]> git.ipfire.org Git - people/ms/linux.git/blob - fs/ntfs/attrib.c
4de597a83b88dd717459b33ff4c363888f72de60
[people/ms/linux.git] / fs / ntfs / attrib.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * attrib.c - NTFS attribute operations. Part of the Linux-NTFS project.
4 *
5 * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc.
6 * Copyright (c) 2002 Richard Russon
7 */
8
9 #include <linux/buffer_head.h>
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/swap.h>
13 #include <linux/writeback.h>
14
15 #include "attrib.h"
16 #include "debug.h"
17 #include "layout.h"
18 #include "lcnalloc.h"
19 #include "malloc.h"
20 #include "mft.h"
21 #include "ntfs.h"
22 #include "types.h"
23
24 /**
25 * ntfs_map_runlist_nolock - map (a part of) a runlist of an ntfs inode
26 * @ni: ntfs inode for which to map (part of) a runlist
27 * @vcn: map runlist part containing this vcn
28 * @ctx: active attribute search context if present or NULL if not
29 *
30 * Map the part of a runlist containing the @vcn of the ntfs inode @ni.
31 *
32 * If @ctx is specified, it is an active search context of @ni and its base mft
33 * record. This is needed when ntfs_map_runlist_nolock() encounters unmapped
34 * runlist fragments and allows their mapping. If you do not have the mft
35 * record mapped, you can specify @ctx as NULL and ntfs_map_runlist_nolock()
36 * will perform the necessary mapping and unmapping.
37 *
38 * Note, ntfs_map_runlist_nolock() saves the state of @ctx on entry and
39 * restores it before returning. Thus, @ctx will be left pointing to the same
40 * attribute on return as on entry. However, the actual pointers in @ctx may
41 * point to different memory locations on return, so you must remember to reset
42 * any cached pointers from the @ctx, i.e. after the call to
43 * ntfs_map_runlist_nolock(), you will probably want to do:
44 * m = ctx->mrec;
45 * a = ctx->attr;
46 * Assuming you cache ctx->attr in a variable @a of type ATTR_RECORD * and that
47 * you cache ctx->mrec in a variable @m of type MFT_RECORD *.
48 *
49 * Return 0 on success and -errno on error. There is one special error code
50 * which is not an error as such. This is -ENOENT. It means that @vcn is out
51 * of bounds of the runlist.
52 *
53 * Note the runlist can be NULL after this function returns if @vcn is zero and
54 * the attribute has zero allocated size, i.e. there simply is no runlist.
55 *
56 * WARNING: If @ctx is supplied, regardless of whether success or failure is
57 * returned, you need to check IS_ERR(@ctx->mrec) and if 'true' the @ctx
58 * is no longer valid, i.e. you need to either call
59 * ntfs_attr_reinit_search_ctx() or ntfs_attr_put_search_ctx() on it.
60 * In that case PTR_ERR(@ctx->mrec) will give you the error code for
61 * why the mapping of the old inode failed.
62 *
63 * Locking: - The runlist described by @ni must be locked for writing on entry
64 * and is locked on return. Note the runlist will be modified.
65 * - If @ctx is NULL, the base mft record of @ni must not be mapped on
66 * entry and it will be left unmapped on return.
67 * - If @ctx is not NULL, the base mft record must be mapped on entry
68 * and it will be left mapped on return.
69 */
70 int ntfs_map_runlist_nolock(ntfs_inode *ni, VCN vcn, ntfs_attr_search_ctx *ctx)
71 {
72 VCN end_vcn;
73 unsigned long flags;
74 ntfs_inode *base_ni;
75 MFT_RECORD *m;
76 ATTR_RECORD *a;
77 runlist_element *rl;
78 struct page *put_this_page = NULL;
79 int err = 0;
80 bool ctx_is_temporary, ctx_needs_reset;
81 ntfs_attr_search_ctx old_ctx = { NULL, };
82
83 ntfs_debug("Mapping runlist part containing vcn 0x%llx.",
84 (unsigned long long)vcn);
85 if (!NInoAttr(ni))
86 base_ni = ni;
87 else
88 base_ni = ni->ext.base_ntfs_ino;
89 if (!ctx) {
90 ctx_is_temporary = ctx_needs_reset = true;
91 m = map_mft_record(base_ni);
92 if (IS_ERR(m))
93 return PTR_ERR(m);
94 ctx = ntfs_attr_get_search_ctx(base_ni, m);
95 if (unlikely(!ctx)) {
96 err = -ENOMEM;
97 goto err_out;
98 }
99 } else {
100 VCN allocated_size_vcn;
101
102 BUG_ON(IS_ERR(ctx->mrec));
103 a = ctx->attr;
104 BUG_ON(!a->non_resident);
105 ctx_is_temporary = false;
106 end_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
107 read_lock_irqsave(&ni->size_lock, flags);
108 allocated_size_vcn = ni->allocated_size >>
109 ni->vol->cluster_size_bits;
110 read_unlock_irqrestore(&ni->size_lock, flags);
111 if (!a->data.non_resident.lowest_vcn && end_vcn <= 0)
112 end_vcn = allocated_size_vcn - 1;
113 /*
114 * If we already have the attribute extent containing @vcn in
115 * @ctx, no need to look it up again. We slightly cheat in
116 * that if vcn exceeds the allocated size, we will refuse to
117 * map the runlist below, so there is definitely no need to get
118 * the right attribute extent.
119 */
120 if (vcn >= allocated_size_vcn || (a->type == ni->type &&
121 a->name_length == ni->name_len &&
122 !memcmp((u8*)a + le16_to_cpu(a->name_offset),
123 ni->name, ni->name_len) &&
124 sle64_to_cpu(a->data.non_resident.lowest_vcn)
125 <= vcn && end_vcn >= vcn))
126 ctx_needs_reset = false;
127 else {
128 /* Save the old search context. */
129 old_ctx = *ctx;
130 /*
131 * If the currently mapped (extent) inode is not the
132 * base inode we will unmap it when we reinitialize the
133 * search context which means we need to get a
134 * reference to the page containing the mapped mft
135 * record so we do not accidentally drop changes to the
136 * mft record when it has not been marked dirty yet.
137 */
138 if (old_ctx.base_ntfs_ino && old_ctx.ntfs_ino !=
139 old_ctx.base_ntfs_ino) {
140 put_this_page = old_ctx.ntfs_ino->page;
141 get_page(put_this_page);
142 }
143 /*
144 * Reinitialize the search context so we can lookup the
145 * needed attribute extent.
146 */
147 ntfs_attr_reinit_search_ctx(ctx);
148 ctx_needs_reset = true;
149 }
150 }
151 if (ctx_needs_reset) {
152 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
153 CASE_SENSITIVE, vcn, NULL, 0, ctx);
154 if (unlikely(err)) {
155 if (err == -ENOENT)
156 err = -EIO;
157 goto err_out;
158 }
159 BUG_ON(!ctx->attr->non_resident);
160 }
161 a = ctx->attr;
162 /*
163 * Only decompress the mapping pairs if @vcn is inside it. Otherwise
164 * we get into problems when we try to map an out of bounds vcn because
165 * we then try to map the already mapped runlist fragment and
166 * ntfs_mapping_pairs_decompress() fails.
167 */
168 end_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn) + 1;
169 if (unlikely(vcn && vcn >= end_vcn)) {
170 err = -ENOENT;
171 goto err_out;
172 }
173 rl = ntfs_mapping_pairs_decompress(ni->vol, a, ni->runlist.rl);
174 if (IS_ERR(rl))
175 err = PTR_ERR(rl);
176 else
177 ni->runlist.rl = rl;
178 err_out:
179 if (ctx_is_temporary) {
180 if (likely(ctx))
181 ntfs_attr_put_search_ctx(ctx);
182 unmap_mft_record(base_ni);
183 } else if (ctx_needs_reset) {
184 /*
185 * If there is no attribute list, restoring the search context
186 * is accomplished simply by copying the saved context back over
187 * the caller supplied context. If there is an attribute list,
188 * things are more complicated as we need to deal with mapping
189 * of mft records and resulting potential changes in pointers.
190 */
191 if (NInoAttrList(base_ni)) {
192 /*
193 * If the currently mapped (extent) inode is not the
194 * one we had before, we need to unmap it and map the
195 * old one.
196 */
197 if (ctx->ntfs_ino != old_ctx.ntfs_ino) {
198 /*
199 * If the currently mapped inode is not the
200 * base inode, unmap it.
201 */
202 if (ctx->base_ntfs_ino && ctx->ntfs_ino !=
203 ctx->base_ntfs_ino) {
204 unmap_extent_mft_record(ctx->ntfs_ino);
205 ctx->mrec = ctx->base_mrec;
206 BUG_ON(!ctx->mrec);
207 }
208 /*
209 * If the old mapped inode is not the base
210 * inode, map it.
211 */
212 if (old_ctx.base_ntfs_ino &&
213 old_ctx.ntfs_ino !=
214 old_ctx.base_ntfs_ino) {
215 retry_map:
216 ctx->mrec = map_mft_record(
217 old_ctx.ntfs_ino);
218 /*
219 * Something bad has happened. If out
220 * of memory retry till it succeeds.
221 * Any other errors are fatal and we
222 * return the error code in ctx->mrec.
223 * Let the caller deal with it... We
224 * just need to fudge things so the
225 * caller can reinit and/or put the
226 * search context safely.
227 */
228 if (IS_ERR(ctx->mrec)) {
229 if (PTR_ERR(ctx->mrec) ==
230 -ENOMEM) {
231 schedule();
232 goto retry_map;
233 } else
234 old_ctx.ntfs_ino =
235 old_ctx.
236 base_ntfs_ino;
237 }
238 }
239 }
240 /* Update the changed pointers in the saved context. */
241 if (ctx->mrec != old_ctx.mrec) {
242 if (!IS_ERR(ctx->mrec))
243 old_ctx.attr = (ATTR_RECORD*)(
244 (u8*)ctx->mrec +
245 ((u8*)old_ctx.attr -
246 (u8*)old_ctx.mrec));
247 old_ctx.mrec = ctx->mrec;
248 }
249 }
250 /* Restore the search context to the saved one. */
251 *ctx = old_ctx;
252 /*
253 * We drop the reference on the page we took earlier. In the
254 * case that IS_ERR(ctx->mrec) is true this means we might lose
255 * some changes to the mft record that had been made between
256 * the last time it was marked dirty/written out and now. This
257 * at this stage is not a problem as the mapping error is fatal
258 * enough that the mft record cannot be written out anyway and
259 * the caller is very likely to shutdown the whole inode
260 * immediately and mark the volume dirty for chkdsk to pick up
261 * the pieces anyway.
262 */
263 if (put_this_page)
264 put_page(put_this_page);
265 }
266 return err;
267 }
268
269 /**
270 * ntfs_map_runlist - map (a part of) a runlist of an ntfs inode
271 * @ni: ntfs inode for which to map (part of) a runlist
272 * @vcn: map runlist part containing this vcn
273 *
274 * Map the part of a runlist containing the @vcn of the ntfs inode @ni.
275 *
276 * Return 0 on success and -errno on error. There is one special error code
277 * which is not an error as such. This is -ENOENT. It means that @vcn is out
278 * of bounds of the runlist.
279 *
280 * Locking: - The runlist must be unlocked on entry and is unlocked on return.
281 * - This function takes the runlist lock for writing and may modify
282 * the runlist.
283 */
284 int ntfs_map_runlist(ntfs_inode *ni, VCN vcn)
285 {
286 int err = 0;
287
288 down_write(&ni->runlist.lock);
289 /* Make sure someone else didn't do the work while we were sleeping. */
290 if (likely(ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn) <=
291 LCN_RL_NOT_MAPPED))
292 err = ntfs_map_runlist_nolock(ni, vcn, NULL);
293 up_write(&ni->runlist.lock);
294 return err;
295 }
296
297 /**
298 * ntfs_attr_vcn_to_lcn_nolock - convert a vcn into a lcn given an ntfs inode
299 * @ni: ntfs inode of the attribute whose runlist to search
300 * @vcn: vcn to convert
301 * @write_locked: true if the runlist is locked for writing
302 *
303 * Find the virtual cluster number @vcn in the runlist of the ntfs attribute
304 * described by the ntfs inode @ni and return the corresponding logical cluster
305 * number (lcn).
306 *
307 * If the @vcn is not mapped yet, the attempt is made to map the attribute
308 * extent containing the @vcn and the vcn to lcn conversion is retried.
309 *
310 * If @write_locked is true the caller has locked the runlist for writing and
311 * if false for reading.
312 *
313 * Since lcns must be >= 0, we use negative return codes with special meaning:
314 *
315 * Return code Meaning / Description
316 * ==========================================
317 * LCN_HOLE Hole / not allocated on disk.
318 * LCN_ENOENT There is no such vcn in the runlist, i.e. @vcn is out of bounds.
319 * LCN_ENOMEM Not enough memory to map runlist.
320 * LCN_EIO Critical error (runlist/file is corrupt, i/o error, etc).
321 *
322 * Locking: - The runlist must be locked on entry and is left locked on return.
323 * - If @write_locked is 'false', i.e. the runlist is locked for reading,
324 * the lock may be dropped inside the function so you cannot rely on
325 * the runlist still being the same when this function returns.
326 */
327 LCN ntfs_attr_vcn_to_lcn_nolock(ntfs_inode *ni, const VCN vcn,
328 const bool write_locked)
329 {
330 LCN lcn;
331 unsigned long flags;
332 bool is_retry = false;
333
334 BUG_ON(!ni);
335 ntfs_debug("Entering for i_ino 0x%lx, vcn 0x%llx, %s_locked.",
336 ni->mft_no, (unsigned long long)vcn,
337 write_locked ? "write" : "read");
338 BUG_ON(!NInoNonResident(ni));
339 BUG_ON(vcn < 0);
340 if (!ni->runlist.rl) {
341 read_lock_irqsave(&ni->size_lock, flags);
342 if (!ni->allocated_size) {
343 read_unlock_irqrestore(&ni->size_lock, flags);
344 return LCN_ENOENT;
345 }
346 read_unlock_irqrestore(&ni->size_lock, flags);
347 }
348 retry_remap:
349 /* Convert vcn to lcn. If that fails map the runlist and retry once. */
350 lcn = ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn);
351 if (likely(lcn >= LCN_HOLE)) {
352 ntfs_debug("Done, lcn 0x%llx.", (long long)lcn);
353 return lcn;
354 }
355 if (lcn != LCN_RL_NOT_MAPPED) {
356 if (lcn != LCN_ENOENT)
357 lcn = LCN_EIO;
358 } else if (!is_retry) {
359 int err;
360
361 if (!write_locked) {
362 up_read(&ni->runlist.lock);
363 down_write(&ni->runlist.lock);
364 if (unlikely(ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn) !=
365 LCN_RL_NOT_MAPPED)) {
366 up_write(&ni->runlist.lock);
367 down_read(&ni->runlist.lock);
368 goto retry_remap;
369 }
370 }
371 err = ntfs_map_runlist_nolock(ni, vcn, NULL);
372 if (!write_locked) {
373 up_write(&ni->runlist.lock);
374 down_read(&ni->runlist.lock);
375 }
376 if (likely(!err)) {
377 is_retry = true;
378 goto retry_remap;
379 }
380 if (err == -ENOENT)
381 lcn = LCN_ENOENT;
382 else if (err == -ENOMEM)
383 lcn = LCN_ENOMEM;
384 else
385 lcn = LCN_EIO;
386 }
387 if (lcn != LCN_ENOENT)
388 ntfs_error(ni->vol->sb, "Failed with error code %lli.",
389 (long long)lcn);
390 return lcn;
391 }
392
393 /**
394 * ntfs_attr_find_vcn_nolock - find a vcn in the runlist of an ntfs inode
395 * @ni: ntfs inode describing the runlist to search
396 * @vcn: vcn to find
397 * @ctx: active attribute search context if present or NULL if not
398 *
399 * Find the virtual cluster number @vcn in the runlist described by the ntfs
400 * inode @ni and return the address of the runlist element containing the @vcn.
401 *
402 * If the @vcn is not mapped yet, the attempt is made to map the attribute
403 * extent containing the @vcn and the vcn to lcn conversion is retried.
404 *
405 * If @ctx is specified, it is an active search context of @ni and its base mft
406 * record. This is needed when ntfs_attr_find_vcn_nolock() encounters unmapped
407 * runlist fragments and allows their mapping. If you do not have the mft
408 * record mapped, you can specify @ctx as NULL and ntfs_attr_find_vcn_nolock()
409 * will perform the necessary mapping and unmapping.
410 *
411 * Note, ntfs_attr_find_vcn_nolock() saves the state of @ctx on entry and
412 * restores it before returning. Thus, @ctx will be left pointing to the same
413 * attribute on return as on entry. However, the actual pointers in @ctx may
414 * point to different memory locations on return, so you must remember to reset
415 * any cached pointers from the @ctx, i.e. after the call to
416 * ntfs_attr_find_vcn_nolock(), you will probably want to do:
417 * m = ctx->mrec;
418 * a = ctx->attr;
419 * Assuming you cache ctx->attr in a variable @a of type ATTR_RECORD * and that
420 * you cache ctx->mrec in a variable @m of type MFT_RECORD *.
421 * Note you need to distinguish between the lcn of the returned runlist element
422 * being >= 0 and LCN_HOLE. In the later case you have to return zeroes on
423 * read and allocate clusters on write.
424 *
425 * Return the runlist element containing the @vcn on success and
426 * ERR_PTR(-errno) on error. You need to test the return value with IS_ERR()
427 * to decide if the return is success or failure and PTR_ERR() to get to the
428 * error code if IS_ERR() is true.
429 *
430 * The possible error return codes are:
431 * -ENOENT - No such vcn in the runlist, i.e. @vcn is out of bounds.
432 * -ENOMEM - Not enough memory to map runlist.
433 * -EIO - Critical error (runlist/file is corrupt, i/o error, etc).
434 *
435 * WARNING: If @ctx is supplied, regardless of whether success or failure is
436 * returned, you need to check IS_ERR(@ctx->mrec) and if 'true' the @ctx
437 * is no longer valid, i.e. you need to either call
438 * ntfs_attr_reinit_search_ctx() or ntfs_attr_put_search_ctx() on it.
439 * In that case PTR_ERR(@ctx->mrec) will give you the error code for
440 * why the mapping of the old inode failed.
441 *
442 * Locking: - The runlist described by @ni must be locked for writing on entry
443 * and is locked on return. Note the runlist may be modified when
444 * needed runlist fragments need to be mapped.
445 * - If @ctx is NULL, the base mft record of @ni must not be mapped on
446 * entry and it will be left unmapped on return.
447 * - If @ctx is not NULL, the base mft record must be mapped on entry
448 * and it will be left mapped on return.
449 */
450 runlist_element *ntfs_attr_find_vcn_nolock(ntfs_inode *ni, const VCN vcn,
451 ntfs_attr_search_ctx *ctx)
452 {
453 unsigned long flags;
454 runlist_element *rl;
455 int err = 0;
456 bool is_retry = false;
457
458 BUG_ON(!ni);
459 ntfs_debug("Entering for i_ino 0x%lx, vcn 0x%llx, with%s ctx.",
460 ni->mft_no, (unsigned long long)vcn, ctx ? "" : "out");
461 BUG_ON(!NInoNonResident(ni));
462 BUG_ON(vcn < 0);
463 if (!ni->runlist.rl) {
464 read_lock_irqsave(&ni->size_lock, flags);
465 if (!ni->allocated_size) {
466 read_unlock_irqrestore(&ni->size_lock, flags);
467 return ERR_PTR(-ENOENT);
468 }
469 read_unlock_irqrestore(&ni->size_lock, flags);
470 }
471 retry_remap:
472 rl = ni->runlist.rl;
473 if (likely(rl && vcn >= rl[0].vcn)) {
474 while (likely(rl->length)) {
475 if (unlikely(vcn < rl[1].vcn)) {
476 if (likely(rl->lcn >= LCN_HOLE)) {
477 ntfs_debug("Done.");
478 return rl;
479 }
480 break;
481 }
482 rl++;
483 }
484 if (likely(rl->lcn != LCN_RL_NOT_MAPPED)) {
485 if (likely(rl->lcn == LCN_ENOENT))
486 err = -ENOENT;
487 else
488 err = -EIO;
489 }
490 }
491 if (!err && !is_retry) {
492 /*
493 * If the search context is invalid we cannot map the unmapped
494 * region.
495 */
496 if (IS_ERR(ctx->mrec))
497 err = PTR_ERR(ctx->mrec);
498 else {
499 /*
500 * The @vcn is in an unmapped region, map the runlist
501 * and retry.
502 */
503 err = ntfs_map_runlist_nolock(ni, vcn, ctx);
504 if (likely(!err)) {
505 is_retry = true;
506 goto retry_remap;
507 }
508 }
509 if (err == -EINVAL)
510 err = -EIO;
511 } else if (!err)
512 err = -EIO;
513 if (err != -ENOENT)
514 ntfs_error(ni->vol->sb, "Failed with error code %i.", err);
515 return ERR_PTR(err);
516 }
517
518 /**
519 * ntfs_attr_find - find (next) attribute in mft record
520 * @type: attribute type to find
521 * @name: attribute name to find (optional, i.e. NULL means don't care)
522 * @name_len: attribute name length (only needed if @name present)
523 * @ic: IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present)
524 * @val: attribute value to find (optional, resident attributes only)
525 * @val_len: attribute value length
526 * @ctx: search context with mft record and attribute to search from
527 *
528 * You should not need to call this function directly. Use ntfs_attr_lookup()
529 * instead.
530 *
531 * ntfs_attr_find() takes a search context @ctx as parameter and searches the
532 * mft record specified by @ctx->mrec, beginning at @ctx->attr, for an
533 * attribute of @type, optionally @name and @val.
534 *
535 * If the attribute is found, ntfs_attr_find() returns 0 and @ctx->attr will
536 * point to the found attribute.
537 *
538 * If the attribute is not found, ntfs_attr_find() returns -ENOENT and
539 * @ctx->attr will point to the attribute before which the attribute being
540 * searched for would need to be inserted if such an action were to be desired.
541 *
542 * On actual error, ntfs_attr_find() returns -EIO. In this case @ctx->attr is
543 * undefined and in particular do not rely on it not changing.
544 *
545 * If @ctx->is_first is 'true', the search begins with @ctx->attr itself. If it
546 * is 'false', the search begins after @ctx->attr.
547 *
548 * If @ic is IGNORE_CASE, the @name comparisson is not case sensitive and
549 * @ctx->ntfs_ino must be set to the ntfs inode to which the mft record
550 * @ctx->mrec belongs. This is so we can get at the ntfs volume and hence at
551 * the upcase table. If @ic is CASE_SENSITIVE, the comparison is case
552 * sensitive. When @name is present, @name_len is the @name length in Unicode
553 * characters.
554 *
555 * If @name is not present (NULL), we assume that the unnamed attribute is
556 * being searched for.
557 *
558 * Finally, the resident attribute value @val is looked for, if present. If
559 * @val is not present (NULL), @val_len is ignored.
560 *
561 * ntfs_attr_find() only searches the specified mft record and it ignores the
562 * presence of an attribute list attribute (unless it is the one being searched
563 * for, obviously). If you need to take attribute lists into consideration,
564 * use ntfs_attr_lookup() instead (see below). This also means that you cannot
565 * use ntfs_attr_find() to search for extent records of non-resident
566 * attributes, as extents with lowest_vcn != 0 are usually described by the
567 * attribute list attribute only. - Note that it is possible that the first
568 * extent is only in the attribute list while the last extent is in the base
569 * mft record, so do not rely on being able to find the first extent in the
570 * base mft record.
571 *
572 * Warning: Never use @val when looking for attribute types which can be
573 * non-resident as this most likely will result in a crash!
574 */
575 static int ntfs_attr_find(const ATTR_TYPE type, const ntfschar *name,
576 const u32 name_len, const IGNORE_CASE_BOOL ic,
577 const u8 *val, const u32 val_len, ntfs_attr_search_ctx *ctx)
578 {
579 ATTR_RECORD *a;
580 ntfs_volume *vol = ctx->ntfs_ino->vol;
581 ntfschar *upcase = vol->upcase;
582 u32 upcase_len = vol->upcase_len;
583
584 /*
585 * Iterate over attributes in mft record starting at @ctx->attr, or the
586 * attribute following that, if @ctx->is_first is 'true'.
587 */
588 if (ctx->is_first) {
589 a = ctx->attr;
590 ctx->is_first = false;
591 } else
592 a = (ATTR_RECORD*)((u8*)ctx->attr +
593 le32_to_cpu(ctx->attr->length));
594 for (;; a = (ATTR_RECORD*)((u8*)a + le32_to_cpu(a->length))) {
595 if ((u8*)a < (u8*)ctx->mrec || (u8*)a > (u8*)ctx->mrec +
596 le32_to_cpu(ctx->mrec->bytes_allocated))
597 break;
598 ctx->attr = a;
599 if (unlikely(le32_to_cpu(a->type) > le32_to_cpu(type) ||
600 a->type == AT_END))
601 return -ENOENT;
602 if (unlikely(!a->length))
603 break;
604 if (a->type != type)
605 continue;
606 /*
607 * If @name is present, compare the two names. If @name is
608 * missing, assume we want an unnamed attribute.
609 */
610 if (!name) {
611 /* The search failed if the found attribute is named. */
612 if (a->name_length)
613 return -ENOENT;
614 } else if (!ntfs_are_names_equal(name, name_len,
615 (ntfschar*)((u8*)a + le16_to_cpu(a->name_offset)),
616 a->name_length, ic, upcase, upcase_len)) {
617 register int rc;
618
619 rc = ntfs_collate_names(name, name_len,
620 (ntfschar*)((u8*)a +
621 le16_to_cpu(a->name_offset)),
622 a->name_length, 1, IGNORE_CASE,
623 upcase, upcase_len);
624 /*
625 * If @name collates before a->name, there is no
626 * matching attribute.
627 */
628 if (rc == -1)
629 return -ENOENT;
630 /* If the strings are not equal, continue search. */
631 if (rc)
632 continue;
633 rc = ntfs_collate_names(name, name_len,
634 (ntfschar*)((u8*)a +
635 le16_to_cpu(a->name_offset)),
636 a->name_length, 1, CASE_SENSITIVE,
637 upcase, upcase_len);
638 if (rc == -1)
639 return -ENOENT;
640 if (rc)
641 continue;
642 }
643 /*
644 * The names match or @name not present and attribute is
645 * unnamed. If no @val specified, we have found the attribute
646 * and are done.
647 */
648 if (!val)
649 return 0;
650 /* @val is present; compare values. */
651 else {
652 register int rc;
653
654 rc = memcmp(val, (u8*)a + le16_to_cpu(
655 a->data.resident.value_offset),
656 min_t(u32, val_len, le32_to_cpu(
657 a->data.resident.value_length)));
658 /*
659 * If @val collates before the current attribute's
660 * value, there is no matching attribute.
661 */
662 if (!rc) {
663 register u32 avl;
664
665 avl = le32_to_cpu(
666 a->data.resident.value_length);
667 if (val_len == avl)
668 return 0;
669 if (val_len < avl)
670 return -ENOENT;
671 } else if (rc < 0)
672 return -ENOENT;
673 }
674 }
675 ntfs_error(vol->sb, "Inode is corrupt. Run chkdsk.");
676 NVolSetErrors(vol);
677 return -EIO;
678 }
679
680 /**
681 * load_attribute_list - load an attribute list into memory
682 * @vol: ntfs volume from which to read
683 * @runlist: runlist of the attribute list
684 * @al_start: destination buffer
685 * @size: size of the destination buffer in bytes
686 * @initialized_size: initialized size of the attribute list
687 *
688 * Walk the runlist @runlist and load all clusters from it copying them into
689 * the linear buffer @al. The maximum number of bytes copied to @al is @size
690 * bytes. Note, @size does not need to be a multiple of the cluster size. If
691 * @initialized_size is less than @size, the region in @al between
692 * @initialized_size and @size will be zeroed and not read from disk.
693 *
694 * Return 0 on success or -errno on error.
695 */
696 int load_attribute_list(ntfs_volume *vol, runlist *runlist, u8 *al_start,
697 const s64 size, const s64 initialized_size)
698 {
699 LCN lcn;
700 u8 *al = al_start;
701 u8 *al_end = al + initialized_size;
702 runlist_element *rl;
703 struct buffer_head *bh;
704 struct super_block *sb;
705 unsigned long block_size;
706 unsigned long block, max_block;
707 int err = 0;
708 unsigned char block_size_bits;
709
710 ntfs_debug("Entering.");
711 if (!vol || !runlist || !al || size <= 0 || initialized_size < 0 ||
712 initialized_size > size)
713 return -EINVAL;
714 if (!initialized_size) {
715 memset(al, 0, size);
716 return 0;
717 }
718 sb = vol->sb;
719 block_size = sb->s_blocksize;
720 block_size_bits = sb->s_blocksize_bits;
721 down_read(&runlist->lock);
722 rl = runlist->rl;
723 if (!rl) {
724 ntfs_error(sb, "Cannot read attribute list since runlist is "
725 "missing.");
726 goto err_out;
727 }
728 /* Read all clusters specified by the runlist one run at a time. */
729 while (rl->length) {
730 lcn = ntfs_rl_vcn_to_lcn(rl, rl->vcn);
731 ntfs_debug("Reading vcn = 0x%llx, lcn = 0x%llx.",
732 (unsigned long long)rl->vcn,
733 (unsigned long long)lcn);
734 /* The attribute list cannot be sparse. */
735 if (lcn < 0) {
736 ntfs_error(sb, "ntfs_rl_vcn_to_lcn() failed. Cannot "
737 "read attribute list.");
738 goto err_out;
739 }
740 block = lcn << vol->cluster_size_bits >> block_size_bits;
741 /* Read the run from device in chunks of block_size bytes. */
742 max_block = block + (rl->length << vol->cluster_size_bits >>
743 block_size_bits);
744 ntfs_debug("max_block = 0x%lx.", max_block);
745 do {
746 ntfs_debug("Reading block = 0x%lx.", block);
747 bh = sb_bread(sb, block);
748 if (!bh) {
749 ntfs_error(sb, "sb_bread() failed. Cannot "
750 "read attribute list.");
751 goto err_out;
752 }
753 if (al + block_size >= al_end)
754 goto do_final;
755 memcpy(al, bh->b_data, block_size);
756 brelse(bh);
757 al += block_size;
758 } while (++block < max_block);
759 rl++;
760 }
761 if (initialized_size < size) {
762 initialize:
763 memset(al_start + initialized_size, 0, size - initialized_size);
764 }
765 done:
766 up_read(&runlist->lock);
767 return err;
768 do_final:
769 if (al < al_end) {
770 /*
771 * Partial block.
772 *
773 * Note: The attribute list can be smaller than its allocation
774 * by multiple clusters. This has been encountered by at least
775 * two people running Windows XP, thus we cannot do any
776 * truncation sanity checking here. (AIA)
777 */
778 memcpy(al, bh->b_data, al_end - al);
779 brelse(bh);
780 if (initialized_size < size)
781 goto initialize;
782 goto done;
783 }
784 brelse(bh);
785 /* Real overflow! */
786 ntfs_error(sb, "Attribute list buffer overflow. Read attribute list "
787 "is truncated.");
788 err_out:
789 err = -EIO;
790 goto done;
791 }
792
793 /**
794 * ntfs_external_attr_find - find an attribute in the attribute list of an inode
795 * @type: attribute type to find
796 * @name: attribute name to find (optional, i.e. NULL means don't care)
797 * @name_len: attribute name length (only needed if @name present)
798 * @ic: IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present)
799 * @lowest_vcn: lowest vcn to find (optional, non-resident attributes only)
800 * @val: attribute value to find (optional, resident attributes only)
801 * @val_len: attribute value length
802 * @ctx: search context with mft record and attribute to search from
803 *
804 * You should not need to call this function directly. Use ntfs_attr_lookup()
805 * instead.
806 *
807 * Find an attribute by searching the attribute list for the corresponding
808 * attribute list entry. Having found the entry, map the mft record if the
809 * attribute is in a different mft record/inode, ntfs_attr_find() the attribute
810 * in there and return it.
811 *
812 * On first search @ctx->ntfs_ino must be the base mft record and @ctx must
813 * have been obtained from a call to ntfs_attr_get_search_ctx(). On subsequent
814 * calls @ctx->ntfs_ino can be any extent inode, too (@ctx->base_ntfs_ino is
815 * then the base inode).
816 *
817 * After finishing with the attribute/mft record you need to call
818 * ntfs_attr_put_search_ctx() to cleanup the search context (unmapping any
819 * mapped inodes, etc).
820 *
821 * If the attribute is found, ntfs_external_attr_find() returns 0 and
822 * @ctx->attr will point to the found attribute. @ctx->mrec will point to the
823 * mft record in which @ctx->attr is located and @ctx->al_entry will point to
824 * the attribute list entry for the attribute.
825 *
826 * If the attribute is not found, ntfs_external_attr_find() returns -ENOENT and
827 * @ctx->attr will point to the attribute in the base mft record before which
828 * the attribute being searched for would need to be inserted if such an action
829 * were to be desired. @ctx->mrec will point to the mft record in which
830 * @ctx->attr is located and @ctx->al_entry will point to the attribute list
831 * entry of the attribute before which the attribute being searched for would
832 * need to be inserted if such an action were to be desired.
833 *
834 * Thus to insert the not found attribute, one wants to add the attribute to
835 * @ctx->mrec (the base mft record) and if there is not enough space, the
836 * attribute should be placed in a newly allocated extent mft record. The
837 * attribute list entry for the inserted attribute should be inserted in the
838 * attribute list attribute at @ctx->al_entry.
839 *
840 * On actual error, ntfs_external_attr_find() returns -EIO. In this case
841 * @ctx->attr is undefined and in particular do not rely on it not changing.
842 */
843 static int ntfs_external_attr_find(const ATTR_TYPE type,
844 const ntfschar *name, const u32 name_len,
845 const IGNORE_CASE_BOOL ic, const VCN lowest_vcn,
846 const u8 *val, const u32 val_len, ntfs_attr_search_ctx *ctx)
847 {
848 ntfs_inode *base_ni, *ni;
849 ntfs_volume *vol;
850 ATTR_LIST_ENTRY *al_entry, *next_al_entry;
851 u8 *al_start, *al_end;
852 ATTR_RECORD *a;
853 ntfschar *al_name;
854 u32 al_name_len;
855 int err = 0;
856 static const char *es = " Unmount and run chkdsk.";
857
858 ni = ctx->ntfs_ino;
859 base_ni = ctx->base_ntfs_ino;
860 ntfs_debug("Entering for inode 0x%lx, type 0x%x.", ni->mft_no, type);
861 if (!base_ni) {
862 /* First call happens with the base mft record. */
863 base_ni = ctx->base_ntfs_ino = ctx->ntfs_ino;
864 ctx->base_mrec = ctx->mrec;
865 }
866 if (ni == base_ni)
867 ctx->base_attr = ctx->attr;
868 if (type == AT_END)
869 goto not_found;
870 vol = base_ni->vol;
871 al_start = base_ni->attr_list;
872 al_end = al_start + base_ni->attr_list_size;
873 if (!ctx->al_entry)
874 ctx->al_entry = (ATTR_LIST_ENTRY*)al_start;
875 /*
876 * Iterate over entries in attribute list starting at @ctx->al_entry,
877 * or the entry following that, if @ctx->is_first is 'true'.
878 */
879 if (ctx->is_first) {
880 al_entry = ctx->al_entry;
881 ctx->is_first = false;
882 } else
883 al_entry = (ATTR_LIST_ENTRY*)((u8*)ctx->al_entry +
884 le16_to_cpu(ctx->al_entry->length));
885 for (;; al_entry = next_al_entry) {
886 /* Out of bounds check. */
887 if ((u8*)al_entry < base_ni->attr_list ||
888 (u8*)al_entry > al_end)
889 break; /* Inode is corrupt. */
890 ctx->al_entry = al_entry;
891 /* Catch the end of the attribute list. */
892 if ((u8*)al_entry == al_end)
893 goto not_found;
894 if (!al_entry->length)
895 break;
896 if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
897 le16_to_cpu(al_entry->length) > al_end)
898 break;
899 next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
900 le16_to_cpu(al_entry->length));
901 if (le32_to_cpu(al_entry->type) > le32_to_cpu(type))
902 goto not_found;
903 if (type != al_entry->type)
904 continue;
905 /*
906 * If @name is present, compare the two names. If @name is
907 * missing, assume we want an unnamed attribute.
908 */
909 al_name_len = al_entry->name_length;
910 al_name = (ntfschar*)((u8*)al_entry + al_entry->name_offset);
911 if (!name) {
912 if (al_name_len)
913 goto not_found;
914 } else if (!ntfs_are_names_equal(al_name, al_name_len, name,
915 name_len, ic, vol->upcase, vol->upcase_len)) {
916 register int rc;
917
918 rc = ntfs_collate_names(name, name_len, al_name,
919 al_name_len, 1, IGNORE_CASE,
920 vol->upcase, vol->upcase_len);
921 /*
922 * If @name collates before al_name, there is no
923 * matching attribute.
924 */
925 if (rc == -1)
926 goto not_found;
927 /* If the strings are not equal, continue search. */
928 if (rc)
929 continue;
930 /*
931 * FIXME: Reverse engineering showed 0, IGNORE_CASE but
932 * that is inconsistent with ntfs_attr_find(). The
933 * subsequent rc checks were also different. Perhaps I
934 * made a mistake in one of the two. Need to recheck
935 * which is correct or at least see what is going on...
936 * (AIA)
937 */
938 rc = ntfs_collate_names(name, name_len, al_name,
939 al_name_len, 1, CASE_SENSITIVE,
940 vol->upcase, vol->upcase_len);
941 if (rc == -1)
942 goto not_found;
943 if (rc)
944 continue;
945 }
946 /*
947 * The names match or @name not present and attribute is
948 * unnamed. Now check @lowest_vcn. Continue search if the
949 * next attribute list entry still fits @lowest_vcn. Otherwise
950 * we have reached the right one or the search has failed.
951 */
952 if (lowest_vcn && (u8*)next_al_entry >= al_start &&
953 (u8*)next_al_entry + 6 < al_end &&
954 (u8*)next_al_entry + le16_to_cpu(
955 next_al_entry->length) <= al_end &&
956 sle64_to_cpu(next_al_entry->lowest_vcn) <=
957 lowest_vcn &&
958 next_al_entry->type == al_entry->type &&
959 next_al_entry->name_length == al_name_len &&
960 ntfs_are_names_equal((ntfschar*)((u8*)
961 next_al_entry +
962 next_al_entry->name_offset),
963 next_al_entry->name_length,
964 al_name, al_name_len, CASE_SENSITIVE,
965 vol->upcase, vol->upcase_len))
966 continue;
967 if (MREF_LE(al_entry->mft_reference) == ni->mft_no) {
968 if (MSEQNO_LE(al_entry->mft_reference) != ni->seq_no) {
969 ntfs_error(vol->sb, "Found stale mft "
970 "reference in attribute list "
971 "of base inode 0x%lx.%s",
972 base_ni->mft_no, es);
973 err = -EIO;
974 break;
975 }
976 } else { /* Mft references do not match. */
977 /* If there is a mapped record unmap it first. */
978 if (ni != base_ni)
979 unmap_extent_mft_record(ni);
980 /* Do we want the base record back? */
981 if (MREF_LE(al_entry->mft_reference) ==
982 base_ni->mft_no) {
983 ni = ctx->ntfs_ino = base_ni;
984 ctx->mrec = ctx->base_mrec;
985 } else {
986 /* We want an extent record. */
987 ctx->mrec = map_extent_mft_record(base_ni,
988 le64_to_cpu(
989 al_entry->mft_reference), &ni);
990 if (IS_ERR(ctx->mrec)) {
991 ntfs_error(vol->sb, "Failed to map "
992 "extent mft record "
993 "0x%lx of base inode "
994 "0x%lx.%s",
995 MREF_LE(al_entry->
996 mft_reference),
997 base_ni->mft_no, es);
998 err = PTR_ERR(ctx->mrec);
999 if (err == -ENOENT)
1000 err = -EIO;
1001 /* Cause @ctx to be sanitized below. */
1002 ni = NULL;
1003 break;
1004 }
1005 ctx->ntfs_ino = ni;
1006 }
1007 ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec +
1008 le16_to_cpu(ctx->mrec->attrs_offset));
1009 }
1010 /*
1011 * ctx->vfs_ino, ctx->mrec, and ctx->attr now point to the
1012 * mft record containing the attribute represented by the
1013 * current al_entry.
1014 */
1015 /*
1016 * We could call into ntfs_attr_find() to find the right
1017 * attribute in this mft record but this would be less
1018 * efficient and not quite accurate as ntfs_attr_find() ignores
1019 * the attribute instance numbers for example which become
1020 * important when one plays with attribute lists. Also,
1021 * because a proper match has been found in the attribute list
1022 * entry above, the comparison can now be optimized. So it is
1023 * worth re-implementing a simplified ntfs_attr_find() here.
1024 */
1025 a = ctx->attr;
1026 /*
1027 * Use a manual loop so we can still use break and continue
1028 * with the same meanings as above.
1029 */
1030 do_next_attr_loop:
1031 if ((u8*)a < (u8*)ctx->mrec || (u8*)a > (u8*)ctx->mrec +
1032 le32_to_cpu(ctx->mrec->bytes_allocated))
1033 break;
1034 if (a->type == AT_END)
1035 break;
1036 if (!a->length)
1037 break;
1038 if (al_entry->instance != a->instance)
1039 goto do_next_attr;
1040 /*
1041 * If the type and/or the name are mismatched between the
1042 * attribute list entry and the attribute record, there is
1043 * corruption so we break and return error EIO.
1044 */
1045 if (al_entry->type != a->type)
1046 break;
1047 if (!ntfs_are_names_equal((ntfschar*)((u8*)a +
1048 le16_to_cpu(a->name_offset)), a->name_length,
1049 al_name, al_name_len, CASE_SENSITIVE,
1050 vol->upcase, vol->upcase_len))
1051 break;
1052 ctx->attr = a;
1053 /*
1054 * If no @val specified or @val specified and it matches, we
1055 * have found it!
1056 */
1057 if (!val || (!a->non_resident && le32_to_cpu(
1058 a->data.resident.value_length) == val_len &&
1059 !memcmp((u8*)a +
1060 le16_to_cpu(a->data.resident.value_offset),
1061 val, val_len))) {
1062 ntfs_debug("Done, found.");
1063 return 0;
1064 }
1065 do_next_attr:
1066 /* Proceed to the next attribute in the current mft record. */
1067 a = (ATTR_RECORD*)((u8*)a + le32_to_cpu(a->length));
1068 goto do_next_attr_loop;
1069 }
1070 if (!err) {
1071 ntfs_error(vol->sb, "Base inode 0x%lx contains corrupt "
1072 "attribute list attribute.%s", base_ni->mft_no,
1073 es);
1074 err = -EIO;
1075 }
1076 if (ni != base_ni) {
1077 if (ni)
1078 unmap_extent_mft_record(ni);
1079 ctx->ntfs_ino = base_ni;
1080 ctx->mrec = ctx->base_mrec;
1081 ctx->attr = ctx->base_attr;
1082 }
1083 if (err != -ENOMEM)
1084 NVolSetErrors(vol);
1085 return err;
1086 not_found:
1087 /*
1088 * If we were looking for AT_END, we reset the search context @ctx and
1089 * use ntfs_attr_find() to seek to the end of the base mft record.
1090 */
1091 if (type == AT_END) {
1092 ntfs_attr_reinit_search_ctx(ctx);
1093 return ntfs_attr_find(AT_END, name, name_len, ic, val, val_len,
1094 ctx);
1095 }
1096 /*
1097 * The attribute was not found. Before we return, we want to ensure
1098 * @ctx->mrec and @ctx->attr indicate the position at which the
1099 * attribute should be inserted in the base mft record. Since we also
1100 * want to preserve @ctx->al_entry we cannot reinitialize the search
1101 * context using ntfs_attr_reinit_search_ctx() as this would set
1102 * @ctx->al_entry to NULL. Thus we do the necessary bits manually (see
1103 * ntfs_attr_init_search_ctx() below). Note, we _only_ preserve
1104 * @ctx->al_entry as the remaining fields (base_*) are identical to
1105 * their non base_ counterparts and we cannot set @ctx->base_attr
1106 * correctly yet as we do not know what @ctx->attr will be set to by
1107 * the call to ntfs_attr_find() below.
1108 */
1109 if (ni != base_ni)
1110 unmap_extent_mft_record(ni);
1111 ctx->mrec = ctx->base_mrec;
1112 ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec +
1113 le16_to_cpu(ctx->mrec->attrs_offset));
1114 ctx->is_first = true;
1115 ctx->ntfs_ino = base_ni;
1116 ctx->base_ntfs_ino = NULL;
1117 ctx->base_mrec = NULL;
1118 ctx->base_attr = NULL;
1119 /*
1120 * In case there are multiple matches in the base mft record, need to
1121 * keep enumerating until we get an attribute not found response (or
1122 * another error), otherwise we would keep returning the same attribute
1123 * over and over again and all programs using us for enumeration would
1124 * lock up in a tight loop.
1125 */
1126 do {
1127 err = ntfs_attr_find(type, name, name_len, ic, val, val_len,
1128 ctx);
1129 } while (!err);
1130 ntfs_debug("Done, not found.");
1131 return err;
1132 }
1133
1134 /**
1135 * ntfs_attr_lookup - find an attribute in an ntfs inode
1136 * @type: attribute type to find
1137 * @name: attribute name to find (optional, i.e. NULL means don't care)
1138 * @name_len: attribute name length (only needed if @name present)
1139 * @ic: IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present)
1140 * @lowest_vcn: lowest vcn to find (optional, non-resident attributes only)
1141 * @val: attribute value to find (optional, resident attributes only)
1142 * @val_len: attribute value length
1143 * @ctx: search context with mft record and attribute to search from
1144 *
1145 * Find an attribute in an ntfs inode. On first search @ctx->ntfs_ino must
1146 * be the base mft record and @ctx must have been obtained from a call to
1147 * ntfs_attr_get_search_ctx().
1148 *
1149 * This function transparently handles attribute lists and @ctx is used to
1150 * continue searches where they were left off at.
1151 *
1152 * After finishing with the attribute/mft record you need to call
1153 * ntfs_attr_put_search_ctx() to cleanup the search context (unmapping any
1154 * mapped inodes, etc).
1155 *
1156 * Return 0 if the search was successful and -errno if not.
1157 *
1158 * When 0, @ctx->attr is the found attribute and it is in mft record
1159 * @ctx->mrec. If an attribute list attribute is present, @ctx->al_entry is
1160 * the attribute list entry of the found attribute.
1161 *
1162 * When -ENOENT, @ctx->attr is the attribute which collates just after the
1163 * attribute being searched for, i.e. if one wants to add the attribute to the
1164 * mft record this is the correct place to insert it into. If an attribute
1165 * list attribute is present, @ctx->al_entry is the attribute list entry which
1166 * collates just after the attribute list entry of the attribute being searched
1167 * for, i.e. if one wants to add the attribute to the mft record this is the
1168 * correct place to insert its attribute list entry into.
1169 *
1170 * When -errno != -ENOENT, an error occurred during the lookup. @ctx->attr is
1171 * then undefined and in particular you should not rely on it not changing.
1172 */
1173 int ntfs_attr_lookup(const ATTR_TYPE type, const ntfschar *name,
1174 const u32 name_len, const IGNORE_CASE_BOOL ic,
1175 const VCN lowest_vcn, const u8 *val, const u32 val_len,
1176 ntfs_attr_search_ctx *ctx)
1177 {
1178 ntfs_inode *base_ni;
1179
1180 ntfs_debug("Entering.");
1181 BUG_ON(IS_ERR(ctx->mrec));
1182 if (ctx->base_ntfs_ino)
1183 base_ni = ctx->base_ntfs_ino;
1184 else
1185 base_ni = ctx->ntfs_ino;
1186 /* Sanity check, just for debugging really. */
1187 BUG_ON(!base_ni);
1188 if (!NInoAttrList(base_ni) || type == AT_ATTRIBUTE_LIST)
1189 return ntfs_attr_find(type, name, name_len, ic, val, val_len,
1190 ctx);
1191 return ntfs_external_attr_find(type, name, name_len, ic, lowest_vcn,
1192 val, val_len, ctx);
1193 }
1194
1195 /**
1196 * ntfs_attr_init_search_ctx - initialize an attribute search context
1197 * @ctx: attribute search context to initialize
1198 * @ni: ntfs inode with which to initialize the search context
1199 * @mrec: mft record with which to initialize the search context
1200 *
1201 * Initialize the attribute search context @ctx with @ni and @mrec.
1202 */
1203 static inline void ntfs_attr_init_search_ctx(ntfs_attr_search_ctx *ctx,
1204 ntfs_inode *ni, MFT_RECORD *mrec)
1205 {
1206 *ctx = (ntfs_attr_search_ctx) {
1207 .mrec = mrec,
1208 /* Sanity checks are performed elsewhere. */
1209 .attr = (ATTR_RECORD*)((u8*)mrec +
1210 le16_to_cpu(mrec->attrs_offset)),
1211 .is_first = true,
1212 .ntfs_ino = ni,
1213 };
1214 }
1215
1216 /**
1217 * ntfs_attr_reinit_search_ctx - reinitialize an attribute search context
1218 * @ctx: attribute search context to reinitialize
1219 *
1220 * Reinitialize the attribute search context @ctx, unmapping an associated
1221 * extent mft record if present, and initialize the search context again.
1222 *
1223 * This is used when a search for a new attribute is being started to reset
1224 * the search context to the beginning.
1225 */
1226 void ntfs_attr_reinit_search_ctx(ntfs_attr_search_ctx *ctx)
1227 {
1228 if (likely(!ctx->base_ntfs_ino)) {
1229 /* No attribute list. */
1230 ctx->is_first = true;
1231 /* Sanity checks are performed elsewhere. */
1232 ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec +
1233 le16_to_cpu(ctx->mrec->attrs_offset));
1234 /*
1235 * This needs resetting due to ntfs_external_attr_find() which
1236 * can leave it set despite having zeroed ctx->base_ntfs_ino.
1237 */
1238 ctx->al_entry = NULL;
1239 return;
1240 } /* Attribute list. */
1241 if (ctx->ntfs_ino != ctx->base_ntfs_ino)
1242 unmap_extent_mft_record(ctx->ntfs_ino);
1243 ntfs_attr_init_search_ctx(ctx, ctx->base_ntfs_ino, ctx->base_mrec);
1244 return;
1245 }
1246
1247 /**
1248 * ntfs_attr_get_search_ctx - allocate/initialize a new attribute search context
1249 * @ni: ntfs inode with which to initialize the search context
1250 * @mrec: mft record with which to initialize the search context
1251 *
1252 * Allocate a new attribute search context, initialize it with @ni and @mrec,
1253 * and return it. Return NULL if allocation failed.
1254 */
1255 ntfs_attr_search_ctx *ntfs_attr_get_search_ctx(ntfs_inode *ni, MFT_RECORD *mrec)
1256 {
1257 ntfs_attr_search_ctx *ctx;
1258
1259 ctx = kmem_cache_alloc(ntfs_attr_ctx_cache, GFP_NOFS);
1260 if (ctx)
1261 ntfs_attr_init_search_ctx(ctx, ni, mrec);
1262 return ctx;
1263 }
1264
1265 /**
1266 * ntfs_attr_put_search_ctx - release an attribute search context
1267 * @ctx: attribute search context to free
1268 *
1269 * Release the attribute search context @ctx, unmapping an associated extent
1270 * mft record if present.
1271 */
1272 void ntfs_attr_put_search_ctx(ntfs_attr_search_ctx *ctx)
1273 {
1274 if (ctx->base_ntfs_ino && ctx->ntfs_ino != ctx->base_ntfs_ino)
1275 unmap_extent_mft_record(ctx->ntfs_ino);
1276 kmem_cache_free(ntfs_attr_ctx_cache, ctx);
1277 return;
1278 }
1279
1280 #ifdef NTFS_RW
1281
1282 /**
1283 * ntfs_attr_find_in_attrdef - find an attribute in the $AttrDef system file
1284 * @vol: ntfs volume to which the attribute belongs
1285 * @type: attribute type which to find
1286 *
1287 * Search for the attribute definition record corresponding to the attribute
1288 * @type in the $AttrDef system file.
1289 *
1290 * Return the attribute type definition record if found and NULL if not found.
1291 */
1292 static ATTR_DEF *ntfs_attr_find_in_attrdef(const ntfs_volume *vol,
1293 const ATTR_TYPE type)
1294 {
1295 ATTR_DEF *ad;
1296
1297 BUG_ON(!vol->attrdef);
1298 BUG_ON(!type);
1299 for (ad = vol->attrdef; (u8*)ad - (u8*)vol->attrdef <
1300 vol->attrdef_size && ad->type; ++ad) {
1301 /* We have not found it yet, carry on searching. */
1302 if (likely(le32_to_cpu(ad->type) < le32_to_cpu(type)))
1303 continue;
1304 /* We found the attribute; return it. */
1305 if (likely(ad->type == type))
1306 return ad;
1307 /* We have gone too far already. No point in continuing. */
1308 break;
1309 }
1310 /* Attribute not found. */
1311 ntfs_debug("Attribute type 0x%x not found in $AttrDef.",
1312 le32_to_cpu(type));
1313 return NULL;
1314 }
1315
1316 /**
1317 * ntfs_attr_size_bounds_check - check a size of an attribute type for validity
1318 * @vol: ntfs volume to which the attribute belongs
1319 * @type: attribute type which to check
1320 * @size: size which to check
1321 *
1322 * Check whether the @size in bytes is valid for an attribute of @type on the
1323 * ntfs volume @vol. This information is obtained from $AttrDef system file.
1324 *
1325 * Return 0 if valid, -ERANGE if not valid, or -ENOENT if the attribute is not
1326 * listed in $AttrDef.
1327 */
1328 int ntfs_attr_size_bounds_check(const ntfs_volume *vol, const ATTR_TYPE type,
1329 const s64 size)
1330 {
1331 ATTR_DEF *ad;
1332
1333 BUG_ON(size < 0);
1334 /*
1335 * $ATTRIBUTE_LIST has a maximum size of 256kiB, but this is not
1336 * listed in $AttrDef.
1337 */
1338 if (unlikely(type == AT_ATTRIBUTE_LIST && size > 256 * 1024))
1339 return -ERANGE;
1340 /* Get the $AttrDef entry for the attribute @type. */
1341 ad = ntfs_attr_find_in_attrdef(vol, type);
1342 if (unlikely(!ad))
1343 return -ENOENT;
1344 /* Do the bounds check. */
1345 if (((sle64_to_cpu(ad->min_size) > 0) &&
1346 size < sle64_to_cpu(ad->min_size)) ||
1347 ((sle64_to_cpu(ad->max_size) > 0) && size >
1348 sle64_to_cpu(ad->max_size)))
1349 return -ERANGE;
1350 return 0;
1351 }
1352
1353 /**
1354 * ntfs_attr_can_be_non_resident - check if an attribute can be non-resident
1355 * @vol: ntfs volume to which the attribute belongs
1356 * @type: attribute type which to check
1357 *
1358 * Check whether the attribute of @type on the ntfs volume @vol is allowed to
1359 * be non-resident. This information is obtained from $AttrDef system file.
1360 *
1361 * Return 0 if the attribute is allowed to be non-resident, -EPERM if not, and
1362 * -ENOENT if the attribute is not listed in $AttrDef.
1363 */
1364 int ntfs_attr_can_be_non_resident(const ntfs_volume *vol, const ATTR_TYPE type)
1365 {
1366 ATTR_DEF *ad;
1367
1368 /* Find the attribute definition record in $AttrDef. */
1369 ad = ntfs_attr_find_in_attrdef(vol, type);
1370 if (unlikely(!ad))
1371 return -ENOENT;
1372 /* Check the flags and return the result. */
1373 if (ad->flags & ATTR_DEF_RESIDENT)
1374 return -EPERM;
1375 return 0;
1376 }
1377
1378 /**
1379 * ntfs_attr_can_be_resident - check if an attribute can be resident
1380 * @vol: ntfs volume to which the attribute belongs
1381 * @type: attribute type which to check
1382 *
1383 * Check whether the attribute of @type on the ntfs volume @vol is allowed to
1384 * be resident. This information is derived from our ntfs knowledge and may
1385 * not be completely accurate, especially when user defined attributes are
1386 * present. Basically we allow everything to be resident except for index
1387 * allocation and $EA attributes.
1388 *
1389 * Return 0 if the attribute is allowed to be non-resident and -EPERM if not.
1390 *
1391 * Warning: In the system file $MFT the attribute $Bitmap must be non-resident
1392 * otherwise windows will not boot (blue screen of death)! We cannot
1393 * check for this here as we do not know which inode's $Bitmap is
1394 * being asked about so the caller needs to special case this.
1395 */
1396 int ntfs_attr_can_be_resident(const ntfs_volume *vol, const ATTR_TYPE type)
1397 {
1398 if (type == AT_INDEX_ALLOCATION)
1399 return -EPERM;
1400 return 0;
1401 }
1402
1403 /**
1404 * ntfs_attr_record_resize - resize an attribute record
1405 * @m: mft record containing attribute record
1406 * @a: attribute record to resize
1407 * @new_size: new size in bytes to which to resize the attribute record @a
1408 *
1409 * Resize the attribute record @a, i.e. the resident part of the attribute, in
1410 * the mft record @m to @new_size bytes.
1411 *
1412 * Return 0 on success and -errno on error. The following error codes are
1413 * defined:
1414 * -ENOSPC - Not enough space in the mft record @m to perform the resize.
1415 *
1416 * Note: On error, no modifications have been performed whatsoever.
1417 *
1418 * Warning: If you make a record smaller without having copied all the data you
1419 * are interested in the data may be overwritten.
1420 */
1421 int ntfs_attr_record_resize(MFT_RECORD *m, ATTR_RECORD *a, u32 new_size)
1422 {
1423 ntfs_debug("Entering for new_size %u.", new_size);
1424 /* Align to 8 bytes if it is not already done. */
1425 if (new_size & 7)
1426 new_size = (new_size + 7) & ~7;
1427 /* If the actual attribute length has changed, move things around. */
1428 if (new_size != le32_to_cpu(a->length)) {
1429 u32 new_muse = le32_to_cpu(m->bytes_in_use) -
1430 le32_to_cpu(a->length) + new_size;
1431 /* Not enough space in this mft record. */
1432 if (new_muse > le32_to_cpu(m->bytes_allocated))
1433 return -ENOSPC;
1434 /* Move attributes following @a to their new location. */
1435 memmove((u8*)a + new_size, (u8*)a + le32_to_cpu(a->length),
1436 le32_to_cpu(m->bytes_in_use) - ((u8*)a -
1437 (u8*)m) - le32_to_cpu(a->length));
1438 /* Adjust @m to reflect the change in used space. */
1439 m->bytes_in_use = cpu_to_le32(new_muse);
1440 /* Adjust @a to reflect the new size. */
1441 if (new_size >= offsetof(ATTR_REC, length) + sizeof(a->length))
1442 a->length = cpu_to_le32(new_size);
1443 }
1444 return 0;
1445 }
1446
1447 /**
1448 * ntfs_resident_attr_value_resize - resize the value of a resident attribute
1449 * @m: mft record containing attribute record
1450 * @a: attribute record whose value to resize
1451 * @new_size: new size in bytes to which to resize the attribute value of @a
1452 *
1453 * Resize the value of the attribute @a in the mft record @m to @new_size bytes.
1454 * If the value is made bigger, the newly allocated space is cleared.
1455 *
1456 * Return 0 on success and -errno on error. The following error codes are
1457 * defined:
1458 * -ENOSPC - Not enough space in the mft record @m to perform the resize.
1459 *
1460 * Note: On error, no modifications have been performed whatsoever.
1461 *
1462 * Warning: If you make a record smaller without having copied all the data you
1463 * are interested in the data may be overwritten.
1464 */
1465 int ntfs_resident_attr_value_resize(MFT_RECORD *m, ATTR_RECORD *a,
1466 const u32 new_size)
1467 {
1468 u32 old_size;
1469
1470 /* Resize the resident part of the attribute record. */
1471 if (ntfs_attr_record_resize(m, a,
1472 le16_to_cpu(a->data.resident.value_offset) + new_size))
1473 return -ENOSPC;
1474 /*
1475 * The resize succeeded! If we made the attribute value bigger, clear
1476 * the area between the old size and @new_size.
1477 */
1478 old_size = le32_to_cpu(a->data.resident.value_length);
1479 if (new_size > old_size)
1480 memset((u8*)a + le16_to_cpu(a->data.resident.value_offset) +
1481 old_size, 0, new_size - old_size);
1482 /* Finally update the length of the attribute value. */
1483 a->data.resident.value_length = cpu_to_le32(new_size);
1484 return 0;
1485 }
1486
1487 /**
1488 * ntfs_attr_make_non_resident - convert a resident to a non-resident attribute
1489 * @ni: ntfs inode describing the attribute to convert
1490 * @data_size: size of the resident data to copy to the non-resident attribute
1491 *
1492 * Convert the resident ntfs attribute described by the ntfs inode @ni to a
1493 * non-resident one.
1494 *
1495 * @data_size must be equal to the attribute value size. This is needed since
1496 * we need to know the size before we can map the mft record and our callers
1497 * always know it. The reason we cannot simply read the size from the vfs
1498 * inode i_size is that this is not necessarily uptodate. This happens when
1499 * ntfs_attr_make_non_resident() is called in the ->truncate call path(s).
1500 *
1501 * Return 0 on success and -errno on error. The following error return codes
1502 * are defined:
1503 * -EPERM - The attribute is not allowed to be non-resident.
1504 * -ENOMEM - Not enough memory.
1505 * -ENOSPC - Not enough disk space.
1506 * -EINVAL - Attribute not defined on the volume.
1507 * -EIO - I/o error or other error.
1508 * Note that -ENOSPC is also returned in the case that there is not enough
1509 * space in the mft record to do the conversion. This can happen when the mft
1510 * record is already very full. The caller is responsible for trying to make
1511 * space in the mft record and trying again. FIXME: Do we need a separate
1512 * error return code for this kind of -ENOSPC or is it always worth trying
1513 * again in case the attribute may then fit in a resident state so no need to
1514 * make it non-resident at all? Ho-hum... (AIA)
1515 *
1516 * NOTE to self: No changes in the attribute list are required to move from
1517 * a resident to a non-resident attribute.
1518 *
1519 * Locking: - The caller must hold i_mutex on the inode.
1520 */
1521 int ntfs_attr_make_non_resident(ntfs_inode *ni, const u32 data_size)
1522 {
1523 s64 new_size;
1524 struct inode *vi = VFS_I(ni);
1525 ntfs_volume *vol = ni->vol;
1526 ntfs_inode *base_ni;
1527 MFT_RECORD *m;
1528 ATTR_RECORD *a;
1529 ntfs_attr_search_ctx *ctx;
1530 struct page *page;
1531 runlist_element *rl;
1532 u8 *kaddr;
1533 unsigned long flags;
1534 int mp_size, mp_ofs, name_ofs, arec_size, err, err2;
1535 u32 attr_size;
1536 u8 old_res_attr_flags;
1537
1538 /* Check that the attribute is allowed to be non-resident. */
1539 err = ntfs_attr_can_be_non_resident(vol, ni->type);
1540 if (unlikely(err)) {
1541 if (err == -EPERM)
1542 ntfs_debug("Attribute is not allowed to be "
1543 "non-resident.");
1544 else
1545 ntfs_debug("Attribute not defined on the NTFS "
1546 "volume!");
1547 return err;
1548 }
1549 /*
1550 * FIXME: Compressed and encrypted attributes are not supported when
1551 * writing and we should never have gotten here for them.
1552 */
1553 BUG_ON(NInoCompressed(ni));
1554 BUG_ON(NInoEncrypted(ni));
1555 /*
1556 * The size needs to be aligned to a cluster boundary for allocation
1557 * purposes.
1558 */
1559 new_size = (data_size + vol->cluster_size - 1) &
1560 ~(vol->cluster_size - 1);
1561 if (new_size > 0) {
1562 /*
1563 * Will need the page later and since the page lock nests
1564 * outside all ntfs locks, we need to get the page now.
1565 */
1566 page = find_or_create_page(vi->i_mapping, 0,
1567 mapping_gfp_mask(vi->i_mapping));
1568 if (unlikely(!page))
1569 return -ENOMEM;
1570 /* Start by allocating clusters to hold the attribute value. */
1571 rl = ntfs_cluster_alloc(vol, 0, new_size >>
1572 vol->cluster_size_bits, -1, DATA_ZONE, true);
1573 if (IS_ERR(rl)) {
1574 err = PTR_ERR(rl);
1575 ntfs_debug("Failed to allocate cluster%s, error code "
1576 "%i.", (new_size >>
1577 vol->cluster_size_bits) > 1 ? "s" : "",
1578 err);
1579 goto page_err_out;
1580 }
1581 } else {
1582 rl = NULL;
1583 page = NULL;
1584 }
1585 /* Determine the size of the mapping pairs array. */
1586 mp_size = ntfs_get_size_for_mapping_pairs(vol, rl, 0, -1);
1587 if (unlikely(mp_size < 0)) {
1588 err = mp_size;
1589 ntfs_debug("Failed to get size for mapping pairs array, error "
1590 "code %i.", err);
1591 goto rl_err_out;
1592 }
1593 down_write(&ni->runlist.lock);
1594 if (!NInoAttr(ni))
1595 base_ni = ni;
1596 else
1597 base_ni = ni->ext.base_ntfs_ino;
1598 m = map_mft_record(base_ni);
1599 if (IS_ERR(m)) {
1600 err = PTR_ERR(m);
1601 m = NULL;
1602 ctx = NULL;
1603 goto err_out;
1604 }
1605 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1606 if (unlikely(!ctx)) {
1607 err = -ENOMEM;
1608 goto err_out;
1609 }
1610 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1611 CASE_SENSITIVE, 0, NULL, 0, ctx);
1612 if (unlikely(err)) {
1613 if (err == -ENOENT)
1614 err = -EIO;
1615 goto err_out;
1616 }
1617 m = ctx->mrec;
1618 a = ctx->attr;
1619 BUG_ON(NInoNonResident(ni));
1620 BUG_ON(a->non_resident);
1621 /*
1622 * Calculate new offsets for the name and the mapping pairs array.
1623 */
1624 if (NInoSparse(ni) || NInoCompressed(ni))
1625 name_ofs = (offsetof(ATTR_REC,
1626 data.non_resident.compressed_size) +
1627 sizeof(a->data.non_resident.compressed_size) +
1628 7) & ~7;
1629 else
1630 name_ofs = (offsetof(ATTR_REC,
1631 data.non_resident.compressed_size) + 7) & ~7;
1632 mp_ofs = (name_ofs + a->name_length * sizeof(ntfschar) + 7) & ~7;
1633 /*
1634 * Determine the size of the resident part of the now non-resident
1635 * attribute record.
1636 */
1637 arec_size = (mp_ofs + mp_size + 7) & ~7;
1638 /*
1639 * If the page is not uptodate bring it uptodate by copying from the
1640 * attribute value.
1641 */
1642 attr_size = le32_to_cpu(a->data.resident.value_length);
1643 BUG_ON(attr_size != data_size);
1644 if (page && !PageUptodate(page)) {
1645 kaddr = kmap_atomic(page);
1646 memcpy(kaddr, (u8*)a +
1647 le16_to_cpu(a->data.resident.value_offset),
1648 attr_size);
1649 memset(kaddr + attr_size, 0, PAGE_SIZE - attr_size);
1650 kunmap_atomic(kaddr);
1651 flush_dcache_page(page);
1652 SetPageUptodate(page);
1653 }
1654 /* Backup the attribute flag. */
1655 old_res_attr_flags = a->data.resident.flags;
1656 /* Resize the resident part of the attribute record. */
1657 err = ntfs_attr_record_resize(m, a, arec_size);
1658 if (unlikely(err))
1659 goto err_out;
1660 /*
1661 * Convert the resident part of the attribute record to describe a
1662 * non-resident attribute.
1663 */
1664 a->non_resident = 1;
1665 /* Move the attribute name if it exists and update the offset. */
1666 if (a->name_length)
1667 memmove((u8*)a + name_ofs, (u8*)a + le16_to_cpu(a->name_offset),
1668 a->name_length * sizeof(ntfschar));
1669 a->name_offset = cpu_to_le16(name_ofs);
1670 /* Setup the fields specific to non-resident attributes. */
1671 a->data.non_resident.lowest_vcn = 0;
1672 a->data.non_resident.highest_vcn = cpu_to_sle64((new_size - 1) >>
1673 vol->cluster_size_bits);
1674 a->data.non_resident.mapping_pairs_offset = cpu_to_le16(mp_ofs);
1675 memset(&a->data.non_resident.reserved, 0,
1676 sizeof(a->data.non_resident.reserved));
1677 a->data.non_resident.allocated_size = cpu_to_sle64(new_size);
1678 a->data.non_resident.data_size =
1679 a->data.non_resident.initialized_size =
1680 cpu_to_sle64(attr_size);
1681 if (NInoSparse(ni) || NInoCompressed(ni)) {
1682 a->data.non_resident.compression_unit = 0;
1683 if (NInoCompressed(ni) || vol->major_ver < 3)
1684 a->data.non_resident.compression_unit = 4;
1685 a->data.non_resident.compressed_size =
1686 a->data.non_resident.allocated_size;
1687 } else
1688 a->data.non_resident.compression_unit = 0;
1689 /* Generate the mapping pairs array into the attribute record. */
1690 err = ntfs_mapping_pairs_build(vol, (u8*)a + mp_ofs,
1691 arec_size - mp_ofs, rl, 0, -1, NULL);
1692 if (unlikely(err)) {
1693 ntfs_debug("Failed to build mapping pairs, error code %i.",
1694 err);
1695 goto undo_err_out;
1696 }
1697 /* Setup the in-memory attribute structure to be non-resident. */
1698 ni->runlist.rl = rl;
1699 write_lock_irqsave(&ni->size_lock, flags);
1700 ni->allocated_size = new_size;
1701 if (NInoSparse(ni) || NInoCompressed(ni)) {
1702 ni->itype.compressed.size = ni->allocated_size;
1703 if (a->data.non_resident.compression_unit) {
1704 ni->itype.compressed.block_size = 1U << (a->data.
1705 non_resident.compression_unit +
1706 vol->cluster_size_bits);
1707 ni->itype.compressed.block_size_bits =
1708 ffs(ni->itype.compressed.block_size) -
1709 1;
1710 ni->itype.compressed.block_clusters = 1U <<
1711 a->data.non_resident.compression_unit;
1712 } else {
1713 ni->itype.compressed.block_size = 0;
1714 ni->itype.compressed.block_size_bits = 0;
1715 ni->itype.compressed.block_clusters = 0;
1716 }
1717 vi->i_blocks = ni->itype.compressed.size >> 9;
1718 } else
1719 vi->i_blocks = ni->allocated_size >> 9;
1720 write_unlock_irqrestore(&ni->size_lock, flags);
1721 /*
1722 * This needs to be last since the address space operations ->read_folio
1723 * and ->writepage can run concurrently with us as they are not
1724 * serialized on i_mutex. Note, we are not allowed to fail once we flip
1725 * this switch, which is another reason to do this last.
1726 */
1727 NInoSetNonResident(ni);
1728 /* Mark the mft record dirty, so it gets written back. */
1729 flush_dcache_mft_record_page(ctx->ntfs_ino);
1730 mark_mft_record_dirty(ctx->ntfs_ino);
1731 ntfs_attr_put_search_ctx(ctx);
1732 unmap_mft_record(base_ni);
1733 up_write(&ni->runlist.lock);
1734 if (page) {
1735 set_page_dirty(page);
1736 unlock_page(page);
1737 put_page(page);
1738 }
1739 ntfs_debug("Done.");
1740 return 0;
1741 undo_err_out:
1742 /* Convert the attribute back into a resident attribute. */
1743 a->non_resident = 0;
1744 /* Move the attribute name if it exists and update the offset. */
1745 name_ofs = (offsetof(ATTR_RECORD, data.resident.reserved) +
1746 sizeof(a->data.resident.reserved) + 7) & ~7;
1747 if (a->name_length)
1748 memmove((u8*)a + name_ofs, (u8*)a + le16_to_cpu(a->name_offset),
1749 a->name_length * sizeof(ntfschar));
1750 mp_ofs = (name_ofs + a->name_length * sizeof(ntfschar) + 7) & ~7;
1751 a->name_offset = cpu_to_le16(name_ofs);
1752 arec_size = (mp_ofs + attr_size + 7) & ~7;
1753 /* Resize the resident part of the attribute record. */
1754 err2 = ntfs_attr_record_resize(m, a, arec_size);
1755 if (unlikely(err2)) {
1756 /*
1757 * This cannot happen (well if memory corruption is at work it
1758 * could happen in theory), but deal with it as well as we can.
1759 * If the old size is too small, truncate the attribute,
1760 * otherwise simply give it a larger allocated size.
1761 * FIXME: Should check whether chkdsk complains when the
1762 * allocated size is much bigger than the resident value size.
1763 */
1764 arec_size = le32_to_cpu(a->length);
1765 if ((mp_ofs + attr_size) > arec_size) {
1766 err2 = attr_size;
1767 attr_size = arec_size - mp_ofs;
1768 ntfs_error(vol->sb, "Failed to undo partial resident "
1769 "to non-resident attribute "
1770 "conversion. Truncating inode 0x%lx, "
1771 "attribute type 0x%x from %i bytes to "
1772 "%i bytes to maintain metadata "
1773 "consistency. THIS MEANS YOU ARE "
1774 "LOSING %i BYTES DATA FROM THIS %s.",
1775 vi->i_ino,
1776 (unsigned)le32_to_cpu(ni->type),
1777 err2, attr_size, err2 - attr_size,
1778 ((ni->type == AT_DATA) &&
1779 !ni->name_len) ? "FILE": "ATTRIBUTE");
1780 write_lock_irqsave(&ni->size_lock, flags);
1781 ni->initialized_size = attr_size;
1782 i_size_write(vi, attr_size);
1783 write_unlock_irqrestore(&ni->size_lock, flags);
1784 }
1785 }
1786 /* Setup the fields specific to resident attributes. */
1787 a->data.resident.value_length = cpu_to_le32(attr_size);
1788 a->data.resident.value_offset = cpu_to_le16(mp_ofs);
1789 a->data.resident.flags = old_res_attr_flags;
1790 memset(&a->data.resident.reserved, 0,
1791 sizeof(a->data.resident.reserved));
1792 /* Copy the data from the page back to the attribute value. */
1793 if (page) {
1794 kaddr = kmap_atomic(page);
1795 memcpy((u8*)a + mp_ofs, kaddr, attr_size);
1796 kunmap_atomic(kaddr);
1797 }
1798 /* Setup the allocated size in the ntfs inode in case it changed. */
1799 write_lock_irqsave(&ni->size_lock, flags);
1800 ni->allocated_size = arec_size - mp_ofs;
1801 write_unlock_irqrestore(&ni->size_lock, flags);
1802 /* Mark the mft record dirty, so it gets written back. */
1803 flush_dcache_mft_record_page(ctx->ntfs_ino);
1804 mark_mft_record_dirty(ctx->ntfs_ino);
1805 err_out:
1806 if (ctx)
1807 ntfs_attr_put_search_ctx(ctx);
1808 if (m)
1809 unmap_mft_record(base_ni);
1810 ni->runlist.rl = NULL;
1811 up_write(&ni->runlist.lock);
1812 rl_err_out:
1813 if (rl) {
1814 if (ntfs_cluster_free_from_rl(vol, rl) < 0) {
1815 ntfs_error(vol->sb, "Failed to release allocated "
1816 "cluster(s) in error code path. Run "
1817 "chkdsk to recover the lost "
1818 "cluster(s).");
1819 NVolSetErrors(vol);
1820 }
1821 ntfs_free(rl);
1822 page_err_out:
1823 unlock_page(page);
1824 put_page(page);
1825 }
1826 if (err == -EINVAL)
1827 err = -EIO;
1828 return err;
1829 }
1830
1831 /**
1832 * ntfs_attr_extend_allocation - extend the allocated space of an attribute
1833 * @ni: ntfs inode of the attribute whose allocation to extend
1834 * @new_alloc_size: new size in bytes to which to extend the allocation to
1835 * @new_data_size: new size in bytes to which to extend the data to
1836 * @data_start: beginning of region which is required to be non-sparse
1837 *
1838 * Extend the allocated space of an attribute described by the ntfs inode @ni
1839 * to @new_alloc_size bytes. If @data_start is -1, the whole extension may be
1840 * implemented as a hole in the file (as long as both the volume and the ntfs
1841 * inode @ni have sparse support enabled). If @data_start is >= 0, then the
1842 * region between the old allocated size and @data_start - 1 may be made sparse
1843 * but the regions between @data_start and @new_alloc_size must be backed by
1844 * actual clusters.
1845 *
1846 * If @new_data_size is -1, it is ignored. If it is >= 0, then the data size
1847 * of the attribute is extended to @new_data_size. Note that the i_size of the
1848 * vfs inode is not updated. Only the data size in the base attribute record
1849 * is updated. The caller has to update i_size separately if this is required.
1850 * WARNING: It is a BUG() for @new_data_size to be smaller than the old data
1851 * size as well as for @new_data_size to be greater than @new_alloc_size.
1852 *
1853 * For resident attributes this involves resizing the attribute record and if
1854 * necessary moving it and/or other attributes into extent mft records and/or
1855 * converting the attribute to a non-resident attribute which in turn involves
1856 * extending the allocation of a non-resident attribute as described below.
1857 *
1858 * For non-resident attributes this involves allocating clusters in the data
1859 * zone on the volume (except for regions that are being made sparse) and
1860 * extending the run list to describe the allocated clusters as well as
1861 * updating the mapping pairs array of the attribute. This in turn involves
1862 * resizing the attribute record and if necessary moving it and/or other
1863 * attributes into extent mft records and/or splitting the attribute record
1864 * into multiple extent attribute records.
1865 *
1866 * Also, the attribute list attribute is updated if present and in some of the
1867 * above cases (the ones where extent mft records/attributes come into play),
1868 * an attribute list attribute is created if not already present.
1869 *
1870 * Return the new allocated size on success and -errno on error. In the case
1871 * that an error is encountered but a partial extension at least up to
1872 * @data_start (if present) is possible, the allocation is partially extended
1873 * and this is returned. This means the caller must check the returned size to
1874 * determine if the extension was partial. If @data_start is -1 then partial
1875 * allocations are not performed.
1876 *
1877 * WARNING: Do not call ntfs_attr_extend_allocation() for $MFT/$DATA.
1878 *
1879 * Locking: This function takes the runlist lock of @ni for writing as well as
1880 * locking the mft record of the base ntfs inode. These locks are maintained
1881 * throughout execution of the function. These locks are required so that the
1882 * attribute can be resized safely and so that it can for example be converted
1883 * from resident to non-resident safely.
1884 *
1885 * TODO: At present attribute list attribute handling is not implemented.
1886 *
1887 * TODO: At present it is not safe to call this function for anything other
1888 * than the $DATA attribute(s) of an uncompressed and unencrypted file.
1889 */
1890 s64 ntfs_attr_extend_allocation(ntfs_inode *ni, s64 new_alloc_size,
1891 const s64 new_data_size, const s64 data_start)
1892 {
1893 VCN vcn;
1894 s64 ll, allocated_size, start = data_start;
1895 struct inode *vi = VFS_I(ni);
1896 ntfs_volume *vol = ni->vol;
1897 ntfs_inode *base_ni;
1898 MFT_RECORD *m;
1899 ATTR_RECORD *a;
1900 ntfs_attr_search_ctx *ctx;
1901 runlist_element *rl, *rl2;
1902 unsigned long flags;
1903 int err, mp_size;
1904 u32 attr_len = 0; /* Silence stupid gcc warning. */
1905 bool mp_rebuilt;
1906
1907 #ifdef DEBUG
1908 read_lock_irqsave(&ni->size_lock, flags);
1909 allocated_size = ni->allocated_size;
1910 read_unlock_irqrestore(&ni->size_lock, flags);
1911 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
1912 "old_allocated_size 0x%llx, "
1913 "new_allocated_size 0x%llx, new_data_size 0x%llx, "
1914 "data_start 0x%llx.", vi->i_ino,
1915 (unsigned)le32_to_cpu(ni->type),
1916 (unsigned long long)allocated_size,
1917 (unsigned long long)new_alloc_size,
1918 (unsigned long long)new_data_size,
1919 (unsigned long long)start);
1920 #endif
1921 retry_extend:
1922 /*
1923 * For non-resident attributes, @start and @new_size need to be aligned
1924 * to cluster boundaries for allocation purposes.
1925 */
1926 if (NInoNonResident(ni)) {
1927 if (start > 0)
1928 start &= ~(s64)vol->cluster_size_mask;
1929 new_alloc_size = (new_alloc_size + vol->cluster_size - 1) &
1930 ~(s64)vol->cluster_size_mask;
1931 }
1932 BUG_ON(new_data_size >= 0 && new_data_size > new_alloc_size);
1933 /* Check if new size is allowed in $AttrDef. */
1934 err = ntfs_attr_size_bounds_check(vol, ni->type, new_alloc_size);
1935 if (unlikely(err)) {
1936 /* Only emit errors when the write will fail completely. */
1937 read_lock_irqsave(&ni->size_lock, flags);
1938 allocated_size = ni->allocated_size;
1939 read_unlock_irqrestore(&ni->size_lock, flags);
1940 if (start < 0 || start >= allocated_size) {
1941 if (err == -ERANGE) {
1942 ntfs_error(vol->sb, "Cannot extend allocation "
1943 "of inode 0x%lx, attribute "
1944 "type 0x%x, because the new "
1945 "allocation would exceed the "
1946 "maximum allowed size for "
1947 "this attribute type.",
1948 vi->i_ino, (unsigned)
1949 le32_to_cpu(ni->type));
1950 } else {
1951 ntfs_error(vol->sb, "Cannot extend allocation "
1952 "of inode 0x%lx, attribute "
1953 "type 0x%x, because this "
1954 "attribute type is not "
1955 "defined on the NTFS volume. "
1956 "Possible corruption! You "
1957 "should run chkdsk!",
1958 vi->i_ino, (unsigned)
1959 le32_to_cpu(ni->type));
1960 }
1961 }
1962 /* Translate error code to be POSIX conformant for write(2). */
1963 if (err == -ERANGE)
1964 err = -EFBIG;
1965 else
1966 err = -EIO;
1967 return err;
1968 }
1969 if (!NInoAttr(ni))
1970 base_ni = ni;
1971 else
1972 base_ni = ni->ext.base_ntfs_ino;
1973 /*
1974 * We will be modifying both the runlist (if non-resident) and the mft
1975 * record so lock them both down.
1976 */
1977 down_write(&ni->runlist.lock);
1978 m = map_mft_record(base_ni);
1979 if (IS_ERR(m)) {
1980 err = PTR_ERR(m);
1981 m = NULL;
1982 ctx = NULL;
1983 goto err_out;
1984 }
1985 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1986 if (unlikely(!ctx)) {
1987 err = -ENOMEM;
1988 goto err_out;
1989 }
1990 read_lock_irqsave(&ni->size_lock, flags);
1991 allocated_size = ni->allocated_size;
1992 read_unlock_irqrestore(&ni->size_lock, flags);
1993 /*
1994 * If non-resident, seek to the last extent. If resident, there is
1995 * only one extent, so seek to that.
1996 */
1997 vcn = NInoNonResident(ni) ? allocated_size >> vol->cluster_size_bits :
1998 0;
1999 /*
2000 * Abort if someone did the work whilst we waited for the locks. If we
2001 * just converted the attribute from resident to non-resident it is
2002 * likely that exactly this has happened already. We cannot quite
2003 * abort if we need to update the data size.
2004 */
2005 if (unlikely(new_alloc_size <= allocated_size)) {
2006 ntfs_debug("Allocated size already exceeds requested size.");
2007 new_alloc_size = allocated_size;
2008 if (new_data_size < 0)
2009 goto done;
2010 /*
2011 * We want the first attribute extent so that we can update the
2012 * data size.
2013 */
2014 vcn = 0;
2015 }
2016 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2017 CASE_SENSITIVE, vcn, NULL, 0, ctx);
2018 if (unlikely(err)) {
2019 if (err == -ENOENT)
2020 err = -EIO;
2021 goto err_out;
2022 }
2023 m = ctx->mrec;
2024 a = ctx->attr;
2025 /* Use goto to reduce indentation. */
2026 if (a->non_resident)
2027 goto do_non_resident_extend;
2028 BUG_ON(NInoNonResident(ni));
2029 /* The total length of the attribute value. */
2030 attr_len = le32_to_cpu(a->data.resident.value_length);
2031 /*
2032 * Extend the attribute record to be able to store the new attribute
2033 * size. ntfs_attr_record_resize() will not do anything if the size is
2034 * not changing.
2035 */
2036 if (new_alloc_size < vol->mft_record_size &&
2037 !ntfs_attr_record_resize(m, a,
2038 le16_to_cpu(a->data.resident.value_offset) +
2039 new_alloc_size)) {
2040 /* The resize succeeded! */
2041 write_lock_irqsave(&ni->size_lock, flags);
2042 ni->allocated_size = le32_to_cpu(a->length) -
2043 le16_to_cpu(a->data.resident.value_offset);
2044 write_unlock_irqrestore(&ni->size_lock, flags);
2045 if (new_data_size >= 0) {
2046 BUG_ON(new_data_size < attr_len);
2047 a->data.resident.value_length =
2048 cpu_to_le32((u32)new_data_size);
2049 }
2050 goto flush_done;
2051 }
2052 /*
2053 * We have to drop all the locks so we can call
2054 * ntfs_attr_make_non_resident(). This could be optimised by try-
2055 * locking the first page cache page and only if that fails dropping
2056 * the locks, locking the page, and redoing all the locking and
2057 * lookups. While this would be a huge optimisation, it is not worth
2058 * it as this is definitely a slow code path.
2059 */
2060 ntfs_attr_put_search_ctx(ctx);
2061 unmap_mft_record(base_ni);
2062 up_write(&ni->runlist.lock);
2063 /*
2064 * Not enough space in the mft record, try to make the attribute
2065 * non-resident and if successful restart the extension process.
2066 */
2067 err = ntfs_attr_make_non_resident(ni, attr_len);
2068 if (likely(!err))
2069 goto retry_extend;
2070 /*
2071 * Could not make non-resident. If this is due to this not being
2072 * permitted for this attribute type or there not being enough space,
2073 * try to make other attributes non-resident. Otherwise fail.
2074 */
2075 if (unlikely(err != -EPERM && err != -ENOSPC)) {
2076 /* Only emit errors when the write will fail completely. */
2077 read_lock_irqsave(&ni->size_lock, flags);
2078 allocated_size = ni->allocated_size;
2079 read_unlock_irqrestore(&ni->size_lock, flags);
2080 if (start < 0 || start >= allocated_size)
2081 ntfs_error(vol->sb, "Cannot extend allocation of "
2082 "inode 0x%lx, attribute type 0x%x, "
2083 "because the conversion from resident "
2084 "to non-resident attribute failed "
2085 "with error code %i.", vi->i_ino,
2086 (unsigned)le32_to_cpu(ni->type), err);
2087 if (err != -ENOMEM)
2088 err = -EIO;
2089 goto conv_err_out;
2090 }
2091 /* TODO: Not implemented from here, abort. */
2092 read_lock_irqsave(&ni->size_lock, flags);
2093 allocated_size = ni->allocated_size;
2094 read_unlock_irqrestore(&ni->size_lock, flags);
2095 if (start < 0 || start >= allocated_size) {
2096 if (err == -ENOSPC)
2097 ntfs_error(vol->sb, "Not enough space in the mft "
2098 "record/on disk for the non-resident "
2099 "attribute value. This case is not "
2100 "implemented yet.");
2101 else /* if (err == -EPERM) */
2102 ntfs_error(vol->sb, "This attribute type may not be "
2103 "non-resident. This case is not "
2104 "implemented yet.");
2105 }
2106 err = -EOPNOTSUPP;
2107 goto conv_err_out;
2108 #if 0
2109 // TODO: Attempt to make other attributes non-resident.
2110 if (!err)
2111 goto do_resident_extend;
2112 /*
2113 * Both the attribute list attribute and the standard information
2114 * attribute must remain in the base inode. Thus, if this is one of
2115 * these attributes, we have to try to move other attributes out into
2116 * extent mft records instead.
2117 */
2118 if (ni->type == AT_ATTRIBUTE_LIST ||
2119 ni->type == AT_STANDARD_INFORMATION) {
2120 // TODO: Attempt to move other attributes into extent mft
2121 // records.
2122 err = -EOPNOTSUPP;
2123 if (!err)
2124 goto do_resident_extend;
2125 goto err_out;
2126 }
2127 // TODO: Attempt to move this attribute to an extent mft record, but
2128 // only if it is not already the only attribute in an mft record in
2129 // which case there would be nothing to gain.
2130 err = -EOPNOTSUPP;
2131 if (!err)
2132 goto do_resident_extend;
2133 /* There is nothing we can do to make enough space. )-: */
2134 goto err_out;
2135 #endif
2136 do_non_resident_extend:
2137 BUG_ON(!NInoNonResident(ni));
2138 if (new_alloc_size == allocated_size) {
2139 BUG_ON(vcn);
2140 goto alloc_done;
2141 }
2142 /*
2143 * If the data starts after the end of the old allocation, this is a
2144 * $DATA attribute and sparse attributes are enabled on the volume and
2145 * for this inode, then create a sparse region between the old
2146 * allocated size and the start of the data. Otherwise simply proceed
2147 * with filling the whole space between the old allocated size and the
2148 * new allocated size with clusters.
2149 */
2150 if ((start >= 0 && start <= allocated_size) || ni->type != AT_DATA ||
2151 !NVolSparseEnabled(vol) || NInoSparseDisabled(ni))
2152 goto skip_sparse;
2153 // TODO: This is not implemented yet. We just fill in with real
2154 // clusters for now...
2155 ntfs_debug("Inserting holes is not-implemented yet. Falling back to "
2156 "allocating real clusters instead.");
2157 skip_sparse:
2158 rl = ni->runlist.rl;
2159 if (likely(rl)) {
2160 /* Seek to the end of the runlist. */
2161 while (rl->length)
2162 rl++;
2163 }
2164 /* If this attribute extent is not mapped, map it now. */
2165 if (unlikely(!rl || rl->lcn == LCN_RL_NOT_MAPPED ||
2166 (rl->lcn == LCN_ENOENT && rl > ni->runlist.rl &&
2167 (rl-1)->lcn == LCN_RL_NOT_MAPPED))) {
2168 if (!rl && !allocated_size)
2169 goto first_alloc;
2170 rl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
2171 if (IS_ERR(rl)) {
2172 err = PTR_ERR(rl);
2173 if (start < 0 || start >= allocated_size)
2174 ntfs_error(vol->sb, "Cannot extend allocation "
2175 "of inode 0x%lx, attribute "
2176 "type 0x%x, because the "
2177 "mapping of a runlist "
2178 "fragment failed with error "
2179 "code %i.", vi->i_ino,
2180 (unsigned)le32_to_cpu(ni->type),
2181 err);
2182 if (err != -ENOMEM)
2183 err = -EIO;
2184 goto err_out;
2185 }
2186 ni->runlist.rl = rl;
2187 /* Seek to the end of the runlist. */
2188 while (rl->length)
2189 rl++;
2190 }
2191 /*
2192 * We now know the runlist of the last extent is mapped and @rl is at
2193 * the end of the runlist. We want to begin allocating clusters
2194 * starting at the last allocated cluster to reduce fragmentation. If
2195 * there are no valid LCNs in the attribute we let the cluster
2196 * allocator choose the starting cluster.
2197 */
2198 /* If the last LCN is a hole or simillar seek back to last real LCN. */
2199 while (rl->lcn < 0 && rl > ni->runlist.rl)
2200 rl--;
2201 first_alloc:
2202 // FIXME: Need to implement partial allocations so at least part of the
2203 // write can be performed when start >= 0. (Needed for POSIX write(2)
2204 // conformance.)
2205 rl2 = ntfs_cluster_alloc(vol, allocated_size >> vol->cluster_size_bits,
2206 (new_alloc_size - allocated_size) >>
2207 vol->cluster_size_bits, (rl && (rl->lcn >= 0)) ?
2208 rl->lcn + rl->length : -1, DATA_ZONE, true);
2209 if (IS_ERR(rl2)) {
2210 err = PTR_ERR(rl2);
2211 if (start < 0 || start >= allocated_size)
2212 ntfs_error(vol->sb, "Cannot extend allocation of "
2213 "inode 0x%lx, attribute type 0x%x, "
2214 "because the allocation of clusters "
2215 "failed with error code %i.", vi->i_ino,
2216 (unsigned)le32_to_cpu(ni->type), err);
2217 if (err != -ENOMEM && err != -ENOSPC)
2218 err = -EIO;
2219 goto err_out;
2220 }
2221 rl = ntfs_runlists_merge(ni->runlist.rl, rl2);
2222 if (IS_ERR(rl)) {
2223 err = PTR_ERR(rl);
2224 if (start < 0 || start >= allocated_size)
2225 ntfs_error(vol->sb, "Cannot extend allocation of "
2226 "inode 0x%lx, attribute type 0x%x, "
2227 "because the runlist merge failed "
2228 "with error code %i.", vi->i_ino,
2229 (unsigned)le32_to_cpu(ni->type), err);
2230 if (err != -ENOMEM)
2231 err = -EIO;
2232 if (ntfs_cluster_free_from_rl(vol, rl2)) {
2233 ntfs_error(vol->sb, "Failed to release allocated "
2234 "cluster(s) in error code path. Run "
2235 "chkdsk to recover the lost "
2236 "cluster(s).");
2237 NVolSetErrors(vol);
2238 }
2239 ntfs_free(rl2);
2240 goto err_out;
2241 }
2242 ni->runlist.rl = rl;
2243 ntfs_debug("Allocated 0x%llx clusters.", (long long)(new_alloc_size -
2244 allocated_size) >> vol->cluster_size_bits);
2245 /* Find the runlist element with which the attribute extent starts. */
2246 ll = sle64_to_cpu(a->data.non_resident.lowest_vcn);
2247 rl2 = ntfs_rl_find_vcn_nolock(rl, ll);
2248 BUG_ON(!rl2);
2249 BUG_ON(!rl2->length);
2250 BUG_ON(rl2->lcn < LCN_HOLE);
2251 mp_rebuilt = false;
2252 /* Get the size for the new mapping pairs array for this extent. */
2253 mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1);
2254 if (unlikely(mp_size <= 0)) {
2255 err = mp_size;
2256 if (start < 0 || start >= allocated_size)
2257 ntfs_error(vol->sb, "Cannot extend allocation of "
2258 "inode 0x%lx, attribute type 0x%x, "
2259 "because determining the size for the "
2260 "mapping pairs failed with error code "
2261 "%i.", vi->i_ino,
2262 (unsigned)le32_to_cpu(ni->type), err);
2263 err = -EIO;
2264 goto undo_alloc;
2265 }
2266 /* Extend the attribute record to fit the bigger mapping pairs array. */
2267 attr_len = le32_to_cpu(a->length);
2268 err = ntfs_attr_record_resize(m, a, mp_size +
2269 le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
2270 if (unlikely(err)) {
2271 BUG_ON(err != -ENOSPC);
2272 // TODO: Deal with this by moving this extent to a new mft
2273 // record or by starting a new extent in a new mft record,
2274 // possibly by extending this extent partially and filling it
2275 // and creating a new extent for the remainder, or by making
2276 // other attributes non-resident and/or by moving other
2277 // attributes out of this mft record.
2278 if (start < 0 || start >= allocated_size)
2279 ntfs_error(vol->sb, "Not enough space in the mft "
2280 "record for the extended attribute "
2281 "record. This case is not "
2282 "implemented yet.");
2283 err = -EOPNOTSUPP;
2284 goto undo_alloc;
2285 }
2286 mp_rebuilt = true;
2287 /* Generate the mapping pairs array directly into the attr record. */
2288 err = ntfs_mapping_pairs_build(vol, (u8*)a +
2289 le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
2290 mp_size, rl2, ll, -1, NULL);
2291 if (unlikely(err)) {
2292 if (start < 0 || start >= allocated_size)
2293 ntfs_error(vol->sb, "Cannot extend allocation of "
2294 "inode 0x%lx, attribute type 0x%x, "
2295 "because building the mapping pairs "
2296 "failed with error code %i.", vi->i_ino,
2297 (unsigned)le32_to_cpu(ni->type), err);
2298 err = -EIO;
2299 goto undo_alloc;
2300 }
2301 /* Update the highest_vcn. */
2302 a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
2303 vol->cluster_size_bits) - 1);
2304 /*
2305 * We now have extended the allocated size of the attribute. Reflect
2306 * this in the ntfs_inode structure and the attribute record.
2307 */
2308 if (a->data.non_resident.lowest_vcn) {
2309 /*
2310 * We are not in the first attribute extent, switch to it, but
2311 * first ensure the changes will make it to disk later.
2312 */
2313 flush_dcache_mft_record_page(ctx->ntfs_ino);
2314 mark_mft_record_dirty(ctx->ntfs_ino);
2315 ntfs_attr_reinit_search_ctx(ctx);
2316 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2317 CASE_SENSITIVE, 0, NULL, 0, ctx);
2318 if (unlikely(err))
2319 goto restore_undo_alloc;
2320 /* @m is not used any more so no need to set it. */
2321 a = ctx->attr;
2322 }
2323 write_lock_irqsave(&ni->size_lock, flags);
2324 ni->allocated_size = new_alloc_size;
2325 a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
2326 /*
2327 * FIXME: This would fail if @ni is a directory, $MFT, or an index,
2328 * since those can have sparse/compressed set. For example can be
2329 * set compressed even though it is not compressed itself and in that
2330 * case the bit means that files are to be created compressed in the
2331 * directory... At present this is ok as this code is only called for
2332 * regular files, and only for their $DATA attribute(s).
2333 * FIXME: The calculation is wrong if we created a hole above. For now
2334 * it does not matter as we never create holes.
2335 */
2336 if (NInoSparse(ni) || NInoCompressed(ni)) {
2337 ni->itype.compressed.size += new_alloc_size - allocated_size;
2338 a->data.non_resident.compressed_size =
2339 cpu_to_sle64(ni->itype.compressed.size);
2340 vi->i_blocks = ni->itype.compressed.size >> 9;
2341 } else
2342 vi->i_blocks = new_alloc_size >> 9;
2343 write_unlock_irqrestore(&ni->size_lock, flags);
2344 alloc_done:
2345 if (new_data_size >= 0) {
2346 BUG_ON(new_data_size <
2347 sle64_to_cpu(a->data.non_resident.data_size));
2348 a->data.non_resident.data_size = cpu_to_sle64(new_data_size);
2349 }
2350 flush_done:
2351 /* Ensure the changes make it to disk. */
2352 flush_dcache_mft_record_page(ctx->ntfs_ino);
2353 mark_mft_record_dirty(ctx->ntfs_ino);
2354 done:
2355 ntfs_attr_put_search_ctx(ctx);
2356 unmap_mft_record(base_ni);
2357 up_write(&ni->runlist.lock);
2358 ntfs_debug("Done, new_allocated_size 0x%llx.",
2359 (unsigned long long)new_alloc_size);
2360 return new_alloc_size;
2361 restore_undo_alloc:
2362 if (start < 0 || start >= allocated_size)
2363 ntfs_error(vol->sb, "Cannot complete extension of allocation "
2364 "of inode 0x%lx, attribute type 0x%x, because "
2365 "lookup of first attribute extent failed with "
2366 "error code %i.", vi->i_ino,
2367 (unsigned)le32_to_cpu(ni->type), err);
2368 if (err == -ENOENT)
2369 err = -EIO;
2370 ntfs_attr_reinit_search_ctx(ctx);
2371 if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len, CASE_SENSITIVE,
2372 allocated_size >> vol->cluster_size_bits, NULL, 0,
2373 ctx)) {
2374 ntfs_error(vol->sb, "Failed to find last attribute extent of "
2375 "attribute in error code path. Run chkdsk to "
2376 "recover.");
2377 write_lock_irqsave(&ni->size_lock, flags);
2378 ni->allocated_size = new_alloc_size;
2379 /*
2380 * FIXME: This would fail if @ni is a directory... See above.
2381 * FIXME: The calculation is wrong if we created a hole above.
2382 * For now it does not matter as we never create holes.
2383 */
2384 if (NInoSparse(ni) || NInoCompressed(ni)) {
2385 ni->itype.compressed.size += new_alloc_size -
2386 allocated_size;
2387 vi->i_blocks = ni->itype.compressed.size >> 9;
2388 } else
2389 vi->i_blocks = new_alloc_size >> 9;
2390 write_unlock_irqrestore(&ni->size_lock, flags);
2391 ntfs_attr_put_search_ctx(ctx);
2392 unmap_mft_record(base_ni);
2393 up_write(&ni->runlist.lock);
2394 /*
2395 * The only thing that is now wrong is the allocated size of the
2396 * base attribute extent which chkdsk should be able to fix.
2397 */
2398 NVolSetErrors(vol);
2399 return err;
2400 }
2401 ctx->attr->data.non_resident.highest_vcn = cpu_to_sle64(
2402 (allocated_size >> vol->cluster_size_bits) - 1);
2403 undo_alloc:
2404 ll = allocated_size >> vol->cluster_size_bits;
2405 if (ntfs_cluster_free(ni, ll, -1, ctx) < 0) {
2406 ntfs_error(vol->sb, "Failed to release allocated cluster(s) "
2407 "in error code path. Run chkdsk to recover "
2408 "the lost cluster(s).");
2409 NVolSetErrors(vol);
2410 }
2411 m = ctx->mrec;
2412 a = ctx->attr;
2413 /*
2414 * If the runlist truncation fails and/or the search context is no
2415 * longer valid, we cannot resize the attribute record or build the
2416 * mapping pairs array thus we mark the inode bad so that no access to
2417 * the freed clusters can happen.
2418 */
2419 if (ntfs_rl_truncate_nolock(vol, &ni->runlist, ll) || IS_ERR(m)) {
2420 ntfs_error(vol->sb, "Failed to %s in error code path. Run "
2421 "chkdsk to recover.", IS_ERR(m) ?
2422 "restore attribute search context" :
2423 "truncate attribute runlist");
2424 NVolSetErrors(vol);
2425 } else if (mp_rebuilt) {
2426 if (ntfs_attr_record_resize(m, a, attr_len)) {
2427 ntfs_error(vol->sb, "Failed to restore attribute "
2428 "record in error code path. Run "
2429 "chkdsk to recover.");
2430 NVolSetErrors(vol);
2431 } else /* if (success) */ {
2432 if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
2433 a->data.non_resident.
2434 mapping_pairs_offset), attr_len -
2435 le16_to_cpu(a->data.non_resident.
2436 mapping_pairs_offset), rl2, ll, -1,
2437 NULL)) {
2438 ntfs_error(vol->sb, "Failed to restore "
2439 "mapping pairs array in error "
2440 "code path. Run chkdsk to "
2441 "recover.");
2442 NVolSetErrors(vol);
2443 }
2444 flush_dcache_mft_record_page(ctx->ntfs_ino);
2445 mark_mft_record_dirty(ctx->ntfs_ino);
2446 }
2447 }
2448 err_out:
2449 if (ctx)
2450 ntfs_attr_put_search_ctx(ctx);
2451 if (m)
2452 unmap_mft_record(base_ni);
2453 up_write(&ni->runlist.lock);
2454 conv_err_out:
2455 ntfs_debug("Failed. Returning error code %i.", err);
2456 return err;
2457 }
2458
2459 /**
2460 * ntfs_attr_set - fill (a part of) an attribute with a byte
2461 * @ni: ntfs inode describing the attribute to fill
2462 * @ofs: offset inside the attribute at which to start to fill
2463 * @cnt: number of bytes to fill
2464 * @val: the unsigned 8-bit value with which to fill the attribute
2465 *
2466 * Fill @cnt bytes of the attribute described by the ntfs inode @ni starting at
2467 * byte offset @ofs inside the attribute with the constant byte @val.
2468 *
2469 * This function is effectively like memset() applied to an ntfs attribute.
2470 * Note thie function actually only operates on the page cache pages belonging
2471 * to the ntfs attribute and it marks them dirty after doing the memset().
2472 * Thus it relies on the vm dirty page write code paths to cause the modified
2473 * pages to be written to the mft record/disk.
2474 *
2475 * Return 0 on success and -errno on error. An error code of -ESPIPE means
2476 * that @ofs + @cnt were outside the end of the attribute and no write was
2477 * performed.
2478 */
2479 int ntfs_attr_set(ntfs_inode *ni, const s64 ofs, const s64 cnt, const u8 val)
2480 {
2481 ntfs_volume *vol = ni->vol;
2482 struct address_space *mapping;
2483 struct page *page;
2484 u8 *kaddr;
2485 pgoff_t idx, end;
2486 unsigned start_ofs, end_ofs, size;
2487
2488 ntfs_debug("Entering for ofs 0x%llx, cnt 0x%llx, val 0x%hx.",
2489 (long long)ofs, (long long)cnt, val);
2490 BUG_ON(ofs < 0);
2491 BUG_ON(cnt < 0);
2492 if (!cnt)
2493 goto done;
2494 /*
2495 * FIXME: Compressed and encrypted attributes are not supported when
2496 * writing and we should never have gotten here for them.
2497 */
2498 BUG_ON(NInoCompressed(ni));
2499 BUG_ON(NInoEncrypted(ni));
2500 mapping = VFS_I(ni)->i_mapping;
2501 /* Work out the starting index and page offset. */
2502 idx = ofs >> PAGE_SHIFT;
2503 start_ofs = ofs & ~PAGE_MASK;
2504 /* Work out the ending index and page offset. */
2505 end = ofs + cnt;
2506 end_ofs = end & ~PAGE_MASK;
2507 /* If the end is outside the inode size return -ESPIPE. */
2508 if (unlikely(end > i_size_read(VFS_I(ni)))) {
2509 ntfs_error(vol->sb, "Request exceeds end of attribute.");
2510 return -ESPIPE;
2511 }
2512 end >>= PAGE_SHIFT;
2513 /* If there is a first partial page, need to do it the slow way. */
2514 if (start_ofs) {
2515 page = read_mapping_page(mapping, idx, NULL);
2516 if (IS_ERR(page)) {
2517 ntfs_error(vol->sb, "Failed to read first partial "
2518 "page (error, index 0x%lx).", idx);
2519 return PTR_ERR(page);
2520 }
2521 /*
2522 * If the last page is the same as the first page, need to
2523 * limit the write to the end offset.
2524 */
2525 size = PAGE_SIZE;
2526 if (idx == end)
2527 size = end_ofs;
2528 kaddr = kmap_atomic(page);
2529 memset(kaddr + start_ofs, val, size - start_ofs);
2530 flush_dcache_page(page);
2531 kunmap_atomic(kaddr);
2532 set_page_dirty(page);
2533 put_page(page);
2534 balance_dirty_pages_ratelimited(mapping);
2535 cond_resched();
2536 if (idx == end)
2537 goto done;
2538 idx++;
2539 }
2540 /* Do the whole pages the fast way. */
2541 for (; idx < end; idx++) {
2542 /* Find or create the current page. (The page is locked.) */
2543 page = grab_cache_page(mapping, idx);
2544 if (unlikely(!page)) {
2545 ntfs_error(vol->sb, "Insufficient memory to grab "
2546 "page (index 0x%lx).", idx);
2547 return -ENOMEM;
2548 }
2549 kaddr = kmap_atomic(page);
2550 memset(kaddr, val, PAGE_SIZE);
2551 flush_dcache_page(page);
2552 kunmap_atomic(kaddr);
2553 /*
2554 * If the page has buffers, mark them uptodate since buffer
2555 * state and not page state is definitive in 2.6 kernels.
2556 */
2557 if (page_has_buffers(page)) {
2558 struct buffer_head *bh, *head;
2559
2560 bh = head = page_buffers(page);
2561 do {
2562 set_buffer_uptodate(bh);
2563 } while ((bh = bh->b_this_page) != head);
2564 }
2565 /* Now that buffers are uptodate, set the page uptodate, too. */
2566 SetPageUptodate(page);
2567 /*
2568 * Set the page and all its buffers dirty and mark the inode
2569 * dirty, too. The VM will write the page later on.
2570 */
2571 set_page_dirty(page);
2572 /* Finally unlock and release the page. */
2573 unlock_page(page);
2574 put_page(page);
2575 balance_dirty_pages_ratelimited(mapping);
2576 cond_resched();
2577 }
2578 /* If there is a last partial page, need to do it the slow way. */
2579 if (end_ofs) {
2580 page = read_mapping_page(mapping, idx, NULL);
2581 if (IS_ERR(page)) {
2582 ntfs_error(vol->sb, "Failed to read last partial page "
2583 "(error, index 0x%lx).", idx);
2584 return PTR_ERR(page);
2585 }
2586 kaddr = kmap_atomic(page);
2587 memset(kaddr, val, end_ofs);
2588 flush_dcache_page(page);
2589 kunmap_atomic(kaddr);
2590 set_page_dirty(page);
2591 put_page(page);
2592 balance_dirty_pages_ratelimited(mapping);
2593 cond_resched();
2594 }
2595 done:
2596 ntfs_debug("Done.");
2597 return 0;
2598 }
2599
2600 #endif /* NTFS_RW */