]> git.ipfire.org Git - people/ms/linux.git/blob - fs/afs/rxrpc.c
eccc3cd0cb70047508fa88ea3d723b2e2f1f7f85
[people/ms/linux.git] / fs / afs / rxrpc.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Maintain an RxRPC server socket to do AFS communications through
3 *
4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7
8 #include <linux/slab.h>
9 #include <linux/sched/signal.h>
10
11 #include <net/sock.h>
12 #include <net/af_rxrpc.h>
13 #include "internal.h"
14 #include "afs_cm.h"
15 #include "protocol_yfs.h"
16
17 struct workqueue_struct *afs_async_calls;
18
19 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
20 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
21 static void afs_process_async_call(struct work_struct *);
22 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
23 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
24 static int afs_deliver_cm_op_id(struct afs_call *);
25
26 /* asynchronous incoming call initial processing */
27 static const struct afs_call_type afs_RXCMxxxx = {
28 .name = "CB.xxxx",
29 .deliver = afs_deliver_cm_op_id,
30 };
31
32 /*
33 * open an RxRPC socket and bind it to be a server for callback notifications
34 * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
35 */
36 int afs_open_socket(struct afs_net *net)
37 {
38 struct sockaddr_rxrpc srx;
39 struct socket *socket;
40 int ret;
41
42 _enter("");
43
44 ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket);
45 if (ret < 0)
46 goto error_1;
47
48 socket->sk->sk_allocation = GFP_NOFS;
49
50 /* bind the callback manager's address to make this a server socket */
51 memset(&srx, 0, sizeof(srx));
52 srx.srx_family = AF_RXRPC;
53 srx.srx_service = CM_SERVICE;
54 srx.transport_type = SOCK_DGRAM;
55 srx.transport_len = sizeof(srx.transport.sin6);
56 srx.transport.sin6.sin6_family = AF_INET6;
57 srx.transport.sin6.sin6_port = htons(AFS_CM_PORT);
58
59 ret = rxrpc_sock_set_min_security_level(socket->sk,
60 RXRPC_SECURITY_ENCRYPT);
61 if (ret < 0)
62 goto error_2;
63
64 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
65 if (ret == -EADDRINUSE) {
66 srx.transport.sin6.sin6_port = 0;
67 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
68 }
69 if (ret < 0)
70 goto error_2;
71
72 srx.srx_service = YFS_CM_SERVICE;
73 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
74 if (ret < 0)
75 goto error_2;
76
77 /* Ideally, we'd turn on service upgrade here, but we can't because
78 * OpenAFS is buggy and leaks the userStatus field from packet to
79 * packet and between FS packets and CB packets - so if we try to do an
80 * upgrade on an FS packet, OpenAFS will leak that into the CB packet
81 * it sends back to us.
82 */
83
84 rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
85 afs_rx_discard_new_call);
86
87 ret = kernel_listen(socket, INT_MAX);
88 if (ret < 0)
89 goto error_2;
90
91 net->socket = socket;
92 afs_charge_preallocation(&net->charge_preallocation_work);
93 _leave(" = 0");
94 return 0;
95
96 error_2:
97 sock_release(socket);
98 error_1:
99 _leave(" = %d", ret);
100 return ret;
101 }
102
103 /*
104 * close the RxRPC socket AFS was using
105 */
106 void afs_close_socket(struct afs_net *net)
107 {
108 _enter("");
109
110 kernel_listen(net->socket, 0);
111 flush_workqueue(afs_async_calls);
112
113 if (net->spare_incoming_call) {
114 afs_put_call(net->spare_incoming_call);
115 net->spare_incoming_call = NULL;
116 }
117
118 _debug("outstanding %u", atomic_read(&net->nr_outstanding_calls));
119 wait_var_event(&net->nr_outstanding_calls,
120 !atomic_read(&net->nr_outstanding_calls));
121 _debug("no outstanding calls");
122
123 kernel_sock_shutdown(net->socket, SHUT_RDWR);
124 flush_workqueue(afs_async_calls);
125 sock_release(net->socket);
126
127 _debug("dework");
128 _leave("");
129 }
130
131 /*
132 * Allocate a call.
133 */
134 static struct afs_call *afs_alloc_call(struct afs_net *net,
135 const struct afs_call_type *type,
136 gfp_t gfp)
137 {
138 struct afs_call *call;
139 int o;
140
141 call = kzalloc(sizeof(*call), gfp);
142 if (!call)
143 return NULL;
144
145 call->type = type;
146 call->net = net;
147 call->debug_id = atomic_inc_return(&rxrpc_debug_id);
148 refcount_set(&call->ref, 1);
149 INIT_WORK(&call->async_work, afs_process_async_call);
150 init_waitqueue_head(&call->waitq);
151 spin_lock_init(&call->state_lock);
152 call->iter = &call->def_iter;
153
154 o = atomic_inc_return(&net->nr_outstanding_calls);
155 trace_afs_call(call->debug_id, afs_call_trace_alloc, 1, o,
156 __builtin_return_address(0));
157 return call;
158 }
159
160 /*
161 * Dispose of a reference on a call.
162 */
163 void afs_put_call(struct afs_call *call)
164 {
165 struct afs_net *net = call->net;
166 unsigned int debug_id = call->debug_id;
167 bool zero;
168 int r, o;
169
170 zero = __refcount_dec_and_test(&call->ref, &r);
171 o = atomic_read(&net->nr_outstanding_calls);
172 trace_afs_call(debug_id, afs_call_trace_put, r - 1, o,
173 __builtin_return_address(0));
174
175 if (zero) {
176 ASSERT(!work_pending(&call->async_work));
177 ASSERT(call->type->name != NULL);
178
179 if (call->rxcall) {
180 rxrpc_kernel_end_call(net->socket, call->rxcall);
181 call->rxcall = NULL;
182 }
183 if (call->type->destructor)
184 call->type->destructor(call);
185
186 afs_unuse_server_notime(call->net, call->server, afs_server_trace_put_call);
187 afs_put_addrlist(call->alist);
188 kfree(call->request);
189
190 trace_afs_call(call->debug_id, afs_call_trace_free, 0, o,
191 __builtin_return_address(0));
192 kfree(call);
193
194 o = atomic_dec_return(&net->nr_outstanding_calls);
195 if (o == 0)
196 wake_up_var(&net->nr_outstanding_calls);
197 }
198 }
199
200 static struct afs_call *afs_get_call(struct afs_call *call,
201 enum afs_call_trace why)
202 {
203 int r;
204
205 __refcount_inc(&call->ref, &r);
206
207 trace_afs_call(call->debug_id, why, r + 1,
208 atomic_read(&call->net->nr_outstanding_calls),
209 __builtin_return_address(0));
210 return call;
211 }
212
213 /*
214 * Queue the call for actual work.
215 */
216 static void afs_queue_call_work(struct afs_call *call)
217 {
218 if (call->type->work) {
219 INIT_WORK(&call->work, call->type->work);
220
221 afs_get_call(call, afs_call_trace_work);
222 if (!queue_work(afs_wq, &call->work))
223 afs_put_call(call);
224 }
225 }
226
227 /*
228 * allocate a call with flat request and reply buffers
229 */
230 struct afs_call *afs_alloc_flat_call(struct afs_net *net,
231 const struct afs_call_type *type,
232 size_t request_size, size_t reply_max)
233 {
234 struct afs_call *call;
235
236 call = afs_alloc_call(net, type, GFP_NOFS);
237 if (!call)
238 goto nomem_call;
239
240 if (request_size) {
241 call->request_size = request_size;
242 call->request = kmalloc(request_size, GFP_NOFS);
243 if (!call->request)
244 goto nomem_free;
245 }
246
247 if (reply_max) {
248 call->reply_max = reply_max;
249 call->buffer = kmalloc(reply_max, GFP_NOFS);
250 if (!call->buffer)
251 goto nomem_free;
252 }
253
254 afs_extract_to_buf(call, call->reply_max);
255 call->operation_ID = type->op;
256 init_waitqueue_head(&call->waitq);
257 return call;
258
259 nomem_free:
260 afs_put_call(call);
261 nomem_call:
262 return NULL;
263 }
264
265 /*
266 * clean up a call with flat buffer
267 */
268 void afs_flat_call_destructor(struct afs_call *call)
269 {
270 _enter("");
271
272 kfree(call->request);
273 call->request = NULL;
274 kfree(call->buffer);
275 call->buffer = NULL;
276 }
277
278 /*
279 * Advance the AFS call state when the RxRPC call ends the transmit phase.
280 */
281 static void afs_notify_end_request_tx(struct sock *sock,
282 struct rxrpc_call *rxcall,
283 unsigned long call_user_ID)
284 {
285 struct afs_call *call = (struct afs_call *)call_user_ID;
286
287 afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY);
288 }
289
290 /*
291 * Initiate a call and synchronously queue up the parameters for dispatch. Any
292 * error is stored into the call struct, which the caller must check for.
293 */
294 void afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call, gfp_t gfp)
295 {
296 struct sockaddr_rxrpc *srx = &ac->alist->addrs[ac->index];
297 struct rxrpc_call *rxcall;
298 struct msghdr msg;
299 struct kvec iov[1];
300 size_t len;
301 s64 tx_total_len;
302 int ret;
303
304 _enter(",{%pISp},", &srx->transport);
305
306 ASSERT(call->type != NULL);
307 ASSERT(call->type->name != NULL);
308
309 _debug("____MAKE %p{%s,%x} [%d]____",
310 call, call->type->name, key_serial(call->key),
311 atomic_read(&call->net->nr_outstanding_calls));
312
313 call->addr_ix = ac->index;
314 call->alist = afs_get_addrlist(ac->alist);
315
316 /* Work out the length we're going to transmit. This is awkward for
317 * calls such as FS.StoreData where there's an extra injection of data
318 * after the initial fixed part.
319 */
320 tx_total_len = call->request_size;
321 if (call->write_iter)
322 tx_total_len += iov_iter_count(call->write_iter);
323
324 /* If the call is going to be asynchronous, we need an extra ref for
325 * the call to hold itself so the caller need not hang on to its ref.
326 */
327 if (call->async) {
328 afs_get_call(call, afs_call_trace_get);
329 call->drop_ref = true;
330 }
331
332 /* create a call */
333 rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key,
334 (unsigned long)call,
335 tx_total_len, gfp,
336 (call->async ?
337 afs_wake_up_async_call :
338 afs_wake_up_call_waiter),
339 call->upgrade,
340 (call->intr ? RXRPC_PREINTERRUPTIBLE :
341 RXRPC_UNINTERRUPTIBLE),
342 call->debug_id);
343 if (IS_ERR(rxcall)) {
344 ret = PTR_ERR(rxcall);
345 call->error = ret;
346 goto error_kill_call;
347 }
348
349 call->rxcall = rxcall;
350
351 if (call->max_lifespan)
352 rxrpc_kernel_set_max_life(call->net->socket, rxcall,
353 call->max_lifespan);
354 call->issue_time = ktime_get_real();
355
356 /* send the request */
357 iov[0].iov_base = call->request;
358 iov[0].iov_len = call->request_size;
359
360 msg.msg_name = NULL;
361 msg.msg_namelen = 0;
362 iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, call->request_size);
363 msg.msg_control = NULL;
364 msg.msg_controllen = 0;
365 msg.msg_flags = MSG_WAITALL | (call->write_iter ? MSG_MORE : 0);
366
367 ret = rxrpc_kernel_send_data(call->net->socket, rxcall,
368 &msg, call->request_size,
369 afs_notify_end_request_tx);
370 if (ret < 0)
371 goto error_do_abort;
372
373 if (call->write_iter) {
374 msg.msg_iter = *call->write_iter;
375 msg.msg_flags &= ~MSG_MORE;
376 trace_afs_send_data(call, &msg);
377
378 ret = rxrpc_kernel_send_data(call->net->socket,
379 call->rxcall, &msg,
380 iov_iter_count(&msg.msg_iter),
381 afs_notify_end_request_tx);
382 *call->write_iter = msg.msg_iter;
383
384 trace_afs_sent_data(call, &msg, ret);
385 if (ret < 0)
386 goto error_do_abort;
387 }
388
389 /* Note that at this point, we may have received the reply or an abort
390 * - and an asynchronous call may already have completed.
391 *
392 * afs_wait_for_call_to_complete(call, ac)
393 * must be called to synchronously clean up.
394 */
395 return;
396
397 error_do_abort:
398 if (ret != -ECONNABORTED) {
399 rxrpc_kernel_abort_call(call->net->socket, rxcall,
400 RX_USER_ABORT, ret, "KSD");
401 } else {
402 len = 0;
403 iov_iter_kvec(&msg.msg_iter, READ, NULL, 0, 0);
404 rxrpc_kernel_recv_data(call->net->socket, rxcall,
405 &msg.msg_iter, &len, false,
406 &call->abort_code, &call->service_id);
407 ac->abort_code = call->abort_code;
408 ac->responded = true;
409 }
410 call->error = ret;
411 trace_afs_call_done(call);
412 error_kill_call:
413 if (call->type->done)
414 call->type->done(call);
415
416 /* We need to dispose of the extra ref we grabbed for an async call.
417 * The call, however, might be queued on afs_async_calls and we need to
418 * make sure we don't get any more notifications that might requeue it.
419 */
420 if (call->rxcall) {
421 rxrpc_kernel_end_call(call->net->socket, call->rxcall);
422 call->rxcall = NULL;
423 }
424 if (call->async) {
425 if (cancel_work_sync(&call->async_work))
426 afs_put_call(call);
427 afs_put_call(call);
428 }
429
430 ac->error = ret;
431 call->state = AFS_CALL_COMPLETE;
432 _leave(" = %d", ret);
433 }
434
435 /*
436 * Log remote abort codes that indicate that we have a protocol disagreement
437 * with the server.
438 */
439 static void afs_log_error(struct afs_call *call, s32 remote_abort)
440 {
441 static int max = 0;
442 const char *msg;
443 int m;
444
445 switch (remote_abort) {
446 case RX_EOF: msg = "unexpected EOF"; break;
447 case RXGEN_CC_MARSHAL: msg = "client marshalling"; break;
448 case RXGEN_CC_UNMARSHAL: msg = "client unmarshalling"; break;
449 case RXGEN_SS_MARSHAL: msg = "server marshalling"; break;
450 case RXGEN_SS_UNMARSHAL: msg = "server unmarshalling"; break;
451 case RXGEN_DECODE: msg = "opcode decode"; break;
452 case RXGEN_SS_XDRFREE: msg = "server XDR cleanup"; break;
453 case RXGEN_CC_XDRFREE: msg = "client XDR cleanup"; break;
454 case -32: msg = "insufficient data"; break;
455 default:
456 return;
457 }
458
459 m = max;
460 if (m < 3) {
461 max = m + 1;
462 pr_notice("kAFS: Peer reported %s failure on %s [%pISp]\n",
463 msg, call->type->name,
464 &call->alist->addrs[call->addr_ix].transport);
465 }
466 }
467
468 /*
469 * deliver messages to a call
470 */
471 static void afs_deliver_to_call(struct afs_call *call)
472 {
473 enum afs_call_state state;
474 size_t len;
475 u32 abort_code, remote_abort = 0;
476 int ret;
477
478 _enter("%s", call->type->name);
479
480 while (state = READ_ONCE(call->state),
481 state == AFS_CALL_CL_AWAIT_REPLY ||
482 state == AFS_CALL_SV_AWAIT_OP_ID ||
483 state == AFS_CALL_SV_AWAIT_REQUEST ||
484 state == AFS_CALL_SV_AWAIT_ACK
485 ) {
486 if (state == AFS_CALL_SV_AWAIT_ACK) {
487 len = 0;
488 iov_iter_kvec(&call->def_iter, READ, NULL, 0, 0);
489 ret = rxrpc_kernel_recv_data(call->net->socket,
490 call->rxcall, &call->def_iter,
491 &len, false, &remote_abort,
492 &call->service_id);
493 trace_afs_receive_data(call, &call->def_iter, false, ret);
494
495 if (ret == -EINPROGRESS || ret == -EAGAIN)
496 return;
497 if (ret < 0 || ret == 1) {
498 if (ret == 1)
499 ret = 0;
500 goto call_complete;
501 }
502 return;
503 }
504
505 ret = call->type->deliver(call);
506 state = READ_ONCE(call->state);
507 if (ret == 0 && call->unmarshalling_error)
508 ret = -EBADMSG;
509 switch (ret) {
510 case 0:
511 afs_queue_call_work(call);
512 if (state == AFS_CALL_CL_PROC_REPLY) {
513 if (call->op)
514 set_bit(AFS_SERVER_FL_MAY_HAVE_CB,
515 &call->op->server->flags);
516 goto call_complete;
517 }
518 ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY);
519 goto done;
520 case -EINPROGRESS:
521 case -EAGAIN:
522 goto out;
523 case -ECONNABORTED:
524 ASSERTCMP(state, ==, AFS_CALL_COMPLETE);
525 afs_log_error(call, call->abort_code);
526 goto done;
527 case -ENOTSUPP:
528 abort_code = RXGEN_OPCODE;
529 rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
530 abort_code, ret, "KIV");
531 goto local_abort;
532 case -EIO:
533 pr_err("kAFS: Call %u in bad state %u\n",
534 call->debug_id, state);
535 fallthrough;
536 case -ENODATA:
537 case -EBADMSG:
538 case -EMSGSIZE:
539 case -ENOMEM:
540 case -EFAULT:
541 abort_code = RXGEN_CC_UNMARSHAL;
542 if (state != AFS_CALL_CL_AWAIT_REPLY)
543 abort_code = RXGEN_SS_UNMARSHAL;
544 rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
545 abort_code, ret, "KUM");
546 goto local_abort;
547 default:
548 abort_code = RX_CALL_DEAD;
549 rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
550 abort_code, ret, "KER");
551 goto local_abort;
552 }
553 }
554
555 done:
556 if (call->type->done)
557 call->type->done(call);
558 out:
559 _leave("");
560 return;
561
562 local_abort:
563 abort_code = 0;
564 call_complete:
565 afs_set_call_complete(call, ret, remote_abort);
566 state = AFS_CALL_COMPLETE;
567 goto done;
568 }
569
570 /*
571 * Wait synchronously for a call to complete and clean up the call struct.
572 */
573 long afs_wait_for_call_to_complete(struct afs_call *call,
574 struct afs_addr_cursor *ac)
575 {
576 long ret;
577 bool rxrpc_complete = false;
578
579 DECLARE_WAITQUEUE(myself, current);
580
581 _enter("");
582
583 ret = call->error;
584 if (ret < 0)
585 goto out;
586
587 add_wait_queue(&call->waitq, &myself);
588 for (;;) {
589 set_current_state(TASK_UNINTERRUPTIBLE);
590
591 /* deliver any messages that are in the queue */
592 if (!afs_check_call_state(call, AFS_CALL_COMPLETE) &&
593 call->need_attention) {
594 call->need_attention = false;
595 __set_current_state(TASK_RUNNING);
596 afs_deliver_to_call(call);
597 continue;
598 }
599
600 if (afs_check_call_state(call, AFS_CALL_COMPLETE))
601 break;
602
603 if (!rxrpc_kernel_check_life(call->net->socket, call->rxcall)) {
604 /* rxrpc terminated the call. */
605 rxrpc_complete = true;
606 break;
607 }
608
609 schedule();
610 }
611
612 remove_wait_queue(&call->waitq, &myself);
613 __set_current_state(TASK_RUNNING);
614
615 if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) {
616 if (rxrpc_complete) {
617 afs_set_call_complete(call, call->error, call->abort_code);
618 } else {
619 /* Kill off the call if it's still live. */
620 _debug("call interrupted");
621 if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
622 RX_USER_ABORT, -EINTR, "KWI"))
623 afs_set_call_complete(call, -EINTR, 0);
624 }
625 }
626
627 spin_lock_bh(&call->state_lock);
628 ac->abort_code = call->abort_code;
629 ac->error = call->error;
630 spin_unlock_bh(&call->state_lock);
631
632 ret = ac->error;
633 switch (ret) {
634 case 0:
635 ret = call->ret0;
636 call->ret0 = 0;
637
638 fallthrough;
639 case -ECONNABORTED:
640 ac->responded = true;
641 break;
642 }
643
644 out:
645 _debug("call complete");
646 afs_put_call(call);
647 _leave(" = %p", (void *)ret);
648 return ret;
649 }
650
651 /*
652 * wake up a waiting call
653 */
654 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
655 unsigned long call_user_ID)
656 {
657 struct afs_call *call = (struct afs_call *)call_user_ID;
658
659 call->need_attention = true;
660 wake_up(&call->waitq);
661 }
662
663 /*
664 * wake up an asynchronous call
665 */
666 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
667 unsigned long call_user_ID)
668 {
669 struct afs_call *call = (struct afs_call *)call_user_ID;
670 int r;
671
672 trace_afs_notify_call(rxcall, call);
673 call->need_attention = true;
674
675 if (__refcount_inc_not_zero(&call->ref, &r)) {
676 trace_afs_call(call->debug_id, afs_call_trace_wake, r + 1,
677 atomic_read(&call->net->nr_outstanding_calls),
678 __builtin_return_address(0));
679
680 if (!queue_work(afs_async_calls, &call->async_work))
681 afs_put_call(call);
682 }
683 }
684
685 /*
686 * Perform I/O processing on an asynchronous call. The work item carries a ref
687 * to the call struct that we either need to release or to pass on.
688 */
689 static void afs_process_async_call(struct work_struct *work)
690 {
691 struct afs_call *call = container_of(work, struct afs_call, async_work);
692
693 _enter("");
694
695 if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
696 call->need_attention = false;
697 afs_deliver_to_call(call);
698 }
699
700 afs_put_call(call);
701 _leave("");
702 }
703
704 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
705 {
706 struct afs_call *call = (struct afs_call *)user_call_ID;
707
708 call->rxcall = rxcall;
709 }
710
711 /*
712 * Charge the incoming call preallocation.
713 */
714 void afs_charge_preallocation(struct work_struct *work)
715 {
716 struct afs_net *net =
717 container_of(work, struct afs_net, charge_preallocation_work);
718 struct afs_call *call = net->spare_incoming_call;
719
720 for (;;) {
721 if (!call) {
722 call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL);
723 if (!call)
724 break;
725
726 call->drop_ref = true;
727 call->async = true;
728 call->state = AFS_CALL_SV_AWAIT_OP_ID;
729 init_waitqueue_head(&call->waitq);
730 afs_extract_to_tmp(call);
731 }
732
733 if (rxrpc_kernel_charge_accept(net->socket,
734 afs_wake_up_async_call,
735 afs_rx_attach,
736 (unsigned long)call,
737 GFP_KERNEL,
738 call->debug_id) < 0)
739 break;
740 call = NULL;
741 }
742 net->spare_incoming_call = call;
743 }
744
745 /*
746 * Discard a preallocated call when a socket is shut down.
747 */
748 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
749 unsigned long user_call_ID)
750 {
751 struct afs_call *call = (struct afs_call *)user_call_ID;
752
753 call->rxcall = NULL;
754 afs_put_call(call);
755 }
756
757 /*
758 * Notification of an incoming call.
759 */
760 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
761 unsigned long user_call_ID)
762 {
763 struct afs_net *net = afs_sock2net(sk);
764
765 queue_work(afs_wq, &net->charge_preallocation_work);
766 }
767
768 /*
769 * Grab the operation ID from an incoming cache manager call. The socket
770 * buffer is discarded on error or if we don't yet have sufficient data.
771 */
772 static int afs_deliver_cm_op_id(struct afs_call *call)
773 {
774 int ret;
775
776 _enter("{%zu}", iov_iter_count(call->iter));
777
778 /* the operation ID forms the first four bytes of the request data */
779 ret = afs_extract_data(call, true);
780 if (ret < 0)
781 return ret;
782
783 call->operation_ID = ntohl(call->tmp);
784 afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST);
785
786 /* ask the cache manager to route the call (it'll change the call type
787 * if successful) */
788 if (!afs_cm_incoming_call(call))
789 return -ENOTSUPP;
790
791 trace_afs_cb_call(call);
792
793 /* pass responsibility for the remainer of this message off to the
794 * cache manager op */
795 return call->type->deliver(call);
796 }
797
798 /*
799 * Advance the AFS call state when an RxRPC service call ends the transmit
800 * phase.
801 */
802 static void afs_notify_end_reply_tx(struct sock *sock,
803 struct rxrpc_call *rxcall,
804 unsigned long call_user_ID)
805 {
806 struct afs_call *call = (struct afs_call *)call_user_ID;
807
808 afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK);
809 }
810
811 /*
812 * send an empty reply
813 */
814 void afs_send_empty_reply(struct afs_call *call)
815 {
816 struct afs_net *net = call->net;
817 struct msghdr msg;
818
819 _enter("");
820
821 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0);
822
823 msg.msg_name = NULL;
824 msg.msg_namelen = 0;
825 iov_iter_kvec(&msg.msg_iter, WRITE, NULL, 0, 0);
826 msg.msg_control = NULL;
827 msg.msg_controllen = 0;
828 msg.msg_flags = 0;
829
830 switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0,
831 afs_notify_end_reply_tx)) {
832 case 0:
833 _leave(" [replied]");
834 return;
835
836 case -ENOMEM:
837 _debug("oom");
838 rxrpc_kernel_abort_call(net->socket, call->rxcall,
839 RXGEN_SS_MARSHAL, -ENOMEM, "KOO");
840 fallthrough;
841 default:
842 _leave(" [error]");
843 return;
844 }
845 }
846
847 /*
848 * send a simple reply
849 */
850 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
851 {
852 struct afs_net *net = call->net;
853 struct msghdr msg;
854 struct kvec iov[1];
855 int n;
856
857 _enter("");
858
859 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len);
860
861 iov[0].iov_base = (void *) buf;
862 iov[0].iov_len = len;
863 msg.msg_name = NULL;
864 msg.msg_namelen = 0;
865 iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, len);
866 msg.msg_control = NULL;
867 msg.msg_controllen = 0;
868 msg.msg_flags = 0;
869
870 n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len,
871 afs_notify_end_reply_tx);
872 if (n >= 0) {
873 /* Success */
874 _leave(" [replied]");
875 return;
876 }
877
878 if (n == -ENOMEM) {
879 _debug("oom");
880 rxrpc_kernel_abort_call(net->socket, call->rxcall,
881 RXGEN_SS_MARSHAL, -ENOMEM, "KOO");
882 }
883 _leave(" [error]");
884 }
885
886 /*
887 * Extract a piece of data from the received data socket buffers.
888 */
889 int afs_extract_data(struct afs_call *call, bool want_more)
890 {
891 struct afs_net *net = call->net;
892 struct iov_iter *iter = call->iter;
893 enum afs_call_state state;
894 u32 remote_abort = 0;
895 int ret;
896
897 _enter("{%s,%zu,%zu},%d",
898 call->type->name, call->iov_len, iov_iter_count(iter), want_more);
899
900 ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, iter,
901 &call->iov_len, want_more, &remote_abort,
902 &call->service_id);
903 if (ret == 0 || ret == -EAGAIN)
904 return ret;
905
906 state = READ_ONCE(call->state);
907 if (ret == 1) {
908 switch (state) {
909 case AFS_CALL_CL_AWAIT_REPLY:
910 afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY);
911 break;
912 case AFS_CALL_SV_AWAIT_REQUEST:
913 afs_set_call_state(call, state, AFS_CALL_SV_REPLYING);
914 break;
915 case AFS_CALL_COMPLETE:
916 kdebug("prem complete %d", call->error);
917 return afs_io_error(call, afs_io_error_extract);
918 default:
919 break;
920 }
921 return 0;
922 }
923
924 afs_set_call_complete(call, ret, remote_abort);
925 return ret;
926 }
927
928 /*
929 * Log protocol error production.
930 */
931 noinline int afs_protocol_error(struct afs_call *call,
932 enum afs_eproto_cause cause)
933 {
934 trace_afs_protocol_error(call, cause);
935 if (call)
936 call->unmarshalling_error = true;
937 return -EBADMSG;
938 }