]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/net/mvpp2.c
net: mvpp2: Add RX and TX FIFO configuration for PPv2.2
[people/ms/u-boot.git] / drivers / net / mvpp2.c
1 /*
2 * Driver for Marvell PPv2 network controller for Armada 375 SoC.
3 *
4 * Copyright (C) 2014 Marvell
5 *
6 * Marcin Wojtas <mw@semihalf.com>
7 *
8 * U-Boot version:
9 * Copyright (C) 2016-2017 Stefan Roese <sr@denx.de>
10 *
11 * This file is licensed under the terms of the GNU General Public
12 * License version 2. This program is licensed "as is" without any
13 * warranty of any kind, whether express or implied.
14 */
15
16 #include <common.h>
17 #include <dm.h>
18 #include <dm/device-internal.h>
19 #include <dm/lists.h>
20 #include <net.h>
21 #include <netdev.h>
22 #include <config.h>
23 #include <malloc.h>
24 #include <asm/io.h>
25 #include <linux/errno.h>
26 #include <phy.h>
27 #include <miiphy.h>
28 #include <watchdog.h>
29 #include <asm/arch/cpu.h>
30 #include <asm/arch/soc.h>
31 #include <linux/compat.h>
32 #include <linux/mbus.h>
33
34 DECLARE_GLOBAL_DATA_PTR;
35
36 /* Some linux -> U-Boot compatibility stuff */
37 #define netdev_err(dev, fmt, args...) \
38 printf(fmt, ##args)
39 #define netdev_warn(dev, fmt, args...) \
40 printf(fmt, ##args)
41 #define netdev_info(dev, fmt, args...) \
42 printf(fmt, ##args)
43 #define netdev_dbg(dev, fmt, args...) \
44 printf(fmt, ##args)
45
46 #define ETH_ALEN 6 /* Octets in one ethernet addr */
47
48 #define __verify_pcpu_ptr(ptr) \
49 do { \
50 const void __percpu *__vpp_verify = (typeof((ptr) + 0))NULL; \
51 (void)__vpp_verify; \
52 } while (0)
53
54 #define VERIFY_PERCPU_PTR(__p) \
55 ({ \
56 __verify_pcpu_ptr(__p); \
57 (typeof(*(__p)) __kernel __force *)(__p); \
58 })
59
60 #define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR(ptr); })
61 #define smp_processor_id() 0
62 #define num_present_cpus() 1
63 #define for_each_present_cpu(cpu) \
64 for ((cpu) = 0; (cpu) < 1; (cpu)++)
65
66 #define NET_SKB_PAD max(32, MVPP2_CPU_D_CACHE_LINE_SIZE)
67
68 #define CONFIG_NR_CPUS 1
69 #define ETH_HLEN ETHER_HDR_SIZE /* Total octets in header */
70
71 /* 2(HW hdr) 14(MAC hdr) 4(CRC) 32(extra for cache prefetch) */
72 #define WRAP (2 + ETH_HLEN + 4 + 32)
73 #define MTU 1500
74 #define RX_BUFFER_SIZE (ALIGN(MTU + WRAP, ARCH_DMA_MINALIGN))
75
76 #define MVPP2_SMI_TIMEOUT 10000
77
78 /* RX Fifo Registers */
79 #define MVPP2_RX_DATA_FIFO_SIZE_REG(port) (0x00 + 4 * (port))
80 #define MVPP2_RX_ATTR_FIFO_SIZE_REG(port) (0x20 + 4 * (port))
81 #define MVPP2_RX_MIN_PKT_SIZE_REG 0x60
82 #define MVPP2_RX_FIFO_INIT_REG 0x64
83
84 /* RX DMA Top Registers */
85 #define MVPP2_RX_CTRL_REG(port) (0x140 + 4 * (port))
86 #define MVPP2_RX_LOW_LATENCY_PKT_SIZE(s) (((s) & 0xfff) << 16)
87 #define MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK BIT(31)
88 #define MVPP2_POOL_BUF_SIZE_REG(pool) (0x180 + 4 * (pool))
89 #define MVPP2_POOL_BUF_SIZE_OFFSET 5
90 #define MVPP2_RXQ_CONFIG_REG(rxq) (0x800 + 4 * (rxq))
91 #define MVPP2_SNOOP_PKT_SIZE_MASK 0x1ff
92 #define MVPP2_SNOOP_BUF_HDR_MASK BIT(9)
93 #define MVPP2_RXQ_POOL_SHORT_OFFS 20
94 #define MVPP21_RXQ_POOL_SHORT_MASK 0x700000
95 #define MVPP22_RXQ_POOL_SHORT_MASK 0xf00000
96 #define MVPP2_RXQ_POOL_LONG_OFFS 24
97 #define MVPP21_RXQ_POOL_LONG_MASK 0x7000000
98 #define MVPP22_RXQ_POOL_LONG_MASK 0xf000000
99 #define MVPP2_RXQ_PACKET_OFFSET_OFFS 28
100 #define MVPP2_RXQ_PACKET_OFFSET_MASK 0x70000000
101 #define MVPP2_RXQ_DISABLE_MASK BIT(31)
102
103 /* Parser Registers */
104 #define MVPP2_PRS_INIT_LOOKUP_REG 0x1000
105 #define MVPP2_PRS_PORT_LU_MAX 0xf
106 #define MVPP2_PRS_PORT_LU_MASK(port) (0xff << ((port) * 4))
107 #define MVPP2_PRS_PORT_LU_VAL(port, val) ((val) << ((port) * 4))
108 #define MVPP2_PRS_INIT_OFFS_REG(port) (0x1004 + ((port) & 4))
109 #define MVPP2_PRS_INIT_OFF_MASK(port) (0x3f << (((port) % 4) * 8))
110 #define MVPP2_PRS_INIT_OFF_VAL(port, val) ((val) << (((port) % 4) * 8))
111 #define MVPP2_PRS_MAX_LOOP_REG(port) (0x100c + ((port) & 4))
112 #define MVPP2_PRS_MAX_LOOP_MASK(port) (0xff << (((port) % 4) * 8))
113 #define MVPP2_PRS_MAX_LOOP_VAL(port, val) ((val) << (((port) % 4) * 8))
114 #define MVPP2_PRS_TCAM_IDX_REG 0x1100
115 #define MVPP2_PRS_TCAM_DATA_REG(idx) (0x1104 + (idx) * 4)
116 #define MVPP2_PRS_TCAM_INV_MASK BIT(31)
117 #define MVPP2_PRS_SRAM_IDX_REG 0x1200
118 #define MVPP2_PRS_SRAM_DATA_REG(idx) (0x1204 + (idx) * 4)
119 #define MVPP2_PRS_TCAM_CTRL_REG 0x1230
120 #define MVPP2_PRS_TCAM_EN_MASK BIT(0)
121
122 /* Classifier Registers */
123 #define MVPP2_CLS_MODE_REG 0x1800
124 #define MVPP2_CLS_MODE_ACTIVE_MASK BIT(0)
125 #define MVPP2_CLS_PORT_WAY_REG 0x1810
126 #define MVPP2_CLS_PORT_WAY_MASK(port) (1 << (port))
127 #define MVPP2_CLS_LKP_INDEX_REG 0x1814
128 #define MVPP2_CLS_LKP_INDEX_WAY_OFFS 6
129 #define MVPP2_CLS_LKP_TBL_REG 0x1818
130 #define MVPP2_CLS_LKP_TBL_RXQ_MASK 0xff
131 #define MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK BIT(25)
132 #define MVPP2_CLS_FLOW_INDEX_REG 0x1820
133 #define MVPP2_CLS_FLOW_TBL0_REG 0x1824
134 #define MVPP2_CLS_FLOW_TBL1_REG 0x1828
135 #define MVPP2_CLS_FLOW_TBL2_REG 0x182c
136 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port) (0x1980 + ((port) * 4))
137 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS 3
138 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK 0x7
139 #define MVPP2_CLS_SWFWD_P2HQ_REG(port) (0x19b0 + ((port) * 4))
140 #define MVPP2_CLS_SWFWD_PCTRL_REG 0x19d0
141 #define MVPP2_CLS_SWFWD_PCTRL_MASK(port) (1 << (port))
142
143 /* Descriptor Manager Top Registers */
144 #define MVPP2_RXQ_NUM_REG 0x2040
145 #define MVPP2_RXQ_DESC_ADDR_REG 0x2044
146 #define MVPP22_DESC_ADDR_OFFS 8
147 #define MVPP2_RXQ_DESC_SIZE_REG 0x2048
148 #define MVPP2_RXQ_DESC_SIZE_MASK 0x3ff0
149 #define MVPP2_RXQ_STATUS_UPDATE_REG(rxq) (0x3000 + 4 * (rxq))
150 #define MVPP2_RXQ_NUM_PROCESSED_OFFSET 0
151 #define MVPP2_RXQ_NUM_NEW_OFFSET 16
152 #define MVPP2_RXQ_STATUS_REG(rxq) (0x3400 + 4 * (rxq))
153 #define MVPP2_RXQ_OCCUPIED_MASK 0x3fff
154 #define MVPP2_RXQ_NON_OCCUPIED_OFFSET 16
155 #define MVPP2_RXQ_NON_OCCUPIED_MASK 0x3fff0000
156 #define MVPP2_RXQ_THRESH_REG 0x204c
157 #define MVPP2_OCCUPIED_THRESH_OFFSET 0
158 #define MVPP2_OCCUPIED_THRESH_MASK 0x3fff
159 #define MVPP2_RXQ_INDEX_REG 0x2050
160 #define MVPP2_TXQ_NUM_REG 0x2080
161 #define MVPP2_TXQ_DESC_ADDR_REG 0x2084
162 #define MVPP2_TXQ_DESC_SIZE_REG 0x2088
163 #define MVPP2_TXQ_DESC_SIZE_MASK 0x3ff0
164 #define MVPP2_AGGR_TXQ_UPDATE_REG 0x2090
165 #define MVPP2_TXQ_THRESH_REG 0x2094
166 #define MVPP2_TRANSMITTED_THRESH_OFFSET 16
167 #define MVPP2_TRANSMITTED_THRESH_MASK 0x3fff0000
168 #define MVPP2_TXQ_INDEX_REG 0x2098
169 #define MVPP2_TXQ_PREF_BUF_REG 0x209c
170 #define MVPP2_PREF_BUF_PTR(desc) ((desc) & 0xfff)
171 #define MVPP2_PREF_BUF_SIZE_4 (BIT(12) | BIT(13))
172 #define MVPP2_PREF_BUF_SIZE_16 (BIT(12) | BIT(14))
173 #define MVPP2_PREF_BUF_THRESH(val) ((val) << 17)
174 #define MVPP2_TXQ_DRAIN_EN_MASK BIT(31)
175 #define MVPP2_TXQ_PENDING_REG 0x20a0
176 #define MVPP2_TXQ_PENDING_MASK 0x3fff
177 #define MVPP2_TXQ_INT_STATUS_REG 0x20a4
178 #define MVPP2_TXQ_SENT_REG(txq) (0x3c00 + 4 * (txq))
179 #define MVPP2_TRANSMITTED_COUNT_OFFSET 16
180 #define MVPP2_TRANSMITTED_COUNT_MASK 0x3fff0000
181 #define MVPP2_TXQ_RSVD_REQ_REG 0x20b0
182 #define MVPP2_TXQ_RSVD_REQ_Q_OFFSET 16
183 #define MVPP2_TXQ_RSVD_RSLT_REG 0x20b4
184 #define MVPP2_TXQ_RSVD_RSLT_MASK 0x3fff
185 #define MVPP2_TXQ_RSVD_CLR_REG 0x20b8
186 #define MVPP2_TXQ_RSVD_CLR_OFFSET 16
187 #define MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu) (0x2100 + 4 * (cpu))
188 #define MVPP22_AGGR_TXQ_DESC_ADDR_OFFS 8
189 #define MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu) (0x2140 + 4 * (cpu))
190 #define MVPP2_AGGR_TXQ_DESC_SIZE_MASK 0x3ff0
191 #define MVPP2_AGGR_TXQ_STATUS_REG(cpu) (0x2180 + 4 * (cpu))
192 #define MVPP2_AGGR_TXQ_PENDING_MASK 0x3fff
193 #define MVPP2_AGGR_TXQ_INDEX_REG(cpu) (0x21c0 + 4 * (cpu))
194
195 /* MBUS bridge registers */
196 #define MVPP2_WIN_BASE(w) (0x4000 + ((w) << 2))
197 #define MVPP2_WIN_SIZE(w) (0x4020 + ((w) << 2))
198 #define MVPP2_WIN_REMAP(w) (0x4040 + ((w) << 2))
199 #define MVPP2_BASE_ADDR_ENABLE 0x4060
200
201 /* AXI Bridge Registers */
202 #define MVPP22_AXI_BM_WR_ATTR_REG 0x4100
203 #define MVPP22_AXI_BM_RD_ATTR_REG 0x4104
204 #define MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG 0x4110
205 #define MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG 0x4114
206 #define MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG 0x4118
207 #define MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG 0x411c
208 #define MVPP22_AXI_RX_DATA_WR_ATTR_REG 0x4120
209 #define MVPP22_AXI_TX_DATA_RD_ATTR_REG 0x4130
210 #define MVPP22_AXI_RD_NORMAL_CODE_REG 0x4150
211 #define MVPP22_AXI_RD_SNOOP_CODE_REG 0x4154
212 #define MVPP22_AXI_WR_NORMAL_CODE_REG 0x4160
213 #define MVPP22_AXI_WR_SNOOP_CODE_REG 0x4164
214
215 /* Values for AXI Bridge registers */
216 #define MVPP22_AXI_ATTR_CACHE_OFFS 0
217 #define MVPP22_AXI_ATTR_DOMAIN_OFFS 12
218
219 #define MVPP22_AXI_CODE_CACHE_OFFS 0
220 #define MVPP22_AXI_CODE_DOMAIN_OFFS 4
221
222 #define MVPP22_AXI_CODE_CACHE_NON_CACHE 0x3
223 #define MVPP22_AXI_CODE_CACHE_WR_CACHE 0x7
224 #define MVPP22_AXI_CODE_CACHE_RD_CACHE 0xb
225
226 #define MVPP22_AXI_CODE_DOMAIN_OUTER_DOM 2
227 #define MVPP22_AXI_CODE_DOMAIN_SYSTEM 3
228
229 /* Interrupt Cause and Mask registers */
230 #define MVPP2_ISR_RX_THRESHOLD_REG(rxq) (0x5200 + 4 * (rxq))
231 #define MVPP21_ISR_RXQ_GROUP_REG(rxq) (0x5400 + 4 * (rxq))
232
233 #define MVPP22_ISR_RXQ_GROUP_INDEX_REG 0x5400
234 #define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf
235 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK 0x380
236 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET 7
237
238 #define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf
239 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK 0x380
240
241 #define MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG 0x5404
242 #define MVPP22_ISR_RXQ_SUB_GROUP_STARTQ_MASK 0x1f
243 #define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_MASK 0xf00
244 #define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET 8
245
246 #define MVPP2_ISR_ENABLE_REG(port) (0x5420 + 4 * (port))
247 #define MVPP2_ISR_ENABLE_INTERRUPT(mask) ((mask) & 0xffff)
248 #define MVPP2_ISR_DISABLE_INTERRUPT(mask) (((mask) << 16) & 0xffff0000)
249 #define MVPP2_ISR_RX_TX_CAUSE_REG(port) (0x5480 + 4 * (port))
250 #define MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff
251 #define MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK 0xff0000
252 #define MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK BIT(24)
253 #define MVPP2_CAUSE_FCS_ERR_MASK BIT(25)
254 #define MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK BIT(26)
255 #define MVPP2_CAUSE_TX_EXCEPTION_SUM_MASK BIT(29)
256 #define MVPP2_CAUSE_RX_EXCEPTION_SUM_MASK BIT(30)
257 #define MVPP2_CAUSE_MISC_SUM_MASK BIT(31)
258 #define MVPP2_ISR_RX_TX_MASK_REG(port) (0x54a0 + 4 * (port))
259 #define MVPP2_ISR_PON_RX_TX_MASK_REG 0x54bc
260 #define MVPP2_PON_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff
261 #define MVPP2_PON_CAUSE_TXP_OCCUP_DESC_ALL_MASK 0x3fc00000
262 #define MVPP2_PON_CAUSE_MISC_SUM_MASK BIT(31)
263 #define MVPP2_ISR_MISC_CAUSE_REG 0x55b0
264
265 /* Buffer Manager registers */
266 #define MVPP2_BM_POOL_BASE_REG(pool) (0x6000 + ((pool) * 4))
267 #define MVPP2_BM_POOL_BASE_ADDR_MASK 0xfffff80
268 #define MVPP2_BM_POOL_SIZE_REG(pool) (0x6040 + ((pool) * 4))
269 #define MVPP2_BM_POOL_SIZE_MASK 0xfff0
270 #define MVPP2_BM_POOL_READ_PTR_REG(pool) (0x6080 + ((pool) * 4))
271 #define MVPP2_BM_POOL_GET_READ_PTR_MASK 0xfff0
272 #define MVPP2_BM_POOL_PTRS_NUM_REG(pool) (0x60c0 + ((pool) * 4))
273 #define MVPP2_BM_POOL_PTRS_NUM_MASK 0xfff0
274 #define MVPP2_BM_BPPI_READ_PTR_REG(pool) (0x6100 + ((pool) * 4))
275 #define MVPP2_BM_BPPI_PTRS_NUM_REG(pool) (0x6140 + ((pool) * 4))
276 #define MVPP2_BM_BPPI_PTR_NUM_MASK 0x7ff
277 #define MVPP2_BM_BPPI_PREFETCH_FULL_MASK BIT(16)
278 #define MVPP2_BM_POOL_CTRL_REG(pool) (0x6200 + ((pool) * 4))
279 #define MVPP2_BM_START_MASK BIT(0)
280 #define MVPP2_BM_STOP_MASK BIT(1)
281 #define MVPP2_BM_STATE_MASK BIT(4)
282 #define MVPP2_BM_LOW_THRESH_OFFS 8
283 #define MVPP2_BM_LOW_THRESH_MASK 0x7f00
284 #define MVPP2_BM_LOW_THRESH_VALUE(val) ((val) << \
285 MVPP2_BM_LOW_THRESH_OFFS)
286 #define MVPP2_BM_HIGH_THRESH_OFFS 16
287 #define MVPP2_BM_HIGH_THRESH_MASK 0x7f0000
288 #define MVPP2_BM_HIGH_THRESH_VALUE(val) ((val) << \
289 MVPP2_BM_HIGH_THRESH_OFFS)
290 #define MVPP2_BM_INTR_CAUSE_REG(pool) (0x6240 + ((pool) * 4))
291 #define MVPP2_BM_RELEASED_DELAY_MASK BIT(0)
292 #define MVPP2_BM_ALLOC_FAILED_MASK BIT(1)
293 #define MVPP2_BM_BPPE_EMPTY_MASK BIT(2)
294 #define MVPP2_BM_BPPE_FULL_MASK BIT(3)
295 #define MVPP2_BM_AVAILABLE_BP_LOW_MASK BIT(4)
296 #define MVPP2_BM_INTR_MASK_REG(pool) (0x6280 + ((pool) * 4))
297 #define MVPP2_BM_PHY_ALLOC_REG(pool) (0x6400 + ((pool) * 4))
298 #define MVPP2_BM_PHY_ALLOC_GRNTD_MASK BIT(0)
299 #define MVPP2_BM_VIRT_ALLOC_REG 0x6440
300 #define MVPP2_BM_ADDR_HIGH_ALLOC 0x6444
301 #define MVPP2_BM_ADDR_HIGH_PHYS_MASK 0xff
302 #define MVPP2_BM_ADDR_HIGH_VIRT_MASK 0xff00
303 #define MVPP2_BM_ADDR_HIGH_VIRT_SHIFT 8
304 #define MVPP2_BM_PHY_RLS_REG(pool) (0x6480 + ((pool) * 4))
305 #define MVPP2_BM_PHY_RLS_MC_BUFF_MASK BIT(0)
306 #define MVPP2_BM_PHY_RLS_PRIO_EN_MASK BIT(1)
307 #define MVPP2_BM_PHY_RLS_GRNTD_MASK BIT(2)
308 #define MVPP2_BM_VIRT_RLS_REG 0x64c0
309 #define MVPP21_BM_MC_RLS_REG 0x64c4
310 #define MVPP2_BM_MC_ID_MASK 0xfff
311 #define MVPP2_BM_FORCE_RELEASE_MASK BIT(12)
312 #define MVPP22_BM_ADDR_HIGH_RLS_REG 0x64c4
313 #define MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK 0xff
314 #define MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK 0xff00
315 #define MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT 8
316 #define MVPP22_BM_MC_RLS_REG 0x64d4
317
318 /* TX Scheduler registers */
319 #define MVPP2_TXP_SCHED_PORT_INDEX_REG 0x8000
320 #define MVPP2_TXP_SCHED_Q_CMD_REG 0x8004
321 #define MVPP2_TXP_SCHED_ENQ_MASK 0xff
322 #define MVPP2_TXP_SCHED_DISQ_OFFSET 8
323 #define MVPP2_TXP_SCHED_CMD_1_REG 0x8010
324 #define MVPP2_TXP_SCHED_PERIOD_REG 0x8018
325 #define MVPP2_TXP_SCHED_MTU_REG 0x801c
326 #define MVPP2_TXP_MTU_MAX 0x7FFFF
327 #define MVPP2_TXP_SCHED_REFILL_REG 0x8020
328 #define MVPP2_TXP_REFILL_TOKENS_ALL_MASK 0x7ffff
329 #define MVPP2_TXP_REFILL_PERIOD_ALL_MASK 0x3ff00000
330 #define MVPP2_TXP_REFILL_PERIOD_MASK(v) ((v) << 20)
331 #define MVPP2_TXP_SCHED_TOKEN_SIZE_REG 0x8024
332 #define MVPP2_TXP_TOKEN_SIZE_MAX 0xffffffff
333 #define MVPP2_TXQ_SCHED_REFILL_REG(q) (0x8040 + ((q) << 2))
334 #define MVPP2_TXQ_REFILL_TOKENS_ALL_MASK 0x7ffff
335 #define MVPP2_TXQ_REFILL_PERIOD_ALL_MASK 0x3ff00000
336 #define MVPP2_TXQ_REFILL_PERIOD_MASK(v) ((v) << 20)
337 #define MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(q) (0x8060 + ((q) << 2))
338 #define MVPP2_TXQ_TOKEN_SIZE_MAX 0x7fffffff
339 #define MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(q) (0x8080 + ((q) << 2))
340 #define MVPP2_TXQ_TOKEN_CNTR_MAX 0xffffffff
341
342 /* TX general registers */
343 #define MVPP2_TX_SNOOP_REG 0x8800
344 #define MVPP2_TX_PORT_FLUSH_REG 0x8810
345 #define MVPP2_TX_PORT_FLUSH_MASK(port) (1 << (port))
346
347 /* LMS registers */
348 #define MVPP2_SRC_ADDR_MIDDLE 0x24
349 #define MVPP2_SRC_ADDR_HIGH 0x28
350 #define MVPP2_PHY_AN_CFG0_REG 0x34
351 #define MVPP2_PHY_AN_STOP_SMI0_MASK BIT(7)
352 #define MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG 0x305c
353 #define MVPP2_EXT_GLOBAL_CTRL_DEFAULT 0x27
354
355 /* Per-port registers */
356 #define MVPP2_GMAC_CTRL_0_REG 0x0
357 #define MVPP2_GMAC_PORT_EN_MASK BIT(0)
358 #define MVPP2_GMAC_MAX_RX_SIZE_OFFS 2
359 #define MVPP2_GMAC_MAX_RX_SIZE_MASK 0x7ffc
360 #define MVPP2_GMAC_MIB_CNTR_EN_MASK BIT(15)
361 #define MVPP2_GMAC_CTRL_1_REG 0x4
362 #define MVPP2_GMAC_PERIODIC_XON_EN_MASK BIT(1)
363 #define MVPP2_GMAC_GMII_LB_EN_MASK BIT(5)
364 #define MVPP2_GMAC_PCS_LB_EN_BIT 6
365 #define MVPP2_GMAC_PCS_LB_EN_MASK BIT(6)
366 #define MVPP2_GMAC_SA_LOW_OFFS 7
367 #define MVPP2_GMAC_CTRL_2_REG 0x8
368 #define MVPP2_GMAC_INBAND_AN_MASK BIT(0)
369 #define MVPP2_GMAC_PCS_ENABLE_MASK BIT(3)
370 #define MVPP2_GMAC_PORT_RGMII_MASK BIT(4)
371 #define MVPP2_GMAC_PORT_RESET_MASK BIT(6)
372 #define MVPP2_GMAC_AUTONEG_CONFIG 0xc
373 #define MVPP2_GMAC_FORCE_LINK_DOWN BIT(0)
374 #define MVPP2_GMAC_FORCE_LINK_PASS BIT(1)
375 #define MVPP2_GMAC_CONFIG_MII_SPEED BIT(5)
376 #define MVPP2_GMAC_CONFIG_GMII_SPEED BIT(6)
377 #define MVPP2_GMAC_AN_SPEED_EN BIT(7)
378 #define MVPP2_GMAC_FC_ADV_EN BIT(9)
379 #define MVPP2_GMAC_CONFIG_FULL_DUPLEX BIT(12)
380 #define MVPP2_GMAC_AN_DUPLEX_EN BIT(13)
381 #define MVPP2_GMAC_PORT_FIFO_CFG_1_REG 0x1c
382 #define MVPP2_GMAC_TX_FIFO_MIN_TH_OFFS 6
383 #define MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK 0x1fc0
384 #define MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(v) (((v) << 6) & \
385 MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK)
386
387 #define MVPP22_SMI_MISC_CFG_REG 0x1204
388 #define MVPP22_SMI_POLLING_EN BIT(10)
389
390 #define MVPP22_PORT_BASE 0x30e00
391 #define MVPP22_PORT_OFFSET 0x1000
392
393 #define MVPP2_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
394
395 /* Descriptor ring Macros */
396 #define MVPP2_QUEUE_NEXT_DESC(q, index) \
397 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
398
399 /* SMI: 0xc0054 -> offset 0x54 to lms_base */
400 #define MVPP21_SMI 0x0054
401 /* PP2.2: SMI: 0x12a200 -> offset 0x1200 to iface_base */
402 #define MVPP22_SMI 0x1200
403 #define MVPP2_PHY_REG_MASK 0x1f
404 /* SMI register fields */
405 #define MVPP2_SMI_DATA_OFFS 0 /* Data */
406 #define MVPP2_SMI_DATA_MASK (0xffff << MVPP2_SMI_DATA_OFFS)
407 #define MVPP2_SMI_DEV_ADDR_OFFS 16 /* PHY device address */
408 #define MVPP2_SMI_REG_ADDR_OFFS 21 /* PHY device reg addr*/
409 #define MVPP2_SMI_OPCODE_OFFS 26 /* Write/Read opcode */
410 #define MVPP2_SMI_OPCODE_READ (1 << MVPP2_SMI_OPCODE_OFFS)
411 #define MVPP2_SMI_READ_VALID (1 << 27) /* Read Valid */
412 #define MVPP2_SMI_BUSY (1 << 28) /* Busy */
413
414 #define MVPP2_PHY_ADDR_MASK 0x1f
415 #define MVPP2_PHY_REG_MASK 0x1f
416
417 /* Various constants */
418
419 /* Coalescing */
420 #define MVPP2_TXDONE_COAL_PKTS_THRESH 15
421 #define MVPP2_TXDONE_HRTIMER_PERIOD_NS 1000000UL
422 #define MVPP2_RX_COAL_PKTS 32
423 #define MVPP2_RX_COAL_USEC 100
424
425 /* The two bytes Marvell header. Either contains a special value used
426 * by Marvell switches when a specific hardware mode is enabled (not
427 * supported by this driver) or is filled automatically by zeroes on
428 * the RX side. Those two bytes being at the front of the Ethernet
429 * header, they allow to have the IP header aligned on a 4 bytes
430 * boundary automatically: the hardware skips those two bytes on its
431 * own.
432 */
433 #define MVPP2_MH_SIZE 2
434 #define MVPP2_ETH_TYPE_LEN 2
435 #define MVPP2_PPPOE_HDR_SIZE 8
436 #define MVPP2_VLAN_TAG_LEN 4
437
438 /* Lbtd 802.3 type */
439 #define MVPP2_IP_LBDT_TYPE 0xfffa
440
441 #define MVPP2_CPU_D_CACHE_LINE_SIZE 32
442 #define MVPP2_TX_CSUM_MAX_SIZE 9800
443
444 /* Timeout constants */
445 #define MVPP2_TX_DISABLE_TIMEOUT_MSEC 1000
446 #define MVPP2_TX_PENDING_TIMEOUT_MSEC 1000
447
448 #define MVPP2_TX_MTU_MAX 0x7ffff
449
450 /* Maximum number of T-CONTs of PON port */
451 #define MVPP2_MAX_TCONT 16
452
453 /* Maximum number of supported ports */
454 #define MVPP2_MAX_PORTS 4
455
456 /* Maximum number of TXQs used by single port */
457 #define MVPP2_MAX_TXQ 8
458
459 /* Default number of TXQs in use */
460 #define MVPP2_DEFAULT_TXQ 1
461
462 /* Dfault number of RXQs in use */
463 #define MVPP2_DEFAULT_RXQ 1
464 #define CONFIG_MV_ETH_RXQ 8 /* increment by 8 */
465
466 /* Max number of Rx descriptors */
467 #define MVPP2_MAX_RXD 16
468
469 /* Max number of Tx descriptors */
470 #define MVPP2_MAX_TXD 16
471
472 /* Amount of Tx descriptors that can be reserved at once by CPU */
473 #define MVPP2_CPU_DESC_CHUNK 64
474
475 /* Max number of Tx descriptors in each aggregated queue */
476 #define MVPP2_AGGR_TXQ_SIZE 256
477
478 /* Descriptor aligned size */
479 #define MVPP2_DESC_ALIGNED_SIZE 32
480
481 /* Descriptor alignment mask */
482 #define MVPP2_TX_DESC_ALIGN (MVPP2_DESC_ALIGNED_SIZE - 1)
483
484 /* RX FIFO constants */
485 #define MVPP21_RX_FIFO_PORT_DATA_SIZE 0x2000
486 #define MVPP21_RX_FIFO_PORT_ATTR_SIZE 0x80
487 #define MVPP22_RX_FIFO_10GB_PORT_DATA_SIZE 0x8000
488 #define MVPP22_RX_FIFO_2_5GB_PORT_DATA_SIZE 0x2000
489 #define MVPP22_RX_FIFO_1GB_PORT_DATA_SIZE 0x1000
490 #define MVPP22_RX_FIFO_10GB_PORT_ATTR_SIZE 0x200
491 #define MVPP22_RX_FIFO_2_5GB_PORT_ATTR_SIZE 0x80
492 #define MVPP22_RX_FIFO_1GB_PORT_ATTR_SIZE 0x40
493 #define MVPP2_RX_FIFO_PORT_MIN_PKT 0x80
494
495 /* TX general registers */
496 #define MVPP22_TX_FIFO_SIZE_REG(eth_tx_port) (0x8860 + ((eth_tx_port) << 2))
497 #define MVPP22_TX_FIFO_SIZE_MASK 0xf
498
499 /* TX FIFO constants */
500 #define MVPP2_TX_FIFO_DATA_SIZE_10KB 0xa
501 #define MVPP2_TX_FIFO_DATA_SIZE_3KB 0x3
502
503 /* RX buffer constants */
504 #define MVPP2_SKB_SHINFO_SIZE \
505 0
506
507 #define MVPP2_RX_PKT_SIZE(mtu) \
508 ALIGN((mtu) + MVPP2_MH_SIZE + MVPP2_VLAN_TAG_LEN + \
509 ETH_HLEN + ETH_FCS_LEN, MVPP2_CPU_D_CACHE_LINE_SIZE)
510
511 #define MVPP2_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD)
512 #define MVPP2_RX_TOTAL_SIZE(buf_size) ((buf_size) + MVPP2_SKB_SHINFO_SIZE)
513 #define MVPP2_RX_MAX_PKT_SIZE(total_size) \
514 ((total_size) - NET_SKB_PAD - MVPP2_SKB_SHINFO_SIZE)
515
516 #define MVPP2_BIT_TO_BYTE(bit) ((bit) / 8)
517
518 /* IPv6 max L3 address size */
519 #define MVPP2_MAX_L3_ADDR_SIZE 16
520
521 /* Port flags */
522 #define MVPP2_F_LOOPBACK BIT(0)
523
524 /* Marvell tag types */
525 enum mvpp2_tag_type {
526 MVPP2_TAG_TYPE_NONE = 0,
527 MVPP2_TAG_TYPE_MH = 1,
528 MVPP2_TAG_TYPE_DSA = 2,
529 MVPP2_TAG_TYPE_EDSA = 3,
530 MVPP2_TAG_TYPE_VLAN = 4,
531 MVPP2_TAG_TYPE_LAST = 5
532 };
533
534 /* Parser constants */
535 #define MVPP2_PRS_TCAM_SRAM_SIZE 256
536 #define MVPP2_PRS_TCAM_WORDS 6
537 #define MVPP2_PRS_SRAM_WORDS 4
538 #define MVPP2_PRS_FLOW_ID_SIZE 64
539 #define MVPP2_PRS_FLOW_ID_MASK 0x3f
540 #define MVPP2_PRS_TCAM_ENTRY_INVALID 1
541 #define MVPP2_PRS_TCAM_DSA_TAGGED_BIT BIT(5)
542 #define MVPP2_PRS_IPV4_HEAD 0x40
543 #define MVPP2_PRS_IPV4_HEAD_MASK 0xf0
544 #define MVPP2_PRS_IPV4_MC 0xe0
545 #define MVPP2_PRS_IPV4_MC_MASK 0xf0
546 #define MVPP2_PRS_IPV4_BC_MASK 0xff
547 #define MVPP2_PRS_IPV4_IHL 0x5
548 #define MVPP2_PRS_IPV4_IHL_MASK 0xf
549 #define MVPP2_PRS_IPV6_MC 0xff
550 #define MVPP2_PRS_IPV6_MC_MASK 0xff
551 #define MVPP2_PRS_IPV6_HOP_MASK 0xff
552 #define MVPP2_PRS_TCAM_PROTO_MASK 0xff
553 #define MVPP2_PRS_TCAM_PROTO_MASK_L 0x3f
554 #define MVPP2_PRS_DBL_VLANS_MAX 100
555
556 /* Tcam structure:
557 * - lookup ID - 4 bits
558 * - port ID - 1 byte
559 * - additional information - 1 byte
560 * - header data - 8 bytes
561 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(5)->(0).
562 */
563 #define MVPP2_PRS_AI_BITS 8
564 #define MVPP2_PRS_PORT_MASK 0xff
565 #define MVPP2_PRS_LU_MASK 0xf
566 #define MVPP2_PRS_TCAM_DATA_BYTE(offs) \
567 (((offs) - ((offs) % 2)) * 2 + ((offs) % 2))
568 #define MVPP2_PRS_TCAM_DATA_BYTE_EN(offs) \
569 (((offs) * 2) - ((offs) % 2) + 2)
570 #define MVPP2_PRS_TCAM_AI_BYTE 16
571 #define MVPP2_PRS_TCAM_PORT_BYTE 17
572 #define MVPP2_PRS_TCAM_LU_BYTE 20
573 #define MVPP2_PRS_TCAM_EN_OFFS(offs) ((offs) + 2)
574 #define MVPP2_PRS_TCAM_INV_WORD 5
575 /* Tcam entries ID */
576 #define MVPP2_PE_DROP_ALL 0
577 #define MVPP2_PE_FIRST_FREE_TID 1
578 #define MVPP2_PE_LAST_FREE_TID (MVPP2_PRS_TCAM_SRAM_SIZE - 31)
579 #define MVPP2_PE_IP6_EXT_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 30)
580 #define MVPP2_PE_MAC_MC_IP6 (MVPP2_PRS_TCAM_SRAM_SIZE - 29)
581 #define MVPP2_PE_IP6_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 28)
582 #define MVPP2_PE_IP4_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 27)
583 #define MVPP2_PE_LAST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 26)
584 #define MVPP2_PE_FIRST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 19)
585 #define MVPP2_PE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 18)
586 #define MVPP2_PE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 17)
587 #define MVPP2_PE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 16)
588 #define MVPP2_PE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 15)
589 #define MVPP2_PE_ETYPE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 14)
590 #define MVPP2_PE_ETYPE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 13)
591 #define MVPP2_PE_ETYPE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 12)
592 #define MVPP2_PE_ETYPE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 11)
593 #define MVPP2_PE_MH_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 10)
594 #define MVPP2_PE_DSA_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 9)
595 #define MVPP2_PE_IP6_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 8)
596 #define MVPP2_PE_IP4_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 7)
597 #define MVPP2_PE_ETH_TYPE_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 6)
598 #define MVPP2_PE_VLAN_DBL (MVPP2_PRS_TCAM_SRAM_SIZE - 5)
599 #define MVPP2_PE_VLAN_NONE (MVPP2_PRS_TCAM_SRAM_SIZE - 4)
600 #define MVPP2_PE_MAC_MC_ALL (MVPP2_PRS_TCAM_SRAM_SIZE - 3)
601 #define MVPP2_PE_MAC_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 2)
602 #define MVPP2_PE_MAC_NON_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 1)
603
604 /* Sram structure
605 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(3)->(0).
606 */
607 #define MVPP2_PRS_SRAM_RI_OFFS 0
608 #define MVPP2_PRS_SRAM_RI_WORD 0
609 #define MVPP2_PRS_SRAM_RI_CTRL_OFFS 32
610 #define MVPP2_PRS_SRAM_RI_CTRL_WORD 1
611 #define MVPP2_PRS_SRAM_RI_CTRL_BITS 32
612 #define MVPP2_PRS_SRAM_SHIFT_OFFS 64
613 #define MVPP2_PRS_SRAM_SHIFT_SIGN_BIT 72
614 #define MVPP2_PRS_SRAM_UDF_OFFS 73
615 #define MVPP2_PRS_SRAM_UDF_BITS 8
616 #define MVPP2_PRS_SRAM_UDF_MASK 0xff
617 #define MVPP2_PRS_SRAM_UDF_SIGN_BIT 81
618 #define MVPP2_PRS_SRAM_UDF_TYPE_OFFS 82
619 #define MVPP2_PRS_SRAM_UDF_TYPE_MASK 0x7
620 #define MVPP2_PRS_SRAM_UDF_TYPE_L3 1
621 #define MVPP2_PRS_SRAM_UDF_TYPE_L4 4
622 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS 85
623 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK 0x3
624 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD 1
625 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP4_ADD 2
626 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP6_ADD 3
627 #define MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS 87
628 #define MVPP2_PRS_SRAM_OP_SEL_UDF_BITS 2
629 #define MVPP2_PRS_SRAM_OP_SEL_UDF_MASK 0x3
630 #define MVPP2_PRS_SRAM_OP_SEL_UDF_ADD 0
631 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP4_ADD 2
632 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP6_ADD 3
633 #define MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS 89
634 #define MVPP2_PRS_SRAM_AI_OFFS 90
635 #define MVPP2_PRS_SRAM_AI_CTRL_OFFS 98
636 #define MVPP2_PRS_SRAM_AI_CTRL_BITS 8
637 #define MVPP2_PRS_SRAM_AI_MASK 0xff
638 #define MVPP2_PRS_SRAM_NEXT_LU_OFFS 106
639 #define MVPP2_PRS_SRAM_NEXT_LU_MASK 0xf
640 #define MVPP2_PRS_SRAM_LU_DONE_BIT 110
641 #define MVPP2_PRS_SRAM_LU_GEN_BIT 111
642
643 /* Sram result info bits assignment */
644 #define MVPP2_PRS_RI_MAC_ME_MASK 0x1
645 #define MVPP2_PRS_RI_DSA_MASK 0x2
646 #define MVPP2_PRS_RI_VLAN_MASK (BIT(2) | BIT(3))
647 #define MVPP2_PRS_RI_VLAN_NONE 0x0
648 #define MVPP2_PRS_RI_VLAN_SINGLE BIT(2)
649 #define MVPP2_PRS_RI_VLAN_DOUBLE BIT(3)
650 #define MVPP2_PRS_RI_VLAN_TRIPLE (BIT(2) | BIT(3))
651 #define MVPP2_PRS_RI_CPU_CODE_MASK 0x70
652 #define MVPP2_PRS_RI_CPU_CODE_RX_SPEC BIT(4)
653 #define MVPP2_PRS_RI_L2_CAST_MASK (BIT(9) | BIT(10))
654 #define MVPP2_PRS_RI_L2_UCAST 0x0
655 #define MVPP2_PRS_RI_L2_MCAST BIT(9)
656 #define MVPP2_PRS_RI_L2_BCAST BIT(10)
657 #define MVPP2_PRS_RI_PPPOE_MASK 0x800
658 #define MVPP2_PRS_RI_L3_PROTO_MASK (BIT(12) | BIT(13) | BIT(14))
659 #define MVPP2_PRS_RI_L3_UN 0x0
660 #define MVPP2_PRS_RI_L3_IP4 BIT(12)
661 #define MVPP2_PRS_RI_L3_IP4_OPT BIT(13)
662 #define MVPP2_PRS_RI_L3_IP4_OTHER (BIT(12) | BIT(13))
663 #define MVPP2_PRS_RI_L3_IP6 BIT(14)
664 #define MVPP2_PRS_RI_L3_IP6_EXT (BIT(12) | BIT(14))
665 #define MVPP2_PRS_RI_L3_ARP (BIT(13) | BIT(14))
666 #define MVPP2_PRS_RI_L3_ADDR_MASK (BIT(15) | BIT(16))
667 #define MVPP2_PRS_RI_L3_UCAST 0x0
668 #define MVPP2_PRS_RI_L3_MCAST BIT(15)
669 #define MVPP2_PRS_RI_L3_BCAST (BIT(15) | BIT(16))
670 #define MVPP2_PRS_RI_IP_FRAG_MASK 0x20000
671 #define MVPP2_PRS_RI_UDF3_MASK 0x300000
672 #define MVPP2_PRS_RI_UDF3_RX_SPECIAL BIT(21)
673 #define MVPP2_PRS_RI_L4_PROTO_MASK 0x1c00000
674 #define MVPP2_PRS_RI_L4_TCP BIT(22)
675 #define MVPP2_PRS_RI_L4_UDP BIT(23)
676 #define MVPP2_PRS_RI_L4_OTHER (BIT(22) | BIT(23))
677 #define MVPP2_PRS_RI_UDF7_MASK 0x60000000
678 #define MVPP2_PRS_RI_UDF7_IP6_LITE BIT(29)
679 #define MVPP2_PRS_RI_DROP_MASK 0x80000000
680
681 /* Sram additional info bits assignment */
682 #define MVPP2_PRS_IPV4_DIP_AI_BIT BIT(0)
683 #define MVPP2_PRS_IPV6_NO_EXT_AI_BIT BIT(0)
684 #define MVPP2_PRS_IPV6_EXT_AI_BIT BIT(1)
685 #define MVPP2_PRS_IPV6_EXT_AH_AI_BIT BIT(2)
686 #define MVPP2_PRS_IPV6_EXT_AH_LEN_AI_BIT BIT(3)
687 #define MVPP2_PRS_IPV6_EXT_AH_L4_AI_BIT BIT(4)
688 #define MVPP2_PRS_SINGLE_VLAN_AI 0
689 #define MVPP2_PRS_DBL_VLAN_AI_BIT BIT(7)
690
691 /* DSA/EDSA type */
692 #define MVPP2_PRS_TAGGED true
693 #define MVPP2_PRS_UNTAGGED false
694 #define MVPP2_PRS_EDSA true
695 #define MVPP2_PRS_DSA false
696
697 /* MAC entries, shadow udf */
698 enum mvpp2_prs_udf {
699 MVPP2_PRS_UDF_MAC_DEF,
700 MVPP2_PRS_UDF_MAC_RANGE,
701 MVPP2_PRS_UDF_L2_DEF,
702 MVPP2_PRS_UDF_L2_DEF_COPY,
703 MVPP2_PRS_UDF_L2_USER,
704 };
705
706 /* Lookup ID */
707 enum mvpp2_prs_lookup {
708 MVPP2_PRS_LU_MH,
709 MVPP2_PRS_LU_MAC,
710 MVPP2_PRS_LU_DSA,
711 MVPP2_PRS_LU_VLAN,
712 MVPP2_PRS_LU_L2,
713 MVPP2_PRS_LU_PPPOE,
714 MVPP2_PRS_LU_IP4,
715 MVPP2_PRS_LU_IP6,
716 MVPP2_PRS_LU_FLOWS,
717 MVPP2_PRS_LU_LAST,
718 };
719
720 /* L3 cast enum */
721 enum mvpp2_prs_l3_cast {
722 MVPP2_PRS_L3_UNI_CAST,
723 MVPP2_PRS_L3_MULTI_CAST,
724 MVPP2_PRS_L3_BROAD_CAST
725 };
726
727 /* Classifier constants */
728 #define MVPP2_CLS_FLOWS_TBL_SIZE 512
729 #define MVPP2_CLS_FLOWS_TBL_DATA_WORDS 3
730 #define MVPP2_CLS_LKP_TBL_SIZE 64
731
732 /* BM constants */
733 #define MVPP2_BM_POOLS_NUM 1
734 #define MVPP2_BM_LONG_BUF_NUM 16
735 #define MVPP2_BM_SHORT_BUF_NUM 16
736 #define MVPP2_BM_POOL_SIZE_MAX (16*1024 - MVPP2_BM_POOL_PTR_ALIGN/4)
737 #define MVPP2_BM_POOL_PTR_ALIGN 128
738 #define MVPP2_BM_SWF_LONG_POOL(port) 0
739
740 /* BM cookie (32 bits) definition */
741 #define MVPP2_BM_COOKIE_POOL_OFFS 8
742 #define MVPP2_BM_COOKIE_CPU_OFFS 24
743
744 /* BM short pool packet size
745 * These value assure that for SWF the total number
746 * of bytes allocated for each buffer will be 512
747 */
748 #define MVPP2_BM_SHORT_PKT_SIZE MVPP2_RX_MAX_PKT_SIZE(512)
749
750 enum mvpp2_bm_type {
751 MVPP2_BM_FREE,
752 MVPP2_BM_SWF_LONG,
753 MVPP2_BM_SWF_SHORT
754 };
755
756 /* Definitions */
757
758 /* Shared Packet Processor resources */
759 struct mvpp2 {
760 /* Shared registers' base addresses */
761 void __iomem *base;
762 void __iomem *lms_base;
763 void __iomem *iface_base;
764 void __iomem *mdio_base;
765
766 /* List of pointers to port structures */
767 struct mvpp2_port **port_list;
768
769 /* Aggregated TXQs */
770 struct mvpp2_tx_queue *aggr_txqs;
771
772 /* BM pools */
773 struct mvpp2_bm_pool *bm_pools;
774
775 /* PRS shadow table */
776 struct mvpp2_prs_shadow *prs_shadow;
777 /* PRS auxiliary table for double vlan entries control */
778 bool *prs_double_vlans;
779
780 /* Tclk value */
781 u32 tclk;
782
783 /* HW version */
784 enum { MVPP21, MVPP22 } hw_version;
785
786 /* Maximum number of RXQs per port */
787 unsigned int max_port_rxqs;
788
789 struct mii_dev *bus;
790
791 int probe_done;
792 };
793
794 struct mvpp2_pcpu_stats {
795 u64 rx_packets;
796 u64 rx_bytes;
797 u64 tx_packets;
798 u64 tx_bytes;
799 };
800
801 struct mvpp2_port {
802 u8 id;
803
804 /* Index of the port from the "group of ports" complex point
805 * of view
806 */
807 int gop_id;
808
809 int irq;
810
811 struct mvpp2 *priv;
812
813 /* Per-port registers' base address */
814 void __iomem *base;
815
816 struct mvpp2_rx_queue **rxqs;
817 struct mvpp2_tx_queue **txqs;
818
819 int pkt_size;
820
821 u32 pending_cause_rx;
822
823 /* Per-CPU port control */
824 struct mvpp2_port_pcpu __percpu *pcpu;
825
826 /* Flags */
827 unsigned long flags;
828
829 u16 tx_ring_size;
830 u16 rx_ring_size;
831 struct mvpp2_pcpu_stats __percpu *stats;
832
833 struct phy_device *phy_dev;
834 phy_interface_t phy_interface;
835 int phy_node;
836 int phyaddr;
837 int init;
838 unsigned int link;
839 unsigned int duplex;
840 unsigned int speed;
841
842 struct mvpp2_bm_pool *pool_long;
843 struct mvpp2_bm_pool *pool_short;
844
845 /* Index of first port's physical RXQ */
846 u8 first_rxq;
847
848 u8 dev_addr[ETH_ALEN];
849 };
850
851 /* The mvpp2_tx_desc and mvpp2_rx_desc structures describe the
852 * layout of the transmit and reception DMA descriptors, and their
853 * layout is therefore defined by the hardware design
854 */
855
856 #define MVPP2_TXD_L3_OFF_SHIFT 0
857 #define MVPP2_TXD_IP_HLEN_SHIFT 8
858 #define MVPP2_TXD_L4_CSUM_FRAG BIT(13)
859 #define MVPP2_TXD_L4_CSUM_NOT BIT(14)
860 #define MVPP2_TXD_IP_CSUM_DISABLE BIT(15)
861 #define MVPP2_TXD_PADDING_DISABLE BIT(23)
862 #define MVPP2_TXD_L4_UDP BIT(24)
863 #define MVPP2_TXD_L3_IP6 BIT(26)
864 #define MVPP2_TXD_L_DESC BIT(28)
865 #define MVPP2_TXD_F_DESC BIT(29)
866
867 #define MVPP2_RXD_ERR_SUMMARY BIT(15)
868 #define MVPP2_RXD_ERR_CODE_MASK (BIT(13) | BIT(14))
869 #define MVPP2_RXD_ERR_CRC 0x0
870 #define MVPP2_RXD_ERR_OVERRUN BIT(13)
871 #define MVPP2_RXD_ERR_RESOURCE (BIT(13) | BIT(14))
872 #define MVPP2_RXD_BM_POOL_ID_OFFS 16
873 #define MVPP2_RXD_BM_POOL_ID_MASK (BIT(16) | BIT(17) | BIT(18))
874 #define MVPP2_RXD_HWF_SYNC BIT(21)
875 #define MVPP2_RXD_L4_CSUM_OK BIT(22)
876 #define MVPP2_RXD_IP4_HEADER_ERR BIT(24)
877 #define MVPP2_RXD_L4_TCP BIT(25)
878 #define MVPP2_RXD_L4_UDP BIT(26)
879 #define MVPP2_RXD_L3_IP4 BIT(28)
880 #define MVPP2_RXD_L3_IP6 BIT(30)
881 #define MVPP2_RXD_BUF_HDR BIT(31)
882
883 /* HW TX descriptor for PPv2.1 */
884 struct mvpp21_tx_desc {
885 u32 command; /* Options used by HW for packet transmitting.*/
886 u8 packet_offset; /* the offset from the buffer beginning */
887 u8 phys_txq; /* destination queue ID */
888 u16 data_size; /* data size of transmitted packet in bytes */
889 u32 buf_dma_addr; /* physical addr of transmitted buffer */
890 u32 buf_cookie; /* cookie for access to TX buffer in tx path */
891 u32 reserved1[3]; /* hw_cmd (for future use, BM, PON, PNC) */
892 u32 reserved2; /* reserved (for future use) */
893 };
894
895 /* HW RX descriptor for PPv2.1 */
896 struct mvpp21_rx_desc {
897 u32 status; /* info about received packet */
898 u16 reserved1; /* parser_info (for future use, PnC) */
899 u16 data_size; /* size of received packet in bytes */
900 u32 buf_dma_addr; /* physical address of the buffer */
901 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
902 u16 reserved2; /* gem_port_id (for future use, PON) */
903 u16 reserved3; /* csum_l4 (for future use, PnC) */
904 u8 reserved4; /* bm_qset (for future use, BM) */
905 u8 reserved5;
906 u16 reserved6; /* classify_info (for future use, PnC) */
907 u32 reserved7; /* flow_id (for future use, PnC) */
908 u32 reserved8;
909 };
910
911 /* HW TX descriptor for PPv2.2 */
912 struct mvpp22_tx_desc {
913 u32 command;
914 u8 packet_offset;
915 u8 phys_txq;
916 u16 data_size;
917 u64 reserved1;
918 u64 buf_dma_addr_ptp;
919 u64 buf_cookie_misc;
920 };
921
922 /* HW RX descriptor for PPv2.2 */
923 struct mvpp22_rx_desc {
924 u32 status;
925 u16 reserved1;
926 u16 data_size;
927 u32 reserved2;
928 u32 reserved3;
929 u64 buf_dma_addr_key_hash;
930 u64 buf_cookie_misc;
931 };
932
933 /* Opaque type used by the driver to manipulate the HW TX and RX
934 * descriptors
935 */
936 struct mvpp2_tx_desc {
937 union {
938 struct mvpp21_tx_desc pp21;
939 struct mvpp22_tx_desc pp22;
940 };
941 };
942
943 struct mvpp2_rx_desc {
944 union {
945 struct mvpp21_rx_desc pp21;
946 struct mvpp22_rx_desc pp22;
947 };
948 };
949
950 /* Per-CPU Tx queue control */
951 struct mvpp2_txq_pcpu {
952 int cpu;
953
954 /* Number of Tx DMA descriptors in the descriptor ring */
955 int size;
956
957 /* Number of currently used Tx DMA descriptor in the
958 * descriptor ring
959 */
960 int count;
961
962 /* Number of Tx DMA descriptors reserved for each CPU */
963 int reserved_num;
964
965 /* Index of last TX DMA descriptor that was inserted */
966 int txq_put_index;
967
968 /* Index of the TX DMA descriptor to be cleaned up */
969 int txq_get_index;
970 };
971
972 struct mvpp2_tx_queue {
973 /* Physical number of this Tx queue */
974 u8 id;
975
976 /* Logical number of this Tx queue */
977 u8 log_id;
978
979 /* Number of Tx DMA descriptors in the descriptor ring */
980 int size;
981
982 /* Number of currently used Tx DMA descriptor in the descriptor ring */
983 int count;
984
985 /* Per-CPU control of physical Tx queues */
986 struct mvpp2_txq_pcpu __percpu *pcpu;
987
988 u32 done_pkts_coal;
989
990 /* Virtual address of thex Tx DMA descriptors array */
991 struct mvpp2_tx_desc *descs;
992
993 /* DMA address of the Tx DMA descriptors array */
994 dma_addr_t descs_dma;
995
996 /* Index of the last Tx DMA descriptor */
997 int last_desc;
998
999 /* Index of the next Tx DMA descriptor to process */
1000 int next_desc_to_proc;
1001 };
1002
1003 struct mvpp2_rx_queue {
1004 /* RX queue number, in the range 0-31 for physical RXQs */
1005 u8 id;
1006
1007 /* Num of rx descriptors in the rx descriptor ring */
1008 int size;
1009
1010 u32 pkts_coal;
1011 u32 time_coal;
1012
1013 /* Virtual address of the RX DMA descriptors array */
1014 struct mvpp2_rx_desc *descs;
1015
1016 /* DMA address of the RX DMA descriptors array */
1017 dma_addr_t descs_dma;
1018
1019 /* Index of the last RX DMA descriptor */
1020 int last_desc;
1021
1022 /* Index of the next RX DMA descriptor to process */
1023 int next_desc_to_proc;
1024
1025 /* ID of port to which physical RXQ is mapped */
1026 int port;
1027
1028 /* Port's logic RXQ number to which physical RXQ is mapped */
1029 int logic_rxq;
1030 };
1031
1032 union mvpp2_prs_tcam_entry {
1033 u32 word[MVPP2_PRS_TCAM_WORDS];
1034 u8 byte[MVPP2_PRS_TCAM_WORDS * 4];
1035 };
1036
1037 union mvpp2_prs_sram_entry {
1038 u32 word[MVPP2_PRS_SRAM_WORDS];
1039 u8 byte[MVPP2_PRS_SRAM_WORDS * 4];
1040 };
1041
1042 struct mvpp2_prs_entry {
1043 u32 index;
1044 union mvpp2_prs_tcam_entry tcam;
1045 union mvpp2_prs_sram_entry sram;
1046 };
1047
1048 struct mvpp2_prs_shadow {
1049 bool valid;
1050 bool finish;
1051
1052 /* Lookup ID */
1053 int lu;
1054
1055 /* User defined offset */
1056 int udf;
1057
1058 /* Result info */
1059 u32 ri;
1060 u32 ri_mask;
1061 };
1062
1063 struct mvpp2_cls_flow_entry {
1064 u32 index;
1065 u32 data[MVPP2_CLS_FLOWS_TBL_DATA_WORDS];
1066 };
1067
1068 struct mvpp2_cls_lookup_entry {
1069 u32 lkpid;
1070 u32 way;
1071 u32 data;
1072 };
1073
1074 struct mvpp2_bm_pool {
1075 /* Pool number in the range 0-7 */
1076 int id;
1077 enum mvpp2_bm_type type;
1078
1079 /* Buffer Pointers Pool External (BPPE) size */
1080 int size;
1081 /* Number of buffers for this pool */
1082 int buf_num;
1083 /* Pool buffer size */
1084 int buf_size;
1085 /* Packet size */
1086 int pkt_size;
1087
1088 /* BPPE virtual base address */
1089 unsigned long *virt_addr;
1090 /* BPPE DMA base address */
1091 dma_addr_t dma_addr;
1092
1093 /* Ports using BM pool */
1094 u32 port_map;
1095
1096 /* Occupied buffers indicator */
1097 int in_use_thresh;
1098 };
1099
1100 /* Static declaractions */
1101
1102 /* Number of RXQs used by single port */
1103 static int rxq_number = MVPP2_DEFAULT_RXQ;
1104 /* Number of TXQs used by single port */
1105 static int txq_number = MVPP2_DEFAULT_TXQ;
1106
1107 static int base_id;
1108
1109 #define MVPP2_DRIVER_NAME "mvpp2"
1110 #define MVPP2_DRIVER_VERSION "1.0"
1111
1112 /*
1113 * U-Boot internal data, mostly uncached buffers for descriptors and data
1114 */
1115 struct buffer_location {
1116 struct mvpp2_tx_desc *aggr_tx_descs;
1117 struct mvpp2_tx_desc *tx_descs;
1118 struct mvpp2_rx_desc *rx_descs;
1119 unsigned long *bm_pool[MVPP2_BM_POOLS_NUM];
1120 unsigned long *rx_buffer[MVPP2_BM_LONG_BUF_NUM];
1121 int first_rxq;
1122 };
1123
1124 /*
1125 * All 4 interfaces use the same global buffer, since only one interface
1126 * can be enabled at once
1127 */
1128 static struct buffer_location buffer_loc;
1129
1130 /*
1131 * Page table entries are set to 1MB, or multiples of 1MB
1132 * (not < 1MB). driver uses less bd's so use 1MB bdspace.
1133 */
1134 #define BD_SPACE (1 << 20)
1135
1136 /* Utility/helper methods */
1137
1138 static void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data)
1139 {
1140 writel(data, priv->base + offset);
1141 }
1142
1143 static u32 mvpp2_read(struct mvpp2 *priv, u32 offset)
1144 {
1145 return readl(priv->base + offset);
1146 }
1147
1148 static void mvpp2_txdesc_dma_addr_set(struct mvpp2_port *port,
1149 struct mvpp2_tx_desc *tx_desc,
1150 dma_addr_t dma_addr)
1151 {
1152 if (port->priv->hw_version == MVPP21) {
1153 tx_desc->pp21.buf_dma_addr = dma_addr;
1154 } else {
1155 u64 val = (u64)dma_addr;
1156
1157 tx_desc->pp22.buf_dma_addr_ptp &= ~GENMASK_ULL(40, 0);
1158 tx_desc->pp22.buf_dma_addr_ptp |= val;
1159 }
1160 }
1161
1162 static void mvpp2_txdesc_size_set(struct mvpp2_port *port,
1163 struct mvpp2_tx_desc *tx_desc,
1164 size_t size)
1165 {
1166 if (port->priv->hw_version == MVPP21)
1167 tx_desc->pp21.data_size = size;
1168 else
1169 tx_desc->pp22.data_size = size;
1170 }
1171
1172 static void mvpp2_txdesc_txq_set(struct mvpp2_port *port,
1173 struct mvpp2_tx_desc *tx_desc,
1174 unsigned int txq)
1175 {
1176 if (port->priv->hw_version == MVPP21)
1177 tx_desc->pp21.phys_txq = txq;
1178 else
1179 tx_desc->pp22.phys_txq = txq;
1180 }
1181
1182 static void mvpp2_txdesc_cmd_set(struct mvpp2_port *port,
1183 struct mvpp2_tx_desc *tx_desc,
1184 unsigned int command)
1185 {
1186 if (port->priv->hw_version == MVPP21)
1187 tx_desc->pp21.command = command;
1188 else
1189 tx_desc->pp22.command = command;
1190 }
1191
1192 static void mvpp2_txdesc_offset_set(struct mvpp2_port *port,
1193 struct mvpp2_tx_desc *tx_desc,
1194 unsigned int offset)
1195 {
1196 if (port->priv->hw_version == MVPP21)
1197 tx_desc->pp21.packet_offset = offset;
1198 else
1199 tx_desc->pp22.packet_offset = offset;
1200 }
1201
1202 static dma_addr_t mvpp2_rxdesc_dma_addr_get(struct mvpp2_port *port,
1203 struct mvpp2_rx_desc *rx_desc)
1204 {
1205 if (port->priv->hw_version == MVPP21)
1206 return rx_desc->pp21.buf_dma_addr;
1207 else
1208 return rx_desc->pp22.buf_dma_addr_key_hash & GENMASK_ULL(40, 0);
1209 }
1210
1211 static unsigned long mvpp2_rxdesc_cookie_get(struct mvpp2_port *port,
1212 struct mvpp2_rx_desc *rx_desc)
1213 {
1214 if (port->priv->hw_version == MVPP21)
1215 return rx_desc->pp21.buf_cookie;
1216 else
1217 return rx_desc->pp22.buf_cookie_misc & GENMASK_ULL(40, 0);
1218 }
1219
1220 static size_t mvpp2_rxdesc_size_get(struct mvpp2_port *port,
1221 struct mvpp2_rx_desc *rx_desc)
1222 {
1223 if (port->priv->hw_version == MVPP21)
1224 return rx_desc->pp21.data_size;
1225 else
1226 return rx_desc->pp22.data_size;
1227 }
1228
1229 static u32 mvpp2_rxdesc_status_get(struct mvpp2_port *port,
1230 struct mvpp2_rx_desc *rx_desc)
1231 {
1232 if (port->priv->hw_version == MVPP21)
1233 return rx_desc->pp21.status;
1234 else
1235 return rx_desc->pp22.status;
1236 }
1237
1238 static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu)
1239 {
1240 txq_pcpu->txq_get_index++;
1241 if (txq_pcpu->txq_get_index == txq_pcpu->size)
1242 txq_pcpu->txq_get_index = 0;
1243 }
1244
1245 /* Get number of physical egress port */
1246 static inline int mvpp2_egress_port(struct mvpp2_port *port)
1247 {
1248 return MVPP2_MAX_TCONT + port->id;
1249 }
1250
1251 /* Get number of physical TXQ */
1252 static inline int mvpp2_txq_phys(int port, int txq)
1253 {
1254 return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq;
1255 }
1256
1257 /* Parser configuration routines */
1258
1259 /* Update parser tcam and sram hw entries */
1260 static int mvpp2_prs_hw_write(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1261 {
1262 int i;
1263
1264 if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1265 return -EINVAL;
1266
1267 /* Clear entry invalidation bit */
1268 pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] &= ~MVPP2_PRS_TCAM_INV_MASK;
1269
1270 /* Write tcam index - indirect access */
1271 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1272 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1273 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), pe->tcam.word[i]);
1274
1275 /* Write sram index - indirect access */
1276 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1277 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1278 mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), pe->sram.word[i]);
1279
1280 return 0;
1281 }
1282
1283 /* Read tcam entry from hw */
1284 static int mvpp2_prs_hw_read(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1285 {
1286 int i;
1287
1288 if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1289 return -EINVAL;
1290
1291 /* Write tcam index - indirect access */
1292 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1293
1294 pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] = mvpp2_read(priv,
1295 MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD));
1296 if (pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] & MVPP2_PRS_TCAM_INV_MASK)
1297 return MVPP2_PRS_TCAM_ENTRY_INVALID;
1298
1299 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1300 pe->tcam.word[i] = mvpp2_read(priv, MVPP2_PRS_TCAM_DATA_REG(i));
1301
1302 /* Write sram index - indirect access */
1303 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1304 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1305 pe->sram.word[i] = mvpp2_read(priv, MVPP2_PRS_SRAM_DATA_REG(i));
1306
1307 return 0;
1308 }
1309
1310 /* Invalidate tcam hw entry */
1311 static void mvpp2_prs_hw_inv(struct mvpp2 *priv, int index)
1312 {
1313 /* Write index - indirect access */
1314 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
1315 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD),
1316 MVPP2_PRS_TCAM_INV_MASK);
1317 }
1318
1319 /* Enable shadow table entry and set its lookup ID */
1320 static void mvpp2_prs_shadow_set(struct mvpp2 *priv, int index, int lu)
1321 {
1322 priv->prs_shadow[index].valid = true;
1323 priv->prs_shadow[index].lu = lu;
1324 }
1325
1326 /* Update ri fields in shadow table entry */
1327 static void mvpp2_prs_shadow_ri_set(struct mvpp2 *priv, int index,
1328 unsigned int ri, unsigned int ri_mask)
1329 {
1330 priv->prs_shadow[index].ri_mask = ri_mask;
1331 priv->prs_shadow[index].ri = ri;
1332 }
1333
1334 /* Update lookup field in tcam sw entry */
1335 static void mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry *pe, unsigned int lu)
1336 {
1337 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_LU_BYTE);
1338
1339 pe->tcam.byte[MVPP2_PRS_TCAM_LU_BYTE] = lu;
1340 pe->tcam.byte[enable_off] = MVPP2_PRS_LU_MASK;
1341 }
1342
1343 /* Update mask for single port in tcam sw entry */
1344 static void mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry *pe,
1345 unsigned int port, bool add)
1346 {
1347 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1348
1349 if (add)
1350 pe->tcam.byte[enable_off] &= ~(1 << port);
1351 else
1352 pe->tcam.byte[enable_off] |= 1 << port;
1353 }
1354
1355 /* Update port map in tcam sw entry */
1356 static void mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry *pe,
1357 unsigned int ports)
1358 {
1359 unsigned char port_mask = MVPP2_PRS_PORT_MASK;
1360 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1361
1362 pe->tcam.byte[MVPP2_PRS_TCAM_PORT_BYTE] = 0;
1363 pe->tcam.byte[enable_off] &= ~port_mask;
1364 pe->tcam.byte[enable_off] |= ~ports & MVPP2_PRS_PORT_MASK;
1365 }
1366
1367 /* Obtain port map from tcam sw entry */
1368 static unsigned int mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry *pe)
1369 {
1370 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1371
1372 return ~(pe->tcam.byte[enable_off]) & MVPP2_PRS_PORT_MASK;
1373 }
1374
1375 /* Set byte of data and its enable bits in tcam sw entry */
1376 static void mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry *pe,
1377 unsigned int offs, unsigned char byte,
1378 unsigned char enable)
1379 {
1380 pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)] = byte;
1381 pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)] = enable;
1382 }
1383
1384 /* Get byte of data and its enable bits from tcam sw entry */
1385 static void mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry *pe,
1386 unsigned int offs, unsigned char *byte,
1387 unsigned char *enable)
1388 {
1389 *byte = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)];
1390 *enable = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)];
1391 }
1392
1393 /* Set ethertype in tcam sw entry */
1394 static void mvpp2_prs_match_etype(struct mvpp2_prs_entry *pe, int offset,
1395 unsigned short ethertype)
1396 {
1397 mvpp2_prs_tcam_data_byte_set(pe, offset + 0, ethertype >> 8, 0xff);
1398 mvpp2_prs_tcam_data_byte_set(pe, offset + 1, ethertype & 0xff, 0xff);
1399 }
1400
1401 /* Set bits in sram sw entry */
1402 static void mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry *pe, int bit_num,
1403 int val)
1404 {
1405 pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] |= (val << (bit_num % 8));
1406 }
1407
1408 /* Clear bits in sram sw entry */
1409 static void mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry *pe, int bit_num,
1410 int val)
1411 {
1412 pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] &= ~(val << (bit_num % 8));
1413 }
1414
1415 /* Update ri bits in sram sw entry */
1416 static void mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry *pe,
1417 unsigned int bits, unsigned int mask)
1418 {
1419 unsigned int i;
1420
1421 for (i = 0; i < MVPP2_PRS_SRAM_RI_CTRL_BITS; i++) {
1422 int ri_off = MVPP2_PRS_SRAM_RI_OFFS;
1423
1424 if (!(mask & BIT(i)))
1425 continue;
1426
1427 if (bits & BIT(i))
1428 mvpp2_prs_sram_bits_set(pe, ri_off + i, 1);
1429 else
1430 mvpp2_prs_sram_bits_clear(pe, ri_off + i, 1);
1431
1432 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_RI_CTRL_OFFS + i, 1);
1433 }
1434 }
1435
1436 /* Update ai bits in sram sw entry */
1437 static void mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry *pe,
1438 unsigned int bits, unsigned int mask)
1439 {
1440 unsigned int i;
1441 int ai_off = MVPP2_PRS_SRAM_AI_OFFS;
1442
1443 for (i = 0; i < MVPP2_PRS_SRAM_AI_CTRL_BITS; i++) {
1444
1445 if (!(mask & BIT(i)))
1446 continue;
1447
1448 if (bits & BIT(i))
1449 mvpp2_prs_sram_bits_set(pe, ai_off + i, 1);
1450 else
1451 mvpp2_prs_sram_bits_clear(pe, ai_off + i, 1);
1452
1453 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_AI_CTRL_OFFS + i, 1);
1454 }
1455 }
1456
1457 /* Read ai bits from sram sw entry */
1458 static int mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry *pe)
1459 {
1460 u8 bits;
1461 int ai_off = MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_AI_OFFS);
1462 int ai_en_off = ai_off + 1;
1463 int ai_shift = MVPP2_PRS_SRAM_AI_OFFS % 8;
1464
1465 bits = (pe->sram.byte[ai_off] >> ai_shift) |
1466 (pe->sram.byte[ai_en_off] << (8 - ai_shift));
1467
1468 return bits;
1469 }
1470
1471 /* In sram sw entry set lookup ID field of the tcam key to be used in the next
1472 * lookup interation
1473 */
1474 static void mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry *pe,
1475 unsigned int lu)
1476 {
1477 int sram_next_off = MVPP2_PRS_SRAM_NEXT_LU_OFFS;
1478
1479 mvpp2_prs_sram_bits_clear(pe, sram_next_off,
1480 MVPP2_PRS_SRAM_NEXT_LU_MASK);
1481 mvpp2_prs_sram_bits_set(pe, sram_next_off, lu);
1482 }
1483
1484 /* In the sram sw entry set sign and value of the next lookup offset
1485 * and the offset value generated to the classifier
1486 */
1487 static void mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry *pe, int shift,
1488 unsigned int op)
1489 {
1490 /* Set sign */
1491 if (shift < 0) {
1492 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1493 shift = 0 - shift;
1494 } else {
1495 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1496 }
1497
1498 /* Set value */
1499 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_SHIFT_OFFS)] =
1500 (unsigned char)shift;
1501
1502 /* Reset and set operation */
1503 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS,
1504 MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK);
1505 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, op);
1506
1507 /* Set base offset as current */
1508 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1509 }
1510
1511 /* In the sram sw entry set sign and value of the user defined offset
1512 * generated to the classifier
1513 */
1514 static void mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry *pe,
1515 unsigned int type, int offset,
1516 unsigned int op)
1517 {
1518 /* Set sign */
1519 if (offset < 0) {
1520 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1521 offset = 0 - offset;
1522 } else {
1523 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1524 }
1525
1526 /* Set value */
1527 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_OFFS,
1528 MVPP2_PRS_SRAM_UDF_MASK);
1529 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_OFFS, offset);
1530 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1531 MVPP2_PRS_SRAM_UDF_BITS)] &=
1532 ~(MVPP2_PRS_SRAM_UDF_MASK >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1533 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1534 MVPP2_PRS_SRAM_UDF_BITS)] |=
1535 (offset >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1536
1537 /* Set offset type */
1538 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS,
1539 MVPP2_PRS_SRAM_UDF_TYPE_MASK);
1540 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, type);
1541
1542 /* Set offset operation */
1543 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS,
1544 MVPP2_PRS_SRAM_OP_SEL_UDF_MASK);
1545 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, op);
1546
1547 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1548 MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] &=
1549 ~(MVPP2_PRS_SRAM_OP_SEL_UDF_MASK >>
1550 (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1551
1552 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1553 MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] |=
1554 (op >> (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1555
1556 /* Set base offset as current */
1557 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1558 }
1559
1560 /* Find parser flow entry */
1561 static struct mvpp2_prs_entry *mvpp2_prs_flow_find(struct mvpp2 *priv, int flow)
1562 {
1563 struct mvpp2_prs_entry *pe;
1564 int tid;
1565
1566 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1567 if (!pe)
1568 return NULL;
1569 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
1570
1571 /* Go through the all entires with MVPP2_PRS_LU_FLOWS */
1572 for (tid = MVPP2_PRS_TCAM_SRAM_SIZE - 1; tid >= 0; tid--) {
1573 u8 bits;
1574
1575 if (!priv->prs_shadow[tid].valid ||
1576 priv->prs_shadow[tid].lu != MVPP2_PRS_LU_FLOWS)
1577 continue;
1578
1579 pe->index = tid;
1580 mvpp2_prs_hw_read(priv, pe);
1581 bits = mvpp2_prs_sram_ai_get(pe);
1582
1583 /* Sram store classification lookup ID in AI bits [5:0] */
1584 if ((bits & MVPP2_PRS_FLOW_ID_MASK) == flow)
1585 return pe;
1586 }
1587 kfree(pe);
1588
1589 return NULL;
1590 }
1591
1592 /* Return first free tcam index, seeking from start to end */
1593 static int mvpp2_prs_tcam_first_free(struct mvpp2 *priv, unsigned char start,
1594 unsigned char end)
1595 {
1596 int tid;
1597
1598 if (start > end)
1599 swap(start, end);
1600
1601 if (end >= MVPP2_PRS_TCAM_SRAM_SIZE)
1602 end = MVPP2_PRS_TCAM_SRAM_SIZE - 1;
1603
1604 for (tid = start; tid <= end; tid++) {
1605 if (!priv->prs_shadow[tid].valid)
1606 return tid;
1607 }
1608
1609 return -EINVAL;
1610 }
1611
1612 /* Enable/disable dropping all mac da's */
1613 static void mvpp2_prs_mac_drop_all_set(struct mvpp2 *priv, int port, bool add)
1614 {
1615 struct mvpp2_prs_entry pe;
1616
1617 if (priv->prs_shadow[MVPP2_PE_DROP_ALL].valid) {
1618 /* Entry exist - update port only */
1619 pe.index = MVPP2_PE_DROP_ALL;
1620 mvpp2_prs_hw_read(priv, &pe);
1621 } else {
1622 /* Entry doesn't exist - create new */
1623 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1624 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1625 pe.index = MVPP2_PE_DROP_ALL;
1626
1627 /* Non-promiscuous mode for all ports - DROP unknown packets */
1628 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
1629 MVPP2_PRS_RI_DROP_MASK);
1630
1631 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1632 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1633
1634 /* Update shadow table */
1635 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1636
1637 /* Mask all ports */
1638 mvpp2_prs_tcam_port_map_set(&pe, 0);
1639 }
1640
1641 /* Update port mask */
1642 mvpp2_prs_tcam_port_set(&pe, port, add);
1643
1644 mvpp2_prs_hw_write(priv, &pe);
1645 }
1646
1647 /* Set port to promiscuous mode */
1648 static void mvpp2_prs_mac_promisc_set(struct mvpp2 *priv, int port, bool add)
1649 {
1650 struct mvpp2_prs_entry pe;
1651
1652 /* Promiscuous mode - Accept unknown packets */
1653
1654 if (priv->prs_shadow[MVPP2_PE_MAC_PROMISCUOUS].valid) {
1655 /* Entry exist - update port only */
1656 pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1657 mvpp2_prs_hw_read(priv, &pe);
1658 } else {
1659 /* Entry doesn't exist - create new */
1660 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1661 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1662 pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1663
1664 /* Continue - set next lookup */
1665 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1666
1667 /* Set result info bits */
1668 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_UCAST,
1669 MVPP2_PRS_RI_L2_CAST_MASK);
1670
1671 /* Shift to ethertype */
1672 mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1673 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1674
1675 /* Mask all ports */
1676 mvpp2_prs_tcam_port_map_set(&pe, 0);
1677
1678 /* Update shadow table */
1679 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1680 }
1681
1682 /* Update port mask */
1683 mvpp2_prs_tcam_port_set(&pe, port, add);
1684
1685 mvpp2_prs_hw_write(priv, &pe);
1686 }
1687
1688 /* Accept multicast */
1689 static void mvpp2_prs_mac_multi_set(struct mvpp2 *priv, int port, int index,
1690 bool add)
1691 {
1692 struct mvpp2_prs_entry pe;
1693 unsigned char da_mc;
1694
1695 /* Ethernet multicast address first byte is
1696 * 0x01 for IPv4 and 0x33 for IPv6
1697 */
1698 da_mc = (index == MVPP2_PE_MAC_MC_ALL) ? 0x01 : 0x33;
1699
1700 if (priv->prs_shadow[index].valid) {
1701 /* Entry exist - update port only */
1702 pe.index = index;
1703 mvpp2_prs_hw_read(priv, &pe);
1704 } else {
1705 /* Entry doesn't exist - create new */
1706 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1707 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1708 pe.index = index;
1709
1710 /* Continue - set next lookup */
1711 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1712
1713 /* Set result info bits */
1714 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_MCAST,
1715 MVPP2_PRS_RI_L2_CAST_MASK);
1716
1717 /* Update tcam entry data first byte */
1718 mvpp2_prs_tcam_data_byte_set(&pe, 0, da_mc, 0xff);
1719
1720 /* Shift to ethertype */
1721 mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1722 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1723
1724 /* Mask all ports */
1725 mvpp2_prs_tcam_port_map_set(&pe, 0);
1726
1727 /* Update shadow table */
1728 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1729 }
1730
1731 /* Update port mask */
1732 mvpp2_prs_tcam_port_set(&pe, port, add);
1733
1734 mvpp2_prs_hw_write(priv, &pe);
1735 }
1736
1737 /* Parser per-port initialization */
1738 static void mvpp2_prs_hw_port_init(struct mvpp2 *priv, int port, int lu_first,
1739 int lu_max, int offset)
1740 {
1741 u32 val;
1742
1743 /* Set lookup ID */
1744 val = mvpp2_read(priv, MVPP2_PRS_INIT_LOOKUP_REG);
1745 val &= ~MVPP2_PRS_PORT_LU_MASK(port);
1746 val |= MVPP2_PRS_PORT_LU_VAL(port, lu_first);
1747 mvpp2_write(priv, MVPP2_PRS_INIT_LOOKUP_REG, val);
1748
1749 /* Set maximum number of loops for packet received from port */
1750 val = mvpp2_read(priv, MVPP2_PRS_MAX_LOOP_REG(port));
1751 val &= ~MVPP2_PRS_MAX_LOOP_MASK(port);
1752 val |= MVPP2_PRS_MAX_LOOP_VAL(port, lu_max);
1753 mvpp2_write(priv, MVPP2_PRS_MAX_LOOP_REG(port), val);
1754
1755 /* Set initial offset for packet header extraction for the first
1756 * searching loop
1757 */
1758 val = mvpp2_read(priv, MVPP2_PRS_INIT_OFFS_REG(port));
1759 val &= ~MVPP2_PRS_INIT_OFF_MASK(port);
1760 val |= MVPP2_PRS_INIT_OFF_VAL(port, offset);
1761 mvpp2_write(priv, MVPP2_PRS_INIT_OFFS_REG(port), val);
1762 }
1763
1764 /* Default flow entries initialization for all ports */
1765 static void mvpp2_prs_def_flow_init(struct mvpp2 *priv)
1766 {
1767 struct mvpp2_prs_entry pe;
1768 int port;
1769
1770 for (port = 0; port < MVPP2_MAX_PORTS; port++) {
1771 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1772 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1773 pe.index = MVPP2_PE_FIRST_DEFAULT_FLOW - port;
1774
1775 /* Mask all ports */
1776 mvpp2_prs_tcam_port_map_set(&pe, 0);
1777
1778 /* Set flow ID*/
1779 mvpp2_prs_sram_ai_update(&pe, port, MVPP2_PRS_FLOW_ID_MASK);
1780 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
1781
1782 /* Update shadow table and hw entry */
1783 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_FLOWS);
1784 mvpp2_prs_hw_write(priv, &pe);
1785 }
1786 }
1787
1788 /* Set default entry for Marvell Header field */
1789 static void mvpp2_prs_mh_init(struct mvpp2 *priv)
1790 {
1791 struct mvpp2_prs_entry pe;
1792
1793 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1794
1795 pe.index = MVPP2_PE_MH_DEFAULT;
1796 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MH);
1797 mvpp2_prs_sram_shift_set(&pe, MVPP2_MH_SIZE,
1798 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1799 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_MAC);
1800
1801 /* Unmask all ports */
1802 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
1803
1804 /* Update shadow table and hw entry */
1805 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MH);
1806 mvpp2_prs_hw_write(priv, &pe);
1807 }
1808
1809 /* Set default entires (place holder) for promiscuous, non-promiscuous and
1810 * multicast MAC addresses
1811 */
1812 static void mvpp2_prs_mac_init(struct mvpp2 *priv)
1813 {
1814 struct mvpp2_prs_entry pe;
1815
1816 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1817
1818 /* Non-promiscuous mode for all ports - DROP unknown packets */
1819 pe.index = MVPP2_PE_MAC_NON_PROMISCUOUS;
1820 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1821
1822 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
1823 MVPP2_PRS_RI_DROP_MASK);
1824 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1825 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1826
1827 /* Unmask all ports */
1828 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
1829
1830 /* Update shadow table and hw entry */
1831 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1832 mvpp2_prs_hw_write(priv, &pe);
1833
1834 /* place holders only - no ports */
1835 mvpp2_prs_mac_drop_all_set(priv, 0, false);
1836 mvpp2_prs_mac_promisc_set(priv, 0, false);
1837 mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_ALL, 0, false);
1838 mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_IP6, 0, false);
1839 }
1840
1841 /* Match basic ethertypes */
1842 static int mvpp2_prs_etype_init(struct mvpp2 *priv)
1843 {
1844 struct mvpp2_prs_entry pe;
1845 int tid;
1846
1847 /* Ethertype: PPPoE */
1848 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1849 MVPP2_PE_LAST_FREE_TID);
1850 if (tid < 0)
1851 return tid;
1852
1853 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1854 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
1855 pe.index = tid;
1856
1857 mvpp2_prs_match_etype(&pe, 0, PROT_PPP_SES);
1858
1859 mvpp2_prs_sram_shift_set(&pe, MVPP2_PPPOE_HDR_SIZE,
1860 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1861 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
1862 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_PPPOE_MASK,
1863 MVPP2_PRS_RI_PPPOE_MASK);
1864
1865 /* Update shadow table and hw entry */
1866 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
1867 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
1868 priv->prs_shadow[pe.index].finish = false;
1869 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_PPPOE_MASK,
1870 MVPP2_PRS_RI_PPPOE_MASK);
1871 mvpp2_prs_hw_write(priv, &pe);
1872
1873 /* Ethertype: ARP */
1874 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1875 MVPP2_PE_LAST_FREE_TID);
1876 if (tid < 0)
1877 return tid;
1878
1879 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1880 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
1881 pe.index = tid;
1882
1883 mvpp2_prs_match_etype(&pe, 0, PROT_ARP);
1884
1885 /* Generate flow in the next iteration*/
1886 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1887 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1888 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_ARP,
1889 MVPP2_PRS_RI_L3_PROTO_MASK);
1890 /* Set L3 offset */
1891 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
1892 MVPP2_ETH_TYPE_LEN,
1893 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
1894
1895 /* Update shadow table and hw entry */
1896 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
1897 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
1898 priv->prs_shadow[pe.index].finish = true;
1899 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_ARP,
1900 MVPP2_PRS_RI_L3_PROTO_MASK);
1901 mvpp2_prs_hw_write(priv, &pe);
1902
1903 /* Ethertype: LBTD */
1904 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1905 MVPP2_PE_LAST_FREE_TID);
1906 if (tid < 0)
1907 return tid;
1908
1909 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1910 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
1911 pe.index = tid;
1912
1913 mvpp2_prs_match_etype(&pe, 0, MVPP2_IP_LBDT_TYPE);
1914
1915 /* Generate flow in the next iteration*/
1916 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1917 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1918 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
1919 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
1920 MVPP2_PRS_RI_CPU_CODE_MASK |
1921 MVPP2_PRS_RI_UDF3_MASK);
1922 /* Set L3 offset */
1923 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
1924 MVPP2_ETH_TYPE_LEN,
1925 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
1926
1927 /* Update shadow table and hw entry */
1928 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
1929 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
1930 priv->prs_shadow[pe.index].finish = true;
1931 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
1932 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
1933 MVPP2_PRS_RI_CPU_CODE_MASK |
1934 MVPP2_PRS_RI_UDF3_MASK);
1935 mvpp2_prs_hw_write(priv, &pe);
1936
1937 /* Ethertype: IPv4 without options */
1938 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1939 MVPP2_PE_LAST_FREE_TID);
1940 if (tid < 0)
1941 return tid;
1942
1943 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1944 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
1945 pe.index = tid;
1946
1947 mvpp2_prs_match_etype(&pe, 0, PROT_IP);
1948 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
1949 MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
1950 MVPP2_PRS_IPV4_HEAD_MASK |
1951 MVPP2_PRS_IPV4_IHL_MASK);
1952
1953 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
1954 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
1955 MVPP2_PRS_RI_L3_PROTO_MASK);
1956 /* Skip eth_type + 4 bytes of IP header */
1957 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
1958 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1959 /* Set L3 offset */
1960 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
1961 MVPP2_ETH_TYPE_LEN,
1962 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
1963
1964 /* Update shadow table and hw entry */
1965 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
1966 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
1967 priv->prs_shadow[pe.index].finish = false;
1968 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4,
1969 MVPP2_PRS_RI_L3_PROTO_MASK);
1970 mvpp2_prs_hw_write(priv, &pe);
1971
1972 /* Ethertype: IPv4 with options */
1973 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1974 MVPP2_PE_LAST_FREE_TID);
1975 if (tid < 0)
1976 return tid;
1977
1978 pe.index = tid;
1979
1980 /* Clear tcam data before updating */
1981 pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(MVPP2_ETH_TYPE_LEN)] = 0x0;
1982 pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(MVPP2_ETH_TYPE_LEN)] = 0x0;
1983
1984 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
1985 MVPP2_PRS_IPV4_HEAD,
1986 MVPP2_PRS_IPV4_HEAD_MASK);
1987
1988 /* Clear ri before updating */
1989 pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
1990 pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
1991 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
1992 MVPP2_PRS_RI_L3_PROTO_MASK);
1993
1994 /* Update shadow table and hw entry */
1995 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
1996 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
1997 priv->prs_shadow[pe.index].finish = false;
1998 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4_OPT,
1999 MVPP2_PRS_RI_L3_PROTO_MASK);
2000 mvpp2_prs_hw_write(priv, &pe);
2001
2002 /* Ethertype: IPv6 without options */
2003 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2004 MVPP2_PE_LAST_FREE_TID);
2005 if (tid < 0)
2006 return tid;
2007
2008 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2009 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2010 pe.index = tid;
2011
2012 mvpp2_prs_match_etype(&pe, 0, PROT_IPV6);
2013
2014 /* Skip DIP of IPV6 header */
2015 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 8 +
2016 MVPP2_MAX_L3_ADDR_SIZE,
2017 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2018 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2019 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
2020 MVPP2_PRS_RI_L3_PROTO_MASK);
2021 /* Set L3 offset */
2022 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2023 MVPP2_ETH_TYPE_LEN,
2024 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2025
2026 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2027 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2028 priv->prs_shadow[pe.index].finish = false;
2029 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP6,
2030 MVPP2_PRS_RI_L3_PROTO_MASK);
2031 mvpp2_prs_hw_write(priv, &pe);
2032
2033 /* Default entry for MVPP2_PRS_LU_L2 - Unknown ethtype */
2034 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2035 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2036 pe.index = MVPP2_PE_ETH_TYPE_UN;
2037
2038 /* Unmask all ports */
2039 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2040
2041 /* Generate flow in the next iteration*/
2042 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2043 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2044 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
2045 MVPP2_PRS_RI_L3_PROTO_MASK);
2046 /* Set L3 offset even it's unknown L3 */
2047 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2048 MVPP2_ETH_TYPE_LEN,
2049 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2050
2051 /* Update shadow table and hw entry */
2052 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2053 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2054 priv->prs_shadow[pe.index].finish = true;
2055 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_UN,
2056 MVPP2_PRS_RI_L3_PROTO_MASK);
2057 mvpp2_prs_hw_write(priv, &pe);
2058
2059 return 0;
2060 }
2061
2062 /* Parser default initialization */
2063 static int mvpp2_prs_default_init(struct udevice *dev,
2064 struct mvpp2 *priv)
2065 {
2066 int err, index, i;
2067
2068 /* Enable tcam table */
2069 mvpp2_write(priv, MVPP2_PRS_TCAM_CTRL_REG, MVPP2_PRS_TCAM_EN_MASK);
2070
2071 /* Clear all tcam and sram entries */
2072 for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) {
2073 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
2074 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
2075 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), 0);
2076
2077 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, index);
2078 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
2079 mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), 0);
2080 }
2081
2082 /* Invalidate all tcam entries */
2083 for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++)
2084 mvpp2_prs_hw_inv(priv, index);
2085
2086 priv->prs_shadow = devm_kcalloc(dev, MVPP2_PRS_TCAM_SRAM_SIZE,
2087 sizeof(struct mvpp2_prs_shadow),
2088 GFP_KERNEL);
2089 if (!priv->prs_shadow)
2090 return -ENOMEM;
2091
2092 /* Always start from lookup = 0 */
2093 for (index = 0; index < MVPP2_MAX_PORTS; index++)
2094 mvpp2_prs_hw_port_init(priv, index, MVPP2_PRS_LU_MH,
2095 MVPP2_PRS_PORT_LU_MAX, 0);
2096
2097 mvpp2_prs_def_flow_init(priv);
2098
2099 mvpp2_prs_mh_init(priv);
2100
2101 mvpp2_prs_mac_init(priv);
2102
2103 err = mvpp2_prs_etype_init(priv);
2104 if (err)
2105 return err;
2106
2107 return 0;
2108 }
2109
2110 /* Compare MAC DA with tcam entry data */
2111 static bool mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry *pe,
2112 const u8 *da, unsigned char *mask)
2113 {
2114 unsigned char tcam_byte, tcam_mask;
2115 int index;
2116
2117 for (index = 0; index < ETH_ALEN; index++) {
2118 mvpp2_prs_tcam_data_byte_get(pe, index, &tcam_byte, &tcam_mask);
2119 if (tcam_mask != mask[index])
2120 return false;
2121
2122 if ((tcam_mask & tcam_byte) != (da[index] & mask[index]))
2123 return false;
2124 }
2125
2126 return true;
2127 }
2128
2129 /* Find tcam entry with matched pair <MAC DA, port> */
2130 static struct mvpp2_prs_entry *
2131 mvpp2_prs_mac_da_range_find(struct mvpp2 *priv, int pmap, const u8 *da,
2132 unsigned char *mask, int udf_type)
2133 {
2134 struct mvpp2_prs_entry *pe;
2135 int tid;
2136
2137 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2138 if (!pe)
2139 return NULL;
2140 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
2141
2142 /* Go through the all entires with MVPP2_PRS_LU_MAC */
2143 for (tid = MVPP2_PE_FIRST_FREE_TID;
2144 tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
2145 unsigned int entry_pmap;
2146
2147 if (!priv->prs_shadow[tid].valid ||
2148 (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
2149 (priv->prs_shadow[tid].udf != udf_type))
2150 continue;
2151
2152 pe->index = tid;
2153 mvpp2_prs_hw_read(priv, pe);
2154 entry_pmap = mvpp2_prs_tcam_port_map_get(pe);
2155
2156 if (mvpp2_prs_mac_range_equals(pe, da, mask) &&
2157 entry_pmap == pmap)
2158 return pe;
2159 }
2160 kfree(pe);
2161
2162 return NULL;
2163 }
2164
2165 /* Update parser's mac da entry */
2166 static int mvpp2_prs_mac_da_accept(struct mvpp2 *priv, int port,
2167 const u8 *da, bool add)
2168 {
2169 struct mvpp2_prs_entry *pe;
2170 unsigned int pmap, len, ri;
2171 unsigned char mask[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
2172 int tid;
2173
2174 /* Scan TCAM and see if entry with this <MAC DA, port> already exist */
2175 pe = mvpp2_prs_mac_da_range_find(priv, (1 << port), da, mask,
2176 MVPP2_PRS_UDF_MAC_DEF);
2177
2178 /* No such entry */
2179 if (!pe) {
2180 if (!add)
2181 return 0;
2182
2183 /* Create new TCAM entry */
2184 /* Find first range mac entry*/
2185 for (tid = MVPP2_PE_FIRST_FREE_TID;
2186 tid <= MVPP2_PE_LAST_FREE_TID; tid++)
2187 if (priv->prs_shadow[tid].valid &&
2188 (priv->prs_shadow[tid].lu == MVPP2_PRS_LU_MAC) &&
2189 (priv->prs_shadow[tid].udf ==
2190 MVPP2_PRS_UDF_MAC_RANGE))
2191 break;
2192
2193 /* Go through the all entries from first to last */
2194 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2195 tid - 1);
2196 if (tid < 0)
2197 return tid;
2198
2199 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2200 if (!pe)
2201 return -1;
2202 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
2203 pe->index = tid;
2204
2205 /* Mask all ports */
2206 mvpp2_prs_tcam_port_map_set(pe, 0);
2207 }
2208
2209 /* Update port mask */
2210 mvpp2_prs_tcam_port_set(pe, port, add);
2211
2212 /* Invalidate the entry if no ports are left enabled */
2213 pmap = mvpp2_prs_tcam_port_map_get(pe);
2214 if (pmap == 0) {
2215 if (add) {
2216 kfree(pe);
2217 return -1;
2218 }
2219 mvpp2_prs_hw_inv(priv, pe->index);
2220 priv->prs_shadow[pe->index].valid = false;
2221 kfree(pe);
2222 return 0;
2223 }
2224
2225 /* Continue - set next lookup */
2226 mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_DSA);
2227
2228 /* Set match on DA */
2229 len = ETH_ALEN;
2230 while (len--)
2231 mvpp2_prs_tcam_data_byte_set(pe, len, da[len], 0xff);
2232
2233 /* Set result info bits */
2234 ri = MVPP2_PRS_RI_L2_UCAST | MVPP2_PRS_RI_MAC_ME_MASK;
2235
2236 mvpp2_prs_sram_ri_update(pe, ri, MVPP2_PRS_RI_L2_CAST_MASK |
2237 MVPP2_PRS_RI_MAC_ME_MASK);
2238 mvpp2_prs_shadow_ri_set(priv, pe->index, ri, MVPP2_PRS_RI_L2_CAST_MASK |
2239 MVPP2_PRS_RI_MAC_ME_MASK);
2240
2241 /* Shift to ethertype */
2242 mvpp2_prs_sram_shift_set(pe, 2 * ETH_ALEN,
2243 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2244
2245 /* Update shadow table and hw entry */
2246 priv->prs_shadow[pe->index].udf = MVPP2_PRS_UDF_MAC_DEF;
2247 mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_MAC);
2248 mvpp2_prs_hw_write(priv, pe);
2249
2250 kfree(pe);
2251
2252 return 0;
2253 }
2254
2255 static int mvpp2_prs_update_mac_da(struct mvpp2_port *port, const u8 *da)
2256 {
2257 int err;
2258
2259 /* Remove old parser entry */
2260 err = mvpp2_prs_mac_da_accept(port->priv, port->id, port->dev_addr,
2261 false);
2262 if (err)
2263 return err;
2264
2265 /* Add new parser entry */
2266 err = mvpp2_prs_mac_da_accept(port->priv, port->id, da, true);
2267 if (err)
2268 return err;
2269
2270 /* Set addr in the device */
2271 memcpy(port->dev_addr, da, ETH_ALEN);
2272
2273 return 0;
2274 }
2275
2276 /* Set prs flow for the port */
2277 static int mvpp2_prs_def_flow(struct mvpp2_port *port)
2278 {
2279 struct mvpp2_prs_entry *pe;
2280 int tid;
2281
2282 pe = mvpp2_prs_flow_find(port->priv, port->id);
2283
2284 /* Such entry not exist */
2285 if (!pe) {
2286 /* Go through the all entires from last to first */
2287 tid = mvpp2_prs_tcam_first_free(port->priv,
2288 MVPP2_PE_LAST_FREE_TID,
2289 MVPP2_PE_FIRST_FREE_TID);
2290 if (tid < 0)
2291 return tid;
2292
2293 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2294 if (!pe)
2295 return -ENOMEM;
2296
2297 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
2298 pe->index = tid;
2299
2300 /* Set flow ID*/
2301 mvpp2_prs_sram_ai_update(pe, port->id, MVPP2_PRS_FLOW_ID_MASK);
2302 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
2303
2304 /* Update shadow table */
2305 mvpp2_prs_shadow_set(port->priv, pe->index, MVPP2_PRS_LU_FLOWS);
2306 }
2307
2308 mvpp2_prs_tcam_port_map_set(pe, (1 << port->id));
2309 mvpp2_prs_hw_write(port->priv, pe);
2310 kfree(pe);
2311
2312 return 0;
2313 }
2314
2315 /* Classifier configuration routines */
2316
2317 /* Update classification flow table registers */
2318 static void mvpp2_cls_flow_write(struct mvpp2 *priv,
2319 struct mvpp2_cls_flow_entry *fe)
2320 {
2321 mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index);
2322 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG, fe->data[0]);
2323 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG, fe->data[1]);
2324 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG, fe->data[2]);
2325 }
2326
2327 /* Update classification lookup table register */
2328 static void mvpp2_cls_lookup_write(struct mvpp2 *priv,
2329 struct mvpp2_cls_lookup_entry *le)
2330 {
2331 u32 val;
2332
2333 val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid;
2334 mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
2335 mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data);
2336 }
2337
2338 /* Classifier default initialization */
2339 static void mvpp2_cls_init(struct mvpp2 *priv)
2340 {
2341 struct mvpp2_cls_lookup_entry le;
2342 struct mvpp2_cls_flow_entry fe;
2343 int index;
2344
2345 /* Enable classifier */
2346 mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK);
2347
2348 /* Clear classifier flow table */
2349 memset(&fe.data, 0, MVPP2_CLS_FLOWS_TBL_DATA_WORDS);
2350 for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) {
2351 fe.index = index;
2352 mvpp2_cls_flow_write(priv, &fe);
2353 }
2354
2355 /* Clear classifier lookup table */
2356 le.data = 0;
2357 for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) {
2358 le.lkpid = index;
2359 le.way = 0;
2360 mvpp2_cls_lookup_write(priv, &le);
2361
2362 le.way = 1;
2363 mvpp2_cls_lookup_write(priv, &le);
2364 }
2365 }
2366
2367 static void mvpp2_cls_port_config(struct mvpp2_port *port)
2368 {
2369 struct mvpp2_cls_lookup_entry le;
2370 u32 val;
2371
2372 /* Set way for the port */
2373 val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG);
2374 val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id);
2375 mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val);
2376
2377 /* Pick the entry to be accessed in lookup ID decoding table
2378 * according to the way and lkpid.
2379 */
2380 le.lkpid = port->id;
2381 le.way = 0;
2382 le.data = 0;
2383
2384 /* Set initial CPU queue for receiving packets */
2385 le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK;
2386 le.data |= port->first_rxq;
2387
2388 /* Disable classification engines */
2389 le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
2390
2391 /* Update lookup ID table entry */
2392 mvpp2_cls_lookup_write(port->priv, &le);
2393 }
2394
2395 /* Set CPU queue number for oversize packets */
2396 static void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port)
2397 {
2398 u32 val;
2399
2400 mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id),
2401 port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK);
2402
2403 mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id),
2404 (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS));
2405
2406 val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG);
2407 val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id);
2408 mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val);
2409 }
2410
2411 /* Buffer Manager configuration routines */
2412
2413 /* Create pool */
2414 static int mvpp2_bm_pool_create(struct udevice *dev,
2415 struct mvpp2 *priv,
2416 struct mvpp2_bm_pool *bm_pool, int size)
2417 {
2418 u32 val;
2419
2420 /* Number of buffer pointers must be a multiple of 16, as per
2421 * hardware constraints
2422 */
2423 if (!IS_ALIGNED(size, 16))
2424 return -EINVAL;
2425
2426 bm_pool->virt_addr = buffer_loc.bm_pool[bm_pool->id];
2427 bm_pool->dma_addr = (dma_addr_t)buffer_loc.bm_pool[bm_pool->id];
2428 if (!bm_pool->virt_addr)
2429 return -ENOMEM;
2430
2431 if (!IS_ALIGNED((unsigned long)bm_pool->virt_addr,
2432 MVPP2_BM_POOL_PTR_ALIGN)) {
2433 dev_err(&pdev->dev, "BM pool %d is not %d bytes aligned\n",
2434 bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN);
2435 return -ENOMEM;
2436 }
2437
2438 mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id),
2439 lower_32_bits(bm_pool->dma_addr));
2440 mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size);
2441
2442 val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
2443 val |= MVPP2_BM_START_MASK;
2444 mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
2445
2446 bm_pool->type = MVPP2_BM_FREE;
2447 bm_pool->size = size;
2448 bm_pool->pkt_size = 0;
2449 bm_pool->buf_num = 0;
2450
2451 return 0;
2452 }
2453
2454 /* Set pool buffer size */
2455 static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv,
2456 struct mvpp2_bm_pool *bm_pool,
2457 int buf_size)
2458 {
2459 u32 val;
2460
2461 bm_pool->buf_size = buf_size;
2462
2463 val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET);
2464 mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val);
2465 }
2466
2467 /* Free all buffers from the pool */
2468 static void mvpp2_bm_bufs_free(struct udevice *dev, struct mvpp2 *priv,
2469 struct mvpp2_bm_pool *bm_pool)
2470 {
2471 bm_pool->buf_num = 0;
2472 }
2473
2474 /* Cleanup pool */
2475 static int mvpp2_bm_pool_destroy(struct udevice *dev,
2476 struct mvpp2 *priv,
2477 struct mvpp2_bm_pool *bm_pool)
2478 {
2479 u32 val;
2480
2481 mvpp2_bm_bufs_free(dev, priv, bm_pool);
2482 if (bm_pool->buf_num) {
2483 dev_err(dev, "cannot free all buffers in pool %d\n", bm_pool->id);
2484 return 0;
2485 }
2486
2487 val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
2488 val |= MVPP2_BM_STOP_MASK;
2489 mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
2490
2491 return 0;
2492 }
2493
2494 static int mvpp2_bm_pools_init(struct udevice *dev,
2495 struct mvpp2 *priv)
2496 {
2497 int i, err, size;
2498 struct mvpp2_bm_pool *bm_pool;
2499
2500 /* Create all pools with maximum size */
2501 size = MVPP2_BM_POOL_SIZE_MAX;
2502 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
2503 bm_pool = &priv->bm_pools[i];
2504 bm_pool->id = i;
2505 err = mvpp2_bm_pool_create(dev, priv, bm_pool, size);
2506 if (err)
2507 goto err_unroll_pools;
2508 mvpp2_bm_pool_bufsize_set(priv, bm_pool, 0);
2509 }
2510 return 0;
2511
2512 err_unroll_pools:
2513 dev_err(&pdev->dev, "failed to create BM pool %d, size %d\n", i, size);
2514 for (i = i - 1; i >= 0; i--)
2515 mvpp2_bm_pool_destroy(dev, priv, &priv->bm_pools[i]);
2516 return err;
2517 }
2518
2519 static int mvpp2_bm_init(struct udevice *dev, struct mvpp2 *priv)
2520 {
2521 int i, err;
2522
2523 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
2524 /* Mask BM all interrupts */
2525 mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0);
2526 /* Clear BM cause register */
2527 mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0);
2528 }
2529
2530 /* Allocate and initialize BM pools */
2531 priv->bm_pools = devm_kcalloc(dev, MVPP2_BM_POOLS_NUM,
2532 sizeof(struct mvpp2_bm_pool), GFP_KERNEL);
2533 if (!priv->bm_pools)
2534 return -ENOMEM;
2535
2536 err = mvpp2_bm_pools_init(dev, priv);
2537 if (err < 0)
2538 return err;
2539 return 0;
2540 }
2541
2542 /* Attach long pool to rxq */
2543 static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port,
2544 int lrxq, int long_pool)
2545 {
2546 u32 val, mask;
2547 int prxq;
2548
2549 /* Get queue physical ID */
2550 prxq = port->rxqs[lrxq]->id;
2551
2552 if (port->priv->hw_version == MVPP21)
2553 mask = MVPP21_RXQ_POOL_LONG_MASK;
2554 else
2555 mask = MVPP22_RXQ_POOL_LONG_MASK;
2556
2557 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
2558 val &= ~mask;
2559 val |= (long_pool << MVPP2_RXQ_POOL_LONG_OFFS) & mask;
2560 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
2561 }
2562
2563 /* Set pool number in a BM cookie */
2564 static inline u32 mvpp2_bm_cookie_pool_set(u32 cookie, int pool)
2565 {
2566 u32 bm;
2567
2568 bm = cookie & ~(0xFF << MVPP2_BM_COOKIE_POOL_OFFS);
2569 bm |= ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS);
2570
2571 return bm;
2572 }
2573
2574 /* Get pool number from a BM cookie */
2575 static inline int mvpp2_bm_cookie_pool_get(unsigned long cookie)
2576 {
2577 return (cookie >> MVPP2_BM_COOKIE_POOL_OFFS) & 0xFF;
2578 }
2579
2580 /* Release buffer to BM */
2581 static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool,
2582 dma_addr_t buf_dma_addr,
2583 unsigned long buf_phys_addr)
2584 {
2585 if (port->priv->hw_version == MVPP22) {
2586 u32 val = 0;
2587
2588 if (sizeof(dma_addr_t) == 8)
2589 val |= upper_32_bits(buf_dma_addr) &
2590 MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK;
2591
2592 if (sizeof(phys_addr_t) == 8)
2593 val |= (upper_32_bits(buf_phys_addr)
2594 << MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT) &
2595 MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK;
2596
2597 mvpp2_write(port->priv, MVPP22_BM_ADDR_HIGH_RLS_REG, val);
2598 }
2599
2600 /* MVPP2_BM_VIRT_RLS_REG is not interpreted by HW, and simply
2601 * returned in the "cookie" field of the RX
2602 * descriptor. Instead of storing the virtual address, we
2603 * store the physical address
2604 */
2605 mvpp2_write(port->priv, MVPP2_BM_VIRT_RLS_REG, buf_phys_addr);
2606 mvpp2_write(port->priv, MVPP2_BM_PHY_RLS_REG(pool), buf_dma_addr);
2607 }
2608
2609 /* Refill BM pool */
2610 static void mvpp2_pool_refill(struct mvpp2_port *port, u32 bm,
2611 dma_addr_t dma_addr,
2612 phys_addr_t phys_addr)
2613 {
2614 int pool = mvpp2_bm_cookie_pool_get(bm);
2615
2616 mvpp2_bm_pool_put(port, pool, dma_addr, phys_addr);
2617 }
2618
2619 /* Allocate buffers for the pool */
2620 static int mvpp2_bm_bufs_add(struct mvpp2_port *port,
2621 struct mvpp2_bm_pool *bm_pool, int buf_num)
2622 {
2623 int i;
2624
2625 if (buf_num < 0 ||
2626 (buf_num + bm_pool->buf_num > bm_pool->size)) {
2627 netdev_err(port->dev,
2628 "cannot allocate %d buffers for pool %d\n",
2629 buf_num, bm_pool->id);
2630 return 0;
2631 }
2632
2633 for (i = 0; i < buf_num; i++) {
2634 mvpp2_bm_pool_put(port, bm_pool->id,
2635 (dma_addr_t)buffer_loc.rx_buffer[i],
2636 (unsigned long)buffer_loc.rx_buffer[i]);
2637
2638 }
2639
2640 /* Update BM driver with number of buffers added to pool */
2641 bm_pool->buf_num += i;
2642 bm_pool->in_use_thresh = bm_pool->buf_num / 4;
2643
2644 return i;
2645 }
2646
2647 /* Notify the driver that BM pool is being used as specific type and return the
2648 * pool pointer on success
2649 */
2650 static struct mvpp2_bm_pool *
2651 mvpp2_bm_pool_use(struct mvpp2_port *port, int pool, enum mvpp2_bm_type type,
2652 int pkt_size)
2653 {
2654 struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool];
2655 int num;
2656
2657 if (new_pool->type != MVPP2_BM_FREE && new_pool->type != type) {
2658 netdev_err(port->dev, "mixing pool types is forbidden\n");
2659 return NULL;
2660 }
2661
2662 if (new_pool->type == MVPP2_BM_FREE)
2663 new_pool->type = type;
2664
2665 /* Allocate buffers in case BM pool is used as long pool, but packet
2666 * size doesn't match MTU or BM pool hasn't being used yet
2667 */
2668 if (((type == MVPP2_BM_SWF_LONG) && (pkt_size > new_pool->pkt_size)) ||
2669 (new_pool->pkt_size == 0)) {
2670 int pkts_num;
2671
2672 /* Set default buffer number or free all the buffers in case
2673 * the pool is not empty
2674 */
2675 pkts_num = new_pool->buf_num;
2676 if (pkts_num == 0)
2677 pkts_num = type == MVPP2_BM_SWF_LONG ?
2678 MVPP2_BM_LONG_BUF_NUM :
2679 MVPP2_BM_SHORT_BUF_NUM;
2680 else
2681 mvpp2_bm_bufs_free(NULL,
2682 port->priv, new_pool);
2683
2684 new_pool->pkt_size = pkt_size;
2685
2686 /* Allocate buffers for this pool */
2687 num = mvpp2_bm_bufs_add(port, new_pool, pkts_num);
2688 if (num != pkts_num) {
2689 dev_err(dev, "pool %d: %d of %d allocated\n",
2690 new_pool->id, num, pkts_num);
2691 return NULL;
2692 }
2693 }
2694
2695 mvpp2_bm_pool_bufsize_set(port->priv, new_pool,
2696 MVPP2_RX_BUF_SIZE(new_pool->pkt_size));
2697
2698 return new_pool;
2699 }
2700
2701 /* Initialize pools for swf */
2702 static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port)
2703 {
2704 int rxq;
2705
2706 if (!port->pool_long) {
2707 port->pool_long =
2708 mvpp2_bm_pool_use(port, MVPP2_BM_SWF_LONG_POOL(port->id),
2709 MVPP2_BM_SWF_LONG,
2710 port->pkt_size);
2711 if (!port->pool_long)
2712 return -ENOMEM;
2713
2714 port->pool_long->port_map |= (1 << port->id);
2715
2716 for (rxq = 0; rxq < rxq_number; rxq++)
2717 mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id);
2718 }
2719
2720 return 0;
2721 }
2722
2723 /* Port configuration routines */
2724
2725 static void mvpp2_port_mii_set(struct mvpp2_port *port)
2726 {
2727 u32 val;
2728
2729 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
2730
2731 switch (port->phy_interface) {
2732 case PHY_INTERFACE_MODE_SGMII:
2733 val |= MVPP2_GMAC_INBAND_AN_MASK;
2734 break;
2735 case PHY_INTERFACE_MODE_RGMII:
2736 val |= MVPP2_GMAC_PORT_RGMII_MASK;
2737 default:
2738 val &= ~MVPP2_GMAC_PCS_ENABLE_MASK;
2739 }
2740
2741 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
2742 }
2743
2744 static void mvpp2_port_fc_adv_enable(struct mvpp2_port *port)
2745 {
2746 u32 val;
2747
2748 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
2749 val |= MVPP2_GMAC_FC_ADV_EN;
2750 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
2751 }
2752
2753 static void mvpp2_port_enable(struct mvpp2_port *port)
2754 {
2755 u32 val;
2756
2757 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
2758 val |= MVPP2_GMAC_PORT_EN_MASK;
2759 val |= MVPP2_GMAC_MIB_CNTR_EN_MASK;
2760 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
2761 }
2762
2763 static void mvpp2_port_disable(struct mvpp2_port *port)
2764 {
2765 u32 val;
2766
2767 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
2768 val &= ~(MVPP2_GMAC_PORT_EN_MASK);
2769 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
2770 }
2771
2772 /* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */
2773 static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port)
2774 {
2775 u32 val;
2776
2777 val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) &
2778 ~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
2779 writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
2780 }
2781
2782 /* Configure loopback port */
2783 static void mvpp2_port_loopback_set(struct mvpp2_port *port)
2784 {
2785 u32 val;
2786
2787 val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
2788
2789 if (port->speed == 1000)
2790 val |= MVPP2_GMAC_GMII_LB_EN_MASK;
2791 else
2792 val &= ~MVPP2_GMAC_GMII_LB_EN_MASK;
2793
2794 if (port->phy_interface == PHY_INTERFACE_MODE_SGMII)
2795 val |= MVPP2_GMAC_PCS_LB_EN_MASK;
2796 else
2797 val &= ~MVPP2_GMAC_PCS_LB_EN_MASK;
2798
2799 writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
2800 }
2801
2802 static void mvpp2_port_reset(struct mvpp2_port *port)
2803 {
2804 u32 val;
2805
2806 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
2807 ~MVPP2_GMAC_PORT_RESET_MASK;
2808 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
2809
2810 while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
2811 MVPP2_GMAC_PORT_RESET_MASK)
2812 continue;
2813 }
2814
2815 /* Change maximum receive size of the port */
2816 static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port)
2817 {
2818 u32 val;
2819
2820 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
2821 val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
2822 val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
2823 MVPP2_GMAC_MAX_RX_SIZE_OFFS);
2824 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
2825 }
2826
2827 /* Set defaults to the MVPP2 port */
2828 static void mvpp2_defaults_set(struct mvpp2_port *port)
2829 {
2830 int tx_port_num, val, queue, ptxq, lrxq;
2831
2832 if (port->priv->hw_version == MVPP21) {
2833 /* Configure port to loopback if needed */
2834 if (port->flags & MVPP2_F_LOOPBACK)
2835 mvpp2_port_loopback_set(port);
2836
2837 /* Update TX FIFO MIN Threshold */
2838 val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
2839 val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
2840 /* Min. TX threshold must be less than minimal packet length */
2841 val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2);
2842 writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
2843 }
2844
2845 /* Disable Legacy WRR, Disable EJP, Release from reset */
2846 tx_port_num = mvpp2_egress_port(port);
2847 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG,
2848 tx_port_num);
2849 mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0);
2850
2851 /* Close bandwidth for all queues */
2852 for (queue = 0; queue < MVPP2_MAX_TXQ; queue++) {
2853 ptxq = mvpp2_txq_phys(port->id, queue);
2854 mvpp2_write(port->priv,
2855 MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(ptxq), 0);
2856 }
2857
2858 /* Set refill period to 1 usec, refill tokens
2859 * and bucket size to maximum
2860 */
2861 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG, 0xc8);
2862 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG);
2863 val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK;
2864 val |= MVPP2_TXP_REFILL_PERIOD_MASK(1);
2865 val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK;
2866 mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val);
2867 val = MVPP2_TXP_TOKEN_SIZE_MAX;
2868 mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
2869
2870 /* Set MaximumLowLatencyPacketSize value to 256 */
2871 mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id),
2872 MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK |
2873 MVPP2_RX_LOW_LATENCY_PKT_SIZE(256));
2874
2875 /* Enable Rx cache snoop */
2876 for (lrxq = 0; lrxq < rxq_number; lrxq++) {
2877 queue = port->rxqs[lrxq]->id;
2878 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
2879 val |= MVPP2_SNOOP_PKT_SIZE_MASK |
2880 MVPP2_SNOOP_BUF_HDR_MASK;
2881 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
2882 }
2883 }
2884
2885 /* Enable/disable receiving packets */
2886 static void mvpp2_ingress_enable(struct mvpp2_port *port)
2887 {
2888 u32 val;
2889 int lrxq, queue;
2890
2891 for (lrxq = 0; lrxq < rxq_number; lrxq++) {
2892 queue = port->rxqs[lrxq]->id;
2893 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
2894 val &= ~MVPP2_RXQ_DISABLE_MASK;
2895 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
2896 }
2897 }
2898
2899 static void mvpp2_ingress_disable(struct mvpp2_port *port)
2900 {
2901 u32 val;
2902 int lrxq, queue;
2903
2904 for (lrxq = 0; lrxq < rxq_number; lrxq++) {
2905 queue = port->rxqs[lrxq]->id;
2906 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
2907 val |= MVPP2_RXQ_DISABLE_MASK;
2908 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
2909 }
2910 }
2911
2912 /* Enable transmit via physical egress queue
2913 * - HW starts take descriptors from DRAM
2914 */
2915 static void mvpp2_egress_enable(struct mvpp2_port *port)
2916 {
2917 u32 qmap;
2918 int queue;
2919 int tx_port_num = mvpp2_egress_port(port);
2920
2921 /* Enable all initialized TXs. */
2922 qmap = 0;
2923 for (queue = 0; queue < txq_number; queue++) {
2924 struct mvpp2_tx_queue *txq = port->txqs[queue];
2925
2926 if (txq->descs != NULL)
2927 qmap |= (1 << queue);
2928 }
2929
2930 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
2931 mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap);
2932 }
2933
2934 /* Disable transmit via physical egress queue
2935 * - HW doesn't take descriptors from DRAM
2936 */
2937 static void mvpp2_egress_disable(struct mvpp2_port *port)
2938 {
2939 u32 reg_data;
2940 int delay;
2941 int tx_port_num = mvpp2_egress_port(port);
2942
2943 /* Issue stop command for active channels only */
2944 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
2945 reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) &
2946 MVPP2_TXP_SCHED_ENQ_MASK;
2947 if (reg_data != 0)
2948 mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG,
2949 (reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET));
2950
2951 /* Wait for all Tx activity to terminate. */
2952 delay = 0;
2953 do {
2954 if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) {
2955 netdev_warn(port->dev,
2956 "Tx stop timed out, status=0x%08x\n",
2957 reg_data);
2958 break;
2959 }
2960 mdelay(1);
2961 delay++;
2962
2963 /* Check port TX Command register that all
2964 * Tx queues are stopped
2965 */
2966 reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG);
2967 } while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK);
2968 }
2969
2970 /* Rx descriptors helper methods */
2971
2972 /* Get number of Rx descriptors occupied by received packets */
2973 static inline int
2974 mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id)
2975 {
2976 u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id));
2977
2978 return val & MVPP2_RXQ_OCCUPIED_MASK;
2979 }
2980
2981 /* Update Rx queue status with the number of occupied and available
2982 * Rx descriptor slots.
2983 */
2984 static inline void
2985 mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id,
2986 int used_count, int free_count)
2987 {
2988 /* Decrement the number of used descriptors and increment count
2989 * increment the number of free descriptors.
2990 */
2991 u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET);
2992
2993 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val);
2994 }
2995
2996 /* Get pointer to next RX descriptor to be processed by SW */
2997 static inline struct mvpp2_rx_desc *
2998 mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq)
2999 {
3000 int rx_desc = rxq->next_desc_to_proc;
3001
3002 rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc);
3003 prefetch(rxq->descs + rxq->next_desc_to_proc);
3004 return rxq->descs + rx_desc;
3005 }
3006
3007 /* Set rx queue offset */
3008 static void mvpp2_rxq_offset_set(struct mvpp2_port *port,
3009 int prxq, int offset)
3010 {
3011 u32 val;
3012
3013 /* Convert offset from bytes to units of 32 bytes */
3014 offset = offset >> 5;
3015
3016 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
3017 val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK;
3018
3019 /* Offset is in */
3020 val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) &
3021 MVPP2_RXQ_PACKET_OFFSET_MASK);
3022
3023 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
3024 }
3025
3026 /* Obtain BM cookie information from descriptor */
3027 static u32 mvpp2_bm_cookie_build(struct mvpp2_port *port,
3028 struct mvpp2_rx_desc *rx_desc)
3029 {
3030 int cpu = smp_processor_id();
3031 int pool;
3032
3033 pool = (mvpp2_rxdesc_status_get(port, rx_desc) &
3034 MVPP2_RXD_BM_POOL_ID_MASK) >>
3035 MVPP2_RXD_BM_POOL_ID_OFFS;
3036
3037 return ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS) |
3038 ((cpu & 0xFF) << MVPP2_BM_COOKIE_CPU_OFFS);
3039 }
3040
3041 /* Tx descriptors helper methods */
3042
3043 /* Get number of Tx descriptors waiting to be transmitted by HW */
3044 static int mvpp2_txq_pend_desc_num_get(struct mvpp2_port *port,
3045 struct mvpp2_tx_queue *txq)
3046 {
3047 u32 val;
3048
3049 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
3050 val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
3051
3052 return val & MVPP2_TXQ_PENDING_MASK;
3053 }
3054
3055 /* Get pointer to next Tx descriptor to be processed (send) by HW */
3056 static struct mvpp2_tx_desc *
3057 mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq)
3058 {
3059 int tx_desc = txq->next_desc_to_proc;
3060
3061 txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc);
3062 return txq->descs + tx_desc;
3063 }
3064
3065 /* Update HW with number of aggregated Tx descriptors to be sent */
3066 static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending)
3067 {
3068 /* aggregated access - relevant TXQ number is written in TX desc */
3069 mvpp2_write(port->priv, MVPP2_AGGR_TXQ_UPDATE_REG, pending);
3070 }
3071
3072 /* Get number of sent descriptors and decrement counter.
3073 * The number of sent descriptors is returned.
3074 * Per-CPU access
3075 */
3076 static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port,
3077 struct mvpp2_tx_queue *txq)
3078 {
3079 u32 val;
3080
3081 /* Reading status reg resets transmitted descriptor counter */
3082 val = mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(txq->id));
3083
3084 return (val & MVPP2_TRANSMITTED_COUNT_MASK) >>
3085 MVPP2_TRANSMITTED_COUNT_OFFSET;
3086 }
3087
3088 static void mvpp2_txq_sent_counter_clear(void *arg)
3089 {
3090 struct mvpp2_port *port = arg;
3091 int queue;
3092
3093 for (queue = 0; queue < txq_number; queue++) {
3094 int id = port->txqs[queue]->id;
3095
3096 mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(id));
3097 }
3098 }
3099
3100 /* Set max sizes for Tx queues */
3101 static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port)
3102 {
3103 u32 val, size, mtu;
3104 int txq, tx_port_num;
3105
3106 mtu = port->pkt_size * 8;
3107 if (mtu > MVPP2_TXP_MTU_MAX)
3108 mtu = MVPP2_TXP_MTU_MAX;
3109
3110 /* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */
3111 mtu = 3 * mtu;
3112
3113 /* Indirect access to registers */
3114 tx_port_num = mvpp2_egress_port(port);
3115 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
3116
3117 /* Set MTU */
3118 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG);
3119 val &= ~MVPP2_TXP_MTU_MAX;
3120 val |= mtu;
3121 mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val);
3122
3123 /* TXP token size and all TXQs token size must be larger that MTU */
3124 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG);
3125 size = val & MVPP2_TXP_TOKEN_SIZE_MAX;
3126 if (size < mtu) {
3127 size = mtu;
3128 val &= ~MVPP2_TXP_TOKEN_SIZE_MAX;
3129 val |= size;
3130 mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
3131 }
3132
3133 for (txq = 0; txq < txq_number; txq++) {
3134 val = mvpp2_read(port->priv,
3135 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq));
3136 size = val & MVPP2_TXQ_TOKEN_SIZE_MAX;
3137
3138 if (size < mtu) {
3139 size = mtu;
3140 val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX;
3141 val |= size;
3142 mvpp2_write(port->priv,
3143 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq),
3144 val);
3145 }
3146 }
3147 }
3148
3149 /* Free Tx queue skbuffs */
3150 static void mvpp2_txq_bufs_free(struct mvpp2_port *port,
3151 struct mvpp2_tx_queue *txq,
3152 struct mvpp2_txq_pcpu *txq_pcpu, int num)
3153 {
3154 int i;
3155
3156 for (i = 0; i < num; i++)
3157 mvpp2_txq_inc_get(txq_pcpu);
3158 }
3159
3160 static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port,
3161 u32 cause)
3162 {
3163 int queue = fls(cause) - 1;
3164
3165 return port->rxqs[queue];
3166 }
3167
3168 static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port,
3169 u32 cause)
3170 {
3171 int queue = fls(cause) - 1;
3172
3173 return port->txqs[queue];
3174 }
3175
3176 /* Rx/Tx queue initialization/cleanup methods */
3177
3178 /* Allocate and initialize descriptors for aggr TXQ */
3179 static int mvpp2_aggr_txq_init(struct udevice *dev,
3180 struct mvpp2_tx_queue *aggr_txq,
3181 int desc_num, int cpu,
3182 struct mvpp2 *priv)
3183 {
3184 u32 txq_dma;
3185
3186 /* Allocate memory for TX descriptors */
3187 aggr_txq->descs = buffer_loc.aggr_tx_descs;
3188 aggr_txq->descs_dma = (dma_addr_t)buffer_loc.aggr_tx_descs;
3189 if (!aggr_txq->descs)
3190 return -ENOMEM;
3191
3192 /* Make sure descriptor address is cache line size aligned */
3193 BUG_ON(aggr_txq->descs !=
3194 PTR_ALIGN(aggr_txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
3195
3196 aggr_txq->last_desc = aggr_txq->size - 1;
3197
3198 /* Aggr TXQ no reset WA */
3199 aggr_txq->next_desc_to_proc = mvpp2_read(priv,
3200 MVPP2_AGGR_TXQ_INDEX_REG(cpu));
3201
3202 /* Set Tx descriptors queue starting address indirect
3203 * access
3204 */
3205 if (priv->hw_version == MVPP21)
3206 txq_dma = aggr_txq->descs_dma;
3207 else
3208 txq_dma = aggr_txq->descs_dma >>
3209 MVPP22_AGGR_TXQ_DESC_ADDR_OFFS;
3210
3211 mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu), txq_dma);
3212 mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu), desc_num);
3213
3214 return 0;
3215 }
3216
3217 /* Create a specified Rx queue */
3218 static int mvpp2_rxq_init(struct mvpp2_port *port,
3219 struct mvpp2_rx_queue *rxq)
3220
3221 {
3222 u32 rxq_dma;
3223
3224 rxq->size = port->rx_ring_size;
3225
3226 /* Allocate memory for RX descriptors */
3227 rxq->descs = buffer_loc.rx_descs;
3228 rxq->descs_dma = (dma_addr_t)buffer_loc.rx_descs;
3229 if (!rxq->descs)
3230 return -ENOMEM;
3231
3232 BUG_ON(rxq->descs !=
3233 PTR_ALIGN(rxq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
3234
3235 rxq->last_desc = rxq->size - 1;
3236
3237 /* Zero occupied and non-occupied counters - direct access */
3238 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
3239
3240 /* Set Rx descriptors queue starting address - indirect access */
3241 mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
3242 if (port->priv->hw_version == MVPP21)
3243 rxq_dma = rxq->descs_dma;
3244 else
3245 rxq_dma = rxq->descs_dma >> MVPP22_DESC_ADDR_OFFS;
3246 mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, rxq_dma);
3247 mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, rxq->size);
3248 mvpp2_write(port->priv, MVPP2_RXQ_INDEX_REG, 0);
3249
3250 /* Set Offset */
3251 mvpp2_rxq_offset_set(port, rxq->id, NET_SKB_PAD);
3252
3253 /* Add number of descriptors ready for receiving packets */
3254 mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size);
3255
3256 return 0;
3257 }
3258
3259 /* Push packets received by the RXQ to BM pool */
3260 static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port,
3261 struct mvpp2_rx_queue *rxq)
3262 {
3263 int rx_received, i;
3264
3265 rx_received = mvpp2_rxq_received(port, rxq->id);
3266 if (!rx_received)
3267 return;
3268
3269 for (i = 0; i < rx_received; i++) {
3270 struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
3271 u32 bm = mvpp2_bm_cookie_build(port, rx_desc);
3272
3273 mvpp2_pool_refill(port, bm,
3274 mvpp2_rxdesc_dma_addr_get(port, rx_desc),
3275 mvpp2_rxdesc_cookie_get(port, rx_desc));
3276 }
3277 mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received);
3278 }
3279
3280 /* Cleanup Rx queue */
3281 static void mvpp2_rxq_deinit(struct mvpp2_port *port,
3282 struct mvpp2_rx_queue *rxq)
3283 {
3284 mvpp2_rxq_drop_pkts(port, rxq);
3285
3286 rxq->descs = NULL;
3287 rxq->last_desc = 0;
3288 rxq->next_desc_to_proc = 0;
3289 rxq->descs_dma = 0;
3290
3291 /* Clear Rx descriptors queue starting address and size;
3292 * free descriptor number
3293 */
3294 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
3295 mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
3296 mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, 0);
3297 mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, 0);
3298 }
3299
3300 /* Create and initialize a Tx queue */
3301 static int mvpp2_txq_init(struct mvpp2_port *port,
3302 struct mvpp2_tx_queue *txq)
3303 {
3304 u32 val;
3305 int cpu, desc, desc_per_txq, tx_port_num;
3306 struct mvpp2_txq_pcpu *txq_pcpu;
3307
3308 txq->size = port->tx_ring_size;
3309
3310 /* Allocate memory for Tx descriptors */
3311 txq->descs = buffer_loc.tx_descs;
3312 txq->descs_dma = (dma_addr_t)buffer_loc.tx_descs;
3313 if (!txq->descs)
3314 return -ENOMEM;
3315
3316 /* Make sure descriptor address is cache line size aligned */
3317 BUG_ON(txq->descs !=
3318 PTR_ALIGN(txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
3319
3320 txq->last_desc = txq->size - 1;
3321
3322 /* Set Tx descriptors queue starting address - indirect access */
3323 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
3324 mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, txq->descs_dma);
3325 mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, txq->size &
3326 MVPP2_TXQ_DESC_SIZE_MASK);
3327 mvpp2_write(port->priv, MVPP2_TXQ_INDEX_REG, 0);
3328 mvpp2_write(port->priv, MVPP2_TXQ_RSVD_CLR_REG,
3329 txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET);
3330 val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
3331 val &= ~MVPP2_TXQ_PENDING_MASK;
3332 mvpp2_write(port->priv, MVPP2_TXQ_PENDING_REG, val);
3333
3334 /* Calculate base address in prefetch buffer. We reserve 16 descriptors
3335 * for each existing TXQ.
3336 * TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT
3337 * GBE ports assumed to be continious from 0 to MVPP2_MAX_PORTS
3338 */
3339 desc_per_txq = 16;
3340 desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) +
3341 (txq->log_id * desc_per_txq);
3342
3343 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG,
3344 MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 |
3345 MVPP2_PREF_BUF_THRESH(desc_per_txq / 2));
3346
3347 /* WRR / EJP configuration - indirect access */
3348 tx_port_num = mvpp2_egress_port(port);
3349 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
3350
3351 val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id));
3352 val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK;
3353 val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1);
3354 val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK;
3355 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val);
3356
3357 val = MVPP2_TXQ_TOKEN_SIZE_MAX;
3358 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id),
3359 val);
3360
3361 for_each_present_cpu(cpu) {
3362 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
3363 txq_pcpu->size = txq->size;
3364 }
3365
3366 return 0;
3367 }
3368
3369 /* Free allocated TXQ resources */
3370 static void mvpp2_txq_deinit(struct mvpp2_port *port,
3371 struct mvpp2_tx_queue *txq)
3372 {
3373 txq->descs = NULL;
3374 txq->last_desc = 0;
3375 txq->next_desc_to_proc = 0;
3376 txq->descs_dma = 0;
3377
3378 /* Set minimum bandwidth for disabled TXQs */
3379 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->id), 0);
3380
3381 /* Set Tx descriptors queue starting address and size */
3382 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
3383 mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, 0);
3384 mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, 0);
3385 }
3386
3387 /* Cleanup Tx ports */
3388 static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq)
3389 {
3390 struct mvpp2_txq_pcpu *txq_pcpu;
3391 int delay, pending, cpu;
3392 u32 val;
3393
3394 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
3395 val = mvpp2_read(port->priv, MVPP2_TXQ_PREF_BUF_REG);
3396 val |= MVPP2_TXQ_DRAIN_EN_MASK;
3397 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
3398
3399 /* The napi queue has been stopped so wait for all packets
3400 * to be transmitted.
3401 */
3402 delay = 0;
3403 do {
3404 if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) {
3405 netdev_warn(port->dev,
3406 "port %d: cleaning queue %d timed out\n",
3407 port->id, txq->log_id);
3408 break;
3409 }
3410 mdelay(1);
3411 delay++;
3412
3413 pending = mvpp2_txq_pend_desc_num_get(port, txq);
3414 } while (pending);
3415
3416 val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
3417 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
3418
3419 for_each_present_cpu(cpu) {
3420 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
3421
3422 /* Release all packets */
3423 mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count);
3424
3425 /* Reset queue */
3426 txq_pcpu->count = 0;
3427 txq_pcpu->txq_put_index = 0;
3428 txq_pcpu->txq_get_index = 0;
3429 }
3430 }
3431
3432 /* Cleanup all Tx queues */
3433 static void mvpp2_cleanup_txqs(struct mvpp2_port *port)
3434 {
3435 struct mvpp2_tx_queue *txq;
3436 int queue;
3437 u32 val;
3438
3439 val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG);
3440
3441 /* Reset Tx ports and delete Tx queues */
3442 val |= MVPP2_TX_PORT_FLUSH_MASK(port->id);
3443 mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
3444
3445 for (queue = 0; queue < txq_number; queue++) {
3446 txq = port->txqs[queue];
3447 mvpp2_txq_clean(port, txq);
3448 mvpp2_txq_deinit(port, txq);
3449 }
3450
3451 mvpp2_txq_sent_counter_clear(port);
3452
3453 val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id);
3454 mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
3455 }
3456
3457 /* Cleanup all Rx queues */
3458 static void mvpp2_cleanup_rxqs(struct mvpp2_port *port)
3459 {
3460 int queue;
3461
3462 for (queue = 0; queue < rxq_number; queue++)
3463 mvpp2_rxq_deinit(port, port->rxqs[queue]);
3464 }
3465
3466 /* Init all Rx queues for port */
3467 static int mvpp2_setup_rxqs(struct mvpp2_port *port)
3468 {
3469 int queue, err;
3470
3471 for (queue = 0; queue < rxq_number; queue++) {
3472 err = mvpp2_rxq_init(port, port->rxqs[queue]);
3473 if (err)
3474 goto err_cleanup;
3475 }
3476 return 0;
3477
3478 err_cleanup:
3479 mvpp2_cleanup_rxqs(port);
3480 return err;
3481 }
3482
3483 /* Init all tx queues for port */
3484 static int mvpp2_setup_txqs(struct mvpp2_port *port)
3485 {
3486 struct mvpp2_tx_queue *txq;
3487 int queue, err;
3488
3489 for (queue = 0; queue < txq_number; queue++) {
3490 txq = port->txqs[queue];
3491 err = mvpp2_txq_init(port, txq);
3492 if (err)
3493 goto err_cleanup;
3494 }
3495
3496 mvpp2_txq_sent_counter_clear(port);
3497 return 0;
3498
3499 err_cleanup:
3500 mvpp2_cleanup_txqs(port);
3501 return err;
3502 }
3503
3504 /* Adjust link */
3505 static void mvpp2_link_event(struct mvpp2_port *port)
3506 {
3507 struct phy_device *phydev = port->phy_dev;
3508 int status_change = 0;
3509 u32 val;
3510
3511 if (phydev->link) {
3512 if ((port->speed != phydev->speed) ||
3513 (port->duplex != phydev->duplex)) {
3514 u32 val;
3515
3516 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3517 val &= ~(MVPP2_GMAC_CONFIG_MII_SPEED |
3518 MVPP2_GMAC_CONFIG_GMII_SPEED |
3519 MVPP2_GMAC_CONFIG_FULL_DUPLEX |
3520 MVPP2_GMAC_AN_SPEED_EN |
3521 MVPP2_GMAC_AN_DUPLEX_EN);
3522
3523 if (phydev->duplex)
3524 val |= MVPP2_GMAC_CONFIG_FULL_DUPLEX;
3525
3526 if (phydev->speed == SPEED_1000)
3527 val |= MVPP2_GMAC_CONFIG_GMII_SPEED;
3528 else if (phydev->speed == SPEED_100)
3529 val |= MVPP2_GMAC_CONFIG_MII_SPEED;
3530
3531 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3532
3533 port->duplex = phydev->duplex;
3534 port->speed = phydev->speed;
3535 }
3536 }
3537
3538 if (phydev->link != port->link) {
3539 if (!phydev->link) {
3540 port->duplex = -1;
3541 port->speed = 0;
3542 }
3543
3544 port->link = phydev->link;
3545 status_change = 1;
3546 }
3547
3548 if (status_change) {
3549 if (phydev->link) {
3550 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3551 val |= (MVPP2_GMAC_FORCE_LINK_PASS |
3552 MVPP2_GMAC_FORCE_LINK_DOWN);
3553 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3554 mvpp2_egress_enable(port);
3555 mvpp2_ingress_enable(port);
3556 } else {
3557 mvpp2_ingress_disable(port);
3558 mvpp2_egress_disable(port);
3559 }
3560 }
3561 }
3562
3563 /* Main RX/TX processing routines */
3564
3565 /* Display more error info */
3566 static void mvpp2_rx_error(struct mvpp2_port *port,
3567 struct mvpp2_rx_desc *rx_desc)
3568 {
3569 u32 status = mvpp2_rxdesc_status_get(port, rx_desc);
3570 size_t sz = mvpp2_rxdesc_size_get(port, rx_desc);
3571
3572 switch (status & MVPP2_RXD_ERR_CODE_MASK) {
3573 case MVPP2_RXD_ERR_CRC:
3574 netdev_err(port->dev, "bad rx status %08x (crc error), size=%zu\n",
3575 status, sz);
3576 break;
3577 case MVPP2_RXD_ERR_OVERRUN:
3578 netdev_err(port->dev, "bad rx status %08x (overrun error), size=%zu\n",
3579 status, sz);
3580 break;
3581 case MVPP2_RXD_ERR_RESOURCE:
3582 netdev_err(port->dev, "bad rx status %08x (resource error), size=%zu\n",
3583 status, sz);
3584 break;
3585 }
3586 }
3587
3588 /* Reuse skb if possible, or allocate a new skb and add it to BM pool */
3589 static int mvpp2_rx_refill(struct mvpp2_port *port,
3590 struct mvpp2_bm_pool *bm_pool,
3591 u32 bm, dma_addr_t dma_addr)
3592 {
3593 mvpp2_pool_refill(port, bm, dma_addr, (unsigned long)dma_addr);
3594 return 0;
3595 }
3596
3597 /* Set hw internals when starting port */
3598 static void mvpp2_start_dev(struct mvpp2_port *port)
3599 {
3600 mvpp2_gmac_max_rx_size_set(port);
3601 mvpp2_txp_max_tx_size_set(port);
3602
3603 mvpp2_port_enable(port);
3604 }
3605
3606 /* Set hw internals when stopping port */
3607 static void mvpp2_stop_dev(struct mvpp2_port *port)
3608 {
3609 /* Stop new packets from arriving to RXQs */
3610 mvpp2_ingress_disable(port);
3611
3612 mvpp2_egress_disable(port);
3613 mvpp2_port_disable(port);
3614 }
3615
3616 static int mvpp2_phy_connect(struct udevice *dev, struct mvpp2_port *port)
3617 {
3618 struct phy_device *phy_dev;
3619
3620 if (!port->init || port->link == 0) {
3621 phy_dev = phy_connect(port->priv->bus, port->phyaddr, dev,
3622 port->phy_interface);
3623 port->phy_dev = phy_dev;
3624 if (!phy_dev) {
3625 netdev_err(port->dev, "cannot connect to phy\n");
3626 return -ENODEV;
3627 }
3628 phy_dev->supported &= PHY_GBIT_FEATURES;
3629 phy_dev->advertising = phy_dev->supported;
3630
3631 port->phy_dev = phy_dev;
3632 port->link = 0;
3633 port->duplex = 0;
3634 port->speed = 0;
3635
3636 phy_config(phy_dev);
3637 phy_startup(phy_dev);
3638 if (!phy_dev->link) {
3639 printf("%s: No link\n", phy_dev->dev->name);
3640 return -1;
3641 }
3642
3643 port->init = 1;
3644 } else {
3645 mvpp2_egress_enable(port);
3646 mvpp2_ingress_enable(port);
3647 }
3648
3649 return 0;
3650 }
3651
3652 static int mvpp2_open(struct udevice *dev, struct mvpp2_port *port)
3653 {
3654 unsigned char mac_bcast[ETH_ALEN] = {
3655 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
3656 int err;
3657
3658 err = mvpp2_prs_mac_da_accept(port->priv, port->id, mac_bcast, true);
3659 if (err) {
3660 netdev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n");
3661 return err;
3662 }
3663 err = mvpp2_prs_mac_da_accept(port->priv, port->id,
3664 port->dev_addr, true);
3665 if (err) {
3666 netdev_err(dev, "mvpp2_prs_mac_da_accept MC failed\n");
3667 return err;
3668 }
3669 err = mvpp2_prs_def_flow(port);
3670 if (err) {
3671 netdev_err(dev, "mvpp2_prs_def_flow failed\n");
3672 return err;
3673 }
3674
3675 /* Allocate the Rx/Tx queues */
3676 err = mvpp2_setup_rxqs(port);
3677 if (err) {
3678 netdev_err(port->dev, "cannot allocate Rx queues\n");
3679 return err;
3680 }
3681
3682 err = mvpp2_setup_txqs(port);
3683 if (err) {
3684 netdev_err(port->dev, "cannot allocate Tx queues\n");
3685 return err;
3686 }
3687
3688 err = mvpp2_phy_connect(dev, port);
3689 if (err < 0)
3690 return err;
3691
3692 mvpp2_link_event(port);
3693
3694 mvpp2_start_dev(port);
3695
3696 return 0;
3697 }
3698
3699 /* No Device ops here in U-Boot */
3700
3701 /* Driver initialization */
3702
3703 static void mvpp2_port_power_up(struct mvpp2_port *port)
3704 {
3705 struct mvpp2 *priv = port->priv;
3706
3707 mvpp2_port_mii_set(port);
3708 mvpp2_port_periodic_xon_disable(port);
3709 if (priv->hw_version == MVPP21)
3710 mvpp2_port_fc_adv_enable(port);
3711 mvpp2_port_reset(port);
3712 }
3713
3714 /* Initialize port HW */
3715 static int mvpp2_port_init(struct udevice *dev, struct mvpp2_port *port)
3716 {
3717 struct mvpp2 *priv = port->priv;
3718 struct mvpp2_txq_pcpu *txq_pcpu;
3719 int queue, cpu, err;
3720
3721 if (port->first_rxq + rxq_number >
3722 MVPP2_MAX_PORTS * priv->max_port_rxqs)
3723 return -EINVAL;
3724
3725 /* Disable port */
3726 mvpp2_egress_disable(port);
3727 mvpp2_port_disable(port);
3728
3729 port->txqs = devm_kcalloc(dev, txq_number, sizeof(*port->txqs),
3730 GFP_KERNEL);
3731 if (!port->txqs)
3732 return -ENOMEM;
3733
3734 /* Associate physical Tx queues to this port and initialize.
3735 * The mapping is predefined.
3736 */
3737 for (queue = 0; queue < txq_number; queue++) {
3738 int queue_phy_id = mvpp2_txq_phys(port->id, queue);
3739 struct mvpp2_tx_queue *txq;
3740
3741 txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL);
3742 if (!txq)
3743 return -ENOMEM;
3744
3745 txq->pcpu = devm_kzalloc(dev, sizeof(struct mvpp2_txq_pcpu),
3746 GFP_KERNEL);
3747 if (!txq->pcpu)
3748 return -ENOMEM;
3749
3750 txq->id = queue_phy_id;
3751 txq->log_id = queue;
3752 txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH;
3753 for_each_present_cpu(cpu) {
3754 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
3755 txq_pcpu->cpu = cpu;
3756 }
3757
3758 port->txqs[queue] = txq;
3759 }
3760
3761 port->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*port->rxqs),
3762 GFP_KERNEL);
3763 if (!port->rxqs)
3764 return -ENOMEM;
3765
3766 /* Allocate and initialize Rx queue for this port */
3767 for (queue = 0; queue < rxq_number; queue++) {
3768 struct mvpp2_rx_queue *rxq;
3769
3770 /* Map physical Rx queue to port's logical Rx queue */
3771 rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL);
3772 if (!rxq)
3773 return -ENOMEM;
3774 /* Map this Rx queue to a physical queue */
3775 rxq->id = port->first_rxq + queue;
3776 rxq->port = port->id;
3777 rxq->logic_rxq = queue;
3778
3779 port->rxqs[queue] = rxq;
3780 }
3781
3782 /* Configure Rx queue group interrupt for this port */
3783 if (priv->hw_version == MVPP21) {
3784 mvpp2_write(priv, MVPP21_ISR_RXQ_GROUP_REG(port->id),
3785 CONFIG_MV_ETH_RXQ);
3786 } else {
3787 u32 val;
3788
3789 val = (port->id << MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET);
3790 mvpp2_write(priv, MVPP22_ISR_RXQ_GROUP_INDEX_REG, val);
3791
3792 val = (CONFIG_MV_ETH_RXQ <<
3793 MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET);
3794 mvpp2_write(priv, MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG, val);
3795 }
3796
3797 /* Create Rx descriptor rings */
3798 for (queue = 0; queue < rxq_number; queue++) {
3799 struct mvpp2_rx_queue *rxq = port->rxqs[queue];
3800
3801 rxq->size = port->rx_ring_size;
3802 rxq->pkts_coal = MVPP2_RX_COAL_PKTS;
3803 rxq->time_coal = MVPP2_RX_COAL_USEC;
3804 }
3805
3806 mvpp2_ingress_disable(port);
3807
3808 /* Port default configuration */
3809 mvpp2_defaults_set(port);
3810
3811 /* Port's classifier configuration */
3812 mvpp2_cls_oversize_rxq_set(port);
3813 mvpp2_cls_port_config(port);
3814
3815 /* Provide an initial Rx packet size */
3816 port->pkt_size = MVPP2_RX_PKT_SIZE(PKTSIZE_ALIGN);
3817
3818 /* Initialize pools for swf */
3819 err = mvpp2_swf_bm_pool_init(port);
3820 if (err)
3821 return err;
3822
3823 return 0;
3824 }
3825
3826 /* Ports initialization */
3827 static int mvpp2_port_probe(struct udevice *dev,
3828 struct mvpp2_port *port,
3829 int port_node,
3830 struct mvpp2 *priv)
3831 {
3832 int phy_node;
3833 u32 id;
3834 u32 phyaddr;
3835 const char *phy_mode_str;
3836 int phy_mode = -1;
3837 int priv_common_regs_num = 2;
3838 int err;
3839
3840 phy_node = fdtdec_lookup_phandle(gd->fdt_blob, port_node, "phy");
3841 if (phy_node < 0) {
3842 dev_err(&pdev->dev, "missing phy\n");
3843 return -ENODEV;
3844 }
3845
3846 phy_mode_str = fdt_getprop(gd->fdt_blob, port_node, "phy-mode", NULL);
3847 if (phy_mode_str)
3848 phy_mode = phy_get_interface_by_name(phy_mode_str);
3849 if (phy_mode == -1) {
3850 dev_err(&pdev->dev, "incorrect phy mode\n");
3851 return -EINVAL;
3852 }
3853
3854 id = fdtdec_get_int(gd->fdt_blob, port_node, "port-id", -1);
3855 if (id == -1) {
3856 dev_err(&pdev->dev, "missing port-id value\n");
3857 return -EINVAL;
3858 }
3859
3860 phyaddr = fdtdec_get_int(gd->fdt_blob, phy_node, "reg", 0);
3861
3862 port->priv = priv;
3863 port->id = id;
3864 if (priv->hw_version == MVPP21)
3865 port->first_rxq = port->id * rxq_number;
3866 else
3867 port->first_rxq = port->id * priv->max_port_rxqs;
3868 port->phy_node = phy_node;
3869 port->phy_interface = phy_mode;
3870 port->phyaddr = phyaddr;
3871
3872 if (priv->hw_version == MVPP21) {
3873 port->base = (void __iomem *)dev_get_addr_index(
3874 dev->parent, priv_common_regs_num + id);
3875 if (IS_ERR(port->base))
3876 return PTR_ERR(port->base);
3877 } else {
3878 u32 gop_id;
3879
3880 gop_id = fdtdec_get_int(gd->fdt_blob, port_node,
3881 "gop-port-id", -1);
3882 if (id == -1) {
3883 dev_err(&pdev->dev, "missing gop-port-id value\n");
3884 return -EINVAL;
3885 }
3886
3887 port->base = priv->iface_base + MVPP22_PORT_BASE +
3888 gop_id * MVPP22_PORT_OFFSET;
3889 }
3890
3891 port->tx_ring_size = MVPP2_MAX_TXD;
3892 port->rx_ring_size = MVPP2_MAX_RXD;
3893
3894 err = mvpp2_port_init(dev, port);
3895 if (err < 0) {
3896 dev_err(&pdev->dev, "failed to init port %d\n", id);
3897 return err;
3898 }
3899 mvpp2_port_power_up(port);
3900
3901 priv->port_list[id] = port;
3902 return 0;
3903 }
3904
3905 /* Initialize decoding windows */
3906 static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram,
3907 struct mvpp2 *priv)
3908 {
3909 u32 win_enable;
3910 int i;
3911
3912 for (i = 0; i < 6; i++) {
3913 mvpp2_write(priv, MVPP2_WIN_BASE(i), 0);
3914 mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0);
3915
3916 if (i < 4)
3917 mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0);
3918 }
3919
3920 win_enable = 0;
3921
3922 for (i = 0; i < dram->num_cs; i++) {
3923 const struct mbus_dram_window *cs = dram->cs + i;
3924
3925 mvpp2_write(priv, MVPP2_WIN_BASE(i),
3926 (cs->base & 0xffff0000) | (cs->mbus_attr << 8) |
3927 dram->mbus_dram_target_id);
3928
3929 mvpp2_write(priv, MVPP2_WIN_SIZE(i),
3930 (cs->size - 1) & 0xffff0000);
3931
3932 win_enable |= (1 << i);
3933 }
3934
3935 mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable);
3936 }
3937
3938 /* Initialize Rx FIFO's */
3939 static void mvpp2_rx_fifo_init(struct mvpp2 *priv)
3940 {
3941 int port;
3942
3943 for (port = 0; port < MVPP2_MAX_PORTS; port++) {
3944 if (priv->hw_version == MVPP22) {
3945 if (port == 0) {
3946 mvpp2_write(priv,
3947 MVPP2_RX_DATA_FIFO_SIZE_REG(port),
3948 MVPP22_RX_FIFO_10GB_PORT_DATA_SIZE);
3949 mvpp2_write(priv,
3950 MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
3951 MVPP22_RX_FIFO_10GB_PORT_ATTR_SIZE);
3952 } else if (port == 1) {
3953 mvpp2_write(priv,
3954 MVPP2_RX_DATA_FIFO_SIZE_REG(port),
3955 MVPP22_RX_FIFO_2_5GB_PORT_DATA_SIZE);
3956 mvpp2_write(priv,
3957 MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
3958 MVPP22_RX_FIFO_2_5GB_PORT_ATTR_SIZE);
3959 } else {
3960 mvpp2_write(priv,
3961 MVPP2_RX_DATA_FIFO_SIZE_REG(port),
3962 MVPP22_RX_FIFO_1GB_PORT_DATA_SIZE);
3963 mvpp2_write(priv,
3964 MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
3965 MVPP22_RX_FIFO_1GB_PORT_ATTR_SIZE);
3966 }
3967 } else {
3968 mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port),
3969 MVPP21_RX_FIFO_PORT_DATA_SIZE);
3970 mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
3971 MVPP21_RX_FIFO_PORT_ATTR_SIZE);
3972 }
3973 }
3974
3975 mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG,
3976 MVPP2_RX_FIFO_PORT_MIN_PKT);
3977 mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1);
3978 }
3979
3980 /* Initialize Tx FIFO's */
3981 static void mvpp2_tx_fifo_init(struct mvpp2 *priv)
3982 {
3983 int port, val;
3984
3985 for (port = 0; port < MVPP2_MAX_PORTS; port++) {
3986 /* Port 0 supports 10KB TX FIFO */
3987 if (port == 0) {
3988 val = MVPP2_TX_FIFO_DATA_SIZE_10KB &
3989 MVPP22_TX_FIFO_SIZE_MASK;
3990 } else {
3991 val = MVPP2_TX_FIFO_DATA_SIZE_3KB &
3992 MVPP22_TX_FIFO_SIZE_MASK;
3993 }
3994 mvpp2_write(priv, MVPP22_TX_FIFO_SIZE_REG(port), val);
3995 }
3996 }
3997
3998 static void mvpp2_axi_init(struct mvpp2 *priv)
3999 {
4000 u32 val, rdval, wrval;
4001
4002 mvpp2_write(priv, MVPP22_BM_ADDR_HIGH_RLS_REG, 0x0);
4003
4004 /* AXI Bridge Configuration */
4005
4006 rdval = MVPP22_AXI_CODE_CACHE_RD_CACHE
4007 << MVPP22_AXI_ATTR_CACHE_OFFS;
4008 rdval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
4009 << MVPP22_AXI_ATTR_DOMAIN_OFFS;
4010
4011 wrval = MVPP22_AXI_CODE_CACHE_WR_CACHE
4012 << MVPP22_AXI_ATTR_CACHE_OFFS;
4013 wrval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
4014 << MVPP22_AXI_ATTR_DOMAIN_OFFS;
4015
4016 /* BM */
4017 mvpp2_write(priv, MVPP22_AXI_BM_WR_ATTR_REG, wrval);
4018 mvpp2_write(priv, MVPP22_AXI_BM_RD_ATTR_REG, rdval);
4019
4020 /* Descriptors */
4021 mvpp2_write(priv, MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG, rdval);
4022 mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG, wrval);
4023 mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG, rdval);
4024 mvpp2_write(priv, MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG, wrval);
4025
4026 /* Buffer Data */
4027 mvpp2_write(priv, MVPP22_AXI_TX_DATA_RD_ATTR_REG, rdval);
4028 mvpp2_write(priv, MVPP22_AXI_RX_DATA_WR_ATTR_REG, wrval);
4029
4030 val = MVPP22_AXI_CODE_CACHE_NON_CACHE
4031 << MVPP22_AXI_CODE_CACHE_OFFS;
4032 val |= MVPP22_AXI_CODE_DOMAIN_SYSTEM
4033 << MVPP22_AXI_CODE_DOMAIN_OFFS;
4034 mvpp2_write(priv, MVPP22_AXI_RD_NORMAL_CODE_REG, val);
4035 mvpp2_write(priv, MVPP22_AXI_WR_NORMAL_CODE_REG, val);
4036
4037 val = MVPP22_AXI_CODE_CACHE_RD_CACHE
4038 << MVPP22_AXI_CODE_CACHE_OFFS;
4039 val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
4040 << MVPP22_AXI_CODE_DOMAIN_OFFS;
4041
4042 mvpp2_write(priv, MVPP22_AXI_RD_SNOOP_CODE_REG, val);
4043
4044 val = MVPP22_AXI_CODE_CACHE_WR_CACHE
4045 << MVPP22_AXI_CODE_CACHE_OFFS;
4046 val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
4047 << MVPP22_AXI_CODE_DOMAIN_OFFS;
4048
4049 mvpp2_write(priv, MVPP22_AXI_WR_SNOOP_CODE_REG, val);
4050 }
4051
4052 /* Initialize network controller common part HW */
4053 static int mvpp2_init(struct udevice *dev, struct mvpp2 *priv)
4054 {
4055 const struct mbus_dram_target_info *dram_target_info;
4056 int err, i;
4057 u32 val;
4058
4059 /* Checks for hardware constraints (U-Boot uses only one rxq) */
4060 if ((rxq_number > priv->max_port_rxqs) ||
4061 (txq_number > MVPP2_MAX_TXQ)) {
4062 dev_err(&pdev->dev, "invalid queue size parameter\n");
4063 return -EINVAL;
4064 }
4065
4066 /* MBUS windows configuration */
4067 dram_target_info = mvebu_mbus_dram_info();
4068 if (dram_target_info)
4069 mvpp2_conf_mbus_windows(dram_target_info, priv);
4070
4071 if (priv->hw_version == MVPP22)
4072 mvpp2_axi_init(priv);
4073
4074 /* Disable HW PHY polling */
4075 if (priv->hw_version == MVPP21) {
4076 val = readl(priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
4077 val |= MVPP2_PHY_AN_STOP_SMI0_MASK;
4078 writel(val, priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
4079 } else {
4080 val = readl(priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
4081 val &= ~MVPP22_SMI_POLLING_EN;
4082 writel(val, priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
4083 }
4084
4085 /* Allocate and initialize aggregated TXQs */
4086 priv->aggr_txqs = devm_kcalloc(dev, num_present_cpus(),
4087 sizeof(struct mvpp2_tx_queue),
4088 GFP_KERNEL);
4089 if (!priv->aggr_txqs)
4090 return -ENOMEM;
4091
4092 for_each_present_cpu(i) {
4093 priv->aggr_txqs[i].id = i;
4094 priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE;
4095 err = mvpp2_aggr_txq_init(dev, &priv->aggr_txqs[i],
4096 MVPP2_AGGR_TXQ_SIZE, i, priv);
4097 if (err < 0)
4098 return err;
4099 }
4100
4101 /* Rx Fifo Init */
4102 mvpp2_rx_fifo_init(priv);
4103
4104 /* Tx Fifo Init */
4105 if (priv->hw_version == MVPP22)
4106 mvpp2_tx_fifo_init(priv);
4107
4108 /* Reset Rx queue group interrupt configuration */
4109 for (i = 0; i < MVPP2_MAX_PORTS; i++) {
4110 if (priv->hw_version == MVPP21) {
4111 mvpp2_write(priv, MVPP21_ISR_RXQ_GROUP_REG(i),
4112 CONFIG_MV_ETH_RXQ);
4113 continue;
4114 } else {
4115 u32 val;
4116
4117 val = (i << MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET);
4118 mvpp2_write(priv, MVPP22_ISR_RXQ_GROUP_INDEX_REG, val);
4119
4120 val = (CONFIG_MV_ETH_RXQ <<
4121 MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET);
4122 mvpp2_write(priv,
4123 MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG, val);
4124 }
4125 }
4126
4127 if (priv->hw_version == MVPP21)
4128 writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT,
4129 priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG);
4130
4131 /* Allow cache snoop when transmiting packets */
4132 mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1);
4133
4134 /* Buffer Manager initialization */
4135 err = mvpp2_bm_init(dev, priv);
4136 if (err < 0)
4137 return err;
4138
4139 /* Parser default initialization */
4140 err = mvpp2_prs_default_init(dev, priv);
4141 if (err < 0)
4142 return err;
4143
4144 /* Classifier default initialization */
4145 mvpp2_cls_init(priv);
4146
4147 return 0;
4148 }
4149
4150 /* SMI / MDIO functions */
4151
4152 static int smi_wait_ready(struct mvpp2 *priv)
4153 {
4154 u32 timeout = MVPP2_SMI_TIMEOUT;
4155 u32 smi_reg;
4156
4157 /* wait till the SMI is not busy */
4158 do {
4159 /* read smi register */
4160 smi_reg = readl(priv->mdio_base);
4161 if (timeout-- == 0) {
4162 printf("Error: SMI busy timeout\n");
4163 return -EFAULT;
4164 }
4165 } while (smi_reg & MVPP2_SMI_BUSY);
4166
4167 return 0;
4168 }
4169
4170 /*
4171 * mpp2_mdio_read - miiphy_read callback function.
4172 *
4173 * Returns 16bit phy register value, or 0xffff on error
4174 */
4175 static int mpp2_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
4176 {
4177 struct mvpp2 *priv = bus->priv;
4178 u32 smi_reg;
4179 u32 timeout;
4180
4181 /* check parameters */
4182 if (addr > MVPP2_PHY_ADDR_MASK) {
4183 printf("Error: Invalid PHY address %d\n", addr);
4184 return -EFAULT;
4185 }
4186
4187 if (reg > MVPP2_PHY_REG_MASK) {
4188 printf("Err: Invalid register offset %d\n", reg);
4189 return -EFAULT;
4190 }
4191
4192 /* wait till the SMI is not busy */
4193 if (smi_wait_ready(priv) < 0)
4194 return -EFAULT;
4195
4196 /* fill the phy address and regiser offset and read opcode */
4197 smi_reg = (addr << MVPP2_SMI_DEV_ADDR_OFFS)
4198 | (reg << MVPP2_SMI_REG_ADDR_OFFS)
4199 | MVPP2_SMI_OPCODE_READ;
4200
4201 /* write the smi register */
4202 writel(smi_reg, priv->mdio_base);
4203
4204 /* wait till read value is ready */
4205 timeout = MVPP2_SMI_TIMEOUT;
4206
4207 do {
4208 /* read smi register */
4209 smi_reg = readl(priv->mdio_base);
4210 if (timeout-- == 0) {
4211 printf("Err: SMI read ready timeout\n");
4212 return -EFAULT;
4213 }
4214 } while (!(smi_reg & MVPP2_SMI_READ_VALID));
4215
4216 /* Wait for the data to update in the SMI register */
4217 for (timeout = 0; timeout < MVPP2_SMI_TIMEOUT; timeout++)
4218 ;
4219
4220 return readl(priv->mdio_base) & MVPP2_SMI_DATA_MASK;
4221 }
4222
4223 /*
4224 * mpp2_mdio_write - miiphy_write callback function.
4225 *
4226 * Returns 0 if write succeed, -EINVAL on bad parameters
4227 * -ETIME on timeout
4228 */
4229 static int mpp2_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
4230 u16 value)
4231 {
4232 struct mvpp2 *priv = bus->priv;
4233 u32 smi_reg;
4234
4235 /* check parameters */
4236 if (addr > MVPP2_PHY_ADDR_MASK) {
4237 printf("Error: Invalid PHY address %d\n", addr);
4238 return -EFAULT;
4239 }
4240
4241 if (reg > MVPP2_PHY_REG_MASK) {
4242 printf("Err: Invalid register offset %d\n", reg);
4243 return -EFAULT;
4244 }
4245
4246 /* wait till the SMI is not busy */
4247 if (smi_wait_ready(priv) < 0)
4248 return -EFAULT;
4249
4250 /* fill the phy addr and reg offset and write opcode and data */
4251 smi_reg = value << MVPP2_SMI_DATA_OFFS;
4252 smi_reg |= (addr << MVPP2_SMI_DEV_ADDR_OFFS)
4253 | (reg << MVPP2_SMI_REG_ADDR_OFFS);
4254 smi_reg &= ~MVPP2_SMI_OPCODE_READ;
4255
4256 /* write the smi register */
4257 writel(smi_reg, priv->mdio_base);
4258
4259 return 0;
4260 }
4261
4262 static int mvpp2_recv(struct udevice *dev, int flags, uchar **packetp)
4263 {
4264 struct mvpp2_port *port = dev_get_priv(dev);
4265 struct mvpp2_rx_desc *rx_desc;
4266 struct mvpp2_bm_pool *bm_pool;
4267 dma_addr_t dma_addr;
4268 u32 bm, rx_status;
4269 int pool, rx_bytes, err;
4270 int rx_received;
4271 struct mvpp2_rx_queue *rxq;
4272 u32 cause_rx_tx, cause_rx, cause_misc;
4273 u8 *data;
4274
4275 cause_rx_tx = mvpp2_read(port->priv,
4276 MVPP2_ISR_RX_TX_CAUSE_REG(port->id));
4277 cause_rx_tx &= ~MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK;
4278 cause_misc = cause_rx_tx & MVPP2_CAUSE_MISC_SUM_MASK;
4279 if (!cause_rx_tx && !cause_misc)
4280 return 0;
4281
4282 cause_rx = cause_rx_tx & MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK;
4283
4284 /* Process RX packets */
4285 cause_rx |= port->pending_cause_rx;
4286 rxq = mvpp2_get_rx_queue(port, cause_rx);
4287
4288 /* Get number of received packets and clamp the to-do */
4289 rx_received = mvpp2_rxq_received(port, rxq->id);
4290
4291 /* Return if no packets are received */
4292 if (!rx_received)
4293 return 0;
4294
4295 rx_desc = mvpp2_rxq_next_desc_get(rxq);
4296 rx_status = mvpp2_rxdesc_status_get(port, rx_desc);
4297 rx_bytes = mvpp2_rxdesc_size_get(port, rx_desc);
4298 rx_bytes -= MVPP2_MH_SIZE;
4299 dma_addr = mvpp2_rxdesc_dma_addr_get(port, rx_desc);
4300
4301 bm = mvpp2_bm_cookie_build(port, rx_desc);
4302 pool = mvpp2_bm_cookie_pool_get(bm);
4303 bm_pool = &port->priv->bm_pools[pool];
4304
4305 /* In case of an error, release the requested buffer pointer
4306 * to the Buffer Manager. This request process is controlled
4307 * by the hardware, and the information about the buffer is
4308 * comprised by the RX descriptor.
4309 */
4310 if (rx_status & MVPP2_RXD_ERR_SUMMARY) {
4311 mvpp2_rx_error(port, rx_desc);
4312 /* Return the buffer to the pool */
4313 mvpp2_pool_refill(port, bm, dma_addr, dma_addr);
4314 return 0;
4315 }
4316
4317 err = mvpp2_rx_refill(port, bm_pool, bm, dma_addr);
4318 if (err) {
4319 netdev_err(port->dev, "failed to refill BM pools\n");
4320 return 0;
4321 }
4322
4323 /* Update Rx queue management counters */
4324 mb();
4325 mvpp2_rxq_status_update(port, rxq->id, 1, 1);
4326
4327 /* give packet to stack - skip on first n bytes */
4328 data = (u8 *)dma_addr + 2 + 32;
4329
4330 if (rx_bytes <= 0)
4331 return 0;
4332
4333 /*
4334 * No cache invalidation needed here, since the rx_buffer's are
4335 * located in a uncached memory region
4336 */
4337 *packetp = data;
4338
4339 return rx_bytes;
4340 }
4341
4342 /* Drain Txq */
4343 static void mvpp2_txq_drain(struct mvpp2_port *port, struct mvpp2_tx_queue *txq,
4344 int enable)
4345 {
4346 u32 val;
4347
4348 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4349 val = mvpp2_read(port->priv, MVPP2_TXQ_PREF_BUF_REG);
4350 if (enable)
4351 val |= MVPP2_TXQ_DRAIN_EN_MASK;
4352 else
4353 val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
4354 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
4355 }
4356
4357 static int mvpp2_send(struct udevice *dev, void *packet, int length)
4358 {
4359 struct mvpp2_port *port = dev_get_priv(dev);
4360 struct mvpp2_tx_queue *txq, *aggr_txq;
4361 struct mvpp2_tx_desc *tx_desc;
4362 int tx_done;
4363 int timeout;
4364
4365 txq = port->txqs[0];
4366 aggr_txq = &port->priv->aggr_txqs[smp_processor_id()];
4367
4368 /* Get a descriptor for the first part of the packet */
4369 tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
4370 mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
4371 mvpp2_txdesc_size_set(port, tx_desc, length);
4372 mvpp2_txdesc_offset_set(port, tx_desc,
4373 (dma_addr_t)packet & MVPP2_TX_DESC_ALIGN);
4374 mvpp2_txdesc_dma_addr_set(port, tx_desc,
4375 (dma_addr_t)packet & ~MVPP2_TX_DESC_ALIGN);
4376 /* First and Last descriptor */
4377 mvpp2_txdesc_cmd_set(port, tx_desc,
4378 MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE
4379 | MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC);
4380
4381 /* Flush tx data */
4382 flush_dcache_range((unsigned long)packet,
4383 (unsigned long)packet + ALIGN(length, PKTALIGN));
4384
4385 /* Enable transmit */
4386 mb();
4387 mvpp2_aggr_txq_pend_desc_add(port, 1);
4388
4389 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4390
4391 timeout = 0;
4392 do {
4393 if (timeout++ > 10000) {
4394 printf("timeout: packet not sent from aggregated to phys TXQ\n");
4395 return 0;
4396 }
4397 tx_done = mvpp2_txq_pend_desc_num_get(port, txq);
4398 } while (tx_done);
4399
4400 /* Enable TXQ drain */
4401 mvpp2_txq_drain(port, txq, 1);
4402
4403 timeout = 0;
4404 do {
4405 if (timeout++ > 10000) {
4406 printf("timeout: packet not sent\n");
4407 return 0;
4408 }
4409 tx_done = mvpp2_txq_sent_desc_proc(port, txq);
4410 } while (!tx_done);
4411
4412 /* Disable TXQ drain */
4413 mvpp2_txq_drain(port, txq, 0);
4414
4415 return 0;
4416 }
4417
4418 static int mvpp2_start(struct udevice *dev)
4419 {
4420 struct eth_pdata *pdata = dev_get_platdata(dev);
4421 struct mvpp2_port *port = dev_get_priv(dev);
4422
4423 /* Load current MAC address */
4424 memcpy(port->dev_addr, pdata->enetaddr, ETH_ALEN);
4425
4426 /* Reconfigure parser accept the original MAC address */
4427 mvpp2_prs_update_mac_da(port, port->dev_addr);
4428
4429 mvpp2_port_power_up(port);
4430
4431 mvpp2_open(dev, port);
4432
4433 return 0;
4434 }
4435
4436 static void mvpp2_stop(struct udevice *dev)
4437 {
4438 struct mvpp2_port *port = dev_get_priv(dev);
4439
4440 mvpp2_stop_dev(port);
4441 mvpp2_cleanup_rxqs(port);
4442 mvpp2_cleanup_txqs(port);
4443 }
4444
4445 static int mvpp2_base_probe(struct udevice *dev)
4446 {
4447 struct mvpp2 *priv = dev_get_priv(dev);
4448 struct mii_dev *bus;
4449 void *bd_space;
4450 u32 size = 0;
4451 int i;
4452
4453 /* Save hw-version */
4454 priv->hw_version = dev_get_driver_data(dev);
4455
4456 /*
4457 * U-Boot special buffer handling:
4458 *
4459 * Allocate buffer area for descs and rx_buffers. This is only
4460 * done once for all interfaces. As only one interface can
4461 * be active. Make this area DMA-safe by disabling the D-cache
4462 */
4463
4464 /* Align buffer area for descs and rx_buffers to 1MiB */
4465 bd_space = memalign(1 << MMU_SECTION_SHIFT, BD_SPACE);
4466 mmu_set_region_dcache_behaviour((unsigned long)bd_space,
4467 BD_SPACE, DCACHE_OFF);
4468
4469 buffer_loc.aggr_tx_descs = (struct mvpp2_tx_desc *)bd_space;
4470 size += MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE;
4471
4472 buffer_loc.tx_descs =
4473 (struct mvpp2_tx_desc *)((unsigned long)bd_space + size);
4474 size += MVPP2_MAX_TXD * MVPP2_DESC_ALIGNED_SIZE;
4475
4476 buffer_loc.rx_descs =
4477 (struct mvpp2_rx_desc *)((unsigned long)bd_space + size);
4478 size += MVPP2_MAX_RXD * MVPP2_DESC_ALIGNED_SIZE;
4479
4480 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
4481 buffer_loc.bm_pool[i] =
4482 (unsigned long *)((unsigned long)bd_space + size);
4483 if (priv->hw_version == MVPP21)
4484 size += MVPP2_BM_POOL_SIZE_MAX * 2 * sizeof(u32);
4485 else
4486 size += MVPP2_BM_POOL_SIZE_MAX * 2 * sizeof(u64);
4487 }
4488
4489 for (i = 0; i < MVPP2_BM_LONG_BUF_NUM; i++) {
4490 buffer_loc.rx_buffer[i] =
4491 (unsigned long *)((unsigned long)bd_space + size);
4492 size += RX_BUFFER_SIZE;
4493 }
4494
4495 /* Clear the complete area so that all descriptors are cleared */
4496 memset(bd_space, 0, size);
4497
4498 /* Save base addresses for later use */
4499 priv->base = (void *)dev_get_addr_index(dev, 0);
4500 if (IS_ERR(priv->base))
4501 return PTR_ERR(priv->base);
4502
4503 if (priv->hw_version == MVPP21) {
4504 priv->lms_base = (void *)dev_get_addr_index(dev, 1);
4505 if (IS_ERR(priv->lms_base))
4506 return PTR_ERR(priv->lms_base);
4507
4508 priv->mdio_base = priv->lms_base + MVPP21_SMI;
4509 } else {
4510 priv->iface_base = (void *)dev_get_addr_index(dev, 1);
4511 if (IS_ERR(priv->iface_base))
4512 return PTR_ERR(priv->iface_base);
4513
4514 priv->mdio_base = priv->iface_base + MVPP22_SMI;
4515 }
4516
4517 if (priv->hw_version == MVPP21)
4518 priv->max_port_rxqs = 8;
4519 else
4520 priv->max_port_rxqs = 32;
4521
4522 /* Finally create and register the MDIO bus driver */
4523 bus = mdio_alloc();
4524 if (!bus) {
4525 printf("Failed to allocate MDIO bus\n");
4526 return -ENOMEM;
4527 }
4528
4529 bus->read = mpp2_mdio_read;
4530 bus->write = mpp2_mdio_write;
4531 snprintf(bus->name, sizeof(bus->name), dev->name);
4532 bus->priv = (void *)priv;
4533 priv->bus = bus;
4534
4535 return mdio_register(bus);
4536 }
4537
4538 static int mvpp2_probe(struct udevice *dev)
4539 {
4540 struct mvpp2_port *port = dev_get_priv(dev);
4541 struct mvpp2 *priv = dev_get_priv(dev->parent);
4542 int err;
4543
4544 /* Only call the probe function for the parent once */
4545 if (!priv->probe_done) {
4546 err = mvpp2_base_probe(dev->parent);
4547 priv->probe_done = 1;
4548 }
4549 /* Initialize network controller */
4550 err = mvpp2_init(dev, priv);
4551 if (err < 0) {
4552 dev_err(&pdev->dev, "failed to initialize controller\n");
4553 return err;
4554 }
4555
4556 return mvpp2_port_probe(dev, port, dev_of_offset(dev), priv);
4557 }
4558
4559 static const struct eth_ops mvpp2_ops = {
4560 .start = mvpp2_start,
4561 .send = mvpp2_send,
4562 .recv = mvpp2_recv,
4563 .stop = mvpp2_stop,
4564 };
4565
4566 static struct driver mvpp2_driver = {
4567 .name = "mvpp2",
4568 .id = UCLASS_ETH,
4569 .probe = mvpp2_probe,
4570 .ops = &mvpp2_ops,
4571 .priv_auto_alloc_size = sizeof(struct mvpp2_port),
4572 .platdata_auto_alloc_size = sizeof(struct eth_pdata),
4573 };
4574
4575 /*
4576 * Use a MISC device to bind the n instances (child nodes) of the
4577 * network base controller in UCLASS_ETH.
4578 */
4579 static int mvpp2_base_bind(struct udevice *parent)
4580 {
4581 const void *blob = gd->fdt_blob;
4582 int node = dev_of_offset(parent);
4583 struct uclass_driver *drv;
4584 struct udevice *dev;
4585 struct eth_pdata *plat;
4586 char *name;
4587 int subnode;
4588 u32 id;
4589 int base_id_add;
4590
4591 /* Lookup eth driver */
4592 drv = lists_uclass_lookup(UCLASS_ETH);
4593 if (!drv) {
4594 puts("Cannot find eth driver\n");
4595 return -ENOENT;
4596 }
4597
4598 base_id_add = base_id;
4599
4600 fdt_for_each_subnode(subnode, blob, node) {
4601 /* Increment base_id for all subnodes, also the disabled ones */
4602 base_id++;
4603
4604 /* Skip disabled ports */
4605 if (!fdtdec_get_is_enabled(blob, subnode))
4606 continue;
4607
4608 plat = calloc(1, sizeof(*plat));
4609 if (!plat)
4610 return -ENOMEM;
4611
4612 id = fdtdec_get_int(blob, subnode, "port-id", -1);
4613 id += base_id_add;
4614
4615 name = calloc(1, 16);
4616 sprintf(name, "mvpp2-%d", id);
4617
4618 /* Create child device UCLASS_ETH and bind it */
4619 device_bind(parent, &mvpp2_driver, name, plat, subnode, &dev);
4620 dev_set_of_offset(dev, subnode);
4621 }
4622
4623 return 0;
4624 }
4625
4626 static const struct udevice_id mvpp2_ids[] = {
4627 {
4628 .compatible = "marvell,armada-375-pp2",
4629 .data = MVPP21,
4630 },
4631 {
4632 .compatible = "marvell,armada-7k-pp22",
4633 .data = MVPP22,
4634 },
4635 { }
4636 };
4637
4638 U_BOOT_DRIVER(mvpp2_base) = {
4639 .name = "mvpp2_base",
4640 .id = UCLASS_MISC,
4641 .of_match = mvpp2_ids,
4642 .bind = mvpp2_base_bind,
4643 .priv_auto_alloc_size = sizeof(struct mvpp2),
4644 };