]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/net/tsec.c
Merge branch 'master' of git://git.denx.de/u-boot-fdt
[people/ms/u-boot.git] / drivers / net / tsec.c
1 /*
2 * Freescale Three Speed Ethernet Controller driver
3 *
4 * This software may be used and distributed according to the
5 * terms of the GNU Public License, Version 2, incorporated
6 * herein by reference.
7 *
8 * Copyright 2004-2011 Freescale Semiconductor, Inc.
9 * (C) Copyright 2003, Motorola, Inc.
10 * author Andy Fleming
11 *
12 */
13
14 #include <config.h>
15 #include <common.h>
16 #include <malloc.h>
17 #include <net.h>
18 #include <command.h>
19 #include <tsec.h>
20 #include <fsl_mdio.h>
21 #include <asm/errno.h>
22 #include <asm/processor.h>
23
24 DECLARE_GLOBAL_DATA_PTR;
25
26 #define TX_BUF_CNT 2
27
28 static uint rxIdx; /* index of the current RX buffer */
29 static uint txIdx; /* index of the current TX buffer */
30
31 typedef volatile struct rtxbd {
32 txbd8_t txbd[TX_BUF_CNT];
33 rxbd8_t rxbd[PKTBUFSRX];
34 } RTXBD;
35
36 #define MAXCONTROLLERS (8)
37
38 static struct tsec_private *privlist[MAXCONTROLLERS];
39 static int num_tsecs = 0;
40
41 #ifdef __GNUC__
42 static RTXBD rtx __attribute__ ((aligned(8)));
43 #else
44 #error "rtx must be 64-bit aligned"
45 #endif
46
47 static int tsec_send(struct eth_device *dev,
48 volatile void *packet, int length);
49
50 /* Default initializations for TSEC controllers. */
51
52 static struct tsec_info_struct tsec_info[] = {
53 #ifdef CONFIG_TSEC1
54 STD_TSEC_INFO(1), /* TSEC1 */
55 #endif
56 #ifdef CONFIG_TSEC2
57 STD_TSEC_INFO(2), /* TSEC2 */
58 #endif
59 #ifdef CONFIG_MPC85XX_FEC
60 {
61 .regs = (tsec_t *)(TSEC_BASE_ADDR + 0x2000),
62 .devname = CONFIG_MPC85XX_FEC_NAME,
63 .phyaddr = FEC_PHY_ADDR,
64 .flags = FEC_FLAGS,
65 .mii_devname = DEFAULT_MII_NAME
66 }, /* FEC */
67 #endif
68 #ifdef CONFIG_TSEC3
69 STD_TSEC_INFO(3), /* TSEC3 */
70 #endif
71 #ifdef CONFIG_TSEC4
72 STD_TSEC_INFO(4), /* TSEC4 */
73 #endif
74 };
75
76 #define TBIANA_SETTINGS ( \
77 TBIANA_ASYMMETRIC_PAUSE \
78 | TBIANA_SYMMETRIC_PAUSE \
79 | TBIANA_FULL_DUPLEX \
80 )
81
82 /* By default force the TBI PHY into 1000Mbps full duplex when in SGMII mode */
83 #ifndef CONFIG_TSEC_TBICR_SETTINGS
84 #define CONFIG_TSEC_TBICR_SETTINGS ( \
85 TBICR_PHY_RESET \
86 | TBICR_ANEG_ENABLE \
87 | TBICR_FULL_DUPLEX \
88 | TBICR_SPEED1_SET \
89 )
90 #endif /* CONFIG_TSEC_TBICR_SETTINGS */
91
92 /* Configure the TBI for SGMII operation */
93 static void tsec_configure_serdes(struct tsec_private *priv)
94 {
95 /* Access TBI PHY registers at given TSEC register offset as opposed
96 * to the register offset used for external PHY accesses */
97 tsec_local_mdio_write(priv->phyregs_sgmii, in_be32(&priv->regs->tbipa),
98 0, TBI_ANA, TBIANA_SETTINGS);
99 tsec_local_mdio_write(priv->phyregs_sgmii, in_be32(&priv->regs->tbipa),
100 0, TBI_TBICON, TBICON_CLK_SELECT);
101 tsec_local_mdio_write(priv->phyregs_sgmii, in_be32(&priv->regs->tbipa),
102 0, TBI_CR, CONFIG_TSEC_TBICR_SETTINGS);
103 }
104
105 #ifdef CONFIG_MCAST_TFTP
106
107 /* CREDITS: linux gianfar driver, slightly adjusted... thanx. */
108
109 /* Set the appropriate hash bit for the given addr */
110
111 /* The algorithm works like so:
112 * 1) Take the Destination Address (ie the multicast address), and
113 * do a CRC on it (little endian), and reverse the bits of the
114 * result.
115 * 2) Use the 8 most significant bits as a hash into a 256-entry
116 * table. The table is controlled through 8 32-bit registers:
117 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
118 * gaddr7. This means that the 3 most significant bits in the
119 * hash index which gaddr register to use, and the 5 other bits
120 * indicate which bit (assuming an IBM numbering scheme, which
121 * for PowerPC (tm) is usually the case) in the tregister holds
122 * the entry. */
123 static int
124 tsec_mcast_addr (struct eth_device *dev, u8 mcast_mac, u8 set)
125 {
126 struct tsec_private *priv = privlist[1];
127 volatile tsec_t *regs = priv->regs;
128 volatile u32 *reg_array, value;
129 u8 result, whichbit, whichreg;
130
131 result = (u8)((ether_crc(MAC_ADDR_LEN,mcast_mac) >> 24) & 0xff);
132 whichbit = result & 0x1f; /* the 5 LSB = which bit to set */
133 whichreg = result >> 5; /* the 3 MSB = which reg to set it in */
134 value = (1 << (31-whichbit));
135
136 reg_array = &(regs->hash.gaddr0);
137
138 if (set) {
139 reg_array[whichreg] |= value;
140 } else {
141 reg_array[whichreg] &= ~value;
142 }
143 return 0;
144 }
145 #endif /* Multicast TFTP ? */
146
147 /* Initialized required registers to appropriate values, zeroing
148 * those we don't care about (unless zero is bad, in which case,
149 * choose a more appropriate value)
150 */
151 static void init_registers(tsec_t *regs)
152 {
153 /* Clear IEVENT */
154 out_be32(&regs->ievent, IEVENT_INIT_CLEAR);
155
156 out_be32(&regs->imask, IMASK_INIT_CLEAR);
157
158 out_be32(&regs->hash.iaddr0, 0);
159 out_be32(&regs->hash.iaddr1, 0);
160 out_be32(&regs->hash.iaddr2, 0);
161 out_be32(&regs->hash.iaddr3, 0);
162 out_be32(&regs->hash.iaddr4, 0);
163 out_be32(&regs->hash.iaddr5, 0);
164 out_be32(&regs->hash.iaddr6, 0);
165 out_be32(&regs->hash.iaddr7, 0);
166
167 out_be32(&regs->hash.gaddr0, 0);
168 out_be32(&regs->hash.gaddr1, 0);
169 out_be32(&regs->hash.gaddr2, 0);
170 out_be32(&regs->hash.gaddr3, 0);
171 out_be32(&regs->hash.gaddr4, 0);
172 out_be32(&regs->hash.gaddr5, 0);
173 out_be32(&regs->hash.gaddr6, 0);
174 out_be32(&regs->hash.gaddr7, 0);
175
176 out_be32(&regs->rctrl, 0x00000000);
177
178 /* Init RMON mib registers */
179 memset((void *)&(regs->rmon), 0, sizeof(rmon_mib_t));
180
181 out_be32(&regs->rmon.cam1, 0xffffffff);
182 out_be32(&regs->rmon.cam2, 0xffffffff);
183
184 out_be32(&regs->mrblr, MRBLR_INIT_SETTINGS);
185
186 out_be32(&regs->minflr, MINFLR_INIT_SETTINGS);
187
188 out_be32(&regs->attr, ATTR_INIT_SETTINGS);
189 out_be32(&regs->attreli, ATTRELI_INIT_SETTINGS);
190
191 }
192
193 /* Configure maccfg2 based on negotiated speed and duplex
194 * reported by PHY handling code
195 */
196 static void adjust_link(struct tsec_private *priv, struct phy_device *phydev)
197 {
198 tsec_t *regs = priv->regs;
199 u32 ecntrl, maccfg2;
200
201 if (!phydev->link) {
202 printf("%s: No link.\n", phydev->dev->name);
203 return;
204 }
205
206 /* clear all bits relative with interface mode */
207 ecntrl = in_be32(&regs->ecntrl);
208 ecntrl &= ~ECNTRL_R100;
209
210 maccfg2 = in_be32(&regs->maccfg2);
211 maccfg2 &= ~(MACCFG2_IF | MACCFG2_FULL_DUPLEX);
212
213 if (phydev->duplex)
214 maccfg2 |= MACCFG2_FULL_DUPLEX;
215
216 switch (phydev->speed) {
217 case 1000:
218 maccfg2 |= MACCFG2_GMII;
219 break;
220 case 100:
221 case 10:
222 maccfg2 |= MACCFG2_MII;
223
224 /* Set R100 bit in all modes although
225 * it is only used in RGMII mode
226 */
227 if (phydev->speed == 100)
228 ecntrl |= ECNTRL_R100;
229 break;
230 default:
231 printf("%s: Speed was bad\n", phydev->dev->name);
232 break;
233 }
234
235 out_be32(&regs->ecntrl, ecntrl);
236 out_be32(&regs->maccfg2, maccfg2);
237
238 printf("Speed: %d, %s duplex%s\n", phydev->speed,
239 (phydev->duplex) ? "full" : "half",
240 (phydev->port == PORT_FIBRE) ? ", fiber mode" : "");
241 }
242
243 #ifdef CONFIG_SYS_FSL_ERRATUM_NMG_ETSEC129
244 /*
245 * When MACCFG1[Rx_EN] is enabled during system boot as part
246 * of the eTSEC port initialization sequence,
247 * the eTSEC Rx logic may not be properly initialized.
248 */
249 void redundant_init(struct eth_device *dev)
250 {
251 struct tsec_private *priv = dev->priv;
252 tsec_t *regs = priv->regs;
253 uint t, count = 0;
254 int fail = 1;
255 static const u8 pkt[] = {
256 0x00, 0x1e, 0x4f, 0x12, 0xcb, 0x2c, 0x00, 0x25,
257 0x64, 0xbb, 0xd1, 0xab, 0x08, 0x00, 0x45, 0x00,
258 0x00, 0x5c, 0xdd, 0x22, 0x00, 0x00, 0x80, 0x01,
259 0x1f, 0x71, 0x0a, 0xc1, 0x14, 0x22, 0x0a, 0xc1,
260 0x14, 0x6a, 0x08, 0x00, 0xef, 0x7e, 0x02, 0x00,
261 0x94, 0x05, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66,
262 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e,
263 0x6f, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76,
264 0x77, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
265 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
266 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
267 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
268 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70,
269 0x71, 0x72};
270
271 /* Enable promiscuous mode */
272 setbits_be32(&regs->rctrl, 0x8);
273 /* Enable loopback mode */
274 setbits_be32(&regs->maccfg1, MACCFG1_LOOPBACK);
275 /* Enable transmit and receive */
276 setbits_be32(&regs->maccfg1, MACCFG1_RX_EN | MACCFG1_TX_EN);
277
278 /* Tell the DMA it is clear to go */
279 setbits_be32(&regs->dmactrl, DMACTRL_INIT_SETTINGS);
280 out_be32(&regs->tstat, TSTAT_CLEAR_THALT);
281 out_be32(&regs->rstat, RSTAT_CLEAR_RHALT);
282 clrbits_be32(&regs->dmactrl, DMACTRL_GRS | DMACTRL_GTS);
283
284 do {
285 tsec_send(dev, (void *)pkt, sizeof(pkt));
286
287 /* Wait for buffer to be received */
288 for (t = 0; rtx.rxbd[rxIdx].status & RXBD_EMPTY; t++) {
289 if (t >= 10 * TOUT_LOOP) {
290 printf("%s: tsec: rx error\n", dev->name);
291 break;
292 }
293 }
294
295 if (!memcmp(pkt, (void *)NetRxPackets[rxIdx], sizeof(pkt)))
296 fail = 0;
297
298 rtx.rxbd[rxIdx].length = 0;
299 rtx.rxbd[rxIdx].status =
300 RXBD_EMPTY | (((rxIdx + 1) == PKTBUFSRX) ? RXBD_WRAP : 0);
301 rxIdx = (rxIdx + 1) % PKTBUFSRX;
302
303 if (in_be32(&regs->ievent) & IEVENT_BSY) {
304 out_be32(&regs->ievent, IEVENT_BSY);
305 out_be32(&regs->rstat, RSTAT_CLEAR_RHALT);
306 }
307 if (fail) {
308 printf("loopback recv packet error!\n");
309 clrbits_be32(&regs->maccfg1, MACCFG1_RX_EN);
310 udelay(1000);
311 setbits_be32(&regs->maccfg1, MACCFG1_RX_EN);
312 }
313 } while ((count++ < 4) && (fail == 1));
314
315 if (fail)
316 panic("eTSEC init fail!\n");
317 /* Disable promiscuous mode */
318 clrbits_be32(&regs->rctrl, 0x8);
319 /* Disable loopback mode */
320 clrbits_be32(&regs->maccfg1, MACCFG1_LOOPBACK);
321 }
322 #endif
323
324 /* Set up the buffers and their descriptors, and bring up the
325 * interface
326 */
327 static void startup_tsec(struct eth_device *dev)
328 {
329 int i;
330 struct tsec_private *priv = (struct tsec_private *)dev->priv;
331 tsec_t *regs = priv->regs;
332
333 /* reset the indices to zero */
334 rxIdx = 0;
335 txIdx = 0;
336 #ifdef CONFIG_SYS_FSL_ERRATUM_NMG_ETSEC129
337 uint svr;
338 #endif
339
340 /* Point to the buffer descriptors */
341 out_be32(&regs->tbase, (unsigned int)(&rtx.txbd[txIdx]));
342 out_be32(&regs->rbase, (unsigned int)(&rtx.rxbd[rxIdx]));
343
344 /* Initialize the Rx Buffer descriptors */
345 for (i = 0; i < PKTBUFSRX; i++) {
346 rtx.rxbd[i].status = RXBD_EMPTY;
347 rtx.rxbd[i].length = 0;
348 rtx.rxbd[i].bufPtr = (uint) NetRxPackets[i];
349 }
350 rtx.rxbd[PKTBUFSRX - 1].status |= RXBD_WRAP;
351
352 /* Initialize the TX Buffer Descriptors */
353 for (i = 0; i < TX_BUF_CNT; i++) {
354 rtx.txbd[i].status = 0;
355 rtx.txbd[i].length = 0;
356 rtx.txbd[i].bufPtr = 0;
357 }
358 rtx.txbd[TX_BUF_CNT - 1].status |= TXBD_WRAP;
359
360 #ifdef CONFIG_SYS_FSL_ERRATUM_NMG_ETSEC129
361 svr = get_svr();
362 if ((SVR_MAJ(svr) == 1) || IS_SVR_REV(svr, 2, 0))
363 redundant_init(dev);
364 #endif
365 /* Enable Transmit and Receive */
366 setbits_be32(&regs->maccfg1, MACCFG1_RX_EN | MACCFG1_TX_EN);
367
368 /* Tell the DMA it is clear to go */
369 setbits_be32(&regs->dmactrl, DMACTRL_INIT_SETTINGS);
370 out_be32(&regs->tstat, TSTAT_CLEAR_THALT);
371 out_be32(&regs->rstat, RSTAT_CLEAR_RHALT);
372 clrbits_be32(&regs->dmactrl, DMACTRL_GRS | DMACTRL_GTS);
373 }
374
375 /* This returns the status bits of the device. The return value
376 * is never checked, and this is what the 8260 driver did, so we
377 * do the same. Presumably, this would be zero if there were no
378 * errors
379 */
380 static int tsec_send(struct eth_device *dev, volatile void *packet, int length)
381 {
382 int i;
383 int result = 0;
384 struct tsec_private *priv = (struct tsec_private *)dev->priv;
385 tsec_t *regs = priv->regs;
386
387 /* Find an empty buffer descriptor */
388 for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) {
389 if (i >= TOUT_LOOP) {
390 debug("%s: tsec: tx buffers full\n", dev->name);
391 return result;
392 }
393 }
394
395 rtx.txbd[txIdx].bufPtr = (uint) packet;
396 rtx.txbd[txIdx].length = length;
397 rtx.txbd[txIdx].status |=
398 (TXBD_READY | TXBD_LAST | TXBD_CRC | TXBD_INTERRUPT);
399
400 /* Tell the DMA to go */
401 out_be32(&regs->tstat, TSTAT_CLEAR_THALT);
402
403 /* Wait for buffer to be transmitted */
404 for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) {
405 if (i >= TOUT_LOOP) {
406 debug("%s: tsec: tx error\n", dev->name);
407 return result;
408 }
409 }
410
411 txIdx = (txIdx + 1) % TX_BUF_CNT;
412 result = rtx.txbd[txIdx].status & TXBD_STATS;
413
414 return result;
415 }
416
417 static int tsec_recv(struct eth_device *dev)
418 {
419 int length;
420 struct tsec_private *priv = (struct tsec_private *)dev->priv;
421 tsec_t *regs = priv->regs;
422
423 while (!(rtx.rxbd[rxIdx].status & RXBD_EMPTY)) {
424
425 length = rtx.rxbd[rxIdx].length;
426
427 /* Send the packet up if there were no errors */
428 if (!(rtx.rxbd[rxIdx].status & RXBD_STATS)) {
429 NetReceive(NetRxPackets[rxIdx], length - 4);
430 } else {
431 printf("Got error %x\n",
432 (rtx.rxbd[rxIdx].status & RXBD_STATS));
433 }
434
435 rtx.rxbd[rxIdx].length = 0;
436
437 /* Set the wrap bit if this is the last element in the list */
438 rtx.rxbd[rxIdx].status =
439 RXBD_EMPTY | (((rxIdx + 1) == PKTBUFSRX) ? RXBD_WRAP : 0);
440
441 rxIdx = (rxIdx + 1) % PKTBUFSRX;
442 }
443
444 if (in_be32(&regs->ievent) & IEVENT_BSY) {
445 out_be32(&regs->ievent, IEVENT_BSY);
446 out_be32(&regs->rstat, RSTAT_CLEAR_RHALT);
447 }
448
449 return -1;
450
451 }
452
453 /* Stop the interface */
454 static void tsec_halt(struct eth_device *dev)
455 {
456 struct tsec_private *priv = (struct tsec_private *)dev->priv;
457 tsec_t *regs = priv->regs;
458
459 clrbits_be32(&regs->dmactrl, DMACTRL_GRS | DMACTRL_GTS);
460 setbits_be32(&regs->dmactrl, DMACTRL_GRS | DMACTRL_GTS);
461
462 while ((in_be32(&regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC))
463 != (IEVENT_GRSC | IEVENT_GTSC))
464 ;
465
466 clrbits_be32(&regs->maccfg1, MACCFG1_TX_EN | MACCFG1_RX_EN);
467
468 /* Shut down the PHY, as needed */
469 phy_shutdown(priv->phydev);
470 }
471
472 /* Initializes data structures and registers for the controller,
473 * and brings the interface up. Returns the link status, meaning
474 * that it returns success if the link is up, failure otherwise.
475 * This allows u-boot to find the first active controller.
476 */
477 static int tsec_init(struct eth_device *dev, bd_t * bd)
478 {
479 uint tempval;
480 char tmpbuf[MAC_ADDR_LEN];
481 int i;
482 struct tsec_private *priv = (struct tsec_private *)dev->priv;
483 tsec_t *regs = priv->regs;
484
485 /* Make sure the controller is stopped */
486 tsec_halt(dev);
487
488 /* Init MACCFG2. Defaults to GMII */
489 out_be32(&regs->maccfg2, MACCFG2_INIT_SETTINGS);
490
491 /* Init ECNTRL */
492 out_be32(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
493
494 /* Copy the station address into the address registers.
495 * Backwards, because little endian MACS are dumb */
496 for (i = 0; i < MAC_ADDR_LEN; i++)
497 tmpbuf[MAC_ADDR_LEN - 1 - i] = dev->enetaddr[i];
498
499 tempval = (tmpbuf[0] << 24) | (tmpbuf[1] << 16) | (tmpbuf[2] << 8) |
500 tmpbuf[3];
501
502 out_be32(&regs->macstnaddr1, tempval);
503
504 tempval = *((uint *) (tmpbuf + 4));
505
506 out_be32(&regs->macstnaddr2, tempval);
507
508 /* Clear out (for the most part) the other registers */
509 init_registers(regs);
510
511 /* Ready the device for tx/rx */
512 startup_tsec(dev);
513
514 /* Start up the PHY */
515 phy_startup(priv->phydev);
516
517 adjust_link(priv, priv->phydev);
518
519 /* If there's no link, fail */
520 return priv->phydev->link ? 0 : -1;
521 }
522
523 static phy_interface_t tsec_get_interface(struct tsec_private *priv)
524 {
525 tsec_t *regs = priv->regs;
526 u32 ecntrl;
527
528 ecntrl = in_be32(&regs->ecntrl);
529
530 if (ecntrl & ECNTRL_SGMII_MODE)
531 return PHY_INTERFACE_MODE_SGMII;
532
533 if (ecntrl & ECNTRL_TBI_MODE) {
534 if (ecntrl & ECNTRL_REDUCED_MODE)
535 return PHY_INTERFACE_MODE_RTBI;
536 else
537 return PHY_INTERFACE_MODE_TBI;
538 }
539
540 if (ecntrl & ECNTRL_REDUCED_MODE) {
541 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
542 return PHY_INTERFACE_MODE_RMII;
543 else {
544 phy_interface_t interface = priv->interface;
545
546 /*
547 * This isn't autodetected, so it must
548 * be set by the platform code.
549 */
550 if ((interface == PHY_INTERFACE_MODE_RGMII_ID) ||
551 (interface == PHY_INTERFACE_MODE_RGMII_TXID) ||
552 (interface == PHY_INTERFACE_MODE_RGMII_RXID))
553 return interface;
554
555 return PHY_INTERFACE_MODE_RGMII;
556 }
557 }
558
559 if (priv->flags & TSEC_GIGABIT)
560 return PHY_INTERFACE_MODE_GMII;
561
562 return PHY_INTERFACE_MODE_MII;
563 }
564
565
566 /* Discover which PHY is attached to the device, and configure it
567 * properly. If the PHY is not recognized, then return 0
568 * (failure). Otherwise, return 1
569 */
570 static int init_phy(struct eth_device *dev)
571 {
572 struct tsec_private *priv = (struct tsec_private *)dev->priv;
573 struct phy_device *phydev;
574 tsec_t *regs = priv->regs;
575 u32 supported = (SUPPORTED_10baseT_Half |
576 SUPPORTED_10baseT_Full |
577 SUPPORTED_100baseT_Half |
578 SUPPORTED_100baseT_Full);
579
580 if (priv->flags & TSEC_GIGABIT)
581 supported |= SUPPORTED_1000baseT_Full;
582
583 /* Assign a Physical address to the TBI */
584 out_be32(&regs->tbipa, CONFIG_SYS_TBIPA_VALUE);
585
586 priv->interface = tsec_get_interface(priv);
587
588 if (priv->interface == PHY_INTERFACE_MODE_SGMII)
589 tsec_configure_serdes(priv);
590
591 phydev = phy_connect(priv->bus, priv->phyaddr, dev, priv->interface);
592
593 phydev->supported &= supported;
594 phydev->advertising = phydev->supported;
595
596 priv->phydev = phydev;
597
598 phy_config(phydev);
599
600 return 1;
601 }
602
603 /* Initialize device structure. Returns success if PHY
604 * initialization succeeded (i.e. if it recognizes the PHY)
605 */
606 static int tsec_initialize(bd_t *bis, struct tsec_info_struct *tsec_info)
607 {
608 struct eth_device *dev;
609 int i;
610 struct tsec_private *priv;
611
612 dev = (struct eth_device *)malloc(sizeof *dev);
613
614 if (NULL == dev)
615 return 0;
616
617 memset(dev, 0, sizeof *dev);
618
619 priv = (struct tsec_private *)malloc(sizeof(*priv));
620
621 if (NULL == priv)
622 return 0;
623
624 privlist[num_tsecs++] = priv;
625 priv->regs = tsec_info->regs;
626 priv->phyregs_sgmii = tsec_info->miiregs_sgmii;
627
628 priv->phyaddr = tsec_info->phyaddr;
629 priv->flags = tsec_info->flags;
630
631 sprintf(dev->name, tsec_info->devname);
632 priv->interface = tsec_info->interface;
633 priv->bus = miiphy_get_dev_by_name(tsec_info->mii_devname);
634 dev->iobase = 0;
635 dev->priv = priv;
636 dev->init = tsec_init;
637 dev->halt = tsec_halt;
638 dev->send = tsec_send;
639 dev->recv = tsec_recv;
640 #ifdef CONFIG_MCAST_TFTP
641 dev->mcast = tsec_mcast_addr;
642 #endif
643
644 /* Tell u-boot to get the addr from the env */
645 for (i = 0; i < 6; i++)
646 dev->enetaddr[i] = 0;
647
648 eth_register(dev);
649
650 /* Reset the MAC */
651 setbits_be32(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
652 udelay(2); /* Soft Reset must be asserted for 3 TX clocks */
653 clrbits_be32(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
654
655 /* Try to initialize PHY here, and return */
656 return init_phy(dev);
657 }
658
659 /*
660 * Initialize all the TSEC devices
661 *
662 * Returns the number of TSEC devices that were initialized
663 */
664 int tsec_eth_init(bd_t *bis, struct tsec_info_struct *tsecs, int num)
665 {
666 int i;
667 int ret, count = 0;
668
669 for (i = 0; i < num; i++) {
670 ret = tsec_initialize(bis, &tsecs[i]);
671 if (ret > 0)
672 count += ret;
673 }
674
675 return count;
676 }
677
678 int tsec_standard_init(bd_t *bis)
679 {
680 struct fsl_pq_mdio_info info;
681
682 info.regs = (struct tsec_mii_mng *)CONFIG_SYS_MDIO_BASE_ADDR;
683 info.name = DEFAULT_MII_NAME;
684
685 fsl_pq_mdio_init(bis, &info);
686
687 return tsec_eth_init(bis, tsec_info, ARRAY_SIZE(tsec_info));
688 }