]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/aio.c
Merge tag '6.9-rc5-ksmbd-fixes' of git://git.samba.org/ksmbd
[thirdparty/linux.git] / fs / aio.c
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 * Copyright 2018 Christoph Hellwig.
9 *
10 * See ../COPYING for licensing terms.
11 */
12 #define pr_fmt(fmt) "%s: " fmt, __func__
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
24
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/timer.h>
33 #include <linux/aio.h>
34 #include <linux/highmem.h>
35 #include <linux/workqueue.h>
36 #include <linux/security.h>
37 #include <linux/eventfd.h>
38 #include <linux/blkdev.h>
39 #include <linux/compat.h>
40 #include <linux/migrate.h>
41 #include <linux/ramfs.h>
42 #include <linux/percpu-refcount.h>
43 #include <linux/mount.h>
44 #include <linux/pseudo_fs.h>
45
46 #include <linux/uaccess.h>
47 #include <linux/nospec.h>
48
49 #include "internal.h"
50
51 #define KIOCB_KEY 0
52
53 #define AIO_RING_MAGIC 0xa10a10a1
54 #define AIO_RING_COMPAT_FEATURES 1
55 #define AIO_RING_INCOMPAT_FEATURES 0
56 struct aio_ring {
57 unsigned id; /* kernel internal index number */
58 unsigned nr; /* number of io_events */
59 unsigned head; /* Written to by userland or under ring_lock
60 * mutex by aio_read_events_ring(). */
61 unsigned tail;
62
63 unsigned magic;
64 unsigned compat_features;
65 unsigned incompat_features;
66 unsigned header_length; /* size of aio_ring */
67
68
69 struct io_event io_events[];
70 }; /* 128 bytes + ring size */
71
72 /*
73 * Plugging is meant to work with larger batches of IOs. If we don't
74 * have more than the below, then don't bother setting up a plug.
75 */
76 #define AIO_PLUG_THRESHOLD 2
77
78 #define AIO_RING_PAGES 8
79
80 struct kioctx_table {
81 struct rcu_head rcu;
82 unsigned nr;
83 struct kioctx __rcu *table[] __counted_by(nr);
84 };
85
86 struct kioctx_cpu {
87 unsigned reqs_available;
88 };
89
90 struct ctx_rq_wait {
91 struct completion comp;
92 atomic_t count;
93 };
94
95 struct kioctx {
96 struct percpu_ref users;
97 atomic_t dead;
98
99 struct percpu_ref reqs;
100
101 unsigned long user_id;
102
103 struct __percpu kioctx_cpu *cpu;
104
105 /*
106 * For percpu reqs_available, number of slots we move to/from global
107 * counter at a time:
108 */
109 unsigned req_batch;
110 /*
111 * This is what userspace passed to io_setup(), it's not used for
112 * anything but counting against the global max_reqs quota.
113 *
114 * The real limit is nr_events - 1, which will be larger (see
115 * aio_setup_ring())
116 */
117 unsigned max_reqs;
118
119 /* Size of ringbuffer, in units of struct io_event */
120 unsigned nr_events;
121
122 unsigned long mmap_base;
123 unsigned long mmap_size;
124
125 struct page **ring_pages;
126 long nr_pages;
127
128 struct rcu_work free_rwork; /* see free_ioctx() */
129
130 /*
131 * signals when all in-flight requests are done
132 */
133 struct ctx_rq_wait *rq_wait;
134
135 struct {
136 /*
137 * This counts the number of available slots in the ringbuffer,
138 * so we avoid overflowing it: it's decremented (if positive)
139 * when allocating a kiocb and incremented when the resulting
140 * io_event is pulled off the ringbuffer.
141 *
142 * We batch accesses to it with a percpu version.
143 */
144 atomic_t reqs_available;
145 } ____cacheline_aligned_in_smp;
146
147 struct {
148 spinlock_t ctx_lock;
149 struct list_head active_reqs; /* used for cancellation */
150 } ____cacheline_aligned_in_smp;
151
152 struct {
153 struct mutex ring_lock;
154 wait_queue_head_t wait;
155 } ____cacheline_aligned_in_smp;
156
157 struct {
158 unsigned tail;
159 unsigned completed_events;
160 spinlock_t completion_lock;
161 } ____cacheline_aligned_in_smp;
162
163 struct page *internal_pages[AIO_RING_PAGES];
164 struct file *aio_ring_file;
165
166 unsigned id;
167 };
168
169 /*
170 * First field must be the file pointer in all the
171 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
172 */
173 struct fsync_iocb {
174 struct file *file;
175 struct work_struct work;
176 bool datasync;
177 struct cred *creds;
178 };
179
180 struct poll_iocb {
181 struct file *file;
182 struct wait_queue_head *head;
183 __poll_t events;
184 bool cancelled;
185 bool work_scheduled;
186 bool work_need_resched;
187 struct wait_queue_entry wait;
188 struct work_struct work;
189 };
190
191 /*
192 * NOTE! Each of the iocb union members has the file pointer
193 * as the first entry in their struct definition. So you can
194 * access the file pointer through any of the sub-structs,
195 * or directly as just 'ki_filp' in this struct.
196 */
197 struct aio_kiocb {
198 union {
199 struct file *ki_filp;
200 struct kiocb rw;
201 struct fsync_iocb fsync;
202 struct poll_iocb poll;
203 };
204
205 struct kioctx *ki_ctx;
206 kiocb_cancel_fn *ki_cancel;
207
208 struct io_event ki_res;
209
210 struct list_head ki_list; /* the aio core uses this
211 * for cancellation */
212 refcount_t ki_refcnt;
213
214 /*
215 * If the aio_resfd field of the userspace iocb is not zero,
216 * this is the underlying eventfd context to deliver events to.
217 */
218 struct eventfd_ctx *ki_eventfd;
219 };
220
221 /*------ sysctl variables----*/
222 static DEFINE_SPINLOCK(aio_nr_lock);
223 static unsigned long aio_nr; /* current system wide number of aio requests */
224 static unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
225 /*----end sysctl variables---*/
226 #ifdef CONFIG_SYSCTL
227 static struct ctl_table aio_sysctls[] = {
228 {
229 .procname = "aio-nr",
230 .data = &aio_nr,
231 .maxlen = sizeof(aio_nr),
232 .mode = 0444,
233 .proc_handler = proc_doulongvec_minmax,
234 },
235 {
236 .procname = "aio-max-nr",
237 .data = &aio_max_nr,
238 .maxlen = sizeof(aio_max_nr),
239 .mode = 0644,
240 .proc_handler = proc_doulongvec_minmax,
241 },
242 };
243
244 static void __init aio_sysctl_init(void)
245 {
246 register_sysctl_init("fs", aio_sysctls);
247 }
248 #else
249 #define aio_sysctl_init() do { } while (0)
250 #endif
251
252 static struct kmem_cache *kiocb_cachep;
253 static struct kmem_cache *kioctx_cachep;
254
255 static struct vfsmount *aio_mnt;
256
257 static const struct file_operations aio_ring_fops;
258 static const struct address_space_operations aio_ctx_aops;
259
260 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
261 {
262 struct file *file;
263 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
264 if (IS_ERR(inode))
265 return ERR_CAST(inode);
266
267 inode->i_mapping->a_ops = &aio_ctx_aops;
268 inode->i_mapping->i_private_data = ctx;
269 inode->i_size = PAGE_SIZE * nr_pages;
270
271 file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
272 O_RDWR, &aio_ring_fops);
273 if (IS_ERR(file))
274 iput(inode);
275 return file;
276 }
277
278 static int aio_init_fs_context(struct fs_context *fc)
279 {
280 if (!init_pseudo(fc, AIO_RING_MAGIC))
281 return -ENOMEM;
282 fc->s_iflags |= SB_I_NOEXEC;
283 return 0;
284 }
285
286 /* aio_setup
287 * Creates the slab caches used by the aio routines, panic on
288 * failure as this is done early during the boot sequence.
289 */
290 static int __init aio_setup(void)
291 {
292 static struct file_system_type aio_fs = {
293 .name = "aio",
294 .init_fs_context = aio_init_fs_context,
295 .kill_sb = kill_anon_super,
296 };
297 aio_mnt = kern_mount(&aio_fs);
298 if (IS_ERR(aio_mnt))
299 panic("Failed to create aio fs mount.");
300
301 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
302 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
303 aio_sysctl_init();
304 return 0;
305 }
306 __initcall(aio_setup);
307
308 static void put_aio_ring_file(struct kioctx *ctx)
309 {
310 struct file *aio_ring_file = ctx->aio_ring_file;
311 struct address_space *i_mapping;
312
313 if (aio_ring_file) {
314 truncate_setsize(file_inode(aio_ring_file), 0);
315
316 /* Prevent further access to the kioctx from migratepages */
317 i_mapping = aio_ring_file->f_mapping;
318 spin_lock(&i_mapping->i_private_lock);
319 i_mapping->i_private_data = NULL;
320 ctx->aio_ring_file = NULL;
321 spin_unlock(&i_mapping->i_private_lock);
322
323 fput(aio_ring_file);
324 }
325 }
326
327 static void aio_free_ring(struct kioctx *ctx)
328 {
329 int i;
330
331 /* Disconnect the kiotx from the ring file. This prevents future
332 * accesses to the kioctx from page migration.
333 */
334 put_aio_ring_file(ctx);
335
336 for (i = 0; i < ctx->nr_pages; i++) {
337 struct page *page;
338 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
339 page_count(ctx->ring_pages[i]));
340 page = ctx->ring_pages[i];
341 if (!page)
342 continue;
343 ctx->ring_pages[i] = NULL;
344 put_page(page);
345 }
346
347 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
348 kfree(ctx->ring_pages);
349 ctx->ring_pages = NULL;
350 }
351 }
352
353 static int aio_ring_mremap(struct vm_area_struct *vma)
354 {
355 struct file *file = vma->vm_file;
356 struct mm_struct *mm = vma->vm_mm;
357 struct kioctx_table *table;
358 int i, res = -EINVAL;
359
360 spin_lock(&mm->ioctx_lock);
361 rcu_read_lock();
362 table = rcu_dereference(mm->ioctx_table);
363 if (!table)
364 goto out_unlock;
365
366 for (i = 0; i < table->nr; i++) {
367 struct kioctx *ctx;
368
369 ctx = rcu_dereference(table->table[i]);
370 if (ctx && ctx->aio_ring_file == file) {
371 if (!atomic_read(&ctx->dead)) {
372 ctx->user_id = ctx->mmap_base = vma->vm_start;
373 res = 0;
374 }
375 break;
376 }
377 }
378
379 out_unlock:
380 rcu_read_unlock();
381 spin_unlock(&mm->ioctx_lock);
382 return res;
383 }
384
385 static const struct vm_operations_struct aio_ring_vm_ops = {
386 .mremap = aio_ring_mremap,
387 #if IS_ENABLED(CONFIG_MMU)
388 .fault = filemap_fault,
389 .map_pages = filemap_map_pages,
390 .page_mkwrite = filemap_page_mkwrite,
391 #endif
392 };
393
394 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
395 {
396 vm_flags_set(vma, VM_DONTEXPAND);
397 vma->vm_ops = &aio_ring_vm_ops;
398 return 0;
399 }
400
401 static const struct file_operations aio_ring_fops = {
402 .mmap = aio_ring_mmap,
403 };
404
405 #if IS_ENABLED(CONFIG_MIGRATION)
406 static int aio_migrate_folio(struct address_space *mapping, struct folio *dst,
407 struct folio *src, enum migrate_mode mode)
408 {
409 struct kioctx *ctx;
410 unsigned long flags;
411 pgoff_t idx;
412 int rc;
413
414 /*
415 * We cannot support the _NO_COPY case here, because copy needs to
416 * happen under the ctx->completion_lock. That does not work with the
417 * migration workflow of MIGRATE_SYNC_NO_COPY.
418 */
419 if (mode == MIGRATE_SYNC_NO_COPY)
420 return -EINVAL;
421
422 rc = 0;
423
424 /* mapping->i_private_lock here protects against the kioctx teardown. */
425 spin_lock(&mapping->i_private_lock);
426 ctx = mapping->i_private_data;
427 if (!ctx) {
428 rc = -EINVAL;
429 goto out;
430 }
431
432 /* The ring_lock mutex. The prevents aio_read_events() from writing
433 * to the ring's head, and prevents page migration from mucking in
434 * a partially initialized kiotx.
435 */
436 if (!mutex_trylock(&ctx->ring_lock)) {
437 rc = -EAGAIN;
438 goto out;
439 }
440
441 idx = src->index;
442 if (idx < (pgoff_t)ctx->nr_pages) {
443 /* Make sure the old folio hasn't already been changed */
444 if (ctx->ring_pages[idx] != &src->page)
445 rc = -EAGAIN;
446 } else
447 rc = -EINVAL;
448
449 if (rc != 0)
450 goto out_unlock;
451
452 /* Writeback must be complete */
453 BUG_ON(folio_test_writeback(src));
454 folio_get(dst);
455
456 rc = folio_migrate_mapping(mapping, dst, src, 1);
457 if (rc != MIGRATEPAGE_SUCCESS) {
458 folio_put(dst);
459 goto out_unlock;
460 }
461
462 /* Take completion_lock to prevent other writes to the ring buffer
463 * while the old folio is copied to the new. This prevents new
464 * events from being lost.
465 */
466 spin_lock_irqsave(&ctx->completion_lock, flags);
467 folio_migrate_copy(dst, src);
468 BUG_ON(ctx->ring_pages[idx] != &src->page);
469 ctx->ring_pages[idx] = &dst->page;
470 spin_unlock_irqrestore(&ctx->completion_lock, flags);
471
472 /* The old folio is no longer accessible. */
473 folio_put(src);
474
475 out_unlock:
476 mutex_unlock(&ctx->ring_lock);
477 out:
478 spin_unlock(&mapping->i_private_lock);
479 return rc;
480 }
481 #else
482 #define aio_migrate_folio NULL
483 #endif
484
485 static const struct address_space_operations aio_ctx_aops = {
486 .dirty_folio = noop_dirty_folio,
487 .migrate_folio = aio_migrate_folio,
488 };
489
490 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
491 {
492 struct aio_ring *ring;
493 struct mm_struct *mm = current->mm;
494 unsigned long size, unused;
495 int nr_pages;
496 int i;
497 struct file *file;
498
499 /* Compensate for the ring buffer's head/tail overlap entry */
500 nr_events += 2; /* 1 is required, 2 for good luck */
501
502 size = sizeof(struct aio_ring);
503 size += sizeof(struct io_event) * nr_events;
504
505 nr_pages = PFN_UP(size);
506 if (nr_pages < 0)
507 return -EINVAL;
508
509 file = aio_private_file(ctx, nr_pages);
510 if (IS_ERR(file)) {
511 ctx->aio_ring_file = NULL;
512 return -ENOMEM;
513 }
514
515 ctx->aio_ring_file = file;
516 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
517 / sizeof(struct io_event);
518
519 ctx->ring_pages = ctx->internal_pages;
520 if (nr_pages > AIO_RING_PAGES) {
521 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
522 GFP_KERNEL);
523 if (!ctx->ring_pages) {
524 put_aio_ring_file(ctx);
525 return -ENOMEM;
526 }
527 }
528
529 for (i = 0; i < nr_pages; i++) {
530 struct page *page;
531 page = find_or_create_page(file->f_mapping,
532 i, GFP_USER | __GFP_ZERO);
533 if (!page)
534 break;
535 pr_debug("pid(%d) page[%d]->count=%d\n",
536 current->pid, i, page_count(page));
537 SetPageUptodate(page);
538 unlock_page(page);
539
540 ctx->ring_pages[i] = page;
541 }
542 ctx->nr_pages = i;
543
544 if (unlikely(i != nr_pages)) {
545 aio_free_ring(ctx);
546 return -ENOMEM;
547 }
548
549 ctx->mmap_size = nr_pages * PAGE_SIZE;
550 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
551
552 if (mmap_write_lock_killable(mm)) {
553 ctx->mmap_size = 0;
554 aio_free_ring(ctx);
555 return -EINTR;
556 }
557
558 ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
559 PROT_READ | PROT_WRITE,
560 MAP_SHARED, 0, 0, &unused, NULL);
561 mmap_write_unlock(mm);
562 if (IS_ERR((void *)ctx->mmap_base)) {
563 ctx->mmap_size = 0;
564 aio_free_ring(ctx);
565 return -ENOMEM;
566 }
567
568 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
569
570 ctx->user_id = ctx->mmap_base;
571 ctx->nr_events = nr_events; /* trusted copy */
572
573 ring = page_address(ctx->ring_pages[0]);
574 ring->nr = nr_events; /* user copy */
575 ring->id = ~0U;
576 ring->head = ring->tail = 0;
577 ring->magic = AIO_RING_MAGIC;
578 ring->compat_features = AIO_RING_COMPAT_FEATURES;
579 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
580 ring->header_length = sizeof(struct aio_ring);
581 flush_dcache_page(ctx->ring_pages[0]);
582
583 return 0;
584 }
585
586 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
587 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
588 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
589
590 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
591 {
592 struct aio_kiocb *req;
593 struct kioctx *ctx;
594 unsigned long flags;
595
596 /*
597 * kiocb didn't come from aio or is neither a read nor a write, hence
598 * ignore it.
599 */
600 if (!(iocb->ki_flags & IOCB_AIO_RW))
601 return;
602
603 req = container_of(iocb, struct aio_kiocb, rw);
604
605 if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
606 return;
607
608 ctx = req->ki_ctx;
609
610 spin_lock_irqsave(&ctx->ctx_lock, flags);
611 list_add_tail(&req->ki_list, &ctx->active_reqs);
612 req->ki_cancel = cancel;
613 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
614 }
615 EXPORT_SYMBOL(kiocb_set_cancel_fn);
616
617 /*
618 * free_ioctx() should be RCU delayed to synchronize against the RCU
619 * protected lookup_ioctx() and also needs process context to call
620 * aio_free_ring(). Use rcu_work.
621 */
622 static void free_ioctx(struct work_struct *work)
623 {
624 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
625 free_rwork);
626 pr_debug("freeing %p\n", ctx);
627
628 aio_free_ring(ctx);
629 free_percpu(ctx->cpu);
630 percpu_ref_exit(&ctx->reqs);
631 percpu_ref_exit(&ctx->users);
632 kmem_cache_free(kioctx_cachep, ctx);
633 }
634
635 static void free_ioctx_reqs(struct percpu_ref *ref)
636 {
637 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
638
639 /* At this point we know that there are no any in-flight requests */
640 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
641 complete(&ctx->rq_wait->comp);
642
643 /* Synchronize against RCU protected table->table[] dereferences */
644 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
645 queue_rcu_work(system_wq, &ctx->free_rwork);
646 }
647
648 /*
649 * When this function runs, the kioctx has been removed from the "hash table"
650 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
651 * now it's safe to cancel any that need to be.
652 */
653 static void free_ioctx_users(struct percpu_ref *ref)
654 {
655 struct kioctx *ctx = container_of(ref, struct kioctx, users);
656 struct aio_kiocb *req;
657
658 spin_lock_irq(&ctx->ctx_lock);
659
660 while (!list_empty(&ctx->active_reqs)) {
661 req = list_first_entry(&ctx->active_reqs,
662 struct aio_kiocb, ki_list);
663 req->ki_cancel(&req->rw);
664 list_del_init(&req->ki_list);
665 }
666
667 spin_unlock_irq(&ctx->ctx_lock);
668
669 percpu_ref_kill(&ctx->reqs);
670 percpu_ref_put(&ctx->reqs);
671 }
672
673 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
674 {
675 unsigned i, new_nr;
676 struct kioctx_table *table, *old;
677 struct aio_ring *ring;
678
679 spin_lock(&mm->ioctx_lock);
680 table = rcu_dereference_raw(mm->ioctx_table);
681
682 while (1) {
683 if (table)
684 for (i = 0; i < table->nr; i++)
685 if (!rcu_access_pointer(table->table[i])) {
686 ctx->id = i;
687 rcu_assign_pointer(table->table[i], ctx);
688 spin_unlock(&mm->ioctx_lock);
689
690 /* While kioctx setup is in progress,
691 * we are protected from page migration
692 * changes ring_pages by ->ring_lock.
693 */
694 ring = page_address(ctx->ring_pages[0]);
695 ring->id = ctx->id;
696 return 0;
697 }
698
699 new_nr = (table ? table->nr : 1) * 4;
700 spin_unlock(&mm->ioctx_lock);
701
702 table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL);
703 if (!table)
704 return -ENOMEM;
705
706 table->nr = new_nr;
707
708 spin_lock(&mm->ioctx_lock);
709 old = rcu_dereference_raw(mm->ioctx_table);
710
711 if (!old) {
712 rcu_assign_pointer(mm->ioctx_table, table);
713 } else if (table->nr > old->nr) {
714 memcpy(table->table, old->table,
715 old->nr * sizeof(struct kioctx *));
716
717 rcu_assign_pointer(mm->ioctx_table, table);
718 kfree_rcu(old, rcu);
719 } else {
720 kfree(table);
721 table = old;
722 }
723 }
724 }
725
726 static void aio_nr_sub(unsigned nr)
727 {
728 spin_lock(&aio_nr_lock);
729 if (WARN_ON(aio_nr - nr > aio_nr))
730 aio_nr = 0;
731 else
732 aio_nr -= nr;
733 spin_unlock(&aio_nr_lock);
734 }
735
736 /* ioctx_alloc
737 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
738 */
739 static struct kioctx *ioctx_alloc(unsigned nr_events)
740 {
741 struct mm_struct *mm = current->mm;
742 struct kioctx *ctx;
743 int err = -ENOMEM;
744
745 /*
746 * Store the original nr_events -- what userspace passed to io_setup(),
747 * for counting against the global limit -- before it changes.
748 */
749 unsigned int max_reqs = nr_events;
750
751 /*
752 * We keep track of the number of available ringbuffer slots, to prevent
753 * overflow (reqs_available), and we also use percpu counters for this.
754 *
755 * So since up to half the slots might be on other cpu's percpu counters
756 * and unavailable, double nr_events so userspace sees what they
757 * expected: additionally, we move req_batch slots to/from percpu
758 * counters at a time, so make sure that isn't 0:
759 */
760 nr_events = max(nr_events, num_possible_cpus() * 4);
761 nr_events *= 2;
762
763 /* Prevent overflows */
764 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
765 pr_debug("ENOMEM: nr_events too high\n");
766 return ERR_PTR(-EINVAL);
767 }
768
769 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
770 return ERR_PTR(-EAGAIN);
771
772 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
773 if (!ctx)
774 return ERR_PTR(-ENOMEM);
775
776 ctx->max_reqs = max_reqs;
777
778 spin_lock_init(&ctx->ctx_lock);
779 spin_lock_init(&ctx->completion_lock);
780 mutex_init(&ctx->ring_lock);
781 /* Protect against page migration throughout kiotx setup by keeping
782 * the ring_lock mutex held until setup is complete. */
783 mutex_lock(&ctx->ring_lock);
784 init_waitqueue_head(&ctx->wait);
785
786 INIT_LIST_HEAD(&ctx->active_reqs);
787
788 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
789 goto err;
790
791 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
792 goto err;
793
794 ctx->cpu = alloc_percpu(struct kioctx_cpu);
795 if (!ctx->cpu)
796 goto err;
797
798 err = aio_setup_ring(ctx, nr_events);
799 if (err < 0)
800 goto err;
801
802 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
803 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
804 if (ctx->req_batch < 1)
805 ctx->req_batch = 1;
806
807 /* limit the number of system wide aios */
808 spin_lock(&aio_nr_lock);
809 if (aio_nr + ctx->max_reqs > aio_max_nr ||
810 aio_nr + ctx->max_reqs < aio_nr) {
811 spin_unlock(&aio_nr_lock);
812 err = -EAGAIN;
813 goto err_ctx;
814 }
815 aio_nr += ctx->max_reqs;
816 spin_unlock(&aio_nr_lock);
817
818 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
819 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
820
821 err = ioctx_add_table(ctx, mm);
822 if (err)
823 goto err_cleanup;
824
825 /* Release the ring_lock mutex now that all setup is complete. */
826 mutex_unlock(&ctx->ring_lock);
827
828 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
829 ctx, ctx->user_id, mm, ctx->nr_events);
830 return ctx;
831
832 err_cleanup:
833 aio_nr_sub(ctx->max_reqs);
834 err_ctx:
835 atomic_set(&ctx->dead, 1);
836 if (ctx->mmap_size)
837 vm_munmap(ctx->mmap_base, ctx->mmap_size);
838 aio_free_ring(ctx);
839 err:
840 mutex_unlock(&ctx->ring_lock);
841 free_percpu(ctx->cpu);
842 percpu_ref_exit(&ctx->reqs);
843 percpu_ref_exit(&ctx->users);
844 kmem_cache_free(kioctx_cachep, ctx);
845 pr_debug("error allocating ioctx %d\n", err);
846 return ERR_PTR(err);
847 }
848
849 /* kill_ioctx
850 * Cancels all outstanding aio requests on an aio context. Used
851 * when the processes owning a context have all exited to encourage
852 * the rapid destruction of the kioctx.
853 */
854 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
855 struct ctx_rq_wait *wait)
856 {
857 struct kioctx_table *table;
858
859 spin_lock(&mm->ioctx_lock);
860 if (atomic_xchg(&ctx->dead, 1)) {
861 spin_unlock(&mm->ioctx_lock);
862 return -EINVAL;
863 }
864
865 table = rcu_dereference_raw(mm->ioctx_table);
866 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
867 RCU_INIT_POINTER(table->table[ctx->id], NULL);
868 spin_unlock(&mm->ioctx_lock);
869
870 /* free_ioctx_reqs() will do the necessary RCU synchronization */
871 wake_up_all(&ctx->wait);
872
873 /*
874 * It'd be more correct to do this in free_ioctx(), after all
875 * the outstanding kiocbs have finished - but by then io_destroy
876 * has already returned, so io_setup() could potentially return
877 * -EAGAIN with no ioctxs actually in use (as far as userspace
878 * could tell).
879 */
880 aio_nr_sub(ctx->max_reqs);
881
882 if (ctx->mmap_size)
883 vm_munmap(ctx->mmap_base, ctx->mmap_size);
884
885 ctx->rq_wait = wait;
886 percpu_ref_kill(&ctx->users);
887 return 0;
888 }
889
890 /*
891 * exit_aio: called when the last user of mm goes away. At this point, there is
892 * no way for any new requests to be submited or any of the io_* syscalls to be
893 * called on the context.
894 *
895 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
896 * them.
897 */
898 void exit_aio(struct mm_struct *mm)
899 {
900 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
901 struct ctx_rq_wait wait;
902 int i, skipped;
903
904 if (!table)
905 return;
906
907 atomic_set(&wait.count, table->nr);
908 init_completion(&wait.comp);
909
910 skipped = 0;
911 for (i = 0; i < table->nr; ++i) {
912 struct kioctx *ctx =
913 rcu_dereference_protected(table->table[i], true);
914
915 if (!ctx) {
916 skipped++;
917 continue;
918 }
919
920 /*
921 * We don't need to bother with munmap() here - exit_mmap(mm)
922 * is coming and it'll unmap everything. And we simply can't,
923 * this is not necessarily our ->mm.
924 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
925 * that it needs to unmap the area, just set it to 0.
926 */
927 ctx->mmap_size = 0;
928 kill_ioctx(mm, ctx, &wait);
929 }
930
931 if (!atomic_sub_and_test(skipped, &wait.count)) {
932 /* Wait until all IO for the context are done. */
933 wait_for_completion(&wait.comp);
934 }
935
936 RCU_INIT_POINTER(mm->ioctx_table, NULL);
937 kfree(table);
938 }
939
940 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
941 {
942 struct kioctx_cpu *kcpu;
943 unsigned long flags;
944
945 local_irq_save(flags);
946 kcpu = this_cpu_ptr(ctx->cpu);
947 kcpu->reqs_available += nr;
948
949 while (kcpu->reqs_available >= ctx->req_batch * 2) {
950 kcpu->reqs_available -= ctx->req_batch;
951 atomic_add(ctx->req_batch, &ctx->reqs_available);
952 }
953
954 local_irq_restore(flags);
955 }
956
957 static bool __get_reqs_available(struct kioctx *ctx)
958 {
959 struct kioctx_cpu *kcpu;
960 bool ret = false;
961 unsigned long flags;
962
963 local_irq_save(flags);
964 kcpu = this_cpu_ptr(ctx->cpu);
965 if (!kcpu->reqs_available) {
966 int avail = atomic_read(&ctx->reqs_available);
967
968 do {
969 if (avail < ctx->req_batch)
970 goto out;
971 } while (!atomic_try_cmpxchg(&ctx->reqs_available,
972 &avail, avail - ctx->req_batch));
973
974 kcpu->reqs_available += ctx->req_batch;
975 }
976
977 ret = true;
978 kcpu->reqs_available--;
979 out:
980 local_irq_restore(flags);
981 return ret;
982 }
983
984 /* refill_reqs_available
985 * Updates the reqs_available reference counts used for tracking the
986 * number of free slots in the completion ring. This can be called
987 * from aio_complete() (to optimistically update reqs_available) or
988 * from aio_get_req() (the we're out of events case). It must be
989 * called holding ctx->completion_lock.
990 */
991 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
992 unsigned tail)
993 {
994 unsigned events_in_ring, completed;
995
996 /* Clamp head since userland can write to it. */
997 head %= ctx->nr_events;
998 if (head <= tail)
999 events_in_ring = tail - head;
1000 else
1001 events_in_ring = ctx->nr_events - (head - tail);
1002
1003 completed = ctx->completed_events;
1004 if (events_in_ring < completed)
1005 completed -= events_in_ring;
1006 else
1007 completed = 0;
1008
1009 if (!completed)
1010 return;
1011
1012 ctx->completed_events -= completed;
1013 put_reqs_available(ctx, completed);
1014 }
1015
1016 /* user_refill_reqs_available
1017 * Called to refill reqs_available when aio_get_req() encounters an
1018 * out of space in the completion ring.
1019 */
1020 static void user_refill_reqs_available(struct kioctx *ctx)
1021 {
1022 spin_lock_irq(&ctx->completion_lock);
1023 if (ctx->completed_events) {
1024 struct aio_ring *ring;
1025 unsigned head;
1026
1027 /* Access of ring->head may race with aio_read_events_ring()
1028 * here, but that's okay since whether we read the old version
1029 * or the new version, and either will be valid. The important
1030 * part is that head cannot pass tail since we prevent
1031 * aio_complete() from updating tail by holding
1032 * ctx->completion_lock. Even if head is invalid, the check
1033 * against ctx->completed_events below will make sure we do the
1034 * safe/right thing.
1035 */
1036 ring = page_address(ctx->ring_pages[0]);
1037 head = ring->head;
1038
1039 refill_reqs_available(ctx, head, ctx->tail);
1040 }
1041
1042 spin_unlock_irq(&ctx->completion_lock);
1043 }
1044
1045 static bool get_reqs_available(struct kioctx *ctx)
1046 {
1047 if (__get_reqs_available(ctx))
1048 return true;
1049 user_refill_reqs_available(ctx);
1050 return __get_reqs_available(ctx);
1051 }
1052
1053 /* aio_get_req
1054 * Allocate a slot for an aio request.
1055 * Returns NULL if no requests are free.
1056 *
1057 * The refcount is initialized to 2 - one for the async op completion,
1058 * one for the synchronous code that does this.
1059 */
1060 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1061 {
1062 struct aio_kiocb *req;
1063
1064 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1065 if (unlikely(!req))
1066 return NULL;
1067
1068 if (unlikely(!get_reqs_available(ctx))) {
1069 kmem_cache_free(kiocb_cachep, req);
1070 return NULL;
1071 }
1072
1073 percpu_ref_get(&ctx->reqs);
1074 req->ki_ctx = ctx;
1075 INIT_LIST_HEAD(&req->ki_list);
1076 refcount_set(&req->ki_refcnt, 2);
1077 req->ki_eventfd = NULL;
1078 return req;
1079 }
1080
1081 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1082 {
1083 struct aio_ring __user *ring = (void __user *)ctx_id;
1084 struct mm_struct *mm = current->mm;
1085 struct kioctx *ctx, *ret = NULL;
1086 struct kioctx_table *table;
1087 unsigned id;
1088
1089 if (get_user(id, &ring->id))
1090 return NULL;
1091
1092 rcu_read_lock();
1093 table = rcu_dereference(mm->ioctx_table);
1094
1095 if (!table || id >= table->nr)
1096 goto out;
1097
1098 id = array_index_nospec(id, table->nr);
1099 ctx = rcu_dereference(table->table[id]);
1100 if (ctx && ctx->user_id == ctx_id) {
1101 if (percpu_ref_tryget_live(&ctx->users))
1102 ret = ctx;
1103 }
1104 out:
1105 rcu_read_unlock();
1106 return ret;
1107 }
1108
1109 static inline void iocb_destroy(struct aio_kiocb *iocb)
1110 {
1111 if (iocb->ki_eventfd)
1112 eventfd_ctx_put(iocb->ki_eventfd);
1113 if (iocb->ki_filp)
1114 fput(iocb->ki_filp);
1115 percpu_ref_put(&iocb->ki_ctx->reqs);
1116 kmem_cache_free(kiocb_cachep, iocb);
1117 }
1118
1119 struct aio_waiter {
1120 struct wait_queue_entry w;
1121 size_t min_nr;
1122 };
1123
1124 /* aio_complete
1125 * Called when the io request on the given iocb is complete.
1126 */
1127 static void aio_complete(struct aio_kiocb *iocb)
1128 {
1129 struct kioctx *ctx = iocb->ki_ctx;
1130 struct aio_ring *ring;
1131 struct io_event *ev_page, *event;
1132 unsigned tail, pos, head, avail;
1133 unsigned long flags;
1134
1135 /*
1136 * Add a completion event to the ring buffer. Must be done holding
1137 * ctx->completion_lock to prevent other code from messing with the tail
1138 * pointer since we might be called from irq context.
1139 */
1140 spin_lock_irqsave(&ctx->completion_lock, flags);
1141
1142 tail = ctx->tail;
1143 pos = tail + AIO_EVENTS_OFFSET;
1144
1145 if (++tail >= ctx->nr_events)
1146 tail = 0;
1147
1148 ev_page = page_address(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1149 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1150
1151 *event = iocb->ki_res;
1152
1153 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1154
1155 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1156 (void __user *)(unsigned long)iocb->ki_res.obj,
1157 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1158
1159 /* after flagging the request as done, we
1160 * must never even look at it again
1161 */
1162 smp_wmb(); /* make event visible before updating tail */
1163
1164 ctx->tail = tail;
1165
1166 ring = page_address(ctx->ring_pages[0]);
1167 head = ring->head;
1168 ring->tail = tail;
1169 flush_dcache_page(ctx->ring_pages[0]);
1170
1171 ctx->completed_events++;
1172 if (ctx->completed_events > 1)
1173 refill_reqs_available(ctx, head, tail);
1174
1175 avail = tail > head
1176 ? tail - head
1177 : tail + ctx->nr_events - head;
1178 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1179
1180 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1181
1182 /*
1183 * Check if the user asked us to deliver the result through an
1184 * eventfd. The eventfd_signal() function is safe to be called
1185 * from IRQ context.
1186 */
1187 if (iocb->ki_eventfd)
1188 eventfd_signal(iocb->ki_eventfd);
1189
1190 /*
1191 * We have to order our ring_info tail store above and test
1192 * of the wait list below outside the wait lock. This is
1193 * like in wake_up_bit() where clearing a bit has to be
1194 * ordered with the unlocked test.
1195 */
1196 smp_mb();
1197
1198 if (waitqueue_active(&ctx->wait)) {
1199 struct aio_waiter *curr, *next;
1200 unsigned long flags;
1201
1202 spin_lock_irqsave(&ctx->wait.lock, flags);
1203 list_for_each_entry_safe(curr, next, &ctx->wait.head, w.entry)
1204 if (avail >= curr->min_nr) {
1205 wake_up_process(curr->w.private);
1206 list_del_init_careful(&curr->w.entry);
1207 }
1208 spin_unlock_irqrestore(&ctx->wait.lock, flags);
1209 }
1210 }
1211
1212 static inline void iocb_put(struct aio_kiocb *iocb)
1213 {
1214 if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1215 aio_complete(iocb);
1216 iocb_destroy(iocb);
1217 }
1218 }
1219
1220 /* aio_read_events_ring
1221 * Pull an event off of the ioctx's event ring. Returns the number of
1222 * events fetched
1223 */
1224 static long aio_read_events_ring(struct kioctx *ctx,
1225 struct io_event __user *event, long nr)
1226 {
1227 struct aio_ring *ring;
1228 unsigned head, tail, pos;
1229 long ret = 0;
1230 int copy_ret;
1231
1232 /*
1233 * The mutex can block and wake us up and that will cause
1234 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1235 * and repeat. This should be rare enough that it doesn't cause
1236 * peformance issues. See the comment in read_events() for more detail.
1237 */
1238 sched_annotate_sleep();
1239 mutex_lock(&ctx->ring_lock);
1240
1241 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1242 ring = page_address(ctx->ring_pages[0]);
1243 head = ring->head;
1244 tail = ring->tail;
1245
1246 /*
1247 * Ensure that once we've read the current tail pointer, that
1248 * we also see the events that were stored up to the tail.
1249 */
1250 smp_rmb();
1251
1252 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1253
1254 if (head == tail)
1255 goto out;
1256
1257 head %= ctx->nr_events;
1258 tail %= ctx->nr_events;
1259
1260 while (ret < nr) {
1261 long avail;
1262 struct io_event *ev;
1263 struct page *page;
1264
1265 avail = (head <= tail ? tail : ctx->nr_events) - head;
1266 if (head == tail)
1267 break;
1268
1269 pos = head + AIO_EVENTS_OFFSET;
1270 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1271 pos %= AIO_EVENTS_PER_PAGE;
1272
1273 avail = min(avail, nr - ret);
1274 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1275
1276 ev = page_address(page);
1277 copy_ret = copy_to_user(event + ret, ev + pos,
1278 sizeof(*ev) * avail);
1279
1280 if (unlikely(copy_ret)) {
1281 ret = -EFAULT;
1282 goto out;
1283 }
1284
1285 ret += avail;
1286 head += avail;
1287 head %= ctx->nr_events;
1288 }
1289
1290 ring = page_address(ctx->ring_pages[0]);
1291 ring->head = head;
1292 flush_dcache_page(ctx->ring_pages[0]);
1293
1294 pr_debug("%li h%u t%u\n", ret, head, tail);
1295 out:
1296 mutex_unlock(&ctx->ring_lock);
1297
1298 return ret;
1299 }
1300
1301 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1302 struct io_event __user *event, long *i)
1303 {
1304 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1305
1306 if (ret > 0)
1307 *i += ret;
1308
1309 if (unlikely(atomic_read(&ctx->dead)))
1310 ret = -EINVAL;
1311
1312 if (!*i)
1313 *i = ret;
1314
1315 return ret < 0 || *i >= min_nr;
1316 }
1317
1318 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1319 struct io_event __user *event,
1320 ktime_t until)
1321 {
1322 struct hrtimer_sleeper t;
1323 struct aio_waiter w;
1324 long ret = 0, ret2 = 0;
1325
1326 /*
1327 * Note that aio_read_events() is being called as the conditional - i.e.
1328 * we're calling it after prepare_to_wait() has set task state to
1329 * TASK_INTERRUPTIBLE.
1330 *
1331 * But aio_read_events() can block, and if it blocks it's going to flip
1332 * the task state back to TASK_RUNNING.
1333 *
1334 * This should be ok, provided it doesn't flip the state back to
1335 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1336 * will only happen if the mutex_lock() call blocks, and we then find
1337 * the ringbuffer empty. So in practice we should be ok, but it's
1338 * something to be aware of when touching this code.
1339 */
1340 aio_read_events(ctx, min_nr, nr, event, &ret);
1341 if (until == 0 || ret < 0 || ret >= min_nr)
1342 return ret;
1343
1344 hrtimer_init_sleeper_on_stack(&t, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1345 if (until != KTIME_MAX) {
1346 hrtimer_set_expires_range_ns(&t.timer, until, current->timer_slack_ns);
1347 hrtimer_sleeper_start_expires(&t, HRTIMER_MODE_REL);
1348 }
1349
1350 init_wait(&w.w);
1351
1352 while (1) {
1353 unsigned long nr_got = ret;
1354
1355 w.min_nr = min_nr - ret;
1356
1357 ret2 = prepare_to_wait_event(&ctx->wait, &w.w, TASK_INTERRUPTIBLE);
1358 if (!ret2 && !t.task)
1359 ret2 = -ETIME;
1360
1361 if (aio_read_events(ctx, min_nr, nr, event, &ret) || ret2)
1362 break;
1363
1364 if (nr_got == ret)
1365 schedule();
1366 }
1367
1368 finish_wait(&ctx->wait, &w.w);
1369 hrtimer_cancel(&t.timer);
1370 destroy_hrtimer_on_stack(&t.timer);
1371
1372 return ret;
1373 }
1374
1375 /* sys_io_setup:
1376 * Create an aio_context capable of receiving at least nr_events.
1377 * ctxp must not point to an aio_context that already exists, and
1378 * must be initialized to 0 prior to the call. On successful
1379 * creation of the aio_context, *ctxp is filled in with the resulting
1380 * handle. May fail with -EINVAL if *ctxp is not initialized,
1381 * if the specified nr_events exceeds internal limits. May fail
1382 * with -EAGAIN if the specified nr_events exceeds the user's limit
1383 * of available events. May fail with -ENOMEM if insufficient kernel
1384 * resources are available. May fail with -EFAULT if an invalid
1385 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1386 * implemented.
1387 */
1388 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1389 {
1390 struct kioctx *ioctx = NULL;
1391 unsigned long ctx;
1392 long ret;
1393
1394 ret = get_user(ctx, ctxp);
1395 if (unlikely(ret))
1396 goto out;
1397
1398 ret = -EINVAL;
1399 if (unlikely(ctx || nr_events == 0)) {
1400 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1401 ctx, nr_events);
1402 goto out;
1403 }
1404
1405 ioctx = ioctx_alloc(nr_events);
1406 ret = PTR_ERR(ioctx);
1407 if (!IS_ERR(ioctx)) {
1408 ret = put_user(ioctx->user_id, ctxp);
1409 if (ret)
1410 kill_ioctx(current->mm, ioctx, NULL);
1411 percpu_ref_put(&ioctx->users);
1412 }
1413
1414 out:
1415 return ret;
1416 }
1417
1418 #ifdef CONFIG_COMPAT
1419 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1420 {
1421 struct kioctx *ioctx = NULL;
1422 unsigned long ctx;
1423 long ret;
1424
1425 ret = get_user(ctx, ctx32p);
1426 if (unlikely(ret))
1427 goto out;
1428
1429 ret = -EINVAL;
1430 if (unlikely(ctx || nr_events == 0)) {
1431 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1432 ctx, nr_events);
1433 goto out;
1434 }
1435
1436 ioctx = ioctx_alloc(nr_events);
1437 ret = PTR_ERR(ioctx);
1438 if (!IS_ERR(ioctx)) {
1439 /* truncating is ok because it's a user address */
1440 ret = put_user((u32)ioctx->user_id, ctx32p);
1441 if (ret)
1442 kill_ioctx(current->mm, ioctx, NULL);
1443 percpu_ref_put(&ioctx->users);
1444 }
1445
1446 out:
1447 return ret;
1448 }
1449 #endif
1450
1451 /* sys_io_destroy:
1452 * Destroy the aio_context specified. May cancel any outstanding
1453 * AIOs and block on completion. Will fail with -ENOSYS if not
1454 * implemented. May fail with -EINVAL if the context pointed to
1455 * is invalid.
1456 */
1457 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1458 {
1459 struct kioctx *ioctx = lookup_ioctx(ctx);
1460 if (likely(NULL != ioctx)) {
1461 struct ctx_rq_wait wait;
1462 int ret;
1463
1464 init_completion(&wait.comp);
1465 atomic_set(&wait.count, 1);
1466
1467 /* Pass requests_done to kill_ioctx() where it can be set
1468 * in a thread-safe way. If we try to set it here then we have
1469 * a race condition if two io_destroy() called simultaneously.
1470 */
1471 ret = kill_ioctx(current->mm, ioctx, &wait);
1472 percpu_ref_put(&ioctx->users);
1473
1474 /* Wait until all IO for the context are done. Otherwise kernel
1475 * keep using user-space buffers even if user thinks the context
1476 * is destroyed.
1477 */
1478 if (!ret)
1479 wait_for_completion(&wait.comp);
1480
1481 return ret;
1482 }
1483 pr_debug("EINVAL: invalid context id\n");
1484 return -EINVAL;
1485 }
1486
1487 static void aio_remove_iocb(struct aio_kiocb *iocb)
1488 {
1489 struct kioctx *ctx = iocb->ki_ctx;
1490 unsigned long flags;
1491
1492 spin_lock_irqsave(&ctx->ctx_lock, flags);
1493 list_del(&iocb->ki_list);
1494 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1495 }
1496
1497 static void aio_complete_rw(struct kiocb *kiocb, long res)
1498 {
1499 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1500
1501 if (!list_empty_careful(&iocb->ki_list))
1502 aio_remove_iocb(iocb);
1503
1504 if (kiocb->ki_flags & IOCB_WRITE) {
1505 struct inode *inode = file_inode(kiocb->ki_filp);
1506
1507 if (S_ISREG(inode->i_mode))
1508 kiocb_end_write(kiocb);
1509 }
1510
1511 iocb->ki_res.res = res;
1512 iocb->ki_res.res2 = 0;
1513 iocb_put(iocb);
1514 }
1515
1516 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1517 {
1518 int ret;
1519
1520 req->ki_complete = aio_complete_rw;
1521 req->private = NULL;
1522 req->ki_pos = iocb->aio_offset;
1523 req->ki_flags = req->ki_filp->f_iocb_flags | IOCB_AIO_RW;
1524 if (iocb->aio_flags & IOCB_FLAG_RESFD)
1525 req->ki_flags |= IOCB_EVENTFD;
1526 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1527 /*
1528 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1529 * aio_reqprio is interpreted as an I/O scheduling
1530 * class and priority.
1531 */
1532 ret = ioprio_check_cap(iocb->aio_reqprio);
1533 if (ret) {
1534 pr_debug("aio ioprio check cap error: %d\n", ret);
1535 return ret;
1536 }
1537
1538 req->ki_ioprio = iocb->aio_reqprio;
1539 } else
1540 req->ki_ioprio = get_current_ioprio();
1541
1542 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1543 if (unlikely(ret))
1544 return ret;
1545
1546 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1547 return 0;
1548 }
1549
1550 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1551 struct iovec **iovec, bool vectored, bool compat,
1552 struct iov_iter *iter)
1553 {
1554 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1555 size_t len = iocb->aio_nbytes;
1556
1557 if (!vectored) {
1558 ssize_t ret = import_ubuf(rw, buf, len, iter);
1559 *iovec = NULL;
1560 return ret;
1561 }
1562
1563 return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
1564 }
1565
1566 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1567 {
1568 switch (ret) {
1569 case -EIOCBQUEUED:
1570 break;
1571 case -ERESTARTSYS:
1572 case -ERESTARTNOINTR:
1573 case -ERESTARTNOHAND:
1574 case -ERESTART_RESTARTBLOCK:
1575 /*
1576 * There's no easy way to restart the syscall since other AIO's
1577 * may be already running. Just fail this IO with EINTR.
1578 */
1579 ret = -EINTR;
1580 fallthrough;
1581 default:
1582 req->ki_complete(req, ret);
1583 }
1584 }
1585
1586 static int aio_read(struct kiocb *req, const struct iocb *iocb,
1587 bool vectored, bool compat)
1588 {
1589 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1590 struct iov_iter iter;
1591 struct file *file;
1592 int ret;
1593
1594 ret = aio_prep_rw(req, iocb);
1595 if (ret)
1596 return ret;
1597 file = req->ki_filp;
1598 if (unlikely(!(file->f_mode & FMODE_READ)))
1599 return -EBADF;
1600 if (unlikely(!file->f_op->read_iter))
1601 return -EINVAL;
1602
1603 ret = aio_setup_rw(ITER_DEST, iocb, &iovec, vectored, compat, &iter);
1604 if (ret < 0)
1605 return ret;
1606 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1607 if (!ret)
1608 aio_rw_done(req, call_read_iter(file, req, &iter));
1609 kfree(iovec);
1610 return ret;
1611 }
1612
1613 static int aio_write(struct kiocb *req, const struct iocb *iocb,
1614 bool vectored, bool compat)
1615 {
1616 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1617 struct iov_iter iter;
1618 struct file *file;
1619 int ret;
1620
1621 ret = aio_prep_rw(req, iocb);
1622 if (ret)
1623 return ret;
1624 file = req->ki_filp;
1625
1626 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1627 return -EBADF;
1628 if (unlikely(!file->f_op->write_iter))
1629 return -EINVAL;
1630
1631 ret = aio_setup_rw(ITER_SOURCE, iocb, &iovec, vectored, compat, &iter);
1632 if (ret < 0)
1633 return ret;
1634 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1635 if (!ret) {
1636 if (S_ISREG(file_inode(file)->i_mode))
1637 kiocb_start_write(req);
1638 req->ki_flags |= IOCB_WRITE;
1639 aio_rw_done(req, call_write_iter(file, req, &iter));
1640 }
1641 kfree(iovec);
1642 return ret;
1643 }
1644
1645 static void aio_fsync_work(struct work_struct *work)
1646 {
1647 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1648 const struct cred *old_cred = override_creds(iocb->fsync.creds);
1649
1650 iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1651 revert_creds(old_cred);
1652 put_cred(iocb->fsync.creds);
1653 iocb_put(iocb);
1654 }
1655
1656 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1657 bool datasync)
1658 {
1659 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1660 iocb->aio_rw_flags))
1661 return -EINVAL;
1662
1663 if (unlikely(!req->file->f_op->fsync))
1664 return -EINVAL;
1665
1666 req->creds = prepare_creds();
1667 if (!req->creds)
1668 return -ENOMEM;
1669
1670 req->datasync = datasync;
1671 INIT_WORK(&req->work, aio_fsync_work);
1672 schedule_work(&req->work);
1673 return 0;
1674 }
1675
1676 static void aio_poll_put_work(struct work_struct *work)
1677 {
1678 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1679 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1680
1681 iocb_put(iocb);
1682 }
1683
1684 /*
1685 * Safely lock the waitqueue which the request is on, synchronizing with the
1686 * case where the ->poll() provider decides to free its waitqueue early.
1687 *
1688 * Returns true on success, meaning that req->head->lock was locked, req->wait
1689 * is on req->head, and an RCU read lock was taken. Returns false if the
1690 * request was already removed from its waitqueue (which might no longer exist).
1691 */
1692 static bool poll_iocb_lock_wq(struct poll_iocb *req)
1693 {
1694 wait_queue_head_t *head;
1695
1696 /*
1697 * While we hold the waitqueue lock and the waitqueue is nonempty,
1698 * wake_up_pollfree() will wait for us. However, taking the waitqueue
1699 * lock in the first place can race with the waitqueue being freed.
1700 *
1701 * We solve this as eventpoll does: by taking advantage of the fact that
1702 * all users of wake_up_pollfree() will RCU-delay the actual free. If
1703 * we enter rcu_read_lock() and see that the pointer to the queue is
1704 * non-NULL, we can then lock it without the memory being freed out from
1705 * under us, then check whether the request is still on the queue.
1706 *
1707 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
1708 * case the caller deletes the entry from the queue, leaving it empty.
1709 * In that case, only RCU prevents the queue memory from being freed.
1710 */
1711 rcu_read_lock();
1712 head = smp_load_acquire(&req->head);
1713 if (head) {
1714 spin_lock(&head->lock);
1715 if (!list_empty(&req->wait.entry))
1716 return true;
1717 spin_unlock(&head->lock);
1718 }
1719 rcu_read_unlock();
1720 return false;
1721 }
1722
1723 static void poll_iocb_unlock_wq(struct poll_iocb *req)
1724 {
1725 spin_unlock(&req->head->lock);
1726 rcu_read_unlock();
1727 }
1728
1729 static void aio_poll_complete_work(struct work_struct *work)
1730 {
1731 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1732 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1733 struct poll_table_struct pt = { ._key = req->events };
1734 struct kioctx *ctx = iocb->ki_ctx;
1735 __poll_t mask = 0;
1736
1737 if (!READ_ONCE(req->cancelled))
1738 mask = vfs_poll(req->file, &pt) & req->events;
1739
1740 /*
1741 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1742 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1743 * synchronize with them. In the cancellation case the list_del_init
1744 * itself is not actually needed, but harmless so we keep it in to
1745 * avoid further branches in the fast path.
1746 */
1747 spin_lock_irq(&ctx->ctx_lock);
1748 if (poll_iocb_lock_wq(req)) {
1749 if (!mask && !READ_ONCE(req->cancelled)) {
1750 /*
1751 * The request isn't actually ready to be completed yet.
1752 * Reschedule completion if another wakeup came in.
1753 */
1754 if (req->work_need_resched) {
1755 schedule_work(&req->work);
1756 req->work_need_resched = false;
1757 } else {
1758 req->work_scheduled = false;
1759 }
1760 poll_iocb_unlock_wq(req);
1761 spin_unlock_irq(&ctx->ctx_lock);
1762 return;
1763 }
1764 list_del_init(&req->wait.entry);
1765 poll_iocb_unlock_wq(req);
1766 } /* else, POLLFREE has freed the waitqueue, so we must complete */
1767 list_del_init(&iocb->ki_list);
1768 iocb->ki_res.res = mangle_poll(mask);
1769 spin_unlock_irq(&ctx->ctx_lock);
1770
1771 iocb_put(iocb);
1772 }
1773
1774 /* assumes we are called with irqs disabled */
1775 static int aio_poll_cancel(struct kiocb *iocb)
1776 {
1777 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1778 struct poll_iocb *req = &aiocb->poll;
1779
1780 if (poll_iocb_lock_wq(req)) {
1781 WRITE_ONCE(req->cancelled, true);
1782 if (!req->work_scheduled) {
1783 schedule_work(&aiocb->poll.work);
1784 req->work_scheduled = true;
1785 }
1786 poll_iocb_unlock_wq(req);
1787 } /* else, the request was force-cancelled by POLLFREE already */
1788
1789 return 0;
1790 }
1791
1792 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1793 void *key)
1794 {
1795 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1796 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1797 __poll_t mask = key_to_poll(key);
1798 unsigned long flags;
1799
1800 /* for instances that support it check for an event match first: */
1801 if (mask && !(mask & req->events))
1802 return 0;
1803
1804 /*
1805 * Complete the request inline if possible. This requires that three
1806 * conditions be met:
1807 * 1. An event mask must have been passed. If a plain wakeup was done
1808 * instead, then mask == 0 and we have to call vfs_poll() to get
1809 * the events, so inline completion isn't possible.
1810 * 2. The completion work must not have already been scheduled.
1811 * 3. ctx_lock must not be busy. We have to use trylock because we
1812 * already hold the waitqueue lock, so this inverts the normal
1813 * locking order. Use irqsave/irqrestore because not all
1814 * filesystems (e.g. fuse) call this function with IRQs disabled,
1815 * yet IRQs have to be disabled before ctx_lock is obtained.
1816 */
1817 if (mask && !req->work_scheduled &&
1818 spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1819 struct kioctx *ctx = iocb->ki_ctx;
1820
1821 list_del_init(&req->wait.entry);
1822 list_del(&iocb->ki_list);
1823 iocb->ki_res.res = mangle_poll(mask);
1824 if (iocb->ki_eventfd && !eventfd_signal_allowed()) {
1825 iocb = NULL;
1826 INIT_WORK(&req->work, aio_poll_put_work);
1827 schedule_work(&req->work);
1828 }
1829 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1830 if (iocb)
1831 iocb_put(iocb);
1832 } else {
1833 /*
1834 * Schedule the completion work if needed. If it was already
1835 * scheduled, record that another wakeup came in.
1836 *
1837 * Don't remove the request from the waitqueue here, as it might
1838 * not actually be complete yet (we won't know until vfs_poll()
1839 * is called), and we must not miss any wakeups. POLLFREE is an
1840 * exception to this; see below.
1841 */
1842 if (req->work_scheduled) {
1843 req->work_need_resched = true;
1844 } else {
1845 schedule_work(&req->work);
1846 req->work_scheduled = true;
1847 }
1848
1849 /*
1850 * If the waitqueue is being freed early but we can't complete
1851 * the request inline, we have to tear down the request as best
1852 * we can. That means immediately removing the request from its
1853 * waitqueue and preventing all further accesses to the
1854 * waitqueue via the request. We also need to schedule the
1855 * completion work (done above). Also mark the request as
1856 * cancelled, to potentially skip an unneeded call to ->poll().
1857 */
1858 if (mask & POLLFREE) {
1859 WRITE_ONCE(req->cancelled, true);
1860 list_del_init(&req->wait.entry);
1861
1862 /*
1863 * Careful: this *must* be the last step, since as soon
1864 * as req->head is NULL'ed out, the request can be
1865 * completed and freed, since aio_poll_complete_work()
1866 * will no longer need to take the waitqueue lock.
1867 */
1868 smp_store_release(&req->head, NULL);
1869 }
1870 }
1871 return 1;
1872 }
1873
1874 struct aio_poll_table {
1875 struct poll_table_struct pt;
1876 struct aio_kiocb *iocb;
1877 bool queued;
1878 int error;
1879 };
1880
1881 static void
1882 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1883 struct poll_table_struct *p)
1884 {
1885 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1886
1887 /* multiple wait queues per file are not supported */
1888 if (unlikely(pt->queued)) {
1889 pt->error = -EINVAL;
1890 return;
1891 }
1892
1893 pt->queued = true;
1894 pt->error = 0;
1895 pt->iocb->poll.head = head;
1896 add_wait_queue(head, &pt->iocb->poll.wait);
1897 }
1898
1899 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1900 {
1901 struct kioctx *ctx = aiocb->ki_ctx;
1902 struct poll_iocb *req = &aiocb->poll;
1903 struct aio_poll_table apt;
1904 bool cancel = false;
1905 __poll_t mask;
1906
1907 /* reject any unknown events outside the normal event mask. */
1908 if ((u16)iocb->aio_buf != iocb->aio_buf)
1909 return -EINVAL;
1910 /* reject fields that are not defined for poll */
1911 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1912 return -EINVAL;
1913
1914 INIT_WORK(&req->work, aio_poll_complete_work);
1915 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1916
1917 req->head = NULL;
1918 req->cancelled = false;
1919 req->work_scheduled = false;
1920 req->work_need_resched = false;
1921
1922 apt.pt._qproc = aio_poll_queue_proc;
1923 apt.pt._key = req->events;
1924 apt.iocb = aiocb;
1925 apt.queued = false;
1926 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1927
1928 /* initialized the list so that we can do list_empty checks */
1929 INIT_LIST_HEAD(&req->wait.entry);
1930 init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1931
1932 mask = vfs_poll(req->file, &apt.pt) & req->events;
1933 spin_lock_irq(&ctx->ctx_lock);
1934 if (likely(apt.queued)) {
1935 bool on_queue = poll_iocb_lock_wq(req);
1936
1937 if (!on_queue || req->work_scheduled) {
1938 /*
1939 * aio_poll_wake() already either scheduled the async
1940 * completion work, or completed the request inline.
1941 */
1942 if (apt.error) /* unsupported case: multiple queues */
1943 cancel = true;
1944 apt.error = 0;
1945 mask = 0;
1946 }
1947 if (mask || apt.error) {
1948 /* Steal to complete synchronously. */
1949 list_del_init(&req->wait.entry);
1950 } else if (cancel) {
1951 /* Cancel if possible (may be too late though). */
1952 WRITE_ONCE(req->cancelled, true);
1953 } else if (on_queue) {
1954 /*
1955 * Actually waiting for an event, so add the request to
1956 * active_reqs so that it can be cancelled if needed.
1957 */
1958 list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1959 aiocb->ki_cancel = aio_poll_cancel;
1960 }
1961 if (on_queue)
1962 poll_iocb_unlock_wq(req);
1963 }
1964 if (mask) { /* no async, we'd stolen it */
1965 aiocb->ki_res.res = mangle_poll(mask);
1966 apt.error = 0;
1967 }
1968 spin_unlock_irq(&ctx->ctx_lock);
1969 if (mask)
1970 iocb_put(aiocb);
1971 return apt.error;
1972 }
1973
1974 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1975 struct iocb __user *user_iocb, struct aio_kiocb *req,
1976 bool compat)
1977 {
1978 req->ki_filp = fget(iocb->aio_fildes);
1979 if (unlikely(!req->ki_filp))
1980 return -EBADF;
1981
1982 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1983 struct eventfd_ctx *eventfd;
1984 /*
1985 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1986 * instance of the file* now. The file descriptor must be
1987 * an eventfd() fd, and will be signaled for each completed
1988 * event using the eventfd_signal() function.
1989 */
1990 eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1991 if (IS_ERR(eventfd))
1992 return PTR_ERR(eventfd);
1993
1994 req->ki_eventfd = eventfd;
1995 }
1996
1997 if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1998 pr_debug("EFAULT: aio_key\n");
1999 return -EFAULT;
2000 }
2001
2002 req->ki_res.obj = (u64)(unsigned long)user_iocb;
2003 req->ki_res.data = iocb->aio_data;
2004 req->ki_res.res = 0;
2005 req->ki_res.res2 = 0;
2006
2007 switch (iocb->aio_lio_opcode) {
2008 case IOCB_CMD_PREAD:
2009 return aio_read(&req->rw, iocb, false, compat);
2010 case IOCB_CMD_PWRITE:
2011 return aio_write(&req->rw, iocb, false, compat);
2012 case IOCB_CMD_PREADV:
2013 return aio_read(&req->rw, iocb, true, compat);
2014 case IOCB_CMD_PWRITEV:
2015 return aio_write(&req->rw, iocb, true, compat);
2016 case IOCB_CMD_FSYNC:
2017 return aio_fsync(&req->fsync, iocb, false);
2018 case IOCB_CMD_FDSYNC:
2019 return aio_fsync(&req->fsync, iocb, true);
2020 case IOCB_CMD_POLL:
2021 return aio_poll(req, iocb);
2022 default:
2023 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
2024 return -EINVAL;
2025 }
2026 }
2027
2028 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
2029 bool compat)
2030 {
2031 struct aio_kiocb *req;
2032 struct iocb iocb;
2033 int err;
2034
2035 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
2036 return -EFAULT;
2037
2038 /* enforce forwards compatibility on users */
2039 if (unlikely(iocb.aio_reserved2)) {
2040 pr_debug("EINVAL: reserve field set\n");
2041 return -EINVAL;
2042 }
2043
2044 /* prevent overflows */
2045 if (unlikely(
2046 (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
2047 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
2048 ((ssize_t)iocb.aio_nbytes < 0)
2049 )) {
2050 pr_debug("EINVAL: overflow check\n");
2051 return -EINVAL;
2052 }
2053
2054 req = aio_get_req(ctx);
2055 if (unlikely(!req))
2056 return -EAGAIN;
2057
2058 err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
2059
2060 /* Done with the synchronous reference */
2061 iocb_put(req);
2062
2063 /*
2064 * If err is 0, we'd either done aio_complete() ourselves or have
2065 * arranged for that to be done asynchronously. Anything non-zero
2066 * means that we need to destroy req ourselves.
2067 */
2068 if (unlikely(err)) {
2069 iocb_destroy(req);
2070 put_reqs_available(ctx, 1);
2071 }
2072 return err;
2073 }
2074
2075 /* sys_io_submit:
2076 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
2077 * the number of iocbs queued. May return -EINVAL if the aio_context
2078 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
2079 * *iocbpp[0] is not properly initialized, if the operation specified
2080 * is invalid for the file descriptor in the iocb. May fail with
2081 * -EFAULT if any of the data structures point to invalid data. May
2082 * fail with -EBADF if the file descriptor specified in the first
2083 * iocb is invalid. May fail with -EAGAIN if insufficient resources
2084 * are available to queue any iocbs. Will return 0 if nr is 0. Will
2085 * fail with -ENOSYS if not implemented.
2086 */
2087 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
2088 struct iocb __user * __user *, iocbpp)
2089 {
2090 struct kioctx *ctx;
2091 long ret = 0;
2092 int i = 0;
2093 struct blk_plug plug;
2094
2095 if (unlikely(nr < 0))
2096 return -EINVAL;
2097
2098 ctx = lookup_ioctx(ctx_id);
2099 if (unlikely(!ctx)) {
2100 pr_debug("EINVAL: invalid context id\n");
2101 return -EINVAL;
2102 }
2103
2104 if (nr > ctx->nr_events)
2105 nr = ctx->nr_events;
2106
2107 if (nr > AIO_PLUG_THRESHOLD)
2108 blk_start_plug(&plug);
2109 for (i = 0; i < nr; i++) {
2110 struct iocb __user *user_iocb;
2111
2112 if (unlikely(get_user(user_iocb, iocbpp + i))) {
2113 ret = -EFAULT;
2114 break;
2115 }
2116
2117 ret = io_submit_one(ctx, user_iocb, false);
2118 if (ret)
2119 break;
2120 }
2121 if (nr > AIO_PLUG_THRESHOLD)
2122 blk_finish_plug(&plug);
2123
2124 percpu_ref_put(&ctx->users);
2125 return i ? i : ret;
2126 }
2127
2128 #ifdef CONFIG_COMPAT
2129 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
2130 int, nr, compat_uptr_t __user *, iocbpp)
2131 {
2132 struct kioctx *ctx;
2133 long ret = 0;
2134 int i = 0;
2135 struct blk_plug plug;
2136
2137 if (unlikely(nr < 0))
2138 return -EINVAL;
2139
2140 ctx = lookup_ioctx(ctx_id);
2141 if (unlikely(!ctx)) {
2142 pr_debug("EINVAL: invalid context id\n");
2143 return -EINVAL;
2144 }
2145
2146 if (nr > ctx->nr_events)
2147 nr = ctx->nr_events;
2148
2149 if (nr > AIO_PLUG_THRESHOLD)
2150 blk_start_plug(&plug);
2151 for (i = 0; i < nr; i++) {
2152 compat_uptr_t user_iocb;
2153
2154 if (unlikely(get_user(user_iocb, iocbpp + i))) {
2155 ret = -EFAULT;
2156 break;
2157 }
2158
2159 ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
2160 if (ret)
2161 break;
2162 }
2163 if (nr > AIO_PLUG_THRESHOLD)
2164 blk_finish_plug(&plug);
2165
2166 percpu_ref_put(&ctx->users);
2167 return i ? i : ret;
2168 }
2169 #endif
2170
2171 /* sys_io_cancel:
2172 * Attempts to cancel an iocb previously passed to io_submit. If
2173 * the operation is successfully cancelled, the resulting event is
2174 * copied into the memory pointed to by result without being placed
2175 * into the completion queue and 0 is returned. May fail with
2176 * -EFAULT if any of the data structures pointed to are invalid.
2177 * May fail with -EINVAL if aio_context specified by ctx_id is
2178 * invalid. May fail with -EAGAIN if the iocb specified was not
2179 * cancelled. Will fail with -ENOSYS if not implemented.
2180 */
2181 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2182 struct io_event __user *, result)
2183 {
2184 struct kioctx *ctx;
2185 struct aio_kiocb *kiocb;
2186 int ret = -EINVAL;
2187 u32 key;
2188 u64 obj = (u64)(unsigned long)iocb;
2189
2190 if (unlikely(get_user(key, &iocb->aio_key)))
2191 return -EFAULT;
2192 if (unlikely(key != KIOCB_KEY))
2193 return -EINVAL;
2194
2195 ctx = lookup_ioctx(ctx_id);
2196 if (unlikely(!ctx))
2197 return -EINVAL;
2198
2199 spin_lock_irq(&ctx->ctx_lock);
2200 /* TODO: use a hash or array, this sucks. */
2201 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2202 if (kiocb->ki_res.obj == obj) {
2203 ret = kiocb->ki_cancel(&kiocb->rw);
2204 list_del_init(&kiocb->ki_list);
2205 break;
2206 }
2207 }
2208 spin_unlock_irq(&ctx->ctx_lock);
2209
2210 if (!ret) {
2211 /*
2212 * The result argument is no longer used - the io_event is
2213 * always delivered via the ring buffer. -EINPROGRESS indicates
2214 * cancellation is progress:
2215 */
2216 ret = -EINPROGRESS;
2217 }
2218
2219 percpu_ref_put(&ctx->users);
2220
2221 return ret;
2222 }
2223
2224 static long do_io_getevents(aio_context_t ctx_id,
2225 long min_nr,
2226 long nr,
2227 struct io_event __user *events,
2228 struct timespec64 *ts)
2229 {
2230 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2231 struct kioctx *ioctx = lookup_ioctx(ctx_id);
2232 long ret = -EINVAL;
2233
2234 if (likely(ioctx)) {
2235 if (likely(min_nr <= nr && min_nr >= 0))
2236 ret = read_events(ioctx, min_nr, nr, events, until);
2237 percpu_ref_put(&ioctx->users);
2238 }
2239
2240 return ret;
2241 }
2242
2243 /* io_getevents:
2244 * Attempts to read at least min_nr events and up to nr events from
2245 * the completion queue for the aio_context specified by ctx_id. If
2246 * it succeeds, the number of read events is returned. May fail with
2247 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2248 * out of range, if timeout is out of range. May fail with -EFAULT
2249 * if any of the memory specified is invalid. May return 0 or
2250 * < min_nr if the timeout specified by timeout has elapsed
2251 * before sufficient events are available, where timeout == NULL
2252 * specifies an infinite timeout. Note that the timeout pointed to by
2253 * timeout is relative. Will fail with -ENOSYS if not implemented.
2254 */
2255 #ifdef CONFIG_64BIT
2256
2257 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2258 long, min_nr,
2259 long, nr,
2260 struct io_event __user *, events,
2261 struct __kernel_timespec __user *, timeout)
2262 {
2263 struct timespec64 ts;
2264 int ret;
2265
2266 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2267 return -EFAULT;
2268
2269 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2270 if (!ret && signal_pending(current))
2271 ret = -EINTR;
2272 return ret;
2273 }
2274
2275 #endif
2276
2277 struct __aio_sigset {
2278 const sigset_t __user *sigmask;
2279 size_t sigsetsize;
2280 };
2281
2282 SYSCALL_DEFINE6(io_pgetevents,
2283 aio_context_t, ctx_id,
2284 long, min_nr,
2285 long, nr,
2286 struct io_event __user *, events,
2287 struct __kernel_timespec __user *, timeout,
2288 const struct __aio_sigset __user *, usig)
2289 {
2290 struct __aio_sigset ksig = { NULL, };
2291 struct timespec64 ts;
2292 bool interrupted;
2293 int ret;
2294
2295 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2296 return -EFAULT;
2297
2298 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2299 return -EFAULT;
2300
2301 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2302 if (ret)
2303 return ret;
2304
2305 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2306
2307 interrupted = signal_pending(current);
2308 restore_saved_sigmask_unless(interrupted);
2309 if (interrupted && !ret)
2310 ret = -ERESTARTNOHAND;
2311
2312 return ret;
2313 }
2314
2315 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2316
2317 SYSCALL_DEFINE6(io_pgetevents_time32,
2318 aio_context_t, ctx_id,
2319 long, min_nr,
2320 long, nr,
2321 struct io_event __user *, events,
2322 struct old_timespec32 __user *, timeout,
2323 const struct __aio_sigset __user *, usig)
2324 {
2325 struct __aio_sigset ksig = { NULL, };
2326 struct timespec64 ts;
2327 bool interrupted;
2328 int ret;
2329
2330 if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2331 return -EFAULT;
2332
2333 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2334 return -EFAULT;
2335
2336
2337 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2338 if (ret)
2339 return ret;
2340
2341 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2342
2343 interrupted = signal_pending(current);
2344 restore_saved_sigmask_unless(interrupted);
2345 if (interrupted && !ret)
2346 ret = -ERESTARTNOHAND;
2347
2348 return ret;
2349 }
2350
2351 #endif
2352
2353 #if defined(CONFIG_COMPAT_32BIT_TIME)
2354
2355 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2356 __s32, min_nr,
2357 __s32, nr,
2358 struct io_event __user *, events,
2359 struct old_timespec32 __user *, timeout)
2360 {
2361 struct timespec64 t;
2362 int ret;
2363
2364 if (timeout && get_old_timespec32(&t, timeout))
2365 return -EFAULT;
2366
2367 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2368 if (!ret && signal_pending(current))
2369 ret = -EINTR;
2370 return ret;
2371 }
2372
2373 #endif
2374
2375 #ifdef CONFIG_COMPAT
2376
2377 struct __compat_aio_sigset {
2378 compat_uptr_t sigmask;
2379 compat_size_t sigsetsize;
2380 };
2381
2382 #if defined(CONFIG_COMPAT_32BIT_TIME)
2383
2384 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2385 compat_aio_context_t, ctx_id,
2386 compat_long_t, min_nr,
2387 compat_long_t, nr,
2388 struct io_event __user *, events,
2389 struct old_timespec32 __user *, timeout,
2390 const struct __compat_aio_sigset __user *, usig)
2391 {
2392 struct __compat_aio_sigset ksig = { 0, };
2393 struct timespec64 t;
2394 bool interrupted;
2395 int ret;
2396
2397 if (timeout && get_old_timespec32(&t, timeout))
2398 return -EFAULT;
2399
2400 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2401 return -EFAULT;
2402
2403 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2404 if (ret)
2405 return ret;
2406
2407 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2408
2409 interrupted = signal_pending(current);
2410 restore_saved_sigmask_unless(interrupted);
2411 if (interrupted && !ret)
2412 ret = -ERESTARTNOHAND;
2413
2414 return ret;
2415 }
2416
2417 #endif
2418
2419 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2420 compat_aio_context_t, ctx_id,
2421 compat_long_t, min_nr,
2422 compat_long_t, nr,
2423 struct io_event __user *, events,
2424 struct __kernel_timespec __user *, timeout,
2425 const struct __compat_aio_sigset __user *, usig)
2426 {
2427 struct __compat_aio_sigset ksig = { 0, };
2428 struct timespec64 t;
2429 bool interrupted;
2430 int ret;
2431
2432 if (timeout && get_timespec64(&t, timeout))
2433 return -EFAULT;
2434
2435 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2436 return -EFAULT;
2437
2438 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2439 if (ret)
2440 return ret;
2441
2442 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2443
2444 interrupted = signal_pending(current);
2445 restore_saved_sigmask_unless(interrupted);
2446 if (interrupted && !ret)
2447 ret = -ERESTARTNOHAND;
2448
2449 return ret;
2450 }
2451 #endif