]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/net/tsec.c
miiphy: constify device name
[people/ms/u-boot.git] / drivers / net / tsec.c
1 /*
2 * Freescale Three Speed Ethernet Controller driver
3 *
4 * This software may be used and distributed according to the
5 * terms of the GNU Public License, Version 2, incorporated
6 * herein by reference.
7 *
8 * Copyright 2004-2009 Freescale Semiconductor, Inc.
9 * (C) Copyright 2003, Motorola, Inc.
10 * author Andy Fleming
11 *
12 */
13
14 #include <config.h>
15 #include <common.h>
16 #include <malloc.h>
17 #include <net.h>
18 #include <command.h>
19 #include <tsec.h>
20 #include <asm/errno.h>
21
22 #include "miiphy.h"
23
24 DECLARE_GLOBAL_DATA_PTR;
25
26 #define TX_BUF_CNT 2
27
28 static uint rxIdx; /* index of the current RX buffer */
29 static uint txIdx; /* index of the current TX buffer */
30
31 typedef volatile struct rtxbd {
32 txbd8_t txbd[TX_BUF_CNT];
33 rxbd8_t rxbd[PKTBUFSRX];
34 } RTXBD;
35
36 #define MAXCONTROLLERS (8)
37
38 static struct tsec_private *privlist[MAXCONTROLLERS];
39 static int num_tsecs = 0;
40
41 #ifdef __GNUC__
42 static RTXBD rtx __attribute__ ((aligned(8)));
43 #else
44 #error "rtx must be 64-bit aligned"
45 #endif
46
47 static int tsec_send(struct eth_device *dev,
48 volatile void *packet, int length);
49 static int tsec_recv(struct eth_device *dev);
50 static int tsec_init(struct eth_device *dev, bd_t * bd);
51 static int tsec_initialize(bd_t * bis, struct tsec_info_struct *tsec_info);
52 static void tsec_halt(struct eth_device *dev);
53 static void init_registers(volatile tsec_t * regs);
54 static void startup_tsec(struct eth_device *dev);
55 static int init_phy(struct eth_device *dev);
56 void write_phy_reg(struct tsec_private *priv, uint regnum, uint value);
57 uint read_phy_reg(struct tsec_private *priv, uint regnum);
58 static struct phy_info *get_phy_info(struct eth_device *dev);
59 static void phy_run_commands(struct tsec_private *priv, struct phy_cmd *cmd);
60 static void adjust_link(struct eth_device *dev);
61 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
62 && !defined(BITBANGMII)
63 static int tsec_miiphy_write(const char *devname, unsigned char addr,
64 unsigned char reg, unsigned short value);
65 static int tsec_miiphy_read(const char *devname, unsigned char addr,
66 unsigned char reg, unsigned short *value);
67 #endif
68 #ifdef CONFIG_MCAST_TFTP
69 static int tsec_mcast_addr (struct eth_device *dev, u8 mcast_mac, u8 set);
70 #endif
71
72 /* Default initializations for TSEC controllers. */
73
74 static struct tsec_info_struct tsec_info[] = {
75 #ifdef CONFIG_TSEC1
76 STD_TSEC_INFO(1), /* TSEC1 */
77 #endif
78 #ifdef CONFIG_TSEC2
79 STD_TSEC_INFO(2), /* TSEC2 */
80 #endif
81 #ifdef CONFIG_MPC85XX_FEC
82 {
83 .regs = (tsec_t *)(TSEC_BASE_ADDR + 0x2000),
84 .miiregs = (tsec_mdio_t *)(MDIO_BASE_ADDR),
85 .devname = CONFIG_MPC85XX_FEC_NAME,
86 .phyaddr = FEC_PHY_ADDR,
87 .flags = FEC_FLAGS
88 }, /* FEC */
89 #endif
90 #ifdef CONFIG_TSEC3
91 STD_TSEC_INFO(3), /* TSEC3 */
92 #endif
93 #ifdef CONFIG_TSEC4
94 STD_TSEC_INFO(4), /* TSEC4 */
95 #endif
96 };
97
98 /*
99 * Initialize all the TSEC devices
100 *
101 * Returns the number of TSEC devices that were initialized
102 */
103 int tsec_eth_init(bd_t *bis, struct tsec_info_struct *tsecs, int num)
104 {
105 int i;
106 int ret, count = 0;
107
108 for (i = 0; i < num; i++) {
109 ret = tsec_initialize(bis, &tsecs[i]);
110 if (ret > 0)
111 count += ret;
112 }
113
114 return count;
115 }
116
117 int tsec_standard_init(bd_t *bis)
118 {
119 return tsec_eth_init(bis, tsec_info, ARRAY_SIZE(tsec_info));
120 }
121
122 /* Initialize device structure. Returns success if PHY
123 * initialization succeeded (i.e. if it recognizes the PHY)
124 */
125 static int tsec_initialize(bd_t * bis, struct tsec_info_struct *tsec_info)
126 {
127 struct eth_device *dev;
128 int i;
129 struct tsec_private *priv;
130
131 dev = (struct eth_device *)malloc(sizeof *dev);
132
133 if (NULL == dev)
134 return 0;
135
136 memset(dev, 0, sizeof *dev);
137
138 priv = (struct tsec_private *)malloc(sizeof(*priv));
139
140 if (NULL == priv)
141 return 0;
142
143 privlist[num_tsecs++] = priv;
144 priv->regs = tsec_info->regs;
145 priv->phyregs = tsec_info->miiregs;
146 priv->phyregs_sgmii = tsec_info->miiregs_sgmii;
147
148 priv->phyaddr = tsec_info->phyaddr;
149 priv->flags = tsec_info->flags;
150
151 sprintf(dev->name, tsec_info->devname);
152 dev->iobase = 0;
153 dev->priv = priv;
154 dev->init = tsec_init;
155 dev->halt = tsec_halt;
156 dev->send = tsec_send;
157 dev->recv = tsec_recv;
158 #ifdef CONFIG_MCAST_TFTP
159 dev->mcast = tsec_mcast_addr;
160 #endif
161
162 /* Tell u-boot to get the addr from the env */
163 for (i = 0; i < 6; i++)
164 dev->enetaddr[i] = 0;
165
166 eth_register(dev);
167
168 /* Reset the MAC */
169 priv->regs->maccfg1 |= MACCFG1_SOFT_RESET;
170 udelay(2); /* Soft Reset must be asserted for 3 TX clocks */
171 priv->regs->maccfg1 &= ~(MACCFG1_SOFT_RESET);
172
173 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
174 && !defined(BITBANGMII)
175 miiphy_register(dev->name, tsec_miiphy_read, tsec_miiphy_write);
176 #endif
177
178 /* Try to initialize PHY here, and return */
179 return init_phy(dev);
180 }
181
182 /* Initializes data structures and registers for the controller,
183 * and brings the interface up. Returns the link status, meaning
184 * that it returns success if the link is up, failure otherwise.
185 * This allows u-boot to find the first active controller.
186 */
187 static int tsec_init(struct eth_device *dev, bd_t * bd)
188 {
189 uint tempval;
190 char tmpbuf[MAC_ADDR_LEN];
191 int i;
192 struct tsec_private *priv = (struct tsec_private *)dev->priv;
193 volatile tsec_t *regs = priv->regs;
194
195 /* Make sure the controller is stopped */
196 tsec_halt(dev);
197
198 /* Init MACCFG2. Defaults to GMII */
199 regs->maccfg2 = MACCFG2_INIT_SETTINGS;
200
201 /* Init ECNTRL */
202 regs->ecntrl = ECNTRL_INIT_SETTINGS;
203
204 /* Copy the station address into the address registers.
205 * Backwards, because little endian MACS are dumb */
206 for (i = 0; i < MAC_ADDR_LEN; i++) {
207 tmpbuf[MAC_ADDR_LEN - 1 - i] = dev->enetaddr[i];
208 }
209 tempval = (tmpbuf[0] << 24) | (tmpbuf[1] << 16) | (tmpbuf[2] << 8) |
210 tmpbuf[3];
211
212 regs->macstnaddr1 = tempval;
213
214 tempval = *((uint *) (tmpbuf + 4));
215
216 regs->macstnaddr2 = tempval;
217
218 /* reset the indices to zero */
219 rxIdx = 0;
220 txIdx = 0;
221
222 /* Clear out (for the most part) the other registers */
223 init_registers(regs);
224
225 /* Ready the device for tx/rx */
226 startup_tsec(dev);
227
228 /* If there's no link, fail */
229 return (priv->link ? 0 : -1);
230 }
231
232 /* Writes the given phy's reg with value, using the specified MDIO regs */
233 static void tsec_local_mdio_write(volatile tsec_mdio_t *phyregs, uint addr,
234 uint reg, uint value)
235 {
236 int timeout = 1000000;
237
238 phyregs->miimadd = (addr << 8) | reg;
239 phyregs->miimcon = value;
240 asm("sync");
241
242 timeout = 1000000;
243 while ((phyregs->miimind & MIIMIND_BUSY) && timeout--) ;
244 }
245
246
247 /* Provide the default behavior of writing the PHY of this ethernet device */
248 #define write_phy_reg(priv, regnum, value) \
249 tsec_local_mdio_write(priv->phyregs,priv->phyaddr,regnum,value)
250
251 /* Reads register regnum on the device's PHY through the
252 * specified registers. It lowers and raises the read
253 * command, and waits for the data to become valid (miimind
254 * notvalid bit cleared), and the bus to cease activity (miimind
255 * busy bit cleared), and then returns the value
256 */
257 static uint tsec_local_mdio_read(volatile tsec_mdio_t *phyregs,
258 uint phyid, uint regnum)
259 {
260 uint value;
261
262 /* Put the address of the phy, and the register
263 * number into MIIMADD */
264 phyregs->miimadd = (phyid << 8) | regnum;
265
266 /* Clear the command register, and wait */
267 phyregs->miimcom = 0;
268 asm("sync");
269
270 /* Initiate a read command, and wait */
271 phyregs->miimcom = MIIM_READ_COMMAND;
272 asm("sync");
273
274 /* Wait for the the indication that the read is done */
275 while ((phyregs->miimind & (MIIMIND_NOTVALID | MIIMIND_BUSY))) ;
276
277 /* Grab the value read from the PHY */
278 value = phyregs->miimstat;
279
280 return value;
281 }
282
283 /* #define to provide old read_phy_reg functionality without duplicating code */
284 #define read_phy_reg(priv,regnum) \
285 tsec_local_mdio_read(priv->phyregs,priv->phyaddr,regnum)
286
287 #define TBIANA_SETTINGS ( \
288 TBIANA_ASYMMETRIC_PAUSE \
289 | TBIANA_SYMMETRIC_PAUSE \
290 | TBIANA_FULL_DUPLEX \
291 )
292
293 /* By default force the TBI PHY into 1000Mbps full duplex when in SGMII mode */
294 #ifndef CONFIG_TSEC_TBICR_SETTINGS
295 #define TBICR_SETTINGS ( \
296 TBICR_PHY_RESET \
297 | TBICR_FULL_DUPLEX \
298 | TBICR_SPEED1_SET \
299 )
300 #else
301 #define TBICR_SETTINGS CONFIG_TSEC_TBICR_SETTINGS
302 #endif /* CONFIG_TSEC_TBICR_SETTINGS */
303
304 /* Configure the TBI for SGMII operation */
305 static void tsec_configure_serdes(struct tsec_private *priv)
306 {
307 /* Access TBI PHY registers at given TSEC register offset as opposed
308 * to the register offset used for external PHY accesses */
309 tsec_local_mdio_write(priv->phyregs_sgmii, priv->regs->tbipa, TBI_ANA,
310 TBIANA_SETTINGS);
311 tsec_local_mdio_write(priv->phyregs_sgmii, priv->regs->tbipa, TBI_TBICON,
312 TBICON_CLK_SELECT);
313 tsec_local_mdio_write(priv->phyregs_sgmii, priv->regs->tbipa, TBI_CR,
314 TBICR_SETTINGS);
315 }
316
317 /* Discover which PHY is attached to the device, and configure it
318 * properly. If the PHY is not recognized, then return 0
319 * (failure). Otherwise, return 1
320 */
321 static int init_phy(struct eth_device *dev)
322 {
323 struct tsec_private *priv = (struct tsec_private *)dev->priv;
324 struct phy_info *curphy;
325 volatile tsec_t *regs = priv->regs;
326
327 /* Assign a Physical address to the TBI */
328 regs->tbipa = CONFIG_SYS_TBIPA_VALUE;
329 asm("sync");
330
331 /* Reset MII (due to new addresses) */
332 priv->phyregs->miimcfg = MIIMCFG_RESET;
333 asm("sync");
334 priv->phyregs->miimcfg = MIIMCFG_INIT_VALUE;
335 asm("sync");
336 while (priv->phyregs->miimind & MIIMIND_BUSY) ;
337
338 /* Get the cmd structure corresponding to the attached
339 * PHY */
340 curphy = get_phy_info(dev);
341
342 if (curphy == NULL) {
343 priv->phyinfo = NULL;
344 printf("%s: No PHY found\n", dev->name);
345
346 return 0;
347 }
348
349 if (regs->ecntrl & ECNTRL_SGMII_MODE)
350 tsec_configure_serdes(priv);
351
352 priv->phyinfo = curphy;
353
354 phy_run_commands(priv, priv->phyinfo->config);
355
356 return 1;
357 }
358
359 /*
360 * Returns which value to write to the control register.
361 * For 10/100, the value is slightly different
362 */
363 static uint mii_cr_init(uint mii_reg, struct tsec_private * priv)
364 {
365 if (priv->flags & TSEC_GIGABIT)
366 return MIIM_CONTROL_INIT;
367 else
368 return MIIM_CR_INIT;
369 }
370
371 /*
372 * Wait for auto-negotiation to complete, then determine link
373 */
374 static uint mii_parse_sr(uint mii_reg, struct tsec_private * priv)
375 {
376 /*
377 * Wait if the link is up, and autonegotiation is in progress
378 * (ie - we're capable and it's not done)
379 */
380 mii_reg = read_phy_reg(priv, MIIM_STATUS);
381 if ((mii_reg & PHY_BMSR_AUTN_ABLE) && !(mii_reg & PHY_BMSR_AUTN_COMP)) {
382 int i = 0;
383
384 puts("Waiting for PHY auto negotiation to complete");
385 while (!(mii_reg & PHY_BMSR_AUTN_COMP)) {
386 /*
387 * Timeout reached ?
388 */
389 if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
390 puts(" TIMEOUT !\n");
391 priv->link = 0;
392 return 0;
393 }
394
395 if (ctrlc()) {
396 puts("user interrupt!\n");
397 priv->link = 0;
398 return -EINTR;
399 }
400
401 if ((i++ % 1000) == 0) {
402 putc('.');
403 }
404 udelay(1000); /* 1 ms */
405 mii_reg = read_phy_reg(priv, MIIM_STATUS);
406 }
407 puts(" done\n");
408
409 /* Link status bit is latched low, read it again */
410 mii_reg = read_phy_reg(priv, MIIM_STATUS);
411
412 udelay(500000); /* another 500 ms (results in faster booting) */
413 }
414
415 priv->link = mii_reg & MIIM_STATUS_LINK ? 1 : 0;
416
417 return 0;
418 }
419
420 /* Generic function which updates the speed and duplex. If
421 * autonegotiation is enabled, it uses the AND of the link
422 * partner's advertised capabilities and our advertised
423 * capabilities. If autonegotiation is disabled, we use the
424 * appropriate bits in the control register.
425 *
426 * Stolen from Linux's mii.c and phy_device.c
427 */
428 static uint mii_parse_link(uint mii_reg, struct tsec_private *priv)
429 {
430 /* We're using autonegotiation */
431 if (mii_reg & PHY_BMSR_AUTN_ABLE) {
432 uint lpa = 0;
433 uint gblpa = 0;
434
435 /* Check for gigabit capability */
436 if (mii_reg & PHY_BMSR_EXT) {
437 /* We want a list of states supported by
438 * both PHYs in the link
439 */
440 gblpa = read_phy_reg(priv, PHY_1000BTSR);
441 gblpa &= read_phy_reg(priv, PHY_1000BTCR) << 2;
442 }
443
444 /* Set the baseline so we only have to set them
445 * if they're different
446 */
447 priv->speed = 10;
448 priv->duplexity = 0;
449
450 /* Check the gigabit fields */
451 if (gblpa & (PHY_1000BTSR_1000FD | PHY_1000BTSR_1000HD)) {
452 priv->speed = 1000;
453
454 if (gblpa & PHY_1000BTSR_1000FD)
455 priv->duplexity = 1;
456
457 /* We're done! */
458 return 0;
459 }
460
461 lpa = read_phy_reg(priv, PHY_ANAR);
462 lpa &= read_phy_reg(priv, PHY_ANLPAR);
463
464 if (lpa & (PHY_ANLPAR_TXFD | PHY_ANLPAR_TX)) {
465 priv->speed = 100;
466
467 if (lpa & PHY_ANLPAR_TXFD)
468 priv->duplexity = 1;
469
470 } else if (lpa & PHY_ANLPAR_10FD)
471 priv->duplexity = 1;
472 } else {
473 uint bmcr = read_phy_reg(priv, PHY_BMCR);
474
475 priv->speed = 10;
476 priv->duplexity = 0;
477
478 if (bmcr & PHY_BMCR_DPLX)
479 priv->duplexity = 1;
480
481 if (bmcr & PHY_BMCR_1000_MBPS)
482 priv->speed = 1000;
483 else if (bmcr & PHY_BMCR_100_MBPS)
484 priv->speed = 100;
485 }
486
487 return 0;
488 }
489
490 /*
491 * "Ethernet@Wirespeed" needs to be enabled to achieve link in certain
492 * circumstances. eg a gigabit TSEC connected to a gigabit switch with
493 * a 4-wire ethernet cable. Both ends advertise gigabit, but can't
494 * link. "Ethernet@Wirespeed" reduces advertised speed until link
495 * can be achieved.
496 */
497 static uint mii_BCM54xx_wirespeed(uint mii_reg, struct tsec_private *priv)
498 {
499 return (read_phy_reg(priv, mii_reg) & 0x8FFF) | 0x8010;
500 }
501
502 /*
503 * Parse the BCM54xx status register for speed and duplex information.
504 * The linux sungem_phy has this information, but in a table format.
505 */
506 static uint mii_parse_BCM54xx_sr(uint mii_reg, struct tsec_private *priv)
507 {
508 /* If there is no link, speed and duplex don't matter */
509 if (!priv->link)
510 return 0;
511
512 switch ((mii_reg & MIIM_BCM54xx_AUXSTATUS_LINKMODE_MASK) >>
513 MIIM_BCM54xx_AUXSTATUS_LINKMODE_SHIFT) {
514 case 1:
515 priv->duplexity = 0;
516 priv->speed = 10;
517 break;
518 case 2:
519 priv->duplexity = 1;
520 priv->speed = 10;
521 break;
522 case 3:
523 priv->duplexity = 0;
524 priv->speed = 100;
525 break;
526 case 5:
527 priv->duplexity = 1;
528 priv->speed = 100;
529 break;
530 case 6:
531 priv->duplexity = 0;
532 priv->speed = 1000;
533 break;
534 case 7:
535 priv->duplexity = 1;
536 priv->speed = 1000;
537 break;
538 default:
539 printf("Auto-neg error, defaulting to 10BT/HD\n");
540 priv->duplexity = 0;
541 priv->speed = 10;
542 break;
543 }
544
545 return 0;
546 }
547
548 /*
549 * Find out if PHY is in copper or serdes mode by looking at Expansion Reg
550 * 0x42 - "Operating Mode Status Register"
551 */
552 static int BCM8482_is_serdes(struct tsec_private *priv)
553 {
554 u16 val;
555 int serdes = 0;
556
557 write_phy_reg(priv, MIIM_BCM54XX_EXP_SEL, MIIM_BCM54XX_EXP_SEL_ER | 0x42);
558 val = read_phy_reg(priv, MIIM_BCM54XX_EXP_DATA);
559
560 switch (val & 0x1f) {
561 case 0x0d: /* RGMII-to-100Base-FX */
562 case 0x0e: /* RGMII-to-SGMII */
563 case 0x0f: /* RGMII-to-SerDes */
564 case 0x12: /* SGMII-to-SerDes */
565 case 0x13: /* SGMII-to-100Base-FX */
566 case 0x16: /* SerDes-to-Serdes */
567 serdes = 1;
568 break;
569 case 0x6: /* RGMII-to-Copper */
570 case 0x14: /* SGMII-to-Copper */
571 case 0x17: /* SerDes-to-Copper */
572 break;
573 default:
574 printf("ERROR, invalid PHY mode (0x%x\n)", val);
575 break;
576 }
577
578 return serdes;
579 }
580
581 /*
582 * Determine SerDes link speed and duplex from Expansion reg 0x42 "Operating
583 * Mode Status Register"
584 */
585 uint mii_parse_BCM5482_serdes_sr(struct tsec_private *priv)
586 {
587 u16 val;
588 int i = 0;
589
590 /* Wait 1s for link - Clause 37 autonegotiation happens very fast */
591 while (1) {
592 write_phy_reg(priv, MIIM_BCM54XX_EXP_SEL,
593 MIIM_BCM54XX_EXP_SEL_ER | 0x42);
594 val = read_phy_reg(priv, MIIM_BCM54XX_EXP_DATA);
595
596 if (val & 0x8000)
597 break;
598
599 if (i++ > 1000) {
600 priv->link = 0;
601 return 1;
602 }
603
604 udelay(1000); /* 1 ms */
605 }
606
607 priv->link = 1;
608 switch ((val >> 13) & 0x3) {
609 case (0x00):
610 priv->speed = 10;
611 break;
612 case (0x01):
613 priv->speed = 100;
614 break;
615 case (0x02):
616 priv->speed = 1000;
617 break;
618 }
619
620 priv->duplexity = (val & 0x1000) == 0x1000;
621
622 return 0;
623 }
624
625 /*
626 * Figure out if BCM5482 is in serdes or copper mode and determine link
627 * configuration accordingly
628 */
629 static uint mii_parse_BCM5482_sr(uint mii_reg, struct tsec_private *priv)
630 {
631 if (BCM8482_is_serdes(priv)) {
632 mii_parse_BCM5482_serdes_sr(priv);
633 priv->flags |= TSEC_FIBER;
634 } else {
635 /* Wait for auto-negotiation to complete or fail */
636 mii_parse_sr(mii_reg, priv);
637
638 /* Parse BCM54xx copper aux status register */
639 mii_reg = read_phy_reg(priv, MIIM_BCM54xx_AUXSTATUS);
640 mii_parse_BCM54xx_sr(mii_reg, priv);
641 }
642
643 return 0;
644 }
645
646 /* Parse the 88E1011's status register for speed and duplex
647 * information
648 */
649 static uint mii_parse_88E1011_psr(uint mii_reg, struct tsec_private * priv)
650 {
651 uint speed;
652
653 mii_reg = read_phy_reg(priv, MIIM_88E1011_PHY_STATUS);
654
655 if ((mii_reg & MIIM_88E1011_PHYSTAT_LINK) &&
656 !(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
657 int i = 0;
658
659 puts("Waiting for PHY realtime link");
660 while (!(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
661 /* Timeout reached ? */
662 if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
663 puts(" TIMEOUT !\n");
664 priv->link = 0;
665 break;
666 }
667
668 if ((i++ % 1000) == 0) {
669 putc('.');
670 }
671 udelay(1000); /* 1 ms */
672 mii_reg = read_phy_reg(priv, MIIM_88E1011_PHY_STATUS);
673 }
674 puts(" done\n");
675 udelay(500000); /* another 500 ms (results in faster booting) */
676 } else {
677 if (mii_reg & MIIM_88E1011_PHYSTAT_LINK)
678 priv->link = 1;
679 else
680 priv->link = 0;
681 }
682
683 if (mii_reg & MIIM_88E1011_PHYSTAT_DUPLEX)
684 priv->duplexity = 1;
685 else
686 priv->duplexity = 0;
687
688 speed = (mii_reg & MIIM_88E1011_PHYSTAT_SPEED);
689
690 switch (speed) {
691 case MIIM_88E1011_PHYSTAT_GBIT:
692 priv->speed = 1000;
693 break;
694 case MIIM_88E1011_PHYSTAT_100:
695 priv->speed = 100;
696 break;
697 default:
698 priv->speed = 10;
699 }
700
701 return 0;
702 }
703
704 /* Parse the RTL8211B's status register for speed and duplex
705 * information
706 */
707 static uint mii_parse_RTL8211B_sr(uint mii_reg, struct tsec_private * priv)
708 {
709 uint speed;
710
711 mii_reg = read_phy_reg(priv, MIIM_RTL8211B_PHY_STATUS);
712 if (!(mii_reg & MIIM_RTL8211B_PHYSTAT_SPDDONE)) {
713 int i = 0;
714
715 /* in case of timeout ->link is cleared */
716 priv->link = 1;
717 puts("Waiting for PHY realtime link");
718 while (!(mii_reg & MIIM_RTL8211B_PHYSTAT_SPDDONE)) {
719 /* Timeout reached ? */
720 if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
721 puts(" TIMEOUT !\n");
722 priv->link = 0;
723 break;
724 }
725
726 if ((i++ % 1000) == 0) {
727 putc('.');
728 }
729 udelay(1000); /* 1 ms */
730 mii_reg = read_phy_reg(priv, MIIM_RTL8211B_PHY_STATUS);
731 }
732 puts(" done\n");
733 udelay(500000); /* another 500 ms (results in faster booting) */
734 } else {
735 if (mii_reg & MIIM_RTL8211B_PHYSTAT_LINK)
736 priv->link = 1;
737 else
738 priv->link = 0;
739 }
740
741 if (mii_reg & MIIM_RTL8211B_PHYSTAT_DUPLEX)
742 priv->duplexity = 1;
743 else
744 priv->duplexity = 0;
745
746 speed = (mii_reg & MIIM_RTL8211B_PHYSTAT_SPEED);
747
748 switch (speed) {
749 case MIIM_RTL8211B_PHYSTAT_GBIT:
750 priv->speed = 1000;
751 break;
752 case MIIM_RTL8211B_PHYSTAT_100:
753 priv->speed = 100;
754 break;
755 default:
756 priv->speed = 10;
757 }
758
759 return 0;
760 }
761
762 /* Parse the cis8201's status register for speed and duplex
763 * information
764 */
765 static uint mii_parse_cis8201(uint mii_reg, struct tsec_private * priv)
766 {
767 uint speed;
768
769 if (mii_reg & MIIM_CIS8201_AUXCONSTAT_DUPLEX)
770 priv->duplexity = 1;
771 else
772 priv->duplexity = 0;
773
774 speed = mii_reg & MIIM_CIS8201_AUXCONSTAT_SPEED;
775 switch (speed) {
776 case MIIM_CIS8201_AUXCONSTAT_GBIT:
777 priv->speed = 1000;
778 break;
779 case MIIM_CIS8201_AUXCONSTAT_100:
780 priv->speed = 100;
781 break;
782 default:
783 priv->speed = 10;
784 break;
785 }
786
787 return 0;
788 }
789
790 /* Parse the vsc8244's status register for speed and duplex
791 * information
792 */
793 static uint mii_parse_vsc8244(uint mii_reg, struct tsec_private * priv)
794 {
795 uint speed;
796
797 if (mii_reg & MIIM_VSC8244_AUXCONSTAT_DUPLEX)
798 priv->duplexity = 1;
799 else
800 priv->duplexity = 0;
801
802 speed = mii_reg & MIIM_VSC8244_AUXCONSTAT_SPEED;
803 switch (speed) {
804 case MIIM_VSC8244_AUXCONSTAT_GBIT:
805 priv->speed = 1000;
806 break;
807 case MIIM_VSC8244_AUXCONSTAT_100:
808 priv->speed = 100;
809 break;
810 default:
811 priv->speed = 10;
812 break;
813 }
814
815 return 0;
816 }
817
818 /* Parse the DM9161's status register for speed and duplex
819 * information
820 */
821 static uint mii_parse_dm9161_scsr(uint mii_reg, struct tsec_private * priv)
822 {
823 if (mii_reg & (MIIM_DM9161_SCSR_100F | MIIM_DM9161_SCSR_100H))
824 priv->speed = 100;
825 else
826 priv->speed = 10;
827
828 if (mii_reg & (MIIM_DM9161_SCSR_100F | MIIM_DM9161_SCSR_10F))
829 priv->duplexity = 1;
830 else
831 priv->duplexity = 0;
832
833 return 0;
834 }
835
836 /*
837 * Hack to write all 4 PHYs with the LED values
838 */
839 static uint mii_cis8204_fixled(uint mii_reg, struct tsec_private * priv)
840 {
841 uint phyid;
842 volatile tsec_mdio_t *regbase = priv->phyregs;
843 int timeout = 1000000;
844
845 for (phyid = 0; phyid < 4; phyid++) {
846 regbase->miimadd = (phyid << 8) | mii_reg;
847 regbase->miimcon = MIIM_CIS8204_SLEDCON_INIT;
848 asm("sync");
849
850 timeout = 1000000;
851 while ((regbase->miimind & MIIMIND_BUSY) && timeout--) ;
852 }
853
854 return MIIM_CIS8204_SLEDCON_INIT;
855 }
856
857 static uint mii_cis8204_setmode(uint mii_reg, struct tsec_private * priv)
858 {
859 if (priv->flags & TSEC_REDUCED)
860 return MIIM_CIS8204_EPHYCON_INIT | MIIM_CIS8204_EPHYCON_RGMII;
861 else
862 return MIIM_CIS8204_EPHYCON_INIT;
863 }
864
865 static uint mii_m88e1111s_setmode(uint mii_reg, struct tsec_private *priv)
866 {
867 uint mii_data = read_phy_reg(priv, mii_reg);
868
869 if (priv->flags & TSEC_REDUCED)
870 mii_data = (mii_data & 0xfff0) | 0x000b;
871 return mii_data;
872 }
873
874 /* Initialized required registers to appropriate values, zeroing
875 * those we don't care about (unless zero is bad, in which case,
876 * choose a more appropriate value)
877 */
878 static void init_registers(volatile tsec_t * regs)
879 {
880 /* Clear IEVENT */
881 regs->ievent = IEVENT_INIT_CLEAR;
882
883 regs->imask = IMASK_INIT_CLEAR;
884
885 regs->hash.iaddr0 = 0;
886 regs->hash.iaddr1 = 0;
887 regs->hash.iaddr2 = 0;
888 regs->hash.iaddr3 = 0;
889 regs->hash.iaddr4 = 0;
890 regs->hash.iaddr5 = 0;
891 regs->hash.iaddr6 = 0;
892 regs->hash.iaddr7 = 0;
893
894 regs->hash.gaddr0 = 0;
895 regs->hash.gaddr1 = 0;
896 regs->hash.gaddr2 = 0;
897 regs->hash.gaddr3 = 0;
898 regs->hash.gaddr4 = 0;
899 regs->hash.gaddr5 = 0;
900 regs->hash.gaddr6 = 0;
901 regs->hash.gaddr7 = 0;
902
903 regs->rctrl = 0x00000000;
904
905 /* Init RMON mib registers */
906 memset((void *)&(regs->rmon), 0, sizeof(rmon_mib_t));
907
908 regs->rmon.cam1 = 0xffffffff;
909 regs->rmon.cam2 = 0xffffffff;
910
911 regs->mrblr = MRBLR_INIT_SETTINGS;
912
913 regs->minflr = MINFLR_INIT_SETTINGS;
914
915 regs->attr = ATTR_INIT_SETTINGS;
916 regs->attreli = ATTRELI_INIT_SETTINGS;
917
918 }
919
920 /* Configure maccfg2 based on negotiated speed and duplex
921 * reported by PHY handling code
922 */
923 static void adjust_link(struct eth_device *dev)
924 {
925 struct tsec_private *priv = (struct tsec_private *)dev->priv;
926 volatile tsec_t *regs = priv->regs;
927
928 if (priv->link) {
929 if (priv->duplexity != 0)
930 regs->maccfg2 |= MACCFG2_FULL_DUPLEX;
931 else
932 regs->maccfg2 &= ~(MACCFG2_FULL_DUPLEX);
933
934 switch (priv->speed) {
935 case 1000:
936 regs->maccfg2 = ((regs->maccfg2 & ~(MACCFG2_IF))
937 | MACCFG2_GMII);
938 break;
939 case 100:
940 case 10:
941 regs->maccfg2 = ((regs->maccfg2 & ~(MACCFG2_IF))
942 | MACCFG2_MII);
943
944 /* Set R100 bit in all modes although
945 * it is only used in RGMII mode
946 */
947 if (priv->speed == 100)
948 regs->ecntrl |= ECNTRL_R100;
949 else
950 regs->ecntrl &= ~(ECNTRL_R100);
951 break;
952 default:
953 printf("%s: Speed was bad\n", dev->name);
954 break;
955 }
956
957 printf("Speed: %d, %s duplex%s\n", priv->speed,
958 (priv->duplexity) ? "full" : "half",
959 (priv->flags & TSEC_FIBER) ? ", fiber mode" : "");
960
961 } else {
962 printf("%s: No link.\n", dev->name);
963 }
964 }
965
966 /* Set up the buffers and their descriptors, and bring up the
967 * interface
968 */
969 static void startup_tsec(struct eth_device *dev)
970 {
971 int i;
972 struct tsec_private *priv = (struct tsec_private *)dev->priv;
973 volatile tsec_t *regs = priv->regs;
974
975 /* Point to the buffer descriptors */
976 regs->tbase = (unsigned int)(&rtx.txbd[txIdx]);
977 regs->rbase = (unsigned int)(&rtx.rxbd[rxIdx]);
978
979 /* Initialize the Rx Buffer descriptors */
980 for (i = 0; i < PKTBUFSRX; i++) {
981 rtx.rxbd[i].status = RXBD_EMPTY;
982 rtx.rxbd[i].length = 0;
983 rtx.rxbd[i].bufPtr = (uint) NetRxPackets[i];
984 }
985 rtx.rxbd[PKTBUFSRX - 1].status |= RXBD_WRAP;
986
987 /* Initialize the TX Buffer Descriptors */
988 for (i = 0; i < TX_BUF_CNT; i++) {
989 rtx.txbd[i].status = 0;
990 rtx.txbd[i].length = 0;
991 rtx.txbd[i].bufPtr = 0;
992 }
993 rtx.txbd[TX_BUF_CNT - 1].status |= TXBD_WRAP;
994
995 /* Start up the PHY */
996 if(priv->phyinfo)
997 phy_run_commands(priv, priv->phyinfo->startup);
998
999 adjust_link(dev);
1000
1001 /* Enable Transmit and Receive */
1002 regs->maccfg1 |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1003
1004 /* Tell the DMA it is clear to go */
1005 regs->dmactrl |= DMACTRL_INIT_SETTINGS;
1006 regs->tstat = TSTAT_CLEAR_THALT;
1007 regs->rstat = RSTAT_CLEAR_RHALT;
1008 regs->dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
1009 }
1010
1011 /* This returns the status bits of the device. The return value
1012 * is never checked, and this is what the 8260 driver did, so we
1013 * do the same. Presumably, this would be zero if there were no
1014 * errors
1015 */
1016 static int tsec_send(struct eth_device *dev, volatile void *packet, int length)
1017 {
1018 int i;
1019 int result = 0;
1020 struct tsec_private *priv = (struct tsec_private *)dev->priv;
1021 volatile tsec_t *regs = priv->regs;
1022
1023 /* Find an empty buffer descriptor */
1024 for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) {
1025 if (i >= TOUT_LOOP) {
1026 debug("%s: tsec: tx buffers full\n", dev->name);
1027 return result;
1028 }
1029 }
1030
1031 rtx.txbd[txIdx].bufPtr = (uint) packet;
1032 rtx.txbd[txIdx].length = length;
1033 rtx.txbd[txIdx].status |=
1034 (TXBD_READY | TXBD_LAST | TXBD_CRC | TXBD_INTERRUPT);
1035
1036 /* Tell the DMA to go */
1037 regs->tstat = TSTAT_CLEAR_THALT;
1038
1039 /* Wait for buffer to be transmitted */
1040 for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) {
1041 if (i >= TOUT_LOOP) {
1042 debug("%s: tsec: tx error\n", dev->name);
1043 return result;
1044 }
1045 }
1046
1047 txIdx = (txIdx + 1) % TX_BUF_CNT;
1048 result = rtx.txbd[txIdx].status & TXBD_STATS;
1049
1050 return result;
1051 }
1052
1053 static int tsec_recv(struct eth_device *dev)
1054 {
1055 int length;
1056 struct tsec_private *priv = (struct tsec_private *)dev->priv;
1057 volatile tsec_t *regs = priv->regs;
1058
1059 while (!(rtx.rxbd[rxIdx].status & RXBD_EMPTY)) {
1060
1061 length = rtx.rxbd[rxIdx].length;
1062
1063 /* Send the packet up if there were no errors */
1064 if (!(rtx.rxbd[rxIdx].status & RXBD_STATS)) {
1065 NetReceive(NetRxPackets[rxIdx], length - 4);
1066 } else {
1067 printf("Got error %x\n",
1068 (rtx.rxbd[rxIdx].status & RXBD_STATS));
1069 }
1070
1071 rtx.rxbd[rxIdx].length = 0;
1072
1073 /* Set the wrap bit if this is the last element in the list */
1074 rtx.rxbd[rxIdx].status =
1075 RXBD_EMPTY | (((rxIdx + 1) == PKTBUFSRX) ? RXBD_WRAP : 0);
1076
1077 rxIdx = (rxIdx + 1) % PKTBUFSRX;
1078 }
1079
1080 if (regs->ievent & IEVENT_BSY) {
1081 regs->ievent = IEVENT_BSY;
1082 regs->rstat = RSTAT_CLEAR_RHALT;
1083 }
1084
1085 return -1;
1086
1087 }
1088
1089 /* Stop the interface */
1090 static void tsec_halt(struct eth_device *dev)
1091 {
1092 struct tsec_private *priv = (struct tsec_private *)dev->priv;
1093 volatile tsec_t *regs = priv->regs;
1094
1095 regs->dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
1096 regs->dmactrl |= (DMACTRL_GRS | DMACTRL_GTS);
1097
1098 while ((regs->ievent & (IEVENT_GRSC | IEVENT_GTSC))
1099 != (IEVENT_GRSC | IEVENT_GTSC)) ;
1100
1101 regs->maccfg1 &= ~(MACCFG1_TX_EN | MACCFG1_RX_EN);
1102
1103 /* Shut down the PHY, as needed */
1104 if(priv->phyinfo)
1105 phy_run_commands(priv, priv->phyinfo->shutdown);
1106 }
1107
1108 static struct phy_info phy_info_M88E1149S = {
1109 0x1410ca,
1110 "Marvell 88E1149S",
1111 4,
1112 (struct phy_cmd[]) { /* config */
1113 /* Reset and configure the PHY */
1114 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1115 {0x1d, 0x1f, NULL},
1116 {0x1e, 0x200c, NULL},
1117 {0x1d, 0x5, NULL},
1118 {0x1e, 0x0, NULL},
1119 {0x1e, 0x100, NULL},
1120 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1121 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1122 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1123 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1124 {miim_end,}
1125 },
1126 (struct phy_cmd[]) { /* startup */
1127 /* Status is read once to clear old link state */
1128 {MIIM_STATUS, miim_read, NULL},
1129 /* Auto-negotiate */
1130 {MIIM_STATUS, miim_read, &mii_parse_sr},
1131 /* Read the status */
1132 {MIIM_88E1011_PHY_STATUS, miim_read, &mii_parse_88E1011_psr},
1133 {miim_end,}
1134 },
1135 (struct phy_cmd[]) { /* shutdown */
1136 {miim_end,}
1137 },
1138 };
1139
1140 /* The 5411 id is 0x206070, the 5421 is 0x2060e0 */
1141 static struct phy_info phy_info_BCM5461S = {
1142 0x02060c1, /* 5461 ID */
1143 "Broadcom BCM5461S",
1144 0, /* not clear to me what minor revisions we can shift away */
1145 (struct phy_cmd[]) { /* config */
1146 /* Reset and configure the PHY */
1147 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1148 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1149 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1150 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1151 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1152 {miim_end,}
1153 },
1154 (struct phy_cmd[]) { /* startup */
1155 /* Status is read once to clear old link state */
1156 {MIIM_STATUS, miim_read, NULL},
1157 /* Auto-negotiate */
1158 {MIIM_STATUS, miim_read, &mii_parse_sr},
1159 /* Read the status */
1160 {MIIM_BCM54xx_AUXSTATUS, miim_read, &mii_parse_BCM54xx_sr},
1161 {miim_end,}
1162 },
1163 (struct phy_cmd[]) { /* shutdown */
1164 {miim_end,}
1165 },
1166 };
1167
1168 static struct phy_info phy_info_BCM5464S = {
1169 0x02060b1, /* 5464 ID */
1170 "Broadcom BCM5464S",
1171 0, /* not clear to me what minor revisions we can shift away */
1172 (struct phy_cmd[]) { /* config */
1173 /* Reset and configure the PHY */
1174 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1175 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1176 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1177 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1178 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1179 {miim_end,}
1180 },
1181 (struct phy_cmd[]) { /* startup */
1182 /* Status is read once to clear old link state */
1183 {MIIM_STATUS, miim_read, NULL},
1184 /* Auto-negotiate */
1185 {MIIM_STATUS, miim_read, &mii_parse_sr},
1186 /* Read the status */
1187 {MIIM_BCM54xx_AUXSTATUS, miim_read, &mii_parse_BCM54xx_sr},
1188 {miim_end,}
1189 },
1190 (struct phy_cmd[]) { /* shutdown */
1191 {miim_end,}
1192 },
1193 };
1194
1195 static struct phy_info phy_info_BCM5482S = {
1196 0x0143bcb,
1197 "Broadcom BCM5482S",
1198 4,
1199 (struct phy_cmd[]) { /* config */
1200 /* Reset and configure the PHY */
1201 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1202 /* Setup read from auxilary control shadow register 7 */
1203 {MIIM_BCM54xx_AUXCNTL, MIIM_BCM54xx_AUXCNTL_ENCODE(7), NULL},
1204 /* Read Misc Control register and or in Ethernet@Wirespeed */
1205 {MIIM_BCM54xx_AUXCNTL, 0, &mii_BCM54xx_wirespeed},
1206 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1207 /* Initial config/enable of secondary SerDes interface */
1208 {MIIM_BCM54XX_SHD, MIIM_BCM54XX_SHD_WR_ENCODE(0x14, 0xf), NULL},
1209 /* Write intial value to secondary SerDes Contol */
1210 {MIIM_BCM54XX_EXP_SEL, MIIM_BCM54XX_EXP_SEL_SSD | 0, NULL},
1211 {MIIM_BCM54XX_EXP_DATA, MIIM_CONTROL_RESTART, NULL},
1212 /* Enable copper/fiber auto-detect */
1213 {MIIM_BCM54XX_SHD, MIIM_BCM54XX_SHD_WR_ENCODE(0x1e, 0x201)},
1214 {miim_end,}
1215 },
1216 (struct phy_cmd[]) { /* startup */
1217 /* Status is read once to clear old link state */
1218 {MIIM_STATUS, miim_read, NULL},
1219 /* Determine copper/fiber, auto-negotiate, and read the result */
1220 {MIIM_STATUS, miim_read, &mii_parse_BCM5482_sr},
1221 {miim_end,}
1222 },
1223 (struct phy_cmd[]) { /* shutdown */
1224 {miim_end,}
1225 },
1226 };
1227
1228 static struct phy_info phy_info_M88E1011S = {
1229 0x01410c6,
1230 "Marvell 88E1011S",
1231 4,
1232 (struct phy_cmd[]) { /* config */
1233 /* Reset and configure the PHY */
1234 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1235 {0x1d, 0x1f, NULL},
1236 {0x1e, 0x200c, NULL},
1237 {0x1d, 0x5, NULL},
1238 {0x1e, 0x0, NULL},
1239 {0x1e, 0x100, NULL},
1240 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1241 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1242 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1243 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1244 {miim_end,}
1245 },
1246 (struct phy_cmd[]) { /* startup */
1247 /* Status is read once to clear old link state */
1248 {MIIM_STATUS, miim_read, NULL},
1249 /* Auto-negotiate */
1250 {MIIM_STATUS, miim_read, &mii_parse_sr},
1251 /* Read the status */
1252 {MIIM_88E1011_PHY_STATUS, miim_read, &mii_parse_88E1011_psr},
1253 {miim_end,}
1254 },
1255 (struct phy_cmd[]) { /* shutdown */
1256 {miim_end,}
1257 },
1258 };
1259
1260 static struct phy_info phy_info_M88E1111S = {
1261 0x01410cc,
1262 "Marvell 88E1111S",
1263 4,
1264 (struct phy_cmd[]) { /* config */
1265 /* Reset and configure the PHY */
1266 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1267 {0x1b, 0x848f, &mii_m88e1111s_setmode},
1268 {0x14, 0x0cd2, NULL}, /* Delay RGMII TX and RX */
1269 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1270 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1271 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1272 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1273 {miim_end,}
1274 },
1275 (struct phy_cmd[]) { /* startup */
1276 /* Status is read once to clear old link state */
1277 {MIIM_STATUS, miim_read, NULL},
1278 /* Auto-negotiate */
1279 {MIIM_STATUS, miim_read, &mii_parse_sr},
1280 /* Read the status */
1281 {MIIM_88E1011_PHY_STATUS, miim_read, &mii_parse_88E1011_psr},
1282 {miim_end,}
1283 },
1284 (struct phy_cmd[]) { /* shutdown */
1285 {miim_end,}
1286 },
1287 };
1288
1289 static struct phy_info phy_info_M88E1118 = {
1290 0x01410e1,
1291 "Marvell 88E1118",
1292 4,
1293 (struct phy_cmd[]) { /* config */
1294 /* Reset and configure the PHY */
1295 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1296 {0x16, 0x0002, NULL}, /* Change Page Number */
1297 {0x15, 0x1070, NULL}, /* Delay RGMII TX and RX */
1298 {0x16, 0x0003, NULL}, /* Change Page Number */
1299 {0x10, 0x021e, NULL}, /* Adjust LED control */
1300 {0x16, 0x0000, NULL}, /* Change Page Number */
1301 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1302 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1303 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1304 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1305 {miim_end,}
1306 },
1307 (struct phy_cmd[]) { /* startup */
1308 {0x16, 0x0000, NULL}, /* Change Page Number */
1309 /* Status is read once to clear old link state */
1310 {MIIM_STATUS, miim_read, NULL},
1311 /* Auto-negotiate */
1312 {MIIM_STATUS, miim_read, &mii_parse_sr},
1313 /* Read the status */
1314 {MIIM_88E1011_PHY_STATUS, miim_read,
1315 &mii_parse_88E1011_psr},
1316 {miim_end,}
1317 },
1318 (struct phy_cmd[]) { /* shutdown */
1319 {miim_end,}
1320 },
1321 };
1322
1323 /*
1324 * Since to access LED register we need do switch the page, we
1325 * do LED configuring in the miim_read-like function as follows
1326 */
1327 static uint mii_88E1121_set_led (uint mii_reg, struct tsec_private *priv)
1328 {
1329 uint pg;
1330
1331 /* Switch the page to access the led register */
1332 pg = read_phy_reg(priv, MIIM_88E1121_PHY_PAGE);
1333 write_phy_reg(priv, MIIM_88E1121_PHY_PAGE, MIIM_88E1121_PHY_LED_PAGE);
1334
1335 /* Configure leds */
1336 write_phy_reg(priv, MIIM_88E1121_PHY_LED_CTRL,
1337 MIIM_88E1121_PHY_LED_DEF);
1338
1339 /* Restore the page pointer */
1340 write_phy_reg(priv, MIIM_88E1121_PHY_PAGE, pg);
1341 return 0;
1342 }
1343
1344 static struct phy_info phy_info_M88E1121R = {
1345 0x01410cb,
1346 "Marvell 88E1121R",
1347 4,
1348 (struct phy_cmd[]) { /* config */
1349 /* Reset and configure the PHY */
1350 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1351 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1352 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1353 /* Configure leds */
1354 {MIIM_88E1121_PHY_LED_CTRL, miim_read, &mii_88E1121_set_led},
1355 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1356 /* Disable IRQs and de-assert interrupt */
1357 {MIIM_88E1121_PHY_IRQ_EN, 0, NULL},
1358 {MIIM_88E1121_PHY_IRQ_STATUS, miim_read, NULL},
1359 {miim_end,}
1360 },
1361 (struct phy_cmd[]) { /* startup */
1362 /* Status is read once to clear old link state */
1363 {MIIM_STATUS, miim_read, NULL},
1364 {MIIM_STATUS, miim_read, &mii_parse_sr},
1365 {MIIM_STATUS, miim_read, &mii_parse_link},
1366 {miim_end,}
1367 },
1368 (struct phy_cmd[]) { /* shutdown */
1369 {miim_end,}
1370 },
1371 };
1372
1373 static unsigned int m88e1145_setmode(uint mii_reg, struct tsec_private *priv)
1374 {
1375 uint mii_data = read_phy_reg(priv, mii_reg);
1376
1377 /* Setting MIIM_88E1145_PHY_EXT_CR */
1378 if (priv->flags & TSEC_REDUCED)
1379 return mii_data |
1380 MIIM_M88E1145_RGMII_RX_DELAY | MIIM_M88E1145_RGMII_TX_DELAY;
1381 else
1382 return mii_data;
1383 }
1384
1385 static struct phy_info phy_info_M88E1145 = {
1386 0x01410cd,
1387 "Marvell 88E1145",
1388 4,
1389 (struct phy_cmd[]) { /* config */
1390 /* Reset the PHY */
1391 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1392
1393 /* Errata E0, E1 */
1394 {29, 0x001b, NULL},
1395 {30, 0x418f, NULL},
1396 {29, 0x0016, NULL},
1397 {30, 0xa2da, NULL},
1398
1399 /* Configure the PHY */
1400 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1401 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1402 {MIIM_88E1011_PHY_SCR, MIIM_88E1011_PHY_MDI_X_AUTO, NULL},
1403 {MIIM_88E1145_PHY_EXT_CR, 0, &m88e1145_setmode},
1404 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1405 {MIIM_CONTROL, MIIM_CONTROL_INIT, NULL},
1406 {miim_end,}
1407 },
1408 (struct phy_cmd[]) { /* startup */
1409 /* Status is read once to clear old link state */
1410 {MIIM_STATUS, miim_read, NULL},
1411 /* Auto-negotiate */
1412 {MIIM_STATUS, miim_read, &mii_parse_sr},
1413 {MIIM_88E1111_PHY_LED_CONTROL, MIIM_88E1111_PHY_LED_DIRECT, NULL},
1414 /* Read the Status */
1415 {MIIM_88E1011_PHY_STATUS, miim_read, &mii_parse_88E1011_psr},
1416 {miim_end,}
1417 },
1418 (struct phy_cmd[]) { /* shutdown */
1419 {miim_end,}
1420 },
1421 };
1422
1423 static struct phy_info phy_info_cis8204 = {
1424 0x3f11,
1425 "Cicada Cis8204",
1426 6,
1427 (struct phy_cmd[]) { /* config */
1428 /* Override PHY config settings */
1429 {MIIM_CIS8201_AUX_CONSTAT, MIIM_CIS8201_AUXCONSTAT_INIT, NULL},
1430 /* Configure some basic stuff */
1431 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1432 {MIIM_CIS8204_SLED_CON, MIIM_CIS8204_SLEDCON_INIT,
1433 &mii_cis8204_fixled},
1434 {MIIM_CIS8204_EPHY_CON, MIIM_CIS8204_EPHYCON_INIT,
1435 &mii_cis8204_setmode},
1436 {miim_end,}
1437 },
1438 (struct phy_cmd[]) { /* startup */
1439 /* Read the Status (2x to make sure link is right) */
1440 {MIIM_STATUS, miim_read, NULL},
1441 /* Auto-negotiate */
1442 {MIIM_STATUS, miim_read, &mii_parse_sr},
1443 /* Read the status */
1444 {MIIM_CIS8201_AUX_CONSTAT, miim_read, &mii_parse_cis8201},
1445 {miim_end,}
1446 },
1447 (struct phy_cmd[]) { /* shutdown */
1448 {miim_end,}
1449 },
1450 };
1451
1452 /* Cicada 8201 */
1453 static struct phy_info phy_info_cis8201 = {
1454 0xfc41,
1455 "CIS8201",
1456 4,
1457 (struct phy_cmd[]) { /* config */
1458 /* Override PHY config settings */
1459 {MIIM_CIS8201_AUX_CONSTAT, MIIM_CIS8201_AUXCONSTAT_INIT, NULL},
1460 /* Set up the interface mode */
1461 {MIIM_CIS8201_EXT_CON1, MIIM_CIS8201_EXTCON1_INIT, NULL},
1462 /* Configure some basic stuff */
1463 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1464 {miim_end,}
1465 },
1466 (struct phy_cmd[]) { /* startup */
1467 /* Read the Status (2x to make sure link is right) */
1468 {MIIM_STATUS, miim_read, NULL},
1469 /* Auto-negotiate */
1470 {MIIM_STATUS, miim_read, &mii_parse_sr},
1471 /* Read the status */
1472 {MIIM_CIS8201_AUX_CONSTAT, miim_read, &mii_parse_cis8201},
1473 {miim_end,}
1474 },
1475 (struct phy_cmd[]) { /* shutdown */
1476 {miim_end,}
1477 },
1478 };
1479
1480 static struct phy_info phy_info_VSC8211 = {
1481 0xfc4b,
1482 "Vitesse VSC8211",
1483 4,
1484 (struct phy_cmd[]) { /* config */
1485 /* Override PHY config settings */
1486 {MIIM_CIS8201_AUX_CONSTAT, MIIM_CIS8201_AUXCONSTAT_INIT, NULL},
1487 /* Set up the interface mode */
1488 {MIIM_CIS8201_EXT_CON1, MIIM_CIS8201_EXTCON1_INIT, NULL},
1489 /* Configure some basic stuff */
1490 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1491 {miim_end,}
1492 },
1493 (struct phy_cmd[]) { /* startup */
1494 /* Read the Status (2x to make sure link is right) */
1495 {MIIM_STATUS, miim_read, NULL},
1496 /* Auto-negotiate */
1497 {MIIM_STATUS, miim_read, &mii_parse_sr},
1498 /* Read the status */
1499 {MIIM_CIS8201_AUX_CONSTAT, miim_read, &mii_parse_cis8201},
1500 {miim_end,}
1501 },
1502 (struct phy_cmd[]) { /* shutdown */
1503 {miim_end,}
1504 },
1505 };
1506
1507 static struct phy_info phy_info_VSC8244 = {
1508 0x3f1b,
1509 "Vitesse VSC8244",
1510 6,
1511 (struct phy_cmd[]) { /* config */
1512 /* Override PHY config settings */
1513 /* Configure some basic stuff */
1514 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1515 {miim_end,}
1516 },
1517 (struct phy_cmd[]) { /* startup */
1518 /* Read the Status (2x to make sure link is right) */
1519 {MIIM_STATUS, miim_read, NULL},
1520 /* Auto-negotiate */
1521 {MIIM_STATUS, miim_read, &mii_parse_sr},
1522 /* Read the status */
1523 {MIIM_VSC8244_AUX_CONSTAT, miim_read, &mii_parse_vsc8244},
1524 {miim_end,}
1525 },
1526 (struct phy_cmd[]) { /* shutdown */
1527 {miim_end,}
1528 },
1529 };
1530
1531 static struct phy_info phy_info_VSC8641 = {
1532 0x7043,
1533 "Vitesse VSC8641",
1534 4,
1535 (struct phy_cmd[]) { /* config */
1536 /* Configure some basic stuff */
1537 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1538 {miim_end,}
1539 },
1540 (struct phy_cmd[]) { /* startup */
1541 /* Read the Status (2x to make sure link is right) */
1542 {MIIM_STATUS, miim_read, NULL},
1543 /* Auto-negotiate */
1544 {MIIM_STATUS, miim_read, &mii_parse_sr},
1545 /* Read the status */
1546 {MIIM_VSC8244_AUX_CONSTAT, miim_read, &mii_parse_vsc8244},
1547 {miim_end,}
1548 },
1549 (struct phy_cmd[]) { /* shutdown */
1550 {miim_end,}
1551 },
1552 };
1553
1554 static struct phy_info phy_info_VSC8221 = {
1555 0xfc55,
1556 "Vitesse VSC8221",
1557 4,
1558 (struct phy_cmd[]) { /* config */
1559 /* Configure some basic stuff */
1560 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1561 {miim_end,}
1562 },
1563 (struct phy_cmd[]) { /* startup */
1564 /* Read the Status (2x to make sure link is right) */
1565 {MIIM_STATUS, miim_read, NULL},
1566 /* Auto-negotiate */
1567 {MIIM_STATUS, miim_read, &mii_parse_sr},
1568 /* Read the status */
1569 {MIIM_VSC8244_AUX_CONSTAT, miim_read, &mii_parse_vsc8244},
1570 {miim_end,}
1571 },
1572 (struct phy_cmd[]) { /* shutdown */
1573 {miim_end,}
1574 },
1575 };
1576
1577 static struct phy_info phy_info_VSC8601 = {
1578 0x00007042,
1579 "Vitesse VSC8601",
1580 4,
1581 (struct phy_cmd[]) { /* config */
1582 /* Override PHY config settings */
1583 /* Configure some basic stuff */
1584 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1585 #ifdef CONFIG_SYS_VSC8601_SKEWFIX
1586 {MIIM_VSC8601_EPHY_CON,MIIM_VSC8601_EPHY_CON_INIT_SKEW,NULL},
1587 #if defined(CONFIG_SYS_VSC8601_SKEW_TX) && defined(CONFIG_SYS_VSC8601_SKEW_RX)
1588 {MIIM_EXT_PAGE_ACCESS,1,NULL},
1589 #define VSC8101_SKEW \
1590 (CONFIG_SYS_VSC8601_SKEW_TX << 14) | (CONFIG_SYS_VSC8601_SKEW_RX << 12)
1591 {MIIM_VSC8601_SKEW_CTRL,VSC8101_SKEW,NULL},
1592 {MIIM_EXT_PAGE_ACCESS,0,NULL},
1593 #endif
1594 #endif
1595 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1596 {MIIM_CONTROL, MIIM_CONTROL_RESTART, &mii_cr_init},
1597 {miim_end,}
1598 },
1599 (struct phy_cmd[]) { /* startup */
1600 /* Read the Status (2x to make sure link is right) */
1601 {MIIM_STATUS, miim_read, NULL},
1602 /* Auto-negotiate */
1603 {MIIM_STATUS, miim_read, &mii_parse_sr},
1604 /* Read the status */
1605 {MIIM_VSC8244_AUX_CONSTAT, miim_read, &mii_parse_vsc8244},
1606 {miim_end,}
1607 },
1608 (struct phy_cmd[]) { /* shutdown */
1609 {miim_end,}
1610 },
1611 };
1612
1613 static struct phy_info phy_info_dm9161 = {
1614 0x0181b88,
1615 "Davicom DM9161E",
1616 4,
1617 (struct phy_cmd[]) { /* config */
1618 {MIIM_CONTROL, MIIM_DM9161_CR_STOP, NULL},
1619 /* Do not bypass the scrambler/descrambler */
1620 {MIIM_DM9161_SCR, MIIM_DM9161_SCR_INIT, NULL},
1621 /* Clear 10BTCSR to default */
1622 {MIIM_DM9161_10BTCSR, MIIM_DM9161_10BTCSR_INIT, NULL},
1623 /* Configure some basic stuff */
1624 {MIIM_CONTROL, MIIM_CR_INIT, NULL},
1625 /* Restart Auto Negotiation */
1626 {MIIM_CONTROL, MIIM_DM9161_CR_RSTAN, NULL},
1627 {miim_end,}
1628 },
1629 (struct phy_cmd[]) { /* startup */
1630 /* Status is read once to clear old link state */
1631 {MIIM_STATUS, miim_read, NULL},
1632 /* Auto-negotiate */
1633 {MIIM_STATUS, miim_read, &mii_parse_sr},
1634 /* Read the status */
1635 {MIIM_DM9161_SCSR, miim_read, &mii_parse_dm9161_scsr},
1636 {miim_end,}
1637 },
1638 (struct phy_cmd[]) { /* shutdown */
1639 {miim_end,}
1640 },
1641 };
1642
1643 /* micrel KSZ804 */
1644 static struct phy_info phy_info_ksz804 = {
1645 0x0022151,
1646 "Micrel KSZ804 PHY",
1647 4,
1648 (struct phy_cmd[]) { /* config */
1649 {PHY_BMCR, PHY_BMCR_RESET, NULL},
1650 {PHY_BMCR, PHY_BMCR_AUTON|PHY_BMCR_RST_NEG, NULL},
1651 {miim_end,}
1652 },
1653 (struct phy_cmd[]) { /* startup */
1654 {PHY_BMSR, miim_read, NULL},
1655 {PHY_BMSR, miim_read, &mii_parse_sr},
1656 {PHY_BMSR, miim_read, &mii_parse_link},
1657 {miim_end,}
1658 },
1659 (struct phy_cmd[]) { /* shutdown */
1660 {miim_end,}
1661 }
1662 };
1663
1664 /* a generic flavor. */
1665 static struct phy_info phy_info_generic = {
1666 0,
1667 "Unknown/Generic PHY",
1668 32,
1669 (struct phy_cmd[]) { /* config */
1670 {PHY_BMCR, PHY_BMCR_RESET, NULL},
1671 {PHY_BMCR, PHY_BMCR_AUTON|PHY_BMCR_RST_NEG, NULL},
1672 {miim_end,}
1673 },
1674 (struct phy_cmd[]) { /* startup */
1675 {PHY_BMSR, miim_read, NULL},
1676 {PHY_BMSR, miim_read, &mii_parse_sr},
1677 {PHY_BMSR, miim_read, &mii_parse_link},
1678 {miim_end,}
1679 },
1680 (struct phy_cmd[]) { /* shutdown */
1681 {miim_end,}
1682 }
1683 };
1684
1685 static uint mii_parse_lxt971_sr2(uint mii_reg, struct tsec_private *priv)
1686 {
1687 unsigned int speed;
1688 if (priv->link) {
1689 speed = mii_reg & MIIM_LXT971_SR2_SPEED_MASK;
1690
1691 switch (speed) {
1692 case MIIM_LXT971_SR2_10HDX:
1693 priv->speed = 10;
1694 priv->duplexity = 0;
1695 break;
1696 case MIIM_LXT971_SR2_10FDX:
1697 priv->speed = 10;
1698 priv->duplexity = 1;
1699 break;
1700 case MIIM_LXT971_SR2_100HDX:
1701 priv->speed = 100;
1702 priv->duplexity = 0;
1703 break;
1704 default:
1705 priv->speed = 100;
1706 priv->duplexity = 1;
1707 }
1708 } else {
1709 priv->speed = 0;
1710 priv->duplexity = 0;
1711 }
1712
1713 return 0;
1714 }
1715
1716 static struct phy_info phy_info_lxt971 = {
1717 0x0001378e,
1718 "LXT971",
1719 4,
1720 (struct phy_cmd[]) { /* config */
1721 {MIIM_CR, MIIM_CR_INIT, mii_cr_init}, /* autonegotiate */
1722 {miim_end,}
1723 },
1724 (struct phy_cmd[]) { /* startup - enable interrupts */
1725 /* { 0x12, 0x00f2, NULL }, */
1726 {MIIM_STATUS, miim_read, NULL},
1727 {MIIM_STATUS, miim_read, &mii_parse_sr},
1728 {MIIM_LXT971_SR2, miim_read, &mii_parse_lxt971_sr2},
1729 {miim_end,}
1730 },
1731 (struct phy_cmd[]) { /* shutdown - disable interrupts */
1732 {miim_end,}
1733 },
1734 };
1735
1736 /* Parse the DP83865's link and auto-neg status register for speed and duplex
1737 * information
1738 */
1739 static uint mii_parse_dp83865_lanr(uint mii_reg, struct tsec_private *priv)
1740 {
1741 switch (mii_reg & MIIM_DP83865_SPD_MASK) {
1742
1743 case MIIM_DP83865_SPD_1000:
1744 priv->speed = 1000;
1745 break;
1746
1747 case MIIM_DP83865_SPD_100:
1748 priv->speed = 100;
1749 break;
1750
1751 default:
1752 priv->speed = 10;
1753 break;
1754
1755 }
1756
1757 if (mii_reg & MIIM_DP83865_DPX_FULL)
1758 priv->duplexity = 1;
1759 else
1760 priv->duplexity = 0;
1761
1762 return 0;
1763 }
1764
1765 static struct phy_info phy_info_dp83865 = {
1766 0x20005c7,
1767 "NatSemi DP83865",
1768 4,
1769 (struct phy_cmd[]) { /* config */
1770 {MIIM_CONTROL, MIIM_DP83865_CR_INIT, NULL},
1771 {miim_end,}
1772 },
1773 (struct phy_cmd[]) { /* startup */
1774 /* Status is read once to clear old link state */
1775 {MIIM_STATUS, miim_read, NULL},
1776 /* Auto-negotiate */
1777 {MIIM_STATUS, miim_read, &mii_parse_sr},
1778 /* Read the link and auto-neg status */
1779 {MIIM_DP83865_LANR, miim_read, &mii_parse_dp83865_lanr},
1780 {miim_end,}
1781 },
1782 (struct phy_cmd[]) { /* shutdown */
1783 {miim_end,}
1784 },
1785 };
1786
1787 static struct phy_info phy_info_rtl8211b = {
1788 0x001cc91,
1789 "RealTek RTL8211B",
1790 4,
1791 (struct phy_cmd[]) { /* config */
1792 /* Reset and configure the PHY */
1793 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1794 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1795 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1796 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1797 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1798 {miim_end,}
1799 },
1800 (struct phy_cmd[]) { /* startup */
1801 /* Status is read once to clear old link state */
1802 {MIIM_STATUS, miim_read, NULL},
1803 /* Auto-negotiate */
1804 {MIIM_STATUS, miim_read, &mii_parse_sr},
1805 /* Read the status */
1806 {MIIM_RTL8211B_PHY_STATUS, miim_read, &mii_parse_RTL8211B_sr},
1807 {miim_end,}
1808 },
1809 (struct phy_cmd[]) { /* shutdown */
1810 {miim_end,}
1811 },
1812 };
1813
1814 static struct phy_info *phy_info[] = {
1815 &phy_info_cis8204,
1816 &phy_info_cis8201,
1817 &phy_info_BCM5461S,
1818 &phy_info_BCM5464S,
1819 &phy_info_BCM5482S,
1820 &phy_info_M88E1011S,
1821 &phy_info_M88E1111S,
1822 &phy_info_M88E1118,
1823 &phy_info_M88E1121R,
1824 &phy_info_M88E1145,
1825 &phy_info_M88E1149S,
1826 &phy_info_dm9161,
1827 &phy_info_ksz804,
1828 &phy_info_lxt971,
1829 &phy_info_VSC8211,
1830 &phy_info_VSC8244,
1831 &phy_info_VSC8601,
1832 &phy_info_VSC8641,
1833 &phy_info_VSC8221,
1834 &phy_info_dp83865,
1835 &phy_info_rtl8211b,
1836 &phy_info_generic, /* must be last; has ID 0 and 32 bit mask */
1837 NULL
1838 };
1839
1840 /* Grab the identifier of the device's PHY, and search through
1841 * all of the known PHYs to see if one matches. If so, return
1842 * it, if not, return NULL
1843 */
1844 static struct phy_info *get_phy_info(struct eth_device *dev)
1845 {
1846 struct tsec_private *priv = (struct tsec_private *)dev->priv;
1847 uint phy_reg, phy_ID;
1848 int i;
1849 struct phy_info *theInfo = NULL;
1850
1851 /* Grab the bits from PHYIR1, and put them in the upper half */
1852 phy_reg = read_phy_reg(priv, MIIM_PHYIR1);
1853 phy_ID = (phy_reg & 0xffff) << 16;
1854
1855 /* Grab the bits from PHYIR2, and put them in the lower half */
1856 phy_reg = read_phy_reg(priv, MIIM_PHYIR2);
1857 phy_ID |= (phy_reg & 0xffff);
1858
1859 /* loop through all the known PHY types, and find one that */
1860 /* matches the ID we read from the PHY. */
1861 for (i = 0; phy_info[i]; i++) {
1862 if (phy_info[i]->id == (phy_ID >> phy_info[i]->shift)) {
1863 theInfo = phy_info[i];
1864 break;
1865 }
1866 }
1867
1868 if (theInfo == &phy_info_generic) {
1869 printf("%s: No support for PHY id %x; assuming generic\n",
1870 dev->name, phy_ID);
1871 } else {
1872 debug("%s: PHY is %s (%x)\n", dev->name, theInfo->name, phy_ID);
1873 }
1874
1875 return theInfo;
1876 }
1877
1878 /* Execute the given series of commands on the given device's
1879 * PHY, running functions as necessary
1880 */
1881 static void phy_run_commands(struct tsec_private *priv, struct phy_cmd *cmd)
1882 {
1883 int i;
1884 uint result;
1885 volatile tsec_mdio_t *phyregs = priv->phyregs;
1886
1887 phyregs->miimcfg = MIIMCFG_RESET;
1888
1889 phyregs->miimcfg = MIIMCFG_INIT_VALUE;
1890
1891 while (phyregs->miimind & MIIMIND_BUSY) ;
1892
1893 for (i = 0; cmd->mii_reg != miim_end; i++) {
1894 if (cmd->mii_data == miim_read) {
1895 result = read_phy_reg(priv, cmd->mii_reg);
1896
1897 if (cmd->funct != NULL)
1898 (*(cmd->funct)) (result, priv);
1899
1900 } else {
1901 if (cmd->funct != NULL)
1902 result = (*(cmd->funct)) (cmd->mii_reg, priv);
1903 else
1904 result = cmd->mii_data;
1905
1906 write_phy_reg(priv, cmd->mii_reg, result);
1907
1908 }
1909 cmd++;
1910 }
1911 }
1912
1913 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
1914 && !defined(BITBANGMII)
1915
1916 /*
1917 * Read a MII PHY register.
1918 *
1919 * Returns:
1920 * 0 on success
1921 */
1922 static int tsec_miiphy_read(const char *devname, unsigned char addr,
1923 unsigned char reg, unsigned short *value)
1924 {
1925 unsigned short ret;
1926 struct tsec_private *priv = privlist[0];
1927
1928 if (NULL == priv) {
1929 printf("Can't read PHY at address %d\n", addr);
1930 return -1;
1931 }
1932
1933 ret = (unsigned short)tsec_local_mdio_read(priv->phyregs, addr, reg);
1934 *value = ret;
1935
1936 return 0;
1937 }
1938
1939 /*
1940 * Write a MII PHY register.
1941 *
1942 * Returns:
1943 * 0 on success
1944 */
1945 static int tsec_miiphy_write(const char *devname, unsigned char addr,
1946 unsigned char reg, unsigned short value)
1947 {
1948 struct tsec_private *priv = privlist[0];
1949
1950 if (NULL == priv) {
1951 printf("Can't write PHY at address %d\n", addr);
1952 return -1;
1953 }
1954
1955 tsec_local_mdio_write(priv->phyregs, addr, reg, value);
1956
1957 return 0;
1958 }
1959
1960 #endif
1961
1962 #ifdef CONFIG_MCAST_TFTP
1963
1964 /* CREDITS: linux gianfar driver, slightly adjusted... thanx. */
1965
1966 /* Set the appropriate hash bit for the given addr */
1967
1968 /* The algorithm works like so:
1969 * 1) Take the Destination Address (ie the multicast address), and
1970 * do a CRC on it (little endian), and reverse the bits of the
1971 * result.
1972 * 2) Use the 8 most significant bits as a hash into a 256-entry
1973 * table. The table is controlled through 8 32-bit registers:
1974 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
1975 * gaddr7. This means that the 3 most significant bits in the
1976 * hash index which gaddr register to use, and the 5 other bits
1977 * indicate which bit (assuming an IBM numbering scheme, which
1978 * for PowerPC (tm) is usually the case) in the tregister holds
1979 * the entry. */
1980 static int
1981 tsec_mcast_addr (struct eth_device *dev, u8 mcast_mac, u8 set)
1982 {
1983 struct tsec_private *priv = privlist[1];
1984 volatile tsec_t *regs = priv->regs;
1985 volatile u32 *reg_array, value;
1986 u8 result, whichbit, whichreg;
1987
1988 result = (u8)((ether_crc(MAC_ADDR_LEN,mcast_mac) >> 24) & 0xff);
1989 whichbit = result & 0x1f; /* the 5 LSB = which bit to set */
1990 whichreg = result >> 5; /* the 3 MSB = which reg to set it in */
1991 value = (1 << (31-whichbit));
1992
1993 reg_array = &(regs->hash.gaddr0);
1994
1995 if (set) {
1996 reg_array[whichreg] |= value;
1997 } else {
1998 reg_array[whichreg] &= ~value;
1999 }
2000 return 0;
2001 }
2002 #endif /* Multicast TFTP ? */