 case e1000_ms_force_slave:
2488 phy_data |= CR_1000T_MS_ENABLE;
2489 phy_data &= ~(CR_1000T_MS_VALUE);
2490 break;
2491 case e1000_ms_auto:
2492 phy_data &= ~CR_1000T_MS_ENABLE;
2493 default:
2494 break;
2495 }
2496 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2497 if (ret_val)
2498 return ret_val;
2499 }
2500
2501 return E1000_SUCCESS;
2502 }
2503
2504 /*****************************************************************************
2505 * This function checks the mode of the firmware.
2506 *
2507 * returns - TRUE when the mode is IAMT or FALSE.
2508 ****************************************************************************/
2509 boolean_t
2510 e1000_check_mng_mode(struct e1000_hw *hw)
2511 {
2512 uint32_t fwsm;
2513 DEBUGFUNC();
2514
2515 fwsm = E1000_READ_REG(hw, FWSM);
2516
2517 if (hw->mac_type == e1000_ich8lan) {
2518 if ((fwsm & E1000_FWSM_MODE_MASK) ==
2519 (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2520 return TRUE;
2521 } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2522 (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2523 return TRUE;
2524
2525 return FALSE;
2526 }
2527
2528 static int32_t
2529 e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2530 {
2531 uint32_t reg_val;
2532 uint16_t swfw;
2533 DEBUGFUNC();
2534
2535 if ((hw->mac_type == e1000_80003es2lan) &&
2536 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
2537 swfw = E1000_SWFW_PHY1_SM;
2538 } else {
2539 swfw = E1000_SWFW_PHY0_SM;
2540 }
2541 if (e1000_swfw_sync_acquire(hw, swfw))
2542 return -E1000_ERR_SWFW_SYNC;
2543
2544 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2545 & E1000_KUMCTRLSTA_OFFSET) | data;
2546 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2547 udelay(2);
2548
2549 return E1000_SUCCESS;
2550 }
2551
2552 static int32_t
2553 e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2554 {
2555 uint32_t reg_val;
2556 uint16_t swfw;
2557 DEBUGFUNC();
2558
2559 if ((hw->mac_type == e1000_80003es2lan) &&
2560 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
2561 swfw = E1000_SWFW_PHY1_SM;
2562 } else {
2563 swfw = E1000_SWFW_PHY0_SM;
2564 }
2565 if (e1000_swfw_sync_acquire(hw, swfw))
2566 return -E1000_ERR_SWFW_SYNC;
2567
2568 /* Write register address */
2569 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2570 E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2571 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2572 udelay(2);
2573
2574 /* Read the data returned */
2575 reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2576 *data = (uint16_t)reg_val;
2577
2578 return E1000_SUCCESS;
2579 }
2580
2581 /********************************************************************
2582 * Copper link setup for e1000_phy_gg82563 series.
2583 *
2584 * hw - Struct containing variables accessed by shared code
2585 *********************************************************************/
2586 static int32_t
2587 e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2588 {
2589 int32_t ret_val;
2590 uint16_t phy_data;
2591 uint32_t reg_data;
2592
2593 DEBUGFUNC();
2594
2595 if (!hw->phy_reset_disable) {
2596 /* Enable CRS on TX for half-duplex operation. */
2597 ret_val = e1000_read_phy_reg(hw,
2598 GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2599 if (ret_val)
2600 return ret_val;
2601
2602 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2603 /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2604 phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2605
2606 ret_val = e1000_write_phy_reg(hw,
2607 GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2608 if (ret_val)
2609 return ret_val;
2610
2611 /* Options:
2612 * MDI/MDI-X = 0 (default)
2613 * 0 - Auto for all speeds
2614 * 1 - MDI mode
2615 * 2 - MDI-X mode
2616 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2617 */
2618 ret_val = e1000_read_phy_reg(hw,
2619 GG82563_PHY_SPEC_CTRL, &phy_data);
2620 if (ret_val)
2621 return ret_val;
2622
2623 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2624
2625 switch (hw->mdix) {
2626 case 1:
2627 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2628 break;
2629 case 2:
2630 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2631 break;
2632 case 0:
2633 default:
2634 phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2635 break;
2636 }
2637
2638 /* Options:
2639 * disable_polarity_correction = 0 (default)
2640 * Automatic Correction for Reversed Cable Polarity
2641 * 0 - Disabled
2642 * 1 - Enabled
2643 */
2644 phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2645 ret_val = e1000_write_phy_reg(hw,
2646 GG82563_PHY_SPEC_CTRL, phy_data);
2647
2648 if (ret_val)
2649 return ret_val;
2650
2651 /* SW Reset the PHY so all changes take effect */
2652 ret_val = e1000_phy_reset(hw);
2653 if (ret_val) {
2654 DEBUGOUT("Error Resetting the PHY\n");
2655 return ret_val;
2656 }
2657 } /* phy_reset_disable */
2658
2659 if (hw->mac_type == e1000_80003es2lan) {
2660 /* Bypass RX and TX FIFO's */
2661 ret_val = e1000_write_kmrn_reg(hw,
2662 E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2663 E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2664 | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2665 if (ret_val)
2666 return ret_val;
2667
2668 ret_val = e1000_read_phy_reg(hw,
2669 GG82563_PHY_SPEC_CTRL_2, &phy_data);
2670 if (ret_val)
2671 return ret_val;
2672
2673 phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2674 ret_val = e1000_write_phy_reg(hw,
2675 GG82563_PHY_SPEC_CTRL_2, phy_data);
2676
2677 if (ret_val)
2678 return ret_val;
2679
2680 reg_data = E1000_READ_REG(hw, CTRL_EXT);
2681 reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2682 E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2683
2684 ret_val = e1000_read_phy_reg(hw,
2685 GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2686 if (ret_val)
2687 return ret_val;
2688
2689 /* Do not init these registers when the HW is in IAMT mode, since the
2690 * firmware will have already initialized them. We only initialize
2691 * them if the HW is not in IAMT mode.
2692 */
2693 if (e1000_check_mng_mode(hw) == FALSE) {
2694 /* Enable Electrical Idle on the PHY */
2695 phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2696 ret_val = e1000_write_phy_reg(hw,
2697 GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2698 if (ret_val)
2699 return ret_val;
2700
2701 ret_val = e1000_read_phy_reg(hw,
2702 GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2703 if (ret_val)
2704 return ret_val;
2705
2706 phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2707 ret_val = e1000_write_phy_reg(hw,
2708 GG82563_PHY_KMRN_MODE_CTRL, phy_data);
2709
2710 if (ret_val)
2711 return ret_val;
2712 }
2713
2714 /* Workaround: Disable padding in Kumeran interface in the MAC
2715 * and in the PHY to avoid CRC errors.
2716 */
2717 ret_val = e1000_read_phy_reg(hw,
2718 GG82563_PHY_INBAND_CTRL, &phy_data);
2719 if (ret_val)
2720 return ret_val;
2721 phy_data |= GG82563_ICR_DIS_PADDING;
2722 ret_val = e1000_write_phy_reg(hw,
2723 GG82563_PHY_INBAND_CTRL, phy_data);
2724 if (ret_val)
2725 return ret_val;
2726 }
2727 return E1000_SUCCESS;
2728 }
2729
2730 /********************************************************************
2731 * Copper link setup for e1000_phy_m88 series.
2732 *
2733 * hw - Struct containing variables accessed by shared code
2734 *********************************************************************/
2735 static int32_t
2736 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
2737 {
2738 int32_t ret_val;
2739 uint16_t phy_data;
2740
2741 DEBUGFUNC();
2742
2743 if (hw->phy_reset_disable)
2744 return E1000_SUCCESS;
2745
2746 /* Enable CRS on TX. This must be set for half-duplex operation. */
2747 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2748 if (ret_val)
2749 return ret_val;
2750
2751 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2752
2753 /* Options:
2754 * MDI/MDI-X = 0 (default)
2755 * 0 - Auto for all speeds
2756 * 1 - MDI mode
2757 * 2 - MDI-X mode
2758 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2759 */
2760 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
2761
2762 switch (hw->mdix) {
2763 case 1:
2764 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
2765 break;
2766 case 2:
2767 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
2768 break;
2769 case 3:
2770 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
2771 break;
2772 case 0:
2773 default:
2774 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
2775 break;
2776 }
2777
2778 /* Options:
2779 * disable_polarity_correction = 0 (default)
2780 * Automatic Correction for Reversed Cable Polarity
2781 * 0 - Disabled
2782 * 1 - Enabled
2783 */
2784 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
2785 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2786 if (ret_val)
2787 return ret_val;
2788
2789 if (hw->phy_revision < M88E1011_I_REV_4) {
2790 /* Force TX_CLK in the Extended PHY Specific Control Register
2791 * to 25MHz clock.
2792 */
2793 ret_val = e1000_read_phy_reg(hw,
2794 M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2795 if (ret_val)
2796 return ret_val;
2797
2798 phy_data |= M88E1000_EPSCR_TX_CLK_25;
2799
2800 if ((hw->phy_revision == E1000_REVISION_2) &&
2801 (hw->phy_id == M88E1111_I_PHY_ID)) {
2802 /* Vidalia Phy, set the downshift counter to 5x */
2803 phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
2804 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
2805 ret_val = e1000_write_phy_reg(hw,
2806 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2807 if (ret_val)
2808 return ret_val;
2809 } else {
2810 /* Configure Master and Slave downshift values */
2811 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
2812 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
2813 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
2814 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
2815 ret_val = e1000_write_phy_reg(hw,
2816 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2817 if (ret_val)
2818 return ret_val;
2819 }
2820 }
2821
2822 /* SW Reset the PHY so all changes take effect */
2823 ret_val = e1000_phy_reset(hw);
2824 if (ret_val) {
2825 DEBUGOUT("Error Resetting the PHY\n");
2826 return ret_val;
2827 }
2828
2829 return E1000_SUCCESS;
2830 }
2831
2832 /********************************************************************
2833 * Setup auto-negotiation and flow control advertisements,
2834 * and then perform auto-negotiation.
2835 *
2836 * hw - Struct containing variables accessed by shared code
2837 *********************************************************************/
2838 static int32_t
2839 e1000_copper_link_autoneg(struct e1000_hw *hw)
2840 {
2841 int32_t ret_val;
2842 uint16_t phy_data;
2843
2844 DEBUGFUNC();
2845
2846 /* Perform some bounds checking on the hw->autoneg_advertised
2847 * parameter. If this variable is zero, then set it to the default.
2848 */
2849 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
2850
2851 /* If autoneg_advertised is zero, we assume it was not defaulted
2852 * by the calling code so we set to advertise full capability.
2853 */
2854 if (hw->autoneg_advertised == 0)
2855 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
2856
2857 /* IFE phy only supports 10/100 */
2858 if (hw->phy_type == e1000_phy_ife)
2859 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
2860
2861 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
2862 ret_val = e1000_phy_setup_autoneg(hw);
2863 if (ret_val) {
2864 DEBUGOUT("Error Setting up Auto-Negotiation\n");
2865 return ret_val;
2866 }
2867 DEBUGOUT("Restarting Auto-Neg\n");
2868
2869 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
2870 * the Auto Neg Restart bit in the PHY control register.
2871 */
2872 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
2873 if (ret_val)
2874 return ret_val;
2875
2876 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
2877 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
2878 if (ret_val)
2879 return ret_val;
2880
2881 /* Does the user want to wait for Auto-Neg to complete here, or
2882 * check at a later time (for example, callback routine).
2883 */
2884 /* If we do not wait for autonegtation to complete I
2885 * do not see a valid link status.
2886 * wait_autoneg_complete = 1 .
2887 */
2888 if (hw->wait_autoneg_complete) {
2889 ret_val = e1000_wait_autoneg(hw);
2890 if (ret_val) {
2891 DEBUGOUT("Error while waiting for autoneg"
2892 "to complete\n");
2893 return ret_val;
2894 }
2895 }
2896
2897 hw->get_link_status = TRUE;
2898
2899 return E1000_SUCCESS;
2900 }
2901
2902 /******************************************************************************
2903 * Config the MAC and the PHY after link is up.
2904 * 1) Set up the MAC to the current PHY speed/duplex
2905 * if we are on 82543. If we
2906 * are on newer silicon, we only need to configure
2907 * collision distance in the Transmit Control Register.
2908 * 2) Set up flow control on the MAC to that established with
2909 * the link partner.
2910 * 3) Config DSP to improve Gigabit link quality for some PHY revisions.
2911 *
2912 * hw - Struct containing variables accessed by shared code
2913 ******************************************************************************/
2914 static int32_t
2915 e1000_copper_link_postconfig(struct e1000_hw *hw)
2916 {
2917 int32_t ret_val;
2918 DEBUGFUNC();
2919
2920 if (hw->mac_type >= e1000_82544) {
2921 e1000_config_collision_dist(hw);
2922 } else {
2923 ret_val = e1000_config_mac_to_phy(hw);
2924 if (ret_val) {
2925 DEBUGOUT("Error configuring MAC to PHY settings\n");
2926 return ret_val;
2927 }
2928 }
2929 ret_val = e1000_config_fc_after_link_up(hw);
2930 if (ret_val) {
2931 DEBUGOUT("Error Configuring Flow Control\n");
2932 return ret_val;
2933 }
2934 return E1000_SUCCESS;
2935 }
2936
2937 /******************************************************************************
2938 * Detects which PHY is present and setup the speed and duplex
2939 *
2940 * hw - Struct containing variables accessed by shared code
2941 ******************************************************************************/
2942 static int
2943 e1000_setup_copper_link(struct eth_device *nic)
2944 {
2945 struct e1000_hw *hw = nic->priv;
2946 int32_t ret_val;
2947 uint16_t i;
2948 uint16_t phy_data;
2949 uint16_t reg_data;
2950
2951 DEBUGFUNC();
2952
2953 switch (hw->mac_type) {
2954 case e1000_80003es2lan:
2955 case e1000_ich8lan:
2956 /* Set the mac to wait the maximum time between each
2957 * iteration and increase the max iterations when
2958 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
2959 ret_val = e1000_write_kmrn_reg(hw,
2960 GG82563_REG(0x34, 4), 0xFFFF);
2961 if (ret_val)
2962 return ret_val;
2963 ret_val = e1000_read_kmrn_reg(hw,
2964 GG82563_REG(0x34, 9), &reg_data);
2965 if (ret_val)
2966 return ret_val;
2967 reg_data |= 0x3F;
2968 ret_val = e1000_write_kmrn_reg(hw,
2969 GG82563_REG(0x34, 9), reg_data);
2970 if (ret_val)
2971 return ret_val;
2972 default:
2973 break;
2974 }
2975
2976 /* Check if it is a valid PHY and set PHY mode if necessary. */
2977 ret_val = e1000_copper_link_preconfig(hw);
2978 if (ret_val)
2979 return ret_val;
2980 switch (hw->mac_type) {
2981 case e1000_80003es2lan:
2982 /* Kumeran registers are written-only */
2983 reg_data =
2984 E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
2985 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
2986 ret_val = e1000_write_kmrn_reg(hw,
2987 E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
2988 if (ret_val)
2989 return ret_val;
2990 break;
2991 default:
2992 break;
2993 }
2994
2995 if (hw->phy_type == e1000_phy_igp ||
2996 hw->phy_type == e1000_phy_igp_3 ||
2997 hw->phy_type == e1000_phy_igp_2) {
2998 ret_val = e1000_copper_link_igp_setup(hw);
2999 if (ret_val)
3000 return ret_val;
3001 } else if (hw->phy_type == e1000_phy_m88) {
3002 ret_val = e1000_copper_link_mgp_setup(hw);
3003 if (ret_val)
3004 return ret_val;
3005 } else if (hw->phy_type == e1000_phy_gg82563) {
3006 ret_val = e1000_copper_link_ggp_setup(hw);
3007 if (ret_val)
3008 return ret_val;
3009 }
3010
3011 /* always auto */
3012 /* Setup autoneg and flow control advertisement
3013 * and perform autonegotiation */
3014 ret_val = e1000_copper_link_autoneg(hw);
3015 if (ret_val)
3016 return ret_val;
3017
3018 /* Check link status. Wait up to 100 microseconds for link to become
3019 * valid.
3020 */
3021 for (i = 0; i < 10; i++) {
3022 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3023 if (ret_val)
3024 return ret_val;
3025 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3026 if (ret_val)
3027 return ret_val;
3028
3029 if (phy_data & MII_SR_LINK_STATUS) {
3030 /* Config the MAC and PHY after link is up */
3031 ret_val = e1000_copper_link_postconfig(hw);
3032 if (ret_val)
3033 return ret_val;
3034
3035 DEBUGOUT("Valid link established!!!\n");
3036 return E1000_SUCCESS;
3037 }
3038 udelay(10);
3039 }
3040
3041 DEBUGOUT("Unable to establish link!!!\n");
3042 return E1000_SUCCESS;
3043 }
3044
3045 /******************************************************************************
3046 * Configures PHY autoneg and flow control advertisement settings
3047 *
3048 * hw - Struct containing variables accessed by shared code
3049 ******************************************************************************/
3050 int32_t
3051 e1000_phy_setup_autoneg(struct e1000_hw *hw)
3052 {
3053 int32_t ret_val;
3054 uint16_t mii_autoneg_adv_reg;
3055 uint16_t mii_1000t_ctrl_reg;
3056
3057 DEBUGFUNC();
3058
3059 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
3060 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3061 if (ret_val)
3062 return ret_val;
3063
3064 if (hw->phy_type != e1000_phy_ife) {
3065 /* Read the MII 1000Base-T Control Register (Address 9). */
3066 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3067 &mii_1000t_ctrl_reg);
3068 if (ret_val)
3069 return ret_val;
3070 } else
3071 mii_1000t_ctrl_reg = 0;
3072
3073 /* Need to parse both autoneg_advertised and fc and set up
3074 * the appropriate PHY registers. First we will parse for
3075 * autoneg_advertised software override. Since we can advertise
3076 * a plethora of combinations, we need to check each bit
3077 * individually.
3078 */
3079
3080 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
3081 * Advertisement Register (Address 4) and the 1000 mb speed bits in
3082 * the 1000Base-T Control Register (Address 9).
3083 */
3084 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3085 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3086
3087 DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3088
3089 /* Do we want to advertise 10 Mb Half Duplex? */
3090 if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3091 DEBUGOUT("Advertise 10mb Half duplex\n");
3092 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3093 }
3094
3095 /* Do we want to advertise 10 Mb Full Duplex? */
3096 if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3097 DEBUGOUT("Advertise 10mb Full duplex\n");
3098 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3099 }
3100
3101 /* Do we want to advertise 100 Mb Half Duplex? */
3102 if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3103 DEBUGOUT("Advertise 100mb Half duplex\n");
3104 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3105 }
3106
3107 /* Do we want to advertise 100 Mb Full Duplex? */
3108 if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3109 DEBUGOUT("Advertise 100mb Full duplex\n");
3110 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3111 }
3112
3113 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3114 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3115 DEBUGOUT
3116 ("Advertise 1000mb Half duplex requested, request denied!\n");
3117 }
3118
3119 /* Do we want to advertise 1000 Mb Full Duplex? */
3120 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3121 DEBUGOUT("Advertise 1000mb Full duplex\n");
3122 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3123 }
3124
3125 /* Check for a software override of the flow control settings, and
3126 * setup the PHY advertisement registers accordingly. If
3127 * auto-negotiation is enabled, then software will have to set the
3128 * "PAUSE" bits to the correct value in the Auto-Negotiation
3129 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3130 *
3131 * The possible values of the "fc" parameter are:
3132 * 0: Flow control is completely disabled
3133 * 1: Rx flow control is enabled (we can receive pause frames
3134 * but not send pause frames).
3135 * 2: Tx flow control is enabled (we can send pause frames
3136 * but we do not support receiving pause frames).
3137 * 3: Both Rx and TX flow control (symmetric) are enabled.
3138 * other: No software override. The flow control configuration
3139 * in the EEPROM is used.
3140 */
3141 switch (hw->fc) {
3142 case e1000_fc_none: /* 0 */
3143 /* Flow control (RX & TX) is completely disabled by a
3144 * software over-ride.
3145 */
3146 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3147 break;
3148 case e1000_fc_rx_pause: /* 1 */
3149 /* RX Flow control is enabled, and TX Flow control is
3150 * disabled, by a software over-ride.
3151 */
3152 /* Since there really isn't a way to advertise that we are
3153 * capable of RX Pause ONLY, we will advertise that we
3154 * support both symmetric and asymmetric RX PAUSE. Later
3155 * (in e1000_config_fc_after_link_up) we will disable the
3156 *hw's ability to send PAUSE frames.
3157 */
3158 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3159 break;
3160 case e1000_fc_tx_pause: /* 2 */
3161 /* TX Flow control is enabled, and RX Flow control is
3162 * disabled, by a software over-ride.
3163 */
3164 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3165 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3166 break;
3167 case e1000_fc_full: /* 3 */
3168 /* Flow control (both RX and TX) is enabled by a software
3169 * over-ride.
3170 */
3171 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3172 break;
3173 default:
3174 DEBUGOUT("Flow control param set incorrectly\n");
3175 return -E1000_ERR_CONFIG;
3176 }
3177
3178 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3179 if (ret_val)
3180 return ret_val;
3181
3182 DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3183
3184 if (hw->phy_type != e1000_phy_ife) {
3185 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3186 mii_1000t_ctrl_reg);
3187 if (ret_val)
3188 return ret_val;
3189 }
3190
3191 return E1000_SUCCESS;
3192 }
3193
3194 /******************************************************************************
3195 * Sets the collision distance in the Transmit Control register
3196 *
3197 * hw - Struct containing variables accessed by shared code
3198 *
3199 * Link should have been established previously. Reads the speed and duplex
3200 * information from the Device Status register.
3201 ******************************************************************************/
3202 static void
3203 e1000_config_collision_dist(struct e1000_hw *hw)
3204 {
3205 uint32_t tctl, coll_dist;
3206
3207 DEBUGFUNC();
3208
3209 if (hw->mac_type < e1000_82543)
3210 coll_dist = E1000_COLLISION_DISTANCE_82542;
3211 else
3212 coll_dist = E1000_COLLISION_DISTANCE;
3213
3214 tctl = E1000_READ_REG(hw, TCTL);
3215
3216 tctl &= ~E1000_TCTL_COLD;
3217 tctl |= coll_dist << E1000_COLD_SHIFT;
3218
3219 E1000_WRITE_REG(hw, TCTL, tctl);
3220 E1000_WRITE_FLUSH(hw);
3221 }
3222
3223 /******************************************************************************
3224 * Sets MAC speed and duplex settings to reflect the those in the PHY
3225 *
3226 * hw - Struct containing variables accessed by shared code
3227 * mii_reg - data to write to the MII control register
3228 *
3229 * The contents of the PHY register containing the needed information need to
3230 * be passed in.
3231 ******************************************************************************/
3232 static int
3233 e1000_config_mac_to_phy(struct e1000_hw *hw)
3234 {
3235 uint32_t ctrl;
3236 uint16_t phy_data;
3237
3238 DEBUGFUNC();
3239
3240 /* Read the Device Control Register and set the bits to Force Speed
3241 * and Duplex.
3242 */
3243 ctrl = E1000_READ_REG(hw, CTRL);
3244 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3245 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
3246
3247 /* Set up duplex in the Device Control and Transmit Control
3248 * registers depending on negotiated values.
3249 */
3250 if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3251 DEBUGOUT("PHY Read Error\n");
3252 return -E1000_ERR_PHY;
3253 }
3254 if (phy_data & M88E1000_PSSR_DPLX)
3255 ctrl |= E1000_CTRL_FD;
3256 else
3257 ctrl &= ~E1000_CTRL_FD;
3258
3259 e1000_config_collision_dist(hw);
3260
3261 /* Set up speed in the Device Control register depending on
3262 * negotiated values.
3263 */
3264 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3265 ctrl |= E1000_CTRL_SPD_1000;
3266 else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3267 ctrl |= E1000_CTRL_SPD_100;
3268 /* Write the configured values back to the Device Control Reg. */
3269 E1000_WRITE_REG(hw, CTRL, ctrl);
3270 return 0;
3271 }
3272
3273 /******************************************************************************
3274 * Forces the MAC's flow control settings.
3275 *
3276 * hw - Struct containing variables accessed by shared code
3277 *
3278 * Sets the TFCE and RFCE bits in the device control register to reflect
3279 * the adapter settings. TFCE and RFCE need to be explicitly set by
3280 * software when a Copper PHY is used because autonegotiation is managed
3281 * by the PHY rather than the MAC. Software must also configure these
3282 * bits when link is forced on a fiber connection.
3283 *****************************************************************************/
3284 static int
3285 e1000_force_mac_fc(struct e1000_hw *hw)
3286 {
3287 uint32_t ctrl;
3288
3289 DEBUGFUNC();
3290
3291 /* Get the current configuration of the Device Control Register */
3292 ctrl = E1000_READ_REG(hw, CTRL);
3293
3294 /* Because we didn't get link via the internal auto-negotiation
3295 * mechanism (we either forced link or we got link via PHY
3296 * auto-neg), we have to manually enable/disable transmit an
3297 * receive flow control.
3298 *
3299 * The "Case" statement below enables/disable flow control
3300 * according to the "hw->fc" parameter.
3301 *
3302 * The possible values of the "fc" parameter are:
3303 * 0: Flow control is completely disabled
3304 * 1: Rx flow control is enabled (we can receive pause
3305 * frames but not send pause frames).
3306 * 2: Tx flow control is enabled (we can send pause frames
3307 * frames but we do not receive pause frames).
3308 * 3: Both Rx and TX flow control (symmetric) is enabled.
3309 * other: No other values should be possible at this point.
3310 */
3311
3312 switch (hw->fc) {
3313 case e1000_fc_none:
3314 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3315 break;
3316 case e1000_fc_rx_pause:
3317 ctrl &= (~E1000_CTRL_TFCE);
3318 ctrl |= E1000_CTRL_RFCE;
3319 break;
3320 case e1000_fc_tx_pause:
3321 ctrl &= (~E1000_CTRL_RFCE);
3322 ctrl |= E1000_CTRL_TFCE;
3323 break;
3324 case e1000_fc_full:
3325 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3326 break;
3327 default:
3328 DEBUGOUT("Flow control param set incorrectly\n");
3329 return -E1000_ERR_CONFIG;
3330 }
3331
3332 /* Disable TX Flow Control for 82542 (rev 2.0) */
3333 if (hw->mac_type == e1000_82542_rev2_0)
3334 ctrl &= (~E1000_CTRL_TFCE);
3335
3336 E1000_WRITE_REG(hw, CTRL, ctrl);
3337 return 0;
3338 }
3339
3340 /******************************************************************************
3341 * Configures flow control settings after link is established
3342 *
3343 * hw - Struct containing variables accessed by shared code
3344 *
3345 * Should be called immediately after a valid link has been established.
3346 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3347 * and autonegotiation is enabled, the MAC flow control settings will be set
3348 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3349 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3350 *****************************************************************************/
3351 static int32_t
3352 e1000_config_fc_after_link_up(struct e1000_hw *hw)
3353 {
3354 int32_t ret_val;
3355 uint16_t mii_status_reg;
3356 uint16_t mii_nway_adv_reg;
3357 uint16_t mii_nway_lp_ability_reg;
3358 uint16_t speed;
3359 uint16_t duplex;
3360
3361 DEBUGFUNC();
3362
3363 /* Check for the case where we have fiber media and auto-neg failed
3364 * so we had to force link. In this case, we need to force the
3365 * configuration of the MAC to match the "fc" parameter.
3366 */
3367 if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3368 || ((hw->media_type == e1000_media_type_internal_serdes)
3369 && (hw->autoneg_failed))
3370 || ((hw->media_type == e1000_media_type_copper)
3371 && (!hw->autoneg))) {
3372 ret_val = e1000_force_mac_fc(hw);
3373 if (ret_val < 0) {
3374 DEBUGOUT("Error forcing flow control settings\n");
3375 return ret_val;
3376 }
3377 }
3378
3379 /* Check for the case where we have copper media and auto-neg is
3380 * enabled. In this case, we need to check and see if Auto-Neg
3381 * has completed, and if so, how the PHY and link partner has
3382 * flow control configured.
3383 */
3384 if (hw->media_type == e1000_media_type_copper) {
3385 /* Read the MII Status Register and check to see if AutoNeg
3386 * has completed. We read this twice because this reg has
3387 * some "sticky" (latched) bits.
3388 */
3389 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3390 DEBUGOUT("PHY Read Error \n");
3391 return -E1000_ERR_PHY;
3392 }
3393 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3394 DEBUGOUT("PHY Read Error \n");
3395 return -E1000_ERR_PHY;
3396 }
3397
3398 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3399 /* The AutoNeg process has completed, so we now need to
3400 * read both the Auto Negotiation Advertisement Register
3401 * (Address 4) and the Auto_Negotiation Base Page Ability
3402 * Register (Address 5) to determine how flow control was
3403 * negotiated.
3404 */
3405 if (e1000_read_phy_reg
3406 (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3407 DEBUGOUT("PHY Read Error\n");
3408 return -E1000_ERR_PHY;
3409 }
3410 if (e1000_read_phy_reg
3411 (hw, PHY_LP_ABILITY,
3412 &mii_nway_lp_ability_reg) < 0) {
3413 DEBUGOUT("PHY Read Error\n");
3414 return -E1000_ERR_PHY;
3415 }
3416
3417 /* Two bits in the Auto Negotiation Advertisement Register
3418 * (Address 4) and two bits in the Auto Negotiation Base
3419 * Page Ability Register (Address 5) determine flow control
3420 * for both the PHY and the link partner. The following
3421 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3422 * 1999, describes these PAUSE resolution bits and how flow
3423 * control is determined based upon these settings.
3424 * NOTE: DC = Don't Care
3425 *
3426 * LOCAL DEVICE | LINK PARTNER
3427 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3428 *-------|---------|-------|---------|--------------------
3429 * 0 | 0 | DC | DC | e1000_fc_none
3430 * 0 | 1 | 0 | DC | e1000_fc_none
3431 * 0 | 1 | 1 | 0 | e1000_fc_none
3432 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
3433 * 1 | 0 | 0 | DC | e1000_fc_none
3434 * 1 | DC | 1 | DC | e1000_fc_full
3435 * 1 | 1 | 0 | 0 | e1000_fc_none
3436 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
3437 *
3438 */
3439 /* Are both PAUSE bits set to 1? If so, this implies
3440 * Symmetric Flow Control is enabled at both ends. The
3441 * ASM_DIR bits are irrelevant per the spec.
3442 *
3443 * For Symmetric Flow Control:
3444 *
3445 * LOCAL DEVICE | LINK PARTNER
3446 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3447 *-------|---------|-------|---------|--------------------
3448 * 1 | DC | 1 | DC | e1000_fc_full
3449 *
3450 */
3451 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3452 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3453 /* Now we need to check if the user selected RX ONLY
3454 * of pause frames. In this case, we had to advertise
3455 * FULL flow control because we could not advertise RX
3456 * ONLY. Hence, we must now check to see if we need to
3457 * turn OFF the TRANSMISSION of PAUSE frames.
3458 */
3459 if (hw->original_fc == e1000_fc_full) {
3460 hw->fc = e1000_fc_full;
3461 DEBUGOUT("Flow Control = FULL.\r\n");
3462 } else {
3463 hw->fc = e1000_fc_rx_pause;
3464 DEBUGOUT
3465 ("Flow Control = RX PAUSE frames only.\r\n");
3466 }
3467 }
3468 /* For receiving PAUSE frames ONLY.
3469 *
3470 * LOCAL DEVICE | LINK PARTNER
3471 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3472 *-------|---------|-------|---------|--------------------
3473 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
3474 *
3475 */
3476 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3477 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3478 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3479 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3480 {
3481 hw->fc = e1000_fc_tx_pause;
3482 DEBUGOUT
3483 ("Flow Control = TX PAUSE frames only.\r\n");
3484 }
3485 /* For transmitting PAUSE frames ONLY.
3486 *
3487 * LOCAL DEVICE | LINK PARTNER
3488 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3489 *-------|---------|-------|---------|--------------------
3490 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
3491 *
3492 */
3493 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3494 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3495 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3496 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3497 {
3498 hw->fc = e1000_fc_rx_pause;
3499 DEBUGOUT
3500 ("Flow Control = RX PAUSE frames only.\r\n");
3501 }
3502 /* Per the IEEE spec, at this point flow control should be
3503 * disabled. However, we want to consider that we could
3504 * be connected to a legacy switch that doesn't advertise
3505 * desired flow control, but can be forced on the link
3506 * partner. So if we advertised no flow control, that is
3507 * what we will resolve to. If we advertised some kind of
3508 * receive capability (Rx Pause Only or Full Flow Control)
3509 * and the link partner advertised none, we will configure
3510 * ourselves to enable Rx Flow Control only. We can do
3511 * this safely for two reasons: If the link partner really
3512 * didn't want flow control enabled, and we enable Rx, no
3513 * harm done since we won't be receiving any PAUSE frames
3514 * anyway. If the intent on the link partner was to have
3515 * flow control enabled, then by us enabling RX only, we
3516 * can at least receive pause frames and process them.
3517 * This is a good idea because in most cases, since we are
3518 * predominantly a server NIC, more times than not we will
3519 * be asked to delay transmission of packets than asking
3520 * our link partner to pause transmission of frames.
3521 */
3522 else if (hw->original_fc == e1000_fc_none ||
3523 hw->original_fc == e1000_fc_tx_pause) {
3524 hw->fc = e1000_fc_none;
3525 DEBUGOUT("Flow Control = NONE.\r\n");
3526 } else {
3527 hw->fc = e1000_fc_rx_pause;
3528 DEBUGOUT
3529 ("Flow Control = RX PAUSE frames only.\r\n");
3530 }
3531
3532 /* Now we need to do one last check... If we auto-
3533 * negotiated to HALF DUPLEX, flow control should not be
3534 * enabled per IEEE 802.3 spec.
3535 */
3536 e1000_get_speed_and_duplex(hw, &speed, &duplex);
3537
3538 if (duplex == HALF_DUPLEX)
3539 hw->fc = e1000_fc_none;
3540
3541 /* Now we call a subroutine to actually force the MAC
3542 * controller to use the correct flow control settings.
3543 */
3544 ret_val = e1000_force_mac_fc(hw);
3545 if (ret_val < 0) {
3546 DEBUGOUT
3547 ("Error forcing flow control settings\n");
3548 return ret_val;
3549 }
3550 } else {
3551 DEBUGOUT
3552 ("Copper PHY and Auto Neg has not completed.\r\n");
3553 }
3554 }
3555 return E1000_SUCCESS;
3556 }
3557
3558 /******************************************************************************
3559 * Checks to see if the link status of the hardware has changed.
3560 *
3561 * hw - Struct containing variables accessed by shared code
3562 *
3563 * Called by any function that needs to check the link status of the adapter.
3564 *****************************************************************************/
3565 static int
3566 e1000_check_for_link(struct eth_device *nic)
3567 {
3568 struct e1000_hw *hw = nic->priv;
3569 uint32_t rxcw;
3570 uint32_t ctrl;
3571 uint32_t status;
3572 uint32_t rctl;
3573 uint32_t signal;
3574 int32_t ret_val;
3575 uint16_t phy_data;
3576 uint16_t lp_capability;
3577
3578 DEBUGFUNC();
3579
3580 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3581 * set when the optics detect a signal. On older adapters, it will be
3582 * cleared when there is a signal
3583 */
3584 ctrl = E1000_READ_REG(hw, CTRL);
3585 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3586 signal = E1000_CTRL_SWDPIN1;
3587 else
3588 signal = 0;
3589
3590 status = E1000_READ_REG(hw, STATUS);
3591 rxcw = E1000_READ_REG(hw, RXCW);
3592 DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3593
3594 /* If we have a copper PHY then we only want to go out to the PHY
3595 * registers to see if Auto-Neg has completed and/or if our link
3596 * status has changed. The get_link_status flag will be set if we
3597 * receive a Link Status Change interrupt or we have Rx Sequence
3598 * Errors.
3599 */
3600 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3601 /* First we want to see if the MII Status Register reports
3602 * link. If so, then we want to get the current speed/duplex
3603 * of the PHY.
3604 * Read the register twice since the link bit is sticky.
3605 */
3606 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3607 DEBUGOUT("PHY Read Error\n");
3608 return -E1000_ERR_PHY;
3609 }
3610 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3611 DEBUGOUT("PHY Read Error\n");
3612 return -E1000_ERR_PHY;
3613 }
3614
3615 if (phy_data & MII_SR_LINK_STATUS) {
3616 hw->get_link_status = FALSE;
3617 } else {
3618 /* No link detected */
3619 return -E1000_ERR_NOLINK;
3620 }
3621
3622 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
3623 * have Si on board that is 82544 or newer, Auto
3624 * Speed Detection takes care of MAC speed/duplex
3625 * configuration. So we only need to configure Collision
3626 * Distance in the MAC. Otherwise, we need to force
3627 * speed/duplex on the MAC to the current PHY speed/duplex
3628 * settings.
3629 */
3630 if (hw->mac_type >= e1000_82544)
3631 e1000_config_collision_dist(hw);
3632 else {
3633 ret_val = e1000_config_mac_to_phy(hw);
3634 if (ret_val < 0) {
3635 DEBUGOUT
3636 ("Error configuring MAC to PHY settings\n");
3637 return ret_val;
3638 }
3639 }
3640
3641 /* Configure Flow Control now that Auto-Neg has completed. First, we
3642 * need to restore the desired flow control settings because we may
3643 * have had to re-autoneg with a different link partner.
3644 */
3645 ret_val = e1000_config_fc_after_link_up(hw);
3646 if (ret_val < 0) {
3647 DEBUGOUT("Error configuring flow control\n");
3648 return ret_val;
3649 }
3650
3651 /* At this point we know that we are on copper and we have
3652 * auto-negotiated link. These are conditions for checking the link
3653 * parter capability register. We use the link partner capability to
3654 * determine if TBI Compatibility needs to be turned on or off. If
3655 * the link partner advertises any speed in addition to Gigabit, then
3656 * we assume that they are GMII-based, and TBI compatibility is not
3657 * needed. If no other speeds are advertised, we assume the link
3658 * partner is TBI-based, and we turn on TBI Compatibility.
3659 */
3660 if (hw->tbi_compatibility_en) {
3661 if (e1000_read_phy_reg
3662 (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3663 DEBUGOUT("PHY Read Error\n");
3664 return -E1000_ERR_PHY;
3665 }
3666 if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3667 NWAY_LPAR_10T_FD_CAPS |
3668 NWAY_LPAR_100TX_HD_CAPS |
3669 NWAY_LPAR_100TX_FD_CAPS |
3670 NWAY_LPAR_100T4_CAPS)) {
3671 /* If our link partner advertises anything in addition to
3672 * gigabit, we do not need to enable TBI compatibility.
3673 */
3674 if (hw->tbi_compatibility_on) {
3675 /* If we previously were in the mode, turn it off. */
3676 rctl = E1000_READ_REG(hw, RCTL);
3677 rctl &= ~E1000_RCTL_SBP;
3678 E1000_WRITE_REG(hw, RCTL, rctl);
3679 hw->tbi_compatibility_on = FALSE;
3680 }
3681 } else {
3682 /* If TBI compatibility is was previously off, turn it on. For
3683 * compatibility with a TBI link partner, we will store bad
3684 * packets. Some frames have an additional byte on the end and
3685 * will look like CRC errors to to the hardware.
3686 */
3687 if (!hw->tbi_compatibility_on) {
3688 hw->tbi_compatibility_on = TRUE;
3689 rctl = E1000_READ_REG(hw, RCTL);
3690 rctl |= E1000_RCTL_SBP;
3691 E1000_WRITE_REG(hw, RCTL, rctl);
3692 }
3693 }
3694 }
3695 }
3696 /* If we don't have link (auto-negotiation failed or link partner cannot
3697 * auto-negotiate), the cable is plugged in (we have signal), and our
3698 * link partner is not trying to auto-negotiate with us (we are receiving
3699 * idles or data), we need to force link up. We also need to give
3700 * auto-negotiation time to complete, in case the cable was just plugged
3701 * in. The autoneg_failed flag does this.
3702 */
3703 else if ((hw->media_type == e1000_media_type_fiber) &&
3704 (!(status & E1000_STATUS_LU)) &&
3705 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3706 (!(rxcw & E1000_RXCW_C))) {
3707 if (hw->autoneg_failed == 0) {
3708 hw->autoneg_failed = 1;
3709 return 0;
3710 }
3711 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
3712
3713 /* Disable auto-negotiation in the TXCW register */
3714 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3715
3716 /* Force link-up and also force full-duplex. */
3717 ctrl = E1000_READ_REG(hw, CTRL);
3718 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3719 E1000_WRITE_REG(hw, CTRL, ctrl);
3720
3721 /* Configure Flow Control after forcing link up. */
3722 ret_val = e1000_config_fc_after_link_up(hw);
3723 if (ret_val < 0) {
3724 DEBUGOUT("Error configuring flow control\n");
3725 return ret_val;
3726 }
3727 }
3728 /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3729 * auto-negotiation in the TXCW register and disable forced link in the
3730 * Device Control register in an attempt to auto-negotiate with our link
3731 * partner.
3732 */
3733 else if ((hw->media_type == e1000_media_type_fiber) &&
3734 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3735 DEBUGOUT
3736 ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
3737 E1000_WRITE_REG(hw, TXCW, hw->txcw);
3738 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3739 }
3740 return 0;
3741 }
3742
3743 /******************************************************************************
3744 * Configure the MAC-to-PHY interface for 10/100Mbps
3745 *
3746 * hw - Struct containing variables accessed by shared code
3747 ******************************************************************************/
3748 static int32_t
3749 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
3750 {
3751 int32_t ret_val = E1000_SUCCESS;
3752 uint32_t tipg;
3753 uint16_t reg_data;
3754
3755 DEBUGFUNC();
3756
3757 reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
3758 ret_val = e1000_write_kmrn_reg(hw,
3759 E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3760 if (ret_val)
3761 return ret_val;
3762
3763 /* Configure Transmit Inter-Packet Gap */
3764 tipg = E1000_READ_REG(hw, TIPG);
3765 tipg &= ~E1000_TIPG_IPGT_MASK;
3766 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
3767 E1000_WRITE_REG(hw, TIPG, tipg);
3768
3769 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3770
3771 if (ret_val)
3772 return ret_val;
3773
3774 if (duplex == HALF_DUPLEX)
3775 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
3776 else
3777 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3778
3779 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3780
3781 return ret_val;
3782 }
3783
3784 static int32_t
3785 e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
3786 {
3787 int32_t ret_val = E1000_SUCCESS;
3788 uint16_t reg_data;
3789 uint32_t tipg;
3790
3791 DEBUGFUNC();
3792
3793 reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
3794 ret_val = e1000_write_kmrn_reg(hw,
3795 E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3796 if (ret_val)
3797 return ret_val;
3798
3799 /* Configure Transmit Inter-Packet Gap */
3800 tipg = E1000_READ_REG(hw, TIPG);
3801 tipg &= ~E1000_TIPG_IPGT_MASK;
3802 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
3803 E1000_WRITE_REG(hw, TIPG, tipg);
3804
3805 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3806
3807 if (ret_val)
3808 return ret_val;
3809
3810 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3811 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3812
3813 return ret_val;
3814 }
3815
3816 /******************************************************************************
3817 * Detects the current speed and duplex settings of the hardware.
3818 *
3819 * hw - Struct containing variables accessed by shared code
3820 * speed - Speed of the connection
3821 * duplex - Duplex setting of the connection
3822 *****************************************************************************/
3823 static int
3824 e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
3825 uint16_t *duplex)
3826 {
3827 uint32_t status;
3828 int32_t ret_val;
3829 uint16_t phy_data;
3830
3831 DEBUGFUNC();
3832
3833 if (hw->mac_type >= e1000_82543) {
3834 status = E1000_READ_REG(hw, STATUS);
3835 if (status & E1000_STATUS_SPEED_1000) {
3836 *speed = SPEED_1000;
3837 DEBUGOUT("1000 Mbs, ");
3838 } else if (status & E1000_STATUS_SPEED_100) {
3839 *speed = SPEED_100;
3840 DEBUGOUT("100 Mbs, ");
3841 } else {
3842 *speed = SPEED_10;
3843 DEBUGOUT("10 Mbs, ");
3844 }
3845
3846 if (status & E1000_STATUS_FD) {
3847 *duplex = FULL_DUPLEX;
3848 DEBUGOUT("Full Duplex\r\n");
3849 } else {
3850 *duplex = HALF_DUPLEX;
3851 DEBUGOUT(" Half Duplex\r\n");
3852 }
3853 } else {
3854 DEBUGOUT("1000 Mbs, Full Duplex\r\n");
3855 *speed = SPEED_1000;
3856 *duplex = FULL_DUPLEX;
3857 }
3858
3859 /* IGP01 PHY may advertise full duplex operation after speed downgrade
3860 * even if it is operating at half duplex. Here we set the duplex
3861 * settings to match the duplex in the link partner's capabilities.
3862 */
3863 if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3864 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3865 if (ret_val)
3866 return ret_val;
3867
3868 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3869 *duplex = HALF_DUPLEX;
3870 else {
3871 ret_val = e1000_read_phy_reg(hw,
3872 PHY_LP_ABILITY, &phy_data);
3873 if (ret_val)
3874 return ret_val;
3875 if ((*speed == SPEED_100 &&
3876 !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
3877 || (*speed == SPEED_10
3878 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3879 *duplex = HALF_DUPLEX;
3880 }
3881 }
3882
3883 if ((hw->mac_type == e1000_80003es2lan) &&
3884 (hw->media_type == e1000_media_type_copper)) {
3885 if (*speed == SPEED_1000)
3886 ret_val = e1000_configure_kmrn_for_1000(hw);
3887 else
3888 ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3889 if (ret_val)
3890 return ret_val;
3891 }
3892 return E1000_SUCCESS;
3893 }
3894
3895 /******************************************************************************
3896 * Blocks until autoneg completes or times out (~4.5 seconds)
3897 *
3898 * hw - Struct containing variables accessed by shared code
3899 ******************************************************************************/
3900 static int
3901 e1000_wait_autoneg(struct e1000_hw *hw)
3902 {
3903 uint16_t i;
3904 uint16_t phy_data;
3905
3906 DEBUGFUNC();
3907 DEBUGOUT("Waiting for Auto-Neg to complete.\n");
3908
3909 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
3910 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
3911 /* Read the MII Status Register and wait for Auto-Neg
3912 * Complete bit to be set.
3913 */
3914 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3915 DEBUGOUT("PHY Read Error\n");
3916 return -E1000_ERR_PHY;
3917 }
3918 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3919 DEBUGOUT("PHY Read Error\n");
3920 return -E1000_ERR_PHY;
3921 }
3922 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
3923 DEBUGOUT("Auto-Neg complete.\n");
3924 return 0;
3925 }
3926 mdelay(100);
3927 }
3928 DEBUGOUT("Auto-Neg timedout.\n");
3929 return -E1000_ERR_TIMEOUT;
3930 }
3931
3932 /******************************************************************************
3933 * Raises the Management Data Clock
3934 *
3935 * hw - Struct containing variables accessed by shared code
3936 * ctrl - Device control register's current value
3937 ******************************************************************************/
3938 static void
3939 e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3940 {
3941 /* Raise the clock input to the Management Data Clock (by setting the MDC
3942 * bit), and then delay 2 microseconds.
3943 */
3944 E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
3945 E1000_WRITE_FLUSH(hw);
3946 udelay(2);
3947 }
3948
3949 /******************************************************************************
3950 * Lowers the Management Data Clock
3951 *
3952 * hw - Struct containing variables accessed by shared code
3953 * ctrl - Device control register's current value
3954 ******************************************************************************/
3955 static void
3956 e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3957 {
3958 /* Lower the clock input to the Management Data Clock (by clearing the MDC
3959 * bit), and then delay 2 microseconds.
3960 */
3961 E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
3962 E1000_WRITE_FLUSH(hw);
3963 udelay(2);
3964 }
3965
3966 /******************************************************************************
3967 * Shifts data bits out to the PHY
3968 *
3969 * hw - Struct containing variables accessed by shared code
3970 * data - Data to send out to the PHY
3971 * count - Number of bits to shift out
3972 *
3973 * Bits are shifted out in MSB to LSB order.
3974 ******************************************************************************/
3975 static void
3976 e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
3977 {
3978 uint32_t ctrl;
3979 uint32_t mask;
3980
3981 /* We need to shift "count" number of bits out to the PHY. So, the value
3982 * in the "data" parameter will be shifted out to the PHY one bit at a
3983 * time. In order to do this, "data" must be broken down into bits.
3984 */
3985 mask = 0x01;
3986 mask <<= (count - 1);
3987
3988 ctrl = E1000_READ_REG(hw, CTRL);
3989
3990 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
3991 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
3992
3993 while (mask) {
3994 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
3995 * then raising and lowering the Management Data Clock. A "0" is
3996 * shifted out to the PHY by setting the MDIO bit to "0" and then
3997 * raising and lowering the clock.
3998 */
3999 if (data & mask)
4000 ctrl |= E1000_CTRL_MDIO;
4001 else
4002 ctrl &= ~E1000_CTRL_MDIO;
4003
4004 E1000_WRITE_REG(hw, CTRL, ctrl);
4005 E1000_WRITE_FLUSH(hw);
4006
4007 udelay(2);
4008
4009 e1000_raise_mdi_clk(hw, &ctrl);
4010 e1000_lower_mdi_clk(hw, &ctrl);
4011
4012 mask = mask >> 1;
4013 }
4014 }
4015
4016 /******************************************************************************
4017 * Shifts data bits in from the PHY
4018 *
4019 * hw - Struct containing variables accessed by shared code
4020 *
4021 * Bits are shifted in in MSB to LSB order.
4022 ******************************************************************************/
4023 static uint16_t
4024 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4025 {
4026 uint32_t ctrl;
4027 uint16_t data = 0;
4028 uint8_t i;
4029
4030 /* In order to read a register from the PHY, we need to shift in a total
4031 * of 18 bits from the PHY. The first two bit (turnaround) times are used
4032 * to avoid contention on the MDIO pin when a read operation is performed.
4033 * These two bits are ignored by us and thrown away. Bits are "shifted in"
4034 * by raising the input to the Management Data Clock (setting the MDC bit),
4035 * and then reading the value of the MDIO bit.
4036 */
4037 ctrl = E1000_READ_REG(hw, CTRL);
4038
4039 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4040 ctrl &= ~E1000_CTRL_MDIO_DIR;
4041 ctrl &= ~E1000_CTRL_MDIO;
4042
4043 E1000_WRITE_REG(hw, CTRL, ctrl);
4044 E1000_WRITE_FLUSH(hw);
4045
4046 /* Raise and Lower the clock before reading in the data. This accounts for
4047 * the turnaround bits. The first clock occurred when we clocked out the
4048 * last bit of the Register Address.
4049 */
4050 e1000_raise_mdi_clk(hw, &ctrl);
4051 e1000_lower_mdi_clk(hw, &ctrl);
4052
4053 for (data = 0, i = 0; i < 16; i++) {
4054 data = data << 1;
4055 e1000_raise_mdi_clk(hw, &ctrl);
4056 ctrl = E1000_READ_REG(hw, CTRL);
4057 /* Check to see if we shifted in a "1". */
4058 if (ctrl & E1000_CTRL_MDIO)
4059 data |= 1;
4060 e1000_lower_mdi_clk(hw, &ctrl);
4061 }
4062
4063 e1000_raise_mdi_clk(hw, &ctrl);
4064 e1000_lower_mdi_clk(hw, &ctrl);
4065
4066 return data;
4067 }
4068
4069 /*****************************************************************************
4070 * Reads the value from a PHY register
4071 *
4072 * hw - Struct containing variables accessed by shared code
4073 * reg_addr - address of the PHY register to read
4074 ******************************************************************************/
4075 static int
4076 e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4077 {
4078 uint32_t i;
4079 uint32_t mdic = 0;
4080 const uint32_t phy_addr = 1;
4081
4082 if (reg_addr > MAX_PHY_REG_ADDRESS) {
4083 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4084 return -E1000_ERR_PARAM;
4085 }
4086
4087 if (hw->mac_type > e1000_82543) {
4088 /* Set up Op-code, Phy Address, and register address in the MDI
4089 * Control register. The MAC will take care of interfacing with the
4090 * PHY to retrieve the desired data.
4091 */
4092 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4093 (phy_addr << E1000_MDIC_PHY_SHIFT) |
4094 (E1000_MDIC_OP_READ));
4095
4096 E1000_WRITE_REG(hw, MDIC, mdic);
4097
4098 /* Poll the ready bit to see if the MDI read completed */
4099 for (i = 0; i < 64; i++) {
4100 udelay(10);
4101 mdic = E1000_READ_REG(hw, MDIC);
4102 if (mdic & E1000_MDIC_READY)
4103 break;
4104 }
4105 if (!(mdic & E1000_MDIC_READY)) {
4106 DEBUGOUT("MDI Read did not complete\n");
4107 return -E1000_ERR_PHY;
4108 }
4109 if (mdic & E1000_MDIC_ERROR) {
4110 DEBUGOUT("MDI Error\n");
4111 return -E1000_ERR_PHY;
4112 }
4113 *phy_data = (uint16_t) mdic;
4114 } else {
4115 /* We must first send a preamble through the MDIO pin to signal the
4116 * beginning of an MII instruction. This is done by sending 32
4117 * consecutive "1" bits.
4118 */
4119 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4120
4121 /* Now combine the next few fields that are required for a read
4122 * operation. We use this method instead of calling the
4123 * e1000_shift_out_mdi_bits routine five different times. The format of
4124 * a MII read instruction consists of a shift out of 14 bits and is
4125 * defined as follows:
4126 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4127 * followed by a shift in of 18 bits. This first two bits shifted in
4128 * are TurnAround bits used to avoid contention on the MDIO pin when a
4129 * READ operation is performed. These two bits are thrown away
4130 * followed by a shift in of 16 bits which contains the desired data.
4131 */
4132 mdic = ((reg_addr) | (phy_addr << 5) |
4133 (PHY_OP_READ << 10) | (PHY_SOF << 12));
4134
4135 e1000_shift_out_mdi_bits(hw, mdic, 14);
4136
4137 /* Now that we've shifted out the read command to the MII, we need to
4138 * "shift in" the 16-bit value (18 total bits) of the requested PHY
4139 * register address.
4140 */
4141 *phy_data = e1000_shift_in_mdi_bits(hw);
4142 }
4143 return 0;
4144 }
4145
4146 /******************************************************************************
4147 * Writes a value to a PHY register
4148 *
4149 * hw - Struct containing variables accessed by shared code
4150 * reg_addr - address of the PHY register to write
4151 * data - data to write to the PHY
4152 ******************************************************************************/
4153 static int
4154 e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4155 {
4156 uint32_t i;
4157 uint32_t mdic = 0;
4158 const uint32_t phy_addr = 1;
4159
4160 if (reg_addr > MAX_PHY_REG_ADDRESS) {
4161 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4162 return -E1000_ERR_PARAM;
4163 }
4164
4165 if (hw->mac_type > e1000_82543) {
4166 /* Set up Op-code, Phy Address, register address, and data intended
4167 * for the PHY register in the MDI Control register. The MAC will take
4168 * care of interfacing with the PHY to send the desired data.
4169 */
4170 mdic = (((uint32_t) phy_data) |
4171 (reg_addr << E1000_MDIC_REG_SHIFT) |
4172 (phy_addr << E1000_MDIC_PHY_SHIFT) |
4173 (E1000_MDIC_OP_WRITE));
4174
4175 E1000_WRITE_REG(hw, MDIC, mdic);
4176
4177 /* Poll the ready bit to see if the MDI read completed */
4178 for (i = 0; i < 64; i++) {
4179 udelay(10);
4180 mdic = E1000_READ_REG(hw, MDIC);
4181 if (mdic & E1000_MDIC_READY)
4182 break;
4183 }
4184 if (!(mdic & E1000_MDIC_READY)) {
4185 DEBUGOUT("MDI Write did not complete\n");
4186 return -E1000_ERR_PHY;
4187 }
4188 } else {
4189 /* We'll need to use the SW defined pins to shift the write command
4190 * out to the PHY. We first send a preamble to the PHY to signal the
4191 * beginning of the MII instruction. This is done by sending 32
4192 * consecutive "1" bits.
4193 */
4194 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4195
4196 /* Now combine the remaining required fields that will indicate a
4197 * write operation. We use this method instead of calling the
4198 * e1000_shift_out_mdi_bits routine for each field in the command. The
4199 * format of a MII write instruction is as follows:
4200 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4201 */
4202 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4203 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4204 mdic <<= 16;
4205 mdic |= (uint32_t) phy_data;
4206
4207 e1000_shift_out_mdi_bits(hw, mdic, 32);
4208 }
4209 return 0;
4210 }
4211
4212 /******************************************************************************
4213 * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4214 * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
4215 * the caller to figure out how to deal with it.
4216 *
4217 * hw - Struct containing variables accessed by shared code
4218 *
4219 * returns: - E1000_BLK_PHY_RESET
4220 * E1000_SUCCESS
4221 *
4222 *****************************************************************************/
4223 int32_t
4224 e1000_check_phy_reset_block(struct e1000_hw *hw)
4225 {
4226 uint32_t manc = 0;
4227 uint32_t fwsm = 0;
4228
4229 if (hw->mac_type == e1000_ich8lan) {
4230 fwsm = E1000_READ_REG(hw, FWSM);
4231 return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4232 : E1000_BLK_PHY_RESET;
4233 }
4234
4235 if (hw->mac_type > e1000_82547_rev_2)
4236 manc = E1000_READ_REG(hw, MANC);
4237 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4238 E1000_BLK_PHY_RESET : E1000_SUCCESS;
4239 }
4240
4241 /***************************************************************************
4242 * Checks if the PHY configuration is done
4243 *
4244 * hw: Struct containing variables accessed by shared code
4245 *
4246 * returns: - E1000_ERR_RESET if fail to reset MAC
4247 * E1000_SUCCESS at any other case.
4248 *
4249 ***************************************************************************/
4250 static int32_t
4251 e1000_get_phy_cfg_done(struct e1000_hw *hw)
4252 {
4253 int32_t timeout = PHY_CFG_TIMEOUT;
4254 uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4255
4256 DEBUGFUNC();
4257
4258 switch (hw->mac_type) {
4259 default:
4260 mdelay(10);
4261 break;
4262 case e1000_80003es2lan:
4263 /* Separate *_CFG_DONE_* bit for each port */
4264 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
4265 cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
4266 /* Fall Through */
4267 case e1000_82571:
4268 case e1000_82572:
4269 while (timeout) {
4270 if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4271 break;
4272 else
4273 mdelay(1);
4274 timeout--;
4275 }
4276 if (!timeout) {
4277 DEBUGOUT("MNG configuration cycle has not "
4278 "completed.\n");
4279 return -E1000_ERR_RESET;
4280 }
4281 break;
4282 }
4283
4284 return E1000_SUCCESS;
4285 }
4286
4287 /******************************************************************************
4288 * Returns the PHY to the power-on reset state
4289 *
4290 * hw - Struct containing variables accessed by shared code
4291 ******************************************************************************/
4292 int32_t
4293 e1000_phy_hw_reset(struct e1000_hw *hw)
4294 {
4295 uint32_t ctrl, ctrl_ext;
4296 uint32_t led_ctrl;
4297 int32_t ret_val;
4298 uint16_t swfw;
4299
4300 DEBUGFUNC();
4301
4302 /* In the case of the phy reset being blocked, it's not an error, we
4303 * simply return success without performing the reset. */
4304 ret_val = e1000_check_phy_reset_block(hw);
4305 if (ret_val)
4306 return E1000_SUCCESS;
4307
4308 DEBUGOUT("Resetting Phy...\n");
4309
4310 if (hw->mac_type > e1000_82543) {
4311 if ((hw->mac_type == e1000_80003es2lan) &&
4312 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
4313 swfw = E1000_SWFW_PHY1_SM;
4314 } else {
4315 swfw = E1000_SWFW_PHY0_SM;
4316 }
4317 if (e1000_swfw_sync_acquire(hw, swfw)) {
4318 DEBUGOUT("Unable to acquire swfw sync\n");
4319 return -E1000_ERR_SWFW_SYNC;
4320 }
4321 /* Read the device control register and assert the E1000_CTRL_PHY_RST
4322 * bit. Then, take it out of reset.
4323 */
4324 ctrl = E1000_READ_REG(hw, CTRL);
4325 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4326 E1000_WRITE_FLUSH(hw);
4327
4328 if (hw->mac_type < e1000_82571)
4329 udelay(10);
4330 else
4331 udelay(100);
4332
4333 E1000_WRITE_REG(hw, CTRL, ctrl);
4334 E1000_WRITE_FLUSH(hw);
4335
4336 if (hw->mac_type >= e1000_82571)
4337 mdelay(10);
4338
4339 } else {
4340 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4341 * bit to put the PHY into reset. Then, take it out of reset.
4342 */
4343 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4344 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4345 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4346 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4347 E1000_WRITE_FLUSH(hw);
4348 mdelay(10);
4349 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4350 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4351 E1000_WRITE_FLUSH(hw);
4352 }
4353 udelay(150);
4354
4355 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4356 /* Configure activity LED after PHY reset */
4357 led_ctrl = E1000_READ_REG(hw, LEDCTL);
4358 led_ctrl &= IGP_ACTIVITY_LED_MASK;
4359 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4360 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4361 }
4362
4363 /* Wait for FW to finish PHY configuration. */
4364 ret_val = e1000_get_phy_cfg_done(hw);
4365 if (ret_val != E1000_SUCCESS)
4366 return ret_val;
4367
4368 return ret_val;
4369 }
4370
4371 /******************************************************************************
4372 * IGP phy init script - initializes the GbE PHY
4373 *
4374 * hw - Struct containing variables accessed by shared code
4375 *****************************************************************************/
4376 static void
4377 e1000_phy_init_script(struct e1000_hw *hw)
4378 {
4379 uint32_t ret_val;
4380 uint16_t phy_saved_data;
4381 DEBUGFUNC();
4382
4383 if (hw->phy_init_script) {
4384 mdelay(20);
4385
4386 /* Save off the current value of register 0x2F5B to be
4387 * restored at the end of this routine. */
4388 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4389
4390 /* Disabled the PHY transmitter */
4391 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4392
4393 mdelay(20);
4394
4395 e1000_write_phy_reg(hw, 0x0000, 0x0140);
4396
4397 mdelay(5);
4398
4399 switch (hw->mac_type) {
4400 case e1000_82541:
4401 case e1000_82547:
4402 e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4403
4404 e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4405
4406 e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4407
4408 e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4409
4410 e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4411
4412 e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4413
4414 e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4415
4416 e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4417
4418 e1000_write_phy_reg(hw, 0x2010, 0x0008);
4419 break;
4420
4421 case e1000_82541_rev_2:
4422 case e1000_82547_rev_2:
4423 e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4424 break;
4425 default:
4426 break;
4427 }
4428
4429 e1000_write_phy_reg(hw, 0x0000, 0x3300);
4430
4431 mdelay(20);
4432
4433 /* Now enable the transmitter */
4434 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
4435
4436 if (hw->mac_type == e1000_82547) {
4437 uint16_t fused, fine, coarse;
4438
4439 /* Move to analog registers page */
4440 e1000_read_phy_reg(hw,
4441 IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4442
4443 if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4444 e1000_read_phy_reg(hw,
4445 IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4446
4447 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4448 coarse = fused
4449 & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4450
4451 if (coarse >
4452 IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4453 coarse -=
4454 IGP01E1000_ANALOG_FUSE_COARSE_10;
4455 fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4456 } else if (coarse
4457 == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4458 fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4459
4460 fused = (fused
4461 & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4462 (fine
4463 & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4464 (coarse
4465 & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4466
4467 e1000_write_phy_reg(hw,
4468 IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4469 e1000_write_phy_reg(hw,
4470 IGP01E1000_ANALOG_FUSE_BYPASS,
4471 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4472 }
4473 }
4474 }
4475 }
4476
4477 /******************************************************************************
4478 * Resets the PHY
4479 *
4480 * hw - Struct containing variables accessed by shared code
4481 *
4482 * Sets bit 15 of the MII Control register
4483 ******************************************************************************/
4484 int32_t
4485 e1000_phy_reset(struct e1000_hw *hw)
4486 {
4487 int32_t ret_val;
4488 uint16_t phy_data;
4489
4490 DEBUGFUNC();
4491
4492 /* In the case of the phy reset being blocked, it's not an error, we
4493 * simply return success without performing the reset. */
4494 ret_val = e1000_check_phy_reset_block(hw);
4495 if (ret_val)
4496 return E1000_SUCCESS;
4497
4498 switch (hw->phy_type) {
4499 case e1000_phy_igp:
4500 case e1000_phy_igp_2:
4501 case e1000_phy_igp_3:
4502 case e1000_phy_ife:
4503 ret_val = e1000_phy_hw_reset(hw);
4504 if (ret_val)
4505 return ret_val;
4506 break;
4507 default:
4508 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4509 if (ret_val)
4510 return ret_val;
4511
4512 phy_data |= MII_CR_RESET;
4513 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4514 if (ret_val)
4515 return ret_val;
4516
4517 udelay(1);
4518 break;
4519 }
4520
4521 if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4522 e1000_phy_init_script(hw);
4523
4524 return E1000_SUCCESS;
4525 }
4526
4527 static int e1000_set_phy_type (struct e1000_hw *hw)
4528 {
4529 DEBUGFUNC ();
4530
4531 if (hw->mac_type == e1000_undefined)
4532 return -E1000_ERR_PHY_TYPE;
4533
4534 switch (hw->phy_id) {
4535 case M88E1000_E_PHY_ID:
4536 case M88E1000_I_PHY_ID:
4537 case M88E1011_I_PHY_ID:
4538 case M88E1111_I_PHY_ID:
4539 hw->phy_type = e1000_phy_m88;
4540 break;
4541 case IGP01E1000_I_PHY_ID:
4542 if (hw->mac_type == e1000_82541 ||
4543 hw->mac_type == e1000_82541_rev_2 ||
4544 hw->mac_type == e1000_82547 ||
4545 hw->mac_type == e1000_82547_rev_2) {
4546 hw->phy_type = e1000_phy_igp;
4547 hw->phy_type = e1000_phy_igp;
4548 break;
4549 }
4550 case IGP03E1000_E_PHY_ID:
4551 hw->phy_type = e1000_phy_igp_3;
4552 break;
4553 case IFE_E_PHY_ID:
4554 case IFE_PLUS_E_PHY_ID:
4555 case IFE_C_E_PHY_ID:
4556 hw->phy_type = e1000_phy_ife;
4557 break;
4558 case GG82563_E_PHY_ID:
4559 if (hw->mac_type == e1000_80003es2lan) {
4560 hw->phy_type = e1000_phy_gg82563;
4561 break;
4562 }
4563 /* Fall Through */
4564 default:
4565 /* Should never have loaded on this device */
4566 hw->phy_type = e1000_phy_undefined;
4567 return -E1000_ERR_PHY_TYPE;
4568 }
4569
4570 return E1000_SUCCESS;
4571 }
4572
4573 /******************************************************************************
4574 * Probes the expected PHY address for known PHY IDs
4575 *
4576 * hw - Struct containing variables accessed by shared code
4577 ******************************************************************************/
4578 static int32_t
4579 e1000_detect_gig_phy(struct e1000_hw *hw)
4580 {
4581 int32_t phy_init_status, ret_val;
4582 uint16_t phy_id_high, phy_id_low;
4583 boolean_t match = FALSE;
4584
4585 DEBUGFUNC();
4586
4587 /* The 82571 firmware may still be configuring the PHY. In this
4588 * case, we cannot access the PHY until the configuration is done. So
4589 * we explicitly set the PHY values. */
4590 if (hw->mac_type == e1000_82571 ||
4591 hw->mac_type == e1000_82572) {
4592 hw->phy_id = IGP01E1000_I_PHY_ID;
4593 hw->phy_type = e1000_phy_igp_2;
4594 return E1000_SUCCESS;
4595 }
4596
4597 /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4598 * work- around that forces PHY page 0 to be set or the reads fail.
4599 * The rest of the code in this routine uses e1000_read_phy_reg to
4600 * read the PHY ID. So for ESB-2 we need to have this set so our
4601 * reads won't fail. If the attached PHY is not a e1000_phy_gg82563,
4602 * the routines below will figure this out as well. */
4603 if (hw->mac_type == e1000_80003es2lan)
4604 hw->phy_type = e1000_phy_gg82563;
4605
4606 /* Read the PHY ID Registers to identify which PHY is onboard. */
4607 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4608 if (ret_val)
4609 return ret_val;
4610
4611 hw->phy_id = (uint32_t) (phy_id_high << 16);
4612 udelay(20);
4613 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4614 if (ret_val)
4615 return ret_val;
4616
4617 hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
4618 hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
4619
4620 switch (hw->mac_type) {
4621 case e1000_82543:
4622 if (hw->phy_id == M88E1000_E_PHY_ID)
4623 match = TRUE;
4624 break;
4625 case e1000_82544:
4626 if (hw->phy_id == M88E1000_I_PHY_ID)
4627 match = TRUE;
4628 break;
4629 case e1000_82540:
4630 case e1000_82545:
4631 case e1000_82545_rev_3:
4632 case e1000_82546:
4633 case e1000_82546_rev_3:
4634 if (hw->phy_id == M88E1011_I_PHY_ID)
4635 match = TRUE;
4636 break;
4637 case e1000_82541:
4638 case e1000_82541_rev_2:
4639 case e1000_82547:
4640 case e1000_82547_rev_2:
4641 if(hw->phy_id == IGP01E1000_I_PHY_ID)
4642 match = TRUE;
4643
4644 break;
4645 case e1000_82573:
4646 if (hw->phy_id == M88E1111_I_PHY_ID)
4647 match = TRUE;
4648 break;
4649 case e1000_80003es2lan:
4650 if (hw->phy_id == GG82563_E_PHY_ID)
4651 match = TRUE;
4652 break;
4653 case e1000_ich8lan:
4654 if (hw->phy_id == IGP03E1000_E_PHY_ID)
4655 match = TRUE;
4656 if (hw->phy_id == IFE_E_PHY_ID)
4657 match = TRUE;
4658 if (hw->phy_id == IFE_PLUS_E_PHY_ID)
4659 match = TRUE;
4660 if (hw->phy_id == IFE_C_E_PHY_ID)
4661 match = TRUE;
4662 break;
4663 default:
4664 DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4665 return -E1000_ERR_CONFIG;
4666 }
4667
4668 phy_init_status = e1000_set_phy_type(hw);
4669
4670 if ((match) && (phy_init_status == E1000_SUCCESS)) {
4671 DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4672 return 0;
4673 }
4674 DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4675 return -E1000_ERR_PHY;
4676 }
4677
4678 /*****************************************************************************
4679 * Set media type and TBI compatibility.
4680 *
4681 * hw - Struct containing variables accessed by shared code
4682 * **************************************************************************/
4683 void
4684 e1000_set_media_type(struct e1000_hw *hw)
4685 {
4686 uint32_t status;
4687
4688 DEBUGFUNC();
4689
4690 if (hw->mac_type != e1000_82543) {
4691 /* tbi_compatibility is only valid on 82543 */
4692 hw->tbi_compatibility_en = FALSE;
4693 }
4694
4695 switch (hw->device_id) {
4696 case E1000_DEV_ID_82545GM_SERDES:
4697 case E1000_DEV_ID_82546GB_SERDES:
4698 case E1000_DEV_ID_82571EB_SERDES:
4699 case E1000_DEV_ID_82571EB_SERDES_DUAL:
4700 case E1000_DEV_ID_82571EB_SERDES_QUAD:
4701 case E1000_DEV_ID_82572EI_SERDES:
4702 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
4703 hw->media_type = e1000_media_type_internal_serdes;
4704 break;
4705 default:
4706 switch (hw->mac_type) {
4707 case e1000_82542_rev2_0:
4708 case e1000_82542_rev2_1:
4709 hw->media_type = e1000_media_type_fiber;
4710 break;
4711 case e1000_ich8lan:
4712 case e1000_82573:
4713 /* The STATUS_TBIMODE bit is reserved or reused
4714 * for the this device.
4715 */
4716 hw->media_type = e1000_media_type_copper;
4717 break;
4718 default:
4719 status = E1000_READ_REG(hw, STATUS);
4720 if (status & E1000_STATUS_TBIMODE) {
4721 hw->media_type = e1000_media_type_fiber;
4722 /* tbi_compatibility not valid on fiber */
4723 hw->tbi_compatibility_en = FALSE;
4724 } else {
4725 hw->media_type = e1000_media_type_copper;
4726 }
4727 break;
4728 }
4729 }
4730 }
4731
4732 /**
4733 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4734 *
4735 * e1000_sw_init initializes the Adapter private data structure.
4736 * Fields are initialized based on PCI device information and
4737 * OS network device settings (MTU size).
4738 **/
4739
4740 static int
4741 e1000_sw_init(struct eth_device *nic, int cardnum)
4742 {
4743 struct e1000_hw *hw = (typeof(hw)) nic->priv;
4744 int result;
4745
4746 /* PCI config space info */
4747 pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
4748 pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
4749 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
4750 &hw->subsystem_vendor_id);
4751 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
4752
4753 pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
4754 pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
4755
4756 /* identify the MAC */
4757 result = e1000_set_mac_type(hw);
4758 if (result) {
4759 E1000_ERR("Unknown MAC Type\n");
4760 return result;
4761 }
4762
4763 switch (hw->mac_type) {
4764 default:
4765 break;
4766 case e1000_82541:
4767 case e1000_82547:
4768 case e1000_82541_rev_2:
4769 case e1000_82547_rev_2:
4770 hw->phy_init_script = 1;
4771 break;
4772 }
4773
4774 /* lan a vs. lan b settings */
4775 if (hw->mac_type == e1000_82546)
4776 /*this also works w/ multiple 82546 cards */
4777 /*but not if they're intermingled /w other e1000s */
4778 hw->lan_loc = (cardnum % 2) ? e1000_lan_b : e1000_lan_a;
4779 else
4780 hw->lan_loc = e1000_lan_a;
4781
4782 /* flow control settings */
4783 hw->fc_high_water = E1000_FC_HIGH_THRESH;
4784 hw->fc_low_water = E1000_FC_LOW_THRESH;
4785 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
4786 hw->fc_send_xon = 1;
4787
4788 /* Media type - copper or fiber */
4789 e1000_set_media_type(hw);
4790
4791 if (hw->mac_type >= e1000_82543) {
4792 uint32_t status = E1000_READ_REG(hw, STATUS);
4793
4794 if (status & E1000_STATUS_TBIMODE) {
4795 DEBUGOUT("fiber interface\n");
4796 hw->media_type = e1000_media_type_fiber;
4797 } else {
4798 DEBUGOUT("copper interface\n");
4799 hw->media_type = e1000_media_type_copper;
4800 }
4801 } else {
4802 hw->media_type = e1000_media_type_fiber;
4803 }
4804
4805 hw->tbi_compatibility_en = TRUE;
4806 hw->wait_autoneg_complete = TRUE;
4807 if (hw->mac_type < e1000_82543)
4808 hw->report_tx_early = 0;
4809 else
4810 hw->report_tx_early = 1;
4811
4812 return E1000_SUCCESS;
4813 }
4814
4815 void
4816 fill_rx(struct e1000_hw *hw)
4817 {
4818 struct e1000_rx_desc *rd;
4819
4820 rx_last = rx_tail;
4821 rd = rx_base + rx_tail;
4822 rx_tail = (rx_tail + 1) % 8;
4823 memset(rd, 0, 16);
4824 rd->buffer_addr = cpu_to_le64((u32) & packet);
4825 E1000_WRITE_REG(hw, RDT, rx_tail);
4826 }
4827
4828 /**
4829 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
4830 * @adapter: board private structure
4831 *
4832 * Configure the Tx unit of the MAC after a reset.
4833 **/
4834
4835 static void
4836 e1000_configure_tx(struct e1000_hw *hw)
4837 {
4838 unsigned long ptr;
4839 unsigned long tctl;
4840 unsigned long tipg, tarc;
4841 uint32_t ipgr1, ipgr2;
4842
4843 ptr = (u32) tx_pool;
4844 if (ptr & 0xf)
4845 ptr = (ptr + 0x10) & (~0xf);
4846
4847 tx_base = (typeof(tx_base)) ptr;
4848
4849 E1000_WRITE_REG(hw, TDBAL, (u32) tx_base);
4850 E1000_WRITE_REG(hw, TDBAH, 0);
4851
4852 E1000_WRITE_REG(hw, TDLEN, 128);
4853
4854 /* Setup the HW Tx Head and Tail descriptor pointers */
4855 E1000_WRITE_REG(hw, TDH, 0);
4856 E1000_WRITE_REG(hw, TDT, 0);
4857 tx_tail = 0;
4858
4859 /* Set the default values for the Tx Inter Packet Gap timer */
4860 if (hw->mac_type <= e1000_82547_rev_2 &&
4861 (hw->media_type == e1000_media_type_fiber ||
4862 hw->media_type == e1000_media_type_internal_serdes))
4863 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
4864 else
4865 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
4866
4867 /* Set the default values for the Tx Inter Packet Gap timer */
4868 switch (hw->mac_type) {
4869 case e1000_82542_rev2_0:
4870 case e1000_82542_rev2_1:
4871 tipg = DEFAULT_82542_TIPG_IPGT;
4872 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
4873 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
4874 break;
4875 case e1000_80003es2lan:
4876 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4877 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
4878 break;
4879 default:
4880 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4881 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
4882 break;
4883 }
4884 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
4885 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
4886 E1000_WRITE_REG(hw, TIPG, tipg);
4887 /* Program the Transmit Control Register */
4888 tctl = E1000_READ_REG(hw, TCTL);
4889 tctl &= ~E1000_TCTL_CT;
4890 tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
4891 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4892
4893 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
4894 tarc = E1000_READ_REG(hw, TARC0);
4895 /* set the speed mode bit, we'll clear it if we're not at
4896 * gigabit link later */
4897 /* git bit can be set to 1*/
4898 } else if (hw->mac_type == e1000_80003es2lan) {
4899 tarc = E1000_READ_REG(hw, TARC0);
4900 tarc |= 1;
4901 E1000_WRITE_REG(hw, TARC0, tarc);
4902 tarc = E1000_READ_REG(hw, TARC1);
4903 tarc |= 1;
4904 E1000_WRITE_REG(hw, TARC1, tarc);
4905 }
4906
4907
4908 e1000_config_collision_dist(hw);
4909 /* Setup Transmit Descriptor Settings for eop descriptor */
4910 hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
4911
4912 /* Need to set up RS bit */
4913 if (hw->mac_type < e1000_82543)
4914 hw->txd_cmd |= E1000_TXD_CMD_RPS;
4915 else
4916 hw->txd_cmd |= E1000_TXD_CMD_RS;
4917 E1000_WRITE_REG(hw, TCTL, tctl);
4918 }
4919
4920 /**
4921 * e1000_setup_rctl - configure the receive control register
4922 * @adapter: Board private structure
4923 **/
4924 static void
4925 e1000_setup_rctl(struct e1000_hw *hw)
4926 {
4927 uint32_t rctl;
4928
4929 rctl = E1000_READ_REG(hw, RCTL);
4930
4931 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4932
4933 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
4934 | E1000_RCTL_RDMTS_HALF; /* |
4935 (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
4936
4937 if (hw->tbi_compatibility_on == 1)
4938 rctl |= E1000_RCTL_SBP;
4939 else
4940 rctl &= ~E1000_RCTL_SBP;
4941
4942 rctl &= ~(E1000_RCTL_SZ_4096);
4943 rctl |= E1000_RCTL_SZ_2048;
4944 rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
4945 E1000_WRITE_REG(hw, RCTL, rctl);
4946 }
4947
4948 /**
4949 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
4950 * @adapter: board private structure
4951 *
4952 * Configure the Rx unit of the MAC after a reset.
4953 **/
4954 static void
4955 e1000_configure_rx(struct e1000_hw *hw)
4956 {
4957 unsigned long ptr;
4958 unsigned long rctl, ctrl_ext;
4959 rx_tail = 0;
4960 /* make sure receives are disabled while setting up the descriptors */
4961 rctl = E1000_READ_REG(hw, RCTL);
4962 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
4963 if (hw->mac_type >= e1000_82540) {
4964 /* Set the interrupt throttling rate. Value is calculated
4965 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
4966 #define MAX_INTS_PER_SEC 8000
4967 #define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256)
4968 E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
4969 }
4970
4971 if (hw->mac_type >= e1000_82571) {
4972 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4973 /* Reset delay timers after every interrupt */
4974 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
4975 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4976 E1000_WRITE_FLUSH(hw);
4977 }
4978 /* Setup the Base and Length of the Rx Descriptor Ring */
4979 ptr = (u32) rx_pool;
4980 if (ptr & 0xf)
4981 ptr = (ptr + 0x10) & (~0xf);
4982 rx_base = (typeof(rx_base)) ptr;
4983 E1000_WRITE_REG(hw, RDBAL, (u32) rx_base);
4984 E1000_WRITE_REG(hw, RDBAH, 0);
4985
4986 E1000_WRITE_REG(hw, RDLEN, 128);
4987
4988 /* Setup the HW Rx Head and Tail Descriptor Pointers */
4989 E1000_WRITE_REG(hw, RDH, 0);
4990 E1000_WRITE_REG(hw, RDT, 0);
4991 /* Enable Receives */
4992
4993 E1000_WRITE_REG(hw, RCTL, rctl);
4994 fill_rx(hw);
4995 }
4996
4997 /**************************************************************************
4998 POLL - Wait for a frame
4999 ***************************************************************************/
5000 static int
5001 e1000_poll(struct eth_device *nic)
5002 {
5003 struct e1000_hw *hw = nic->priv;
5004 struct e1000_rx_desc *rd;
5005 /* return true if there's an ethernet packet ready to read */
5006 rd = rx_base + rx_last;
5007 if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
5008 return 0;
5009 /*DEBUGOUT("recv: packet len=%d \n", rd->length); */
5010 NetReceive((uchar *)packet, le32_to_cpu(rd->length));
5011 fill_rx(hw);
5012 return 1;
5013 }
5014
5015 /**************************************************************************
5016 TRANSMIT - Transmit a frame
5017 ***************************************************************************/
5018 static int
5019 e1000_transmit(struct eth_device *nic, volatile void *packet, int length)
5020 {
5021 struct e1000_hw *hw = nic->priv;
5022 struct e1000_tx_desc *txp;
5023 int i = 0;
5024
5025 txp = tx_base + tx_tail;
5026 tx_tail = (tx_tail + 1) % 8;
5027
5028 txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, packet));
5029 txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
5030 txp->upper.data = 0;
5031 E1000_WRITE_REG(hw, TDT, tx_tail);
5032
5033 E1000_WRITE_FLUSH(hw);
5034 while (!(le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)) {
5035 if (i++ > TOUT_LOOP) {
5036 DEBUGOUT("e1000: tx timeout\n");
5037 return 0;
5038 }
5039 udelay(10); /* give the nic a chance to write to the register */
5040 }
5041 return 1;
5042 }
5043
5044 /*reset function*/
5045 static inline int
5046 e1000_reset(struct eth_device *nic)
5047 {
5048 struct e1000_hw *hw = nic->priv;
5049
5050 e1000_reset_hw(hw);
5051 if (hw->mac_type >= e1000_82544) {
5052 E1000_WRITE_REG(hw, WUC, 0);
5053 }
5054 return e1000_init_hw(nic);
5055 }
5056
5057 /**************************************************************************
5058 DISABLE - Turn off ethernet interface
5059 ***************************************************************************/
5060 static void
5061 e1000_disable(struct eth_device *nic)
5062 {
5063 struct e1000_hw *hw = nic->priv;
5064
5065 /* Turn off the ethernet interface */
5066 E1000_WRITE_REG(hw, RCTL, 0);
5067 E1000_WRITE_REG(hw, TCTL, 0);
5068
5069 /* Clear the transmit ring */
5070 E1000_WRITE_REG(hw, TDH, 0);
5071 E1000_WRITE_REG(hw, TDT, 0);
5072
5073 /* Clear the receive ring */
5074 E1000_WRITE_REG(hw, RDH, 0);
5075 E1000_WRITE_REG(hw, RDT, 0);
5076
5077 /* put the card in its initial state */
5078 #if 0
5079 E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
5080 #endif
5081 mdelay(10);
5082
5083 }
5084
5085 /**************************************************************************
5086 INIT - set up ethernet interface(s)
5087 ***************************************************************************/
5088 static int
5089 e1000_init(struct eth_device *nic, bd_t * bis)
5090 {
5091 struct e1000_hw *hw = nic->priv;
5092 int ret_val = 0;
5093
5094 ret_val = e1000_reset(nic);
5095 if (ret_val < 0) {
5096 if ((ret_val == -E1000_ERR_NOLINK) ||
5097 (ret_val == -E1000_ERR_TIMEOUT)) {
5098 E1000_ERR("Valid Link not detected\n");
5099 } else {
5100 E1000_ERR("Hardware Initialization Failed\n");
5101 }
5102 return 0;
5103 }
5104 e1000_configure_tx(hw);
5105 e1000_setup_rctl(hw);
5106 e1000_configure_rx(hw);
5107 return 1;
5108 }
5109
5110 /******************************************************************************
5111 * Gets the current PCI bus type of hardware
5112 *
5113 * hw - Struct containing variables accessed by shared code
5114 *****************************************************************************/
5115 void e1000_get_bus_type(struct e1000_hw *hw)
5116 {
5117 uint32_t status;
5118
5119 switch (hw->mac_type) {
5120 case e1000_82542_rev2_0:
5121 case e1000_82542_rev2_1:
5122 hw->bus_type = e1000_bus_type_pci;
5123 break;
5124 case e1000_82571:
5125 case e1000_82572:
5126 case e1000_82573:
5127 case e1000_80003es2lan:
5128 hw->bus_type = e1000_bus_type_pci_express;
5129 break;
5130 case e1000_ich8lan:
5131 hw->bus_type = e1000_bus_type_pci_express;
5132 break;
5133 default:
5134 status = E1000_READ_REG(hw, STATUS);
5135 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5136 e1000_bus_type_pcix : e1000_bus_type_pci;
5137 break;
5138 }
5139 }
5140
5141 /**************************************************************************
5142 PROBE - Look for an adapter, this routine's visible to the outside
5143 You should omit the last argument struct pci_device * for a non-PCI NIC
5144 ***************************************************************************/
5145 int
5146 e1000_initialize(bd_t * bis)
5147 {
5148 pci_dev_t devno;
5149 int card_number = 0;
5150 struct eth_device *nic = NULL;
5151 struct e1000_hw *hw = NULL;
5152 u32 iobase;
5153 int idx = 0;
5154 u32 PciCommandWord;
5155
5156 DEBUGFUNC();
5157
5158 while (1) { /* Find PCI device(s) */
5159 if ((devno = pci_find_devices(supported, idx++)) < 0) {
5160 break;
5161 }
5162
5163 pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &iobase);
5164 iobase &= ~0xf; /* Mask the bits that say "this is an io addr" */
5165 DEBUGOUT("e1000#%d: iobase 0x%08x\n", card_number, iobase);
5166
5167 pci_write_config_dword(devno, PCI_COMMAND,
5168 PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
5169 /* Check if I/O accesses and Bus Mastering are enabled. */
5170 pci_read_config_dword(devno, PCI_COMMAND, &PciCommandWord);
5171 if (!(PciCommandWord & PCI_COMMAND_MEMORY)) {
5172 printf("Error: Can not enable MEM access.\n");
5173 continue;
5174 } else if (!(PciCommandWord & PCI_COMMAND_MASTER)) {
5175 printf("Error: Can not enable Bus Mastering.\n");
5176 continue;
5177 }
5178
5179 nic = (struct eth_device *) malloc(sizeof (*nic));
5180 if (!nic) {
5181 printf("Error: e1000 - Can not alloc memory\n");
5182 return 0;
5183 }
5184
5185 hw = (struct e1000_hw *) malloc(sizeof (*hw));
5186 if (!hw) {
5187 free(nic);
5188 printf("Error: e1000 - Can not alloc memory\n");
5189 return 0;
5190 }
5191
5192 memset(nic, 0, sizeof(*dev));
5193 memset(hw, 0, sizeof(*hw));
5194
5195 hw->pdev = devno;
5196 nic->priv = hw;
5197
5198 sprintf(nic->name, "e1000#%d", card_number);
5199
5200 /* Are these variables needed? */
5201 hw->fc = e1000_fc_default;
5202 hw->original_fc = e1000_fc_default;
5203 hw->autoneg_failed = 0;
5204 hw->autoneg = 1;
5205 hw->get_link_status = TRUE;
5206 hw->hw_addr =
5207 pci_map_bar(devno, PCI_BASE_ADDRESS_0, PCI_REGION_MEM);
5208 hw->mac_type = e1000_undefined;
5209
5210 /* MAC and Phy settings */
5211 if (e1000_sw_init(nic, card_number) < 0) {
5212 free(hw);
5213 free(nic);
5214 return 0;
5215 }
5216 if (e1000_check_phy_reset_block(hw))
5217 printf("phy reset block error \n");
5218 e1000_reset_hw(hw);
5219 #if !(defined(CONFIG_AP1000) || defined(CONFIG_MVBC_1G))
5220 if (e1000_init_eeprom_params(hw)) {
5221 printf("The EEPROM Checksum Is Not Valid\n");
5222 free(hw);
5223 free(nic);
5224 return 0;
5225 }
5226 if (e1000_validate_eeprom_checksum(nic) < 0) {
5227 printf("The EEPROM Checksum Is Not Valid\n");
5228 free(hw);
5229 free(nic);
5230 return 0;
5231 }
5232 #endif
5233 e1000_read_mac_addr(nic);
5234
5235 /* get the bus type information */
5236 e1000_get_bus_type(hw);
5237
5238 printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n",
5239 nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2],
5240 nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]);
5241
5242 nic->init = e1000_init;
5243 nic->recv = e1000_poll;
5244 nic->send = e1000_transmit;
5245 nic->halt = e1000_disable;
5246
5247 eth_register(nic);
5248
5249 card_number++;
5250 }
5251 return card_number;
5252 }