]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/net/tsec.c
net: abort network initialization if the PHY driver fails
[people/ms/u-boot.git] / drivers / net / tsec.c
1 /*
2 * Freescale Three Speed Ethernet Controller driver
3 *
4 * This software may be used and distributed according to the
5 * terms of the GNU Public License, Version 2, incorporated
6 * herein by reference.
7 *
8 * Copyright 2004-2011 Freescale Semiconductor, Inc.
9 * (C) Copyright 2003, Motorola, Inc.
10 * author Andy Fleming
11 *
12 */
13
14 #include <config.h>
15 #include <common.h>
16 #include <malloc.h>
17 #include <net.h>
18 #include <command.h>
19 #include <tsec.h>
20 #include <fsl_mdio.h>
21 #include <asm/errno.h>
22 #include <asm/processor.h>
23
24 DECLARE_GLOBAL_DATA_PTR;
25
26 #define TX_BUF_CNT 2
27
28 static uint rxIdx; /* index of the current RX buffer */
29 static uint txIdx; /* index of the current TX buffer */
30
31 typedef volatile struct rtxbd {
32 txbd8_t txbd[TX_BUF_CNT];
33 rxbd8_t rxbd[PKTBUFSRX];
34 } RTXBD;
35
36 #define MAXCONTROLLERS (8)
37
38 static struct tsec_private *privlist[MAXCONTROLLERS];
39 static int num_tsecs = 0;
40
41 #ifdef __GNUC__
42 static RTXBD rtx __attribute__ ((aligned(8)));
43 #else
44 #error "rtx must be 64-bit aligned"
45 #endif
46
47 static int tsec_send(struct eth_device *dev, void *packet, int length);
48
49 /* Default initializations for TSEC controllers. */
50
51 static struct tsec_info_struct tsec_info[] = {
52 #ifdef CONFIG_TSEC1
53 STD_TSEC_INFO(1), /* TSEC1 */
54 #endif
55 #ifdef CONFIG_TSEC2
56 STD_TSEC_INFO(2), /* TSEC2 */
57 #endif
58 #ifdef CONFIG_MPC85XX_FEC
59 {
60 .regs = (tsec_t *)(TSEC_BASE_ADDR + 0x2000),
61 .devname = CONFIG_MPC85XX_FEC_NAME,
62 .phyaddr = FEC_PHY_ADDR,
63 .flags = FEC_FLAGS,
64 .mii_devname = DEFAULT_MII_NAME
65 }, /* FEC */
66 #endif
67 #ifdef CONFIG_TSEC3
68 STD_TSEC_INFO(3), /* TSEC3 */
69 #endif
70 #ifdef CONFIG_TSEC4
71 STD_TSEC_INFO(4), /* TSEC4 */
72 #endif
73 };
74
75 #define TBIANA_SETTINGS ( \
76 TBIANA_ASYMMETRIC_PAUSE \
77 | TBIANA_SYMMETRIC_PAUSE \
78 | TBIANA_FULL_DUPLEX \
79 )
80
81 /* By default force the TBI PHY into 1000Mbps full duplex when in SGMII mode */
82 #ifndef CONFIG_TSEC_TBICR_SETTINGS
83 #define CONFIG_TSEC_TBICR_SETTINGS ( \
84 TBICR_PHY_RESET \
85 | TBICR_ANEG_ENABLE \
86 | TBICR_FULL_DUPLEX \
87 | TBICR_SPEED1_SET \
88 )
89 #endif /* CONFIG_TSEC_TBICR_SETTINGS */
90
91 /* Configure the TBI for SGMII operation */
92 static void tsec_configure_serdes(struct tsec_private *priv)
93 {
94 /* Access TBI PHY registers at given TSEC register offset as opposed
95 * to the register offset used for external PHY accesses */
96 tsec_local_mdio_write(priv->phyregs_sgmii, in_be32(&priv->regs->tbipa),
97 0, TBI_ANA, TBIANA_SETTINGS);
98 tsec_local_mdio_write(priv->phyregs_sgmii, in_be32(&priv->regs->tbipa),
99 0, TBI_TBICON, TBICON_CLK_SELECT);
100 tsec_local_mdio_write(priv->phyregs_sgmii, in_be32(&priv->regs->tbipa),
101 0, TBI_CR, CONFIG_TSEC_TBICR_SETTINGS);
102 }
103
104 #ifdef CONFIG_MCAST_TFTP
105
106 /* CREDITS: linux gianfar driver, slightly adjusted... thanx. */
107
108 /* Set the appropriate hash bit for the given addr */
109
110 /* The algorithm works like so:
111 * 1) Take the Destination Address (ie the multicast address), and
112 * do a CRC on it (little endian), and reverse the bits of the
113 * result.
114 * 2) Use the 8 most significant bits as a hash into a 256-entry
115 * table. The table is controlled through 8 32-bit registers:
116 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
117 * gaddr7. This means that the 3 most significant bits in the
118 * hash index which gaddr register to use, and the 5 other bits
119 * indicate which bit (assuming an IBM numbering scheme, which
120 * for PowerPC (tm) is usually the case) in the tregister holds
121 * the entry. */
122 static int
123 tsec_mcast_addr (struct eth_device *dev, u8 mcast_mac, u8 set)
124 {
125 struct tsec_private *priv = privlist[1];
126 volatile tsec_t *regs = priv->regs;
127 volatile u32 *reg_array, value;
128 u8 result, whichbit, whichreg;
129
130 result = (u8)((ether_crc(MAC_ADDR_LEN,mcast_mac) >> 24) & 0xff);
131 whichbit = result & 0x1f; /* the 5 LSB = which bit to set */
132 whichreg = result >> 5; /* the 3 MSB = which reg to set it in */
133 value = (1 << (31-whichbit));
134
135 reg_array = &(regs->hash.gaddr0);
136
137 if (set) {
138 reg_array[whichreg] |= value;
139 } else {
140 reg_array[whichreg] &= ~value;
141 }
142 return 0;
143 }
144 #endif /* Multicast TFTP ? */
145
146 /* Initialized required registers to appropriate values, zeroing
147 * those we don't care about (unless zero is bad, in which case,
148 * choose a more appropriate value)
149 */
150 static void init_registers(tsec_t *regs)
151 {
152 /* Clear IEVENT */
153 out_be32(&regs->ievent, IEVENT_INIT_CLEAR);
154
155 out_be32(&regs->imask, IMASK_INIT_CLEAR);
156
157 out_be32(&regs->hash.iaddr0, 0);
158 out_be32(&regs->hash.iaddr1, 0);
159 out_be32(&regs->hash.iaddr2, 0);
160 out_be32(&regs->hash.iaddr3, 0);
161 out_be32(&regs->hash.iaddr4, 0);
162 out_be32(&regs->hash.iaddr5, 0);
163 out_be32(&regs->hash.iaddr6, 0);
164 out_be32(&regs->hash.iaddr7, 0);
165
166 out_be32(&regs->hash.gaddr0, 0);
167 out_be32(&regs->hash.gaddr1, 0);
168 out_be32(&regs->hash.gaddr2, 0);
169 out_be32(&regs->hash.gaddr3, 0);
170 out_be32(&regs->hash.gaddr4, 0);
171 out_be32(&regs->hash.gaddr5, 0);
172 out_be32(&regs->hash.gaddr6, 0);
173 out_be32(&regs->hash.gaddr7, 0);
174
175 out_be32(&regs->rctrl, 0x00000000);
176
177 /* Init RMON mib registers */
178 memset((void *)&(regs->rmon), 0, sizeof(rmon_mib_t));
179
180 out_be32(&regs->rmon.cam1, 0xffffffff);
181 out_be32(&regs->rmon.cam2, 0xffffffff);
182
183 out_be32(&regs->mrblr, MRBLR_INIT_SETTINGS);
184
185 out_be32(&regs->minflr, MINFLR_INIT_SETTINGS);
186
187 out_be32(&regs->attr, ATTR_INIT_SETTINGS);
188 out_be32(&regs->attreli, ATTRELI_INIT_SETTINGS);
189
190 }
191
192 /* Configure maccfg2 based on negotiated speed and duplex
193 * reported by PHY handling code
194 */
195 static void adjust_link(struct tsec_private *priv, struct phy_device *phydev)
196 {
197 tsec_t *regs = priv->regs;
198 u32 ecntrl, maccfg2;
199
200 if (!phydev->link) {
201 printf("%s: No link.\n", phydev->dev->name);
202 return;
203 }
204
205 /* clear all bits relative with interface mode */
206 ecntrl = in_be32(&regs->ecntrl);
207 ecntrl &= ~ECNTRL_R100;
208
209 maccfg2 = in_be32(&regs->maccfg2);
210 maccfg2 &= ~(MACCFG2_IF | MACCFG2_FULL_DUPLEX);
211
212 if (phydev->duplex)
213 maccfg2 |= MACCFG2_FULL_DUPLEX;
214
215 switch (phydev->speed) {
216 case 1000:
217 maccfg2 |= MACCFG2_GMII;
218 break;
219 case 100:
220 case 10:
221 maccfg2 |= MACCFG2_MII;
222
223 /* Set R100 bit in all modes although
224 * it is only used in RGMII mode
225 */
226 if (phydev->speed == 100)
227 ecntrl |= ECNTRL_R100;
228 break;
229 default:
230 printf("%s: Speed was bad\n", phydev->dev->name);
231 break;
232 }
233
234 out_be32(&regs->ecntrl, ecntrl);
235 out_be32(&regs->maccfg2, maccfg2);
236
237 printf("Speed: %d, %s duplex%s\n", phydev->speed,
238 (phydev->duplex) ? "full" : "half",
239 (phydev->port == PORT_FIBRE) ? ", fiber mode" : "");
240 }
241
242 #ifdef CONFIG_SYS_FSL_ERRATUM_NMG_ETSEC129
243 /*
244 * When MACCFG1[Rx_EN] is enabled during system boot as part
245 * of the eTSEC port initialization sequence,
246 * the eTSEC Rx logic may not be properly initialized.
247 */
248 void redundant_init(struct eth_device *dev)
249 {
250 struct tsec_private *priv = dev->priv;
251 tsec_t *regs = priv->regs;
252 uint t, count = 0;
253 int fail = 1;
254 static const u8 pkt[] = {
255 0x00, 0x1e, 0x4f, 0x12, 0xcb, 0x2c, 0x00, 0x25,
256 0x64, 0xbb, 0xd1, 0xab, 0x08, 0x00, 0x45, 0x00,
257 0x00, 0x5c, 0xdd, 0x22, 0x00, 0x00, 0x80, 0x01,
258 0x1f, 0x71, 0x0a, 0xc1, 0x14, 0x22, 0x0a, 0xc1,
259 0x14, 0x6a, 0x08, 0x00, 0xef, 0x7e, 0x02, 0x00,
260 0x94, 0x05, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66,
261 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e,
262 0x6f, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76,
263 0x77, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
264 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
265 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
266 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
267 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70,
268 0x71, 0x72};
269
270 /* Enable promiscuous mode */
271 setbits_be32(&regs->rctrl, 0x8);
272 /* Enable loopback mode */
273 setbits_be32(&regs->maccfg1, MACCFG1_LOOPBACK);
274 /* Enable transmit and receive */
275 setbits_be32(&regs->maccfg1, MACCFG1_RX_EN | MACCFG1_TX_EN);
276
277 /* Tell the DMA it is clear to go */
278 setbits_be32(&regs->dmactrl, DMACTRL_INIT_SETTINGS);
279 out_be32(&regs->tstat, TSTAT_CLEAR_THALT);
280 out_be32(&regs->rstat, RSTAT_CLEAR_RHALT);
281 clrbits_be32(&regs->dmactrl, DMACTRL_GRS | DMACTRL_GTS);
282
283 do {
284 tsec_send(dev, (void *)pkt, sizeof(pkt));
285
286 /* Wait for buffer to be received */
287 for (t = 0; rtx.rxbd[rxIdx].status & RXBD_EMPTY; t++) {
288 if (t >= 10 * TOUT_LOOP) {
289 printf("%s: tsec: rx error\n", dev->name);
290 break;
291 }
292 }
293
294 if (!memcmp(pkt, (void *)NetRxPackets[rxIdx], sizeof(pkt)))
295 fail = 0;
296
297 rtx.rxbd[rxIdx].length = 0;
298 rtx.rxbd[rxIdx].status =
299 RXBD_EMPTY | (((rxIdx + 1) == PKTBUFSRX) ? RXBD_WRAP : 0);
300 rxIdx = (rxIdx + 1) % PKTBUFSRX;
301
302 if (in_be32(&regs->ievent) & IEVENT_BSY) {
303 out_be32(&regs->ievent, IEVENT_BSY);
304 out_be32(&regs->rstat, RSTAT_CLEAR_RHALT);
305 }
306 if (fail) {
307 printf("loopback recv packet error!\n");
308 clrbits_be32(&regs->maccfg1, MACCFG1_RX_EN);
309 udelay(1000);
310 setbits_be32(&regs->maccfg1, MACCFG1_RX_EN);
311 }
312 } while ((count++ < 4) && (fail == 1));
313
314 if (fail)
315 panic("eTSEC init fail!\n");
316 /* Disable promiscuous mode */
317 clrbits_be32(&regs->rctrl, 0x8);
318 /* Disable loopback mode */
319 clrbits_be32(&regs->maccfg1, MACCFG1_LOOPBACK);
320 }
321 #endif
322
323 /* Set up the buffers and their descriptors, and bring up the
324 * interface
325 */
326 static void startup_tsec(struct eth_device *dev)
327 {
328 int i;
329 struct tsec_private *priv = (struct tsec_private *)dev->priv;
330 tsec_t *regs = priv->regs;
331
332 /* reset the indices to zero */
333 rxIdx = 0;
334 txIdx = 0;
335 #ifdef CONFIG_SYS_FSL_ERRATUM_NMG_ETSEC129
336 uint svr;
337 #endif
338
339 /* Point to the buffer descriptors */
340 out_be32(&regs->tbase, (unsigned int)(&rtx.txbd[txIdx]));
341 out_be32(&regs->rbase, (unsigned int)(&rtx.rxbd[rxIdx]));
342
343 /* Initialize the Rx Buffer descriptors */
344 for (i = 0; i < PKTBUFSRX; i++) {
345 rtx.rxbd[i].status = RXBD_EMPTY;
346 rtx.rxbd[i].length = 0;
347 rtx.rxbd[i].bufPtr = (uint) NetRxPackets[i];
348 }
349 rtx.rxbd[PKTBUFSRX - 1].status |= RXBD_WRAP;
350
351 /* Initialize the TX Buffer Descriptors */
352 for (i = 0; i < TX_BUF_CNT; i++) {
353 rtx.txbd[i].status = 0;
354 rtx.txbd[i].length = 0;
355 rtx.txbd[i].bufPtr = 0;
356 }
357 rtx.txbd[TX_BUF_CNT - 1].status |= TXBD_WRAP;
358
359 #ifdef CONFIG_SYS_FSL_ERRATUM_NMG_ETSEC129
360 svr = get_svr();
361 if ((SVR_MAJ(svr) == 1) || IS_SVR_REV(svr, 2, 0))
362 redundant_init(dev);
363 #endif
364 /* Enable Transmit and Receive */
365 setbits_be32(&regs->maccfg1, MACCFG1_RX_EN | MACCFG1_TX_EN);
366
367 /* Tell the DMA it is clear to go */
368 setbits_be32(&regs->dmactrl, DMACTRL_INIT_SETTINGS);
369 out_be32(&regs->tstat, TSTAT_CLEAR_THALT);
370 out_be32(&regs->rstat, RSTAT_CLEAR_RHALT);
371 clrbits_be32(&regs->dmactrl, DMACTRL_GRS | DMACTRL_GTS);
372 }
373
374 /* This returns the status bits of the device. The return value
375 * is never checked, and this is what the 8260 driver did, so we
376 * do the same. Presumably, this would be zero if there were no
377 * errors
378 */
379 static int tsec_send(struct eth_device *dev, void *packet, int length)
380 {
381 int i;
382 int result = 0;
383 struct tsec_private *priv = (struct tsec_private *)dev->priv;
384 tsec_t *regs = priv->regs;
385
386 /* Find an empty buffer descriptor */
387 for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) {
388 if (i >= TOUT_LOOP) {
389 debug("%s: tsec: tx buffers full\n", dev->name);
390 return result;
391 }
392 }
393
394 rtx.txbd[txIdx].bufPtr = (uint) packet;
395 rtx.txbd[txIdx].length = length;
396 rtx.txbd[txIdx].status |=
397 (TXBD_READY | TXBD_LAST | TXBD_CRC | TXBD_INTERRUPT);
398
399 /* Tell the DMA to go */
400 out_be32(&regs->tstat, TSTAT_CLEAR_THALT);
401
402 /* Wait for buffer to be transmitted */
403 for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) {
404 if (i >= TOUT_LOOP) {
405 debug("%s: tsec: tx error\n", dev->name);
406 return result;
407 }
408 }
409
410 txIdx = (txIdx + 1) % TX_BUF_CNT;
411 result = rtx.txbd[txIdx].status & TXBD_STATS;
412
413 return result;
414 }
415
416 static int tsec_recv(struct eth_device *dev)
417 {
418 int length;
419 struct tsec_private *priv = (struct tsec_private *)dev->priv;
420 tsec_t *regs = priv->regs;
421
422 while (!(rtx.rxbd[rxIdx].status & RXBD_EMPTY)) {
423
424 length = rtx.rxbd[rxIdx].length;
425
426 /* Send the packet up if there were no errors */
427 if (!(rtx.rxbd[rxIdx].status & RXBD_STATS)) {
428 NetReceive(NetRxPackets[rxIdx], length - 4);
429 } else {
430 printf("Got error %x\n",
431 (rtx.rxbd[rxIdx].status & RXBD_STATS));
432 }
433
434 rtx.rxbd[rxIdx].length = 0;
435
436 /* Set the wrap bit if this is the last element in the list */
437 rtx.rxbd[rxIdx].status =
438 RXBD_EMPTY | (((rxIdx + 1) == PKTBUFSRX) ? RXBD_WRAP : 0);
439
440 rxIdx = (rxIdx + 1) % PKTBUFSRX;
441 }
442
443 if (in_be32(&regs->ievent) & IEVENT_BSY) {
444 out_be32(&regs->ievent, IEVENT_BSY);
445 out_be32(&regs->rstat, RSTAT_CLEAR_RHALT);
446 }
447
448 return -1;
449
450 }
451
452 /* Stop the interface */
453 static void tsec_halt(struct eth_device *dev)
454 {
455 struct tsec_private *priv = (struct tsec_private *)dev->priv;
456 tsec_t *regs = priv->regs;
457
458 clrbits_be32(&regs->dmactrl, DMACTRL_GRS | DMACTRL_GTS);
459 setbits_be32(&regs->dmactrl, DMACTRL_GRS | DMACTRL_GTS);
460
461 while ((in_be32(&regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC))
462 != (IEVENT_GRSC | IEVENT_GTSC))
463 ;
464
465 clrbits_be32(&regs->maccfg1, MACCFG1_TX_EN | MACCFG1_RX_EN);
466
467 /* Shut down the PHY, as needed */
468 phy_shutdown(priv->phydev);
469 }
470
471 /* Initializes data structures and registers for the controller,
472 * and brings the interface up. Returns the link status, meaning
473 * that it returns success if the link is up, failure otherwise.
474 * This allows u-boot to find the first active controller.
475 */
476 static int tsec_init(struct eth_device *dev, bd_t * bd)
477 {
478 uint tempval;
479 char tmpbuf[MAC_ADDR_LEN];
480 int i;
481 struct tsec_private *priv = (struct tsec_private *)dev->priv;
482 tsec_t *regs = priv->regs;
483 int ret;
484
485 /* Make sure the controller is stopped */
486 tsec_halt(dev);
487
488 /* Init MACCFG2. Defaults to GMII */
489 out_be32(&regs->maccfg2, MACCFG2_INIT_SETTINGS);
490
491 /* Init ECNTRL */
492 out_be32(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
493
494 /* Copy the station address into the address registers.
495 * Backwards, because little endian MACS are dumb */
496 for (i = 0; i < MAC_ADDR_LEN; i++)
497 tmpbuf[MAC_ADDR_LEN - 1 - i] = dev->enetaddr[i];
498
499 tempval = (tmpbuf[0] << 24) | (tmpbuf[1] << 16) | (tmpbuf[2] << 8) |
500 tmpbuf[3];
501
502 out_be32(&regs->macstnaddr1, tempval);
503
504 tempval = *((uint *) (tmpbuf + 4));
505
506 out_be32(&regs->macstnaddr2, tempval);
507
508 /* Clear out (for the most part) the other registers */
509 init_registers(regs);
510
511 /* Ready the device for tx/rx */
512 startup_tsec(dev);
513
514 /* Start up the PHY */
515 ret = phy_startup(priv->phydev);
516 if (ret) {
517 printf("Could not initialize PHY %s\n",
518 priv->phydev->dev->name);
519 return ret;
520 }
521
522 adjust_link(priv, priv->phydev);
523
524 /* If there's no link, fail */
525 return priv->phydev->link ? 0 : -1;
526 }
527
528 static phy_interface_t tsec_get_interface(struct tsec_private *priv)
529 {
530 tsec_t *regs = priv->regs;
531 u32 ecntrl;
532
533 ecntrl = in_be32(&regs->ecntrl);
534
535 if (ecntrl & ECNTRL_SGMII_MODE)
536 return PHY_INTERFACE_MODE_SGMII;
537
538 if (ecntrl & ECNTRL_TBI_MODE) {
539 if (ecntrl & ECNTRL_REDUCED_MODE)
540 return PHY_INTERFACE_MODE_RTBI;
541 else
542 return PHY_INTERFACE_MODE_TBI;
543 }
544
545 if (ecntrl & ECNTRL_REDUCED_MODE) {
546 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
547 return PHY_INTERFACE_MODE_RMII;
548 else {
549 phy_interface_t interface = priv->interface;
550
551 /*
552 * This isn't autodetected, so it must
553 * be set by the platform code.
554 */
555 if ((interface == PHY_INTERFACE_MODE_RGMII_ID) ||
556 (interface == PHY_INTERFACE_MODE_RGMII_TXID) ||
557 (interface == PHY_INTERFACE_MODE_RGMII_RXID))
558 return interface;
559
560 return PHY_INTERFACE_MODE_RGMII;
561 }
562 }
563
564 if (priv->flags & TSEC_GIGABIT)
565 return PHY_INTERFACE_MODE_GMII;
566
567 return PHY_INTERFACE_MODE_MII;
568 }
569
570
571 /* Discover which PHY is attached to the device, and configure it
572 * properly. If the PHY is not recognized, then return 0
573 * (failure). Otherwise, return 1
574 */
575 static int init_phy(struct eth_device *dev)
576 {
577 struct tsec_private *priv = (struct tsec_private *)dev->priv;
578 struct phy_device *phydev;
579 tsec_t *regs = priv->regs;
580 u32 supported = (SUPPORTED_10baseT_Half |
581 SUPPORTED_10baseT_Full |
582 SUPPORTED_100baseT_Half |
583 SUPPORTED_100baseT_Full);
584
585 if (priv->flags & TSEC_GIGABIT)
586 supported |= SUPPORTED_1000baseT_Full;
587
588 /* Assign a Physical address to the TBI */
589 out_be32(&regs->tbipa, CONFIG_SYS_TBIPA_VALUE);
590
591 priv->interface = tsec_get_interface(priv);
592
593 if (priv->interface == PHY_INTERFACE_MODE_SGMII)
594 tsec_configure_serdes(priv);
595
596 phydev = phy_connect(priv->bus, priv->phyaddr, dev, priv->interface);
597
598 phydev->supported &= supported;
599 phydev->advertising = phydev->supported;
600
601 priv->phydev = phydev;
602
603 phy_config(phydev);
604
605 return 1;
606 }
607
608 /* Initialize device structure. Returns success if PHY
609 * initialization succeeded (i.e. if it recognizes the PHY)
610 */
611 static int tsec_initialize(bd_t *bis, struct tsec_info_struct *tsec_info)
612 {
613 struct eth_device *dev;
614 int i;
615 struct tsec_private *priv;
616
617 dev = (struct eth_device *)malloc(sizeof *dev);
618
619 if (NULL == dev)
620 return 0;
621
622 memset(dev, 0, sizeof *dev);
623
624 priv = (struct tsec_private *)malloc(sizeof(*priv));
625
626 if (NULL == priv)
627 return 0;
628
629 privlist[num_tsecs++] = priv;
630 priv->regs = tsec_info->regs;
631 priv->phyregs_sgmii = tsec_info->miiregs_sgmii;
632
633 priv->phyaddr = tsec_info->phyaddr;
634 priv->flags = tsec_info->flags;
635
636 sprintf(dev->name, tsec_info->devname);
637 priv->interface = tsec_info->interface;
638 priv->bus = miiphy_get_dev_by_name(tsec_info->mii_devname);
639 dev->iobase = 0;
640 dev->priv = priv;
641 dev->init = tsec_init;
642 dev->halt = tsec_halt;
643 dev->send = tsec_send;
644 dev->recv = tsec_recv;
645 #ifdef CONFIG_MCAST_TFTP
646 dev->mcast = tsec_mcast_addr;
647 #endif
648
649 /* Tell u-boot to get the addr from the env */
650 for (i = 0; i < 6; i++)
651 dev->enetaddr[i] = 0;
652
653 eth_register(dev);
654
655 /* Reset the MAC */
656 setbits_be32(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
657 udelay(2); /* Soft Reset must be asserted for 3 TX clocks */
658 clrbits_be32(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
659
660 /* Try to initialize PHY here, and return */
661 return init_phy(dev);
662 }
663
664 /*
665 * Initialize all the TSEC devices
666 *
667 * Returns the number of TSEC devices that were initialized
668 */
669 int tsec_eth_init(bd_t *bis, struct tsec_info_struct *tsecs, int num)
670 {
671 int i;
672 int ret, count = 0;
673
674 for (i = 0; i < num; i++) {
675 ret = tsec_initialize(bis, &tsecs[i]);
676 if (ret > 0)
677 count += ret;
678 }
679
680 return count;
681 }
682
683 int tsec_standard_init(bd_t *bis)
684 {
685 struct fsl_pq_mdio_info info;
686
687 info.regs = (struct tsec_mii_mng *)CONFIG_SYS_MDIO_BASE_ADDR;
688 info.name = DEFAULT_MII_NAME;
689
690 fsl_pq_mdio_init(bis, &info);
691
692 return tsec_eth_init(bis, tsec_info, ARRAY_SIZE(tsec_info));
693 }