]> git.ipfire.org Git - people/ms/linux.git/blob - fs/btrfs/block-rsv.c
b3ee49b0b1e83068413f0bffb9feefe14bafb72e
[people/ms/linux.git] / fs / btrfs / block-rsv.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "misc.h"
4 #include "ctree.h"
5 #include "block-rsv.h"
6 #include "space-info.h"
7 #include "transaction.h"
8 #include "block-group.h"
9 #include "disk-io.h"
10
11 /*
12 * HOW DO BLOCK RESERVES WORK
13 *
14 * Think of block_rsv's as buckets for logically grouped metadata
15 * reservations. Each block_rsv has a ->size and a ->reserved. ->size is
16 * how large we want our block rsv to be, ->reserved is how much space is
17 * currently reserved for this block reserve.
18 *
19 * ->failfast exists for the truncate case, and is described below.
20 *
21 * NORMAL OPERATION
22 *
23 * -> Reserve
24 * Entrance: btrfs_block_rsv_add, btrfs_block_rsv_refill
25 *
26 * We call into btrfs_reserve_metadata_bytes() with our bytes, which is
27 * accounted for in space_info->bytes_may_use, and then add the bytes to
28 * ->reserved, and ->size in the case of btrfs_block_rsv_add.
29 *
30 * ->size is an over-estimation of how much we may use for a particular
31 * operation.
32 *
33 * -> Use
34 * Entrance: btrfs_use_block_rsv
35 *
36 * When we do a btrfs_alloc_tree_block() we call into btrfs_use_block_rsv()
37 * to determine the appropriate block_rsv to use, and then verify that
38 * ->reserved has enough space for our tree block allocation. Once
39 * successful we subtract fs_info->nodesize from ->reserved.
40 *
41 * -> Finish
42 * Entrance: btrfs_block_rsv_release
43 *
44 * We are finished with our operation, subtract our individual reservation
45 * from ->size, and then subtract ->size from ->reserved and free up the
46 * excess if there is any.
47 *
48 * There is some logic here to refill the delayed refs rsv or the global rsv
49 * as needed, otherwise the excess is subtracted from
50 * space_info->bytes_may_use.
51 *
52 * TYPES OF BLOCK RESERVES
53 *
54 * BLOCK_RSV_TRANS, BLOCK_RSV_DELOPS, BLOCK_RSV_CHUNK
55 * These behave normally, as described above, just within the confines of the
56 * lifetime of their particular operation (transaction for the whole trans
57 * handle lifetime, for example).
58 *
59 * BLOCK_RSV_GLOBAL
60 * It is impossible to properly account for all the space that may be required
61 * to make our extent tree updates. This block reserve acts as an overflow
62 * buffer in case our delayed refs reserve does not reserve enough space to
63 * update the extent tree.
64 *
65 * We can steal from this in some cases as well, notably on evict() or
66 * truncate() in order to help users recover from ENOSPC conditions.
67 *
68 * BLOCK_RSV_DELALLOC
69 * The individual item sizes are determined by the per-inode size
70 * calculations, which are described with the delalloc code. This is pretty
71 * straightforward, it's just the calculation of ->size encodes a lot of
72 * different items, and thus it gets used when updating inodes, inserting file
73 * extents, and inserting checksums.
74 *
75 * BLOCK_RSV_DELREFS
76 * We keep a running tally of how many delayed refs we have on the system.
77 * We assume each one of these delayed refs are going to use a full
78 * reservation. We use the transaction items and pre-reserve space for every
79 * operation, and use this reservation to refill any gap between ->size and
80 * ->reserved that may exist.
81 *
82 * From there it's straightforward, removing a delayed ref means we remove its
83 * count from ->size and free up reservations as necessary. Since this is
84 * the most dynamic block reserve in the system, we will try to refill this
85 * block reserve first with any excess returned by any other block reserve.
86 *
87 * BLOCK_RSV_EMPTY
88 * This is the fallback block reserve to make us try to reserve space if we
89 * don't have a specific bucket for this allocation. It is mostly used for
90 * updating the device tree and such, since that is a separate pool we're
91 * content to just reserve space from the space_info on demand.
92 *
93 * BLOCK_RSV_TEMP
94 * This is used by things like truncate and iput. We will temporarily
95 * allocate a block reserve, set it to some size, and then truncate bytes
96 * until we have no space left. With ->failfast set we'll simply return
97 * ENOSPC from btrfs_use_block_rsv() to signal that we need to unwind and try
98 * to make a new reservation. This is because these operations are
99 * unbounded, so we want to do as much work as we can, and then back off and
100 * re-reserve.
101 */
102
103 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
104 struct btrfs_block_rsv *block_rsv,
105 struct btrfs_block_rsv *dest, u64 num_bytes,
106 u64 *qgroup_to_release_ret)
107 {
108 struct btrfs_space_info *space_info = block_rsv->space_info;
109 u64 qgroup_to_release = 0;
110 u64 ret;
111
112 spin_lock(&block_rsv->lock);
113 if (num_bytes == (u64)-1) {
114 num_bytes = block_rsv->size;
115 qgroup_to_release = block_rsv->qgroup_rsv_size;
116 }
117 block_rsv->size -= num_bytes;
118 if (block_rsv->reserved >= block_rsv->size) {
119 num_bytes = block_rsv->reserved - block_rsv->size;
120 block_rsv->reserved = block_rsv->size;
121 block_rsv->full = 1;
122 } else {
123 num_bytes = 0;
124 }
125 if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
126 qgroup_to_release = block_rsv->qgroup_rsv_reserved -
127 block_rsv->qgroup_rsv_size;
128 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
129 } else {
130 qgroup_to_release = 0;
131 }
132 spin_unlock(&block_rsv->lock);
133
134 ret = num_bytes;
135 if (num_bytes > 0) {
136 if (dest) {
137 spin_lock(&dest->lock);
138 if (!dest->full) {
139 u64 bytes_to_add;
140
141 bytes_to_add = dest->size - dest->reserved;
142 bytes_to_add = min(num_bytes, bytes_to_add);
143 dest->reserved += bytes_to_add;
144 if (dest->reserved >= dest->size)
145 dest->full = 1;
146 num_bytes -= bytes_to_add;
147 }
148 spin_unlock(&dest->lock);
149 }
150 if (num_bytes)
151 btrfs_space_info_free_bytes_may_use(fs_info,
152 space_info,
153 num_bytes);
154 }
155 if (qgroup_to_release_ret)
156 *qgroup_to_release_ret = qgroup_to_release;
157 return ret;
158 }
159
160 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
161 struct btrfs_block_rsv *dst, u64 num_bytes,
162 bool update_size)
163 {
164 int ret;
165
166 ret = btrfs_block_rsv_use_bytes(src, num_bytes);
167 if (ret)
168 return ret;
169
170 btrfs_block_rsv_add_bytes(dst, num_bytes, update_size);
171 return 0;
172 }
173
174 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
175 {
176 memset(rsv, 0, sizeof(*rsv));
177 spin_lock_init(&rsv->lock);
178 rsv->type = type;
179 }
180
181 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
182 struct btrfs_block_rsv *rsv,
183 unsigned short type)
184 {
185 btrfs_init_block_rsv(rsv, type);
186 rsv->space_info = btrfs_find_space_info(fs_info,
187 BTRFS_BLOCK_GROUP_METADATA);
188 }
189
190 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
191 unsigned short type)
192 {
193 struct btrfs_block_rsv *block_rsv;
194
195 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
196 if (!block_rsv)
197 return NULL;
198
199 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
200 return block_rsv;
201 }
202
203 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
204 struct btrfs_block_rsv *rsv)
205 {
206 if (!rsv)
207 return;
208 btrfs_block_rsv_release(fs_info, rsv, (u64)-1, NULL);
209 kfree(rsv);
210 }
211
212 int btrfs_block_rsv_add(struct btrfs_fs_info *fs_info,
213 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
214 enum btrfs_reserve_flush_enum flush)
215 {
216 int ret;
217
218 if (num_bytes == 0)
219 return 0;
220
221 ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, num_bytes, flush);
222 if (!ret)
223 btrfs_block_rsv_add_bytes(block_rsv, num_bytes, true);
224
225 return ret;
226 }
227
228 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
229 {
230 u64 num_bytes = 0;
231 int ret = -ENOSPC;
232
233 if (!block_rsv)
234 return 0;
235
236 spin_lock(&block_rsv->lock);
237 num_bytes = div_factor(block_rsv->size, min_factor);
238 if (block_rsv->reserved >= num_bytes)
239 ret = 0;
240 spin_unlock(&block_rsv->lock);
241
242 return ret;
243 }
244
245 int btrfs_block_rsv_refill(struct btrfs_fs_info *fs_info,
246 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
247 enum btrfs_reserve_flush_enum flush)
248 {
249 u64 num_bytes = 0;
250 int ret = -ENOSPC;
251
252 if (!block_rsv)
253 return 0;
254
255 spin_lock(&block_rsv->lock);
256 num_bytes = min_reserved;
257 if (block_rsv->reserved >= num_bytes)
258 ret = 0;
259 else
260 num_bytes -= block_rsv->reserved;
261 spin_unlock(&block_rsv->lock);
262
263 if (!ret)
264 return 0;
265
266 ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, num_bytes, flush);
267 if (!ret) {
268 btrfs_block_rsv_add_bytes(block_rsv, num_bytes, false);
269 return 0;
270 }
271
272 return ret;
273 }
274
275 u64 btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
276 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
277 u64 *qgroup_to_release)
278 {
279 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
280 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
281 struct btrfs_block_rsv *target = NULL;
282
283 /*
284 * If we are the delayed_rsv then push to the global rsv, otherwise dump
285 * into the delayed rsv if it is not full.
286 */
287 if (block_rsv == delayed_rsv)
288 target = global_rsv;
289 else if (block_rsv != global_rsv && !delayed_rsv->full)
290 target = delayed_rsv;
291
292 if (target && block_rsv->space_info != target->space_info)
293 target = NULL;
294
295 return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes,
296 qgroup_to_release);
297 }
298
299 int btrfs_block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, u64 num_bytes)
300 {
301 int ret = -ENOSPC;
302
303 spin_lock(&block_rsv->lock);
304 if (block_rsv->reserved >= num_bytes) {
305 block_rsv->reserved -= num_bytes;
306 if (block_rsv->reserved < block_rsv->size)
307 block_rsv->full = 0;
308 ret = 0;
309 }
310 spin_unlock(&block_rsv->lock);
311 return ret;
312 }
313
314 void btrfs_block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
315 u64 num_bytes, bool update_size)
316 {
317 spin_lock(&block_rsv->lock);
318 block_rsv->reserved += num_bytes;
319 if (update_size)
320 block_rsv->size += num_bytes;
321 else if (block_rsv->reserved >= block_rsv->size)
322 block_rsv->full = 1;
323 spin_unlock(&block_rsv->lock);
324 }
325
326 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
327 struct btrfs_block_rsv *dest, u64 num_bytes,
328 int min_factor)
329 {
330 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
331 u64 min_bytes;
332
333 if (global_rsv->space_info != dest->space_info)
334 return -ENOSPC;
335
336 spin_lock(&global_rsv->lock);
337 min_bytes = div_factor(global_rsv->size, min_factor);
338 if (global_rsv->reserved < min_bytes + num_bytes) {
339 spin_unlock(&global_rsv->lock);
340 return -ENOSPC;
341 }
342 global_rsv->reserved -= num_bytes;
343 if (global_rsv->reserved < global_rsv->size)
344 global_rsv->full = 0;
345 spin_unlock(&global_rsv->lock);
346
347 btrfs_block_rsv_add_bytes(dest, num_bytes, true);
348 return 0;
349 }
350
351 void btrfs_update_global_block_rsv(struct btrfs_fs_info *fs_info)
352 {
353 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
354 struct btrfs_space_info *sinfo = block_rsv->space_info;
355 struct btrfs_root *root, *tmp;
356 u64 num_bytes = btrfs_root_used(&fs_info->tree_root->root_item);
357 unsigned int min_items = 1;
358
359 /*
360 * The global block rsv is based on the size of the extent tree, the
361 * checksum tree and the root tree. If the fs is empty we want to set
362 * it to a minimal amount for safety.
363 *
364 * We also are going to need to modify the minimum of the tree root and
365 * any global roots we could touch.
366 */
367 read_lock(&fs_info->global_root_lock);
368 rbtree_postorder_for_each_entry_safe(root, tmp, &fs_info->global_root_tree,
369 rb_node) {
370 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID ||
371 root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID ||
372 root->root_key.objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
373 num_bytes += btrfs_root_used(&root->root_item);
374 min_items++;
375 }
376 }
377 read_unlock(&fs_info->global_root_lock);
378
379 /*
380 * But we also want to reserve enough space so we can do the fallback
381 * global reserve for an unlink, which is an additional 5 items (see the
382 * comment in __unlink_start_trans for what we're modifying.)
383 *
384 * But we also need space for the delayed ref updates from the unlink,
385 * so its 10, 5 for the actual operation, and 5 for the delayed ref
386 * updates.
387 */
388 min_items += 10;
389
390 num_bytes = max_t(u64, num_bytes,
391 btrfs_calc_insert_metadata_size(fs_info, min_items));
392
393 spin_lock(&sinfo->lock);
394 spin_lock(&block_rsv->lock);
395
396 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
397
398 if (block_rsv->reserved < block_rsv->size) {
399 num_bytes = block_rsv->size - block_rsv->reserved;
400 btrfs_space_info_update_bytes_may_use(fs_info, sinfo,
401 num_bytes);
402 block_rsv->reserved = block_rsv->size;
403 } else if (block_rsv->reserved > block_rsv->size) {
404 num_bytes = block_rsv->reserved - block_rsv->size;
405 btrfs_space_info_update_bytes_may_use(fs_info, sinfo,
406 -num_bytes);
407 block_rsv->reserved = block_rsv->size;
408 btrfs_try_granting_tickets(fs_info, sinfo);
409 }
410
411 if (block_rsv->reserved == block_rsv->size)
412 block_rsv->full = 1;
413 else
414 block_rsv->full = 0;
415
416 if (block_rsv->size >= sinfo->total_bytes)
417 sinfo->force_alloc = CHUNK_ALLOC_FORCE;
418 spin_unlock(&block_rsv->lock);
419 spin_unlock(&sinfo->lock);
420 }
421
422 void btrfs_init_root_block_rsv(struct btrfs_root *root)
423 {
424 struct btrfs_fs_info *fs_info = root->fs_info;
425
426 switch (root->root_key.objectid) {
427 case BTRFS_CSUM_TREE_OBJECTID:
428 case BTRFS_EXTENT_TREE_OBJECTID:
429 case BTRFS_FREE_SPACE_TREE_OBJECTID:
430 root->block_rsv = &fs_info->delayed_refs_rsv;
431 break;
432 case BTRFS_ROOT_TREE_OBJECTID:
433 case BTRFS_DEV_TREE_OBJECTID:
434 case BTRFS_QUOTA_TREE_OBJECTID:
435 root->block_rsv = &fs_info->global_block_rsv;
436 break;
437 case BTRFS_CHUNK_TREE_OBJECTID:
438 root->block_rsv = &fs_info->chunk_block_rsv;
439 break;
440 default:
441 root->block_rsv = NULL;
442 break;
443 }
444 }
445
446 void btrfs_init_global_block_rsv(struct btrfs_fs_info *fs_info)
447 {
448 struct btrfs_space_info *space_info;
449
450 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
451 fs_info->chunk_block_rsv.space_info = space_info;
452
453 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
454 fs_info->global_block_rsv.space_info = space_info;
455 fs_info->trans_block_rsv.space_info = space_info;
456 fs_info->empty_block_rsv.space_info = space_info;
457 fs_info->delayed_block_rsv.space_info = space_info;
458 fs_info->delayed_refs_rsv.space_info = space_info;
459
460 btrfs_update_global_block_rsv(fs_info);
461 }
462
463 void btrfs_release_global_block_rsv(struct btrfs_fs_info *fs_info)
464 {
465 btrfs_block_rsv_release(fs_info, &fs_info->global_block_rsv, (u64)-1,
466 NULL);
467 WARN_ON(fs_info->trans_block_rsv.size > 0);
468 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
469 WARN_ON(fs_info->chunk_block_rsv.size > 0);
470 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
471 WARN_ON(fs_info->delayed_block_rsv.size > 0);
472 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
473 WARN_ON(fs_info->delayed_refs_rsv.reserved > 0);
474 WARN_ON(fs_info->delayed_refs_rsv.size > 0);
475 }
476
477 static struct btrfs_block_rsv *get_block_rsv(
478 const struct btrfs_trans_handle *trans,
479 const struct btrfs_root *root)
480 {
481 struct btrfs_fs_info *fs_info = root->fs_info;
482 struct btrfs_block_rsv *block_rsv = NULL;
483
484 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
485 (root == fs_info->uuid_root) ||
486 (trans->adding_csums &&
487 root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID))
488 block_rsv = trans->block_rsv;
489
490 if (!block_rsv)
491 block_rsv = root->block_rsv;
492
493 if (!block_rsv)
494 block_rsv = &fs_info->empty_block_rsv;
495
496 return block_rsv;
497 }
498
499 struct btrfs_block_rsv *btrfs_use_block_rsv(struct btrfs_trans_handle *trans,
500 struct btrfs_root *root,
501 u32 blocksize)
502 {
503 struct btrfs_fs_info *fs_info = root->fs_info;
504 struct btrfs_block_rsv *block_rsv;
505 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
506 int ret;
507 bool global_updated = false;
508
509 block_rsv = get_block_rsv(trans, root);
510
511 if (unlikely(block_rsv->size == 0))
512 goto try_reserve;
513 again:
514 ret = btrfs_block_rsv_use_bytes(block_rsv, blocksize);
515 if (!ret)
516 return block_rsv;
517
518 if (block_rsv->failfast)
519 return ERR_PTR(ret);
520
521 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
522 global_updated = true;
523 btrfs_update_global_block_rsv(fs_info);
524 goto again;
525 }
526
527 /*
528 * The global reserve still exists to save us from ourselves, so don't
529 * warn_on if we are short on our delayed refs reserve.
530 */
531 if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS &&
532 btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
533 static DEFINE_RATELIMIT_STATE(_rs,
534 DEFAULT_RATELIMIT_INTERVAL * 10,
535 /*DEFAULT_RATELIMIT_BURST*/ 1);
536 if (__ratelimit(&_rs))
537 WARN(1, KERN_DEBUG
538 "BTRFS: block rsv %d returned %d\n",
539 block_rsv->type, ret);
540 }
541 try_reserve:
542 ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, blocksize,
543 BTRFS_RESERVE_NO_FLUSH);
544 if (!ret)
545 return block_rsv;
546 /*
547 * If we couldn't reserve metadata bytes try and use some from
548 * the global reserve if its space type is the same as the global
549 * reservation.
550 */
551 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
552 block_rsv->space_info == global_rsv->space_info) {
553 ret = btrfs_block_rsv_use_bytes(global_rsv, blocksize);
554 if (!ret)
555 return global_rsv;
556 }
557 return ERR_PTR(ret);
558 }