]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-arm.c
* gas/config/tc-arm.c (do_t_bkpt_hlt1): New function.
[thirdparty/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
27
28 #include "as.h"
29 #include <limits.h>
30 #include <stdarg.h>
31 #define NO_RELOC 0
32 #include "safe-ctype.h"
33 #include "subsegs.h"
34 #include "obstack.h"
35 #include "libiberty.h"
36 #include "opcode/arm.h"
37
38 #ifdef OBJ_ELF
39 #include "elf/arm.h"
40 #include "dw2gencfi.h"
41 #endif
42
43 #include "dwarf2dbg.h"
44
45 #ifdef OBJ_ELF
46 /* Must be at least the size of the largest unwind opcode (currently two). */
47 #define ARM_OPCODE_CHUNK_SIZE 8
48
49 /* This structure holds the unwinding state. */
50
51 static struct
52 {
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
57 /* The segment containing the function. */
58 segT saved_seg;
59 subsegT saved_subseg;
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
62 int opcode_count;
63 int opcode_alloc;
64 /* The number of bytes pushed to the stack. */
65 offsetT frame_size;
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
69 offsetT pending_offset;
70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
74 /* Nonzero if an unwind_setfp directive has been seen. */
75 unsigned fp_used:1;
76 /* Nonzero if the last opcode restores sp from fp_reg. */
77 unsigned sp_restored:1;
78 } unwind;
79
80 #endif /* OBJ_ELF */
81
82 /* Results from operand parsing worker functions. */
83
84 typedef enum
85 {
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89 } parse_operand_result;
90
91 enum arm_float_abi
92 {
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96 };
97
98 /* Types of processor to assemble for. */
99 #ifndef CPU_DEFAULT
100 /* The code that was here used to select a default CPU depending on compiler
101 pre-defines which were only present when doing native builds, thus
102 changing gas' default behaviour depending upon the build host.
103
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
106 #endif
107
108 #ifndef FPU_DEFAULT
109 # ifdef TE_LINUX
110 # define FPU_DEFAULT FPU_ARCH_FPA
111 # elif defined (TE_NetBSD)
112 # ifdef OBJ_ELF
113 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
114 # else
115 /* Legacy a.out format. */
116 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
117 # endif
118 # elif defined (TE_VXWORKS)
119 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
120 # else
121 /* For backwards compatibility, default to FPA. */
122 # define FPU_DEFAULT FPU_ARCH_FPA
123 # endif
124 #endif /* ifndef FPU_DEFAULT */
125
126 #define streq(a, b) (strcmp (a, b) == 0)
127
128 static arm_feature_set cpu_variant;
129 static arm_feature_set arm_arch_used;
130 static arm_feature_set thumb_arch_used;
131
132 /* Flags stored in private area of BFD structure. */
133 static int uses_apcs_26 = FALSE;
134 static int atpcs = FALSE;
135 static int support_interwork = FALSE;
136 static int uses_apcs_float = FALSE;
137 static int pic_code = FALSE;
138 static int fix_v4bx = FALSE;
139 /* Warn on using deprecated features. */
140 static int warn_on_deprecated = TRUE;
141
142
143 /* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
146 static const arm_feature_set *legacy_cpu = NULL;
147 static const arm_feature_set *legacy_fpu = NULL;
148
149 static const arm_feature_set *mcpu_cpu_opt = NULL;
150 static const arm_feature_set *mcpu_fpu_opt = NULL;
151 static const arm_feature_set *march_cpu_opt = NULL;
152 static const arm_feature_set *march_fpu_opt = NULL;
153 static const arm_feature_set *mfpu_opt = NULL;
154 static const arm_feature_set *object_arch = NULL;
155
156 /* Constants for known architecture features. */
157 static const arm_feature_set fpu_default = FPU_DEFAULT;
158 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
160 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
162 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167 #ifdef CPU_DEFAULT
168 static const arm_feature_set cpu_default = CPU_DEFAULT;
169 #endif
170
171 static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172 static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173 static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174 static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175 static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176 static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177 static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178 static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179 static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181 static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182 static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184 static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185 static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186 static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
187 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
188 static const arm_feature_set arm_ext_v6m = ARM_FEATURE (ARM_EXT_V6M, 0);
189 static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
190 static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
191 static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192 static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
193 static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194 static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195 static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196 static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
197 static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
198 static const arm_feature_set arm_ext_v8 = ARM_FEATURE (ARM_EXT_V8, 0);
199 static const arm_feature_set arm_ext_m =
200 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_OS | ARM_EXT_V7M, 0);
201 static const arm_feature_set arm_ext_mp = ARM_FEATURE (ARM_EXT_MP, 0);
202 static const arm_feature_set arm_ext_sec = ARM_FEATURE (ARM_EXT_SEC, 0);
203 static const arm_feature_set arm_ext_os = ARM_FEATURE (ARM_EXT_OS, 0);
204 static const arm_feature_set arm_ext_adiv = ARM_FEATURE (ARM_EXT_ADIV, 0);
205 static const arm_feature_set arm_ext_virt = ARM_FEATURE (ARM_EXT_VIRT, 0);
206
207 static const arm_feature_set arm_arch_any = ARM_ANY;
208 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
209 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
210 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
211 static const arm_feature_set arm_arch_v6m_only = ARM_ARCH_V6M_ONLY;
212
213 static const arm_feature_set arm_cext_iwmmxt2 =
214 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
215 static const arm_feature_set arm_cext_iwmmxt =
216 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
217 static const arm_feature_set arm_cext_xscale =
218 ARM_FEATURE (0, ARM_CEXT_XSCALE);
219 static const arm_feature_set arm_cext_maverick =
220 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
221 static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
222 static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
223 static const arm_feature_set fpu_vfp_ext_v1xd =
224 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
225 static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
226 static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
227 static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
228 static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
229 static const arm_feature_set fpu_vfp_ext_d32 =
230 ARM_FEATURE (0, FPU_VFP_EXT_D32);
231 static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
232 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
233 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
234 static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
235 static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
236 static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
237 static const arm_feature_set fpu_vfp_ext_armv8 =
238 ARM_FEATURE (0, FPU_VFP_EXT_ARMV8);
239 static const arm_feature_set fpu_neon_ext_armv8 =
240 ARM_FEATURE (0, FPU_NEON_EXT_ARMV8);
241 static const arm_feature_set fpu_crypto_ext_armv8 =
242 ARM_FEATURE (0, FPU_CRYPTO_EXT_ARMV8);
243
244 static int mfloat_abi_opt = -1;
245 /* Record user cpu selection for object attributes. */
246 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
247 /* Must be long enough to hold any of the names in arm_cpus. */
248 static char selected_cpu_name[16];
249
250 /* Return if no cpu was selected on command-line. */
251 static bfd_boolean
252 no_cpu_selected (void)
253 {
254 return selected_cpu.core == arm_arch_none.core
255 && selected_cpu.coproc == arm_arch_none.coproc;
256 }
257
258 #ifdef OBJ_ELF
259 # ifdef EABI_DEFAULT
260 static int meabi_flags = EABI_DEFAULT;
261 # else
262 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
263 # endif
264
265 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
266
267 bfd_boolean
268 arm_is_eabi (void)
269 {
270 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
271 }
272 #endif
273
274 #ifdef OBJ_ELF
275 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
276 symbolS * GOT_symbol;
277 #endif
278
279 /* 0: assemble for ARM,
280 1: assemble for Thumb,
281 2: assemble for Thumb even though target CPU does not support thumb
282 instructions. */
283 static int thumb_mode = 0;
284 /* A value distinct from the possible values for thumb_mode that we
285 can use to record whether thumb_mode has been copied into the
286 tc_frag_data field of a frag. */
287 #define MODE_RECORDED (1 << 4)
288
289 /* Specifies the intrinsic IT insn behavior mode. */
290 enum implicit_it_mode
291 {
292 IMPLICIT_IT_MODE_NEVER = 0x00,
293 IMPLICIT_IT_MODE_ARM = 0x01,
294 IMPLICIT_IT_MODE_THUMB = 0x02,
295 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
296 };
297 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
298
299 /* If unified_syntax is true, we are processing the new unified
300 ARM/Thumb syntax. Important differences from the old ARM mode:
301
302 - Immediate operands do not require a # prefix.
303 - Conditional affixes always appear at the end of the
304 instruction. (For backward compatibility, those instructions
305 that formerly had them in the middle, continue to accept them
306 there.)
307 - The IT instruction may appear, and if it does is validated
308 against subsequent conditional affixes. It does not generate
309 machine code.
310
311 Important differences from the old Thumb mode:
312
313 - Immediate operands do not require a # prefix.
314 - Most of the V6T2 instructions are only available in unified mode.
315 - The .N and .W suffixes are recognized and honored (it is an error
316 if they cannot be honored).
317 - All instructions set the flags if and only if they have an 's' affix.
318 - Conditional affixes may be used. They are validated against
319 preceding IT instructions. Unlike ARM mode, you cannot use a
320 conditional affix except in the scope of an IT instruction. */
321
322 static bfd_boolean unified_syntax = FALSE;
323
324 enum neon_el_type
325 {
326 NT_invtype,
327 NT_untyped,
328 NT_integer,
329 NT_float,
330 NT_poly,
331 NT_signed,
332 NT_unsigned
333 };
334
335 struct neon_type_el
336 {
337 enum neon_el_type type;
338 unsigned size;
339 };
340
341 #define NEON_MAX_TYPE_ELS 4
342
343 struct neon_type
344 {
345 struct neon_type_el el[NEON_MAX_TYPE_ELS];
346 unsigned elems;
347 };
348
349 enum it_instruction_type
350 {
351 OUTSIDE_IT_INSN,
352 INSIDE_IT_INSN,
353 INSIDE_IT_LAST_INSN,
354 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
355 if inside, should be the last one. */
356 NEUTRAL_IT_INSN, /* This could be either inside or outside,
357 i.e. BKPT and NOP. */
358 IT_INSN /* The IT insn has been parsed. */
359 };
360
361 /* The maximum number of operands we need. */
362 #define ARM_IT_MAX_OPERANDS 6
363
364 struct arm_it
365 {
366 const char * error;
367 unsigned long instruction;
368 int size;
369 int size_req;
370 int cond;
371 /* "uncond_value" is set to the value in place of the conditional field in
372 unconditional versions of the instruction, or -1 if nothing is
373 appropriate. */
374 int uncond_value;
375 struct neon_type vectype;
376 /* This does not indicate an actual NEON instruction, only that
377 the mnemonic accepts neon-style type suffixes. */
378 int is_neon;
379 /* Set to the opcode if the instruction needs relaxation.
380 Zero if the instruction is not relaxed. */
381 unsigned long relax;
382 struct
383 {
384 bfd_reloc_code_real_type type;
385 expressionS exp;
386 int pc_rel;
387 } reloc;
388
389 enum it_instruction_type it_insn_type;
390
391 struct
392 {
393 unsigned reg;
394 signed int imm;
395 struct neon_type_el vectype;
396 unsigned present : 1; /* Operand present. */
397 unsigned isreg : 1; /* Operand was a register. */
398 unsigned immisreg : 1; /* .imm field is a second register. */
399 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
400 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
401 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
402 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
403 instructions. This allows us to disambiguate ARM <-> vector insns. */
404 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
405 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
406 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
407 unsigned issingle : 1; /* Operand is VFP single-precision register. */
408 unsigned hasreloc : 1; /* Operand has relocation suffix. */
409 unsigned writeback : 1; /* Operand has trailing ! */
410 unsigned preind : 1; /* Preindexed address. */
411 unsigned postind : 1; /* Postindexed address. */
412 unsigned negative : 1; /* Index register was negated. */
413 unsigned shifted : 1; /* Shift applied to operation. */
414 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
415 } operands[ARM_IT_MAX_OPERANDS];
416 };
417
418 static struct arm_it inst;
419
420 #define NUM_FLOAT_VALS 8
421
422 const char * fp_const[] =
423 {
424 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
425 };
426
427 /* Number of littlenums required to hold an extended precision number. */
428 #define MAX_LITTLENUMS 6
429
430 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
431
432 #define FAIL (-1)
433 #define SUCCESS (0)
434
435 #define SUFF_S 1
436 #define SUFF_D 2
437 #define SUFF_E 3
438 #define SUFF_P 4
439
440 #define CP_T_X 0x00008000
441 #define CP_T_Y 0x00400000
442
443 #define CONDS_BIT 0x00100000
444 #define LOAD_BIT 0x00100000
445
446 #define DOUBLE_LOAD_FLAG 0x00000001
447
448 struct asm_cond
449 {
450 const char * template_name;
451 unsigned long value;
452 };
453
454 #define COND_ALWAYS 0xE
455
456 struct asm_psr
457 {
458 const char * template_name;
459 unsigned long field;
460 };
461
462 struct asm_barrier_opt
463 {
464 const char * template_name;
465 unsigned long value;
466 const arm_feature_set arch;
467 };
468
469 /* The bit that distinguishes CPSR and SPSR. */
470 #define SPSR_BIT (1 << 22)
471
472 /* The individual PSR flag bits. */
473 #define PSR_c (1 << 16)
474 #define PSR_x (1 << 17)
475 #define PSR_s (1 << 18)
476 #define PSR_f (1 << 19)
477
478 struct reloc_entry
479 {
480 char * name;
481 bfd_reloc_code_real_type reloc;
482 };
483
484 enum vfp_reg_pos
485 {
486 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
487 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
488 };
489
490 enum vfp_ldstm_type
491 {
492 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
493 };
494
495 /* Bits for DEFINED field in neon_typed_alias. */
496 #define NTA_HASTYPE 1
497 #define NTA_HASINDEX 2
498
499 struct neon_typed_alias
500 {
501 unsigned char defined;
502 unsigned char index;
503 struct neon_type_el eltype;
504 };
505
506 /* ARM register categories. This includes coprocessor numbers and various
507 architecture extensions' registers. */
508 enum arm_reg_type
509 {
510 REG_TYPE_RN,
511 REG_TYPE_CP,
512 REG_TYPE_CN,
513 REG_TYPE_FN,
514 REG_TYPE_VFS,
515 REG_TYPE_VFD,
516 REG_TYPE_NQ,
517 REG_TYPE_VFSD,
518 REG_TYPE_NDQ,
519 REG_TYPE_NSDQ,
520 REG_TYPE_VFC,
521 REG_TYPE_MVF,
522 REG_TYPE_MVD,
523 REG_TYPE_MVFX,
524 REG_TYPE_MVDX,
525 REG_TYPE_MVAX,
526 REG_TYPE_DSPSC,
527 REG_TYPE_MMXWR,
528 REG_TYPE_MMXWC,
529 REG_TYPE_MMXWCG,
530 REG_TYPE_XSCALE,
531 REG_TYPE_RNB
532 };
533
534 /* Structure for a hash table entry for a register.
535 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
536 information which states whether a vector type or index is specified (for a
537 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
538 struct reg_entry
539 {
540 const char * name;
541 unsigned int number;
542 unsigned char type;
543 unsigned char builtin;
544 struct neon_typed_alias * neon;
545 };
546
547 /* Diagnostics used when we don't get a register of the expected type. */
548 const char * const reg_expected_msgs[] =
549 {
550 N_("ARM register expected"),
551 N_("bad or missing co-processor number"),
552 N_("co-processor register expected"),
553 N_("FPA register expected"),
554 N_("VFP single precision register expected"),
555 N_("VFP/Neon double precision register expected"),
556 N_("Neon quad precision register expected"),
557 N_("VFP single or double precision register expected"),
558 N_("Neon double or quad precision register expected"),
559 N_("VFP single, double or Neon quad precision register expected"),
560 N_("VFP system register expected"),
561 N_("Maverick MVF register expected"),
562 N_("Maverick MVD register expected"),
563 N_("Maverick MVFX register expected"),
564 N_("Maverick MVDX register expected"),
565 N_("Maverick MVAX register expected"),
566 N_("Maverick DSPSC register expected"),
567 N_("iWMMXt data register expected"),
568 N_("iWMMXt control register expected"),
569 N_("iWMMXt scalar register expected"),
570 N_("XScale accumulator register expected"),
571 };
572
573 /* Some well known registers that we refer to directly elsewhere. */
574 #define REG_R12 12
575 #define REG_SP 13
576 #define REG_LR 14
577 #define REG_PC 15
578
579 /* ARM instructions take 4bytes in the object file, Thumb instructions
580 take 2: */
581 #define INSN_SIZE 4
582
583 struct asm_opcode
584 {
585 /* Basic string to match. */
586 const char * template_name;
587
588 /* Parameters to instruction. */
589 unsigned int operands[8];
590
591 /* Conditional tag - see opcode_lookup. */
592 unsigned int tag : 4;
593
594 /* Basic instruction code. */
595 unsigned int avalue : 28;
596
597 /* Thumb-format instruction code. */
598 unsigned int tvalue;
599
600 /* Which architecture variant provides this instruction. */
601 const arm_feature_set * avariant;
602 const arm_feature_set * tvariant;
603
604 /* Function to call to encode instruction in ARM format. */
605 void (* aencode) (void);
606
607 /* Function to call to encode instruction in Thumb format. */
608 void (* tencode) (void);
609 };
610
611 /* Defines for various bits that we will want to toggle. */
612 #define INST_IMMEDIATE 0x02000000
613 #define OFFSET_REG 0x02000000
614 #define HWOFFSET_IMM 0x00400000
615 #define SHIFT_BY_REG 0x00000010
616 #define PRE_INDEX 0x01000000
617 #define INDEX_UP 0x00800000
618 #define WRITE_BACK 0x00200000
619 #define LDM_TYPE_2_OR_3 0x00400000
620 #define CPSI_MMOD 0x00020000
621
622 #define LITERAL_MASK 0xf000f000
623 #define OPCODE_MASK 0xfe1fffff
624 #define V4_STR_BIT 0x00000020
625
626 #define T2_SUBS_PC_LR 0xf3de8f00
627
628 #define DATA_OP_SHIFT 21
629
630 #define T2_OPCODE_MASK 0xfe1fffff
631 #define T2_DATA_OP_SHIFT 21
632
633 #define A_COND_MASK 0xf0000000
634 #define A_PUSH_POP_OP_MASK 0x0fff0000
635
636 /* Opcodes for pushing/poping registers to/from the stack. */
637 #define A1_OPCODE_PUSH 0x092d0000
638 #define A2_OPCODE_PUSH 0x052d0004
639 #define A2_OPCODE_POP 0x049d0004
640
641 /* Codes to distinguish the arithmetic instructions. */
642 #define OPCODE_AND 0
643 #define OPCODE_EOR 1
644 #define OPCODE_SUB 2
645 #define OPCODE_RSB 3
646 #define OPCODE_ADD 4
647 #define OPCODE_ADC 5
648 #define OPCODE_SBC 6
649 #define OPCODE_RSC 7
650 #define OPCODE_TST 8
651 #define OPCODE_TEQ 9
652 #define OPCODE_CMP 10
653 #define OPCODE_CMN 11
654 #define OPCODE_ORR 12
655 #define OPCODE_MOV 13
656 #define OPCODE_BIC 14
657 #define OPCODE_MVN 15
658
659 #define T2_OPCODE_AND 0
660 #define T2_OPCODE_BIC 1
661 #define T2_OPCODE_ORR 2
662 #define T2_OPCODE_ORN 3
663 #define T2_OPCODE_EOR 4
664 #define T2_OPCODE_ADD 8
665 #define T2_OPCODE_ADC 10
666 #define T2_OPCODE_SBC 11
667 #define T2_OPCODE_SUB 13
668 #define T2_OPCODE_RSB 14
669
670 #define T_OPCODE_MUL 0x4340
671 #define T_OPCODE_TST 0x4200
672 #define T_OPCODE_CMN 0x42c0
673 #define T_OPCODE_NEG 0x4240
674 #define T_OPCODE_MVN 0x43c0
675
676 #define T_OPCODE_ADD_R3 0x1800
677 #define T_OPCODE_SUB_R3 0x1a00
678 #define T_OPCODE_ADD_HI 0x4400
679 #define T_OPCODE_ADD_ST 0xb000
680 #define T_OPCODE_SUB_ST 0xb080
681 #define T_OPCODE_ADD_SP 0xa800
682 #define T_OPCODE_ADD_PC 0xa000
683 #define T_OPCODE_ADD_I8 0x3000
684 #define T_OPCODE_SUB_I8 0x3800
685 #define T_OPCODE_ADD_I3 0x1c00
686 #define T_OPCODE_SUB_I3 0x1e00
687
688 #define T_OPCODE_ASR_R 0x4100
689 #define T_OPCODE_LSL_R 0x4080
690 #define T_OPCODE_LSR_R 0x40c0
691 #define T_OPCODE_ROR_R 0x41c0
692 #define T_OPCODE_ASR_I 0x1000
693 #define T_OPCODE_LSL_I 0x0000
694 #define T_OPCODE_LSR_I 0x0800
695
696 #define T_OPCODE_MOV_I8 0x2000
697 #define T_OPCODE_CMP_I8 0x2800
698 #define T_OPCODE_CMP_LR 0x4280
699 #define T_OPCODE_MOV_HR 0x4600
700 #define T_OPCODE_CMP_HR 0x4500
701
702 #define T_OPCODE_LDR_PC 0x4800
703 #define T_OPCODE_LDR_SP 0x9800
704 #define T_OPCODE_STR_SP 0x9000
705 #define T_OPCODE_LDR_IW 0x6800
706 #define T_OPCODE_STR_IW 0x6000
707 #define T_OPCODE_LDR_IH 0x8800
708 #define T_OPCODE_STR_IH 0x8000
709 #define T_OPCODE_LDR_IB 0x7800
710 #define T_OPCODE_STR_IB 0x7000
711 #define T_OPCODE_LDR_RW 0x5800
712 #define T_OPCODE_STR_RW 0x5000
713 #define T_OPCODE_LDR_RH 0x5a00
714 #define T_OPCODE_STR_RH 0x5200
715 #define T_OPCODE_LDR_RB 0x5c00
716 #define T_OPCODE_STR_RB 0x5400
717
718 #define T_OPCODE_PUSH 0xb400
719 #define T_OPCODE_POP 0xbc00
720
721 #define T_OPCODE_BRANCH 0xe000
722
723 #define THUMB_SIZE 2 /* Size of thumb instruction. */
724 #define THUMB_PP_PC_LR 0x0100
725 #define THUMB_LOAD_BIT 0x0800
726 #define THUMB2_LOAD_BIT 0x00100000
727
728 #define BAD_ARGS _("bad arguments to instruction")
729 #define BAD_SP _("r13 not allowed here")
730 #define BAD_PC _("r15 not allowed here")
731 #define BAD_COND _("instruction cannot be conditional")
732 #define BAD_OVERLAP _("registers may not be the same")
733 #define BAD_HIREG _("lo register required")
734 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
735 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
736 #define BAD_BRANCH _("branch must be last instruction in IT block")
737 #define BAD_NOT_IT _("instruction not allowed in IT block")
738 #define BAD_FPU _("selected FPU does not support instruction")
739 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
740 #define BAD_IT_COND _("incorrect condition in IT block")
741 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
742 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
743 #define BAD_PC_ADDRESSING \
744 _("cannot use register index with PC-relative addressing")
745 #define BAD_PC_WRITEBACK \
746 _("cannot use writeback with PC-relative addressing")
747 #define BAD_RANGE _("branch out of range")
748
749 static struct hash_control * arm_ops_hsh;
750 static struct hash_control * arm_cond_hsh;
751 static struct hash_control * arm_shift_hsh;
752 static struct hash_control * arm_psr_hsh;
753 static struct hash_control * arm_v7m_psr_hsh;
754 static struct hash_control * arm_reg_hsh;
755 static struct hash_control * arm_reloc_hsh;
756 static struct hash_control * arm_barrier_opt_hsh;
757
758 /* Stuff needed to resolve the label ambiguity
759 As:
760 ...
761 label: <insn>
762 may differ from:
763 ...
764 label:
765 <insn> */
766
767 symbolS * last_label_seen;
768 static int label_is_thumb_function_name = FALSE;
769
770 /* Literal pool structure. Held on a per-section
771 and per-sub-section basis. */
772
773 #define MAX_LITERAL_POOL_SIZE 1024
774 typedef struct literal_pool
775 {
776 expressionS literals [MAX_LITERAL_POOL_SIZE];
777 unsigned int next_free_entry;
778 unsigned int id;
779 symbolS * symbol;
780 segT section;
781 subsegT sub_section;
782 #ifdef OBJ_ELF
783 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
784 #endif
785 struct literal_pool * next;
786 } literal_pool;
787
788 /* Pointer to a linked list of literal pools. */
789 literal_pool * list_of_pools = NULL;
790
791 #ifdef OBJ_ELF
792 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
793 #else
794 static struct current_it now_it;
795 #endif
796
797 static inline int
798 now_it_compatible (int cond)
799 {
800 return (cond & ~1) == (now_it.cc & ~1);
801 }
802
803 static inline int
804 conditional_insn (void)
805 {
806 return inst.cond != COND_ALWAYS;
807 }
808
809 static int in_it_block (void);
810
811 static int handle_it_state (void);
812
813 static void force_automatic_it_block_close (void);
814
815 static void it_fsm_post_encode (void);
816
817 #define set_it_insn_type(type) \
818 do \
819 { \
820 inst.it_insn_type = type; \
821 if (handle_it_state () == FAIL) \
822 return; \
823 } \
824 while (0)
825
826 #define set_it_insn_type_nonvoid(type, failret) \
827 do \
828 { \
829 inst.it_insn_type = type; \
830 if (handle_it_state () == FAIL) \
831 return failret; \
832 } \
833 while(0)
834
835 #define set_it_insn_type_last() \
836 do \
837 { \
838 if (inst.cond == COND_ALWAYS) \
839 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
840 else \
841 set_it_insn_type (INSIDE_IT_LAST_INSN); \
842 } \
843 while (0)
844
845 /* Pure syntax. */
846
847 /* This array holds the chars that always start a comment. If the
848 pre-processor is disabled, these aren't very useful. */
849 const char comment_chars[] = "@";
850
851 /* This array holds the chars that only start a comment at the beginning of
852 a line. If the line seems to have the form '# 123 filename'
853 .line and .file directives will appear in the pre-processed output. */
854 /* Note that input_file.c hand checks for '#' at the beginning of the
855 first line of the input file. This is because the compiler outputs
856 #NO_APP at the beginning of its output. */
857 /* Also note that comments like this one will always work. */
858 const char line_comment_chars[] = "#";
859
860 const char line_separator_chars[] = ";";
861
862 /* Chars that can be used to separate mant
863 from exp in floating point numbers. */
864 const char EXP_CHARS[] = "eE";
865
866 /* Chars that mean this number is a floating point constant. */
867 /* As in 0f12.456 */
868 /* or 0d1.2345e12 */
869
870 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
871
872 /* Prefix characters that indicate the start of an immediate
873 value. */
874 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
875
876 /* Separator character handling. */
877
878 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
879
880 static inline int
881 skip_past_char (char ** str, char c)
882 {
883 if (**str == c)
884 {
885 (*str)++;
886 return SUCCESS;
887 }
888 else
889 return FAIL;
890 }
891
892 #define skip_past_comma(str) skip_past_char (str, ',')
893
894 /* Arithmetic expressions (possibly involving symbols). */
895
896 /* Return TRUE if anything in the expression is a bignum. */
897
898 static int
899 walk_no_bignums (symbolS * sp)
900 {
901 if (symbol_get_value_expression (sp)->X_op == O_big)
902 return 1;
903
904 if (symbol_get_value_expression (sp)->X_add_symbol)
905 {
906 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
907 || (symbol_get_value_expression (sp)->X_op_symbol
908 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
909 }
910
911 return 0;
912 }
913
914 static int in_my_get_expression = 0;
915
916 /* Third argument to my_get_expression. */
917 #define GE_NO_PREFIX 0
918 #define GE_IMM_PREFIX 1
919 #define GE_OPT_PREFIX 2
920 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
921 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
922 #define GE_OPT_PREFIX_BIG 3
923
924 static int
925 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
926 {
927 char * save_in;
928 segT seg;
929
930 /* In unified syntax, all prefixes are optional. */
931 if (unified_syntax)
932 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
933 : GE_OPT_PREFIX;
934
935 switch (prefix_mode)
936 {
937 case GE_NO_PREFIX: break;
938 case GE_IMM_PREFIX:
939 if (!is_immediate_prefix (**str))
940 {
941 inst.error = _("immediate expression requires a # prefix");
942 return FAIL;
943 }
944 (*str)++;
945 break;
946 case GE_OPT_PREFIX:
947 case GE_OPT_PREFIX_BIG:
948 if (is_immediate_prefix (**str))
949 (*str)++;
950 break;
951 default: abort ();
952 }
953
954 memset (ep, 0, sizeof (expressionS));
955
956 save_in = input_line_pointer;
957 input_line_pointer = *str;
958 in_my_get_expression = 1;
959 seg = expression (ep);
960 in_my_get_expression = 0;
961
962 if (ep->X_op == O_illegal || ep->X_op == O_absent)
963 {
964 /* We found a bad or missing expression in md_operand(). */
965 *str = input_line_pointer;
966 input_line_pointer = save_in;
967 if (inst.error == NULL)
968 inst.error = (ep->X_op == O_absent
969 ? _("missing expression") :_("bad expression"));
970 return 1;
971 }
972
973 #ifdef OBJ_AOUT
974 if (seg != absolute_section
975 && seg != text_section
976 && seg != data_section
977 && seg != bss_section
978 && seg != undefined_section)
979 {
980 inst.error = _("bad segment");
981 *str = input_line_pointer;
982 input_line_pointer = save_in;
983 return 1;
984 }
985 #else
986 (void) seg;
987 #endif
988
989 /* Get rid of any bignums now, so that we don't generate an error for which
990 we can't establish a line number later on. Big numbers are never valid
991 in instructions, which is where this routine is always called. */
992 if (prefix_mode != GE_OPT_PREFIX_BIG
993 && (ep->X_op == O_big
994 || (ep->X_add_symbol
995 && (walk_no_bignums (ep->X_add_symbol)
996 || (ep->X_op_symbol
997 && walk_no_bignums (ep->X_op_symbol))))))
998 {
999 inst.error = _("invalid constant");
1000 *str = input_line_pointer;
1001 input_line_pointer = save_in;
1002 return 1;
1003 }
1004
1005 *str = input_line_pointer;
1006 input_line_pointer = save_in;
1007 return 0;
1008 }
1009
1010 /* Turn a string in input_line_pointer into a floating point constant
1011 of type TYPE, and store the appropriate bytes in *LITP. The number
1012 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1013 returned, or NULL on OK.
1014
1015 Note that fp constants aren't represent in the normal way on the ARM.
1016 In big endian mode, things are as expected. However, in little endian
1017 mode fp constants are big-endian word-wise, and little-endian byte-wise
1018 within the words. For example, (double) 1.1 in big endian mode is
1019 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1020 the byte sequence 99 99 f1 3f 9a 99 99 99.
1021
1022 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1023
1024 char *
1025 md_atof (int type, char * litP, int * sizeP)
1026 {
1027 int prec;
1028 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1029 char *t;
1030 int i;
1031
1032 switch (type)
1033 {
1034 case 'f':
1035 case 'F':
1036 case 's':
1037 case 'S':
1038 prec = 2;
1039 break;
1040
1041 case 'd':
1042 case 'D':
1043 case 'r':
1044 case 'R':
1045 prec = 4;
1046 break;
1047
1048 case 'x':
1049 case 'X':
1050 prec = 5;
1051 break;
1052
1053 case 'p':
1054 case 'P':
1055 prec = 5;
1056 break;
1057
1058 default:
1059 *sizeP = 0;
1060 return _("Unrecognized or unsupported floating point constant");
1061 }
1062
1063 t = atof_ieee (input_line_pointer, type, words);
1064 if (t)
1065 input_line_pointer = t;
1066 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1067
1068 if (target_big_endian)
1069 {
1070 for (i = 0; i < prec; i++)
1071 {
1072 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1073 litP += sizeof (LITTLENUM_TYPE);
1074 }
1075 }
1076 else
1077 {
1078 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1079 for (i = prec - 1; i >= 0; i--)
1080 {
1081 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1082 litP += sizeof (LITTLENUM_TYPE);
1083 }
1084 else
1085 /* For a 4 byte float the order of elements in `words' is 1 0.
1086 For an 8 byte float the order is 1 0 3 2. */
1087 for (i = 0; i < prec; i += 2)
1088 {
1089 md_number_to_chars (litP, (valueT) words[i + 1],
1090 sizeof (LITTLENUM_TYPE));
1091 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1092 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1093 litP += 2 * sizeof (LITTLENUM_TYPE);
1094 }
1095 }
1096
1097 return NULL;
1098 }
1099
1100 /* We handle all bad expressions here, so that we can report the faulty
1101 instruction in the error message. */
1102 void
1103 md_operand (expressionS * exp)
1104 {
1105 if (in_my_get_expression)
1106 exp->X_op = O_illegal;
1107 }
1108
1109 /* Immediate values. */
1110
1111 /* Generic immediate-value read function for use in directives.
1112 Accepts anything that 'expression' can fold to a constant.
1113 *val receives the number. */
1114 #ifdef OBJ_ELF
1115 static int
1116 immediate_for_directive (int *val)
1117 {
1118 expressionS exp;
1119 exp.X_op = O_illegal;
1120
1121 if (is_immediate_prefix (*input_line_pointer))
1122 {
1123 input_line_pointer++;
1124 expression (&exp);
1125 }
1126
1127 if (exp.X_op != O_constant)
1128 {
1129 as_bad (_("expected #constant"));
1130 ignore_rest_of_line ();
1131 return FAIL;
1132 }
1133 *val = exp.X_add_number;
1134 return SUCCESS;
1135 }
1136 #endif
1137
1138 /* Register parsing. */
1139
1140 /* Generic register parser. CCP points to what should be the
1141 beginning of a register name. If it is indeed a valid register
1142 name, advance CCP over it and return the reg_entry structure;
1143 otherwise return NULL. Does not issue diagnostics. */
1144
1145 static struct reg_entry *
1146 arm_reg_parse_multi (char **ccp)
1147 {
1148 char *start = *ccp;
1149 char *p;
1150 struct reg_entry *reg;
1151
1152 #ifdef REGISTER_PREFIX
1153 if (*start != REGISTER_PREFIX)
1154 return NULL;
1155 start++;
1156 #endif
1157 #ifdef OPTIONAL_REGISTER_PREFIX
1158 if (*start == OPTIONAL_REGISTER_PREFIX)
1159 start++;
1160 #endif
1161
1162 p = start;
1163 if (!ISALPHA (*p) || !is_name_beginner (*p))
1164 return NULL;
1165
1166 do
1167 p++;
1168 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1169
1170 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1171
1172 if (!reg)
1173 return NULL;
1174
1175 *ccp = p;
1176 return reg;
1177 }
1178
1179 static int
1180 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1181 enum arm_reg_type type)
1182 {
1183 /* Alternative syntaxes are accepted for a few register classes. */
1184 switch (type)
1185 {
1186 case REG_TYPE_MVF:
1187 case REG_TYPE_MVD:
1188 case REG_TYPE_MVFX:
1189 case REG_TYPE_MVDX:
1190 /* Generic coprocessor register names are allowed for these. */
1191 if (reg && reg->type == REG_TYPE_CN)
1192 return reg->number;
1193 break;
1194
1195 case REG_TYPE_CP:
1196 /* For backward compatibility, a bare number is valid here. */
1197 {
1198 unsigned long processor = strtoul (start, ccp, 10);
1199 if (*ccp != start && processor <= 15)
1200 return processor;
1201 }
1202
1203 case REG_TYPE_MMXWC:
1204 /* WC includes WCG. ??? I'm not sure this is true for all
1205 instructions that take WC registers. */
1206 if (reg && reg->type == REG_TYPE_MMXWCG)
1207 return reg->number;
1208 break;
1209
1210 default:
1211 break;
1212 }
1213
1214 return FAIL;
1215 }
1216
1217 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1218 return value is the register number or FAIL. */
1219
1220 static int
1221 arm_reg_parse (char **ccp, enum arm_reg_type type)
1222 {
1223 char *start = *ccp;
1224 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1225 int ret;
1226
1227 /* Do not allow a scalar (reg+index) to parse as a register. */
1228 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1229 return FAIL;
1230
1231 if (reg && reg->type == type)
1232 return reg->number;
1233
1234 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1235 return ret;
1236
1237 *ccp = start;
1238 return FAIL;
1239 }
1240
1241 /* Parse a Neon type specifier. *STR should point at the leading '.'
1242 character. Does no verification at this stage that the type fits the opcode
1243 properly. E.g.,
1244
1245 .i32.i32.s16
1246 .s32.f32
1247 .u16
1248
1249 Can all be legally parsed by this function.
1250
1251 Fills in neon_type struct pointer with parsed information, and updates STR
1252 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1253 type, FAIL if not. */
1254
1255 static int
1256 parse_neon_type (struct neon_type *type, char **str)
1257 {
1258 char *ptr = *str;
1259
1260 if (type)
1261 type->elems = 0;
1262
1263 while (type->elems < NEON_MAX_TYPE_ELS)
1264 {
1265 enum neon_el_type thistype = NT_untyped;
1266 unsigned thissize = -1u;
1267
1268 if (*ptr != '.')
1269 break;
1270
1271 ptr++;
1272
1273 /* Just a size without an explicit type. */
1274 if (ISDIGIT (*ptr))
1275 goto parsesize;
1276
1277 switch (TOLOWER (*ptr))
1278 {
1279 case 'i': thistype = NT_integer; break;
1280 case 'f': thistype = NT_float; break;
1281 case 'p': thistype = NT_poly; break;
1282 case 's': thistype = NT_signed; break;
1283 case 'u': thistype = NT_unsigned; break;
1284 case 'd':
1285 thistype = NT_float;
1286 thissize = 64;
1287 ptr++;
1288 goto done;
1289 default:
1290 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1291 return FAIL;
1292 }
1293
1294 ptr++;
1295
1296 /* .f is an abbreviation for .f32. */
1297 if (thistype == NT_float && !ISDIGIT (*ptr))
1298 thissize = 32;
1299 else
1300 {
1301 parsesize:
1302 thissize = strtoul (ptr, &ptr, 10);
1303
1304 if (thissize != 8 && thissize != 16 && thissize != 32
1305 && thissize != 64)
1306 {
1307 as_bad (_("bad size %d in type specifier"), thissize);
1308 return FAIL;
1309 }
1310 }
1311
1312 done:
1313 if (type)
1314 {
1315 type->el[type->elems].type = thistype;
1316 type->el[type->elems].size = thissize;
1317 type->elems++;
1318 }
1319 }
1320
1321 /* Empty/missing type is not a successful parse. */
1322 if (type->elems == 0)
1323 return FAIL;
1324
1325 *str = ptr;
1326
1327 return SUCCESS;
1328 }
1329
1330 /* Errors may be set multiple times during parsing or bit encoding
1331 (particularly in the Neon bits), but usually the earliest error which is set
1332 will be the most meaningful. Avoid overwriting it with later (cascading)
1333 errors by calling this function. */
1334
1335 static void
1336 first_error (const char *err)
1337 {
1338 if (!inst.error)
1339 inst.error = err;
1340 }
1341
1342 /* Parse a single type, e.g. ".s32", leading period included. */
1343 static int
1344 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1345 {
1346 char *str = *ccp;
1347 struct neon_type optype;
1348
1349 if (*str == '.')
1350 {
1351 if (parse_neon_type (&optype, &str) == SUCCESS)
1352 {
1353 if (optype.elems == 1)
1354 *vectype = optype.el[0];
1355 else
1356 {
1357 first_error (_("only one type should be specified for operand"));
1358 return FAIL;
1359 }
1360 }
1361 else
1362 {
1363 first_error (_("vector type expected"));
1364 return FAIL;
1365 }
1366 }
1367 else
1368 return FAIL;
1369
1370 *ccp = str;
1371
1372 return SUCCESS;
1373 }
1374
1375 /* Special meanings for indices (which have a range of 0-7), which will fit into
1376 a 4-bit integer. */
1377
1378 #define NEON_ALL_LANES 15
1379 #define NEON_INTERLEAVE_LANES 14
1380
1381 /* Parse either a register or a scalar, with an optional type. Return the
1382 register number, and optionally fill in the actual type of the register
1383 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1384 type/index information in *TYPEINFO. */
1385
1386 static int
1387 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1388 enum arm_reg_type *rtype,
1389 struct neon_typed_alias *typeinfo)
1390 {
1391 char *str = *ccp;
1392 struct reg_entry *reg = arm_reg_parse_multi (&str);
1393 struct neon_typed_alias atype;
1394 struct neon_type_el parsetype;
1395
1396 atype.defined = 0;
1397 atype.index = -1;
1398 atype.eltype.type = NT_invtype;
1399 atype.eltype.size = -1;
1400
1401 /* Try alternate syntax for some types of register. Note these are mutually
1402 exclusive with the Neon syntax extensions. */
1403 if (reg == NULL)
1404 {
1405 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1406 if (altreg != FAIL)
1407 *ccp = str;
1408 if (typeinfo)
1409 *typeinfo = atype;
1410 return altreg;
1411 }
1412
1413 /* Undo polymorphism when a set of register types may be accepted. */
1414 if ((type == REG_TYPE_NDQ
1415 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1416 || (type == REG_TYPE_VFSD
1417 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1418 || (type == REG_TYPE_NSDQ
1419 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1420 || reg->type == REG_TYPE_NQ))
1421 || (type == REG_TYPE_MMXWC
1422 && (reg->type == REG_TYPE_MMXWCG)))
1423 type = (enum arm_reg_type) reg->type;
1424
1425 if (type != reg->type)
1426 return FAIL;
1427
1428 if (reg->neon)
1429 atype = *reg->neon;
1430
1431 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1432 {
1433 if ((atype.defined & NTA_HASTYPE) != 0)
1434 {
1435 first_error (_("can't redefine type for operand"));
1436 return FAIL;
1437 }
1438 atype.defined |= NTA_HASTYPE;
1439 atype.eltype = parsetype;
1440 }
1441
1442 if (skip_past_char (&str, '[') == SUCCESS)
1443 {
1444 if (type != REG_TYPE_VFD)
1445 {
1446 first_error (_("only D registers may be indexed"));
1447 return FAIL;
1448 }
1449
1450 if ((atype.defined & NTA_HASINDEX) != 0)
1451 {
1452 first_error (_("can't change index for operand"));
1453 return FAIL;
1454 }
1455
1456 atype.defined |= NTA_HASINDEX;
1457
1458 if (skip_past_char (&str, ']') == SUCCESS)
1459 atype.index = NEON_ALL_LANES;
1460 else
1461 {
1462 expressionS exp;
1463
1464 my_get_expression (&exp, &str, GE_NO_PREFIX);
1465
1466 if (exp.X_op != O_constant)
1467 {
1468 first_error (_("constant expression required"));
1469 return FAIL;
1470 }
1471
1472 if (skip_past_char (&str, ']') == FAIL)
1473 return FAIL;
1474
1475 atype.index = exp.X_add_number;
1476 }
1477 }
1478
1479 if (typeinfo)
1480 *typeinfo = atype;
1481
1482 if (rtype)
1483 *rtype = type;
1484
1485 *ccp = str;
1486
1487 return reg->number;
1488 }
1489
1490 /* Like arm_reg_parse, but allow allow the following extra features:
1491 - If RTYPE is non-zero, return the (possibly restricted) type of the
1492 register (e.g. Neon double or quad reg when either has been requested).
1493 - If this is a Neon vector type with additional type information, fill
1494 in the struct pointed to by VECTYPE (if non-NULL).
1495 This function will fault on encountering a scalar. */
1496
1497 static int
1498 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1499 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1500 {
1501 struct neon_typed_alias atype;
1502 char *str = *ccp;
1503 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1504
1505 if (reg == FAIL)
1506 return FAIL;
1507
1508 /* Do not allow regname(... to parse as a register. */
1509 if (*str == '(')
1510 return FAIL;
1511
1512 /* Do not allow a scalar (reg+index) to parse as a register. */
1513 if ((atype.defined & NTA_HASINDEX) != 0)
1514 {
1515 first_error (_("register operand expected, but got scalar"));
1516 return FAIL;
1517 }
1518
1519 if (vectype)
1520 *vectype = atype.eltype;
1521
1522 *ccp = str;
1523
1524 return reg;
1525 }
1526
1527 #define NEON_SCALAR_REG(X) ((X) >> 4)
1528 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1529
1530 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1531 have enough information to be able to do a good job bounds-checking. So, we
1532 just do easy checks here, and do further checks later. */
1533
1534 static int
1535 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1536 {
1537 int reg;
1538 char *str = *ccp;
1539 struct neon_typed_alias atype;
1540
1541 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1542
1543 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1544 return FAIL;
1545
1546 if (atype.index == NEON_ALL_LANES)
1547 {
1548 first_error (_("scalar must have an index"));
1549 return FAIL;
1550 }
1551 else if (atype.index >= 64 / elsize)
1552 {
1553 first_error (_("scalar index out of range"));
1554 return FAIL;
1555 }
1556
1557 if (type)
1558 *type = atype.eltype;
1559
1560 *ccp = str;
1561
1562 return reg * 16 + atype.index;
1563 }
1564
1565 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1566
1567 static long
1568 parse_reg_list (char ** strp)
1569 {
1570 char * str = * strp;
1571 long range = 0;
1572 int another_range;
1573
1574 /* We come back here if we get ranges concatenated by '+' or '|'. */
1575 do
1576 {
1577 another_range = 0;
1578
1579 if (*str == '{')
1580 {
1581 int in_range = 0;
1582 int cur_reg = -1;
1583
1584 str++;
1585 do
1586 {
1587 int reg;
1588
1589 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1590 {
1591 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1592 return FAIL;
1593 }
1594
1595 if (in_range)
1596 {
1597 int i;
1598
1599 if (reg <= cur_reg)
1600 {
1601 first_error (_("bad range in register list"));
1602 return FAIL;
1603 }
1604
1605 for (i = cur_reg + 1; i < reg; i++)
1606 {
1607 if (range & (1 << i))
1608 as_tsktsk
1609 (_("Warning: duplicated register (r%d) in register list"),
1610 i);
1611 else
1612 range |= 1 << i;
1613 }
1614 in_range = 0;
1615 }
1616
1617 if (range & (1 << reg))
1618 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1619 reg);
1620 else if (reg <= cur_reg)
1621 as_tsktsk (_("Warning: register range not in ascending order"));
1622
1623 range |= 1 << reg;
1624 cur_reg = reg;
1625 }
1626 while (skip_past_comma (&str) != FAIL
1627 || (in_range = 1, *str++ == '-'));
1628 str--;
1629
1630 if (*str++ != '}')
1631 {
1632 first_error (_("missing `}'"));
1633 return FAIL;
1634 }
1635 }
1636 else
1637 {
1638 expressionS exp;
1639
1640 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1641 return FAIL;
1642
1643 if (exp.X_op == O_constant)
1644 {
1645 if (exp.X_add_number
1646 != (exp.X_add_number & 0x0000ffff))
1647 {
1648 inst.error = _("invalid register mask");
1649 return FAIL;
1650 }
1651
1652 if ((range & exp.X_add_number) != 0)
1653 {
1654 int regno = range & exp.X_add_number;
1655
1656 regno &= -regno;
1657 regno = (1 << regno) - 1;
1658 as_tsktsk
1659 (_("Warning: duplicated register (r%d) in register list"),
1660 regno);
1661 }
1662
1663 range |= exp.X_add_number;
1664 }
1665 else
1666 {
1667 if (inst.reloc.type != 0)
1668 {
1669 inst.error = _("expression too complex");
1670 return FAIL;
1671 }
1672
1673 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
1674 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1675 inst.reloc.pc_rel = 0;
1676 }
1677 }
1678
1679 if (*str == '|' || *str == '+')
1680 {
1681 str++;
1682 another_range = 1;
1683 }
1684 }
1685 while (another_range);
1686
1687 *strp = str;
1688 return range;
1689 }
1690
1691 /* Types of registers in a list. */
1692
1693 enum reg_list_els
1694 {
1695 REGLIST_VFP_S,
1696 REGLIST_VFP_D,
1697 REGLIST_NEON_D
1698 };
1699
1700 /* Parse a VFP register list. If the string is invalid return FAIL.
1701 Otherwise return the number of registers, and set PBASE to the first
1702 register. Parses registers of type ETYPE.
1703 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1704 - Q registers can be used to specify pairs of D registers
1705 - { } can be omitted from around a singleton register list
1706 FIXME: This is not implemented, as it would require backtracking in
1707 some cases, e.g.:
1708 vtbl.8 d3,d4,d5
1709 This could be done (the meaning isn't really ambiguous), but doesn't
1710 fit in well with the current parsing framework.
1711 - 32 D registers may be used (also true for VFPv3).
1712 FIXME: Types are ignored in these register lists, which is probably a
1713 bug. */
1714
1715 static int
1716 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1717 {
1718 char *str = *ccp;
1719 int base_reg;
1720 int new_base;
1721 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1722 int max_regs = 0;
1723 int count = 0;
1724 int warned = 0;
1725 unsigned long mask = 0;
1726 int i;
1727
1728 if (*str != '{')
1729 {
1730 inst.error = _("expecting {");
1731 return FAIL;
1732 }
1733
1734 str++;
1735
1736 switch (etype)
1737 {
1738 case REGLIST_VFP_S:
1739 regtype = REG_TYPE_VFS;
1740 max_regs = 32;
1741 break;
1742
1743 case REGLIST_VFP_D:
1744 regtype = REG_TYPE_VFD;
1745 break;
1746
1747 case REGLIST_NEON_D:
1748 regtype = REG_TYPE_NDQ;
1749 break;
1750 }
1751
1752 if (etype != REGLIST_VFP_S)
1753 {
1754 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1755 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1756 {
1757 max_regs = 32;
1758 if (thumb_mode)
1759 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1760 fpu_vfp_ext_d32);
1761 else
1762 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1763 fpu_vfp_ext_d32);
1764 }
1765 else
1766 max_regs = 16;
1767 }
1768
1769 base_reg = max_regs;
1770
1771 do
1772 {
1773 int setmask = 1, addregs = 1;
1774
1775 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1776
1777 if (new_base == FAIL)
1778 {
1779 first_error (_(reg_expected_msgs[regtype]));
1780 return FAIL;
1781 }
1782
1783 if (new_base >= max_regs)
1784 {
1785 first_error (_("register out of range in list"));
1786 return FAIL;
1787 }
1788
1789 /* Note: a value of 2 * n is returned for the register Q<n>. */
1790 if (regtype == REG_TYPE_NQ)
1791 {
1792 setmask = 3;
1793 addregs = 2;
1794 }
1795
1796 if (new_base < base_reg)
1797 base_reg = new_base;
1798
1799 if (mask & (setmask << new_base))
1800 {
1801 first_error (_("invalid register list"));
1802 return FAIL;
1803 }
1804
1805 if ((mask >> new_base) != 0 && ! warned)
1806 {
1807 as_tsktsk (_("register list not in ascending order"));
1808 warned = 1;
1809 }
1810
1811 mask |= setmask << new_base;
1812 count += addregs;
1813
1814 if (*str == '-') /* We have the start of a range expression */
1815 {
1816 int high_range;
1817
1818 str++;
1819
1820 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1821 == FAIL)
1822 {
1823 inst.error = gettext (reg_expected_msgs[regtype]);
1824 return FAIL;
1825 }
1826
1827 if (high_range >= max_regs)
1828 {
1829 first_error (_("register out of range in list"));
1830 return FAIL;
1831 }
1832
1833 if (regtype == REG_TYPE_NQ)
1834 high_range = high_range + 1;
1835
1836 if (high_range <= new_base)
1837 {
1838 inst.error = _("register range not in ascending order");
1839 return FAIL;
1840 }
1841
1842 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1843 {
1844 if (mask & (setmask << new_base))
1845 {
1846 inst.error = _("invalid register list");
1847 return FAIL;
1848 }
1849
1850 mask |= setmask << new_base;
1851 count += addregs;
1852 }
1853 }
1854 }
1855 while (skip_past_comma (&str) != FAIL);
1856
1857 str++;
1858
1859 /* Sanity check -- should have raised a parse error above. */
1860 if (count == 0 || count > max_regs)
1861 abort ();
1862
1863 *pbase = base_reg;
1864
1865 /* Final test -- the registers must be consecutive. */
1866 mask >>= base_reg;
1867 for (i = 0; i < count; i++)
1868 {
1869 if ((mask & (1u << i)) == 0)
1870 {
1871 inst.error = _("non-contiguous register range");
1872 return FAIL;
1873 }
1874 }
1875
1876 *ccp = str;
1877
1878 return count;
1879 }
1880
1881 /* True if two alias types are the same. */
1882
1883 static bfd_boolean
1884 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1885 {
1886 if (!a && !b)
1887 return TRUE;
1888
1889 if (!a || !b)
1890 return FALSE;
1891
1892 if (a->defined != b->defined)
1893 return FALSE;
1894
1895 if ((a->defined & NTA_HASTYPE) != 0
1896 && (a->eltype.type != b->eltype.type
1897 || a->eltype.size != b->eltype.size))
1898 return FALSE;
1899
1900 if ((a->defined & NTA_HASINDEX) != 0
1901 && (a->index != b->index))
1902 return FALSE;
1903
1904 return TRUE;
1905 }
1906
1907 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1908 The base register is put in *PBASE.
1909 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1910 the return value.
1911 The register stride (minus one) is put in bit 4 of the return value.
1912 Bits [6:5] encode the list length (minus one).
1913 The type of the list elements is put in *ELTYPE, if non-NULL. */
1914
1915 #define NEON_LANE(X) ((X) & 0xf)
1916 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1917 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1918
1919 static int
1920 parse_neon_el_struct_list (char **str, unsigned *pbase,
1921 struct neon_type_el *eltype)
1922 {
1923 char *ptr = *str;
1924 int base_reg = -1;
1925 int reg_incr = -1;
1926 int count = 0;
1927 int lane = -1;
1928 int leading_brace = 0;
1929 enum arm_reg_type rtype = REG_TYPE_NDQ;
1930 const char *const incr_error = _("register stride must be 1 or 2");
1931 const char *const type_error = _("mismatched element/structure types in list");
1932 struct neon_typed_alias firsttype;
1933
1934 if (skip_past_char (&ptr, '{') == SUCCESS)
1935 leading_brace = 1;
1936
1937 do
1938 {
1939 struct neon_typed_alias atype;
1940 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1941
1942 if (getreg == FAIL)
1943 {
1944 first_error (_(reg_expected_msgs[rtype]));
1945 return FAIL;
1946 }
1947
1948 if (base_reg == -1)
1949 {
1950 base_reg = getreg;
1951 if (rtype == REG_TYPE_NQ)
1952 {
1953 reg_incr = 1;
1954 }
1955 firsttype = atype;
1956 }
1957 else if (reg_incr == -1)
1958 {
1959 reg_incr = getreg - base_reg;
1960 if (reg_incr < 1 || reg_incr > 2)
1961 {
1962 first_error (_(incr_error));
1963 return FAIL;
1964 }
1965 }
1966 else if (getreg != base_reg + reg_incr * count)
1967 {
1968 first_error (_(incr_error));
1969 return FAIL;
1970 }
1971
1972 if (! neon_alias_types_same (&atype, &firsttype))
1973 {
1974 first_error (_(type_error));
1975 return FAIL;
1976 }
1977
1978 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1979 modes. */
1980 if (ptr[0] == '-')
1981 {
1982 struct neon_typed_alias htype;
1983 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1984 if (lane == -1)
1985 lane = NEON_INTERLEAVE_LANES;
1986 else if (lane != NEON_INTERLEAVE_LANES)
1987 {
1988 first_error (_(type_error));
1989 return FAIL;
1990 }
1991 if (reg_incr == -1)
1992 reg_incr = 1;
1993 else if (reg_incr != 1)
1994 {
1995 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1996 return FAIL;
1997 }
1998 ptr++;
1999 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2000 if (hireg == FAIL)
2001 {
2002 first_error (_(reg_expected_msgs[rtype]));
2003 return FAIL;
2004 }
2005 if (! neon_alias_types_same (&htype, &firsttype))
2006 {
2007 first_error (_(type_error));
2008 return FAIL;
2009 }
2010 count += hireg + dregs - getreg;
2011 continue;
2012 }
2013
2014 /* If we're using Q registers, we can't use [] or [n] syntax. */
2015 if (rtype == REG_TYPE_NQ)
2016 {
2017 count += 2;
2018 continue;
2019 }
2020
2021 if ((atype.defined & NTA_HASINDEX) != 0)
2022 {
2023 if (lane == -1)
2024 lane = atype.index;
2025 else if (lane != atype.index)
2026 {
2027 first_error (_(type_error));
2028 return FAIL;
2029 }
2030 }
2031 else if (lane == -1)
2032 lane = NEON_INTERLEAVE_LANES;
2033 else if (lane != NEON_INTERLEAVE_LANES)
2034 {
2035 first_error (_(type_error));
2036 return FAIL;
2037 }
2038 count++;
2039 }
2040 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2041
2042 /* No lane set by [x]. We must be interleaving structures. */
2043 if (lane == -1)
2044 lane = NEON_INTERLEAVE_LANES;
2045
2046 /* Sanity check. */
2047 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2048 || (count > 1 && reg_incr == -1))
2049 {
2050 first_error (_("error parsing element/structure list"));
2051 return FAIL;
2052 }
2053
2054 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2055 {
2056 first_error (_("expected }"));
2057 return FAIL;
2058 }
2059
2060 if (reg_incr == -1)
2061 reg_incr = 1;
2062
2063 if (eltype)
2064 *eltype = firsttype.eltype;
2065
2066 *pbase = base_reg;
2067 *str = ptr;
2068
2069 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2070 }
2071
2072 /* Parse an explicit relocation suffix on an expression. This is
2073 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2074 arm_reloc_hsh contains no entries, so this function can only
2075 succeed if there is no () after the word. Returns -1 on error,
2076 BFD_RELOC_UNUSED if there wasn't any suffix. */
2077
2078 static int
2079 parse_reloc (char **str)
2080 {
2081 struct reloc_entry *r;
2082 char *p, *q;
2083
2084 if (**str != '(')
2085 return BFD_RELOC_UNUSED;
2086
2087 p = *str + 1;
2088 q = p;
2089
2090 while (*q && *q != ')' && *q != ',')
2091 q++;
2092 if (*q != ')')
2093 return -1;
2094
2095 if ((r = (struct reloc_entry *)
2096 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2097 return -1;
2098
2099 *str = q + 1;
2100 return r->reloc;
2101 }
2102
2103 /* Directives: register aliases. */
2104
2105 static struct reg_entry *
2106 insert_reg_alias (char *str, unsigned number, int type)
2107 {
2108 struct reg_entry *new_reg;
2109 const char *name;
2110
2111 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2112 {
2113 if (new_reg->builtin)
2114 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2115
2116 /* Only warn about a redefinition if it's not defined as the
2117 same register. */
2118 else if (new_reg->number != number || new_reg->type != type)
2119 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2120
2121 return NULL;
2122 }
2123
2124 name = xstrdup (str);
2125 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
2126
2127 new_reg->name = name;
2128 new_reg->number = number;
2129 new_reg->type = type;
2130 new_reg->builtin = FALSE;
2131 new_reg->neon = NULL;
2132
2133 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2134 abort ();
2135
2136 return new_reg;
2137 }
2138
2139 static void
2140 insert_neon_reg_alias (char *str, int number, int type,
2141 struct neon_typed_alias *atype)
2142 {
2143 struct reg_entry *reg = insert_reg_alias (str, number, type);
2144
2145 if (!reg)
2146 {
2147 first_error (_("attempt to redefine typed alias"));
2148 return;
2149 }
2150
2151 if (atype)
2152 {
2153 reg->neon = (struct neon_typed_alias *)
2154 xmalloc (sizeof (struct neon_typed_alias));
2155 *reg->neon = *atype;
2156 }
2157 }
2158
2159 /* Look for the .req directive. This is of the form:
2160
2161 new_register_name .req existing_register_name
2162
2163 If we find one, or if it looks sufficiently like one that we want to
2164 handle any error here, return TRUE. Otherwise return FALSE. */
2165
2166 static bfd_boolean
2167 create_register_alias (char * newname, char *p)
2168 {
2169 struct reg_entry *old;
2170 char *oldname, *nbuf;
2171 size_t nlen;
2172
2173 /* The input scrubber ensures that whitespace after the mnemonic is
2174 collapsed to single spaces. */
2175 oldname = p;
2176 if (strncmp (oldname, " .req ", 6) != 0)
2177 return FALSE;
2178
2179 oldname += 6;
2180 if (*oldname == '\0')
2181 return FALSE;
2182
2183 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2184 if (!old)
2185 {
2186 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2187 return TRUE;
2188 }
2189
2190 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2191 the desired alias name, and p points to its end. If not, then
2192 the desired alias name is in the global original_case_string. */
2193 #ifdef TC_CASE_SENSITIVE
2194 nlen = p - newname;
2195 #else
2196 newname = original_case_string;
2197 nlen = strlen (newname);
2198 #endif
2199
2200 nbuf = (char *) alloca (nlen + 1);
2201 memcpy (nbuf, newname, nlen);
2202 nbuf[nlen] = '\0';
2203
2204 /* Create aliases under the new name as stated; an all-lowercase
2205 version of the new name; and an all-uppercase version of the new
2206 name. */
2207 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2208 {
2209 for (p = nbuf; *p; p++)
2210 *p = TOUPPER (*p);
2211
2212 if (strncmp (nbuf, newname, nlen))
2213 {
2214 /* If this attempt to create an additional alias fails, do not bother
2215 trying to create the all-lower case alias. We will fail and issue
2216 a second, duplicate error message. This situation arises when the
2217 programmer does something like:
2218 foo .req r0
2219 Foo .req r1
2220 The second .req creates the "Foo" alias but then fails to create
2221 the artificial FOO alias because it has already been created by the
2222 first .req. */
2223 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2224 return TRUE;
2225 }
2226
2227 for (p = nbuf; *p; p++)
2228 *p = TOLOWER (*p);
2229
2230 if (strncmp (nbuf, newname, nlen))
2231 insert_reg_alias (nbuf, old->number, old->type);
2232 }
2233
2234 return TRUE;
2235 }
2236
2237 /* Create a Neon typed/indexed register alias using directives, e.g.:
2238 X .dn d5.s32[1]
2239 Y .qn 6.s16
2240 Z .dn d7
2241 T .dn Z[0]
2242 These typed registers can be used instead of the types specified after the
2243 Neon mnemonic, so long as all operands given have types. Types can also be
2244 specified directly, e.g.:
2245 vadd d0.s32, d1.s32, d2.s32 */
2246
2247 static bfd_boolean
2248 create_neon_reg_alias (char *newname, char *p)
2249 {
2250 enum arm_reg_type basetype;
2251 struct reg_entry *basereg;
2252 struct reg_entry mybasereg;
2253 struct neon_type ntype;
2254 struct neon_typed_alias typeinfo;
2255 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2256 int namelen;
2257
2258 typeinfo.defined = 0;
2259 typeinfo.eltype.type = NT_invtype;
2260 typeinfo.eltype.size = -1;
2261 typeinfo.index = -1;
2262
2263 nameend = p;
2264
2265 if (strncmp (p, " .dn ", 5) == 0)
2266 basetype = REG_TYPE_VFD;
2267 else if (strncmp (p, " .qn ", 5) == 0)
2268 basetype = REG_TYPE_NQ;
2269 else
2270 return FALSE;
2271
2272 p += 5;
2273
2274 if (*p == '\0')
2275 return FALSE;
2276
2277 basereg = arm_reg_parse_multi (&p);
2278
2279 if (basereg && basereg->type != basetype)
2280 {
2281 as_bad (_("bad type for register"));
2282 return FALSE;
2283 }
2284
2285 if (basereg == NULL)
2286 {
2287 expressionS exp;
2288 /* Try parsing as an integer. */
2289 my_get_expression (&exp, &p, GE_NO_PREFIX);
2290 if (exp.X_op != O_constant)
2291 {
2292 as_bad (_("expression must be constant"));
2293 return FALSE;
2294 }
2295 basereg = &mybasereg;
2296 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2297 : exp.X_add_number;
2298 basereg->neon = 0;
2299 }
2300
2301 if (basereg->neon)
2302 typeinfo = *basereg->neon;
2303
2304 if (parse_neon_type (&ntype, &p) == SUCCESS)
2305 {
2306 /* We got a type. */
2307 if (typeinfo.defined & NTA_HASTYPE)
2308 {
2309 as_bad (_("can't redefine the type of a register alias"));
2310 return FALSE;
2311 }
2312
2313 typeinfo.defined |= NTA_HASTYPE;
2314 if (ntype.elems != 1)
2315 {
2316 as_bad (_("you must specify a single type only"));
2317 return FALSE;
2318 }
2319 typeinfo.eltype = ntype.el[0];
2320 }
2321
2322 if (skip_past_char (&p, '[') == SUCCESS)
2323 {
2324 expressionS exp;
2325 /* We got a scalar index. */
2326
2327 if (typeinfo.defined & NTA_HASINDEX)
2328 {
2329 as_bad (_("can't redefine the index of a scalar alias"));
2330 return FALSE;
2331 }
2332
2333 my_get_expression (&exp, &p, GE_NO_PREFIX);
2334
2335 if (exp.X_op != O_constant)
2336 {
2337 as_bad (_("scalar index must be constant"));
2338 return FALSE;
2339 }
2340
2341 typeinfo.defined |= NTA_HASINDEX;
2342 typeinfo.index = exp.X_add_number;
2343
2344 if (skip_past_char (&p, ']') == FAIL)
2345 {
2346 as_bad (_("expecting ]"));
2347 return FALSE;
2348 }
2349 }
2350
2351 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2352 the desired alias name, and p points to its end. If not, then
2353 the desired alias name is in the global original_case_string. */
2354 #ifdef TC_CASE_SENSITIVE
2355 namelen = nameend - newname;
2356 #else
2357 newname = original_case_string;
2358 namelen = strlen (newname);
2359 #endif
2360
2361 namebuf = (char *) alloca (namelen + 1);
2362 strncpy (namebuf, newname, namelen);
2363 namebuf[namelen] = '\0';
2364
2365 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2366 typeinfo.defined != 0 ? &typeinfo : NULL);
2367
2368 /* Insert name in all uppercase. */
2369 for (p = namebuf; *p; p++)
2370 *p = TOUPPER (*p);
2371
2372 if (strncmp (namebuf, newname, namelen))
2373 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2374 typeinfo.defined != 0 ? &typeinfo : NULL);
2375
2376 /* Insert name in all lowercase. */
2377 for (p = namebuf; *p; p++)
2378 *p = TOLOWER (*p);
2379
2380 if (strncmp (namebuf, newname, namelen))
2381 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2382 typeinfo.defined != 0 ? &typeinfo : NULL);
2383
2384 return TRUE;
2385 }
2386
2387 /* Should never be called, as .req goes between the alias and the
2388 register name, not at the beginning of the line. */
2389
2390 static void
2391 s_req (int a ATTRIBUTE_UNUSED)
2392 {
2393 as_bad (_("invalid syntax for .req directive"));
2394 }
2395
2396 static void
2397 s_dn (int a ATTRIBUTE_UNUSED)
2398 {
2399 as_bad (_("invalid syntax for .dn directive"));
2400 }
2401
2402 static void
2403 s_qn (int a ATTRIBUTE_UNUSED)
2404 {
2405 as_bad (_("invalid syntax for .qn directive"));
2406 }
2407
2408 /* The .unreq directive deletes an alias which was previously defined
2409 by .req. For example:
2410
2411 my_alias .req r11
2412 .unreq my_alias */
2413
2414 static void
2415 s_unreq (int a ATTRIBUTE_UNUSED)
2416 {
2417 char * name;
2418 char saved_char;
2419
2420 name = input_line_pointer;
2421
2422 while (*input_line_pointer != 0
2423 && *input_line_pointer != ' '
2424 && *input_line_pointer != '\n')
2425 ++input_line_pointer;
2426
2427 saved_char = *input_line_pointer;
2428 *input_line_pointer = 0;
2429
2430 if (!*name)
2431 as_bad (_("invalid syntax for .unreq directive"));
2432 else
2433 {
2434 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2435 name);
2436
2437 if (!reg)
2438 as_bad (_("unknown register alias '%s'"), name);
2439 else if (reg->builtin)
2440 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2441 name);
2442 else
2443 {
2444 char * p;
2445 char * nbuf;
2446
2447 hash_delete (arm_reg_hsh, name, FALSE);
2448 free ((char *) reg->name);
2449 if (reg->neon)
2450 free (reg->neon);
2451 free (reg);
2452
2453 /* Also locate the all upper case and all lower case versions.
2454 Do not complain if we cannot find one or the other as it
2455 was probably deleted above. */
2456
2457 nbuf = strdup (name);
2458 for (p = nbuf; *p; p++)
2459 *p = TOUPPER (*p);
2460 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2461 if (reg)
2462 {
2463 hash_delete (arm_reg_hsh, nbuf, FALSE);
2464 free ((char *) reg->name);
2465 if (reg->neon)
2466 free (reg->neon);
2467 free (reg);
2468 }
2469
2470 for (p = nbuf; *p; p++)
2471 *p = TOLOWER (*p);
2472 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2473 if (reg)
2474 {
2475 hash_delete (arm_reg_hsh, nbuf, FALSE);
2476 free ((char *) reg->name);
2477 if (reg->neon)
2478 free (reg->neon);
2479 free (reg);
2480 }
2481
2482 free (nbuf);
2483 }
2484 }
2485
2486 *input_line_pointer = saved_char;
2487 demand_empty_rest_of_line ();
2488 }
2489
2490 /* Directives: Instruction set selection. */
2491
2492 #ifdef OBJ_ELF
2493 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2494 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2495 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2496 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2497
2498 /* Create a new mapping symbol for the transition to STATE. */
2499
2500 static void
2501 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2502 {
2503 symbolS * symbolP;
2504 const char * symname;
2505 int type;
2506
2507 switch (state)
2508 {
2509 case MAP_DATA:
2510 symname = "$d";
2511 type = BSF_NO_FLAGS;
2512 break;
2513 case MAP_ARM:
2514 symname = "$a";
2515 type = BSF_NO_FLAGS;
2516 break;
2517 case MAP_THUMB:
2518 symname = "$t";
2519 type = BSF_NO_FLAGS;
2520 break;
2521 default:
2522 abort ();
2523 }
2524
2525 symbolP = symbol_new (symname, now_seg, value, frag);
2526 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2527
2528 switch (state)
2529 {
2530 case MAP_ARM:
2531 THUMB_SET_FUNC (symbolP, 0);
2532 ARM_SET_THUMB (symbolP, 0);
2533 ARM_SET_INTERWORK (symbolP, support_interwork);
2534 break;
2535
2536 case MAP_THUMB:
2537 THUMB_SET_FUNC (symbolP, 1);
2538 ARM_SET_THUMB (symbolP, 1);
2539 ARM_SET_INTERWORK (symbolP, support_interwork);
2540 break;
2541
2542 case MAP_DATA:
2543 default:
2544 break;
2545 }
2546
2547 /* Save the mapping symbols for future reference. Also check that
2548 we do not place two mapping symbols at the same offset within a
2549 frag. We'll handle overlap between frags in
2550 check_mapping_symbols.
2551
2552 If .fill or other data filling directive generates zero sized data,
2553 the mapping symbol for the following code will have the same value
2554 as the one generated for the data filling directive. In this case,
2555 we replace the old symbol with the new one at the same address. */
2556 if (value == 0)
2557 {
2558 if (frag->tc_frag_data.first_map != NULL)
2559 {
2560 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2561 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2562 }
2563 frag->tc_frag_data.first_map = symbolP;
2564 }
2565 if (frag->tc_frag_data.last_map != NULL)
2566 {
2567 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2568 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2569 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2570 }
2571 frag->tc_frag_data.last_map = symbolP;
2572 }
2573
2574 /* We must sometimes convert a region marked as code to data during
2575 code alignment, if an odd number of bytes have to be padded. The
2576 code mapping symbol is pushed to an aligned address. */
2577
2578 static void
2579 insert_data_mapping_symbol (enum mstate state,
2580 valueT value, fragS *frag, offsetT bytes)
2581 {
2582 /* If there was already a mapping symbol, remove it. */
2583 if (frag->tc_frag_data.last_map != NULL
2584 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2585 {
2586 symbolS *symp = frag->tc_frag_data.last_map;
2587
2588 if (value == 0)
2589 {
2590 know (frag->tc_frag_data.first_map == symp);
2591 frag->tc_frag_data.first_map = NULL;
2592 }
2593 frag->tc_frag_data.last_map = NULL;
2594 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2595 }
2596
2597 make_mapping_symbol (MAP_DATA, value, frag);
2598 make_mapping_symbol (state, value + bytes, frag);
2599 }
2600
2601 static void mapping_state_2 (enum mstate state, int max_chars);
2602
2603 /* Set the mapping state to STATE. Only call this when about to
2604 emit some STATE bytes to the file. */
2605
2606 void
2607 mapping_state (enum mstate state)
2608 {
2609 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2610
2611 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2612
2613 if (mapstate == state)
2614 /* The mapping symbol has already been emitted.
2615 There is nothing else to do. */
2616 return;
2617
2618 if (state == MAP_ARM || state == MAP_THUMB)
2619 /* PR gas/12931
2620 All ARM instructions require 4-byte alignment.
2621 (Almost) all Thumb instructions require 2-byte alignment.
2622
2623 When emitting instructions into any section, mark the section
2624 appropriately.
2625
2626 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2627 but themselves require 2-byte alignment; this applies to some
2628 PC- relative forms. However, these cases will invovle implicit
2629 literal pool generation or an explicit .align >=2, both of
2630 which will cause the section to me marked with sufficient
2631 alignment. Thus, we don't handle those cases here. */
2632 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2633
2634 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2635 /* This case will be evaluated later in the next else. */
2636 return;
2637 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2638 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2639 {
2640 /* Only add the symbol if the offset is > 0:
2641 if we're at the first frag, check it's size > 0;
2642 if we're not at the first frag, then for sure
2643 the offset is > 0. */
2644 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2645 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2646
2647 if (add_symbol)
2648 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2649 }
2650
2651 mapping_state_2 (state, 0);
2652 #undef TRANSITION
2653 }
2654
2655 /* Same as mapping_state, but MAX_CHARS bytes have already been
2656 allocated. Put the mapping symbol that far back. */
2657
2658 static void
2659 mapping_state_2 (enum mstate state, int max_chars)
2660 {
2661 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2662
2663 if (!SEG_NORMAL (now_seg))
2664 return;
2665
2666 if (mapstate == state)
2667 /* The mapping symbol has already been emitted.
2668 There is nothing else to do. */
2669 return;
2670
2671 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2672 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2673 }
2674 #else
2675 #define mapping_state(x) ((void)0)
2676 #define mapping_state_2(x, y) ((void)0)
2677 #endif
2678
2679 /* Find the real, Thumb encoded start of a Thumb function. */
2680
2681 #ifdef OBJ_COFF
2682 static symbolS *
2683 find_real_start (symbolS * symbolP)
2684 {
2685 char * real_start;
2686 const char * name = S_GET_NAME (symbolP);
2687 symbolS * new_target;
2688
2689 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2690 #define STUB_NAME ".real_start_of"
2691
2692 if (name == NULL)
2693 abort ();
2694
2695 /* The compiler may generate BL instructions to local labels because
2696 it needs to perform a branch to a far away location. These labels
2697 do not have a corresponding ".real_start_of" label. We check
2698 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2699 the ".real_start_of" convention for nonlocal branches. */
2700 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2701 return symbolP;
2702
2703 real_start = ACONCAT ((STUB_NAME, name, NULL));
2704 new_target = symbol_find (real_start);
2705
2706 if (new_target == NULL)
2707 {
2708 as_warn (_("Failed to find real start of function: %s\n"), name);
2709 new_target = symbolP;
2710 }
2711
2712 return new_target;
2713 }
2714 #endif
2715
2716 static void
2717 opcode_select (int width)
2718 {
2719 switch (width)
2720 {
2721 case 16:
2722 if (! thumb_mode)
2723 {
2724 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2725 as_bad (_("selected processor does not support THUMB opcodes"));
2726
2727 thumb_mode = 1;
2728 /* No need to force the alignment, since we will have been
2729 coming from ARM mode, which is word-aligned. */
2730 record_alignment (now_seg, 1);
2731 }
2732 break;
2733
2734 case 32:
2735 if (thumb_mode)
2736 {
2737 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2738 as_bad (_("selected processor does not support ARM opcodes"));
2739
2740 thumb_mode = 0;
2741
2742 if (!need_pass_2)
2743 frag_align (2, 0, 0);
2744
2745 record_alignment (now_seg, 1);
2746 }
2747 break;
2748
2749 default:
2750 as_bad (_("invalid instruction size selected (%d)"), width);
2751 }
2752 }
2753
2754 static void
2755 s_arm (int ignore ATTRIBUTE_UNUSED)
2756 {
2757 opcode_select (32);
2758 demand_empty_rest_of_line ();
2759 }
2760
2761 static void
2762 s_thumb (int ignore ATTRIBUTE_UNUSED)
2763 {
2764 opcode_select (16);
2765 demand_empty_rest_of_line ();
2766 }
2767
2768 static void
2769 s_code (int unused ATTRIBUTE_UNUSED)
2770 {
2771 int temp;
2772
2773 temp = get_absolute_expression ();
2774 switch (temp)
2775 {
2776 case 16:
2777 case 32:
2778 opcode_select (temp);
2779 break;
2780
2781 default:
2782 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2783 }
2784 }
2785
2786 static void
2787 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2788 {
2789 /* If we are not already in thumb mode go into it, EVEN if
2790 the target processor does not support thumb instructions.
2791 This is used by gcc/config/arm/lib1funcs.asm for example
2792 to compile interworking support functions even if the
2793 target processor should not support interworking. */
2794 if (! thumb_mode)
2795 {
2796 thumb_mode = 2;
2797 record_alignment (now_seg, 1);
2798 }
2799
2800 demand_empty_rest_of_line ();
2801 }
2802
2803 static void
2804 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2805 {
2806 s_thumb (0);
2807
2808 /* The following label is the name/address of the start of a Thumb function.
2809 We need to know this for the interworking support. */
2810 label_is_thumb_function_name = TRUE;
2811 }
2812
2813 /* Perform a .set directive, but also mark the alias as
2814 being a thumb function. */
2815
2816 static void
2817 s_thumb_set (int equiv)
2818 {
2819 /* XXX the following is a duplicate of the code for s_set() in read.c
2820 We cannot just call that code as we need to get at the symbol that
2821 is created. */
2822 char * name;
2823 char delim;
2824 char * end_name;
2825 symbolS * symbolP;
2826
2827 /* Especial apologies for the random logic:
2828 This just grew, and could be parsed much more simply!
2829 Dean - in haste. */
2830 name = input_line_pointer;
2831 delim = get_symbol_end ();
2832 end_name = input_line_pointer;
2833 *end_name = delim;
2834
2835 if (*input_line_pointer != ',')
2836 {
2837 *end_name = 0;
2838 as_bad (_("expected comma after name \"%s\""), name);
2839 *end_name = delim;
2840 ignore_rest_of_line ();
2841 return;
2842 }
2843
2844 input_line_pointer++;
2845 *end_name = 0;
2846
2847 if (name[0] == '.' && name[1] == '\0')
2848 {
2849 /* XXX - this should not happen to .thumb_set. */
2850 abort ();
2851 }
2852
2853 if ((symbolP = symbol_find (name)) == NULL
2854 && (symbolP = md_undefined_symbol (name)) == NULL)
2855 {
2856 #ifndef NO_LISTING
2857 /* When doing symbol listings, play games with dummy fragments living
2858 outside the normal fragment chain to record the file and line info
2859 for this symbol. */
2860 if (listing & LISTING_SYMBOLS)
2861 {
2862 extern struct list_info_struct * listing_tail;
2863 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
2864
2865 memset (dummy_frag, 0, sizeof (fragS));
2866 dummy_frag->fr_type = rs_fill;
2867 dummy_frag->line = listing_tail;
2868 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2869 dummy_frag->fr_symbol = symbolP;
2870 }
2871 else
2872 #endif
2873 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2874
2875 #ifdef OBJ_COFF
2876 /* "set" symbols are local unless otherwise specified. */
2877 SF_SET_LOCAL (symbolP);
2878 #endif /* OBJ_COFF */
2879 } /* Make a new symbol. */
2880
2881 symbol_table_insert (symbolP);
2882
2883 * end_name = delim;
2884
2885 if (equiv
2886 && S_IS_DEFINED (symbolP)
2887 && S_GET_SEGMENT (symbolP) != reg_section)
2888 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2889
2890 pseudo_set (symbolP);
2891
2892 demand_empty_rest_of_line ();
2893
2894 /* XXX Now we come to the Thumb specific bit of code. */
2895
2896 THUMB_SET_FUNC (symbolP, 1);
2897 ARM_SET_THUMB (symbolP, 1);
2898 #if defined OBJ_ELF || defined OBJ_COFF
2899 ARM_SET_INTERWORK (symbolP, support_interwork);
2900 #endif
2901 }
2902
2903 /* Directives: Mode selection. */
2904
2905 /* .syntax [unified|divided] - choose the new unified syntax
2906 (same for Arm and Thumb encoding, modulo slight differences in what
2907 can be represented) or the old divergent syntax for each mode. */
2908 static void
2909 s_syntax (int unused ATTRIBUTE_UNUSED)
2910 {
2911 char *name, delim;
2912
2913 name = input_line_pointer;
2914 delim = get_symbol_end ();
2915
2916 if (!strcasecmp (name, "unified"))
2917 unified_syntax = TRUE;
2918 else if (!strcasecmp (name, "divided"))
2919 unified_syntax = FALSE;
2920 else
2921 {
2922 as_bad (_("unrecognized syntax mode \"%s\""), name);
2923 return;
2924 }
2925 *input_line_pointer = delim;
2926 demand_empty_rest_of_line ();
2927 }
2928
2929 /* Directives: sectioning and alignment. */
2930
2931 /* Same as s_align_ptwo but align 0 => align 2. */
2932
2933 static void
2934 s_align (int unused ATTRIBUTE_UNUSED)
2935 {
2936 int temp;
2937 bfd_boolean fill_p;
2938 long temp_fill;
2939 long max_alignment = 15;
2940
2941 temp = get_absolute_expression ();
2942 if (temp > max_alignment)
2943 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2944 else if (temp < 0)
2945 {
2946 as_bad (_("alignment negative. 0 assumed."));
2947 temp = 0;
2948 }
2949
2950 if (*input_line_pointer == ',')
2951 {
2952 input_line_pointer++;
2953 temp_fill = get_absolute_expression ();
2954 fill_p = TRUE;
2955 }
2956 else
2957 {
2958 fill_p = FALSE;
2959 temp_fill = 0;
2960 }
2961
2962 if (!temp)
2963 temp = 2;
2964
2965 /* Only make a frag if we HAVE to. */
2966 if (temp && !need_pass_2)
2967 {
2968 if (!fill_p && subseg_text_p (now_seg))
2969 frag_align_code (temp, 0);
2970 else
2971 frag_align (temp, (int) temp_fill, 0);
2972 }
2973 demand_empty_rest_of_line ();
2974
2975 record_alignment (now_seg, temp);
2976 }
2977
2978 static void
2979 s_bss (int ignore ATTRIBUTE_UNUSED)
2980 {
2981 /* We don't support putting frags in the BSS segment, we fake it by
2982 marking in_bss, then looking at s_skip for clues. */
2983 subseg_set (bss_section, 0);
2984 demand_empty_rest_of_line ();
2985
2986 #ifdef md_elf_section_change_hook
2987 md_elf_section_change_hook ();
2988 #endif
2989 }
2990
2991 static void
2992 s_even (int ignore ATTRIBUTE_UNUSED)
2993 {
2994 /* Never make frag if expect extra pass. */
2995 if (!need_pass_2)
2996 frag_align (1, 0, 0);
2997
2998 record_alignment (now_seg, 1);
2999
3000 demand_empty_rest_of_line ();
3001 }
3002
3003 /* Directives: Literal pools. */
3004
3005 static literal_pool *
3006 find_literal_pool (void)
3007 {
3008 literal_pool * pool;
3009
3010 for (pool = list_of_pools; pool != NULL; pool = pool->next)
3011 {
3012 if (pool->section == now_seg
3013 && pool->sub_section == now_subseg)
3014 break;
3015 }
3016
3017 return pool;
3018 }
3019
3020 static literal_pool *
3021 find_or_make_literal_pool (void)
3022 {
3023 /* Next literal pool ID number. */
3024 static unsigned int latest_pool_num = 1;
3025 literal_pool * pool;
3026
3027 pool = find_literal_pool ();
3028
3029 if (pool == NULL)
3030 {
3031 /* Create a new pool. */
3032 pool = (literal_pool *) xmalloc (sizeof (* pool));
3033 if (! pool)
3034 return NULL;
3035
3036 pool->next_free_entry = 0;
3037 pool->section = now_seg;
3038 pool->sub_section = now_subseg;
3039 pool->next = list_of_pools;
3040 pool->symbol = NULL;
3041
3042 /* Add it to the list. */
3043 list_of_pools = pool;
3044 }
3045
3046 /* New pools, and emptied pools, will have a NULL symbol. */
3047 if (pool->symbol == NULL)
3048 {
3049 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3050 (valueT) 0, &zero_address_frag);
3051 pool->id = latest_pool_num ++;
3052 }
3053
3054 /* Done. */
3055 return pool;
3056 }
3057
3058 /* Add the literal in the global 'inst'
3059 structure to the relevant literal pool. */
3060
3061 static int
3062 add_to_lit_pool (void)
3063 {
3064 literal_pool * pool;
3065 unsigned int entry;
3066
3067 pool = find_or_make_literal_pool ();
3068
3069 /* Check if this literal value is already in the pool. */
3070 for (entry = 0; entry < pool->next_free_entry; entry ++)
3071 {
3072 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3073 && (inst.reloc.exp.X_op == O_constant)
3074 && (pool->literals[entry].X_add_number
3075 == inst.reloc.exp.X_add_number)
3076 && (pool->literals[entry].X_unsigned
3077 == inst.reloc.exp.X_unsigned))
3078 break;
3079
3080 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3081 && (inst.reloc.exp.X_op == O_symbol)
3082 && (pool->literals[entry].X_add_number
3083 == inst.reloc.exp.X_add_number)
3084 && (pool->literals[entry].X_add_symbol
3085 == inst.reloc.exp.X_add_symbol)
3086 && (pool->literals[entry].X_op_symbol
3087 == inst.reloc.exp.X_op_symbol))
3088 break;
3089 }
3090
3091 /* Do we need to create a new entry? */
3092 if (entry == pool->next_free_entry)
3093 {
3094 if (entry >= MAX_LITERAL_POOL_SIZE)
3095 {
3096 inst.error = _("literal pool overflow");
3097 return FAIL;
3098 }
3099
3100 pool->literals[entry] = inst.reloc.exp;
3101 #ifdef OBJ_ELF
3102 /* PR ld/12974: Record the location of the first source line to reference
3103 this entry in the literal pool. If it turns out during linking that the
3104 symbol does not exist we will be able to give an accurate line number for
3105 the (first use of the) missing reference. */
3106 if (debug_type == DEBUG_DWARF2)
3107 dwarf2_where (pool->locs + entry);
3108 #endif
3109 pool->next_free_entry += 1;
3110 }
3111
3112 inst.reloc.exp.X_op = O_symbol;
3113 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3114 inst.reloc.exp.X_add_symbol = pool->symbol;
3115
3116 return SUCCESS;
3117 }
3118
3119 /* Can't use symbol_new here, so have to create a symbol and then at
3120 a later date assign it a value. Thats what these functions do. */
3121
3122 static void
3123 symbol_locate (symbolS * symbolP,
3124 const char * name, /* It is copied, the caller can modify. */
3125 segT segment, /* Segment identifier (SEG_<something>). */
3126 valueT valu, /* Symbol value. */
3127 fragS * frag) /* Associated fragment. */
3128 {
3129 unsigned int name_length;
3130 char * preserved_copy_of_name;
3131
3132 name_length = strlen (name) + 1; /* +1 for \0. */
3133 obstack_grow (&notes, name, name_length);
3134 preserved_copy_of_name = (char *) obstack_finish (&notes);
3135
3136 #ifdef tc_canonicalize_symbol_name
3137 preserved_copy_of_name =
3138 tc_canonicalize_symbol_name (preserved_copy_of_name);
3139 #endif
3140
3141 S_SET_NAME (symbolP, preserved_copy_of_name);
3142
3143 S_SET_SEGMENT (symbolP, segment);
3144 S_SET_VALUE (symbolP, valu);
3145 symbol_clear_list_pointers (symbolP);
3146
3147 symbol_set_frag (symbolP, frag);
3148
3149 /* Link to end of symbol chain. */
3150 {
3151 extern int symbol_table_frozen;
3152
3153 if (symbol_table_frozen)
3154 abort ();
3155 }
3156
3157 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3158
3159 obj_symbol_new_hook (symbolP);
3160
3161 #ifdef tc_symbol_new_hook
3162 tc_symbol_new_hook (symbolP);
3163 #endif
3164
3165 #ifdef DEBUG_SYMS
3166 verify_symbol_chain (symbol_rootP, symbol_lastP);
3167 #endif /* DEBUG_SYMS */
3168 }
3169
3170
3171 static void
3172 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3173 {
3174 unsigned int entry;
3175 literal_pool * pool;
3176 char sym_name[20];
3177
3178 pool = find_literal_pool ();
3179 if (pool == NULL
3180 || pool->symbol == NULL
3181 || pool->next_free_entry == 0)
3182 return;
3183
3184 mapping_state (MAP_DATA);
3185
3186 /* Align pool as you have word accesses.
3187 Only make a frag if we have to. */
3188 if (!need_pass_2)
3189 frag_align (2, 0, 0);
3190
3191 record_alignment (now_seg, 2);
3192
3193 sprintf (sym_name, "$$lit_\002%x", pool->id);
3194
3195 symbol_locate (pool->symbol, sym_name, now_seg,
3196 (valueT) frag_now_fix (), frag_now);
3197 symbol_table_insert (pool->symbol);
3198
3199 ARM_SET_THUMB (pool->symbol, thumb_mode);
3200
3201 #if defined OBJ_COFF || defined OBJ_ELF
3202 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3203 #endif
3204
3205 for (entry = 0; entry < pool->next_free_entry; entry ++)
3206 {
3207 #ifdef OBJ_ELF
3208 if (debug_type == DEBUG_DWARF2)
3209 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3210 #endif
3211 /* First output the expression in the instruction to the pool. */
3212 emit_expr (&(pool->literals[entry]), 4); /* .word */
3213 }
3214
3215 /* Mark the pool as empty. */
3216 pool->next_free_entry = 0;
3217 pool->symbol = NULL;
3218 }
3219
3220 #ifdef OBJ_ELF
3221 /* Forward declarations for functions below, in the MD interface
3222 section. */
3223 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3224 static valueT create_unwind_entry (int);
3225 static void start_unwind_section (const segT, int);
3226 static void add_unwind_opcode (valueT, int);
3227 static void flush_pending_unwind (void);
3228
3229 /* Directives: Data. */
3230
3231 static void
3232 s_arm_elf_cons (int nbytes)
3233 {
3234 expressionS exp;
3235
3236 #ifdef md_flush_pending_output
3237 md_flush_pending_output ();
3238 #endif
3239
3240 if (is_it_end_of_statement ())
3241 {
3242 demand_empty_rest_of_line ();
3243 return;
3244 }
3245
3246 #ifdef md_cons_align
3247 md_cons_align (nbytes);
3248 #endif
3249
3250 mapping_state (MAP_DATA);
3251 do
3252 {
3253 int reloc;
3254 char *base = input_line_pointer;
3255
3256 expression (& exp);
3257
3258 if (exp.X_op != O_symbol)
3259 emit_expr (&exp, (unsigned int) nbytes);
3260 else
3261 {
3262 char *before_reloc = input_line_pointer;
3263 reloc = parse_reloc (&input_line_pointer);
3264 if (reloc == -1)
3265 {
3266 as_bad (_("unrecognized relocation suffix"));
3267 ignore_rest_of_line ();
3268 return;
3269 }
3270 else if (reloc == BFD_RELOC_UNUSED)
3271 emit_expr (&exp, (unsigned int) nbytes);
3272 else
3273 {
3274 reloc_howto_type *howto = (reloc_howto_type *)
3275 bfd_reloc_type_lookup (stdoutput,
3276 (bfd_reloc_code_real_type) reloc);
3277 int size = bfd_get_reloc_size (howto);
3278
3279 if (reloc == BFD_RELOC_ARM_PLT32)
3280 {
3281 as_bad (_("(plt) is only valid on branch targets"));
3282 reloc = BFD_RELOC_UNUSED;
3283 size = 0;
3284 }
3285
3286 if (size > nbytes)
3287 as_bad (_("%s relocations do not fit in %d bytes"),
3288 howto->name, nbytes);
3289 else
3290 {
3291 /* We've parsed an expression stopping at O_symbol.
3292 But there may be more expression left now that we
3293 have parsed the relocation marker. Parse it again.
3294 XXX Surely there is a cleaner way to do this. */
3295 char *p = input_line_pointer;
3296 int offset;
3297 char *save_buf = (char *) alloca (input_line_pointer - base);
3298 memcpy (save_buf, base, input_line_pointer - base);
3299 memmove (base + (input_line_pointer - before_reloc),
3300 base, before_reloc - base);
3301
3302 input_line_pointer = base + (input_line_pointer-before_reloc);
3303 expression (&exp);
3304 memcpy (base, save_buf, p - base);
3305
3306 offset = nbytes - size;
3307 p = frag_more ((int) nbytes);
3308 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3309 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3310 }
3311 }
3312 }
3313 }
3314 while (*input_line_pointer++ == ',');
3315
3316 /* Put terminator back into stream. */
3317 input_line_pointer --;
3318 demand_empty_rest_of_line ();
3319 }
3320
3321 /* Emit an expression containing a 32-bit thumb instruction.
3322 Implementation based on put_thumb32_insn. */
3323
3324 static void
3325 emit_thumb32_expr (expressionS * exp)
3326 {
3327 expressionS exp_high = *exp;
3328
3329 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3330 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3331 exp->X_add_number &= 0xffff;
3332 emit_expr (exp, (unsigned int) THUMB_SIZE);
3333 }
3334
3335 /* Guess the instruction size based on the opcode. */
3336
3337 static int
3338 thumb_insn_size (int opcode)
3339 {
3340 if ((unsigned int) opcode < 0xe800u)
3341 return 2;
3342 else if ((unsigned int) opcode >= 0xe8000000u)
3343 return 4;
3344 else
3345 return 0;
3346 }
3347
3348 static bfd_boolean
3349 emit_insn (expressionS *exp, int nbytes)
3350 {
3351 int size = 0;
3352
3353 if (exp->X_op == O_constant)
3354 {
3355 size = nbytes;
3356
3357 if (size == 0)
3358 size = thumb_insn_size (exp->X_add_number);
3359
3360 if (size != 0)
3361 {
3362 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3363 {
3364 as_bad (_(".inst.n operand too big. "\
3365 "Use .inst.w instead"));
3366 size = 0;
3367 }
3368 else
3369 {
3370 if (now_it.state == AUTOMATIC_IT_BLOCK)
3371 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3372 else
3373 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3374
3375 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3376 emit_thumb32_expr (exp);
3377 else
3378 emit_expr (exp, (unsigned int) size);
3379
3380 it_fsm_post_encode ();
3381 }
3382 }
3383 else
3384 as_bad (_("cannot determine Thumb instruction size. " \
3385 "Use .inst.n/.inst.w instead"));
3386 }
3387 else
3388 as_bad (_("constant expression required"));
3389
3390 return (size != 0);
3391 }
3392
3393 /* Like s_arm_elf_cons but do not use md_cons_align and
3394 set the mapping state to MAP_ARM/MAP_THUMB. */
3395
3396 static void
3397 s_arm_elf_inst (int nbytes)
3398 {
3399 if (is_it_end_of_statement ())
3400 {
3401 demand_empty_rest_of_line ();
3402 return;
3403 }
3404
3405 /* Calling mapping_state () here will not change ARM/THUMB,
3406 but will ensure not to be in DATA state. */
3407
3408 if (thumb_mode)
3409 mapping_state (MAP_THUMB);
3410 else
3411 {
3412 if (nbytes != 0)
3413 {
3414 as_bad (_("width suffixes are invalid in ARM mode"));
3415 ignore_rest_of_line ();
3416 return;
3417 }
3418
3419 nbytes = 4;
3420
3421 mapping_state (MAP_ARM);
3422 }
3423
3424 do
3425 {
3426 expressionS exp;
3427
3428 expression (& exp);
3429
3430 if (! emit_insn (& exp, nbytes))
3431 {
3432 ignore_rest_of_line ();
3433 return;
3434 }
3435 }
3436 while (*input_line_pointer++ == ',');
3437
3438 /* Put terminator back into stream. */
3439 input_line_pointer --;
3440 demand_empty_rest_of_line ();
3441 }
3442
3443 /* Parse a .rel31 directive. */
3444
3445 static void
3446 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3447 {
3448 expressionS exp;
3449 char *p;
3450 valueT highbit;
3451
3452 highbit = 0;
3453 if (*input_line_pointer == '1')
3454 highbit = 0x80000000;
3455 else if (*input_line_pointer != '0')
3456 as_bad (_("expected 0 or 1"));
3457
3458 input_line_pointer++;
3459 if (*input_line_pointer != ',')
3460 as_bad (_("missing comma"));
3461 input_line_pointer++;
3462
3463 #ifdef md_flush_pending_output
3464 md_flush_pending_output ();
3465 #endif
3466
3467 #ifdef md_cons_align
3468 md_cons_align (4);
3469 #endif
3470
3471 mapping_state (MAP_DATA);
3472
3473 expression (&exp);
3474
3475 p = frag_more (4);
3476 md_number_to_chars (p, highbit, 4);
3477 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3478 BFD_RELOC_ARM_PREL31);
3479
3480 demand_empty_rest_of_line ();
3481 }
3482
3483 /* Directives: AEABI stack-unwind tables. */
3484
3485 /* Parse an unwind_fnstart directive. Simply records the current location. */
3486
3487 static void
3488 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3489 {
3490 demand_empty_rest_of_line ();
3491 if (unwind.proc_start)
3492 {
3493 as_bad (_("duplicate .fnstart directive"));
3494 return;
3495 }
3496
3497 /* Mark the start of the function. */
3498 unwind.proc_start = expr_build_dot ();
3499
3500 /* Reset the rest of the unwind info. */
3501 unwind.opcode_count = 0;
3502 unwind.table_entry = NULL;
3503 unwind.personality_routine = NULL;
3504 unwind.personality_index = -1;
3505 unwind.frame_size = 0;
3506 unwind.fp_offset = 0;
3507 unwind.fp_reg = REG_SP;
3508 unwind.fp_used = 0;
3509 unwind.sp_restored = 0;
3510 }
3511
3512
3513 /* Parse a handlerdata directive. Creates the exception handling table entry
3514 for the function. */
3515
3516 static void
3517 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3518 {
3519 demand_empty_rest_of_line ();
3520 if (!unwind.proc_start)
3521 as_bad (MISSING_FNSTART);
3522
3523 if (unwind.table_entry)
3524 as_bad (_("duplicate .handlerdata directive"));
3525
3526 create_unwind_entry (1);
3527 }
3528
3529 /* Parse an unwind_fnend directive. Generates the index table entry. */
3530
3531 static void
3532 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3533 {
3534 long where;
3535 char *ptr;
3536 valueT val;
3537 unsigned int marked_pr_dependency;
3538
3539 demand_empty_rest_of_line ();
3540
3541 if (!unwind.proc_start)
3542 {
3543 as_bad (_(".fnend directive without .fnstart"));
3544 return;
3545 }
3546
3547 /* Add eh table entry. */
3548 if (unwind.table_entry == NULL)
3549 val = create_unwind_entry (0);
3550 else
3551 val = 0;
3552
3553 /* Add index table entry. This is two words. */
3554 start_unwind_section (unwind.saved_seg, 1);
3555 frag_align (2, 0, 0);
3556 record_alignment (now_seg, 2);
3557
3558 ptr = frag_more (8);
3559 memset (ptr, 0, 8);
3560 where = frag_now_fix () - 8;
3561
3562 /* Self relative offset of the function start. */
3563 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3564 BFD_RELOC_ARM_PREL31);
3565
3566 /* Indicate dependency on EHABI-defined personality routines to the
3567 linker, if it hasn't been done already. */
3568 marked_pr_dependency
3569 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
3570 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3571 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3572 {
3573 static const char *const name[] =
3574 {
3575 "__aeabi_unwind_cpp_pr0",
3576 "__aeabi_unwind_cpp_pr1",
3577 "__aeabi_unwind_cpp_pr2"
3578 };
3579 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3580 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3581 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3582 |= 1 << unwind.personality_index;
3583 }
3584
3585 if (val)
3586 /* Inline exception table entry. */
3587 md_number_to_chars (ptr + 4, val, 4);
3588 else
3589 /* Self relative offset of the table entry. */
3590 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3591 BFD_RELOC_ARM_PREL31);
3592
3593 /* Restore the original section. */
3594 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3595
3596 unwind.proc_start = NULL;
3597 }
3598
3599
3600 /* Parse an unwind_cantunwind directive. */
3601
3602 static void
3603 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3604 {
3605 demand_empty_rest_of_line ();
3606 if (!unwind.proc_start)
3607 as_bad (MISSING_FNSTART);
3608
3609 if (unwind.personality_routine || unwind.personality_index != -1)
3610 as_bad (_("personality routine specified for cantunwind frame"));
3611
3612 unwind.personality_index = -2;
3613 }
3614
3615
3616 /* Parse a personalityindex directive. */
3617
3618 static void
3619 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3620 {
3621 expressionS exp;
3622
3623 if (!unwind.proc_start)
3624 as_bad (MISSING_FNSTART);
3625
3626 if (unwind.personality_routine || unwind.personality_index != -1)
3627 as_bad (_("duplicate .personalityindex directive"));
3628
3629 expression (&exp);
3630
3631 if (exp.X_op != O_constant
3632 || exp.X_add_number < 0 || exp.X_add_number > 15)
3633 {
3634 as_bad (_("bad personality routine number"));
3635 ignore_rest_of_line ();
3636 return;
3637 }
3638
3639 unwind.personality_index = exp.X_add_number;
3640
3641 demand_empty_rest_of_line ();
3642 }
3643
3644
3645 /* Parse a personality directive. */
3646
3647 static void
3648 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3649 {
3650 char *name, *p, c;
3651
3652 if (!unwind.proc_start)
3653 as_bad (MISSING_FNSTART);
3654
3655 if (unwind.personality_routine || unwind.personality_index != -1)
3656 as_bad (_("duplicate .personality directive"));
3657
3658 name = input_line_pointer;
3659 c = get_symbol_end ();
3660 p = input_line_pointer;
3661 unwind.personality_routine = symbol_find_or_make (name);
3662 *p = c;
3663 demand_empty_rest_of_line ();
3664 }
3665
3666
3667 /* Parse a directive saving core registers. */
3668
3669 static void
3670 s_arm_unwind_save_core (void)
3671 {
3672 valueT op;
3673 long range;
3674 int n;
3675
3676 range = parse_reg_list (&input_line_pointer);
3677 if (range == FAIL)
3678 {
3679 as_bad (_("expected register list"));
3680 ignore_rest_of_line ();
3681 return;
3682 }
3683
3684 demand_empty_rest_of_line ();
3685
3686 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3687 into .unwind_save {..., sp...}. We aren't bothered about the value of
3688 ip because it is clobbered by calls. */
3689 if (unwind.sp_restored && unwind.fp_reg == 12
3690 && (range & 0x3000) == 0x1000)
3691 {
3692 unwind.opcode_count--;
3693 unwind.sp_restored = 0;
3694 range = (range | 0x2000) & ~0x1000;
3695 unwind.pending_offset = 0;
3696 }
3697
3698 /* Pop r4-r15. */
3699 if (range & 0xfff0)
3700 {
3701 /* See if we can use the short opcodes. These pop a block of up to 8
3702 registers starting with r4, plus maybe r14. */
3703 for (n = 0; n < 8; n++)
3704 {
3705 /* Break at the first non-saved register. */
3706 if ((range & (1 << (n + 4))) == 0)
3707 break;
3708 }
3709 /* See if there are any other bits set. */
3710 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3711 {
3712 /* Use the long form. */
3713 op = 0x8000 | ((range >> 4) & 0xfff);
3714 add_unwind_opcode (op, 2);
3715 }
3716 else
3717 {
3718 /* Use the short form. */
3719 if (range & 0x4000)
3720 op = 0xa8; /* Pop r14. */
3721 else
3722 op = 0xa0; /* Do not pop r14. */
3723 op |= (n - 1);
3724 add_unwind_opcode (op, 1);
3725 }
3726 }
3727
3728 /* Pop r0-r3. */
3729 if (range & 0xf)
3730 {
3731 op = 0xb100 | (range & 0xf);
3732 add_unwind_opcode (op, 2);
3733 }
3734
3735 /* Record the number of bytes pushed. */
3736 for (n = 0; n < 16; n++)
3737 {
3738 if (range & (1 << n))
3739 unwind.frame_size += 4;
3740 }
3741 }
3742
3743
3744 /* Parse a directive saving FPA registers. */
3745
3746 static void
3747 s_arm_unwind_save_fpa (int reg)
3748 {
3749 expressionS exp;
3750 int num_regs;
3751 valueT op;
3752
3753 /* Get Number of registers to transfer. */
3754 if (skip_past_comma (&input_line_pointer) != FAIL)
3755 expression (&exp);
3756 else
3757 exp.X_op = O_illegal;
3758
3759 if (exp.X_op != O_constant)
3760 {
3761 as_bad (_("expected , <constant>"));
3762 ignore_rest_of_line ();
3763 return;
3764 }
3765
3766 num_regs = exp.X_add_number;
3767
3768 if (num_regs < 1 || num_regs > 4)
3769 {
3770 as_bad (_("number of registers must be in the range [1:4]"));
3771 ignore_rest_of_line ();
3772 return;
3773 }
3774
3775 demand_empty_rest_of_line ();
3776
3777 if (reg == 4)
3778 {
3779 /* Short form. */
3780 op = 0xb4 | (num_regs - 1);
3781 add_unwind_opcode (op, 1);
3782 }
3783 else
3784 {
3785 /* Long form. */
3786 op = 0xc800 | (reg << 4) | (num_regs - 1);
3787 add_unwind_opcode (op, 2);
3788 }
3789 unwind.frame_size += num_regs * 12;
3790 }
3791
3792
3793 /* Parse a directive saving VFP registers for ARMv6 and above. */
3794
3795 static void
3796 s_arm_unwind_save_vfp_armv6 (void)
3797 {
3798 int count;
3799 unsigned int start;
3800 valueT op;
3801 int num_vfpv3_regs = 0;
3802 int num_regs_below_16;
3803
3804 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3805 if (count == FAIL)
3806 {
3807 as_bad (_("expected register list"));
3808 ignore_rest_of_line ();
3809 return;
3810 }
3811
3812 demand_empty_rest_of_line ();
3813
3814 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3815 than FSTMX/FLDMX-style ones). */
3816
3817 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3818 if (start >= 16)
3819 num_vfpv3_regs = count;
3820 else if (start + count > 16)
3821 num_vfpv3_regs = start + count - 16;
3822
3823 if (num_vfpv3_regs > 0)
3824 {
3825 int start_offset = start > 16 ? start - 16 : 0;
3826 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3827 add_unwind_opcode (op, 2);
3828 }
3829
3830 /* Generate opcode for registers numbered in the range 0 .. 15. */
3831 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3832 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
3833 if (num_regs_below_16 > 0)
3834 {
3835 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3836 add_unwind_opcode (op, 2);
3837 }
3838
3839 unwind.frame_size += count * 8;
3840 }
3841
3842
3843 /* Parse a directive saving VFP registers for pre-ARMv6. */
3844
3845 static void
3846 s_arm_unwind_save_vfp (void)
3847 {
3848 int count;
3849 unsigned int reg;
3850 valueT op;
3851
3852 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
3853 if (count == FAIL)
3854 {
3855 as_bad (_("expected register list"));
3856 ignore_rest_of_line ();
3857 return;
3858 }
3859
3860 demand_empty_rest_of_line ();
3861
3862 if (reg == 8)
3863 {
3864 /* Short form. */
3865 op = 0xb8 | (count - 1);
3866 add_unwind_opcode (op, 1);
3867 }
3868 else
3869 {
3870 /* Long form. */
3871 op = 0xb300 | (reg << 4) | (count - 1);
3872 add_unwind_opcode (op, 2);
3873 }
3874 unwind.frame_size += count * 8 + 4;
3875 }
3876
3877
3878 /* Parse a directive saving iWMMXt data registers. */
3879
3880 static void
3881 s_arm_unwind_save_mmxwr (void)
3882 {
3883 int reg;
3884 int hi_reg;
3885 int i;
3886 unsigned mask = 0;
3887 valueT op;
3888
3889 if (*input_line_pointer == '{')
3890 input_line_pointer++;
3891
3892 do
3893 {
3894 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3895
3896 if (reg == FAIL)
3897 {
3898 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3899 goto error;
3900 }
3901
3902 if (mask >> reg)
3903 as_tsktsk (_("register list not in ascending order"));
3904 mask |= 1 << reg;
3905
3906 if (*input_line_pointer == '-')
3907 {
3908 input_line_pointer++;
3909 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3910 if (hi_reg == FAIL)
3911 {
3912 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3913 goto error;
3914 }
3915 else if (reg >= hi_reg)
3916 {
3917 as_bad (_("bad register range"));
3918 goto error;
3919 }
3920 for (; reg < hi_reg; reg++)
3921 mask |= 1 << reg;
3922 }
3923 }
3924 while (skip_past_comma (&input_line_pointer) != FAIL);
3925
3926 if (*input_line_pointer == '}')
3927 input_line_pointer++;
3928
3929 demand_empty_rest_of_line ();
3930
3931 /* Generate any deferred opcodes because we're going to be looking at
3932 the list. */
3933 flush_pending_unwind ();
3934
3935 for (i = 0; i < 16; i++)
3936 {
3937 if (mask & (1 << i))
3938 unwind.frame_size += 8;
3939 }
3940
3941 /* Attempt to combine with a previous opcode. We do this because gcc
3942 likes to output separate unwind directives for a single block of
3943 registers. */
3944 if (unwind.opcode_count > 0)
3945 {
3946 i = unwind.opcodes[unwind.opcode_count - 1];
3947 if ((i & 0xf8) == 0xc0)
3948 {
3949 i &= 7;
3950 /* Only merge if the blocks are contiguous. */
3951 if (i < 6)
3952 {
3953 if ((mask & 0xfe00) == (1 << 9))
3954 {
3955 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3956 unwind.opcode_count--;
3957 }
3958 }
3959 else if (i == 6 && unwind.opcode_count >= 2)
3960 {
3961 i = unwind.opcodes[unwind.opcode_count - 2];
3962 reg = i >> 4;
3963 i &= 0xf;
3964
3965 op = 0xffff << (reg - 1);
3966 if (reg > 0
3967 && ((mask & op) == (1u << (reg - 1))))
3968 {
3969 op = (1 << (reg + i + 1)) - 1;
3970 op &= ~((1 << reg) - 1);
3971 mask |= op;
3972 unwind.opcode_count -= 2;
3973 }
3974 }
3975 }
3976 }
3977
3978 hi_reg = 15;
3979 /* We want to generate opcodes in the order the registers have been
3980 saved, ie. descending order. */
3981 for (reg = 15; reg >= -1; reg--)
3982 {
3983 /* Save registers in blocks. */
3984 if (reg < 0
3985 || !(mask & (1 << reg)))
3986 {
3987 /* We found an unsaved reg. Generate opcodes to save the
3988 preceding block. */
3989 if (reg != hi_reg)
3990 {
3991 if (reg == 9)
3992 {
3993 /* Short form. */
3994 op = 0xc0 | (hi_reg - 10);
3995 add_unwind_opcode (op, 1);
3996 }
3997 else
3998 {
3999 /* Long form. */
4000 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4001 add_unwind_opcode (op, 2);
4002 }
4003 }
4004 hi_reg = reg - 1;
4005 }
4006 }
4007
4008 return;
4009 error:
4010 ignore_rest_of_line ();
4011 }
4012
4013 static void
4014 s_arm_unwind_save_mmxwcg (void)
4015 {
4016 int reg;
4017 int hi_reg;
4018 unsigned mask = 0;
4019 valueT op;
4020
4021 if (*input_line_pointer == '{')
4022 input_line_pointer++;
4023
4024 do
4025 {
4026 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4027
4028 if (reg == FAIL)
4029 {
4030 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4031 goto error;
4032 }
4033
4034 reg -= 8;
4035 if (mask >> reg)
4036 as_tsktsk (_("register list not in ascending order"));
4037 mask |= 1 << reg;
4038
4039 if (*input_line_pointer == '-')
4040 {
4041 input_line_pointer++;
4042 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4043 if (hi_reg == FAIL)
4044 {
4045 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4046 goto error;
4047 }
4048 else if (reg >= hi_reg)
4049 {
4050 as_bad (_("bad register range"));
4051 goto error;
4052 }
4053 for (; reg < hi_reg; reg++)
4054 mask |= 1 << reg;
4055 }
4056 }
4057 while (skip_past_comma (&input_line_pointer) != FAIL);
4058
4059 if (*input_line_pointer == '}')
4060 input_line_pointer++;
4061
4062 demand_empty_rest_of_line ();
4063
4064 /* Generate any deferred opcodes because we're going to be looking at
4065 the list. */
4066 flush_pending_unwind ();
4067
4068 for (reg = 0; reg < 16; reg++)
4069 {
4070 if (mask & (1 << reg))
4071 unwind.frame_size += 4;
4072 }
4073 op = 0xc700 | mask;
4074 add_unwind_opcode (op, 2);
4075 return;
4076 error:
4077 ignore_rest_of_line ();
4078 }
4079
4080
4081 /* Parse an unwind_save directive.
4082 If the argument is non-zero, this is a .vsave directive. */
4083
4084 static void
4085 s_arm_unwind_save (int arch_v6)
4086 {
4087 char *peek;
4088 struct reg_entry *reg;
4089 bfd_boolean had_brace = FALSE;
4090
4091 if (!unwind.proc_start)
4092 as_bad (MISSING_FNSTART);
4093
4094 /* Figure out what sort of save we have. */
4095 peek = input_line_pointer;
4096
4097 if (*peek == '{')
4098 {
4099 had_brace = TRUE;
4100 peek++;
4101 }
4102
4103 reg = arm_reg_parse_multi (&peek);
4104
4105 if (!reg)
4106 {
4107 as_bad (_("register expected"));
4108 ignore_rest_of_line ();
4109 return;
4110 }
4111
4112 switch (reg->type)
4113 {
4114 case REG_TYPE_FN:
4115 if (had_brace)
4116 {
4117 as_bad (_("FPA .unwind_save does not take a register list"));
4118 ignore_rest_of_line ();
4119 return;
4120 }
4121 input_line_pointer = peek;
4122 s_arm_unwind_save_fpa (reg->number);
4123 return;
4124
4125 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
4126 case REG_TYPE_VFD:
4127 if (arch_v6)
4128 s_arm_unwind_save_vfp_armv6 ();
4129 else
4130 s_arm_unwind_save_vfp ();
4131 return;
4132 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4133 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4134
4135 default:
4136 as_bad (_(".unwind_save does not support this kind of register"));
4137 ignore_rest_of_line ();
4138 }
4139 }
4140
4141
4142 /* Parse an unwind_movsp directive. */
4143
4144 static void
4145 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4146 {
4147 int reg;
4148 valueT op;
4149 int offset;
4150
4151 if (!unwind.proc_start)
4152 as_bad (MISSING_FNSTART);
4153
4154 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4155 if (reg == FAIL)
4156 {
4157 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4158 ignore_rest_of_line ();
4159 return;
4160 }
4161
4162 /* Optional constant. */
4163 if (skip_past_comma (&input_line_pointer) != FAIL)
4164 {
4165 if (immediate_for_directive (&offset) == FAIL)
4166 return;
4167 }
4168 else
4169 offset = 0;
4170
4171 demand_empty_rest_of_line ();
4172
4173 if (reg == REG_SP || reg == REG_PC)
4174 {
4175 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4176 return;
4177 }
4178
4179 if (unwind.fp_reg != REG_SP)
4180 as_bad (_("unexpected .unwind_movsp directive"));
4181
4182 /* Generate opcode to restore the value. */
4183 op = 0x90 | reg;
4184 add_unwind_opcode (op, 1);
4185
4186 /* Record the information for later. */
4187 unwind.fp_reg = reg;
4188 unwind.fp_offset = unwind.frame_size - offset;
4189 unwind.sp_restored = 1;
4190 }
4191
4192 /* Parse an unwind_pad directive. */
4193
4194 static void
4195 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4196 {
4197 int offset;
4198
4199 if (!unwind.proc_start)
4200 as_bad (MISSING_FNSTART);
4201
4202 if (immediate_for_directive (&offset) == FAIL)
4203 return;
4204
4205 if (offset & 3)
4206 {
4207 as_bad (_("stack increment must be multiple of 4"));
4208 ignore_rest_of_line ();
4209 return;
4210 }
4211
4212 /* Don't generate any opcodes, just record the details for later. */
4213 unwind.frame_size += offset;
4214 unwind.pending_offset += offset;
4215
4216 demand_empty_rest_of_line ();
4217 }
4218
4219 /* Parse an unwind_setfp directive. */
4220
4221 static void
4222 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4223 {
4224 int sp_reg;
4225 int fp_reg;
4226 int offset;
4227
4228 if (!unwind.proc_start)
4229 as_bad (MISSING_FNSTART);
4230
4231 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4232 if (skip_past_comma (&input_line_pointer) == FAIL)
4233 sp_reg = FAIL;
4234 else
4235 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4236
4237 if (fp_reg == FAIL || sp_reg == FAIL)
4238 {
4239 as_bad (_("expected <reg>, <reg>"));
4240 ignore_rest_of_line ();
4241 return;
4242 }
4243
4244 /* Optional constant. */
4245 if (skip_past_comma (&input_line_pointer) != FAIL)
4246 {
4247 if (immediate_for_directive (&offset) == FAIL)
4248 return;
4249 }
4250 else
4251 offset = 0;
4252
4253 demand_empty_rest_of_line ();
4254
4255 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4256 {
4257 as_bad (_("register must be either sp or set by a previous"
4258 "unwind_movsp directive"));
4259 return;
4260 }
4261
4262 /* Don't generate any opcodes, just record the information for later. */
4263 unwind.fp_reg = fp_reg;
4264 unwind.fp_used = 1;
4265 if (sp_reg == REG_SP)
4266 unwind.fp_offset = unwind.frame_size - offset;
4267 else
4268 unwind.fp_offset -= offset;
4269 }
4270
4271 /* Parse an unwind_raw directive. */
4272
4273 static void
4274 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4275 {
4276 expressionS exp;
4277 /* This is an arbitrary limit. */
4278 unsigned char op[16];
4279 int count;
4280
4281 if (!unwind.proc_start)
4282 as_bad (MISSING_FNSTART);
4283
4284 expression (&exp);
4285 if (exp.X_op == O_constant
4286 && skip_past_comma (&input_line_pointer) != FAIL)
4287 {
4288 unwind.frame_size += exp.X_add_number;
4289 expression (&exp);
4290 }
4291 else
4292 exp.X_op = O_illegal;
4293
4294 if (exp.X_op != O_constant)
4295 {
4296 as_bad (_("expected <offset>, <opcode>"));
4297 ignore_rest_of_line ();
4298 return;
4299 }
4300
4301 count = 0;
4302
4303 /* Parse the opcode. */
4304 for (;;)
4305 {
4306 if (count >= 16)
4307 {
4308 as_bad (_("unwind opcode too long"));
4309 ignore_rest_of_line ();
4310 }
4311 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4312 {
4313 as_bad (_("invalid unwind opcode"));
4314 ignore_rest_of_line ();
4315 return;
4316 }
4317 op[count++] = exp.X_add_number;
4318
4319 /* Parse the next byte. */
4320 if (skip_past_comma (&input_line_pointer) == FAIL)
4321 break;
4322
4323 expression (&exp);
4324 }
4325
4326 /* Add the opcode bytes in reverse order. */
4327 while (count--)
4328 add_unwind_opcode (op[count], 1);
4329
4330 demand_empty_rest_of_line ();
4331 }
4332
4333
4334 /* Parse a .eabi_attribute directive. */
4335
4336 static void
4337 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4338 {
4339 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4340
4341 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4342 attributes_set_explicitly[tag] = 1;
4343 }
4344
4345 /* Emit a tls fix for the symbol. */
4346
4347 static void
4348 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4349 {
4350 char *p;
4351 expressionS exp;
4352 #ifdef md_flush_pending_output
4353 md_flush_pending_output ();
4354 #endif
4355
4356 #ifdef md_cons_align
4357 md_cons_align (4);
4358 #endif
4359
4360 /* Since we're just labelling the code, there's no need to define a
4361 mapping symbol. */
4362 expression (&exp);
4363 p = obstack_next_free (&frchain_now->frch_obstack);
4364 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4365 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4366 : BFD_RELOC_ARM_TLS_DESCSEQ);
4367 }
4368 #endif /* OBJ_ELF */
4369
4370 static void s_arm_arch (int);
4371 static void s_arm_object_arch (int);
4372 static void s_arm_cpu (int);
4373 static void s_arm_fpu (int);
4374 static void s_arm_arch_extension (int);
4375
4376 #ifdef TE_PE
4377
4378 static void
4379 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4380 {
4381 expressionS exp;
4382
4383 do
4384 {
4385 expression (&exp);
4386 if (exp.X_op == O_symbol)
4387 exp.X_op = O_secrel;
4388
4389 emit_expr (&exp, 4);
4390 }
4391 while (*input_line_pointer++ == ',');
4392
4393 input_line_pointer--;
4394 demand_empty_rest_of_line ();
4395 }
4396 #endif /* TE_PE */
4397
4398 /* This table describes all the machine specific pseudo-ops the assembler
4399 has to support. The fields are:
4400 pseudo-op name without dot
4401 function to call to execute this pseudo-op
4402 Integer arg to pass to the function. */
4403
4404 const pseudo_typeS md_pseudo_table[] =
4405 {
4406 /* Never called because '.req' does not start a line. */
4407 { "req", s_req, 0 },
4408 /* Following two are likewise never called. */
4409 { "dn", s_dn, 0 },
4410 { "qn", s_qn, 0 },
4411 { "unreq", s_unreq, 0 },
4412 { "bss", s_bss, 0 },
4413 { "align", s_align, 0 },
4414 { "arm", s_arm, 0 },
4415 { "thumb", s_thumb, 0 },
4416 { "code", s_code, 0 },
4417 { "force_thumb", s_force_thumb, 0 },
4418 { "thumb_func", s_thumb_func, 0 },
4419 { "thumb_set", s_thumb_set, 0 },
4420 { "even", s_even, 0 },
4421 { "ltorg", s_ltorg, 0 },
4422 { "pool", s_ltorg, 0 },
4423 { "syntax", s_syntax, 0 },
4424 { "cpu", s_arm_cpu, 0 },
4425 { "arch", s_arm_arch, 0 },
4426 { "object_arch", s_arm_object_arch, 0 },
4427 { "fpu", s_arm_fpu, 0 },
4428 { "arch_extension", s_arm_arch_extension, 0 },
4429 #ifdef OBJ_ELF
4430 { "word", s_arm_elf_cons, 4 },
4431 { "long", s_arm_elf_cons, 4 },
4432 { "inst.n", s_arm_elf_inst, 2 },
4433 { "inst.w", s_arm_elf_inst, 4 },
4434 { "inst", s_arm_elf_inst, 0 },
4435 { "rel31", s_arm_rel31, 0 },
4436 { "fnstart", s_arm_unwind_fnstart, 0 },
4437 { "fnend", s_arm_unwind_fnend, 0 },
4438 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4439 { "personality", s_arm_unwind_personality, 0 },
4440 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4441 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4442 { "save", s_arm_unwind_save, 0 },
4443 { "vsave", s_arm_unwind_save, 1 },
4444 { "movsp", s_arm_unwind_movsp, 0 },
4445 { "pad", s_arm_unwind_pad, 0 },
4446 { "setfp", s_arm_unwind_setfp, 0 },
4447 { "unwind_raw", s_arm_unwind_raw, 0 },
4448 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4449 { "tlsdescseq", s_arm_tls_descseq, 0 },
4450 #else
4451 { "word", cons, 4},
4452
4453 /* These are used for dwarf. */
4454 {"2byte", cons, 2},
4455 {"4byte", cons, 4},
4456 {"8byte", cons, 8},
4457 /* These are used for dwarf2. */
4458 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4459 { "loc", dwarf2_directive_loc, 0 },
4460 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4461 #endif
4462 { "extend", float_cons, 'x' },
4463 { "ldouble", float_cons, 'x' },
4464 { "packed", float_cons, 'p' },
4465 #ifdef TE_PE
4466 {"secrel32", pe_directive_secrel, 0},
4467 #endif
4468 { 0, 0, 0 }
4469 };
4470 \f
4471 /* Parser functions used exclusively in instruction operands. */
4472
4473 /* Generic immediate-value read function for use in insn parsing.
4474 STR points to the beginning of the immediate (the leading #);
4475 VAL receives the value; if the value is outside [MIN, MAX]
4476 issue an error. PREFIX_OPT is true if the immediate prefix is
4477 optional. */
4478
4479 static int
4480 parse_immediate (char **str, int *val, int min, int max,
4481 bfd_boolean prefix_opt)
4482 {
4483 expressionS exp;
4484 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4485 if (exp.X_op != O_constant)
4486 {
4487 inst.error = _("constant expression required");
4488 return FAIL;
4489 }
4490
4491 if (exp.X_add_number < min || exp.X_add_number > max)
4492 {
4493 inst.error = _("immediate value out of range");
4494 return FAIL;
4495 }
4496
4497 *val = exp.X_add_number;
4498 return SUCCESS;
4499 }
4500
4501 /* Less-generic immediate-value read function with the possibility of loading a
4502 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4503 instructions. Puts the result directly in inst.operands[i]. */
4504
4505 static int
4506 parse_big_immediate (char **str, int i)
4507 {
4508 expressionS exp;
4509 char *ptr = *str;
4510
4511 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4512
4513 if (exp.X_op == O_constant)
4514 {
4515 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4516 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4517 O_constant. We have to be careful not to break compilation for
4518 32-bit X_add_number, though. */
4519 if ((exp.X_add_number & ~(offsetT)(0xffffffffU)) != 0)
4520 {
4521 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4522 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4523 inst.operands[i].regisimm = 1;
4524 }
4525 }
4526 else if (exp.X_op == O_big
4527 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32)
4528 {
4529 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4530
4531 /* Bignums have their least significant bits in
4532 generic_bignum[0]. Make sure we put 32 bits in imm and
4533 32 bits in reg, in a (hopefully) portable way. */
4534 gas_assert (parts != 0);
4535
4536 /* Make sure that the number is not too big.
4537 PR 11972: Bignums can now be sign-extended to the
4538 size of a .octa so check that the out of range bits
4539 are all zero or all one. */
4540 if (LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 64)
4541 {
4542 LITTLENUM_TYPE m = -1;
4543
4544 if (generic_bignum[parts * 2] != 0
4545 && generic_bignum[parts * 2] != m)
4546 return FAIL;
4547
4548 for (j = parts * 2 + 1; j < (unsigned) exp.X_add_number; j++)
4549 if (generic_bignum[j] != generic_bignum[j-1])
4550 return FAIL;
4551 }
4552
4553 inst.operands[i].imm = 0;
4554 for (j = 0; j < parts; j++, idx++)
4555 inst.operands[i].imm |= generic_bignum[idx]
4556 << (LITTLENUM_NUMBER_OF_BITS * j);
4557 inst.operands[i].reg = 0;
4558 for (j = 0; j < parts; j++, idx++)
4559 inst.operands[i].reg |= generic_bignum[idx]
4560 << (LITTLENUM_NUMBER_OF_BITS * j);
4561 inst.operands[i].regisimm = 1;
4562 }
4563 else
4564 return FAIL;
4565
4566 *str = ptr;
4567
4568 return SUCCESS;
4569 }
4570
4571 /* Returns the pseudo-register number of an FPA immediate constant,
4572 or FAIL if there isn't a valid constant here. */
4573
4574 static int
4575 parse_fpa_immediate (char ** str)
4576 {
4577 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4578 char * save_in;
4579 expressionS exp;
4580 int i;
4581 int j;
4582
4583 /* First try and match exact strings, this is to guarantee
4584 that some formats will work even for cross assembly. */
4585
4586 for (i = 0; fp_const[i]; i++)
4587 {
4588 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4589 {
4590 char *start = *str;
4591
4592 *str += strlen (fp_const[i]);
4593 if (is_end_of_line[(unsigned char) **str])
4594 return i + 8;
4595 *str = start;
4596 }
4597 }
4598
4599 /* Just because we didn't get a match doesn't mean that the constant
4600 isn't valid, just that it is in a format that we don't
4601 automatically recognize. Try parsing it with the standard
4602 expression routines. */
4603
4604 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4605
4606 /* Look for a raw floating point number. */
4607 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4608 && is_end_of_line[(unsigned char) *save_in])
4609 {
4610 for (i = 0; i < NUM_FLOAT_VALS; i++)
4611 {
4612 for (j = 0; j < MAX_LITTLENUMS; j++)
4613 {
4614 if (words[j] != fp_values[i][j])
4615 break;
4616 }
4617
4618 if (j == MAX_LITTLENUMS)
4619 {
4620 *str = save_in;
4621 return i + 8;
4622 }
4623 }
4624 }
4625
4626 /* Try and parse a more complex expression, this will probably fail
4627 unless the code uses a floating point prefix (eg "0f"). */
4628 save_in = input_line_pointer;
4629 input_line_pointer = *str;
4630 if (expression (&exp) == absolute_section
4631 && exp.X_op == O_big
4632 && exp.X_add_number < 0)
4633 {
4634 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4635 Ditto for 15. */
4636 if (gen_to_words (words, 5, (long) 15) == 0)
4637 {
4638 for (i = 0; i < NUM_FLOAT_VALS; i++)
4639 {
4640 for (j = 0; j < MAX_LITTLENUMS; j++)
4641 {
4642 if (words[j] != fp_values[i][j])
4643 break;
4644 }
4645
4646 if (j == MAX_LITTLENUMS)
4647 {
4648 *str = input_line_pointer;
4649 input_line_pointer = save_in;
4650 return i + 8;
4651 }
4652 }
4653 }
4654 }
4655
4656 *str = input_line_pointer;
4657 input_line_pointer = save_in;
4658 inst.error = _("invalid FPA immediate expression");
4659 return FAIL;
4660 }
4661
4662 /* Returns 1 if a number has "quarter-precision" float format
4663 0baBbbbbbc defgh000 00000000 00000000. */
4664
4665 static int
4666 is_quarter_float (unsigned imm)
4667 {
4668 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4669 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4670 }
4671
4672 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4673 0baBbbbbbc defgh000 00000000 00000000.
4674 The zero and minus-zero cases need special handling, since they can't be
4675 encoded in the "quarter-precision" float format, but can nonetheless be
4676 loaded as integer constants. */
4677
4678 static unsigned
4679 parse_qfloat_immediate (char **ccp, int *immed)
4680 {
4681 char *str = *ccp;
4682 char *fpnum;
4683 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4684 int found_fpchar = 0;
4685
4686 skip_past_char (&str, '#');
4687
4688 /* We must not accidentally parse an integer as a floating-point number. Make
4689 sure that the value we parse is not an integer by checking for special
4690 characters '.' or 'e'.
4691 FIXME: This is a horrible hack, but doing better is tricky because type
4692 information isn't in a very usable state at parse time. */
4693 fpnum = str;
4694 skip_whitespace (fpnum);
4695
4696 if (strncmp (fpnum, "0x", 2) == 0)
4697 return FAIL;
4698 else
4699 {
4700 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4701 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4702 {
4703 found_fpchar = 1;
4704 break;
4705 }
4706
4707 if (!found_fpchar)
4708 return FAIL;
4709 }
4710
4711 if ((str = atof_ieee (str, 's', words)) != NULL)
4712 {
4713 unsigned fpword = 0;
4714 int i;
4715
4716 /* Our FP word must be 32 bits (single-precision FP). */
4717 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4718 {
4719 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4720 fpword |= words[i];
4721 }
4722
4723 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
4724 *immed = fpword;
4725 else
4726 return FAIL;
4727
4728 *ccp = str;
4729
4730 return SUCCESS;
4731 }
4732
4733 return FAIL;
4734 }
4735
4736 /* Shift operands. */
4737 enum shift_kind
4738 {
4739 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4740 };
4741
4742 struct asm_shift_name
4743 {
4744 const char *name;
4745 enum shift_kind kind;
4746 };
4747
4748 /* Third argument to parse_shift. */
4749 enum parse_shift_mode
4750 {
4751 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4752 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4753 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4754 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4755 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4756 };
4757
4758 /* Parse a <shift> specifier on an ARM data processing instruction.
4759 This has three forms:
4760
4761 (LSL|LSR|ASL|ASR|ROR) Rs
4762 (LSL|LSR|ASL|ASR|ROR) #imm
4763 RRX
4764
4765 Note that ASL is assimilated to LSL in the instruction encoding, and
4766 RRX to ROR #0 (which cannot be written as such). */
4767
4768 static int
4769 parse_shift (char **str, int i, enum parse_shift_mode mode)
4770 {
4771 const struct asm_shift_name *shift_name;
4772 enum shift_kind shift;
4773 char *s = *str;
4774 char *p = s;
4775 int reg;
4776
4777 for (p = *str; ISALPHA (*p); p++)
4778 ;
4779
4780 if (p == *str)
4781 {
4782 inst.error = _("shift expression expected");
4783 return FAIL;
4784 }
4785
4786 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4787 p - *str);
4788
4789 if (shift_name == NULL)
4790 {
4791 inst.error = _("shift expression expected");
4792 return FAIL;
4793 }
4794
4795 shift = shift_name->kind;
4796
4797 switch (mode)
4798 {
4799 case NO_SHIFT_RESTRICT:
4800 case SHIFT_IMMEDIATE: break;
4801
4802 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4803 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4804 {
4805 inst.error = _("'LSL' or 'ASR' required");
4806 return FAIL;
4807 }
4808 break;
4809
4810 case SHIFT_LSL_IMMEDIATE:
4811 if (shift != SHIFT_LSL)
4812 {
4813 inst.error = _("'LSL' required");
4814 return FAIL;
4815 }
4816 break;
4817
4818 case SHIFT_ASR_IMMEDIATE:
4819 if (shift != SHIFT_ASR)
4820 {
4821 inst.error = _("'ASR' required");
4822 return FAIL;
4823 }
4824 break;
4825
4826 default: abort ();
4827 }
4828
4829 if (shift != SHIFT_RRX)
4830 {
4831 /* Whitespace can appear here if the next thing is a bare digit. */
4832 skip_whitespace (p);
4833
4834 if (mode == NO_SHIFT_RESTRICT
4835 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4836 {
4837 inst.operands[i].imm = reg;
4838 inst.operands[i].immisreg = 1;
4839 }
4840 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4841 return FAIL;
4842 }
4843 inst.operands[i].shift_kind = shift;
4844 inst.operands[i].shifted = 1;
4845 *str = p;
4846 return SUCCESS;
4847 }
4848
4849 /* Parse a <shifter_operand> for an ARM data processing instruction:
4850
4851 #<immediate>
4852 #<immediate>, <rotate>
4853 <Rm>
4854 <Rm>, <shift>
4855
4856 where <shift> is defined by parse_shift above, and <rotate> is a
4857 multiple of 2 between 0 and 30. Validation of immediate operands
4858 is deferred to md_apply_fix. */
4859
4860 static int
4861 parse_shifter_operand (char **str, int i)
4862 {
4863 int value;
4864 expressionS exp;
4865
4866 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
4867 {
4868 inst.operands[i].reg = value;
4869 inst.operands[i].isreg = 1;
4870
4871 /* parse_shift will override this if appropriate */
4872 inst.reloc.exp.X_op = O_constant;
4873 inst.reloc.exp.X_add_number = 0;
4874
4875 if (skip_past_comma (str) == FAIL)
4876 return SUCCESS;
4877
4878 /* Shift operation on register. */
4879 return parse_shift (str, i, NO_SHIFT_RESTRICT);
4880 }
4881
4882 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4883 return FAIL;
4884
4885 if (skip_past_comma (str) == SUCCESS)
4886 {
4887 /* #x, y -- ie explicit rotation by Y. */
4888 if (my_get_expression (&exp, str, GE_NO_PREFIX))
4889 return FAIL;
4890
4891 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4892 {
4893 inst.error = _("constant expression expected");
4894 return FAIL;
4895 }
4896
4897 value = exp.X_add_number;
4898 if (value < 0 || value > 30 || value % 2 != 0)
4899 {
4900 inst.error = _("invalid rotation");
4901 return FAIL;
4902 }
4903 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4904 {
4905 inst.error = _("invalid constant");
4906 return FAIL;
4907 }
4908
4909 /* Encode as specified. */
4910 inst.operands[i].imm = inst.reloc.exp.X_add_number | value << 7;
4911 return SUCCESS;
4912 }
4913
4914 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4915 inst.reloc.pc_rel = 0;
4916 return SUCCESS;
4917 }
4918
4919 /* Group relocation information. Each entry in the table contains the
4920 textual name of the relocation as may appear in assembler source
4921 and must end with a colon.
4922 Along with this textual name are the relocation codes to be used if
4923 the corresponding instruction is an ALU instruction (ADD or SUB only),
4924 an LDR, an LDRS, or an LDC. */
4925
4926 struct group_reloc_table_entry
4927 {
4928 const char *name;
4929 int alu_code;
4930 int ldr_code;
4931 int ldrs_code;
4932 int ldc_code;
4933 };
4934
4935 typedef enum
4936 {
4937 /* Varieties of non-ALU group relocation. */
4938
4939 GROUP_LDR,
4940 GROUP_LDRS,
4941 GROUP_LDC
4942 } group_reloc_type;
4943
4944 static struct group_reloc_table_entry group_reloc_table[] =
4945 { /* Program counter relative: */
4946 { "pc_g0_nc",
4947 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4948 0, /* LDR */
4949 0, /* LDRS */
4950 0 }, /* LDC */
4951 { "pc_g0",
4952 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4953 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4954 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4955 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4956 { "pc_g1_nc",
4957 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4958 0, /* LDR */
4959 0, /* LDRS */
4960 0 }, /* LDC */
4961 { "pc_g1",
4962 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4963 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4964 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4965 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4966 { "pc_g2",
4967 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4968 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4969 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4970 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4971 /* Section base relative */
4972 { "sb_g0_nc",
4973 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4974 0, /* LDR */
4975 0, /* LDRS */
4976 0 }, /* LDC */
4977 { "sb_g0",
4978 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4979 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4980 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4981 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4982 { "sb_g1_nc",
4983 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4984 0, /* LDR */
4985 0, /* LDRS */
4986 0 }, /* LDC */
4987 { "sb_g1",
4988 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4989 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4990 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4991 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4992 { "sb_g2",
4993 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4994 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4995 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4996 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4997
4998 /* Given the address of a pointer pointing to the textual name of a group
4999 relocation as may appear in assembler source, attempt to find its details
5000 in group_reloc_table. The pointer will be updated to the character after
5001 the trailing colon. On failure, FAIL will be returned; SUCCESS
5002 otherwise. On success, *entry will be updated to point at the relevant
5003 group_reloc_table entry. */
5004
5005 static int
5006 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5007 {
5008 unsigned int i;
5009 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5010 {
5011 int length = strlen (group_reloc_table[i].name);
5012
5013 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5014 && (*str)[length] == ':')
5015 {
5016 *out = &group_reloc_table[i];
5017 *str += (length + 1);
5018 return SUCCESS;
5019 }
5020 }
5021
5022 return FAIL;
5023 }
5024
5025 /* Parse a <shifter_operand> for an ARM data processing instruction
5026 (as for parse_shifter_operand) where group relocations are allowed:
5027
5028 #<immediate>
5029 #<immediate>, <rotate>
5030 #:<group_reloc>:<expression>
5031 <Rm>
5032 <Rm>, <shift>
5033
5034 where <group_reloc> is one of the strings defined in group_reloc_table.
5035 The hashes are optional.
5036
5037 Everything else is as for parse_shifter_operand. */
5038
5039 static parse_operand_result
5040 parse_shifter_operand_group_reloc (char **str, int i)
5041 {
5042 /* Determine if we have the sequence of characters #: or just :
5043 coming next. If we do, then we check for a group relocation.
5044 If we don't, punt the whole lot to parse_shifter_operand. */
5045
5046 if (((*str)[0] == '#' && (*str)[1] == ':')
5047 || (*str)[0] == ':')
5048 {
5049 struct group_reloc_table_entry *entry;
5050
5051 if ((*str)[0] == '#')
5052 (*str) += 2;
5053 else
5054 (*str)++;
5055
5056 /* Try to parse a group relocation. Anything else is an error. */
5057 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5058 {
5059 inst.error = _("unknown group relocation");
5060 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5061 }
5062
5063 /* We now have the group relocation table entry corresponding to
5064 the name in the assembler source. Next, we parse the expression. */
5065 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
5066 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5067
5068 /* Record the relocation type (always the ALU variant here). */
5069 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
5070 gas_assert (inst.reloc.type != 0);
5071
5072 return PARSE_OPERAND_SUCCESS;
5073 }
5074 else
5075 return parse_shifter_operand (str, i) == SUCCESS
5076 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5077
5078 /* Never reached. */
5079 }
5080
5081 /* Parse a Neon alignment expression. Information is written to
5082 inst.operands[i]. We assume the initial ':' has been skipped.
5083
5084 align .imm = align << 8, .immisalign=1, .preind=0 */
5085 static parse_operand_result
5086 parse_neon_alignment (char **str, int i)
5087 {
5088 char *p = *str;
5089 expressionS exp;
5090
5091 my_get_expression (&exp, &p, GE_NO_PREFIX);
5092
5093 if (exp.X_op != O_constant)
5094 {
5095 inst.error = _("alignment must be constant");
5096 return PARSE_OPERAND_FAIL;
5097 }
5098
5099 inst.operands[i].imm = exp.X_add_number << 8;
5100 inst.operands[i].immisalign = 1;
5101 /* Alignments are not pre-indexes. */
5102 inst.operands[i].preind = 0;
5103
5104 *str = p;
5105 return PARSE_OPERAND_SUCCESS;
5106 }
5107
5108 /* Parse all forms of an ARM address expression. Information is written
5109 to inst.operands[i] and/or inst.reloc.
5110
5111 Preindexed addressing (.preind=1):
5112
5113 [Rn, #offset] .reg=Rn .reloc.exp=offset
5114 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5115 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5116 .shift_kind=shift .reloc.exp=shift_imm
5117
5118 These three may have a trailing ! which causes .writeback to be set also.
5119
5120 Postindexed addressing (.postind=1, .writeback=1):
5121
5122 [Rn], #offset .reg=Rn .reloc.exp=offset
5123 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5124 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5125 .shift_kind=shift .reloc.exp=shift_imm
5126
5127 Unindexed addressing (.preind=0, .postind=0):
5128
5129 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5130
5131 Other:
5132
5133 [Rn]{!} shorthand for [Rn,#0]{!}
5134 =immediate .isreg=0 .reloc.exp=immediate
5135 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
5136
5137 It is the caller's responsibility to check for addressing modes not
5138 supported by the instruction, and to set inst.reloc.type. */
5139
5140 static parse_operand_result
5141 parse_address_main (char **str, int i, int group_relocations,
5142 group_reloc_type group_type)
5143 {
5144 char *p = *str;
5145 int reg;
5146
5147 if (skip_past_char (&p, '[') == FAIL)
5148 {
5149 if (skip_past_char (&p, '=') == FAIL)
5150 {
5151 /* Bare address - translate to PC-relative offset. */
5152 inst.reloc.pc_rel = 1;
5153 inst.operands[i].reg = REG_PC;
5154 inst.operands[i].isreg = 1;
5155 inst.operands[i].preind = 1;
5156 }
5157 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
5158
5159 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5160 return PARSE_OPERAND_FAIL;
5161
5162 *str = p;
5163 return PARSE_OPERAND_SUCCESS;
5164 }
5165
5166 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5167 {
5168 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5169 return PARSE_OPERAND_FAIL;
5170 }
5171 inst.operands[i].reg = reg;
5172 inst.operands[i].isreg = 1;
5173
5174 if (skip_past_comma (&p) == SUCCESS)
5175 {
5176 inst.operands[i].preind = 1;
5177
5178 if (*p == '+') p++;
5179 else if (*p == '-') p++, inst.operands[i].negative = 1;
5180
5181 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5182 {
5183 inst.operands[i].imm = reg;
5184 inst.operands[i].immisreg = 1;
5185
5186 if (skip_past_comma (&p) == SUCCESS)
5187 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5188 return PARSE_OPERAND_FAIL;
5189 }
5190 else if (skip_past_char (&p, ':') == SUCCESS)
5191 {
5192 /* FIXME: '@' should be used here, but it's filtered out by generic
5193 code before we get to see it here. This may be subject to
5194 change. */
5195 parse_operand_result result = parse_neon_alignment (&p, i);
5196
5197 if (result != PARSE_OPERAND_SUCCESS)
5198 return result;
5199 }
5200 else
5201 {
5202 if (inst.operands[i].negative)
5203 {
5204 inst.operands[i].negative = 0;
5205 p--;
5206 }
5207
5208 if (group_relocations
5209 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5210 {
5211 struct group_reloc_table_entry *entry;
5212
5213 /* Skip over the #: or : sequence. */
5214 if (*p == '#')
5215 p += 2;
5216 else
5217 p++;
5218
5219 /* Try to parse a group relocation. Anything else is an
5220 error. */
5221 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5222 {
5223 inst.error = _("unknown group relocation");
5224 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5225 }
5226
5227 /* We now have the group relocation table entry corresponding to
5228 the name in the assembler source. Next, we parse the
5229 expression. */
5230 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5231 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5232
5233 /* Record the relocation type. */
5234 switch (group_type)
5235 {
5236 case GROUP_LDR:
5237 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
5238 break;
5239
5240 case GROUP_LDRS:
5241 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
5242 break;
5243
5244 case GROUP_LDC:
5245 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
5246 break;
5247
5248 default:
5249 gas_assert (0);
5250 }
5251
5252 if (inst.reloc.type == 0)
5253 {
5254 inst.error = _("this group relocation is not allowed on this instruction");
5255 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5256 }
5257 }
5258 else
5259 {
5260 char *q = p;
5261 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5262 return PARSE_OPERAND_FAIL;
5263 /* If the offset is 0, find out if it's a +0 or -0. */
5264 if (inst.reloc.exp.X_op == O_constant
5265 && inst.reloc.exp.X_add_number == 0)
5266 {
5267 skip_whitespace (q);
5268 if (*q == '#')
5269 {
5270 q++;
5271 skip_whitespace (q);
5272 }
5273 if (*q == '-')
5274 inst.operands[i].negative = 1;
5275 }
5276 }
5277 }
5278 }
5279 else if (skip_past_char (&p, ':') == SUCCESS)
5280 {
5281 /* FIXME: '@' should be used here, but it's filtered out by generic code
5282 before we get to see it here. This may be subject to change. */
5283 parse_operand_result result = parse_neon_alignment (&p, i);
5284
5285 if (result != PARSE_OPERAND_SUCCESS)
5286 return result;
5287 }
5288
5289 if (skip_past_char (&p, ']') == FAIL)
5290 {
5291 inst.error = _("']' expected");
5292 return PARSE_OPERAND_FAIL;
5293 }
5294
5295 if (skip_past_char (&p, '!') == SUCCESS)
5296 inst.operands[i].writeback = 1;
5297
5298 else if (skip_past_comma (&p) == SUCCESS)
5299 {
5300 if (skip_past_char (&p, '{') == SUCCESS)
5301 {
5302 /* [Rn], {expr} - unindexed, with option */
5303 if (parse_immediate (&p, &inst.operands[i].imm,
5304 0, 255, TRUE) == FAIL)
5305 return PARSE_OPERAND_FAIL;
5306
5307 if (skip_past_char (&p, '}') == FAIL)
5308 {
5309 inst.error = _("'}' expected at end of 'option' field");
5310 return PARSE_OPERAND_FAIL;
5311 }
5312 if (inst.operands[i].preind)
5313 {
5314 inst.error = _("cannot combine index with option");
5315 return PARSE_OPERAND_FAIL;
5316 }
5317 *str = p;
5318 return PARSE_OPERAND_SUCCESS;
5319 }
5320 else
5321 {
5322 inst.operands[i].postind = 1;
5323 inst.operands[i].writeback = 1;
5324
5325 if (inst.operands[i].preind)
5326 {
5327 inst.error = _("cannot combine pre- and post-indexing");
5328 return PARSE_OPERAND_FAIL;
5329 }
5330
5331 if (*p == '+') p++;
5332 else if (*p == '-') p++, inst.operands[i].negative = 1;
5333
5334 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5335 {
5336 /* We might be using the immediate for alignment already. If we
5337 are, OR the register number into the low-order bits. */
5338 if (inst.operands[i].immisalign)
5339 inst.operands[i].imm |= reg;
5340 else
5341 inst.operands[i].imm = reg;
5342 inst.operands[i].immisreg = 1;
5343
5344 if (skip_past_comma (&p) == SUCCESS)
5345 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5346 return PARSE_OPERAND_FAIL;
5347 }
5348 else
5349 {
5350 char *q = p;
5351 if (inst.operands[i].negative)
5352 {
5353 inst.operands[i].negative = 0;
5354 p--;
5355 }
5356 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5357 return PARSE_OPERAND_FAIL;
5358 /* If the offset is 0, find out if it's a +0 or -0. */
5359 if (inst.reloc.exp.X_op == O_constant
5360 && inst.reloc.exp.X_add_number == 0)
5361 {
5362 skip_whitespace (q);
5363 if (*q == '#')
5364 {
5365 q++;
5366 skip_whitespace (q);
5367 }
5368 if (*q == '-')
5369 inst.operands[i].negative = 1;
5370 }
5371 }
5372 }
5373 }
5374
5375 /* If at this point neither .preind nor .postind is set, we have a
5376 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5377 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5378 {
5379 inst.operands[i].preind = 1;
5380 inst.reloc.exp.X_op = O_constant;
5381 inst.reloc.exp.X_add_number = 0;
5382 }
5383 *str = p;
5384 return PARSE_OPERAND_SUCCESS;
5385 }
5386
5387 static int
5388 parse_address (char **str, int i)
5389 {
5390 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
5391 ? SUCCESS : FAIL;
5392 }
5393
5394 static parse_operand_result
5395 parse_address_group_reloc (char **str, int i, group_reloc_type type)
5396 {
5397 return parse_address_main (str, i, 1, type);
5398 }
5399
5400 /* Parse an operand for a MOVW or MOVT instruction. */
5401 static int
5402 parse_half (char **str)
5403 {
5404 char * p;
5405
5406 p = *str;
5407 skip_past_char (&p, '#');
5408 if (strncasecmp (p, ":lower16:", 9) == 0)
5409 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5410 else if (strncasecmp (p, ":upper16:", 9) == 0)
5411 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5412
5413 if (inst.reloc.type != BFD_RELOC_UNUSED)
5414 {
5415 p += 9;
5416 skip_whitespace (p);
5417 }
5418
5419 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5420 return FAIL;
5421
5422 if (inst.reloc.type == BFD_RELOC_UNUSED)
5423 {
5424 if (inst.reloc.exp.X_op != O_constant)
5425 {
5426 inst.error = _("constant expression expected");
5427 return FAIL;
5428 }
5429 if (inst.reloc.exp.X_add_number < 0
5430 || inst.reloc.exp.X_add_number > 0xffff)
5431 {
5432 inst.error = _("immediate value out of range");
5433 return FAIL;
5434 }
5435 }
5436 *str = p;
5437 return SUCCESS;
5438 }
5439
5440 /* Miscellaneous. */
5441
5442 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5443 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5444 static int
5445 parse_psr (char **str, bfd_boolean lhs)
5446 {
5447 char *p;
5448 unsigned long psr_field;
5449 const struct asm_psr *psr;
5450 char *start;
5451 bfd_boolean is_apsr = FALSE;
5452 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
5453
5454 /* PR gas/12698: If the user has specified -march=all then m_profile will
5455 be TRUE, but we want to ignore it in this case as we are building for any
5456 CPU type, including non-m variants. */
5457 if (selected_cpu.core == arm_arch_any.core)
5458 m_profile = FALSE;
5459
5460 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5461 feature for ease of use and backwards compatibility. */
5462 p = *str;
5463 if (strncasecmp (p, "SPSR", 4) == 0)
5464 {
5465 if (m_profile)
5466 goto unsupported_psr;
5467
5468 psr_field = SPSR_BIT;
5469 }
5470 else if (strncasecmp (p, "CPSR", 4) == 0)
5471 {
5472 if (m_profile)
5473 goto unsupported_psr;
5474
5475 psr_field = 0;
5476 }
5477 else if (strncasecmp (p, "APSR", 4) == 0)
5478 {
5479 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5480 and ARMv7-R architecture CPUs. */
5481 is_apsr = TRUE;
5482 psr_field = 0;
5483 }
5484 else if (m_profile)
5485 {
5486 start = p;
5487 do
5488 p++;
5489 while (ISALNUM (*p) || *p == '_');
5490
5491 if (strncasecmp (start, "iapsr", 5) == 0
5492 || strncasecmp (start, "eapsr", 5) == 0
5493 || strncasecmp (start, "xpsr", 4) == 0
5494 || strncasecmp (start, "psr", 3) == 0)
5495 p = start + strcspn (start, "rR") + 1;
5496
5497 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5498 p - start);
5499
5500 if (!psr)
5501 return FAIL;
5502
5503 /* If APSR is being written, a bitfield may be specified. Note that
5504 APSR itself is handled above. */
5505 if (psr->field <= 3)
5506 {
5507 psr_field = psr->field;
5508 is_apsr = TRUE;
5509 goto check_suffix;
5510 }
5511
5512 *str = p;
5513 /* M-profile MSR instructions have the mask field set to "10", except
5514 *PSR variants which modify APSR, which may use a different mask (and
5515 have been handled already). Do that by setting the PSR_f field
5516 here. */
5517 return psr->field | (lhs ? PSR_f : 0);
5518 }
5519 else
5520 goto unsupported_psr;
5521
5522 p += 4;
5523 check_suffix:
5524 if (*p == '_')
5525 {
5526 /* A suffix follows. */
5527 p++;
5528 start = p;
5529
5530 do
5531 p++;
5532 while (ISALNUM (*p) || *p == '_');
5533
5534 if (is_apsr)
5535 {
5536 /* APSR uses a notation for bits, rather than fields. */
5537 unsigned int nzcvq_bits = 0;
5538 unsigned int g_bit = 0;
5539 char *bit;
5540
5541 for (bit = start; bit != p; bit++)
5542 {
5543 switch (TOLOWER (*bit))
5544 {
5545 case 'n':
5546 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5547 break;
5548
5549 case 'z':
5550 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5551 break;
5552
5553 case 'c':
5554 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5555 break;
5556
5557 case 'v':
5558 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5559 break;
5560
5561 case 'q':
5562 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5563 break;
5564
5565 case 'g':
5566 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5567 break;
5568
5569 default:
5570 inst.error = _("unexpected bit specified after APSR");
5571 return FAIL;
5572 }
5573 }
5574
5575 if (nzcvq_bits == 0x1f)
5576 psr_field |= PSR_f;
5577
5578 if (g_bit == 0x1)
5579 {
5580 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
5581 {
5582 inst.error = _("selected processor does not "
5583 "support DSP extension");
5584 return FAIL;
5585 }
5586
5587 psr_field |= PSR_s;
5588 }
5589
5590 if ((nzcvq_bits & 0x20) != 0
5591 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
5592 || (g_bit & 0x2) != 0)
5593 {
5594 inst.error = _("bad bitmask specified after APSR");
5595 return FAIL;
5596 }
5597 }
5598 else
5599 {
5600 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5601 p - start);
5602 if (!psr)
5603 goto error;
5604
5605 psr_field |= psr->field;
5606 }
5607 }
5608 else
5609 {
5610 if (ISALNUM (*p))
5611 goto error; /* Garbage after "[CS]PSR". */
5612
5613 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
5614 is deprecated, but allow it anyway. */
5615 if (is_apsr && lhs)
5616 {
5617 psr_field |= PSR_f;
5618 as_tsktsk (_("writing to APSR without specifying a bitmask is "
5619 "deprecated"));
5620 }
5621 else if (!m_profile)
5622 /* These bits are never right for M-profile devices: don't set them
5623 (only code paths which read/write APSR reach here). */
5624 psr_field |= (PSR_c | PSR_f);
5625 }
5626 *str = p;
5627 return psr_field;
5628
5629 unsupported_psr:
5630 inst.error = _("selected processor does not support requested special "
5631 "purpose register");
5632 return FAIL;
5633
5634 error:
5635 inst.error = _("flag for {c}psr instruction expected");
5636 return FAIL;
5637 }
5638
5639 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5640 value suitable for splatting into the AIF field of the instruction. */
5641
5642 static int
5643 parse_cps_flags (char **str)
5644 {
5645 int val = 0;
5646 int saw_a_flag = 0;
5647 char *s = *str;
5648
5649 for (;;)
5650 switch (*s++)
5651 {
5652 case '\0': case ',':
5653 goto done;
5654
5655 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5656 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5657 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
5658
5659 default:
5660 inst.error = _("unrecognized CPS flag");
5661 return FAIL;
5662 }
5663
5664 done:
5665 if (saw_a_flag == 0)
5666 {
5667 inst.error = _("missing CPS flags");
5668 return FAIL;
5669 }
5670
5671 *str = s - 1;
5672 return val;
5673 }
5674
5675 /* Parse an endian specifier ("BE" or "LE", case insensitive);
5676 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
5677
5678 static int
5679 parse_endian_specifier (char **str)
5680 {
5681 int little_endian;
5682 char *s = *str;
5683
5684 if (strncasecmp (s, "BE", 2))
5685 little_endian = 0;
5686 else if (strncasecmp (s, "LE", 2))
5687 little_endian = 1;
5688 else
5689 {
5690 inst.error = _("valid endian specifiers are be or le");
5691 return FAIL;
5692 }
5693
5694 if (ISALNUM (s[2]) || s[2] == '_')
5695 {
5696 inst.error = _("valid endian specifiers are be or le");
5697 return FAIL;
5698 }
5699
5700 *str = s + 2;
5701 return little_endian;
5702 }
5703
5704 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5705 value suitable for poking into the rotate field of an sxt or sxta
5706 instruction, or FAIL on error. */
5707
5708 static int
5709 parse_ror (char **str)
5710 {
5711 int rot;
5712 char *s = *str;
5713
5714 if (strncasecmp (s, "ROR", 3) == 0)
5715 s += 3;
5716 else
5717 {
5718 inst.error = _("missing rotation field after comma");
5719 return FAIL;
5720 }
5721
5722 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5723 return FAIL;
5724
5725 switch (rot)
5726 {
5727 case 0: *str = s; return 0x0;
5728 case 8: *str = s; return 0x1;
5729 case 16: *str = s; return 0x2;
5730 case 24: *str = s; return 0x3;
5731
5732 default:
5733 inst.error = _("rotation can only be 0, 8, 16, or 24");
5734 return FAIL;
5735 }
5736 }
5737
5738 /* Parse a conditional code (from conds[] below). The value returned is in the
5739 range 0 .. 14, or FAIL. */
5740 static int
5741 parse_cond (char **str)
5742 {
5743 char *q;
5744 const struct asm_cond *c;
5745 int n;
5746 /* Condition codes are always 2 characters, so matching up to
5747 3 characters is sufficient. */
5748 char cond[3];
5749
5750 q = *str;
5751 n = 0;
5752 while (ISALPHA (*q) && n < 3)
5753 {
5754 cond[n] = TOLOWER (*q);
5755 q++;
5756 n++;
5757 }
5758
5759 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
5760 if (!c)
5761 {
5762 inst.error = _("condition required");
5763 return FAIL;
5764 }
5765
5766 *str = q;
5767 return c->value;
5768 }
5769
5770 /* If the given feature available in the selected CPU, mark it as used.
5771 Returns TRUE iff feature is available. */
5772 static bfd_boolean
5773 mark_feature_used (const arm_feature_set *feature)
5774 {
5775 /* Ensure the option is valid on the current architecture. */
5776 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
5777 return FALSE;
5778
5779 /* Add the appropriate architecture feature for the barrier option used.
5780 */
5781 if (thumb_mode)
5782 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
5783 else
5784 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
5785
5786 return TRUE;
5787 }
5788
5789 /* Parse an option for a barrier instruction. Returns the encoding for the
5790 option, or FAIL. */
5791 static int
5792 parse_barrier (char **str)
5793 {
5794 char *p, *q;
5795 const struct asm_barrier_opt *o;
5796
5797 p = q = *str;
5798 while (ISALPHA (*q))
5799 q++;
5800
5801 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5802 q - p);
5803 if (!o)
5804 return FAIL;
5805
5806 if (!mark_feature_used (&o->arch))
5807 return FAIL;
5808
5809 *str = q;
5810 return o->value;
5811 }
5812
5813 /* Parse the operands of a table branch instruction. Similar to a memory
5814 operand. */
5815 static int
5816 parse_tb (char **str)
5817 {
5818 char * p = *str;
5819 int reg;
5820
5821 if (skip_past_char (&p, '[') == FAIL)
5822 {
5823 inst.error = _("'[' expected");
5824 return FAIL;
5825 }
5826
5827 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5828 {
5829 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5830 return FAIL;
5831 }
5832 inst.operands[0].reg = reg;
5833
5834 if (skip_past_comma (&p) == FAIL)
5835 {
5836 inst.error = _("',' expected");
5837 return FAIL;
5838 }
5839
5840 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5841 {
5842 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5843 return FAIL;
5844 }
5845 inst.operands[0].imm = reg;
5846
5847 if (skip_past_comma (&p) == SUCCESS)
5848 {
5849 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5850 return FAIL;
5851 if (inst.reloc.exp.X_add_number != 1)
5852 {
5853 inst.error = _("invalid shift");
5854 return FAIL;
5855 }
5856 inst.operands[0].shifted = 1;
5857 }
5858
5859 if (skip_past_char (&p, ']') == FAIL)
5860 {
5861 inst.error = _("']' expected");
5862 return FAIL;
5863 }
5864 *str = p;
5865 return SUCCESS;
5866 }
5867
5868 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5869 information on the types the operands can take and how they are encoded.
5870 Up to four operands may be read; this function handles setting the
5871 ".present" field for each read operand itself.
5872 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5873 else returns FAIL. */
5874
5875 static int
5876 parse_neon_mov (char **str, int *which_operand)
5877 {
5878 int i = *which_operand, val;
5879 enum arm_reg_type rtype;
5880 char *ptr = *str;
5881 struct neon_type_el optype;
5882
5883 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5884 {
5885 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5886 inst.operands[i].reg = val;
5887 inst.operands[i].isscalar = 1;
5888 inst.operands[i].vectype = optype;
5889 inst.operands[i++].present = 1;
5890
5891 if (skip_past_comma (&ptr) == FAIL)
5892 goto wanted_comma;
5893
5894 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5895 goto wanted_arm;
5896
5897 inst.operands[i].reg = val;
5898 inst.operands[i].isreg = 1;
5899 inst.operands[i].present = 1;
5900 }
5901 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
5902 != FAIL)
5903 {
5904 /* Cases 0, 1, 2, 3, 5 (D only). */
5905 if (skip_past_comma (&ptr) == FAIL)
5906 goto wanted_comma;
5907
5908 inst.operands[i].reg = val;
5909 inst.operands[i].isreg = 1;
5910 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5911 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5912 inst.operands[i].isvec = 1;
5913 inst.operands[i].vectype = optype;
5914 inst.operands[i++].present = 1;
5915
5916 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5917 {
5918 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5919 Case 13: VMOV <Sd>, <Rm> */
5920 inst.operands[i].reg = val;
5921 inst.operands[i].isreg = 1;
5922 inst.operands[i].present = 1;
5923
5924 if (rtype == REG_TYPE_NQ)
5925 {
5926 first_error (_("can't use Neon quad register here"));
5927 return FAIL;
5928 }
5929 else if (rtype != REG_TYPE_VFS)
5930 {
5931 i++;
5932 if (skip_past_comma (&ptr) == FAIL)
5933 goto wanted_comma;
5934 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5935 goto wanted_arm;
5936 inst.operands[i].reg = val;
5937 inst.operands[i].isreg = 1;
5938 inst.operands[i].present = 1;
5939 }
5940 }
5941 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5942 &optype)) != FAIL)
5943 {
5944 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5945 Case 1: VMOV<c><q> <Dd>, <Dm>
5946 Case 8: VMOV.F32 <Sd>, <Sm>
5947 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5948
5949 inst.operands[i].reg = val;
5950 inst.operands[i].isreg = 1;
5951 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5952 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5953 inst.operands[i].isvec = 1;
5954 inst.operands[i].vectype = optype;
5955 inst.operands[i].present = 1;
5956
5957 if (skip_past_comma (&ptr) == SUCCESS)
5958 {
5959 /* Case 15. */
5960 i++;
5961
5962 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5963 goto wanted_arm;
5964
5965 inst.operands[i].reg = val;
5966 inst.operands[i].isreg = 1;
5967 inst.operands[i++].present = 1;
5968
5969 if (skip_past_comma (&ptr) == FAIL)
5970 goto wanted_comma;
5971
5972 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5973 goto wanted_arm;
5974
5975 inst.operands[i].reg = val;
5976 inst.operands[i].isreg = 1;
5977 inst.operands[i].present = 1;
5978 }
5979 }
5980 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5981 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5982 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5983 Case 10: VMOV.F32 <Sd>, #<imm>
5984 Case 11: VMOV.F64 <Dd>, #<imm> */
5985 inst.operands[i].immisfloat = 1;
5986 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5987 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5988 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5989 ;
5990 else
5991 {
5992 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5993 return FAIL;
5994 }
5995 }
5996 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5997 {
5998 /* Cases 6, 7. */
5999 inst.operands[i].reg = val;
6000 inst.operands[i].isreg = 1;
6001 inst.operands[i++].present = 1;
6002
6003 if (skip_past_comma (&ptr) == FAIL)
6004 goto wanted_comma;
6005
6006 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
6007 {
6008 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6009 inst.operands[i].reg = val;
6010 inst.operands[i].isscalar = 1;
6011 inst.operands[i].present = 1;
6012 inst.operands[i].vectype = optype;
6013 }
6014 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6015 {
6016 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6017 inst.operands[i].reg = val;
6018 inst.operands[i].isreg = 1;
6019 inst.operands[i++].present = 1;
6020
6021 if (skip_past_comma (&ptr) == FAIL)
6022 goto wanted_comma;
6023
6024 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6025 == FAIL)
6026 {
6027 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
6028 return FAIL;
6029 }
6030
6031 inst.operands[i].reg = val;
6032 inst.operands[i].isreg = 1;
6033 inst.operands[i].isvec = 1;
6034 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6035 inst.operands[i].vectype = optype;
6036 inst.operands[i].present = 1;
6037
6038 if (rtype == REG_TYPE_VFS)
6039 {
6040 /* Case 14. */
6041 i++;
6042 if (skip_past_comma (&ptr) == FAIL)
6043 goto wanted_comma;
6044 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6045 &optype)) == FAIL)
6046 {
6047 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6048 return FAIL;
6049 }
6050 inst.operands[i].reg = val;
6051 inst.operands[i].isreg = 1;
6052 inst.operands[i].isvec = 1;
6053 inst.operands[i].issingle = 1;
6054 inst.operands[i].vectype = optype;
6055 inst.operands[i].present = 1;
6056 }
6057 }
6058 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6059 != FAIL)
6060 {
6061 /* Case 13. */
6062 inst.operands[i].reg = val;
6063 inst.operands[i].isreg = 1;
6064 inst.operands[i].isvec = 1;
6065 inst.operands[i].issingle = 1;
6066 inst.operands[i].vectype = optype;
6067 inst.operands[i].present = 1;
6068 }
6069 }
6070 else
6071 {
6072 first_error (_("parse error"));
6073 return FAIL;
6074 }
6075
6076 /* Successfully parsed the operands. Update args. */
6077 *which_operand = i;
6078 *str = ptr;
6079 return SUCCESS;
6080
6081 wanted_comma:
6082 first_error (_("expected comma"));
6083 return FAIL;
6084
6085 wanted_arm:
6086 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6087 return FAIL;
6088 }
6089
6090 /* Use this macro when the operand constraints are different
6091 for ARM and THUMB (e.g. ldrd). */
6092 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6093 ((arm_operand) | ((thumb_operand) << 16))
6094
6095 /* Matcher codes for parse_operands. */
6096 enum operand_parse_code
6097 {
6098 OP_stop, /* end of line */
6099
6100 OP_RR, /* ARM register */
6101 OP_RRnpc, /* ARM register, not r15 */
6102 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6103 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6104 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6105 optional trailing ! */
6106 OP_RRw, /* ARM register, not r15, optional trailing ! */
6107 OP_RCP, /* Coprocessor number */
6108 OP_RCN, /* Coprocessor register */
6109 OP_RF, /* FPA register */
6110 OP_RVS, /* VFP single precision register */
6111 OP_RVD, /* VFP double precision register (0..15) */
6112 OP_RND, /* Neon double precision register (0..31) */
6113 OP_RNQ, /* Neon quad precision register */
6114 OP_RVSD, /* VFP single or double precision register */
6115 OP_RNDQ, /* Neon double or quad precision register */
6116 OP_RNSDQ, /* Neon single, double or quad precision register */
6117 OP_RNSC, /* Neon scalar D[X] */
6118 OP_RVC, /* VFP control register */
6119 OP_RMF, /* Maverick F register */
6120 OP_RMD, /* Maverick D register */
6121 OP_RMFX, /* Maverick FX register */
6122 OP_RMDX, /* Maverick DX register */
6123 OP_RMAX, /* Maverick AX register */
6124 OP_RMDS, /* Maverick DSPSC register */
6125 OP_RIWR, /* iWMMXt wR register */
6126 OP_RIWC, /* iWMMXt wC register */
6127 OP_RIWG, /* iWMMXt wCG register */
6128 OP_RXA, /* XScale accumulator register */
6129
6130 OP_REGLST, /* ARM register list */
6131 OP_VRSLST, /* VFP single-precision register list */
6132 OP_VRDLST, /* VFP double-precision register list */
6133 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6134 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6135 OP_NSTRLST, /* Neon element/structure list */
6136
6137 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6138 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6139 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6140 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6141 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6142 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6143 OP_VMOV, /* Neon VMOV operands. */
6144 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6145 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6146 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6147
6148 OP_I0, /* immediate zero */
6149 OP_I7, /* immediate value 0 .. 7 */
6150 OP_I15, /* 0 .. 15 */
6151 OP_I16, /* 1 .. 16 */
6152 OP_I16z, /* 0 .. 16 */
6153 OP_I31, /* 0 .. 31 */
6154 OP_I31w, /* 0 .. 31, optional trailing ! */
6155 OP_I32, /* 1 .. 32 */
6156 OP_I32z, /* 0 .. 32 */
6157 OP_I63, /* 0 .. 63 */
6158 OP_I63s, /* -64 .. 63 */
6159 OP_I64, /* 1 .. 64 */
6160 OP_I64z, /* 0 .. 64 */
6161 OP_I255, /* 0 .. 255 */
6162
6163 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6164 OP_I7b, /* 0 .. 7 */
6165 OP_I15b, /* 0 .. 15 */
6166 OP_I31b, /* 0 .. 31 */
6167
6168 OP_SH, /* shifter operand */
6169 OP_SHG, /* shifter operand with possible group relocation */
6170 OP_ADDR, /* Memory address expression (any mode) */
6171 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6172 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6173 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
6174 OP_EXP, /* arbitrary expression */
6175 OP_EXPi, /* same, with optional immediate prefix */
6176 OP_EXPr, /* same, with optional relocation suffix */
6177 OP_HALF, /* 0 .. 65535 or low/high reloc. */
6178
6179 OP_CPSF, /* CPS flags */
6180 OP_ENDI, /* Endianness specifier */
6181 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6182 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
6183 OP_COND, /* conditional code */
6184 OP_TB, /* Table branch. */
6185
6186 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6187
6188 OP_RRnpc_I0, /* ARM register or literal 0 */
6189 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
6190 OP_RR_EXi, /* ARM register or expression with imm prefix */
6191 OP_RF_IF, /* FPA register or immediate */
6192 OP_RIWR_RIWC, /* iWMMXt R or C reg */
6193 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
6194
6195 /* Optional operands. */
6196 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6197 OP_oI31b, /* 0 .. 31 */
6198 OP_oI32b, /* 1 .. 32 */
6199 OP_oI32z, /* 0 .. 32 */
6200 OP_oIffffb, /* 0 .. 65535 */
6201 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6202
6203 OP_oRR, /* ARM register */
6204 OP_oRRnpc, /* ARM register, not the PC */
6205 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
6206 OP_oRRw, /* ARM register, not r15, optional trailing ! */
6207 OP_oRND, /* Optional Neon double precision register */
6208 OP_oRNQ, /* Optional Neon quad precision register */
6209 OP_oRNDQ, /* Optional Neon double or quad precision register */
6210 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
6211 OP_oSHll, /* LSL immediate */
6212 OP_oSHar, /* ASR immediate */
6213 OP_oSHllar, /* LSL or ASR immediate */
6214 OP_oROR, /* ROR 0/8/16/24 */
6215 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
6216
6217 /* Some pre-defined mixed (ARM/THUMB) operands. */
6218 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6219 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6220 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6221
6222 OP_FIRST_OPTIONAL = OP_oI7b
6223 };
6224
6225 /* Generic instruction operand parser. This does no encoding and no
6226 semantic validation; it merely squirrels values away in the inst
6227 structure. Returns SUCCESS or FAIL depending on whether the
6228 specified grammar matched. */
6229 static int
6230 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
6231 {
6232 unsigned const int *upat = pattern;
6233 char *backtrack_pos = 0;
6234 const char *backtrack_error = 0;
6235 int i, val = 0, backtrack_index = 0;
6236 enum arm_reg_type rtype;
6237 parse_operand_result result;
6238 unsigned int op_parse_code;
6239
6240 #define po_char_or_fail(chr) \
6241 do \
6242 { \
6243 if (skip_past_char (&str, chr) == FAIL) \
6244 goto bad_args; \
6245 } \
6246 while (0)
6247
6248 #define po_reg_or_fail(regtype) \
6249 do \
6250 { \
6251 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6252 & inst.operands[i].vectype); \
6253 if (val == FAIL) \
6254 { \
6255 first_error (_(reg_expected_msgs[regtype])); \
6256 goto failure; \
6257 } \
6258 inst.operands[i].reg = val; \
6259 inst.operands[i].isreg = 1; \
6260 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6261 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6262 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6263 || rtype == REG_TYPE_VFD \
6264 || rtype == REG_TYPE_NQ); \
6265 } \
6266 while (0)
6267
6268 #define po_reg_or_goto(regtype, label) \
6269 do \
6270 { \
6271 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6272 & inst.operands[i].vectype); \
6273 if (val == FAIL) \
6274 goto label; \
6275 \
6276 inst.operands[i].reg = val; \
6277 inst.operands[i].isreg = 1; \
6278 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6279 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6280 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6281 || rtype == REG_TYPE_VFD \
6282 || rtype == REG_TYPE_NQ); \
6283 } \
6284 while (0)
6285
6286 #define po_imm_or_fail(min, max, popt) \
6287 do \
6288 { \
6289 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6290 goto failure; \
6291 inst.operands[i].imm = val; \
6292 } \
6293 while (0)
6294
6295 #define po_scalar_or_goto(elsz, label) \
6296 do \
6297 { \
6298 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6299 if (val == FAIL) \
6300 goto label; \
6301 inst.operands[i].reg = val; \
6302 inst.operands[i].isscalar = 1; \
6303 } \
6304 while (0)
6305
6306 #define po_misc_or_fail(expr) \
6307 do \
6308 { \
6309 if (expr) \
6310 goto failure; \
6311 } \
6312 while (0)
6313
6314 #define po_misc_or_fail_no_backtrack(expr) \
6315 do \
6316 { \
6317 result = expr; \
6318 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6319 backtrack_pos = 0; \
6320 if (result != PARSE_OPERAND_SUCCESS) \
6321 goto failure; \
6322 } \
6323 while (0)
6324
6325 #define po_barrier_or_imm(str) \
6326 do \
6327 { \
6328 val = parse_barrier (&str); \
6329 if (val == FAIL) \
6330 { \
6331 if (ISALPHA (*str)) \
6332 goto failure; \
6333 else \
6334 goto immediate; \
6335 } \
6336 else \
6337 { \
6338 if ((inst.instruction & 0xf0) == 0x60 \
6339 && val != 0xf) \
6340 { \
6341 /* ISB can only take SY as an option. */ \
6342 inst.error = _("invalid barrier type"); \
6343 goto failure; \
6344 } \
6345 } \
6346 } \
6347 while (0)
6348
6349 skip_whitespace (str);
6350
6351 for (i = 0; upat[i] != OP_stop; i++)
6352 {
6353 op_parse_code = upat[i];
6354 if (op_parse_code >= 1<<16)
6355 op_parse_code = thumb ? (op_parse_code >> 16)
6356 : (op_parse_code & ((1<<16)-1));
6357
6358 if (op_parse_code >= OP_FIRST_OPTIONAL)
6359 {
6360 /* Remember where we are in case we need to backtrack. */
6361 gas_assert (!backtrack_pos);
6362 backtrack_pos = str;
6363 backtrack_error = inst.error;
6364 backtrack_index = i;
6365 }
6366
6367 if (i > 0 && (i > 1 || inst.operands[0].present))
6368 po_char_or_fail (',');
6369
6370 switch (op_parse_code)
6371 {
6372 /* Registers */
6373 case OP_oRRnpc:
6374 case OP_oRRnpcsp:
6375 case OP_RRnpc:
6376 case OP_RRnpcsp:
6377 case OP_oRR:
6378 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6379 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6380 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6381 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6382 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6383 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
6384 case OP_oRND:
6385 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
6386 case OP_RVC:
6387 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6388 break;
6389 /* Also accept generic coprocessor regs for unknown registers. */
6390 coproc_reg:
6391 po_reg_or_fail (REG_TYPE_CN);
6392 break;
6393 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6394 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6395 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6396 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6397 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6398 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6399 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6400 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6401 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6402 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
6403 case OP_oRNQ:
6404 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6405 case OP_oRNDQ:
6406 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
6407 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6408 case OP_oRNSDQ:
6409 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6410
6411 /* Neon scalar. Using an element size of 8 means that some invalid
6412 scalars are accepted here, so deal with those in later code. */
6413 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6414
6415 case OP_RNDQ_I0:
6416 {
6417 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6418 break;
6419 try_imm0:
6420 po_imm_or_fail (0, 0, TRUE);
6421 }
6422 break;
6423
6424 case OP_RVSD_I0:
6425 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6426 break;
6427
6428 case OP_RR_RNSC:
6429 {
6430 po_scalar_or_goto (8, try_rr);
6431 break;
6432 try_rr:
6433 po_reg_or_fail (REG_TYPE_RN);
6434 }
6435 break;
6436
6437 case OP_RNSDQ_RNSC:
6438 {
6439 po_scalar_or_goto (8, try_nsdq);
6440 break;
6441 try_nsdq:
6442 po_reg_or_fail (REG_TYPE_NSDQ);
6443 }
6444 break;
6445
6446 case OP_RNDQ_RNSC:
6447 {
6448 po_scalar_or_goto (8, try_ndq);
6449 break;
6450 try_ndq:
6451 po_reg_or_fail (REG_TYPE_NDQ);
6452 }
6453 break;
6454
6455 case OP_RND_RNSC:
6456 {
6457 po_scalar_or_goto (8, try_vfd);
6458 break;
6459 try_vfd:
6460 po_reg_or_fail (REG_TYPE_VFD);
6461 }
6462 break;
6463
6464 case OP_VMOV:
6465 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6466 not careful then bad things might happen. */
6467 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6468 break;
6469
6470 case OP_RNDQ_Ibig:
6471 {
6472 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6473 break;
6474 try_immbig:
6475 /* There's a possibility of getting a 64-bit immediate here, so
6476 we need special handling. */
6477 if (parse_big_immediate (&str, i) == FAIL)
6478 {
6479 inst.error = _("immediate value is out of range");
6480 goto failure;
6481 }
6482 }
6483 break;
6484
6485 case OP_RNDQ_I63b:
6486 {
6487 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6488 break;
6489 try_shimm:
6490 po_imm_or_fail (0, 63, TRUE);
6491 }
6492 break;
6493
6494 case OP_RRnpcb:
6495 po_char_or_fail ('[');
6496 po_reg_or_fail (REG_TYPE_RN);
6497 po_char_or_fail (']');
6498 break;
6499
6500 case OP_RRnpctw:
6501 case OP_RRw:
6502 case OP_oRRw:
6503 po_reg_or_fail (REG_TYPE_RN);
6504 if (skip_past_char (&str, '!') == SUCCESS)
6505 inst.operands[i].writeback = 1;
6506 break;
6507
6508 /* Immediates */
6509 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6510 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6511 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
6512 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
6513 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6514 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
6515 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
6516 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
6517 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6518 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6519 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
6520 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
6521
6522 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6523 case OP_oI7b:
6524 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6525 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6526 case OP_oI31b:
6527 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
6528 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6529 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
6530 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6531
6532 /* Immediate variants */
6533 case OP_oI255c:
6534 po_char_or_fail ('{');
6535 po_imm_or_fail (0, 255, TRUE);
6536 po_char_or_fail ('}');
6537 break;
6538
6539 case OP_I31w:
6540 /* The expression parser chokes on a trailing !, so we have
6541 to find it first and zap it. */
6542 {
6543 char *s = str;
6544 while (*s && *s != ',')
6545 s++;
6546 if (s[-1] == '!')
6547 {
6548 s[-1] = '\0';
6549 inst.operands[i].writeback = 1;
6550 }
6551 po_imm_or_fail (0, 31, TRUE);
6552 if (str == s - 1)
6553 str = s;
6554 }
6555 break;
6556
6557 /* Expressions */
6558 case OP_EXPi: EXPi:
6559 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6560 GE_OPT_PREFIX));
6561 break;
6562
6563 case OP_EXP:
6564 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6565 GE_NO_PREFIX));
6566 break;
6567
6568 case OP_EXPr: EXPr:
6569 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6570 GE_NO_PREFIX));
6571 if (inst.reloc.exp.X_op == O_symbol)
6572 {
6573 val = parse_reloc (&str);
6574 if (val == -1)
6575 {
6576 inst.error = _("unrecognized relocation suffix");
6577 goto failure;
6578 }
6579 else if (val != BFD_RELOC_UNUSED)
6580 {
6581 inst.operands[i].imm = val;
6582 inst.operands[i].hasreloc = 1;
6583 }
6584 }
6585 break;
6586
6587 /* Operand for MOVW or MOVT. */
6588 case OP_HALF:
6589 po_misc_or_fail (parse_half (&str));
6590 break;
6591
6592 /* Register or expression. */
6593 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6594 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
6595
6596 /* Register or immediate. */
6597 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6598 I0: po_imm_or_fail (0, 0, FALSE); break;
6599
6600 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6601 IF:
6602 if (!is_immediate_prefix (*str))
6603 goto bad_args;
6604 str++;
6605 val = parse_fpa_immediate (&str);
6606 if (val == FAIL)
6607 goto failure;
6608 /* FPA immediates are encoded as registers 8-15.
6609 parse_fpa_immediate has already applied the offset. */
6610 inst.operands[i].reg = val;
6611 inst.operands[i].isreg = 1;
6612 break;
6613
6614 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6615 I32z: po_imm_or_fail (0, 32, FALSE); break;
6616
6617 /* Two kinds of register. */
6618 case OP_RIWR_RIWC:
6619 {
6620 struct reg_entry *rege = arm_reg_parse_multi (&str);
6621 if (!rege
6622 || (rege->type != REG_TYPE_MMXWR
6623 && rege->type != REG_TYPE_MMXWC
6624 && rege->type != REG_TYPE_MMXWCG))
6625 {
6626 inst.error = _("iWMMXt data or control register expected");
6627 goto failure;
6628 }
6629 inst.operands[i].reg = rege->number;
6630 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6631 }
6632 break;
6633
6634 case OP_RIWC_RIWG:
6635 {
6636 struct reg_entry *rege = arm_reg_parse_multi (&str);
6637 if (!rege
6638 || (rege->type != REG_TYPE_MMXWC
6639 && rege->type != REG_TYPE_MMXWCG))
6640 {
6641 inst.error = _("iWMMXt control register expected");
6642 goto failure;
6643 }
6644 inst.operands[i].reg = rege->number;
6645 inst.operands[i].isreg = 1;
6646 }
6647 break;
6648
6649 /* Misc */
6650 case OP_CPSF: val = parse_cps_flags (&str); break;
6651 case OP_ENDI: val = parse_endian_specifier (&str); break;
6652 case OP_oROR: val = parse_ror (&str); break;
6653 case OP_COND: val = parse_cond (&str); break;
6654 case OP_oBARRIER_I15:
6655 po_barrier_or_imm (str); break;
6656 immediate:
6657 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
6658 goto failure;
6659 break;
6660
6661 case OP_wPSR:
6662 case OP_rPSR:
6663 po_reg_or_goto (REG_TYPE_RNB, try_psr);
6664 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
6665 {
6666 inst.error = _("Banked registers are not available with this "
6667 "architecture.");
6668 goto failure;
6669 }
6670 break;
6671 try_psr:
6672 val = parse_psr (&str, op_parse_code == OP_wPSR);
6673 break;
6674
6675 case OP_APSR_RR:
6676 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6677 break;
6678 try_apsr:
6679 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6680 instruction). */
6681 if (strncasecmp (str, "APSR_", 5) == 0)
6682 {
6683 unsigned found = 0;
6684 str += 5;
6685 while (found < 15)
6686 switch (*str++)
6687 {
6688 case 'c': found = (found & 1) ? 16 : found | 1; break;
6689 case 'n': found = (found & 2) ? 16 : found | 2; break;
6690 case 'z': found = (found & 4) ? 16 : found | 4; break;
6691 case 'v': found = (found & 8) ? 16 : found | 8; break;
6692 default: found = 16;
6693 }
6694 if (found != 15)
6695 goto failure;
6696 inst.operands[i].isvec = 1;
6697 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6698 inst.operands[i].reg = REG_PC;
6699 }
6700 else
6701 goto failure;
6702 break;
6703
6704 case OP_TB:
6705 po_misc_or_fail (parse_tb (&str));
6706 break;
6707
6708 /* Register lists. */
6709 case OP_REGLST:
6710 val = parse_reg_list (&str);
6711 if (*str == '^')
6712 {
6713 inst.operands[1].writeback = 1;
6714 str++;
6715 }
6716 break;
6717
6718 case OP_VRSLST:
6719 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
6720 break;
6721
6722 case OP_VRDLST:
6723 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
6724 break;
6725
6726 case OP_VRSDLST:
6727 /* Allow Q registers too. */
6728 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6729 REGLIST_NEON_D);
6730 if (val == FAIL)
6731 {
6732 inst.error = NULL;
6733 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6734 REGLIST_VFP_S);
6735 inst.operands[i].issingle = 1;
6736 }
6737 break;
6738
6739 case OP_NRDLST:
6740 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6741 REGLIST_NEON_D);
6742 break;
6743
6744 case OP_NSTRLST:
6745 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6746 &inst.operands[i].vectype);
6747 break;
6748
6749 /* Addressing modes */
6750 case OP_ADDR:
6751 po_misc_or_fail (parse_address (&str, i));
6752 break;
6753
6754 case OP_ADDRGLDR:
6755 po_misc_or_fail_no_backtrack (
6756 parse_address_group_reloc (&str, i, GROUP_LDR));
6757 break;
6758
6759 case OP_ADDRGLDRS:
6760 po_misc_or_fail_no_backtrack (
6761 parse_address_group_reloc (&str, i, GROUP_LDRS));
6762 break;
6763
6764 case OP_ADDRGLDC:
6765 po_misc_or_fail_no_backtrack (
6766 parse_address_group_reloc (&str, i, GROUP_LDC));
6767 break;
6768
6769 case OP_SH:
6770 po_misc_or_fail (parse_shifter_operand (&str, i));
6771 break;
6772
6773 case OP_SHG:
6774 po_misc_or_fail_no_backtrack (
6775 parse_shifter_operand_group_reloc (&str, i));
6776 break;
6777
6778 case OP_oSHll:
6779 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6780 break;
6781
6782 case OP_oSHar:
6783 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6784 break;
6785
6786 case OP_oSHllar:
6787 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6788 break;
6789
6790 default:
6791 as_fatal (_("unhandled operand code %d"), op_parse_code);
6792 }
6793
6794 /* Various value-based sanity checks and shared operations. We
6795 do not signal immediate failures for the register constraints;
6796 this allows a syntax error to take precedence. */
6797 switch (op_parse_code)
6798 {
6799 case OP_oRRnpc:
6800 case OP_RRnpc:
6801 case OP_RRnpcb:
6802 case OP_RRw:
6803 case OP_oRRw:
6804 case OP_RRnpc_I0:
6805 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6806 inst.error = BAD_PC;
6807 break;
6808
6809 case OP_oRRnpcsp:
6810 case OP_RRnpcsp:
6811 if (inst.operands[i].isreg)
6812 {
6813 if (inst.operands[i].reg == REG_PC)
6814 inst.error = BAD_PC;
6815 else if (inst.operands[i].reg == REG_SP)
6816 inst.error = BAD_SP;
6817 }
6818 break;
6819
6820 case OP_RRnpctw:
6821 if (inst.operands[i].isreg
6822 && inst.operands[i].reg == REG_PC
6823 && (inst.operands[i].writeback || thumb))
6824 inst.error = BAD_PC;
6825 break;
6826
6827 case OP_CPSF:
6828 case OP_ENDI:
6829 case OP_oROR:
6830 case OP_wPSR:
6831 case OP_rPSR:
6832 case OP_COND:
6833 case OP_oBARRIER_I15:
6834 case OP_REGLST:
6835 case OP_VRSLST:
6836 case OP_VRDLST:
6837 case OP_VRSDLST:
6838 case OP_NRDLST:
6839 case OP_NSTRLST:
6840 if (val == FAIL)
6841 goto failure;
6842 inst.operands[i].imm = val;
6843 break;
6844
6845 default:
6846 break;
6847 }
6848
6849 /* If we get here, this operand was successfully parsed. */
6850 inst.operands[i].present = 1;
6851 continue;
6852
6853 bad_args:
6854 inst.error = BAD_ARGS;
6855
6856 failure:
6857 if (!backtrack_pos)
6858 {
6859 /* The parse routine should already have set inst.error, but set a
6860 default here just in case. */
6861 if (!inst.error)
6862 inst.error = _("syntax error");
6863 return FAIL;
6864 }
6865
6866 /* Do not backtrack over a trailing optional argument that
6867 absorbed some text. We will only fail again, with the
6868 'garbage following instruction' error message, which is
6869 probably less helpful than the current one. */
6870 if (backtrack_index == i && backtrack_pos != str
6871 && upat[i+1] == OP_stop)
6872 {
6873 if (!inst.error)
6874 inst.error = _("syntax error");
6875 return FAIL;
6876 }
6877
6878 /* Try again, skipping the optional argument at backtrack_pos. */
6879 str = backtrack_pos;
6880 inst.error = backtrack_error;
6881 inst.operands[backtrack_index].present = 0;
6882 i = backtrack_index;
6883 backtrack_pos = 0;
6884 }
6885
6886 /* Check that we have parsed all the arguments. */
6887 if (*str != '\0' && !inst.error)
6888 inst.error = _("garbage following instruction");
6889
6890 return inst.error ? FAIL : SUCCESS;
6891 }
6892
6893 #undef po_char_or_fail
6894 #undef po_reg_or_fail
6895 #undef po_reg_or_goto
6896 #undef po_imm_or_fail
6897 #undef po_scalar_or_fail
6898 #undef po_barrier_or_imm
6899
6900 /* Shorthand macro for instruction encoding functions issuing errors. */
6901 #define constraint(expr, err) \
6902 do \
6903 { \
6904 if (expr) \
6905 { \
6906 inst.error = err; \
6907 return; \
6908 } \
6909 } \
6910 while (0)
6911
6912 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6913 instructions are unpredictable if these registers are used. This
6914 is the BadReg predicate in ARM's Thumb-2 documentation. */
6915 #define reject_bad_reg(reg) \
6916 do \
6917 if (reg == REG_SP || reg == REG_PC) \
6918 { \
6919 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6920 return; \
6921 } \
6922 while (0)
6923
6924 /* If REG is R13 (the stack pointer), warn that its use is
6925 deprecated. */
6926 #define warn_deprecated_sp(reg) \
6927 do \
6928 if (warn_on_deprecated && reg == REG_SP) \
6929 as_warn (_("use of r13 is deprecated")); \
6930 while (0)
6931
6932 /* Functions for operand encoding. ARM, then Thumb. */
6933
6934 #define rotate_left(v, n) (v << n | v >> (32 - n))
6935
6936 /* If VAL can be encoded in the immediate field of an ARM instruction,
6937 return the encoded form. Otherwise, return FAIL. */
6938
6939 static unsigned int
6940 encode_arm_immediate (unsigned int val)
6941 {
6942 unsigned int a, i;
6943
6944 for (i = 0; i < 32; i += 2)
6945 if ((a = rotate_left (val, i)) <= 0xff)
6946 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6947
6948 return FAIL;
6949 }
6950
6951 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6952 return the encoded form. Otherwise, return FAIL. */
6953 static unsigned int
6954 encode_thumb32_immediate (unsigned int val)
6955 {
6956 unsigned int a, i;
6957
6958 if (val <= 0xff)
6959 return val;
6960
6961 for (i = 1; i <= 24; i++)
6962 {
6963 a = val >> i;
6964 if ((val & ~(0xff << i)) == 0)
6965 return ((val >> i) & 0x7f) | ((32 - i) << 7);
6966 }
6967
6968 a = val & 0xff;
6969 if (val == ((a << 16) | a))
6970 return 0x100 | a;
6971 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6972 return 0x300 | a;
6973
6974 a = val & 0xff00;
6975 if (val == ((a << 16) | a))
6976 return 0x200 | (a >> 8);
6977
6978 return FAIL;
6979 }
6980 /* Encode a VFP SP or DP register number into inst.instruction. */
6981
6982 static void
6983 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6984 {
6985 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6986 && reg > 15)
6987 {
6988 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
6989 {
6990 if (thumb_mode)
6991 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6992 fpu_vfp_ext_d32);
6993 else
6994 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6995 fpu_vfp_ext_d32);
6996 }
6997 else
6998 {
6999 first_error (_("D register out of range for selected VFP version"));
7000 return;
7001 }
7002 }
7003
7004 switch (pos)
7005 {
7006 case VFP_REG_Sd:
7007 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
7008 break;
7009
7010 case VFP_REG_Sn:
7011 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
7012 break;
7013
7014 case VFP_REG_Sm:
7015 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
7016 break;
7017
7018 case VFP_REG_Dd:
7019 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
7020 break;
7021
7022 case VFP_REG_Dn:
7023 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
7024 break;
7025
7026 case VFP_REG_Dm:
7027 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
7028 break;
7029
7030 default:
7031 abort ();
7032 }
7033 }
7034
7035 /* Encode a <shift> in an ARM-format instruction. The immediate,
7036 if any, is handled by md_apply_fix. */
7037 static void
7038 encode_arm_shift (int i)
7039 {
7040 if (inst.operands[i].shift_kind == SHIFT_RRX)
7041 inst.instruction |= SHIFT_ROR << 5;
7042 else
7043 {
7044 inst.instruction |= inst.operands[i].shift_kind << 5;
7045 if (inst.operands[i].immisreg)
7046 {
7047 inst.instruction |= SHIFT_BY_REG;
7048 inst.instruction |= inst.operands[i].imm << 8;
7049 }
7050 else
7051 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7052 }
7053 }
7054
7055 static void
7056 encode_arm_shifter_operand (int i)
7057 {
7058 if (inst.operands[i].isreg)
7059 {
7060 inst.instruction |= inst.operands[i].reg;
7061 encode_arm_shift (i);
7062 }
7063 else
7064 {
7065 inst.instruction |= INST_IMMEDIATE;
7066 if (inst.reloc.type != BFD_RELOC_ARM_IMMEDIATE)
7067 inst.instruction |= inst.operands[i].imm;
7068 }
7069 }
7070
7071 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
7072 static void
7073 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
7074 {
7075 /* PR 14260:
7076 Generate an error if the operand is not a register. */
7077 constraint (!inst.operands[i].isreg,
7078 _("Instruction does not support =N addresses"));
7079
7080 inst.instruction |= inst.operands[i].reg << 16;
7081
7082 if (inst.operands[i].preind)
7083 {
7084 if (is_t)
7085 {
7086 inst.error = _("instruction does not accept preindexed addressing");
7087 return;
7088 }
7089 inst.instruction |= PRE_INDEX;
7090 if (inst.operands[i].writeback)
7091 inst.instruction |= WRITE_BACK;
7092
7093 }
7094 else if (inst.operands[i].postind)
7095 {
7096 gas_assert (inst.operands[i].writeback);
7097 if (is_t)
7098 inst.instruction |= WRITE_BACK;
7099 }
7100 else /* unindexed - only for coprocessor */
7101 {
7102 inst.error = _("instruction does not accept unindexed addressing");
7103 return;
7104 }
7105
7106 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7107 && (((inst.instruction & 0x000f0000) >> 16)
7108 == ((inst.instruction & 0x0000f000) >> 12)))
7109 as_warn ((inst.instruction & LOAD_BIT)
7110 ? _("destination register same as write-back base")
7111 : _("source register same as write-back base"));
7112 }
7113
7114 /* inst.operands[i] was set up by parse_address. Encode it into an
7115 ARM-format mode 2 load or store instruction. If is_t is true,
7116 reject forms that cannot be used with a T instruction (i.e. not
7117 post-indexed). */
7118 static void
7119 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
7120 {
7121 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7122
7123 encode_arm_addr_mode_common (i, is_t);
7124
7125 if (inst.operands[i].immisreg)
7126 {
7127 constraint ((inst.operands[i].imm == REG_PC
7128 || (is_pc && inst.operands[i].writeback)),
7129 BAD_PC_ADDRESSING);
7130 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7131 inst.instruction |= inst.operands[i].imm;
7132 if (!inst.operands[i].negative)
7133 inst.instruction |= INDEX_UP;
7134 if (inst.operands[i].shifted)
7135 {
7136 if (inst.operands[i].shift_kind == SHIFT_RRX)
7137 inst.instruction |= SHIFT_ROR << 5;
7138 else
7139 {
7140 inst.instruction |= inst.operands[i].shift_kind << 5;
7141 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7142 }
7143 }
7144 }
7145 else /* immediate offset in inst.reloc */
7146 {
7147 if (is_pc && !inst.reloc.pc_rel)
7148 {
7149 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
7150
7151 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7152 cannot use PC in addressing.
7153 PC cannot be used in writeback addressing, either. */
7154 constraint ((is_t || inst.operands[i].writeback),
7155 BAD_PC_ADDRESSING);
7156
7157 /* Use of PC in str is deprecated for ARMv7. */
7158 if (warn_on_deprecated
7159 && !is_load
7160 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
7161 as_warn (_("use of PC in this instruction is deprecated"));
7162 }
7163
7164 if (inst.reloc.type == BFD_RELOC_UNUSED)
7165 {
7166 /* Prefer + for zero encoded value. */
7167 if (!inst.operands[i].negative)
7168 inst.instruction |= INDEX_UP;
7169 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
7170 }
7171 }
7172 }
7173
7174 /* inst.operands[i] was set up by parse_address. Encode it into an
7175 ARM-format mode 3 load or store instruction. Reject forms that
7176 cannot be used with such instructions. If is_t is true, reject
7177 forms that cannot be used with a T instruction (i.e. not
7178 post-indexed). */
7179 static void
7180 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
7181 {
7182 if (inst.operands[i].immisreg && inst.operands[i].shifted)
7183 {
7184 inst.error = _("instruction does not accept scaled register index");
7185 return;
7186 }
7187
7188 encode_arm_addr_mode_common (i, is_t);
7189
7190 if (inst.operands[i].immisreg)
7191 {
7192 constraint ((inst.operands[i].imm == REG_PC
7193 || inst.operands[i].reg == REG_PC),
7194 BAD_PC_ADDRESSING);
7195 inst.instruction |= inst.operands[i].imm;
7196 if (!inst.operands[i].negative)
7197 inst.instruction |= INDEX_UP;
7198 }
7199 else /* immediate offset in inst.reloc */
7200 {
7201 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
7202 && inst.operands[i].writeback),
7203 BAD_PC_WRITEBACK);
7204 inst.instruction |= HWOFFSET_IMM;
7205 if (inst.reloc.type == BFD_RELOC_UNUSED)
7206 {
7207 /* Prefer + for zero encoded value. */
7208 if (!inst.operands[i].negative)
7209 inst.instruction |= INDEX_UP;
7210
7211 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
7212 }
7213 }
7214 }
7215
7216 /* inst.operands[i] was set up by parse_address. Encode it into an
7217 ARM-format instruction. Reject all forms which cannot be encoded
7218 into a coprocessor load/store instruction. If wb_ok is false,
7219 reject use of writeback; if unind_ok is false, reject use of
7220 unindexed addressing. If reloc_override is not 0, use it instead
7221 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
7222 (in which case it is preserved). */
7223
7224 static int
7225 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
7226 {
7227 inst.instruction |= inst.operands[i].reg << 16;
7228
7229 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
7230
7231 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
7232 {
7233 gas_assert (!inst.operands[i].writeback);
7234 if (!unind_ok)
7235 {
7236 inst.error = _("instruction does not support unindexed addressing");
7237 return FAIL;
7238 }
7239 inst.instruction |= inst.operands[i].imm;
7240 inst.instruction |= INDEX_UP;
7241 return SUCCESS;
7242 }
7243
7244 if (inst.operands[i].preind)
7245 inst.instruction |= PRE_INDEX;
7246
7247 if (inst.operands[i].writeback)
7248 {
7249 if (inst.operands[i].reg == REG_PC)
7250 {
7251 inst.error = _("pc may not be used with write-back");
7252 return FAIL;
7253 }
7254 if (!wb_ok)
7255 {
7256 inst.error = _("instruction does not support writeback");
7257 return FAIL;
7258 }
7259 inst.instruction |= WRITE_BACK;
7260 }
7261
7262 if (reloc_override)
7263 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
7264 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
7265 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
7266 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
7267 {
7268 if (thumb_mode)
7269 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
7270 else
7271 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
7272 }
7273
7274 /* Prefer + for zero encoded value. */
7275 if (!inst.operands[i].negative)
7276 inst.instruction |= INDEX_UP;
7277
7278 return SUCCESS;
7279 }
7280
7281 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
7282 Determine whether it can be performed with a move instruction; if
7283 it can, convert inst.instruction to that move instruction and
7284 return TRUE; if it can't, convert inst.instruction to a literal-pool
7285 load and return FALSE. If this is not a valid thing to do in the
7286 current context, set inst.error and return TRUE.
7287
7288 inst.operands[i] describes the destination register. */
7289
7290 static bfd_boolean
7291 move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
7292 {
7293 unsigned long tbit;
7294
7295 if (thumb_p)
7296 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7297 else
7298 tbit = LOAD_BIT;
7299
7300 if ((inst.instruction & tbit) == 0)
7301 {
7302 inst.error = _("invalid pseudo operation");
7303 return TRUE;
7304 }
7305 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
7306 {
7307 inst.error = _("constant expression expected");
7308 return TRUE;
7309 }
7310 if (inst.reloc.exp.X_op == O_constant)
7311 {
7312 if (thumb_p)
7313 {
7314 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
7315 {
7316 /* This can be done with a mov(1) instruction. */
7317 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
7318 inst.instruction |= inst.reloc.exp.X_add_number;
7319 return TRUE;
7320 }
7321 }
7322 else
7323 {
7324 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
7325 if (value != FAIL)
7326 {
7327 /* This can be done with a mov instruction. */
7328 inst.instruction &= LITERAL_MASK;
7329 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
7330 inst.instruction |= value & 0xfff;
7331 return TRUE;
7332 }
7333
7334 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
7335 if (value != FAIL)
7336 {
7337 /* This can be done with a mvn instruction. */
7338 inst.instruction &= LITERAL_MASK;
7339 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
7340 inst.instruction |= value & 0xfff;
7341 return TRUE;
7342 }
7343 }
7344 }
7345
7346 if (add_to_lit_pool () == FAIL)
7347 {
7348 inst.error = _("literal pool insertion failed");
7349 return TRUE;
7350 }
7351 inst.operands[1].reg = REG_PC;
7352 inst.operands[1].isreg = 1;
7353 inst.operands[1].preind = 1;
7354 inst.reloc.pc_rel = 1;
7355 inst.reloc.type = (thumb_p
7356 ? BFD_RELOC_ARM_THUMB_OFFSET
7357 : (mode_3
7358 ? BFD_RELOC_ARM_HWLITERAL
7359 : BFD_RELOC_ARM_LITERAL));
7360 return FALSE;
7361 }
7362
7363 /* Functions for instruction encoding, sorted by sub-architecture.
7364 First some generics; their names are taken from the conventional
7365 bit positions for register arguments in ARM format instructions. */
7366
7367 static void
7368 do_noargs (void)
7369 {
7370 }
7371
7372 static void
7373 do_rd (void)
7374 {
7375 inst.instruction |= inst.operands[0].reg << 12;
7376 }
7377
7378 static void
7379 do_rd_rm (void)
7380 {
7381 inst.instruction |= inst.operands[0].reg << 12;
7382 inst.instruction |= inst.operands[1].reg;
7383 }
7384
7385 static void
7386 do_rd_rn (void)
7387 {
7388 inst.instruction |= inst.operands[0].reg << 12;
7389 inst.instruction |= inst.operands[1].reg << 16;
7390 }
7391
7392 static void
7393 do_rn_rd (void)
7394 {
7395 inst.instruction |= inst.operands[0].reg << 16;
7396 inst.instruction |= inst.operands[1].reg << 12;
7397 }
7398
7399 static bfd_boolean
7400 check_obsolete (const arm_feature_set *feature, const char *msg)
7401 {
7402 if (ARM_CPU_IS_ANY (cpu_variant))
7403 {
7404 as_warn ("%s", msg);
7405 return TRUE;
7406 }
7407 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
7408 {
7409 as_bad ("%s", msg);
7410 return TRUE;
7411 }
7412
7413 return FALSE;
7414 }
7415
7416 static void
7417 do_rd_rm_rn (void)
7418 {
7419 unsigned Rn = inst.operands[2].reg;
7420 /* Enforce restrictions on SWP instruction. */
7421 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
7422 {
7423 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
7424 _("Rn must not overlap other operands"));
7425
7426 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
7427 */
7428 if (!check_obsolete (&arm_ext_v8,
7429 _("swp{b} use is obsoleted for ARMv8 and later"))
7430 && warn_on_deprecated
7431 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
7432 as_warn (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
7433 }
7434
7435 inst.instruction |= inst.operands[0].reg << 12;
7436 inst.instruction |= inst.operands[1].reg;
7437 inst.instruction |= Rn << 16;
7438 }
7439
7440 static void
7441 do_rd_rn_rm (void)
7442 {
7443 inst.instruction |= inst.operands[0].reg << 12;
7444 inst.instruction |= inst.operands[1].reg << 16;
7445 inst.instruction |= inst.operands[2].reg;
7446 }
7447
7448 static void
7449 do_rm_rd_rn (void)
7450 {
7451 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7452 constraint (((inst.reloc.exp.X_op != O_constant
7453 && inst.reloc.exp.X_op != O_illegal)
7454 || inst.reloc.exp.X_add_number != 0),
7455 BAD_ADDR_MODE);
7456 inst.instruction |= inst.operands[0].reg;
7457 inst.instruction |= inst.operands[1].reg << 12;
7458 inst.instruction |= inst.operands[2].reg << 16;
7459 }
7460
7461 static void
7462 do_imm0 (void)
7463 {
7464 inst.instruction |= inst.operands[0].imm;
7465 }
7466
7467 static void
7468 do_rd_cpaddr (void)
7469 {
7470 inst.instruction |= inst.operands[0].reg << 12;
7471 encode_arm_cp_address (1, TRUE, TRUE, 0);
7472 }
7473
7474 /* ARM instructions, in alphabetical order by function name (except
7475 that wrapper functions appear immediately after the function they
7476 wrap). */
7477
7478 /* This is a pseudo-op of the form "adr rd, label" to be converted
7479 into a relative address of the form "add rd, pc, #label-.-8". */
7480
7481 static void
7482 do_adr (void)
7483 {
7484 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7485
7486 /* Frag hacking will turn this into a sub instruction if the offset turns
7487 out to be negative. */
7488 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7489 inst.reloc.pc_rel = 1;
7490 inst.reloc.exp.X_add_number -= 8;
7491 }
7492
7493 /* This is a pseudo-op of the form "adrl rd, label" to be converted
7494 into a relative address of the form:
7495 add rd, pc, #low(label-.-8)"
7496 add rd, rd, #high(label-.-8)" */
7497
7498 static void
7499 do_adrl (void)
7500 {
7501 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7502
7503 /* Frag hacking will turn this into a sub instruction if the offset turns
7504 out to be negative. */
7505 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
7506 inst.reloc.pc_rel = 1;
7507 inst.size = INSN_SIZE * 2;
7508 inst.reloc.exp.X_add_number -= 8;
7509 }
7510
7511 static void
7512 do_arit (void)
7513 {
7514 if (!inst.operands[1].present)
7515 inst.operands[1].reg = inst.operands[0].reg;
7516 inst.instruction |= inst.operands[0].reg << 12;
7517 inst.instruction |= inst.operands[1].reg << 16;
7518 encode_arm_shifter_operand (2);
7519 }
7520
7521 static void
7522 do_barrier (void)
7523 {
7524 if (inst.operands[0].present)
7525 {
7526 constraint ((inst.instruction & 0xf0) != 0x40
7527 && inst.operands[0].imm > 0xf
7528 && inst.operands[0].imm < 0x0,
7529 _("bad barrier type"));
7530 inst.instruction |= inst.operands[0].imm;
7531 }
7532 else
7533 inst.instruction |= 0xf;
7534 }
7535
7536 static void
7537 do_bfc (void)
7538 {
7539 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7540 constraint (msb > 32, _("bit-field extends past end of register"));
7541 /* The instruction encoding stores the LSB and MSB,
7542 not the LSB and width. */
7543 inst.instruction |= inst.operands[0].reg << 12;
7544 inst.instruction |= inst.operands[1].imm << 7;
7545 inst.instruction |= (msb - 1) << 16;
7546 }
7547
7548 static void
7549 do_bfi (void)
7550 {
7551 unsigned int msb;
7552
7553 /* #0 in second position is alternative syntax for bfc, which is
7554 the same instruction but with REG_PC in the Rm field. */
7555 if (!inst.operands[1].isreg)
7556 inst.operands[1].reg = REG_PC;
7557
7558 msb = inst.operands[2].imm + inst.operands[3].imm;
7559 constraint (msb > 32, _("bit-field extends past end of register"));
7560 /* The instruction encoding stores the LSB and MSB,
7561 not the LSB and width. */
7562 inst.instruction |= inst.operands[0].reg << 12;
7563 inst.instruction |= inst.operands[1].reg;
7564 inst.instruction |= inst.operands[2].imm << 7;
7565 inst.instruction |= (msb - 1) << 16;
7566 }
7567
7568 static void
7569 do_bfx (void)
7570 {
7571 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7572 _("bit-field extends past end of register"));
7573 inst.instruction |= inst.operands[0].reg << 12;
7574 inst.instruction |= inst.operands[1].reg;
7575 inst.instruction |= inst.operands[2].imm << 7;
7576 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7577 }
7578
7579 /* ARM V5 breakpoint instruction (argument parse)
7580 BKPT <16 bit unsigned immediate>
7581 Instruction is not conditional.
7582 The bit pattern given in insns[] has the COND_ALWAYS condition,
7583 and it is an error if the caller tried to override that. */
7584
7585 static void
7586 do_bkpt (void)
7587 {
7588 /* Top 12 of 16 bits to bits 19:8. */
7589 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
7590
7591 /* Bottom 4 of 16 bits to bits 3:0. */
7592 inst.instruction |= inst.operands[0].imm & 0xf;
7593 }
7594
7595 static void
7596 encode_branch (int default_reloc)
7597 {
7598 if (inst.operands[0].hasreloc)
7599 {
7600 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
7601 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
7602 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
7603 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
7604 ? BFD_RELOC_ARM_PLT32
7605 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
7606 }
7607 else
7608 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
7609 inst.reloc.pc_rel = 1;
7610 }
7611
7612 static void
7613 do_branch (void)
7614 {
7615 #ifdef OBJ_ELF
7616 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7617 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7618 else
7619 #endif
7620 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7621 }
7622
7623 static void
7624 do_bl (void)
7625 {
7626 #ifdef OBJ_ELF
7627 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7628 {
7629 if (inst.cond == COND_ALWAYS)
7630 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7631 else
7632 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7633 }
7634 else
7635 #endif
7636 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7637 }
7638
7639 /* ARM V5 branch-link-exchange instruction (argument parse)
7640 BLX <target_addr> ie BLX(1)
7641 BLX{<condition>} <Rm> ie BLX(2)
7642 Unfortunately, there are two different opcodes for this mnemonic.
7643 So, the insns[].value is not used, and the code here zaps values
7644 into inst.instruction.
7645 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
7646
7647 static void
7648 do_blx (void)
7649 {
7650 if (inst.operands[0].isreg)
7651 {
7652 /* Arg is a register; the opcode provided by insns[] is correct.
7653 It is not illegal to do "blx pc", just useless. */
7654 if (inst.operands[0].reg == REG_PC)
7655 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
7656
7657 inst.instruction |= inst.operands[0].reg;
7658 }
7659 else
7660 {
7661 /* Arg is an address; this instruction cannot be executed
7662 conditionally, and the opcode must be adjusted.
7663 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7664 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
7665 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7666 inst.instruction = 0xfa000000;
7667 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
7668 }
7669 }
7670
7671 static void
7672 do_bx (void)
7673 {
7674 bfd_boolean want_reloc;
7675
7676 if (inst.operands[0].reg == REG_PC)
7677 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
7678
7679 inst.instruction |= inst.operands[0].reg;
7680 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7681 it is for ARMv4t or earlier. */
7682 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7683 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7684 want_reloc = TRUE;
7685
7686 #ifdef OBJ_ELF
7687 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
7688 #endif
7689 want_reloc = FALSE;
7690
7691 if (want_reloc)
7692 inst.reloc.type = BFD_RELOC_ARM_V4BX;
7693 }
7694
7695
7696 /* ARM v5TEJ. Jump to Jazelle code. */
7697
7698 static void
7699 do_bxj (void)
7700 {
7701 if (inst.operands[0].reg == REG_PC)
7702 as_tsktsk (_("use of r15 in bxj is not really useful"));
7703
7704 inst.instruction |= inst.operands[0].reg;
7705 }
7706
7707 /* Co-processor data operation:
7708 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7709 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7710 static void
7711 do_cdp (void)
7712 {
7713 inst.instruction |= inst.operands[0].reg << 8;
7714 inst.instruction |= inst.operands[1].imm << 20;
7715 inst.instruction |= inst.operands[2].reg << 12;
7716 inst.instruction |= inst.operands[3].reg << 16;
7717 inst.instruction |= inst.operands[4].reg;
7718 inst.instruction |= inst.operands[5].imm << 5;
7719 }
7720
7721 static void
7722 do_cmp (void)
7723 {
7724 inst.instruction |= inst.operands[0].reg << 16;
7725 encode_arm_shifter_operand (1);
7726 }
7727
7728 /* Transfer between coprocessor and ARM registers.
7729 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7730 MRC2
7731 MCR{cond}
7732 MCR2
7733
7734 No special properties. */
7735
7736 struct deprecated_coproc_regs_s
7737 {
7738 unsigned cp;
7739 int opc1;
7740 unsigned crn;
7741 unsigned crm;
7742 int opc2;
7743 arm_feature_set deprecated;
7744 arm_feature_set obsoleted;
7745 const char *dep_msg;
7746 const char *obs_msg;
7747 };
7748
7749 #define DEPR_ACCESS_V8 \
7750 N_("This coprocessor register access is deprecated in ARMv8")
7751
7752 /* Table of all deprecated coprocessor registers. */
7753 static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
7754 {
7755 {15, 0, 7, 10, 5, /* CP15DMB. */
7756 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7757 DEPR_ACCESS_V8, NULL},
7758 {15, 0, 7, 10, 4, /* CP15DSB. */
7759 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7760 DEPR_ACCESS_V8, NULL},
7761 {15, 0, 7, 5, 4, /* CP15ISB. */
7762 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7763 DEPR_ACCESS_V8, NULL},
7764 {14, 6, 1, 0, 0, /* TEEHBR. */
7765 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7766 DEPR_ACCESS_V8, NULL},
7767 {14, 6, 0, 0, 0, /* TEECR. */
7768 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7769 DEPR_ACCESS_V8, NULL},
7770 };
7771
7772 #undef DEPR_ACCESS_V8
7773
7774 static const size_t deprecated_coproc_reg_count =
7775 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
7776
7777 static void
7778 do_co_reg (void)
7779 {
7780 unsigned Rd;
7781 size_t i;
7782
7783 Rd = inst.operands[2].reg;
7784 if (thumb_mode)
7785 {
7786 if (inst.instruction == 0xee000010
7787 || inst.instruction == 0xfe000010)
7788 /* MCR, MCR2 */
7789 reject_bad_reg (Rd);
7790 else
7791 /* MRC, MRC2 */
7792 constraint (Rd == REG_SP, BAD_SP);
7793 }
7794 else
7795 {
7796 /* MCR */
7797 if (inst.instruction == 0xe000010)
7798 constraint (Rd == REG_PC, BAD_PC);
7799 }
7800
7801 for (i = 0; i < deprecated_coproc_reg_count; ++i)
7802 {
7803 const struct deprecated_coproc_regs_s *r =
7804 deprecated_coproc_regs + i;
7805
7806 if (inst.operands[0].reg == r->cp
7807 && inst.operands[1].imm == r->opc1
7808 && inst.operands[3].reg == r->crn
7809 && inst.operands[4].reg == r->crm
7810 && inst.operands[5].imm == r->opc2)
7811 {
7812 if (!check_obsolete (&r->obsoleted, r->obs_msg)
7813 && warn_on_deprecated
7814 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
7815 as_warn ("%s", r->dep_msg);
7816 }
7817 }
7818
7819 inst.instruction |= inst.operands[0].reg << 8;
7820 inst.instruction |= inst.operands[1].imm << 21;
7821 inst.instruction |= Rd << 12;
7822 inst.instruction |= inst.operands[3].reg << 16;
7823 inst.instruction |= inst.operands[4].reg;
7824 inst.instruction |= inst.operands[5].imm << 5;
7825 }
7826
7827 /* Transfer between coprocessor register and pair of ARM registers.
7828 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7829 MCRR2
7830 MRRC{cond}
7831 MRRC2
7832
7833 Two XScale instructions are special cases of these:
7834
7835 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7836 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
7837
7838 Result unpredictable if Rd or Rn is R15. */
7839
7840 static void
7841 do_co_reg2c (void)
7842 {
7843 unsigned Rd, Rn;
7844
7845 Rd = inst.operands[2].reg;
7846 Rn = inst.operands[3].reg;
7847
7848 if (thumb_mode)
7849 {
7850 reject_bad_reg (Rd);
7851 reject_bad_reg (Rn);
7852 }
7853 else
7854 {
7855 constraint (Rd == REG_PC, BAD_PC);
7856 constraint (Rn == REG_PC, BAD_PC);
7857 }
7858
7859 inst.instruction |= inst.operands[0].reg << 8;
7860 inst.instruction |= inst.operands[1].imm << 4;
7861 inst.instruction |= Rd << 12;
7862 inst.instruction |= Rn << 16;
7863 inst.instruction |= inst.operands[4].reg;
7864 }
7865
7866 static void
7867 do_cpsi (void)
7868 {
7869 inst.instruction |= inst.operands[0].imm << 6;
7870 if (inst.operands[1].present)
7871 {
7872 inst.instruction |= CPSI_MMOD;
7873 inst.instruction |= inst.operands[1].imm;
7874 }
7875 }
7876
7877 static void
7878 do_dbg (void)
7879 {
7880 inst.instruction |= inst.operands[0].imm;
7881 }
7882
7883 static void
7884 do_div (void)
7885 {
7886 unsigned Rd, Rn, Rm;
7887
7888 Rd = inst.operands[0].reg;
7889 Rn = (inst.operands[1].present
7890 ? inst.operands[1].reg : Rd);
7891 Rm = inst.operands[2].reg;
7892
7893 constraint ((Rd == REG_PC), BAD_PC);
7894 constraint ((Rn == REG_PC), BAD_PC);
7895 constraint ((Rm == REG_PC), BAD_PC);
7896
7897 inst.instruction |= Rd << 16;
7898 inst.instruction |= Rn << 0;
7899 inst.instruction |= Rm << 8;
7900 }
7901
7902 static void
7903 do_it (void)
7904 {
7905 /* There is no IT instruction in ARM mode. We
7906 process it to do the validation as if in
7907 thumb mode, just in case the code gets
7908 assembled for thumb using the unified syntax. */
7909
7910 inst.size = 0;
7911 if (unified_syntax)
7912 {
7913 set_it_insn_type (IT_INSN);
7914 now_it.mask = (inst.instruction & 0xf) | 0x10;
7915 now_it.cc = inst.operands[0].imm;
7916 }
7917 }
7918
7919 /* If there is only one register in the register list,
7920 then return its register number. Otherwise return -1. */
7921 static int
7922 only_one_reg_in_list (int range)
7923 {
7924 int i = ffs (range) - 1;
7925 return (i > 15 || range != (1 << i)) ? -1 : i;
7926 }
7927
7928 static void
7929 encode_ldmstm(int from_push_pop_mnem)
7930 {
7931 int base_reg = inst.operands[0].reg;
7932 int range = inst.operands[1].imm;
7933 int one_reg;
7934
7935 inst.instruction |= base_reg << 16;
7936 inst.instruction |= range;
7937
7938 if (inst.operands[1].writeback)
7939 inst.instruction |= LDM_TYPE_2_OR_3;
7940
7941 if (inst.operands[0].writeback)
7942 {
7943 inst.instruction |= WRITE_BACK;
7944 /* Check for unpredictable uses of writeback. */
7945 if (inst.instruction & LOAD_BIT)
7946 {
7947 /* Not allowed in LDM type 2. */
7948 if ((inst.instruction & LDM_TYPE_2_OR_3)
7949 && ((range & (1 << REG_PC)) == 0))
7950 as_warn (_("writeback of base register is UNPREDICTABLE"));
7951 /* Only allowed if base reg not in list for other types. */
7952 else if (range & (1 << base_reg))
7953 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7954 }
7955 else /* STM. */
7956 {
7957 /* Not allowed for type 2. */
7958 if (inst.instruction & LDM_TYPE_2_OR_3)
7959 as_warn (_("writeback of base register is UNPREDICTABLE"));
7960 /* Only allowed if base reg not in list, or first in list. */
7961 else if ((range & (1 << base_reg))
7962 && (range & ((1 << base_reg) - 1)))
7963 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
7964 }
7965 }
7966
7967 /* If PUSH/POP has only one register, then use the A2 encoding. */
7968 one_reg = only_one_reg_in_list (range);
7969 if (from_push_pop_mnem && one_reg >= 0)
7970 {
7971 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
7972
7973 inst.instruction &= A_COND_MASK;
7974 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
7975 inst.instruction |= one_reg << 12;
7976 }
7977 }
7978
7979 static void
7980 do_ldmstm (void)
7981 {
7982 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
7983 }
7984
7985 /* ARMv5TE load-consecutive (argument parse)
7986 Mode is like LDRH.
7987
7988 LDRccD R, mode
7989 STRccD R, mode. */
7990
7991 static void
7992 do_ldrd (void)
7993 {
7994 constraint (inst.operands[0].reg % 2 != 0,
7995 _("first transfer register must be even"));
7996 constraint (inst.operands[1].present
7997 && inst.operands[1].reg != inst.operands[0].reg + 1,
7998 _("can only transfer two consecutive registers"));
7999 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8000 constraint (!inst.operands[2].isreg, _("'[' expected"));
8001
8002 if (!inst.operands[1].present)
8003 inst.operands[1].reg = inst.operands[0].reg + 1;
8004
8005 /* encode_arm_addr_mode_3 will diagnose overlap between the base
8006 register and the first register written; we have to diagnose
8007 overlap between the base and the second register written here. */
8008
8009 if (inst.operands[2].reg == inst.operands[1].reg
8010 && (inst.operands[2].writeback || inst.operands[2].postind))
8011 as_warn (_("base register written back, and overlaps "
8012 "second transfer register"));
8013
8014 if (!(inst.instruction & V4_STR_BIT))
8015 {
8016 /* For an index-register load, the index register must not overlap the
8017 destination (even if not write-back). */
8018 if (inst.operands[2].immisreg
8019 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
8020 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
8021 as_warn (_("index register overlaps transfer register"));
8022 }
8023 inst.instruction |= inst.operands[0].reg << 12;
8024 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
8025 }
8026
8027 static void
8028 do_ldrex (void)
8029 {
8030 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
8031 || inst.operands[1].postind || inst.operands[1].writeback
8032 || inst.operands[1].immisreg || inst.operands[1].shifted
8033 || inst.operands[1].negative
8034 /* This can arise if the programmer has written
8035 strex rN, rM, foo
8036 or if they have mistakenly used a register name as the last
8037 operand, eg:
8038 strex rN, rM, rX
8039 It is very difficult to distinguish between these two cases
8040 because "rX" might actually be a label. ie the register
8041 name has been occluded by a symbol of the same name. So we
8042 just generate a general 'bad addressing mode' type error
8043 message and leave it up to the programmer to discover the
8044 true cause and fix their mistake. */
8045 || (inst.operands[1].reg == REG_PC),
8046 BAD_ADDR_MODE);
8047
8048 constraint (inst.reloc.exp.X_op != O_constant
8049 || inst.reloc.exp.X_add_number != 0,
8050 _("offset must be zero in ARM encoding"));
8051
8052 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
8053
8054 inst.instruction |= inst.operands[0].reg << 12;
8055 inst.instruction |= inst.operands[1].reg << 16;
8056 inst.reloc.type = BFD_RELOC_UNUSED;
8057 }
8058
8059 static void
8060 do_ldrexd (void)
8061 {
8062 constraint (inst.operands[0].reg % 2 != 0,
8063 _("even register required"));
8064 constraint (inst.operands[1].present
8065 && inst.operands[1].reg != inst.operands[0].reg + 1,
8066 _("can only load two consecutive registers"));
8067 /* If op 1 were present and equal to PC, this function wouldn't
8068 have been called in the first place. */
8069 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8070
8071 inst.instruction |= inst.operands[0].reg << 12;
8072 inst.instruction |= inst.operands[2].reg << 16;
8073 }
8074
8075 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
8076 which is not a multiple of four is UNPREDICTABLE. */
8077 static void
8078 check_ldr_r15_aligned (void)
8079 {
8080 constraint (!(inst.operands[1].immisreg)
8081 && (inst.operands[0].reg == REG_PC
8082 && inst.operands[1].reg == REG_PC
8083 && (inst.reloc.exp.X_add_number & 0x3)),
8084 _("ldr to register 15 must be 4-byte alligned"));
8085 }
8086
8087 static void
8088 do_ldst (void)
8089 {
8090 inst.instruction |= inst.operands[0].reg << 12;
8091 if (!inst.operands[1].isreg)
8092 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
8093 return;
8094 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
8095 check_ldr_r15_aligned ();
8096 }
8097
8098 static void
8099 do_ldstt (void)
8100 {
8101 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8102 reject [Rn,...]. */
8103 if (inst.operands[1].preind)
8104 {
8105 constraint (inst.reloc.exp.X_op != O_constant
8106 || inst.reloc.exp.X_add_number != 0,
8107 _("this instruction requires a post-indexed address"));
8108
8109 inst.operands[1].preind = 0;
8110 inst.operands[1].postind = 1;
8111 inst.operands[1].writeback = 1;
8112 }
8113 inst.instruction |= inst.operands[0].reg << 12;
8114 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
8115 }
8116
8117 /* Halfword and signed-byte load/store operations. */
8118
8119 static void
8120 do_ldstv4 (void)
8121 {
8122 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
8123 inst.instruction |= inst.operands[0].reg << 12;
8124 if (!inst.operands[1].isreg)
8125 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
8126 return;
8127 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
8128 }
8129
8130 static void
8131 do_ldsttv4 (void)
8132 {
8133 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8134 reject [Rn,...]. */
8135 if (inst.operands[1].preind)
8136 {
8137 constraint (inst.reloc.exp.X_op != O_constant
8138 || inst.reloc.exp.X_add_number != 0,
8139 _("this instruction requires a post-indexed address"));
8140
8141 inst.operands[1].preind = 0;
8142 inst.operands[1].postind = 1;
8143 inst.operands[1].writeback = 1;
8144 }
8145 inst.instruction |= inst.operands[0].reg << 12;
8146 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
8147 }
8148
8149 /* Co-processor register load/store.
8150 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
8151 static void
8152 do_lstc (void)
8153 {
8154 inst.instruction |= inst.operands[0].reg << 8;
8155 inst.instruction |= inst.operands[1].reg << 12;
8156 encode_arm_cp_address (2, TRUE, TRUE, 0);
8157 }
8158
8159 static void
8160 do_mlas (void)
8161 {
8162 /* This restriction does not apply to mls (nor to mla in v6 or later). */
8163 if (inst.operands[0].reg == inst.operands[1].reg
8164 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
8165 && !(inst.instruction & 0x00400000))
8166 as_tsktsk (_("Rd and Rm should be different in mla"));
8167
8168 inst.instruction |= inst.operands[0].reg << 16;
8169 inst.instruction |= inst.operands[1].reg;
8170 inst.instruction |= inst.operands[2].reg << 8;
8171 inst.instruction |= inst.operands[3].reg << 12;
8172 }
8173
8174 static void
8175 do_mov (void)
8176 {
8177 inst.instruction |= inst.operands[0].reg << 12;
8178 encode_arm_shifter_operand (1);
8179 }
8180
8181 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
8182 static void
8183 do_mov16 (void)
8184 {
8185 bfd_vma imm;
8186 bfd_boolean top;
8187
8188 top = (inst.instruction & 0x00400000) != 0;
8189 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
8190 _(":lower16: not allowed this instruction"));
8191 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
8192 _(":upper16: not allowed instruction"));
8193 inst.instruction |= inst.operands[0].reg << 12;
8194 if (inst.reloc.type == BFD_RELOC_UNUSED)
8195 {
8196 imm = inst.reloc.exp.X_add_number;
8197 /* The value is in two pieces: 0:11, 16:19. */
8198 inst.instruction |= (imm & 0x00000fff);
8199 inst.instruction |= (imm & 0x0000f000) << 4;
8200 }
8201 }
8202
8203 static void do_vfp_nsyn_opcode (const char *);
8204
8205 static int
8206 do_vfp_nsyn_mrs (void)
8207 {
8208 if (inst.operands[0].isvec)
8209 {
8210 if (inst.operands[1].reg != 1)
8211 first_error (_("operand 1 must be FPSCR"));
8212 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
8213 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
8214 do_vfp_nsyn_opcode ("fmstat");
8215 }
8216 else if (inst.operands[1].isvec)
8217 do_vfp_nsyn_opcode ("fmrx");
8218 else
8219 return FAIL;
8220
8221 return SUCCESS;
8222 }
8223
8224 static int
8225 do_vfp_nsyn_msr (void)
8226 {
8227 if (inst.operands[0].isvec)
8228 do_vfp_nsyn_opcode ("fmxr");
8229 else
8230 return FAIL;
8231
8232 return SUCCESS;
8233 }
8234
8235 static void
8236 do_vmrs (void)
8237 {
8238 unsigned Rt = inst.operands[0].reg;
8239
8240 if (thumb_mode && inst.operands[0].reg == REG_SP)
8241 {
8242 inst.error = BAD_SP;
8243 return;
8244 }
8245
8246 /* APSR_ sets isvec. All other refs to PC are illegal. */
8247 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
8248 {
8249 inst.error = BAD_PC;
8250 return;
8251 }
8252
8253 switch (inst.operands[1].reg)
8254 {
8255 case 0: /* FPSID */
8256 case 1: /* FPSCR */
8257 case 6: /* MVFR1 */
8258 case 7: /* MVFR0 */
8259 case 8: /* FPEXC */
8260 inst.instruction |= (inst.operands[1].reg << 16);
8261 break;
8262 default:
8263 first_error (_("operand 1 must be a VFP extension System Register"));
8264 }
8265
8266 inst.instruction |= (Rt << 12);
8267 }
8268
8269 static void
8270 do_vmsr (void)
8271 {
8272 unsigned Rt = inst.operands[1].reg;
8273
8274 if (thumb_mode)
8275 reject_bad_reg (Rt);
8276 else if (Rt == REG_PC)
8277 {
8278 inst.error = BAD_PC;
8279 return;
8280 }
8281
8282 switch (inst.operands[0].reg)
8283 {
8284 case 0: /* FPSID */
8285 case 1: /* FPSCR */
8286 case 8: /* FPEXC */
8287 inst.instruction |= (inst.operands[0].reg << 16);
8288 break;
8289 default:
8290 first_error (_("operand 0 must be FPSID or FPSCR pr FPEXC"));
8291 }
8292
8293 inst.instruction |= (Rt << 12);
8294 }
8295
8296 static void
8297 do_mrs (void)
8298 {
8299 unsigned br;
8300
8301 if (do_vfp_nsyn_mrs () == SUCCESS)
8302 return;
8303
8304 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
8305 inst.instruction |= inst.operands[0].reg << 12;
8306
8307 if (inst.operands[1].isreg)
8308 {
8309 br = inst.operands[1].reg;
8310 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
8311 as_bad (_("bad register for mrs"));
8312 }
8313 else
8314 {
8315 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
8316 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
8317 != (PSR_c|PSR_f),
8318 _("'APSR', 'CPSR' or 'SPSR' expected"));
8319 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
8320 }
8321
8322 inst.instruction |= br;
8323 }
8324
8325 /* Two possible forms:
8326 "{C|S}PSR_<field>, Rm",
8327 "{C|S}PSR_f, #expression". */
8328
8329 static void
8330 do_msr (void)
8331 {
8332 if (do_vfp_nsyn_msr () == SUCCESS)
8333 return;
8334
8335 inst.instruction |= inst.operands[0].imm;
8336 if (inst.operands[1].isreg)
8337 inst.instruction |= inst.operands[1].reg;
8338 else
8339 {
8340 inst.instruction |= INST_IMMEDIATE;
8341 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
8342 inst.reloc.pc_rel = 0;
8343 }
8344 }
8345
8346 static void
8347 do_mul (void)
8348 {
8349 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
8350
8351 if (!inst.operands[2].present)
8352 inst.operands[2].reg = inst.operands[0].reg;
8353 inst.instruction |= inst.operands[0].reg << 16;
8354 inst.instruction |= inst.operands[1].reg;
8355 inst.instruction |= inst.operands[2].reg << 8;
8356
8357 if (inst.operands[0].reg == inst.operands[1].reg
8358 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8359 as_tsktsk (_("Rd and Rm should be different in mul"));
8360 }
8361
8362 /* Long Multiply Parser
8363 UMULL RdLo, RdHi, Rm, Rs
8364 SMULL RdLo, RdHi, Rm, Rs
8365 UMLAL RdLo, RdHi, Rm, Rs
8366 SMLAL RdLo, RdHi, Rm, Rs. */
8367
8368 static void
8369 do_mull (void)
8370 {
8371 inst.instruction |= inst.operands[0].reg << 12;
8372 inst.instruction |= inst.operands[1].reg << 16;
8373 inst.instruction |= inst.operands[2].reg;
8374 inst.instruction |= inst.operands[3].reg << 8;
8375
8376 /* rdhi and rdlo must be different. */
8377 if (inst.operands[0].reg == inst.operands[1].reg)
8378 as_tsktsk (_("rdhi and rdlo must be different"));
8379
8380 /* rdhi, rdlo and rm must all be different before armv6. */
8381 if ((inst.operands[0].reg == inst.operands[2].reg
8382 || inst.operands[1].reg == inst.operands[2].reg)
8383 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8384 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
8385 }
8386
8387 static void
8388 do_nop (void)
8389 {
8390 if (inst.operands[0].present
8391 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
8392 {
8393 /* Architectural NOP hints are CPSR sets with no bits selected. */
8394 inst.instruction &= 0xf0000000;
8395 inst.instruction |= 0x0320f000;
8396 if (inst.operands[0].present)
8397 inst.instruction |= inst.operands[0].imm;
8398 }
8399 }
8400
8401 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
8402 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
8403 Condition defaults to COND_ALWAYS.
8404 Error if Rd, Rn or Rm are R15. */
8405
8406 static void
8407 do_pkhbt (void)
8408 {
8409 inst.instruction |= inst.operands[0].reg << 12;
8410 inst.instruction |= inst.operands[1].reg << 16;
8411 inst.instruction |= inst.operands[2].reg;
8412 if (inst.operands[3].present)
8413 encode_arm_shift (3);
8414 }
8415
8416 /* ARM V6 PKHTB (Argument Parse). */
8417
8418 static void
8419 do_pkhtb (void)
8420 {
8421 if (!inst.operands[3].present)
8422 {
8423 /* If the shift specifier is omitted, turn the instruction
8424 into pkhbt rd, rm, rn. */
8425 inst.instruction &= 0xfff00010;
8426 inst.instruction |= inst.operands[0].reg << 12;
8427 inst.instruction |= inst.operands[1].reg;
8428 inst.instruction |= inst.operands[2].reg << 16;
8429 }
8430 else
8431 {
8432 inst.instruction |= inst.operands[0].reg << 12;
8433 inst.instruction |= inst.operands[1].reg << 16;
8434 inst.instruction |= inst.operands[2].reg;
8435 encode_arm_shift (3);
8436 }
8437 }
8438
8439 /* ARMv5TE: Preload-Cache
8440 MP Extensions: Preload for write
8441
8442 PLD(W) <addr_mode>
8443
8444 Syntactically, like LDR with B=1, W=0, L=1. */
8445
8446 static void
8447 do_pld (void)
8448 {
8449 constraint (!inst.operands[0].isreg,
8450 _("'[' expected after PLD mnemonic"));
8451 constraint (inst.operands[0].postind,
8452 _("post-indexed expression used in preload instruction"));
8453 constraint (inst.operands[0].writeback,
8454 _("writeback used in preload instruction"));
8455 constraint (!inst.operands[0].preind,
8456 _("unindexed addressing used in preload instruction"));
8457 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8458 }
8459
8460 /* ARMv7: PLI <addr_mode> */
8461 static void
8462 do_pli (void)
8463 {
8464 constraint (!inst.operands[0].isreg,
8465 _("'[' expected after PLI mnemonic"));
8466 constraint (inst.operands[0].postind,
8467 _("post-indexed expression used in preload instruction"));
8468 constraint (inst.operands[0].writeback,
8469 _("writeback used in preload instruction"));
8470 constraint (!inst.operands[0].preind,
8471 _("unindexed addressing used in preload instruction"));
8472 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8473 inst.instruction &= ~PRE_INDEX;
8474 }
8475
8476 static void
8477 do_push_pop (void)
8478 {
8479 inst.operands[1] = inst.operands[0];
8480 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
8481 inst.operands[0].isreg = 1;
8482 inst.operands[0].writeback = 1;
8483 inst.operands[0].reg = REG_SP;
8484 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
8485 }
8486
8487 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
8488 word at the specified address and the following word
8489 respectively.
8490 Unconditionally executed.
8491 Error if Rn is R15. */
8492
8493 static void
8494 do_rfe (void)
8495 {
8496 inst.instruction |= inst.operands[0].reg << 16;
8497 if (inst.operands[0].writeback)
8498 inst.instruction |= WRITE_BACK;
8499 }
8500
8501 /* ARM V6 ssat (argument parse). */
8502
8503 static void
8504 do_ssat (void)
8505 {
8506 inst.instruction |= inst.operands[0].reg << 12;
8507 inst.instruction |= (inst.operands[1].imm - 1) << 16;
8508 inst.instruction |= inst.operands[2].reg;
8509
8510 if (inst.operands[3].present)
8511 encode_arm_shift (3);
8512 }
8513
8514 /* ARM V6 usat (argument parse). */
8515
8516 static void
8517 do_usat (void)
8518 {
8519 inst.instruction |= inst.operands[0].reg << 12;
8520 inst.instruction |= inst.operands[1].imm << 16;
8521 inst.instruction |= inst.operands[2].reg;
8522
8523 if (inst.operands[3].present)
8524 encode_arm_shift (3);
8525 }
8526
8527 /* ARM V6 ssat16 (argument parse). */
8528
8529 static void
8530 do_ssat16 (void)
8531 {
8532 inst.instruction |= inst.operands[0].reg << 12;
8533 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
8534 inst.instruction |= inst.operands[2].reg;
8535 }
8536
8537 static void
8538 do_usat16 (void)
8539 {
8540 inst.instruction |= inst.operands[0].reg << 12;
8541 inst.instruction |= inst.operands[1].imm << 16;
8542 inst.instruction |= inst.operands[2].reg;
8543 }
8544
8545 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
8546 preserving the other bits.
8547
8548 setend <endian_specifier>, where <endian_specifier> is either
8549 BE or LE. */
8550
8551 static void
8552 do_setend (void)
8553 {
8554 if (warn_on_deprecated
8555 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
8556 as_warn (_("setend use is deprecated for ARMv8"));
8557
8558 if (inst.operands[0].imm)
8559 inst.instruction |= 0x200;
8560 }
8561
8562 static void
8563 do_shift (void)
8564 {
8565 unsigned int Rm = (inst.operands[1].present
8566 ? inst.operands[1].reg
8567 : inst.operands[0].reg);
8568
8569 inst.instruction |= inst.operands[0].reg << 12;
8570 inst.instruction |= Rm;
8571 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
8572 {
8573 inst.instruction |= inst.operands[2].reg << 8;
8574 inst.instruction |= SHIFT_BY_REG;
8575 /* PR 12854: Error on extraneous shifts. */
8576 constraint (inst.operands[2].shifted,
8577 _("extraneous shift as part of operand to shift insn"));
8578 }
8579 else
8580 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
8581 }
8582
8583 static void
8584 do_smc (void)
8585 {
8586 inst.reloc.type = BFD_RELOC_ARM_SMC;
8587 inst.reloc.pc_rel = 0;
8588 }
8589
8590 static void
8591 do_hvc (void)
8592 {
8593 inst.reloc.type = BFD_RELOC_ARM_HVC;
8594 inst.reloc.pc_rel = 0;
8595 }
8596
8597 static void
8598 do_swi (void)
8599 {
8600 inst.reloc.type = BFD_RELOC_ARM_SWI;
8601 inst.reloc.pc_rel = 0;
8602 }
8603
8604 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
8605 SMLAxy{cond} Rd,Rm,Rs,Rn
8606 SMLAWy{cond} Rd,Rm,Rs,Rn
8607 Error if any register is R15. */
8608
8609 static void
8610 do_smla (void)
8611 {
8612 inst.instruction |= inst.operands[0].reg << 16;
8613 inst.instruction |= inst.operands[1].reg;
8614 inst.instruction |= inst.operands[2].reg << 8;
8615 inst.instruction |= inst.operands[3].reg << 12;
8616 }
8617
8618 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8619 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8620 Error if any register is R15.
8621 Warning if Rdlo == Rdhi. */
8622
8623 static void
8624 do_smlal (void)
8625 {
8626 inst.instruction |= inst.operands[0].reg << 12;
8627 inst.instruction |= inst.operands[1].reg << 16;
8628 inst.instruction |= inst.operands[2].reg;
8629 inst.instruction |= inst.operands[3].reg << 8;
8630
8631 if (inst.operands[0].reg == inst.operands[1].reg)
8632 as_tsktsk (_("rdhi and rdlo must be different"));
8633 }
8634
8635 /* ARM V5E (El Segundo) signed-multiply (argument parse)
8636 SMULxy{cond} Rd,Rm,Rs
8637 Error if any register is R15. */
8638
8639 static void
8640 do_smul (void)
8641 {
8642 inst.instruction |= inst.operands[0].reg << 16;
8643 inst.instruction |= inst.operands[1].reg;
8644 inst.instruction |= inst.operands[2].reg << 8;
8645 }
8646
8647 /* ARM V6 srs (argument parse). The variable fields in the encoding are
8648 the same for both ARM and Thumb-2. */
8649
8650 static void
8651 do_srs (void)
8652 {
8653 int reg;
8654
8655 if (inst.operands[0].present)
8656 {
8657 reg = inst.operands[0].reg;
8658 constraint (reg != REG_SP, _("SRS base register must be r13"));
8659 }
8660 else
8661 reg = REG_SP;
8662
8663 inst.instruction |= reg << 16;
8664 inst.instruction |= inst.operands[1].imm;
8665 if (inst.operands[0].writeback || inst.operands[1].writeback)
8666 inst.instruction |= WRITE_BACK;
8667 }
8668
8669 /* ARM V6 strex (argument parse). */
8670
8671 static void
8672 do_strex (void)
8673 {
8674 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8675 || inst.operands[2].postind || inst.operands[2].writeback
8676 || inst.operands[2].immisreg || inst.operands[2].shifted
8677 || inst.operands[2].negative
8678 /* See comment in do_ldrex(). */
8679 || (inst.operands[2].reg == REG_PC),
8680 BAD_ADDR_MODE);
8681
8682 constraint (inst.operands[0].reg == inst.operands[1].reg
8683 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8684
8685 constraint (inst.reloc.exp.X_op != O_constant
8686 || inst.reloc.exp.X_add_number != 0,
8687 _("offset must be zero in ARM encoding"));
8688
8689 inst.instruction |= inst.operands[0].reg << 12;
8690 inst.instruction |= inst.operands[1].reg;
8691 inst.instruction |= inst.operands[2].reg << 16;
8692 inst.reloc.type = BFD_RELOC_UNUSED;
8693 }
8694
8695 static void
8696 do_t_strexbh (void)
8697 {
8698 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8699 || inst.operands[2].postind || inst.operands[2].writeback
8700 || inst.operands[2].immisreg || inst.operands[2].shifted
8701 || inst.operands[2].negative,
8702 BAD_ADDR_MODE);
8703
8704 constraint (inst.operands[0].reg == inst.operands[1].reg
8705 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8706
8707 do_rm_rd_rn ();
8708 }
8709
8710 static void
8711 do_strexd (void)
8712 {
8713 constraint (inst.operands[1].reg % 2 != 0,
8714 _("even register required"));
8715 constraint (inst.operands[2].present
8716 && inst.operands[2].reg != inst.operands[1].reg + 1,
8717 _("can only store two consecutive registers"));
8718 /* If op 2 were present and equal to PC, this function wouldn't
8719 have been called in the first place. */
8720 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
8721
8722 constraint (inst.operands[0].reg == inst.operands[1].reg
8723 || inst.operands[0].reg == inst.operands[1].reg + 1
8724 || inst.operands[0].reg == inst.operands[3].reg,
8725 BAD_OVERLAP);
8726
8727 inst.instruction |= inst.operands[0].reg << 12;
8728 inst.instruction |= inst.operands[1].reg;
8729 inst.instruction |= inst.operands[3].reg << 16;
8730 }
8731
8732 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8733 extends it to 32-bits, and adds the result to a value in another
8734 register. You can specify a rotation by 0, 8, 16, or 24 bits
8735 before extracting the 16-bit value.
8736 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8737 Condition defaults to COND_ALWAYS.
8738 Error if any register uses R15. */
8739
8740 static void
8741 do_sxtah (void)
8742 {
8743 inst.instruction |= inst.operands[0].reg << 12;
8744 inst.instruction |= inst.operands[1].reg << 16;
8745 inst.instruction |= inst.operands[2].reg;
8746 inst.instruction |= inst.operands[3].imm << 10;
8747 }
8748
8749 /* ARM V6 SXTH.
8750
8751 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8752 Condition defaults to COND_ALWAYS.
8753 Error if any register uses R15. */
8754
8755 static void
8756 do_sxth (void)
8757 {
8758 inst.instruction |= inst.operands[0].reg << 12;
8759 inst.instruction |= inst.operands[1].reg;
8760 inst.instruction |= inst.operands[2].imm << 10;
8761 }
8762 \f
8763 /* VFP instructions. In a logical order: SP variant first, monad
8764 before dyad, arithmetic then move then load/store. */
8765
8766 static void
8767 do_vfp_sp_monadic (void)
8768 {
8769 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8770 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8771 }
8772
8773 static void
8774 do_vfp_sp_dyadic (void)
8775 {
8776 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8777 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8778 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8779 }
8780
8781 static void
8782 do_vfp_sp_compare_z (void)
8783 {
8784 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8785 }
8786
8787 static void
8788 do_vfp_dp_sp_cvt (void)
8789 {
8790 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8791 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8792 }
8793
8794 static void
8795 do_vfp_sp_dp_cvt (void)
8796 {
8797 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8798 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8799 }
8800
8801 static void
8802 do_vfp_reg_from_sp (void)
8803 {
8804 inst.instruction |= inst.operands[0].reg << 12;
8805 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8806 }
8807
8808 static void
8809 do_vfp_reg2_from_sp2 (void)
8810 {
8811 constraint (inst.operands[2].imm != 2,
8812 _("only two consecutive VFP SP registers allowed here"));
8813 inst.instruction |= inst.operands[0].reg << 12;
8814 inst.instruction |= inst.operands[1].reg << 16;
8815 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8816 }
8817
8818 static void
8819 do_vfp_sp_from_reg (void)
8820 {
8821 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
8822 inst.instruction |= inst.operands[1].reg << 12;
8823 }
8824
8825 static void
8826 do_vfp_sp2_from_reg2 (void)
8827 {
8828 constraint (inst.operands[0].imm != 2,
8829 _("only two consecutive VFP SP registers allowed here"));
8830 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
8831 inst.instruction |= inst.operands[1].reg << 12;
8832 inst.instruction |= inst.operands[2].reg << 16;
8833 }
8834
8835 static void
8836 do_vfp_sp_ldst (void)
8837 {
8838 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8839 encode_arm_cp_address (1, FALSE, TRUE, 0);
8840 }
8841
8842 static void
8843 do_vfp_dp_ldst (void)
8844 {
8845 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8846 encode_arm_cp_address (1, FALSE, TRUE, 0);
8847 }
8848
8849
8850 static void
8851 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
8852 {
8853 if (inst.operands[0].writeback)
8854 inst.instruction |= WRITE_BACK;
8855 else
8856 constraint (ldstm_type != VFP_LDSTMIA,
8857 _("this addressing mode requires base-register writeback"));
8858 inst.instruction |= inst.operands[0].reg << 16;
8859 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
8860 inst.instruction |= inst.operands[1].imm;
8861 }
8862
8863 static void
8864 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
8865 {
8866 int count;
8867
8868 if (inst.operands[0].writeback)
8869 inst.instruction |= WRITE_BACK;
8870 else
8871 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8872 _("this addressing mode requires base-register writeback"));
8873
8874 inst.instruction |= inst.operands[0].reg << 16;
8875 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8876
8877 count = inst.operands[1].imm << 1;
8878 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8879 count += 1;
8880
8881 inst.instruction |= count;
8882 }
8883
8884 static void
8885 do_vfp_sp_ldstmia (void)
8886 {
8887 vfp_sp_ldstm (VFP_LDSTMIA);
8888 }
8889
8890 static void
8891 do_vfp_sp_ldstmdb (void)
8892 {
8893 vfp_sp_ldstm (VFP_LDSTMDB);
8894 }
8895
8896 static void
8897 do_vfp_dp_ldstmia (void)
8898 {
8899 vfp_dp_ldstm (VFP_LDSTMIA);
8900 }
8901
8902 static void
8903 do_vfp_dp_ldstmdb (void)
8904 {
8905 vfp_dp_ldstm (VFP_LDSTMDB);
8906 }
8907
8908 static void
8909 do_vfp_xp_ldstmia (void)
8910 {
8911 vfp_dp_ldstm (VFP_LDSTMIAX);
8912 }
8913
8914 static void
8915 do_vfp_xp_ldstmdb (void)
8916 {
8917 vfp_dp_ldstm (VFP_LDSTMDBX);
8918 }
8919
8920 static void
8921 do_vfp_dp_rd_rm (void)
8922 {
8923 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8924 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8925 }
8926
8927 static void
8928 do_vfp_dp_rn_rd (void)
8929 {
8930 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8931 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8932 }
8933
8934 static void
8935 do_vfp_dp_rd_rn (void)
8936 {
8937 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8938 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8939 }
8940
8941 static void
8942 do_vfp_dp_rd_rn_rm (void)
8943 {
8944 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8945 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8946 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8947 }
8948
8949 static void
8950 do_vfp_dp_rd (void)
8951 {
8952 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8953 }
8954
8955 static void
8956 do_vfp_dp_rm_rd_rn (void)
8957 {
8958 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8959 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8960 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8961 }
8962
8963 /* VFPv3 instructions. */
8964 static void
8965 do_vfp_sp_const (void)
8966 {
8967 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8968 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8969 inst.instruction |= (inst.operands[1].imm & 0x0f);
8970 }
8971
8972 static void
8973 do_vfp_dp_const (void)
8974 {
8975 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8976 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8977 inst.instruction |= (inst.operands[1].imm & 0x0f);
8978 }
8979
8980 static void
8981 vfp_conv (int srcsize)
8982 {
8983 int immbits = srcsize - inst.operands[1].imm;
8984
8985 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
8986 {
8987 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
8988 i.e. immbits must be in range 0 - 16. */
8989 inst.error = _("immediate value out of range, expected range [0, 16]");
8990 return;
8991 }
8992 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
8993 {
8994 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
8995 i.e. immbits must be in range 0 - 31. */
8996 inst.error = _("immediate value out of range, expected range [1, 32]");
8997 return;
8998 }
8999
9000 inst.instruction |= (immbits & 1) << 5;
9001 inst.instruction |= (immbits >> 1);
9002 }
9003
9004 static void
9005 do_vfp_sp_conv_16 (void)
9006 {
9007 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9008 vfp_conv (16);
9009 }
9010
9011 static void
9012 do_vfp_dp_conv_16 (void)
9013 {
9014 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9015 vfp_conv (16);
9016 }
9017
9018 static void
9019 do_vfp_sp_conv_32 (void)
9020 {
9021 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9022 vfp_conv (32);
9023 }
9024
9025 static void
9026 do_vfp_dp_conv_32 (void)
9027 {
9028 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9029 vfp_conv (32);
9030 }
9031 \f
9032 /* FPA instructions. Also in a logical order. */
9033
9034 static void
9035 do_fpa_cmp (void)
9036 {
9037 inst.instruction |= inst.operands[0].reg << 16;
9038 inst.instruction |= inst.operands[1].reg;
9039 }
9040
9041 static void
9042 do_fpa_ldmstm (void)
9043 {
9044 inst.instruction |= inst.operands[0].reg << 12;
9045 switch (inst.operands[1].imm)
9046 {
9047 case 1: inst.instruction |= CP_T_X; break;
9048 case 2: inst.instruction |= CP_T_Y; break;
9049 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
9050 case 4: break;
9051 default: abort ();
9052 }
9053
9054 if (inst.instruction & (PRE_INDEX | INDEX_UP))
9055 {
9056 /* The instruction specified "ea" or "fd", so we can only accept
9057 [Rn]{!}. The instruction does not really support stacking or
9058 unstacking, so we have to emulate these by setting appropriate
9059 bits and offsets. */
9060 constraint (inst.reloc.exp.X_op != O_constant
9061 || inst.reloc.exp.X_add_number != 0,
9062 _("this instruction does not support indexing"));
9063
9064 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
9065 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
9066
9067 if (!(inst.instruction & INDEX_UP))
9068 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
9069
9070 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
9071 {
9072 inst.operands[2].preind = 0;
9073 inst.operands[2].postind = 1;
9074 }
9075 }
9076
9077 encode_arm_cp_address (2, TRUE, TRUE, 0);
9078 }
9079 \f
9080 /* iWMMXt instructions: strictly in alphabetical order. */
9081
9082 static void
9083 do_iwmmxt_tandorc (void)
9084 {
9085 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
9086 }
9087
9088 static void
9089 do_iwmmxt_textrc (void)
9090 {
9091 inst.instruction |= inst.operands[0].reg << 12;
9092 inst.instruction |= inst.operands[1].imm;
9093 }
9094
9095 static void
9096 do_iwmmxt_textrm (void)
9097 {
9098 inst.instruction |= inst.operands[0].reg << 12;
9099 inst.instruction |= inst.operands[1].reg << 16;
9100 inst.instruction |= inst.operands[2].imm;
9101 }
9102
9103 static void
9104 do_iwmmxt_tinsr (void)
9105 {
9106 inst.instruction |= inst.operands[0].reg << 16;
9107 inst.instruction |= inst.operands[1].reg << 12;
9108 inst.instruction |= inst.operands[2].imm;
9109 }
9110
9111 static void
9112 do_iwmmxt_tmia (void)
9113 {
9114 inst.instruction |= inst.operands[0].reg << 5;
9115 inst.instruction |= inst.operands[1].reg;
9116 inst.instruction |= inst.operands[2].reg << 12;
9117 }
9118
9119 static void
9120 do_iwmmxt_waligni (void)
9121 {
9122 inst.instruction |= inst.operands[0].reg << 12;
9123 inst.instruction |= inst.operands[1].reg << 16;
9124 inst.instruction |= inst.operands[2].reg;
9125 inst.instruction |= inst.operands[3].imm << 20;
9126 }
9127
9128 static void
9129 do_iwmmxt_wmerge (void)
9130 {
9131 inst.instruction |= inst.operands[0].reg << 12;
9132 inst.instruction |= inst.operands[1].reg << 16;
9133 inst.instruction |= inst.operands[2].reg;
9134 inst.instruction |= inst.operands[3].imm << 21;
9135 }
9136
9137 static void
9138 do_iwmmxt_wmov (void)
9139 {
9140 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
9141 inst.instruction |= inst.operands[0].reg << 12;
9142 inst.instruction |= inst.operands[1].reg << 16;
9143 inst.instruction |= inst.operands[1].reg;
9144 }
9145
9146 static void
9147 do_iwmmxt_wldstbh (void)
9148 {
9149 int reloc;
9150 inst.instruction |= inst.operands[0].reg << 12;
9151 if (thumb_mode)
9152 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
9153 else
9154 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
9155 encode_arm_cp_address (1, TRUE, FALSE, reloc);
9156 }
9157
9158 static void
9159 do_iwmmxt_wldstw (void)
9160 {
9161 /* RIWR_RIWC clears .isreg for a control register. */
9162 if (!inst.operands[0].isreg)
9163 {
9164 constraint (inst.cond != COND_ALWAYS, BAD_COND);
9165 inst.instruction |= 0xf0000000;
9166 }
9167
9168 inst.instruction |= inst.operands[0].reg << 12;
9169 encode_arm_cp_address (1, TRUE, TRUE, 0);
9170 }
9171
9172 static void
9173 do_iwmmxt_wldstd (void)
9174 {
9175 inst.instruction |= inst.operands[0].reg << 12;
9176 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
9177 && inst.operands[1].immisreg)
9178 {
9179 inst.instruction &= ~0x1a000ff;
9180 inst.instruction |= (0xf << 28);
9181 if (inst.operands[1].preind)
9182 inst.instruction |= PRE_INDEX;
9183 if (!inst.operands[1].negative)
9184 inst.instruction |= INDEX_UP;
9185 if (inst.operands[1].writeback)
9186 inst.instruction |= WRITE_BACK;
9187 inst.instruction |= inst.operands[1].reg << 16;
9188 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9189 inst.instruction |= inst.operands[1].imm;
9190 }
9191 else
9192 encode_arm_cp_address (1, TRUE, FALSE, 0);
9193 }
9194
9195 static void
9196 do_iwmmxt_wshufh (void)
9197 {
9198 inst.instruction |= inst.operands[0].reg << 12;
9199 inst.instruction |= inst.operands[1].reg << 16;
9200 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
9201 inst.instruction |= (inst.operands[2].imm & 0x0f);
9202 }
9203
9204 static void
9205 do_iwmmxt_wzero (void)
9206 {
9207 /* WZERO reg is an alias for WANDN reg, reg, reg. */
9208 inst.instruction |= inst.operands[0].reg;
9209 inst.instruction |= inst.operands[0].reg << 12;
9210 inst.instruction |= inst.operands[0].reg << 16;
9211 }
9212
9213 static void
9214 do_iwmmxt_wrwrwr_or_imm5 (void)
9215 {
9216 if (inst.operands[2].isreg)
9217 do_rd_rn_rm ();
9218 else {
9219 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
9220 _("immediate operand requires iWMMXt2"));
9221 do_rd_rn ();
9222 if (inst.operands[2].imm == 0)
9223 {
9224 switch ((inst.instruction >> 20) & 0xf)
9225 {
9226 case 4:
9227 case 5:
9228 case 6:
9229 case 7:
9230 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
9231 inst.operands[2].imm = 16;
9232 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
9233 break;
9234 case 8:
9235 case 9:
9236 case 10:
9237 case 11:
9238 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
9239 inst.operands[2].imm = 32;
9240 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
9241 break;
9242 case 12:
9243 case 13:
9244 case 14:
9245 case 15:
9246 {
9247 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
9248 unsigned long wrn;
9249 wrn = (inst.instruction >> 16) & 0xf;
9250 inst.instruction &= 0xff0fff0f;
9251 inst.instruction |= wrn;
9252 /* Bail out here; the instruction is now assembled. */
9253 return;
9254 }
9255 }
9256 }
9257 /* Map 32 -> 0, etc. */
9258 inst.operands[2].imm &= 0x1f;
9259 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
9260 }
9261 }
9262 \f
9263 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
9264 operations first, then control, shift, and load/store. */
9265
9266 /* Insns like "foo X,Y,Z". */
9267
9268 static void
9269 do_mav_triple (void)
9270 {
9271 inst.instruction |= inst.operands[0].reg << 16;
9272 inst.instruction |= inst.operands[1].reg;
9273 inst.instruction |= inst.operands[2].reg << 12;
9274 }
9275
9276 /* Insns like "foo W,X,Y,Z".
9277 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
9278
9279 static void
9280 do_mav_quad (void)
9281 {
9282 inst.instruction |= inst.operands[0].reg << 5;
9283 inst.instruction |= inst.operands[1].reg << 12;
9284 inst.instruction |= inst.operands[2].reg << 16;
9285 inst.instruction |= inst.operands[3].reg;
9286 }
9287
9288 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
9289 static void
9290 do_mav_dspsc (void)
9291 {
9292 inst.instruction |= inst.operands[1].reg << 12;
9293 }
9294
9295 /* Maverick shift immediate instructions.
9296 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
9297 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
9298
9299 static void
9300 do_mav_shift (void)
9301 {
9302 int imm = inst.operands[2].imm;
9303
9304 inst.instruction |= inst.operands[0].reg << 12;
9305 inst.instruction |= inst.operands[1].reg << 16;
9306
9307 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
9308 Bits 5-7 of the insn should have bits 4-6 of the immediate.
9309 Bit 4 should be 0. */
9310 imm = (imm & 0xf) | ((imm & 0x70) << 1);
9311
9312 inst.instruction |= imm;
9313 }
9314 \f
9315 /* XScale instructions. Also sorted arithmetic before move. */
9316
9317 /* Xscale multiply-accumulate (argument parse)
9318 MIAcc acc0,Rm,Rs
9319 MIAPHcc acc0,Rm,Rs
9320 MIAxycc acc0,Rm,Rs. */
9321
9322 static void
9323 do_xsc_mia (void)
9324 {
9325 inst.instruction |= inst.operands[1].reg;
9326 inst.instruction |= inst.operands[2].reg << 12;
9327 }
9328
9329 /* Xscale move-accumulator-register (argument parse)
9330
9331 MARcc acc0,RdLo,RdHi. */
9332
9333 static void
9334 do_xsc_mar (void)
9335 {
9336 inst.instruction |= inst.operands[1].reg << 12;
9337 inst.instruction |= inst.operands[2].reg << 16;
9338 }
9339
9340 /* Xscale move-register-accumulator (argument parse)
9341
9342 MRAcc RdLo,RdHi,acc0. */
9343
9344 static void
9345 do_xsc_mra (void)
9346 {
9347 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
9348 inst.instruction |= inst.operands[0].reg << 12;
9349 inst.instruction |= inst.operands[1].reg << 16;
9350 }
9351 \f
9352 /* Encoding functions relevant only to Thumb. */
9353
9354 /* inst.operands[i] is a shifted-register operand; encode
9355 it into inst.instruction in the format used by Thumb32. */
9356
9357 static void
9358 encode_thumb32_shifted_operand (int i)
9359 {
9360 unsigned int value = inst.reloc.exp.X_add_number;
9361 unsigned int shift = inst.operands[i].shift_kind;
9362
9363 constraint (inst.operands[i].immisreg,
9364 _("shift by register not allowed in thumb mode"));
9365 inst.instruction |= inst.operands[i].reg;
9366 if (shift == SHIFT_RRX)
9367 inst.instruction |= SHIFT_ROR << 4;
9368 else
9369 {
9370 constraint (inst.reloc.exp.X_op != O_constant,
9371 _("expression too complex"));
9372
9373 constraint (value > 32
9374 || (value == 32 && (shift == SHIFT_LSL
9375 || shift == SHIFT_ROR)),
9376 _("shift expression is too large"));
9377
9378 if (value == 0)
9379 shift = SHIFT_LSL;
9380 else if (value == 32)
9381 value = 0;
9382
9383 inst.instruction |= shift << 4;
9384 inst.instruction |= (value & 0x1c) << 10;
9385 inst.instruction |= (value & 0x03) << 6;
9386 }
9387 }
9388
9389
9390 /* inst.operands[i] was set up by parse_address. Encode it into a
9391 Thumb32 format load or store instruction. Reject forms that cannot
9392 be used with such instructions. If is_t is true, reject forms that
9393 cannot be used with a T instruction; if is_d is true, reject forms
9394 that cannot be used with a D instruction. If it is a store insn,
9395 reject PC in Rn. */
9396
9397 static void
9398 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
9399 {
9400 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
9401
9402 constraint (!inst.operands[i].isreg,
9403 _("Instruction does not support =N addresses"));
9404
9405 inst.instruction |= inst.operands[i].reg << 16;
9406 if (inst.operands[i].immisreg)
9407 {
9408 constraint (is_pc, BAD_PC_ADDRESSING);
9409 constraint (is_t || is_d, _("cannot use register index with this instruction"));
9410 constraint (inst.operands[i].negative,
9411 _("Thumb does not support negative register indexing"));
9412 constraint (inst.operands[i].postind,
9413 _("Thumb does not support register post-indexing"));
9414 constraint (inst.operands[i].writeback,
9415 _("Thumb does not support register indexing with writeback"));
9416 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
9417 _("Thumb supports only LSL in shifted register indexing"));
9418
9419 inst.instruction |= inst.operands[i].imm;
9420 if (inst.operands[i].shifted)
9421 {
9422 constraint (inst.reloc.exp.X_op != O_constant,
9423 _("expression too complex"));
9424 constraint (inst.reloc.exp.X_add_number < 0
9425 || inst.reloc.exp.X_add_number > 3,
9426 _("shift out of range"));
9427 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9428 }
9429 inst.reloc.type = BFD_RELOC_UNUSED;
9430 }
9431 else if (inst.operands[i].preind)
9432 {
9433 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
9434 constraint (is_t && inst.operands[i].writeback,
9435 _("cannot use writeback with this instruction"));
9436 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0)
9437 && !inst.reloc.pc_rel, BAD_PC_ADDRESSING);
9438
9439 if (is_d)
9440 {
9441 inst.instruction |= 0x01000000;
9442 if (inst.operands[i].writeback)
9443 inst.instruction |= 0x00200000;
9444 }
9445 else
9446 {
9447 inst.instruction |= 0x00000c00;
9448 if (inst.operands[i].writeback)
9449 inst.instruction |= 0x00000100;
9450 }
9451 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9452 }
9453 else if (inst.operands[i].postind)
9454 {
9455 gas_assert (inst.operands[i].writeback);
9456 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
9457 constraint (is_t, _("cannot use post-indexing with this instruction"));
9458
9459 if (is_d)
9460 inst.instruction |= 0x00200000;
9461 else
9462 inst.instruction |= 0x00000900;
9463 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9464 }
9465 else /* unindexed - only for coprocessor */
9466 inst.error = _("instruction does not accept unindexed addressing");
9467 }
9468
9469 /* Table of Thumb instructions which exist in both 16- and 32-bit
9470 encodings (the latter only in post-V6T2 cores). The index is the
9471 value used in the insns table below. When there is more than one
9472 possible 16-bit encoding for the instruction, this table always
9473 holds variant (1).
9474 Also contains several pseudo-instructions used during relaxation. */
9475 #define T16_32_TAB \
9476 X(_adc, 4140, eb400000), \
9477 X(_adcs, 4140, eb500000), \
9478 X(_add, 1c00, eb000000), \
9479 X(_adds, 1c00, eb100000), \
9480 X(_addi, 0000, f1000000), \
9481 X(_addis, 0000, f1100000), \
9482 X(_add_pc,000f, f20f0000), \
9483 X(_add_sp,000d, f10d0000), \
9484 X(_adr, 000f, f20f0000), \
9485 X(_and, 4000, ea000000), \
9486 X(_ands, 4000, ea100000), \
9487 X(_asr, 1000, fa40f000), \
9488 X(_asrs, 1000, fa50f000), \
9489 X(_b, e000, f000b000), \
9490 X(_bcond, d000, f0008000), \
9491 X(_bic, 4380, ea200000), \
9492 X(_bics, 4380, ea300000), \
9493 X(_cmn, 42c0, eb100f00), \
9494 X(_cmp, 2800, ebb00f00), \
9495 X(_cpsie, b660, f3af8400), \
9496 X(_cpsid, b670, f3af8600), \
9497 X(_cpy, 4600, ea4f0000), \
9498 X(_dec_sp,80dd, f1ad0d00), \
9499 X(_eor, 4040, ea800000), \
9500 X(_eors, 4040, ea900000), \
9501 X(_inc_sp,00dd, f10d0d00), \
9502 X(_ldmia, c800, e8900000), \
9503 X(_ldr, 6800, f8500000), \
9504 X(_ldrb, 7800, f8100000), \
9505 X(_ldrh, 8800, f8300000), \
9506 X(_ldrsb, 5600, f9100000), \
9507 X(_ldrsh, 5e00, f9300000), \
9508 X(_ldr_pc,4800, f85f0000), \
9509 X(_ldr_pc2,4800, f85f0000), \
9510 X(_ldr_sp,9800, f85d0000), \
9511 X(_lsl, 0000, fa00f000), \
9512 X(_lsls, 0000, fa10f000), \
9513 X(_lsr, 0800, fa20f000), \
9514 X(_lsrs, 0800, fa30f000), \
9515 X(_mov, 2000, ea4f0000), \
9516 X(_movs, 2000, ea5f0000), \
9517 X(_mul, 4340, fb00f000), \
9518 X(_muls, 4340, ffffffff), /* no 32b muls */ \
9519 X(_mvn, 43c0, ea6f0000), \
9520 X(_mvns, 43c0, ea7f0000), \
9521 X(_neg, 4240, f1c00000), /* rsb #0 */ \
9522 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
9523 X(_orr, 4300, ea400000), \
9524 X(_orrs, 4300, ea500000), \
9525 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
9526 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
9527 X(_rev, ba00, fa90f080), \
9528 X(_rev16, ba40, fa90f090), \
9529 X(_revsh, bac0, fa90f0b0), \
9530 X(_ror, 41c0, fa60f000), \
9531 X(_rors, 41c0, fa70f000), \
9532 X(_sbc, 4180, eb600000), \
9533 X(_sbcs, 4180, eb700000), \
9534 X(_stmia, c000, e8800000), \
9535 X(_str, 6000, f8400000), \
9536 X(_strb, 7000, f8000000), \
9537 X(_strh, 8000, f8200000), \
9538 X(_str_sp,9000, f84d0000), \
9539 X(_sub, 1e00, eba00000), \
9540 X(_subs, 1e00, ebb00000), \
9541 X(_subi, 8000, f1a00000), \
9542 X(_subis, 8000, f1b00000), \
9543 X(_sxtb, b240, fa4ff080), \
9544 X(_sxth, b200, fa0ff080), \
9545 X(_tst, 4200, ea100f00), \
9546 X(_uxtb, b2c0, fa5ff080), \
9547 X(_uxth, b280, fa1ff080), \
9548 X(_nop, bf00, f3af8000), \
9549 X(_yield, bf10, f3af8001), \
9550 X(_wfe, bf20, f3af8002), \
9551 X(_wfi, bf30, f3af8003), \
9552 X(_sev, bf40, f3af8004), \
9553 X(_sevl, bf50, f3af8005)
9554
9555 /* To catch errors in encoding functions, the codes are all offset by
9556 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
9557 as 16-bit instructions. */
9558 #define X(a,b,c) T_MNEM##a
9559 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
9560 #undef X
9561
9562 #define X(a,b,c) 0x##b
9563 static const unsigned short thumb_op16[] = { T16_32_TAB };
9564 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
9565 #undef X
9566
9567 #define X(a,b,c) 0x##c
9568 static const unsigned int thumb_op32[] = { T16_32_TAB };
9569 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
9570 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
9571 #undef X
9572 #undef T16_32_TAB
9573
9574 /* Thumb instruction encoders, in alphabetical order. */
9575
9576 /* ADDW or SUBW. */
9577
9578 static void
9579 do_t_add_sub_w (void)
9580 {
9581 int Rd, Rn;
9582
9583 Rd = inst.operands[0].reg;
9584 Rn = inst.operands[1].reg;
9585
9586 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
9587 is the SP-{plus,minus}-immediate form of the instruction. */
9588 if (Rn == REG_SP)
9589 constraint (Rd == REG_PC, BAD_PC);
9590 else
9591 reject_bad_reg (Rd);
9592
9593 inst.instruction |= (Rn << 16) | (Rd << 8);
9594 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9595 }
9596
9597 /* Parse an add or subtract instruction. We get here with inst.instruction
9598 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
9599
9600 static void
9601 do_t_add_sub (void)
9602 {
9603 int Rd, Rs, Rn;
9604
9605 Rd = inst.operands[0].reg;
9606 Rs = (inst.operands[1].present
9607 ? inst.operands[1].reg /* Rd, Rs, foo */
9608 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9609
9610 if (Rd == REG_PC)
9611 set_it_insn_type_last ();
9612
9613 if (unified_syntax)
9614 {
9615 bfd_boolean flags;
9616 bfd_boolean narrow;
9617 int opcode;
9618
9619 flags = (inst.instruction == T_MNEM_adds
9620 || inst.instruction == T_MNEM_subs);
9621 if (flags)
9622 narrow = !in_it_block ();
9623 else
9624 narrow = in_it_block ();
9625 if (!inst.operands[2].isreg)
9626 {
9627 int add;
9628
9629 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9630
9631 add = (inst.instruction == T_MNEM_add
9632 || inst.instruction == T_MNEM_adds);
9633 opcode = 0;
9634 if (inst.size_req != 4)
9635 {
9636 /* Attempt to use a narrow opcode, with relaxation if
9637 appropriate. */
9638 if (Rd == REG_SP && Rs == REG_SP && !flags)
9639 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
9640 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
9641 opcode = T_MNEM_add_sp;
9642 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
9643 opcode = T_MNEM_add_pc;
9644 else if (Rd <= 7 && Rs <= 7 && narrow)
9645 {
9646 if (flags)
9647 opcode = add ? T_MNEM_addis : T_MNEM_subis;
9648 else
9649 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9650 }
9651 if (opcode)
9652 {
9653 inst.instruction = THUMB_OP16(opcode);
9654 inst.instruction |= (Rd << 4) | Rs;
9655 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9656 if (inst.size_req != 2)
9657 inst.relax = opcode;
9658 }
9659 else
9660 constraint (inst.size_req == 2, BAD_HIREG);
9661 }
9662 if (inst.size_req == 4
9663 || (inst.size_req != 2 && !opcode))
9664 {
9665 if (Rd == REG_PC)
9666 {
9667 constraint (add, BAD_PC);
9668 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9669 _("only SUBS PC, LR, #const allowed"));
9670 constraint (inst.reloc.exp.X_op != O_constant,
9671 _("expression too complex"));
9672 constraint (inst.reloc.exp.X_add_number < 0
9673 || inst.reloc.exp.X_add_number > 0xff,
9674 _("immediate value out of range"));
9675 inst.instruction = T2_SUBS_PC_LR
9676 | inst.reloc.exp.X_add_number;
9677 inst.reloc.type = BFD_RELOC_UNUSED;
9678 return;
9679 }
9680 else if (Rs == REG_PC)
9681 {
9682 /* Always use addw/subw. */
9683 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9684 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9685 }
9686 else
9687 {
9688 inst.instruction = THUMB_OP32 (inst.instruction);
9689 inst.instruction = (inst.instruction & 0xe1ffffff)
9690 | 0x10000000;
9691 if (flags)
9692 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9693 else
9694 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9695 }
9696 inst.instruction |= Rd << 8;
9697 inst.instruction |= Rs << 16;
9698 }
9699 }
9700 else
9701 {
9702 unsigned int value = inst.reloc.exp.X_add_number;
9703 unsigned int shift = inst.operands[2].shift_kind;
9704
9705 Rn = inst.operands[2].reg;
9706 /* See if we can do this with a 16-bit instruction. */
9707 if (!inst.operands[2].shifted && inst.size_req != 4)
9708 {
9709 if (Rd > 7 || Rs > 7 || Rn > 7)
9710 narrow = FALSE;
9711
9712 if (narrow)
9713 {
9714 inst.instruction = ((inst.instruction == T_MNEM_adds
9715 || inst.instruction == T_MNEM_add)
9716 ? T_OPCODE_ADD_R3
9717 : T_OPCODE_SUB_R3);
9718 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9719 return;
9720 }
9721
9722 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
9723 {
9724 /* Thumb-1 cores (except v6-M) require at least one high
9725 register in a narrow non flag setting add. */
9726 if (Rd > 7 || Rn > 7
9727 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9728 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
9729 {
9730 if (Rd == Rn)
9731 {
9732 Rn = Rs;
9733 Rs = Rd;
9734 }
9735 inst.instruction = T_OPCODE_ADD_HI;
9736 inst.instruction |= (Rd & 8) << 4;
9737 inst.instruction |= (Rd & 7);
9738 inst.instruction |= Rn << 3;
9739 return;
9740 }
9741 }
9742 }
9743
9744 constraint (Rd == REG_PC, BAD_PC);
9745 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9746 constraint (Rs == REG_PC, BAD_PC);
9747 reject_bad_reg (Rn);
9748
9749 /* If we get here, it can't be done in 16 bits. */
9750 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9751 _("shift must be constant"));
9752 inst.instruction = THUMB_OP32 (inst.instruction);
9753 inst.instruction |= Rd << 8;
9754 inst.instruction |= Rs << 16;
9755 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
9756 _("shift value over 3 not allowed in thumb mode"));
9757 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
9758 _("only LSL shift allowed in thumb mode"));
9759 encode_thumb32_shifted_operand (2);
9760 }
9761 }
9762 else
9763 {
9764 constraint (inst.instruction == T_MNEM_adds
9765 || inst.instruction == T_MNEM_subs,
9766 BAD_THUMB32);
9767
9768 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
9769 {
9770 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9771 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9772 BAD_HIREG);
9773
9774 inst.instruction = (inst.instruction == T_MNEM_add
9775 ? 0x0000 : 0x8000);
9776 inst.instruction |= (Rd << 4) | Rs;
9777 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9778 return;
9779 }
9780
9781 Rn = inst.operands[2].reg;
9782 constraint (inst.operands[2].shifted, _("unshifted register required"));
9783
9784 /* We now have Rd, Rs, and Rn set to registers. */
9785 if (Rd > 7 || Rs > 7 || Rn > 7)
9786 {
9787 /* Can't do this for SUB. */
9788 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9789 inst.instruction = T_OPCODE_ADD_HI;
9790 inst.instruction |= (Rd & 8) << 4;
9791 inst.instruction |= (Rd & 7);
9792 if (Rs == Rd)
9793 inst.instruction |= Rn << 3;
9794 else if (Rn == Rd)
9795 inst.instruction |= Rs << 3;
9796 else
9797 constraint (1, _("dest must overlap one source register"));
9798 }
9799 else
9800 {
9801 inst.instruction = (inst.instruction == T_MNEM_add
9802 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9803 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9804 }
9805 }
9806 }
9807
9808 static void
9809 do_t_adr (void)
9810 {
9811 unsigned Rd;
9812
9813 Rd = inst.operands[0].reg;
9814 reject_bad_reg (Rd);
9815
9816 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
9817 {
9818 /* Defer to section relaxation. */
9819 inst.relax = inst.instruction;
9820 inst.instruction = THUMB_OP16 (inst.instruction);
9821 inst.instruction |= Rd << 4;
9822 }
9823 else if (unified_syntax && inst.size_req != 2)
9824 {
9825 /* Generate a 32-bit opcode. */
9826 inst.instruction = THUMB_OP32 (inst.instruction);
9827 inst.instruction |= Rd << 8;
9828 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9829 inst.reloc.pc_rel = 1;
9830 }
9831 else
9832 {
9833 /* Generate a 16-bit opcode. */
9834 inst.instruction = THUMB_OP16 (inst.instruction);
9835 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9836 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9837 inst.reloc.pc_rel = 1;
9838
9839 inst.instruction |= Rd << 4;
9840 }
9841 }
9842
9843 /* Arithmetic instructions for which there is just one 16-bit
9844 instruction encoding, and it allows only two low registers.
9845 For maximal compatibility with ARM syntax, we allow three register
9846 operands even when Thumb-32 instructions are not available, as long
9847 as the first two are identical. For instance, both "sbc r0,r1" and
9848 "sbc r0,r0,r1" are allowed. */
9849 static void
9850 do_t_arit3 (void)
9851 {
9852 int Rd, Rs, Rn;
9853
9854 Rd = inst.operands[0].reg;
9855 Rs = (inst.operands[1].present
9856 ? inst.operands[1].reg /* Rd, Rs, foo */
9857 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9858 Rn = inst.operands[2].reg;
9859
9860 reject_bad_reg (Rd);
9861 reject_bad_reg (Rs);
9862 if (inst.operands[2].isreg)
9863 reject_bad_reg (Rn);
9864
9865 if (unified_syntax)
9866 {
9867 if (!inst.operands[2].isreg)
9868 {
9869 /* For an immediate, we always generate a 32-bit opcode;
9870 section relaxation will shrink it later if possible. */
9871 inst.instruction = THUMB_OP32 (inst.instruction);
9872 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9873 inst.instruction |= Rd << 8;
9874 inst.instruction |= Rs << 16;
9875 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9876 }
9877 else
9878 {
9879 bfd_boolean narrow;
9880
9881 /* See if we can do this with a 16-bit instruction. */
9882 if (THUMB_SETS_FLAGS (inst.instruction))
9883 narrow = !in_it_block ();
9884 else
9885 narrow = in_it_block ();
9886
9887 if (Rd > 7 || Rn > 7 || Rs > 7)
9888 narrow = FALSE;
9889 if (inst.operands[2].shifted)
9890 narrow = FALSE;
9891 if (inst.size_req == 4)
9892 narrow = FALSE;
9893
9894 if (narrow
9895 && Rd == Rs)
9896 {
9897 inst.instruction = THUMB_OP16 (inst.instruction);
9898 inst.instruction |= Rd;
9899 inst.instruction |= Rn << 3;
9900 return;
9901 }
9902
9903 /* If we get here, it can't be done in 16 bits. */
9904 constraint (inst.operands[2].shifted
9905 && inst.operands[2].immisreg,
9906 _("shift must be constant"));
9907 inst.instruction = THUMB_OP32 (inst.instruction);
9908 inst.instruction |= Rd << 8;
9909 inst.instruction |= Rs << 16;
9910 encode_thumb32_shifted_operand (2);
9911 }
9912 }
9913 else
9914 {
9915 /* On its face this is a lie - the instruction does set the
9916 flags. However, the only supported mnemonic in this mode
9917 says it doesn't. */
9918 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9919
9920 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9921 _("unshifted register required"));
9922 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9923 constraint (Rd != Rs,
9924 _("dest and source1 must be the same register"));
9925
9926 inst.instruction = THUMB_OP16 (inst.instruction);
9927 inst.instruction |= Rd;
9928 inst.instruction |= Rn << 3;
9929 }
9930 }
9931
9932 /* Similarly, but for instructions where the arithmetic operation is
9933 commutative, so we can allow either of them to be different from
9934 the destination operand in a 16-bit instruction. For instance, all
9935 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9936 accepted. */
9937 static void
9938 do_t_arit3c (void)
9939 {
9940 int Rd, Rs, Rn;
9941
9942 Rd = inst.operands[0].reg;
9943 Rs = (inst.operands[1].present
9944 ? inst.operands[1].reg /* Rd, Rs, foo */
9945 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9946 Rn = inst.operands[2].reg;
9947
9948 reject_bad_reg (Rd);
9949 reject_bad_reg (Rs);
9950 if (inst.operands[2].isreg)
9951 reject_bad_reg (Rn);
9952
9953 if (unified_syntax)
9954 {
9955 if (!inst.operands[2].isreg)
9956 {
9957 /* For an immediate, we always generate a 32-bit opcode;
9958 section relaxation will shrink it later if possible. */
9959 inst.instruction = THUMB_OP32 (inst.instruction);
9960 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9961 inst.instruction |= Rd << 8;
9962 inst.instruction |= Rs << 16;
9963 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9964 }
9965 else
9966 {
9967 bfd_boolean narrow;
9968
9969 /* See if we can do this with a 16-bit instruction. */
9970 if (THUMB_SETS_FLAGS (inst.instruction))
9971 narrow = !in_it_block ();
9972 else
9973 narrow = in_it_block ();
9974
9975 if (Rd > 7 || Rn > 7 || Rs > 7)
9976 narrow = FALSE;
9977 if (inst.operands[2].shifted)
9978 narrow = FALSE;
9979 if (inst.size_req == 4)
9980 narrow = FALSE;
9981
9982 if (narrow)
9983 {
9984 if (Rd == Rs)
9985 {
9986 inst.instruction = THUMB_OP16 (inst.instruction);
9987 inst.instruction |= Rd;
9988 inst.instruction |= Rn << 3;
9989 return;
9990 }
9991 if (Rd == Rn)
9992 {
9993 inst.instruction = THUMB_OP16 (inst.instruction);
9994 inst.instruction |= Rd;
9995 inst.instruction |= Rs << 3;
9996 return;
9997 }
9998 }
9999
10000 /* If we get here, it can't be done in 16 bits. */
10001 constraint (inst.operands[2].shifted
10002 && inst.operands[2].immisreg,
10003 _("shift must be constant"));
10004 inst.instruction = THUMB_OP32 (inst.instruction);
10005 inst.instruction |= Rd << 8;
10006 inst.instruction |= Rs << 16;
10007 encode_thumb32_shifted_operand (2);
10008 }
10009 }
10010 else
10011 {
10012 /* On its face this is a lie - the instruction does set the
10013 flags. However, the only supported mnemonic in this mode
10014 says it doesn't. */
10015 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10016
10017 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
10018 _("unshifted register required"));
10019 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
10020
10021 inst.instruction = THUMB_OP16 (inst.instruction);
10022 inst.instruction |= Rd;
10023
10024 if (Rd == Rs)
10025 inst.instruction |= Rn << 3;
10026 else if (Rd == Rn)
10027 inst.instruction |= Rs << 3;
10028 else
10029 constraint (1, _("dest must overlap one source register"));
10030 }
10031 }
10032
10033 static void
10034 do_t_barrier (void)
10035 {
10036 if (inst.operands[0].present)
10037 {
10038 constraint ((inst.instruction & 0xf0) != 0x40
10039 && inst.operands[0].imm > 0xf
10040 && inst.operands[0].imm < 0x0,
10041 _("bad barrier type"));
10042 inst.instruction |= inst.operands[0].imm;
10043 }
10044 else
10045 inst.instruction |= 0xf;
10046 }
10047
10048 static void
10049 do_t_bfc (void)
10050 {
10051 unsigned Rd;
10052 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
10053 constraint (msb > 32, _("bit-field extends past end of register"));
10054 /* The instruction encoding stores the LSB and MSB,
10055 not the LSB and width. */
10056 Rd = inst.operands[0].reg;
10057 reject_bad_reg (Rd);
10058 inst.instruction |= Rd << 8;
10059 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
10060 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
10061 inst.instruction |= msb - 1;
10062 }
10063
10064 static void
10065 do_t_bfi (void)
10066 {
10067 int Rd, Rn;
10068 unsigned int msb;
10069
10070 Rd = inst.operands[0].reg;
10071 reject_bad_reg (Rd);
10072
10073 /* #0 in second position is alternative syntax for bfc, which is
10074 the same instruction but with REG_PC in the Rm field. */
10075 if (!inst.operands[1].isreg)
10076 Rn = REG_PC;
10077 else
10078 {
10079 Rn = inst.operands[1].reg;
10080 reject_bad_reg (Rn);
10081 }
10082
10083 msb = inst.operands[2].imm + inst.operands[3].imm;
10084 constraint (msb > 32, _("bit-field extends past end of register"));
10085 /* The instruction encoding stores the LSB and MSB,
10086 not the LSB and width. */
10087 inst.instruction |= Rd << 8;
10088 inst.instruction |= Rn << 16;
10089 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
10090 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
10091 inst.instruction |= msb - 1;
10092 }
10093
10094 static void
10095 do_t_bfx (void)
10096 {
10097 unsigned Rd, Rn;
10098
10099 Rd = inst.operands[0].reg;
10100 Rn = inst.operands[1].reg;
10101
10102 reject_bad_reg (Rd);
10103 reject_bad_reg (Rn);
10104
10105 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
10106 _("bit-field extends past end of register"));
10107 inst.instruction |= Rd << 8;
10108 inst.instruction |= Rn << 16;
10109 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
10110 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
10111 inst.instruction |= inst.operands[3].imm - 1;
10112 }
10113
10114 /* ARM V5 Thumb BLX (argument parse)
10115 BLX <target_addr> which is BLX(1)
10116 BLX <Rm> which is BLX(2)
10117 Unfortunately, there are two different opcodes for this mnemonic.
10118 So, the insns[].value is not used, and the code here zaps values
10119 into inst.instruction.
10120
10121 ??? How to take advantage of the additional two bits of displacement
10122 available in Thumb32 mode? Need new relocation? */
10123
10124 static void
10125 do_t_blx (void)
10126 {
10127 set_it_insn_type_last ();
10128
10129 if (inst.operands[0].isreg)
10130 {
10131 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
10132 /* We have a register, so this is BLX(2). */
10133 inst.instruction |= inst.operands[0].reg << 3;
10134 }
10135 else
10136 {
10137 /* No register. This must be BLX(1). */
10138 inst.instruction = 0xf000e800;
10139 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
10140 }
10141 }
10142
10143 static void
10144 do_t_branch (void)
10145 {
10146 int opcode;
10147 int cond;
10148 int reloc;
10149
10150 cond = inst.cond;
10151 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
10152
10153 if (in_it_block ())
10154 {
10155 /* Conditional branches inside IT blocks are encoded as unconditional
10156 branches. */
10157 cond = COND_ALWAYS;
10158 }
10159 else
10160 cond = inst.cond;
10161
10162 if (cond != COND_ALWAYS)
10163 opcode = T_MNEM_bcond;
10164 else
10165 opcode = inst.instruction;
10166
10167 if (unified_syntax
10168 && (inst.size_req == 4
10169 || (inst.size_req != 2
10170 && (inst.operands[0].hasreloc
10171 || inst.reloc.exp.X_op == O_constant))))
10172 {
10173 inst.instruction = THUMB_OP32(opcode);
10174 if (cond == COND_ALWAYS)
10175 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
10176 else
10177 {
10178 gas_assert (cond != 0xF);
10179 inst.instruction |= cond << 22;
10180 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
10181 }
10182 }
10183 else
10184 {
10185 inst.instruction = THUMB_OP16(opcode);
10186 if (cond == COND_ALWAYS)
10187 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
10188 else
10189 {
10190 inst.instruction |= cond << 8;
10191 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
10192 }
10193 /* Allow section relaxation. */
10194 if (unified_syntax && inst.size_req != 2)
10195 inst.relax = opcode;
10196 }
10197 inst.reloc.type = reloc;
10198 inst.reloc.pc_rel = 1;
10199 }
10200
10201 /* Actually do the work for Thumb state bkpt and hlt. The only difference
10202 between the two is the maximum immediate allowed - which is passed in
10203 RANGE. */
10204 static void
10205 do_t_bkpt_hlt1 (int range)
10206 {
10207 constraint (inst.cond != COND_ALWAYS,
10208 _("instruction is always unconditional"));
10209 if (inst.operands[0].present)
10210 {
10211 constraint (inst.operands[0].imm > range,
10212 _("immediate value out of range"));
10213 inst.instruction |= inst.operands[0].imm;
10214 }
10215
10216 set_it_insn_type (NEUTRAL_IT_INSN);
10217 }
10218
10219 static void
10220 do_t_hlt (void)
10221 {
10222 do_t_bkpt_hlt1 (63);
10223 }
10224
10225 static void
10226 do_t_bkpt (void)
10227 {
10228 do_t_bkpt_hlt1 (255);
10229 }
10230
10231 static void
10232 do_t_branch23 (void)
10233 {
10234 set_it_insn_type_last ();
10235 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
10236
10237 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
10238 this file. We used to simply ignore the PLT reloc type here --
10239 the branch encoding is now needed to deal with TLSCALL relocs.
10240 So if we see a PLT reloc now, put it back to how it used to be to
10241 keep the preexisting behaviour. */
10242 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
10243 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
10244
10245 #if defined(OBJ_COFF)
10246 /* If the destination of the branch is a defined symbol which does not have
10247 the THUMB_FUNC attribute, then we must be calling a function which has
10248 the (interfacearm) attribute. We look for the Thumb entry point to that
10249 function and change the branch to refer to that function instead. */
10250 if ( inst.reloc.exp.X_op == O_symbol
10251 && inst.reloc.exp.X_add_symbol != NULL
10252 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
10253 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
10254 inst.reloc.exp.X_add_symbol =
10255 find_real_start (inst.reloc.exp.X_add_symbol);
10256 #endif
10257 }
10258
10259 static void
10260 do_t_bx (void)
10261 {
10262 set_it_insn_type_last ();
10263 inst.instruction |= inst.operands[0].reg << 3;
10264 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
10265 should cause the alignment to be checked once it is known. This is
10266 because BX PC only works if the instruction is word aligned. */
10267 }
10268
10269 static void
10270 do_t_bxj (void)
10271 {
10272 int Rm;
10273
10274 set_it_insn_type_last ();
10275 Rm = inst.operands[0].reg;
10276 reject_bad_reg (Rm);
10277 inst.instruction |= Rm << 16;
10278 }
10279
10280 static void
10281 do_t_clz (void)
10282 {
10283 unsigned Rd;
10284 unsigned Rm;
10285
10286 Rd = inst.operands[0].reg;
10287 Rm = inst.operands[1].reg;
10288
10289 reject_bad_reg (Rd);
10290 reject_bad_reg (Rm);
10291
10292 inst.instruction |= Rd << 8;
10293 inst.instruction |= Rm << 16;
10294 inst.instruction |= Rm;
10295 }
10296
10297 static void
10298 do_t_cps (void)
10299 {
10300 set_it_insn_type (OUTSIDE_IT_INSN);
10301 inst.instruction |= inst.operands[0].imm;
10302 }
10303
10304 static void
10305 do_t_cpsi (void)
10306 {
10307 set_it_insn_type (OUTSIDE_IT_INSN);
10308 if (unified_syntax
10309 && (inst.operands[1].present || inst.size_req == 4)
10310 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
10311 {
10312 unsigned int imod = (inst.instruction & 0x0030) >> 4;
10313 inst.instruction = 0xf3af8000;
10314 inst.instruction |= imod << 9;
10315 inst.instruction |= inst.operands[0].imm << 5;
10316 if (inst.operands[1].present)
10317 inst.instruction |= 0x100 | inst.operands[1].imm;
10318 }
10319 else
10320 {
10321 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
10322 && (inst.operands[0].imm & 4),
10323 _("selected processor does not support 'A' form "
10324 "of this instruction"));
10325 constraint (inst.operands[1].present || inst.size_req == 4,
10326 _("Thumb does not support the 2-argument "
10327 "form of this instruction"));
10328 inst.instruction |= inst.operands[0].imm;
10329 }
10330 }
10331
10332 /* THUMB CPY instruction (argument parse). */
10333
10334 static void
10335 do_t_cpy (void)
10336 {
10337 if (inst.size_req == 4)
10338 {
10339 inst.instruction = THUMB_OP32 (T_MNEM_mov);
10340 inst.instruction |= inst.operands[0].reg << 8;
10341 inst.instruction |= inst.operands[1].reg;
10342 }
10343 else
10344 {
10345 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
10346 inst.instruction |= (inst.operands[0].reg & 0x7);
10347 inst.instruction |= inst.operands[1].reg << 3;
10348 }
10349 }
10350
10351 static void
10352 do_t_cbz (void)
10353 {
10354 set_it_insn_type (OUTSIDE_IT_INSN);
10355 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10356 inst.instruction |= inst.operands[0].reg;
10357 inst.reloc.pc_rel = 1;
10358 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
10359 }
10360
10361 static void
10362 do_t_dbg (void)
10363 {
10364 inst.instruction |= inst.operands[0].imm;
10365 }
10366
10367 static void
10368 do_t_div (void)
10369 {
10370 unsigned Rd, Rn, Rm;
10371
10372 Rd = inst.operands[0].reg;
10373 Rn = (inst.operands[1].present
10374 ? inst.operands[1].reg : Rd);
10375 Rm = inst.operands[2].reg;
10376
10377 reject_bad_reg (Rd);
10378 reject_bad_reg (Rn);
10379 reject_bad_reg (Rm);
10380
10381 inst.instruction |= Rd << 8;
10382 inst.instruction |= Rn << 16;
10383 inst.instruction |= Rm;
10384 }
10385
10386 static void
10387 do_t_hint (void)
10388 {
10389 if (unified_syntax && inst.size_req == 4)
10390 inst.instruction = THUMB_OP32 (inst.instruction);
10391 else
10392 inst.instruction = THUMB_OP16 (inst.instruction);
10393 }
10394
10395 static void
10396 do_t_it (void)
10397 {
10398 unsigned int cond = inst.operands[0].imm;
10399
10400 set_it_insn_type (IT_INSN);
10401 now_it.mask = (inst.instruction & 0xf) | 0x10;
10402 now_it.cc = cond;
10403 now_it.warn_deprecated = FALSE;
10404
10405 /* If the condition is a negative condition, invert the mask. */
10406 if ((cond & 0x1) == 0x0)
10407 {
10408 unsigned int mask = inst.instruction & 0x000f;
10409
10410 if ((mask & 0x7) == 0)
10411 {
10412 /* No conversion needed. */
10413 now_it.block_length = 1;
10414 }
10415 else if ((mask & 0x3) == 0)
10416 {
10417 mask ^= 0x8;
10418 now_it.block_length = 2;
10419 }
10420 else if ((mask & 0x1) == 0)
10421 {
10422 mask ^= 0xC;
10423 now_it.block_length = 3;
10424 }
10425 else
10426 {
10427 mask ^= 0xE;
10428 now_it.block_length = 4;
10429 }
10430
10431 inst.instruction &= 0xfff0;
10432 inst.instruction |= mask;
10433 }
10434
10435 inst.instruction |= cond << 4;
10436 }
10437
10438 /* Helper function used for both push/pop and ldm/stm. */
10439 static void
10440 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
10441 {
10442 bfd_boolean load;
10443
10444 load = (inst.instruction & (1 << 20)) != 0;
10445
10446 if (mask & (1 << 13))
10447 inst.error = _("SP not allowed in register list");
10448
10449 if ((mask & (1 << base)) != 0
10450 && writeback)
10451 inst.error = _("having the base register in the register list when "
10452 "using write back is UNPREDICTABLE");
10453
10454 if (load)
10455 {
10456 if (mask & (1 << 15))
10457 {
10458 if (mask & (1 << 14))
10459 inst.error = _("LR and PC should not both be in register list");
10460 else
10461 set_it_insn_type_last ();
10462 }
10463 }
10464 else
10465 {
10466 if (mask & (1 << 15))
10467 inst.error = _("PC not allowed in register list");
10468 }
10469
10470 if ((mask & (mask - 1)) == 0)
10471 {
10472 /* Single register transfers implemented as str/ldr. */
10473 if (writeback)
10474 {
10475 if (inst.instruction & (1 << 23))
10476 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
10477 else
10478 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
10479 }
10480 else
10481 {
10482 if (inst.instruction & (1 << 23))
10483 inst.instruction = 0x00800000; /* ia -> [base] */
10484 else
10485 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
10486 }
10487
10488 inst.instruction |= 0xf8400000;
10489 if (load)
10490 inst.instruction |= 0x00100000;
10491
10492 mask = ffs (mask) - 1;
10493 mask <<= 12;
10494 }
10495 else if (writeback)
10496 inst.instruction |= WRITE_BACK;
10497
10498 inst.instruction |= mask;
10499 inst.instruction |= base << 16;
10500 }
10501
10502 static void
10503 do_t_ldmstm (void)
10504 {
10505 /* This really doesn't seem worth it. */
10506 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10507 _("expression too complex"));
10508 constraint (inst.operands[1].writeback,
10509 _("Thumb load/store multiple does not support {reglist}^"));
10510
10511 if (unified_syntax)
10512 {
10513 bfd_boolean narrow;
10514 unsigned mask;
10515
10516 narrow = FALSE;
10517 /* See if we can use a 16-bit instruction. */
10518 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
10519 && inst.size_req != 4
10520 && !(inst.operands[1].imm & ~0xff))
10521 {
10522 mask = 1 << inst.operands[0].reg;
10523
10524 if (inst.operands[0].reg <= 7)
10525 {
10526 if (inst.instruction == T_MNEM_stmia
10527 ? inst.operands[0].writeback
10528 : (inst.operands[0].writeback
10529 == !(inst.operands[1].imm & mask)))
10530 {
10531 if (inst.instruction == T_MNEM_stmia
10532 && (inst.operands[1].imm & mask)
10533 && (inst.operands[1].imm & (mask - 1)))
10534 as_warn (_("value stored for r%d is UNKNOWN"),
10535 inst.operands[0].reg);
10536
10537 inst.instruction = THUMB_OP16 (inst.instruction);
10538 inst.instruction |= inst.operands[0].reg << 8;
10539 inst.instruction |= inst.operands[1].imm;
10540 narrow = TRUE;
10541 }
10542 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10543 {
10544 /* This means 1 register in reg list one of 3 situations:
10545 1. Instruction is stmia, but without writeback.
10546 2. lmdia without writeback, but with Rn not in
10547 reglist.
10548 3. ldmia with writeback, but with Rn in reglist.
10549 Case 3 is UNPREDICTABLE behaviour, so we handle
10550 case 1 and 2 which can be converted into a 16-bit
10551 str or ldr. The SP cases are handled below. */
10552 unsigned long opcode;
10553 /* First, record an error for Case 3. */
10554 if (inst.operands[1].imm & mask
10555 && inst.operands[0].writeback)
10556 inst.error =
10557 _("having the base register in the register list when "
10558 "using write back is UNPREDICTABLE");
10559
10560 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
10561 : T_MNEM_ldr);
10562 inst.instruction = THUMB_OP16 (opcode);
10563 inst.instruction |= inst.operands[0].reg << 3;
10564 inst.instruction |= (ffs (inst.operands[1].imm)-1);
10565 narrow = TRUE;
10566 }
10567 }
10568 else if (inst.operands[0] .reg == REG_SP)
10569 {
10570 if (inst.operands[0].writeback)
10571 {
10572 inst.instruction =
10573 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10574 ? T_MNEM_push : T_MNEM_pop);
10575 inst.instruction |= inst.operands[1].imm;
10576 narrow = TRUE;
10577 }
10578 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10579 {
10580 inst.instruction =
10581 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10582 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
10583 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
10584 narrow = TRUE;
10585 }
10586 }
10587 }
10588
10589 if (!narrow)
10590 {
10591 if (inst.instruction < 0xffff)
10592 inst.instruction = THUMB_OP32 (inst.instruction);
10593
10594 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
10595 inst.operands[0].writeback);
10596 }
10597 }
10598 else
10599 {
10600 constraint (inst.operands[0].reg > 7
10601 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
10602 constraint (inst.instruction != T_MNEM_ldmia
10603 && inst.instruction != T_MNEM_stmia,
10604 _("Thumb-2 instruction only valid in unified syntax"));
10605 if (inst.instruction == T_MNEM_stmia)
10606 {
10607 if (!inst.operands[0].writeback)
10608 as_warn (_("this instruction will write back the base register"));
10609 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
10610 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
10611 as_warn (_("value stored for r%d is UNKNOWN"),
10612 inst.operands[0].reg);
10613 }
10614 else
10615 {
10616 if (!inst.operands[0].writeback
10617 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
10618 as_warn (_("this instruction will write back the base register"));
10619 else if (inst.operands[0].writeback
10620 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
10621 as_warn (_("this instruction will not write back the base register"));
10622 }
10623
10624 inst.instruction = THUMB_OP16 (inst.instruction);
10625 inst.instruction |= inst.operands[0].reg << 8;
10626 inst.instruction |= inst.operands[1].imm;
10627 }
10628 }
10629
10630 static void
10631 do_t_ldrex (void)
10632 {
10633 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
10634 || inst.operands[1].postind || inst.operands[1].writeback
10635 || inst.operands[1].immisreg || inst.operands[1].shifted
10636 || inst.operands[1].negative,
10637 BAD_ADDR_MODE);
10638
10639 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
10640
10641 inst.instruction |= inst.operands[0].reg << 12;
10642 inst.instruction |= inst.operands[1].reg << 16;
10643 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10644 }
10645
10646 static void
10647 do_t_ldrexd (void)
10648 {
10649 if (!inst.operands[1].present)
10650 {
10651 constraint (inst.operands[0].reg == REG_LR,
10652 _("r14 not allowed as first register "
10653 "when second register is omitted"));
10654 inst.operands[1].reg = inst.operands[0].reg + 1;
10655 }
10656 constraint (inst.operands[0].reg == inst.operands[1].reg,
10657 BAD_OVERLAP);
10658
10659 inst.instruction |= inst.operands[0].reg << 12;
10660 inst.instruction |= inst.operands[1].reg << 8;
10661 inst.instruction |= inst.operands[2].reg << 16;
10662 }
10663
10664 static void
10665 do_t_ldst (void)
10666 {
10667 unsigned long opcode;
10668 int Rn;
10669
10670 if (inst.operands[0].isreg
10671 && !inst.operands[0].preind
10672 && inst.operands[0].reg == REG_PC)
10673 set_it_insn_type_last ();
10674
10675 opcode = inst.instruction;
10676 if (unified_syntax)
10677 {
10678 if (!inst.operands[1].isreg)
10679 {
10680 if (opcode <= 0xffff)
10681 inst.instruction = THUMB_OP32 (opcode);
10682 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10683 return;
10684 }
10685 if (inst.operands[1].isreg
10686 && !inst.operands[1].writeback
10687 && !inst.operands[1].shifted && !inst.operands[1].postind
10688 && !inst.operands[1].negative && inst.operands[0].reg <= 7
10689 && opcode <= 0xffff
10690 && inst.size_req != 4)
10691 {
10692 /* Insn may have a 16-bit form. */
10693 Rn = inst.operands[1].reg;
10694 if (inst.operands[1].immisreg)
10695 {
10696 inst.instruction = THUMB_OP16 (opcode);
10697 /* [Rn, Rik] */
10698 if (Rn <= 7 && inst.operands[1].imm <= 7)
10699 goto op16;
10700 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
10701 reject_bad_reg (inst.operands[1].imm);
10702 }
10703 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
10704 && opcode != T_MNEM_ldrsb)
10705 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
10706 || (Rn == REG_SP && opcode == T_MNEM_str))
10707 {
10708 /* [Rn, #const] */
10709 if (Rn > 7)
10710 {
10711 if (Rn == REG_PC)
10712 {
10713 if (inst.reloc.pc_rel)
10714 opcode = T_MNEM_ldr_pc2;
10715 else
10716 opcode = T_MNEM_ldr_pc;
10717 }
10718 else
10719 {
10720 if (opcode == T_MNEM_ldr)
10721 opcode = T_MNEM_ldr_sp;
10722 else
10723 opcode = T_MNEM_str_sp;
10724 }
10725 inst.instruction = inst.operands[0].reg << 8;
10726 }
10727 else
10728 {
10729 inst.instruction = inst.operands[0].reg;
10730 inst.instruction |= inst.operands[1].reg << 3;
10731 }
10732 inst.instruction |= THUMB_OP16 (opcode);
10733 if (inst.size_req == 2)
10734 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10735 else
10736 inst.relax = opcode;
10737 return;
10738 }
10739 }
10740 /* Definitely a 32-bit variant. */
10741
10742 /* Warning for Erratum 752419. */
10743 if (opcode == T_MNEM_ldr
10744 && inst.operands[0].reg == REG_SP
10745 && inst.operands[1].writeback == 1
10746 && !inst.operands[1].immisreg)
10747 {
10748 if (no_cpu_selected ()
10749 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
10750 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
10751 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
10752 as_warn (_("This instruction may be unpredictable "
10753 "if executed on M-profile cores "
10754 "with interrupts enabled."));
10755 }
10756
10757 /* Do some validations regarding addressing modes. */
10758 if (inst.operands[1].immisreg)
10759 reject_bad_reg (inst.operands[1].imm);
10760
10761 constraint (inst.operands[1].writeback == 1
10762 && inst.operands[0].reg == inst.operands[1].reg,
10763 BAD_OVERLAP);
10764
10765 inst.instruction = THUMB_OP32 (opcode);
10766 inst.instruction |= inst.operands[0].reg << 12;
10767 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
10768 check_ldr_r15_aligned ();
10769 return;
10770 }
10771
10772 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10773
10774 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
10775 {
10776 /* Only [Rn,Rm] is acceptable. */
10777 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10778 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10779 || inst.operands[1].postind || inst.operands[1].shifted
10780 || inst.operands[1].negative,
10781 _("Thumb does not support this addressing mode"));
10782 inst.instruction = THUMB_OP16 (inst.instruction);
10783 goto op16;
10784 }
10785
10786 inst.instruction = THUMB_OP16 (inst.instruction);
10787 if (!inst.operands[1].isreg)
10788 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10789 return;
10790
10791 constraint (!inst.operands[1].preind
10792 || inst.operands[1].shifted
10793 || inst.operands[1].writeback,
10794 _("Thumb does not support this addressing mode"));
10795 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
10796 {
10797 constraint (inst.instruction & 0x0600,
10798 _("byte or halfword not valid for base register"));
10799 constraint (inst.operands[1].reg == REG_PC
10800 && !(inst.instruction & THUMB_LOAD_BIT),
10801 _("r15 based store not allowed"));
10802 constraint (inst.operands[1].immisreg,
10803 _("invalid base register for register offset"));
10804
10805 if (inst.operands[1].reg == REG_PC)
10806 inst.instruction = T_OPCODE_LDR_PC;
10807 else if (inst.instruction & THUMB_LOAD_BIT)
10808 inst.instruction = T_OPCODE_LDR_SP;
10809 else
10810 inst.instruction = T_OPCODE_STR_SP;
10811
10812 inst.instruction |= inst.operands[0].reg << 8;
10813 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10814 return;
10815 }
10816
10817 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10818 if (!inst.operands[1].immisreg)
10819 {
10820 /* Immediate offset. */
10821 inst.instruction |= inst.operands[0].reg;
10822 inst.instruction |= inst.operands[1].reg << 3;
10823 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10824 return;
10825 }
10826
10827 /* Register offset. */
10828 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10829 constraint (inst.operands[1].negative,
10830 _("Thumb does not support this addressing mode"));
10831
10832 op16:
10833 switch (inst.instruction)
10834 {
10835 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10836 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10837 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10838 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10839 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10840 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10841 case 0x5600 /* ldrsb */:
10842 case 0x5e00 /* ldrsh */: break;
10843 default: abort ();
10844 }
10845
10846 inst.instruction |= inst.operands[0].reg;
10847 inst.instruction |= inst.operands[1].reg << 3;
10848 inst.instruction |= inst.operands[1].imm << 6;
10849 }
10850
10851 static void
10852 do_t_ldstd (void)
10853 {
10854 if (!inst.operands[1].present)
10855 {
10856 inst.operands[1].reg = inst.operands[0].reg + 1;
10857 constraint (inst.operands[0].reg == REG_LR,
10858 _("r14 not allowed here"));
10859 constraint (inst.operands[0].reg == REG_R12,
10860 _("r12 not allowed here"));
10861 }
10862
10863 if (inst.operands[2].writeback
10864 && (inst.operands[0].reg == inst.operands[2].reg
10865 || inst.operands[1].reg == inst.operands[2].reg))
10866 as_warn (_("base register written back, and overlaps "
10867 "one of transfer registers"));
10868
10869 inst.instruction |= inst.operands[0].reg << 12;
10870 inst.instruction |= inst.operands[1].reg << 8;
10871 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
10872 }
10873
10874 static void
10875 do_t_ldstt (void)
10876 {
10877 inst.instruction |= inst.operands[0].reg << 12;
10878 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10879 }
10880
10881 static void
10882 do_t_mla (void)
10883 {
10884 unsigned Rd, Rn, Rm, Ra;
10885
10886 Rd = inst.operands[0].reg;
10887 Rn = inst.operands[1].reg;
10888 Rm = inst.operands[2].reg;
10889 Ra = inst.operands[3].reg;
10890
10891 reject_bad_reg (Rd);
10892 reject_bad_reg (Rn);
10893 reject_bad_reg (Rm);
10894 reject_bad_reg (Ra);
10895
10896 inst.instruction |= Rd << 8;
10897 inst.instruction |= Rn << 16;
10898 inst.instruction |= Rm;
10899 inst.instruction |= Ra << 12;
10900 }
10901
10902 static void
10903 do_t_mlal (void)
10904 {
10905 unsigned RdLo, RdHi, Rn, Rm;
10906
10907 RdLo = inst.operands[0].reg;
10908 RdHi = inst.operands[1].reg;
10909 Rn = inst.operands[2].reg;
10910 Rm = inst.operands[3].reg;
10911
10912 reject_bad_reg (RdLo);
10913 reject_bad_reg (RdHi);
10914 reject_bad_reg (Rn);
10915 reject_bad_reg (Rm);
10916
10917 inst.instruction |= RdLo << 12;
10918 inst.instruction |= RdHi << 8;
10919 inst.instruction |= Rn << 16;
10920 inst.instruction |= Rm;
10921 }
10922
10923 static void
10924 do_t_mov_cmp (void)
10925 {
10926 unsigned Rn, Rm;
10927
10928 Rn = inst.operands[0].reg;
10929 Rm = inst.operands[1].reg;
10930
10931 if (Rn == REG_PC)
10932 set_it_insn_type_last ();
10933
10934 if (unified_syntax)
10935 {
10936 int r0off = (inst.instruction == T_MNEM_mov
10937 || inst.instruction == T_MNEM_movs) ? 8 : 16;
10938 unsigned long opcode;
10939 bfd_boolean narrow;
10940 bfd_boolean low_regs;
10941
10942 low_regs = (Rn <= 7 && Rm <= 7);
10943 opcode = inst.instruction;
10944 if (in_it_block ())
10945 narrow = opcode != T_MNEM_movs;
10946 else
10947 narrow = opcode != T_MNEM_movs || low_regs;
10948 if (inst.size_req == 4
10949 || inst.operands[1].shifted)
10950 narrow = FALSE;
10951
10952 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10953 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10954 && !inst.operands[1].shifted
10955 && Rn == REG_PC
10956 && Rm == REG_LR)
10957 {
10958 inst.instruction = T2_SUBS_PC_LR;
10959 return;
10960 }
10961
10962 if (opcode == T_MNEM_cmp)
10963 {
10964 constraint (Rn == REG_PC, BAD_PC);
10965 if (narrow)
10966 {
10967 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10968 but valid. */
10969 warn_deprecated_sp (Rm);
10970 /* R15 was documented as a valid choice for Rm in ARMv6,
10971 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10972 tools reject R15, so we do too. */
10973 constraint (Rm == REG_PC, BAD_PC);
10974 }
10975 else
10976 reject_bad_reg (Rm);
10977 }
10978 else if (opcode == T_MNEM_mov
10979 || opcode == T_MNEM_movs)
10980 {
10981 if (inst.operands[1].isreg)
10982 {
10983 if (opcode == T_MNEM_movs)
10984 {
10985 reject_bad_reg (Rn);
10986 reject_bad_reg (Rm);
10987 }
10988 else if (narrow)
10989 {
10990 /* This is mov.n. */
10991 if ((Rn == REG_SP || Rn == REG_PC)
10992 && (Rm == REG_SP || Rm == REG_PC))
10993 {
10994 as_warn (_("Use of r%u as a source register is "
10995 "deprecated when r%u is the destination "
10996 "register."), Rm, Rn);
10997 }
10998 }
10999 else
11000 {
11001 /* This is mov.w. */
11002 constraint (Rn == REG_PC, BAD_PC);
11003 constraint (Rm == REG_PC, BAD_PC);
11004 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
11005 }
11006 }
11007 else
11008 reject_bad_reg (Rn);
11009 }
11010
11011 if (!inst.operands[1].isreg)
11012 {
11013 /* Immediate operand. */
11014 if (!in_it_block () && opcode == T_MNEM_mov)
11015 narrow = 0;
11016 if (low_regs && narrow)
11017 {
11018 inst.instruction = THUMB_OP16 (opcode);
11019 inst.instruction |= Rn << 8;
11020 if (inst.size_req == 2)
11021 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
11022 else
11023 inst.relax = opcode;
11024 }
11025 else
11026 {
11027 inst.instruction = THUMB_OP32 (inst.instruction);
11028 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11029 inst.instruction |= Rn << r0off;
11030 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11031 }
11032 }
11033 else if (inst.operands[1].shifted && inst.operands[1].immisreg
11034 && (inst.instruction == T_MNEM_mov
11035 || inst.instruction == T_MNEM_movs))
11036 {
11037 /* Register shifts are encoded as separate shift instructions. */
11038 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
11039
11040 if (in_it_block ())
11041 narrow = !flags;
11042 else
11043 narrow = flags;
11044
11045 if (inst.size_req == 4)
11046 narrow = FALSE;
11047
11048 if (!low_regs || inst.operands[1].imm > 7)
11049 narrow = FALSE;
11050
11051 if (Rn != Rm)
11052 narrow = FALSE;
11053
11054 switch (inst.operands[1].shift_kind)
11055 {
11056 case SHIFT_LSL:
11057 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
11058 break;
11059 case SHIFT_ASR:
11060 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
11061 break;
11062 case SHIFT_LSR:
11063 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
11064 break;
11065 case SHIFT_ROR:
11066 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
11067 break;
11068 default:
11069 abort ();
11070 }
11071
11072 inst.instruction = opcode;
11073 if (narrow)
11074 {
11075 inst.instruction |= Rn;
11076 inst.instruction |= inst.operands[1].imm << 3;
11077 }
11078 else
11079 {
11080 if (flags)
11081 inst.instruction |= CONDS_BIT;
11082
11083 inst.instruction |= Rn << 8;
11084 inst.instruction |= Rm << 16;
11085 inst.instruction |= inst.operands[1].imm;
11086 }
11087 }
11088 else if (!narrow)
11089 {
11090 /* Some mov with immediate shift have narrow variants.
11091 Register shifts are handled above. */
11092 if (low_regs && inst.operands[1].shifted
11093 && (inst.instruction == T_MNEM_mov
11094 || inst.instruction == T_MNEM_movs))
11095 {
11096 if (in_it_block ())
11097 narrow = (inst.instruction == T_MNEM_mov);
11098 else
11099 narrow = (inst.instruction == T_MNEM_movs);
11100 }
11101
11102 if (narrow)
11103 {
11104 switch (inst.operands[1].shift_kind)
11105 {
11106 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11107 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11108 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11109 default: narrow = FALSE; break;
11110 }
11111 }
11112
11113 if (narrow)
11114 {
11115 inst.instruction |= Rn;
11116 inst.instruction |= Rm << 3;
11117 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11118 }
11119 else
11120 {
11121 inst.instruction = THUMB_OP32 (inst.instruction);
11122 inst.instruction |= Rn << r0off;
11123 encode_thumb32_shifted_operand (1);
11124 }
11125 }
11126 else
11127 switch (inst.instruction)
11128 {
11129 case T_MNEM_mov:
11130 /* In v4t or v5t a move of two lowregs produces unpredictable
11131 results. Don't allow this. */
11132 if (low_regs)
11133 {
11134 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
11135 "MOV Rd, Rs with two low registers is not "
11136 "permitted on this architecture");
11137 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
11138 arm_ext_v6);
11139 }
11140
11141 inst.instruction = T_OPCODE_MOV_HR;
11142 inst.instruction |= (Rn & 0x8) << 4;
11143 inst.instruction |= (Rn & 0x7);
11144 inst.instruction |= Rm << 3;
11145 break;
11146
11147 case T_MNEM_movs:
11148 /* We know we have low registers at this point.
11149 Generate LSLS Rd, Rs, #0. */
11150 inst.instruction = T_OPCODE_LSL_I;
11151 inst.instruction |= Rn;
11152 inst.instruction |= Rm << 3;
11153 break;
11154
11155 case T_MNEM_cmp:
11156 if (low_regs)
11157 {
11158 inst.instruction = T_OPCODE_CMP_LR;
11159 inst.instruction |= Rn;
11160 inst.instruction |= Rm << 3;
11161 }
11162 else
11163 {
11164 inst.instruction = T_OPCODE_CMP_HR;
11165 inst.instruction |= (Rn & 0x8) << 4;
11166 inst.instruction |= (Rn & 0x7);
11167 inst.instruction |= Rm << 3;
11168 }
11169 break;
11170 }
11171 return;
11172 }
11173
11174 inst.instruction = THUMB_OP16 (inst.instruction);
11175
11176 /* PR 10443: Do not silently ignore shifted operands. */
11177 constraint (inst.operands[1].shifted,
11178 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
11179
11180 if (inst.operands[1].isreg)
11181 {
11182 if (Rn < 8 && Rm < 8)
11183 {
11184 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
11185 since a MOV instruction produces unpredictable results. */
11186 if (inst.instruction == T_OPCODE_MOV_I8)
11187 inst.instruction = T_OPCODE_ADD_I3;
11188 else
11189 inst.instruction = T_OPCODE_CMP_LR;
11190
11191 inst.instruction |= Rn;
11192 inst.instruction |= Rm << 3;
11193 }
11194 else
11195 {
11196 if (inst.instruction == T_OPCODE_MOV_I8)
11197 inst.instruction = T_OPCODE_MOV_HR;
11198 else
11199 inst.instruction = T_OPCODE_CMP_HR;
11200 do_t_cpy ();
11201 }
11202 }
11203 else
11204 {
11205 constraint (Rn > 7,
11206 _("only lo regs allowed with immediate"));
11207 inst.instruction |= Rn << 8;
11208 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
11209 }
11210 }
11211
11212 static void
11213 do_t_mov16 (void)
11214 {
11215 unsigned Rd;
11216 bfd_vma imm;
11217 bfd_boolean top;
11218
11219 top = (inst.instruction & 0x00800000) != 0;
11220 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
11221 {
11222 constraint (top, _(":lower16: not allowed this instruction"));
11223 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
11224 }
11225 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
11226 {
11227 constraint (!top, _(":upper16: not allowed this instruction"));
11228 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
11229 }
11230
11231 Rd = inst.operands[0].reg;
11232 reject_bad_reg (Rd);
11233
11234 inst.instruction |= Rd << 8;
11235 if (inst.reloc.type == BFD_RELOC_UNUSED)
11236 {
11237 imm = inst.reloc.exp.X_add_number;
11238 inst.instruction |= (imm & 0xf000) << 4;
11239 inst.instruction |= (imm & 0x0800) << 15;
11240 inst.instruction |= (imm & 0x0700) << 4;
11241 inst.instruction |= (imm & 0x00ff);
11242 }
11243 }
11244
11245 static void
11246 do_t_mvn_tst (void)
11247 {
11248 unsigned Rn, Rm;
11249
11250 Rn = inst.operands[0].reg;
11251 Rm = inst.operands[1].reg;
11252
11253 if (inst.instruction == T_MNEM_cmp
11254 || inst.instruction == T_MNEM_cmn)
11255 constraint (Rn == REG_PC, BAD_PC);
11256 else
11257 reject_bad_reg (Rn);
11258 reject_bad_reg (Rm);
11259
11260 if (unified_syntax)
11261 {
11262 int r0off = (inst.instruction == T_MNEM_mvn
11263 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
11264 bfd_boolean narrow;
11265
11266 if (inst.size_req == 4
11267 || inst.instruction > 0xffff
11268 || inst.operands[1].shifted
11269 || Rn > 7 || Rm > 7)
11270 narrow = FALSE;
11271 else if (inst.instruction == T_MNEM_cmn)
11272 narrow = TRUE;
11273 else if (THUMB_SETS_FLAGS (inst.instruction))
11274 narrow = !in_it_block ();
11275 else
11276 narrow = in_it_block ();
11277
11278 if (!inst.operands[1].isreg)
11279 {
11280 /* For an immediate, we always generate a 32-bit opcode;
11281 section relaxation will shrink it later if possible. */
11282 if (inst.instruction < 0xffff)
11283 inst.instruction = THUMB_OP32 (inst.instruction);
11284 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11285 inst.instruction |= Rn << r0off;
11286 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11287 }
11288 else
11289 {
11290 /* See if we can do this with a 16-bit instruction. */
11291 if (narrow)
11292 {
11293 inst.instruction = THUMB_OP16 (inst.instruction);
11294 inst.instruction |= Rn;
11295 inst.instruction |= Rm << 3;
11296 }
11297 else
11298 {
11299 constraint (inst.operands[1].shifted
11300 && inst.operands[1].immisreg,
11301 _("shift must be constant"));
11302 if (inst.instruction < 0xffff)
11303 inst.instruction = THUMB_OP32 (inst.instruction);
11304 inst.instruction |= Rn << r0off;
11305 encode_thumb32_shifted_operand (1);
11306 }
11307 }
11308 }
11309 else
11310 {
11311 constraint (inst.instruction > 0xffff
11312 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
11313 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
11314 _("unshifted register required"));
11315 constraint (Rn > 7 || Rm > 7,
11316 BAD_HIREG);
11317
11318 inst.instruction = THUMB_OP16 (inst.instruction);
11319 inst.instruction |= Rn;
11320 inst.instruction |= Rm << 3;
11321 }
11322 }
11323
11324 static void
11325 do_t_mrs (void)
11326 {
11327 unsigned Rd;
11328
11329 if (do_vfp_nsyn_mrs () == SUCCESS)
11330 return;
11331
11332 Rd = inst.operands[0].reg;
11333 reject_bad_reg (Rd);
11334 inst.instruction |= Rd << 8;
11335
11336 if (inst.operands[1].isreg)
11337 {
11338 unsigned br = inst.operands[1].reg;
11339 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
11340 as_bad (_("bad register for mrs"));
11341
11342 inst.instruction |= br & (0xf << 16);
11343 inst.instruction |= (br & 0x300) >> 4;
11344 inst.instruction |= (br & SPSR_BIT) >> 2;
11345 }
11346 else
11347 {
11348 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11349
11350 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
11351 {
11352 /* PR gas/12698: The constraint is only applied for m_profile.
11353 If the user has specified -march=all, we want to ignore it as
11354 we are building for any CPU type, including non-m variants. */
11355 bfd_boolean m_profile = selected_cpu.core != arm_arch_any.core;
11356 constraint ((flags != 0) && m_profile, _("selected processor does "
11357 "not support requested special purpose register"));
11358 }
11359 else
11360 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
11361 devices). */
11362 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
11363 _("'APSR', 'CPSR' or 'SPSR' expected"));
11364
11365 inst.instruction |= (flags & SPSR_BIT) >> 2;
11366 inst.instruction |= inst.operands[1].imm & 0xff;
11367 inst.instruction |= 0xf0000;
11368 }
11369 }
11370
11371 static void
11372 do_t_msr (void)
11373 {
11374 int flags;
11375 unsigned Rn;
11376
11377 if (do_vfp_nsyn_msr () == SUCCESS)
11378 return;
11379
11380 constraint (!inst.operands[1].isreg,
11381 _("Thumb encoding does not support an immediate here"));
11382
11383 if (inst.operands[0].isreg)
11384 flags = (int)(inst.operands[0].reg);
11385 else
11386 flags = inst.operands[0].imm;
11387
11388 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
11389 {
11390 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11391
11392 /* PR gas/12698: The constraint is only applied for m_profile.
11393 If the user has specified -march=all, we want to ignore it as
11394 we are building for any CPU type, including non-m variants. */
11395 bfd_boolean m_profile = selected_cpu.core != arm_arch_any.core;
11396 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11397 && (bits & ~(PSR_s | PSR_f)) != 0)
11398 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11399 && bits != PSR_f)) && m_profile,
11400 _("selected processor does not support requested special "
11401 "purpose register"));
11402 }
11403 else
11404 constraint ((flags & 0xff) != 0, _("selected processor does not support "
11405 "requested special purpose register"));
11406
11407 Rn = inst.operands[1].reg;
11408 reject_bad_reg (Rn);
11409
11410 inst.instruction |= (flags & SPSR_BIT) >> 2;
11411 inst.instruction |= (flags & 0xf0000) >> 8;
11412 inst.instruction |= (flags & 0x300) >> 4;
11413 inst.instruction |= (flags & 0xff);
11414 inst.instruction |= Rn << 16;
11415 }
11416
11417 static void
11418 do_t_mul (void)
11419 {
11420 bfd_boolean narrow;
11421 unsigned Rd, Rn, Rm;
11422
11423 if (!inst.operands[2].present)
11424 inst.operands[2].reg = inst.operands[0].reg;
11425
11426 Rd = inst.operands[0].reg;
11427 Rn = inst.operands[1].reg;
11428 Rm = inst.operands[2].reg;
11429
11430 if (unified_syntax)
11431 {
11432 if (inst.size_req == 4
11433 || (Rd != Rn
11434 && Rd != Rm)
11435 || Rn > 7
11436 || Rm > 7)
11437 narrow = FALSE;
11438 else if (inst.instruction == T_MNEM_muls)
11439 narrow = !in_it_block ();
11440 else
11441 narrow = in_it_block ();
11442 }
11443 else
11444 {
11445 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
11446 constraint (Rn > 7 || Rm > 7,
11447 BAD_HIREG);
11448 narrow = TRUE;
11449 }
11450
11451 if (narrow)
11452 {
11453 /* 16-bit MULS/Conditional MUL. */
11454 inst.instruction = THUMB_OP16 (inst.instruction);
11455 inst.instruction |= Rd;
11456
11457 if (Rd == Rn)
11458 inst.instruction |= Rm << 3;
11459 else if (Rd == Rm)
11460 inst.instruction |= Rn << 3;
11461 else
11462 constraint (1, _("dest must overlap one source register"));
11463 }
11464 else
11465 {
11466 constraint (inst.instruction != T_MNEM_mul,
11467 _("Thumb-2 MUL must not set flags"));
11468 /* 32-bit MUL. */
11469 inst.instruction = THUMB_OP32 (inst.instruction);
11470 inst.instruction |= Rd << 8;
11471 inst.instruction |= Rn << 16;
11472 inst.instruction |= Rm << 0;
11473
11474 reject_bad_reg (Rd);
11475 reject_bad_reg (Rn);
11476 reject_bad_reg (Rm);
11477 }
11478 }
11479
11480 static void
11481 do_t_mull (void)
11482 {
11483 unsigned RdLo, RdHi, Rn, Rm;
11484
11485 RdLo = inst.operands[0].reg;
11486 RdHi = inst.operands[1].reg;
11487 Rn = inst.operands[2].reg;
11488 Rm = inst.operands[3].reg;
11489
11490 reject_bad_reg (RdLo);
11491 reject_bad_reg (RdHi);
11492 reject_bad_reg (Rn);
11493 reject_bad_reg (Rm);
11494
11495 inst.instruction |= RdLo << 12;
11496 inst.instruction |= RdHi << 8;
11497 inst.instruction |= Rn << 16;
11498 inst.instruction |= Rm;
11499
11500 if (RdLo == RdHi)
11501 as_tsktsk (_("rdhi and rdlo must be different"));
11502 }
11503
11504 static void
11505 do_t_nop (void)
11506 {
11507 set_it_insn_type (NEUTRAL_IT_INSN);
11508
11509 if (unified_syntax)
11510 {
11511 if (inst.size_req == 4 || inst.operands[0].imm > 15)
11512 {
11513 inst.instruction = THUMB_OP32 (inst.instruction);
11514 inst.instruction |= inst.operands[0].imm;
11515 }
11516 else
11517 {
11518 /* PR9722: Check for Thumb2 availability before
11519 generating a thumb2 nop instruction. */
11520 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
11521 {
11522 inst.instruction = THUMB_OP16 (inst.instruction);
11523 inst.instruction |= inst.operands[0].imm << 4;
11524 }
11525 else
11526 inst.instruction = 0x46c0;
11527 }
11528 }
11529 else
11530 {
11531 constraint (inst.operands[0].present,
11532 _("Thumb does not support NOP with hints"));
11533 inst.instruction = 0x46c0;
11534 }
11535 }
11536
11537 static void
11538 do_t_neg (void)
11539 {
11540 if (unified_syntax)
11541 {
11542 bfd_boolean narrow;
11543
11544 if (THUMB_SETS_FLAGS (inst.instruction))
11545 narrow = !in_it_block ();
11546 else
11547 narrow = in_it_block ();
11548 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11549 narrow = FALSE;
11550 if (inst.size_req == 4)
11551 narrow = FALSE;
11552
11553 if (!narrow)
11554 {
11555 inst.instruction = THUMB_OP32 (inst.instruction);
11556 inst.instruction |= inst.operands[0].reg << 8;
11557 inst.instruction |= inst.operands[1].reg << 16;
11558 }
11559 else
11560 {
11561 inst.instruction = THUMB_OP16 (inst.instruction);
11562 inst.instruction |= inst.operands[0].reg;
11563 inst.instruction |= inst.operands[1].reg << 3;
11564 }
11565 }
11566 else
11567 {
11568 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
11569 BAD_HIREG);
11570 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11571
11572 inst.instruction = THUMB_OP16 (inst.instruction);
11573 inst.instruction |= inst.operands[0].reg;
11574 inst.instruction |= inst.operands[1].reg << 3;
11575 }
11576 }
11577
11578 static void
11579 do_t_orn (void)
11580 {
11581 unsigned Rd, Rn;
11582
11583 Rd = inst.operands[0].reg;
11584 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
11585
11586 reject_bad_reg (Rd);
11587 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
11588 reject_bad_reg (Rn);
11589
11590 inst.instruction |= Rd << 8;
11591 inst.instruction |= Rn << 16;
11592
11593 if (!inst.operands[2].isreg)
11594 {
11595 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11596 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11597 }
11598 else
11599 {
11600 unsigned Rm;
11601
11602 Rm = inst.operands[2].reg;
11603 reject_bad_reg (Rm);
11604
11605 constraint (inst.operands[2].shifted
11606 && inst.operands[2].immisreg,
11607 _("shift must be constant"));
11608 encode_thumb32_shifted_operand (2);
11609 }
11610 }
11611
11612 static void
11613 do_t_pkhbt (void)
11614 {
11615 unsigned Rd, Rn, Rm;
11616
11617 Rd = inst.operands[0].reg;
11618 Rn = inst.operands[1].reg;
11619 Rm = inst.operands[2].reg;
11620
11621 reject_bad_reg (Rd);
11622 reject_bad_reg (Rn);
11623 reject_bad_reg (Rm);
11624
11625 inst.instruction |= Rd << 8;
11626 inst.instruction |= Rn << 16;
11627 inst.instruction |= Rm;
11628 if (inst.operands[3].present)
11629 {
11630 unsigned int val = inst.reloc.exp.X_add_number;
11631 constraint (inst.reloc.exp.X_op != O_constant,
11632 _("expression too complex"));
11633 inst.instruction |= (val & 0x1c) << 10;
11634 inst.instruction |= (val & 0x03) << 6;
11635 }
11636 }
11637
11638 static void
11639 do_t_pkhtb (void)
11640 {
11641 if (!inst.operands[3].present)
11642 {
11643 unsigned Rtmp;
11644
11645 inst.instruction &= ~0x00000020;
11646
11647 /* PR 10168. Swap the Rm and Rn registers. */
11648 Rtmp = inst.operands[1].reg;
11649 inst.operands[1].reg = inst.operands[2].reg;
11650 inst.operands[2].reg = Rtmp;
11651 }
11652 do_t_pkhbt ();
11653 }
11654
11655 static void
11656 do_t_pld (void)
11657 {
11658 if (inst.operands[0].immisreg)
11659 reject_bad_reg (inst.operands[0].imm);
11660
11661 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
11662 }
11663
11664 static void
11665 do_t_push_pop (void)
11666 {
11667 unsigned mask;
11668
11669 constraint (inst.operands[0].writeback,
11670 _("push/pop do not support {reglist}^"));
11671 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11672 _("expression too complex"));
11673
11674 mask = inst.operands[0].imm;
11675 if ((mask & ~0xff) == 0)
11676 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
11677 else if ((inst.instruction == T_MNEM_push
11678 && (mask & ~0xff) == 1 << REG_LR)
11679 || (inst.instruction == T_MNEM_pop
11680 && (mask & ~0xff) == 1 << REG_PC))
11681 {
11682 inst.instruction = THUMB_OP16 (inst.instruction);
11683 inst.instruction |= THUMB_PP_PC_LR;
11684 inst.instruction |= mask & 0xff;
11685 }
11686 else if (unified_syntax)
11687 {
11688 inst.instruction = THUMB_OP32 (inst.instruction);
11689 encode_thumb2_ldmstm (13, mask, TRUE);
11690 }
11691 else
11692 {
11693 inst.error = _("invalid register list to push/pop instruction");
11694 return;
11695 }
11696 }
11697
11698 static void
11699 do_t_rbit (void)
11700 {
11701 unsigned Rd, Rm;
11702
11703 Rd = inst.operands[0].reg;
11704 Rm = inst.operands[1].reg;
11705
11706 reject_bad_reg (Rd);
11707 reject_bad_reg (Rm);
11708
11709 inst.instruction |= Rd << 8;
11710 inst.instruction |= Rm << 16;
11711 inst.instruction |= Rm;
11712 }
11713
11714 static void
11715 do_t_rev (void)
11716 {
11717 unsigned Rd, Rm;
11718
11719 Rd = inst.operands[0].reg;
11720 Rm = inst.operands[1].reg;
11721
11722 reject_bad_reg (Rd);
11723 reject_bad_reg (Rm);
11724
11725 if (Rd <= 7 && Rm <= 7
11726 && inst.size_req != 4)
11727 {
11728 inst.instruction = THUMB_OP16 (inst.instruction);
11729 inst.instruction |= Rd;
11730 inst.instruction |= Rm << 3;
11731 }
11732 else if (unified_syntax)
11733 {
11734 inst.instruction = THUMB_OP32 (inst.instruction);
11735 inst.instruction |= Rd << 8;
11736 inst.instruction |= Rm << 16;
11737 inst.instruction |= Rm;
11738 }
11739 else
11740 inst.error = BAD_HIREG;
11741 }
11742
11743 static void
11744 do_t_rrx (void)
11745 {
11746 unsigned Rd, Rm;
11747
11748 Rd = inst.operands[0].reg;
11749 Rm = inst.operands[1].reg;
11750
11751 reject_bad_reg (Rd);
11752 reject_bad_reg (Rm);
11753
11754 inst.instruction |= Rd << 8;
11755 inst.instruction |= Rm;
11756 }
11757
11758 static void
11759 do_t_rsb (void)
11760 {
11761 unsigned Rd, Rs;
11762
11763 Rd = inst.operands[0].reg;
11764 Rs = (inst.operands[1].present
11765 ? inst.operands[1].reg /* Rd, Rs, foo */
11766 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11767
11768 reject_bad_reg (Rd);
11769 reject_bad_reg (Rs);
11770 if (inst.operands[2].isreg)
11771 reject_bad_reg (inst.operands[2].reg);
11772
11773 inst.instruction |= Rd << 8;
11774 inst.instruction |= Rs << 16;
11775 if (!inst.operands[2].isreg)
11776 {
11777 bfd_boolean narrow;
11778
11779 if ((inst.instruction & 0x00100000) != 0)
11780 narrow = !in_it_block ();
11781 else
11782 narrow = in_it_block ();
11783
11784 if (Rd > 7 || Rs > 7)
11785 narrow = FALSE;
11786
11787 if (inst.size_req == 4 || !unified_syntax)
11788 narrow = FALSE;
11789
11790 if (inst.reloc.exp.X_op != O_constant
11791 || inst.reloc.exp.X_add_number != 0)
11792 narrow = FALSE;
11793
11794 /* Turn rsb #0 into 16-bit neg. We should probably do this via
11795 relaxation, but it doesn't seem worth the hassle. */
11796 if (narrow)
11797 {
11798 inst.reloc.type = BFD_RELOC_UNUSED;
11799 inst.instruction = THUMB_OP16 (T_MNEM_negs);
11800 inst.instruction |= Rs << 3;
11801 inst.instruction |= Rd;
11802 }
11803 else
11804 {
11805 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11806 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11807 }
11808 }
11809 else
11810 encode_thumb32_shifted_operand (2);
11811 }
11812
11813 static void
11814 do_t_setend (void)
11815 {
11816 if (warn_on_deprecated
11817 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11818 as_warn (_("setend use is deprecated for ARMv8"));
11819
11820 set_it_insn_type (OUTSIDE_IT_INSN);
11821 if (inst.operands[0].imm)
11822 inst.instruction |= 0x8;
11823 }
11824
11825 static void
11826 do_t_shift (void)
11827 {
11828 if (!inst.operands[1].present)
11829 inst.operands[1].reg = inst.operands[0].reg;
11830
11831 if (unified_syntax)
11832 {
11833 bfd_boolean narrow;
11834 int shift_kind;
11835
11836 switch (inst.instruction)
11837 {
11838 case T_MNEM_asr:
11839 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11840 case T_MNEM_lsl:
11841 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11842 case T_MNEM_lsr:
11843 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11844 case T_MNEM_ror:
11845 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11846 default: abort ();
11847 }
11848
11849 if (THUMB_SETS_FLAGS (inst.instruction))
11850 narrow = !in_it_block ();
11851 else
11852 narrow = in_it_block ();
11853 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11854 narrow = FALSE;
11855 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
11856 narrow = FALSE;
11857 if (inst.operands[2].isreg
11858 && (inst.operands[1].reg != inst.operands[0].reg
11859 || inst.operands[2].reg > 7))
11860 narrow = FALSE;
11861 if (inst.size_req == 4)
11862 narrow = FALSE;
11863
11864 reject_bad_reg (inst.operands[0].reg);
11865 reject_bad_reg (inst.operands[1].reg);
11866
11867 if (!narrow)
11868 {
11869 if (inst.operands[2].isreg)
11870 {
11871 reject_bad_reg (inst.operands[2].reg);
11872 inst.instruction = THUMB_OP32 (inst.instruction);
11873 inst.instruction |= inst.operands[0].reg << 8;
11874 inst.instruction |= inst.operands[1].reg << 16;
11875 inst.instruction |= inst.operands[2].reg;
11876
11877 /* PR 12854: Error on extraneous shifts. */
11878 constraint (inst.operands[2].shifted,
11879 _("extraneous shift as part of operand to shift insn"));
11880 }
11881 else
11882 {
11883 inst.operands[1].shifted = 1;
11884 inst.operands[1].shift_kind = shift_kind;
11885 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11886 ? T_MNEM_movs : T_MNEM_mov);
11887 inst.instruction |= inst.operands[0].reg << 8;
11888 encode_thumb32_shifted_operand (1);
11889 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11890 inst.reloc.type = BFD_RELOC_UNUSED;
11891 }
11892 }
11893 else
11894 {
11895 if (inst.operands[2].isreg)
11896 {
11897 switch (shift_kind)
11898 {
11899 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11900 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11901 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11902 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
11903 default: abort ();
11904 }
11905
11906 inst.instruction |= inst.operands[0].reg;
11907 inst.instruction |= inst.operands[2].reg << 3;
11908
11909 /* PR 12854: Error on extraneous shifts. */
11910 constraint (inst.operands[2].shifted,
11911 _("extraneous shift as part of operand to shift insn"));
11912 }
11913 else
11914 {
11915 switch (shift_kind)
11916 {
11917 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11918 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11919 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11920 default: abort ();
11921 }
11922 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11923 inst.instruction |= inst.operands[0].reg;
11924 inst.instruction |= inst.operands[1].reg << 3;
11925 }
11926 }
11927 }
11928 else
11929 {
11930 constraint (inst.operands[0].reg > 7
11931 || inst.operands[1].reg > 7, BAD_HIREG);
11932 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11933
11934 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11935 {
11936 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11937 constraint (inst.operands[0].reg != inst.operands[1].reg,
11938 _("source1 and dest must be same register"));
11939
11940 switch (inst.instruction)
11941 {
11942 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11943 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11944 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11945 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11946 default: abort ();
11947 }
11948
11949 inst.instruction |= inst.operands[0].reg;
11950 inst.instruction |= inst.operands[2].reg << 3;
11951
11952 /* PR 12854: Error on extraneous shifts. */
11953 constraint (inst.operands[2].shifted,
11954 _("extraneous shift as part of operand to shift insn"));
11955 }
11956 else
11957 {
11958 switch (inst.instruction)
11959 {
11960 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11961 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11962 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11963 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11964 default: abort ();
11965 }
11966 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11967 inst.instruction |= inst.operands[0].reg;
11968 inst.instruction |= inst.operands[1].reg << 3;
11969 }
11970 }
11971 }
11972
11973 static void
11974 do_t_simd (void)
11975 {
11976 unsigned Rd, Rn, Rm;
11977
11978 Rd = inst.operands[0].reg;
11979 Rn = inst.operands[1].reg;
11980 Rm = inst.operands[2].reg;
11981
11982 reject_bad_reg (Rd);
11983 reject_bad_reg (Rn);
11984 reject_bad_reg (Rm);
11985
11986 inst.instruction |= Rd << 8;
11987 inst.instruction |= Rn << 16;
11988 inst.instruction |= Rm;
11989 }
11990
11991 static void
11992 do_t_simd2 (void)
11993 {
11994 unsigned Rd, Rn, Rm;
11995
11996 Rd = inst.operands[0].reg;
11997 Rm = inst.operands[1].reg;
11998 Rn = inst.operands[2].reg;
11999
12000 reject_bad_reg (Rd);
12001 reject_bad_reg (Rn);
12002 reject_bad_reg (Rm);
12003
12004 inst.instruction |= Rd << 8;
12005 inst.instruction |= Rn << 16;
12006 inst.instruction |= Rm;
12007 }
12008
12009 static void
12010 do_t_smc (void)
12011 {
12012 unsigned int value = inst.reloc.exp.X_add_number;
12013 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
12014 _("SMC is not permitted on this architecture"));
12015 constraint (inst.reloc.exp.X_op != O_constant,
12016 _("expression too complex"));
12017 inst.reloc.type = BFD_RELOC_UNUSED;
12018 inst.instruction |= (value & 0xf000) >> 12;
12019 inst.instruction |= (value & 0x0ff0);
12020 inst.instruction |= (value & 0x000f) << 16;
12021 }
12022
12023 static void
12024 do_t_hvc (void)
12025 {
12026 unsigned int value = inst.reloc.exp.X_add_number;
12027
12028 inst.reloc.type = BFD_RELOC_UNUSED;
12029 inst.instruction |= (value & 0x0fff);
12030 inst.instruction |= (value & 0xf000) << 4;
12031 }
12032
12033 static void
12034 do_t_ssat_usat (int bias)
12035 {
12036 unsigned Rd, Rn;
12037
12038 Rd = inst.operands[0].reg;
12039 Rn = inst.operands[2].reg;
12040
12041 reject_bad_reg (Rd);
12042 reject_bad_reg (Rn);
12043
12044 inst.instruction |= Rd << 8;
12045 inst.instruction |= inst.operands[1].imm - bias;
12046 inst.instruction |= Rn << 16;
12047
12048 if (inst.operands[3].present)
12049 {
12050 offsetT shift_amount = inst.reloc.exp.X_add_number;
12051
12052 inst.reloc.type = BFD_RELOC_UNUSED;
12053
12054 constraint (inst.reloc.exp.X_op != O_constant,
12055 _("expression too complex"));
12056
12057 if (shift_amount != 0)
12058 {
12059 constraint (shift_amount > 31,
12060 _("shift expression is too large"));
12061
12062 if (inst.operands[3].shift_kind == SHIFT_ASR)
12063 inst.instruction |= 0x00200000; /* sh bit. */
12064
12065 inst.instruction |= (shift_amount & 0x1c) << 10;
12066 inst.instruction |= (shift_amount & 0x03) << 6;
12067 }
12068 }
12069 }
12070
12071 static void
12072 do_t_ssat (void)
12073 {
12074 do_t_ssat_usat (1);
12075 }
12076
12077 static void
12078 do_t_ssat16 (void)
12079 {
12080 unsigned Rd, Rn;
12081
12082 Rd = inst.operands[0].reg;
12083 Rn = inst.operands[2].reg;
12084
12085 reject_bad_reg (Rd);
12086 reject_bad_reg (Rn);
12087
12088 inst.instruction |= Rd << 8;
12089 inst.instruction |= inst.operands[1].imm - 1;
12090 inst.instruction |= Rn << 16;
12091 }
12092
12093 static void
12094 do_t_strex (void)
12095 {
12096 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
12097 || inst.operands[2].postind || inst.operands[2].writeback
12098 || inst.operands[2].immisreg || inst.operands[2].shifted
12099 || inst.operands[2].negative,
12100 BAD_ADDR_MODE);
12101
12102 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
12103
12104 inst.instruction |= inst.operands[0].reg << 8;
12105 inst.instruction |= inst.operands[1].reg << 12;
12106 inst.instruction |= inst.operands[2].reg << 16;
12107 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
12108 }
12109
12110 static void
12111 do_t_strexd (void)
12112 {
12113 if (!inst.operands[2].present)
12114 inst.operands[2].reg = inst.operands[1].reg + 1;
12115
12116 constraint (inst.operands[0].reg == inst.operands[1].reg
12117 || inst.operands[0].reg == inst.operands[2].reg
12118 || inst.operands[0].reg == inst.operands[3].reg,
12119 BAD_OVERLAP);
12120
12121 inst.instruction |= inst.operands[0].reg;
12122 inst.instruction |= inst.operands[1].reg << 12;
12123 inst.instruction |= inst.operands[2].reg << 8;
12124 inst.instruction |= inst.operands[3].reg << 16;
12125 }
12126
12127 static void
12128 do_t_sxtah (void)
12129 {
12130 unsigned Rd, Rn, Rm;
12131
12132 Rd = inst.operands[0].reg;
12133 Rn = inst.operands[1].reg;
12134 Rm = inst.operands[2].reg;
12135
12136 reject_bad_reg (Rd);
12137 reject_bad_reg (Rn);
12138 reject_bad_reg (Rm);
12139
12140 inst.instruction |= Rd << 8;
12141 inst.instruction |= Rn << 16;
12142 inst.instruction |= Rm;
12143 inst.instruction |= inst.operands[3].imm << 4;
12144 }
12145
12146 static void
12147 do_t_sxth (void)
12148 {
12149 unsigned Rd, Rm;
12150
12151 Rd = inst.operands[0].reg;
12152 Rm = inst.operands[1].reg;
12153
12154 reject_bad_reg (Rd);
12155 reject_bad_reg (Rm);
12156
12157 if (inst.instruction <= 0xffff
12158 && inst.size_req != 4
12159 && Rd <= 7 && Rm <= 7
12160 && (!inst.operands[2].present || inst.operands[2].imm == 0))
12161 {
12162 inst.instruction = THUMB_OP16 (inst.instruction);
12163 inst.instruction |= Rd;
12164 inst.instruction |= Rm << 3;
12165 }
12166 else if (unified_syntax)
12167 {
12168 if (inst.instruction <= 0xffff)
12169 inst.instruction = THUMB_OP32 (inst.instruction);
12170 inst.instruction |= Rd << 8;
12171 inst.instruction |= Rm;
12172 inst.instruction |= inst.operands[2].imm << 4;
12173 }
12174 else
12175 {
12176 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
12177 _("Thumb encoding does not support rotation"));
12178 constraint (1, BAD_HIREG);
12179 }
12180 }
12181
12182 static void
12183 do_t_swi (void)
12184 {
12185 /* We have to do the following check manually as ARM_EXT_OS only applies
12186 to ARM_EXT_V6M. */
12187 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6m))
12188 {
12189 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_os)
12190 /* This only applies to the v6m howver, not later architectures. */
12191 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7))
12192 as_bad (_("SVC is not permitted on this architecture"));
12193 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_os);
12194 }
12195
12196 inst.reloc.type = BFD_RELOC_ARM_SWI;
12197 }
12198
12199 static void
12200 do_t_tb (void)
12201 {
12202 unsigned Rn, Rm;
12203 int half;
12204
12205 half = (inst.instruction & 0x10) != 0;
12206 set_it_insn_type_last ();
12207 constraint (inst.operands[0].immisreg,
12208 _("instruction requires register index"));
12209
12210 Rn = inst.operands[0].reg;
12211 Rm = inst.operands[0].imm;
12212
12213 constraint (Rn == REG_SP, BAD_SP);
12214 reject_bad_reg (Rm);
12215
12216 constraint (!half && inst.operands[0].shifted,
12217 _("instruction does not allow shifted index"));
12218 inst.instruction |= (Rn << 16) | Rm;
12219 }
12220
12221 static void
12222 do_t_usat (void)
12223 {
12224 do_t_ssat_usat (0);
12225 }
12226
12227 static void
12228 do_t_usat16 (void)
12229 {
12230 unsigned Rd, Rn;
12231
12232 Rd = inst.operands[0].reg;
12233 Rn = inst.operands[2].reg;
12234
12235 reject_bad_reg (Rd);
12236 reject_bad_reg (Rn);
12237
12238 inst.instruction |= Rd << 8;
12239 inst.instruction |= inst.operands[1].imm;
12240 inst.instruction |= Rn << 16;
12241 }
12242
12243 /* Neon instruction encoder helpers. */
12244
12245 /* Encodings for the different types for various Neon opcodes. */
12246
12247 /* An "invalid" code for the following tables. */
12248 #define N_INV -1u
12249
12250 struct neon_tab_entry
12251 {
12252 unsigned integer;
12253 unsigned float_or_poly;
12254 unsigned scalar_or_imm;
12255 };
12256
12257 /* Map overloaded Neon opcodes to their respective encodings. */
12258 #define NEON_ENC_TAB \
12259 X(vabd, 0x0000700, 0x1200d00, N_INV), \
12260 X(vmax, 0x0000600, 0x0000f00, N_INV), \
12261 X(vmin, 0x0000610, 0x0200f00, N_INV), \
12262 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
12263 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
12264 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
12265 X(vadd, 0x0000800, 0x0000d00, N_INV), \
12266 X(vsub, 0x1000800, 0x0200d00, N_INV), \
12267 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
12268 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
12269 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
12270 /* Register variants of the following two instructions are encoded as
12271 vcge / vcgt with the operands reversed. */ \
12272 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
12273 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
12274 X(vfma, N_INV, 0x0000c10, N_INV), \
12275 X(vfms, N_INV, 0x0200c10, N_INV), \
12276 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
12277 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
12278 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
12279 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
12280 X(vmlal, 0x0800800, N_INV, 0x0800240), \
12281 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
12282 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
12283 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
12284 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
12285 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
12286 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
12287 X(vshl, 0x0000400, N_INV, 0x0800510), \
12288 X(vqshl, 0x0000410, N_INV, 0x0800710), \
12289 X(vand, 0x0000110, N_INV, 0x0800030), \
12290 X(vbic, 0x0100110, N_INV, 0x0800030), \
12291 X(veor, 0x1000110, N_INV, N_INV), \
12292 X(vorn, 0x0300110, N_INV, 0x0800010), \
12293 X(vorr, 0x0200110, N_INV, 0x0800010), \
12294 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
12295 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
12296 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
12297 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
12298 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
12299 X(vst1, 0x0000000, 0x0800000, N_INV), \
12300 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
12301 X(vst2, 0x0000100, 0x0800100, N_INV), \
12302 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
12303 X(vst3, 0x0000200, 0x0800200, N_INV), \
12304 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
12305 X(vst4, 0x0000300, 0x0800300, N_INV), \
12306 X(vmovn, 0x1b20200, N_INV, N_INV), \
12307 X(vtrn, 0x1b20080, N_INV, N_INV), \
12308 X(vqmovn, 0x1b20200, N_INV, N_INV), \
12309 X(vqmovun, 0x1b20240, N_INV, N_INV), \
12310 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
12311 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
12312 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
12313 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
12314 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
12315 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
12316 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
12317 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
12318 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
12319
12320 enum neon_opc
12321 {
12322 #define X(OPC,I,F,S) N_MNEM_##OPC
12323 NEON_ENC_TAB
12324 #undef X
12325 };
12326
12327 static const struct neon_tab_entry neon_enc_tab[] =
12328 {
12329 #define X(OPC,I,F,S) { (I), (F), (S) }
12330 NEON_ENC_TAB
12331 #undef X
12332 };
12333
12334 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
12335 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12336 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12337 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12338 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12339 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12340 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12341 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12342 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12343 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12344 #define NEON_ENC_SINGLE_(X) \
12345 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
12346 #define NEON_ENC_DOUBLE_(X) \
12347 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
12348
12349 #define NEON_ENCODE(type, inst) \
12350 do \
12351 { \
12352 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
12353 inst.is_neon = 1; \
12354 } \
12355 while (0)
12356
12357 #define check_neon_suffixes \
12358 do \
12359 { \
12360 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
12361 { \
12362 as_bad (_("invalid neon suffix for non neon instruction")); \
12363 return; \
12364 } \
12365 } \
12366 while (0)
12367
12368 /* Define shapes for instruction operands. The following mnemonic characters
12369 are used in this table:
12370
12371 F - VFP S<n> register
12372 D - Neon D<n> register
12373 Q - Neon Q<n> register
12374 I - Immediate
12375 S - Scalar
12376 R - ARM register
12377 L - D<n> register list
12378
12379 This table is used to generate various data:
12380 - enumerations of the form NS_DDR to be used as arguments to
12381 neon_select_shape.
12382 - a table classifying shapes into single, double, quad, mixed.
12383 - a table used to drive neon_select_shape. */
12384
12385 #define NEON_SHAPE_DEF \
12386 X(3, (D, D, D), DOUBLE), \
12387 X(3, (Q, Q, Q), QUAD), \
12388 X(3, (D, D, I), DOUBLE), \
12389 X(3, (Q, Q, I), QUAD), \
12390 X(3, (D, D, S), DOUBLE), \
12391 X(3, (Q, Q, S), QUAD), \
12392 X(2, (D, D), DOUBLE), \
12393 X(2, (Q, Q), QUAD), \
12394 X(2, (D, S), DOUBLE), \
12395 X(2, (Q, S), QUAD), \
12396 X(2, (D, R), DOUBLE), \
12397 X(2, (Q, R), QUAD), \
12398 X(2, (D, I), DOUBLE), \
12399 X(2, (Q, I), QUAD), \
12400 X(3, (D, L, D), DOUBLE), \
12401 X(2, (D, Q), MIXED), \
12402 X(2, (Q, D), MIXED), \
12403 X(3, (D, Q, I), MIXED), \
12404 X(3, (Q, D, I), MIXED), \
12405 X(3, (Q, D, D), MIXED), \
12406 X(3, (D, Q, Q), MIXED), \
12407 X(3, (Q, Q, D), MIXED), \
12408 X(3, (Q, D, S), MIXED), \
12409 X(3, (D, Q, S), MIXED), \
12410 X(4, (D, D, D, I), DOUBLE), \
12411 X(4, (Q, Q, Q, I), QUAD), \
12412 X(2, (F, F), SINGLE), \
12413 X(3, (F, F, F), SINGLE), \
12414 X(2, (F, I), SINGLE), \
12415 X(2, (F, D), MIXED), \
12416 X(2, (D, F), MIXED), \
12417 X(3, (F, F, I), MIXED), \
12418 X(4, (R, R, F, F), SINGLE), \
12419 X(4, (F, F, R, R), SINGLE), \
12420 X(3, (D, R, R), DOUBLE), \
12421 X(3, (R, R, D), DOUBLE), \
12422 X(2, (S, R), SINGLE), \
12423 X(2, (R, S), SINGLE), \
12424 X(2, (F, R), SINGLE), \
12425 X(2, (R, F), SINGLE)
12426
12427 #define S2(A,B) NS_##A##B
12428 #define S3(A,B,C) NS_##A##B##C
12429 #define S4(A,B,C,D) NS_##A##B##C##D
12430
12431 #define X(N, L, C) S##N L
12432
12433 enum neon_shape
12434 {
12435 NEON_SHAPE_DEF,
12436 NS_NULL
12437 };
12438
12439 #undef X
12440 #undef S2
12441 #undef S3
12442 #undef S4
12443
12444 enum neon_shape_class
12445 {
12446 SC_SINGLE,
12447 SC_DOUBLE,
12448 SC_QUAD,
12449 SC_MIXED
12450 };
12451
12452 #define X(N, L, C) SC_##C
12453
12454 static enum neon_shape_class neon_shape_class[] =
12455 {
12456 NEON_SHAPE_DEF
12457 };
12458
12459 #undef X
12460
12461 enum neon_shape_el
12462 {
12463 SE_F,
12464 SE_D,
12465 SE_Q,
12466 SE_I,
12467 SE_S,
12468 SE_R,
12469 SE_L
12470 };
12471
12472 /* Register widths of above. */
12473 static unsigned neon_shape_el_size[] =
12474 {
12475 32,
12476 64,
12477 128,
12478 0,
12479 32,
12480 32,
12481 0
12482 };
12483
12484 struct neon_shape_info
12485 {
12486 unsigned els;
12487 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
12488 };
12489
12490 #define S2(A,B) { SE_##A, SE_##B }
12491 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
12492 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
12493
12494 #define X(N, L, C) { N, S##N L }
12495
12496 static struct neon_shape_info neon_shape_tab[] =
12497 {
12498 NEON_SHAPE_DEF
12499 };
12500
12501 #undef X
12502 #undef S2
12503 #undef S3
12504 #undef S4
12505
12506 /* Bit masks used in type checking given instructions.
12507 'N_EQK' means the type must be the same as (or based on in some way) the key
12508 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
12509 set, various other bits can be set as well in order to modify the meaning of
12510 the type constraint. */
12511
12512 enum neon_type_mask
12513 {
12514 N_S8 = 0x0000001,
12515 N_S16 = 0x0000002,
12516 N_S32 = 0x0000004,
12517 N_S64 = 0x0000008,
12518 N_U8 = 0x0000010,
12519 N_U16 = 0x0000020,
12520 N_U32 = 0x0000040,
12521 N_U64 = 0x0000080,
12522 N_I8 = 0x0000100,
12523 N_I16 = 0x0000200,
12524 N_I32 = 0x0000400,
12525 N_I64 = 0x0000800,
12526 N_8 = 0x0001000,
12527 N_16 = 0x0002000,
12528 N_32 = 0x0004000,
12529 N_64 = 0x0008000,
12530 N_P8 = 0x0010000,
12531 N_P16 = 0x0020000,
12532 N_F16 = 0x0040000,
12533 N_F32 = 0x0080000,
12534 N_F64 = 0x0100000,
12535 N_KEY = 0x1000000, /* Key element (main type specifier). */
12536 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
12537 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
12538 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
12539 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
12540 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
12541 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
12542 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
12543 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
12544 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
12545 N_UTYP = 0,
12546 N_MAX_NONSPECIAL = N_F64
12547 };
12548
12549 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
12550
12551 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
12552 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
12553 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
12554 #define N_SUF_32 (N_SU_32 | N_F32)
12555 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
12556 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
12557
12558 /* Pass this as the first type argument to neon_check_type to ignore types
12559 altogether. */
12560 #define N_IGNORE_TYPE (N_KEY | N_EQK)
12561
12562 /* Select a "shape" for the current instruction (describing register types or
12563 sizes) from a list of alternatives. Return NS_NULL if the current instruction
12564 doesn't fit. For non-polymorphic shapes, checking is usually done as a
12565 function of operand parsing, so this function doesn't need to be called.
12566 Shapes should be listed in order of decreasing length. */
12567
12568 static enum neon_shape
12569 neon_select_shape (enum neon_shape shape, ...)
12570 {
12571 va_list ap;
12572 enum neon_shape first_shape = shape;
12573
12574 /* Fix missing optional operands. FIXME: we don't know at this point how
12575 many arguments we should have, so this makes the assumption that we have
12576 > 1. This is true of all current Neon opcodes, I think, but may not be
12577 true in the future. */
12578 if (!inst.operands[1].present)
12579 inst.operands[1] = inst.operands[0];
12580
12581 va_start (ap, shape);
12582
12583 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
12584 {
12585 unsigned j;
12586 int matches = 1;
12587
12588 for (j = 0; j < neon_shape_tab[shape].els; j++)
12589 {
12590 if (!inst.operands[j].present)
12591 {
12592 matches = 0;
12593 break;
12594 }
12595
12596 switch (neon_shape_tab[shape].el[j])
12597 {
12598 case SE_F:
12599 if (!(inst.operands[j].isreg
12600 && inst.operands[j].isvec
12601 && inst.operands[j].issingle
12602 && !inst.operands[j].isquad))
12603 matches = 0;
12604 break;
12605
12606 case SE_D:
12607 if (!(inst.operands[j].isreg
12608 && inst.operands[j].isvec
12609 && !inst.operands[j].isquad
12610 && !inst.operands[j].issingle))
12611 matches = 0;
12612 break;
12613
12614 case SE_R:
12615 if (!(inst.operands[j].isreg
12616 && !inst.operands[j].isvec))
12617 matches = 0;
12618 break;
12619
12620 case SE_Q:
12621 if (!(inst.operands[j].isreg
12622 && inst.operands[j].isvec
12623 && inst.operands[j].isquad
12624 && !inst.operands[j].issingle))
12625 matches = 0;
12626 break;
12627
12628 case SE_I:
12629 if (!(!inst.operands[j].isreg
12630 && !inst.operands[j].isscalar))
12631 matches = 0;
12632 break;
12633
12634 case SE_S:
12635 if (!(!inst.operands[j].isreg
12636 && inst.operands[j].isscalar))
12637 matches = 0;
12638 break;
12639
12640 case SE_L:
12641 break;
12642 }
12643 if (!matches)
12644 break;
12645 }
12646 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
12647 /* We've matched all the entries in the shape table, and we don't
12648 have any left over operands which have not been matched. */
12649 break;
12650 }
12651
12652 va_end (ap);
12653
12654 if (shape == NS_NULL && first_shape != NS_NULL)
12655 first_error (_("invalid instruction shape"));
12656
12657 return shape;
12658 }
12659
12660 /* True if SHAPE is predominantly a quadword operation (most of the time, this
12661 means the Q bit should be set). */
12662
12663 static int
12664 neon_quad (enum neon_shape shape)
12665 {
12666 return neon_shape_class[shape] == SC_QUAD;
12667 }
12668
12669 static void
12670 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
12671 unsigned *g_size)
12672 {
12673 /* Allow modification to be made to types which are constrained to be
12674 based on the key element, based on bits set alongside N_EQK. */
12675 if ((typebits & N_EQK) != 0)
12676 {
12677 if ((typebits & N_HLF) != 0)
12678 *g_size /= 2;
12679 else if ((typebits & N_DBL) != 0)
12680 *g_size *= 2;
12681 if ((typebits & N_SGN) != 0)
12682 *g_type = NT_signed;
12683 else if ((typebits & N_UNS) != 0)
12684 *g_type = NT_unsigned;
12685 else if ((typebits & N_INT) != 0)
12686 *g_type = NT_integer;
12687 else if ((typebits & N_FLT) != 0)
12688 *g_type = NT_float;
12689 else if ((typebits & N_SIZ) != 0)
12690 *g_type = NT_untyped;
12691 }
12692 }
12693
12694 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
12695 operand type, i.e. the single type specified in a Neon instruction when it
12696 is the only one given. */
12697
12698 static struct neon_type_el
12699 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
12700 {
12701 struct neon_type_el dest = *key;
12702
12703 gas_assert ((thisarg & N_EQK) != 0);
12704
12705 neon_modify_type_size (thisarg, &dest.type, &dest.size);
12706
12707 return dest;
12708 }
12709
12710 /* Convert Neon type and size into compact bitmask representation. */
12711
12712 static enum neon_type_mask
12713 type_chk_of_el_type (enum neon_el_type type, unsigned size)
12714 {
12715 switch (type)
12716 {
12717 case NT_untyped:
12718 switch (size)
12719 {
12720 case 8: return N_8;
12721 case 16: return N_16;
12722 case 32: return N_32;
12723 case 64: return N_64;
12724 default: ;
12725 }
12726 break;
12727
12728 case NT_integer:
12729 switch (size)
12730 {
12731 case 8: return N_I8;
12732 case 16: return N_I16;
12733 case 32: return N_I32;
12734 case 64: return N_I64;
12735 default: ;
12736 }
12737 break;
12738
12739 case NT_float:
12740 switch (size)
12741 {
12742 case 16: return N_F16;
12743 case 32: return N_F32;
12744 case 64: return N_F64;
12745 default: ;
12746 }
12747 break;
12748
12749 case NT_poly:
12750 switch (size)
12751 {
12752 case 8: return N_P8;
12753 case 16: return N_P16;
12754 default: ;
12755 }
12756 break;
12757
12758 case NT_signed:
12759 switch (size)
12760 {
12761 case 8: return N_S8;
12762 case 16: return N_S16;
12763 case 32: return N_S32;
12764 case 64: return N_S64;
12765 default: ;
12766 }
12767 break;
12768
12769 case NT_unsigned:
12770 switch (size)
12771 {
12772 case 8: return N_U8;
12773 case 16: return N_U16;
12774 case 32: return N_U32;
12775 case 64: return N_U64;
12776 default: ;
12777 }
12778 break;
12779
12780 default: ;
12781 }
12782
12783 return N_UTYP;
12784 }
12785
12786 /* Convert compact Neon bitmask type representation to a type and size. Only
12787 handles the case where a single bit is set in the mask. */
12788
12789 static int
12790 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
12791 enum neon_type_mask mask)
12792 {
12793 if ((mask & N_EQK) != 0)
12794 return FAIL;
12795
12796 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
12797 *size = 8;
12798 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
12799 *size = 16;
12800 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
12801 *size = 32;
12802 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
12803 *size = 64;
12804 else
12805 return FAIL;
12806
12807 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
12808 *type = NT_signed;
12809 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
12810 *type = NT_unsigned;
12811 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
12812 *type = NT_integer;
12813 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
12814 *type = NT_untyped;
12815 else if ((mask & (N_P8 | N_P16)) != 0)
12816 *type = NT_poly;
12817 else if ((mask & (N_F32 | N_F64)) != 0)
12818 *type = NT_float;
12819 else
12820 return FAIL;
12821
12822 return SUCCESS;
12823 }
12824
12825 /* Modify a bitmask of allowed types. This is only needed for type
12826 relaxation. */
12827
12828 static unsigned
12829 modify_types_allowed (unsigned allowed, unsigned mods)
12830 {
12831 unsigned size;
12832 enum neon_el_type type;
12833 unsigned destmask;
12834 int i;
12835
12836 destmask = 0;
12837
12838 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
12839 {
12840 if (el_type_of_type_chk (&type, &size,
12841 (enum neon_type_mask) (allowed & i)) == SUCCESS)
12842 {
12843 neon_modify_type_size (mods, &type, &size);
12844 destmask |= type_chk_of_el_type (type, size);
12845 }
12846 }
12847
12848 return destmask;
12849 }
12850
12851 /* Check type and return type classification.
12852 The manual states (paraphrase): If one datatype is given, it indicates the
12853 type given in:
12854 - the second operand, if there is one
12855 - the operand, if there is no second operand
12856 - the result, if there are no operands.
12857 This isn't quite good enough though, so we use a concept of a "key" datatype
12858 which is set on a per-instruction basis, which is the one which matters when
12859 only one data type is written.
12860 Note: this function has side-effects (e.g. filling in missing operands). All
12861 Neon instructions should call it before performing bit encoding. */
12862
12863 static struct neon_type_el
12864 neon_check_type (unsigned els, enum neon_shape ns, ...)
12865 {
12866 va_list ap;
12867 unsigned i, pass, key_el = 0;
12868 unsigned types[NEON_MAX_TYPE_ELS];
12869 enum neon_el_type k_type = NT_invtype;
12870 unsigned k_size = -1u;
12871 struct neon_type_el badtype = {NT_invtype, -1};
12872 unsigned key_allowed = 0;
12873
12874 /* Optional registers in Neon instructions are always (not) in operand 1.
12875 Fill in the missing operand here, if it was omitted. */
12876 if (els > 1 && !inst.operands[1].present)
12877 inst.operands[1] = inst.operands[0];
12878
12879 /* Suck up all the varargs. */
12880 va_start (ap, ns);
12881 for (i = 0; i < els; i++)
12882 {
12883 unsigned thisarg = va_arg (ap, unsigned);
12884 if (thisarg == N_IGNORE_TYPE)
12885 {
12886 va_end (ap);
12887 return badtype;
12888 }
12889 types[i] = thisarg;
12890 if ((thisarg & N_KEY) != 0)
12891 key_el = i;
12892 }
12893 va_end (ap);
12894
12895 if (inst.vectype.elems > 0)
12896 for (i = 0; i < els; i++)
12897 if (inst.operands[i].vectype.type != NT_invtype)
12898 {
12899 first_error (_("types specified in both the mnemonic and operands"));
12900 return badtype;
12901 }
12902
12903 /* Duplicate inst.vectype elements here as necessary.
12904 FIXME: No idea if this is exactly the same as the ARM assembler,
12905 particularly when an insn takes one register and one non-register
12906 operand. */
12907 if (inst.vectype.elems == 1 && els > 1)
12908 {
12909 unsigned j;
12910 inst.vectype.elems = els;
12911 inst.vectype.el[key_el] = inst.vectype.el[0];
12912 for (j = 0; j < els; j++)
12913 if (j != key_el)
12914 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12915 types[j]);
12916 }
12917 else if (inst.vectype.elems == 0 && els > 0)
12918 {
12919 unsigned j;
12920 /* No types were given after the mnemonic, so look for types specified
12921 after each operand. We allow some flexibility here; as long as the
12922 "key" operand has a type, we can infer the others. */
12923 for (j = 0; j < els; j++)
12924 if (inst.operands[j].vectype.type != NT_invtype)
12925 inst.vectype.el[j] = inst.operands[j].vectype;
12926
12927 if (inst.operands[key_el].vectype.type != NT_invtype)
12928 {
12929 for (j = 0; j < els; j++)
12930 if (inst.operands[j].vectype.type == NT_invtype)
12931 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12932 types[j]);
12933 }
12934 else
12935 {
12936 first_error (_("operand types can't be inferred"));
12937 return badtype;
12938 }
12939 }
12940 else if (inst.vectype.elems != els)
12941 {
12942 first_error (_("type specifier has the wrong number of parts"));
12943 return badtype;
12944 }
12945
12946 for (pass = 0; pass < 2; pass++)
12947 {
12948 for (i = 0; i < els; i++)
12949 {
12950 unsigned thisarg = types[i];
12951 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12952 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12953 enum neon_el_type g_type = inst.vectype.el[i].type;
12954 unsigned g_size = inst.vectype.el[i].size;
12955
12956 /* Decay more-specific signed & unsigned types to sign-insensitive
12957 integer types if sign-specific variants are unavailable. */
12958 if ((g_type == NT_signed || g_type == NT_unsigned)
12959 && (types_allowed & N_SU_ALL) == 0)
12960 g_type = NT_integer;
12961
12962 /* If only untyped args are allowed, decay any more specific types to
12963 them. Some instructions only care about signs for some element
12964 sizes, so handle that properly. */
12965 if ((g_size == 8 && (types_allowed & N_8) != 0)
12966 || (g_size == 16 && (types_allowed & N_16) != 0)
12967 || (g_size == 32 && (types_allowed & N_32) != 0)
12968 || (g_size == 64 && (types_allowed & N_64) != 0))
12969 g_type = NT_untyped;
12970
12971 if (pass == 0)
12972 {
12973 if ((thisarg & N_KEY) != 0)
12974 {
12975 k_type = g_type;
12976 k_size = g_size;
12977 key_allowed = thisarg & ~N_KEY;
12978 }
12979 }
12980 else
12981 {
12982 if ((thisarg & N_VFP) != 0)
12983 {
12984 enum neon_shape_el regshape;
12985 unsigned regwidth, match;
12986
12987 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
12988 if (ns == NS_NULL)
12989 {
12990 first_error (_("invalid instruction shape"));
12991 return badtype;
12992 }
12993 regshape = neon_shape_tab[ns].el[i];
12994 regwidth = neon_shape_el_size[regshape];
12995
12996 /* In VFP mode, operands must match register widths. If we
12997 have a key operand, use its width, else use the width of
12998 the current operand. */
12999 if (k_size != -1u)
13000 match = k_size;
13001 else
13002 match = g_size;
13003
13004 if (regwidth != match)
13005 {
13006 first_error (_("operand size must match register width"));
13007 return badtype;
13008 }
13009 }
13010
13011 if ((thisarg & N_EQK) == 0)
13012 {
13013 unsigned given_type = type_chk_of_el_type (g_type, g_size);
13014
13015 if ((given_type & types_allowed) == 0)
13016 {
13017 first_error (_("bad type in Neon instruction"));
13018 return badtype;
13019 }
13020 }
13021 else
13022 {
13023 enum neon_el_type mod_k_type = k_type;
13024 unsigned mod_k_size = k_size;
13025 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
13026 if (g_type != mod_k_type || g_size != mod_k_size)
13027 {
13028 first_error (_("inconsistent types in Neon instruction"));
13029 return badtype;
13030 }
13031 }
13032 }
13033 }
13034 }
13035
13036 return inst.vectype.el[key_el];
13037 }
13038
13039 /* Neon-style VFP instruction forwarding. */
13040
13041 /* Thumb VFP instructions have 0xE in the condition field. */
13042
13043 static void
13044 do_vfp_cond_or_thumb (void)
13045 {
13046 inst.is_neon = 1;
13047
13048 if (thumb_mode)
13049 inst.instruction |= 0xe0000000;
13050 else
13051 inst.instruction |= inst.cond << 28;
13052 }
13053
13054 /* Look up and encode a simple mnemonic, for use as a helper function for the
13055 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
13056 etc. It is assumed that operand parsing has already been done, and that the
13057 operands are in the form expected by the given opcode (this isn't necessarily
13058 the same as the form in which they were parsed, hence some massaging must
13059 take place before this function is called).
13060 Checks current arch version against that in the looked-up opcode. */
13061
13062 static void
13063 do_vfp_nsyn_opcode (const char *opname)
13064 {
13065 const struct asm_opcode *opcode;
13066
13067 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
13068
13069 if (!opcode)
13070 abort ();
13071
13072 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
13073 thumb_mode ? *opcode->tvariant : *opcode->avariant),
13074 _(BAD_FPU));
13075
13076 inst.is_neon = 1;
13077
13078 if (thumb_mode)
13079 {
13080 inst.instruction = opcode->tvalue;
13081 opcode->tencode ();
13082 }
13083 else
13084 {
13085 inst.instruction = (inst.cond << 28) | opcode->avalue;
13086 opcode->aencode ();
13087 }
13088 }
13089
13090 static void
13091 do_vfp_nsyn_add_sub (enum neon_shape rs)
13092 {
13093 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
13094
13095 if (rs == NS_FFF)
13096 {
13097 if (is_add)
13098 do_vfp_nsyn_opcode ("fadds");
13099 else
13100 do_vfp_nsyn_opcode ("fsubs");
13101 }
13102 else
13103 {
13104 if (is_add)
13105 do_vfp_nsyn_opcode ("faddd");
13106 else
13107 do_vfp_nsyn_opcode ("fsubd");
13108 }
13109 }
13110
13111 /* Check operand types to see if this is a VFP instruction, and if so call
13112 PFN (). */
13113
13114 static int
13115 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
13116 {
13117 enum neon_shape rs;
13118 struct neon_type_el et;
13119
13120 switch (args)
13121 {
13122 case 2:
13123 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13124 et = neon_check_type (2, rs,
13125 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13126 break;
13127
13128 case 3:
13129 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13130 et = neon_check_type (3, rs,
13131 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13132 break;
13133
13134 default:
13135 abort ();
13136 }
13137
13138 if (et.type != NT_invtype)
13139 {
13140 pfn (rs);
13141 return SUCCESS;
13142 }
13143
13144 inst.error = NULL;
13145 return FAIL;
13146 }
13147
13148 static void
13149 do_vfp_nsyn_mla_mls (enum neon_shape rs)
13150 {
13151 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
13152
13153 if (rs == NS_FFF)
13154 {
13155 if (is_mla)
13156 do_vfp_nsyn_opcode ("fmacs");
13157 else
13158 do_vfp_nsyn_opcode ("fnmacs");
13159 }
13160 else
13161 {
13162 if (is_mla)
13163 do_vfp_nsyn_opcode ("fmacd");
13164 else
13165 do_vfp_nsyn_opcode ("fnmacd");
13166 }
13167 }
13168
13169 static void
13170 do_vfp_nsyn_fma_fms (enum neon_shape rs)
13171 {
13172 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
13173
13174 if (rs == NS_FFF)
13175 {
13176 if (is_fma)
13177 do_vfp_nsyn_opcode ("ffmas");
13178 else
13179 do_vfp_nsyn_opcode ("ffnmas");
13180 }
13181 else
13182 {
13183 if (is_fma)
13184 do_vfp_nsyn_opcode ("ffmad");
13185 else
13186 do_vfp_nsyn_opcode ("ffnmad");
13187 }
13188 }
13189
13190 static void
13191 do_vfp_nsyn_mul (enum neon_shape rs)
13192 {
13193 if (rs == NS_FFF)
13194 do_vfp_nsyn_opcode ("fmuls");
13195 else
13196 do_vfp_nsyn_opcode ("fmuld");
13197 }
13198
13199 static void
13200 do_vfp_nsyn_abs_neg (enum neon_shape rs)
13201 {
13202 int is_neg = (inst.instruction & 0x80) != 0;
13203 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
13204
13205 if (rs == NS_FF)
13206 {
13207 if (is_neg)
13208 do_vfp_nsyn_opcode ("fnegs");
13209 else
13210 do_vfp_nsyn_opcode ("fabss");
13211 }
13212 else
13213 {
13214 if (is_neg)
13215 do_vfp_nsyn_opcode ("fnegd");
13216 else
13217 do_vfp_nsyn_opcode ("fabsd");
13218 }
13219 }
13220
13221 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
13222 insns belong to Neon, and are handled elsewhere. */
13223
13224 static void
13225 do_vfp_nsyn_ldm_stm (int is_dbmode)
13226 {
13227 int is_ldm = (inst.instruction & (1 << 20)) != 0;
13228 if (is_ldm)
13229 {
13230 if (is_dbmode)
13231 do_vfp_nsyn_opcode ("fldmdbs");
13232 else
13233 do_vfp_nsyn_opcode ("fldmias");
13234 }
13235 else
13236 {
13237 if (is_dbmode)
13238 do_vfp_nsyn_opcode ("fstmdbs");
13239 else
13240 do_vfp_nsyn_opcode ("fstmias");
13241 }
13242 }
13243
13244 static void
13245 do_vfp_nsyn_sqrt (void)
13246 {
13247 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13248 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13249
13250 if (rs == NS_FF)
13251 do_vfp_nsyn_opcode ("fsqrts");
13252 else
13253 do_vfp_nsyn_opcode ("fsqrtd");
13254 }
13255
13256 static void
13257 do_vfp_nsyn_div (void)
13258 {
13259 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13260 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13261 N_F32 | N_F64 | N_KEY | N_VFP);
13262
13263 if (rs == NS_FFF)
13264 do_vfp_nsyn_opcode ("fdivs");
13265 else
13266 do_vfp_nsyn_opcode ("fdivd");
13267 }
13268
13269 static void
13270 do_vfp_nsyn_nmul (void)
13271 {
13272 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13273 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13274 N_F32 | N_F64 | N_KEY | N_VFP);
13275
13276 if (rs == NS_FFF)
13277 {
13278 NEON_ENCODE (SINGLE, inst);
13279 do_vfp_sp_dyadic ();
13280 }
13281 else
13282 {
13283 NEON_ENCODE (DOUBLE, inst);
13284 do_vfp_dp_rd_rn_rm ();
13285 }
13286 do_vfp_cond_or_thumb ();
13287 }
13288
13289 static void
13290 do_vfp_nsyn_cmp (void)
13291 {
13292 if (inst.operands[1].isreg)
13293 {
13294 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13295 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13296
13297 if (rs == NS_FF)
13298 {
13299 NEON_ENCODE (SINGLE, inst);
13300 do_vfp_sp_monadic ();
13301 }
13302 else
13303 {
13304 NEON_ENCODE (DOUBLE, inst);
13305 do_vfp_dp_rd_rm ();
13306 }
13307 }
13308 else
13309 {
13310 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
13311 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
13312
13313 switch (inst.instruction & 0x0fffffff)
13314 {
13315 case N_MNEM_vcmp:
13316 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
13317 break;
13318 case N_MNEM_vcmpe:
13319 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
13320 break;
13321 default:
13322 abort ();
13323 }
13324
13325 if (rs == NS_FI)
13326 {
13327 NEON_ENCODE (SINGLE, inst);
13328 do_vfp_sp_compare_z ();
13329 }
13330 else
13331 {
13332 NEON_ENCODE (DOUBLE, inst);
13333 do_vfp_dp_rd ();
13334 }
13335 }
13336 do_vfp_cond_or_thumb ();
13337 }
13338
13339 static void
13340 nsyn_insert_sp (void)
13341 {
13342 inst.operands[1] = inst.operands[0];
13343 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
13344 inst.operands[0].reg = REG_SP;
13345 inst.operands[0].isreg = 1;
13346 inst.operands[0].writeback = 1;
13347 inst.operands[0].present = 1;
13348 }
13349
13350 static void
13351 do_vfp_nsyn_push (void)
13352 {
13353 nsyn_insert_sp ();
13354 if (inst.operands[1].issingle)
13355 do_vfp_nsyn_opcode ("fstmdbs");
13356 else
13357 do_vfp_nsyn_opcode ("fstmdbd");
13358 }
13359
13360 static void
13361 do_vfp_nsyn_pop (void)
13362 {
13363 nsyn_insert_sp ();
13364 if (inst.operands[1].issingle)
13365 do_vfp_nsyn_opcode ("fldmias");
13366 else
13367 do_vfp_nsyn_opcode ("fldmiad");
13368 }
13369
13370 /* Fix up Neon data-processing instructions, ORing in the correct bits for
13371 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
13372
13373 static void
13374 neon_dp_fixup (struct arm_it* insn)
13375 {
13376 unsigned int i = insn->instruction;
13377 insn->is_neon = 1;
13378
13379 if (thumb_mode)
13380 {
13381 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
13382 if (i & (1 << 24))
13383 i |= 1 << 28;
13384
13385 i &= ~(1 << 24);
13386
13387 i |= 0xef000000;
13388 }
13389 else
13390 i |= 0xf2000000;
13391
13392 insn->instruction = i;
13393 }
13394
13395 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
13396 (0, 1, 2, 3). */
13397
13398 static unsigned
13399 neon_logbits (unsigned x)
13400 {
13401 return ffs (x) - 4;
13402 }
13403
13404 #define LOW4(R) ((R) & 0xf)
13405 #define HI1(R) (((R) >> 4) & 1)
13406
13407 /* Encode insns with bit pattern:
13408
13409 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
13410 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
13411
13412 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
13413 different meaning for some instruction. */
13414
13415 static void
13416 neon_three_same (int isquad, int ubit, int size)
13417 {
13418 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13419 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13420 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13421 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13422 inst.instruction |= LOW4 (inst.operands[2].reg);
13423 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13424 inst.instruction |= (isquad != 0) << 6;
13425 inst.instruction |= (ubit != 0) << 24;
13426 if (size != -1)
13427 inst.instruction |= neon_logbits (size) << 20;
13428
13429 neon_dp_fixup (&inst);
13430 }
13431
13432 /* Encode instructions of the form:
13433
13434 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
13435 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
13436
13437 Don't write size if SIZE == -1. */
13438
13439 static void
13440 neon_two_same (int qbit, int ubit, int size)
13441 {
13442 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13443 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13444 inst.instruction |= LOW4 (inst.operands[1].reg);
13445 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13446 inst.instruction |= (qbit != 0) << 6;
13447 inst.instruction |= (ubit != 0) << 24;
13448
13449 if (size != -1)
13450 inst.instruction |= neon_logbits (size) << 18;
13451
13452 neon_dp_fixup (&inst);
13453 }
13454
13455 /* Neon instruction encoders, in approximate order of appearance. */
13456
13457 static void
13458 do_neon_dyadic_i_su (void)
13459 {
13460 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13461 struct neon_type_el et = neon_check_type (3, rs,
13462 N_EQK, N_EQK, N_SU_32 | N_KEY);
13463 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13464 }
13465
13466 static void
13467 do_neon_dyadic_i64_su (void)
13468 {
13469 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13470 struct neon_type_el et = neon_check_type (3, rs,
13471 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13472 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13473 }
13474
13475 static void
13476 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
13477 unsigned immbits)
13478 {
13479 unsigned size = et.size >> 3;
13480 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13481 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13482 inst.instruction |= LOW4 (inst.operands[1].reg);
13483 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13484 inst.instruction |= (isquad != 0) << 6;
13485 inst.instruction |= immbits << 16;
13486 inst.instruction |= (size >> 3) << 7;
13487 inst.instruction |= (size & 0x7) << 19;
13488 if (write_ubit)
13489 inst.instruction |= (uval != 0) << 24;
13490
13491 neon_dp_fixup (&inst);
13492 }
13493
13494 static void
13495 do_neon_shl_imm (void)
13496 {
13497 if (!inst.operands[2].isreg)
13498 {
13499 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13500 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
13501 NEON_ENCODE (IMMED, inst);
13502 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
13503 }
13504 else
13505 {
13506 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13507 struct neon_type_el et = neon_check_type (3, rs,
13508 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
13509 unsigned int tmp;
13510
13511 /* VSHL/VQSHL 3-register variants have syntax such as:
13512 vshl.xx Dd, Dm, Dn
13513 whereas other 3-register operations encoded by neon_three_same have
13514 syntax like:
13515 vadd.xx Dd, Dn, Dm
13516 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
13517 here. */
13518 tmp = inst.operands[2].reg;
13519 inst.operands[2].reg = inst.operands[1].reg;
13520 inst.operands[1].reg = tmp;
13521 NEON_ENCODE (INTEGER, inst);
13522 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13523 }
13524 }
13525
13526 static void
13527 do_neon_qshl_imm (void)
13528 {
13529 if (!inst.operands[2].isreg)
13530 {
13531 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13532 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
13533
13534 NEON_ENCODE (IMMED, inst);
13535 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
13536 inst.operands[2].imm);
13537 }
13538 else
13539 {
13540 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13541 struct neon_type_el et = neon_check_type (3, rs,
13542 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
13543 unsigned int tmp;
13544
13545 /* See note in do_neon_shl_imm. */
13546 tmp = inst.operands[2].reg;
13547 inst.operands[2].reg = inst.operands[1].reg;
13548 inst.operands[1].reg = tmp;
13549 NEON_ENCODE (INTEGER, inst);
13550 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13551 }
13552 }
13553
13554 static void
13555 do_neon_rshl (void)
13556 {
13557 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13558 struct neon_type_el et = neon_check_type (3, rs,
13559 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13560 unsigned int tmp;
13561
13562 tmp = inst.operands[2].reg;
13563 inst.operands[2].reg = inst.operands[1].reg;
13564 inst.operands[1].reg = tmp;
13565 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13566 }
13567
13568 static int
13569 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
13570 {
13571 /* Handle .I8 pseudo-instructions. */
13572 if (size == 8)
13573 {
13574 /* Unfortunately, this will make everything apart from zero out-of-range.
13575 FIXME is this the intended semantics? There doesn't seem much point in
13576 accepting .I8 if so. */
13577 immediate |= immediate << 8;
13578 size = 16;
13579 }
13580
13581 if (size >= 32)
13582 {
13583 if (immediate == (immediate & 0x000000ff))
13584 {
13585 *immbits = immediate;
13586 return 0x1;
13587 }
13588 else if (immediate == (immediate & 0x0000ff00))
13589 {
13590 *immbits = immediate >> 8;
13591 return 0x3;
13592 }
13593 else if (immediate == (immediate & 0x00ff0000))
13594 {
13595 *immbits = immediate >> 16;
13596 return 0x5;
13597 }
13598 else if (immediate == (immediate & 0xff000000))
13599 {
13600 *immbits = immediate >> 24;
13601 return 0x7;
13602 }
13603 if ((immediate & 0xffff) != (immediate >> 16))
13604 goto bad_immediate;
13605 immediate &= 0xffff;
13606 }
13607
13608 if (immediate == (immediate & 0x000000ff))
13609 {
13610 *immbits = immediate;
13611 return 0x9;
13612 }
13613 else if (immediate == (immediate & 0x0000ff00))
13614 {
13615 *immbits = immediate >> 8;
13616 return 0xb;
13617 }
13618
13619 bad_immediate:
13620 first_error (_("immediate value out of range"));
13621 return FAIL;
13622 }
13623
13624 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
13625 A, B, C, D. */
13626
13627 static int
13628 neon_bits_same_in_bytes (unsigned imm)
13629 {
13630 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
13631 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
13632 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
13633 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
13634 }
13635
13636 /* For immediate of above form, return 0bABCD. */
13637
13638 static unsigned
13639 neon_squash_bits (unsigned imm)
13640 {
13641 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
13642 | ((imm & 0x01000000) >> 21);
13643 }
13644
13645 /* Compress quarter-float representation to 0b...000 abcdefgh. */
13646
13647 static unsigned
13648 neon_qfloat_bits (unsigned imm)
13649 {
13650 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
13651 }
13652
13653 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
13654 the instruction. *OP is passed as the initial value of the op field, and
13655 may be set to a different value depending on the constant (i.e.
13656 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
13657 MVN). If the immediate looks like a repeated pattern then also
13658 try smaller element sizes. */
13659
13660 static int
13661 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
13662 unsigned *immbits, int *op, int size,
13663 enum neon_el_type type)
13664 {
13665 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
13666 float. */
13667 if (type == NT_float && !float_p)
13668 return FAIL;
13669
13670 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
13671 {
13672 if (size != 32 || *op == 1)
13673 return FAIL;
13674 *immbits = neon_qfloat_bits (immlo);
13675 return 0xf;
13676 }
13677
13678 if (size == 64)
13679 {
13680 if (neon_bits_same_in_bytes (immhi)
13681 && neon_bits_same_in_bytes (immlo))
13682 {
13683 if (*op == 1)
13684 return FAIL;
13685 *immbits = (neon_squash_bits (immhi) << 4)
13686 | neon_squash_bits (immlo);
13687 *op = 1;
13688 return 0xe;
13689 }
13690
13691 if (immhi != immlo)
13692 return FAIL;
13693 }
13694
13695 if (size >= 32)
13696 {
13697 if (immlo == (immlo & 0x000000ff))
13698 {
13699 *immbits = immlo;
13700 return 0x0;
13701 }
13702 else if (immlo == (immlo & 0x0000ff00))
13703 {
13704 *immbits = immlo >> 8;
13705 return 0x2;
13706 }
13707 else if (immlo == (immlo & 0x00ff0000))
13708 {
13709 *immbits = immlo >> 16;
13710 return 0x4;
13711 }
13712 else if (immlo == (immlo & 0xff000000))
13713 {
13714 *immbits = immlo >> 24;
13715 return 0x6;
13716 }
13717 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
13718 {
13719 *immbits = (immlo >> 8) & 0xff;
13720 return 0xc;
13721 }
13722 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
13723 {
13724 *immbits = (immlo >> 16) & 0xff;
13725 return 0xd;
13726 }
13727
13728 if ((immlo & 0xffff) != (immlo >> 16))
13729 return FAIL;
13730 immlo &= 0xffff;
13731 }
13732
13733 if (size >= 16)
13734 {
13735 if (immlo == (immlo & 0x000000ff))
13736 {
13737 *immbits = immlo;
13738 return 0x8;
13739 }
13740 else if (immlo == (immlo & 0x0000ff00))
13741 {
13742 *immbits = immlo >> 8;
13743 return 0xa;
13744 }
13745
13746 if ((immlo & 0xff) != (immlo >> 8))
13747 return FAIL;
13748 immlo &= 0xff;
13749 }
13750
13751 if (immlo == (immlo & 0x000000ff))
13752 {
13753 /* Don't allow MVN with 8-bit immediate. */
13754 if (*op == 1)
13755 return FAIL;
13756 *immbits = immlo;
13757 return 0xe;
13758 }
13759
13760 return FAIL;
13761 }
13762
13763 /* Write immediate bits [7:0] to the following locations:
13764
13765 |28/24|23 19|18 16|15 4|3 0|
13766 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
13767
13768 This function is used by VMOV/VMVN/VORR/VBIC. */
13769
13770 static void
13771 neon_write_immbits (unsigned immbits)
13772 {
13773 inst.instruction |= immbits & 0xf;
13774 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
13775 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
13776 }
13777
13778 /* Invert low-order SIZE bits of XHI:XLO. */
13779
13780 static void
13781 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
13782 {
13783 unsigned immlo = xlo ? *xlo : 0;
13784 unsigned immhi = xhi ? *xhi : 0;
13785
13786 switch (size)
13787 {
13788 case 8:
13789 immlo = (~immlo) & 0xff;
13790 break;
13791
13792 case 16:
13793 immlo = (~immlo) & 0xffff;
13794 break;
13795
13796 case 64:
13797 immhi = (~immhi) & 0xffffffff;
13798 /* fall through. */
13799
13800 case 32:
13801 immlo = (~immlo) & 0xffffffff;
13802 break;
13803
13804 default:
13805 abort ();
13806 }
13807
13808 if (xlo)
13809 *xlo = immlo;
13810
13811 if (xhi)
13812 *xhi = immhi;
13813 }
13814
13815 static void
13816 do_neon_logic (void)
13817 {
13818 if (inst.operands[2].present && inst.operands[2].isreg)
13819 {
13820 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13821 neon_check_type (3, rs, N_IGNORE_TYPE);
13822 /* U bit and size field were set as part of the bitmask. */
13823 NEON_ENCODE (INTEGER, inst);
13824 neon_three_same (neon_quad (rs), 0, -1);
13825 }
13826 else
13827 {
13828 const int three_ops_form = (inst.operands[2].present
13829 && !inst.operands[2].isreg);
13830 const int immoperand = (three_ops_form ? 2 : 1);
13831 enum neon_shape rs = (three_ops_form
13832 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
13833 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
13834 struct neon_type_el et = neon_check_type (2, rs,
13835 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
13836 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
13837 unsigned immbits;
13838 int cmode;
13839
13840 if (et.type == NT_invtype)
13841 return;
13842
13843 if (three_ops_form)
13844 constraint (inst.operands[0].reg != inst.operands[1].reg,
13845 _("first and second operands shall be the same register"));
13846
13847 NEON_ENCODE (IMMED, inst);
13848
13849 immbits = inst.operands[immoperand].imm;
13850 if (et.size == 64)
13851 {
13852 /* .i64 is a pseudo-op, so the immediate must be a repeating
13853 pattern. */
13854 if (immbits != (inst.operands[immoperand].regisimm ?
13855 inst.operands[immoperand].reg : 0))
13856 {
13857 /* Set immbits to an invalid constant. */
13858 immbits = 0xdeadbeef;
13859 }
13860 }
13861
13862 switch (opcode)
13863 {
13864 case N_MNEM_vbic:
13865 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13866 break;
13867
13868 case N_MNEM_vorr:
13869 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13870 break;
13871
13872 case N_MNEM_vand:
13873 /* Pseudo-instruction for VBIC. */
13874 neon_invert_size (&immbits, 0, et.size);
13875 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13876 break;
13877
13878 case N_MNEM_vorn:
13879 /* Pseudo-instruction for VORR. */
13880 neon_invert_size (&immbits, 0, et.size);
13881 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13882 break;
13883
13884 default:
13885 abort ();
13886 }
13887
13888 if (cmode == FAIL)
13889 return;
13890
13891 inst.instruction |= neon_quad (rs) << 6;
13892 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13893 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13894 inst.instruction |= cmode << 8;
13895 neon_write_immbits (immbits);
13896
13897 neon_dp_fixup (&inst);
13898 }
13899 }
13900
13901 static void
13902 do_neon_bitfield (void)
13903 {
13904 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13905 neon_check_type (3, rs, N_IGNORE_TYPE);
13906 neon_three_same (neon_quad (rs), 0, -1);
13907 }
13908
13909 static void
13910 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
13911 unsigned destbits)
13912 {
13913 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13914 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
13915 types | N_KEY);
13916 if (et.type == NT_float)
13917 {
13918 NEON_ENCODE (FLOAT, inst);
13919 neon_three_same (neon_quad (rs), 0, -1);
13920 }
13921 else
13922 {
13923 NEON_ENCODE (INTEGER, inst);
13924 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
13925 }
13926 }
13927
13928 static void
13929 do_neon_dyadic_if_su (void)
13930 {
13931 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13932 }
13933
13934 static void
13935 do_neon_dyadic_if_su_d (void)
13936 {
13937 /* This version only allow D registers, but that constraint is enforced during
13938 operand parsing so we don't need to do anything extra here. */
13939 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13940 }
13941
13942 static void
13943 do_neon_dyadic_if_i_d (void)
13944 {
13945 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13946 affected if we specify unsigned args. */
13947 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13948 }
13949
13950 enum vfp_or_neon_is_neon_bits
13951 {
13952 NEON_CHECK_CC = 1,
13953 NEON_CHECK_ARCH = 2
13954 };
13955
13956 /* Call this function if an instruction which may have belonged to the VFP or
13957 Neon instruction sets, but turned out to be a Neon instruction (due to the
13958 operand types involved, etc.). We have to check and/or fix-up a couple of
13959 things:
13960
13961 - Make sure the user hasn't attempted to make a Neon instruction
13962 conditional.
13963 - Alter the value in the condition code field if necessary.
13964 - Make sure that the arch supports Neon instructions.
13965
13966 Which of these operations take place depends on bits from enum
13967 vfp_or_neon_is_neon_bits.
13968
13969 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
13970 current instruction's condition is COND_ALWAYS, the condition field is
13971 changed to inst.uncond_value. This is necessary because instructions shared
13972 between VFP and Neon may be conditional for the VFP variants only, and the
13973 unconditional Neon version must have, e.g., 0xF in the condition field. */
13974
13975 static int
13976 vfp_or_neon_is_neon (unsigned check)
13977 {
13978 /* Conditions are always legal in Thumb mode (IT blocks). */
13979 if (!thumb_mode && (check & NEON_CHECK_CC))
13980 {
13981 if (inst.cond != COND_ALWAYS)
13982 {
13983 first_error (_(BAD_COND));
13984 return FAIL;
13985 }
13986 if (inst.uncond_value != -1)
13987 inst.instruction |= inst.uncond_value << 28;
13988 }
13989
13990 if ((check & NEON_CHECK_ARCH)
13991 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
13992 {
13993 first_error (_(BAD_FPU));
13994 return FAIL;
13995 }
13996
13997 return SUCCESS;
13998 }
13999
14000 static void
14001 do_neon_addsub_if_i (void)
14002 {
14003 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
14004 return;
14005
14006 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14007 return;
14008
14009 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14010 affected if we specify unsigned args. */
14011 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
14012 }
14013
14014 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
14015 result to be:
14016 V<op> A,B (A is operand 0, B is operand 2)
14017 to mean:
14018 V<op> A,B,A
14019 not:
14020 V<op> A,B,B
14021 so handle that case specially. */
14022
14023 static void
14024 neon_exchange_operands (void)
14025 {
14026 void *scratch = alloca (sizeof (inst.operands[0]));
14027 if (inst.operands[1].present)
14028 {
14029 /* Swap operands[1] and operands[2]. */
14030 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
14031 inst.operands[1] = inst.operands[2];
14032 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
14033 }
14034 else
14035 {
14036 inst.operands[1] = inst.operands[2];
14037 inst.operands[2] = inst.operands[0];
14038 }
14039 }
14040
14041 static void
14042 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
14043 {
14044 if (inst.operands[2].isreg)
14045 {
14046 if (invert)
14047 neon_exchange_operands ();
14048 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
14049 }
14050 else
14051 {
14052 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14053 struct neon_type_el et = neon_check_type (2, rs,
14054 N_EQK | N_SIZ, immtypes | N_KEY);
14055
14056 NEON_ENCODE (IMMED, inst);
14057 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14058 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14059 inst.instruction |= LOW4 (inst.operands[1].reg);
14060 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14061 inst.instruction |= neon_quad (rs) << 6;
14062 inst.instruction |= (et.type == NT_float) << 10;
14063 inst.instruction |= neon_logbits (et.size) << 18;
14064
14065 neon_dp_fixup (&inst);
14066 }
14067 }
14068
14069 static void
14070 do_neon_cmp (void)
14071 {
14072 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
14073 }
14074
14075 static void
14076 do_neon_cmp_inv (void)
14077 {
14078 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
14079 }
14080
14081 static void
14082 do_neon_ceq (void)
14083 {
14084 neon_compare (N_IF_32, N_IF_32, FALSE);
14085 }
14086
14087 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
14088 scalars, which are encoded in 5 bits, M : Rm.
14089 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
14090 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
14091 index in M. */
14092
14093 static unsigned
14094 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
14095 {
14096 unsigned regno = NEON_SCALAR_REG (scalar);
14097 unsigned elno = NEON_SCALAR_INDEX (scalar);
14098
14099 switch (elsize)
14100 {
14101 case 16:
14102 if (regno > 7 || elno > 3)
14103 goto bad_scalar;
14104 return regno | (elno << 3);
14105
14106 case 32:
14107 if (regno > 15 || elno > 1)
14108 goto bad_scalar;
14109 return regno | (elno << 4);
14110
14111 default:
14112 bad_scalar:
14113 first_error (_("scalar out of range for multiply instruction"));
14114 }
14115
14116 return 0;
14117 }
14118
14119 /* Encode multiply / multiply-accumulate scalar instructions. */
14120
14121 static void
14122 neon_mul_mac (struct neon_type_el et, int ubit)
14123 {
14124 unsigned scalar;
14125
14126 /* Give a more helpful error message if we have an invalid type. */
14127 if (et.type == NT_invtype)
14128 return;
14129
14130 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
14131 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14132 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14133 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14134 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14135 inst.instruction |= LOW4 (scalar);
14136 inst.instruction |= HI1 (scalar) << 5;
14137 inst.instruction |= (et.type == NT_float) << 8;
14138 inst.instruction |= neon_logbits (et.size) << 20;
14139 inst.instruction |= (ubit != 0) << 24;
14140
14141 neon_dp_fixup (&inst);
14142 }
14143
14144 static void
14145 do_neon_mac_maybe_scalar (void)
14146 {
14147 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
14148 return;
14149
14150 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14151 return;
14152
14153 if (inst.operands[2].isscalar)
14154 {
14155 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
14156 struct neon_type_el et = neon_check_type (3, rs,
14157 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
14158 NEON_ENCODE (SCALAR, inst);
14159 neon_mul_mac (et, neon_quad (rs));
14160 }
14161 else
14162 {
14163 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14164 affected if we specify unsigned args. */
14165 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14166 }
14167 }
14168
14169 static void
14170 do_neon_fmac (void)
14171 {
14172 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
14173 return;
14174
14175 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14176 return;
14177
14178 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14179 }
14180
14181 static void
14182 do_neon_tst (void)
14183 {
14184 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14185 struct neon_type_el et = neon_check_type (3, rs,
14186 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
14187 neon_three_same (neon_quad (rs), 0, et.size);
14188 }
14189
14190 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
14191 same types as the MAC equivalents. The polynomial type for this instruction
14192 is encoded the same as the integer type. */
14193
14194 static void
14195 do_neon_mul (void)
14196 {
14197 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
14198 return;
14199
14200 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14201 return;
14202
14203 if (inst.operands[2].isscalar)
14204 do_neon_mac_maybe_scalar ();
14205 else
14206 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
14207 }
14208
14209 static void
14210 do_neon_qdmulh (void)
14211 {
14212 if (inst.operands[2].isscalar)
14213 {
14214 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
14215 struct neon_type_el et = neon_check_type (3, rs,
14216 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
14217 NEON_ENCODE (SCALAR, inst);
14218 neon_mul_mac (et, neon_quad (rs));
14219 }
14220 else
14221 {
14222 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14223 struct neon_type_el et = neon_check_type (3, rs,
14224 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
14225 NEON_ENCODE (INTEGER, inst);
14226 /* The U bit (rounding) comes from bit mask. */
14227 neon_three_same (neon_quad (rs), 0, et.size);
14228 }
14229 }
14230
14231 static void
14232 do_neon_fcmp_absolute (void)
14233 {
14234 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14235 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
14236 /* Size field comes from bit mask. */
14237 neon_three_same (neon_quad (rs), 1, -1);
14238 }
14239
14240 static void
14241 do_neon_fcmp_absolute_inv (void)
14242 {
14243 neon_exchange_operands ();
14244 do_neon_fcmp_absolute ();
14245 }
14246
14247 static void
14248 do_neon_step (void)
14249 {
14250 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14251 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
14252 neon_three_same (neon_quad (rs), 0, -1);
14253 }
14254
14255 static void
14256 do_neon_abs_neg (void)
14257 {
14258 enum neon_shape rs;
14259 struct neon_type_el et;
14260
14261 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
14262 return;
14263
14264 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14265 return;
14266
14267 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14268 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
14269
14270 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14271 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14272 inst.instruction |= LOW4 (inst.operands[1].reg);
14273 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14274 inst.instruction |= neon_quad (rs) << 6;
14275 inst.instruction |= (et.type == NT_float) << 10;
14276 inst.instruction |= neon_logbits (et.size) << 18;
14277
14278 neon_dp_fixup (&inst);
14279 }
14280
14281 static void
14282 do_neon_sli (void)
14283 {
14284 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14285 struct neon_type_el et = neon_check_type (2, rs,
14286 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14287 int imm = inst.operands[2].imm;
14288 constraint (imm < 0 || (unsigned)imm >= et.size,
14289 _("immediate out of range for insert"));
14290 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14291 }
14292
14293 static void
14294 do_neon_sri (void)
14295 {
14296 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14297 struct neon_type_el et = neon_check_type (2, rs,
14298 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14299 int imm = inst.operands[2].imm;
14300 constraint (imm < 1 || (unsigned)imm > et.size,
14301 _("immediate out of range for insert"));
14302 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
14303 }
14304
14305 static void
14306 do_neon_qshlu_imm (void)
14307 {
14308 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14309 struct neon_type_el et = neon_check_type (2, rs,
14310 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
14311 int imm = inst.operands[2].imm;
14312 constraint (imm < 0 || (unsigned)imm >= et.size,
14313 _("immediate out of range for shift"));
14314 /* Only encodes the 'U present' variant of the instruction.
14315 In this case, signed types have OP (bit 8) set to 0.
14316 Unsigned types have OP set to 1. */
14317 inst.instruction |= (et.type == NT_unsigned) << 8;
14318 /* The rest of the bits are the same as other immediate shifts. */
14319 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14320 }
14321
14322 static void
14323 do_neon_qmovn (void)
14324 {
14325 struct neon_type_el et = neon_check_type (2, NS_DQ,
14326 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14327 /* Saturating move where operands can be signed or unsigned, and the
14328 destination has the same signedness. */
14329 NEON_ENCODE (INTEGER, inst);
14330 if (et.type == NT_unsigned)
14331 inst.instruction |= 0xc0;
14332 else
14333 inst.instruction |= 0x80;
14334 neon_two_same (0, 1, et.size / 2);
14335 }
14336
14337 static void
14338 do_neon_qmovun (void)
14339 {
14340 struct neon_type_el et = neon_check_type (2, NS_DQ,
14341 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14342 /* Saturating move with unsigned results. Operands must be signed. */
14343 NEON_ENCODE (INTEGER, inst);
14344 neon_two_same (0, 1, et.size / 2);
14345 }
14346
14347 static void
14348 do_neon_rshift_sat_narrow (void)
14349 {
14350 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14351 or unsigned. If operands are unsigned, results must also be unsigned. */
14352 struct neon_type_el et = neon_check_type (2, NS_DQI,
14353 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14354 int imm = inst.operands[2].imm;
14355 /* This gets the bounds check, size encoding and immediate bits calculation
14356 right. */
14357 et.size /= 2;
14358
14359 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
14360 VQMOVN.I<size> <Dd>, <Qm>. */
14361 if (imm == 0)
14362 {
14363 inst.operands[2].present = 0;
14364 inst.instruction = N_MNEM_vqmovn;
14365 do_neon_qmovn ();
14366 return;
14367 }
14368
14369 constraint (imm < 1 || (unsigned)imm > et.size,
14370 _("immediate out of range"));
14371 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
14372 }
14373
14374 static void
14375 do_neon_rshift_sat_narrow_u (void)
14376 {
14377 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14378 or unsigned. If operands are unsigned, results must also be unsigned. */
14379 struct neon_type_el et = neon_check_type (2, NS_DQI,
14380 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14381 int imm = inst.operands[2].imm;
14382 /* This gets the bounds check, size encoding and immediate bits calculation
14383 right. */
14384 et.size /= 2;
14385
14386 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
14387 VQMOVUN.I<size> <Dd>, <Qm>. */
14388 if (imm == 0)
14389 {
14390 inst.operands[2].present = 0;
14391 inst.instruction = N_MNEM_vqmovun;
14392 do_neon_qmovun ();
14393 return;
14394 }
14395
14396 constraint (imm < 1 || (unsigned)imm > et.size,
14397 _("immediate out of range"));
14398 /* FIXME: The manual is kind of unclear about what value U should have in
14399 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
14400 must be 1. */
14401 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
14402 }
14403
14404 static void
14405 do_neon_movn (void)
14406 {
14407 struct neon_type_el et = neon_check_type (2, NS_DQ,
14408 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14409 NEON_ENCODE (INTEGER, inst);
14410 neon_two_same (0, 1, et.size / 2);
14411 }
14412
14413 static void
14414 do_neon_rshift_narrow (void)
14415 {
14416 struct neon_type_el et = neon_check_type (2, NS_DQI,
14417 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14418 int imm = inst.operands[2].imm;
14419 /* This gets the bounds check, size encoding and immediate bits calculation
14420 right. */
14421 et.size /= 2;
14422
14423 /* If immediate is zero then we are a pseudo-instruction for
14424 VMOVN.I<size> <Dd>, <Qm> */
14425 if (imm == 0)
14426 {
14427 inst.operands[2].present = 0;
14428 inst.instruction = N_MNEM_vmovn;
14429 do_neon_movn ();
14430 return;
14431 }
14432
14433 constraint (imm < 1 || (unsigned)imm > et.size,
14434 _("immediate out of range for narrowing operation"));
14435 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
14436 }
14437
14438 static void
14439 do_neon_shll (void)
14440 {
14441 /* FIXME: Type checking when lengthening. */
14442 struct neon_type_el et = neon_check_type (2, NS_QDI,
14443 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
14444 unsigned imm = inst.operands[2].imm;
14445
14446 if (imm == et.size)
14447 {
14448 /* Maximum shift variant. */
14449 NEON_ENCODE (INTEGER, inst);
14450 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14451 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14452 inst.instruction |= LOW4 (inst.operands[1].reg);
14453 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14454 inst.instruction |= neon_logbits (et.size) << 18;
14455
14456 neon_dp_fixup (&inst);
14457 }
14458 else
14459 {
14460 /* A more-specific type check for non-max versions. */
14461 et = neon_check_type (2, NS_QDI,
14462 N_EQK | N_DBL, N_SU_32 | N_KEY);
14463 NEON_ENCODE (IMMED, inst);
14464 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
14465 }
14466 }
14467
14468 /* Check the various types for the VCVT instruction, and return which version
14469 the current instruction is. */
14470
14471 static int
14472 neon_cvt_flavour (enum neon_shape rs)
14473 {
14474 #define CVT_VAR(C,X,Y) \
14475 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
14476 if (et.type != NT_invtype) \
14477 { \
14478 inst.error = NULL; \
14479 return (C); \
14480 }
14481 struct neon_type_el et;
14482 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
14483 || rs == NS_FF) ? N_VFP : 0;
14484 /* The instruction versions which take an immediate take one register
14485 argument, which is extended to the width of the full register. Thus the
14486 "source" and "destination" registers must have the same width. Hack that
14487 here by making the size equal to the key (wider, in this case) operand. */
14488 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
14489
14490 CVT_VAR (0, N_S32, N_F32);
14491 CVT_VAR (1, N_U32, N_F32);
14492 CVT_VAR (2, N_F32, N_S32);
14493 CVT_VAR (3, N_F32, N_U32);
14494 /* Half-precision conversions. */
14495 CVT_VAR (4, N_F32, N_F16);
14496 CVT_VAR (5, N_F16, N_F32);
14497
14498 whole_reg = N_VFP;
14499
14500 /* VFP instructions. */
14501 CVT_VAR (6, N_F32, N_F64);
14502 CVT_VAR (7, N_F64, N_F32);
14503 CVT_VAR (8, N_S32, N_F64 | key);
14504 CVT_VAR (9, N_U32, N_F64 | key);
14505 CVT_VAR (10, N_F64 | key, N_S32);
14506 CVT_VAR (11, N_F64 | key, N_U32);
14507 /* VFP instructions with bitshift. */
14508 CVT_VAR (12, N_F32 | key, N_S16);
14509 CVT_VAR (13, N_F32 | key, N_U16);
14510 CVT_VAR (14, N_F64 | key, N_S16);
14511 CVT_VAR (15, N_F64 | key, N_U16);
14512 CVT_VAR (16, N_S16, N_F32 | key);
14513 CVT_VAR (17, N_U16, N_F32 | key);
14514 CVT_VAR (18, N_S16, N_F64 | key);
14515 CVT_VAR (19, N_U16, N_F64 | key);
14516
14517 return -1;
14518 #undef CVT_VAR
14519 }
14520
14521 /* Neon-syntax VFP conversions. */
14522
14523 static void
14524 do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
14525 {
14526 const char *opname = 0;
14527
14528 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
14529 {
14530 /* Conversions with immediate bitshift. */
14531 const char *enc[] =
14532 {
14533 "ftosls",
14534 "ftouls",
14535 "fsltos",
14536 "fultos",
14537 NULL,
14538 NULL,
14539 NULL,
14540 NULL,
14541 "ftosld",
14542 "ftould",
14543 "fsltod",
14544 "fultod",
14545 "fshtos",
14546 "fuhtos",
14547 "fshtod",
14548 "fuhtod",
14549 "ftoshs",
14550 "ftouhs",
14551 "ftoshd",
14552 "ftouhd"
14553 };
14554
14555 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14556 {
14557 opname = enc[flavour];
14558 constraint (inst.operands[0].reg != inst.operands[1].reg,
14559 _("operands 0 and 1 must be the same register"));
14560 inst.operands[1] = inst.operands[2];
14561 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
14562 }
14563 }
14564 else
14565 {
14566 /* Conversions without bitshift. */
14567 const char *enc[] =
14568 {
14569 "ftosis",
14570 "ftouis",
14571 "fsitos",
14572 "fuitos",
14573 "NULL",
14574 "NULL",
14575 "fcvtsd",
14576 "fcvtds",
14577 "ftosid",
14578 "ftouid",
14579 "fsitod",
14580 "fuitod"
14581 };
14582
14583 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14584 opname = enc[flavour];
14585 }
14586
14587 if (opname)
14588 do_vfp_nsyn_opcode (opname);
14589 }
14590
14591 static void
14592 do_vfp_nsyn_cvtz (void)
14593 {
14594 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
14595 int flavour = neon_cvt_flavour (rs);
14596 const char *enc[] =
14597 {
14598 "ftosizs",
14599 "ftouizs",
14600 NULL,
14601 NULL,
14602 NULL,
14603 NULL,
14604 NULL,
14605 NULL,
14606 "ftosizd",
14607 "ftouizd"
14608 };
14609
14610 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
14611 do_vfp_nsyn_opcode (enc[flavour]);
14612 }
14613
14614 static void
14615 do_neon_cvt_1 (bfd_boolean round_to_zero ATTRIBUTE_UNUSED)
14616 {
14617 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
14618 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
14619 int flavour = neon_cvt_flavour (rs);
14620
14621 /* PR11109: Handle round-to-zero for VCVT conversions. */
14622 if (round_to_zero
14623 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
14624 && (flavour == 0 || flavour == 1 || flavour == 8 || flavour == 9)
14625 && (rs == NS_FD || rs == NS_FF))
14626 {
14627 do_vfp_nsyn_cvtz ();
14628 return;
14629 }
14630
14631 /* VFP rather than Neon conversions. */
14632 if (flavour >= 6)
14633 {
14634 do_vfp_nsyn_cvt (rs, flavour);
14635 return;
14636 }
14637
14638 switch (rs)
14639 {
14640 case NS_DDI:
14641 case NS_QQI:
14642 {
14643 unsigned immbits;
14644 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
14645
14646 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14647 return;
14648
14649 /* Fixed-point conversion with #0 immediate is encoded as an
14650 integer conversion. */
14651 if (inst.operands[2].present && inst.operands[2].imm == 0)
14652 goto int_encode;
14653 immbits = 32 - inst.operands[2].imm;
14654 NEON_ENCODE (IMMED, inst);
14655 if (flavour != -1)
14656 inst.instruction |= enctab[flavour];
14657 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14658 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14659 inst.instruction |= LOW4 (inst.operands[1].reg);
14660 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14661 inst.instruction |= neon_quad (rs) << 6;
14662 inst.instruction |= 1 << 21;
14663 inst.instruction |= immbits << 16;
14664
14665 neon_dp_fixup (&inst);
14666 }
14667 break;
14668
14669 case NS_DD:
14670 case NS_QQ:
14671 int_encode:
14672 {
14673 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
14674
14675 NEON_ENCODE (INTEGER, inst);
14676
14677 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14678 return;
14679
14680 if (flavour != -1)
14681 inst.instruction |= enctab[flavour];
14682
14683 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14684 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14685 inst.instruction |= LOW4 (inst.operands[1].reg);
14686 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14687 inst.instruction |= neon_quad (rs) << 6;
14688 inst.instruction |= 2 << 18;
14689
14690 neon_dp_fixup (&inst);
14691 }
14692 break;
14693
14694 /* Half-precision conversions for Advanced SIMD -- neon. */
14695 case NS_QD:
14696 case NS_DQ:
14697
14698 if ((rs == NS_DQ)
14699 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
14700 {
14701 as_bad (_("operand size must match register width"));
14702 break;
14703 }
14704
14705 if ((rs == NS_QD)
14706 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
14707 {
14708 as_bad (_("operand size must match register width"));
14709 break;
14710 }
14711
14712 if (rs == NS_DQ)
14713 inst.instruction = 0x3b60600;
14714 else
14715 inst.instruction = 0x3b60700;
14716
14717 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14718 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14719 inst.instruction |= LOW4 (inst.operands[1].reg);
14720 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14721 neon_dp_fixup (&inst);
14722 break;
14723
14724 default:
14725 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
14726 do_vfp_nsyn_cvt (rs, flavour);
14727 }
14728 }
14729
14730 static void
14731 do_neon_cvtr (void)
14732 {
14733 do_neon_cvt_1 (FALSE);
14734 }
14735
14736 static void
14737 do_neon_cvt (void)
14738 {
14739 do_neon_cvt_1 (TRUE);
14740 }
14741
14742 static void
14743 do_neon_cvtb (void)
14744 {
14745 inst.instruction = 0xeb20a40;
14746
14747 /* The sizes are attached to the mnemonic. */
14748 if (inst.vectype.el[0].type != NT_invtype
14749 && inst.vectype.el[0].size == 16)
14750 inst.instruction |= 0x00010000;
14751
14752 /* Programmer's syntax: the sizes are attached to the operands. */
14753 else if (inst.operands[0].vectype.type != NT_invtype
14754 && inst.operands[0].vectype.size == 16)
14755 inst.instruction |= 0x00010000;
14756
14757 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
14758 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
14759 do_vfp_cond_or_thumb ();
14760 }
14761
14762
14763 static void
14764 do_neon_cvtt (void)
14765 {
14766 do_neon_cvtb ();
14767 inst.instruction |= 0x80;
14768 }
14769
14770 static void
14771 neon_move_immediate (void)
14772 {
14773 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
14774 struct neon_type_el et = neon_check_type (2, rs,
14775 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
14776 unsigned immlo, immhi = 0, immbits;
14777 int op, cmode, float_p;
14778
14779 constraint (et.type == NT_invtype,
14780 _("operand size must be specified for immediate VMOV"));
14781
14782 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
14783 op = (inst.instruction & (1 << 5)) != 0;
14784
14785 immlo = inst.operands[1].imm;
14786 if (inst.operands[1].regisimm)
14787 immhi = inst.operands[1].reg;
14788
14789 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
14790 _("immediate has bits set outside the operand size"));
14791
14792 float_p = inst.operands[1].immisfloat;
14793
14794 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
14795 et.size, et.type)) == FAIL)
14796 {
14797 /* Invert relevant bits only. */
14798 neon_invert_size (&immlo, &immhi, et.size);
14799 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
14800 with one or the other; those cases are caught by
14801 neon_cmode_for_move_imm. */
14802 op = !op;
14803 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
14804 &op, et.size, et.type)) == FAIL)
14805 {
14806 first_error (_("immediate out of range"));
14807 return;
14808 }
14809 }
14810
14811 inst.instruction &= ~(1 << 5);
14812 inst.instruction |= op << 5;
14813
14814 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14815 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14816 inst.instruction |= neon_quad (rs) << 6;
14817 inst.instruction |= cmode << 8;
14818
14819 neon_write_immbits (immbits);
14820 }
14821
14822 static void
14823 do_neon_mvn (void)
14824 {
14825 if (inst.operands[1].isreg)
14826 {
14827 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14828
14829 NEON_ENCODE (INTEGER, inst);
14830 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14831 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14832 inst.instruction |= LOW4 (inst.operands[1].reg);
14833 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14834 inst.instruction |= neon_quad (rs) << 6;
14835 }
14836 else
14837 {
14838 NEON_ENCODE (IMMED, inst);
14839 neon_move_immediate ();
14840 }
14841
14842 neon_dp_fixup (&inst);
14843 }
14844
14845 /* Encode instructions of form:
14846
14847 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
14848 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
14849
14850 static void
14851 neon_mixed_length (struct neon_type_el et, unsigned size)
14852 {
14853 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14854 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14855 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14856 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14857 inst.instruction |= LOW4 (inst.operands[2].reg);
14858 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14859 inst.instruction |= (et.type == NT_unsigned) << 24;
14860 inst.instruction |= neon_logbits (size) << 20;
14861
14862 neon_dp_fixup (&inst);
14863 }
14864
14865 static void
14866 do_neon_dyadic_long (void)
14867 {
14868 /* FIXME: Type checking for lengthening op. */
14869 struct neon_type_el et = neon_check_type (3, NS_QDD,
14870 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
14871 neon_mixed_length (et, et.size);
14872 }
14873
14874 static void
14875 do_neon_abal (void)
14876 {
14877 struct neon_type_el et = neon_check_type (3, NS_QDD,
14878 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
14879 neon_mixed_length (et, et.size);
14880 }
14881
14882 static void
14883 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
14884 {
14885 if (inst.operands[2].isscalar)
14886 {
14887 struct neon_type_el et = neon_check_type (3, NS_QDS,
14888 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
14889 NEON_ENCODE (SCALAR, inst);
14890 neon_mul_mac (et, et.type == NT_unsigned);
14891 }
14892 else
14893 {
14894 struct neon_type_el et = neon_check_type (3, NS_QDD,
14895 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
14896 NEON_ENCODE (INTEGER, inst);
14897 neon_mixed_length (et, et.size);
14898 }
14899 }
14900
14901 static void
14902 do_neon_mac_maybe_scalar_long (void)
14903 {
14904 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
14905 }
14906
14907 static void
14908 do_neon_dyadic_wide (void)
14909 {
14910 struct neon_type_el et = neon_check_type (3, NS_QQD,
14911 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
14912 neon_mixed_length (et, et.size);
14913 }
14914
14915 static void
14916 do_neon_dyadic_narrow (void)
14917 {
14918 struct neon_type_el et = neon_check_type (3, NS_QDD,
14919 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
14920 /* Operand sign is unimportant, and the U bit is part of the opcode,
14921 so force the operand type to integer. */
14922 et.type = NT_integer;
14923 neon_mixed_length (et, et.size / 2);
14924 }
14925
14926 static void
14927 do_neon_mul_sat_scalar_long (void)
14928 {
14929 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
14930 }
14931
14932 static void
14933 do_neon_vmull (void)
14934 {
14935 if (inst.operands[2].isscalar)
14936 do_neon_mac_maybe_scalar_long ();
14937 else
14938 {
14939 struct neon_type_el et = neon_check_type (3, NS_QDD,
14940 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
14941 if (et.type == NT_poly)
14942 NEON_ENCODE (POLY, inst);
14943 else
14944 NEON_ENCODE (INTEGER, inst);
14945 /* For polynomial encoding, size field must be 0b00 and the U bit must be
14946 zero. Should be OK as-is. */
14947 neon_mixed_length (et, et.size);
14948 }
14949 }
14950
14951 static void
14952 do_neon_ext (void)
14953 {
14954 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
14955 struct neon_type_el et = neon_check_type (3, rs,
14956 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14957 unsigned imm = (inst.operands[3].imm * et.size) / 8;
14958
14959 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
14960 _("shift out of range"));
14961 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14962 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14963 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14964 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14965 inst.instruction |= LOW4 (inst.operands[2].reg);
14966 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14967 inst.instruction |= neon_quad (rs) << 6;
14968 inst.instruction |= imm << 8;
14969
14970 neon_dp_fixup (&inst);
14971 }
14972
14973 static void
14974 do_neon_rev (void)
14975 {
14976 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14977 struct neon_type_el et = neon_check_type (2, rs,
14978 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14979 unsigned op = (inst.instruction >> 7) & 3;
14980 /* N (width of reversed regions) is encoded as part of the bitmask. We
14981 extract it here to check the elements to be reversed are smaller.
14982 Otherwise we'd get a reserved instruction. */
14983 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
14984 gas_assert (elsize != 0);
14985 constraint (et.size >= elsize,
14986 _("elements must be smaller than reversal region"));
14987 neon_two_same (neon_quad (rs), 1, et.size);
14988 }
14989
14990 static void
14991 do_neon_dup (void)
14992 {
14993 if (inst.operands[1].isscalar)
14994 {
14995 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
14996 struct neon_type_el et = neon_check_type (2, rs,
14997 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14998 unsigned sizebits = et.size >> 3;
14999 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
15000 int logsize = neon_logbits (et.size);
15001 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
15002
15003 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
15004 return;
15005
15006 NEON_ENCODE (SCALAR, inst);
15007 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15008 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15009 inst.instruction |= LOW4 (dm);
15010 inst.instruction |= HI1 (dm) << 5;
15011 inst.instruction |= neon_quad (rs) << 6;
15012 inst.instruction |= x << 17;
15013 inst.instruction |= sizebits << 16;
15014
15015 neon_dp_fixup (&inst);
15016 }
15017 else
15018 {
15019 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
15020 struct neon_type_el et = neon_check_type (2, rs,
15021 N_8 | N_16 | N_32 | N_KEY, N_EQK);
15022 /* Duplicate ARM register to lanes of vector. */
15023 NEON_ENCODE (ARMREG, inst);
15024 switch (et.size)
15025 {
15026 case 8: inst.instruction |= 0x400000; break;
15027 case 16: inst.instruction |= 0x000020; break;
15028 case 32: inst.instruction |= 0x000000; break;
15029 default: break;
15030 }
15031 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15032 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
15033 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
15034 inst.instruction |= neon_quad (rs) << 21;
15035 /* The encoding for this instruction is identical for the ARM and Thumb
15036 variants, except for the condition field. */
15037 do_vfp_cond_or_thumb ();
15038 }
15039 }
15040
15041 /* VMOV has particularly many variations. It can be one of:
15042 0. VMOV<c><q> <Qd>, <Qm>
15043 1. VMOV<c><q> <Dd>, <Dm>
15044 (Register operations, which are VORR with Rm = Rn.)
15045 2. VMOV<c><q>.<dt> <Qd>, #<imm>
15046 3. VMOV<c><q>.<dt> <Dd>, #<imm>
15047 (Immediate loads.)
15048 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
15049 (ARM register to scalar.)
15050 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
15051 (Two ARM registers to vector.)
15052 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
15053 (Scalar to ARM register.)
15054 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
15055 (Vector to two ARM registers.)
15056 8. VMOV.F32 <Sd>, <Sm>
15057 9. VMOV.F64 <Dd>, <Dm>
15058 (VFP register moves.)
15059 10. VMOV.F32 <Sd>, #imm
15060 11. VMOV.F64 <Dd>, #imm
15061 (VFP float immediate load.)
15062 12. VMOV <Rd>, <Sm>
15063 (VFP single to ARM reg.)
15064 13. VMOV <Sd>, <Rm>
15065 (ARM reg to VFP single.)
15066 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
15067 (Two ARM regs to two VFP singles.)
15068 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
15069 (Two VFP singles to two ARM regs.)
15070
15071 These cases can be disambiguated using neon_select_shape, except cases 1/9
15072 and 3/11 which depend on the operand type too.
15073
15074 All the encoded bits are hardcoded by this function.
15075
15076 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
15077 Cases 5, 7 may be used with VFPv2 and above.
15078
15079 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
15080 can specify a type where it doesn't make sense to, and is ignored). */
15081
15082 static void
15083 do_neon_mov (void)
15084 {
15085 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
15086 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
15087 NS_NULL);
15088 struct neon_type_el et;
15089 const char *ldconst = 0;
15090
15091 switch (rs)
15092 {
15093 case NS_DD: /* case 1/9. */
15094 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
15095 /* It is not an error here if no type is given. */
15096 inst.error = NULL;
15097 if (et.type == NT_float && et.size == 64)
15098 {
15099 do_vfp_nsyn_opcode ("fcpyd");
15100 break;
15101 }
15102 /* fall through. */
15103
15104 case NS_QQ: /* case 0/1. */
15105 {
15106 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15107 return;
15108 /* The architecture manual I have doesn't explicitly state which
15109 value the U bit should have for register->register moves, but
15110 the equivalent VORR instruction has U = 0, so do that. */
15111 inst.instruction = 0x0200110;
15112 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15113 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15114 inst.instruction |= LOW4 (inst.operands[1].reg);
15115 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15116 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15117 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15118 inst.instruction |= neon_quad (rs) << 6;
15119
15120 neon_dp_fixup (&inst);
15121 }
15122 break;
15123
15124 case NS_DI: /* case 3/11. */
15125 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
15126 inst.error = NULL;
15127 if (et.type == NT_float && et.size == 64)
15128 {
15129 /* case 11 (fconstd). */
15130 ldconst = "fconstd";
15131 goto encode_fconstd;
15132 }
15133 /* fall through. */
15134
15135 case NS_QI: /* case 2/3. */
15136 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15137 return;
15138 inst.instruction = 0x0800010;
15139 neon_move_immediate ();
15140 neon_dp_fixup (&inst);
15141 break;
15142
15143 case NS_SR: /* case 4. */
15144 {
15145 unsigned bcdebits = 0;
15146 int logsize;
15147 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
15148 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
15149
15150 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
15151 logsize = neon_logbits (et.size);
15152
15153 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
15154 _(BAD_FPU));
15155 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
15156 && et.size != 32, _(BAD_FPU));
15157 constraint (et.type == NT_invtype, _("bad type for scalar"));
15158 constraint (x >= 64 / et.size, _("scalar index out of range"));
15159
15160 switch (et.size)
15161 {
15162 case 8: bcdebits = 0x8; break;
15163 case 16: bcdebits = 0x1; break;
15164 case 32: bcdebits = 0x0; break;
15165 default: ;
15166 }
15167
15168 bcdebits |= x << logsize;
15169
15170 inst.instruction = 0xe000b10;
15171 do_vfp_cond_or_thumb ();
15172 inst.instruction |= LOW4 (dn) << 16;
15173 inst.instruction |= HI1 (dn) << 7;
15174 inst.instruction |= inst.operands[1].reg << 12;
15175 inst.instruction |= (bcdebits & 3) << 5;
15176 inst.instruction |= (bcdebits >> 2) << 21;
15177 }
15178 break;
15179
15180 case NS_DRR: /* case 5 (fmdrr). */
15181 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
15182 _(BAD_FPU));
15183
15184 inst.instruction = 0xc400b10;
15185 do_vfp_cond_or_thumb ();
15186 inst.instruction |= LOW4 (inst.operands[0].reg);
15187 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
15188 inst.instruction |= inst.operands[1].reg << 12;
15189 inst.instruction |= inst.operands[2].reg << 16;
15190 break;
15191
15192 case NS_RS: /* case 6. */
15193 {
15194 unsigned logsize;
15195 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
15196 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
15197 unsigned abcdebits = 0;
15198
15199 et = neon_check_type (2, NS_NULL,
15200 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
15201 logsize = neon_logbits (et.size);
15202
15203 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
15204 _(BAD_FPU));
15205 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
15206 && et.size != 32, _(BAD_FPU));
15207 constraint (et.type == NT_invtype, _("bad type for scalar"));
15208 constraint (x >= 64 / et.size, _("scalar index out of range"));
15209
15210 switch (et.size)
15211 {
15212 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
15213 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
15214 case 32: abcdebits = 0x00; break;
15215 default: ;
15216 }
15217
15218 abcdebits |= x << logsize;
15219 inst.instruction = 0xe100b10;
15220 do_vfp_cond_or_thumb ();
15221 inst.instruction |= LOW4 (dn) << 16;
15222 inst.instruction |= HI1 (dn) << 7;
15223 inst.instruction |= inst.operands[0].reg << 12;
15224 inst.instruction |= (abcdebits & 3) << 5;
15225 inst.instruction |= (abcdebits >> 2) << 21;
15226 }
15227 break;
15228
15229 case NS_RRD: /* case 7 (fmrrd). */
15230 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
15231 _(BAD_FPU));
15232
15233 inst.instruction = 0xc500b10;
15234 do_vfp_cond_or_thumb ();
15235 inst.instruction |= inst.operands[0].reg << 12;
15236 inst.instruction |= inst.operands[1].reg << 16;
15237 inst.instruction |= LOW4 (inst.operands[2].reg);
15238 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15239 break;
15240
15241 case NS_FF: /* case 8 (fcpys). */
15242 do_vfp_nsyn_opcode ("fcpys");
15243 break;
15244
15245 case NS_FI: /* case 10 (fconsts). */
15246 ldconst = "fconsts";
15247 encode_fconstd:
15248 if (is_quarter_float (inst.operands[1].imm))
15249 {
15250 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
15251 do_vfp_nsyn_opcode (ldconst);
15252 }
15253 else
15254 first_error (_("immediate out of range"));
15255 break;
15256
15257 case NS_RF: /* case 12 (fmrs). */
15258 do_vfp_nsyn_opcode ("fmrs");
15259 break;
15260
15261 case NS_FR: /* case 13 (fmsr). */
15262 do_vfp_nsyn_opcode ("fmsr");
15263 break;
15264
15265 /* The encoders for the fmrrs and fmsrr instructions expect three operands
15266 (one of which is a list), but we have parsed four. Do some fiddling to
15267 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
15268 expect. */
15269 case NS_RRFF: /* case 14 (fmrrs). */
15270 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
15271 _("VFP registers must be adjacent"));
15272 inst.operands[2].imm = 2;
15273 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15274 do_vfp_nsyn_opcode ("fmrrs");
15275 break;
15276
15277 case NS_FFRR: /* case 15 (fmsrr). */
15278 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
15279 _("VFP registers must be adjacent"));
15280 inst.operands[1] = inst.operands[2];
15281 inst.operands[2] = inst.operands[3];
15282 inst.operands[0].imm = 2;
15283 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15284 do_vfp_nsyn_opcode ("fmsrr");
15285 break;
15286
15287 default:
15288 abort ();
15289 }
15290 }
15291
15292 static void
15293 do_neon_rshift_round_imm (void)
15294 {
15295 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15296 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
15297 int imm = inst.operands[2].imm;
15298
15299 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
15300 if (imm == 0)
15301 {
15302 inst.operands[2].present = 0;
15303 do_neon_mov ();
15304 return;
15305 }
15306
15307 constraint (imm < 1 || (unsigned)imm > et.size,
15308 _("immediate out of range for shift"));
15309 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
15310 et.size - imm);
15311 }
15312
15313 static void
15314 do_neon_movl (void)
15315 {
15316 struct neon_type_el et = neon_check_type (2, NS_QD,
15317 N_EQK | N_DBL, N_SU_32 | N_KEY);
15318 unsigned sizebits = et.size >> 3;
15319 inst.instruction |= sizebits << 19;
15320 neon_two_same (0, et.type == NT_unsigned, -1);
15321 }
15322
15323 static void
15324 do_neon_trn (void)
15325 {
15326 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15327 struct neon_type_el et = neon_check_type (2, rs,
15328 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15329 NEON_ENCODE (INTEGER, inst);
15330 neon_two_same (neon_quad (rs), 1, et.size);
15331 }
15332
15333 static void
15334 do_neon_zip_uzp (void)
15335 {
15336 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15337 struct neon_type_el et = neon_check_type (2, rs,
15338 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15339 if (rs == NS_DD && et.size == 32)
15340 {
15341 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
15342 inst.instruction = N_MNEM_vtrn;
15343 do_neon_trn ();
15344 return;
15345 }
15346 neon_two_same (neon_quad (rs), 1, et.size);
15347 }
15348
15349 static void
15350 do_neon_sat_abs_neg (void)
15351 {
15352 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15353 struct neon_type_el et = neon_check_type (2, rs,
15354 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
15355 neon_two_same (neon_quad (rs), 1, et.size);
15356 }
15357
15358 static void
15359 do_neon_pair_long (void)
15360 {
15361 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15362 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
15363 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
15364 inst.instruction |= (et.type == NT_unsigned) << 7;
15365 neon_two_same (neon_quad (rs), 1, et.size);
15366 }
15367
15368 static void
15369 do_neon_recip_est (void)
15370 {
15371 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15372 struct neon_type_el et = neon_check_type (2, rs,
15373 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
15374 inst.instruction |= (et.type == NT_float) << 8;
15375 neon_two_same (neon_quad (rs), 1, et.size);
15376 }
15377
15378 static void
15379 do_neon_cls (void)
15380 {
15381 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15382 struct neon_type_el et = neon_check_type (2, rs,
15383 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
15384 neon_two_same (neon_quad (rs), 1, et.size);
15385 }
15386
15387 static void
15388 do_neon_clz (void)
15389 {
15390 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15391 struct neon_type_el et = neon_check_type (2, rs,
15392 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
15393 neon_two_same (neon_quad (rs), 1, et.size);
15394 }
15395
15396 static void
15397 do_neon_cnt (void)
15398 {
15399 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15400 struct neon_type_el et = neon_check_type (2, rs,
15401 N_EQK | N_INT, N_8 | N_KEY);
15402 neon_two_same (neon_quad (rs), 1, et.size);
15403 }
15404
15405 static void
15406 do_neon_swp (void)
15407 {
15408 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15409 neon_two_same (neon_quad (rs), 1, -1);
15410 }
15411
15412 static void
15413 do_neon_tbl_tbx (void)
15414 {
15415 unsigned listlenbits;
15416 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
15417
15418 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
15419 {
15420 first_error (_("bad list length for table lookup"));
15421 return;
15422 }
15423
15424 listlenbits = inst.operands[1].imm - 1;
15425 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15426 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15427 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15428 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15429 inst.instruction |= LOW4 (inst.operands[2].reg);
15430 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15431 inst.instruction |= listlenbits << 8;
15432
15433 neon_dp_fixup (&inst);
15434 }
15435
15436 static void
15437 do_neon_ldm_stm (void)
15438 {
15439 /* P, U and L bits are part of bitmask. */
15440 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
15441 unsigned offsetbits = inst.operands[1].imm * 2;
15442
15443 if (inst.operands[1].issingle)
15444 {
15445 do_vfp_nsyn_ldm_stm (is_dbmode);
15446 return;
15447 }
15448
15449 constraint (is_dbmode && !inst.operands[0].writeback,
15450 _("writeback (!) must be used for VLDMDB and VSTMDB"));
15451
15452 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15453 _("register list must contain at least 1 and at most 16 "
15454 "registers"));
15455
15456 inst.instruction |= inst.operands[0].reg << 16;
15457 inst.instruction |= inst.operands[0].writeback << 21;
15458 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15459 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
15460
15461 inst.instruction |= offsetbits;
15462
15463 do_vfp_cond_or_thumb ();
15464 }
15465
15466 static void
15467 do_neon_ldr_str (void)
15468 {
15469 int is_ldr = (inst.instruction & (1 << 20)) != 0;
15470
15471 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
15472 And is UNPREDICTABLE in thumb mode. */
15473 if (!is_ldr
15474 && inst.operands[1].reg == REG_PC
15475 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
15476 {
15477 if (!thumb_mode && warn_on_deprecated)
15478 as_warn (_("Use of PC here is deprecated"));
15479 else
15480 inst.error = _("Use of PC here is UNPREDICTABLE");
15481 }
15482
15483 if (inst.operands[0].issingle)
15484 {
15485 if (is_ldr)
15486 do_vfp_nsyn_opcode ("flds");
15487 else
15488 do_vfp_nsyn_opcode ("fsts");
15489 }
15490 else
15491 {
15492 if (is_ldr)
15493 do_vfp_nsyn_opcode ("fldd");
15494 else
15495 do_vfp_nsyn_opcode ("fstd");
15496 }
15497 }
15498
15499 /* "interleave" version also handles non-interleaving register VLD1/VST1
15500 instructions. */
15501
15502 static void
15503 do_neon_ld_st_interleave (void)
15504 {
15505 struct neon_type_el et = neon_check_type (1, NS_NULL,
15506 N_8 | N_16 | N_32 | N_64);
15507 unsigned alignbits = 0;
15508 unsigned idx;
15509 /* The bits in this table go:
15510 0: register stride of one (0) or two (1)
15511 1,2: register list length, minus one (1, 2, 3, 4).
15512 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
15513 We use -1 for invalid entries. */
15514 const int typetable[] =
15515 {
15516 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
15517 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
15518 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
15519 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
15520 };
15521 int typebits;
15522
15523 if (et.type == NT_invtype)
15524 return;
15525
15526 if (inst.operands[1].immisalign)
15527 switch (inst.operands[1].imm >> 8)
15528 {
15529 case 64: alignbits = 1; break;
15530 case 128:
15531 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
15532 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
15533 goto bad_alignment;
15534 alignbits = 2;
15535 break;
15536 case 256:
15537 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
15538 goto bad_alignment;
15539 alignbits = 3;
15540 break;
15541 default:
15542 bad_alignment:
15543 first_error (_("bad alignment"));
15544 return;
15545 }
15546
15547 inst.instruction |= alignbits << 4;
15548 inst.instruction |= neon_logbits (et.size) << 6;
15549
15550 /* Bits [4:6] of the immediate in a list specifier encode register stride
15551 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
15552 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
15553 up the right value for "type" in a table based on this value and the given
15554 list style, then stick it back. */
15555 idx = ((inst.operands[0].imm >> 4) & 7)
15556 | (((inst.instruction >> 8) & 3) << 3);
15557
15558 typebits = typetable[idx];
15559
15560 constraint (typebits == -1, _("bad list type for instruction"));
15561
15562 inst.instruction &= ~0xf00;
15563 inst.instruction |= typebits << 8;
15564 }
15565
15566 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
15567 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
15568 otherwise. The variable arguments are a list of pairs of legal (size, align)
15569 values, terminated with -1. */
15570
15571 static int
15572 neon_alignment_bit (int size, int align, int *do_align, ...)
15573 {
15574 va_list ap;
15575 int result = FAIL, thissize, thisalign;
15576
15577 if (!inst.operands[1].immisalign)
15578 {
15579 *do_align = 0;
15580 return SUCCESS;
15581 }
15582
15583 va_start (ap, do_align);
15584
15585 do
15586 {
15587 thissize = va_arg (ap, int);
15588 if (thissize == -1)
15589 break;
15590 thisalign = va_arg (ap, int);
15591
15592 if (size == thissize && align == thisalign)
15593 result = SUCCESS;
15594 }
15595 while (result != SUCCESS);
15596
15597 va_end (ap);
15598
15599 if (result == SUCCESS)
15600 *do_align = 1;
15601 else
15602 first_error (_("unsupported alignment for instruction"));
15603
15604 return result;
15605 }
15606
15607 static void
15608 do_neon_ld_st_lane (void)
15609 {
15610 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
15611 int align_good, do_align = 0;
15612 int logsize = neon_logbits (et.size);
15613 int align = inst.operands[1].imm >> 8;
15614 int n = (inst.instruction >> 8) & 3;
15615 int max_el = 64 / et.size;
15616
15617 if (et.type == NT_invtype)
15618 return;
15619
15620 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
15621 _("bad list length"));
15622 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
15623 _("scalar index out of range"));
15624 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
15625 && et.size == 8,
15626 _("stride of 2 unavailable when element size is 8"));
15627
15628 switch (n)
15629 {
15630 case 0: /* VLD1 / VST1. */
15631 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
15632 32, 32, -1);
15633 if (align_good == FAIL)
15634 return;
15635 if (do_align)
15636 {
15637 unsigned alignbits = 0;
15638 switch (et.size)
15639 {
15640 case 16: alignbits = 0x1; break;
15641 case 32: alignbits = 0x3; break;
15642 default: ;
15643 }
15644 inst.instruction |= alignbits << 4;
15645 }
15646 break;
15647
15648 case 1: /* VLD2 / VST2. */
15649 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
15650 32, 64, -1);
15651 if (align_good == FAIL)
15652 return;
15653 if (do_align)
15654 inst.instruction |= 1 << 4;
15655 break;
15656
15657 case 2: /* VLD3 / VST3. */
15658 constraint (inst.operands[1].immisalign,
15659 _("can't use alignment with this instruction"));
15660 break;
15661
15662 case 3: /* VLD4 / VST4. */
15663 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15664 16, 64, 32, 64, 32, 128, -1);
15665 if (align_good == FAIL)
15666 return;
15667 if (do_align)
15668 {
15669 unsigned alignbits = 0;
15670 switch (et.size)
15671 {
15672 case 8: alignbits = 0x1; break;
15673 case 16: alignbits = 0x1; break;
15674 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
15675 default: ;
15676 }
15677 inst.instruction |= alignbits << 4;
15678 }
15679 break;
15680
15681 default: ;
15682 }
15683
15684 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
15685 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15686 inst.instruction |= 1 << (4 + logsize);
15687
15688 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
15689 inst.instruction |= logsize << 10;
15690 }
15691
15692 /* Encode single n-element structure to all lanes VLD<n> instructions. */
15693
15694 static void
15695 do_neon_ld_dup (void)
15696 {
15697 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
15698 int align_good, do_align = 0;
15699
15700 if (et.type == NT_invtype)
15701 return;
15702
15703 switch ((inst.instruction >> 8) & 3)
15704 {
15705 case 0: /* VLD1. */
15706 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
15707 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15708 &do_align, 16, 16, 32, 32, -1);
15709 if (align_good == FAIL)
15710 return;
15711 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
15712 {
15713 case 1: break;
15714 case 2: inst.instruction |= 1 << 5; break;
15715 default: first_error (_("bad list length")); return;
15716 }
15717 inst.instruction |= neon_logbits (et.size) << 6;
15718 break;
15719
15720 case 1: /* VLD2. */
15721 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15722 &do_align, 8, 16, 16, 32, 32, 64, -1);
15723 if (align_good == FAIL)
15724 return;
15725 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
15726 _("bad list length"));
15727 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15728 inst.instruction |= 1 << 5;
15729 inst.instruction |= neon_logbits (et.size) << 6;
15730 break;
15731
15732 case 2: /* VLD3. */
15733 constraint (inst.operands[1].immisalign,
15734 _("can't use alignment with this instruction"));
15735 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
15736 _("bad list length"));
15737 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15738 inst.instruction |= 1 << 5;
15739 inst.instruction |= neon_logbits (et.size) << 6;
15740 break;
15741
15742 case 3: /* VLD4. */
15743 {
15744 int align = inst.operands[1].imm >> 8;
15745 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15746 16, 64, 32, 64, 32, 128, -1);
15747 if (align_good == FAIL)
15748 return;
15749 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
15750 _("bad list length"));
15751 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15752 inst.instruction |= 1 << 5;
15753 if (et.size == 32 && align == 128)
15754 inst.instruction |= 0x3 << 6;
15755 else
15756 inst.instruction |= neon_logbits (et.size) << 6;
15757 }
15758 break;
15759
15760 default: ;
15761 }
15762
15763 inst.instruction |= do_align << 4;
15764 }
15765
15766 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
15767 apart from bits [11:4]. */
15768
15769 static void
15770 do_neon_ldx_stx (void)
15771 {
15772 if (inst.operands[1].isreg)
15773 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
15774
15775 switch (NEON_LANE (inst.operands[0].imm))
15776 {
15777 case NEON_INTERLEAVE_LANES:
15778 NEON_ENCODE (INTERLV, inst);
15779 do_neon_ld_st_interleave ();
15780 break;
15781
15782 case NEON_ALL_LANES:
15783 NEON_ENCODE (DUP, inst);
15784 do_neon_ld_dup ();
15785 break;
15786
15787 default:
15788 NEON_ENCODE (LANE, inst);
15789 do_neon_ld_st_lane ();
15790 }
15791
15792 /* L bit comes from bit mask. */
15793 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15794 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15795 inst.instruction |= inst.operands[1].reg << 16;
15796
15797 if (inst.operands[1].postind)
15798 {
15799 int postreg = inst.operands[1].imm & 0xf;
15800 constraint (!inst.operands[1].immisreg,
15801 _("post-index must be a register"));
15802 constraint (postreg == 0xd || postreg == 0xf,
15803 _("bad register for post-index"));
15804 inst.instruction |= postreg;
15805 }
15806 else if (inst.operands[1].writeback)
15807 {
15808 inst.instruction |= 0xd;
15809 }
15810 else
15811 inst.instruction |= 0xf;
15812
15813 if (thumb_mode)
15814 inst.instruction |= 0xf9000000;
15815 else
15816 inst.instruction |= 0xf4000000;
15817 }
15818 \f
15819 /* Overall per-instruction processing. */
15820
15821 /* We need to be able to fix up arbitrary expressions in some statements.
15822 This is so that we can handle symbols that are an arbitrary distance from
15823 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
15824 which returns part of an address in a form which will be valid for
15825 a data instruction. We do this by pushing the expression into a symbol
15826 in the expr_section, and creating a fix for that. */
15827
15828 static void
15829 fix_new_arm (fragS * frag,
15830 int where,
15831 short int size,
15832 expressionS * exp,
15833 int pc_rel,
15834 int reloc)
15835 {
15836 fixS * new_fix;
15837
15838 switch (exp->X_op)
15839 {
15840 case O_constant:
15841 if (pc_rel)
15842 {
15843 /* Create an absolute valued symbol, so we have something to
15844 refer to in the object file. Unfortunately for us, gas's
15845 generic expression parsing will already have folded out
15846 any use of .set foo/.type foo %function that may have
15847 been used to set type information of the target location,
15848 that's being specified symbolically. We have to presume
15849 the user knows what they are doing. */
15850 char name[16 + 8];
15851 symbolS *symbol;
15852
15853 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
15854
15855 symbol = symbol_find_or_make (name);
15856 S_SET_SEGMENT (symbol, absolute_section);
15857 symbol_set_frag (symbol, &zero_address_frag);
15858 S_SET_VALUE (symbol, exp->X_add_number);
15859 exp->X_op = O_symbol;
15860 exp->X_add_symbol = symbol;
15861 exp->X_add_number = 0;
15862 }
15863 /* FALLTHROUGH */
15864 case O_symbol:
15865 case O_add:
15866 case O_subtract:
15867 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
15868 (enum bfd_reloc_code_real) reloc);
15869 break;
15870
15871 default:
15872 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
15873 pc_rel, (enum bfd_reloc_code_real) reloc);
15874 break;
15875 }
15876
15877 /* Mark whether the fix is to a THUMB instruction, or an ARM
15878 instruction. */
15879 new_fix->tc_fix_data = thumb_mode;
15880 }
15881
15882 /* Create a frg for an instruction requiring relaxation. */
15883 static void
15884 output_relax_insn (void)
15885 {
15886 char * to;
15887 symbolS *sym;
15888 int offset;
15889
15890 /* The size of the instruction is unknown, so tie the debug info to the
15891 start of the instruction. */
15892 dwarf2_emit_insn (0);
15893
15894 switch (inst.reloc.exp.X_op)
15895 {
15896 case O_symbol:
15897 sym = inst.reloc.exp.X_add_symbol;
15898 offset = inst.reloc.exp.X_add_number;
15899 break;
15900 case O_constant:
15901 sym = NULL;
15902 offset = inst.reloc.exp.X_add_number;
15903 break;
15904 default:
15905 sym = make_expr_symbol (&inst.reloc.exp);
15906 offset = 0;
15907 break;
15908 }
15909 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
15910 inst.relax, sym, offset, NULL/*offset, opcode*/);
15911 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
15912 }
15913
15914 /* Write a 32-bit thumb instruction to buf. */
15915 static void
15916 put_thumb32_insn (char * buf, unsigned long insn)
15917 {
15918 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
15919 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
15920 }
15921
15922 static void
15923 output_inst (const char * str)
15924 {
15925 char * to = NULL;
15926
15927 if (inst.error)
15928 {
15929 as_bad ("%s -- `%s'", inst.error, str);
15930 return;
15931 }
15932 if (inst.relax)
15933 {
15934 output_relax_insn ();
15935 return;
15936 }
15937 if (inst.size == 0)
15938 return;
15939
15940 to = frag_more (inst.size);
15941 /* PR 9814: Record the thumb mode into the current frag so that we know
15942 what type of NOP padding to use, if necessary. We override any previous
15943 setting so that if the mode has changed then the NOPS that we use will
15944 match the encoding of the last instruction in the frag. */
15945 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
15946
15947 if (thumb_mode && (inst.size > THUMB_SIZE))
15948 {
15949 gas_assert (inst.size == (2 * THUMB_SIZE));
15950 put_thumb32_insn (to, inst.instruction);
15951 }
15952 else if (inst.size > INSN_SIZE)
15953 {
15954 gas_assert (inst.size == (2 * INSN_SIZE));
15955 md_number_to_chars (to, inst.instruction, INSN_SIZE);
15956 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
15957 }
15958 else
15959 md_number_to_chars (to, inst.instruction, inst.size);
15960
15961 if (inst.reloc.type != BFD_RELOC_UNUSED)
15962 fix_new_arm (frag_now, to - frag_now->fr_literal,
15963 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
15964 inst.reloc.type);
15965
15966 dwarf2_emit_insn (inst.size);
15967 }
15968
15969 static char *
15970 output_it_inst (int cond, int mask, char * to)
15971 {
15972 unsigned long instruction = 0xbf00;
15973
15974 mask &= 0xf;
15975 instruction |= mask;
15976 instruction |= cond << 4;
15977
15978 if (to == NULL)
15979 {
15980 to = frag_more (2);
15981 #ifdef OBJ_ELF
15982 dwarf2_emit_insn (2);
15983 #endif
15984 }
15985
15986 md_number_to_chars (to, instruction, 2);
15987
15988 return to;
15989 }
15990
15991 /* Tag values used in struct asm_opcode's tag field. */
15992 enum opcode_tag
15993 {
15994 OT_unconditional, /* Instruction cannot be conditionalized.
15995 The ARM condition field is still 0xE. */
15996 OT_unconditionalF, /* Instruction cannot be conditionalized
15997 and carries 0xF in its ARM condition field. */
15998 OT_csuffix, /* Instruction takes a conditional suffix. */
15999 OT_csuffixF, /* Some forms of the instruction take a conditional
16000 suffix, others place 0xF where the condition field
16001 would be. */
16002 OT_cinfix3, /* Instruction takes a conditional infix,
16003 beginning at character index 3. (In
16004 unified mode, it becomes a suffix.) */
16005 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
16006 tsts, cmps, cmns, and teqs. */
16007 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
16008 character index 3, even in unified mode. Used for
16009 legacy instructions where suffix and infix forms
16010 may be ambiguous. */
16011 OT_csuf_or_in3, /* Instruction takes either a conditional
16012 suffix or an infix at character index 3. */
16013 OT_odd_infix_unc, /* This is the unconditional variant of an
16014 instruction that takes a conditional infix
16015 at an unusual position. In unified mode,
16016 this variant will accept a suffix. */
16017 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
16018 are the conditional variants of instructions that
16019 take conditional infixes in unusual positions.
16020 The infix appears at character index
16021 (tag - OT_odd_infix_0). These are not accepted
16022 in unified mode. */
16023 };
16024
16025 /* Subroutine of md_assemble, responsible for looking up the primary
16026 opcode from the mnemonic the user wrote. STR points to the
16027 beginning of the mnemonic.
16028
16029 This is not simply a hash table lookup, because of conditional
16030 variants. Most instructions have conditional variants, which are
16031 expressed with a _conditional affix_ to the mnemonic. If we were
16032 to encode each conditional variant as a literal string in the opcode
16033 table, it would have approximately 20,000 entries.
16034
16035 Most mnemonics take this affix as a suffix, and in unified syntax,
16036 'most' is upgraded to 'all'. However, in the divided syntax, some
16037 instructions take the affix as an infix, notably the s-variants of
16038 the arithmetic instructions. Of those instructions, all but six
16039 have the infix appear after the third character of the mnemonic.
16040
16041 Accordingly, the algorithm for looking up primary opcodes given
16042 an identifier is:
16043
16044 1. Look up the identifier in the opcode table.
16045 If we find a match, go to step U.
16046
16047 2. Look up the last two characters of the identifier in the
16048 conditions table. If we find a match, look up the first N-2
16049 characters of the identifier in the opcode table. If we
16050 find a match, go to step CE.
16051
16052 3. Look up the fourth and fifth characters of the identifier in
16053 the conditions table. If we find a match, extract those
16054 characters from the identifier, and look up the remaining
16055 characters in the opcode table. If we find a match, go
16056 to step CM.
16057
16058 4. Fail.
16059
16060 U. Examine the tag field of the opcode structure, in case this is
16061 one of the six instructions with its conditional infix in an
16062 unusual place. If it is, the tag tells us where to find the
16063 infix; look it up in the conditions table and set inst.cond
16064 accordingly. Otherwise, this is an unconditional instruction.
16065 Again set inst.cond accordingly. Return the opcode structure.
16066
16067 CE. Examine the tag field to make sure this is an instruction that
16068 should receive a conditional suffix. If it is not, fail.
16069 Otherwise, set inst.cond from the suffix we already looked up,
16070 and return the opcode structure.
16071
16072 CM. Examine the tag field to make sure this is an instruction that
16073 should receive a conditional infix after the third character.
16074 If it is not, fail. Otherwise, undo the edits to the current
16075 line of input and proceed as for case CE. */
16076
16077 static const struct asm_opcode *
16078 opcode_lookup (char **str)
16079 {
16080 char *end, *base;
16081 char *affix;
16082 const struct asm_opcode *opcode;
16083 const struct asm_cond *cond;
16084 char save[2];
16085
16086 /* Scan up to the end of the mnemonic, which must end in white space,
16087 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
16088 for (base = end = *str; *end != '\0'; end++)
16089 if (*end == ' ' || *end == '.')
16090 break;
16091
16092 if (end == base)
16093 return NULL;
16094
16095 /* Handle a possible width suffix and/or Neon type suffix. */
16096 if (end[0] == '.')
16097 {
16098 int offset = 2;
16099
16100 /* The .w and .n suffixes are only valid if the unified syntax is in
16101 use. */
16102 if (unified_syntax && end[1] == 'w')
16103 inst.size_req = 4;
16104 else if (unified_syntax && end[1] == 'n')
16105 inst.size_req = 2;
16106 else
16107 offset = 0;
16108
16109 inst.vectype.elems = 0;
16110
16111 *str = end + offset;
16112
16113 if (end[offset] == '.')
16114 {
16115 /* See if we have a Neon type suffix (possible in either unified or
16116 non-unified ARM syntax mode). */
16117 if (parse_neon_type (&inst.vectype, str) == FAIL)
16118 return NULL;
16119 }
16120 else if (end[offset] != '\0' && end[offset] != ' ')
16121 return NULL;
16122 }
16123 else
16124 *str = end;
16125
16126 /* Look for unaffixed or special-case affixed mnemonic. */
16127 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16128 end - base);
16129 if (opcode)
16130 {
16131 /* step U */
16132 if (opcode->tag < OT_odd_infix_0)
16133 {
16134 inst.cond = COND_ALWAYS;
16135 return opcode;
16136 }
16137
16138 if (warn_on_deprecated && unified_syntax)
16139 as_warn (_("conditional infixes are deprecated in unified syntax"));
16140 affix = base + (opcode->tag - OT_odd_infix_0);
16141 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
16142 gas_assert (cond);
16143
16144 inst.cond = cond->value;
16145 return opcode;
16146 }
16147
16148 /* Cannot have a conditional suffix on a mnemonic of less than two
16149 characters. */
16150 if (end - base < 3)
16151 return NULL;
16152
16153 /* Look for suffixed mnemonic. */
16154 affix = end - 2;
16155 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
16156 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16157 affix - base);
16158 if (opcode && cond)
16159 {
16160 /* step CE */
16161 switch (opcode->tag)
16162 {
16163 case OT_cinfix3_legacy:
16164 /* Ignore conditional suffixes matched on infix only mnemonics. */
16165 break;
16166
16167 case OT_cinfix3:
16168 case OT_cinfix3_deprecated:
16169 case OT_odd_infix_unc:
16170 if (!unified_syntax)
16171 return 0;
16172 /* else fall through */
16173
16174 case OT_csuffix:
16175 case OT_csuffixF:
16176 case OT_csuf_or_in3:
16177 inst.cond = cond->value;
16178 return opcode;
16179
16180 case OT_unconditional:
16181 case OT_unconditionalF:
16182 if (thumb_mode)
16183 inst.cond = cond->value;
16184 else
16185 {
16186 /* Delayed diagnostic. */
16187 inst.error = BAD_COND;
16188 inst.cond = COND_ALWAYS;
16189 }
16190 return opcode;
16191
16192 default:
16193 return NULL;
16194 }
16195 }
16196
16197 /* Cannot have a usual-position infix on a mnemonic of less than
16198 six characters (five would be a suffix). */
16199 if (end - base < 6)
16200 return NULL;
16201
16202 /* Look for infixed mnemonic in the usual position. */
16203 affix = base + 3;
16204 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
16205 if (!cond)
16206 return NULL;
16207
16208 memcpy (save, affix, 2);
16209 memmove (affix, affix + 2, (end - affix) - 2);
16210 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16211 (end - base) - 2);
16212 memmove (affix + 2, affix, (end - affix) - 2);
16213 memcpy (affix, save, 2);
16214
16215 if (opcode
16216 && (opcode->tag == OT_cinfix3
16217 || opcode->tag == OT_cinfix3_deprecated
16218 || opcode->tag == OT_csuf_or_in3
16219 || opcode->tag == OT_cinfix3_legacy))
16220 {
16221 /* Step CM. */
16222 if (warn_on_deprecated && unified_syntax
16223 && (opcode->tag == OT_cinfix3
16224 || opcode->tag == OT_cinfix3_deprecated))
16225 as_warn (_("conditional infixes are deprecated in unified syntax"));
16226
16227 inst.cond = cond->value;
16228 return opcode;
16229 }
16230
16231 return NULL;
16232 }
16233
16234 /* This function generates an initial IT instruction, leaving its block
16235 virtually open for the new instructions. Eventually,
16236 the mask will be updated by now_it_add_mask () each time
16237 a new instruction needs to be included in the IT block.
16238 Finally, the block is closed with close_automatic_it_block ().
16239 The block closure can be requested either from md_assemble (),
16240 a tencode (), or due to a label hook. */
16241
16242 static void
16243 new_automatic_it_block (int cond)
16244 {
16245 now_it.state = AUTOMATIC_IT_BLOCK;
16246 now_it.mask = 0x18;
16247 now_it.cc = cond;
16248 now_it.block_length = 1;
16249 mapping_state (MAP_THUMB);
16250 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
16251 now_it.warn_deprecated = FALSE;
16252 now_it.insn_cond = TRUE;
16253 }
16254
16255 /* Close an automatic IT block.
16256 See comments in new_automatic_it_block (). */
16257
16258 static void
16259 close_automatic_it_block (void)
16260 {
16261 now_it.mask = 0x10;
16262 now_it.block_length = 0;
16263 }
16264
16265 /* Update the mask of the current automatically-generated IT
16266 instruction. See comments in new_automatic_it_block (). */
16267
16268 static void
16269 now_it_add_mask (int cond)
16270 {
16271 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
16272 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
16273 | ((bitvalue) << (nbit)))
16274 const int resulting_bit = (cond & 1);
16275
16276 now_it.mask &= 0xf;
16277 now_it.mask = SET_BIT_VALUE (now_it.mask,
16278 resulting_bit,
16279 (5 - now_it.block_length));
16280 now_it.mask = SET_BIT_VALUE (now_it.mask,
16281 1,
16282 ((5 - now_it.block_length) - 1) );
16283 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
16284
16285 #undef CLEAR_BIT
16286 #undef SET_BIT_VALUE
16287 }
16288
16289 /* The IT blocks handling machinery is accessed through the these functions:
16290 it_fsm_pre_encode () from md_assemble ()
16291 set_it_insn_type () optional, from the tencode functions
16292 set_it_insn_type_last () ditto
16293 in_it_block () ditto
16294 it_fsm_post_encode () from md_assemble ()
16295 force_automatic_it_block_close () from label habdling functions
16296
16297 Rationale:
16298 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
16299 initializing the IT insn type with a generic initial value depending
16300 on the inst.condition.
16301 2) During the tencode function, two things may happen:
16302 a) The tencode function overrides the IT insn type by
16303 calling either set_it_insn_type (type) or set_it_insn_type_last ().
16304 b) The tencode function queries the IT block state by
16305 calling in_it_block () (i.e. to determine narrow/not narrow mode).
16306
16307 Both set_it_insn_type and in_it_block run the internal FSM state
16308 handling function (handle_it_state), because: a) setting the IT insn
16309 type may incur in an invalid state (exiting the function),
16310 and b) querying the state requires the FSM to be updated.
16311 Specifically we want to avoid creating an IT block for conditional
16312 branches, so it_fsm_pre_encode is actually a guess and we can't
16313 determine whether an IT block is required until the tencode () routine
16314 has decided what type of instruction this actually it.
16315 Because of this, if set_it_insn_type and in_it_block have to be used,
16316 set_it_insn_type has to be called first.
16317
16318 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
16319 determines the insn IT type depending on the inst.cond code.
16320 When a tencode () routine encodes an instruction that can be
16321 either outside an IT block, or, in the case of being inside, has to be
16322 the last one, set_it_insn_type_last () will determine the proper
16323 IT instruction type based on the inst.cond code. Otherwise,
16324 set_it_insn_type can be called for overriding that logic or
16325 for covering other cases.
16326
16327 Calling handle_it_state () may not transition the IT block state to
16328 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
16329 still queried. Instead, if the FSM determines that the state should
16330 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
16331 after the tencode () function: that's what it_fsm_post_encode () does.
16332
16333 Since in_it_block () calls the state handling function to get an
16334 updated state, an error may occur (due to invalid insns combination).
16335 In that case, inst.error is set.
16336 Therefore, inst.error has to be checked after the execution of
16337 the tencode () routine.
16338
16339 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
16340 any pending state change (if any) that didn't take place in
16341 handle_it_state () as explained above. */
16342
16343 static void
16344 it_fsm_pre_encode (void)
16345 {
16346 if (inst.cond != COND_ALWAYS)
16347 inst.it_insn_type = INSIDE_IT_INSN;
16348 else
16349 inst.it_insn_type = OUTSIDE_IT_INSN;
16350
16351 now_it.state_handled = 0;
16352 }
16353
16354 /* IT state FSM handling function. */
16355
16356 static int
16357 handle_it_state (void)
16358 {
16359 now_it.state_handled = 1;
16360 now_it.insn_cond = FALSE;
16361
16362 switch (now_it.state)
16363 {
16364 case OUTSIDE_IT_BLOCK:
16365 switch (inst.it_insn_type)
16366 {
16367 case OUTSIDE_IT_INSN:
16368 break;
16369
16370 case INSIDE_IT_INSN:
16371 case INSIDE_IT_LAST_INSN:
16372 if (thumb_mode == 0)
16373 {
16374 if (unified_syntax
16375 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
16376 as_tsktsk (_("Warning: conditional outside an IT block"\
16377 " for Thumb."));
16378 }
16379 else
16380 {
16381 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
16382 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
16383 {
16384 /* Automatically generate the IT instruction. */
16385 new_automatic_it_block (inst.cond);
16386 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
16387 close_automatic_it_block ();
16388 }
16389 else
16390 {
16391 inst.error = BAD_OUT_IT;
16392 return FAIL;
16393 }
16394 }
16395 break;
16396
16397 case IF_INSIDE_IT_LAST_INSN:
16398 case NEUTRAL_IT_INSN:
16399 break;
16400
16401 case IT_INSN:
16402 now_it.state = MANUAL_IT_BLOCK;
16403 now_it.block_length = 0;
16404 break;
16405 }
16406 break;
16407
16408 case AUTOMATIC_IT_BLOCK:
16409 /* Three things may happen now:
16410 a) We should increment current it block size;
16411 b) We should close current it block (closing insn or 4 insns);
16412 c) We should close current it block and start a new one (due
16413 to incompatible conditions or
16414 4 insns-length block reached). */
16415
16416 switch (inst.it_insn_type)
16417 {
16418 case OUTSIDE_IT_INSN:
16419 /* The closure of the block shall happen immediatelly,
16420 so any in_it_block () call reports the block as closed. */
16421 force_automatic_it_block_close ();
16422 break;
16423
16424 case INSIDE_IT_INSN:
16425 case INSIDE_IT_LAST_INSN:
16426 case IF_INSIDE_IT_LAST_INSN:
16427 now_it.block_length++;
16428
16429 if (now_it.block_length > 4
16430 || !now_it_compatible (inst.cond))
16431 {
16432 force_automatic_it_block_close ();
16433 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
16434 new_automatic_it_block (inst.cond);
16435 }
16436 else
16437 {
16438 now_it.insn_cond = TRUE;
16439 now_it_add_mask (inst.cond);
16440 }
16441
16442 if (now_it.state == AUTOMATIC_IT_BLOCK
16443 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
16444 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
16445 close_automatic_it_block ();
16446 break;
16447
16448 case NEUTRAL_IT_INSN:
16449 now_it.block_length++;
16450 now_it.insn_cond = TRUE;
16451
16452 if (now_it.block_length > 4)
16453 force_automatic_it_block_close ();
16454 else
16455 now_it_add_mask (now_it.cc & 1);
16456 break;
16457
16458 case IT_INSN:
16459 close_automatic_it_block ();
16460 now_it.state = MANUAL_IT_BLOCK;
16461 break;
16462 }
16463 break;
16464
16465 case MANUAL_IT_BLOCK:
16466 {
16467 /* Check conditional suffixes. */
16468 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
16469 int is_last;
16470 now_it.mask <<= 1;
16471 now_it.mask &= 0x1f;
16472 is_last = (now_it.mask == 0x10);
16473 now_it.insn_cond = TRUE;
16474
16475 switch (inst.it_insn_type)
16476 {
16477 case OUTSIDE_IT_INSN:
16478 inst.error = BAD_NOT_IT;
16479 return FAIL;
16480
16481 case INSIDE_IT_INSN:
16482 if (cond != inst.cond)
16483 {
16484 inst.error = BAD_IT_COND;
16485 return FAIL;
16486 }
16487 break;
16488
16489 case INSIDE_IT_LAST_INSN:
16490 case IF_INSIDE_IT_LAST_INSN:
16491 if (cond != inst.cond)
16492 {
16493 inst.error = BAD_IT_COND;
16494 return FAIL;
16495 }
16496 if (!is_last)
16497 {
16498 inst.error = BAD_BRANCH;
16499 return FAIL;
16500 }
16501 break;
16502
16503 case NEUTRAL_IT_INSN:
16504 /* The BKPT instruction is unconditional even in an IT block. */
16505 break;
16506
16507 case IT_INSN:
16508 inst.error = BAD_IT_IT;
16509 return FAIL;
16510 }
16511 }
16512 break;
16513 }
16514
16515 return SUCCESS;
16516 }
16517
16518 struct depr_insn_mask
16519 {
16520 unsigned long pattern;
16521 unsigned long mask;
16522 const char* description;
16523 };
16524
16525 /* List of 16-bit instruction patterns deprecated in an IT block in
16526 ARMv8. */
16527 static const struct depr_insn_mask depr_it_insns[] = {
16528 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
16529 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
16530 { 0xa000, 0xb800, N_("ADR") },
16531 { 0x4800, 0xf800, N_("Literal loads") },
16532 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
16533 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
16534 { 0, 0, NULL }
16535 };
16536
16537 static void
16538 it_fsm_post_encode (void)
16539 {
16540 int is_last;
16541
16542 if (!now_it.state_handled)
16543 handle_it_state ();
16544
16545 if (now_it.insn_cond
16546 && !now_it.warn_deprecated
16547 && warn_on_deprecated
16548 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
16549 {
16550 if (inst.instruction >= 0x10000)
16551 {
16552 as_warn (_("it blocks containing wide Thumb instructions are "
16553 "deprecated in ARMv8"));
16554 now_it.warn_deprecated = TRUE;
16555 }
16556 else
16557 {
16558 const struct depr_insn_mask *p = depr_it_insns;
16559
16560 while (p->mask != 0)
16561 {
16562 if ((inst.instruction & p->mask) == p->pattern)
16563 {
16564 as_warn (_("it blocks containing 16-bit Thumb intsructions "
16565 "of the following class are deprecated in ARMv8: "
16566 "%s"), p->description);
16567 now_it.warn_deprecated = TRUE;
16568 break;
16569 }
16570
16571 ++p;
16572 }
16573 }
16574
16575 if (now_it.block_length > 1)
16576 {
16577 as_warn (_("it blocks of more than one conditional instruction are "
16578 "deprecated in ARMv8"));
16579 now_it.warn_deprecated = TRUE;
16580 }
16581 }
16582
16583 is_last = (now_it.mask == 0x10);
16584 if (is_last)
16585 {
16586 now_it.state = OUTSIDE_IT_BLOCK;
16587 now_it.mask = 0;
16588 }
16589 }
16590
16591 static void
16592 force_automatic_it_block_close (void)
16593 {
16594 if (now_it.state == AUTOMATIC_IT_BLOCK)
16595 {
16596 close_automatic_it_block ();
16597 now_it.state = OUTSIDE_IT_BLOCK;
16598 now_it.mask = 0;
16599 }
16600 }
16601
16602 static int
16603 in_it_block (void)
16604 {
16605 if (!now_it.state_handled)
16606 handle_it_state ();
16607
16608 return now_it.state != OUTSIDE_IT_BLOCK;
16609 }
16610
16611 void
16612 md_assemble (char *str)
16613 {
16614 char *p = str;
16615 const struct asm_opcode * opcode;
16616
16617 /* Align the previous label if needed. */
16618 if (last_label_seen != NULL)
16619 {
16620 symbol_set_frag (last_label_seen, frag_now);
16621 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
16622 S_SET_SEGMENT (last_label_seen, now_seg);
16623 }
16624
16625 memset (&inst, '\0', sizeof (inst));
16626 inst.reloc.type = BFD_RELOC_UNUSED;
16627
16628 opcode = opcode_lookup (&p);
16629 if (!opcode)
16630 {
16631 /* It wasn't an instruction, but it might be a register alias of
16632 the form alias .req reg, or a Neon .dn/.qn directive. */
16633 if (! create_register_alias (str, p)
16634 && ! create_neon_reg_alias (str, p))
16635 as_bad (_("bad instruction `%s'"), str);
16636
16637 return;
16638 }
16639
16640 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
16641 as_warn (_("s suffix on comparison instruction is deprecated"));
16642
16643 /* The value which unconditional instructions should have in place of the
16644 condition field. */
16645 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
16646
16647 if (thumb_mode)
16648 {
16649 arm_feature_set variant;
16650
16651 variant = cpu_variant;
16652 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
16653 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
16654 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
16655 /* Check that this instruction is supported for this CPU. */
16656 if (!opcode->tvariant
16657 || (thumb_mode == 1
16658 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
16659 {
16660 as_bad (_("selected processor does not support Thumb mode `%s'"), str);
16661 return;
16662 }
16663 if (inst.cond != COND_ALWAYS && !unified_syntax
16664 && opcode->tencode != do_t_branch)
16665 {
16666 as_bad (_("Thumb does not support conditional execution"));
16667 return;
16668 }
16669
16670 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
16671 {
16672 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
16673 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
16674 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
16675 {
16676 /* Two things are addressed here.
16677 1) Implicit require narrow instructions on Thumb-1.
16678 This avoids relaxation accidentally introducing Thumb-2
16679 instructions.
16680 2) Reject wide instructions in non Thumb-2 cores. */
16681 if (inst.size_req == 0)
16682 inst.size_req = 2;
16683 else if (inst.size_req == 4)
16684 {
16685 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str);
16686 return;
16687 }
16688 }
16689 }
16690
16691 inst.instruction = opcode->tvalue;
16692
16693 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
16694 {
16695 /* Prepare the it_insn_type for those encodings that don't set
16696 it. */
16697 it_fsm_pre_encode ();
16698
16699 opcode->tencode ();
16700
16701 it_fsm_post_encode ();
16702 }
16703
16704 if (!(inst.error || inst.relax))
16705 {
16706 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
16707 inst.size = (inst.instruction > 0xffff ? 4 : 2);
16708 if (inst.size_req && inst.size_req != inst.size)
16709 {
16710 as_bad (_("cannot honor width suffix -- `%s'"), str);
16711 return;
16712 }
16713 }
16714
16715 /* Something has gone badly wrong if we try to relax a fixed size
16716 instruction. */
16717 gas_assert (inst.size_req == 0 || !inst.relax);
16718
16719 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16720 *opcode->tvariant);
16721 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
16722 set those bits when Thumb-2 32-bit instructions are seen. ie.
16723 anything other than bl/blx and v6-M instructions.
16724 This is overly pessimistic for relaxable instructions. */
16725 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
16726 || inst.relax)
16727 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
16728 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
16729 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16730 arm_ext_v6t2);
16731
16732 check_neon_suffixes;
16733
16734 if (!inst.error)
16735 {
16736 mapping_state (MAP_THUMB);
16737 }
16738 }
16739 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
16740 {
16741 bfd_boolean is_bx;
16742
16743 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
16744 is_bx = (opcode->aencode == do_bx);
16745
16746 /* Check that this instruction is supported for this CPU. */
16747 if (!(is_bx && fix_v4bx)
16748 && !(opcode->avariant &&
16749 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
16750 {
16751 as_bad (_("selected processor does not support ARM mode `%s'"), str);
16752 return;
16753 }
16754 if (inst.size_req)
16755 {
16756 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
16757 return;
16758 }
16759
16760 inst.instruction = opcode->avalue;
16761 if (opcode->tag == OT_unconditionalF)
16762 inst.instruction |= 0xF << 28;
16763 else
16764 inst.instruction |= inst.cond << 28;
16765 inst.size = INSN_SIZE;
16766 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
16767 {
16768 it_fsm_pre_encode ();
16769 opcode->aencode ();
16770 it_fsm_post_encode ();
16771 }
16772 /* Arm mode bx is marked as both v4T and v5 because it's still required
16773 on a hypothetical non-thumb v5 core. */
16774 if (is_bx)
16775 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
16776 else
16777 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
16778 *opcode->avariant);
16779
16780 check_neon_suffixes;
16781
16782 if (!inst.error)
16783 {
16784 mapping_state (MAP_ARM);
16785 }
16786 }
16787 else
16788 {
16789 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
16790 "-- `%s'"), str);
16791 return;
16792 }
16793 output_inst (str);
16794 }
16795
16796 static void
16797 check_it_blocks_finished (void)
16798 {
16799 #ifdef OBJ_ELF
16800 asection *sect;
16801
16802 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
16803 if (seg_info (sect)->tc_segment_info_data.current_it.state
16804 == MANUAL_IT_BLOCK)
16805 {
16806 as_warn (_("section '%s' finished with an open IT block."),
16807 sect->name);
16808 }
16809 #else
16810 if (now_it.state == MANUAL_IT_BLOCK)
16811 as_warn (_("file finished with an open IT block."));
16812 #endif
16813 }
16814
16815 /* Various frobbings of labels and their addresses. */
16816
16817 void
16818 arm_start_line_hook (void)
16819 {
16820 last_label_seen = NULL;
16821 }
16822
16823 void
16824 arm_frob_label (symbolS * sym)
16825 {
16826 last_label_seen = sym;
16827
16828 ARM_SET_THUMB (sym, thumb_mode);
16829
16830 #if defined OBJ_COFF || defined OBJ_ELF
16831 ARM_SET_INTERWORK (sym, support_interwork);
16832 #endif
16833
16834 force_automatic_it_block_close ();
16835
16836 /* Note - do not allow local symbols (.Lxxx) to be labelled
16837 as Thumb functions. This is because these labels, whilst
16838 they exist inside Thumb code, are not the entry points for
16839 possible ARM->Thumb calls. Also, these labels can be used
16840 as part of a computed goto or switch statement. eg gcc
16841 can generate code that looks like this:
16842
16843 ldr r2, [pc, .Laaa]
16844 lsl r3, r3, #2
16845 ldr r2, [r3, r2]
16846 mov pc, r2
16847
16848 .Lbbb: .word .Lxxx
16849 .Lccc: .word .Lyyy
16850 ..etc...
16851 .Laaa: .word Lbbb
16852
16853 The first instruction loads the address of the jump table.
16854 The second instruction converts a table index into a byte offset.
16855 The third instruction gets the jump address out of the table.
16856 The fourth instruction performs the jump.
16857
16858 If the address stored at .Laaa is that of a symbol which has the
16859 Thumb_Func bit set, then the linker will arrange for this address
16860 to have the bottom bit set, which in turn would mean that the
16861 address computation performed by the third instruction would end
16862 up with the bottom bit set. Since the ARM is capable of unaligned
16863 word loads, the instruction would then load the incorrect address
16864 out of the jump table, and chaos would ensue. */
16865 if (label_is_thumb_function_name
16866 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
16867 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
16868 {
16869 /* When the address of a Thumb function is taken the bottom
16870 bit of that address should be set. This will allow
16871 interworking between Arm and Thumb functions to work
16872 correctly. */
16873
16874 THUMB_SET_FUNC (sym, 1);
16875
16876 label_is_thumb_function_name = FALSE;
16877 }
16878
16879 dwarf2_emit_label (sym);
16880 }
16881
16882 bfd_boolean
16883 arm_data_in_code (void)
16884 {
16885 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
16886 {
16887 *input_line_pointer = '/';
16888 input_line_pointer += 5;
16889 *input_line_pointer = 0;
16890 return TRUE;
16891 }
16892
16893 return FALSE;
16894 }
16895
16896 char *
16897 arm_canonicalize_symbol_name (char * name)
16898 {
16899 int len;
16900
16901 if (thumb_mode && (len = strlen (name)) > 5
16902 && streq (name + len - 5, "/data"))
16903 *(name + len - 5) = 0;
16904
16905 return name;
16906 }
16907 \f
16908 /* Table of all register names defined by default. The user can
16909 define additional names with .req. Note that all register names
16910 should appear in both upper and lowercase variants. Some registers
16911 also have mixed-case names. */
16912
16913 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
16914 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
16915 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
16916 #define REGSET(p,t) \
16917 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
16918 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
16919 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
16920 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
16921 #define REGSETH(p,t) \
16922 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
16923 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
16924 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
16925 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
16926 #define REGSET2(p,t) \
16927 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
16928 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
16929 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
16930 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
16931 #define SPLRBANK(base,bank,t) \
16932 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
16933 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
16934 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
16935 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
16936 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
16937 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
16938
16939 static const struct reg_entry reg_names[] =
16940 {
16941 /* ARM integer registers. */
16942 REGSET(r, RN), REGSET(R, RN),
16943
16944 /* ATPCS synonyms. */
16945 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
16946 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
16947 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
16948
16949 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
16950 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
16951 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
16952
16953 /* Well-known aliases. */
16954 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
16955 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
16956
16957 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
16958 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
16959
16960 /* Coprocessor numbers. */
16961 REGSET(p, CP), REGSET(P, CP),
16962
16963 /* Coprocessor register numbers. The "cr" variants are for backward
16964 compatibility. */
16965 REGSET(c, CN), REGSET(C, CN),
16966 REGSET(cr, CN), REGSET(CR, CN),
16967
16968 /* ARM banked registers. */
16969 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
16970 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
16971 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
16972 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
16973 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
16974 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
16975 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
16976
16977 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
16978 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
16979 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
16980 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
16981 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
16982 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(SP_fiq,512|(13<<16),RNB),
16983 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
16984 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
16985
16986 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
16987 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
16988 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
16989 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
16990 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
16991 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
16992 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
16993 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
16994 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
16995
16996 /* FPA registers. */
16997 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
16998 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
16999
17000 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
17001 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
17002
17003 /* VFP SP registers. */
17004 REGSET(s,VFS), REGSET(S,VFS),
17005 REGSETH(s,VFS), REGSETH(S,VFS),
17006
17007 /* VFP DP Registers. */
17008 REGSET(d,VFD), REGSET(D,VFD),
17009 /* Extra Neon DP registers. */
17010 REGSETH(d,VFD), REGSETH(D,VFD),
17011
17012 /* Neon QP registers. */
17013 REGSET2(q,NQ), REGSET2(Q,NQ),
17014
17015 /* VFP control registers. */
17016 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
17017 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
17018 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
17019 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
17020 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
17021 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
17022
17023 /* Maverick DSP coprocessor registers. */
17024 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
17025 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
17026
17027 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
17028 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
17029 REGDEF(dspsc,0,DSPSC),
17030
17031 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
17032 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
17033 REGDEF(DSPSC,0,DSPSC),
17034
17035 /* iWMMXt data registers - p0, c0-15. */
17036 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
17037
17038 /* iWMMXt control registers - p1, c0-3. */
17039 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
17040 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
17041 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
17042 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
17043
17044 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
17045 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
17046 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
17047 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
17048 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
17049
17050 /* XScale accumulator registers. */
17051 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
17052 };
17053 #undef REGDEF
17054 #undef REGNUM
17055 #undef REGSET
17056
17057 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
17058 within psr_required_here. */
17059 static const struct asm_psr psrs[] =
17060 {
17061 /* Backward compatibility notation. Note that "all" is no longer
17062 truly all possible PSR bits. */
17063 {"all", PSR_c | PSR_f},
17064 {"flg", PSR_f},
17065 {"ctl", PSR_c},
17066
17067 /* Individual flags. */
17068 {"f", PSR_f},
17069 {"c", PSR_c},
17070 {"x", PSR_x},
17071 {"s", PSR_s},
17072
17073 /* Combinations of flags. */
17074 {"fs", PSR_f | PSR_s},
17075 {"fx", PSR_f | PSR_x},
17076 {"fc", PSR_f | PSR_c},
17077 {"sf", PSR_s | PSR_f},
17078 {"sx", PSR_s | PSR_x},
17079 {"sc", PSR_s | PSR_c},
17080 {"xf", PSR_x | PSR_f},
17081 {"xs", PSR_x | PSR_s},
17082 {"xc", PSR_x | PSR_c},
17083 {"cf", PSR_c | PSR_f},
17084 {"cs", PSR_c | PSR_s},
17085 {"cx", PSR_c | PSR_x},
17086 {"fsx", PSR_f | PSR_s | PSR_x},
17087 {"fsc", PSR_f | PSR_s | PSR_c},
17088 {"fxs", PSR_f | PSR_x | PSR_s},
17089 {"fxc", PSR_f | PSR_x | PSR_c},
17090 {"fcs", PSR_f | PSR_c | PSR_s},
17091 {"fcx", PSR_f | PSR_c | PSR_x},
17092 {"sfx", PSR_s | PSR_f | PSR_x},
17093 {"sfc", PSR_s | PSR_f | PSR_c},
17094 {"sxf", PSR_s | PSR_x | PSR_f},
17095 {"sxc", PSR_s | PSR_x | PSR_c},
17096 {"scf", PSR_s | PSR_c | PSR_f},
17097 {"scx", PSR_s | PSR_c | PSR_x},
17098 {"xfs", PSR_x | PSR_f | PSR_s},
17099 {"xfc", PSR_x | PSR_f | PSR_c},
17100 {"xsf", PSR_x | PSR_s | PSR_f},
17101 {"xsc", PSR_x | PSR_s | PSR_c},
17102 {"xcf", PSR_x | PSR_c | PSR_f},
17103 {"xcs", PSR_x | PSR_c | PSR_s},
17104 {"cfs", PSR_c | PSR_f | PSR_s},
17105 {"cfx", PSR_c | PSR_f | PSR_x},
17106 {"csf", PSR_c | PSR_s | PSR_f},
17107 {"csx", PSR_c | PSR_s | PSR_x},
17108 {"cxf", PSR_c | PSR_x | PSR_f},
17109 {"cxs", PSR_c | PSR_x | PSR_s},
17110 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
17111 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
17112 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
17113 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
17114 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
17115 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
17116 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
17117 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
17118 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
17119 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
17120 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
17121 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
17122 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
17123 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
17124 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
17125 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
17126 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
17127 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
17128 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
17129 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
17130 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
17131 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
17132 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
17133 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
17134 };
17135
17136 /* Table of V7M psr names. */
17137 static const struct asm_psr v7m_psrs[] =
17138 {
17139 {"apsr", 0 }, {"APSR", 0 },
17140 {"iapsr", 1 }, {"IAPSR", 1 },
17141 {"eapsr", 2 }, {"EAPSR", 2 },
17142 {"psr", 3 }, {"PSR", 3 },
17143 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
17144 {"ipsr", 5 }, {"IPSR", 5 },
17145 {"epsr", 6 }, {"EPSR", 6 },
17146 {"iepsr", 7 }, {"IEPSR", 7 },
17147 {"msp", 8 }, {"MSP", 8 },
17148 {"psp", 9 }, {"PSP", 9 },
17149 {"primask", 16}, {"PRIMASK", 16},
17150 {"basepri", 17}, {"BASEPRI", 17},
17151 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
17152 {"basepri_max", 18}, {"BASEPRI_MASK", 18}, /* Typo, preserved for backwards compatibility. */
17153 {"faultmask", 19}, {"FAULTMASK", 19},
17154 {"control", 20}, {"CONTROL", 20}
17155 };
17156
17157 /* Table of all shift-in-operand names. */
17158 static const struct asm_shift_name shift_names [] =
17159 {
17160 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
17161 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
17162 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
17163 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
17164 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
17165 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
17166 };
17167
17168 /* Table of all explicit relocation names. */
17169 #ifdef OBJ_ELF
17170 static struct reloc_entry reloc_names[] =
17171 {
17172 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
17173 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
17174 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
17175 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
17176 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
17177 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
17178 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
17179 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
17180 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
17181 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
17182 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
17183 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
17184 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
17185 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
17186 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
17187 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
17188 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
17189 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ}
17190 };
17191 #endif
17192
17193 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
17194 static const struct asm_cond conds[] =
17195 {
17196 {"eq", 0x0},
17197 {"ne", 0x1},
17198 {"cs", 0x2}, {"hs", 0x2},
17199 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
17200 {"mi", 0x4},
17201 {"pl", 0x5},
17202 {"vs", 0x6},
17203 {"vc", 0x7},
17204 {"hi", 0x8},
17205 {"ls", 0x9},
17206 {"ge", 0xa},
17207 {"lt", 0xb},
17208 {"gt", 0xc},
17209 {"le", 0xd},
17210 {"al", 0xe}
17211 };
17212
17213 #define UL_BARRIER(L,U,CODE,FEAT) \
17214 { L, CODE, ARM_FEATURE (FEAT, 0) }, \
17215 { U, CODE, ARM_FEATURE (FEAT, 0) }
17216
17217 static struct asm_barrier_opt barrier_opt_names[] =
17218 {
17219 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
17220 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
17221 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
17222 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
17223 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
17224 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
17225 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
17226 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
17227 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
17228 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
17229 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
17230 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
17231 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
17232 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
17233 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
17234 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
17235 };
17236
17237 #undef UL_BARRIER
17238
17239 /* Table of ARM-format instructions. */
17240
17241 /* Macros for gluing together operand strings. N.B. In all cases
17242 other than OPS0, the trailing OP_stop comes from default
17243 zero-initialization of the unspecified elements of the array. */
17244 #define OPS0() { OP_stop, }
17245 #define OPS1(a) { OP_##a, }
17246 #define OPS2(a,b) { OP_##a,OP_##b, }
17247 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
17248 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
17249 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
17250 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
17251
17252 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
17253 This is useful when mixing operands for ARM and THUMB, i.e. using the
17254 MIX_ARM_THUMB_OPERANDS macro.
17255 In order to use these macros, prefix the number of operands with _
17256 e.g. _3. */
17257 #define OPS_1(a) { a, }
17258 #define OPS_2(a,b) { a,b, }
17259 #define OPS_3(a,b,c) { a,b,c, }
17260 #define OPS_4(a,b,c,d) { a,b,c,d, }
17261 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
17262 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
17263
17264 /* These macros abstract out the exact format of the mnemonic table and
17265 save some repeated characters. */
17266
17267 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
17268 #define TxCE(mnem, op, top, nops, ops, ae, te) \
17269 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
17270 THUMB_VARIANT, do_##ae, do_##te }
17271
17272 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
17273 a T_MNEM_xyz enumerator. */
17274 #define TCE(mnem, aop, top, nops, ops, ae, te) \
17275 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
17276 #define tCE(mnem, aop, top, nops, ops, ae, te) \
17277 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
17278
17279 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
17280 infix after the third character. */
17281 #define TxC3(mnem, op, top, nops, ops, ae, te) \
17282 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
17283 THUMB_VARIANT, do_##ae, do_##te }
17284 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
17285 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
17286 THUMB_VARIANT, do_##ae, do_##te }
17287 #define TC3(mnem, aop, top, nops, ops, ae, te) \
17288 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
17289 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
17290 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
17291 #define tC3(mnem, aop, top, nops, ops, ae, te) \
17292 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
17293 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
17294 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
17295
17296 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
17297 appear in the condition table. */
17298 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
17299 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
17300 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
17301
17302 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
17303 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
17304 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
17305 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
17306 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
17307 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
17308 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
17309 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
17310 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
17311 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
17312 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
17313 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
17314 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
17315 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
17316 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
17317 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
17318 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
17319 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
17320 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
17321 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
17322
17323 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
17324 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
17325 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
17326 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
17327
17328 /* Mnemonic that cannot be conditionalized. The ARM condition-code
17329 field is still 0xE. Many of the Thumb variants can be executed
17330 conditionally, so this is checked separately. */
17331 #define TUE(mnem, op, top, nops, ops, ae, te) \
17332 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
17333 THUMB_VARIANT, do_##ae, do_##te }
17334
17335 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
17336 condition code field. */
17337 #define TUF(mnem, op, top, nops, ops, ae, te) \
17338 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
17339 THUMB_VARIANT, do_##ae, do_##te }
17340
17341 /* ARM-only variants of all the above. */
17342 #define CE(mnem, op, nops, ops, ae) \
17343 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17344
17345 #define C3(mnem, op, nops, ops, ae) \
17346 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17347
17348 /* Legacy mnemonics that always have conditional infix after the third
17349 character. */
17350 #define CL(mnem, op, nops, ops, ae) \
17351 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
17352 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17353
17354 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
17355 #define cCE(mnem, op, nops, ops, ae) \
17356 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17357
17358 /* Legacy coprocessor instructions where conditional infix and conditional
17359 suffix are ambiguous. For consistency this includes all FPA instructions,
17360 not just the potentially ambiguous ones. */
17361 #define cCL(mnem, op, nops, ops, ae) \
17362 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
17363 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17364
17365 /* Coprocessor, takes either a suffix or a position-3 infix
17366 (for an FPA corner case). */
17367 #define C3E(mnem, op, nops, ops, ae) \
17368 { mnem, OPS##nops ops, OT_csuf_or_in3, \
17369 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17370
17371 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
17372 { m1 #m2 m3, OPS##nops ops, \
17373 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
17374 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17375
17376 #define CM(m1, m2, op, nops, ops, ae) \
17377 xCM_ (m1, , m2, op, nops, ops, ae), \
17378 xCM_ (m1, eq, m2, op, nops, ops, ae), \
17379 xCM_ (m1, ne, m2, op, nops, ops, ae), \
17380 xCM_ (m1, cs, m2, op, nops, ops, ae), \
17381 xCM_ (m1, hs, m2, op, nops, ops, ae), \
17382 xCM_ (m1, cc, m2, op, nops, ops, ae), \
17383 xCM_ (m1, ul, m2, op, nops, ops, ae), \
17384 xCM_ (m1, lo, m2, op, nops, ops, ae), \
17385 xCM_ (m1, mi, m2, op, nops, ops, ae), \
17386 xCM_ (m1, pl, m2, op, nops, ops, ae), \
17387 xCM_ (m1, vs, m2, op, nops, ops, ae), \
17388 xCM_ (m1, vc, m2, op, nops, ops, ae), \
17389 xCM_ (m1, hi, m2, op, nops, ops, ae), \
17390 xCM_ (m1, ls, m2, op, nops, ops, ae), \
17391 xCM_ (m1, ge, m2, op, nops, ops, ae), \
17392 xCM_ (m1, lt, m2, op, nops, ops, ae), \
17393 xCM_ (m1, gt, m2, op, nops, ops, ae), \
17394 xCM_ (m1, le, m2, op, nops, ops, ae), \
17395 xCM_ (m1, al, m2, op, nops, ops, ae)
17396
17397 #define UE(mnem, op, nops, ops, ae) \
17398 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17399
17400 #define UF(mnem, op, nops, ops, ae) \
17401 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17402
17403 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
17404 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
17405 use the same encoding function for each. */
17406 #define NUF(mnem, op, nops, ops, enc) \
17407 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
17408 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17409
17410 /* Neon data processing, version which indirects through neon_enc_tab for
17411 the various overloaded versions of opcodes. */
17412 #define nUF(mnem, op, nops, ops, enc) \
17413 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
17414 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17415
17416 /* Neon insn with conditional suffix for the ARM version, non-overloaded
17417 version. */
17418 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
17419 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
17420 THUMB_VARIANT, do_##enc, do_##enc }
17421
17422 #define NCE(mnem, op, nops, ops, enc) \
17423 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
17424
17425 #define NCEF(mnem, op, nops, ops, enc) \
17426 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
17427
17428 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
17429 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
17430 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
17431 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17432
17433 #define nCE(mnem, op, nops, ops, enc) \
17434 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
17435
17436 #define nCEF(mnem, op, nops, ops, enc) \
17437 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
17438
17439 #define do_0 0
17440
17441 static const struct asm_opcode insns[] =
17442 {
17443 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
17444 #define THUMB_VARIANT &arm_ext_v4t
17445 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
17446 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
17447 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
17448 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
17449 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
17450 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
17451 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
17452 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
17453 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
17454 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
17455 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
17456 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
17457 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
17458 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
17459 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
17460 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
17461
17462 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
17463 for setting PSR flag bits. They are obsolete in V6 and do not
17464 have Thumb equivalents. */
17465 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17466 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17467 CL("tstp", 110f000, 2, (RR, SH), cmp),
17468 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17469 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17470 CL("cmpp", 150f000, 2, (RR, SH), cmp),
17471 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17472 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17473 CL("cmnp", 170f000, 2, (RR, SH), cmp),
17474
17475 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
17476 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
17477 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
17478 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
17479
17480 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
17481 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17482 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
17483 OP_RRnpc),
17484 OP_ADDRGLDR),ldst, t_ldst),
17485 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17486
17487 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17488 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17489 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17490 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17491 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17492 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17493
17494 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
17495 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
17496 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
17497 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
17498
17499 /* Pseudo ops. */
17500 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
17501 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
17502 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
17503
17504 /* Thumb-compatibility pseudo ops. */
17505 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
17506 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
17507 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
17508 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
17509 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
17510 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
17511 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
17512 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
17513 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
17514 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
17515 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
17516 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
17517
17518 /* These may simplify to neg. */
17519 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
17520 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
17521
17522 #undef THUMB_VARIANT
17523 #define THUMB_VARIANT & arm_ext_v6
17524
17525 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
17526
17527 /* V1 instructions with no Thumb analogue prior to V6T2. */
17528 #undef THUMB_VARIANT
17529 #define THUMB_VARIANT & arm_ext_v6t2
17530
17531 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17532 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17533 CL("teqp", 130f000, 2, (RR, SH), cmp),
17534
17535 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17536 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17537 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
17538 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17539
17540 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17541 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17542
17543 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17544 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17545
17546 /* V1 instructions with no Thumb analogue at all. */
17547 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
17548 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
17549
17550 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
17551 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
17552 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
17553 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
17554 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
17555 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
17556 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
17557 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
17558
17559 #undef ARM_VARIANT
17560 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
17561 #undef THUMB_VARIANT
17562 #define THUMB_VARIANT & arm_ext_v4t
17563
17564 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17565 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17566
17567 #undef THUMB_VARIANT
17568 #define THUMB_VARIANT & arm_ext_v6t2
17569
17570 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17571 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
17572
17573 /* Generic coprocessor instructions. */
17574 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17575 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17576 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17577 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17578 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17579 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17580 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
17581
17582 #undef ARM_VARIANT
17583 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
17584
17585 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17586 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17587
17588 #undef ARM_VARIANT
17589 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
17590 #undef THUMB_VARIANT
17591 #define THUMB_VARIANT & arm_ext_msr
17592
17593 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
17594 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
17595
17596 #undef ARM_VARIANT
17597 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
17598 #undef THUMB_VARIANT
17599 #define THUMB_VARIANT & arm_ext_v6t2
17600
17601 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17602 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17603 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17604 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17605 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17606 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17607 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17608 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17609
17610 #undef ARM_VARIANT
17611 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
17612 #undef THUMB_VARIANT
17613 #define THUMB_VARIANT & arm_ext_v4t
17614
17615 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17616 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17617 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17618 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17619 tCM("ld","sh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17620 tCM("ld","sb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17621
17622 #undef ARM_VARIANT
17623 #define ARM_VARIANT & arm_ext_v4t_5
17624
17625 /* ARM Architecture 4T. */
17626 /* Note: bx (and blx) are required on V5, even if the processor does
17627 not support Thumb. */
17628 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
17629
17630 #undef ARM_VARIANT
17631 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
17632 #undef THUMB_VARIANT
17633 #define THUMB_VARIANT & arm_ext_v5t
17634
17635 /* Note: blx has 2 variants; the .value coded here is for
17636 BLX(2). Only this variant has conditional execution. */
17637 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
17638 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
17639
17640 #undef THUMB_VARIANT
17641 #define THUMB_VARIANT & arm_ext_v6t2
17642
17643 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
17644 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17645 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17646 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17647 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17648 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17649 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17650 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17651
17652 #undef ARM_VARIANT
17653 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
17654 #undef THUMB_VARIANT
17655 #define THUMB_VARIANT &arm_ext_v5exp
17656
17657 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17658 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17659 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17660 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17661
17662 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17663 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17664
17665 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17666 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17667 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17668 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17669
17670 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17671 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17672 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17673 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17674
17675 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17676 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17677
17678 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17679 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17680 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17681 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17682
17683 #undef ARM_VARIANT
17684 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
17685 #undef THUMB_VARIANT
17686 #define THUMB_VARIANT &arm_ext_v6t2
17687
17688 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
17689 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
17690 ldrd, t_ldstd),
17691 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
17692 ADDRGLDRS), ldrd, t_ldstd),
17693
17694 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17695 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17696
17697 #undef ARM_VARIANT
17698 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
17699
17700 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
17701
17702 #undef ARM_VARIANT
17703 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
17704 #undef THUMB_VARIANT
17705 #define THUMB_VARIANT & arm_ext_v6
17706
17707 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
17708 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
17709 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17710 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17711 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17712 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17713 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17714 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17715 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17716 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
17717
17718 #undef THUMB_VARIANT
17719 #define THUMB_VARIANT & arm_ext_v6t2
17720
17721 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
17722 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17723 strex, t_strex),
17724 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17725 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17726
17727 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
17728 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
17729
17730 /* ARM V6 not included in V7M. */
17731 #undef THUMB_VARIANT
17732 #define THUMB_VARIANT & arm_ext_v6_notm
17733 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17734 UF(rfeib, 9900a00, 1, (RRw), rfe),
17735 UF(rfeda, 8100a00, 1, (RRw), rfe),
17736 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17737 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17738 UF(rfefa, 9900a00, 1, (RRw), rfe),
17739 UF(rfeea, 8100a00, 1, (RRw), rfe),
17740 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17741 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
17742 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
17743 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
17744 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
17745
17746 /* ARM V6 not included in V7M (eg. integer SIMD). */
17747 #undef THUMB_VARIANT
17748 #define THUMB_VARIANT & arm_ext_v6_dsp
17749 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
17750 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
17751 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
17752 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17753 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17754 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17755 /* Old name for QASX. */
17756 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17757 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17758 /* Old name for QSAX. */
17759 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17760 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17761 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17762 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17763 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17764 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17765 /* Old name for SASX. */
17766 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17767 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17768 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17769 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17770 /* Old name for SHASX. */
17771 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17772 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17773 /* Old name for SHSAX. */
17774 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17775 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17776 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17777 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17778 /* Old name for SSAX. */
17779 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17780 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17781 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17782 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17783 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17784 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17785 /* Old name for UASX. */
17786 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17787 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17788 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17789 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17790 /* Old name for UHASX. */
17791 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17792 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17793 /* Old name for UHSAX. */
17794 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17795 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17796 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17797 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17798 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17799 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17800 /* Old name for UQASX. */
17801 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17802 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17803 /* Old name for UQSAX. */
17804 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17805 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17806 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17807 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17808 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17809 /* Old name for USAX. */
17810 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17811 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17812 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17813 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17814 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17815 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17816 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17817 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17818 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17819 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17820 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17821 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17822 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17823 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17824 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17825 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17826 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17827 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17828 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17829 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17830 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17831 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17832 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17833 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17834 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17835 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17836 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17837 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17838 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17839 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
17840 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
17841 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17842 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17843 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
17844
17845 #undef ARM_VARIANT
17846 #define ARM_VARIANT & arm_ext_v6k
17847 #undef THUMB_VARIANT
17848 #define THUMB_VARIANT & arm_ext_v6k
17849
17850 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
17851 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
17852 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
17853 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
17854
17855 #undef THUMB_VARIANT
17856 #define THUMB_VARIANT & arm_ext_v6_notm
17857 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
17858 ldrexd, t_ldrexd),
17859 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
17860 RRnpcb), strexd, t_strexd),
17861
17862 #undef THUMB_VARIANT
17863 #define THUMB_VARIANT & arm_ext_v6t2
17864 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
17865 rd_rn, rd_rn),
17866 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
17867 rd_rn, rd_rn),
17868 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17869 strex, t_strexbh),
17870 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17871 strex, t_strexbh),
17872 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
17873
17874 #undef ARM_VARIANT
17875 #define ARM_VARIANT & arm_ext_sec
17876 #undef THUMB_VARIANT
17877 #define THUMB_VARIANT & arm_ext_sec
17878
17879 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
17880
17881 #undef ARM_VARIANT
17882 #define ARM_VARIANT & arm_ext_virt
17883 #undef THUMB_VARIANT
17884 #define THUMB_VARIANT & arm_ext_virt
17885
17886 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
17887 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
17888
17889 #undef ARM_VARIANT
17890 #define ARM_VARIANT & arm_ext_v6t2
17891 #undef THUMB_VARIANT
17892 #define THUMB_VARIANT & arm_ext_v6t2
17893
17894 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
17895 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
17896 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17897 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17898
17899 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17900 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
17901 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
17902 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
17903
17904 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17905 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17906 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17907 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17908
17909 /* Thumb-only instructions. */
17910 #undef ARM_VARIANT
17911 #define ARM_VARIANT NULL
17912 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
17913 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
17914
17915 /* ARM does not really have an IT instruction, so always allow it.
17916 The opcode is copied from Thumb in order to allow warnings in
17917 -mimplicit-it=[never | arm] modes. */
17918 #undef ARM_VARIANT
17919 #define ARM_VARIANT & arm_ext_v1
17920
17921 TUE("it", bf08, bf08, 1, (COND), it, t_it),
17922 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
17923 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
17924 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
17925 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
17926 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
17927 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
17928 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
17929 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
17930 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
17931 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
17932 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
17933 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
17934 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
17935 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
17936 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
17937 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
17938 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
17939
17940 /* Thumb2 only instructions. */
17941 #undef ARM_VARIANT
17942 #define ARM_VARIANT NULL
17943
17944 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17945 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17946 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
17947 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
17948 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
17949 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
17950
17951 /* Hardware division instructions. */
17952 #undef ARM_VARIANT
17953 #define ARM_VARIANT & arm_ext_adiv
17954 #undef THUMB_VARIANT
17955 #define THUMB_VARIANT & arm_ext_div
17956
17957 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
17958 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
17959
17960 /* ARM V6M/V7 instructions. */
17961 #undef ARM_VARIANT
17962 #define ARM_VARIANT & arm_ext_barrier
17963 #undef THUMB_VARIANT
17964 #define THUMB_VARIANT & arm_ext_barrier
17965
17966 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, t_barrier),
17967 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, t_barrier),
17968 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, t_barrier),
17969
17970 /* ARM V7 instructions. */
17971 #undef ARM_VARIANT
17972 #define ARM_VARIANT & arm_ext_v7
17973 #undef THUMB_VARIANT
17974 #define THUMB_VARIANT & arm_ext_v7
17975
17976 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
17977 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
17978
17979 #undef ARM_VARIANT
17980 #define ARM_VARIANT & arm_ext_mp
17981 #undef THUMB_VARIANT
17982 #define THUMB_VARIANT & arm_ext_mp
17983
17984 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
17985
17986 /* AArchv8 instructions. */
17987 #undef ARM_VARIANT
17988 #define ARM_VARIANT & arm_ext_v8
17989 #undef THUMB_VARIANT
17990 #define THUMB_VARIANT & arm_ext_v8
17991
17992 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
17993 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
17994
17995 /* ARMv8 T32 only. */
17996 #undef ARM_VARIANT
17997 #define ARM_VARIANT NULL
17998 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
17999 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
18000 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
18001
18002 #undef ARM_VARIANT
18003 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
18004 #undef THUMB_VARIANT
18005 #define THUMB_VARIANT NULL
18006
18007 cCE("wfs", e200110, 1, (RR), rd),
18008 cCE("rfs", e300110, 1, (RR), rd),
18009 cCE("wfc", e400110, 1, (RR), rd),
18010 cCE("rfc", e500110, 1, (RR), rd),
18011
18012 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
18013 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
18014 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
18015 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
18016
18017 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
18018 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
18019 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
18020 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
18021
18022 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
18023 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
18024 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
18025 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
18026 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
18027 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
18028 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
18029 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
18030 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
18031 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
18032 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
18033 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
18034
18035 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
18036 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
18037 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
18038 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
18039 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
18040 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
18041 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
18042 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
18043 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
18044 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
18045 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
18046 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
18047
18048 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
18049 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
18050 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
18051 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
18052 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
18053 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
18054 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
18055 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
18056 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
18057 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
18058 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
18059 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
18060
18061 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
18062 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
18063 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
18064 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
18065 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
18066 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
18067 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
18068 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
18069 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
18070 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
18071 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
18072 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
18073
18074 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
18075 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
18076 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
18077 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
18078 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
18079 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
18080 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
18081 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
18082 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
18083 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
18084 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
18085 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
18086
18087 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
18088 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
18089 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
18090 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
18091 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
18092 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
18093 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
18094 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
18095 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
18096 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
18097 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
18098 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
18099
18100 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
18101 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
18102 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
18103 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
18104 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
18105 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
18106 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
18107 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
18108 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
18109 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
18110 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
18111 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
18112
18113 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
18114 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
18115 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
18116 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
18117 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
18118 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
18119 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
18120 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
18121 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
18122 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
18123 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
18124 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
18125
18126 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
18127 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
18128 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
18129 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
18130 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
18131 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
18132 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
18133 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
18134 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
18135 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
18136 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
18137 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
18138
18139 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
18140 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
18141 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
18142 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
18143 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
18144 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
18145 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
18146 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
18147 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
18148 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
18149 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
18150 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
18151
18152 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
18153 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
18154 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
18155 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
18156 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
18157 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
18158 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
18159 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
18160 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
18161 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
18162 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
18163 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
18164
18165 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
18166 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
18167 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
18168 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
18169 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
18170 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
18171 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
18172 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
18173 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
18174 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
18175 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
18176 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
18177
18178 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
18179 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
18180 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
18181 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
18182 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
18183 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
18184 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
18185 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
18186 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
18187 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
18188 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
18189 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
18190
18191 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
18192 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
18193 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
18194 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
18195 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
18196 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
18197 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
18198 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
18199 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
18200 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
18201 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
18202 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
18203
18204 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
18205 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
18206 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
18207 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
18208 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
18209 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
18210 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
18211 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
18212 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
18213 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
18214 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
18215 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
18216
18217 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
18218 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
18219 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
18220 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
18221 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
18222 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
18223 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
18224 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
18225 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
18226 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
18227 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
18228 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
18229
18230 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
18231 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
18232 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
18233 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
18234 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
18235 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18236 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18237 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18238 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
18239 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
18240 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
18241 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
18242
18243 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
18244 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
18245 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
18246 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
18247 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
18248 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18249 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18250 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18251 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
18252 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
18253 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
18254 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
18255
18256 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
18257 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
18258 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
18259 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
18260 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
18261 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18262 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18263 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18264 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
18265 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
18266 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
18267 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
18268
18269 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
18270 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
18271 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
18272 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
18273 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
18274 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18275 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18276 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18277 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
18278 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
18279 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
18280 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
18281
18282 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
18283 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
18284 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
18285 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
18286 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
18287 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18288 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18289 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18290 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
18291 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
18292 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
18293 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
18294
18295 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
18296 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
18297 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
18298 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
18299 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
18300 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18301 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18302 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18303 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
18304 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
18305 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
18306 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
18307
18308 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
18309 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
18310 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
18311 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
18312 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
18313 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18314 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18315 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18316 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
18317 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
18318 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
18319 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
18320
18321 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
18322 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
18323 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
18324 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
18325 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
18326 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18327 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18328 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18329 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
18330 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
18331 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
18332 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
18333
18334 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
18335 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
18336 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
18337 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
18338 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
18339 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18340 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18341 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18342 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
18343 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
18344 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
18345 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
18346
18347 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
18348 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
18349 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
18350 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
18351 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
18352 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18353 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18354 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18355 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
18356 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
18357 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
18358 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
18359
18360 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18361 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18362 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18363 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18364 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18365 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18366 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18367 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18368 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18369 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18370 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18371 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18372
18373 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18374 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18375 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18376 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18377 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18378 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18379 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18380 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18381 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18382 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18383 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18384 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18385
18386 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18387 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18388 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18389 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18390 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18391 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18392 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18393 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18394 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18395 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18396 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18397 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18398
18399 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
18400 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
18401 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
18402 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
18403
18404 cCL("flts", e000110, 2, (RF, RR), rn_rd),
18405 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
18406 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
18407 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
18408 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
18409 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
18410 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
18411 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
18412 cCL("flte", e080110, 2, (RF, RR), rn_rd),
18413 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
18414 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
18415 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
18416
18417 /* The implementation of the FIX instruction is broken on some
18418 assemblers, in that it accepts a precision specifier as well as a
18419 rounding specifier, despite the fact that this is meaningless.
18420 To be more compatible, we accept it as well, though of course it
18421 does not set any bits. */
18422 cCE("fix", e100110, 2, (RR, RF), rd_rm),
18423 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
18424 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
18425 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
18426 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
18427 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
18428 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
18429 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
18430 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
18431 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
18432 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
18433 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
18434 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
18435
18436 /* Instructions that were new with the real FPA, call them V2. */
18437 #undef ARM_VARIANT
18438 #define ARM_VARIANT & fpu_fpa_ext_v2
18439
18440 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18441 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18442 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18443 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18444 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18445 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18446
18447 #undef ARM_VARIANT
18448 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
18449
18450 /* Moves and type conversions. */
18451 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
18452 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
18453 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
18454 cCE("fmstat", ef1fa10, 0, (), noargs),
18455 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
18456 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
18457 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
18458 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
18459 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
18460 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18461 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
18462 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18463 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
18464 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
18465
18466 /* Memory operations. */
18467 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
18468 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
18469 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18470 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18471 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18472 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18473 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18474 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18475 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18476 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18477 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18478 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18479 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18480 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18481 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18482 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18483 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18484 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18485
18486 /* Monadic operations. */
18487 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
18488 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
18489 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
18490
18491 /* Dyadic operations. */
18492 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18493 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18494 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18495 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18496 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18497 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18498 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18499 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18500 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18501
18502 /* Comparisons. */
18503 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
18504 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
18505 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
18506 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
18507
18508 /* Double precision load/store are still present on single precision
18509 implementations. */
18510 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
18511 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
18512 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18513 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18514 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18515 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18516 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18517 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18518 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18519 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18520
18521 #undef ARM_VARIANT
18522 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
18523
18524 /* Moves and type conversions. */
18525 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18526 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18527 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18528 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
18529 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
18530 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
18531 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
18532 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18533 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
18534 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18535 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18536 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18537 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18538
18539 /* Monadic operations. */
18540 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18541 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18542 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18543
18544 /* Dyadic operations. */
18545 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18546 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18547 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18548 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18549 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18550 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18551 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18552 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18553 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18554
18555 /* Comparisons. */
18556 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18557 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
18558 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18559 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
18560
18561 #undef ARM_VARIANT
18562 #define ARM_VARIANT & fpu_vfp_ext_v2
18563
18564 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
18565 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
18566 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
18567 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
18568
18569 /* Instructions which may belong to either the Neon or VFP instruction sets.
18570 Individual encoder functions perform additional architecture checks. */
18571 #undef ARM_VARIANT
18572 #define ARM_VARIANT & fpu_vfp_ext_v1xd
18573 #undef THUMB_VARIANT
18574 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
18575
18576 /* These mnemonics are unique to VFP. */
18577 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
18578 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
18579 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18580 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18581 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18582 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
18583 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
18584 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
18585 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
18586 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
18587
18588 /* Mnemonics shared by Neon and VFP. */
18589 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
18590 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
18591 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
18592
18593 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
18594 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
18595
18596 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18597 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18598
18599 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18600 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18601 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18602 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18603 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18604 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18605 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
18606 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
18607
18608 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32z), neon_cvt),
18609 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
18610 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
18611 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
18612
18613
18614 /* NOTE: All VMOV encoding is special-cased! */
18615 NCE(vmov, 0, 1, (VMOV), neon_mov),
18616 NCE(vmovq, 0, 1, (VMOV), neon_mov),
18617
18618 #undef THUMB_VARIANT
18619 #define THUMB_VARIANT & fpu_neon_ext_v1
18620 #undef ARM_VARIANT
18621 #define ARM_VARIANT & fpu_neon_ext_v1
18622
18623 /* Data processing with three registers of the same length. */
18624 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
18625 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
18626 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
18627 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18628 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18629 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18630 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18631 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18632 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18633 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
18634 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18635 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
18636 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18637 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
18638 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18639 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
18640 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18641 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
18642 /* If not immediate, fall back to neon_dyadic_i64_su.
18643 shl_imm should accept I8 I16 I32 I64,
18644 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
18645 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
18646 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
18647 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
18648 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
18649 /* Logic ops, types optional & ignored. */
18650 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18651 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18652 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18653 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18654 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18655 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18656 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18657 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18658 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
18659 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
18660 /* Bitfield ops, untyped. */
18661 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18662 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18663 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18664 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18665 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18666 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18667 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
18668 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18669 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18670 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18671 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18672 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18673 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18674 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
18675 back to neon_dyadic_if_su. */
18676 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18677 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18678 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18679 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18680 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18681 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
18682 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18683 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
18684 /* Comparison. Type I8 I16 I32 F32. */
18685 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
18686 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
18687 /* As above, D registers only. */
18688 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
18689 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
18690 /* Int and float variants, signedness unimportant. */
18691 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18692 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18693 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
18694 /* Add/sub take types I8 I16 I32 I64 F32. */
18695 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
18696 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
18697 /* vtst takes sizes 8, 16, 32. */
18698 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
18699 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
18700 /* VMUL takes I8 I16 I32 F32 P8. */
18701 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
18702 /* VQD{R}MULH takes S16 S32. */
18703 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18704 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18705 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18706 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18707 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18708 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18709 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18710 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18711 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18712 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18713 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18714 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18715 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18716 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18717 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18718 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18719
18720 /* Two address, int/float. Types S8 S16 S32 F32. */
18721 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
18722 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
18723
18724 /* Data processing with two registers and a shift amount. */
18725 /* Right shifts, and variants with rounding.
18726 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
18727 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18728 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18729 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18730 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18731 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18732 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18733 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18734 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18735 /* Shift and insert. Sizes accepted 8 16 32 64. */
18736 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
18737 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
18738 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
18739 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
18740 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
18741 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
18742 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
18743 /* Right shift immediate, saturating & narrowing, with rounding variants.
18744 Types accepted S16 S32 S64 U16 U32 U64. */
18745 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18746 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18747 /* As above, unsigned. Types accepted S16 S32 S64. */
18748 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18749 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18750 /* Right shift narrowing. Types accepted I16 I32 I64. */
18751 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18752 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18753 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
18754 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
18755 /* CVT with optional immediate for fixed-point variant. */
18756 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
18757
18758 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
18759 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
18760
18761 /* Data processing, three registers of different lengths. */
18762 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
18763 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
18764 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
18765 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
18766 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
18767 /* If not scalar, fall back to neon_dyadic_long.
18768 Vector types as above, scalar types S16 S32 U16 U32. */
18769 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18770 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18771 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
18772 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18773 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18774 /* Dyadic, narrowing insns. Types I16 I32 I64. */
18775 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18776 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18777 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18778 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18779 /* Saturating doubling multiplies. Types S16 S32. */
18780 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18781 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18782 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18783 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
18784 S16 S32 U16 U32. */
18785 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
18786
18787 /* Extract. Size 8. */
18788 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
18789 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
18790
18791 /* Two registers, miscellaneous. */
18792 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
18793 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
18794 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
18795 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
18796 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
18797 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
18798 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
18799 /* Vector replicate. Sizes 8 16 32. */
18800 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
18801 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
18802 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
18803 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
18804 /* VMOVN. Types I16 I32 I64. */
18805 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
18806 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
18807 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
18808 /* VQMOVUN. Types S16 S32 S64. */
18809 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
18810 /* VZIP / VUZP. Sizes 8 16 32. */
18811 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
18812 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
18813 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
18814 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
18815 /* VQABS / VQNEG. Types S8 S16 S32. */
18816 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18817 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
18818 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18819 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
18820 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
18821 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
18822 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
18823 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
18824 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
18825 /* Reciprocal estimates. Types U32 F32. */
18826 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
18827 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
18828 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
18829 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
18830 /* VCLS. Types S8 S16 S32. */
18831 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
18832 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
18833 /* VCLZ. Types I8 I16 I32. */
18834 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
18835 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
18836 /* VCNT. Size 8. */
18837 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
18838 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
18839 /* Two address, untyped. */
18840 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
18841 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
18842 /* VTRN. Sizes 8 16 32. */
18843 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
18844 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
18845
18846 /* Table lookup. Size 8. */
18847 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18848 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18849
18850 #undef THUMB_VARIANT
18851 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
18852 #undef ARM_VARIANT
18853 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
18854
18855 /* Neon element/structure load/store. */
18856 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18857 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18858 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18859 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18860 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18861 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18862 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18863 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18864
18865 #undef THUMB_VARIANT
18866 #define THUMB_VARIANT &fpu_vfp_ext_v3xd
18867 #undef ARM_VARIANT
18868 #define ARM_VARIANT &fpu_vfp_ext_v3xd
18869 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
18870 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18871 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18872 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18873 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18874 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18875 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18876 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18877 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18878
18879 #undef THUMB_VARIANT
18880 #define THUMB_VARIANT & fpu_vfp_ext_v3
18881 #undef ARM_VARIANT
18882 #define ARM_VARIANT & fpu_vfp_ext_v3
18883
18884 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
18885 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18886 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18887 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18888 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18889 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18890 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18891 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18892 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18893
18894 #undef ARM_VARIANT
18895 #define ARM_VARIANT &fpu_vfp_ext_fma
18896 #undef THUMB_VARIANT
18897 #define THUMB_VARIANT &fpu_vfp_ext_fma
18898 /* Mnemonics shared by Neon and VFP. These are included in the
18899 VFP FMA variant; NEON and VFP FMA always includes the NEON
18900 FMA instructions. */
18901 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18902 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18903 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
18904 the v form should always be used. */
18905 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18906 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18907 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18908 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18909 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18910 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18911
18912 #undef THUMB_VARIANT
18913 #undef ARM_VARIANT
18914 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
18915
18916 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18917 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18918 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18919 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18920 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18921 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18922 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
18923 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
18924
18925 #undef ARM_VARIANT
18926 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
18927
18928 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
18929 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
18930 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
18931 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
18932 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
18933 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
18934 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
18935 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
18936 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
18937 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18938 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18939 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18940 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18941 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18942 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18943 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18944 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18945 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18946 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
18947 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
18948 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18949 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18950 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18951 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18952 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18953 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18954 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
18955 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
18956 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
18957 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
18958 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
18959 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
18960 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
18961 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
18962 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
18963 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
18964 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
18965 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18966 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18967 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18968 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18969 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18970 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18971 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18972 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18973 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18974 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
18975 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18976 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18977 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18978 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18979 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18980 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18981 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18982 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18983 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18984 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18985 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18986 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18987 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18988 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18989 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18990 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18991 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18992 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18993 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18994 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18995 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18996 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18997 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18998 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18999 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19000 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19001 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19002 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19003 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19004 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19005 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19006 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19007 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19008 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19009 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19010 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19011 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19012 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19013 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19014 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19015 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19016 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
19017 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19018 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19019 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19020 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19021 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19022 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19023 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19024 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19025 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19026 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19027 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19028 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19029 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19030 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19031 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19032 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19033 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19034 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19035 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19036 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19037 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19038 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
19039 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19040 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19041 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19042 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19043 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19044 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19045 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19046 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19047 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19048 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19049 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19050 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19051 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19052 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19053 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19054 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19055 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19056 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19057 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19058 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19059 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
19060 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
19061 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19062 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19063 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19064 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19065 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19066 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19067 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19068 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19069 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19070 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
19071 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
19072 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
19073 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
19074 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
19075 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
19076 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19077 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19078 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19079 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
19080 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
19081 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
19082 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
19083 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
19084 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
19085 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19086 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19087 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19088 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19089 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
19090
19091 #undef ARM_VARIANT
19092 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
19093
19094 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
19095 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
19096 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
19097 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
19098 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
19099 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
19100 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19101 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19102 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19103 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19104 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19105 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19106 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19107 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19108 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19109 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19110 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19111 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19112 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19113 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19114 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
19115 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19116 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19117 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19118 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19119 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19120 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19121 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19122 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19123 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19124 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19125 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19126 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19127 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19128 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19129 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19130 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19131 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19132 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19133 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19134 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19135 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19136 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19137 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19138 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19139 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19140 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19141 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19142 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19143 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19144 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19145 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19146 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19147 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19148 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19149 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19150 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19151
19152 #undef ARM_VARIANT
19153 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
19154
19155 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
19156 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
19157 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
19158 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
19159 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
19160 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
19161 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
19162 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
19163 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
19164 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
19165 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
19166 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
19167 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
19168 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
19169 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
19170 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
19171 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
19172 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
19173 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
19174 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
19175 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
19176 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
19177 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
19178 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
19179 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
19180 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
19181 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
19182 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
19183 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
19184 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
19185 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
19186 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
19187 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
19188 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
19189 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
19190 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
19191 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
19192 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
19193 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
19194 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
19195 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
19196 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
19197 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
19198 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
19199 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
19200 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
19201 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
19202 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
19203 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
19204 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
19205 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
19206 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
19207 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
19208 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
19209 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
19210 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
19211 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
19212 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
19213 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
19214 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
19215 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
19216 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
19217 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
19218 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
19219 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19220 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19221 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19222 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19223 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19224 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19225 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19226 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19227 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
19228 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
19229 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
19230 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
19231 };
19232 #undef ARM_VARIANT
19233 #undef THUMB_VARIANT
19234 #undef TCE
19235 #undef TCM
19236 #undef TUE
19237 #undef TUF
19238 #undef TCC
19239 #undef cCE
19240 #undef cCL
19241 #undef C3E
19242 #undef CE
19243 #undef CM
19244 #undef UE
19245 #undef UF
19246 #undef UT
19247 #undef NUF
19248 #undef nUF
19249 #undef NCE
19250 #undef nCE
19251 #undef OPS0
19252 #undef OPS1
19253 #undef OPS2
19254 #undef OPS3
19255 #undef OPS4
19256 #undef OPS5
19257 #undef OPS6
19258 #undef do_0
19259 \f
19260 /* MD interface: bits in the object file. */
19261
19262 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
19263 for use in the a.out file, and stores them in the array pointed to by buf.
19264 This knows about the endian-ness of the target machine and does
19265 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
19266 2 (short) and 4 (long) Floating numbers are put out as a series of
19267 LITTLENUMS (shorts, here at least). */
19268
19269 void
19270 md_number_to_chars (char * buf, valueT val, int n)
19271 {
19272 if (target_big_endian)
19273 number_to_chars_bigendian (buf, val, n);
19274 else
19275 number_to_chars_littleendian (buf, val, n);
19276 }
19277
19278 static valueT
19279 md_chars_to_number (char * buf, int n)
19280 {
19281 valueT result = 0;
19282 unsigned char * where = (unsigned char *) buf;
19283
19284 if (target_big_endian)
19285 {
19286 while (n--)
19287 {
19288 result <<= 8;
19289 result |= (*where++ & 255);
19290 }
19291 }
19292 else
19293 {
19294 while (n--)
19295 {
19296 result <<= 8;
19297 result |= (where[n] & 255);
19298 }
19299 }
19300
19301 return result;
19302 }
19303
19304 /* MD interface: Sections. */
19305
19306 /* Calculate the maximum variable size (i.e., excluding fr_fix)
19307 that an rs_machine_dependent frag may reach. */
19308
19309 unsigned int
19310 arm_frag_max_var (fragS *fragp)
19311 {
19312 /* We only use rs_machine_dependent for variable-size Thumb instructions,
19313 which are either THUMB_SIZE (2) or INSN_SIZE (4).
19314
19315 Note that we generate relaxable instructions even for cases that don't
19316 really need it, like an immediate that's a trivial constant. So we're
19317 overestimating the instruction size for some of those cases. Rather
19318 than putting more intelligence here, it would probably be better to
19319 avoid generating a relaxation frag in the first place when it can be
19320 determined up front that a short instruction will suffice. */
19321
19322 gas_assert (fragp->fr_type == rs_machine_dependent);
19323 return INSN_SIZE;
19324 }
19325
19326 /* Estimate the size of a frag before relaxing. Assume everything fits in
19327 2 bytes. */
19328
19329 int
19330 md_estimate_size_before_relax (fragS * fragp,
19331 segT segtype ATTRIBUTE_UNUSED)
19332 {
19333 fragp->fr_var = 2;
19334 return 2;
19335 }
19336
19337 /* Convert a machine dependent frag. */
19338
19339 void
19340 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
19341 {
19342 unsigned long insn;
19343 unsigned long old_op;
19344 char *buf;
19345 expressionS exp;
19346 fixS *fixp;
19347 int reloc_type;
19348 int pc_rel;
19349 int opcode;
19350
19351 buf = fragp->fr_literal + fragp->fr_fix;
19352
19353 old_op = bfd_get_16(abfd, buf);
19354 if (fragp->fr_symbol)
19355 {
19356 exp.X_op = O_symbol;
19357 exp.X_add_symbol = fragp->fr_symbol;
19358 }
19359 else
19360 {
19361 exp.X_op = O_constant;
19362 }
19363 exp.X_add_number = fragp->fr_offset;
19364 opcode = fragp->fr_subtype;
19365 switch (opcode)
19366 {
19367 case T_MNEM_ldr_pc:
19368 case T_MNEM_ldr_pc2:
19369 case T_MNEM_ldr_sp:
19370 case T_MNEM_str_sp:
19371 case T_MNEM_ldr:
19372 case T_MNEM_ldrb:
19373 case T_MNEM_ldrh:
19374 case T_MNEM_str:
19375 case T_MNEM_strb:
19376 case T_MNEM_strh:
19377 if (fragp->fr_var == 4)
19378 {
19379 insn = THUMB_OP32 (opcode);
19380 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
19381 {
19382 insn |= (old_op & 0x700) << 4;
19383 }
19384 else
19385 {
19386 insn |= (old_op & 7) << 12;
19387 insn |= (old_op & 0x38) << 13;
19388 }
19389 insn |= 0x00000c00;
19390 put_thumb32_insn (buf, insn);
19391 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
19392 }
19393 else
19394 {
19395 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
19396 }
19397 pc_rel = (opcode == T_MNEM_ldr_pc2);
19398 break;
19399 case T_MNEM_adr:
19400 if (fragp->fr_var == 4)
19401 {
19402 insn = THUMB_OP32 (opcode);
19403 insn |= (old_op & 0xf0) << 4;
19404 put_thumb32_insn (buf, insn);
19405 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
19406 }
19407 else
19408 {
19409 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19410 exp.X_add_number -= 4;
19411 }
19412 pc_rel = 1;
19413 break;
19414 case T_MNEM_mov:
19415 case T_MNEM_movs:
19416 case T_MNEM_cmp:
19417 case T_MNEM_cmn:
19418 if (fragp->fr_var == 4)
19419 {
19420 int r0off = (opcode == T_MNEM_mov
19421 || opcode == T_MNEM_movs) ? 0 : 8;
19422 insn = THUMB_OP32 (opcode);
19423 insn = (insn & 0xe1ffffff) | 0x10000000;
19424 insn |= (old_op & 0x700) << r0off;
19425 put_thumb32_insn (buf, insn);
19426 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
19427 }
19428 else
19429 {
19430 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
19431 }
19432 pc_rel = 0;
19433 break;
19434 case T_MNEM_b:
19435 if (fragp->fr_var == 4)
19436 {
19437 insn = THUMB_OP32(opcode);
19438 put_thumb32_insn (buf, insn);
19439 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
19440 }
19441 else
19442 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
19443 pc_rel = 1;
19444 break;
19445 case T_MNEM_bcond:
19446 if (fragp->fr_var == 4)
19447 {
19448 insn = THUMB_OP32(opcode);
19449 insn |= (old_op & 0xf00) << 14;
19450 put_thumb32_insn (buf, insn);
19451 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
19452 }
19453 else
19454 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
19455 pc_rel = 1;
19456 break;
19457 case T_MNEM_add_sp:
19458 case T_MNEM_add_pc:
19459 case T_MNEM_inc_sp:
19460 case T_MNEM_dec_sp:
19461 if (fragp->fr_var == 4)
19462 {
19463 /* ??? Choose between add and addw. */
19464 insn = THUMB_OP32 (opcode);
19465 insn |= (old_op & 0xf0) << 4;
19466 put_thumb32_insn (buf, insn);
19467 if (opcode == T_MNEM_add_pc)
19468 reloc_type = BFD_RELOC_ARM_T32_IMM12;
19469 else
19470 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
19471 }
19472 else
19473 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19474 pc_rel = 0;
19475 break;
19476
19477 case T_MNEM_addi:
19478 case T_MNEM_addis:
19479 case T_MNEM_subi:
19480 case T_MNEM_subis:
19481 if (fragp->fr_var == 4)
19482 {
19483 insn = THUMB_OP32 (opcode);
19484 insn |= (old_op & 0xf0) << 4;
19485 insn |= (old_op & 0xf) << 16;
19486 put_thumb32_insn (buf, insn);
19487 if (insn & (1 << 20))
19488 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
19489 else
19490 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
19491 }
19492 else
19493 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19494 pc_rel = 0;
19495 break;
19496 default:
19497 abort ();
19498 }
19499 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
19500 (enum bfd_reloc_code_real) reloc_type);
19501 fixp->fx_file = fragp->fr_file;
19502 fixp->fx_line = fragp->fr_line;
19503 fragp->fr_fix += fragp->fr_var;
19504 }
19505
19506 /* Return the size of a relaxable immediate operand instruction.
19507 SHIFT and SIZE specify the form of the allowable immediate. */
19508 static int
19509 relax_immediate (fragS *fragp, int size, int shift)
19510 {
19511 offsetT offset;
19512 offsetT mask;
19513 offsetT low;
19514
19515 /* ??? Should be able to do better than this. */
19516 if (fragp->fr_symbol)
19517 return 4;
19518
19519 low = (1 << shift) - 1;
19520 mask = (1 << (shift + size)) - (1 << shift);
19521 offset = fragp->fr_offset;
19522 /* Force misaligned offsets to 32-bit variant. */
19523 if (offset & low)
19524 return 4;
19525 if (offset & ~mask)
19526 return 4;
19527 return 2;
19528 }
19529
19530 /* Get the address of a symbol during relaxation. */
19531 static addressT
19532 relaxed_symbol_addr (fragS *fragp, long stretch)
19533 {
19534 fragS *sym_frag;
19535 addressT addr;
19536 symbolS *sym;
19537
19538 sym = fragp->fr_symbol;
19539 sym_frag = symbol_get_frag (sym);
19540 know (S_GET_SEGMENT (sym) != absolute_section
19541 || sym_frag == &zero_address_frag);
19542 addr = S_GET_VALUE (sym) + fragp->fr_offset;
19543
19544 /* If frag has yet to be reached on this pass, assume it will
19545 move by STRETCH just as we did. If this is not so, it will
19546 be because some frag between grows, and that will force
19547 another pass. */
19548
19549 if (stretch != 0
19550 && sym_frag->relax_marker != fragp->relax_marker)
19551 {
19552 fragS *f;
19553
19554 /* Adjust stretch for any alignment frag. Note that if have
19555 been expanding the earlier code, the symbol may be
19556 defined in what appears to be an earlier frag. FIXME:
19557 This doesn't handle the fr_subtype field, which specifies
19558 a maximum number of bytes to skip when doing an
19559 alignment. */
19560 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
19561 {
19562 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
19563 {
19564 if (stretch < 0)
19565 stretch = - ((- stretch)
19566 & ~ ((1 << (int) f->fr_offset) - 1));
19567 else
19568 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
19569 if (stretch == 0)
19570 break;
19571 }
19572 }
19573 if (f != NULL)
19574 addr += stretch;
19575 }
19576
19577 return addr;
19578 }
19579
19580 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
19581 load. */
19582 static int
19583 relax_adr (fragS *fragp, asection *sec, long stretch)
19584 {
19585 addressT addr;
19586 offsetT val;
19587
19588 /* Assume worst case for symbols not known to be in the same section. */
19589 if (fragp->fr_symbol == NULL
19590 || !S_IS_DEFINED (fragp->fr_symbol)
19591 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19592 || S_IS_WEAK (fragp->fr_symbol))
19593 return 4;
19594
19595 val = relaxed_symbol_addr (fragp, stretch);
19596 addr = fragp->fr_address + fragp->fr_fix;
19597 addr = (addr + 4) & ~3;
19598 /* Force misaligned targets to 32-bit variant. */
19599 if (val & 3)
19600 return 4;
19601 val -= addr;
19602 if (val < 0 || val > 1020)
19603 return 4;
19604 return 2;
19605 }
19606
19607 /* Return the size of a relaxable add/sub immediate instruction. */
19608 static int
19609 relax_addsub (fragS *fragp, asection *sec)
19610 {
19611 char *buf;
19612 int op;
19613
19614 buf = fragp->fr_literal + fragp->fr_fix;
19615 op = bfd_get_16(sec->owner, buf);
19616 if ((op & 0xf) == ((op >> 4) & 0xf))
19617 return relax_immediate (fragp, 8, 0);
19618 else
19619 return relax_immediate (fragp, 3, 0);
19620 }
19621
19622
19623 /* Return the size of a relaxable branch instruction. BITS is the
19624 size of the offset field in the narrow instruction. */
19625
19626 static int
19627 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
19628 {
19629 addressT addr;
19630 offsetT val;
19631 offsetT limit;
19632
19633 /* Assume worst case for symbols not known to be in the same section. */
19634 if (!S_IS_DEFINED (fragp->fr_symbol)
19635 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19636 || S_IS_WEAK (fragp->fr_symbol))
19637 return 4;
19638
19639 #ifdef OBJ_ELF
19640 if (S_IS_DEFINED (fragp->fr_symbol)
19641 && ARM_IS_FUNC (fragp->fr_symbol))
19642 return 4;
19643
19644 /* PR 12532. Global symbols with default visibility might
19645 be preempted, so do not relax relocations to them. */
19646 if ((ELF_ST_VISIBILITY (S_GET_OTHER (fragp->fr_symbol)) == STV_DEFAULT)
19647 && (! S_IS_LOCAL (fragp->fr_symbol)))
19648 return 4;
19649 #endif
19650
19651 val = relaxed_symbol_addr (fragp, stretch);
19652 addr = fragp->fr_address + fragp->fr_fix + 4;
19653 val -= addr;
19654
19655 /* Offset is a signed value *2 */
19656 limit = 1 << bits;
19657 if (val >= limit || val < -limit)
19658 return 4;
19659 return 2;
19660 }
19661
19662
19663 /* Relax a machine dependent frag. This returns the amount by which
19664 the current size of the frag should change. */
19665
19666 int
19667 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
19668 {
19669 int oldsize;
19670 int newsize;
19671
19672 oldsize = fragp->fr_var;
19673 switch (fragp->fr_subtype)
19674 {
19675 case T_MNEM_ldr_pc2:
19676 newsize = relax_adr (fragp, sec, stretch);
19677 break;
19678 case T_MNEM_ldr_pc:
19679 case T_MNEM_ldr_sp:
19680 case T_MNEM_str_sp:
19681 newsize = relax_immediate (fragp, 8, 2);
19682 break;
19683 case T_MNEM_ldr:
19684 case T_MNEM_str:
19685 newsize = relax_immediate (fragp, 5, 2);
19686 break;
19687 case T_MNEM_ldrh:
19688 case T_MNEM_strh:
19689 newsize = relax_immediate (fragp, 5, 1);
19690 break;
19691 case T_MNEM_ldrb:
19692 case T_MNEM_strb:
19693 newsize = relax_immediate (fragp, 5, 0);
19694 break;
19695 case T_MNEM_adr:
19696 newsize = relax_adr (fragp, sec, stretch);
19697 break;
19698 case T_MNEM_mov:
19699 case T_MNEM_movs:
19700 case T_MNEM_cmp:
19701 case T_MNEM_cmn:
19702 newsize = relax_immediate (fragp, 8, 0);
19703 break;
19704 case T_MNEM_b:
19705 newsize = relax_branch (fragp, sec, 11, stretch);
19706 break;
19707 case T_MNEM_bcond:
19708 newsize = relax_branch (fragp, sec, 8, stretch);
19709 break;
19710 case T_MNEM_add_sp:
19711 case T_MNEM_add_pc:
19712 newsize = relax_immediate (fragp, 8, 2);
19713 break;
19714 case T_MNEM_inc_sp:
19715 case T_MNEM_dec_sp:
19716 newsize = relax_immediate (fragp, 7, 2);
19717 break;
19718 case T_MNEM_addi:
19719 case T_MNEM_addis:
19720 case T_MNEM_subi:
19721 case T_MNEM_subis:
19722 newsize = relax_addsub (fragp, sec);
19723 break;
19724 default:
19725 abort ();
19726 }
19727
19728 fragp->fr_var = newsize;
19729 /* Freeze wide instructions that are at or before the same location as
19730 in the previous pass. This avoids infinite loops.
19731 Don't freeze them unconditionally because targets may be artificially
19732 misaligned by the expansion of preceding frags. */
19733 if (stretch <= 0 && newsize > 2)
19734 {
19735 md_convert_frag (sec->owner, sec, fragp);
19736 frag_wane (fragp);
19737 }
19738
19739 return newsize - oldsize;
19740 }
19741
19742 /* Round up a section size to the appropriate boundary. */
19743
19744 valueT
19745 md_section_align (segT segment ATTRIBUTE_UNUSED,
19746 valueT size)
19747 {
19748 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
19749 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
19750 {
19751 /* For a.out, force the section size to be aligned. If we don't do
19752 this, BFD will align it for us, but it will not write out the
19753 final bytes of the section. This may be a bug in BFD, but it is
19754 easier to fix it here since that is how the other a.out targets
19755 work. */
19756 int align;
19757
19758 align = bfd_get_section_alignment (stdoutput, segment);
19759 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
19760 }
19761 #endif
19762
19763 return size;
19764 }
19765
19766 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
19767 of an rs_align_code fragment. */
19768
19769 void
19770 arm_handle_align (fragS * fragP)
19771 {
19772 static char const arm_noop[2][2][4] =
19773 {
19774 { /* ARMv1 */
19775 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
19776 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
19777 },
19778 { /* ARMv6k */
19779 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
19780 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
19781 },
19782 };
19783 static char const thumb_noop[2][2][2] =
19784 {
19785 { /* Thumb-1 */
19786 {0xc0, 0x46}, /* LE */
19787 {0x46, 0xc0}, /* BE */
19788 },
19789 { /* Thumb-2 */
19790 {0x00, 0xbf}, /* LE */
19791 {0xbf, 0x00} /* BE */
19792 }
19793 };
19794 static char const wide_thumb_noop[2][4] =
19795 { /* Wide Thumb-2 */
19796 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
19797 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
19798 };
19799
19800 unsigned bytes, fix, noop_size;
19801 char * p;
19802 const char * noop;
19803 const char *narrow_noop = NULL;
19804 #ifdef OBJ_ELF
19805 enum mstate state;
19806 #endif
19807
19808 if (fragP->fr_type != rs_align_code)
19809 return;
19810
19811 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
19812 p = fragP->fr_literal + fragP->fr_fix;
19813 fix = 0;
19814
19815 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
19816 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
19817
19818 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
19819
19820 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
19821 {
19822 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
19823 {
19824 narrow_noop = thumb_noop[1][target_big_endian];
19825 noop = wide_thumb_noop[target_big_endian];
19826 }
19827 else
19828 noop = thumb_noop[0][target_big_endian];
19829 noop_size = 2;
19830 #ifdef OBJ_ELF
19831 state = MAP_THUMB;
19832 #endif
19833 }
19834 else
19835 {
19836 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
19837 [target_big_endian];
19838 noop_size = 4;
19839 #ifdef OBJ_ELF
19840 state = MAP_ARM;
19841 #endif
19842 }
19843
19844 fragP->fr_var = noop_size;
19845
19846 if (bytes & (noop_size - 1))
19847 {
19848 fix = bytes & (noop_size - 1);
19849 #ifdef OBJ_ELF
19850 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
19851 #endif
19852 memset (p, 0, fix);
19853 p += fix;
19854 bytes -= fix;
19855 }
19856
19857 if (narrow_noop)
19858 {
19859 if (bytes & noop_size)
19860 {
19861 /* Insert a narrow noop. */
19862 memcpy (p, narrow_noop, noop_size);
19863 p += noop_size;
19864 bytes -= noop_size;
19865 fix += noop_size;
19866 }
19867
19868 /* Use wide noops for the remainder */
19869 noop_size = 4;
19870 }
19871
19872 while (bytes >= noop_size)
19873 {
19874 memcpy (p, noop, noop_size);
19875 p += noop_size;
19876 bytes -= noop_size;
19877 fix += noop_size;
19878 }
19879
19880 fragP->fr_fix += fix;
19881 }
19882
19883 /* Called from md_do_align. Used to create an alignment
19884 frag in a code section. */
19885
19886 void
19887 arm_frag_align_code (int n, int max)
19888 {
19889 char * p;
19890
19891 /* We assume that there will never be a requirement
19892 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
19893 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
19894 {
19895 char err_msg[128];
19896
19897 sprintf (err_msg,
19898 _("alignments greater than %d bytes not supported in .text sections."),
19899 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
19900 as_fatal ("%s", err_msg);
19901 }
19902
19903 p = frag_var (rs_align_code,
19904 MAX_MEM_FOR_RS_ALIGN_CODE,
19905 1,
19906 (relax_substateT) max,
19907 (symbolS *) NULL,
19908 (offsetT) n,
19909 (char *) NULL);
19910 *p = 0;
19911 }
19912
19913 /* Perform target specific initialisation of a frag.
19914 Note - despite the name this initialisation is not done when the frag
19915 is created, but only when its type is assigned. A frag can be created
19916 and used a long time before its type is set, so beware of assuming that
19917 this initialisationis performed first. */
19918
19919 #ifndef OBJ_ELF
19920 void
19921 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
19922 {
19923 /* Record whether this frag is in an ARM or a THUMB area. */
19924 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
19925 }
19926
19927 #else /* OBJ_ELF is defined. */
19928 void
19929 arm_init_frag (fragS * fragP, int max_chars)
19930 {
19931 /* If the current ARM vs THUMB mode has not already
19932 been recorded into this frag then do so now. */
19933 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
19934 {
19935 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
19936
19937 /* Record a mapping symbol for alignment frags. We will delete this
19938 later if the alignment ends up empty. */
19939 switch (fragP->fr_type)
19940 {
19941 case rs_align:
19942 case rs_align_test:
19943 case rs_fill:
19944 mapping_state_2 (MAP_DATA, max_chars);
19945 break;
19946 case rs_align_code:
19947 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
19948 break;
19949 default:
19950 break;
19951 }
19952 }
19953 }
19954
19955 /* When we change sections we need to issue a new mapping symbol. */
19956
19957 void
19958 arm_elf_change_section (void)
19959 {
19960 /* Link an unlinked unwind index table section to the .text section. */
19961 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
19962 && elf_linked_to_section (now_seg) == NULL)
19963 elf_linked_to_section (now_seg) = text_section;
19964 }
19965
19966 int
19967 arm_elf_section_type (const char * str, size_t len)
19968 {
19969 if (len == 5 && strncmp (str, "exidx", 5) == 0)
19970 return SHT_ARM_EXIDX;
19971
19972 return -1;
19973 }
19974 \f
19975 /* Code to deal with unwinding tables. */
19976
19977 static void add_unwind_adjustsp (offsetT);
19978
19979 /* Generate any deferred unwind frame offset. */
19980
19981 static void
19982 flush_pending_unwind (void)
19983 {
19984 offsetT offset;
19985
19986 offset = unwind.pending_offset;
19987 unwind.pending_offset = 0;
19988 if (offset != 0)
19989 add_unwind_adjustsp (offset);
19990 }
19991
19992 /* Add an opcode to this list for this function. Two-byte opcodes should
19993 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
19994 order. */
19995
19996 static void
19997 add_unwind_opcode (valueT op, int length)
19998 {
19999 /* Add any deferred stack adjustment. */
20000 if (unwind.pending_offset)
20001 flush_pending_unwind ();
20002
20003 unwind.sp_restored = 0;
20004
20005 if (unwind.opcode_count + length > unwind.opcode_alloc)
20006 {
20007 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
20008 if (unwind.opcodes)
20009 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
20010 unwind.opcode_alloc);
20011 else
20012 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
20013 }
20014 while (length > 0)
20015 {
20016 length--;
20017 unwind.opcodes[unwind.opcode_count] = op & 0xff;
20018 op >>= 8;
20019 unwind.opcode_count++;
20020 }
20021 }
20022
20023 /* Add unwind opcodes to adjust the stack pointer. */
20024
20025 static void
20026 add_unwind_adjustsp (offsetT offset)
20027 {
20028 valueT op;
20029
20030 if (offset > 0x200)
20031 {
20032 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
20033 char bytes[5];
20034 int n;
20035 valueT o;
20036
20037 /* Long form: 0xb2, uleb128. */
20038 /* This might not fit in a word so add the individual bytes,
20039 remembering the list is built in reverse order. */
20040 o = (valueT) ((offset - 0x204) >> 2);
20041 if (o == 0)
20042 add_unwind_opcode (0, 1);
20043
20044 /* Calculate the uleb128 encoding of the offset. */
20045 n = 0;
20046 while (o)
20047 {
20048 bytes[n] = o & 0x7f;
20049 o >>= 7;
20050 if (o)
20051 bytes[n] |= 0x80;
20052 n++;
20053 }
20054 /* Add the insn. */
20055 for (; n; n--)
20056 add_unwind_opcode (bytes[n - 1], 1);
20057 add_unwind_opcode (0xb2, 1);
20058 }
20059 else if (offset > 0x100)
20060 {
20061 /* Two short opcodes. */
20062 add_unwind_opcode (0x3f, 1);
20063 op = (offset - 0x104) >> 2;
20064 add_unwind_opcode (op, 1);
20065 }
20066 else if (offset > 0)
20067 {
20068 /* Short opcode. */
20069 op = (offset - 4) >> 2;
20070 add_unwind_opcode (op, 1);
20071 }
20072 else if (offset < 0)
20073 {
20074 offset = -offset;
20075 while (offset > 0x100)
20076 {
20077 add_unwind_opcode (0x7f, 1);
20078 offset -= 0x100;
20079 }
20080 op = ((offset - 4) >> 2) | 0x40;
20081 add_unwind_opcode (op, 1);
20082 }
20083 }
20084
20085 /* Finish the list of unwind opcodes for this function. */
20086 static void
20087 finish_unwind_opcodes (void)
20088 {
20089 valueT op;
20090
20091 if (unwind.fp_used)
20092 {
20093 /* Adjust sp as necessary. */
20094 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
20095 flush_pending_unwind ();
20096
20097 /* After restoring sp from the frame pointer. */
20098 op = 0x90 | unwind.fp_reg;
20099 add_unwind_opcode (op, 1);
20100 }
20101 else
20102 flush_pending_unwind ();
20103 }
20104
20105
20106 /* Start an exception table entry. If idx is nonzero this is an index table
20107 entry. */
20108
20109 static void
20110 start_unwind_section (const segT text_seg, int idx)
20111 {
20112 const char * text_name;
20113 const char * prefix;
20114 const char * prefix_once;
20115 const char * group_name;
20116 size_t prefix_len;
20117 size_t text_len;
20118 char * sec_name;
20119 size_t sec_name_len;
20120 int type;
20121 int flags;
20122 int linkonce;
20123
20124 if (idx)
20125 {
20126 prefix = ELF_STRING_ARM_unwind;
20127 prefix_once = ELF_STRING_ARM_unwind_once;
20128 type = SHT_ARM_EXIDX;
20129 }
20130 else
20131 {
20132 prefix = ELF_STRING_ARM_unwind_info;
20133 prefix_once = ELF_STRING_ARM_unwind_info_once;
20134 type = SHT_PROGBITS;
20135 }
20136
20137 text_name = segment_name (text_seg);
20138 if (streq (text_name, ".text"))
20139 text_name = "";
20140
20141 if (strncmp (text_name, ".gnu.linkonce.t.",
20142 strlen (".gnu.linkonce.t.")) == 0)
20143 {
20144 prefix = prefix_once;
20145 text_name += strlen (".gnu.linkonce.t.");
20146 }
20147
20148 prefix_len = strlen (prefix);
20149 text_len = strlen (text_name);
20150 sec_name_len = prefix_len + text_len;
20151 sec_name = (char *) xmalloc (sec_name_len + 1);
20152 memcpy (sec_name, prefix, prefix_len);
20153 memcpy (sec_name + prefix_len, text_name, text_len);
20154 sec_name[prefix_len + text_len] = '\0';
20155
20156 flags = SHF_ALLOC;
20157 linkonce = 0;
20158 group_name = 0;
20159
20160 /* Handle COMDAT group. */
20161 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
20162 {
20163 group_name = elf_group_name (text_seg);
20164 if (group_name == NULL)
20165 {
20166 as_bad (_("Group section `%s' has no group signature"),
20167 segment_name (text_seg));
20168 ignore_rest_of_line ();
20169 return;
20170 }
20171 flags |= SHF_GROUP;
20172 linkonce = 1;
20173 }
20174
20175 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
20176
20177 /* Set the section link for index tables. */
20178 if (idx)
20179 elf_linked_to_section (now_seg) = text_seg;
20180 }
20181
20182
20183 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
20184 personality routine data. Returns zero, or the index table value for
20185 and inline entry. */
20186
20187 static valueT
20188 create_unwind_entry (int have_data)
20189 {
20190 int size;
20191 addressT where;
20192 char *ptr;
20193 /* The current word of data. */
20194 valueT data;
20195 /* The number of bytes left in this word. */
20196 int n;
20197
20198 finish_unwind_opcodes ();
20199
20200 /* Remember the current text section. */
20201 unwind.saved_seg = now_seg;
20202 unwind.saved_subseg = now_subseg;
20203
20204 start_unwind_section (now_seg, 0);
20205
20206 if (unwind.personality_routine == NULL)
20207 {
20208 if (unwind.personality_index == -2)
20209 {
20210 if (have_data)
20211 as_bad (_("handlerdata in cantunwind frame"));
20212 return 1; /* EXIDX_CANTUNWIND. */
20213 }
20214
20215 /* Use a default personality routine if none is specified. */
20216 if (unwind.personality_index == -1)
20217 {
20218 if (unwind.opcode_count > 3)
20219 unwind.personality_index = 1;
20220 else
20221 unwind.personality_index = 0;
20222 }
20223
20224 /* Space for the personality routine entry. */
20225 if (unwind.personality_index == 0)
20226 {
20227 if (unwind.opcode_count > 3)
20228 as_bad (_("too many unwind opcodes for personality routine 0"));
20229
20230 if (!have_data)
20231 {
20232 /* All the data is inline in the index table. */
20233 data = 0x80;
20234 n = 3;
20235 while (unwind.opcode_count > 0)
20236 {
20237 unwind.opcode_count--;
20238 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
20239 n--;
20240 }
20241
20242 /* Pad with "finish" opcodes. */
20243 while (n--)
20244 data = (data << 8) | 0xb0;
20245
20246 return data;
20247 }
20248 size = 0;
20249 }
20250 else
20251 /* We get two opcodes "free" in the first word. */
20252 size = unwind.opcode_count - 2;
20253 }
20254 else
20255 {
20256 gas_assert (unwind.personality_index == -1);
20257
20258 /* An extra byte is required for the opcode count. */
20259 size = unwind.opcode_count + 1;
20260 }
20261
20262 size = (size + 3) >> 2;
20263 if (size > 0xff)
20264 as_bad (_("too many unwind opcodes"));
20265
20266 frag_align (2, 0, 0);
20267 record_alignment (now_seg, 2);
20268 unwind.table_entry = expr_build_dot ();
20269
20270 /* Allocate the table entry. */
20271 ptr = frag_more ((size << 2) + 4);
20272 /* PR 13449: Zero the table entries in case some of them are not used. */
20273 memset (ptr, 0, (size << 2) + 4);
20274 where = frag_now_fix () - ((size << 2) + 4);
20275
20276 switch (unwind.personality_index)
20277 {
20278 case -1:
20279 /* ??? Should this be a PLT generating relocation? */
20280 /* Custom personality routine. */
20281 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
20282 BFD_RELOC_ARM_PREL31);
20283
20284 where += 4;
20285 ptr += 4;
20286
20287 /* Set the first byte to the number of additional words. */
20288 data = size > 0 ? size - 1 : 0;
20289 n = 3;
20290 break;
20291
20292 /* ABI defined personality routines. */
20293 case 0:
20294 /* Three opcodes bytes are packed into the first word. */
20295 data = 0x80;
20296 n = 3;
20297 break;
20298
20299 case 1:
20300 case 2:
20301 /* The size and first two opcode bytes go in the first word. */
20302 data = ((0x80 + unwind.personality_index) << 8) | size;
20303 n = 2;
20304 break;
20305
20306 default:
20307 /* Should never happen. */
20308 abort ();
20309 }
20310
20311 /* Pack the opcodes into words (MSB first), reversing the list at the same
20312 time. */
20313 while (unwind.opcode_count > 0)
20314 {
20315 if (n == 0)
20316 {
20317 md_number_to_chars (ptr, data, 4);
20318 ptr += 4;
20319 n = 4;
20320 data = 0;
20321 }
20322 unwind.opcode_count--;
20323 n--;
20324 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
20325 }
20326
20327 /* Finish off the last word. */
20328 if (n < 4)
20329 {
20330 /* Pad with "finish" opcodes. */
20331 while (n--)
20332 data = (data << 8) | 0xb0;
20333
20334 md_number_to_chars (ptr, data, 4);
20335 }
20336
20337 if (!have_data)
20338 {
20339 /* Add an empty descriptor if there is no user-specified data. */
20340 ptr = frag_more (4);
20341 md_number_to_chars (ptr, 0, 4);
20342 }
20343
20344 return 0;
20345 }
20346
20347
20348 /* Initialize the DWARF-2 unwind information for this procedure. */
20349
20350 void
20351 tc_arm_frame_initial_instructions (void)
20352 {
20353 cfi_add_CFA_def_cfa (REG_SP, 0);
20354 }
20355 #endif /* OBJ_ELF */
20356
20357 /* Convert REGNAME to a DWARF-2 register number. */
20358
20359 int
20360 tc_arm_regname_to_dw2regnum (char *regname)
20361 {
20362 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
20363
20364 if (reg == FAIL)
20365 return -1;
20366
20367 return reg;
20368 }
20369
20370 #ifdef TE_PE
20371 void
20372 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
20373 {
20374 expressionS exp;
20375
20376 exp.X_op = O_secrel;
20377 exp.X_add_symbol = symbol;
20378 exp.X_add_number = 0;
20379 emit_expr (&exp, size);
20380 }
20381 #endif
20382
20383 /* MD interface: Symbol and relocation handling. */
20384
20385 /* Return the address within the segment that a PC-relative fixup is
20386 relative to. For ARM, PC-relative fixups applied to instructions
20387 are generally relative to the location of the fixup plus 8 bytes.
20388 Thumb branches are offset by 4, and Thumb loads relative to PC
20389 require special handling. */
20390
20391 long
20392 md_pcrel_from_section (fixS * fixP, segT seg)
20393 {
20394 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
20395
20396 /* If this is pc-relative and we are going to emit a relocation
20397 then we just want to put out any pipeline compensation that the linker
20398 will need. Otherwise we want to use the calculated base.
20399 For WinCE we skip the bias for externals as well, since this
20400 is how the MS ARM-CE assembler behaves and we want to be compatible. */
20401 if (fixP->fx_pcrel
20402 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
20403 || (arm_force_relocation (fixP)
20404 #ifdef TE_WINCE
20405 && !S_IS_EXTERNAL (fixP->fx_addsy)
20406 #endif
20407 )))
20408 base = 0;
20409
20410
20411 switch (fixP->fx_r_type)
20412 {
20413 /* PC relative addressing on the Thumb is slightly odd as the
20414 bottom two bits of the PC are forced to zero for the
20415 calculation. This happens *after* application of the
20416 pipeline offset. However, Thumb adrl already adjusts for
20417 this, so we need not do it again. */
20418 case BFD_RELOC_ARM_THUMB_ADD:
20419 return base & ~3;
20420
20421 case BFD_RELOC_ARM_THUMB_OFFSET:
20422 case BFD_RELOC_ARM_T32_OFFSET_IMM:
20423 case BFD_RELOC_ARM_T32_ADD_PC12:
20424 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
20425 return (base + 4) & ~3;
20426
20427 /* Thumb branches are simply offset by +4. */
20428 case BFD_RELOC_THUMB_PCREL_BRANCH7:
20429 case BFD_RELOC_THUMB_PCREL_BRANCH9:
20430 case BFD_RELOC_THUMB_PCREL_BRANCH12:
20431 case BFD_RELOC_THUMB_PCREL_BRANCH20:
20432 case BFD_RELOC_THUMB_PCREL_BRANCH25:
20433 return base + 4;
20434
20435 case BFD_RELOC_THUMB_PCREL_BRANCH23:
20436 if (fixP->fx_addsy
20437 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20438 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20439 && ARM_IS_FUNC (fixP->fx_addsy)
20440 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20441 base = fixP->fx_where + fixP->fx_frag->fr_address;
20442 return base + 4;
20443
20444 /* BLX is like branches above, but forces the low two bits of PC to
20445 zero. */
20446 case BFD_RELOC_THUMB_PCREL_BLX:
20447 if (fixP->fx_addsy
20448 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20449 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20450 && THUMB_IS_FUNC (fixP->fx_addsy)
20451 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20452 base = fixP->fx_where + fixP->fx_frag->fr_address;
20453 return (base + 4) & ~3;
20454
20455 /* ARM mode branches are offset by +8. However, the Windows CE
20456 loader expects the relocation not to take this into account. */
20457 case BFD_RELOC_ARM_PCREL_BLX:
20458 if (fixP->fx_addsy
20459 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20460 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20461 && ARM_IS_FUNC (fixP->fx_addsy)
20462 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20463 base = fixP->fx_where + fixP->fx_frag->fr_address;
20464 return base + 8;
20465
20466 case BFD_RELOC_ARM_PCREL_CALL:
20467 if (fixP->fx_addsy
20468 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20469 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20470 && THUMB_IS_FUNC (fixP->fx_addsy)
20471 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20472 base = fixP->fx_where + fixP->fx_frag->fr_address;
20473 return base + 8;
20474
20475 case BFD_RELOC_ARM_PCREL_BRANCH:
20476 case BFD_RELOC_ARM_PCREL_JUMP:
20477 case BFD_RELOC_ARM_PLT32:
20478 #ifdef TE_WINCE
20479 /* When handling fixups immediately, because we have already
20480 discovered the value of a symbol, or the address of the frag involved
20481 we must account for the offset by +8, as the OS loader will never see the reloc.
20482 see fixup_segment() in write.c
20483 The S_IS_EXTERNAL test handles the case of global symbols.
20484 Those need the calculated base, not just the pipe compensation the linker will need. */
20485 if (fixP->fx_pcrel
20486 && fixP->fx_addsy != NULL
20487 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20488 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
20489 return base + 8;
20490 return base;
20491 #else
20492 return base + 8;
20493 #endif
20494
20495
20496 /* ARM mode loads relative to PC are also offset by +8. Unlike
20497 branches, the Windows CE loader *does* expect the relocation
20498 to take this into account. */
20499 case BFD_RELOC_ARM_OFFSET_IMM:
20500 case BFD_RELOC_ARM_OFFSET_IMM8:
20501 case BFD_RELOC_ARM_HWLITERAL:
20502 case BFD_RELOC_ARM_LITERAL:
20503 case BFD_RELOC_ARM_CP_OFF_IMM:
20504 return base + 8;
20505
20506
20507 /* Other PC-relative relocations are un-offset. */
20508 default:
20509 return base;
20510 }
20511 }
20512
20513 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
20514 Otherwise we have no need to default values of symbols. */
20515
20516 symbolS *
20517 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
20518 {
20519 #ifdef OBJ_ELF
20520 if (name[0] == '_' && name[1] == 'G'
20521 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
20522 {
20523 if (!GOT_symbol)
20524 {
20525 if (symbol_find (name))
20526 as_bad (_("GOT already in the symbol table"));
20527
20528 GOT_symbol = symbol_new (name, undefined_section,
20529 (valueT) 0, & zero_address_frag);
20530 }
20531
20532 return GOT_symbol;
20533 }
20534 #endif
20535
20536 return NULL;
20537 }
20538
20539 /* Subroutine of md_apply_fix. Check to see if an immediate can be
20540 computed as two separate immediate values, added together. We
20541 already know that this value cannot be computed by just one ARM
20542 instruction. */
20543
20544 static unsigned int
20545 validate_immediate_twopart (unsigned int val,
20546 unsigned int * highpart)
20547 {
20548 unsigned int a;
20549 unsigned int i;
20550
20551 for (i = 0; i < 32; i += 2)
20552 if (((a = rotate_left (val, i)) & 0xff) != 0)
20553 {
20554 if (a & 0xff00)
20555 {
20556 if (a & ~ 0xffff)
20557 continue;
20558 * highpart = (a >> 8) | ((i + 24) << 7);
20559 }
20560 else if (a & 0xff0000)
20561 {
20562 if (a & 0xff000000)
20563 continue;
20564 * highpart = (a >> 16) | ((i + 16) << 7);
20565 }
20566 else
20567 {
20568 gas_assert (a & 0xff000000);
20569 * highpart = (a >> 24) | ((i + 8) << 7);
20570 }
20571
20572 return (a & 0xff) | (i << 7);
20573 }
20574
20575 return FAIL;
20576 }
20577
20578 static int
20579 validate_offset_imm (unsigned int val, int hwse)
20580 {
20581 if ((hwse && val > 255) || val > 4095)
20582 return FAIL;
20583 return val;
20584 }
20585
20586 /* Subroutine of md_apply_fix. Do those data_ops which can take a
20587 negative immediate constant by altering the instruction. A bit of
20588 a hack really.
20589 MOV <-> MVN
20590 AND <-> BIC
20591 ADC <-> SBC
20592 by inverting the second operand, and
20593 ADD <-> SUB
20594 CMP <-> CMN
20595 by negating the second operand. */
20596
20597 static int
20598 negate_data_op (unsigned long * instruction,
20599 unsigned long value)
20600 {
20601 int op, new_inst;
20602 unsigned long negated, inverted;
20603
20604 negated = encode_arm_immediate (-value);
20605 inverted = encode_arm_immediate (~value);
20606
20607 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
20608 switch (op)
20609 {
20610 /* First negates. */
20611 case OPCODE_SUB: /* ADD <-> SUB */
20612 new_inst = OPCODE_ADD;
20613 value = negated;
20614 break;
20615
20616 case OPCODE_ADD:
20617 new_inst = OPCODE_SUB;
20618 value = negated;
20619 break;
20620
20621 case OPCODE_CMP: /* CMP <-> CMN */
20622 new_inst = OPCODE_CMN;
20623 value = negated;
20624 break;
20625
20626 case OPCODE_CMN:
20627 new_inst = OPCODE_CMP;
20628 value = negated;
20629 break;
20630
20631 /* Now Inverted ops. */
20632 case OPCODE_MOV: /* MOV <-> MVN */
20633 new_inst = OPCODE_MVN;
20634 value = inverted;
20635 break;
20636
20637 case OPCODE_MVN:
20638 new_inst = OPCODE_MOV;
20639 value = inverted;
20640 break;
20641
20642 case OPCODE_AND: /* AND <-> BIC */
20643 new_inst = OPCODE_BIC;
20644 value = inverted;
20645 break;
20646
20647 case OPCODE_BIC:
20648 new_inst = OPCODE_AND;
20649 value = inverted;
20650 break;
20651
20652 case OPCODE_ADC: /* ADC <-> SBC */
20653 new_inst = OPCODE_SBC;
20654 value = inverted;
20655 break;
20656
20657 case OPCODE_SBC:
20658 new_inst = OPCODE_ADC;
20659 value = inverted;
20660 break;
20661
20662 /* We cannot do anything. */
20663 default:
20664 return FAIL;
20665 }
20666
20667 if (value == (unsigned) FAIL)
20668 return FAIL;
20669
20670 *instruction &= OPCODE_MASK;
20671 *instruction |= new_inst << DATA_OP_SHIFT;
20672 return value;
20673 }
20674
20675 /* Like negate_data_op, but for Thumb-2. */
20676
20677 static unsigned int
20678 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
20679 {
20680 int op, new_inst;
20681 int rd;
20682 unsigned int negated, inverted;
20683
20684 negated = encode_thumb32_immediate (-value);
20685 inverted = encode_thumb32_immediate (~value);
20686
20687 rd = (*instruction >> 8) & 0xf;
20688 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
20689 switch (op)
20690 {
20691 /* ADD <-> SUB. Includes CMP <-> CMN. */
20692 case T2_OPCODE_SUB:
20693 new_inst = T2_OPCODE_ADD;
20694 value = negated;
20695 break;
20696
20697 case T2_OPCODE_ADD:
20698 new_inst = T2_OPCODE_SUB;
20699 value = negated;
20700 break;
20701
20702 /* ORR <-> ORN. Includes MOV <-> MVN. */
20703 case T2_OPCODE_ORR:
20704 new_inst = T2_OPCODE_ORN;
20705 value = inverted;
20706 break;
20707
20708 case T2_OPCODE_ORN:
20709 new_inst = T2_OPCODE_ORR;
20710 value = inverted;
20711 break;
20712
20713 /* AND <-> BIC. TST has no inverted equivalent. */
20714 case T2_OPCODE_AND:
20715 new_inst = T2_OPCODE_BIC;
20716 if (rd == 15)
20717 value = FAIL;
20718 else
20719 value = inverted;
20720 break;
20721
20722 case T2_OPCODE_BIC:
20723 new_inst = T2_OPCODE_AND;
20724 value = inverted;
20725 break;
20726
20727 /* ADC <-> SBC */
20728 case T2_OPCODE_ADC:
20729 new_inst = T2_OPCODE_SBC;
20730 value = inverted;
20731 break;
20732
20733 case T2_OPCODE_SBC:
20734 new_inst = T2_OPCODE_ADC;
20735 value = inverted;
20736 break;
20737
20738 /* We cannot do anything. */
20739 default:
20740 return FAIL;
20741 }
20742
20743 if (value == (unsigned int)FAIL)
20744 return FAIL;
20745
20746 *instruction &= T2_OPCODE_MASK;
20747 *instruction |= new_inst << T2_DATA_OP_SHIFT;
20748 return value;
20749 }
20750
20751 /* Read a 32-bit thumb instruction from buf. */
20752 static unsigned long
20753 get_thumb32_insn (char * buf)
20754 {
20755 unsigned long insn;
20756 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
20757 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20758
20759 return insn;
20760 }
20761
20762
20763 /* We usually want to set the low bit on the address of thumb function
20764 symbols. In particular .word foo - . should have the low bit set.
20765 Generic code tries to fold the difference of two symbols to
20766 a constant. Prevent this and force a relocation when the first symbols
20767 is a thumb function. */
20768
20769 bfd_boolean
20770 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
20771 {
20772 if (op == O_subtract
20773 && l->X_op == O_symbol
20774 && r->X_op == O_symbol
20775 && THUMB_IS_FUNC (l->X_add_symbol))
20776 {
20777 l->X_op = O_subtract;
20778 l->X_op_symbol = r->X_add_symbol;
20779 l->X_add_number -= r->X_add_number;
20780 return TRUE;
20781 }
20782
20783 /* Process as normal. */
20784 return FALSE;
20785 }
20786
20787 /* Encode Thumb2 unconditional branches and calls. The encoding
20788 for the 2 are identical for the immediate values. */
20789
20790 static void
20791 encode_thumb2_b_bl_offset (char * buf, offsetT value)
20792 {
20793 #define T2I1I2MASK ((1 << 13) | (1 << 11))
20794 offsetT newval;
20795 offsetT newval2;
20796 addressT S, I1, I2, lo, hi;
20797
20798 S = (value >> 24) & 0x01;
20799 I1 = (value >> 23) & 0x01;
20800 I2 = (value >> 22) & 0x01;
20801 hi = (value >> 12) & 0x3ff;
20802 lo = (value >> 1) & 0x7ff;
20803 newval = md_chars_to_number (buf, THUMB_SIZE);
20804 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20805 newval |= (S << 10) | hi;
20806 newval2 &= ~T2I1I2MASK;
20807 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
20808 md_number_to_chars (buf, newval, THUMB_SIZE);
20809 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20810 }
20811
20812 void
20813 md_apply_fix (fixS * fixP,
20814 valueT * valP,
20815 segT seg)
20816 {
20817 offsetT value = * valP;
20818 offsetT newval;
20819 unsigned int newimm;
20820 unsigned long temp;
20821 int sign;
20822 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
20823
20824 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
20825
20826 /* Note whether this will delete the relocation. */
20827
20828 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
20829 fixP->fx_done = 1;
20830
20831 /* On a 64-bit host, silently truncate 'value' to 32 bits for
20832 consistency with the behaviour on 32-bit hosts. Remember value
20833 for emit_reloc. */
20834 value &= 0xffffffff;
20835 value ^= 0x80000000;
20836 value -= 0x80000000;
20837
20838 *valP = value;
20839 fixP->fx_addnumber = value;
20840
20841 /* Same treatment for fixP->fx_offset. */
20842 fixP->fx_offset &= 0xffffffff;
20843 fixP->fx_offset ^= 0x80000000;
20844 fixP->fx_offset -= 0x80000000;
20845
20846 switch (fixP->fx_r_type)
20847 {
20848 case BFD_RELOC_NONE:
20849 /* This will need to go in the object file. */
20850 fixP->fx_done = 0;
20851 break;
20852
20853 case BFD_RELOC_ARM_IMMEDIATE:
20854 /* We claim that this fixup has been processed here,
20855 even if in fact we generate an error because we do
20856 not have a reloc for it, so tc_gen_reloc will reject it. */
20857 fixP->fx_done = 1;
20858
20859 if (fixP->fx_addsy)
20860 {
20861 const char *msg = 0;
20862
20863 if (! S_IS_DEFINED (fixP->fx_addsy))
20864 msg = _("undefined symbol %s used as an immediate value");
20865 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20866 msg = _("symbol %s is in a different section");
20867 else if (S_IS_WEAK (fixP->fx_addsy))
20868 msg = _("symbol %s is weak and may be overridden later");
20869
20870 if (msg)
20871 {
20872 as_bad_where (fixP->fx_file, fixP->fx_line,
20873 msg, S_GET_NAME (fixP->fx_addsy));
20874 break;
20875 }
20876 }
20877
20878 temp = md_chars_to_number (buf, INSN_SIZE);
20879
20880 /* If the offset is negative, we should use encoding A2 for ADR. */
20881 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
20882 newimm = negate_data_op (&temp, value);
20883 else
20884 {
20885 newimm = encode_arm_immediate (value);
20886
20887 /* If the instruction will fail, see if we can fix things up by
20888 changing the opcode. */
20889 if (newimm == (unsigned int) FAIL)
20890 newimm = negate_data_op (&temp, value);
20891 }
20892
20893 if (newimm == (unsigned int) FAIL)
20894 {
20895 as_bad_where (fixP->fx_file, fixP->fx_line,
20896 _("invalid constant (%lx) after fixup"),
20897 (unsigned long) value);
20898 break;
20899 }
20900
20901 newimm |= (temp & 0xfffff000);
20902 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20903 break;
20904
20905 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
20906 {
20907 unsigned int highpart = 0;
20908 unsigned int newinsn = 0xe1a00000; /* nop. */
20909
20910 if (fixP->fx_addsy)
20911 {
20912 const char *msg = 0;
20913
20914 if (! S_IS_DEFINED (fixP->fx_addsy))
20915 msg = _("undefined symbol %s used as an immediate value");
20916 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20917 msg = _("symbol %s is in a different section");
20918 else if (S_IS_WEAK (fixP->fx_addsy))
20919 msg = _("symbol %s is weak and may be overridden later");
20920
20921 if (msg)
20922 {
20923 as_bad_where (fixP->fx_file, fixP->fx_line,
20924 msg, S_GET_NAME (fixP->fx_addsy));
20925 break;
20926 }
20927 }
20928
20929 newimm = encode_arm_immediate (value);
20930 temp = md_chars_to_number (buf, INSN_SIZE);
20931
20932 /* If the instruction will fail, see if we can fix things up by
20933 changing the opcode. */
20934 if (newimm == (unsigned int) FAIL
20935 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
20936 {
20937 /* No ? OK - try using two ADD instructions to generate
20938 the value. */
20939 newimm = validate_immediate_twopart (value, & highpart);
20940
20941 /* Yes - then make sure that the second instruction is
20942 also an add. */
20943 if (newimm != (unsigned int) FAIL)
20944 newinsn = temp;
20945 /* Still No ? Try using a negated value. */
20946 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
20947 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
20948 /* Otherwise - give up. */
20949 else
20950 {
20951 as_bad_where (fixP->fx_file, fixP->fx_line,
20952 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
20953 (long) value);
20954 break;
20955 }
20956
20957 /* Replace the first operand in the 2nd instruction (which
20958 is the PC) with the destination register. We have
20959 already added in the PC in the first instruction and we
20960 do not want to do it again. */
20961 newinsn &= ~ 0xf0000;
20962 newinsn |= ((newinsn & 0x0f000) << 4);
20963 }
20964
20965 newimm |= (temp & 0xfffff000);
20966 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20967
20968 highpart |= (newinsn & 0xfffff000);
20969 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
20970 }
20971 break;
20972
20973 case BFD_RELOC_ARM_OFFSET_IMM:
20974 if (!fixP->fx_done && seg->use_rela_p)
20975 value = 0;
20976
20977 case BFD_RELOC_ARM_LITERAL:
20978 sign = value > 0;
20979
20980 if (value < 0)
20981 value = - value;
20982
20983 if (validate_offset_imm (value, 0) == FAIL)
20984 {
20985 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
20986 as_bad_where (fixP->fx_file, fixP->fx_line,
20987 _("invalid literal constant: pool needs to be closer"));
20988 else
20989 as_bad_where (fixP->fx_file, fixP->fx_line,
20990 _("bad immediate value for offset (%ld)"),
20991 (long) value);
20992 break;
20993 }
20994
20995 newval = md_chars_to_number (buf, INSN_SIZE);
20996 if (value == 0)
20997 newval &= 0xfffff000;
20998 else
20999 {
21000 newval &= 0xff7ff000;
21001 newval |= value | (sign ? INDEX_UP : 0);
21002 }
21003 md_number_to_chars (buf, newval, INSN_SIZE);
21004 break;
21005
21006 case BFD_RELOC_ARM_OFFSET_IMM8:
21007 case BFD_RELOC_ARM_HWLITERAL:
21008 sign = value > 0;
21009
21010 if (value < 0)
21011 value = - value;
21012
21013 if (validate_offset_imm (value, 1) == FAIL)
21014 {
21015 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
21016 as_bad_where (fixP->fx_file, fixP->fx_line,
21017 _("invalid literal constant: pool needs to be closer"));
21018 else
21019 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
21020 (long) value);
21021 break;
21022 }
21023
21024 newval = md_chars_to_number (buf, INSN_SIZE);
21025 if (value == 0)
21026 newval &= 0xfffff0f0;
21027 else
21028 {
21029 newval &= 0xff7ff0f0;
21030 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
21031 }
21032 md_number_to_chars (buf, newval, INSN_SIZE);
21033 break;
21034
21035 case BFD_RELOC_ARM_T32_OFFSET_U8:
21036 if (value < 0 || value > 1020 || value % 4 != 0)
21037 as_bad_where (fixP->fx_file, fixP->fx_line,
21038 _("bad immediate value for offset (%ld)"), (long) value);
21039 value /= 4;
21040
21041 newval = md_chars_to_number (buf+2, THUMB_SIZE);
21042 newval |= value;
21043 md_number_to_chars (buf+2, newval, THUMB_SIZE);
21044 break;
21045
21046 case BFD_RELOC_ARM_T32_OFFSET_IMM:
21047 /* This is a complicated relocation used for all varieties of Thumb32
21048 load/store instruction with immediate offset:
21049
21050 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
21051 *4, optional writeback(W)
21052 (doubleword load/store)
21053
21054 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
21055 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
21056 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
21057 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
21058 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
21059
21060 Uppercase letters indicate bits that are already encoded at
21061 this point. Lowercase letters are our problem. For the
21062 second block of instructions, the secondary opcode nybble
21063 (bits 8..11) is present, and bit 23 is zero, even if this is
21064 a PC-relative operation. */
21065 newval = md_chars_to_number (buf, THUMB_SIZE);
21066 newval <<= 16;
21067 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
21068
21069 if ((newval & 0xf0000000) == 0xe0000000)
21070 {
21071 /* Doubleword load/store: 8-bit offset, scaled by 4. */
21072 if (value >= 0)
21073 newval |= (1 << 23);
21074 else
21075 value = -value;
21076 if (value % 4 != 0)
21077 {
21078 as_bad_where (fixP->fx_file, fixP->fx_line,
21079 _("offset not a multiple of 4"));
21080 break;
21081 }
21082 value /= 4;
21083 if (value > 0xff)
21084 {
21085 as_bad_where (fixP->fx_file, fixP->fx_line,
21086 _("offset out of range"));
21087 break;
21088 }
21089 newval &= ~0xff;
21090 }
21091 else if ((newval & 0x000f0000) == 0x000f0000)
21092 {
21093 /* PC-relative, 12-bit offset. */
21094 if (value >= 0)
21095 newval |= (1 << 23);
21096 else
21097 value = -value;
21098 if (value > 0xfff)
21099 {
21100 as_bad_where (fixP->fx_file, fixP->fx_line,
21101 _("offset out of range"));
21102 break;
21103 }
21104 newval &= ~0xfff;
21105 }
21106 else if ((newval & 0x00000100) == 0x00000100)
21107 {
21108 /* Writeback: 8-bit, +/- offset. */
21109 if (value >= 0)
21110 newval |= (1 << 9);
21111 else
21112 value = -value;
21113 if (value > 0xff)
21114 {
21115 as_bad_where (fixP->fx_file, fixP->fx_line,
21116 _("offset out of range"));
21117 break;
21118 }
21119 newval &= ~0xff;
21120 }
21121 else if ((newval & 0x00000f00) == 0x00000e00)
21122 {
21123 /* T-instruction: positive 8-bit offset. */
21124 if (value < 0 || value > 0xff)
21125 {
21126 as_bad_where (fixP->fx_file, fixP->fx_line,
21127 _("offset out of range"));
21128 break;
21129 }
21130 newval &= ~0xff;
21131 newval |= value;
21132 }
21133 else
21134 {
21135 /* Positive 12-bit or negative 8-bit offset. */
21136 int limit;
21137 if (value >= 0)
21138 {
21139 newval |= (1 << 23);
21140 limit = 0xfff;
21141 }
21142 else
21143 {
21144 value = -value;
21145 limit = 0xff;
21146 }
21147 if (value > limit)
21148 {
21149 as_bad_where (fixP->fx_file, fixP->fx_line,
21150 _("offset out of range"));
21151 break;
21152 }
21153 newval &= ~limit;
21154 }
21155
21156 newval |= value;
21157 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
21158 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
21159 break;
21160
21161 case BFD_RELOC_ARM_SHIFT_IMM:
21162 newval = md_chars_to_number (buf, INSN_SIZE);
21163 if (((unsigned long) value) > 32
21164 || (value == 32
21165 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
21166 {
21167 as_bad_where (fixP->fx_file, fixP->fx_line,
21168 _("shift expression is too large"));
21169 break;
21170 }
21171
21172 if (value == 0)
21173 /* Shifts of zero must be done as lsl. */
21174 newval &= ~0x60;
21175 else if (value == 32)
21176 value = 0;
21177 newval &= 0xfffff07f;
21178 newval |= (value & 0x1f) << 7;
21179 md_number_to_chars (buf, newval, INSN_SIZE);
21180 break;
21181
21182 case BFD_RELOC_ARM_T32_IMMEDIATE:
21183 case BFD_RELOC_ARM_T32_ADD_IMM:
21184 case BFD_RELOC_ARM_T32_IMM12:
21185 case BFD_RELOC_ARM_T32_ADD_PC12:
21186 /* We claim that this fixup has been processed here,
21187 even if in fact we generate an error because we do
21188 not have a reloc for it, so tc_gen_reloc will reject it. */
21189 fixP->fx_done = 1;
21190
21191 if (fixP->fx_addsy
21192 && ! S_IS_DEFINED (fixP->fx_addsy))
21193 {
21194 as_bad_where (fixP->fx_file, fixP->fx_line,
21195 _("undefined symbol %s used as an immediate value"),
21196 S_GET_NAME (fixP->fx_addsy));
21197 break;
21198 }
21199
21200 newval = md_chars_to_number (buf, THUMB_SIZE);
21201 newval <<= 16;
21202 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
21203
21204 newimm = FAIL;
21205 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
21206 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
21207 {
21208 newimm = encode_thumb32_immediate (value);
21209 if (newimm == (unsigned int) FAIL)
21210 newimm = thumb32_negate_data_op (&newval, value);
21211 }
21212 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
21213 && newimm == (unsigned int) FAIL)
21214 {
21215 /* Turn add/sum into addw/subw. */
21216 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
21217 newval = (newval & 0xfeffffff) | 0x02000000;
21218 /* No flat 12-bit imm encoding for addsw/subsw. */
21219 if ((newval & 0x00100000) == 0)
21220 {
21221 /* 12 bit immediate for addw/subw. */
21222 if (value < 0)
21223 {
21224 value = -value;
21225 newval ^= 0x00a00000;
21226 }
21227 if (value > 0xfff)
21228 newimm = (unsigned int) FAIL;
21229 else
21230 newimm = value;
21231 }
21232 }
21233
21234 if (newimm == (unsigned int)FAIL)
21235 {
21236 as_bad_where (fixP->fx_file, fixP->fx_line,
21237 _("invalid constant (%lx) after fixup"),
21238 (unsigned long) value);
21239 break;
21240 }
21241
21242 newval |= (newimm & 0x800) << 15;
21243 newval |= (newimm & 0x700) << 4;
21244 newval |= (newimm & 0x0ff);
21245
21246 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
21247 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
21248 break;
21249
21250 case BFD_RELOC_ARM_SMC:
21251 if (((unsigned long) value) > 0xffff)
21252 as_bad_where (fixP->fx_file, fixP->fx_line,
21253 _("invalid smc expression"));
21254 newval = md_chars_to_number (buf, INSN_SIZE);
21255 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
21256 md_number_to_chars (buf, newval, INSN_SIZE);
21257 break;
21258
21259 case BFD_RELOC_ARM_HVC:
21260 if (((unsigned long) value) > 0xffff)
21261 as_bad_where (fixP->fx_file, fixP->fx_line,
21262 _("invalid hvc expression"));
21263 newval = md_chars_to_number (buf, INSN_SIZE);
21264 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
21265 md_number_to_chars (buf, newval, INSN_SIZE);
21266 break;
21267
21268 case BFD_RELOC_ARM_SWI:
21269 if (fixP->tc_fix_data != 0)
21270 {
21271 if (((unsigned long) value) > 0xff)
21272 as_bad_where (fixP->fx_file, fixP->fx_line,
21273 _("invalid swi expression"));
21274 newval = md_chars_to_number (buf, THUMB_SIZE);
21275 newval |= value;
21276 md_number_to_chars (buf, newval, THUMB_SIZE);
21277 }
21278 else
21279 {
21280 if (((unsigned long) value) > 0x00ffffff)
21281 as_bad_where (fixP->fx_file, fixP->fx_line,
21282 _("invalid swi expression"));
21283 newval = md_chars_to_number (buf, INSN_SIZE);
21284 newval |= value;
21285 md_number_to_chars (buf, newval, INSN_SIZE);
21286 }
21287 break;
21288
21289 case BFD_RELOC_ARM_MULTI:
21290 if (((unsigned long) value) > 0xffff)
21291 as_bad_where (fixP->fx_file, fixP->fx_line,
21292 _("invalid expression in load/store multiple"));
21293 newval = value | md_chars_to_number (buf, INSN_SIZE);
21294 md_number_to_chars (buf, newval, INSN_SIZE);
21295 break;
21296
21297 #ifdef OBJ_ELF
21298 case BFD_RELOC_ARM_PCREL_CALL:
21299
21300 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21301 && fixP->fx_addsy
21302 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21303 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21304 && THUMB_IS_FUNC (fixP->fx_addsy))
21305 /* Flip the bl to blx. This is a simple flip
21306 bit here because we generate PCREL_CALL for
21307 unconditional bls. */
21308 {
21309 newval = md_chars_to_number (buf, INSN_SIZE);
21310 newval = newval | 0x10000000;
21311 md_number_to_chars (buf, newval, INSN_SIZE);
21312 temp = 1;
21313 fixP->fx_done = 1;
21314 }
21315 else
21316 temp = 3;
21317 goto arm_branch_common;
21318
21319 case BFD_RELOC_ARM_PCREL_JUMP:
21320 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21321 && fixP->fx_addsy
21322 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21323 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21324 && THUMB_IS_FUNC (fixP->fx_addsy))
21325 {
21326 /* This would map to a bl<cond>, b<cond>,
21327 b<always> to a Thumb function. We
21328 need to force a relocation for this particular
21329 case. */
21330 newval = md_chars_to_number (buf, INSN_SIZE);
21331 fixP->fx_done = 0;
21332 }
21333
21334 case BFD_RELOC_ARM_PLT32:
21335 #endif
21336 case BFD_RELOC_ARM_PCREL_BRANCH:
21337 temp = 3;
21338 goto arm_branch_common;
21339
21340 case BFD_RELOC_ARM_PCREL_BLX:
21341
21342 temp = 1;
21343 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21344 && fixP->fx_addsy
21345 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21346 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21347 && ARM_IS_FUNC (fixP->fx_addsy))
21348 {
21349 /* Flip the blx to a bl and warn. */
21350 const char *name = S_GET_NAME (fixP->fx_addsy);
21351 newval = 0xeb000000;
21352 as_warn_where (fixP->fx_file, fixP->fx_line,
21353 _("blx to '%s' an ARM ISA state function changed to bl"),
21354 name);
21355 md_number_to_chars (buf, newval, INSN_SIZE);
21356 temp = 3;
21357 fixP->fx_done = 1;
21358 }
21359
21360 #ifdef OBJ_ELF
21361 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21362 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
21363 #endif
21364
21365 arm_branch_common:
21366 /* We are going to store value (shifted right by two) in the
21367 instruction, in a 24 bit, signed field. Bits 26 through 32 either
21368 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
21369 also be be clear. */
21370 if (value & temp)
21371 as_bad_where (fixP->fx_file, fixP->fx_line,
21372 _("misaligned branch destination"));
21373 if ((value & (offsetT)0xfe000000) != (offsetT)0
21374 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
21375 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21376
21377 if (fixP->fx_done || !seg->use_rela_p)
21378 {
21379 newval = md_chars_to_number (buf, INSN_SIZE);
21380 newval |= (value >> 2) & 0x00ffffff;
21381 /* Set the H bit on BLX instructions. */
21382 if (temp == 1)
21383 {
21384 if (value & 2)
21385 newval |= 0x01000000;
21386 else
21387 newval &= ~0x01000000;
21388 }
21389 md_number_to_chars (buf, newval, INSN_SIZE);
21390 }
21391 break;
21392
21393 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
21394 /* CBZ can only branch forward. */
21395
21396 /* Attempts to use CBZ to branch to the next instruction
21397 (which, strictly speaking, are prohibited) will be turned into
21398 no-ops.
21399
21400 FIXME: It may be better to remove the instruction completely and
21401 perform relaxation. */
21402 if (value == -2)
21403 {
21404 newval = md_chars_to_number (buf, THUMB_SIZE);
21405 newval = 0xbf00; /* NOP encoding T1 */
21406 md_number_to_chars (buf, newval, THUMB_SIZE);
21407 }
21408 else
21409 {
21410 if (value & ~0x7e)
21411 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21412
21413 if (fixP->fx_done || !seg->use_rela_p)
21414 {
21415 newval = md_chars_to_number (buf, THUMB_SIZE);
21416 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
21417 md_number_to_chars (buf, newval, THUMB_SIZE);
21418 }
21419 }
21420 break;
21421
21422 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
21423 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
21424 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21425
21426 if (fixP->fx_done || !seg->use_rela_p)
21427 {
21428 newval = md_chars_to_number (buf, THUMB_SIZE);
21429 newval |= (value & 0x1ff) >> 1;
21430 md_number_to_chars (buf, newval, THUMB_SIZE);
21431 }
21432 break;
21433
21434 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
21435 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
21436 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21437
21438 if (fixP->fx_done || !seg->use_rela_p)
21439 {
21440 newval = md_chars_to_number (buf, THUMB_SIZE);
21441 newval |= (value & 0xfff) >> 1;
21442 md_number_to_chars (buf, newval, THUMB_SIZE);
21443 }
21444 break;
21445
21446 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21447 if (fixP->fx_addsy
21448 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21449 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21450 && ARM_IS_FUNC (fixP->fx_addsy)
21451 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21452 {
21453 /* Force a relocation for a branch 20 bits wide. */
21454 fixP->fx_done = 0;
21455 }
21456 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
21457 as_bad_where (fixP->fx_file, fixP->fx_line,
21458 _("conditional branch out of range"));
21459
21460 if (fixP->fx_done || !seg->use_rela_p)
21461 {
21462 offsetT newval2;
21463 addressT S, J1, J2, lo, hi;
21464
21465 S = (value & 0x00100000) >> 20;
21466 J2 = (value & 0x00080000) >> 19;
21467 J1 = (value & 0x00040000) >> 18;
21468 hi = (value & 0x0003f000) >> 12;
21469 lo = (value & 0x00000ffe) >> 1;
21470
21471 newval = md_chars_to_number (buf, THUMB_SIZE);
21472 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21473 newval |= (S << 10) | hi;
21474 newval2 |= (J1 << 13) | (J2 << 11) | lo;
21475 md_number_to_chars (buf, newval, THUMB_SIZE);
21476 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
21477 }
21478 break;
21479
21480 case BFD_RELOC_THUMB_PCREL_BLX:
21481 /* If there is a blx from a thumb state function to
21482 another thumb function flip this to a bl and warn
21483 about it. */
21484
21485 if (fixP->fx_addsy
21486 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21487 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21488 && THUMB_IS_FUNC (fixP->fx_addsy))
21489 {
21490 const char *name = S_GET_NAME (fixP->fx_addsy);
21491 as_warn_where (fixP->fx_file, fixP->fx_line,
21492 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
21493 name);
21494 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21495 newval = newval | 0x1000;
21496 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21497 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21498 fixP->fx_done = 1;
21499 }
21500
21501
21502 goto thumb_bl_common;
21503
21504 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21505 /* A bl from Thumb state ISA to an internal ARM state function
21506 is converted to a blx. */
21507 if (fixP->fx_addsy
21508 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21509 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21510 && ARM_IS_FUNC (fixP->fx_addsy)
21511 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21512 {
21513 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21514 newval = newval & ~0x1000;
21515 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21516 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
21517 fixP->fx_done = 1;
21518 }
21519
21520 thumb_bl_common:
21521
21522 #ifdef OBJ_ELF
21523 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
21524 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21525 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21526 #endif
21527
21528 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21529 /* For a BLX instruction, make sure that the relocation is rounded up
21530 to a word boundary. This follows the semantics of the instruction
21531 which specifies that bit 1 of the target address will come from bit
21532 1 of the base address. */
21533 value = (value + 1) & ~ 1;
21534
21535 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
21536 {
21537 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
21538 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21539 else if ((value & ~0x1ffffff)
21540 && ((value & ~0x1ffffff) != ~0x1ffffff))
21541 as_bad_where (fixP->fx_file, fixP->fx_line,
21542 _("Thumb2 branch out of range"));
21543 }
21544
21545 if (fixP->fx_done || !seg->use_rela_p)
21546 encode_thumb2_b_bl_offset (buf, value);
21547
21548 break;
21549
21550 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21551 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
21552 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21553
21554 if (fixP->fx_done || !seg->use_rela_p)
21555 encode_thumb2_b_bl_offset (buf, value);
21556
21557 break;
21558
21559 case BFD_RELOC_8:
21560 if (fixP->fx_done || !seg->use_rela_p)
21561 md_number_to_chars (buf, value, 1);
21562 break;
21563
21564 case BFD_RELOC_16:
21565 if (fixP->fx_done || !seg->use_rela_p)
21566 md_number_to_chars (buf, value, 2);
21567 break;
21568
21569 #ifdef OBJ_ELF
21570 case BFD_RELOC_ARM_TLS_CALL:
21571 case BFD_RELOC_ARM_THM_TLS_CALL:
21572 case BFD_RELOC_ARM_TLS_DESCSEQ:
21573 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
21574 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21575 break;
21576
21577 case BFD_RELOC_ARM_TLS_GOTDESC:
21578 case BFD_RELOC_ARM_TLS_GD32:
21579 case BFD_RELOC_ARM_TLS_LE32:
21580 case BFD_RELOC_ARM_TLS_IE32:
21581 case BFD_RELOC_ARM_TLS_LDM32:
21582 case BFD_RELOC_ARM_TLS_LDO32:
21583 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21584 /* fall through */
21585
21586 case BFD_RELOC_ARM_GOT32:
21587 case BFD_RELOC_ARM_GOTOFF:
21588 if (fixP->fx_done || !seg->use_rela_p)
21589 md_number_to_chars (buf, 0, 4);
21590 break;
21591
21592 case BFD_RELOC_ARM_GOT_PREL:
21593 if (fixP->fx_done || !seg->use_rela_p)
21594 md_number_to_chars (buf, value, 4);
21595 break;
21596
21597 case BFD_RELOC_ARM_TARGET2:
21598 /* TARGET2 is not partial-inplace, so we need to write the
21599 addend here for REL targets, because it won't be written out
21600 during reloc processing later. */
21601 if (fixP->fx_done || !seg->use_rela_p)
21602 md_number_to_chars (buf, fixP->fx_offset, 4);
21603 break;
21604 #endif
21605
21606 case BFD_RELOC_RVA:
21607 case BFD_RELOC_32:
21608 case BFD_RELOC_ARM_TARGET1:
21609 case BFD_RELOC_ARM_ROSEGREL32:
21610 case BFD_RELOC_ARM_SBREL32:
21611 case BFD_RELOC_32_PCREL:
21612 #ifdef TE_PE
21613 case BFD_RELOC_32_SECREL:
21614 #endif
21615 if (fixP->fx_done || !seg->use_rela_p)
21616 #ifdef TE_WINCE
21617 /* For WinCE we only do this for pcrel fixups. */
21618 if (fixP->fx_done || fixP->fx_pcrel)
21619 #endif
21620 md_number_to_chars (buf, value, 4);
21621 break;
21622
21623 #ifdef OBJ_ELF
21624 case BFD_RELOC_ARM_PREL31:
21625 if (fixP->fx_done || !seg->use_rela_p)
21626 {
21627 newval = md_chars_to_number (buf, 4) & 0x80000000;
21628 if ((value ^ (value >> 1)) & 0x40000000)
21629 {
21630 as_bad_where (fixP->fx_file, fixP->fx_line,
21631 _("rel31 relocation overflow"));
21632 }
21633 newval |= value & 0x7fffffff;
21634 md_number_to_chars (buf, newval, 4);
21635 }
21636 break;
21637 #endif
21638
21639 case BFD_RELOC_ARM_CP_OFF_IMM:
21640 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
21641 if (value < -1023 || value > 1023 || (value & 3))
21642 as_bad_where (fixP->fx_file, fixP->fx_line,
21643 _("co-processor offset out of range"));
21644 cp_off_common:
21645 sign = value > 0;
21646 if (value < 0)
21647 value = -value;
21648 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21649 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21650 newval = md_chars_to_number (buf, INSN_SIZE);
21651 else
21652 newval = get_thumb32_insn (buf);
21653 if (value == 0)
21654 newval &= 0xffffff00;
21655 else
21656 {
21657 newval &= 0xff7fff00;
21658 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
21659 }
21660 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21661 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21662 md_number_to_chars (buf, newval, INSN_SIZE);
21663 else
21664 put_thumb32_insn (buf, newval);
21665 break;
21666
21667 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
21668 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
21669 if (value < -255 || value > 255)
21670 as_bad_where (fixP->fx_file, fixP->fx_line,
21671 _("co-processor offset out of range"));
21672 value *= 4;
21673 goto cp_off_common;
21674
21675 case BFD_RELOC_ARM_THUMB_OFFSET:
21676 newval = md_chars_to_number (buf, THUMB_SIZE);
21677 /* Exactly what ranges, and where the offset is inserted depends
21678 on the type of instruction, we can establish this from the
21679 top 4 bits. */
21680 switch (newval >> 12)
21681 {
21682 case 4: /* PC load. */
21683 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
21684 forced to zero for these loads; md_pcrel_from has already
21685 compensated for this. */
21686 if (value & 3)
21687 as_bad_where (fixP->fx_file, fixP->fx_line,
21688 _("invalid offset, target not word aligned (0x%08lX)"),
21689 (((unsigned long) fixP->fx_frag->fr_address
21690 + (unsigned long) fixP->fx_where) & ~3)
21691 + (unsigned long) value);
21692
21693 if (value & ~0x3fc)
21694 as_bad_where (fixP->fx_file, fixP->fx_line,
21695 _("invalid offset, value too big (0x%08lX)"),
21696 (long) value);
21697
21698 newval |= value >> 2;
21699 break;
21700
21701 case 9: /* SP load/store. */
21702 if (value & ~0x3fc)
21703 as_bad_where (fixP->fx_file, fixP->fx_line,
21704 _("invalid offset, value too big (0x%08lX)"),
21705 (long) value);
21706 newval |= value >> 2;
21707 break;
21708
21709 case 6: /* Word load/store. */
21710 if (value & ~0x7c)
21711 as_bad_where (fixP->fx_file, fixP->fx_line,
21712 _("invalid offset, value too big (0x%08lX)"),
21713 (long) value);
21714 newval |= value << 4; /* 6 - 2. */
21715 break;
21716
21717 case 7: /* Byte load/store. */
21718 if (value & ~0x1f)
21719 as_bad_where (fixP->fx_file, fixP->fx_line,
21720 _("invalid offset, value too big (0x%08lX)"),
21721 (long) value);
21722 newval |= value << 6;
21723 break;
21724
21725 case 8: /* Halfword load/store. */
21726 if (value & ~0x3e)
21727 as_bad_where (fixP->fx_file, fixP->fx_line,
21728 _("invalid offset, value too big (0x%08lX)"),
21729 (long) value);
21730 newval |= value << 5; /* 6 - 1. */
21731 break;
21732
21733 default:
21734 as_bad_where (fixP->fx_file, fixP->fx_line,
21735 "Unable to process relocation for thumb opcode: %lx",
21736 (unsigned long) newval);
21737 break;
21738 }
21739 md_number_to_chars (buf, newval, THUMB_SIZE);
21740 break;
21741
21742 case BFD_RELOC_ARM_THUMB_ADD:
21743 /* This is a complicated relocation, since we use it for all of
21744 the following immediate relocations:
21745
21746 3bit ADD/SUB
21747 8bit ADD/SUB
21748 9bit ADD/SUB SP word-aligned
21749 10bit ADD PC/SP word-aligned
21750
21751 The type of instruction being processed is encoded in the
21752 instruction field:
21753
21754 0x8000 SUB
21755 0x00F0 Rd
21756 0x000F Rs
21757 */
21758 newval = md_chars_to_number (buf, THUMB_SIZE);
21759 {
21760 int rd = (newval >> 4) & 0xf;
21761 int rs = newval & 0xf;
21762 int subtract = !!(newval & 0x8000);
21763
21764 /* Check for HI regs, only very restricted cases allowed:
21765 Adjusting SP, and using PC or SP to get an address. */
21766 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
21767 || (rs > 7 && rs != REG_SP && rs != REG_PC))
21768 as_bad_where (fixP->fx_file, fixP->fx_line,
21769 _("invalid Hi register with immediate"));
21770
21771 /* If value is negative, choose the opposite instruction. */
21772 if (value < 0)
21773 {
21774 value = -value;
21775 subtract = !subtract;
21776 if (value < 0)
21777 as_bad_where (fixP->fx_file, fixP->fx_line,
21778 _("immediate value out of range"));
21779 }
21780
21781 if (rd == REG_SP)
21782 {
21783 if (value & ~0x1fc)
21784 as_bad_where (fixP->fx_file, fixP->fx_line,
21785 _("invalid immediate for stack address calculation"));
21786 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
21787 newval |= value >> 2;
21788 }
21789 else if (rs == REG_PC || rs == REG_SP)
21790 {
21791 if (subtract || value & ~0x3fc)
21792 as_bad_where (fixP->fx_file, fixP->fx_line,
21793 _("invalid immediate for address calculation (value = 0x%08lX)"),
21794 (unsigned long) value);
21795 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
21796 newval |= rd << 8;
21797 newval |= value >> 2;
21798 }
21799 else if (rs == rd)
21800 {
21801 if (value & ~0xff)
21802 as_bad_where (fixP->fx_file, fixP->fx_line,
21803 _("immediate value out of range"));
21804 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
21805 newval |= (rd << 8) | value;
21806 }
21807 else
21808 {
21809 if (value & ~0x7)
21810 as_bad_where (fixP->fx_file, fixP->fx_line,
21811 _("immediate value out of range"));
21812 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
21813 newval |= rd | (rs << 3) | (value << 6);
21814 }
21815 }
21816 md_number_to_chars (buf, newval, THUMB_SIZE);
21817 break;
21818
21819 case BFD_RELOC_ARM_THUMB_IMM:
21820 newval = md_chars_to_number (buf, THUMB_SIZE);
21821 if (value < 0 || value > 255)
21822 as_bad_where (fixP->fx_file, fixP->fx_line,
21823 _("invalid immediate: %ld is out of range"),
21824 (long) value);
21825 newval |= value;
21826 md_number_to_chars (buf, newval, THUMB_SIZE);
21827 break;
21828
21829 case BFD_RELOC_ARM_THUMB_SHIFT:
21830 /* 5bit shift value (0..32). LSL cannot take 32. */
21831 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
21832 temp = newval & 0xf800;
21833 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
21834 as_bad_where (fixP->fx_file, fixP->fx_line,
21835 _("invalid shift value: %ld"), (long) value);
21836 /* Shifts of zero must be encoded as LSL. */
21837 if (value == 0)
21838 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
21839 /* Shifts of 32 are encoded as zero. */
21840 else if (value == 32)
21841 value = 0;
21842 newval |= value << 6;
21843 md_number_to_chars (buf, newval, THUMB_SIZE);
21844 break;
21845
21846 case BFD_RELOC_VTABLE_INHERIT:
21847 case BFD_RELOC_VTABLE_ENTRY:
21848 fixP->fx_done = 0;
21849 return;
21850
21851 case BFD_RELOC_ARM_MOVW:
21852 case BFD_RELOC_ARM_MOVT:
21853 case BFD_RELOC_ARM_THUMB_MOVW:
21854 case BFD_RELOC_ARM_THUMB_MOVT:
21855 if (fixP->fx_done || !seg->use_rela_p)
21856 {
21857 /* REL format relocations are limited to a 16-bit addend. */
21858 if (!fixP->fx_done)
21859 {
21860 if (value < -0x8000 || value > 0x7fff)
21861 as_bad_where (fixP->fx_file, fixP->fx_line,
21862 _("offset out of range"));
21863 }
21864 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21865 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21866 {
21867 value >>= 16;
21868 }
21869
21870 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21871 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21872 {
21873 newval = get_thumb32_insn (buf);
21874 newval &= 0xfbf08f00;
21875 newval |= (value & 0xf000) << 4;
21876 newval |= (value & 0x0800) << 15;
21877 newval |= (value & 0x0700) << 4;
21878 newval |= (value & 0x00ff);
21879 put_thumb32_insn (buf, newval);
21880 }
21881 else
21882 {
21883 newval = md_chars_to_number (buf, 4);
21884 newval &= 0xfff0f000;
21885 newval |= value & 0x0fff;
21886 newval |= (value & 0xf000) << 4;
21887 md_number_to_chars (buf, newval, 4);
21888 }
21889 }
21890 return;
21891
21892 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21893 case BFD_RELOC_ARM_ALU_PC_G0:
21894 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21895 case BFD_RELOC_ARM_ALU_PC_G1:
21896 case BFD_RELOC_ARM_ALU_PC_G2:
21897 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21898 case BFD_RELOC_ARM_ALU_SB_G0:
21899 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21900 case BFD_RELOC_ARM_ALU_SB_G1:
21901 case BFD_RELOC_ARM_ALU_SB_G2:
21902 gas_assert (!fixP->fx_done);
21903 if (!seg->use_rela_p)
21904 {
21905 bfd_vma insn;
21906 bfd_vma encoded_addend;
21907 bfd_vma addend_abs = abs (value);
21908
21909 /* Check that the absolute value of the addend can be
21910 expressed as an 8-bit constant plus a rotation. */
21911 encoded_addend = encode_arm_immediate (addend_abs);
21912 if (encoded_addend == (unsigned int) FAIL)
21913 as_bad_where (fixP->fx_file, fixP->fx_line,
21914 _("the offset 0x%08lX is not representable"),
21915 (unsigned long) addend_abs);
21916
21917 /* Extract the instruction. */
21918 insn = md_chars_to_number (buf, INSN_SIZE);
21919
21920 /* If the addend is positive, use an ADD instruction.
21921 Otherwise use a SUB. Take care not to destroy the S bit. */
21922 insn &= 0xff1fffff;
21923 if (value < 0)
21924 insn |= 1 << 22;
21925 else
21926 insn |= 1 << 23;
21927
21928 /* Place the encoded addend into the first 12 bits of the
21929 instruction. */
21930 insn &= 0xfffff000;
21931 insn |= encoded_addend;
21932
21933 /* Update the instruction. */
21934 md_number_to_chars (buf, insn, INSN_SIZE);
21935 }
21936 break;
21937
21938 case BFD_RELOC_ARM_LDR_PC_G0:
21939 case BFD_RELOC_ARM_LDR_PC_G1:
21940 case BFD_RELOC_ARM_LDR_PC_G2:
21941 case BFD_RELOC_ARM_LDR_SB_G0:
21942 case BFD_RELOC_ARM_LDR_SB_G1:
21943 case BFD_RELOC_ARM_LDR_SB_G2:
21944 gas_assert (!fixP->fx_done);
21945 if (!seg->use_rela_p)
21946 {
21947 bfd_vma insn;
21948 bfd_vma addend_abs = abs (value);
21949
21950 /* Check that the absolute value of the addend can be
21951 encoded in 12 bits. */
21952 if (addend_abs >= 0x1000)
21953 as_bad_where (fixP->fx_file, fixP->fx_line,
21954 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
21955 (unsigned long) addend_abs);
21956
21957 /* Extract the instruction. */
21958 insn = md_chars_to_number (buf, INSN_SIZE);
21959
21960 /* If the addend is negative, clear bit 23 of the instruction.
21961 Otherwise set it. */
21962 if (value < 0)
21963 insn &= ~(1 << 23);
21964 else
21965 insn |= 1 << 23;
21966
21967 /* Place the absolute value of the addend into the first 12 bits
21968 of the instruction. */
21969 insn &= 0xfffff000;
21970 insn |= addend_abs;
21971
21972 /* Update the instruction. */
21973 md_number_to_chars (buf, insn, INSN_SIZE);
21974 }
21975 break;
21976
21977 case BFD_RELOC_ARM_LDRS_PC_G0:
21978 case BFD_RELOC_ARM_LDRS_PC_G1:
21979 case BFD_RELOC_ARM_LDRS_PC_G2:
21980 case BFD_RELOC_ARM_LDRS_SB_G0:
21981 case BFD_RELOC_ARM_LDRS_SB_G1:
21982 case BFD_RELOC_ARM_LDRS_SB_G2:
21983 gas_assert (!fixP->fx_done);
21984 if (!seg->use_rela_p)
21985 {
21986 bfd_vma insn;
21987 bfd_vma addend_abs = abs (value);
21988
21989 /* Check that the absolute value of the addend can be
21990 encoded in 8 bits. */
21991 if (addend_abs >= 0x100)
21992 as_bad_where (fixP->fx_file, fixP->fx_line,
21993 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
21994 (unsigned long) addend_abs);
21995
21996 /* Extract the instruction. */
21997 insn = md_chars_to_number (buf, INSN_SIZE);
21998
21999 /* If the addend is negative, clear bit 23 of the instruction.
22000 Otherwise set it. */
22001 if (value < 0)
22002 insn &= ~(1 << 23);
22003 else
22004 insn |= 1 << 23;
22005
22006 /* Place the first four bits of the absolute value of the addend
22007 into the first 4 bits of the instruction, and the remaining
22008 four into bits 8 .. 11. */
22009 insn &= 0xfffff0f0;
22010 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
22011
22012 /* Update the instruction. */
22013 md_number_to_chars (buf, insn, INSN_SIZE);
22014 }
22015 break;
22016
22017 case BFD_RELOC_ARM_LDC_PC_G0:
22018 case BFD_RELOC_ARM_LDC_PC_G1:
22019 case BFD_RELOC_ARM_LDC_PC_G2:
22020 case BFD_RELOC_ARM_LDC_SB_G0:
22021 case BFD_RELOC_ARM_LDC_SB_G1:
22022 case BFD_RELOC_ARM_LDC_SB_G2:
22023 gas_assert (!fixP->fx_done);
22024 if (!seg->use_rela_p)
22025 {
22026 bfd_vma insn;
22027 bfd_vma addend_abs = abs (value);
22028
22029 /* Check that the absolute value of the addend is a multiple of
22030 four and, when divided by four, fits in 8 bits. */
22031 if (addend_abs & 0x3)
22032 as_bad_where (fixP->fx_file, fixP->fx_line,
22033 _("bad offset 0x%08lX (must be word-aligned)"),
22034 (unsigned long) addend_abs);
22035
22036 if ((addend_abs >> 2) > 0xff)
22037 as_bad_where (fixP->fx_file, fixP->fx_line,
22038 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
22039 (unsigned long) addend_abs);
22040
22041 /* Extract the instruction. */
22042 insn = md_chars_to_number (buf, INSN_SIZE);
22043
22044 /* If the addend is negative, clear bit 23 of the instruction.
22045 Otherwise set it. */
22046 if (value < 0)
22047 insn &= ~(1 << 23);
22048 else
22049 insn |= 1 << 23;
22050
22051 /* Place the addend (divided by four) into the first eight
22052 bits of the instruction. */
22053 insn &= 0xfffffff0;
22054 insn |= addend_abs >> 2;
22055
22056 /* Update the instruction. */
22057 md_number_to_chars (buf, insn, INSN_SIZE);
22058 }
22059 break;
22060
22061 case BFD_RELOC_ARM_V4BX:
22062 /* This will need to go in the object file. */
22063 fixP->fx_done = 0;
22064 break;
22065
22066 case BFD_RELOC_UNUSED:
22067 default:
22068 as_bad_where (fixP->fx_file, fixP->fx_line,
22069 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
22070 }
22071 }
22072
22073 /* Translate internal representation of relocation info to BFD target
22074 format. */
22075
22076 arelent *
22077 tc_gen_reloc (asection *section, fixS *fixp)
22078 {
22079 arelent * reloc;
22080 bfd_reloc_code_real_type code;
22081
22082 reloc = (arelent *) xmalloc (sizeof (arelent));
22083
22084 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
22085 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
22086 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
22087
22088 if (fixp->fx_pcrel)
22089 {
22090 if (section->use_rela_p)
22091 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
22092 else
22093 fixp->fx_offset = reloc->address;
22094 }
22095 reloc->addend = fixp->fx_offset;
22096
22097 switch (fixp->fx_r_type)
22098 {
22099 case BFD_RELOC_8:
22100 if (fixp->fx_pcrel)
22101 {
22102 code = BFD_RELOC_8_PCREL;
22103 break;
22104 }
22105
22106 case BFD_RELOC_16:
22107 if (fixp->fx_pcrel)
22108 {
22109 code = BFD_RELOC_16_PCREL;
22110 break;
22111 }
22112
22113 case BFD_RELOC_32:
22114 if (fixp->fx_pcrel)
22115 {
22116 code = BFD_RELOC_32_PCREL;
22117 break;
22118 }
22119
22120 case BFD_RELOC_ARM_MOVW:
22121 if (fixp->fx_pcrel)
22122 {
22123 code = BFD_RELOC_ARM_MOVW_PCREL;
22124 break;
22125 }
22126
22127 case BFD_RELOC_ARM_MOVT:
22128 if (fixp->fx_pcrel)
22129 {
22130 code = BFD_RELOC_ARM_MOVT_PCREL;
22131 break;
22132 }
22133
22134 case BFD_RELOC_ARM_THUMB_MOVW:
22135 if (fixp->fx_pcrel)
22136 {
22137 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
22138 break;
22139 }
22140
22141 case BFD_RELOC_ARM_THUMB_MOVT:
22142 if (fixp->fx_pcrel)
22143 {
22144 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
22145 break;
22146 }
22147
22148 case BFD_RELOC_NONE:
22149 case BFD_RELOC_ARM_PCREL_BRANCH:
22150 case BFD_RELOC_ARM_PCREL_BLX:
22151 case BFD_RELOC_RVA:
22152 case BFD_RELOC_THUMB_PCREL_BRANCH7:
22153 case BFD_RELOC_THUMB_PCREL_BRANCH9:
22154 case BFD_RELOC_THUMB_PCREL_BRANCH12:
22155 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22156 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22157 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22158 case BFD_RELOC_VTABLE_ENTRY:
22159 case BFD_RELOC_VTABLE_INHERIT:
22160 #ifdef TE_PE
22161 case BFD_RELOC_32_SECREL:
22162 #endif
22163 code = fixp->fx_r_type;
22164 break;
22165
22166 case BFD_RELOC_THUMB_PCREL_BLX:
22167 #ifdef OBJ_ELF
22168 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
22169 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
22170 else
22171 #endif
22172 code = BFD_RELOC_THUMB_PCREL_BLX;
22173 break;
22174
22175 case BFD_RELOC_ARM_LITERAL:
22176 case BFD_RELOC_ARM_HWLITERAL:
22177 /* If this is called then the a literal has
22178 been referenced across a section boundary. */
22179 as_bad_where (fixp->fx_file, fixp->fx_line,
22180 _("literal referenced across section boundary"));
22181 return NULL;
22182
22183 #ifdef OBJ_ELF
22184 case BFD_RELOC_ARM_TLS_CALL:
22185 case BFD_RELOC_ARM_THM_TLS_CALL:
22186 case BFD_RELOC_ARM_TLS_DESCSEQ:
22187 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
22188 case BFD_RELOC_ARM_GOT32:
22189 case BFD_RELOC_ARM_GOTOFF:
22190 case BFD_RELOC_ARM_GOT_PREL:
22191 case BFD_RELOC_ARM_PLT32:
22192 case BFD_RELOC_ARM_TARGET1:
22193 case BFD_RELOC_ARM_ROSEGREL32:
22194 case BFD_RELOC_ARM_SBREL32:
22195 case BFD_RELOC_ARM_PREL31:
22196 case BFD_RELOC_ARM_TARGET2:
22197 case BFD_RELOC_ARM_TLS_LE32:
22198 case BFD_RELOC_ARM_TLS_LDO32:
22199 case BFD_RELOC_ARM_PCREL_CALL:
22200 case BFD_RELOC_ARM_PCREL_JUMP:
22201 case BFD_RELOC_ARM_ALU_PC_G0_NC:
22202 case BFD_RELOC_ARM_ALU_PC_G0:
22203 case BFD_RELOC_ARM_ALU_PC_G1_NC:
22204 case BFD_RELOC_ARM_ALU_PC_G1:
22205 case BFD_RELOC_ARM_ALU_PC_G2:
22206 case BFD_RELOC_ARM_LDR_PC_G0:
22207 case BFD_RELOC_ARM_LDR_PC_G1:
22208 case BFD_RELOC_ARM_LDR_PC_G2:
22209 case BFD_RELOC_ARM_LDRS_PC_G0:
22210 case BFD_RELOC_ARM_LDRS_PC_G1:
22211 case BFD_RELOC_ARM_LDRS_PC_G2:
22212 case BFD_RELOC_ARM_LDC_PC_G0:
22213 case BFD_RELOC_ARM_LDC_PC_G1:
22214 case BFD_RELOC_ARM_LDC_PC_G2:
22215 case BFD_RELOC_ARM_ALU_SB_G0_NC:
22216 case BFD_RELOC_ARM_ALU_SB_G0:
22217 case BFD_RELOC_ARM_ALU_SB_G1_NC:
22218 case BFD_RELOC_ARM_ALU_SB_G1:
22219 case BFD_RELOC_ARM_ALU_SB_G2:
22220 case BFD_RELOC_ARM_LDR_SB_G0:
22221 case BFD_RELOC_ARM_LDR_SB_G1:
22222 case BFD_RELOC_ARM_LDR_SB_G2:
22223 case BFD_RELOC_ARM_LDRS_SB_G0:
22224 case BFD_RELOC_ARM_LDRS_SB_G1:
22225 case BFD_RELOC_ARM_LDRS_SB_G2:
22226 case BFD_RELOC_ARM_LDC_SB_G0:
22227 case BFD_RELOC_ARM_LDC_SB_G1:
22228 case BFD_RELOC_ARM_LDC_SB_G2:
22229 case BFD_RELOC_ARM_V4BX:
22230 code = fixp->fx_r_type;
22231 break;
22232
22233 case BFD_RELOC_ARM_TLS_GOTDESC:
22234 case BFD_RELOC_ARM_TLS_GD32:
22235 case BFD_RELOC_ARM_TLS_IE32:
22236 case BFD_RELOC_ARM_TLS_LDM32:
22237 /* BFD will include the symbol's address in the addend.
22238 But we don't want that, so subtract it out again here. */
22239 if (!S_IS_COMMON (fixp->fx_addsy))
22240 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
22241 code = fixp->fx_r_type;
22242 break;
22243 #endif
22244
22245 case BFD_RELOC_ARM_IMMEDIATE:
22246 as_bad_where (fixp->fx_file, fixp->fx_line,
22247 _("internal relocation (type: IMMEDIATE) not fixed up"));
22248 return NULL;
22249
22250 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
22251 as_bad_where (fixp->fx_file, fixp->fx_line,
22252 _("ADRL used for a symbol not defined in the same file"));
22253 return NULL;
22254
22255 case BFD_RELOC_ARM_OFFSET_IMM:
22256 if (section->use_rela_p)
22257 {
22258 code = fixp->fx_r_type;
22259 break;
22260 }
22261
22262 if (fixp->fx_addsy != NULL
22263 && !S_IS_DEFINED (fixp->fx_addsy)
22264 && S_IS_LOCAL (fixp->fx_addsy))
22265 {
22266 as_bad_where (fixp->fx_file, fixp->fx_line,
22267 _("undefined local label `%s'"),
22268 S_GET_NAME (fixp->fx_addsy));
22269 return NULL;
22270 }
22271
22272 as_bad_where (fixp->fx_file, fixp->fx_line,
22273 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
22274 return NULL;
22275
22276 default:
22277 {
22278 char * type;
22279
22280 switch (fixp->fx_r_type)
22281 {
22282 case BFD_RELOC_NONE: type = "NONE"; break;
22283 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
22284 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
22285 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
22286 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
22287 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
22288 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
22289 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
22290 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
22291 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
22292 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
22293 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
22294 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
22295 default: type = _("<unknown>"); break;
22296 }
22297 as_bad_where (fixp->fx_file, fixp->fx_line,
22298 _("cannot represent %s relocation in this object file format"),
22299 type);
22300 return NULL;
22301 }
22302 }
22303
22304 #ifdef OBJ_ELF
22305 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
22306 && GOT_symbol
22307 && fixp->fx_addsy == GOT_symbol)
22308 {
22309 code = BFD_RELOC_ARM_GOTPC;
22310 reloc->addend = fixp->fx_offset = reloc->address;
22311 }
22312 #endif
22313
22314 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
22315
22316 if (reloc->howto == NULL)
22317 {
22318 as_bad_where (fixp->fx_file, fixp->fx_line,
22319 _("cannot represent %s relocation in this object file format"),
22320 bfd_get_reloc_code_name (code));
22321 return NULL;
22322 }
22323
22324 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
22325 vtable entry to be used in the relocation's section offset. */
22326 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
22327 reloc->address = fixp->fx_offset;
22328
22329 return reloc;
22330 }
22331
22332 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
22333
22334 void
22335 cons_fix_new_arm (fragS * frag,
22336 int where,
22337 int size,
22338 expressionS * exp)
22339 {
22340 bfd_reloc_code_real_type type;
22341 int pcrel = 0;
22342
22343 /* Pick a reloc.
22344 FIXME: @@ Should look at CPU word size. */
22345 switch (size)
22346 {
22347 case 1:
22348 type = BFD_RELOC_8;
22349 break;
22350 case 2:
22351 type = BFD_RELOC_16;
22352 break;
22353 case 4:
22354 default:
22355 type = BFD_RELOC_32;
22356 break;
22357 case 8:
22358 type = BFD_RELOC_64;
22359 break;
22360 }
22361
22362 #ifdef TE_PE
22363 if (exp->X_op == O_secrel)
22364 {
22365 exp->X_op = O_symbol;
22366 type = BFD_RELOC_32_SECREL;
22367 }
22368 #endif
22369
22370 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
22371 }
22372
22373 #if defined (OBJ_COFF)
22374 void
22375 arm_validate_fix (fixS * fixP)
22376 {
22377 /* If the destination of the branch is a defined symbol which does not have
22378 the THUMB_FUNC attribute, then we must be calling a function which has
22379 the (interfacearm) attribute. We look for the Thumb entry point to that
22380 function and change the branch to refer to that function instead. */
22381 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
22382 && fixP->fx_addsy != NULL
22383 && S_IS_DEFINED (fixP->fx_addsy)
22384 && ! THUMB_IS_FUNC (fixP->fx_addsy))
22385 {
22386 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
22387 }
22388 }
22389 #endif
22390
22391
22392 int
22393 arm_force_relocation (struct fix * fixp)
22394 {
22395 #if defined (OBJ_COFF) && defined (TE_PE)
22396 if (fixp->fx_r_type == BFD_RELOC_RVA)
22397 return 1;
22398 #endif
22399
22400 /* In case we have a call or a branch to a function in ARM ISA mode from
22401 a thumb function or vice-versa force the relocation. These relocations
22402 are cleared off for some cores that might have blx and simple transformations
22403 are possible. */
22404
22405 #ifdef OBJ_ELF
22406 switch (fixp->fx_r_type)
22407 {
22408 case BFD_RELOC_ARM_PCREL_JUMP:
22409 case BFD_RELOC_ARM_PCREL_CALL:
22410 case BFD_RELOC_THUMB_PCREL_BLX:
22411 if (THUMB_IS_FUNC (fixp->fx_addsy))
22412 return 1;
22413 break;
22414
22415 case BFD_RELOC_ARM_PCREL_BLX:
22416 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22417 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22418 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22419 if (ARM_IS_FUNC (fixp->fx_addsy))
22420 return 1;
22421 break;
22422
22423 default:
22424 break;
22425 }
22426 #endif
22427
22428 /* Resolve these relocations even if the symbol is extern or weak.
22429 Technically this is probably wrong due to symbol preemption.
22430 In practice these relocations do not have enough range to be useful
22431 at dynamic link time, and some code (e.g. in the Linux kernel)
22432 expects these references to be resolved. */
22433 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
22434 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
22435 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
22436 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
22437 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
22438 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
22439 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
22440 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
22441 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
22442 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
22443 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
22444 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
22445 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
22446 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
22447 return 0;
22448
22449 /* Always leave these relocations for the linker. */
22450 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22451 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22452 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
22453 return 1;
22454
22455 /* Always generate relocations against function symbols. */
22456 if (fixp->fx_r_type == BFD_RELOC_32
22457 && fixp->fx_addsy
22458 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
22459 return 1;
22460
22461 return generic_force_reloc (fixp);
22462 }
22463
22464 #if defined (OBJ_ELF) || defined (OBJ_COFF)
22465 /* Relocations against function names must be left unadjusted,
22466 so that the linker can use this information to generate interworking
22467 stubs. The MIPS version of this function
22468 also prevents relocations that are mips-16 specific, but I do not
22469 know why it does this.
22470
22471 FIXME:
22472 There is one other problem that ought to be addressed here, but
22473 which currently is not: Taking the address of a label (rather
22474 than a function) and then later jumping to that address. Such
22475 addresses also ought to have their bottom bit set (assuming that
22476 they reside in Thumb code), but at the moment they will not. */
22477
22478 bfd_boolean
22479 arm_fix_adjustable (fixS * fixP)
22480 {
22481 if (fixP->fx_addsy == NULL)
22482 return 1;
22483
22484 /* Preserve relocations against symbols with function type. */
22485 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
22486 return FALSE;
22487
22488 if (THUMB_IS_FUNC (fixP->fx_addsy)
22489 && fixP->fx_subsy == NULL)
22490 return FALSE;
22491
22492 /* We need the symbol name for the VTABLE entries. */
22493 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
22494 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
22495 return FALSE;
22496
22497 /* Don't allow symbols to be discarded on GOT related relocs. */
22498 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
22499 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
22500 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
22501 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
22502 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
22503 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
22504 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
22505 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
22506 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
22507 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
22508 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
22509 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
22510 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
22511 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
22512 return FALSE;
22513
22514 /* Similarly for group relocations. */
22515 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22516 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22517 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
22518 return FALSE;
22519
22520 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
22521 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
22522 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
22523 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
22524 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
22525 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
22526 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
22527 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
22528 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
22529 return FALSE;
22530
22531 return TRUE;
22532 }
22533 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
22534
22535 #ifdef OBJ_ELF
22536
22537 const char *
22538 elf32_arm_target_format (void)
22539 {
22540 #ifdef TE_SYMBIAN
22541 return (target_big_endian
22542 ? "elf32-bigarm-symbian"
22543 : "elf32-littlearm-symbian");
22544 #elif defined (TE_VXWORKS)
22545 return (target_big_endian
22546 ? "elf32-bigarm-vxworks"
22547 : "elf32-littlearm-vxworks");
22548 #elif defined (TE_NACL)
22549 return (target_big_endian
22550 ? "elf32-bigarm-nacl"
22551 : "elf32-littlearm-nacl");
22552 #else
22553 if (target_big_endian)
22554 return "elf32-bigarm";
22555 else
22556 return "elf32-littlearm";
22557 #endif
22558 }
22559
22560 void
22561 armelf_frob_symbol (symbolS * symp,
22562 int * puntp)
22563 {
22564 elf_frob_symbol (symp, puntp);
22565 }
22566 #endif
22567
22568 /* MD interface: Finalization. */
22569
22570 void
22571 arm_cleanup (void)
22572 {
22573 literal_pool * pool;
22574
22575 /* Ensure that all the IT blocks are properly closed. */
22576 check_it_blocks_finished ();
22577
22578 for (pool = list_of_pools; pool; pool = pool->next)
22579 {
22580 /* Put it at the end of the relevant section. */
22581 subseg_set (pool->section, pool->sub_section);
22582 #ifdef OBJ_ELF
22583 arm_elf_change_section ();
22584 #endif
22585 s_ltorg (0);
22586 }
22587 }
22588
22589 #ifdef OBJ_ELF
22590 /* Remove any excess mapping symbols generated for alignment frags in
22591 SEC. We may have created a mapping symbol before a zero byte
22592 alignment; remove it if there's a mapping symbol after the
22593 alignment. */
22594 static void
22595 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
22596 void *dummy ATTRIBUTE_UNUSED)
22597 {
22598 segment_info_type *seginfo = seg_info (sec);
22599 fragS *fragp;
22600
22601 if (seginfo == NULL || seginfo->frchainP == NULL)
22602 return;
22603
22604 for (fragp = seginfo->frchainP->frch_root;
22605 fragp != NULL;
22606 fragp = fragp->fr_next)
22607 {
22608 symbolS *sym = fragp->tc_frag_data.last_map;
22609 fragS *next = fragp->fr_next;
22610
22611 /* Variable-sized frags have been converted to fixed size by
22612 this point. But if this was variable-sized to start with,
22613 there will be a fixed-size frag after it. So don't handle
22614 next == NULL. */
22615 if (sym == NULL || next == NULL)
22616 continue;
22617
22618 if (S_GET_VALUE (sym) < next->fr_address)
22619 /* Not at the end of this frag. */
22620 continue;
22621 know (S_GET_VALUE (sym) == next->fr_address);
22622
22623 do
22624 {
22625 if (next->tc_frag_data.first_map != NULL)
22626 {
22627 /* Next frag starts with a mapping symbol. Discard this
22628 one. */
22629 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22630 break;
22631 }
22632
22633 if (next->fr_next == NULL)
22634 {
22635 /* This mapping symbol is at the end of the section. Discard
22636 it. */
22637 know (next->fr_fix == 0 && next->fr_var == 0);
22638 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22639 break;
22640 }
22641
22642 /* As long as we have empty frags without any mapping symbols,
22643 keep looking. */
22644 /* If the next frag is non-empty and does not start with a
22645 mapping symbol, then this mapping symbol is required. */
22646 if (next->fr_address != next->fr_next->fr_address)
22647 break;
22648
22649 next = next->fr_next;
22650 }
22651 while (next != NULL);
22652 }
22653 }
22654 #endif
22655
22656 /* Adjust the symbol table. This marks Thumb symbols as distinct from
22657 ARM ones. */
22658
22659 void
22660 arm_adjust_symtab (void)
22661 {
22662 #ifdef OBJ_COFF
22663 symbolS * sym;
22664
22665 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
22666 {
22667 if (ARM_IS_THUMB (sym))
22668 {
22669 if (THUMB_IS_FUNC (sym))
22670 {
22671 /* Mark the symbol as a Thumb function. */
22672 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
22673 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
22674 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
22675
22676 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
22677 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
22678 else
22679 as_bad (_("%s: unexpected function type: %d"),
22680 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
22681 }
22682 else switch (S_GET_STORAGE_CLASS (sym))
22683 {
22684 case C_EXT:
22685 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
22686 break;
22687 case C_STAT:
22688 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
22689 break;
22690 case C_LABEL:
22691 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
22692 break;
22693 default:
22694 /* Do nothing. */
22695 break;
22696 }
22697 }
22698
22699 if (ARM_IS_INTERWORK (sym))
22700 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
22701 }
22702 #endif
22703 #ifdef OBJ_ELF
22704 symbolS * sym;
22705 char bind;
22706
22707 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
22708 {
22709 if (ARM_IS_THUMB (sym))
22710 {
22711 elf_symbol_type * elf_sym;
22712
22713 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
22714 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
22715
22716 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
22717 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
22718 {
22719 /* If it's a .thumb_func, declare it as so,
22720 otherwise tag label as .code 16. */
22721 if (THUMB_IS_FUNC (sym))
22722 elf_sym->internal_elf_sym.st_target_internal
22723 = ST_BRANCH_TO_THUMB;
22724 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
22725 elf_sym->internal_elf_sym.st_info =
22726 ELF_ST_INFO (bind, STT_ARM_16BIT);
22727 }
22728 }
22729 }
22730
22731 /* Remove any overlapping mapping symbols generated by alignment frags. */
22732 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
22733 /* Now do generic ELF adjustments. */
22734 elf_adjust_symtab ();
22735 #endif
22736 }
22737
22738 /* MD interface: Initialization. */
22739
22740 static void
22741 set_constant_flonums (void)
22742 {
22743 int i;
22744
22745 for (i = 0; i < NUM_FLOAT_VALS; i++)
22746 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
22747 abort ();
22748 }
22749
22750 /* Auto-select Thumb mode if it's the only available instruction set for the
22751 given architecture. */
22752
22753 static void
22754 autoselect_thumb_from_cpu_variant (void)
22755 {
22756 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
22757 opcode_select (16);
22758 }
22759
22760 void
22761 md_begin (void)
22762 {
22763 unsigned mach;
22764 unsigned int i;
22765
22766 if ( (arm_ops_hsh = hash_new ()) == NULL
22767 || (arm_cond_hsh = hash_new ()) == NULL
22768 || (arm_shift_hsh = hash_new ()) == NULL
22769 || (arm_psr_hsh = hash_new ()) == NULL
22770 || (arm_v7m_psr_hsh = hash_new ()) == NULL
22771 || (arm_reg_hsh = hash_new ()) == NULL
22772 || (arm_reloc_hsh = hash_new ()) == NULL
22773 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
22774 as_fatal (_("virtual memory exhausted"));
22775
22776 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
22777 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
22778 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
22779 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
22780 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
22781 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
22782 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
22783 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
22784 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
22785 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
22786 (void *) (v7m_psrs + i));
22787 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
22788 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
22789 for (i = 0;
22790 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
22791 i++)
22792 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
22793 (void *) (barrier_opt_names + i));
22794 #ifdef OBJ_ELF
22795 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
22796 {
22797 struct reloc_entry * entry = reloc_names + i;
22798
22799 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
22800 /* This makes encode_branch() use the EABI versions of this relocation. */
22801 entry->reloc = BFD_RELOC_UNUSED;
22802
22803 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
22804 }
22805 #endif
22806
22807 set_constant_flonums ();
22808
22809 /* Set the cpu variant based on the command-line options. We prefer
22810 -mcpu= over -march= if both are set (as for GCC); and we prefer
22811 -mfpu= over any other way of setting the floating point unit.
22812 Use of legacy options with new options are faulted. */
22813 if (legacy_cpu)
22814 {
22815 if (mcpu_cpu_opt || march_cpu_opt)
22816 as_bad (_("use of old and new-style options to set CPU type"));
22817
22818 mcpu_cpu_opt = legacy_cpu;
22819 }
22820 else if (!mcpu_cpu_opt)
22821 mcpu_cpu_opt = march_cpu_opt;
22822
22823 if (legacy_fpu)
22824 {
22825 if (mfpu_opt)
22826 as_bad (_("use of old and new-style options to set FPU type"));
22827
22828 mfpu_opt = legacy_fpu;
22829 }
22830 else if (!mfpu_opt)
22831 {
22832 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
22833 || defined (TE_NetBSD) || defined (TE_VXWORKS))
22834 /* Some environments specify a default FPU. If they don't, infer it
22835 from the processor. */
22836 if (mcpu_fpu_opt)
22837 mfpu_opt = mcpu_fpu_opt;
22838 else
22839 mfpu_opt = march_fpu_opt;
22840 #else
22841 mfpu_opt = &fpu_default;
22842 #endif
22843 }
22844
22845 if (!mfpu_opt)
22846 {
22847 if (mcpu_cpu_opt != NULL)
22848 mfpu_opt = &fpu_default;
22849 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
22850 mfpu_opt = &fpu_arch_vfp_v2;
22851 else
22852 mfpu_opt = &fpu_arch_fpa;
22853 }
22854
22855 #ifdef CPU_DEFAULT
22856 if (!mcpu_cpu_opt)
22857 {
22858 mcpu_cpu_opt = &cpu_default;
22859 selected_cpu = cpu_default;
22860 }
22861 #else
22862 if (mcpu_cpu_opt)
22863 selected_cpu = *mcpu_cpu_opt;
22864 else
22865 mcpu_cpu_opt = &arm_arch_any;
22866 #endif
22867
22868 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
22869
22870 autoselect_thumb_from_cpu_variant ();
22871
22872 arm_arch_used = thumb_arch_used = arm_arch_none;
22873
22874 #if defined OBJ_COFF || defined OBJ_ELF
22875 {
22876 unsigned int flags = 0;
22877
22878 #if defined OBJ_ELF
22879 flags = meabi_flags;
22880
22881 switch (meabi_flags)
22882 {
22883 case EF_ARM_EABI_UNKNOWN:
22884 #endif
22885 /* Set the flags in the private structure. */
22886 if (uses_apcs_26) flags |= F_APCS26;
22887 if (support_interwork) flags |= F_INTERWORK;
22888 if (uses_apcs_float) flags |= F_APCS_FLOAT;
22889 if (pic_code) flags |= F_PIC;
22890 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
22891 flags |= F_SOFT_FLOAT;
22892
22893 switch (mfloat_abi_opt)
22894 {
22895 case ARM_FLOAT_ABI_SOFT:
22896 case ARM_FLOAT_ABI_SOFTFP:
22897 flags |= F_SOFT_FLOAT;
22898 break;
22899
22900 case ARM_FLOAT_ABI_HARD:
22901 if (flags & F_SOFT_FLOAT)
22902 as_bad (_("hard-float conflicts with specified fpu"));
22903 break;
22904 }
22905
22906 /* Using pure-endian doubles (even if soft-float). */
22907 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
22908 flags |= F_VFP_FLOAT;
22909
22910 #if defined OBJ_ELF
22911 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
22912 flags |= EF_ARM_MAVERICK_FLOAT;
22913 break;
22914
22915 case EF_ARM_EABI_VER4:
22916 case EF_ARM_EABI_VER5:
22917 /* No additional flags to set. */
22918 break;
22919
22920 default:
22921 abort ();
22922 }
22923 #endif
22924 bfd_set_private_flags (stdoutput, flags);
22925
22926 /* We have run out flags in the COFF header to encode the
22927 status of ATPCS support, so instead we create a dummy,
22928 empty, debug section called .arm.atpcs. */
22929 if (atpcs)
22930 {
22931 asection * sec;
22932
22933 sec = bfd_make_section (stdoutput, ".arm.atpcs");
22934
22935 if (sec != NULL)
22936 {
22937 bfd_set_section_flags
22938 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
22939 bfd_set_section_size (stdoutput, sec, 0);
22940 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
22941 }
22942 }
22943 }
22944 #endif
22945
22946 /* Record the CPU type as well. */
22947 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
22948 mach = bfd_mach_arm_iWMMXt2;
22949 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
22950 mach = bfd_mach_arm_iWMMXt;
22951 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
22952 mach = bfd_mach_arm_XScale;
22953 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
22954 mach = bfd_mach_arm_ep9312;
22955 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
22956 mach = bfd_mach_arm_5TE;
22957 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
22958 {
22959 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
22960 mach = bfd_mach_arm_5T;
22961 else
22962 mach = bfd_mach_arm_5;
22963 }
22964 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
22965 {
22966 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
22967 mach = bfd_mach_arm_4T;
22968 else
22969 mach = bfd_mach_arm_4;
22970 }
22971 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
22972 mach = bfd_mach_arm_3M;
22973 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
22974 mach = bfd_mach_arm_3;
22975 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
22976 mach = bfd_mach_arm_2a;
22977 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
22978 mach = bfd_mach_arm_2;
22979 else
22980 mach = bfd_mach_arm_unknown;
22981
22982 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
22983 }
22984
22985 /* Command line processing. */
22986
22987 /* md_parse_option
22988 Invocation line includes a switch not recognized by the base assembler.
22989 See if it's a processor-specific option.
22990
22991 This routine is somewhat complicated by the need for backwards
22992 compatibility (since older releases of gcc can't be changed).
22993 The new options try to make the interface as compatible as
22994 possible with GCC.
22995
22996 New options (supported) are:
22997
22998 -mcpu=<cpu name> Assemble for selected processor
22999 -march=<architecture name> Assemble for selected architecture
23000 -mfpu=<fpu architecture> Assemble for selected FPU.
23001 -EB/-mbig-endian Big-endian
23002 -EL/-mlittle-endian Little-endian
23003 -k Generate PIC code
23004 -mthumb Start in Thumb mode
23005 -mthumb-interwork Code supports ARM/Thumb interworking
23006
23007 -m[no-]warn-deprecated Warn about deprecated features
23008
23009 For now we will also provide support for:
23010
23011 -mapcs-32 32-bit Program counter
23012 -mapcs-26 26-bit Program counter
23013 -macps-float Floats passed in FP registers
23014 -mapcs-reentrant Reentrant code
23015 -matpcs
23016 (sometime these will probably be replaced with -mapcs=<list of options>
23017 and -matpcs=<list of options>)
23018
23019 The remaining options are only supported for back-wards compatibility.
23020 Cpu variants, the arm part is optional:
23021 -m[arm]1 Currently not supported.
23022 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
23023 -m[arm]3 Arm 3 processor
23024 -m[arm]6[xx], Arm 6 processors
23025 -m[arm]7[xx][t][[d]m] Arm 7 processors
23026 -m[arm]8[10] Arm 8 processors
23027 -m[arm]9[20][tdmi] Arm 9 processors
23028 -mstrongarm[110[0]] StrongARM processors
23029 -mxscale XScale processors
23030 -m[arm]v[2345[t[e]]] Arm architectures
23031 -mall All (except the ARM1)
23032 FP variants:
23033 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
23034 -mfpe-old (No float load/store multiples)
23035 -mvfpxd VFP Single precision
23036 -mvfp All VFP
23037 -mno-fpu Disable all floating point instructions
23038
23039 The following CPU names are recognized:
23040 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
23041 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
23042 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
23043 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
23044 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
23045 arm10t arm10e, arm1020t, arm1020e, arm10200e,
23046 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
23047
23048 */
23049
23050 const char * md_shortopts = "m:k";
23051
23052 #ifdef ARM_BI_ENDIAN
23053 #define OPTION_EB (OPTION_MD_BASE + 0)
23054 #define OPTION_EL (OPTION_MD_BASE + 1)
23055 #else
23056 #if TARGET_BYTES_BIG_ENDIAN
23057 #define OPTION_EB (OPTION_MD_BASE + 0)
23058 #else
23059 #define OPTION_EL (OPTION_MD_BASE + 1)
23060 #endif
23061 #endif
23062 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
23063
23064 struct option md_longopts[] =
23065 {
23066 #ifdef OPTION_EB
23067 {"EB", no_argument, NULL, OPTION_EB},
23068 #endif
23069 #ifdef OPTION_EL
23070 {"EL", no_argument, NULL, OPTION_EL},
23071 #endif
23072 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
23073 {NULL, no_argument, NULL, 0}
23074 };
23075
23076 size_t md_longopts_size = sizeof (md_longopts);
23077
23078 struct arm_option_table
23079 {
23080 char *option; /* Option name to match. */
23081 char *help; /* Help information. */
23082 int *var; /* Variable to change. */
23083 int value; /* What to change it to. */
23084 char *deprecated; /* If non-null, print this message. */
23085 };
23086
23087 struct arm_option_table arm_opts[] =
23088 {
23089 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
23090 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
23091 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
23092 &support_interwork, 1, NULL},
23093 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
23094 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
23095 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
23096 1, NULL},
23097 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
23098 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
23099 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
23100 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
23101 NULL},
23102
23103 /* These are recognized by the assembler, but have no affect on code. */
23104 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
23105 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
23106
23107 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
23108 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
23109 &warn_on_deprecated, 0, NULL},
23110 {NULL, NULL, NULL, 0, NULL}
23111 };
23112
23113 struct arm_legacy_option_table
23114 {
23115 char *option; /* Option name to match. */
23116 const arm_feature_set **var; /* Variable to change. */
23117 const arm_feature_set value; /* What to change it to. */
23118 char *deprecated; /* If non-null, print this message. */
23119 };
23120
23121 const struct arm_legacy_option_table arm_legacy_opts[] =
23122 {
23123 /* DON'T add any new processors to this list -- we want the whole list
23124 to go away... Add them to the processors table instead. */
23125 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
23126 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
23127 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
23128 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
23129 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
23130 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
23131 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
23132 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
23133 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
23134 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
23135 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
23136 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
23137 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
23138 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
23139 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
23140 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
23141 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
23142 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
23143 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
23144 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
23145 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
23146 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
23147 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
23148 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
23149 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
23150 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
23151 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
23152 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
23153 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
23154 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
23155 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
23156 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
23157 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
23158 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
23159 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
23160 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
23161 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
23162 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
23163 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
23164 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
23165 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
23166 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
23167 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
23168 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
23169 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
23170 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
23171 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23172 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23173 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23174 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23175 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
23176 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
23177 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
23178 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
23179 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
23180 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
23181 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
23182 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
23183 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
23184 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
23185 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
23186 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
23187 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
23188 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
23189 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
23190 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
23191 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
23192 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
23193 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
23194 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
23195 N_("use -mcpu=strongarm110")},
23196 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
23197 N_("use -mcpu=strongarm1100")},
23198 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
23199 N_("use -mcpu=strongarm1110")},
23200 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
23201 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
23202 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
23203
23204 /* Architecture variants -- don't add any more to this list either. */
23205 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
23206 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
23207 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
23208 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
23209 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
23210 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
23211 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
23212 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
23213 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
23214 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
23215 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
23216 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
23217 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
23218 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
23219 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
23220 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
23221 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
23222 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
23223
23224 /* Floating point variants -- don't add any more to this list either. */
23225 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
23226 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
23227 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
23228 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
23229 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
23230
23231 {NULL, NULL, ARM_ARCH_NONE, NULL}
23232 };
23233
23234 struct arm_cpu_option_table
23235 {
23236 char *name;
23237 size_t name_len;
23238 const arm_feature_set value;
23239 /* For some CPUs we assume an FPU unless the user explicitly sets
23240 -mfpu=... */
23241 const arm_feature_set default_fpu;
23242 /* The canonical name of the CPU, or NULL to use NAME converted to upper
23243 case. */
23244 const char *canonical_name;
23245 };
23246
23247 /* This list should, at a minimum, contain all the cpu names
23248 recognized by GCC. */
23249 #define ARM_CPU_OPT(N, V, DF, CN) { N, sizeof (N) - 1, V, DF, CN }
23250 static const struct arm_cpu_option_table arm_cpus[] =
23251 {
23252 ARM_CPU_OPT ("all", ARM_ANY, FPU_ARCH_FPA, NULL),
23253 ARM_CPU_OPT ("arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL),
23254 ARM_CPU_OPT ("arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL),
23255 ARM_CPU_OPT ("arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
23256 ARM_CPU_OPT ("arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
23257 ARM_CPU_OPT ("arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23258 ARM_CPU_OPT ("arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23259 ARM_CPU_OPT ("arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23260 ARM_CPU_OPT ("arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23261 ARM_CPU_OPT ("arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23262 ARM_CPU_OPT ("arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23263 ARM_CPU_OPT ("arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23264 ARM_CPU_OPT ("arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23265 ARM_CPU_OPT ("arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23266 ARM_CPU_OPT ("arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23267 ARM_CPU_OPT ("arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23268 ARM_CPU_OPT ("arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23269 ARM_CPU_OPT ("arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23270 ARM_CPU_OPT ("arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23271 ARM_CPU_OPT ("arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23272 ARM_CPU_OPT ("arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23273 ARM_CPU_OPT ("arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23274 ARM_CPU_OPT ("arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23275 ARM_CPU_OPT ("arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23276 ARM_CPU_OPT ("arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23277 ARM_CPU_OPT ("arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23278 ARM_CPU_OPT ("arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23279 ARM_CPU_OPT ("arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23280 ARM_CPU_OPT ("arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23281 ARM_CPU_OPT ("arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23282 ARM_CPU_OPT ("arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23283 ARM_CPU_OPT ("arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23284 ARM_CPU_OPT ("arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23285 ARM_CPU_OPT ("strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23286 ARM_CPU_OPT ("strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23287 ARM_CPU_OPT ("strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23288 ARM_CPU_OPT ("strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23289 ARM_CPU_OPT ("strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23290 ARM_CPU_OPT ("arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23291 ARM_CPU_OPT ("arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"),
23292 ARM_CPU_OPT ("arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23293 ARM_CPU_OPT ("arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23294 ARM_CPU_OPT ("arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23295 ARM_CPU_OPT ("arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23296 ARM_CPU_OPT ("fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23297 ARM_CPU_OPT ("fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23298 /* For V5 or later processors we default to using VFP; but the user
23299 should really set the FPU type explicitly. */
23300 ARM_CPU_OPT ("arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23301 ARM_CPU_OPT ("arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23302 ARM_CPU_OPT ("arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
23303 ARM_CPU_OPT ("arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
23304 ARM_CPU_OPT ("arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
23305 ARM_CPU_OPT ("arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23306 ARM_CPU_OPT ("arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"),
23307 ARM_CPU_OPT ("arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23308 ARM_CPU_OPT ("arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23309 ARM_CPU_OPT ("arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"),
23310 ARM_CPU_OPT ("arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23311 ARM_CPU_OPT ("arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23312 ARM_CPU_OPT ("arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23313 ARM_CPU_OPT ("arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23314 ARM_CPU_OPT ("arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23315 ARM_CPU_OPT ("arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"),
23316 ARM_CPU_OPT ("arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23317 ARM_CPU_OPT ("arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23318 ARM_CPU_OPT ("arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23319 ARM_CPU_OPT ("arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2,
23320 "ARM1026EJ-S"),
23321 ARM_CPU_OPT ("arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
23322 ARM_CPU_OPT ("fa606te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23323 ARM_CPU_OPT ("fa616te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23324 ARM_CPU_OPT ("fa626te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23325 ARM_CPU_OPT ("fmp626", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23326 ARM_CPU_OPT ("fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23327 ARM_CPU_OPT ("arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"),
23328 ARM_CPU_OPT ("arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL),
23329 ARM_CPU_OPT ("arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2,
23330 "ARM1136JF-S"),
23331 ARM_CPU_OPT ("arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL),
23332 ARM_CPU_OPT ("mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, "MPCore"),
23333 ARM_CPU_OPT ("mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, "MPCore"),
23334 ARM_CPU_OPT ("arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL),
23335 ARM_CPU_OPT ("arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL),
23336 ARM_CPU_OPT ("arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL),
23337 ARM_CPU_OPT ("arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL),
23338 ARM_CPU_OPT ("cortex-a5", ARM_ARCH_V7A_MP_SEC,
23339 FPU_NONE, "Cortex-A5"),
23340 ARM_CPU_OPT ("cortex-a7", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
23341 FPU_ARCH_NEON_VFP_V4,
23342 "Cortex-A7"),
23343 ARM_CPU_OPT ("cortex-a8", ARM_ARCH_V7A_SEC,
23344 ARM_FEATURE (0, FPU_VFP_V3
23345 | FPU_NEON_EXT_V1),
23346 "Cortex-A8"),
23347 ARM_CPU_OPT ("cortex-a9", ARM_ARCH_V7A_MP_SEC,
23348 ARM_FEATURE (0, FPU_VFP_V3
23349 | FPU_NEON_EXT_V1),
23350 "Cortex-A9"),
23351 ARM_CPU_OPT ("cortex-a15", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
23352 FPU_ARCH_NEON_VFP_V4,
23353 "Cortex-A15"),
23354 ARM_CPU_OPT ("cortex-r4", ARM_ARCH_V7R, FPU_NONE, "Cortex-R4"),
23355 ARM_CPU_OPT ("cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16,
23356 "Cortex-R4F"),
23357 ARM_CPU_OPT ("cortex-r5", ARM_ARCH_V7R_IDIV,
23358 FPU_NONE, "Cortex-R5"),
23359 ARM_CPU_OPT ("cortex-m4", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M4"),
23360 ARM_CPU_OPT ("cortex-m3", ARM_ARCH_V7M, FPU_NONE, "Cortex-M3"),
23361 ARM_CPU_OPT ("cortex-m1", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M1"),
23362 ARM_CPU_OPT ("cortex-m0", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0"),
23363 ARM_CPU_OPT ("cortex-m0plus", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0+"),
23364 /* ??? XSCALE is really an architecture. */
23365 ARM_CPU_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
23366 /* ??? iwmmxt is not a processor. */
23367 ARM_CPU_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL),
23368 ARM_CPU_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL),
23369 ARM_CPU_OPT ("i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
23370 /* Maverick */
23371 ARM_CPU_OPT ("ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
23372 FPU_ARCH_MAVERICK,
23373 "ARM920T"),
23374 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
23375 };
23376 #undef ARM_CPU_OPT
23377
23378 struct arm_arch_option_table
23379 {
23380 char *name;
23381 size_t name_len;
23382 const arm_feature_set value;
23383 const arm_feature_set default_fpu;
23384 };
23385
23386 /* This list should, at a minimum, contain all the architecture names
23387 recognized by GCC. */
23388 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF }
23389 static const struct arm_arch_option_table arm_archs[] =
23390 {
23391 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
23392 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
23393 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
23394 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
23395 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
23396 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
23397 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
23398 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
23399 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
23400 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
23401 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
23402 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
23403 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
23404 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
23405 ARM_ARCH_OPT ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP),
23406 ARM_ARCH_OPT ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP),
23407 ARM_ARCH_OPT ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP),
23408 ARM_ARCH_OPT ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP),
23409 ARM_ARCH_OPT ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP),
23410 ARM_ARCH_OPT ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP),
23411 ARM_ARCH_OPT ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP),
23412 ARM_ARCH_OPT ("armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP),
23413 ARM_ARCH_OPT ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP),
23414 ARM_ARCH_OPT ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP),
23415 ARM_ARCH_OPT ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP),
23416 ARM_ARCH_OPT ("armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP),
23417 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
23418 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
23419 ARM_ARCH_OPT ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP),
23420 /* The official spelling of the ARMv7 profile variants is the dashed form.
23421 Accept the non-dashed form for compatibility with old toolchains. */
23422 ARM_ARCH_OPT ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP),
23423 ARM_ARCH_OPT ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP),
23424 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
23425 ARM_ARCH_OPT ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP),
23426 ARM_ARCH_OPT ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP),
23427 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
23428 ARM_ARCH_OPT ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP),
23429 ARM_ARCH_OPT ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP),
23430 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
23431 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
23432 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP),
23433 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
23434 };
23435 #undef ARM_ARCH_OPT
23436
23437 /* ISA extensions in the co-processor and main instruction set space. */
23438 struct arm_option_extension_value_table
23439 {
23440 char *name;
23441 size_t name_len;
23442 const arm_feature_set value;
23443 const arm_feature_set allowed_archs;
23444 };
23445
23446 /* The following table must be in alphabetical order with a NULL last entry.
23447 */
23448 #define ARM_EXT_OPT(N, V, AA) { N, sizeof (N) - 1, V, AA }
23449 static const struct arm_option_extension_value_table arm_extensions[] =
23450 {
23451 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
23452 ARM_FEATURE (ARM_EXT_V8, 0)),
23453 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8,
23454 ARM_FEATURE (ARM_EXT_V8, 0)),
23455 ARM_EXT_OPT ("idiv", ARM_FEATURE (ARM_EXT_ADIV | ARM_EXT_DIV, 0),
23456 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)),
23457 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE (0, ARM_CEXT_IWMMXT), ARM_ANY),
23458 ARM_EXT_OPT ("iwmmxt2",
23459 ARM_FEATURE (0, ARM_CEXT_IWMMXT2), ARM_ANY),
23460 ARM_EXT_OPT ("maverick",
23461 ARM_FEATURE (0, ARM_CEXT_MAVERICK), ARM_ANY),
23462 ARM_EXT_OPT ("mp", ARM_FEATURE (ARM_EXT_MP, 0),
23463 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)),
23464 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
23465 ARM_FEATURE (ARM_EXT_V8, 0)),
23466 ARM_EXT_OPT ("os", ARM_FEATURE (ARM_EXT_OS, 0),
23467 ARM_FEATURE (ARM_EXT_V6M, 0)),
23468 ARM_EXT_OPT ("sec", ARM_FEATURE (ARM_EXT_SEC, 0),
23469 ARM_FEATURE (ARM_EXT_V6K | ARM_EXT_V7A, 0)),
23470 ARM_EXT_OPT ("virt", ARM_FEATURE (ARM_EXT_VIRT | ARM_EXT_ADIV
23471 | ARM_EXT_DIV, 0),
23472 ARM_FEATURE (ARM_EXT_V7A, 0)),
23473 ARM_EXT_OPT ("xscale",ARM_FEATURE (0, ARM_CEXT_XSCALE), ARM_ANY),
23474 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
23475 };
23476 #undef ARM_EXT_OPT
23477
23478 /* ISA floating-point and Advanced SIMD extensions. */
23479 struct arm_option_fpu_value_table
23480 {
23481 char *name;
23482 const arm_feature_set value;
23483 };
23484
23485 /* This list should, at a minimum, contain all the fpu names
23486 recognized by GCC. */
23487 static const struct arm_option_fpu_value_table arm_fpus[] =
23488 {
23489 {"softfpa", FPU_NONE},
23490 {"fpe", FPU_ARCH_FPE},
23491 {"fpe2", FPU_ARCH_FPE},
23492 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
23493 {"fpa", FPU_ARCH_FPA},
23494 {"fpa10", FPU_ARCH_FPA},
23495 {"fpa11", FPU_ARCH_FPA},
23496 {"arm7500fe", FPU_ARCH_FPA},
23497 {"softvfp", FPU_ARCH_VFP},
23498 {"softvfp+vfp", FPU_ARCH_VFP_V2},
23499 {"vfp", FPU_ARCH_VFP_V2},
23500 {"vfp9", FPU_ARCH_VFP_V2},
23501 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
23502 {"vfp10", FPU_ARCH_VFP_V2},
23503 {"vfp10-r0", FPU_ARCH_VFP_V1},
23504 {"vfpxd", FPU_ARCH_VFP_V1xD},
23505 {"vfpv2", FPU_ARCH_VFP_V2},
23506 {"vfpv3", FPU_ARCH_VFP_V3},
23507 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
23508 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
23509 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
23510 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
23511 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
23512 {"arm1020t", FPU_ARCH_VFP_V1},
23513 {"arm1020e", FPU_ARCH_VFP_V2},
23514 {"arm1136jfs", FPU_ARCH_VFP_V2},
23515 {"arm1136jf-s", FPU_ARCH_VFP_V2},
23516 {"maverick", FPU_ARCH_MAVERICK},
23517 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
23518 {"neon-fp16", FPU_ARCH_NEON_FP16},
23519 {"vfpv4", FPU_ARCH_VFP_V4},
23520 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
23521 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
23522 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
23523 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
23524 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
23525 {"crypto-neon-fp-armv8",
23526 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
23527 {NULL, ARM_ARCH_NONE}
23528 };
23529
23530 struct arm_option_value_table
23531 {
23532 char *name;
23533 long value;
23534 };
23535
23536 static const struct arm_option_value_table arm_float_abis[] =
23537 {
23538 {"hard", ARM_FLOAT_ABI_HARD},
23539 {"softfp", ARM_FLOAT_ABI_SOFTFP},
23540 {"soft", ARM_FLOAT_ABI_SOFT},
23541 {NULL, 0}
23542 };
23543
23544 #ifdef OBJ_ELF
23545 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
23546 static const struct arm_option_value_table arm_eabis[] =
23547 {
23548 {"gnu", EF_ARM_EABI_UNKNOWN},
23549 {"4", EF_ARM_EABI_VER4},
23550 {"5", EF_ARM_EABI_VER5},
23551 {NULL, 0}
23552 };
23553 #endif
23554
23555 struct arm_long_option_table
23556 {
23557 char * option; /* Substring to match. */
23558 char * help; /* Help information. */
23559 int (* func) (char * subopt); /* Function to decode sub-option. */
23560 char * deprecated; /* If non-null, print this message. */
23561 };
23562
23563 static bfd_boolean
23564 arm_parse_extension (char *str, const arm_feature_set **opt_p)
23565 {
23566 arm_feature_set *ext_set = (arm_feature_set *)
23567 xmalloc (sizeof (arm_feature_set));
23568
23569 /* We insist on extensions being specified in alphabetical order, and with
23570 extensions being added before being removed. We achieve this by having
23571 the global ARM_EXTENSIONS table in alphabetical order, and using the
23572 ADDING_VALUE variable to indicate whether we are adding an extension (1)
23573 or removing it (0) and only allowing it to change in the order
23574 -1 -> 1 -> 0. */
23575 const struct arm_option_extension_value_table * opt = NULL;
23576 int adding_value = -1;
23577
23578 /* Copy the feature set, so that we can modify it. */
23579 *ext_set = **opt_p;
23580 *opt_p = ext_set;
23581
23582 while (str != NULL && *str != 0)
23583 {
23584 char *ext;
23585 size_t len;
23586
23587 if (*str != '+')
23588 {
23589 as_bad (_("invalid architectural extension"));
23590 return FALSE;
23591 }
23592
23593 str++;
23594 ext = strchr (str, '+');
23595
23596 if (ext != NULL)
23597 len = ext - str;
23598 else
23599 len = strlen (str);
23600
23601 if (len >= 2 && strncmp (str, "no", 2) == 0)
23602 {
23603 if (adding_value != 0)
23604 {
23605 adding_value = 0;
23606 opt = arm_extensions;
23607 }
23608
23609 len -= 2;
23610 str += 2;
23611 }
23612 else if (len > 0)
23613 {
23614 if (adding_value == -1)
23615 {
23616 adding_value = 1;
23617 opt = arm_extensions;
23618 }
23619 else if (adding_value != 1)
23620 {
23621 as_bad (_("must specify extensions to add before specifying "
23622 "those to remove"));
23623 return FALSE;
23624 }
23625 }
23626
23627 if (len == 0)
23628 {
23629 as_bad (_("missing architectural extension"));
23630 return FALSE;
23631 }
23632
23633 gas_assert (adding_value != -1);
23634 gas_assert (opt != NULL);
23635
23636 /* Scan over the options table trying to find an exact match. */
23637 for (; opt->name != NULL; opt++)
23638 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
23639 {
23640 /* Check we can apply the extension to this architecture. */
23641 if (!ARM_CPU_HAS_FEATURE (*ext_set, opt->allowed_archs))
23642 {
23643 as_bad (_("extension does not apply to the base architecture"));
23644 return FALSE;
23645 }
23646
23647 /* Add or remove the extension. */
23648 if (adding_value)
23649 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
23650 else
23651 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
23652
23653 break;
23654 }
23655
23656 if (opt->name == NULL)
23657 {
23658 /* Did we fail to find an extension because it wasn't specified in
23659 alphabetical order, or because it does not exist? */
23660
23661 for (opt = arm_extensions; opt->name != NULL; opt++)
23662 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
23663 break;
23664
23665 if (opt->name == NULL)
23666 as_bad (_("unknown architectural extension `%s'"), str);
23667 else
23668 as_bad (_("architectural extensions must be specified in "
23669 "alphabetical order"));
23670
23671 return FALSE;
23672 }
23673 else
23674 {
23675 /* We should skip the extension we've just matched the next time
23676 round. */
23677 opt++;
23678 }
23679
23680 str = ext;
23681 };
23682
23683 return TRUE;
23684 }
23685
23686 static bfd_boolean
23687 arm_parse_cpu (char *str)
23688 {
23689 const struct arm_cpu_option_table *opt;
23690 char *ext = strchr (str, '+');
23691 size_t len;
23692
23693 if (ext != NULL)
23694 len = ext - str;
23695 else
23696 len = strlen (str);
23697
23698 if (len == 0)
23699 {
23700 as_bad (_("missing cpu name `%s'"), str);
23701 return FALSE;
23702 }
23703
23704 for (opt = arm_cpus; opt->name != NULL; opt++)
23705 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
23706 {
23707 mcpu_cpu_opt = &opt->value;
23708 mcpu_fpu_opt = &opt->default_fpu;
23709 if (opt->canonical_name)
23710 strcpy (selected_cpu_name, opt->canonical_name);
23711 else
23712 {
23713 size_t i;
23714
23715 for (i = 0; i < len; i++)
23716 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23717 selected_cpu_name[i] = 0;
23718 }
23719
23720 if (ext != NULL)
23721 return arm_parse_extension (ext, &mcpu_cpu_opt);
23722
23723 return TRUE;
23724 }
23725
23726 as_bad (_("unknown cpu `%s'"), str);
23727 return FALSE;
23728 }
23729
23730 static bfd_boolean
23731 arm_parse_arch (char *str)
23732 {
23733 const struct arm_arch_option_table *opt;
23734 char *ext = strchr (str, '+');
23735 size_t len;
23736
23737 if (ext != NULL)
23738 len = ext - str;
23739 else
23740 len = strlen (str);
23741
23742 if (len == 0)
23743 {
23744 as_bad (_("missing architecture name `%s'"), str);
23745 return FALSE;
23746 }
23747
23748 for (opt = arm_archs; opt->name != NULL; opt++)
23749 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
23750 {
23751 march_cpu_opt = &opt->value;
23752 march_fpu_opt = &opt->default_fpu;
23753 strcpy (selected_cpu_name, opt->name);
23754
23755 if (ext != NULL)
23756 return arm_parse_extension (ext, &march_cpu_opt);
23757
23758 return TRUE;
23759 }
23760
23761 as_bad (_("unknown architecture `%s'\n"), str);
23762 return FALSE;
23763 }
23764
23765 static bfd_boolean
23766 arm_parse_fpu (char * str)
23767 {
23768 const struct arm_option_fpu_value_table * opt;
23769
23770 for (opt = arm_fpus; opt->name != NULL; opt++)
23771 if (streq (opt->name, str))
23772 {
23773 mfpu_opt = &opt->value;
23774 return TRUE;
23775 }
23776
23777 as_bad (_("unknown floating point format `%s'\n"), str);
23778 return FALSE;
23779 }
23780
23781 static bfd_boolean
23782 arm_parse_float_abi (char * str)
23783 {
23784 const struct arm_option_value_table * opt;
23785
23786 for (opt = arm_float_abis; opt->name != NULL; opt++)
23787 if (streq (opt->name, str))
23788 {
23789 mfloat_abi_opt = opt->value;
23790 return TRUE;
23791 }
23792
23793 as_bad (_("unknown floating point abi `%s'\n"), str);
23794 return FALSE;
23795 }
23796
23797 #ifdef OBJ_ELF
23798 static bfd_boolean
23799 arm_parse_eabi (char * str)
23800 {
23801 const struct arm_option_value_table *opt;
23802
23803 for (opt = arm_eabis; opt->name != NULL; opt++)
23804 if (streq (opt->name, str))
23805 {
23806 meabi_flags = opt->value;
23807 return TRUE;
23808 }
23809 as_bad (_("unknown EABI `%s'\n"), str);
23810 return FALSE;
23811 }
23812 #endif
23813
23814 static bfd_boolean
23815 arm_parse_it_mode (char * str)
23816 {
23817 bfd_boolean ret = TRUE;
23818
23819 if (streq ("arm", str))
23820 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
23821 else if (streq ("thumb", str))
23822 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
23823 else if (streq ("always", str))
23824 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
23825 else if (streq ("never", str))
23826 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
23827 else
23828 {
23829 as_bad (_("unknown implicit IT mode `%s', should be "\
23830 "arm, thumb, always, or never."), str);
23831 ret = FALSE;
23832 }
23833
23834 return ret;
23835 }
23836
23837 struct arm_long_option_table arm_long_opts[] =
23838 {
23839 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
23840 arm_parse_cpu, NULL},
23841 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
23842 arm_parse_arch, NULL},
23843 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
23844 arm_parse_fpu, NULL},
23845 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
23846 arm_parse_float_abi, NULL},
23847 #ifdef OBJ_ELF
23848 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
23849 arm_parse_eabi, NULL},
23850 #endif
23851 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
23852 arm_parse_it_mode, NULL},
23853 {NULL, NULL, 0, NULL}
23854 };
23855
23856 int
23857 md_parse_option (int c, char * arg)
23858 {
23859 struct arm_option_table *opt;
23860 const struct arm_legacy_option_table *fopt;
23861 struct arm_long_option_table *lopt;
23862
23863 switch (c)
23864 {
23865 #ifdef OPTION_EB
23866 case OPTION_EB:
23867 target_big_endian = 1;
23868 break;
23869 #endif
23870
23871 #ifdef OPTION_EL
23872 case OPTION_EL:
23873 target_big_endian = 0;
23874 break;
23875 #endif
23876
23877 case OPTION_FIX_V4BX:
23878 fix_v4bx = TRUE;
23879 break;
23880
23881 case 'a':
23882 /* Listing option. Just ignore these, we don't support additional
23883 ones. */
23884 return 0;
23885
23886 default:
23887 for (opt = arm_opts; opt->option != NULL; opt++)
23888 {
23889 if (c == opt->option[0]
23890 && ((arg == NULL && opt->option[1] == 0)
23891 || streq (arg, opt->option + 1)))
23892 {
23893 /* If the option is deprecated, tell the user. */
23894 if (warn_on_deprecated && opt->deprecated != NULL)
23895 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23896 arg ? arg : "", _(opt->deprecated));
23897
23898 if (opt->var != NULL)
23899 *opt->var = opt->value;
23900
23901 return 1;
23902 }
23903 }
23904
23905 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
23906 {
23907 if (c == fopt->option[0]
23908 && ((arg == NULL && fopt->option[1] == 0)
23909 || streq (arg, fopt->option + 1)))
23910 {
23911 /* If the option is deprecated, tell the user. */
23912 if (warn_on_deprecated && fopt->deprecated != NULL)
23913 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23914 arg ? arg : "", _(fopt->deprecated));
23915
23916 if (fopt->var != NULL)
23917 *fopt->var = &fopt->value;
23918
23919 return 1;
23920 }
23921 }
23922
23923 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23924 {
23925 /* These options are expected to have an argument. */
23926 if (c == lopt->option[0]
23927 && arg != NULL
23928 && strncmp (arg, lopt->option + 1,
23929 strlen (lopt->option + 1)) == 0)
23930 {
23931 /* If the option is deprecated, tell the user. */
23932 if (warn_on_deprecated && lopt->deprecated != NULL)
23933 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
23934 _(lopt->deprecated));
23935
23936 /* Call the sup-option parser. */
23937 return lopt->func (arg + strlen (lopt->option) - 1);
23938 }
23939 }
23940
23941 return 0;
23942 }
23943
23944 return 1;
23945 }
23946
23947 void
23948 md_show_usage (FILE * fp)
23949 {
23950 struct arm_option_table *opt;
23951 struct arm_long_option_table *lopt;
23952
23953 fprintf (fp, _(" ARM-specific assembler options:\n"));
23954
23955 for (opt = arm_opts; opt->option != NULL; opt++)
23956 if (opt->help != NULL)
23957 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
23958
23959 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23960 if (lopt->help != NULL)
23961 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
23962
23963 #ifdef OPTION_EB
23964 fprintf (fp, _("\
23965 -EB assemble code for a big-endian cpu\n"));
23966 #endif
23967
23968 #ifdef OPTION_EL
23969 fprintf (fp, _("\
23970 -EL assemble code for a little-endian cpu\n"));
23971 #endif
23972
23973 fprintf (fp, _("\
23974 --fix-v4bx Allow BX in ARMv4 code\n"));
23975 }
23976
23977
23978 #ifdef OBJ_ELF
23979 typedef struct
23980 {
23981 int val;
23982 arm_feature_set flags;
23983 } cpu_arch_ver_table;
23984
23985 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
23986 least features first. */
23987 static const cpu_arch_ver_table cpu_arch_ver[] =
23988 {
23989 {1, ARM_ARCH_V4},
23990 {2, ARM_ARCH_V4T},
23991 {3, ARM_ARCH_V5},
23992 {3, ARM_ARCH_V5T},
23993 {4, ARM_ARCH_V5TE},
23994 {5, ARM_ARCH_V5TEJ},
23995 {6, ARM_ARCH_V6},
23996 {9, ARM_ARCH_V6K},
23997 {7, ARM_ARCH_V6Z},
23998 {11, ARM_ARCH_V6M},
23999 {12, ARM_ARCH_V6SM},
24000 {8, ARM_ARCH_V6T2},
24001 {10, ARM_ARCH_V7A_IDIV_MP_SEC_VIRT},
24002 {10, ARM_ARCH_V7R},
24003 {10, ARM_ARCH_V7M},
24004 {14, ARM_ARCH_V8A},
24005 {0, ARM_ARCH_NONE}
24006 };
24007
24008 /* Set an attribute if it has not already been set by the user. */
24009 static void
24010 aeabi_set_attribute_int (int tag, int value)
24011 {
24012 if (tag < 1
24013 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
24014 || !attributes_set_explicitly[tag])
24015 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
24016 }
24017
24018 static void
24019 aeabi_set_attribute_string (int tag, const char *value)
24020 {
24021 if (tag < 1
24022 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
24023 || !attributes_set_explicitly[tag])
24024 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
24025 }
24026
24027 /* Set the public EABI object attributes. */
24028 static void
24029 aeabi_set_public_attributes (void)
24030 {
24031 int arch;
24032 char profile;
24033 int virt_sec = 0;
24034 int fp16_optional = 0;
24035 arm_feature_set flags;
24036 arm_feature_set tmp;
24037 const cpu_arch_ver_table *p;
24038
24039 /* Choose the architecture based on the capabilities of the requested cpu
24040 (if any) and/or the instructions actually used. */
24041 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
24042 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
24043 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
24044
24045 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
24046 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
24047
24048 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
24049 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
24050
24051 /* Allow the user to override the reported architecture. */
24052 if (object_arch)
24053 {
24054 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
24055 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
24056 }
24057
24058 /* We need to make sure that the attributes do not identify us as v6S-M
24059 when the only v6S-M feature in use is the Operating System Extensions. */
24060 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_os))
24061 if (!ARM_CPU_HAS_FEATURE (flags, arm_arch_v6m_only))
24062 ARM_CLEAR_FEATURE (flags, flags, arm_ext_os);
24063
24064 tmp = flags;
24065 arch = 0;
24066 for (p = cpu_arch_ver; p->val; p++)
24067 {
24068 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
24069 {
24070 arch = p->val;
24071 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
24072 }
24073 }
24074
24075 /* The table lookup above finds the last architecture to contribute
24076 a new feature. Unfortunately, Tag13 is a subset of the union of
24077 v6T2 and v7-M, so it is never seen as contributing a new feature.
24078 We can not search for the last entry which is entirely used,
24079 because if no CPU is specified we build up only those flags
24080 actually used. Perhaps we should separate out the specified
24081 and implicit cases. Avoid taking this path for -march=all by
24082 checking for contradictory v7-A / v7-M features. */
24083 if (arch == 10
24084 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
24085 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
24086 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
24087 arch = 13;
24088
24089 /* Tag_CPU_name. */
24090 if (selected_cpu_name[0])
24091 {
24092 char *q;
24093
24094 q = selected_cpu_name;
24095 if (strncmp (q, "armv", 4) == 0)
24096 {
24097 int i;
24098
24099 q += 4;
24100 for (i = 0; q[i]; i++)
24101 q[i] = TOUPPER (q[i]);
24102 }
24103 aeabi_set_attribute_string (Tag_CPU_name, q);
24104 }
24105
24106 /* Tag_CPU_arch. */
24107 aeabi_set_attribute_int (Tag_CPU_arch, arch);
24108
24109 /* Tag_CPU_arch_profile. */
24110 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
24111 profile = 'A';
24112 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
24113 profile = 'R';
24114 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
24115 profile = 'M';
24116 else
24117 profile = '\0';
24118
24119 if (profile != '\0')
24120 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
24121
24122 /* Tag_ARM_ISA_use. */
24123 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
24124 || arch == 0)
24125 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
24126
24127 /* Tag_THUMB_ISA_use. */
24128 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
24129 || arch == 0)
24130 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
24131 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
24132
24133 /* Tag_VFP_arch. */
24134 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8))
24135 aeabi_set_attribute_int (Tag_VFP_arch, 7);
24136 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
24137 aeabi_set_attribute_int (Tag_VFP_arch,
24138 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
24139 ? 5 : 6);
24140 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
24141 {
24142 fp16_optional = 1;
24143 aeabi_set_attribute_int (Tag_VFP_arch, 3);
24144 }
24145 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
24146 {
24147 aeabi_set_attribute_int (Tag_VFP_arch, 4);
24148 fp16_optional = 1;
24149 }
24150 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
24151 aeabi_set_attribute_int (Tag_VFP_arch, 2);
24152 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
24153 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
24154 aeabi_set_attribute_int (Tag_VFP_arch, 1);
24155
24156 /* Tag_ABI_HardFP_use. */
24157 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
24158 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
24159 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
24160
24161 /* Tag_WMMX_arch. */
24162 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
24163 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
24164 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
24165 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
24166
24167 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
24168 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
24169 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
24170 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
24171 {
24172 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
24173 {
24174 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
24175 }
24176 else
24177 {
24178 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
24179 fp16_optional = 1;
24180 }
24181 }
24182
24183 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
24184 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
24185 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
24186
24187 /* Tag_DIV_use.
24188
24189 We set Tag_DIV_use to two when integer divide instructions have been used
24190 in ARM state, or when Thumb integer divide instructions have been used,
24191 but we have no architecture profile set, nor have we any ARM instructions.
24192
24193 For ARMv8 we set the tag to 0 as integer divide is implied by the base
24194 architecture.
24195
24196 For new architectures we will have to check these tests. */
24197 gas_assert (arch <= TAG_CPU_ARCH_V8);
24198 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8))
24199 aeabi_set_attribute_int (Tag_DIV_use, 0);
24200 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
24201 || (profile == '\0'
24202 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
24203 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
24204 aeabi_set_attribute_int (Tag_DIV_use, 2);
24205
24206 /* Tag_MP_extension_use. */
24207 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
24208 aeabi_set_attribute_int (Tag_MPextension_use, 1);
24209
24210 /* Tag Virtualization_use. */
24211 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
24212 virt_sec |= 1;
24213 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
24214 virt_sec |= 2;
24215 if (virt_sec != 0)
24216 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
24217 }
24218
24219 /* Add the default contents for the .ARM.attributes section. */
24220 void
24221 arm_md_end (void)
24222 {
24223 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
24224 return;
24225
24226 aeabi_set_public_attributes ();
24227 }
24228 #endif /* OBJ_ELF */
24229
24230
24231 /* Parse a .cpu directive. */
24232
24233 static void
24234 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
24235 {
24236 const struct arm_cpu_option_table *opt;
24237 char *name;
24238 char saved_char;
24239
24240 name = input_line_pointer;
24241 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24242 input_line_pointer++;
24243 saved_char = *input_line_pointer;
24244 *input_line_pointer = 0;
24245
24246 /* Skip the first "all" entry. */
24247 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
24248 if (streq (opt->name, name))
24249 {
24250 mcpu_cpu_opt = &opt->value;
24251 selected_cpu = opt->value;
24252 if (opt->canonical_name)
24253 strcpy (selected_cpu_name, opt->canonical_name);
24254 else
24255 {
24256 int i;
24257 for (i = 0; opt->name[i]; i++)
24258 selected_cpu_name[i] = TOUPPER (opt->name[i]);
24259
24260 selected_cpu_name[i] = 0;
24261 }
24262 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24263 *input_line_pointer = saved_char;
24264 demand_empty_rest_of_line ();
24265 return;
24266 }
24267 as_bad (_("unknown cpu `%s'"), name);
24268 *input_line_pointer = saved_char;
24269 ignore_rest_of_line ();
24270 }
24271
24272
24273 /* Parse a .arch directive. */
24274
24275 static void
24276 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
24277 {
24278 const struct arm_arch_option_table *opt;
24279 char saved_char;
24280 char *name;
24281
24282 name = input_line_pointer;
24283 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24284 input_line_pointer++;
24285 saved_char = *input_line_pointer;
24286 *input_line_pointer = 0;
24287
24288 /* Skip the first "all" entry. */
24289 for (opt = arm_archs + 1; opt->name != NULL; opt++)
24290 if (streq (opt->name, name))
24291 {
24292 mcpu_cpu_opt = &opt->value;
24293 selected_cpu = opt->value;
24294 strcpy (selected_cpu_name, opt->name);
24295 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24296 *input_line_pointer = saved_char;
24297 demand_empty_rest_of_line ();
24298 return;
24299 }
24300
24301 as_bad (_("unknown architecture `%s'\n"), name);
24302 *input_line_pointer = saved_char;
24303 ignore_rest_of_line ();
24304 }
24305
24306
24307 /* Parse a .object_arch directive. */
24308
24309 static void
24310 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
24311 {
24312 const struct arm_arch_option_table *opt;
24313 char saved_char;
24314 char *name;
24315
24316 name = input_line_pointer;
24317 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24318 input_line_pointer++;
24319 saved_char = *input_line_pointer;
24320 *input_line_pointer = 0;
24321
24322 /* Skip the first "all" entry. */
24323 for (opt = arm_archs + 1; opt->name != NULL; opt++)
24324 if (streq (opt->name, name))
24325 {
24326 object_arch = &opt->value;
24327 *input_line_pointer = saved_char;
24328 demand_empty_rest_of_line ();
24329 return;
24330 }
24331
24332 as_bad (_("unknown architecture `%s'\n"), name);
24333 *input_line_pointer = saved_char;
24334 ignore_rest_of_line ();
24335 }
24336
24337 /* Parse a .arch_extension directive. */
24338
24339 static void
24340 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
24341 {
24342 const struct arm_option_extension_value_table *opt;
24343 char saved_char;
24344 char *name;
24345 int adding_value = 1;
24346
24347 name = input_line_pointer;
24348 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24349 input_line_pointer++;
24350 saved_char = *input_line_pointer;
24351 *input_line_pointer = 0;
24352
24353 if (strlen (name) >= 2
24354 && strncmp (name, "no", 2) == 0)
24355 {
24356 adding_value = 0;
24357 name += 2;
24358 }
24359
24360 for (opt = arm_extensions; opt->name != NULL; opt++)
24361 if (streq (opt->name, name))
24362 {
24363 if (!ARM_CPU_HAS_FEATURE (*mcpu_cpu_opt, opt->allowed_archs))
24364 {
24365 as_bad (_("architectural extension `%s' is not allowed for the "
24366 "current base architecture"), name);
24367 break;
24368 }
24369
24370 if (adding_value)
24371 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_cpu, opt->value);
24372 else
24373 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, opt->value);
24374
24375 mcpu_cpu_opt = &selected_cpu;
24376 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24377 *input_line_pointer = saved_char;
24378 demand_empty_rest_of_line ();
24379 return;
24380 }
24381
24382 if (opt->name == NULL)
24383 as_bad (_("unknown architecture `%s'\n"), name);
24384
24385 *input_line_pointer = saved_char;
24386 ignore_rest_of_line ();
24387 }
24388
24389 /* Parse a .fpu directive. */
24390
24391 static void
24392 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
24393 {
24394 const struct arm_option_fpu_value_table *opt;
24395 char saved_char;
24396 char *name;
24397
24398 name = input_line_pointer;
24399 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24400 input_line_pointer++;
24401 saved_char = *input_line_pointer;
24402 *input_line_pointer = 0;
24403
24404 for (opt = arm_fpus; opt->name != NULL; opt++)
24405 if (streq (opt->name, name))
24406 {
24407 mfpu_opt = &opt->value;
24408 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24409 *input_line_pointer = saved_char;
24410 demand_empty_rest_of_line ();
24411 return;
24412 }
24413
24414 as_bad (_("unknown floating point format `%s'\n"), name);
24415 *input_line_pointer = saved_char;
24416 ignore_rest_of_line ();
24417 }
24418
24419 /* Copy symbol information. */
24420
24421 void
24422 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
24423 {
24424 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
24425 }
24426
24427 #ifdef OBJ_ELF
24428 /* Given a symbolic attribute NAME, return the proper integer value.
24429 Returns -1 if the attribute is not known. */
24430
24431 int
24432 arm_convert_symbolic_attribute (const char *name)
24433 {
24434 static const struct
24435 {
24436 const char * name;
24437 const int tag;
24438 }
24439 attribute_table[] =
24440 {
24441 /* When you modify this table you should
24442 also modify the list in doc/c-arm.texi. */
24443 #define T(tag) {#tag, tag}
24444 T (Tag_CPU_raw_name),
24445 T (Tag_CPU_name),
24446 T (Tag_CPU_arch),
24447 T (Tag_CPU_arch_profile),
24448 T (Tag_ARM_ISA_use),
24449 T (Tag_THUMB_ISA_use),
24450 T (Tag_FP_arch),
24451 T (Tag_VFP_arch),
24452 T (Tag_WMMX_arch),
24453 T (Tag_Advanced_SIMD_arch),
24454 T (Tag_PCS_config),
24455 T (Tag_ABI_PCS_R9_use),
24456 T (Tag_ABI_PCS_RW_data),
24457 T (Tag_ABI_PCS_RO_data),
24458 T (Tag_ABI_PCS_GOT_use),
24459 T (Tag_ABI_PCS_wchar_t),
24460 T (Tag_ABI_FP_rounding),
24461 T (Tag_ABI_FP_denormal),
24462 T (Tag_ABI_FP_exceptions),
24463 T (Tag_ABI_FP_user_exceptions),
24464 T (Tag_ABI_FP_number_model),
24465 T (Tag_ABI_align_needed),
24466 T (Tag_ABI_align8_needed),
24467 T (Tag_ABI_align_preserved),
24468 T (Tag_ABI_align8_preserved),
24469 T (Tag_ABI_enum_size),
24470 T (Tag_ABI_HardFP_use),
24471 T (Tag_ABI_VFP_args),
24472 T (Tag_ABI_WMMX_args),
24473 T (Tag_ABI_optimization_goals),
24474 T (Tag_ABI_FP_optimization_goals),
24475 T (Tag_compatibility),
24476 T (Tag_CPU_unaligned_access),
24477 T (Tag_FP_HP_extension),
24478 T (Tag_VFP_HP_extension),
24479 T (Tag_ABI_FP_16bit_format),
24480 T (Tag_MPextension_use),
24481 T (Tag_DIV_use),
24482 T (Tag_nodefaults),
24483 T (Tag_also_compatible_with),
24484 T (Tag_conformance),
24485 T (Tag_T2EE_use),
24486 T (Tag_Virtualization_use),
24487 /* We deliberately do not include Tag_MPextension_use_legacy. */
24488 #undef T
24489 };
24490 unsigned int i;
24491
24492 if (name == NULL)
24493 return -1;
24494
24495 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
24496 if (streq (name, attribute_table[i].name))
24497 return attribute_table[i].tag;
24498
24499 return -1;
24500 }
24501
24502
24503 /* Apply sym value for relocations only in the case that
24504 they are for local symbols and you have the respective
24505 architectural feature for blx and simple switches. */
24506 int
24507 arm_apply_sym_value (struct fix * fixP)
24508 {
24509 if (fixP->fx_addsy
24510 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
24511 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
24512 {
24513 switch (fixP->fx_r_type)
24514 {
24515 case BFD_RELOC_ARM_PCREL_BLX:
24516 case BFD_RELOC_THUMB_PCREL_BRANCH23:
24517 if (ARM_IS_FUNC (fixP->fx_addsy))
24518 return 1;
24519 break;
24520
24521 case BFD_RELOC_ARM_PCREL_CALL:
24522 case BFD_RELOC_THUMB_PCREL_BLX:
24523 if (THUMB_IS_FUNC (fixP->fx_addsy))
24524 return 1;
24525 break;
24526
24527 default:
24528 break;
24529 }
24530
24531 }
24532 return 0;
24533 }
24534 #endif /* OBJ_ELF */