]> git.ipfire.org Git - people/ms/u-boot.git/blob - drivers/net/tsec.c
Merge branch 'master' of git://git.denx.de/u-boot-arm
[people/ms/u-boot.git] / drivers / net / tsec.c
1 /*
2 * Freescale Three Speed Ethernet Controller driver
3 *
4 * This software may be used and distributed according to the
5 * terms of the GNU Public License, Version 2, incorporated
6 * herein by reference.
7 *
8 * Copyright 2004-2010 Freescale Semiconductor, Inc.
9 * (C) Copyright 2003, Motorola, Inc.
10 * author Andy Fleming
11 *
12 */
13
14 #include <config.h>
15 #include <common.h>
16 #include <malloc.h>
17 #include <net.h>
18 #include <command.h>
19 #include <tsec.h>
20 #include <asm/errno.h>
21
22 #include "miiphy.h"
23
24 DECLARE_GLOBAL_DATA_PTR;
25
26 #define TX_BUF_CNT 2
27
28 static uint rxIdx; /* index of the current RX buffer */
29 static uint txIdx; /* index of the current TX buffer */
30
31 typedef volatile struct rtxbd {
32 txbd8_t txbd[TX_BUF_CNT];
33 rxbd8_t rxbd[PKTBUFSRX];
34 } RTXBD;
35
36 #define MAXCONTROLLERS (8)
37
38 static struct tsec_private *privlist[MAXCONTROLLERS];
39 static int num_tsecs = 0;
40
41 #ifdef __GNUC__
42 static RTXBD rtx __attribute__ ((aligned(8)));
43 #else
44 #error "rtx must be 64-bit aligned"
45 #endif
46
47 static int tsec_send(struct eth_device *dev,
48 volatile void *packet, int length);
49 static int tsec_recv(struct eth_device *dev);
50 static int tsec_init(struct eth_device *dev, bd_t * bd);
51 static int tsec_initialize(bd_t * bis, struct tsec_info_struct *tsec_info);
52 static void tsec_halt(struct eth_device *dev);
53 static void init_registers(volatile tsec_t * regs);
54 static void startup_tsec(struct eth_device *dev);
55 static int init_phy(struct eth_device *dev);
56 void write_phy_reg(struct tsec_private *priv, uint regnum, uint value);
57 uint read_phy_reg(struct tsec_private *priv, uint regnum);
58 static struct phy_info *get_phy_info(struct eth_device *dev);
59 static void phy_run_commands(struct tsec_private *priv, struct phy_cmd *cmd);
60 static void adjust_link(struct eth_device *dev);
61 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
62 && !defined(BITBANGMII)
63 static int tsec_miiphy_write(const char *devname, unsigned char addr,
64 unsigned char reg, unsigned short value);
65 static int tsec_miiphy_read(const char *devname, unsigned char addr,
66 unsigned char reg, unsigned short *value);
67 #endif
68 #ifdef CONFIG_MCAST_TFTP
69 static int tsec_mcast_addr (struct eth_device *dev, u8 mcast_mac, u8 set);
70 #endif
71
72 /* Default initializations for TSEC controllers. */
73
74 static struct tsec_info_struct tsec_info[] = {
75 #ifdef CONFIG_TSEC1
76 STD_TSEC_INFO(1), /* TSEC1 */
77 #endif
78 #ifdef CONFIG_TSEC2
79 STD_TSEC_INFO(2), /* TSEC2 */
80 #endif
81 #ifdef CONFIG_MPC85XX_FEC
82 {
83 .regs = (tsec_t *)(TSEC_BASE_ADDR + 0x2000),
84 .miiregs = (tsec_mdio_t *)(MDIO_BASE_ADDR),
85 .devname = CONFIG_MPC85XX_FEC_NAME,
86 .phyaddr = FEC_PHY_ADDR,
87 .flags = FEC_FLAGS
88 }, /* FEC */
89 #endif
90 #ifdef CONFIG_TSEC3
91 STD_TSEC_INFO(3), /* TSEC3 */
92 #endif
93 #ifdef CONFIG_TSEC4
94 STD_TSEC_INFO(4), /* TSEC4 */
95 #endif
96 };
97
98 /*
99 * Initialize all the TSEC devices
100 *
101 * Returns the number of TSEC devices that were initialized
102 */
103 int tsec_eth_init(bd_t *bis, struct tsec_info_struct *tsecs, int num)
104 {
105 int i;
106 int ret, count = 0;
107
108 for (i = 0; i < num; i++) {
109 ret = tsec_initialize(bis, &tsecs[i]);
110 if (ret > 0)
111 count += ret;
112 }
113
114 return count;
115 }
116
117 int tsec_standard_init(bd_t *bis)
118 {
119 return tsec_eth_init(bis, tsec_info, ARRAY_SIZE(tsec_info));
120 }
121
122 /* Initialize device structure. Returns success if PHY
123 * initialization succeeded (i.e. if it recognizes the PHY)
124 */
125 static int tsec_initialize(bd_t * bis, struct tsec_info_struct *tsec_info)
126 {
127 struct eth_device *dev;
128 int i;
129 struct tsec_private *priv;
130
131 dev = (struct eth_device *)malloc(sizeof *dev);
132
133 if (NULL == dev)
134 return 0;
135
136 memset(dev, 0, sizeof *dev);
137
138 priv = (struct tsec_private *)malloc(sizeof(*priv));
139
140 if (NULL == priv)
141 return 0;
142
143 privlist[num_tsecs++] = priv;
144 priv->regs = tsec_info->regs;
145 priv->phyregs = tsec_info->miiregs;
146 priv->phyregs_sgmii = tsec_info->miiregs_sgmii;
147
148 priv->phyaddr = tsec_info->phyaddr;
149 priv->flags = tsec_info->flags;
150
151 sprintf(dev->name, tsec_info->devname);
152 dev->iobase = 0;
153 dev->priv = priv;
154 dev->init = tsec_init;
155 dev->halt = tsec_halt;
156 dev->send = tsec_send;
157 dev->recv = tsec_recv;
158 #ifdef CONFIG_MCAST_TFTP
159 dev->mcast = tsec_mcast_addr;
160 #endif
161
162 /* Tell u-boot to get the addr from the env */
163 for (i = 0; i < 6; i++)
164 dev->enetaddr[i] = 0;
165
166 eth_register(dev);
167
168 /* Reset the MAC */
169 priv->regs->maccfg1 |= MACCFG1_SOFT_RESET;
170 udelay(2); /* Soft Reset must be asserted for 3 TX clocks */
171 priv->regs->maccfg1 &= ~(MACCFG1_SOFT_RESET);
172
173 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
174 && !defined(BITBANGMII)
175 miiphy_register(dev->name, tsec_miiphy_read, tsec_miiphy_write);
176 #endif
177
178 /* Try to initialize PHY here, and return */
179 return init_phy(dev);
180 }
181
182 /* Initializes data structures and registers for the controller,
183 * and brings the interface up. Returns the link status, meaning
184 * that it returns success if the link is up, failure otherwise.
185 * This allows u-boot to find the first active controller.
186 */
187 static int tsec_init(struct eth_device *dev, bd_t * bd)
188 {
189 uint tempval;
190 char tmpbuf[MAC_ADDR_LEN];
191 int i;
192 struct tsec_private *priv = (struct tsec_private *)dev->priv;
193 volatile tsec_t *regs = priv->regs;
194
195 /* Make sure the controller is stopped */
196 tsec_halt(dev);
197
198 /* Init MACCFG2. Defaults to GMII */
199 regs->maccfg2 = MACCFG2_INIT_SETTINGS;
200
201 /* Init ECNTRL */
202 regs->ecntrl = ECNTRL_INIT_SETTINGS;
203
204 /* Copy the station address into the address registers.
205 * Backwards, because little endian MACS are dumb */
206 for (i = 0; i < MAC_ADDR_LEN; i++) {
207 tmpbuf[MAC_ADDR_LEN - 1 - i] = dev->enetaddr[i];
208 }
209 tempval = (tmpbuf[0] << 24) | (tmpbuf[1] << 16) | (tmpbuf[2] << 8) |
210 tmpbuf[3];
211
212 regs->macstnaddr1 = tempval;
213
214 tempval = *((uint *) (tmpbuf + 4));
215
216 regs->macstnaddr2 = tempval;
217
218 /* reset the indices to zero */
219 rxIdx = 0;
220 txIdx = 0;
221
222 /* Clear out (for the most part) the other registers */
223 init_registers(regs);
224
225 /* Ready the device for tx/rx */
226 startup_tsec(dev);
227
228 /* If there's no link, fail */
229 return (priv->link ? 0 : -1);
230 }
231
232 /* Writes the given phy's reg with value, using the specified MDIO regs */
233 static void tsec_local_mdio_write(volatile tsec_mdio_t *phyregs, uint addr,
234 uint reg, uint value)
235 {
236 int timeout = 1000000;
237
238 phyregs->miimadd = (addr << 8) | reg;
239 phyregs->miimcon = value;
240 asm("sync");
241
242 timeout = 1000000;
243 while ((phyregs->miimind & MIIMIND_BUSY) && timeout--) ;
244 }
245
246
247 /* Provide the default behavior of writing the PHY of this ethernet device */
248 #define write_phy_reg(priv, regnum, value) \
249 tsec_local_mdio_write(priv->phyregs,priv->phyaddr,regnum,value)
250
251 /* Reads register regnum on the device's PHY through the
252 * specified registers. It lowers and raises the read
253 * command, and waits for the data to become valid (miimind
254 * notvalid bit cleared), and the bus to cease activity (miimind
255 * busy bit cleared), and then returns the value
256 */
257 static uint tsec_local_mdio_read(volatile tsec_mdio_t *phyregs,
258 uint phyid, uint regnum)
259 {
260 uint value;
261
262 /* Put the address of the phy, and the register
263 * number into MIIMADD */
264 phyregs->miimadd = (phyid << 8) | regnum;
265
266 /* Clear the command register, and wait */
267 phyregs->miimcom = 0;
268 asm("sync");
269
270 /* Initiate a read command, and wait */
271 phyregs->miimcom = MIIM_READ_COMMAND;
272 asm("sync");
273
274 /* Wait for the the indication that the read is done */
275 while ((phyregs->miimind & (MIIMIND_NOTVALID | MIIMIND_BUSY))) ;
276
277 /* Grab the value read from the PHY */
278 value = phyregs->miimstat;
279
280 return value;
281 }
282
283 /* #define to provide old read_phy_reg functionality without duplicating code */
284 #define read_phy_reg(priv,regnum) \
285 tsec_local_mdio_read(priv->phyregs,priv->phyaddr,regnum)
286
287 #define TBIANA_SETTINGS ( \
288 TBIANA_ASYMMETRIC_PAUSE \
289 | TBIANA_SYMMETRIC_PAUSE \
290 | TBIANA_FULL_DUPLEX \
291 )
292
293 /* By default force the TBI PHY into 1000Mbps full duplex when in SGMII mode */
294 #ifndef CONFIG_TSEC_TBICR_SETTINGS
295 #define CONFIG_TSEC_TBICR_SETTINGS ( \
296 TBICR_PHY_RESET \
297 | TBICR_ANEG_ENABLE \
298 | TBICR_FULL_DUPLEX \
299 | TBICR_SPEED1_SET \
300 )
301 #endif /* CONFIG_TSEC_TBICR_SETTINGS */
302
303 /* Configure the TBI for SGMII operation */
304 static void tsec_configure_serdes(struct tsec_private *priv)
305 {
306 /* Access TBI PHY registers at given TSEC register offset as opposed
307 * to the register offset used for external PHY accesses */
308 tsec_local_mdio_write(priv->phyregs_sgmii, priv->regs->tbipa, TBI_ANA,
309 TBIANA_SETTINGS);
310 tsec_local_mdio_write(priv->phyregs_sgmii, priv->regs->tbipa, TBI_TBICON,
311 TBICON_CLK_SELECT);
312 tsec_local_mdio_write(priv->phyregs_sgmii, priv->regs->tbipa, TBI_CR,
313 CONFIG_TSEC_TBICR_SETTINGS);
314 }
315
316 /* Discover which PHY is attached to the device, and configure it
317 * properly. If the PHY is not recognized, then return 0
318 * (failure). Otherwise, return 1
319 */
320 static int init_phy(struct eth_device *dev)
321 {
322 struct tsec_private *priv = (struct tsec_private *)dev->priv;
323 struct phy_info *curphy;
324 volatile tsec_t *regs = priv->regs;
325
326 /* Assign a Physical address to the TBI */
327 regs->tbipa = CONFIG_SYS_TBIPA_VALUE;
328 asm("sync");
329
330 /* Reset MII (due to new addresses) */
331 priv->phyregs->miimcfg = MIIMCFG_RESET;
332 asm("sync");
333 priv->phyregs->miimcfg = MIIMCFG_INIT_VALUE;
334 asm("sync");
335 while (priv->phyregs->miimind & MIIMIND_BUSY) ;
336
337 /* Get the cmd structure corresponding to the attached
338 * PHY */
339 curphy = get_phy_info(dev);
340
341 if (curphy == NULL) {
342 priv->phyinfo = NULL;
343 printf("%s: No PHY found\n", dev->name);
344
345 return 0;
346 }
347
348 if (regs->ecntrl & ECNTRL_SGMII_MODE)
349 tsec_configure_serdes(priv);
350
351 priv->phyinfo = curphy;
352
353 phy_run_commands(priv, priv->phyinfo->config);
354
355 return 1;
356 }
357
358 /*
359 * Returns which value to write to the control register.
360 * For 10/100, the value is slightly different
361 */
362 static uint mii_cr_init(uint mii_reg, struct tsec_private * priv)
363 {
364 if (priv->flags & TSEC_GIGABIT)
365 return MIIM_CONTROL_INIT;
366 else
367 return MIIM_CR_INIT;
368 }
369
370 /*
371 * Wait for auto-negotiation to complete, then determine link
372 */
373 static uint mii_parse_sr(uint mii_reg, struct tsec_private * priv)
374 {
375 /*
376 * Wait if the link is up, and autonegotiation is in progress
377 * (ie - we're capable and it's not done)
378 */
379 mii_reg = read_phy_reg(priv, MIIM_STATUS);
380 if ((mii_reg & PHY_BMSR_AUTN_ABLE) && !(mii_reg & PHY_BMSR_AUTN_COMP)) {
381 int i = 0;
382
383 puts("Waiting for PHY auto negotiation to complete");
384 while (!(mii_reg & PHY_BMSR_AUTN_COMP)) {
385 /*
386 * Timeout reached ?
387 */
388 if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
389 puts(" TIMEOUT !\n");
390 priv->link = 0;
391 return 0;
392 }
393
394 if (ctrlc()) {
395 puts("user interrupt!\n");
396 priv->link = 0;
397 return -EINTR;
398 }
399
400 if ((i++ % 1000) == 0) {
401 putc('.');
402 }
403 udelay(1000); /* 1 ms */
404 mii_reg = read_phy_reg(priv, MIIM_STATUS);
405 }
406 puts(" done\n");
407
408 /* Link status bit is latched low, read it again */
409 mii_reg = read_phy_reg(priv, MIIM_STATUS);
410
411 udelay(500000); /* another 500 ms (results in faster booting) */
412 }
413
414 priv->link = mii_reg & MIIM_STATUS_LINK ? 1 : 0;
415
416 return 0;
417 }
418
419 /* Generic function which updates the speed and duplex. If
420 * autonegotiation is enabled, it uses the AND of the link
421 * partner's advertised capabilities and our advertised
422 * capabilities. If autonegotiation is disabled, we use the
423 * appropriate bits in the control register.
424 *
425 * Stolen from Linux's mii.c and phy_device.c
426 */
427 static uint mii_parse_link(uint mii_reg, struct tsec_private *priv)
428 {
429 /* We're using autonegotiation */
430 if (mii_reg & PHY_BMSR_AUTN_ABLE) {
431 uint lpa = 0;
432 uint gblpa = 0;
433
434 /* Check for gigabit capability */
435 if (mii_reg & PHY_BMSR_EXT) {
436 /* We want a list of states supported by
437 * both PHYs in the link
438 */
439 gblpa = read_phy_reg(priv, PHY_1000BTSR);
440 gblpa &= read_phy_reg(priv, PHY_1000BTCR) << 2;
441 }
442
443 /* Set the baseline so we only have to set them
444 * if they're different
445 */
446 priv->speed = 10;
447 priv->duplexity = 0;
448
449 /* Check the gigabit fields */
450 if (gblpa & (PHY_1000BTSR_1000FD | PHY_1000BTSR_1000HD)) {
451 priv->speed = 1000;
452
453 if (gblpa & PHY_1000BTSR_1000FD)
454 priv->duplexity = 1;
455
456 /* We're done! */
457 return 0;
458 }
459
460 lpa = read_phy_reg(priv, PHY_ANAR);
461 lpa &= read_phy_reg(priv, PHY_ANLPAR);
462
463 if (lpa & (PHY_ANLPAR_TXFD | PHY_ANLPAR_TX)) {
464 priv->speed = 100;
465
466 if (lpa & PHY_ANLPAR_TXFD)
467 priv->duplexity = 1;
468
469 } else if (lpa & PHY_ANLPAR_10FD)
470 priv->duplexity = 1;
471 } else {
472 uint bmcr = read_phy_reg(priv, PHY_BMCR);
473
474 priv->speed = 10;
475 priv->duplexity = 0;
476
477 if (bmcr & PHY_BMCR_DPLX)
478 priv->duplexity = 1;
479
480 if (bmcr & PHY_BMCR_1000_MBPS)
481 priv->speed = 1000;
482 else if (bmcr & PHY_BMCR_100_MBPS)
483 priv->speed = 100;
484 }
485
486 return 0;
487 }
488
489 /*
490 * "Ethernet@Wirespeed" needs to be enabled to achieve link in certain
491 * circumstances. eg a gigabit TSEC connected to a gigabit switch with
492 * a 4-wire ethernet cable. Both ends advertise gigabit, but can't
493 * link. "Ethernet@Wirespeed" reduces advertised speed until link
494 * can be achieved.
495 */
496 static uint mii_BCM54xx_wirespeed(uint mii_reg, struct tsec_private *priv)
497 {
498 return (read_phy_reg(priv, mii_reg) & 0x8FFF) | 0x8010;
499 }
500
501 /*
502 * Parse the BCM54xx status register for speed and duplex information.
503 * The linux sungem_phy has this information, but in a table format.
504 */
505 static uint mii_parse_BCM54xx_sr(uint mii_reg, struct tsec_private *priv)
506 {
507 /* If there is no link, speed and duplex don't matter */
508 if (!priv->link)
509 return 0;
510
511 switch ((mii_reg & MIIM_BCM54xx_AUXSTATUS_LINKMODE_MASK) >>
512 MIIM_BCM54xx_AUXSTATUS_LINKMODE_SHIFT) {
513 case 1:
514 priv->duplexity = 0;
515 priv->speed = 10;
516 break;
517 case 2:
518 priv->duplexity = 1;
519 priv->speed = 10;
520 break;
521 case 3:
522 priv->duplexity = 0;
523 priv->speed = 100;
524 break;
525 case 5:
526 priv->duplexity = 1;
527 priv->speed = 100;
528 break;
529 case 6:
530 priv->duplexity = 0;
531 priv->speed = 1000;
532 break;
533 case 7:
534 priv->duplexity = 1;
535 priv->speed = 1000;
536 break;
537 default:
538 printf("Auto-neg error, defaulting to 10BT/HD\n");
539 priv->duplexity = 0;
540 priv->speed = 10;
541 break;
542 }
543
544 return 0;
545 }
546
547 /*
548 * Find out if PHY is in copper or serdes mode by looking at Expansion Reg
549 * 0x42 - "Operating Mode Status Register"
550 */
551 static int BCM8482_is_serdes(struct tsec_private *priv)
552 {
553 u16 val;
554 int serdes = 0;
555
556 write_phy_reg(priv, MIIM_BCM54XX_EXP_SEL, MIIM_BCM54XX_EXP_SEL_ER | 0x42);
557 val = read_phy_reg(priv, MIIM_BCM54XX_EXP_DATA);
558
559 switch (val & 0x1f) {
560 case 0x0d: /* RGMII-to-100Base-FX */
561 case 0x0e: /* RGMII-to-SGMII */
562 case 0x0f: /* RGMII-to-SerDes */
563 case 0x12: /* SGMII-to-SerDes */
564 case 0x13: /* SGMII-to-100Base-FX */
565 case 0x16: /* SerDes-to-Serdes */
566 serdes = 1;
567 break;
568 case 0x6: /* RGMII-to-Copper */
569 case 0x14: /* SGMII-to-Copper */
570 case 0x17: /* SerDes-to-Copper */
571 break;
572 default:
573 printf("ERROR, invalid PHY mode (0x%x\n)", val);
574 break;
575 }
576
577 return serdes;
578 }
579
580 /*
581 * Determine SerDes link speed and duplex from Expansion reg 0x42 "Operating
582 * Mode Status Register"
583 */
584 uint mii_parse_BCM5482_serdes_sr(struct tsec_private *priv)
585 {
586 u16 val;
587 int i = 0;
588
589 /* Wait 1s for link - Clause 37 autonegotiation happens very fast */
590 while (1) {
591 write_phy_reg(priv, MIIM_BCM54XX_EXP_SEL,
592 MIIM_BCM54XX_EXP_SEL_ER | 0x42);
593 val = read_phy_reg(priv, MIIM_BCM54XX_EXP_DATA);
594
595 if (val & 0x8000)
596 break;
597
598 if (i++ > 1000) {
599 priv->link = 0;
600 return 1;
601 }
602
603 udelay(1000); /* 1 ms */
604 }
605
606 priv->link = 1;
607 switch ((val >> 13) & 0x3) {
608 case (0x00):
609 priv->speed = 10;
610 break;
611 case (0x01):
612 priv->speed = 100;
613 break;
614 case (0x02):
615 priv->speed = 1000;
616 break;
617 }
618
619 priv->duplexity = (val & 0x1000) == 0x1000;
620
621 return 0;
622 }
623
624 /*
625 * Figure out if BCM5482 is in serdes or copper mode and determine link
626 * configuration accordingly
627 */
628 static uint mii_parse_BCM5482_sr(uint mii_reg, struct tsec_private *priv)
629 {
630 if (BCM8482_is_serdes(priv)) {
631 mii_parse_BCM5482_serdes_sr(priv);
632 priv->flags |= TSEC_FIBER;
633 } else {
634 /* Wait for auto-negotiation to complete or fail */
635 mii_parse_sr(mii_reg, priv);
636
637 /* Parse BCM54xx copper aux status register */
638 mii_reg = read_phy_reg(priv, MIIM_BCM54xx_AUXSTATUS);
639 mii_parse_BCM54xx_sr(mii_reg, priv);
640 }
641
642 return 0;
643 }
644
645 /* Parse the 88E1011's status register for speed and duplex
646 * information
647 */
648 static uint mii_parse_88E1011_psr(uint mii_reg, struct tsec_private * priv)
649 {
650 uint speed;
651
652 mii_reg = read_phy_reg(priv, MIIM_88E1011_PHY_STATUS);
653
654 if ((mii_reg & MIIM_88E1011_PHYSTAT_LINK) &&
655 !(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
656 int i = 0;
657
658 puts("Waiting for PHY realtime link");
659 while (!(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
660 /* Timeout reached ? */
661 if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
662 puts(" TIMEOUT !\n");
663 priv->link = 0;
664 break;
665 }
666
667 if ((i++ % 1000) == 0) {
668 putc('.');
669 }
670 udelay(1000); /* 1 ms */
671 mii_reg = read_phy_reg(priv, MIIM_88E1011_PHY_STATUS);
672 }
673 puts(" done\n");
674 udelay(500000); /* another 500 ms (results in faster booting) */
675 } else {
676 if (mii_reg & MIIM_88E1011_PHYSTAT_LINK)
677 priv->link = 1;
678 else
679 priv->link = 0;
680 }
681
682 if (mii_reg & MIIM_88E1011_PHYSTAT_DUPLEX)
683 priv->duplexity = 1;
684 else
685 priv->duplexity = 0;
686
687 speed = (mii_reg & MIIM_88E1011_PHYSTAT_SPEED);
688
689 switch (speed) {
690 case MIIM_88E1011_PHYSTAT_GBIT:
691 priv->speed = 1000;
692 break;
693 case MIIM_88E1011_PHYSTAT_100:
694 priv->speed = 100;
695 break;
696 default:
697 priv->speed = 10;
698 }
699
700 return 0;
701 }
702
703 /* Parse the RTL8211B's status register for speed and duplex
704 * information
705 */
706 static uint mii_parse_RTL8211B_sr(uint mii_reg, struct tsec_private * priv)
707 {
708 uint speed;
709
710 mii_reg = read_phy_reg(priv, MIIM_RTL8211B_PHY_STATUS);
711 if (!(mii_reg & MIIM_RTL8211B_PHYSTAT_SPDDONE)) {
712 int i = 0;
713
714 /* in case of timeout ->link is cleared */
715 priv->link = 1;
716 puts("Waiting for PHY realtime link");
717 while (!(mii_reg & MIIM_RTL8211B_PHYSTAT_SPDDONE)) {
718 /* Timeout reached ? */
719 if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
720 puts(" TIMEOUT !\n");
721 priv->link = 0;
722 break;
723 }
724
725 if ((i++ % 1000) == 0) {
726 putc('.');
727 }
728 udelay(1000); /* 1 ms */
729 mii_reg = read_phy_reg(priv, MIIM_RTL8211B_PHY_STATUS);
730 }
731 puts(" done\n");
732 udelay(500000); /* another 500 ms (results in faster booting) */
733 } else {
734 if (mii_reg & MIIM_RTL8211B_PHYSTAT_LINK)
735 priv->link = 1;
736 else
737 priv->link = 0;
738 }
739
740 if (mii_reg & MIIM_RTL8211B_PHYSTAT_DUPLEX)
741 priv->duplexity = 1;
742 else
743 priv->duplexity = 0;
744
745 speed = (mii_reg & MIIM_RTL8211B_PHYSTAT_SPEED);
746
747 switch (speed) {
748 case MIIM_RTL8211B_PHYSTAT_GBIT:
749 priv->speed = 1000;
750 break;
751 case MIIM_RTL8211B_PHYSTAT_100:
752 priv->speed = 100;
753 break;
754 default:
755 priv->speed = 10;
756 }
757
758 return 0;
759 }
760
761 /* Parse the cis8201's status register for speed and duplex
762 * information
763 */
764 static uint mii_parse_cis8201(uint mii_reg, struct tsec_private * priv)
765 {
766 uint speed;
767
768 if (mii_reg & MIIM_CIS8201_AUXCONSTAT_DUPLEX)
769 priv->duplexity = 1;
770 else
771 priv->duplexity = 0;
772
773 speed = mii_reg & MIIM_CIS8201_AUXCONSTAT_SPEED;
774 switch (speed) {
775 case MIIM_CIS8201_AUXCONSTAT_GBIT:
776 priv->speed = 1000;
777 break;
778 case MIIM_CIS8201_AUXCONSTAT_100:
779 priv->speed = 100;
780 break;
781 default:
782 priv->speed = 10;
783 break;
784 }
785
786 return 0;
787 }
788
789 /* Parse the vsc8244's status register for speed and duplex
790 * information
791 */
792 static uint mii_parse_vsc8244(uint mii_reg, struct tsec_private * priv)
793 {
794 uint speed;
795
796 if (mii_reg & MIIM_VSC8244_AUXCONSTAT_DUPLEX)
797 priv->duplexity = 1;
798 else
799 priv->duplexity = 0;
800
801 speed = mii_reg & MIIM_VSC8244_AUXCONSTAT_SPEED;
802 switch (speed) {
803 case MIIM_VSC8244_AUXCONSTAT_GBIT:
804 priv->speed = 1000;
805 break;
806 case MIIM_VSC8244_AUXCONSTAT_100:
807 priv->speed = 100;
808 break;
809 default:
810 priv->speed = 10;
811 break;
812 }
813
814 return 0;
815 }
816
817 /* Parse the DM9161's status register for speed and duplex
818 * information
819 */
820 static uint mii_parse_dm9161_scsr(uint mii_reg, struct tsec_private * priv)
821 {
822 if (mii_reg & (MIIM_DM9161_SCSR_100F | MIIM_DM9161_SCSR_100H))
823 priv->speed = 100;
824 else
825 priv->speed = 10;
826
827 if (mii_reg & (MIIM_DM9161_SCSR_100F | MIIM_DM9161_SCSR_10F))
828 priv->duplexity = 1;
829 else
830 priv->duplexity = 0;
831
832 return 0;
833 }
834
835 /*
836 * Hack to write all 4 PHYs with the LED values
837 */
838 static uint mii_cis8204_fixled(uint mii_reg, struct tsec_private * priv)
839 {
840 uint phyid;
841 volatile tsec_mdio_t *regbase = priv->phyregs;
842 int timeout = 1000000;
843
844 for (phyid = 0; phyid < 4; phyid++) {
845 regbase->miimadd = (phyid << 8) | mii_reg;
846 regbase->miimcon = MIIM_CIS8204_SLEDCON_INIT;
847 asm("sync");
848
849 timeout = 1000000;
850 while ((regbase->miimind & MIIMIND_BUSY) && timeout--) ;
851 }
852
853 return MIIM_CIS8204_SLEDCON_INIT;
854 }
855
856 static uint mii_cis8204_setmode(uint mii_reg, struct tsec_private * priv)
857 {
858 if (priv->flags & TSEC_REDUCED)
859 return MIIM_CIS8204_EPHYCON_INIT | MIIM_CIS8204_EPHYCON_RGMII;
860 else
861 return MIIM_CIS8204_EPHYCON_INIT;
862 }
863
864 static uint mii_m88e1111s_setmode(uint mii_reg, struct tsec_private *priv)
865 {
866 uint mii_data = read_phy_reg(priv, mii_reg);
867
868 if (priv->flags & TSEC_REDUCED)
869 mii_data = (mii_data & 0xfff0) | 0x000b;
870 return mii_data;
871 }
872
873 /* Initialized required registers to appropriate values, zeroing
874 * those we don't care about (unless zero is bad, in which case,
875 * choose a more appropriate value)
876 */
877 static void init_registers(volatile tsec_t * regs)
878 {
879 /* Clear IEVENT */
880 regs->ievent = IEVENT_INIT_CLEAR;
881
882 regs->imask = IMASK_INIT_CLEAR;
883
884 regs->hash.iaddr0 = 0;
885 regs->hash.iaddr1 = 0;
886 regs->hash.iaddr2 = 0;
887 regs->hash.iaddr3 = 0;
888 regs->hash.iaddr4 = 0;
889 regs->hash.iaddr5 = 0;
890 regs->hash.iaddr6 = 0;
891 regs->hash.iaddr7 = 0;
892
893 regs->hash.gaddr0 = 0;
894 regs->hash.gaddr1 = 0;
895 regs->hash.gaddr2 = 0;
896 regs->hash.gaddr3 = 0;
897 regs->hash.gaddr4 = 0;
898 regs->hash.gaddr5 = 0;
899 regs->hash.gaddr6 = 0;
900 regs->hash.gaddr7 = 0;
901
902 regs->rctrl = 0x00000000;
903
904 /* Init RMON mib registers */
905 memset((void *)&(regs->rmon), 0, sizeof(rmon_mib_t));
906
907 regs->rmon.cam1 = 0xffffffff;
908 regs->rmon.cam2 = 0xffffffff;
909
910 regs->mrblr = MRBLR_INIT_SETTINGS;
911
912 regs->minflr = MINFLR_INIT_SETTINGS;
913
914 regs->attr = ATTR_INIT_SETTINGS;
915 regs->attreli = ATTRELI_INIT_SETTINGS;
916
917 }
918
919 /* Configure maccfg2 based on negotiated speed and duplex
920 * reported by PHY handling code
921 */
922 static void adjust_link(struct eth_device *dev)
923 {
924 struct tsec_private *priv = (struct tsec_private *)dev->priv;
925 volatile tsec_t *regs = priv->regs;
926
927 if (priv->link) {
928 if (priv->duplexity != 0)
929 regs->maccfg2 |= MACCFG2_FULL_DUPLEX;
930 else
931 regs->maccfg2 &= ~(MACCFG2_FULL_DUPLEX);
932
933 switch (priv->speed) {
934 case 1000:
935 regs->maccfg2 = ((regs->maccfg2 & ~(MACCFG2_IF))
936 | MACCFG2_GMII);
937 break;
938 case 100:
939 case 10:
940 regs->maccfg2 = ((regs->maccfg2 & ~(MACCFG2_IF))
941 | MACCFG2_MII);
942
943 /* Set R100 bit in all modes although
944 * it is only used in RGMII mode
945 */
946 if (priv->speed == 100)
947 regs->ecntrl |= ECNTRL_R100;
948 else
949 regs->ecntrl &= ~(ECNTRL_R100);
950 break;
951 default:
952 printf("%s: Speed was bad\n", dev->name);
953 break;
954 }
955
956 printf("Speed: %d, %s duplex%s\n", priv->speed,
957 (priv->duplexity) ? "full" : "half",
958 (priv->flags & TSEC_FIBER) ? ", fiber mode" : "");
959
960 } else {
961 printf("%s: No link.\n", dev->name);
962 }
963 }
964
965 /* Set up the buffers and their descriptors, and bring up the
966 * interface
967 */
968 static void startup_tsec(struct eth_device *dev)
969 {
970 int i;
971 struct tsec_private *priv = (struct tsec_private *)dev->priv;
972 volatile tsec_t *regs = priv->regs;
973
974 /* Point to the buffer descriptors */
975 regs->tbase = (unsigned int)(&rtx.txbd[txIdx]);
976 regs->rbase = (unsigned int)(&rtx.rxbd[rxIdx]);
977
978 /* Initialize the Rx Buffer descriptors */
979 for (i = 0; i < PKTBUFSRX; i++) {
980 rtx.rxbd[i].status = RXBD_EMPTY;
981 rtx.rxbd[i].length = 0;
982 rtx.rxbd[i].bufPtr = (uint) NetRxPackets[i];
983 }
984 rtx.rxbd[PKTBUFSRX - 1].status |= RXBD_WRAP;
985
986 /* Initialize the TX Buffer Descriptors */
987 for (i = 0; i < TX_BUF_CNT; i++) {
988 rtx.txbd[i].status = 0;
989 rtx.txbd[i].length = 0;
990 rtx.txbd[i].bufPtr = 0;
991 }
992 rtx.txbd[TX_BUF_CNT - 1].status |= TXBD_WRAP;
993
994 /* Start up the PHY */
995 if(priv->phyinfo)
996 phy_run_commands(priv, priv->phyinfo->startup);
997
998 adjust_link(dev);
999
1000 /* Enable Transmit and Receive */
1001 regs->maccfg1 |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1002
1003 /* Tell the DMA it is clear to go */
1004 regs->dmactrl |= DMACTRL_INIT_SETTINGS;
1005 regs->tstat = TSTAT_CLEAR_THALT;
1006 regs->rstat = RSTAT_CLEAR_RHALT;
1007 regs->dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
1008 }
1009
1010 /* This returns the status bits of the device. The return value
1011 * is never checked, and this is what the 8260 driver did, so we
1012 * do the same. Presumably, this would be zero if there were no
1013 * errors
1014 */
1015 static int tsec_send(struct eth_device *dev, volatile void *packet, int length)
1016 {
1017 int i;
1018 int result = 0;
1019 struct tsec_private *priv = (struct tsec_private *)dev->priv;
1020 volatile tsec_t *regs = priv->regs;
1021
1022 /* Find an empty buffer descriptor */
1023 for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) {
1024 if (i >= TOUT_LOOP) {
1025 debug("%s: tsec: tx buffers full\n", dev->name);
1026 return result;
1027 }
1028 }
1029
1030 rtx.txbd[txIdx].bufPtr = (uint) packet;
1031 rtx.txbd[txIdx].length = length;
1032 rtx.txbd[txIdx].status |=
1033 (TXBD_READY | TXBD_LAST | TXBD_CRC | TXBD_INTERRUPT);
1034
1035 /* Tell the DMA to go */
1036 regs->tstat = TSTAT_CLEAR_THALT;
1037
1038 /* Wait for buffer to be transmitted */
1039 for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) {
1040 if (i >= TOUT_LOOP) {
1041 debug("%s: tsec: tx error\n", dev->name);
1042 return result;
1043 }
1044 }
1045
1046 txIdx = (txIdx + 1) % TX_BUF_CNT;
1047 result = rtx.txbd[txIdx].status & TXBD_STATS;
1048
1049 return result;
1050 }
1051
1052 static int tsec_recv(struct eth_device *dev)
1053 {
1054 int length;
1055 struct tsec_private *priv = (struct tsec_private *)dev->priv;
1056 volatile tsec_t *regs = priv->regs;
1057
1058 while (!(rtx.rxbd[rxIdx].status & RXBD_EMPTY)) {
1059
1060 length = rtx.rxbd[rxIdx].length;
1061
1062 /* Send the packet up if there were no errors */
1063 if (!(rtx.rxbd[rxIdx].status & RXBD_STATS)) {
1064 NetReceive(NetRxPackets[rxIdx], length - 4);
1065 } else {
1066 printf("Got error %x\n",
1067 (rtx.rxbd[rxIdx].status & RXBD_STATS));
1068 }
1069
1070 rtx.rxbd[rxIdx].length = 0;
1071
1072 /* Set the wrap bit if this is the last element in the list */
1073 rtx.rxbd[rxIdx].status =
1074 RXBD_EMPTY | (((rxIdx + 1) == PKTBUFSRX) ? RXBD_WRAP : 0);
1075
1076 rxIdx = (rxIdx + 1) % PKTBUFSRX;
1077 }
1078
1079 if (regs->ievent & IEVENT_BSY) {
1080 regs->ievent = IEVENT_BSY;
1081 regs->rstat = RSTAT_CLEAR_RHALT;
1082 }
1083
1084 return -1;
1085
1086 }
1087
1088 /* Stop the interface */
1089 static void tsec_halt(struct eth_device *dev)
1090 {
1091 struct tsec_private *priv = (struct tsec_private *)dev->priv;
1092 volatile tsec_t *regs = priv->regs;
1093
1094 regs->dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
1095 regs->dmactrl |= (DMACTRL_GRS | DMACTRL_GTS);
1096
1097 while ((regs->ievent & (IEVENT_GRSC | IEVENT_GTSC))
1098 != (IEVENT_GRSC | IEVENT_GTSC)) ;
1099
1100 regs->maccfg1 &= ~(MACCFG1_TX_EN | MACCFG1_RX_EN);
1101
1102 /* Shut down the PHY, as needed */
1103 if(priv->phyinfo)
1104 phy_run_commands(priv, priv->phyinfo->shutdown);
1105 }
1106
1107 static struct phy_info phy_info_M88E1149S = {
1108 0x1410ca,
1109 "Marvell 88E1149S",
1110 4,
1111 (struct phy_cmd[]) { /* config */
1112 /* Reset and configure the PHY */
1113 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1114 {0x1d, 0x1f, NULL},
1115 {0x1e, 0x200c, NULL},
1116 {0x1d, 0x5, NULL},
1117 {0x1e, 0x0, NULL},
1118 {0x1e, 0x100, NULL},
1119 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1120 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1121 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1122 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1123 {miim_end,}
1124 },
1125 (struct phy_cmd[]) { /* startup */
1126 /* Status is read once to clear old link state */
1127 {MIIM_STATUS, miim_read, NULL},
1128 /* Auto-negotiate */
1129 {MIIM_STATUS, miim_read, &mii_parse_sr},
1130 /* Read the status */
1131 {MIIM_88E1011_PHY_STATUS, miim_read, &mii_parse_88E1011_psr},
1132 {miim_end,}
1133 },
1134 (struct phy_cmd[]) { /* shutdown */
1135 {miim_end,}
1136 },
1137 };
1138
1139 /* The 5411 id is 0x206070, the 5421 is 0x2060e0 */
1140 static struct phy_info phy_info_BCM5461S = {
1141 0x02060c1, /* 5461 ID */
1142 "Broadcom BCM5461S",
1143 0, /* not clear to me what minor revisions we can shift away */
1144 (struct phy_cmd[]) { /* config */
1145 /* Reset and configure the PHY */
1146 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1147 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1148 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1149 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1150 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1151 {miim_end,}
1152 },
1153 (struct phy_cmd[]) { /* startup */
1154 /* Status is read once to clear old link state */
1155 {MIIM_STATUS, miim_read, NULL},
1156 /* Auto-negotiate */
1157 {MIIM_STATUS, miim_read, &mii_parse_sr},
1158 /* Read the status */
1159 {MIIM_BCM54xx_AUXSTATUS, miim_read, &mii_parse_BCM54xx_sr},
1160 {miim_end,}
1161 },
1162 (struct phy_cmd[]) { /* shutdown */
1163 {miim_end,}
1164 },
1165 };
1166
1167 static struct phy_info phy_info_BCM5464S = {
1168 0x02060b1, /* 5464 ID */
1169 "Broadcom BCM5464S",
1170 0, /* not clear to me what minor revisions we can shift away */
1171 (struct phy_cmd[]) { /* config */
1172 /* Reset and configure the PHY */
1173 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1174 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1175 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1176 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1177 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1178 {miim_end,}
1179 },
1180 (struct phy_cmd[]) { /* startup */
1181 /* Status is read once to clear old link state */
1182 {MIIM_STATUS, miim_read, NULL},
1183 /* Auto-negotiate */
1184 {MIIM_STATUS, miim_read, &mii_parse_sr},
1185 /* Read the status */
1186 {MIIM_BCM54xx_AUXSTATUS, miim_read, &mii_parse_BCM54xx_sr},
1187 {miim_end,}
1188 },
1189 (struct phy_cmd[]) { /* shutdown */
1190 {miim_end,}
1191 },
1192 };
1193
1194 static struct phy_info phy_info_BCM5482S = {
1195 0x0143bcb,
1196 "Broadcom BCM5482S",
1197 4,
1198 (struct phy_cmd[]) { /* config */
1199 /* Reset and configure the PHY */
1200 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1201 /* Setup read from auxilary control shadow register 7 */
1202 {MIIM_BCM54xx_AUXCNTL, MIIM_BCM54xx_AUXCNTL_ENCODE(7), NULL},
1203 /* Read Misc Control register and or in Ethernet@Wirespeed */
1204 {MIIM_BCM54xx_AUXCNTL, 0, &mii_BCM54xx_wirespeed},
1205 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1206 /* Initial config/enable of secondary SerDes interface */
1207 {MIIM_BCM54XX_SHD, MIIM_BCM54XX_SHD_WR_ENCODE(0x14, 0xf), NULL},
1208 /* Write intial value to secondary SerDes Contol */
1209 {MIIM_BCM54XX_EXP_SEL, MIIM_BCM54XX_EXP_SEL_SSD | 0, NULL},
1210 {MIIM_BCM54XX_EXP_DATA, MIIM_CONTROL_RESTART, NULL},
1211 /* Enable copper/fiber auto-detect */
1212 {MIIM_BCM54XX_SHD, MIIM_BCM54XX_SHD_WR_ENCODE(0x1e, 0x201)},
1213 {miim_end,}
1214 },
1215 (struct phy_cmd[]) { /* startup */
1216 /* Status is read once to clear old link state */
1217 {MIIM_STATUS, miim_read, NULL},
1218 /* Determine copper/fiber, auto-negotiate, and read the result */
1219 {MIIM_STATUS, miim_read, &mii_parse_BCM5482_sr},
1220 {miim_end,}
1221 },
1222 (struct phy_cmd[]) { /* shutdown */
1223 {miim_end,}
1224 },
1225 };
1226
1227 static struct phy_info phy_info_M88E1011S = {
1228 0x01410c6,
1229 "Marvell 88E1011S",
1230 4,
1231 (struct phy_cmd[]) { /* config */
1232 /* Reset and configure the PHY */
1233 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1234 {0x1d, 0x1f, NULL},
1235 {0x1e, 0x200c, NULL},
1236 {0x1d, 0x5, NULL},
1237 {0x1e, 0x0, NULL},
1238 {0x1e, 0x100, NULL},
1239 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1240 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1241 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1242 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1243 {miim_end,}
1244 },
1245 (struct phy_cmd[]) { /* startup */
1246 /* Status is read once to clear old link state */
1247 {MIIM_STATUS, miim_read, NULL},
1248 /* Auto-negotiate */
1249 {MIIM_STATUS, miim_read, &mii_parse_sr},
1250 /* Read the status */
1251 {MIIM_88E1011_PHY_STATUS, miim_read, &mii_parse_88E1011_psr},
1252 {miim_end,}
1253 },
1254 (struct phy_cmd[]) { /* shutdown */
1255 {miim_end,}
1256 },
1257 };
1258
1259 static struct phy_info phy_info_M88E1111S = {
1260 0x01410cc,
1261 "Marvell 88E1111S",
1262 4,
1263 (struct phy_cmd[]) { /* config */
1264 /* Reset and configure the PHY */
1265 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1266 {0x1b, 0x848f, &mii_m88e1111s_setmode},
1267 {0x14, 0x0cd2, NULL}, /* Delay RGMII TX and RX */
1268 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1269 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1270 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1271 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1272 {miim_end,}
1273 },
1274 (struct phy_cmd[]) { /* startup */
1275 /* Status is read once to clear old link state */
1276 {MIIM_STATUS, miim_read, NULL},
1277 /* Auto-negotiate */
1278 {MIIM_STATUS, miim_read, &mii_parse_sr},
1279 /* Read the status */
1280 {MIIM_88E1011_PHY_STATUS, miim_read, &mii_parse_88E1011_psr},
1281 {miim_end,}
1282 },
1283 (struct phy_cmd[]) { /* shutdown */
1284 {miim_end,}
1285 },
1286 };
1287
1288 static struct phy_info phy_info_M88E1118 = {
1289 0x01410e1,
1290 "Marvell 88E1118",
1291 4,
1292 (struct phy_cmd[]) { /* config */
1293 /* Reset and configure the PHY */
1294 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1295 {0x16, 0x0002, NULL}, /* Change Page Number */
1296 {0x15, 0x1070, NULL}, /* Delay RGMII TX and RX */
1297 {0x16, 0x0003, NULL}, /* Change Page Number */
1298 {0x10, 0x021e, NULL}, /* Adjust LED control */
1299 {0x16, 0x0000, NULL}, /* Change Page Number */
1300 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1301 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1302 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1303 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1304 {miim_end,}
1305 },
1306 (struct phy_cmd[]) { /* startup */
1307 {0x16, 0x0000, NULL}, /* Change Page Number */
1308 /* Status is read once to clear old link state */
1309 {MIIM_STATUS, miim_read, NULL},
1310 /* Auto-negotiate */
1311 {MIIM_STATUS, miim_read, &mii_parse_sr},
1312 /* Read the status */
1313 {MIIM_88E1011_PHY_STATUS, miim_read,
1314 &mii_parse_88E1011_psr},
1315 {miim_end,}
1316 },
1317 (struct phy_cmd[]) { /* shutdown */
1318 {miim_end,}
1319 },
1320 };
1321
1322 /*
1323 * Since to access LED register we need do switch the page, we
1324 * do LED configuring in the miim_read-like function as follows
1325 */
1326 static uint mii_88E1121_set_led (uint mii_reg, struct tsec_private *priv)
1327 {
1328 uint pg;
1329
1330 /* Switch the page to access the led register */
1331 pg = read_phy_reg(priv, MIIM_88E1121_PHY_PAGE);
1332 write_phy_reg(priv, MIIM_88E1121_PHY_PAGE, MIIM_88E1121_PHY_LED_PAGE);
1333
1334 /* Configure leds */
1335 write_phy_reg(priv, MIIM_88E1121_PHY_LED_CTRL,
1336 MIIM_88E1121_PHY_LED_DEF);
1337
1338 /* Restore the page pointer */
1339 write_phy_reg(priv, MIIM_88E1121_PHY_PAGE, pg);
1340 return 0;
1341 }
1342
1343 static struct phy_info phy_info_M88E1121R = {
1344 0x01410cb,
1345 "Marvell 88E1121R",
1346 4,
1347 (struct phy_cmd[]) { /* config */
1348 /* Reset and configure the PHY */
1349 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1350 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1351 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1352 /* Configure leds */
1353 {MIIM_88E1121_PHY_LED_CTRL, miim_read, &mii_88E1121_set_led},
1354 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1355 /* Disable IRQs and de-assert interrupt */
1356 {MIIM_88E1121_PHY_IRQ_EN, 0, NULL},
1357 {MIIM_88E1121_PHY_IRQ_STATUS, miim_read, NULL},
1358 {miim_end,}
1359 },
1360 (struct phy_cmd[]) { /* startup */
1361 /* Status is read once to clear old link state */
1362 {MIIM_STATUS, miim_read, NULL},
1363 {MIIM_STATUS, miim_read, &mii_parse_sr},
1364 {MIIM_STATUS, miim_read, &mii_parse_link},
1365 {miim_end,}
1366 },
1367 (struct phy_cmd[]) { /* shutdown */
1368 {miim_end,}
1369 },
1370 };
1371
1372 static unsigned int m88e1145_setmode(uint mii_reg, struct tsec_private *priv)
1373 {
1374 uint mii_data = read_phy_reg(priv, mii_reg);
1375
1376 /* Setting MIIM_88E1145_PHY_EXT_CR */
1377 if (priv->flags & TSEC_REDUCED)
1378 return mii_data |
1379 MIIM_M88E1145_RGMII_RX_DELAY | MIIM_M88E1145_RGMII_TX_DELAY;
1380 else
1381 return mii_data;
1382 }
1383
1384 static struct phy_info phy_info_M88E1145 = {
1385 0x01410cd,
1386 "Marvell 88E1145",
1387 4,
1388 (struct phy_cmd[]) { /* config */
1389 /* Reset the PHY */
1390 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1391
1392 /* Errata E0, E1 */
1393 {29, 0x001b, NULL},
1394 {30, 0x418f, NULL},
1395 {29, 0x0016, NULL},
1396 {30, 0xa2da, NULL},
1397
1398 /* Configure the PHY */
1399 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1400 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1401 {MIIM_88E1011_PHY_SCR, MIIM_88E1011_PHY_MDI_X_AUTO, NULL},
1402 {MIIM_88E1145_PHY_EXT_CR, 0, &m88e1145_setmode},
1403 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1404 {MIIM_CONTROL, MIIM_CONTROL_INIT, NULL},
1405 {miim_end,}
1406 },
1407 (struct phy_cmd[]) { /* startup */
1408 /* Status is read once to clear old link state */
1409 {MIIM_STATUS, miim_read, NULL},
1410 /* Auto-negotiate */
1411 {MIIM_STATUS, miim_read, &mii_parse_sr},
1412 {MIIM_88E1111_PHY_LED_CONTROL, MIIM_88E1111_PHY_LED_DIRECT, NULL},
1413 /* Read the Status */
1414 {MIIM_88E1011_PHY_STATUS, miim_read, &mii_parse_88E1011_psr},
1415 {miim_end,}
1416 },
1417 (struct phy_cmd[]) { /* shutdown */
1418 {miim_end,}
1419 },
1420 };
1421
1422 static struct phy_info phy_info_cis8204 = {
1423 0x3f11,
1424 "Cicada Cis8204",
1425 6,
1426 (struct phy_cmd[]) { /* config */
1427 /* Override PHY config settings */
1428 {MIIM_CIS8201_AUX_CONSTAT, MIIM_CIS8201_AUXCONSTAT_INIT, NULL},
1429 /* Configure some basic stuff */
1430 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1431 {MIIM_CIS8204_SLED_CON, MIIM_CIS8204_SLEDCON_INIT,
1432 &mii_cis8204_fixled},
1433 {MIIM_CIS8204_EPHY_CON, MIIM_CIS8204_EPHYCON_INIT,
1434 &mii_cis8204_setmode},
1435 {miim_end,}
1436 },
1437 (struct phy_cmd[]) { /* startup */
1438 /* Read the Status (2x to make sure link is right) */
1439 {MIIM_STATUS, miim_read, NULL},
1440 /* Auto-negotiate */
1441 {MIIM_STATUS, miim_read, &mii_parse_sr},
1442 /* Read the status */
1443 {MIIM_CIS8201_AUX_CONSTAT, miim_read, &mii_parse_cis8201},
1444 {miim_end,}
1445 },
1446 (struct phy_cmd[]) { /* shutdown */
1447 {miim_end,}
1448 },
1449 };
1450
1451 /* Cicada 8201 */
1452 static struct phy_info phy_info_cis8201 = {
1453 0xfc41,
1454 "CIS8201",
1455 4,
1456 (struct phy_cmd[]) { /* config */
1457 /* Override PHY config settings */
1458 {MIIM_CIS8201_AUX_CONSTAT, MIIM_CIS8201_AUXCONSTAT_INIT, NULL},
1459 /* Set up the interface mode */
1460 {MIIM_CIS8201_EXT_CON1, MIIM_CIS8201_EXTCON1_INIT, NULL},
1461 /* Configure some basic stuff */
1462 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1463 {miim_end,}
1464 },
1465 (struct phy_cmd[]) { /* startup */
1466 /* Read the Status (2x to make sure link is right) */
1467 {MIIM_STATUS, miim_read, NULL},
1468 /* Auto-negotiate */
1469 {MIIM_STATUS, miim_read, &mii_parse_sr},
1470 /* Read the status */
1471 {MIIM_CIS8201_AUX_CONSTAT, miim_read, &mii_parse_cis8201},
1472 {miim_end,}
1473 },
1474 (struct phy_cmd[]) { /* shutdown */
1475 {miim_end,}
1476 },
1477 };
1478
1479 static struct phy_info phy_info_VSC8211 = {
1480 0xfc4b,
1481 "Vitesse VSC8211",
1482 4,
1483 (struct phy_cmd[]) { /* config */
1484 /* Override PHY config settings */
1485 {MIIM_CIS8201_AUX_CONSTAT, MIIM_CIS8201_AUXCONSTAT_INIT, NULL},
1486 /* Set up the interface mode */
1487 {MIIM_CIS8201_EXT_CON1, MIIM_CIS8201_EXTCON1_INIT, NULL},
1488 /* Configure some basic stuff */
1489 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1490 {miim_end,}
1491 },
1492 (struct phy_cmd[]) { /* startup */
1493 /* Read the Status (2x to make sure link is right) */
1494 {MIIM_STATUS, miim_read, NULL},
1495 /* Auto-negotiate */
1496 {MIIM_STATUS, miim_read, &mii_parse_sr},
1497 /* Read the status */
1498 {MIIM_CIS8201_AUX_CONSTAT, miim_read, &mii_parse_cis8201},
1499 {miim_end,}
1500 },
1501 (struct phy_cmd[]) { /* shutdown */
1502 {miim_end,}
1503 },
1504 };
1505
1506 static struct phy_info phy_info_VSC8244 = {
1507 0x3f1b,
1508 "Vitesse VSC8244",
1509 6,
1510 (struct phy_cmd[]) { /* config */
1511 /* Override PHY config settings */
1512 /* Configure some basic stuff */
1513 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1514 {miim_end,}
1515 },
1516 (struct phy_cmd[]) { /* startup */
1517 /* Read the Status (2x to make sure link is right) */
1518 {MIIM_STATUS, miim_read, NULL},
1519 /* Auto-negotiate */
1520 {MIIM_STATUS, miim_read, &mii_parse_sr},
1521 /* Read the status */
1522 {MIIM_VSC8244_AUX_CONSTAT, miim_read, &mii_parse_vsc8244},
1523 {miim_end,}
1524 },
1525 (struct phy_cmd[]) { /* shutdown */
1526 {miim_end,}
1527 },
1528 };
1529
1530 static struct phy_info phy_info_VSC8641 = {
1531 0x7043,
1532 "Vitesse VSC8641",
1533 4,
1534 (struct phy_cmd[]) { /* config */
1535 /* Configure some basic stuff */
1536 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1537 {miim_end,}
1538 },
1539 (struct phy_cmd[]) { /* startup */
1540 /* Read the Status (2x to make sure link is right) */
1541 {MIIM_STATUS, miim_read, NULL},
1542 /* Auto-negotiate */
1543 {MIIM_STATUS, miim_read, &mii_parse_sr},
1544 /* Read the status */
1545 {MIIM_VSC8244_AUX_CONSTAT, miim_read, &mii_parse_vsc8244},
1546 {miim_end,}
1547 },
1548 (struct phy_cmd[]) { /* shutdown */
1549 {miim_end,}
1550 },
1551 };
1552
1553 static struct phy_info phy_info_VSC8221 = {
1554 0xfc55,
1555 "Vitesse VSC8221",
1556 4,
1557 (struct phy_cmd[]) { /* config */
1558 /* Configure some basic stuff */
1559 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1560 {miim_end,}
1561 },
1562 (struct phy_cmd[]) { /* startup */
1563 /* Read the Status (2x to make sure link is right) */
1564 {MIIM_STATUS, miim_read, NULL},
1565 /* Auto-negotiate */
1566 {MIIM_STATUS, miim_read, &mii_parse_sr},
1567 /* Read the status */
1568 {MIIM_VSC8244_AUX_CONSTAT, miim_read, &mii_parse_vsc8244},
1569 {miim_end,}
1570 },
1571 (struct phy_cmd[]) { /* shutdown */
1572 {miim_end,}
1573 },
1574 };
1575
1576 static struct phy_info phy_info_VSC8601 = {
1577 0x00007042,
1578 "Vitesse VSC8601",
1579 4,
1580 (struct phy_cmd[]) { /* config */
1581 /* Override PHY config settings */
1582 /* Configure some basic stuff */
1583 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1584 #ifdef CONFIG_SYS_VSC8601_SKEWFIX
1585 {MIIM_VSC8601_EPHY_CON,MIIM_VSC8601_EPHY_CON_INIT_SKEW,NULL},
1586 #if defined(CONFIG_SYS_VSC8601_SKEW_TX) && defined(CONFIG_SYS_VSC8601_SKEW_RX)
1587 {MIIM_EXT_PAGE_ACCESS,1,NULL},
1588 #define VSC8101_SKEW \
1589 (CONFIG_SYS_VSC8601_SKEW_TX << 14) | (CONFIG_SYS_VSC8601_SKEW_RX << 12)
1590 {MIIM_VSC8601_SKEW_CTRL,VSC8101_SKEW,NULL},
1591 {MIIM_EXT_PAGE_ACCESS,0,NULL},
1592 #endif
1593 #endif
1594 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1595 {MIIM_CONTROL, MIIM_CONTROL_RESTART, &mii_cr_init},
1596 {miim_end,}
1597 },
1598 (struct phy_cmd[]) { /* startup */
1599 /* Read the Status (2x to make sure link is right) */
1600 {MIIM_STATUS, miim_read, NULL},
1601 /* Auto-negotiate */
1602 {MIIM_STATUS, miim_read, &mii_parse_sr},
1603 /* Read the status */
1604 {MIIM_VSC8244_AUX_CONSTAT, miim_read, &mii_parse_vsc8244},
1605 {miim_end,}
1606 },
1607 (struct phy_cmd[]) { /* shutdown */
1608 {miim_end,}
1609 },
1610 };
1611
1612 static struct phy_info phy_info_dm9161 = {
1613 0x0181b88,
1614 "Davicom DM9161E",
1615 4,
1616 (struct phy_cmd[]) { /* config */
1617 {MIIM_CONTROL, MIIM_DM9161_CR_STOP, NULL},
1618 /* Do not bypass the scrambler/descrambler */
1619 {MIIM_DM9161_SCR, MIIM_DM9161_SCR_INIT, NULL},
1620 /* Clear 10BTCSR to default */
1621 {MIIM_DM9161_10BTCSR, MIIM_DM9161_10BTCSR_INIT, NULL},
1622 /* Configure some basic stuff */
1623 {MIIM_CONTROL, MIIM_CR_INIT, NULL},
1624 /* Restart Auto Negotiation */
1625 {MIIM_CONTROL, MIIM_DM9161_CR_RSTAN, NULL},
1626 {miim_end,}
1627 },
1628 (struct phy_cmd[]) { /* startup */
1629 /* Status is read once to clear old link state */
1630 {MIIM_STATUS, miim_read, NULL},
1631 /* Auto-negotiate */
1632 {MIIM_STATUS, miim_read, &mii_parse_sr},
1633 /* Read the status */
1634 {MIIM_DM9161_SCSR, miim_read, &mii_parse_dm9161_scsr},
1635 {miim_end,}
1636 },
1637 (struct phy_cmd[]) { /* shutdown */
1638 {miim_end,}
1639 },
1640 };
1641
1642 /* micrel KSZ804 */
1643 static struct phy_info phy_info_ksz804 = {
1644 0x0022151,
1645 "Micrel KSZ804 PHY",
1646 4,
1647 (struct phy_cmd[]) { /* config */
1648 {PHY_BMCR, PHY_BMCR_RESET, NULL},
1649 {PHY_BMCR, PHY_BMCR_AUTON|PHY_BMCR_RST_NEG, NULL},
1650 {miim_end,}
1651 },
1652 (struct phy_cmd[]) { /* startup */
1653 {PHY_BMSR, miim_read, NULL},
1654 {PHY_BMSR, miim_read, &mii_parse_sr},
1655 {PHY_BMSR, miim_read, &mii_parse_link},
1656 {miim_end,}
1657 },
1658 (struct phy_cmd[]) { /* shutdown */
1659 {miim_end,}
1660 }
1661 };
1662
1663 /* a generic flavor. */
1664 static struct phy_info phy_info_generic = {
1665 0,
1666 "Unknown/Generic PHY",
1667 32,
1668 (struct phy_cmd[]) { /* config */
1669 {PHY_BMCR, PHY_BMCR_RESET, NULL},
1670 {PHY_BMCR, PHY_BMCR_AUTON|PHY_BMCR_RST_NEG, NULL},
1671 {miim_end,}
1672 },
1673 (struct phy_cmd[]) { /* startup */
1674 {PHY_BMSR, miim_read, NULL},
1675 {PHY_BMSR, miim_read, &mii_parse_sr},
1676 {PHY_BMSR, miim_read, &mii_parse_link},
1677 {miim_end,}
1678 },
1679 (struct phy_cmd[]) { /* shutdown */
1680 {miim_end,}
1681 }
1682 };
1683
1684 static uint mii_parse_lxt971_sr2(uint mii_reg, struct tsec_private *priv)
1685 {
1686 unsigned int speed;
1687 if (priv->link) {
1688 speed = mii_reg & MIIM_LXT971_SR2_SPEED_MASK;
1689
1690 switch (speed) {
1691 case MIIM_LXT971_SR2_10HDX:
1692 priv->speed = 10;
1693 priv->duplexity = 0;
1694 break;
1695 case MIIM_LXT971_SR2_10FDX:
1696 priv->speed = 10;
1697 priv->duplexity = 1;
1698 break;
1699 case MIIM_LXT971_SR2_100HDX:
1700 priv->speed = 100;
1701 priv->duplexity = 0;
1702 break;
1703 default:
1704 priv->speed = 100;
1705 priv->duplexity = 1;
1706 }
1707 } else {
1708 priv->speed = 0;
1709 priv->duplexity = 0;
1710 }
1711
1712 return 0;
1713 }
1714
1715 static struct phy_info phy_info_lxt971 = {
1716 0x0001378e,
1717 "LXT971",
1718 4,
1719 (struct phy_cmd[]) { /* config */
1720 {MIIM_CR, MIIM_CR_INIT, mii_cr_init}, /* autonegotiate */
1721 {miim_end,}
1722 },
1723 (struct phy_cmd[]) { /* startup - enable interrupts */
1724 /* { 0x12, 0x00f2, NULL }, */
1725 {MIIM_STATUS, miim_read, NULL},
1726 {MIIM_STATUS, miim_read, &mii_parse_sr},
1727 {MIIM_LXT971_SR2, miim_read, &mii_parse_lxt971_sr2},
1728 {miim_end,}
1729 },
1730 (struct phy_cmd[]) { /* shutdown - disable interrupts */
1731 {miim_end,}
1732 },
1733 };
1734
1735 /* Parse the DP83865's link and auto-neg status register for speed and duplex
1736 * information
1737 */
1738 static uint mii_parse_dp83865_lanr(uint mii_reg, struct tsec_private *priv)
1739 {
1740 switch (mii_reg & MIIM_DP83865_SPD_MASK) {
1741
1742 case MIIM_DP83865_SPD_1000:
1743 priv->speed = 1000;
1744 break;
1745
1746 case MIIM_DP83865_SPD_100:
1747 priv->speed = 100;
1748 break;
1749
1750 default:
1751 priv->speed = 10;
1752 break;
1753
1754 }
1755
1756 if (mii_reg & MIIM_DP83865_DPX_FULL)
1757 priv->duplexity = 1;
1758 else
1759 priv->duplexity = 0;
1760
1761 return 0;
1762 }
1763
1764 static struct phy_info phy_info_dp83865 = {
1765 0x20005c7,
1766 "NatSemi DP83865",
1767 4,
1768 (struct phy_cmd[]) { /* config */
1769 {MIIM_CONTROL, MIIM_DP83865_CR_INIT, NULL},
1770 {miim_end,}
1771 },
1772 (struct phy_cmd[]) { /* startup */
1773 /* Status is read once to clear old link state */
1774 {MIIM_STATUS, miim_read, NULL},
1775 /* Auto-negotiate */
1776 {MIIM_STATUS, miim_read, &mii_parse_sr},
1777 /* Read the link and auto-neg status */
1778 {MIIM_DP83865_LANR, miim_read, &mii_parse_dp83865_lanr},
1779 {miim_end,}
1780 },
1781 (struct phy_cmd[]) { /* shutdown */
1782 {miim_end,}
1783 },
1784 };
1785
1786 static struct phy_info phy_info_rtl8211b = {
1787 0x001cc91,
1788 "RealTek RTL8211B",
1789 4,
1790 (struct phy_cmd[]) { /* config */
1791 /* Reset and configure the PHY */
1792 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1793 {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1794 {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1795 {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1796 {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1797 {miim_end,}
1798 },
1799 (struct phy_cmd[]) { /* startup */
1800 /* Status is read once to clear old link state */
1801 {MIIM_STATUS, miim_read, NULL},
1802 /* Auto-negotiate */
1803 {MIIM_STATUS, miim_read, &mii_parse_sr},
1804 /* Read the status */
1805 {MIIM_RTL8211B_PHY_STATUS, miim_read, &mii_parse_RTL8211B_sr},
1806 {miim_end,}
1807 },
1808 (struct phy_cmd[]) { /* shutdown */
1809 {miim_end,}
1810 },
1811 };
1812
1813 static struct phy_info *phy_info[] = {
1814 &phy_info_cis8204,
1815 &phy_info_cis8201,
1816 &phy_info_BCM5461S,
1817 &phy_info_BCM5464S,
1818 &phy_info_BCM5482S,
1819 &phy_info_M88E1011S,
1820 &phy_info_M88E1111S,
1821 &phy_info_M88E1118,
1822 &phy_info_M88E1121R,
1823 &phy_info_M88E1145,
1824 &phy_info_M88E1149S,
1825 &phy_info_dm9161,
1826 &phy_info_ksz804,
1827 &phy_info_lxt971,
1828 &phy_info_VSC8211,
1829 &phy_info_VSC8244,
1830 &phy_info_VSC8601,
1831 &phy_info_VSC8641,
1832 &phy_info_VSC8221,
1833 &phy_info_dp83865,
1834 &phy_info_rtl8211b,
1835 &phy_info_generic, /* must be last; has ID 0 and 32 bit mask */
1836 NULL
1837 };
1838
1839 /* Grab the identifier of the device's PHY, and search through
1840 * all of the known PHYs to see if one matches. If so, return
1841 * it, if not, return NULL
1842 */
1843 static struct phy_info *get_phy_info(struct eth_device *dev)
1844 {
1845 struct tsec_private *priv = (struct tsec_private *)dev->priv;
1846 uint phy_reg, phy_ID;
1847 int i;
1848 struct phy_info *theInfo = NULL;
1849
1850 /* Grab the bits from PHYIR1, and put them in the upper half */
1851 phy_reg = read_phy_reg(priv, MIIM_PHYIR1);
1852 phy_ID = (phy_reg & 0xffff) << 16;
1853
1854 /* Grab the bits from PHYIR2, and put them in the lower half */
1855 phy_reg = read_phy_reg(priv, MIIM_PHYIR2);
1856 phy_ID |= (phy_reg & 0xffff);
1857
1858 /* loop through all the known PHY types, and find one that */
1859 /* matches the ID we read from the PHY. */
1860 for (i = 0; phy_info[i]; i++) {
1861 if (phy_info[i]->id == (phy_ID >> phy_info[i]->shift)) {
1862 theInfo = phy_info[i];
1863 break;
1864 }
1865 }
1866
1867 if (theInfo == &phy_info_generic) {
1868 printf("%s: No support for PHY id %x; assuming generic\n",
1869 dev->name, phy_ID);
1870 } else {
1871 debug("%s: PHY is %s (%x)\n", dev->name, theInfo->name, phy_ID);
1872 }
1873
1874 return theInfo;
1875 }
1876
1877 /* Execute the given series of commands on the given device's
1878 * PHY, running functions as necessary
1879 */
1880 static void phy_run_commands(struct tsec_private *priv, struct phy_cmd *cmd)
1881 {
1882 int i;
1883 uint result;
1884 volatile tsec_mdio_t *phyregs = priv->phyregs;
1885
1886 phyregs->miimcfg = MIIMCFG_RESET;
1887
1888 phyregs->miimcfg = MIIMCFG_INIT_VALUE;
1889
1890 while (phyregs->miimind & MIIMIND_BUSY) ;
1891
1892 for (i = 0; cmd->mii_reg != miim_end; i++) {
1893 if (cmd->mii_data == miim_read) {
1894 result = read_phy_reg(priv, cmd->mii_reg);
1895
1896 if (cmd->funct != NULL)
1897 (*(cmd->funct)) (result, priv);
1898
1899 } else {
1900 if (cmd->funct != NULL)
1901 result = (*(cmd->funct)) (cmd->mii_reg, priv);
1902 else
1903 result = cmd->mii_data;
1904
1905 write_phy_reg(priv, cmd->mii_reg, result);
1906
1907 }
1908 cmd++;
1909 }
1910 }
1911
1912 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
1913 && !defined(BITBANGMII)
1914
1915 /*
1916 * Read a MII PHY register.
1917 *
1918 * Returns:
1919 * 0 on success
1920 */
1921 static int tsec_miiphy_read(const char *devname, unsigned char addr,
1922 unsigned char reg, unsigned short *value)
1923 {
1924 unsigned short ret;
1925 struct tsec_private *priv = privlist[0];
1926
1927 if (NULL == priv) {
1928 printf("Can't read PHY at address %d\n", addr);
1929 return -1;
1930 }
1931
1932 ret = (unsigned short)tsec_local_mdio_read(priv->phyregs, addr, reg);
1933 *value = ret;
1934
1935 return 0;
1936 }
1937
1938 /*
1939 * Write a MII PHY register.
1940 *
1941 * Returns:
1942 * 0 on success
1943 */
1944 static int tsec_miiphy_write(const char *devname, unsigned char addr,
1945 unsigned char reg, unsigned short value)
1946 {
1947 struct tsec_private *priv = privlist[0];
1948
1949 if (NULL == priv) {
1950 printf("Can't write PHY at address %d\n", addr);
1951 return -1;
1952 }
1953
1954 tsec_local_mdio_write(priv->phyregs, addr, reg, value);
1955
1956 return 0;
1957 }
1958
1959 #endif
1960
1961 #ifdef CONFIG_MCAST_TFTP
1962
1963 /* CREDITS: linux gianfar driver, slightly adjusted... thanx. */
1964
1965 /* Set the appropriate hash bit for the given addr */
1966
1967 /* The algorithm works like so:
1968 * 1) Take the Destination Address (ie the multicast address), and
1969 * do a CRC on it (little endian), and reverse the bits of the
1970 * result.
1971 * 2) Use the 8 most significant bits as a hash into a 256-entry
1972 * table. The table is controlled through 8 32-bit registers:
1973 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
1974 * gaddr7. This means that the 3 most significant bits in the
1975 * hash index which gaddr register to use, and the 5 other bits
1976 * indicate which bit (assuming an IBM numbering scheme, which
1977 * for PowerPC (tm) is usually the case) in the tregister holds
1978 * the entry. */
1979 static int
1980 tsec_mcast_addr (struct eth_device *dev, u8 mcast_mac, u8 set)
1981 {
1982 struct tsec_private *priv = privlist[1];
1983 volatile tsec_t *regs = priv->regs;
1984 volatile u32 *reg_array, value;
1985 u8 result, whichbit, whichreg;
1986
1987 result = (u8)((ether_crc(MAC_ADDR_LEN,mcast_mac) >> 24) & 0xff);
1988 whichbit = result & 0x1f; /* the 5 LSB = which bit to set */
1989 whichreg = result >> 5; /* the 3 MSB = which reg to set it in */
1990 value = (1 << (31-whichbit));
1991
1992 reg_array = &(regs->hash.gaddr0);
1993
1994 if (set) {
1995 reg_array[whichreg] |= value;
1996 } else {
1997 reg_array[whichreg] &= ~value;
1998 }
1999 return 0;
2000 }
2001 #endif /* Multicast TFTP ? */