]> git.ipfire.org Git - people/ms/linux.git/blob - fs/userfaultfd.c
e943370107d06afab21d37fc43e2aa3714fb816e
[people/ms/linux.git] / fs / userfaultfd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/userfaultfd.c
4 *
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
8 *
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
11 */
12
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/mmu_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32 #include <linux/swapops.h>
33
34 int sysctl_unprivileged_userfaultfd __read_mostly;
35
36 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
37
38 /*
39 * Start with fault_pending_wqh and fault_wqh so they're more likely
40 * to be in the same cacheline.
41 *
42 * Locking order:
43 * fd_wqh.lock
44 * fault_pending_wqh.lock
45 * fault_wqh.lock
46 * event_wqh.lock
47 *
48 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
49 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
50 * also taken in IRQ context.
51 */
52 struct userfaultfd_ctx {
53 /* waitqueue head for the pending (i.e. not read) userfaults */
54 wait_queue_head_t fault_pending_wqh;
55 /* waitqueue head for the userfaults */
56 wait_queue_head_t fault_wqh;
57 /* waitqueue head for the pseudo fd to wakeup poll/read */
58 wait_queue_head_t fd_wqh;
59 /* waitqueue head for events */
60 wait_queue_head_t event_wqh;
61 /* a refile sequence protected by fault_pending_wqh lock */
62 seqcount_spinlock_t refile_seq;
63 /* pseudo fd refcounting */
64 refcount_t refcount;
65 /* userfaultfd syscall flags */
66 unsigned int flags;
67 /* features requested from the userspace */
68 unsigned int features;
69 /* released */
70 bool released;
71 /* memory mappings are changing because of non-cooperative event */
72 atomic_t mmap_changing;
73 /* mm with one ore more vmas attached to this userfaultfd_ctx */
74 struct mm_struct *mm;
75 };
76
77 struct userfaultfd_fork_ctx {
78 struct userfaultfd_ctx *orig;
79 struct userfaultfd_ctx *new;
80 struct list_head list;
81 };
82
83 struct userfaultfd_unmap_ctx {
84 struct userfaultfd_ctx *ctx;
85 unsigned long start;
86 unsigned long end;
87 struct list_head list;
88 };
89
90 struct userfaultfd_wait_queue {
91 struct uffd_msg msg;
92 wait_queue_entry_t wq;
93 struct userfaultfd_ctx *ctx;
94 bool waken;
95 };
96
97 struct userfaultfd_wake_range {
98 unsigned long start;
99 unsigned long len;
100 };
101
102 /* internal indication that UFFD_API ioctl was successfully executed */
103 #define UFFD_FEATURE_INITIALIZED (1u << 31)
104
105 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
106 {
107 return ctx->features & UFFD_FEATURE_INITIALIZED;
108 }
109
110 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
111 int wake_flags, void *key)
112 {
113 struct userfaultfd_wake_range *range = key;
114 int ret;
115 struct userfaultfd_wait_queue *uwq;
116 unsigned long start, len;
117
118 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
119 ret = 0;
120 /* len == 0 means wake all */
121 start = range->start;
122 len = range->len;
123 if (len && (start > uwq->msg.arg.pagefault.address ||
124 start + len <= uwq->msg.arg.pagefault.address))
125 goto out;
126 WRITE_ONCE(uwq->waken, true);
127 /*
128 * The Program-Order guarantees provided by the scheduler
129 * ensure uwq->waken is visible before the task is woken.
130 */
131 ret = wake_up_state(wq->private, mode);
132 if (ret) {
133 /*
134 * Wake only once, autoremove behavior.
135 *
136 * After the effect of list_del_init is visible to the other
137 * CPUs, the waitqueue may disappear from under us, see the
138 * !list_empty_careful() in handle_userfault().
139 *
140 * try_to_wake_up() has an implicit smp_mb(), and the
141 * wq->private is read before calling the extern function
142 * "wake_up_state" (which in turns calls try_to_wake_up).
143 */
144 list_del_init(&wq->entry);
145 }
146 out:
147 return ret;
148 }
149
150 /**
151 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
152 * context.
153 * @ctx: [in] Pointer to the userfaultfd context.
154 */
155 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
156 {
157 refcount_inc(&ctx->refcount);
158 }
159
160 /**
161 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
162 * context.
163 * @ctx: [in] Pointer to userfaultfd context.
164 *
165 * The userfaultfd context reference must have been previously acquired either
166 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
167 */
168 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
169 {
170 if (refcount_dec_and_test(&ctx->refcount)) {
171 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
172 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
173 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
174 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
175 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
176 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
177 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
178 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
179 mmdrop(ctx->mm);
180 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
181 }
182 }
183
184 static inline void msg_init(struct uffd_msg *msg)
185 {
186 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
187 /*
188 * Must use memset to zero out the paddings or kernel data is
189 * leaked to userland.
190 */
191 memset(msg, 0, sizeof(struct uffd_msg));
192 }
193
194 static inline struct uffd_msg userfault_msg(unsigned long address,
195 unsigned int flags,
196 unsigned long reason,
197 unsigned int features)
198 {
199 struct uffd_msg msg;
200 msg_init(&msg);
201 msg.event = UFFD_EVENT_PAGEFAULT;
202
203 if (!(features & UFFD_FEATURE_EXACT_ADDRESS))
204 address &= PAGE_MASK;
205 msg.arg.pagefault.address = address;
206 /*
207 * These flags indicate why the userfault occurred:
208 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
209 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
210 * - Neither of these flags being set indicates a MISSING fault.
211 *
212 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
213 * fault. Otherwise, it was a read fault.
214 */
215 if (flags & FAULT_FLAG_WRITE)
216 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
217 if (reason & VM_UFFD_WP)
218 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
219 if (reason & VM_UFFD_MINOR)
220 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
221 if (features & UFFD_FEATURE_THREAD_ID)
222 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
223 return msg;
224 }
225
226 #ifdef CONFIG_HUGETLB_PAGE
227 /*
228 * Same functionality as userfaultfd_must_wait below with modifications for
229 * hugepmd ranges.
230 */
231 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
232 struct vm_area_struct *vma,
233 unsigned long address,
234 unsigned long flags,
235 unsigned long reason)
236 {
237 struct mm_struct *mm = ctx->mm;
238 pte_t *ptep, pte;
239 bool ret = true;
240
241 mmap_assert_locked(mm);
242
243 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
244
245 if (!ptep)
246 goto out;
247
248 ret = false;
249 pte = huge_ptep_get(ptep);
250
251 /*
252 * Lockless access: we're in a wait_event so it's ok if it
253 * changes under us. PTE markers should be handled the same as none
254 * ptes here.
255 */
256 if (huge_pte_none_mostly(pte))
257 ret = true;
258 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
259 ret = true;
260 out:
261 return ret;
262 }
263 #else
264 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
265 struct vm_area_struct *vma,
266 unsigned long address,
267 unsigned long flags,
268 unsigned long reason)
269 {
270 return false; /* should never get here */
271 }
272 #endif /* CONFIG_HUGETLB_PAGE */
273
274 /*
275 * Verify the pagetables are still not ok after having reigstered into
276 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
277 * userfault that has already been resolved, if userfaultfd_read and
278 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
279 * threads.
280 */
281 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
282 unsigned long address,
283 unsigned long flags,
284 unsigned long reason)
285 {
286 struct mm_struct *mm = ctx->mm;
287 pgd_t *pgd;
288 p4d_t *p4d;
289 pud_t *pud;
290 pmd_t *pmd, _pmd;
291 pte_t *pte;
292 bool ret = true;
293
294 mmap_assert_locked(mm);
295
296 pgd = pgd_offset(mm, address);
297 if (!pgd_present(*pgd))
298 goto out;
299 p4d = p4d_offset(pgd, address);
300 if (!p4d_present(*p4d))
301 goto out;
302 pud = pud_offset(p4d, address);
303 if (!pud_present(*pud))
304 goto out;
305 pmd = pmd_offset(pud, address);
306 /*
307 * READ_ONCE must function as a barrier with narrower scope
308 * and it must be equivalent to:
309 * _pmd = *pmd; barrier();
310 *
311 * This is to deal with the instability (as in
312 * pmd_trans_unstable) of the pmd.
313 */
314 _pmd = READ_ONCE(*pmd);
315 if (pmd_none(_pmd))
316 goto out;
317
318 ret = false;
319 if (!pmd_present(_pmd))
320 goto out;
321
322 if (pmd_trans_huge(_pmd)) {
323 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
324 ret = true;
325 goto out;
326 }
327
328 /*
329 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
330 * and use the standard pte_offset_map() instead of parsing _pmd.
331 */
332 pte = pte_offset_map(pmd, address);
333 /*
334 * Lockless access: we're in a wait_event so it's ok if it
335 * changes under us. PTE markers should be handled the same as none
336 * ptes here.
337 */
338 if (pte_none_mostly(*pte))
339 ret = true;
340 if (!pte_write(*pte) && (reason & VM_UFFD_WP))
341 ret = true;
342 pte_unmap(pte);
343
344 out:
345 return ret;
346 }
347
348 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
349 {
350 if (flags & FAULT_FLAG_INTERRUPTIBLE)
351 return TASK_INTERRUPTIBLE;
352
353 if (flags & FAULT_FLAG_KILLABLE)
354 return TASK_KILLABLE;
355
356 return TASK_UNINTERRUPTIBLE;
357 }
358
359 /*
360 * The locking rules involved in returning VM_FAULT_RETRY depending on
361 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
362 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
363 * recommendation in __lock_page_or_retry is not an understatement.
364 *
365 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
366 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
367 * not set.
368 *
369 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
370 * set, VM_FAULT_RETRY can still be returned if and only if there are
371 * fatal_signal_pending()s, and the mmap_lock must be released before
372 * returning it.
373 */
374 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
375 {
376 struct mm_struct *mm = vmf->vma->vm_mm;
377 struct userfaultfd_ctx *ctx;
378 struct userfaultfd_wait_queue uwq;
379 vm_fault_t ret = VM_FAULT_SIGBUS;
380 bool must_wait;
381 unsigned int blocking_state;
382
383 /*
384 * We don't do userfault handling for the final child pid update.
385 *
386 * We also don't do userfault handling during
387 * coredumping. hugetlbfs has the special
388 * follow_hugetlb_page() to skip missing pages in the
389 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
390 * the no_page_table() helper in follow_page_mask(), but the
391 * shmem_vm_ops->fault method is invoked even during
392 * coredumping without mmap_lock and it ends up here.
393 */
394 if (current->flags & (PF_EXITING|PF_DUMPCORE))
395 goto out;
396
397 /*
398 * Coredumping runs without mmap_lock so we can only check that
399 * the mmap_lock is held, if PF_DUMPCORE was not set.
400 */
401 mmap_assert_locked(mm);
402
403 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
404 if (!ctx)
405 goto out;
406
407 BUG_ON(ctx->mm != mm);
408
409 /* Any unrecognized flag is a bug. */
410 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
411 /* 0 or > 1 flags set is a bug; we expect exactly 1. */
412 VM_BUG_ON(!reason || (reason & (reason - 1)));
413
414 if (ctx->features & UFFD_FEATURE_SIGBUS)
415 goto out;
416 if ((vmf->flags & FAULT_FLAG_USER) == 0 &&
417 ctx->flags & UFFD_USER_MODE_ONLY) {
418 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
419 "sysctl knob to 1 if kernel faults must be handled "
420 "without obtaining CAP_SYS_PTRACE capability\n");
421 goto out;
422 }
423
424 /*
425 * If it's already released don't get it. This avoids to loop
426 * in __get_user_pages if userfaultfd_release waits on the
427 * caller of handle_userfault to release the mmap_lock.
428 */
429 if (unlikely(READ_ONCE(ctx->released))) {
430 /*
431 * Don't return VM_FAULT_SIGBUS in this case, so a non
432 * cooperative manager can close the uffd after the
433 * last UFFDIO_COPY, without risking to trigger an
434 * involuntary SIGBUS if the process was starting the
435 * userfaultfd while the userfaultfd was still armed
436 * (but after the last UFFDIO_COPY). If the uffd
437 * wasn't already closed when the userfault reached
438 * this point, that would normally be solved by
439 * userfaultfd_must_wait returning 'false'.
440 *
441 * If we were to return VM_FAULT_SIGBUS here, the non
442 * cooperative manager would be instead forced to
443 * always call UFFDIO_UNREGISTER before it can safely
444 * close the uffd.
445 */
446 ret = VM_FAULT_NOPAGE;
447 goto out;
448 }
449
450 /*
451 * Check that we can return VM_FAULT_RETRY.
452 *
453 * NOTE: it should become possible to return VM_FAULT_RETRY
454 * even if FAULT_FLAG_TRIED is set without leading to gup()
455 * -EBUSY failures, if the userfaultfd is to be extended for
456 * VM_UFFD_WP tracking and we intend to arm the userfault
457 * without first stopping userland access to the memory. For
458 * VM_UFFD_MISSING userfaults this is enough for now.
459 */
460 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
461 /*
462 * Validate the invariant that nowait must allow retry
463 * to be sure not to return SIGBUS erroneously on
464 * nowait invocations.
465 */
466 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
467 #ifdef CONFIG_DEBUG_VM
468 if (printk_ratelimit()) {
469 printk(KERN_WARNING
470 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
471 vmf->flags);
472 dump_stack();
473 }
474 #endif
475 goto out;
476 }
477
478 /*
479 * Handle nowait, not much to do other than tell it to retry
480 * and wait.
481 */
482 ret = VM_FAULT_RETRY;
483 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
484 goto out;
485
486 /* take the reference before dropping the mmap_lock */
487 userfaultfd_ctx_get(ctx);
488
489 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
490 uwq.wq.private = current;
491 uwq.msg = userfault_msg(vmf->real_address, vmf->flags, reason,
492 ctx->features);
493 uwq.ctx = ctx;
494 uwq.waken = false;
495
496 blocking_state = userfaultfd_get_blocking_state(vmf->flags);
497
498 spin_lock_irq(&ctx->fault_pending_wqh.lock);
499 /*
500 * After the __add_wait_queue the uwq is visible to userland
501 * through poll/read().
502 */
503 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
504 /*
505 * The smp_mb() after __set_current_state prevents the reads
506 * following the spin_unlock to happen before the list_add in
507 * __add_wait_queue.
508 */
509 set_current_state(blocking_state);
510 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
511
512 if (!is_vm_hugetlb_page(vmf->vma))
513 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
514 reason);
515 else
516 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
517 vmf->address,
518 vmf->flags, reason);
519 mmap_read_unlock(mm);
520
521 if (likely(must_wait && !READ_ONCE(ctx->released))) {
522 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
523 schedule();
524 }
525
526 __set_current_state(TASK_RUNNING);
527
528 /*
529 * Here we race with the list_del; list_add in
530 * userfaultfd_ctx_read(), however because we don't ever run
531 * list_del_init() to refile across the two lists, the prev
532 * and next pointers will never point to self. list_add also
533 * would never let any of the two pointers to point to
534 * self. So list_empty_careful won't risk to see both pointers
535 * pointing to self at any time during the list refile. The
536 * only case where list_del_init() is called is the full
537 * removal in the wake function and there we don't re-list_add
538 * and it's fine not to block on the spinlock. The uwq on this
539 * kernel stack can be released after the list_del_init.
540 */
541 if (!list_empty_careful(&uwq.wq.entry)) {
542 spin_lock_irq(&ctx->fault_pending_wqh.lock);
543 /*
544 * No need of list_del_init(), the uwq on the stack
545 * will be freed shortly anyway.
546 */
547 list_del(&uwq.wq.entry);
548 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
549 }
550
551 /*
552 * ctx may go away after this if the userfault pseudo fd is
553 * already released.
554 */
555 userfaultfd_ctx_put(ctx);
556
557 out:
558 return ret;
559 }
560
561 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
562 struct userfaultfd_wait_queue *ewq)
563 {
564 struct userfaultfd_ctx *release_new_ctx;
565
566 if (WARN_ON_ONCE(current->flags & PF_EXITING))
567 goto out;
568
569 ewq->ctx = ctx;
570 init_waitqueue_entry(&ewq->wq, current);
571 release_new_ctx = NULL;
572
573 spin_lock_irq(&ctx->event_wqh.lock);
574 /*
575 * After the __add_wait_queue the uwq is visible to userland
576 * through poll/read().
577 */
578 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
579 for (;;) {
580 set_current_state(TASK_KILLABLE);
581 if (ewq->msg.event == 0)
582 break;
583 if (READ_ONCE(ctx->released) ||
584 fatal_signal_pending(current)) {
585 /*
586 * &ewq->wq may be queued in fork_event, but
587 * __remove_wait_queue ignores the head
588 * parameter. It would be a problem if it
589 * didn't.
590 */
591 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
592 if (ewq->msg.event == UFFD_EVENT_FORK) {
593 struct userfaultfd_ctx *new;
594
595 new = (struct userfaultfd_ctx *)
596 (unsigned long)
597 ewq->msg.arg.reserved.reserved1;
598 release_new_ctx = new;
599 }
600 break;
601 }
602
603 spin_unlock_irq(&ctx->event_wqh.lock);
604
605 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
606 schedule();
607
608 spin_lock_irq(&ctx->event_wqh.lock);
609 }
610 __set_current_state(TASK_RUNNING);
611 spin_unlock_irq(&ctx->event_wqh.lock);
612
613 if (release_new_ctx) {
614 struct vm_area_struct *vma;
615 struct mm_struct *mm = release_new_ctx->mm;
616
617 /* the various vma->vm_userfaultfd_ctx still points to it */
618 mmap_write_lock(mm);
619 for (vma = mm->mmap; vma; vma = vma->vm_next)
620 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
621 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
622 vma->vm_flags &= ~__VM_UFFD_FLAGS;
623 }
624 mmap_write_unlock(mm);
625
626 userfaultfd_ctx_put(release_new_ctx);
627 }
628
629 /*
630 * ctx may go away after this if the userfault pseudo fd is
631 * already released.
632 */
633 out:
634 atomic_dec(&ctx->mmap_changing);
635 VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
636 userfaultfd_ctx_put(ctx);
637 }
638
639 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
640 struct userfaultfd_wait_queue *ewq)
641 {
642 ewq->msg.event = 0;
643 wake_up_locked(&ctx->event_wqh);
644 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
645 }
646
647 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
648 {
649 struct userfaultfd_ctx *ctx = NULL, *octx;
650 struct userfaultfd_fork_ctx *fctx;
651
652 octx = vma->vm_userfaultfd_ctx.ctx;
653 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
654 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
655 vma->vm_flags &= ~__VM_UFFD_FLAGS;
656 return 0;
657 }
658
659 list_for_each_entry(fctx, fcs, list)
660 if (fctx->orig == octx) {
661 ctx = fctx->new;
662 break;
663 }
664
665 if (!ctx) {
666 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
667 if (!fctx)
668 return -ENOMEM;
669
670 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
671 if (!ctx) {
672 kfree(fctx);
673 return -ENOMEM;
674 }
675
676 refcount_set(&ctx->refcount, 1);
677 ctx->flags = octx->flags;
678 ctx->features = octx->features;
679 ctx->released = false;
680 atomic_set(&ctx->mmap_changing, 0);
681 ctx->mm = vma->vm_mm;
682 mmgrab(ctx->mm);
683
684 userfaultfd_ctx_get(octx);
685 atomic_inc(&octx->mmap_changing);
686 fctx->orig = octx;
687 fctx->new = ctx;
688 list_add_tail(&fctx->list, fcs);
689 }
690
691 vma->vm_userfaultfd_ctx.ctx = ctx;
692 return 0;
693 }
694
695 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
696 {
697 struct userfaultfd_ctx *ctx = fctx->orig;
698 struct userfaultfd_wait_queue ewq;
699
700 msg_init(&ewq.msg);
701
702 ewq.msg.event = UFFD_EVENT_FORK;
703 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
704
705 userfaultfd_event_wait_completion(ctx, &ewq);
706 }
707
708 void dup_userfaultfd_complete(struct list_head *fcs)
709 {
710 struct userfaultfd_fork_ctx *fctx, *n;
711
712 list_for_each_entry_safe(fctx, n, fcs, list) {
713 dup_fctx(fctx);
714 list_del(&fctx->list);
715 kfree(fctx);
716 }
717 }
718
719 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
720 struct vm_userfaultfd_ctx *vm_ctx)
721 {
722 struct userfaultfd_ctx *ctx;
723
724 ctx = vma->vm_userfaultfd_ctx.ctx;
725
726 if (!ctx)
727 return;
728
729 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
730 vm_ctx->ctx = ctx;
731 userfaultfd_ctx_get(ctx);
732 atomic_inc(&ctx->mmap_changing);
733 } else {
734 /* Drop uffd context if remap feature not enabled */
735 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
736 vma->vm_flags &= ~__VM_UFFD_FLAGS;
737 }
738 }
739
740 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
741 unsigned long from, unsigned long to,
742 unsigned long len)
743 {
744 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
745 struct userfaultfd_wait_queue ewq;
746
747 if (!ctx)
748 return;
749
750 if (to & ~PAGE_MASK) {
751 userfaultfd_ctx_put(ctx);
752 return;
753 }
754
755 msg_init(&ewq.msg);
756
757 ewq.msg.event = UFFD_EVENT_REMAP;
758 ewq.msg.arg.remap.from = from;
759 ewq.msg.arg.remap.to = to;
760 ewq.msg.arg.remap.len = len;
761
762 userfaultfd_event_wait_completion(ctx, &ewq);
763 }
764
765 bool userfaultfd_remove(struct vm_area_struct *vma,
766 unsigned long start, unsigned long end)
767 {
768 struct mm_struct *mm = vma->vm_mm;
769 struct userfaultfd_ctx *ctx;
770 struct userfaultfd_wait_queue ewq;
771
772 ctx = vma->vm_userfaultfd_ctx.ctx;
773 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
774 return true;
775
776 userfaultfd_ctx_get(ctx);
777 atomic_inc(&ctx->mmap_changing);
778 mmap_read_unlock(mm);
779
780 msg_init(&ewq.msg);
781
782 ewq.msg.event = UFFD_EVENT_REMOVE;
783 ewq.msg.arg.remove.start = start;
784 ewq.msg.arg.remove.end = end;
785
786 userfaultfd_event_wait_completion(ctx, &ewq);
787
788 return false;
789 }
790
791 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
792 unsigned long start, unsigned long end)
793 {
794 struct userfaultfd_unmap_ctx *unmap_ctx;
795
796 list_for_each_entry(unmap_ctx, unmaps, list)
797 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
798 unmap_ctx->end == end)
799 return true;
800
801 return false;
802 }
803
804 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
805 unsigned long start, unsigned long end,
806 struct list_head *unmaps)
807 {
808 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
809 struct userfaultfd_unmap_ctx *unmap_ctx;
810 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
811
812 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
813 has_unmap_ctx(ctx, unmaps, start, end))
814 continue;
815
816 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
817 if (!unmap_ctx)
818 return -ENOMEM;
819
820 userfaultfd_ctx_get(ctx);
821 atomic_inc(&ctx->mmap_changing);
822 unmap_ctx->ctx = ctx;
823 unmap_ctx->start = start;
824 unmap_ctx->end = end;
825 list_add_tail(&unmap_ctx->list, unmaps);
826 }
827
828 return 0;
829 }
830
831 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
832 {
833 struct userfaultfd_unmap_ctx *ctx, *n;
834 struct userfaultfd_wait_queue ewq;
835
836 list_for_each_entry_safe(ctx, n, uf, list) {
837 msg_init(&ewq.msg);
838
839 ewq.msg.event = UFFD_EVENT_UNMAP;
840 ewq.msg.arg.remove.start = ctx->start;
841 ewq.msg.arg.remove.end = ctx->end;
842
843 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
844
845 list_del(&ctx->list);
846 kfree(ctx);
847 }
848 }
849
850 static int userfaultfd_release(struct inode *inode, struct file *file)
851 {
852 struct userfaultfd_ctx *ctx = file->private_data;
853 struct mm_struct *mm = ctx->mm;
854 struct vm_area_struct *vma, *prev;
855 /* len == 0 means wake all */
856 struct userfaultfd_wake_range range = { .len = 0, };
857 unsigned long new_flags;
858
859 WRITE_ONCE(ctx->released, true);
860
861 if (!mmget_not_zero(mm))
862 goto wakeup;
863
864 /*
865 * Flush page faults out of all CPUs. NOTE: all page faults
866 * must be retried without returning VM_FAULT_SIGBUS if
867 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
868 * changes while handle_userfault released the mmap_lock. So
869 * it's critical that released is set to true (above), before
870 * taking the mmap_lock for writing.
871 */
872 mmap_write_lock(mm);
873 prev = NULL;
874 for (vma = mm->mmap; vma; vma = vma->vm_next) {
875 cond_resched();
876 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
877 !!(vma->vm_flags & __VM_UFFD_FLAGS));
878 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
879 prev = vma;
880 continue;
881 }
882 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
883 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
884 new_flags, vma->anon_vma,
885 vma->vm_file, vma->vm_pgoff,
886 vma_policy(vma),
887 NULL_VM_UFFD_CTX, anon_vma_name(vma));
888 if (prev)
889 vma = prev;
890 else
891 prev = vma;
892 vma->vm_flags = new_flags;
893 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
894 }
895 mmap_write_unlock(mm);
896 mmput(mm);
897 wakeup:
898 /*
899 * After no new page faults can wait on this fault_*wqh, flush
900 * the last page faults that may have been already waiting on
901 * the fault_*wqh.
902 */
903 spin_lock_irq(&ctx->fault_pending_wqh.lock);
904 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
905 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
906 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
907
908 /* Flush pending events that may still wait on event_wqh */
909 wake_up_all(&ctx->event_wqh);
910
911 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
912 userfaultfd_ctx_put(ctx);
913 return 0;
914 }
915
916 /* fault_pending_wqh.lock must be hold by the caller */
917 static inline struct userfaultfd_wait_queue *find_userfault_in(
918 wait_queue_head_t *wqh)
919 {
920 wait_queue_entry_t *wq;
921 struct userfaultfd_wait_queue *uwq;
922
923 lockdep_assert_held(&wqh->lock);
924
925 uwq = NULL;
926 if (!waitqueue_active(wqh))
927 goto out;
928 /* walk in reverse to provide FIFO behavior to read userfaults */
929 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
930 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
931 out:
932 return uwq;
933 }
934
935 static inline struct userfaultfd_wait_queue *find_userfault(
936 struct userfaultfd_ctx *ctx)
937 {
938 return find_userfault_in(&ctx->fault_pending_wqh);
939 }
940
941 static inline struct userfaultfd_wait_queue *find_userfault_evt(
942 struct userfaultfd_ctx *ctx)
943 {
944 return find_userfault_in(&ctx->event_wqh);
945 }
946
947 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
948 {
949 struct userfaultfd_ctx *ctx = file->private_data;
950 __poll_t ret;
951
952 poll_wait(file, &ctx->fd_wqh, wait);
953
954 if (!userfaultfd_is_initialized(ctx))
955 return EPOLLERR;
956
957 /*
958 * poll() never guarantees that read won't block.
959 * userfaults can be waken before they're read().
960 */
961 if (unlikely(!(file->f_flags & O_NONBLOCK)))
962 return EPOLLERR;
963 /*
964 * lockless access to see if there are pending faults
965 * __pollwait last action is the add_wait_queue but
966 * the spin_unlock would allow the waitqueue_active to
967 * pass above the actual list_add inside
968 * add_wait_queue critical section. So use a full
969 * memory barrier to serialize the list_add write of
970 * add_wait_queue() with the waitqueue_active read
971 * below.
972 */
973 ret = 0;
974 smp_mb();
975 if (waitqueue_active(&ctx->fault_pending_wqh))
976 ret = EPOLLIN;
977 else if (waitqueue_active(&ctx->event_wqh))
978 ret = EPOLLIN;
979
980 return ret;
981 }
982
983 static const struct file_operations userfaultfd_fops;
984
985 static int resolve_userfault_fork(struct userfaultfd_ctx *new,
986 struct inode *inode,
987 struct uffd_msg *msg)
988 {
989 int fd;
990
991 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
992 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
993 if (fd < 0)
994 return fd;
995
996 msg->arg.reserved.reserved1 = 0;
997 msg->arg.fork.ufd = fd;
998 return 0;
999 }
1000
1001 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1002 struct uffd_msg *msg, struct inode *inode)
1003 {
1004 ssize_t ret;
1005 DECLARE_WAITQUEUE(wait, current);
1006 struct userfaultfd_wait_queue *uwq;
1007 /*
1008 * Handling fork event requires sleeping operations, so
1009 * we drop the event_wqh lock, then do these ops, then
1010 * lock it back and wake up the waiter. While the lock is
1011 * dropped the ewq may go away so we keep track of it
1012 * carefully.
1013 */
1014 LIST_HEAD(fork_event);
1015 struct userfaultfd_ctx *fork_nctx = NULL;
1016
1017 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1018 spin_lock_irq(&ctx->fd_wqh.lock);
1019 __add_wait_queue(&ctx->fd_wqh, &wait);
1020 for (;;) {
1021 set_current_state(TASK_INTERRUPTIBLE);
1022 spin_lock(&ctx->fault_pending_wqh.lock);
1023 uwq = find_userfault(ctx);
1024 if (uwq) {
1025 /*
1026 * Use a seqcount to repeat the lockless check
1027 * in wake_userfault() to avoid missing
1028 * wakeups because during the refile both
1029 * waitqueue could become empty if this is the
1030 * only userfault.
1031 */
1032 write_seqcount_begin(&ctx->refile_seq);
1033
1034 /*
1035 * The fault_pending_wqh.lock prevents the uwq
1036 * to disappear from under us.
1037 *
1038 * Refile this userfault from
1039 * fault_pending_wqh to fault_wqh, it's not
1040 * pending anymore after we read it.
1041 *
1042 * Use list_del() by hand (as
1043 * userfaultfd_wake_function also uses
1044 * list_del_init() by hand) to be sure nobody
1045 * changes __remove_wait_queue() to use
1046 * list_del_init() in turn breaking the
1047 * !list_empty_careful() check in
1048 * handle_userfault(). The uwq->wq.head list
1049 * must never be empty at any time during the
1050 * refile, or the waitqueue could disappear
1051 * from under us. The "wait_queue_head_t"
1052 * parameter of __remove_wait_queue() is unused
1053 * anyway.
1054 */
1055 list_del(&uwq->wq.entry);
1056 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1057
1058 write_seqcount_end(&ctx->refile_seq);
1059
1060 /* careful to always initialize msg if ret == 0 */
1061 *msg = uwq->msg;
1062 spin_unlock(&ctx->fault_pending_wqh.lock);
1063 ret = 0;
1064 break;
1065 }
1066 spin_unlock(&ctx->fault_pending_wqh.lock);
1067
1068 spin_lock(&ctx->event_wqh.lock);
1069 uwq = find_userfault_evt(ctx);
1070 if (uwq) {
1071 *msg = uwq->msg;
1072
1073 if (uwq->msg.event == UFFD_EVENT_FORK) {
1074 fork_nctx = (struct userfaultfd_ctx *)
1075 (unsigned long)
1076 uwq->msg.arg.reserved.reserved1;
1077 list_move(&uwq->wq.entry, &fork_event);
1078 /*
1079 * fork_nctx can be freed as soon as
1080 * we drop the lock, unless we take a
1081 * reference on it.
1082 */
1083 userfaultfd_ctx_get(fork_nctx);
1084 spin_unlock(&ctx->event_wqh.lock);
1085 ret = 0;
1086 break;
1087 }
1088
1089 userfaultfd_event_complete(ctx, uwq);
1090 spin_unlock(&ctx->event_wqh.lock);
1091 ret = 0;
1092 break;
1093 }
1094 spin_unlock(&ctx->event_wqh.lock);
1095
1096 if (signal_pending(current)) {
1097 ret = -ERESTARTSYS;
1098 break;
1099 }
1100 if (no_wait) {
1101 ret = -EAGAIN;
1102 break;
1103 }
1104 spin_unlock_irq(&ctx->fd_wqh.lock);
1105 schedule();
1106 spin_lock_irq(&ctx->fd_wqh.lock);
1107 }
1108 __remove_wait_queue(&ctx->fd_wqh, &wait);
1109 __set_current_state(TASK_RUNNING);
1110 spin_unlock_irq(&ctx->fd_wqh.lock);
1111
1112 if (!ret && msg->event == UFFD_EVENT_FORK) {
1113 ret = resolve_userfault_fork(fork_nctx, inode, msg);
1114 spin_lock_irq(&ctx->event_wqh.lock);
1115 if (!list_empty(&fork_event)) {
1116 /*
1117 * The fork thread didn't abort, so we can
1118 * drop the temporary refcount.
1119 */
1120 userfaultfd_ctx_put(fork_nctx);
1121
1122 uwq = list_first_entry(&fork_event,
1123 typeof(*uwq),
1124 wq.entry);
1125 /*
1126 * If fork_event list wasn't empty and in turn
1127 * the event wasn't already released by fork
1128 * (the event is allocated on fork kernel
1129 * stack), put the event back to its place in
1130 * the event_wq. fork_event head will be freed
1131 * as soon as we return so the event cannot
1132 * stay queued there no matter the current
1133 * "ret" value.
1134 */
1135 list_del(&uwq->wq.entry);
1136 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1137
1138 /*
1139 * Leave the event in the waitqueue and report
1140 * error to userland if we failed to resolve
1141 * the userfault fork.
1142 */
1143 if (likely(!ret))
1144 userfaultfd_event_complete(ctx, uwq);
1145 } else {
1146 /*
1147 * Here the fork thread aborted and the
1148 * refcount from the fork thread on fork_nctx
1149 * has already been released. We still hold
1150 * the reference we took before releasing the
1151 * lock above. If resolve_userfault_fork
1152 * failed we've to drop it because the
1153 * fork_nctx has to be freed in such case. If
1154 * it succeeded we'll hold it because the new
1155 * uffd references it.
1156 */
1157 if (ret)
1158 userfaultfd_ctx_put(fork_nctx);
1159 }
1160 spin_unlock_irq(&ctx->event_wqh.lock);
1161 }
1162
1163 return ret;
1164 }
1165
1166 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1167 size_t count, loff_t *ppos)
1168 {
1169 struct userfaultfd_ctx *ctx = file->private_data;
1170 ssize_t _ret, ret = 0;
1171 struct uffd_msg msg;
1172 int no_wait = file->f_flags & O_NONBLOCK;
1173 struct inode *inode = file_inode(file);
1174
1175 if (!userfaultfd_is_initialized(ctx))
1176 return -EINVAL;
1177
1178 for (;;) {
1179 if (count < sizeof(msg))
1180 return ret ? ret : -EINVAL;
1181 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1182 if (_ret < 0)
1183 return ret ? ret : _ret;
1184 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1185 return ret ? ret : -EFAULT;
1186 ret += sizeof(msg);
1187 buf += sizeof(msg);
1188 count -= sizeof(msg);
1189 /*
1190 * Allow to read more than one fault at time but only
1191 * block if waiting for the very first one.
1192 */
1193 no_wait = O_NONBLOCK;
1194 }
1195 }
1196
1197 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1198 struct userfaultfd_wake_range *range)
1199 {
1200 spin_lock_irq(&ctx->fault_pending_wqh.lock);
1201 /* wake all in the range and autoremove */
1202 if (waitqueue_active(&ctx->fault_pending_wqh))
1203 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1204 range);
1205 if (waitqueue_active(&ctx->fault_wqh))
1206 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1207 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1208 }
1209
1210 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1211 struct userfaultfd_wake_range *range)
1212 {
1213 unsigned seq;
1214 bool need_wakeup;
1215
1216 /*
1217 * To be sure waitqueue_active() is not reordered by the CPU
1218 * before the pagetable update, use an explicit SMP memory
1219 * barrier here. PT lock release or mmap_read_unlock(mm) still
1220 * have release semantics that can allow the
1221 * waitqueue_active() to be reordered before the pte update.
1222 */
1223 smp_mb();
1224
1225 /*
1226 * Use waitqueue_active because it's very frequent to
1227 * change the address space atomically even if there are no
1228 * userfaults yet. So we take the spinlock only when we're
1229 * sure we've userfaults to wake.
1230 */
1231 do {
1232 seq = read_seqcount_begin(&ctx->refile_seq);
1233 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1234 waitqueue_active(&ctx->fault_wqh);
1235 cond_resched();
1236 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1237 if (need_wakeup)
1238 __wake_userfault(ctx, range);
1239 }
1240
1241 static __always_inline int validate_range(struct mm_struct *mm,
1242 __u64 start, __u64 len)
1243 {
1244 __u64 task_size = mm->task_size;
1245
1246 if (start & ~PAGE_MASK)
1247 return -EINVAL;
1248 if (len & ~PAGE_MASK)
1249 return -EINVAL;
1250 if (!len)
1251 return -EINVAL;
1252 if (start < mmap_min_addr)
1253 return -EINVAL;
1254 if (start >= task_size)
1255 return -EINVAL;
1256 if (len > task_size - start)
1257 return -EINVAL;
1258 return 0;
1259 }
1260
1261 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1262 unsigned long arg)
1263 {
1264 struct mm_struct *mm = ctx->mm;
1265 struct vm_area_struct *vma, *prev, *cur;
1266 int ret;
1267 struct uffdio_register uffdio_register;
1268 struct uffdio_register __user *user_uffdio_register;
1269 unsigned long vm_flags, new_flags;
1270 bool found;
1271 bool basic_ioctls;
1272 unsigned long start, end, vma_end;
1273
1274 user_uffdio_register = (struct uffdio_register __user *) arg;
1275
1276 ret = -EFAULT;
1277 if (copy_from_user(&uffdio_register, user_uffdio_register,
1278 sizeof(uffdio_register)-sizeof(__u64)))
1279 goto out;
1280
1281 ret = -EINVAL;
1282 if (!uffdio_register.mode)
1283 goto out;
1284 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1285 goto out;
1286 vm_flags = 0;
1287 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1288 vm_flags |= VM_UFFD_MISSING;
1289 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1290 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1291 goto out;
1292 #endif
1293 vm_flags |= VM_UFFD_WP;
1294 }
1295 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1296 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1297 goto out;
1298 #endif
1299 vm_flags |= VM_UFFD_MINOR;
1300 }
1301
1302 ret = validate_range(mm, uffdio_register.range.start,
1303 uffdio_register.range.len);
1304 if (ret)
1305 goto out;
1306
1307 start = uffdio_register.range.start;
1308 end = start + uffdio_register.range.len;
1309
1310 ret = -ENOMEM;
1311 if (!mmget_not_zero(mm))
1312 goto out;
1313
1314 mmap_write_lock(mm);
1315 vma = find_vma_prev(mm, start, &prev);
1316 if (!vma)
1317 goto out_unlock;
1318
1319 /* check that there's at least one vma in the range */
1320 ret = -EINVAL;
1321 if (vma->vm_start >= end)
1322 goto out_unlock;
1323
1324 /*
1325 * If the first vma contains huge pages, make sure start address
1326 * is aligned to huge page size.
1327 */
1328 if (is_vm_hugetlb_page(vma)) {
1329 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1330
1331 if (start & (vma_hpagesize - 1))
1332 goto out_unlock;
1333 }
1334
1335 /*
1336 * Search for not compatible vmas.
1337 */
1338 found = false;
1339 basic_ioctls = false;
1340 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1341 cond_resched();
1342
1343 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1344 !!(cur->vm_flags & __VM_UFFD_FLAGS));
1345
1346 /* check not compatible vmas */
1347 ret = -EINVAL;
1348 if (!vma_can_userfault(cur, vm_flags))
1349 goto out_unlock;
1350
1351 /*
1352 * UFFDIO_COPY will fill file holes even without
1353 * PROT_WRITE. This check enforces that if this is a
1354 * MAP_SHARED, the process has write permission to the backing
1355 * file. If VM_MAYWRITE is set it also enforces that on a
1356 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1357 * F_WRITE_SEAL can be taken until the vma is destroyed.
1358 */
1359 ret = -EPERM;
1360 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1361 goto out_unlock;
1362
1363 /*
1364 * If this vma contains ending address, and huge pages
1365 * check alignment.
1366 */
1367 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1368 end > cur->vm_start) {
1369 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1370
1371 ret = -EINVAL;
1372
1373 if (end & (vma_hpagesize - 1))
1374 goto out_unlock;
1375 }
1376 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1377 goto out_unlock;
1378
1379 /*
1380 * Check that this vma isn't already owned by a
1381 * different userfaultfd. We can't allow more than one
1382 * userfaultfd to own a single vma simultaneously or we
1383 * wouldn't know which one to deliver the userfaults to.
1384 */
1385 ret = -EBUSY;
1386 if (cur->vm_userfaultfd_ctx.ctx &&
1387 cur->vm_userfaultfd_ctx.ctx != ctx)
1388 goto out_unlock;
1389
1390 /*
1391 * Note vmas containing huge pages
1392 */
1393 if (is_vm_hugetlb_page(cur))
1394 basic_ioctls = true;
1395
1396 found = true;
1397 }
1398 BUG_ON(!found);
1399
1400 if (vma->vm_start < start)
1401 prev = vma;
1402
1403 ret = 0;
1404 do {
1405 cond_resched();
1406
1407 BUG_ON(!vma_can_userfault(vma, vm_flags));
1408 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1409 vma->vm_userfaultfd_ctx.ctx != ctx);
1410 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1411
1412 /*
1413 * Nothing to do: this vma is already registered into this
1414 * userfaultfd and with the right tracking mode too.
1415 */
1416 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1417 (vma->vm_flags & vm_flags) == vm_flags)
1418 goto skip;
1419
1420 if (vma->vm_start > start)
1421 start = vma->vm_start;
1422 vma_end = min(end, vma->vm_end);
1423
1424 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1425 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1426 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1427 vma_policy(vma),
1428 ((struct vm_userfaultfd_ctx){ ctx }),
1429 anon_vma_name(vma));
1430 if (prev) {
1431 vma = prev;
1432 goto next;
1433 }
1434 if (vma->vm_start < start) {
1435 ret = split_vma(mm, vma, start, 1);
1436 if (ret)
1437 break;
1438 }
1439 if (vma->vm_end > end) {
1440 ret = split_vma(mm, vma, end, 0);
1441 if (ret)
1442 break;
1443 }
1444 next:
1445 /*
1446 * In the vma_merge() successful mprotect-like case 8:
1447 * the next vma was merged into the current one and
1448 * the current one has not been updated yet.
1449 */
1450 vma->vm_flags = new_flags;
1451 vma->vm_userfaultfd_ctx.ctx = ctx;
1452
1453 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1454 hugetlb_unshare_all_pmds(vma);
1455
1456 skip:
1457 prev = vma;
1458 start = vma->vm_end;
1459 vma = vma->vm_next;
1460 } while (vma && vma->vm_start < end);
1461 out_unlock:
1462 mmap_write_unlock(mm);
1463 mmput(mm);
1464 if (!ret) {
1465 __u64 ioctls_out;
1466
1467 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1468 UFFD_API_RANGE_IOCTLS;
1469
1470 /*
1471 * Declare the WP ioctl only if the WP mode is
1472 * specified and all checks passed with the range
1473 */
1474 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1475 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1476
1477 /* CONTINUE ioctl is only supported for MINOR ranges. */
1478 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1479 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1480
1481 /*
1482 * Now that we scanned all vmas we can already tell
1483 * userland which ioctls methods are guaranteed to
1484 * succeed on this range.
1485 */
1486 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1487 ret = -EFAULT;
1488 }
1489 out:
1490 return ret;
1491 }
1492
1493 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1494 unsigned long arg)
1495 {
1496 struct mm_struct *mm = ctx->mm;
1497 struct vm_area_struct *vma, *prev, *cur;
1498 int ret;
1499 struct uffdio_range uffdio_unregister;
1500 unsigned long new_flags;
1501 bool found;
1502 unsigned long start, end, vma_end;
1503 const void __user *buf = (void __user *)arg;
1504
1505 ret = -EFAULT;
1506 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1507 goto out;
1508
1509 ret = validate_range(mm, uffdio_unregister.start,
1510 uffdio_unregister.len);
1511 if (ret)
1512 goto out;
1513
1514 start = uffdio_unregister.start;
1515 end = start + uffdio_unregister.len;
1516
1517 ret = -ENOMEM;
1518 if (!mmget_not_zero(mm))
1519 goto out;
1520
1521 mmap_write_lock(mm);
1522 vma = find_vma_prev(mm, start, &prev);
1523 if (!vma)
1524 goto out_unlock;
1525
1526 /* check that there's at least one vma in the range */
1527 ret = -EINVAL;
1528 if (vma->vm_start >= end)
1529 goto out_unlock;
1530
1531 /*
1532 * If the first vma contains huge pages, make sure start address
1533 * is aligned to huge page size.
1534 */
1535 if (is_vm_hugetlb_page(vma)) {
1536 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1537
1538 if (start & (vma_hpagesize - 1))
1539 goto out_unlock;
1540 }
1541
1542 /*
1543 * Search for not compatible vmas.
1544 */
1545 found = false;
1546 ret = -EINVAL;
1547 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1548 cond_resched();
1549
1550 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1551 !!(cur->vm_flags & __VM_UFFD_FLAGS));
1552
1553 /*
1554 * Check not compatible vmas, not strictly required
1555 * here as not compatible vmas cannot have an
1556 * userfaultfd_ctx registered on them, but this
1557 * provides for more strict behavior to notice
1558 * unregistration errors.
1559 */
1560 if (!vma_can_userfault(cur, cur->vm_flags))
1561 goto out_unlock;
1562
1563 found = true;
1564 }
1565 BUG_ON(!found);
1566
1567 if (vma->vm_start < start)
1568 prev = vma;
1569
1570 ret = 0;
1571 do {
1572 cond_resched();
1573
1574 BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1575
1576 /*
1577 * Nothing to do: this vma is already registered into this
1578 * userfaultfd and with the right tracking mode too.
1579 */
1580 if (!vma->vm_userfaultfd_ctx.ctx)
1581 goto skip;
1582
1583 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1584
1585 if (vma->vm_start > start)
1586 start = vma->vm_start;
1587 vma_end = min(end, vma->vm_end);
1588
1589 if (userfaultfd_missing(vma)) {
1590 /*
1591 * Wake any concurrent pending userfault while
1592 * we unregister, so they will not hang
1593 * permanently and it avoids userland to call
1594 * UFFDIO_WAKE explicitly.
1595 */
1596 struct userfaultfd_wake_range range;
1597 range.start = start;
1598 range.len = vma_end - start;
1599 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1600 }
1601
1602 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1603 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1604 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1605 vma_policy(vma),
1606 NULL_VM_UFFD_CTX, anon_vma_name(vma));
1607 if (prev) {
1608 vma = prev;
1609 goto next;
1610 }
1611 if (vma->vm_start < start) {
1612 ret = split_vma(mm, vma, start, 1);
1613 if (ret)
1614 break;
1615 }
1616 if (vma->vm_end > end) {
1617 ret = split_vma(mm, vma, end, 0);
1618 if (ret)
1619 break;
1620 }
1621 next:
1622 /*
1623 * In the vma_merge() successful mprotect-like case 8:
1624 * the next vma was merged into the current one and
1625 * the current one has not been updated yet.
1626 */
1627 vma->vm_flags = new_flags;
1628 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1629
1630 skip:
1631 prev = vma;
1632 start = vma->vm_end;
1633 vma = vma->vm_next;
1634 } while (vma && vma->vm_start < end);
1635 out_unlock:
1636 mmap_write_unlock(mm);
1637 mmput(mm);
1638 out:
1639 return ret;
1640 }
1641
1642 /*
1643 * userfaultfd_wake may be used in combination with the
1644 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1645 */
1646 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1647 unsigned long arg)
1648 {
1649 int ret;
1650 struct uffdio_range uffdio_wake;
1651 struct userfaultfd_wake_range range;
1652 const void __user *buf = (void __user *)arg;
1653
1654 ret = -EFAULT;
1655 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1656 goto out;
1657
1658 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1659 if (ret)
1660 goto out;
1661
1662 range.start = uffdio_wake.start;
1663 range.len = uffdio_wake.len;
1664
1665 /*
1666 * len == 0 means wake all and we don't want to wake all here,
1667 * so check it again to be sure.
1668 */
1669 VM_BUG_ON(!range.len);
1670
1671 wake_userfault(ctx, &range);
1672 ret = 0;
1673
1674 out:
1675 return ret;
1676 }
1677
1678 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1679 unsigned long arg)
1680 {
1681 __s64 ret;
1682 struct uffdio_copy uffdio_copy;
1683 struct uffdio_copy __user *user_uffdio_copy;
1684 struct userfaultfd_wake_range range;
1685
1686 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1687
1688 ret = -EAGAIN;
1689 if (atomic_read(&ctx->mmap_changing))
1690 goto out;
1691
1692 ret = -EFAULT;
1693 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1694 /* don't copy "copy" last field */
1695 sizeof(uffdio_copy)-sizeof(__s64)))
1696 goto out;
1697
1698 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1699 if (ret)
1700 goto out;
1701 /*
1702 * double check for wraparound just in case. copy_from_user()
1703 * will later check uffdio_copy.src + uffdio_copy.len to fit
1704 * in the userland range.
1705 */
1706 ret = -EINVAL;
1707 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1708 goto out;
1709 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1710 goto out;
1711 if (mmget_not_zero(ctx->mm)) {
1712 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1713 uffdio_copy.len, &ctx->mmap_changing,
1714 uffdio_copy.mode);
1715 mmput(ctx->mm);
1716 } else {
1717 return -ESRCH;
1718 }
1719 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1720 return -EFAULT;
1721 if (ret < 0)
1722 goto out;
1723 BUG_ON(!ret);
1724 /* len == 0 would wake all */
1725 range.len = ret;
1726 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1727 range.start = uffdio_copy.dst;
1728 wake_userfault(ctx, &range);
1729 }
1730 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1731 out:
1732 return ret;
1733 }
1734
1735 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1736 unsigned long arg)
1737 {
1738 __s64 ret;
1739 struct uffdio_zeropage uffdio_zeropage;
1740 struct uffdio_zeropage __user *user_uffdio_zeropage;
1741 struct userfaultfd_wake_range range;
1742
1743 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1744
1745 ret = -EAGAIN;
1746 if (atomic_read(&ctx->mmap_changing))
1747 goto out;
1748
1749 ret = -EFAULT;
1750 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1751 /* don't copy "zeropage" last field */
1752 sizeof(uffdio_zeropage)-sizeof(__s64)))
1753 goto out;
1754
1755 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1756 uffdio_zeropage.range.len);
1757 if (ret)
1758 goto out;
1759 ret = -EINVAL;
1760 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1761 goto out;
1762
1763 if (mmget_not_zero(ctx->mm)) {
1764 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1765 uffdio_zeropage.range.len,
1766 &ctx->mmap_changing);
1767 mmput(ctx->mm);
1768 } else {
1769 return -ESRCH;
1770 }
1771 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1772 return -EFAULT;
1773 if (ret < 0)
1774 goto out;
1775 /* len == 0 would wake all */
1776 BUG_ON(!ret);
1777 range.len = ret;
1778 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1779 range.start = uffdio_zeropage.range.start;
1780 wake_userfault(ctx, &range);
1781 }
1782 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1783 out:
1784 return ret;
1785 }
1786
1787 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1788 unsigned long arg)
1789 {
1790 int ret;
1791 struct uffdio_writeprotect uffdio_wp;
1792 struct uffdio_writeprotect __user *user_uffdio_wp;
1793 struct userfaultfd_wake_range range;
1794 bool mode_wp, mode_dontwake;
1795
1796 if (atomic_read(&ctx->mmap_changing))
1797 return -EAGAIN;
1798
1799 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1800
1801 if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1802 sizeof(struct uffdio_writeprotect)))
1803 return -EFAULT;
1804
1805 ret = validate_range(ctx->mm, uffdio_wp.range.start,
1806 uffdio_wp.range.len);
1807 if (ret)
1808 return ret;
1809
1810 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1811 UFFDIO_WRITEPROTECT_MODE_WP))
1812 return -EINVAL;
1813
1814 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1815 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1816
1817 if (mode_wp && mode_dontwake)
1818 return -EINVAL;
1819
1820 if (mmget_not_zero(ctx->mm)) {
1821 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1822 uffdio_wp.range.len, mode_wp,
1823 &ctx->mmap_changing);
1824 mmput(ctx->mm);
1825 } else {
1826 return -ESRCH;
1827 }
1828
1829 if (ret)
1830 return ret;
1831
1832 if (!mode_wp && !mode_dontwake) {
1833 range.start = uffdio_wp.range.start;
1834 range.len = uffdio_wp.range.len;
1835 wake_userfault(ctx, &range);
1836 }
1837 return ret;
1838 }
1839
1840 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1841 {
1842 __s64 ret;
1843 struct uffdio_continue uffdio_continue;
1844 struct uffdio_continue __user *user_uffdio_continue;
1845 struct userfaultfd_wake_range range;
1846
1847 user_uffdio_continue = (struct uffdio_continue __user *)arg;
1848
1849 ret = -EAGAIN;
1850 if (atomic_read(&ctx->mmap_changing))
1851 goto out;
1852
1853 ret = -EFAULT;
1854 if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1855 /* don't copy the output fields */
1856 sizeof(uffdio_continue) - (sizeof(__s64))))
1857 goto out;
1858
1859 ret = validate_range(ctx->mm, uffdio_continue.range.start,
1860 uffdio_continue.range.len);
1861 if (ret)
1862 goto out;
1863
1864 ret = -EINVAL;
1865 /* double check for wraparound just in case. */
1866 if (uffdio_continue.range.start + uffdio_continue.range.len <=
1867 uffdio_continue.range.start) {
1868 goto out;
1869 }
1870 if (uffdio_continue.mode & ~UFFDIO_CONTINUE_MODE_DONTWAKE)
1871 goto out;
1872
1873 if (mmget_not_zero(ctx->mm)) {
1874 ret = mcopy_continue(ctx->mm, uffdio_continue.range.start,
1875 uffdio_continue.range.len,
1876 &ctx->mmap_changing);
1877 mmput(ctx->mm);
1878 } else {
1879 return -ESRCH;
1880 }
1881
1882 if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1883 return -EFAULT;
1884 if (ret < 0)
1885 goto out;
1886
1887 /* len == 0 would wake all */
1888 BUG_ON(!ret);
1889 range.len = ret;
1890 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1891 range.start = uffdio_continue.range.start;
1892 wake_userfault(ctx, &range);
1893 }
1894 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1895
1896 out:
1897 return ret;
1898 }
1899
1900 static inline unsigned int uffd_ctx_features(__u64 user_features)
1901 {
1902 /*
1903 * For the current set of features the bits just coincide. Set
1904 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1905 */
1906 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1907 }
1908
1909 /*
1910 * userland asks for a certain API version and we return which bits
1911 * and ioctl commands are implemented in this kernel for such API
1912 * version or -EINVAL if unknown.
1913 */
1914 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1915 unsigned long arg)
1916 {
1917 struct uffdio_api uffdio_api;
1918 void __user *buf = (void __user *)arg;
1919 unsigned int ctx_features;
1920 int ret;
1921 __u64 features;
1922
1923 ret = -EFAULT;
1924 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1925 goto out;
1926 features = uffdio_api.features;
1927 ret = -EINVAL;
1928 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1929 goto err_out;
1930 ret = -EPERM;
1931 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1932 goto err_out;
1933 /* report all available features and ioctls to userland */
1934 uffdio_api.features = UFFD_API_FEATURES;
1935 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1936 uffdio_api.features &=
1937 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
1938 #endif
1939 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1940 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
1941 #endif
1942 #ifndef CONFIG_PTE_MARKER_UFFD_WP
1943 uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM;
1944 #endif
1945 uffdio_api.ioctls = UFFD_API_IOCTLS;
1946 ret = -EFAULT;
1947 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1948 goto out;
1949
1950 /* only enable the requested features for this uffd context */
1951 ctx_features = uffd_ctx_features(features);
1952 ret = -EINVAL;
1953 if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
1954 goto err_out;
1955
1956 ret = 0;
1957 out:
1958 return ret;
1959 err_out:
1960 memset(&uffdio_api, 0, sizeof(uffdio_api));
1961 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1962 ret = -EFAULT;
1963 goto out;
1964 }
1965
1966 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1967 unsigned long arg)
1968 {
1969 int ret = -EINVAL;
1970 struct userfaultfd_ctx *ctx = file->private_data;
1971
1972 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
1973 return -EINVAL;
1974
1975 switch(cmd) {
1976 case UFFDIO_API:
1977 ret = userfaultfd_api(ctx, arg);
1978 break;
1979 case UFFDIO_REGISTER:
1980 ret = userfaultfd_register(ctx, arg);
1981 break;
1982 case UFFDIO_UNREGISTER:
1983 ret = userfaultfd_unregister(ctx, arg);
1984 break;
1985 case UFFDIO_WAKE:
1986 ret = userfaultfd_wake(ctx, arg);
1987 break;
1988 case UFFDIO_COPY:
1989 ret = userfaultfd_copy(ctx, arg);
1990 break;
1991 case UFFDIO_ZEROPAGE:
1992 ret = userfaultfd_zeropage(ctx, arg);
1993 break;
1994 case UFFDIO_WRITEPROTECT:
1995 ret = userfaultfd_writeprotect(ctx, arg);
1996 break;
1997 case UFFDIO_CONTINUE:
1998 ret = userfaultfd_continue(ctx, arg);
1999 break;
2000 }
2001 return ret;
2002 }
2003
2004 #ifdef CONFIG_PROC_FS
2005 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2006 {
2007 struct userfaultfd_ctx *ctx = f->private_data;
2008 wait_queue_entry_t *wq;
2009 unsigned long pending = 0, total = 0;
2010
2011 spin_lock_irq(&ctx->fault_pending_wqh.lock);
2012 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2013 pending++;
2014 total++;
2015 }
2016 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2017 total++;
2018 }
2019 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2020
2021 /*
2022 * If more protocols will be added, there will be all shown
2023 * separated by a space. Like this:
2024 * protocols: aa:... bb:...
2025 */
2026 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2027 pending, total, UFFD_API, ctx->features,
2028 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2029 }
2030 #endif
2031
2032 static const struct file_operations userfaultfd_fops = {
2033 #ifdef CONFIG_PROC_FS
2034 .show_fdinfo = userfaultfd_show_fdinfo,
2035 #endif
2036 .release = userfaultfd_release,
2037 .poll = userfaultfd_poll,
2038 .read = userfaultfd_read,
2039 .unlocked_ioctl = userfaultfd_ioctl,
2040 .compat_ioctl = compat_ptr_ioctl,
2041 .llseek = noop_llseek,
2042 };
2043
2044 static void init_once_userfaultfd_ctx(void *mem)
2045 {
2046 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2047
2048 init_waitqueue_head(&ctx->fault_pending_wqh);
2049 init_waitqueue_head(&ctx->fault_wqh);
2050 init_waitqueue_head(&ctx->event_wqh);
2051 init_waitqueue_head(&ctx->fd_wqh);
2052 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2053 }
2054
2055 SYSCALL_DEFINE1(userfaultfd, int, flags)
2056 {
2057 struct userfaultfd_ctx *ctx;
2058 int fd;
2059
2060 if (!sysctl_unprivileged_userfaultfd &&
2061 (flags & UFFD_USER_MODE_ONLY) == 0 &&
2062 !capable(CAP_SYS_PTRACE)) {
2063 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
2064 "sysctl knob to 1 if kernel faults must be handled "
2065 "without obtaining CAP_SYS_PTRACE capability\n");
2066 return -EPERM;
2067 }
2068
2069 BUG_ON(!current->mm);
2070
2071 /* Check the UFFD_* constants for consistency. */
2072 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2073 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2074 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2075
2076 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2077 return -EINVAL;
2078
2079 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2080 if (!ctx)
2081 return -ENOMEM;
2082
2083 refcount_set(&ctx->refcount, 1);
2084 ctx->flags = flags;
2085 ctx->features = 0;
2086 ctx->released = false;
2087 atomic_set(&ctx->mmap_changing, 0);
2088 ctx->mm = current->mm;
2089 /* prevent the mm struct to be freed */
2090 mmgrab(ctx->mm);
2091
2092 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
2093 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2094 if (fd < 0) {
2095 mmdrop(ctx->mm);
2096 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2097 }
2098 return fd;
2099 }
2100
2101 static int __init userfaultfd_init(void)
2102 {
2103 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2104 sizeof(struct userfaultfd_ctx),
2105 0,
2106 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2107 init_once_userfaultfd_ctx);
2108 return 0;
2109 }
2110 __initcall(userfaultfd_init);