]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-arm.c
Add support for the MVE VMOV instruction to the ARM assembler. This instruction...
[thirdparty/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25
26 #include "as.h"
27 #include <limits.h>
28 #include <stdarg.h>
29 #define NO_RELOC 0
30 #include "safe-ctype.h"
31 #include "subsegs.h"
32 #include "obstack.h"
33 #include "libiberty.h"
34 #include "opcode/arm.h"
35
36 #ifdef OBJ_ELF
37 #include "elf/arm.h"
38 #include "dw2gencfi.h"
39 #endif
40
41 #include "dwarf2dbg.h"
42
43 #ifdef OBJ_ELF
44 /* Must be at least the size of the largest unwind opcode (currently two). */
45 #define ARM_OPCODE_CHUNK_SIZE 8
46
47 /* This structure holds the unwinding state. */
48
49 static struct
50 {
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
55 /* The segment containing the function. */
56 segT saved_seg;
57 subsegT saved_subseg;
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
60 int opcode_count;
61 int opcode_alloc;
62 /* The number of bytes pushed to the stack. */
63 offsetT frame_size;
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
67 offsetT pending_offset;
68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
72 /* Nonzero if an unwind_setfp directive has been seen. */
73 unsigned fp_used:1;
74 /* Nonzero if the last opcode restores sp from fp_reg. */
75 unsigned sp_restored:1;
76 } unwind;
77
78 /* Whether --fdpic was given. */
79 static int arm_fdpic;
80
81 #endif /* OBJ_ELF */
82
83 /* Results from operand parsing worker functions. */
84
85 typedef enum
86 {
87 PARSE_OPERAND_SUCCESS,
88 PARSE_OPERAND_FAIL,
89 PARSE_OPERAND_FAIL_NO_BACKTRACK
90 } parse_operand_result;
91
92 enum arm_float_abi
93 {
94 ARM_FLOAT_ABI_HARD,
95 ARM_FLOAT_ABI_SOFTFP,
96 ARM_FLOAT_ABI_SOFT
97 };
98
99 /* Types of processor to assemble for. */
100 #ifndef CPU_DEFAULT
101 /* The code that was here used to select a default CPU depending on compiler
102 pre-defines which were only present when doing native builds, thus
103 changing gas' default behaviour depending upon the build host.
104
105 If you have a target that requires a default CPU option then the you
106 should define CPU_DEFAULT here. */
107 #endif
108
109 #ifndef FPU_DEFAULT
110 # ifdef TE_LINUX
111 # define FPU_DEFAULT FPU_ARCH_FPA
112 # elif defined (TE_NetBSD)
113 # ifdef OBJ_ELF
114 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115 # else
116 /* Legacy a.out format. */
117 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118 # endif
119 # elif defined (TE_VXWORKS)
120 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
121 # else
122 /* For backwards compatibility, default to FPA. */
123 # define FPU_DEFAULT FPU_ARCH_FPA
124 # endif
125 #endif /* ifndef FPU_DEFAULT */
126
127 #define streq(a, b) (strcmp (a, b) == 0)
128
129 /* Current set of feature bits available (CPU+FPU). Different from
130 selected_cpu + selected_fpu in case of autodetection since the CPU
131 feature bits are then all set. */
132 static arm_feature_set cpu_variant;
133 /* Feature bits used in each execution state. Used to set build attribute
134 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
135 static arm_feature_set arm_arch_used;
136 static arm_feature_set thumb_arch_used;
137
138 /* Flags stored in private area of BFD structure. */
139 static int uses_apcs_26 = FALSE;
140 static int atpcs = FALSE;
141 static int support_interwork = FALSE;
142 static int uses_apcs_float = FALSE;
143 static int pic_code = FALSE;
144 static int fix_v4bx = FALSE;
145 /* Warn on using deprecated features. */
146 static int warn_on_deprecated = TRUE;
147
148 /* Understand CodeComposer Studio assembly syntax. */
149 bfd_boolean codecomposer_syntax = FALSE;
150
151 /* Variables that we set while parsing command-line options. Once all
152 options have been read we re-process these values to set the real
153 assembly flags. */
154
155 /* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
156 instead of -mcpu=arm1). */
157 static const arm_feature_set *legacy_cpu = NULL;
158 static const arm_feature_set *legacy_fpu = NULL;
159
160 /* CPU, extension and FPU feature bits selected by -mcpu. */
161 static const arm_feature_set *mcpu_cpu_opt = NULL;
162 static arm_feature_set *mcpu_ext_opt = NULL;
163 static const arm_feature_set *mcpu_fpu_opt = NULL;
164
165 /* CPU, extension and FPU feature bits selected by -march. */
166 static const arm_feature_set *march_cpu_opt = NULL;
167 static arm_feature_set *march_ext_opt = NULL;
168 static const arm_feature_set *march_fpu_opt = NULL;
169
170 /* Feature bits selected by -mfpu. */
171 static const arm_feature_set *mfpu_opt = NULL;
172
173 /* Constants for known architecture features. */
174 static const arm_feature_set fpu_default = FPU_DEFAULT;
175 static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
176 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
177 static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
178 static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
179 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
180 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
181 #ifdef OBJ_ELF
182 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
183 #endif
184 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
185
186 #ifdef CPU_DEFAULT
187 static const arm_feature_set cpu_default = CPU_DEFAULT;
188 #endif
189
190 static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
191 static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
192 static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
193 static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
194 static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
195 static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
196 static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
197 static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
198 static const arm_feature_set arm_ext_v4t_5 =
199 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
200 static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
201 static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
202 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
203 static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
204 static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
205 static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
206 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
207 /* Only for compatability of hint instructions. */
208 static const arm_feature_set arm_ext_v6k_v6t2 =
209 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V6T2);
210 static const arm_feature_set arm_ext_v6_notm =
211 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
212 static const arm_feature_set arm_ext_v6_dsp =
213 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
214 static const arm_feature_set arm_ext_barrier =
215 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
216 static const arm_feature_set arm_ext_msr =
217 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
218 static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
219 static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
220 static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
221 static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
222 #ifdef OBJ_ELF
223 static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
224 #endif
225 static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
226 static const arm_feature_set arm_ext_m =
227 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
228 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
229 static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
230 static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
231 static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
232 static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
233 static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
234 static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
235 static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
236 static const arm_feature_set arm_ext_v8m_main =
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
238 static const arm_feature_set arm_ext_v8_1m_main =
239 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN);
240 /* Instructions in ARMv8-M only found in M profile architectures. */
241 static const arm_feature_set arm_ext_v8m_m_only =
242 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
243 static const arm_feature_set arm_ext_v6t2_v8m =
244 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
245 /* Instructions shared between ARMv8-A and ARMv8-M. */
246 static const arm_feature_set arm_ext_atomics =
247 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
248 #ifdef OBJ_ELF
249 /* DSP instructions Tag_DSP_extension refers to. */
250 static const arm_feature_set arm_ext_dsp =
251 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
252 #endif
253 static const arm_feature_set arm_ext_ras =
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
255 /* FP16 instructions. */
256 static const arm_feature_set arm_ext_fp16 =
257 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
258 static const arm_feature_set arm_ext_fp16_fml =
259 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
260 static const arm_feature_set arm_ext_v8_2 =
261 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
262 static const arm_feature_set arm_ext_v8_3 =
263 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
264 static const arm_feature_set arm_ext_sb =
265 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB);
266 static const arm_feature_set arm_ext_predres =
267 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES);
268
269 static const arm_feature_set arm_arch_any = ARM_ANY;
270 #ifdef OBJ_ELF
271 static const arm_feature_set fpu_any = FPU_ANY;
272 #endif
273 static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
274 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
275 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
276
277 static const arm_feature_set arm_cext_iwmmxt2 =
278 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
279 static const arm_feature_set arm_cext_iwmmxt =
280 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
281 static const arm_feature_set arm_cext_xscale =
282 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
283 static const arm_feature_set arm_cext_maverick =
284 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
285 static const arm_feature_set fpu_fpa_ext_v1 =
286 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
287 static const arm_feature_set fpu_fpa_ext_v2 =
288 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
289 static const arm_feature_set fpu_vfp_ext_v1xd =
290 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
291 static const arm_feature_set fpu_vfp_ext_v1 =
292 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
293 static const arm_feature_set fpu_vfp_ext_v2 =
294 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
295 static const arm_feature_set fpu_vfp_ext_v3xd =
296 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
297 static const arm_feature_set fpu_vfp_ext_v3 =
298 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
299 static const arm_feature_set fpu_vfp_ext_d32 =
300 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
301 static const arm_feature_set fpu_neon_ext_v1 =
302 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
303 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
304 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
305 static const arm_feature_set mve_ext =
306 ARM_FEATURE_COPROC (FPU_MVE);
307 static const arm_feature_set mve_fp_ext =
308 ARM_FEATURE_COPROC (FPU_MVE_FP);
309 #ifdef OBJ_ELF
310 static const arm_feature_set fpu_vfp_fp16 =
311 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
312 static const arm_feature_set fpu_neon_ext_fma =
313 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
314 #endif
315 static const arm_feature_set fpu_vfp_ext_fma =
316 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
317 static const arm_feature_set fpu_vfp_ext_armv8 =
318 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
319 static const arm_feature_set fpu_vfp_ext_armv8xd =
320 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
321 static const arm_feature_set fpu_neon_ext_armv8 =
322 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
323 static const arm_feature_set fpu_crypto_ext_armv8 =
324 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
325 static const arm_feature_set crc_ext_armv8 =
326 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
327 static const arm_feature_set fpu_neon_ext_v8_1 =
328 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
329 static const arm_feature_set fpu_neon_ext_dotprod =
330 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
331
332 static int mfloat_abi_opt = -1;
333 /* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
334 directive. */
335 static arm_feature_set selected_arch = ARM_ARCH_NONE;
336 /* Extension feature bits selected by the last -mcpu/-march or .arch_extension
337 directive. */
338 static arm_feature_set selected_ext = ARM_ARCH_NONE;
339 /* Feature bits selected by the last -mcpu/-march or by the combination of the
340 last .cpu/.arch directive .arch_extension directives since that
341 directive. */
342 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
343 /* FPU feature bits selected by the last -mfpu or .fpu directive. */
344 static arm_feature_set selected_fpu = FPU_NONE;
345 /* Feature bits selected by the last .object_arch directive. */
346 static arm_feature_set selected_object_arch = ARM_ARCH_NONE;
347 /* Must be long enough to hold any of the names in arm_cpus. */
348 static char selected_cpu_name[20];
349
350 extern FLONUM_TYPE generic_floating_point_number;
351
352 /* Return if no cpu was selected on command-line. */
353 static bfd_boolean
354 no_cpu_selected (void)
355 {
356 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
357 }
358
359 #ifdef OBJ_ELF
360 # ifdef EABI_DEFAULT
361 static int meabi_flags = EABI_DEFAULT;
362 # else
363 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
364 # endif
365
366 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
367
368 bfd_boolean
369 arm_is_eabi (void)
370 {
371 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
372 }
373 #endif
374
375 #ifdef OBJ_ELF
376 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
377 symbolS * GOT_symbol;
378 #endif
379
380 /* 0: assemble for ARM,
381 1: assemble for Thumb,
382 2: assemble for Thumb even though target CPU does not support thumb
383 instructions. */
384 static int thumb_mode = 0;
385 /* A value distinct from the possible values for thumb_mode that we
386 can use to record whether thumb_mode has been copied into the
387 tc_frag_data field of a frag. */
388 #define MODE_RECORDED (1 << 4)
389
390 /* Specifies the intrinsic IT insn behavior mode. */
391 enum implicit_it_mode
392 {
393 IMPLICIT_IT_MODE_NEVER = 0x00,
394 IMPLICIT_IT_MODE_ARM = 0x01,
395 IMPLICIT_IT_MODE_THUMB = 0x02,
396 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
397 };
398 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
399
400 /* If unified_syntax is true, we are processing the new unified
401 ARM/Thumb syntax. Important differences from the old ARM mode:
402
403 - Immediate operands do not require a # prefix.
404 - Conditional affixes always appear at the end of the
405 instruction. (For backward compatibility, those instructions
406 that formerly had them in the middle, continue to accept them
407 there.)
408 - The IT instruction may appear, and if it does is validated
409 against subsequent conditional affixes. It does not generate
410 machine code.
411
412 Important differences from the old Thumb mode:
413
414 - Immediate operands do not require a # prefix.
415 - Most of the V6T2 instructions are only available in unified mode.
416 - The .N and .W suffixes are recognized and honored (it is an error
417 if they cannot be honored).
418 - All instructions set the flags if and only if they have an 's' affix.
419 - Conditional affixes may be used. They are validated against
420 preceding IT instructions. Unlike ARM mode, you cannot use a
421 conditional affix except in the scope of an IT instruction. */
422
423 static bfd_boolean unified_syntax = FALSE;
424
425 /* An immediate operand can start with #, and ld*, st*, pld operands
426 can contain [ and ]. We need to tell APP not to elide whitespace
427 before a [, which can appear as the first operand for pld.
428 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
429 const char arm_symbol_chars[] = "#[]{}";
430
431 enum neon_el_type
432 {
433 NT_invtype,
434 NT_untyped,
435 NT_integer,
436 NT_float,
437 NT_poly,
438 NT_signed,
439 NT_unsigned
440 };
441
442 struct neon_type_el
443 {
444 enum neon_el_type type;
445 unsigned size;
446 };
447
448 #define NEON_MAX_TYPE_ELS 4
449
450 struct neon_type
451 {
452 struct neon_type_el el[NEON_MAX_TYPE_ELS];
453 unsigned elems;
454 };
455
456 enum pred_instruction_type
457 {
458 OUTSIDE_PRED_INSN,
459 INSIDE_VPT_INSN,
460 INSIDE_IT_INSN,
461 INSIDE_IT_LAST_INSN,
462 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
463 if inside, should be the last one. */
464 NEUTRAL_IT_INSN, /* This could be either inside or outside,
465 i.e. BKPT and NOP. */
466 IT_INSN, /* The IT insn has been parsed. */
467 VPT_INSN, /* The VPT/VPST insn has been parsed. */
468 MVE_OUTSIDE_PRED_INSN , /* Instruction to indicate a MVE instruction without
469 a predication code. */
470 MVE_UNPREDICABLE_INSN /* MVE instruction that is non-predicable. */
471 };
472
473 /* The maximum number of operands we need. */
474 #define ARM_IT_MAX_OPERANDS 6
475 #define ARM_IT_MAX_RELOCS 3
476
477 struct arm_it
478 {
479 const char * error;
480 unsigned long instruction;
481 int size;
482 int size_req;
483 int cond;
484 /* "uncond_value" is set to the value in place of the conditional field in
485 unconditional versions of the instruction, or -1 if nothing is
486 appropriate. */
487 int uncond_value;
488 struct neon_type vectype;
489 /* This does not indicate an actual NEON instruction, only that
490 the mnemonic accepts neon-style type suffixes. */
491 int is_neon;
492 /* Set to the opcode if the instruction needs relaxation.
493 Zero if the instruction is not relaxed. */
494 unsigned long relax;
495 struct
496 {
497 bfd_reloc_code_real_type type;
498 expressionS exp;
499 int pc_rel;
500 } relocs[ARM_IT_MAX_RELOCS];
501
502 enum pred_instruction_type pred_insn_type;
503
504 struct
505 {
506 unsigned reg;
507 signed int imm;
508 struct neon_type_el vectype;
509 unsigned present : 1; /* Operand present. */
510 unsigned isreg : 1; /* Operand was a register. */
511 unsigned immisreg : 2; /* .imm field is a second register.
512 0: imm, 1: gpr, 2: MVE Q-register. */
513 unsigned isscalar : 2; /* Operand is a (SIMD) scalar:
514 0) not scalar,
515 1) Neon scalar,
516 2) MVE scalar. */
517 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
518 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
519 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
520 instructions. This allows us to disambiguate ARM <-> vector insns. */
521 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
522 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
523 unsigned isquad : 1; /* Operand is SIMD quad register. */
524 unsigned issingle : 1; /* Operand is VFP single-precision register. */
525 unsigned iszr : 1; /* Operand is ZR register. */
526 unsigned hasreloc : 1; /* Operand has relocation suffix. */
527 unsigned writeback : 1; /* Operand has trailing ! */
528 unsigned preind : 1; /* Preindexed address. */
529 unsigned postind : 1; /* Postindexed address. */
530 unsigned negative : 1; /* Index register was negated. */
531 unsigned shifted : 1; /* Shift applied to operation. */
532 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
533 } operands[ARM_IT_MAX_OPERANDS];
534 };
535
536 static struct arm_it inst;
537
538 #define NUM_FLOAT_VALS 8
539
540 const char * fp_const[] =
541 {
542 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
543 };
544
545 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
546
547 #define FAIL (-1)
548 #define SUCCESS (0)
549
550 #define SUFF_S 1
551 #define SUFF_D 2
552 #define SUFF_E 3
553 #define SUFF_P 4
554
555 #define CP_T_X 0x00008000
556 #define CP_T_Y 0x00400000
557
558 #define CONDS_BIT 0x00100000
559 #define LOAD_BIT 0x00100000
560
561 #define DOUBLE_LOAD_FLAG 0x00000001
562
563 struct asm_cond
564 {
565 const char * template_name;
566 unsigned long value;
567 };
568
569 #define COND_ALWAYS 0xE
570
571 struct asm_psr
572 {
573 const char * template_name;
574 unsigned long field;
575 };
576
577 struct asm_barrier_opt
578 {
579 const char * template_name;
580 unsigned long value;
581 const arm_feature_set arch;
582 };
583
584 /* The bit that distinguishes CPSR and SPSR. */
585 #define SPSR_BIT (1 << 22)
586
587 /* The individual PSR flag bits. */
588 #define PSR_c (1 << 16)
589 #define PSR_x (1 << 17)
590 #define PSR_s (1 << 18)
591 #define PSR_f (1 << 19)
592
593 struct reloc_entry
594 {
595 const char * name;
596 bfd_reloc_code_real_type reloc;
597 };
598
599 enum vfp_reg_pos
600 {
601 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
602 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
603 };
604
605 enum vfp_ldstm_type
606 {
607 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
608 };
609
610 /* Bits for DEFINED field in neon_typed_alias. */
611 #define NTA_HASTYPE 1
612 #define NTA_HASINDEX 2
613
614 struct neon_typed_alias
615 {
616 unsigned char defined;
617 unsigned char index;
618 struct neon_type_el eltype;
619 };
620
621 /* ARM register categories. This includes coprocessor numbers and various
622 architecture extensions' registers. Each entry should have an error message
623 in reg_expected_msgs below. */
624 enum arm_reg_type
625 {
626 REG_TYPE_RN,
627 REG_TYPE_CP,
628 REG_TYPE_CN,
629 REG_TYPE_FN,
630 REG_TYPE_VFS,
631 REG_TYPE_VFD,
632 REG_TYPE_NQ,
633 REG_TYPE_VFSD,
634 REG_TYPE_NDQ,
635 REG_TYPE_NSD,
636 REG_TYPE_NSDQ,
637 REG_TYPE_VFC,
638 REG_TYPE_MVF,
639 REG_TYPE_MVD,
640 REG_TYPE_MVFX,
641 REG_TYPE_MVDX,
642 REG_TYPE_MVAX,
643 REG_TYPE_MQ,
644 REG_TYPE_DSPSC,
645 REG_TYPE_MMXWR,
646 REG_TYPE_MMXWC,
647 REG_TYPE_MMXWCG,
648 REG_TYPE_XSCALE,
649 REG_TYPE_RNB,
650 REG_TYPE_ZR
651 };
652
653 /* Structure for a hash table entry for a register.
654 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
655 information which states whether a vector type or index is specified (for a
656 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
657 struct reg_entry
658 {
659 const char * name;
660 unsigned int number;
661 unsigned char type;
662 unsigned char builtin;
663 struct neon_typed_alias * neon;
664 };
665
666 /* Diagnostics used when we don't get a register of the expected type. */
667 const char * const reg_expected_msgs[] =
668 {
669 [REG_TYPE_RN] = N_("ARM register expected"),
670 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
671 [REG_TYPE_CN] = N_("co-processor register expected"),
672 [REG_TYPE_FN] = N_("FPA register expected"),
673 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
674 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
675 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
676 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
677 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
678 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
679 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
680 " expected"),
681 [REG_TYPE_VFC] = N_("VFP system register expected"),
682 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
683 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
684 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
685 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
686 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
687 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
688 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
689 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
690 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
691 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
692 [REG_TYPE_MQ] = N_("MVE vector register expected"),
693 [REG_TYPE_RNB] = N_("")
694 };
695
696 /* Some well known registers that we refer to directly elsewhere. */
697 #define REG_R12 12
698 #define REG_SP 13
699 #define REG_LR 14
700 #define REG_PC 15
701
702 /* ARM instructions take 4bytes in the object file, Thumb instructions
703 take 2: */
704 #define INSN_SIZE 4
705
706 struct asm_opcode
707 {
708 /* Basic string to match. */
709 const char * template_name;
710
711 /* Parameters to instruction. */
712 unsigned int operands[8];
713
714 /* Conditional tag - see opcode_lookup. */
715 unsigned int tag : 4;
716
717 /* Basic instruction code. */
718 unsigned int avalue;
719
720 /* Thumb-format instruction code. */
721 unsigned int tvalue;
722
723 /* Which architecture variant provides this instruction. */
724 const arm_feature_set * avariant;
725 const arm_feature_set * tvariant;
726
727 /* Function to call to encode instruction in ARM format. */
728 void (* aencode) (void);
729
730 /* Function to call to encode instruction in Thumb format. */
731 void (* tencode) (void);
732
733 /* Indicates whether this instruction may be vector predicated. */
734 unsigned int mayBeVecPred : 1;
735 };
736
737 /* Defines for various bits that we will want to toggle. */
738 #define INST_IMMEDIATE 0x02000000
739 #define OFFSET_REG 0x02000000
740 #define HWOFFSET_IMM 0x00400000
741 #define SHIFT_BY_REG 0x00000010
742 #define PRE_INDEX 0x01000000
743 #define INDEX_UP 0x00800000
744 #define WRITE_BACK 0x00200000
745 #define LDM_TYPE_2_OR_3 0x00400000
746 #define CPSI_MMOD 0x00020000
747
748 #define LITERAL_MASK 0xf000f000
749 #define OPCODE_MASK 0xfe1fffff
750 #define V4_STR_BIT 0x00000020
751 #define VLDR_VMOV_SAME 0x0040f000
752
753 #define T2_SUBS_PC_LR 0xf3de8f00
754
755 #define DATA_OP_SHIFT 21
756 #define SBIT_SHIFT 20
757
758 #define T2_OPCODE_MASK 0xfe1fffff
759 #define T2_DATA_OP_SHIFT 21
760 #define T2_SBIT_SHIFT 20
761
762 #define A_COND_MASK 0xf0000000
763 #define A_PUSH_POP_OP_MASK 0x0fff0000
764
765 /* Opcodes for pushing/poping registers to/from the stack. */
766 #define A1_OPCODE_PUSH 0x092d0000
767 #define A2_OPCODE_PUSH 0x052d0004
768 #define A2_OPCODE_POP 0x049d0004
769
770 /* Codes to distinguish the arithmetic instructions. */
771 #define OPCODE_AND 0
772 #define OPCODE_EOR 1
773 #define OPCODE_SUB 2
774 #define OPCODE_RSB 3
775 #define OPCODE_ADD 4
776 #define OPCODE_ADC 5
777 #define OPCODE_SBC 6
778 #define OPCODE_RSC 7
779 #define OPCODE_TST 8
780 #define OPCODE_TEQ 9
781 #define OPCODE_CMP 10
782 #define OPCODE_CMN 11
783 #define OPCODE_ORR 12
784 #define OPCODE_MOV 13
785 #define OPCODE_BIC 14
786 #define OPCODE_MVN 15
787
788 #define T2_OPCODE_AND 0
789 #define T2_OPCODE_BIC 1
790 #define T2_OPCODE_ORR 2
791 #define T2_OPCODE_ORN 3
792 #define T2_OPCODE_EOR 4
793 #define T2_OPCODE_ADD 8
794 #define T2_OPCODE_ADC 10
795 #define T2_OPCODE_SBC 11
796 #define T2_OPCODE_SUB 13
797 #define T2_OPCODE_RSB 14
798
799 #define T_OPCODE_MUL 0x4340
800 #define T_OPCODE_TST 0x4200
801 #define T_OPCODE_CMN 0x42c0
802 #define T_OPCODE_NEG 0x4240
803 #define T_OPCODE_MVN 0x43c0
804
805 #define T_OPCODE_ADD_R3 0x1800
806 #define T_OPCODE_SUB_R3 0x1a00
807 #define T_OPCODE_ADD_HI 0x4400
808 #define T_OPCODE_ADD_ST 0xb000
809 #define T_OPCODE_SUB_ST 0xb080
810 #define T_OPCODE_ADD_SP 0xa800
811 #define T_OPCODE_ADD_PC 0xa000
812 #define T_OPCODE_ADD_I8 0x3000
813 #define T_OPCODE_SUB_I8 0x3800
814 #define T_OPCODE_ADD_I3 0x1c00
815 #define T_OPCODE_SUB_I3 0x1e00
816
817 #define T_OPCODE_ASR_R 0x4100
818 #define T_OPCODE_LSL_R 0x4080
819 #define T_OPCODE_LSR_R 0x40c0
820 #define T_OPCODE_ROR_R 0x41c0
821 #define T_OPCODE_ASR_I 0x1000
822 #define T_OPCODE_LSL_I 0x0000
823 #define T_OPCODE_LSR_I 0x0800
824
825 #define T_OPCODE_MOV_I8 0x2000
826 #define T_OPCODE_CMP_I8 0x2800
827 #define T_OPCODE_CMP_LR 0x4280
828 #define T_OPCODE_MOV_HR 0x4600
829 #define T_OPCODE_CMP_HR 0x4500
830
831 #define T_OPCODE_LDR_PC 0x4800
832 #define T_OPCODE_LDR_SP 0x9800
833 #define T_OPCODE_STR_SP 0x9000
834 #define T_OPCODE_LDR_IW 0x6800
835 #define T_OPCODE_STR_IW 0x6000
836 #define T_OPCODE_LDR_IH 0x8800
837 #define T_OPCODE_STR_IH 0x8000
838 #define T_OPCODE_LDR_IB 0x7800
839 #define T_OPCODE_STR_IB 0x7000
840 #define T_OPCODE_LDR_RW 0x5800
841 #define T_OPCODE_STR_RW 0x5000
842 #define T_OPCODE_LDR_RH 0x5a00
843 #define T_OPCODE_STR_RH 0x5200
844 #define T_OPCODE_LDR_RB 0x5c00
845 #define T_OPCODE_STR_RB 0x5400
846
847 #define T_OPCODE_PUSH 0xb400
848 #define T_OPCODE_POP 0xbc00
849
850 #define T_OPCODE_BRANCH 0xe000
851
852 #define THUMB_SIZE 2 /* Size of thumb instruction. */
853 #define THUMB_PP_PC_LR 0x0100
854 #define THUMB_LOAD_BIT 0x0800
855 #define THUMB2_LOAD_BIT 0x00100000
856
857 #define BAD_SYNTAX _("syntax error")
858 #define BAD_ARGS _("bad arguments to instruction")
859 #define BAD_SP _("r13 not allowed here")
860 #define BAD_PC _("r15 not allowed here")
861 #define BAD_ODD _("Odd register not allowed here")
862 #define BAD_EVEN _("Even register not allowed here")
863 #define BAD_COND _("instruction cannot be conditional")
864 #define BAD_OVERLAP _("registers may not be the same")
865 #define BAD_HIREG _("lo register required")
866 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
867 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode")
868 #define BAD_BRANCH _("branch must be last instruction in IT block")
869 #define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
870 #define BAD_NOT_IT _("instruction not allowed in IT block")
871 #define BAD_NOT_VPT _("instruction missing MVE vector predication code")
872 #define BAD_FPU _("selected FPU does not support instruction")
873 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
874 #define BAD_OUT_VPT \
875 _("vector predicated instruction should be in VPT/VPST block")
876 #define BAD_IT_COND _("incorrect condition in IT block")
877 #define BAD_VPT_COND _("incorrect condition in VPT/VPST block")
878 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
879 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
880 #define BAD_PC_ADDRESSING \
881 _("cannot use register index with PC-relative addressing")
882 #define BAD_PC_WRITEBACK \
883 _("cannot use writeback with PC-relative addressing")
884 #define BAD_RANGE _("branch out of range")
885 #define BAD_FP16 _("selected processor does not support fp16 instruction")
886 #define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
887 #define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
888 #define MVE_NOT_IT _("Warning: instruction is UNPREDICTABLE in an IT " \
889 "block")
890 #define MVE_NOT_VPT _("Warning: instruction is UNPREDICTABLE in a VPT " \
891 "block")
892 #define MVE_BAD_PC _("Warning: instruction is UNPREDICTABLE with PC" \
893 " operand")
894 #define MVE_BAD_SP _("Warning: instruction is UNPREDICTABLE with SP" \
895 " operand")
896 #define BAD_SIMD_TYPE _("bad type in SIMD instruction")
897 #define BAD_MVE_AUTO \
898 _("GAS auto-detection mode and -march=all is deprecated for MVE, please" \
899 " use a valid -march or -mcpu option.")
900 #define BAD_MVE_SRCDEST _("Warning: 32-bit element size and same destination "\
901 "and source operands makes instruction UNPREDICTABLE")
902 #define BAD_EL_TYPE _("bad element type for instruction")
903 #define MVE_BAD_QREG _("MVE vector register Q[0..7] expected")
904
905 static struct hash_control * arm_ops_hsh;
906 static struct hash_control * arm_cond_hsh;
907 static struct hash_control * arm_vcond_hsh;
908 static struct hash_control * arm_shift_hsh;
909 static struct hash_control * arm_psr_hsh;
910 static struct hash_control * arm_v7m_psr_hsh;
911 static struct hash_control * arm_reg_hsh;
912 static struct hash_control * arm_reloc_hsh;
913 static struct hash_control * arm_barrier_opt_hsh;
914
915 /* Stuff needed to resolve the label ambiguity
916 As:
917 ...
918 label: <insn>
919 may differ from:
920 ...
921 label:
922 <insn> */
923
924 symbolS * last_label_seen;
925 static int label_is_thumb_function_name = FALSE;
926
927 /* Literal pool structure. Held on a per-section
928 and per-sub-section basis. */
929
930 #define MAX_LITERAL_POOL_SIZE 1024
931 typedef struct literal_pool
932 {
933 expressionS literals [MAX_LITERAL_POOL_SIZE];
934 unsigned int next_free_entry;
935 unsigned int id;
936 symbolS * symbol;
937 segT section;
938 subsegT sub_section;
939 #ifdef OBJ_ELF
940 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
941 #endif
942 struct literal_pool * next;
943 unsigned int alignment;
944 } literal_pool;
945
946 /* Pointer to a linked list of literal pools. */
947 literal_pool * list_of_pools = NULL;
948
949 typedef enum asmfunc_states
950 {
951 OUTSIDE_ASMFUNC,
952 WAITING_ASMFUNC_NAME,
953 WAITING_ENDASMFUNC
954 } asmfunc_states;
955
956 static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
957
958 #ifdef OBJ_ELF
959 # define now_pred seg_info (now_seg)->tc_segment_info_data.current_pred
960 #else
961 static struct current_pred now_pred;
962 #endif
963
964 static inline int
965 now_pred_compatible (int cond)
966 {
967 return (cond & ~1) == (now_pred.cc & ~1);
968 }
969
970 static inline int
971 conditional_insn (void)
972 {
973 return inst.cond != COND_ALWAYS;
974 }
975
976 static int in_pred_block (void);
977
978 static int handle_pred_state (void);
979
980 static void force_automatic_it_block_close (void);
981
982 static void it_fsm_post_encode (void);
983
984 #define set_pred_insn_type(type) \
985 do \
986 { \
987 inst.pred_insn_type = type; \
988 if (handle_pred_state () == FAIL) \
989 return; \
990 } \
991 while (0)
992
993 #define set_pred_insn_type_nonvoid(type, failret) \
994 do \
995 { \
996 inst.pred_insn_type = type; \
997 if (handle_pred_state () == FAIL) \
998 return failret; \
999 } \
1000 while(0)
1001
1002 #define set_pred_insn_type_last() \
1003 do \
1004 { \
1005 if (inst.cond == COND_ALWAYS) \
1006 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN); \
1007 else \
1008 set_pred_insn_type (INSIDE_IT_LAST_INSN); \
1009 } \
1010 while (0)
1011
1012 /* Toggle value[pos]. */
1013 #define TOGGLE_BIT(value, pos) (value ^ (1 << pos))
1014
1015 /* Pure syntax. */
1016
1017 /* This array holds the chars that always start a comment. If the
1018 pre-processor is disabled, these aren't very useful. */
1019 char arm_comment_chars[] = "@";
1020
1021 /* This array holds the chars that only start a comment at the beginning of
1022 a line. If the line seems to have the form '# 123 filename'
1023 .line and .file directives will appear in the pre-processed output. */
1024 /* Note that input_file.c hand checks for '#' at the beginning of the
1025 first line of the input file. This is because the compiler outputs
1026 #NO_APP at the beginning of its output. */
1027 /* Also note that comments like this one will always work. */
1028 const char line_comment_chars[] = "#";
1029
1030 char arm_line_separator_chars[] = ";";
1031
1032 /* Chars that can be used to separate mant
1033 from exp in floating point numbers. */
1034 const char EXP_CHARS[] = "eE";
1035
1036 /* Chars that mean this number is a floating point constant. */
1037 /* As in 0f12.456 */
1038 /* or 0d1.2345e12 */
1039
1040 const char FLT_CHARS[] = "rRsSfFdDxXeEpPHh";
1041
1042 /* Prefix characters that indicate the start of an immediate
1043 value. */
1044 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
1045
1046 /* Separator character handling. */
1047
1048 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1049
1050 enum fp_16bit_format
1051 {
1052 ARM_FP16_FORMAT_IEEE = 0x1,
1053 ARM_FP16_FORMAT_ALTERNATIVE = 0x2,
1054 ARM_FP16_FORMAT_DEFAULT = 0x3
1055 };
1056
1057 static enum fp_16bit_format fp16_format = ARM_FP16_FORMAT_DEFAULT;
1058
1059
1060 static inline int
1061 skip_past_char (char ** str, char c)
1062 {
1063 /* PR gas/14987: Allow for whitespace before the expected character. */
1064 skip_whitespace (*str);
1065
1066 if (**str == c)
1067 {
1068 (*str)++;
1069 return SUCCESS;
1070 }
1071 else
1072 return FAIL;
1073 }
1074
1075 #define skip_past_comma(str) skip_past_char (str, ',')
1076
1077 /* Arithmetic expressions (possibly involving symbols). */
1078
1079 /* Return TRUE if anything in the expression is a bignum. */
1080
1081 static bfd_boolean
1082 walk_no_bignums (symbolS * sp)
1083 {
1084 if (symbol_get_value_expression (sp)->X_op == O_big)
1085 return TRUE;
1086
1087 if (symbol_get_value_expression (sp)->X_add_symbol)
1088 {
1089 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
1090 || (symbol_get_value_expression (sp)->X_op_symbol
1091 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
1092 }
1093
1094 return FALSE;
1095 }
1096
1097 static bfd_boolean in_my_get_expression = FALSE;
1098
1099 /* Third argument to my_get_expression. */
1100 #define GE_NO_PREFIX 0
1101 #define GE_IMM_PREFIX 1
1102 #define GE_OPT_PREFIX 2
1103 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1104 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1105 #define GE_OPT_PREFIX_BIG 3
1106
1107 static int
1108 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
1109 {
1110 char * save_in;
1111
1112 /* In unified syntax, all prefixes are optional. */
1113 if (unified_syntax)
1114 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
1115 : GE_OPT_PREFIX;
1116
1117 switch (prefix_mode)
1118 {
1119 case GE_NO_PREFIX: break;
1120 case GE_IMM_PREFIX:
1121 if (!is_immediate_prefix (**str))
1122 {
1123 inst.error = _("immediate expression requires a # prefix");
1124 return FAIL;
1125 }
1126 (*str)++;
1127 break;
1128 case GE_OPT_PREFIX:
1129 case GE_OPT_PREFIX_BIG:
1130 if (is_immediate_prefix (**str))
1131 (*str)++;
1132 break;
1133 default:
1134 abort ();
1135 }
1136
1137 memset (ep, 0, sizeof (expressionS));
1138
1139 save_in = input_line_pointer;
1140 input_line_pointer = *str;
1141 in_my_get_expression = TRUE;
1142 expression (ep);
1143 in_my_get_expression = FALSE;
1144
1145 if (ep->X_op == O_illegal || ep->X_op == O_absent)
1146 {
1147 /* We found a bad or missing expression in md_operand(). */
1148 *str = input_line_pointer;
1149 input_line_pointer = save_in;
1150 if (inst.error == NULL)
1151 inst.error = (ep->X_op == O_absent
1152 ? _("missing expression") :_("bad expression"));
1153 return 1;
1154 }
1155
1156 /* Get rid of any bignums now, so that we don't generate an error for which
1157 we can't establish a line number later on. Big numbers are never valid
1158 in instructions, which is where this routine is always called. */
1159 if (prefix_mode != GE_OPT_PREFIX_BIG
1160 && (ep->X_op == O_big
1161 || (ep->X_add_symbol
1162 && (walk_no_bignums (ep->X_add_symbol)
1163 || (ep->X_op_symbol
1164 && walk_no_bignums (ep->X_op_symbol))))))
1165 {
1166 inst.error = _("invalid constant");
1167 *str = input_line_pointer;
1168 input_line_pointer = save_in;
1169 return 1;
1170 }
1171
1172 *str = input_line_pointer;
1173 input_line_pointer = save_in;
1174 return SUCCESS;
1175 }
1176
1177 /* Turn a string in input_line_pointer into a floating point constant
1178 of type TYPE, and store the appropriate bytes in *LITP. The number
1179 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1180 returned, or NULL on OK.
1181
1182 Note that fp constants aren't represent in the normal way on the ARM.
1183 In big endian mode, things are as expected. However, in little endian
1184 mode fp constants are big-endian word-wise, and little-endian byte-wise
1185 within the words. For example, (double) 1.1 in big endian mode is
1186 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1187 the byte sequence 99 99 f1 3f 9a 99 99 99.
1188
1189 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1190
1191 const char *
1192 md_atof (int type, char * litP, int * sizeP)
1193 {
1194 int prec;
1195 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1196 char *t;
1197 int i;
1198
1199 switch (type)
1200 {
1201 case 'H':
1202 case 'h':
1203 prec = 1;
1204 break;
1205
1206 case 'f':
1207 case 'F':
1208 case 's':
1209 case 'S':
1210 prec = 2;
1211 break;
1212
1213 case 'd':
1214 case 'D':
1215 case 'r':
1216 case 'R':
1217 prec = 4;
1218 break;
1219
1220 case 'x':
1221 case 'X':
1222 prec = 5;
1223 break;
1224
1225 case 'p':
1226 case 'P':
1227 prec = 5;
1228 break;
1229
1230 default:
1231 *sizeP = 0;
1232 return _("Unrecognized or unsupported floating point constant");
1233 }
1234
1235 t = atof_ieee (input_line_pointer, type, words);
1236 if (t)
1237 input_line_pointer = t;
1238 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1239
1240 if (target_big_endian || prec == 1)
1241 for (i = 0; i < prec; i++)
1242 {
1243 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1244 litP += sizeof (LITTLENUM_TYPE);
1245 }
1246 else if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1247 for (i = prec - 1; i >= 0; i--)
1248 {
1249 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1250 litP += sizeof (LITTLENUM_TYPE);
1251 }
1252 else
1253 /* For a 4 byte float the order of elements in `words' is 1 0.
1254 For an 8 byte float the order is 1 0 3 2. */
1255 for (i = 0; i < prec; i += 2)
1256 {
1257 md_number_to_chars (litP, (valueT) words[i + 1],
1258 sizeof (LITTLENUM_TYPE));
1259 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1260 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1261 litP += 2 * sizeof (LITTLENUM_TYPE);
1262 }
1263
1264 return NULL;
1265 }
1266
1267 /* We handle all bad expressions here, so that we can report the faulty
1268 instruction in the error message. */
1269
1270 void
1271 md_operand (expressionS * exp)
1272 {
1273 if (in_my_get_expression)
1274 exp->X_op = O_illegal;
1275 }
1276
1277 /* Immediate values. */
1278
1279 #ifdef OBJ_ELF
1280 /* Generic immediate-value read function for use in directives.
1281 Accepts anything that 'expression' can fold to a constant.
1282 *val receives the number. */
1283
1284 static int
1285 immediate_for_directive (int *val)
1286 {
1287 expressionS exp;
1288 exp.X_op = O_illegal;
1289
1290 if (is_immediate_prefix (*input_line_pointer))
1291 {
1292 input_line_pointer++;
1293 expression (&exp);
1294 }
1295
1296 if (exp.X_op != O_constant)
1297 {
1298 as_bad (_("expected #constant"));
1299 ignore_rest_of_line ();
1300 return FAIL;
1301 }
1302 *val = exp.X_add_number;
1303 return SUCCESS;
1304 }
1305 #endif
1306
1307 /* Register parsing. */
1308
1309 /* Generic register parser. CCP points to what should be the
1310 beginning of a register name. If it is indeed a valid register
1311 name, advance CCP over it and return the reg_entry structure;
1312 otherwise return NULL. Does not issue diagnostics. */
1313
1314 static struct reg_entry *
1315 arm_reg_parse_multi (char **ccp)
1316 {
1317 char *start = *ccp;
1318 char *p;
1319 struct reg_entry *reg;
1320
1321 skip_whitespace (start);
1322
1323 #ifdef REGISTER_PREFIX
1324 if (*start != REGISTER_PREFIX)
1325 return NULL;
1326 start++;
1327 #endif
1328 #ifdef OPTIONAL_REGISTER_PREFIX
1329 if (*start == OPTIONAL_REGISTER_PREFIX)
1330 start++;
1331 #endif
1332
1333 p = start;
1334 if (!ISALPHA (*p) || !is_name_beginner (*p))
1335 return NULL;
1336
1337 do
1338 p++;
1339 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1340
1341 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1342
1343 if (!reg)
1344 return NULL;
1345
1346 *ccp = p;
1347 return reg;
1348 }
1349
1350 static int
1351 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1352 enum arm_reg_type type)
1353 {
1354 /* Alternative syntaxes are accepted for a few register classes. */
1355 switch (type)
1356 {
1357 case REG_TYPE_MVF:
1358 case REG_TYPE_MVD:
1359 case REG_TYPE_MVFX:
1360 case REG_TYPE_MVDX:
1361 /* Generic coprocessor register names are allowed for these. */
1362 if (reg && reg->type == REG_TYPE_CN)
1363 return reg->number;
1364 break;
1365
1366 case REG_TYPE_CP:
1367 /* For backward compatibility, a bare number is valid here. */
1368 {
1369 unsigned long processor = strtoul (start, ccp, 10);
1370 if (*ccp != start && processor <= 15)
1371 return processor;
1372 }
1373 /* Fall through. */
1374
1375 case REG_TYPE_MMXWC:
1376 /* WC includes WCG. ??? I'm not sure this is true for all
1377 instructions that take WC registers. */
1378 if (reg && reg->type == REG_TYPE_MMXWCG)
1379 return reg->number;
1380 break;
1381
1382 default:
1383 break;
1384 }
1385
1386 return FAIL;
1387 }
1388
1389 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1390 return value is the register number or FAIL. */
1391
1392 static int
1393 arm_reg_parse (char **ccp, enum arm_reg_type type)
1394 {
1395 char *start = *ccp;
1396 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1397 int ret;
1398
1399 /* Do not allow a scalar (reg+index) to parse as a register. */
1400 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1401 return FAIL;
1402
1403 if (reg && reg->type == type)
1404 return reg->number;
1405
1406 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1407 return ret;
1408
1409 *ccp = start;
1410 return FAIL;
1411 }
1412
1413 /* Parse a Neon type specifier. *STR should point at the leading '.'
1414 character. Does no verification at this stage that the type fits the opcode
1415 properly. E.g.,
1416
1417 .i32.i32.s16
1418 .s32.f32
1419 .u16
1420
1421 Can all be legally parsed by this function.
1422
1423 Fills in neon_type struct pointer with parsed information, and updates STR
1424 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1425 type, FAIL if not. */
1426
1427 static int
1428 parse_neon_type (struct neon_type *type, char **str)
1429 {
1430 char *ptr = *str;
1431
1432 if (type)
1433 type->elems = 0;
1434
1435 while (type->elems < NEON_MAX_TYPE_ELS)
1436 {
1437 enum neon_el_type thistype = NT_untyped;
1438 unsigned thissize = -1u;
1439
1440 if (*ptr != '.')
1441 break;
1442
1443 ptr++;
1444
1445 /* Just a size without an explicit type. */
1446 if (ISDIGIT (*ptr))
1447 goto parsesize;
1448
1449 switch (TOLOWER (*ptr))
1450 {
1451 case 'i': thistype = NT_integer; break;
1452 case 'f': thistype = NT_float; break;
1453 case 'p': thistype = NT_poly; break;
1454 case 's': thistype = NT_signed; break;
1455 case 'u': thistype = NT_unsigned; break;
1456 case 'd':
1457 thistype = NT_float;
1458 thissize = 64;
1459 ptr++;
1460 goto done;
1461 default:
1462 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1463 return FAIL;
1464 }
1465
1466 ptr++;
1467
1468 /* .f is an abbreviation for .f32. */
1469 if (thistype == NT_float && !ISDIGIT (*ptr))
1470 thissize = 32;
1471 else
1472 {
1473 parsesize:
1474 thissize = strtoul (ptr, &ptr, 10);
1475
1476 if (thissize != 8 && thissize != 16 && thissize != 32
1477 && thissize != 64)
1478 {
1479 as_bad (_("bad size %d in type specifier"), thissize);
1480 return FAIL;
1481 }
1482 }
1483
1484 done:
1485 if (type)
1486 {
1487 type->el[type->elems].type = thistype;
1488 type->el[type->elems].size = thissize;
1489 type->elems++;
1490 }
1491 }
1492
1493 /* Empty/missing type is not a successful parse. */
1494 if (type->elems == 0)
1495 return FAIL;
1496
1497 *str = ptr;
1498
1499 return SUCCESS;
1500 }
1501
1502 /* Errors may be set multiple times during parsing or bit encoding
1503 (particularly in the Neon bits), but usually the earliest error which is set
1504 will be the most meaningful. Avoid overwriting it with later (cascading)
1505 errors by calling this function. */
1506
1507 static void
1508 first_error (const char *err)
1509 {
1510 if (!inst.error)
1511 inst.error = err;
1512 }
1513
1514 /* Parse a single type, e.g. ".s32", leading period included. */
1515 static int
1516 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1517 {
1518 char *str = *ccp;
1519 struct neon_type optype;
1520
1521 if (*str == '.')
1522 {
1523 if (parse_neon_type (&optype, &str) == SUCCESS)
1524 {
1525 if (optype.elems == 1)
1526 *vectype = optype.el[0];
1527 else
1528 {
1529 first_error (_("only one type should be specified for operand"));
1530 return FAIL;
1531 }
1532 }
1533 else
1534 {
1535 first_error (_("vector type expected"));
1536 return FAIL;
1537 }
1538 }
1539 else
1540 return FAIL;
1541
1542 *ccp = str;
1543
1544 return SUCCESS;
1545 }
1546
1547 /* Special meanings for indices (which have a range of 0-7), which will fit into
1548 a 4-bit integer. */
1549
1550 #define NEON_ALL_LANES 15
1551 #define NEON_INTERLEAVE_LANES 14
1552
1553 /* Record a use of the given feature. */
1554 static void
1555 record_feature_use (const arm_feature_set *feature)
1556 {
1557 if (thumb_mode)
1558 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
1559 else
1560 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
1561 }
1562
1563 /* If the given feature available in the selected CPU, mark it as used.
1564 Returns TRUE iff feature is available. */
1565 static bfd_boolean
1566 mark_feature_used (const arm_feature_set *feature)
1567 {
1568
1569 /* Do not support the use of MVE only instructions when in auto-detection or
1570 -march=all. */
1571 if (((feature == &mve_ext) || (feature == &mve_fp_ext))
1572 && ARM_CPU_IS_ANY (cpu_variant))
1573 {
1574 first_error (BAD_MVE_AUTO);
1575 return FALSE;
1576 }
1577 /* Ensure the option is valid on the current architecture. */
1578 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
1579 return FALSE;
1580
1581 /* Add the appropriate architecture feature for the barrier option used.
1582 */
1583 record_feature_use (feature);
1584
1585 return TRUE;
1586 }
1587
1588 /* Parse either a register or a scalar, with an optional type. Return the
1589 register number, and optionally fill in the actual type of the register
1590 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1591 type/index information in *TYPEINFO. */
1592
1593 static int
1594 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1595 enum arm_reg_type *rtype,
1596 struct neon_typed_alias *typeinfo)
1597 {
1598 char *str = *ccp;
1599 struct reg_entry *reg = arm_reg_parse_multi (&str);
1600 struct neon_typed_alias atype;
1601 struct neon_type_el parsetype;
1602
1603 atype.defined = 0;
1604 atype.index = -1;
1605 atype.eltype.type = NT_invtype;
1606 atype.eltype.size = -1;
1607
1608 /* Try alternate syntax for some types of register. Note these are mutually
1609 exclusive with the Neon syntax extensions. */
1610 if (reg == NULL)
1611 {
1612 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1613 if (altreg != FAIL)
1614 *ccp = str;
1615 if (typeinfo)
1616 *typeinfo = atype;
1617 return altreg;
1618 }
1619
1620 /* Undo polymorphism when a set of register types may be accepted. */
1621 if ((type == REG_TYPE_NDQ
1622 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1623 || (type == REG_TYPE_VFSD
1624 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1625 || (type == REG_TYPE_NSDQ
1626 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1627 || reg->type == REG_TYPE_NQ))
1628 || (type == REG_TYPE_NSD
1629 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1630 || (type == REG_TYPE_MMXWC
1631 && (reg->type == REG_TYPE_MMXWCG)))
1632 type = (enum arm_reg_type) reg->type;
1633
1634 if (type == REG_TYPE_MQ)
1635 {
1636 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1637 return FAIL;
1638
1639 if (!reg || reg->type != REG_TYPE_NQ)
1640 return FAIL;
1641
1642 if (reg->number > 14 && !mark_feature_used (&fpu_vfp_ext_d32))
1643 {
1644 first_error (_("expected MVE register [q0..q7]"));
1645 return FAIL;
1646 }
1647 type = REG_TYPE_NQ;
1648 }
1649 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
1650 && (type == REG_TYPE_NQ))
1651 return FAIL;
1652
1653
1654 if (type != reg->type)
1655 return FAIL;
1656
1657 if (reg->neon)
1658 atype = *reg->neon;
1659
1660 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1661 {
1662 if ((atype.defined & NTA_HASTYPE) != 0)
1663 {
1664 first_error (_("can't redefine type for operand"));
1665 return FAIL;
1666 }
1667 atype.defined |= NTA_HASTYPE;
1668 atype.eltype = parsetype;
1669 }
1670
1671 if (skip_past_char (&str, '[') == SUCCESS)
1672 {
1673 if (type != REG_TYPE_VFD
1674 && !(type == REG_TYPE_VFS
1675 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2))
1676 && !(type == REG_TYPE_NQ
1677 && ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)))
1678 {
1679 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1680 first_error (_("only D and Q registers may be indexed"));
1681 else
1682 first_error (_("only D registers may be indexed"));
1683 return FAIL;
1684 }
1685
1686 if ((atype.defined & NTA_HASINDEX) != 0)
1687 {
1688 first_error (_("can't change index for operand"));
1689 return FAIL;
1690 }
1691
1692 atype.defined |= NTA_HASINDEX;
1693
1694 if (skip_past_char (&str, ']') == SUCCESS)
1695 atype.index = NEON_ALL_LANES;
1696 else
1697 {
1698 expressionS exp;
1699
1700 my_get_expression (&exp, &str, GE_NO_PREFIX);
1701
1702 if (exp.X_op != O_constant)
1703 {
1704 first_error (_("constant expression required"));
1705 return FAIL;
1706 }
1707
1708 if (skip_past_char (&str, ']') == FAIL)
1709 return FAIL;
1710
1711 atype.index = exp.X_add_number;
1712 }
1713 }
1714
1715 if (typeinfo)
1716 *typeinfo = atype;
1717
1718 if (rtype)
1719 *rtype = type;
1720
1721 *ccp = str;
1722
1723 return reg->number;
1724 }
1725
1726 /* Like arm_reg_parse, but also allow the following extra features:
1727 - If RTYPE is non-zero, return the (possibly restricted) type of the
1728 register (e.g. Neon double or quad reg when either has been requested).
1729 - If this is a Neon vector type with additional type information, fill
1730 in the struct pointed to by VECTYPE (if non-NULL).
1731 This function will fault on encountering a scalar. */
1732
1733 static int
1734 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1735 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1736 {
1737 struct neon_typed_alias atype;
1738 char *str = *ccp;
1739 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1740
1741 if (reg == FAIL)
1742 return FAIL;
1743
1744 /* Do not allow regname(... to parse as a register. */
1745 if (*str == '(')
1746 return FAIL;
1747
1748 /* Do not allow a scalar (reg+index) to parse as a register. */
1749 if ((atype.defined & NTA_HASINDEX) != 0)
1750 {
1751 first_error (_("register operand expected, but got scalar"));
1752 return FAIL;
1753 }
1754
1755 if (vectype)
1756 *vectype = atype.eltype;
1757
1758 *ccp = str;
1759
1760 return reg;
1761 }
1762
1763 #define NEON_SCALAR_REG(X) ((X) >> 4)
1764 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1765
1766 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1767 have enough information to be able to do a good job bounds-checking. So, we
1768 just do easy checks here, and do further checks later. */
1769
1770 static int
1771 parse_scalar (char **ccp, int elsize, struct neon_type_el *type, enum
1772 arm_reg_type reg_type)
1773 {
1774 int reg;
1775 char *str = *ccp;
1776 struct neon_typed_alias atype;
1777 unsigned reg_size;
1778
1779 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
1780
1781 switch (reg_type)
1782 {
1783 case REG_TYPE_VFS:
1784 reg_size = 32;
1785 break;
1786 case REG_TYPE_VFD:
1787 reg_size = 64;
1788 break;
1789 case REG_TYPE_MQ:
1790 reg_size = 128;
1791 break;
1792 default:
1793 gas_assert (0);
1794 return FAIL;
1795 }
1796
1797 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1798 return FAIL;
1799
1800 if (reg_type != REG_TYPE_MQ && atype.index == NEON_ALL_LANES)
1801 {
1802 first_error (_("scalar must have an index"));
1803 return FAIL;
1804 }
1805 else if (atype.index >= reg_size / elsize)
1806 {
1807 first_error (_("scalar index out of range"));
1808 return FAIL;
1809 }
1810
1811 if (type)
1812 *type = atype.eltype;
1813
1814 *ccp = str;
1815
1816 return reg * 16 + atype.index;
1817 }
1818
1819 /* Types of registers in a list. */
1820
1821 enum reg_list_els
1822 {
1823 REGLIST_RN,
1824 REGLIST_CLRM,
1825 REGLIST_VFP_S,
1826 REGLIST_VFP_S_VPR,
1827 REGLIST_VFP_D,
1828 REGLIST_VFP_D_VPR,
1829 REGLIST_NEON_D
1830 };
1831
1832 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1833
1834 static long
1835 parse_reg_list (char ** strp, enum reg_list_els etype)
1836 {
1837 char *str = *strp;
1838 long range = 0;
1839 int another_range;
1840
1841 gas_assert (etype == REGLIST_RN || etype == REGLIST_CLRM);
1842
1843 /* We come back here if we get ranges concatenated by '+' or '|'. */
1844 do
1845 {
1846 skip_whitespace (str);
1847
1848 another_range = 0;
1849
1850 if (*str == '{')
1851 {
1852 int in_range = 0;
1853 int cur_reg = -1;
1854
1855 str++;
1856 do
1857 {
1858 int reg;
1859 const char apsr_str[] = "apsr";
1860 int apsr_str_len = strlen (apsr_str);
1861
1862 reg = arm_reg_parse (&str, REGLIST_RN);
1863 if (etype == REGLIST_CLRM)
1864 {
1865 if (reg == REG_SP || reg == REG_PC)
1866 reg = FAIL;
1867 else if (reg == FAIL
1868 && !strncasecmp (str, apsr_str, apsr_str_len)
1869 && !ISALPHA (*(str + apsr_str_len)))
1870 {
1871 reg = 15;
1872 str += apsr_str_len;
1873 }
1874
1875 if (reg == FAIL)
1876 {
1877 first_error (_("r0-r12, lr or APSR expected"));
1878 return FAIL;
1879 }
1880 }
1881 else /* etype == REGLIST_RN. */
1882 {
1883 if (reg == FAIL)
1884 {
1885 first_error (_(reg_expected_msgs[REGLIST_RN]));
1886 return FAIL;
1887 }
1888 }
1889
1890 if (in_range)
1891 {
1892 int i;
1893
1894 if (reg <= cur_reg)
1895 {
1896 first_error (_("bad range in register list"));
1897 return FAIL;
1898 }
1899
1900 for (i = cur_reg + 1; i < reg; i++)
1901 {
1902 if (range & (1 << i))
1903 as_tsktsk
1904 (_("Warning: duplicated register (r%d) in register list"),
1905 i);
1906 else
1907 range |= 1 << i;
1908 }
1909 in_range = 0;
1910 }
1911
1912 if (range & (1 << reg))
1913 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1914 reg);
1915 else if (reg <= cur_reg)
1916 as_tsktsk (_("Warning: register range not in ascending order"));
1917
1918 range |= 1 << reg;
1919 cur_reg = reg;
1920 }
1921 while (skip_past_comma (&str) != FAIL
1922 || (in_range = 1, *str++ == '-'));
1923 str--;
1924
1925 if (skip_past_char (&str, '}') == FAIL)
1926 {
1927 first_error (_("missing `}'"));
1928 return FAIL;
1929 }
1930 }
1931 else if (etype == REGLIST_RN)
1932 {
1933 expressionS exp;
1934
1935 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1936 return FAIL;
1937
1938 if (exp.X_op == O_constant)
1939 {
1940 if (exp.X_add_number
1941 != (exp.X_add_number & 0x0000ffff))
1942 {
1943 inst.error = _("invalid register mask");
1944 return FAIL;
1945 }
1946
1947 if ((range & exp.X_add_number) != 0)
1948 {
1949 int regno = range & exp.X_add_number;
1950
1951 regno &= -regno;
1952 regno = (1 << regno) - 1;
1953 as_tsktsk
1954 (_("Warning: duplicated register (r%d) in register list"),
1955 regno);
1956 }
1957
1958 range |= exp.X_add_number;
1959 }
1960 else
1961 {
1962 if (inst.relocs[0].type != 0)
1963 {
1964 inst.error = _("expression too complex");
1965 return FAIL;
1966 }
1967
1968 memcpy (&inst.relocs[0].exp, &exp, sizeof (expressionS));
1969 inst.relocs[0].type = BFD_RELOC_ARM_MULTI;
1970 inst.relocs[0].pc_rel = 0;
1971 }
1972 }
1973
1974 if (*str == '|' || *str == '+')
1975 {
1976 str++;
1977 another_range = 1;
1978 }
1979 }
1980 while (another_range);
1981
1982 *strp = str;
1983 return range;
1984 }
1985
1986 /* Parse a VFP register list. If the string is invalid return FAIL.
1987 Otherwise return the number of registers, and set PBASE to the first
1988 register. Parses registers of type ETYPE.
1989 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1990 - Q registers can be used to specify pairs of D registers
1991 - { } can be omitted from around a singleton register list
1992 FIXME: This is not implemented, as it would require backtracking in
1993 some cases, e.g.:
1994 vtbl.8 d3,d4,d5
1995 This could be done (the meaning isn't really ambiguous), but doesn't
1996 fit in well with the current parsing framework.
1997 - 32 D registers may be used (also true for VFPv3).
1998 FIXME: Types are ignored in these register lists, which is probably a
1999 bug. */
2000
2001 static int
2002 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype,
2003 bfd_boolean *partial_match)
2004 {
2005 char *str = *ccp;
2006 int base_reg;
2007 int new_base;
2008 enum arm_reg_type regtype = (enum arm_reg_type) 0;
2009 int max_regs = 0;
2010 int count = 0;
2011 int warned = 0;
2012 unsigned long mask = 0;
2013 int i;
2014 bfd_boolean vpr_seen = FALSE;
2015 bfd_boolean expect_vpr =
2016 (etype == REGLIST_VFP_S_VPR) || (etype == REGLIST_VFP_D_VPR);
2017
2018 if (skip_past_char (&str, '{') == FAIL)
2019 {
2020 inst.error = _("expecting {");
2021 return FAIL;
2022 }
2023
2024 switch (etype)
2025 {
2026 case REGLIST_VFP_S:
2027 case REGLIST_VFP_S_VPR:
2028 regtype = REG_TYPE_VFS;
2029 max_regs = 32;
2030 break;
2031
2032 case REGLIST_VFP_D:
2033 case REGLIST_VFP_D_VPR:
2034 regtype = REG_TYPE_VFD;
2035 break;
2036
2037 case REGLIST_NEON_D:
2038 regtype = REG_TYPE_NDQ;
2039 break;
2040
2041 default:
2042 gas_assert (0);
2043 }
2044
2045 if (etype != REGLIST_VFP_S && etype != REGLIST_VFP_S_VPR)
2046 {
2047 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
2048 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
2049 {
2050 max_regs = 32;
2051 if (thumb_mode)
2052 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
2053 fpu_vfp_ext_d32);
2054 else
2055 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
2056 fpu_vfp_ext_d32);
2057 }
2058 else
2059 max_regs = 16;
2060 }
2061
2062 base_reg = max_regs;
2063 *partial_match = FALSE;
2064
2065 do
2066 {
2067 int setmask = 1, addregs = 1;
2068 const char vpr_str[] = "vpr";
2069 int vpr_str_len = strlen (vpr_str);
2070
2071 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
2072
2073 if (expect_vpr)
2074 {
2075 if (new_base == FAIL
2076 && !strncasecmp (str, vpr_str, vpr_str_len)
2077 && !ISALPHA (*(str + vpr_str_len))
2078 && !vpr_seen)
2079 {
2080 vpr_seen = TRUE;
2081 str += vpr_str_len;
2082 if (count == 0)
2083 base_reg = 0; /* Canonicalize VPR only on d0 with 0 regs. */
2084 }
2085 else if (vpr_seen)
2086 {
2087 first_error (_("VPR expected last"));
2088 return FAIL;
2089 }
2090 else if (new_base == FAIL)
2091 {
2092 if (regtype == REG_TYPE_VFS)
2093 first_error (_("VFP single precision register or VPR "
2094 "expected"));
2095 else /* regtype == REG_TYPE_VFD. */
2096 first_error (_("VFP/Neon double precision register or VPR "
2097 "expected"));
2098 return FAIL;
2099 }
2100 }
2101 else if (new_base == FAIL)
2102 {
2103 first_error (_(reg_expected_msgs[regtype]));
2104 return FAIL;
2105 }
2106
2107 *partial_match = TRUE;
2108 if (vpr_seen)
2109 continue;
2110
2111 if (new_base >= max_regs)
2112 {
2113 first_error (_("register out of range in list"));
2114 return FAIL;
2115 }
2116
2117 /* Note: a value of 2 * n is returned for the register Q<n>. */
2118 if (regtype == REG_TYPE_NQ)
2119 {
2120 setmask = 3;
2121 addregs = 2;
2122 }
2123
2124 if (new_base < base_reg)
2125 base_reg = new_base;
2126
2127 if (mask & (setmask << new_base))
2128 {
2129 first_error (_("invalid register list"));
2130 return FAIL;
2131 }
2132
2133 if ((mask >> new_base) != 0 && ! warned && !vpr_seen)
2134 {
2135 as_tsktsk (_("register list not in ascending order"));
2136 warned = 1;
2137 }
2138
2139 mask |= setmask << new_base;
2140 count += addregs;
2141
2142 if (*str == '-') /* We have the start of a range expression */
2143 {
2144 int high_range;
2145
2146 str++;
2147
2148 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
2149 == FAIL)
2150 {
2151 inst.error = gettext (reg_expected_msgs[regtype]);
2152 return FAIL;
2153 }
2154
2155 if (high_range >= max_regs)
2156 {
2157 first_error (_("register out of range in list"));
2158 return FAIL;
2159 }
2160
2161 if (regtype == REG_TYPE_NQ)
2162 high_range = high_range + 1;
2163
2164 if (high_range <= new_base)
2165 {
2166 inst.error = _("register range not in ascending order");
2167 return FAIL;
2168 }
2169
2170 for (new_base += addregs; new_base <= high_range; new_base += addregs)
2171 {
2172 if (mask & (setmask << new_base))
2173 {
2174 inst.error = _("invalid register list");
2175 return FAIL;
2176 }
2177
2178 mask |= setmask << new_base;
2179 count += addregs;
2180 }
2181 }
2182 }
2183 while (skip_past_comma (&str) != FAIL);
2184
2185 str++;
2186
2187 /* Sanity check -- should have raised a parse error above. */
2188 if ((!vpr_seen && count == 0) || count > max_regs)
2189 abort ();
2190
2191 *pbase = base_reg;
2192
2193 if (expect_vpr && !vpr_seen)
2194 {
2195 first_error (_("VPR expected last"));
2196 return FAIL;
2197 }
2198
2199 /* Final test -- the registers must be consecutive. */
2200 mask >>= base_reg;
2201 for (i = 0; i < count; i++)
2202 {
2203 if ((mask & (1u << i)) == 0)
2204 {
2205 inst.error = _("non-contiguous register range");
2206 return FAIL;
2207 }
2208 }
2209
2210 *ccp = str;
2211
2212 return count;
2213 }
2214
2215 /* True if two alias types are the same. */
2216
2217 static bfd_boolean
2218 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
2219 {
2220 if (!a && !b)
2221 return TRUE;
2222
2223 if (!a || !b)
2224 return FALSE;
2225
2226 if (a->defined != b->defined)
2227 return FALSE;
2228
2229 if ((a->defined & NTA_HASTYPE) != 0
2230 && (a->eltype.type != b->eltype.type
2231 || a->eltype.size != b->eltype.size))
2232 return FALSE;
2233
2234 if ((a->defined & NTA_HASINDEX) != 0
2235 && (a->index != b->index))
2236 return FALSE;
2237
2238 return TRUE;
2239 }
2240
2241 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2242 The base register is put in *PBASE.
2243 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
2244 the return value.
2245 The register stride (minus one) is put in bit 4 of the return value.
2246 Bits [6:5] encode the list length (minus one).
2247 The type of the list elements is put in *ELTYPE, if non-NULL. */
2248
2249 #define NEON_LANE(X) ((X) & 0xf)
2250 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
2251 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2252
2253 static int
2254 parse_neon_el_struct_list (char **str, unsigned *pbase,
2255 int mve,
2256 struct neon_type_el *eltype)
2257 {
2258 char *ptr = *str;
2259 int base_reg = -1;
2260 int reg_incr = -1;
2261 int count = 0;
2262 int lane = -1;
2263 int leading_brace = 0;
2264 enum arm_reg_type rtype = REG_TYPE_NDQ;
2265 const char *const incr_error = mve ? _("register stride must be 1") :
2266 _("register stride must be 1 or 2");
2267 const char *const type_error = _("mismatched element/structure types in list");
2268 struct neon_typed_alias firsttype;
2269 firsttype.defined = 0;
2270 firsttype.eltype.type = NT_invtype;
2271 firsttype.eltype.size = -1;
2272 firsttype.index = -1;
2273
2274 if (skip_past_char (&ptr, '{') == SUCCESS)
2275 leading_brace = 1;
2276
2277 do
2278 {
2279 struct neon_typed_alias atype;
2280 if (mve)
2281 rtype = REG_TYPE_MQ;
2282 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2283
2284 if (getreg == FAIL)
2285 {
2286 first_error (_(reg_expected_msgs[rtype]));
2287 return FAIL;
2288 }
2289
2290 if (base_reg == -1)
2291 {
2292 base_reg = getreg;
2293 if (rtype == REG_TYPE_NQ)
2294 {
2295 reg_incr = 1;
2296 }
2297 firsttype = atype;
2298 }
2299 else if (reg_incr == -1)
2300 {
2301 reg_incr = getreg - base_reg;
2302 if (reg_incr < 1 || reg_incr > 2)
2303 {
2304 first_error (_(incr_error));
2305 return FAIL;
2306 }
2307 }
2308 else if (getreg != base_reg + reg_incr * count)
2309 {
2310 first_error (_(incr_error));
2311 return FAIL;
2312 }
2313
2314 if (! neon_alias_types_same (&atype, &firsttype))
2315 {
2316 first_error (_(type_error));
2317 return FAIL;
2318 }
2319
2320 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
2321 modes. */
2322 if (ptr[0] == '-')
2323 {
2324 struct neon_typed_alias htype;
2325 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2326 if (lane == -1)
2327 lane = NEON_INTERLEAVE_LANES;
2328 else if (lane != NEON_INTERLEAVE_LANES)
2329 {
2330 first_error (_(type_error));
2331 return FAIL;
2332 }
2333 if (reg_incr == -1)
2334 reg_incr = 1;
2335 else if (reg_incr != 1)
2336 {
2337 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2338 return FAIL;
2339 }
2340 ptr++;
2341 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2342 if (hireg == FAIL)
2343 {
2344 first_error (_(reg_expected_msgs[rtype]));
2345 return FAIL;
2346 }
2347 if (! neon_alias_types_same (&htype, &firsttype))
2348 {
2349 first_error (_(type_error));
2350 return FAIL;
2351 }
2352 count += hireg + dregs - getreg;
2353 continue;
2354 }
2355
2356 /* If we're using Q registers, we can't use [] or [n] syntax. */
2357 if (rtype == REG_TYPE_NQ)
2358 {
2359 count += 2;
2360 continue;
2361 }
2362
2363 if ((atype.defined & NTA_HASINDEX) != 0)
2364 {
2365 if (lane == -1)
2366 lane = atype.index;
2367 else if (lane != atype.index)
2368 {
2369 first_error (_(type_error));
2370 return FAIL;
2371 }
2372 }
2373 else if (lane == -1)
2374 lane = NEON_INTERLEAVE_LANES;
2375 else if (lane != NEON_INTERLEAVE_LANES)
2376 {
2377 first_error (_(type_error));
2378 return FAIL;
2379 }
2380 count++;
2381 }
2382 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2383
2384 /* No lane set by [x]. We must be interleaving structures. */
2385 if (lane == -1)
2386 lane = NEON_INTERLEAVE_LANES;
2387
2388 /* Sanity check. */
2389 if (lane == -1 || base_reg == -1 || count < 1 || (!mve && count > 4)
2390 || (count > 1 && reg_incr == -1))
2391 {
2392 first_error (_("error parsing element/structure list"));
2393 return FAIL;
2394 }
2395
2396 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2397 {
2398 first_error (_("expected }"));
2399 return FAIL;
2400 }
2401
2402 if (reg_incr == -1)
2403 reg_incr = 1;
2404
2405 if (eltype)
2406 *eltype = firsttype.eltype;
2407
2408 *pbase = base_reg;
2409 *str = ptr;
2410
2411 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2412 }
2413
2414 /* Parse an explicit relocation suffix on an expression. This is
2415 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2416 arm_reloc_hsh contains no entries, so this function can only
2417 succeed if there is no () after the word. Returns -1 on error,
2418 BFD_RELOC_UNUSED if there wasn't any suffix. */
2419
2420 static int
2421 parse_reloc (char **str)
2422 {
2423 struct reloc_entry *r;
2424 char *p, *q;
2425
2426 if (**str != '(')
2427 return BFD_RELOC_UNUSED;
2428
2429 p = *str + 1;
2430 q = p;
2431
2432 while (*q && *q != ')' && *q != ',')
2433 q++;
2434 if (*q != ')')
2435 return -1;
2436
2437 if ((r = (struct reloc_entry *)
2438 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2439 return -1;
2440
2441 *str = q + 1;
2442 return r->reloc;
2443 }
2444
2445 /* Directives: register aliases. */
2446
2447 static struct reg_entry *
2448 insert_reg_alias (char *str, unsigned number, int type)
2449 {
2450 struct reg_entry *new_reg;
2451 const char *name;
2452
2453 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2454 {
2455 if (new_reg->builtin)
2456 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2457
2458 /* Only warn about a redefinition if it's not defined as the
2459 same register. */
2460 else if (new_reg->number != number || new_reg->type != type)
2461 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2462
2463 return NULL;
2464 }
2465
2466 name = xstrdup (str);
2467 new_reg = XNEW (struct reg_entry);
2468
2469 new_reg->name = name;
2470 new_reg->number = number;
2471 new_reg->type = type;
2472 new_reg->builtin = FALSE;
2473 new_reg->neon = NULL;
2474
2475 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2476 abort ();
2477
2478 return new_reg;
2479 }
2480
2481 static void
2482 insert_neon_reg_alias (char *str, int number, int type,
2483 struct neon_typed_alias *atype)
2484 {
2485 struct reg_entry *reg = insert_reg_alias (str, number, type);
2486
2487 if (!reg)
2488 {
2489 first_error (_("attempt to redefine typed alias"));
2490 return;
2491 }
2492
2493 if (atype)
2494 {
2495 reg->neon = XNEW (struct neon_typed_alias);
2496 *reg->neon = *atype;
2497 }
2498 }
2499
2500 /* Look for the .req directive. This is of the form:
2501
2502 new_register_name .req existing_register_name
2503
2504 If we find one, or if it looks sufficiently like one that we want to
2505 handle any error here, return TRUE. Otherwise return FALSE. */
2506
2507 static bfd_boolean
2508 create_register_alias (char * newname, char *p)
2509 {
2510 struct reg_entry *old;
2511 char *oldname, *nbuf;
2512 size_t nlen;
2513
2514 /* The input scrubber ensures that whitespace after the mnemonic is
2515 collapsed to single spaces. */
2516 oldname = p;
2517 if (strncmp (oldname, " .req ", 6) != 0)
2518 return FALSE;
2519
2520 oldname += 6;
2521 if (*oldname == '\0')
2522 return FALSE;
2523
2524 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2525 if (!old)
2526 {
2527 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2528 return TRUE;
2529 }
2530
2531 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2532 the desired alias name, and p points to its end. If not, then
2533 the desired alias name is in the global original_case_string. */
2534 #ifdef TC_CASE_SENSITIVE
2535 nlen = p - newname;
2536 #else
2537 newname = original_case_string;
2538 nlen = strlen (newname);
2539 #endif
2540
2541 nbuf = xmemdup0 (newname, nlen);
2542
2543 /* Create aliases under the new name as stated; an all-lowercase
2544 version of the new name; and an all-uppercase version of the new
2545 name. */
2546 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2547 {
2548 for (p = nbuf; *p; p++)
2549 *p = TOUPPER (*p);
2550
2551 if (strncmp (nbuf, newname, nlen))
2552 {
2553 /* If this attempt to create an additional alias fails, do not bother
2554 trying to create the all-lower case alias. We will fail and issue
2555 a second, duplicate error message. This situation arises when the
2556 programmer does something like:
2557 foo .req r0
2558 Foo .req r1
2559 The second .req creates the "Foo" alias but then fails to create
2560 the artificial FOO alias because it has already been created by the
2561 first .req. */
2562 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2563 {
2564 free (nbuf);
2565 return TRUE;
2566 }
2567 }
2568
2569 for (p = nbuf; *p; p++)
2570 *p = TOLOWER (*p);
2571
2572 if (strncmp (nbuf, newname, nlen))
2573 insert_reg_alias (nbuf, old->number, old->type);
2574 }
2575
2576 free (nbuf);
2577 return TRUE;
2578 }
2579
2580 /* Create a Neon typed/indexed register alias using directives, e.g.:
2581 X .dn d5.s32[1]
2582 Y .qn 6.s16
2583 Z .dn d7
2584 T .dn Z[0]
2585 These typed registers can be used instead of the types specified after the
2586 Neon mnemonic, so long as all operands given have types. Types can also be
2587 specified directly, e.g.:
2588 vadd d0.s32, d1.s32, d2.s32 */
2589
2590 static bfd_boolean
2591 create_neon_reg_alias (char *newname, char *p)
2592 {
2593 enum arm_reg_type basetype;
2594 struct reg_entry *basereg;
2595 struct reg_entry mybasereg;
2596 struct neon_type ntype;
2597 struct neon_typed_alias typeinfo;
2598 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2599 int namelen;
2600
2601 typeinfo.defined = 0;
2602 typeinfo.eltype.type = NT_invtype;
2603 typeinfo.eltype.size = -1;
2604 typeinfo.index = -1;
2605
2606 nameend = p;
2607
2608 if (strncmp (p, " .dn ", 5) == 0)
2609 basetype = REG_TYPE_VFD;
2610 else if (strncmp (p, " .qn ", 5) == 0)
2611 basetype = REG_TYPE_NQ;
2612 else
2613 return FALSE;
2614
2615 p += 5;
2616
2617 if (*p == '\0')
2618 return FALSE;
2619
2620 basereg = arm_reg_parse_multi (&p);
2621
2622 if (basereg && basereg->type != basetype)
2623 {
2624 as_bad (_("bad type for register"));
2625 return FALSE;
2626 }
2627
2628 if (basereg == NULL)
2629 {
2630 expressionS exp;
2631 /* Try parsing as an integer. */
2632 my_get_expression (&exp, &p, GE_NO_PREFIX);
2633 if (exp.X_op != O_constant)
2634 {
2635 as_bad (_("expression must be constant"));
2636 return FALSE;
2637 }
2638 basereg = &mybasereg;
2639 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2640 : exp.X_add_number;
2641 basereg->neon = 0;
2642 }
2643
2644 if (basereg->neon)
2645 typeinfo = *basereg->neon;
2646
2647 if (parse_neon_type (&ntype, &p) == SUCCESS)
2648 {
2649 /* We got a type. */
2650 if (typeinfo.defined & NTA_HASTYPE)
2651 {
2652 as_bad (_("can't redefine the type of a register alias"));
2653 return FALSE;
2654 }
2655
2656 typeinfo.defined |= NTA_HASTYPE;
2657 if (ntype.elems != 1)
2658 {
2659 as_bad (_("you must specify a single type only"));
2660 return FALSE;
2661 }
2662 typeinfo.eltype = ntype.el[0];
2663 }
2664
2665 if (skip_past_char (&p, '[') == SUCCESS)
2666 {
2667 expressionS exp;
2668 /* We got a scalar index. */
2669
2670 if (typeinfo.defined & NTA_HASINDEX)
2671 {
2672 as_bad (_("can't redefine the index of a scalar alias"));
2673 return FALSE;
2674 }
2675
2676 my_get_expression (&exp, &p, GE_NO_PREFIX);
2677
2678 if (exp.X_op != O_constant)
2679 {
2680 as_bad (_("scalar index must be constant"));
2681 return FALSE;
2682 }
2683
2684 typeinfo.defined |= NTA_HASINDEX;
2685 typeinfo.index = exp.X_add_number;
2686
2687 if (skip_past_char (&p, ']') == FAIL)
2688 {
2689 as_bad (_("expecting ]"));
2690 return FALSE;
2691 }
2692 }
2693
2694 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2695 the desired alias name, and p points to its end. If not, then
2696 the desired alias name is in the global original_case_string. */
2697 #ifdef TC_CASE_SENSITIVE
2698 namelen = nameend - newname;
2699 #else
2700 newname = original_case_string;
2701 namelen = strlen (newname);
2702 #endif
2703
2704 namebuf = xmemdup0 (newname, namelen);
2705
2706 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2707 typeinfo.defined != 0 ? &typeinfo : NULL);
2708
2709 /* Insert name in all uppercase. */
2710 for (p = namebuf; *p; p++)
2711 *p = TOUPPER (*p);
2712
2713 if (strncmp (namebuf, newname, namelen))
2714 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2715 typeinfo.defined != 0 ? &typeinfo : NULL);
2716
2717 /* Insert name in all lowercase. */
2718 for (p = namebuf; *p; p++)
2719 *p = TOLOWER (*p);
2720
2721 if (strncmp (namebuf, newname, namelen))
2722 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2723 typeinfo.defined != 0 ? &typeinfo : NULL);
2724
2725 free (namebuf);
2726 return TRUE;
2727 }
2728
2729 /* Should never be called, as .req goes between the alias and the
2730 register name, not at the beginning of the line. */
2731
2732 static void
2733 s_req (int a ATTRIBUTE_UNUSED)
2734 {
2735 as_bad (_("invalid syntax for .req directive"));
2736 }
2737
2738 static void
2739 s_dn (int a ATTRIBUTE_UNUSED)
2740 {
2741 as_bad (_("invalid syntax for .dn directive"));
2742 }
2743
2744 static void
2745 s_qn (int a ATTRIBUTE_UNUSED)
2746 {
2747 as_bad (_("invalid syntax for .qn directive"));
2748 }
2749
2750 /* The .unreq directive deletes an alias which was previously defined
2751 by .req. For example:
2752
2753 my_alias .req r11
2754 .unreq my_alias */
2755
2756 static void
2757 s_unreq (int a ATTRIBUTE_UNUSED)
2758 {
2759 char * name;
2760 char saved_char;
2761
2762 name = input_line_pointer;
2763
2764 while (*input_line_pointer != 0
2765 && *input_line_pointer != ' '
2766 && *input_line_pointer != '\n')
2767 ++input_line_pointer;
2768
2769 saved_char = *input_line_pointer;
2770 *input_line_pointer = 0;
2771
2772 if (!*name)
2773 as_bad (_("invalid syntax for .unreq directive"));
2774 else
2775 {
2776 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2777 name);
2778
2779 if (!reg)
2780 as_bad (_("unknown register alias '%s'"), name);
2781 else if (reg->builtin)
2782 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2783 name);
2784 else
2785 {
2786 char * p;
2787 char * nbuf;
2788
2789 hash_delete (arm_reg_hsh, name, FALSE);
2790 free ((char *) reg->name);
2791 if (reg->neon)
2792 free (reg->neon);
2793 free (reg);
2794
2795 /* Also locate the all upper case and all lower case versions.
2796 Do not complain if we cannot find one or the other as it
2797 was probably deleted above. */
2798
2799 nbuf = strdup (name);
2800 for (p = nbuf; *p; p++)
2801 *p = TOUPPER (*p);
2802 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2803 if (reg)
2804 {
2805 hash_delete (arm_reg_hsh, nbuf, FALSE);
2806 free ((char *) reg->name);
2807 if (reg->neon)
2808 free (reg->neon);
2809 free (reg);
2810 }
2811
2812 for (p = nbuf; *p; p++)
2813 *p = TOLOWER (*p);
2814 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2815 if (reg)
2816 {
2817 hash_delete (arm_reg_hsh, nbuf, FALSE);
2818 free ((char *) reg->name);
2819 if (reg->neon)
2820 free (reg->neon);
2821 free (reg);
2822 }
2823
2824 free (nbuf);
2825 }
2826 }
2827
2828 *input_line_pointer = saved_char;
2829 demand_empty_rest_of_line ();
2830 }
2831
2832 /* Directives: Instruction set selection. */
2833
2834 #ifdef OBJ_ELF
2835 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2836 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2837 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2838 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2839
2840 /* Create a new mapping symbol for the transition to STATE. */
2841
2842 static void
2843 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2844 {
2845 symbolS * symbolP;
2846 const char * symname;
2847 int type;
2848
2849 switch (state)
2850 {
2851 case MAP_DATA:
2852 symname = "$d";
2853 type = BSF_NO_FLAGS;
2854 break;
2855 case MAP_ARM:
2856 symname = "$a";
2857 type = BSF_NO_FLAGS;
2858 break;
2859 case MAP_THUMB:
2860 symname = "$t";
2861 type = BSF_NO_FLAGS;
2862 break;
2863 default:
2864 abort ();
2865 }
2866
2867 symbolP = symbol_new (symname, now_seg, value, frag);
2868 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2869
2870 switch (state)
2871 {
2872 case MAP_ARM:
2873 THUMB_SET_FUNC (symbolP, 0);
2874 ARM_SET_THUMB (symbolP, 0);
2875 ARM_SET_INTERWORK (symbolP, support_interwork);
2876 break;
2877
2878 case MAP_THUMB:
2879 THUMB_SET_FUNC (symbolP, 1);
2880 ARM_SET_THUMB (symbolP, 1);
2881 ARM_SET_INTERWORK (symbolP, support_interwork);
2882 break;
2883
2884 case MAP_DATA:
2885 default:
2886 break;
2887 }
2888
2889 /* Save the mapping symbols for future reference. Also check that
2890 we do not place two mapping symbols at the same offset within a
2891 frag. We'll handle overlap between frags in
2892 check_mapping_symbols.
2893
2894 If .fill or other data filling directive generates zero sized data,
2895 the mapping symbol for the following code will have the same value
2896 as the one generated for the data filling directive. In this case,
2897 we replace the old symbol with the new one at the same address. */
2898 if (value == 0)
2899 {
2900 if (frag->tc_frag_data.first_map != NULL)
2901 {
2902 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2903 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2904 }
2905 frag->tc_frag_data.first_map = symbolP;
2906 }
2907 if (frag->tc_frag_data.last_map != NULL)
2908 {
2909 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2910 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2911 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2912 }
2913 frag->tc_frag_data.last_map = symbolP;
2914 }
2915
2916 /* We must sometimes convert a region marked as code to data during
2917 code alignment, if an odd number of bytes have to be padded. The
2918 code mapping symbol is pushed to an aligned address. */
2919
2920 static void
2921 insert_data_mapping_symbol (enum mstate state,
2922 valueT value, fragS *frag, offsetT bytes)
2923 {
2924 /* If there was already a mapping symbol, remove it. */
2925 if (frag->tc_frag_data.last_map != NULL
2926 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2927 {
2928 symbolS *symp = frag->tc_frag_data.last_map;
2929
2930 if (value == 0)
2931 {
2932 know (frag->tc_frag_data.first_map == symp);
2933 frag->tc_frag_data.first_map = NULL;
2934 }
2935 frag->tc_frag_data.last_map = NULL;
2936 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2937 }
2938
2939 make_mapping_symbol (MAP_DATA, value, frag);
2940 make_mapping_symbol (state, value + bytes, frag);
2941 }
2942
2943 static void mapping_state_2 (enum mstate state, int max_chars);
2944
2945 /* Set the mapping state to STATE. Only call this when about to
2946 emit some STATE bytes to the file. */
2947
2948 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2949 void
2950 mapping_state (enum mstate state)
2951 {
2952 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2953
2954 if (mapstate == state)
2955 /* The mapping symbol has already been emitted.
2956 There is nothing else to do. */
2957 return;
2958
2959 if (state == MAP_ARM || state == MAP_THUMB)
2960 /* PR gas/12931
2961 All ARM instructions require 4-byte alignment.
2962 (Almost) all Thumb instructions require 2-byte alignment.
2963
2964 When emitting instructions into any section, mark the section
2965 appropriately.
2966
2967 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2968 but themselves require 2-byte alignment; this applies to some
2969 PC- relative forms. However, these cases will involve implicit
2970 literal pool generation or an explicit .align >=2, both of
2971 which will cause the section to me marked with sufficient
2972 alignment. Thus, we don't handle those cases here. */
2973 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2974
2975 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2976 /* This case will be evaluated later. */
2977 return;
2978
2979 mapping_state_2 (state, 0);
2980 }
2981
2982 /* Same as mapping_state, but MAX_CHARS bytes have already been
2983 allocated. Put the mapping symbol that far back. */
2984
2985 static void
2986 mapping_state_2 (enum mstate state, int max_chars)
2987 {
2988 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2989
2990 if (!SEG_NORMAL (now_seg))
2991 return;
2992
2993 if (mapstate == state)
2994 /* The mapping symbol has already been emitted.
2995 There is nothing else to do. */
2996 return;
2997
2998 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2999 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
3000 {
3001 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
3002 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
3003
3004 if (add_symbol)
3005 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
3006 }
3007
3008 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
3009 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
3010 }
3011 #undef TRANSITION
3012 #else
3013 #define mapping_state(x) ((void)0)
3014 #define mapping_state_2(x, y) ((void)0)
3015 #endif
3016
3017 /* Find the real, Thumb encoded start of a Thumb function. */
3018
3019 #ifdef OBJ_COFF
3020 static symbolS *
3021 find_real_start (symbolS * symbolP)
3022 {
3023 char * real_start;
3024 const char * name = S_GET_NAME (symbolP);
3025 symbolS * new_target;
3026
3027 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
3028 #define STUB_NAME ".real_start_of"
3029
3030 if (name == NULL)
3031 abort ();
3032
3033 /* The compiler may generate BL instructions to local labels because
3034 it needs to perform a branch to a far away location. These labels
3035 do not have a corresponding ".real_start_of" label. We check
3036 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
3037 the ".real_start_of" convention for nonlocal branches. */
3038 if (S_IS_LOCAL (symbolP) || name[0] == '.')
3039 return symbolP;
3040
3041 real_start = concat (STUB_NAME, name, NULL);
3042 new_target = symbol_find (real_start);
3043 free (real_start);
3044
3045 if (new_target == NULL)
3046 {
3047 as_warn (_("Failed to find real start of function: %s\n"), name);
3048 new_target = symbolP;
3049 }
3050
3051 return new_target;
3052 }
3053 #endif
3054
3055 static void
3056 opcode_select (int width)
3057 {
3058 switch (width)
3059 {
3060 case 16:
3061 if (! thumb_mode)
3062 {
3063 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
3064 as_bad (_("selected processor does not support THUMB opcodes"));
3065
3066 thumb_mode = 1;
3067 /* No need to force the alignment, since we will have been
3068 coming from ARM mode, which is word-aligned. */
3069 record_alignment (now_seg, 1);
3070 }
3071 break;
3072
3073 case 32:
3074 if (thumb_mode)
3075 {
3076 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
3077 as_bad (_("selected processor does not support ARM opcodes"));
3078
3079 thumb_mode = 0;
3080
3081 if (!need_pass_2)
3082 frag_align (2, 0, 0);
3083
3084 record_alignment (now_seg, 1);
3085 }
3086 break;
3087
3088 default:
3089 as_bad (_("invalid instruction size selected (%d)"), width);
3090 }
3091 }
3092
3093 static void
3094 s_arm (int ignore ATTRIBUTE_UNUSED)
3095 {
3096 opcode_select (32);
3097 demand_empty_rest_of_line ();
3098 }
3099
3100 static void
3101 s_thumb (int ignore ATTRIBUTE_UNUSED)
3102 {
3103 opcode_select (16);
3104 demand_empty_rest_of_line ();
3105 }
3106
3107 static void
3108 s_code (int unused ATTRIBUTE_UNUSED)
3109 {
3110 int temp;
3111
3112 temp = get_absolute_expression ();
3113 switch (temp)
3114 {
3115 case 16:
3116 case 32:
3117 opcode_select (temp);
3118 break;
3119
3120 default:
3121 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
3122 }
3123 }
3124
3125 static void
3126 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
3127 {
3128 /* If we are not already in thumb mode go into it, EVEN if
3129 the target processor does not support thumb instructions.
3130 This is used by gcc/config/arm/lib1funcs.asm for example
3131 to compile interworking support functions even if the
3132 target processor should not support interworking. */
3133 if (! thumb_mode)
3134 {
3135 thumb_mode = 2;
3136 record_alignment (now_seg, 1);
3137 }
3138
3139 demand_empty_rest_of_line ();
3140 }
3141
3142 static void
3143 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
3144 {
3145 s_thumb (0);
3146
3147 /* The following label is the name/address of the start of a Thumb function.
3148 We need to know this for the interworking support. */
3149 label_is_thumb_function_name = TRUE;
3150 }
3151
3152 /* Perform a .set directive, but also mark the alias as
3153 being a thumb function. */
3154
3155 static void
3156 s_thumb_set (int equiv)
3157 {
3158 /* XXX the following is a duplicate of the code for s_set() in read.c
3159 We cannot just call that code as we need to get at the symbol that
3160 is created. */
3161 char * name;
3162 char delim;
3163 char * end_name;
3164 symbolS * symbolP;
3165
3166 /* Especial apologies for the random logic:
3167 This just grew, and could be parsed much more simply!
3168 Dean - in haste. */
3169 delim = get_symbol_name (& name);
3170 end_name = input_line_pointer;
3171 (void) restore_line_pointer (delim);
3172
3173 if (*input_line_pointer != ',')
3174 {
3175 *end_name = 0;
3176 as_bad (_("expected comma after name \"%s\""), name);
3177 *end_name = delim;
3178 ignore_rest_of_line ();
3179 return;
3180 }
3181
3182 input_line_pointer++;
3183 *end_name = 0;
3184
3185 if (name[0] == '.' && name[1] == '\0')
3186 {
3187 /* XXX - this should not happen to .thumb_set. */
3188 abort ();
3189 }
3190
3191 if ((symbolP = symbol_find (name)) == NULL
3192 && (symbolP = md_undefined_symbol (name)) == NULL)
3193 {
3194 #ifndef NO_LISTING
3195 /* When doing symbol listings, play games with dummy fragments living
3196 outside the normal fragment chain to record the file and line info
3197 for this symbol. */
3198 if (listing & LISTING_SYMBOLS)
3199 {
3200 extern struct list_info_struct * listing_tail;
3201 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
3202
3203 memset (dummy_frag, 0, sizeof (fragS));
3204 dummy_frag->fr_type = rs_fill;
3205 dummy_frag->line = listing_tail;
3206 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
3207 dummy_frag->fr_symbol = symbolP;
3208 }
3209 else
3210 #endif
3211 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
3212
3213 #ifdef OBJ_COFF
3214 /* "set" symbols are local unless otherwise specified. */
3215 SF_SET_LOCAL (symbolP);
3216 #endif /* OBJ_COFF */
3217 } /* Make a new symbol. */
3218
3219 symbol_table_insert (symbolP);
3220
3221 * end_name = delim;
3222
3223 if (equiv
3224 && S_IS_DEFINED (symbolP)
3225 && S_GET_SEGMENT (symbolP) != reg_section)
3226 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
3227
3228 pseudo_set (symbolP);
3229
3230 demand_empty_rest_of_line ();
3231
3232 /* XXX Now we come to the Thumb specific bit of code. */
3233
3234 THUMB_SET_FUNC (symbolP, 1);
3235 ARM_SET_THUMB (symbolP, 1);
3236 #if defined OBJ_ELF || defined OBJ_COFF
3237 ARM_SET_INTERWORK (symbolP, support_interwork);
3238 #endif
3239 }
3240
3241 /* Directives: Mode selection. */
3242
3243 /* .syntax [unified|divided] - choose the new unified syntax
3244 (same for Arm and Thumb encoding, modulo slight differences in what
3245 can be represented) or the old divergent syntax for each mode. */
3246 static void
3247 s_syntax (int unused ATTRIBUTE_UNUSED)
3248 {
3249 char *name, delim;
3250
3251 delim = get_symbol_name (& name);
3252
3253 if (!strcasecmp (name, "unified"))
3254 unified_syntax = TRUE;
3255 else if (!strcasecmp (name, "divided"))
3256 unified_syntax = FALSE;
3257 else
3258 {
3259 as_bad (_("unrecognized syntax mode \"%s\""), name);
3260 return;
3261 }
3262 (void) restore_line_pointer (delim);
3263 demand_empty_rest_of_line ();
3264 }
3265
3266 /* Directives: sectioning and alignment. */
3267
3268 static void
3269 s_bss (int ignore ATTRIBUTE_UNUSED)
3270 {
3271 /* We don't support putting frags in the BSS segment, we fake it by
3272 marking in_bss, then looking at s_skip for clues. */
3273 subseg_set (bss_section, 0);
3274 demand_empty_rest_of_line ();
3275
3276 #ifdef md_elf_section_change_hook
3277 md_elf_section_change_hook ();
3278 #endif
3279 }
3280
3281 static void
3282 s_even (int ignore ATTRIBUTE_UNUSED)
3283 {
3284 /* Never make frag if expect extra pass. */
3285 if (!need_pass_2)
3286 frag_align (1, 0, 0);
3287
3288 record_alignment (now_seg, 1);
3289
3290 demand_empty_rest_of_line ();
3291 }
3292
3293 /* Directives: CodeComposer Studio. */
3294
3295 /* .ref (for CodeComposer Studio syntax only). */
3296 static void
3297 s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3298 {
3299 if (codecomposer_syntax)
3300 ignore_rest_of_line ();
3301 else
3302 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3303 }
3304
3305 /* If name is not NULL, then it is used for marking the beginning of a
3306 function, whereas if it is NULL then it means the function end. */
3307 static void
3308 asmfunc_debug (const char * name)
3309 {
3310 static const char * last_name = NULL;
3311
3312 if (name != NULL)
3313 {
3314 gas_assert (last_name == NULL);
3315 last_name = name;
3316
3317 if (debug_type == DEBUG_STABS)
3318 stabs_generate_asm_func (name, name);
3319 }
3320 else
3321 {
3322 gas_assert (last_name != NULL);
3323
3324 if (debug_type == DEBUG_STABS)
3325 stabs_generate_asm_endfunc (last_name, last_name);
3326
3327 last_name = NULL;
3328 }
3329 }
3330
3331 static void
3332 s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3333 {
3334 if (codecomposer_syntax)
3335 {
3336 switch (asmfunc_state)
3337 {
3338 case OUTSIDE_ASMFUNC:
3339 asmfunc_state = WAITING_ASMFUNC_NAME;
3340 break;
3341
3342 case WAITING_ASMFUNC_NAME:
3343 as_bad (_(".asmfunc repeated."));
3344 break;
3345
3346 case WAITING_ENDASMFUNC:
3347 as_bad (_(".asmfunc without function."));
3348 break;
3349 }
3350 demand_empty_rest_of_line ();
3351 }
3352 else
3353 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3354 }
3355
3356 static void
3357 s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3358 {
3359 if (codecomposer_syntax)
3360 {
3361 switch (asmfunc_state)
3362 {
3363 case OUTSIDE_ASMFUNC:
3364 as_bad (_(".endasmfunc without a .asmfunc."));
3365 break;
3366
3367 case WAITING_ASMFUNC_NAME:
3368 as_bad (_(".endasmfunc without function."));
3369 break;
3370
3371 case WAITING_ENDASMFUNC:
3372 asmfunc_state = OUTSIDE_ASMFUNC;
3373 asmfunc_debug (NULL);
3374 break;
3375 }
3376 demand_empty_rest_of_line ();
3377 }
3378 else
3379 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3380 }
3381
3382 static void
3383 s_ccs_def (int name)
3384 {
3385 if (codecomposer_syntax)
3386 s_globl (name);
3387 else
3388 as_bad (_(".def pseudo-op only available with -mccs flag."));
3389 }
3390
3391 /* Directives: Literal pools. */
3392
3393 static literal_pool *
3394 find_literal_pool (void)
3395 {
3396 literal_pool * pool;
3397
3398 for (pool = list_of_pools; pool != NULL; pool = pool->next)
3399 {
3400 if (pool->section == now_seg
3401 && pool->sub_section == now_subseg)
3402 break;
3403 }
3404
3405 return pool;
3406 }
3407
3408 static literal_pool *
3409 find_or_make_literal_pool (void)
3410 {
3411 /* Next literal pool ID number. */
3412 static unsigned int latest_pool_num = 1;
3413 literal_pool * pool;
3414
3415 pool = find_literal_pool ();
3416
3417 if (pool == NULL)
3418 {
3419 /* Create a new pool. */
3420 pool = XNEW (literal_pool);
3421 if (! pool)
3422 return NULL;
3423
3424 pool->next_free_entry = 0;
3425 pool->section = now_seg;
3426 pool->sub_section = now_subseg;
3427 pool->next = list_of_pools;
3428 pool->symbol = NULL;
3429 pool->alignment = 2;
3430
3431 /* Add it to the list. */
3432 list_of_pools = pool;
3433 }
3434
3435 /* New pools, and emptied pools, will have a NULL symbol. */
3436 if (pool->symbol == NULL)
3437 {
3438 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3439 (valueT) 0, &zero_address_frag);
3440 pool->id = latest_pool_num ++;
3441 }
3442
3443 /* Done. */
3444 return pool;
3445 }
3446
3447 /* Add the literal in the global 'inst'
3448 structure to the relevant literal pool. */
3449
3450 static int
3451 add_to_lit_pool (unsigned int nbytes)
3452 {
3453 #define PADDING_SLOT 0x1
3454 #define LIT_ENTRY_SIZE_MASK 0xFF
3455 literal_pool * pool;
3456 unsigned int entry, pool_size = 0;
3457 bfd_boolean padding_slot_p = FALSE;
3458 unsigned imm1 = 0;
3459 unsigned imm2 = 0;
3460
3461 if (nbytes == 8)
3462 {
3463 imm1 = inst.operands[1].imm;
3464 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
3465 : inst.relocs[0].exp.X_unsigned ? 0
3466 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
3467 if (target_big_endian)
3468 {
3469 imm1 = imm2;
3470 imm2 = inst.operands[1].imm;
3471 }
3472 }
3473
3474 pool = find_or_make_literal_pool ();
3475
3476 /* Check if this literal value is already in the pool. */
3477 for (entry = 0; entry < pool->next_free_entry; entry ++)
3478 {
3479 if (nbytes == 4)
3480 {
3481 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3482 && (inst.relocs[0].exp.X_op == O_constant)
3483 && (pool->literals[entry].X_add_number
3484 == inst.relocs[0].exp.X_add_number)
3485 && (pool->literals[entry].X_md == nbytes)
3486 && (pool->literals[entry].X_unsigned
3487 == inst.relocs[0].exp.X_unsigned))
3488 break;
3489
3490 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3491 && (inst.relocs[0].exp.X_op == O_symbol)
3492 && (pool->literals[entry].X_add_number
3493 == inst.relocs[0].exp.X_add_number)
3494 && (pool->literals[entry].X_add_symbol
3495 == inst.relocs[0].exp.X_add_symbol)
3496 && (pool->literals[entry].X_op_symbol
3497 == inst.relocs[0].exp.X_op_symbol)
3498 && (pool->literals[entry].X_md == nbytes))
3499 break;
3500 }
3501 else if ((nbytes == 8)
3502 && !(pool_size & 0x7)
3503 && ((entry + 1) != pool->next_free_entry)
3504 && (pool->literals[entry].X_op == O_constant)
3505 && (pool->literals[entry].X_add_number == (offsetT) imm1)
3506 && (pool->literals[entry].X_unsigned
3507 == inst.relocs[0].exp.X_unsigned)
3508 && (pool->literals[entry + 1].X_op == O_constant)
3509 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
3510 && (pool->literals[entry + 1].X_unsigned
3511 == inst.relocs[0].exp.X_unsigned))
3512 break;
3513
3514 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3515 if (padding_slot_p && (nbytes == 4))
3516 break;
3517
3518 pool_size += 4;
3519 }
3520
3521 /* Do we need to create a new entry? */
3522 if (entry == pool->next_free_entry)
3523 {
3524 if (entry >= MAX_LITERAL_POOL_SIZE)
3525 {
3526 inst.error = _("literal pool overflow");
3527 return FAIL;
3528 }
3529
3530 if (nbytes == 8)
3531 {
3532 /* For 8-byte entries, we align to an 8-byte boundary,
3533 and split it into two 4-byte entries, because on 32-bit
3534 host, 8-byte constants are treated as big num, thus
3535 saved in "generic_bignum" which will be overwritten
3536 by later assignments.
3537
3538 We also need to make sure there is enough space for
3539 the split.
3540
3541 We also check to make sure the literal operand is a
3542 constant number. */
3543 if (!(inst.relocs[0].exp.X_op == O_constant
3544 || inst.relocs[0].exp.X_op == O_big))
3545 {
3546 inst.error = _("invalid type for literal pool");
3547 return FAIL;
3548 }
3549 else if (pool_size & 0x7)
3550 {
3551 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3552 {
3553 inst.error = _("literal pool overflow");
3554 return FAIL;
3555 }
3556
3557 pool->literals[entry] = inst.relocs[0].exp;
3558 pool->literals[entry].X_op = O_constant;
3559 pool->literals[entry].X_add_number = 0;
3560 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3561 pool->next_free_entry += 1;
3562 pool_size += 4;
3563 }
3564 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3565 {
3566 inst.error = _("literal pool overflow");
3567 return FAIL;
3568 }
3569
3570 pool->literals[entry] = inst.relocs[0].exp;
3571 pool->literals[entry].X_op = O_constant;
3572 pool->literals[entry].X_add_number = imm1;
3573 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3574 pool->literals[entry++].X_md = 4;
3575 pool->literals[entry] = inst.relocs[0].exp;
3576 pool->literals[entry].X_op = O_constant;
3577 pool->literals[entry].X_add_number = imm2;
3578 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3579 pool->literals[entry].X_md = 4;
3580 pool->alignment = 3;
3581 pool->next_free_entry += 1;
3582 }
3583 else
3584 {
3585 pool->literals[entry] = inst.relocs[0].exp;
3586 pool->literals[entry].X_md = 4;
3587 }
3588
3589 #ifdef OBJ_ELF
3590 /* PR ld/12974: Record the location of the first source line to reference
3591 this entry in the literal pool. If it turns out during linking that the
3592 symbol does not exist we will be able to give an accurate line number for
3593 the (first use of the) missing reference. */
3594 if (debug_type == DEBUG_DWARF2)
3595 dwarf2_where (pool->locs + entry);
3596 #endif
3597 pool->next_free_entry += 1;
3598 }
3599 else if (padding_slot_p)
3600 {
3601 pool->literals[entry] = inst.relocs[0].exp;
3602 pool->literals[entry].X_md = nbytes;
3603 }
3604
3605 inst.relocs[0].exp.X_op = O_symbol;
3606 inst.relocs[0].exp.X_add_number = pool_size;
3607 inst.relocs[0].exp.X_add_symbol = pool->symbol;
3608
3609 return SUCCESS;
3610 }
3611
3612 bfd_boolean
3613 tc_start_label_without_colon (void)
3614 {
3615 bfd_boolean ret = TRUE;
3616
3617 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3618 {
3619 const char *label = input_line_pointer;
3620
3621 while (!is_end_of_line[(int) label[-1]])
3622 --label;
3623
3624 if (*label == '.')
3625 {
3626 as_bad (_("Invalid label '%s'"), label);
3627 ret = FALSE;
3628 }
3629
3630 asmfunc_debug (label);
3631
3632 asmfunc_state = WAITING_ENDASMFUNC;
3633 }
3634
3635 return ret;
3636 }
3637
3638 /* Can't use symbol_new here, so have to create a symbol and then at
3639 a later date assign it a value. That's what these functions do. */
3640
3641 static void
3642 symbol_locate (symbolS * symbolP,
3643 const char * name, /* It is copied, the caller can modify. */
3644 segT segment, /* Segment identifier (SEG_<something>). */
3645 valueT valu, /* Symbol value. */
3646 fragS * frag) /* Associated fragment. */
3647 {
3648 size_t name_length;
3649 char * preserved_copy_of_name;
3650
3651 name_length = strlen (name) + 1; /* +1 for \0. */
3652 obstack_grow (&notes, name, name_length);
3653 preserved_copy_of_name = (char *) obstack_finish (&notes);
3654
3655 #ifdef tc_canonicalize_symbol_name
3656 preserved_copy_of_name =
3657 tc_canonicalize_symbol_name (preserved_copy_of_name);
3658 #endif
3659
3660 S_SET_NAME (symbolP, preserved_copy_of_name);
3661
3662 S_SET_SEGMENT (symbolP, segment);
3663 S_SET_VALUE (symbolP, valu);
3664 symbol_clear_list_pointers (symbolP);
3665
3666 symbol_set_frag (symbolP, frag);
3667
3668 /* Link to end of symbol chain. */
3669 {
3670 extern int symbol_table_frozen;
3671
3672 if (symbol_table_frozen)
3673 abort ();
3674 }
3675
3676 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3677
3678 obj_symbol_new_hook (symbolP);
3679
3680 #ifdef tc_symbol_new_hook
3681 tc_symbol_new_hook (symbolP);
3682 #endif
3683
3684 #ifdef DEBUG_SYMS
3685 verify_symbol_chain (symbol_rootP, symbol_lastP);
3686 #endif /* DEBUG_SYMS */
3687 }
3688
3689 static void
3690 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3691 {
3692 unsigned int entry;
3693 literal_pool * pool;
3694 char sym_name[20];
3695
3696 pool = find_literal_pool ();
3697 if (pool == NULL
3698 || pool->symbol == NULL
3699 || pool->next_free_entry == 0)
3700 return;
3701
3702 /* Align pool as you have word accesses.
3703 Only make a frag if we have to. */
3704 if (!need_pass_2)
3705 frag_align (pool->alignment, 0, 0);
3706
3707 record_alignment (now_seg, 2);
3708
3709 #ifdef OBJ_ELF
3710 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3711 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
3712 #endif
3713 sprintf (sym_name, "$$lit_\002%x", pool->id);
3714
3715 symbol_locate (pool->symbol, sym_name, now_seg,
3716 (valueT) frag_now_fix (), frag_now);
3717 symbol_table_insert (pool->symbol);
3718
3719 ARM_SET_THUMB (pool->symbol, thumb_mode);
3720
3721 #if defined OBJ_COFF || defined OBJ_ELF
3722 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3723 #endif
3724
3725 for (entry = 0; entry < pool->next_free_entry; entry ++)
3726 {
3727 #ifdef OBJ_ELF
3728 if (debug_type == DEBUG_DWARF2)
3729 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3730 #endif
3731 /* First output the expression in the instruction to the pool. */
3732 emit_expr (&(pool->literals[entry]),
3733 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
3734 }
3735
3736 /* Mark the pool as empty. */
3737 pool->next_free_entry = 0;
3738 pool->symbol = NULL;
3739 }
3740
3741 #ifdef OBJ_ELF
3742 /* Forward declarations for functions below, in the MD interface
3743 section. */
3744 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3745 static valueT create_unwind_entry (int);
3746 static void start_unwind_section (const segT, int);
3747 static void add_unwind_opcode (valueT, int);
3748 static void flush_pending_unwind (void);
3749
3750 /* Directives: Data. */
3751
3752 static void
3753 s_arm_elf_cons (int nbytes)
3754 {
3755 expressionS exp;
3756
3757 #ifdef md_flush_pending_output
3758 md_flush_pending_output ();
3759 #endif
3760
3761 if (is_it_end_of_statement ())
3762 {
3763 demand_empty_rest_of_line ();
3764 return;
3765 }
3766
3767 #ifdef md_cons_align
3768 md_cons_align (nbytes);
3769 #endif
3770
3771 mapping_state (MAP_DATA);
3772 do
3773 {
3774 int reloc;
3775 char *base = input_line_pointer;
3776
3777 expression (& exp);
3778
3779 if (exp.X_op != O_symbol)
3780 emit_expr (&exp, (unsigned int) nbytes);
3781 else
3782 {
3783 char *before_reloc = input_line_pointer;
3784 reloc = parse_reloc (&input_line_pointer);
3785 if (reloc == -1)
3786 {
3787 as_bad (_("unrecognized relocation suffix"));
3788 ignore_rest_of_line ();
3789 return;
3790 }
3791 else if (reloc == BFD_RELOC_UNUSED)
3792 emit_expr (&exp, (unsigned int) nbytes);
3793 else
3794 {
3795 reloc_howto_type *howto = (reloc_howto_type *)
3796 bfd_reloc_type_lookup (stdoutput,
3797 (bfd_reloc_code_real_type) reloc);
3798 int size = bfd_get_reloc_size (howto);
3799
3800 if (reloc == BFD_RELOC_ARM_PLT32)
3801 {
3802 as_bad (_("(plt) is only valid on branch targets"));
3803 reloc = BFD_RELOC_UNUSED;
3804 size = 0;
3805 }
3806
3807 if (size > nbytes)
3808 as_bad (ngettext ("%s relocations do not fit in %d byte",
3809 "%s relocations do not fit in %d bytes",
3810 nbytes),
3811 howto->name, nbytes);
3812 else
3813 {
3814 /* We've parsed an expression stopping at O_symbol.
3815 But there may be more expression left now that we
3816 have parsed the relocation marker. Parse it again.
3817 XXX Surely there is a cleaner way to do this. */
3818 char *p = input_line_pointer;
3819 int offset;
3820 char *save_buf = XNEWVEC (char, input_line_pointer - base);
3821
3822 memcpy (save_buf, base, input_line_pointer - base);
3823 memmove (base + (input_line_pointer - before_reloc),
3824 base, before_reloc - base);
3825
3826 input_line_pointer = base + (input_line_pointer-before_reloc);
3827 expression (&exp);
3828 memcpy (base, save_buf, p - base);
3829
3830 offset = nbytes - size;
3831 p = frag_more (nbytes);
3832 memset (p, 0, nbytes);
3833 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3834 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3835 free (save_buf);
3836 }
3837 }
3838 }
3839 }
3840 while (*input_line_pointer++ == ',');
3841
3842 /* Put terminator back into stream. */
3843 input_line_pointer --;
3844 demand_empty_rest_of_line ();
3845 }
3846
3847 /* Emit an expression containing a 32-bit thumb instruction.
3848 Implementation based on put_thumb32_insn. */
3849
3850 static void
3851 emit_thumb32_expr (expressionS * exp)
3852 {
3853 expressionS exp_high = *exp;
3854
3855 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3856 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3857 exp->X_add_number &= 0xffff;
3858 emit_expr (exp, (unsigned int) THUMB_SIZE);
3859 }
3860
3861 /* Guess the instruction size based on the opcode. */
3862
3863 static int
3864 thumb_insn_size (int opcode)
3865 {
3866 if ((unsigned int) opcode < 0xe800u)
3867 return 2;
3868 else if ((unsigned int) opcode >= 0xe8000000u)
3869 return 4;
3870 else
3871 return 0;
3872 }
3873
3874 static bfd_boolean
3875 emit_insn (expressionS *exp, int nbytes)
3876 {
3877 int size = 0;
3878
3879 if (exp->X_op == O_constant)
3880 {
3881 size = nbytes;
3882
3883 if (size == 0)
3884 size = thumb_insn_size (exp->X_add_number);
3885
3886 if (size != 0)
3887 {
3888 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3889 {
3890 as_bad (_(".inst.n operand too big. "\
3891 "Use .inst.w instead"));
3892 size = 0;
3893 }
3894 else
3895 {
3896 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
3897 set_pred_insn_type_nonvoid (OUTSIDE_PRED_INSN, 0);
3898 else
3899 set_pred_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3900
3901 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3902 emit_thumb32_expr (exp);
3903 else
3904 emit_expr (exp, (unsigned int) size);
3905
3906 it_fsm_post_encode ();
3907 }
3908 }
3909 else
3910 as_bad (_("cannot determine Thumb instruction size. " \
3911 "Use .inst.n/.inst.w instead"));
3912 }
3913 else
3914 as_bad (_("constant expression required"));
3915
3916 return (size != 0);
3917 }
3918
3919 /* Like s_arm_elf_cons but do not use md_cons_align and
3920 set the mapping state to MAP_ARM/MAP_THUMB. */
3921
3922 static void
3923 s_arm_elf_inst (int nbytes)
3924 {
3925 if (is_it_end_of_statement ())
3926 {
3927 demand_empty_rest_of_line ();
3928 return;
3929 }
3930
3931 /* Calling mapping_state () here will not change ARM/THUMB,
3932 but will ensure not to be in DATA state. */
3933
3934 if (thumb_mode)
3935 mapping_state (MAP_THUMB);
3936 else
3937 {
3938 if (nbytes != 0)
3939 {
3940 as_bad (_("width suffixes are invalid in ARM mode"));
3941 ignore_rest_of_line ();
3942 return;
3943 }
3944
3945 nbytes = 4;
3946
3947 mapping_state (MAP_ARM);
3948 }
3949
3950 do
3951 {
3952 expressionS exp;
3953
3954 expression (& exp);
3955
3956 if (! emit_insn (& exp, nbytes))
3957 {
3958 ignore_rest_of_line ();
3959 return;
3960 }
3961 }
3962 while (*input_line_pointer++ == ',');
3963
3964 /* Put terminator back into stream. */
3965 input_line_pointer --;
3966 demand_empty_rest_of_line ();
3967 }
3968
3969 /* Parse a .rel31 directive. */
3970
3971 static void
3972 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3973 {
3974 expressionS exp;
3975 char *p;
3976 valueT highbit;
3977
3978 highbit = 0;
3979 if (*input_line_pointer == '1')
3980 highbit = 0x80000000;
3981 else if (*input_line_pointer != '0')
3982 as_bad (_("expected 0 or 1"));
3983
3984 input_line_pointer++;
3985 if (*input_line_pointer != ',')
3986 as_bad (_("missing comma"));
3987 input_line_pointer++;
3988
3989 #ifdef md_flush_pending_output
3990 md_flush_pending_output ();
3991 #endif
3992
3993 #ifdef md_cons_align
3994 md_cons_align (4);
3995 #endif
3996
3997 mapping_state (MAP_DATA);
3998
3999 expression (&exp);
4000
4001 p = frag_more (4);
4002 md_number_to_chars (p, highbit, 4);
4003 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
4004 BFD_RELOC_ARM_PREL31);
4005
4006 demand_empty_rest_of_line ();
4007 }
4008
4009 /* Directives: AEABI stack-unwind tables. */
4010
4011 /* Parse an unwind_fnstart directive. Simply records the current location. */
4012
4013 static void
4014 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
4015 {
4016 demand_empty_rest_of_line ();
4017 if (unwind.proc_start)
4018 {
4019 as_bad (_("duplicate .fnstart directive"));
4020 return;
4021 }
4022
4023 /* Mark the start of the function. */
4024 unwind.proc_start = expr_build_dot ();
4025
4026 /* Reset the rest of the unwind info. */
4027 unwind.opcode_count = 0;
4028 unwind.table_entry = NULL;
4029 unwind.personality_routine = NULL;
4030 unwind.personality_index = -1;
4031 unwind.frame_size = 0;
4032 unwind.fp_offset = 0;
4033 unwind.fp_reg = REG_SP;
4034 unwind.fp_used = 0;
4035 unwind.sp_restored = 0;
4036 }
4037
4038
4039 /* Parse a handlerdata directive. Creates the exception handling table entry
4040 for the function. */
4041
4042 static void
4043 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
4044 {
4045 demand_empty_rest_of_line ();
4046 if (!unwind.proc_start)
4047 as_bad (MISSING_FNSTART);
4048
4049 if (unwind.table_entry)
4050 as_bad (_("duplicate .handlerdata directive"));
4051
4052 create_unwind_entry (1);
4053 }
4054
4055 /* Parse an unwind_fnend directive. Generates the index table entry. */
4056
4057 static void
4058 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
4059 {
4060 long where;
4061 char *ptr;
4062 valueT val;
4063 unsigned int marked_pr_dependency;
4064
4065 demand_empty_rest_of_line ();
4066
4067 if (!unwind.proc_start)
4068 {
4069 as_bad (_(".fnend directive without .fnstart"));
4070 return;
4071 }
4072
4073 /* Add eh table entry. */
4074 if (unwind.table_entry == NULL)
4075 val = create_unwind_entry (0);
4076 else
4077 val = 0;
4078
4079 /* Add index table entry. This is two words. */
4080 start_unwind_section (unwind.saved_seg, 1);
4081 frag_align (2, 0, 0);
4082 record_alignment (now_seg, 2);
4083
4084 ptr = frag_more (8);
4085 memset (ptr, 0, 8);
4086 where = frag_now_fix () - 8;
4087
4088 /* Self relative offset of the function start. */
4089 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
4090 BFD_RELOC_ARM_PREL31);
4091
4092 /* Indicate dependency on EHABI-defined personality routines to the
4093 linker, if it hasn't been done already. */
4094 marked_pr_dependency
4095 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
4096 if (unwind.personality_index >= 0 && unwind.personality_index < 3
4097 && !(marked_pr_dependency & (1 << unwind.personality_index)))
4098 {
4099 static const char *const name[] =
4100 {
4101 "__aeabi_unwind_cpp_pr0",
4102 "__aeabi_unwind_cpp_pr1",
4103 "__aeabi_unwind_cpp_pr2"
4104 };
4105 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
4106 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
4107 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
4108 |= 1 << unwind.personality_index;
4109 }
4110
4111 if (val)
4112 /* Inline exception table entry. */
4113 md_number_to_chars (ptr + 4, val, 4);
4114 else
4115 /* Self relative offset of the table entry. */
4116 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
4117 BFD_RELOC_ARM_PREL31);
4118
4119 /* Restore the original section. */
4120 subseg_set (unwind.saved_seg, unwind.saved_subseg);
4121
4122 unwind.proc_start = NULL;
4123 }
4124
4125
4126 /* Parse an unwind_cantunwind directive. */
4127
4128 static void
4129 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
4130 {
4131 demand_empty_rest_of_line ();
4132 if (!unwind.proc_start)
4133 as_bad (MISSING_FNSTART);
4134
4135 if (unwind.personality_routine || unwind.personality_index != -1)
4136 as_bad (_("personality routine specified for cantunwind frame"));
4137
4138 unwind.personality_index = -2;
4139 }
4140
4141
4142 /* Parse a personalityindex directive. */
4143
4144 static void
4145 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
4146 {
4147 expressionS exp;
4148
4149 if (!unwind.proc_start)
4150 as_bad (MISSING_FNSTART);
4151
4152 if (unwind.personality_routine || unwind.personality_index != -1)
4153 as_bad (_("duplicate .personalityindex directive"));
4154
4155 expression (&exp);
4156
4157 if (exp.X_op != O_constant
4158 || exp.X_add_number < 0 || exp.X_add_number > 15)
4159 {
4160 as_bad (_("bad personality routine number"));
4161 ignore_rest_of_line ();
4162 return;
4163 }
4164
4165 unwind.personality_index = exp.X_add_number;
4166
4167 demand_empty_rest_of_line ();
4168 }
4169
4170
4171 /* Parse a personality directive. */
4172
4173 static void
4174 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
4175 {
4176 char *name, *p, c;
4177
4178 if (!unwind.proc_start)
4179 as_bad (MISSING_FNSTART);
4180
4181 if (unwind.personality_routine || unwind.personality_index != -1)
4182 as_bad (_("duplicate .personality directive"));
4183
4184 c = get_symbol_name (& name);
4185 p = input_line_pointer;
4186 if (c == '"')
4187 ++ input_line_pointer;
4188 unwind.personality_routine = symbol_find_or_make (name);
4189 *p = c;
4190 demand_empty_rest_of_line ();
4191 }
4192
4193
4194 /* Parse a directive saving core registers. */
4195
4196 static void
4197 s_arm_unwind_save_core (void)
4198 {
4199 valueT op;
4200 long range;
4201 int n;
4202
4203 range = parse_reg_list (&input_line_pointer, REGLIST_RN);
4204 if (range == FAIL)
4205 {
4206 as_bad (_("expected register list"));
4207 ignore_rest_of_line ();
4208 return;
4209 }
4210
4211 demand_empty_rest_of_line ();
4212
4213 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4214 into .unwind_save {..., sp...}. We aren't bothered about the value of
4215 ip because it is clobbered by calls. */
4216 if (unwind.sp_restored && unwind.fp_reg == 12
4217 && (range & 0x3000) == 0x1000)
4218 {
4219 unwind.opcode_count--;
4220 unwind.sp_restored = 0;
4221 range = (range | 0x2000) & ~0x1000;
4222 unwind.pending_offset = 0;
4223 }
4224
4225 /* Pop r4-r15. */
4226 if (range & 0xfff0)
4227 {
4228 /* See if we can use the short opcodes. These pop a block of up to 8
4229 registers starting with r4, plus maybe r14. */
4230 for (n = 0; n < 8; n++)
4231 {
4232 /* Break at the first non-saved register. */
4233 if ((range & (1 << (n + 4))) == 0)
4234 break;
4235 }
4236 /* See if there are any other bits set. */
4237 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4238 {
4239 /* Use the long form. */
4240 op = 0x8000 | ((range >> 4) & 0xfff);
4241 add_unwind_opcode (op, 2);
4242 }
4243 else
4244 {
4245 /* Use the short form. */
4246 if (range & 0x4000)
4247 op = 0xa8; /* Pop r14. */
4248 else
4249 op = 0xa0; /* Do not pop r14. */
4250 op |= (n - 1);
4251 add_unwind_opcode (op, 1);
4252 }
4253 }
4254
4255 /* Pop r0-r3. */
4256 if (range & 0xf)
4257 {
4258 op = 0xb100 | (range & 0xf);
4259 add_unwind_opcode (op, 2);
4260 }
4261
4262 /* Record the number of bytes pushed. */
4263 for (n = 0; n < 16; n++)
4264 {
4265 if (range & (1 << n))
4266 unwind.frame_size += 4;
4267 }
4268 }
4269
4270
4271 /* Parse a directive saving FPA registers. */
4272
4273 static void
4274 s_arm_unwind_save_fpa (int reg)
4275 {
4276 expressionS exp;
4277 int num_regs;
4278 valueT op;
4279
4280 /* Get Number of registers to transfer. */
4281 if (skip_past_comma (&input_line_pointer) != FAIL)
4282 expression (&exp);
4283 else
4284 exp.X_op = O_illegal;
4285
4286 if (exp.X_op != O_constant)
4287 {
4288 as_bad (_("expected , <constant>"));
4289 ignore_rest_of_line ();
4290 return;
4291 }
4292
4293 num_regs = exp.X_add_number;
4294
4295 if (num_regs < 1 || num_regs > 4)
4296 {
4297 as_bad (_("number of registers must be in the range [1:4]"));
4298 ignore_rest_of_line ();
4299 return;
4300 }
4301
4302 demand_empty_rest_of_line ();
4303
4304 if (reg == 4)
4305 {
4306 /* Short form. */
4307 op = 0xb4 | (num_regs - 1);
4308 add_unwind_opcode (op, 1);
4309 }
4310 else
4311 {
4312 /* Long form. */
4313 op = 0xc800 | (reg << 4) | (num_regs - 1);
4314 add_unwind_opcode (op, 2);
4315 }
4316 unwind.frame_size += num_regs * 12;
4317 }
4318
4319
4320 /* Parse a directive saving VFP registers for ARMv6 and above. */
4321
4322 static void
4323 s_arm_unwind_save_vfp_armv6 (void)
4324 {
4325 int count;
4326 unsigned int start;
4327 valueT op;
4328 int num_vfpv3_regs = 0;
4329 int num_regs_below_16;
4330 bfd_boolean partial_match;
4331
4332 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D,
4333 &partial_match);
4334 if (count == FAIL)
4335 {
4336 as_bad (_("expected register list"));
4337 ignore_rest_of_line ();
4338 return;
4339 }
4340
4341 demand_empty_rest_of_line ();
4342
4343 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4344 than FSTMX/FLDMX-style ones). */
4345
4346 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4347 if (start >= 16)
4348 num_vfpv3_regs = count;
4349 else if (start + count > 16)
4350 num_vfpv3_regs = start + count - 16;
4351
4352 if (num_vfpv3_regs > 0)
4353 {
4354 int start_offset = start > 16 ? start - 16 : 0;
4355 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4356 add_unwind_opcode (op, 2);
4357 }
4358
4359 /* Generate opcode for registers numbered in the range 0 .. 15. */
4360 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
4361 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
4362 if (num_regs_below_16 > 0)
4363 {
4364 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4365 add_unwind_opcode (op, 2);
4366 }
4367
4368 unwind.frame_size += count * 8;
4369 }
4370
4371
4372 /* Parse a directive saving VFP registers for pre-ARMv6. */
4373
4374 static void
4375 s_arm_unwind_save_vfp (void)
4376 {
4377 int count;
4378 unsigned int reg;
4379 valueT op;
4380 bfd_boolean partial_match;
4381
4382 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D,
4383 &partial_match);
4384 if (count == FAIL)
4385 {
4386 as_bad (_("expected register list"));
4387 ignore_rest_of_line ();
4388 return;
4389 }
4390
4391 demand_empty_rest_of_line ();
4392
4393 if (reg == 8)
4394 {
4395 /* Short form. */
4396 op = 0xb8 | (count - 1);
4397 add_unwind_opcode (op, 1);
4398 }
4399 else
4400 {
4401 /* Long form. */
4402 op = 0xb300 | (reg << 4) | (count - 1);
4403 add_unwind_opcode (op, 2);
4404 }
4405 unwind.frame_size += count * 8 + 4;
4406 }
4407
4408
4409 /* Parse a directive saving iWMMXt data registers. */
4410
4411 static void
4412 s_arm_unwind_save_mmxwr (void)
4413 {
4414 int reg;
4415 int hi_reg;
4416 int i;
4417 unsigned mask = 0;
4418 valueT op;
4419
4420 if (*input_line_pointer == '{')
4421 input_line_pointer++;
4422
4423 do
4424 {
4425 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4426
4427 if (reg == FAIL)
4428 {
4429 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4430 goto error;
4431 }
4432
4433 if (mask >> reg)
4434 as_tsktsk (_("register list not in ascending order"));
4435 mask |= 1 << reg;
4436
4437 if (*input_line_pointer == '-')
4438 {
4439 input_line_pointer++;
4440 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4441 if (hi_reg == FAIL)
4442 {
4443 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4444 goto error;
4445 }
4446 else if (reg >= hi_reg)
4447 {
4448 as_bad (_("bad register range"));
4449 goto error;
4450 }
4451 for (; reg < hi_reg; reg++)
4452 mask |= 1 << reg;
4453 }
4454 }
4455 while (skip_past_comma (&input_line_pointer) != FAIL);
4456
4457 skip_past_char (&input_line_pointer, '}');
4458
4459 demand_empty_rest_of_line ();
4460
4461 /* Generate any deferred opcodes because we're going to be looking at
4462 the list. */
4463 flush_pending_unwind ();
4464
4465 for (i = 0; i < 16; i++)
4466 {
4467 if (mask & (1 << i))
4468 unwind.frame_size += 8;
4469 }
4470
4471 /* Attempt to combine with a previous opcode. We do this because gcc
4472 likes to output separate unwind directives for a single block of
4473 registers. */
4474 if (unwind.opcode_count > 0)
4475 {
4476 i = unwind.opcodes[unwind.opcode_count - 1];
4477 if ((i & 0xf8) == 0xc0)
4478 {
4479 i &= 7;
4480 /* Only merge if the blocks are contiguous. */
4481 if (i < 6)
4482 {
4483 if ((mask & 0xfe00) == (1 << 9))
4484 {
4485 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4486 unwind.opcode_count--;
4487 }
4488 }
4489 else if (i == 6 && unwind.opcode_count >= 2)
4490 {
4491 i = unwind.opcodes[unwind.opcode_count - 2];
4492 reg = i >> 4;
4493 i &= 0xf;
4494
4495 op = 0xffff << (reg - 1);
4496 if (reg > 0
4497 && ((mask & op) == (1u << (reg - 1))))
4498 {
4499 op = (1 << (reg + i + 1)) - 1;
4500 op &= ~((1 << reg) - 1);
4501 mask |= op;
4502 unwind.opcode_count -= 2;
4503 }
4504 }
4505 }
4506 }
4507
4508 hi_reg = 15;
4509 /* We want to generate opcodes in the order the registers have been
4510 saved, ie. descending order. */
4511 for (reg = 15; reg >= -1; reg--)
4512 {
4513 /* Save registers in blocks. */
4514 if (reg < 0
4515 || !(mask & (1 << reg)))
4516 {
4517 /* We found an unsaved reg. Generate opcodes to save the
4518 preceding block. */
4519 if (reg != hi_reg)
4520 {
4521 if (reg == 9)
4522 {
4523 /* Short form. */
4524 op = 0xc0 | (hi_reg - 10);
4525 add_unwind_opcode (op, 1);
4526 }
4527 else
4528 {
4529 /* Long form. */
4530 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4531 add_unwind_opcode (op, 2);
4532 }
4533 }
4534 hi_reg = reg - 1;
4535 }
4536 }
4537
4538 return;
4539 error:
4540 ignore_rest_of_line ();
4541 }
4542
4543 static void
4544 s_arm_unwind_save_mmxwcg (void)
4545 {
4546 int reg;
4547 int hi_reg;
4548 unsigned mask = 0;
4549 valueT op;
4550
4551 if (*input_line_pointer == '{')
4552 input_line_pointer++;
4553
4554 skip_whitespace (input_line_pointer);
4555
4556 do
4557 {
4558 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4559
4560 if (reg == FAIL)
4561 {
4562 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4563 goto error;
4564 }
4565
4566 reg -= 8;
4567 if (mask >> reg)
4568 as_tsktsk (_("register list not in ascending order"));
4569 mask |= 1 << reg;
4570
4571 if (*input_line_pointer == '-')
4572 {
4573 input_line_pointer++;
4574 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4575 if (hi_reg == FAIL)
4576 {
4577 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4578 goto error;
4579 }
4580 else if (reg >= hi_reg)
4581 {
4582 as_bad (_("bad register range"));
4583 goto error;
4584 }
4585 for (; reg < hi_reg; reg++)
4586 mask |= 1 << reg;
4587 }
4588 }
4589 while (skip_past_comma (&input_line_pointer) != FAIL);
4590
4591 skip_past_char (&input_line_pointer, '}');
4592
4593 demand_empty_rest_of_line ();
4594
4595 /* Generate any deferred opcodes because we're going to be looking at
4596 the list. */
4597 flush_pending_unwind ();
4598
4599 for (reg = 0; reg < 16; reg++)
4600 {
4601 if (mask & (1 << reg))
4602 unwind.frame_size += 4;
4603 }
4604 op = 0xc700 | mask;
4605 add_unwind_opcode (op, 2);
4606 return;
4607 error:
4608 ignore_rest_of_line ();
4609 }
4610
4611
4612 /* Parse an unwind_save directive.
4613 If the argument is non-zero, this is a .vsave directive. */
4614
4615 static void
4616 s_arm_unwind_save (int arch_v6)
4617 {
4618 char *peek;
4619 struct reg_entry *reg;
4620 bfd_boolean had_brace = FALSE;
4621
4622 if (!unwind.proc_start)
4623 as_bad (MISSING_FNSTART);
4624
4625 /* Figure out what sort of save we have. */
4626 peek = input_line_pointer;
4627
4628 if (*peek == '{')
4629 {
4630 had_brace = TRUE;
4631 peek++;
4632 }
4633
4634 reg = arm_reg_parse_multi (&peek);
4635
4636 if (!reg)
4637 {
4638 as_bad (_("register expected"));
4639 ignore_rest_of_line ();
4640 return;
4641 }
4642
4643 switch (reg->type)
4644 {
4645 case REG_TYPE_FN:
4646 if (had_brace)
4647 {
4648 as_bad (_("FPA .unwind_save does not take a register list"));
4649 ignore_rest_of_line ();
4650 return;
4651 }
4652 input_line_pointer = peek;
4653 s_arm_unwind_save_fpa (reg->number);
4654 return;
4655
4656 case REG_TYPE_RN:
4657 s_arm_unwind_save_core ();
4658 return;
4659
4660 case REG_TYPE_VFD:
4661 if (arch_v6)
4662 s_arm_unwind_save_vfp_armv6 ();
4663 else
4664 s_arm_unwind_save_vfp ();
4665 return;
4666
4667 case REG_TYPE_MMXWR:
4668 s_arm_unwind_save_mmxwr ();
4669 return;
4670
4671 case REG_TYPE_MMXWCG:
4672 s_arm_unwind_save_mmxwcg ();
4673 return;
4674
4675 default:
4676 as_bad (_(".unwind_save does not support this kind of register"));
4677 ignore_rest_of_line ();
4678 }
4679 }
4680
4681
4682 /* Parse an unwind_movsp directive. */
4683
4684 static void
4685 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4686 {
4687 int reg;
4688 valueT op;
4689 int offset;
4690
4691 if (!unwind.proc_start)
4692 as_bad (MISSING_FNSTART);
4693
4694 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4695 if (reg == FAIL)
4696 {
4697 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4698 ignore_rest_of_line ();
4699 return;
4700 }
4701
4702 /* Optional constant. */
4703 if (skip_past_comma (&input_line_pointer) != FAIL)
4704 {
4705 if (immediate_for_directive (&offset) == FAIL)
4706 return;
4707 }
4708 else
4709 offset = 0;
4710
4711 demand_empty_rest_of_line ();
4712
4713 if (reg == REG_SP || reg == REG_PC)
4714 {
4715 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4716 return;
4717 }
4718
4719 if (unwind.fp_reg != REG_SP)
4720 as_bad (_("unexpected .unwind_movsp directive"));
4721
4722 /* Generate opcode to restore the value. */
4723 op = 0x90 | reg;
4724 add_unwind_opcode (op, 1);
4725
4726 /* Record the information for later. */
4727 unwind.fp_reg = reg;
4728 unwind.fp_offset = unwind.frame_size - offset;
4729 unwind.sp_restored = 1;
4730 }
4731
4732 /* Parse an unwind_pad directive. */
4733
4734 static void
4735 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4736 {
4737 int offset;
4738
4739 if (!unwind.proc_start)
4740 as_bad (MISSING_FNSTART);
4741
4742 if (immediate_for_directive (&offset) == FAIL)
4743 return;
4744
4745 if (offset & 3)
4746 {
4747 as_bad (_("stack increment must be multiple of 4"));
4748 ignore_rest_of_line ();
4749 return;
4750 }
4751
4752 /* Don't generate any opcodes, just record the details for later. */
4753 unwind.frame_size += offset;
4754 unwind.pending_offset += offset;
4755
4756 demand_empty_rest_of_line ();
4757 }
4758
4759 /* Parse an unwind_setfp directive. */
4760
4761 static void
4762 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4763 {
4764 int sp_reg;
4765 int fp_reg;
4766 int offset;
4767
4768 if (!unwind.proc_start)
4769 as_bad (MISSING_FNSTART);
4770
4771 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4772 if (skip_past_comma (&input_line_pointer) == FAIL)
4773 sp_reg = FAIL;
4774 else
4775 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4776
4777 if (fp_reg == FAIL || sp_reg == FAIL)
4778 {
4779 as_bad (_("expected <reg>, <reg>"));
4780 ignore_rest_of_line ();
4781 return;
4782 }
4783
4784 /* Optional constant. */
4785 if (skip_past_comma (&input_line_pointer) != FAIL)
4786 {
4787 if (immediate_for_directive (&offset) == FAIL)
4788 return;
4789 }
4790 else
4791 offset = 0;
4792
4793 demand_empty_rest_of_line ();
4794
4795 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4796 {
4797 as_bad (_("register must be either sp or set by a previous"
4798 "unwind_movsp directive"));
4799 return;
4800 }
4801
4802 /* Don't generate any opcodes, just record the information for later. */
4803 unwind.fp_reg = fp_reg;
4804 unwind.fp_used = 1;
4805 if (sp_reg == REG_SP)
4806 unwind.fp_offset = unwind.frame_size - offset;
4807 else
4808 unwind.fp_offset -= offset;
4809 }
4810
4811 /* Parse an unwind_raw directive. */
4812
4813 static void
4814 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4815 {
4816 expressionS exp;
4817 /* This is an arbitrary limit. */
4818 unsigned char op[16];
4819 int count;
4820
4821 if (!unwind.proc_start)
4822 as_bad (MISSING_FNSTART);
4823
4824 expression (&exp);
4825 if (exp.X_op == O_constant
4826 && skip_past_comma (&input_line_pointer) != FAIL)
4827 {
4828 unwind.frame_size += exp.X_add_number;
4829 expression (&exp);
4830 }
4831 else
4832 exp.X_op = O_illegal;
4833
4834 if (exp.X_op != O_constant)
4835 {
4836 as_bad (_("expected <offset>, <opcode>"));
4837 ignore_rest_of_line ();
4838 return;
4839 }
4840
4841 count = 0;
4842
4843 /* Parse the opcode. */
4844 for (;;)
4845 {
4846 if (count >= 16)
4847 {
4848 as_bad (_("unwind opcode too long"));
4849 ignore_rest_of_line ();
4850 }
4851 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4852 {
4853 as_bad (_("invalid unwind opcode"));
4854 ignore_rest_of_line ();
4855 return;
4856 }
4857 op[count++] = exp.X_add_number;
4858
4859 /* Parse the next byte. */
4860 if (skip_past_comma (&input_line_pointer) == FAIL)
4861 break;
4862
4863 expression (&exp);
4864 }
4865
4866 /* Add the opcode bytes in reverse order. */
4867 while (count--)
4868 add_unwind_opcode (op[count], 1);
4869
4870 demand_empty_rest_of_line ();
4871 }
4872
4873
4874 /* Parse a .eabi_attribute directive. */
4875
4876 static void
4877 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4878 {
4879 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
4880
4881 if (tag >= 0 && tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4882 attributes_set_explicitly[tag] = 1;
4883 }
4884
4885 /* Emit a tls fix for the symbol. */
4886
4887 static void
4888 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4889 {
4890 char *p;
4891 expressionS exp;
4892 #ifdef md_flush_pending_output
4893 md_flush_pending_output ();
4894 #endif
4895
4896 #ifdef md_cons_align
4897 md_cons_align (4);
4898 #endif
4899
4900 /* Since we're just labelling the code, there's no need to define a
4901 mapping symbol. */
4902 expression (&exp);
4903 p = obstack_next_free (&frchain_now->frch_obstack);
4904 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4905 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4906 : BFD_RELOC_ARM_TLS_DESCSEQ);
4907 }
4908 #endif /* OBJ_ELF */
4909
4910 static void s_arm_arch (int);
4911 static void s_arm_object_arch (int);
4912 static void s_arm_cpu (int);
4913 static void s_arm_fpu (int);
4914 static void s_arm_arch_extension (int);
4915
4916 #ifdef TE_PE
4917
4918 static void
4919 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4920 {
4921 expressionS exp;
4922
4923 do
4924 {
4925 expression (&exp);
4926 if (exp.X_op == O_symbol)
4927 exp.X_op = O_secrel;
4928
4929 emit_expr (&exp, 4);
4930 }
4931 while (*input_line_pointer++ == ',');
4932
4933 input_line_pointer--;
4934 demand_empty_rest_of_line ();
4935 }
4936 #endif /* TE_PE */
4937
4938 int
4939 arm_is_largest_exponent_ok (int precision)
4940 {
4941 /* precision == 1 ensures that this will only return
4942 true for 16 bit floats. */
4943 return (precision == 1) && (fp16_format == ARM_FP16_FORMAT_ALTERNATIVE);
4944 }
4945
4946 static void
4947 set_fp16_format (int dummy ATTRIBUTE_UNUSED)
4948 {
4949 char saved_char;
4950 char* name;
4951 enum fp_16bit_format new_format;
4952
4953 new_format = ARM_FP16_FORMAT_DEFAULT;
4954
4955 name = input_line_pointer;
4956 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
4957 input_line_pointer++;
4958
4959 saved_char = *input_line_pointer;
4960 *input_line_pointer = 0;
4961
4962 if (strcasecmp (name, "ieee") == 0)
4963 new_format = ARM_FP16_FORMAT_IEEE;
4964 else if (strcasecmp (name, "alternative") == 0)
4965 new_format = ARM_FP16_FORMAT_ALTERNATIVE;
4966 else
4967 {
4968 as_bad (_("unrecognised float16 format \"%s\""), name);
4969 goto cleanup;
4970 }
4971
4972 /* Only set fp16_format if it is still the default (aka not already
4973 been set yet). */
4974 if (fp16_format == ARM_FP16_FORMAT_DEFAULT)
4975 fp16_format = new_format;
4976 else
4977 {
4978 if (new_format != fp16_format)
4979 as_warn (_("float16 format cannot be set more than once, ignoring."));
4980 }
4981
4982 cleanup:
4983 *input_line_pointer = saved_char;
4984 ignore_rest_of_line ();
4985 }
4986
4987 /* This table describes all the machine specific pseudo-ops the assembler
4988 has to support. The fields are:
4989 pseudo-op name without dot
4990 function to call to execute this pseudo-op
4991 Integer arg to pass to the function. */
4992
4993 const pseudo_typeS md_pseudo_table[] =
4994 {
4995 /* Never called because '.req' does not start a line. */
4996 { "req", s_req, 0 },
4997 /* Following two are likewise never called. */
4998 { "dn", s_dn, 0 },
4999 { "qn", s_qn, 0 },
5000 { "unreq", s_unreq, 0 },
5001 { "bss", s_bss, 0 },
5002 { "align", s_align_ptwo, 2 },
5003 { "arm", s_arm, 0 },
5004 { "thumb", s_thumb, 0 },
5005 { "code", s_code, 0 },
5006 { "force_thumb", s_force_thumb, 0 },
5007 { "thumb_func", s_thumb_func, 0 },
5008 { "thumb_set", s_thumb_set, 0 },
5009 { "even", s_even, 0 },
5010 { "ltorg", s_ltorg, 0 },
5011 { "pool", s_ltorg, 0 },
5012 { "syntax", s_syntax, 0 },
5013 { "cpu", s_arm_cpu, 0 },
5014 { "arch", s_arm_arch, 0 },
5015 { "object_arch", s_arm_object_arch, 0 },
5016 { "fpu", s_arm_fpu, 0 },
5017 { "arch_extension", s_arm_arch_extension, 0 },
5018 #ifdef OBJ_ELF
5019 { "word", s_arm_elf_cons, 4 },
5020 { "long", s_arm_elf_cons, 4 },
5021 { "inst.n", s_arm_elf_inst, 2 },
5022 { "inst.w", s_arm_elf_inst, 4 },
5023 { "inst", s_arm_elf_inst, 0 },
5024 { "rel31", s_arm_rel31, 0 },
5025 { "fnstart", s_arm_unwind_fnstart, 0 },
5026 { "fnend", s_arm_unwind_fnend, 0 },
5027 { "cantunwind", s_arm_unwind_cantunwind, 0 },
5028 { "personality", s_arm_unwind_personality, 0 },
5029 { "personalityindex", s_arm_unwind_personalityindex, 0 },
5030 { "handlerdata", s_arm_unwind_handlerdata, 0 },
5031 { "save", s_arm_unwind_save, 0 },
5032 { "vsave", s_arm_unwind_save, 1 },
5033 { "movsp", s_arm_unwind_movsp, 0 },
5034 { "pad", s_arm_unwind_pad, 0 },
5035 { "setfp", s_arm_unwind_setfp, 0 },
5036 { "unwind_raw", s_arm_unwind_raw, 0 },
5037 { "eabi_attribute", s_arm_eabi_attribute, 0 },
5038 { "tlsdescseq", s_arm_tls_descseq, 0 },
5039 #else
5040 { "word", cons, 4},
5041
5042 /* These are used for dwarf. */
5043 {"2byte", cons, 2},
5044 {"4byte", cons, 4},
5045 {"8byte", cons, 8},
5046 /* These are used for dwarf2. */
5047 { "file", dwarf2_directive_file, 0 },
5048 { "loc", dwarf2_directive_loc, 0 },
5049 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
5050 #endif
5051 { "extend", float_cons, 'x' },
5052 { "ldouble", float_cons, 'x' },
5053 { "packed", float_cons, 'p' },
5054 #ifdef TE_PE
5055 {"secrel32", pe_directive_secrel, 0},
5056 #endif
5057
5058 /* These are for compatibility with CodeComposer Studio. */
5059 {"ref", s_ccs_ref, 0},
5060 {"def", s_ccs_def, 0},
5061 {"asmfunc", s_ccs_asmfunc, 0},
5062 {"endasmfunc", s_ccs_endasmfunc, 0},
5063
5064 {"float16", float_cons, 'h' },
5065 {"float16_format", set_fp16_format, 0 },
5066
5067 { 0, 0, 0 }
5068 };
5069
5070 /* Parser functions used exclusively in instruction operands. */
5071
5072 /* Generic immediate-value read function for use in insn parsing.
5073 STR points to the beginning of the immediate (the leading #);
5074 VAL receives the value; if the value is outside [MIN, MAX]
5075 issue an error. PREFIX_OPT is true if the immediate prefix is
5076 optional. */
5077
5078 static int
5079 parse_immediate (char **str, int *val, int min, int max,
5080 bfd_boolean prefix_opt)
5081 {
5082 expressionS exp;
5083
5084 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
5085 if (exp.X_op != O_constant)
5086 {
5087 inst.error = _("constant expression required");
5088 return FAIL;
5089 }
5090
5091 if (exp.X_add_number < min || exp.X_add_number > max)
5092 {
5093 inst.error = _("immediate value out of range");
5094 return FAIL;
5095 }
5096
5097 *val = exp.X_add_number;
5098 return SUCCESS;
5099 }
5100
5101 /* Less-generic immediate-value read function with the possibility of loading a
5102 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5103 instructions. Puts the result directly in inst.operands[i]. */
5104
5105 static int
5106 parse_big_immediate (char **str, int i, expressionS *in_exp,
5107 bfd_boolean allow_symbol_p)
5108 {
5109 expressionS exp;
5110 expressionS *exp_p = in_exp ? in_exp : &exp;
5111 char *ptr = *str;
5112
5113 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
5114
5115 if (exp_p->X_op == O_constant)
5116 {
5117 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
5118 /* If we're on a 64-bit host, then a 64-bit number can be returned using
5119 O_constant. We have to be careful not to break compilation for
5120 32-bit X_add_number, though. */
5121 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
5122 {
5123 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
5124 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
5125 & 0xffffffff);
5126 inst.operands[i].regisimm = 1;
5127 }
5128 }
5129 else if (exp_p->X_op == O_big
5130 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
5131 {
5132 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
5133
5134 /* Bignums have their least significant bits in
5135 generic_bignum[0]. Make sure we put 32 bits in imm and
5136 32 bits in reg, in a (hopefully) portable way. */
5137 gas_assert (parts != 0);
5138
5139 /* Make sure that the number is not too big.
5140 PR 11972: Bignums can now be sign-extended to the
5141 size of a .octa so check that the out of range bits
5142 are all zero or all one. */
5143 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
5144 {
5145 LITTLENUM_TYPE m = -1;
5146
5147 if (generic_bignum[parts * 2] != 0
5148 && generic_bignum[parts * 2] != m)
5149 return FAIL;
5150
5151 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
5152 if (generic_bignum[j] != generic_bignum[j-1])
5153 return FAIL;
5154 }
5155
5156 inst.operands[i].imm = 0;
5157 for (j = 0; j < parts; j++, idx++)
5158 inst.operands[i].imm |= generic_bignum[idx]
5159 << (LITTLENUM_NUMBER_OF_BITS * j);
5160 inst.operands[i].reg = 0;
5161 for (j = 0; j < parts; j++, idx++)
5162 inst.operands[i].reg |= generic_bignum[idx]
5163 << (LITTLENUM_NUMBER_OF_BITS * j);
5164 inst.operands[i].regisimm = 1;
5165 }
5166 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
5167 return FAIL;
5168
5169 *str = ptr;
5170
5171 return SUCCESS;
5172 }
5173
5174 /* Returns the pseudo-register number of an FPA immediate constant,
5175 or FAIL if there isn't a valid constant here. */
5176
5177 static int
5178 parse_fpa_immediate (char ** str)
5179 {
5180 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5181 char * save_in;
5182 expressionS exp;
5183 int i;
5184 int j;
5185
5186 /* First try and match exact strings, this is to guarantee
5187 that some formats will work even for cross assembly. */
5188
5189 for (i = 0; fp_const[i]; i++)
5190 {
5191 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
5192 {
5193 char *start = *str;
5194
5195 *str += strlen (fp_const[i]);
5196 if (is_end_of_line[(unsigned char) **str])
5197 return i + 8;
5198 *str = start;
5199 }
5200 }
5201
5202 /* Just because we didn't get a match doesn't mean that the constant
5203 isn't valid, just that it is in a format that we don't
5204 automatically recognize. Try parsing it with the standard
5205 expression routines. */
5206
5207 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
5208
5209 /* Look for a raw floating point number. */
5210 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
5211 && is_end_of_line[(unsigned char) *save_in])
5212 {
5213 for (i = 0; i < NUM_FLOAT_VALS; i++)
5214 {
5215 for (j = 0; j < MAX_LITTLENUMS; j++)
5216 {
5217 if (words[j] != fp_values[i][j])
5218 break;
5219 }
5220
5221 if (j == MAX_LITTLENUMS)
5222 {
5223 *str = save_in;
5224 return i + 8;
5225 }
5226 }
5227 }
5228
5229 /* Try and parse a more complex expression, this will probably fail
5230 unless the code uses a floating point prefix (eg "0f"). */
5231 save_in = input_line_pointer;
5232 input_line_pointer = *str;
5233 if (expression (&exp) == absolute_section
5234 && exp.X_op == O_big
5235 && exp.X_add_number < 0)
5236 {
5237 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
5238 Ditto for 15. */
5239 #define X_PRECISION 5
5240 #define E_PRECISION 15L
5241 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
5242 {
5243 for (i = 0; i < NUM_FLOAT_VALS; i++)
5244 {
5245 for (j = 0; j < MAX_LITTLENUMS; j++)
5246 {
5247 if (words[j] != fp_values[i][j])
5248 break;
5249 }
5250
5251 if (j == MAX_LITTLENUMS)
5252 {
5253 *str = input_line_pointer;
5254 input_line_pointer = save_in;
5255 return i + 8;
5256 }
5257 }
5258 }
5259 }
5260
5261 *str = input_line_pointer;
5262 input_line_pointer = save_in;
5263 inst.error = _("invalid FPA immediate expression");
5264 return FAIL;
5265 }
5266
5267 /* Returns 1 if a number has "quarter-precision" float format
5268 0baBbbbbbc defgh000 00000000 00000000. */
5269
5270 static int
5271 is_quarter_float (unsigned imm)
5272 {
5273 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
5274 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
5275 }
5276
5277
5278 /* Detect the presence of a floating point or integer zero constant,
5279 i.e. #0.0 or #0. */
5280
5281 static bfd_boolean
5282 parse_ifimm_zero (char **in)
5283 {
5284 int error_code;
5285
5286 if (!is_immediate_prefix (**in))
5287 {
5288 /* In unified syntax, all prefixes are optional. */
5289 if (!unified_syntax)
5290 return FALSE;
5291 }
5292 else
5293 ++*in;
5294
5295 /* Accept #0x0 as a synonym for #0. */
5296 if (strncmp (*in, "0x", 2) == 0)
5297 {
5298 int val;
5299 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5300 return FALSE;
5301 return TRUE;
5302 }
5303
5304 error_code = atof_generic (in, ".", EXP_CHARS,
5305 &generic_floating_point_number);
5306
5307 if (!error_code
5308 && generic_floating_point_number.sign == '+'
5309 && (generic_floating_point_number.low
5310 > generic_floating_point_number.leader))
5311 return TRUE;
5312
5313 return FALSE;
5314 }
5315
5316 /* Parse an 8-bit "quarter-precision" floating point number of the form:
5317 0baBbbbbbc defgh000 00000000 00000000.
5318 The zero and minus-zero cases need special handling, since they can't be
5319 encoded in the "quarter-precision" float format, but can nonetheless be
5320 loaded as integer constants. */
5321
5322 static unsigned
5323 parse_qfloat_immediate (char **ccp, int *immed)
5324 {
5325 char *str = *ccp;
5326 char *fpnum;
5327 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5328 int found_fpchar = 0;
5329
5330 skip_past_char (&str, '#');
5331
5332 /* We must not accidentally parse an integer as a floating-point number. Make
5333 sure that the value we parse is not an integer by checking for special
5334 characters '.' or 'e'.
5335 FIXME: This is a horrible hack, but doing better is tricky because type
5336 information isn't in a very usable state at parse time. */
5337 fpnum = str;
5338 skip_whitespace (fpnum);
5339
5340 if (strncmp (fpnum, "0x", 2) == 0)
5341 return FAIL;
5342 else
5343 {
5344 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
5345 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5346 {
5347 found_fpchar = 1;
5348 break;
5349 }
5350
5351 if (!found_fpchar)
5352 return FAIL;
5353 }
5354
5355 if ((str = atof_ieee (str, 's', words)) != NULL)
5356 {
5357 unsigned fpword = 0;
5358 int i;
5359
5360 /* Our FP word must be 32 bits (single-precision FP). */
5361 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
5362 {
5363 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5364 fpword |= words[i];
5365 }
5366
5367 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
5368 *immed = fpword;
5369 else
5370 return FAIL;
5371
5372 *ccp = str;
5373
5374 return SUCCESS;
5375 }
5376
5377 return FAIL;
5378 }
5379
5380 /* Shift operands. */
5381 enum shift_kind
5382 {
5383 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX, SHIFT_UXTW
5384 };
5385
5386 struct asm_shift_name
5387 {
5388 const char *name;
5389 enum shift_kind kind;
5390 };
5391
5392 /* Third argument to parse_shift. */
5393 enum parse_shift_mode
5394 {
5395 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5396 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5397 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5398 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5399 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
5400 SHIFT_UXTW_IMMEDIATE /* Shift must be UXTW immediate. */
5401 };
5402
5403 /* Parse a <shift> specifier on an ARM data processing instruction.
5404 This has three forms:
5405
5406 (LSL|LSR|ASL|ASR|ROR) Rs
5407 (LSL|LSR|ASL|ASR|ROR) #imm
5408 RRX
5409
5410 Note that ASL is assimilated to LSL in the instruction encoding, and
5411 RRX to ROR #0 (which cannot be written as such). */
5412
5413 static int
5414 parse_shift (char **str, int i, enum parse_shift_mode mode)
5415 {
5416 const struct asm_shift_name *shift_name;
5417 enum shift_kind shift;
5418 char *s = *str;
5419 char *p = s;
5420 int reg;
5421
5422 for (p = *str; ISALPHA (*p); p++)
5423 ;
5424
5425 if (p == *str)
5426 {
5427 inst.error = _("shift expression expected");
5428 return FAIL;
5429 }
5430
5431 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
5432 p - *str);
5433
5434 if (shift_name == NULL)
5435 {
5436 inst.error = _("shift expression expected");
5437 return FAIL;
5438 }
5439
5440 shift = shift_name->kind;
5441
5442 switch (mode)
5443 {
5444 case NO_SHIFT_RESTRICT:
5445 case SHIFT_IMMEDIATE:
5446 if (shift == SHIFT_UXTW)
5447 {
5448 inst.error = _("'UXTW' not allowed here");
5449 return FAIL;
5450 }
5451 break;
5452
5453 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5454 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5455 {
5456 inst.error = _("'LSL' or 'ASR' required");
5457 return FAIL;
5458 }
5459 break;
5460
5461 case SHIFT_LSL_IMMEDIATE:
5462 if (shift != SHIFT_LSL)
5463 {
5464 inst.error = _("'LSL' required");
5465 return FAIL;
5466 }
5467 break;
5468
5469 case SHIFT_ASR_IMMEDIATE:
5470 if (shift != SHIFT_ASR)
5471 {
5472 inst.error = _("'ASR' required");
5473 return FAIL;
5474 }
5475 break;
5476 case SHIFT_UXTW_IMMEDIATE:
5477 if (shift != SHIFT_UXTW)
5478 {
5479 inst.error = _("'UXTW' required");
5480 return FAIL;
5481 }
5482 break;
5483
5484 default: abort ();
5485 }
5486
5487 if (shift != SHIFT_RRX)
5488 {
5489 /* Whitespace can appear here if the next thing is a bare digit. */
5490 skip_whitespace (p);
5491
5492 if (mode == NO_SHIFT_RESTRICT
5493 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5494 {
5495 inst.operands[i].imm = reg;
5496 inst.operands[i].immisreg = 1;
5497 }
5498 else if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5499 return FAIL;
5500 }
5501 inst.operands[i].shift_kind = shift;
5502 inst.operands[i].shifted = 1;
5503 *str = p;
5504 return SUCCESS;
5505 }
5506
5507 /* Parse a <shifter_operand> for an ARM data processing instruction:
5508
5509 #<immediate>
5510 #<immediate>, <rotate>
5511 <Rm>
5512 <Rm>, <shift>
5513
5514 where <shift> is defined by parse_shift above, and <rotate> is a
5515 multiple of 2 between 0 and 30. Validation of immediate operands
5516 is deferred to md_apply_fix. */
5517
5518 static int
5519 parse_shifter_operand (char **str, int i)
5520 {
5521 int value;
5522 expressionS exp;
5523
5524 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
5525 {
5526 inst.operands[i].reg = value;
5527 inst.operands[i].isreg = 1;
5528
5529 /* parse_shift will override this if appropriate */
5530 inst.relocs[0].exp.X_op = O_constant;
5531 inst.relocs[0].exp.X_add_number = 0;
5532
5533 if (skip_past_comma (str) == FAIL)
5534 return SUCCESS;
5535
5536 /* Shift operation on register. */
5537 return parse_shift (str, i, NO_SHIFT_RESTRICT);
5538 }
5539
5540 if (my_get_expression (&inst.relocs[0].exp, str, GE_IMM_PREFIX))
5541 return FAIL;
5542
5543 if (skip_past_comma (str) == SUCCESS)
5544 {
5545 /* #x, y -- ie explicit rotation by Y. */
5546 if (my_get_expression (&exp, str, GE_NO_PREFIX))
5547 return FAIL;
5548
5549 if (exp.X_op != O_constant || inst.relocs[0].exp.X_op != O_constant)
5550 {
5551 inst.error = _("constant expression expected");
5552 return FAIL;
5553 }
5554
5555 value = exp.X_add_number;
5556 if (value < 0 || value > 30 || value % 2 != 0)
5557 {
5558 inst.error = _("invalid rotation");
5559 return FAIL;
5560 }
5561 if (inst.relocs[0].exp.X_add_number < 0
5562 || inst.relocs[0].exp.X_add_number > 255)
5563 {
5564 inst.error = _("invalid constant");
5565 return FAIL;
5566 }
5567
5568 /* Encode as specified. */
5569 inst.operands[i].imm = inst.relocs[0].exp.X_add_number | value << 7;
5570 return SUCCESS;
5571 }
5572
5573 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
5574 inst.relocs[0].pc_rel = 0;
5575 return SUCCESS;
5576 }
5577
5578 /* Group relocation information. Each entry in the table contains the
5579 textual name of the relocation as may appear in assembler source
5580 and must end with a colon.
5581 Along with this textual name are the relocation codes to be used if
5582 the corresponding instruction is an ALU instruction (ADD or SUB only),
5583 an LDR, an LDRS, or an LDC. */
5584
5585 struct group_reloc_table_entry
5586 {
5587 const char *name;
5588 int alu_code;
5589 int ldr_code;
5590 int ldrs_code;
5591 int ldc_code;
5592 };
5593
5594 typedef enum
5595 {
5596 /* Varieties of non-ALU group relocation. */
5597
5598 GROUP_LDR,
5599 GROUP_LDRS,
5600 GROUP_LDC,
5601 GROUP_MVE
5602 } group_reloc_type;
5603
5604 static struct group_reloc_table_entry group_reloc_table[] =
5605 { /* Program counter relative: */
5606 { "pc_g0_nc",
5607 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5608 0, /* LDR */
5609 0, /* LDRS */
5610 0 }, /* LDC */
5611 { "pc_g0",
5612 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5613 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5614 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5615 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5616 { "pc_g1_nc",
5617 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5618 0, /* LDR */
5619 0, /* LDRS */
5620 0 }, /* LDC */
5621 { "pc_g1",
5622 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5623 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5624 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5625 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5626 { "pc_g2",
5627 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5628 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5629 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5630 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5631 /* Section base relative */
5632 { "sb_g0_nc",
5633 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5634 0, /* LDR */
5635 0, /* LDRS */
5636 0 }, /* LDC */
5637 { "sb_g0",
5638 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5639 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5640 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5641 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5642 { "sb_g1_nc",
5643 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5644 0, /* LDR */
5645 0, /* LDRS */
5646 0 }, /* LDC */
5647 { "sb_g1",
5648 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5649 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5650 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5651 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5652 { "sb_g2",
5653 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5654 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5655 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
5656 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5657 /* Absolute thumb alu relocations. */
5658 { "lower0_7",
5659 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5660 0, /* LDR. */
5661 0, /* LDRS. */
5662 0 }, /* LDC. */
5663 { "lower8_15",
5664 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5665 0, /* LDR. */
5666 0, /* LDRS. */
5667 0 }, /* LDC. */
5668 { "upper0_7",
5669 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5670 0, /* LDR. */
5671 0, /* LDRS. */
5672 0 }, /* LDC. */
5673 { "upper8_15",
5674 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5675 0, /* LDR. */
5676 0, /* LDRS. */
5677 0 } }; /* LDC. */
5678
5679 /* Given the address of a pointer pointing to the textual name of a group
5680 relocation as may appear in assembler source, attempt to find its details
5681 in group_reloc_table. The pointer will be updated to the character after
5682 the trailing colon. On failure, FAIL will be returned; SUCCESS
5683 otherwise. On success, *entry will be updated to point at the relevant
5684 group_reloc_table entry. */
5685
5686 static int
5687 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5688 {
5689 unsigned int i;
5690 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5691 {
5692 int length = strlen (group_reloc_table[i].name);
5693
5694 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5695 && (*str)[length] == ':')
5696 {
5697 *out = &group_reloc_table[i];
5698 *str += (length + 1);
5699 return SUCCESS;
5700 }
5701 }
5702
5703 return FAIL;
5704 }
5705
5706 /* Parse a <shifter_operand> for an ARM data processing instruction
5707 (as for parse_shifter_operand) where group relocations are allowed:
5708
5709 #<immediate>
5710 #<immediate>, <rotate>
5711 #:<group_reloc>:<expression>
5712 <Rm>
5713 <Rm>, <shift>
5714
5715 where <group_reloc> is one of the strings defined in group_reloc_table.
5716 The hashes are optional.
5717
5718 Everything else is as for parse_shifter_operand. */
5719
5720 static parse_operand_result
5721 parse_shifter_operand_group_reloc (char **str, int i)
5722 {
5723 /* Determine if we have the sequence of characters #: or just :
5724 coming next. If we do, then we check for a group relocation.
5725 If we don't, punt the whole lot to parse_shifter_operand. */
5726
5727 if (((*str)[0] == '#' && (*str)[1] == ':')
5728 || (*str)[0] == ':')
5729 {
5730 struct group_reloc_table_entry *entry;
5731
5732 if ((*str)[0] == '#')
5733 (*str) += 2;
5734 else
5735 (*str)++;
5736
5737 /* Try to parse a group relocation. Anything else is an error. */
5738 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5739 {
5740 inst.error = _("unknown group relocation");
5741 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5742 }
5743
5744 /* We now have the group relocation table entry corresponding to
5745 the name in the assembler source. Next, we parse the expression. */
5746 if (my_get_expression (&inst.relocs[0].exp, str, GE_NO_PREFIX))
5747 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5748
5749 /* Record the relocation type (always the ALU variant here). */
5750 inst.relocs[0].type = (bfd_reloc_code_real_type) entry->alu_code;
5751 gas_assert (inst.relocs[0].type != 0);
5752
5753 return PARSE_OPERAND_SUCCESS;
5754 }
5755 else
5756 return parse_shifter_operand (str, i) == SUCCESS
5757 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5758
5759 /* Never reached. */
5760 }
5761
5762 /* Parse a Neon alignment expression. Information is written to
5763 inst.operands[i]. We assume the initial ':' has been skipped.
5764
5765 align .imm = align << 8, .immisalign=1, .preind=0 */
5766 static parse_operand_result
5767 parse_neon_alignment (char **str, int i)
5768 {
5769 char *p = *str;
5770 expressionS exp;
5771
5772 my_get_expression (&exp, &p, GE_NO_PREFIX);
5773
5774 if (exp.X_op != O_constant)
5775 {
5776 inst.error = _("alignment must be constant");
5777 return PARSE_OPERAND_FAIL;
5778 }
5779
5780 inst.operands[i].imm = exp.X_add_number << 8;
5781 inst.operands[i].immisalign = 1;
5782 /* Alignments are not pre-indexes. */
5783 inst.operands[i].preind = 0;
5784
5785 *str = p;
5786 return PARSE_OPERAND_SUCCESS;
5787 }
5788
5789 /* Parse all forms of an ARM address expression. Information is written
5790 to inst.operands[i] and/or inst.relocs[0].
5791
5792 Preindexed addressing (.preind=1):
5793
5794 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
5795 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5796 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5797 .shift_kind=shift .relocs[0].exp=shift_imm
5798
5799 These three may have a trailing ! which causes .writeback to be set also.
5800
5801 Postindexed addressing (.postind=1, .writeback=1):
5802
5803 [Rn], #offset .reg=Rn .relocs[0].exp=offset
5804 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5805 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5806 .shift_kind=shift .relocs[0].exp=shift_imm
5807
5808 Unindexed addressing (.preind=0, .postind=0):
5809
5810 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5811
5812 Other:
5813
5814 [Rn]{!} shorthand for [Rn,#0]{!}
5815 =immediate .isreg=0 .relocs[0].exp=immediate
5816 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
5817
5818 It is the caller's responsibility to check for addressing modes not
5819 supported by the instruction, and to set inst.relocs[0].type. */
5820
5821 static parse_operand_result
5822 parse_address_main (char **str, int i, int group_relocations,
5823 group_reloc_type group_type)
5824 {
5825 char *p = *str;
5826 int reg;
5827
5828 if (skip_past_char (&p, '[') == FAIL)
5829 {
5830 if (skip_past_char (&p, '=') == FAIL)
5831 {
5832 /* Bare address - translate to PC-relative offset. */
5833 inst.relocs[0].pc_rel = 1;
5834 inst.operands[i].reg = REG_PC;
5835 inst.operands[i].isreg = 1;
5836 inst.operands[i].preind = 1;
5837
5838 if (my_get_expression (&inst.relocs[0].exp, &p, GE_OPT_PREFIX_BIG))
5839 return PARSE_OPERAND_FAIL;
5840 }
5841 else if (parse_big_immediate (&p, i, &inst.relocs[0].exp,
5842 /*allow_symbol_p=*/TRUE))
5843 return PARSE_OPERAND_FAIL;
5844
5845 *str = p;
5846 return PARSE_OPERAND_SUCCESS;
5847 }
5848
5849 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5850 skip_whitespace (p);
5851
5852 if (group_type == GROUP_MVE)
5853 {
5854 enum arm_reg_type rtype = REG_TYPE_MQ;
5855 struct neon_type_el et;
5856 if ((reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5857 {
5858 inst.operands[i].isquad = 1;
5859 }
5860 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5861 {
5862 inst.error = BAD_ADDR_MODE;
5863 return PARSE_OPERAND_FAIL;
5864 }
5865 }
5866 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5867 {
5868 if (group_type == GROUP_MVE)
5869 inst.error = BAD_ADDR_MODE;
5870 else
5871 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5872 return PARSE_OPERAND_FAIL;
5873 }
5874 inst.operands[i].reg = reg;
5875 inst.operands[i].isreg = 1;
5876
5877 if (skip_past_comma (&p) == SUCCESS)
5878 {
5879 inst.operands[i].preind = 1;
5880
5881 if (*p == '+') p++;
5882 else if (*p == '-') p++, inst.operands[i].negative = 1;
5883
5884 enum arm_reg_type rtype = REG_TYPE_MQ;
5885 struct neon_type_el et;
5886 if (group_type == GROUP_MVE
5887 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5888 {
5889 inst.operands[i].immisreg = 2;
5890 inst.operands[i].imm = reg;
5891
5892 if (skip_past_comma (&p) == SUCCESS)
5893 {
5894 if (parse_shift (&p, i, SHIFT_UXTW_IMMEDIATE) == SUCCESS)
5895 {
5896 inst.operands[i].imm |= inst.relocs[0].exp.X_add_number << 5;
5897 inst.relocs[0].exp.X_add_number = 0;
5898 }
5899 else
5900 return PARSE_OPERAND_FAIL;
5901 }
5902 }
5903 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5904 {
5905 inst.operands[i].imm = reg;
5906 inst.operands[i].immisreg = 1;
5907
5908 if (skip_past_comma (&p) == SUCCESS)
5909 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5910 return PARSE_OPERAND_FAIL;
5911 }
5912 else if (skip_past_char (&p, ':') == SUCCESS)
5913 {
5914 /* FIXME: '@' should be used here, but it's filtered out by generic
5915 code before we get to see it here. This may be subject to
5916 change. */
5917 parse_operand_result result = parse_neon_alignment (&p, i);
5918
5919 if (result != PARSE_OPERAND_SUCCESS)
5920 return result;
5921 }
5922 else
5923 {
5924 if (inst.operands[i].negative)
5925 {
5926 inst.operands[i].negative = 0;
5927 p--;
5928 }
5929
5930 if (group_relocations
5931 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5932 {
5933 struct group_reloc_table_entry *entry;
5934
5935 /* Skip over the #: or : sequence. */
5936 if (*p == '#')
5937 p += 2;
5938 else
5939 p++;
5940
5941 /* Try to parse a group relocation. Anything else is an
5942 error. */
5943 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5944 {
5945 inst.error = _("unknown group relocation");
5946 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5947 }
5948
5949 /* We now have the group relocation table entry corresponding to
5950 the name in the assembler source. Next, we parse the
5951 expression. */
5952 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
5953 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5954
5955 /* Record the relocation type. */
5956 switch (group_type)
5957 {
5958 case GROUP_LDR:
5959 inst.relocs[0].type
5960 = (bfd_reloc_code_real_type) entry->ldr_code;
5961 break;
5962
5963 case GROUP_LDRS:
5964 inst.relocs[0].type
5965 = (bfd_reloc_code_real_type) entry->ldrs_code;
5966 break;
5967
5968 case GROUP_LDC:
5969 inst.relocs[0].type
5970 = (bfd_reloc_code_real_type) entry->ldc_code;
5971 break;
5972
5973 default:
5974 gas_assert (0);
5975 }
5976
5977 if (inst.relocs[0].type == 0)
5978 {
5979 inst.error = _("this group relocation is not allowed on this instruction");
5980 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5981 }
5982 }
5983 else
5984 {
5985 char *q = p;
5986
5987 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5988 return PARSE_OPERAND_FAIL;
5989 /* If the offset is 0, find out if it's a +0 or -0. */
5990 if (inst.relocs[0].exp.X_op == O_constant
5991 && inst.relocs[0].exp.X_add_number == 0)
5992 {
5993 skip_whitespace (q);
5994 if (*q == '#')
5995 {
5996 q++;
5997 skip_whitespace (q);
5998 }
5999 if (*q == '-')
6000 inst.operands[i].negative = 1;
6001 }
6002 }
6003 }
6004 }
6005 else if (skip_past_char (&p, ':') == SUCCESS)
6006 {
6007 /* FIXME: '@' should be used here, but it's filtered out by generic code
6008 before we get to see it here. This may be subject to change. */
6009 parse_operand_result result = parse_neon_alignment (&p, i);
6010
6011 if (result != PARSE_OPERAND_SUCCESS)
6012 return result;
6013 }
6014
6015 if (skip_past_char (&p, ']') == FAIL)
6016 {
6017 inst.error = _("']' expected");
6018 return PARSE_OPERAND_FAIL;
6019 }
6020
6021 if (skip_past_char (&p, '!') == SUCCESS)
6022 inst.operands[i].writeback = 1;
6023
6024 else if (skip_past_comma (&p) == SUCCESS)
6025 {
6026 if (skip_past_char (&p, '{') == SUCCESS)
6027 {
6028 /* [Rn], {expr} - unindexed, with option */
6029 if (parse_immediate (&p, &inst.operands[i].imm,
6030 0, 255, TRUE) == FAIL)
6031 return PARSE_OPERAND_FAIL;
6032
6033 if (skip_past_char (&p, '}') == FAIL)
6034 {
6035 inst.error = _("'}' expected at end of 'option' field");
6036 return PARSE_OPERAND_FAIL;
6037 }
6038 if (inst.operands[i].preind)
6039 {
6040 inst.error = _("cannot combine index with option");
6041 return PARSE_OPERAND_FAIL;
6042 }
6043 *str = p;
6044 return PARSE_OPERAND_SUCCESS;
6045 }
6046 else
6047 {
6048 inst.operands[i].postind = 1;
6049 inst.operands[i].writeback = 1;
6050
6051 if (inst.operands[i].preind)
6052 {
6053 inst.error = _("cannot combine pre- and post-indexing");
6054 return PARSE_OPERAND_FAIL;
6055 }
6056
6057 if (*p == '+') p++;
6058 else if (*p == '-') p++, inst.operands[i].negative = 1;
6059
6060 enum arm_reg_type rtype = REG_TYPE_MQ;
6061 struct neon_type_el et;
6062 if (group_type == GROUP_MVE
6063 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
6064 {
6065 inst.operands[i].immisreg = 2;
6066 inst.operands[i].imm = reg;
6067 }
6068 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
6069 {
6070 /* We might be using the immediate for alignment already. If we
6071 are, OR the register number into the low-order bits. */
6072 if (inst.operands[i].immisalign)
6073 inst.operands[i].imm |= reg;
6074 else
6075 inst.operands[i].imm = reg;
6076 inst.operands[i].immisreg = 1;
6077
6078 if (skip_past_comma (&p) == SUCCESS)
6079 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
6080 return PARSE_OPERAND_FAIL;
6081 }
6082 else
6083 {
6084 char *q = p;
6085
6086 if (inst.operands[i].negative)
6087 {
6088 inst.operands[i].negative = 0;
6089 p--;
6090 }
6091 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
6092 return PARSE_OPERAND_FAIL;
6093 /* If the offset is 0, find out if it's a +0 or -0. */
6094 if (inst.relocs[0].exp.X_op == O_constant
6095 && inst.relocs[0].exp.X_add_number == 0)
6096 {
6097 skip_whitespace (q);
6098 if (*q == '#')
6099 {
6100 q++;
6101 skip_whitespace (q);
6102 }
6103 if (*q == '-')
6104 inst.operands[i].negative = 1;
6105 }
6106 }
6107 }
6108 }
6109
6110 /* If at this point neither .preind nor .postind is set, we have a
6111 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
6112 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
6113 {
6114 inst.operands[i].preind = 1;
6115 inst.relocs[0].exp.X_op = O_constant;
6116 inst.relocs[0].exp.X_add_number = 0;
6117 }
6118 *str = p;
6119 return PARSE_OPERAND_SUCCESS;
6120 }
6121
6122 static int
6123 parse_address (char **str, int i)
6124 {
6125 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
6126 ? SUCCESS : FAIL;
6127 }
6128
6129 static parse_operand_result
6130 parse_address_group_reloc (char **str, int i, group_reloc_type type)
6131 {
6132 return parse_address_main (str, i, 1, type);
6133 }
6134
6135 /* Parse an operand for a MOVW or MOVT instruction. */
6136 static int
6137 parse_half (char **str)
6138 {
6139 char * p;
6140
6141 p = *str;
6142 skip_past_char (&p, '#');
6143 if (strncasecmp (p, ":lower16:", 9) == 0)
6144 inst.relocs[0].type = BFD_RELOC_ARM_MOVW;
6145 else if (strncasecmp (p, ":upper16:", 9) == 0)
6146 inst.relocs[0].type = BFD_RELOC_ARM_MOVT;
6147
6148 if (inst.relocs[0].type != BFD_RELOC_UNUSED)
6149 {
6150 p += 9;
6151 skip_whitespace (p);
6152 }
6153
6154 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
6155 return FAIL;
6156
6157 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
6158 {
6159 if (inst.relocs[0].exp.X_op != O_constant)
6160 {
6161 inst.error = _("constant expression expected");
6162 return FAIL;
6163 }
6164 if (inst.relocs[0].exp.X_add_number < 0
6165 || inst.relocs[0].exp.X_add_number > 0xffff)
6166 {
6167 inst.error = _("immediate value out of range");
6168 return FAIL;
6169 }
6170 }
6171 *str = p;
6172 return SUCCESS;
6173 }
6174
6175 /* Miscellaneous. */
6176
6177 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
6178 or a bitmask suitable to be or-ed into the ARM msr instruction. */
6179 static int
6180 parse_psr (char **str, bfd_boolean lhs)
6181 {
6182 char *p;
6183 unsigned long psr_field;
6184 const struct asm_psr *psr;
6185 char *start;
6186 bfd_boolean is_apsr = FALSE;
6187 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
6188
6189 /* PR gas/12698: If the user has specified -march=all then m_profile will
6190 be TRUE, but we want to ignore it in this case as we are building for any
6191 CPU type, including non-m variants. */
6192 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
6193 m_profile = FALSE;
6194
6195 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
6196 feature for ease of use and backwards compatibility. */
6197 p = *str;
6198 if (strncasecmp (p, "SPSR", 4) == 0)
6199 {
6200 if (m_profile)
6201 goto unsupported_psr;
6202
6203 psr_field = SPSR_BIT;
6204 }
6205 else if (strncasecmp (p, "CPSR", 4) == 0)
6206 {
6207 if (m_profile)
6208 goto unsupported_psr;
6209
6210 psr_field = 0;
6211 }
6212 else if (strncasecmp (p, "APSR", 4) == 0)
6213 {
6214 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
6215 and ARMv7-R architecture CPUs. */
6216 is_apsr = TRUE;
6217 psr_field = 0;
6218 }
6219 else if (m_profile)
6220 {
6221 start = p;
6222 do
6223 p++;
6224 while (ISALNUM (*p) || *p == '_');
6225
6226 if (strncasecmp (start, "iapsr", 5) == 0
6227 || strncasecmp (start, "eapsr", 5) == 0
6228 || strncasecmp (start, "xpsr", 4) == 0
6229 || strncasecmp (start, "psr", 3) == 0)
6230 p = start + strcspn (start, "rR") + 1;
6231
6232 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
6233 p - start);
6234
6235 if (!psr)
6236 return FAIL;
6237
6238 /* If APSR is being written, a bitfield may be specified. Note that
6239 APSR itself is handled above. */
6240 if (psr->field <= 3)
6241 {
6242 psr_field = psr->field;
6243 is_apsr = TRUE;
6244 goto check_suffix;
6245 }
6246
6247 *str = p;
6248 /* M-profile MSR instructions have the mask field set to "10", except
6249 *PSR variants which modify APSR, which may use a different mask (and
6250 have been handled already). Do that by setting the PSR_f field
6251 here. */
6252 return psr->field | (lhs ? PSR_f : 0);
6253 }
6254 else
6255 goto unsupported_psr;
6256
6257 p += 4;
6258 check_suffix:
6259 if (*p == '_')
6260 {
6261 /* A suffix follows. */
6262 p++;
6263 start = p;
6264
6265 do
6266 p++;
6267 while (ISALNUM (*p) || *p == '_');
6268
6269 if (is_apsr)
6270 {
6271 /* APSR uses a notation for bits, rather than fields. */
6272 unsigned int nzcvq_bits = 0;
6273 unsigned int g_bit = 0;
6274 char *bit;
6275
6276 for (bit = start; bit != p; bit++)
6277 {
6278 switch (TOLOWER (*bit))
6279 {
6280 case 'n':
6281 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
6282 break;
6283
6284 case 'z':
6285 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
6286 break;
6287
6288 case 'c':
6289 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
6290 break;
6291
6292 case 'v':
6293 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
6294 break;
6295
6296 case 'q':
6297 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
6298 break;
6299
6300 case 'g':
6301 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
6302 break;
6303
6304 default:
6305 inst.error = _("unexpected bit specified after APSR");
6306 return FAIL;
6307 }
6308 }
6309
6310 if (nzcvq_bits == 0x1f)
6311 psr_field |= PSR_f;
6312
6313 if (g_bit == 0x1)
6314 {
6315 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
6316 {
6317 inst.error = _("selected processor does not "
6318 "support DSP extension");
6319 return FAIL;
6320 }
6321
6322 psr_field |= PSR_s;
6323 }
6324
6325 if ((nzcvq_bits & 0x20) != 0
6326 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
6327 || (g_bit & 0x2) != 0)
6328 {
6329 inst.error = _("bad bitmask specified after APSR");
6330 return FAIL;
6331 }
6332 }
6333 else
6334 {
6335 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
6336 p - start);
6337 if (!psr)
6338 goto error;
6339
6340 psr_field |= psr->field;
6341 }
6342 }
6343 else
6344 {
6345 if (ISALNUM (*p))
6346 goto error; /* Garbage after "[CS]PSR". */
6347
6348 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
6349 is deprecated, but allow it anyway. */
6350 if (is_apsr && lhs)
6351 {
6352 psr_field |= PSR_f;
6353 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6354 "deprecated"));
6355 }
6356 else if (!m_profile)
6357 /* These bits are never right for M-profile devices: don't set them
6358 (only code paths which read/write APSR reach here). */
6359 psr_field |= (PSR_c | PSR_f);
6360 }
6361 *str = p;
6362 return psr_field;
6363
6364 unsupported_psr:
6365 inst.error = _("selected processor does not support requested special "
6366 "purpose register");
6367 return FAIL;
6368
6369 error:
6370 inst.error = _("flag for {c}psr instruction expected");
6371 return FAIL;
6372 }
6373
6374 static int
6375 parse_sys_vldr_vstr (char **str)
6376 {
6377 unsigned i;
6378 int val = FAIL;
6379 struct {
6380 const char *name;
6381 int regl;
6382 int regh;
6383 } sysregs[] = {
6384 {"FPSCR", 0x1, 0x0},
6385 {"FPSCR_nzcvqc", 0x2, 0x0},
6386 {"VPR", 0x4, 0x1},
6387 {"P0", 0x5, 0x1},
6388 {"FPCXTNS", 0x6, 0x1},
6389 {"FPCXTS", 0x7, 0x1}
6390 };
6391 char *op_end = strchr (*str, ',');
6392 size_t op_strlen = op_end - *str;
6393
6394 for (i = 0; i < sizeof (sysregs) / sizeof (sysregs[0]); i++)
6395 {
6396 if (!strncmp (*str, sysregs[i].name, op_strlen))
6397 {
6398 val = sysregs[i].regl | (sysregs[i].regh << 3);
6399 *str = op_end;
6400 break;
6401 }
6402 }
6403
6404 return val;
6405 }
6406
6407 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6408 value suitable for splatting into the AIF field of the instruction. */
6409
6410 static int
6411 parse_cps_flags (char **str)
6412 {
6413 int val = 0;
6414 int saw_a_flag = 0;
6415 char *s = *str;
6416
6417 for (;;)
6418 switch (*s++)
6419 {
6420 case '\0': case ',':
6421 goto done;
6422
6423 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6424 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6425 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
6426
6427 default:
6428 inst.error = _("unrecognized CPS flag");
6429 return FAIL;
6430 }
6431
6432 done:
6433 if (saw_a_flag == 0)
6434 {
6435 inst.error = _("missing CPS flags");
6436 return FAIL;
6437 }
6438
6439 *str = s - 1;
6440 return val;
6441 }
6442
6443 /* Parse an endian specifier ("BE" or "LE", case insensitive);
6444 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
6445
6446 static int
6447 parse_endian_specifier (char **str)
6448 {
6449 int little_endian;
6450 char *s = *str;
6451
6452 if (strncasecmp (s, "BE", 2))
6453 little_endian = 0;
6454 else if (strncasecmp (s, "LE", 2))
6455 little_endian = 1;
6456 else
6457 {
6458 inst.error = _("valid endian specifiers are be or le");
6459 return FAIL;
6460 }
6461
6462 if (ISALNUM (s[2]) || s[2] == '_')
6463 {
6464 inst.error = _("valid endian specifiers are be or le");
6465 return FAIL;
6466 }
6467
6468 *str = s + 2;
6469 return little_endian;
6470 }
6471
6472 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6473 value suitable for poking into the rotate field of an sxt or sxta
6474 instruction, or FAIL on error. */
6475
6476 static int
6477 parse_ror (char **str)
6478 {
6479 int rot;
6480 char *s = *str;
6481
6482 if (strncasecmp (s, "ROR", 3) == 0)
6483 s += 3;
6484 else
6485 {
6486 inst.error = _("missing rotation field after comma");
6487 return FAIL;
6488 }
6489
6490 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6491 return FAIL;
6492
6493 switch (rot)
6494 {
6495 case 0: *str = s; return 0x0;
6496 case 8: *str = s; return 0x1;
6497 case 16: *str = s; return 0x2;
6498 case 24: *str = s; return 0x3;
6499
6500 default:
6501 inst.error = _("rotation can only be 0, 8, 16, or 24");
6502 return FAIL;
6503 }
6504 }
6505
6506 /* Parse a conditional code (from conds[] below). The value returned is in the
6507 range 0 .. 14, or FAIL. */
6508 static int
6509 parse_cond (char **str)
6510 {
6511 char *q;
6512 const struct asm_cond *c;
6513 int n;
6514 /* Condition codes are always 2 characters, so matching up to
6515 3 characters is sufficient. */
6516 char cond[3];
6517
6518 q = *str;
6519 n = 0;
6520 while (ISALPHA (*q) && n < 3)
6521 {
6522 cond[n] = TOLOWER (*q);
6523 q++;
6524 n++;
6525 }
6526
6527 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
6528 if (!c)
6529 {
6530 inst.error = _("condition required");
6531 return FAIL;
6532 }
6533
6534 *str = q;
6535 return c->value;
6536 }
6537
6538 /* Parse an option for a barrier instruction. Returns the encoding for the
6539 option, or FAIL. */
6540 static int
6541 parse_barrier (char **str)
6542 {
6543 char *p, *q;
6544 const struct asm_barrier_opt *o;
6545
6546 p = q = *str;
6547 while (ISALPHA (*q))
6548 q++;
6549
6550 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
6551 q - p);
6552 if (!o)
6553 return FAIL;
6554
6555 if (!mark_feature_used (&o->arch))
6556 return FAIL;
6557
6558 *str = q;
6559 return o->value;
6560 }
6561
6562 /* Parse the operands of a table branch instruction. Similar to a memory
6563 operand. */
6564 static int
6565 parse_tb (char **str)
6566 {
6567 char * p = *str;
6568 int reg;
6569
6570 if (skip_past_char (&p, '[') == FAIL)
6571 {
6572 inst.error = _("'[' expected");
6573 return FAIL;
6574 }
6575
6576 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6577 {
6578 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6579 return FAIL;
6580 }
6581 inst.operands[0].reg = reg;
6582
6583 if (skip_past_comma (&p) == FAIL)
6584 {
6585 inst.error = _("',' expected");
6586 return FAIL;
6587 }
6588
6589 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6590 {
6591 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6592 return FAIL;
6593 }
6594 inst.operands[0].imm = reg;
6595
6596 if (skip_past_comma (&p) == SUCCESS)
6597 {
6598 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6599 return FAIL;
6600 if (inst.relocs[0].exp.X_add_number != 1)
6601 {
6602 inst.error = _("invalid shift");
6603 return FAIL;
6604 }
6605 inst.operands[0].shifted = 1;
6606 }
6607
6608 if (skip_past_char (&p, ']') == FAIL)
6609 {
6610 inst.error = _("']' expected");
6611 return FAIL;
6612 }
6613 *str = p;
6614 return SUCCESS;
6615 }
6616
6617 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6618 information on the types the operands can take and how they are encoded.
6619 Up to four operands may be read; this function handles setting the
6620 ".present" field for each read operand itself.
6621 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6622 else returns FAIL. */
6623
6624 static int
6625 parse_neon_mov (char **str, int *which_operand)
6626 {
6627 int i = *which_operand, val;
6628 enum arm_reg_type rtype;
6629 char *ptr = *str;
6630 struct neon_type_el optype;
6631
6632 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6633 {
6634 /* Cases 17 or 19. */
6635 inst.operands[i].reg = val;
6636 inst.operands[i].isvec = 1;
6637 inst.operands[i].isscalar = 2;
6638 inst.operands[i].vectype = optype;
6639 inst.operands[i++].present = 1;
6640
6641 if (skip_past_comma (&ptr) == FAIL)
6642 goto wanted_comma;
6643
6644 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6645 {
6646 /* Case 17: VMOV<c>.<dt> <Qd[idx]>, <Rt> */
6647 inst.operands[i].reg = val;
6648 inst.operands[i].isreg = 1;
6649 inst.operands[i].present = 1;
6650 }
6651 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6652 {
6653 /* Case 19: VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2> */
6654 inst.operands[i].reg = val;
6655 inst.operands[i].isvec = 1;
6656 inst.operands[i].isscalar = 2;
6657 inst.operands[i].vectype = optype;
6658 inst.operands[i++].present = 1;
6659
6660 if (skip_past_comma (&ptr) == FAIL)
6661 goto wanted_comma;
6662
6663 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6664 goto wanted_arm;
6665
6666 inst.operands[i].reg = val;
6667 inst.operands[i].isreg = 1;
6668 inst.operands[i++].present = 1;
6669
6670 if (skip_past_comma (&ptr) == FAIL)
6671 goto wanted_comma;
6672
6673 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6674 goto wanted_arm;
6675
6676 inst.operands[i].reg = val;
6677 inst.operands[i].isreg = 1;
6678 inst.operands[i].present = 1;
6679 }
6680 else
6681 {
6682 first_error (_("expected ARM or MVE vector register"));
6683 return FAIL;
6684 }
6685 }
6686 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
6687 {
6688 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6689 inst.operands[i].reg = val;
6690 inst.operands[i].isscalar = 1;
6691 inst.operands[i].vectype = optype;
6692 inst.operands[i++].present = 1;
6693
6694 if (skip_past_comma (&ptr) == FAIL)
6695 goto wanted_comma;
6696
6697 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6698 goto wanted_arm;
6699
6700 inst.operands[i].reg = val;
6701 inst.operands[i].isreg = 1;
6702 inst.operands[i].present = 1;
6703 }
6704 else if (((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6705 != FAIL)
6706 || ((val = arm_typed_reg_parse (&ptr, REG_TYPE_MQ, &rtype, &optype))
6707 != FAIL))
6708 {
6709 /* Cases 0, 1, 2, 3, 5 (D only). */
6710 if (skip_past_comma (&ptr) == FAIL)
6711 goto wanted_comma;
6712
6713 inst.operands[i].reg = val;
6714 inst.operands[i].isreg = 1;
6715 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6716 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6717 inst.operands[i].isvec = 1;
6718 inst.operands[i].vectype = optype;
6719 inst.operands[i++].present = 1;
6720
6721 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6722 {
6723 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6724 Case 13: VMOV <Sd>, <Rm> */
6725 inst.operands[i].reg = val;
6726 inst.operands[i].isreg = 1;
6727 inst.operands[i].present = 1;
6728
6729 if (rtype == REG_TYPE_NQ)
6730 {
6731 first_error (_("can't use Neon quad register here"));
6732 return FAIL;
6733 }
6734 else if (rtype != REG_TYPE_VFS)
6735 {
6736 i++;
6737 if (skip_past_comma (&ptr) == FAIL)
6738 goto wanted_comma;
6739 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6740 goto wanted_arm;
6741 inst.operands[i].reg = val;
6742 inst.operands[i].isreg = 1;
6743 inst.operands[i].present = 1;
6744 }
6745 }
6746 else if (((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
6747 &optype)) != FAIL)
6748 || ((val = arm_typed_reg_parse (&ptr, REG_TYPE_MQ, &rtype,
6749 &optype)) != FAIL))
6750 {
6751 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6752 Case 1: VMOV<c><q> <Dd>, <Dm>
6753 Case 8: VMOV.F32 <Sd>, <Sm>
6754 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6755
6756 inst.operands[i].reg = val;
6757 inst.operands[i].isreg = 1;
6758 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6759 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6760 inst.operands[i].isvec = 1;
6761 inst.operands[i].vectype = optype;
6762 inst.operands[i].present = 1;
6763
6764 if (skip_past_comma (&ptr) == SUCCESS)
6765 {
6766 /* Case 15. */
6767 i++;
6768
6769 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6770 goto wanted_arm;
6771
6772 inst.operands[i].reg = val;
6773 inst.operands[i].isreg = 1;
6774 inst.operands[i++].present = 1;
6775
6776 if (skip_past_comma (&ptr) == FAIL)
6777 goto wanted_comma;
6778
6779 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6780 goto wanted_arm;
6781
6782 inst.operands[i].reg = val;
6783 inst.operands[i].isreg = 1;
6784 inst.operands[i].present = 1;
6785 }
6786 }
6787 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
6788 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6789 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6790 Case 10: VMOV.F32 <Sd>, #<imm>
6791 Case 11: VMOV.F64 <Dd>, #<imm> */
6792 inst.operands[i].immisfloat = 1;
6793 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6794 == SUCCESS)
6795 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6796 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6797 ;
6798 else
6799 {
6800 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6801 return FAIL;
6802 }
6803 }
6804 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6805 {
6806 /* Cases 6, 7, 16, 18. */
6807 inst.operands[i].reg = val;
6808 inst.operands[i].isreg = 1;
6809 inst.operands[i++].present = 1;
6810
6811 if (skip_past_comma (&ptr) == FAIL)
6812 goto wanted_comma;
6813
6814 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6815 {
6816 /* Case 18: VMOV<c>.<dt> <Rt>, <Qn[idx]> */
6817 inst.operands[i].reg = val;
6818 inst.operands[i].isscalar = 2;
6819 inst.operands[i].present = 1;
6820 inst.operands[i].vectype = optype;
6821 }
6822 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
6823 {
6824 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6825 inst.operands[i].reg = val;
6826 inst.operands[i].isscalar = 1;
6827 inst.operands[i].present = 1;
6828 inst.operands[i].vectype = optype;
6829 }
6830 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6831 {
6832 inst.operands[i].reg = val;
6833 inst.operands[i].isreg = 1;
6834 inst.operands[i++].present = 1;
6835
6836 if (skip_past_comma (&ptr) == FAIL)
6837 goto wanted_comma;
6838
6839 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6840 != FAIL)
6841 {
6842 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6843
6844 inst.operands[i].reg = val;
6845 inst.operands[i].isreg = 1;
6846 inst.operands[i].isvec = 1;
6847 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6848 inst.operands[i].vectype = optype;
6849 inst.operands[i].present = 1;
6850
6851 if (rtype == REG_TYPE_VFS)
6852 {
6853 /* Case 14. */
6854 i++;
6855 if (skip_past_comma (&ptr) == FAIL)
6856 goto wanted_comma;
6857 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6858 &optype)) == FAIL)
6859 {
6860 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6861 return FAIL;
6862 }
6863 inst.operands[i].reg = val;
6864 inst.operands[i].isreg = 1;
6865 inst.operands[i].isvec = 1;
6866 inst.operands[i].issingle = 1;
6867 inst.operands[i].vectype = optype;
6868 inst.operands[i].present = 1;
6869 }
6870 }
6871 else
6872 {
6873 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6874 != FAIL)
6875 {
6876 /* Case 16: VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]> */
6877 inst.operands[i].reg = val;
6878 inst.operands[i].isvec = 1;
6879 inst.operands[i].isscalar = 2;
6880 inst.operands[i].vectype = optype;
6881 inst.operands[i++].present = 1;
6882
6883 if (skip_past_comma (&ptr) == FAIL)
6884 goto wanted_comma;
6885
6886 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6887 == FAIL)
6888 {
6889 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
6890 return FAIL;
6891 }
6892 inst.operands[i].reg = val;
6893 inst.operands[i].isvec = 1;
6894 inst.operands[i].isscalar = 2;
6895 inst.operands[i].vectype = optype;
6896 inst.operands[i].present = 1;
6897 }
6898 else
6899 {
6900 first_error (_("VFP single, double or MVE vector register"
6901 " expected"));
6902 return FAIL;
6903 }
6904 }
6905 }
6906 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6907 != FAIL)
6908 {
6909 /* Case 13. */
6910 inst.operands[i].reg = val;
6911 inst.operands[i].isreg = 1;
6912 inst.operands[i].isvec = 1;
6913 inst.operands[i].issingle = 1;
6914 inst.operands[i].vectype = optype;
6915 inst.operands[i].present = 1;
6916 }
6917 }
6918 else
6919 {
6920 first_error (_("parse error"));
6921 return FAIL;
6922 }
6923
6924 /* Successfully parsed the operands. Update args. */
6925 *which_operand = i;
6926 *str = ptr;
6927 return SUCCESS;
6928
6929 wanted_comma:
6930 first_error (_("expected comma"));
6931 return FAIL;
6932
6933 wanted_arm:
6934 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6935 return FAIL;
6936 }
6937
6938 /* Use this macro when the operand constraints are different
6939 for ARM and THUMB (e.g. ldrd). */
6940 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6941 ((arm_operand) | ((thumb_operand) << 16))
6942
6943 /* Matcher codes for parse_operands. */
6944 enum operand_parse_code
6945 {
6946 OP_stop, /* end of line */
6947
6948 OP_RR, /* ARM register */
6949 OP_RRnpc, /* ARM register, not r15 */
6950 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6951 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6952 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6953 optional trailing ! */
6954 OP_RRw, /* ARM register, not r15, optional trailing ! */
6955 OP_RCP, /* Coprocessor number */
6956 OP_RCN, /* Coprocessor register */
6957 OP_RF, /* FPA register */
6958 OP_RVS, /* VFP single precision register */
6959 OP_RVD, /* VFP double precision register (0..15) */
6960 OP_RND, /* Neon double precision register (0..31) */
6961 OP_RNDMQ, /* Neon double precision (0..31) or MVE vector register. */
6962 OP_RNDMQR, /* Neon double precision (0..31), MVE vector or ARM register.
6963 */
6964 OP_RNQ, /* Neon quad precision register */
6965 OP_RNQMQ, /* Neon quad or MVE vector register. */
6966 OP_RVSD, /* VFP single or double precision register */
6967 OP_RVSD_COND, /* VFP single, double precision register or condition code. */
6968 OP_RVSDMQ, /* VFP single, double precision or MVE vector register. */
6969 OP_RNSD, /* Neon single or double precision register */
6970 OP_RNDQ, /* Neon double or quad precision register */
6971 OP_RNDQMQ, /* Neon double, quad or MVE vector register. */
6972 OP_RNDQMQR, /* Neon double, quad, MVE vector or ARM register. */
6973 OP_RNSDQ, /* Neon single, double or quad precision register */
6974 OP_RNSC, /* Neon scalar D[X] */
6975 OP_RVC, /* VFP control register */
6976 OP_RMF, /* Maverick F register */
6977 OP_RMD, /* Maverick D register */
6978 OP_RMFX, /* Maverick FX register */
6979 OP_RMDX, /* Maverick DX register */
6980 OP_RMAX, /* Maverick AX register */
6981 OP_RMDS, /* Maverick DSPSC register */
6982 OP_RIWR, /* iWMMXt wR register */
6983 OP_RIWC, /* iWMMXt wC register */
6984 OP_RIWG, /* iWMMXt wCG register */
6985 OP_RXA, /* XScale accumulator register */
6986
6987 OP_RNSDQMQ, /* Neon single, double or quad register or MVE vector register
6988 */
6989 OP_RNSDQMQR, /* Neon single, double or quad register, MVE vector register or
6990 GPR (no SP/SP) */
6991 OP_RMQ, /* MVE vector register. */
6992 OP_RMQRZ, /* MVE vector or ARM register including ZR. */
6993 OP_RMQRR, /* MVE vector or ARM register. */
6994
6995 /* New operands for Armv8.1-M Mainline. */
6996 OP_LR, /* ARM LR register */
6997 OP_RRe, /* ARM register, only even numbered. */
6998 OP_RRo, /* ARM register, only odd numbered, not r13 or r15. */
6999 OP_RRnpcsp_I32, /* ARM register (no BadReg) or literal 1 .. 32 */
7000 OP_RR_ZR, /* ARM register or ZR but no PC */
7001
7002 OP_REGLST, /* ARM register list */
7003 OP_CLRMLST, /* CLRM register list */
7004 OP_VRSLST, /* VFP single-precision register list */
7005 OP_VRDLST, /* VFP double-precision register list */
7006 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
7007 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
7008 OP_NSTRLST, /* Neon element/structure list */
7009 OP_VRSDVLST, /* VFP single or double-precision register list and VPR */
7010 OP_MSTRLST2, /* MVE vector list with two elements. */
7011 OP_MSTRLST4, /* MVE vector list with four elements. */
7012
7013 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
7014 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
7015 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
7016 OP_RSVDMQ_FI0, /* VFP S, D, MVE vector register or floating point immediate
7017 zero. */
7018 OP_RR_RNSC, /* ARM reg or Neon scalar. */
7019 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
7020 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
7021 OP_RNSDQ_RNSC_MQ, /* Vector S, D or Q reg, Neon scalar or MVE vector register.
7022 */
7023 OP_RNSDQ_RNSC_MQ_RR, /* Vector S, D or Q reg, or MVE vector reg , or Neon
7024 scalar, or ARM register. */
7025 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
7026 OP_RNDQ_RNSC_RR, /* Neon D or Q reg, Neon scalar, or ARM register. */
7027 OP_RNDQMQ_RNSC_RR, /* Neon D or Q reg, Neon scalar, MVE vector or ARM
7028 register. */
7029 OP_RNDQMQ_RNSC, /* Neon D, Q or MVE vector reg, or Neon scalar. */
7030 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
7031 OP_VMOV, /* Neon VMOV operands. */
7032 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
7033 /* Neon D, Q or MVE vector register, or big immediate for logic and VMVN. */
7034 OP_RNDQMQ_Ibig,
7035 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
7036 OP_RNDQMQ_I63b_RR, /* Neon D or Q reg, immediate for shift, MVE vector or
7037 ARM register. */
7038 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
7039 OP_VLDR, /* VLDR operand. */
7040
7041 OP_I0, /* immediate zero */
7042 OP_I7, /* immediate value 0 .. 7 */
7043 OP_I15, /* 0 .. 15 */
7044 OP_I16, /* 1 .. 16 */
7045 OP_I16z, /* 0 .. 16 */
7046 OP_I31, /* 0 .. 31 */
7047 OP_I31w, /* 0 .. 31, optional trailing ! */
7048 OP_I32, /* 1 .. 32 */
7049 OP_I32z, /* 0 .. 32 */
7050 OP_I48_I64, /* 48 or 64 */
7051 OP_I63, /* 0 .. 63 */
7052 OP_I63s, /* -64 .. 63 */
7053 OP_I64, /* 1 .. 64 */
7054 OP_I64z, /* 0 .. 64 */
7055 OP_I255, /* 0 .. 255 */
7056
7057 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
7058 OP_I7b, /* 0 .. 7 */
7059 OP_I15b, /* 0 .. 15 */
7060 OP_I31b, /* 0 .. 31 */
7061
7062 OP_SH, /* shifter operand */
7063 OP_SHG, /* shifter operand with possible group relocation */
7064 OP_ADDR, /* Memory address expression (any mode) */
7065 OP_ADDRMVE, /* Memory address expression for MVE's VSTR/VLDR. */
7066 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
7067 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
7068 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
7069 OP_EXP, /* arbitrary expression */
7070 OP_EXPi, /* same, with optional immediate prefix */
7071 OP_EXPr, /* same, with optional relocation suffix */
7072 OP_EXPs, /* same, with optional non-first operand relocation suffix */
7073 OP_HALF, /* 0 .. 65535 or low/high reloc. */
7074 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
7075 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
7076
7077 OP_CPSF, /* CPS flags */
7078 OP_ENDI, /* Endianness specifier */
7079 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
7080 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
7081 OP_COND, /* conditional code */
7082 OP_TB, /* Table branch. */
7083
7084 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
7085
7086 OP_RRnpc_I0, /* ARM register or literal 0 */
7087 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
7088 OP_RR_EXi, /* ARM register or expression with imm prefix */
7089 OP_RF_IF, /* FPA register or immediate */
7090 OP_RIWR_RIWC, /* iWMMXt R or C reg */
7091 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
7092
7093 /* Optional operands. */
7094 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
7095 OP_oI31b, /* 0 .. 31 */
7096 OP_oI32b, /* 1 .. 32 */
7097 OP_oI32z, /* 0 .. 32 */
7098 OP_oIffffb, /* 0 .. 65535 */
7099 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
7100
7101 OP_oRR, /* ARM register */
7102 OP_oLR, /* ARM LR register */
7103 OP_oRRnpc, /* ARM register, not the PC */
7104 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
7105 OP_oRRw, /* ARM register, not r15, optional trailing ! */
7106 OP_oRND, /* Optional Neon double precision register */
7107 OP_oRNQ, /* Optional Neon quad precision register */
7108 OP_oRNDQMQ, /* Optional Neon double, quad or MVE vector register. */
7109 OP_oRNDQ, /* Optional Neon double or quad precision register */
7110 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
7111 OP_oRNSDQMQ, /* Optional single, double or quad register or MVE vector
7112 register. */
7113 OP_oSHll, /* LSL immediate */
7114 OP_oSHar, /* ASR immediate */
7115 OP_oSHllar, /* LSL or ASR immediate */
7116 OP_oROR, /* ROR 0/8/16/24 */
7117 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
7118
7119 OP_oRMQRZ, /* optional MVE vector or ARM register including ZR. */
7120
7121 /* Some pre-defined mixed (ARM/THUMB) operands. */
7122 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
7123 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
7124 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
7125
7126 OP_FIRST_OPTIONAL = OP_oI7b
7127 };
7128
7129 /* Generic instruction operand parser. This does no encoding and no
7130 semantic validation; it merely squirrels values away in the inst
7131 structure. Returns SUCCESS or FAIL depending on whether the
7132 specified grammar matched. */
7133 static int
7134 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
7135 {
7136 unsigned const int *upat = pattern;
7137 char *backtrack_pos = 0;
7138 const char *backtrack_error = 0;
7139 int i, val = 0, backtrack_index = 0;
7140 enum arm_reg_type rtype;
7141 parse_operand_result result;
7142 unsigned int op_parse_code;
7143 bfd_boolean partial_match;
7144
7145 #define po_char_or_fail(chr) \
7146 do \
7147 { \
7148 if (skip_past_char (&str, chr) == FAIL) \
7149 goto bad_args; \
7150 } \
7151 while (0)
7152
7153 #define po_reg_or_fail(regtype) \
7154 do \
7155 { \
7156 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7157 & inst.operands[i].vectype); \
7158 if (val == FAIL) \
7159 { \
7160 first_error (_(reg_expected_msgs[regtype])); \
7161 goto failure; \
7162 } \
7163 inst.operands[i].reg = val; \
7164 inst.operands[i].isreg = 1; \
7165 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7166 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7167 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7168 || rtype == REG_TYPE_VFD \
7169 || rtype == REG_TYPE_NQ); \
7170 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7171 } \
7172 while (0)
7173
7174 #define po_reg_or_goto(regtype, label) \
7175 do \
7176 { \
7177 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7178 & inst.operands[i].vectype); \
7179 if (val == FAIL) \
7180 goto label; \
7181 \
7182 inst.operands[i].reg = val; \
7183 inst.operands[i].isreg = 1; \
7184 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7185 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7186 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7187 || rtype == REG_TYPE_VFD \
7188 || rtype == REG_TYPE_NQ); \
7189 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7190 } \
7191 while (0)
7192
7193 #define po_imm_or_fail(min, max, popt) \
7194 do \
7195 { \
7196 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
7197 goto failure; \
7198 inst.operands[i].imm = val; \
7199 } \
7200 while (0)
7201
7202 #define po_imm1_or_imm2_or_fail(imm1, imm2, popt) \
7203 do \
7204 { \
7205 expressionS exp; \
7206 my_get_expression (&exp, &str, popt); \
7207 if (exp.X_op != O_constant) \
7208 { \
7209 inst.error = _("constant expression required"); \
7210 goto failure; \
7211 } \
7212 if (exp.X_add_number != imm1 && exp.X_add_number != imm2) \
7213 { \
7214 inst.error = _("immediate value 48 or 64 expected"); \
7215 goto failure; \
7216 } \
7217 inst.operands[i].imm = exp.X_add_number; \
7218 } \
7219 while (0)
7220
7221 #define po_scalar_or_goto(elsz, label, reg_type) \
7222 do \
7223 { \
7224 val = parse_scalar (& str, elsz, & inst.operands[i].vectype, \
7225 reg_type); \
7226 if (val == FAIL) \
7227 goto label; \
7228 inst.operands[i].reg = val; \
7229 inst.operands[i].isscalar = 1; \
7230 } \
7231 while (0)
7232
7233 #define po_misc_or_fail(expr) \
7234 do \
7235 { \
7236 if (expr) \
7237 goto failure; \
7238 } \
7239 while (0)
7240
7241 #define po_misc_or_fail_no_backtrack(expr) \
7242 do \
7243 { \
7244 result = expr; \
7245 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
7246 backtrack_pos = 0; \
7247 if (result != PARSE_OPERAND_SUCCESS) \
7248 goto failure; \
7249 } \
7250 while (0)
7251
7252 #define po_barrier_or_imm(str) \
7253 do \
7254 { \
7255 val = parse_barrier (&str); \
7256 if (val == FAIL && ! ISALPHA (*str)) \
7257 goto immediate; \
7258 if (val == FAIL \
7259 /* ISB can only take SY as an option. */ \
7260 || ((inst.instruction & 0xf0) == 0x60 \
7261 && val != 0xf)) \
7262 { \
7263 inst.error = _("invalid barrier type"); \
7264 backtrack_pos = 0; \
7265 goto failure; \
7266 } \
7267 } \
7268 while (0)
7269
7270 skip_whitespace (str);
7271
7272 for (i = 0; upat[i] != OP_stop; i++)
7273 {
7274 op_parse_code = upat[i];
7275 if (op_parse_code >= 1<<16)
7276 op_parse_code = thumb ? (op_parse_code >> 16)
7277 : (op_parse_code & ((1<<16)-1));
7278
7279 if (op_parse_code >= OP_FIRST_OPTIONAL)
7280 {
7281 /* Remember where we are in case we need to backtrack. */
7282 backtrack_pos = str;
7283 backtrack_error = inst.error;
7284 backtrack_index = i;
7285 }
7286
7287 if (i > 0 && (i > 1 || inst.operands[0].present))
7288 po_char_or_fail (',');
7289
7290 switch (op_parse_code)
7291 {
7292 /* Registers */
7293 case OP_oRRnpc:
7294 case OP_oRRnpcsp:
7295 case OP_RRnpc:
7296 case OP_RRnpcsp:
7297 case OP_oRR:
7298 case OP_RRe:
7299 case OP_RRo:
7300 case OP_LR:
7301 case OP_oLR:
7302 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
7303 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
7304 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
7305 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
7306 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
7307 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
7308 case OP_oRND:
7309 case OP_RNDMQR:
7310 po_reg_or_goto (REG_TYPE_RN, try_rndmq);
7311 break;
7312 try_rndmq:
7313 case OP_RNDMQ:
7314 po_reg_or_goto (REG_TYPE_MQ, try_rnd);
7315 break;
7316 try_rnd:
7317 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
7318 case OP_RVC:
7319 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
7320 break;
7321 /* Also accept generic coprocessor regs for unknown registers. */
7322 coproc_reg:
7323 po_reg_or_goto (REG_TYPE_CN, vpr_po);
7324 break;
7325 /* Also accept P0 or p0 for VPR.P0. Since P0 is already an
7326 existing register with a value of 0, this seems like the
7327 best way to parse P0. */
7328 vpr_po:
7329 if (strncasecmp (str, "P0", 2) == 0)
7330 {
7331 str += 2;
7332 inst.operands[i].isreg = 1;
7333 inst.operands[i].reg = 13;
7334 }
7335 else
7336 goto failure;
7337 break;
7338 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
7339 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
7340 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
7341 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
7342 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
7343 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
7344 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
7345 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
7346 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
7347 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
7348 case OP_oRNQ:
7349 case OP_RNQMQ:
7350 po_reg_or_goto (REG_TYPE_MQ, try_nq);
7351 break;
7352 try_nq:
7353 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
7354 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
7355 case OP_RNDQMQR:
7356 po_reg_or_goto (REG_TYPE_RN, try_rndqmq);
7357 break;
7358 try_rndqmq:
7359 case OP_oRNDQMQ:
7360 case OP_RNDQMQ:
7361 po_reg_or_goto (REG_TYPE_MQ, try_rndq);
7362 break;
7363 try_rndq:
7364 case OP_oRNDQ:
7365 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
7366 case OP_RVSDMQ:
7367 po_reg_or_goto (REG_TYPE_MQ, try_rvsd);
7368 break;
7369 try_rvsd:
7370 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
7371 case OP_RVSD_COND:
7372 po_reg_or_goto (REG_TYPE_VFSD, try_cond);
7373 break;
7374 case OP_oRNSDQ:
7375 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
7376 case OP_RNSDQMQR:
7377 po_reg_or_goto (REG_TYPE_RN, try_mq);
7378 break;
7379 try_mq:
7380 case OP_oRNSDQMQ:
7381 case OP_RNSDQMQ:
7382 po_reg_or_goto (REG_TYPE_MQ, try_nsdq2);
7383 break;
7384 try_nsdq2:
7385 po_reg_or_fail (REG_TYPE_NSDQ);
7386 inst.error = 0;
7387 break;
7388 case OP_RMQRR:
7389 po_reg_or_goto (REG_TYPE_RN, try_rmq);
7390 break;
7391 try_rmq:
7392 case OP_RMQ:
7393 po_reg_or_fail (REG_TYPE_MQ);
7394 break;
7395 /* Neon scalar. Using an element size of 8 means that some invalid
7396 scalars are accepted here, so deal with those in later code. */
7397 case OP_RNSC: po_scalar_or_goto (8, failure, REG_TYPE_VFD); break;
7398
7399 case OP_RNDQ_I0:
7400 {
7401 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
7402 break;
7403 try_imm0:
7404 po_imm_or_fail (0, 0, TRUE);
7405 }
7406 break;
7407
7408 case OP_RVSD_I0:
7409 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
7410 break;
7411
7412 case OP_RSVDMQ_FI0:
7413 po_reg_or_goto (REG_TYPE_MQ, try_rsvd_fi0);
7414 break;
7415 try_rsvd_fi0:
7416 case OP_RSVD_FI0:
7417 {
7418 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
7419 break;
7420 try_ifimm0:
7421 if (parse_ifimm_zero (&str))
7422 inst.operands[i].imm = 0;
7423 else
7424 {
7425 inst.error
7426 = _("only floating point zero is allowed as immediate value");
7427 goto failure;
7428 }
7429 }
7430 break;
7431
7432 case OP_RR_RNSC:
7433 {
7434 po_scalar_or_goto (8, try_rr, REG_TYPE_VFD);
7435 break;
7436 try_rr:
7437 po_reg_or_fail (REG_TYPE_RN);
7438 }
7439 break;
7440
7441 case OP_RNSDQ_RNSC_MQ_RR:
7442 po_reg_or_goto (REG_TYPE_RN, try_rnsdq_rnsc_mq);
7443 break;
7444 try_rnsdq_rnsc_mq:
7445 case OP_RNSDQ_RNSC_MQ:
7446 po_reg_or_goto (REG_TYPE_MQ, try_rnsdq_rnsc);
7447 break;
7448 try_rnsdq_rnsc:
7449 case OP_RNSDQ_RNSC:
7450 {
7451 po_scalar_or_goto (8, try_nsdq, REG_TYPE_VFD);
7452 inst.error = 0;
7453 break;
7454 try_nsdq:
7455 po_reg_or_fail (REG_TYPE_NSDQ);
7456 inst.error = 0;
7457 }
7458 break;
7459
7460 case OP_RNSD_RNSC:
7461 {
7462 po_scalar_or_goto (8, try_s_scalar, REG_TYPE_VFD);
7463 break;
7464 try_s_scalar:
7465 po_scalar_or_goto (4, try_nsd, REG_TYPE_VFS);
7466 break;
7467 try_nsd:
7468 po_reg_or_fail (REG_TYPE_NSD);
7469 }
7470 break;
7471
7472 case OP_RNDQMQ_RNSC_RR:
7473 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc_rr);
7474 break;
7475 try_rndq_rnsc_rr:
7476 case OP_RNDQ_RNSC_RR:
7477 po_reg_or_goto (REG_TYPE_RN, try_rndq_rnsc);
7478 break;
7479 case OP_RNDQMQ_RNSC:
7480 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc);
7481 break;
7482 try_rndq_rnsc:
7483 case OP_RNDQ_RNSC:
7484 {
7485 po_scalar_or_goto (8, try_ndq, REG_TYPE_VFD);
7486 break;
7487 try_ndq:
7488 po_reg_or_fail (REG_TYPE_NDQ);
7489 }
7490 break;
7491
7492 case OP_RND_RNSC:
7493 {
7494 po_scalar_or_goto (8, try_vfd, REG_TYPE_VFD);
7495 break;
7496 try_vfd:
7497 po_reg_or_fail (REG_TYPE_VFD);
7498 }
7499 break;
7500
7501 case OP_VMOV:
7502 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
7503 not careful then bad things might happen. */
7504 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
7505 break;
7506
7507 case OP_RNDQMQ_Ibig:
7508 po_reg_or_goto (REG_TYPE_MQ, try_rndq_ibig);
7509 break;
7510 try_rndq_ibig:
7511 case OP_RNDQ_Ibig:
7512 {
7513 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
7514 break;
7515 try_immbig:
7516 /* There's a possibility of getting a 64-bit immediate here, so
7517 we need special handling. */
7518 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
7519 == FAIL)
7520 {
7521 inst.error = _("immediate value is out of range");
7522 goto failure;
7523 }
7524 }
7525 break;
7526
7527 case OP_RNDQMQ_I63b_RR:
7528 po_reg_or_goto (REG_TYPE_MQ, try_rndq_i63b_rr);
7529 break;
7530 try_rndq_i63b_rr:
7531 po_reg_or_goto (REG_TYPE_RN, try_rndq_i63b);
7532 break;
7533 try_rndq_i63b:
7534 case OP_RNDQ_I63b:
7535 {
7536 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
7537 break;
7538 try_shimm:
7539 po_imm_or_fail (0, 63, TRUE);
7540 }
7541 break;
7542
7543 case OP_RRnpcb:
7544 po_char_or_fail ('[');
7545 po_reg_or_fail (REG_TYPE_RN);
7546 po_char_or_fail (']');
7547 break;
7548
7549 case OP_RRnpctw:
7550 case OP_RRw:
7551 case OP_oRRw:
7552 po_reg_or_fail (REG_TYPE_RN);
7553 if (skip_past_char (&str, '!') == SUCCESS)
7554 inst.operands[i].writeback = 1;
7555 break;
7556
7557 /* Immediates */
7558 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
7559 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
7560 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
7561 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
7562 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
7563 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
7564 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
7565 case OP_I48_I64: po_imm1_or_imm2_or_fail (48, 64, FALSE); break;
7566 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
7567 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
7568 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
7569 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
7570 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
7571
7572 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
7573 case OP_oI7b:
7574 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
7575 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
7576 case OP_oI31b:
7577 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
7578 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
7579 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
7580 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
7581
7582 /* Immediate variants */
7583 case OP_oI255c:
7584 po_char_or_fail ('{');
7585 po_imm_or_fail (0, 255, TRUE);
7586 po_char_or_fail ('}');
7587 break;
7588
7589 case OP_I31w:
7590 /* The expression parser chokes on a trailing !, so we have
7591 to find it first and zap it. */
7592 {
7593 char *s = str;
7594 while (*s && *s != ',')
7595 s++;
7596 if (s[-1] == '!')
7597 {
7598 s[-1] = '\0';
7599 inst.operands[i].writeback = 1;
7600 }
7601 po_imm_or_fail (0, 31, TRUE);
7602 if (str == s - 1)
7603 str = s;
7604 }
7605 break;
7606
7607 /* Expressions */
7608 case OP_EXPi: EXPi:
7609 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7610 GE_OPT_PREFIX));
7611 break;
7612
7613 case OP_EXP:
7614 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7615 GE_NO_PREFIX));
7616 break;
7617
7618 case OP_EXPr: EXPr:
7619 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7620 GE_NO_PREFIX));
7621 if (inst.relocs[0].exp.X_op == O_symbol)
7622 {
7623 val = parse_reloc (&str);
7624 if (val == -1)
7625 {
7626 inst.error = _("unrecognized relocation suffix");
7627 goto failure;
7628 }
7629 else if (val != BFD_RELOC_UNUSED)
7630 {
7631 inst.operands[i].imm = val;
7632 inst.operands[i].hasreloc = 1;
7633 }
7634 }
7635 break;
7636
7637 case OP_EXPs:
7638 po_misc_or_fail (my_get_expression (&inst.relocs[i].exp, &str,
7639 GE_NO_PREFIX));
7640 if (inst.relocs[i].exp.X_op == O_symbol)
7641 {
7642 inst.operands[i].hasreloc = 1;
7643 }
7644 else if (inst.relocs[i].exp.X_op == O_constant)
7645 {
7646 inst.operands[i].imm = inst.relocs[i].exp.X_add_number;
7647 inst.operands[i].hasreloc = 0;
7648 }
7649 break;
7650
7651 /* Operand for MOVW or MOVT. */
7652 case OP_HALF:
7653 po_misc_or_fail (parse_half (&str));
7654 break;
7655
7656 /* Register or expression. */
7657 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7658 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
7659
7660 /* Register or immediate. */
7661 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7662 I0: po_imm_or_fail (0, 0, FALSE); break;
7663
7664 case OP_RRnpcsp_I32: po_reg_or_goto (REG_TYPE_RN, I32); break;
7665 I32: po_imm_or_fail (1, 32, FALSE); break;
7666
7667 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7668 IF:
7669 if (!is_immediate_prefix (*str))
7670 goto bad_args;
7671 str++;
7672 val = parse_fpa_immediate (&str);
7673 if (val == FAIL)
7674 goto failure;
7675 /* FPA immediates are encoded as registers 8-15.
7676 parse_fpa_immediate has already applied the offset. */
7677 inst.operands[i].reg = val;
7678 inst.operands[i].isreg = 1;
7679 break;
7680
7681 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7682 I32z: po_imm_or_fail (0, 32, FALSE); break;
7683
7684 /* Two kinds of register. */
7685 case OP_RIWR_RIWC:
7686 {
7687 struct reg_entry *rege = arm_reg_parse_multi (&str);
7688 if (!rege
7689 || (rege->type != REG_TYPE_MMXWR
7690 && rege->type != REG_TYPE_MMXWC
7691 && rege->type != REG_TYPE_MMXWCG))
7692 {
7693 inst.error = _("iWMMXt data or control register expected");
7694 goto failure;
7695 }
7696 inst.operands[i].reg = rege->number;
7697 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7698 }
7699 break;
7700
7701 case OP_RIWC_RIWG:
7702 {
7703 struct reg_entry *rege = arm_reg_parse_multi (&str);
7704 if (!rege
7705 || (rege->type != REG_TYPE_MMXWC
7706 && rege->type != REG_TYPE_MMXWCG))
7707 {
7708 inst.error = _("iWMMXt control register expected");
7709 goto failure;
7710 }
7711 inst.operands[i].reg = rege->number;
7712 inst.operands[i].isreg = 1;
7713 }
7714 break;
7715
7716 /* Misc */
7717 case OP_CPSF: val = parse_cps_flags (&str); break;
7718 case OP_ENDI: val = parse_endian_specifier (&str); break;
7719 case OP_oROR: val = parse_ror (&str); break;
7720 try_cond:
7721 case OP_COND: val = parse_cond (&str); break;
7722 case OP_oBARRIER_I15:
7723 po_barrier_or_imm (str); break;
7724 immediate:
7725 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
7726 goto failure;
7727 break;
7728
7729 case OP_wPSR:
7730 case OP_rPSR:
7731 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7732 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7733 {
7734 inst.error = _("Banked registers are not available with this "
7735 "architecture.");
7736 goto failure;
7737 }
7738 break;
7739 try_psr:
7740 val = parse_psr (&str, op_parse_code == OP_wPSR);
7741 break;
7742
7743 case OP_VLDR:
7744 po_reg_or_goto (REG_TYPE_VFSD, try_sysreg);
7745 break;
7746 try_sysreg:
7747 val = parse_sys_vldr_vstr (&str);
7748 break;
7749
7750 case OP_APSR_RR:
7751 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7752 break;
7753 try_apsr:
7754 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7755 instruction). */
7756 if (strncasecmp (str, "APSR_", 5) == 0)
7757 {
7758 unsigned found = 0;
7759 str += 5;
7760 while (found < 15)
7761 switch (*str++)
7762 {
7763 case 'c': found = (found & 1) ? 16 : found | 1; break;
7764 case 'n': found = (found & 2) ? 16 : found | 2; break;
7765 case 'z': found = (found & 4) ? 16 : found | 4; break;
7766 case 'v': found = (found & 8) ? 16 : found | 8; break;
7767 default: found = 16;
7768 }
7769 if (found != 15)
7770 goto failure;
7771 inst.operands[i].isvec = 1;
7772 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7773 inst.operands[i].reg = REG_PC;
7774 }
7775 else
7776 goto failure;
7777 break;
7778
7779 case OP_TB:
7780 po_misc_or_fail (parse_tb (&str));
7781 break;
7782
7783 /* Register lists. */
7784 case OP_REGLST:
7785 val = parse_reg_list (&str, REGLIST_RN);
7786 if (*str == '^')
7787 {
7788 inst.operands[i].writeback = 1;
7789 str++;
7790 }
7791 break;
7792
7793 case OP_CLRMLST:
7794 val = parse_reg_list (&str, REGLIST_CLRM);
7795 break;
7796
7797 case OP_VRSLST:
7798 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S,
7799 &partial_match);
7800 break;
7801
7802 case OP_VRDLST:
7803 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D,
7804 &partial_match);
7805 break;
7806
7807 case OP_VRSDLST:
7808 /* Allow Q registers too. */
7809 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7810 REGLIST_NEON_D, &partial_match);
7811 if (val == FAIL)
7812 {
7813 inst.error = NULL;
7814 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7815 REGLIST_VFP_S, &partial_match);
7816 inst.operands[i].issingle = 1;
7817 }
7818 break;
7819
7820 case OP_VRSDVLST:
7821 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7822 REGLIST_VFP_D_VPR, &partial_match);
7823 if (val == FAIL && !partial_match)
7824 {
7825 inst.error = NULL;
7826 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7827 REGLIST_VFP_S_VPR, &partial_match);
7828 inst.operands[i].issingle = 1;
7829 }
7830 break;
7831
7832 case OP_NRDLST:
7833 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7834 REGLIST_NEON_D, &partial_match);
7835 break;
7836
7837 case OP_MSTRLST4:
7838 case OP_MSTRLST2:
7839 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7840 1, &inst.operands[i].vectype);
7841 if (val != (((op_parse_code == OP_MSTRLST2) ? 3 : 7) << 5 | 0xe))
7842 goto failure;
7843 break;
7844 case OP_NSTRLST:
7845 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7846 0, &inst.operands[i].vectype);
7847 break;
7848
7849 /* Addressing modes */
7850 case OP_ADDRMVE:
7851 po_misc_or_fail (parse_address_group_reloc (&str, i, GROUP_MVE));
7852 break;
7853
7854 case OP_ADDR:
7855 po_misc_or_fail (parse_address (&str, i));
7856 break;
7857
7858 case OP_ADDRGLDR:
7859 po_misc_or_fail_no_backtrack (
7860 parse_address_group_reloc (&str, i, GROUP_LDR));
7861 break;
7862
7863 case OP_ADDRGLDRS:
7864 po_misc_or_fail_no_backtrack (
7865 parse_address_group_reloc (&str, i, GROUP_LDRS));
7866 break;
7867
7868 case OP_ADDRGLDC:
7869 po_misc_or_fail_no_backtrack (
7870 parse_address_group_reloc (&str, i, GROUP_LDC));
7871 break;
7872
7873 case OP_SH:
7874 po_misc_or_fail (parse_shifter_operand (&str, i));
7875 break;
7876
7877 case OP_SHG:
7878 po_misc_or_fail_no_backtrack (
7879 parse_shifter_operand_group_reloc (&str, i));
7880 break;
7881
7882 case OP_oSHll:
7883 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7884 break;
7885
7886 case OP_oSHar:
7887 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7888 break;
7889
7890 case OP_oSHllar:
7891 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7892 break;
7893
7894 case OP_RMQRZ:
7895 case OP_oRMQRZ:
7896 po_reg_or_goto (REG_TYPE_MQ, try_rr_zr);
7897 break;
7898
7899 case OP_RR_ZR:
7900 try_rr_zr:
7901 po_reg_or_goto (REG_TYPE_RN, ZR);
7902 break;
7903 ZR:
7904 po_reg_or_fail (REG_TYPE_ZR);
7905 break;
7906
7907 default:
7908 as_fatal (_("unhandled operand code %d"), op_parse_code);
7909 }
7910
7911 /* Various value-based sanity checks and shared operations. We
7912 do not signal immediate failures for the register constraints;
7913 this allows a syntax error to take precedence. */
7914 switch (op_parse_code)
7915 {
7916 case OP_oRRnpc:
7917 case OP_RRnpc:
7918 case OP_RRnpcb:
7919 case OP_RRw:
7920 case OP_oRRw:
7921 case OP_RRnpc_I0:
7922 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7923 inst.error = BAD_PC;
7924 break;
7925
7926 case OP_oRRnpcsp:
7927 case OP_RRnpcsp:
7928 case OP_RRnpcsp_I32:
7929 if (inst.operands[i].isreg)
7930 {
7931 if (inst.operands[i].reg == REG_PC)
7932 inst.error = BAD_PC;
7933 else if (inst.operands[i].reg == REG_SP
7934 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7935 relaxed since ARMv8-A. */
7936 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
7937 {
7938 gas_assert (thumb);
7939 inst.error = BAD_SP;
7940 }
7941 }
7942 break;
7943
7944 case OP_RRnpctw:
7945 if (inst.operands[i].isreg
7946 && inst.operands[i].reg == REG_PC
7947 && (inst.operands[i].writeback || thumb))
7948 inst.error = BAD_PC;
7949 break;
7950
7951 case OP_RVSD_COND:
7952 case OP_VLDR:
7953 if (inst.operands[i].isreg)
7954 break;
7955 /* fall through. */
7956
7957 case OP_CPSF:
7958 case OP_ENDI:
7959 case OP_oROR:
7960 case OP_wPSR:
7961 case OP_rPSR:
7962 case OP_COND:
7963 case OP_oBARRIER_I15:
7964 case OP_REGLST:
7965 case OP_CLRMLST:
7966 case OP_VRSLST:
7967 case OP_VRDLST:
7968 case OP_VRSDLST:
7969 case OP_VRSDVLST:
7970 case OP_NRDLST:
7971 case OP_NSTRLST:
7972 case OP_MSTRLST2:
7973 case OP_MSTRLST4:
7974 if (val == FAIL)
7975 goto failure;
7976 inst.operands[i].imm = val;
7977 break;
7978
7979 case OP_LR:
7980 case OP_oLR:
7981 if (inst.operands[i].reg != REG_LR)
7982 inst.error = _("operand must be LR register");
7983 break;
7984
7985 case OP_RMQRZ:
7986 case OP_oRMQRZ:
7987 case OP_RR_ZR:
7988 if (!inst.operands[i].iszr && inst.operands[i].reg == REG_PC)
7989 inst.error = BAD_PC;
7990 break;
7991
7992 case OP_RRe:
7993 if (inst.operands[i].isreg
7994 && (inst.operands[i].reg & 0x00000001) != 0)
7995 inst.error = BAD_ODD;
7996 break;
7997
7998 case OP_RRo:
7999 if (inst.operands[i].isreg)
8000 {
8001 if ((inst.operands[i].reg & 0x00000001) != 1)
8002 inst.error = BAD_EVEN;
8003 else if (inst.operands[i].reg == REG_SP)
8004 as_tsktsk (MVE_BAD_SP);
8005 else if (inst.operands[i].reg == REG_PC)
8006 inst.error = BAD_PC;
8007 }
8008 break;
8009
8010 default:
8011 break;
8012 }
8013
8014 /* If we get here, this operand was successfully parsed. */
8015 inst.operands[i].present = 1;
8016 continue;
8017
8018 bad_args:
8019 inst.error = BAD_ARGS;
8020
8021 failure:
8022 if (!backtrack_pos)
8023 {
8024 /* The parse routine should already have set inst.error, but set a
8025 default here just in case. */
8026 if (!inst.error)
8027 inst.error = BAD_SYNTAX;
8028 return FAIL;
8029 }
8030
8031 /* Do not backtrack over a trailing optional argument that
8032 absorbed some text. We will only fail again, with the
8033 'garbage following instruction' error message, which is
8034 probably less helpful than the current one. */
8035 if (backtrack_index == i && backtrack_pos != str
8036 && upat[i+1] == OP_stop)
8037 {
8038 if (!inst.error)
8039 inst.error = BAD_SYNTAX;
8040 return FAIL;
8041 }
8042
8043 /* Try again, skipping the optional argument at backtrack_pos. */
8044 str = backtrack_pos;
8045 inst.error = backtrack_error;
8046 inst.operands[backtrack_index].present = 0;
8047 i = backtrack_index;
8048 backtrack_pos = 0;
8049 }
8050
8051 /* Check that we have parsed all the arguments. */
8052 if (*str != '\0' && !inst.error)
8053 inst.error = _("garbage following instruction");
8054
8055 return inst.error ? FAIL : SUCCESS;
8056 }
8057
8058 #undef po_char_or_fail
8059 #undef po_reg_or_fail
8060 #undef po_reg_or_goto
8061 #undef po_imm_or_fail
8062 #undef po_scalar_or_fail
8063 #undef po_barrier_or_imm
8064
8065 /* Shorthand macro for instruction encoding functions issuing errors. */
8066 #define constraint(expr, err) \
8067 do \
8068 { \
8069 if (expr) \
8070 { \
8071 inst.error = err; \
8072 return; \
8073 } \
8074 } \
8075 while (0)
8076
8077 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
8078 instructions are unpredictable if these registers are used. This
8079 is the BadReg predicate in ARM's Thumb-2 documentation.
8080
8081 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
8082 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
8083 #define reject_bad_reg(reg) \
8084 do \
8085 if (reg == REG_PC) \
8086 { \
8087 inst.error = BAD_PC; \
8088 return; \
8089 } \
8090 else if (reg == REG_SP \
8091 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
8092 { \
8093 inst.error = BAD_SP; \
8094 return; \
8095 } \
8096 while (0)
8097
8098 /* If REG is R13 (the stack pointer), warn that its use is
8099 deprecated. */
8100 #define warn_deprecated_sp(reg) \
8101 do \
8102 if (warn_on_deprecated && reg == REG_SP) \
8103 as_tsktsk (_("use of r13 is deprecated")); \
8104 while (0)
8105
8106 /* Functions for operand encoding. ARM, then Thumb. */
8107
8108 #define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
8109
8110 /* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
8111
8112 The only binary encoding difference is the Coprocessor number. Coprocessor
8113 9 is used for half-precision calculations or conversions. The format of the
8114 instruction is the same as the equivalent Coprocessor 10 instruction that
8115 exists for Single-Precision operation. */
8116
8117 static void
8118 do_scalar_fp16_v82_encode (void)
8119 {
8120 if (inst.cond < COND_ALWAYS)
8121 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
8122 " the behaviour is UNPREDICTABLE"));
8123 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
8124 _(BAD_FP16));
8125
8126 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
8127 mark_feature_used (&arm_ext_fp16);
8128 }
8129
8130 /* If VAL can be encoded in the immediate field of an ARM instruction,
8131 return the encoded form. Otherwise, return FAIL. */
8132
8133 static unsigned int
8134 encode_arm_immediate (unsigned int val)
8135 {
8136 unsigned int a, i;
8137
8138 if (val <= 0xff)
8139 return val;
8140
8141 for (i = 2; i < 32; i += 2)
8142 if ((a = rotate_left (val, i)) <= 0xff)
8143 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
8144
8145 return FAIL;
8146 }
8147
8148 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
8149 return the encoded form. Otherwise, return FAIL. */
8150 static unsigned int
8151 encode_thumb32_immediate (unsigned int val)
8152 {
8153 unsigned int a, i;
8154
8155 if (val <= 0xff)
8156 return val;
8157
8158 for (i = 1; i <= 24; i++)
8159 {
8160 a = val >> i;
8161 if ((val & ~(0xff << i)) == 0)
8162 return ((val >> i) & 0x7f) | ((32 - i) << 7);
8163 }
8164
8165 a = val & 0xff;
8166 if (val == ((a << 16) | a))
8167 return 0x100 | a;
8168 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
8169 return 0x300 | a;
8170
8171 a = val & 0xff00;
8172 if (val == ((a << 16) | a))
8173 return 0x200 | (a >> 8);
8174
8175 return FAIL;
8176 }
8177 /* Encode a VFP SP or DP register number into inst.instruction. */
8178
8179 static void
8180 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
8181 {
8182 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
8183 && reg > 15)
8184 {
8185 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
8186 {
8187 if (thumb_mode)
8188 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
8189 fpu_vfp_ext_d32);
8190 else
8191 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
8192 fpu_vfp_ext_d32);
8193 }
8194 else
8195 {
8196 first_error (_("D register out of range for selected VFP version"));
8197 return;
8198 }
8199 }
8200
8201 switch (pos)
8202 {
8203 case VFP_REG_Sd:
8204 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
8205 break;
8206
8207 case VFP_REG_Sn:
8208 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
8209 break;
8210
8211 case VFP_REG_Sm:
8212 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
8213 break;
8214
8215 case VFP_REG_Dd:
8216 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
8217 break;
8218
8219 case VFP_REG_Dn:
8220 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
8221 break;
8222
8223 case VFP_REG_Dm:
8224 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
8225 break;
8226
8227 default:
8228 abort ();
8229 }
8230 }
8231
8232 /* Encode a <shift> in an ARM-format instruction. The immediate,
8233 if any, is handled by md_apply_fix. */
8234 static void
8235 encode_arm_shift (int i)
8236 {
8237 /* register-shifted register. */
8238 if (inst.operands[i].immisreg)
8239 {
8240 int op_index;
8241 for (op_index = 0; op_index <= i; ++op_index)
8242 {
8243 /* Check the operand only when it's presented. In pre-UAL syntax,
8244 if the destination register is the same as the first operand, two
8245 register form of the instruction can be used. */
8246 if (inst.operands[op_index].present && inst.operands[op_index].isreg
8247 && inst.operands[op_index].reg == REG_PC)
8248 as_warn (UNPRED_REG ("r15"));
8249 }
8250
8251 if (inst.operands[i].imm == REG_PC)
8252 as_warn (UNPRED_REG ("r15"));
8253 }
8254
8255 if (inst.operands[i].shift_kind == SHIFT_RRX)
8256 inst.instruction |= SHIFT_ROR << 5;
8257 else
8258 {
8259 inst.instruction |= inst.operands[i].shift_kind << 5;
8260 if (inst.operands[i].immisreg)
8261 {
8262 inst.instruction |= SHIFT_BY_REG;
8263 inst.instruction |= inst.operands[i].imm << 8;
8264 }
8265 else
8266 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
8267 }
8268 }
8269
8270 static void
8271 encode_arm_shifter_operand (int i)
8272 {
8273 if (inst.operands[i].isreg)
8274 {
8275 inst.instruction |= inst.operands[i].reg;
8276 encode_arm_shift (i);
8277 }
8278 else
8279 {
8280 inst.instruction |= INST_IMMEDIATE;
8281 if (inst.relocs[0].type != BFD_RELOC_ARM_IMMEDIATE)
8282 inst.instruction |= inst.operands[i].imm;
8283 }
8284 }
8285
8286 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
8287 static void
8288 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
8289 {
8290 /* PR 14260:
8291 Generate an error if the operand is not a register. */
8292 constraint (!inst.operands[i].isreg,
8293 _("Instruction does not support =N addresses"));
8294
8295 inst.instruction |= inst.operands[i].reg << 16;
8296
8297 if (inst.operands[i].preind)
8298 {
8299 if (is_t)
8300 {
8301 inst.error = _("instruction does not accept preindexed addressing");
8302 return;
8303 }
8304 inst.instruction |= PRE_INDEX;
8305 if (inst.operands[i].writeback)
8306 inst.instruction |= WRITE_BACK;
8307
8308 }
8309 else if (inst.operands[i].postind)
8310 {
8311 gas_assert (inst.operands[i].writeback);
8312 if (is_t)
8313 inst.instruction |= WRITE_BACK;
8314 }
8315 else /* unindexed - only for coprocessor */
8316 {
8317 inst.error = _("instruction does not accept unindexed addressing");
8318 return;
8319 }
8320
8321 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
8322 && (((inst.instruction & 0x000f0000) >> 16)
8323 == ((inst.instruction & 0x0000f000) >> 12)))
8324 as_warn ((inst.instruction & LOAD_BIT)
8325 ? _("destination register same as write-back base")
8326 : _("source register same as write-back base"));
8327 }
8328
8329 /* inst.operands[i] was set up by parse_address. Encode it into an
8330 ARM-format mode 2 load or store instruction. If is_t is true,
8331 reject forms that cannot be used with a T instruction (i.e. not
8332 post-indexed). */
8333 static void
8334 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
8335 {
8336 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8337
8338 encode_arm_addr_mode_common (i, is_t);
8339
8340 if (inst.operands[i].immisreg)
8341 {
8342 constraint ((inst.operands[i].imm == REG_PC
8343 || (is_pc && inst.operands[i].writeback)),
8344 BAD_PC_ADDRESSING);
8345 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
8346 inst.instruction |= inst.operands[i].imm;
8347 if (!inst.operands[i].negative)
8348 inst.instruction |= INDEX_UP;
8349 if (inst.operands[i].shifted)
8350 {
8351 if (inst.operands[i].shift_kind == SHIFT_RRX)
8352 inst.instruction |= SHIFT_ROR << 5;
8353 else
8354 {
8355 inst.instruction |= inst.operands[i].shift_kind << 5;
8356 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
8357 }
8358 }
8359 }
8360 else /* immediate offset in inst.relocs[0] */
8361 {
8362 if (is_pc && !inst.relocs[0].pc_rel)
8363 {
8364 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
8365
8366 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
8367 cannot use PC in addressing.
8368 PC cannot be used in writeback addressing, either. */
8369 constraint ((is_t || inst.operands[i].writeback),
8370 BAD_PC_ADDRESSING);
8371
8372 /* Use of PC in str is deprecated for ARMv7. */
8373 if (warn_on_deprecated
8374 && !is_load
8375 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
8376 as_tsktsk (_("use of PC in this instruction is deprecated"));
8377 }
8378
8379 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
8380 {
8381 /* Prefer + for zero encoded value. */
8382 if (!inst.operands[i].negative)
8383 inst.instruction |= INDEX_UP;
8384 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM;
8385 }
8386 }
8387 }
8388
8389 /* inst.operands[i] was set up by parse_address. Encode it into an
8390 ARM-format mode 3 load or store instruction. Reject forms that
8391 cannot be used with such instructions. If is_t is true, reject
8392 forms that cannot be used with a T instruction (i.e. not
8393 post-indexed). */
8394 static void
8395 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
8396 {
8397 if (inst.operands[i].immisreg && inst.operands[i].shifted)
8398 {
8399 inst.error = _("instruction does not accept scaled register index");
8400 return;
8401 }
8402
8403 encode_arm_addr_mode_common (i, is_t);
8404
8405 if (inst.operands[i].immisreg)
8406 {
8407 constraint ((inst.operands[i].imm == REG_PC
8408 || (is_t && inst.operands[i].reg == REG_PC)),
8409 BAD_PC_ADDRESSING);
8410 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
8411 BAD_PC_WRITEBACK);
8412 inst.instruction |= inst.operands[i].imm;
8413 if (!inst.operands[i].negative)
8414 inst.instruction |= INDEX_UP;
8415 }
8416 else /* immediate offset in inst.relocs[0] */
8417 {
8418 constraint ((inst.operands[i].reg == REG_PC && !inst.relocs[0].pc_rel
8419 && inst.operands[i].writeback),
8420 BAD_PC_WRITEBACK);
8421 inst.instruction |= HWOFFSET_IMM;
8422 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
8423 {
8424 /* Prefer + for zero encoded value. */
8425 if (!inst.operands[i].negative)
8426 inst.instruction |= INDEX_UP;
8427
8428 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM8;
8429 }
8430 }
8431 }
8432
8433 /* Write immediate bits [7:0] to the following locations:
8434
8435 |28/24|23 19|18 16|15 4|3 0|
8436 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
8437
8438 This function is used by VMOV/VMVN/VORR/VBIC. */
8439
8440 static void
8441 neon_write_immbits (unsigned immbits)
8442 {
8443 inst.instruction |= immbits & 0xf;
8444 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
8445 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
8446 }
8447
8448 /* Invert low-order SIZE bits of XHI:XLO. */
8449
8450 static void
8451 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
8452 {
8453 unsigned immlo = xlo ? *xlo : 0;
8454 unsigned immhi = xhi ? *xhi : 0;
8455
8456 switch (size)
8457 {
8458 case 8:
8459 immlo = (~immlo) & 0xff;
8460 break;
8461
8462 case 16:
8463 immlo = (~immlo) & 0xffff;
8464 break;
8465
8466 case 64:
8467 immhi = (~immhi) & 0xffffffff;
8468 /* fall through. */
8469
8470 case 32:
8471 immlo = (~immlo) & 0xffffffff;
8472 break;
8473
8474 default:
8475 abort ();
8476 }
8477
8478 if (xlo)
8479 *xlo = immlo;
8480
8481 if (xhi)
8482 *xhi = immhi;
8483 }
8484
8485 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
8486 A, B, C, D. */
8487
8488 static int
8489 neon_bits_same_in_bytes (unsigned imm)
8490 {
8491 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
8492 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
8493 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
8494 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
8495 }
8496
8497 /* For immediate of above form, return 0bABCD. */
8498
8499 static unsigned
8500 neon_squash_bits (unsigned imm)
8501 {
8502 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
8503 | ((imm & 0x01000000) >> 21);
8504 }
8505
8506 /* Compress quarter-float representation to 0b...000 abcdefgh. */
8507
8508 static unsigned
8509 neon_qfloat_bits (unsigned imm)
8510 {
8511 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
8512 }
8513
8514 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
8515 the instruction. *OP is passed as the initial value of the op field, and
8516 may be set to a different value depending on the constant (i.e.
8517 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
8518 MVN). If the immediate looks like a repeated pattern then also
8519 try smaller element sizes. */
8520
8521 static int
8522 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
8523 unsigned *immbits, int *op, int size,
8524 enum neon_el_type type)
8525 {
8526 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
8527 float. */
8528 if (type == NT_float && !float_p)
8529 return FAIL;
8530
8531 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
8532 {
8533 if (size != 32 || *op == 1)
8534 return FAIL;
8535 *immbits = neon_qfloat_bits (immlo);
8536 return 0xf;
8537 }
8538
8539 if (size == 64)
8540 {
8541 if (neon_bits_same_in_bytes (immhi)
8542 && neon_bits_same_in_bytes (immlo))
8543 {
8544 if (*op == 1)
8545 return FAIL;
8546 *immbits = (neon_squash_bits (immhi) << 4)
8547 | neon_squash_bits (immlo);
8548 *op = 1;
8549 return 0xe;
8550 }
8551
8552 if (immhi != immlo)
8553 return FAIL;
8554 }
8555
8556 if (size >= 32)
8557 {
8558 if (immlo == (immlo & 0x000000ff))
8559 {
8560 *immbits = immlo;
8561 return 0x0;
8562 }
8563 else if (immlo == (immlo & 0x0000ff00))
8564 {
8565 *immbits = immlo >> 8;
8566 return 0x2;
8567 }
8568 else if (immlo == (immlo & 0x00ff0000))
8569 {
8570 *immbits = immlo >> 16;
8571 return 0x4;
8572 }
8573 else if (immlo == (immlo & 0xff000000))
8574 {
8575 *immbits = immlo >> 24;
8576 return 0x6;
8577 }
8578 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
8579 {
8580 *immbits = (immlo >> 8) & 0xff;
8581 return 0xc;
8582 }
8583 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
8584 {
8585 *immbits = (immlo >> 16) & 0xff;
8586 return 0xd;
8587 }
8588
8589 if ((immlo & 0xffff) != (immlo >> 16))
8590 return FAIL;
8591 immlo &= 0xffff;
8592 }
8593
8594 if (size >= 16)
8595 {
8596 if (immlo == (immlo & 0x000000ff))
8597 {
8598 *immbits = immlo;
8599 return 0x8;
8600 }
8601 else if (immlo == (immlo & 0x0000ff00))
8602 {
8603 *immbits = immlo >> 8;
8604 return 0xa;
8605 }
8606
8607 if ((immlo & 0xff) != (immlo >> 8))
8608 return FAIL;
8609 immlo &= 0xff;
8610 }
8611
8612 if (immlo == (immlo & 0x000000ff))
8613 {
8614 /* Don't allow MVN with 8-bit immediate. */
8615 if (*op == 1)
8616 return FAIL;
8617 *immbits = immlo;
8618 return 0xe;
8619 }
8620
8621 return FAIL;
8622 }
8623
8624 #if defined BFD_HOST_64_BIT
8625 /* Returns TRUE if double precision value V may be cast
8626 to single precision without loss of accuracy. */
8627
8628 static bfd_boolean
8629 is_double_a_single (bfd_int64_t v)
8630 {
8631 int exp = (int)((v >> 52) & 0x7FF);
8632 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
8633
8634 return (exp == 0 || exp == 0x7FF
8635 || (exp >= 1023 - 126 && exp <= 1023 + 127))
8636 && (mantissa & 0x1FFFFFFFl) == 0;
8637 }
8638
8639 /* Returns a double precision value casted to single precision
8640 (ignoring the least significant bits in exponent and mantissa). */
8641
8642 static int
8643 double_to_single (bfd_int64_t v)
8644 {
8645 int sign = (int) ((v >> 63) & 1l);
8646 int exp = (int) ((v >> 52) & 0x7FF);
8647 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
8648
8649 if (exp == 0x7FF)
8650 exp = 0xFF;
8651 else
8652 {
8653 exp = exp - 1023 + 127;
8654 if (exp >= 0xFF)
8655 {
8656 /* Infinity. */
8657 exp = 0x7F;
8658 mantissa = 0;
8659 }
8660 else if (exp < 0)
8661 {
8662 /* No denormalized numbers. */
8663 exp = 0;
8664 mantissa = 0;
8665 }
8666 }
8667 mantissa >>= 29;
8668 return (sign << 31) | (exp << 23) | mantissa;
8669 }
8670 #endif /* BFD_HOST_64_BIT */
8671
8672 enum lit_type
8673 {
8674 CONST_THUMB,
8675 CONST_ARM,
8676 CONST_VEC
8677 };
8678
8679 static void do_vfp_nsyn_opcode (const char *);
8680
8681 /* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
8682 Determine whether it can be performed with a move instruction; if
8683 it can, convert inst.instruction to that move instruction and
8684 return TRUE; if it can't, convert inst.instruction to a literal-pool
8685 load and return FALSE. If this is not a valid thing to do in the
8686 current context, set inst.error and return TRUE.
8687
8688 inst.operands[i] describes the destination register. */
8689
8690 static bfd_boolean
8691 move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
8692 {
8693 unsigned long tbit;
8694 bfd_boolean thumb_p = (t == CONST_THUMB);
8695 bfd_boolean arm_p = (t == CONST_ARM);
8696
8697 if (thumb_p)
8698 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
8699 else
8700 tbit = LOAD_BIT;
8701
8702 if ((inst.instruction & tbit) == 0)
8703 {
8704 inst.error = _("invalid pseudo operation");
8705 return TRUE;
8706 }
8707
8708 if (inst.relocs[0].exp.X_op != O_constant
8709 && inst.relocs[0].exp.X_op != O_symbol
8710 && inst.relocs[0].exp.X_op != O_big)
8711 {
8712 inst.error = _("constant expression expected");
8713 return TRUE;
8714 }
8715
8716 if (inst.relocs[0].exp.X_op == O_constant
8717 || inst.relocs[0].exp.X_op == O_big)
8718 {
8719 #if defined BFD_HOST_64_BIT
8720 bfd_int64_t v;
8721 #else
8722 offsetT v;
8723 #endif
8724 if (inst.relocs[0].exp.X_op == O_big)
8725 {
8726 LITTLENUM_TYPE w[X_PRECISION];
8727 LITTLENUM_TYPE * l;
8728
8729 if (inst.relocs[0].exp.X_add_number == -1)
8730 {
8731 gen_to_words (w, X_PRECISION, E_PRECISION);
8732 l = w;
8733 /* FIXME: Should we check words w[2..5] ? */
8734 }
8735 else
8736 l = generic_bignum;
8737
8738 #if defined BFD_HOST_64_BIT
8739 v =
8740 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8741 << LITTLENUM_NUMBER_OF_BITS)
8742 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8743 << LITTLENUM_NUMBER_OF_BITS)
8744 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8745 << LITTLENUM_NUMBER_OF_BITS)
8746 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8747 #else
8748 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8749 | (l[0] & LITTLENUM_MASK);
8750 #endif
8751 }
8752 else
8753 v = inst.relocs[0].exp.X_add_number;
8754
8755 if (!inst.operands[i].issingle)
8756 {
8757 if (thumb_p)
8758 {
8759 /* LDR should not use lead in a flag-setting instruction being
8760 chosen so we do not check whether movs can be used. */
8761
8762 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
8763 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8764 && inst.operands[i].reg != 13
8765 && inst.operands[i].reg != 15)
8766 {
8767 /* Check if on thumb2 it can be done with a mov.w, mvn or
8768 movw instruction. */
8769 unsigned int newimm;
8770 bfd_boolean isNegated;
8771
8772 newimm = encode_thumb32_immediate (v);
8773 if (newimm != (unsigned int) FAIL)
8774 isNegated = FALSE;
8775 else
8776 {
8777 newimm = encode_thumb32_immediate (~v);
8778 if (newimm != (unsigned int) FAIL)
8779 isNegated = TRUE;
8780 }
8781
8782 /* The number can be loaded with a mov.w or mvn
8783 instruction. */
8784 if (newimm != (unsigned int) FAIL
8785 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
8786 {
8787 inst.instruction = (0xf04f0000 /* MOV.W. */
8788 | (inst.operands[i].reg << 8));
8789 /* Change to MOVN. */
8790 inst.instruction |= (isNegated ? 0x200000 : 0);
8791 inst.instruction |= (newimm & 0x800) << 15;
8792 inst.instruction |= (newimm & 0x700) << 4;
8793 inst.instruction |= (newimm & 0x0ff);
8794 return TRUE;
8795 }
8796 /* The number can be loaded with a movw instruction. */
8797 else if ((v & ~0xFFFF) == 0
8798 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8799 {
8800 int imm = v & 0xFFFF;
8801
8802 inst.instruction = 0xf2400000; /* MOVW. */
8803 inst.instruction |= (inst.operands[i].reg << 8);
8804 inst.instruction |= (imm & 0xf000) << 4;
8805 inst.instruction |= (imm & 0x0800) << 15;
8806 inst.instruction |= (imm & 0x0700) << 4;
8807 inst.instruction |= (imm & 0x00ff);
8808 /* In case this replacement is being done on Armv8-M
8809 Baseline we need to make sure to disable the
8810 instruction size check, as otherwise GAS will reject
8811 the use of this T32 instruction. */
8812 inst.size_req = 0;
8813 return TRUE;
8814 }
8815 }
8816 }
8817 else if (arm_p)
8818 {
8819 int value = encode_arm_immediate (v);
8820
8821 if (value != FAIL)
8822 {
8823 /* This can be done with a mov instruction. */
8824 inst.instruction &= LITERAL_MASK;
8825 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8826 inst.instruction |= value & 0xfff;
8827 return TRUE;
8828 }
8829
8830 value = encode_arm_immediate (~ v);
8831 if (value != FAIL)
8832 {
8833 /* This can be done with a mvn instruction. */
8834 inst.instruction &= LITERAL_MASK;
8835 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8836 inst.instruction |= value & 0xfff;
8837 return TRUE;
8838 }
8839 }
8840 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8841 {
8842 int op = 0;
8843 unsigned immbits = 0;
8844 unsigned immlo = inst.operands[1].imm;
8845 unsigned immhi = inst.operands[1].regisimm
8846 ? inst.operands[1].reg
8847 : inst.relocs[0].exp.X_unsigned
8848 ? 0
8849 : ((bfd_int64_t)((int) immlo)) >> 32;
8850 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8851 &op, 64, NT_invtype);
8852
8853 if (cmode == FAIL)
8854 {
8855 neon_invert_size (&immlo, &immhi, 64);
8856 op = !op;
8857 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8858 &op, 64, NT_invtype);
8859 }
8860
8861 if (cmode != FAIL)
8862 {
8863 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8864 | (1 << 23)
8865 | (cmode << 8)
8866 | (op << 5)
8867 | (1 << 4);
8868
8869 /* Fill other bits in vmov encoding for both thumb and arm. */
8870 if (thumb_mode)
8871 inst.instruction |= (0x7U << 29) | (0xF << 24);
8872 else
8873 inst.instruction |= (0xFU << 28) | (0x1 << 25);
8874 neon_write_immbits (immbits);
8875 return TRUE;
8876 }
8877 }
8878 }
8879
8880 if (t == CONST_VEC)
8881 {
8882 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8883 if (inst.operands[i].issingle
8884 && is_quarter_float (inst.operands[1].imm)
8885 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8886 {
8887 inst.operands[1].imm =
8888 neon_qfloat_bits (v);
8889 do_vfp_nsyn_opcode ("fconsts");
8890 return TRUE;
8891 }
8892
8893 /* If our host does not support a 64-bit type then we cannot perform
8894 the following optimization. This mean that there will be a
8895 discrepancy between the output produced by an assembler built for
8896 a 32-bit-only host and the output produced from a 64-bit host, but
8897 this cannot be helped. */
8898 #if defined BFD_HOST_64_BIT
8899 else if (!inst.operands[1].issingle
8900 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8901 {
8902 if (is_double_a_single (v)
8903 && is_quarter_float (double_to_single (v)))
8904 {
8905 inst.operands[1].imm =
8906 neon_qfloat_bits (double_to_single (v));
8907 do_vfp_nsyn_opcode ("fconstd");
8908 return TRUE;
8909 }
8910 }
8911 #endif
8912 }
8913 }
8914
8915 if (add_to_lit_pool ((!inst.operands[i].isvec
8916 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8917 return TRUE;
8918
8919 inst.operands[1].reg = REG_PC;
8920 inst.operands[1].isreg = 1;
8921 inst.operands[1].preind = 1;
8922 inst.relocs[0].pc_rel = 1;
8923 inst.relocs[0].type = (thumb_p
8924 ? BFD_RELOC_ARM_THUMB_OFFSET
8925 : (mode_3
8926 ? BFD_RELOC_ARM_HWLITERAL
8927 : BFD_RELOC_ARM_LITERAL));
8928 return FALSE;
8929 }
8930
8931 /* inst.operands[i] was set up by parse_address. Encode it into an
8932 ARM-format instruction. Reject all forms which cannot be encoded
8933 into a coprocessor load/store instruction. If wb_ok is false,
8934 reject use of writeback; if unind_ok is false, reject use of
8935 unindexed addressing. If reloc_override is not 0, use it instead
8936 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8937 (in which case it is preserved). */
8938
8939 static int
8940 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8941 {
8942 if (!inst.operands[i].isreg)
8943 {
8944 /* PR 18256 */
8945 if (! inst.operands[0].isvec)
8946 {
8947 inst.error = _("invalid co-processor operand");
8948 return FAIL;
8949 }
8950 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8951 return SUCCESS;
8952 }
8953
8954 inst.instruction |= inst.operands[i].reg << 16;
8955
8956 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8957
8958 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8959 {
8960 gas_assert (!inst.operands[i].writeback);
8961 if (!unind_ok)
8962 {
8963 inst.error = _("instruction does not support unindexed addressing");
8964 return FAIL;
8965 }
8966 inst.instruction |= inst.operands[i].imm;
8967 inst.instruction |= INDEX_UP;
8968 return SUCCESS;
8969 }
8970
8971 if (inst.operands[i].preind)
8972 inst.instruction |= PRE_INDEX;
8973
8974 if (inst.operands[i].writeback)
8975 {
8976 if (inst.operands[i].reg == REG_PC)
8977 {
8978 inst.error = _("pc may not be used with write-back");
8979 return FAIL;
8980 }
8981 if (!wb_ok)
8982 {
8983 inst.error = _("instruction does not support writeback");
8984 return FAIL;
8985 }
8986 inst.instruction |= WRITE_BACK;
8987 }
8988
8989 if (reloc_override)
8990 inst.relocs[0].type = (bfd_reloc_code_real_type) reloc_override;
8991 else if ((inst.relocs[0].type < BFD_RELOC_ARM_ALU_PC_G0_NC
8992 || inst.relocs[0].type > BFD_RELOC_ARM_LDC_SB_G2)
8993 && inst.relocs[0].type != BFD_RELOC_ARM_LDR_PC_G0)
8994 {
8995 if (thumb_mode)
8996 inst.relocs[0].type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8997 else
8998 inst.relocs[0].type = BFD_RELOC_ARM_CP_OFF_IMM;
8999 }
9000
9001 /* Prefer + for zero encoded value. */
9002 if (!inst.operands[i].negative)
9003 inst.instruction |= INDEX_UP;
9004
9005 return SUCCESS;
9006 }
9007
9008 /* Functions for instruction encoding, sorted by sub-architecture.
9009 First some generics; their names are taken from the conventional
9010 bit positions for register arguments in ARM format instructions. */
9011
9012 static void
9013 do_noargs (void)
9014 {
9015 }
9016
9017 static void
9018 do_rd (void)
9019 {
9020 inst.instruction |= inst.operands[0].reg << 12;
9021 }
9022
9023 static void
9024 do_rn (void)
9025 {
9026 inst.instruction |= inst.operands[0].reg << 16;
9027 }
9028
9029 static void
9030 do_rd_rm (void)
9031 {
9032 inst.instruction |= inst.operands[0].reg << 12;
9033 inst.instruction |= inst.operands[1].reg;
9034 }
9035
9036 static void
9037 do_rm_rn (void)
9038 {
9039 inst.instruction |= inst.operands[0].reg;
9040 inst.instruction |= inst.operands[1].reg << 16;
9041 }
9042
9043 static void
9044 do_rd_rn (void)
9045 {
9046 inst.instruction |= inst.operands[0].reg << 12;
9047 inst.instruction |= inst.operands[1].reg << 16;
9048 }
9049
9050 static void
9051 do_rn_rd (void)
9052 {
9053 inst.instruction |= inst.operands[0].reg << 16;
9054 inst.instruction |= inst.operands[1].reg << 12;
9055 }
9056
9057 static void
9058 do_tt (void)
9059 {
9060 inst.instruction |= inst.operands[0].reg << 8;
9061 inst.instruction |= inst.operands[1].reg << 16;
9062 }
9063
9064 static bfd_boolean
9065 check_obsolete (const arm_feature_set *feature, const char *msg)
9066 {
9067 if (ARM_CPU_IS_ANY (cpu_variant))
9068 {
9069 as_tsktsk ("%s", msg);
9070 return TRUE;
9071 }
9072 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
9073 {
9074 as_bad ("%s", msg);
9075 return TRUE;
9076 }
9077
9078 return FALSE;
9079 }
9080
9081 static void
9082 do_rd_rm_rn (void)
9083 {
9084 unsigned Rn = inst.operands[2].reg;
9085 /* Enforce restrictions on SWP instruction. */
9086 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
9087 {
9088 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
9089 _("Rn must not overlap other operands"));
9090
9091 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
9092 */
9093 if (!check_obsolete (&arm_ext_v8,
9094 _("swp{b} use is obsoleted for ARMv8 and later"))
9095 && warn_on_deprecated
9096 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
9097 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
9098 }
9099
9100 inst.instruction |= inst.operands[0].reg << 12;
9101 inst.instruction |= inst.operands[1].reg;
9102 inst.instruction |= Rn << 16;
9103 }
9104
9105 static void
9106 do_rd_rn_rm (void)
9107 {
9108 inst.instruction |= inst.operands[0].reg << 12;
9109 inst.instruction |= inst.operands[1].reg << 16;
9110 inst.instruction |= inst.operands[2].reg;
9111 }
9112
9113 static void
9114 do_rm_rd_rn (void)
9115 {
9116 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
9117 constraint (((inst.relocs[0].exp.X_op != O_constant
9118 && inst.relocs[0].exp.X_op != O_illegal)
9119 || inst.relocs[0].exp.X_add_number != 0),
9120 BAD_ADDR_MODE);
9121 inst.instruction |= inst.operands[0].reg;
9122 inst.instruction |= inst.operands[1].reg << 12;
9123 inst.instruction |= inst.operands[2].reg << 16;
9124 }
9125
9126 static void
9127 do_imm0 (void)
9128 {
9129 inst.instruction |= inst.operands[0].imm;
9130 }
9131
9132 static void
9133 do_rd_cpaddr (void)
9134 {
9135 inst.instruction |= inst.operands[0].reg << 12;
9136 encode_arm_cp_address (1, TRUE, TRUE, 0);
9137 }
9138
9139 /* ARM instructions, in alphabetical order by function name (except
9140 that wrapper functions appear immediately after the function they
9141 wrap). */
9142
9143 /* This is a pseudo-op of the form "adr rd, label" to be converted
9144 into a relative address of the form "add rd, pc, #label-.-8". */
9145
9146 static void
9147 do_adr (void)
9148 {
9149 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
9150
9151 /* Frag hacking will turn this into a sub instruction if the offset turns
9152 out to be negative. */
9153 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9154 inst.relocs[0].pc_rel = 1;
9155 inst.relocs[0].exp.X_add_number -= 8;
9156
9157 if (support_interwork
9158 && inst.relocs[0].exp.X_op == O_symbol
9159 && inst.relocs[0].exp.X_add_symbol != NULL
9160 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9161 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9162 inst.relocs[0].exp.X_add_number |= 1;
9163 }
9164
9165 /* This is a pseudo-op of the form "adrl rd, label" to be converted
9166 into a relative address of the form:
9167 add rd, pc, #low(label-.-8)"
9168 add rd, rd, #high(label-.-8)" */
9169
9170 static void
9171 do_adrl (void)
9172 {
9173 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
9174
9175 /* Frag hacking will turn this into a sub instruction if the offset turns
9176 out to be negative. */
9177 inst.relocs[0].type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
9178 inst.relocs[0].pc_rel = 1;
9179 inst.size = INSN_SIZE * 2;
9180 inst.relocs[0].exp.X_add_number -= 8;
9181
9182 if (support_interwork
9183 && inst.relocs[0].exp.X_op == O_symbol
9184 && inst.relocs[0].exp.X_add_symbol != NULL
9185 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9186 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9187 inst.relocs[0].exp.X_add_number |= 1;
9188 }
9189
9190 static void
9191 do_arit (void)
9192 {
9193 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9194 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9195 THUMB1_RELOC_ONLY);
9196 if (!inst.operands[1].present)
9197 inst.operands[1].reg = inst.operands[0].reg;
9198 inst.instruction |= inst.operands[0].reg << 12;
9199 inst.instruction |= inst.operands[1].reg << 16;
9200 encode_arm_shifter_operand (2);
9201 }
9202
9203 static void
9204 do_barrier (void)
9205 {
9206 if (inst.operands[0].present)
9207 inst.instruction |= inst.operands[0].imm;
9208 else
9209 inst.instruction |= 0xf;
9210 }
9211
9212 static void
9213 do_bfc (void)
9214 {
9215 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9216 constraint (msb > 32, _("bit-field extends past end of register"));
9217 /* The instruction encoding stores the LSB and MSB,
9218 not the LSB and width. */
9219 inst.instruction |= inst.operands[0].reg << 12;
9220 inst.instruction |= inst.operands[1].imm << 7;
9221 inst.instruction |= (msb - 1) << 16;
9222 }
9223
9224 static void
9225 do_bfi (void)
9226 {
9227 unsigned int msb;
9228
9229 /* #0 in second position is alternative syntax for bfc, which is
9230 the same instruction but with REG_PC in the Rm field. */
9231 if (!inst.operands[1].isreg)
9232 inst.operands[1].reg = REG_PC;
9233
9234 msb = inst.operands[2].imm + inst.operands[3].imm;
9235 constraint (msb > 32, _("bit-field extends past end of register"));
9236 /* The instruction encoding stores the LSB and MSB,
9237 not the LSB and width. */
9238 inst.instruction |= inst.operands[0].reg << 12;
9239 inst.instruction |= inst.operands[1].reg;
9240 inst.instruction |= inst.operands[2].imm << 7;
9241 inst.instruction |= (msb - 1) << 16;
9242 }
9243
9244 static void
9245 do_bfx (void)
9246 {
9247 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9248 _("bit-field extends past end of register"));
9249 inst.instruction |= inst.operands[0].reg << 12;
9250 inst.instruction |= inst.operands[1].reg;
9251 inst.instruction |= inst.operands[2].imm << 7;
9252 inst.instruction |= (inst.operands[3].imm - 1) << 16;
9253 }
9254
9255 /* ARM V5 breakpoint instruction (argument parse)
9256 BKPT <16 bit unsigned immediate>
9257 Instruction is not conditional.
9258 The bit pattern given in insns[] has the COND_ALWAYS condition,
9259 and it is an error if the caller tried to override that. */
9260
9261 static void
9262 do_bkpt (void)
9263 {
9264 /* Top 12 of 16 bits to bits 19:8. */
9265 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
9266
9267 /* Bottom 4 of 16 bits to bits 3:0. */
9268 inst.instruction |= inst.operands[0].imm & 0xf;
9269 }
9270
9271 static void
9272 encode_branch (int default_reloc)
9273 {
9274 if (inst.operands[0].hasreloc)
9275 {
9276 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
9277 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
9278 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
9279 inst.relocs[0].type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
9280 ? BFD_RELOC_ARM_PLT32
9281 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
9282 }
9283 else
9284 inst.relocs[0].type = (bfd_reloc_code_real_type) default_reloc;
9285 inst.relocs[0].pc_rel = 1;
9286 }
9287
9288 static void
9289 do_branch (void)
9290 {
9291 #ifdef OBJ_ELF
9292 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9293 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9294 else
9295 #endif
9296 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9297 }
9298
9299 static void
9300 do_bl (void)
9301 {
9302 #ifdef OBJ_ELF
9303 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9304 {
9305 if (inst.cond == COND_ALWAYS)
9306 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
9307 else
9308 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9309 }
9310 else
9311 #endif
9312 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9313 }
9314
9315 /* ARM V5 branch-link-exchange instruction (argument parse)
9316 BLX <target_addr> ie BLX(1)
9317 BLX{<condition>} <Rm> ie BLX(2)
9318 Unfortunately, there are two different opcodes for this mnemonic.
9319 So, the insns[].value is not used, and the code here zaps values
9320 into inst.instruction.
9321 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
9322
9323 static void
9324 do_blx (void)
9325 {
9326 if (inst.operands[0].isreg)
9327 {
9328 /* Arg is a register; the opcode provided by insns[] is correct.
9329 It is not illegal to do "blx pc", just useless. */
9330 if (inst.operands[0].reg == REG_PC)
9331 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
9332
9333 inst.instruction |= inst.operands[0].reg;
9334 }
9335 else
9336 {
9337 /* Arg is an address; this instruction cannot be executed
9338 conditionally, and the opcode must be adjusted.
9339 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
9340 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
9341 constraint (inst.cond != COND_ALWAYS, BAD_COND);
9342 inst.instruction = 0xfa000000;
9343 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
9344 }
9345 }
9346
9347 static void
9348 do_bx (void)
9349 {
9350 bfd_boolean want_reloc;
9351
9352 if (inst.operands[0].reg == REG_PC)
9353 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
9354
9355 inst.instruction |= inst.operands[0].reg;
9356 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
9357 it is for ARMv4t or earlier. */
9358 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
9359 if (!ARM_FEATURE_ZERO (selected_object_arch)
9360 && !ARM_CPU_HAS_FEATURE (selected_object_arch, arm_ext_v5))
9361 want_reloc = TRUE;
9362
9363 #ifdef OBJ_ELF
9364 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
9365 #endif
9366 want_reloc = FALSE;
9367
9368 if (want_reloc)
9369 inst.relocs[0].type = BFD_RELOC_ARM_V4BX;
9370 }
9371
9372
9373 /* ARM v5TEJ. Jump to Jazelle code. */
9374
9375 static void
9376 do_bxj (void)
9377 {
9378 if (inst.operands[0].reg == REG_PC)
9379 as_tsktsk (_("use of r15 in bxj is not really useful"));
9380
9381 inst.instruction |= inst.operands[0].reg;
9382 }
9383
9384 /* Co-processor data operation:
9385 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
9386 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
9387 static void
9388 do_cdp (void)
9389 {
9390 inst.instruction |= inst.operands[0].reg << 8;
9391 inst.instruction |= inst.operands[1].imm << 20;
9392 inst.instruction |= inst.operands[2].reg << 12;
9393 inst.instruction |= inst.operands[3].reg << 16;
9394 inst.instruction |= inst.operands[4].reg;
9395 inst.instruction |= inst.operands[5].imm << 5;
9396 }
9397
9398 static void
9399 do_cmp (void)
9400 {
9401 inst.instruction |= inst.operands[0].reg << 16;
9402 encode_arm_shifter_operand (1);
9403 }
9404
9405 /* Transfer between coprocessor and ARM registers.
9406 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
9407 MRC2
9408 MCR{cond}
9409 MCR2
9410
9411 No special properties. */
9412
9413 struct deprecated_coproc_regs_s
9414 {
9415 unsigned cp;
9416 int opc1;
9417 unsigned crn;
9418 unsigned crm;
9419 int opc2;
9420 arm_feature_set deprecated;
9421 arm_feature_set obsoleted;
9422 const char *dep_msg;
9423 const char *obs_msg;
9424 };
9425
9426 #define DEPR_ACCESS_V8 \
9427 N_("This coprocessor register access is deprecated in ARMv8")
9428
9429 /* Table of all deprecated coprocessor registers. */
9430 static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
9431 {
9432 {15, 0, 7, 10, 5, /* CP15DMB. */
9433 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9434 DEPR_ACCESS_V8, NULL},
9435 {15, 0, 7, 10, 4, /* CP15DSB. */
9436 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9437 DEPR_ACCESS_V8, NULL},
9438 {15, 0, 7, 5, 4, /* CP15ISB. */
9439 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9440 DEPR_ACCESS_V8, NULL},
9441 {14, 6, 1, 0, 0, /* TEEHBR. */
9442 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9443 DEPR_ACCESS_V8, NULL},
9444 {14, 6, 0, 0, 0, /* TEECR. */
9445 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9446 DEPR_ACCESS_V8, NULL},
9447 };
9448
9449 #undef DEPR_ACCESS_V8
9450
9451 static const size_t deprecated_coproc_reg_count =
9452 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
9453
9454 static void
9455 do_co_reg (void)
9456 {
9457 unsigned Rd;
9458 size_t i;
9459
9460 Rd = inst.operands[2].reg;
9461 if (thumb_mode)
9462 {
9463 if (inst.instruction == 0xee000010
9464 || inst.instruction == 0xfe000010)
9465 /* MCR, MCR2 */
9466 reject_bad_reg (Rd);
9467 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
9468 /* MRC, MRC2 */
9469 constraint (Rd == REG_SP, BAD_SP);
9470 }
9471 else
9472 {
9473 /* MCR */
9474 if (inst.instruction == 0xe000010)
9475 constraint (Rd == REG_PC, BAD_PC);
9476 }
9477
9478 for (i = 0; i < deprecated_coproc_reg_count; ++i)
9479 {
9480 const struct deprecated_coproc_regs_s *r =
9481 deprecated_coproc_regs + i;
9482
9483 if (inst.operands[0].reg == r->cp
9484 && inst.operands[1].imm == r->opc1
9485 && inst.operands[3].reg == r->crn
9486 && inst.operands[4].reg == r->crm
9487 && inst.operands[5].imm == r->opc2)
9488 {
9489 if (! ARM_CPU_IS_ANY (cpu_variant)
9490 && warn_on_deprecated
9491 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
9492 as_tsktsk ("%s", r->dep_msg);
9493 }
9494 }
9495
9496 inst.instruction |= inst.operands[0].reg << 8;
9497 inst.instruction |= inst.operands[1].imm << 21;
9498 inst.instruction |= Rd << 12;
9499 inst.instruction |= inst.operands[3].reg << 16;
9500 inst.instruction |= inst.operands[4].reg;
9501 inst.instruction |= inst.operands[5].imm << 5;
9502 }
9503
9504 /* Transfer between coprocessor register and pair of ARM registers.
9505 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
9506 MCRR2
9507 MRRC{cond}
9508 MRRC2
9509
9510 Two XScale instructions are special cases of these:
9511
9512 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
9513 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
9514
9515 Result unpredictable if Rd or Rn is R15. */
9516
9517 static void
9518 do_co_reg2c (void)
9519 {
9520 unsigned Rd, Rn;
9521
9522 Rd = inst.operands[2].reg;
9523 Rn = inst.operands[3].reg;
9524
9525 if (thumb_mode)
9526 {
9527 reject_bad_reg (Rd);
9528 reject_bad_reg (Rn);
9529 }
9530 else
9531 {
9532 constraint (Rd == REG_PC, BAD_PC);
9533 constraint (Rn == REG_PC, BAD_PC);
9534 }
9535
9536 /* Only check the MRRC{2} variants. */
9537 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
9538 {
9539 /* If Rd == Rn, error that the operation is
9540 unpredictable (example MRRC p3,#1,r1,r1,c4). */
9541 constraint (Rd == Rn, BAD_OVERLAP);
9542 }
9543
9544 inst.instruction |= inst.operands[0].reg << 8;
9545 inst.instruction |= inst.operands[1].imm << 4;
9546 inst.instruction |= Rd << 12;
9547 inst.instruction |= Rn << 16;
9548 inst.instruction |= inst.operands[4].reg;
9549 }
9550
9551 static void
9552 do_cpsi (void)
9553 {
9554 inst.instruction |= inst.operands[0].imm << 6;
9555 if (inst.operands[1].present)
9556 {
9557 inst.instruction |= CPSI_MMOD;
9558 inst.instruction |= inst.operands[1].imm;
9559 }
9560 }
9561
9562 static void
9563 do_dbg (void)
9564 {
9565 inst.instruction |= inst.operands[0].imm;
9566 }
9567
9568 static void
9569 do_div (void)
9570 {
9571 unsigned Rd, Rn, Rm;
9572
9573 Rd = inst.operands[0].reg;
9574 Rn = (inst.operands[1].present
9575 ? inst.operands[1].reg : Rd);
9576 Rm = inst.operands[2].reg;
9577
9578 constraint ((Rd == REG_PC), BAD_PC);
9579 constraint ((Rn == REG_PC), BAD_PC);
9580 constraint ((Rm == REG_PC), BAD_PC);
9581
9582 inst.instruction |= Rd << 16;
9583 inst.instruction |= Rn << 0;
9584 inst.instruction |= Rm << 8;
9585 }
9586
9587 static void
9588 do_it (void)
9589 {
9590 /* There is no IT instruction in ARM mode. We
9591 process it to do the validation as if in
9592 thumb mode, just in case the code gets
9593 assembled for thumb using the unified syntax. */
9594
9595 inst.size = 0;
9596 if (unified_syntax)
9597 {
9598 set_pred_insn_type (IT_INSN);
9599 now_pred.mask = (inst.instruction & 0xf) | 0x10;
9600 now_pred.cc = inst.operands[0].imm;
9601 }
9602 }
9603
9604 /* If there is only one register in the register list,
9605 then return its register number. Otherwise return -1. */
9606 static int
9607 only_one_reg_in_list (int range)
9608 {
9609 int i = ffs (range) - 1;
9610 return (i > 15 || range != (1 << i)) ? -1 : i;
9611 }
9612
9613 static void
9614 encode_ldmstm(int from_push_pop_mnem)
9615 {
9616 int base_reg = inst.operands[0].reg;
9617 int range = inst.operands[1].imm;
9618 int one_reg;
9619
9620 inst.instruction |= base_reg << 16;
9621 inst.instruction |= range;
9622
9623 if (inst.operands[1].writeback)
9624 inst.instruction |= LDM_TYPE_2_OR_3;
9625
9626 if (inst.operands[0].writeback)
9627 {
9628 inst.instruction |= WRITE_BACK;
9629 /* Check for unpredictable uses of writeback. */
9630 if (inst.instruction & LOAD_BIT)
9631 {
9632 /* Not allowed in LDM type 2. */
9633 if ((inst.instruction & LDM_TYPE_2_OR_3)
9634 && ((range & (1 << REG_PC)) == 0))
9635 as_warn (_("writeback of base register is UNPREDICTABLE"));
9636 /* Only allowed if base reg not in list for other types. */
9637 else if (range & (1 << base_reg))
9638 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
9639 }
9640 else /* STM. */
9641 {
9642 /* Not allowed for type 2. */
9643 if (inst.instruction & LDM_TYPE_2_OR_3)
9644 as_warn (_("writeback of base register is UNPREDICTABLE"));
9645 /* Only allowed if base reg not in list, or first in list. */
9646 else if ((range & (1 << base_reg))
9647 && (range & ((1 << base_reg) - 1)))
9648 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
9649 }
9650 }
9651
9652 /* If PUSH/POP has only one register, then use the A2 encoding. */
9653 one_reg = only_one_reg_in_list (range);
9654 if (from_push_pop_mnem && one_reg >= 0)
9655 {
9656 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
9657
9658 if (is_push && one_reg == 13 /* SP */)
9659 /* PR 22483: The A2 encoding cannot be used when
9660 pushing the stack pointer as this is UNPREDICTABLE. */
9661 return;
9662
9663 inst.instruction &= A_COND_MASK;
9664 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
9665 inst.instruction |= one_reg << 12;
9666 }
9667 }
9668
9669 static void
9670 do_ldmstm (void)
9671 {
9672 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
9673 }
9674
9675 /* ARMv5TE load-consecutive (argument parse)
9676 Mode is like LDRH.
9677
9678 LDRccD R, mode
9679 STRccD R, mode. */
9680
9681 static void
9682 do_ldrd (void)
9683 {
9684 constraint (inst.operands[0].reg % 2 != 0,
9685 _("first transfer register must be even"));
9686 constraint (inst.operands[1].present
9687 && inst.operands[1].reg != inst.operands[0].reg + 1,
9688 _("can only transfer two consecutive registers"));
9689 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9690 constraint (!inst.operands[2].isreg, _("'[' expected"));
9691
9692 if (!inst.operands[1].present)
9693 inst.operands[1].reg = inst.operands[0].reg + 1;
9694
9695 /* encode_arm_addr_mode_3 will diagnose overlap between the base
9696 register and the first register written; we have to diagnose
9697 overlap between the base and the second register written here. */
9698
9699 if (inst.operands[2].reg == inst.operands[1].reg
9700 && (inst.operands[2].writeback || inst.operands[2].postind))
9701 as_warn (_("base register written back, and overlaps "
9702 "second transfer register"));
9703
9704 if (!(inst.instruction & V4_STR_BIT))
9705 {
9706 /* For an index-register load, the index register must not overlap the
9707 destination (even if not write-back). */
9708 if (inst.operands[2].immisreg
9709 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
9710 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
9711 as_warn (_("index register overlaps transfer register"));
9712 }
9713 inst.instruction |= inst.operands[0].reg << 12;
9714 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
9715 }
9716
9717 static void
9718 do_ldrex (void)
9719 {
9720 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9721 || inst.operands[1].postind || inst.operands[1].writeback
9722 || inst.operands[1].immisreg || inst.operands[1].shifted
9723 || inst.operands[1].negative
9724 /* This can arise if the programmer has written
9725 strex rN, rM, foo
9726 or if they have mistakenly used a register name as the last
9727 operand, eg:
9728 strex rN, rM, rX
9729 It is very difficult to distinguish between these two cases
9730 because "rX" might actually be a label. ie the register
9731 name has been occluded by a symbol of the same name. So we
9732 just generate a general 'bad addressing mode' type error
9733 message and leave it up to the programmer to discover the
9734 true cause and fix their mistake. */
9735 || (inst.operands[1].reg == REG_PC),
9736 BAD_ADDR_MODE);
9737
9738 constraint (inst.relocs[0].exp.X_op != O_constant
9739 || inst.relocs[0].exp.X_add_number != 0,
9740 _("offset must be zero in ARM encoding"));
9741
9742 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9743
9744 inst.instruction |= inst.operands[0].reg << 12;
9745 inst.instruction |= inst.operands[1].reg << 16;
9746 inst.relocs[0].type = BFD_RELOC_UNUSED;
9747 }
9748
9749 static void
9750 do_ldrexd (void)
9751 {
9752 constraint (inst.operands[0].reg % 2 != 0,
9753 _("even register required"));
9754 constraint (inst.operands[1].present
9755 && inst.operands[1].reg != inst.operands[0].reg + 1,
9756 _("can only load two consecutive registers"));
9757 /* If op 1 were present and equal to PC, this function wouldn't
9758 have been called in the first place. */
9759 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9760
9761 inst.instruction |= inst.operands[0].reg << 12;
9762 inst.instruction |= inst.operands[2].reg << 16;
9763 }
9764
9765 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9766 which is not a multiple of four is UNPREDICTABLE. */
9767 static void
9768 check_ldr_r15_aligned (void)
9769 {
9770 constraint (!(inst.operands[1].immisreg)
9771 && (inst.operands[0].reg == REG_PC
9772 && inst.operands[1].reg == REG_PC
9773 && (inst.relocs[0].exp.X_add_number & 0x3)),
9774 _("ldr to register 15 must be 4-byte aligned"));
9775 }
9776
9777 static void
9778 do_ldst (void)
9779 {
9780 inst.instruction |= inst.operands[0].reg << 12;
9781 if (!inst.operands[1].isreg)
9782 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
9783 return;
9784 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
9785 check_ldr_r15_aligned ();
9786 }
9787
9788 static void
9789 do_ldstt (void)
9790 {
9791 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9792 reject [Rn,...]. */
9793 if (inst.operands[1].preind)
9794 {
9795 constraint (inst.relocs[0].exp.X_op != O_constant
9796 || inst.relocs[0].exp.X_add_number != 0,
9797 _("this instruction requires a post-indexed address"));
9798
9799 inst.operands[1].preind = 0;
9800 inst.operands[1].postind = 1;
9801 inst.operands[1].writeback = 1;
9802 }
9803 inst.instruction |= inst.operands[0].reg << 12;
9804 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9805 }
9806
9807 /* Halfword and signed-byte load/store operations. */
9808
9809 static void
9810 do_ldstv4 (void)
9811 {
9812 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9813 inst.instruction |= inst.operands[0].reg << 12;
9814 if (!inst.operands[1].isreg)
9815 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
9816 return;
9817 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
9818 }
9819
9820 static void
9821 do_ldsttv4 (void)
9822 {
9823 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9824 reject [Rn,...]. */
9825 if (inst.operands[1].preind)
9826 {
9827 constraint (inst.relocs[0].exp.X_op != O_constant
9828 || inst.relocs[0].exp.X_add_number != 0,
9829 _("this instruction requires a post-indexed address"));
9830
9831 inst.operands[1].preind = 0;
9832 inst.operands[1].postind = 1;
9833 inst.operands[1].writeback = 1;
9834 }
9835 inst.instruction |= inst.operands[0].reg << 12;
9836 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9837 }
9838
9839 /* Co-processor register load/store.
9840 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9841 static void
9842 do_lstc (void)
9843 {
9844 inst.instruction |= inst.operands[0].reg << 8;
9845 inst.instruction |= inst.operands[1].reg << 12;
9846 encode_arm_cp_address (2, TRUE, TRUE, 0);
9847 }
9848
9849 static void
9850 do_mlas (void)
9851 {
9852 /* This restriction does not apply to mls (nor to mla in v6 or later). */
9853 if (inst.operands[0].reg == inst.operands[1].reg
9854 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
9855 && !(inst.instruction & 0x00400000))
9856 as_tsktsk (_("Rd and Rm should be different in mla"));
9857
9858 inst.instruction |= inst.operands[0].reg << 16;
9859 inst.instruction |= inst.operands[1].reg;
9860 inst.instruction |= inst.operands[2].reg << 8;
9861 inst.instruction |= inst.operands[3].reg << 12;
9862 }
9863
9864 static void
9865 do_mov (void)
9866 {
9867 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9868 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9869 THUMB1_RELOC_ONLY);
9870 inst.instruction |= inst.operands[0].reg << 12;
9871 encode_arm_shifter_operand (1);
9872 }
9873
9874 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9875 static void
9876 do_mov16 (void)
9877 {
9878 bfd_vma imm;
9879 bfd_boolean top;
9880
9881 top = (inst.instruction & 0x00400000) != 0;
9882 constraint (top && inst.relocs[0].type == BFD_RELOC_ARM_MOVW,
9883 _(":lower16: not allowed in this instruction"));
9884 constraint (!top && inst.relocs[0].type == BFD_RELOC_ARM_MOVT,
9885 _(":upper16: not allowed in this instruction"));
9886 inst.instruction |= inst.operands[0].reg << 12;
9887 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
9888 {
9889 imm = inst.relocs[0].exp.X_add_number;
9890 /* The value is in two pieces: 0:11, 16:19. */
9891 inst.instruction |= (imm & 0x00000fff);
9892 inst.instruction |= (imm & 0x0000f000) << 4;
9893 }
9894 }
9895
9896 static int
9897 do_vfp_nsyn_mrs (void)
9898 {
9899 if (inst.operands[0].isvec)
9900 {
9901 if (inst.operands[1].reg != 1)
9902 first_error (_("operand 1 must be FPSCR"));
9903 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9904 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9905 do_vfp_nsyn_opcode ("fmstat");
9906 }
9907 else if (inst.operands[1].isvec)
9908 do_vfp_nsyn_opcode ("fmrx");
9909 else
9910 return FAIL;
9911
9912 return SUCCESS;
9913 }
9914
9915 static int
9916 do_vfp_nsyn_msr (void)
9917 {
9918 if (inst.operands[0].isvec)
9919 do_vfp_nsyn_opcode ("fmxr");
9920 else
9921 return FAIL;
9922
9923 return SUCCESS;
9924 }
9925
9926 static void
9927 do_vmrs (void)
9928 {
9929 unsigned Rt = inst.operands[0].reg;
9930
9931 if (thumb_mode && Rt == REG_SP)
9932 {
9933 inst.error = BAD_SP;
9934 return;
9935 }
9936
9937 switch (inst.operands[1].reg)
9938 {
9939 /* MVFR2 is only valid for Armv8-A. */
9940 case 5:
9941 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9942 _(BAD_FPU));
9943 break;
9944
9945 /* Check for new Armv8.1-M Mainline changes to <spec_reg>. */
9946 case 1: /* fpscr. */
9947 constraint (!(ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
9948 || ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)),
9949 _(BAD_FPU));
9950 break;
9951
9952 case 14: /* fpcxt_ns. */
9953 case 15: /* fpcxt_s. */
9954 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_1m_main),
9955 _("selected processor does not support instruction"));
9956 break;
9957
9958 case 2: /* fpscr_nzcvqc. */
9959 case 12: /* vpr. */
9960 case 13: /* p0. */
9961 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_1m_main)
9962 || (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
9963 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)),
9964 _("selected processor does not support instruction"));
9965 if (inst.operands[0].reg != 2
9966 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
9967 as_warn (_("accessing MVE system register without MVE is UNPREDICTABLE"));
9968 break;
9969
9970 default:
9971 break;
9972 }
9973
9974 /* APSR_ sets isvec. All other refs to PC are illegal. */
9975 if (!inst.operands[0].isvec && Rt == REG_PC)
9976 {
9977 inst.error = BAD_PC;
9978 return;
9979 }
9980
9981 /* If we get through parsing the register name, we just insert the number
9982 generated into the instruction without further validation. */
9983 inst.instruction |= (inst.operands[1].reg << 16);
9984 inst.instruction |= (Rt << 12);
9985 }
9986
9987 static void
9988 do_vmsr (void)
9989 {
9990 unsigned Rt = inst.operands[1].reg;
9991
9992 if (thumb_mode)
9993 reject_bad_reg (Rt);
9994 else if (Rt == REG_PC)
9995 {
9996 inst.error = BAD_PC;
9997 return;
9998 }
9999
10000 switch (inst.operands[0].reg)
10001 {
10002 /* MVFR2 is only valid for Armv8-A. */
10003 case 5:
10004 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
10005 _(BAD_FPU));
10006 break;
10007
10008 /* Check for new Armv8.1-M Mainline changes to <spec_reg>. */
10009 case 1: /* fpcr. */
10010 constraint (!(ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
10011 || ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)),
10012 _(BAD_FPU));
10013 break;
10014
10015 case 14: /* fpcxt_ns. */
10016 case 15: /* fpcxt_s. */
10017 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_1m_main),
10018 _("selected processor does not support instruction"));
10019 break;
10020
10021 case 2: /* fpscr_nzcvqc. */
10022 case 12: /* vpr. */
10023 case 13: /* p0. */
10024 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_1m_main)
10025 || (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
10026 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)),
10027 _("selected processor does not support instruction"));
10028 if (inst.operands[0].reg != 2
10029 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
10030 as_warn (_("accessing MVE system register without MVE is UNPREDICTABLE"));
10031 break;
10032
10033 default:
10034 break;
10035 }
10036
10037 /* If we get through parsing the register name, we just insert the number
10038 generated into the instruction without further validation. */
10039 inst.instruction |= (inst.operands[0].reg << 16);
10040 inst.instruction |= (Rt << 12);
10041 }
10042
10043 static void
10044 do_mrs (void)
10045 {
10046 unsigned br;
10047
10048 if (do_vfp_nsyn_mrs () == SUCCESS)
10049 return;
10050
10051 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
10052 inst.instruction |= inst.operands[0].reg << 12;
10053
10054 if (inst.operands[1].isreg)
10055 {
10056 br = inst.operands[1].reg;
10057 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
10058 as_bad (_("bad register for mrs"));
10059 }
10060 else
10061 {
10062 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
10063 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
10064 != (PSR_c|PSR_f),
10065 _("'APSR', 'CPSR' or 'SPSR' expected"));
10066 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
10067 }
10068
10069 inst.instruction |= br;
10070 }
10071
10072 /* Two possible forms:
10073 "{C|S}PSR_<field>, Rm",
10074 "{C|S}PSR_f, #expression". */
10075
10076 static void
10077 do_msr (void)
10078 {
10079 if (do_vfp_nsyn_msr () == SUCCESS)
10080 return;
10081
10082 inst.instruction |= inst.operands[0].imm;
10083 if (inst.operands[1].isreg)
10084 inst.instruction |= inst.operands[1].reg;
10085 else
10086 {
10087 inst.instruction |= INST_IMMEDIATE;
10088 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
10089 inst.relocs[0].pc_rel = 0;
10090 }
10091 }
10092
10093 static void
10094 do_mul (void)
10095 {
10096 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
10097
10098 if (!inst.operands[2].present)
10099 inst.operands[2].reg = inst.operands[0].reg;
10100 inst.instruction |= inst.operands[0].reg << 16;
10101 inst.instruction |= inst.operands[1].reg;
10102 inst.instruction |= inst.operands[2].reg << 8;
10103
10104 if (inst.operands[0].reg == inst.operands[1].reg
10105 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
10106 as_tsktsk (_("Rd and Rm should be different in mul"));
10107 }
10108
10109 /* Long Multiply Parser
10110 UMULL RdLo, RdHi, Rm, Rs
10111 SMULL RdLo, RdHi, Rm, Rs
10112 UMLAL RdLo, RdHi, Rm, Rs
10113 SMLAL RdLo, RdHi, Rm, Rs. */
10114
10115 static void
10116 do_mull (void)
10117 {
10118 inst.instruction |= inst.operands[0].reg << 12;
10119 inst.instruction |= inst.operands[1].reg << 16;
10120 inst.instruction |= inst.operands[2].reg;
10121 inst.instruction |= inst.operands[3].reg << 8;
10122
10123 /* rdhi and rdlo must be different. */
10124 if (inst.operands[0].reg == inst.operands[1].reg)
10125 as_tsktsk (_("rdhi and rdlo must be different"));
10126
10127 /* rdhi, rdlo and rm must all be different before armv6. */
10128 if ((inst.operands[0].reg == inst.operands[2].reg
10129 || inst.operands[1].reg == inst.operands[2].reg)
10130 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
10131 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
10132 }
10133
10134 static void
10135 do_nop (void)
10136 {
10137 if (inst.operands[0].present
10138 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
10139 {
10140 /* Architectural NOP hints are CPSR sets with no bits selected. */
10141 inst.instruction &= 0xf0000000;
10142 inst.instruction |= 0x0320f000;
10143 if (inst.operands[0].present)
10144 inst.instruction |= inst.operands[0].imm;
10145 }
10146 }
10147
10148 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
10149 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
10150 Condition defaults to COND_ALWAYS.
10151 Error if Rd, Rn or Rm are R15. */
10152
10153 static void
10154 do_pkhbt (void)
10155 {
10156 inst.instruction |= inst.operands[0].reg << 12;
10157 inst.instruction |= inst.operands[1].reg << 16;
10158 inst.instruction |= inst.operands[2].reg;
10159 if (inst.operands[3].present)
10160 encode_arm_shift (3);
10161 }
10162
10163 /* ARM V6 PKHTB (Argument Parse). */
10164
10165 static void
10166 do_pkhtb (void)
10167 {
10168 if (!inst.operands[3].present)
10169 {
10170 /* If the shift specifier is omitted, turn the instruction
10171 into pkhbt rd, rm, rn. */
10172 inst.instruction &= 0xfff00010;
10173 inst.instruction |= inst.operands[0].reg << 12;
10174 inst.instruction |= inst.operands[1].reg;
10175 inst.instruction |= inst.operands[2].reg << 16;
10176 }
10177 else
10178 {
10179 inst.instruction |= inst.operands[0].reg << 12;
10180 inst.instruction |= inst.operands[1].reg << 16;
10181 inst.instruction |= inst.operands[2].reg;
10182 encode_arm_shift (3);
10183 }
10184 }
10185
10186 /* ARMv5TE: Preload-Cache
10187 MP Extensions: Preload for write
10188
10189 PLD(W) <addr_mode>
10190
10191 Syntactically, like LDR with B=1, W=0, L=1. */
10192
10193 static void
10194 do_pld (void)
10195 {
10196 constraint (!inst.operands[0].isreg,
10197 _("'[' expected after PLD mnemonic"));
10198 constraint (inst.operands[0].postind,
10199 _("post-indexed expression used in preload instruction"));
10200 constraint (inst.operands[0].writeback,
10201 _("writeback used in preload instruction"));
10202 constraint (!inst.operands[0].preind,
10203 _("unindexed addressing used in preload instruction"));
10204 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10205 }
10206
10207 /* ARMv7: PLI <addr_mode> */
10208 static void
10209 do_pli (void)
10210 {
10211 constraint (!inst.operands[0].isreg,
10212 _("'[' expected after PLI mnemonic"));
10213 constraint (inst.operands[0].postind,
10214 _("post-indexed expression used in preload instruction"));
10215 constraint (inst.operands[0].writeback,
10216 _("writeback used in preload instruction"));
10217 constraint (!inst.operands[0].preind,
10218 _("unindexed addressing used in preload instruction"));
10219 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10220 inst.instruction &= ~PRE_INDEX;
10221 }
10222
10223 static void
10224 do_push_pop (void)
10225 {
10226 constraint (inst.operands[0].writeback,
10227 _("push/pop do not support {reglist}^"));
10228 inst.operands[1] = inst.operands[0];
10229 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
10230 inst.operands[0].isreg = 1;
10231 inst.operands[0].writeback = 1;
10232 inst.operands[0].reg = REG_SP;
10233 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
10234 }
10235
10236 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
10237 word at the specified address and the following word
10238 respectively.
10239 Unconditionally executed.
10240 Error if Rn is R15. */
10241
10242 static void
10243 do_rfe (void)
10244 {
10245 inst.instruction |= inst.operands[0].reg << 16;
10246 if (inst.operands[0].writeback)
10247 inst.instruction |= WRITE_BACK;
10248 }
10249
10250 /* ARM V6 ssat (argument parse). */
10251
10252 static void
10253 do_ssat (void)
10254 {
10255 inst.instruction |= inst.operands[0].reg << 12;
10256 inst.instruction |= (inst.operands[1].imm - 1) << 16;
10257 inst.instruction |= inst.operands[2].reg;
10258
10259 if (inst.operands[3].present)
10260 encode_arm_shift (3);
10261 }
10262
10263 /* ARM V6 usat (argument parse). */
10264
10265 static void
10266 do_usat (void)
10267 {
10268 inst.instruction |= inst.operands[0].reg << 12;
10269 inst.instruction |= inst.operands[1].imm << 16;
10270 inst.instruction |= inst.operands[2].reg;
10271
10272 if (inst.operands[3].present)
10273 encode_arm_shift (3);
10274 }
10275
10276 /* ARM V6 ssat16 (argument parse). */
10277
10278 static void
10279 do_ssat16 (void)
10280 {
10281 inst.instruction |= inst.operands[0].reg << 12;
10282 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
10283 inst.instruction |= inst.operands[2].reg;
10284 }
10285
10286 static void
10287 do_usat16 (void)
10288 {
10289 inst.instruction |= inst.operands[0].reg << 12;
10290 inst.instruction |= inst.operands[1].imm << 16;
10291 inst.instruction |= inst.operands[2].reg;
10292 }
10293
10294 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
10295 preserving the other bits.
10296
10297 setend <endian_specifier>, where <endian_specifier> is either
10298 BE or LE. */
10299
10300 static void
10301 do_setend (void)
10302 {
10303 if (warn_on_deprecated
10304 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10305 as_tsktsk (_("setend use is deprecated for ARMv8"));
10306
10307 if (inst.operands[0].imm)
10308 inst.instruction |= 0x200;
10309 }
10310
10311 static void
10312 do_shift (void)
10313 {
10314 unsigned int Rm = (inst.operands[1].present
10315 ? inst.operands[1].reg
10316 : inst.operands[0].reg);
10317
10318 inst.instruction |= inst.operands[0].reg << 12;
10319 inst.instruction |= Rm;
10320 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
10321 {
10322 inst.instruction |= inst.operands[2].reg << 8;
10323 inst.instruction |= SHIFT_BY_REG;
10324 /* PR 12854: Error on extraneous shifts. */
10325 constraint (inst.operands[2].shifted,
10326 _("extraneous shift as part of operand to shift insn"));
10327 }
10328 else
10329 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
10330 }
10331
10332 static void
10333 do_smc (void)
10334 {
10335 unsigned int value = inst.relocs[0].exp.X_add_number;
10336 constraint (value > 0xf, _("immediate too large (bigger than 0xF)"));
10337
10338 inst.relocs[0].type = BFD_RELOC_ARM_SMC;
10339 inst.relocs[0].pc_rel = 0;
10340 }
10341
10342 static void
10343 do_hvc (void)
10344 {
10345 inst.relocs[0].type = BFD_RELOC_ARM_HVC;
10346 inst.relocs[0].pc_rel = 0;
10347 }
10348
10349 static void
10350 do_swi (void)
10351 {
10352 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
10353 inst.relocs[0].pc_rel = 0;
10354 }
10355
10356 static void
10357 do_setpan (void)
10358 {
10359 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10360 _("selected processor does not support SETPAN instruction"));
10361
10362 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
10363 }
10364
10365 static void
10366 do_t_setpan (void)
10367 {
10368 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10369 _("selected processor does not support SETPAN instruction"));
10370
10371 inst.instruction |= (inst.operands[0].imm << 3);
10372 }
10373
10374 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
10375 SMLAxy{cond} Rd,Rm,Rs,Rn
10376 SMLAWy{cond} Rd,Rm,Rs,Rn
10377 Error if any register is R15. */
10378
10379 static void
10380 do_smla (void)
10381 {
10382 inst.instruction |= inst.operands[0].reg << 16;
10383 inst.instruction |= inst.operands[1].reg;
10384 inst.instruction |= inst.operands[2].reg << 8;
10385 inst.instruction |= inst.operands[3].reg << 12;
10386 }
10387
10388 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
10389 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
10390 Error if any register is R15.
10391 Warning if Rdlo == Rdhi. */
10392
10393 static void
10394 do_smlal (void)
10395 {
10396 inst.instruction |= inst.operands[0].reg << 12;
10397 inst.instruction |= inst.operands[1].reg << 16;
10398 inst.instruction |= inst.operands[2].reg;
10399 inst.instruction |= inst.operands[3].reg << 8;
10400
10401 if (inst.operands[0].reg == inst.operands[1].reg)
10402 as_tsktsk (_("rdhi and rdlo must be different"));
10403 }
10404
10405 /* ARM V5E (El Segundo) signed-multiply (argument parse)
10406 SMULxy{cond} Rd,Rm,Rs
10407 Error if any register is R15. */
10408
10409 static void
10410 do_smul (void)
10411 {
10412 inst.instruction |= inst.operands[0].reg << 16;
10413 inst.instruction |= inst.operands[1].reg;
10414 inst.instruction |= inst.operands[2].reg << 8;
10415 }
10416
10417 /* ARM V6 srs (argument parse). The variable fields in the encoding are
10418 the same for both ARM and Thumb-2. */
10419
10420 static void
10421 do_srs (void)
10422 {
10423 int reg;
10424
10425 if (inst.operands[0].present)
10426 {
10427 reg = inst.operands[0].reg;
10428 constraint (reg != REG_SP, _("SRS base register must be r13"));
10429 }
10430 else
10431 reg = REG_SP;
10432
10433 inst.instruction |= reg << 16;
10434 inst.instruction |= inst.operands[1].imm;
10435 if (inst.operands[0].writeback || inst.operands[1].writeback)
10436 inst.instruction |= WRITE_BACK;
10437 }
10438
10439 /* ARM V6 strex (argument parse). */
10440
10441 static void
10442 do_strex (void)
10443 {
10444 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10445 || inst.operands[2].postind || inst.operands[2].writeback
10446 || inst.operands[2].immisreg || inst.operands[2].shifted
10447 || inst.operands[2].negative
10448 /* See comment in do_ldrex(). */
10449 || (inst.operands[2].reg == REG_PC),
10450 BAD_ADDR_MODE);
10451
10452 constraint (inst.operands[0].reg == inst.operands[1].reg
10453 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10454
10455 constraint (inst.relocs[0].exp.X_op != O_constant
10456 || inst.relocs[0].exp.X_add_number != 0,
10457 _("offset must be zero in ARM encoding"));
10458
10459 inst.instruction |= inst.operands[0].reg << 12;
10460 inst.instruction |= inst.operands[1].reg;
10461 inst.instruction |= inst.operands[2].reg << 16;
10462 inst.relocs[0].type = BFD_RELOC_UNUSED;
10463 }
10464
10465 static void
10466 do_t_strexbh (void)
10467 {
10468 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10469 || inst.operands[2].postind || inst.operands[2].writeback
10470 || inst.operands[2].immisreg || inst.operands[2].shifted
10471 || inst.operands[2].negative,
10472 BAD_ADDR_MODE);
10473
10474 constraint (inst.operands[0].reg == inst.operands[1].reg
10475 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10476
10477 do_rm_rd_rn ();
10478 }
10479
10480 static void
10481 do_strexd (void)
10482 {
10483 constraint (inst.operands[1].reg % 2 != 0,
10484 _("even register required"));
10485 constraint (inst.operands[2].present
10486 && inst.operands[2].reg != inst.operands[1].reg + 1,
10487 _("can only store two consecutive registers"));
10488 /* If op 2 were present and equal to PC, this function wouldn't
10489 have been called in the first place. */
10490 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
10491
10492 constraint (inst.operands[0].reg == inst.operands[1].reg
10493 || inst.operands[0].reg == inst.operands[1].reg + 1
10494 || inst.operands[0].reg == inst.operands[3].reg,
10495 BAD_OVERLAP);
10496
10497 inst.instruction |= inst.operands[0].reg << 12;
10498 inst.instruction |= inst.operands[1].reg;
10499 inst.instruction |= inst.operands[3].reg << 16;
10500 }
10501
10502 /* ARM V8 STRL. */
10503 static void
10504 do_stlex (void)
10505 {
10506 constraint (inst.operands[0].reg == inst.operands[1].reg
10507 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10508
10509 do_rd_rm_rn ();
10510 }
10511
10512 static void
10513 do_t_stlex (void)
10514 {
10515 constraint (inst.operands[0].reg == inst.operands[1].reg
10516 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10517
10518 do_rm_rd_rn ();
10519 }
10520
10521 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
10522 extends it to 32-bits, and adds the result to a value in another
10523 register. You can specify a rotation by 0, 8, 16, or 24 bits
10524 before extracting the 16-bit value.
10525 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
10526 Condition defaults to COND_ALWAYS.
10527 Error if any register uses R15. */
10528
10529 static void
10530 do_sxtah (void)
10531 {
10532 inst.instruction |= inst.operands[0].reg << 12;
10533 inst.instruction |= inst.operands[1].reg << 16;
10534 inst.instruction |= inst.operands[2].reg;
10535 inst.instruction |= inst.operands[3].imm << 10;
10536 }
10537
10538 /* ARM V6 SXTH.
10539
10540 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
10541 Condition defaults to COND_ALWAYS.
10542 Error if any register uses R15. */
10543
10544 static void
10545 do_sxth (void)
10546 {
10547 inst.instruction |= inst.operands[0].reg << 12;
10548 inst.instruction |= inst.operands[1].reg;
10549 inst.instruction |= inst.operands[2].imm << 10;
10550 }
10551 \f
10552 /* VFP instructions. In a logical order: SP variant first, monad
10553 before dyad, arithmetic then move then load/store. */
10554
10555 static void
10556 do_vfp_sp_monadic (void)
10557 {
10558 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10559 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10560 _(BAD_FPU));
10561
10562 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10563 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
10564 }
10565
10566 static void
10567 do_vfp_sp_dyadic (void)
10568 {
10569 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10570 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10571 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
10572 }
10573
10574 static void
10575 do_vfp_sp_compare_z (void)
10576 {
10577 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10578 }
10579
10580 static void
10581 do_vfp_dp_sp_cvt (void)
10582 {
10583 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10584 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
10585 }
10586
10587 static void
10588 do_vfp_sp_dp_cvt (void)
10589 {
10590 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10591 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10592 }
10593
10594 static void
10595 do_vfp_reg_from_sp (void)
10596 {
10597 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10598 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10599 _(BAD_FPU));
10600
10601 inst.instruction |= inst.operands[0].reg << 12;
10602 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10603 }
10604
10605 static void
10606 do_vfp_reg2_from_sp2 (void)
10607 {
10608 constraint (inst.operands[2].imm != 2,
10609 _("only two consecutive VFP SP registers allowed here"));
10610 inst.instruction |= inst.operands[0].reg << 12;
10611 inst.instruction |= inst.operands[1].reg << 16;
10612 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
10613 }
10614
10615 static void
10616 do_vfp_sp_from_reg (void)
10617 {
10618 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10619 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10620 _(BAD_FPU));
10621
10622 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
10623 inst.instruction |= inst.operands[1].reg << 12;
10624 }
10625
10626 static void
10627 do_vfp_sp2_from_reg2 (void)
10628 {
10629 constraint (inst.operands[0].imm != 2,
10630 _("only two consecutive VFP SP registers allowed here"));
10631 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
10632 inst.instruction |= inst.operands[1].reg << 12;
10633 inst.instruction |= inst.operands[2].reg << 16;
10634 }
10635
10636 static void
10637 do_vfp_sp_ldst (void)
10638 {
10639 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10640 encode_arm_cp_address (1, FALSE, TRUE, 0);
10641 }
10642
10643 static void
10644 do_vfp_dp_ldst (void)
10645 {
10646 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10647 encode_arm_cp_address (1, FALSE, TRUE, 0);
10648 }
10649
10650
10651 static void
10652 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
10653 {
10654 if (inst.operands[0].writeback)
10655 inst.instruction |= WRITE_BACK;
10656 else
10657 constraint (ldstm_type != VFP_LDSTMIA,
10658 _("this addressing mode requires base-register writeback"));
10659 inst.instruction |= inst.operands[0].reg << 16;
10660 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
10661 inst.instruction |= inst.operands[1].imm;
10662 }
10663
10664 static void
10665 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
10666 {
10667 int count;
10668
10669 if (inst.operands[0].writeback)
10670 inst.instruction |= WRITE_BACK;
10671 else
10672 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
10673 _("this addressing mode requires base-register writeback"));
10674
10675 inst.instruction |= inst.operands[0].reg << 16;
10676 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10677
10678 count = inst.operands[1].imm << 1;
10679 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
10680 count += 1;
10681
10682 inst.instruction |= count;
10683 }
10684
10685 static void
10686 do_vfp_sp_ldstmia (void)
10687 {
10688 vfp_sp_ldstm (VFP_LDSTMIA);
10689 }
10690
10691 static void
10692 do_vfp_sp_ldstmdb (void)
10693 {
10694 vfp_sp_ldstm (VFP_LDSTMDB);
10695 }
10696
10697 static void
10698 do_vfp_dp_ldstmia (void)
10699 {
10700 vfp_dp_ldstm (VFP_LDSTMIA);
10701 }
10702
10703 static void
10704 do_vfp_dp_ldstmdb (void)
10705 {
10706 vfp_dp_ldstm (VFP_LDSTMDB);
10707 }
10708
10709 static void
10710 do_vfp_xp_ldstmia (void)
10711 {
10712 vfp_dp_ldstm (VFP_LDSTMIAX);
10713 }
10714
10715 static void
10716 do_vfp_xp_ldstmdb (void)
10717 {
10718 vfp_dp_ldstm (VFP_LDSTMDBX);
10719 }
10720
10721 static void
10722 do_vfp_dp_rd_rm (void)
10723 {
10724 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
10725 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10726 _(BAD_FPU));
10727
10728 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10729 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10730 }
10731
10732 static void
10733 do_vfp_dp_rn_rd (void)
10734 {
10735 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
10736 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10737 }
10738
10739 static void
10740 do_vfp_dp_rd_rn (void)
10741 {
10742 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10743 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10744 }
10745
10746 static void
10747 do_vfp_dp_rd_rn_rm (void)
10748 {
10749 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10750 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10751 _(BAD_FPU));
10752
10753 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10754 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10755 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
10756 }
10757
10758 static void
10759 do_vfp_dp_rd (void)
10760 {
10761 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10762 }
10763
10764 static void
10765 do_vfp_dp_rm_rd_rn (void)
10766 {
10767 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10768 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10769 _(BAD_FPU));
10770
10771 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
10772 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10773 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
10774 }
10775
10776 /* VFPv3 instructions. */
10777 static void
10778 do_vfp_sp_const (void)
10779 {
10780 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10781 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10782 inst.instruction |= (inst.operands[1].imm & 0x0f);
10783 }
10784
10785 static void
10786 do_vfp_dp_const (void)
10787 {
10788 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10789 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10790 inst.instruction |= (inst.operands[1].imm & 0x0f);
10791 }
10792
10793 static void
10794 vfp_conv (int srcsize)
10795 {
10796 int immbits = srcsize - inst.operands[1].imm;
10797
10798 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
10799 {
10800 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
10801 i.e. immbits must be in range 0 - 16. */
10802 inst.error = _("immediate value out of range, expected range [0, 16]");
10803 return;
10804 }
10805 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
10806 {
10807 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
10808 i.e. immbits must be in range 0 - 31. */
10809 inst.error = _("immediate value out of range, expected range [1, 32]");
10810 return;
10811 }
10812
10813 inst.instruction |= (immbits & 1) << 5;
10814 inst.instruction |= (immbits >> 1);
10815 }
10816
10817 static void
10818 do_vfp_sp_conv_16 (void)
10819 {
10820 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10821 vfp_conv (16);
10822 }
10823
10824 static void
10825 do_vfp_dp_conv_16 (void)
10826 {
10827 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10828 vfp_conv (16);
10829 }
10830
10831 static void
10832 do_vfp_sp_conv_32 (void)
10833 {
10834 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10835 vfp_conv (32);
10836 }
10837
10838 static void
10839 do_vfp_dp_conv_32 (void)
10840 {
10841 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10842 vfp_conv (32);
10843 }
10844 \f
10845 /* FPA instructions. Also in a logical order. */
10846
10847 static void
10848 do_fpa_cmp (void)
10849 {
10850 inst.instruction |= inst.operands[0].reg << 16;
10851 inst.instruction |= inst.operands[1].reg;
10852 }
10853
10854 static void
10855 do_fpa_ldmstm (void)
10856 {
10857 inst.instruction |= inst.operands[0].reg << 12;
10858 switch (inst.operands[1].imm)
10859 {
10860 case 1: inst.instruction |= CP_T_X; break;
10861 case 2: inst.instruction |= CP_T_Y; break;
10862 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10863 case 4: break;
10864 default: abort ();
10865 }
10866
10867 if (inst.instruction & (PRE_INDEX | INDEX_UP))
10868 {
10869 /* The instruction specified "ea" or "fd", so we can only accept
10870 [Rn]{!}. The instruction does not really support stacking or
10871 unstacking, so we have to emulate these by setting appropriate
10872 bits and offsets. */
10873 constraint (inst.relocs[0].exp.X_op != O_constant
10874 || inst.relocs[0].exp.X_add_number != 0,
10875 _("this instruction does not support indexing"));
10876
10877 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
10878 inst.relocs[0].exp.X_add_number = 12 * inst.operands[1].imm;
10879
10880 if (!(inst.instruction & INDEX_UP))
10881 inst.relocs[0].exp.X_add_number = -inst.relocs[0].exp.X_add_number;
10882
10883 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10884 {
10885 inst.operands[2].preind = 0;
10886 inst.operands[2].postind = 1;
10887 }
10888 }
10889
10890 encode_arm_cp_address (2, TRUE, TRUE, 0);
10891 }
10892 \f
10893 /* iWMMXt instructions: strictly in alphabetical order. */
10894
10895 static void
10896 do_iwmmxt_tandorc (void)
10897 {
10898 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10899 }
10900
10901 static void
10902 do_iwmmxt_textrc (void)
10903 {
10904 inst.instruction |= inst.operands[0].reg << 12;
10905 inst.instruction |= inst.operands[1].imm;
10906 }
10907
10908 static void
10909 do_iwmmxt_textrm (void)
10910 {
10911 inst.instruction |= inst.operands[0].reg << 12;
10912 inst.instruction |= inst.operands[1].reg << 16;
10913 inst.instruction |= inst.operands[2].imm;
10914 }
10915
10916 static void
10917 do_iwmmxt_tinsr (void)
10918 {
10919 inst.instruction |= inst.operands[0].reg << 16;
10920 inst.instruction |= inst.operands[1].reg << 12;
10921 inst.instruction |= inst.operands[2].imm;
10922 }
10923
10924 static void
10925 do_iwmmxt_tmia (void)
10926 {
10927 inst.instruction |= inst.operands[0].reg << 5;
10928 inst.instruction |= inst.operands[1].reg;
10929 inst.instruction |= inst.operands[2].reg << 12;
10930 }
10931
10932 static void
10933 do_iwmmxt_waligni (void)
10934 {
10935 inst.instruction |= inst.operands[0].reg << 12;
10936 inst.instruction |= inst.operands[1].reg << 16;
10937 inst.instruction |= inst.operands[2].reg;
10938 inst.instruction |= inst.operands[3].imm << 20;
10939 }
10940
10941 static void
10942 do_iwmmxt_wmerge (void)
10943 {
10944 inst.instruction |= inst.operands[0].reg << 12;
10945 inst.instruction |= inst.operands[1].reg << 16;
10946 inst.instruction |= inst.operands[2].reg;
10947 inst.instruction |= inst.operands[3].imm << 21;
10948 }
10949
10950 static void
10951 do_iwmmxt_wmov (void)
10952 {
10953 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10954 inst.instruction |= inst.operands[0].reg << 12;
10955 inst.instruction |= inst.operands[1].reg << 16;
10956 inst.instruction |= inst.operands[1].reg;
10957 }
10958
10959 static void
10960 do_iwmmxt_wldstbh (void)
10961 {
10962 int reloc;
10963 inst.instruction |= inst.operands[0].reg << 12;
10964 if (thumb_mode)
10965 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
10966 else
10967 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
10968 encode_arm_cp_address (1, TRUE, FALSE, reloc);
10969 }
10970
10971 static void
10972 do_iwmmxt_wldstw (void)
10973 {
10974 /* RIWR_RIWC clears .isreg for a control register. */
10975 if (!inst.operands[0].isreg)
10976 {
10977 constraint (inst.cond != COND_ALWAYS, BAD_COND);
10978 inst.instruction |= 0xf0000000;
10979 }
10980
10981 inst.instruction |= inst.operands[0].reg << 12;
10982 encode_arm_cp_address (1, TRUE, TRUE, 0);
10983 }
10984
10985 static void
10986 do_iwmmxt_wldstd (void)
10987 {
10988 inst.instruction |= inst.operands[0].reg << 12;
10989 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
10990 && inst.operands[1].immisreg)
10991 {
10992 inst.instruction &= ~0x1a000ff;
10993 inst.instruction |= (0xfU << 28);
10994 if (inst.operands[1].preind)
10995 inst.instruction |= PRE_INDEX;
10996 if (!inst.operands[1].negative)
10997 inst.instruction |= INDEX_UP;
10998 if (inst.operands[1].writeback)
10999 inst.instruction |= WRITE_BACK;
11000 inst.instruction |= inst.operands[1].reg << 16;
11001 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
11002 inst.instruction |= inst.operands[1].imm;
11003 }
11004 else
11005 encode_arm_cp_address (1, TRUE, FALSE, 0);
11006 }
11007
11008 static void
11009 do_iwmmxt_wshufh (void)
11010 {
11011 inst.instruction |= inst.operands[0].reg << 12;
11012 inst.instruction |= inst.operands[1].reg << 16;
11013 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
11014 inst.instruction |= (inst.operands[2].imm & 0x0f);
11015 }
11016
11017 static void
11018 do_iwmmxt_wzero (void)
11019 {
11020 /* WZERO reg is an alias for WANDN reg, reg, reg. */
11021 inst.instruction |= inst.operands[0].reg;
11022 inst.instruction |= inst.operands[0].reg << 12;
11023 inst.instruction |= inst.operands[0].reg << 16;
11024 }
11025
11026 static void
11027 do_iwmmxt_wrwrwr_or_imm5 (void)
11028 {
11029 if (inst.operands[2].isreg)
11030 do_rd_rn_rm ();
11031 else {
11032 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
11033 _("immediate operand requires iWMMXt2"));
11034 do_rd_rn ();
11035 if (inst.operands[2].imm == 0)
11036 {
11037 switch ((inst.instruction >> 20) & 0xf)
11038 {
11039 case 4:
11040 case 5:
11041 case 6:
11042 case 7:
11043 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
11044 inst.operands[2].imm = 16;
11045 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
11046 break;
11047 case 8:
11048 case 9:
11049 case 10:
11050 case 11:
11051 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
11052 inst.operands[2].imm = 32;
11053 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
11054 break;
11055 case 12:
11056 case 13:
11057 case 14:
11058 case 15:
11059 {
11060 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
11061 unsigned long wrn;
11062 wrn = (inst.instruction >> 16) & 0xf;
11063 inst.instruction &= 0xff0fff0f;
11064 inst.instruction |= wrn;
11065 /* Bail out here; the instruction is now assembled. */
11066 return;
11067 }
11068 }
11069 }
11070 /* Map 32 -> 0, etc. */
11071 inst.operands[2].imm &= 0x1f;
11072 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
11073 }
11074 }
11075 \f
11076 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
11077 operations first, then control, shift, and load/store. */
11078
11079 /* Insns like "foo X,Y,Z". */
11080
11081 static void
11082 do_mav_triple (void)
11083 {
11084 inst.instruction |= inst.operands[0].reg << 16;
11085 inst.instruction |= inst.operands[1].reg;
11086 inst.instruction |= inst.operands[2].reg << 12;
11087 }
11088
11089 /* Insns like "foo W,X,Y,Z".
11090 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
11091
11092 static void
11093 do_mav_quad (void)
11094 {
11095 inst.instruction |= inst.operands[0].reg << 5;
11096 inst.instruction |= inst.operands[1].reg << 12;
11097 inst.instruction |= inst.operands[2].reg << 16;
11098 inst.instruction |= inst.operands[3].reg;
11099 }
11100
11101 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
11102 static void
11103 do_mav_dspsc (void)
11104 {
11105 inst.instruction |= inst.operands[1].reg << 12;
11106 }
11107
11108 /* Maverick shift immediate instructions.
11109 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
11110 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
11111
11112 static void
11113 do_mav_shift (void)
11114 {
11115 int imm = inst.operands[2].imm;
11116
11117 inst.instruction |= inst.operands[0].reg << 12;
11118 inst.instruction |= inst.operands[1].reg << 16;
11119
11120 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
11121 Bits 5-7 of the insn should have bits 4-6 of the immediate.
11122 Bit 4 should be 0. */
11123 imm = (imm & 0xf) | ((imm & 0x70) << 1);
11124
11125 inst.instruction |= imm;
11126 }
11127 \f
11128 /* XScale instructions. Also sorted arithmetic before move. */
11129
11130 /* Xscale multiply-accumulate (argument parse)
11131 MIAcc acc0,Rm,Rs
11132 MIAPHcc acc0,Rm,Rs
11133 MIAxycc acc0,Rm,Rs. */
11134
11135 static void
11136 do_xsc_mia (void)
11137 {
11138 inst.instruction |= inst.operands[1].reg;
11139 inst.instruction |= inst.operands[2].reg << 12;
11140 }
11141
11142 /* Xscale move-accumulator-register (argument parse)
11143
11144 MARcc acc0,RdLo,RdHi. */
11145
11146 static void
11147 do_xsc_mar (void)
11148 {
11149 inst.instruction |= inst.operands[1].reg << 12;
11150 inst.instruction |= inst.operands[2].reg << 16;
11151 }
11152
11153 /* Xscale move-register-accumulator (argument parse)
11154
11155 MRAcc RdLo,RdHi,acc0. */
11156
11157 static void
11158 do_xsc_mra (void)
11159 {
11160 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
11161 inst.instruction |= inst.operands[0].reg << 12;
11162 inst.instruction |= inst.operands[1].reg << 16;
11163 }
11164 \f
11165 /* Encoding functions relevant only to Thumb. */
11166
11167 /* inst.operands[i] is a shifted-register operand; encode
11168 it into inst.instruction in the format used by Thumb32. */
11169
11170 static void
11171 encode_thumb32_shifted_operand (int i)
11172 {
11173 unsigned int value = inst.relocs[0].exp.X_add_number;
11174 unsigned int shift = inst.operands[i].shift_kind;
11175
11176 constraint (inst.operands[i].immisreg,
11177 _("shift by register not allowed in thumb mode"));
11178 inst.instruction |= inst.operands[i].reg;
11179 if (shift == SHIFT_RRX)
11180 inst.instruction |= SHIFT_ROR << 4;
11181 else
11182 {
11183 constraint (inst.relocs[0].exp.X_op != O_constant,
11184 _("expression too complex"));
11185
11186 constraint (value > 32
11187 || (value == 32 && (shift == SHIFT_LSL
11188 || shift == SHIFT_ROR)),
11189 _("shift expression is too large"));
11190
11191 if (value == 0)
11192 shift = SHIFT_LSL;
11193 else if (value == 32)
11194 value = 0;
11195
11196 inst.instruction |= shift << 4;
11197 inst.instruction |= (value & 0x1c) << 10;
11198 inst.instruction |= (value & 0x03) << 6;
11199 }
11200 }
11201
11202
11203 /* inst.operands[i] was set up by parse_address. Encode it into a
11204 Thumb32 format load or store instruction. Reject forms that cannot
11205 be used with such instructions. If is_t is true, reject forms that
11206 cannot be used with a T instruction; if is_d is true, reject forms
11207 that cannot be used with a D instruction. If it is a store insn,
11208 reject PC in Rn. */
11209
11210 static void
11211 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
11212 {
11213 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
11214
11215 constraint (!inst.operands[i].isreg,
11216 _("Instruction does not support =N addresses"));
11217
11218 inst.instruction |= inst.operands[i].reg << 16;
11219 if (inst.operands[i].immisreg)
11220 {
11221 constraint (is_pc, BAD_PC_ADDRESSING);
11222 constraint (is_t || is_d, _("cannot use register index with this instruction"));
11223 constraint (inst.operands[i].negative,
11224 _("Thumb does not support negative register indexing"));
11225 constraint (inst.operands[i].postind,
11226 _("Thumb does not support register post-indexing"));
11227 constraint (inst.operands[i].writeback,
11228 _("Thumb does not support register indexing with writeback"));
11229 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
11230 _("Thumb supports only LSL in shifted register indexing"));
11231
11232 inst.instruction |= inst.operands[i].imm;
11233 if (inst.operands[i].shifted)
11234 {
11235 constraint (inst.relocs[0].exp.X_op != O_constant,
11236 _("expression too complex"));
11237 constraint (inst.relocs[0].exp.X_add_number < 0
11238 || inst.relocs[0].exp.X_add_number > 3,
11239 _("shift out of range"));
11240 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
11241 }
11242 inst.relocs[0].type = BFD_RELOC_UNUSED;
11243 }
11244 else if (inst.operands[i].preind)
11245 {
11246 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
11247 constraint (is_t && inst.operands[i].writeback,
11248 _("cannot use writeback with this instruction"));
11249 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
11250 BAD_PC_ADDRESSING);
11251
11252 if (is_d)
11253 {
11254 inst.instruction |= 0x01000000;
11255 if (inst.operands[i].writeback)
11256 inst.instruction |= 0x00200000;
11257 }
11258 else
11259 {
11260 inst.instruction |= 0x00000c00;
11261 if (inst.operands[i].writeback)
11262 inst.instruction |= 0x00000100;
11263 }
11264 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
11265 }
11266 else if (inst.operands[i].postind)
11267 {
11268 gas_assert (inst.operands[i].writeback);
11269 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
11270 constraint (is_t, _("cannot use post-indexing with this instruction"));
11271
11272 if (is_d)
11273 inst.instruction |= 0x00200000;
11274 else
11275 inst.instruction |= 0x00000900;
11276 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
11277 }
11278 else /* unindexed - only for coprocessor */
11279 inst.error = _("instruction does not accept unindexed addressing");
11280 }
11281
11282 /* Table of Thumb instructions which exist in 16- and/or 32-bit
11283 encodings (the latter only in post-V6T2 cores). The index is the
11284 value used in the insns table below. When there is more than one
11285 possible 16-bit encoding for the instruction, this table always
11286 holds variant (1).
11287 Also contains several pseudo-instructions used during relaxation. */
11288 #define T16_32_TAB \
11289 X(_adc, 4140, eb400000), \
11290 X(_adcs, 4140, eb500000), \
11291 X(_add, 1c00, eb000000), \
11292 X(_adds, 1c00, eb100000), \
11293 X(_addi, 0000, f1000000), \
11294 X(_addis, 0000, f1100000), \
11295 X(_add_pc,000f, f20f0000), \
11296 X(_add_sp,000d, f10d0000), \
11297 X(_adr, 000f, f20f0000), \
11298 X(_and, 4000, ea000000), \
11299 X(_ands, 4000, ea100000), \
11300 X(_asr, 1000, fa40f000), \
11301 X(_asrs, 1000, fa50f000), \
11302 X(_b, e000, f000b000), \
11303 X(_bcond, d000, f0008000), \
11304 X(_bf, 0000, f040e001), \
11305 X(_bfcsel,0000, f000e001), \
11306 X(_bfx, 0000, f060e001), \
11307 X(_bfl, 0000, f000c001), \
11308 X(_bflx, 0000, f070e001), \
11309 X(_bic, 4380, ea200000), \
11310 X(_bics, 4380, ea300000), \
11311 X(_cinc, 0000, ea509000), \
11312 X(_cinv, 0000, ea50a000), \
11313 X(_cmn, 42c0, eb100f00), \
11314 X(_cmp, 2800, ebb00f00), \
11315 X(_cneg, 0000, ea50b000), \
11316 X(_cpsie, b660, f3af8400), \
11317 X(_cpsid, b670, f3af8600), \
11318 X(_cpy, 4600, ea4f0000), \
11319 X(_csel, 0000, ea508000), \
11320 X(_cset, 0000, ea5f900f), \
11321 X(_csetm, 0000, ea5fa00f), \
11322 X(_csinc, 0000, ea509000), \
11323 X(_csinv, 0000, ea50a000), \
11324 X(_csneg, 0000, ea50b000), \
11325 X(_dec_sp,80dd, f1ad0d00), \
11326 X(_dls, 0000, f040e001), \
11327 X(_dlstp, 0000, f000e001), \
11328 X(_eor, 4040, ea800000), \
11329 X(_eors, 4040, ea900000), \
11330 X(_inc_sp,00dd, f10d0d00), \
11331 X(_lctp, 0000, f00fe001), \
11332 X(_ldmia, c800, e8900000), \
11333 X(_ldr, 6800, f8500000), \
11334 X(_ldrb, 7800, f8100000), \
11335 X(_ldrh, 8800, f8300000), \
11336 X(_ldrsb, 5600, f9100000), \
11337 X(_ldrsh, 5e00, f9300000), \
11338 X(_ldr_pc,4800, f85f0000), \
11339 X(_ldr_pc2,4800, f85f0000), \
11340 X(_ldr_sp,9800, f85d0000), \
11341 X(_le, 0000, f00fc001), \
11342 X(_letp, 0000, f01fc001), \
11343 X(_lsl, 0000, fa00f000), \
11344 X(_lsls, 0000, fa10f000), \
11345 X(_lsr, 0800, fa20f000), \
11346 X(_lsrs, 0800, fa30f000), \
11347 X(_mov, 2000, ea4f0000), \
11348 X(_movs, 2000, ea5f0000), \
11349 X(_mul, 4340, fb00f000), \
11350 X(_muls, 4340, ffffffff), /* no 32b muls */ \
11351 X(_mvn, 43c0, ea6f0000), \
11352 X(_mvns, 43c0, ea7f0000), \
11353 X(_neg, 4240, f1c00000), /* rsb #0 */ \
11354 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
11355 X(_orr, 4300, ea400000), \
11356 X(_orrs, 4300, ea500000), \
11357 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
11358 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
11359 X(_rev, ba00, fa90f080), \
11360 X(_rev16, ba40, fa90f090), \
11361 X(_revsh, bac0, fa90f0b0), \
11362 X(_ror, 41c0, fa60f000), \
11363 X(_rors, 41c0, fa70f000), \
11364 X(_sbc, 4180, eb600000), \
11365 X(_sbcs, 4180, eb700000), \
11366 X(_stmia, c000, e8800000), \
11367 X(_str, 6000, f8400000), \
11368 X(_strb, 7000, f8000000), \
11369 X(_strh, 8000, f8200000), \
11370 X(_str_sp,9000, f84d0000), \
11371 X(_sub, 1e00, eba00000), \
11372 X(_subs, 1e00, ebb00000), \
11373 X(_subi, 8000, f1a00000), \
11374 X(_subis, 8000, f1b00000), \
11375 X(_sxtb, b240, fa4ff080), \
11376 X(_sxth, b200, fa0ff080), \
11377 X(_tst, 4200, ea100f00), \
11378 X(_uxtb, b2c0, fa5ff080), \
11379 X(_uxth, b280, fa1ff080), \
11380 X(_nop, bf00, f3af8000), \
11381 X(_yield, bf10, f3af8001), \
11382 X(_wfe, bf20, f3af8002), \
11383 X(_wfi, bf30, f3af8003), \
11384 X(_wls, 0000, f040c001), \
11385 X(_wlstp, 0000, f000c001), \
11386 X(_sev, bf40, f3af8004), \
11387 X(_sevl, bf50, f3af8005), \
11388 X(_udf, de00, f7f0a000)
11389
11390 /* To catch errors in encoding functions, the codes are all offset by
11391 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
11392 as 16-bit instructions. */
11393 #define X(a,b,c) T_MNEM##a
11394 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
11395 #undef X
11396
11397 #define X(a,b,c) 0x##b
11398 static const unsigned short thumb_op16[] = { T16_32_TAB };
11399 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
11400 #undef X
11401
11402 #define X(a,b,c) 0x##c
11403 static const unsigned int thumb_op32[] = { T16_32_TAB };
11404 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
11405 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
11406 #undef X
11407 #undef T16_32_TAB
11408
11409 /* Thumb instruction encoders, in alphabetical order. */
11410
11411 /* ADDW or SUBW. */
11412
11413 static void
11414 do_t_add_sub_w (void)
11415 {
11416 int Rd, Rn;
11417
11418 Rd = inst.operands[0].reg;
11419 Rn = inst.operands[1].reg;
11420
11421 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
11422 is the SP-{plus,minus}-immediate form of the instruction. */
11423 if (Rn == REG_SP)
11424 constraint (Rd == REG_PC, BAD_PC);
11425 else
11426 reject_bad_reg (Rd);
11427
11428 inst.instruction |= (Rn << 16) | (Rd << 8);
11429 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
11430 }
11431
11432 /* Parse an add or subtract instruction. We get here with inst.instruction
11433 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
11434
11435 static void
11436 do_t_add_sub (void)
11437 {
11438 int Rd, Rs, Rn;
11439
11440 Rd = inst.operands[0].reg;
11441 Rs = (inst.operands[1].present
11442 ? inst.operands[1].reg /* Rd, Rs, foo */
11443 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11444
11445 if (Rd == REG_PC)
11446 set_pred_insn_type_last ();
11447
11448 if (unified_syntax)
11449 {
11450 bfd_boolean flags;
11451 bfd_boolean narrow;
11452 int opcode;
11453
11454 flags = (inst.instruction == T_MNEM_adds
11455 || inst.instruction == T_MNEM_subs);
11456 if (flags)
11457 narrow = !in_pred_block ();
11458 else
11459 narrow = in_pred_block ();
11460 if (!inst.operands[2].isreg)
11461 {
11462 int add;
11463
11464 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11465 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
11466
11467 add = (inst.instruction == T_MNEM_add
11468 || inst.instruction == T_MNEM_adds);
11469 opcode = 0;
11470 if (inst.size_req != 4)
11471 {
11472 /* Attempt to use a narrow opcode, with relaxation if
11473 appropriate. */
11474 if (Rd == REG_SP && Rs == REG_SP && !flags)
11475 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
11476 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
11477 opcode = T_MNEM_add_sp;
11478 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
11479 opcode = T_MNEM_add_pc;
11480 else if (Rd <= 7 && Rs <= 7 && narrow)
11481 {
11482 if (flags)
11483 opcode = add ? T_MNEM_addis : T_MNEM_subis;
11484 else
11485 opcode = add ? T_MNEM_addi : T_MNEM_subi;
11486 }
11487 if (opcode)
11488 {
11489 inst.instruction = THUMB_OP16(opcode);
11490 inst.instruction |= (Rd << 4) | Rs;
11491 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11492 || (inst.relocs[0].type
11493 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC))
11494 {
11495 if (inst.size_req == 2)
11496 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11497 else
11498 inst.relax = opcode;
11499 }
11500 }
11501 else
11502 constraint (inst.size_req == 2, BAD_HIREG);
11503 }
11504 if (inst.size_req == 4
11505 || (inst.size_req != 2 && !opcode))
11506 {
11507 constraint ((inst.relocs[0].type
11508 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
11509 && (inst.relocs[0].type
11510 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
11511 THUMB1_RELOC_ONLY);
11512 if (Rd == REG_PC)
11513 {
11514 constraint (add, BAD_PC);
11515 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
11516 _("only SUBS PC, LR, #const allowed"));
11517 constraint (inst.relocs[0].exp.X_op != O_constant,
11518 _("expression too complex"));
11519 constraint (inst.relocs[0].exp.X_add_number < 0
11520 || inst.relocs[0].exp.X_add_number > 0xff,
11521 _("immediate value out of range"));
11522 inst.instruction = T2_SUBS_PC_LR
11523 | inst.relocs[0].exp.X_add_number;
11524 inst.relocs[0].type = BFD_RELOC_UNUSED;
11525 return;
11526 }
11527 else if (Rs == REG_PC)
11528 {
11529 /* Always use addw/subw. */
11530 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
11531 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
11532 }
11533 else
11534 {
11535 inst.instruction = THUMB_OP32 (inst.instruction);
11536 inst.instruction = (inst.instruction & 0xe1ffffff)
11537 | 0x10000000;
11538 if (flags)
11539 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11540 else
11541 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_IMM;
11542 }
11543 inst.instruction |= Rd << 8;
11544 inst.instruction |= Rs << 16;
11545 }
11546 }
11547 else
11548 {
11549 unsigned int value = inst.relocs[0].exp.X_add_number;
11550 unsigned int shift = inst.operands[2].shift_kind;
11551
11552 Rn = inst.operands[2].reg;
11553 /* See if we can do this with a 16-bit instruction. */
11554 if (!inst.operands[2].shifted && inst.size_req != 4)
11555 {
11556 if (Rd > 7 || Rs > 7 || Rn > 7)
11557 narrow = FALSE;
11558
11559 if (narrow)
11560 {
11561 inst.instruction = ((inst.instruction == T_MNEM_adds
11562 || inst.instruction == T_MNEM_add)
11563 ? T_OPCODE_ADD_R3
11564 : T_OPCODE_SUB_R3);
11565 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11566 return;
11567 }
11568
11569 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
11570 {
11571 /* Thumb-1 cores (except v6-M) require at least one high
11572 register in a narrow non flag setting add. */
11573 if (Rd > 7 || Rn > 7
11574 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
11575 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
11576 {
11577 if (Rd == Rn)
11578 {
11579 Rn = Rs;
11580 Rs = Rd;
11581 }
11582 inst.instruction = T_OPCODE_ADD_HI;
11583 inst.instruction |= (Rd & 8) << 4;
11584 inst.instruction |= (Rd & 7);
11585 inst.instruction |= Rn << 3;
11586 return;
11587 }
11588 }
11589 }
11590
11591 constraint (Rd == REG_PC, BAD_PC);
11592 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11593 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
11594 constraint (Rs == REG_PC, BAD_PC);
11595 reject_bad_reg (Rn);
11596
11597 /* If we get here, it can't be done in 16 bits. */
11598 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
11599 _("shift must be constant"));
11600 inst.instruction = THUMB_OP32 (inst.instruction);
11601 inst.instruction |= Rd << 8;
11602 inst.instruction |= Rs << 16;
11603 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
11604 _("shift value over 3 not allowed in thumb mode"));
11605 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
11606 _("only LSL shift allowed in thumb mode"));
11607 encode_thumb32_shifted_operand (2);
11608 }
11609 }
11610 else
11611 {
11612 constraint (inst.instruction == T_MNEM_adds
11613 || inst.instruction == T_MNEM_subs,
11614 BAD_THUMB32);
11615
11616 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
11617 {
11618 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
11619 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
11620 BAD_HIREG);
11621
11622 inst.instruction = (inst.instruction == T_MNEM_add
11623 ? 0x0000 : 0x8000);
11624 inst.instruction |= (Rd << 4) | Rs;
11625 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11626 return;
11627 }
11628
11629 Rn = inst.operands[2].reg;
11630 constraint (inst.operands[2].shifted, _("unshifted register required"));
11631
11632 /* We now have Rd, Rs, and Rn set to registers. */
11633 if (Rd > 7 || Rs > 7 || Rn > 7)
11634 {
11635 /* Can't do this for SUB. */
11636 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
11637 inst.instruction = T_OPCODE_ADD_HI;
11638 inst.instruction |= (Rd & 8) << 4;
11639 inst.instruction |= (Rd & 7);
11640 if (Rs == Rd)
11641 inst.instruction |= Rn << 3;
11642 else if (Rn == Rd)
11643 inst.instruction |= Rs << 3;
11644 else
11645 constraint (1, _("dest must overlap one source register"));
11646 }
11647 else
11648 {
11649 inst.instruction = (inst.instruction == T_MNEM_add
11650 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
11651 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11652 }
11653 }
11654 }
11655
11656 static void
11657 do_t_adr (void)
11658 {
11659 unsigned Rd;
11660
11661 Rd = inst.operands[0].reg;
11662 reject_bad_reg (Rd);
11663
11664 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
11665 {
11666 /* Defer to section relaxation. */
11667 inst.relax = inst.instruction;
11668 inst.instruction = THUMB_OP16 (inst.instruction);
11669 inst.instruction |= Rd << 4;
11670 }
11671 else if (unified_syntax && inst.size_req != 2)
11672 {
11673 /* Generate a 32-bit opcode. */
11674 inst.instruction = THUMB_OP32 (inst.instruction);
11675 inst.instruction |= Rd << 8;
11676 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_PC12;
11677 inst.relocs[0].pc_rel = 1;
11678 }
11679 else
11680 {
11681 /* Generate a 16-bit opcode. */
11682 inst.instruction = THUMB_OP16 (inst.instruction);
11683 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11684 inst.relocs[0].exp.X_add_number -= 4; /* PC relative adjust. */
11685 inst.relocs[0].pc_rel = 1;
11686 inst.instruction |= Rd << 4;
11687 }
11688
11689 if (inst.relocs[0].exp.X_op == O_symbol
11690 && inst.relocs[0].exp.X_add_symbol != NULL
11691 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11692 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11693 inst.relocs[0].exp.X_add_number += 1;
11694 }
11695
11696 /* Arithmetic instructions for which there is just one 16-bit
11697 instruction encoding, and it allows only two low registers.
11698 For maximal compatibility with ARM syntax, we allow three register
11699 operands even when Thumb-32 instructions are not available, as long
11700 as the first two are identical. For instance, both "sbc r0,r1" and
11701 "sbc r0,r0,r1" are allowed. */
11702 static void
11703 do_t_arit3 (void)
11704 {
11705 int Rd, Rs, Rn;
11706
11707 Rd = inst.operands[0].reg;
11708 Rs = (inst.operands[1].present
11709 ? inst.operands[1].reg /* Rd, Rs, foo */
11710 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11711 Rn = inst.operands[2].reg;
11712
11713 reject_bad_reg (Rd);
11714 reject_bad_reg (Rs);
11715 if (inst.operands[2].isreg)
11716 reject_bad_reg (Rn);
11717
11718 if (unified_syntax)
11719 {
11720 if (!inst.operands[2].isreg)
11721 {
11722 /* For an immediate, we always generate a 32-bit opcode;
11723 section relaxation will shrink it later if possible. */
11724 inst.instruction = THUMB_OP32 (inst.instruction);
11725 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11726 inst.instruction |= Rd << 8;
11727 inst.instruction |= Rs << 16;
11728 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11729 }
11730 else
11731 {
11732 bfd_boolean narrow;
11733
11734 /* See if we can do this with a 16-bit instruction. */
11735 if (THUMB_SETS_FLAGS (inst.instruction))
11736 narrow = !in_pred_block ();
11737 else
11738 narrow = in_pred_block ();
11739
11740 if (Rd > 7 || Rn > 7 || Rs > 7)
11741 narrow = FALSE;
11742 if (inst.operands[2].shifted)
11743 narrow = FALSE;
11744 if (inst.size_req == 4)
11745 narrow = FALSE;
11746
11747 if (narrow
11748 && Rd == Rs)
11749 {
11750 inst.instruction = THUMB_OP16 (inst.instruction);
11751 inst.instruction |= Rd;
11752 inst.instruction |= Rn << 3;
11753 return;
11754 }
11755
11756 /* If we get here, it can't be done in 16 bits. */
11757 constraint (inst.operands[2].shifted
11758 && inst.operands[2].immisreg,
11759 _("shift must be constant"));
11760 inst.instruction = THUMB_OP32 (inst.instruction);
11761 inst.instruction |= Rd << 8;
11762 inst.instruction |= Rs << 16;
11763 encode_thumb32_shifted_operand (2);
11764 }
11765 }
11766 else
11767 {
11768 /* On its face this is a lie - the instruction does set the
11769 flags. However, the only supported mnemonic in this mode
11770 says it doesn't. */
11771 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11772
11773 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11774 _("unshifted register required"));
11775 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11776 constraint (Rd != Rs,
11777 _("dest and source1 must be the same register"));
11778
11779 inst.instruction = THUMB_OP16 (inst.instruction);
11780 inst.instruction |= Rd;
11781 inst.instruction |= Rn << 3;
11782 }
11783 }
11784
11785 /* Similarly, but for instructions where the arithmetic operation is
11786 commutative, so we can allow either of them to be different from
11787 the destination operand in a 16-bit instruction. For instance, all
11788 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
11789 accepted. */
11790 static void
11791 do_t_arit3c (void)
11792 {
11793 int Rd, Rs, Rn;
11794
11795 Rd = inst.operands[0].reg;
11796 Rs = (inst.operands[1].present
11797 ? inst.operands[1].reg /* Rd, Rs, foo */
11798 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11799 Rn = inst.operands[2].reg;
11800
11801 reject_bad_reg (Rd);
11802 reject_bad_reg (Rs);
11803 if (inst.operands[2].isreg)
11804 reject_bad_reg (Rn);
11805
11806 if (unified_syntax)
11807 {
11808 if (!inst.operands[2].isreg)
11809 {
11810 /* For an immediate, we always generate a 32-bit opcode;
11811 section relaxation will shrink it later if possible. */
11812 inst.instruction = THUMB_OP32 (inst.instruction);
11813 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11814 inst.instruction |= Rd << 8;
11815 inst.instruction |= Rs << 16;
11816 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11817 }
11818 else
11819 {
11820 bfd_boolean narrow;
11821
11822 /* See if we can do this with a 16-bit instruction. */
11823 if (THUMB_SETS_FLAGS (inst.instruction))
11824 narrow = !in_pred_block ();
11825 else
11826 narrow = in_pred_block ();
11827
11828 if (Rd > 7 || Rn > 7 || Rs > 7)
11829 narrow = FALSE;
11830 if (inst.operands[2].shifted)
11831 narrow = FALSE;
11832 if (inst.size_req == 4)
11833 narrow = FALSE;
11834
11835 if (narrow)
11836 {
11837 if (Rd == Rs)
11838 {
11839 inst.instruction = THUMB_OP16 (inst.instruction);
11840 inst.instruction |= Rd;
11841 inst.instruction |= Rn << 3;
11842 return;
11843 }
11844 if (Rd == Rn)
11845 {
11846 inst.instruction = THUMB_OP16 (inst.instruction);
11847 inst.instruction |= Rd;
11848 inst.instruction |= Rs << 3;
11849 return;
11850 }
11851 }
11852
11853 /* If we get here, it can't be done in 16 bits. */
11854 constraint (inst.operands[2].shifted
11855 && inst.operands[2].immisreg,
11856 _("shift must be constant"));
11857 inst.instruction = THUMB_OP32 (inst.instruction);
11858 inst.instruction |= Rd << 8;
11859 inst.instruction |= Rs << 16;
11860 encode_thumb32_shifted_operand (2);
11861 }
11862 }
11863 else
11864 {
11865 /* On its face this is a lie - the instruction does set the
11866 flags. However, the only supported mnemonic in this mode
11867 says it doesn't. */
11868 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11869
11870 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11871 _("unshifted register required"));
11872 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11873
11874 inst.instruction = THUMB_OP16 (inst.instruction);
11875 inst.instruction |= Rd;
11876
11877 if (Rd == Rs)
11878 inst.instruction |= Rn << 3;
11879 else if (Rd == Rn)
11880 inst.instruction |= Rs << 3;
11881 else
11882 constraint (1, _("dest must overlap one source register"));
11883 }
11884 }
11885
11886 static void
11887 do_t_bfc (void)
11888 {
11889 unsigned Rd;
11890 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
11891 constraint (msb > 32, _("bit-field extends past end of register"));
11892 /* The instruction encoding stores the LSB and MSB,
11893 not the LSB and width. */
11894 Rd = inst.operands[0].reg;
11895 reject_bad_reg (Rd);
11896 inst.instruction |= Rd << 8;
11897 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
11898 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
11899 inst.instruction |= msb - 1;
11900 }
11901
11902 static void
11903 do_t_bfi (void)
11904 {
11905 int Rd, Rn;
11906 unsigned int msb;
11907
11908 Rd = inst.operands[0].reg;
11909 reject_bad_reg (Rd);
11910
11911 /* #0 in second position is alternative syntax for bfc, which is
11912 the same instruction but with REG_PC in the Rm field. */
11913 if (!inst.operands[1].isreg)
11914 Rn = REG_PC;
11915 else
11916 {
11917 Rn = inst.operands[1].reg;
11918 reject_bad_reg (Rn);
11919 }
11920
11921 msb = inst.operands[2].imm + inst.operands[3].imm;
11922 constraint (msb > 32, _("bit-field extends past end of register"));
11923 /* The instruction encoding stores the LSB and MSB,
11924 not the LSB and width. */
11925 inst.instruction |= Rd << 8;
11926 inst.instruction |= Rn << 16;
11927 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11928 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11929 inst.instruction |= msb - 1;
11930 }
11931
11932 static void
11933 do_t_bfx (void)
11934 {
11935 unsigned Rd, Rn;
11936
11937 Rd = inst.operands[0].reg;
11938 Rn = inst.operands[1].reg;
11939
11940 reject_bad_reg (Rd);
11941 reject_bad_reg (Rn);
11942
11943 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
11944 _("bit-field extends past end of register"));
11945 inst.instruction |= Rd << 8;
11946 inst.instruction |= Rn << 16;
11947 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11948 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11949 inst.instruction |= inst.operands[3].imm - 1;
11950 }
11951
11952 /* ARM V5 Thumb BLX (argument parse)
11953 BLX <target_addr> which is BLX(1)
11954 BLX <Rm> which is BLX(2)
11955 Unfortunately, there are two different opcodes for this mnemonic.
11956 So, the insns[].value is not used, and the code here zaps values
11957 into inst.instruction.
11958
11959 ??? How to take advantage of the additional two bits of displacement
11960 available in Thumb32 mode? Need new relocation? */
11961
11962 static void
11963 do_t_blx (void)
11964 {
11965 set_pred_insn_type_last ();
11966
11967 if (inst.operands[0].isreg)
11968 {
11969 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
11970 /* We have a register, so this is BLX(2). */
11971 inst.instruction |= inst.operands[0].reg << 3;
11972 }
11973 else
11974 {
11975 /* No register. This must be BLX(1). */
11976 inst.instruction = 0xf000e800;
11977 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
11978 }
11979 }
11980
11981 static void
11982 do_t_branch (void)
11983 {
11984 int opcode;
11985 int cond;
11986 bfd_reloc_code_real_type reloc;
11987
11988 cond = inst.cond;
11989 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN);
11990
11991 if (in_pred_block ())
11992 {
11993 /* Conditional branches inside IT blocks are encoded as unconditional
11994 branches. */
11995 cond = COND_ALWAYS;
11996 }
11997 else
11998 cond = inst.cond;
11999
12000 if (cond != COND_ALWAYS)
12001 opcode = T_MNEM_bcond;
12002 else
12003 opcode = inst.instruction;
12004
12005 if (unified_syntax
12006 && (inst.size_req == 4
12007 || (inst.size_req != 2
12008 && (inst.operands[0].hasreloc
12009 || inst.relocs[0].exp.X_op == O_constant))))
12010 {
12011 inst.instruction = THUMB_OP32(opcode);
12012 if (cond == COND_ALWAYS)
12013 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
12014 else
12015 {
12016 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
12017 _("selected architecture does not support "
12018 "wide conditional branch instruction"));
12019
12020 gas_assert (cond != 0xF);
12021 inst.instruction |= cond << 22;
12022 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
12023 }
12024 }
12025 else
12026 {
12027 inst.instruction = THUMB_OP16(opcode);
12028 if (cond == COND_ALWAYS)
12029 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
12030 else
12031 {
12032 inst.instruction |= cond << 8;
12033 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
12034 }
12035 /* Allow section relaxation. */
12036 if (unified_syntax && inst.size_req != 2)
12037 inst.relax = opcode;
12038 }
12039 inst.relocs[0].type = reloc;
12040 inst.relocs[0].pc_rel = 1;
12041 }
12042
12043 /* Actually do the work for Thumb state bkpt and hlt. The only difference
12044 between the two is the maximum immediate allowed - which is passed in
12045 RANGE. */
12046 static void
12047 do_t_bkpt_hlt1 (int range)
12048 {
12049 constraint (inst.cond != COND_ALWAYS,
12050 _("instruction is always unconditional"));
12051 if (inst.operands[0].present)
12052 {
12053 constraint (inst.operands[0].imm > range,
12054 _("immediate value out of range"));
12055 inst.instruction |= inst.operands[0].imm;
12056 }
12057
12058 set_pred_insn_type (NEUTRAL_IT_INSN);
12059 }
12060
12061 static void
12062 do_t_hlt (void)
12063 {
12064 do_t_bkpt_hlt1 (63);
12065 }
12066
12067 static void
12068 do_t_bkpt (void)
12069 {
12070 do_t_bkpt_hlt1 (255);
12071 }
12072
12073 static void
12074 do_t_branch23 (void)
12075 {
12076 set_pred_insn_type_last ();
12077 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
12078
12079 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
12080 this file. We used to simply ignore the PLT reloc type here --
12081 the branch encoding is now needed to deal with TLSCALL relocs.
12082 So if we see a PLT reloc now, put it back to how it used to be to
12083 keep the preexisting behaviour. */
12084 if (inst.relocs[0].type == BFD_RELOC_ARM_PLT32)
12085 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH23;
12086
12087 #if defined(OBJ_COFF)
12088 /* If the destination of the branch is a defined symbol which does not have
12089 the THUMB_FUNC attribute, then we must be calling a function which has
12090 the (interfacearm) attribute. We look for the Thumb entry point to that
12091 function and change the branch to refer to that function instead. */
12092 if ( inst.relocs[0].exp.X_op == O_symbol
12093 && inst.relocs[0].exp.X_add_symbol != NULL
12094 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
12095 && ! THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
12096 inst.relocs[0].exp.X_add_symbol
12097 = find_real_start (inst.relocs[0].exp.X_add_symbol);
12098 #endif
12099 }
12100
12101 static void
12102 do_t_bx (void)
12103 {
12104 set_pred_insn_type_last ();
12105 inst.instruction |= inst.operands[0].reg << 3;
12106 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
12107 should cause the alignment to be checked once it is known. This is
12108 because BX PC only works if the instruction is word aligned. */
12109 }
12110
12111 static void
12112 do_t_bxj (void)
12113 {
12114 int Rm;
12115
12116 set_pred_insn_type_last ();
12117 Rm = inst.operands[0].reg;
12118 reject_bad_reg (Rm);
12119 inst.instruction |= Rm << 16;
12120 }
12121
12122 static void
12123 do_t_clz (void)
12124 {
12125 unsigned Rd;
12126 unsigned Rm;
12127
12128 Rd = inst.operands[0].reg;
12129 Rm = inst.operands[1].reg;
12130
12131 reject_bad_reg (Rd);
12132 reject_bad_reg (Rm);
12133
12134 inst.instruction |= Rd << 8;
12135 inst.instruction |= Rm << 16;
12136 inst.instruction |= Rm;
12137 }
12138
12139 /* For the Armv8.1-M conditional instructions. */
12140 static void
12141 do_t_cond (void)
12142 {
12143 unsigned Rd, Rn, Rm;
12144 signed int cond;
12145
12146 constraint (inst.cond != COND_ALWAYS, BAD_COND);
12147
12148 Rd = inst.operands[0].reg;
12149 switch (inst.instruction)
12150 {
12151 case T_MNEM_csinc:
12152 case T_MNEM_csinv:
12153 case T_MNEM_csneg:
12154 case T_MNEM_csel:
12155 Rn = inst.operands[1].reg;
12156 Rm = inst.operands[2].reg;
12157 cond = inst.operands[3].imm;
12158 constraint (Rn == REG_SP, BAD_SP);
12159 constraint (Rm == REG_SP, BAD_SP);
12160 break;
12161
12162 case T_MNEM_cinc:
12163 case T_MNEM_cinv:
12164 case T_MNEM_cneg:
12165 Rn = inst.operands[1].reg;
12166 cond = inst.operands[2].imm;
12167 /* Invert the last bit to invert the cond. */
12168 cond = TOGGLE_BIT (cond, 0);
12169 constraint (Rn == REG_SP, BAD_SP);
12170 Rm = Rn;
12171 break;
12172
12173 case T_MNEM_csetm:
12174 case T_MNEM_cset:
12175 cond = inst.operands[1].imm;
12176 /* Invert the last bit to invert the cond. */
12177 cond = TOGGLE_BIT (cond, 0);
12178 Rn = REG_PC;
12179 Rm = REG_PC;
12180 break;
12181
12182 default: abort ();
12183 }
12184
12185 set_pred_insn_type (OUTSIDE_PRED_INSN);
12186 inst.instruction = THUMB_OP32 (inst.instruction);
12187 inst.instruction |= Rd << 8;
12188 inst.instruction |= Rn << 16;
12189 inst.instruction |= Rm;
12190 inst.instruction |= cond << 4;
12191 }
12192
12193 static void
12194 do_t_csdb (void)
12195 {
12196 set_pred_insn_type (OUTSIDE_PRED_INSN);
12197 }
12198
12199 static void
12200 do_t_cps (void)
12201 {
12202 set_pred_insn_type (OUTSIDE_PRED_INSN);
12203 inst.instruction |= inst.operands[0].imm;
12204 }
12205
12206 static void
12207 do_t_cpsi (void)
12208 {
12209 set_pred_insn_type (OUTSIDE_PRED_INSN);
12210 if (unified_syntax
12211 && (inst.operands[1].present || inst.size_req == 4)
12212 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
12213 {
12214 unsigned int imod = (inst.instruction & 0x0030) >> 4;
12215 inst.instruction = 0xf3af8000;
12216 inst.instruction |= imod << 9;
12217 inst.instruction |= inst.operands[0].imm << 5;
12218 if (inst.operands[1].present)
12219 inst.instruction |= 0x100 | inst.operands[1].imm;
12220 }
12221 else
12222 {
12223 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
12224 && (inst.operands[0].imm & 4),
12225 _("selected processor does not support 'A' form "
12226 "of this instruction"));
12227 constraint (inst.operands[1].present || inst.size_req == 4,
12228 _("Thumb does not support the 2-argument "
12229 "form of this instruction"));
12230 inst.instruction |= inst.operands[0].imm;
12231 }
12232 }
12233
12234 /* THUMB CPY instruction (argument parse). */
12235
12236 static void
12237 do_t_cpy (void)
12238 {
12239 if (inst.size_req == 4)
12240 {
12241 inst.instruction = THUMB_OP32 (T_MNEM_mov);
12242 inst.instruction |= inst.operands[0].reg << 8;
12243 inst.instruction |= inst.operands[1].reg;
12244 }
12245 else
12246 {
12247 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
12248 inst.instruction |= (inst.operands[0].reg & 0x7);
12249 inst.instruction |= inst.operands[1].reg << 3;
12250 }
12251 }
12252
12253 static void
12254 do_t_cbz (void)
12255 {
12256 set_pred_insn_type (OUTSIDE_PRED_INSN);
12257 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12258 inst.instruction |= inst.operands[0].reg;
12259 inst.relocs[0].pc_rel = 1;
12260 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH7;
12261 }
12262
12263 static void
12264 do_t_dbg (void)
12265 {
12266 inst.instruction |= inst.operands[0].imm;
12267 }
12268
12269 static void
12270 do_t_div (void)
12271 {
12272 unsigned Rd, Rn, Rm;
12273
12274 Rd = inst.operands[0].reg;
12275 Rn = (inst.operands[1].present
12276 ? inst.operands[1].reg : Rd);
12277 Rm = inst.operands[2].reg;
12278
12279 reject_bad_reg (Rd);
12280 reject_bad_reg (Rn);
12281 reject_bad_reg (Rm);
12282
12283 inst.instruction |= Rd << 8;
12284 inst.instruction |= Rn << 16;
12285 inst.instruction |= Rm;
12286 }
12287
12288 static void
12289 do_t_hint (void)
12290 {
12291 if (unified_syntax && inst.size_req == 4)
12292 inst.instruction = THUMB_OP32 (inst.instruction);
12293 else
12294 inst.instruction = THUMB_OP16 (inst.instruction);
12295 }
12296
12297 static void
12298 do_t_it (void)
12299 {
12300 unsigned int cond = inst.operands[0].imm;
12301
12302 set_pred_insn_type (IT_INSN);
12303 now_pred.mask = (inst.instruction & 0xf) | 0x10;
12304 now_pred.cc = cond;
12305 now_pred.warn_deprecated = FALSE;
12306 now_pred.type = SCALAR_PRED;
12307
12308 /* If the condition is a negative condition, invert the mask. */
12309 if ((cond & 0x1) == 0x0)
12310 {
12311 unsigned int mask = inst.instruction & 0x000f;
12312
12313 if ((mask & 0x7) == 0)
12314 {
12315 /* No conversion needed. */
12316 now_pred.block_length = 1;
12317 }
12318 else if ((mask & 0x3) == 0)
12319 {
12320 mask ^= 0x8;
12321 now_pred.block_length = 2;
12322 }
12323 else if ((mask & 0x1) == 0)
12324 {
12325 mask ^= 0xC;
12326 now_pred.block_length = 3;
12327 }
12328 else
12329 {
12330 mask ^= 0xE;
12331 now_pred.block_length = 4;
12332 }
12333
12334 inst.instruction &= 0xfff0;
12335 inst.instruction |= mask;
12336 }
12337
12338 inst.instruction |= cond << 4;
12339 }
12340
12341 /* Helper function used for both push/pop and ldm/stm. */
12342 static void
12343 encode_thumb2_multi (bfd_boolean do_io, int base, unsigned mask,
12344 bfd_boolean writeback)
12345 {
12346 bfd_boolean load, store;
12347
12348 gas_assert (base != -1 || !do_io);
12349 load = do_io && ((inst.instruction & (1 << 20)) != 0);
12350 store = do_io && !load;
12351
12352 if (mask & (1 << 13))
12353 inst.error = _("SP not allowed in register list");
12354
12355 if (do_io && (mask & (1 << base)) != 0
12356 && writeback)
12357 inst.error = _("having the base register in the register list when "
12358 "using write back is UNPREDICTABLE");
12359
12360 if (load)
12361 {
12362 if (mask & (1 << 15))
12363 {
12364 if (mask & (1 << 14))
12365 inst.error = _("LR and PC should not both be in register list");
12366 else
12367 set_pred_insn_type_last ();
12368 }
12369 }
12370 else if (store)
12371 {
12372 if (mask & (1 << 15))
12373 inst.error = _("PC not allowed in register list");
12374 }
12375
12376 if (do_io && ((mask & (mask - 1)) == 0))
12377 {
12378 /* Single register transfers implemented as str/ldr. */
12379 if (writeback)
12380 {
12381 if (inst.instruction & (1 << 23))
12382 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
12383 else
12384 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
12385 }
12386 else
12387 {
12388 if (inst.instruction & (1 << 23))
12389 inst.instruction = 0x00800000; /* ia -> [base] */
12390 else
12391 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
12392 }
12393
12394 inst.instruction |= 0xf8400000;
12395 if (load)
12396 inst.instruction |= 0x00100000;
12397
12398 mask = ffs (mask) - 1;
12399 mask <<= 12;
12400 }
12401 else if (writeback)
12402 inst.instruction |= WRITE_BACK;
12403
12404 inst.instruction |= mask;
12405 if (do_io)
12406 inst.instruction |= base << 16;
12407 }
12408
12409 static void
12410 do_t_ldmstm (void)
12411 {
12412 /* This really doesn't seem worth it. */
12413 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
12414 _("expression too complex"));
12415 constraint (inst.operands[1].writeback,
12416 _("Thumb load/store multiple does not support {reglist}^"));
12417
12418 if (unified_syntax)
12419 {
12420 bfd_boolean narrow;
12421 unsigned mask;
12422
12423 narrow = FALSE;
12424 /* See if we can use a 16-bit instruction. */
12425 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
12426 && inst.size_req != 4
12427 && !(inst.operands[1].imm & ~0xff))
12428 {
12429 mask = 1 << inst.operands[0].reg;
12430
12431 if (inst.operands[0].reg <= 7)
12432 {
12433 if (inst.instruction == T_MNEM_stmia
12434 ? inst.operands[0].writeback
12435 : (inst.operands[0].writeback
12436 == !(inst.operands[1].imm & mask)))
12437 {
12438 if (inst.instruction == T_MNEM_stmia
12439 && (inst.operands[1].imm & mask)
12440 && (inst.operands[1].imm & (mask - 1)))
12441 as_warn (_("value stored for r%d is UNKNOWN"),
12442 inst.operands[0].reg);
12443
12444 inst.instruction = THUMB_OP16 (inst.instruction);
12445 inst.instruction |= inst.operands[0].reg << 8;
12446 inst.instruction |= inst.operands[1].imm;
12447 narrow = TRUE;
12448 }
12449 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12450 {
12451 /* This means 1 register in reg list one of 3 situations:
12452 1. Instruction is stmia, but without writeback.
12453 2. lmdia without writeback, but with Rn not in
12454 reglist.
12455 3. ldmia with writeback, but with Rn in reglist.
12456 Case 3 is UNPREDICTABLE behaviour, so we handle
12457 case 1 and 2 which can be converted into a 16-bit
12458 str or ldr. The SP cases are handled below. */
12459 unsigned long opcode;
12460 /* First, record an error for Case 3. */
12461 if (inst.operands[1].imm & mask
12462 && inst.operands[0].writeback)
12463 inst.error =
12464 _("having the base register in the register list when "
12465 "using write back is UNPREDICTABLE");
12466
12467 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
12468 : T_MNEM_ldr);
12469 inst.instruction = THUMB_OP16 (opcode);
12470 inst.instruction |= inst.operands[0].reg << 3;
12471 inst.instruction |= (ffs (inst.operands[1].imm)-1);
12472 narrow = TRUE;
12473 }
12474 }
12475 else if (inst.operands[0] .reg == REG_SP)
12476 {
12477 if (inst.operands[0].writeback)
12478 {
12479 inst.instruction =
12480 THUMB_OP16 (inst.instruction == T_MNEM_stmia
12481 ? T_MNEM_push : T_MNEM_pop);
12482 inst.instruction |= inst.operands[1].imm;
12483 narrow = TRUE;
12484 }
12485 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12486 {
12487 inst.instruction =
12488 THUMB_OP16 (inst.instruction == T_MNEM_stmia
12489 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
12490 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
12491 narrow = TRUE;
12492 }
12493 }
12494 }
12495
12496 if (!narrow)
12497 {
12498 if (inst.instruction < 0xffff)
12499 inst.instruction = THUMB_OP32 (inst.instruction);
12500
12501 encode_thumb2_multi (TRUE /* do_io */, inst.operands[0].reg,
12502 inst.operands[1].imm,
12503 inst.operands[0].writeback);
12504 }
12505 }
12506 else
12507 {
12508 constraint (inst.operands[0].reg > 7
12509 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
12510 constraint (inst.instruction != T_MNEM_ldmia
12511 && inst.instruction != T_MNEM_stmia,
12512 _("Thumb-2 instruction only valid in unified syntax"));
12513 if (inst.instruction == T_MNEM_stmia)
12514 {
12515 if (!inst.operands[0].writeback)
12516 as_warn (_("this instruction will write back the base register"));
12517 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
12518 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
12519 as_warn (_("value stored for r%d is UNKNOWN"),
12520 inst.operands[0].reg);
12521 }
12522 else
12523 {
12524 if (!inst.operands[0].writeback
12525 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
12526 as_warn (_("this instruction will write back the base register"));
12527 else if (inst.operands[0].writeback
12528 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
12529 as_warn (_("this instruction will not write back the base register"));
12530 }
12531
12532 inst.instruction = THUMB_OP16 (inst.instruction);
12533 inst.instruction |= inst.operands[0].reg << 8;
12534 inst.instruction |= inst.operands[1].imm;
12535 }
12536 }
12537
12538 static void
12539 do_t_ldrex (void)
12540 {
12541 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
12542 || inst.operands[1].postind || inst.operands[1].writeback
12543 || inst.operands[1].immisreg || inst.operands[1].shifted
12544 || inst.operands[1].negative,
12545 BAD_ADDR_MODE);
12546
12547 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
12548
12549 inst.instruction |= inst.operands[0].reg << 12;
12550 inst.instruction |= inst.operands[1].reg << 16;
12551 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
12552 }
12553
12554 static void
12555 do_t_ldrexd (void)
12556 {
12557 if (!inst.operands[1].present)
12558 {
12559 constraint (inst.operands[0].reg == REG_LR,
12560 _("r14 not allowed as first register "
12561 "when second register is omitted"));
12562 inst.operands[1].reg = inst.operands[0].reg + 1;
12563 }
12564 constraint (inst.operands[0].reg == inst.operands[1].reg,
12565 BAD_OVERLAP);
12566
12567 inst.instruction |= inst.operands[0].reg << 12;
12568 inst.instruction |= inst.operands[1].reg << 8;
12569 inst.instruction |= inst.operands[2].reg << 16;
12570 }
12571
12572 static void
12573 do_t_ldst (void)
12574 {
12575 unsigned long opcode;
12576 int Rn;
12577
12578 if (inst.operands[0].isreg
12579 && !inst.operands[0].preind
12580 && inst.operands[0].reg == REG_PC)
12581 set_pred_insn_type_last ();
12582
12583 opcode = inst.instruction;
12584 if (unified_syntax)
12585 {
12586 if (!inst.operands[1].isreg)
12587 {
12588 if (opcode <= 0xffff)
12589 inst.instruction = THUMB_OP32 (opcode);
12590 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
12591 return;
12592 }
12593 if (inst.operands[1].isreg
12594 && !inst.operands[1].writeback
12595 && !inst.operands[1].shifted && !inst.operands[1].postind
12596 && !inst.operands[1].negative && inst.operands[0].reg <= 7
12597 && opcode <= 0xffff
12598 && inst.size_req != 4)
12599 {
12600 /* Insn may have a 16-bit form. */
12601 Rn = inst.operands[1].reg;
12602 if (inst.operands[1].immisreg)
12603 {
12604 inst.instruction = THUMB_OP16 (opcode);
12605 /* [Rn, Rik] */
12606 if (Rn <= 7 && inst.operands[1].imm <= 7)
12607 goto op16;
12608 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
12609 reject_bad_reg (inst.operands[1].imm);
12610 }
12611 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
12612 && opcode != T_MNEM_ldrsb)
12613 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
12614 || (Rn == REG_SP && opcode == T_MNEM_str))
12615 {
12616 /* [Rn, #const] */
12617 if (Rn > 7)
12618 {
12619 if (Rn == REG_PC)
12620 {
12621 if (inst.relocs[0].pc_rel)
12622 opcode = T_MNEM_ldr_pc2;
12623 else
12624 opcode = T_MNEM_ldr_pc;
12625 }
12626 else
12627 {
12628 if (opcode == T_MNEM_ldr)
12629 opcode = T_MNEM_ldr_sp;
12630 else
12631 opcode = T_MNEM_str_sp;
12632 }
12633 inst.instruction = inst.operands[0].reg << 8;
12634 }
12635 else
12636 {
12637 inst.instruction = inst.operands[0].reg;
12638 inst.instruction |= inst.operands[1].reg << 3;
12639 }
12640 inst.instruction |= THUMB_OP16 (opcode);
12641 if (inst.size_req == 2)
12642 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12643 else
12644 inst.relax = opcode;
12645 return;
12646 }
12647 }
12648 /* Definitely a 32-bit variant. */
12649
12650 /* Warning for Erratum 752419. */
12651 if (opcode == T_MNEM_ldr
12652 && inst.operands[0].reg == REG_SP
12653 && inst.operands[1].writeback == 1
12654 && !inst.operands[1].immisreg)
12655 {
12656 if (no_cpu_selected ()
12657 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
12658 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
12659 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
12660 as_warn (_("This instruction may be unpredictable "
12661 "if executed on M-profile cores "
12662 "with interrupts enabled."));
12663 }
12664
12665 /* Do some validations regarding addressing modes. */
12666 if (inst.operands[1].immisreg)
12667 reject_bad_reg (inst.operands[1].imm);
12668
12669 constraint (inst.operands[1].writeback == 1
12670 && inst.operands[0].reg == inst.operands[1].reg,
12671 BAD_OVERLAP);
12672
12673 inst.instruction = THUMB_OP32 (opcode);
12674 inst.instruction |= inst.operands[0].reg << 12;
12675 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
12676 check_ldr_r15_aligned ();
12677 return;
12678 }
12679
12680 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12681
12682 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
12683 {
12684 /* Only [Rn,Rm] is acceptable. */
12685 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
12686 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
12687 || inst.operands[1].postind || inst.operands[1].shifted
12688 || inst.operands[1].negative,
12689 _("Thumb does not support this addressing mode"));
12690 inst.instruction = THUMB_OP16 (inst.instruction);
12691 goto op16;
12692 }
12693
12694 inst.instruction = THUMB_OP16 (inst.instruction);
12695 if (!inst.operands[1].isreg)
12696 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
12697 return;
12698
12699 constraint (!inst.operands[1].preind
12700 || inst.operands[1].shifted
12701 || inst.operands[1].writeback,
12702 _("Thumb does not support this addressing mode"));
12703 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
12704 {
12705 constraint (inst.instruction & 0x0600,
12706 _("byte or halfword not valid for base register"));
12707 constraint (inst.operands[1].reg == REG_PC
12708 && !(inst.instruction & THUMB_LOAD_BIT),
12709 _("r15 based store not allowed"));
12710 constraint (inst.operands[1].immisreg,
12711 _("invalid base register for register offset"));
12712
12713 if (inst.operands[1].reg == REG_PC)
12714 inst.instruction = T_OPCODE_LDR_PC;
12715 else if (inst.instruction & THUMB_LOAD_BIT)
12716 inst.instruction = T_OPCODE_LDR_SP;
12717 else
12718 inst.instruction = T_OPCODE_STR_SP;
12719
12720 inst.instruction |= inst.operands[0].reg << 8;
12721 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12722 return;
12723 }
12724
12725 constraint (inst.operands[1].reg > 7, BAD_HIREG);
12726 if (!inst.operands[1].immisreg)
12727 {
12728 /* Immediate offset. */
12729 inst.instruction |= inst.operands[0].reg;
12730 inst.instruction |= inst.operands[1].reg << 3;
12731 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12732 return;
12733 }
12734
12735 /* Register offset. */
12736 constraint (inst.operands[1].imm > 7, BAD_HIREG);
12737 constraint (inst.operands[1].negative,
12738 _("Thumb does not support this addressing mode"));
12739
12740 op16:
12741 switch (inst.instruction)
12742 {
12743 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
12744 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
12745 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
12746 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
12747 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
12748 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
12749 case 0x5600 /* ldrsb */:
12750 case 0x5e00 /* ldrsh */: break;
12751 default: abort ();
12752 }
12753
12754 inst.instruction |= inst.operands[0].reg;
12755 inst.instruction |= inst.operands[1].reg << 3;
12756 inst.instruction |= inst.operands[1].imm << 6;
12757 }
12758
12759 static void
12760 do_t_ldstd (void)
12761 {
12762 if (!inst.operands[1].present)
12763 {
12764 inst.operands[1].reg = inst.operands[0].reg + 1;
12765 constraint (inst.operands[0].reg == REG_LR,
12766 _("r14 not allowed here"));
12767 constraint (inst.operands[0].reg == REG_R12,
12768 _("r12 not allowed here"));
12769 }
12770
12771 if (inst.operands[2].writeback
12772 && (inst.operands[0].reg == inst.operands[2].reg
12773 || inst.operands[1].reg == inst.operands[2].reg))
12774 as_warn (_("base register written back, and overlaps "
12775 "one of transfer registers"));
12776
12777 inst.instruction |= inst.operands[0].reg << 12;
12778 inst.instruction |= inst.operands[1].reg << 8;
12779 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
12780 }
12781
12782 static void
12783 do_t_ldstt (void)
12784 {
12785 inst.instruction |= inst.operands[0].reg << 12;
12786 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
12787 }
12788
12789 static void
12790 do_t_mla (void)
12791 {
12792 unsigned Rd, Rn, Rm, Ra;
12793
12794 Rd = inst.operands[0].reg;
12795 Rn = inst.operands[1].reg;
12796 Rm = inst.operands[2].reg;
12797 Ra = inst.operands[3].reg;
12798
12799 reject_bad_reg (Rd);
12800 reject_bad_reg (Rn);
12801 reject_bad_reg (Rm);
12802 reject_bad_reg (Ra);
12803
12804 inst.instruction |= Rd << 8;
12805 inst.instruction |= Rn << 16;
12806 inst.instruction |= Rm;
12807 inst.instruction |= Ra << 12;
12808 }
12809
12810 static void
12811 do_t_mlal (void)
12812 {
12813 unsigned RdLo, RdHi, Rn, Rm;
12814
12815 RdLo = inst.operands[0].reg;
12816 RdHi = inst.operands[1].reg;
12817 Rn = inst.operands[2].reg;
12818 Rm = inst.operands[3].reg;
12819
12820 reject_bad_reg (RdLo);
12821 reject_bad_reg (RdHi);
12822 reject_bad_reg (Rn);
12823 reject_bad_reg (Rm);
12824
12825 inst.instruction |= RdLo << 12;
12826 inst.instruction |= RdHi << 8;
12827 inst.instruction |= Rn << 16;
12828 inst.instruction |= Rm;
12829 }
12830
12831 static void
12832 do_t_mov_cmp (void)
12833 {
12834 unsigned Rn, Rm;
12835
12836 Rn = inst.operands[0].reg;
12837 Rm = inst.operands[1].reg;
12838
12839 if (Rn == REG_PC)
12840 set_pred_insn_type_last ();
12841
12842 if (unified_syntax)
12843 {
12844 int r0off = (inst.instruction == T_MNEM_mov
12845 || inst.instruction == T_MNEM_movs) ? 8 : 16;
12846 unsigned long opcode;
12847 bfd_boolean narrow;
12848 bfd_boolean low_regs;
12849
12850 low_regs = (Rn <= 7 && Rm <= 7);
12851 opcode = inst.instruction;
12852 if (in_pred_block ())
12853 narrow = opcode != T_MNEM_movs;
12854 else
12855 narrow = opcode != T_MNEM_movs || low_regs;
12856 if (inst.size_req == 4
12857 || inst.operands[1].shifted)
12858 narrow = FALSE;
12859
12860 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
12861 if (opcode == T_MNEM_movs && inst.operands[1].isreg
12862 && !inst.operands[1].shifted
12863 && Rn == REG_PC
12864 && Rm == REG_LR)
12865 {
12866 inst.instruction = T2_SUBS_PC_LR;
12867 return;
12868 }
12869
12870 if (opcode == T_MNEM_cmp)
12871 {
12872 constraint (Rn == REG_PC, BAD_PC);
12873 if (narrow)
12874 {
12875 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
12876 but valid. */
12877 warn_deprecated_sp (Rm);
12878 /* R15 was documented as a valid choice for Rm in ARMv6,
12879 but as UNPREDICTABLE in ARMv7. ARM's proprietary
12880 tools reject R15, so we do too. */
12881 constraint (Rm == REG_PC, BAD_PC);
12882 }
12883 else
12884 reject_bad_reg (Rm);
12885 }
12886 else if (opcode == T_MNEM_mov
12887 || opcode == T_MNEM_movs)
12888 {
12889 if (inst.operands[1].isreg)
12890 {
12891 if (opcode == T_MNEM_movs)
12892 {
12893 reject_bad_reg (Rn);
12894 reject_bad_reg (Rm);
12895 }
12896 else if (narrow)
12897 {
12898 /* This is mov.n. */
12899 if ((Rn == REG_SP || Rn == REG_PC)
12900 && (Rm == REG_SP || Rm == REG_PC))
12901 {
12902 as_tsktsk (_("Use of r%u as a source register is "
12903 "deprecated when r%u is the destination "
12904 "register."), Rm, Rn);
12905 }
12906 }
12907 else
12908 {
12909 /* This is mov.w. */
12910 constraint (Rn == REG_PC, BAD_PC);
12911 constraint (Rm == REG_PC, BAD_PC);
12912 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12913 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
12914 }
12915 }
12916 else
12917 reject_bad_reg (Rn);
12918 }
12919
12920 if (!inst.operands[1].isreg)
12921 {
12922 /* Immediate operand. */
12923 if (!in_pred_block () && opcode == T_MNEM_mov)
12924 narrow = 0;
12925 if (low_regs && narrow)
12926 {
12927 inst.instruction = THUMB_OP16 (opcode);
12928 inst.instruction |= Rn << 8;
12929 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12930 || inst.relocs[0].type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
12931 {
12932 if (inst.size_req == 2)
12933 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
12934 else
12935 inst.relax = opcode;
12936 }
12937 }
12938 else
12939 {
12940 constraint ((inst.relocs[0].type
12941 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
12942 && (inst.relocs[0].type
12943 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
12944 THUMB1_RELOC_ONLY);
12945
12946 inst.instruction = THUMB_OP32 (inst.instruction);
12947 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12948 inst.instruction |= Rn << r0off;
12949 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
12950 }
12951 }
12952 else if (inst.operands[1].shifted && inst.operands[1].immisreg
12953 && (inst.instruction == T_MNEM_mov
12954 || inst.instruction == T_MNEM_movs))
12955 {
12956 /* Register shifts are encoded as separate shift instructions. */
12957 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
12958
12959 if (in_pred_block ())
12960 narrow = !flags;
12961 else
12962 narrow = flags;
12963
12964 if (inst.size_req == 4)
12965 narrow = FALSE;
12966
12967 if (!low_regs || inst.operands[1].imm > 7)
12968 narrow = FALSE;
12969
12970 if (Rn != Rm)
12971 narrow = FALSE;
12972
12973 switch (inst.operands[1].shift_kind)
12974 {
12975 case SHIFT_LSL:
12976 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
12977 break;
12978 case SHIFT_ASR:
12979 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
12980 break;
12981 case SHIFT_LSR:
12982 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
12983 break;
12984 case SHIFT_ROR:
12985 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
12986 break;
12987 default:
12988 abort ();
12989 }
12990
12991 inst.instruction = opcode;
12992 if (narrow)
12993 {
12994 inst.instruction |= Rn;
12995 inst.instruction |= inst.operands[1].imm << 3;
12996 }
12997 else
12998 {
12999 if (flags)
13000 inst.instruction |= CONDS_BIT;
13001
13002 inst.instruction |= Rn << 8;
13003 inst.instruction |= Rm << 16;
13004 inst.instruction |= inst.operands[1].imm;
13005 }
13006 }
13007 else if (!narrow)
13008 {
13009 /* Some mov with immediate shift have narrow variants.
13010 Register shifts are handled above. */
13011 if (low_regs && inst.operands[1].shifted
13012 && (inst.instruction == T_MNEM_mov
13013 || inst.instruction == T_MNEM_movs))
13014 {
13015 if (in_pred_block ())
13016 narrow = (inst.instruction == T_MNEM_mov);
13017 else
13018 narrow = (inst.instruction == T_MNEM_movs);
13019 }
13020
13021 if (narrow)
13022 {
13023 switch (inst.operands[1].shift_kind)
13024 {
13025 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
13026 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
13027 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
13028 default: narrow = FALSE; break;
13029 }
13030 }
13031
13032 if (narrow)
13033 {
13034 inst.instruction |= Rn;
13035 inst.instruction |= Rm << 3;
13036 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13037 }
13038 else
13039 {
13040 inst.instruction = THUMB_OP32 (inst.instruction);
13041 inst.instruction |= Rn << r0off;
13042 encode_thumb32_shifted_operand (1);
13043 }
13044 }
13045 else
13046 switch (inst.instruction)
13047 {
13048 case T_MNEM_mov:
13049 /* In v4t or v5t a move of two lowregs produces unpredictable
13050 results. Don't allow this. */
13051 if (low_regs)
13052 {
13053 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
13054 "MOV Rd, Rs with two low registers is not "
13055 "permitted on this architecture");
13056 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
13057 arm_ext_v6);
13058 }
13059
13060 inst.instruction = T_OPCODE_MOV_HR;
13061 inst.instruction |= (Rn & 0x8) << 4;
13062 inst.instruction |= (Rn & 0x7);
13063 inst.instruction |= Rm << 3;
13064 break;
13065
13066 case T_MNEM_movs:
13067 /* We know we have low registers at this point.
13068 Generate LSLS Rd, Rs, #0. */
13069 inst.instruction = T_OPCODE_LSL_I;
13070 inst.instruction |= Rn;
13071 inst.instruction |= Rm << 3;
13072 break;
13073
13074 case T_MNEM_cmp:
13075 if (low_regs)
13076 {
13077 inst.instruction = T_OPCODE_CMP_LR;
13078 inst.instruction |= Rn;
13079 inst.instruction |= Rm << 3;
13080 }
13081 else
13082 {
13083 inst.instruction = T_OPCODE_CMP_HR;
13084 inst.instruction |= (Rn & 0x8) << 4;
13085 inst.instruction |= (Rn & 0x7);
13086 inst.instruction |= Rm << 3;
13087 }
13088 break;
13089 }
13090 return;
13091 }
13092
13093 inst.instruction = THUMB_OP16 (inst.instruction);
13094
13095 /* PR 10443: Do not silently ignore shifted operands. */
13096 constraint (inst.operands[1].shifted,
13097 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
13098
13099 if (inst.operands[1].isreg)
13100 {
13101 if (Rn < 8 && Rm < 8)
13102 {
13103 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
13104 since a MOV instruction produces unpredictable results. */
13105 if (inst.instruction == T_OPCODE_MOV_I8)
13106 inst.instruction = T_OPCODE_ADD_I3;
13107 else
13108 inst.instruction = T_OPCODE_CMP_LR;
13109
13110 inst.instruction |= Rn;
13111 inst.instruction |= Rm << 3;
13112 }
13113 else
13114 {
13115 if (inst.instruction == T_OPCODE_MOV_I8)
13116 inst.instruction = T_OPCODE_MOV_HR;
13117 else
13118 inst.instruction = T_OPCODE_CMP_HR;
13119 do_t_cpy ();
13120 }
13121 }
13122 else
13123 {
13124 constraint (Rn > 7,
13125 _("only lo regs allowed with immediate"));
13126 inst.instruction |= Rn << 8;
13127 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
13128 }
13129 }
13130
13131 static void
13132 do_t_mov16 (void)
13133 {
13134 unsigned Rd;
13135 bfd_vma imm;
13136 bfd_boolean top;
13137
13138 top = (inst.instruction & 0x00800000) != 0;
13139 if (inst.relocs[0].type == BFD_RELOC_ARM_MOVW)
13140 {
13141 constraint (top, _(":lower16: not allowed in this instruction"));
13142 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVW;
13143 }
13144 else if (inst.relocs[0].type == BFD_RELOC_ARM_MOVT)
13145 {
13146 constraint (!top, _(":upper16: not allowed in this instruction"));
13147 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVT;
13148 }
13149
13150 Rd = inst.operands[0].reg;
13151 reject_bad_reg (Rd);
13152
13153 inst.instruction |= Rd << 8;
13154 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
13155 {
13156 imm = inst.relocs[0].exp.X_add_number;
13157 inst.instruction |= (imm & 0xf000) << 4;
13158 inst.instruction |= (imm & 0x0800) << 15;
13159 inst.instruction |= (imm & 0x0700) << 4;
13160 inst.instruction |= (imm & 0x00ff);
13161 }
13162 }
13163
13164 static void
13165 do_t_mvn_tst (void)
13166 {
13167 unsigned Rn, Rm;
13168
13169 Rn = inst.operands[0].reg;
13170 Rm = inst.operands[1].reg;
13171
13172 if (inst.instruction == T_MNEM_cmp
13173 || inst.instruction == T_MNEM_cmn)
13174 constraint (Rn == REG_PC, BAD_PC);
13175 else
13176 reject_bad_reg (Rn);
13177 reject_bad_reg (Rm);
13178
13179 if (unified_syntax)
13180 {
13181 int r0off = (inst.instruction == T_MNEM_mvn
13182 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
13183 bfd_boolean narrow;
13184
13185 if (inst.size_req == 4
13186 || inst.instruction > 0xffff
13187 || inst.operands[1].shifted
13188 || Rn > 7 || Rm > 7)
13189 narrow = FALSE;
13190 else if (inst.instruction == T_MNEM_cmn
13191 || inst.instruction == T_MNEM_tst)
13192 narrow = TRUE;
13193 else if (THUMB_SETS_FLAGS (inst.instruction))
13194 narrow = !in_pred_block ();
13195 else
13196 narrow = in_pred_block ();
13197
13198 if (!inst.operands[1].isreg)
13199 {
13200 /* For an immediate, we always generate a 32-bit opcode;
13201 section relaxation will shrink it later if possible. */
13202 if (inst.instruction < 0xffff)
13203 inst.instruction = THUMB_OP32 (inst.instruction);
13204 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13205 inst.instruction |= Rn << r0off;
13206 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13207 }
13208 else
13209 {
13210 /* See if we can do this with a 16-bit instruction. */
13211 if (narrow)
13212 {
13213 inst.instruction = THUMB_OP16 (inst.instruction);
13214 inst.instruction |= Rn;
13215 inst.instruction |= Rm << 3;
13216 }
13217 else
13218 {
13219 constraint (inst.operands[1].shifted
13220 && inst.operands[1].immisreg,
13221 _("shift must be constant"));
13222 if (inst.instruction < 0xffff)
13223 inst.instruction = THUMB_OP32 (inst.instruction);
13224 inst.instruction |= Rn << r0off;
13225 encode_thumb32_shifted_operand (1);
13226 }
13227 }
13228 }
13229 else
13230 {
13231 constraint (inst.instruction > 0xffff
13232 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
13233 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
13234 _("unshifted register required"));
13235 constraint (Rn > 7 || Rm > 7,
13236 BAD_HIREG);
13237
13238 inst.instruction = THUMB_OP16 (inst.instruction);
13239 inst.instruction |= Rn;
13240 inst.instruction |= Rm << 3;
13241 }
13242 }
13243
13244 static void
13245 do_t_mrs (void)
13246 {
13247 unsigned Rd;
13248
13249 if (do_vfp_nsyn_mrs () == SUCCESS)
13250 return;
13251
13252 Rd = inst.operands[0].reg;
13253 reject_bad_reg (Rd);
13254 inst.instruction |= Rd << 8;
13255
13256 if (inst.operands[1].isreg)
13257 {
13258 unsigned br = inst.operands[1].reg;
13259 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
13260 as_bad (_("bad register for mrs"));
13261
13262 inst.instruction |= br & (0xf << 16);
13263 inst.instruction |= (br & 0x300) >> 4;
13264 inst.instruction |= (br & SPSR_BIT) >> 2;
13265 }
13266 else
13267 {
13268 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13269
13270 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
13271 {
13272 /* PR gas/12698: The constraint is only applied for m_profile.
13273 If the user has specified -march=all, we want to ignore it as
13274 we are building for any CPU type, including non-m variants. */
13275 bfd_boolean m_profile =
13276 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
13277 constraint ((flags != 0) && m_profile, _("selected processor does "
13278 "not support requested special purpose register"));
13279 }
13280 else
13281 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
13282 devices). */
13283 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
13284 _("'APSR', 'CPSR' or 'SPSR' expected"));
13285
13286 inst.instruction |= (flags & SPSR_BIT) >> 2;
13287 inst.instruction |= inst.operands[1].imm & 0xff;
13288 inst.instruction |= 0xf0000;
13289 }
13290 }
13291
13292 static void
13293 do_t_msr (void)
13294 {
13295 int flags;
13296 unsigned Rn;
13297
13298 if (do_vfp_nsyn_msr () == SUCCESS)
13299 return;
13300
13301 constraint (!inst.operands[1].isreg,
13302 _("Thumb encoding does not support an immediate here"));
13303
13304 if (inst.operands[0].isreg)
13305 flags = (int)(inst.operands[0].reg);
13306 else
13307 flags = inst.operands[0].imm;
13308
13309 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
13310 {
13311 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13312
13313 /* PR gas/12698: The constraint is only applied for m_profile.
13314 If the user has specified -march=all, we want to ignore it as
13315 we are building for any CPU type, including non-m variants. */
13316 bfd_boolean m_profile =
13317 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
13318 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13319 && (bits & ~(PSR_s | PSR_f)) != 0)
13320 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13321 && bits != PSR_f)) && m_profile,
13322 _("selected processor does not support requested special "
13323 "purpose register"));
13324 }
13325 else
13326 constraint ((flags & 0xff) != 0, _("selected processor does not support "
13327 "requested special purpose register"));
13328
13329 Rn = inst.operands[1].reg;
13330 reject_bad_reg (Rn);
13331
13332 inst.instruction |= (flags & SPSR_BIT) >> 2;
13333 inst.instruction |= (flags & 0xf0000) >> 8;
13334 inst.instruction |= (flags & 0x300) >> 4;
13335 inst.instruction |= (flags & 0xff);
13336 inst.instruction |= Rn << 16;
13337 }
13338
13339 static void
13340 do_t_mul (void)
13341 {
13342 bfd_boolean narrow;
13343 unsigned Rd, Rn, Rm;
13344
13345 if (!inst.operands[2].present)
13346 inst.operands[2].reg = inst.operands[0].reg;
13347
13348 Rd = inst.operands[0].reg;
13349 Rn = inst.operands[1].reg;
13350 Rm = inst.operands[2].reg;
13351
13352 if (unified_syntax)
13353 {
13354 if (inst.size_req == 4
13355 || (Rd != Rn
13356 && Rd != Rm)
13357 || Rn > 7
13358 || Rm > 7)
13359 narrow = FALSE;
13360 else if (inst.instruction == T_MNEM_muls)
13361 narrow = !in_pred_block ();
13362 else
13363 narrow = in_pred_block ();
13364 }
13365 else
13366 {
13367 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
13368 constraint (Rn > 7 || Rm > 7,
13369 BAD_HIREG);
13370 narrow = TRUE;
13371 }
13372
13373 if (narrow)
13374 {
13375 /* 16-bit MULS/Conditional MUL. */
13376 inst.instruction = THUMB_OP16 (inst.instruction);
13377 inst.instruction |= Rd;
13378
13379 if (Rd == Rn)
13380 inst.instruction |= Rm << 3;
13381 else if (Rd == Rm)
13382 inst.instruction |= Rn << 3;
13383 else
13384 constraint (1, _("dest must overlap one source register"));
13385 }
13386 else
13387 {
13388 constraint (inst.instruction != T_MNEM_mul,
13389 _("Thumb-2 MUL must not set flags"));
13390 /* 32-bit MUL. */
13391 inst.instruction = THUMB_OP32 (inst.instruction);
13392 inst.instruction |= Rd << 8;
13393 inst.instruction |= Rn << 16;
13394 inst.instruction |= Rm << 0;
13395
13396 reject_bad_reg (Rd);
13397 reject_bad_reg (Rn);
13398 reject_bad_reg (Rm);
13399 }
13400 }
13401
13402 static void
13403 do_t_mull (void)
13404 {
13405 unsigned RdLo, RdHi, Rn, Rm;
13406
13407 RdLo = inst.operands[0].reg;
13408 RdHi = inst.operands[1].reg;
13409 Rn = inst.operands[2].reg;
13410 Rm = inst.operands[3].reg;
13411
13412 reject_bad_reg (RdLo);
13413 reject_bad_reg (RdHi);
13414 reject_bad_reg (Rn);
13415 reject_bad_reg (Rm);
13416
13417 inst.instruction |= RdLo << 12;
13418 inst.instruction |= RdHi << 8;
13419 inst.instruction |= Rn << 16;
13420 inst.instruction |= Rm;
13421
13422 if (RdLo == RdHi)
13423 as_tsktsk (_("rdhi and rdlo must be different"));
13424 }
13425
13426 static void
13427 do_t_nop (void)
13428 {
13429 set_pred_insn_type (NEUTRAL_IT_INSN);
13430
13431 if (unified_syntax)
13432 {
13433 if (inst.size_req == 4 || inst.operands[0].imm > 15)
13434 {
13435 inst.instruction = THUMB_OP32 (inst.instruction);
13436 inst.instruction |= inst.operands[0].imm;
13437 }
13438 else
13439 {
13440 /* PR9722: Check for Thumb2 availability before
13441 generating a thumb2 nop instruction. */
13442 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
13443 {
13444 inst.instruction = THUMB_OP16 (inst.instruction);
13445 inst.instruction |= inst.operands[0].imm << 4;
13446 }
13447 else
13448 inst.instruction = 0x46c0;
13449 }
13450 }
13451 else
13452 {
13453 constraint (inst.operands[0].present,
13454 _("Thumb does not support NOP with hints"));
13455 inst.instruction = 0x46c0;
13456 }
13457 }
13458
13459 static void
13460 do_t_neg (void)
13461 {
13462 if (unified_syntax)
13463 {
13464 bfd_boolean narrow;
13465
13466 if (THUMB_SETS_FLAGS (inst.instruction))
13467 narrow = !in_pred_block ();
13468 else
13469 narrow = in_pred_block ();
13470 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13471 narrow = FALSE;
13472 if (inst.size_req == 4)
13473 narrow = FALSE;
13474
13475 if (!narrow)
13476 {
13477 inst.instruction = THUMB_OP32 (inst.instruction);
13478 inst.instruction |= inst.operands[0].reg << 8;
13479 inst.instruction |= inst.operands[1].reg << 16;
13480 }
13481 else
13482 {
13483 inst.instruction = THUMB_OP16 (inst.instruction);
13484 inst.instruction |= inst.operands[0].reg;
13485 inst.instruction |= inst.operands[1].reg << 3;
13486 }
13487 }
13488 else
13489 {
13490 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
13491 BAD_HIREG);
13492 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13493
13494 inst.instruction = THUMB_OP16 (inst.instruction);
13495 inst.instruction |= inst.operands[0].reg;
13496 inst.instruction |= inst.operands[1].reg << 3;
13497 }
13498 }
13499
13500 static void
13501 do_t_orn (void)
13502 {
13503 unsigned Rd, Rn;
13504
13505 Rd = inst.operands[0].reg;
13506 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
13507
13508 reject_bad_reg (Rd);
13509 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
13510 reject_bad_reg (Rn);
13511
13512 inst.instruction |= Rd << 8;
13513 inst.instruction |= Rn << 16;
13514
13515 if (!inst.operands[2].isreg)
13516 {
13517 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13518 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13519 }
13520 else
13521 {
13522 unsigned Rm;
13523
13524 Rm = inst.operands[2].reg;
13525 reject_bad_reg (Rm);
13526
13527 constraint (inst.operands[2].shifted
13528 && inst.operands[2].immisreg,
13529 _("shift must be constant"));
13530 encode_thumb32_shifted_operand (2);
13531 }
13532 }
13533
13534 static void
13535 do_t_pkhbt (void)
13536 {
13537 unsigned Rd, Rn, Rm;
13538
13539 Rd = inst.operands[0].reg;
13540 Rn = inst.operands[1].reg;
13541 Rm = inst.operands[2].reg;
13542
13543 reject_bad_reg (Rd);
13544 reject_bad_reg (Rn);
13545 reject_bad_reg (Rm);
13546
13547 inst.instruction |= Rd << 8;
13548 inst.instruction |= Rn << 16;
13549 inst.instruction |= Rm;
13550 if (inst.operands[3].present)
13551 {
13552 unsigned int val = inst.relocs[0].exp.X_add_number;
13553 constraint (inst.relocs[0].exp.X_op != O_constant,
13554 _("expression too complex"));
13555 inst.instruction |= (val & 0x1c) << 10;
13556 inst.instruction |= (val & 0x03) << 6;
13557 }
13558 }
13559
13560 static void
13561 do_t_pkhtb (void)
13562 {
13563 if (!inst.operands[3].present)
13564 {
13565 unsigned Rtmp;
13566
13567 inst.instruction &= ~0x00000020;
13568
13569 /* PR 10168. Swap the Rm and Rn registers. */
13570 Rtmp = inst.operands[1].reg;
13571 inst.operands[1].reg = inst.operands[2].reg;
13572 inst.operands[2].reg = Rtmp;
13573 }
13574 do_t_pkhbt ();
13575 }
13576
13577 static void
13578 do_t_pld (void)
13579 {
13580 if (inst.operands[0].immisreg)
13581 reject_bad_reg (inst.operands[0].imm);
13582
13583 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
13584 }
13585
13586 static void
13587 do_t_push_pop (void)
13588 {
13589 unsigned mask;
13590
13591 constraint (inst.operands[0].writeback,
13592 _("push/pop do not support {reglist}^"));
13593 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
13594 _("expression too complex"));
13595
13596 mask = inst.operands[0].imm;
13597 if (inst.size_req != 4 && (mask & ~0xff) == 0)
13598 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
13599 else if (inst.size_req != 4
13600 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
13601 ? REG_LR : REG_PC)))
13602 {
13603 inst.instruction = THUMB_OP16 (inst.instruction);
13604 inst.instruction |= THUMB_PP_PC_LR;
13605 inst.instruction |= mask & 0xff;
13606 }
13607 else if (unified_syntax)
13608 {
13609 inst.instruction = THUMB_OP32 (inst.instruction);
13610 encode_thumb2_multi (TRUE /* do_io */, 13, mask, TRUE);
13611 }
13612 else
13613 {
13614 inst.error = _("invalid register list to push/pop instruction");
13615 return;
13616 }
13617 }
13618
13619 static void
13620 do_t_clrm (void)
13621 {
13622 if (unified_syntax)
13623 encode_thumb2_multi (FALSE /* do_io */, -1, inst.operands[0].imm, FALSE);
13624 else
13625 {
13626 inst.error = _("invalid register list to push/pop instruction");
13627 return;
13628 }
13629 }
13630
13631 static void
13632 do_t_vscclrm (void)
13633 {
13634 if (inst.operands[0].issingle)
13635 {
13636 inst.instruction |= (inst.operands[0].reg & 0x1) << 22;
13637 inst.instruction |= (inst.operands[0].reg & 0x1e) << 11;
13638 inst.instruction |= inst.operands[0].imm;
13639 }
13640 else
13641 {
13642 inst.instruction |= (inst.operands[0].reg & 0x10) << 18;
13643 inst.instruction |= (inst.operands[0].reg & 0xf) << 12;
13644 inst.instruction |= 1 << 8;
13645 inst.instruction |= inst.operands[0].imm << 1;
13646 }
13647 }
13648
13649 static void
13650 do_t_rbit (void)
13651 {
13652 unsigned Rd, Rm;
13653
13654 Rd = inst.operands[0].reg;
13655 Rm = inst.operands[1].reg;
13656
13657 reject_bad_reg (Rd);
13658 reject_bad_reg (Rm);
13659
13660 inst.instruction |= Rd << 8;
13661 inst.instruction |= Rm << 16;
13662 inst.instruction |= Rm;
13663 }
13664
13665 static void
13666 do_t_rev (void)
13667 {
13668 unsigned Rd, Rm;
13669
13670 Rd = inst.operands[0].reg;
13671 Rm = inst.operands[1].reg;
13672
13673 reject_bad_reg (Rd);
13674 reject_bad_reg (Rm);
13675
13676 if (Rd <= 7 && Rm <= 7
13677 && inst.size_req != 4)
13678 {
13679 inst.instruction = THUMB_OP16 (inst.instruction);
13680 inst.instruction |= Rd;
13681 inst.instruction |= Rm << 3;
13682 }
13683 else if (unified_syntax)
13684 {
13685 inst.instruction = THUMB_OP32 (inst.instruction);
13686 inst.instruction |= Rd << 8;
13687 inst.instruction |= Rm << 16;
13688 inst.instruction |= Rm;
13689 }
13690 else
13691 inst.error = BAD_HIREG;
13692 }
13693
13694 static void
13695 do_t_rrx (void)
13696 {
13697 unsigned Rd, Rm;
13698
13699 Rd = inst.operands[0].reg;
13700 Rm = inst.operands[1].reg;
13701
13702 reject_bad_reg (Rd);
13703 reject_bad_reg (Rm);
13704
13705 inst.instruction |= Rd << 8;
13706 inst.instruction |= Rm;
13707 }
13708
13709 static void
13710 do_t_rsb (void)
13711 {
13712 unsigned Rd, Rs;
13713
13714 Rd = inst.operands[0].reg;
13715 Rs = (inst.operands[1].present
13716 ? inst.operands[1].reg /* Rd, Rs, foo */
13717 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
13718
13719 reject_bad_reg (Rd);
13720 reject_bad_reg (Rs);
13721 if (inst.operands[2].isreg)
13722 reject_bad_reg (inst.operands[2].reg);
13723
13724 inst.instruction |= Rd << 8;
13725 inst.instruction |= Rs << 16;
13726 if (!inst.operands[2].isreg)
13727 {
13728 bfd_boolean narrow;
13729
13730 if ((inst.instruction & 0x00100000) != 0)
13731 narrow = !in_pred_block ();
13732 else
13733 narrow = in_pred_block ();
13734
13735 if (Rd > 7 || Rs > 7)
13736 narrow = FALSE;
13737
13738 if (inst.size_req == 4 || !unified_syntax)
13739 narrow = FALSE;
13740
13741 if (inst.relocs[0].exp.X_op != O_constant
13742 || inst.relocs[0].exp.X_add_number != 0)
13743 narrow = FALSE;
13744
13745 /* Turn rsb #0 into 16-bit neg. We should probably do this via
13746 relaxation, but it doesn't seem worth the hassle. */
13747 if (narrow)
13748 {
13749 inst.relocs[0].type = BFD_RELOC_UNUSED;
13750 inst.instruction = THUMB_OP16 (T_MNEM_negs);
13751 inst.instruction |= Rs << 3;
13752 inst.instruction |= Rd;
13753 }
13754 else
13755 {
13756 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13757 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13758 }
13759 }
13760 else
13761 encode_thumb32_shifted_operand (2);
13762 }
13763
13764 static void
13765 do_t_setend (void)
13766 {
13767 if (warn_on_deprecated
13768 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13769 as_tsktsk (_("setend use is deprecated for ARMv8"));
13770
13771 set_pred_insn_type (OUTSIDE_PRED_INSN);
13772 if (inst.operands[0].imm)
13773 inst.instruction |= 0x8;
13774 }
13775
13776 static void
13777 do_t_shift (void)
13778 {
13779 if (!inst.operands[1].present)
13780 inst.operands[1].reg = inst.operands[0].reg;
13781
13782 if (unified_syntax)
13783 {
13784 bfd_boolean narrow;
13785 int shift_kind;
13786
13787 switch (inst.instruction)
13788 {
13789 case T_MNEM_asr:
13790 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
13791 case T_MNEM_lsl:
13792 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
13793 case T_MNEM_lsr:
13794 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
13795 case T_MNEM_ror:
13796 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
13797 default: abort ();
13798 }
13799
13800 if (THUMB_SETS_FLAGS (inst.instruction))
13801 narrow = !in_pred_block ();
13802 else
13803 narrow = in_pred_block ();
13804 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13805 narrow = FALSE;
13806 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
13807 narrow = FALSE;
13808 if (inst.operands[2].isreg
13809 && (inst.operands[1].reg != inst.operands[0].reg
13810 || inst.operands[2].reg > 7))
13811 narrow = FALSE;
13812 if (inst.size_req == 4)
13813 narrow = FALSE;
13814
13815 reject_bad_reg (inst.operands[0].reg);
13816 reject_bad_reg (inst.operands[1].reg);
13817
13818 if (!narrow)
13819 {
13820 if (inst.operands[2].isreg)
13821 {
13822 reject_bad_reg (inst.operands[2].reg);
13823 inst.instruction = THUMB_OP32 (inst.instruction);
13824 inst.instruction |= inst.operands[0].reg << 8;
13825 inst.instruction |= inst.operands[1].reg << 16;
13826 inst.instruction |= inst.operands[2].reg;
13827
13828 /* PR 12854: Error on extraneous shifts. */
13829 constraint (inst.operands[2].shifted,
13830 _("extraneous shift as part of operand to shift insn"));
13831 }
13832 else
13833 {
13834 inst.operands[1].shifted = 1;
13835 inst.operands[1].shift_kind = shift_kind;
13836 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
13837 ? T_MNEM_movs : T_MNEM_mov);
13838 inst.instruction |= inst.operands[0].reg << 8;
13839 encode_thumb32_shifted_operand (1);
13840 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
13841 inst.relocs[0].type = BFD_RELOC_UNUSED;
13842 }
13843 }
13844 else
13845 {
13846 if (inst.operands[2].isreg)
13847 {
13848 switch (shift_kind)
13849 {
13850 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
13851 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
13852 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
13853 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
13854 default: abort ();
13855 }
13856
13857 inst.instruction |= inst.operands[0].reg;
13858 inst.instruction |= inst.operands[2].reg << 3;
13859
13860 /* PR 12854: Error on extraneous shifts. */
13861 constraint (inst.operands[2].shifted,
13862 _("extraneous shift as part of operand to shift insn"));
13863 }
13864 else
13865 {
13866 switch (shift_kind)
13867 {
13868 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
13869 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
13870 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
13871 default: abort ();
13872 }
13873 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13874 inst.instruction |= inst.operands[0].reg;
13875 inst.instruction |= inst.operands[1].reg << 3;
13876 }
13877 }
13878 }
13879 else
13880 {
13881 constraint (inst.operands[0].reg > 7
13882 || inst.operands[1].reg > 7, BAD_HIREG);
13883 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13884
13885 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
13886 {
13887 constraint (inst.operands[2].reg > 7, BAD_HIREG);
13888 constraint (inst.operands[0].reg != inst.operands[1].reg,
13889 _("source1 and dest must be same register"));
13890
13891 switch (inst.instruction)
13892 {
13893 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
13894 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
13895 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
13896 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
13897 default: abort ();
13898 }
13899
13900 inst.instruction |= inst.operands[0].reg;
13901 inst.instruction |= inst.operands[2].reg << 3;
13902
13903 /* PR 12854: Error on extraneous shifts. */
13904 constraint (inst.operands[2].shifted,
13905 _("extraneous shift as part of operand to shift insn"));
13906 }
13907 else
13908 {
13909 switch (inst.instruction)
13910 {
13911 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
13912 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
13913 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
13914 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
13915 default: abort ();
13916 }
13917 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13918 inst.instruction |= inst.operands[0].reg;
13919 inst.instruction |= inst.operands[1].reg << 3;
13920 }
13921 }
13922 }
13923
13924 static void
13925 do_t_simd (void)
13926 {
13927 unsigned Rd, Rn, Rm;
13928
13929 Rd = inst.operands[0].reg;
13930 Rn = inst.operands[1].reg;
13931 Rm = inst.operands[2].reg;
13932
13933 reject_bad_reg (Rd);
13934 reject_bad_reg (Rn);
13935 reject_bad_reg (Rm);
13936
13937 inst.instruction |= Rd << 8;
13938 inst.instruction |= Rn << 16;
13939 inst.instruction |= Rm;
13940 }
13941
13942 static void
13943 do_t_simd2 (void)
13944 {
13945 unsigned Rd, Rn, Rm;
13946
13947 Rd = inst.operands[0].reg;
13948 Rm = inst.operands[1].reg;
13949 Rn = inst.operands[2].reg;
13950
13951 reject_bad_reg (Rd);
13952 reject_bad_reg (Rn);
13953 reject_bad_reg (Rm);
13954
13955 inst.instruction |= Rd << 8;
13956 inst.instruction |= Rn << 16;
13957 inst.instruction |= Rm;
13958 }
13959
13960 static void
13961 do_t_smc (void)
13962 {
13963 unsigned int value = inst.relocs[0].exp.X_add_number;
13964 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
13965 _("SMC is not permitted on this architecture"));
13966 constraint (inst.relocs[0].exp.X_op != O_constant,
13967 _("expression too complex"));
13968 constraint (value > 0xf, _("immediate too large (bigger than 0xF)"));
13969
13970 inst.relocs[0].type = BFD_RELOC_UNUSED;
13971 inst.instruction |= (value & 0x000f) << 16;
13972
13973 /* PR gas/15623: SMC instructions must be last in an IT block. */
13974 set_pred_insn_type_last ();
13975 }
13976
13977 static void
13978 do_t_hvc (void)
13979 {
13980 unsigned int value = inst.relocs[0].exp.X_add_number;
13981
13982 inst.relocs[0].type = BFD_RELOC_UNUSED;
13983 inst.instruction |= (value & 0x0fff);
13984 inst.instruction |= (value & 0xf000) << 4;
13985 }
13986
13987 static void
13988 do_t_ssat_usat (int bias)
13989 {
13990 unsigned Rd, Rn;
13991
13992 Rd = inst.operands[0].reg;
13993 Rn = inst.operands[2].reg;
13994
13995 reject_bad_reg (Rd);
13996 reject_bad_reg (Rn);
13997
13998 inst.instruction |= Rd << 8;
13999 inst.instruction |= inst.operands[1].imm - bias;
14000 inst.instruction |= Rn << 16;
14001
14002 if (inst.operands[3].present)
14003 {
14004 offsetT shift_amount = inst.relocs[0].exp.X_add_number;
14005
14006 inst.relocs[0].type = BFD_RELOC_UNUSED;
14007
14008 constraint (inst.relocs[0].exp.X_op != O_constant,
14009 _("expression too complex"));
14010
14011 if (shift_amount != 0)
14012 {
14013 constraint (shift_amount > 31,
14014 _("shift expression is too large"));
14015
14016 if (inst.operands[3].shift_kind == SHIFT_ASR)
14017 inst.instruction |= 0x00200000; /* sh bit. */
14018
14019 inst.instruction |= (shift_amount & 0x1c) << 10;
14020 inst.instruction |= (shift_amount & 0x03) << 6;
14021 }
14022 }
14023 }
14024
14025 static void
14026 do_t_ssat (void)
14027 {
14028 do_t_ssat_usat (1);
14029 }
14030
14031 static void
14032 do_t_ssat16 (void)
14033 {
14034 unsigned Rd, Rn;
14035
14036 Rd = inst.operands[0].reg;
14037 Rn = inst.operands[2].reg;
14038
14039 reject_bad_reg (Rd);
14040 reject_bad_reg (Rn);
14041
14042 inst.instruction |= Rd << 8;
14043 inst.instruction |= inst.operands[1].imm - 1;
14044 inst.instruction |= Rn << 16;
14045 }
14046
14047 static void
14048 do_t_strex (void)
14049 {
14050 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
14051 || inst.operands[2].postind || inst.operands[2].writeback
14052 || inst.operands[2].immisreg || inst.operands[2].shifted
14053 || inst.operands[2].negative,
14054 BAD_ADDR_MODE);
14055
14056 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
14057
14058 inst.instruction |= inst.operands[0].reg << 8;
14059 inst.instruction |= inst.operands[1].reg << 12;
14060 inst.instruction |= inst.operands[2].reg << 16;
14061 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
14062 }
14063
14064 static void
14065 do_t_strexd (void)
14066 {
14067 if (!inst.operands[2].present)
14068 inst.operands[2].reg = inst.operands[1].reg + 1;
14069
14070 constraint (inst.operands[0].reg == inst.operands[1].reg
14071 || inst.operands[0].reg == inst.operands[2].reg
14072 || inst.operands[0].reg == inst.operands[3].reg,
14073 BAD_OVERLAP);
14074
14075 inst.instruction |= inst.operands[0].reg;
14076 inst.instruction |= inst.operands[1].reg << 12;
14077 inst.instruction |= inst.operands[2].reg << 8;
14078 inst.instruction |= inst.operands[3].reg << 16;
14079 }
14080
14081 static void
14082 do_t_sxtah (void)
14083 {
14084 unsigned Rd, Rn, Rm;
14085
14086 Rd = inst.operands[0].reg;
14087 Rn = inst.operands[1].reg;
14088 Rm = inst.operands[2].reg;
14089
14090 reject_bad_reg (Rd);
14091 reject_bad_reg (Rn);
14092 reject_bad_reg (Rm);
14093
14094 inst.instruction |= Rd << 8;
14095 inst.instruction |= Rn << 16;
14096 inst.instruction |= Rm;
14097 inst.instruction |= inst.operands[3].imm << 4;
14098 }
14099
14100 static void
14101 do_t_sxth (void)
14102 {
14103 unsigned Rd, Rm;
14104
14105 Rd = inst.operands[0].reg;
14106 Rm = inst.operands[1].reg;
14107
14108 reject_bad_reg (Rd);
14109 reject_bad_reg (Rm);
14110
14111 if (inst.instruction <= 0xffff
14112 && inst.size_req != 4
14113 && Rd <= 7 && Rm <= 7
14114 && (!inst.operands[2].present || inst.operands[2].imm == 0))
14115 {
14116 inst.instruction = THUMB_OP16 (inst.instruction);
14117 inst.instruction |= Rd;
14118 inst.instruction |= Rm << 3;
14119 }
14120 else if (unified_syntax)
14121 {
14122 if (inst.instruction <= 0xffff)
14123 inst.instruction = THUMB_OP32 (inst.instruction);
14124 inst.instruction |= Rd << 8;
14125 inst.instruction |= Rm;
14126 inst.instruction |= inst.operands[2].imm << 4;
14127 }
14128 else
14129 {
14130 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
14131 _("Thumb encoding does not support rotation"));
14132 constraint (1, BAD_HIREG);
14133 }
14134 }
14135
14136 static void
14137 do_t_swi (void)
14138 {
14139 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
14140 }
14141
14142 static void
14143 do_t_tb (void)
14144 {
14145 unsigned Rn, Rm;
14146 int half;
14147
14148 half = (inst.instruction & 0x10) != 0;
14149 set_pred_insn_type_last ();
14150 constraint (inst.operands[0].immisreg,
14151 _("instruction requires register index"));
14152
14153 Rn = inst.operands[0].reg;
14154 Rm = inst.operands[0].imm;
14155
14156 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
14157 constraint (Rn == REG_SP, BAD_SP);
14158 reject_bad_reg (Rm);
14159
14160 constraint (!half && inst.operands[0].shifted,
14161 _("instruction does not allow shifted index"));
14162 inst.instruction |= (Rn << 16) | Rm;
14163 }
14164
14165 static void
14166 do_t_udf (void)
14167 {
14168 if (!inst.operands[0].present)
14169 inst.operands[0].imm = 0;
14170
14171 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
14172 {
14173 constraint (inst.size_req == 2,
14174 _("immediate value out of range"));
14175 inst.instruction = THUMB_OP32 (inst.instruction);
14176 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
14177 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
14178 }
14179 else
14180 {
14181 inst.instruction = THUMB_OP16 (inst.instruction);
14182 inst.instruction |= inst.operands[0].imm;
14183 }
14184
14185 set_pred_insn_type (NEUTRAL_IT_INSN);
14186 }
14187
14188
14189 static void
14190 do_t_usat (void)
14191 {
14192 do_t_ssat_usat (0);
14193 }
14194
14195 static void
14196 do_t_usat16 (void)
14197 {
14198 unsigned Rd, Rn;
14199
14200 Rd = inst.operands[0].reg;
14201 Rn = inst.operands[2].reg;
14202
14203 reject_bad_reg (Rd);
14204 reject_bad_reg (Rn);
14205
14206 inst.instruction |= Rd << 8;
14207 inst.instruction |= inst.operands[1].imm;
14208 inst.instruction |= Rn << 16;
14209 }
14210
14211 /* Checking the range of the branch offset (VAL) with NBITS bits
14212 and IS_SIGNED signedness. Also checks the LSB to be 0. */
14213 static int
14214 v8_1_branch_value_check (int val, int nbits, int is_signed)
14215 {
14216 gas_assert (nbits > 0 && nbits <= 32);
14217 if (is_signed)
14218 {
14219 int cmp = (1 << (nbits - 1));
14220 if ((val < -cmp) || (val >= cmp) || (val & 0x01))
14221 return FAIL;
14222 }
14223 else
14224 {
14225 if ((val <= 0) || (val >= (1 << nbits)) || (val & 0x1))
14226 return FAIL;
14227 }
14228 return SUCCESS;
14229 }
14230
14231 /* For branches in Armv8.1-M Mainline. */
14232 static void
14233 do_t_branch_future (void)
14234 {
14235 unsigned long insn = inst.instruction;
14236
14237 inst.instruction = THUMB_OP32 (inst.instruction);
14238 if (inst.operands[0].hasreloc == 0)
14239 {
14240 if (v8_1_branch_value_check (inst.operands[0].imm, 5, FALSE) == FAIL)
14241 as_bad (BAD_BRANCH_OFF);
14242
14243 inst.instruction |= ((inst.operands[0].imm & 0x1f) >> 1) << 23;
14244 }
14245 else
14246 {
14247 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH5;
14248 inst.relocs[0].pc_rel = 1;
14249 }
14250
14251 switch (insn)
14252 {
14253 case T_MNEM_bf:
14254 if (inst.operands[1].hasreloc == 0)
14255 {
14256 int val = inst.operands[1].imm;
14257 if (v8_1_branch_value_check (inst.operands[1].imm, 17, TRUE) == FAIL)
14258 as_bad (BAD_BRANCH_OFF);
14259
14260 int immA = (val & 0x0001f000) >> 12;
14261 int immB = (val & 0x00000ffc) >> 2;
14262 int immC = (val & 0x00000002) >> 1;
14263 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14264 }
14265 else
14266 {
14267 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF17;
14268 inst.relocs[1].pc_rel = 1;
14269 }
14270 break;
14271
14272 case T_MNEM_bfl:
14273 if (inst.operands[1].hasreloc == 0)
14274 {
14275 int val = inst.operands[1].imm;
14276 if (v8_1_branch_value_check (inst.operands[1].imm, 19, TRUE) == FAIL)
14277 as_bad (BAD_BRANCH_OFF);
14278
14279 int immA = (val & 0x0007f000) >> 12;
14280 int immB = (val & 0x00000ffc) >> 2;
14281 int immC = (val & 0x00000002) >> 1;
14282 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14283 }
14284 else
14285 {
14286 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF19;
14287 inst.relocs[1].pc_rel = 1;
14288 }
14289 break;
14290
14291 case T_MNEM_bfcsel:
14292 /* Operand 1. */
14293 if (inst.operands[1].hasreloc == 0)
14294 {
14295 int val = inst.operands[1].imm;
14296 int immA = (val & 0x00001000) >> 12;
14297 int immB = (val & 0x00000ffc) >> 2;
14298 int immC = (val & 0x00000002) >> 1;
14299 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14300 }
14301 else
14302 {
14303 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF13;
14304 inst.relocs[1].pc_rel = 1;
14305 }
14306
14307 /* Operand 2. */
14308 if (inst.operands[2].hasreloc == 0)
14309 {
14310 constraint ((inst.operands[0].hasreloc != 0), BAD_ARGS);
14311 int val2 = inst.operands[2].imm;
14312 int val0 = inst.operands[0].imm & 0x1f;
14313 int diff = val2 - val0;
14314 if (diff == 4)
14315 inst.instruction |= 1 << 17; /* T bit. */
14316 else if (diff != 2)
14317 as_bad (_("out of range label-relative fixup value"));
14318 }
14319 else
14320 {
14321 constraint ((inst.operands[0].hasreloc == 0), BAD_ARGS);
14322 inst.relocs[2].type = BFD_RELOC_THUMB_PCREL_BFCSEL;
14323 inst.relocs[2].pc_rel = 1;
14324 }
14325
14326 /* Operand 3. */
14327 constraint (inst.cond != COND_ALWAYS, BAD_COND);
14328 inst.instruction |= (inst.operands[3].imm & 0xf) << 18;
14329 break;
14330
14331 case T_MNEM_bfx:
14332 case T_MNEM_bflx:
14333 inst.instruction |= inst.operands[1].reg << 16;
14334 break;
14335
14336 default: abort ();
14337 }
14338 }
14339
14340 /* Helper function for do_t_loloop to handle relocations. */
14341 static void
14342 v8_1_loop_reloc (int is_le)
14343 {
14344 if (inst.relocs[0].exp.X_op == O_constant)
14345 {
14346 int value = inst.relocs[0].exp.X_add_number;
14347 value = (is_le) ? -value : value;
14348
14349 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
14350 as_bad (BAD_BRANCH_OFF);
14351
14352 int imml, immh;
14353
14354 immh = (value & 0x00000ffc) >> 2;
14355 imml = (value & 0x00000002) >> 1;
14356
14357 inst.instruction |= (imml << 11) | (immh << 1);
14358 }
14359 else
14360 {
14361 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_LOOP12;
14362 inst.relocs[0].pc_rel = 1;
14363 }
14364 }
14365
14366 /* For shifts with four operands in MVE. */
14367 static void
14368 do_mve_scalar_shift1 (void)
14369 {
14370 unsigned int value = inst.operands[2].imm;
14371
14372 inst.instruction |= inst.operands[0].reg << 16;
14373 inst.instruction |= inst.operands[1].reg << 8;
14374
14375 /* Setting the bit for saturation. */
14376 inst.instruction |= ((value == 64) ? 0: 1) << 7;
14377
14378 /* Assuming Rm is already checked not to be 11x1. */
14379 constraint (inst.operands[3].reg == inst.operands[0].reg, BAD_OVERLAP);
14380 constraint (inst.operands[3].reg == inst.operands[1].reg, BAD_OVERLAP);
14381 inst.instruction |= inst.operands[3].reg << 12;
14382 }
14383
14384 /* For shifts in MVE. */
14385 static void
14386 do_mve_scalar_shift (void)
14387 {
14388 if (!inst.operands[2].present)
14389 {
14390 inst.operands[2] = inst.operands[1];
14391 inst.operands[1].reg = 0xf;
14392 }
14393
14394 inst.instruction |= inst.operands[0].reg << 16;
14395 inst.instruction |= inst.operands[1].reg << 8;
14396
14397 if (inst.operands[2].isreg)
14398 {
14399 /* Assuming Rm is already checked not to be 11x1. */
14400 constraint (inst.operands[2].reg == inst.operands[0].reg, BAD_OVERLAP);
14401 constraint (inst.operands[2].reg == inst.operands[1].reg, BAD_OVERLAP);
14402 inst.instruction |= inst.operands[2].reg << 12;
14403 }
14404 else
14405 {
14406 /* Assuming imm is already checked as [1,32]. */
14407 unsigned int value = inst.operands[2].imm;
14408 inst.instruction |= (value & 0x1c) << 10;
14409 inst.instruction |= (value & 0x03) << 6;
14410 /* Change last 4 bits from 0xd to 0xf. */
14411 inst.instruction |= 0x2;
14412 }
14413 }
14414
14415 /* MVE instruction encoder helpers. */
14416 #define M_MNEM_vabav 0xee800f01
14417 #define M_MNEM_vmladav 0xeef00e00
14418 #define M_MNEM_vmladava 0xeef00e20
14419 #define M_MNEM_vmladavx 0xeef01e00
14420 #define M_MNEM_vmladavax 0xeef01e20
14421 #define M_MNEM_vmlsdav 0xeef00e01
14422 #define M_MNEM_vmlsdava 0xeef00e21
14423 #define M_MNEM_vmlsdavx 0xeef01e01
14424 #define M_MNEM_vmlsdavax 0xeef01e21
14425 #define M_MNEM_vmullt 0xee011e00
14426 #define M_MNEM_vmullb 0xee010e00
14427 #define M_MNEM_vst20 0xfc801e00
14428 #define M_MNEM_vst21 0xfc801e20
14429 #define M_MNEM_vst40 0xfc801e01
14430 #define M_MNEM_vst41 0xfc801e21
14431 #define M_MNEM_vst42 0xfc801e41
14432 #define M_MNEM_vst43 0xfc801e61
14433 #define M_MNEM_vld20 0xfc901e00
14434 #define M_MNEM_vld21 0xfc901e20
14435 #define M_MNEM_vld40 0xfc901e01
14436 #define M_MNEM_vld41 0xfc901e21
14437 #define M_MNEM_vld42 0xfc901e41
14438 #define M_MNEM_vld43 0xfc901e61
14439 #define M_MNEM_vstrb 0xec000e00
14440 #define M_MNEM_vstrh 0xec000e10
14441 #define M_MNEM_vstrw 0xec000e40
14442 #define M_MNEM_vstrd 0xec000e50
14443 #define M_MNEM_vldrb 0xec100e00
14444 #define M_MNEM_vldrh 0xec100e10
14445 #define M_MNEM_vldrw 0xec100e40
14446 #define M_MNEM_vldrd 0xec100e50
14447 #define M_MNEM_vmovlt 0xeea01f40
14448 #define M_MNEM_vmovlb 0xeea00f40
14449 #define M_MNEM_vmovnt 0xfe311e81
14450 #define M_MNEM_vmovnb 0xfe310e81
14451 #define M_MNEM_vadc 0xee300f00
14452 #define M_MNEM_vadci 0xee301f00
14453 #define M_MNEM_vbrsr 0xfe011e60
14454 #define M_MNEM_vaddlv 0xee890f00
14455 #define M_MNEM_vaddlva 0xee890f20
14456 #define M_MNEM_vaddv 0xeef10f00
14457 #define M_MNEM_vaddva 0xeef10f20
14458 #define M_MNEM_vddup 0xee011f6e
14459 #define M_MNEM_vdwdup 0xee011f60
14460 #define M_MNEM_vidup 0xee010f6e
14461 #define M_MNEM_viwdup 0xee010f60
14462 #define M_MNEM_vmaxv 0xeee20f00
14463 #define M_MNEM_vmaxav 0xeee00f00
14464 #define M_MNEM_vminv 0xeee20f80
14465 #define M_MNEM_vminav 0xeee00f80
14466 #define M_MNEM_vmlaldav 0xee800e00
14467 #define M_MNEM_vmlaldava 0xee800e20
14468 #define M_MNEM_vmlaldavx 0xee801e00
14469 #define M_MNEM_vmlaldavax 0xee801e20
14470 #define M_MNEM_vmlsldav 0xee800e01
14471 #define M_MNEM_vmlsldava 0xee800e21
14472 #define M_MNEM_vmlsldavx 0xee801e01
14473 #define M_MNEM_vmlsldavax 0xee801e21
14474 #define M_MNEM_vrmlaldavhx 0xee801f00
14475 #define M_MNEM_vrmlaldavhax 0xee801f20
14476 #define M_MNEM_vrmlsldavh 0xfe800e01
14477 #define M_MNEM_vrmlsldavha 0xfe800e21
14478 #define M_MNEM_vrmlsldavhx 0xfe801e01
14479 #define M_MNEM_vrmlsldavhax 0xfe801e21
14480 #define M_MNEM_vqmovnt 0xee331e01
14481 #define M_MNEM_vqmovnb 0xee330e01
14482 #define M_MNEM_vqmovunt 0xee311e81
14483 #define M_MNEM_vqmovunb 0xee310e81
14484 #define M_MNEM_vshrnt 0xee801fc1
14485 #define M_MNEM_vshrnb 0xee800fc1
14486 #define M_MNEM_vrshrnt 0xfe801fc1
14487 #define M_MNEM_vqshrnt 0xee801f40
14488 #define M_MNEM_vqshrnb 0xee800f40
14489 #define M_MNEM_vqshrunt 0xee801fc0
14490 #define M_MNEM_vqshrunb 0xee800fc0
14491 #define M_MNEM_vrshrnb 0xfe800fc1
14492 #define M_MNEM_vqrshrnt 0xee801f41
14493 #define M_MNEM_vqrshrnb 0xee800f41
14494 #define M_MNEM_vqrshrunt 0xfe801fc0
14495 #define M_MNEM_vqrshrunb 0xfe800fc0
14496
14497 /* Neon instruction encoder helpers. */
14498
14499 /* Encodings for the different types for various Neon opcodes. */
14500
14501 /* An "invalid" code for the following tables. */
14502 #define N_INV -1u
14503
14504 struct neon_tab_entry
14505 {
14506 unsigned integer;
14507 unsigned float_or_poly;
14508 unsigned scalar_or_imm;
14509 };
14510
14511 /* Map overloaded Neon opcodes to their respective encodings. */
14512 #define NEON_ENC_TAB \
14513 X(vabd, 0x0000700, 0x1200d00, N_INV), \
14514 X(vabdl, 0x0800700, N_INV, N_INV), \
14515 X(vmax, 0x0000600, 0x0000f00, N_INV), \
14516 X(vmin, 0x0000610, 0x0200f00, N_INV), \
14517 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
14518 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
14519 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
14520 X(vadd, 0x0000800, 0x0000d00, N_INV), \
14521 X(vaddl, 0x0800000, N_INV, N_INV), \
14522 X(vsub, 0x1000800, 0x0200d00, N_INV), \
14523 X(vsubl, 0x0800200, N_INV, N_INV), \
14524 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
14525 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
14526 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
14527 /* Register variants of the following two instructions are encoded as
14528 vcge / vcgt with the operands reversed. */ \
14529 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
14530 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
14531 X(vfma, N_INV, 0x0000c10, N_INV), \
14532 X(vfms, N_INV, 0x0200c10, N_INV), \
14533 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
14534 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
14535 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
14536 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
14537 X(vmlal, 0x0800800, N_INV, 0x0800240), \
14538 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
14539 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
14540 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
14541 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
14542 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
14543 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
14544 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
14545 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
14546 X(vshl, 0x0000400, N_INV, 0x0800510), \
14547 X(vqshl, 0x0000410, N_INV, 0x0800710), \
14548 X(vand, 0x0000110, N_INV, 0x0800030), \
14549 X(vbic, 0x0100110, N_INV, 0x0800030), \
14550 X(veor, 0x1000110, N_INV, N_INV), \
14551 X(vorn, 0x0300110, N_INV, 0x0800010), \
14552 X(vorr, 0x0200110, N_INV, 0x0800010), \
14553 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
14554 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
14555 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
14556 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
14557 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
14558 X(vst1, 0x0000000, 0x0800000, N_INV), \
14559 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
14560 X(vst2, 0x0000100, 0x0800100, N_INV), \
14561 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
14562 X(vst3, 0x0000200, 0x0800200, N_INV), \
14563 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
14564 X(vst4, 0x0000300, 0x0800300, N_INV), \
14565 X(vmovn, 0x1b20200, N_INV, N_INV), \
14566 X(vtrn, 0x1b20080, N_INV, N_INV), \
14567 X(vqmovn, 0x1b20200, N_INV, N_INV), \
14568 X(vqmovun, 0x1b20240, N_INV, N_INV), \
14569 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
14570 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
14571 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
14572 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
14573 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
14574 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
14575 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
14576 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
14577 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
14578 X(vseleq, 0xe000a00, N_INV, N_INV), \
14579 X(vselvs, 0xe100a00, N_INV, N_INV), \
14580 X(vselge, 0xe200a00, N_INV, N_INV), \
14581 X(vselgt, 0xe300a00, N_INV, N_INV), \
14582 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
14583 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
14584 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
14585 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
14586 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
14587 X(aes, 0x3b00300, N_INV, N_INV), \
14588 X(sha3op, 0x2000c00, N_INV, N_INV), \
14589 X(sha1h, 0x3b902c0, N_INV, N_INV), \
14590 X(sha2op, 0x3ba0380, N_INV, N_INV)
14591
14592 enum neon_opc
14593 {
14594 #define X(OPC,I,F,S) N_MNEM_##OPC
14595 NEON_ENC_TAB
14596 #undef X
14597 };
14598
14599 static const struct neon_tab_entry neon_enc_tab[] =
14600 {
14601 #define X(OPC,I,F,S) { (I), (F), (S) }
14602 NEON_ENC_TAB
14603 #undef X
14604 };
14605
14606 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
14607 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14608 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14609 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14610 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14611 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14612 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14613 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14614 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14615 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14616 #define NEON_ENC_SINGLE_(X) \
14617 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
14618 #define NEON_ENC_DOUBLE_(X) \
14619 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
14620 #define NEON_ENC_FPV8_(X) \
14621 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
14622
14623 #define NEON_ENCODE(type, inst) \
14624 do \
14625 { \
14626 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
14627 inst.is_neon = 1; \
14628 } \
14629 while (0)
14630
14631 #define check_neon_suffixes \
14632 do \
14633 { \
14634 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
14635 { \
14636 as_bad (_("invalid neon suffix for non neon instruction")); \
14637 return; \
14638 } \
14639 } \
14640 while (0)
14641
14642 /* Define shapes for instruction operands. The following mnemonic characters
14643 are used in this table:
14644
14645 F - VFP S<n> register
14646 D - Neon D<n> register
14647 Q - Neon Q<n> register
14648 I - Immediate
14649 S - Scalar
14650 R - ARM register
14651 L - D<n> register list
14652
14653 This table is used to generate various data:
14654 - enumerations of the form NS_DDR to be used as arguments to
14655 neon_select_shape.
14656 - a table classifying shapes into single, double, quad, mixed.
14657 - a table used to drive neon_select_shape. */
14658
14659 #define NEON_SHAPE_DEF \
14660 X(4, (R, R, Q, Q), QUAD), \
14661 X(4, (Q, R, R, I), QUAD), \
14662 X(4, (R, R, S, S), QUAD), \
14663 X(4, (S, S, R, R), QUAD), \
14664 X(3, (Q, R, I), QUAD), \
14665 X(3, (I, Q, Q), QUAD), \
14666 X(3, (I, Q, R), QUAD), \
14667 X(3, (R, Q, Q), QUAD), \
14668 X(3, (D, D, D), DOUBLE), \
14669 X(3, (Q, Q, Q), QUAD), \
14670 X(3, (D, D, I), DOUBLE), \
14671 X(3, (Q, Q, I), QUAD), \
14672 X(3, (D, D, S), DOUBLE), \
14673 X(3, (Q, Q, S), QUAD), \
14674 X(3, (Q, Q, R), QUAD), \
14675 X(3, (R, R, Q), QUAD), \
14676 X(2, (R, Q), QUAD), \
14677 X(2, (D, D), DOUBLE), \
14678 X(2, (Q, Q), QUAD), \
14679 X(2, (D, S), DOUBLE), \
14680 X(2, (Q, S), QUAD), \
14681 X(2, (D, R), DOUBLE), \
14682 X(2, (Q, R), QUAD), \
14683 X(2, (D, I), DOUBLE), \
14684 X(2, (Q, I), QUAD), \
14685 X(3, (D, L, D), DOUBLE), \
14686 X(2, (D, Q), MIXED), \
14687 X(2, (Q, D), MIXED), \
14688 X(3, (D, Q, I), MIXED), \
14689 X(3, (Q, D, I), MIXED), \
14690 X(3, (Q, D, D), MIXED), \
14691 X(3, (D, Q, Q), MIXED), \
14692 X(3, (Q, Q, D), MIXED), \
14693 X(3, (Q, D, S), MIXED), \
14694 X(3, (D, Q, S), MIXED), \
14695 X(4, (D, D, D, I), DOUBLE), \
14696 X(4, (Q, Q, Q, I), QUAD), \
14697 X(4, (D, D, S, I), DOUBLE), \
14698 X(4, (Q, Q, S, I), QUAD), \
14699 X(2, (F, F), SINGLE), \
14700 X(3, (F, F, F), SINGLE), \
14701 X(2, (F, I), SINGLE), \
14702 X(2, (F, D), MIXED), \
14703 X(2, (D, F), MIXED), \
14704 X(3, (F, F, I), MIXED), \
14705 X(4, (R, R, F, F), SINGLE), \
14706 X(4, (F, F, R, R), SINGLE), \
14707 X(3, (D, R, R), DOUBLE), \
14708 X(3, (R, R, D), DOUBLE), \
14709 X(2, (S, R), SINGLE), \
14710 X(2, (R, S), SINGLE), \
14711 X(2, (F, R), SINGLE), \
14712 X(2, (R, F), SINGLE), \
14713 /* Used for MVE tail predicated loop instructions. */\
14714 X(2, (R, R), QUAD), \
14715 /* Half float shape supported so far. */\
14716 X (2, (H, D), MIXED), \
14717 X (2, (D, H), MIXED), \
14718 X (2, (H, F), MIXED), \
14719 X (2, (F, H), MIXED), \
14720 X (2, (H, H), HALF), \
14721 X (2, (H, R), HALF), \
14722 X (2, (R, H), HALF), \
14723 X (2, (H, I), HALF), \
14724 X (3, (H, H, H), HALF), \
14725 X (3, (H, F, I), MIXED), \
14726 X (3, (F, H, I), MIXED), \
14727 X (3, (D, H, H), MIXED), \
14728 X (3, (D, H, S), MIXED)
14729
14730 #define S2(A,B) NS_##A##B
14731 #define S3(A,B,C) NS_##A##B##C
14732 #define S4(A,B,C,D) NS_##A##B##C##D
14733
14734 #define X(N, L, C) S##N L
14735
14736 enum neon_shape
14737 {
14738 NEON_SHAPE_DEF,
14739 NS_NULL
14740 };
14741
14742 #undef X
14743 #undef S2
14744 #undef S3
14745 #undef S4
14746
14747 enum neon_shape_class
14748 {
14749 SC_HALF,
14750 SC_SINGLE,
14751 SC_DOUBLE,
14752 SC_QUAD,
14753 SC_MIXED
14754 };
14755
14756 #define X(N, L, C) SC_##C
14757
14758 static enum neon_shape_class neon_shape_class[] =
14759 {
14760 NEON_SHAPE_DEF
14761 };
14762
14763 #undef X
14764
14765 enum neon_shape_el
14766 {
14767 SE_H,
14768 SE_F,
14769 SE_D,
14770 SE_Q,
14771 SE_I,
14772 SE_S,
14773 SE_R,
14774 SE_L
14775 };
14776
14777 /* Register widths of above. */
14778 static unsigned neon_shape_el_size[] =
14779 {
14780 16,
14781 32,
14782 64,
14783 128,
14784 0,
14785 32,
14786 32,
14787 0
14788 };
14789
14790 struct neon_shape_info
14791 {
14792 unsigned els;
14793 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
14794 };
14795
14796 #define S2(A,B) { SE_##A, SE_##B }
14797 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
14798 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
14799
14800 #define X(N, L, C) { N, S##N L }
14801
14802 static struct neon_shape_info neon_shape_tab[] =
14803 {
14804 NEON_SHAPE_DEF
14805 };
14806
14807 #undef X
14808 #undef S2
14809 #undef S3
14810 #undef S4
14811
14812 /* Bit masks used in type checking given instructions.
14813 'N_EQK' means the type must be the same as (or based on in some way) the key
14814 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
14815 set, various other bits can be set as well in order to modify the meaning of
14816 the type constraint. */
14817
14818 enum neon_type_mask
14819 {
14820 N_S8 = 0x0000001,
14821 N_S16 = 0x0000002,
14822 N_S32 = 0x0000004,
14823 N_S64 = 0x0000008,
14824 N_U8 = 0x0000010,
14825 N_U16 = 0x0000020,
14826 N_U32 = 0x0000040,
14827 N_U64 = 0x0000080,
14828 N_I8 = 0x0000100,
14829 N_I16 = 0x0000200,
14830 N_I32 = 0x0000400,
14831 N_I64 = 0x0000800,
14832 N_8 = 0x0001000,
14833 N_16 = 0x0002000,
14834 N_32 = 0x0004000,
14835 N_64 = 0x0008000,
14836 N_P8 = 0x0010000,
14837 N_P16 = 0x0020000,
14838 N_F16 = 0x0040000,
14839 N_F32 = 0x0080000,
14840 N_F64 = 0x0100000,
14841 N_P64 = 0x0200000,
14842 N_KEY = 0x1000000, /* Key element (main type specifier). */
14843 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
14844 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
14845 N_UNT = 0x8000000, /* Must be explicitly untyped. */
14846 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
14847 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
14848 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
14849 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
14850 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
14851 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
14852 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
14853 N_UTYP = 0,
14854 N_MAX_NONSPECIAL = N_P64
14855 };
14856
14857 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
14858
14859 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
14860 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14861 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
14862 #define N_S_32 (N_S8 | N_S16 | N_S32)
14863 #define N_F_16_32 (N_F16 | N_F32)
14864 #define N_SUF_32 (N_SU_32 | N_F_16_32)
14865 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
14866 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
14867 #define N_F_ALL (N_F16 | N_F32 | N_F64)
14868 #define N_I_MVE (N_I8 | N_I16 | N_I32)
14869 #define N_F_MVE (N_F16 | N_F32)
14870 #define N_SU_MVE (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14871
14872 /* Pass this as the first type argument to neon_check_type to ignore types
14873 altogether. */
14874 #define N_IGNORE_TYPE (N_KEY | N_EQK)
14875
14876 /* Select a "shape" for the current instruction (describing register types or
14877 sizes) from a list of alternatives. Return NS_NULL if the current instruction
14878 doesn't fit. For non-polymorphic shapes, checking is usually done as a
14879 function of operand parsing, so this function doesn't need to be called.
14880 Shapes should be listed in order of decreasing length. */
14881
14882 static enum neon_shape
14883 neon_select_shape (enum neon_shape shape, ...)
14884 {
14885 va_list ap;
14886 enum neon_shape first_shape = shape;
14887
14888 /* Fix missing optional operands. FIXME: we don't know at this point how
14889 many arguments we should have, so this makes the assumption that we have
14890 > 1. This is true of all current Neon opcodes, I think, but may not be
14891 true in the future. */
14892 if (!inst.operands[1].present)
14893 inst.operands[1] = inst.operands[0];
14894
14895 va_start (ap, shape);
14896
14897 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
14898 {
14899 unsigned j;
14900 int matches = 1;
14901
14902 for (j = 0; j < neon_shape_tab[shape].els; j++)
14903 {
14904 if (!inst.operands[j].present)
14905 {
14906 matches = 0;
14907 break;
14908 }
14909
14910 switch (neon_shape_tab[shape].el[j])
14911 {
14912 /* If a .f16, .16, .u16, .s16 type specifier is given over
14913 a VFP single precision register operand, it's essentially
14914 means only half of the register is used.
14915
14916 If the type specifier is given after the mnemonics, the
14917 information is stored in inst.vectype. If the type specifier
14918 is given after register operand, the information is stored
14919 in inst.operands[].vectype.
14920
14921 When there is only one type specifier, and all the register
14922 operands are the same type of hardware register, the type
14923 specifier applies to all register operands.
14924
14925 If no type specifier is given, the shape is inferred from
14926 operand information.
14927
14928 for example:
14929 vadd.f16 s0, s1, s2: NS_HHH
14930 vabs.f16 s0, s1: NS_HH
14931 vmov.f16 s0, r1: NS_HR
14932 vmov.f16 r0, s1: NS_RH
14933 vcvt.f16 r0, s1: NS_RH
14934 vcvt.f16.s32 s2, s2, #29: NS_HFI
14935 vcvt.f16.s32 s2, s2: NS_HF
14936 */
14937 case SE_H:
14938 if (!(inst.operands[j].isreg
14939 && inst.operands[j].isvec
14940 && inst.operands[j].issingle
14941 && !inst.operands[j].isquad
14942 && ((inst.vectype.elems == 1
14943 && inst.vectype.el[0].size == 16)
14944 || (inst.vectype.elems > 1
14945 && inst.vectype.el[j].size == 16)
14946 || (inst.vectype.elems == 0
14947 && inst.operands[j].vectype.type != NT_invtype
14948 && inst.operands[j].vectype.size == 16))))
14949 matches = 0;
14950 break;
14951
14952 case SE_F:
14953 if (!(inst.operands[j].isreg
14954 && inst.operands[j].isvec
14955 && inst.operands[j].issingle
14956 && !inst.operands[j].isquad
14957 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
14958 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
14959 || (inst.vectype.elems == 0
14960 && (inst.operands[j].vectype.size == 32
14961 || inst.operands[j].vectype.type == NT_invtype)))))
14962 matches = 0;
14963 break;
14964
14965 case SE_D:
14966 if (!(inst.operands[j].isreg
14967 && inst.operands[j].isvec
14968 && !inst.operands[j].isquad
14969 && !inst.operands[j].issingle))
14970 matches = 0;
14971 break;
14972
14973 case SE_R:
14974 if (!(inst.operands[j].isreg
14975 && !inst.operands[j].isvec))
14976 matches = 0;
14977 break;
14978
14979 case SE_Q:
14980 if (!(inst.operands[j].isreg
14981 && inst.operands[j].isvec
14982 && inst.operands[j].isquad
14983 && !inst.operands[j].issingle))
14984 matches = 0;
14985 break;
14986
14987 case SE_I:
14988 if (!(!inst.operands[j].isreg
14989 && !inst.operands[j].isscalar))
14990 matches = 0;
14991 break;
14992
14993 case SE_S:
14994 if (!(!inst.operands[j].isreg
14995 && inst.operands[j].isscalar))
14996 matches = 0;
14997 break;
14998
14999 case SE_L:
15000 break;
15001 }
15002 if (!matches)
15003 break;
15004 }
15005 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
15006 /* We've matched all the entries in the shape table, and we don't
15007 have any left over operands which have not been matched. */
15008 break;
15009 }
15010
15011 va_end (ap);
15012
15013 if (shape == NS_NULL && first_shape != NS_NULL)
15014 first_error (_("invalid instruction shape"));
15015
15016 return shape;
15017 }
15018
15019 /* True if SHAPE is predominantly a quadword operation (most of the time, this
15020 means the Q bit should be set). */
15021
15022 static int
15023 neon_quad (enum neon_shape shape)
15024 {
15025 return neon_shape_class[shape] == SC_QUAD;
15026 }
15027
15028 static void
15029 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
15030 unsigned *g_size)
15031 {
15032 /* Allow modification to be made to types which are constrained to be
15033 based on the key element, based on bits set alongside N_EQK. */
15034 if ((typebits & N_EQK) != 0)
15035 {
15036 if ((typebits & N_HLF) != 0)
15037 *g_size /= 2;
15038 else if ((typebits & N_DBL) != 0)
15039 *g_size *= 2;
15040 if ((typebits & N_SGN) != 0)
15041 *g_type = NT_signed;
15042 else if ((typebits & N_UNS) != 0)
15043 *g_type = NT_unsigned;
15044 else if ((typebits & N_INT) != 0)
15045 *g_type = NT_integer;
15046 else if ((typebits & N_FLT) != 0)
15047 *g_type = NT_float;
15048 else if ((typebits & N_SIZ) != 0)
15049 *g_type = NT_untyped;
15050 }
15051 }
15052
15053 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
15054 operand type, i.e. the single type specified in a Neon instruction when it
15055 is the only one given. */
15056
15057 static struct neon_type_el
15058 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
15059 {
15060 struct neon_type_el dest = *key;
15061
15062 gas_assert ((thisarg & N_EQK) != 0);
15063
15064 neon_modify_type_size (thisarg, &dest.type, &dest.size);
15065
15066 return dest;
15067 }
15068
15069 /* Convert Neon type and size into compact bitmask representation. */
15070
15071 static enum neon_type_mask
15072 type_chk_of_el_type (enum neon_el_type type, unsigned size)
15073 {
15074 switch (type)
15075 {
15076 case NT_untyped:
15077 switch (size)
15078 {
15079 case 8: return N_8;
15080 case 16: return N_16;
15081 case 32: return N_32;
15082 case 64: return N_64;
15083 default: ;
15084 }
15085 break;
15086
15087 case NT_integer:
15088 switch (size)
15089 {
15090 case 8: return N_I8;
15091 case 16: return N_I16;
15092 case 32: return N_I32;
15093 case 64: return N_I64;
15094 default: ;
15095 }
15096 break;
15097
15098 case NT_float:
15099 switch (size)
15100 {
15101 case 16: return N_F16;
15102 case 32: return N_F32;
15103 case 64: return N_F64;
15104 default: ;
15105 }
15106 break;
15107
15108 case NT_poly:
15109 switch (size)
15110 {
15111 case 8: return N_P8;
15112 case 16: return N_P16;
15113 case 64: return N_P64;
15114 default: ;
15115 }
15116 break;
15117
15118 case NT_signed:
15119 switch (size)
15120 {
15121 case 8: return N_S8;
15122 case 16: return N_S16;
15123 case 32: return N_S32;
15124 case 64: return N_S64;
15125 default: ;
15126 }
15127 break;
15128
15129 case NT_unsigned:
15130 switch (size)
15131 {
15132 case 8: return N_U8;
15133 case 16: return N_U16;
15134 case 32: return N_U32;
15135 case 64: return N_U64;
15136 default: ;
15137 }
15138 break;
15139
15140 default: ;
15141 }
15142
15143 return N_UTYP;
15144 }
15145
15146 /* Convert compact Neon bitmask type representation to a type and size. Only
15147 handles the case where a single bit is set in the mask. */
15148
15149 static int
15150 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
15151 enum neon_type_mask mask)
15152 {
15153 if ((mask & N_EQK) != 0)
15154 return FAIL;
15155
15156 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
15157 *size = 8;
15158 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
15159 *size = 16;
15160 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
15161 *size = 32;
15162 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
15163 *size = 64;
15164 else
15165 return FAIL;
15166
15167 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
15168 *type = NT_signed;
15169 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
15170 *type = NT_unsigned;
15171 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
15172 *type = NT_integer;
15173 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
15174 *type = NT_untyped;
15175 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
15176 *type = NT_poly;
15177 else if ((mask & (N_F_ALL)) != 0)
15178 *type = NT_float;
15179 else
15180 return FAIL;
15181
15182 return SUCCESS;
15183 }
15184
15185 /* Modify a bitmask of allowed types. This is only needed for type
15186 relaxation. */
15187
15188 static unsigned
15189 modify_types_allowed (unsigned allowed, unsigned mods)
15190 {
15191 unsigned size;
15192 enum neon_el_type type;
15193 unsigned destmask;
15194 int i;
15195
15196 destmask = 0;
15197
15198 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
15199 {
15200 if (el_type_of_type_chk (&type, &size,
15201 (enum neon_type_mask) (allowed & i)) == SUCCESS)
15202 {
15203 neon_modify_type_size (mods, &type, &size);
15204 destmask |= type_chk_of_el_type (type, size);
15205 }
15206 }
15207
15208 return destmask;
15209 }
15210
15211 /* Check type and return type classification.
15212 The manual states (paraphrase): If one datatype is given, it indicates the
15213 type given in:
15214 - the second operand, if there is one
15215 - the operand, if there is no second operand
15216 - the result, if there are no operands.
15217 This isn't quite good enough though, so we use a concept of a "key" datatype
15218 which is set on a per-instruction basis, which is the one which matters when
15219 only one data type is written.
15220 Note: this function has side-effects (e.g. filling in missing operands). All
15221 Neon instructions should call it before performing bit encoding. */
15222
15223 static struct neon_type_el
15224 neon_check_type (unsigned els, enum neon_shape ns, ...)
15225 {
15226 va_list ap;
15227 unsigned i, pass, key_el = 0;
15228 unsigned types[NEON_MAX_TYPE_ELS];
15229 enum neon_el_type k_type = NT_invtype;
15230 unsigned k_size = -1u;
15231 struct neon_type_el badtype = {NT_invtype, -1};
15232 unsigned key_allowed = 0;
15233
15234 /* Optional registers in Neon instructions are always (not) in operand 1.
15235 Fill in the missing operand here, if it was omitted. */
15236 if (els > 1 && !inst.operands[1].present)
15237 inst.operands[1] = inst.operands[0];
15238
15239 /* Suck up all the varargs. */
15240 va_start (ap, ns);
15241 for (i = 0; i < els; i++)
15242 {
15243 unsigned thisarg = va_arg (ap, unsigned);
15244 if (thisarg == N_IGNORE_TYPE)
15245 {
15246 va_end (ap);
15247 return badtype;
15248 }
15249 types[i] = thisarg;
15250 if ((thisarg & N_KEY) != 0)
15251 key_el = i;
15252 }
15253 va_end (ap);
15254
15255 if (inst.vectype.elems > 0)
15256 for (i = 0; i < els; i++)
15257 if (inst.operands[i].vectype.type != NT_invtype)
15258 {
15259 first_error (_("types specified in both the mnemonic and operands"));
15260 return badtype;
15261 }
15262
15263 /* Duplicate inst.vectype elements here as necessary.
15264 FIXME: No idea if this is exactly the same as the ARM assembler,
15265 particularly when an insn takes one register and one non-register
15266 operand. */
15267 if (inst.vectype.elems == 1 && els > 1)
15268 {
15269 unsigned j;
15270 inst.vectype.elems = els;
15271 inst.vectype.el[key_el] = inst.vectype.el[0];
15272 for (j = 0; j < els; j++)
15273 if (j != key_el)
15274 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
15275 types[j]);
15276 }
15277 else if (inst.vectype.elems == 0 && els > 0)
15278 {
15279 unsigned j;
15280 /* No types were given after the mnemonic, so look for types specified
15281 after each operand. We allow some flexibility here; as long as the
15282 "key" operand has a type, we can infer the others. */
15283 for (j = 0; j < els; j++)
15284 if (inst.operands[j].vectype.type != NT_invtype)
15285 inst.vectype.el[j] = inst.operands[j].vectype;
15286
15287 if (inst.operands[key_el].vectype.type != NT_invtype)
15288 {
15289 for (j = 0; j < els; j++)
15290 if (inst.operands[j].vectype.type == NT_invtype)
15291 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
15292 types[j]);
15293 }
15294 else
15295 {
15296 first_error (_("operand types can't be inferred"));
15297 return badtype;
15298 }
15299 }
15300 else if (inst.vectype.elems != els)
15301 {
15302 first_error (_("type specifier has the wrong number of parts"));
15303 return badtype;
15304 }
15305
15306 for (pass = 0; pass < 2; pass++)
15307 {
15308 for (i = 0; i < els; i++)
15309 {
15310 unsigned thisarg = types[i];
15311 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
15312 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
15313 enum neon_el_type g_type = inst.vectype.el[i].type;
15314 unsigned g_size = inst.vectype.el[i].size;
15315
15316 /* Decay more-specific signed & unsigned types to sign-insensitive
15317 integer types if sign-specific variants are unavailable. */
15318 if ((g_type == NT_signed || g_type == NT_unsigned)
15319 && (types_allowed & N_SU_ALL) == 0)
15320 g_type = NT_integer;
15321
15322 /* If only untyped args are allowed, decay any more specific types to
15323 them. Some instructions only care about signs for some element
15324 sizes, so handle that properly. */
15325 if (((types_allowed & N_UNT) == 0)
15326 && ((g_size == 8 && (types_allowed & N_8) != 0)
15327 || (g_size == 16 && (types_allowed & N_16) != 0)
15328 || (g_size == 32 && (types_allowed & N_32) != 0)
15329 || (g_size == 64 && (types_allowed & N_64) != 0)))
15330 g_type = NT_untyped;
15331
15332 if (pass == 0)
15333 {
15334 if ((thisarg & N_KEY) != 0)
15335 {
15336 k_type = g_type;
15337 k_size = g_size;
15338 key_allowed = thisarg & ~N_KEY;
15339
15340 /* Check architecture constraint on FP16 extension. */
15341 if (k_size == 16
15342 && k_type == NT_float
15343 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15344 {
15345 inst.error = _(BAD_FP16);
15346 return badtype;
15347 }
15348 }
15349 }
15350 else
15351 {
15352 if ((thisarg & N_VFP) != 0)
15353 {
15354 enum neon_shape_el regshape;
15355 unsigned regwidth, match;
15356
15357 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
15358 if (ns == NS_NULL)
15359 {
15360 first_error (_("invalid instruction shape"));
15361 return badtype;
15362 }
15363 regshape = neon_shape_tab[ns].el[i];
15364 regwidth = neon_shape_el_size[regshape];
15365
15366 /* In VFP mode, operands must match register widths. If we
15367 have a key operand, use its width, else use the width of
15368 the current operand. */
15369 if (k_size != -1u)
15370 match = k_size;
15371 else
15372 match = g_size;
15373
15374 /* FP16 will use a single precision register. */
15375 if (regwidth == 32 && match == 16)
15376 {
15377 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15378 match = regwidth;
15379 else
15380 {
15381 inst.error = _(BAD_FP16);
15382 return badtype;
15383 }
15384 }
15385
15386 if (regwidth != match)
15387 {
15388 first_error (_("operand size must match register width"));
15389 return badtype;
15390 }
15391 }
15392
15393 if ((thisarg & N_EQK) == 0)
15394 {
15395 unsigned given_type = type_chk_of_el_type (g_type, g_size);
15396
15397 if ((given_type & types_allowed) == 0)
15398 {
15399 first_error (BAD_SIMD_TYPE);
15400 return badtype;
15401 }
15402 }
15403 else
15404 {
15405 enum neon_el_type mod_k_type = k_type;
15406 unsigned mod_k_size = k_size;
15407 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
15408 if (g_type != mod_k_type || g_size != mod_k_size)
15409 {
15410 first_error (_("inconsistent types in Neon instruction"));
15411 return badtype;
15412 }
15413 }
15414 }
15415 }
15416 }
15417
15418 return inst.vectype.el[key_el];
15419 }
15420
15421 /* Neon-style VFP instruction forwarding. */
15422
15423 /* Thumb VFP instructions have 0xE in the condition field. */
15424
15425 static void
15426 do_vfp_cond_or_thumb (void)
15427 {
15428 inst.is_neon = 1;
15429
15430 if (thumb_mode)
15431 inst.instruction |= 0xe0000000;
15432 else
15433 inst.instruction |= inst.cond << 28;
15434 }
15435
15436 /* Look up and encode a simple mnemonic, for use as a helper function for the
15437 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
15438 etc. It is assumed that operand parsing has already been done, and that the
15439 operands are in the form expected by the given opcode (this isn't necessarily
15440 the same as the form in which they were parsed, hence some massaging must
15441 take place before this function is called).
15442 Checks current arch version against that in the looked-up opcode. */
15443
15444 static void
15445 do_vfp_nsyn_opcode (const char *opname)
15446 {
15447 const struct asm_opcode *opcode;
15448
15449 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
15450
15451 if (!opcode)
15452 abort ();
15453
15454 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
15455 thumb_mode ? *opcode->tvariant : *opcode->avariant),
15456 _(BAD_FPU));
15457
15458 inst.is_neon = 1;
15459
15460 if (thumb_mode)
15461 {
15462 inst.instruction = opcode->tvalue;
15463 opcode->tencode ();
15464 }
15465 else
15466 {
15467 inst.instruction = (inst.cond << 28) | opcode->avalue;
15468 opcode->aencode ();
15469 }
15470 }
15471
15472 static void
15473 do_vfp_nsyn_add_sub (enum neon_shape rs)
15474 {
15475 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
15476
15477 if (rs == NS_FFF || rs == NS_HHH)
15478 {
15479 if (is_add)
15480 do_vfp_nsyn_opcode ("fadds");
15481 else
15482 do_vfp_nsyn_opcode ("fsubs");
15483
15484 /* ARMv8.2 fp16 instruction. */
15485 if (rs == NS_HHH)
15486 do_scalar_fp16_v82_encode ();
15487 }
15488 else
15489 {
15490 if (is_add)
15491 do_vfp_nsyn_opcode ("faddd");
15492 else
15493 do_vfp_nsyn_opcode ("fsubd");
15494 }
15495 }
15496
15497 /* Check operand types to see if this is a VFP instruction, and if so call
15498 PFN (). */
15499
15500 static int
15501 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
15502 {
15503 enum neon_shape rs;
15504 struct neon_type_el et;
15505
15506 switch (args)
15507 {
15508 case 2:
15509 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15510 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15511 break;
15512
15513 case 3:
15514 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15515 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15516 N_F_ALL | N_KEY | N_VFP);
15517 break;
15518
15519 default:
15520 abort ();
15521 }
15522
15523 if (et.type != NT_invtype)
15524 {
15525 pfn (rs);
15526 return SUCCESS;
15527 }
15528
15529 inst.error = NULL;
15530 return FAIL;
15531 }
15532
15533 static void
15534 do_vfp_nsyn_mla_mls (enum neon_shape rs)
15535 {
15536 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
15537
15538 if (rs == NS_FFF || rs == NS_HHH)
15539 {
15540 if (is_mla)
15541 do_vfp_nsyn_opcode ("fmacs");
15542 else
15543 do_vfp_nsyn_opcode ("fnmacs");
15544
15545 /* ARMv8.2 fp16 instruction. */
15546 if (rs == NS_HHH)
15547 do_scalar_fp16_v82_encode ();
15548 }
15549 else
15550 {
15551 if (is_mla)
15552 do_vfp_nsyn_opcode ("fmacd");
15553 else
15554 do_vfp_nsyn_opcode ("fnmacd");
15555 }
15556 }
15557
15558 static void
15559 do_vfp_nsyn_fma_fms (enum neon_shape rs)
15560 {
15561 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
15562
15563 if (rs == NS_FFF || rs == NS_HHH)
15564 {
15565 if (is_fma)
15566 do_vfp_nsyn_opcode ("ffmas");
15567 else
15568 do_vfp_nsyn_opcode ("ffnmas");
15569
15570 /* ARMv8.2 fp16 instruction. */
15571 if (rs == NS_HHH)
15572 do_scalar_fp16_v82_encode ();
15573 }
15574 else
15575 {
15576 if (is_fma)
15577 do_vfp_nsyn_opcode ("ffmad");
15578 else
15579 do_vfp_nsyn_opcode ("ffnmad");
15580 }
15581 }
15582
15583 static void
15584 do_vfp_nsyn_mul (enum neon_shape rs)
15585 {
15586 if (rs == NS_FFF || rs == NS_HHH)
15587 {
15588 do_vfp_nsyn_opcode ("fmuls");
15589
15590 /* ARMv8.2 fp16 instruction. */
15591 if (rs == NS_HHH)
15592 do_scalar_fp16_v82_encode ();
15593 }
15594 else
15595 do_vfp_nsyn_opcode ("fmuld");
15596 }
15597
15598 static void
15599 do_vfp_nsyn_abs_neg (enum neon_shape rs)
15600 {
15601 int is_neg = (inst.instruction & 0x80) != 0;
15602 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
15603
15604 if (rs == NS_FF || rs == NS_HH)
15605 {
15606 if (is_neg)
15607 do_vfp_nsyn_opcode ("fnegs");
15608 else
15609 do_vfp_nsyn_opcode ("fabss");
15610
15611 /* ARMv8.2 fp16 instruction. */
15612 if (rs == NS_HH)
15613 do_scalar_fp16_v82_encode ();
15614 }
15615 else
15616 {
15617 if (is_neg)
15618 do_vfp_nsyn_opcode ("fnegd");
15619 else
15620 do_vfp_nsyn_opcode ("fabsd");
15621 }
15622 }
15623
15624 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
15625 insns belong to Neon, and are handled elsewhere. */
15626
15627 static void
15628 do_vfp_nsyn_ldm_stm (int is_dbmode)
15629 {
15630 int is_ldm = (inst.instruction & (1 << 20)) != 0;
15631 if (is_ldm)
15632 {
15633 if (is_dbmode)
15634 do_vfp_nsyn_opcode ("fldmdbs");
15635 else
15636 do_vfp_nsyn_opcode ("fldmias");
15637 }
15638 else
15639 {
15640 if (is_dbmode)
15641 do_vfp_nsyn_opcode ("fstmdbs");
15642 else
15643 do_vfp_nsyn_opcode ("fstmias");
15644 }
15645 }
15646
15647 static void
15648 do_vfp_nsyn_sqrt (void)
15649 {
15650 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15651 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15652
15653 if (rs == NS_FF || rs == NS_HH)
15654 {
15655 do_vfp_nsyn_opcode ("fsqrts");
15656
15657 /* ARMv8.2 fp16 instruction. */
15658 if (rs == NS_HH)
15659 do_scalar_fp16_v82_encode ();
15660 }
15661 else
15662 do_vfp_nsyn_opcode ("fsqrtd");
15663 }
15664
15665 static void
15666 do_vfp_nsyn_div (void)
15667 {
15668 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15669 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15670 N_F_ALL | N_KEY | N_VFP);
15671
15672 if (rs == NS_FFF || rs == NS_HHH)
15673 {
15674 do_vfp_nsyn_opcode ("fdivs");
15675
15676 /* ARMv8.2 fp16 instruction. */
15677 if (rs == NS_HHH)
15678 do_scalar_fp16_v82_encode ();
15679 }
15680 else
15681 do_vfp_nsyn_opcode ("fdivd");
15682 }
15683
15684 static void
15685 do_vfp_nsyn_nmul (void)
15686 {
15687 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15688 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15689 N_F_ALL | N_KEY | N_VFP);
15690
15691 if (rs == NS_FFF || rs == NS_HHH)
15692 {
15693 NEON_ENCODE (SINGLE, inst);
15694 do_vfp_sp_dyadic ();
15695
15696 /* ARMv8.2 fp16 instruction. */
15697 if (rs == NS_HHH)
15698 do_scalar_fp16_v82_encode ();
15699 }
15700 else
15701 {
15702 NEON_ENCODE (DOUBLE, inst);
15703 do_vfp_dp_rd_rn_rm ();
15704 }
15705 do_vfp_cond_or_thumb ();
15706
15707 }
15708
15709 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
15710 (0, 1, 2, 3). */
15711
15712 static unsigned
15713 neon_logbits (unsigned x)
15714 {
15715 return ffs (x) - 4;
15716 }
15717
15718 #define LOW4(R) ((R) & 0xf)
15719 #define HI1(R) (((R) >> 4) & 1)
15720
15721 static unsigned
15722 mve_get_vcmp_vpt_cond (struct neon_type_el et)
15723 {
15724 switch (et.type)
15725 {
15726 default:
15727 first_error (BAD_EL_TYPE);
15728 return 0;
15729 case NT_float:
15730 switch (inst.operands[0].imm)
15731 {
15732 default:
15733 first_error (_("invalid condition"));
15734 return 0;
15735 case 0x0:
15736 /* eq. */
15737 return 0;
15738 case 0x1:
15739 /* ne. */
15740 return 1;
15741 case 0xa:
15742 /* ge/ */
15743 return 4;
15744 case 0xb:
15745 /* lt. */
15746 return 5;
15747 case 0xc:
15748 /* gt. */
15749 return 6;
15750 case 0xd:
15751 /* le. */
15752 return 7;
15753 }
15754 case NT_integer:
15755 /* only accept eq and ne. */
15756 if (inst.operands[0].imm > 1)
15757 {
15758 first_error (_("invalid condition"));
15759 return 0;
15760 }
15761 return inst.operands[0].imm;
15762 case NT_unsigned:
15763 if (inst.operands[0].imm == 0x2)
15764 return 2;
15765 else if (inst.operands[0].imm == 0x8)
15766 return 3;
15767 else
15768 {
15769 first_error (_("invalid condition"));
15770 return 0;
15771 }
15772 case NT_signed:
15773 switch (inst.operands[0].imm)
15774 {
15775 default:
15776 first_error (_("invalid condition"));
15777 return 0;
15778 case 0xa:
15779 /* ge. */
15780 return 4;
15781 case 0xb:
15782 /* lt. */
15783 return 5;
15784 case 0xc:
15785 /* gt. */
15786 return 6;
15787 case 0xd:
15788 /* le. */
15789 return 7;
15790 }
15791 }
15792 /* Should be unreachable. */
15793 abort ();
15794 }
15795
15796 static void
15797 do_mve_vpt (void)
15798 {
15799 /* We are dealing with a vector predicated block. */
15800 if (inst.operands[0].present)
15801 {
15802 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15803 struct neon_type_el et
15804 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15805 N_EQK);
15806
15807 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15808
15809 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15810
15811 if (et.type == NT_invtype)
15812 return;
15813
15814 if (et.type == NT_float)
15815 {
15816 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15817 BAD_FPU);
15818 constraint (et.size != 16 && et.size != 32, BAD_EL_TYPE);
15819 inst.instruction |= (et.size == 16) << 28;
15820 inst.instruction |= 0x3 << 20;
15821 }
15822 else
15823 {
15824 constraint (et.size != 8 && et.size != 16 && et.size != 32,
15825 BAD_EL_TYPE);
15826 inst.instruction |= 1 << 28;
15827 inst.instruction |= neon_logbits (et.size) << 20;
15828 }
15829
15830 if (inst.operands[2].isquad)
15831 {
15832 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15833 inst.instruction |= LOW4 (inst.operands[2].reg);
15834 inst.instruction |= (fcond & 0x2) >> 1;
15835 }
15836 else
15837 {
15838 if (inst.operands[2].reg == REG_SP)
15839 as_tsktsk (MVE_BAD_SP);
15840 inst.instruction |= 1 << 6;
15841 inst.instruction |= (fcond & 0x2) << 4;
15842 inst.instruction |= inst.operands[2].reg;
15843 }
15844 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15845 inst.instruction |= (fcond & 0x4) << 10;
15846 inst.instruction |= (fcond & 0x1) << 7;
15847
15848 }
15849 set_pred_insn_type (VPT_INSN);
15850 now_pred.cc = 0;
15851 now_pred.mask = ((inst.instruction & 0x00400000) >> 19)
15852 | ((inst.instruction & 0xe000) >> 13);
15853 now_pred.warn_deprecated = FALSE;
15854 now_pred.type = VECTOR_PRED;
15855 inst.is_neon = 1;
15856 }
15857
15858 static void
15859 do_mve_vcmp (void)
15860 {
15861 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
15862 if (!inst.operands[1].isreg || !inst.operands[1].isquad)
15863 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
15864 if (!inst.operands[2].present)
15865 first_error (_("MVE vector or ARM register expected"));
15866 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15867
15868 /* Deal with 'else' conditional MVE's vcmp, it will be parsed as vcmpe. */
15869 if ((inst.instruction & 0xffffffff) == N_MNEM_vcmpe
15870 && inst.operands[1].isquad)
15871 {
15872 inst.instruction = N_MNEM_vcmp;
15873 inst.cond = 0x10;
15874 }
15875
15876 if (inst.cond > COND_ALWAYS)
15877 inst.pred_insn_type = INSIDE_VPT_INSN;
15878 else
15879 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15880
15881 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15882 struct neon_type_el et
15883 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15884 N_EQK);
15885
15886 constraint (rs == NS_IQR && inst.operands[2].reg == REG_PC
15887 && !inst.operands[2].iszr, BAD_PC);
15888
15889 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15890
15891 inst.instruction = 0xee010f00;
15892 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15893 inst.instruction |= (fcond & 0x4) << 10;
15894 inst.instruction |= (fcond & 0x1) << 7;
15895 if (et.type == NT_float)
15896 {
15897 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15898 BAD_FPU);
15899 inst.instruction |= (et.size == 16) << 28;
15900 inst.instruction |= 0x3 << 20;
15901 }
15902 else
15903 {
15904 inst.instruction |= 1 << 28;
15905 inst.instruction |= neon_logbits (et.size) << 20;
15906 }
15907 if (inst.operands[2].isquad)
15908 {
15909 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15910 inst.instruction |= (fcond & 0x2) >> 1;
15911 inst.instruction |= LOW4 (inst.operands[2].reg);
15912 }
15913 else
15914 {
15915 if (inst.operands[2].reg == REG_SP)
15916 as_tsktsk (MVE_BAD_SP);
15917 inst.instruction |= 1 << 6;
15918 inst.instruction |= (fcond & 0x2) << 4;
15919 inst.instruction |= inst.operands[2].reg;
15920 }
15921
15922 inst.is_neon = 1;
15923 return;
15924 }
15925
15926 static void
15927 do_mve_vmaxa_vmina (void)
15928 {
15929 if (inst.cond > COND_ALWAYS)
15930 inst.pred_insn_type = INSIDE_VPT_INSN;
15931 else
15932 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15933
15934 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
15935 struct neon_type_el et
15936 = neon_check_type (2, rs, N_EQK, N_KEY | N_S8 | N_S16 | N_S32);
15937
15938 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15939 inst.instruction |= neon_logbits (et.size) << 18;
15940 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15941 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15942 inst.instruction |= LOW4 (inst.operands[1].reg);
15943 inst.is_neon = 1;
15944 }
15945
15946 static void
15947 do_mve_vfmas (void)
15948 {
15949 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
15950 struct neon_type_el et
15951 = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK, N_EQK);
15952
15953 if (inst.cond > COND_ALWAYS)
15954 inst.pred_insn_type = INSIDE_VPT_INSN;
15955 else
15956 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15957
15958 if (inst.operands[2].reg == REG_SP)
15959 as_tsktsk (MVE_BAD_SP);
15960 else if (inst.operands[2].reg == REG_PC)
15961 as_tsktsk (MVE_BAD_PC);
15962
15963 inst.instruction |= (et.size == 16) << 28;
15964 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15965 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15966 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15967 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15968 inst.instruction |= inst.operands[2].reg;
15969 inst.is_neon = 1;
15970 }
15971
15972 static void
15973 do_mve_viddup (void)
15974 {
15975 if (inst.cond > COND_ALWAYS)
15976 inst.pred_insn_type = INSIDE_VPT_INSN;
15977 else
15978 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15979
15980 unsigned imm = inst.relocs[0].exp.X_add_number;
15981 constraint (imm != 1 && imm != 2 && imm != 4 && imm != 8,
15982 _("immediate must be either 1, 2, 4 or 8"));
15983
15984 enum neon_shape rs;
15985 struct neon_type_el et;
15986 unsigned Rm;
15987 if (inst.instruction == M_MNEM_vddup || inst.instruction == M_MNEM_vidup)
15988 {
15989 rs = neon_select_shape (NS_QRI, NS_NULL);
15990 et = neon_check_type (2, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK);
15991 Rm = 7;
15992 }
15993 else
15994 {
15995 constraint ((inst.operands[2].reg % 2) != 1, BAD_EVEN);
15996 if (inst.operands[2].reg == REG_SP)
15997 as_tsktsk (MVE_BAD_SP);
15998 else if (inst.operands[2].reg == REG_PC)
15999 first_error (BAD_PC);
16000
16001 rs = neon_select_shape (NS_QRRI, NS_NULL);
16002 et = neon_check_type (3, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK, N_EQK);
16003 Rm = inst.operands[2].reg >> 1;
16004 }
16005 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16006 inst.instruction |= neon_logbits (et.size) << 20;
16007 inst.instruction |= inst.operands[1].reg << 16;
16008 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16009 inst.instruction |= (imm > 2) << 7;
16010 inst.instruction |= Rm << 1;
16011 inst.instruction |= (imm == 2 || imm == 8);
16012 inst.is_neon = 1;
16013 }
16014
16015 static void
16016 do_mve_vmlas (void)
16017 {
16018 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
16019 struct neon_type_el et
16020 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
16021
16022 if (inst.operands[2].reg == REG_PC)
16023 as_tsktsk (MVE_BAD_PC);
16024 else if (inst.operands[2].reg == REG_SP)
16025 as_tsktsk (MVE_BAD_SP);
16026
16027 if (inst.cond > COND_ALWAYS)
16028 inst.pred_insn_type = INSIDE_VPT_INSN;
16029 else
16030 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16031
16032 inst.instruction |= (et.type == NT_unsigned) << 28;
16033 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16034 inst.instruction |= neon_logbits (et.size) << 20;
16035 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16036 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16037 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16038 inst.instruction |= inst.operands[2].reg;
16039 inst.is_neon = 1;
16040 }
16041
16042 static void
16043 do_mve_vshll (void)
16044 {
16045 struct neon_type_el et
16046 = neon_check_type (2, NS_QQI, N_EQK, N_S8 | N_U8 | N_S16 | N_U16 | N_KEY);
16047
16048 if (inst.cond > COND_ALWAYS)
16049 inst.pred_insn_type = INSIDE_VPT_INSN;
16050 else
16051 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16052
16053 int imm = inst.operands[2].imm;
16054 constraint (imm < 1 || (unsigned)imm > et.size,
16055 _("immediate value out of range"));
16056
16057 if ((unsigned)imm == et.size)
16058 {
16059 inst.instruction |= neon_logbits (et.size) << 18;
16060 inst.instruction |= 0x110001;
16061 }
16062 else
16063 {
16064 inst.instruction |= (et.size + imm) << 16;
16065 inst.instruction |= 0x800140;
16066 }
16067
16068 inst.instruction |= (et.type == NT_unsigned) << 28;
16069 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16070 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16071 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16072 inst.instruction |= LOW4 (inst.operands[1].reg);
16073 inst.is_neon = 1;
16074 }
16075
16076 static void
16077 do_mve_vshlc (void)
16078 {
16079 if (inst.cond > COND_ALWAYS)
16080 inst.pred_insn_type = INSIDE_VPT_INSN;
16081 else
16082 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16083
16084 if (inst.operands[1].reg == REG_PC)
16085 as_tsktsk (MVE_BAD_PC);
16086 else if (inst.operands[1].reg == REG_SP)
16087 as_tsktsk (MVE_BAD_SP);
16088
16089 int imm = inst.operands[2].imm;
16090 constraint (imm < 1 || imm > 32, _("immediate value out of range"));
16091
16092 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16093 inst.instruction |= (imm & 0x1f) << 16;
16094 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16095 inst.instruction |= inst.operands[1].reg;
16096 inst.is_neon = 1;
16097 }
16098
16099 static void
16100 do_mve_vshrn (void)
16101 {
16102 unsigned types;
16103 switch (inst.instruction)
16104 {
16105 case M_MNEM_vshrnt:
16106 case M_MNEM_vshrnb:
16107 case M_MNEM_vrshrnt:
16108 case M_MNEM_vrshrnb:
16109 types = N_I16 | N_I32;
16110 break;
16111 case M_MNEM_vqshrnt:
16112 case M_MNEM_vqshrnb:
16113 case M_MNEM_vqrshrnt:
16114 case M_MNEM_vqrshrnb:
16115 types = N_U16 | N_U32 | N_S16 | N_S32;
16116 break;
16117 case M_MNEM_vqshrunt:
16118 case M_MNEM_vqshrunb:
16119 case M_MNEM_vqrshrunt:
16120 case M_MNEM_vqrshrunb:
16121 types = N_S16 | N_S32;
16122 break;
16123 default:
16124 abort ();
16125 }
16126
16127 struct neon_type_el et = neon_check_type (2, NS_QQI, N_EQK, types | N_KEY);
16128
16129 if (inst.cond > COND_ALWAYS)
16130 inst.pred_insn_type = INSIDE_VPT_INSN;
16131 else
16132 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16133
16134 unsigned Qd = inst.operands[0].reg;
16135 unsigned Qm = inst.operands[1].reg;
16136 unsigned imm = inst.operands[2].imm;
16137 constraint (imm < 1 || ((unsigned) imm) > (et.size / 2),
16138 et.size == 16
16139 ? _("immediate operand expected in the range [1,8]")
16140 : _("immediate operand expected in the range [1,16]"));
16141
16142 inst.instruction |= (et.type == NT_unsigned) << 28;
16143 inst.instruction |= HI1 (Qd) << 22;
16144 inst.instruction |= (et.size - imm) << 16;
16145 inst.instruction |= LOW4 (Qd) << 12;
16146 inst.instruction |= HI1 (Qm) << 5;
16147 inst.instruction |= LOW4 (Qm);
16148 inst.is_neon = 1;
16149 }
16150
16151 static void
16152 do_mve_vqmovn (void)
16153 {
16154 struct neon_type_el et;
16155 if (inst.instruction == M_MNEM_vqmovnt
16156 || inst.instruction == M_MNEM_vqmovnb)
16157 et = neon_check_type (2, NS_QQ, N_EQK,
16158 N_U16 | N_U32 | N_S16 | N_S32 | N_KEY);
16159 else
16160 et = neon_check_type (2, NS_QQ, N_EQK, N_S16 | N_S32 | N_KEY);
16161
16162 if (inst.cond > COND_ALWAYS)
16163 inst.pred_insn_type = INSIDE_VPT_INSN;
16164 else
16165 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16166
16167 inst.instruction |= (et.type == NT_unsigned) << 28;
16168 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16169 inst.instruction |= (et.size == 32) << 18;
16170 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16171 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16172 inst.instruction |= LOW4 (inst.operands[1].reg);
16173 inst.is_neon = 1;
16174 }
16175
16176 static void
16177 do_mve_vpsel (void)
16178 {
16179 neon_select_shape (NS_QQQ, NS_NULL);
16180
16181 if (inst.cond > COND_ALWAYS)
16182 inst.pred_insn_type = INSIDE_VPT_INSN;
16183 else
16184 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16185
16186 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16187 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16188 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16189 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16190 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16191 inst.instruction |= LOW4 (inst.operands[2].reg);
16192 inst.is_neon = 1;
16193 }
16194
16195 static void
16196 do_mve_vpnot (void)
16197 {
16198 if (inst.cond > COND_ALWAYS)
16199 inst.pred_insn_type = INSIDE_VPT_INSN;
16200 else
16201 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16202 }
16203
16204 static void
16205 do_mve_vmaxnma_vminnma (void)
16206 {
16207 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
16208 struct neon_type_el et
16209 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
16210
16211 if (inst.cond > COND_ALWAYS)
16212 inst.pred_insn_type = INSIDE_VPT_INSN;
16213 else
16214 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16215
16216 inst.instruction |= (et.size == 16) << 28;
16217 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16218 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16219 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16220 inst.instruction |= LOW4 (inst.operands[1].reg);
16221 inst.is_neon = 1;
16222 }
16223
16224 static void
16225 do_mve_vcmul (void)
16226 {
16227 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
16228 struct neon_type_el et
16229 = neon_check_type (3, rs, N_EQK, N_EQK, N_F_MVE | N_KEY);
16230
16231 if (inst.cond > COND_ALWAYS)
16232 inst.pred_insn_type = INSIDE_VPT_INSN;
16233 else
16234 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16235
16236 unsigned rot = inst.relocs[0].exp.X_add_number;
16237 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
16238 _("immediate out of range"));
16239
16240 if (et.size == 32 && (inst.operands[0].reg == inst.operands[1].reg
16241 || inst.operands[0].reg == inst.operands[2].reg))
16242 as_tsktsk (BAD_MVE_SRCDEST);
16243
16244 inst.instruction |= (et.size == 32) << 28;
16245 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16246 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16247 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16248 inst.instruction |= (rot > 90) << 12;
16249 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16250 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16251 inst.instruction |= LOW4 (inst.operands[2].reg);
16252 inst.instruction |= (rot == 90 || rot == 270);
16253 inst.is_neon = 1;
16254 }
16255
16256 /* To handle the Low Overhead Loop instructions
16257 in Armv8.1-M Mainline and MVE. */
16258 static void
16259 do_t_loloop (void)
16260 {
16261 unsigned long insn = inst.instruction;
16262
16263 inst.instruction = THUMB_OP32 (inst.instruction);
16264
16265 if (insn == T_MNEM_lctp)
16266 return;
16267
16268 set_pred_insn_type (MVE_OUTSIDE_PRED_INSN);
16269
16270 if (insn == T_MNEM_wlstp || insn == T_MNEM_dlstp)
16271 {
16272 struct neon_type_el et
16273 = neon_check_type (2, NS_RR, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
16274 inst.instruction |= neon_logbits (et.size) << 20;
16275 inst.is_neon = 1;
16276 }
16277
16278 switch (insn)
16279 {
16280 case T_MNEM_letp:
16281 constraint (!inst.operands[0].present,
16282 _("expected LR"));
16283 /* fall through. */
16284 case T_MNEM_le:
16285 /* le <label>. */
16286 if (!inst.operands[0].present)
16287 inst.instruction |= 1 << 21;
16288
16289 v8_1_loop_reloc (TRUE);
16290 break;
16291
16292 case T_MNEM_wls:
16293 case T_MNEM_wlstp:
16294 v8_1_loop_reloc (FALSE);
16295 /* fall through. */
16296 case T_MNEM_dlstp:
16297 case T_MNEM_dls:
16298 constraint (inst.operands[1].isreg != 1, BAD_ARGS);
16299
16300 if (insn == T_MNEM_wlstp || insn == T_MNEM_dlstp)
16301 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
16302 else if (inst.operands[1].reg == REG_PC)
16303 as_tsktsk (MVE_BAD_PC);
16304 if (inst.operands[1].reg == REG_SP)
16305 as_tsktsk (MVE_BAD_SP);
16306
16307 inst.instruction |= (inst.operands[1].reg << 16);
16308 break;
16309
16310 default:
16311 abort ();
16312 }
16313 }
16314
16315
16316 static void
16317 do_vfp_nsyn_cmp (void)
16318 {
16319 enum neon_shape rs;
16320 if (!inst.operands[0].isreg)
16321 {
16322 do_mve_vcmp ();
16323 return;
16324 }
16325 else
16326 {
16327 constraint (inst.operands[2].present, BAD_SYNTAX);
16328 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd),
16329 BAD_FPU);
16330 }
16331
16332 if (inst.operands[1].isreg)
16333 {
16334 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
16335 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
16336
16337 if (rs == NS_FF || rs == NS_HH)
16338 {
16339 NEON_ENCODE (SINGLE, inst);
16340 do_vfp_sp_monadic ();
16341 }
16342 else
16343 {
16344 NEON_ENCODE (DOUBLE, inst);
16345 do_vfp_dp_rd_rm ();
16346 }
16347 }
16348 else
16349 {
16350 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
16351 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
16352
16353 switch (inst.instruction & 0x0fffffff)
16354 {
16355 case N_MNEM_vcmp:
16356 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
16357 break;
16358 case N_MNEM_vcmpe:
16359 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
16360 break;
16361 default:
16362 abort ();
16363 }
16364
16365 if (rs == NS_FI || rs == NS_HI)
16366 {
16367 NEON_ENCODE (SINGLE, inst);
16368 do_vfp_sp_compare_z ();
16369 }
16370 else
16371 {
16372 NEON_ENCODE (DOUBLE, inst);
16373 do_vfp_dp_rd ();
16374 }
16375 }
16376 do_vfp_cond_or_thumb ();
16377
16378 /* ARMv8.2 fp16 instruction. */
16379 if (rs == NS_HI || rs == NS_HH)
16380 do_scalar_fp16_v82_encode ();
16381 }
16382
16383 static void
16384 nsyn_insert_sp (void)
16385 {
16386 inst.operands[1] = inst.operands[0];
16387 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
16388 inst.operands[0].reg = REG_SP;
16389 inst.operands[0].isreg = 1;
16390 inst.operands[0].writeback = 1;
16391 inst.operands[0].present = 1;
16392 }
16393
16394 static void
16395 do_vfp_nsyn_push (void)
16396 {
16397 nsyn_insert_sp ();
16398
16399 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
16400 _("register list must contain at least 1 and at most 16 "
16401 "registers"));
16402
16403 if (inst.operands[1].issingle)
16404 do_vfp_nsyn_opcode ("fstmdbs");
16405 else
16406 do_vfp_nsyn_opcode ("fstmdbd");
16407 }
16408
16409 static void
16410 do_vfp_nsyn_pop (void)
16411 {
16412 nsyn_insert_sp ();
16413
16414 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
16415 _("register list must contain at least 1 and at most 16 "
16416 "registers"));
16417
16418 if (inst.operands[1].issingle)
16419 do_vfp_nsyn_opcode ("fldmias");
16420 else
16421 do_vfp_nsyn_opcode ("fldmiad");
16422 }
16423
16424 /* Fix up Neon data-processing instructions, ORing in the correct bits for
16425 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
16426
16427 static void
16428 neon_dp_fixup (struct arm_it* insn)
16429 {
16430 unsigned int i = insn->instruction;
16431 insn->is_neon = 1;
16432
16433 if (thumb_mode)
16434 {
16435 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
16436 if (i & (1 << 24))
16437 i |= 1 << 28;
16438
16439 i &= ~(1 << 24);
16440
16441 i |= 0xef000000;
16442 }
16443 else
16444 i |= 0xf2000000;
16445
16446 insn->instruction = i;
16447 }
16448
16449 static void
16450 mve_encode_qqr (int size, int U, int fp)
16451 {
16452 if (inst.operands[2].reg == REG_SP)
16453 as_tsktsk (MVE_BAD_SP);
16454 else if (inst.operands[2].reg == REG_PC)
16455 as_tsktsk (MVE_BAD_PC);
16456
16457 if (fp)
16458 {
16459 /* vadd. */
16460 if (((unsigned)inst.instruction) == 0xd00)
16461 inst.instruction = 0xee300f40;
16462 /* vsub. */
16463 else if (((unsigned)inst.instruction) == 0x200d00)
16464 inst.instruction = 0xee301f40;
16465 /* vmul. */
16466 else if (((unsigned)inst.instruction) == 0x1000d10)
16467 inst.instruction = 0xee310e60;
16468
16469 /* Setting size which is 1 for F16 and 0 for F32. */
16470 inst.instruction |= (size == 16) << 28;
16471 }
16472 else
16473 {
16474 /* vadd. */
16475 if (((unsigned)inst.instruction) == 0x800)
16476 inst.instruction = 0xee010f40;
16477 /* vsub. */
16478 else if (((unsigned)inst.instruction) == 0x1000800)
16479 inst.instruction = 0xee011f40;
16480 /* vhadd. */
16481 else if (((unsigned)inst.instruction) == 0)
16482 inst.instruction = 0xee000f40;
16483 /* vhsub. */
16484 else if (((unsigned)inst.instruction) == 0x200)
16485 inst.instruction = 0xee001f40;
16486 /* vmla. */
16487 else if (((unsigned)inst.instruction) == 0x900)
16488 inst.instruction = 0xee010e40;
16489 /* vmul. */
16490 else if (((unsigned)inst.instruction) == 0x910)
16491 inst.instruction = 0xee011e60;
16492 /* vqadd. */
16493 else if (((unsigned)inst.instruction) == 0x10)
16494 inst.instruction = 0xee000f60;
16495 /* vqsub. */
16496 else if (((unsigned)inst.instruction) == 0x210)
16497 inst.instruction = 0xee001f60;
16498 /* vqrdmlah. */
16499 else if (((unsigned)inst.instruction) == 0x3000b10)
16500 inst.instruction = 0xee000e40;
16501 /* vqdmulh. */
16502 else if (((unsigned)inst.instruction) == 0x0000b00)
16503 inst.instruction = 0xee010e60;
16504 /* vqrdmulh. */
16505 else if (((unsigned)inst.instruction) == 0x1000b00)
16506 inst.instruction = 0xfe010e60;
16507
16508 /* Set U-bit. */
16509 inst.instruction |= U << 28;
16510
16511 /* Setting bits for size. */
16512 inst.instruction |= neon_logbits (size) << 20;
16513 }
16514 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16515 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16516 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16517 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16518 inst.instruction |= inst.operands[2].reg;
16519 inst.is_neon = 1;
16520 }
16521
16522 static void
16523 mve_encode_rqq (unsigned bit28, unsigned size)
16524 {
16525 inst.instruction |= bit28 << 28;
16526 inst.instruction |= neon_logbits (size) << 20;
16527 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16528 inst.instruction |= inst.operands[0].reg << 12;
16529 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16530 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16531 inst.instruction |= LOW4 (inst.operands[2].reg);
16532 inst.is_neon = 1;
16533 }
16534
16535 static void
16536 mve_encode_qqq (int ubit, int size)
16537 {
16538
16539 inst.instruction |= (ubit != 0) << 28;
16540 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16541 inst.instruction |= neon_logbits (size) << 20;
16542 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16543 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16544 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16545 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16546 inst.instruction |= LOW4 (inst.operands[2].reg);
16547
16548 inst.is_neon = 1;
16549 }
16550
16551 static void
16552 mve_encode_rq (unsigned bit28, unsigned size)
16553 {
16554 inst.instruction |= bit28 << 28;
16555 inst.instruction |= neon_logbits (size) << 18;
16556 inst.instruction |= inst.operands[0].reg << 12;
16557 inst.instruction |= LOW4 (inst.operands[1].reg);
16558 inst.is_neon = 1;
16559 }
16560
16561 static void
16562 mve_encode_rrqq (unsigned U, unsigned size)
16563 {
16564 constraint (inst.operands[3].reg > 14, MVE_BAD_QREG);
16565
16566 inst.instruction |= U << 28;
16567 inst.instruction |= (inst.operands[1].reg >> 1) << 20;
16568 inst.instruction |= LOW4 (inst.operands[2].reg) << 16;
16569 inst.instruction |= (size == 32) << 16;
16570 inst.instruction |= inst.operands[0].reg << 12;
16571 inst.instruction |= HI1 (inst.operands[2].reg) << 7;
16572 inst.instruction |= inst.operands[3].reg;
16573 inst.is_neon = 1;
16574 }
16575
16576 /* Encode insns with bit pattern:
16577
16578 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
16579 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
16580
16581 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
16582 different meaning for some instruction. */
16583
16584 static void
16585 neon_three_same (int isquad, int ubit, int size)
16586 {
16587 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16588 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16589 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16590 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16591 inst.instruction |= LOW4 (inst.operands[2].reg);
16592 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16593 inst.instruction |= (isquad != 0) << 6;
16594 inst.instruction |= (ubit != 0) << 24;
16595 if (size != -1)
16596 inst.instruction |= neon_logbits (size) << 20;
16597
16598 neon_dp_fixup (&inst);
16599 }
16600
16601 /* Encode instructions of the form:
16602
16603 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
16604 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
16605
16606 Don't write size if SIZE == -1. */
16607
16608 static void
16609 neon_two_same (int qbit, int ubit, int size)
16610 {
16611 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16612 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16613 inst.instruction |= LOW4 (inst.operands[1].reg);
16614 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16615 inst.instruction |= (qbit != 0) << 6;
16616 inst.instruction |= (ubit != 0) << 24;
16617
16618 if (size != -1)
16619 inst.instruction |= neon_logbits (size) << 18;
16620
16621 neon_dp_fixup (&inst);
16622 }
16623
16624 enum vfp_or_neon_is_neon_bits
16625 {
16626 NEON_CHECK_CC = 1,
16627 NEON_CHECK_ARCH = 2,
16628 NEON_CHECK_ARCH8 = 4
16629 };
16630
16631 /* Call this function if an instruction which may have belonged to the VFP or
16632 Neon instruction sets, but turned out to be a Neon instruction (due to the
16633 operand types involved, etc.). We have to check and/or fix-up a couple of
16634 things:
16635
16636 - Make sure the user hasn't attempted to make a Neon instruction
16637 conditional.
16638 - Alter the value in the condition code field if necessary.
16639 - Make sure that the arch supports Neon instructions.
16640
16641 Which of these operations take place depends on bits from enum
16642 vfp_or_neon_is_neon_bits.
16643
16644 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
16645 current instruction's condition is COND_ALWAYS, the condition field is
16646 changed to inst.uncond_value. This is necessary because instructions shared
16647 between VFP and Neon may be conditional for the VFP variants only, and the
16648 unconditional Neon version must have, e.g., 0xF in the condition field. */
16649
16650 static int
16651 vfp_or_neon_is_neon (unsigned check)
16652 {
16653 /* Conditions are always legal in Thumb mode (IT blocks). */
16654 if (!thumb_mode && (check & NEON_CHECK_CC))
16655 {
16656 if (inst.cond != COND_ALWAYS)
16657 {
16658 first_error (_(BAD_COND));
16659 return FAIL;
16660 }
16661 if (inst.uncond_value != -1)
16662 inst.instruction |= inst.uncond_value << 28;
16663 }
16664
16665
16666 if (((check & NEON_CHECK_ARCH) && !mark_feature_used (&fpu_neon_ext_v1))
16667 || ((check & NEON_CHECK_ARCH8)
16668 && !mark_feature_used (&fpu_neon_ext_armv8)))
16669 {
16670 first_error (_(BAD_FPU));
16671 return FAIL;
16672 }
16673
16674 return SUCCESS;
16675 }
16676
16677
16678 /* Return TRUE if the SIMD instruction is available for the current
16679 cpu_variant. FP is set to TRUE if this is a SIMD floating-point
16680 instruction. CHECK contains th. CHECK contains the set of bits to pass to
16681 vfp_or_neon_is_neon for the NEON specific checks. */
16682
16683 static bfd_boolean
16684 check_simd_pred_availability (int fp, unsigned check)
16685 {
16686 if (inst.cond > COND_ALWAYS)
16687 {
16688 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16689 {
16690 inst.error = BAD_FPU;
16691 return FALSE;
16692 }
16693 inst.pred_insn_type = INSIDE_VPT_INSN;
16694 }
16695 else if (inst.cond < COND_ALWAYS)
16696 {
16697 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16698 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16699 else if (vfp_or_neon_is_neon (check) == FAIL)
16700 return FALSE;
16701 }
16702 else
16703 {
16704 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fp ? mve_fp_ext : mve_ext)
16705 && vfp_or_neon_is_neon (check) == FAIL)
16706 return FALSE;
16707
16708 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16709 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16710 }
16711 return TRUE;
16712 }
16713
16714 /* Neon instruction encoders, in approximate order of appearance. */
16715
16716 static void
16717 do_neon_dyadic_i_su (void)
16718 {
16719 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
16720 return;
16721
16722 enum neon_shape rs;
16723 struct neon_type_el et;
16724 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16725 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16726 else
16727 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16728
16729 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_32 | N_KEY);
16730
16731
16732 if (rs != NS_QQR)
16733 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16734 else
16735 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
16736 }
16737
16738 static void
16739 do_neon_dyadic_i64_su (void)
16740 {
16741 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
16742 return;
16743 enum neon_shape rs;
16744 struct neon_type_el et;
16745 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16746 {
16747 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
16748 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
16749 }
16750 else
16751 {
16752 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16753 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_ALL | N_KEY);
16754 }
16755 if (rs == NS_QQR)
16756 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
16757 else
16758 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16759 }
16760
16761 static void
16762 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
16763 unsigned immbits)
16764 {
16765 unsigned size = et.size >> 3;
16766 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16767 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16768 inst.instruction |= LOW4 (inst.operands[1].reg);
16769 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16770 inst.instruction |= (isquad != 0) << 6;
16771 inst.instruction |= immbits << 16;
16772 inst.instruction |= (size >> 3) << 7;
16773 inst.instruction |= (size & 0x7) << 19;
16774 if (write_ubit)
16775 inst.instruction |= (uval != 0) << 24;
16776
16777 neon_dp_fixup (&inst);
16778 }
16779
16780 static void
16781 do_neon_shl (void)
16782 {
16783 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
16784 return;
16785
16786 if (!inst.operands[2].isreg)
16787 {
16788 enum neon_shape rs;
16789 struct neon_type_el et;
16790 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16791 {
16792 rs = neon_select_shape (NS_QQI, NS_NULL);
16793 et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_MVE);
16794 }
16795 else
16796 {
16797 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16798 et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
16799 }
16800 int imm = inst.operands[2].imm;
16801
16802 constraint (imm < 0 || (unsigned)imm >= et.size,
16803 _("immediate out of range for shift"));
16804 NEON_ENCODE (IMMED, inst);
16805 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
16806 }
16807 else
16808 {
16809 enum neon_shape rs;
16810 struct neon_type_el et;
16811 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16812 {
16813 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16814 et = neon_check_type (3, rs, N_EQK, N_SU_MVE | N_KEY, N_EQK | N_EQK);
16815 }
16816 else
16817 {
16818 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16819 et = neon_check_type (3, rs, N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
16820 }
16821
16822
16823 if (rs == NS_QQR)
16824 {
16825 constraint (inst.operands[0].reg != inst.operands[1].reg,
16826 _("invalid instruction shape"));
16827 if (inst.operands[2].reg == REG_SP)
16828 as_tsktsk (MVE_BAD_SP);
16829 else if (inst.operands[2].reg == REG_PC)
16830 as_tsktsk (MVE_BAD_PC);
16831
16832 inst.instruction = 0xee311e60;
16833 inst.instruction |= (et.type == NT_unsigned) << 28;
16834 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16835 inst.instruction |= neon_logbits (et.size) << 18;
16836 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16837 inst.instruction |= inst.operands[2].reg;
16838 inst.is_neon = 1;
16839 }
16840 else
16841 {
16842 unsigned int tmp;
16843
16844 /* VSHL/VQSHL 3-register variants have syntax such as:
16845 vshl.xx Dd, Dm, Dn
16846 whereas other 3-register operations encoded by neon_three_same have
16847 syntax like:
16848 vadd.xx Dd, Dn, Dm
16849 (i.e. with Dn & Dm reversed). Swap operands[1].reg and
16850 operands[2].reg here. */
16851 tmp = inst.operands[2].reg;
16852 inst.operands[2].reg = inst.operands[1].reg;
16853 inst.operands[1].reg = tmp;
16854 NEON_ENCODE (INTEGER, inst);
16855 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16856 }
16857 }
16858 }
16859
16860 static void
16861 do_neon_qshl (void)
16862 {
16863 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
16864 return;
16865
16866 if (!inst.operands[2].isreg)
16867 {
16868 enum neon_shape rs;
16869 struct neon_type_el et;
16870 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16871 {
16872 rs = neon_select_shape (NS_QQI, NS_NULL);
16873 et = neon_check_type (2, rs, N_EQK, N_KEY | N_SU_MVE);
16874 }
16875 else
16876 {
16877 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16878 et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
16879 }
16880 int imm = inst.operands[2].imm;
16881
16882 constraint (imm < 0 || (unsigned)imm >= et.size,
16883 _("immediate out of range for shift"));
16884 NEON_ENCODE (IMMED, inst);
16885 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
16886 }
16887 else
16888 {
16889 enum neon_shape rs;
16890 struct neon_type_el et;
16891
16892 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16893 {
16894 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16895 et = neon_check_type (3, rs, N_EQK, N_SU_MVE | N_KEY, N_EQK | N_EQK);
16896 }
16897 else
16898 {
16899 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16900 et = neon_check_type (3, rs, N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
16901 }
16902
16903 if (rs == NS_QQR)
16904 {
16905 constraint (inst.operands[0].reg != inst.operands[1].reg,
16906 _("invalid instruction shape"));
16907 if (inst.operands[2].reg == REG_SP)
16908 as_tsktsk (MVE_BAD_SP);
16909 else if (inst.operands[2].reg == REG_PC)
16910 as_tsktsk (MVE_BAD_PC);
16911
16912 inst.instruction = 0xee311ee0;
16913 inst.instruction |= (et.type == NT_unsigned) << 28;
16914 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16915 inst.instruction |= neon_logbits (et.size) << 18;
16916 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16917 inst.instruction |= inst.operands[2].reg;
16918 inst.is_neon = 1;
16919 }
16920 else
16921 {
16922 unsigned int tmp;
16923
16924 /* See note in do_neon_shl. */
16925 tmp = inst.operands[2].reg;
16926 inst.operands[2].reg = inst.operands[1].reg;
16927 inst.operands[1].reg = tmp;
16928 NEON_ENCODE (INTEGER, inst);
16929 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16930 }
16931 }
16932 }
16933
16934 static void
16935 do_neon_rshl (void)
16936 {
16937 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
16938 return;
16939
16940 enum neon_shape rs;
16941 struct neon_type_el et;
16942 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16943 {
16944 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
16945 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
16946 }
16947 else
16948 {
16949 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16950 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_ALL | N_KEY);
16951 }
16952
16953 unsigned int tmp;
16954
16955 if (rs == NS_QQR)
16956 {
16957 if (inst.operands[2].reg == REG_PC)
16958 as_tsktsk (MVE_BAD_PC);
16959 else if (inst.operands[2].reg == REG_SP)
16960 as_tsktsk (MVE_BAD_SP);
16961
16962 constraint (inst.operands[0].reg != inst.operands[1].reg,
16963 _("invalid instruction shape"));
16964
16965 if (inst.instruction == 0x0000510)
16966 /* We are dealing with vqrshl. */
16967 inst.instruction = 0xee331ee0;
16968 else
16969 /* We are dealing with vrshl. */
16970 inst.instruction = 0xee331e60;
16971
16972 inst.instruction |= (et.type == NT_unsigned) << 28;
16973 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16974 inst.instruction |= neon_logbits (et.size) << 18;
16975 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16976 inst.instruction |= inst.operands[2].reg;
16977 inst.is_neon = 1;
16978 }
16979 else
16980 {
16981 tmp = inst.operands[2].reg;
16982 inst.operands[2].reg = inst.operands[1].reg;
16983 inst.operands[1].reg = tmp;
16984 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16985 }
16986 }
16987
16988 static int
16989 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
16990 {
16991 /* Handle .I8 pseudo-instructions. */
16992 if (size == 8)
16993 {
16994 /* Unfortunately, this will make everything apart from zero out-of-range.
16995 FIXME is this the intended semantics? There doesn't seem much point in
16996 accepting .I8 if so. */
16997 immediate |= immediate << 8;
16998 size = 16;
16999 }
17000
17001 if (size >= 32)
17002 {
17003 if (immediate == (immediate & 0x000000ff))
17004 {
17005 *immbits = immediate;
17006 return 0x1;
17007 }
17008 else if (immediate == (immediate & 0x0000ff00))
17009 {
17010 *immbits = immediate >> 8;
17011 return 0x3;
17012 }
17013 else if (immediate == (immediate & 0x00ff0000))
17014 {
17015 *immbits = immediate >> 16;
17016 return 0x5;
17017 }
17018 else if (immediate == (immediate & 0xff000000))
17019 {
17020 *immbits = immediate >> 24;
17021 return 0x7;
17022 }
17023 if ((immediate & 0xffff) != (immediate >> 16))
17024 goto bad_immediate;
17025 immediate &= 0xffff;
17026 }
17027
17028 if (immediate == (immediate & 0x000000ff))
17029 {
17030 *immbits = immediate;
17031 return 0x9;
17032 }
17033 else if (immediate == (immediate & 0x0000ff00))
17034 {
17035 *immbits = immediate >> 8;
17036 return 0xb;
17037 }
17038
17039 bad_immediate:
17040 first_error (_("immediate value out of range"));
17041 return FAIL;
17042 }
17043
17044 static void
17045 do_neon_logic (void)
17046 {
17047 if (inst.operands[2].present && inst.operands[2].isreg)
17048 {
17049 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17050 if (rs == NS_QQQ
17051 && !check_simd_pred_availability (FALSE,
17052 NEON_CHECK_ARCH | NEON_CHECK_CC))
17053 return;
17054 else if (rs != NS_QQQ
17055 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
17056 first_error (BAD_FPU);
17057
17058 neon_check_type (3, rs, N_IGNORE_TYPE);
17059 /* U bit and size field were set as part of the bitmask. */
17060 NEON_ENCODE (INTEGER, inst);
17061 neon_three_same (neon_quad (rs), 0, -1);
17062 }
17063 else
17064 {
17065 const int three_ops_form = (inst.operands[2].present
17066 && !inst.operands[2].isreg);
17067 const int immoperand = (three_ops_form ? 2 : 1);
17068 enum neon_shape rs = (three_ops_form
17069 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
17070 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
17071 /* Because neon_select_shape makes the second operand a copy of the first
17072 if the second operand is not present. */
17073 if (rs == NS_QQI
17074 && !check_simd_pred_availability (FALSE,
17075 NEON_CHECK_ARCH | NEON_CHECK_CC))
17076 return;
17077 else if (rs != NS_QQI
17078 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
17079 first_error (BAD_FPU);
17080
17081 struct neon_type_el et;
17082 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17083 et = neon_check_type (2, rs, N_I32 | N_I16 | N_KEY, N_EQK);
17084 else
17085 et = neon_check_type (2, rs, N_I8 | N_I16 | N_I32 | N_I64 | N_F32
17086 | N_KEY, N_EQK);
17087
17088 if (et.type == NT_invtype)
17089 return;
17090 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
17091 unsigned immbits;
17092 int cmode;
17093
17094
17095 if (three_ops_form)
17096 constraint (inst.operands[0].reg != inst.operands[1].reg,
17097 _("first and second operands shall be the same register"));
17098
17099 NEON_ENCODE (IMMED, inst);
17100
17101 immbits = inst.operands[immoperand].imm;
17102 if (et.size == 64)
17103 {
17104 /* .i64 is a pseudo-op, so the immediate must be a repeating
17105 pattern. */
17106 if (immbits != (inst.operands[immoperand].regisimm ?
17107 inst.operands[immoperand].reg : 0))
17108 {
17109 /* Set immbits to an invalid constant. */
17110 immbits = 0xdeadbeef;
17111 }
17112 }
17113
17114 switch (opcode)
17115 {
17116 case N_MNEM_vbic:
17117 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
17118 break;
17119
17120 case N_MNEM_vorr:
17121 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
17122 break;
17123
17124 case N_MNEM_vand:
17125 /* Pseudo-instruction for VBIC. */
17126 neon_invert_size (&immbits, 0, et.size);
17127 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
17128 break;
17129
17130 case N_MNEM_vorn:
17131 /* Pseudo-instruction for VORR. */
17132 neon_invert_size (&immbits, 0, et.size);
17133 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
17134 break;
17135
17136 default:
17137 abort ();
17138 }
17139
17140 if (cmode == FAIL)
17141 return;
17142
17143 inst.instruction |= neon_quad (rs) << 6;
17144 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17145 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17146 inst.instruction |= cmode << 8;
17147 neon_write_immbits (immbits);
17148
17149 neon_dp_fixup (&inst);
17150 }
17151 }
17152
17153 static void
17154 do_neon_bitfield (void)
17155 {
17156 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17157 neon_check_type (3, rs, N_IGNORE_TYPE);
17158 neon_three_same (neon_quad (rs), 0, -1);
17159 }
17160
17161 static void
17162 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
17163 unsigned destbits)
17164 {
17165 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
17166 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
17167 types | N_KEY);
17168 if (et.type == NT_float)
17169 {
17170 NEON_ENCODE (FLOAT, inst);
17171 if (rs == NS_QQR)
17172 mve_encode_qqr (et.size, 0, 1);
17173 else
17174 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
17175 }
17176 else
17177 {
17178 NEON_ENCODE (INTEGER, inst);
17179 if (rs == NS_QQR)
17180 mve_encode_qqr (et.size, et.type == ubit_meaning, 0);
17181 else
17182 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
17183 }
17184 }
17185
17186
17187 static void
17188 do_neon_dyadic_if_su_d (void)
17189 {
17190 /* This version only allow D registers, but that constraint is enforced during
17191 operand parsing so we don't need to do anything extra here. */
17192 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
17193 }
17194
17195 static void
17196 do_neon_dyadic_if_i_d (void)
17197 {
17198 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17199 affected if we specify unsigned args. */
17200 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17201 }
17202
17203 static void
17204 do_mve_vstr_vldr_QI (int size, int elsize, int load)
17205 {
17206 constraint (size < 32, BAD_ADDR_MODE);
17207 constraint (size != elsize, BAD_EL_TYPE);
17208 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
17209 constraint (!inst.operands[1].preind, BAD_ADDR_MODE);
17210 constraint (load && inst.operands[0].reg == inst.operands[1].reg,
17211 _("destination register and offset register may not be the"
17212 " same"));
17213
17214 int imm = inst.relocs[0].exp.X_add_number;
17215 int add = 1;
17216 if (imm < 0)
17217 {
17218 add = 0;
17219 imm = -imm;
17220 }
17221 constraint ((imm % (size / 8) != 0)
17222 || imm > (0x7f << neon_logbits (size)),
17223 (size == 32) ? _("immediate must be a multiple of 4 in the"
17224 " range of +/-[0,508]")
17225 : _("immediate must be a multiple of 8 in the"
17226 " range of +/-[0,1016]"));
17227 inst.instruction |= 0x11 << 24;
17228 inst.instruction |= add << 23;
17229 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17230 inst.instruction |= inst.operands[1].writeback << 21;
17231 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17232 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17233 inst.instruction |= 1 << 12;
17234 inst.instruction |= (size == 64) << 8;
17235 inst.instruction &= 0xffffff00;
17236 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17237 inst.instruction |= imm >> neon_logbits (size);
17238 }
17239
17240 static void
17241 do_mve_vstr_vldr_RQ (int size, int elsize, int load)
17242 {
17243 unsigned os = inst.operands[1].imm >> 5;
17244 constraint (os != 0 && size == 8,
17245 _("can not shift offsets when accessing less than half-word"));
17246 constraint (os && os != neon_logbits (size),
17247 _("shift immediate must be 1, 2 or 3 for half-word, word"
17248 " or double-word accesses respectively"));
17249 if (inst.operands[1].reg == REG_PC)
17250 as_tsktsk (MVE_BAD_PC);
17251
17252 switch (size)
17253 {
17254 case 8:
17255 constraint (elsize >= 64, BAD_EL_TYPE);
17256 break;
17257 case 16:
17258 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
17259 break;
17260 case 32:
17261 case 64:
17262 constraint (elsize != size, BAD_EL_TYPE);
17263 break;
17264 default:
17265 break;
17266 }
17267 constraint (inst.operands[1].writeback || !inst.operands[1].preind,
17268 BAD_ADDR_MODE);
17269 if (load)
17270 {
17271 constraint (inst.operands[0].reg == (inst.operands[1].imm & 0x1f),
17272 _("destination register and offset register may not be"
17273 " the same"));
17274 constraint (size == elsize && inst.vectype.el[0].type != NT_unsigned,
17275 BAD_EL_TYPE);
17276 constraint (inst.vectype.el[0].type != NT_unsigned
17277 && inst.vectype.el[0].type != NT_signed, BAD_EL_TYPE);
17278 inst.instruction |= (inst.vectype.el[0].type == NT_unsigned) << 28;
17279 }
17280 else
17281 {
17282 constraint (inst.vectype.el[0].type != NT_untyped, BAD_EL_TYPE);
17283 }
17284
17285 inst.instruction |= 1 << 23;
17286 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17287 inst.instruction |= inst.operands[1].reg << 16;
17288 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17289 inst.instruction |= neon_logbits (elsize) << 7;
17290 inst.instruction |= HI1 (inst.operands[1].imm) << 5;
17291 inst.instruction |= LOW4 (inst.operands[1].imm);
17292 inst.instruction |= !!os;
17293 }
17294
17295 static void
17296 do_mve_vstr_vldr_RI (int size, int elsize, int load)
17297 {
17298 enum neon_el_type type = inst.vectype.el[0].type;
17299
17300 constraint (size >= 64, BAD_ADDR_MODE);
17301 switch (size)
17302 {
17303 case 16:
17304 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
17305 break;
17306 case 32:
17307 constraint (elsize != size, BAD_EL_TYPE);
17308 break;
17309 default:
17310 break;
17311 }
17312 if (load)
17313 {
17314 constraint (elsize != size && type != NT_unsigned
17315 && type != NT_signed, BAD_EL_TYPE);
17316 }
17317 else
17318 {
17319 constraint (elsize != size && type != NT_untyped, BAD_EL_TYPE);
17320 }
17321
17322 int imm = inst.relocs[0].exp.X_add_number;
17323 int add = 1;
17324 if (imm < 0)
17325 {
17326 add = 0;
17327 imm = -imm;
17328 }
17329
17330 if ((imm % (size / 8) != 0) || imm > (0x7f << neon_logbits (size)))
17331 {
17332 switch (size)
17333 {
17334 case 8:
17335 constraint (1, _("immediate must be in the range of +/-[0,127]"));
17336 break;
17337 case 16:
17338 constraint (1, _("immediate must be a multiple of 2 in the"
17339 " range of +/-[0,254]"));
17340 break;
17341 case 32:
17342 constraint (1, _("immediate must be a multiple of 4 in the"
17343 " range of +/-[0,508]"));
17344 break;
17345 }
17346 }
17347
17348 if (size != elsize)
17349 {
17350 constraint (inst.operands[1].reg > 7, BAD_HIREG);
17351 constraint (inst.operands[0].reg > 14,
17352 _("MVE vector register in the range [Q0..Q7] expected"));
17353 inst.instruction |= (load && type == NT_unsigned) << 28;
17354 inst.instruction |= (size == 16) << 19;
17355 inst.instruction |= neon_logbits (elsize) << 7;
17356 }
17357 else
17358 {
17359 if (inst.operands[1].reg == REG_PC)
17360 as_tsktsk (MVE_BAD_PC);
17361 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
17362 as_tsktsk (MVE_BAD_SP);
17363 inst.instruction |= 1 << 12;
17364 inst.instruction |= neon_logbits (size) << 7;
17365 }
17366 inst.instruction |= inst.operands[1].preind << 24;
17367 inst.instruction |= add << 23;
17368 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17369 inst.instruction |= inst.operands[1].writeback << 21;
17370 inst.instruction |= inst.operands[1].reg << 16;
17371 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17372 inst.instruction &= 0xffffff80;
17373 inst.instruction |= imm >> neon_logbits (size);
17374
17375 }
17376
17377 static void
17378 do_mve_vstr_vldr (void)
17379 {
17380 unsigned size;
17381 int load = 0;
17382
17383 if (inst.cond > COND_ALWAYS)
17384 inst.pred_insn_type = INSIDE_VPT_INSN;
17385 else
17386 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17387
17388 switch (inst.instruction)
17389 {
17390 default:
17391 gas_assert (0);
17392 break;
17393 case M_MNEM_vldrb:
17394 load = 1;
17395 /* fall through. */
17396 case M_MNEM_vstrb:
17397 size = 8;
17398 break;
17399 case M_MNEM_vldrh:
17400 load = 1;
17401 /* fall through. */
17402 case M_MNEM_vstrh:
17403 size = 16;
17404 break;
17405 case M_MNEM_vldrw:
17406 load = 1;
17407 /* fall through. */
17408 case M_MNEM_vstrw:
17409 size = 32;
17410 break;
17411 case M_MNEM_vldrd:
17412 load = 1;
17413 /* fall through. */
17414 case M_MNEM_vstrd:
17415 size = 64;
17416 break;
17417 }
17418 unsigned elsize = inst.vectype.el[0].size;
17419
17420 if (inst.operands[1].isquad)
17421 {
17422 /* We are dealing with [Q, imm]{!} cases. */
17423 do_mve_vstr_vldr_QI (size, elsize, load);
17424 }
17425 else
17426 {
17427 if (inst.operands[1].immisreg == 2)
17428 {
17429 /* We are dealing with [R, Q, {UXTW #os}] cases. */
17430 do_mve_vstr_vldr_RQ (size, elsize, load);
17431 }
17432 else if (!inst.operands[1].immisreg)
17433 {
17434 /* We are dealing with [R, Imm]{!}/[R], Imm cases. */
17435 do_mve_vstr_vldr_RI (size, elsize, load);
17436 }
17437 else
17438 constraint (1, BAD_ADDR_MODE);
17439 }
17440
17441 inst.is_neon = 1;
17442 }
17443
17444 static void
17445 do_mve_vst_vld (void)
17446 {
17447 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17448 return;
17449
17450 constraint (!inst.operands[1].preind || inst.relocs[0].exp.X_add_symbol != 0
17451 || inst.relocs[0].exp.X_add_number != 0
17452 || inst.operands[1].immisreg != 0,
17453 BAD_ADDR_MODE);
17454 constraint (inst.vectype.el[0].size > 32, BAD_EL_TYPE);
17455 if (inst.operands[1].reg == REG_PC)
17456 as_tsktsk (MVE_BAD_PC);
17457 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
17458 as_tsktsk (MVE_BAD_SP);
17459
17460
17461 /* These instructions are one of the "exceptions" mentioned in
17462 handle_pred_state. They are MVE instructions that are not VPT compatible
17463 and do not accept a VPT code, thus appending such a code is a syntax
17464 error. */
17465 if (inst.cond > COND_ALWAYS)
17466 first_error (BAD_SYNTAX);
17467 /* If we append a scalar condition code we can set this to
17468 MVE_OUTSIDE_PRED_INSN as it will also lead to a syntax error. */
17469 else if (inst.cond < COND_ALWAYS)
17470 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17471 else
17472 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
17473
17474 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17475 inst.instruction |= inst.operands[1].writeback << 21;
17476 inst.instruction |= inst.operands[1].reg << 16;
17477 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17478 inst.instruction |= neon_logbits (inst.vectype.el[0].size) << 7;
17479 inst.is_neon = 1;
17480 }
17481
17482 static void
17483 do_mve_vaddlv (void)
17484 {
17485 enum neon_shape rs = neon_select_shape (NS_RRQ, NS_NULL);
17486 struct neon_type_el et
17487 = neon_check_type (3, rs, N_EQK, N_EQK, N_S32 | N_U32 | N_KEY);
17488
17489 if (et.type == NT_invtype)
17490 first_error (BAD_EL_TYPE);
17491
17492 if (inst.cond > COND_ALWAYS)
17493 inst.pred_insn_type = INSIDE_VPT_INSN;
17494 else
17495 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17496
17497 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
17498
17499 inst.instruction |= (et.type == NT_unsigned) << 28;
17500 inst.instruction |= inst.operands[1].reg << 19;
17501 inst.instruction |= inst.operands[0].reg << 12;
17502 inst.instruction |= inst.operands[2].reg;
17503 inst.is_neon = 1;
17504 }
17505
17506 static void
17507 do_neon_dyadic_if_su (void)
17508 {
17509 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
17510 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17511 N_SUF_32 | N_KEY);
17512
17513 constraint ((inst.instruction == ((unsigned) N_MNEM_vmax)
17514 || inst.instruction == ((unsigned) N_MNEM_vmin))
17515 && et.type == NT_float
17516 && !ARM_CPU_HAS_FEATURE (cpu_variant,fpu_neon_ext_v1), BAD_FPU);
17517
17518 if (!check_simd_pred_availability (et.type == NT_float,
17519 NEON_CHECK_ARCH | NEON_CHECK_CC))
17520 return;
17521
17522 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
17523 }
17524
17525 static void
17526 do_neon_addsub_if_i (void)
17527 {
17528 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
17529 && try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
17530 return;
17531
17532 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
17533 struct neon_type_el et = neon_check_type (3, rs, N_EQK,
17534 N_EQK, N_IF_32 | N_I64 | N_KEY);
17535
17536 constraint (rs == NS_QQR && et.size == 64, BAD_FPU);
17537 /* If we are parsing Q registers and the element types match MVE, which NEON
17538 also supports, then we must check whether this is an instruction that can
17539 be used by both MVE/NEON. This distinction can be made based on whether
17540 they are predicated or not. */
17541 if ((rs == NS_QQQ || rs == NS_QQR) && et.size != 64)
17542 {
17543 if (!check_simd_pred_availability (et.type == NT_float,
17544 NEON_CHECK_ARCH | NEON_CHECK_CC))
17545 return;
17546 }
17547 else
17548 {
17549 /* If they are either in a D register or are using an unsupported. */
17550 if (rs != NS_QQR
17551 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17552 return;
17553 }
17554
17555 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17556 affected if we specify unsigned args. */
17557 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
17558 }
17559
17560 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
17561 result to be:
17562 V<op> A,B (A is operand 0, B is operand 2)
17563 to mean:
17564 V<op> A,B,A
17565 not:
17566 V<op> A,B,B
17567 so handle that case specially. */
17568
17569 static void
17570 neon_exchange_operands (void)
17571 {
17572 if (inst.operands[1].present)
17573 {
17574 void *scratch = xmalloc (sizeof (inst.operands[0]));
17575
17576 /* Swap operands[1] and operands[2]. */
17577 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
17578 inst.operands[1] = inst.operands[2];
17579 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
17580 free (scratch);
17581 }
17582 else
17583 {
17584 inst.operands[1] = inst.operands[2];
17585 inst.operands[2] = inst.operands[0];
17586 }
17587 }
17588
17589 static void
17590 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
17591 {
17592 if (inst.operands[2].isreg)
17593 {
17594 if (invert)
17595 neon_exchange_operands ();
17596 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
17597 }
17598 else
17599 {
17600 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17601 struct neon_type_el et = neon_check_type (2, rs,
17602 N_EQK | N_SIZ, immtypes | N_KEY);
17603
17604 NEON_ENCODE (IMMED, inst);
17605 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17606 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17607 inst.instruction |= LOW4 (inst.operands[1].reg);
17608 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17609 inst.instruction |= neon_quad (rs) << 6;
17610 inst.instruction |= (et.type == NT_float) << 10;
17611 inst.instruction |= neon_logbits (et.size) << 18;
17612
17613 neon_dp_fixup (&inst);
17614 }
17615 }
17616
17617 static void
17618 do_neon_cmp (void)
17619 {
17620 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
17621 }
17622
17623 static void
17624 do_neon_cmp_inv (void)
17625 {
17626 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
17627 }
17628
17629 static void
17630 do_neon_ceq (void)
17631 {
17632 neon_compare (N_IF_32, N_IF_32, FALSE);
17633 }
17634
17635 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
17636 scalars, which are encoded in 5 bits, M : Rm.
17637 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
17638 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
17639 index in M.
17640
17641 Dot Product instructions are similar to multiply instructions except elsize
17642 should always be 32.
17643
17644 This function translates SCALAR, which is GAS's internal encoding of indexed
17645 scalar register, to raw encoding. There is also register and index range
17646 check based on ELSIZE. */
17647
17648 static unsigned
17649 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
17650 {
17651 unsigned regno = NEON_SCALAR_REG (scalar);
17652 unsigned elno = NEON_SCALAR_INDEX (scalar);
17653
17654 switch (elsize)
17655 {
17656 case 16:
17657 if (regno > 7 || elno > 3)
17658 goto bad_scalar;
17659 return regno | (elno << 3);
17660
17661 case 32:
17662 if (regno > 15 || elno > 1)
17663 goto bad_scalar;
17664 return regno | (elno << 4);
17665
17666 default:
17667 bad_scalar:
17668 first_error (_("scalar out of range for multiply instruction"));
17669 }
17670
17671 return 0;
17672 }
17673
17674 /* Encode multiply / multiply-accumulate scalar instructions. */
17675
17676 static void
17677 neon_mul_mac (struct neon_type_el et, int ubit)
17678 {
17679 unsigned scalar;
17680
17681 /* Give a more helpful error message if we have an invalid type. */
17682 if (et.type == NT_invtype)
17683 return;
17684
17685 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
17686 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17687 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17688 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17689 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17690 inst.instruction |= LOW4 (scalar);
17691 inst.instruction |= HI1 (scalar) << 5;
17692 inst.instruction |= (et.type == NT_float) << 8;
17693 inst.instruction |= neon_logbits (et.size) << 20;
17694 inst.instruction |= (ubit != 0) << 24;
17695
17696 neon_dp_fixup (&inst);
17697 }
17698
17699 static void
17700 do_neon_mac_maybe_scalar (void)
17701 {
17702 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
17703 return;
17704
17705 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
17706 return;
17707
17708 if (inst.operands[2].isscalar)
17709 {
17710 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17711 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17712 struct neon_type_el et = neon_check_type (3, rs,
17713 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
17714 NEON_ENCODE (SCALAR, inst);
17715 neon_mul_mac (et, neon_quad (rs));
17716 }
17717 else if (!inst.operands[2].isvec)
17718 {
17719 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17720
17721 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17722 neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17723
17724 neon_dyadic_misc (NT_unsigned, N_SU_MVE, 0);
17725 }
17726 else
17727 {
17728 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17729 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17730 affected if we specify unsigned args. */
17731 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17732 }
17733 }
17734
17735 static void
17736 do_neon_fmac (void)
17737 {
17738 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_fma)
17739 && try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
17740 return;
17741
17742 if (!check_simd_pred_availability (TRUE, NEON_CHECK_CC | NEON_CHECK_ARCH))
17743 return;
17744
17745 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17746 {
17747 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
17748 struct neon_type_el et = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK,
17749 N_EQK);
17750
17751 if (rs == NS_QQR)
17752 {
17753 if (inst.operands[2].reg == REG_SP)
17754 as_tsktsk (MVE_BAD_SP);
17755 else if (inst.operands[2].reg == REG_PC)
17756 as_tsktsk (MVE_BAD_PC);
17757
17758 inst.instruction = 0xee310e40;
17759 inst.instruction |= (et.size == 16) << 28;
17760 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17761 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17762 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17763 inst.instruction |= HI1 (inst.operands[1].reg) << 6;
17764 inst.instruction |= inst.operands[2].reg;
17765 inst.is_neon = 1;
17766 return;
17767 }
17768 }
17769 else
17770 {
17771 constraint (!inst.operands[2].isvec, BAD_FPU);
17772 }
17773
17774 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17775 }
17776
17777 static void
17778 do_neon_tst (void)
17779 {
17780 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17781 struct neon_type_el et = neon_check_type (3, rs,
17782 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
17783 neon_three_same (neon_quad (rs), 0, et.size);
17784 }
17785
17786 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
17787 same types as the MAC equivalents. The polynomial type for this instruction
17788 is encoded the same as the integer type. */
17789
17790 static void
17791 do_neon_mul (void)
17792 {
17793 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
17794 return;
17795
17796 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
17797 return;
17798
17799 if (inst.operands[2].isscalar)
17800 {
17801 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17802 do_neon_mac_maybe_scalar ();
17803 }
17804 else
17805 {
17806 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17807 {
17808 enum neon_shape rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
17809 struct neon_type_el et
17810 = neon_check_type (3, rs, N_EQK, N_EQK, N_I_MVE | N_F_MVE | N_KEY);
17811 if (et.type == NT_float)
17812 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
17813 BAD_FPU);
17814
17815 neon_dyadic_misc (NT_float, N_I_MVE | N_F_MVE, 0);
17816 }
17817 else
17818 {
17819 constraint (!inst.operands[2].isvec, BAD_FPU);
17820 neon_dyadic_misc (NT_poly,
17821 N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
17822 }
17823 }
17824 }
17825
17826 static void
17827 do_neon_qdmulh (void)
17828 {
17829 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
17830 return;
17831
17832 if (inst.operands[2].isscalar)
17833 {
17834 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17835 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17836 struct neon_type_el et = neon_check_type (3, rs,
17837 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17838 NEON_ENCODE (SCALAR, inst);
17839 neon_mul_mac (et, neon_quad (rs));
17840 }
17841 else
17842 {
17843 enum neon_shape rs;
17844 struct neon_type_el et;
17845 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17846 {
17847 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
17848 et = neon_check_type (3, rs,
17849 N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17850 }
17851 else
17852 {
17853 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17854 et = neon_check_type (3, rs,
17855 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17856 }
17857
17858 NEON_ENCODE (INTEGER, inst);
17859 if (rs == NS_QQR)
17860 mve_encode_qqr (et.size, 0, 0);
17861 else
17862 /* The U bit (rounding) comes from bit mask. */
17863 neon_three_same (neon_quad (rs), 0, et.size);
17864 }
17865 }
17866
17867 static void
17868 do_mve_vaddv (void)
17869 {
17870 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17871 struct neon_type_el et
17872 = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
17873
17874 if (et.type == NT_invtype)
17875 first_error (BAD_EL_TYPE);
17876
17877 if (inst.cond > COND_ALWAYS)
17878 inst.pred_insn_type = INSIDE_VPT_INSN;
17879 else
17880 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17881
17882 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
17883
17884 mve_encode_rq (et.type == NT_unsigned, et.size);
17885 }
17886
17887 static void
17888 do_mve_vhcadd (void)
17889 {
17890 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
17891 struct neon_type_el et
17892 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17893
17894 if (inst.cond > COND_ALWAYS)
17895 inst.pred_insn_type = INSIDE_VPT_INSN;
17896 else
17897 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17898
17899 unsigned rot = inst.relocs[0].exp.X_add_number;
17900 constraint (rot != 90 && rot != 270, _("immediate out of range"));
17901
17902 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
17903 as_tsktsk (_("Warning: 32-bit element size and same first and third "
17904 "operand makes instruction UNPREDICTABLE"));
17905
17906 mve_encode_qqq (0, et.size);
17907 inst.instruction |= (rot == 270) << 12;
17908 inst.is_neon = 1;
17909 }
17910
17911 static void
17912 do_mve_vqdmull (void)
17913 {
17914 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
17915 struct neon_type_el et
17916 = neon_check_type (3, rs, N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17917
17918 if (et.size == 32
17919 && (inst.operands[0].reg == inst.operands[1].reg
17920 || (rs == NS_QQQ && inst.operands[0].reg == inst.operands[2].reg)))
17921 as_tsktsk (BAD_MVE_SRCDEST);
17922
17923 if (inst.cond > COND_ALWAYS)
17924 inst.pred_insn_type = INSIDE_VPT_INSN;
17925 else
17926 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17927
17928 if (rs == NS_QQQ)
17929 {
17930 mve_encode_qqq (et.size == 32, 64);
17931 inst.instruction |= 1;
17932 }
17933 else
17934 {
17935 mve_encode_qqr (64, et.size == 32, 0);
17936 inst.instruction |= 0x3 << 5;
17937 }
17938 }
17939
17940 static void
17941 do_mve_vadc (void)
17942 {
17943 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17944 struct neon_type_el et
17945 = neon_check_type (3, rs, N_KEY | N_I32, N_EQK, N_EQK);
17946
17947 if (et.type == NT_invtype)
17948 first_error (BAD_EL_TYPE);
17949
17950 if (inst.cond > COND_ALWAYS)
17951 inst.pred_insn_type = INSIDE_VPT_INSN;
17952 else
17953 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17954
17955 mve_encode_qqq (0, 64);
17956 }
17957
17958 static void
17959 do_mve_vbrsr (void)
17960 {
17961 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17962 struct neon_type_el et
17963 = neon_check_type (3, rs, N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
17964
17965 if (inst.cond > COND_ALWAYS)
17966 inst.pred_insn_type = INSIDE_VPT_INSN;
17967 else
17968 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17969
17970 mve_encode_qqr (et.size, 0, 0);
17971 }
17972
17973 static void
17974 do_mve_vsbc (void)
17975 {
17976 neon_check_type (3, NS_QQQ, N_EQK, N_EQK, N_I32 | N_KEY);
17977
17978 if (inst.cond > COND_ALWAYS)
17979 inst.pred_insn_type = INSIDE_VPT_INSN;
17980 else
17981 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17982
17983 mve_encode_qqq (1, 64);
17984 }
17985
17986 static void
17987 do_mve_vmulh (void)
17988 {
17989 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17990 struct neon_type_el et
17991 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17992
17993 if (inst.cond > COND_ALWAYS)
17994 inst.pred_insn_type = INSIDE_VPT_INSN;
17995 else
17996 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17997
17998 mve_encode_qqq (et.type == NT_unsigned, et.size);
17999 }
18000
18001 static void
18002 do_mve_vqdmlah (void)
18003 {
18004 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
18005 struct neon_type_el et
18006 = neon_check_type (3, rs, N_EQK, N_EQK, N_S_32 | N_KEY);
18007
18008 if (inst.cond > COND_ALWAYS)
18009 inst.pred_insn_type = INSIDE_VPT_INSN;
18010 else
18011 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18012
18013 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
18014 }
18015
18016 static void
18017 do_mve_vqdmladh (void)
18018 {
18019 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
18020 struct neon_type_el et
18021 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
18022
18023 if (inst.cond > COND_ALWAYS)
18024 inst.pred_insn_type = INSIDE_VPT_INSN;
18025 else
18026 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18027
18028 mve_encode_qqq (0, et.size);
18029 }
18030
18031
18032 static void
18033 do_mve_vmull (void)
18034 {
18035
18036 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_DDS,
18037 NS_QQS, NS_QQQ, NS_QQR, NS_NULL);
18038 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18039 && inst.cond == COND_ALWAYS
18040 && ((unsigned)inst.instruction) == M_MNEM_vmullt)
18041 {
18042 if (rs == NS_QQQ)
18043 {
18044
18045 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
18046 N_SUF_32 | N_F64 | N_P8
18047 | N_P16 | N_I_MVE | N_KEY);
18048 if (((et.type == NT_poly) && et.size == 8
18049 && ARM_CPU_IS_ANY (cpu_variant))
18050 || (et.type == NT_integer) || (et.type == NT_float))
18051 goto neon_vmul;
18052 }
18053 else
18054 goto neon_vmul;
18055 }
18056
18057 constraint (rs != NS_QQQ, BAD_FPU);
18058 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
18059 N_SU_32 | N_P8 | N_P16 | N_KEY);
18060
18061 /* We are dealing with MVE's vmullt. */
18062 if (et.size == 32
18063 && (inst.operands[0].reg == inst.operands[1].reg
18064 || inst.operands[0].reg == inst.operands[2].reg))
18065 as_tsktsk (BAD_MVE_SRCDEST);
18066
18067 if (inst.cond > COND_ALWAYS)
18068 inst.pred_insn_type = INSIDE_VPT_INSN;
18069 else
18070 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18071
18072 if (et.type == NT_poly)
18073 mve_encode_qqq (neon_logbits (et.size), 64);
18074 else
18075 mve_encode_qqq (et.type == NT_unsigned, et.size);
18076
18077 return;
18078
18079 neon_vmul:
18080 inst.instruction = N_MNEM_vmul;
18081 inst.cond = 0xb;
18082 if (thumb_mode)
18083 inst.pred_insn_type = INSIDE_IT_INSN;
18084 do_neon_mul ();
18085 }
18086
18087 static void
18088 do_mve_vabav (void)
18089 {
18090 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
18091
18092 if (rs == NS_NULL)
18093 return;
18094
18095 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18096 return;
18097
18098 struct neon_type_el et = neon_check_type (2, NS_NULL, N_EQK, N_KEY | N_S8
18099 | N_S16 | N_S32 | N_U8 | N_U16
18100 | N_U32);
18101
18102 if (inst.cond > COND_ALWAYS)
18103 inst.pred_insn_type = INSIDE_VPT_INSN;
18104 else
18105 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18106
18107 mve_encode_rqq (et.type == NT_unsigned, et.size);
18108 }
18109
18110 static void
18111 do_mve_vmladav (void)
18112 {
18113 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
18114 struct neon_type_el et = neon_check_type (3, rs,
18115 N_EQK, N_EQK, N_SU_MVE | N_KEY);
18116
18117 if (et.type == NT_unsigned
18118 && (inst.instruction == M_MNEM_vmladavx
18119 || inst.instruction == M_MNEM_vmladavax
18120 || inst.instruction == M_MNEM_vmlsdav
18121 || inst.instruction == M_MNEM_vmlsdava
18122 || inst.instruction == M_MNEM_vmlsdavx
18123 || inst.instruction == M_MNEM_vmlsdavax))
18124 first_error (BAD_SIMD_TYPE);
18125
18126 constraint (inst.operands[2].reg > 14,
18127 _("MVE vector register in the range [Q0..Q7] expected"));
18128
18129 if (inst.cond > COND_ALWAYS)
18130 inst.pred_insn_type = INSIDE_VPT_INSN;
18131 else
18132 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18133
18134 if (inst.instruction == M_MNEM_vmlsdav
18135 || inst.instruction == M_MNEM_vmlsdava
18136 || inst.instruction == M_MNEM_vmlsdavx
18137 || inst.instruction == M_MNEM_vmlsdavax)
18138 inst.instruction |= (et.size == 8) << 28;
18139 else
18140 inst.instruction |= (et.size == 8) << 8;
18141
18142 mve_encode_rqq (et.type == NT_unsigned, 64);
18143 inst.instruction |= (et.size == 32) << 16;
18144 }
18145
18146 static void
18147 do_mve_vmlaldav (void)
18148 {
18149 enum neon_shape rs = neon_select_shape (NS_RRQQ, NS_NULL);
18150 struct neon_type_el et
18151 = neon_check_type (4, rs, N_EQK, N_EQK, N_EQK,
18152 N_S16 | N_S32 | N_U16 | N_U32 | N_KEY);
18153
18154 if (et.type == NT_unsigned
18155 && (inst.instruction == M_MNEM_vmlsldav
18156 || inst.instruction == M_MNEM_vmlsldava
18157 || inst.instruction == M_MNEM_vmlsldavx
18158 || inst.instruction == M_MNEM_vmlsldavax))
18159 first_error (BAD_SIMD_TYPE);
18160
18161 if (inst.cond > COND_ALWAYS)
18162 inst.pred_insn_type = INSIDE_VPT_INSN;
18163 else
18164 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18165
18166 mve_encode_rrqq (et.type == NT_unsigned, et.size);
18167 }
18168
18169 static void
18170 do_mve_vrmlaldavh (void)
18171 {
18172 struct neon_type_el et;
18173 if (inst.instruction == M_MNEM_vrmlsldavh
18174 || inst.instruction == M_MNEM_vrmlsldavha
18175 || inst.instruction == M_MNEM_vrmlsldavhx
18176 || inst.instruction == M_MNEM_vrmlsldavhax)
18177 {
18178 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
18179 if (inst.operands[1].reg == REG_SP)
18180 as_tsktsk (MVE_BAD_SP);
18181 }
18182 else
18183 {
18184 if (inst.instruction == M_MNEM_vrmlaldavhx
18185 || inst.instruction == M_MNEM_vrmlaldavhax)
18186 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
18187 else
18188 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK,
18189 N_U32 | N_S32 | N_KEY);
18190 /* vrmlaldavh's encoding with SP as the second, odd, GPR operand may alias
18191 with vmax/min instructions, making the use of SP in assembly really
18192 nonsensical, so instead of issuing a warning like we do for other uses
18193 of SP for the odd register operand we error out. */
18194 constraint (inst.operands[1].reg == REG_SP, BAD_SP);
18195 }
18196
18197 /* Make sure we still check the second operand is an odd one and that PC is
18198 disallowed. This because we are parsing for any GPR operand, to be able
18199 to distinguish between giving a warning or an error for SP as described
18200 above. */
18201 constraint ((inst.operands[1].reg % 2) != 1, BAD_EVEN);
18202 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
18203
18204 if (inst.cond > COND_ALWAYS)
18205 inst.pred_insn_type = INSIDE_VPT_INSN;
18206 else
18207 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18208
18209 mve_encode_rrqq (et.type == NT_unsigned, 0);
18210 }
18211
18212
18213 static void
18214 do_mve_vmaxnmv (void)
18215 {
18216 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
18217 struct neon_type_el et
18218 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
18219
18220 if (inst.cond > COND_ALWAYS)
18221 inst.pred_insn_type = INSIDE_VPT_INSN;
18222 else
18223 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18224
18225 if (inst.operands[0].reg == REG_SP)
18226 as_tsktsk (MVE_BAD_SP);
18227 else if (inst.operands[0].reg == REG_PC)
18228 as_tsktsk (MVE_BAD_PC);
18229
18230 mve_encode_rq (et.size == 16, 64);
18231 }
18232
18233 static void
18234 do_mve_vmaxv (void)
18235 {
18236 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
18237 struct neon_type_el et;
18238
18239 if (inst.instruction == M_MNEM_vmaxv || inst.instruction == M_MNEM_vminv)
18240 et = neon_check_type (2, rs, N_EQK, N_SU_MVE | N_KEY);
18241 else
18242 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
18243
18244 if (inst.cond > COND_ALWAYS)
18245 inst.pred_insn_type = INSIDE_VPT_INSN;
18246 else
18247 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18248
18249 if (inst.operands[0].reg == REG_SP)
18250 as_tsktsk (MVE_BAD_SP);
18251 else if (inst.operands[0].reg == REG_PC)
18252 as_tsktsk (MVE_BAD_PC);
18253
18254 mve_encode_rq (et.type == NT_unsigned, et.size);
18255 }
18256
18257
18258 static void
18259 do_neon_qrdmlah (void)
18260 {
18261 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
18262 return;
18263 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18264 {
18265 /* Check we're on the correct architecture. */
18266 if (!mark_feature_used (&fpu_neon_ext_armv8))
18267 inst.error
18268 = _("instruction form not available on this architecture.");
18269 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
18270 {
18271 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
18272 record_feature_use (&fpu_neon_ext_v8_1);
18273 }
18274 if (inst.operands[2].isscalar)
18275 {
18276 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
18277 struct neon_type_el et = neon_check_type (3, rs,
18278 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
18279 NEON_ENCODE (SCALAR, inst);
18280 neon_mul_mac (et, neon_quad (rs));
18281 }
18282 else
18283 {
18284 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
18285 struct neon_type_el et = neon_check_type (3, rs,
18286 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
18287 NEON_ENCODE (INTEGER, inst);
18288 /* The U bit (rounding) comes from bit mask. */
18289 neon_three_same (neon_quad (rs), 0, et.size);
18290 }
18291 }
18292 else
18293 {
18294 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
18295 struct neon_type_el et
18296 = neon_check_type (3, rs, N_EQK, N_EQK, N_S_32 | N_KEY);
18297
18298 NEON_ENCODE (INTEGER, inst);
18299 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
18300 }
18301 }
18302
18303 static void
18304 do_neon_fcmp_absolute (void)
18305 {
18306 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
18307 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
18308 N_F_16_32 | N_KEY);
18309 /* Size field comes from bit mask. */
18310 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
18311 }
18312
18313 static void
18314 do_neon_fcmp_absolute_inv (void)
18315 {
18316 neon_exchange_operands ();
18317 do_neon_fcmp_absolute ();
18318 }
18319
18320 static void
18321 do_neon_step (void)
18322 {
18323 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
18324 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
18325 N_F_16_32 | N_KEY);
18326 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
18327 }
18328
18329 static void
18330 do_neon_abs_neg (void)
18331 {
18332 enum neon_shape rs;
18333 struct neon_type_el et;
18334
18335 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
18336 return;
18337
18338 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18339 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
18340
18341 if (!check_simd_pred_availability (et.type == NT_float,
18342 NEON_CHECK_ARCH | NEON_CHECK_CC))
18343 return;
18344
18345 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18346 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18347 inst.instruction |= LOW4 (inst.operands[1].reg);
18348 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18349 inst.instruction |= neon_quad (rs) << 6;
18350 inst.instruction |= (et.type == NT_float) << 10;
18351 inst.instruction |= neon_logbits (et.size) << 18;
18352
18353 neon_dp_fixup (&inst);
18354 }
18355
18356 static void
18357 do_neon_sli (void)
18358 {
18359 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
18360 return;
18361
18362 enum neon_shape rs;
18363 struct neon_type_el et;
18364 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18365 {
18366 rs = neon_select_shape (NS_QQI, NS_NULL);
18367 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_KEY);
18368 }
18369 else
18370 {
18371 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
18372 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
18373 }
18374
18375
18376 int imm = inst.operands[2].imm;
18377 constraint (imm < 0 || (unsigned)imm >= et.size,
18378 _("immediate out of range for insert"));
18379 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
18380 }
18381
18382 static void
18383 do_neon_sri (void)
18384 {
18385 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
18386 return;
18387
18388 enum neon_shape rs;
18389 struct neon_type_el et;
18390 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18391 {
18392 rs = neon_select_shape (NS_QQI, NS_NULL);
18393 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_KEY);
18394 }
18395 else
18396 {
18397 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
18398 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
18399 }
18400
18401 int imm = inst.operands[2].imm;
18402 constraint (imm < 1 || (unsigned)imm > et.size,
18403 _("immediate out of range for insert"));
18404 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
18405 }
18406
18407 static void
18408 do_neon_qshlu_imm (void)
18409 {
18410 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
18411 return;
18412
18413 enum neon_shape rs;
18414 struct neon_type_el et;
18415 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18416 {
18417 rs = neon_select_shape (NS_QQI, NS_NULL);
18418 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
18419 }
18420 else
18421 {
18422 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
18423 et = neon_check_type (2, rs, N_EQK | N_UNS,
18424 N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
18425 }
18426
18427 int imm = inst.operands[2].imm;
18428 constraint (imm < 0 || (unsigned)imm >= et.size,
18429 _("immediate out of range for shift"));
18430 /* Only encodes the 'U present' variant of the instruction.
18431 In this case, signed types have OP (bit 8) set to 0.
18432 Unsigned types have OP set to 1. */
18433 inst.instruction |= (et.type == NT_unsigned) << 8;
18434 /* The rest of the bits are the same as other immediate shifts. */
18435 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
18436 }
18437
18438 static void
18439 do_neon_qmovn (void)
18440 {
18441 struct neon_type_el et = neon_check_type (2, NS_DQ,
18442 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
18443 /* Saturating move where operands can be signed or unsigned, and the
18444 destination has the same signedness. */
18445 NEON_ENCODE (INTEGER, inst);
18446 if (et.type == NT_unsigned)
18447 inst.instruction |= 0xc0;
18448 else
18449 inst.instruction |= 0x80;
18450 neon_two_same (0, 1, et.size / 2);
18451 }
18452
18453 static void
18454 do_neon_qmovun (void)
18455 {
18456 struct neon_type_el et = neon_check_type (2, NS_DQ,
18457 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
18458 /* Saturating move with unsigned results. Operands must be signed. */
18459 NEON_ENCODE (INTEGER, inst);
18460 neon_two_same (0, 1, et.size / 2);
18461 }
18462
18463 static void
18464 do_neon_rshift_sat_narrow (void)
18465 {
18466 /* FIXME: Types for narrowing. If operands are signed, results can be signed
18467 or unsigned. If operands are unsigned, results must also be unsigned. */
18468 struct neon_type_el et = neon_check_type (2, NS_DQI,
18469 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
18470 int imm = inst.operands[2].imm;
18471 /* This gets the bounds check, size encoding and immediate bits calculation
18472 right. */
18473 et.size /= 2;
18474
18475 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
18476 VQMOVN.I<size> <Dd>, <Qm>. */
18477 if (imm == 0)
18478 {
18479 inst.operands[2].present = 0;
18480 inst.instruction = N_MNEM_vqmovn;
18481 do_neon_qmovn ();
18482 return;
18483 }
18484
18485 constraint (imm < 1 || (unsigned)imm > et.size,
18486 _("immediate out of range"));
18487 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
18488 }
18489
18490 static void
18491 do_neon_rshift_sat_narrow_u (void)
18492 {
18493 /* FIXME: Types for narrowing. If operands are signed, results can be signed
18494 or unsigned. If operands are unsigned, results must also be unsigned. */
18495 struct neon_type_el et = neon_check_type (2, NS_DQI,
18496 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
18497 int imm = inst.operands[2].imm;
18498 /* This gets the bounds check, size encoding and immediate bits calculation
18499 right. */
18500 et.size /= 2;
18501
18502 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
18503 VQMOVUN.I<size> <Dd>, <Qm>. */
18504 if (imm == 0)
18505 {
18506 inst.operands[2].present = 0;
18507 inst.instruction = N_MNEM_vqmovun;
18508 do_neon_qmovun ();
18509 return;
18510 }
18511
18512 constraint (imm < 1 || (unsigned)imm > et.size,
18513 _("immediate out of range"));
18514 /* FIXME: The manual is kind of unclear about what value U should have in
18515 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
18516 must be 1. */
18517 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
18518 }
18519
18520 static void
18521 do_neon_movn (void)
18522 {
18523 struct neon_type_el et = neon_check_type (2, NS_DQ,
18524 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
18525 NEON_ENCODE (INTEGER, inst);
18526 neon_two_same (0, 1, et.size / 2);
18527 }
18528
18529 static void
18530 do_neon_rshift_narrow (void)
18531 {
18532 struct neon_type_el et = neon_check_type (2, NS_DQI,
18533 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
18534 int imm = inst.operands[2].imm;
18535 /* This gets the bounds check, size encoding and immediate bits calculation
18536 right. */
18537 et.size /= 2;
18538
18539 /* If immediate is zero then we are a pseudo-instruction for
18540 VMOVN.I<size> <Dd>, <Qm> */
18541 if (imm == 0)
18542 {
18543 inst.operands[2].present = 0;
18544 inst.instruction = N_MNEM_vmovn;
18545 do_neon_movn ();
18546 return;
18547 }
18548
18549 constraint (imm < 1 || (unsigned)imm > et.size,
18550 _("immediate out of range for narrowing operation"));
18551 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
18552 }
18553
18554 static void
18555 do_neon_shll (void)
18556 {
18557 /* FIXME: Type checking when lengthening. */
18558 struct neon_type_el et = neon_check_type (2, NS_QDI,
18559 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
18560 unsigned imm = inst.operands[2].imm;
18561
18562 if (imm == et.size)
18563 {
18564 /* Maximum shift variant. */
18565 NEON_ENCODE (INTEGER, inst);
18566 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18567 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18568 inst.instruction |= LOW4 (inst.operands[1].reg);
18569 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18570 inst.instruction |= neon_logbits (et.size) << 18;
18571
18572 neon_dp_fixup (&inst);
18573 }
18574 else
18575 {
18576 /* A more-specific type check for non-max versions. */
18577 et = neon_check_type (2, NS_QDI,
18578 N_EQK | N_DBL, N_SU_32 | N_KEY);
18579 NEON_ENCODE (IMMED, inst);
18580 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
18581 }
18582 }
18583
18584 /* Check the various types for the VCVT instruction, and return which version
18585 the current instruction is. */
18586
18587 #define CVT_FLAVOUR_VAR \
18588 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
18589 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
18590 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
18591 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
18592 /* Half-precision conversions. */ \
18593 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
18594 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
18595 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
18596 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
18597 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
18598 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
18599 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
18600 Compared with single/double precision variants, only the co-processor \
18601 field is different, so the encoding flow is reused here. */ \
18602 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
18603 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
18604 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
18605 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
18606 /* VFP instructions. */ \
18607 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
18608 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
18609 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
18610 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
18611 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
18612 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
18613 /* VFP instructions with bitshift. */ \
18614 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
18615 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
18616 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
18617 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
18618 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
18619 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
18620 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
18621 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
18622
18623 #define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
18624 neon_cvt_flavour_##C,
18625
18626 /* The different types of conversions we can do. */
18627 enum neon_cvt_flavour
18628 {
18629 CVT_FLAVOUR_VAR
18630 neon_cvt_flavour_invalid,
18631 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
18632 };
18633
18634 #undef CVT_VAR
18635
18636 static enum neon_cvt_flavour
18637 get_neon_cvt_flavour (enum neon_shape rs)
18638 {
18639 #define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
18640 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
18641 if (et.type != NT_invtype) \
18642 { \
18643 inst.error = NULL; \
18644 return (neon_cvt_flavour_##C); \
18645 }
18646
18647 struct neon_type_el et;
18648 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
18649 || rs == NS_FF) ? N_VFP : 0;
18650 /* The instruction versions which take an immediate take one register
18651 argument, which is extended to the width of the full register. Thus the
18652 "source" and "destination" registers must have the same width. Hack that
18653 here by making the size equal to the key (wider, in this case) operand. */
18654 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
18655
18656 CVT_FLAVOUR_VAR;
18657
18658 return neon_cvt_flavour_invalid;
18659 #undef CVT_VAR
18660 }
18661
18662 enum neon_cvt_mode
18663 {
18664 neon_cvt_mode_a,
18665 neon_cvt_mode_n,
18666 neon_cvt_mode_p,
18667 neon_cvt_mode_m,
18668 neon_cvt_mode_z,
18669 neon_cvt_mode_x,
18670 neon_cvt_mode_r
18671 };
18672
18673 /* Neon-syntax VFP conversions. */
18674
18675 static void
18676 do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
18677 {
18678 const char *opname = 0;
18679
18680 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
18681 || rs == NS_FHI || rs == NS_HFI)
18682 {
18683 /* Conversions with immediate bitshift. */
18684 const char *enc[] =
18685 {
18686 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
18687 CVT_FLAVOUR_VAR
18688 NULL
18689 #undef CVT_VAR
18690 };
18691
18692 if (flavour < (int) ARRAY_SIZE (enc))
18693 {
18694 opname = enc[flavour];
18695 constraint (inst.operands[0].reg != inst.operands[1].reg,
18696 _("operands 0 and 1 must be the same register"));
18697 inst.operands[1] = inst.operands[2];
18698 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
18699 }
18700 }
18701 else
18702 {
18703 /* Conversions without bitshift. */
18704 const char *enc[] =
18705 {
18706 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
18707 CVT_FLAVOUR_VAR
18708 NULL
18709 #undef CVT_VAR
18710 };
18711
18712 if (flavour < (int) ARRAY_SIZE (enc))
18713 opname = enc[flavour];
18714 }
18715
18716 if (opname)
18717 do_vfp_nsyn_opcode (opname);
18718
18719 /* ARMv8.2 fp16 VCVT instruction. */
18720 if (flavour == neon_cvt_flavour_s32_f16
18721 || flavour == neon_cvt_flavour_u32_f16
18722 || flavour == neon_cvt_flavour_f16_u32
18723 || flavour == neon_cvt_flavour_f16_s32)
18724 do_scalar_fp16_v82_encode ();
18725 }
18726
18727 static void
18728 do_vfp_nsyn_cvtz (void)
18729 {
18730 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
18731 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18732 const char *enc[] =
18733 {
18734 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
18735 CVT_FLAVOUR_VAR
18736 NULL
18737 #undef CVT_VAR
18738 };
18739
18740 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
18741 do_vfp_nsyn_opcode (enc[flavour]);
18742 }
18743
18744 static void
18745 do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
18746 enum neon_cvt_mode mode)
18747 {
18748 int sz, op;
18749 int rm;
18750
18751 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
18752 D register operands. */
18753 if (flavour == neon_cvt_flavour_s32_f64
18754 || flavour == neon_cvt_flavour_u32_f64)
18755 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18756 _(BAD_FPU));
18757
18758 if (flavour == neon_cvt_flavour_s32_f16
18759 || flavour == neon_cvt_flavour_u32_f16)
18760 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
18761 _(BAD_FP16));
18762
18763 set_pred_insn_type (OUTSIDE_PRED_INSN);
18764
18765 switch (flavour)
18766 {
18767 case neon_cvt_flavour_s32_f64:
18768 sz = 1;
18769 op = 1;
18770 break;
18771 case neon_cvt_flavour_s32_f32:
18772 sz = 0;
18773 op = 1;
18774 break;
18775 case neon_cvt_flavour_s32_f16:
18776 sz = 0;
18777 op = 1;
18778 break;
18779 case neon_cvt_flavour_u32_f64:
18780 sz = 1;
18781 op = 0;
18782 break;
18783 case neon_cvt_flavour_u32_f32:
18784 sz = 0;
18785 op = 0;
18786 break;
18787 case neon_cvt_flavour_u32_f16:
18788 sz = 0;
18789 op = 0;
18790 break;
18791 default:
18792 first_error (_("invalid instruction shape"));
18793 return;
18794 }
18795
18796 switch (mode)
18797 {
18798 case neon_cvt_mode_a: rm = 0; break;
18799 case neon_cvt_mode_n: rm = 1; break;
18800 case neon_cvt_mode_p: rm = 2; break;
18801 case neon_cvt_mode_m: rm = 3; break;
18802 default: first_error (_("invalid rounding mode")); return;
18803 }
18804
18805 NEON_ENCODE (FPV8, inst);
18806 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
18807 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
18808 inst.instruction |= sz << 8;
18809
18810 /* ARMv8.2 fp16 VCVT instruction. */
18811 if (flavour == neon_cvt_flavour_s32_f16
18812 ||flavour == neon_cvt_flavour_u32_f16)
18813 do_scalar_fp16_v82_encode ();
18814 inst.instruction |= op << 7;
18815 inst.instruction |= rm << 16;
18816 inst.instruction |= 0xf0000000;
18817 inst.is_neon = TRUE;
18818 }
18819
18820 static void
18821 do_neon_cvt_1 (enum neon_cvt_mode mode)
18822 {
18823 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
18824 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
18825 NS_FH, NS_HF, NS_FHI, NS_HFI,
18826 NS_NULL);
18827 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18828
18829 if (flavour == neon_cvt_flavour_invalid)
18830 return;
18831
18832 /* PR11109: Handle round-to-zero for VCVT conversions. */
18833 if (mode == neon_cvt_mode_z
18834 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
18835 && (flavour == neon_cvt_flavour_s16_f16
18836 || flavour == neon_cvt_flavour_u16_f16
18837 || flavour == neon_cvt_flavour_s32_f32
18838 || flavour == neon_cvt_flavour_u32_f32
18839 || flavour == neon_cvt_flavour_s32_f64
18840 || flavour == neon_cvt_flavour_u32_f64)
18841 && (rs == NS_FD || rs == NS_FF))
18842 {
18843 do_vfp_nsyn_cvtz ();
18844 return;
18845 }
18846
18847 /* ARMv8.2 fp16 VCVT conversions. */
18848 if (mode == neon_cvt_mode_z
18849 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
18850 && (flavour == neon_cvt_flavour_s32_f16
18851 || flavour == neon_cvt_flavour_u32_f16)
18852 && (rs == NS_FH))
18853 {
18854 do_vfp_nsyn_cvtz ();
18855 do_scalar_fp16_v82_encode ();
18856 return;
18857 }
18858
18859 /* VFP rather than Neon conversions. */
18860 if (flavour >= neon_cvt_flavour_first_fp)
18861 {
18862 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
18863 do_vfp_nsyn_cvt (rs, flavour);
18864 else
18865 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
18866
18867 return;
18868 }
18869
18870 switch (rs)
18871 {
18872 case NS_QQI:
18873 if (mode == neon_cvt_mode_z
18874 && (flavour == neon_cvt_flavour_f16_s16
18875 || flavour == neon_cvt_flavour_f16_u16
18876 || flavour == neon_cvt_flavour_s16_f16
18877 || flavour == neon_cvt_flavour_u16_f16
18878 || flavour == neon_cvt_flavour_f32_u32
18879 || flavour == neon_cvt_flavour_f32_s32
18880 || flavour == neon_cvt_flavour_s32_f32
18881 || flavour == neon_cvt_flavour_u32_f32))
18882 {
18883 if (!check_simd_pred_availability (TRUE,
18884 NEON_CHECK_CC | NEON_CHECK_ARCH))
18885 return;
18886 }
18887 else if (mode == neon_cvt_mode_n)
18888 {
18889 /* We are dealing with vcvt with the 'ne' condition. */
18890 inst.cond = 0x1;
18891 inst.instruction = N_MNEM_vcvt;
18892 do_neon_cvt_1 (neon_cvt_mode_z);
18893 return;
18894 }
18895 /* fall through. */
18896 case NS_DDI:
18897 {
18898 unsigned immbits;
18899 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
18900 0x0000100, 0x1000100, 0x0, 0x1000000};
18901
18902 if ((rs != NS_QQI || !ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18903 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18904 return;
18905
18906 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18907 {
18908 constraint (inst.operands[2].present && inst.operands[2].imm == 0,
18909 _("immediate value out of range"));
18910 switch (flavour)
18911 {
18912 case neon_cvt_flavour_f16_s16:
18913 case neon_cvt_flavour_f16_u16:
18914 case neon_cvt_flavour_s16_f16:
18915 case neon_cvt_flavour_u16_f16:
18916 constraint (inst.operands[2].imm > 16,
18917 _("immediate value out of range"));
18918 break;
18919 case neon_cvt_flavour_f32_u32:
18920 case neon_cvt_flavour_f32_s32:
18921 case neon_cvt_flavour_s32_f32:
18922 case neon_cvt_flavour_u32_f32:
18923 constraint (inst.operands[2].imm > 32,
18924 _("immediate value out of range"));
18925 break;
18926 default:
18927 inst.error = BAD_FPU;
18928 return;
18929 }
18930 }
18931
18932 /* Fixed-point conversion with #0 immediate is encoded as an
18933 integer conversion. */
18934 if (inst.operands[2].present && inst.operands[2].imm == 0)
18935 goto int_encode;
18936 NEON_ENCODE (IMMED, inst);
18937 if (flavour != neon_cvt_flavour_invalid)
18938 inst.instruction |= enctab[flavour];
18939 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18940 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18941 inst.instruction |= LOW4 (inst.operands[1].reg);
18942 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18943 inst.instruction |= neon_quad (rs) << 6;
18944 inst.instruction |= 1 << 21;
18945 if (flavour < neon_cvt_flavour_s16_f16)
18946 {
18947 inst.instruction |= 1 << 21;
18948 immbits = 32 - inst.operands[2].imm;
18949 inst.instruction |= immbits << 16;
18950 }
18951 else
18952 {
18953 inst.instruction |= 3 << 20;
18954 immbits = 16 - inst.operands[2].imm;
18955 inst.instruction |= immbits << 16;
18956 inst.instruction &= ~(1 << 9);
18957 }
18958
18959 neon_dp_fixup (&inst);
18960 }
18961 break;
18962
18963 case NS_QQ:
18964 if ((mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
18965 || mode == neon_cvt_mode_m || mode == neon_cvt_mode_p)
18966 && (flavour == neon_cvt_flavour_s16_f16
18967 || flavour == neon_cvt_flavour_u16_f16
18968 || flavour == neon_cvt_flavour_s32_f32
18969 || flavour == neon_cvt_flavour_u32_f32))
18970 {
18971 if (!check_simd_pred_availability (TRUE,
18972 NEON_CHECK_CC | NEON_CHECK_ARCH8))
18973 return;
18974 }
18975 else if (mode == neon_cvt_mode_z
18976 && (flavour == neon_cvt_flavour_f16_s16
18977 || flavour == neon_cvt_flavour_f16_u16
18978 || flavour == neon_cvt_flavour_s16_f16
18979 || flavour == neon_cvt_flavour_u16_f16
18980 || flavour == neon_cvt_flavour_f32_u32
18981 || flavour == neon_cvt_flavour_f32_s32
18982 || flavour == neon_cvt_flavour_s32_f32
18983 || flavour == neon_cvt_flavour_u32_f32))
18984 {
18985 if (!check_simd_pred_availability (TRUE,
18986 NEON_CHECK_CC | NEON_CHECK_ARCH))
18987 return;
18988 }
18989 /* fall through. */
18990 case NS_DD:
18991 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
18992 {
18993
18994 NEON_ENCODE (FLOAT, inst);
18995 if (!check_simd_pred_availability (TRUE,
18996 NEON_CHECK_CC | NEON_CHECK_ARCH8))
18997 return;
18998
18999 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19000 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19001 inst.instruction |= LOW4 (inst.operands[1].reg);
19002 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19003 inst.instruction |= neon_quad (rs) << 6;
19004 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
19005 || flavour == neon_cvt_flavour_u32_f32) << 7;
19006 inst.instruction |= mode << 8;
19007 if (flavour == neon_cvt_flavour_u16_f16
19008 || flavour == neon_cvt_flavour_s16_f16)
19009 /* Mask off the original size bits and reencode them. */
19010 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
19011
19012 if (thumb_mode)
19013 inst.instruction |= 0xfc000000;
19014 else
19015 inst.instruction |= 0xf0000000;
19016 }
19017 else
19018 {
19019 int_encode:
19020 {
19021 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
19022 0x100, 0x180, 0x0, 0x080};
19023
19024 NEON_ENCODE (INTEGER, inst);
19025
19026 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
19027 {
19028 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
19029 return;
19030 }
19031
19032 if (flavour != neon_cvt_flavour_invalid)
19033 inst.instruction |= enctab[flavour];
19034
19035 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19036 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19037 inst.instruction |= LOW4 (inst.operands[1].reg);
19038 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19039 inst.instruction |= neon_quad (rs) << 6;
19040 if (flavour >= neon_cvt_flavour_s16_f16
19041 && flavour <= neon_cvt_flavour_f16_u16)
19042 /* Half precision. */
19043 inst.instruction |= 1 << 18;
19044 else
19045 inst.instruction |= 2 << 18;
19046
19047 neon_dp_fixup (&inst);
19048 }
19049 }
19050 break;
19051
19052 /* Half-precision conversions for Advanced SIMD -- neon. */
19053 case NS_QD:
19054 case NS_DQ:
19055 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
19056 return;
19057
19058 if ((rs == NS_DQ)
19059 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
19060 {
19061 as_bad (_("operand size must match register width"));
19062 break;
19063 }
19064
19065 if ((rs == NS_QD)
19066 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
19067 {
19068 as_bad (_("operand size must match register width"));
19069 break;
19070 }
19071
19072 if (rs == NS_DQ)
19073 inst.instruction = 0x3b60600;
19074 else
19075 inst.instruction = 0x3b60700;
19076
19077 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19078 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19079 inst.instruction |= LOW4 (inst.operands[1].reg);
19080 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19081 neon_dp_fixup (&inst);
19082 break;
19083
19084 default:
19085 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
19086 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
19087 do_vfp_nsyn_cvt (rs, flavour);
19088 else
19089 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
19090 }
19091 }
19092
19093 static void
19094 do_neon_cvtr (void)
19095 {
19096 do_neon_cvt_1 (neon_cvt_mode_x);
19097 }
19098
19099 static void
19100 do_neon_cvt (void)
19101 {
19102 do_neon_cvt_1 (neon_cvt_mode_z);
19103 }
19104
19105 static void
19106 do_neon_cvta (void)
19107 {
19108 do_neon_cvt_1 (neon_cvt_mode_a);
19109 }
19110
19111 static void
19112 do_neon_cvtn (void)
19113 {
19114 do_neon_cvt_1 (neon_cvt_mode_n);
19115 }
19116
19117 static void
19118 do_neon_cvtp (void)
19119 {
19120 do_neon_cvt_1 (neon_cvt_mode_p);
19121 }
19122
19123 static void
19124 do_neon_cvtm (void)
19125 {
19126 do_neon_cvt_1 (neon_cvt_mode_m);
19127 }
19128
19129 static void
19130 do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
19131 {
19132 if (is_double)
19133 mark_feature_used (&fpu_vfp_ext_armv8);
19134
19135 encode_arm_vfp_reg (inst.operands[0].reg,
19136 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
19137 encode_arm_vfp_reg (inst.operands[1].reg,
19138 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
19139 inst.instruction |= to ? 0x10000 : 0;
19140 inst.instruction |= t ? 0x80 : 0;
19141 inst.instruction |= is_double ? 0x100 : 0;
19142 do_vfp_cond_or_thumb ();
19143 }
19144
19145 static void
19146 do_neon_cvttb_1 (bfd_boolean t)
19147 {
19148 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
19149 NS_DF, NS_DH, NS_QQ, NS_QQI, NS_NULL);
19150
19151 if (rs == NS_NULL)
19152 return;
19153 else if (rs == NS_QQ || rs == NS_QQI)
19154 {
19155 int single_to_half = 0;
19156 if (!check_simd_pred_availability (TRUE, NEON_CHECK_ARCH))
19157 return;
19158
19159 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
19160
19161 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19162 && (flavour == neon_cvt_flavour_u16_f16
19163 || flavour == neon_cvt_flavour_s16_f16
19164 || flavour == neon_cvt_flavour_f16_s16
19165 || flavour == neon_cvt_flavour_f16_u16
19166 || flavour == neon_cvt_flavour_u32_f32
19167 || flavour == neon_cvt_flavour_s32_f32
19168 || flavour == neon_cvt_flavour_f32_s32
19169 || flavour == neon_cvt_flavour_f32_u32))
19170 {
19171 inst.cond = 0xf;
19172 inst.instruction = N_MNEM_vcvt;
19173 set_pred_insn_type (INSIDE_VPT_INSN);
19174 do_neon_cvt_1 (neon_cvt_mode_z);
19175 return;
19176 }
19177 else if (rs == NS_QQ && flavour == neon_cvt_flavour_f32_f16)
19178 single_to_half = 1;
19179 else if (rs == NS_QQ && flavour != neon_cvt_flavour_f16_f32)
19180 {
19181 first_error (BAD_FPU);
19182 return;
19183 }
19184
19185 inst.instruction = 0xee3f0e01;
19186 inst.instruction |= single_to_half << 28;
19187 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19188 inst.instruction |= LOW4 (inst.operands[0].reg) << 13;
19189 inst.instruction |= t << 12;
19190 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19191 inst.instruction |= LOW4 (inst.operands[1].reg) << 1;
19192 inst.is_neon = 1;
19193 }
19194 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
19195 {
19196 inst.error = NULL;
19197 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
19198 }
19199 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
19200 {
19201 inst.error = NULL;
19202 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
19203 }
19204 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
19205 {
19206 /* The VCVTB and VCVTT instructions with D-register operands
19207 don't work for SP only targets. */
19208 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19209 _(BAD_FPU));
19210
19211 inst.error = NULL;
19212 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
19213 }
19214 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
19215 {
19216 /* The VCVTB and VCVTT instructions with D-register operands
19217 don't work for SP only targets. */
19218 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19219 _(BAD_FPU));
19220
19221 inst.error = NULL;
19222 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
19223 }
19224 else
19225 return;
19226 }
19227
19228 static void
19229 do_neon_cvtb (void)
19230 {
19231 do_neon_cvttb_1 (FALSE);
19232 }
19233
19234
19235 static void
19236 do_neon_cvtt (void)
19237 {
19238 do_neon_cvttb_1 (TRUE);
19239 }
19240
19241 static void
19242 neon_move_immediate (void)
19243 {
19244 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
19245 struct neon_type_el et = neon_check_type (2, rs,
19246 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
19247 unsigned immlo, immhi = 0, immbits;
19248 int op, cmode, float_p;
19249
19250 constraint (et.type == NT_invtype,
19251 _("operand size must be specified for immediate VMOV"));
19252
19253 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
19254 op = (inst.instruction & (1 << 5)) != 0;
19255
19256 immlo = inst.operands[1].imm;
19257 if (inst.operands[1].regisimm)
19258 immhi = inst.operands[1].reg;
19259
19260 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
19261 _("immediate has bits set outside the operand size"));
19262
19263 float_p = inst.operands[1].immisfloat;
19264
19265 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
19266 et.size, et.type)) == FAIL)
19267 {
19268 /* Invert relevant bits only. */
19269 neon_invert_size (&immlo, &immhi, et.size);
19270 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
19271 with one or the other; those cases are caught by
19272 neon_cmode_for_move_imm. */
19273 op = !op;
19274 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
19275 &op, et.size, et.type)) == FAIL)
19276 {
19277 first_error (_("immediate out of range"));
19278 return;
19279 }
19280 }
19281
19282 inst.instruction &= ~(1 << 5);
19283 inst.instruction |= op << 5;
19284
19285 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19286 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19287 inst.instruction |= neon_quad (rs) << 6;
19288 inst.instruction |= cmode << 8;
19289
19290 neon_write_immbits (immbits);
19291 }
19292
19293 static void
19294 do_neon_mvn (void)
19295 {
19296 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
19297 return;
19298
19299 if (inst.operands[1].isreg)
19300 {
19301 enum neon_shape rs;
19302 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19303 rs = neon_select_shape (NS_QQ, NS_NULL);
19304 else
19305 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19306
19307 NEON_ENCODE (INTEGER, inst);
19308 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19309 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19310 inst.instruction |= LOW4 (inst.operands[1].reg);
19311 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19312 inst.instruction |= neon_quad (rs) << 6;
19313 }
19314 else
19315 {
19316 NEON_ENCODE (IMMED, inst);
19317 neon_move_immediate ();
19318 }
19319
19320 neon_dp_fixup (&inst);
19321
19322 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19323 {
19324 constraint (!inst.operands[1].isreg && !inst.operands[0].isquad, BAD_FPU);
19325 constraint ((inst.instruction & 0xd00) == 0xd00,
19326 _("immediate value out of range"));
19327 }
19328 }
19329
19330 /* Encode instructions of form:
19331
19332 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
19333 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
19334
19335 static void
19336 neon_mixed_length (struct neon_type_el et, unsigned size)
19337 {
19338 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19339 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19340 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19341 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19342 inst.instruction |= LOW4 (inst.operands[2].reg);
19343 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19344 inst.instruction |= (et.type == NT_unsigned) << 24;
19345 inst.instruction |= neon_logbits (size) << 20;
19346
19347 neon_dp_fixup (&inst);
19348 }
19349
19350 static void
19351 do_neon_dyadic_long (void)
19352 {
19353 enum neon_shape rs = neon_select_shape (NS_QDD, NS_QQQ, NS_QQR, NS_NULL);
19354 if (rs == NS_QDD)
19355 {
19356 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH | NEON_CHECK_CC) == FAIL)
19357 return;
19358
19359 NEON_ENCODE (INTEGER, inst);
19360 /* FIXME: Type checking for lengthening op. */
19361 struct neon_type_el et = neon_check_type (3, NS_QDD,
19362 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
19363 neon_mixed_length (et, et.size);
19364 }
19365 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19366 && (inst.cond == 0xf || inst.cond == 0x10))
19367 {
19368 /* If parsing for MVE, vaddl/vsubl/vabdl{e,t} can only be vadd/vsub/vabd
19369 in an IT block with le/lt conditions. */
19370
19371 if (inst.cond == 0xf)
19372 inst.cond = 0xb;
19373 else if (inst.cond == 0x10)
19374 inst.cond = 0xd;
19375
19376 inst.pred_insn_type = INSIDE_IT_INSN;
19377
19378 if (inst.instruction == N_MNEM_vaddl)
19379 {
19380 inst.instruction = N_MNEM_vadd;
19381 do_neon_addsub_if_i ();
19382 }
19383 else if (inst.instruction == N_MNEM_vsubl)
19384 {
19385 inst.instruction = N_MNEM_vsub;
19386 do_neon_addsub_if_i ();
19387 }
19388 else if (inst.instruction == N_MNEM_vabdl)
19389 {
19390 inst.instruction = N_MNEM_vabd;
19391 do_neon_dyadic_if_su ();
19392 }
19393 }
19394 else
19395 first_error (BAD_FPU);
19396 }
19397
19398 static void
19399 do_neon_abal (void)
19400 {
19401 struct neon_type_el et = neon_check_type (3, NS_QDD,
19402 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
19403 neon_mixed_length (et, et.size);
19404 }
19405
19406 static void
19407 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
19408 {
19409 if (inst.operands[2].isscalar)
19410 {
19411 struct neon_type_el et = neon_check_type (3, NS_QDS,
19412 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
19413 NEON_ENCODE (SCALAR, inst);
19414 neon_mul_mac (et, et.type == NT_unsigned);
19415 }
19416 else
19417 {
19418 struct neon_type_el et = neon_check_type (3, NS_QDD,
19419 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
19420 NEON_ENCODE (INTEGER, inst);
19421 neon_mixed_length (et, et.size);
19422 }
19423 }
19424
19425 static void
19426 do_neon_mac_maybe_scalar_long (void)
19427 {
19428 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
19429 }
19430
19431 /* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
19432 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
19433
19434 static unsigned
19435 neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
19436 {
19437 unsigned regno = NEON_SCALAR_REG (scalar);
19438 unsigned elno = NEON_SCALAR_INDEX (scalar);
19439
19440 if (quad_p)
19441 {
19442 if (regno > 7 || elno > 3)
19443 goto bad_scalar;
19444
19445 return ((regno & 0x7)
19446 | ((elno & 0x1) << 3)
19447 | (((elno >> 1) & 0x1) << 5));
19448 }
19449 else
19450 {
19451 if (regno > 15 || elno > 1)
19452 goto bad_scalar;
19453
19454 return (((regno & 0x1) << 5)
19455 | ((regno >> 1) & 0x7)
19456 | ((elno & 0x1) << 3));
19457 }
19458
19459 bad_scalar:
19460 first_error (_("scalar out of range for multiply instruction"));
19461 return 0;
19462 }
19463
19464 static void
19465 do_neon_fmac_maybe_scalar_long (int subtype)
19466 {
19467 enum neon_shape rs;
19468 int high8;
19469 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
19470 field (bits[21:20]) has different meaning. For scalar index variant, it's
19471 used to differentiate add and subtract, otherwise it's with fixed value
19472 0x2. */
19473 int size = -1;
19474
19475 if (inst.cond != COND_ALWAYS)
19476 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
19477 "behaviour is UNPREDICTABLE"));
19478
19479 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
19480 _(BAD_FP16));
19481
19482 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
19483 _(BAD_FPU));
19484
19485 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
19486 be a scalar index register. */
19487 if (inst.operands[2].isscalar)
19488 {
19489 high8 = 0xfe000000;
19490 if (subtype)
19491 size = 16;
19492 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
19493 }
19494 else
19495 {
19496 high8 = 0xfc000000;
19497 size = 32;
19498 if (subtype)
19499 inst.instruction |= (0x1 << 23);
19500 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
19501 }
19502
19503 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16);
19504
19505 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
19506 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
19507 so we simply pass -1 as size. */
19508 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
19509 neon_three_same (quad_p, 0, size);
19510
19511 /* Undo neon_dp_fixup. Redo the high eight bits. */
19512 inst.instruction &= 0x00ffffff;
19513 inst.instruction |= high8;
19514
19515 #define LOW1(R) ((R) & 0x1)
19516 #define HI4(R) (((R) >> 1) & 0xf)
19517 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
19518 whether the instruction is in Q form and whether Vm is a scalar indexed
19519 operand. */
19520 if (inst.operands[2].isscalar)
19521 {
19522 unsigned rm
19523 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
19524 inst.instruction &= 0xffffffd0;
19525 inst.instruction |= rm;
19526
19527 if (!quad_p)
19528 {
19529 /* Redo Rn as well. */
19530 inst.instruction &= 0xfff0ff7f;
19531 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
19532 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
19533 }
19534 }
19535 else if (!quad_p)
19536 {
19537 /* Redo Rn and Rm. */
19538 inst.instruction &= 0xfff0ff50;
19539 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
19540 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
19541 inst.instruction |= HI4 (inst.operands[2].reg);
19542 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
19543 }
19544 }
19545
19546 static void
19547 do_neon_vfmal (void)
19548 {
19549 return do_neon_fmac_maybe_scalar_long (0);
19550 }
19551
19552 static void
19553 do_neon_vfmsl (void)
19554 {
19555 return do_neon_fmac_maybe_scalar_long (1);
19556 }
19557
19558 static void
19559 do_neon_dyadic_wide (void)
19560 {
19561 struct neon_type_el et = neon_check_type (3, NS_QQD,
19562 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
19563 neon_mixed_length (et, et.size);
19564 }
19565
19566 static void
19567 do_neon_dyadic_narrow (void)
19568 {
19569 struct neon_type_el et = neon_check_type (3, NS_QDD,
19570 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
19571 /* Operand sign is unimportant, and the U bit is part of the opcode,
19572 so force the operand type to integer. */
19573 et.type = NT_integer;
19574 neon_mixed_length (et, et.size / 2);
19575 }
19576
19577 static void
19578 do_neon_mul_sat_scalar_long (void)
19579 {
19580 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
19581 }
19582
19583 static void
19584 do_neon_vmull (void)
19585 {
19586 if (inst.operands[2].isscalar)
19587 do_neon_mac_maybe_scalar_long ();
19588 else
19589 {
19590 struct neon_type_el et = neon_check_type (3, NS_QDD,
19591 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
19592
19593 if (et.type == NT_poly)
19594 NEON_ENCODE (POLY, inst);
19595 else
19596 NEON_ENCODE (INTEGER, inst);
19597
19598 /* For polynomial encoding the U bit must be zero, and the size must
19599 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
19600 obviously, as 0b10). */
19601 if (et.size == 64)
19602 {
19603 /* Check we're on the correct architecture. */
19604 if (!mark_feature_used (&fpu_crypto_ext_armv8))
19605 inst.error =
19606 _("Instruction form not available on this architecture.");
19607
19608 et.size = 32;
19609 }
19610
19611 neon_mixed_length (et, et.size);
19612 }
19613 }
19614
19615 static void
19616 do_neon_ext (void)
19617 {
19618 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
19619 struct neon_type_el et = neon_check_type (3, rs,
19620 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
19621 unsigned imm = (inst.operands[3].imm * et.size) / 8;
19622
19623 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
19624 _("shift out of range"));
19625 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19626 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19627 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19628 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19629 inst.instruction |= LOW4 (inst.operands[2].reg);
19630 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19631 inst.instruction |= neon_quad (rs) << 6;
19632 inst.instruction |= imm << 8;
19633
19634 neon_dp_fixup (&inst);
19635 }
19636
19637 static void
19638 do_neon_rev (void)
19639 {
19640 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
19641 return;
19642
19643 enum neon_shape rs;
19644 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19645 rs = neon_select_shape (NS_QQ, NS_NULL);
19646 else
19647 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19648
19649 struct neon_type_el et = neon_check_type (2, rs,
19650 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19651
19652 unsigned op = (inst.instruction >> 7) & 3;
19653 /* N (width of reversed regions) is encoded as part of the bitmask. We
19654 extract it here to check the elements to be reversed are smaller.
19655 Otherwise we'd get a reserved instruction. */
19656 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
19657
19658 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext) && elsize == 64
19659 && inst.operands[0].reg == inst.operands[1].reg)
19660 as_tsktsk (_("Warning: 64-bit element size and same destination and source"
19661 " operands makes instruction UNPREDICTABLE"));
19662
19663 gas_assert (elsize != 0);
19664 constraint (et.size >= elsize,
19665 _("elements must be smaller than reversal region"));
19666 neon_two_same (neon_quad (rs), 1, et.size);
19667 }
19668
19669 static void
19670 do_neon_dup (void)
19671 {
19672 if (inst.operands[1].isscalar)
19673 {
19674 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
19675 BAD_FPU);
19676 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
19677 struct neon_type_el et = neon_check_type (2, rs,
19678 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19679 unsigned sizebits = et.size >> 3;
19680 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
19681 int logsize = neon_logbits (et.size);
19682 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
19683
19684 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
19685 return;
19686
19687 NEON_ENCODE (SCALAR, inst);
19688 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19689 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19690 inst.instruction |= LOW4 (dm);
19691 inst.instruction |= HI1 (dm) << 5;
19692 inst.instruction |= neon_quad (rs) << 6;
19693 inst.instruction |= x << 17;
19694 inst.instruction |= sizebits << 16;
19695
19696 neon_dp_fixup (&inst);
19697 }
19698 else
19699 {
19700 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
19701 struct neon_type_el et = neon_check_type (2, rs,
19702 N_8 | N_16 | N_32 | N_KEY, N_EQK);
19703 if (rs == NS_QR)
19704 {
19705 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH))
19706 return;
19707 }
19708 else
19709 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
19710 BAD_FPU);
19711
19712 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19713 {
19714 if (inst.operands[1].reg == REG_SP)
19715 as_tsktsk (MVE_BAD_SP);
19716 else if (inst.operands[1].reg == REG_PC)
19717 as_tsktsk (MVE_BAD_PC);
19718 }
19719
19720 /* Duplicate ARM register to lanes of vector. */
19721 NEON_ENCODE (ARMREG, inst);
19722 switch (et.size)
19723 {
19724 case 8: inst.instruction |= 0x400000; break;
19725 case 16: inst.instruction |= 0x000020; break;
19726 case 32: inst.instruction |= 0x000000; break;
19727 default: break;
19728 }
19729 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
19730 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
19731 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
19732 inst.instruction |= neon_quad (rs) << 21;
19733 /* The encoding for this instruction is identical for the ARM and Thumb
19734 variants, except for the condition field. */
19735 do_vfp_cond_or_thumb ();
19736 }
19737 }
19738
19739 static void
19740 do_mve_mov (int toQ)
19741 {
19742 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19743 return;
19744 if (inst.cond > COND_ALWAYS)
19745 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
19746
19747 unsigned Rt = 0, Rt2 = 1, Q0 = 2, Q1 = 3;
19748 if (toQ)
19749 {
19750 Q0 = 0;
19751 Q1 = 1;
19752 Rt = 2;
19753 Rt2 = 3;
19754 }
19755
19756 constraint (inst.operands[Q0].reg != inst.operands[Q1].reg + 2,
19757 _("Index one must be [2,3] and index two must be two less than"
19758 " index one."));
19759 constraint (inst.operands[Rt].reg == inst.operands[Rt2].reg,
19760 _("General purpose registers may not be the same"));
19761 constraint (inst.operands[Rt].reg == REG_SP
19762 || inst.operands[Rt2].reg == REG_SP,
19763 BAD_SP);
19764 constraint (inst.operands[Rt].reg == REG_PC
19765 || inst.operands[Rt2].reg == REG_PC,
19766 BAD_PC);
19767
19768 inst.instruction = 0xec000f00;
19769 inst.instruction |= HI1 (inst.operands[Q1].reg / 32) << 23;
19770 inst.instruction |= !!toQ << 20;
19771 inst.instruction |= inst.operands[Rt2].reg << 16;
19772 inst.instruction |= LOW4 (inst.operands[Q1].reg / 32) << 13;
19773 inst.instruction |= (inst.operands[Q1].reg % 4) << 4;
19774 inst.instruction |= inst.operands[Rt].reg;
19775 }
19776
19777 static void
19778 do_mve_movn (void)
19779 {
19780 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19781 return;
19782
19783 if (inst.cond > COND_ALWAYS)
19784 inst.pred_insn_type = INSIDE_VPT_INSN;
19785 else
19786 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
19787
19788 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_I16 | N_I32
19789 | N_KEY);
19790
19791 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19792 inst.instruction |= (neon_logbits (et.size) - 1) << 18;
19793 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19794 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19795 inst.instruction |= LOW4 (inst.operands[1].reg);
19796 inst.is_neon = 1;
19797
19798 }
19799
19800 /* VMOV has particularly many variations. It can be one of:
19801 0. VMOV<c><q> <Qd>, <Qm>
19802 1. VMOV<c><q> <Dd>, <Dm>
19803 (Register operations, which are VORR with Rm = Rn.)
19804 2. VMOV<c><q>.<dt> <Qd>, #<imm>
19805 3. VMOV<c><q>.<dt> <Dd>, #<imm>
19806 (Immediate loads.)
19807 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
19808 (ARM register to scalar.)
19809 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
19810 (Two ARM registers to vector.)
19811 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
19812 (Scalar to ARM register.)
19813 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
19814 (Vector to two ARM registers.)
19815 8. VMOV.F32 <Sd>, <Sm>
19816 9. VMOV.F64 <Dd>, <Dm>
19817 (VFP register moves.)
19818 10. VMOV.F32 <Sd>, #imm
19819 11. VMOV.F64 <Dd>, #imm
19820 (VFP float immediate load.)
19821 12. VMOV <Rd>, <Sm>
19822 (VFP single to ARM reg.)
19823 13. VMOV <Sd>, <Rm>
19824 (ARM reg to VFP single.)
19825 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
19826 (Two ARM regs to two VFP singles.)
19827 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
19828 (Two VFP singles to two ARM regs.)
19829 16. VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]>
19830 17. VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2>
19831 18. VMOV<c>.<dt> <Rt>, <Qn[idx]>
19832 19. VMOV<c>.<dt> <Qd[idx]>, <Rt>
19833
19834 These cases can be disambiguated using neon_select_shape, except cases 1/9
19835 and 3/11 which depend on the operand type too.
19836
19837 All the encoded bits are hardcoded by this function.
19838
19839 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
19840 Cases 5, 7 may be used with VFPv2 and above.
19841
19842 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
19843 can specify a type where it doesn't make sense to, and is ignored). */
19844
19845 static void
19846 do_neon_mov (void)
19847 {
19848 enum neon_shape rs = neon_select_shape (NS_RRSS, NS_SSRR, NS_RRFF, NS_FFRR,
19849 NS_DRR, NS_RRD, NS_QQ, NS_DD, NS_QI,
19850 NS_DI, NS_SR, NS_RS, NS_FF, NS_FI,
19851 NS_RF, NS_FR, NS_HR, NS_RH, NS_HI,
19852 NS_NULL);
19853 struct neon_type_el et;
19854 const char *ldconst = 0;
19855
19856 switch (rs)
19857 {
19858 case NS_DD: /* case 1/9. */
19859 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
19860 /* It is not an error here if no type is given. */
19861 inst.error = NULL;
19862 if (et.type == NT_float && et.size == 64)
19863 {
19864 do_vfp_nsyn_opcode ("fcpyd");
19865 break;
19866 }
19867 /* fall through. */
19868
19869 case NS_QQ: /* case 0/1. */
19870 {
19871 if (!check_simd_pred_availability (FALSE,
19872 NEON_CHECK_CC | NEON_CHECK_ARCH))
19873 return;
19874 /* The architecture manual I have doesn't explicitly state which
19875 value the U bit should have for register->register moves, but
19876 the equivalent VORR instruction has U = 0, so do that. */
19877 inst.instruction = 0x0200110;
19878 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19879 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19880 inst.instruction |= LOW4 (inst.operands[1].reg);
19881 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19882 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19883 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19884 inst.instruction |= neon_quad (rs) << 6;
19885
19886 neon_dp_fixup (&inst);
19887 }
19888 break;
19889
19890 case NS_DI: /* case 3/11. */
19891 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
19892 inst.error = NULL;
19893 if (et.type == NT_float && et.size == 64)
19894 {
19895 /* case 11 (fconstd). */
19896 ldconst = "fconstd";
19897 goto encode_fconstd;
19898 }
19899 /* fall through. */
19900
19901 case NS_QI: /* case 2/3. */
19902 if (!check_simd_pred_availability (FALSE,
19903 NEON_CHECK_CC | NEON_CHECK_ARCH))
19904 return;
19905 inst.instruction = 0x0800010;
19906 neon_move_immediate ();
19907 neon_dp_fixup (&inst);
19908 break;
19909
19910 case NS_SR: /* case 4. */
19911 {
19912 unsigned bcdebits = 0;
19913 int logsize;
19914 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
19915 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
19916
19917 /* .<size> is optional here, defaulting to .32. */
19918 if (inst.vectype.elems == 0
19919 && inst.operands[0].vectype.type == NT_invtype
19920 && inst.operands[1].vectype.type == NT_invtype)
19921 {
19922 inst.vectype.el[0].type = NT_untyped;
19923 inst.vectype.el[0].size = 32;
19924 inst.vectype.elems = 1;
19925 }
19926
19927 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
19928 logsize = neon_logbits (et.size);
19929
19930 if (et.size != 32)
19931 {
19932 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19933 && vfp_or_neon_is_neon (NEON_CHECK_ARCH) == FAIL)
19934 return;
19935 }
19936 else
19937 {
19938 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
19939 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19940 _(BAD_FPU));
19941 }
19942
19943 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19944 {
19945 if (inst.operands[1].reg == REG_SP)
19946 as_tsktsk (MVE_BAD_SP);
19947 else if (inst.operands[1].reg == REG_PC)
19948 as_tsktsk (MVE_BAD_PC);
19949 }
19950 unsigned size = inst.operands[0].isscalar == 1 ? 64 : 128;
19951
19952 constraint (et.type == NT_invtype, _("bad type for scalar"));
19953 constraint (x >= size / et.size, _("scalar index out of range"));
19954
19955
19956 switch (et.size)
19957 {
19958 case 8: bcdebits = 0x8; break;
19959 case 16: bcdebits = 0x1; break;
19960 case 32: bcdebits = 0x0; break;
19961 default: ;
19962 }
19963
19964 bcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
19965
19966 inst.instruction = 0xe000b10;
19967 do_vfp_cond_or_thumb ();
19968 inst.instruction |= LOW4 (dn) << 16;
19969 inst.instruction |= HI1 (dn) << 7;
19970 inst.instruction |= inst.operands[1].reg << 12;
19971 inst.instruction |= (bcdebits & 3) << 5;
19972 inst.instruction |= ((bcdebits >> 2) & 3) << 21;
19973 inst.instruction |= (x >> (3-logsize)) << 16;
19974 }
19975 break;
19976
19977 case NS_DRR: /* case 5 (fmdrr). */
19978 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19979 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19980 _(BAD_FPU));
19981
19982 inst.instruction = 0xc400b10;
19983 do_vfp_cond_or_thumb ();
19984 inst.instruction |= LOW4 (inst.operands[0].reg);
19985 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
19986 inst.instruction |= inst.operands[1].reg << 12;
19987 inst.instruction |= inst.operands[2].reg << 16;
19988 break;
19989
19990 case NS_RS: /* case 6. */
19991 {
19992 unsigned logsize;
19993 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
19994 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
19995 unsigned abcdebits = 0;
19996
19997 /* .<dt> is optional here, defaulting to .32. */
19998 if (inst.vectype.elems == 0
19999 && inst.operands[0].vectype.type == NT_invtype
20000 && inst.operands[1].vectype.type == NT_invtype)
20001 {
20002 inst.vectype.el[0].type = NT_untyped;
20003 inst.vectype.el[0].size = 32;
20004 inst.vectype.elems = 1;
20005 }
20006
20007 et = neon_check_type (2, NS_NULL,
20008 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
20009 logsize = neon_logbits (et.size);
20010
20011 if (et.size != 32)
20012 {
20013 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
20014 && vfp_or_neon_is_neon (NEON_CHECK_CC
20015 | NEON_CHECK_ARCH) == FAIL)
20016 return;
20017 }
20018 else
20019 {
20020 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
20021 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
20022 _(BAD_FPU));
20023 }
20024
20025 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20026 {
20027 if (inst.operands[0].reg == REG_SP)
20028 as_tsktsk (MVE_BAD_SP);
20029 else if (inst.operands[0].reg == REG_PC)
20030 as_tsktsk (MVE_BAD_PC);
20031 }
20032
20033 unsigned size = inst.operands[1].isscalar == 1 ? 64 : 128;
20034
20035 constraint (et.type == NT_invtype, _("bad type for scalar"));
20036 constraint (x >= size / et.size, _("scalar index out of range"));
20037
20038 switch (et.size)
20039 {
20040 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
20041 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
20042 case 32: abcdebits = 0x00; break;
20043 default: ;
20044 }
20045
20046 abcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
20047 inst.instruction = 0xe100b10;
20048 do_vfp_cond_or_thumb ();
20049 inst.instruction |= LOW4 (dn) << 16;
20050 inst.instruction |= HI1 (dn) << 7;
20051 inst.instruction |= inst.operands[0].reg << 12;
20052 inst.instruction |= (abcdebits & 3) << 5;
20053 inst.instruction |= (abcdebits >> 2) << 21;
20054 inst.instruction |= (x >> (3-logsize)) << 16;
20055 }
20056 break;
20057
20058 case NS_RRD: /* case 7 (fmrrd). */
20059 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
20060 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
20061 _(BAD_FPU));
20062
20063 inst.instruction = 0xc500b10;
20064 do_vfp_cond_or_thumb ();
20065 inst.instruction |= inst.operands[0].reg << 12;
20066 inst.instruction |= inst.operands[1].reg << 16;
20067 inst.instruction |= LOW4 (inst.operands[2].reg);
20068 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
20069 break;
20070
20071 case NS_FF: /* case 8 (fcpys). */
20072 do_vfp_nsyn_opcode ("fcpys");
20073 break;
20074
20075 case NS_HI:
20076 case NS_FI: /* case 10 (fconsts). */
20077 ldconst = "fconsts";
20078 encode_fconstd:
20079 if (!inst.operands[1].immisfloat)
20080 {
20081 unsigned new_imm;
20082 /* Immediate has to fit in 8 bits so float is enough. */
20083 float imm = (float) inst.operands[1].imm;
20084 memcpy (&new_imm, &imm, sizeof (float));
20085 /* But the assembly may have been written to provide an integer
20086 bit pattern that equates to a float, so check that the
20087 conversion has worked. */
20088 if (is_quarter_float (new_imm))
20089 {
20090 if (is_quarter_float (inst.operands[1].imm))
20091 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
20092
20093 inst.operands[1].imm = new_imm;
20094 inst.operands[1].immisfloat = 1;
20095 }
20096 }
20097
20098 if (is_quarter_float (inst.operands[1].imm))
20099 {
20100 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
20101 do_vfp_nsyn_opcode (ldconst);
20102
20103 /* ARMv8.2 fp16 vmov.f16 instruction. */
20104 if (rs == NS_HI)
20105 do_scalar_fp16_v82_encode ();
20106 }
20107 else
20108 first_error (_("immediate out of range"));
20109 break;
20110
20111 case NS_RH:
20112 case NS_RF: /* case 12 (fmrs). */
20113 do_vfp_nsyn_opcode ("fmrs");
20114 /* ARMv8.2 fp16 vmov.f16 instruction. */
20115 if (rs == NS_RH)
20116 do_scalar_fp16_v82_encode ();
20117 break;
20118
20119 case NS_HR:
20120 case NS_FR: /* case 13 (fmsr). */
20121 do_vfp_nsyn_opcode ("fmsr");
20122 /* ARMv8.2 fp16 vmov.f16 instruction. */
20123 if (rs == NS_HR)
20124 do_scalar_fp16_v82_encode ();
20125 break;
20126
20127 case NS_RRSS:
20128 do_mve_mov (0);
20129 break;
20130 case NS_SSRR:
20131 do_mve_mov (1);
20132 break;
20133
20134 /* The encoders for the fmrrs and fmsrr instructions expect three operands
20135 (one of which is a list), but we have parsed four. Do some fiddling to
20136 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
20137 expect. */
20138 case NS_RRFF: /* case 14 (fmrrs). */
20139 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
20140 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
20141 _(BAD_FPU));
20142 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
20143 _("VFP registers must be adjacent"));
20144 inst.operands[2].imm = 2;
20145 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
20146 do_vfp_nsyn_opcode ("fmrrs");
20147 break;
20148
20149 case NS_FFRR: /* case 15 (fmsrr). */
20150 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
20151 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
20152 _(BAD_FPU));
20153 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
20154 _("VFP registers must be adjacent"));
20155 inst.operands[1] = inst.operands[2];
20156 inst.operands[2] = inst.operands[3];
20157 inst.operands[0].imm = 2;
20158 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
20159 do_vfp_nsyn_opcode ("fmsrr");
20160 break;
20161
20162 case NS_NULL:
20163 /* neon_select_shape has determined that the instruction
20164 shape is wrong and has already set the error message. */
20165 break;
20166
20167 default:
20168 abort ();
20169 }
20170 }
20171
20172 static void
20173 do_mve_movl (void)
20174 {
20175 if (!(inst.operands[0].present && inst.operands[0].isquad
20176 && inst.operands[1].present && inst.operands[1].isquad
20177 && !inst.operands[2].present))
20178 {
20179 inst.instruction = 0;
20180 inst.cond = 0xb;
20181 if (thumb_mode)
20182 set_pred_insn_type (INSIDE_IT_INSN);
20183 do_neon_mov ();
20184 return;
20185 }
20186
20187 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20188 return;
20189
20190 if (inst.cond != COND_ALWAYS)
20191 inst.pred_insn_type = INSIDE_VPT_INSN;
20192
20193 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_S8 | N_U8
20194 | N_S16 | N_U16 | N_KEY);
20195
20196 inst.instruction |= (et.type == NT_unsigned) << 28;
20197 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20198 inst.instruction |= (neon_logbits (et.size) + 1) << 19;
20199 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20200 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20201 inst.instruction |= LOW4 (inst.operands[1].reg);
20202 inst.is_neon = 1;
20203 }
20204
20205 static void
20206 do_neon_rshift_round_imm (void)
20207 {
20208 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
20209 return;
20210
20211 enum neon_shape rs;
20212 struct neon_type_el et;
20213
20214 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20215 {
20216 rs = neon_select_shape (NS_QQI, NS_NULL);
20217 et = neon_check_type (2, rs, N_EQK, N_SU_MVE | N_KEY);
20218 }
20219 else
20220 {
20221 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
20222 et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
20223 }
20224 int imm = inst.operands[2].imm;
20225
20226 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
20227 if (imm == 0)
20228 {
20229 inst.operands[2].present = 0;
20230 do_neon_mov ();
20231 return;
20232 }
20233
20234 constraint (imm < 1 || (unsigned)imm > et.size,
20235 _("immediate out of range for shift"));
20236 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
20237 et.size - imm);
20238 }
20239
20240 static void
20241 do_neon_movhf (void)
20242 {
20243 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
20244 constraint (rs != NS_HH, _("invalid suffix"));
20245
20246 if (inst.cond != COND_ALWAYS)
20247 {
20248 if (thumb_mode)
20249 {
20250 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
20251 " the behaviour is UNPREDICTABLE"));
20252 }
20253 else
20254 {
20255 inst.error = BAD_COND;
20256 return;
20257 }
20258 }
20259
20260 do_vfp_sp_monadic ();
20261
20262 inst.is_neon = 1;
20263 inst.instruction |= 0xf0000000;
20264 }
20265
20266 static void
20267 do_neon_movl (void)
20268 {
20269 struct neon_type_el et = neon_check_type (2, NS_QD,
20270 N_EQK | N_DBL, N_SU_32 | N_KEY);
20271 unsigned sizebits = et.size >> 3;
20272 inst.instruction |= sizebits << 19;
20273 neon_two_same (0, et.type == NT_unsigned, -1);
20274 }
20275
20276 static void
20277 do_neon_trn (void)
20278 {
20279 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20280 struct neon_type_el et = neon_check_type (2, rs,
20281 N_EQK, N_8 | N_16 | N_32 | N_KEY);
20282 NEON_ENCODE (INTEGER, inst);
20283 neon_two_same (neon_quad (rs), 1, et.size);
20284 }
20285
20286 static void
20287 do_neon_zip_uzp (void)
20288 {
20289 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20290 struct neon_type_el et = neon_check_type (2, rs,
20291 N_EQK, N_8 | N_16 | N_32 | N_KEY);
20292 if (rs == NS_DD && et.size == 32)
20293 {
20294 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
20295 inst.instruction = N_MNEM_vtrn;
20296 do_neon_trn ();
20297 return;
20298 }
20299 neon_two_same (neon_quad (rs), 1, et.size);
20300 }
20301
20302 static void
20303 do_neon_sat_abs_neg (void)
20304 {
20305 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
20306 return;
20307
20308 enum neon_shape rs;
20309 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20310 rs = neon_select_shape (NS_QQ, NS_NULL);
20311 else
20312 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20313 struct neon_type_el et = neon_check_type (2, rs,
20314 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
20315 neon_two_same (neon_quad (rs), 1, et.size);
20316 }
20317
20318 static void
20319 do_neon_pair_long (void)
20320 {
20321 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20322 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
20323 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
20324 inst.instruction |= (et.type == NT_unsigned) << 7;
20325 neon_two_same (neon_quad (rs), 1, et.size);
20326 }
20327
20328 static void
20329 do_neon_recip_est (void)
20330 {
20331 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20332 struct neon_type_el et = neon_check_type (2, rs,
20333 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
20334 inst.instruction |= (et.type == NT_float) << 8;
20335 neon_two_same (neon_quad (rs), 1, et.size);
20336 }
20337
20338 static void
20339 do_neon_cls (void)
20340 {
20341 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
20342 return;
20343
20344 enum neon_shape rs;
20345 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20346 rs = neon_select_shape (NS_QQ, NS_NULL);
20347 else
20348 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20349
20350 struct neon_type_el et = neon_check_type (2, rs,
20351 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
20352 neon_two_same (neon_quad (rs), 1, et.size);
20353 }
20354
20355 static void
20356 do_neon_clz (void)
20357 {
20358 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
20359 return;
20360
20361 enum neon_shape rs;
20362 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20363 rs = neon_select_shape (NS_QQ, NS_NULL);
20364 else
20365 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20366
20367 struct neon_type_el et = neon_check_type (2, rs,
20368 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
20369 neon_two_same (neon_quad (rs), 1, et.size);
20370 }
20371
20372 static void
20373 do_neon_cnt (void)
20374 {
20375 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20376 struct neon_type_el et = neon_check_type (2, rs,
20377 N_EQK | N_INT, N_8 | N_KEY);
20378 neon_two_same (neon_quad (rs), 1, et.size);
20379 }
20380
20381 static void
20382 do_neon_swp (void)
20383 {
20384 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20385 neon_two_same (neon_quad (rs), 1, -1);
20386 }
20387
20388 static void
20389 do_neon_tbl_tbx (void)
20390 {
20391 unsigned listlenbits;
20392 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
20393
20394 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
20395 {
20396 first_error (_("bad list length for table lookup"));
20397 return;
20398 }
20399
20400 listlenbits = inst.operands[1].imm - 1;
20401 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20402 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20403 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20404 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20405 inst.instruction |= LOW4 (inst.operands[2].reg);
20406 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
20407 inst.instruction |= listlenbits << 8;
20408
20409 neon_dp_fixup (&inst);
20410 }
20411
20412 static void
20413 do_neon_ldm_stm (void)
20414 {
20415 /* P, U and L bits are part of bitmask. */
20416 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
20417 unsigned offsetbits = inst.operands[1].imm * 2;
20418
20419 if (inst.operands[1].issingle)
20420 {
20421 do_vfp_nsyn_ldm_stm (is_dbmode);
20422 return;
20423 }
20424
20425 constraint (is_dbmode && !inst.operands[0].writeback,
20426 _("writeback (!) must be used for VLDMDB and VSTMDB"));
20427
20428 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
20429 _("register list must contain at least 1 and at most 16 "
20430 "registers"));
20431
20432 inst.instruction |= inst.operands[0].reg << 16;
20433 inst.instruction |= inst.operands[0].writeback << 21;
20434 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
20435 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
20436
20437 inst.instruction |= offsetbits;
20438
20439 do_vfp_cond_or_thumb ();
20440 }
20441
20442 static void
20443 do_neon_ldr_str (void)
20444 {
20445 int is_ldr = (inst.instruction & (1 << 20)) != 0;
20446
20447 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
20448 And is UNPREDICTABLE in thumb mode. */
20449 if (!is_ldr
20450 && inst.operands[1].reg == REG_PC
20451 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
20452 {
20453 if (thumb_mode)
20454 inst.error = _("Use of PC here is UNPREDICTABLE");
20455 else if (warn_on_deprecated)
20456 as_tsktsk (_("Use of PC here is deprecated"));
20457 }
20458
20459 if (inst.operands[0].issingle)
20460 {
20461 if (is_ldr)
20462 do_vfp_nsyn_opcode ("flds");
20463 else
20464 do_vfp_nsyn_opcode ("fsts");
20465
20466 /* ARMv8.2 vldr.16/vstr.16 instruction. */
20467 if (inst.vectype.el[0].size == 16)
20468 do_scalar_fp16_v82_encode ();
20469 }
20470 else
20471 {
20472 if (is_ldr)
20473 do_vfp_nsyn_opcode ("fldd");
20474 else
20475 do_vfp_nsyn_opcode ("fstd");
20476 }
20477 }
20478
20479 static void
20480 do_t_vldr_vstr_sysreg (void)
20481 {
20482 int fp_vldr_bitno = 20, sysreg_vldr_bitno = 20;
20483 bfd_boolean is_vldr = ((inst.instruction & (1 << fp_vldr_bitno)) != 0);
20484
20485 /* Use of PC is UNPREDICTABLE. */
20486 if (inst.operands[1].reg == REG_PC)
20487 inst.error = _("Use of PC here is UNPREDICTABLE");
20488
20489 if (inst.operands[1].immisreg)
20490 inst.error = _("instruction does not accept register index");
20491
20492 if (!inst.operands[1].isreg)
20493 inst.error = _("instruction does not accept PC-relative addressing");
20494
20495 if (abs (inst.operands[1].imm) >= (1 << 7))
20496 inst.error = _("immediate value out of range");
20497
20498 inst.instruction = 0xec000f80;
20499 if (is_vldr)
20500 inst.instruction |= 1 << sysreg_vldr_bitno;
20501 encode_arm_cp_address (1, TRUE, FALSE, BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM);
20502 inst.instruction |= (inst.operands[0].imm & 0x7) << 13;
20503 inst.instruction |= (inst.operands[0].imm & 0x8) << 19;
20504 }
20505
20506 static void
20507 do_vldr_vstr (void)
20508 {
20509 bfd_boolean sysreg_op = !inst.operands[0].isreg;
20510
20511 /* VLDR/VSTR (System Register). */
20512 if (sysreg_op)
20513 {
20514 if (!mark_feature_used (&arm_ext_v8_1m_main))
20515 as_bad (_("Instruction not permitted on this architecture"));
20516
20517 do_t_vldr_vstr_sysreg ();
20518 }
20519 /* VLDR/VSTR. */
20520 else
20521 {
20522 if (!mark_feature_used (&fpu_vfp_ext_v1xd))
20523 as_bad (_("Instruction not permitted on this architecture"));
20524 do_neon_ldr_str ();
20525 }
20526 }
20527
20528 /* "interleave" version also handles non-interleaving register VLD1/VST1
20529 instructions. */
20530
20531 static void
20532 do_neon_ld_st_interleave (void)
20533 {
20534 struct neon_type_el et = neon_check_type (1, NS_NULL,
20535 N_8 | N_16 | N_32 | N_64);
20536 unsigned alignbits = 0;
20537 unsigned idx;
20538 /* The bits in this table go:
20539 0: register stride of one (0) or two (1)
20540 1,2: register list length, minus one (1, 2, 3, 4).
20541 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
20542 We use -1 for invalid entries. */
20543 const int typetable[] =
20544 {
20545 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
20546 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
20547 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
20548 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
20549 };
20550 int typebits;
20551
20552 if (et.type == NT_invtype)
20553 return;
20554
20555 if (inst.operands[1].immisalign)
20556 switch (inst.operands[1].imm >> 8)
20557 {
20558 case 64: alignbits = 1; break;
20559 case 128:
20560 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
20561 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
20562 goto bad_alignment;
20563 alignbits = 2;
20564 break;
20565 case 256:
20566 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
20567 goto bad_alignment;
20568 alignbits = 3;
20569 break;
20570 default:
20571 bad_alignment:
20572 first_error (_("bad alignment"));
20573 return;
20574 }
20575
20576 inst.instruction |= alignbits << 4;
20577 inst.instruction |= neon_logbits (et.size) << 6;
20578
20579 /* Bits [4:6] of the immediate in a list specifier encode register stride
20580 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
20581 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
20582 up the right value for "type" in a table based on this value and the given
20583 list style, then stick it back. */
20584 idx = ((inst.operands[0].imm >> 4) & 7)
20585 | (((inst.instruction >> 8) & 3) << 3);
20586
20587 typebits = typetable[idx];
20588
20589 constraint (typebits == -1, _("bad list type for instruction"));
20590 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
20591 BAD_EL_TYPE);
20592
20593 inst.instruction &= ~0xf00;
20594 inst.instruction |= typebits << 8;
20595 }
20596
20597 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
20598 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
20599 otherwise. The variable arguments are a list of pairs of legal (size, align)
20600 values, terminated with -1. */
20601
20602 static int
20603 neon_alignment_bit (int size, int align, int *do_alignment, ...)
20604 {
20605 va_list ap;
20606 int result = FAIL, thissize, thisalign;
20607
20608 if (!inst.operands[1].immisalign)
20609 {
20610 *do_alignment = 0;
20611 return SUCCESS;
20612 }
20613
20614 va_start (ap, do_alignment);
20615
20616 do
20617 {
20618 thissize = va_arg (ap, int);
20619 if (thissize == -1)
20620 break;
20621 thisalign = va_arg (ap, int);
20622
20623 if (size == thissize && align == thisalign)
20624 result = SUCCESS;
20625 }
20626 while (result != SUCCESS);
20627
20628 va_end (ap);
20629
20630 if (result == SUCCESS)
20631 *do_alignment = 1;
20632 else
20633 first_error (_("unsupported alignment for instruction"));
20634
20635 return result;
20636 }
20637
20638 static void
20639 do_neon_ld_st_lane (void)
20640 {
20641 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
20642 int align_good, do_alignment = 0;
20643 int logsize = neon_logbits (et.size);
20644 int align = inst.operands[1].imm >> 8;
20645 int n = (inst.instruction >> 8) & 3;
20646 int max_el = 64 / et.size;
20647
20648 if (et.type == NT_invtype)
20649 return;
20650
20651 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
20652 _("bad list length"));
20653 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
20654 _("scalar index out of range"));
20655 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
20656 && et.size == 8,
20657 _("stride of 2 unavailable when element size is 8"));
20658
20659 switch (n)
20660 {
20661 case 0: /* VLD1 / VST1. */
20662 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
20663 32, 32, -1);
20664 if (align_good == FAIL)
20665 return;
20666 if (do_alignment)
20667 {
20668 unsigned alignbits = 0;
20669 switch (et.size)
20670 {
20671 case 16: alignbits = 0x1; break;
20672 case 32: alignbits = 0x3; break;
20673 default: ;
20674 }
20675 inst.instruction |= alignbits << 4;
20676 }
20677 break;
20678
20679 case 1: /* VLD2 / VST2. */
20680 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
20681 16, 32, 32, 64, -1);
20682 if (align_good == FAIL)
20683 return;
20684 if (do_alignment)
20685 inst.instruction |= 1 << 4;
20686 break;
20687
20688 case 2: /* VLD3 / VST3. */
20689 constraint (inst.operands[1].immisalign,
20690 _("can't use alignment with this instruction"));
20691 break;
20692
20693 case 3: /* VLD4 / VST4. */
20694 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
20695 16, 64, 32, 64, 32, 128, -1);
20696 if (align_good == FAIL)
20697 return;
20698 if (do_alignment)
20699 {
20700 unsigned alignbits = 0;
20701 switch (et.size)
20702 {
20703 case 8: alignbits = 0x1; break;
20704 case 16: alignbits = 0x1; break;
20705 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
20706 default: ;
20707 }
20708 inst.instruction |= alignbits << 4;
20709 }
20710 break;
20711
20712 default: ;
20713 }
20714
20715 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
20716 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20717 inst.instruction |= 1 << (4 + logsize);
20718
20719 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
20720 inst.instruction |= logsize << 10;
20721 }
20722
20723 /* Encode single n-element structure to all lanes VLD<n> instructions. */
20724
20725 static void
20726 do_neon_ld_dup (void)
20727 {
20728 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
20729 int align_good, do_alignment = 0;
20730
20731 if (et.type == NT_invtype)
20732 return;
20733
20734 switch ((inst.instruction >> 8) & 3)
20735 {
20736 case 0: /* VLD1. */
20737 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
20738 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
20739 &do_alignment, 16, 16, 32, 32, -1);
20740 if (align_good == FAIL)
20741 return;
20742 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
20743 {
20744 case 1: break;
20745 case 2: inst.instruction |= 1 << 5; break;
20746 default: first_error (_("bad list length")); return;
20747 }
20748 inst.instruction |= neon_logbits (et.size) << 6;
20749 break;
20750
20751 case 1: /* VLD2. */
20752 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
20753 &do_alignment, 8, 16, 16, 32, 32, 64,
20754 -1);
20755 if (align_good == FAIL)
20756 return;
20757 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
20758 _("bad list length"));
20759 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20760 inst.instruction |= 1 << 5;
20761 inst.instruction |= neon_logbits (et.size) << 6;
20762 break;
20763
20764 case 2: /* VLD3. */
20765 constraint (inst.operands[1].immisalign,
20766 _("can't use alignment with this instruction"));
20767 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
20768 _("bad list length"));
20769 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20770 inst.instruction |= 1 << 5;
20771 inst.instruction |= neon_logbits (et.size) << 6;
20772 break;
20773
20774 case 3: /* VLD4. */
20775 {
20776 int align = inst.operands[1].imm >> 8;
20777 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
20778 16, 64, 32, 64, 32, 128, -1);
20779 if (align_good == FAIL)
20780 return;
20781 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
20782 _("bad list length"));
20783 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20784 inst.instruction |= 1 << 5;
20785 if (et.size == 32 && align == 128)
20786 inst.instruction |= 0x3 << 6;
20787 else
20788 inst.instruction |= neon_logbits (et.size) << 6;
20789 }
20790 break;
20791
20792 default: ;
20793 }
20794
20795 inst.instruction |= do_alignment << 4;
20796 }
20797
20798 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
20799 apart from bits [11:4]. */
20800
20801 static void
20802 do_neon_ldx_stx (void)
20803 {
20804 if (inst.operands[1].isreg)
20805 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
20806
20807 switch (NEON_LANE (inst.operands[0].imm))
20808 {
20809 case NEON_INTERLEAVE_LANES:
20810 NEON_ENCODE (INTERLV, inst);
20811 do_neon_ld_st_interleave ();
20812 break;
20813
20814 case NEON_ALL_LANES:
20815 NEON_ENCODE (DUP, inst);
20816 if (inst.instruction == N_INV)
20817 {
20818 first_error ("only loads support such operands");
20819 break;
20820 }
20821 do_neon_ld_dup ();
20822 break;
20823
20824 default:
20825 NEON_ENCODE (LANE, inst);
20826 do_neon_ld_st_lane ();
20827 }
20828
20829 /* L bit comes from bit mask. */
20830 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20831 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20832 inst.instruction |= inst.operands[1].reg << 16;
20833
20834 if (inst.operands[1].postind)
20835 {
20836 int postreg = inst.operands[1].imm & 0xf;
20837 constraint (!inst.operands[1].immisreg,
20838 _("post-index must be a register"));
20839 constraint (postreg == 0xd || postreg == 0xf,
20840 _("bad register for post-index"));
20841 inst.instruction |= postreg;
20842 }
20843 else
20844 {
20845 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
20846 constraint (inst.relocs[0].exp.X_op != O_constant
20847 || inst.relocs[0].exp.X_add_number != 0,
20848 BAD_ADDR_MODE);
20849
20850 if (inst.operands[1].writeback)
20851 {
20852 inst.instruction |= 0xd;
20853 }
20854 else
20855 inst.instruction |= 0xf;
20856 }
20857
20858 if (thumb_mode)
20859 inst.instruction |= 0xf9000000;
20860 else
20861 inst.instruction |= 0xf4000000;
20862 }
20863
20864 /* FP v8. */
20865 static void
20866 do_vfp_nsyn_fpv8 (enum neon_shape rs)
20867 {
20868 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
20869 D register operands. */
20870 if (neon_shape_class[rs] == SC_DOUBLE)
20871 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20872 _(BAD_FPU));
20873
20874 NEON_ENCODE (FPV8, inst);
20875
20876 if (rs == NS_FFF || rs == NS_HHH)
20877 {
20878 do_vfp_sp_dyadic ();
20879
20880 /* ARMv8.2 fp16 instruction. */
20881 if (rs == NS_HHH)
20882 do_scalar_fp16_v82_encode ();
20883 }
20884 else
20885 do_vfp_dp_rd_rn_rm ();
20886
20887 if (rs == NS_DDD)
20888 inst.instruction |= 0x100;
20889
20890 inst.instruction |= 0xf0000000;
20891 }
20892
20893 static void
20894 do_vsel (void)
20895 {
20896 set_pred_insn_type (OUTSIDE_PRED_INSN);
20897
20898 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
20899 first_error (_("invalid instruction shape"));
20900 }
20901
20902 static void
20903 do_vmaxnm (void)
20904 {
20905 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20906 set_pred_insn_type (OUTSIDE_PRED_INSN);
20907
20908 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
20909 return;
20910
20911 if (!check_simd_pred_availability (TRUE, NEON_CHECK_CC | NEON_CHECK_ARCH8))
20912 return;
20913
20914 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
20915 }
20916
20917 static void
20918 do_vrint_1 (enum neon_cvt_mode mode)
20919 {
20920 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
20921 struct neon_type_el et;
20922
20923 if (rs == NS_NULL)
20924 return;
20925
20926 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
20927 D register operands. */
20928 if (neon_shape_class[rs] == SC_DOUBLE)
20929 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20930 _(BAD_FPU));
20931
20932 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
20933 | N_VFP);
20934 if (et.type != NT_invtype)
20935 {
20936 /* VFP encodings. */
20937 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
20938 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
20939 set_pred_insn_type (OUTSIDE_PRED_INSN);
20940
20941 NEON_ENCODE (FPV8, inst);
20942 if (rs == NS_FF || rs == NS_HH)
20943 do_vfp_sp_monadic ();
20944 else
20945 do_vfp_dp_rd_rm ();
20946
20947 switch (mode)
20948 {
20949 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
20950 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
20951 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
20952 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
20953 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
20954 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
20955 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
20956 default: abort ();
20957 }
20958
20959 inst.instruction |= (rs == NS_DD) << 8;
20960 do_vfp_cond_or_thumb ();
20961
20962 /* ARMv8.2 fp16 vrint instruction. */
20963 if (rs == NS_HH)
20964 do_scalar_fp16_v82_encode ();
20965 }
20966 else
20967 {
20968 /* Neon encodings (or something broken...). */
20969 inst.error = NULL;
20970 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
20971
20972 if (et.type == NT_invtype)
20973 return;
20974
20975 if (!check_simd_pred_availability (TRUE,
20976 NEON_CHECK_CC | NEON_CHECK_ARCH8))
20977 return;
20978
20979 NEON_ENCODE (FLOAT, inst);
20980
20981 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20982 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20983 inst.instruction |= LOW4 (inst.operands[1].reg);
20984 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20985 inst.instruction |= neon_quad (rs) << 6;
20986 /* Mask off the original size bits and reencode them. */
20987 inst.instruction = ((inst.instruction & 0xfff3ffff)
20988 | neon_logbits (et.size) << 18);
20989
20990 switch (mode)
20991 {
20992 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
20993 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
20994 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
20995 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
20996 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
20997 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
20998 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
20999 default: abort ();
21000 }
21001
21002 if (thumb_mode)
21003 inst.instruction |= 0xfc000000;
21004 else
21005 inst.instruction |= 0xf0000000;
21006 }
21007 }
21008
21009 static void
21010 do_vrintx (void)
21011 {
21012 do_vrint_1 (neon_cvt_mode_x);
21013 }
21014
21015 static void
21016 do_vrintz (void)
21017 {
21018 do_vrint_1 (neon_cvt_mode_z);
21019 }
21020
21021 static void
21022 do_vrintr (void)
21023 {
21024 do_vrint_1 (neon_cvt_mode_r);
21025 }
21026
21027 static void
21028 do_vrinta (void)
21029 {
21030 do_vrint_1 (neon_cvt_mode_a);
21031 }
21032
21033 static void
21034 do_vrintn (void)
21035 {
21036 do_vrint_1 (neon_cvt_mode_n);
21037 }
21038
21039 static void
21040 do_vrintp (void)
21041 {
21042 do_vrint_1 (neon_cvt_mode_p);
21043 }
21044
21045 static void
21046 do_vrintm (void)
21047 {
21048 do_vrint_1 (neon_cvt_mode_m);
21049 }
21050
21051 static unsigned
21052 neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
21053 {
21054 unsigned regno = NEON_SCALAR_REG (opnd);
21055 unsigned elno = NEON_SCALAR_INDEX (opnd);
21056
21057 if (elsize == 16 && elno < 2 && regno < 16)
21058 return regno | (elno << 4);
21059 else if (elsize == 32 && elno == 0)
21060 return regno;
21061
21062 first_error (_("scalar out of range"));
21063 return 0;
21064 }
21065
21066 static void
21067 do_vcmla (void)
21068 {
21069 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext)
21070 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
21071 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
21072 constraint (inst.relocs[0].exp.X_op != O_constant,
21073 _("expression too complex"));
21074 unsigned rot = inst.relocs[0].exp.X_add_number;
21075 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
21076 _("immediate out of range"));
21077 rot /= 90;
21078
21079 if (!check_simd_pred_availability (TRUE,
21080 NEON_CHECK_ARCH8 | NEON_CHECK_CC))
21081 return;
21082
21083 if (inst.operands[2].isscalar)
21084 {
21085 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
21086 first_error (_("invalid instruction shape"));
21087 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
21088 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
21089 N_KEY | N_F16 | N_F32).size;
21090 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
21091 inst.is_neon = 1;
21092 inst.instruction = 0xfe000800;
21093 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
21094 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
21095 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
21096 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
21097 inst.instruction |= LOW4 (m);
21098 inst.instruction |= HI1 (m) << 5;
21099 inst.instruction |= neon_quad (rs) << 6;
21100 inst.instruction |= rot << 20;
21101 inst.instruction |= (size == 32) << 23;
21102 }
21103 else
21104 {
21105 enum neon_shape rs;
21106 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
21107 rs = neon_select_shape (NS_QQQI, NS_NULL);
21108 else
21109 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
21110
21111 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
21112 N_KEY | N_F16 | N_F32).size;
21113 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext) && size == 32
21114 && (inst.operands[0].reg == inst.operands[1].reg
21115 || inst.operands[0].reg == inst.operands[2].reg))
21116 as_tsktsk (BAD_MVE_SRCDEST);
21117
21118 neon_three_same (neon_quad (rs), 0, -1);
21119 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
21120 inst.instruction |= 0xfc200800;
21121 inst.instruction |= rot << 23;
21122 inst.instruction |= (size == 32) << 20;
21123 }
21124 }
21125
21126 static void
21127 do_vcadd (void)
21128 {
21129 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
21130 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
21131 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
21132 constraint (inst.relocs[0].exp.X_op != O_constant,
21133 _("expression too complex"));
21134
21135 unsigned rot = inst.relocs[0].exp.X_add_number;
21136 constraint (rot != 90 && rot != 270, _("immediate out of range"));
21137 enum neon_shape rs;
21138 struct neon_type_el et;
21139 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
21140 {
21141 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
21142 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32);
21143 }
21144 else
21145 {
21146 rs = neon_select_shape (NS_QQQI, NS_NULL);
21147 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32 | N_I8
21148 | N_I16 | N_I32);
21149 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
21150 as_tsktsk (_("Warning: 32-bit element size and same first and third "
21151 "operand makes instruction UNPREDICTABLE"));
21152 }
21153
21154 if (et.type == NT_invtype)
21155 return;
21156
21157 if (!check_simd_pred_availability (et.type == NT_float,
21158 NEON_CHECK_ARCH8 | NEON_CHECK_CC))
21159 return;
21160
21161 if (et.type == NT_float)
21162 {
21163 neon_three_same (neon_quad (rs), 0, -1);
21164 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
21165 inst.instruction |= 0xfc800800;
21166 inst.instruction |= (rot == 270) << 24;
21167 inst.instruction |= (et.size == 32) << 20;
21168 }
21169 else
21170 {
21171 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
21172 inst.instruction = 0xfe000f00;
21173 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
21174 inst.instruction |= neon_logbits (et.size) << 20;
21175 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
21176 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
21177 inst.instruction |= (rot == 270) << 12;
21178 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
21179 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
21180 inst.instruction |= LOW4 (inst.operands[2].reg);
21181 inst.is_neon = 1;
21182 }
21183 }
21184
21185 /* Dot Product instructions encoding support. */
21186
21187 static void
21188 do_neon_dotproduct (int unsigned_p)
21189 {
21190 enum neon_shape rs;
21191 unsigned scalar_oprd2 = 0;
21192 int high8;
21193
21194 if (inst.cond != COND_ALWAYS)
21195 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
21196 "is UNPREDICTABLE"));
21197
21198 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
21199 _(BAD_FPU));
21200
21201 /* Dot Product instructions are in three-same D/Q register format or the third
21202 operand can be a scalar index register. */
21203 if (inst.operands[2].isscalar)
21204 {
21205 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
21206 high8 = 0xfe000000;
21207 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
21208 }
21209 else
21210 {
21211 high8 = 0xfc000000;
21212 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
21213 }
21214
21215 if (unsigned_p)
21216 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
21217 else
21218 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
21219
21220 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
21221 Product instruction, so we pass 0 as the "ubit" parameter. And the
21222 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
21223 neon_three_same (neon_quad (rs), 0, 32);
21224
21225 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
21226 different NEON three-same encoding. */
21227 inst.instruction &= 0x00ffffff;
21228 inst.instruction |= high8;
21229 /* Encode 'U' bit which indicates signedness. */
21230 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
21231 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
21232 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
21233 the instruction encoding. */
21234 if (inst.operands[2].isscalar)
21235 {
21236 inst.instruction &= 0xffffffd0;
21237 inst.instruction |= LOW4 (scalar_oprd2);
21238 inst.instruction |= HI1 (scalar_oprd2) << 5;
21239 }
21240 }
21241
21242 /* Dot Product instructions for signed integer. */
21243
21244 static void
21245 do_neon_dotproduct_s (void)
21246 {
21247 return do_neon_dotproduct (0);
21248 }
21249
21250 /* Dot Product instructions for unsigned integer. */
21251
21252 static void
21253 do_neon_dotproduct_u (void)
21254 {
21255 return do_neon_dotproduct (1);
21256 }
21257
21258 /* Crypto v1 instructions. */
21259 static void
21260 do_crypto_2op_1 (unsigned elttype, int op)
21261 {
21262 set_pred_insn_type (OUTSIDE_PRED_INSN);
21263
21264 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
21265 == NT_invtype)
21266 return;
21267
21268 inst.error = NULL;
21269
21270 NEON_ENCODE (INTEGER, inst);
21271 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
21272 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
21273 inst.instruction |= LOW4 (inst.operands[1].reg);
21274 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
21275 if (op != -1)
21276 inst.instruction |= op << 6;
21277
21278 if (thumb_mode)
21279 inst.instruction |= 0xfc000000;
21280 else
21281 inst.instruction |= 0xf0000000;
21282 }
21283
21284 static void
21285 do_crypto_3op_1 (int u, int op)
21286 {
21287 set_pred_insn_type (OUTSIDE_PRED_INSN);
21288
21289 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
21290 N_32 | N_UNT | N_KEY).type == NT_invtype)
21291 return;
21292
21293 inst.error = NULL;
21294
21295 NEON_ENCODE (INTEGER, inst);
21296 neon_three_same (1, u, 8 << op);
21297 }
21298
21299 static void
21300 do_aese (void)
21301 {
21302 do_crypto_2op_1 (N_8, 0);
21303 }
21304
21305 static void
21306 do_aesd (void)
21307 {
21308 do_crypto_2op_1 (N_8, 1);
21309 }
21310
21311 static void
21312 do_aesmc (void)
21313 {
21314 do_crypto_2op_1 (N_8, 2);
21315 }
21316
21317 static void
21318 do_aesimc (void)
21319 {
21320 do_crypto_2op_1 (N_8, 3);
21321 }
21322
21323 static void
21324 do_sha1c (void)
21325 {
21326 do_crypto_3op_1 (0, 0);
21327 }
21328
21329 static void
21330 do_sha1p (void)
21331 {
21332 do_crypto_3op_1 (0, 1);
21333 }
21334
21335 static void
21336 do_sha1m (void)
21337 {
21338 do_crypto_3op_1 (0, 2);
21339 }
21340
21341 static void
21342 do_sha1su0 (void)
21343 {
21344 do_crypto_3op_1 (0, 3);
21345 }
21346
21347 static void
21348 do_sha256h (void)
21349 {
21350 do_crypto_3op_1 (1, 0);
21351 }
21352
21353 static void
21354 do_sha256h2 (void)
21355 {
21356 do_crypto_3op_1 (1, 1);
21357 }
21358
21359 static void
21360 do_sha256su1 (void)
21361 {
21362 do_crypto_3op_1 (1, 2);
21363 }
21364
21365 static void
21366 do_sha1h (void)
21367 {
21368 do_crypto_2op_1 (N_32, -1);
21369 }
21370
21371 static void
21372 do_sha1su1 (void)
21373 {
21374 do_crypto_2op_1 (N_32, 0);
21375 }
21376
21377 static void
21378 do_sha256su0 (void)
21379 {
21380 do_crypto_2op_1 (N_32, 1);
21381 }
21382
21383 static void
21384 do_crc32_1 (unsigned int poly, unsigned int sz)
21385 {
21386 unsigned int Rd = inst.operands[0].reg;
21387 unsigned int Rn = inst.operands[1].reg;
21388 unsigned int Rm = inst.operands[2].reg;
21389
21390 set_pred_insn_type (OUTSIDE_PRED_INSN);
21391 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
21392 inst.instruction |= LOW4 (Rn) << 16;
21393 inst.instruction |= LOW4 (Rm);
21394 inst.instruction |= sz << (thumb_mode ? 4 : 21);
21395 inst.instruction |= poly << (thumb_mode ? 20 : 9);
21396
21397 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
21398 as_warn (UNPRED_REG ("r15"));
21399 }
21400
21401 static void
21402 do_crc32b (void)
21403 {
21404 do_crc32_1 (0, 0);
21405 }
21406
21407 static void
21408 do_crc32h (void)
21409 {
21410 do_crc32_1 (0, 1);
21411 }
21412
21413 static void
21414 do_crc32w (void)
21415 {
21416 do_crc32_1 (0, 2);
21417 }
21418
21419 static void
21420 do_crc32cb (void)
21421 {
21422 do_crc32_1 (1, 0);
21423 }
21424
21425 static void
21426 do_crc32ch (void)
21427 {
21428 do_crc32_1 (1, 1);
21429 }
21430
21431 static void
21432 do_crc32cw (void)
21433 {
21434 do_crc32_1 (1, 2);
21435 }
21436
21437 static void
21438 do_vjcvt (void)
21439 {
21440 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
21441 _(BAD_FPU));
21442 neon_check_type (2, NS_FD, N_S32, N_F64);
21443 do_vfp_sp_dp_cvt ();
21444 do_vfp_cond_or_thumb ();
21445 }
21446
21447 \f
21448 /* Overall per-instruction processing. */
21449
21450 /* We need to be able to fix up arbitrary expressions in some statements.
21451 This is so that we can handle symbols that are an arbitrary distance from
21452 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
21453 which returns part of an address in a form which will be valid for
21454 a data instruction. We do this by pushing the expression into a symbol
21455 in the expr_section, and creating a fix for that. */
21456
21457 static void
21458 fix_new_arm (fragS * frag,
21459 int where,
21460 short int size,
21461 expressionS * exp,
21462 int pc_rel,
21463 int reloc)
21464 {
21465 fixS * new_fix;
21466
21467 switch (exp->X_op)
21468 {
21469 case O_constant:
21470 if (pc_rel)
21471 {
21472 /* Create an absolute valued symbol, so we have something to
21473 refer to in the object file. Unfortunately for us, gas's
21474 generic expression parsing will already have folded out
21475 any use of .set foo/.type foo %function that may have
21476 been used to set type information of the target location,
21477 that's being specified symbolically. We have to presume
21478 the user knows what they are doing. */
21479 char name[16 + 8];
21480 symbolS *symbol;
21481
21482 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
21483
21484 symbol = symbol_find_or_make (name);
21485 S_SET_SEGMENT (symbol, absolute_section);
21486 symbol_set_frag (symbol, &zero_address_frag);
21487 S_SET_VALUE (symbol, exp->X_add_number);
21488 exp->X_op = O_symbol;
21489 exp->X_add_symbol = symbol;
21490 exp->X_add_number = 0;
21491 }
21492 /* FALLTHROUGH */
21493 case O_symbol:
21494 case O_add:
21495 case O_subtract:
21496 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
21497 (enum bfd_reloc_code_real) reloc);
21498 break;
21499
21500 default:
21501 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
21502 pc_rel, (enum bfd_reloc_code_real) reloc);
21503 break;
21504 }
21505
21506 /* Mark whether the fix is to a THUMB instruction, or an ARM
21507 instruction. */
21508 new_fix->tc_fix_data = thumb_mode;
21509 }
21510
21511 /* Create a frg for an instruction requiring relaxation. */
21512 static void
21513 output_relax_insn (void)
21514 {
21515 char * to;
21516 symbolS *sym;
21517 int offset;
21518
21519 /* The size of the instruction is unknown, so tie the debug info to the
21520 start of the instruction. */
21521 dwarf2_emit_insn (0);
21522
21523 switch (inst.relocs[0].exp.X_op)
21524 {
21525 case O_symbol:
21526 sym = inst.relocs[0].exp.X_add_symbol;
21527 offset = inst.relocs[0].exp.X_add_number;
21528 break;
21529 case O_constant:
21530 sym = NULL;
21531 offset = inst.relocs[0].exp.X_add_number;
21532 break;
21533 default:
21534 sym = make_expr_symbol (&inst.relocs[0].exp);
21535 offset = 0;
21536 break;
21537 }
21538 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
21539 inst.relax, sym, offset, NULL/*offset, opcode*/);
21540 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
21541 }
21542
21543 /* Write a 32-bit thumb instruction to buf. */
21544 static void
21545 put_thumb32_insn (char * buf, unsigned long insn)
21546 {
21547 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
21548 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
21549 }
21550
21551 static void
21552 output_inst (const char * str)
21553 {
21554 char * to = NULL;
21555
21556 if (inst.error)
21557 {
21558 as_bad ("%s -- `%s'", inst.error, str);
21559 return;
21560 }
21561 if (inst.relax)
21562 {
21563 output_relax_insn ();
21564 return;
21565 }
21566 if (inst.size == 0)
21567 return;
21568
21569 to = frag_more (inst.size);
21570 /* PR 9814: Record the thumb mode into the current frag so that we know
21571 what type of NOP padding to use, if necessary. We override any previous
21572 setting so that if the mode has changed then the NOPS that we use will
21573 match the encoding of the last instruction in the frag. */
21574 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
21575
21576 if (thumb_mode && (inst.size > THUMB_SIZE))
21577 {
21578 gas_assert (inst.size == (2 * THUMB_SIZE));
21579 put_thumb32_insn (to, inst.instruction);
21580 }
21581 else if (inst.size > INSN_SIZE)
21582 {
21583 gas_assert (inst.size == (2 * INSN_SIZE));
21584 md_number_to_chars (to, inst.instruction, INSN_SIZE);
21585 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
21586 }
21587 else
21588 md_number_to_chars (to, inst.instruction, inst.size);
21589
21590 int r;
21591 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
21592 {
21593 if (inst.relocs[r].type != BFD_RELOC_UNUSED)
21594 fix_new_arm (frag_now, to - frag_now->fr_literal,
21595 inst.size, & inst.relocs[r].exp, inst.relocs[r].pc_rel,
21596 inst.relocs[r].type);
21597 }
21598
21599 dwarf2_emit_insn (inst.size);
21600 }
21601
21602 static char *
21603 output_it_inst (int cond, int mask, char * to)
21604 {
21605 unsigned long instruction = 0xbf00;
21606
21607 mask &= 0xf;
21608 instruction |= mask;
21609 instruction |= cond << 4;
21610
21611 if (to == NULL)
21612 {
21613 to = frag_more (2);
21614 #ifdef OBJ_ELF
21615 dwarf2_emit_insn (2);
21616 #endif
21617 }
21618
21619 md_number_to_chars (to, instruction, 2);
21620
21621 return to;
21622 }
21623
21624 /* Tag values used in struct asm_opcode's tag field. */
21625 enum opcode_tag
21626 {
21627 OT_unconditional, /* Instruction cannot be conditionalized.
21628 The ARM condition field is still 0xE. */
21629 OT_unconditionalF, /* Instruction cannot be conditionalized
21630 and carries 0xF in its ARM condition field. */
21631 OT_csuffix, /* Instruction takes a conditional suffix. */
21632 OT_csuffixF, /* Some forms of the instruction take a scalar
21633 conditional suffix, others place 0xF where the
21634 condition field would be, others take a vector
21635 conditional suffix. */
21636 OT_cinfix3, /* Instruction takes a conditional infix,
21637 beginning at character index 3. (In
21638 unified mode, it becomes a suffix.) */
21639 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
21640 tsts, cmps, cmns, and teqs. */
21641 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
21642 character index 3, even in unified mode. Used for
21643 legacy instructions where suffix and infix forms
21644 may be ambiguous. */
21645 OT_csuf_or_in3, /* Instruction takes either a conditional
21646 suffix or an infix at character index 3. */
21647 OT_odd_infix_unc, /* This is the unconditional variant of an
21648 instruction that takes a conditional infix
21649 at an unusual position. In unified mode,
21650 this variant will accept a suffix. */
21651 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
21652 are the conditional variants of instructions that
21653 take conditional infixes in unusual positions.
21654 The infix appears at character index
21655 (tag - OT_odd_infix_0). These are not accepted
21656 in unified mode. */
21657 };
21658
21659 /* Subroutine of md_assemble, responsible for looking up the primary
21660 opcode from the mnemonic the user wrote. STR points to the
21661 beginning of the mnemonic.
21662
21663 This is not simply a hash table lookup, because of conditional
21664 variants. Most instructions have conditional variants, which are
21665 expressed with a _conditional affix_ to the mnemonic. If we were
21666 to encode each conditional variant as a literal string in the opcode
21667 table, it would have approximately 20,000 entries.
21668
21669 Most mnemonics take this affix as a suffix, and in unified syntax,
21670 'most' is upgraded to 'all'. However, in the divided syntax, some
21671 instructions take the affix as an infix, notably the s-variants of
21672 the arithmetic instructions. Of those instructions, all but six
21673 have the infix appear after the third character of the mnemonic.
21674
21675 Accordingly, the algorithm for looking up primary opcodes given
21676 an identifier is:
21677
21678 1. Look up the identifier in the opcode table.
21679 If we find a match, go to step U.
21680
21681 2. Look up the last two characters of the identifier in the
21682 conditions table. If we find a match, look up the first N-2
21683 characters of the identifier in the opcode table. If we
21684 find a match, go to step CE.
21685
21686 3. Look up the fourth and fifth characters of the identifier in
21687 the conditions table. If we find a match, extract those
21688 characters from the identifier, and look up the remaining
21689 characters in the opcode table. If we find a match, go
21690 to step CM.
21691
21692 4. Fail.
21693
21694 U. Examine the tag field of the opcode structure, in case this is
21695 one of the six instructions with its conditional infix in an
21696 unusual place. If it is, the tag tells us where to find the
21697 infix; look it up in the conditions table and set inst.cond
21698 accordingly. Otherwise, this is an unconditional instruction.
21699 Again set inst.cond accordingly. Return the opcode structure.
21700
21701 CE. Examine the tag field to make sure this is an instruction that
21702 should receive a conditional suffix. If it is not, fail.
21703 Otherwise, set inst.cond from the suffix we already looked up,
21704 and return the opcode structure.
21705
21706 CM. Examine the tag field to make sure this is an instruction that
21707 should receive a conditional infix after the third character.
21708 If it is not, fail. Otherwise, undo the edits to the current
21709 line of input and proceed as for case CE. */
21710
21711 static const struct asm_opcode *
21712 opcode_lookup (char **str)
21713 {
21714 char *end, *base;
21715 char *affix;
21716 const struct asm_opcode *opcode;
21717 const struct asm_cond *cond;
21718 char save[2];
21719
21720 /* Scan up to the end of the mnemonic, which must end in white space,
21721 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
21722 for (base = end = *str; *end != '\0'; end++)
21723 if (*end == ' ' || *end == '.')
21724 break;
21725
21726 if (end == base)
21727 return NULL;
21728
21729 /* Handle a possible width suffix and/or Neon type suffix. */
21730 if (end[0] == '.')
21731 {
21732 int offset = 2;
21733
21734 /* The .w and .n suffixes are only valid if the unified syntax is in
21735 use. */
21736 if (unified_syntax && end[1] == 'w')
21737 inst.size_req = 4;
21738 else if (unified_syntax && end[1] == 'n')
21739 inst.size_req = 2;
21740 else
21741 offset = 0;
21742
21743 inst.vectype.elems = 0;
21744
21745 *str = end + offset;
21746
21747 if (end[offset] == '.')
21748 {
21749 /* See if we have a Neon type suffix (possible in either unified or
21750 non-unified ARM syntax mode). */
21751 if (parse_neon_type (&inst.vectype, str) == FAIL)
21752 return NULL;
21753 }
21754 else if (end[offset] != '\0' && end[offset] != ' ')
21755 return NULL;
21756 }
21757 else
21758 *str = end;
21759
21760 /* Look for unaffixed or special-case affixed mnemonic. */
21761 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21762 end - base);
21763 if (opcode)
21764 {
21765 /* step U */
21766 if (opcode->tag < OT_odd_infix_0)
21767 {
21768 inst.cond = COND_ALWAYS;
21769 return opcode;
21770 }
21771
21772 if (warn_on_deprecated && unified_syntax)
21773 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
21774 affix = base + (opcode->tag - OT_odd_infix_0);
21775 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
21776 gas_assert (cond);
21777
21778 inst.cond = cond->value;
21779 return opcode;
21780 }
21781 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
21782 {
21783 /* Cannot have a conditional suffix on a mnemonic of less than a character.
21784 */
21785 if (end - base < 2)
21786 return NULL;
21787 affix = end - 1;
21788 cond = (const struct asm_cond *) hash_find_n (arm_vcond_hsh, affix, 1);
21789 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21790 affix - base);
21791 /* If this opcode can not be vector predicated then don't accept it with a
21792 vector predication code. */
21793 if (opcode && !opcode->mayBeVecPred)
21794 opcode = NULL;
21795 }
21796 if (!opcode || !cond)
21797 {
21798 /* Cannot have a conditional suffix on a mnemonic of less than two
21799 characters. */
21800 if (end - base < 3)
21801 return NULL;
21802
21803 /* Look for suffixed mnemonic. */
21804 affix = end - 2;
21805 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
21806 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21807 affix - base);
21808 }
21809
21810 if (opcode && cond)
21811 {
21812 /* step CE */
21813 switch (opcode->tag)
21814 {
21815 case OT_cinfix3_legacy:
21816 /* Ignore conditional suffixes matched on infix only mnemonics. */
21817 break;
21818
21819 case OT_cinfix3:
21820 case OT_cinfix3_deprecated:
21821 case OT_odd_infix_unc:
21822 if (!unified_syntax)
21823 return NULL;
21824 /* Fall through. */
21825
21826 case OT_csuffix:
21827 case OT_csuffixF:
21828 case OT_csuf_or_in3:
21829 inst.cond = cond->value;
21830 return opcode;
21831
21832 case OT_unconditional:
21833 case OT_unconditionalF:
21834 if (thumb_mode)
21835 inst.cond = cond->value;
21836 else
21837 {
21838 /* Delayed diagnostic. */
21839 inst.error = BAD_COND;
21840 inst.cond = COND_ALWAYS;
21841 }
21842 return opcode;
21843
21844 default:
21845 return NULL;
21846 }
21847 }
21848
21849 /* Cannot have a usual-position infix on a mnemonic of less than
21850 six characters (five would be a suffix). */
21851 if (end - base < 6)
21852 return NULL;
21853
21854 /* Look for infixed mnemonic in the usual position. */
21855 affix = base + 3;
21856 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
21857 if (!cond)
21858 return NULL;
21859
21860 memcpy (save, affix, 2);
21861 memmove (affix, affix + 2, (end - affix) - 2);
21862 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21863 (end - base) - 2);
21864 memmove (affix + 2, affix, (end - affix) - 2);
21865 memcpy (affix, save, 2);
21866
21867 if (opcode
21868 && (opcode->tag == OT_cinfix3
21869 || opcode->tag == OT_cinfix3_deprecated
21870 || opcode->tag == OT_csuf_or_in3
21871 || opcode->tag == OT_cinfix3_legacy))
21872 {
21873 /* Step CM. */
21874 if (warn_on_deprecated && unified_syntax
21875 && (opcode->tag == OT_cinfix3
21876 || opcode->tag == OT_cinfix3_deprecated))
21877 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
21878
21879 inst.cond = cond->value;
21880 return opcode;
21881 }
21882
21883 return NULL;
21884 }
21885
21886 /* This function generates an initial IT instruction, leaving its block
21887 virtually open for the new instructions. Eventually,
21888 the mask will be updated by now_pred_add_mask () each time
21889 a new instruction needs to be included in the IT block.
21890 Finally, the block is closed with close_automatic_it_block ().
21891 The block closure can be requested either from md_assemble (),
21892 a tencode (), or due to a label hook. */
21893
21894 static void
21895 new_automatic_it_block (int cond)
21896 {
21897 now_pred.state = AUTOMATIC_PRED_BLOCK;
21898 now_pred.mask = 0x18;
21899 now_pred.cc = cond;
21900 now_pred.block_length = 1;
21901 mapping_state (MAP_THUMB);
21902 now_pred.insn = output_it_inst (cond, now_pred.mask, NULL);
21903 now_pred.warn_deprecated = FALSE;
21904 now_pred.insn_cond = TRUE;
21905 }
21906
21907 /* Close an automatic IT block.
21908 See comments in new_automatic_it_block (). */
21909
21910 static void
21911 close_automatic_it_block (void)
21912 {
21913 now_pred.mask = 0x10;
21914 now_pred.block_length = 0;
21915 }
21916
21917 /* Update the mask of the current automatically-generated IT
21918 instruction. See comments in new_automatic_it_block (). */
21919
21920 static void
21921 now_pred_add_mask (int cond)
21922 {
21923 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
21924 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
21925 | ((bitvalue) << (nbit)))
21926 const int resulting_bit = (cond & 1);
21927
21928 now_pred.mask &= 0xf;
21929 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
21930 resulting_bit,
21931 (5 - now_pred.block_length));
21932 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
21933 1,
21934 ((5 - now_pred.block_length) - 1));
21935 output_it_inst (now_pred.cc, now_pred.mask, now_pred.insn);
21936
21937 #undef CLEAR_BIT
21938 #undef SET_BIT_VALUE
21939 }
21940
21941 /* The IT blocks handling machinery is accessed through the these functions:
21942 it_fsm_pre_encode () from md_assemble ()
21943 set_pred_insn_type () optional, from the tencode functions
21944 set_pred_insn_type_last () ditto
21945 in_pred_block () ditto
21946 it_fsm_post_encode () from md_assemble ()
21947 force_automatic_it_block_close () from label handling functions
21948
21949 Rationale:
21950 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
21951 initializing the IT insn type with a generic initial value depending
21952 on the inst.condition.
21953 2) During the tencode function, two things may happen:
21954 a) The tencode function overrides the IT insn type by
21955 calling either set_pred_insn_type (type) or
21956 set_pred_insn_type_last ().
21957 b) The tencode function queries the IT block state by
21958 calling in_pred_block () (i.e. to determine narrow/not narrow mode).
21959
21960 Both set_pred_insn_type and in_pred_block run the internal FSM state
21961 handling function (handle_pred_state), because: a) setting the IT insn
21962 type may incur in an invalid state (exiting the function),
21963 and b) querying the state requires the FSM to be updated.
21964 Specifically we want to avoid creating an IT block for conditional
21965 branches, so it_fsm_pre_encode is actually a guess and we can't
21966 determine whether an IT block is required until the tencode () routine
21967 has decided what type of instruction this actually it.
21968 Because of this, if set_pred_insn_type and in_pred_block have to be
21969 used, set_pred_insn_type has to be called first.
21970
21971 set_pred_insn_type_last () is a wrapper of set_pred_insn_type (type),
21972 that determines the insn IT type depending on the inst.cond code.
21973 When a tencode () routine encodes an instruction that can be
21974 either outside an IT block, or, in the case of being inside, has to be
21975 the last one, set_pred_insn_type_last () will determine the proper
21976 IT instruction type based on the inst.cond code. Otherwise,
21977 set_pred_insn_type can be called for overriding that logic or
21978 for covering other cases.
21979
21980 Calling handle_pred_state () may not transition the IT block state to
21981 OUTSIDE_PRED_BLOCK immediately, since the (current) state could be
21982 still queried. Instead, if the FSM determines that the state should
21983 be transitioned to OUTSIDE_PRED_BLOCK, a flag is marked to be closed
21984 after the tencode () function: that's what it_fsm_post_encode () does.
21985
21986 Since in_pred_block () calls the state handling function to get an
21987 updated state, an error may occur (due to invalid insns combination).
21988 In that case, inst.error is set.
21989 Therefore, inst.error has to be checked after the execution of
21990 the tencode () routine.
21991
21992 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
21993 any pending state change (if any) that didn't take place in
21994 handle_pred_state () as explained above. */
21995
21996 static void
21997 it_fsm_pre_encode (void)
21998 {
21999 if (inst.cond != COND_ALWAYS)
22000 inst.pred_insn_type = INSIDE_IT_INSN;
22001 else
22002 inst.pred_insn_type = OUTSIDE_PRED_INSN;
22003
22004 now_pred.state_handled = 0;
22005 }
22006
22007 /* IT state FSM handling function. */
22008 /* MVE instructions and non-MVE instructions are handled differently because of
22009 the introduction of VPT blocks.
22010 Specifications say that any non-MVE instruction inside a VPT block is
22011 UNPREDICTABLE, with the exception of the BKPT instruction. Whereas most MVE
22012 instructions are deemed to be UNPREDICTABLE if inside an IT block. For the
22013 few exceptions we have MVE_UNPREDICABLE_INSN.
22014 The error messages provided depending on the different combinations possible
22015 are described in the cases below:
22016 For 'most' MVE instructions:
22017 1) In an IT block, with an IT code: syntax error
22018 2) In an IT block, with a VPT code: error: must be in a VPT block
22019 3) In an IT block, with no code: warning: UNPREDICTABLE
22020 4) In a VPT block, with an IT code: syntax error
22021 5) In a VPT block, with a VPT code: OK!
22022 6) In a VPT block, with no code: error: missing code
22023 7) Outside a pred block, with an IT code: error: syntax error
22024 8) Outside a pred block, with a VPT code: error: should be in a VPT block
22025 9) Outside a pred block, with no code: OK!
22026 For non-MVE instructions:
22027 10) In an IT block, with an IT code: OK!
22028 11) In an IT block, with a VPT code: syntax error
22029 12) In an IT block, with no code: error: missing code
22030 13) In a VPT block, with an IT code: error: should be in an IT block
22031 14) In a VPT block, with a VPT code: syntax error
22032 15) In a VPT block, with no code: UNPREDICTABLE
22033 16) Outside a pred block, with an IT code: error: should be in an IT block
22034 17) Outside a pred block, with a VPT code: syntax error
22035 18) Outside a pred block, with no code: OK!
22036 */
22037
22038
22039 static int
22040 handle_pred_state (void)
22041 {
22042 now_pred.state_handled = 1;
22043 now_pred.insn_cond = FALSE;
22044
22045 switch (now_pred.state)
22046 {
22047 case OUTSIDE_PRED_BLOCK:
22048 switch (inst.pred_insn_type)
22049 {
22050 case MVE_UNPREDICABLE_INSN:
22051 case MVE_OUTSIDE_PRED_INSN:
22052 if (inst.cond < COND_ALWAYS)
22053 {
22054 /* Case 7: Outside a pred block, with an IT code: error: syntax
22055 error. */
22056 inst.error = BAD_SYNTAX;
22057 return FAIL;
22058 }
22059 /* Case 9: Outside a pred block, with no code: OK! */
22060 break;
22061 case OUTSIDE_PRED_INSN:
22062 if (inst.cond > COND_ALWAYS)
22063 {
22064 /* Case 17: Outside a pred block, with a VPT code: syntax error.
22065 */
22066 inst.error = BAD_SYNTAX;
22067 return FAIL;
22068 }
22069 /* Case 18: Outside a pred block, with no code: OK! */
22070 break;
22071
22072 case INSIDE_VPT_INSN:
22073 /* Case 8: Outside a pred block, with a VPT code: error: should be in
22074 a VPT block. */
22075 inst.error = BAD_OUT_VPT;
22076 return FAIL;
22077
22078 case INSIDE_IT_INSN:
22079 case INSIDE_IT_LAST_INSN:
22080 if (inst.cond < COND_ALWAYS)
22081 {
22082 /* Case 16: Outside a pred block, with an IT code: error: should
22083 be in an IT block. */
22084 if (thumb_mode == 0)
22085 {
22086 if (unified_syntax
22087 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
22088 as_tsktsk (_("Warning: conditional outside an IT block"\
22089 " for Thumb."));
22090 }
22091 else
22092 {
22093 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
22094 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
22095 {
22096 /* Automatically generate the IT instruction. */
22097 new_automatic_it_block (inst.cond);
22098 if (inst.pred_insn_type == INSIDE_IT_LAST_INSN)
22099 close_automatic_it_block ();
22100 }
22101 else
22102 {
22103 inst.error = BAD_OUT_IT;
22104 return FAIL;
22105 }
22106 }
22107 break;
22108 }
22109 else if (inst.cond > COND_ALWAYS)
22110 {
22111 /* Case 17: Outside a pred block, with a VPT code: syntax error.
22112 */
22113 inst.error = BAD_SYNTAX;
22114 return FAIL;
22115 }
22116 else
22117 gas_assert (0);
22118 case IF_INSIDE_IT_LAST_INSN:
22119 case NEUTRAL_IT_INSN:
22120 break;
22121
22122 case VPT_INSN:
22123 if (inst.cond != COND_ALWAYS)
22124 first_error (BAD_SYNTAX);
22125 now_pred.state = MANUAL_PRED_BLOCK;
22126 now_pred.block_length = 0;
22127 now_pred.type = VECTOR_PRED;
22128 now_pred.cc = 0;
22129 break;
22130 case IT_INSN:
22131 now_pred.state = MANUAL_PRED_BLOCK;
22132 now_pred.block_length = 0;
22133 now_pred.type = SCALAR_PRED;
22134 break;
22135 }
22136 break;
22137
22138 case AUTOMATIC_PRED_BLOCK:
22139 /* Three things may happen now:
22140 a) We should increment current it block size;
22141 b) We should close current it block (closing insn or 4 insns);
22142 c) We should close current it block and start a new one (due
22143 to incompatible conditions or
22144 4 insns-length block reached). */
22145
22146 switch (inst.pred_insn_type)
22147 {
22148 case INSIDE_VPT_INSN:
22149 case VPT_INSN:
22150 case MVE_UNPREDICABLE_INSN:
22151 case MVE_OUTSIDE_PRED_INSN:
22152 gas_assert (0);
22153 case OUTSIDE_PRED_INSN:
22154 /* The closure of the block shall happen immediately,
22155 so any in_pred_block () call reports the block as closed. */
22156 force_automatic_it_block_close ();
22157 break;
22158
22159 case INSIDE_IT_INSN:
22160 case INSIDE_IT_LAST_INSN:
22161 case IF_INSIDE_IT_LAST_INSN:
22162 now_pred.block_length++;
22163
22164 if (now_pred.block_length > 4
22165 || !now_pred_compatible (inst.cond))
22166 {
22167 force_automatic_it_block_close ();
22168 if (inst.pred_insn_type != IF_INSIDE_IT_LAST_INSN)
22169 new_automatic_it_block (inst.cond);
22170 }
22171 else
22172 {
22173 now_pred.insn_cond = TRUE;
22174 now_pred_add_mask (inst.cond);
22175 }
22176
22177 if (now_pred.state == AUTOMATIC_PRED_BLOCK
22178 && (inst.pred_insn_type == INSIDE_IT_LAST_INSN
22179 || inst.pred_insn_type == IF_INSIDE_IT_LAST_INSN))
22180 close_automatic_it_block ();
22181 break;
22182
22183 case NEUTRAL_IT_INSN:
22184 now_pred.block_length++;
22185 now_pred.insn_cond = TRUE;
22186
22187 if (now_pred.block_length > 4)
22188 force_automatic_it_block_close ();
22189 else
22190 now_pred_add_mask (now_pred.cc & 1);
22191 break;
22192
22193 case IT_INSN:
22194 close_automatic_it_block ();
22195 now_pred.state = MANUAL_PRED_BLOCK;
22196 break;
22197 }
22198 break;
22199
22200 case MANUAL_PRED_BLOCK:
22201 {
22202 int cond, is_last;
22203 if (now_pred.type == SCALAR_PRED)
22204 {
22205 /* Check conditional suffixes. */
22206 cond = now_pred.cc ^ ((now_pred.mask >> 4) & 1) ^ 1;
22207 now_pred.mask <<= 1;
22208 now_pred.mask &= 0x1f;
22209 is_last = (now_pred.mask == 0x10);
22210 }
22211 else
22212 {
22213 now_pred.cc ^= (now_pred.mask >> 4);
22214 cond = now_pred.cc + 0xf;
22215 now_pred.mask <<= 1;
22216 now_pred.mask &= 0x1f;
22217 is_last = now_pred.mask == 0x10;
22218 }
22219 now_pred.insn_cond = TRUE;
22220
22221 switch (inst.pred_insn_type)
22222 {
22223 case OUTSIDE_PRED_INSN:
22224 if (now_pred.type == SCALAR_PRED)
22225 {
22226 if (inst.cond == COND_ALWAYS)
22227 {
22228 /* Case 12: In an IT block, with no code: error: missing
22229 code. */
22230 inst.error = BAD_NOT_IT;
22231 return FAIL;
22232 }
22233 else if (inst.cond > COND_ALWAYS)
22234 {
22235 /* Case 11: In an IT block, with a VPT code: syntax error.
22236 */
22237 inst.error = BAD_SYNTAX;
22238 return FAIL;
22239 }
22240 else if (thumb_mode)
22241 {
22242 /* This is for some special cases where a non-MVE
22243 instruction is not allowed in an IT block, such as cbz,
22244 but are put into one with a condition code.
22245 You could argue this should be a syntax error, but we
22246 gave the 'not allowed in IT block' diagnostic in the
22247 past so we will keep doing so. */
22248 inst.error = BAD_NOT_IT;
22249 return FAIL;
22250 }
22251 break;
22252 }
22253 else
22254 {
22255 /* Case 15: In a VPT block, with no code: UNPREDICTABLE. */
22256 as_tsktsk (MVE_NOT_VPT);
22257 return SUCCESS;
22258 }
22259 case MVE_OUTSIDE_PRED_INSN:
22260 if (now_pred.type == SCALAR_PRED)
22261 {
22262 if (inst.cond == COND_ALWAYS)
22263 {
22264 /* Case 3: In an IT block, with no code: warning:
22265 UNPREDICTABLE. */
22266 as_tsktsk (MVE_NOT_IT);
22267 return SUCCESS;
22268 }
22269 else if (inst.cond < COND_ALWAYS)
22270 {
22271 /* Case 1: In an IT block, with an IT code: syntax error.
22272 */
22273 inst.error = BAD_SYNTAX;
22274 return FAIL;
22275 }
22276 else
22277 gas_assert (0);
22278 }
22279 else
22280 {
22281 if (inst.cond < COND_ALWAYS)
22282 {
22283 /* Case 4: In a VPT block, with an IT code: syntax error.
22284 */
22285 inst.error = BAD_SYNTAX;
22286 return FAIL;
22287 }
22288 else if (inst.cond == COND_ALWAYS)
22289 {
22290 /* Case 6: In a VPT block, with no code: error: missing
22291 code. */
22292 inst.error = BAD_NOT_VPT;
22293 return FAIL;
22294 }
22295 else
22296 {
22297 gas_assert (0);
22298 }
22299 }
22300 case MVE_UNPREDICABLE_INSN:
22301 as_tsktsk (now_pred.type == SCALAR_PRED ? MVE_NOT_IT : MVE_NOT_VPT);
22302 return SUCCESS;
22303 case INSIDE_IT_INSN:
22304 if (inst.cond > COND_ALWAYS)
22305 {
22306 /* Case 11: In an IT block, with a VPT code: syntax error. */
22307 /* Case 14: In a VPT block, with a VPT code: syntax error. */
22308 inst.error = BAD_SYNTAX;
22309 return FAIL;
22310 }
22311 else if (now_pred.type == SCALAR_PRED)
22312 {
22313 /* Case 10: In an IT block, with an IT code: OK! */
22314 if (cond != inst.cond)
22315 {
22316 inst.error = now_pred.type == SCALAR_PRED ? BAD_IT_COND :
22317 BAD_VPT_COND;
22318 return FAIL;
22319 }
22320 }
22321 else
22322 {
22323 /* Case 13: In a VPT block, with an IT code: error: should be
22324 in an IT block. */
22325 inst.error = BAD_OUT_IT;
22326 return FAIL;
22327 }
22328 break;
22329
22330 case INSIDE_VPT_INSN:
22331 if (now_pred.type == SCALAR_PRED)
22332 {
22333 /* Case 2: In an IT block, with a VPT code: error: must be in a
22334 VPT block. */
22335 inst.error = BAD_OUT_VPT;
22336 return FAIL;
22337 }
22338 /* Case 5: In a VPT block, with a VPT code: OK! */
22339 else if (cond != inst.cond)
22340 {
22341 inst.error = BAD_VPT_COND;
22342 return FAIL;
22343 }
22344 break;
22345 case INSIDE_IT_LAST_INSN:
22346 case IF_INSIDE_IT_LAST_INSN:
22347 if (now_pred.type == VECTOR_PRED || inst.cond > COND_ALWAYS)
22348 {
22349 /* Case 4: In a VPT block, with an IT code: syntax error. */
22350 /* Case 11: In an IT block, with a VPT code: syntax error. */
22351 inst.error = BAD_SYNTAX;
22352 return FAIL;
22353 }
22354 else if (cond != inst.cond)
22355 {
22356 inst.error = BAD_IT_COND;
22357 return FAIL;
22358 }
22359 if (!is_last)
22360 {
22361 inst.error = BAD_BRANCH;
22362 return FAIL;
22363 }
22364 break;
22365
22366 case NEUTRAL_IT_INSN:
22367 /* The BKPT instruction is unconditional even in a IT or VPT
22368 block. */
22369 break;
22370
22371 case IT_INSN:
22372 if (now_pred.type == SCALAR_PRED)
22373 {
22374 inst.error = BAD_IT_IT;
22375 return FAIL;
22376 }
22377 /* fall through. */
22378 case VPT_INSN:
22379 if (inst.cond == COND_ALWAYS)
22380 {
22381 /* Executing a VPT/VPST instruction inside an IT block or a
22382 VPT/VPST/IT instruction inside a VPT block is UNPREDICTABLE.
22383 */
22384 if (now_pred.type == SCALAR_PRED)
22385 as_tsktsk (MVE_NOT_IT);
22386 else
22387 as_tsktsk (MVE_NOT_VPT);
22388 return SUCCESS;
22389 }
22390 else
22391 {
22392 /* VPT/VPST do not accept condition codes. */
22393 inst.error = BAD_SYNTAX;
22394 return FAIL;
22395 }
22396 }
22397 }
22398 break;
22399 }
22400
22401 return SUCCESS;
22402 }
22403
22404 struct depr_insn_mask
22405 {
22406 unsigned long pattern;
22407 unsigned long mask;
22408 const char* description;
22409 };
22410
22411 /* List of 16-bit instruction patterns deprecated in an IT block in
22412 ARMv8. */
22413 static const struct depr_insn_mask depr_it_insns[] = {
22414 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
22415 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
22416 { 0xa000, 0xb800, N_("ADR") },
22417 { 0x4800, 0xf800, N_("Literal loads") },
22418 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
22419 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
22420 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
22421 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
22422 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
22423 { 0, 0, NULL }
22424 };
22425
22426 static void
22427 it_fsm_post_encode (void)
22428 {
22429 int is_last;
22430
22431 if (!now_pred.state_handled)
22432 handle_pred_state ();
22433
22434 if (now_pred.insn_cond
22435 && !now_pred.warn_deprecated
22436 && warn_on_deprecated
22437 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)
22438 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m))
22439 {
22440 if (inst.instruction >= 0x10000)
22441 {
22442 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
22443 "performance deprecated in ARMv8-A and ARMv8-R"));
22444 now_pred.warn_deprecated = TRUE;
22445 }
22446 else
22447 {
22448 const struct depr_insn_mask *p = depr_it_insns;
22449
22450 while (p->mask != 0)
22451 {
22452 if ((inst.instruction & p->mask) == p->pattern)
22453 {
22454 as_tsktsk (_("IT blocks containing 16-bit Thumb "
22455 "instructions of the following class are "
22456 "performance deprecated in ARMv8-A and "
22457 "ARMv8-R: %s"), p->description);
22458 now_pred.warn_deprecated = TRUE;
22459 break;
22460 }
22461
22462 ++p;
22463 }
22464 }
22465
22466 if (now_pred.block_length > 1)
22467 {
22468 as_tsktsk (_("IT blocks containing more than one conditional "
22469 "instruction are performance deprecated in ARMv8-A and "
22470 "ARMv8-R"));
22471 now_pred.warn_deprecated = TRUE;
22472 }
22473 }
22474
22475 is_last = (now_pred.mask == 0x10);
22476 if (is_last)
22477 {
22478 now_pred.state = OUTSIDE_PRED_BLOCK;
22479 now_pred.mask = 0;
22480 }
22481 }
22482
22483 static void
22484 force_automatic_it_block_close (void)
22485 {
22486 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
22487 {
22488 close_automatic_it_block ();
22489 now_pred.state = OUTSIDE_PRED_BLOCK;
22490 now_pred.mask = 0;
22491 }
22492 }
22493
22494 static int
22495 in_pred_block (void)
22496 {
22497 if (!now_pred.state_handled)
22498 handle_pred_state ();
22499
22500 return now_pred.state != OUTSIDE_PRED_BLOCK;
22501 }
22502
22503 /* Whether OPCODE only has T32 encoding. Since this function is only used by
22504 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
22505 here, hence the "known" in the function name. */
22506
22507 static bfd_boolean
22508 known_t32_only_insn (const struct asm_opcode *opcode)
22509 {
22510 /* Original Thumb-1 wide instruction. */
22511 if (opcode->tencode == do_t_blx
22512 || opcode->tencode == do_t_branch23
22513 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
22514 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
22515 return TRUE;
22516
22517 /* Wide-only instruction added to ARMv8-M Baseline. */
22518 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
22519 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
22520 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
22521 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
22522 return TRUE;
22523
22524 return FALSE;
22525 }
22526
22527 /* Whether wide instruction variant can be used if available for a valid OPCODE
22528 in ARCH. */
22529
22530 static bfd_boolean
22531 t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
22532 {
22533 if (known_t32_only_insn (opcode))
22534 return TRUE;
22535
22536 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
22537 of variant T3 of B.W is checked in do_t_branch. */
22538 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
22539 && opcode->tencode == do_t_branch)
22540 return TRUE;
22541
22542 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
22543 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
22544 && opcode->tencode == do_t_mov_cmp
22545 /* Make sure CMP instruction is not affected. */
22546 && opcode->aencode == do_mov)
22547 return TRUE;
22548
22549 /* Wide instruction variants of all instructions with narrow *and* wide
22550 variants become available with ARMv6t2. Other opcodes are either
22551 narrow-only or wide-only and are thus available if OPCODE is valid. */
22552 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
22553 return TRUE;
22554
22555 /* OPCODE with narrow only instruction variant or wide variant not
22556 available. */
22557 return FALSE;
22558 }
22559
22560 void
22561 md_assemble (char *str)
22562 {
22563 char *p = str;
22564 const struct asm_opcode * opcode;
22565
22566 /* Align the previous label if needed. */
22567 if (last_label_seen != NULL)
22568 {
22569 symbol_set_frag (last_label_seen, frag_now);
22570 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
22571 S_SET_SEGMENT (last_label_seen, now_seg);
22572 }
22573
22574 memset (&inst, '\0', sizeof (inst));
22575 int r;
22576 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
22577 inst.relocs[r].type = BFD_RELOC_UNUSED;
22578
22579 opcode = opcode_lookup (&p);
22580 if (!opcode)
22581 {
22582 /* It wasn't an instruction, but it might be a register alias of
22583 the form alias .req reg, or a Neon .dn/.qn directive. */
22584 if (! create_register_alias (str, p)
22585 && ! create_neon_reg_alias (str, p))
22586 as_bad (_("bad instruction `%s'"), str);
22587
22588 return;
22589 }
22590
22591 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
22592 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
22593
22594 /* The value which unconditional instructions should have in place of the
22595 condition field. */
22596 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
22597
22598 if (thumb_mode)
22599 {
22600 arm_feature_set variant;
22601
22602 variant = cpu_variant;
22603 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
22604 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
22605 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
22606 /* Check that this instruction is supported for this CPU. */
22607 if (!opcode->tvariant
22608 || (thumb_mode == 1
22609 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
22610 {
22611 if (opcode->tencode == do_t_swi)
22612 as_bad (_("SVC is not permitted on this architecture"));
22613 else
22614 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
22615 return;
22616 }
22617 if (inst.cond != COND_ALWAYS && !unified_syntax
22618 && opcode->tencode != do_t_branch)
22619 {
22620 as_bad (_("Thumb does not support conditional execution"));
22621 return;
22622 }
22623
22624 /* Two things are addressed here:
22625 1) Implicit require narrow instructions on Thumb-1.
22626 This avoids relaxation accidentally introducing Thumb-2
22627 instructions.
22628 2) Reject wide instructions in non Thumb-2 cores.
22629
22630 Only instructions with narrow and wide variants need to be handled
22631 but selecting all non wide-only instructions is easier. */
22632 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
22633 && !t32_insn_ok (variant, opcode))
22634 {
22635 if (inst.size_req == 0)
22636 inst.size_req = 2;
22637 else if (inst.size_req == 4)
22638 {
22639 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
22640 as_bad (_("selected processor does not support 32bit wide "
22641 "variant of instruction `%s'"), str);
22642 else
22643 as_bad (_("selected processor does not support `%s' in "
22644 "Thumb-2 mode"), str);
22645 return;
22646 }
22647 }
22648
22649 inst.instruction = opcode->tvalue;
22650
22651 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
22652 {
22653 /* Prepare the pred_insn_type for those encodings that don't set
22654 it. */
22655 it_fsm_pre_encode ();
22656
22657 opcode->tencode ();
22658
22659 it_fsm_post_encode ();
22660 }
22661
22662 if (!(inst.error || inst.relax))
22663 {
22664 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
22665 inst.size = (inst.instruction > 0xffff ? 4 : 2);
22666 if (inst.size_req && inst.size_req != inst.size)
22667 {
22668 as_bad (_("cannot honor width suffix -- `%s'"), str);
22669 return;
22670 }
22671 }
22672
22673 /* Something has gone badly wrong if we try to relax a fixed size
22674 instruction. */
22675 gas_assert (inst.size_req == 0 || !inst.relax);
22676
22677 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
22678 *opcode->tvariant);
22679 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
22680 set those bits when Thumb-2 32-bit instructions are seen. The impact
22681 of relaxable instructions will be considered later after we finish all
22682 relaxation. */
22683 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
22684 variant = arm_arch_none;
22685 else
22686 variant = cpu_variant;
22687 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
22688 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
22689 arm_ext_v6t2);
22690
22691 check_neon_suffixes;
22692
22693 if (!inst.error)
22694 {
22695 mapping_state (MAP_THUMB);
22696 }
22697 }
22698 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
22699 {
22700 bfd_boolean is_bx;
22701
22702 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
22703 is_bx = (opcode->aencode == do_bx);
22704
22705 /* Check that this instruction is supported for this CPU. */
22706 if (!(is_bx && fix_v4bx)
22707 && !(opcode->avariant &&
22708 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
22709 {
22710 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
22711 return;
22712 }
22713 if (inst.size_req)
22714 {
22715 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
22716 return;
22717 }
22718
22719 inst.instruction = opcode->avalue;
22720 if (opcode->tag == OT_unconditionalF)
22721 inst.instruction |= 0xFU << 28;
22722 else
22723 inst.instruction |= inst.cond << 28;
22724 inst.size = INSN_SIZE;
22725 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
22726 {
22727 it_fsm_pre_encode ();
22728 opcode->aencode ();
22729 it_fsm_post_encode ();
22730 }
22731 /* Arm mode bx is marked as both v4T and v5 because it's still required
22732 on a hypothetical non-thumb v5 core. */
22733 if (is_bx)
22734 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
22735 else
22736 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
22737 *opcode->avariant);
22738
22739 check_neon_suffixes;
22740
22741 if (!inst.error)
22742 {
22743 mapping_state (MAP_ARM);
22744 }
22745 }
22746 else
22747 {
22748 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
22749 "-- `%s'"), str);
22750 return;
22751 }
22752 output_inst (str);
22753 }
22754
22755 static void
22756 check_pred_blocks_finished (void)
22757 {
22758 #ifdef OBJ_ELF
22759 asection *sect;
22760
22761 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
22762 if (seg_info (sect)->tc_segment_info_data.current_pred.state
22763 == MANUAL_PRED_BLOCK)
22764 {
22765 if (now_pred.type == SCALAR_PRED)
22766 as_warn (_("section '%s' finished with an open IT block."),
22767 sect->name);
22768 else
22769 as_warn (_("section '%s' finished with an open VPT/VPST block."),
22770 sect->name);
22771 }
22772 #else
22773 if (now_pred.state == MANUAL_PRED_BLOCK)
22774 {
22775 if (now_pred.type == SCALAR_PRED)
22776 as_warn (_("file finished with an open IT block."));
22777 else
22778 as_warn (_("file finished with an open VPT/VPST block."));
22779 }
22780 #endif
22781 }
22782
22783 /* Various frobbings of labels and their addresses. */
22784
22785 void
22786 arm_start_line_hook (void)
22787 {
22788 last_label_seen = NULL;
22789 }
22790
22791 void
22792 arm_frob_label (symbolS * sym)
22793 {
22794 last_label_seen = sym;
22795
22796 ARM_SET_THUMB (sym, thumb_mode);
22797
22798 #if defined OBJ_COFF || defined OBJ_ELF
22799 ARM_SET_INTERWORK (sym, support_interwork);
22800 #endif
22801
22802 force_automatic_it_block_close ();
22803
22804 /* Note - do not allow local symbols (.Lxxx) to be labelled
22805 as Thumb functions. This is because these labels, whilst
22806 they exist inside Thumb code, are not the entry points for
22807 possible ARM->Thumb calls. Also, these labels can be used
22808 as part of a computed goto or switch statement. eg gcc
22809 can generate code that looks like this:
22810
22811 ldr r2, [pc, .Laaa]
22812 lsl r3, r3, #2
22813 ldr r2, [r3, r2]
22814 mov pc, r2
22815
22816 .Lbbb: .word .Lxxx
22817 .Lccc: .word .Lyyy
22818 ..etc...
22819 .Laaa: .word Lbbb
22820
22821 The first instruction loads the address of the jump table.
22822 The second instruction converts a table index into a byte offset.
22823 The third instruction gets the jump address out of the table.
22824 The fourth instruction performs the jump.
22825
22826 If the address stored at .Laaa is that of a symbol which has the
22827 Thumb_Func bit set, then the linker will arrange for this address
22828 to have the bottom bit set, which in turn would mean that the
22829 address computation performed by the third instruction would end
22830 up with the bottom bit set. Since the ARM is capable of unaligned
22831 word loads, the instruction would then load the incorrect address
22832 out of the jump table, and chaos would ensue. */
22833 if (label_is_thumb_function_name
22834 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
22835 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
22836 {
22837 /* When the address of a Thumb function is taken the bottom
22838 bit of that address should be set. This will allow
22839 interworking between Arm and Thumb functions to work
22840 correctly. */
22841
22842 THUMB_SET_FUNC (sym, 1);
22843
22844 label_is_thumb_function_name = FALSE;
22845 }
22846
22847 dwarf2_emit_label (sym);
22848 }
22849
22850 bfd_boolean
22851 arm_data_in_code (void)
22852 {
22853 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
22854 {
22855 *input_line_pointer = '/';
22856 input_line_pointer += 5;
22857 *input_line_pointer = 0;
22858 return TRUE;
22859 }
22860
22861 return FALSE;
22862 }
22863
22864 char *
22865 arm_canonicalize_symbol_name (char * name)
22866 {
22867 int len;
22868
22869 if (thumb_mode && (len = strlen (name)) > 5
22870 && streq (name + len - 5, "/data"))
22871 *(name + len - 5) = 0;
22872
22873 return name;
22874 }
22875 \f
22876 /* Table of all register names defined by default. The user can
22877 define additional names with .req. Note that all register names
22878 should appear in both upper and lowercase variants. Some registers
22879 also have mixed-case names. */
22880
22881 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
22882 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
22883 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
22884 #define REGSET(p,t) \
22885 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
22886 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
22887 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
22888 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
22889 #define REGSETH(p,t) \
22890 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
22891 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
22892 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
22893 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
22894 #define REGSET2(p,t) \
22895 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
22896 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
22897 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
22898 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
22899 #define SPLRBANK(base,bank,t) \
22900 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
22901 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
22902 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
22903 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
22904 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
22905 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
22906
22907 static const struct reg_entry reg_names[] =
22908 {
22909 /* ARM integer registers. */
22910 REGSET(r, RN), REGSET(R, RN),
22911
22912 /* ATPCS synonyms. */
22913 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
22914 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
22915 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
22916
22917 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
22918 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
22919 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
22920
22921 /* Well-known aliases. */
22922 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
22923 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
22924
22925 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
22926 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
22927
22928 /* Defining the new Zero register from ARMv8.1-M. */
22929 REGDEF(zr,15,ZR),
22930 REGDEF(ZR,15,ZR),
22931
22932 /* Coprocessor numbers. */
22933 REGSET(p, CP), REGSET(P, CP),
22934
22935 /* Coprocessor register numbers. The "cr" variants are for backward
22936 compatibility. */
22937 REGSET(c, CN), REGSET(C, CN),
22938 REGSET(cr, CN), REGSET(CR, CN),
22939
22940 /* ARM banked registers. */
22941 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
22942 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
22943 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
22944 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
22945 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
22946 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
22947 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
22948
22949 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
22950 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
22951 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
22952 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
22953 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
22954 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
22955 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
22956 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
22957
22958 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
22959 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
22960 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
22961 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
22962 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
22963 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
22964 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
22965 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
22966 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
22967
22968 /* FPA registers. */
22969 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
22970 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
22971
22972 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
22973 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
22974
22975 /* VFP SP registers. */
22976 REGSET(s,VFS), REGSET(S,VFS),
22977 REGSETH(s,VFS), REGSETH(S,VFS),
22978
22979 /* VFP DP Registers. */
22980 REGSET(d,VFD), REGSET(D,VFD),
22981 /* Extra Neon DP registers. */
22982 REGSETH(d,VFD), REGSETH(D,VFD),
22983
22984 /* Neon QP registers. */
22985 REGSET2(q,NQ), REGSET2(Q,NQ),
22986
22987 /* VFP control registers. */
22988 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
22989 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
22990 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
22991 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
22992 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
22993 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
22994 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
22995 REGDEF(fpscr_nzcvqc,2,VFC), REGDEF(FPSCR_nzcvqc,2,VFC),
22996 REGDEF(vpr,12,VFC), REGDEF(VPR,12,VFC),
22997 REGDEF(fpcxt_ns,14,VFC), REGDEF(FPCXT_NS,14,VFC),
22998 REGDEF(fpcxt_s,15,VFC), REGDEF(FPCXT_S,15,VFC),
22999
23000 /* Maverick DSP coprocessor registers. */
23001 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
23002 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
23003
23004 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
23005 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
23006 REGDEF(dspsc,0,DSPSC),
23007
23008 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
23009 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
23010 REGDEF(DSPSC,0,DSPSC),
23011
23012 /* iWMMXt data registers - p0, c0-15. */
23013 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
23014
23015 /* iWMMXt control registers - p1, c0-3. */
23016 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
23017 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
23018 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
23019 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
23020
23021 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
23022 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
23023 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
23024 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
23025 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
23026
23027 /* XScale accumulator registers. */
23028 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
23029 };
23030 #undef REGDEF
23031 #undef REGNUM
23032 #undef REGSET
23033
23034 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
23035 within psr_required_here. */
23036 static const struct asm_psr psrs[] =
23037 {
23038 /* Backward compatibility notation. Note that "all" is no longer
23039 truly all possible PSR bits. */
23040 {"all", PSR_c | PSR_f},
23041 {"flg", PSR_f},
23042 {"ctl", PSR_c},
23043
23044 /* Individual flags. */
23045 {"f", PSR_f},
23046 {"c", PSR_c},
23047 {"x", PSR_x},
23048 {"s", PSR_s},
23049
23050 /* Combinations of flags. */
23051 {"fs", PSR_f | PSR_s},
23052 {"fx", PSR_f | PSR_x},
23053 {"fc", PSR_f | PSR_c},
23054 {"sf", PSR_s | PSR_f},
23055 {"sx", PSR_s | PSR_x},
23056 {"sc", PSR_s | PSR_c},
23057 {"xf", PSR_x | PSR_f},
23058 {"xs", PSR_x | PSR_s},
23059 {"xc", PSR_x | PSR_c},
23060 {"cf", PSR_c | PSR_f},
23061 {"cs", PSR_c | PSR_s},
23062 {"cx", PSR_c | PSR_x},
23063 {"fsx", PSR_f | PSR_s | PSR_x},
23064 {"fsc", PSR_f | PSR_s | PSR_c},
23065 {"fxs", PSR_f | PSR_x | PSR_s},
23066 {"fxc", PSR_f | PSR_x | PSR_c},
23067 {"fcs", PSR_f | PSR_c | PSR_s},
23068 {"fcx", PSR_f | PSR_c | PSR_x},
23069 {"sfx", PSR_s | PSR_f | PSR_x},
23070 {"sfc", PSR_s | PSR_f | PSR_c},
23071 {"sxf", PSR_s | PSR_x | PSR_f},
23072 {"sxc", PSR_s | PSR_x | PSR_c},
23073 {"scf", PSR_s | PSR_c | PSR_f},
23074 {"scx", PSR_s | PSR_c | PSR_x},
23075 {"xfs", PSR_x | PSR_f | PSR_s},
23076 {"xfc", PSR_x | PSR_f | PSR_c},
23077 {"xsf", PSR_x | PSR_s | PSR_f},
23078 {"xsc", PSR_x | PSR_s | PSR_c},
23079 {"xcf", PSR_x | PSR_c | PSR_f},
23080 {"xcs", PSR_x | PSR_c | PSR_s},
23081 {"cfs", PSR_c | PSR_f | PSR_s},
23082 {"cfx", PSR_c | PSR_f | PSR_x},
23083 {"csf", PSR_c | PSR_s | PSR_f},
23084 {"csx", PSR_c | PSR_s | PSR_x},
23085 {"cxf", PSR_c | PSR_x | PSR_f},
23086 {"cxs", PSR_c | PSR_x | PSR_s},
23087 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
23088 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
23089 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
23090 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
23091 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
23092 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
23093 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
23094 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
23095 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
23096 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
23097 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
23098 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
23099 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
23100 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
23101 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
23102 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
23103 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
23104 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
23105 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
23106 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
23107 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
23108 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
23109 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
23110 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
23111 };
23112
23113 /* Table of V7M psr names. */
23114 static const struct asm_psr v7m_psrs[] =
23115 {
23116 {"apsr", 0x0 }, {"APSR", 0x0 },
23117 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
23118 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
23119 {"psr", 0x3 }, {"PSR", 0x3 },
23120 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
23121 {"ipsr", 0x5 }, {"IPSR", 0x5 },
23122 {"epsr", 0x6 }, {"EPSR", 0x6 },
23123 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
23124 {"msp", 0x8 }, {"MSP", 0x8 },
23125 {"psp", 0x9 }, {"PSP", 0x9 },
23126 {"msplim", 0xa }, {"MSPLIM", 0xa },
23127 {"psplim", 0xb }, {"PSPLIM", 0xb },
23128 {"primask", 0x10}, {"PRIMASK", 0x10},
23129 {"basepri", 0x11}, {"BASEPRI", 0x11},
23130 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
23131 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
23132 {"control", 0x14}, {"CONTROL", 0x14},
23133 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
23134 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
23135 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
23136 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
23137 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
23138 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
23139 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
23140 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
23141 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
23142 };
23143
23144 /* Table of all shift-in-operand names. */
23145 static const struct asm_shift_name shift_names [] =
23146 {
23147 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
23148 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
23149 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
23150 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
23151 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
23152 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX },
23153 { "uxtw", SHIFT_UXTW}, { "UXTW", SHIFT_UXTW}
23154 };
23155
23156 /* Table of all explicit relocation names. */
23157 #ifdef OBJ_ELF
23158 static struct reloc_entry reloc_names[] =
23159 {
23160 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
23161 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
23162 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
23163 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
23164 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
23165 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
23166 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
23167 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
23168 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
23169 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
23170 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
23171 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
23172 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
23173 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
23174 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
23175 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
23176 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
23177 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ},
23178 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC },
23179 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC },
23180 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC },
23181 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC },
23182 { "funcdesc", BFD_RELOC_ARM_FUNCDESC },
23183 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC },
23184 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC },
23185 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC },
23186 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC }, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC },
23187 };
23188 #endif
23189
23190 /* Table of all conditional affixes. */
23191 static const struct asm_cond conds[] =
23192 {
23193 {"eq", 0x0},
23194 {"ne", 0x1},
23195 {"cs", 0x2}, {"hs", 0x2},
23196 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
23197 {"mi", 0x4},
23198 {"pl", 0x5},
23199 {"vs", 0x6},
23200 {"vc", 0x7},
23201 {"hi", 0x8},
23202 {"ls", 0x9},
23203 {"ge", 0xa},
23204 {"lt", 0xb},
23205 {"gt", 0xc},
23206 {"le", 0xd},
23207 {"al", 0xe}
23208 };
23209 static const struct asm_cond vconds[] =
23210 {
23211 {"t", 0xf},
23212 {"e", 0x10}
23213 };
23214
23215 #define UL_BARRIER(L,U,CODE,FEAT) \
23216 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
23217 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
23218
23219 static struct asm_barrier_opt barrier_opt_names[] =
23220 {
23221 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
23222 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
23223 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
23224 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
23225 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
23226 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
23227 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
23228 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
23229 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
23230 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
23231 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
23232 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
23233 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
23234 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
23235 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
23236 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
23237 };
23238
23239 #undef UL_BARRIER
23240
23241 /* Table of ARM-format instructions. */
23242
23243 /* Macros for gluing together operand strings. N.B. In all cases
23244 other than OPS0, the trailing OP_stop comes from default
23245 zero-initialization of the unspecified elements of the array. */
23246 #define OPS0() { OP_stop, }
23247 #define OPS1(a) { OP_##a, }
23248 #define OPS2(a,b) { OP_##a,OP_##b, }
23249 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
23250 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
23251 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
23252 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
23253
23254 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
23255 This is useful when mixing operands for ARM and THUMB, i.e. using the
23256 MIX_ARM_THUMB_OPERANDS macro.
23257 In order to use these macros, prefix the number of operands with _
23258 e.g. _3. */
23259 #define OPS_1(a) { a, }
23260 #define OPS_2(a,b) { a,b, }
23261 #define OPS_3(a,b,c) { a,b,c, }
23262 #define OPS_4(a,b,c,d) { a,b,c,d, }
23263 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
23264 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
23265
23266 /* These macros abstract out the exact format of the mnemonic table and
23267 save some repeated characters. */
23268
23269 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
23270 #define TxCE(mnem, op, top, nops, ops, ae, te) \
23271 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
23272 THUMB_VARIANT, do_##ae, do_##te, 0 }
23273
23274 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
23275 a T_MNEM_xyz enumerator. */
23276 #define TCE(mnem, aop, top, nops, ops, ae, te) \
23277 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
23278 #define tCE(mnem, aop, top, nops, ops, ae, te) \
23279 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
23280
23281 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
23282 infix after the third character. */
23283 #define TxC3(mnem, op, top, nops, ops, ae, te) \
23284 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
23285 THUMB_VARIANT, do_##ae, do_##te, 0 }
23286 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
23287 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
23288 THUMB_VARIANT, do_##ae, do_##te, 0 }
23289 #define TC3(mnem, aop, top, nops, ops, ae, te) \
23290 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
23291 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
23292 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
23293 #define tC3(mnem, aop, top, nops, ops, ae, te) \
23294 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
23295 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
23296 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
23297
23298 /* Mnemonic that cannot be conditionalized. The ARM condition-code
23299 field is still 0xE. Many of the Thumb variants can be executed
23300 conditionally, so this is checked separately. */
23301 #define TUE(mnem, op, top, nops, ops, ae, te) \
23302 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
23303 THUMB_VARIANT, do_##ae, do_##te, 0 }
23304
23305 /* Same as TUE but the encoding function for ARM and Thumb modes is the same.
23306 Used by mnemonics that have very minimal differences in the encoding for
23307 ARM and Thumb variants and can be handled in a common function. */
23308 #define TUEc(mnem, op, top, nops, ops, en) \
23309 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
23310 THUMB_VARIANT, do_##en, do_##en, 0 }
23311
23312 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
23313 condition code field. */
23314 #define TUF(mnem, op, top, nops, ops, ae, te) \
23315 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
23316 THUMB_VARIANT, do_##ae, do_##te, 0 }
23317
23318 /* ARM-only variants of all the above. */
23319 #define CE(mnem, op, nops, ops, ae) \
23320 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
23321
23322 #define C3(mnem, op, nops, ops, ae) \
23323 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
23324
23325 /* Thumb-only variants of TCE and TUE. */
23326 #define ToC(mnem, top, nops, ops, te) \
23327 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
23328 do_##te, 0 }
23329
23330 #define ToU(mnem, top, nops, ops, te) \
23331 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
23332 NULL, do_##te, 0 }
23333
23334 /* T_MNEM_xyz enumerator variants of ToC. */
23335 #define toC(mnem, top, nops, ops, te) \
23336 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
23337 do_##te, 0 }
23338
23339 /* T_MNEM_xyz enumerator variants of ToU. */
23340 #define toU(mnem, top, nops, ops, te) \
23341 { mnem, OPS##nops ops, OT_unconditional, 0x0, T_MNEM##top, 0, THUMB_VARIANT, \
23342 NULL, do_##te, 0 }
23343
23344 /* Legacy mnemonics that always have conditional infix after the third
23345 character. */
23346 #define CL(mnem, op, nops, ops, ae) \
23347 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
23348 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
23349
23350 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
23351 #define cCE(mnem, op, nops, ops, ae) \
23352 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
23353
23354 /* mov instructions that are shared between coprocessor and MVE. */
23355 #define mcCE(mnem, op, nops, ops, ae) \
23356 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##ae, 0 }
23357
23358 /* Legacy coprocessor instructions where conditional infix and conditional
23359 suffix are ambiguous. For consistency this includes all FPA instructions,
23360 not just the potentially ambiguous ones. */
23361 #define cCL(mnem, op, nops, ops, ae) \
23362 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
23363 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
23364
23365 /* Coprocessor, takes either a suffix or a position-3 infix
23366 (for an FPA corner case). */
23367 #define C3E(mnem, op, nops, ops, ae) \
23368 { mnem, OPS##nops ops, OT_csuf_or_in3, \
23369 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
23370
23371 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
23372 { m1 #m2 m3, OPS##nops ops, \
23373 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
23374 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
23375
23376 #define CM(m1, m2, op, nops, ops, ae) \
23377 xCM_ (m1, , m2, op, nops, ops, ae), \
23378 xCM_ (m1, eq, m2, op, nops, ops, ae), \
23379 xCM_ (m1, ne, m2, op, nops, ops, ae), \
23380 xCM_ (m1, cs, m2, op, nops, ops, ae), \
23381 xCM_ (m1, hs, m2, op, nops, ops, ae), \
23382 xCM_ (m1, cc, m2, op, nops, ops, ae), \
23383 xCM_ (m1, ul, m2, op, nops, ops, ae), \
23384 xCM_ (m1, lo, m2, op, nops, ops, ae), \
23385 xCM_ (m1, mi, m2, op, nops, ops, ae), \
23386 xCM_ (m1, pl, m2, op, nops, ops, ae), \
23387 xCM_ (m1, vs, m2, op, nops, ops, ae), \
23388 xCM_ (m1, vc, m2, op, nops, ops, ae), \
23389 xCM_ (m1, hi, m2, op, nops, ops, ae), \
23390 xCM_ (m1, ls, m2, op, nops, ops, ae), \
23391 xCM_ (m1, ge, m2, op, nops, ops, ae), \
23392 xCM_ (m1, lt, m2, op, nops, ops, ae), \
23393 xCM_ (m1, gt, m2, op, nops, ops, ae), \
23394 xCM_ (m1, le, m2, op, nops, ops, ae), \
23395 xCM_ (m1, al, m2, op, nops, ops, ae)
23396
23397 #define UE(mnem, op, nops, ops, ae) \
23398 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
23399
23400 #define UF(mnem, op, nops, ops, ae) \
23401 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
23402
23403 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
23404 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
23405 use the same encoding function for each. */
23406 #define NUF(mnem, op, nops, ops, enc) \
23407 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
23408 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
23409
23410 /* Neon data processing, version which indirects through neon_enc_tab for
23411 the various overloaded versions of opcodes. */
23412 #define nUF(mnem, op, nops, ops, enc) \
23413 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
23414 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
23415
23416 /* Neon insn with conditional suffix for the ARM version, non-overloaded
23417 version. */
23418 #define NCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
23419 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
23420 THUMB_VARIANT, do_##enc, do_##enc, mve_p }
23421
23422 #define NCE(mnem, op, nops, ops, enc) \
23423 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
23424
23425 #define NCEF(mnem, op, nops, ops, enc) \
23426 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
23427
23428 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
23429 #define nCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
23430 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
23431 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, mve_p }
23432
23433 #define nCE(mnem, op, nops, ops, enc) \
23434 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
23435
23436 #define nCEF(mnem, op, nops, ops, enc) \
23437 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
23438
23439 /* */
23440 #define mCEF(mnem, op, nops, ops, enc) \
23441 { #mnem, OPS##nops ops, OT_csuffixF, M_MNEM##op, M_MNEM##op, \
23442 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
23443
23444
23445 /* nCEF but for MVE predicated instructions. */
23446 #define mnCEF(mnem, op, nops, ops, enc) \
23447 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
23448
23449 /* nCE but for MVE predicated instructions. */
23450 #define mnCE(mnem, op, nops, ops, enc) \
23451 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
23452
23453 /* NUF but for potentially MVE predicated instructions. */
23454 #define MNUF(mnem, op, nops, ops, enc) \
23455 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
23456 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
23457
23458 /* nUF but for potentially MVE predicated instructions. */
23459 #define mnUF(mnem, op, nops, ops, enc) \
23460 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
23461 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
23462
23463 /* ToC but for potentially MVE predicated instructions. */
23464 #define mToC(mnem, top, nops, ops, te) \
23465 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
23466 do_##te, 1 }
23467
23468 /* NCE but for MVE predicated instructions. */
23469 #define MNCE(mnem, op, nops, ops, enc) \
23470 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
23471
23472 /* NCEF but for MVE predicated instructions. */
23473 #define MNCEF(mnem, op, nops, ops, enc) \
23474 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
23475 #define do_0 0
23476
23477 static const struct asm_opcode insns[] =
23478 {
23479 #define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
23480 #define THUMB_VARIANT & arm_ext_v4t
23481 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
23482 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
23483 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
23484 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
23485 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
23486 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
23487 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
23488 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
23489 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
23490 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
23491 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
23492 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
23493 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
23494 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
23495 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
23496 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
23497
23498 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
23499 for setting PSR flag bits. They are obsolete in V6 and do not
23500 have Thumb equivalents. */
23501 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
23502 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
23503 CL("tstp", 110f000, 2, (RR, SH), cmp),
23504 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
23505 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
23506 CL("cmpp", 150f000, 2, (RR, SH), cmp),
23507 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
23508 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
23509 CL("cmnp", 170f000, 2, (RR, SH), cmp),
23510
23511 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
23512 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
23513 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
23514 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
23515
23516 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
23517 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
23518 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
23519 OP_RRnpc),
23520 OP_ADDRGLDR),ldst, t_ldst),
23521 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
23522
23523 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23524 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23525 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23526 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23527 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23528 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23529
23530 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
23531 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
23532
23533 /* Pseudo ops. */
23534 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
23535 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
23536 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
23537 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
23538
23539 /* Thumb-compatibility pseudo ops. */
23540 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
23541 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
23542 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
23543 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
23544 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
23545 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
23546 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
23547 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
23548 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
23549 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
23550 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
23551 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
23552
23553 /* These may simplify to neg. */
23554 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
23555 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
23556
23557 #undef THUMB_VARIANT
23558 #define THUMB_VARIANT & arm_ext_os
23559
23560 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
23561 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
23562
23563 #undef THUMB_VARIANT
23564 #define THUMB_VARIANT & arm_ext_v6
23565
23566 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
23567
23568 /* V1 instructions with no Thumb analogue prior to V6T2. */
23569 #undef THUMB_VARIANT
23570 #define THUMB_VARIANT & arm_ext_v6t2
23571
23572 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
23573 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
23574 CL("teqp", 130f000, 2, (RR, SH), cmp),
23575
23576 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
23577 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
23578 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
23579 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
23580
23581 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23582 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23583
23584 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23585 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23586
23587 /* V1 instructions with no Thumb analogue at all. */
23588 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
23589 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
23590
23591 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
23592 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
23593 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
23594 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
23595 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
23596 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
23597 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
23598 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
23599
23600 #undef ARM_VARIANT
23601 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
23602 #undef THUMB_VARIANT
23603 #define THUMB_VARIANT & arm_ext_v4t
23604
23605 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
23606 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
23607
23608 #undef THUMB_VARIANT
23609 #define THUMB_VARIANT & arm_ext_v6t2
23610
23611 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
23612 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
23613
23614 /* Generic coprocessor instructions. */
23615 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
23616 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23617 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23618 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23619 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23620 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
23621 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
23622
23623 #undef ARM_VARIANT
23624 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
23625
23626 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
23627 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
23628
23629 #undef ARM_VARIANT
23630 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
23631 #undef THUMB_VARIANT
23632 #define THUMB_VARIANT & arm_ext_msr
23633
23634 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
23635 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
23636
23637 #undef ARM_VARIANT
23638 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
23639 #undef THUMB_VARIANT
23640 #define THUMB_VARIANT & arm_ext_v6t2
23641
23642 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23643 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23644 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23645 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23646 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23647 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23648 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23649 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23650
23651 #undef ARM_VARIANT
23652 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
23653 #undef THUMB_VARIANT
23654 #define THUMB_VARIANT & arm_ext_v4t
23655
23656 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23657 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23658 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23659 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23660 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23661 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23662
23663 #undef ARM_VARIANT
23664 #define ARM_VARIANT & arm_ext_v4t_5
23665
23666 /* ARM Architecture 4T. */
23667 /* Note: bx (and blx) are required on V5, even if the processor does
23668 not support Thumb. */
23669 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
23670
23671 #undef ARM_VARIANT
23672 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
23673 #undef THUMB_VARIANT
23674 #define THUMB_VARIANT & arm_ext_v5t
23675
23676 /* Note: blx has 2 variants; the .value coded here is for
23677 BLX(2). Only this variant has conditional execution. */
23678 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
23679 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
23680
23681 #undef THUMB_VARIANT
23682 #define THUMB_VARIANT & arm_ext_v6t2
23683
23684 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
23685 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23686 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23687 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23688 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23689 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
23690 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
23691 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
23692
23693 #undef ARM_VARIANT
23694 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
23695 #undef THUMB_VARIANT
23696 #define THUMB_VARIANT & arm_ext_v5exp
23697
23698 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23699 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23700 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23701 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23702
23703 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23704 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23705
23706 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23707 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23708 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23709 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23710
23711 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23712 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23713 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23714 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23715
23716 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23717 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23718
23719 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23720 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23721 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23722 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23723
23724 #undef ARM_VARIANT
23725 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
23726 #undef THUMB_VARIANT
23727 #define THUMB_VARIANT & arm_ext_v6t2
23728
23729 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
23730 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
23731 ldrd, t_ldstd),
23732 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
23733 ADDRGLDRS), ldrd, t_ldstd),
23734
23735 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23736 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23737
23738 #undef ARM_VARIANT
23739 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
23740
23741 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
23742
23743 #undef ARM_VARIANT
23744 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
23745 #undef THUMB_VARIANT
23746 #define THUMB_VARIANT & arm_ext_v6
23747
23748 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
23749 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
23750 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23751 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23752 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23753 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23754 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23755 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23756 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23757 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
23758
23759 #undef THUMB_VARIANT
23760 #define THUMB_VARIANT & arm_ext_v6t2_v8m
23761
23762 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
23763 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
23764 strex, t_strex),
23765 #undef THUMB_VARIANT
23766 #define THUMB_VARIANT & arm_ext_v6t2
23767
23768 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23769 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23770
23771 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
23772 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
23773
23774 /* ARM V6 not included in V7M. */
23775 #undef THUMB_VARIANT
23776 #define THUMB_VARIANT & arm_ext_v6_notm
23777 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
23778 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
23779 UF(rfeib, 9900a00, 1, (RRw), rfe),
23780 UF(rfeda, 8100a00, 1, (RRw), rfe),
23781 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
23782 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
23783 UF(rfefa, 8100a00, 1, (RRw), rfe),
23784 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
23785 UF(rfeed, 9900a00, 1, (RRw), rfe),
23786 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
23787 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
23788 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
23789 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
23790 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
23791 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
23792 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
23793 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
23794 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
23795 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
23796
23797 /* ARM V6 not included in V7M (eg. integer SIMD). */
23798 #undef THUMB_VARIANT
23799 #define THUMB_VARIANT & arm_ext_v6_dsp
23800 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
23801 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
23802 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23803 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23804 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23805 /* Old name for QASX. */
23806 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23807 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23808 /* Old name for QSAX. */
23809 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23810 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23811 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23812 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23813 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23814 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23815 /* Old name for SASX. */
23816 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23817 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23818 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23819 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23820 /* Old name for SHASX. */
23821 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23822 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23823 /* Old name for SHSAX. */
23824 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23825 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23826 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23827 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23828 /* Old name for SSAX. */
23829 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23830 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23831 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23832 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23833 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23834 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23835 /* Old name for UASX. */
23836 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23837 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23838 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23839 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23840 /* Old name for UHASX. */
23841 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23842 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23843 /* Old name for UHSAX. */
23844 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23845 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23846 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23847 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23848 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23849 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23850 /* Old name for UQASX. */
23851 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23852 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23853 /* Old name for UQSAX. */
23854 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23855 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23856 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23857 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23858 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23859 /* Old name for USAX. */
23860 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23861 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23862 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23863 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23864 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23865 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23866 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23867 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23868 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23869 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23870 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23871 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23872 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23873 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23874 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23875 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23876 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23877 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23878 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23879 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23880 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23881 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23882 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23883 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23884 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23885 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23886 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23887 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23888 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23889 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
23890 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
23891 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23892 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23893 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
23894
23895 #undef ARM_VARIANT
23896 #define ARM_VARIANT & arm_ext_v6k_v6t2
23897 #undef THUMB_VARIANT
23898 #define THUMB_VARIANT & arm_ext_v6k_v6t2
23899
23900 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
23901 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
23902 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
23903 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
23904
23905 #undef THUMB_VARIANT
23906 #define THUMB_VARIANT & arm_ext_v6_notm
23907 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
23908 ldrexd, t_ldrexd),
23909 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
23910 RRnpcb), strexd, t_strexd),
23911
23912 #undef THUMB_VARIANT
23913 #define THUMB_VARIANT & arm_ext_v6t2_v8m
23914 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
23915 rd_rn, rd_rn),
23916 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
23917 rd_rn, rd_rn),
23918 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
23919 strex, t_strexbh),
23920 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
23921 strex, t_strexbh),
23922 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
23923
23924 #undef ARM_VARIANT
23925 #define ARM_VARIANT & arm_ext_sec
23926 #undef THUMB_VARIANT
23927 #define THUMB_VARIANT & arm_ext_sec
23928
23929 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
23930
23931 #undef ARM_VARIANT
23932 #define ARM_VARIANT & arm_ext_virt
23933 #undef THUMB_VARIANT
23934 #define THUMB_VARIANT & arm_ext_virt
23935
23936 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
23937 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
23938
23939 #undef ARM_VARIANT
23940 #define ARM_VARIANT & arm_ext_pan
23941 #undef THUMB_VARIANT
23942 #define THUMB_VARIANT & arm_ext_pan
23943
23944 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
23945
23946 #undef ARM_VARIANT
23947 #define ARM_VARIANT & arm_ext_v6t2
23948 #undef THUMB_VARIANT
23949 #define THUMB_VARIANT & arm_ext_v6t2
23950
23951 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
23952 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
23953 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
23954 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
23955
23956 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
23957 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
23958
23959 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23960 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23961 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23962 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23963
23964 #undef ARM_VARIANT
23965 #define ARM_VARIANT & arm_ext_v3
23966 #undef THUMB_VARIANT
23967 #define THUMB_VARIANT & arm_ext_v6t2
23968
23969 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
23970 TUF("ssbb", 57ff040, f3bf8f40, 0, (), noargs, t_csdb),
23971 TUF("pssbb", 57ff044, f3bf8f44, 0, (), noargs, t_csdb),
23972
23973 #undef ARM_VARIANT
23974 #define ARM_VARIANT & arm_ext_v6t2
23975 #undef THUMB_VARIANT
23976 #define THUMB_VARIANT & arm_ext_v6t2_v8m
23977 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
23978 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
23979
23980 /* Thumb-only instructions. */
23981 #undef ARM_VARIANT
23982 #define ARM_VARIANT NULL
23983 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
23984 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
23985
23986 /* ARM does not really have an IT instruction, so always allow it.
23987 The opcode is copied from Thumb in order to allow warnings in
23988 -mimplicit-it=[never | arm] modes. */
23989 #undef ARM_VARIANT
23990 #define ARM_VARIANT & arm_ext_v1
23991 #undef THUMB_VARIANT
23992 #define THUMB_VARIANT & arm_ext_v6t2
23993
23994 TUE("it", bf08, bf08, 1, (COND), it, t_it),
23995 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
23996 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
23997 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
23998 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
23999 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
24000 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
24001 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
24002 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
24003 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
24004 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
24005 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
24006 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
24007 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
24008 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
24009 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
24010 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
24011 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
24012
24013 /* Thumb2 only instructions. */
24014 #undef ARM_VARIANT
24015 #define ARM_VARIANT NULL
24016
24017 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
24018 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
24019 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
24020 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
24021 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
24022 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
24023
24024 /* Hardware division instructions. */
24025 #undef ARM_VARIANT
24026 #define ARM_VARIANT & arm_ext_adiv
24027 #undef THUMB_VARIANT
24028 #define THUMB_VARIANT & arm_ext_div
24029
24030 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
24031 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
24032
24033 /* ARM V6M/V7 instructions. */
24034 #undef ARM_VARIANT
24035 #define ARM_VARIANT & arm_ext_barrier
24036 #undef THUMB_VARIANT
24037 #define THUMB_VARIANT & arm_ext_barrier
24038
24039 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
24040 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
24041 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
24042
24043 /* ARM V7 instructions. */
24044 #undef ARM_VARIANT
24045 #define ARM_VARIANT & arm_ext_v7
24046 #undef THUMB_VARIANT
24047 #define THUMB_VARIANT & arm_ext_v7
24048
24049 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
24050 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
24051
24052 #undef ARM_VARIANT
24053 #define ARM_VARIANT & arm_ext_mp
24054 #undef THUMB_VARIANT
24055 #define THUMB_VARIANT & arm_ext_mp
24056
24057 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
24058
24059 /* AArchv8 instructions. */
24060 #undef ARM_VARIANT
24061 #define ARM_VARIANT & arm_ext_v8
24062
24063 /* Instructions shared between armv8-a and armv8-m. */
24064 #undef THUMB_VARIANT
24065 #define THUMB_VARIANT & arm_ext_atomics
24066
24067 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
24068 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
24069 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
24070 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
24071 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
24072 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
24073 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
24074 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
24075 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
24076 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
24077 stlex, t_stlex),
24078 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
24079 stlex, t_stlex),
24080 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
24081 stlex, t_stlex),
24082 #undef THUMB_VARIANT
24083 #define THUMB_VARIANT & arm_ext_v8
24084
24085 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
24086 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
24087 ldrexd, t_ldrexd),
24088 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
24089 strexd, t_strexd),
24090
24091 /* Defined in V8 but is in undefined encoding space for earlier
24092 architectures. However earlier architectures are required to treat
24093 this instuction as a semihosting trap as well. Hence while not explicitly
24094 defined as such, it is in fact correct to define the instruction for all
24095 architectures. */
24096 #undef THUMB_VARIANT
24097 #define THUMB_VARIANT & arm_ext_v1
24098 #undef ARM_VARIANT
24099 #define ARM_VARIANT & arm_ext_v1
24100 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
24101
24102 /* ARMv8 T32 only. */
24103 #undef ARM_VARIANT
24104 #define ARM_VARIANT NULL
24105 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
24106 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
24107 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
24108
24109 /* FP for ARMv8. */
24110 #undef ARM_VARIANT
24111 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
24112 #undef THUMB_VARIANT
24113 #define THUMB_VARIANT & fpu_vfp_ext_armv8xd
24114
24115 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
24116 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
24117 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
24118 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
24119 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
24120 mnCE(vrintz, _vrintr, 2, (RNSDQMQ, oRNSDQMQ), vrintz),
24121 mnCE(vrintx, _vrintr, 2, (RNSDQMQ, oRNSDQMQ), vrintx),
24122 mnUF(vrinta, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrinta),
24123 mnUF(vrintn, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintn),
24124 mnUF(vrintp, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintp),
24125 mnUF(vrintm, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintm),
24126
24127 /* Crypto v1 extensions. */
24128 #undef ARM_VARIANT
24129 #define ARM_VARIANT & fpu_crypto_ext_armv8
24130 #undef THUMB_VARIANT
24131 #define THUMB_VARIANT & fpu_crypto_ext_armv8
24132
24133 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
24134 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
24135 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
24136 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
24137 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
24138 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
24139 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
24140 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
24141 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
24142 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
24143 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
24144 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
24145 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
24146 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
24147
24148 #undef ARM_VARIANT
24149 #define ARM_VARIANT & crc_ext_armv8
24150 #undef THUMB_VARIANT
24151 #define THUMB_VARIANT & crc_ext_armv8
24152 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
24153 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
24154 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
24155 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
24156 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
24157 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
24158
24159 /* ARMv8.2 RAS extension. */
24160 #undef ARM_VARIANT
24161 #define ARM_VARIANT & arm_ext_ras
24162 #undef THUMB_VARIANT
24163 #define THUMB_VARIANT & arm_ext_ras
24164 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
24165
24166 #undef ARM_VARIANT
24167 #define ARM_VARIANT & arm_ext_v8_3
24168 #undef THUMB_VARIANT
24169 #define THUMB_VARIANT & arm_ext_v8_3
24170 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
24171
24172 #undef ARM_VARIANT
24173 #define ARM_VARIANT & fpu_neon_ext_dotprod
24174 #undef THUMB_VARIANT
24175 #define THUMB_VARIANT & fpu_neon_ext_dotprod
24176 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
24177 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
24178
24179 #undef ARM_VARIANT
24180 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
24181 #undef THUMB_VARIANT
24182 #define THUMB_VARIANT NULL
24183
24184 cCE("wfs", e200110, 1, (RR), rd),
24185 cCE("rfs", e300110, 1, (RR), rd),
24186 cCE("wfc", e400110, 1, (RR), rd),
24187 cCE("rfc", e500110, 1, (RR), rd),
24188
24189 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
24190 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
24191 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
24192 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
24193
24194 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
24195 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
24196 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
24197 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
24198
24199 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
24200 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
24201 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
24202 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
24203 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
24204 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
24205 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
24206 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
24207 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
24208 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
24209 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
24210 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
24211
24212 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
24213 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
24214 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
24215 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
24216 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
24217 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
24218 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
24219 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
24220 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
24221 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
24222 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
24223 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
24224
24225 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
24226 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
24227 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
24228 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
24229 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
24230 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
24231 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
24232 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
24233 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
24234 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
24235 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
24236 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
24237
24238 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
24239 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
24240 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
24241 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
24242 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
24243 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
24244 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
24245 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
24246 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
24247 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
24248 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
24249 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
24250
24251 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
24252 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
24253 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
24254 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
24255 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
24256 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
24257 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
24258 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
24259 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
24260 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
24261 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
24262 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
24263
24264 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
24265 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
24266 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
24267 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
24268 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
24269 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
24270 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
24271 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
24272 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
24273 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
24274 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
24275 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
24276
24277 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
24278 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
24279 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
24280 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
24281 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
24282 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
24283 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
24284 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
24285 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
24286 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
24287 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
24288 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
24289
24290 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
24291 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
24292 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
24293 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
24294 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
24295 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
24296 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
24297 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
24298 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
24299 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
24300 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
24301 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
24302
24303 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
24304 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
24305 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
24306 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
24307 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
24308 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
24309 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
24310 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
24311 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
24312 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
24313 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
24314 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
24315
24316 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
24317 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
24318 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
24319 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
24320 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
24321 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
24322 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
24323 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
24324 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
24325 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
24326 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
24327 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
24328
24329 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
24330 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
24331 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
24332 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
24333 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
24334 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
24335 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
24336 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
24337 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
24338 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
24339 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
24340 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
24341
24342 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
24343 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
24344 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
24345 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
24346 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
24347 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
24348 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
24349 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
24350 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
24351 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
24352 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
24353 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
24354
24355 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
24356 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
24357 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
24358 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
24359 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
24360 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
24361 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
24362 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
24363 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
24364 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
24365 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
24366 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
24367
24368 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
24369 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
24370 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
24371 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
24372 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
24373 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
24374 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
24375 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
24376 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
24377 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
24378 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
24379 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
24380
24381 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
24382 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
24383 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
24384 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
24385 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
24386 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
24387 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
24388 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
24389 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
24390 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
24391 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
24392 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
24393
24394 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
24395 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
24396 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
24397 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
24398 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
24399 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
24400 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
24401 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
24402 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
24403 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
24404 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
24405 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
24406
24407 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
24408 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
24409 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
24410 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
24411 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
24412 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24413 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24414 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24415 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
24416 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
24417 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
24418 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
24419
24420 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
24421 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
24422 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
24423 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
24424 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
24425 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24426 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24427 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24428 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
24429 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
24430 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
24431 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
24432
24433 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
24434 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
24435 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
24436 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
24437 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
24438 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24439 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24440 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24441 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
24442 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
24443 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
24444 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
24445
24446 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
24447 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
24448 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
24449 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
24450 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
24451 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24452 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24453 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24454 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
24455 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
24456 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
24457 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
24458
24459 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
24460 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
24461 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
24462 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
24463 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
24464 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24465 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24466 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24467 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
24468 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
24469 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
24470 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
24471
24472 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
24473 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
24474 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
24475 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
24476 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
24477 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24478 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24479 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24480 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
24481 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
24482 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
24483 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
24484
24485 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
24486 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
24487 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
24488 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
24489 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
24490 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24491 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24492 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24493 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
24494 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
24495 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
24496 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
24497
24498 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
24499 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
24500 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
24501 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
24502 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
24503 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24504 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24505 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24506 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
24507 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
24508 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
24509 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
24510
24511 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
24512 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
24513 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
24514 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
24515 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
24516 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24517 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24518 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24519 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
24520 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
24521 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
24522 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
24523
24524 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
24525 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
24526 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
24527 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
24528 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
24529 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24530 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24531 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24532 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
24533 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
24534 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
24535 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
24536
24537 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
24538 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
24539 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
24540 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
24541 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
24542 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24543 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24544 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24545 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
24546 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
24547 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
24548 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
24549
24550 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
24551 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
24552 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
24553 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
24554 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
24555 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24556 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24557 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24558 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
24559 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
24560 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
24561 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
24562
24563 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
24564 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
24565 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
24566 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
24567 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
24568 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24569 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24570 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24571 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
24572 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
24573 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
24574 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
24575
24576 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
24577 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
24578 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
24579 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
24580
24581 cCL("flts", e000110, 2, (RF, RR), rn_rd),
24582 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
24583 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
24584 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
24585 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
24586 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
24587 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
24588 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
24589 cCL("flte", e080110, 2, (RF, RR), rn_rd),
24590 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
24591 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
24592 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
24593
24594 /* The implementation of the FIX instruction is broken on some
24595 assemblers, in that it accepts a precision specifier as well as a
24596 rounding specifier, despite the fact that this is meaningless.
24597 To be more compatible, we accept it as well, though of course it
24598 does not set any bits. */
24599 cCE("fix", e100110, 2, (RR, RF), rd_rm),
24600 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
24601 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
24602 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
24603 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
24604 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
24605 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
24606 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
24607 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
24608 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
24609 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
24610 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
24611 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
24612
24613 /* Instructions that were new with the real FPA, call them V2. */
24614 #undef ARM_VARIANT
24615 #define ARM_VARIANT & fpu_fpa_ext_v2
24616
24617 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24618 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24619 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24620 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24621 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24622 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24623
24624 #undef ARM_VARIANT
24625 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
24626 #undef THUMB_VARIANT
24627 #define THUMB_VARIANT & arm_ext_v6t2
24628 mcCE(vmrs, ef00a10, 2, (APSR_RR, RVC), vmrs),
24629 mcCE(vmsr, ee00a10, 2, (RVC, RR), vmsr),
24630 #undef THUMB_VARIANT
24631
24632 /* Moves and type conversions. */
24633 cCE("fmstat", ef1fa10, 0, (), noargs),
24634 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
24635 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
24636 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
24637 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
24638 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
24639 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
24640 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
24641 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
24642
24643 /* Memory operations. */
24644 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
24645 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
24646 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24647 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24648 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24649 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24650 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24651 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24652 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24653 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24654 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24655 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24656 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24657 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24658 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24659 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24660 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24661 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24662
24663 /* Monadic operations. */
24664 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
24665 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
24666 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
24667
24668 /* Dyadic operations. */
24669 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24670 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24671 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24672 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24673 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24674 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24675 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24676 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24677 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24678
24679 /* Comparisons. */
24680 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
24681 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
24682 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
24683 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
24684
24685 /* Double precision load/store are still present on single precision
24686 implementations. */
24687 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
24688 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
24689 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24690 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24691 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24692 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24693 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24694 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24695 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24696 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24697
24698 #undef ARM_VARIANT
24699 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
24700
24701 /* Moves and type conversions. */
24702 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
24703 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
24704 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
24705 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
24706 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
24707 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
24708 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
24709 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
24710 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
24711 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
24712 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
24713 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
24714
24715 /* Monadic operations. */
24716 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
24717 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24718 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
24719
24720 /* Dyadic operations. */
24721 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24722 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24723 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24724 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24725 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24726 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24727 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24728 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24729 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24730
24731 /* Comparisons. */
24732 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24733 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
24734 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
24735 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
24736
24737 /* Instructions which may belong to either the Neon or VFP instruction sets.
24738 Individual encoder functions perform additional architecture checks. */
24739 #undef ARM_VARIANT
24740 #define ARM_VARIANT & fpu_vfp_ext_v1xd
24741 #undef THUMB_VARIANT
24742 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
24743
24744 /* These mnemonics are unique to VFP. */
24745 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
24746 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
24747 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24748 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24749 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24750 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
24751 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
24752 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
24753
24754 /* Mnemonics shared by Neon and VFP. */
24755 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
24756
24757 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24758 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24759 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24760 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24761 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24762 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24763
24764 mnCEF(vcvt, _vcvt, 3, (RNSDQMQ, RNSDQMQ, oI32z), neon_cvt),
24765 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
24766 MNCEF(vcvtb, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtb),
24767 MNCEF(vcvtt, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtt),
24768
24769
24770 /* NOTE: All VMOV encoding is special-cased! */
24771 NCE(vmovq, 0, 1, (VMOV), neon_mov),
24772
24773 #undef THUMB_VARIANT
24774 /* Could be either VLDR/VSTR or VLDR/VSTR (system register) which are guarded
24775 by different feature bits. Since we are setting the Thumb guard, we can
24776 require Thumb-1 which makes it a nop guard and set the right feature bit in
24777 do_vldr_vstr (). */
24778 #define THUMB_VARIANT & arm_ext_v4t
24779 NCE(vldr, d100b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
24780 NCE(vstr, d000b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
24781
24782 #undef ARM_VARIANT
24783 #define ARM_VARIANT & arm_ext_fp16
24784 #undef THUMB_VARIANT
24785 #define THUMB_VARIANT & arm_ext_fp16
24786 /* New instructions added from v8.2, allowing the extraction and insertion of
24787 the upper 16 bits of a 32-bit vector register. */
24788 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
24789 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
24790
24791 /* New backported fma/fms instructions optional in v8.2. */
24792 NCE (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
24793 NCE (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
24794
24795 #undef THUMB_VARIANT
24796 #define THUMB_VARIANT & fpu_neon_ext_v1
24797 #undef ARM_VARIANT
24798 #define ARM_VARIANT & fpu_neon_ext_v1
24799
24800 /* Data processing with three registers of the same length. */
24801 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
24802 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
24803 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
24804 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
24805 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
24806 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
24807 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
24808 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
24809 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
24810 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
24811 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
24812 /* If not immediate, fall back to neon_dyadic_i64_su.
24813 shl should accept I8 I16 I32 I64,
24814 qshl should accept S8 S16 S32 S64 U8 U16 U32 U64. */
24815 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl),
24816 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl),
24817 /* Logic ops, types optional & ignored. */
24818 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
24819 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
24820 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
24821 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
24822 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
24823 /* Bitfield ops, untyped. */
24824 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24825 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
24826 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24827 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
24828 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24829 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
24830 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
24831 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
24832 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
24833 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
24834 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
24835 back to neon_dyadic_if_su. */
24836 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
24837 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
24838 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
24839 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
24840 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
24841 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
24842 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
24843 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
24844 /* Comparison. Type I8 I16 I32 F32. */
24845 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
24846 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
24847 /* As above, D registers only. */
24848 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
24849 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
24850 /* Int and float variants, signedness unimportant. */
24851 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
24852 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
24853 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
24854 /* Add/sub take types I8 I16 I32 I64 F32. */
24855 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
24856 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
24857 /* vtst takes sizes 8, 16, 32. */
24858 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
24859 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
24860 /* VMUL takes I8 I16 I32 F32 P8. */
24861 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
24862 /* VQD{R}MULH takes S16 S32. */
24863 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
24864 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
24865 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
24866 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
24867 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
24868 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
24869 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
24870 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
24871 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
24872 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
24873 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
24874 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
24875 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
24876 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
24877 /* ARM v8.1 extension. */
24878 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
24879 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
24880 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
24881
24882 /* Two address, int/float. Types S8 S16 S32 F32. */
24883 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
24884 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
24885
24886 /* Data processing with two registers and a shift amount. */
24887 /* Right shifts, and variants with rounding.
24888 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
24889 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
24890 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
24891 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
24892 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
24893 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
24894 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
24895 /* Shift and insert. Sizes accepted 8 16 32 64. */
24896 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
24897 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
24898 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
24899 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
24900 /* Right shift immediate, saturating & narrowing, with rounding variants.
24901 Types accepted S16 S32 S64 U16 U32 U64. */
24902 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
24903 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
24904 /* As above, unsigned. Types accepted S16 S32 S64. */
24905 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
24906 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
24907 /* Right shift narrowing. Types accepted I16 I32 I64. */
24908 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
24909 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
24910 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
24911 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
24912 /* CVT with optional immediate for fixed-point variant. */
24913 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
24914
24915 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
24916
24917 /* Data processing, three registers of different lengths. */
24918 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
24919 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
24920 /* If not scalar, fall back to neon_dyadic_long.
24921 Vector types as above, scalar types S16 S32 U16 U32. */
24922 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
24923 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
24924 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
24925 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
24926 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
24927 /* Dyadic, narrowing insns. Types I16 I32 I64. */
24928 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24929 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24930 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24931 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24932 /* Saturating doubling multiplies. Types S16 S32. */
24933 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24934 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24935 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24936 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
24937 S16 S32 U16 U32. */
24938 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
24939
24940 /* Extract. Size 8. */
24941 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
24942 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
24943
24944 /* Two registers, miscellaneous. */
24945 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
24946 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
24947 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
24948 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
24949 /* Vector replicate. Sizes 8 16 32. */
24950 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
24951 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
24952 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
24953 /* VMOVN. Types I16 I32 I64. */
24954 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
24955 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
24956 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
24957 /* VQMOVUN. Types S16 S32 S64. */
24958 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
24959 /* VZIP / VUZP. Sizes 8 16 32. */
24960 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
24961 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
24962 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
24963 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
24964 /* VQABS / VQNEG. Types S8 S16 S32. */
24965 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
24966 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
24967 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
24968 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
24969 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
24970 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
24971 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
24972 /* Reciprocal estimates. Types U32 F16 F32. */
24973 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
24974 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
24975 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
24976 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
24977 /* VCLS. Types S8 S16 S32. */
24978 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
24979 /* VCLZ. Types I8 I16 I32. */
24980 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
24981 /* VCNT. Size 8. */
24982 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
24983 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
24984 /* Two address, untyped. */
24985 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
24986 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
24987 /* VTRN. Sizes 8 16 32. */
24988 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
24989 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
24990
24991 /* Table lookup. Size 8. */
24992 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
24993 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
24994
24995 #undef THUMB_VARIANT
24996 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
24997 #undef ARM_VARIANT
24998 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
24999
25000 /* Neon element/structure load/store. */
25001 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
25002 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
25003 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
25004 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
25005 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
25006 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
25007 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
25008 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
25009
25010 #undef THUMB_VARIANT
25011 #define THUMB_VARIANT & fpu_vfp_ext_v3xd
25012 #undef ARM_VARIANT
25013 #define ARM_VARIANT & fpu_vfp_ext_v3xd
25014 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
25015 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
25016 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
25017 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
25018 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
25019 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
25020 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
25021 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
25022 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
25023
25024 #undef THUMB_VARIANT
25025 #define THUMB_VARIANT & fpu_vfp_ext_v3
25026 #undef ARM_VARIANT
25027 #define ARM_VARIANT & fpu_vfp_ext_v3
25028
25029 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
25030 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
25031 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
25032 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
25033 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
25034 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
25035 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
25036 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
25037 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
25038
25039 #undef ARM_VARIANT
25040 #define ARM_VARIANT & fpu_vfp_ext_fma
25041 #undef THUMB_VARIANT
25042 #define THUMB_VARIANT & fpu_vfp_ext_fma
25043 /* Mnemonics shared by Neon, VFP and MVE. These are included in the
25044 VFP FMA variant; NEON and VFP FMA always includes the NEON
25045 FMA instructions. */
25046 mnCEF(vfma, _vfma, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_fmac),
25047 mnCEF(vfms, _vfms, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), neon_fmac),
25048
25049 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
25050 the v form should always be used. */
25051 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25052 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25053 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25054 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25055 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
25056 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
25057
25058 #undef THUMB_VARIANT
25059 #undef ARM_VARIANT
25060 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
25061
25062 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25063 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25064 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25065 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25066 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25067 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25068 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
25069 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
25070
25071 #undef ARM_VARIANT
25072 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
25073
25074 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
25075 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
25076 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
25077 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
25078 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
25079 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
25080 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
25081 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
25082 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
25083 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
25084 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
25085 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
25086 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
25087 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
25088 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
25089 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
25090 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
25091 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
25092 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
25093 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
25094 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
25095 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
25096 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
25097 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
25098 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
25099 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
25100 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
25101 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
25102 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
25103 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
25104 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
25105 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
25106 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
25107 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
25108 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
25109 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
25110 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
25111 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25112 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25113 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25114 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25115 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25116 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25117 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25118 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25119 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25120 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
25121 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25122 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25123 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25124 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25125 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25126 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25127 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25128 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25129 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25130 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25131 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25132 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25133 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25134 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25135 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25136 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25137 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25138 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25139 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25140 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
25141 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
25142 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
25143 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
25144 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25145 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25146 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25147 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25148 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25149 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25150 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25151 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25152 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25153 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25154 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25155 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25156 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25157 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25158 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25159 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25160 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25161 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25162 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
25163 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25164 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25165 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25166 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25167 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25168 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25169 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25170 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25171 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25172 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25173 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25174 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25175 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25176 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25177 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25178 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25179 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25180 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25181 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25182 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25183 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25184 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
25185 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25186 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25187 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25188 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25189 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25190 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25191 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25192 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25193 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25194 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25195 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25196 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25197 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25198 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25199 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25200 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25201 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25202 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25203 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
25204 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
25205 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
25206 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
25207 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25208 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25209 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25210 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25211 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25212 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25213 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25214 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25215 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25216 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
25217 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
25218 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
25219 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
25220 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
25221 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
25222 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25223 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25224 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25225 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
25226 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
25227 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
25228 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
25229 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
25230 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
25231 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25232 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25233 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25234 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25235 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
25236
25237 #undef ARM_VARIANT
25238 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
25239
25240 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
25241 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
25242 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
25243 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
25244 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
25245 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
25246 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25247 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25248 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25249 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25250 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25251 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25252 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25253 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25254 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25255 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25256 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25257 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25258 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25259 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25260 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
25261 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25262 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25263 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25264 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25265 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25266 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25267 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25268 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25269 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25270 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25271 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25272 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25273 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25274 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25275 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25276 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25277 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25278 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25279 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25280 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25281 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25282 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25283 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25284 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25285 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25286 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25287 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25288 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25289 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25290 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25291 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25292 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25293 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25294 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25295 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25296 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25297
25298 #undef ARM_VARIANT
25299 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
25300
25301 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
25302 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
25303 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
25304 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
25305 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
25306 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
25307 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
25308 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
25309 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
25310 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
25311 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
25312 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
25313 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
25314 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
25315 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
25316 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
25317 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
25318 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
25319 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
25320 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
25321 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
25322 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
25323 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
25324 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
25325 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
25326 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
25327 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
25328 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
25329 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
25330 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
25331 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
25332 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
25333 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
25334 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
25335 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
25336 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
25337 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
25338 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
25339 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
25340 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
25341 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
25342 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
25343 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
25344 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
25345 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
25346 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
25347 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
25348 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
25349 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
25350 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
25351 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
25352 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
25353 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
25354 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
25355 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
25356 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
25357 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
25358 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
25359 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
25360 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
25361 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
25362 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
25363 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
25364 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
25365 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
25366 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
25367 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
25368 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
25369 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
25370 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
25371 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
25372 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
25373 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
25374 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
25375 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
25376 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
25377
25378 /* ARMv8.5-A instructions. */
25379 #undef ARM_VARIANT
25380 #define ARM_VARIANT & arm_ext_sb
25381 #undef THUMB_VARIANT
25382 #define THUMB_VARIANT & arm_ext_sb
25383 TUF("sb", 57ff070, f3bf8f70, 0, (), noargs, noargs),
25384
25385 #undef ARM_VARIANT
25386 #define ARM_VARIANT & arm_ext_predres
25387 #undef THUMB_VARIANT
25388 #define THUMB_VARIANT & arm_ext_predres
25389 CE("cfprctx", e070f93, 1, (RRnpc), rd),
25390 CE("dvprctx", e070fb3, 1, (RRnpc), rd),
25391 CE("cpprctx", e070ff3, 1, (RRnpc), rd),
25392
25393 /* ARMv8-M instructions. */
25394 #undef ARM_VARIANT
25395 #define ARM_VARIANT NULL
25396 #undef THUMB_VARIANT
25397 #define THUMB_VARIANT & arm_ext_v8m
25398 ToU("sg", e97fe97f, 0, (), noargs),
25399 ToC("blxns", 4784, 1, (RRnpc), t_blx),
25400 ToC("bxns", 4704, 1, (RRnpc), t_bx),
25401 ToC("tt", e840f000, 2, (RRnpc, RRnpc), tt),
25402 ToC("ttt", e840f040, 2, (RRnpc, RRnpc), tt),
25403 ToC("tta", e840f080, 2, (RRnpc, RRnpc), tt),
25404 ToC("ttat", e840f0c0, 2, (RRnpc, RRnpc), tt),
25405
25406 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
25407 instructions behave as nop if no VFP is present. */
25408 #undef THUMB_VARIANT
25409 #define THUMB_VARIANT & arm_ext_v8m_main
25410 ToC("vlldm", ec300a00, 1, (RRnpc), rn),
25411 ToC("vlstm", ec200a00, 1, (RRnpc), rn),
25412
25413 /* Armv8.1-M Mainline instructions. */
25414 #undef THUMB_VARIANT
25415 #define THUMB_VARIANT & arm_ext_v8_1m_main
25416 toU("cinc", _cinc, 3, (RRnpcsp, RR_ZR, COND), t_cond),
25417 toU("cinv", _cinv, 3, (RRnpcsp, RR_ZR, COND), t_cond),
25418 toU("cneg", _cneg, 3, (RRnpcsp, RR_ZR, COND), t_cond),
25419 toU("csel", _csel, 4, (RRnpcsp, RR_ZR, RR_ZR, COND), t_cond),
25420 toU("csetm", _csetm, 2, (RRnpcsp, COND), t_cond),
25421 toU("cset", _cset, 2, (RRnpcsp, COND), t_cond),
25422 toU("csinc", _csinc, 4, (RRnpcsp, RR_ZR, RR_ZR, COND), t_cond),
25423 toU("csinv", _csinv, 4, (RRnpcsp, RR_ZR, RR_ZR, COND), t_cond),
25424 toU("csneg", _csneg, 4, (RRnpcsp, RR_ZR, RR_ZR, COND), t_cond),
25425
25426 toC("bf", _bf, 2, (EXPs, EXPs), t_branch_future),
25427 toU("bfcsel", _bfcsel, 4, (EXPs, EXPs, EXPs, COND), t_branch_future),
25428 toC("bfx", _bfx, 2, (EXPs, RRnpcsp), t_branch_future),
25429 toC("bfl", _bfl, 2, (EXPs, EXPs), t_branch_future),
25430 toC("bflx", _bflx, 2, (EXPs, RRnpcsp), t_branch_future),
25431
25432 toU("dls", _dls, 2, (LR, RRnpcsp), t_loloop),
25433 toU("wls", _wls, 3, (LR, RRnpcsp, EXP), t_loloop),
25434 toU("le", _le, 2, (oLR, EXP), t_loloop),
25435
25436 ToC("clrm", e89f0000, 1, (CLRMLST), t_clrm),
25437 ToC("vscclrm", ec9f0a00, 1, (VRSDVLST), t_vscclrm),
25438
25439 #undef THUMB_VARIANT
25440 #define THUMB_VARIANT & mve_ext
25441 ToC("lsll", ea50010d, 3, (RRe, RRo, RRnpcsp_I32), mve_scalar_shift),
25442 ToC("lsrl", ea50011f, 3, (RRe, RRo, I32), mve_scalar_shift),
25443 ToC("asrl", ea50012d, 3, (RRe, RRo, RRnpcsp_I32), mve_scalar_shift),
25444 ToC("uqrshll", ea51010d, 4, (RRe, RRo, I48_I64, RRnpcsp), mve_scalar_shift1),
25445 ToC("sqrshrl", ea51012d, 4, (RRe, RRo, I48_I64, RRnpcsp), mve_scalar_shift1),
25446 ToC("uqshll", ea51010f, 3, (RRe, RRo, I32), mve_scalar_shift),
25447 ToC("urshrl", ea51011f, 3, (RRe, RRo, I32), mve_scalar_shift),
25448 ToC("srshrl", ea51012f, 3, (RRe, RRo, I32), mve_scalar_shift),
25449 ToC("sqshll", ea51013f, 3, (RRe, RRo, I32), mve_scalar_shift),
25450 ToC("uqrshl", ea500f0d, 2, (RRnpcsp, RRnpcsp), mve_scalar_shift),
25451 ToC("sqrshr", ea500f2d, 2, (RRnpcsp, RRnpcsp), mve_scalar_shift),
25452 ToC("uqshl", ea500f0f, 2, (RRnpcsp, I32), mve_scalar_shift),
25453 ToC("urshr", ea500f1f, 2, (RRnpcsp, I32), mve_scalar_shift),
25454 ToC("srshr", ea500f2f, 2, (RRnpcsp, I32), mve_scalar_shift),
25455 ToC("sqshl", ea500f3f, 2, (RRnpcsp, I32), mve_scalar_shift),
25456
25457 ToC("vpt", ee410f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25458 ToC("vptt", ee018f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25459 ToC("vpte", ee418f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25460 ToC("vpttt", ee014f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25461 ToC("vptte", ee01cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25462 ToC("vptet", ee41cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25463 ToC("vptee", ee414f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25464 ToC("vptttt", ee012f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25465 ToC("vpttte", ee016f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25466 ToC("vpttet", ee01ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25467 ToC("vpttee", ee01af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25468 ToC("vptett", ee41af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25469 ToC("vptete", ee41ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25470 ToC("vpteet", ee416f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25471 ToC("vpteee", ee412f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25472
25473 ToC("vpst", fe710f4d, 0, (), mve_vpt),
25474 ToC("vpstt", fe318f4d, 0, (), mve_vpt),
25475 ToC("vpste", fe718f4d, 0, (), mve_vpt),
25476 ToC("vpsttt", fe314f4d, 0, (), mve_vpt),
25477 ToC("vpstte", fe31cf4d, 0, (), mve_vpt),
25478 ToC("vpstet", fe71cf4d, 0, (), mve_vpt),
25479 ToC("vpstee", fe714f4d, 0, (), mve_vpt),
25480 ToC("vpstttt", fe312f4d, 0, (), mve_vpt),
25481 ToC("vpsttte", fe316f4d, 0, (), mve_vpt),
25482 ToC("vpsttet", fe31ef4d, 0, (), mve_vpt),
25483 ToC("vpsttee", fe31af4d, 0, (), mve_vpt),
25484 ToC("vpstett", fe71af4d, 0, (), mve_vpt),
25485 ToC("vpstete", fe71ef4d, 0, (), mve_vpt),
25486 ToC("vpsteet", fe716f4d, 0, (), mve_vpt),
25487 ToC("vpsteee", fe712f4d, 0, (), mve_vpt),
25488
25489 /* MVE and MVE FP only. */
25490 mToC("vhcadd", ee000f00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vhcadd),
25491 mCEF(vadc, _vadc, 3, (RMQ, RMQ, RMQ), mve_vadc),
25492 mCEF(vadci, _vadci, 3, (RMQ, RMQ, RMQ), mve_vadc),
25493 mToC("vsbc", fe300f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
25494 mToC("vsbci", fe301f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
25495 mCEF(vmullb, _vmullb, 3, (RMQ, RMQ, RMQ), mve_vmull),
25496 mCEF(vabav, _vabav, 3, (RRnpcsp, RMQ, RMQ), mve_vabav),
25497 mCEF(vmladav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
25498 mCEF(vmladava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
25499 mCEF(vmladavx, _vmladavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
25500 mCEF(vmladavax, _vmladavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
25501 mCEF(vmlav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
25502 mCEF(vmlava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
25503 mCEF(vmlsdav, _vmlsdav, 3, (RRe, RMQ, RMQ), mve_vmladav),
25504 mCEF(vmlsdava, _vmlsdava, 3, (RRe, RMQ, RMQ), mve_vmladav),
25505 mCEF(vmlsdavx, _vmlsdavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
25506 mCEF(vmlsdavax, _vmlsdavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
25507
25508 mCEF(vst20, _vst20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
25509 mCEF(vst21, _vst21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
25510 mCEF(vst40, _vst40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25511 mCEF(vst41, _vst41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25512 mCEF(vst42, _vst42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25513 mCEF(vst43, _vst43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25514 mCEF(vld20, _vld20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
25515 mCEF(vld21, _vld21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
25516 mCEF(vld40, _vld40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25517 mCEF(vld41, _vld41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25518 mCEF(vld42, _vld42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25519 mCEF(vld43, _vld43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25520 mCEF(vstrb, _vstrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25521 mCEF(vstrh, _vstrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25522 mCEF(vstrw, _vstrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25523 mCEF(vstrd, _vstrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25524 mCEF(vldrb, _vldrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25525 mCEF(vldrh, _vldrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25526 mCEF(vldrw, _vldrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25527 mCEF(vldrd, _vldrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25528
25529 mCEF(vmovnt, _vmovnt, 2, (RMQ, RMQ), mve_movn),
25530 mCEF(vmovnb, _vmovnb, 2, (RMQ, RMQ), mve_movn),
25531 mCEF(vbrsr, _vbrsr, 3, (RMQ, RMQ, RR), mve_vbrsr),
25532 mCEF(vaddlv, _vaddlv, 3, (RRe, RRo, RMQ), mve_vaddlv),
25533 mCEF(vaddlva, _vaddlva, 3, (RRe, RRo, RMQ), mve_vaddlv),
25534 mCEF(vaddv, _vaddv, 2, (RRe, RMQ), mve_vaddv),
25535 mCEF(vaddva, _vaddva, 2, (RRe, RMQ), mve_vaddv),
25536 mCEF(vddup, _vddup, 3, (RMQ, RRe, EXPi), mve_viddup),
25537 mCEF(vdwdup, _vdwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
25538 mCEF(vidup, _vidup, 3, (RMQ, RRe, EXPi), mve_viddup),
25539 mCEF(viwdup, _viwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
25540 mToC("vmaxa", ee330e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
25541 mToC("vmina", ee331e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
25542 mCEF(vmaxv, _vmaxv, 2, (RR, RMQ), mve_vmaxv),
25543 mCEF(vmaxav, _vmaxav, 2, (RR, RMQ), mve_vmaxv),
25544 mCEF(vminv, _vminv, 2, (RR, RMQ), mve_vmaxv),
25545 mCEF(vminav, _vminav, 2, (RR, RMQ), mve_vmaxv),
25546
25547 mCEF(vmlaldav, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25548 mCEF(vmlaldava, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25549 mCEF(vmlaldavx, _vmlaldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25550 mCEF(vmlaldavax, _vmlaldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25551 mCEF(vmlalv, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25552 mCEF(vmlalva, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25553 mCEF(vmlsldav, _vmlsldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25554 mCEF(vmlsldava, _vmlsldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25555 mCEF(vmlsldavx, _vmlsldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25556 mCEF(vmlsldavax, _vmlsldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25557 mToC("vrmlaldavh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25558 mToC("vrmlaldavha",ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25559 mCEF(vrmlaldavhx, _vrmlaldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25560 mCEF(vrmlaldavhax, _vrmlaldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25561 mToC("vrmlalvh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25562 mToC("vrmlalvha", ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25563 mCEF(vrmlsldavh, _vrmlsldavh, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25564 mCEF(vrmlsldavha, _vrmlsldavha, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25565 mCEF(vrmlsldavhx, _vrmlsldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25566 mCEF(vrmlsldavhax, _vrmlsldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25567
25568 mToC("vmlas", ee011e40, 3, (RMQ, RMQ, RR), mve_vmlas),
25569 mToC("vmulh", ee010e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
25570 mToC("vrmulh", ee011e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
25571 mToC("vpnot", fe310f4d, 0, (), mve_vpnot),
25572 mToC("vpsel", fe310f01, 3, (RMQ, RMQ, RMQ), mve_vpsel),
25573
25574 mToC("vqdmladh", ee000e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25575 mToC("vqdmladhx", ee001e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25576 mToC("vqrdmladh", ee000e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25577 mToC("vqrdmladhx",ee001e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25578 mToC("vqdmlsdh", fe000e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25579 mToC("vqdmlsdhx", fe001e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25580 mToC("vqrdmlsdh", fe000e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25581 mToC("vqrdmlsdhx",fe001e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25582 mToC("vqdmlah", ee000e60, 3, (RMQ, RMQ, RR), mve_vqdmlah),
25583 mToC("vqdmlash", ee001e60, 3, (RMQ, RMQ, RR), mve_vqdmlah),
25584 mToC("vqrdmlash", ee001e40, 3, (RMQ, RMQ, RR), mve_vqdmlah),
25585 mToC("vqdmullt", ee301f00, 3, (RMQ, RMQ, RMQRR), mve_vqdmull),
25586 mToC("vqdmullb", ee300f00, 3, (RMQ, RMQ, RMQRR), mve_vqdmull),
25587 mCEF(vqmovnt, _vqmovnt, 2, (RMQ, RMQ), mve_vqmovn),
25588 mCEF(vqmovnb, _vqmovnb, 2, (RMQ, RMQ), mve_vqmovn),
25589 mCEF(vqmovunt, _vqmovunt, 2, (RMQ, RMQ), mve_vqmovn),
25590 mCEF(vqmovunb, _vqmovunb, 2, (RMQ, RMQ), mve_vqmovn),
25591
25592 mCEF(vshrnt, _vshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25593 mCEF(vshrnb, _vshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25594 mCEF(vrshrnt, _vrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25595 mCEF(vrshrnb, _vrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25596 mCEF(vqshrnt, _vqrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25597 mCEF(vqshrnb, _vqrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25598 mCEF(vqshrunt, _vqrshrunt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25599 mCEF(vqshrunb, _vqrshrunb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25600 mCEF(vqrshrnt, _vqrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25601 mCEF(vqrshrnb, _vqrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25602 mCEF(vqrshrunt, _vqrshrunt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25603 mCEF(vqrshrunb, _vqrshrunb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25604
25605 mToC("vshlc", eea00fc0, 3, (RMQ, RR, I32z), mve_vshlc),
25606 mToC("vshllt", ee201e00, 3, (RMQ, RMQ, I32), mve_vshll),
25607 mToC("vshllb", ee200e00, 3, (RMQ, RMQ, I32), mve_vshll),
25608
25609 toU("dlstp", _dlstp, 2, (LR, RR), t_loloop),
25610 toU("wlstp", _wlstp, 3, (LR, RR, EXP), t_loloop),
25611 toU("letp", _letp, 2, (LR, EXP), t_loloop),
25612 toU("lctp", _lctp, 0, (), t_loloop),
25613
25614 #undef THUMB_VARIANT
25615 #define THUMB_VARIANT & mve_fp_ext
25616 mToC("vcmul", ee300e00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vcmul),
25617 mToC("vfmas", ee311e40, 3, (RMQ, RMQ, RR), mve_vfmas),
25618 mToC("vmaxnma", ee3f0e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
25619 mToC("vminnma", ee3f1e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
25620 mToC("vmaxnmv", eeee0f00, 2, (RR, RMQ), mve_vmaxnmv),
25621 mToC("vmaxnmav",eeec0f00, 2, (RR, RMQ), mve_vmaxnmv),
25622 mToC("vminnmv", eeee0f80, 2, (RR, RMQ), mve_vmaxnmv),
25623 mToC("vminnmav",eeec0f80, 2, (RR, RMQ), mve_vmaxnmv),
25624
25625 #undef ARM_VARIANT
25626 #define ARM_VARIANT & fpu_vfp_ext_v1
25627 #undef THUMB_VARIANT
25628 #define THUMB_VARIANT & arm_ext_v6t2
25629 mnCEF(vmla, _vmla, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mac_maybe_scalar),
25630 mnCEF(vmul, _vmul, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mul),
25631
25632 mcCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
25633
25634 #undef ARM_VARIANT
25635 #define ARM_VARIANT & fpu_vfp_ext_v1xd
25636
25637 MNCE(vmov, 0, 1, (VMOV), neon_mov),
25638 mcCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
25639 mcCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
25640 mcCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
25641
25642 mCEF(vmullt, _vmullt, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ), mve_vmull),
25643 mnCEF(vadd, _vadd, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
25644 mnCEF(vsub, _vsub, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
25645
25646 MNCEF(vabs, 1b10300, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
25647 MNCEF(vneg, 1b10380, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
25648
25649 mCEF(vmovlt, _vmovlt, 1, (VMOV), mve_movl),
25650 mCEF(vmovlb, _vmovlb, 1, (VMOV), mve_movl),
25651
25652 mnCE(vcmp, _vcmp, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
25653 mnCE(vcmpe, _vcmpe, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
25654
25655 #undef ARM_VARIANT
25656 #define ARM_VARIANT & fpu_vfp_ext_v2
25657
25658 mcCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
25659 mcCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
25660 mcCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
25661 mcCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
25662
25663 #undef ARM_VARIANT
25664 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
25665 mnUF(vcvta, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvta),
25666 mnUF(vcvtp, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtp),
25667 mnUF(vcvtn, _vcvta, 3, (RNSDQMQ, oRNSDQMQ, oI32z), neon_cvtn),
25668 mnUF(vcvtm, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtm),
25669 mnUF(vmaxnm, _vmaxnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
25670 mnUF(vminnm, _vminnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
25671
25672 #undef ARM_VARIANT
25673 #define ARM_VARIANT & fpu_neon_ext_v1
25674 mnUF(vabd, _vabd, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
25675 mnUF(vabdl, _vabdl, 3, (RNQMQ, RNDMQ, RNDMQ), neon_dyadic_long),
25676 mnUF(vaddl, _vaddl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
25677 mnUF(vsubl, _vsubl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
25678 mnUF(vand, _vand, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25679 mnUF(vbic, _vbic, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25680 mnUF(vorr, _vorr, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25681 mnUF(vorn, _vorn, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25682 mnUF(veor, _veor, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_logic),
25683 MNUF(vcls, 1b00400, 2, (RNDQMQ, RNDQMQ), neon_cls),
25684 MNUF(vclz, 1b00480, 2, (RNDQMQ, RNDQMQ), neon_clz),
25685 mnCE(vdup, _vdup, 2, (RNDQMQ, RR_RNSC), neon_dup),
25686 MNUF(vhadd, 00000000, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
25687 MNUF(vrhadd, 00000100, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_i_su),
25688 MNUF(vhsub, 00000200, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
25689 mnUF(vmin, _vmin, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
25690 mnUF(vmax, _vmax, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
25691 MNUF(vqadd, 0000010, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
25692 MNUF(vqsub, 0000210, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
25693 mnUF(vmvn, _vmvn, 2, (RNDQMQ, RNDQMQ_Ibig), neon_mvn),
25694 MNUF(vqabs, 1b00700, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg),
25695 MNUF(vqneg, 1b00780, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg),
25696 mnUF(vqrdmlah, _vqrdmlah,3, (RNDQMQ, oRNDQMQ, RNDQ_RNSC_RR), neon_qrdmlah),
25697 mnUF(vqdmulh, _vqdmulh, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_RNSC_RR), neon_qdmulh),
25698 mnUF(vqrdmulh, _vqrdmulh,3, (RNDQMQ, oRNDQMQ, RNDQMQ_RNSC_RR), neon_qdmulh),
25699 MNUF(vqrshl, 0000510, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_rshl),
25700 MNUF(vrshl, 0000500, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_rshl),
25701 MNUF(vshr, 0800010, 3, (RNDQMQ, oRNDQMQ, I64z), neon_rshift_round_imm),
25702 MNUF(vrshr, 0800210, 3, (RNDQMQ, oRNDQMQ, I64z), neon_rshift_round_imm),
25703 MNUF(vsli, 1800510, 3, (RNDQMQ, oRNDQMQ, I63), neon_sli),
25704 MNUF(vsri, 1800410, 3, (RNDQMQ, oRNDQMQ, I64z), neon_sri),
25705 MNUF(vrev64, 1b00000, 2, (RNDQMQ, RNDQMQ), neon_rev),
25706 MNUF(vrev32, 1b00080, 2, (RNDQMQ, RNDQMQ), neon_rev),
25707 MNUF(vrev16, 1b00100, 2, (RNDQMQ, RNDQMQ), neon_rev),
25708 mnUF(vshl, _vshl, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_I63b_RR), neon_shl),
25709 mnUF(vqshl, _vqshl, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_I63b_RR), neon_qshl),
25710 MNUF(vqshlu, 1800610, 3, (RNDQMQ, oRNDQMQ, I63), neon_qshlu_imm),
25711
25712 #undef ARM_VARIANT
25713 #define ARM_VARIANT & arm_ext_v8_3
25714 #undef THUMB_VARIANT
25715 #define THUMB_VARIANT & arm_ext_v6t2_v8m
25716 MNUF (vcadd, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ, EXPi), vcadd),
25717 MNUF (vcmla, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ_RNSC, EXPi), vcmla),
25718 };
25719 #undef ARM_VARIANT
25720 #undef THUMB_VARIANT
25721 #undef TCE
25722 #undef TUE
25723 #undef TUF
25724 #undef TCC
25725 #undef cCE
25726 #undef cCL
25727 #undef C3E
25728 #undef C3
25729 #undef CE
25730 #undef CM
25731 #undef CL
25732 #undef UE
25733 #undef UF
25734 #undef UT
25735 #undef NUF
25736 #undef nUF
25737 #undef NCE
25738 #undef nCE
25739 #undef OPS0
25740 #undef OPS1
25741 #undef OPS2
25742 #undef OPS3
25743 #undef OPS4
25744 #undef OPS5
25745 #undef OPS6
25746 #undef do_0
25747 #undef ToC
25748 #undef toC
25749 #undef ToU
25750 #undef toU
25751 \f
25752 /* MD interface: bits in the object file. */
25753
25754 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
25755 for use in the a.out file, and stores them in the array pointed to by buf.
25756 This knows about the endian-ness of the target machine and does
25757 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
25758 2 (short) and 4 (long) Floating numbers are put out as a series of
25759 LITTLENUMS (shorts, here at least). */
25760
25761 void
25762 md_number_to_chars (char * buf, valueT val, int n)
25763 {
25764 if (target_big_endian)
25765 number_to_chars_bigendian (buf, val, n);
25766 else
25767 number_to_chars_littleendian (buf, val, n);
25768 }
25769
25770 static valueT
25771 md_chars_to_number (char * buf, int n)
25772 {
25773 valueT result = 0;
25774 unsigned char * where = (unsigned char *) buf;
25775
25776 if (target_big_endian)
25777 {
25778 while (n--)
25779 {
25780 result <<= 8;
25781 result |= (*where++ & 255);
25782 }
25783 }
25784 else
25785 {
25786 while (n--)
25787 {
25788 result <<= 8;
25789 result |= (where[n] & 255);
25790 }
25791 }
25792
25793 return result;
25794 }
25795
25796 /* MD interface: Sections. */
25797
25798 /* Calculate the maximum variable size (i.e., excluding fr_fix)
25799 that an rs_machine_dependent frag may reach. */
25800
25801 unsigned int
25802 arm_frag_max_var (fragS *fragp)
25803 {
25804 /* We only use rs_machine_dependent for variable-size Thumb instructions,
25805 which are either THUMB_SIZE (2) or INSN_SIZE (4).
25806
25807 Note that we generate relaxable instructions even for cases that don't
25808 really need it, like an immediate that's a trivial constant. So we're
25809 overestimating the instruction size for some of those cases. Rather
25810 than putting more intelligence here, it would probably be better to
25811 avoid generating a relaxation frag in the first place when it can be
25812 determined up front that a short instruction will suffice. */
25813
25814 gas_assert (fragp->fr_type == rs_machine_dependent);
25815 return INSN_SIZE;
25816 }
25817
25818 /* Estimate the size of a frag before relaxing. Assume everything fits in
25819 2 bytes. */
25820
25821 int
25822 md_estimate_size_before_relax (fragS * fragp,
25823 segT segtype ATTRIBUTE_UNUSED)
25824 {
25825 fragp->fr_var = 2;
25826 return 2;
25827 }
25828
25829 /* Convert a machine dependent frag. */
25830
25831 void
25832 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
25833 {
25834 unsigned long insn;
25835 unsigned long old_op;
25836 char *buf;
25837 expressionS exp;
25838 fixS *fixp;
25839 int reloc_type;
25840 int pc_rel;
25841 int opcode;
25842
25843 buf = fragp->fr_literal + fragp->fr_fix;
25844
25845 old_op = bfd_get_16(abfd, buf);
25846 if (fragp->fr_symbol)
25847 {
25848 exp.X_op = O_symbol;
25849 exp.X_add_symbol = fragp->fr_symbol;
25850 }
25851 else
25852 {
25853 exp.X_op = O_constant;
25854 }
25855 exp.X_add_number = fragp->fr_offset;
25856 opcode = fragp->fr_subtype;
25857 switch (opcode)
25858 {
25859 case T_MNEM_ldr_pc:
25860 case T_MNEM_ldr_pc2:
25861 case T_MNEM_ldr_sp:
25862 case T_MNEM_str_sp:
25863 case T_MNEM_ldr:
25864 case T_MNEM_ldrb:
25865 case T_MNEM_ldrh:
25866 case T_MNEM_str:
25867 case T_MNEM_strb:
25868 case T_MNEM_strh:
25869 if (fragp->fr_var == 4)
25870 {
25871 insn = THUMB_OP32 (opcode);
25872 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
25873 {
25874 insn |= (old_op & 0x700) << 4;
25875 }
25876 else
25877 {
25878 insn |= (old_op & 7) << 12;
25879 insn |= (old_op & 0x38) << 13;
25880 }
25881 insn |= 0x00000c00;
25882 put_thumb32_insn (buf, insn);
25883 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
25884 }
25885 else
25886 {
25887 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
25888 }
25889 pc_rel = (opcode == T_MNEM_ldr_pc2);
25890 break;
25891 case T_MNEM_adr:
25892 if (fragp->fr_var == 4)
25893 {
25894 insn = THUMB_OP32 (opcode);
25895 insn |= (old_op & 0xf0) << 4;
25896 put_thumb32_insn (buf, insn);
25897 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
25898 }
25899 else
25900 {
25901 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25902 exp.X_add_number -= 4;
25903 }
25904 pc_rel = 1;
25905 break;
25906 case T_MNEM_mov:
25907 case T_MNEM_movs:
25908 case T_MNEM_cmp:
25909 case T_MNEM_cmn:
25910 if (fragp->fr_var == 4)
25911 {
25912 int r0off = (opcode == T_MNEM_mov
25913 || opcode == T_MNEM_movs) ? 0 : 8;
25914 insn = THUMB_OP32 (opcode);
25915 insn = (insn & 0xe1ffffff) | 0x10000000;
25916 insn |= (old_op & 0x700) << r0off;
25917 put_thumb32_insn (buf, insn);
25918 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
25919 }
25920 else
25921 {
25922 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
25923 }
25924 pc_rel = 0;
25925 break;
25926 case T_MNEM_b:
25927 if (fragp->fr_var == 4)
25928 {
25929 insn = THUMB_OP32(opcode);
25930 put_thumb32_insn (buf, insn);
25931 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
25932 }
25933 else
25934 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
25935 pc_rel = 1;
25936 break;
25937 case T_MNEM_bcond:
25938 if (fragp->fr_var == 4)
25939 {
25940 insn = THUMB_OP32(opcode);
25941 insn |= (old_op & 0xf00) << 14;
25942 put_thumb32_insn (buf, insn);
25943 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
25944 }
25945 else
25946 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
25947 pc_rel = 1;
25948 break;
25949 case T_MNEM_add_sp:
25950 case T_MNEM_add_pc:
25951 case T_MNEM_inc_sp:
25952 case T_MNEM_dec_sp:
25953 if (fragp->fr_var == 4)
25954 {
25955 /* ??? Choose between add and addw. */
25956 insn = THUMB_OP32 (opcode);
25957 insn |= (old_op & 0xf0) << 4;
25958 put_thumb32_insn (buf, insn);
25959 if (opcode == T_MNEM_add_pc)
25960 reloc_type = BFD_RELOC_ARM_T32_IMM12;
25961 else
25962 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
25963 }
25964 else
25965 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25966 pc_rel = 0;
25967 break;
25968
25969 case T_MNEM_addi:
25970 case T_MNEM_addis:
25971 case T_MNEM_subi:
25972 case T_MNEM_subis:
25973 if (fragp->fr_var == 4)
25974 {
25975 insn = THUMB_OP32 (opcode);
25976 insn |= (old_op & 0xf0) << 4;
25977 insn |= (old_op & 0xf) << 16;
25978 put_thumb32_insn (buf, insn);
25979 if (insn & (1 << 20))
25980 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
25981 else
25982 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
25983 }
25984 else
25985 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25986 pc_rel = 0;
25987 break;
25988 default:
25989 abort ();
25990 }
25991 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
25992 (enum bfd_reloc_code_real) reloc_type);
25993 fixp->fx_file = fragp->fr_file;
25994 fixp->fx_line = fragp->fr_line;
25995 fragp->fr_fix += fragp->fr_var;
25996
25997 /* Set whether we use thumb-2 ISA based on final relaxation results. */
25998 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
25999 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
26000 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
26001 }
26002
26003 /* Return the size of a relaxable immediate operand instruction.
26004 SHIFT and SIZE specify the form of the allowable immediate. */
26005 static int
26006 relax_immediate (fragS *fragp, int size, int shift)
26007 {
26008 offsetT offset;
26009 offsetT mask;
26010 offsetT low;
26011
26012 /* ??? Should be able to do better than this. */
26013 if (fragp->fr_symbol)
26014 return 4;
26015
26016 low = (1 << shift) - 1;
26017 mask = (1 << (shift + size)) - (1 << shift);
26018 offset = fragp->fr_offset;
26019 /* Force misaligned offsets to 32-bit variant. */
26020 if (offset & low)
26021 return 4;
26022 if (offset & ~mask)
26023 return 4;
26024 return 2;
26025 }
26026
26027 /* Get the address of a symbol during relaxation. */
26028 static addressT
26029 relaxed_symbol_addr (fragS *fragp, long stretch)
26030 {
26031 fragS *sym_frag;
26032 addressT addr;
26033 symbolS *sym;
26034
26035 sym = fragp->fr_symbol;
26036 sym_frag = symbol_get_frag (sym);
26037 know (S_GET_SEGMENT (sym) != absolute_section
26038 || sym_frag == &zero_address_frag);
26039 addr = S_GET_VALUE (sym) + fragp->fr_offset;
26040
26041 /* If frag has yet to be reached on this pass, assume it will
26042 move by STRETCH just as we did. If this is not so, it will
26043 be because some frag between grows, and that will force
26044 another pass. */
26045
26046 if (stretch != 0
26047 && sym_frag->relax_marker != fragp->relax_marker)
26048 {
26049 fragS *f;
26050
26051 /* Adjust stretch for any alignment frag. Note that if have
26052 been expanding the earlier code, the symbol may be
26053 defined in what appears to be an earlier frag. FIXME:
26054 This doesn't handle the fr_subtype field, which specifies
26055 a maximum number of bytes to skip when doing an
26056 alignment. */
26057 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
26058 {
26059 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
26060 {
26061 if (stretch < 0)
26062 stretch = - ((- stretch)
26063 & ~ ((1 << (int) f->fr_offset) - 1));
26064 else
26065 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
26066 if (stretch == 0)
26067 break;
26068 }
26069 }
26070 if (f != NULL)
26071 addr += stretch;
26072 }
26073
26074 return addr;
26075 }
26076
26077 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
26078 load. */
26079 static int
26080 relax_adr (fragS *fragp, asection *sec, long stretch)
26081 {
26082 addressT addr;
26083 offsetT val;
26084
26085 /* Assume worst case for symbols not known to be in the same section. */
26086 if (fragp->fr_symbol == NULL
26087 || !S_IS_DEFINED (fragp->fr_symbol)
26088 || sec != S_GET_SEGMENT (fragp->fr_symbol)
26089 || S_IS_WEAK (fragp->fr_symbol))
26090 return 4;
26091
26092 val = relaxed_symbol_addr (fragp, stretch);
26093 addr = fragp->fr_address + fragp->fr_fix;
26094 addr = (addr + 4) & ~3;
26095 /* Force misaligned targets to 32-bit variant. */
26096 if (val & 3)
26097 return 4;
26098 val -= addr;
26099 if (val < 0 || val > 1020)
26100 return 4;
26101 return 2;
26102 }
26103
26104 /* Return the size of a relaxable add/sub immediate instruction. */
26105 static int
26106 relax_addsub (fragS *fragp, asection *sec)
26107 {
26108 char *buf;
26109 int op;
26110
26111 buf = fragp->fr_literal + fragp->fr_fix;
26112 op = bfd_get_16(sec->owner, buf);
26113 if ((op & 0xf) == ((op >> 4) & 0xf))
26114 return relax_immediate (fragp, 8, 0);
26115 else
26116 return relax_immediate (fragp, 3, 0);
26117 }
26118
26119 /* Return TRUE iff the definition of symbol S could be pre-empted
26120 (overridden) at link or load time. */
26121 static bfd_boolean
26122 symbol_preemptible (symbolS *s)
26123 {
26124 /* Weak symbols can always be pre-empted. */
26125 if (S_IS_WEAK (s))
26126 return TRUE;
26127
26128 /* Non-global symbols cannot be pre-empted. */
26129 if (! S_IS_EXTERNAL (s))
26130 return FALSE;
26131
26132 #ifdef OBJ_ELF
26133 /* In ELF, a global symbol can be marked protected, or private. In that
26134 case it can't be pre-empted (other definitions in the same link unit
26135 would violate the ODR). */
26136 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
26137 return FALSE;
26138 #endif
26139
26140 /* Other global symbols might be pre-empted. */
26141 return TRUE;
26142 }
26143
26144 /* Return the size of a relaxable branch instruction. BITS is the
26145 size of the offset field in the narrow instruction. */
26146
26147 static int
26148 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
26149 {
26150 addressT addr;
26151 offsetT val;
26152 offsetT limit;
26153
26154 /* Assume worst case for symbols not known to be in the same section. */
26155 if (!S_IS_DEFINED (fragp->fr_symbol)
26156 || sec != S_GET_SEGMENT (fragp->fr_symbol)
26157 || S_IS_WEAK (fragp->fr_symbol))
26158 return 4;
26159
26160 #ifdef OBJ_ELF
26161 /* A branch to a function in ARM state will require interworking. */
26162 if (S_IS_DEFINED (fragp->fr_symbol)
26163 && ARM_IS_FUNC (fragp->fr_symbol))
26164 return 4;
26165 #endif
26166
26167 if (symbol_preemptible (fragp->fr_symbol))
26168 return 4;
26169
26170 val = relaxed_symbol_addr (fragp, stretch);
26171 addr = fragp->fr_address + fragp->fr_fix + 4;
26172 val -= addr;
26173
26174 /* Offset is a signed value *2 */
26175 limit = 1 << bits;
26176 if (val >= limit || val < -limit)
26177 return 4;
26178 return 2;
26179 }
26180
26181
26182 /* Relax a machine dependent frag. This returns the amount by which
26183 the current size of the frag should change. */
26184
26185 int
26186 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
26187 {
26188 int oldsize;
26189 int newsize;
26190
26191 oldsize = fragp->fr_var;
26192 switch (fragp->fr_subtype)
26193 {
26194 case T_MNEM_ldr_pc2:
26195 newsize = relax_adr (fragp, sec, stretch);
26196 break;
26197 case T_MNEM_ldr_pc:
26198 case T_MNEM_ldr_sp:
26199 case T_MNEM_str_sp:
26200 newsize = relax_immediate (fragp, 8, 2);
26201 break;
26202 case T_MNEM_ldr:
26203 case T_MNEM_str:
26204 newsize = relax_immediate (fragp, 5, 2);
26205 break;
26206 case T_MNEM_ldrh:
26207 case T_MNEM_strh:
26208 newsize = relax_immediate (fragp, 5, 1);
26209 break;
26210 case T_MNEM_ldrb:
26211 case T_MNEM_strb:
26212 newsize = relax_immediate (fragp, 5, 0);
26213 break;
26214 case T_MNEM_adr:
26215 newsize = relax_adr (fragp, sec, stretch);
26216 break;
26217 case T_MNEM_mov:
26218 case T_MNEM_movs:
26219 case T_MNEM_cmp:
26220 case T_MNEM_cmn:
26221 newsize = relax_immediate (fragp, 8, 0);
26222 break;
26223 case T_MNEM_b:
26224 newsize = relax_branch (fragp, sec, 11, stretch);
26225 break;
26226 case T_MNEM_bcond:
26227 newsize = relax_branch (fragp, sec, 8, stretch);
26228 break;
26229 case T_MNEM_add_sp:
26230 case T_MNEM_add_pc:
26231 newsize = relax_immediate (fragp, 8, 2);
26232 break;
26233 case T_MNEM_inc_sp:
26234 case T_MNEM_dec_sp:
26235 newsize = relax_immediate (fragp, 7, 2);
26236 break;
26237 case T_MNEM_addi:
26238 case T_MNEM_addis:
26239 case T_MNEM_subi:
26240 case T_MNEM_subis:
26241 newsize = relax_addsub (fragp, sec);
26242 break;
26243 default:
26244 abort ();
26245 }
26246
26247 fragp->fr_var = newsize;
26248 /* Freeze wide instructions that are at or before the same location as
26249 in the previous pass. This avoids infinite loops.
26250 Don't freeze them unconditionally because targets may be artificially
26251 misaligned by the expansion of preceding frags. */
26252 if (stretch <= 0 && newsize > 2)
26253 {
26254 md_convert_frag (sec->owner, sec, fragp);
26255 frag_wane (fragp);
26256 }
26257
26258 return newsize - oldsize;
26259 }
26260
26261 /* Round up a section size to the appropriate boundary. */
26262
26263 valueT
26264 md_section_align (segT segment ATTRIBUTE_UNUSED,
26265 valueT size)
26266 {
26267 return size;
26268 }
26269
26270 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
26271 of an rs_align_code fragment. */
26272
26273 void
26274 arm_handle_align (fragS * fragP)
26275 {
26276 static unsigned char const arm_noop[2][2][4] =
26277 {
26278 { /* ARMv1 */
26279 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
26280 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
26281 },
26282 { /* ARMv6k */
26283 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
26284 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
26285 },
26286 };
26287 static unsigned char const thumb_noop[2][2][2] =
26288 {
26289 { /* Thumb-1 */
26290 {0xc0, 0x46}, /* LE */
26291 {0x46, 0xc0}, /* BE */
26292 },
26293 { /* Thumb-2 */
26294 {0x00, 0xbf}, /* LE */
26295 {0xbf, 0x00} /* BE */
26296 }
26297 };
26298 static unsigned char const wide_thumb_noop[2][4] =
26299 { /* Wide Thumb-2 */
26300 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
26301 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
26302 };
26303
26304 unsigned bytes, fix, noop_size;
26305 char * p;
26306 const unsigned char * noop;
26307 const unsigned char *narrow_noop = NULL;
26308 #ifdef OBJ_ELF
26309 enum mstate state;
26310 #endif
26311
26312 if (fragP->fr_type != rs_align_code)
26313 return;
26314
26315 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
26316 p = fragP->fr_literal + fragP->fr_fix;
26317 fix = 0;
26318
26319 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
26320 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
26321
26322 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
26323
26324 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
26325 {
26326 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
26327 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
26328 {
26329 narrow_noop = thumb_noop[1][target_big_endian];
26330 noop = wide_thumb_noop[target_big_endian];
26331 }
26332 else
26333 noop = thumb_noop[0][target_big_endian];
26334 noop_size = 2;
26335 #ifdef OBJ_ELF
26336 state = MAP_THUMB;
26337 #endif
26338 }
26339 else
26340 {
26341 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
26342 ? selected_cpu : arm_arch_none,
26343 arm_ext_v6k) != 0]
26344 [target_big_endian];
26345 noop_size = 4;
26346 #ifdef OBJ_ELF
26347 state = MAP_ARM;
26348 #endif
26349 }
26350
26351 fragP->fr_var = noop_size;
26352
26353 if (bytes & (noop_size - 1))
26354 {
26355 fix = bytes & (noop_size - 1);
26356 #ifdef OBJ_ELF
26357 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
26358 #endif
26359 memset (p, 0, fix);
26360 p += fix;
26361 bytes -= fix;
26362 }
26363
26364 if (narrow_noop)
26365 {
26366 if (bytes & noop_size)
26367 {
26368 /* Insert a narrow noop. */
26369 memcpy (p, narrow_noop, noop_size);
26370 p += noop_size;
26371 bytes -= noop_size;
26372 fix += noop_size;
26373 }
26374
26375 /* Use wide noops for the remainder */
26376 noop_size = 4;
26377 }
26378
26379 while (bytes >= noop_size)
26380 {
26381 memcpy (p, noop, noop_size);
26382 p += noop_size;
26383 bytes -= noop_size;
26384 fix += noop_size;
26385 }
26386
26387 fragP->fr_fix += fix;
26388 }
26389
26390 /* Called from md_do_align. Used to create an alignment
26391 frag in a code section. */
26392
26393 void
26394 arm_frag_align_code (int n, int max)
26395 {
26396 char * p;
26397
26398 /* We assume that there will never be a requirement
26399 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
26400 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
26401 {
26402 char err_msg[128];
26403
26404 sprintf (err_msg,
26405 _("alignments greater than %d bytes not supported in .text sections."),
26406 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
26407 as_fatal ("%s", err_msg);
26408 }
26409
26410 p = frag_var (rs_align_code,
26411 MAX_MEM_FOR_RS_ALIGN_CODE,
26412 1,
26413 (relax_substateT) max,
26414 (symbolS *) NULL,
26415 (offsetT) n,
26416 (char *) NULL);
26417 *p = 0;
26418 }
26419
26420 /* Perform target specific initialisation of a frag.
26421 Note - despite the name this initialisation is not done when the frag
26422 is created, but only when its type is assigned. A frag can be created
26423 and used a long time before its type is set, so beware of assuming that
26424 this initialisation is performed first. */
26425
26426 #ifndef OBJ_ELF
26427 void
26428 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
26429 {
26430 /* Record whether this frag is in an ARM or a THUMB area. */
26431 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
26432 }
26433
26434 #else /* OBJ_ELF is defined. */
26435 void
26436 arm_init_frag (fragS * fragP, int max_chars)
26437 {
26438 bfd_boolean frag_thumb_mode;
26439
26440 /* If the current ARM vs THUMB mode has not already
26441 been recorded into this frag then do so now. */
26442 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
26443 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
26444
26445 /* PR 21809: Do not set a mapping state for debug sections
26446 - it just confuses other tools. */
26447 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
26448 return;
26449
26450 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
26451
26452 /* Record a mapping symbol for alignment frags. We will delete this
26453 later if the alignment ends up empty. */
26454 switch (fragP->fr_type)
26455 {
26456 case rs_align:
26457 case rs_align_test:
26458 case rs_fill:
26459 mapping_state_2 (MAP_DATA, max_chars);
26460 break;
26461 case rs_align_code:
26462 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
26463 break;
26464 default:
26465 break;
26466 }
26467 }
26468
26469 /* When we change sections we need to issue a new mapping symbol. */
26470
26471 void
26472 arm_elf_change_section (void)
26473 {
26474 /* Link an unlinked unwind index table section to the .text section. */
26475 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
26476 && elf_linked_to_section (now_seg) == NULL)
26477 elf_linked_to_section (now_seg) = text_section;
26478 }
26479
26480 int
26481 arm_elf_section_type (const char * str, size_t len)
26482 {
26483 if (len == 5 && strncmp (str, "exidx", 5) == 0)
26484 return SHT_ARM_EXIDX;
26485
26486 return -1;
26487 }
26488 \f
26489 /* Code to deal with unwinding tables. */
26490
26491 static void add_unwind_adjustsp (offsetT);
26492
26493 /* Generate any deferred unwind frame offset. */
26494
26495 static void
26496 flush_pending_unwind (void)
26497 {
26498 offsetT offset;
26499
26500 offset = unwind.pending_offset;
26501 unwind.pending_offset = 0;
26502 if (offset != 0)
26503 add_unwind_adjustsp (offset);
26504 }
26505
26506 /* Add an opcode to this list for this function. Two-byte opcodes should
26507 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
26508 order. */
26509
26510 static void
26511 add_unwind_opcode (valueT op, int length)
26512 {
26513 /* Add any deferred stack adjustment. */
26514 if (unwind.pending_offset)
26515 flush_pending_unwind ();
26516
26517 unwind.sp_restored = 0;
26518
26519 if (unwind.opcode_count + length > unwind.opcode_alloc)
26520 {
26521 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
26522 if (unwind.opcodes)
26523 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
26524 unwind.opcode_alloc);
26525 else
26526 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
26527 }
26528 while (length > 0)
26529 {
26530 length--;
26531 unwind.opcodes[unwind.opcode_count] = op & 0xff;
26532 op >>= 8;
26533 unwind.opcode_count++;
26534 }
26535 }
26536
26537 /* Add unwind opcodes to adjust the stack pointer. */
26538
26539 static void
26540 add_unwind_adjustsp (offsetT offset)
26541 {
26542 valueT op;
26543
26544 if (offset > 0x200)
26545 {
26546 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
26547 char bytes[5];
26548 int n;
26549 valueT o;
26550
26551 /* Long form: 0xb2, uleb128. */
26552 /* This might not fit in a word so add the individual bytes,
26553 remembering the list is built in reverse order. */
26554 o = (valueT) ((offset - 0x204) >> 2);
26555 if (o == 0)
26556 add_unwind_opcode (0, 1);
26557
26558 /* Calculate the uleb128 encoding of the offset. */
26559 n = 0;
26560 while (o)
26561 {
26562 bytes[n] = o & 0x7f;
26563 o >>= 7;
26564 if (o)
26565 bytes[n] |= 0x80;
26566 n++;
26567 }
26568 /* Add the insn. */
26569 for (; n; n--)
26570 add_unwind_opcode (bytes[n - 1], 1);
26571 add_unwind_opcode (0xb2, 1);
26572 }
26573 else if (offset > 0x100)
26574 {
26575 /* Two short opcodes. */
26576 add_unwind_opcode (0x3f, 1);
26577 op = (offset - 0x104) >> 2;
26578 add_unwind_opcode (op, 1);
26579 }
26580 else if (offset > 0)
26581 {
26582 /* Short opcode. */
26583 op = (offset - 4) >> 2;
26584 add_unwind_opcode (op, 1);
26585 }
26586 else if (offset < 0)
26587 {
26588 offset = -offset;
26589 while (offset > 0x100)
26590 {
26591 add_unwind_opcode (0x7f, 1);
26592 offset -= 0x100;
26593 }
26594 op = ((offset - 4) >> 2) | 0x40;
26595 add_unwind_opcode (op, 1);
26596 }
26597 }
26598
26599 /* Finish the list of unwind opcodes for this function. */
26600
26601 static void
26602 finish_unwind_opcodes (void)
26603 {
26604 valueT op;
26605
26606 if (unwind.fp_used)
26607 {
26608 /* Adjust sp as necessary. */
26609 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
26610 flush_pending_unwind ();
26611
26612 /* After restoring sp from the frame pointer. */
26613 op = 0x90 | unwind.fp_reg;
26614 add_unwind_opcode (op, 1);
26615 }
26616 else
26617 flush_pending_unwind ();
26618 }
26619
26620
26621 /* Start an exception table entry. If idx is nonzero this is an index table
26622 entry. */
26623
26624 static void
26625 start_unwind_section (const segT text_seg, int idx)
26626 {
26627 const char * text_name;
26628 const char * prefix;
26629 const char * prefix_once;
26630 const char * group_name;
26631 char * sec_name;
26632 int type;
26633 int flags;
26634 int linkonce;
26635
26636 if (idx)
26637 {
26638 prefix = ELF_STRING_ARM_unwind;
26639 prefix_once = ELF_STRING_ARM_unwind_once;
26640 type = SHT_ARM_EXIDX;
26641 }
26642 else
26643 {
26644 prefix = ELF_STRING_ARM_unwind_info;
26645 prefix_once = ELF_STRING_ARM_unwind_info_once;
26646 type = SHT_PROGBITS;
26647 }
26648
26649 text_name = segment_name (text_seg);
26650 if (streq (text_name, ".text"))
26651 text_name = "";
26652
26653 if (strncmp (text_name, ".gnu.linkonce.t.",
26654 strlen (".gnu.linkonce.t.")) == 0)
26655 {
26656 prefix = prefix_once;
26657 text_name += strlen (".gnu.linkonce.t.");
26658 }
26659
26660 sec_name = concat (prefix, text_name, (char *) NULL);
26661
26662 flags = SHF_ALLOC;
26663 linkonce = 0;
26664 group_name = 0;
26665
26666 /* Handle COMDAT group. */
26667 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
26668 {
26669 group_name = elf_group_name (text_seg);
26670 if (group_name == NULL)
26671 {
26672 as_bad (_("Group section `%s' has no group signature"),
26673 segment_name (text_seg));
26674 ignore_rest_of_line ();
26675 return;
26676 }
26677 flags |= SHF_GROUP;
26678 linkonce = 1;
26679 }
26680
26681 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
26682 linkonce, 0);
26683
26684 /* Set the section link for index tables. */
26685 if (idx)
26686 elf_linked_to_section (now_seg) = text_seg;
26687 }
26688
26689
26690 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
26691 personality routine data. Returns zero, or the index table value for
26692 an inline entry. */
26693
26694 static valueT
26695 create_unwind_entry (int have_data)
26696 {
26697 int size;
26698 addressT where;
26699 char *ptr;
26700 /* The current word of data. */
26701 valueT data;
26702 /* The number of bytes left in this word. */
26703 int n;
26704
26705 finish_unwind_opcodes ();
26706
26707 /* Remember the current text section. */
26708 unwind.saved_seg = now_seg;
26709 unwind.saved_subseg = now_subseg;
26710
26711 start_unwind_section (now_seg, 0);
26712
26713 if (unwind.personality_routine == NULL)
26714 {
26715 if (unwind.personality_index == -2)
26716 {
26717 if (have_data)
26718 as_bad (_("handlerdata in cantunwind frame"));
26719 return 1; /* EXIDX_CANTUNWIND. */
26720 }
26721
26722 /* Use a default personality routine if none is specified. */
26723 if (unwind.personality_index == -1)
26724 {
26725 if (unwind.opcode_count > 3)
26726 unwind.personality_index = 1;
26727 else
26728 unwind.personality_index = 0;
26729 }
26730
26731 /* Space for the personality routine entry. */
26732 if (unwind.personality_index == 0)
26733 {
26734 if (unwind.opcode_count > 3)
26735 as_bad (_("too many unwind opcodes for personality routine 0"));
26736
26737 if (!have_data)
26738 {
26739 /* All the data is inline in the index table. */
26740 data = 0x80;
26741 n = 3;
26742 while (unwind.opcode_count > 0)
26743 {
26744 unwind.opcode_count--;
26745 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
26746 n--;
26747 }
26748
26749 /* Pad with "finish" opcodes. */
26750 while (n--)
26751 data = (data << 8) | 0xb0;
26752
26753 return data;
26754 }
26755 size = 0;
26756 }
26757 else
26758 /* We get two opcodes "free" in the first word. */
26759 size = unwind.opcode_count - 2;
26760 }
26761 else
26762 {
26763 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
26764 if (unwind.personality_index != -1)
26765 {
26766 as_bad (_("attempt to recreate an unwind entry"));
26767 return 1;
26768 }
26769
26770 /* An extra byte is required for the opcode count. */
26771 size = unwind.opcode_count + 1;
26772 }
26773
26774 size = (size + 3) >> 2;
26775 if (size > 0xff)
26776 as_bad (_("too many unwind opcodes"));
26777
26778 frag_align (2, 0, 0);
26779 record_alignment (now_seg, 2);
26780 unwind.table_entry = expr_build_dot ();
26781
26782 /* Allocate the table entry. */
26783 ptr = frag_more ((size << 2) + 4);
26784 /* PR 13449: Zero the table entries in case some of them are not used. */
26785 memset (ptr, 0, (size << 2) + 4);
26786 where = frag_now_fix () - ((size << 2) + 4);
26787
26788 switch (unwind.personality_index)
26789 {
26790 case -1:
26791 /* ??? Should this be a PLT generating relocation? */
26792 /* Custom personality routine. */
26793 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
26794 BFD_RELOC_ARM_PREL31);
26795
26796 where += 4;
26797 ptr += 4;
26798
26799 /* Set the first byte to the number of additional words. */
26800 data = size > 0 ? size - 1 : 0;
26801 n = 3;
26802 break;
26803
26804 /* ABI defined personality routines. */
26805 case 0:
26806 /* Three opcodes bytes are packed into the first word. */
26807 data = 0x80;
26808 n = 3;
26809 break;
26810
26811 case 1:
26812 case 2:
26813 /* The size and first two opcode bytes go in the first word. */
26814 data = ((0x80 + unwind.personality_index) << 8) | size;
26815 n = 2;
26816 break;
26817
26818 default:
26819 /* Should never happen. */
26820 abort ();
26821 }
26822
26823 /* Pack the opcodes into words (MSB first), reversing the list at the same
26824 time. */
26825 while (unwind.opcode_count > 0)
26826 {
26827 if (n == 0)
26828 {
26829 md_number_to_chars (ptr, data, 4);
26830 ptr += 4;
26831 n = 4;
26832 data = 0;
26833 }
26834 unwind.opcode_count--;
26835 n--;
26836 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
26837 }
26838
26839 /* Finish off the last word. */
26840 if (n < 4)
26841 {
26842 /* Pad with "finish" opcodes. */
26843 while (n--)
26844 data = (data << 8) | 0xb0;
26845
26846 md_number_to_chars (ptr, data, 4);
26847 }
26848
26849 if (!have_data)
26850 {
26851 /* Add an empty descriptor if there is no user-specified data. */
26852 ptr = frag_more (4);
26853 md_number_to_chars (ptr, 0, 4);
26854 }
26855
26856 return 0;
26857 }
26858
26859
26860 /* Initialize the DWARF-2 unwind information for this procedure. */
26861
26862 void
26863 tc_arm_frame_initial_instructions (void)
26864 {
26865 cfi_add_CFA_def_cfa (REG_SP, 0);
26866 }
26867 #endif /* OBJ_ELF */
26868
26869 /* Convert REGNAME to a DWARF-2 register number. */
26870
26871 int
26872 tc_arm_regname_to_dw2regnum (char *regname)
26873 {
26874 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
26875 if (reg != FAIL)
26876 return reg;
26877
26878 /* PR 16694: Allow VFP registers as well. */
26879 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
26880 if (reg != FAIL)
26881 return 64 + reg;
26882
26883 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
26884 if (reg != FAIL)
26885 return reg + 256;
26886
26887 return FAIL;
26888 }
26889
26890 #ifdef TE_PE
26891 void
26892 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
26893 {
26894 expressionS exp;
26895
26896 exp.X_op = O_secrel;
26897 exp.X_add_symbol = symbol;
26898 exp.X_add_number = 0;
26899 emit_expr (&exp, size);
26900 }
26901 #endif
26902
26903 /* MD interface: Symbol and relocation handling. */
26904
26905 /* Return the address within the segment that a PC-relative fixup is
26906 relative to. For ARM, PC-relative fixups applied to instructions
26907 are generally relative to the location of the fixup plus 8 bytes.
26908 Thumb branches are offset by 4, and Thumb loads relative to PC
26909 require special handling. */
26910
26911 long
26912 md_pcrel_from_section (fixS * fixP, segT seg)
26913 {
26914 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
26915
26916 /* If this is pc-relative and we are going to emit a relocation
26917 then we just want to put out any pipeline compensation that the linker
26918 will need. Otherwise we want to use the calculated base.
26919 For WinCE we skip the bias for externals as well, since this
26920 is how the MS ARM-CE assembler behaves and we want to be compatible. */
26921 if (fixP->fx_pcrel
26922 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
26923 || (arm_force_relocation (fixP)
26924 #ifdef TE_WINCE
26925 && !S_IS_EXTERNAL (fixP->fx_addsy)
26926 #endif
26927 )))
26928 base = 0;
26929
26930
26931 switch (fixP->fx_r_type)
26932 {
26933 /* PC relative addressing on the Thumb is slightly odd as the
26934 bottom two bits of the PC are forced to zero for the
26935 calculation. This happens *after* application of the
26936 pipeline offset. However, Thumb adrl already adjusts for
26937 this, so we need not do it again. */
26938 case BFD_RELOC_ARM_THUMB_ADD:
26939 return base & ~3;
26940
26941 case BFD_RELOC_ARM_THUMB_OFFSET:
26942 case BFD_RELOC_ARM_T32_OFFSET_IMM:
26943 case BFD_RELOC_ARM_T32_ADD_PC12:
26944 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
26945 return (base + 4) & ~3;
26946
26947 /* Thumb branches are simply offset by +4. */
26948 case BFD_RELOC_THUMB_PCREL_BRANCH5:
26949 case BFD_RELOC_THUMB_PCREL_BRANCH7:
26950 case BFD_RELOC_THUMB_PCREL_BRANCH9:
26951 case BFD_RELOC_THUMB_PCREL_BRANCH12:
26952 case BFD_RELOC_THUMB_PCREL_BRANCH20:
26953 case BFD_RELOC_THUMB_PCREL_BRANCH25:
26954 case BFD_RELOC_THUMB_PCREL_BFCSEL:
26955 case BFD_RELOC_ARM_THUMB_BF17:
26956 case BFD_RELOC_ARM_THUMB_BF19:
26957 case BFD_RELOC_ARM_THUMB_BF13:
26958 case BFD_RELOC_ARM_THUMB_LOOP12:
26959 return base + 4;
26960
26961 case BFD_RELOC_THUMB_PCREL_BRANCH23:
26962 if (fixP->fx_addsy
26963 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26964 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26965 && ARM_IS_FUNC (fixP->fx_addsy)
26966 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26967 base = fixP->fx_where + fixP->fx_frag->fr_address;
26968 return base + 4;
26969
26970 /* BLX is like branches above, but forces the low two bits of PC to
26971 zero. */
26972 case BFD_RELOC_THUMB_PCREL_BLX:
26973 if (fixP->fx_addsy
26974 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26975 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26976 && THUMB_IS_FUNC (fixP->fx_addsy)
26977 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26978 base = fixP->fx_where + fixP->fx_frag->fr_address;
26979 return (base + 4) & ~3;
26980
26981 /* ARM mode branches are offset by +8. However, the Windows CE
26982 loader expects the relocation not to take this into account. */
26983 case BFD_RELOC_ARM_PCREL_BLX:
26984 if (fixP->fx_addsy
26985 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26986 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26987 && ARM_IS_FUNC (fixP->fx_addsy)
26988 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26989 base = fixP->fx_where + fixP->fx_frag->fr_address;
26990 return base + 8;
26991
26992 case BFD_RELOC_ARM_PCREL_CALL:
26993 if (fixP->fx_addsy
26994 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26995 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26996 && THUMB_IS_FUNC (fixP->fx_addsy)
26997 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26998 base = fixP->fx_where + fixP->fx_frag->fr_address;
26999 return base + 8;
27000
27001 case BFD_RELOC_ARM_PCREL_BRANCH:
27002 case BFD_RELOC_ARM_PCREL_JUMP:
27003 case BFD_RELOC_ARM_PLT32:
27004 #ifdef TE_WINCE
27005 /* When handling fixups immediately, because we have already
27006 discovered the value of a symbol, or the address of the frag involved
27007 we must account for the offset by +8, as the OS loader will never see the reloc.
27008 see fixup_segment() in write.c
27009 The S_IS_EXTERNAL test handles the case of global symbols.
27010 Those need the calculated base, not just the pipe compensation the linker will need. */
27011 if (fixP->fx_pcrel
27012 && fixP->fx_addsy != NULL
27013 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27014 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
27015 return base + 8;
27016 return base;
27017 #else
27018 return base + 8;
27019 #endif
27020
27021
27022 /* ARM mode loads relative to PC are also offset by +8. Unlike
27023 branches, the Windows CE loader *does* expect the relocation
27024 to take this into account. */
27025 case BFD_RELOC_ARM_OFFSET_IMM:
27026 case BFD_RELOC_ARM_OFFSET_IMM8:
27027 case BFD_RELOC_ARM_HWLITERAL:
27028 case BFD_RELOC_ARM_LITERAL:
27029 case BFD_RELOC_ARM_CP_OFF_IMM:
27030 return base + 8;
27031
27032
27033 /* Other PC-relative relocations are un-offset. */
27034 default:
27035 return base;
27036 }
27037 }
27038
27039 static bfd_boolean flag_warn_syms = TRUE;
27040
27041 bfd_boolean
27042 arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
27043 {
27044 /* PR 18347 - Warn if the user attempts to create a symbol with the same
27045 name as an ARM instruction. Whilst strictly speaking it is allowed, it
27046 does mean that the resulting code might be very confusing to the reader.
27047 Also this warning can be triggered if the user omits an operand before
27048 an immediate address, eg:
27049
27050 LDR =foo
27051
27052 GAS treats this as an assignment of the value of the symbol foo to a
27053 symbol LDR, and so (without this code) it will not issue any kind of
27054 warning or error message.
27055
27056 Note - ARM instructions are case-insensitive but the strings in the hash
27057 table are all stored in lower case, so we must first ensure that name is
27058 lower case too. */
27059 if (flag_warn_syms && arm_ops_hsh)
27060 {
27061 char * nbuf = strdup (name);
27062 char * p;
27063
27064 for (p = nbuf; *p; p++)
27065 *p = TOLOWER (*p);
27066 if (hash_find (arm_ops_hsh, nbuf) != NULL)
27067 {
27068 static struct hash_control * already_warned = NULL;
27069
27070 if (already_warned == NULL)
27071 already_warned = hash_new ();
27072 /* Only warn about the symbol once. To keep the code
27073 simple we let hash_insert do the lookup for us. */
27074 if (hash_insert (already_warned, nbuf, NULL) == NULL)
27075 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
27076 }
27077 else
27078 free (nbuf);
27079 }
27080
27081 return FALSE;
27082 }
27083
27084 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
27085 Otherwise we have no need to default values of symbols. */
27086
27087 symbolS *
27088 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
27089 {
27090 #ifdef OBJ_ELF
27091 if (name[0] == '_' && name[1] == 'G'
27092 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
27093 {
27094 if (!GOT_symbol)
27095 {
27096 if (symbol_find (name))
27097 as_bad (_("GOT already in the symbol table"));
27098
27099 GOT_symbol = symbol_new (name, undefined_section,
27100 (valueT) 0, & zero_address_frag);
27101 }
27102
27103 return GOT_symbol;
27104 }
27105 #endif
27106
27107 return NULL;
27108 }
27109
27110 /* Subroutine of md_apply_fix. Check to see if an immediate can be
27111 computed as two separate immediate values, added together. We
27112 already know that this value cannot be computed by just one ARM
27113 instruction. */
27114
27115 static unsigned int
27116 validate_immediate_twopart (unsigned int val,
27117 unsigned int * highpart)
27118 {
27119 unsigned int a;
27120 unsigned int i;
27121
27122 for (i = 0; i < 32; i += 2)
27123 if (((a = rotate_left (val, i)) & 0xff) != 0)
27124 {
27125 if (a & 0xff00)
27126 {
27127 if (a & ~ 0xffff)
27128 continue;
27129 * highpart = (a >> 8) | ((i + 24) << 7);
27130 }
27131 else if (a & 0xff0000)
27132 {
27133 if (a & 0xff000000)
27134 continue;
27135 * highpart = (a >> 16) | ((i + 16) << 7);
27136 }
27137 else
27138 {
27139 gas_assert (a & 0xff000000);
27140 * highpart = (a >> 24) | ((i + 8) << 7);
27141 }
27142
27143 return (a & 0xff) | (i << 7);
27144 }
27145
27146 return FAIL;
27147 }
27148
27149 static int
27150 validate_offset_imm (unsigned int val, int hwse)
27151 {
27152 if ((hwse && val > 255) || val > 4095)
27153 return FAIL;
27154 return val;
27155 }
27156
27157 /* Subroutine of md_apply_fix. Do those data_ops which can take a
27158 negative immediate constant by altering the instruction. A bit of
27159 a hack really.
27160 MOV <-> MVN
27161 AND <-> BIC
27162 ADC <-> SBC
27163 by inverting the second operand, and
27164 ADD <-> SUB
27165 CMP <-> CMN
27166 by negating the second operand. */
27167
27168 static int
27169 negate_data_op (unsigned long * instruction,
27170 unsigned long value)
27171 {
27172 int op, new_inst;
27173 unsigned long negated, inverted;
27174
27175 negated = encode_arm_immediate (-value);
27176 inverted = encode_arm_immediate (~value);
27177
27178 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
27179 switch (op)
27180 {
27181 /* First negates. */
27182 case OPCODE_SUB: /* ADD <-> SUB */
27183 new_inst = OPCODE_ADD;
27184 value = negated;
27185 break;
27186
27187 case OPCODE_ADD:
27188 new_inst = OPCODE_SUB;
27189 value = negated;
27190 break;
27191
27192 case OPCODE_CMP: /* CMP <-> CMN */
27193 new_inst = OPCODE_CMN;
27194 value = negated;
27195 break;
27196
27197 case OPCODE_CMN:
27198 new_inst = OPCODE_CMP;
27199 value = negated;
27200 break;
27201
27202 /* Now Inverted ops. */
27203 case OPCODE_MOV: /* MOV <-> MVN */
27204 new_inst = OPCODE_MVN;
27205 value = inverted;
27206 break;
27207
27208 case OPCODE_MVN:
27209 new_inst = OPCODE_MOV;
27210 value = inverted;
27211 break;
27212
27213 case OPCODE_AND: /* AND <-> BIC */
27214 new_inst = OPCODE_BIC;
27215 value = inverted;
27216 break;
27217
27218 case OPCODE_BIC:
27219 new_inst = OPCODE_AND;
27220 value = inverted;
27221 break;
27222
27223 case OPCODE_ADC: /* ADC <-> SBC */
27224 new_inst = OPCODE_SBC;
27225 value = inverted;
27226 break;
27227
27228 case OPCODE_SBC:
27229 new_inst = OPCODE_ADC;
27230 value = inverted;
27231 break;
27232
27233 /* We cannot do anything. */
27234 default:
27235 return FAIL;
27236 }
27237
27238 if (value == (unsigned) FAIL)
27239 return FAIL;
27240
27241 *instruction &= OPCODE_MASK;
27242 *instruction |= new_inst << DATA_OP_SHIFT;
27243 return value;
27244 }
27245
27246 /* Like negate_data_op, but for Thumb-2. */
27247
27248 static unsigned int
27249 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
27250 {
27251 int op, new_inst;
27252 int rd;
27253 unsigned int negated, inverted;
27254
27255 negated = encode_thumb32_immediate (-value);
27256 inverted = encode_thumb32_immediate (~value);
27257
27258 rd = (*instruction >> 8) & 0xf;
27259 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
27260 switch (op)
27261 {
27262 /* ADD <-> SUB. Includes CMP <-> CMN. */
27263 case T2_OPCODE_SUB:
27264 new_inst = T2_OPCODE_ADD;
27265 value = negated;
27266 break;
27267
27268 case T2_OPCODE_ADD:
27269 new_inst = T2_OPCODE_SUB;
27270 value = negated;
27271 break;
27272
27273 /* ORR <-> ORN. Includes MOV <-> MVN. */
27274 case T2_OPCODE_ORR:
27275 new_inst = T2_OPCODE_ORN;
27276 value = inverted;
27277 break;
27278
27279 case T2_OPCODE_ORN:
27280 new_inst = T2_OPCODE_ORR;
27281 value = inverted;
27282 break;
27283
27284 /* AND <-> BIC. TST has no inverted equivalent. */
27285 case T2_OPCODE_AND:
27286 new_inst = T2_OPCODE_BIC;
27287 if (rd == 15)
27288 value = FAIL;
27289 else
27290 value = inverted;
27291 break;
27292
27293 case T2_OPCODE_BIC:
27294 new_inst = T2_OPCODE_AND;
27295 value = inverted;
27296 break;
27297
27298 /* ADC <-> SBC */
27299 case T2_OPCODE_ADC:
27300 new_inst = T2_OPCODE_SBC;
27301 value = inverted;
27302 break;
27303
27304 case T2_OPCODE_SBC:
27305 new_inst = T2_OPCODE_ADC;
27306 value = inverted;
27307 break;
27308
27309 /* We cannot do anything. */
27310 default:
27311 return FAIL;
27312 }
27313
27314 if (value == (unsigned int)FAIL)
27315 return FAIL;
27316
27317 *instruction &= T2_OPCODE_MASK;
27318 *instruction |= new_inst << T2_DATA_OP_SHIFT;
27319 return value;
27320 }
27321
27322 /* Read a 32-bit thumb instruction from buf. */
27323
27324 static unsigned long
27325 get_thumb32_insn (char * buf)
27326 {
27327 unsigned long insn;
27328 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
27329 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27330
27331 return insn;
27332 }
27333
27334 /* We usually want to set the low bit on the address of thumb function
27335 symbols. In particular .word foo - . should have the low bit set.
27336 Generic code tries to fold the difference of two symbols to
27337 a constant. Prevent this and force a relocation when the first symbols
27338 is a thumb function. */
27339
27340 bfd_boolean
27341 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
27342 {
27343 if (op == O_subtract
27344 && l->X_op == O_symbol
27345 && r->X_op == O_symbol
27346 && THUMB_IS_FUNC (l->X_add_symbol))
27347 {
27348 l->X_op = O_subtract;
27349 l->X_op_symbol = r->X_add_symbol;
27350 l->X_add_number -= r->X_add_number;
27351 return TRUE;
27352 }
27353
27354 /* Process as normal. */
27355 return FALSE;
27356 }
27357
27358 /* Encode Thumb2 unconditional branches and calls. The encoding
27359 for the 2 are identical for the immediate values. */
27360
27361 static void
27362 encode_thumb2_b_bl_offset (char * buf, offsetT value)
27363 {
27364 #define T2I1I2MASK ((1 << 13) | (1 << 11))
27365 offsetT newval;
27366 offsetT newval2;
27367 addressT S, I1, I2, lo, hi;
27368
27369 S = (value >> 24) & 0x01;
27370 I1 = (value >> 23) & 0x01;
27371 I2 = (value >> 22) & 0x01;
27372 hi = (value >> 12) & 0x3ff;
27373 lo = (value >> 1) & 0x7ff;
27374 newval = md_chars_to_number (buf, THUMB_SIZE);
27375 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27376 newval |= (S << 10) | hi;
27377 newval2 &= ~T2I1I2MASK;
27378 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
27379 md_number_to_chars (buf, newval, THUMB_SIZE);
27380 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27381 }
27382
27383 void
27384 md_apply_fix (fixS * fixP,
27385 valueT * valP,
27386 segT seg)
27387 {
27388 offsetT value = * valP;
27389 offsetT newval;
27390 unsigned int newimm;
27391 unsigned long temp;
27392 int sign;
27393 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
27394
27395 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
27396
27397 /* Note whether this will delete the relocation. */
27398
27399 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
27400 fixP->fx_done = 1;
27401
27402 /* On a 64-bit host, silently truncate 'value' to 32 bits for
27403 consistency with the behaviour on 32-bit hosts. Remember value
27404 for emit_reloc. */
27405 value &= 0xffffffff;
27406 value ^= 0x80000000;
27407 value -= 0x80000000;
27408
27409 *valP = value;
27410 fixP->fx_addnumber = value;
27411
27412 /* Same treatment for fixP->fx_offset. */
27413 fixP->fx_offset &= 0xffffffff;
27414 fixP->fx_offset ^= 0x80000000;
27415 fixP->fx_offset -= 0x80000000;
27416
27417 switch (fixP->fx_r_type)
27418 {
27419 case BFD_RELOC_NONE:
27420 /* This will need to go in the object file. */
27421 fixP->fx_done = 0;
27422 break;
27423
27424 case BFD_RELOC_ARM_IMMEDIATE:
27425 /* We claim that this fixup has been processed here,
27426 even if in fact we generate an error because we do
27427 not have a reloc for it, so tc_gen_reloc will reject it. */
27428 fixP->fx_done = 1;
27429
27430 if (fixP->fx_addsy)
27431 {
27432 const char *msg = 0;
27433
27434 if (! S_IS_DEFINED (fixP->fx_addsy))
27435 msg = _("undefined symbol %s used as an immediate value");
27436 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
27437 msg = _("symbol %s is in a different section");
27438 else if (S_IS_WEAK (fixP->fx_addsy))
27439 msg = _("symbol %s is weak and may be overridden later");
27440
27441 if (msg)
27442 {
27443 as_bad_where (fixP->fx_file, fixP->fx_line,
27444 msg, S_GET_NAME (fixP->fx_addsy));
27445 break;
27446 }
27447 }
27448
27449 temp = md_chars_to_number (buf, INSN_SIZE);
27450
27451 /* If the offset is negative, we should use encoding A2 for ADR. */
27452 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
27453 newimm = negate_data_op (&temp, value);
27454 else
27455 {
27456 newimm = encode_arm_immediate (value);
27457
27458 /* If the instruction will fail, see if we can fix things up by
27459 changing the opcode. */
27460 if (newimm == (unsigned int) FAIL)
27461 newimm = negate_data_op (&temp, value);
27462 /* MOV accepts both ARM modified immediate (A1 encoding) and
27463 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
27464 When disassembling, MOV is preferred when there is no encoding
27465 overlap. */
27466 if (newimm == (unsigned int) FAIL
27467 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
27468 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
27469 && !((temp >> SBIT_SHIFT) & 0x1)
27470 && value >= 0 && value <= 0xffff)
27471 {
27472 /* Clear bits[23:20] to change encoding from A1 to A2. */
27473 temp &= 0xff0fffff;
27474 /* Encoding high 4bits imm. Code below will encode the remaining
27475 low 12bits. */
27476 temp |= (value & 0x0000f000) << 4;
27477 newimm = value & 0x00000fff;
27478 }
27479 }
27480
27481 if (newimm == (unsigned int) FAIL)
27482 {
27483 as_bad_where (fixP->fx_file, fixP->fx_line,
27484 _("invalid constant (%lx) after fixup"),
27485 (unsigned long) value);
27486 break;
27487 }
27488
27489 newimm |= (temp & 0xfffff000);
27490 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
27491 break;
27492
27493 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
27494 {
27495 unsigned int highpart = 0;
27496 unsigned int newinsn = 0xe1a00000; /* nop. */
27497
27498 if (fixP->fx_addsy)
27499 {
27500 const char *msg = 0;
27501
27502 if (! S_IS_DEFINED (fixP->fx_addsy))
27503 msg = _("undefined symbol %s used as an immediate value");
27504 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
27505 msg = _("symbol %s is in a different section");
27506 else if (S_IS_WEAK (fixP->fx_addsy))
27507 msg = _("symbol %s is weak and may be overridden later");
27508
27509 if (msg)
27510 {
27511 as_bad_where (fixP->fx_file, fixP->fx_line,
27512 msg, S_GET_NAME (fixP->fx_addsy));
27513 break;
27514 }
27515 }
27516
27517 newimm = encode_arm_immediate (value);
27518 temp = md_chars_to_number (buf, INSN_SIZE);
27519
27520 /* If the instruction will fail, see if we can fix things up by
27521 changing the opcode. */
27522 if (newimm == (unsigned int) FAIL
27523 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
27524 {
27525 /* No ? OK - try using two ADD instructions to generate
27526 the value. */
27527 newimm = validate_immediate_twopart (value, & highpart);
27528
27529 /* Yes - then make sure that the second instruction is
27530 also an add. */
27531 if (newimm != (unsigned int) FAIL)
27532 newinsn = temp;
27533 /* Still No ? Try using a negated value. */
27534 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
27535 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
27536 /* Otherwise - give up. */
27537 else
27538 {
27539 as_bad_where (fixP->fx_file, fixP->fx_line,
27540 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
27541 (long) value);
27542 break;
27543 }
27544
27545 /* Replace the first operand in the 2nd instruction (which
27546 is the PC) with the destination register. We have
27547 already added in the PC in the first instruction and we
27548 do not want to do it again. */
27549 newinsn &= ~ 0xf0000;
27550 newinsn |= ((newinsn & 0x0f000) << 4);
27551 }
27552
27553 newimm |= (temp & 0xfffff000);
27554 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
27555
27556 highpart |= (newinsn & 0xfffff000);
27557 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
27558 }
27559 break;
27560
27561 case BFD_RELOC_ARM_OFFSET_IMM:
27562 if (!fixP->fx_done && seg->use_rela_p)
27563 value = 0;
27564 /* Fall through. */
27565
27566 case BFD_RELOC_ARM_LITERAL:
27567 sign = value > 0;
27568
27569 if (value < 0)
27570 value = - value;
27571
27572 if (validate_offset_imm (value, 0) == FAIL)
27573 {
27574 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
27575 as_bad_where (fixP->fx_file, fixP->fx_line,
27576 _("invalid literal constant: pool needs to be closer"));
27577 else
27578 as_bad_where (fixP->fx_file, fixP->fx_line,
27579 _("bad immediate value for offset (%ld)"),
27580 (long) value);
27581 break;
27582 }
27583
27584 newval = md_chars_to_number (buf, INSN_SIZE);
27585 if (value == 0)
27586 newval &= 0xfffff000;
27587 else
27588 {
27589 newval &= 0xff7ff000;
27590 newval |= value | (sign ? INDEX_UP : 0);
27591 }
27592 md_number_to_chars (buf, newval, INSN_SIZE);
27593 break;
27594
27595 case BFD_RELOC_ARM_OFFSET_IMM8:
27596 case BFD_RELOC_ARM_HWLITERAL:
27597 sign = value > 0;
27598
27599 if (value < 0)
27600 value = - value;
27601
27602 if (validate_offset_imm (value, 1) == FAIL)
27603 {
27604 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
27605 as_bad_where (fixP->fx_file, fixP->fx_line,
27606 _("invalid literal constant: pool needs to be closer"));
27607 else
27608 as_bad_where (fixP->fx_file, fixP->fx_line,
27609 _("bad immediate value for 8-bit offset (%ld)"),
27610 (long) value);
27611 break;
27612 }
27613
27614 newval = md_chars_to_number (buf, INSN_SIZE);
27615 if (value == 0)
27616 newval &= 0xfffff0f0;
27617 else
27618 {
27619 newval &= 0xff7ff0f0;
27620 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
27621 }
27622 md_number_to_chars (buf, newval, INSN_SIZE);
27623 break;
27624
27625 case BFD_RELOC_ARM_T32_OFFSET_U8:
27626 if (value < 0 || value > 1020 || value % 4 != 0)
27627 as_bad_where (fixP->fx_file, fixP->fx_line,
27628 _("bad immediate value for offset (%ld)"), (long) value);
27629 value /= 4;
27630
27631 newval = md_chars_to_number (buf+2, THUMB_SIZE);
27632 newval |= value;
27633 md_number_to_chars (buf+2, newval, THUMB_SIZE);
27634 break;
27635
27636 case BFD_RELOC_ARM_T32_OFFSET_IMM:
27637 /* This is a complicated relocation used for all varieties of Thumb32
27638 load/store instruction with immediate offset:
27639
27640 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
27641 *4, optional writeback(W)
27642 (doubleword load/store)
27643
27644 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
27645 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
27646 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
27647 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
27648 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
27649
27650 Uppercase letters indicate bits that are already encoded at
27651 this point. Lowercase letters are our problem. For the
27652 second block of instructions, the secondary opcode nybble
27653 (bits 8..11) is present, and bit 23 is zero, even if this is
27654 a PC-relative operation. */
27655 newval = md_chars_to_number (buf, THUMB_SIZE);
27656 newval <<= 16;
27657 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
27658
27659 if ((newval & 0xf0000000) == 0xe0000000)
27660 {
27661 /* Doubleword load/store: 8-bit offset, scaled by 4. */
27662 if (value >= 0)
27663 newval |= (1 << 23);
27664 else
27665 value = -value;
27666 if (value % 4 != 0)
27667 {
27668 as_bad_where (fixP->fx_file, fixP->fx_line,
27669 _("offset not a multiple of 4"));
27670 break;
27671 }
27672 value /= 4;
27673 if (value > 0xff)
27674 {
27675 as_bad_where (fixP->fx_file, fixP->fx_line,
27676 _("offset out of range"));
27677 break;
27678 }
27679 newval &= ~0xff;
27680 }
27681 else if ((newval & 0x000f0000) == 0x000f0000)
27682 {
27683 /* PC-relative, 12-bit offset. */
27684 if (value >= 0)
27685 newval |= (1 << 23);
27686 else
27687 value = -value;
27688 if (value > 0xfff)
27689 {
27690 as_bad_where (fixP->fx_file, fixP->fx_line,
27691 _("offset out of range"));
27692 break;
27693 }
27694 newval &= ~0xfff;
27695 }
27696 else if ((newval & 0x00000100) == 0x00000100)
27697 {
27698 /* Writeback: 8-bit, +/- offset. */
27699 if (value >= 0)
27700 newval |= (1 << 9);
27701 else
27702 value = -value;
27703 if (value > 0xff)
27704 {
27705 as_bad_where (fixP->fx_file, fixP->fx_line,
27706 _("offset out of range"));
27707 break;
27708 }
27709 newval &= ~0xff;
27710 }
27711 else if ((newval & 0x00000f00) == 0x00000e00)
27712 {
27713 /* T-instruction: positive 8-bit offset. */
27714 if (value < 0 || value > 0xff)
27715 {
27716 as_bad_where (fixP->fx_file, fixP->fx_line,
27717 _("offset out of range"));
27718 break;
27719 }
27720 newval &= ~0xff;
27721 newval |= value;
27722 }
27723 else
27724 {
27725 /* Positive 12-bit or negative 8-bit offset. */
27726 int limit;
27727 if (value >= 0)
27728 {
27729 newval |= (1 << 23);
27730 limit = 0xfff;
27731 }
27732 else
27733 {
27734 value = -value;
27735 limit = 0xff;
27736 }
27737 if (value > limit)
27738 {
27739 as_bad_where (fixP->fx_file, fixP->fx_line,
27740 _("offset out of range"));
27741 break;
27742 }
27743 newval &= ~limit;
27744 }
27745
27746 newval |= value;
27747 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
27748 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
27749 break;
27750
27751 case BFD_RELOC_ARM_SHIFT_IMM:
27752 newval = md_chars_to_number (buf, INSN_SIZE);
27753 if (((unsigned long) value) > 32
27754 || (value == 32
27755 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
27756 {
27757 as_bad_where (fixP->fx_file, fixP->fx_line,
27758 _("shift expression is too large"));
27759 break;
27760 }
27761
27762 if (value == 0)
27763 /* Shifts of zero must be done as lsl. */
27764 newval &= ~0x60;
27765 else if (value == 32)
27766 value = 0;
27767 newval &= 0xfffff07f;
27768 newval |= (value & 0x1f) << 7;
27769 md_number_to_chars (buf, newval, INSN_SIZE);
27770 break;
27771
27772 case BFD_RELOC_ARM_T32_IMMEDIATE:
27773 case BFD_RELOC_ARM_T32_ADD_IMM:
27774 case BFD_RELOC_ARM_T32_IMM12:
27775 case BFD_RELOC_ARM_T32_ADD_PC12:
27776 /* We claim that this fixup has been processed here,
27777 even if in fact we generate an error because we do
27778 not have a reloc for it, so tc_gen_reloc will reject it. */
27779 fixP->fx_done = 1;
27780
27781 if (fixP->fx_addsy
27782 && ! S_IS_DEFINED (fixP->fx_addsy))
27783 {
27784 as_bad_where (fixP->fx_file, fixP->fx_line,
27785 _("undefined symbol %s used as an immediate value"),
27786 S_GET_NAME (fixP->fx_addsy));
27787 break;
27788 }
27789
27790 newval = md_chars_to_number (buf, THUMB_SIZE);
27791 newval <<= 16;
27792 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
27793
27794 newimm = FAIL;
27795 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
27796 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
27797 Thumb2 modified immediate encoding (T2). */
27798 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
27799 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
27800 {
27801 newimm = encode_thumb32_immediate (value);
27802 if (newimm == (unsigned int) FAIL)
27803 newimm = thumb32_negate_data_op (&newval, value);
27804 }
27805 if (newimm == (unsigned int) FAIL)
27806 {
27807 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
27808 {
27809 /* Turn add/sum into addw/subw. */
27810 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
27811 newval = (newval & 0xfeffffff) | 0x02000000;
27812 /* No flat 12-bit imm encoding for addsw/subsw. */
27813 if ((newval & 0x00100000) == 0)
27814 {
27815 /* 12 bit immediate for addw/subw. */
27816 if (value < 0)
27817 {
27818 value = -value;
27819 newval ^= 0x00a00000;
27820 }
27821 if (value > 0xfff)
27822 newimm = (unsigned int) FAIL;
27823 else
27824 newimm = value;
27825 }
27826 }
27827 else
27828 {
27829 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
27830 UINT16 (T3 encoding), MOVW only accepts UINT16. When
27831 disassembling, MOV is preferred when there is no encoding
27832 overlap. */
27833 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
27834 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
27835 but with the Rn field [19:16] set to 1111. */
27836 && (((newval >> 16) & 0xf) == 0xf)
27837 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
27838 && !((newval >> T2_SBIT_SHIFT) & 0x1)
27839 && value >= 0 && value <= 0xffff)
27840 {
27841 /* Toggle bit[25] to change encoding from T2 to T3. */
27842 newval ^= 1 << 25;
27843 /* Clear bits[19:16]. */
27844 newval &= 0xfff0ffff;
27845 /* Encoding high 4bits imm. Code below will encode the
27846 remaining low 12bits. */
27847 newval |= (value & 0x0000f000) << 4;
27848 newimm = value & 0x00000fff;
27849 }
27850 }
27851 }
27852
27853 if (newimm == (unsigned int)FAIL)
27854 {
27855 as_bad_where (fixP->fx_file, fixP->fx_line,
27856 _("invalid constant (%lx) after fixup"),
27857 (unsigned long) value);
27858 break;
27859 }
27860
27861 newval |= (newimm & 0x800) << 15;
27862 newval |= (newimm & 0x700) << 4;
27863 newval |= (newimm & 0x0ff);
27864
27865 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
27866 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
27867 break;
27868
27869 case BFD_RELOC_ARM_SMC:
27870 if (((unsigned long) value) > 0xf)
27871 as_bad_where (fixP->fx_file, fixP->fx_line,
27872 _("invalid smc expression"));
27873
27874 newval = md_chars_to_number (buf, INSN_SIZE);
27875 newval |= (value & 0xf);
27876 md_number_to_chars (buf, newval, INSN_SIZE);
27877 break;
27878
27879 case BFD_RELOC_ARM_HVC:
27880 if (((unsigned long) value) > 0xffff)
27881 as_bad_where (fixP->fx_file, fixP->fx_line,
27882 _("invalid hvc expression"));
27883 newval = md_chars_to_number (buf, INSN_SIZE);
27884 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
27885 md_number_to_chars (buf, newval, INSN_SIZE);
27886 break;
27887
27888 case BFD_RELOC_ARM_SWI:
27889 if (fixP->tc_fix_data != 0)
27890 {
27891 if (((unsigned long) value) > 0xff)
27892 as_bad_where (fixP->fx_file, fixP->fx_line,
27893 _("invalid swi expression"));
27894 newval = md_chars_to_number (buf, THUMB_SIZE);
27895 newval |= value;
27896 md_number_to_chars (buf, newval, THUMB_SIZE);
27897 }
27898 else
27899 {
27900 if (((unsigned long) value) > 0x00ffffff)
27901 as_bad_where (fixP->fx_file, fixP->fx_line,
27902 _("invalid swi expression"));
27903 newval = md_chars_to_number (buf, INSN_SIZE);
27904 newval |= value;
27905 md_number_to_chars (buf, newval, INSN_SIZE);
27906 }
27907 break;
27908
27909 case BFD_RELOC_ARM_MULTI:
27910 if (((unsigned long) value) > 0xffff)
27911 as_bad_where (fixP->fx_file, fixP->fx_line,
27912 _("invalid expression in load/store multiple"));
27913 newval = value | md_chars_to_number (buf, INSN_SIZE);
27914 md_number_to_chars (buf, newval, INSN_SIZE);
27915 break;
27916
27917 #ifdef OBJ_ELF
27918 case BFD_RELOC_ARM_PCREL_CALL:
27919
27920 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27921 && fixP->fx_addsy
27922 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27923 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27924 && THUMB_IS_FUNC (fixP->fx_addsy))
27925 /* Flip the bl to blx. This is a simple flip
27926 bit here because we generate PCREL_CALL for
27927 unconditional bls. */
27928 {
27929 newval = md_chars_to_number (buf, INSN_SIZE);
27930 newval = newval | 0x10000000;
27931 md_number_to_chars (buf, newval, INSN_SIZE);
27932 temp = 1;
27933 fixP->fx_done = 1;
27934 }
27935 else
27936 temp = 3;
27937 goto arm_branch_common;
27938
27939 case BFD_RELOC_ARM_PCREL_JUMP:
27940 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27941 && fixP->fx_addsy
27942 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27943 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27944 && THUMB_IS_FUNC (fixP->fx_addsy))
27945 {
27946 /* This would map to a bl<cond>, b<cond>,
27947 b<always> to a Thumb function. We
27948 need to force a relocation for this particular
27949 case. */
27950 newval = md_chars_to_number (buf, INSN_SIZE);
27951 fixP->fx_done = 0;
27952 }
27953 /* Fall through. */
27954
27955 case BFD_RELOC_ARM_PLT32:
27956 #endif
27957 case BFD_RELOC_ARM_PCREL_BRANCH:
27958 temp = 3;
27959 goto arm_branch_common;
27960
27961 case BFD_RELOC_ARM_PCREL_BLX:
27962
27963 temp = 1;
27964 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27965 && fixP->fx_addsy
27966 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27967 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27968 && ARM_IS_FUNC (fixP->fx_addsy))
27969 {
27970 /* Flip the blx to a bl and warn. */
27971 const char *name = S_GET_NAME (fixP->fx_addsy);
27972 newval = 0xeb000000;
27973 as_warn_where (fixP->fx_file, fixP->fx_line,
27974 _("blx to '%s' an ARM ISA state function changed to bl"),
27975 name);
27976 md_number_to_chars (buf, newval, INSN_SIZE);
27977 temp = 3;
27978 fixP->fx_done = 1;
27979 }
27980
27981 #ifdef OBJ_ELF
27982 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
27983 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
27984 #endif
27985
27986 arm_branch_common:
27987 /* We are going to store value (shifted right by two) in the
27988 instruction, in a 24 bit, signed field. Bits 26 through 32 either
27989 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
27990 also be clear. */
27991 if (value & temp)
27992 as_bad_where (fixP->fx_file, fixP->fx_line,
27993 _("misaligned branch destination"));
27994 if ((value & (offsetT)0xfe000000) != (offsetT)0
27995 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
27996 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27997
27998 if (fixP->fx_done || !seg->use_rela_p)
27999 {
28000 newval = md_chars_to_number (buf, INSN_SIZE);
28001 newval |= (value >> 2) & 0x00ffffff;
28002 /* Set the H bit on BLX instructions. */
28003 if (temp == 1)
28004 {
28005 if (value & 2)
28006 newval |= 0x01000000;
28007 else
28008 newval &= ~0x01000000;
28009 }
28010 md_number_to_chars (buf, newval, INSN_SIZE);
28011 }
28012 break;
28013
28014 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
28015 /* CBZ can only branch forward. */
28016
28017 /* Attempts to use CBZ to branch to the next instruction
28018 (which, strictly speaking, are prohibited) will be turned into
28019 no-ops.
28020
28021 FIXME: It may be better to remove the instruction completely and
28022 perform relaxation. */
28023 if (value == -2)
28024 {
28025 newval = md_chars_to_number (buf, THUMB_SIZE);
28026 newval = 0xbf00; /* NOP encoding T1 */
28027 md_number_to_chars (buf, newval, THUMB_SIZE);
28028 }
28029 else
28030 {
28031 if (value & ~0x7e)
28032 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
28033
28034 if (fixP->fx_done || !seg->use_rela_p)
28035 {
28036 newval = md_chars_to_number (buf, THUMB_SIZE);
28037 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
28038 md_number_to_chars (buf, newval, THUMB_SIZE);
28039 }
28040 }
28041 break;
28042
28043 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
28044 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
28045 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
28046
28047 if (fixP->fx_done || !seg->use_rela_p)
28048 {
28049 newval = md_chars_to_number (buf, THUMB_SIZE);
28050 newval |= (value & 0x1ff) >> 1;
28051 md_number_to_chars (buf, newval, THUMB_SIZE);
28052 }
28053 break;
28054
28055 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
28056 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
28057 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
28058
28059 if (fixP->fx_done || !seg->use_rela_p)
28060 {
28061 newval = md_chars_to_number (buf, THUMB_SIZE);
28062 newval |= (value & 0xfff) >> 1;
28063 md_number_to_chars (buf, newval, THUMB_SIZE);
28064 }
28065 break;
28066
28067 case BFD_RELOC_THUMB_PCREL_BRANCH20:
28068 if (fixP->fx_addsy
28069 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28070 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28071 && ARM_IS_FUNC (fixP->fx_addsy)
28072 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
28073 {
28074 /* Force a relocation for a branch 20 bits wide. */
28075 fixP->fx_done = 0;
28076 }
28077 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
28078 as_bad_where (fixP->fx_file, fixP->fx_line,
28079 _("conditional branch out of range"));
28080
28081 if (fixP->fx_done || !seg->use_rela_p)
28082 {
28083 offsetT newval2;
28084 addressT S, J1, J2, lo, hi;
28085
28086 S = (value & 0x00100000) >> 20;
28087 J2 = (value & 0x00080000) >> 19;
28088 J1 = (value & 0x00040000) >> 18;
28089 hi = (value & 0x0003f000) >> 12;
28090 lo = (value & 0x00000ffe) >> 1;
28091
28092 newval = md_chars_to_number (buf, THUMB_SIZE);
28093 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28094 newval |= (S << 10) | hi;
28095 newval2 |= (J1 << 13) | (J2 << 11) | lo;
28096 md_number_to_chars (buf, newval, THUMB_SIZE);
28097 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28098 }
28099 break;
28100
28101 case BFD_RELOC_THUMB_PCREL_BLX:
28102 /* If there is a blx from a thumb state function to
28103 another thumb function flip this to a bl and warn
28104 about it. */
28105
28106 if (fixP->fx_addsy
28107 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28108 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28109 && THUMB_IS_FUNC (fixP->fx_addsy))
28110 {
28111 const char *name = S_GET_NAME (fixP->fx_addsy);
28112 as_warn_where (fixP->fx_file, fixP->fx_line,
28113 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
28114 name);
28115 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28116 newval = newval | 0x1000;
28117 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
28118 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
28119 fixP->fx_done = 1;
28120 }
28121
28122
28123 goto thumb_bl_common;
28124
28125 case BFD_RELOC_THUMB_PCREL_BRANCH23:
28126 /* A bl from Thumb state ISA to an internal ARM state function
28127 is converted to a blx. */
28128 if (fixP->fx_addsy
28129 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28130 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28131 && ARM_IS_FUNC (fixP->fx_addsy)
28132 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
28133 {
28134 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28135 newval = newval & ~0x1000;
28136 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
28137 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
28138 fixP->fx_done = 1;
28139 }
28140
28141 thumb_bl_common:
28142
28143 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
28144 /* For a BLX instruction, make sure that the relocation is rounded up
28145 to a word boundary. This follows the semantics of the instruction
28146 which specifies that bit 1 of the target address will come from bit
28147 1 of the base address. */
28148 value = (value + 3) & ~ 3;
28149
28150 #ifdef OBJ_ELF
28151 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
28152 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
28153 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
28154 #endif
28155
28156 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
28157 {
28158 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
28159 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
28160 else if ((value & ~0x1ffffff)
28161 && ((value & ~0x1ffffff) != ~0x1ffffff))
28162 as_bad_where (fixP->fx_file, fixP->fx_line,
28163 _("Thumb2 branch out of range"));
28164 }
28165
28166 if (fixP->fx_done || !seg->use_rela_p)
28167 encode_thumb2_b_bl_offset (buf, value);
28168
28169 break;
28170
28171 case BFD_RELOC_THUMB_PCREL_BRANCH25:
28172 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
28173 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
28174
28175 if (fixP->fx_done || !seg->use_rela_p)
28176 encode_thumb2_b_bl_offset (buf, value);
28177
28178 break;
28179
28180 case BFD_RELOC_8:
28181 if (fixP->fx_done || !seg->use_rela_p)
28182 *buf = value;
28183 break;
28184
28185 case BFD_RELOC_16:
28186 if (fixP->fx_done || !seg->use_rela_p)
28187 md_number_to_chars (buf, value, 2);
28188 break;
28189
28190 #ifdef OBJ_ELF
28191 case BFD_RELOC_ARM_TLS_CALL:
28192 case BFD_RELOC_ARM_THM_TLS_CALL:
28193 case BFD_RELOC_ARM_TLS_DESCSEQ:
28194 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
28195 case BFD_RELOC_ARM_TLS_GOTDESC:
28196 case BFD_RELOC_ARM_TLS_GD32:
28197 case BFD_RELOC_ARM_TLS_LE32:
28198 case BFD_RELOC_ARM_TLS_IE32:
28199 case BFD_RELOC_ARM_TLS_LDM32:
28200 case BFD_RELOC_ARM_TLS_LDO32:
28201 S_SET_THREAD_LOCAL (fixP->fx_addsy);
28202 break;
28203
28204 /* Same handling as above, but with the arm_fdpic guard. */
28205 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
28206 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
28207 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
28208 if (arm_fdpic)
28209 {
28210 S_SET_THREAD_LOCAL (fixP->fx_addsy);
28211 }
28212 else
28213 {
28214 as_bad_where (fixP->fx_file, fixP->fx_line,
28215 _("Relocation supported only in FDPIC mode"));
28216 }
28217 break;
28218
28219 case BFD_RELOC_ARM_GOT32:
28220 case BFD_RELOC_ARM_GOTOFF:
28221 break;
28222
28223 case BFD_RELOC_ARM_GOT_PREL:
28224 if (fixP->fx_done || !seg->use_rela_p)
28225 md_number_to_chars (buf, value, 4);
28226 break;
28227
28228 case BFD_RELOC_ARM_TARGET2:
28229 /* TARGET2 is not partial-inplace, so we need to write the
28230 addend here for REL targets, because it won't be written out
28231 during reloc processing later. */
28232 if (fixP->fx_done || !seg->use_rela_p)
28233 md_number_to_chars (buf, fixP->fx_offset, 4);
28234 break;
28235
28236 /* Relocations for FDPIC. */
28237 case BFD_RELOC_ARM_GOTFUNCDESC:
28238 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
28239 case BFD_RELOC_ARM_FUNCDESC:
28240 if (arm_fdpic)
28241 {
28242 if (fixP->fx_done || !seg->use_rela_p)
28243 md_number_to_chars (buf, 0, 4);
28244 }
28245 else
28246 {
28247 as_bad_where (fixP->fx_file, fixP->fx_line,
28248 _("Relocation supported only in FDPIC mode"));
28249 }
28250 break;
28251 #endif
28252
28253 case BFD_RELOC_RVA:
28254 case BFD_RELOC_32:
28255 case BFD_RELOC_ARM_TARGET1:
28256 case BFD_RELOC_ARM_ROSEGREL32:
28257 case BFD_RELOC_ARM_SBREL32:
28258 case BFD_RELOC_32_PCREL:
28259 #ifdef TE_PE
28260 case BFD_RELOC_32_SECREL:
28261 #endif
28262 if (fixP->fx_done || !seg->use_rela_p)
28263 #ifdef TE_WINCE
28264 /* For WinCE we only do this for pcrel fixups. */
28265 if (fixP->fx_done || fixP->fx_pcrel)
28266 #endif
28267 md_number_to_chars (buf, value, 4);
28268 break;
28269
28270 #ifdef OBJ_ELF
28271 case BFD_RELOC_ARM_PREL31:
28272 if (fixP->fx_done || !seg->use_rela_p)
28273 {
28274 newval = md_chars_to_number (buf, 4) & 0x80000000;
28275 if ((value ^ (value >> 1)) & 0x40000000)
28276 {
28277 as_bad_where (fixP->fx_file, fixP->fx_line,
28278 _("rel31 relocation overflow"));
28279 }
28280 newval |= value & 0x7fffffff;
28281 md_number_to_chars (buf, newval, 4);
28282 }
28283 break;
28284 #endif
28285
28286 case BFD_RELOC_ARM_CP_OFF_IMM:
28287 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
28288 case BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM:
28289 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
28290 newval = md_chars_to_number (buf, INSN_SIZE);
28291 else
28292 newval = get_thumb32_insn (buf);
28293 if ((newval & 0x0f200f00) == 0x0d000900)
28294 {
28295 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
28296 has permitted values that are multiples of 2, in the range 0
28297 to 510. */
28298 if (value < -510 || value > 510 || (value & 1))
28299 as_bad_where (fixP->fx_file, fixP->fx_line,
28300 _("co-processor offset out of range"));
28301 }
28302 else if ((newval & 0xfe001f80) == 0xec000f80)
28303 {
28304 if (value < -511 || value > 512 || (value & 3))
28305 as_bad_where (fixP->fx_file, fixP->fx_line,
28306 _("co-processor offset out of range"));
28307 }
28308 else if (value < -1023 || value > 1023 || (value & 3))
28309 as_bad_where (fixP->fx_file, fixP->fx_line,
28310 _("co-processor offset out of range"));
28311 cp_off_common:
28312 sign = value > 0;
28313 if (value < 0)
28314 value = -value;
28315 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
28316 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
28317 newval = md_chars_to_number (buf, INSN_SIZE);
28318 else
28319 newval = get_thumb32_insn (buf);
28320 if (value == 0)
28321 {
28322 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
28323 newval &= 0xffffff80;
28324 else
28325 newval &= 0xffffff00;
28326 }
28327 else
28328 {
28329 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
28330 newval &= 0xff7fff80;
28331 else
28332 newval &= 0xff7fff00;
28333 if ((newval & 0x0f200f00) == 0x0d000900)
28334 {
28335 /* This is a fp16 vstr/vldr.
28336
28337 It requires the immediate offset in the instruction is shifted
28338 left by 1 to be a half-word offset.
28339
28340 Here, left shift by 1 first, and later right shift by 2
28341 should get the right offset. */
28342 value <<= 1;
28343 }
28344 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
28345 }
28346 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
28347 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
28348 md_number_to_chars (buf, newval, INSN_SIZE);
28349 else
28350 put_thumb32_insn (buf, newval);
28351 break;
28352
28353 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
28354 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
28355 if (value < -255 || value > 255)
28356 as_bad_where (fixP->fx_file, fixP->fx_line,
28357 _("co-processor offset out of range"));
28358 value *= 4;
28359 goto cp_off_common;
28360
28361 case BFD_RELOC_ARM_THUMB_OFFSET:
28362 newval = md_chars_to_number (buf, THUMB_SIZE);
28363 /* Exactly what ranges, and where the offset is inserted depends
28364 on the type of instruction, we can establish this from the
28365 top 4 bits. */
28366 switch (newval >> 12)
28367 {
28368 case 4: /* PC load. */
28369 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
28370 forced to zero for these loads; md_pcrel_from has already
28371 compensated for this. */
28372 if (value & 3)
28373 as_bad_where (fixP->fx_file, fixP->fx_line,
28374 _("invalid offset, target not word aligned (0x%08lX)"),
28375 (((unsigned long) fixP->fx_frag->fr_address
28376 + (unsigned long) fixP->fx_where) & ~3)
28377 + (unsigned long) value);
28378
28379 if (value & ~0x3fc)
28380 as_bad_where (fixP->fx_file, fixP->fx_line,
28381 _("invalid offset, value too big (0x%08lX)"),
28382 (long) value);
28383
28384 newval |= value >> 2;
28385 break;
28386
28387 case 9: /* SP load/store. */
28388 if (value & ~0x3fc)
28389 as_bad_where (fixP->fx_file, fixP->fx_line,
28390 _("invalid offset, value too big (0x%08lX)"),
28391 (long) value);
28392 newval |= value >> 2;
28393 break;
28394
28395 case 6: /* Word load/store. */
28396 if (value & ~0x7c)
28397 as_bad_where (fixP->fx_file, fixP->fx_line,
28398 _("invalid offset, value too big (0x%08lX)"),
28399 (long) value);
28400 newval |= value << 4; /* 6 - 2. */
28401 break;
28402
28403 case 7: /* Byte load/store. */
28404 if (value & ~0x1f)
28405 as_bad_where (fixP->fx_file, fixP->fx_line,
28406 _("invalid offset, value too big (0x%08lX)"),
28407 (long) value);
28408 newval |= value << 6;
28409 break;
28410
28411 case 8: /* Halfword load/store. */
28412 if (value & ~0x3e)
28413 as_bad_where (fixP->fx_file, fixP->fx_line,
28414 _("invalid offset, value too big (0x%08lX)"),
28415 (long) value);
28416 newval |= value << 5; /* 6 - 1. */
28417 break;
28418
28419 default:
28420 as_bad_where (fixP->fx_file, fixP->fx_line,
28421 "Unable to process relocation for thumb opcode: %lx",
28422 (unsigned long) newval);
28423 break;
28424 }
28425 md_number_to_chars (buf, newval, THUMB_SIZE);
28426 break;
28427
28428 case BFD_RELOC_ARM_THUMB_ADD:
28429 /* This is a complicated relocation, since we use it for all of
28430 the following immediate relocations:
28431
28432 3bit ADD/SUB
28433 8bit ADD/SUB
28434 9bit ADD/SUB SP word-aligned
28435 10bit ADD PC/SP word-aligned
28436
28437 The type of instruction being processed is encoded in the
28438 instruction field:
28439
28440 0x8000 SUB
28441 0x00F0 Rd
28442 0x000F Rs
28443 */
28444 newval = md_chars_to_number (buf, THUMB_SIZE);
28445 {
28446 int rd = (newval >> 4) & 0xf;
28447 int rs = newval & 0xf;
28448 int subtract = !!(newval & 0x8000);
28449
28450 /* Check for HI regs, only very restricted cases allowed:
28451 Adjusting SP, and using PC or SP to get an address. */
28452 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
28453 || (rs > 7 && rs != REG_SP && rs != REG_PC))
28454 as_bad_where (fixP->fx_file, fixP->fx_line,
28455 _("invalid Hi register with immediate"));
28456
28457 /* If value is negative, choose the opposite instruction. */
28458 if (value < 0)
28459 {
28460 value = -value;
28461 subtract = !subtract;
28462 if (value < 0)
28463 as_bad_where (fixP->fx_file, fixP->fx_line,
28464 _("immediate value out of range"));
28465 }
28466
28467 if (rd == REG_SP)
28468 {
28469 if (value & ~0x1fc)
28470 as_bad_where (fixP->fx_file, fixP->fx_line,
28471 _("invalid immediate for stack address calculation"));
28472 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
28473 newval |= value >> 2;
28474 }
28475 else if (rs == REG_PC || rs == REG_SP)
28476 {
28477 /* PR gas/18541. If the addition is for a defined symbol
28478 within range of an ADR instruction then accept it. */
28479 if (subtract
28480 && value == 4
28481 && fixP->fx_addsy != NULL)
28482 {
28483 subtract = 0;
28484
28485 if (! S_IS_DEFINED (fixP->fx_addsy)
28486 || S_GET_SEGMENT (fixP->fx_addsy) != seg
28487 || S_IS_WEAK (fixP->fx_addsy))
28488 {
28489 as_bad_where (fixP->fx_file, fixP->fx_line,
28490 _("address calculation needs a strongly defined nearby symbol"));
28491 }
28492 else
28493 {
28494 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
28495
28496 /* Round up to the next 4-byte boundary. */
28497 if (v & 3)
28498 v = (v + 3) & ~ 3;
28499 else
28500 v += 4;
28501 v = S_GET_VALUE (fixP->fx_addsy) - v;
28502
28503 if (v & ~0x3fc)
28504 {
28505 as_bad_where (fixP->fx_file, fixP->fx_line,
28506 _("symbol too far away"));
28507 }
28508 else
28509 {
28510 fixP->fx_done = 1;
28511 value = v;
28512 }
28513 }
28514 }
28515
28516 if (subtract || value & ~0x3fc)
28517 as_bad_where (fixP->fx_file, fixP->fx_line,
28518 _("invalid immediate for address calculation (value = 0x%08lX)"),
28519 (unsigned long) (subtract ? - value : value));
28520 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
28521 newval |= rd << 8;
28522 newval |= value >> 2;
28523 }
28524 else if (rs == rd)
28525 {
28526 if (value & ~0xff)
28527 as_bad_where (fixP->fx_file, fixP->fx_line,
28528 _("immediate value out of range"));
28529 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
28530 newval |= (rd << 8) | value;
28531 }
28532 else
28533 {
28534 if (value & ~0x7)
28535 as_bad_where (fixP->fx_file, fixP->fx_line,
28536 _("immediate value out of range"));
28537 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
28538 newval |= rd | (rs << 3) | (value << 6);
28539 }
28540 }
28541 md_number_to_chars (buf, newval, THUMB_SIZE);
28542 break;
28543
28544 case BFD_RELOC_ARM_THUMB_IMM:
28545 newval = md_chars_to_number (buf, THUMB_SIZE);
28546 if (value < 0 || value > 255)
28547 as_bad_where (fixP->fx_file, fixP->fx_line,
28548 _("invalid immediate: %ld is out of range"),
28549 (long) value);
28550 newval |= value;
28551 md_number_to_chars (buf, newval, THUMB_SIZE);
28552 break;
28553
28554 case BFD_RELOC_ARM_THUMB_SHIFT:
28555 /* 5bit shift value (0..32). LSL cannot take 32. */
28556 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
28557 temp = newval & 0xf800;
28558 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
28559 as_bad_where (fixP->fx_file, fixP->fx_line,
28560 _("invalid shift value: %ld"), (long) value);
28561 /* Shifts of zero must be encoded as LSL. */
28562 if (value == 0)
28563 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
28564 /* Shifts of 32 are encoded as zero. */
28565 else if (value == 32)
28566 value = 0;
28567 newval |= value << 6;
28568 md_number_to_chars (buf, newval, THUMB_SIZE);
28569 break;
28570
28571 case BFD_RELOC_VTABLE_INHERIT:
28572 case BFD_RELOC_VTABLE_ENTRY:
28573 fixP->fx_done = 0;
28574 return;
28575
28576 case BFD_RELOC_ARM_MOVW:
28577 case BFD_RELOC_ARM_MOVT:
28578 case BFD_RELOC_ARM_THUMB_MOVW:
28579 case BFD_RELOC_ARM_THUMB_MOVT:
28580 if (fixP->fx_done || !seg->use_rela_p)
28581 {
28582 /* REL format relocations are limited to a 16-bit addend. */
28583 if (!fixP->fx_done)
28584 {
28585 if (value < -0x8000 || value > 0x7fff)
28586 as_bad_where (fixP->fx_file, fixP->fx_line,
28587 _("offset out of range"));
28588 }
28589 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
28590 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
28591 {
28592 value >>= 16;
28593 }
28594
28595 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
28596 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
28597 {
28598 newval = get_thumb32_insn (buf);
28599 newval &= 0xfbf08f00;
28600 newval |= (value & 0xf000) << 4;
28601 newval |= (value & 0x0800) << 15;
28602 newval |= (value & 0x0700) << 4;
28603 newval |= (value & 0x00ff);
28604 put_thumb32_insn (buf, newval);
28605 }
28606 else
28607 {
28608 newval = md_chars_to_number (buf, 4);
28609 newval &= 0xfff0f000;
28610 newval |= value & 0x0fff;
28611 newval |= (value & 0xf000) << 4;
28612 md_number_to_chars (buf, newval, 4);
28613 }
28614 }
28615 return;
28616
28617 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
28618 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
28619 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
28620 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
28621 gas_assert (!fixP->fx_done);
28622 {
28623 bfd_vma insn;
28624 bfd_boolean is_mov;
28625 bfd_vma encoded_addend = value;
28626
28627 /* Check that addend can be encoded in instruction. */
28628 if (!seg->use_rela_p && (value < 0 || value > 255))
28629 as_bad_where (fixP->fx_file, fixP->fx_line,
28630 _("the offset 0x%08lX is not representable"),
28631 (unsigned long) encoded_addend);
28632
28633 /* Extract the instruction. */
28634 insn = md_chars_to_number (buf, THUMB_SIZE);
28635 is_mov = (insn & 0xf800) == 0x2000;
28636
28637 /* Encode insn. */
28638 if (is_mov)
28639 {
28640 if (!seg->use_rela_p)
28641 insn |= encoded_addend;
28642 }
28643 else
28644 {
28645 int rd, rs;
28646
28647 /* Extract the instruction. */
28648 /* Encoding is the following
28649 0x8000 SUB
28650 0x00F0 Rd
28651 0x000F Rs
28652 */
28653 /* The following conditions must be true :
28654 - ADD
28655 - Rd == Rs
28656 - Rd <= 7
28657 */
28658 rd = (insn >> 4) & 0xf;
28659 rs = insn & 0xf;
28660 if ((insn & 0x8000) || (rd != rs) || rd > 7)
28661 as_bad_where (fixP->fx_file, fixP->fx_line,
28662 _("Unable to process relocation for thumb opcode: %lx"),
28663 (unsigned long) insn);
28664
28665 /* Encode as ADD immediate8 thumb 1 code. */
28666 insn = 0x3000 | (rd << 8);
28667
28668 /* Place the encoded addend into the first 8 bits of the
28669 instruction. */
28670 if (!seg->use_rela_p)
28671 insn |= encoded_addend;
28672 }
28673
28674 /* Update the instruction. */
28675 md_number_to_chars (buf, insn, THUMB_SIZE);
28676 }
28677 break;
28678
28679 case BFD_RELOC_ARM_ALU_PC_G0_NC:
28680 case BFD_RELOC_ARM_ALU_PC_G0:
28681 case BFD_RELOC_ARM_ALU_PC_G1_NC:
28682 case BFD_RELOC_ARM_ALU_PC_G1:
28683 case BFD_RELOC_ARM_ALU_PC_G2:
28684 case BFD_RELOC_ARM_ALU_SB_G0_NC:
28685 case BFD_RELOC_ARM_ALU_SB_G0:
28686 case BFD_RELOC_ARM_ALU_SB_G1_NC:
28687 case BFD_RELOC_ARM_ALU_SB_G1:
28688 case BFD_RELOC_ARM_ALU_SB_G2:
28689 gas_assert (!fixP->fx_done);
28690 if (!seg->use_rela_p)
28691 {
28692 bfd_vma insn;
28693 bfd_vma encoded_addend;
28694 bfd_vma addend_abs = llabs (value);
28695
28696 /* Check that the absolute value of the addend can be
28697 expressed as an 8-bit constant plus a rotation. */
28698 encoded_addend = encode_arm_immediate (addend_abs);
28699 if (encoded_addend == (unsigned int) FAIL)
28700 as_bad_where (fixP->fx_file, fixP->fx_line,
28701 _("the offset 0x%08lX is not representable"),
28702 (unsigned long) addend_abs);
28703
28704 /* Extract the instruction. */
28705 insn = md_chars_to_number (buf, INSN_SIZE);
28706
28707 /* If the addend is positive, use an ADD instruction.
28708 Otherwise use a SUB. Take care not to destroy the S bit. */
28709 insn &= 0xff1fffff;
28710 if (value < 0)
28711 insn |= 1 << 22;
28712 else
28713 insn |= 1 << 23;
28714
28715 /* Place the encoded addend into the first 12 bits of the
28716 instruction. */
28717 insn &= 0xfffff000;
28718 insn |= encoded_addend;
28719
28720 /* Update the instruction. */
28721 md_number_to_chars (buf, insn, INSN_SIZE);
28722 }
28723 break;
28724
28725 case BFD_RELOC_ARM_LDR_PC_G0:
28726 case BFD_RELOC_ARM_LDR_PC_G1:
28727 case BFD_RELOC_ARM_LDR_PC_G2:
28728 case BFD_RELOC_ARM_LDR_SB_G0:
28729 case BFD_RELOC_ARM_LDR_SB_G1:
28730 case BFD_RELOC_ARM_LDR_SB_G2:
28731 gas_assert (!fixP->fx_done);
28732 if (!seg->use_rela_p)
28733 {
28734 bfd_vma insn;
28735 bfd_vma addend_abs = llabs (value);
28736
28737 /* Check that the absolute value of the addend can be
28738 encoded in 12 bits. */
28739 if (addend_abs >= 0x1000)
28740 as_bad_where (fixP->fx_file, fixP->fx_line,
28741 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
28742 (unsigned long) addend_abs);
28743
28744 /* Extract the instruction. */
28745 insn = md_chars_to_number (buf, INSN_SIZE);
28746
28747 /* If the addend is negative, clear bit 23 of the instruction.
28748 Otherwise set it. */
28749 if (value < 0)
28750 insn &= ~(1 << 23);
28751 else
28752 insn |= 1 << 23;
28753
28754 /* Place the absolute value of the addend into the first 12 bits
28755 of the instruction. */
28756 insn &= 0xfffff000;
28757 insn |= addend_abs;
28758
28759 /* Update the instruction. */
28760 md_number_to_chars (buf, insn, INSN_SIZE);
28761 }
28762 break;
28763
28764 case BFD_RELOC_ARM_LDRS_PC_G0:
28765 case BFD_RELOC_ARM_LDRS_PC_G1:
28766 case BFD_RELOC_ARM_LDRS_PC_G2:
28767 case BFD_RELOC_ARM_LDRS_SB_G0:
28768 case BFD_RELOC_ARM_LDRS_SB_G1:
28769 case BFD_RELOC_ARM_LDRS_SB_G2:
28770 gas_assert (!fixP->fx_done);
28771 if (!seg->use_rela_p)
28772 {
28773 bfd_vma insn;
28774 bfd_vma addend_abs = llabs (value);
28775
28776 /* Check that the absolute value of the addend can be
28777 encoded in 8 bits. */
28778 if (addend_abs >= 0x100)
28779 as_bad_where (fixP->fx_file, fixP->fx_line,
28780 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
28781 (unsigned long) addend_abs);
28782
28783 /* Extract the instruction. */
28784 insn = md_chars_to_number (buf, INSN_SIZE);
28785
28786 /* If the addend is negative, clear bit 23 of the instruction.
28787 Otherwise set it. */
28788 if (value < 0)
28789 insn &= ~(1 << 23);
28790 else
28791 insn |= 1 << 23;
28792
28793 /* Place the first four bits of the absolute value of the addend
28794 into the first 4 bits of the instruction, and the remaining
28795 four into bits 8 .. 11. */
28796 insn &= 0xfffff0f0;
28797 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
28798
28799 /* Update the instruction. */
28800 md_number_to_chars (buf, insn, INSN_SIZE);
28801 }
28802 break;
28803
28804 case BFD_RELOC_ARM_LDC_PC_G0:
28805 case BFD_RELOC_ARM_LDC_PC_G1:
28806 case BFD_RELOC_ARM_LDC_PC_G2:
28807 case BFD_RELOC_ARM_LDC_SB_G0:
28808 case BFD_RELOC_ARM_LDC_SB_G1:
28809 case BFD_RELOC_ARM_LDC_SB_G2:
28810 gas_assert (!fixP->fx_done);
28811 if (!seg->use_rela_p)
28812 {
28813 bfd_vma insn;
28814 bfd_vma addend_abs = llabs (value);
28815
28816 /* Check that the absolute value of the addend is a multiple of
28817 four and, when divided by four, fits in 8 bits. */
28818 if (addend_abs & 0x3)
28819 as_bad_where (fixP->fx_file, fixP->fx_line,
28820 _("bad offset 0x%08lX (must be word-aligned)"),
28821 (unsigned long) addend_abs);
28822
28823 if ((addend_abs >> 2) > 0xff)
28824 as_bad_where (fixP->fx_file, fixP->fx_line,
28825 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
28826 (unsigned long) addend_abs);
28827
28828 /* Extract the instruction. */
28829 insn = md_chars_to_number (buf, INSN_SIZE);
28830
28831 /* If the addend is negative, clear bit 23 of the instruction.
28832 Otherwise set it. */
28833 if (value < 0)
28834 insn &= ~(1 << 23);
28835 else
28836 insn |= 1 << 23;
28837
28838 /* Place the addend (divided by four) into the first eight
28839 bits of the instruction. */
28840 insn &= 0xfffffff0;
28841 insn |= addend_abs >> 2;
28842
28843 /* Update the instruction. */
28844 md_number_to_chars (buf, insn, INSN_SIZE);
28845 }
28846 break;
28847
28848 case BFD_RELOC_THUMB_PCREL_BRANCH5:
28849 if (fixP->fx_addsy
28850 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28851 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28852 && ARM_IS_FUNC (fixP->fx_addsy)
28853 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28854 {
28855 /* Force a relocation for a branch 5 bits wide. */
28856 fixP->fx_done = 0;
28857 }
28858 if (v8_1_branch_value_check (value, 5, FALSE) == FAIL)
28859 as_bad_where (fixP->fx_file, fixP->fx_line,
28860 BAD_BRANCH_OFF);
28861
28862 if (fixP->fx_done || !seg->use_rela_p)
28863 {
28864 addressT boff = value >> 1;
28865
28866 newval = md_chars_to_number (buf, THUMB_SIZE);
28867 newval |= (boff << 7);
28868 md_number_to_chars (buf, newval, THUMB_SIZE);
28869 }
28870 break;
28871
28872 case BFD_RELOC_THUMB_PCREL_BFCSEL:
28873 if (fixP->fx_addsy
28874 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28875 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28876 && ARM_IS_FUNC (fixP->fx_addsy)
28877 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28878 {
28879 fixP->fx_done = 0;
28880 }
28881 if ((value & ~0x7f) && ((value & ~0x3f) != ~0x3f))
28882 as_bad_where (fixP->fx_file, fixP->fx_line,
28883 _("branch out of range"));
28884
28885 if (fixP->fx_done || !seg->use_rela_p)
28886 {
28887 newval = md_chars_to_number (buf, THUMB_SIZE);
28888
28889 addressT boff = ((newval & 0x0780) >> 7) << 1;
28890 addressT diff = value - boff;
28891
28892 if (diff == 4)
28893 {
28894 newval |= 1 << 1; /* T bit. */
28895 }
28896 else if (diff != 2)
28897 {
28898 as_bad_where (fixP->fx_file, fixP->fx_line,
28899 _("out of range label-relative fixup value"));
28900 }
28901 md_number_to_chars (buf, newval, THUMB_SIZE);
28902 }
28903 break;
28904
28905 case BFD_RELOC_ARM_THUMB_BF17:
28906 if (fixP->fx_addsy
28907 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28908 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28909 && ARM_IS_FUNC (fixP->fx_addsy)
28910 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28911 {
28912 /* Force a relocation for a branch 17 bits wide. */
28913 fixP->fx_done = 0;
28914 }
28915
28916 if (v8_1_branch_value_check (value, 17, TRUE) == FAIL)
28917 as_bad_where (fixP->fx_file, fixP->fx_line,
28918 BAD_BRANCH_OFF);
28919
28920 if (fixP->fx_done || !seg->use_rela_p)
28921 {
28922 offsetT newval2;
28923 addressT immA, immB, immC;
28924
28925 immA = (value & 0x0001f000) >> 12;
28926 immB = (value & 0x00000ffc) >> 2;
28927 immC = (value & 0x00000002) >> 1;
28928
28929 newval = md_chars_to_number (buf, THUMB_SIZE);
28930 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28931 newval |= immA;
28932 newval2 |= (immC << 11) | (immB << 1);
28933 md_number_to_chars (buf, newval, THUMB_SIZE);
28934 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28935 }
28936 break;
28937
28938 case BFD_RELOC_ARM_THUMB_BF19:
28939 if (fixP->fx_addsy
28940 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28941 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28942 && ARM_IS_FUNC (fixP->fx_addsy)
28943 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28944 {
28945 /* Force a relocation for a branch 19 bits wide. */
28946 fixP->fx_done = 0;
28947 }
28948
28949 if (v8_1_branch_value_check (value, 19, TRUE) == FAIL)
28950 as_bad_where (fixP->fx_file, fixP->fx_line,
28951 BAD_BRANCH_OFF);
28952
28953 if (fixP->fx_done || !seg->use_rela_p)
28954 {
28955 offsetT newval2;
28956 addressT immA, immB, immC;
28957
28958 immA = (value & 0x0007f000) >> 12;
28959 immB = (value & 0x00000ffc) >> 2;
28960 immC = (value & 0x00000002) >> 1;
28961
28962 newval = md_chars_to_number (buf, THUMB_SIZE);
28963 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28964 newval |= immA;
28965 newval2 |= (immC << 11) | (immB << 1);
28966 md_number_to_chars (buf, newval, THUMB_SIZE);
28967 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28968 }
28969 break;
28970
28971 case BFD_RELOC_ARM_THUMB_BF13:
28972 if (fixP->fx_addsy
28973 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28974 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28975 && ARM_IS_FUNC (fixP->fx_addsy)
28976 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28977 {
28978 /* Force a relocation for a branch 13 bits wide. */
28979 fixP->fx_done = 0;
28980 }
28981
28982 if (v8_1_branch_value_check (value, 13, TRUE) == FAIL)
28983 as_bad_where (fixP->fx_file, fixP->fx_line,
28984 BAD_BRANCH_OFF);
28985
28986 if (fixP->fx_done || !seg->use_rela_p)
28987 {
28988 offsetT newval2;
28989 addressT immA, immB, immC;
28990
28991 immA = (value & 0x00001000) >> 12;
28992 immB = (value & 0x00000ffc) >> 2;
28993 immC = (value & 0x00000002) >> 1;
28994
28995 newval = md_chars_to_number (buf, THUMB_SIZE);
28996 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28997 newval |= immA;
28998 newval2 |= (immC << 11) | (immB << 1);
28999 md_number_to_chars (buf, newval, THUMB_SIZE);
29000 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
29001 }
29002 break;
29003
29004 case BFD_RELOC_ARM_THUMB_LOOP12:
29005 if (fixP->fx_addsy
29006 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
29007 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
29008 && ARM_IS_FUNC (fixP->fx_addsy)
29009 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
29010 {
29011 /* Force a relocation for a branch 12 bits wide. */
29012 fixP->fx_done = 0;
29013 }
29014
29015 bfd_vma insn = get_thumb32_insn (buf);
29016 /* le lr, <label>, le <label> or letp lr, <label> */
29017 if (((insn & 0xffffffff) == 0xf00fc001)
29018 || ((insn & 0xffffffff) == 0xf02fc001)
29019 || ((insn & 0xffffffff) == 0xf01fc001))
29020 value = -value;
29021
29022 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
29023 as_bad_where (fixP->fx_file, fixP->fx_line,
29024 BAD_BRANCH_OFF);
29025 if (fixP->fx_done || !seg->use_rela_p)
29026 {
29027 addressT imml, immh;
29028
29029 immh = (value & 0x00000ffc) >> 2;
29030 imml = (value & 0x00000002) >> 1;
29031
29032 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
29033 newval |= (imml << 11) | (immh << 1);
29034 md_number_to_chars (buf + THUMB_SIZE, newval, THUMB_SIZE);
29035 }
29036 break;
29037
29038 case BFD_RELOC_ARM_V4BX:
29039 /* This will need to go in the object file. */
29040 fixP->fx_done = 0;
29041 break;
29042
29043 case BFD_RELOC_UNUSED:
29044 default:
29045 as_bad_where (fixP->fx_file, fixP->fx_line,
29046 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
29047 }
29048 }
29049
29050 /* Translate internal representation of relocation info to BFD target
29051 format. */
29052
29053 arelent *
29054 tc_gen_reloc (asection *section, fixS *fixp)
29055 {
29056 arelent * reloc;
29057 bfd_reloc_code_real_type code;
29058
29059 reloc = XNEW (arelent);
29060
29061 reloc->sym_ptr_ptr = XNEW (asymbol *);
29062 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
29063 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
29064
29065 if (fixp->fx_pcrel)
29066 {
29067 if (section->use_rela_p)
29068 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
29069 else
29070 fixp->fx_offset = reloc->address;
29071 }
29072 reloc->addend = fixp->fx_offset;
29073
29074 switch (fixp->fx_r_type)
29075 {
29076 case BFD_RELOC_8:
29077 if (fixp->fx_pcrel)
29078 {
29079 code = BFD_RELOC_8_PCREL;
29080 break;
29081 }
29082 /* Fall through. */
29083
29084 case BFD_RELOC_16:
29085 if (fixp->fx_pcrel)
29086 {
29087 code = BFD_RELOC_16_PCREL;
29088 break;
29089 }
29090 /* Fall through. */
29091
29092 case BFD_RELOC_32:
29093 if (fixp->fx_pcrel)
29094 {
29095 code = BFD_RELOC_32_PCREL;
29096 break;
29097 }
29098 /* Fall through. */
29099
29100 case BFD_RELOC_ARM_MOVW:
29101 if (fixp->fx_pcrel)
29102 {
29103 code = BFD_RELOC_ARM_MOVW_PCREL;
29104 break;
29105 }
29106 /* Fall through. */
29107
29108 case BFD_RELOC_ARM_MOVT:
29109 if (fixp->fx_pcrel)
29110 {
29111 code = BFD_RELOC_ARM_MOVT_PCREL;
29112 break;
29113 }
29114 /* Fall through. */
29115
29116 case BFD_RELOC_ARM_THUMB_MOVW:
29117 if (fixp->fx_pcrel)
29118 {
29119 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
29120 break;
29121 }
29122 /* Fall through. */
29123
29124 case BFD_RELOC_ARM_THUMB_MOVT:
29125 if (fixp->fx_pcrel)
29126 {
29127 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
29128 break;
29129 }
29130 /* Fall through. */
29131
29132 case BFD_RELOC_NONE:
29133 case BFD_RELOC_ARM_PCREL_BRANCH:
29134 case BFD_RELOC_ARM_PCREL_BLX:
29135 case BFD_RELOC_RVA:
29136 case BFD_RELOC_THUMB_PCREL_BRANCH7:
29137 case BFD_RELOC_THUMB_PCREL_BRANCH9:
29138 case BFD_RELOC_THUMB_PCREL_BRANCH12:
29139 case BFD_RELOC_THUMB_PCREL_BRANCH20:
29140 case BFD_RELOC_THUMB_PCREL_BRANCH23:
29141 case BFD_RELOC_THUMB_PCREL_BRANCH25:
29142 case BFD_RELOC_VTABLE_ENTRY:
29143 case BFD_RELOC_VTABLE_INHERIT:
29144 #ifdef TE_PE
29145 case BFD_RELOC_32_SECREL:
29146 #endif
29147 code = fixp->fx_r_type;
29148 break;
29149
29150 case BFD_RELOC_THUMB_PCREL_BLX:
29151 #ifdef OBJ_ELF
29152 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
29153 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
29154 else
29155 #endif
29156 code = BFD_RELOC_THUMB_PCREL_BLX;
29157 break;
29158
29159 case BFD_RELOC_ARM_LITERAL:
29160 case BFD_RELOC_ARM_HWLITERAL:
29161 /* If this is called then the a literal has
29162 been referenced across a section boundary. */
29163 as_bad_where (fixp->fx_file, fixp->fx_line,
29164 _("literal referenced across section boundary"));
29165 return NULL;
29166
29167 #ifdef OBJ_ELF
29168 case BFD_RELOC_ARM_TLS_CALL:
29169 case BFD_RELOC_ARM_THM_TLS_CALL:
29170 case BFD_RELOC_ARM_TLS_DESCSEQ:
29171 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
29172 case BFD_RELOC_ARM_GOT32:
29173 case BFD_RELOC_ARM_GOTOFF:
29174 case BFD_RELOC_ARM_GOT_PREL:
29175 case BFD_RELOC_ARM_PLT32:
29176 case BFD_RELOC_ARM_TARGET1:
29177 case BFD_RELOC_ARM_ROSEGREL32:
29178 case BFD_RELOC_ARM_SBREL32:
29179 case BFD_RELOC_ARM_PREL31:
29180 case BFD_RELOC_ARM_TARGET2:
29181 case BFD_RELOC_ARM_TLS_LDO32:
29182 case BFD_RELOC_ARM_PCREL_CALL:
29183 case BFD_RELOC_ARM_PCREL_JUMP:
29184 case BFD_RELOC_ARM_ALU_PC_G0_NC:
29185 case BFD_RELOC_ARM_ALU_PC_G0:
29186 case BFD_RELOC_ARM_ALU_PC_G1_NC:
29187 case BFD_RELOC_ARM_ALU_PC_G1:
29188 case BFD_RELOC_ARM_ALU_PC_G2:
29189 case BFD_RELOC_ARM_LDR_PC_G0:
29190 case BFD_RELOC_ARM_LDR_PC_G1:
29191 case BFD_RELOC_ARM_LDR_PC_G2:
29192 case BFD_RELOC_ARM_LDRS_PC_G0:
29193 case BFD_RELOC_ARM_LDRS_PC_G1:
29194 case BFD_RELOC_ARM_LDRS_PC_G2:
29195 case BFD_RELOC_ARM_LDC_PC_G0:
29196 case BFD_RELOC_ARM_LDC_PC_G1:
29197 case BFD_RELOC_ARM_LDC_PC_G2:
29198 case BFD_RELOC_ARM_ALU_SB_G0_NC:
29199 case BFD_RELOC_ARM_ALU_SB_G0:
29200 case BFD_RELOC_ARM_ALU_SB_G1_NC:
29201 case BFD_RELOC_ARM_ALU_SB_G1:
29202 case BFD_RELOC_ARM_ALU_SB_G2:
29203 case BFD_RELOC_ARM_LDR_SB_G0:
29204 case BFD_RELOC_ARM_LDR_SB_G1:
29205 case BFD_RELOC_ARM_LDR_SB_G2:
29206 case BFD_RELOC_ARM_LDRS_SB_G0:
29207 case BFD_RELOC_ARM_LDRS_SB_G1:
29208 case BFD_RELOC_ARM_LDRS_SB_G2:
29209 case BFD_RELOC_ARM_LDC_SB_G0:
29210 case BFD_RELOC_ARM_LDC_SB_G1:
29211 case BFD_RELOC_ARM_LDC_SB_G2:
29212 case BFD_RELOC_ARM_V4BX:
29213 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
29214 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
29215 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
29216 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
29217 case BFD_RELOC_ARM_GOTFUNCDESC:
29218 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
29219 case BFD_RELOC_ARM_FUNCDESC:
29220 case BFD_RELOC_ARM_THUMB_BF17:
29221 case BFD_RELOC_ARM_THUMB_BF19:
29222 case BFD_RELOC_ARM_THUMB_BF13:
29223 code = fixp->fx_r_type;
29224 break;
29225
29226 case BFD_RELOC_ARM_TLS_GOTDESC:
29227 case BFD_RELOC_ARM_TLS_GD32:
29228 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
29229 case BFD_RELOC_ARM_TLS_LE32:
29230 case BFD_RELOC_ARM_TLS_IE32:
29231 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
29232 case BFD_RELOC_ARM_TLS_LDM32:
29233 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
29234 /* BFD will include the symbol's address in the addend.
29235 But we don't want that, so subtract it out again here. */
29236 if (!S_IS_COMMON (fixp->fx_addsy))
29237 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
29238 code = fixp->fx_r_type;
29239 break;
29240 #endif
29241
29242 case BFD_RELOC_ARM_IMMEDIATE:
29243 as_bad_where (fixp->fx_file, fixp->fx_line,
29244 _("internal relocation (type: IMMEDIATE) not fixed up"));
29245 return NULL;
29246
29247 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
29248 as_bad_where (fixp->fx_file, fixp->fx_line,
29249 _("ADRL used for a symbol not defined in the same file"));
29250 return NULL;
29251
29252 case BFD_RELOC_THUMB_PCREL_BRANCH5:
29253 case BFD_RELOC_THUMB_PCREL_BFCSEL:
29254 case BFD_RELOC_ARM_THUMB_LOOP12:
29255 as_bad_where (fixp->fx_file, fixp->fx_line,
29256 _("%s used for a symbol not defined in the same file"),
29257 bfd_get_reloc_code_name (fixp->fx_r_type));
29258 return NULL;
29259
29260 case BFD_RELOC_ARM_OFFSET_IMM:
29261 if (section->use_rela_p)
29262 {
29263 code = fixp->fx_r_type;
29264 break;
29265 }
29266
29267 if (fixp->fx_addsy != NULL
29268 && !S_IS_DEFINED (fixp->fx_addsy)
29269 && S_IS_LOCAL (fixp->fx_addsy))
29270 {
29271 as_bad_where (fixp->fx_file, fixp->fx_line,
29272 _("undefined local label `%s'"),
29273 S_GET_NAME (fixp->fx_addsy));
29274 return NULL;
29275 }
29276
29277 as_bad_where (fixp->fx_file, fixp->fx_line,
29278 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
29279 return NULL;
29280
29281 default:
29282 {
29283 const char * type;
29284
29285 switch (fixp->fx_r_type)
29286 {
29287 case BFD_RELOC_NONE: type = "NONE"; break;
29288 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
29289 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
29290 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
29291 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
29292 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
29293 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
29294 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
29295 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
29296 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
29297 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
29298 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
29299 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
29300 default: type = _("<unknown>"); break;
29301 }
29302 as_bad_where (fixp->fx_file, fixp->fx_line,
29303 _("cannot represent %s relocation in this object file format"),
29304 type);
29305 return NULL;
29306 }
29307 }
29308
29309 #ifdef OBJ_ELF
29310 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
29311 && GOT_symbol
29312 && fixp->fx_addsy == GOT_symbol)
29313 {
29314 code = BFD_RELOC_ARM_GOTPC;
29315 reloc->addend = fixp->fx_offset = reloc->address;
29316 }
29317 #endif
29318
29319 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
29320
29321 if (reloc->howto == NULL)
29322 {
29323 as_bad_where (fixp->fx_file, fixp->fx_line,
29324 _("cannot represent %s relocation in this object file format"),
29325 bfd_get_reloc_code_name (code));
29326 return NULL;
29327 }
29328
29329 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
29330 vtable entry to be used in the relocation's section offset. */
29331 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
29332 reloc->address = fixp->fx_offset;
29333
29334 return reloc;
29335 }
29336
29337 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
29338
29339 void
29340 cons_fix_new_arm (fragS * frag,
29341 int where,
29342 int size,
29343 expressionS * exp,
29344 bfd_reloc_code_real_type reloc)
29345 {
29346 int pcrel = 0;
29347
29348 /* Pick a reloc.
29349 FIXME: @@ Should look at CPU word size. */
29350 switch (size)
29351 {
29352 case 1:
29353 reloc = BFD_RELOC_8;
29354 break;
29355 case 2:
29356 reloc = BFD_RELOC_16;
29357 break;
29358 case 4:
29359 default:
29360 reloc = BFD_RELOC_32;
29361 break;
29362 case 8:
29363 reloc = BFD_RELOC_64;
29364 break;
29365 }
29366
29367 #ifdef TE_PE
29368 if (exp->X_op == O_secrel)
29369 {
29370 exp->X_op = O_symbol;
29371 reloc = BFD_RELOC_32_SECREL;
29372 }
29373 #endif
29374
29375 fix_new_exp (frag, where, size, exp, pcrel, reloc);
29376 }
29377
29378 #if defined (OBJ_COFF)
29379 void
29380 arm_validate_fix (fixS * fixP)
29381 {
29382 /* If the destination of the branch is a defined symbol which does not have
29383 the THUMB_FUNC attribute, then we must be calling a function which has
29384 the (interfacearm) attribute. We look for the Thumb entry point to that
29385 function and change the branch to refer to that function instead. */
29386 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
29387 && fixP->fx_addsy != NULL
29388 && S_IS_DEFINED (fixP->fx_addsy)
29389 && ! THUMB_IS_FUNC (fixP->fx_addsy))
29390 {
29391 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
29392 }
29393 }
29394 #endif
29395
29396
29397 int
29398 arm_force_relocation (struct fix * fixp)
29399 {
29400 #if defined (OBJ_COFF) && defined (TE_PE)
29401 if (fixp->fx_r_type == BFD_RELOC_RVA)
29402 return 1;
29403 #endif
29404
29405 /* In case we have a call or a branch to a function in ARM ISA mode from
29406 a thumb function or vice-versa force the relocation. These relocations
29407 are cleared off for some cores that might have blx and simple transformations
29408 are possible. */
29409
29410 #ifdef OBJ_ELF
29411 switch (fixp->fx_r_type)
29412 {
29413 case BFD_RELOC_ARM_PCREL_JUMP:
29414 case BFD_RELOC_ARM_PCREL_CALL:
29415 case BFD_RELOC_THUMB_PCREL_BLX:
29416 if (THUMB_IS_FUNC (fixp->fx_addsy))
29417 return 1;
29418 break;
29419
29420 case BFD_RELOC_ARM_PCREL_BLX:
29421 case BFD_RELOC_THUMB_PCREL_BRANCH25:
29422 case BFD_RELOC_THUMB_PCREL_BRANCH20:
29423 case BFD_RELOC_THUMB_PCREL_BRANCH23:
29424 if (ARM_IS_FUNC (fixp->fx_addsy))
29425 return 1;
29426 break;
29427
29428 default:
29429 break;
29430 }
29431 #endif
29432
29433 /* Resolve these relocations even if the symbol is extern or weak.
29434 Technically this is probably wrong due to symbol preemption.
29435 In practice these relocations do not have enough range to be useful
29436 at dynamic link time, and some code (e.g. in the Linux kernel)
29437 expects these references to be resolved. */
29438 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
29439 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
29440 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
29441 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
29442 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
29443 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
29444 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
29445 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
29446 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
29447 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
29448 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
29449 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
29450 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
29451 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
29452 return 0;
29453
29454 /* Always leave these relocations for the linker. */
29455 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
29456 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
29457 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
29458 return 1;
29459
29460 /* Always generate relocations against function symbols. */
29461 if (fixp->fx_r_type == BFD_RELOC_32
29462 && fixp->fx_addsy
29463 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
29464 return 1;
29465
29466 return generic_force_reloc (fixp);
29467 }
29468
29469 #if defined (OBJ_ELF) || defined (OBJ_COFF)
29470 /* Relocations against function names must be left unadjusted,
29471 so that the linker can use this information to generate interworking
29472 stubs. The MIPS version of this function
29473 also prevents relocations that are mips-16 specific, but I do not
29474 know why it does this.
29475
29476 FIXME:
29477 There is one other problem that ought to be addressed here, but
29478 which currently is not: Taking the address of a label (rather
29479 than a function) and then later jumping to that address. Such
29480 addresses also ought to have their bottom bit set (assuming that
29481 they reside in Thumb code), but at the moment they will not. */
29482
29483 bfd_boolean
29484 arm_fix_adjustable (fixS * fixP)
29485 {
29486 if (fixP->fx_addsy == NULL)
29487 return 1;
29488
29489 /* Preserve relocations against symbols with function type. */
29490 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
29491 return FALSE;
29492
29493 if (THUMB_IS_FUNC (fixP->fx_addsy)
29494 && fixP->fx_subsy == NULL)
29495 return FALSE;
29496
29497 /* We need the symbol name for the VTABLE entries. */
29498 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
29499 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
29500 return FALSE;
29501
29502 /* Don't allow symbols to be discarded on GOT related relocs. */
29503 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
29504 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
29505 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
29506 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
29507 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32_FDPIC
29508 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
29509 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
29510 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32_FDPIC
29511 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
29512 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32_FDPIC
29513 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
29514 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
29515 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
29516 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
29517 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
29518 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
29519 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
29520 return FALSE;
29521
29522 /* Similarly for group relocations. */
29523 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
29524 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
29525 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
29526 return FALSE;
29527
29528 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
29529 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
29530 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
29531 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
29532 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
29533 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
29534 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
29535 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
29536 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
29537 return FALSE;
29538
29539 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
29540 offsets, so keep these symbols. */
29541 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
29542 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
29543 return FALSE;
29544
29545 return TRUE;
29546 }
29547 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
29548
29549 #ifdef OBJ_ELF
29550 const char *
29551 elf32_arm_target_format (void)
29552 {
29553 #ifdef TE_SYMBIAN
29554 return (target_big_endian
29555 ? "elf32-bigarm-symbian"
29556 : "elf32-littlearm-symbian");
29557 #elif defined (TE_VXWORKS)
29558 return (target_big_endian
29559 ? "elf32-bigarm-vxworks"
29560 : "elf32-littlearm-vxworks");
29561 #elif defined (TE_NACL)
29562 return (target_big_endian
29563 ? "elf32-bigarm-nacl"
29564 : "elf32-littlearm-nacl");
29565 #else
29566 if (arm_fdpic)
29567 {
29568 if (target_big_endian)
29569 return "elf32-bigarm-fdpic";
29570 else
29571 return "elf32-littlearm-fdpic";
29572 }
29573 else
29574 {
29575 if (target_big_endian)
29576 return "elf32-bigarm";
29577 else
29578 return "elf32-littlearm";
29579 }
29580 #endif
29581 }
29582
29583 void
29584 armelf_frob_symbol (symbolS * symp,
29585 int * puntp)
29586 {
29587 elf_frob_symbol (symp, puntp);
29588 }
29589 #endif
29590
29591 /* MD interface: Finalization. */
29592
29593 void
29594 arm_cleanup (void)
29595 {
29596 literal_pool * pool;
29597
29598 /* Ensure that all the predication blocks are properly closed. */
29599 check_pred_blocks_finished ();
29600
29601 for (pool = list_of_pools; pool; pool = pool->next)
29602 {
29603 /* Put it at the end of the relevant section. */
29604 subseg_set (pool->section, pool->sub_section);
29605 #ifdef OBJ_ELF
29606 arm_elf_change_section ();
29607 #endif
29608 s_ltorg (0);
29609 }
29610 }
29611
29612 #ifdef OBJ_ELF
29613 /* Remove any excess mapping symbols generated for alignment frags in
29614 SEC. We may have created a mapping symbol before a zero byte
29615 alignment; remove it if there's a mapping symbol after the
29616 alignment. */
29617 static void
29618 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
29619 void *dummy ATTRIBUTE_UNUSED)
29620 {
29621 segment_info_type *seginfo = seg_info (sec);
29622 fragS *fragp;
29623
29624 if (seginfo == NULL || seginfo->frchainP == NULL)
29625 return;
29626
29627 for (fragp = seginfo->frchainP->frch_root;
29628 fragp != NULL;
29629 fragp = fragp->fr_next)
29630 {
29631 symbolS *sym = fragp->tc_frag_data.last_map;
29632 fragS *next = fragp->fr_next;
29633
29634 /* Variable-sized frags have been converted to fixed size by
29635 this point. But if this was variable-sized to start with,
29636 there will be a fixed-size frag after it. So don't handle
29637 next == NULL. */
29638 if (sym == NULL || next == NULL)
29639 continue;
29640
29641 if (S_GET_VALUE (sym) < next->fr_address)
29642 /* Not at the end of this frag. */
29643 continue;
29644 know (S_GET_VALUE (sym) == next->fr_address);
29645
29646 do
29647 {
29648 if (next->tc_frag_data.first_map != NULL)
29649 {
29650 /* Next frag starts with a mapping symbol. Discard this
29651 one. */
29652 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
29653 break;
29654 }
29655
29656 if (next->fr_next == NULL)
29657 {
29658 /* This mapping symbol is at the end of the section. Discard
29659 it. */
29660 know (next->fr_fix == 0 && next->fr_var == 0);
29661 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
29662 break;
29663 }
29664
29665 /* As long as we have empty frags without any mapping symbols,
29666 keep looking. */
29667 /* If the next frag is non-empty and does not start with a
29668 mapping symbol, then this mapping symbol is required. */
29669 if (next->fr_address != next->fr_next->fr_address)
29670 break;
29671
29672 next = next->fr_next;
29673 }
29674 while (next != NULL);
29675 }
29676 }
29677 #endif
29678
29679 /* Adjust the symbol table. This marks Thumb symbols as distinct from
29680 ARM ones. */
29681
29682 void
29683 arm_adjust_symtab (void)
29684 {
29685 #ifdef OBJ_COFF
29686 symbolS * sym;
29687
29688 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
29689 {
29690 if (ARM_IS_THUMB (sym))
29691 {
29692 if (THUMB_IS_FUNC (sym))
29693 {
29694 /* Mark the symbol as a Thumb function. */
29695 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
29696 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
29697 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
29698
29699 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
29700 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
29701 else
29702 as_bad (_("%s: unexpected function type: %d"),
29703 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
29704 }
29705 else switch (S_GET_STORAGE_CLASS (sym))
29706 {
29707 case C_EXT:
29708 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
29709 break;
29710 case C_STAT:
29711 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
29712 break;
29713 case C_LABEL:
29714 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
29715 break;
29716 default:
29717 /* Do nothing. */
29718 break;
29719 }
29720 }
29721
29722 if (ARM_IS_INTERWORK (sym))
29723 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
29724 }
29725 #endif
29726 #ifdef OBJ_ELF
29727 symbolS * sym;
29728 char bind;
29729
29730 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
29731 {
29732 if (ARM_IS_THUMB (sym))
29733 {
29734 elf_symbol_type * elf_sym;
29735
29736 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
29737 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
29738
29739 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
29740 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
29741 {
29742 /* If it's a .thumb_func, declare it as so,
29743 otherwise tag label as .code 16. */
29744 if (THUMB_IS_FUNC (sym))
29745 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
29746 ST_BRANCH_TO_THUMB);
29747 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
29748 elf_sym->internal_elf_sym.st_info =
29749 ELF_ST_INFO (bind, STT_ARM_16BIT);
29750 }
29751 }
29752 }
29753
29754 /* Remove any overlapping mapping symbols generated by alignment frags. */
29755 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
29756 /* Now do generic ELF adjustments. */
29757 elf_adjust_symtab ();
29758 #endif
29759 }
29760
29761 /* MD interface: Initialization. */
29762
29763 static void
29764 set_constant_flonums (void)
29765 {
29766 int i;
29767
29768 for (i = 0; i < NUM_FLOAT_VALS; i++)
29769 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
29770 abort ();
29771 }
29772
29773 /* Auto-select Thumb mode if it's the only available instruction set for the
29774 given architecture. */
29775
29776 static void
29777 autoselect_thumb_from_cpu_variant (void)
29778 {
29779 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
29780 opcode_select (16);
29781 }
29782
29783 void
29784 md_begin (void)
29785 {
29786 unsigned mach;
29787 unsigned int i;
29788
29789 if ( (arm_ops_hsh = hash_new ()) == NULL
29790 || (arm_cond_hsh = hash_new ()) == NULL
29791 || (arm_vcond_hsh = hash_new ()) == NULL
29792 || (arm_shift_hsh = hash_new ()) == NULL
29793 || (arm_psr_hsh = hash_new ()) == NULL
29794 || (arm_v7m_psr_hsh = hash_new ()) == NULL
29795 || (arm_reg_hsh = hash_new ()) == NULL
29796 || (arm_reloc_hsh = hash_new ()) == NULL
29797 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
29798 as_fatal (_("virtual memory exhausted"));
29799
29800 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
29801 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
29802 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
29803 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
29804 for (i = 0; i < sizeof (vconds) / sizeof (struct asm_cond); i++)
29805 hash_insert (arm_vcond_hsh, vconds[i].template_name, (void *) (vconds + i));
29806 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
29807 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
29808 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
29809 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
29810 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
29811 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
29812 (void *) (v7m_psrs + i));
29813 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
29814 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
29815 for (i = 0;
29816 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
29817 i++)
29818 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
29819 (void *) (barrier_opt_names + i));
29820 #ifdef OBJ_ELF
29821 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
29822 {
29823 struct reloc_entry * entry = reloc_names + i;
29824
29825 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
29826 /* This makes encode_branch() use the EABI versions of this relocation. */
29827 entry->reloc = BFD_RELOC_UNUSED;
29828
29829 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
29830 }
29831 #endif
29832
29833 set_constant_flonums ();
29834
29835 /* Set the cpu variant based on the command-line options. We prefer
29836 -mcpu= over -march= if both are set (as for GCC); and we prefer
29837 -mfpu= over any other way of setting the floating point unit.
29838 Use of legacy options with new options are faulted. */
29839 if (legacy_cpu)
29840 {
29841 if (mcpu_cpu_opt || march_cpu_opt)
29842 as_bad (_("use of old and new-style options to set CPU type"));
29843
29844 selected_arch = *legacy_cpu;
29845 }
29846 else if (mcpu_cpu_opt)
29847 {
29848 selected_arch = *mcpu_cpu_opt;
29849 selected_ext = *mcpu_ext_opt;
29850 }
29851 else if (march_cpu_opt)
29852 {
29853 selected_arch = *march_cpu_opt;
29854 selected_ext = *march_ext_opt;
29855 }
29856 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
29857
29858 if (legacy_fpu)
29859 {
29860 if (mfpu_opt)
29861 as_bad (_("use of old and new-style options to set FPU type"));
29862
29863 selected_fpu = *legacy_fpu;
29864 }
29865 else if (mfpu_opt)
29866 selected_fpu = *mfpu_opt;
29867 else
29868 {
29869 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
29870 || defined (TE_NetBSD) || defined (TE_VXWORKS))
29871 /* Some environments specify a default FPU. If they don't, infer it
29872 from the processor. */
29873 if (mcpu_fpu_opt)
29874 selected_fpu = *mcpu_fpu_opt;
29875 else if (march_fpu_opt)
29876 selected_fpu = *march_fpu_opt;
29877 #else
29878 selected_fpu = fpu_default;
29879 #endif
29880 }
29881
29882 if (ARM_FEATURE_ZERO (selected_fpu))
29883 {
29884 if (!no_cpu_selected ())
29885 selected_fpu = fpu_default;
29886 else
29887 selected_fpu = fpu_arch_fpa;
29888 }
29889
29890 #ifdef CPU_DEFAULT
29891 if (ARM_FEATURE_ZERO (selected_arch))
29892 {
29893 selected_arch = cpu_default;
29894 selected_cpu = selected_arch;
29895 }
29896 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
29897 #else
29898 /* Autodection of feature mode: allow all features in cpu_variant but leave
29899 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
29900 after all instruction have been processed and we can decide what CPU
29901 should be selected. */
29902 if (ARM_FEATURE_ZERO (selected_arch))
29903 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
29904 else
29905 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
29906 #endif
29907
29908 autoselect_thumb_from_cpu_variant ();
29909
29910 arm_arch_used = thumb_arch_used = arm_arch_none;
29911
29912 #if defined OBJ_COFF || defined OBJ_ELF
29913 {
29914 unsigned int flags = 0;
29915
29916 #if defined OBJ_ELF
29917 flags = meabi_flags;
29918
29919 switch (meabi_flags)
29920 {
29921 case EF_ARM_EABI_UNKNOWN:
29922 #endif
29923 /* Set the flags in the private structure. */
29924 if (uses_apcs_26) flags |= F_APCS26;
29925 if (support_interwork) flags |= F_INTERWORK;
29926 if (uses_apcs_float) flags |= F_APCS_FLOAT;
29927 if (pic_code) flags |= F_PIC;
29928 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
29929 flags |= F_SOFT_FLOAT;
29930
29931 switch (mfloat_abi_opt)
29932 {
29933 case ARM_FLOAT_ABI_SOFT:
29934 case ARM_FLOAT_ABI_SOFTFP:
29935 flags |= F_SOFT_FLOAT;
29936 break;
29937
29938 case ARM_FLOAT_ABI_HARD:
29939 if (flags & F_SOFT_FLOAT)
29940 as_bad (_("hard-float conflicts with specified fpu"));
29941 break;
29942 }
29943
29944 /* Using pure-endian doubles (even if soft-float). */
29945 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
29946 flags |= F_VFP_FLOAT;
29947
29948 #if defined OBJ_ELF
29949 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
29950 flags |= EF_ARM_MAVERICK_FLOAT;
29951 break;
29952
29953 case EF_ARM_EABI_VER4:
29954 case EF_ARM_EABI_VER5:
29955 /* No additional flags to set. */
29956 break;
29957
29958 default:
29959 abort ();
29960 }
29961 #endif
29962 bfd_set_private_flags (stdoutput, flags);
29963
29964 /* We have run out flags in the COFF header to encode the
29965 status of ATPCS support, so instead we create a dummy,
29966 empty, debug section called .arm.atpcs. */
29967 if (atpcs)
29968 {
29969 asection * sec;
29970
29971 sec = bfd_make_section (stdoutput, ".arm.atpcs");
29972
29973 if (sec != NULL)
29974 {
29975 bfd_set_section_flags
29976 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
29977 bfd_set_section_size (stdoutput, sec, 0);
29978 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
29979 }
29980 }
29981 }
29982 #endif
29983
29984 /* Record the CPU type as well. */
29985 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
29986 mach = bfd_mach_arm_iWMMXt2;
29987 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
29988 mach = bfd_mach_arm_iWMMXt;
29989 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
29990 mach = bfd_mach_arm_XScale;
29991 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
29992 mach = bfd_mach_arm_ep9312;
29993 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
29994 mach = bfd_mach_arm_5TE;
29995 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
29996 {
29997 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
29998 mach = bfd_mach_arm_5T;
29999 else
30000 mach = bfd_mach_arm_5;
30001 }
30002 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
30003 {
30004 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
30005 mach = bfd_mach_arm_4T;
30006 else
30007 mach = bfd_mach_arm_4;
30008 }
30009 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
30010 mach = bfd_mach_arm_3M;
30011 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
30012 mach = bfd_mach_arm_3;
30013 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
30014 mach = bfd_mach_arm_2a;
30015 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
30016 mach = bfd_mach_arm_2;
30017 else
30018 mach = bfd_mach_arm_unknown;
30019
30020 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
30021 }
30022
30023 /* Command line processing. */
30024
30025 /* md_parse_option
30026 Invocation line includes a switch not recognized by the base assembler.
30027 See if it's a processor-specific option.
30028
30029 This routine is somewhat complicated by the need for backwards
30030 compatibility (since older releases of gcc can't be changed).
30031 The new options try to make the interface as compatible as
30032 possible with GCC.
30033
30034 New options (supported) are:
30035
30036 -mcpu=<cpu name> Assemble for selected processor
30037 -march=<architecture name> Assemble for selected architecture
30038 -mfpu=<fpu architecture> Assemble for selected FPU.
30039 -EB/-mbig-endian Big-endian
30040 -EL/-mlittle-endian Little-endian
30041 -k Generate PIC code
30042 -mthumb Start in Thumb mode
30043 -mthumb-interwork Code supports ARM/Thumb interworking
30044
30045 -m[no-]warn-deprecated Warn about deprecated features
30046 -m[no-]warn-syms Warn when symbols match instructions
30047
30048 For now we will also provide support for:
30049
30050 -mapcs-32 32-bit Program counter
30051 -mapcs-26 26-bit Program counter
30052 -macps-float Floats passed in FP registers
30053 -mapcs-reentrant Reentrant code
30054 -matpcs
30055 (sometime these will probably be replaced with -mapcs=<list of options>
30056 and -matpcs=<list of options>)
30057
30058 The remaining options are only supported for back-wards compatibility.
30059 Cpu variants, the arm part is optional:
30060 -m[arm]1 Currently not supported.
30061 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
30062 -m[arm]3 Arm 3 processor
30063 -m[arm]6[xx], Arm 6 processors
30064 -m[arm]7[xx][t][[d]m] Arm 7 processors
30065 -m[arm]8[10] Arm 8 processors
30066 -m[arm]9[20][tdmi] Arm 9 processors
30067 -mstrongarm[110[0]] StrongARM processors
30068 -mxscale XScale processors
30069 -m[arm]v[2345[t[e]]] Arm architectures
30070 -mall All (except the ARM1)
30071 FP variants:
30072 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
30073 -mfpe-old (No float load/store multiples)
30074 -mvfpxd VFP Single precision
30075 -mvfp All VFP
30076 -mno-fpu Disable all floating point instructions
30077
30078 The following CPU names are recognized:
30079 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
30080 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
30081 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
30082 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
30083 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
30084 arm10t arm10e, arm1020t, arm1020e, arm10200e,
30085 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
30086
30087 */
30088
30089 const char * md_shortopts = "m:k";
30090
30091 #ifdef ARM_BI_ENDIAN
30092 #define OPTION_EB (OPTION_MD_BASE + 0)
30093 #define OPTION_EL (OPTION_MD_BASE + 1)
30094 #else
30095 #if TARGET_BYTES_BIG_ENDIAN
30096 #define OPTION_EB (OPTION_MD_BASE + 0)
30097 #else
30098 #define OPTION_EL (OPTION_MD_BASE + 1)
30099 #endif
30100 #endif
30101 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
30102 #define OPTION_FDPIC (OPTION_MD_BASE + 3)
30103
30104 struct option md_longopts[] =
30105 {
30106 #ifdef OPTION_EB
30107 {"EB", no_argument, NULL, OPTION_EB},
30108 #endif
30109 #ifdef OPTION_EL
30110 {"EL", no_argument, NULL, OPTION_EL},
30111 #endif
30112 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
30113 #ifdef OBJ_ELF
30114 {"fdpic", no_argument, NULL, OPTION_FDPIC},
30115 #endif
30116 {NULL, no_argument, NULL, 0}
30117 };
30118
30119 size_t md_longopts_size = sizeof (md_longopts);
30120
30121 struct arm_option_table
30122 {
30123 const char * option; /* Option name to match. */
30124 const char * help; /* Help information. */
30125 int * var; /* Variable to change. */
30126 int value; /* What to change it to. */
30127 const char * deprecated; /* If non-null, print this message. */
30128 };
30129
30130 struct arm_option_table arm_opts[] =
30131 {
30132 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
30133 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
30134 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
30135 &support_interwork, 1, NULL},
30136 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
30137 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
30138 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
30139 1, NULL},
30140 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
30141 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
30142 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
30143 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
30144 NULL},
30145
30146 /* These are recognized by the assembler, but have no affect on code. */
30147 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
30148 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
30149
30150 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
30151 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
30152 &warn_on_deprecated, 0, NULL},
30153 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
30154 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
30155 {NULL, NULL, NULL, 0, NULL}
30156 };
30157
30158 struct arm_legacy_option_table
30159 {
30160 const char * option; /* Option name to match. */
30161 const arm_feature_set ** var; /* Variable to change. */
30162 const arm_feature_set value; /* What to change it to. */
30163 const char * deprecated; /* If non-null, print this message. */
30164 };
30165
30166 const struct arm_legacy_option_table arm_legacy_opts[] =
30167 {
30168 /* DON'T add any new processors to this list -- we want the whole list
30169 to go away... Add them to the processors table instead. */
30170 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
30171 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
30172 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
30173 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
30174 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
30175 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
30176 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
30177 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
30178 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
30179 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
30180 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
30181 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
30182 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
30183 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
30184 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
30185 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
30186 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
30187 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
30188 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
30189 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
30190 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
30191 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
30192 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
30193 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
30194 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
30195 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
30196 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
30197 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
30198 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
30199 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
30200 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
30201 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
30202 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
30203 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
30204 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
30205 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
30206 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
30207 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
30208 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
30209 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
30210 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
30211 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
30212 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
30213 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
30214 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
30215 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
30216 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
30217 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
30218 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
30219 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
30220 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
30221 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
30222 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
30223 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
30224 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
30225 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
30226 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
30227 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
30228 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
30229 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
30230 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
30231 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
30232 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
30233 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
30234 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
30235 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
30236 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
30237 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
30238 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
30239 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
30240 N_("use -mcpu=strongarm110")},
30241 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
30242 N_("use -mcpu=strongarm1100")},
30243 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
30244 N_("use -mcpu=strongarm1110")},
30245 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
30246 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
30247 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
30248
30249 /* Architecture variants -- don't add any more to this list either. */
30250 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
30251 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
30252 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
30253 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
30254 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
30255 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
30256 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
30257 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
30258 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
30259 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
30260 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
30261 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
30262 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
30263 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
30264 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
30265 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
30266 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
30267 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
30268
30269 /* Floating point variants -- don't add any more to this list either. */
30270 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
30271 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
30272 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
30273 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
30274 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
30275
30276 {NULL, NULL, ARM_ARCH_NONE, NULL}
30277 };
30278
30279 struct arm_cpu_option_table
30280 {
30281 const char * name;
30282 size_t name_len;
30283 const arm_feature_set value;
30284 const arm_feature_set ext;
30285 /* For some CPUs we assume an FPU unless the user explicitly sets
30286 -mfpu=... */
30287 const arm_feature_set default_fpu;
30288 /* The canonical name of the CPU, or NULL to use NAME converted to upper
30289 case. */
30290 const char * canonical_name;
30291 };
30292
30293 /* This list should, at a minimum, contain all the cpu names
30294 recognized by GCC. */
30295 #define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
30296
30297 static const struct arm_cpu_option_table arm_cpus[] =
30298 {
30299 ARM_CPU_OPT ("all", NULL, ARM_ANY,
30300 ARM_ARCH_NONE,
30301 FPU_ARCH_FPA),
30302 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
30303 ARM_ARCH_NONE,
30304 FPU_ARCH_FPA),
30305 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
30306 ARM_ARCH_NONE,
30307 FPU_ARCH_FPA),
30308 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
30309 ARM_ARCH_NONE,
30310 FPU_ARCH_FPA),
30311 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
30312 ARM_ARCH_NONE,
30313 FPU_ARCH_FPA),
30314 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
30315 ARM_ARCH_NONE,
30316 FPU_ARCH_FPA),
30317 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
30318 ARM_ARCH_NONE,
30319 FPU_ARCH_FPA),
30320 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
30321 ARM_ARCH_NONE,
30322 FPU_ARCH_FPA),
30323 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
30324 ARM_ARCH_NONE,
30325 FPU_ARCH_FPA),
30326 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
30327 ARM_ARCH_NONE,
30328 FPU_ARCH_FPA),
30329 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
30330 ARM_ARCH_NONE,
30331 FPU_ARCH_FPA),
30332 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
30333 ARM_ARCH_NONE,
30334 FPU_ARCH_FPA),
30335 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
30336 ARM_ARCH_NONE,
30337 FPU_ARCH_FPA),
30338 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
30339 ARM_ARCH_NONE,
30340 FPU_ARCH_FPA),
30341 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
30342 ARM_ARCH_NONE,
30343 FPU_ARCH_FPA),
30344 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
30345 ARM_ARCH_NONE,
30346 FPU_ARCH_FPA),
30347 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
30348 ARM_ARCH_NONE,
30349 FPU_ARCH_FPA),
30350 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
30351 ARM_ARCH_NONE,
30352 FPU_ARCH_FPA),
30353 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
30354 ARM_ARCH_NONE,
30355 FPU_ARCH_FPA),
30356 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
30357 ARM_ARCH_NONE,
30358 FPU_ARCH_FPA),
30359 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
30360 ARM_ARCH_NONE,
30361 FPU_ARCH_FPA),
30362 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
30363 ARM_ARCH_NONE,
30364 FPU_ARCH_FPA),
30365 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
30366 ARM_ARCH_NONE,
30367 FPU_ARCH_FPA),
30368 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
30369 ARM_ARCH_NONE,
30370 FPU_ARCH_FPA),
30371 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
30372 ARM_ARCH_NONE,
30373 FPU_ARCH_FPA),
30374 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
30375 ARM_ARCH_NONE,
30376 FPU_ARCH_FPA),
30377 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
30378 ARM_ARCH_NONE,
30379 FPU_ARCH_FPA),
30380 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
30381 ARM_ARCH_NONE,
30382 FPU_ARCH_FPA),
30383 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
30384 ARM_ARCH_NONE,
30385 FPU_ARCH_FPA),
30386 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
30387 ARM_ARCH_NONE,
30388 FPU_ARCH_FPA),
30389 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
30390 ARM_ARCH_NONE,
30391 FPU_ARCH_FPA),
30392 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
30393 ARM_ARCH_NONE,
30394 FPU_ARCH_FPA),
30395 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
30396 ARM_ARCH_NONE,
30397 FPU_ARCH_FPA),
30398 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
30399 ARM_ARCH_NONE,
30400 FPU_ARCH_FPA),
30401 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
30402 ARM_ARCH_NONE,
30403 FPU_ARCH_FPA),
30404 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
30405 ARM_ARCH_NONE,
30406 FPU_ARCH_FPA),
30407 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
30408 ARM_ARCH_NONE,
30409 FPU_ARCH_FPA),
30410 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
30411 ARM_ARCH_NONE,
30412 FPU_ARCH_FPA),
30413 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
30414 ARM_ARCH_NONE,
30415 FPU_ARCH_FPA),
30416 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
30417 ARM_ARCH_NONE,
30418 FPU_ARCH_FPA),
30419 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
30420 ARM_ARCH_NONE,
30421 FPU_ARCH_FPA),
30422 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
30423 ARM_ARCH_NONE,
30424 FPU_ARCH_FPA),
30425 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
30426 ARM_ARCH_NONE,
30427 FPU_ARCH_FPA),
30428 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
30429 ARM_ARCH_NONE,
30430 FPU_ARCH_FPA),
30431 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
30432 ARM_ARCH_NONE,
30433 FPU_ARCH_FPA),
30434 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
30435 ARM_ARCH_NONE,
30436 FPU_ARCH_FPA),
30437
30438 /* For V5 or later processors we default to using VFP; but the user
30439 should really set the FPU type explicitly. */
30440 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
30441 ARM_ARCH_NONE,
30442 FPU_ARCH_VFP_V2),
30443 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
30444 ARM_ARCH_NONE,
30445 FPU_ARCH_VFP_V2),
30446 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
30447 ARM_ARCH_NONE,
30448 FPU_ARCH_VFP_V2),
30449 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
30450 ARM_ARCH_NONE,
30451 FPU_ARCH_VFP_V2),
30452 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
30453 ARM_ARCH_NONE,
30454 FPU_ARCH_VFP_V2),
30455 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
30456 ARM_ARCH_NONE,
30457 FPU_ARCH_VFP_V2),
30458 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
30459 ARM_ARCH_NONE,
30460 FPU_ARCH_VFP_V2),
30461 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
30462 ARM_ARCH_NONE,
30463 FPU_ARCH_VFP_V2),
30464 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
30465 ARM_ARCH_NONE,
30466 FPU_ARCH_VFP_V2),
30467 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
30468 ARM_ARCH_NONE,
30469 FPU_ARCH_VFP_V2),
30470 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
30471 ARM_ARCH_NONE,
30472 FPU_ARCH_VFP_V2),
30473 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
30474 ARM_ARCH_NONE,
30475 FPU_ARCH_VFP_V2),
30476 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
30477 ARM_ARCH_NONE,
30478 FPU_ARCH_VFP_V1),
30479 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
30480 ARM_ARCH_NONE,
30481 FPU_ARCH_VFP_V1),
30482 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
30483 ARM_ARCH_NONE,
30484 FPU_ARCH_VFP_V2),
30485 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
30486 ARM_ARCH_NONE,
30487 FPU_ARCH_VFP_V2),
30488 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
30489 ARM_ARCH_NONE,
30490 FPU_ARCH_VFP_V1),
30491 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
30492 ARM_ARCH_NONE,
30493 FPU_ARCH_VFP_V2),
30494 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
30495 ARM_ARCH_NONE,
30496 FPU_ARCH_VFP_V2),
30497 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
30498 ARM_ARCH_NONE,
30499 FPU_ARCH_VFP_V2),
30500 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
30501 ARM_ARCH_NONE,
30502 FPU_ARCH_VFP_V2),
30503 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
30504 ARM_ARCH_NONE,
30505 FPU_ARCH_VFP_V2),
30506 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
30507 ARM_ARCH_NONE,
30508 FPU_ARCH_VFP_V2),
30509 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
30510 ARM_ARCH_NONE,
30511 FPU_ARCH_VFP_V2),
30512 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
30513 ARM_ARCH_NONE,
30514 FPU_ARCH_VFP_V2),
30515 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
30516 ARM_ARCH_NONE,
30517 FPU_ARCH_VFP_V2),
30518 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
30519 ARM_ARCH_NONE,
30520 FPU_NONE),
30521 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
30522 ARM_ARCH_NONE,
30523 FPU_NONE),
30524 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
30525 ARM_ARCH_NONE,
30526 FPU_ARCH_VFP_V2),
30527 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
30528 ARM_ARCH_NONE,
30529 FPU_ARCH_VFP_V2),
30530 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
30531 ARM_ARCH_NONE,
30532 FPU_ARCH_VFP_V2),
30533 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
30534 ARM_ARCH_NONE,
30535 FPU_NONE),
30536 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
30537 ARM_ARCH_NONE,
30538 FPU_NONE),
30539 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
30540 ARM_ARCH_NONE,
30541 FPU_ARCH_VFP_V2),
30542 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
30543 ARM_ARCH_NONE,
30544 FPU_NONE),
30545 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
30546 ARM_ARCH_NONE,
30547 FPU_ARCH_VFP_V2),
30548 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
30549 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
30550 FPU_NONE),
30551 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
30552 ARM_ARCH_NONE,
30553 FPU_ARCH_NEON_VFP_V4),
30554 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
30555 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
30556 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
30557 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
30558 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
30559 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
30560 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
30561 ARM_ARCH_NONE,
30562 FPU_ARCH_NEON_VFP_V4),
30563 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
30564 ARM_ARCH_NONE,
30565 FPU_ARCH_NEON_VFP_V4),
30566 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
30567 ARM_ARCH_NONE,
30568 FPU_ARCH_NEON_VFP_V4),
30569 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
30570 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30571 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30572 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
30573 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30574 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30575 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
30576 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30577 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30578 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
30579 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30580 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
30581 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
30582 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30583 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30584 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
30585 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30586 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30587 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
30588 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30589 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30590 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
30591 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30592 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
30593 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A,
30594 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30595 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
30596 ARM_CPU_OPT ("cortex-a76ae", "Cortex-A76AE", ARM_ARCH_V8_2A,
30597 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30598 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
30599 ARM_CPU_OPT ("cortex-a77", "Cortex-A77", ARM_ARCH_V8_2A,
30600 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30601 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
30602 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A,
30603 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30604 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
30605 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
30606 ARM_ARCH_NONE,
30607 FPU_NONE),
30608 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
30609 ARM_ARCH_NONE,
30610 FPU_ARCH_VFP_V3D16),
30611 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
30612 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
30613 FPU_NONE),
30614 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
30615 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
30616 FPU_ARCH_VFP_V3D16),
30617 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
30618 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
30619 FPU_ARCH_VFP_V3D16),
30620 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
30621 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30622 FPU_ARCH_NEON_VFP_ARMV8),
30623 ARM_CPU_OPT ("cortex-m35p", "Cortex-M35P", ARM_ARCH_V8M_MAIN,
30624 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30625 FPU_NONE),
30626 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
30627 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30628 FPU_NONE),
30629 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
30630 ARM_ARCH_NONE,
30631 FPU_NONE),
30632 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
30633 ARM_ARCH_NONE,
30634 FPU_NONE),
30635 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
30636 ARM_ARCH_NONE,
30637 FPU_NONE),
30638 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
30639 ARM_ARCH_NONE,
30640 FPU_NONE),
30641 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
30642 ARM_ARCH_NONE,
30643 FPU_NONE),
30644 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
30645 ARM_ARCH_NONE,
30646 FPU_NONE),
30647 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
30648 ARM_ARCH_NONE,
30649 FPU_NONE),
30650 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
30651 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30652 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30653 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A,
30654 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30655 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
30656 /* ??? XSCALE is really an architecture. */
30657 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
30658 ARM_ARCH_NONE,
30659 FPU_ARCH_VFP_V2),
30660
30661 /* ??? iwmmxt is not a processor. */
30662 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
30663 ARM_ARCH_NONE,
30664 FPU_ARCH_VFP_V2),
30665 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
30666 ARM_ARCH_NONE,
30667 FPU_ARCH_VFP_V2),
30668 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
30669 ARM_ARCH_NONE,
30670 FPU_ARCH_VFP_V2),
30671
30672 /* Maverick. */
30673 ARM_CPU_OPT ("ep9312", "ARM920T",
30674 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
30675 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
30676
30677 /* Marvell processors. */
30678 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
30679 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
30680 FPU_ARCH_VFP_V3D16),
30681 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
30682 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
30683 FPU_ARCH_NEON_VFP_V4),
30684
30685 /* APM X-Gene family. */
30686 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
30687 ARM_ARCH_NONE,
30688 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30689 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
30690 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30691 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30692
30693 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
30694 };
30695 #undef ARM_CPU_OPT
30696
30697 struct arm_ext_table
30698 {
30699 const char * name;
30700 size_t name_len;
30701 const arm_feature_set merge;
30702 const arm_feature_set clear;
30703 };
30704
30705 struct arm_arch_option_table
30706 {
30707 const char * name;
30708 size_t name_len;
30709 const arm_feature_set value;
30710 const arm_feature_set default_fpu;
30711 const struct arm_ext_table * ext_table;
30712 };
30713
30714 /* Used to add support for +E and +noE extension. */
30715 #define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
30716 /* Used to add support for a +E extension. */
30717 #define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
30718 /* Used to add support for a +noE extension. */
30719 #define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
30720
30721 #define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
30722 ~0 & ~FPU_ENDIAN_PURE)
30723
30724 static const struct arm_ext_table armv5te_ext_table[] =
30725 {
30726 ARM_EXT ("fp", FPU_ARCH_VFP_V2, ALL_FP),
30727 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30728 };
30729
30730 static const struct arm_ext_table armv7_ext_table[] =
30731 {
30732 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
30733 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30734 };
30735
30736 static const struct arm_ext_table armv7ve_ext_table[] =
30737 {
30738 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16, ALL_FP),
30739 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16),
30740 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
30741 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
30742 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
30743 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16), /* Alias for +fp. */
30744 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
30745
30746 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4,
30747 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
30748
30749 /* Aliases for +simd. */
30750 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
30751
30752 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30753 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30754 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
30755
30756 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30757 };
30758
30759 static const struct arm_ext_table armv7a_ext_table[] =
30760 {
30761 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
30762 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
30763 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
30764 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
30765 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
30766 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16),
30767 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
30768
30769 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1,
30770 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
30771
30772 /* Aliases for +simd. */
30773 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30774 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30775
30776 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
30777 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
30778
30779 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP)),
30780 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC)),
30781 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30782 };
30783
30784 static const struct arm_ext_table armv7r_ext_table[] =
30785 {
30786 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD),
30787 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD), /* Alias for +fp.sp. */
30788 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
30789 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
30790 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16),
30791 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
30792 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
30793 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV)),
30794 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30795 };
30796
30797 static const struct arm_ext_table armv7em_ext_table[] =
30798 {
30799 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16, ALL_FP),
30800 /* Alias for +fp, used to be known as fpv4-sp-d16. */
30801 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16),
30802 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16),
30803 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
30804 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16),
30805 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30806 };
30807
30808 static const struct arm_ext_table armv8a_ext_table[] =
30809 {
30810 ARM_ADD ("crc", ARCH_CRC_ARMV8),
30811 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
30812 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
30813 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30814
30815 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30816 should use the +simd option to turn on FP. */
30817 ARM_REMOVE ("fp", ALL_FP),
30818 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30819 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30820 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30821 };
30822
30823
30824 static const struct arm_ext_table armv81a_ext_table[] =
30825 {
30826 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
30827 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
30828 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30829
30830 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30831 should use the +simd option to turn on FP. */
30832 ARM_REMOVE ("fp", ALL_FP),
30833 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30834 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30835 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30836 };
30837
30838 static const struct arm_ext_table armv82a_ext_table[] =
30839 {
30840 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
30841 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16),
30842 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML),
30843 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
30844 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30845 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30846
30847 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30848 should use the +simd option to turn on FP. */
30849 ARM_REMOVE ("fp", ALL_FP),
30850 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30851 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30852 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30853 };
30854
30855 static const struct arm_ext_table armv84a_ext_table[] =
30856 {
30857 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30858 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
30859 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
30860 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30861
30862 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30863 should use the +simd option to turn on FP. */
30864 ARM_REMOVE ("fp", ALL_FP),
30865 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30866 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30867 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30868 };
30869
30870 static const struct arm_ext_table armv85a_ext_table[] =
30871 {
30872 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30873 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
30874 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
30875 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30876
30877 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30878 should use the +simd option to turn on FP. */
30879 ARM_REMOVE ("fp", ALL_FP),
30880 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30881 };
30882
30883 static const struct arm_ext_table armv8m_main_ext_table[] =
30884 {
30885 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30886 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
30887 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16, ALL_FP),
30888 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
30889 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30890 };
30891
30892 static const struct arm_ext_table armv8_1m_main_ext_table[] =
30893 {
30894 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30895 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
30896 ARM_EXT ("fp",
30897 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30898 FPU_VFP_V5_SP_D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA),
30899 ALL_FP),
30900 ARM_ADD ("fp.dp",
30901 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30902 FPU_VFP_V5D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
30903 ARM_EXT ("mve", ARM_FEATURE_COPROC (FPU_MVE),
30904 ARM_FEATURE_COPROC (FPU_MVE | FPU_MVE_FP)),
30905 ARM_ADD ("mve.fp",
30906 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30907 FPU_MVE | FPU_MVE_FP | FPU_VFP_V5_SP_D16 |
30908 FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
30909 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30910 };
30911
30912 static const struct arm_ext_table armv8r_ext_table[] =
30913 {
30914 ARM_ADD ("crc", ARCH_CRC_ARMV8),
30915 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
30916 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
30917 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30918 ARM_REMOVE ("fp", ALL_FP),
30919 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16),
30920 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30921 };
30922
30923 /* This list should, at a minimum, contain all the architecture names
30924 recognized by GCC. */
30925 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
30926 #define ARM_ARCH_OPT2(N, V, DF, ext) \
30927 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
30928
30929 static const struct arm_arch_option_table arm_archs[] =
30930 {
30931 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
30932 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
30933 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
30934 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
30935 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
30936 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
30937 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
30938 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
30939 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
30940 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
30941 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
30942 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
30943 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
30944 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
30945 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP, armv5te),
30946 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP, armv5te),
30947 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP, armv5te),
30948 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
30949 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
30950 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP, armv5te),
30951 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP, armv5te),
30952 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
30953 kept to preserve existing behaviour. */
30954 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
30955 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
30956 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP, armv5te),
30957 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP, armv5te),
30958 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP, armv5te),
30959 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
30960 kept to preserve existing behaviour. */
30961 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
30962 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
30963 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
30964 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
30965 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP, armv7),
30966 /* The official spelling of the ARMv7 profile variants is the dashed form.
30967 Accept the non-dashed form for compatibility with old toolchains. */
30968 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
30969 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP, armv7ve),
30970 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
30971 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
30972 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
30973 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
30974 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
30975 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP, armv7em),
30976 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
30977 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP,
30978 armv8m_main),
30979 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN, FPU_ARCH_VFP,
30980 armv8_1m_main),
30981 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP, armv8a),
30982 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP, armv81a),
30983 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP, armv82a),
30984 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP, armv82a),
30985 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP, armv8r),
30986 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP, armv84a),
30987 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A, FPU_ARCH_VFP, armv85a),
30988 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
30989 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
30990 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2, FPU_ARCH_VFP),
30991 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
30992 };
30993 #undef ARM_ARCH_OPT
30994
30995 /* ISA extensions in the co-processor and main instruction set space. */
30996
30997 struct arm_option_extension_value_table
30998 {
30999 const char * name;
31000 size_t name_len;
31001 const arm_feature_set merge_value;
31002 const arm_feature_set clear_value;
31003 /* List of architectures for which an extension is available. ARM_ARCH_NONE
31004 indicates that an extension is available for all architectures while
31005 ARM_ANY marks an empty entry. */
31006 const arm_feature_set allowed_archs[2];
31007 };
31008
31009 /* The following table must be in alphabetical order with a NULL last entry. */
31010
31011 #define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
31012 #define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
31013
31014 /* DEPRECATED: Refrain from using this table to add any new extensions, instead
31015 use the context sensitive approach using arm_ext_table's. */
31016 static const struct arm_option_extension_value_table arm_extensions[] =
31017 {
31018 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
31019 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
31020 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
31021 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
31022 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
31023 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
31024 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
31025 ARM_ARCH_V8_2A),
31026 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
31027 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
31028 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
31029 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
31030 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
31031 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
31032 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
31033 ARM_ARCH_V8_2A),
31034 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
31035 | ARM_EXT2_FP16_FML),
31036 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
31037 | ARM_EXT2_FP16_FML),
31038 ARM_ARCH_V8_2A),
31039 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
31040 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
31041 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
31042 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
31043 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
31044 Thumb divide instruction. Due to this having the same name as the
31045 previous entry, this will be ignored when doing command-line parsing and
31046 only considered by build attribute selection code. */
31047 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
31048 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
31049 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
31050 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
31051 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
31052 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
31053 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
31054 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
31055 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
31056 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
31057 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
31058 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
31059 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
31060 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
31061 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
31062 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
31063 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
31064 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
31065 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
31066 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
31067 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
31068 ARM_ARCH_V8A),
31069 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
31070 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
31071 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
31072 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
31073 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
31074 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
31075 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
31076 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
31077 ARM_ARCH_V8A),
31078 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
31079 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
31080 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
31081 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
31082 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
31083 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
31084 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
31085 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
31086 | ARM_EXT_DIV),
31087 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
31088 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
31089 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
31090 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
31091 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
31092 };
31093 #undef ARM_EXT_OPT
31094
31095 /* ISA floating-point and Advanced SIMD extensions. */
31096 struct arm_option_fpu_value_table
31097 {
31098 const char * name;
31099 const arm_feature_set value;
31100 };
31101
31102 /* This list should, at a minimum, contain all the fpu names
31103 recognized by GCC. */
31104 static const struct arm_option_fpu_value_table arm_fpus[] =
31105 {
31106 {"softfpa", FPU_NONE},
31107 {"fpe", FPU_ARCH_FPE},
31108 {"fpe2", FPU_ARCH_FPE},
31109 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
31110 {"fpa", FPU_ARCH_FPA},
31111 {"fpa10", FPU_ARCH_FPA},
31112 {"fpa11", FPU_ARCH_FPA},
31113 {"arm7500fe", FPU_ARCH_FPA},
31114 {"softvfp", FPU_ARCH_VFP},
31115 {"softvfp+vfp", FPU_ARCH_VFP_V2},
31116 {"vfp", FPU_ARCH_VFP_V2},
31117 {"vfp9", FPU_ARCH_VFP_V2},
31118 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
31119 {"vfp10", FPU_ARCH_VFP_V2},
31120 {"vfp10-r0", FPU_ARCH_VFP_V1},
31121 {"vfpxd", FPU_ARCH_VFP_V1xD},
31122 {"vfpv2", FPU_ARCH_VFP_V2},
31123 {"vfpv3", FPU_ARCH_VFP_V3},
31124 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
31125 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
31126 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
31127 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
31128 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
31129 {"arm1020t", FPU_ARCH_VFP_V1},
31130 {"arm1020e", FPU_ARCH_VFP_V2},
31131 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
31132 {"arm1136jf-s", FPU_ARCH_VFP_V2},
31133 {"maverick", FPU_ARCH_MAVERICK},
31134 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
31135 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
31136 {"neon-fp16", FPU_ARCH_NEON_FP16},
31137 {"vfpv4", FPU_ARCH_VFP_V4},
31138 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
31139 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
31140 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
31141 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
31142 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
31143 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
31144 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
31145 {"crypto-neon-fp-armv8",
31146 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
31147 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
31148 {"crypto-neon-fp-armv8.1",
31149 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
31150 {NULL, ARM_ARCH_NONE}
31151 };
31152
31153 struct arm_option_value_table
31154 {
31155 const char *name;
31156 long value;
31157 };
31158
31159 static const struct arm_option_value_table arm_float_abis[] =
31160 {
31161 {"hard", ARM_FLOAT_ABI_HARD},
31162 {"softfp", ARM_FLOAT_ABI_SOFTFP},
31163 {"soft", ARM_FLOAT_ABI_SOFT},
31164 {NULL, 0}
31165 };
31166
31167 #ifdef OBJ_ELF
31168 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
31169 static const struct arm_option_value_table arm_eabis[] =
31170 {
31171 {"gnu", EF_ARM_EABI_UNKNOWN},
31172 {"4", EF_ARM_EABI_VER4},
31173 {"5", EF_ARM_EABI_VER5},
31174 {NULL, 0}
31175 };
31176 #endif
31177
31178 struct arm_long_option_table
31179 {
31180 const char * option; /* Substring to match. */
31181 const char * help; /* Help information. */
31182 int (* func) (const char * subopt); /* Function to decode sub-option. */
31183 const char * deprecated; /* If non-null, print this message. */
31184 };
31185
31186 static bfd_boolean
31187 arm_parse_extension (const char *str, const arm_feature_set *opt_set,
31188 arm_feature_set *ext_set,
31189 const struct arm_ext_table *ext_table)
31190 {
31191 /* We insist on extensions being specified in alphabetical order, and with
31192 extensions being added before being removed. We achieve this by having
31193 the global ARM_EXTENSIONS table in alphabetical order, and using the
31194 ADDING_VALUE variable to indicate whether we are adding an extension (1)
31195 or removing it (0) and only allowing it to change in the order
31196 -1 -> 1 -> 0. */
31197 const struct arm_option_extension_value_table * opt = NULL;
31198 const arm_feature_set arm_any = ARM_ANY;
31199 int adding_value = -1;
31200
31201 while (str != NULL && *str != 0)
31202 {
31203 const char *ext;
31204 size_t len;
31205
31206 if (*str != '+')
31207 {
31208 as_bad (_("invalid architectural extension"));
31209 return FALSE;
31210 }
31211
31212 str++;
31213 ext = strchr (str, '+');
31214
31215 if (ext != NULL)
31216 len = ext - str;
31217 else
31218 len = strlen (str);
31219
31220 if (len >= 2 && strncmp (str, "no", 2) == 0)
31221 {
31222 if (adding_value != 0)
31223 {
31224 adding_value = 0;
31225 opt = arm_extensions;
31226 }
31227
31228 len -= 2;
31229 str += 2;
31230 }
31231 else if (len > 0)
31232 {
31233 if (adding_value == -1)
31234 {
31235 adding_value = 1;
31236 opt = arm_extensions;
31237 }
31238 else if (adding_value != 1)
31239 {
31240 as_bad (_("must specify extensions to add before specifying "
31241 "those to remove"));
31242 return FALSE;
31243 }
31244 }
31245
31246 if (len == 0)
31247 {
31248 as_bad (_("missing architectural extension"));
31249 return FALSE;
31250 }
31251
31252 gas_assert (adding_value != -1);
31253 gas_assert (opt != NULL);
31254
31255 if (ext_table != NULL)
31256 {
31257 const struct arm_ext_table * ext_opt = ext_table;
31258 bfd_boolean found = FALSE;
31259 for (; ext_opt->name != NULL; ext_opt++)
31260 if (ext_opt->name_len == len
31261 && strncmp (ext_opt->name, str, len) == 0)
31262 {
31263 if (adding_value)
31264 {
31265 if (ARM_FEATURE_ZERO (ext_opt->merge))
31266 /* TODO: Option not supported. When we remove the
31267 legacy table this case should error out. */
31268 continue;
31269
31270 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, ext_opt->merge);
31271 }
31272 else
31273 {
31274 if (ARM_FEATURE_ZERO (ext_opt->clear))
31275 /* TODO: Option not supported. When we remove the
31276 legacy table this case should error out. */
31277 continue;
31278 ARM_CLEAR_FEATURE (*ext_set, *ext_set, ext_opt->clear);
31279 }
31280 found = TRUE;
31281 break;
31282 }
31283 if (found)
31284 {
31285 str = ext;
31286 continue;
31287 }
31288 }
31289
31290 /* Scan over the options table trying to find an exact match. */
31291 for (; opt->name != NULL; opt++)
31292 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
31293 {
31294 int i, nb_allowed_archs =
31295 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
31296 /* Check we can apply the extension to this architecture. */
31297 for (i = 0; i < nb_allowed_archs; i++)
31298 {
31299 /* Empty entry. */
31300 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
31301 continue;
31302 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
31303 break;
31304 }
31305 if (i == nb_allowed_archs)
31306 {
31307 as_bad (_("extension does not apply to the base architecture"));
31308 return FALSE;
31309 }
31310
31311 /* Add or remove the extension. */
31312 if (adding_value)
31313 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
31314 else
31315 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
31316
31317 /* Allowing Thumb division instructions for ARMv7 in autodetection
31318 rely on this break so that duplicate extensions (extensions
31319 with the same name as a previous extension in the list) are not
31320 considered for command-line parsing. */
31321 break;
31322 }
31323
31324 if (opt->name == NULL)
31325 {
31326 /* Did we fail to find an extension because it wasn't specified in
31327 alphabetical order, or because it does not exist? */
31328
31329 for (opt = arm_extensions; opt->name != NULL; opt++)
31330 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
31331 break;
31332
31333 if (opt->name == NULL)
31334 as_bad (_("unknown architectural extension `%s'"), str);
31335 else
31336 as_bad (_("architectural extensions must be specified in "
31337 "alphabetical order"));
31338
31339 return FALSE;
31340 }
31341 else
31342 {
31343 /* We should skip the extension we've just matched the next time
31344 round. */
31345 opt++;
31346 }
31347
31348 str = ext;
31349 };
31350
31351 return TRUE;
31352 }
31353
31354 static bfd_boolean
31355 arm_parse_fp16_opt (const char *str)
31356 {
31357 if (strcasecmp (str, "ieee") == 0)
31358 fp16_format = ARM_FP16_FORMAT_IEEE;
31359 else if (strcasecmp (str, "alternative") == 0)
31360 fp16_format = ARM_FP16_FORMAT_ALTERNATIVE;
31361 else
31362 {
31363 as_bad (_("unrecognised float16 format \"%s\""), str);
31364 return FALSE;
31365 }
31366
31367 return TRUE;
31368 }
31369
31370 static bfd_boolean
31371 arm_parse_cpu (const char *str)
31372 {
31373 const struct arm_cpu_option_table *opt;
31374 const char *ext = strchr (str, '+');
31375 size_t len;
31376
31377 if (ext != NULL)
31378 len = ext - str;
31379 else
31380 len = strlen (str);
31381
31382 if (len == 0)
31383 {
31384 as_bad (_("missing cpu name `%s'"), str);
31385 return FALSE;
31386 }
31387
31388 for (opt = arm_cpus; opt->name != NULL; opt++)
31389 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
31390 {
31391 mcpu_cpu_opt = &opt->value;
31392 if (mcpu_ext_opt == NULL)
31393 mcpu_ext_opt = XNEW (arm_feature_set);
31394 *mcpu_ext_opt = opt->ext;
31395 mcpu_fpu_opt = &opt->default_fpu;
31396 if (opt->canonical_name)
31397 {
31398 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
31399 strcpy (selected_cpu_name, opt->canonical_name);
31400 }
31401 else
31402 {
31403 size_t i;
31404
31405 if (len >= sizeof selected_cpu_name)
31406 len = (sizeof selected_cpu_name) - 1;
31407
31408 for (i = 0; i < len; i++)
31409 selected_cpu_name[i] = TOUPPER (opt->name[i]);
31410 selected_cpu_name[i] = 0;
31411 }
31412
31413 if (ext != NULL)
31414 return arm_parse_extension (ext, mcpu_cpu_opt, mcpu_ext_opt, NULL);
31415
31416 return TRUE;
31417 }
31418
31419 as_bad (_("unknown cpu `%s'"), str);
31420 return FALSE;
31421 }
31422
31423 static bfd_boolean
31424 arm_parse_arch (const char *str)
31425 {
31426 const struct arm_arch_option_table *opt;
31427 const char *ext = strchr (str, '+');
31428 size_t len;
31429
31430 if (ext != NULL)
31431 len = ext - str;
31432 else
31433 len = strlen (str);
31434
31435 if (len == 0)
31436 {
31437 as_bad (_("missing architecture name `%s'"), str);
31438 return FALSE;
31439 }
31440
31441 for (opt = arm_archs; opt->name != NULL; opt++)
31442 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
31443 {
31444 march_cpu_opt = &opt->value;
31445 if (march_ext_opt == NULL)
31446 march_ext_opt = XNEW (arm_feature_set);
31447 *march_ext_opt = arm_arch_none;
31448 march_fpu_opt = &opt->default_fpu;
31449 strcpy (selected_cpu_name, opt->name);
31450
31451 if (ext != NULL)
31452 return arm_parse_extension (ext, march_cpu_opt, march_ext_opt,
31453 opt->ext_table);
31454
31455 return TRUE;
31456 }
31457
31458 as_bad (_("unknown architecture `%s'\n"), str);
31459 return FALSE;
31460 }
31461
31462 static bfd_boolean
31463 arm_parse_fpu (const char * str)
31464 {
31465 const struct arm_option_fpu_value_table * opt;
31466
31467 for (opt = arm_fpus; opt->name != NULL; opt++)
31468 if (streq (opt->name, str))
31469 {
31470 mfpu_opt = &opt->value;
31471 return TRUE;
31472 }
31473
31474 as_bad (_("unknown floating point format `%s'\n"), str);
31475 return FALSE;
31476 }
31477
31478 static bfd_boolean
31479 arm_parse_float_abi (const char * str)
31480 {
31481 const struct arm_option_value_table * opt;
31482
31483 for (opt = arm_float_abis; opt->name != NULL; opt++)
31484 if (streq (opt->name, str))
31485 {
31486 mfloat_abi_opt = opt->value;
31487 return TRUE;
31488 }
31489
31490 as_bad (_("unknown floating point abi `%s'\n"), str);
31491 return FALSE;
31492 }
31493
31494 #ifdef OBJ_ELF
31495 static bfd_boolean
31496 arm_parse_eabi (const char * str)
31497 {
31498 const struct arm_option_value_table *opt;
31499
31500 for (opt = arm_eabis; opt->name != NULL; opt++)
31501 if (streq (opt->name, str))
31502 {
31503 meabi_flags = opt->value;
31504 return TRUE;
31505 }
31506 as_bad (_("unknown EABI `%s'\n"), str);
31507 return FALSE;
31508 }
31509 #endif
31510
31511 static bfd_boolean
31512 arm_parse_it_mode (const char * str)
31513 {
31514 bfd_boolean ret = TRUE;
31515
31516 if (streq ("arm", str))
31517 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
31518 else if (streq ("thumb", str))
31519 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
31520 else if (streq ("always", str))
31521 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
31522 else if (streq ("never", str))
31523 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
31524 else
31525 {
31526 as_bad (_("unknown implicit IT mode `%s', should be "\
31527 "arm, thumb, always, or never."), str);
31528 ret = FALSE;
31529 }
31530
31531 return ret;
31532 }
31533
31534 static bfd_boolean
31535 arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
31536 {
31537 codecomposer_syntax = TRUE;
31538 arm_comment_chars[0] = ';';
31539 arm_line_separator_chars[0] = 0;
31540 return TRUE;
31541 }
31542
31543 struct arm_long_option_table arm_long_opts[] =
31544 {
31545 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
31546 arm_parse_cpu, NULL},
31547 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
31548 arm_parse_arch, NULL},
31549 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
31550 arm_parse_fpu, NULL},
31551 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
31552 arm_parse_float_abi, NULL},
31553 #ifdef OBJ_ELF
31554 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
31555 arm_parse_eabi, NULL},
31556 #endif
31557 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
31558 arm_parse_it_mode, NULL},
31559 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
31560 arm_ccs_mode, NULL},
31561 {"mfp16-format=",
31562 N_("[ieee|alternative]\n\
31563 set the encoding for half precision floating point "
31564 "numbers to IEEE\n\
31565 or Arm alternative format."),
31566 arm_parse_fp16_opt, NULL },
31567 {NULL, NULL, 0, NULL}
31568 };
31569
31570 int
31571 md_parse_option (int c, const char * arg)
31572 {
31573 struct arm_option_table *opt;
31574 const struct arm_legacy_option_table *fopt;
31575 struct arm_long_option_table *lopt;
31576
31577 switch (c)
31578 {
31579 #ifdef OPTION_EB
31580 case OPTION_EB:
31581 target_big_endian = 1;
31582 break;
31583 #endif
31584
31585 #ifdef OPTION_EL
31586 case OPTION_EL:
31587 target_big_endian = 0;
31588 break;
31589 #endif
31590
31591 case OPTION_FIX_V4BX:
31592 fix_v4bx = TRUE;
31593 break;
31594
31595 #ifdef OBJ_ELF
31596 case OPTION_FDPIC:
31597 arm_fdpic = TRUE;
31598 break;
31599 #endif /* OBJ_ELF */
31600
31601 case 'a':
31602 /* Listing option. Just ignore these, we don't support additional
31603 ones. */
31604 return 0;
31605
31606 default:
31607 for (opt = arm_opts; opt->option != NULL; opt++)
31608 {
31609 if (c == opt->option[0]
31610 && ((arg == NULL && opt->option[1] == 0)
31611 || streq (arg, opt->option + 1)))
31612 {
31613 /* If the option is deprecated, tell the user. */
31614 if (warn_on_deprecated && opt->deprecated != NULL)
31615 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
31616 arg ? arg : "", _(opt->deprecated));
31617
31618 if (opt->var != NULL)
31619 *opt->var = opt->value;
31620
31621 return 1;
31622 }
31623 }
31624
31625 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
31626 {
31627 if (c == fopt->option[0]
31628 && ((arg == NULL && fopt->option[1] == 0)
31629 || streq (arg, fopt->option + 1)))
31630 {
31631 /* If the option is deprecated, tell the user. */
31632 if (warn_on_deprecated && fopt->deprecated != NULL)
31633 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
31634 arg ? arg : "", _(fopt->deprecated));
31635
31636 if (fopt->var != NULL)
31637 *fopt->var = &fopt->value;
31638
31639 return 1;
31640 }
31641 }
31642
31643 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
31644 {
31645 /* These options are expected to have an argument. */
31646 if (c == lopt->option[0]
31647 && arg != NULL
31648 && strncmp (arg, lopt->option + 1,
31649 strlen (lopt->option + 1)) == 0)
31650 {
31651 /* If the option is deprecated, tell the user. */
31652 if (warn_on_deprecated && lopt->deprecated != NULL)
31653 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
31654 _(lopt->deprecated));
31655
31656 /* Call the sup-option parser. */
31657 return lopt->func (arg + strlen (lopt->option) - 1);
31658 }
31659 }
31660
31661 return 0;
31662 }
31663
31664 return 1;
31665 }
31666
31667 void
31668 md_show_usage (FILE * fp)
31669 {
31670 struct arm_option_table *opt;
31671 struct arm_long_option_table *lopt;
31672
31673 fprintf (fp, _(" ARM-specific assembler options:\n"));
31674
31675 for (opt = arm_opts; opt->option != NULL; opt++)
31676 if (opt->help != NULL)
31677 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
31678
31679 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
31680 if (lopt->help != NULL)
31681 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
31682
31683 #ifdef OPTION_EB
31684 fprintf (fp, _("\
31685 -EB assemble code for a big-endian cpu\n"));
31686 #endif
31687
31688 #ifdef OPTION_EL
31689 fprintf (fp, _("\
31690 -EL assemble code for a little-endian cpu\n"));
31691 #endif
31692
31693 fprintf (fp, _("\
31694 --fix-v4bx Allow BX in ARMv4 code\n"));
31695
31696 #ifdef OBJ_ELF
31697 fprintf (fp, _("\
31698 --fdpic generate an FDPIC object file\n"));
31699 #endif /* OBJ_ELF */
31700 }
31701
31702 #ifdef OBJ_ELF
31703
31704 typedef struct
31705 {
31706 int val;
31707 arm_feature_set flags;
31708 } cpu_arch_ver_table;
31709
31710 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
31711 chronologically for architectures, with an exception for ARMv6-M and
31712 ARMv6S-M due to legacy reasons. No new architecture should have a
31713 special case. This allows for build attribute selection results to be
31714 stable when new architectures are added. */
31715 static const cpu_arch_ver_table cpu_arch_ver[] =
31716 {
31717 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V1},
31718 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2},
31719 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2S},
31720 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3},
31721 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3M},
31722 {TAG_CPU_ARCH_V4, ARM_ARCH_V4xM},
31723 {TAG_CPU_ARCH_V4, ARM_ARCH_V4},
31724 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4TxM},
31725 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4T},
31726 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5xM},
31727 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5},
31728 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5TxM},
31729 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5T},
31730 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TExP},
31731 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TE},
31732 {TAG_CPU_ARCH_V5TEJ, ARM_ARCH_V5TEJ},
31733 {TAG_CPU_ARCH_V6, ARM_ARCH_V6},
31734 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6Z},
31735 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6KZ},
31736 {TAG_CPU_ARCH_V6K, ARM_ARCH_V6K},
31737 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6T2},
31738 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KT2},
31739 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6ZT2},
31740 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KZT2},
31741
31742 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
31743 always selected build attributes to match those of ARMv6-M
31744 (resp. ARMv6S-M). However, due to these architectures being a strict
31745 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
31746 would be selected when fully respecting chronology of architectures.
31747 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
31748 move them before ARMv7 architectures. */
31749 {TAG_CPU_ARCH_V6_M, ARM_ARCH_V6M},
31750 {TAG_CPU_ARCH_V6S_M, ARM_ARCH_V6SM},
31751
31752 {TAG_CPU_ARCH_V7, ARM_ARCH_V7},
31753 {TAG_CPU_ARCH_V7, ARM_ARCH_V7A},
31754 {TAG_CPU_ARCH_V7, ARM_ARCH_V7R},
31755 {TAG_CPU_ARCH_V7, ARM_ARCH_V7M},
31756 {TAG_CPU_ARCH_V7, ARM_ARCH_V7VE},
31757 {TAG_CPU_ARCH_V7E_M, ARM_ARCH_V7EM},
31758 {TAG_CPU_ARCH_V8, ARM_ARCH_V8A},
31759 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_1A},
31760 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_2A},
31761 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_3A},
31762 {TAG_CPU_ARCH_V8M_BASE, ARM_ARCH_V8M_BASE},
31763 {TAG_CPU_ARCH_V8M_MAIN, ARM_ARCH_V8M_MAIN},
31764 {TAG_CPU_ARCH_V8R, ARM_ARCH_V8R},
31765 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_4A},
31766 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_5A},
31767 {TAG_CPU_ARCH_V8_1M_MAIN, ARM_ARCH_V8_1M_MAIN},
31768 {-1, ARM_ARCH_NONE}
31769 };
31770
31771 /* Set an attribute if it has not already been set by the user. */
31772
31773 static void
31774 aeabi_set_attribute_int (int tag, int value)
31775 {
31776 if (tag < 1
31777 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
31778 || !attributes_set_explicitly[tag])
31779 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
31780 }
31781
31782 static void
31783 aeabi_set_attribute_string (int tag, const char *value)
31784 {
31785 if (tag < 1
31786 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
31787 || !attributes_set_explicitly[tag])
31788 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
31789 }
31790
31791 /* Return whether features in the *NEEDED feature set are available via
31792 extensions for the architecture whose feature set is *ARCH_FSET. */
31793
31794 static bfd_boolean
31795 have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
31796 const arm_feature_set *needed)
31797 {
31798 int i, nb_allowed_archs;
31799 arm_feature_set ext_fset;
31800 const struct arm_option_extension_value_table *opt;
31801
31802 ext_fset = arm_arch_none;
31803 for (opt = arm_extensions; opt->name != NULL; opt++)
31804 {
31805 /* Extension does not provide any feature we need. */
31806 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
31807 continue;
31808
31809 nb_allowed_archs =
31810 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
31811 for (i = 0; i < nb_allowed_archs; i++)
31812 {
31813 /* Empty entry. */
31814 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
31815 break;
31816
31817 /* Extension is available, add it. */
31818 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
31819 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
31820 }
31821 }
31822
31823 /* Can we enable all features in *needed? */
31824 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
31825 }
31826
31827 /* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
31828 a given architecture feature set *ARCH_EXT_FSET including extension feature
31829 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
31830 - if true, check for an exact match of the architecture modulo extensions;
31831 - otherwise, select build attribute value of the first superset
31832 architecture released so that results remains stable when new architectures
31833 are added.
31834 For -march/-mcpu=all the build attribute value of the most featureful
31835 architecture is returned. Tag_CPU_arch_profile result is returned in
31836 PROFILE. */
31837
31838 static int
31839 get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
31840 const arm_feature_set *ext_fset,
31841 char *profile, int exact_match)
31842 {
31843 arm_feature_set arch_fset;
31844 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
31845
31846 /* Select most featureful architecture with all its extensions if building
31847 for -march=all as the feature sets used to set build attributes. */
31848 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
31849 {
31850 /* Force revisiting of decision for each new architecture. */
31851 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8_1M_MAIN);
31852 *profile = 'A';
31853 return TAG_CPU_ARCH_V8;
31854 }
31855
31856 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
31857
31858 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
31859 {
31860 arm_feature_set known_arch_fset;
31861
31862 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
31863 if (exact_match)
31864 {
31865 /* Base architecture match user-specified architecture and
31866 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
31867 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
31868 {
31869 p_ver_ret = p_ver;
31870 goto found;
31871 }
31872 /* Base architecture match user-specified architecture only
31873 (eg. ARMv6-M in the same case as above). Record it in case we
31874 find a match with above condition. */
31875 else if (p_ver_ret == NULL
31876 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
31877 p_ver_ret = p_ver;
31878 }
31879 else
31880 {
31881
31882 /* Architecture has all features wanted. */
31883 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
31884 {
31885 arm_feature_set added_fset;
31886
31887 /* Compute features added by this architecture over the one
31888 recorded in p_ver_ret. */
31889 if (p_ver_ret != NULL)
31890 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
31891 p_ver_ret->flags);
31892 /* First architecture that match incl. with extensions, or the
31893 only difference in features over the recorded match is
31894 features that were optional and are now mandatory. */
31895 if (p_ver_ret == NULL
31896 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
31897 {
31898 p_ver_ret = p_ver;
31899 goto found;
31900 }
31901 }
31902 else if (p_ver_ret == NULL)
31903 {
31904 arm_feature_set needed_ext_fset;
31905
31906 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
31907
31908 /* Architecture has all features needed when using some
31909 extensions. Record it and continue searching in case there
31910 exist an architecture providing all needed features without
31911 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
31912 OS extension). */
31913 if (have_ext_for_needed_feat_p (&known_arch_fset,
31914 &needed_ext_fset))
31915 p_ver_ret = p_ver;
31916 }
31917 }
31918 }
31919
31920 if (p_ver_ret == NULL)
31921 return -1;
31922
31923 found:
31924 /* Tag_CPU_arch_profile. */
31925 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
31926 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
31927 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
31928 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
31929 *profile = 'A';
31930 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
31931 *profile = 'R';
31932 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
31933 *profile = 'M';
31934 else
31935 *profile = '\0';
31936 return p_ver_ret->val;
31937 }
31938
31939 /* Set the public EABI object attributes. */
31940
31941 static void
31942 aeabi_set_public_attributes (void)
31943 {
31944 char profile = '\0';
31945 int arch = -1;
31946 int virt_sec = 0;
31947 int fp16_optional = 0;
31948 int skip_exact_match = 0;
31949 arm_feature_set flags, flags_arch, flags_ext;
31950
31951 /* Autodetection mode, choose the architecture based the instructions
31952 actually used. */
31953 if (no_cpu_selected ())
31954 {
31955 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
31956
31957 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
31958 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
31959
31960 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
31961 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
31962
31963 /* Code run during relaxation relies on selected_cpu being set. */
31964 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
31965 flags_ext = arm_arch_none;
31966 ARM_CLEAR_FEATURE (selected_arch, flags_arch, flags_ext);
31967 selected_ext = flags_ext;
31968 selected_cpu = flags;
31969 }
31970 /* Otherwise, choose the architecture based on the capabilities of the
31971 requested cpu. */
31972 else
31973 {
31974 ARM_MERGE_FEATURE_SETS (flags_arch, selected_arch, selected_ext);
31975 ARM_CLEAR_FEATURE (flags_arch, flags_arch, fpu_any);
31976 flags_ext = selected_ext;
31977 flags = selected_cpu;
31978 }
31979 ARM_MERGE_FEATURE_SETS (flags, flags, selected_fpu);
31980
31981 /* Allow the user to override the reported architecture. */
31982 if (!ARM_FEATURE_ZERO (selected_object_arch))
31983 {
31984 ARM_CLEAR_FEATURE (flags_arch, selected_object_arch, fpu_any);
31985 flags_ext = arm_arch_none;
31986 }
31987 else
31988 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
31989
31990 /* When this function is run again after relaxation has happened there is no
31991 way to determine whether an architecture or CPU was specified by the user:
31992 - selected_cpu is set above for relaxation to work;
31993 - march_cpu_opt is not set if only -mcpu or .cpu is used;
31994 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
31995 Therefore, if not in -march=all case we first try an exact match and fall
31996 back to autodetection. */
31997 if (!skip_exact_match)
31998 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
31999 if (arch == -1)
32000 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
32001 if (arch == -1)
32002 as_bad (_("no architecture contains all the instructions used\n"));
32003
32004 /* Tag_CPU_name. */
32005 if (selected_cpu_name[0])
32006 {
32007 char *q;
32008
32009 q = selected_cpu_name;
32010 if (strncmp (q, "armv", 4) == 0)
32011 {
32012 int i;
32013
32014 q += 4;
32015 for (i = 0; q[i]; i++)
32016 q[i] = TOUPPER (q[i]);
32017 }
32018 aeabi_set_attribute_string (Tag_CPU_name, q);
32019 }
32020
32021 /* Tag_CPU_arch. */
32022 aeabi_set_attribute_int (Tag_CPU_arch, arch);
32023
32024 /* Tag_CPU_arch_profile. */
32025 if (profile != '\0')
32026 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
32027
32028 /* Tag_DSP_extension. */
32029 if (ARM_CPU_HAS_FEATURE (selected_ext, arm_ext_dsp))
32030 aeabi_set_attribute_int (Tag_DSP_extension, 1);
32031
32032 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
32033 /* Tag_ARM_ISA_use. */
32034 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
32035 || ARM_FEATURE_ZERO (flags_arch))
32036 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
32037
32038 /* Tag_THUMB_ISA_use. */
32039 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
32040 || ARM_FEATURE_ZERO (flags_arch))
32041 {
32042 int thumb_isa_use;
32043
32044 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
32045 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
32046 thumb_isa_use = 3;
32047 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
32048 thumb_isa_use = 2;
32049 else
32050 thumb_isa_use = 1;
32051 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
32052 }
32053
32054 /* Tag_VFP_arch. */
32055 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
32056 aeabi_set_attribute_int (Tag_VFP_arch,
32057 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
32058 ? 7 : 8);
32059 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
32060 aeabi_set_attribute_int (Tag_VFP_arch,
32061 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
32062 ? 5 : 6);
32063 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
32064 {
32065 fp16_optional = 1;
32066 aeabi_set_attribute_int (Tag_VFP_arch, 3);
32067 }
32068 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
32069 {
32070 aeabi_set_attribute_int (Tag_VFP_arch, 4);
32071 fp16_optional = 1;
32072 }
32073 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
32074 aeabi_set_attribute_int (Tag_VFP_arch, 2);
32075 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
32076 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
32077 aeabi_set_attribute_int (Tag_VFP_arch, 1);
32078
32079 /* Tag_ABI_HardFP_use. */
32080 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
32081 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
32082 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
32083
32084 /* Tag_WMMX_arch. */
32085 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
32086 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
32087 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
32088 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
32089
32090 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
32091 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
32092 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
32093 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
32094 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
32095 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
32096 {
32097 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
32098 {
32099 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
32100 }
32101 else
32102 {
32103 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
32104 fp16_optional = 1;
32105 }
32106 }
32107
32108 if (ARM_CPU_HAS_FEATURE (flags, mve_fp_ext))
32109 aeabi_set_attribute_int (Tag_MVE_arch, 2);
32110 else if (ARM_CPU_HAS_FEATURE (flags, mve_ext))
32111 aeabi_set_attribute_int (Tag_MVE_arch, 1);
32112
32113 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
32114 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
32115 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
32116
32117 /* Tag_DIV_use.
32118
32119 We set Tag_DIV_use to two when integer divide instructions have been used
32120 in ARM state, or when Thumb integer divide instructions have been used,
32121 but we have no architecture profile set, nor have we any ARM instructions.
32122
32123 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
32124 by the base architecture.
32125
32126 For new architectures we will have to check these tests. */
32127 gas_assert (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
32128 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
32129 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
32130 aeabi_set_attribute_int (Tag_DIV_use, 0);
32131 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
32132 || (profile == '\0'
32133 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
32134 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
32135 aeabi_set_attribute_int (Tag_DIV_use, 2);
32136
32137 /* Tag_MP_extension_use. */
32138 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
32139 aeabi_set_attribute_int (Tag_MPextension_use, 1);
32140
32141 /* Tag Virtualization_use. */
32142 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
32143 virt_sec |= 1;
32144 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
32145 virt_sec |= 2;
32146 if (virt_sec != 0)
32147 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
32148
32149 if (fp16_format != ARM_FP16_FORMAT_DEFAULT)
32150 aeabi_set_attribute_int (Tag_ABI_FP_16bit_format, fp16_format);
32151 }
32152
32153 /* Post relaxation hook. Recompute ARM attributes now that relaxation is
32154 finished and free extension feature bits which will not be used anymore. */
32155
32156 void
32157 arm_md_post_relax (void)
32158 {
32159 aeabi_set_public_attributes ();
32160 XDELETE (mcpu_ext_opt);
32161 mcpu_ext_opt = NULL;
32162 XDELETE (march_ext_opt);
32163 march_ext_opt = NULL;
32164 }
32165
32166 /* Add the default contents for the .ARM.attributes section. */
32167
32168 void
32169 arm_md_end (void)
32170 {
32171 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
32172 return;
32173
32174 aeabi_set_public_attributes ();
32175 }
32176 #endif /* OBJ_ELF */
32177
32178 /* Parse a .cpu directive. */
32179
32180 static void
32181 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
32182 {
32183 const struct arm_cpu_option_table *opt;
32184 char *name;
32185 char saved_char;
32186
32187 name = input_line_pointer;
32188 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
32189 input_line_pointer++;
32190 saved_char = *input_line_pointer;
32191 *input_line_pointer = 0;
32192
32193 /* Skip the first "all" entry. */
32194 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
32195 if (streq (opt->name, name))
32196 {
32197 selected_arch = opt->value;
32198 selected_ext = opt->ext;
32199 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
32200 if (opt->canonical_name)
32201 strcpy (selected_cpu_name, opt->canonical_name);
32202 else
32203 {
32204 int i;
32205 for (i = 0; opt->name[i]; i++)
32206 selected_cpu_name[i] = TOUPPER (opt->name[i]);
32207
32208 selected_cpu_name[i] = 0;
32209 }
32210 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
32211
32212 *input_line_pointer = saved_char;
32213 demand_empty_rest_of_line ();
32214 return;
32215 }
32216 as_bad (_("unknown cpu `%s'"), name);
32217 *input_line_pointer = saved_char;
32218 ignore_rest_of_line ();
32219 }
32220
32221 /* Parse a .arch directive. */
32222
32223 static void
32224 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
32225 {
32226 const struct arm_arch_option_table *opt;
32227 char saved_char;
32228 char *name;
32229
32230 name = input_line_pointer;
32231 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
32232 input_line_pointer++;
32233 saved_char = *input_line_pointer;
32234 *input_line_pointer = 0;
32235
32236 /* Skip the first "all" entry. */
32237 for (opt = arm_archs + 1; opt->name != NULL; opt++)
32238 if (streq (opt->name, name))
32239 {
32240 selected_arch = opt->value;
32241 selected_ext = arm_arch_none;
32242 selected_cpu = selected_arch;
32243 strcpy (selected_cpu_name, opt->name);
32244 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
32245 *input_line_pointer = saved_char;
32246 demand_empty_rest_of_line ();
32247 return;
32248 }
32249
32250 as_bad (_("unknown architecture `%s'\n"), name);
32251 *input_line_pointer = saved_char;
32252 ignore_rest_of_line ();
32253 }
32254
32255 /* Parse a .object_arch directive. */
32256
32257 static void
32258 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
32259 {
32260 const struct arm_arch_option_table *opt;
32261 char saved_char;
32262 char *name;
32263
32264 name = input_line_pointer;
32265 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
32266 input_line_pointer++;
32267 saved_char = *input_line_pointer;
32268 *input_line_pointer = 0;
32269
32270 /* Skip the first "all" entry. */
32271 for (opt = arm_archs + 1; opt->name != NULL; opt++)
32272 if (streq (opt->name, name))
32273 {
32274 selected_object_arch = opt->value;
32275 *input_line_pointer = saved_char;
32276 demand_empty_rest_of_line ();
32277 return;
32278 }
32279
32280 as_bad (_("unknown architecture `%s'\n"), name);
32281 *input_line_pointer = saved_char;
32282 ignore_rest_of_line ();
32283 }
32284
32285 /* Parse a .arch_extension directive. */
32286
32287 static void
32288 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
32289 {
32290 const struct arm_option_extension_value_table *opt;
32291 char saved_char;
32292 char *name;
32293 int adding_value = 1;
32294
32295 name = input_line_pointer;
32296 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
32297 input_line_pointer++;
32298 saved_char = *input_line_pointer;
32299 *input_line_pointer = 0;
32300
32301 if (strlen (name) >= 2
32302 && strncmp (name, "no", 2) == 0)
32303 {
32304 adding_value = 0;
32305 name += 2;
32306 }
32307
32308 for (opt = arm_extensions; opt->name != NULL; opt++)
32309 if (streq (opt->name, name))
32310 {
32311 int i, nb_allowed_archs =
32312 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
32313 for (i = 0; i < nb_allowed_archs; i++)
32314 {
32315 /* Empty entry. */
32316 if (ARM_CPU_IS_ANY (opt->allowed_archs[i]))
32317 continue;
32318 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], selected_arch))
32319 break;
32320 }
32321
32322 if (i == nb_allowed_archs)
32323 {
32324 as_bad (_("architectural extension `%s' is not allowed for the "
32325 "current base architecture"), name);
32326 break;
32327 }
32328
32329 if (adding_value)
32330 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
32331 opt->merge_value);
32332 else
32333 ARM_CLEAR_FEATURE (selected_ext, selected_ext, opt->clear_value);
32334
32335 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
32336 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
32337 *input_line_pointer = saved_char;
32338 demand_empty_rest_of_line ();
32339 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
32340 on this return so that duplicate extensions (extensions with the
32341 same name as a previous extension in the list) are not considered
32342 for command-line parsing. */
32343 return;
32344 }
32345
32346 if (opt->name == NULL)
32347 as_bad (_("unknown architecture extension `%s'\n"), name);
32348
32349 *input_line_pointer = saved_char;
32350 ignore_rest_of_line ();
32351 }
32352
32353 /* Parse a .fpu directive. */
32354
32355 static void
32356 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
32357 {
32358 const struct arm_option_fpu_value_table *opt;
32359 char saved_char;
32360 char *name;
32361
32362 name = input_line_pointer;
32363 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
32364 input_line_pointer++;
32365 saved_char = *input_line_pointer;
32366 *input_line_pointer = 0;
32367
32368 for (opt = arm_fpus; opt->name != NULL; opt++)
32369 if (streq (opt->name, name))
32370 {
32371 selected_fpu = opt->value;
32372 #ifndef CPU_DEFAULT
32373 if (no_cpu_selected ())
32374 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
32375 else
32376 #endif
32377 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
32378 *input_line_pointer = saved_char;
32379 demand_empty_rest_of_line ();
32380 return;
32381 }
32382
32383 as_bad (_("unknown floating point format `%s'\n"), name);
32384 *input_line_pointer = saved_char;
32385 ignore_rest_of_line ();
32386 }
32387
32388 /* Copy symbol information. */
32389
32390 void
32391 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
32392 {
32393 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
32394 }
32395
32396 #ifdef OBJ_ELF
32397 /* Given a symbolic attribute NAME, return the proper integer value.
32398 Returns -1 if the attribute is not known. */
32399
32400 int
32401 arm_convert_symbolic_attribute (const char *name)
32402 {
32403 static const struct
32404 {
32405 const char * name;
32406 const int tag;
32407 }
32408 attribute_table[] =
32409 {
32410 /* When you modify this table you should
32411 also modify the list in doc/c-arm.texi. */
32412 #define T(tag) {#tag, tag}
32413 T (Tag_CPU_raw_name),
32414 T (Tag_CPU_name),
32415 T (Tag_CPU_arch),
32416 T (Tag_CPU_arch_profile),
32417 T (Tag_ARM_ISA_use),
32418 T (Tag_THUMB_ISA_use),
32419 T (Tag_FP_arch),
32420 T (Tag_VFP_arch),
32421 T (Tag_WMMX_arch),
32422 T (Tag_Advanced_SIMD_arch),
32423 T (Tag_PCS_config),
32424 T (Tag_ABI_PCS_R9_use),
32425 T (Tag_ABI_PCS_RW_data),
32426 T (Tag_ABI_PCS_RO_data),
32427 T (Tag_ABI_PCS_GOT_use),
32428 T (Tag_ABI_PCS_wchar_t),
32429 T (Tag_ABI_FP_rounding),
32430 T (Tag_ABI_FP_denormal),
32431 T (Tag_ABI_FP_exceptions),
32432 T (Tag_ABI_FP_user_exceptions),
32433 T (Tag_ABI_FP_number_model),
32434 T (Tag_ABI_align_needed),
32435 T (Tag_ABI_align8_needed),
32436 T (Tag_ABI_align_preserved),
32437 T (Tag_ABI_align8_preserved),
32438 T (Tag_ABI_enum_size),
32439 T (Tag_ABI_HardFP_use),
32440 T (Tag_ABI_VFP_args),
32441 T (Tag_ABI_WMMX_args),
32442 T (Tag_ABI_optimization_goals),
32443 T (Tag_ABI_FP_optimization_goals),
32444 T (Tag_compatibility),
32445 T (Tag_CPU_unaligned_access),
32446 T (Tag_FP_HP_extension),
32447 T (Tag_VFP_HP_extension),
32448 T (Tag_ABI_FP_16bit_format),
32449 T (Tag_MPextension_use),
32450 T (Tag_DIV_use),
32451 T (Tag_nodefaults),
32452 T (Tag_also_compatible_with),
32453 T (Tag_conformance),
32454 T (Tag_T2EE_use),
32455 T (Tag_Virtualization_use),
32456 T (Tag_DSP_extension),
32457 T (Tag_MVE_arch),
32458 /* We deliberately do not include Tag_MPextension_use_legacy. */
32459 #undef T
32460 };
32461 unsigned int i;
32462
32463 if (name == NULL)
32464 return -1;
32465
32466 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
32467 if (streq (name, attribute_table[i].name))
32468 return attribute_table[i].tag;
32469
32470 return -1;
32471 }
32472
32473 /* Apply sym value for relocations only in the case that they are for
32474 local symbols in the same segment as the fixup and you have the
32475 respective architectural feature for blx and simple switches. */
32476
32477 int
32478 arm_apply_sym_value (struct fix * fixP, segT this_seg)
32479 {
32480 if (fixP->fx_addsy
32481 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
32482 /* PR 17444: If the local symbol is in a different section then a reloc
32483 will always be generated for it, so applying the symbol value now
32484 will result in a double offset being stored in the relocation. */
32485 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
32486 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
32487 {
32488 switch (fixP->fx_r_type)
32489 {
32490 case BFD_RELOC_ARM_PCREL_BLX:
32491 case BFD_RELOC_THUMB_PCREL_BRANCH23:
32492 if (ARM_IS_FUNC (fixP->fx_addsy))
32493 return 1;
32494 break;
32495
32496 case BFD_RELOC_ARM_PCREL_CALL:
32497 case BFD_RELOC_THUMB_PCREL_BLX:
32498 if (THUMB_IS_FUNC (fixP->fx_addsy))
32499 return 1;
32500 break;
32501
32502 default:
32503 break;
32504 }
32505
32506 }
32507 return 0;
32508 }
32509 #endif /* OBJ_ELF */