]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-arm.c
[gas][arm] Make .fpu reset the FPU/Coprocessor feature bits
[thirdparty/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25
26 #include "as.h"
27 #include <limits.h>
28 #include <stdarg.h>
29 #define NO_RELOC 0
30 #include "safe-ctype.h"
31 #include "subsegs.h"
32 #include "obstack.h"
33 #include "libiberty.h"
34 #include "opcode/arm.h"
35 #include "cpu-arm.h"
36
37 #ifdef OBJ_ELF
38 #include "elf/arm.h"
39 #include "dw2gencfi.h"
40 #endif
41
42 #include "dwarf2dbg.h"
43
44 #ifdef OBJ_ELF
45 /* Must be at least the size of the largest unwind opcode (currently two). */
46 #define ARM_OPCODE_CHUNK_SIZE 8
47
48 /* This structure holds the unwinding state. */
49
50 static struct
51 {
52 symbolS * proc_start;
53 symbolS * table_entry;
54 symbolS * personality_routine;
55 int personality_index;
56 /* The segment containing the function. */
57 segT saved_seg;
58 subsegT saved_subseg;
59 /* Opcodes generated from this function. */
60 unsigned char * opcodes;
61 int opcode_count;
62 int opcode_alloc;
63 /* The number of bytes pushed to the stack. */
64 offsetT frame_size;
65 /* We don't add stack adjustment opcodes immediately so that we can merge
66 multiple adjustments. We can also omit the final adjustment
67 when using a frame pointer. */
68 offsetT pending_offset;
69 /* These two fields are set by both unwind_movsp and unwind_setfp. They
70 hold the reg+offset to use when restoring sp from a frame pointer. */
71 offsetT fp_offset;
72 int fp_reg;
73 /* Nonzero if an unwind_setfp directive has been seen. */
74 unsigned fp_used:1;
75 /* Nonzero if the last opcode restores sp from fp_reg. */
76 unsigned sp_restored:1;
77 } unwind;
78
79 /* Whether --fdpic was given. */
80 static int arm_fdpic;
81
82 #endif /* OBJ_ELF */
83
84 /* Results from operand parsing worker functions. */
85
86 typedef enum
87 {
88 PARSE_OPERAND_SUCCESS,
89 PARSE_OPERAND_FAIL,
90 PARSE_OPERAND_FAIL_NO_BACKTRACK
91 } parse_operand_result;
92
93 enum arm_float_abi
94 {
95 ARM_FLOAT_ABI_HARD,
96 ARM_FLOAT_ABI_SOFTFP,
97 ARM_FLOAT_ABI_SOFT
98 };
99
100 /* Types of processor to assemble for. */
101 #ifndef CPU_DEFAULT
102 /* The code that was here used to select a default CPU depending on compiler
103 pre-defines which were only present when doing native builds, thus
104 changing gas' default behaviour depending upon the build host.
105
106 If you have a target that requires a default CPU option then the you
107 should define CPU_DEFAULT here. */
108 #endif
109
110 /* Perform range checks on positive and negative overflows by checking if the
111 VALUE given fits within the range of an BITS sized immediate. */
112 static bfd_boolean out_of_range_p (offsetT value, offsetT bits)
113 {
114 gas_assert (bits < (offsetT)(sizeof (value) * 8));
115 return (value & ~((1 << bits)-1))
116 && ((value & ~((1 << bits)-1)) != ~((1 << bits)-1));
117 }
118
119 #ifndef FPU_DEFAULT
120 # ifdef TE_LINUX
121 # define FPU_DEFAULT FPU_ARCH_FPA
122 # elif defined (TE_NetBSD)
123 # ifdef OBJ_ELF
124 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
125 # else
126 /* Legacy a.out format. */
127 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
128 # endif
129 # elif defined (TE_VXWORKS)
130 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
131 # else
132 /* For backwards compatibility, default to FPA. */
133 # define FPU_DEFAULT FPU_ARCH_FPA
134 # endif
135 #endif /* ifndef FPU_DEFAULT */
136
137 #define streq(a, b) (strcmp (a, b) == 0)
138
139 /* Current set of feature bits available (CPU+FPU). Different from
140 selected_cpu + selected_fpu in case of autodetection since the CPU
141 feature bits are then all set. */
142 static arm_feature_set cpu_variant;
143 /* Feature bits used in each execution state. Used to set build attribute
144 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
145 static arm_feature_set arm_arch_used;
146 static arm_feature_set thumb_arch_used;
147
148 /* Flags stored in private area of BFD structure. */
149 static int uses_apcs_26 = FALSE;
150 static int atpcs = FALSE;
151 static int support_interwork = FALSE;
152 static int uses_apcs_float = FALSE;
153 static int pic_code = FALSE;
154 static int fix_v4bx = FALSE;
155 /* Warn on using deprecated features. */
156 static int warn_on_deprecated = TRUE;
157
158 /* Understand CodeComposer Studio assembly syntax. */
159 bfd_boolean codecomposer_syntax = FALSE;
160
161 /* Variables that we set while parsing command-line options. Once all
162 options have been read we re-process these values to set the real
163 assembly flags. */
164
165 /* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
166 instead of -mcpu=arm1). */
167 static const arm_feature_set *legacy_cpu = NULL;
168 static const arm_feature_set *legacy_fpu = NULL;
169
170 /* CPU, extension and FPU feature bits selected by -mcpu. */
171 static const arm_feature_set *mcpu_cpu_opt = NULL;
172 static arm_feature_set *mcpu_ext_opt = NULL;
173 static const arm_feature_set *mcpu_fpu_opt = NULL;
174
175 /* CPU, extension and FPU feature bits selected by -march. */
176 static const arm_feature_set *march_cpu_opt = NULL;
177 static arm_feature_set *march_ext_opt = NULL;
178 static const arm_feature_set *march_fpu_opt = NULL;
179
180 /* Feature bits selected by -mfpu. */
181 static const arm_feature_set *mfpu_opt = NULL;
182
183 /* Constants for known architecture features. */
184 static const arm_feature_set fpu_default = FPU_DEFAULT;
185 static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
186 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
187 static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
188 static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
189 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
190 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
191 #ifdef OBJ_ELF
192 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
193 #endif
194 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
195
196 #ifdef CPU_DEFAULT
197 static const arm_feature_set cpu_default = CPU_DEFAULT;
198 #endif
199
200 static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
201 static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
202 static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
203 static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
204 static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
205 static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
206 static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
207 static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
208 static const arm_feature_set arm_ext_v4t_5 =
209 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
210 static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
211 static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
212 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
213 static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
214 static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
215 static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
216 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
217 /* Only for compatability of hint instructions. */
218 static const arm_feature_set arm_ext_v6k_v6t2 =
219 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V6T2);
220 static const arm_feature_set arm_ext_v6_notm =
221 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
222 static const arm_feature_set arm_ext_v6_dsp =
223 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
224 static const arm_feature_set arm_ext_barrier =
225 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
226 static const arm_feature_set arm_ext_msr =
227 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
228 static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
229 static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
230 static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
231 static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
232 #ifdef OBJ_ELF
233 static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
234 #endif
235 static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
236 static const arm_feature_set arm_ext_m =
237 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
238 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
239 static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
240 static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
241 static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
242 static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
243 static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
244 static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
245 static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
246 static const arm_feature_set arm_ext_v8m_main =
247 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
248 static const arm_feature_set arm_ext_v8_1m_main =
249 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN);
250 /* Instructions in ARMv8-M only found in M profile architectures. */
251 static const arm_feature_set arm_ext_v8m_m_only =
252 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
253 static const arm_feature_set arm_ext_v6t2_v8m =
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
255 /* Instructions shared between ARMv8-A and ARMv8-M. */
256 static const arm_feature_set arm_ext_atomics =
257 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
258 #ifdef OBJ_ELF
259 /* DSP instructions Tag_DSP_extension refers to. */
260 static const arm_feature_set arm_ext_dsp =
261 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
262 #endif
263 static const arm_feature_set arm_ext_ras =
264 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
265 /* FP16 instructions. */
266 static const arm_feature_set arm_ext_fp16 =
267 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
268 static const arm_feature_set arm_ext_fp16_fml =
269 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
270 static const arm_feature_set arm_ext_v8_2 =
271 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
272 static const arm_feature_set arm_ext_v8_3 =
273 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
274 static const arm_feature_set arm_ext_sb =
275 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB);
276 static const arm_feature_set arm_ext_predres =
277 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES);
278 static const arm_feature_set arm_ext_bf16 =
279 ARM_FEATURE_CORE_HIGH (ARM_EXT2_BF16);
280 static const arm_feature_set arm_ext_i8mm =
281 ARM_FEATURE_CORE_HIGH (ARM_EXT2_I8MM);
282
283 static const arm_feature_set arm_arch_any = ARM_ANY;
284 static const arm_feature_set fpu_any = FPU_ANY;
285 static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
286 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
287 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
288
289 static const arm_feature_set arm_cext_iwmmxt2 =
290 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
291 static const arm_feature_set arm_cext_iwmmxt =
292 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
293 static const arm_feature_set arm_cext_xscale =
294 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
295 static const arm_feature_set arm_cext_maverick =
296 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
297 static const arm_feature_set fpu_fpa_ext_v1 =
298 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
299 static const arm_feature_set fpu_fpa_ext_v2 =
300 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
301 static const arm_feature_set fpu_vfp_ext_v1xd =
302 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
303 static const arm_feature_set fpu_vfp_ext_v1 =
304 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
305 static const arm_feature_set fpu_vfp_ext_v2 =
306 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
307 static const arm_feature_set fpu_vfp_ext_v3xd =
308 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
309 static const arm_feature_set fpu_vfp_ext_v3 =
310 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
311 static const arm_feature_set fpu_vfp_ext_d32 =
312 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
313 static const arm_feature_set fpu_neon_ext_v1 =
314 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
315 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
316 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
317 static const arm_feature_set mve_ext =
318 ARM_FEATURE_COPROC (FPU_MVE);
319 static const arm_feature_set mve_fp_ext =
320 ARM_FEATURE_COPROC (FPU_MVE_FP);
321 #ifdef OBJ_ELF
322 static const arm_feature_set fpu_vfp_fp16 =
323 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
324 static const arm_feature_set fpu_neon_ext_fma =
325 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
326 #endif
327 static const arm_feature_set fpu_vfp_ext_fma =
328 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
329 static const arm_feature_set fpu_vfp_ext_armv8 =
330 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
331 static const arm_feature_set fpu_vfp_ext_armv8xd =
332 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
333 static const arm_feature_set fpu_neon_ext_armv8 =
334 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
335 static const arm_feature_set fpu_crypto_ext_armv8 =
336 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
337 static const arm_feature_set crc_ext_armv8 =
338 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
339 static const arm_feature_set fpu_neon_ext_v8_1 =
340 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
341 static const arm_feature_set fpu_neon_ext_dotprod =
342 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
343
344 static int mfloat_abi_opt = -1;
345 /* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
346 directive. */
347 static arm_feature_set selected_arch = ARM_ARCH_NONE;
348 /* Extension feature bits selected by the last -mcpu/-march or .arch_extension
349 directive. */
350 static arm_feature_set selected_ext = ARM_ARCH_NONE;
351 /* Feature bits selected by the last -mcpu/-march or by the combination of the
352 last .cpu/.arch directive .arch_extension directives since that
353 directive. */
354 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
355 /* FPU feature bits selected by the last -mfpu or .fpu directive. */
356 static arm_feature_set selected_fpu = FPU_NONE;
357 /* Feature bits selected by the last .object_arch directive. */
358 static arm_feature_set selected_object_arch = ARM_ARCH_NONE;
359 /* Must be long enough to hold any of the names in arm_cpus. */
360 static const struct arm_ext_table * selected_ctx_ext_table = NULL;
361 static char selected_cpu_name[20];
362
363 extern FLONUM_TYPE generic_floating_point_number;
364
365 /* Return if no cpu was selected on command-line. */
366 static bfd_boolean
367 no_cpu_selected (void)
368 {
369 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
370 }
371
372 #ifdef OBJ_ELF
373 # ifdef EABI_DEFAULT
374 static int meabi_flags = EABI_DEFAULT;
375 # else
376 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
377 # endif
378
379 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
380
381 bfd_boolean
382 arm_is_eabi (void)
383 {
384 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
385 }
386 #endif
387
388 #ifdef OBJ_ELF
389 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
390 symbolS * GOT_symbol;
391 #endif
392
393 /* 0: assemble for ARM,
394 1: assemble for Thumb,
395 2: assemble for Thumb even though target CPU does not support thumb
396 instructions. */
397 static int thumb_mode = 0;
398 /* A value distinct from the possible values for thumb_mode that we
399 can use to record whether thumb_mode has been copied into the
400 tc_frag_data field of a frag. */
401 #define MODE_RECORDED (1 << 4)
402
403 /* Specifies the intrinsic IT insn behavior mode. */
404 enum implicit_it_mode
405 {
406 IMPLICIT_IT_MODE_NEVER = 0x00,
407 IMPLICIT_IT_MODE_ARM = 0x01,
408 IMPLICIT_IT_MODE_THUMB = 0x02,
409 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
410 };
411 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
412
413 /* If unified_syntax is true, we are processing the new unified
414 ARM/Thumb syntax. Important differences from the old ARM mode:
415
416 - Immediate operands do not require a # prefix.
417 - Conditional affixes always appear at the end of the
418 instruction. (For backward compatibility, those instructions
419 that formerly had them in the middle, continue to accept them
420 there.)
421 - The IT instruction may appear, and if it does is validated
422 against subsequent conditional affixes. It does not generate
423 machine code.
424
425 Important differences from the old Thumb mode:
426
427 - Immediate operands do not require a # prefix.
428 - Most of the V6T2 instructions are only available in unified mode.
429 - The .N and .W suffixes are recognized and honored (it is an error
430 if they cannot be honored).
431 - All instructions set the flags if and only if they have an 's' affix.
432 - Conditional affixes may be used. They are validated against
433 preceding IT instructions. Unlike ARM mode, you cannot use a
434 conditional affix except in the scope of an IT instruction. */
435
436 static bfd_boolean unified_syntax = FALSE;
437
438 /* An immediate operand can start with #, and ld*, st*, pld operands
439 can contain [ and ]. We need to tell APP not to elide whitespace
440 before a [, which can appear as the first operand for pld.
441 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
442 const char arm_symbol_chars[] = "#[]{}";
443
444 enum neon_el_type
445 {
446 NT_invtype,
447 NT_untyped,
448 NT_integer,
449 NT_float,
450 NT_poly,
451 NT_signed,
452 NT_bfloat,
453 NT_unsigned
454 };
455
456 struct neon_type_el
457 {
458 enum neon_el_type type;
459 unsigned size;
460 };
461
462 #define NEON_MAX_TYPE_ELS 4
463
464 struct neon_type
465 {
466 struct neon_type_el el[NEON_MAX_TYPE_ELS];
467 unsigned elems;
468 };
469
470 enum pred_instruction_type
471 {
472 OUTSIDE_PRED_INSN,
473 INSIDE_VPT_INSN,
474 INSIDE_IT_INSN,
475 INSIDE_IT_LAST_INSN,
476 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
477 if inside, should be the last one. */
478 NEUTRAL_IT_INSN, /* This could be either inside or outside,
479 i.e. BKPT and NOP. */
480 IT_INSN, /* The IT insn has been parsed. */
481 VPT_INSN, /* The VPT/VPST insn has been parsed. */
482 MVE_OUTSIDE_PRED_INSN , /* Instruction to indicate a MVE instruction without
483 a predication code. */
484 MVE_UNPREDICABLE_INSN /* MVE instruction that is non-predicable. */
485 };
486
487 /* The maximum number of operands we need. */
488 #define ARM_IT_MAX_OPERANDS 6
489 #define ARM_IT_MAX_RELOCS 3
490
491 struct arm_it
492 {
493 const char * error;
494 unsigned long instruction;
495 int size;
496 int size_req;
497 int cond;
498 /* "uncond_value" is set to the value in place of the conditional field in
499 unconditional versions of the instruction, or -1 if nothing is
500 appropriate. */
501 int uncond_value;
502 struct neon_type vectype;
503 /* This does not indicate an actual NEON instruction, only that
504 the mnemonic accepts neon-style type suffixes. */
505 int is_neon;
506 /* Set to the opcode if the instruction needs relaxation.
507 Zero if the instruction is not relaxed. */
508 unsigned long relax;
509 struct
510 {
511 bfd_reloc_code_real_type type;
512 expressionS exp;
513 int pc_rel;
514 } relocs[ARM_IT_MAX_RELOCS];
515
516 enum pred_instruction_type pred_insn_type;
517
518 struct
519 {
520 unsigned reg;
521 signed int imm;
522 struct neon_type_el vectype;
523 unsigned present : 1; /* Operand present. */
524 unsigned isreg : 1; /* Operand was a register. */
525 unsigned immisreg : 2; /* .imm field is a second register.
526 0: imm, 1: gpr, 2: MVE Q-register. */
527 unsigned isscalar : 2; /* Operand is a (SIMD) scalar:
528 0) not scalar,
529 1) Neon scalar,
530 2) MVE scalar. */
531 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
532 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
533 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
534 instructions. This allows us to disambiguate ARM <-> vector insns. */
535 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
536 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
537 unsigned isquad : 1; /* Operand is SIMD quad register. */
538 unsigned issingle : 1; /* Operand is VFP single-precision register. */
539 unsigned iszr : 1; /* Operand is ZR register. */
540 unsigned hasreloc : 1; /* Operand has relocation suffix. */
541 unsigned writeback : 1; /* Operand has trailing ! */
542 unsigned preind : 1; /* Preindexed address. */
543 unsigned postind : 1; /* Postindexed address. */
544 unsigned negative : 1; /* Index register was negated. */
545 unsigned shifted : 1; /* Shift applied to operation. */
546 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
547 } operands[ARM_IT_MAX_OPERANDS];
548 };
549
550 static struct arm_it inst;
551
552 #define NUM_FLOAT_VALS 8
553
554 const char * fp_const[] =
555 {
556 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
557 };
558
559 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
560
561 #define FAIL (-1)
562 #define SUCCESS (0)
563
564 #define SUFF_S 1
565 #define SUFF_D 2
566 #define SUFF_E 3
567 #define SUFF_P 4
568
569 #define CP_T_X 0x00008000
570 #define CP_T_Y 0x00400000
571
572 #define CONDS_BIT 0x00100000
573 #define LOAD_BIT 0x00100000
574
575 #define DOUBLE_LOAD_FLAG 0x00000001
576
577 struct asm_cond
578 {
579 const char * template_name;
580 unsigned long value;
581 };
582
583 #define COND_ALWAYS 0xE
584
585 struct asm_psr
586 {
587 const char * template_name;
588 unsigned long field;
589 };
590
591 struct asm_barrier_opt
592 {
593 const char * template_name;
594 unsigned long value;
595 const arm_feature_set arch;
596 };
597
598 /* The bit that distinguishes CPSR and SPSR. */
599 #define SPSR_BIT (1 << 22)
600
601 /* The individual PSR flag bits. */
602 #define PSR_c (1 << 16)
603 #define PSR_x (1 << 17)
604 #define PSR_s (1 << 18)
605 #define PSR_f (1 << 19)
606
607 struct reloc_entry
608 {
609 const char * name;
610 bfd_reloc_code_real_type reloc;
611 };
612
613 enum vfp_reg_pos
614 {
615 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
616 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
617 };
618
619 enum vfp_ldstm_type
620 {
621 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
622 };
623
624 /* Bits for DEFINED field in neon_typed_alias. */
625 #define NTA_HASTYPE 1
626 #define NTA_HASINDEX 2
627
628 struct neon_typed_alias
629 {
630 unsigned char defined;
631 unsigned char index;
632 struct neon_type_el eltype;
633 };
634
635 /* ARM register categories. This includes coprocessor numbers and various
636 architecture extensions' registers. Each entry should have an error message
637 in reg_expected_msgs below. */
638 enum arm_reg_type
639 {
640 REG_TYPE_RN,
641 REG_TYPE_CP,
642 REG_TYPE_CN,
643 REG_TYPE_FN,
644 REG_TYPE_VFS,
645 REG_TYPE_VFD,
646 REG_TYPE_NQ,
647 REG_TYPE_VFSD,
648 REG_TYPE_NDQ,
649 REG_TYPE_NSD,
650 REG_TYPE_NSDQ,
651 REG_TYPE_VFC,
652 REG_TYPE_MVF,
653 REG_TYPE_MVD,
654 REG_TYPE_MVFX,
655 REG_TYPE_MVDX,
656 REG_TYPE_MVAX,
657 REG_TYPE_MQ,
658 REG_TYPE_DSPSC,
659 REG_TYPE_MMXWR,
660 REG_TYPE_MMXWC,
661 REG_TYPE_MMXWCG,
662 REG_TYPE_XSCALE,
663 REG_TYPE_RNB,
664 REG_TYPE_ZR
665 };
666
667 /* Structure for a hash table entry for a register.
668 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
669 information which states whether a vector type or index is specified (for a
670 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
671 struct reg_entry
672 {
673 const char * name;
674 unsigned int number;
675 unsigned char type;
676 unsigned char builtin;
677 struct neon_typed_alias * neon;
678 };
679
680 /* Diagnostics used when we don't get a register of the expected type. */
681 const char * const reg_expected_msgs[] =
682 {
683 [REG_TYPE_RN] = N_("ARM register expected"),
684 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
685 [REG_TYPE_CN] = N_("co-processor register expected"),
686 [REG_TYPE_FN] = N_("FPA register expected"),
687 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
688 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
689 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
690 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
691 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
692 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
693 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
694 " expected"),
695 [REG_TYPE_VFC] = N_("VFP system register expected"),
696 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
697 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
698 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
699 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
700 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
701 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
702 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
703 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
704 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
705 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
706 [REG_TYPE_MQ] = N_("MVE vector register expected"),
707 [REG_TYPE_RNB] = N_("")
708 };
709
710 /* Some well known registers that we refer to directly elsewhere. */
711 #define REG_R12 12
712 #define REG_SP 13
713 #define REG_LR 14
714 #define REG_PC 15
715
716 /* ARM instructions take 4bytes in the object file, Thumb instructions
717 take 2: */
718 #define INSN_SIZE 4
719
720 struct asm_opcode
721 {
722 /* Basic string to match. */
723 const char * template_name;
724
725 /* Parameters to instruction. */
726 unsigned int operands[8];
727
728 /* Conditional tag - see opcode_lookup. */
729 unsigned int tag : 4;
730
731 /* Basic instruction code. */
732 unsigned int avalue;
733
734 /* Thumb-format instruction code. */
735 unsigned int tvalue;
736
737 /* Which architecture variant provides this instruction. */
738 const arm_feature_set * avariant;
739 const arm_feature_set * tvariant;
740
741 /* Function to call to encode instruction in ARM format. */
742 void (* aencode) (void);
743
744 /* Function to call to encode instruction in Thumb format. */
745 void (* tencode) (void);
746
747 /* Indicates whether this instruction may be vector predicated. */
748 unsigned int mayBeVecPred : 1;
749 };
750
751 /* Defines for various bits that we will want to toggle. */
752 #define INST_IMMEDIATE 0x02000000
753 #define OFFSET_REG 0x02000000
754 #define HWOFFSET_IMM 0x00400000
755 #define SHIFT_BY_REG 0x00000010
756 #define PRE_INDEX 0x01000000
757 #define INDEX_UP 0x00800000
758 #define WRITE_BACK 0x00200000
759 #define LDM_TYPE_2_OR_3 0x00400000
760 #define CPSI_MMOD 0x00020000
761
762 #define LITERAL_MASK 0xf000f000
763 #define OPCODE_MASK 0xfe1fffff
764 #define V4_STR_BIT 0x00000020
765 #define VLDR_VMOV_SAME 0x0040f000
766
767 #define T2_SUBS_PC_LR 0xf3de8f00
768
769 #define DATA_OP_SHIFT 21
770 #define SBIT_SHIFT 20
771
772 #define T2_OPCODE_MASK 0xfe1fffff
773 #define T2_DATA_OP_SHIFT 21
774 #define T2_SBIT_SHIFT 20
775
776 #define A_COND_MASK 0xf0000000
777 #define A_PUSH_POP_OP_MASK 0x0fff0000
778
779 /* Opcodes for pushing/poping registers to/from the stack. */
780 #define A1_OPCODE_PUSH 0x092d0000
781 #define A2_OPCODE_PUSH 0x052d0004
782 #define A2_OPCODE_POP 0x049d0004
783
784 /* Codes to distinguish the arithmetic instructions. */
785 #define OPCODE_AND 0
786 #define OPCODE_EOR 1
787 #define OPCODE_SUB 2
788 #define OPCODE_RSB 3
789 #define OPCODE_ADD 4
790 #define OPCODE_ADC 5
791 #define OPCODE_SBC 6
792 #define OPCODE_RSC 7
793 #define OPCODE_TST 8
794 #define OPCODE_TEQ 9
795 #define OPCODE_CMP 10
796 #define OPCODE_CMN 11
797 #define OPCODE_ORR 12
798 #define OPCODE_MOV 13
799 #define OPCODE_BIC 14
800 #define OPCODE_MVN 15
801
802 #define T2_OPCODE_AND 0
803 #define T2_OPCODE_BIC 1
804 #define T2_OPCODE_ORR 2
805 #define T2_OPCODE_ORN 3
806 #define T2_OPCODE_EOR 4
807 #define T2_OPCODE_ADD 8
808 #define T2_OPCODE_ADC 10
809 #define T2_OPCODE_SBC 11
810 #define T2_OPCODE_SUB 13
811 #define T2_OPCODE_RSB 14
812
813 #define T_OPCODE_MUL 0x4340
814 #define T_OPCODE_TST 0x4200
815 #define T_OPCODE_CMN 0x42c0
816 #define T_OPCODE_NEG 0x4240
817 #define T_OPCODE_MVN 0x43c0
818
819 #define T_OPCODE_ADD_R3 0x1800
820 #define T_OPCODE_SUB_R3 0x1a00
821 #define T_OPCODE_ADD_HI 0x4400
822 #define T_OPCODE_ADD_ST 0xb000
823 #define T_OPCODE_SUB_ST 0xb080
824 #define T_OPCODE_ADD_SP 0xa800
825 #define T_OPCODE_ADD_PC 0xa000
826 #define T_OPCODE_ADD_I8 0x3000
827 #define T_OPCODE_SUB_I8 0x3800
828 #define T_OPCODE_ADD_I3 0x1c00
829 #define T_OPCODE_SUB_I3 0x1e00
830
831 #define T_OPCODE_ASR_R 0x4100
832 #define T_OPCODE_LSL_R 0x4080
833 #define T_OPCODE_LSR_R 0x40c0
834 #define T_OPCODE_ROR_R 0x41c0
835 #define T_OPCODE_ASR_I 0x1000
836 #define T_OPCODE_LSL_I 0x0000
837 #define T_OPCODE_LSR_I 0x0800
838
839 #define T_OPCODE_MOV_I8 0x2000
840 #define T_OPCODE_CMP_I8 0x2800
841 #define T_OPCODE_CMP_LR 0x4280
842 #define T_OPCODE_MOV_HR 0x4600
843 #define T_OPCODE_CMP_HR 0x4500
844
845 #define T_OPCODE_LDR_PC 0x4800
846 #define T_OPCODE_LDR_SP 0x9800
847 #define T_OPCODE_STR_SP 0x9000
848 #define T_OPCODE_LDR_IW 0x6800
849 #define T_OPCODE_STR_IW 0x6000
850 #define T_OPCODE_LDR_IH 0x8800
851 #define T_OPCODE_STR_IH 0x8000
852 #define T_OPCODE_LDR_IB 0x7800
853 #define T_OPCODE_STR_IB 0x7000
854 #define T_OPCODE_LDR_RW 0x5800
855 #define T_OPCODE_STR_RW 0x5000
856 #define T_OPCODE_LDR_RH 0x5a00
857 #define T_OPCODE_STR_RH 0x5200
858 #define T_OPCODE_LDR_RB 0x5c00
859 #define T_OPCODE_STR_RB 0x5400
860
861 #define T_OPCODE_PUSH 0xb400
862 #define T_OPCODE_POP 0xbc00
863
864 #define T_OPCODE_BRANCH 0xe000
865
866 #define THUMB_SIZE 2 /* Size of thumb instruction. */
867 #define THUMB_PP_PC_LR 0x0100
868 #define THUMB_LOAD_BIT 0x0800
869 #define THUMB2_LOAD_BIT 0x00100000
870
871 #define BAD_SYNTAX _("syntax error")
872 #define BAD_ARGS _("bad arguments to instruction")
873 #define BAD_SP _("r13 not allowed here")
874 #define BAD_PC _("r15 not allowed here")
875 #define BAD_ODD _("Odd register not allowed here")
876 #define BAD_EVEN _("Even register not allowed here")
877 #define BAD_COND _("instruction cannot be conditional")
878 #define BAD_OVERLAP _("registers may not be the same")
879 #define BAD_HIREG _("lo register required")
880 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
881 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode")
882 #define BAD_BRANCH _("branch must be last instruction in IT block")
883 #define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
884 #define BAD_NOT_IT _("instruction not allowed in IT block")
885 #define BAD_NOT_VPT _("instruction missing MVE vector predication code")
886 #define BAD_FPU _("selected FPU does not support instruction")
887 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
888 #define BAD_OUT_VPT \
889 _("vector predicated instruction should be in VPT/VPST block")
890 #define BAD_IT_COND _("incorrect condition in IT block")
891 #define BAD_VPT_COND _("incorrect condition in VPT/VPST block")
892 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
893 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
894 #define BAD_PC_ADDRESSING \
895 _("cannot use register index with PC-relative addressing")
896 #define BAD_PC_WRITEBACK \
897 _("cannot use writeback with PC-relative addressing")
898 #define BAD_RANGE _("branch out of range")
899 #define BAD_FP16 _("selected processor does not support fp16 instruction")
900 #define BAD_BF16 _("selected processor does not support bf16 instruction")
901 #define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
902 #define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
903 #define MVE_NOT_IT _("Warning: instruction is UNPREDICTABLE in an IT " \
904 "block")
905 #define MVE_NOT_VPT _("Warning: instruction is UNPREDICTABLE in a VPT " \
906 "block")
907 #define MVE_BAD_PC _("Warning: instruction is UNPREDICTABLE with PC" \
908 " operand")
909 #define MVE_BAD_SP _("Warning: instruction is UNPREDICTABLE with SP" \
910 " operand")
911 #define BAD_SIMD_TYPE _("bad type in SIMD instruction")
912 #define BAD_MVE_AUTO \
913 _("GAS auto-detection mode and -march=all is deprecated for MVE, please" \
914 " use a valid -march or -mcpu option.")
915 #define BAD_MVE_SRCDEST _("Warning: 32-bit element size and same destination "\
916 "and source operands makes instruction UNPREDICTABLE")
917 #define BAD_EL_TYPE _("bad element type for instruction")
918 #define MVE_BAD_QREG _("MVE vector register Q[0..7] expected")
919
920 static struct hash_control * arm_ops_hsh;
921 static struct hash_control * arm_cond_hsh;
922 static struct hash_control * arm_vcond_hsh;
923 static struct hash_control * arm_shift_hsh;
924 static struct hash_control * arm_psr_hsh;
925 static struct hash_control * arm_v7m_psr_hsh;
926 static struct hash_control * arm_reg_hsh;
927 static struct hash_control * arm_reloc_hsh;
928 static struct hash_control * arm_barrier_opt_hsh;
929
930 /* Stuff needed to resolve the label ambiguity
931 As:
932 ...
933 label: <insn>
934 may differ from:
935 ...
936 label:
937 <insn> */
938
939 symbolS * last_label_seen;
940 static int label_is_thumb_function_name = FALSE;
941
942 /* Literal pool structure. Held on a per-section
943 and per-sub-section basis. */
944
945 #define MAX_LITERAL_POOL_SIZE 1024
946 typedef struct literal_pool
947 {
948 expressionS literals [MAX_LITERAL_POOL_SIZE];
949 unsigned int next_free_entry;
950 unsigned int id;
951 symbolS * symbol;
952 segT section;
953 subsegT sub_section;
954 #ifdef OBJ_ELF
955 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
956 #endif
957 struct literal_pool * next;
958 unsigned int alignment;
959 } literal_pool;
960
961 /* Pointer to a linked list of literal pools. */
962 literal_pool * list_of_pools = NULL;
963
964 typedef enum asmfunc_states
965 {
966 OUTSIDE_ASMFUNC,
967 WAITING_ASMFUNC_NAME,
968 WAITING_ENDASMFUNC
969 } asmfunc_states;
970
971 static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
972
973 #ifdef OBJ_ELF
974 # define now_pred seg_info (now_seg)->tc_segment_info_data.current_pred
975 #else
976 static struct current_pred now_pred;
977 #endif
978
979 static inline int
980 now_pred_compatible (int cond)
981 {
982 return (cond & ~1) == (now_pred.cc & ~1);
983 }
984
985 static inline int
986 conditional_insn (void)
987 {
988 return inst.cond != COND_ALWAYS;
989 }
990
991 static int in_pred_block (void);
992
993 static int handle_pred_state (void);
994
995 static void force_automatic_it_block_close (void);
996
997 static void it_fsm_post_encode (void);
998
999 #define set_pred_insn_type(type) \
1000 do \
1001 { \
1002 inst.pred_insn_type = type; \
1003 if (handle_pred_state () == FAIL) \
1004 return; \
1005 } \
1006 while (0)
1007
1008 #define set_pred_insn_type_nonvoid(type, failret) \
1009 do \
1010 { \
1011 inst.pred_insn_type = type; \
1012 if (handle_pred_state () == FAIL) \
1013 return failret; \
1014 } \
1015 while(0)
1016
1017 #define set_pred_insn_type_last() \
1018 do \
1019 { \
1020 if (inst.cond == COND_ALWAYS) \
1021 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN); \
1022 else \
1023 set_pred_insn_type (INSIDE_IT_LAST_INSN); \
1024 } \
1025 while (0)
1026
1027 /* Toggle value[pos]. */
1028 #define TOGGLE_BIT(value, pos) (value ^ (1 << pos))
1029
1030 /* Pure syntax. */
1031
1032 /* This array holds the chars that always start a comment. If the
1033 pre-processor is disabled, these aren't very useful. */
1034 char arm_comment_chars[] = "@";
1035
1036 /* This array holds the chars that only start a comment at the beginning of
1037 a line. If the line seems to have the form '# 123 filename'
1038 .line and .file directives will appear in the pre-processed output. */
1039 /* Note that input_file.c hand checks for '#' at the beginning of the
1040 first line of the input file. This is because the compiler outputs
1041 #NO_APP at the beginning of its output. */
1042 /* Also note that comments like this one will always work. */
1043 const char line_comment_chars[] = "#";
1044
1045 char arm_line_separator_chars[] = ";";
1046
1047 /* Chars that can be used to separate mant
1048 from exp in floating point numbers. */
1049 const char EXP_CHARS[] = "eE";
1050
1051 /* Chars that mean this number is a floating point constant. */
1052 /* As in 0f12.456 */
1053 /* or 0d1.2345e12 */
1054
1055 const char FLT_CHARS[] = "rRsSfFdDxXeEpPHh";
1056
1057 /* Prefix characters that indicate the start of an immediate
1058 value. */
1059 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
1060
1061 /* Separator character handling. */
1062
1063 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1064
1065 enum fp_16bit_format
1066 {
1067 ARM_FP16_FORMAT_IEEE = 0x1,
1068 ARM_FP16_FORMAT_ALTERNATIVE = 0x2,
1069 ARM_FP16_FORMAT_DEFAULT = 0x3
1070 };
1071
1072 static enum fp_16bit_format fp16_format = ARM_FP16_FORMAT_DEFAULT;
1073
1074
1075 static inline int
1076 skip_past_char (char ** str, char c)
1077 {
1078 /* PR gas/14987: Allow for whitespace before the expected character. */
1079 skip_whitespace (*str);
1080
1081 if (**str == c)
1082 {
1083 (*str)++;
1084 return SUCCESS;
1085 }
1086 else
1087 return FAIL;
1088 }
1089
1090 #define skip_past_comma(str) skip_past_char (str, ',')
1091
1092 /* Arithmetic expressions (possibly involving symbols). */
1093
1094 /* Return TRUE if anything in the expression is a bignum. */
1095
1096 static bfd_boolean
1097 walk_no_bignums (symbolS * sp)
1098 {
1099 if (symbol_get_value_expression (sp)->X_op == O_big)
1100 return TRUE;
1101
1102 if (symbol_get_value_expression (sp)->X_add_symbol)
1103 {
1104 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
1105 || (symbol_get_value_expression (sp)->X_op_symbol
1106 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
1107 }
1108
1109 return FALSE;
1110 }
1111
1112 static bfd_boolean in_my_get_expression = FALSE;
1113
1114 /* Third argument to my_get_expression. */
1115 #define GE_NO_PREFIX 0
1116 #define GE_IMM_PREFIX 1
1117 #define GE_OPT_PREFIX 2
1118 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1119 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1120 #define GE_OPT_PREFIX_BIG 3
1121
1122 static int
1123 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
1124 {
1125 char * save_in;
1126
1127 /* In unified syntax, all prefixes are optional. */
1128 if (unified_syntax)
1129 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
1130 : GE_OPT_PREFIX;
1131
1132 switch (prefix_mode)
1133 {
1134 case GE_NO_PREFIX: break;
1135 case GE_IMM_PREFIX:
1136 if (!is_immediate_prefix (**str))
1137 {
1138 inst.error = _("immediate expression requires a # prefix");
1139 return FAIL;
1140 }
1141 (*str)++;
1142 break;
1143 case GE_OPT_PREFIX:
1144 case GE_OPT_PREFIX_BIG:
1145 if (is_immediate_prefix (**str))
1146 (*str)++;
1147 break;
1148 default:
1149 abort ();
1150 }
1151
1152 memset (ep, 0, sizeof (expressionS));
1153
1154 save_in = input_line_pointer;
1155 input_line_pointer = *str;
1156 in_my_get_expression = TRUE;
1157 expression (ep);
1158 in_my_get_expression = FALSE;
1159
1160 if (ep->X_op == O_illegal || ep->X_op == O_absent)
1161 {
1162 /* We found a bad or missing expression in md_operand(). */
1163 *str = input_line_pointer;
1164 input_line_pointer = save_in;
1165 if (inst.error == NULL)
1166 inst.error = (ep->X_op == O_absent
1167 ? _("missing expression") :_("bad expression"));
1168 return 1;
1169 }
1170
1171 /* Get rid of any bignums now, so that we don't generate an error for which
1172 we can't establish a line number later on. Big numbers are never valid
1173 in instructions, which is where this routine is always called. */
1174 if (prefix_mode != GE_OPT_PREFIX_BIG
1175 && (ep->X_op == O_big
1176 || (ep->X_add_symbol
1177 && (walk_no_bignums (ep->X_add_symbol)
1178 || (ep->X_op_symbol
1179 && walk_no_bignums (ep->X_op_symbol))))))
1180 {
1181 inst.error = _("invalid constant");
1182 *str = input_line_pointer;
1183 input_line_pointer = save_in;
1184 return 1;
1185 }
1186
1187 *str = input_line_pointer;
1188 input_line_pointer = save_in;
1189 return SUCCESS;
1190 }
1191
1192 /* Turn a string in input_line_pointer into a floating point constant
1193 of type TYPE, and store the appropriate bytes in *LITP. The number
1194 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1195 returned, or NULL on OK.
1196
1197 Note that fp constants aren't represent in the normal way on the ARM.
1198 In big endian mode, things are as expected. However, in little endian
1199 mode fp constants are big-endian word-wise, and little-endian byte-wise
1200 within the words. For example, (double) 1.1 in big endian mode is
1201 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1202 the byte sequence 99 99 f1 3f 9a 99 99 99.
1203
1204 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1205
1206 const char *
1207 md_atof (int type, char * litP, int * sizeP)
1208 {
1209 int prec;
1210 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1211 char *t;
1212 int i;
1213
1214 switch (type)
1215 {
1216 case 'H':
1217 case 'h':
1218 prec = 1;
1219 break;
1220
1221 /* If this is a bfloat16, then parse it slightly differently, as it
1222 does not follow the IEEE specification for floating point numbers
1223 exactly. */
1224 case 'b':
1225 {
1226 FLONUM_TYPE generic_float;
1227
1228 t = atof_ieee_detail (input_line_pointer, 1, 8, words, &generic_float);
1229
1230 if (t)
1231 input_line_pointer = t;
1232 else
1233 return _("invalid floating point number");
1234
1235 switch (generic_float.sign)
1236 {
1237 /* Is +Inf. */
1238 case 'P':
1239 words[0] = 0x7f80;
1240 break;
1241
1242 /* Is -Inf. */
1243 case 'N':
1244 words[0] = 0xff80;
1245 break;
1246
1247 /* Is NaN. */
1248 /* bfloat16 has two types of NaN - quiet and signalling.
1249 Quiet NaN has bit[6] == 1 && faction != 0, whereas
1250 signalling NaN's have bit[0] == 0 && fraction != 0.
1251 Chosen this specific encoding as it is the same form
1252 as used by other IEEE 754 encodings in GAS. */
1253 case 0:
1254 words[0] = 0x7fff;
1255 break;
1256
1257 default:
1258 break;
1259 }
1260
1261 *sizeP = 2;
1262
1263 md_number_to_chars (litP, (valueT) words[0], sizeof (LITTLENUM_TYPE));
1264
1265 return NULL;
1266 }
1267 case 'f':
1268 case 'F':
1269 case 's':
1270 case 'S':
1271 prec = 2;
1272 break;
1273
1274 case 'd':
1275 case 'D':
1276 case 'r':
1277 case 'R':
1278 prec = 4;
1279 break;
1280
1281 case 'x':
1282 case 'X':
1283 prec = 5;
1284 break;
1285
1286 case 'p':
1287 case 'P':
1288 prec = 5;
1289 break;
1290
1291 default:
1292 *sizeP = 0;
1293 return _("Unrecognized or unsupported floating point constant");
1294 }
1295
1296 t = atof_ieee (input_line_pointer, type, words);
1297 if (t)
1298 input_line_pointer = t;
1299 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1300
1301 if (target_big_endian || prec == 1)
1302 for (i = 0; i < prec; i++)
1303 {
1304 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1305 litP += sizeof (LITTLENUM_TYPE);
1306 }
1307 else if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1308 for (i = prec - 1; i >= 0; i--)
1309 {
1310 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1311 litP += sizeof (LITTLENUM_TYPE);
1312 }
1313 else
1314 /* For a 4 byte float the order of elements in `words' is 1 0.
1315 For an 8 byte float the order is 1 0 3 2. */
1316 for (i = 0; i < prec; i += 2)
1317 {
1318 md_number_to_chars (litP, (valueT) words[i + 1],
1319 sizeof (LITTLENUM_TYPE));
1320 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1321 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1322 litP += 2 * sizeof (LITTLENUM_TYPE);
1323 }
1324
1325 return NULL;
1326 }
1327
1328 /* We handle all bad expressions here, so that we can report the faulty
1329 instruction in the error message. */
1330
1331 void
1332 md_operand (expressionS * exp)
1333 {
1334 if (in_my_get_expression)
1335 exp->X_op = O_illegal;
1336 }
1337
1338 /* Immediate values. */
1339
1340 #ifdef OBJ_ELF
1341 /* Generic immediate-value read function for use in directives.
1342 Accepts anything that 'expression' can fold to a constant.
1343 *val receives the number. */
1344
1345 static int
1346 immediate_for_directive (int *val)
1347 {
1348 expressionS exp;
1349 exp.X_op = O_illegal;
1350
1351 if (is_immediate_prefix (*input_line_pointer))
1352 {
1353 input_line_pointer++;
1354 expression (&exp);
1355 }
1356
1357 if (exp.X_op != O_constant)
1358 {
1359 as_bad (_("expected #constant"));
1360 ignore_rest_of_line ();
1361 return FAIL;
1362 }
1363 *val = exp.X_add_number;
1364 return SUCCESS;
1365 }
1366 #endif
1367
1368 /* Register parsing. */
1369
1370 /* Generic register parser. CCP points to what should be the
1371 beginning of a register name. If it is indeed a valid register
1372 name, advance CCP over it and return the reg_entry structure;
1373 otherwise return NULL. Does not issue diagnostics. */
1374
1375 static struct reg_entry *
1376 arm_reg_parse_multi (char **ccp)
1377 {
1378 char *start = *ccp;
1379 char *p;
1380 struct reg_entry *reg;
1381
1382 skip_whitespace (start);
1383
1384 #ifdef REGISTER_PREFIX
1385 if (*start != REGISTER_PREFIX)
1386 return NULL;
1387 start++;
1388 #endif
1389 #ifdef OPTIONAL_REGISTER_PREFIX
1390 if (*start == OPTIONAL_REGISTER_PREFIX)
1391 start++;
1392 #endif
1393
1394 p = start;
1395 if (!ISALPHA (*p) || !is_name_beginner (*p))
1396 return NULL;
1397
1398 do
1399 p++;
1400 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1401
1402 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1403
1404 if (!reg)
1405 return NULL;
1406
1407 *ccp = p;
1408 return reg;
1409 }
1410
1411 static int
1412 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1413 enum arm_reg_type type)
1414 {
1415 /* Alternative syntaxes are accepted for a few register classes. */
1416 switch (type)
1417 {
1418 case REG_TYPE_MVF:
1419 case REG_TYPE_MVD:
1420 case REG_TYPE_MVFX:
1421 case REG_TYPE_MVDX:
1422 /* Generic coprocessor register names are allowed for these. */
1423 if (reg && reg->type == REG_TYPE_CN)
1424 return reg->number;
1425 break;
1426
1427 case REG_TYPE_CP:
1428 /* For backward compatibility, a bare number is valid here. */
1429 {
1430 unsigned long processor = strtoul (start, ccp, 10);
1431 if (*ccp != start && processor <= 15)
1432 return processor;
1433 }
1434 /* Fall through. */
1435
1436 case REG_TYPE_MMXWC:
1437 /* WC includes WCG. ??? I'm not sure this is true for all
1438 instructions that take WC registers. */
1439 if (reg && reg->type == REG_TYPE_MMXWCG)
1440 return reg->number;
1441 break;
1442
1443 default:
1444 break;
1445 }
1446
1447 return FAIL;
1448 }
1449
1450 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1451 return value is the register number or FAIL. */
1452
1453 static int
1454 arm_reg_parse (char **ccp, enum arm_reg_type type)
1455 {
1456 char *start = *ccp;
1457 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1458 int ret;
1459
1460 /* Do not allow a scalar (reg+index) to parse as a register. */
1461 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1462 return FAIL;
1463
1464 if (reg && reg->type == type)
1465 return reg->number;
1466
1467 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1468 return ret;
1469
1470 *ccp = start;
1471 return FAIL;
1472 }
1473
1474 /* Parse a Neon type specifier. *STR should point at the leading '.'
1475 character. Does no verification at this stage that the type fits the opcode
1476 properly. E.g.,
1477
1478 .i32.i32.s16
1479 .s32.f32
1480 .u16
1481
1482 Can all be legally parsed by this function.
1483
1484 Fills in neon_type struct pointer with parsed information, and updates STR
1485 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1486 type, FAIL if not. */
1487
1488 static int
1489 parse_neon_type (struct neon_type *type, char **str)
1490 {
1491 char *ptr = *str;
1492
1493 if (type)
1494 type->elems = 0;
1495
1496 while (type->elems < NEON_MAX_TYPE_ELS)
1497 {
1498 enum neon_el_type thistype = NT_untyped;
1499 unsigned thissize = -1u;
1500
1501 if (*ptr != '.')
1502 break;
1503
1504 ptr++;
1505
1506 /* Just a size without an explicit type. */
1507 if (ISDIGIT (*ptr))
1508 goto parsesize;
1509
1510 switch (TOLOWER (*ptr))
1511 {
1512 case 'i': thistype = NT_integer; break;
1513 case 'f': thistype = NT_float; break;
1514 case 'p': thistype = NT_poly; break;
1515 case 's': thistype = NT_signed; break;
1516 case 'u': thistype = NT_unsigned; break;
1517 case 'd':
1518 thistype = NT_float;
1519 thissize = 64;
1520 ptr++;
1521 goto done;
1522 case 'b':
1523 thistype = NT_bfloat;
1524 switch (TOLOWER (*(++ptr)))
1525 {
1526 case 'f':
1527 ptr += 1;
1528 thissize = strtoul (ptr, &ptr, 10);
1529 if (thissize != 16)
1530 {
1531 as_bad (_("bad size %d in type specifier"), thissize);
1532 return FAIL;
1533 }
1534 goto done;
1535 case '0': case '1': case '2': case '3': case '4':
1536 case '5': case '6': case '7': case '8': case '9':
1537 case ' ': case '.':
1538 as_bad (_("unexpected type character `b' -- did you mean `bf'?"));
1539 return FAIL;
1540 default:
1541 break;
1542 }
1543 break;
1544 default:
1545 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1546 return FAIL;
1547 }
1548
1549 ptr++;
1550
1551 /* .f is an abbreviation for .f32. */
1552 if (thistype == NT_float && !ISDIGIT (*ptr))
1553 thissize = 32;
1554 else
1555 {
1556 parsesize:
1557 thissize = strtoul (ptr, &ptr, 10);
1558
1559 if (thissize != 8 && thissize != 16 && thissize != 32
1560 && thissize != 64)
1561 {
1562 as_bad (_("bad size %d in type specifier"), thissize);
1563 return FAIL;
1564 }
1565 }
1566
1567 done:
1568 if (type)
1569 {
1570 type->el[type->elems].type = thistype;
1571 type->el[type->elems].size = thissize;
1572 type->elems++;
1573 }
1574 }
1575
1576 /* Empty/missing type is not a successful parse. */
1577 if (type->elems == 0)
1578 return FAIL;
1579
1580 *str = ptr;
1581
1582 return SUCCESS;
1583 }
1584
1585 /* Errors may be set multiple times during parsing or bit encoding
1586 (particularly in the Neon bits), but usually the earliest error which is set
1587 will be the most meaningful. Avoid overwriting it with later (cascading)
1588 errors by calling this function. */
1589
1590 static void
1591 first_error (const char *err)
1592 {
1593 if (!inst.error)
1594 inst.error = err;
1595 }
1596
1597 /* Parse a single type, e.g. ".s32", leading period included. */
1598 static int
1599 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1600 {
1601 char *str = *ccp;
1602 struct neon_type optype;
1603
1604 if (*str == '.')
1605 {
1606 if (parse_neon_type (&optype, &str) == SUCCESS)
1607 {
1608 if (optype.elems == 1)
1609 *vectype = optype.el[0];
1610 else
1611 {
1612 first_error (_("only one type should be specified for operand"));
1613 return FAIL;
1614 }
1615 }
1616 else
1617 {
1618 first_error (_("vector type expected"));
1619 return FAIL;
1620 }
1621 }
1622 else
1623 return FAIL;
1624
1625 *ccp = str;
1626
1627 return SUCCESS;
1628 }
1629
1630 /* Special meanings for indices (which have a range of 0-7), which will fit into
1631 a 4-bit integer. */
1632
1633 #define NEON_ALL_LANES 15
1634 #define NEON_INTERLEAVE_LANES 14
1635
1636 /* Record a use of the given feature. */
1637 static void
1638 record_feature_use (const arm_feature_set *feature)
1639 {
1640 if (thumb_mode)
1641 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
1642 else
1643 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
1644 }
1645
1646 /* If the given feature available in the selected CPU, mark it as used.
1647 Returns TRUE iff feature is available. */
1648 static bfd_boolean
1649 mark_feature_used (const arm_feature_set *feature)
1650 {
1651
1652 /* Do not support the use of MVE only instructions when in auto-detection or
1653 -march=all. */
1654 if (((feature == &mve_ext) || (feature == &mve_fp_ext))
1655 && ARM_CPU_IS_ANY (cpu_variant))
1656 {
1657 first_error (BAD_MVE_AUTO);
1658 return FALSE;
1659 }
1660 /* Ensure the option is valid on the current architecture. */
1661 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
1662 return FALSE;
1663
1664 /* Add the appropriate architecture feature for the barrier option used.
1665 */
1666 record_feature_use (feature);
1667
1668 return TRUE;
1669 }
1670
1671 /* Parse either a register or a scalar, with an optional type. Return the
1672 register number, and optionally fill in the actual type of the register
1673 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1674 type/index information in *TYPEINFO. */
1675
1676 static int
1677 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1678 enum arm_reg_type *rtype,
1679 struct neon_typed_alias *typeinfo)
1680 {
1681 char *str = *ccp;
1682 struct reg_entry *reg = arm_reg_parse_multi (&str);
1683 struct neon_typed_alias atype;
1684 struct neon_type_el parsetype;
1685
1686 atype.defined = 0;
1687 atype.index = -1;
1688 atype.eltype.type = NT_invtype;
1689 atype.eltype.size = -1;
1690
1691 /* Try alternate syntax for some types of register. Note these are mutually
1692 exclusive with the Neon syntax extensions. */
1693 if (reg == NULL)
1694 {
1695 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1696 if (altreg != FAIL)
1697 *ccp = str;
1698 if (typeinfo)
1699 *typeinfo = atype;
1700 return altreg;
1701 }
1702
1703 /* Undo polymorphism when a set of register types may be accepted. */
1704 if ((type == REG_TYPE_NDQ
1705 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1706 || (type == REG_TYPE_VFSD
1707 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1708 || (type == REG_TYPE_NSDQ
1709 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1710 || reg->type == REG_TYPE_NQ))
1711 || (type == REG_TYPE_NSD
1712 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1713 || (type == REG_TYPE_MMXWC
1714 && (reg->type == REG_TYPE_MMXWCG)))
1715 type = (enum arm_reg_type) reg->type;
1716
1717 if (type == REG_TYPE_MQ)
1718 {
1719 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1720 return FAIL;
1721
1722 if (!reg || reg->type != REG_TYPE_NQ)
1723 return FAIL;
1724
1725 if (reg->number > 14 && !mark_feature_used (&fpu_vfp_ext_d32))
1726 {
1727 first_error (_("expected MVE register [q0..q7]"));
1728 return FAIL;
1729 }
1730 type = REG_TYPE_NQ;
1731 }
1732 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
1733 && (type == REG_TYPE_NQ))
1734 return FAIL;
1735
1736
1737 if (type != reg->type)
1738 return FAIL;
1739
1740 if (reg->neon)
1741 atype = *reg->neon;
1742
1743 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1744 {
1745 if ((atype.defined & NTA_HASTYPE) != 0)
1746 {
1747 first_error (_("can't redefine type for operand"));
1748 return FAIL;
1749 }
1750 atype.defined |= NTA_HASTYPE;
1751 atype.eltype = parsetype;
1752 }
1753
1754 if (skip_past_char (&str, '[') == SUCCESS)
1755 {
1756 if (type != REG_TYPE_VFD
1757 && !(type == REG_TYPE_VFS
1758 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2))
1759 && !(type == REG_TYPE_NQ
1760 && ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)))
1761 {
1762 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1763 first_error (_("only D and Q registers may be indexed"));
1764 else
1765 first_error (_("only D registers may be indexed"));
1766 return FAIL;
1767 }
1768
1769 if ((atype.defined & NTA_HASINDEX) != 0)
1770 {
1771 first_error (_("can't change index for operand"));
1772 return FAIL;
1773 }
1774
1775 atype.defined |= NTA_HASINDEX;
1776
1777 if (skip_past_char (&str, ']') == SUCCESS)
1778 atype.index = NEON_ALL_LANES;
1779 else
1780 {
1781 expressionS exp;
1782
1783 my_get_expression (&exp, &str, GE_NO_PREFIX);
1784
1785 if (exp.X_op != O_constant)
1786 {
1787 first_error (_("constant expression required"));
1788 return FAIL;
1789 }
1790
1791 if (skip_past_char (&str, ']') == FAIL)
1792 return FAIL;
1793
1794 atype.index = exp.X_add_number;
1795 }
1796 }
1797
1798 if (typeinfo)
1799 *typeinfo = atype;
1800
1801 if (rtype)
1802 *rtype = type;
1803
1804 *ccp = str;
1805
1806 return reg->number;
1807 }
1808
1809 /* Like arm_reg_parse, but also allow the following extra features:
1810 - If RTYPE is non-zero, return the (possibly restricted) type of the
1811 register (e.g. Neon double or quad reg when either has been requested).
1812 - If this is a Neon vector type with additional type information, fill
1813 in the struct pointed to by VECTYPE (if non-NULL).
1814 This function will fault on encountering a scalar. */
1815
1816 static int
1817 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1818 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1819 {
1820 struct neon_typed_alias atype;
1821 char *str = *ccp;
1822 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1823
1824 if (reg == FAIL)
1825 return FAIL;
1826
1827 /* Do not allow regname(... to parse as a register. */
1828 if (*str == '(')
1829 return FAIL;
1830
1831 /* Do not allow a scalar (reg+index) to parse as a register. */
1832 if ((atype.defined & NTA_HASINDEX) != 0)
1833 {
1834 first_error (_("register operand expected, but got scalar"));
1835 return FAIL;
1836 }
1837
1838 if (vectype)
1839 *vectype = atype.eltype;
1840
1841 *ccp = str;
1842
1843 return reg;
1844 }
1845
1846 #define NEON_SCALAR_REG(X) ((X) >> 4)
1847 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1848
1849 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1850 have enough information to be able to do a good job bounds-checking. So, we
1851 just do easy checks here, and do further checks later. */
1852
1853 static int
1854 parse_scalar (char **ccp, int elsize, struct neon_type_el *type, enum
1855 arm_reg_type reg_type)
1856 {
1857 int reg;
1858 char *str = *ccp;
1859 struct neon_typed_alias atype;
1860 unsigned reg_size;
1861
1862 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
1863
1864 switch (reg_type)
1865 {
1866 case REG_TYPE_VFS:
1867 reg_size = 32;
1868 break;
1869 case REG_TYPE_VFD:
1870 reg_size = 64;
1871 break;
1872 case REG_TYPE_MQ:
1873 reg_size = 128;
1874 break;
1875 default:
1876 gas_assert (0);
1877 return FAIL;
1878 }
1879
1880 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1881 return FAIL;
1882
1883 if (reg_type != REG_TYPE_MQ && atype.index == NEON_ALL_LANES)
1884 {
1885 first_error (_("scalar must have an index"));
1886 return FAIL;
1887 }
1888 else if (atype.index >= reg_size / elsize)
1889 {
1890 first_error (_("scalar index out of range"));
1891 return FAIL;
1892 }
1893
1894 if (type)
1895 *type = atype.eltype;
1896
1897 *ccp = str;
1898
1899 return reg * 16 + atype.index;
1900 }
1901
1902 /* Types of registers in a list. */
1903
1904 enum reg_list_els
1905 {
1906 REGLIST_RN,
1907 REGLIST_CLRM,
1908 REGLIST_VFP_S,
1909 REGLIST_VFP_S_VPR,
1910 REGLIST_VFP_D,
1911 REGLIST_VFP_D_VPR,
1912 REGLIST_NEON_D
1913 };
1914
1915 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1916
1917 static long
1918 parse_reg_list (char ** strp, enum reg_list_els etype)
1919 {
1920 char *str = *strp;
1921 long range = 0;
1922 int another_range;
1923
1924 gas_assert (etype == REGLIST_RN || etype == REGLIST_CLRM);
1925
1926 /* We come back here if we get ranges concatenated by '+' or '|'. */
1927 do
1928 {
1929 skip_whitespace (str);
1930
1931 another_range = 0;
1932
1933 if (*str == '{')
1934 {
1935 int in_range = 0;
1936 int cur_reg = -1;
1937
1938 str++;
1939 do
1940 {
1941 int reg;
1942 const char apsr_str[] = "apsr";
1943 int apsr_str_len = strlen (apsr_str);
1944
1945 reg = arm_reg_parse (&str, REGLIST_RN);
1946 if (etype == REGLIST_CLRM)
1947 {
1948 if (reg == REG_SP || reg == REG_PC)
1949 reg = FAIL;
1950 else if (reg == FAIL
1951 && !strncasecmp (str, apsr_str, apsr_str_len)
1952 && !ISALPHA (*(str + apsr_str_len)))
1953 {
1954 reg = 15;
1955 str += apsr_str_len;
1956 }
1957
1958 if (reg == FAIL)
1959 {
1960 first_error (_("r0-r12, lr or APSR expected"));
1961 return FAIL;
1962 }
1963 }
1964 else /* etype == REGLIST_RN. */
1965 {
1966 if (reg == FAIL)
1967 {
1968 first_error (_(reg_expected_msgs[REGLIST_RN]));
1969 return FAIL;
1970 }
1971 }
1972
1973 if (in_range)
1974 {
1975 int i;
1976
1977 if (reg <= cur_reg)
1978 {
1979 first_error (_("bad range in register list"));
1980 return FAIL;
1981 }
1982
1983 for (i = cur_reg + 1; i < reg; i++)
1984 {
1985 if (range & (1 << i))
1986 as_tsktsk
1987 (_("Warning: duplicated register (r%d) in register list"),
1988 i);
1989 else
1990 range |= 1 << i;
1991 }
1992 in_range = 0;
1993 }
1994
1995 if (range & (1 << reg))
1996 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1997 reg);
1998 else if (reg <= cur_reg)
1999 as_tsktsk (_("Warning: register range not in ascending order"));
2000
2001 range |= 1 << reg;
2002 cur_reg = reg;
2003 }
2004 while (skip_past_comma (&str) != FAIL
2005 || (in_range = 1, *str++ == '-'));
2006 str--;
2007
2008 if (skip_past_char (&str, '}') == FAIL)
2009 {
2010 first_error (_("missing `}'"));
2011 return FAIL;
2012 }
2013 }
2014 else if (etype == REGLIST_RN)
2015 {
2016 expressionS exp;
2017
2018 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
2019 return FAIL;
2020
2021 if (exp.X_op == O_constant)
2022 {
2023 if (exp.X_add_number
2024 != (exp.X_add_number & 0x0000ffff))
2025 {
2026 inst.error = _("invalid register mask");
2027 return FAIL;
2028 }
2029
2030 if ((range & exp.X_add_number) != 0)
2031 {
2032 int regno = range & exp.X_add_number;
2033
2034 regno &= -regno;
2035 regno = (1 << regno) - 1;
2036 as_tsktsk
2037 (_("Warning: duplicated register (r%d) in register list"),
2038 regno);
2039 }
2040
2041 range |= exp.X_add_number;
2042 }
2043 else
2044 {
2045 if (inst.relocs[0].type != 0)
2046 {
2047 inst.error = _("expression too complex");
2048 return FAIL;
2049 }
2050
2051 memcpy (&inst.relocs[0].exp, &exp, sizeof (expressionS));
2052 inst.relocs[0].type = BFD_RELOC_ARM_MULTI;
2053 inst.relocs[0].pc_rel = 0;
2054 }
2055 }
2056
2057 if (*str == '|' || *str == '+')
2058 {
2059 str++;
2060 another_range = 1;
2061 }
2062 }
2063 while (another_range);
2064
2065 *strp = str;
2066 return range;
2067 }
2068
2069 /* Parse a VFP register list. If the string is invalid return FAIL.
2070 Otherwise return the number of registers, and set PBASE to the first
2071 register. Parses registers of type ETYPE.
2072 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
2073 - Q registers can be used to specify pairs of D registers
2074 - { } can be omitted from around a singleton register list
2075 FIXME: This is not implemented, as it would require backtracking in
2076 some cases, e.g.:
2077 vtbl.8 d3,d4,d5
2078 This could be done (the meaning isn't really ambiguous), but doesn't
2079 fit in well with the current parsing framework.
2080 - 32 D registers may be used (also true for VFPv3).
2081 FIXME: Types are ignored in these register lists, which is probably a
2082 bug. */
2083
2084 static int
2085 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype,
2086 bfd_boolean *partial_match)
2087 {
2088 char *str = *ccp;
2089 int base_reg;
2090 int new_base;
2091 enum arm_reg_type regtype = (enum arm_reg_type) 0;
2092 int max_regs = 0;
2093 int count = 0;
2094 int warned = 0;
2095 unsigned long mask = 0;
2096 int i;
2097 bfd_boolean vpr_seen = FALSE;
2098 bfd_boolean expect_vpr =
2099 (etype == REGLIST_VFP_S_VPR) || (etype == REGLIST_VFP_D_VPR);
2100
2101 if (skip_past_char (&str, '{') == FAIL)
2102 {
2103 inst.error = _("expecting {");
2104 return FAIL;
2105 }
2106
2107 switch (etype)
2108 {
2109 case REGLIST_VFP_S:
2110 case REGLIST_VFP_S_VPR:
2111 regtype = REG_TYPE_VFS;
2112 max_regs = 32;
2113 break;
2114
2115 case REGLIST_VFP_D:
2116 case REGLIST_VFP_D_VPR:
2117 regtype = REG_TYPE_VFD;
2118 break;
2119
2120 case REGLIST_NEON_D:
2121 regtype = REG_TYPE_NDQ;
2122 break;
2123
2124 default:
2125 gas_assert (0);
2126 }
2127
2128 if (etype != REGLIST_VFP_S && etype != REGLIST_VFP_S_VPR)
2129 {
2130 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
2131 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
2132 {
2133 max_regs = 32;
2134 if (thumb_mode)
2135 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
2136 fpu_vfp_ext_d32);
2137 else
2138 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
2139 fpu_vfp_ext_d32);
2140 }
2141 else
2142 max_regs = 16;
2143 }
2144
2145 base_reg = max_regs;
2146 *partial_match = FALSE;
2147
2148 do
2149 {
2150 int setmask = 1, addregs = 1;
2151 const char vpr_str[] = "vpr";
2152 int vpr_str_len = strlen (vpr_str);
2153
2154 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
2155
2156 if (expect_vpr)
2157 {
2158 if (new_base == FAIL
2159 && !strncasecmp (str, vpr_str, vpr_str_len)
2160 && !ISALPHA (*(str + vpr_str_len))
2161 && !vpr_seen)
2162 {
2163 vpr_seen = TRUE;
2164 str += vpr_str_len;
2165 if (count == 0)
2166 base_reg = 0; /* Canonicalize VPR only on d0 with 0 regs. */
2167 }
2168 else if (vpr_seen)
2169 {
2170 first_error (_("VPR expected last"));
2171 return FAIL;
2172 }
2173 else if (new_base == FAIL)
2174 {
2175 if (regtype == REG_TYPE_VFS)
2176 first_error (_("VFP single precision register or VPR "
2177 "expected"));
2178 else /* regtype == REG_TYPE_VFD. */
2179 first_error (_("VFP/Neon double precision register or VPR "
2180 "expected"));
2181 return FAIL;
2182 }
2183 }
2184 else if (new_base == FAIL)
2185 {
2186 first_error (_(reg_expected_msgs[regtype]));
2187 return FAIL;
2188 }
2189
2190 *partial_match = TRUE;
2191 if (vpr_seen)
2192 continue;
2193
2194 if (new_base >= max_regs)
2195 {
2196 first_error (_("register out of range in list"));
2197 return FAIL;
2198 }
2199
2200 /* Note: a value of 2 * n is returned for the register Q<n>. */
2201 if (regtype == REG_TYPE_NQ)
2202 {
2203 setmask = 3;
2204 addregs = 2;
2205 }
2206
2207 if (new_base < base_reg)
2208 base_reg = new_base;
2209
2210 if (mask & (setmask << new_base))
2211 {
2212 first_error (_("invalid register list"));
2213 return FAIL;
2214 }
2215
2216 if ((mask >> new_base) != 0 && ! warned && !vpr_seen)
2217 {
2218 as_tsktsk (_("register list not in ascending order"));
2219 warned = 1;
2220 }
2221
2222 mask |= setmask << new_base;
2223 count += addregs;
2224
2225 if (*str == '-') /* We have the start of a range expression */
2226 {
2227 int high_range;
2228
2229 str++;
2230
2231 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
2232 == FAIL)
2233 {
2234 inst.error = gettext (reg_expected_msgs[regtype]);
2235 return FAIL;
2236 }
2237
2238 if (high_range >= max_regs)
2239 {
2240 first_error (_("register out of range in list"));
2241 return FAIL;
2242 }
2243
2244 if (regtype == REG_TYPE_NQ)
2245 high_range = high_range + 1;
2246
2247 if (high_range <= new_base)
2248 {
2249 inst.error = _("register range not in ascending order");
2250 return FAIL;
2251 }
2252
2253 for (new_base += addregs; new_base <= high_range; new_base += addregs)
2254 {
2255 if (mask & (setmask << new_base))
2256 {
2257 inst.error = _("invalid register list");
2258 return FAIL;
2259 }
2260
2261 mask |= setmask << new_base;
2262 count += addregs;
2263 }
2264 }
2265 }
2266 while (skip_past_comma (&str) != FAIL);
2267
2268 str++;
2269
2270 /* Sanity check -- should have raised a parse error above. */
2271 if ((!vpr_seen && count == 0) || count > max_regs)
2272 abort ();
2273
2274 *pbase = base_reg;
2275
2276 if (expect_vpr && !vpr_seen)
2277 {
2278 first_error (_("VPR expected last"));
2279 return FAIL;
2280 }
2281
2282 /* Final test -- the registers must be consecutive. */
2283 mask >>= base_reg;
2284 for (i = 0; i < count; i++)
2285 {
2286 if ((mask & (1u << i)) == 0)
2287 {
2288 inst.error = _("non-contiguous register range");
2289 return FAIL;
2290 }
2291 }
2292
2293 *ccp = str;
2294
2295 return count;
2296 }
2297
2298 /* True if two alias types are the same. */
2299
2300 static bfd_boolean
2301 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
2302 {
2303 if (!a && !b)
2304 return TRUE;
2305
2306 if (!a || !b)
2307 return FALSE;
2308
2309 if (a->defined != b->defined)
2310 return FALSE;
2311
2312 if ((a->defined & NTA_HASTYPE) != 0
2313 && (a->eltype.type != b->eltype.type
2314 || a->eltype.size != b->eltype.size))
2315 return FALSE;
2316
2317 if ((a->defined & NTA_HASINDEX) != 0
2318 && (a->index != b->index))
2319 return FALSE;
2320
2321 return TRUE;
2322 }
2323
2324 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2325 The base register is put in *PBASE.
2326 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
2327 the return value.
2328 The register stride (minus one) is put in bit 4 of the return value.
2329 Bits [6:5] encode the list length (minus one).
2330 The type of the list elements is put in *ELTYPE, if non-NULL. */
2331
2332 #define NEON_LANE(X) ((X) & 0xf)
2333 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
2334 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2335
2336 static int
2337 parse_neon_el_struct_list (char **str, unsigned *pbase,
2338 int mve,
2339 struct neon_type_el *eltype)
2340 {
2341 char *ptr = *str;
2342 int base_reg = -1;
2343 int reg_incr = -1;
2344 int count = 0;
2345 int lane = -1;
2346 int leading_brace = 0;
2347 enum arm_reg_type rtype = REG_TYPE_NDQ;
2348 const char *const incr_error = mve ? _("register stride must be 1") :
2349 _("register stride must be 1 or 2");
2350 const char *const type_error = _("mismatched element/structure types in list");
2351 struct neon_typed_alias firsttype;
2352 firsttype.defined = 0;
2353 firsttype.eltype.type = NT_invtype;
2354 firsttype.eltype.size = -1;
2355 firsttype.index = -1;
2356
2357 if (skip_past_char (&ptr, '{') == SUCCESS)
2358 leading_brace = 1;
2359
2360 do
2361 {
2362 struct neon_typed_alias atype;
2363 if (mve)
2364 rtype = REG_TYPE_MQ;
2365 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2366
2367 if (getreg == FAIL)
2368 {
2369 first_error (_(reg_expected_msgs[rtype]));
2370 return FAIL;
2371 }
2372
2373 if (base_reg == -1)
2374 {
2375 base_reg = getreg;
2376 if (rtype == REG_TYPE_NQ)
2377 {
2378 reg_incr = 1;
2379 }
2380 firsttype = atype;
2381 }
2382 else if (reg_incr == -1)
2383 {
2384 reg_incr = getreg - base_reg;
2385 if (reg_incr < 1 || reg_incr > 2)
2386 {
2387 first_error (_(incr_error));
2388 return FAIL;
2389 }
2390 }
2391 else if (getreg != base_reg + reg_incr * count)
2392 {
2393 first_error (_(incr_error));
2394 return FAIL;
2395 }
2396
2397 if (! neon_alias_types_same (&atype, &firsttype))
2398 {
2399 first_error (_(type_error));
2400 return FAIL;
2401 }
2402
2403 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
2404 modes. */
2405 if (ptr[0] == '-')
2406 {
2407 struct neon_typed_alias htype;
2408 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2409 if (lane == -1)
2410 lane = NEON_INTERLEAVE_LANES;
2411 else if (lane != NEON_INTERLEAVE_LANES)
2412 {
2413 first_error (_(type_error));
2414 return FAIL;
2415 }
2416 if (reg_incr == -1)
2417 reg_incr = 1;
2418 else if (reg_incr != 1)
2419 {
2420 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2421 return FAIL;
2422 }
2423 ptr++;
2424 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2425 if (hireg == FAIL)
2426 {
2427 first_error (_(reg_expected_msgs[rtype]));
2428 return FAIL;
2429 }
2430 if (! neon_alias_types_same (&htype, &firsttype))
2431 {
2432 first_error (_(type_error));
2433 return FAIL;
2434 }
2435 count += hireg + dregs - getreg;
2436 continue;
2437 }
2438
2439 /* If we're using Q registers, we can't use [] or [n] syntax. */
2440 if (rtype == REG_TYPE_NQ)
2441 {
2442 count += 2;
2443 continue;
2444 }
2445
2446 if ((atype.defined & NTA_HASINDEX) != 0)
2447 {
2448 if (lane == -1)
2449 lane = atype.index;
2450 else if (lane != atype.index)
2451 {
2452 first_error (_(type_error));
2453 return FAIL;
2454 }
2455 }
2456 else if (lane == -1)
2457 lane = NEON_INTERLEAVE_LANES;
2458 else if (lane != NEON_INTERLEAVE_LANES)
2459 {
2460 first_error (_(type_error));
2461 return FAIL;
2462 }
2463 count++;
2464 }
2465 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2466
2467 /* No lane set by [x]. We must be interleaving structures. */
2468 if (lane == -1)
2469 lane = NEON_INTERLEAVE_LANES;
2470
2471 /* Sanity check. */
2472 if (lane == -1 || base_reg == -1 || count < 1 || (!mve && count > 4)
2473 || (count > 1 && reg_incr == -1))
2474 {
2475 first_error (_("error parsing element/structure list"));
2476 return FAIL;
2477 }
2478
2479 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2480 {
2481 first_error (_("expected }"));
2482 return FAIL;
2483 }
2484
2485 if (reg_incr == -1)
2486 reg_incr = 1;
2487
2488 if (eltype)
2489 *eltype = firsttype.eltype;
2490
2491 *pbase = base_reg;
2492 *str = ptr;
2493
2494 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2495 }
2496
2497 /* Parse an explicit relocation suffix on an expression. This is
2498 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2499 arm_reloc_hsh contains no entries, so this function can only
2500 succeed if there is no () after the word. Returns -1 on error,
2501 BFD_RELOC_UNUSED if there wasn't any suffix. */
2502
2503 static int
2504 parse_reloc (char **str)
2505 {
2506 struct reloc_entry *r;
2507 char *p, *q;
2508
2509 if (**str != '(')
2510 return BFD_RELOC_UNUSED;
2511
2512 p = *str + 1;
2513 q = p;
2514
2515 while (*q && *q != ')' && *q != ',')
2516 q++;
2517 if (*q != ')')
2518 return -1;
2519
2520 if ((r = (struct reloc_entry *)
2521 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2522 return -1;
2523
2524 *str = q + 1;
2525 return r->reloc;
2526 }
2527
2528 /* Directives: register aliases. */
2529
2530 static struct reg_entry *
2531 insert_reg_alias (char *str, unsigned number, int type)
2532 {
2533 struct reg_entry *new_reg;
2534 const char *name;
2535
2536 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2537 {
2538 if (new_reg->builtin)
2539 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2540
2541 /* Only warn about a redefinition if it's not defined as the
2542 same register. */
2543 else if (new_reg->number != number || new_reg->type != type)
2544 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2545
2546 return NULL;
2547 }
2548
2549 name = xstrdup (str);
2550 new_reg = XNEW (struct reg_entry);
2551
2552 new_reg->name = name;
2553 new_reg->number = number;
2554 new_reg->type = type;
2555 new_reg->builtin = FALSE;
2556 new_reg->neon = NULL;
2557
2558 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2559 abort ();
2560
2561 return new_reg;
2562 }
2563
2564 static void
2565 insert_neon_reg_alias (char *str, int number, int type,
2566 struct neon_typed_alias *atype)
2567 {
2568 struct reg_entry *reg = insert_reg_alias (str, number, type);
2569
2570 if (!reg)
2571 {
2572 first_error (_("attempt to redefine typed alias"));
2573 return;
2574 }
2575
2576 if (atype)
2577 {
2578 reg->neon = XNEW (struct neon_typed_alias);
2579 *reg->neon = *atype;
2580 }
2581 }
2582
2583 /* Look for the .req directive. This is of the form:
2584
2585 new_register_name .req existing_register_name
2586
2587 If we find one, or if it looks sufficiently like one that we want to
2588 handle any error here, return TRUE. Otherwise return FALSE. */
2589
2590 static bfd_boolean
2591 create_register_alias (char * newname, char *p)
2592 {
2593 struct reg_entry *old;
2594 char *oldname, *nbuf;
2595 size_t nlen;
2596
2597 /* The input scrubber ensures that whitespace after the mnemonic is
2598 collapsed to single spaces. */
2599 oldname = p;
2600 if (strncmp (oldname, " .req ", 6) != 0)
2601 return FALSE;
2602
2603 oldname += 6;
2604 if (*oldname == '\0')
2605 return FALSE;
2606
2607 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2608 if (!old)
2609 {
2610 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2611 return TRUE;
2612 }
2613
2614 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2615 the desired alias name, and p points to its end. If not, then
2616 the desired alias name is in the global original_case_string. */
2617 #ifdef TC_CASE_SENSITIVE
2618 nlen = p - newname;
2619 #else
2620 newname = original_case_string;
2621 nlen = strlen (newname);
2622 #endif
2623
2624 nbuf = xmemdup0 (newname, nlen);
2625
2626 /* Create aliases under the new name as stated; an all-lowercase
2627 version of the new name; and an all-uppercase version of the new
2628 name. */
2629 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2630 {
2631 for (p = nbuf; *p; p++)
2632 *p = TOUPPER (*p);
2633
2634 if (strncmp (nbuf, newname, nlen))
2635 {
2636 /* If this attempt to create an additional alias fails, do not bother
2637 trying to create the all-lower case alias. We will fail and issue
2638 a second, duplicate error message. This situation arises when the
2639 programmer does something like:
2640 foo .req r0
2641 Foo .req r1
2642 The second .req creates the "Foo" alias but then fails to create
2643 the artificial FOO alias because it has already been created by the
2644 first .req. */
2645 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2646 {
2647 free (nbuf);
2648 return TRUE;
2649 }
2650 }
2651
2652 for (p = nbuf; *p; p++)
2653 *p = TOLOWER (*p);
2654
2655 if (strncmp (nbuf, newname, nlen))
2656 insert_reg_alias (nbuf, old->number, old->type);
2657 }
2658
2659 free (nbuf);
2660 return TRUE;
2661 }
2662
2663 /* Create a Neon typed/indexed register alias using directives, e.g.:
2664 X .dn d5.s32[1]
2665 Y .qn 6.s16
2666 Z .dn d7
2667 T .dn Z[0]
2668 These typed registers can be used instead of the types specified after the
2669 Neon mnemonic, so long as all operands given have types. Types can also be
2670 specified directly, e.g.:
2671 vadd d0.s32, d1.s32, d2.s32 */
2672
2673 static bfd_boolean
2674 create_neon_reg_alias (char *newname, char *p)
2675 {
2676 enum arm_reg_type basetype;
2677 struct reg_entry *basereg;
2678 struct reg_entry mybasereg;
2679 struct neon_type ntype;
2680 struct neon_typed_alias typeinfo;
2681 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2682 int namelen;
2683
2684 typeinfo.defined = 0;
2685 typeinfo.eltype.type = NT_invtype;
2686 typeinfo.eltype.size = -1;
2687 typeinfo.index = -1;
2688
2689 nameend = p;
2690
2691 if (strncmp (p, " .dn ", 5) == 0)
2692 basetype = REG_TYPE_VFD;
2693 else if (strncmp (p, " .qn ", 5) == 0)
2694 basetype = REG_TYPE_NQ;
2695 else
2696 return FALSE;
2697
2698 p += 5;
2699
2700 if (*p == '\0')
2701 return FALSE;
2702
2703 basereg = arm_reg_parse_multi (&p);
2704
2705 if (basereg && basereg->type != basetype)
2706 {
2707 as_bad (_("bad type for register"));
2708 return FALSE;
2709 }
2710
2711 if (basereg == NULL)
2712 {
2713 expressionS exp;
2714 /* Try parsing as an integer. */
2715 my_get_expression (&exp, &p, GE_NO_PREFIX);
2716 if (exp.X_op != O_constant)
2717 {
2718 as_bad (_("expression must be constant"));
2719 return FALSE;
2720 }
2721 basereg = &mybasereg;
2722 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2723 : exp.X_add_number;
2724 basereg->neon = 0;
2725 }
2726
2727 if (basereg->neon)
2728 typeinfo = *basereg->neon;
2729
2730 if (parse_neon_type (&ntype, &p) == SUCCESS)
2731 {
2732 /* We got a type. */
2733 if (typeinfo.defined & NTA_HASTYPE)
2734 {
2735 as_bad (_("can't redefine the type of a register alias"));
2736 return FALSE;
2737 }
2738
2739 typeinfo.defined |= NTA_HASTYPE;
2740 if (ntype.elems != 1)
2741 {
2742 as_bad (_("you must specify a single type only"));
2743 return FALSE;
2744 }
2745 typeinfo.eltype = ntype.el[0];
2746 }
2747
2748 if (skip_past_char (&p, '[') == SUCCESS)
2749 {
2750 expressionS exp;
2751 /* We got a scalar index. */
2752
2753 if (typeinfo.defined & NTA_HASINDEX)
2754 {
2755 as_bad (_("can't redefine the index of a scalar alias"));
2756 return FALSE;
2757 }
2758
2759 my_get_expression (&exp, &p, GE_NO_PREFIX);
2760
2761 if (exp.X_op != O_constant)
2762 {
2763 as_bad (_("scalar index must be constant"));
2764 return FALSE;
2765 }
2766
2767 typeinfo.defined |= NTA_HASINDEX;
2768 typeinfo.index = exp.X_add_number;
2769
2770 if (skip_past_char (&p, ']') == FAIL)
2771 {
2772 as_bad (_("expecting ]"));
2773 return FALSE;
2774 }
2775 }
2776
2777 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2778 the desired alias name, and p points to its end. If not, then
2779 the desired alias name is in the global original_case_string. */
2780 #ifdef TC_CASE_SENSITIVE
2781 namelen = nameend - newname;
2782 #else
2783 newname = original_case_string;
2784 namelen = strlen (newname);
2785 #endif
2786
2787 namebuf = xmemdup0 (newname, namelen);
2788
2789 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2790 typeinfo.defined != 0 ? &typeinfo : NULL);
2791
2792 /* Insert name in all uppercase. */
2793 for (p = namebuf; *p; p++)
2794 *p = TOUPPER (*p);
2795
2796 if (strncmp (namebuf, newname, namelen))
2797 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2798 typeinfo.defined != 0 ? &typeinfo : NULL);
2799
2800 /* Insert name in all lowercase. */
2801 for (p = namebuf; *p; p++)
2802 *p = TOLOWER (*p);
2803
2804 if (strncmp (namebuf, newname, namelen))
2805 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2806 typeinfo.defined != 0 ? &typeinfo : NULL);
2807
2808 free (namebuf);
2809 return TRUE;
2810 }
2811
2812 /* Should never be called, as .req goes between the alias and the
2813 register name, not at the beginning of the line. */
2814
2815 static void
2816 s_req (int a ATTRIBUTE_UNUSED)
2817 {
2818 as_bad (_("invalid syntax for .req directive"));
2819 }
2820
2821 static void
2822 s_dn (int a ATTRIBUTE_UNUSED)
2823 {
2824 as_bad (_("invalid syntax for .dn directive"));
2825 }
2826
2827 static void
2828 s_qn (int a ATTRIBUTE_UNUSED)
2829 {
2830 as_bad (_("invalid syntax for .qn directive"));
2831 }
2832
2833 /* The .unreq directive deletes an alias which was previously defined
2834 by .req. For example:
2835
2836 my_alias .req r11
2837 .unreq my_alias */
2838
2839 static void
2840 s_unreq (int a ATTRIBUTE_UNUSED)
2841 {
2842 char * name;
2843 char saved_char;
2844
2845 name = input_line_pointer;
2846
2847 while (*input_line_pointer != 0
2848 && *input_line_pointer != ' '
2849 && *input_line_pointer != '\n')
2850 ++input_line_pointer;
2851
2852 saved_char = *input_line_pointer;
2853 *input_line_pointer = 0;
2854
2855 if (!*name)
2856 as_bad (_("invalid syntax for .unreq directive"));
2857 else
2858 {
2859 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2860 name);
2861
2862 if (!reg)
2863 as_bad (_("unknown register alias '%s'"), name);
2864 else if (reg->builtin)
2865 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2866 name);
2867 else
2868 {
2869 char * p;
2870 char * nbuf;
2871
2872 hash_delete (arm_reg_hsh, name, FALSE);
2873 free ((char *) reg->name);
2874 if (reg->neon)
2875 free (reg->neon);
2876 free (reg);
2877
2878 /* Also locate the all upper case and all lower case versions.
2879 Do not complain if we cannot find one or the other as it
2880 was probably deleted above. */
2881
2882 nbuf = strdup (name);
2883 for (p = nbuf; *p; p++)
2884 *p = TOUPPER (*p);
2885 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2886 if (reg)
2887 {
2888 hash_delete (arm_reg_hsh, nbuf, FALSE);
2889 free ((char *) reg->name);
2890 if (reg->neon)
2891 free (reg->neon);
2892 free (reg);
2893 }
2894
2895 for (p = nbuf; *p; p++)
2896 *p = TOLOWER (*p);
2897 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2898 if (reg)
2899 {
2900 hash_delete (arm_reg_hsh, nbuf, FALSE);
2901 free ((char *) reg->name);
2902 if (reg->neon)
2903 free (reg->neon);
2904 free (reg);
2905 }
2906
2907 free (nbuf);
2908 }
2909 }
2910
2911 *input_line_pointer = saved_char;
2912 demand_empty_rest_of_line ();
2913 }
2914
2915 /* Directives: Instruction set selection. */
2916
2917 #ifdef OBJ_ELF
2918 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2919 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2920 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2921 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2922
2923 /* Create a new mapping symbol for the transition to STATE. */
2924
2925 static void
2926 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2927 {
2928 symbolS * symbolP;
2929 const char * symname;
2930 int type;
2931
2932 switch (state)
2933 {
2934 case MAP_DATA:
2935 symname = "$d";
2936 type = BSF_NO_FLAGS;
2937 break;
2938 case MAP_ARM:
2939 symname = "$a";
2940 type = BSF_NO_FLAGS;
2941 break;
2942 case MAP_THUMB:
2943 symname = "$t";
2944 type = BSF_NO_FLAGS;
2945 break;
2946 default:
2947 abort ();
2948 }
2949
2950 symbolP = symbol_new (symname, now_seg, value, frag);
2951 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2952
2953 switch (state)
2954 {
2955 case MAP_ARM:
2956 THUMB_SET_FUNC (symbolP, 0);
2957 ARM_SET_THUMB (symbolP, 0);
2958 ARM_SET_INTERWORK (symbolP, support_interwork);
2959 break;
2960
2961 case MAP_THUMB:
2962 THUMB_SET_FUNC (symbolP, 1);
2963 ARM_SET_THUMB (symbolP, 1);
2964 ARM_SET_INTERWORK (symbolP, support_interwork);
2965 break;
2966
2967 case MAP_DATA:
2968 default:
2969 break;
2970 }
2971
2972 /* Save the mapping symbols for future reference. Also check that
2973 we do not place two mapping symbols at the same offset within a
2974 frag. We'll handle overlap between frags in
2975 check_mapping_symbols.
2976
2977 If .fill or other data filling directive generates zero sized data,
2978 the mapping symbol for the following code will have the same value
2979 as the one generated for the data filling directive. In this case,
2980 we replace the old symbol with the new one at the same address. */
2981 if (value == 0)
2982 {
2983 if (frag->tc_frag_data.first_map != NULL)
2984 {
2985 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2986 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2987 }
2988 frag->tc_frag_data.first_map = symbolP;
2989 }
2990 if (frag->tc_frag_data.last_map != NULL)
2991 {
2992 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2993 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2994 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2995 }
2996 frag->tc_frag_data.last_map = symbolP;
2997 }
2998
2999 /* We must sometimes convert a region marked as code to data during
3000 code alignment, if an odd number of bytes have to be padded. The
3001 code mapping symbol is pushed to an aligned address. */
3002
3003 static void
3004 insert_data_mapping_symbol (enum mstate state,
3005 valueT value, fragS *frag, offsetT bytes)
3006 {
3007 /* If there was already a mapping symbol, remove it. */
3008 if (frag->tc_frag_data.last_map != NULL
3009 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
3010 {
3011 symbolS *symp = frag->tc_frag_data.last_map;
3012
3013 if (value == 0)
3014 {
3015 know (frag->tc_frag_data.first_map == symp);
3016 frag->tc_frag_data.first_map = NULL;
3017 }
3018 frag->tc_frag_data.last_map = NULL;
3019 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
3020 }
3021
3022 make_mapping_symbol (MAP_DATA, value, frag);
3023 make_mapping_symbol (state, value + bytes, frag);
3024 }
3025
3026 static void mapping_state_2 (enum mstate state, int max_chars);
3027
3028 /* Set the mapping state to STATE. Only call this when about to
3029 emit some STATE bytes to the file. */
3030
3031 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
3032 void
3033 mapping_state (enum mstate state)
3034 {
3035 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
3036
3037 if (mapstate == state)
3038 /* The mapping symbol has already been emitted.
3039 There is nothing else to do. */
3040 return;
3041
3042 if (state == MAP_ARM || state == MAP_THUMB)
3043 /* PR gas/12931
3044 All ARM instructions require 4-byte alignment.
3045 (Almost) all Thumb instructions require 2-byte alignment.
3046
3047 When emitting instructions into any section, mark the section
3048 appropriately.
3049
3050 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
3051 but themselves require 2-byte alignment; this applies to some
3052 PC- relative forms. However, these cases will involve implicit
3053 literal pool generation or an explicit .align >=2, both of
3054 which will cause the section to me marked with sufficient
3055 alignment. Thus, we don't handle those cases here. */
3056 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
3057
3058 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
3059 /* This case will be evaluated later. */
3060 return;
3061
3062 mapping_state_2 (state, 0);
3063 }
3064
3065 /* Same as mapping_state, but MAX_CHARS bytes have already been
3066 allocated. Put the mapping symbol that far back. */
3067
3068 static void
3069 mapping_state_2 (enum mstate state, int max_chars)
3070 {
3071 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
3072
3073 if (!SEG_NORMAL (now_seg))
3074 return;
3075
3076 if (mapstate == state)
3077 /* The mapping symbol has already been emitted.
3078 There is nothing else to do. */
3079 return;
3080
3081 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
3082 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
3083 {
3084 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
3085 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
3086
3087 if (add_symbol)
3088 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
3089 }
3090
3091 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
3092 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
3093 }
3094 #undef TRANSITION
3095 #else
3096 #define mapping_state(x) ((void)0)
3097 #define mapping_state_2(x, y) ((void)0)
3098 #endif
3099
3100 /* Find the real, Thumb encoded start of a Thumb function. */
3101
3102 #ifdef OBJ_COFF
3103 static symbolS *
3104 find_real_start (symbolS * symbolP)
3105 {
3106 char * real_start;
3107 const char * name = S_GET_NAME (symbolP);
3108 symbolS * new_target;
3109
3110 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
3111 #define STUB_NAME ".real_start_of"
3112
3113 if (name == NULL)
3114 abort ();
3115
3116 /* The compiler may generate BL instructions to local labels because
3117 it needs to perform a branch to a far away location. These labels
3118 do not have a corresponding ".real_start_of" label. We check
3119 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
3120 the ".real_start_of" convention for nonlocal branches. */
3121 if (S_IS_LOCAL (symbolP) || name[0] == '.')
3122 return symbolP;
3123
3124 real_start = concat (STUB_NAME, name, NULL);
3125 new_target = symbol_find (real_start);
3126 free (real_start);
3127
3128 if (new_target == NULL)
3129 {
3130 as_warn (_("Failed to find real start of function: %s\n"), name);
3131 new_target = symbolP;
3132 }
3133
3134 return new_target;
3135 }
3136 #endif
3137
3138 static void
3139 opcode_select (int width)
3140 {
3141 switch (width)
3142 {
3143 case 16:
3144 if (! thumb_mode)
3145 {
3146 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
3147 as_bad (_("selected processor does not support THUMB opcodes"));
3148
3149 thumb_mode = 1;
3150 /* No need to force the alignment, since we will have been
3151 coming from ARM mode, which is word-aligned. */
3152 record_alignment (now_seg, 1);
3153 }
3154 break;
3155
3156 case 32:
3157 if (thumb_mode)
3158 {
3159 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
3160 as_bad (_("selected processor does not support ARM opcodes"));
3161
3162 thumb_mode = 0;
3163
3164 if (!need_pass_2)
3165 frag_align (2, 0, 0);
3166
3167 record_alignment (now_seg, 1);
3168 }
3169 break;
3170
3171 default:
3172 as_bad (_("invalid instruction size selected (%d)"), width);
3173 }
3174 }
3175
3176 static void
3177 s_arm (int ignore ATTRIBUTE_UNUSED)
3178 {
3179 opcode_select (32);
3180 demand_empty_rest_of_line ();
3181 }
3182
3183 static void
3184 s_thumb (int ignore ATTRIBUTE_UNUSED)
3185 {
3186 opcode_select (16);
3187 demand_empty_rest_of_line ();
3188 }
3189
3190 static void
3191 s_code (int unused ATTRIBUTE_UNUSED)
3192 {
3193 int temp;
3194
3195 temp = get_absolute_expression ();
3196 switch (temp)
3197 {
3198 case 16:
3199 case 32:
3200 opcode_select (temp);
3201 break;
3202
3203 default:
3204 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
3205 }
3206 }
3207
3208 static void
3209 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
3210 {
3211 /* If we are not already in thumb mode go into it, EVEN if
3212 the target processor does not support thumb instructions.
3213 This is used by gcc/config/arm/lib1funcs.asm for example
3214 to compile interworking support functions even if the
3215 target processor should not support interworking. */
3216 if (! thumb_mode)
3217 {
3218 thumb_mode = 2;
3219 record_alignment (now_seg, 1);
3220 }
3221
3222 demand_empty_rest_of_line ();
3223 }
3224
3225 static void
3226 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
3227 {
3228 s_thumb (0);
3229
3230 /* The following label is the name/address of the start of a Thumb function.
3231 We need to know this for the interworking support. */
3232 label_is_thumb_function_name = TRUE;
3233 }
3234
3235 /* Perform a .set directive, but also mark the alias as
3236 being a thumb function. */
3237
3238 static void
3239 s_thumb_set (int equiv)
3240 {
3241 /* XXX the following is a duplicate of the code for s_set() in read.c
3242 We cannot just call that code as we need to get at the symbol that
3243 is created. */
3244 char * name;
3245 char delim;
3246 char * end_name;
3247 symbolS * symbolP;
3248
3249 /* Especial apologies for the random logic:
3250 This just grew, and could be parsed much more simply!
3251 Dean - in haste. */
3252 delim = get_symbol_name (& name);
3253 end_name = input_line_pointer;
3254 (void) restore_line_pointer (delim);
3255
3256 if (*input_line_pointer != ',')
3257 {
3258 *end_name = 0;
3259 as_bad (_("expected comma after name \"%s\""), name);
3260 *end_name = delim;
3261 ignore_rest_of_line ();
3262 return;
3263 }
3264
3265 input_line_pointer++;
3266 *end_name = 0;
3267
3268 if (name[0] == '.' && name[1] == '\0')
3269 {
3270 /* XXX - this should not happen to .thumb_set. */
3271 abort ();
3272 }
3273
3274 if ((symbolP = symbol_find (name)) == NULL
3275 && (symbolP = md_undefined_symbol (name)) == NULL)
3276 {
3277 #ifndef NO_LISTING
3278 /* When doing symbol listings, play games with dummy fragments living
3279 outside the normal fragment chain to record the file and line info
3280 for this symbol. */
3281 if (listing & LISTING_SYMBOLS)
3282 {
3283 extern struct list_info_struct * listing_tail;
3284 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
3285
3286 memset (dummy_frag, 0, sizeof (fragS));
3287 dummy_frag->fr_type = rs_fill;
3288 dummy_frag->line = listing_tail;
3289 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
3290 dummy_frag->fr_symbol = symbolP;
3291 }
3292 else
3293 #endif
3294 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
3295
3296 #ifdef OBJ_COFF
3297 /* "set" symbols are local unless otherwise specified. */
3298 SF_SET_LOCAL (symbolP);
3299 #endif /* OBJ_COFF */
3300 } /* Make a new symbol. */
3301
3302 symbol_table_insert (symbolP);
3303
3304 * end_name = delim;
3305
3306 if (equiv
3307 && S_IS_DEFINED (symbolP)
3308 && S_GET_SEGMENT (symbolP) != reg_section)
3309 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
3310
3311 pseudo_set (symbolP);
3312
3313 demand_empty_rest_of_line ();
3314
3315 /* XXX Now we come to the Thumb specific bit of code. */
3316
3317 THUMB_SET_FUNC (symbolP, 1);
3318 ARM_SET_THUMB (symbolP, 1);
3319 #if defined OBJ_ELF || defined OBJ_COFF
3320 ARM_SET_INTERWORK (symbolP, support_interwork);
3321 #endif
3322 }
3323
3324 /* Directives: Mode selection. */
3325
3326 /* .syntax [unified|divided] - choose the new unified syntax
3327 (same for Arm and Thumb encoding, modulo slight differences in what
3328 can be represented) or the old divergent syntax for each mode. */
3329 static void
3330 s_syntax (int unused ATTRIBUTE_UNUSED)
3331 {
3332 char *name, delim;
3333
3334 delim = get_symbol_name (& name);
3335
3336 if (!strcasecmp (name, "unified"))
3337 unified_syntax = TRUE;
3338 else if (!strcasecmp (name, "divided"))
3339 unified_syntax = FALSE;
3340 else
3341 {
3342 as_bad (_("unrecognized syntax mode \"%s\""), name);
3343 return;
3344 }
3345 (void) restore_line_pointer (delim);
3346 demand_empty_rest_of_line ();
3347 }
3348
3349 /* Directives: sectioning and alignment. */
3350
3351 static void
3352 s_bss (int ignore ATTRIBUTE_UNUSED)
3353 {
3354 /* We don't support putting frags in the BSS segment, we fake it by
3355 marking in_bss, then looking at s_skip for clues. */
3356 subseg_set (bss_section, 0);
3357 demand_empty_rest_of_line ();
3358
3359 #ifdef md_elf_section_change_hook
3360 md_elf_section_change_hook ();
3361 #endif
3362 }
3363
3364 static void
3365 s_even (int ignore ATTRIBUTE_UNUSED)
3366 {
3367 /* Never make frag if expect extra pass. */
3368 if (!need_pass_2)
3369 frag_align (1, 0, 0);
3370
3371 record_alignment (now_seg, 1);
3372
3373 demand_empty_rest_of_line ();
3374 }
3375
3376 /* Directives: CodeComposer Studio. */
3377
3378 /* .ref (for CodeComposer Studio syntax only). */
3379 static void
3380 s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3381 {
3382 if (codecomposer_syntax)
3383 ignore_rest_of_line ();
3384 else
3385 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3386 }
3387
3388 /* If name is not NULL, then it is used for marking the beginning of a
3389 function, whereas if it is NULL then it means the function end. */
3390 static void
3391 asmfunc_debug (const char * name)
3392 {
3393 static const char * last_name = NULL;
3394
3395 if (name != NULL)
3396 {
3397 gas_assert (last_name == NULL);
3398 last_name = name;
3399
3400 if (debug_type == DEBUG_STABS)
3401 stabs_generate_asm_func (name, name);
3402 }
3403 else
3404 {
3405 gas_assert (last_name != NULL);
3406
3407 if (debug_type == DEBUG_STABS)
3408 stabs_generate_asm_endfunc (last_name, last_name);
3409
3410 last_name = NULL;
3411 }
3412 }
3413
3414 static void
3415 s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3416 {
3417 if (codecomposer_syntax)
3418 {
3419 switch (asmfunc_state)
3420 {
3421 case OUTSIDE_ASMFUNC:
3422 asmfunc_state = WAITING_ASMFUNC_NAME;
3423 break;
3424
3425 case WAITING_ASMFUNC_NAME:
3426 as_bad (_(".asmfunc repeated."));
3427 break;
3428
3429 case WAITING_ENDASMFUNC:
3430 as_bad (_(".asmfunc without function."));
3431 break;
3432 }
3433 demand_empty_rest_of_line ();
3434 }
3435 else
3436 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3437 }
3438
3439 static void
3440 s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3441 {
3442 if (codecomposer_syntax)
3443 {
3444 switch (asmfunc_state)
3445 {
3446 case OUTSIDE_ASMFUNC:
3447 as_bad (_(".endasmfunc without a .asmfunc."));
3448 break;
3449
3450 case WAITING_ASMFUNC_NAME:
3451 as_bad (_(".endasmfunc without function."));
3452 break;
3453
3454 case WAITING_ENDASMFUNC:
3455 asmfunc_state = OUTSIDE_ASMFUNC;
3456 asmfunc_debug (NULL);
3457 break;
3458 }
3459 demand_empty_rest_of_line ();
3460 }
3461 else
3462 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3463 }
3464
3465 static void
3466 s_ccs_def (int name)
3467 {
3468 if (codecomposer_syntax)
3469 s_globl (name);
3470 else
3471 as_bad (_(".def pseudo-op only available with -mccs flag."));
3472 }
3473
3474 /* Directives: Literal pools. */
3475
3476 static literal_pool *
3477 find_literal_pool (void)
3478 {
3479 literal_pool * pool;
3480
3481 for (pool = list_of_pools; pool != NULL; pool = pool->next)
3482 {
3483 if (pool->section == now_seg
3484 && pool->sub_section == now_subseg)
3485 break;
3486 }
3487
3488 return pool;
3489 }
3490
3491 static literal_pool *
3492 find_or_make_literal_pool (void)
3493 {
3494 /* Next literal pool ID number. */
3495 static unsigned int latest_pool_num = 1;
3496 literal_pool * pool;
3497
3498 pool = find_literal_pool ();
3499
3500 if (pool == NULL)
3501 {
3502 /* Create a new pool. */
3503 pool = XNEW (literal_pool);
3504 if (! pool)
3505 return NULL;
3506
3507 pool->next_free_entry = 0;
3508 pool->section = now_seg;
3509 pool->sub_section = now_subseg;
3510 pool->next = list_of_pools;
3511 pool->symbol = NULL;
3512 pool->alignment = 2;
3513
3514 /* Add it to the list. */
3515 list_of_pools = pool;
3516 }
3517
3518 /* New pools, and emptied pools, will have a NULL symbol. */
3519 if (pool->symbol == NULL)
3520 {
3521 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3522 (valueT) 0, &zero_address_frag);
3523 pool->id = latest_pool_num ++;
3524 }
3525
3526 /* Done. */
3527 return pool;
3528 }
3529
3530 /* Add the literal in the global 'inst'
3531 structure to the relevant literal pool. */
3532
3533 static int
3534 add_to_lit_pool (unsigned int nbytes)
3535 {
3536 #define PADDING_SLOT 0x1
3537 #define LIT_ENTRY_SIZE_MASK 0xFF
3538 literal_pool * pool;
3539 unsigned int entry, pool_size = 0;
3540 bfd_boolean padding_slot_p = FALSE;
3541 unsigned imm1 = 0;
3542 unsigned imm2 = 0;
3543
3544 if (nbytes == 8)
3545 {
3546 imm1 = inst.operands[1].imm;
3547 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
3548 : inst.relocs[0].exp.X_unsigned ? 0
3549 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
3550 if (target_big_endian)
3551 {
3552 imm1 = imm2;
3553 imm2 = inst.operands[1].imm;
3554 }
3555 }
3556
3557 pool = find_or_make_literal_pool ();
3558
3559 /* Check if this literal value is already in the pool. */
3560 for (entry = 0; entry < pool->next_free_entry; entry ++)
3561 {
3562 if (nbytes == 4)
3563 {
3564 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3565 && (inst.relocs[0].exp.X_op == O_constant)
3566 && (pool->literals[entry].X_add_number
3567 == inst.relocs[0].exp.X_add_number)
3568 && (pool->literals[entry].X_md == nbytes)
3569 && (pool->literals[entry].X_unsigned
3570 == inst.relocs[0].exp.X_unsigned))
3571 break;
3572
3573 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3574 && (inst.relocs[0].exp.X_op == O_symbol)
3575 && (pool->literals[entry].X_add_number
3576 == inst.relocs[0].exp.X_add_number)
3577 && (pool->literals[entry].X_add_symbol
3578 == inst.relocs[0].exp.X_add_symbol)
3579 && (pool->literals[entry].X_op_symbol
3580 == inst.relocs[0].exp.X_op_symbol)
3581 && (pool->literals[entry].X_md == nbytes))
3582 break;
3583 }
3584 else if ((nbytes == 8)
3585 && !(pool_size & 0x7)
3586 && ((entry + 1) != pool->next_free_entry)
3587 && (pool->literals[entry].X_op == O_constant)
3588 && (pool->literals[entry].X_add_number == (offsetT) imm1)
3589 && (pool->literals[entry].X_unsigned
3590 == inst.relocs[0].exp.X_unsigned)
3591 && (pool->literals[entry + 1].X_op == O_constant)
3592 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
3593 && (pool->literals[entry + 1].X_unsigned
3594 == inst.relocs[0].exp.X_unsigned))
3595 break;
3596
3597 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3598 if (padding_slot_p && (nbytes == 4))
3599 break;
3600
3601 pool_size += 4;
3602 }
3603
3604 /* Do we need to create a new entry? */
3605 if (entry == pool->next_free_entry)
3606 {
3607 if (entry >= MAX_LITERAL_POOL_SIZE)
3608 {
3609 inst.error = _("literal pool overflow");
3610 return FAIL;
3611 }
3612
3613 if (nbytes == 8)
3614 {
3615 /* For 8-byte entries, we align to an 8-byte boundary,
3616 and split it into two 4-byte entries, because on 32-bit
3617 host, 8-byte constants are treated as big num, thus
3618 saved in "generic_bignum" which will be overwritten
3619 by later assignments.
3620
3621 We also need to make sure there is enough space for
3622 the split.
3623
3624 We also check to make sure the literal operand is a
3625 constant number. */
3626 if (!(inst.relocs[0].exp.X_op == O_constant
3627 || inst.relocs[0].exp.X_op == O_big))
3628 {
3629 inst.error = _("invalid type for literal pool");
3630 return FAIL;
3631 }
3632 else if (pool_size & 0x7)
3633 {
3634 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3635 {
3636 inst.error = _("literal pool overflow");
3637 return FAIL;
3638 }
3639
3640 pool->literals[entry] = inst.relocs[0].exp;
3641 pool->literals[entry].X_op = O_constant;
3642 pool->literals[entry].X_add_number = 0;
3643 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3644 pool->next_free_entry += 1;
3645 pool_size += 4;
3646 }
3647 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3648 {
3649 inst.error = _("literal pool overflow");
3650 return FAIL;
3651 }
3652
3653 pool->literals[entry] = inst.relocs[0].exp;
3654 pool->literals[entry].X_op = O_constant;
3655 pool->literals[entry].X_add_number = imm1;
3656 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3657 pool->literals[entry++].X_md = 4;
3658 pool->literals[entry] = inst.relocs[0].exp;
3659 pool->literals[entry].X_op = O_constant;
3660 pool->literals[entry].X_add_number = imm2;
3661 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3662 pool->literals[entry].X_md = 4;
3663 pool->alignment = 3;
3664 pool->next_free_entry += 1;
3665 }
3666 else
3667 {
3668 pool->literals[entry] = inst.relocs[0].exp;
3669 pool->literals[entry].X_md = 4;
3670 }
3671
3672 #ifdef OBJ_ELF
3673 /* PR ld/12974: Record the location of the first source line to reference
3674 this entry in the literal pool. If it turns out during linking that the
3675 symbol does not exist we will be able to give an accurate line number for
3676 the (first use of the) missing reference. */
3677 if (debug_type == DEBUG_DWARF2)
3678 dwarf2_where (pool->locs + entry);
3679 #endif
3680 pool->next_free_entry += 1;
3681 }
3682 else if (padding_slot_p)
3683 {
3684 pool->literals[entry] = inst.relocs[0].exp;
3685 pool->literals[entry].X_md = nbytes;
3686 }
3687
3688 inst.relocs[0].exp.X_op = O_symbol;
3689 inst.relocs[0].exp.X_add_number = pool_size;
3690 inst.relocs[0].exp.X_add_symbol = pool->symbol;
3691
3692 return SUCCESS;
3693 }
3694
3695 bfd_boolean
3696 tc_start_label_without_colon (void)
3697 {
3698 bfd_boolean ret = TRUE;
3699
3700 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3701 {
3702 const char *label = input_line_pointer;
3703
3704 while (!is_end_of_line[(int) label[-1]])
3705 --label;
3706
3707 if (*label == '.')
3708 {
3709 as_bad (_("Invalid label '%s'"), label);
3710 ret = FALSE;
3711 }
3712
3713 asmfunc_debug (label);
3714
3715 asmfunc_state = WAITING_ENDASMFUNC;
3716 }
3717
3718 return ret;
3719 }
3720
3721 /* Can't use symbol_new here, so have to create a symbol and then at
3722 a later date assign it a value. That's what these functions do. */
3723
3724 static void
3725 symbol_locate (symbolS * symbolP,
3726 const char * name, /* It is copied, the caller can modify. */
3727 segT segment, /* Segment identifier (SEG_<something>). */
3728 valueT valu, /* Symbol value. */
3729 fragS * frag) /* Associated fragment. */
3730 {
3731 size_t name_length;
3732 char * preserved_copy_of_name;
3733
3734 name_length = strlen (name) + 1; /* +1 for \0. */
3735 obstack_grow (&notes, name, name_length);
3736 preserved_copy_of_name = (char *) obstack_finish (&notes);
3737
3738 #ifdef tc_canonicalize_symbol_name
3739 preserved_copy_of_name =
3740 tc_canonicalize_symbol_name (preserved_copy_of_name);
3741 #endif
3742
3743 S_SET_NAME (symbolP, preserved_copy_of_name);
3744
3745 S_SET_SEGMENT (symbolP, segment);
3746 S_SET_VALUE (symbolP, valu);
3747 symbol_clear_list_pointers (symbolP);
3748
3749 symbol_set_frag (symbolP, frag);
3750
3751 /* Link to end of symbol chain. */
3752 {
3753 extern int symbol_table_frozen;
3754
3755 if (symbol_table_frozen)
3756 abort ();
3757 }
3758
3759 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3760
3761 obj_symbol_new_hook (symbolP);
3762
3763 #ifdef tc_symbol_new_hook
3764 tc_symbol_new_hook (symbolP);
3765 #endif
3766
3767 #ifdef DEBUG_SYMS
3768 verify_symbol_chain (symbol_rootP, symbol_lastP);
3769 #endif /* DEBUG_SYMS */
3770 }
3771
3772 static void
3773 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3774 {
3775 unsigned int entry;
3776 literal_pool * pool;
3777 char sym_name[20];
3778
3779 pool = find_literal_pool ();
3780 if (pool == NULL
3781 || pool->symbol == NULL
3782 || pool->next_free_entry == 0)
3783 return;
3784
3785 /* Align pool as you have word accesses.
3786 Only make a frag if we have to. */
3787 if (!need_pass_2)
3788 frag_align (pool->alignment, 0, 0);
3789
3790 record_alignment (now_seg, 2);
3791
3792 #ifdef OBJ_ELF
3793 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3794 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
3795 #endif
3796 sprintf (sym_name, "$$lit_\002%x", pool->id);
3797
3798 symbol_locate (pool->symbol, sym_name, now_seg,
3799 (valueT) frag_now_fix (), frag_now);
3800 symbol_table_insert (pool->symbol);
3801
3802 ARM_SET_THUMB (pool->symbol, thumb_mode);
3803
3804 #if defined OBJ_COFF || defined OBJ_ELF
3805 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3806 #endif
3807
3808 for (entry = 0; entry < pool->next_free_entry; entry ++)
3809 {
3810 #ifdef OBJ_ELF
3811 if (debug_type == DEBUG_DWARF2)
3812 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3813 #endif
3814 /* First output the expression in the instruction to the pool. */
3815 emit_expr (&(pool->literals[entry]),
3816 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
3817 }
3818
3819 /* Mark the pool as empty. */
3820 pool->next_free_entry = 0;
3821 pool->symbol = NULL;
3822 }
3823
3824 #ifdef OBJ_ELF
3825 /* Forward declarations for functions below, in the MD interface
3826 section. */
3827 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3828 static valueT create_unwind_entry (int);
3829 static void start_unwind_section (const segT, int);
3830 static void add_unwind_opcode (valueT, int);
3831 static void flush_pending_unwind (void);
3832
3833 /* Directives: Data. */
3834
3835 static void
3836 s_arm_elf_cons (int nbytes)
3837 {
3838 expressionS exp;
3839
3840 #ifdef md_flush_pending_output
3841 md_flush_pending_output ();
3842 #endif
3843
3844 if (is_it_end_of_statement ())
3845 {
3846 demand_empty_rest_of_line ();
3847 return;
3848 }
3849
3850 #ifdef md_cons_align
3851 md_cons_align (nbytes);
3852 #endif
3853
3854 mapping_state (MAP_DATA);
3855 do
3856 {
3857 int reloc;
3858 char *base = input_line_pointer;
3859
3860 expression (& exp);
3861
3862 if (exp.X_op != O_symbol)
3863 emit_expr (&exp, (unsigned int) nbytes);
3864 else
3865 {
3866 char *before_reloc = input_line_pointer;
3867 reloc = parse_reloc (&input_line_pointer);
3868 if (reloc == -1)
3869 {
3870 as_bad (_("unrecognized relocation suffix"));
3871 ignore_rest_of_line ();
3872 return;
3873 }
3874 else if (reloc == BFD_RELOC_UNUSED)
3875 emit_expr (&exp, (unsigned int) nbytes);
3876 else
3877 {
3878 reloc_howto_type *howto = (reloc_howto_type *)
3879 bfd_reloc_type_lookup (stdoutput,
3880 (bfd_reloc_code_real_type) reloc);
3881 int size = bfd_get_reloc_size (howto);
3882
3883 if (reloc == BFD_RELOC_ARM_PLT32)
3884 {
3885 as_bad (_("(plt) is only valid on branch targets"));
3886 reloc = BFD_RELOC_UNUSED;
3887 size = 0;
3888 }
3889
3890 if (size > nbytes)
3891 as_bad (ngettext ("%s relocations do not fit in %d byte",
3892 "%s relocations do not fit in %d bytes",
3893 nbytes),
3894 howto->name, nbytes);
3895 else
3896 {
3897 /* We've parsed an expression stopping at O_symbol.
3898 But there may be more expression left now that we
3899 have parsed the relocation marker. Parse it again.
3900 XXX Surely there is a cleaner way to do this. */
3901 char *p = input_line_pointer;
3902 int offset;
3903 char *save_buf = XNEWVEC (char, input_line_pointer - base);
3904
3905 memcpy (save_buf, base, input_line_pointer - base);
3906 memmove (base + (input_line_pointer - before_reloc),
3907 base, before_reloc - base);
3908
3909 input_line_pointer = base + (input_line_pointer-before_reloc);
3910 expression (&exp);
3911 memcpy (base, save_buf, p - base);
3912
3913 offset = nbytes - size;
3914 p = frag_more (nbytes);
3915 memset (p, 0, nbytes);
3916 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3917 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3918 free (save_buf);
3919 }
3920 }
3921 }
3922 }
3923 while (*input_line_pointer++ == ',');
3924
3925 /* Put terminator back into stream. */
3926 input_line_pointer --;
3927 demand_empty_rest_of_line ();
3928 }
3929
3930 /* Emit an expression containing a 32-bit thumb instruction.
3931 Implementation based on put_thumb32_insn. */
3932
3933 static void
3934 emit_thumb32_expr (expressionS * exp)
3935 {
3936 expressionS exp_high = *exp;
3937
3938 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3939 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3940 exp->X_add_number &= 0xffff;
3941 emit_expr (exp, (unsigned int) THUMB_SIZE);
3942 }
3943
3944 /* Guess the instruction size based on the opcode. */
3945
3946 static int
3947 thumb_insn_size (int opcode)
3948 {
3949 if ((unsigned int) opcode < 0xe800u)
3950 return 2;
3951 else if ((unsigned int) opcode >= 0xe8000000u)
3952 return 4;
3953 else
3954 return 0;
3955 }
3956
3957 static bfd_boolean
3958 emit_insn (expressionS *exp, int nbytes)
3959 {
3960 int size = 0;
3961
3962 if (exp->X_op == O_constant)
3963 {
3964 size = nbytes;
3965
3966 if (size == 0)
3967 size = thumb_insn_size (exp->X_add_number);
3968
3969 if (size != 0)
3970 {
3971 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3972 {
3973 as_bad (_(".inst.n operand too big. "\
3974 "Use .inst.w instead"));
3975 size = 0;
3976 }
3977 else
3978 {
3979 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
3980 set_pred_insn_type_nonvoid (OUTSIDE_PRED_INSN, 0);
3981 else
3982 set_pred_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3983
3984 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3985 emit_thumb32_expr (exp);
3986 else
3987 emit_expr (exp, (unsigned int) size);
3988
3989 it_fsm_post_encode ();
3990 }
3991 }
3992 else
3993 as_bad (_("cannot determine Thumb instruction size. " \
3994 "Use .inst.n/.inst.w instead"));
3995 }
3996 else
3997 as_bad (_("constant expression required"));
3998
3999 return (size != 0);
4000 }
4001
4002 /* Like s_arm_elf_cons but do not use md_cons_align and
4003 set the mapping state to MAP_ARM/MAP_THUMB. */
4004
4005 static void
4006 s_arm_elf_inst (int nbytes)
4007 {
4008 if (is_it_end_of_statement ())
4009 {
4010 demand_empty_rest_of_line ();
4011 return;
4012 }
4013
4014 /* Calling mapping_state () here will not change ARM/THUMB,
4015 but will ensure not to be in DATA state. */
4016
4017 if (thumb_mode)
4018 mapping_state (MAP_THUMB);
4019 else
4020 {
4021 if (nbytes != 0)
4022 {
4023 as_bad (_("width suffixes are invalid in ARM mode"));
4024 ignore_rest_of_line ();
4025 return;
4026 }
4027
4028 nbytes = 4;
4029
4030 mapping_state (MAP_ARM);
4031 }
4032
4033 do
4034 {
4035 expressionS exp;
4036
4037 expression (& exp);
4038
4039 if (! emit_insn (& exp, nbytes))
4040 {
4041 ignore_rest_of_line ();
4042 return;
4043 }
4044 }
4045 while (*input_line_pointer++ == ',');
4046
4047 /* Put terminator back into stream. */
4048 input_line_pointer --;
4049 demand_empty_rest_of_line ();
4050 }
4051
4052 /* Parse a .rel31 directive. */
4053
4054 static void
4055 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
4056 {
4057 expressionS exp;
4058 char *p;
4059 valueT highbit;
4060
4061 highbit = 0;
4062 if (*input_line_pointer == '1')
4063 highbit = 0x80000000;
4064 else if (*input_line_pointer != '0')
4065 as_bad (_("expected 0 or 1"));
4066
4067 input_line_pointer++;
4068 if (*input_line_pointer != ',')
4069 as_bad (_("missing comma"));
4070 input_line_pointer++;
4071
4072 #ifdef md_flush_pending_output
4073 md_flush_pending_output ();
4074 #endif
4075
4076 #ifdef md_cons_align
4077 md_cons_align (4);
4078 #endif
4079
4080 mapping_state (MAP_DATA);
4081
4082 expression (&exp);
4083
4084 p = frag_more (4);
4085 md_number_to_chars (p, highbit, 4);
4086 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
4087 BFD_RELOC_ARM_PREL31);
4088
4089 demand_empty_rest_of_line ();
4090 }
4091
4092 /* Directives: AEABI stack-unwind tables. */
4093
4094 /* Parse an unwind_fnstart directive. Simply records the current location. */
4095
4096 static void
4097 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
4098 {
4099 demand_empty_rest_of_line ();
4100 if (unwind.proc_start)
4101 {
4102 as_bad (_("duplicate .fnstart directive"));
4103 return;
4104 }
4105
4106 /* Mark the start of the function. */
4107 unwind.proc_start = expr_build_dot ();
4108
4109 /* Reset the rest of the unwind info. */
4110 unwind.opcode_count = 0;
4111 unwind.table_entry = NULL;
4112 unwind.personality_routine = NULL;
4113 unwind.personality_index = -1;
4114 unwind.frame_size = 0;
4115 unwind.fp_offset = 0;
4116 unwind.fp_reg = REG_SP;
4117 unwind.fp_used = 0;
4118 unwind.sp_restored = 0;
4119 }
4120
4121
4122 /* Parse a handlerdata directive. Creates the exception handling table entry
4123 for the function. */
4124
4125 static void
4126 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
4127 {
4128 demand_empty_rest_of_line ();
4129 if (!unwind.proc_start)
4130 as_bad (MISSING_FNSTART);
4131
4132 if (unwind.table_entry)
4133 as_bad (_("duplicate .handlerdata directive"));
4134
4135 create_unwind_entry (1);
4136 }
4137
4138 /* Parse an unwind_fnend directive. Generates the index table entry. */
4139
4140 static void
4141 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
4142 {
4143 long where;
4144 char *ptr;
4145 valueT val;
4146 unsigned int marked_pr_dependency;
4147
4148 demand_empty_rest_of_line ();
4149
4150 if (!unwind.proc_start)
4151 {
4152 as_bad (_(".fnend directive without .fnstart"));
4153 return;
4154 }
4155
4156 /* Add eh table entry. */
4157 if (unwind.table_entry == NULL)
4158 val = create_unwind_entry (0);
4159 else
4160 val = 0;
4161
4162 /* Add index table entry. This is two words. */
4163 start_unwind_section (unwind.saved_seg, 1);
4164 frag_align (2, 0, 0);
4165 record_alignment (now_seg, 2);
4166
4167 ptr = frag_more (8);
4168 memset (ptr, 0, 8);
4169 where = frag_now_fix () - 8;
4170
4171 /* Self relative offset of the function start. */
4172 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
4173 BFD_RELOC_ARM_PREL31);
4174
4175 /* Indicate dependency on EHABI-defined personality routines to the
4176 linker, if it hasn't been done already. */
4177 marked_pr_dependency
4178 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
4179 if (unwind.personality_index >= 0 && unwind.personality_index < 3
4180 && !(marked_pr_dependency & (1 << unwind.personality_index)))
4181 {
4182 static const char *const name[] =
4183 {
4184 "__aeabi_unwind_cpp_pr0",
4185 "__aeabi_unwind_cpp_pr1",
4186 "__aeabi_unwind_cpp_pr2"
4187 };
4188 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
4189 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
4190 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
4191 |= 1 << unwind.personality_index;
4192 }
4193
4194 if (val)
4195 /* Inline exception table entry. */
4196 md_number_to_chars (ptr + 4, val, 4);
4197 else
4198 /* Self relative offset of the table entry. */
4199 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
4200 BFD_RELOC_ARM_PREL31);
4201
4202 /* Restore the original section. */
4203 subseg_set (unwind.saved_seg, unwind.saved_subseg);
4204
4205 unwind.proc_start = NULL;
4206 }
4207
4208
4209 /* Parse an unwind_cantunwind directive. */
4210
4211 static void
4212 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
4213 {
4214 demand_empty_rest_of_line ();
4215 if (!unwind.proc_start)
4216 as_bad (MISSING_FNSTART);
4217
4218 if (unwind.personality_routine || unwind.personality_index != -1)
4219 as_bad (_("personality routine specified for cantunwind frame"));
4220
4221 unwind.personality_index = -2;
4222 }
4223
4224
4225 /* Parse a personalityindex directive. */
4226
4227 static void
4228 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
4229 {
4230 expressionS exp;
4231
4232 if (!unwind.proc_start)
4233 as_bad (MISSING_FNSTART);
4234
4235 if (unwind.personality_routine || unwind.personality_index != -1)
4236 as_bad (_("duplicate .personalityindex directive"));
4237
4238 expression (&exp);
4239
4240 if (exp.X_op != O_constant
4241 || exp.X_add_number < 0 || exp.X_add_number > 15)
4242 {
4243 as_bad (_("bad personality routine number"));
4244 ignore_rest_of_line ();
4245 return;
4246 }
4247
4248 unwind.personality_index = exp.X_add_number;
4249
4250 demand_empty_rest_of_line ();
4251 }
4252
4253
4254 /* Parse a personality directive. */
4255
4256 static void
4257 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
4258 {
4259 char *name, *p, c;
4260
4261 if (!unwind.proc_start)
4262 as_bad (MISSING_FNSTART);
4263
4264 if (unwind.personality_routine || unwind.personality_index != -1)
4265 as_bad (_("duplicate .personality directive"));
4266
4267 c = get_symbol_name (& name);
4268 p = input_line_pointer;
4269 if (c == '"')
4270 ++ input_line_pointer;
4271 unwind.personality_routine = symbol_find_or_make (name);
4272 *p = c;
4273 demand_empty_rest_of_line ();
4274 }
4275
4276
4277 /* Parse a directive saving core registers. */
4278
4279 static void
4280 s_arm_unwind_save_core (void)
4281 {
4282 valueT op;
4283 long range;
4284 int n;
4285
4286 range = parse_reg_list (&input_line_pointer, REGLIST_RN);
4287 if (range == FAIL)
4288 {
4289 as_bad (_("expected register list"));
4290 ignore_rest_of_line ();
4291 return;
4292 }
4293
4294 demand_empty_rest_of_line ();
4295
4296 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4297 into .unwind_save {..., sp...}. We aren't bothered about the value of
4298 ip because it is clobbered by calls. */
4299 if (unwind.sp_restored && unwind.fp_reg == 12
4300 && (range & 0x3000) == 0x1000)
4301 {
4302 unwind.opcode_count--;
4303 unwind.sp_restored = 0;
4304 range = (range | 0x2000) & ~0x1000;
4305 unwind.pending_offset = 0;
4306 }
4307
4308 /* Pop r4-r15. */
4309 if (range & 0xfff0)
4310 {
4311 /* See if we can use the short opcodes. These pop a block of up to 8
4312 registers starting with r4, plus maybe r14. */
4313 for (n = 0; n < 8; n++)
4314 {
4315 /* Break at the first non-saved register. */
4316 if ((range & (1 << (n + 4))) == 0)
4317 break;
4318 }
4319 /* See if there are any other bits set. */
4320 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4321 {
4322 /* Use the long form. */
4323 op = 0x8000 | ((range >> 4) & 0xfff);
4324 add_unwind_opcode (op, 2);
4325 }
4326 else
4327 {
4328 /* Use the short form. */
4329 if (range & 0x4000)
4330 op = 0xa8; /* Pop r14. */
4331 else
4332 op = 0xa0; /* Do not pop r14. */
4333 op |= (n - 1);
4334 add_unwind_opcode (op, 1);
4335 }
4336 }
4337
4338 /* Pop r0-r3. */
4339 if (range & 0xf)
4340 {
4341 op = 0xb100 | (range & 0xf);
4342 add_unwind_opcode (op, 2);
4343 }
4344
4345 /* Record the number of bytes pushed. */
4346 for (n = 0; n < 16; n++)
4347 {
4348 if (range & (1 << n))
4349 unwind.frame_size += 4;
4350 }
4351 }
4352
4353
4354 /* Parse a directive saving FPA registers. */
4355
4356 static void
4357 s_arm_unwind_save_fpa (int reg)
4358 {
4359 expressionS exp;
4360 int num_regs;
4361 valueT op;
4362
4363 /* Get Number of registers to transfer. */
4364 if (skip_past_comma (&input_line_pointer) != FAIL)
4365 expression (&exp);
4366 else
4367 exp.X_op = O_illegal;
4368
4369 if (exp.X_op != O_constant)
4370 {
4371 as_bad (_("expected , <constant>"));
4372 ignore_rest_of_line ();
4373 return;
4374 }
4375
4376 num_regs = exp.X_add_number;
4377
4378 if (num_regs < 1 || num_regs > 4)
4379 {
4380 as_bad (_("number of registers must be in the range [1:4]"));
4381 ignore_rest_of_line ();
4382 return;
4383 }
4384
4385 demand_empty_rest_of_line ();
4386
4387 if (reg == 4)
4388 {
4389 /* Short form. */
4390 op = 0xb4 | (num_regs - 1);
4391 add_unwind_opcode (op, 1);
4392 }
4393 else
4394 {
4395 /* Long form. */
4396 op = 0xc800 | (reg << 4) | (num_regs - 1);
4397 add_unwind_opcode (op, 2);
4398 }
4399 unwind.frame_size += num_regs * 12;
4400 }
4401
4402
4403 /* Parse a directive saving VFP registers for ARMv6 and above. */
4404
4405 static void
4406 s_arm_unwind_save_vfp_armv6 (void)
4407 {
4408 int count;
4409 unsigned int start;
4410 valueT op;
4411 int num_vfpv3_regs = 0;
4412 int num_regs_below_16;
4413 bfd_boolean partial_match;
4414
4415 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D,
4416 &partial_match);
4417 if (count == FAIL)
4418 {
4419 as_bad (_("expected register list"));
4420 ignore_rest_of_line ();
4421 return;
4422 }
4423
4424 demand_empty_rest_of_line ();
4425
4426 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4427 than FSTMX/FLDMX-style ones). */
4428
4429 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4430 if (start >= 16)
4431 num_vfpv3_regs = count;
4432 else if (start + count > 16)
4433 num_vfpv3_regs = start + count - 16;
4434
4435 if (num_vfpv3_regs > 0)
4436 {
4437 int start_offset = start > 16 ? start - 16 : 0;
4438 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4439 add_unwind_opcode (op, 2);
4440 }
4441
4442 /* Generate opcode for registers numbered in the range 0 .. 15. */
4443 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
4444 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
4445 if (num_regs_below_16 > 0)
4446 {
4447 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4448 add_unwind_opcode (op, 2);
4449 }
4450
4451 unwind.frame_size += count * 8;
4452 }
4453
4454
4455 /* Parse a directive saving VFP registers for pre-ARMv6. */
4456
4457 static void
4458 s_arm_unwind_save_vfp (void)
4459 {
4460 int count;
4461 unsigned int reg;
4462 valueT op;
4463 bfd_boolean partial_match;
4464
4465 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D,
4466 &partial_match);
4467 if (count == FAIL)
4468 {
4469 as_bad (_("expected register list"));
4470 ignore_rest_of_line ();
4471 return;
4472 }
4473
4474 demand_empty_rest_of_line ();
4475
4476 if (reg == 8)
4477 {
4478 /* Short form. */
4479 op = 0xb8 | (count - 1);
4480 add_unwind_opcode (op, 1);
4481 }
4482 else
4483 {
4484 /* Long form. */
4485 op = 0xb300 | (reg << 4) | (count - 1);
4486 add_unwind_opcode (op, 2);
4487 }
4488 unwind.frame_size += count * 8 + 4;
4489 }
4490
4491
4492 /* Parse a directive saving iWMMXt data registers. */
4493
4494 static void
4495 s_arm_unwind_save_mmxwr (void)
4496 {
4497 int reg;
4498 int hi_reg;
4499 int i;
4500 unsigned mask = 0;
4501 valueT op;
4502
4503 if (*input_line_pointer == '{')
4504 input_line_pointer++;
4505
4506 do
4507 {
4508 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4509
4510 if (reg == FAIL)
4511 {
4512 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4513 goto error;
4514 }
4515
4516 if (mask >> reg)
4517 as_tsktsk (_("register list not in ascending order"));
4518 mask |= 1 << reg;
4519
4520 if (*input_line_pointer == '-')
4521 {
4522 input_line_pointer++;
4523 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4524 if (hi_reg == FAIL)
4525 {
4526 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4527 goto error;
4528 }
4529 else if (reg >= hi_reg)
4530 {
4531 as_bad (_("bad register range"));
4532 goto error;
4533 }
4534 for (; reg < hi_reg; reg++)
4535 mask |= 1 << reg;
4536 }
4537 }
4538 while (skip_past_comma (&input_line_pointer) != FAIL);
4539
4540 skip_past_char (&input_line_pointer, '}');
4541
4542 demand_empty_rest_of_line ();
4543
4544 /* Generate any deferred opcodes because we're going to be looking at
4545 the list. */
4546 flush_pending_unwind ();
4547
4548 for (i = 0; i < 16; i++)
4549 {
4550 if (mask & (1 << i))
4551 unwind.frame_size += 8;
4552 }
4553
4554 /* Attempt to combine with a previous opcode. We do this because gcc
4555 likes to output separate unwind directives for a single block of
4556 registers. */
4557 if (unwind.opcode_count > 0)
4558 {
4559 i = unwind.opcodes[unwind.opcode_count - 1];
4560 if ((i & 0xf8) == 0xc0)
4561 {
4562 i &= 7;
4563 /* Only merge if the blocks are contiguous. */
4564 if (i < 6)
4565 {
4566 if ((mask & 0xfe00) == (1 << 9))
4567 {
4568 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4569 unwind.opcode_count--;
4570 }
4571 }
4572 else if (i == 6 && unwind.opcode_count >= 2)
4573 {
4574 i = unwind.opcodes[unwind.opcode_count - 2];
4575 reg = i >> 4;
4576 i &= 0xf;
4577
4578 op = 0xffff << (reg - 1);
4579 if (reg > 0
4580 && ((mask & op) == (1u << (reg - 1))))
4581 {
4582 op = (1 << (reg + i + 1)) - 1;
4583 op &= ~((1 << reg) - 1);
4584 mask |= op;
4585 unwind.opcode_count -= 2;
4586 }
4587 }
4588 }
4589 }
4590
4591 hi_reg = 15;
4592 /* We want to generate opcodes in the order the registers have been
4593 saved, ie. descending order. */
4594 for (reg = 15; reg >= -1; reg--)
4595 {
4596 /* Save registers in blocks. */
4597 if (reg < 0
4598 || !(mask & (1 << reg)))
4599 {
4600 /* We found an unsaved reg. Generate opcodes to save the
4601 preceding block. */
4602 if (reg != hi_reg)
4603 {
4604 if (reg == 9)
4605 {
4606 /* Short form. */
4607 op = 0xc0 | (hi_reg - 10);
4608 add_unwind_opcode (op, 1);
4609 }
4610 else
4611 {
4612 /* Long form. */
4613 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4614 add_unwind_opcode (op, 2);
4615 }
4616 }
4617 hi_reg = reg - 1;
4618 }
4619 }
4620
4621 return;
4622 error:
4623 ignore_rest_of_line ();
4624 }
4625
4626 static void
4627 s_arm_unwind_save_mmxwcg (void)
4628 {
4629 int reg;
4630 int hi_reg;
4631 unsigned mask = 0;
4632 valueT op;
4633
4634 if (*input_line_pointer == '{')
4635 input_line_pointer++;
4636
4637 skip_whitespace (input_line_pointer);
4638
4639 do
4640 {
4641 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4642
4643 if (reg == FAIL)
4644 {
4645 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4646 goto error;
4647 }
4648
4649 reg -= 8;
4650 if (mask >> reg)
4651 as_tsktsk (_("register list not in ascending order"));
4652 mask |= 1 << reg;
4653
4654 if (*input_line_pointer == '-')
4655 {
4656 input_line_pointer++;
4657 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4658 if (hi_reg == FAIL)
4659 {
4660 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4661 goto error;
4662 }
4663 else if (reg >= hi_reg)
4664 {
4665 as_bad (_("bad register range"));
4666 goto error;
4667 }
4668 for (; reg < hi_reg; reg++)
4669 mask |= 1 << reg;
4670 }
4671 }
4672 while (skip_past_comma (&input_line_pointer) != FAIL);
4673
4674 skip_past_char (&input_line_pointer, '}');
4675
4676 demand_empty_rest_of_line ();
4677
4678 /* Generate any deferred opcodes because we're going to be looking at
4679 the list. */
4680 flush_pending_unwind ();
4681
4682 for (reg = 0; reg < 16; reg++)
4683 {
4684 if (mask & (1 << reg))
4685 unwind.frame_size += 4;
4686 }
4687 op = 0xc700 | mask;
4688 add_unwind_opcode (op, 2);
4689 return;
4690 error:
4691 ignore_rest_of_line ();
4692 }
4693
4694
4695 /* Parse an unwind_save directive.
4696 If the argument is non-zero, this is a .vsave directive. */
4697
4698 static void
4699 s_arm_unwind_save (int arch_v6)
4700 {
4701 char *peek;
4702 struct reg_entry *reg;
4703 bfd_boolean had_brace = FALSE;
4704
4705 if (!unwind.proc_start)
4706 as_bad (MISSING_FNSTART);
4707
4708 /* Figure out what sort of save we have. */
4709 peek = input_line_pointer;
4710
4711 if (*peek == '{')
4712 {
4713 had_brace = TRUE;
4714 peek++;
4715 }
4716
4717 reg = arm_reg_parse_multi (&peek);
4718
4719 if (!reg)
4720 {
4721 as_bad (_("register expected"));
4722 ignore_rest_of_line ();
4723 return;
4724 }
4725
4726 switch (reg->type)
4727 {
4728 case REG_TYPE_FN:
4729 if (had_brace)
4730 {
4731 as_bad (_("FPA .unwind_save does not take a register list"));
4732 ignore_rest_of_line ();
4733 return;
4734 }
4735 input_line_pointer = peek;
4736 s_arm_unwind_save_fpa (reg->number);
4737 return;
4738
4739 case REG_TYPE_RN:
4740 s_arm_unwind_save_core ();
4741 return;
4742
4743 case REG_TYPE_VFD:
4744 if (arch_v6)
4745 s_arm_unwind_save_vfp_armv6 ();
4746 else
4747 s_arm_unwind_save_vfp ();
4748 return;
4749
4750 case REG_TYPE_MMXWR:
4751 s_arm_unwind_save_mmxwr ();
4752 return;
4753
4754 case REG_TYPE_MMXWCG:
4755 s_arm_unwind_save_mmxwcg ();
4756 return;
4757
4758 default:
4759 as_bad (_(".unwind_save does not support this kind of register"));
4760 ignore_rest_of_line ();
4761 }
4762 }
4763
4764
4765 /* Parse an unwind_movsp directive. */
4766
4767 static void
4768 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4769 {
4770 int reg;
4771 valueT op;
4772 int offset;
4773
4774 if (!unwind.proc_start)
4775 as_bad (MISSING_FNSTART);
4776
4777 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4778 if (reg == FAIL)
4779 {
4780 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4781 ignore_rest_of_line ();
4782 return;
4783 }
4784
4785 /* Optional constant. */
4786 if (skip_past_comma (&input_line_pointer) != FAIL)
4787 {
4788 if (immediate_for_directive (&offset) == FAIL)
4789 return;
4790 }
4791 else
4792 offset = 0;
4793
4794 demand_empty_rest_of_line ();
4795
4796 if (reg == REG_SP || reg == REG_PC)
4797 {
4798 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4799 return;
4800 }
4801
4802 if (unwind.fp_reg != REG_SP)
4803 as_bad (_("unexpected .unwind_movsp directive"));
4804
4805 /* Generate opcode to restore the value. */
4806 op = 0x90 | reg;
4807 add_unwind_opcode (op, 1);
4808
4809 /* Record the information for later. */
4810 unwind.fp_reg = reg;
4811 unwind.fp_offset = unwind.frame_size - offset;
4812 unwind.sp_restored = 1;
4813 }
4814
4815 /* Parse an unwind_pad directive. */
4816
4817 static void
4818 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4819 {
4820 int offset;
4821
4822 if (!unwind.proc_start)
4823 as_bad (MISSING_FNSTART);
4824
4825 if (immediate_for_directive (&offset) == FAIL)
4826 return;
4827
4828 if (offset & 3)
4829 {
4830 as_bad (_("stack increment must be multiple of 4"));
4831 ignore_rest_of_line ();
4832 return;
4833 }
4834
4835 /* Don't generate any opcodes, just record the details for later. */
4836 unwind.frame_size += offset;
4837 unwind.pending_offset += offset;
4838
4839 demand_empty_rest_of_line ();
4840 }
4841
4842 /* Parse an unwind_setfp directive. */
4843
4844 static void
4845 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4846 {
4847 int sp_reg;
4848 int fp_reg;
4849 int offset;
4850
4851 if (!unwind.proc_start)
4852 as_bad (MISSING_FNSTART);
4853
4854 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4855 if (skip_past_comma (&input_line_pointer) == FAIL)
4856 sp_reg = FAIL;
4857 else
4858 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4859
4860 if (fp_reg == FAIL || sp_reg == FAIL)
4861 {
4862 as_bad (_("expected <reg>, <reg>"));
4863 ignore_rest_of_line ();
4864 return;
4865 }
4866
4867 /* Optional constant. */
4868 if (skip_past_comma (&input_line_pointer) != FAIL)
4869 {
4870 if (immediate_for_directive (&offset) == FAIL)
4871 return;
4872 }
4873 else
4874 offset = 0;
4875
4876 demand_empty_rest_of_line ();
4877
4878 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4879 {
4880 as_bad (_("register must be either sp or set by a previous"
4881 "unwind_movsp directive"));
4882 return;
4883 }
4884
4885 /* Don't generate any opcodes, just record the information for later. */
4886 unwind.fp_reg = fp_reg;
4887 unwind.fp_used = 1;
4888 if (sp_reg == REG_SP)
4889 unwind.fp_offset = unwind.frame_size - offset;
4890 else
4891 unwind.fp_offset -= offset;
4892 }
4893
4894 /* Parse an unwind_raw directive. */
4895
4896 static void
4897 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4898 {
4899 expressionS exp;
4900 /* This is an arbitrary limit. */
4901 unsigned char op[16];
4902 int count;
4903
4904 if (!unwind.proc_start)
4905 as_bad (MISSING_FNSTART);
4906
4907 expression (&exp);
4908 if (exp.X_op == O_constant
4909 && skip_past_comma (&input_line_pointer) != FAIL)
4910 {
4911 unwind.frame_size += exp.X_add_number;
4912 expression (&exp);
4913 }
4914 else
4915 exp.X_op = O_illegal;
4916
4917 if (exp.X_op != O_constant)
4918 {
4919 as_bad (_("expected <offset>, <opcode>"));
4920 ignore_rest_of_line ();
4921 return;
4922 }
4923
4924 count = 0;
4925
4926 /* Parse the opcode. */
4927 for (;;)
4928 {
4929 if (count >= 16)
4930 {
4931 as_bad (_("unwind opcode too long"));
4932 ignore_rest_of_line ();
4933 }
4934 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4935 {
4936 as_bad (_("invalid unwind opcode"));
4937 ignore_rest_of_line ();
4938 return;
4939 }
4940 op[count++] = exp.X_add_number;
4941
4942 /* Parse the next byte. */
4943 if (skip_past_comma (&input_line_pointer) == FAIL)
4944 break;
4945
4946 expression (&exp);
4947 }
4948
4949 /* Add the opcode bytes in reverse order. */
4950 while (count--)
4951 add_unwind_opcode (op[count], 1);
4952
4953 demand_empty_rest_of_line ();
4954 }
4955
4956
4957 /* Parse a .eabi_attribute directive. */
4958
4959 static void
4960 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4961 {
4962 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
4963
4964 if (tag >= 0 && tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4965 attributes_set_explicitly[tag] = 1;
4966 }
4967
4968 /* Emit a tls fix for the symbol. */
4969
4970 static void
4971 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4972 {
4973 char *p;
4974 expressionS exp;
4975 #ifdef md_flush_pending_output
4976 md_flush_pending_output ();
4977 #endif
4978
4979 #ifdef md_cons_align
4980 md_cons_align (4);
4981 #endif
4982
4983 /* Since we're just labelling the code, there's no need to define a
4984 mapping symbol. */
4985 expression (&exp);
4986 p = obstack_next_free (&frchain_now->frch_obstack);
4987 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4988 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4989 : BFD_RELOC_ARM_TLS_DESCSEQ);
4990 }
4991 #endif /* OBJ_ELF */
4992
4993 static void s_arm_arch (int);
4994 static void s_arm_object_arch (int);
4995 static void s_arm_cpu (int);
4996 static void s_arm_fpu (int);
4997 static void s_arm_arch_extension (int);
4998
4999 #ifdef TE_PE
5000
5001 static void
5002 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
5003 {
5004 expressionS exp;
5005
5006 do
5007 {
5008 expression (&exp);
5009 if (exp.X_op == O_symbol)
5010 exp.X_op = O_secrel;
5011
5012 emit_expr (&exp, 4);
5013 }
5014 while (*input_line_pointer++ == ',');
5015
5016 input_line_pointer--;
5017 demand_empty_rest_of_line ();
5018 }
5019 #endif /* TE_PE */
5020
5021 int
5022 arm_is_largest_exponent_ok (int precision)
5023 {
5024 /* precision == 1 ensures that this will only return
5025 true for 16 bit floats. */
5026 return (precision == 1) && (fp16_format == ARM_FP16_FORMAT_ALTERNATIVE);
5027 }
5028
5029 static void
5030 set_fp16_format (int dummy ATTRIBUTE_UNUSED)
5031 {
5032 char saved_char;
5033 char* name;
5034 enum fp_16bit_format new_format;
5035
5036 new_format = ARM_FP16_FORMAT_DEFAULT;
5037
5038 name = input_line_pointer;
5039 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
5040 input_line_pointer++;
5041
5042 saved_char = *input_line_pointer;
5043 *input_line_pointer = 0;
5044
5045 if (strcasecmp (name, "ieee") == 0)
5046 new_format = ARM_FP16_FORMAT_IEEE;
5047 else if (strcasecmp (name, "alternative") == 0)
5048 new_format = ARM_FP16_FORMAT_ALTERNATIVE;
5049 else
5050 {
5051 as_bad (_("unrecognised float16 format \"%s\""), name);
5052 goto cleanup;
5053 }
5054
5055 /* Only set fp16_format if it is still the default (aka not already
5056 been set yet). */
5057 if (fp16_format == ARM_FP16_FORMAT_DEFAULT)
5058 fp16_format = new_format;
5059 else
5060 {
5061 if (new_format != fp16_format)
5062 as_warn (_("float16 format cannot be set more than once, ignoring."));
5063 }
5064
5065 cleanup:
5066 *input_line_pointer = saved_char;
5067 ignore_rest_of_line ();
5068 }
5069
5070 /* This table describes all the machine specific pseudo-ops the assembler
5071 has to support. The fields are:
5072 pseudo-op name without dot
5073 function to call to execute this pseudo-op
5074 Integer arg to pass to the function. */
5075
5076 const pseudo_typeS md_pseudo_table[] =
5077 {
5078 /* Never called because '.req' does not start a line. */
5079 { "req", s_req, 0 },
5080 /* Following two are likewise never called. */
5081 { "dn", s_dn, 0 },
5082 { "qn", s_qn, 0 },
5083 { "unreq", s_unreq, 0 },
5084 { "bss", s_bss, 0 },
5085 { "align", s_align_ptwo, 2 },
5086 { "arm", s_arm, 0 },
5087 { "thumb", s_thumb, 0 },
5088 { "code", s_code, 0 },
5089 { "force_thumb", s_force_thumb, 0 },
5090 { "thumb_func", s_thumb_func, 0 },
5091 { "thumb_set", s_thumb_set, 0 },
5092 { "even", s_even, 0 },
5093 { "ltorg", s_ltorg, 0 },
5094 { "pool", s_ltorg, 0 },
5095 { "syntax", s_syntax, 0 },
5096 { "cpu", s_arm_cpu, 0 },
5097 { "arch", s_arm_arch, 0 },
5098 { "object_arch", s_arm_object_arch, 0 },
5099 { "fpu", s_arm_fpu, 0 },
5100 { "arch_extension", s_arm_arch_extension, 0 },
5101 #ifdef OBJ_ELF
5102 { "word", s_arm_elf_cons, 4 },
5103 { "long", s_arm_elf_cons, 4 },
5104 { "inst.n", s_arm_elf_inst, 2 },
5105 { "inst.w", s_arm_elf_inst, 4 },
5106 { "inst", s_arm_elf_inst, 0 },
5107 { "rel31", s_arm_rel31, 0 },
5108 { "fnstart", s_arm_unwind_fnstart, 0 },
5109 { "fnend", s_arm_unwind_fnend, 0 },
5110 { "cantunwind", s_arm_unwind_cantunwind, 0 },
5111 { "personality", s_arm_unwind_personality, 0 },
5112 { "personalityindex", s_arm_unwind_personalityindex, 0 },
5113 { "handlerdata", s_arm_unwind_handlerdata, 0 },
5114 { "save", s_arm_unwind_save, 0 },
5115 { "vsave", s_arm_unwind_save, 1 },
5116 { "movsp", s_arm_unwind_movsp, 0 },
5117 { "pad", s_arm_unwind_pad, 0 },
5118 { "setfp", s_arm_unwind_setfp, 0 },
5119 { "unwind_raw", s_arm_unwind_raw, 0 },
5120 { "eabi_attribute", s_arm_eabi_attribute, 0 },
5121 { "tlsdescseq", s_arm_tls_descseq, 0 },
5122 #else
5123 { "word", cons, 4},
5124
5125 /* These are used for dwarf. */
5126 {"2byte", cons, 2},
5127 {"4byte", cons, 4},
5128 {"8byte", cons, 8},
5129 /* These are used for dwarf2. */
5130 { "file", dwarf2_directive_file, 0 },
5131 { "loc", dwarf2_directive_loc, 0 },
5132 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
5133 #endif
5134 { "extend", float_cons, 'x' },
5135 { "ldouble", float_cons, 'x' },
5136 { "packed", float_cons, 'p' },
5137 { "bfloat16", float_cons, 'b' },
5138 #ifdef TE_PE
5139 {"secrel32", pe_directive_secrel, 0},
5140 #endif
5141
5142 /* These are for compatibility with CodeComposer Studio. */
5143 {"ref", s_ccs_ref, 0},
5144 {"def", s_ccs_def, 0},
5145 {"asmfunc", s_ccs_asmfunc, 0},
5146 {"endasmfunc", s_ccs_endasmfunc, 0},
5147
5148 {"float16", float_cons, 'h' },
5149 {"float16_format", set_fp16_format, 0 },
5150
5151 { 0, 0, 0 }
5152 };
5153
5154 /* Parser functions used exclusively in instruction operands. */
5155
5156 /* Generic immediate-value read function for use in insn parsing.
5157 STR points to the beginning of the immediate (the leading #);
5158 VAL receives the value; if the value is outside [MIN, MAX]
5159 issue an error. PREFIX_OPT is true if the immediate prefix is
5160 optional. */
5161
5162 static int
5163 parse_immediate (char **str, int *val, int min, int max,
5164 bfd_boolean prefix_opt)
5165 {
5166 expressionS exp;
5167
5168 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
5169 if (exp.X_op != O_constant)
5170 {
5171 inst.error = _("constant expression required");
5172 return FAIL;
5173 }
5174
5175 if (exp.X_add_number < min || exp.X_add_number > max)
5176 {
5177 inst.error = _("immediate value out of range");
5178 return FAIL;
5179 }
5180
5181 *val = exp.X_add_number;
5182 return SUCCESS;
5183 }
5184
5185 /* Less-generic immediate-value read function with the possibility of loading a
5186 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5187 instructions. Puts the result directly in inst.operands[i]. */
5188
5189 static int
5190 parse_big_immediate (char **str, int i, expressionS *in_exp,
5191 bfd_boolean allow_symbol_p)
5192 {
5193 expressionS exp;
5194 expressionS *exp_p = in_exp ? in_exp : &exp;
5195 char *ptr = *str;
5196
5197 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
5198
5199 if (exp_p->X_op == O_constant)
5200 {
5201 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
5202 /* If we're on a 64-bit host, then a 64-bit number can be returned using
5203 O_constant. We have to be careful not to break compilation for
5204 32-bit X_add_number, though. */
5205 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
5206 {
5207 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
5208 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
5209 & 0xffffffff);
5210 inst.operands[i].regisimm = 1;
5211 }
5212 }
5213 else if (exp_p->X_op == O_big
5214 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
5215 {
5216 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
5217
5218 /* Bignums have their least significant bits in
5219 generic_bignum[0]. Make sure we put 32 bits in imm and
5220 32 bits in reg, in a (hopefully) portable way. */
5221 gas_assert (parts != 0);
5222
5223 /* Make sure that the number is not too big.
5224 PR 11972: Bignums can now be sign-extended to the
5225 size of a .octa so check that the out of range bits
5226 are all zero or all one. */
5227 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
5228 {
5229 LITTLENUM_TYPE m = -1;
5230
5231 if (generic_bignum[parts * 2] != 0
5232 && generic_bignum[parts * 2] != m)
5233 return FAIL;
5234
5235 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
5236 if (generic_bignum[j] != generic_bignum[j-1])
5237 return FAIL;
5238 }
5239
5240 inst.operands[i].imm = 0;
5241 for (j = 0; j < parts; j++, idx++)
5242 inst.operands[i].imm |= generic_bignum[idx]
5243 << (LITTLENUM_NUMBER_OF_BITS * j);
5244 inst.operands[i].reg = 0;
5245 for (j = 0; j < parts; j++, idx++)
5246 inst.operands[i].reg |= generic_bignum[idx]
5247 << (LITTLENUM_NUMBER_OF_BITS * j);
5248 inst.operands[i].regisimm = 1;
5249 }
5250 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
5251 return FAIL;
5252
5253 *str = ptr;
5254
5255 return SUCCESS;
5256 }
5257
5258 /* Returns the pseudo-register number of an FPA immediate constant,
5259 or FAIL if there isn't a valid constant here. */
5260
5261 static int
5262 parse_fpa_immediate (char ** str)
5263 {
5264 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5265 char * save_in;
5266 expressionS exp;
5267 int i;
5268 int j;
5269
5270 /* First try and match exact strings, this is to guarantee
5271 that some formats will work even for cross assembly. */
5272
5273 for (i = 0; fp_const[i]; i++)
5274 {
5275 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
5276 {
5277 char *start = *str;
5278
5279 *str += strlen (fp_const[i]);
5280 if (is_end_of_line[(unsigned char) **str])
5281 return i + 8;
5282 *str = start;
5283 }
5284 }
5285
5286 /* Just because we didn't get a match doesn't mean that the constant
5287 isn't valid, just that it is in a format that we don't
5288 automatically recognize. Try parsing it with the standard
5289 expression routines. */
5290
5291 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
5292
5293 /* Look for a raw floating point number. */
5294 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
5295 && is_end_of_line[(unsigned char) *save_in])
5296 {
5297 for (i = 0; i < NUM_FLOAT_VALS; i++)
5298 {
5299 for (j = 0; j < MAX_LITTLENUMS; j++)
5300 {
5301 if (words[j] != fp_values[i][j])
5302 break;
5303 }
5304
5305 if (j == MAX_LITTLENUMS)
5306 {
5307 *str = save_in;
5308 return i + 8;
5309 }
5310 }
5311 }
5312
5313 /* Try and parse a more complex expression, this will probably fail
5314 unless the code uses a floating point prefix (eg "0f"). */
5315 save_in = input_line_pointer;
5316 input_line_pointer = *str;
5317 if (expression (&exp) == absolute_section
5318 && exp.X_op == O_big
5319 && exp.X_add_number < 0)
5320 {
5321 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
5322 Ditto for 15. */
5323 #define X_PRECISION 5
5324 #define E_PRECISION 15L
5325 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
5326 {
5327 for (i = 0; i < NUM_FLOAT_VALS; i++)
5328 {
5329 for (j = 0; j < MAX_LITTLENUMS; j++)
5330 {
5331 if (words[j] != fp_values[i][j])
5332 break;
5333 }
5334
5335 if (j == MAX_LITTLENUMS)
5336 {
5337 *str = input_line_pointer;
5338 input_line_pointer = save_in;
5339 return i + 8;
5340 }
5341 }
5342 }
5343 }
5344
5345 *str = input_line_pointer;
5346 input_line_pointer = save_in;
5347 inst.error = _("invalid FPA immediate expression");
5348 return FAIL;
5349 }
5350
5351 /* Returns 1 if a number has "quarter-precision" float format
5352 0baBbbbbbc defgh000 00000000 00000000. */
5353
5354 static int
5355 is_quarter_float (unsigned imm)
5356 {
5357 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
5358 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
5359 }
5360
5361
5362 /* Detect the presence of a floating point or integer zero constant,
5363 i.e. #0.0 or #0. */
5364
5365 static bfd_boolean
5366 parse_ifimm_zero (char **in)
5367 {
5368 int error_code;
5369
5370 if (!is_immediate_prefix (**in))
5371 {
5372 /* In unified syntax, all prefixes are optional. */
5373 if (!unified_syntax)
5374 return FALSE;
5375 }
5376 else
5377 ++*in;
5378
5379 /* Accept #0x0 as a synonym for #0. */
5380 if (strncmp (*in, "0x", 2) == 0)
5381 {
5382 int val;
5383 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5384 return FALSE;
5385 return TRUE;
5386 }
5387
5388 error_code = atof_generic (in, ".", EXP_CHARS,
5389 &generic_floating_point_number);
5390
5391 if (!error_code
5392 && generic_floating_point_number.sign == '+'
5393 && (generic_floating_point_number.low
5394 > generic_floating_point_number.leader))
5395 return TRUE;
5396
5397 return FALSE;
5398 }
5399
5400 /* Parse an 8-bit "quarter-precision" floating point number of the form:
5401 0baBbbbbbc defgh000 00000000 00000000.
5402 The zero and minus-zero cases need special handling, since they can't be
5403 encoded in the "quarter-precision" float format, but can nonetheless be
5404 loaded as integer constants. */
5405
5406 static unsigned
5407 parse_qfloat_immediate (char **ccp, int *immed)
5408 {
5409 char *str = *ccp;
5410 char *fpnum;
5411 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5412 int found_fpchar = 0;
5413
5414 skip_past_char (&str, '#');
5415
5416 /* We must not accidentally parse an integer as a floating-point number. Make
5417 sure that the value we parse is not an integer by checking for special
5418 characters '.' or 'e'.
5419 FIXME: This is a horrible hack, but doing better is tricky because type
5420 information isn't in a very usable state at parse time. */
5421 fpnum = str;
5422 skip_whitespace (fpnum);
5423
5424 if (strncmp (fpnum, "0x", 2) == 0)
5425 return FAIL;
5426 else
5427 {
5428 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
5429 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5430 {
5431 found_fpchar = 1;
5432 break;
5433 }
5434
5435 if (!found_fpchar)
5436 return FAIL;
5437 }
5438
5439 if ((str = atof_ieee (str, 's', words)) != NULL)
5440 {
5441 unsigned fpword = 0;
5442 int i;
5443
5444 /* Our FP word must be 32 bits (single-precision FP). */
5445 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
5446 {
5447 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5448 fpword |= words[i];
5449 }
5450
5451 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
5452 *immed = fpword;
5453 else
5454 return FAIL;
5455
5456 *ccp = str;
5457
5458 return SUCCESS;
5459 }
5460
5461 return FAIL;
5462 }
5463
5464 /* Shift operands. */
5465 enum shift_kind
5466 {
5467 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX, SHIFT_UXTW
5468 };
5469
5470 struct asm_shift_name
5471 {
5472 const char *name;
5473 enum shift_kind kind;
5474 };
5475
5476 /* Third argument to parse_shift. */
5477 enum parse_shift_mode
5478 {
5479 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5480 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5481 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5482 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5483 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
5484 SHIFT_UXTW_IMMEDIATE /* Shift must be UXTW immediate. */
5485 };
5486
5487 /* Parse a <shift> specifier on an ARM data processing instruction.
5488 This has three forms:
5489
5490 (LSL|LSR|ASL|ASR|ROR) Rs
5491 (LSL|LSR|ASL|ASR|ROR) #imm
5492 RRX
5493
5494 Note that ASL is assimilated to LSL in the instruction encoding, and
5495 RRX to ROR #0 (which cannot be written as such). */
5496
5497 static int
5498 parse_shift (char **str, int i, enum parse_shift_mode mode)
5499 {
5500 const struct asm_shift_name *shift_name;
5501 enum shift_kind shift;
5502 char *s = *str;
5503 char *p = s;
5504 int reg;
5505
5506 for (p = *str; ISALPHA (*p); p++)
5507 ;
5508
5509 if (p == *str)
5510 {
5511 inst.error = _("shift expression expected");
5512 return FAIL;
5513 }
5514
5515 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
5516 p - *str);
5517
5518 if (shift_name == NULL)
5519 {
5520 inst.error = _("shift expression expected");
5521 return FAIL;
5522 }
5523
5524 shift = shift_name->kind;
5525
5526 switch (mode)
5527 {
5528 case NO_SHIFT_RESTRICT:
5529 case SHIFT_IMMEDIATE:
5530 if (shift == SHIFT_UXTW)
5531 {
5532 inst.error = _("'UXTW' not allowed here");
5533 return FAIL;
5534 }
5535 break;
5536
5537 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5538 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5539 {
5540 inst.error = _("'LSL' or 'ASR' required");
5541 return FAIL;
5542 }
5543 break;
5544
5545 case SHIFT_LSL_IMMEDIATE:
5546 if (shift != SHIFT_LSL)
5547 {
5548 inst.error = _("'LSL' required");
5549 return FAIL;
5550 }
5551 break;
5552
5553 case SHIFT_ASR_IMMEDIATE:
5554 if (shift != SHIFT_ASR)
5555 {
5556 inst.error = _("'ASR' required");
5557 return FAIL;
5558 }
5559 break;
5560 case SHIFT_UXTW_IMMEDIATE:
5561 if (shift != SHIFT_UXTW)
5562 {
5563 inst.error = _("'UXTW' required");
5564 return FAIL;
5565 }
5566 break;
5567
5568 default: abort ();
5569 }
5570
5571 if (shift != SHIFT_RRX)
5572 {
5573 /* Whitespace can appear here if the next thing is a bare digit. */
5574 skip_whitespace (p);
5575
5576 if (mode == NO_SHIFT_RESTRICT
5577 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5578 {
5579 inst.operands[i].imm = reg;
5580 inst.operands[i].immisreg = 1;
5581 }
5582 else if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5583 return FAIL;
5584 }
5585 inst.operands[i].shift_kind = shift;
5586 inst.operands[i].shifted = 1;
5587 *str = p;
5588 return SUCCESS;
5589 }
5590
5591 /* Parse a <shifter_operand> for an ARM data processing instruction:
5592
5593 #<immediate>
5594 #<immediate>, <rotate>
5595 <Rm>
5596 <Rm>, <shift>
5597
5598 where <shift> is defined by parse_shift above, and <rotate> is a
5599 multiple of 2 between 0 and 30. Validation of immediate operands
5600 is deferred to md_apply_fix. */
5601
5602 static int
5603 parse_shifter_operand (char **str, int i)
5604 {
5605 int value;
5606 expressionS exp;
5607
5608 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
5609 {
5610 inst.operands[i].reg = value;
5611 inst.operands[i].isreg = 1;
5612
5613 /* parse_shift will override this if appropriate */
5614 inst.relocs[0].exp.X_op = O_constant;
5615 inst.relocs[0].exp.X_add_number = 0;
5616
5617 if (skip_past_comma (str) == FAIL)
5618 return SUCCESS;
5619
5620 /* Shift operation on register. */
5621 return parse_shift (str, i, NO_SHIFT_RESTRICT);
5622 }
5623
5624 if (my_get_expression (&inst.relocs[0].exp, str, GE_IMM_PREFIX))
5625 return FAIL;
5626
5627 if (skip_past_comma (str) == SUCCESS)
5628 {
5629 /* #x, y -- ie explicit rotation by Y. */
5630 if (my_get_expression (&exp, str, GE_NO_PREFIX))
5631 return FAIL;
5632
5633 if (exp.X_op != O_constant || inst.relocs[0].exp.X_op != O_constant)
5634 {
5635 inst.error = _("constant expression expected");
5636 return FAIL;
5637 }
5638
5639 value = exp.X_add_number;
5640 if (value < 0 || value > 30 || value % 2 != 0)
5641 {
5642 inst.error = _("invalid rotation");
5643 return FAIL;
5644 }
5645 if (inst.relocs[0].exp.X_add_number < 0
5646 || inst.relocs[0].exp.X_add_number > 255)
5647 {
5648 inst.error = _("invalid constant");
5649 return FAIL;
5650 }
5651
5652 /* Encode as specified. */
5653 inst.operands[i].imm = inst.relocs[0].exp.X_add_number | value << 7;
5654 return SUCCESS;
5655 }
5656
5657 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
5658 inst.relocs[0].pc_rel = 0;
5659 return SUCCESS;
5660 }
5661
5662 /* Group relocation information. Each entry in the table contains the
5663 textual name of the relocation as may appear in assembler source
5664 and must end with a colon.
5665 Along with this textual name are the relocation codes to be used if
5666 the corresponding instruction is an ALU instruction (ADD or SUB only),
5667 an LDR, an LDRS, or an LDC. */
5668
5669 struct group_reloc_table_entry
5670 {
5671 const char *name;
5672 int alu_code;
5673 int ldr_code;
5674 int ldrs_code;
5675 int ldc_code;
5676 };
5677
5678 typedef enum
5679 {
5680 /* Varieties of non-ALU group relocation. */
5681
5682 GROUP_LDR,
5683 GROUP_LDRS,
5684 GROUP_LDC,
5685 GROUP_MVE
5686 } group_reloc_type;
5687
5688 static struct group_reloc_table_entry group_reloc_table[] =
5689 { /* Program counter relative: */
5690 { "pc_g0_nc",
5691 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5692 0, /* LDR */
5693 0, /* LDRS */
5694 0 }, /* LDC */
5695 { "pc_g0",
5696 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5697 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5698 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5699 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5700 { "pc_g1_nc",
5701 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5702 0, /* LDR */
5703 0, /* LDRS */
5704 0 }, /* LDC */
5705 { "pc_g1",
5706 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5707 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5708 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5709 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5710 { "pc_g2",
5711 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5712 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5713 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5714 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5715 /* Section base relative */
5716 { "sb_g0_nc",
5717 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5718 0, /* LDR */
5719 0, /* LDRS */
5720 0 }, /* LDC */
5721 { "sb_g0",
5722 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5723 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5724 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5725 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5726 { "sb_g1_nc",
5727 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5728 0, /* LDR */
5729 0, /* LDRS */
5730 0 }, /* LDC */
5731 { "sb_g1",
5732 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5733 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5734 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5735 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5736 { "sb_g2",
5737 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5738 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5739 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
5740 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5741 /* Absolute thumb alu relocations. */
5742 { "lower0_7",
5743 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5744 0, /* LDR. */
5745 0, /* LDRS. */
5746 0 }, /* LDC. */
5747 { "lower8_15",
5748 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5749 0, /* LDR. */
5750 0, /* LDRS. */
5751 0 }, /* LDC. */
5752 { "upper0_7",
5753 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5754 0, /* LDR. */
5755 0, /* LDRS. */
5756 0 }, /* LDC. */
5757 { "upper8_15",
5758 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5759 0, /* LDR. */
5760 0, /* LDRS. */
5761 0 } }; /* LDC. */
5762
5763 /* Given the address of a pointer pointing to the textual name of a group
5764 relocation as may appear in assembler source, attempt to find its details
5765 in group_reloc_table. The pointer will be updated to the character after
5766 the trailing colon. On failure, FAIL will be returned; SUCCESS
5767 otherwise. On success, *entry will be updated to point at the relevant
5768 group_reloc_table entry. */
5769
5770 static int
5771 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5772 {
5773 unsigned int i;
5774 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5775 {
5776 int length = strlen (group_reloc_table[i].name);
5777
5778 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5779 && (*str)[length] == ':')
5780 {
5781 *out = &group_reloc_table[i];
5782 *str += (length + 1);
5783 return SUCCESS;
5784 }
5785 }
5786
5787 return FAIL;
5788 }
5789
5790 /* Parse a <shifter_operand> for an ARM data processing instruction
5791 (as for parse_shifter_operand) where group relocations are allowed:
5792
5793 #<immediate>
5794 #<immediate>, <rotate>
5795 #:<group_reloc>:<expression>
5796 <Rm>
5797 <Rm>, <shift>
5798
5799 where <group_reloc> is one of the strings defined in group_reloc_table.
5800 The hashes are optional.
5801
5802 Everything else is as for parse_shifter_operand. */
5803
5804 static parse_operand_result
5805 parse_shifter_operand_group_reloc (char **str, int i)
5806 {
5807 /* Determine if we have the sequence of characters #: or just :
5808 coming next. If we do, then we check for a group relocation.
5809 If we don't, punt the whole lot to parse_shifter_operand. */
5810
5811 if (((*str)[0] == '#' && (*str)[1] == ':')
5812 || (*str)[0] == ':')
5813 {
5814 struct group_reloc_table_entry *entry;
5815
5816 if ((*str)[0] == '#')
5817 (*str) += 2;
5818 else
5819 (*str)++;
5820
5821 /* Try to parse a group relocation. Anything else is an error. */
5822 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5823 {
5824 inst.error = _("unknown group relocation");
5825 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5826 }
5827
5828 /* We now have the group relocation table entry corresponding to
5829 the name in the assembler source. Next, we parse the expression. */
5830 if (my_get_expression (&inst.relocs[0].exp, str, GE_NO_PREFIX))
5831 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5832
5833 /* Record the relocation type (always the ALU variant here). */
5834 inst.relocs[0].type = (bfd_reloc_code_real_type) entry->alu_code;
5835 gas_assert (inst.relocs[0].type != 0);
5836
5837 return PARSE_OPERAND_SUCCESS;
5838 }
5839 else
5840 return parse_shifter_operand (str, i) == SUCCESS
5841 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5842
5843 /* Never reached. */
5844 }
5845
5846 /* Parse a Neon alignment expression. Information is written to
5847 inst.operands[i]. We assume the initial ':' has been skipped.
5848
5849 align .imm = align << 8, .immisalign=1, .preind=0 */
5850 static parse_operand_result
5851 parse_neon_alignment (char **str, int i)
5852 {
5853 char *p = *str;
5854 expressionS exp;
5855
5856 my_get_expression (&exp, &p, GE_NO_PREFIX);
5857
5858 if (exp.X_op != O_constant)
5859 {
5860 inst.error = _("alignment must be constant");
5861 return PARSE_OPERAND_FAIL;
5862 }
5863
5864 inst.operands[i].imm = exp.X_add_number << 8;
5865 inst.operands[i].immisalign = 1;
5866 /* Alignments are not pre-indexes. */
5867 inst.operands[i].preind = 0;
5868
5869 *str = p;
5870 return PARSE_OPERAND_SUCCESS;
5871 }
5872
5873 /* Parse all forms of an ARM address expression. Information is written
5874 to inst.operands[i] and/or inst.relocs[0].
5875
5876 Preindexed addressing (.preind=1):
5877
5878 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
5879 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5880 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5881 .shift_kind=shift .relocs[0].exp=shift_imm
5882
5883 These three may have a trailing ! which causes .writeback to be set also.
5884
5885 Postindexed addressing (.postind=1, .writeback=1):
5886
5887 [Rn], #offset .reg=Rn .relocs[0].exp=offset
5888 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5889 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5890 .shift_kind=shift .relocs[0].exp=shift_imm
5891
5892 Unindexed addressing (.preind=0, .postind=0):
5893
5894 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5895
5896 Other:
5897
5898 [Rn]{!} shorthand for [Rn,#0]{!}
5899 =immediate .isreg=0 .relocs[0].exp=immediate
5900 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
5901
5902 It is the caller's responsibility to check for addressing modes not
5903 supported by the instruction, and to set inst.relocs[0].type. */
5904
5905 static parse_operand_result
5906 parse_address_main (char **str, int i, int group_relocations,
5907 group_reloc_type group_type)
5908 {
5909 char *p = *str;
5910 int reg;
5911
5912 if (skip_past_char (&p, '[') == FAIL)
5913 {
5914 if (skip_past_char (&p, '=') == FAIL)
5915 {
5916 /* Bare address - translate to PC-relative offset. */
5917 inst.relocs[0].pc_rel = 1;
5918 inst.operands[i].reg = REG_PC;
5919 inst.operands[i].isreg = 1;
5920 inst.operands[i].preind = 1;
5921
5922 if (my_get_expression (&inst.relocs[0].exp, &p, GE_OPT_PREFIX_BIG))
5923 return PARSE_OPERAND_FAIL;
5924 }
5925 else if (parse_big_immediate (&p, i, &inst.relocs[0].exp,
5926 /*allow_symbol_p=*/TRUE))
5927 return PARSE_OPERAND_FAIL;
5928
5929 *str = p;
5930 return PARSE_OPERAND_SUCCESS;
5931 }
5932
5933 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5934 skip_whitespace (p);
5935
5936 if (group_type == GROUP_MVE)
5937 {
5938 enum arm_reg_type rtype = REG_TYPE_MQ;
5939 struct neon_type_el et;
5940 if ((reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5941 {
5942 inst.operands[i].isquad = 1;
5943 }
5944 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5945 {
5946 inst.error = BAD_ADDR_MODE;
5947 return PARSE_OPERAND_FAIL;
5948 }
5949 }
5950 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5951 {
5952 if (group_type == GROUP_MVE)
5953 inst.error = BAD_ADDR_MODE;
5954 else
5955 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5956 return PARSE_OPERAND_FAIL;
5957 }
5958 inst.operands[i].reg = reg;
5959 inst.operands[i].isreg = 1;
5960
5961 if (skip_past_comma (&p) == SUCCESS)
5962 {
5963 inst.operands[i].preind = 1;
5964
5965 if (*p == '+') p++;
5966 else if (*p == '-') p++, inst.operands[i].negative = 1;
5967
5968 enum arm_reg_type rtype = REG_TYPE_MQ;
5969 struct neon_type_el et;
5970 if (group_type == GROUP_MVE
5971 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5972 {
5973 inst.operands[i].immisreg = 2;
5974 inst.operands[i].imm = reg;
5975
5976 if (skip_past_comma (&p) == SUCCESS)
5977 {
5978 if (parse_shift (&p, i, SHIFT_UXTW_IMMEDIATE) == SUCCESS)
5979 {
5980 inst.operands[i].imm |= inst.relocs[0].exp.X_add_number << 5;
5981 inst.relocs[0].exp.X_add_number = 0;
5982 }
5983 else
5984 return PARSE_OPERAND_FAIL;
5985 }
5986 }
5987 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5988 {
5989 inst.operands[i].imm = reg;
5990 inst.operands[i].immisreg = 1;
5991
5992 if (skip_past_comma (&p) == SUCCESS)
5993 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5994 return PARSE_OPERAND_FAIL;
5995 }
5996 else if (skip_past_char (&p, ':') == SUCCESS)
5997 {
5998 /* FIXME: '@' should be used here, but it's filtered out by generic
5999 code before we get to see it here. This may be subject to
6000 change. */
6001 parse_operand_result result = parse_neon_alignment (&p, i);
6002
6003 if (result != PARSE_OPERAND_SUCCESS)
6004 return result;
6005 }
6006 else
6007 {
6008 if (inst.operands[i].negative)
6009 {
6010 inst.operands[i].negative = 0;
6011 p--;
6012 }
6013
6014 if (group_relocations
6015 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
6016 {
6017 struct group_reloc_table_entry *entry;
6018
6019 /* Skip over the #: or : sequence. */
6020 if (*p == '#')
6021 p += 2;
6022 else
6023 p++;
6024
6025 /* Try to parse a group relocation. Anything else is an
6026 error. */
6027 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
6028 {
6029 inst.error = _("unknown group relocation");
6030 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
6031 }
6032
6033 /* We now have the group relocation table entry corresponding to
6034 the name in the assembler source. Next, we parse the
6035 expression. */
6036 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
6037 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
6038
6039 /* Record the relocation type. */
6040 switch (group_type)
6041 {
6042 case GROUP_LDR:
6043 inst.relocs[0].type
6044 = (bfd_reloc_code_real_type) entry->ldr_code;
6045 break;
6046
6047 case GROUP_LDRS:
6048 inst.relocs[0].type
6049 = (bfd_reloc_code_real_type) entry->ldrs_code;
6050 break;
6051
6052 case GROUP_LDC:
6053 inst.relocs[0].type
6054 = (bfd_reloc_code_real_type) entry->ldc_code;
6055 break;
6056
6057 default:
6058 gas_assert (0);
6059 }
6060
6061 if (inst.relocs[0].type == 0)
6062 {
6063 inst.error = _("this group relocation is not allowed on this instruction");
6064 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
6065 }
6066 }
6067 else
6068 {
6069 char *q = p;
6070
6071 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
6072 return PARSE_OPERAND_FAIL;
6073 /* If the offset is 0, find out if it's a +0 or -0. */
6074 if (inst.relocs[0].exp.X_op == O_constant
6075 && inst.relocs[0].exp.X_add_number == 0)
6076 {
6077 skip_whitespace (q);
6078 if (*q == '#')
6079 {
6080 q++;
6081 skip_whitespace (q);
6082 }
6083 if (*q == '-')
6084 inst.operands[i].negative = 1;
6085 }
6086 }
6087 }
6088 }
6089 else if (skip_past_char (&p, ':') == SUCCESS)
6090 {
6091 /* FIXME: '@' should be used here, but it's filtered out by generic code
6092 before we get to see it here. This may be subject to change. */
6093 parse_operand_result result = parse_neon_alignment (&p, i);
6094
6095 if (result != PARSE_OPERAND_SUCCESS)
6096 return result;
6097 }
6098
6099 if (skip_past_char (&p, ']') == FAIL)
6100 {
6101 inst.error = _("']' expected");
6102 return PARSE_OPERAND_FAIL;
6103 }
6104
6105 if (skip_past_char (&p, '!') == SUCCESS)
6106 inst.operands[i].writeback = 1;
6107
6108 else if (skip_past_comma (&p) == SUCCESS)
6109 {
6110 if (skip_past_char (&p, '{') == SUCCESS)
6111 {
6112 /* [Rn], {expr} - unindexed, with option */
6113 if (parse_immediate (&p, &inst.operands[i].imm,
6114 0, 255, TRUE) == FAIL)
6115 return PARSE_OPERAND_FAIL;
6116
6117 if (skip_past_char (&p, '}') == FAIL)
6118 {
6119 inst.error = _("'}' expected at end of 'option' field");
6120 return PARSE_OPERAND_FAIL;
6121 }
6122 if (inst.operands[i].preind)
6123 {
6124 inst.error = _("cannot combine index with option");
6125 return PARSE_OPERAND_FAIL;
6126 }
6127 *str = p;
6128 return PARSE_OPERAND_SUCCESS;
6129 }
6130 else
6131 {
6132 inst.operands[i].postind = 1;
6133 inst.operands[i].writeback = 1;
6134
6135 if (inst.operands[i].preind)
6136 {
6137 inst.error = _("cannot combine pre- and post-indexing");
6138 return PARSE_OPERAND_FAIL;
6139 }
6140
6141 if (*p == '+') p++;
6142 else if (*p == '-') p++, inst.operands[i].negative = 1;
6143
6144 enum arm_reg_type rtype = REG_TYPE_MQ;
6145 struct neon_type_el et;
6146 if (group_type == GROUP_MVE
6147 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
6148 {
6149 inst.operands[i].immisreg = 2;
6150 inst.operands[i].imm = reg;
6151 }
6152 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
6153 {
6154 /* We might be using the immediate for alignment already. If we
6155 are, OR the register number into the low-order bits. */
6156 if (inst.operands[i].immisalign)
6157 inst.operands[i].imm |= reg;
6158 else
6159 inst.operands[i].imm = reg;
6160 inst.operands[i].immisreg = 1;
6161
6162 if (skip_past_comma (&p) == SUCCESS)
6163 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
6164 return PARSE_OPERAND_FAIL;
6165 }
6166 else
6167 {
6168 char *q = p;
6169
6170 if (inst.operands[i].negative)
6171 {
6172 inst.operands[i].negative = 0;
6173 p--;
6174 }
6175 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
6176 return PARSE_OPERAND_FAIL;
6177 /* If the offset is 0, find out if it's a +0 or -0. */
6178 if (inst.relocs[0].exp.X_op == O_constant
6179 && inst.relocs[0].exp.X_add_number == 0)
6180 {
6181 skip_whitespace (q);
6182 if (*q == '#')
6183 {
6184 q++;
6185 skip_whitespace (q);
6186 }
6187 if (*q == '-')
6188 inst.operands[i].negative = 1;
6189 }
6190 }
6191 }
6192 }
6193
6194 /* If at this point neither .preind nor .postind is set, we have a
6195 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
6196 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
6197 {
6198 inst.operands[i].preind = 1;
6199 inst.relocs[0].exp.X_op = O_constant;
6200 inst.relocs[0].exp.X_add_number = 0;
6201 }
6202 *str = p;
6203 return PARSE_OPERAND_SUCCESS;
6204 }
6205
6206 static int
6207 parse_address (char **str, int i)
6208 {
6209 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
6210 ? SUCCESS : FAIL;
6211 }
6212
6213 static parse_operand_result
6214 parse_address_group_reloc (char **str, int i, group_reloc_type type)
6215 {
6216 return parse_address_main (str, i, 1, type);
6217 }
6218
6219 /* Parse an operand for a MOVW or MOVT instruction. */
6220 static int
6221 parse_half (char **str)
6222 {
6223 char * p;
6224
6225 p = *str;
6226 skip_past_char (&p, '#');
6227 if (strncasecmp (p, ":lower16:", 9) == 0)
6228 inst.relocs[0].type = BFD_RELOC_ARM_MOVW;
6229 else if (strncasecmp (p, ":upper16:", 9) == 0)
6230 inst.relocs[0].type = BFD_RELOC_ARM_MOVT;
6231
6232 if (inst.relocs[0].type != BFD_RELOC_UNUSED)
6233 {
6234 p += 9;
6235 skip_whitespace (p);
6236 }
6237
6238 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
6239 return FAIL;
6240
6241 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
6242 {
6243 if (inst.relocs[0].exp.X_op != O_constant)
6244 {
6245 inst.error = _("constant expression expected");
6246 return FAIL;
6247 }
6248 if (inst.relocs[0].exp.X_add_number < 0
6249 || inst.relocs[0].exp.X_add_number > 0xffff)
6250 {
6251 inst.error = _("immediate value out of range");
6252 return FAIL;
6253 }
6254 }
6255 *str = p;
6256 return SUCCESS;
6257 }
6258
6259 /* Miscellaneous. */
6260
6261 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
6262 or a bitmask suitable to be or-ed into the ARM msr instruction. */
6263 static int
6264 parse_psr (char **str, bfd_boolean lhs)
6265 {
6266 char *p;
6267 unsigned long psr_field;
6268 const struct asm_psr *psr;
6269 char *start;
6270 bfd_boolean is_apsr = FALSE;
6271 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
6272
6273 /* PR gas/12698: If the user has specified -march=all then m_profile will
6274 be TRUE, but we want to ignore it in this case as we are building for any
6275 CPU type, including non-m variants. */
6276 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
6277 m_profile = FALSE;
6278
6279 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
6280 feature for ease of use and backwards compatibility. */
6281 p = *str;
6282 if (strncasecmp (p, "SPSR", 4) == 0)
6283 {
6284 if (m_profile)
6285 goto unsupported_psr;
6286
6287 psr_field = SPSR_BIT;
6288 }
6289 else if (strncasecmp (p, "CPSR", 4) == 0)
6290 {
6291 if (m_profile)
6292 goto unsupported_psr;
6293
6294 psr_field = 0;
6295 }
6296 else if (strncasecmp (p, "APSR", 4) == 0)
6297 {
6298 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
6299 and ARMv7-R architecture CPUs. */
6300 is_apsr = TRUE;
6301 psr_field = 0;
6302 }
6303 else if (m_profile)
6304 {
6305 start = p;
6306 do
6307 p++;
6308 while (ISALNUM (*p) || *p == '_');
6309
6310 if (strncasecmp (start, "iapsr", 5) == 0
6311 || strncasecmp (start, "eapsr", 5) == 0
6312 || strncasecmp (start, "xpsr", 4) == 0
6313 || strncasecmp (start, "psr", 3) == 0)
6314 p = start + strcspn (start, "rR") + 1;
6315
6316 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
6317 p - start);
6318
6319 if (!psr)
6320 return FAIL;
6321
6322 /* If APSR is being written, a bitfield may be specified. Note that
6323 APSR itself is handled above. */
6324 if (psr->field <= 3)
6325 {
6326 psr_field = psr->field;
6327 is_apsr = TRUE;
6328 goto check_suffix;
6329 }
6330
6331 *str = p;
6332 /* M-profile MSR instructions have the mask field set to "10", except
6333 *PSR variants which modify APSR, which may use a different mask (and
6334 have been handled already). Do that by setting the PSR_f field
6335 here. */
6336 return psr->field | (lhs ? PSR_f : 0);
6337 }
6338 else
6339 goto unsupported_psr;
6340
6341 p += 4;
6342 check_suffix:
6343 if (*p == '_')
6344 {
6345 /* A suffix follows. */
6346 p++;
6347 start = p;
6348
6349 do
6350 p++;
6351 while (ISALNUM (*p) || *p == '_');
6352
6353 if (is_apsr)
6354 {
6355 /* APSR uses a notation for bits, rather than fields. */
6356 unsigned int nzcvq_bits = 0;
6357 unsigned int g_bit = 0;
6358 char *bit;
6359
6360 for (bit = start; bit != p; bit++)
6361 {
6362 switch (TOLOWER (*bit))
6363 {
6364 case 'n':
6365 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
6366 break;
6367
6368 case 'z':
6369 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
6370 break;
6371
6372 case 'c':
6373 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
6374 break;
6375
6376 case 'v':
6377 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
6378 break;
6379
6380 case 'q':
6381 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
6382 break;
6383
6384 case 'g':
6385 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
6386 break;
6387
6388 default:
6389 inst.error = _("unexpected bit specified after APSR");
6390 return FAIL;
6391 }
6392 }
6393
6394 if (nzcvq_bits == 0x1f)
6395 psr_field |= PSR_f;
6396
6397 if (g_bit == 0x1)
6398 {
6399 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
6400 {
6401 inst.error = _("selected processor does not "
6402 "support DSP extension");
6403 return FAIL;
6404 }
6405
6406 psr_field |= PSR_s;
6407 }
6408
6409 if ((nzcvq_bits & 0x20) != 0
6410 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
6411 || (g_bit & 0x2) != 0)
6412 {
6413 inst.error = _("bad bitmask specified after APSR");
6414 return FAIL;
6415 }
6416 }
6417 else
6418 {
6419 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
6420 p - start);
6421 if (!psr)
6422 goto error;
6423
6424 psr_field |= psr->field;
6425 }
6426 }
6427 else
6428 {
6429 if (ISALNUM (*p))
6430 goto error; /* Garbage after "[CS]PSR". */
6431
6432 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
6433 is deprecated, but allow it anyway. */
6434 if (is_apsr && lhs)
6435 {
6436 psr_field |= PSR_f;
6437 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6438 "deprecated"));
6439 }
6440 else if (!m_profile)
6441 /* These bits are never right for M-profile devices: don't set them
6442 (only code paths which read/write APSR reach here). */
6443 psr_field |= (PSR_c | PSR_f);
6444 }
6445 *str = p;
6446 return psr_field;
6447
6448 unsupported_psr:
6449 inst.error = _("selected processor does not support requested special "
6450 "purpose register");
6451 return FAIL;
6452
6453 error:
6454 inst.error = _("flag for {c}psr instruction expected");
6455 return FAIL;
6456 }
6457
6458 static int
6459 parse_sys_vldr_vstr (char **str)
6460 {
6461 unsigned i;
6462 int val = FAIL;
6463 struct {
6464 const char *name;
6465 int regl;
6466 int regh;
6467 } sysregs[] = {
6468 {"FPSCR", 0x1, 0x0},
6469 {"FPSCR_nzcvqc", 0x2, 0x0},
6470 {"VPR", 0x4, 0x1},
6471 {"P0", 0x5, 0x1},
6472 {"FPCXTNS", 0x6, 0x1},
6473 {"FPCXTS", 0x7, 0x1}
6474 };
6475 char *op_end = strchr (*str, ',');
6476 size_t op_strlen = op_end - *str;
6477
6478 for (i = 0; i < sizeof (sysregs) / sizeof (sysregs[0]); i++)
6479 {
6480 if (!strncmp (*str, sysregs[i].name, op_strlen))
6481 {
6482 val = sysregs[i].regl | (sysregs[i].regh << 3);
6483 *str = op_end;
6484 break;
6485 }
6486 }
6487
6488 return val;
6489 }
6490
6491 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6492 value suitable for splatting into the AIF field of the instruction. */
6493
6494 static int
6495 parse_cps_flags (char **str)
6496 {
6497 int val = 0;
6498 int saw_a_flag = 0;
6499 char *s = *str;
6500
6501 for (;;)
6502 switch (*s++)
6503 {
6504 case '\0': case ',':
6505 goto done;
6506
6507 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6508 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6509 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
6510
6511 default:
6512 inst.error = _("unrecognized CPS flag");
6513 return FAIL;
6514 }
6515
6516 done:
6517 if (saw_a_flag == 0)
6518 {
6519 inst.error = _("missing CPS flags");
6520 return FAIL;
6521 }
6522
6523 *str = s - 1;
6524 return val;
6525 }
6526
6527 /* Parse an endian specifier ("BE" or "LE", case insensitive);
6528 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
6529
6530 static int
6531 parse_endian_specifier (char **str)
6532 {
6533 int little_endian;
6534 char *s = *str;
6535
6536 if (strncasecmp (s, "BE", 2))
6537 little_endian = 0;
6538 else if (strncasecmp (s, "LE", 2))
6539 little_endian = 1;
6540 else
6541 {
6542 inst.error = _("valid endian specifiers are be or le");
6543 return FAIL;
6544 }
6545
6546 if (ISALNUM (s[2]) || s[2] == '_')
6547 {
6548 inst.error = _("valid endian specifiers are be or le");
6549 return FAIL;
6550 }
6551
6552 *str = s + 2;
6553 return little_endian;
6554 }
6555
6556 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6557 value suitable for poking into the rotate field of an sxt or sxta
6558 instruction, or FAIL on error. */
6559
6560 static int
6561 parse_ror (char **str)
6562 {
6563 int rot;
6564 char *s = *str;
6565
6566 if (strncasecmp (s, "ROR", 3) == 0)
6567 s += 3;
6568 else
6569 {
6570 inst.error = _("missing rotation field after comma");
6571 return FAIL;
6572 }
6573
6574 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6575 return FAIL;
6576
6577 switch (rot)
6578 {
6579 case 0: *str = s; return 0x0;
6580 case 8: *str = s; return 0x1;
6581 case 16: *str = s; return 0x2;
6582 case 24: *str = s; return 0x3;
6583
6584 default:
6585 inst.error = _("rotation can only be 0, 8, 16, or 24");
6586 return FAIL;
6587 }
6588 }
6589
6590 /* Parse a conditional code (from conds[] below). The value returned is in the
6591 range 0 .. 14, or FAIL. */
6592 static int
6593 parse_cond (char **str)
6594 {
6595 char *q;
6596 const struct asm_cond *c;
6597 int n;
6598 /* Condition codes are always 2 characters, so matching up to
6599 3 characters is sufficient. */
6600 char cond[3];
6601
6602 q = *str;
6603 n = 0;
6604 while (ISALPHA (*q) && n < 3)
6605 {
6606 cond[n] = TOLOWER (*q);
6607 q++;
6608 n++;
6609 }
6610
6611 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
6612 if (!c)
6613 {
6614 inst.error = _("condition required");
6615 return FAIL;
6616 }
6617
6618 *str = q;
6619 return c->value;
6620 }
6621
6622 /* Parse an option for a barrier instruction. Returns the encoding for the
6623 option, or FAIL. */
6624 static int
6625 parse_barrier (char **str)
6626 {
6627 char *p, *q;
6628 const struct asm_barrier_opt *o;
6629
6630 p = q = *str;
6631 while (ISALPHA (*q))
6632 q++;
6633
6634 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
6635 q - p);
6636 if (!o)
6637 return FAIL;
6638
6639 if (!mark_feature_used (&o->arch))
6640 return FAIL;
6641
6642 *str = q;
6643 return o->value;
6644 }
6645
6646 /* Parse the operands of a table branch instruction. Similar to a memory
6647 operand. */
6648 static int
6649 parse_tb (char **str)
6650 {
6651 char * p = *str;
6652 int reg;
6653
6654 if (skip_past_char (&p, '[') == FAIL)
6655 {
6656 inst.error = _("'[' expected");
6657 return FAIL;
6658 }
6659
6660 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6661 {
6662 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6663 return FAIL;
6664 }
6665 inst.operands[0].reg = reg;
6666
6667 if (skip_past_comma (&p) == FAIL)
6668 {
6669 inst.error = _("',' expected");
6670 return FAIL;
6671 }
6672
6673 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6674 {
6675 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6676 return FAIL;
6677 }
6678 inst.operands[0].imm = reg;
6679
6680 if (skip_past_comma (&p) == SUCCESS)
6681 {
6682 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6683 return FAIL;
6684 if (inst.relocs[0].exp.X_add_number != 1)
6685 {
6686 inst.error = _("invalid shift");
6687 return FAIL;
6688 }
6689 inst.operands[0].shifted = 1;
6690 }
6691
6692 if (skip_past_char (&p, ']') == FAIL)
6693 {
6694 inst.error = _("']' expected");
6695 return FAIL;
6696 }
6697 *str = p;
6698 return SUCCESS;
6699 }
6700
6701 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6702 information on the types the operands can take and how they are encoded.
6703 Up to four operands may be read; this function handles setting the
6704 ".present" field for each read operand itself.
6705 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6706 else returns FAIL. */
6707
6708 static int
6709 parse_neon_mov (char **str, int *which_operand)
6710 {
6711 int i = *which_operand, val;
6712 enum arm_reg_type rtype;
6713 char *ptr = *str;
6714 struct neon_type_el optype;
6715
6716 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6717 {
6718 /* Cases 17 or 19. */
6719 inst.operands[i].reg = val;
6720 inst.operands[i].isvec = 1;
6721 inst.operands[i].isscalar = 2;
6722 inst.operands[i].vectype = optype;
6723 inst.operands[i++].present = 1;
6724
6725 if (skip_past_comma (&ptr) == FAIL)
6726 goto wanted_comma;
6727
6728 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6729 {
6730 /* Case 17: VMOV<c>.<dt> <Qd[idx]>, <Rt> */
6731 inst.operands[i].reg = val;
6732 inst.operands[i].isreg = 1;
6733 inst.operands[i].present = 1;
6734 }
6735 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6736 {
6737 /* Case 19: VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2> */
6738 inst.operands[i].reg = val;
6739 inst.operands[i].isvec = 1;
6740 inst.operands[i].isscalar = 2;
6741 inst.operands[i].vectype = optype;
6742 inst.operands[i++].present = 1;
6743
6744 if (skip_past_comma (&ptr) == FAIL)
6745 goto wanted_comma;
6746
6747 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6748 goto wanted_arm;
6749
6750 inst.operands[i].reg = val;
6751 inst.operands[i].isreg = 1;
6752 inst.operands[i++].present = 1;
6753
6754 if (skip_past_comma (&ptr) == FAIL)
6755 goto wanted_comma;
6756
6757 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6758 goto wanted_arm;
6759
6760 inst.operands[i].reg = val;
6761 inst.operands[i].isreg = 1;
6762 inst.operands[i].present = 1;
6763 }
6764 else
6765 {
6766 first_error (_("expected ARM or MVE vector register"));
6767 return FAIL;
6768 }
6769 }
6770 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
6771 {
6772 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6773 inst.operands[i].reg = val;
6774 inst.operands[i].isscalar = 1;
6775 inst.operands[i].vectype = optype;
6776 inst.operands[i++].present = 1;
6777
6778 if (skip_past_comma (&ptr) == FAIL)
6779 goto wanted_comma;
6780
6781 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6782 goto wanted_arm;
6783
6784 inst.operands[i].reg = val;
6785 inst.operands[i].isreg = 1;
6786 inst.operands[i].present = 1;
6787 }
6788 else if (((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6789 != FAIL)
6790 || ((val = arm_typed_reg_parse (&ptr, REG_TYPE_MQ, &rtype, &optype))
6791 != FAIL))
6792 {
6793 /* Cases 0, 1, 2, 3, 5 (D only). */
6794 if (skip_past_comma (&ptr) == FAIL)
6795 goto wanted_comma;
6796
6797 inst.operands[i].reg = val;
6798 inst.operands[i].isreg = 1;
6799 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6800 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6801 inst.operands[i].isvec = 1;
6802 inst.operands[i].vectype = optype;
6803 inst.operands[i++].present = 1;
6804
6805 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6806 {
6807 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6808 Case 13: VMOV <Sd>, <Rm> */
6809 inst.operands[i].reg = val;
6810 inst.operands[i].isreg = 1;
6811 inst.operands[i].present = 1;
6812
6813 if (rtype == REG_TYPE_NQ)
6814 {
6815 first_error (_("can't use Neon quad register here"));
6816 return FAIL;
6817 }
6818 else if (rtype != REG_TYPE_VFS)
6819 {
6820 i++;
6821 if (skip_past_comma (&ptr) == FAIL)
6822 goto wanted_comma;
6823 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6824 goto wanted_arm;
6825 inst.operands[i].reg = val;
6826 inst.operands[i].isreg = 1;
6827 inst.operands[i].present = 1;
6828 }
6829 }
6830 else if (((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
6831 &optype)) != FAIL)
6832 || ((val = arm_typed_reg_parse (&ptr, REG_TYPE_MQ, &rtype,
6833 &optype)) != FAIL))
6834 {
6835 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6836 Case 1: VMOV<c><q> <Dd>, <Dm>
6837 Case 8: VMOV.F32 <Sd>, <Sm>
6838 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6839
6840 inst.operands[i].reg = val;
6841 inst.operands[i].isreg = 1;
6842 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6843 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6844 inst.operands[i].isvec = 1;
6845 inst.operands[i].vectype = optype;
6846 inst.operands[i].present = 1;
6847
6848 if (skip_past_comma (&ptr) == SUCCESS)
6849 {
6850 /* Case 15. */
6851 i++;
6852
6853 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6854 goto wanted_arm;
6855
6856 inst.operands[i].reg = val;
6857 inst.operands[i].isreg = 1;
6858 inst.operands[i++].present = 1;
6859
6860 if (skip_past_comma (&ptr) == FAIL)
6861 goto wanted_comma;
6862
6863 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6864 goto wanted_arm;
6865
6866 inst.operands[i].reg = val;
6867 inst.operands[i].isreg = 1;
6868 inst.operands[i].present = 1;
6869 }
6870 }
6871 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
6872 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6873 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6874 Case 10: VMOV.F32 <Sd>, #<imm>
6875 Case 11: VMOV.F64 <Dd>, #<imm> */
6876 inst.operands[i].immisfloat = 1;
6877 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6878 == SUCCESS)
6879 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6880 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6881 ;
6882 else
6883 {
6884 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6885 return FAIL;
6886 }
6887 }
6888 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6889 {
6890 /* Cases 6, 7, 16, 18. */
6891 inst.operands[i].reg = val;
6892 inst.operands[i].isreg = 1;
6893 inst.operands[i++].present = 1;
6894
6895 if (skip_past_comma (&ptr) == FAIL)
6896 goto wanted_comma;
6897
6898 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6899 {
6900 /* Case 18: VMOV<c>.<dt> <Rt>, <Qn[idx]> */
6901 inst.operands[i].reg = val;
6902 inst.operands[i].isscalar = 2;
6903 inst.operands[i].present = 1;
6904 inst.operands[i].vectype = optype;
6905 }
6906 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
6907 {
6908 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6909 inst.operands[i].reg = val;
6910 inst.operands[i].isscalar = 1;
6911 inst.operands[i].present = 1;
6912 inst.operands[i].vectype = optype;
6913 }
6914 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6915 {
6916 inst.operands[i].reg = val;
6917 inst.operands[i].isreg = 1;
6918 inst.operands[i++].present = 1;
6919
6920 if (skip_past_comma (&ptr) == FAIL)
6921 goto wanted_comma;
6922
6923 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6924 != FAIL)
6925 {
6926 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6927
6928 inst.operands[i].reg = val;
6929 inst.operands[i].isreg = 1;
6930 inst.operands[i].isvec = 1;
6931 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6932 inst.operands[i].vectype = optype;
6933 inst.operands[i].present = 1;
6934
6935 if (rtype == REG_TYPE_VFS)
6936 {
6937 /* Case 14. */
6938 i++;
6939 if (skip_past_comma (&ptr) == FAIL)
6940 goto wanted_comma;
6941 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6942 &optype)) == FAIL)
6943 {
6944 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6945 return FAIL;
6946 }
6947 inst.operands[i].reg = val;
6948 inst.operands[i].isreg = 1;
6949 inst.operands[i].isvec = 1;
6950 inst.operands[i].issingle = 1;
6951 inst.operands[i].vectype = optype;
6952 inst.operands[i].present = 1;
6953 }
6954 }
6955 else
6956 {
6957 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6958 != FAIL)
6959 {
6960 /* Case 16: VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]> */
6961 inst.operands[i].reg = val;
6962 inst.operands[i].isvec = 1;
6963 inst.operands[i].isscalar = 2;
6964 inst.operands[i].vectype = optype;
6965 inst.operands[i++].present = 1;
6966
6967 if (skip_past_comma (&ptr) == FAIL)
6968 goto wanted_comma;
6969
6970 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6971 == FAIL)
6972 {
6973 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
6974 return FAIL;
6975 }
6976 inst.operands[i].reg = val;
6977 inst.operands[i].isvec = 1;
6978 inst.operands[i].isscalar = 2;
6979 inst.operands[i].vectype = optype;
6980 inst.operands[i].present = 1;
6981 }
6982 else
6983 {
6984 first_error (_("VFP single, double or MVE vector register"
6985 " expected"));
6986 return FAIL;
6987 }
6988 }
6989 }
6990 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6991 != FAIL)
6992 {
6993 /* Case 13. */
6994 inst.operands[i].reg = val;
6995 inst.operands[i].isreg = 1;
6996 inst.operands[i].isvec = 1;
6997 inst.operands[i].issingle = 1;
6998 inst.operands[i].vectype = optype;
6999 inst.operands[i].present = 1;
7000 }
7001 }
7002 else
7003 {
7004 first_error (_("parse error"));
7005 return FAIL;
7006 }
7007
7008 /* Successfully parsed the operands. Update args. */
7009 *which_operand = i;
7010 *str = ptr;
7011 return SUCCESS;
7012
7013 wanted_comma:
7014 first_error (_("expected comma"));
7015 return FAIL;
7016
7017 wanted_arm:
7018 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
7019 return FAIL;
7020 }
7021
7022 /* Use this macro when the operand constraints are different
7023 for ARM and THUMB (e.g. ldrd). */
7024 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
7025 ((arm_operand) | ((thumb_operand) << 16))
7026
7027 /* Matcher codes for parse_operands. */
7028 enum operand_parse_code
7029 {
7030 OP_stop, /* end of line */
7031
7032 OP_RR, /* ARM register */
7033 OP_RRnpc, /* ARM register, not r15 */
7034 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
7035 OP_RRnpcb, /* ARM register, not r15, in square brackets */
7036 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
7037 optional trailing ! */
7038 OP_RRw, /* ARM register, not r15, optional trailing ! */
7039 OP_RCP, /* Coprocessor number */
7040 OP_RCN, /* Coprocessor register */
7041 OP_RF, /* FPA register */
7042 OP_RVS, /* VFP single precision register */
7043 OP_RVD, /* VFP double precision register (0..15) */
7044 OP_RND, /* Neon double precision register (0..31) */
7045 OP_RNDMQ, /* Neon double precision (0..31) or MVE vector register. */
7046 OP_RNDMQR, /* Neon double precision (0..31), MVE vector or ARM register.
7047 */
7048 OP_RNQ, /* Neon quad precision register */
7049 OP_RNQMQ, /* Neon quad or MVE vector register. */
7050 OP_RVSD, /* VFP single or double precision register */
7051 OP_RVSD_COND, /* VFP single, double precision register or condition code. */
7052 OP_RVSDMQ, /* VFP single, double precision or MVE vector register. */
7053 OP_RNSD, /* Neon single or double precision register */
7054 OP_RNDQ, /* Neon double or quad precision register */
7055 OP_RNDQMQ, /* Neon double, quad or MVE vector register. */
7056 OP_RNDQMQR, /* Neon double, quad, MVE vector or ARM register. */
7057 OP_RNSDQ, /* Neon single, double or quad precision register */
7058 OP_RNSC, /* Neon scalar D[X] */
7059 OP_RVC, /* VFP control register */
7060 OP_RMF, /* Maverick F register */
7061 OP_RMD, /* Maverick D register */
7062 OP_RMFX, /* Maverick FX register */
7063 OP_RMDX, /* Maverick DX register */
7064 OP_RMAX, /* Maverick AX register */
7065 OP_RMDS, /* Maverick DSPSC register */
7066 OP_RIWR, /* iWMMXt wR register */
7067 OP_RIWC, /* iWMMXt wC register */
7068 OP_RIWG, /* iWMMXt wCG register */
7069 OP_RXA, /* XScale accumulator register */
7070
7071 OP_RNSDQMQ, /* Neon single, double or quad register or MVE vector register
7072 */
7073 OP_RNSDQMQR, /* Neon single, double or quad register, MVE vector register or
7074 GPR (no SP/SP) */
7075 OP_RMQ, /* MVE vector register. */
7076 OP_RMQRZ, /* MVE vector or ARM register including ZR. */
7077 OP_RMQRR, /* MVE vector or ARM register. */
7078
7079 /* New operands for Armv8.1-M Mainline. */
7080 OP_LR, /* ARM LR register */
7081 OP_RRe, /* ARM register, only even numbered. */
7082 OP_RRo, /* ARM register, only odd numbered, not r13 or r15. */
7083 OP_RRnpcsp_I32, /* ARM register (no BadReg) or literal 1 .. 32 */
7084 OP_RR_ZR, /* ARM register or ZR but no PC */
7085
7086 OP_REGLST, /* ARM register list */
7087 OP_CLRMLST, /* CLRM register list */
7088 OP_VRSLST, /* VFP single-precision register list */
7089 OP_VRDLST, /* VFP double-precision register list */
7090 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
7091 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
7092 OP_NSTRLST, /* Neon element/structure list */
7093 OP_VRSDVLST, /* VFP single or double-precision register list and VPR */
7094 OP_MSTRLST2, /* MVE vector list with two elements. */
7095 OP_MSTRLST4, /* MVE vector list with four elements. */
7096
7097 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
7098 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
7099 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
7100 OP_RSVDMQ_FI0, /* VFP S, D, MVE vector register or floating point immediate
7101 zero. */
7102 OP_RR_RNSC, /* ARM reg or Neon scalar. */
7103 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
7104 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
7105 OP_RNSDQ_RNSC_MQ, /* Vector S, D or Q reg, Neon scalar or MVE vector register.
7106 */
7107 OP_RNSDQ_RNSC_MQ_RR, /* Vector S, D or Q reg, or MVE vector reg , or Neon
7108 scalar, or ARM register. */
7109 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
7110 OP_RNDQ_RNSC_RR, /* Neon D or Q reg, Neon scalar, or ARM register. */
7111 OP_RNDQMQ_RNSC_RR, /* Neon D or Q reg, Neon scalar, MVE vector or ARM
7112 register. */
7113 OP_RNDQMQ_RNSC, /* Neon D, Q or MVE vector reg, or Neon scalar. */
7114 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
7115 OP_VMOV, /* Neon VMOV operands. */
7116 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
7117 /* Neon D, Q or MVE vector register, or big immediate for logic and VMVN. */
7118 OP_RNDQMQ_Ibig,
7119 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
7120 OP_RNDQMQ_I63b_RR, /* Neon D or Q reg, immediate for shift, MVE vector or
7121 ARM register. */
7122 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
7123 OP_VLDR, /* VLDR operand. */
7124
7125 OP_I0, /* immediate zero */
7126 OP_I7, /* immediate value 0 .. 7 */
7127 OP_I15, /* 0 .. 15 */
7128 OP_I16, /* 1 .. 16 */
7129 OP_I16z, /* 0 .. 16 */
7130 OP_I31, /* 0 .. 31 */
7131 OP_I31w, /* 0 .. 31, optional trailing ! */
7132 OP_I32, /* 1 .. 32 */
7133 OP_I32z, /* 0 .. 32 */
7134 OP_I48_I64, /* 48 or 64 */
7135 OP_I63, /* 0 .. 63 */
7136 OP_I63s, /* -64 .. 63 */
7137 OP_I64, /* 1 .. 64 */
7138 OP_I64z, /* 0 .. 64 */
7139 OP_I255, /* 0 .. 255 */
7140
7141 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
7142 OP_I7b, /* 0 .. 7 */
7143 OP_I15b, /* 0 .. 15 */
7144 OP_I31b, /* 0 .. 31 */
7145
7146 OP_SH, /* shifter operand */
7147 OP_SHG, /* shifter operand with possible group relocation */
7148 OP_ADDR, /* Memory address expression (any mode) */
7149 OP_ADDRMVE, /* Memory address expression for MVE's VSTR/VLDR. */
7150 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
7151 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
7152 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
7153 OP_EXP, /* arbitrary expression */
7154 OP_EXPi, /* same, with optional immediate prefix */
7155 OP_EXPr, /* same, with optional relocation suffix */
7156 OP_EXPs, /* same, with optional non-first operand relocation suffix */
7157 OP_HALF, /* 0 .. 65535 or low/high reloc. */
7158 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
7159 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
7160
7161 OP_CPSF, /* CPS flags */
7162 OP_ENDI, /* Endianness specifier */
7163 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
7164 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
7165 OP_COND, /* conditional code */
7166 OP_TB, /* Table branch. */
7167
7168 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
7169
7170 OP_RRnpc_I0, /* ARM register or literal 0 */
7171 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
7172 OP_RR_EXi, /* ARM register or expression with imm prefix */
7173 OP_RF_IF, /* FPA register or immediate */
7174 OP_RIWR_RIWC, /* iWMMXt R or C reg */
7175 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
7176
7177 /* Optional operands. */
7178 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
7179 OP_oI31b, /* 0 .. 31 */
7180 OP_oI32b, /* 1 .. 32 */
7181 OP_oI32z, /* 0 .. 32 */
7182 OP_oIffffb, /* 0 .. 65535 */
7183 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
7184
7185 OP_oRR, /* ARM register */
7186 OP_oLR, /* ARM LR register */
7187 OP_oRRnpc, /* ARM register, not the PC */
7188 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
7189 OP_oRRw, /* ARM register, not r15, optional trailing ! */
7190 OP_oRND, /* Optional Neon double precision register */
7191 OP_oRNQ, /* Optional Neon quad precision register */
7192 OP_oRNDQMQ, /* Optional Neon double, quad or MVE vector register. */
7193 OP_oRNDQ, /* Optional Neon double or quad precision register */
7194 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
7195 OP_oRNSDQMQ, /* Optional single, double or quad register or MVE vector
7196 register. */
7197 OP_oSHll, /* LSL immediate */
7198 OP_oSHar, /* ASR immediate */
7199 OP_oSHllar, /* LSL or ASR immediate */
7200 OP_oROR, /* ROR 0/8/16/24 */
7201 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
7202
7203 OP_oRMQRZ, /* optional MVE vector or ARM register including ZR. */
7204
7205 /* Some pre-defined mixed (ARM/THUMB) operands. */
7206 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
7207 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
7208 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
7209
7210 OP_FIRST_OPTIONAL = OP_oI7b
7211 };
7212
7213 /* Generic instruction operand parser. This does no encoding and no
7214 semantic validation; it merely squirrels values away in the inst
7215 structure. Returns SUCCESS or FAIL depending on whether the
7216 specified grammar matched. */
7217 static int
7218 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
7219 {
7220 unsigned const int *upat = pattern;
7221 char *backtrack_pos = 0;
7222 const char *backtrack_error = 0;
7223 int i, val = 0, backtrack_index = 0;
7224 enum arm_reg_type rtype;
7225 parse_operand_result result;
7226 unsigned int op_parse_code;
7227 bfd_boolean partial_match;
7228
7229 #define po_char_or_fail(chr) \
7230 do \
7231 { \
7232 if (skip_past_char (&str, chr) == FAIL) \
7233 goto bad_args; \
7234 } \
7235 while (0)
7236
7237 #define po_reg_or_fail(regtype) \
7238 do \
7239 { \
7240 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7241 & inst.operands[i].vectype); \
7242 if (val == FAIL) \
7243 { \
7244 first_error (_(reg_expected_msgs[regtype])); \
7245 goto failure; \
7246 } \
7247 inst.operands[i].reg = val; \
7248 inst.operands[i].isreg = 1; \
7249 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7250 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7251 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7252 || rtype == REG_TYPE_VFD \
7253 || rtype == REG_TYPE_NQ); \
7254 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7255 } \
7256 while (0)
7257
7258 #define po_reg_or_goto(regtype, label) \
7259 do \
7260 { \
7261 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7262 & inst.operands[i].vectype); \
7263 if (val == FAIL) \
7264 goto label; \
7265 \
7266 inst.operands[i].reg = val; \
7267 inst.operands[i].isreg = 1; \
7268 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7269 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7270 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7271 || rtype == REG_TYPE_VFD \
7272 || rtype == REG_TYPE_NQ); \
7273 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7274 } \
7275 while (0)
7276
7277 #define po_imm_or_fail(min, max, popt) \
7278 do \
7279 { \
7280 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
7281 goto failure; \
7282 inst.operands[i].imm = val; \
7283 } \
7284 while (0)
7285
7286 #define po_imm1_or_imm2_or_fail(imm1, imm2, popt) \
7287 do \
7288 { \
7289 expressionS exp; \
7290 my_get_expression (&exp, &str, popt); \
7291 if (exp.X_op != O_constant) \
7292 { \
7293 inst.error = _("constant expression required"); \
7294 goto failure; \
7295 } \
7296 if (exp.X_add_number != imm1 && exp.X_add_number != imm2) \
7297 { \
7298 inst.error = _("immediate value 48 or 64 expected"); \
7299 goto failure; \
7300 } \
7301 inst.operands[i].imm = exp.X_add_number; \
7302 } \
7303 while (0)
7304
7305 #define po_scalar_or_goto(elsz, label, reg_type) \
7306 do \
7307 { \
7308 val = parse_scalar (& str, elsz, & inst.operands[i].vectype, \
7309 reg_type); \
7310 if (val == FAIL) \
7311 goto label; \
7312 inst.operands[i].reg = val; \
7313 inst.operands[i].isscalar = 1; \
7314 } \
7315 while (0)
7316
7317 #define po_misc_or_fail(expr) \
7318 do \
7319 { \
7320 if (expr) \
7321 goto failure; \
7322 } \
7323 while (0)
7324
7325 #define po_misc_or_fail_no_backtrack(expr) \
7326 do \
7327 { \
7328 result = expr; \
7329 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
7330 backtrack_pos = 0; \
7331 if (result != PARSE_OPERAND_SUCCESS) \
7332 goto failure; \
7333 } \
7334 while (0)
7335
7336 #define po_barrier_or_imm(str) \
7337 do \
7338 { \
7339 val = parse_barrier (&str); \
7340 if (val == FAIL && ! ISALPHA (*str)) \
7341 goto immediate; \
7342 if (val == FAIL \
7343 /* ISB can only take SY as an option. */ \
7344 || ((inst.instruction & 0xf0) == 0x60 \
7345 && val != 0xf)) \
7346 { \
7347 inst.error = _("invalid barrier type"); \
7348 backtrack_pos = 0; \
7349 goto failure; \
7350 } \
7351 } \
7352 while (0)
7353
7354 skip_whitespace (str);
7355
7356 for (i = 0; upat[i] != OP_stop; i++)
7357 {
7358 op_parse_code = upat[i];
7359 if (op_parse_code >= 1<<16)
7360 op_parse_code = thumb ? (op_parse_code >> 16)
7361 : (op_parse_code & ((1<<16)-1));
7362
7363 if (op_parse_code >= OP_FIRST_OPTIONAL)
7364 {
7365 /* Remember where we are in case we need to backtrack. */
7366 backtrack_pos = str;
7367 backtrack_error = inst.error;
7368 backtrack_index = i;
7369 }
7370
7371 if (i > 0 && (i > 1 || inst.operands[0].present))
7372 po_char_or_fail (',');
7373
7374 switch (op_parse_code)
7375 {
7376 /* Registers */
7377 case OP_oRRnpc:
7378 case OP_oRRnpcsp:
7379 case OP_RRnpc:
7380 case OP_RRnpcsp:
7381 case OP_oRR:
7382 case OP_RRe:
7383 case OP_RRo:
7384 case OP_LR:
7385 case OP_oLR:
7386 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
7387 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
7388 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
7389 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
7390 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
7391 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
7392 case OP_oRND:
7393 case OP_RNDMQR:
7394 po_reg_or_goto (REG_TYPE_RN, try_rndmq);
7395 break;
7396 try_rndmq:
7397 case OP_RNDMQ:
7398 po_reg_or_goto (REG_TYPE_MQ, try_rnd);
7399 break;
7400 try_rnd:
7401 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
7402 case OP_RVC:
7403 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
7404 break;
7405 /* Also accept generic coprocessor regs for unknown registers. */
7406 coproc_reg:
7407 po_reg_or_goto (REG_TYPE_CN, vpr_po);
7408 break;
7409 /* Also accept P0 or p0 for VPR.P0. Since P0 is already an
7410 existing register with a value of 0, this seems like the
7411 best way to parse P0. */
7412 vpr_po:
7413 if (strncasecmp (str, "P0", 2) == 0)
7414 {
7415 str += 2;
7416 inst.operands[i].isreg = 1;
7417 inst.operands[i].reg = 13;
7418 }
7419 else
7420 goto failure;
7421 break;
7422 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
7423 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
7424 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
7425 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
7426 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
7427 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
7428 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
7429 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
7430 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
7431 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
7432 case OP_oRNQ:
7433 case OP_RNQMQ:
7434 po_reg_or_goto (REG_TYPE_MQ, try_nq);
7435 break;
7436 try_nq:
7437 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
7438 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
7439 case OP_RNDQMQR:
7440 po_reg_or_goto (REG_TYPE_RN, try_rndqmq);
7441 break;
7442 try_rndqmq:
7443 case OP_oRNDQMQ:
7444 case OP_RNDQMQ:
7445 po_reg_or_goto (REG_TYPE_MQ, try_rndq);
7446 break;
7447 try_rndq:
7448 case OP_oRNDQ:
7449 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
7450 case OP_RVSDMQ:
7451 po_reg_or_goto (REG_TYPE_MQ, try_rvsd);
7452 break;
7453 try_rvsd:
7454 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
7455 case OP_RVSD_COND:
7456 po_reg_or_goto (REG_TYPE_VFSD, try_cond);
7457 break;
7458 case OP_oRNSDQ:
7459 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
7460 case OP_RNSDQMQR:
7461 po_reg_or_goto (REG_TYPE_RN, try_mq);
7462 break;
7463 try_mq:
7464 case OP_oRNSDQMQ:
7465 case OP_RNSDQMQ:
7466 po_reg_or_goto (REG_TYPE_MQ, try_nsdq2);
7467 break;
7468 try_nsdq2:
7469 po_reg_or_fail (REG_TYPE_NSDQ);
7470 inst.error = 0;
7471 break;
7472 case OP_RMQRR:
7473 po_reg_or_goto (REG_TYPE_RN, try_rmq);
7474 break;
7475 try_rmq:
7476 case OP_RMQ:
7477 po_reg_or_fail (REG_TYPE_MQ);
7478 break;
7479 /* Neon scalar. Using an element size of 8 means that some invalid
7480 scalars are accepted here, so deal with those in later code. */
7481 case OP_RNSC: po_scalar_or_goto (8, failure, REG_TYPE_VFD); break;
7482
7483 case OP_RNDQ_I0:
7484 {
7485 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
7486 break;
7487 try_imm0:
7488 po_imm_or_fail (0, 0, TRUE);
7489 }
7490 break;
7491
7492 case OP_RVSD_I0:
7493 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
7494 break;
7495
7496 case OP_RSVDMQ_FI0:
7497 po_reg_or_goto (REG_TYPE_MQ, try_rsvd_fi0);
7498 break;
7499 try_rsvd_fi0:
7500 case OP_RSVD_FI0:
7501 {
7502 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
7503 break;
7504 try_ifimm0:
7505 if (parse_ifimm_zero (&str))
7506 inst.operands[i].imm = 0;
7507 else
7508 {
7509 inst.error
7510 = _("only floating point zero is allowed as immediate value");
7511 goto failure;
7512 }
7513 }
7514 break;
7515
7516 case OP_RR_RNSC:
7517 {
7518 po_scalar_or_goto (8, try_rr, REG_TYPE_VFD);
7519 break;
7520 try_rr:
7521 po_reg_or_fail (REG_TYPE_RN);
7522 }
7523 break;
7524
7525 case OP_RNSDQ_RNSC_MQ_RR:
7526 po_reg_or_goto (REG_TYPE_RN, try_rnsdq_rnsc_mq);
7527 break;
7528 try_rnsdq_rnsc_mq:
7529 case OP_RNSDQ_RNSC_MQ:
7530 po_reg_or_goto (REG_TYPE_MQ, try_rnsdq_rnsc);
7531 break;
7532 try_rnsdq_rnsc:
7533 case OP_RNSDQ_RNSC:
7534 {
7535 po_scalar_or_goto (8, try_nsdq, REG_TYPE_VFD);
7536 inst.error = 0;
7537 break;
7538 try_nsdq:
7539 po_reg_or_fail (REG_TYPE_NSDQ);
7540 inst.error = 0;
7541 }
7542 break;
7543
7544 case OP_RNSD_RNSC:
7545 {
7546 po_scalar_or_goto (8, try_s_scalar, REG_TYPE_VFD);
7547 break;
7548 try_s_scalar:
7549 po_scalar_or_goto (4, try_nsd, REG_TYPE_VFS);
7550 break;
7551 try_nsd:
7552 po_reg_or_fail (REG_TYPE_NSD);
7553 }
7554 break;
7555
7556 case OP_RNDQMQ_RNSC_RR:
7557 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc_rr);
7558 break;
7559 try_rndq_rnsc_rr:
7560 case OP_RNDQ_RNSC_RR:
7561 po_reg_or_goto (REG_TYPE_RN, try_rndq_rnsc);
7562 break;
7563 case OP_RNDQMQ_RNSC:
7564 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc);
7565 break;
7566 try_rndq_rnsc:
7567 case OP_RNDQ_RNSC:
7568 {
7569 po_scalar_or_goto (8, try_ndq, REG_TYPE_VFD);
7570 break;
7571 try_ndq:
7572 po_reg_or_fail (REG_TYPE_NDQ);
7573 }
7574 break;
7575
7576 case OP_RND_RNSC:
7577 {
7578 po_scalar_or_goto (8, try_vfd, REG_TYPE_VFD);
7579 break;
7580 try_vfd:
7581 po_reg_or_fail (REG_TYPE_VFD);
7582 }
7583 break;
7584
7585 case OP_VMOV:
7586 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
7587 not careful then bad things might happen. */
7588 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
7589 break;
7590
7591 case OP_RNDQMQ_Ibig:
7592 po_reg_or_goto (REG_TYPE_MQ, try_rndq_ibig);
7593 break;
7594 try_rndq_ibig:
7595 case OP_RNDQ_Ibig:
7596 {
7597 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
7598 break;
7599 try_immbig:
7600 /* There's a possibility of getting a 64-bit immediate here, so
7601 we need special handling. */
7602 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
7603 == FAIL)
7604 {
7605 inst.error = _("immediate value is out of range");
7606 goto failure;
7607 }
7608 }
7609 break;
7610
7611 case OP_RNDQMQ_I63b_RR:
7612 po_reg_or_goto (REG_TYPE_MQ, try_rndq_i63b_rr);
7613 break;
7614 try_rndq_i63b_rr:
7615 po_reg_or_goto (REG_TYPE_RN, try_rndq_i63b);
7616 break;
7617 try_rndq_i63b:
7618 case OP_RNDQ_I63b:
7619 {
7620 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
7621 break;
7622 try_shimm:
7623 po_imm_or_fail (0, 63, TRUE);
7624 }
7625 break;
7626
7627 case OP_RRnpcb:
7628 po_char_or_fail ('[');
7629 po_reg_or_fail (REG_TYPE_RN);
7630 po_char_or_fail (']');
7631 break;
7632
7633 case OP_RRnpctw:
7634 case OP_RRw:
7635 case OP_oRRw:
7636 po_reg_or_fail (REG_TYPE_RN);
7637 if (skip_past_char (&str, '!') == SUCCESS)
7638 inst.operands[i].writeback = 1;
7639 break;
7640
7641 /* Immediates */
7642 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
7643 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
7644 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
7645 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
7646 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
7647 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
7648 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
7649 case OP_I48_I64: po_imm1_or_imm2_or_fail (48, 64, FALSE); break;
7650 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
7651 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
7652 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
7653 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
7654 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
7655
7656 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
7657 case OP_oI7b:
7658 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
7659 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
7660 case OP_oI31b:
7661 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
7662 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
7663 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
7664 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
7665
7666 /* Immediate variants */
7667 case OP_oI255c:
7668 po_char_or_fail ('{');
7669 po_imm_or_fail (0, 255, TRUE);
7670 po_char_or_fail ('}');
7671 break;
7672
7673 case OP_I31w:
7674 /* The expression parser chokes on a trailing !, so we have
7675 to find it first and zap it. */
7676 {
7677 char *s = str;
7678 while (*s && *s != ',')
7679 s++;
7680 if (s[-1] == '!')
7681 {
7682 s[-1] = '\0';
7683 inst.operands[i].writeback = 1;
7684 }
7685 po_imm_or_fail (0, 31, TRUE);
7686 if (str == s - 1)
7687 str = s;
7688 }
7689 break;
7690
7691 /* Expressions */
7692 case OP_EXPi: EXPi:
7693 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7694 GE_OPT_PREFIX));
7695 break;
7696
7697 case OP_EXP:
7698 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7699 GE_NO_PREFIX));
7700 break;
7701
7702 case OP_EXPr: EXPr:
7703 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7704 GE_NO_PREFIX));
7705 if (inst.relocs[0].exp.X_op == O_symbol)
7706 {
7707 val = parse_reloc (&str);
7708 if (val == -1)
7709 {
7710 inst.error = _("unrecognized relocation suffix");
7711 goto failure;
7712 }
7713 else if (val != BFD_RELOC_UNUSED)
7714 {
7715 inst.operands[i].imm = val;
7716 inst.operands[i].hasreloc = 1;
7717 }
7718 }
7719 break;
7720
7721 case OP_EXPs:
7722 po_misc_or_fail (my_get_expression (&inst.relocs[i].exp, &str,
7723 GE_NO_PREFIX));
7724 if (inst.relocs[i].exp.X_op == O_symbol)
7725 {
7726 inst.operands[i].hasreloc = 1;
7727 }
7728 else if (inst.relocs[i].exp.X_op == O_constant)
7729 {
7730 inst.operands[i].imm = inst.relocs[i].exp.X_add_number;
7731 inst.operands[i].hasreloc = 0;
7732 }
7733 break;
7734
7735 /* Operand for MOVW or MOVT. */
7736 case OP_HALF:
7737 po_misc_or_fail (parse_half (&str));
7738 break;
7739
7740 /* Register or expression. */
7741 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7742 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
7743
7744 /* Register or immediate. */
7745 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7746 I0: po_imm_or_fail (0, 0, FALSE); break;
7747
7748 case OP_RRnpcsp_I32: po_reg_or_goto (REG_TYPE_RN, I32); break;
7749 I32: po_imm_or_fail (1, 32, FALSE); break;
7750
7751 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7752 IF:
7753 if (!is_immediate_prefix (*str))
7754 goto bad_args;
7755 str++;
7756 val = parse_fpa_immediate (&str);
7757 if (val == FAIL)
7758 goto failure;
7759 /* FPA immediates are encoded as registers 8-15.
7760 parse_fpa_immediate has already applied the offset. */
7761 inst.operands[i].reg = val;
7762 inst.operands[i].isreg = 1;
7763 break;
7764
7765 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7766 I32z: po_imm_or_fail (0, 32, FALSE); break;
7767
7768 /* Two kinds of register. */
7769 case OP_RIWR_RIWC:
7770 {
7771 struct reg_entry *rege = arm_reg_parse_multi (&str);
7772 if (!rege
7773 || (rege->type != REG_TYPE_MMXWR
7774 && rege->type != REG_TYPE_MMXWC
7775 && rege->type != REG_TYPE_MMXWCG))
7776 {
7777 inst.error = _("iWMMXt data or control register expected");
7778 goto failure;
7779 }
7780 inst.operands[i].reg = rege->number;
7781 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7782 }
7783 break;
7784
7785 case OP_RIWC_RIWG:
7786 {
7787 struct reg_entry *rege = arm_reg_parse_multi (&str);
7788 if (!rege
7789 || (rege->type != REG_TYPE_MMXWC
7790 && rege->type != REG_TYPE_MMXWCG))
7791 {
7792 inst.error = _("iWMMXt control register expected");
7793 goto failure;
7794 }
7795 inst.operands[i].reg = rege->number;
7796 inst.operands[i].isreg = 1;
7797 }
7798 break;
7799
7800 /* Misc */
7801 case OP_CPSF: val = parse_cps_flags (&str); break;
7802 case OP_ENDI: val = parse_endian_specifier (&str); break;
7803 case OP_oROR: val = parse_ror (&str); break;
7804 try_cond:
7805 case OP_COND: val = parse_cond (&str); break;
7806 case OP_oBARRIER_I15:
7807 po_barrier_or_imm (str); break;
7808 immediate:
7809 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
7810 goto failure;
7811 break;
7812
7813 case OP_wPSR:
7814 case OP_rPSR:
7815 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7816 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7817 {
7818 inst.error = _("Banked registers are not available with this "
7819 "architecture.");
7820 goto failure;
7821 }
7822 break;
7823 try_psr:
7824 val = parse_psr (&str, op_parse_code == OP_wPSR);
7825 break;
7826
7827 case OP_VLDR:
7828 po_reg_or_goto (REG_TYPE_VFSD, try_sysreg);
7829 break;
7830 try_sysreg:
7831 val = parse_sys_vldr_vstr (&str);
7832 break;
7833
7834 case OP_APSR_RR:
7835 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7836 break;
7837 try_apsr:
7838 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7839 instruction). */
7840 if (strncasecmp (str, "APSR_", 5) == 0)
7841 {
7842 unsigned found = 0;
7843 str += 5;
7844 while (found < 15)
7845 switch (*str++)
7846 {
7847 case 'c': found = (found & 1) ? 16 : found | 1; break;
7848 case 'n': found = (found & 2) ? 16 : found | 2; break;
7849 case 'z': found = (found & 4) ? 16 : found | 4; break;
7850 case 'v': found = (found & 8) ? 16 : found | 8; break;
7851 default: found = 16;
7852 }
7853 if (found != 15)
7854 goto failure;
7855 inst.operands[i].isvec = 1;
7856 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7857 inst.operands[i].reg = REG_PC;
7858 }
7859 else
7860 goto failure;
7861 break;
7862
7863 case OP_TB:
7864 po_misc_or_fail (parse_tb (&str));
7865 break;
7866
7867 /* Register lists. */
7868 case OP_REGLST:
7869 val = parse_reg_list (&str, REGLIST_RN);
7870 if (*str == '^')
7871 {
7872 inst.operands[i].writeback = 1;
7873 str++;
7874 }
7875 break;
7876
7877 case OP_CLRMLST:
7878 val = parse_reg_list (&str, REGLIST_CLRM);
7879 break;
7880
7881 case OP_VRSLST:
7882 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S,
7883 &partial_match);
7884 break;
7885
7886 case OP_VRDLST:
7887 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D,
7888 &partial_match);
7889 break;
7890
7891 case OP_VRSDLST:
7892 /* Allow Q registers too. */
7893 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7894 REGLIST_NEON_D, &partial_match);
7895 if (val == FAIL)
7896 {
7897 inst.error = NULL;
7898 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7899 REGLIST_VFP_S, &partial_match);
7900 inst.operands[i].issingle = 1;
7901 }
7902 break;
7903
7904 case OP_VRSDVLST:
7905 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7906 REGLIST_VFP_D_VPR, &partial_match);
7907 if (val == FAIL && !partial_match)
7908 {
7909 inst.error = NULL;
7910 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7911 REGLIST_VFP_S_VPR, &partial_match);
7912 inst.operands[i].issingle = 1;
7913 }
7914 break;
7915
7916 case OP_NRDLST:
7917 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7918 REGLIST_NEON_D, &partial_match);
7919 break;
7920
7921 case OP_MSTRLST4:
7922 case OP_MSTRLST2:
7923 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7924 1, &inst.operands[i].vectype);
7925 if (val != (((op_parse_code == OP_MSTRLST2) ? 3 : 7) << 5 | 0xe))
7926 goto failure;
7927 break;
7928 case OP_NSTRLST:
7929 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7930 0, &inst.operands[i].vectype);
7931 break;
7932
7933 /* Addressing modes */
7934 case OP_ADDRMVE:
7935 po_misc_or_fail (parse_address_group_reloc (&str, i, GROUP_MVE));
7936 break;
7937
7938 case OP_ADDR:
7939 po_misc_or_fail (parse_address (&str, i));
7940 break;
7941
7942 case OP_ADDRGLDR:
7943 po_misc_or_fail_no_backtrack (
7944 parse_address_group_reloc (&str, i, GROUP_LDR));
7945 break;
7946
7947 case OP_ADDRGLDRS:
7948 po_misc_or_fail_no_backtrack (
7949 parse_address_group_reloc (&str, i, GROUP_LDRS));
7950 break;
7951
7952 case OP_ADDRGLDC:
7953 po_misc_or_fail_no_backtrack (
7954 parse_address_group_reloc (&str, i, GROUP_LDC));
7955 break;
7956
7957 case OP_SH:
7958 po_misc_or_fail (parse_shifter_operand (&str, i));
7959 break;
7960
7961 case OP_SHG:
7962 po_misc_or_fail_no_backtrack (
7963 parse_shifter_operand_group_reloc (&str, i));
7964 break;
7965
7966 case OP_oSHll:
7967 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7968 break;
7969
7970 case OP_oSHar:
7971 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7972 break;
7973
7974 case OP_oSHllar:
7975 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7976 break;
7977
7978 case OP_RMQRZ:
7979 case OP_oRMQRZ:
7980 po_reg_or_goto (REG_TYPE_MQ, try_rr_zr);
7981 break;
7982
7983 case OP_RR_ZR:
7984 try_rr_zr:
7985 po_reg_or_goto (REG_TYPE_RN, ZR);
7986 break;
7987 ZR:
7988 po_reg_or_fail (REG_TYPE_ZR);
7989 break;
7990
7991 default:
7992 as_fatal (_("unhandled operand code %d"), op_parse_code);
7993 }
7994
7995 /* Various value-based sanity checks and shared operations. We
7996 do not signal immediate failures for the register constraints;
7997 this allows a syntax error to take precedence. */
7998 switch (op_parse_code)
7999 {
8000 case OP_oRRnpc:
8001 case OP_RRnpc:
8002 case OP_RRnpcb:
8003 case OP_RRw:
8004 case OP_oRRw:
8005 case OP_RRnpc_I0:
8006 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
8007 inst.error = BAD_PC;
8008 break;
8009
8010 case OP_oRRnpcsp:
8011 case OP_RRnpcsp:
8012 case OP_RRnpcsp_I32:
8013 if (inst.operands[i].isreg)
8014 {
8015 if (inst.operands[i].reg == REG_PC)
8016 inst.error = BAD_PC;
8017 else if (inst.operands[i].reg == REG_SP
8018 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
8019 relaxed since ARMv8-A. */
8020 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
8021 {
8022 gas_assert (thumb);
8023 inst.error = BAD_SP;
8024 }
8025 }
8026 break;
8027
8028 case OP_RRnpctw:
8029 if (inst.operands[i].isreg
8030 && inst.operands[i].reg == REG_PC
8031 && (inst.operands[i].writeback || thumb))
8032 inst.error = BAD_PC;
8033 break;
8034
8035 case OP_RVSD_COND:
8036 case OP_VLDR:
8037 if (inst.operands[i].isreg)
8038 break;
8039 /* fall through. */
8040
8041 case OP_CPSF:
8042 case OP_ENDI:
8043 case OP_oROR:
8044 case OP_wPSR:
8045 case OP_rPSR:
8046 case OP_COND:
8047 case OP_oBARRIER_I15:
8048 case OP_REGLST:
8049 case OP_CLRMLST:
8050 case OP_VRSLST:
8051 case OP_VRDLST:
8052 case OP_VRSDLST:
8053 case OP_VRSDVLST:
8054 case OP_NRDLST:
8055 case OP_NSTRLST:
8056 case OP_MSTRLST2:
8057 case OP_MSTRLST4:
8058 if (val == FAIL)
8059 goto failure;
8060 inst.operands[i].imm = val;
8061 break;
8062
8063 case OP_LR:
8064 case OP_oLR:
8065 if (inst.operands[i].reg != REG_LR)
8066 inst.error = _("operand must be LR register");
8067 break;
8068
8069 case OP_RMQRZ:
8070 case OP_oRMQRZ:
8071 case OP_RR_ZR:
8072 if (!inst.operands[i].iszr && inst.operands[i].reg == REG_PC)
8073 inst.error = BAD_PC;
8074 break;
8075
8076 case OP_RRe:
8077 if (inst.operands[i].isreg
8078 && (inst.operands[i].reg & 0x00000001) != 0)
8079 inst.error = BAD_ODD;
8080 break;
8081
8082 case OP_RRo:
8083 if (inst.operands[i].isreg)
8084 {
8085 if ((inst.operands[i].reg & 0x00000001) != 1)
8086 inst.error = BAD_EVEN;
8087 else if (inst.operands[i].reg == REG_SP)
8088 as_tsktsk (MVE_BAD_SP);
8089 else if (inst.operands[i].reg == REG_PC)
8090 inst.error = BAD_PC;
8091 }
8092 break;
8093
8094 default:
8095 break;
8096 }
8097
8098 /* If we get here, this operand was successfully parsed. */
8099 inst.operands[i].present = 1;
8100 continue;
8101
8102 bad_args:
8103 inst.error = BAD_ARGS;
8104
8105 failure:
8106 if (!backtrack_pos)
8107 {
8108 /* The parse routine should already have set inst.error, but set a
8109 default here just in case. */
8110 if (!inst.error)
8111 inst.error = BAD_SYNTAX;
8112 return FAIL;
8113 }
8114
8115 /* Do not backtrack over a trailing optional argument that
8116 absorbed some text. We will only fail again, with the
8117 'garbage following instruction' error message, which is
8118 probably less helpful than the current one. */
8119 if (backtrack_index == i && backtrack_pos != str
8120 && upat[i+1] == OP_stop)
8121 {
8122 if (!inst.error)
8123 inst.error = BAD_SYNTAX;
8124 return FAIL;
8125 }
8126
8127 /* Try again, skipping the optional argument at backtrack_pos. */
8128 str = backtrack_pos;
8129 inst.error = backtrack_error;
8130 inst.operands[backtrack_index].present = 0;
8131 i = backtrack_index;
8132 backtrack_pos = 0;
8133 }
8134
8135 /* Check that we have parsed all the arguments. */
8136 if (*str != '\0' && !inst.error)
8137 inst.error = _("garbage following instruction");
8138
8139 return inst.error ? FAIL : SUCCESS;
8140 }
8141
8142 #undef po_char_or_fail
8143 #undef po_reg_or_fail
8144 #undef po_reg_or_goto
8145 #undef po_imm_or_fail
8146 #undef po_scalar_or_fail
8147 #undef po_barrier_or_imm
8148
8149 /* Shorthand macro for instruction encoding functions issuing errors. */
8150 #define constraint(expr, err) \
8151 do \
8152 { \
8153 if (expr) \
8154 { \
8155 inst.error = err; \
8156 return; \
8157 } \
8158 } \
8159 while (0)
8160
8161 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
8162 instructions are unpredictable if these registers are used. This
8163 is the BadReg predicate in ARM's Thumb-2 documentation.
8164
8165 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
8166 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
8167 #define reject_bad_reg(reg) \
8168 do \
8169 if (reg == REG_PC) \
8170 { \
8171 inst.error = BAD_PC; \
8172 return; \
8173 } \
8174 else if (reg == REG_SP \
8175 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
8176 { \
8177 inst.error = BAD_SP; \
8178 return; \
8179 } \
8180 while (0)
8181
8182 /* If REG is R13 (the stack pointer), warn that its use is
8183 deprecated. */
8184 #define warn_deprecated_sp(reg) \
8185 do \
8186 if (warn_on_deprecated && reg == REG_SP) \
8187 as_tsktsk (_("use of r13 is deprecated")); \
8188 while (0)
8189
8190 /* Functions for operand encoding. ARM, then Thumb. */
8191
8192 #define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
8193
8194 /* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
8195
8196 The only binary encoding difference is the Coprocessor number. Coprocessor
8197 9 is used for half-precision calculations or conversions. The format of the
8198 instruction is the same as the equivalent Coprocessor 10 instruction that
8199 exists for Single-Precision operation. */
8200
8201 static void
8202 do_scalar_fp16_v82_encode (void)
8203 {
8204 if (inst.cond < COND_ALWAYS)
8205 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
8206 " the behaviour is UNPREDICTABLE"));
8207 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
8208 _(BAD_FP16));
8209
8210 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
8211 mark_feature_used (&arm_ext_fp16);
8212 }
8213
8214 /* If VAL can be encoded in the immediate field of an ARM instruction,
8215 return the encoded form. Otherwise, return FAIL. */
8216
8217 static unsigned int
8218 encode_arm_immediate (unsigned int val)
8219 {
8220 unsigned int a, i;
8221
8222 if (val <= 0xff)
8223 return val;
8224
8225 for (i = 2; i < 32; i += 2)
8226 if ((a = rotate_left (val, i)) <= 0xff)
8227 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
8228
8229 return FAIL;
8230 }
8231
8232 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
8233 return the encoded form. Otherwise, return FAIL. */
8234 static unsigned int
8235 encode_thumb32_immediate (unsigned int val)
8236 {
8237 unsigned int a, i;
8238
8239 if (val <= 0xff)
8240 return val;
8241
8242 for (i = 1; i <= 24; i++)
8243 {
8244 a = val >> i;
8245 if ((val & ~(0xff << i)) == 0)
8246 return ((val >> i) & 0x7f) | ((32 - i) << 7);
8247 }
8248
8249 a = val & 0xff;
8250 if (val == ((a << 16) | a))
8251 return 0x100 | a;
8252 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
8253 return 0x300 | a;
8254
8255 a = val & 0xff00;
8256 if (val == ((a << 16) | a))
8257 return 0x200 | (a >> 8);
8258
8259 return FAIL;
8260 }
8261 /* Encode a VFP SP or DP register number into inst.instruction. */
8262
8263 static void
8264 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
8265 {
8266 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
8267 && reg > 15)
8268 {
8269 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
8270 {
8271 if (thumb_mode)
8272 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
8273 fpu_vfp_ext_d32);
8274 else
8275 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
8276 fpu_vfp_ext_d32);
8277 }
8278 else
8279 {
8280 first_error (_("D register out of range for selected VFP version"));
8281 return;
8282 }
8283 }
8284
8285 switch (pos)
8286 {
8287 case VFP_REG_Sd:
8288 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
8289 break;
8290
8291 case VFP_REG_Sn:
8292 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
8293 break;
8294
8295 case VFP_REG_Sm:
8296 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
8297 break;
8298
8299 case VFP_REG_Dd:
8300 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
8301 break;
8302
8303 case VFP_REG_Dn:
8304 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
8305 break;
8306
8307 case VFP_REG_Dm:
8308 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
8309 break;
8310
8311 default:
8312 abort ();
8313 }
8314 }
8315
8316 /* Encode a <shift> in an ARM-format instruction. The immediate,
8317 if any, is handled by md_apply_fix. */
8318 static void
8319 encode_arm_shift (int i)
8320 {
8321 /* register-shifted register. */
8322 if (inst.operands[i].immisreg)
8323 {
8324 int op_index;
8325 for (op_index = 0; op_index <= i; ++op_index)
8326 {
8327 /* Check the operand only when it's presented. In pre-UAL syntax,
8328 if the destination register is the same as the first operand, two
8329 register form of the instruction can be used. */
8330 if (inst.operands[op_index].present && inst.operands[op_index].isreg
8331 && inst.operands[op_index].reg == REG_PC)
8332 as_warn (UNPRED_REG ("r15"));
8333 }
8334
8335 if (inst.operands[i].imm == REG_PC)
8336 as_warn (UNPRED_REG ("r15"));
8337 }
8338
8339 if (inst.operands[i].shift_kind == SHIFT_RRX)
8340 inst.instruction |= SHIFT_ROR << 5;
8341 else
8342 {
8343 inst.instruction |= inst.operands[i].shift_kind << 5;
8344 if (inst.operands[i].immisreg)
8345 {
8346 inst.instruction |= SHIFT_BY_REG;
8347 inst.instruction |= inst.operands[i].imm << 8;
8348 }
8349 else
8350 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
8351 }
8352 }
8353
8354 static void
8355 encode_arm_shifter_operand (int i)
8356 {
8357 if (inst.operands[i].isreg)
8358 {
8359 inst.instruction |= inst.operands[i].reg;
8360 encode_arm_shift (i);
8361 }
8362 else
8363 {
8364 inst.instruction |= INST_IMMEDIATE;
8365 if (inst.relocs[0].type != BFD_RELOC_ARM_IMMEDIATE)
8366 inst.instruction |= inst.operands[i].imm;
8367 }
8368 }
8369
8370 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
8371 static void
8372 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
8373 {
8374 /* PR 14260:
8375 Generate an error if the operand is not a register. */
8376 constraint (!inst.operands[i].isreg,
8377 _("Instruction does not support =N addresses"));
8378
8379 inst.instruction |= inst.operands[i].reg << 16;
8380
8381 if (inst.operands[i].preind)
8382 {
8383 if (is_t)
8384 {
8385 inst.error = _("instruction does not accept preindexed addressing");
8386 return;
8387 }
8388 inst.instruction |= PRE_INDEX;
8389 if (inst.operands[i].writeback)
8390 inst.instruction |= WRITE_BACK;
8391
8392 }
8393 else if (inst.operands[i].postind)
8394 {
8395 gas_assert (inst.operands[i].writeback);
8396 if (is_t)
8397 inst.instruction |= WRITE_BACK;
8398 }
8399 else /* unindexed - only for coprocessor */
8400 {
8401 inst.error = _("instruction does not accept unindexed addressing");
8402 return;
8403 }
8404
8405 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
8406 && (((inst.instruction & 0x000f0000) >> 16)
8407 == ((inst.instruction & 0x0000f000) >> 12)))
8408 as_warn ((inst.instruction & LOAD_BIT)
8409 ? _("destination register same as write-back base")
8410 : _("source register same as write-back base"));
8411 }
8412
8413 /* inst.operands[i] was set up by parse_address. Encode it into an
8414 ARM-format mode 2 load or store instruction. If is_t is true,
8415 reject forms that cannot be used with a T instruction (i.e. not
8416 post-indexed). */
8417 static void
8418 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
8419 {
8420 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8421
8422 encode_arm_addr_mode_common (i, is_t);
8423
8424 if (inst.operands[i].immisreg)
8425 {
8426 constraint ((inst.operands[i].imm == REG_PC
8427 || (is_pc && inst.operands[i].writeback)),
8428 BAD_PC_ADDRESSING);
8429 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
8430 inst.instruction |= inst.operands[i].imm;
8431 if (!inst.operands[i].negative)
8432 inst.instruction |= INDEX_UP;
8433 if (inst.operands[i].shifted)
8434 {
8435 if (inst.operands[i].shift_kind == SHIFT_RRX)
8436 inst.instruction |= SHIFT_ROR << 5;
8437 else
8438 {
8439 inst.instruction |= inst.operands[i].shift_kind << 5;
8440 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
8441 }
8442 }
8443 }
8444 else /* immediate offset in inst.relocs[0] */
8445 {
8446 if (is_pc && !inst.relocs[0].pc_rel)
8447 {
8448 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
8449
8450 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
8451 cannot use PC in addressing.
8452 PC cannot be used in writeback addressing, either. */
8453 constraint ((is_t || inst.operands[i].writeback),
8454 BAD_PC_ADDRESSING);
8455
8456 /* Use of PC in str is deprecated for ARMv7. */
8457 if (warn_on_deprecated
8458 && !is_load
8459 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
8460 as_tsktsk (_("use of PC in this instruction is deprecated"));
8461 }
8462
8463 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
8464 {
8465 /* Prefer + for zero encoded value. */
8466 if (!inst.operands[i].negative)
8467 inst.instruction |= INDEX_UP;
8468 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM;
8469 }
8470 }
8471 }
8472
8473 /* inst.operands[i] was set up by parse_address. Encode it into an
8474 ARM-format mode 3 load or store instruction. Reject forms that
8475 cannot be used with such instructions. If is_t is true, reject
8476 forms that cannot be used with a T instruction (i.e. not
8477 post-indexed). */
8478 static void
8479 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
8480 {
8481 if (inst.operands[i].immisreg && inst.operands[i].shifted)
8482 {
8483 inst.error = _("instruction does not accept scaled register index");
8484 return;
8485 }
8486
8487 encode_arm_addr_mode_common (i, is_t);
8488
8489 if (inst.operands[i].immisreg)
8490 {
8491 constraint ((inst.operands[i].imm == REG_PC
8492 || (is_t && inst.operands[i].reg == REG_PC)),
8493 BAD_PC_ADDRESSING);
8494 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
8495 BAD_PC_WRITEBACK);
8496 inst.instruction |= inst.operands[i].imm;
8497 if (!inst.operands[i].negative)
8498 inst.instruction |= INDEX_UP;
8499 }
8500 else /* immediate offset in inst.relocs[0] */
8501 {
8502 constraint ((inst.operands[i].reg == REG_PC && !inst.relocs[0].pc_rel
8503 && inst.operands[i].writeback),
8504 BAD_PC_WRITEBACK);
8505 inst.instruction |= HWOFFSET_IMM;
8506 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
8507 {
8508 /* Prefer + for zero encoded value. */
8509 if (!inst.operands[i].negative)
8510 inst.instruction |= INDEX_UP;
8511
8512 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM8;
8513 }
8514 }
8515 }
8516
8517 /* Write immediate bits [7:0] to the following locations:
8518
8519 |28/24|23 19|18 16|15 4|3 0|
8520 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
8521
8522 This function is used by VMOV/VMVN/VORR/VBIC. */
8523
8524 static void
8525 neon_write_immbits (unsigned immbits)
8526 {
8527 inst.instruction |= immbits & 0xf;
8528 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
8529 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
8530 }
8531
8532 /* Invert low-order SIZE bits of XHI:XLO. */
8533
8534 static void
8535 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
8536 {
8537 unsigned immlo = xlo ? *xlo : 0;
8538 unsigned immhi = xhi ? *xhi : 0;
8539
8540 switch (size)
8541 {
8542 case 8:
8543 immlo = (~immlo) & 0xff;
8544 break;
8545
8546 case 16:
8547 immlo = (~immlo) & 0xffff;
8548 break;
8549
8550 case 64:
8551 immhi = (~immhi) & 0xffffffff;
8552 /* fall through. */
8553
8554 case 32:
8555 immlo = (~immlo) & 0xffffffff;
8556 break;
8557
8558 default:
8559 abort ();
8560 }
8561
8562 if (xlo)
8563 *xlo = immlo;
8564
8565 if (xhi)
8566 *xhi = immhi;
8567 }
8568
8569 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
8570 A, B, C, D. */
8571
8572 static int
8573 neon_bits_same_in_bytes (unsigned imm)
8574 {
8575 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
8576 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
8577 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
8578 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
8579 }
8580
8581 /* For immediate of above form, return 0bABCD. */
8582
8583 static unsigned
8584 neon_squash_bits (unsigned imm)
8585 {
8586 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
8587 | ((imm & 0x01000000) >> 21);
8588 }
8589
8590 /* Compress quarter-float representation to 0b...000 abcdefgh. */
8591
8592 static unsigned
8593 neon_qfloat_bits (unsigned imm)
8594 {
8595 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
8596 }
8597
8598 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
8599 the instruction. *OP is passed as the initial value of the op field, and
8600 may be set to a different value depending on the constant (i.e.
8601 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
8602 MVN). If the immediate looks like a repeated pattern then also
8603 try smaller element sizes. */
8604
8605 static int
8606 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
8607 unsigned *immbits, int *op, int size,
8608 enum neon_el_type type)
8609 {
8610 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
8611 float. */
8612 if (type == NT_float && !float_p)
8613 return FAIL;
8614
8615 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
8616 {
8617 if (size != 32 || *op == 1)
8618 return FAIL;
8619 *immbits = neon_qfloat_bits (immlo);
8620 return 0xf;
8621 }
8622
8623 if (size == 64)
8624 {
8625 if (neon_bits_same_in_bytes (immhi)
8626 && neon_bits_same_in_bytes (immlo))
8627 {
8628 if (*op == 1)
8629 return FAIL;
8630 *immbits = (neon_squash_bits (immhi) << 4)
8631 | neon_squash_bits (immlo);
8632 *op = 1;
8633 return 0xe;
8634 }
8635
8636 if (immhi != immlo)
8637 return FAIL;
8638 }
8639
8640 if (size >= 32)
8641 {
8642 if (immlo == (immlo & 0x000000ff))
8643 {
8644 *immbits = immlo;
8645 return 0x0;
8646 }
8647 else if (immlo == (immlo & 0x0000ff00))
8648 {
8649 *immbits = immlo >> 8;
8650 return 0x2;
8651 }
8652 else if (immlo == (immlo & 0x00ff0000))
8653 {
8654 *immbits = immlo >> 16;
8655 return 0x4;
8656 }
8657 else if (immlo == (immlo & 0xff000000))
8658 {
8659 *immbits = immlo >> 24;
8660 return 0x6;
8661 }
8662 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
8663 {
8664 *immbits = (immlo >> 8) & 0xff;
8665 return 0xc;
8666 }
8667 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
8668 {
8669 *immbits = (immlo >> 16) & 0xff;
8670 return 0xd;
8671 }
8672
8673 if ((immlo & 0xffff) != (immlo >> 16))
8674 return FAIL;
8675 immlo &= 0xffff;
8676 }
8677
8678 if (size >= 16)
8679 {
8680 if (immlo == (immlo & 0x000000ff))
8681 {
8682 *immbits = immlo;
8683 return 0x8;
8684 }
8685 else if (immlo == (immlo & 0x0000ff00))
8686 {
8687 *immbits = immlo >> 8;
8688 return 0xa;
8689 }
8690
8691 if ((immlo & 0xff) != (immlo >> 8))
8692 return FAIL;
8693 immlo &= 0xff;
8694 }
8695
8696 if (immlo == (immlo & 0x000000ff))
8697 {
8698 /* Don't allow MVN with 8-bit immediate. */
8699 if (*op == 1)
8700 return FAIL;
8701 *immbits = immlo;
8702 return 0xe;
8703 }
8704
8705 return FAIL;
8706 }
8707
8708 #if defined BFD_HOST_64_BIT
8709 /* Returns TRUE if double precision value V may be cast
8710 to single precision without loss of accuracy. */
8711
8712 static bfd_boolean
8713 is_double_a_single (bfd_int64_t v)
8714 {
8715 int exp = (int)((v >> 52) & 0x7FF);
8716 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
8717
8718 return (exp == 0 || exp == 0x7FF
8719 || (exp >= 1023 - 126 && exp <= 1023 + 127))
8720 && (mantissa & 0x1FFFFFFFl) == 0;
8721 }
8722
8723 /* Returns a double precision value casted to single precision
8724 (ignoring the least significant bits in exponent and mantissa). */
8725
8726 static int
8727 double_to_single (bfd_int64_t v)
8728 {
8729 int sign = (int) ((v >> 63) & 1l);
8730 int exp = (int) ((v >> 52) & 0x7FF);
8731 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
8732
8733 if (exp == 0x7FF)
8734 exp = 0xFF;
8735 else
8736 {
8737 exp = exp - 1023 + 127;
8738 if (exp >= 0xFF)
8739 {
8740 /* Infinity. */
8741 exp = 0x7F;
8742 mantissa = 0;
8743 }
8744 else if (exp < 0)
8745 {
8746 /* No denormalized numbers. */
8747 exp = 0;
8748 mantissa = 0;
8749 }
8750 }
8751 mantissa >>= 29;
8752 return (sign << 31) | (exp << 23) | mantissa;
8753 }
8754 #endif /* BFD_HOST_64_BIT */
8755
8756 enum lit_type
8757 {
8758 CONST_THUMB,
8759 CONST_ARM,
8760 CONST_VEC
8761 };
8762
8763 static void do_vfp_nsyn_opcode (const char *);
8764
8765 /* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
8766 Determine whether it can be performed with a move instruction; if
8767 it can, convert inst.instruction to that move instruction and
8768 return TRUE; if it can't, convert inst.instruction to a literal-pool
8769 load and return FALSE. If this is not a valid thing to do in the
8770 current context, set inst.error and return TRUE.
8771
8772 inst.operands[i] describes the destination register. */
8773
8774 static bfd_boolean
8775 move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
8776 {
8777 unsigned long tbit;
8778 bfd_boolean thumb_p = (t == CONST_THUMB);
8779 bfd_boolean arm_p = (t == CONST_ARM);
8780
8781 if (thumb_p)
8782 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
8783 else
8784 tbit = LOAD_BIT;
8785
8786 if ((inst.instruction & tbit) == 0)
8787 {
8788 inst.error = _("invalid pseudo operation");
8789 return TRUE;
8790 }
8791
8792 if (inst.relocs[0].exp.X_op != O_constant
8793 && inst.relocs[0].exp.X_op != O_symbol
8794 && inst.relocs[0].exp.X_op != O_big)
8795 {
8796 inst.error = _("constant expression expected");
8797 return TRUE;
8798 }
8799
8800 if (inst.relocs[0].exp.X_op == O_constant
8801 || inst.relocs[0].exp.X_op == O_big)
8802 {
8803 #if defined BFD_HOST_64_BIT
8804 bfd_int64_t v;
8805 #else
8806 offsetT v;
8807 #endif
8808 if (inst.relocs[0].exp.X_op == O_big)
8809 {
8810 LITTLENUM_TYPE w[X_PRECISION];
8811 LITTLENUM_TYPE * l;
8812
8813 if (inst.relocs[0].exp.X_add_number == -1)
8814 {
8815 gen_to_words (w, X_PRECISION, E_PRECISION);
8816 l = w;
8817 /* FIXME: Should we check words w[2..5] ? */
8818 }
8819 else
8820 l = generic_bignum;
8821
8822 #if defined BFD_HOST_64_BIT
8823 v =
8824 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8825 << LITTLENUM_NUMBER_OF_BITS)
8826 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8827 << LITTLENUM_NUMBER_OF_BITS)
8828 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8829 << LITTLENUM_NUMBER_OF_BITS)
8830 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8831 #else
8832 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8833 | (l[0] & LITTLENUM_MASK);
8834 #endif
8835 }
8836 else
8837 v = inst.relocs[0].exp.X_add_number;
8838
8839 if (!inst.operands[i].issingle)
8840 {
8841 if (thumb_p)
8842 {
8843 /* LDR should not use lead in a flag-setting instruction being
8844 chosen so we do not check whether movs can be used. */
8845
8846 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
8847 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8848 && inst.operands[i].reg != 13
8849 && inst.operands[i].reg != 15)
8850 {
8851 /* Check if on thumb2 it can be done with a mov.w, mvn or
8852 movw instruction. */
8853 unsigned int newimm;
8854 bfd_boolean isNegated;
8855
8856 newimm = encode_thumb32_immediate (v);
8857 if (newimm != (unsigned int) FAIL)
8858 isNegated = FALSE;
8859 else
8860 {
8861 newimm = encode_thumb32_immediate (~v);
8862 if (newimm != (unsigned int) FAIL)
8863 isNegated = TRUE;
8864 }
8865
8866 /* The number can be loaded with a mov.w or mvn
8867 instruction. */
8868 if (newimm != (unsigned int) FAIL
8869 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
8870 {
8871 inst.instruction = (0xf04f0000 /* MOV.W. */
8872 | (inst.operands[i].reg << 8));
8873 /* Change to MOVN. */
8874 inst.instruction |= (isNegated ? 0x200000 : 0);
8875 inst.instruction |= (newimm & 0x800) << 15;
8876 inst.instruction |= (newimm & 0x700) << 4;
8877 inst.instruction |= (newimm & 0x0ff);
8878 return TRUE;
8879 }
8880 /* The number can be loaded with a movw instruction. */
8881 else if ((v & ~0xFFFF) == 0
8882 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8883 {
8884 int imm = v & 0xFFFF;
8885
8886 inst.instruction = 0xf2400000; /* MOVW. */
8887 inst.instruction |= (inst.operands[i].reg << 8);
8888 inst.instruction |= (imm & 0xf000) << 4;
8889 inst.instruction |= (imm & 0x0800) << 15;
8890 inst.instruction |= (imm & 0x0700) << 4;
8891 inst.instruction |= (imm & 0x00ff);
8892 /* In case this replacement is being done on Armv8-M
8893 Baseline we need to make sure to disable the
8894 instruction size check, as otherwise GAS will reject
8895 the use of this T32 instruction. */
8896 inst.size_req = 0;
8897 return TRUE;
8898 }
8899 }
8900 }
8901 else if (arm_p)
8902 {
8903 int value = encode_arm_immediate (v);
8904
8905 if (value != FAIL)
8906 {
8907 /* This can be done with a mov instruction. */
8908 inst.instruction &= LITERAL_MASK;
8909 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8910 inst.instruction |= value & 0xfff;
8911 return TRUE;
8912 }
8913
8914 value = encode_arm_immediate (~ v);
8915 if (value != FAIL)
8916 {
8917 /* This can be done with a mvn instruction. */
8918 inst.instruction &= LITERAL_MASK;
8919 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8920 inst.instruction |= value & 0xfff;
8921 return TRUE;
8922 }
8923 }
8924 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8925 {
8926 int op = 0;
8927 unsigned immbits = 0;
8928 unsigned immlo = inst.operands[1].imm;
8929 unsigned immhi = inst.operands[1].regisimm
8930 ? inst.operands[1].reg
8931 : inst.relocs[0].exp.X_unsigned
8932 ? 0
8933 : ((bfd_int64_t)((int) immlo)) >> 32;
8934 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8935 &op, 64, NT_invtype);
8936
8937 if (cmode == FAIL)
8938 {
8939 neon_invert_size (&immlo, &immhi, 64);
8940 op = !op;
8941 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8942 &op, 64, NT_invtype);
8943 }
8944
8945 if (cmode != FAIL)
8946 {
8947 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8948 | (1 << 23)
8949 | (cmode << 8)
8950 | (op << 5)
8951 | (1 << 4);
8952
8953 /* Fill other bits in vmov encoding for both thumb and arm. */
8954 if (thumb_mode)
8955 inst.instruction |= (0x7U << 29) | (0xF << 24);
8956 else
8957 inst.instruction |= (0xFU << 28) | (0x1 << 25);
8958 neon_write_immbits (immbits);
8959 return TRUE;
8960 }
8961 }
8962 }
8963
8964 if (t == CONST_VEC)
8965 {
8966 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8967 if (inst.operands[i].issingle
8968 && is_quarter_float (inst.operands[1].imm)
8969 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8970 {
8971 inst.operands[1].imm =
8972 neon_qfloat_bits (v);
8973 do_vfp_nsyn_opcode ("fconsts");
8974 return TRUE;
8975 }
8976
8977 /* If our host does not support a 64-bit type then we cannot perform
8978 the following optimization. This mean that there will be a
8979 discrepancy between the output produced by an assembler built for
8980 a 32-bit-only host and the output produced from a 64-bit host, but
8981 this cannot be helped. */
8982 #if defined BFD_HOST_64_BIT
8983 else if (!inst.operands[1].issingle
8984 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8985 {
8986 if (is_double_a_single (v)
8987 && is_quarter_float (double_to_single (v)))
8988 {
8989 inst.operands[1].imm =
8990 neon_qfloat_bits (double_to_single (v));
8991 do_vfp_nsyn_opcode ("fconstd");
8992 return TRUE;
8993 }
8994 }
8995 #endif
8996 }
8997 }
8998
8999 if (add_to_lit_pool ((!inst.operands[i].isvec
9000 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
9001 return TRUE;
9002
9003 inst.operands[1].reg = REG_PC;
9004 inst.operands[1].isreg = 1;
9005 inst.operands[1].preind = 1;
9006 inst.relocs[0].pc_rel = 1;
9007 inst.relocs[0].type = (thumb_p
9008 ? BFD_RELOC_ARM_THUMB_OFFSET
9009 : (mode_3
9010 ? BFD_RELOC_ARM_HWLITERAL
9011 : BFD_RELOC_ARM_LITERAL));
9012 return FALSE;
9013 }
9014
9015 /* inst.operands[i] was set up by parse_address. Encode it into an
9016 ARM-format instruction. Reject all forms which cannot be encoded
9017 into a coprocessor load/store instruction. If wb_ok is false,
9018 reject use of writeback; if unind_ok is false, reject use of
9019 unindexed addressing. If reloc_override is not 0, use it instead
9020 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
9021 (in which case it is preserved). */
9022
9023 static int
9024 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
9025 {
9026 if (!inst.operands[i].isreg)
9027 {
9028 /* PR 18256 */
9029 if (! inst.operands[0].isvec)
9030 {
9031 inst.error = _("invalid co-processor operand");
9032 return FAIL;
9033 }
9034 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
9035 return SUCCESS;
9036 }
9037
9038 inst.instruction |= inst.operands[i].reg << 16;
9039
9040 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
9041
9042 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
9043 {
9044 gas_assert (!inst.operands[i].writeback);
9045 if (!unind_ok)
9046 {
9047 inst.error = _("instruction does not support unindexed addressing");
9048 return FAIL;
9049 }
9050 inst.instruction |= inst.operands[i].imm;
9051 inst.instruction |= INDEX_UP;
9052 return SUCCESS;
9053 }
9054
9055 if (inst.operands[i].preind)
9056 inst.instruction |= PRE_INDEX;
9057
9058 if (inst.operands[i].writeback)
9059 {
9060 if (inst.operands[i].reg == REG_PC)
9061 {
9062 inst.error = _("pc may not be used with write-back");
9063 return FAIL;
9064 }
9065 if (!wb_ok)
9066 {
9067 inst.error = _("instruction does not support writeback");
9068 return FAIL;
9069 }
9070 inst.instruction |= WRITE_BACK;
9071 }
9072
9073 if (reloc_override)
9074 inst.relocs[0].type = (bfd_reloc_code_real_type) reloc_override;
9075 else if ((inst.relocs[0].type < BFD_RELOC_ARM_ALU_PC_G0_NC
9076 || inst.relocs[0].type > BFD_RELOC_ARM_LDC_SB_G2)
9077 && inst.relocs[0].type != BFD_RELOC_ARM_LDR_PC_G0)
9078 {
9079 if (thumb_mode)
9080 inst.relocs[0].type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
9081 else
9082 inst.relocs[0].type = BFD_RELOC_ARM_CP_OFF_IMM;
9083 }
9084
9085 /* Prefer + for zero encoded value. */
9086 if (!inst.operands[i].negative)
9087 inst.instruction |= INDEX_UP;
9088
9089 return SUCCESS;
9090 }
9091
9092 /* Functions for instruction encoding, sorted by sub-architecture.
9093 First some generics; their names are taken from the conventional
9094 bit positions for register arguments in ARM format instructions. */
9095
9096 static void
9097 do_noargs (void)
9098 {
9099 }
9100
9101 static void
9102 do_rd (void)
9103 {
9104 inst.instruction |= inst.operands[0].reg << 12;
9105 }
9106
9107 static void
9108 do_rn (void)
9109 {
9110 inst.instruction |= inst.operands[0].reg << 16;
9111 }
9112
9113 static void
9114 do_rd_rm (void)
9115 {
9116 inst.instruction |= inst.operands[0].reg << 12;
9117 inst.instruction |= inst.operands[1].reg;
9118 }
9119
9120 static void
9121 do_rm_rn (void)
9122 {
9123 inst.instruction |= inst.operands[0].reg;
9124 inst.instruction |= inst.operands[1].reg << 16;
9125 }
9126
9127 static void
9128 do_rd_rn (void)
9129 {
9130 inst.instruction |= inst.operands[0].reg << 12;
9131 inst.instruction |= inst.operands[1].reg << 16;
9132 }
9133
9134 static void
9135 do_rn_rd (void)
9136 {
9137 inst.instruction |= inst.operands[0].reg << 16;
9138 inst.instruction |= inst.operands[1].reg << 12;
9139 }
9140
9141 static void
9142 do_tt (void)
9143 {
9144 inst.instruction |= inst.operands[0].reg << 8;
9145 inst.instruction |= inst.operands[1].reg << 16;
9146 }
9147
9148 static bfd_boolean
9149 check_obsolete (const arm_feature_set *feature, const char *msg)
9150 {
9151 if (ARM_CPU_IS_ANY (cpu_variant))
9152 {
9153 as_tsktsk ("%s", msg);
9154 return TRUE;
9155 }
9156 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
9157 {
9158 as_bad ("%s", msg);
9159 return TRUE;
9160 }
9161
9162 return FALSE;
9163 }
9164
9165 static void
9166 do_rd_rm_rn (void)
9167 {
9168 unsigned Rn = inst.operands[2].reg;
9169 /* Enforce restrictions on SWP instruction. */
9170 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
9171 {
9172 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
9173 _("Rn must not overlap other operands"));
9174
9175 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
9176 */
9177 if (!check_obsolete (&arm_ext_v8,
9178 _("swp{b} use is obsoleted for ARMv8 and later"))
9179 && warn_on_deprecated
9180 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
9181 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
9182 }
9183
9184 inst.instruction |= inst.operands[0].reg << 12;
9185 inst.instruction |= inst.operands[1].reg;
9186 inst.instruction |= Rn << 16;
9187 }
9188
9189 static void
9190 do_rd_rn_rm (void)
9191 {
9192 inst.instruction |= inst.operands[0].reg << 12;
9193 inst.instruction |= inst.operands[1].reg << 16;
9194 inst.instruction |= inst.operands[2].reg;
9195 }
9196
9197 static void
9198 do_rm_rd_rn (void)
9199 {
9200 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
9201 constraint (((inst.relocs[0].exp.X_op != O_constant
9202 && inst.relocs[0].exp.X_op != O_illegal)
9203 || inst.relocs[0].exp.X_add_number != 0),
9204 BAD_ADDR_MODE);
9205 inst.instruction |= inst.operands[0].reg;
9206 inst.instruction |= inst.operands[1].reg << 12;
9207 inst.instruction |= inst.operands[2].reg << 16;
9208 }
9209
9210 static void
9211 do_imm0 (void)
9212 {
9213 inst.instruction |= inst.operands[0].imm;
9214 }
9215
9216 static void
9217 do_rd_cpaddr (void)
9218 {
9219 inst.instruction |= inst.operands[0].reg << 12;
9220 encode_arm_cp_address (1, TRUE, TRUE, 0);
9221 }
9222
9223 /* ARM instructions, in alphabetical order by function name (except
9224 that wrapper functions appear immediately after the function they
9225 wrap). */
9226
9227 /* This is a pseudo-op of the form "adr rd, label" to be converted
9228 into a relative address of the form "add rd, pc, #label-.-8". */
9229
9230 static void
9231 do_adr (void)
9232 {
9233 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
9234
9235 /* Frag hacking will turn this into a sub instruction if the offset turns
9236 out to be negative. */
9237 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9238 inst.relocs[0].pc_rel = 1;
9239 inst.relocs[0].exp.X_add_number -= 8;
9240
9241 if (support_interwork
9242 && inst.relocs[0].exp.X_op == O_symbol
9243 && inst.relocs[0].exp.X_add_symbol != NULL
9244 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9245 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9246 inst.relocs[0].exp.X_add_number |= 1;
9247 }
9248
9249 /* This is a pseudo-op of the form "adrl rd, label" to be converted
9250 into a relative address of the form:
9251 add rd, pc, #low(label-.-8)"
9252 add rd, rd, #high(label-.-8)" */
9253
9254 static void
9255 do_adrl (void)
9256 {
9257 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
9258
9259 /* Frag hacking will turn this into a sub instruction if the offset turns
9260 out to be negative. */
9261 inst.relocs[0].type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
9262 inst.relocs[0].pc_rel = 1;
9263 inst.size = INSN_SIZE * 2;
9264 inst.relocs[0].exp.X_add_number -= 8;
9265
9266 if (support_interwork
9267 && inst.relocs[0].exp.X_op == O_symbol
9268 && inst.relocs[0].exp.X_add_symbol != NULL
9269 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9270 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9271 inst.relocs[0].exp.X_add_number |= 1;
9272 }
9273
9274 static void
9275 do_arit (void)
9276 {
9277 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9278 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9279 THUMB1_RELOC_ONLY);
9280 if (!inst.operands[1].present)
9281 inst.operands[1].reg = inst.operands[0].reg;
9282 inst.instruction |= inst.operands[0].reg << 12;
9283 inst.instruction |= inst.operands[1].reg << 16;
9284 encode_arm_shifter_operand (2);
9285 }
9286
9287 static void
9288 do_barrier (void)
9289 {
9290 if (inst.operands[0].present)
9291 inst.instruction |= inst.operands[0].imm;
9292 else
9293 inst.instruction |= 0xf;
9294 }
9295
9296 static void
9297 do_bfc (void)
9298 {
9299 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9300 constraint (msb > 32, _("bit-field extends past end of register"));
9301 /* The instruction encoding stores the LSB and MSB,
9302 not the LSB and width. */
9303 inst.instruction |= inst.operands[0].reg << 12;
9304 inst.instruction |= inst.operands[1].imm << 7;
9305 inst.instruction |= (msb - 1) << 16;
9306 }
9307
9308 static void
9309 do_bfi (void)
9310 {
9311 unsigned int msb;
9312
9313 /* #0 in second position is alternative syntax for bfc, which is
9314 the same instruction but with REG_PC in the Rm field. */
9315 if (!inst.operands[1].isreg)
9316 inst.operands[1].reg = REG_PC;
9317
9318 msb = inst.operands[2].imm + inst.operands[3].imm;
9319 constraint (msb > 32, _("bit-field extends past end of register"));
9320 /* The instruction encoding stores the LSB and MSB,
9321 not the LSB and width. */
9322 inst.instruction |= inst.operands[0].reg << 12;
9323 inst.instruction |= inst.operands[1].reg;
9324 inst.instruction |= inst.operands[2].imm << 7;
9325 inst.instruction |= (msb - 1) << 16;
9326 }
9327
9328 static void
9329 do_bfx (void)
9330 {
9331 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9332 _("bit-field extends past end of register"));
9333 inst.instruction |= inst.operands[0].reg << 12;
9334 inst.instruction |= inst.operands[1].reg;
9335 inst.instruction |= inst.operands[2].imm << 7;
9336 inst.instruction |= (inst.operands[3].imm - 1) << 16;
9337 }
9338
9339 /* ARM V5 breakpoint instruction (argument parse)
9340 BKPT <16 bit unsigned immediate>
9341 Instruction is not conditional.
9342 The bit pattern given in insns[] has the COND_ALWAYS condition,
9343 and it is an error if the caller tried to override that. */
9344
9345 static void
9346 do_bkpt (void)
9347 {
9348 /* Top 12 of 16 bits to bits 19:8. */
9349 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
9350
9351 /* Bottom 4 of 16 bits to bits 3:0. */
9352 inst.instruction |= inst.operands[0].imm & 0xf;
9353 }
9354
9355 static void
9356 encode_branch (int default_reloc)
9357 {
9358 if (inst.operands[0].hasreloc)
9359 {
9360 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
9361 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
9362 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
9363 inst.relocs[0].type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
9364 ? BFD_RELOC_ARM_PLT32
9365 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
9366 }
9367 else
9368 inst.relocs[0].type = (bfd_reloc_code_real_type) default_reloc;
9369 inst.relocs[0].pc_rel = 1;
9370 }
9371
9372 static void
9373 do_branch (void)
9374 {
9375 #ifdef OBJ_ELF
9376 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9377 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9378 else
9379 #endif
9380 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9381 }
9382
9383 static void
9384 do_bl (void)
9385 {
9386 #ifdef OBJ_ELF
9387 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9388 {
9389 if (inst.cond == COND_ALWAYS)
9390 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
9391 else
9392 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9393 }
9394 else
9395 #endif
9396 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9397 }
9398
9399 /* ARM V5 branch-link-exchange instruction (argument parse)
9400 BLX <target_addr> ie BLX(1)
9401 BLX{<condition>} <Rm> ie BLX(2)
9402 Unfortunately, there are two different opcodes for this mnemonic.
9403 So, the insns[].value is not used, and the code here zaps values
9404 into inst.instruction.
9405 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
9406
9407 static void
9408 do_blx (void)
9409 {
9410 if (inst.operands[0].isreg)
9411 {
9412 /* Arg is a register; the opcode provided by insns[] is correct.
9413 It is not illegal to do "blx pc", just useless. */
9414 if (inst.operands[0].reg == REG_PC)
9415 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
9416
9417 inst.instruction |= inst.operands[0].reg;
9418 }
9419 else
9420 {
9421 /* Arg is an address; this instruction cannot be executed
9422 conditionally, and the opcode must be adjusted.
9423 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
9424 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
9425 constraint (inst.cond != COND_ALWAYS, BAD_COND);
9426 inst.instruction = 0xfa000000;
9427 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
9428 }
9429 }
9430
9431 static void
9432 do_bx (void)
9433 {
9434 bfd_boolean want_reloc;
9435
9436 if (inst.operands[0].reg == REG_PC)
9437 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
9438
9439 inst.instruction |= inst.operands[0].reg;
9440 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
9441 it is for ARMv4t or earlier. */
9442 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
9443 if (!ARM_FEATURE_ZERO (selected_object_arch)
9444 && !ARM_CPU_HAS_FEATURE (selected_object_arch, arm_ext_v5))
9445 want_reloc = TRUE;
9446
9447 #ifdef OBJ_ELF
9448 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
9449 #endif
9450 want_reloc = FALSE;
9451
9452 if (want_reloc)
9453 inst.relocs[0].type = BFD_RELOC_ARM_V4BX;
9454 }
9455
9456
9457 /* ARM v5TEJ. Jump to Jazelle code. */
9458
9459 static void
9460 do_bxj (void)
9461 {
9462 if (inst.operands[0].reg == REG_PC)
9463 as_tsktsk (_("use of r15 in bxj is not really useful"));
9464
9465 inst.instruction |= inst.operands[0].reg;
9466 }
9467
9468 /* Co-processor data operation:
9469 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
9470 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
9471 static void
9472 do_cdp (void)
9473 {
9474 inst.instruction |= inst.operands[0].reg << 8;
9475 inst.instruction |= inst.operands[1].imm << 20;
9476 inst.instruction |= inst.operands[2].reg << 12;
9477 inst.instruction |= inst.operands[3].reg << 16;
9478 inst.instruction |= inst.operands[4].reg;
9479 inst.instruction |= inst.operands[5].imm << 5;
9480 }
9481
9482 static void
9483 do_cmp (void)
9484 {
9485 inst.instruction |= inst.operands[0].reg << 16;
9486 encode_arm_shifter_operand (1);
9487 }
9488
9489 /* Transfer between coprocessor and ARM registers.
9490 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
9491 MRC2
9492 MCR{cond}
9493 MCR2
9494
9495 No special properties. */
9496
9497 struct deprecated_coproc_regs_s
9498 {
9499 unsigned cp;
9500 int opc1;
9501 unsigned crn;
9502 unsigned crm;
9503 int opc2;
9504 arm_feature_set deprecated;
9505 arm_feature_set obsoleted;
9506 const char *dep_msg;
9507 const char *obs_msg;
9508 };
9509
9510 #define DEPR_ACCESS_V8 \
9511 N_("This coprocessor register access is deprecated in ARMv8")
9512
9513 /* Table of all deprecated coprocessor registers. */
9514 static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
9515 {
9516 {15, 0, 7, 10, 5, /* CP15DMB. */
9517 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9518 DEPR_ACCESS_V8, NULL},
9519 {15, 0, 7, 10, 4, /* CP15DSB. */
9520 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9521 DEPR_ACCESS_V8, NULL},
9522 {15, 0, 7, 5, 4, /* CP15ISB. */
9523 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9524 DEPR_ACCESS_V8, NULL},
9525 {14, 6, 1, 0, 0, /* TEEHBR. */
9526 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9527 DEPR_ACCESS_V8, NULL},
9528 {14, 6, 0, 0, 0, /* TEECR. */
9529 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9530 DEPR_ACCESS_V8, NULL},
9531 };
9532
9533 #undef DEPR_ACCESS_V8
9534
9535 static const size_t deprecated_coproc_reg_count =
9536 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
9537
9538 static void
9539 do_co_reg (void)
9540 {
9541 unsigned Rd;
9542 size_t i;
9543
9544 Rd = inst.operands[2].reg;
9545 if (thumb_mode)
9546 {
9547 if (inst.instruction == 0xee000010
9548 || inst.instruction == 0xfe000010)
9549 /* MCR, MCR2 */
9550 reject_bad_reg (Rd);
9551 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
9552 /* MRC, MRC2 */
9553 constraint (Rd == REG_SP, BAD_SP);
9554 }
9555 else
9556 {
9557 /* MCR */
9558 if (inst.instruction == 0xe000010)
9559 constraint (Rd == REG_PC, BAD_PC);
9560 }
9561
9562 for (i = 0; i < deprecated_coproc_reg_count; ++i)
9563 {
9564 const struct deprecated_coproc_regs_s *r =
9565 deprecated_coproc_regs + i;
9566
9567 if (inst.operands[0].reg == r->cp
9568 && inst.operands[1].imm == r->opc1
9569 && inst.operands[3].reg == r->crn
9570 && inst.operands[4].reg == r->crm
9571 && inst.operands[5].imm == r->opc2)
9572 {
9573 if (! ARM_CPU_IS_ANY (cpu_variant)
9574 && warn_on_deprecated
9575 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
9576 as_tsktsk ("%s", r->dep_msg);
9577 }
9578 }
9579
9580 inst.instruction |= inst.operands[0].reg << 8;
9581 inst.instruction |= inst.operands[1].imm << 21;
9582 inst.instruction |= Rd << 12;
9583 inst.instruction |= inst.operands[3].reg << 16;
9584 inst.instruction |= inst.operands[4].reg;
9585 inst.instruction |= inst.operands[5].imm << 5;
9586 }
9587
9588 /* Transfer between coprocessor register and pair of ARM registers.
9589 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
9590 MCRR2
9591 MRRC{cond}
9592 MRRC2
9593
9594 Two XScale instructions are special cases of these:
9595
9596 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
9597 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
9598
9599 Result unpredictable if Rd or Rn is R15. */
9600
9601 static void
9602 do_co_reg2c (void)
9603 {
9604 unsigned Rd, Rn;
9605
9606 Rd = inst.operands[2].reg;
9607 Rn = inst.operands[3].reg;
9608
9609 if (thumb_mode)
9610 {
9611 reject_bad_reg (Rd);
9612 reject_bad_reg (Rn);
9613 }
9614 else
9615 {
9616 constraint (Rd == REG_PC, BAD_PC);
9617 constraint (Rn == REG_PC, BAD_PC);
9618 }
9619
9620 /* Only check the MRRC{2} variants. */
9621 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
9622 {
9623 /* If Rd == Rn, error that the operation is
9624 unpredictable (example MRRC p3,#1,r1,r1,c4). */
9625 constraint (Rd == Rn, BAD_OVERLAP);
9626 }
9627
9628 inst.instruction |= inst.operands[0].reg << 8;
9629 inst.instruction |= inst.operands[1].imm << 4;
9630 inst.instruction |= Rd << 12;
9631 inst.instruction |= Rn << 16;
9632 inst.instruction |= inst.operands[4].reg;
9633 }
9634
9635 static void
9636 do_cpsi (void)
9637 {
9638 inst.instruction |= inst.operands[0].imm << 6;
9639 if (inst.operands[1].present)
9640 {
9641 inst.instruction |= CPSI_MMOD;
9642 inst.instruction |= inst.operands[1].imm;
9643 }
9644 }
9645
9646 static void
9647 do_dbg (void)
9648 {
9649 inst.instruction |= inst.operands[0].imm;
9650 }
9651
9652 static void
9653 do_div (void)
9654 {
9655 unsigned Rd, Rn, Rm;
9656
9657 Rd = inst.operands[0].reg;
9658 Rn = (inst.operands[1].present
9659 ? inst.operands[1].reg : Rd);
9660 Rm = inst.operands[2].reg;
9661
9662 constraint ((Rd == REG_PC), BAD_PC);
9663 constraint ((Rn == REG_PC), BAD_PC);
9664 constraint ((Rm == REG_PC), BAD_PC);
9665
9666 inst.instruction |= Rd << 16;
9667 inst.instruction |= Rn << 0;
9668 inst.instruction |= Rm << 8;
9669 }
9670
9671 static void
9672 do_it (void)
9673 {
9674 /* There is no IT instruction in ARM mode. We
9675 process it to do the validation as if in
9676 thumb mode, just in case the code gets
9677 assembled for thumb using the unified syntax. */
9678
9679 inst.size = 0;
9680 if (unified_syntax)
9681 {
9682 set_pred_insn_type (IT_INSN);
9683 now_pred.mask = (inst.instruction & 0xf) | 0x10;
9684 now_pred.cc = inst.operands[0].imm;
9685 }
9686 }
9687
9688 /* If there is only one register in the register list,
9689 then return its register number. Otherwise return -1. */
9690 static int
9691 only_one_reg_in_list (int range)
9692 {
9693 int i = ffs (range) - 1;
9694 return (i > 15 || range != (1 << i)) ? -1 : i;
9695 }
9696
9697 static void
9698 encode_ldmstm(int from_push_pop_mnem)
9699 {
9700 int base_reg = inst.operands[0].reg;
9701 int range = inst.operands[1].imm;
9702 int one_reg;
9703
9704 inst.instruction |= base_reg << 16;
9705 inst.instruction |= range;
9706
9707 if (inst.operands[1].writeback)
9708 inst.instruction |= LDM_TYPE_2_OR_3;
9709
9710 if (inst.operands[0].writeback)
9711 {
9712 inst.instruction |= WRITE_BACK;
9713 /* Check for unpredictable uses of writeback. */
9714 if (inst.instruction & LOAD_BIT)
9715 {
9716 /* Not allowed in LDM type 2. */
9717 if ((inst.instruction & LDM_TYPE_2_OR_3)
9718 && ((range & (1 << REG_PC)) == 0))
9719 as_warn (_("writeback of base register is UNPREDICTABLE"));
9720 /* Only allowed if base reg not in list for other types. */
9721 else if (range & (1 << base_reg))
9722 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
9723 }
9724 else /* STM. */
9725 {
9726 /* Not allowed for type 2. */
9727 if (inst.instruction & LDM_TYPE_2_OR_3)
9728 as_warn (_("writeback of base register is UNPREDICTABLE"));
9729 /* Only allowed if base reg not in list, or first in list. */
9730 else if ((range & (1 << base_reg))
9731 && (range & ((1 << base_reg) - 1)))
9732 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
9733 }
9734 }
9735
9736 /* If PUSH/POP has only one register, then use the A2 encoding. */
9737 one_reg = only_one_reg_in_list (range);
9738 if (from_push_pop_mnem && one_reg >= 0)
9739 {
9740 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
9741
9742 if (is_push && one_reg == 13 /* SP */)
9743 /* PR 22483: The A2 encoding cannot be used when
9744 pushing the stack pointer as this is UNPREDICTABLE. */
9745 return;
9746
9747 inst.instruction &= A_COND_MASK;
9748 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
9749 inst.instruction |= one_reg << 12;
9750 }
9751 }
9752
9753 static void
9754 do_ldmstm (void)
9755 {
9756 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
9757 }
9758
9759 /* ARMv5TE load-consecutive (argument parse)
9760 Mode is like LDRH.
9761
9762 LDRccD R, mode
9763 STRccD R, mode. */
9764
9765 static void
9766 do_ldrd (void)
9767 {
9768 constraint (inst.operands[0].reg % 2 != 0,
9769 _("first transfer register must be even"));
9770 constraint (inst.operands[1].present
9771 && inst.operands[1].reg != inst.operands[0].reg + 1,
9772 _("can only transfer two consecutive registers"));
9773 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9774 constraint (!inst.operands[2].isreg, _("'[' expected"));
9775
9776 if (!inst.operands[1].present)
9777 inst.operands[1].reg = inst.operands[0].reg + 1;
9778
9779 /* encode_arm_addr_mode_3 will diagnose overlap between the base
9780 register and the first register written; we have to diagnose
9781 overlap between the base and the second register written here. */
9782
9783 if (inst.operands[2].reg == inst.operands[1].reg
9784 && (inst.operands[2].writeback || inst.operands[2].postind))
9785 as_warn (_("base register written back, and overlaps "
9786 "second transfer register"));
9787
9788 if (!(inst.instruction & V4_STR_BIT))
9789 {
9790 /* For an index-register load, the index register must not overlap the
9791 destination (even if not write-back). */
9792 if (inst.operands[2].immisreg
9793 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
9794 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
9795 as_warn (_("index register overlaps transfer register"));
9796 }
9797 inst.instruction |= inst.operands[0].reg << 12;
9798 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
9799 }
9800
9801 static void
9802 do_ldrex (void)
9803 {
9804 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9805 || inst.operands[1].postind || inst.operands[1].writeback
9806 || inst.operands[1].immisreg || inst.operands[1].shifted
9807 || inst.operands[1].negative
9808 /* This can arise if the programmer has written
9809 strex rN, rM, foo
9810 or if they have mistakenly used a register name as the last
9811 operand, eg:
9812 strex rN, rM, rX
9813 It is very difficult to distinguish between these two cases
9814 because "rX" might actually be a label. ie the register
9815 name has been occluded by a symbol of the same name. So we
9816 just generate a general 'bad addressing mode' type error
9817 message and leave it up to the programmer to discover the
9818 true cause and fix their mistake. */
9819 || (inst.operands[1].reg == REG_PC),
9820 BAD_ADDR_MODE);
9821
9822 constraint (inst.relocs[0].exp.X_op != O_constant
9823 || inst.relocs[0].exp.X_add_number != 0,
9824 _("offset must be zero in ARM encoding"));
9825
9826 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9827
9828 inst.instruction |= inst.operands[0].reg << 12;
9829 inst.instruction |= inst.operands[1].reg << 16;
9830 inst.relocs[0].type = BFD_RELOC_UNUSED;
9831 }
9832
9833 static void
9834 do_ldrexd (void)
9835 {
9836 constraint (inst.operands[0].reg % 2 != 0,
9837 _("even register required"));
9838 constraint (inst.operands[1].present
9839 && inst.operands[1].reg != inst.operands[0].reg + 1,
9840 _("can only load two consecutive registers"));
9841 /* If op 1 were present and equal to PC, this function wouldn't
9842 have been called in the first place. */
9843 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9844
9845 inst.instruction |= inst.operands[0].reg << 12;
9846 inst.instruction |= inst.operands[2].reg << 16;
9847 }
9848
9849 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9850 which is not a multiple of four is UNPREDICTABLE. */
9851 static void
9852 check_ldr_r15_aligned (void)
9853 {
9854 constraint (!(inst.operands[1].immisreg)
9855 && (inst.operands[0].reg == REG_PC
9856 && inst.operands[1].reg == REG_PC
9857 && (inst.relocs[0].exp.X_add_number & 0x3)),
9858 _("ldr to register 15 must be 4-byte aligned"));
9859 }
9860
9861 static void
9862 do_ldst (void)
9863 {
9864 inst.instruction |= inst.operands[0].reg << 12;
9865 if (!inst.operands[1].isreg)
9866 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
9867 return;
9868 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
9869 check_ldr_r15_aligned ();
9870 }
9871
9872 static void
9873 do_ldstt (void)
9874 {
9875 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9876 reject [Rn,...]. */
9877 if (inst.operands[1].preind)
9878 {
9879 constraint (inst.relocs[0].exp.X_op != O_constant
9880 || inst.relocs[0].exp.X_add_number != 0,
9881 _("this instruction requires a post-indexed address"));
9882
9883 inst.operands[1].preind = 0;
9884 inst.operands[1].postind = 1;
9885 inst.operands[1].writeback = 1;
9886 }
9887 inst.instruction |= inst.operands[0].reg << 12;
9888 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9889 }
9890
9891 /* Halfword and signed-byte load/store operations. */
9892
9893 static void
9894 do_ldstv4 (void)
9895 {
9896 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9897 inst.instruction |= inst.operands[0].reg << 12;
9898 if (!inst.operands[1].isreg)
9899 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
9900 return;
9901 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
9902 }
9903
9904 static void
9905 do_ldsttv4 (void)
9906 {
9907 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9908 reject [Rn,...]. */
9909 if (inst.operands[1].preind)
9910 {
9911 constraint (inst.relocs[0].exp.X_op != O_constant
9912 || inst.relocs[0].exp.X_add_number != 0,
9913 _("this instruction requires a post-indexed address"));
9914
9915 inst.operands[1].preind = 0;
9916 inst.operands[1].postind = 1;
9917 inst.operands[1].writeback = 1;
9918 }
9919 inst.instruction |= inst.operands[0].reg << 12;
9920 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9921 }
9922
9923 /* Co-processor register load/store.
9924 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9925 static void
9926 do_lstc (void)
9927 {
9928 inst.instruction |= inst.operands[0].reg << 8;
9929 inst.instruction |= inst.operands[1].reg << 12;
9930 encode_arm_cp_address (2, TRUE, TRUE, 0);
9931 }
9932
9933 static void
9934 do_mlas (void)
9935 {
9936 /* This restriction does not apply to mls (nor to mla in v6 or later). */
9937 if (inst.operands[0].reg == inst.operands[1].reg
9938 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
9939 && !(inst.instruction & 0x00400000))
9940 as_tsktsk (_("Rd and Rm should be different in mla"));
9941
9942 inst.instruction |= inst.operands[0].reg << 16;
9943 inst.instruction |= inst.operands[1].reg;
9944 inst.instruction |= inst.operands[2].reg << 8;
9945 inst.instruction |= inst.operands[3].reg << 12;
9946 }
9947
9948 static void
9949 do_mov (void)
9950 {
9951 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9952 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9953 THUMB1_RELOC_ONLY);
9954 inst.instruction |= inst.operands[0].reg << 12;
9955 encode_arm_shifter_operand (1);
9956 }
9957
9958 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9959 static void
9960 do_mov16 (void)
9961 {
9962 bfd_vma imm;
9963 bfd_boolean top;
9964
9965 top = (inst.instruction & 0x00400000) != 0;
9966 constraint (top && inst.relocs[0].type == BFD_RELOC_ARM_MOVW,
9967 _(":lower16: not allowed in this instruction"));
9968 constraint (!top && inst.relocs[0].type == BFD_RELOC_ARM_MOVT,
9969 _(":upper16: not allowed in this instruction"));
9970 inst.instruction |= inst.operands[0].reg << 12;
9971 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
9972 {
9973 imm = inst.relocs[0].exp.X_add_number;
9974 /* The value is in two pieces: 0:11, 16:19. */
9975 inst.instruction |= (imm & 0x00000fff);
9976 inst.instruction |= (imm & 0x0000f000) << 4;
9977 }
9978 }
9979
9980 static int
9981 do_vfp_nsyn_mrs (void)
9982 {
9983 if (inst.operands[0].isvec)
9984 {
9985 if (inst.operands[1].reg != 1)
9986 first_error (_("operand 1 must be FPSCR"));
9987 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9988 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9989 do_vfp_nsyn_opcode ("fmstat");
9990 }
9991 else if (inst.operands[1].isvec)
9992 do_vfp_nsyn_opcode ("fmrx");
9993 else
9994 return FAIL;
9995
9996 return SUCCESS;
9997 }
9998
9999 static int
10000 do_vfp_nsyn_msr (void)
10001 {
10002 if (inst.operands[0].isvec)
10003 do_vfp_nsyn_opcode ("fmxr");
10004 else
10005 return FAIL;
10006
10007 return SUCCESS;
10008 }
10009
10010 static void
10011 do_vmrs (void)
10012 {
10013 unsigned Rt = inst.operands[0].reg;
10014
10015 if (thumb_mode && Rt == REG_SP)
10016 {
10017 inst.error = BAD_SP;
10018 return;
10019 }
10020
10021 switch (inst.operands[1].reg)
10022 {
10023 /* MVFR2 is only valid for Armv8-A. */
10024 case 5:
10025 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
10026 _(BAD_FPU));
10027 break;
10028
10029 /* Check for new Armv8.1-M Mainline changes to <spec_reg>. */
10030 case 1: /* fpscr. */
10031 constraint (!(ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
10032 || ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)),
10033 _(BAD_FPU));
10034 break;
10035
10036 case 14: /* fpcxt_ns. */
10037 case 15: /* fpcxt_s. */
10038 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_1m_main),
10039 _("selected processor does not support instruction"));
10040 break;
10041
10042 case 2: /* fpscr_nzcvqc. */
10043 case 12: /* vpr. */
10044 case 13: /* p0. */
10045 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_1m_main)
10046 || (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
10047 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)),
10048 _("selected processor does not support instruction"));
10049 if (inst.operands[0].reg != 2
10050 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
10051 as_warn (_("accessing MVE system register without MVE is UNPREDICTABLE"));
10052 break;
10053
10054 default:
10055 break;
10056 }
10057
10058 /* APSR_ sets isvec. All other refs to PC are illegal. */
10059 if (!inst.operands[0].isvec && Rt == REG_PC)
10060 {
10061 inst.error = BAD_PC;
10062 return;
10063 }
10064
10065 /* If we get through parsing the register name, we just insert the number
10066 generated into the instruction without further validation. */
10067 inst.instruction |= (inst.operands[1].reg << 16);
10068 inst.instruction |= (Rt << 12);
10069 }
10070
10071 static void
10072 do_vmsr (void)
10073 {
10074 unsigned Rt = inst.operands[1].reg;
10075
10076 if (thumb_mode)
10077 reject_bad_reg (Rt);
10078 else if (Rt == REG_PC)
10079 {
10080 inst.error = BAD_PC;
10081 return;
10082 }
10083
10084 switch (inst.operands[0].reg)
10085 {
10086 /* MVFR2 is only valid for Armv8-A. */
10087 case 5:
10088 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
10089 _(BAD_FPU));
10090 break;
10091
10092 /* Check for new Armv8.1-M Mainline changes to <spec_reg>. */
10093 case 1: /* fpcr. */
10094 constraint (!(ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
10095 || ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)),
10096 _(BAD_FPU));
10097 break;
10098
10099 case 14: /* fpcxt_ns. */
10100 case 15: /* fpcxt_s. */
10101 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_1m_main),
10102 _("selected processor does not support instruction"));
10103 break;
10104
10105 case 2: /* fpscr_nzcvqc. */
10106 case 12: /* vpr. */
10107 case 13: /* p0. */
10108 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_1m_main)
10109 || (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
10110 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)),
10111 _("selected processor does not support instruction"));
10112 if (inst.operands[0].reg != 2
10113 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
10114 as_warn (_("accessing MVE system register without MVE is UNPREDICTABLE"));
10115 break;
10116
10117 default:
10118 break;
10119 }
10120
10121 /* If we get through parsing the register name, we just insert the number
10122 generated into the instruction without further validation. */
10123 inst.instruction |= (inst.operands[0].reg << 16);
10124 inst.instruction |= (Rt << 12);
10125 }
10126
10127 static void
10128 do_mrs (void)
10129 {
10130 unsigned br;
10131
10132 if (do_vfp_nsyn_mrs () == SUCCESS)
10133 return;
10134
10135 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
10136 inst.instruction |= inst.operands[0].reg << 12;
10137
10138 if (inst.operands[1].isreg)
10139 {
10140 br = inst.operands[1].reg;
10141 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
10142 as_bad (_("bad register for mrs"));
10143 }
10144 else
10145 {
10146 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
10147 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
10148 != (PSR_c|PSR_f),
10149 _("'APSR', 'CPSR' or 'SPSR' expected"));
10150 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
10151 }
10152
10153 inst.instruction |= br;
10154 }
10155
10156 /* Two possible forms:
10157 "{C|S}PSR_<field>, Rm",
10158 "{C|S}PSR_f, #expression". */
10159
10160 static void
10161 do_msr (void)
10162 {
10163 if (do_vfp_nsyn_msr () == SUCCESS)
10164 return;
10165
10166 inst.instruction |= inst.operands[0].imm;
10167 if (inst.operands[1].isreg)
10168 inst.instruction |= inst.operands[1].reg;
10169 else
10170 {
10171 inst.instruction |= INST_IMMEDIATE;
10172 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
10173 inst.relocs[0].pc_rel = 0;
10174 }
10175 }
10176
10177 static void
10178 do_mul (void)
10179 {
10180 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
10181
10182 if (!inst.operands[2].present)
10183 inst.operands[2].reg = inst.operands[0].reg;
10184 inst.instruction |= inst.operands[0].reg << 16;
10185 inst.instruction |= inst.operands[1].reg;
10186 inst.instruction |= inst.operands[2].reg << 8;
10187
10188 if (inst.operands[0].reg == inst.operands[1].reg
10189 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
10190 as_tsktsk (_("Rd and Rm should be different in mul"));
10191 }
10192
10193 /* Long Multiply Parser
10194 UMULL RdLo, RdHi, Rm, Rs
10195 SMULL RdLo, RdHi, Rm, Rs
10196 UMLAL RdLo, RdHi, Rm, Rs
10197 SMLAL RdLo, RdHi, Rm, Rs. */
10198
10199 static void
10200 do_mull (void)
10201 {
10202 inst.instruction |= inst.operands[0].reg << 12;
10203 inst.instruction |= inst.operands[1].reg << 16;
10204 inst.instruction |= inst.operands[2].reg;
10205 inst.instruction |= inst.operands[3].reg << 8;
10206
10207 /* rdhi and rdlo must be different. */
10208 if (inst.operands[0].reg == inst.operands[1].reg)
10209 as_tsktsk (_("rdhi and rdlo must be different"));
10210
10211 /* rdhi, rdlo and rm must all be different before armv6. */
10212 if ((inst.operands[0].reg == inst.operands[2].reg
10213 || inst.operands[1].reg == inst.operands[2].reg)
10214 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
10215 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
10216 }
10217
10218 static void
10219 do_nop (void)
10220 {
10221 if (inst.operands[0].present
10222 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
10223 {
10224 /* Architectural NOP hints are CPSR sets with no bits selected. */
10225 inst.instruction &= 0xf0000000;
10226 inst.instruction |= 0x0320f000;
10227 if (inst.operands[0].present)
10228 inst.instruction |= inst.operands[0].imm;
10229 }
10230 }
10231
10232 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
10233 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
10234 Condition defaults to COND_ALWAYS.
10235 Error if Rd, Rn or Rm are R15. */
10236
10237 static void
10238 do_pkhbt (void)
10239 {
10240 inst.instruction |= inst.operands[0].reg << 12;
10241 inst.instruction |= inst.operands[1].reg << 16;
10242 inst.instruction |= inst.operands[2].reg;
10243 if (inst.operands[3].present)
10244 encode_arm_shift (3);
10245 }
10246
10247 /* ARM V6 PKHTB (Argument Parse). */
10248
10249 static void
10250 do_pkhtb (void)
10251 {
10252 if (!inst.operands[3].present)
10253 {
10254 /* If the shift specifier is omitted, turn the instruction
10255 into pkhbt rd, rm, rn. */
10256 inst.instruction &= 0xfff00010;
10257 inst.instruction |= inst.operands[0].reg << 12;
10258 inst.instruction |= inst.operands[1].reg;
10259 inst.instruction |= inst.operands[2].reg << 16;
10260 }
10261 else
10262 {
10263 inst.instruction |= inst.operands[0].reg << 12;
10264 inst.instruction |= inst.operands[1].reg << 16;
10265 inst.instruction |= inst.operands[2].reg;
10266 encode_arm_shift (3);
10267 }
10268 }
10269
10270 /* ARMv5TE: Preload-Cache
10271 MP Extensions: Preload for write
10272
10273 PLD(W) <addr_mode>
10274
10275 Syntactically, like LDR with B=1, W=0, L=1. */
10276
10277 static void
10278 do_pld (void)
10279 {
10280 constraint (!inst.operands[0].isreg,
10281 _("'[' expected after PLD mnemonic"));
10282 constraint (inst.operands[0].postind,
10283 _("post-indexed expression used in preload instruction"));
10284 constraint (inst.operands[0].writeback,
10285 _("writeback used in preload instruction"));
10286 constraint (!inst.operands[0].preind,
10287 _("unindexed addressing used in preload instruction"));
10288 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10289 }
10290
10291 /* ARMv7: PLI <addr_mode> */
10292 static void
10293 do_pli (void)
10294 {
10295 constraint (!inst.operands[0].isreg,
10296 _("'[' expected after PLI mnemonic"));
10297 constraint (inst.operands[0].postind,
10298 _("post-indexed expression used in preload instruction"));
10299 constraint (inst.operands[0].writeback,
10300 _("writeback used in preload instruction"));
10301 constraint (!inst.operands[0].preind,
10302 _("unindexed addressing used in preload instruction"));
10303 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10304 inst.instruction &= ~PRE_INDEX;
10305 }
10306
10307 static void
10308 do_push_pop (void)
10309 {
10310 constraint (inst.operands[0].writeback,
10311 _("push/pop do not support {reglist}^"));
10312 inst.operands[1] = inst.operands[0];
10313 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
10314 inst.operands[0].isreg = 1;
10315 inst.operands[0].writeback = 1;
10316 inst.operands[0].reg = REG_SP;
10317 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
10318 }
10319
10320 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
10321 word at the specified address and the following word
10322 respectively.
10323 Unconditionally executed.
10324 Error if Rn is R15. */
10325
10326 static void
10327 do_rfe (void)
10328 {
10329 inst.instruction |= inst.operands[0].reg << 16;
10330 if (inst.operands[0].writeback)
10331 inst.instruction |= WRITE_BACK;
10332 }
10333
10334 /* ARM V6 ssat (argument parse). */
10335
10336 static void
10337 do_ssat (void)
10338 {
10339 inst.instruction |= inst.operands[0].reg << 12;
10340 inst.instruction |= (inst.operands[1].imm - 1) << 16;
10341 inst.instruction |= inst.operands[2].reg;
10342
10343 if (inst.operands[3].present)
10344 encode_arm_shift (3);
10345 }
10346
10347 /* ARM V6 usat (argument parse). */
10348
10349 static void
10350 do_usat (void)
10351 {
10352 inst.instruction |= inst.operands[0].reg << 12;
10353 inst.instruction |= inst.operands[1].imm << 16;
10354 inst.instruction |= inst.operands[2].reg;
10355
10356 if (inst.operands[3].present)
10357 encode_arm_shift (3);
10358 }
10359
10360 /* ARM V6 ssat16 (argument parse). */
10361
10362 static void
10363 do_ssat16 (void)
10364 {
10365 inst.instruction |= inst.operands[0].reg << 12;
10366 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
10367 inst.instruction |= inst.operands[2].reg;
10368 }
10369
10370 static void
10371 do_usat16 (void)
10372 {
10373 inst.instruction |= inst.operands[0].reg << 12;
10374 inst.instruction |= inst.operands[1].imm << 16;
10375 inst.instruction |= inst.operands[2].reg;
10376 }
10377
10378 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
10379 preserving the other bits.
10380
10381 setend <endian_specifier>, where <endian_specifier> is either
10382 BE or LE. */
10383
10384 static void
10385 do_setend (void)
10386 {
10387 if (warn_on_deprecated
10388 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10389 as_tsktsk (_("setend use is deprecated for ARMv8"));
10390
10391 if (inst.operands[0].imm)
10392 inst.instruction |= 0x200;
10393 }
10394
10395 static void
10396 do_shift (void)
10397 {
10398 unsigned int Rm = (inst.operands[1].present
10399 ? inst.operands[1].reg
10400 : inst.operands[0].reg);
10401
10402 inst.instruction |= inst.operands[0].reg << 12;
10403 inst.instruction |= Rm;
10404 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
10405 {
10406 inst.instruction |= inst.operands[2].reg << 8;
10407 inst.instruction |= SHIFT_BY_REG;
10408 /* PR 12854: Error on extraneous shifts. */
10409 constraint (inst.operands[2].shifted,
10410 _("extraneous shift as part of operand to shift insn"));
10411 }
10412 else
10413 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
10414 }
10415
10416 static void
10417 do_smc (void)
10418 {
10419 unsigned int value = inst.relocs[0].exp.X_add_number;
10420 constraint (value > 0xf, _("immediate too large (bigger than 0xF)"));
10421
10422 inst.relocs[0].type = BFD_RELOC_ARM_SMC;
10423 inst.relocs[0].pc_rel = 0;
10424 }
10425
10426 static void
10427 do_hvc (void)
10428 {
10429 inst.relocs[0].type = BFD_RELOC_ARM_HVC;
10430 inst.relocs[0].pc_rel = 0;
10431 }
10432
10433 static void
10434 do_swi (void)
10435 {
10436 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
10437 inst.relocs[0].pc_rel = 0;
10438 }
10439
10440 static void
10441 do_setpan (void)
10442 {
10443 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10444 _("selected processor does not support SETPAN instruction"));
10445
10446 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
10447 }
10448
10449 static void
10450 do_t_setpan (void)
10451 {
10452 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10453 _("selected processor does not support SETPAN instruction"));
10454
10455 inst.instruction |= (inst.operands[0].imm << 3);
10456 }
10457
10458 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
10459 SMLAxy{cond} Rd,Rm,Rs,Rn
10460 SMLAWy{cond} Rd,Rm,Rs,Rn
10461 Error if any register is R15. */
10462
10463 static void
10464 do_smla (void)
10465 {
10466 inst.instruction |= inst.operands[0].reg << 16;
10467 inst.instruction |= inst.operands[1].reg;
10468 inst.instruction |= inst.operands[2].reg << 8;
10469 inst.instruction |= inst.operands[3].reg << 12;
10470 }
10471
10472 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
10473 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
10474 Error if any register is R15.
10475 Warning if Rdlo == Rdhi. */
10476
10477 static void
10478 do_smlal (void)
10479 {
10480 inst.instruction |= inst.operands[0].reg << 12;
10481 inst.instruction |= inst.operands[1].reg << 16;
10482 inst.instruction |= inst.operands[2].reg;
10483 inst.instruction |= inst.operands[3].reg << 8;
10484
10485 if (inst.operands[0].reg == inst.operands[1].reg)
10486 as_tsktsk (_("rdhi and rdlo must be different"));
10487 }
10488
10489 /* ARM V5E (El Segundo) signed-multiply (argument parse)
10490 SMULxy{cond} Rd,Rm,Rs
10491 Error if any register is R15. */
10492
10493 static void
10494 do_smul (void)
10495 {
10496 inst.instruction |= inst.operands[0].reg << 16;
10497 inst.instruction |= inst.operands[1].reg;
10498 inst.instruction |= inst.operands[2].reg << 8;
10499 }
10500
10501 /* ARM V6 srs (argument parse). The variable fields in the encoding are
10502 the same for both ARM and Thumb-2. */
10503
10504 static void
10505 do_srs (void)
10506 {
10507 int reg;
10508
10509 if (inst.operands[0].present)
10510 {
10511 reg = inst.operands[0].reg;
10512 constraint (reg != REG_SP, _("SRS base register must be r13"));
10513 }
10514 else
10515 reg = REG_SP;
10516
10517 inst.instruction |= reg << 16;
10518 inst.instruction |= inst.operands[1].imm;
10519 if (inst.operands[0].writeback || inst.operands[1].writeback)
10520 inst.instruction |= WRITE_BACK;
10521 }
10522
10523 /* ARM V6 strex (argument parse). */
10524
10525 static void
10526 do_strex (void)
10527 {
10528 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10529 || inst.operands[2].postind || inst.operands[2].writeback
10530 || inst.operands[2].immisreg || inst.operands[2].shifted
10531 || inst.operands[2].negative
10532 /* See comment in do_ldrex(). */
10533 || (inst.operands[2].reg == REG_PC),
10534 BAD_ADDR_MODE);
10535
10536 constraint (inst.operands[0].reg == inst.operands[1].reg
10537 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10538
10539 constraint (inst.relocs[0].exp.X_op != O_constant
10540 || inst.relocs[0].exp.X_add_number != 0,
10541 _("offset must be zero in ARM encoding"));
10542
10543 inst.instruction |= inst.operands[0].reg << 12;
10544 inst.instruction |= inst.operands[1].reg;
10545 inst.instruction |= inst.operands[2].reg << 16;
10546 inst.relocs[0].type = BFD_RELOC_UNUSED;
10547 }
10548
10549 static void
10550 do_t_strexbh (void)
10551 {
10552 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10553 || inst.operands[2].postind || inst.operands[2].writeback
10554 || inst.operands[2].immisreg || inst.operands[2].shifted
10555 || inst.operands[2].negative,
10556 BAD_ADDR_MODE);
10557
10558 constraint (inst.operands[0].reg == inst.operands[1].reg
10559 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10560
10561 do_rm_rd_rn ();
10562 }
10563
10564 static void
10565 do_strexd (void)
10566 {
10567 constraint (inst.operands[1].reg % 2 != 0,
10568 _("even register required"));
10569 constraint (inst.operands[2].present
10570 && inst.operands[2].reg != inst.operands[1].reg + 1,
10571 _("can only store two consecutive registers"));
10572 /* If op 2 were present and equal to PC, this function wouldn't
10573 have been called in the first place. */
10574 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
10575
10576 constraint (inst.operands[0].reg == inst.operands[1].reg
10577 || inst.operands[0].reg == inst.operands[1].reg + 1
10578 || inst.operands[0].reg == inst.operands[3].reg,
10579 BAD_OVERLAP);
10580
10581 inst.instruction |= inst.operands[0].reg << 12;
10582 inst.instruction |= inst.operands[1].reg;
10583 inst.instruction |= inst.operands[3].reg << 16;
10584 }
10585
10586 /* ARM V8 STRL. */
10587 static void
10588 do_stlex (void)
10589 {
10590 constraint (inst.operands[0].reg == inst.operands[1].reg
10591 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10592
10593 do_rd_rm_rn ();
10594 }
10595
10596 static void
10597 do_t_stlex (void)
10598 {
10599 constraint (inst.operands[0].reg == inst.operands[1].reg
10600 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10601
10602 do_rm_rd_rn ();
10603 }
10604
10605 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
10606 extends it to 32-bits, and adds the result to a value in another
10607 register. You can specify a rotation by 0, 8, 16, or 24 bits
10608 before extracting the 16-bit value.
10609 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
10610 Condition defaults to COND_ALWAYS.
10611 Error if any register uses R15. */
10612
10613 static void
10614 do_sxtah (void)
10615 {
10616 inst.instruction |= inst.operands[0].reg << 12;
10617 inst.instruction |= inst.operands[1].reg << 16;
10618 inst.instruction |= inst.operands[2].reg;
10619 inst.instruction |= inst.operands[3].imm << 10;
10620 }
10621
10622 /* ARM V6 SXTH.
10623
10624 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
10625 Condition defaults to COND_ALWAYS.
10626 Error if any register uses R15. */
10627
10628 static void
10629 do_sxth (void)
10630 {
10631 inst.instruction |= inst.operands[0].reg << 12;
10632 inst.instruction |= inst.operands[1].reg;
10633 inst.instruction |= inst.operands[2].imm << 10;
10634 }
10635 \f
10636 /* VFP instructions. In a logical order: SP variant first, monad
10637 before dyad, arithmetic then move then load/store. */
10638
10639 static void
10640 do_vfp_sp_monadic (void)
10641 {
10642 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10643 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10644 _(BAD_FPU));
10645
10646 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10647 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
10648 }
10649
10650 static void
10651 do_vfp_sp_dyadic (void)
10652 {
10653 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10654 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10655 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
10656 }
10657
10658 static void
10659 do_vfp_sp_compare_z (void)
10660 {
10661 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10662 }
10663
10664 static void
10665 do_vfp_dp_sp_cvt (void)
10666 {
10667 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10668 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
10669 }
10670
10671 static void
10672 do_vfp_sp_dp_cvt (void)
10673 {
10674 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10675 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10676 }
10677
10678 static void
10679 do_vfp_reg_from_sp (void)
10680 {
10681 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10682 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10683 _(BAD_FPU));
10684
10685 inst.instruction |= inst.operands[0].reg << 12;
10686 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10687 }
10688
10689 static void
10690 do_vfp_reg2_from_sp2 (void)
10691 {
10692 constraint (inst.operands[2].imm != 2,
10693 _("only two consecutive VFP SP registers allowed here"));
10694 inst.instruction |= inst.operands[0].reg << 12;
10695 inst.instruction |= inst.operands[1].reg << 16;
10696 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
10697 }
10698
10699 static void
10700 do_vfp_sp_from_reg (void)
10701 {
10702 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10703 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10704 _(BAD_FPU));
10705
10706 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
10707 inst.instruction |= inst.operands[1].reg << 12;
10708 }
10709
10710 static void
10711 do_vfp_sp2_from_reg2 (void)
10712 {
10713 constraint (inst.operands[0].imm != 2,
10714 _("only two consecutive VFP SP registers allowed here"));
10715 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
10716 inst.instruction |= inst.operands[1].reg << 12;
10717 inst.instruction |= inst.operands[2].reg << 16;
10718 }
10719
10720 static void
10721 do_vfp_sp_ldst (void)
10722 {
10723 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10724 encode_arm_cp_address (1, FALSE, TRUE, 0);
10725 }
10726
10727 static void
10728 do_vfp_dp_ldst (void)
10729 {
10730 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10731 encode_arm_cp_address (1, FALSE, TRUE, 0);
10732 }
10733
10734
10735 static void
10736 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
10737 {
10738 if (inst.operands[0].writeback)
10739 inst.instruction |= WRITE_BACK;
10740 else
10741 constraint (ldstm_type != VFP_LDSTMIA,
10742 _("this addressing mode requires base-register writeback"));
10743 inst.instruction |= inst.operands[0].reg << 16;
10744 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
10745 inst.instruction |= inst.operands[1].imm;
10746 }
10747
10748 static void
10749 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
10750 {
10751 int count;
10752
10753 if (inst.operands[0].writeback)
10754 inst.instruction |= WRITE_BACK;
10755 else
10756 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
10757 _("this addressing mode requires base-register writeback"));
10758
10759 inst.instruction |= inst.operands[0].reg << 16;
10760 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10761
10762 count = inst.operands[1].imm << 1;
10763 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
10764 count += 1;
10765
10766 inst.instruction |= count;
10767 }
10768
10769 static void
10770 do_vfp_sp_ldstmia (void)
10771 {
10772 vfp_sp_ldstm (VFP_LDSTMIA);
10773 }
10774
10775 static void
10776 do_vfp_sp_ldstmdb (void)
10777 {
10778 vfp_sp_ldstm (VFP_LDSTMDB);
10779 }
10780
10781 static void
10782 do_vfp_dp_ldstmia (void)
10783 {
10784 vfp_dp_ldstm (VFP_LDSTMIA);
10785 }
10786
10787 static void
10788 do_vfp_dp_ldstmdb (void)
10789 {
10790 vfp_dp_ldstm (VFP_LDSTMDB);
10791 }
10792
10793 static void
10794 do_vfp_xp_ldstmia (void)
10795 {
10796 vfp_dp_ldstm (VFP_LDSTMIAX);
10797 }
10798
10799 static void
10800 do_vfp_xp_ldstmdb (void)
10801 {
10802 vfp_dp_ldstm (VFP_LDSTMDBX);
10803 }
10804
10805 static void
10806 do_vfp_dp_rd_rm (void)
10807 {
10808 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
10809 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10810 _(BAD_FPU));
10811
10812 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10813 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10814 }
10815
10816 static void
10817 do_vfp_dp_rn_rd (void)
10818 {
10819 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
10820 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10821 }
10822
10823 static void
10824 do_vfp_dp_rd_rn (void)
10825 {
10826 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10827 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10828 }
10829
10830 static void
10831 do_vfp_dp_rd_rn_rm (void)
10832 {
10833 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10834 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10835 _(BAD_FPU));
10836
10837 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10838 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10839 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
10840 }
10841
10842 static void
10843 do_vfp_dp_rd (void)
10844 {
10845 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10846 }
10847
10848 static void
10849 do_vfp_dp_rm_rd_rn (void)
10850 {
10851 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10852 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10853 _(BAD_FPU));
10854
10855 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
10856 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10857 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
10858 }
10859
10860 /* VFPv3 instructions. */
10861 static void
10862 do_vfp_sp_const (void)
10863 {
10864 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10865 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10866 inst.instruction |= (inst.operands[1].imm & 0x0f);
10867 }
10868
10869 static void
10870 do_vfp_dp_const (void)
10871 {
10872 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10873 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10874 inst.instruction |= (inst.operands[1].imm & 0x0f);
10875 }
10876
10877 static void
10878 vfp_conv (int srcsize)
10879 {
10880 int immbits = srcsize - inst.operands[1].imm;
10881
10882 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
10883 {
10884 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
10885 i.e. immbits must be in range 0 - 16. */
10886 inst.error = _("immediate value out of range, expected range [0, 16]");
10887 return;
10888 }
10889 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
10890 {
10891 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
10892 i.e. immbits must be in range 0 - 31. */
10893 inst.error = _("immediate value out of range, expected range [1, 32]");
10894 return;
10895 }
10896
10897 inst.instruction |= (immbits & 1) << 5;
10898 inst.instruction |= (immbits >> 1);
10899 }
10900
10901 static void
10902 do_vfp_sp_conv_16 (void)
10903 {
10904 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10905 vfp_conv (16);
10906 }
10907
10908 static void
10909 do_vfp_dp_conv_16 (void)
10910 {
10911 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10912 vfp_conv (16);
10913 }
10914
10915 static void
10916 do_vfp_sp_conv_32 (void)
10917 {
10918 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10919 vfp_conv (32);
10920 }
10921
10922 static void
10923 do_vfp_dp_conv_32 (void)
10924 {
10925 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10926 vfp_conv (32);
10927 }
10928 \f
10929 /* FPA instructions. Also in a logical order. */
10930
10931 static void
10932 do_fpa_cmp (void)
10933 {
10934 inst.instruction |= inst.operands[0].reg << 16;
10935 inst.instruction |= inst.operands[1].reg;
10936 }
10937
10938 static void
10939 do_fpa_ldmstm (void)
10940 {
10941 inst.instruction |= inst.operands[0].reg << 12;
10942 switch (inst.operands[1].imm)
10943 {
10944 case 1: inst.instruction |= CP_T_X; break;
10945 case 2: inst.instruction |= CP_T_Y; break;
10946 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10947 case 4: break;
10948 default: abort ();
10949 }
10950
10951 if (inst.instruction & (PRE_INDEX | INDEX_UP))
10952 {
10953 /* The instruction specified "ea" or "fd", so we can only accept
10954 [Rn]{!}. The instruction does not really support stacking or
10955 unstacking, so we have to emulate these by setting appropriate
10956 bits and offsets. */
10957 constraint (inst.relocs[0].exp.X_op != O_constant
10958 || inst.relocs[0].exp.X_add_number != 0,
10959 _("this instruction does not support indexing"));
10960
10961 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
10962 inst.relocs[0].exp.X_add_number = 12 * inst.operands[1].imm;
10963
10964 if (!(inst.instruction & INDEX_UP))
10965 inst.relocs[0].exp.X_add_number = -inst.relocs[0].exp.X_add_number;
10966
10967 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10968 {
10969 inst.operands[2].preind = 0;
10970 inst.operands[2].postind = 1;
10971 }
10972 }
10973
10974 encode_arm_cp_address (2, TRUE, TRUE, 0);
10975 }
10976 \f
10977 /* iWMMXt instructions: strictly in alphabetical order. */
10978
10979 static void
10980 do_iwmmxt_tandorc (void)
10981 {
10982 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10983 }
10984
10985 static void
10986 do_iwmmxt_textrc (void)
10987 {
10988 inst.instruction |= inst.operands[0].reg << 12;
10989 inst.instruction |= inst.operands[1].imm;
10990 }
10991
10992 static void
10993 do_iwmmxt_textrm (void)
10994 {
10995 inst.instruction |= inst.operands[0].reg << 12;
10996 inst.instruction |= inst.operands[1].reg << 16;
10997 inst.instruction |= inst.operands[2].imm;
10998 }
10999
11000 static void
11001 do_iwmmxt_tinsr (void)
11002 {
11003 inst.instruction |= inst.operands[0].reg << 16;
11004 inst.instruction |= inst.operands[1].reg << 12;
11005 inst.instruction |= inst.operands[2].imm;
11006 }
11007
11008 static void
11009 do_iwmmxt_tmia (void)
11010 {
11011 inst.instruction |= inst.operands[0].reg << 5;
11012 inst.instruction |= inst.operands[1].reg;
11013 inst.instruction |= inst.operands[2].reg << 12;
11014 }
11015
11016 static void
11017 do_iwmmxt_waligni (void)
11018 {
11019 inst.instruction |= inst.operands[0].reg << 12;
11020 inst.instruction |= inst.operands[1].reg << 16;
11021 inst.instruction |= inst.operands[2].reg;
11022 inst.instruction |= inst.operands[3].imm << 20;
11023 }
11024
11025 static void
11026 do_iwmmxt_wmerge (void)
11027 {
11028 inst.instruction |= inst.operands[0].reg << 12;
11029 inst.instruction |= inst.operands[1].reg << 16;
11030 inst.instruction |= inst.operands[2].reg;
11031 inst.instruction |= inst.operands[3].imm << 21;
11032 }
11033
11034 static void
11035 do_iwmmxt_wmov (void)
11036 {
11037 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
11038 inst.instruction |= inst.operands[0].reg << 12;
11039 inst.instruction |= inst.operands[1].reg << 16;
11040 inst.instruction |= inst.operands[1].reg;
11041 }
11042
11043 static void
11044 do_iwmmxt_wldstbh (void)
11045 {
11046 int reloc;
11047 inst.instruction |= inst.operands[0].reg << 12;
11048 if (thumb_mode)
11049 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
11050 else
11051 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
11052 encode_arm_cp_address (1, TRUE, FALSE, reloc);
11053 }
11054
11055 static void
11056 do_iwmmxt_wldstw (void)
11057 {
11058 /* RIWR_RIWC clears .isreg for a control register. */
11059 if (!inst.operands[0].isreg)
11060 {
11061 constraint (inst.cond != COND_ALWAYS, BAD_COND);
11062 inst.instruction |= 0xf0000000;
11063 }
11064
11065 inst.instruction |= inst.operands[0].reg << 12;
11066 encode_arm_cp_address (1, TRUE, TRUE, 0);
11067 }
11068
11069 static void
11070 do_iwmmxt_wldstd (void)
11071 {
11072 inst.instruction |= inst.operands[0].reg << 12;
11073 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
11074 && inst.operands[1].immisreg)
11075 {
11076 inst.instruction &= ~0x1a000ff;
11077 inst.instruction |= (0xfU << 28);
11078 if (inst.operands[1].preind)
11079 inst.instruction |= PRE_INDEX;
11080 if (!inst.operands[1].negative)
11081 inst.instruction |= INDEX_UP;
11082 if (inst.operands[1].writeback)
11083 inst.instruction |= WRITE_BACK;
11084 inst.instruction |= inst.operands[1].reg << 16;
11085 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
11086 inst.instruction |= inst.operands[1].imm;
11087 }
11088 else
11089 encode_arm_cp_address (1, TRUE, FALSE, 0);
11090 }
11091
11092 static void
11093 do_iwmmxt_wshufh (void)
11094 {
11095 inst.instruction |= inst.operands[0].reg << 12;
11096 inst.instruction |= inst.operands[1].reg << 16;
11097 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
11098 inst.instruction |= (inst.operands[2].imm & 0x0f);
11099 }
11100
11101 static void
11102 do_iwmmxt_wzero (void)
11103 {
11104 /* WZERO reg is an alias for WANDN reg, reg, reg. */
11105 inst.instruction |= inst.operands[0].reg;
11106 inst.instruction |= inst.operands[0].reg << 12;
11107 inst.instruction |= inst.operands[0].reg << 16;
11108 }
11109
11110 static void
11111 do_iwmmxt_wrwrwr_or_imm5 (void)
11112 {
11113 if (inst.operands[2].isreg)
11114 do_rd_rn_rm ();
11115 else {
11116 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
11117 _("immediate operand requires iWMMXt2"));
11118 do_rd_rn ();
11119 if (inst.operands[2].imm == 0)
11120 {
11121 switch ((inst.instruction >> 20) & 0xf)
11122 {
11123 case 4:
11124 case 5:
11125 case 6:
11126 case 7:
11127 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
11128 inst.operands[2].imm = 16;
11129 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
11130 break;
11131 case 8:
11132 case 9:
11133 case 10:
11134 case 11:
11135 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
11136 inst.operands[2].imm = 32;
11137 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
11138 break;
11139 case 12:
11140 case 13:
11141 case 14:
11142 case 15:
11143 {
11144 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
11145 unsigned long wrn;
11146 wrn = (inst.instruction >> 16) & 0xf;
11147 inst.instruction &= 0xff0fff0f;
11148 inst.instruction |= wrn;
11149 /* Bail out here; the instruction is now assembled. */
11150 return;
11151 }
11152 }
11153 }
11154 /* Map 32 -> 0, etc. */
11155 inst.operands[2].imm &= 0x1f;
11156 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
11157 }
11158 }
11159 \f
11160 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
11161 operations first, then control, shift, and load/store. */
11162
11163 /* Insns like "foo X,Y,Z". */
11164
11165 static void
11166 do_mav_triple (void)
11167 {
11168 inst.instruction |= inst.operands[0].reg << 16;
11169 inst.instruction |= inst.operands[1].reg;
11170 inst.instruction |= inst.operands[2].reg << 12;
11171 }
11172
11173 /* Insns like "foo W,X,Y,Z".
11174 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
11175
11176 static void
11177 do_mav_quad (void)
11178 {
11179 inst.instruction |= inst.operands[0].reg << 5;
11180 inst.instruction |= inst.operands[1].reg << 12;
11181 inst.instruction |= inst.operands[2].reg << 16;
11182 inst.instruction |= inst.operands[3].reg;
11183 }
11184
11185 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
11186 static void
11187 do_mav_dspsc (void)
11188 {
11189 inst.instruction |= inst.operands[1].reg << 12;
11190 }
11191
11192 /* Maverick shift immediate instructions.
11193 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
11194 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
11195
11196 static void
11197 do_mav_shift (void)
11198 {
11199 int imm = inst.operands[2].imm;
11200
11201 inst.instruction |= inst.operands[0].reg << 12;
11202 inst.instruction |= inst.operands[1].reg << 16;
11203
11204 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
11205 Bits 5-7 of the insn should have bits 4-6 of the immediate.
11206 Bit 4 should be 0. */
11207 imm = (imm & 0xf) | ((imm & 0x70) << 1);
11208
11209 inst.instruction |= imm;
11210 }
11211 \f
11212 /* XScale instructions. Also sorted arithmetic before move. */
11213
11214 /* Xscale multiply-accumulate (argument parse)
11215 MIAcc acc0,Rm,Rs
11216 MIAPHcc acc0,Rm,Rs
11217 MIAxycc acc0,Rm,Rs. */
11218
11219 static void
11220 do_xsc_mia (void)
11221 {
11222 inst.instruction |= inst.operands[1].reg;
11223 inst.instruction |= inst.operands[2].reg << 12;
11224 }
11225
11226 /* Xscale move-accumulator-register (argument parse)
11227
11228 MARcc acc0,RdLo,RdHi. */
11229
11230 static void
11231 do_xsc_mar (void)
11232 {
11233 inst.instruction |= inst.operands[1].reg << 12;
11234 inst.instruction |= inst.operands[2].reg << 16;
11235 }
11236
11237 /* Xscale move-register-accumulator (argument parse)
11238
11239 MRAcc RdLo,RdHi,acc0. */
11240
11241 static void
11242 do_xsc_mra (void)
11243 {
11244 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
11245 inst.instruction |= inst.operands[0].reg << 12;
11246 inst.instruction |= inst.operands[1].reg << 16;
11247 }
11248 \f
11249 /* Encoding functions relevant only to Thumb. */
11250
11251 /* inst.operands[i] is a shifted-register operand; encode
11252 it into inst.instruction in the format used by Thumb32. */
11253
11254 static void
11255 encode_thumb32_shifted_operand (int i)
11256 {
11257 unsigned int value = inst.relocs[0].exp.X_add_number;
11258 unsigned int shift = inst.operands[i].shift_kind;
11259
11260 constraint (inst.operands[i].immisreg,
11261 _("shift by register not allowed in thumb mode"));
11262 inst.instruction |= inst.operands[i].reg;
11263 if (shift == SHIFT_RRX)
11264 inst.instruction |= SHIFT_ROR << 4;
11265 else
11266 {
11267 constraint (inst.relocs[0].exp.X_op != O_constant,
11268 _("expression too complex"));
11269
11270 constraint (value > 32
11271 || (value == 32 && (shift == SHIFT_LSL
11272 || shift == SHIFT_ROR)),
11273 _("shift expression is too large"));
11274
11275 if (value == 0)
11276 shift = SHIFT_LSL;
11277 else if (value == 32)
11278 value = 0;
11279
11280 inst.instruction |= shift << 4;
11281 inst.instruction |= (value & 0x1c) << 10;
11282 inst.instruction |= (value & 0x03) << 6;
11283 }
11284 }
11285
11286
11287 /* inst.operands[i] was set up by parse_address. Encode it into a
11288 Thumb32 format load or store instruction. Reject forms that cannot
11289 be used with such instructions. If is_t is true, reject forms that
11290 cannot be used with a T instruction; if is_d is true, reject forms
11291 that cannot be used with a D instruction. If it is a store insn,
11292 reject PC in Rn. */
11293
11294 static void
11295 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
11296 {
11297 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
11298
11299 constraint (!inst.operands[i].isreg,
11300 _("Instruction does not support =N addresses"));
11301
11302 inst.instruction |= inst.operands[i].reg << 16;
11303 if (inst.operands[i].immisreg)
11304 {
11305 constraint (is_pc, BAD_PC_ADDRESSING);
11306 constraint (is_t || is_d, _("cannot use register index with this instruction"));
11307 constraint (inst.operands[i].negative,
11308 _("Thumb does not support negative register indexing"));
11309 constraint (inst.operands[i].postind,
11310 _("Thumb does not support register post-indexing"));
11311 constraint (inst.operands[i].writeback,
11312 _("Thumb does not support register indexing with writeback"));
11313 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
11314 _("Thumb supports only LSL in shifted register indexing"));
11315
11316 inst.instruction |= inst.operands[i].imm;
11317 if (inst.operands[i].shifted)
11318 {
11319 constraint (inst.relocs[0].exp.X_op != O_constant,
11320 _("expression too complex"));
11321 constraint (inst.relocs[0].exp.X_add_number < 0
11322 || inst.relocs[0].exp.X_add_number > 3,
11323 _("shift out of range"));
11324 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
11325 }
11326 inst.relocs[0].type = BFD_RELOC_UNUSED;
11327 }
11328 else if (inst.operands[i].preind)
11329 {
11330 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
11331 constraint (is_t && inst.operands[i].writeback,
11332 _("cannot use writeback with this instruction"));
11333 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
11334 BAD_PC_ADDRESSING);
11335
11336 if (is_d)
11337 {
11338 inst.instruction |= 0x01000000;
11339 if (inst.operands[i].writeback)
11340 inst.instruction |= 0x00200000;
11341 }
11342 else
11343 {
11344 inst.instruction |= 0x00000c00;
11345 if (inst.operands[i].writeback)
11346 inst.instruction |= 0x00000100;
11347 }
11348 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
11349 }
11350 else if (inst.operands[i].postind)
11351 {
11352 gas_assert (inst.operands[i].writeback);
11353 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
11354 constraint (is_t, _("cannot use post-indexing with this instruction"));
11355
11356 if (is_d)
11357 inst.instruction |= 0x00200000;
11358 else
11359 inst.instruction |= 0x00000900;
11360 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
11361 }
11362 else /* unindexed - only for coprocessor */
11363 inst.error = _("instruction does not accept unindexed addressing");
11364 }
11365
11366 /* Table of Thumb instructions which exist in 16- and/or 32-bit
11367 encodings (the latter only in post-V6T2 cores). The index is the
11368 value used in the insns table below. When there is more than one
11369 possible 16-bit encoding for the instruction, this table always
11370 holds variant (1).
11371 Also contains several pseudo-instructions used during relaxation. */
11372 #define T16_32_TAB \
11373 X(_adc, 4140, eb400000), \
11374 X(_adcs, 4140, eb500000), \
11375 X(_add, 1c00, eb000000), \
11376 X(_adds, 1c00, eb100000), \
11377 X(_addi, 0000, f1000000), \
11378 X(_addis, 0000, f1100000), \
11379 X(_add_pc,000f, f20f0000), \
11380 X(_add_sp,000d, f10d0000), \
11381 X(_adr, 000f, f20f0000), \
11382 X(_and, 4000, ea000000), \
11383 X(_ands, 4000, ea100000), \
11384 X(_asr, 1000, fa40f000), \
11385 X(_asrs, 1000, fa50f000), \
11386 X(_b, e000, f000b000), \
11387 X(_bcond, d000, f0008000), \
11388 X(_bf, 0000, f040e001), \
11389 X(_bfcsel,0000, f000e001), \
11390 X(_bfx, 0000, f060e001), \
11391 X(_bfl, 0000, f000c001), \
11392 X(_bflx, 0000, f070e001), \
11393 X(_bic, 4380, ea200000), \
11394 X(_bics, 4380, ea300000), \
11395 X(_cinc, 0000, ea509000), \
11396 X(_cinv, 0000, ea50a000), \
11397 X(_cmn, 42c0, eb100f00), \
11398 X(_cmp, 2800, ebb00f00), \
11399 X(_cneg, 0000, ea50b000), \
11400 X(_cpsie, b660, f3af8400), \
11401 X(_cpsid, b670, f3af8600), \
11402 X(_cpy, 4600, ea4f0000), \
11403 X(_csel, 0000, ea508000), \
11404 X(_cset, 0000, ea5f900f), \
11405 X(_csetm, 0000, ea5fa00f), \
11406 X(_csinc, 0000, ea509000), \
11407 X(_csinv, 0000, ea50a000), \
11408 X(_csneg, 0000, ea50b000), \
11409 X(_dec_sp,80dd, f1ad0d00), \
11410 X(_dls, 0000, f040e001), \
11411 X(_dlstp, 0000, f000e001), \
11412 X(_eor, 4040, ea800000), \
11413 X(_eors, 4040, ea900000), \
11414 X(_inc_sp,00dd, f10d0d00), \
11415 X(_lctp, 0000, f00fe001), \
11416 X(_ldmia, c800, e8900000), \
11417 X(_ldr, 6800, f8500000), \
11418 X(_ldrb, 7800, f8100000), \
11419 X(_ldrh, 8800, f8300000), \
11420 X(_ldrsb, 5600, f9100000), \
11421 X(_ldrsh, 5e00, f9300000), \
11422 X(_ldr_pc,4800, f85f0000), \
11423 X(_ldr_pc2,4800, f85f0000), \
11424 X(_ldr_sp,9800, f85d0000), \
11425 X(_le, 0000, f00fc001), \
11426 X(_letp, 0000, f01fc001), \
11427 X(_lsl, 0000, fa00f000), \
11428 X(_lsls, 0000, fa10f000), \
11429 X(_lsr, 0800, fa20f000), \
11430 X(_lsrs, 0800, fa30f000), \
11431 X(_mov, 2000, ea4f0000), \
11432 X(_movs, 2000, ea5f0000), \
11433 X(_mul, 4340, fb00f000), \
11434 X(_muls, 4340, ffffffff), /* no 32b muls */ \
11435 X(_mvn, 43c0, ea6f0000), \
11436 X(_mvns, 43c0, ea7f0000), \
11437 X(_neg, 4240, f1c00000), /* rsb #0 */ \
11438 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
11439 X(_orr, 4300, ea400000), \
11440 X(_orrs, 4300, ea500000), \
11441 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
11442 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
11443 X(_rev, ba00, fa90f080), \
11444 X(_rev16, ba40, fa90f090), \
11445 X(_revsh, bac0, fa90f0b0), \
11446 X(_ror, 41c0, fa60f000), \
11447 X(_rors, 41c0, fa70f000), \
11448 X(_sbc, 4180, eb600000), \
11449 X(_sbcs, 4180, eb700000), \
11450 X(_stmia, c000, e8800000), \
11451 X(_str, 6000, f8400000), \
11452 X(_strb, 7000, f8000000), \
11453 X(_strh, 8000, f8200000), \
11454 X(_str_sp,9000, f84d0000), \
11455 X(_sub, 1e00, eba00000), \
11456 X(_subs, 1e00, ebb00000), \
11457 X(_subi, 8000, f1a00000), \
11458 X(_subis, 8000, f1b00000), \
11459 X(_sxtb, b240, fa4ff080), \
11460 X(_sxth, b200, fa0ff080), \
11461 X(_tst, 4200, ea100f00), \
11462 X(_uxtb, b2c0, fa5ff080), \
11463 X(_uxth, b280, fa1ff080), \
11464 X(_nop, bf00, f3af8000), \
11465 X(_yield, bf10, f3af8001), \
11466 X(_wfe, bf20, f3af8002), \
11467 X(_wfi, bf30, f3af8003), \
11468 X(_wls, 0000, f040c001), \
11469 X(_wlstp, 0000, f000c001), \
11470 X(_sev, bf40, f3af8004), \
11471 X(_sevl, bf50, f3af8005), \
11472 X(_udf, de00, f7f0a000)
11473
11474 /* To catch errors in encoding functions, the codes are all offset by
11475 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
11476 as 16-bit instructions. */
11477 #define X(a,b,c) T_MNEM##a
11478 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
11479 #undef X
11480
11481 #define X(a,b,c) 0x##b
11482 static const unsigned short thumb_op16[] = { T16_32_TAB };
11483 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
11484 #undef X
11485
11486 #define X(a,b,c) 0x##c
11487 static const unsigned int thumb_op32[] = { T16_32_TAB };
11488 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
11489 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
11490 #undef X
11491 #undef T16_32_TAB
11492
11493 /* Thumb instruction encoders, in alphabetical order. */
11494
11495 /* ADDW or SUBW. */
11496
11497 static void
11498 do_t_add_sub_w (void)
11499 {
11500 int Rd, Rn;
11501
11502 Rd = inst.operands[0].reg;
11503 Rn = inst.operands[1].reg;
11504
11505 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
11506 is the SP-{plus,minus}-immediate form of the instruction. */
11507 if (Rn == REG_SP)
11508 constraint (Rd == REG_PC, BAD_PC);
11509 else
11510 reject_bad_reg (Rd);
11511
11512 inst.instruction |= (Rn << 16) | (Rd << 8);
11513 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
11514 }
11515
11516 /* Parse an add or subtract instruction. We get here with inst.instruction
11517 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
11518
11519 static void
11520 do_t_add_sub (void)
11521 {
11522 int Rd, Rs, Rn;
11523
11524 Rd = inst.operands[0].reg;
11525 Rs = (inst.operands[1].present
11526 ? inst.operands[1].reg /* Rd, Rs, foo */
11527 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11528
11529 if (Rd == REG_PC)
11530 set_pred_insn_type_last ();
11531
11532 if (unified_syntax)
11533 {
11534 bfd_boolean flags;
11535 bfd_boolean narrow;
11536 int opcode;
11537
11538 flags = (inst.instruction == T_MNEM_adds
11539 || inst.instruction == T_MNEM_subs);
11540 if (flags)
11541 narrow = !in_pred_block ();
11542 else
11543 narrow = in_pred_block ();
11544 if (!inst.operands[2].isreg)
11545 {
11546 int add;
11547
11548 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11549 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
11550
11551 add = (inst.instruction == T_MNEM_add
11552 || inst.instruction == T_MNEM_adds);
11553 opcode = 0;
11554 if (inst.size_req != 4)
11555 {
11556 /* Attempt to use a narrow opcode, with relaxation if
11557 appropriate. */
11558 if (Rd == REG_SP && Rs == REG_SP && !flags)
11559 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
11560 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
11561 opcode = T_MNEM_add_sp;
11562 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
11563 opcode = T_MNEM_add_pc;
11564 else if (Rd <= 7 && Rs <= 7 && narrow)
11565 {
11566 if (flags)
11567 opcode = add ? T_MNEM_addis : T_MNEM_subis;
11568 else
11569 opcode = add ? T_MNEM_addi : T_MNEM_subi;
11570 }
11571 if (opcode)
11572 {
11573 inst.instruction = THUMB_OP16(opcode);
11574 inst.instruction |= (Rd << 4) | Rs;
11575 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11576 || (inst.relocs[0].type
11577 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC))
11578 {
11579 if (inst.size_req == 2)
11580 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11581 else
11582 inst.relax = opcode;
11583 }
11584 }
11585 else
11586 constraint (inst.size_req == 2, BAD_HIREG);
11587 }
11588 if (inst.size_req == 4
11589 || (inst.size_req != 2 && !opcode))
11590 {
11591 constraint ((inst.relocs[0].type
11592 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
11593 && (inst.relocs[0].type
11594 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
11595 THUMB1_RELOC_ONLY);
11596 if (Rd == REG_PC)
11597 {
11598 constraint (add, BAD_PC);
11599 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
11600 _("only SUBS PC, LR, #const allowed"));
11601 constraint (inst.relocs[0].exp.X_op != O_constant,
11602 _("expression too complex"));
11603 constraint (inst.relocs[0].exp.X_add_number < 0
11604 || inst.relocs[0].exp.X_add_number > 0xff,
11605 _("immediate value out of range"));
11606 inst.instruction = T2_SUBS_PC_LR
11607 | inst.relocs[0].exp.X_add_number;
11608 inst.relocs[0].type = BFD_RELOC_UNUSED;
11609 return;
11610 }
11611 else if (Rs == REG_PC)
11612 {
11613 /* Always use addw/subw. */
11614 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
11615 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
11616 }
11617 else
11618 {
11619 inst.instruction = THUMB_OP32 (inst.instruction);
11620 inst.instruction = (inst.instruction & 0xe1ffffff)
11621 | 0x10000000;
11622 if (flags)
11623 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11624 else
11625 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_IMM;
11626 }
11627 inst.instruction |= Rd << 8;
11628 inst.instruction |= Rs << 16;
11629 }
11630 }
11631 else
11632 {
11633 unsigned int value = inst.relocs[0].exp.X_add_number;
11634 unsigned int shift = inst.operands[2].shift_kind;
11635
11636 Rn = inst.operands[2].reg;
11637 /* See if we can do this with a 16-bit instruction. */
11638 if (!inst.operands[2].shifted && inst.size_req != 4)
11639 {
11640 if (Rd > 7 || Rs > 7 || Rn > 7)
11641 narrow = FALSE;
11642
11643 if (narrow)
11644 {
11645 inst.instruction = ((inst.instruction == T_MNEM_adds
11646 || inst.instruction == T_MNEM_add)
11647 ? T_OPCODE_ADD_R3
11648 : T_OPCODE_SUB_R3);
11649 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11650 return;
11651 }
11652
11653 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
11654 {
11655 /* Thumb-1 cores (except v6-M) require at least one high
11656 register in a narrow non flag setting add. */
11657 if (Rd > 7 || Rn > 7
11658 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
11659 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
11660 {
11661 if (Rd == Rn)
11662 {
11663 Rn = Rs;
11664 Rs = Rd;
11665 }
11666 inst.instruction = T_OPCODE_ADD_HI;
11667 inst.instruction |= (Rd & 8) << 4;
11668 inst.instruction |= (Rd & 7);
11669 inst.instruction |= Rn << 3;
11670 return;
11671 }
11672 }
11673 }
11674
11675 constraint (Rd == REG_PC, BAD_PC);
11676 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11677 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
11678 constraint (Rs == REG_PC, BAD_PC);
11679 reject_bad_reg (Rn);
11680
11681 /* If we get here, it can't be done in 16 bits. */
11682 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
11683 _("shift must be constant"));
11684 inst.instruction = THUMB_OP32 (inst.instruction);
11685 inst.instruction |= Rd << 8;
11686 inst.instruction |= Rs << 16;
11687 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
11688 _("shift value over 3 not allowed in thumb mode"));
11689 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
11690 _("only LSL shift allowed in thumb mode"));
11691 encode_thumb32_shifted_operand (2);
11692 }
11693 }
11694 else
11695 {
11696 constraint (inst.instruction == T_MNEM_adds
11697 || inst.instruction == T_MNEM_subs,
11698 BAD_THUMB32);
11699
11700 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
11701 {
11702 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
11703 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
11704 BAD_HIREG);
11705
11706 inst.instruction = (inst.instruction == T_MNEM_add
11707 ? 0x0000 : 0x8000);
11708 inst.instruction |= (Rd << 4) | Rs;
11709 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11710 return;
11711 }
11712
11713 Rn = inst.operands[2].reg;
11714 constraint (inst.operands[2].shifted, _("unshifted register required"));
11715
11716 /* We now have Rd, Rs, and Rn set to registers. */
11717 if (Rd > 7 || Rs > 7 || Rn > 7)
11718 {
11719 /* Can't do this for SUB. */
11720 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
11721 inst.instruction = T_OPCODE_ADD_HI;
11722 inst.instruction |= (Rd & 8) << 4;
11723 inst.instruction |= (Rd & 7);
11724 if (Rs == Rd)
11725 inst.instruction |= Rn << 3;
11726 else if (Rn == Rd)
11727 inst.instruction |= Rs << 3;
11728 else
11729 constraint (1, _("dest must overlap one source register"));
11730 }
11731 else
11732 {
11733 inst.instruction = (inst.instruction == T_MNEM_add
11734 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
11735 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11736 }
11737 }
11738 }
11739
11740 static void
11741 do_t_adr (void)
11742 {
11743 unsigned Rd;
11744
11745 Rd = inst.operands[0].reg;
11746 reject_bad_reg (Rd);
11747
11748 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
11749 {
11750 /* Defer to section relaxation. */
11751 inst.relax = inst.instruction;
11752 inst.instruction = THUMB_OP16 (inst.instruction);
11753 inst.instruction |= Rd << 4;
11754 }
11755 else if (unified_syntax && inst.size_req != 2)
11756 {
11757 /* Generate a 32-bit opcode. */
11758 inst.instruction = THUMB_OP32 (inst.instruction);
11759 inst.instruction |= Rd << 8;
11760 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_PC12;
11761 inst.relocs[0].pc_rel = 1;
11762 }
11763 else
11764 {
11765 /* Generate a 16-bit opcode. */
11766 inst.instruction = THUMB_OP16 (inst.instruction);
11767 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11768 inst.relocs[0].exp.X_add_number -= 4; /* PC relative adjust. */
11769 inst.relocs[0].pc_rel = 1;
11770 inst.instruction |= Rd << 4;
11771 }
11772
11773 if (inst.relocs[0].exp.X_op == O_symbol
11774 && inst.relocs[0].exp.X_add_symbol != NULL
11775 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11776 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11777 inst.relocs[0].exp.X_add_number += 1;
11778 }
11779
11780 /* Arithmetic instructions for which there is just one 16-bit
11781 instruction encoding, and it allows only two low registers.
11782 For maximal compatibility with ARM syntax, we allow three register
11783 operands even when Thumb-32 instructions are not available, as long
11784 as the first two are identical. For instance, both "sbc r0,r1" and
11785 "sbc r0,r0,r1" are allowed. */
11786 static void
11787 do_t_arit3 (void)
11788 {
11789 int Rd, Rs, Rn;
11790
11791 Rd = inst.operands[0].reg;
11792 Rs = (inst.operands[1].present
11793 ? inst.operands[1].reg /* Rd, Rs, foo */
11794 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11795 Rn = inst.operands[2].reg;
11796
11797 reject_bad_reg (Rd);
11798 reject_bad_reg (Rs);
11799 if (inst.operands[2].isreg)
11800 reject_bad_reg (Rn);
11801
11802 if (unified_syntax)
11803 {
11804 if (!inst.operands[2].isreg)
11805 {
11806 /* For an immediate, we always generate a 32-bit opcode;
11807 section relaxation will shrink it later if possible. */
11808 inst.instruction = THUMB_OP32 (inst.instruction);
11809 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11810 inst.instruction |= Rd << 8;
11811 inst.instruction |= Rs << 16;
11812 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11813 }
11814 else
11815 {
11816 bfd_boolean narrow;
11817
11818 /* See if we can do this with a 16-bit instruction. */
11819 if (THUMB_SETS_FLAGS (inst.instruction))
11820 narrow = !in_pred_block ();
11821 else
11822 narrow = in_pred_block ();
11823
11824 if (Rd > 7 || Rn > 7 || Rs > 7)
11825 narrow = FALSE;
11826 if (inst.operands[2].shifted)
11827 narrow = FALSE;
11828 if (inst.size_req == 4)
11829 narrow = FALSE;
11830
11831 if (narrow
11832 && Rd == Rs)
11833 {
11834 inst.instruction = THUMB_OP16 (inst.instruction);
11835 inst.instruction |= Rd;
11836 inst.instruction |= Rn << 3;
11837 return;
11838 }
11839
11840 /* If we get here, it can't be done in 16 bits. */
11841 constraint (inst.operands[2].shifted
11842 && inst.operands[2].immisreg,
11843 _("shift must be constant"));
11844 inst.instruction = THUMB_OP32 (inst.instruction);
11845 inst.instruction |= Rd << 8;
11846 inst.instruction |= Rs << 16;
11847 encode_thumb32_shifted_operand (2);
11848 }
11849 }
11850 else
11851 {
11852 /* On its face this is a lie - the instruction does set the
11853 flags. However, the only supported mnemonic in this mode
11854 says it doesn't. */
11855 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11856
11857 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11858 _("unshifted register required"));
11859 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11860 constraint (Rd != Rs,
11861 _("dest and source1 must be the same register"));
11862
11863 inst.instruction = THUMB_OP16 (inst.instruction);
11864 inst.instruction |= Rd;
11865 inst.instruction |= Rn << 3;
11866 }
11867 }
11868
11869 /* Similarly, but for instructions where the arithmetic operation is
11870 commutative, so we can allow either of them to be different from
11871 the destination operand in a 16-bit instruction. For instance, all
11872 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
11873 accepted. */
11874 static void
11875 do_t_arit3c (void)
11876 {
11877 int Rd, Rs, Rn;
11878
11879 Rd = inst.operands[0].reg;
11880 Rs = (inst.operands[1].present
11881 ? inst.operands[1].reg /* Rd, Rs, foo */
11882 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11883 Rn = inst.operands[2].reg;
11884
11885 reject_bad_reg (Rd);
11886 reject_bad_reg (Rs);
11887 if (inst.operands[2].isreg)
11888 reject_bad_reg (Rn);
11889
11890 if (unified_syntax)
11891 {
11892 if (!inst.operands[2].isreg)
11893 {
11894 /* For an immediate, we always generate a 32-bit opcode;
11895 section relaxation will shrink it later if possible. */
11896 inst.instruction = THUMB_OP32 (inst.instruction);
11897 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11898 inst.instruction |= Rd << 8;
11899 inst.instruction |= Rs << 16;
11900 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11901 }
11902 else
11903 {
11904 bfd_boolean narrow;
11905
11906 /* See if we can do this with a 16-bit instruction. */
11907 if (THUMB_SETS_FLAGS (inst.instruction))
11908 narrow = !in_pred_block ();
11909 else
11910 narrow = in_pred_block ();
11911
11912 if (Rd > 7 || Rn > 7 || Rs > 7)
11913 narrow = FALSE;
11914 if (inst.operands[2].shifted)
11915 narrow = FALSE;
11916 if (inst.size_req == 4)
11917 narrow = FALSE;
11918
11919 if (narrow)
11920 {
11921 if (Rd == Rs)
11922 {
11923 inst.instruction = THUMB_OP16 (inst.instruction);
11924 inst.instruction |= Rd;
11925 inst.instruction |= Rn << 3;
11926 return;
11927 }
11928 if (Rd == Rn)
11929 {
11930 inst.instruction = THUMB_OP16 (inst.instruction);
11931 inst.instruction |= Rd;
11932 inst.instruction |= Rs << 3;
11933 return;
11934 }
11935 }
11936
11937 /* If we get here, it can't be done in 16 bits. */
11938 constraint (inst.operands[2].shifted
11939 && inst.operands[2].immisreg,
11940 _("shift must be constant"));
11941 inst.instruction = THUMB_OP32 (inst.instruction);
11942 inst.instruction |= Rd << 8;
11943 inst.instruction |= Rs << 16;
11944 encode_thumb32_shifted_operand (2);
11945 }
11946 }
11947 else
11948 {
11949 /* On its face this is a lie - the instruction does set the
11950 flags. However, the only supported mnemonic in this mode
11951 says it doesn't. */
11952 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11953
11954 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11955 _("unshifted register required"));
11956 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11957
11958 inst.instruction = THUMB_OP16 (inst.instruction);
11959 inst.instruction |= Rd;
11960
11961 if (Rd == Rs)
11962 inst.instruction |= Rn << 3;
11963 else if (Rd == Rn)
11964 inst.instruction |= Rs << 3;
11965 else
11966 constraint (1, _("dest must overlap one source register"));
11967 }
11968 }
11969
11970 static void
11971 do_t_bfc (void)
11972 {
11973 unsigned Rd;
11974 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
11975 constraint (msb > 32, _("bit-field extends past end of register"));
11976 /* The instruction encoding stores the LSB and MSB,
11977 not the LSB and width. */
11978 Rd = inst.operands[0].reg;
11979 reject_bad_reg (Rd);
11980 inst.instruction |= Rd << 8;
11981 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
11982 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
11983 inst.instruction |= msb - 1;
11984 }
11985
11986 static void
11987 do_t_bfi (void)
11988 {
11989 int Rd, Rn;
11990 unsigned int msb;
11991
11992 Rd = inst.operands[0].reg;
11993 reject_bad_reg (Rd);
11994
11995 /* #0 in second position is alternative syntax for bfc, which is
11996 the same instruction but with REG_PC in the Rm field. */
11997 if (!inst.operands[1].isreg)
11998 Rn = REG_PC;
11999 else
12000 {
12001 Rn = inst.operands[1].reg;
12002 reject_bad_reg (Rn);
12003 }
12004
12005 msb = inst.operands[2].imm + inst.operands[3].imm;
12006 constraint (msb > 32, _("bit-field extends past end of register"));
12007 /* The instruction encoding stores the LSB and MSB,
12008 not the LSB and width. */
12009 inst.instruction |= Rd << 8;
12010 inst.instruction |= Rn << 16;
12011 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
12012 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
12013 inst.instruction |= msb - 1;
12014 }
12015
12016 static void
12017 do_t_bfx (void)
12018 {
12019 unsigned Rd, Rn;
12020
12021 Rd = inst.operands[0].reg;
12022 Rn = inst.operands[1].reg;
12023
12024 reject_bad_reg (Rd);
12025 reject_bad_reg (Rn);
12026
12027 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
12028 _("bit-field extends past end of register"));
12029 inst.instruction |= Rd << 8;
12030 inst.instruction |= Rn << 16;
12031 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
12032 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
12033 inst.instruction |= inst.operands[3].imm - 1;
12034 }
12035
12036 /* ARM V5 Thumb BLX (argument parse)
12037 BLX <target_addr> which is BLX(1)
12038 BLX <Rm> which is BLX(2)
12039 Unfortunately, there are two different opcodes for this mnemonic.
12040 So, the insns[].value is not used, and the code here zaps values
12041 into inst.instruction.
12042
12043 ??? How to take advantage of the additional two bits of displacement
12044 available in Thumb32 mode? Need new relocation? */
12045
12046 static void
12047 do_t_blx (void)
12048 {
12049 set_pred_insn_type_last ();
12050
12051 if (inst.operands[0].isreg)
12052 {
12053 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
12054 /* We have a register, so this is BLX(2). */
12055 inst.instruction |= inst.operands[0].reg << 3;
12056 }
12057 else
12058 {
12059 /* No register. This must be BLX(1). */
12060 inst.instruction = 0xf000e800;
12061 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
12062 }
12063 }
12064
12065 static void
12066 do_t_branch (void)
12067 {
12068 int opcode;
12069 int cond;
12070 bfd_reloc_code_real_type reloc;
12071
12072 cond = inst.cond;
12073 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN);
12074
12075 if (in_pred_block ())
12076 {
12077 /* Conditional branches inside IT blocks are encoded as unconditional
12078 branches. */
12079 cond = COND_ALWAYS;
12080 }
12081 else
12082 cond = inst.cond;
12083
12084 if (cond != COND_ALWAYS)
12085 opcode = T_MNEM_bcond;
12086 else
12087 opcode = inst.instruction;
12088
12089 if (unified_syntax
12090 && (inst.size_req == 4
12091 || (inst.size_req != 2
12092 && (inst.operands[0].hasreloc
12093 || inst.relocs[0].exp.X_op == O_constant))))
12094 {
12095 inst.instruction = THUMB_OP32(opcode);
12096 if (cond == COND_ALWAYS)
12097 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
12098 else
12099 {
12100 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
12101 _("selected architecture does not support "
12102 "wide conditional branch instruction"));
12103
12104 gas_assert (cond != 0xF);
12105 inst.instruction |= cond << 22;
12106 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
12107 }
12108 }
12109 else
12110 {
12111 inst.instruction = THUMB_OP16(opcode);
12112 if (cond == COND_ALWAYS)
12113 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
12114 else
12115 {
12116 inst.instruction |= cond << 8;
12117 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
12118 }
12119 /* Allow section relaxation. */
12120 if (unified_syntax && inst.size_req != 2)
12121 inst.relax = opcode;
12122 }
12123 inst.relocs[0].type = reloc;
12124 inst.relocs[0].pc_rel = 1;
12125 }
12126
12127 /* Actually do the work for Thumb state bkpt and hlt. The only difference
12128 between the two is the maximum immediate allowed - which is passed in
12129 RANGE. */
12130 static void
12131 do_t_bkpt_hlt1 (int range)
12132 {
12133 constraint (inst.cond != COND_ALWAYS,
12134 _("instruction is always unconditional"));
12135 if (inst.operands[0].present)
12136 {
12137 constraint (inst.operands[0].imm > range,
12138 _("immediate value out of range"));
12139 inst.instruction |= inst.operands[0].imm;
12140 }
12141
12142 set_pred_insn_type (NEUTRAL_IT_INSN);
12143 }
12144
12145 static void
12146 do_t_hlt (void)
12147 {
12148 do_t_bkpt_hlt1 (63);
12149 }
12150
12151 static void
12152 do_t_bkpt (void)
12153 {
12154 do_t_bkpt_hlt1 (255);
12155 }
12156
12157 static void
12158 do_t_branch23 (void)
12159 {
12160 set_pred_insn_type_last ();
12161 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
12162
12163 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
12164 this file. We used to simply ignore the PLT reloc type here --
12165 the branch encoding is now needed to deal with TLSCALL relocs.
12166 So if we see a PLT reloc now, put it back to how it used to be to
12167 keep the preexisting behaviour. */
12168 if (inst.relocs[0].type == BFD_RELOC_ARM_PLT32)
12169 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH23;
12170
12171 #if defined(OBJ_COFF)
12172 /* If the destination of the branch is a defined symbol which does not have
12173 the THUMB_FUNC attribute, then we must be calling a function which has
12174 the (interfacearm) attribute. We look for the Thumb entry point to that
12175 function and change the branch to refer to that function instead. */
12176 if ( inst.relocs[0].exp.X_op == O_symbol
12177 && inst.relocs[0].exp.X_add_symbol != NULL
12178 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
12179 && ! THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
12180 inst.relocs[0].exp.X_add_symbol
12181 = find_real_start (inst.relocs[0].exp.X_add_symbol);
12182 #endif
12183 }
12184
12185 static void
12186 do_t_bx (void)
12187 {
12188 set_pred_insn_type_last ();
12189 inst.instruction |= inst.operands[0].reg << 3;
12190 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
12191 should cause the alignment to be checked once it is known. This is
12192 because BX PC only works if the instruction is word aligned. */
12193 }
12194
12195 static void
12196 do_t_bxj (void)
12197 {
12198 int Rm;
12199
12200 set_pred_insn_type_last ();
12201 Rm = inst.operands[0].reg;
12202 reject_bad_reg (Rm);
12203 inst.instruction |= Rm << 16;
12204 }
12205
12206 static void
12207 do_t_clz (void)
12208 {
12209 unsigned Rd;
12210 unsigned Rm;
12211
12212 Rd = inst.operands[0].reg;
12213 Rm = inst.operands[1].reg;
12214
12215 reject_bad_reg (Rd);
12216 reject_bad_reg (Rm);
12217
12218 inst.instruction |= Rd << 8;
12219 inst.instruction |= Rm << 16;
12220 inst.instruction |= Rm;
12221 }
12222
12223 /* For the Armv8.1-M conditional instructions. */
12224 static void
12225 do_t_cond (void)
12226 {
12227 unsigned Rd, Rn, Rm;
12228 signed int cond;
12229
12230 constraint (inst.cond != COND_ALWAYS, BAD_COND);
12231
12232 Rd = inst.operands[0].reg;
12233 switch (inst.instruction)
12234 {
12235 case T_MNEM_csinc:
12236 case T_MNEM_csinv:
12237 case T_MNEM_csneg:
12238 case T_MNEM_csel:
12239 Rn = inst.operands[1].reg;
12240 Rm = inst.operands[2].reg;
12241 cond = inst.operands[3].imm;
12242 constraint (Rn == REG_SP, BAD_SP);
12243 constraint (Rm == REG_SP, BAD_SP);
12244 break;
12245
12246 case T_MNEM_cinc:
12247 case T_MNEM_cinv:
12248 case T_MNEM_cneg:
12249 Rn = inst.operands[1].reg;
12250 cond = inst.operands[2].imm;
12251 /* Invert the last bit to invert the cond. */
12252 cond = TOGGLE_BIT (cond, 0);
12253 constraint (Rn == REG_SP, BAD_SP);
12254 Rm = Rn;
12255 break;
12256
12257 case T_MNEM_csetm:
12258 case T_MNEM_cset:
12259 cond = inst.operands[1].imm;
12260 /* Invert the last bit to invert the cond. */
12261 cond = TOGGLE_BIT (cond, 0);
12262 Rn = REG_PC;
12263 Rm = REG_PC;
12264 break;
12265
12266 default: abort ();
12267 }
12268
12269 set_pred_insn_type (OUTSIDE_PRED_INSN);
12270 inst.instruction = THUMB_OP32 (inst.instruction);
12271 inst.instruction |= Rd << 8;
12272 inst.instruction |= Rn << 16;
12273 inst.instruction |= Rm;
12274 inst.instruction |= cond << 4;
12275 }
12276
12277 static void
12278 do_t_csdb (void)
12279 {
12280 set_pred_insn_type (OUTSIDE_PRED_INSN);
12281 }
12282
12283 static void
12284 do_t_cps (void)
12285 {
12286 set_pred_insn_type (OUTSIDE_PRED_INSN);
12287 inst.instruction |= inst.operands[0].imm;
12288 }
12289
12290 static void
12291 do_t_cpsi (void)
12292 {
12293 set_pred_insn_type (OUTSIDE_PRED_INSN);
12294 if (unified_syntax
12295 && (inst.operands[1].present || inst.size_req == 4)
12296 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
12297 {
12298 unsigned int imod = (inst.instruction & 0x0030) >> 4;
12299 inst.instruction = 0xf3af8000;
12300 inst.instruction |= imod << 9;
12301 inst.instruction |= inst.operands[0].imm << 5;
12302 if (inst.operands[1].present)
12303 inst.instruction |= 0x100 | inst.operands[1].imm;
12304 }
12305 else
12306 {
12307 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
12308 && (inst.operands[0].imm & 4),
12309 _("selected processor does not support 'A' form "
12310 "of this instruction"));
12311 constraint (inst.operands[1].present || inst.size_req == 4,
12312 _("Thumb does not support the 2-argument "
12313 "form of this instruction"));
12314 inst.instruction |= inst.operands[0].imm;
12315 }
12316 }
12317
12318 /* THUMB CPY instruction (argument parse). */
12319
12320 static void
12321 do_t_cpy (void)
12322 {
12323 if (inst.size_req == 4)
12324 {
12325 inst.instruction = THUMB_OP32 (T_MNEM_mov);
12326 inst.instruction |= inst.operands[0].reg << 8;
12327 inst.instruction |= inst.operands[1].reg;
12328 }
12329 else
12330 {
12331 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
12332 inst.instruction |= (inst.operands[0].reg & 0x7);
12333 inst.instruction |= inst.operands[1].reg << 3;
12334 }
12335 }
12336
12337 static void
12338 do_t_cbz (void)
12339 {
12340 set_pred_insn_type (OUTSIDE_PRED_INSN);
12341 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12342 inst.instruction |= inst.operands[0].reg;
12343 inst.relocs[0].pc_rel = 1;
12344 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH7;
12345 }
12346
12347 static void
12348 do_t_dbg (void)
12349 {
12350 inst.instruction |= inst.operands[0].imm;
12351 }
12352
12353 static void
12354 do_t_div (void)
12355 {
12356 unsigned Rd, Rn, Rm;
12357
12358 Rd = inst.operands[0].reg;
12359 Rn = (inst.operands[1].present
12360 ? inst.operands[1].reg : Rd);
12361 Rm = inst.operands[2].reg;
12362
12363 reject_bad_reg (Rd);
12364 reject_bad_reg (Rn);
12365 reject_bad_reg (Rm);
12366
12367 inst.instruction |= Rd << 8;
12368 inst.instruction |= Rn << 16;
12369 inst.instruction |= Rm;
12370 }
12371
12372 static void
12373 do_t_hint (void)
12374 {
12375 if (unified_syntax && inst.size_req == 4)
12376 inst.instruction = THUMB_OP32 (inst.instruction);
12377 else
12378 inst.instruction = THUMB_OP16 (inst.instruction);
12379 }
12380
12381 static void
12382 do_t_it (void)
12383 {
12384 unsigned int cond = inst.operands[0].imm;
12385
12386 set_pred_insn_type (IT_INSN);
12387 now_pred.mask = (inst.instruction & 0xf) | 0x10;
12388 now_pred.cc = cond;
12389 now_pred.warn_deprecated = FALSE;
12390 now_pred.type = SCALAR_PRED;
12391
12392 /* If the condition is a negative condition, invert the mask. */
12393 if ((cond & 0x1) == 0x0)
12394 {
12395 unsigned int mask = inst.instruction & 0x000f;
12396
12397 if ((mask & 0x7) == 0)
12398 {
12399 /* No conversion needed. */
12400 now_pred.block_length = 1;
12401 }
12402 else if ((mask & 0x3) == 0)
12403 {
12404 mask ^= 0x8;
12405 now_pred.block_length = 2;
12406 }
12407 else if ((mask & 0x1) == 0)
12408 {
12409 mask ^= 0xC;
12410 now_pred.block_length = 3;
12411 }
12412 else
12413 {
12414 mask ^= 0xE;
12415 now_pred.block_length = 4;
12416 }
12417
12418 inst.instruction &= 0xfff0;
12419 inst.instruction |= mask;
12420 }
12421
12422 inst.instruction |= cond << 4;
12423 }
12424
12425 /* Helper function used for both push/pop and ldm/stm. */
12426 static void
12427 encode_thumb2_multi (bfd_boolean do_io, int base, unsigned mask,
12428 bfd_boolean writeback)
12429 {
12430 bfd_boolean load, store;
12431
12432 gas_assert (base != -1 || !do_io);
12433 load = do_io && ((inst.instruction & (1 << 20)) != 0);
12434 store = do_io && !load;
12435
12436 if (mask & (1 << 13))
12437 inst.error = _("SP not allowed in register list");
12438
12439 if (do_io && (mask & (1 << base)) != 0
12440 && writeback)
12441 inst.error = _("having the base register in the register list when "
12442 "using write back is UNPREDICTABLE");
12443
12444 if (load)
12445 {
12446 if (mask & (1 << 15))
12447 {
12448 if (mask & (1 << 14))
12449 inst.error = _("LR and PC should not both be in register list");
12450 else
12451 set_pred_insn_type_last ();
12452 }
12453 }
12454 else if (store)
12455 {
12456 if (mask & (1 << 15))
12457 inst.error = _("PC not allowed in register list");
12458 }
12459
12460 if (do_io && ((mask & (mask - 1)) == 0))
12461 {
12462 /* Single register transfers implemented as str/ldr. */
12463 if (writeback)
12464 {
12465 if (inst.instruction & (1 << 23))
12466 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
12467 else
12468 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
12469 }
12470 else
12471 {
12472 if (inst.instruction & (1 << 23))
12473 inst.instruction = 0x00800000; /* ia -> [base] */
12474 else
12475 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
12476 }
12477
12478 inst.instruction |= 0xf8400000;
12479 if (load)
12480 inst.instruction |= 0x00100000;
12481
12482 mask = ffs (mask) - 1;
12483 mask <<= 12;
12484 }
12485 else if (writeback)
12486 inst.instruction |= WRITE_BACK;
12487
12488 inst.instruction |= mask;
12489 if (do_io)
12490 inst.instruction |= base << 16;
12491 }
12492
12493 static void
12494 do_t_ldmstm (void)
12495 {
12496 /* This really doesn't seem worth it. */
12497 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
12498 _("expression too complex"));
12499 constraint (inst.operands[1].writeback,
12500 _("Thumb load/store multiple does not support {reglist}^"));
12501
12502 if (unified_syntax)
12503 {
12504 bfd_boolean narrow;
12505 unsigned mask;
12506
12507 narrow = FALSE;
12508 /* See if we can use a 16-bit instruction. */
12509 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
12510 && inst.size_req != 4
12511 && !(inst.operands[1].imm & ~0xff))
12512 {
12513 mask = 1 << inst.operands[0].reg;
12514
12515 if (inst.operands[0].reg <= 7)
12516 {
12517 if (inst.instruction == T_MNEM_stmia
12518 ? inst.operands[0].writeback
12519 : (inst.operands[0].writeback
12520 == !(inst.operands[1].imm & mask)))
12521 {
12522 if (inst.instruction == T_MNEM_stmia
12523 && (inst.operands[1].imm & mask)
12524 && (inst.operands[1].imm & (mask - 1)))
12525 as_warn (_("value stored for r%d is UNKNOWN"),
12526 inst.operands[0].reg);
12527
12528 inst.instruction = THUMB_OP16 (inst.instruction);
12529 inst.instruction |= inst.operands[0].reg << 8;
12530 inst.instruction |= inst.operands[1].imm;
12531 narrow = TRUE;
12532 }
12533 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12534 {
12535 /* This means 1 register in reg list one of 3 situations:
12536 1. Instruction is stmia, but without writeback.
12537 2. lmdia without writeback, but with Rn not in
12538 reglist.
12539 3. ldmia with writeback, but with Rn in reglist.
12540 Case 3 is UNPREDICTABLE behaviour, so we handle
12541 case 1 and 2 which can be converted into a 16-bit
12542 str or ldr. The SP cases are handled below. */
12543 unsigned long opcode;
12544 /* First, record an error for Case 3. */
12545 if (inst.operands[1].imm & mask
12546 && inst.operands[0].writeback)
12547 inst.error =
12548 _("having the base register in the register list when "
12549 "using write back is UNPREDICTABLE");
12550
12551 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
12552 : T_MNEM_ldr);
12553 inst.instruction = THUMB_OP16 (opcode);
12554 inst.instruction |= inst.operands[0].reg << 3;
12555 inst.instruction |= (ffs (inst.operands[1].imm)-1);
12556 narrow = TRUE;
12557 }
12558 }
12559 else if (inst.operands[0] .reg == REG_SP)
12560 {
12561 if (inst.operands[0].writeback)
12562 {
12563 inst.instruction =
12564 THUMB_OP16 (inst.instruction == T_MNEM_stmia
12565 ? T_MNEM_push : T_MNEM_pop);
12566 inst.instruction |= inst.operands[1].imm;
12567 narrow = TRUE;
12568 }
12569 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12570 {
12571 inst.instruction =
12572 THUMB_OP16 (inst.instruction == T_MNEM_stmia
12573 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
12574 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
12575 narrow = TRUE;
12576 }
12577 }
12578 }
12579
12580 if (!narrow)
12581 {
12582 if (inst.instruction < 0xffff)
12583 inst.instruction = THUMB_OP32 (inst.instruction);
12584
12585 encode_thumb2_multi (TRUE /* do_io */, inst.operands[0].reg,
12586 inst.operands[1].imm,
12587 inst.operands[0].writeback);
12588 }
12589 }
12590 else
12591 {
12592 constraint (inst.operands[0].reg > 7
12593 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
12594 constraint (inst.instruction != T_MNEM_ldmia
12595 && inst.instruction != T_MNEM_stmia,
12596 _("Thumb-2 instruction only valid in unified syntax"));
12597 if (inst.instruction == T_MNEM_stmia)
12598 {
12599 if (!inst.operands[0].writeback)
12600 as_warn (_("this instruction will write back the base register"));
12601 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
12602 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
12603 as_warn (_("value stored for r%d is UNKNOWN"),
12604 inst.operands[0].reg);
12605 }
12606 else
12607 {
12608 if (!inst.operands[0].writeback
12609 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
12610 as_warn (_("this instruction will write back the base register"));
12611 else if (inst.operands[0].writeback
12612 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
12613 as_warn (_("this instruction will not write back the base register"));
12614 }
12615
12616 inst.instruction = THUMB_OP16 (inst.instruction);
12617 inst.instruction |= inst.operands[0].reg << 8;
12618 inst.instruction |= inst.operands[1].imm;
12619 }
12620 }
12621
12622 static void
12623 do_t_ldrex (void)
12624 {
12625 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
12626 || inst.operands[1].postind || inst.operands[1].writeback
12627 || inst.operands[1].immisreg || inst.operands[1].shifted
12628 || inst.operands[1].negative,
12629 BAD_ADDR_MODE);
12630
12631 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
12632
12633 inst.instruction |= inst.operands[0].reg << 12;
12634 inst.instruction |= inst.operands[1].reg << 16;
12635 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
12636 }
12637
12638 static void
12639 do_t_ldrexd (void)
12640 {
12641 if (!inst.operands[1].present)
12642 {
12643 constraint (inst.operands[0].reg == REG_LR,
12644 _("r14 not allowed as first register "
12645 "when second register is omitted"));
12646 inst.operands[1].reg = inst.operands[0].reg + 1;
12647 }
12648 constraint (inst.operands[0].reg == inst.operands[1].reg,
12649 BAD_OVERLAP);
12650
12651 inst.instruction |= inst.operands[0].reg << 12;
12652 inst.instruction |= inst.operands[1].reg << 8;
12653 inst.instruction |= inst.operands[2].reg << 16;
12654 }
12655
12656 static void
12657 do_t_ldst (void)
12658 {
12659 unsigned long opcode;
12660 int Rn;
12661
12662 if (inst.operands[0].isreg
12663 && !inst.operands[0].preind
12664 && inst.operands[0].reg == REG_PC)
12665 set_pred_insn_type_last ();
12666
12667 opcode = inst.instruction;
12668 if (unified_syntax)
12669 {
12670 if (!inst.operands[1].isreg)
12671 {
12672 if (opcode <= 0xffff)
12673 inst.instruction = THUMB_OP32 (opcode);
12674 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
12675 return;
12676 }
12677 if (inst.operands[1].isreg
12678 && !inst.operands[1].writeback
12679 && !inst.operands[1].shifted && !inst.operands[1].postind
12680 && !inst.operands[1].negative && inst.operands[0].reg <= 7
12681 && opcode <= 0xffff
12682 && inst.size_req != 4)
12683 {
12684 /* Insn may have a 16-bit form. */
12685 Rn = inst.operands[1].reg;
12686 if (inst.operands[1].immisreg)
12687 {
12688 inst.instruction = THUMB_OP16 (opcode);
12689 /* [Rn, Rik] */
12690 if (Rn <= 7 && inst.operands[1].imm <= 7)
12691 goto op16;
12692 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
12693 reject_bad_reg (inst.operands[1].imm);
12694 }
12695 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
12696 && opcode != T_MNEM_ldrsb)
12697 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
12698 || (Rn == REG_SP && opcode == T_MNEM_str))
12699 {
12700 /* [Rn, #const] */
12701 if (Rn > 7)
12702 {
12703 if (Rn == REG_PC)
12704 {
12705 if (inst.relocs[0].pc_rel)
12706 opcode = T_MNEM_ldr_pc2;
12707 else
12708 opcode = T_MNEM_ldr_pc;
12709 }
12710 else
12711 {
12712 if (opcode == T_MNEM_ldr)
12713 opcode = T_MNEM_ldr_sp;
12714 else
12715 opcode = T_MNEM_str_sp;
12716 }
12717 inst.instruction = inst.operands[0].reg << 8;
12718 }
12719 else
12720 {
12721 inst.instruction = inst.operands[0].reg;
12722 inst.instruction |= inst.operands[1].reg << 3;
12723 }
12724 inst.instruction |= THUMB_OP16 (opcode);
12725 if (inst.size_req == 2)
12726 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12727 else
12728 inst.relax = opcode;
12729 return;
12730 }
12731 }
12732 /* Definitely a 32-bit variant. */
12733
12734 /* Warning for Erratum 752419. */
12735 if (opcode == T_MNEM_ldr
12736 && inst.operands[0].reg == REG_SP
12737 && inst.operands[1].writeback == 1
12738 && !inst.operands[1].immisreg)
12739 {
12740 if (no_cpu_selected ()
12741 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
12742 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
12743 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
12744 as_warn (_("This instruction may be unpredictable "
12745 "if executed on M-profile cores "
12746 "with interrupts enabled."));
12747 }
12748
12749 /* Do some validations regarding addressing modes. */
12750 if (inst.operands[1].immisreg)
12751 reject_bad_reg (inst.operands[1].imm);
12752
12753 constraint (inst.operands[1].writeback == 1
12754 && inst.operands[0].reg == inst.operands[1].reg,
12755 BAD_OVERLAP);
12756
12757 inst.instruction = THUMB_OP32 (opcode);
12758 inst.instruction |= inst.operands[0].reg << 12;
12759 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
12760 check_ldr_r15_aligned ();
12761 return;
12762 }
12763
12764 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12765
12766 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
12767 {
12768 /* Only [Rn,Rm] is acceptable. */
12769 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
12770 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
12771 || inst.operands[1].postind || inst.operands[1].shifted
12772 || inst.operands[1].negative,
12773 _("Thumb does not support this addressing mode"));
12774 inst.instruction = THUMB_OP16 (inst.instruction);
12775 goto op16;
12776 }
12777
12778 inst.instruction = THUMB_OP16 (inst.instruction);
12779 if (!inst.operands[1].isreg)
12780 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
12781 return;
12782
12783 constraint (!inst.operands[1].preind
12784 || inst.operands[1].shifted
12785 || inst.operands[1].writeback,
12786 _("Thumb does not support this addressing mode"));
12787 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
12788 {
12789 constraint (inst.instruction & 0x0600,
12790 _("byte or halfword not valid for base register"));
12791 constraint (inst.operands[1].reg == REG_PC
12792 && !(inst.instruction & THUMB_LOAD_BIT),
12793 _("r15 based store not allowed"));
12794 constraint (inst.operands[1].immisreg,
12795 _("invalid base register for register offset"));
12796
12797 if (inst.operands[1].reg == REG_PC)
12798 inst.instruction = T_OPCODE_LDR_PC;
12799 else if (inst.instruction & THUMB_LOAD_BIT)
12800 inst.instruction = T_OPCODE_LDR_SP;
12801 else
12802 inst.instruction = T_OPCODE_STR_SP;
12803
12804 inst.instruction |= inst.operands[0].reg << 8;
12805 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12806 return;
12807 }
12808
12809 constraint (inst.operands[1].reg > 7, BAD_HIREG);
12810 if (!inst.operands[1].immisreg)
12811 {
12812 /* Immediate offset. */
12813 inst.instruction |= inst.operands[0].reg;
12814 inst.instruction |= inst.operands[1].reg << 3;
12815 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12816 return;
12817 }
12818
12819 /* Register offset. */
12820 constraint (inst.operands[1].imm > 7, BAD_HIREG);
12821 constraint (inst.operands[1].negative,
12822 _("Thumb does not support this addressing mode"));
12823
12824 op16:
12825 switch (inst.instruction)
12826 {
12827 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
12828 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
12829 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
12830 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
12831 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
12832 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
12833 case 0x5600 /* ldrsb */:
12834 case 0x5e00 /* ldrsh */: break;
12835 default: abort ();
12836 }
12837
12838 inst.instruction |= inst.operands[0].reg;
12839 inst.instruction |= inst.operands[1].reg << 3;
12840 inst.instruction |= inst.operands[1].imm << 6;
12841 }
12842
12843 static void
12844 do_t_ldstd (void)
12845 {
12846 if (!inst.operands[1].present)
12847 {
12848 inst.operands[1].reg = inst.operands[0].reg + 1;
12849 constraint (inst.operands[0].reg == REG_LR,
12850 _("r14 not allowed here"));
12851 constraint (inst.operands[0].reg == REG_R12,
12852 _("r12 not allowed here"));
12853 }
12854
12855 if (inst.operands[2].writeback
12856 && (inst.operands[0].reg == inst.operands[2].reg
12857 || inst.operands[1].reg == inst.operands[2].reg))
12858 as_warn (_("base register written back, and overlaps "
12859 "one of transfer registers"));
12860
12861 inst.instruction |= inst.operands[0].reg << 12;
12862 inst.instruction |= inst.operands[1].reg << 8;
12863 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
12864 }
12865
12866 static void
12867 do_t_ldstt (void)
12868 {
12869 inst.instruction |= inst.operands[0].reg << 12;
12870 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
12871 }
12872
12873 static void
12874 do_t_mla (void)
12875 {
12876 unsigned Rd, Rn, Rm, Ra;
12877
12878 Rd = inst.operands[0].reg;
12879 Rn = inst.operands[1].reg;
12880 Rm = inst.operands[2].reg;
12881 Ra = inst.operands[3].reg;
12882
12883 reject_bad_reg (Rd);
12884 reject_bad_reg (Rn);
12885 reject_bad_reg (Rm);
12886 reject_bad_reg (Ra);
12887
12888 inst.instruction |= Rd << 8;
12889 inst.instruction |= Rn << 16;
12890 inst.instruction |= Rm;
12891 inst.instruction |= Ra << 12;
12892 }
12893
12894 static void
12895 do_t_mlal (void)
12896 {
12897 unsigned RdLo, RdHi, Rn, Rm;
12898
12899 RdLo = inst.operands[0].reg;
12900 RdHi = inst.operands[1].reg;
12901 Rn = inst.operands[2].reg;
12902 Rm = inst.operands[3].reg;
12903
12904 reject_bad_reg (RdLo);
12905 reject_bad_reg (RdHi);
12906 reject_bad_reg (Rn);
12907 reject_bad_reg (Rm);
12908
12909 inst.instruction |= RdLo << 12;
12910 inst.instruction |= RdHi << 8;
12911 inst.instruction |= Rn << 16;
12912 inst.instruction |= Rm;
12913 }
12914
12915 static void
12916 do_t_mov_cmp (void)
12917 {
12918 unsigned Rn, Rm;
12919
12920 Rn = inst.operands[0].reg;
12921 Rm = inst.operands[1].reg;
12922
12923 if (Rn == REG_PC)
12924 set_pred_insn_type_last ();
12925
12926 if (unified_syntax)
12927 {
12928 int r0off = (inst.instruction == T_MNEM_mov
12929 || inst.instruction == T_MNEM_movs) ? 8 : 16;
12930 unsigned long opcode;
12931 bfd_boolean narrow;
12932 bfd_boolean low_regs;
12933
12934 low_regs = (Rn <= 7 && Rm <= 7);
12935 opcode = inst.instruction;
12936 if (in_pred_block ())
12937 narrow = opcode != T_MNEM_movs;
12938 else
12939 narrow = opcode != T_MNEM_movs || low_regs;
12940 if (inst.size_req == 4
12941 || inst.operands[1].shifted)
12942 narrow = FALSE;
12943
12944 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
12945 if (opcode == T_MNEM_movs && inst.operands[1].isreg
12946 && !inst.operands[1].shifted
12947 && Rn == REG_PC
12948 && Rm == REG_LR)
12949 {
12950 inst.instruction = T2_SUBS_PC_LR;
12951 return;
12952 }
12953
12954 if (opcode == T_MNEM_cmp)
12955 {
12956 constraint (Rn == REG_PC, BAD_PC);
12957 if (narrow)
12958 {
12959 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
12960 but valid. */
12961 warn_deprecated_sp (Rm);
12962 /* R15 was documented as a valid choice for Rm in ARMv6,
12963 but as UNPREDICTABLE in ARMv7. ARM's proprietary
12964 tools reject R15, so we do too. */
12965 constraint (Rm == REG_PC, BAD_PC);
12966 }
12967 else
12968 reject_bad_reg (Rm);
12969 }
12970 else if (opcode == T_MNEM_mov
12971 || opcode == T_MNEM_movs)
12972 {
12973 if (inst.operands[1].isreg)
12974 {
12975 if (opcode == T_MNEM_movs)
12976 {
12977 reject_bad_reg (Rn);
12978 reject_bad_reg (Rm);
12979 }
12980 else if (narrow)
12981 {
12982 /* This is mov.n. */
12983 if ((Rn == REG_SP || Rn == REG_PC)
12984 && (Rm == REG_SP || Rm == REG_PC))
12985 {
12986 as_tsktsk (_("Use of r%u as a source register is "
12987 "deprecated when r%u is the destination "
12988 "register."), Rm, Rn);
12989 }
12990 }
12991 else
12992 {
12993 /* This is mov.w. */
12994 constraint (Rn == REG_PC, BAD_PC);
12995 constraint (Rm == REG_PC, BAD_PC);
12996 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12997 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
12998 }
12999 }
13000 else
13001 reject_bad_reg (Rn);
13002 }
13003
13004 if (!inst.operands[1].isreg)
13005 {
13006 /* Immediate operand. */
13007 if (!in_pred_block () && opcode == T_MNEM_mov)
13008 narrow = 0;
13009 if (low_regs && narrow)
13010 {
13011 inst.instruction = THUMB_OP16 (opcode);
13012 inst.instruction |= Rn << 8;
13013 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
13014 || inst.relocs[0].type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
13015 {
13016 if (inst.size_req == 2)
13017 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
13018 else
13019 inst.relax = opcode;
13020 }
13021 }
13022 else
13023 {
13024 constraint ((inst.relocs[0].type
13025 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
13026 && (inst.relocs[0].type
13027 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
13028 THUMB1_RELOC_ONLY);
13029
13030 inst.instruction = THUMB_OP32 (inst.instruction);
13031 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13032 inst.instruction |= Rn << r0off;
13033 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13034 }
13035 }
13036 else if (inst.operands[1].shifted && inst.operands[1].immisreg
13037 && (inst.instruction == T_MNEM_mov
13038 || inst.instruction == T_MNEM_movs))
13039 {
13040 /* Register shifts are encoded as separate shift instructions. */
13041 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
13042
13043 if (in_pred_block ())
13044 narrow = !flags;
13045 else
13046 narrow = flags;
13047
13048 if (inst.size_req == 4)
13049 narrow = FALSE;
13050
13051 if (!low_regs || inst.operands[1].imm > 7)
13052 narrow = FALSE;
13053
13054 if (Rn != Rm)
13055 narrow = FALSE;
13056
13057 switch (inst.operands[1].shift_kind)
13058 {
13059 case SHIFT_LSL:
13060 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
13061 break;
13062 case SHIFT_ASR:
13063 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
13064 break;
13065 case SHIFT_LSR:
13066 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
13067 break;
13068 case SHIFT_ROR:
13069 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
13070 break;
13071 default:
13072 abort ();
13073 }
13074
13075 inst.instruction = opcode;
13076 if (narrow)
13077 {
13078 inst.instruction |= Rn;
13079 inst.instruction |= inst.operands[1].imm << 3;
13080 }
13081 else
13082 {
13083 if (flags)
13084 inst.instruction |= CONDS_BIT;
13085
13086 inst.instruction |= Rn << 8;
13087 inst.instruction |= Rm << 16;
13088 inst.instruction |= inst.operands[1].imm;
13089 }
13090 }
13091 else if (!narrow)
13092 {
13093 /* Some mov with immediate shift have narrow variants.
13094 Register shifts are handled above. */
13095 if (low_regs && inst.operands[1].shifted
13096 && (inst.instruction == T_MNEM_mov
13097 || inst.instruction == T_MNEM_movs))
13098 {
13099 if (in_pred_block ())
13100 narrow = (inst.instruction == T_MNEM_mov);
13101 else
13102 narrow = (inst.instruction == T_MNEM_movs);
13103 }
13104
13105 if (narrow)
13106 {
13107 switch (inst.operands[1].shift_kind)
13108 {
13109 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
13110 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
13111 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
13112 default: narrow = FALSE; break;
13113 }
13114 }
13115
13116 if (narrow)
13117 {
13118 inst.instruction |= Rn;
13119 inst.instruction |= Rm << 3;
13120 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13121 }
13122 else
13123 {
13124 inst.instruction = THUMB_OP32 (inst.instruction);
13125 inst.instruction |= Rn << r0off;
13126 encode_thumb32_shifted_operand (1);
13127 }
13128 }
13129 else
13130 switch (inst.instruction)
13131 {
13132 case T_MNEM_mov:
13133 /* In v4t or v5t a move of two lowregs produces unpredictable
13134 results. Don't allow this. */
13135 if (low_regs)
13136 {
13137 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
13138 "MOV Rd, Rs with two low registers is not "
13139 "permitted on this architecture");
13140 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
13141 arm_ext_v6);
13142 }
13143
13144 inst.instruction = T_OPCODE_MOV_HR;
13145 inst.instruction |= (Rn & 0x8) << 4;
13146 inst.instruction |= (Rn & 0x7);
13147 inst.instruction |= Rm << 3;
13148 break;
13149
13150 case T_MNEM_movs:
13151 /* We know we have low registers at this point.
13152 Generate LSLS Rd, Rs, #0. */
13153 inst.instruction = T_OPCODE_LSL_I;
13154 inst.instruction |= Rn;
13155 inst.instruction |= Rm << 3;
13156 break;
13157
13158 case T_MNEM_cmp:
13159 if (low_regs)
13160 {
13161 inst.instruction = T_OPCODE_CMP_LR;
13162 inst.instruction |= Rn;
13163 inst.instruction |= Rm << 3;
13164 }
13165 else
13166 {
13167 inst.instruction = T_OPCODE_CMP_HR;
13168 inst.instruction |= (Rn & 0x8) << 4;
13169 inst.instruction |= (Rn & 0x7);
13170 inst.instruction |= Rm << 3;
13171 }
13172 break;
13173 }
13174 return;
13175 }
13176
13177 inst.instruction = THUMB_OP16 (inst.instruction);
13178
13179 /* PR 10443: Do not silently ignore shifted operands. */
13180 constraint (inst.operands[1].shifted,
13181 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
13182
13183 if (inst.operands[1].isreg)
13184 {
13185 if (Rn < 8 && Rm < 8)
13186 {
13187 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
13188 since a MOV instruction produces unpredictable results. */
13189 if (inst.instruction == T_OPCODE_MOV_I8)
13190 inst.instruction = T_OPCODE_ADD_I3;
13191 else
13192 inst.instruction = T_OPCODE_CMP_LR;
13193
13194 inst.instruction |= Rn;
13195 inst.instruction |= Rm << 3;
13196 }
13197 else
13198 {
13199 if (inst.instruction == T_OPCODE_MOV_I8)
13200 inst.instruction = T_OPCODE_MOV_HR;
13201 else
13202 inst.instruction = T_OPCODE_CMP_HR;
13203 do_t_cpy ();
13204 }
13205 }
13206 else
13207 {
13208 constraint (Rn > 7,
13209 _("only lo regs allowed with immediate"));
13210 inst.instruction |= Rn << 8;
13211 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
13212 }
13213 }
13214
13215 static void
13216 do_t_mov16 (void)
13217 {
13218 unsigned Rd;
13219 bfd_vma imm;
13220 bfd_boolean top;
13221
13222 top = (inst.instruction & 0x00800000) != 0;
13223 if (inst.relocs[0].type == BFD_RELOC_ARM_MOVW)
13224 {
13225 constraint (top, _(":lower16: not allowed in this instruction"));
13226 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVW;
13227 }
13228 else if (inst.relocs[0].type == BFD_RELOC_ARM_MOVT)
13229 {
13230 constraint (!top, _(":upper16: not allowed in this instruction"));
13231 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVT;
13232 }
13233
13234 Rd = inst.operands[0].reg;
13235 reject_bad_reg (Rd);
13236
13237 inst.instruction |= Rd << 8;
13238 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
13239 {
13240 imm = inst.relocs[0].exp.X_add_number;
13241 inst.instruction |= (imm & 0xf000) << 4;
13242 inst.instruction |= (imm & 0x0800) << 15;
13243 inst.instruction |= (imm & 0x0700) << 4;
13244 inst.instruction |= (imm & 0x00ff);
13245 }
13246 }
13247
13248 static void
13249 do_t_mvn_tst (void)
13250 {
13251 unsigned Rn, Rm;
13252
13253 Rn = inst.operands[0].reg;
13254 Rm = inst.operands[1].reg;
13255
13256 if (inst.instruction == T_MNEM_cmp
13257 || inst.instruction == T_MNEM_cmn)
13258 constraint (Rn == REG_PC, BAD_PC);
13259 else
13260 reject_bad_reg (Rn);
13261 reject_bad_reg (Rm);
13262
13263 if (unified_syntax)
13264 {
13265 int r0off = (inst.instruction == T_MNEM_mvn
13266 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
13267 bfd_boolean narrow;
13268
13269 if (inst.size_req == 4
13270 || inst.instruction > 0xffff
13271 || inst.operands[1].shifted
13272 || Rn > 7 || Rm > 7)
13273 narrow = FALSE;
13274 else if (inst.instruction == T_MNEM_cmn
13275 || inst.instruction == T_MNEM_tst)
13276 narrow = TRUE;
13277 else if (THUMB_SETS_FLAGS (inst.instruction))
13278 narrow = !in_pred_block ();
13279 else
13280 narrow = in_pred_block ();
13281
13282 if (!inst.operands[1].isreg)
13283 {
13284 /* For an immediate, we always generate a 32-bit opcode;
13285 section relaxation will shrink it later if possible. */
13286 if (inst.instruction < 0xffff)
13287 inst.instruction = THUMB_OP32 (inst.instruction);
13288 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13289 inst.instruction |= Rn << r0off;
13290 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13291 }
13292 else
13293 {
13294 /* See if we can do this with a 16-bit instruction. */
13295 if (narrow)
13296 {
13297 inst.instruction = THUMB_OP16 (inst.instruction);
13298 inst.instruction |= Rn;
13299 inst.instruction |= Rm << 3;
13300 }
13301 else
13302 {
13303 constraint (inst.operands[1].shifted
13304 && inst.operands[1].immisreg,
13305 _("shift must be constant"));
13306 if (inst.instruction < 0xffff)
13307 inst.instruction = THUMB_OP32 (inst.instruction);
13308 inst.instruction |= Rn << r0off;
13309 encode_thumb32_shifted_operand (1);
13310 }
13311 }
13312 }
13313 else
13314 {
13315 constraint (inst.instruction > 0xffff
13316 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
13317 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
13318 _("unshifted register required"));
13319 constraint (Rn > 7 || Rm > 7,
13320 BAD_HIREG);
13321
13322 inst.instruction = THUMB_OP16 (inst.instruction);
13323 inst.instruction |= Rn;
13324 inst.instruction |= Rm << 3;
13325 }
13326 }
13327
13328 static void
13329 do_t_mrs (void)
13330 {
13331 unsigned Rd;
13332
13333 if (do_vfp_nsyn_mrs () == SUCCESS)
13334 return;
13335
13336 Rd = inst.operands[0].reg;
13337 reject_bad_reg (Rd);
13338 inst.instruction |= Rd << 8;
13339
13340 if (inst.operands[1].isreg)
13341 {
13342 unsigned br = inst.operands[1].reg;
13343 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
13344 as_bad (_("bad register for mrs"));
13345
13346 inst.instruction |= br & (0xf << 16);
13347 inst.instruction |= (br & 0x300) >> 4;
13348 inst.instruction |= (br & SPSR_BIT) >> 2;
13349 }
13350 else
13351 {
13352 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13353
13354 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
13355 {
13356 /* PR gas/12698: The constraint is only applied for m_profile.
13357 If the user has specified -march=all, we want to ignore it as
13358 we are building for any CPU type, including non-m variants. */
13359 bfd_boolean m_profile =
13360 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
13361 constraint ((flags != 0) && m_profile, _("selected processor does "
13362 "not support requested special purpose register"));
13363 }
13364 else
13365 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
13366 devices). */
13367 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
13368 _("'APSR', 'CPSR' or 'SPSR' expected"));
13369
13370 inst.instruction |= (flags & SPSR_BIT) >> 2;
13371 inst.instruction |= inst.operands[1].imm & 0xff;
13372 inst.instruction |= 0xf0000;
13373 }
13374 }
13375
13376 static void
13377 do_t_msr (void)
13378 {
13379 int flags;
13380 unsigned Rn;
13381
13382 if (do_vfp_nsyn_msr () == SUCCESS)
13383 return;
13384
13385 constraint (!inst.operands[1].isreg,
13386 _("Thumb encoding does not support an immediate here"));
13387
13388 if (inst.operands[0].isreg)
13389 flags = (int)(inst.operands[0].reg);
13390 else
13391 flags = inst.operands[0].imm;
13392
13393 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
13394 {
13395 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13396
13397 /* PR gas/12698: The constraint is only applied for m_profile.
13398 If the user has specified -march=all, we want to ignore it as
13399 we are building for any CPU type, including non-m variants. */
13400 bfd_boolean m_profile =
13401 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
13402 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13403 && (bits & ~(PSR_s | PSR_f)) != 0)
13404 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13405 && bits != PSR_f)) && m_profile,
13406 _("selected processor does not support requested special "
13407 "purpose register"));
13408 }
13409 else
13410 constraint ((flags & 0xff) != 0, _("selected processor does not support "
13411 "requested special purpose register"));
13412
13413 Rn = inst.operands[1].reg;
13414 reject_bad_reg (Rn);
13415
13416 inst.instruction |= (flags & SPSR_BIT) >> 2;
13417 inst.instruction |= (flags & 0xf0000) >> 8;
13418 inst.instruction |= (flags & 0x300) >> 4;
13419 inst.instruction |= (flags & 0xff);
13420 inst.instruction |= Rn << 16;
13421 }
13422
13423 static void
13424 do_t_mul (void)
13425 {
13426 bfd_boolean narrow;
13427 unsigned Rd, Rn, Rm;
13428
13429 if (!inst.operands[2].present)
13430 inst.operands[2].reg = inst.operands[0].reg;
13431
13432 Rd = inst.operands[0].reg;
13433 Rn = inst.operands[1].reg;
13434 Rm = inst.operands[2].reg;
13435
13436 if (unified_syntax)
13437 {
13438 if (inst.size_req == 4
13439 || (Rd != Rn
13440 && Rd != Rm)
13441 || Rn > 7
13442 || Rm > 7)
13443 narrow = FALSE;
13444 else if (inst.instruction == T_MNEM_muls)
13445 narrow = !in_pred_block ();
13446 else
13447 narrow = in_pred_block ();
13448 }
13449 else
13450 {
13451 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
13452 constraint (Rn > 7 || Rm > 7,
13453 BAD_HIREG);
13454 narrow = TRUE;
13455 }
13456
13457 if (narrow)
13458 {
13459 /* 16-bit MULS/Conditional MUL. */
13460 inst.instruction = THUMB_OP16 (inst.instruction);
13461 inst.instruction |= Rd;
13462
13463 if (Rd == Rn)
13464 inst.instruction |= Rm << 3;
13465 else if (Rd == Rm)
13466 inst.instruction |= Rn << 3;
13467 else
13468 constraint (1, _("dest must overlap one source register"));
13469 }
13470 else
13471 {
13472 constraint (inst.instruction != T_MNEM_mul,
13473 _("Thumb-2 MUL must not set flags"));
13474 /* 32-bit MUL. */
13475 inst.instruction = THUMB_OP32 (inst.instruction);
13476 inst.instruction |= Rd << 8;
13477 inst.instruction |= Rn << 16;
13478 inst.instruction |= Rm << 0;
13479
13480 reject_bad_reg (Rd);
13481 reject_bad_reg (Rn);
13482 reject_bad_reg (Rm);
13483 }
13484 }
13485
13486 static void
13487 do_t_mull (void)
13488 {
13489 unsigned RdLo, RdHi, Rn, Rm;
13490
13491 RdLo = inst.operands[0].reg;
13492 RdHi = inst.operands[1].reg;
13493 Rn = inst.operands[2].reg;
13494 Rm = inst.operands[3].reg;
13495
13496 reject_bad_reg (RdLo);
13497 reject_bad_reg (RdHi);
13498 reject_bad_reg (Rn);
13499 reject_bad_reg (Rm);
13500
13501 inst.instruction |= RdLo << 12;
13502 inst.instruction |= RdHi << 8;
13503 inst.instruction |= Rn << 16;
13504 inst.instruction |= Rm;
13505
13506 if (RdLo == RdHi)
13507 as_tsktsk (_("rdhi and rdlo must be different"));
13508 }
13509
13510 static void
13511 do_t_nop (void)
13512 {
13513 set_pred_insn_type (NEUTRAL_IT_INSN);
13514
13515 if (unified_syntax)
13516 {
13517 if (inst.size_req == 4 || inst.operands[0].imm > 15)
13518 {
13519 inst.instruction = THUMB_OP32 (inst.instruction);
13520 inst.instruction |= inst.operands[0].imm;
13521 }
13522 else
13523 {
13524 /* PR9722: Check for Thumb2 availability before
13525 generating a thumb2 nop instruction. */
13526 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
13527 {
13528 inst.instruction = THUMB_OP16 (inst.instruction);
13529 inst.instruction |= inst.operands[0].imm << 4;
13530 }
13531 else
13532 inst.instruction = 0x46c0;
13533 }
13534 }
13535 else
13536 {
13537 constraint (inst.operands[0].present,
13538 _("Thumb does not support NOP with hints"));
13539 inst.instruction = 0x46c0;
13540 }
13541 }
13542
13543 static void
13544 do_t_neg (void)
13545 {
13546 if (unified_syntax)
13547 {
13548 bfd_boolean narrow;
13549
13550 if (THUMB_SETS_FLAGS (inst.instruction))
13551 narrow = !in_pred_block ();
13552 else
13553 narrow = in_pred_block ();
13554 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13555 narrow = FALSE;
13556 if (inst.size_req == 4)
13557 narrow = FALSE;
13558
13559 if (!narrow)
13560 {
13561 inst.instruction = THUMB_OP32 (inst.instruction);
13562 inst.instruction |= inst.operands[0].reg << 8;
13563 inst.instruction |= inst.operands[1].reg << 16;
13564 }
13565 else
13566 {
13567 inst.instruction = THUMB_OP16 (inst.instruction);
13568 inst.instruction |= inst.operands[0].reg;
13569 inst.instruction |= inst.operands[1].reg << 3;
13570 }
13571 }
13572 else
13573 {
13574 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
13575 BAD_HIREG);
13576 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13577
13578 inst.instruction = THUMB_OP16 (inst.instruction);
13579 inst.instruction |= inst.operands[0].reg;
13580 inst.instruction |= inst.operands[1].reg << 3;
13581 }
13582 }
13583
13584 static void
13585 do_t_orn (void)
13586 {
13587 unsigned Rd, Rn;
13588
13589 Rd = inst.operands[0].reg;
13590 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
13591
13592 reject_bad_reg (Rd);
13593 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
13594 reject_bad_reg (Rn);
13595
13596 inst.instruction |= Rd << 8;
13597 inst.instruction |= Rn << 16;
13598
13599 if (!inst.operands[2].isreg)
13600 {
13601 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13602 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13603 }
13604 else
13605 {
13606 unsigned Rm;
13607
13608 Rm = inst.operands[2].reg;
13609 reject_bad_reg (Rm);
13610
13611 constraint (inst.operands[2].shifted
13612 && inst.operands[2].immisreg,
13613 _("shift must be constant"));
13614 encode_thumb32_shifted_operand (2);
13615 }
13616 }
13617
13618 static void
13619 do_t_pkhbt (void)
13620 {
13621 unsigned Rd, Rn, Rm;
13622
13623 Rd = inst.operands[0].reg;
13624 Rn = inst.operands[1].reg;
13625 Rm = inst.operands[2].reg;
13626
13627 reject_bad_reg (Rd);
13628 reject_bad_reg (Rn);
13629 reject_bad_reg (Rm);
13630
13631 inst.instruction |= Rd << 8;
13632 inst.instruction |= Rn << 16;
13633 inst.instruction |= Rm;
13634 if (inst.operands[3].present)
13635 {
13636 unsigned int val = inst.relocs[0].exp.X_add_number;
13637 constraint (inst.relocs[0].exp.X_op != O_constant,
13638 _("expression too complex"));
13639 inst.instruction |= (val & 0x1c) << 10;
13640 inst.instruction |= (val & 0x03) << 6;
13641 }
13642 }
13643
13644 static void
13645 do_t_pkhtb (void)
13646 {
13647 if (!inst.operands[3].present)
13648 {
13649 unsigned Rtmp;
13650
13651 inst.instruction &= ~0x00000020;
13652
13653 /* PR 10168. Swap the Rm and Rn registers. */
13654 Rtmp = inst.operands[1].reg;
13655 inst.operands[1].reg = inst.operands[2].reg;
13656 inst.operands[2].reg = Rtmp;
13657 }
13658 do_t_pkhbt ();
13659 }
13660
13661 static void
13662 do_t_pld (void)
13663 {
13664 if (inst.operands[0].immisreg)
13665 reject_bad_reg (inst.operands[0].imm);
13666
13667 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
13668 }
13669
13670 static void
13671 do_t_push_pop (void)
13672 {
13673 unsigned mask;
13674
13675 constraint (inst.operands[0].writeback,
13676 _("push/pop do not support {reglist}^"));
13677 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
13678 _("expression too complex"));
13679
13680 mask = inst.operands[0].imm;
13681 if (inst.size_req != 4 && (mask & ~0xff) == 0)
13682 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
13683 else if (inst.size_req != 4
13684 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
13685 ? REG_LR : REG_PC)))
13686 {
13687 inst.instruction = THUMB_OP16 (inst.instruction);
13688 inst.instruction |= THUMB_PP_PC_LR;
13689 inst.instruction |= mask & 0xff;
13690 }
13691 else if (unified_syntax)
13692 {
13693 inst.instruction = THUMB_OP32 (inst.instruction);
13694 encode_thumb2_multi (TRUE /* do_io */, 13, mask, TRUE);
13695 }
13696 else
13697 {
13698 inst.error = _("invalid register list to push/pop instruction");
13699 return;
13700 }
13701 }
13702
13703 static void
13704 do_t_clrm (void)
13705 {
13706 if (unified_syntax)
13707 encode_thumb2_multi (FALSE /* do_io */, -1, inst.operands[0].imm, FALSE);
13708 else
13709 {
13710 inst.error = _("invalid register list to push/pop instruction");
13711 return;
13712 }
13713 }
13714
13715 static void
13716 do_t_vscclrm (void)
13717 {
13718 if (inst.operands[0].issingle)
13719 {
13720 inst.instruction |= (inst.operands[0].reg & 0x1) << 22;
13721 inst.instruction |= (inst.operands[0].reg & 0x1e) << 11;
13722 inst.instruction |= inst.operands[0].imm;
13723 }
13724 else
13725 {
13726 inst.instruction |= (inst.operands[0].reg & 0x10) << 18;
13727 inst.instruction |= (inst.operands[0].reg & 0xf) << 12;
13728 inst.instruction |= 1 << 8;
13729 inst.instruction |= inst.operands[0].imm << 1;
13730 }
13731 }
13732
13733 static void
13734 do_t_rbit (void)
13735 {
13736 unsigned Rd, Rm;
13737
13738 Rd = inst.operands[0].reg;
13739 Rm = inst.operands[1].reg;
13740
13741 reject_bad_reg (Rd);
13742 reject_bad_reg (Rm);
13743
13744 inst.instruction |= Rd << 8;
13745 inst.instruction |= Rm << 16;
13746 inst.instruction |= Rm;
13747 }
13748
13749 static void
13750 do_t_rev (void)
13751 {
13752 unsigned Rd, Rm;
13753
13754 Rd = inst.operands[0].reg;
13755 Rm = inst.operands[1].reg;
13756
13757 reject_bad_reg (Rd);
13758 reject_bad_reg (Rm);
13759
13760 if (Rd <= 7 && Rm <= 7
13761 && inst.size_req != 4)
13762 {
13763 inst.instruction = THUMB_OP16 (inst.instruction);
13764 inst.instruction |= Rd;
13765 inst.instruction |= Rm << 3;
13766 }
13767 else if (unified_syntax)
13768 {
13769 inst.instruction = THUMB_OP32 (inst.instruction);
13770 inst.instruction |= Rd << 8;
13771 inst.instruction |= Rm << 16;
13772 inst.instruction |= Rm;
13773 }
13774 else
13775 inst.error = BAD_HIREG;
13776 }
13777
13778 static void
13779 do_t_rrx (void)
13780 {
13781 unsigned Rd, Rm;
13782
13783 Rd = inst.operands[0].reg;
13784 Rm = inst.operands[1].reg;
13785
13786 reject_bad_reg (Rd);
13787 reject_bad_reg (Rm);
13788
13789 inst.instruction |= Rd << 8;
13790 inst.instruction |= Rm;
13791 }
13792
13793 static void
13794 do_t_rsb (void)
13795 {
13796 unsigned Rd, Rs;
13797
13798 Rd = inst.operands[0].reg;
13799 Rs = (inst.operands[1].present
13800 ? inst.operands[1].reg /* Rd, Rs, foo */
13801 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
13802
13803 reject_bad_reg (Rd);
13804 reject_bad_reg (Rs);
13805 if (inst.operands[2].isreg)
13806 reject_bad_reg (inst.operands[2].reg);
13807
13808 inst.instruction |= Rd << 8;
13809 inst.instruction |= Rs << 16;
13810 if (!inst.operands[2].isreg)
13811 {
13812 bfd_boolean narrow;
13813
13814 if ((inst.instruction & 0x00100000) != 0)
13815 narrow = !in_pred_block ();
13816 else
13817 narrow = in_pred_block ();
13818
13819 if (Rd > 7 || Rs > 7)
13820 narrow = FALSE;
13821
13822 if (inst.size_req == 4 || !unified_syntax)
13823 narrow = FALSE;
13824
13825 if (inst.relocs[0].exp.X_op != O_constant
13826 || inst.relocs[0].exp.X_add_number != 0)
13827 narrow = FALSE;
13828
13829 /* Turn rsb #0 into 16-bit neg. We should probably do this via
13830 relaxation, but it doesn't seem worth the hassle. */
13831 if (narrow)
13832 {
13833 inst.relocs[0].type = BFD_RELOC_UNUSED;
13834 inst.instruction = THUMB_OP16 (T_MNEM_negs);
13835 inst.instruction |= Rs << 3;
13836 inst.instruction |= Rd;
13837 }
13838 else
13839 {
13840 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13841 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13842 }
13843 }
13844 else
13845 encode_thumb32_shifted_operand (2);
13846 }
13847
13848 static void
13849 do_t_setend (void)
13850 {
13851 if (warn_on_deprecated
13852 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13853 as_tsktsk (_("setend use is deprecated for ARMv8"));
13854
13855 set_pred_insn_type (OUTSIDE_PRED_INSN);
13856 if (inst.operands[0].imm)
13857 inst.instruction |= 0x8;
13858 }
13859
13860 static void
13861 do_t_shift (void)
13862 {
13863 if (!inst.operands[1].present)
13864 inst.operands[1].reg = inst.operands[0].reg;
13865
13866 if (unified_syntax)
13867 {
13868 bfd_boolean narrow;
13869 int shift_kind;
13870
13871 switch (inst.instruction)
13872 {
13873 case T_MNEM_asr:
13874 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
13875 case T_MNEM_lsl:
13876 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
13877 case T_MNEM_lsr:
13878 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
13879 case T_MNEM_ror:
13880 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
13881 default: abort ();
13882 }
13883
13884 if (THUMB_SETS_FLAGS (inst.instruction))
13885 narrow = !in_pred_block ();
13886 else
13887 narrow = in_pred_block ();
13888 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13889 narrow = FALSE;
13890 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
13891 narrow = FALSE;
13892 if (inst.operands[2].isreg
13893 && (inst.operands[1].reg != inst.operands[0].reg
13894 || inst.operands[2].reg > 7))
13895 narrow = FALSE;
13896 if (inst.size_req == 4)
13897 narrow = FALSE;
13898
13899 reject_bad_reg (inst.operands[0].reg);
13900 reject_bad_reg (inst.operands[1].reg);
13901
13902 if (!narrow)
13903 {
13904 if (inst.operands[2].isreg)
13905 {
13906 reject_bad_reg (inst.operands[2].reg);
13907 inst.instruction = THUMB_OP32 (inst.instruction);
13908 inst.instruction |= inst.operands[0].reg << 8;
13909 inst.instruction |= inst.operands[1].reg << 16;
13910 inst.instruction |= inst.operands[2].reg;
13911
13912 /* PR 12854: Error on extraneous shifts. */
13913 constraint (inst.operands[2].shifted,
13914 _("extraneous shift as part of operand to shift insn"));
13915 }
13916 else
13917 {
13918 inst.operands[1].shifted = 1;
13919 inst.operands[1].shift_kind = shift_kind;
13920 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
13921 ? T_MNEM_movs : T_MNEM_mov);
13922 inst.instruction |= inst.operands[0].reg << 8;
13923 encode_thumb32_shifted_operand (1);
13924 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
13925 inst.relocs[0].type = BFD_RELOC_UNUSED;
13926 }
13927 }
13928 else
13929 {
13930 if (inst.operands[2].isreg)
13931 {
13932 switch (shift_kind)
13933 {
13934 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
13935 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
13936 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
13937 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
13938 default: abort ();
13939 }
13940
13941 inst.instruction |= inst.operands[0].reg;
13942 inst.instruction |= inst.operands[2].reg << 3;
13943
13944 /* PR 12854: Error on extraneous shifts. */
13945 constraint (inst.operands[2].shifted,
13946 _("extraneous shift as part of operand to shift insn"));
13947 }
13948 else
13949 {
13950 switch (shift_kind)
13951 {
13952 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
13953 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
13954 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
13955 default: abort ();
13956 }
13957 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13958 inst.instruction |= inst.operands[0].reg;
13959 inst.instruction |= inst.operands[1].reg << 3;
13960 }
13961 }
13962 }
13963 else
13964 {
13965 constraint (inst.operands[0].reg > 7
13966 || inst.operands[1].reg > 7, BAD_HIREG);
13967 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13968
13969 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
13970 {
13971 constraint (inst.operands[2].reg > 7, BAD_HIREG);
13972 constraint (inst.operands[0].reg != inst.operands[1].reg,
13973 _("source1 and dest must be same register"));
13974
13975 switch (inst.instruction)
13976 {
13977 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
13978 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
13979 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
13980 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
13981 default: abort ();
13982 }
13983
13984 inst.instruction |= inst.operands[0].reg;
13985 inst.instruction |= inst.operands[2].reg << 3;
13986
13987 /* PR 12854: Error on extraneous shifts. */
13988 constraint (inst.operands[2].shifted,
13989 _("extraneous shift as part of operand to shift insn"));
13990 }
13991 else
13992 {
13993 switch (inst.instruction)
13994 {
13995 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
13996 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
13997 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
13998 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
13999 default: abort ();
14000 }
14001 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
14002 inst.instruction |= inst.operands[0].reg;
14003 inst.instruction |= inst.operands[1].reg << 3;
14004 }
14005 }
14006 }
14007
14008 static void
14009 do_t_simd (void)
14010 {
14011 unsigned Rd, Rn, Rm;
14012
14013 Rd = inst.operands[0].reg;
14014 Rn = inst.operands[1].reg;
14015 Rm = inst.operands[2].reg;
14016
14017 reject_bad_reg (Rd);
14018 reject_bad_reg (Rn);
14019 reject_bad_reg (Rm);
14020
14021 inst.instruction |= Rd << 8;
14022 inst.instruction |= Rn << 16;
14023 inst.instruction |= Rm;
14024 }
14025
14026 static void
14027 do_t_simd2 (void)
14028 {
14029 unsigned Rd, Rn, Rm;
14030
14031 Rd = inst.operands[0].reg;
14032 Rm = inst.operands[1].reg;
14033 Rn = inst.operands[2].reg;
14034
14035 reject_bad_reg (Rd);
14036 reject_bad_reg (Rn);
14037 reject_bad_reg (Rm);
14038
14039 inst.instruction |= Rd << 8;
14040 inst.instruction |= Rn << 16;
14041 inst.instruction |= Rm;
14042 }
14043
14044 static void
14045 do_t_smc (void)
14046 {
14047 unsigned int value = inst.relocs[0].exp.X_add_number;
14048 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
14049 _("SMC is not permitted on this architecture"));
14050 constraint (inst.relocs[0].exp.X_op != O_constant,
14051 _("expression too complex"));
14052 constraint (value > 0xf, _("immediate too large (bigger than 0xF)"));
14053
14054 inst.relocs[0].type = BFD_RELOC_UNUSED;
14055 inst.instruction |= (value & 0x000f) << 16;
14056
14057 /* PR gas/15623: SMC instructions must be last in an IT block. */
14058 set_pred_insn_type_last ();
14059 }
14060
14061 static void
14062 do_t_hvc (void)
14063 {
14064 unsigned int value = inst.relocs[0].exp.X_add_number;
14065
14066 inst.relocs[0].type = BFD_RELOC_UNUSED;
14067 inst.instruction |= (value & 0x0fff);
14068 inst.instruction |= (value & 0xf000) << 4;
14069 }
14070
14071 static void
14072 do_t_ssat_usat (int bias)
14073 {
14074 unsigned Rd, Rn;
14075
14076 Rd = inst.operands[0].reg;
14077 Rn = inst.operands[2].reg;
14078
14079 reject_bad_reg (Rd);
14080 reject_bad_reg (Rn);
14081
14082 inst.instruction |= Rd << 8;
14083 inst.instruction |= inst.operands[1].imm - bias;
14084 inst.instruction |= Rn << 16;
14085
14086 if (inst.operands[3].present)
14087 {
14088 offsetT shift_amount = inst.relocs[0].exp.X_add_number;
14089
14090 inst.relocs[0].type = BFD_RELOC_UNUSED;
14091
14092 constraint (inst.relocs[0].exp.X_op != O_constant,
14093 _("expression too complex"));
14094
14095 if (shift_amount != 0)
14096 {
14097 constraint (shift_amount > 31,
14098 _("shift expression is too large"));
14099
14100 if (inst.operands[3].shift_kind == SHIFT_ASR)
14101 inst.instruction |= 0x00200000; /* sh bit. */
14102
14103 inst.instruction |= (shift_amount & 0x1c) << 10;
14104 inst.instruction |= (shift_amount & 0x03) << 6;
14105 }
14106 }
14107 }
14108
14109 static void
14110 do_t_ssat (void)
14111 {
14112 do_t_ssat_usat (1);
14113 }
14114
14115 static void
14116 do_t_ssat16 (void)
14117 {
14118 unsigned Rd, Rn;
14119
14120 Rd = inst.operands[0].reg;
14121 Rn = inst.operands[2].reg;
14122
14123 reject_bad_reg (Rd);
14124 reject_bad_reg (Rn);
14125
14126 inst.instruction |= Rd << 8;
14127 inst.instruction |= inst.operands[1].imm - 1;
14128 inst.instruction |= Rn << 16;
14129 }
14130
14131 static void
14132 do_t_strex (void)
14133 {
14134 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
14135 || inst.operands[2].postind || inst.operands[2].writeback
14136 || inst.operands[2].immisreg || inst.operands[2].shifted
14137 || inst.operands[2].negative,
14138 BAD_ADDR_MODE);
14139
14140 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
14141
14142 inst.instruction |= inst.operands[0].reg << 8;
14143 inst.instruction |= inst.operands[1].reg << 12;
14144 inst.instruction |= inst.operands[2].reg << 16;
14145 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
14146 }
14147
14148 static void
14149 do_t_strexd (void)
14150 {
14151 if (!inst.operands[2].present)
14152 inst.operands[2].reg = inst.operands[1].reg + 1;
14153
14154 constraint (inst.operands[0].reg == inst.operands[1].reg
14155 || inst.operands[0].reg == inst.operands[2].reg
14156 || inst.operands[0].reg == inst.operands[3].reg,
14157 BAD_OVERLAP);
14158
14159 inst.instruction |= inst.operands[0].reg;
14160 inst.instruction |= inst.operands[1].reg << 12;
14161 inst.instruction |= inst.operands[2].reg << 8;
14162 inst.instruction |= inst.operands[3].reg << 16;
14163 }
14164
14165 static void
14166 do_t_sxtah (void)
14167 {
14168 unsigned Rd, Rn, Rm;
14169
14170 Rd = inst.operands[0].reg;
14171 Rn = inst.operands[1].reg;
14172 Rm = inst.operands[2].reg;
14173
14174 reject_bad_reg (Rd);
14175 reject_bad_reg (Rn);
14176 reject_bad_reg (Rm);
14177
14178 inst.instruction |= Rd << 8;
14179 inst.instruction |= Rn << 16;
14180 inst.instruction |= Rm;
14181 inst.instruction |= inst.operands[3].imm << 4;
14182 }
14183
14184 static void
14185 do_t_sxth (void)
14186 {
14187 unsigned Rd, Rm;
14188
14189 Rd = inst.operands[0].reg;
14190 Rm = inst.operands[1].reg;
14191
14192 reject_bad_reg (Rd);
14193 reject_bad_reg (Rm);
14194
14195 if (inst.instruction <= 0xffff
14196 && inst.size_req != 4
14197 && Rd <= 7 && Rm <= 7
14198 && (!inst.operands[2].present || inst.operands[2].imm == 0))
14199 {
14200 inst.instruction = THUMB_OP16 (inst.instruction);
14201 inst.instruction |= Rd;
14202 inst.instruction |= Rm << 3;
14203 }
14204 else if (unified_syntax)
14205 {
14206 if (inst.instruction <= 0xffff)
14207 inst.instruction = THUMB_OP32 (inst.instruction);
14208 inst.instruction |= Rd << 8;
14209 inst.instruction |= Rm;
14210 inst.instruction |= inst.operands[2].imm << 4;
14211 }
14212 else
14213 {
14214 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
14215 _("Thumb encoding does not support rotation"));
14216 constraint (1, BAD_HIREG);
14217 }
14218 }
14219
14220 static void
14221 do_t_swi (void)
14222 {
14223 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
14224 }
14225
14226 static void
14227 do_t_tb (void)
14228 {
14229 unsigned Rn, Rm;
14230 int half;
14231
14232 half = (inst.instruction & 0x10) != 0;
14233 set_pred_insn_type_last ();
14234 constraint (inst.operands[0].immisreg,
14235 _("instruction requires register index"));
14236
14237 Rn = inst.operands[0].reg;
14238 Rm = inst.operands[0].imm;
14239
14240 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
14241 constraint (Rn == REG_SP, BAD_SP);
14242 reject_bad_reg (Rm);
14243
14244 constraint (!half && inst.operands[0].shifted,
14245 _("instruction does not allow shifted index"));
14246 inst.instruction |= (Rn << 16) | Rm;
14247 }
14248
14249 static void
14250 do_t_udf (void)
14251 {
14252 if (!inst.operands[0].present)
14253 inst.operands[0].imm = 0;
14254
14255 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
14256 {
14257 constraint (inst.size_req == 2,
14258 _("immediate value out of range"));
14259 inst.instruction = THUMB_OP32 (inst.instruction);
14260 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
14261 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
14262 }
14263 else
14264 {
14265 inst.instruction = THUMB_OP16 (inst.instruction);
14266 inst.instruction |= inst.operands[0].imm;
14267 }
14268
14269 set_pred_insn_type (NEUTRAL_IT_INSN);
14270 }
14271
14272
14273 static void
14274 do_t_usat (void)
14275 {
14276 do_t_ssat_usat (0);
14277 }
14278
14279 static void
14280 do_t_usat16 (void)
14281 {
14282 unsigned Rd, Rn;
14283
14284 Rd = inst.operands[0].reg;
14285 Rn = inst.operands[2].reg;
14286
14287 reject_bad_reg (Rd);
14288 reject_bad_reg (Rn);
14289
14290 inst.instruction |= Rd << 8;
14291 inst.instruction |= inst.operands[1].imm;
14292 inst.instruction |= Rn << 16;
14293 }
14294
14295 /* Checking the range of the branch offset (VAL) with NBITS bits
14296 and IS_SIGNED signedness. Also checks the LSB to be 0. */
14297 static int
14298 v8_1_branch_value_check (int val, int nbits, int is_signed)
14299 {
14300 gas_assert (nbits > 0 && nbits <= 32);
14301 if (is_signed)
14302 {
14303 int cmp = (1 << (nbits - 1));
14304 if ((val < -cmp) || (val >= cmp) || (val & 0x01))
14305 return FAIL;
14306 }
14307 else
14308 {
14309 if ((val <= 0) || (val >= (1 << nbits)) || (val & 0x1))
14310 return FAIL;
14311 }
14312 return SUCCESS;
14313 }
14314
14315 /* For branches in Armv8.1-M Mainline. */
14316 static void
14317 do_t_branch_future (void)
14318 {
14319 unsigned long insn = inst.instruction;
14320
14321 inst.instruction = THUMB_OP32 (inst.instruction);
14322 if (inst.operands[0].hasreloc == 0)
14323 {
14324 if (v8_1_branch_value_check (inst.operands[0].imm, 5, FALSE) == FAIL)
14325 as_bad (BAD_BRANCH_OFF);
14326
14327 inst.instruction |= ((inst.operands[0].imm & 0x1f) >> 1) << 23;
14328 }
14329 else
14330 {
14331 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH5;
14332 inst.relocs[0].pc_rel = 1;
14333 }
14334
14335 switch (insn)
14336 {
14337 case T_MNEM_bf:
14338 if (inst.operands[1].hasreloc == 0)
14339 {
14340 int val = inst.operands[1].imm;
14341 if (v8_1_branch_value_check (inst.operands[1].imm, 17, TRUE) == FAIL)
14342 as_bad (BAD_BRANCH_OFF);
14343
14344 int immA = (val & 0x0001f000) >> 12;
14345 int immB = (val & 0x00000ffc) >> 2;
14346 int immC = (val & 0x00000002) >> 1;
14347 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14348 }
14349 else
14350 {
14351 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF17;
14352 inst.relocs[1].pc_rel = 1;
14353 }
14354 break;
14355
14356 case T_MNEM_bfl:
14357 if (inst.operands[1].hasreloc == 0)
14358 {
14359 int val = inst.operands[1].imm;
14360 if (v8_1_branch_value_check (inst.operands[1].imm, 19, TRUE) == FAIL)
14361 as_bad (BAD_BRANCH_OFF);
14362
14363 int immA = (val & 0x0007f000) >> 12;
14364 int immB = (val & 0x00000ffc) >> 2;
14365 int immC = (val & 0x00000002) >> 1;
14366 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14367 }
14368 else
14369 {
14370 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF19;
14371 inst.relocs[1].pc_rel = 1;
14372 }
14373 break;
14374
14375 case T_MNEM_bfcsel:
14376 /* Operand 1. */
14377 if (inst.operands[1].hasreloc == 0)
14378 {
14379 int val = inst.operands[1].imm;
14380 int immA = (val & 0x00001000) >> 12;
14381 int immB = (val & 0x00000ffc) >> 2;
14382 int immC = (val & 0x00000002) >> 1;
14383 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14384 }
14385 else
14386 {
14387 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF13;
14388 inst.relocs[1].pc_rel = 1;
14389 }
14390
14391 /* Operand 2. */
14392 if (inst.operands[2].hasreloc == 0)
14393 {
14394 constraint ((inst.operands[0].hasreloc != 0), BAD_ARGS);
14395 int val2 = inst.operands[2].imm;
14396 int val0 = inst.operands[0].imm & 0x1f;
14397 int diff = val2 - val0;
14398 if (diff == 4)
14399 inst.instruction |= 1 << 17; /* T bit. */
14400 else if (diff != 2)
14401 as_bad (_("out of range label-relative fixup value"));
14402 }
14403 else
14404 {
14405 constraint ((inst.operands[0].hasreloc == 0), BAD_ARGS);
14406 inst.relocs[2].type = BFD_RELOC_THUMB_PCREL_BFCSEL;
14407 inst.relocs[2].pc_rel = 1;
14408 }
14409
14410 /* Operand 3. */
14411 constraint (inst.cond != COND_ALWAYS, BAD_COND);
14412 inst.instruction |= (inst.operands[3].imm & 0xf) << 18;
14413 break;
14414
14415 case T_MNEM_bfx:
14416 case T_MNEM_bflx:
14417 inst.instruction |= inst.operands[1].reg << 16;
14418 break;
14419
14420 default: abort ();
14421 }
14422 }
14423
14424 /* Helper function for do_t_loloop to handle relocations. */
14425 static void
14426 v8_1_loop_reloc (int is_le)
14427 {
14428 if (inst.relocs[0].exp.X_op == O_constant)
14429 {
14430 int value = inst.relocs[0].exp.X_add_number;
14431 value = (is_le) ? -value : value;
14432
14433 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
14434 as_bad (BAD_BRANCH_OFF);
14435
14436 int imml, immh;
14437
14438 immh = (value & 0x00000ffc) >> 2;
14439 imml = (value & 0x00000002) >> 1;
14440
14441 inst.instruction |= (imml << 11) | (immh << 1);
14442 }
14443 else
14444 {
14445 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_LOOP12;
14446 inst.relocs[0].pc_rel = 1;
14447 }
14448 }
14449
14450 /* For shifts with four operands in MVE. */
14451 static void
14452 do_mve_scalar_shift1 (void)
14453 {
14454 unsigned int value = inst.operands[2].imm;
14455
14456 inst.instruction |= inst.operands[0].reg << 16;
14457 inst.instruction |= inst.operands[1].reg << 8;
14458
14459 /* Setting the bit for saturation. */
14460 inst.instruction |= ((value == 64) ? 0: 1) << 7;
14461
14462 /* Assuming Rm is already checked not to be 11x1. */
14463 constraint (inst.operands[3].reg == inst.operands[0].reg, BAD_OVERLAP);
14464 constraint (inst.operands[3].reg == inst.operands[1].reg, BAD_OVERLAP);
14465 inst.instruction |= inst.operands[3].reg << 12;
14466 }
14467
14468 /* For shifts in MVE. */
14469 static void
14470 do_mve_scalar_shift (void)
14471 {
14472 if (!inst.operands[2].present)
14473 {
14474 inst.operands[2] = inst.operands[1];
14475 inst.operands[1].reg = 0xf;
14476 }
14477
14478 inst.instruction |= inst.operands[0].reg << 16;
14479 inst.instruction |= inst.operands[1].reg << 8;
14480
14481 if (inst.operands[2].isreg)
14482 {
14483 /* Assuming Rm is already checked not to be 11x1. */
14484 constraint (inst.operands[2].reg == inst.operands[0].reg, BAD_OVERLAP);
14485 constraint (inst.operands[2].reg == inst.operands[1].reg, BAD_OVERLAP);
14486 inst.instruction |= inst.operands[2].reg << 12;
14487 }
14488 else
14489 {
14490 /* Assuming imm is already checked as [1,32]. */
14491 unsigned int value = inst.operands[2].imm;
14492 inst.instruction |= (value & 0x1c) << 10;
14493 inst.instruction |= (value & 0x03) << 6;
14494 /* Change last 4 bits from 0xd to 0xf. */
14495 inst.instruction |= 0x2;
14496 }
14497 }
14498
14499 /* MVE instruction encoder helpers. */
14500 #define M_MNEM_vabav 0xee800f01
14501 #define M_MNEM_vmladav 0xeef00e00
14502 #define M_MNEM_vmladava 0xeef00e20
14503 #define M_MNEM_vmladavx 0xeef01e00
14504 #define M_MNEM_vmladavax 0xeef01e20
14505 #define M_MNEM_vmlsdav 0xeef00e01
14506 #define M_MNEM_vmlsdava 0xeef00e21
14507 #define M_MNEM_vmlsdavx 0xeef01e01
14508 #define M_MNEM_vmlsdavax 0xeef01e21
14509 #define M_MNEM_vmullt 0xee011e00
14510 #define M_MNEM_vmullb 0xee010e00
14511 #define M_MNEM_vctp 0xf000e801
14512 #define M_MNEM_vst20 0xfc801e00
14513 #define M_MNEM_vst21 0xfc801e20
14514 #define M_MNEM_vst40 0xfc801e01
14515 #define M_MNEM_vst41 0xfc801e21
14516 #define M_MNEM_vst42 0xfc801e41
14517 #define M_MNEM_vst43 0xfc801e61
14518 #define M_MNEM_vld20 0xfc901e00
14519 #define M_MNEM_vld21 0xfc901e20
14520 #define M_MNEM_vld40 0xfc901e01
14521 #define M_MNEM_vld41 0xfc901e21
14522 #define M_MNEM_vld42 0xfc901e41
14523 #define M_MNEM_vld43 0xfc901e61
14524 #define M_MNEM_vstrb 0xec000e00
14525 #define M_MNEM_vstrh 0xec000e10
14526 #define M_MNEM_vstrw 0xec000e40
14527 #define M_MNEM_vstrd 0xec000e50
14528 #define M_MNEM_vldrb 0xec100e00
14529 #define M_MNEM_vldrh 0xec100e10
14530 #define M_MNEM_vldrw 0xec100e40
14531 #define M_MNEM_vldrd 0xec100e50
14532 #define M_MNEM_vmovlt 0xeea01f40
14533 #define M_MNEM_vmovlb 0xeea00f40
14534 #define M_MNEM_vmovnt 0xfe311e81
14535 #define M_MNEM_vmovnb 0xfe310e81
14536 #define M_MNEM_vadc 0xee300f00
14537 #define M_MNEM_vadci 0xee301f00
14538 #define M_MNEM_vbrsr 0xfe011e60
14539 #define M_MNEM_vaddlv 0xee890f00
14540 #define M_MNEM_vaddlva 0xee890f20
14541 #define M_MNEM_vaddv 0xeef10f00
14542 #define M_MNEM_vaddva 0xeef10f20
14543 #define M_MNEM_vddup 0xee011f6e
14544 #define M_MNEM_vdwdup 0xee011f60
14545 #define M_MNEM_vidup 0xee010f6e
14546 #define M_MNEM_viwdup 0xee010f60
14547 #define M_MNEM_vmaxv 0xeee20f00
14548 #define M_MNEM_vmaxav 0xeee00f00
14549 #define M_MNEM_vminv 0xeee20f80
14550 #define M_MNEM_vminav 0xeee00f80
14551 #define M_MNEM_vmlaldav 0xee800e00
14552 #define M_MNEM_vmlaldava 0xee800e20
14553 #define M_MNEM_vmlaldavx 0xee801e00
14554 #define M_MNEM_vmlaldavax 0xee801e20
14555 #define M_MNEM_vmlsldav 0xee800e01
14556 #define M_MNEM_vmlsldava 0xee800e21
14557 #define M_MNEM_vmlsldavx 0xee801e01
14558 #define M_MNEM_vmlsldavax 0xee801e21
14559 #define M_MNEM_vrmlaldavhx 0xee801f00
14560 #define M_MNEM_vrmlaldavhax 0xee801f20
14561 #define M_MNEM_vrmlsldavh 0xfe800e01
14562 #define M_MNEM_vrmlsldavha 0xfe800e21
14563 #define M_MNEM_vrmlsldavhx 0xfe801e01
14564 #define M_MNEM_vrmlsldavhax 0xfe801e21
14565 #define M_MNEM_vqmovnt 0xee331e01
14566 #define M_MNEM_vqmovnb 0xee330e01
14567 #define M_MNEM_vqmovunt 0xee311e81
14568 #define M_MNEM_vqmovunb 0xee310e81
14569 #define M_MNEM_vshrnt 0xee801fc1
14570 #define M_MNEM_vshrnb 0xee800fc1
14571 #define M_MNEM_vrshrnt 0xfe801fc1
14572 #define M_MNEM_vqshrnt 0xee801f40
14573 #define M_MNEM_vqshrnb 0xee800f40
14574 #define M_MNEM_vqshrunt 0xee801fc0
14575 #define M_MNEM_vqshrunb 0xee800fc0
14576 #define M_MNEM_vrshrnb 0xfe800fc1
14577 #define M_MNEM_vqrshrnt 0xee801f41
14578 #define M_MNEM_vqrshrnb 0xee800f41
14579 #define M_MNEM_vqrshrunt 0xfe801fc0
14580 #define M_MNEM_vqrshrunb 0xfe800fc0
14581
14582 /* Bfloat16 instruction encoder helpers. */
14583 #define B_MNEM_vfmat 0xfc300850
14584 #define B_MNEM_vfmab 0xfc300810
14585
14586 /* Neon instruction encoder helpers. */
14587
14588 /* Encodings for the different types for various Neon opcodes. */
14589
14590 /* An "invalid" code for the following tables. */
14591 #define N_INV -1u
14592
14593 struct neon_tab_entry
14594 {
14595 unsigned integer;
14596 unsigned float_or_poly;
14597 unsigned scalar_or_imm;
14598 };
14599
14600 /* Map overloaded Neon opcodes to their respective encodings. */
14601 #define NEON_ENC_TAB \
14602 X(vabd, 0x0000700, 0x1200d00, N_INV), \
14603 X(vabdl, 0x0800700, N_INV, N_INV), \
14604 X(vmax, 0x0000600, 0x0000f00, N_INV), \
14605 X(vmin, 0x0000610, 0x0200f00, N_INV), \
14606 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
14607 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
14608 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
14609 X(vadd, 0x0000800, 0x0000d00, N_INV), \
14610 X(vaddl, 0x0800000, N_INV, N_INV), \
14611 X(vsub, 0x1000800, 0x0200d00, N_INV), \
14612 X(vsubl, 0x0800200, N_INV, N_INV), \
14613 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
14614 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
14615 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
14616 /* Register variants of the following two instructions are encoded as
14617 vcge / vcgt with the operands reversed. */ \
14618 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
14619 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
14620 X(vfma, N_INV, 0x0000c10, N_INV), \
14621 X(vfms, N_INV, 0x0200c10, N_INV), \
14622 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
14623 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
14624 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
14625 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
14626 X(vmlal, 0x0800800, N_INV, 0x0800240), \
14627 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
14628 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
14629 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
14630 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
14631 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
14632 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
14633 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
14634 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
14635 X(vshl, 0x0000400, N_INV, 0x0800510), \
14636 X(vqshl, 0x0000410, N_INV, 0x0800710), \
14637 X(vand, 0x0000110, N_INV, 0x0800030), \
14638 X(vbic, 0x0100110, N_INV, 0x0800030), \
14639 X(veor, 0x1000110, N_INV, N_INV), \
14640 X(vorn, 0x0300110, N_INV, 0x0800010), \
14641 X(vorr, 0x0200110, N_INV, 0x0800010), \
14642 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
14643 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
14644 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
14645 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
14646 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
14647 X(vst1, 0x0000000, 0x0800000, N_INV), \
14648 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
14649 X(vst2, 0x0000100, 0x0800100, N_INV), \
14650 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
14651 X(vst3, 0x0000200, 0x0800200, N_INV), \
14652 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
14653 X(vst4, 0x0000300, 0x0800300, N_INV), \
14654 X(vmovn, 0x1b20200, N_INV, N_INV), \
14655 X(vtrn, 0x1b20080, N_INV, N_INV), \
14656 X(vqmovn, 0x1b20200, N_INV, N_INV), \
14657 X(vqmovun, 0x1b20240, N_INV, N_INV), \
14658 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
14659 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
14660 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
14661 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
14662 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
14663 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
14664 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
14665 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
14666 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
14667 X(vseleq, 0xe000a00, N_INV, N_INV), \
14668 X(vselvs, 0xe100a00, N_INV, N_INV), \
14669 X(vselge, 0xe200a00, N_INV, N_INV), \
14670 X(vselgt, 0xe300a00, N_INV, N_INV), \
14671 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
14672 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
14673 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
14674 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
14675 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
14676 X(aes, 0x3b00300, N_INV, N_INV), \
14677 X(sha3op, 0x2000c00, N_INV, N_INV), \
14678 X(sha1h, 0x3b902c0, N_INV, N_INV), \
14679 X(sha2op, 0x3ba0380, N_INV, N_INV)
14680
14681 enum neon_opc
14682 {
14683 #define X(OPC,I,F,S) N_MNEM_##OPC
14684 NEON_ENC_TAB
14685 #undef X
14686 };
14687
14688 static const struct neon_tab_entry neon_enc_tab[] =
14689 {
14690 #define X(OPC,I,F,S) { (I), (F), (S) }
14691 NEON_ENC_TAB
14692 #undef X
14693 };
14694
14695 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
14696 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14697 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14698 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14699 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14700 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14701 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14702 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14703 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14704 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14705 #define NEON_ENC_SINGLE_(X) \
14706 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
14707 #define NEON_ENC_DOUBLE_(X) \
14708 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
14709 #define NEON_ENC_FPV8_(X) \
14710 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
14711
14712 #define NEON_ENCODE(type, inst) \
14713 do \
14714 { \
14715 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
14716 inst.is_neon = 1; \
14717 } \
14718 while (0)
14719
14720 #define check_neon_suffixes \
14721 do \
14722 { \
14723 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
14724 { \
14725 as_bad (_("invalid neon suffix for non neon instruction")); \
14726 return; \
14727 } \
14728 } \
14729 while (0)
14730
14731 /* Define shapes for instruction operands. The following mnemonic characters
14732 are used in this table:
14733
14734 F - VFP S<n> register
14735 D - Neon D<n> register
14736 Q - Neon Q<n> register
14737 I - Immediate
14738 S - Scalar
14739 R - ARM register
14740 L - D<n> register list
14741
14742 This table is used to generate various data:
14743 - enumerations of the form NS_DDR to be used as arguments to
14744 neon_select_shape.
14745 - a table classifying shapes into single, double, quad, mixed.
14746 - a table used to drive neon_select_shape. */
14747
14748 #define NEON_SHAPE_DEF \
14749 X(4, (R, R, Q, Q), QUAD), \
14750 X(4, (Q, R, R, I), QUAD), \
14751 X(4, (R, R, S, S), QUAD), \
14752 X(4, (S, S, R, R), QUAD), \
14753 X(3, (Q, R, I), QUAD), \
14754 X(3, (I, Q, Q), QUAD), \
14755 X(3, (I, Q, R), QUAD), \
14756 X(3, (R, Q, Q), QUAD), \
14757 X(3, (D, D, D), DOUBLE), \
14758 X(3, (Q, Q, Q), QUAD), \
14759 X(3, (D, D, I), DOUBLE), \
14760 X(3, (Q, Q, I), QUAD), \
14761 X(3, (D, D, S), DOUBLE), \
14762 X(3, (Q, Q, S), QUAD), \
14763 X(3, (Q, Q, R), QUAD), \
14764 X(3, (R, R, Q), QUAD), \
14765 X(2, (R, Q), QUAD), \
14766 X(2, (D, D), DOUBLE), \
14767 X(2, (Q, Q), QUAD), \
14768 X(2, (D, S), DOUBLE), \
14769 X(2, (Q, S), QUAD), \
14770 X(2, (D, R), DOUBLE), \
14771 X(2, (Q, R), QUAD), \
14772 X(2, (D, I), DOUBLE), \
14773 X(2, (Q, I), QUAD), \
14774 X(3, (D, L, D), DOUBLE), \
14775 X(2, (D, Q), MIXED), \
14776 X(2, (Q, D), MIXED), \
14777 X(3, (D, Q, I), MIXED), \
14778 X(3, (Q, D, I), MIXED), \
14779 X(3, (Q, D, D), MIXED), \
14780 X(3, (D, Q, Q), MIXED), \
14781 X(3, (Q, Q, D), MIXED), \
14782 X(3, (Q, D, S), MIXED), \
14783 X(3, (D, Q, S), MIXED), \
14784 X(4, (D, D, D, I), DOUBLE), \
14785 X(4, (Q, Q, Q, I), QUAD), \
14786 X(4, (D, D, S, I), DOUBLE), \
14787 X(4, (Q, Q, S, I), QUAD), \
14788 X(2, (F, F), SINGLE), \
14789 X(3, (F, F, F), SINGLE), \
14790 X(2, (F, I), SINGLE), \
14791 X(2, (F, D), MIXED), \
14792 X(2, (D, F), MIXED), \
14793 X(3, (F, F, I), MIXED), \
14794 X(4, (R, R, F, F), SINGLE), \
14795 X(4, (F, F, R, R), SINGLE), \
14796 X(3, (D, R, R), DOUBLE), \
14797 X(3, (R, R, D), DOUBLE), \
14798 X(2, (S, R), SINGLE), \
14799 X(2, (R, S), SINGLE), \
14800 X(2, (F, R), SINGLE), \
14801 X(2, (R, F), SINGLE), \
14802 /* Used for MVE tail predicated loop instructions. */\
14803 X(2, (R, R), QUAD), \
14804 /* Half float shape supported so far. */\
14805 X (2, (H, D), MIXED), \
14806 X (2, (D, H), MIXED), \
14807 X (2, (H, F), MIXED), \
14808 X (2, (F, H), MIXED), \
14809 X (2, (H, H), HALF), \
14810 X (2, (H, R), HALF), \
14811 X (2, (R, H), HALF), \
14812 X (2, (H, I), HALF), \
14813 X (3, (H, H, H), HALF), \
14814 X (3, (H, F, I), MIXED), \
14815 X (3, (F, H, I), MIXED), \
14816 X (3, (D, H, H), MIXED), \
14817 X (3, (D, H, S), MIXED)
14818
14819 #define S2(A,B) NS_##A##B
14820 #define S3(A,B,C) NS_##A##B##C
14821 #define S4(A,B,C,D) NS_##A##B##C##D
14822
14823 #define X(N, L, C) S##N L
14824
14825 enum neon_shape
14826 {
14827 NEON_SHAPE_DEF,
14828 NS_NULL
14829 };
14830
14831 #undef X
14832 #undef S2
14833 #undef S3
14834 #undef S4
14835
14836 enum neon_shape_class
14837 {
14838 SC_HALF,
14839 SC_SINGLE,
14840 SC_DOUBLE,
14841 SC_QUAD,
14842 SC_MIXED
14843 };
14844
14845 #define X(N, L, C) SC_##C
14846
14847 static enum neon_shape_class neon_shape_class[] =
14848 {
14849 NEON_SHAPE_DEF
14850 };
14851
14852 #undef X
14853
14854 enum neon_shape_el
14855 {
14856 SE_H,
14857 SE_F,
14858 SE_D,
14859 SE_Q,
14860 SE_I,
14861 SE_S,
14862 SE_R,
14863 SE_L
14864 };
14865
14866 /* Register widths of above. */
14867 static unsigned neon_shape_el_size[] =
14868 {
14869 16,
14870 32,
14871 64,
14872 128,
14873 0,
14874 32,
14875 32,
14876 0
14877 };
14878
14879 struct neon_shape_info
14880 {
14881 unsigned els;
14882 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
14883 };
14884
14885 #define S2(A,B) { SE_##A, SE_##B }
14886 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
14887 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
14888
14889 #define X(N, L, C) { N, S##N L }
14890
14891 static struct neon_shape_info neon_shape_tab[] =
14892 {
14893 NEON_SHAPE_DEF
14894 };
14895
14896 #undef X
14897 #undef S2
14898 #undef S3
14899 #undef S4
14900
14901 /* Bit masks used in type checking given instructions.
14902 'N_EQK' means the type must be the same as (or based on in some way) the key
14903 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
14904 set, various other bits can be set as well in order to modify the meaning of
14905 the type constraint. */
14906
14907 enum neon_type_mask
14908 {
14909 N_S8 = 0x0000001,
14910 N_S16 = 0x0000002,
14911 N_S32 = 0x0000004,
14912 N_S64 = 0x0000008,
14913 N_U8 = 0x0000010,
14914 N_U16 = 0x0000020,
14915 N_U32 = 0x0000040,
14916 N_U64 = 0x0000080,
14917 N_I8 = 0x0000100,
14918 N_I16 = 0x0000200,
14919 N_I32 = 0x0000400,
14920 N_I64 = 0x0000800,
14921 N_8 = 0x0001000,
14922 N_16 = 0x0002000,
14923 N_32 = 0x0004000,
14924 N_64 = 0x0008000,
14925 N_P8 = 0x0010000,
14926 N_P16 = 0x0020000,
14927 N_F16 = 0x0040000,
14928 N_F32 = 0x0080000,
14929 N_F64 = 0x0100000,
14930 N_P64 = 0x0200000,
14931 N_BF16 = 0x0400000,
14932 N_KEY = 0x1000000, /* Key element (main type specifier). */
14933 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
14934 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
14935 N_UNT = 0x8000000, /* Must be explicitly untyped. */
14936 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
14937 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
14938 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
14939 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
14940 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
14941 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
14942 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
14943 N_UTYP = 0,
14944 N_MAX_NONSPECIAL = N_P64
14945 };
14946
14947 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
14948
14949 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
14950 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14951 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
14952 #define N_S_32 (N_S8 | N_S16 | N_S32)
14953 #define N_F_16_32 (N_F16 | N_F32)
14954 #define N_SUF_32 (N_SU_32 | N_F_16_32)
14955 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
14956 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
14957 #define N_F_ALL (N_F16 | N_F32 | N_F64)
14958 #define N_I_MVE (N_I8 | N_I16 | N_I32)
14959 #define N_F_MVE (N_F16 | N_F32)
14960 #define N_SU_MVE (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14961
14962 /* Pass this as the first type argument to neon_check_type to ignore types
14963 altogether. */
14964 #define N_IGNORE_TYPE (N_KEY | N_EQK)
14965
14966 /* Select a "shape" for the current instruction (describing register types or
14967 sizes) from a list of alternatives. Return NS_NULL if the current instruction
14968 doesn't fit. For non-polymorphic shapes, checking is usually done as a
14969 function of operand parsing, so this function doesn't need to be called.
14970 Shapes should be listed in order of decreasing length. */
14971
14972 static enum neon_shape
14973 neon_select_shape (enum neon_shape shape, ...)
14974 {
14975 va_list ap;
14976 enum neon_shape first_shape = shape;
14977
14978 /* Fix missing optional operands. FIXME: we don't know at this point how
14979 many arguments we should have, so this makes the assumption that we have
14980 > 1. This is true of all current Neon opcodes, I think, but may not be
14981 true in the future. */
14982 if (!inst.operands[1].present)
14983 inst.operands[1] = inst.operands[0];
14984
14985 va_start (ap, shape);
14986
14987 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
14988 {
14989 unsigned j;
14990 int matches = 1;
14991
14992 for (j = 0; j < neon_shape_tab[shape].els; j++)
14993 {
14994 if (!inst.operands[j].present)
14995 {
14996 matches = 0;
14997 break;
14998 }
14999
15000 switch (neon_shape_tab[shape].el[j])
15001 {
15002 /* If a .f16, .16, .u16, .s16 type specifier is given over
15003 a VFP single precision register operand, it's essentially
15004 means only half of the register is used.
15005
15006 If the type specifier is given after the mnemonics, the
15007 information is stored in inst.vectype. If the type specifier
15008 is given after register operand, the information is stored
15009 in inst.operands[].vectype.
15010
15011 When there is only one type specifier, and all the register
15012 operands are the same type of hardware register, the type
15013 specifier applies to all register operands.
15014
15015 If no type specifier is given, the shape is inferred from
15016 operand information.
15017
15018 for example:
15019 vadd.f16 s0, s1, s2: NS_HHH
15020 vabs.f16 s0, s1: NS_HH
15021 vmov.f16 s0, r1: NS_HR
15022 vmov.f16 r0, s1: NS_RH
15023 vcvt.f16 r0, s1: NS_RH
15024 vcvt.f16.s32 s2, s2, #29: NS_HFI
15025 vcvt.f16.s32 s2, s2: NS_HF
15026 */
15027 case SE_H:
15028 if (!(inst.operands[j].isreg
15029 && inst.operands[j].isvec
15030 && inst.operands[j].issingle
15031 && !inst.operands[j].isquad
15032 && ((inst.vectype.elems == 1
15033 && inst.vectype.el[0].size == 16)
15034 || (inst.vectype.elems > 1
15035 && inst.vectype.el[j].size == 16)
15036 || (inst.vectype.elems == 0
15037 && inst.operands[j].vectype.type != NT_invtype
15038 && inst.operands[j].vectype.size == 16))))
15039 matches = 0;
15040 break;
15041
15042 case SE_F:
15043 if (!(inst.operands[j].isreg
15044 && inst.operands[j].isvec
15045 && inst.operands[j].issingle
15046 && !inst.operands[j].isquad
15047 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
15048 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
15049 || (inst.vectype.elems == 0
15050 && (inst.operands[j].vectype.size == 32
15051 || inst.operands[j].vectype.type == NT_invtype)))))
15052 matches = 0;
15053 break;
15054
15055 case SE_D:
15056 if (!(inst.operands[j].isreg
15057 && inst.operands[j].isvec
15058 && !inst.operands[j].isquad
15059 && !inst.operands[j].issingle))
15060 matches = 0;
15061 break;
15062
15063 case SE_R:
15064 if (!(inst.operands[j].isreg
15065 && !inst.operands[j].isvec))
15066 matches = 0;
15067 break;
15068
15069 case SE_Q:
15070 if (!(inst.operands[j].isreg
15071 && inst.operands[j].isvec
15072 && inst.operands[j].isquad
15073 && !inst.operands[j].issingle))
15074 matches = 0;
15075 break;
15076
15077 case SE_I:
15078 if (!(!inst.operands[j].isreg
15079 && !inst.operands[j].isscalar))
15080 matches = 0;
15081 break;
15082
15083 case SE_S:
15084 if (!(!inst.operands[j].isreg
15085 && inst.operands[j].isscalar))
15086 matches = 0;
15087 break;
15088
15089 case SE_L:
15090 break;
15091 }
15092 if (!matches)
15093 break;
15094 }
15095 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
15096 /* We've matched all the entries in the shape table, and we don't
15097 have any left over operands which have not been matched. */
15098 break;
15099 }
15100
15101 va_end (ap);
15102
15103 if (shape == NS_NULL && first_shape != NS_NULL)
15104 first_error (_("invalid instruction shape"));
15105
15106 return shape;
15107 }
15108
15109 /* True if SHAPE is predominantly a quadword operation (most of the time, this
15110 means the Q bit should be set). */
15111
15112 static int
15113 neon_quad (enum neon_shape shape)
15114 {
15115 return neon_shape_class[shape] == SC_QUAD;
15116 }
15117
15118 static void
15119 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
15120 unsigned *g_size)
15121 {
15122 /* Allow modification to be made to types which are constrained to be
15123 based on the key element, based on bits set alongside N_EQK. */
15124 if ((typebits & N_EQK) != 0)
15125 {
15126 if ((typebits & N_HLF) != 0)
15127 *g_size /= 2;
15128 else if ((typebits & N_DBL) != 0)
15129 *g_size *= 2;
15130 if ((typebits & N_SGN) != 0)
15131 *g_type = NT_signed;
15132 else if ((typebits & N_UNS) != 0)
15133 *g_type = NT_unsigned;
15134 else if ((typebits & N_INT) != 0)
15135 *g_type = NT_integer;
15136 else if ((typebits & N_FLT) != 0)
15137 *g_type = NT_float;
15138 else if ((typebits & N_SIZ) != 0)
15139 *g_type = NT_untyped;
15140 }
15141 }
15142
15143 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
15144 operand type, i.e. the single type specified in a Neon instruction when it
15145 is the only one given. */
15146
15147 static struct neon_type_el
15148 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
15149 {
15150 struct neon_type_el dest = *key;
15151
15152 gas_assert ((thisarg & N_EQK) != 0);
15153
15154 neon_modify_type_size (thisarg, &dest.type, &dest.size);
15155
15156 return dest;
15157 }
15158
15159 /* Convert Neon type and size into compact bitmask representation. */
15160
15161 static enum neon_type_mask
15162 type_chk_of_el_type (enum neon_el_type type, unsigned size)
15163 {
15164 switch (type)
15165 {
15166 case NT_untyped:
15167 switch (size)
15168 {
15169 case 8: return N_8;
15170 case 16: return N_16;
15171 case 32: return N_32;
15172 case 64: return N_64;
15173 default: ;
15174 }
15175 break;
15176
15177 case NT_integer:
15178 switch (size)
15179 {
15180 case 8: return N_I8;
15181 case 16: return N_I16;
15182 case 32: return N_I32;
15183 case 64: return N_I64;
15184 default: ;
15185 }
15186 break;
15187
15188 case NT_float:
15189 switch (size)
15190 {
15191 case 16: return N_F16;
15192 case 32: return N_F32;
15193 case 64: return N_F64;
15194 default: ;
15195 }
15196 break;
15197
15198 case NT_poly:
15199 switch (size)
15200 {
15201 case 8: return N_P8;
15202 case 16: return N_P16;
15203 case 64: return N_P64;
15204 default: ;
15205 }
15206 break;
15207
15208 case NT_signed:
15209 switch (size)
15210 {
15211 case 8: return N_S8;
15212 case 16: return N_S16;
15213 case 32: return N_S32;
15214 case 64: return N_S64;
15215 default: ;
15216 }
15217 break;
15218
15219 case NT_unsigned:
15220 switch (size)
15221 {
15222 case 8: return N_U8;
15223 case 16: return N_U16;
15224 case 32: return N_U32;
15225 case 64: return N_U64;
15226 default: ;
15227 }
15228 break;
15229
15230 case NT_bfloat:
15231 if (size == 16) return N_BF16;
15232 break;
15233
15234 default: ;
15235 }
15236
15237 return N_UTYP;
15238 }
15239
15240 /* Convert compact Neon bitmask type representation to a type and size. Only
15241 handles the case where a single bit is set in the mask. */
15242
15243 static int
15244 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
15245 enum neon_type_mask mask)
15246 {
15247 if ((mask & N_EQK) != 0)
15248 return FAIL;
15249
15250 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
15251 *size = 8;
15252 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16 | N_BF16))
15253 != 0)
15254 *size = 16;
15255 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
15256 *size = 32;
15257 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
15258 *size = 64;
15259 else
15260 return FAIL;
15261
15262 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
15263 *type = NT_signed;
15264 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
15265 *type = NT_unsigned;
15266 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
15267 *type = NT_integer;
15268 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
15269 *type = NT_untyped;
15270 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
15271 *type = NT_poly;
15272 else if ((mask & (N_F_ALL)) != 0)
15273 *type = NT_float;
15274 else if ((mask & (N_BF16)) != 0)
15275 *type = NT_bfloat;
15276 else
15277 return FAIL;
15278
15279 return SUCCESS;
15280 }
15281
15282 /* Modify a bitmask of allowed types. This is only needed for type
15283 relaxation. */
15284
15285 static unsigned
15286 modify_types_allowed (unsigned allowed, unsigned mods)
15287 {
15288 unsigned size;
15289 enum neon_el_type type;
15290 unsigned destmask;
15291 int i;
15292
15293 destmask = 0;
15294
15295 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
15296 {
15297 if (el_type_of_type_chk (&type, &size,
15298 (enum neon_type_mask) (allowed & i)) == SUCCESS)
15299 {
15300 neon_modify_type_size (mods, &type, &size);
15301 destmask |= type_chk_of_el_type (type, size);
15302 }
15303 }
15304
15305 return destmask;
15306 }
15307
15308 /* Check type and return type classification.
15309 The manual states (paraphrase): If one datatype is given, it indicates the
15310 type given in:
15311 - the second operand, if there is one
15312 - the operand, if there is no second operand
15313 - the result, if there are no operands.
15314 This isn't quite good enough though, so we use a concept of a "key" datatype
15315 which is set on a per-instruction basis, which is the one which matters when
15316 only one data type is written.
15317 Note: this function has side-effects (e.g. filling in missing operands). All
15318 Neon instructions should call it before performing bit encoding. */
15319
15320 static struct neon_type_el
15321 neon_check_type (unsigned els, enum neon_shape ns, ...)
15322 {
15323 va_list ap;
15324 unsigned i, pass, key_el = 0;
15325 unsigned types[NEON_MAX_TYPE_ELS];
15326 enum neon_el_type k_type = NT_invtype;
15327 unsigned k_size = -1u;
15328 struct neon_type_el badtype = {NT_invtype, -1};
15329 unsigned key_allowed = 0;
15330
15331 /* Optional registers in Neon instructions are always (not) in operand 1.
15332 Fill in the missing operand here, if it was omitted. */
15333 if (els > 1 && !inst.operands[1].present)
15334 inst.operands[1] = inst.operands[0];
15335
15336 /* Suck up all the varargs. */
15337 va_start (ap, ns);
15338 for (i = 0; i < els; i++)
15339 {
15340 unsigned thisarg = va_arg (ap, unsigned);
15341 if (thisarg == N_IGNORE_TYPE)
15342 {
15343 va_end (ap);
15344 return badtype;
15345 }
15346 types[i] = thisarg;
15347 if ((thisarg & N_KEY) != 0)
15348 key_el = i;
15349 }
15350 va_end (ap);
15351
15352 if (inst.vectype.elems > 0)
15353 for (i = 0; i < els; i++)
15354 if (inst.operands[i].vectype.type != NT_invtype)
15355 {
15356 first_error (_("types specified in both the mnemonic and operands"));
15357 return badtype;
15358 }
15359
15360 /* Duplicate inst.vectype elements here as necessary.
15361 FIXME: No idea if this is exactly the same as the ARM assembler,
15362 particularly when an insn takes one register and one non-register
15363 operand. */
15364 if (inst.vectype.elems == 1 && els > 1)
15365 {
15366 unsigned j;
15367 inst.vectype.elems = els;
15368 inst.vectype.el[key_el] = inst.vectype.el[0];
15369 for (j = 0; j < els; j++)
15370 if (j != key_el)
15371 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
15372 types[j]);
15373 }
15374 else if (inst.vectype.elems == 0 && els > 0)
15375 {
15376 unsigned j;
15377 /* No types were given after the mnemonic, so look for types specified
15378 after each operand. We allow some flexibility here; as long as the
15379 "key" operand has a type, we can infer the others. */
15380 for (j = 0; j < els; j++)
15381 if (inst.operands[j].vectype.type != NT_invtype)
15382 inst.vectype.el[j] = inst.operands[j].vectype;
15383
15384 if (inst.operands[key_el].vectype.type != NT_invtype)
15385 {
15386 for (j = 0; j < els; j++)
15387 if (inst.operands[j].vectype.type == NT_invtype)
15388 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
15389 types[j]);
15390 }
15391 else
15392 {
15393 first_error (_("operand types can't be inferred"));
15394 return badtype;
15395 }
15396 }
15397 else if (inst.vectype.elems != els)
15398 {
15399 first_error (_("type specifier has the wrong number of parts"));
15400 return badtype;
15401 }
15402
15403 for (pass = 0; pass < 2; pass++)
15404 {
15405 for (i = 0; i < els; i++)
15406 {
15407 unsigned thisarg = types[i];
15408 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
15409 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
15410 enum neon_el_type g_type = inst.vectype.el[i].type;
15411 unsigned g_size = inst.vectype.el[i].size;
15412
15413 /* Decay more-specific signed & unsigned types to sign-insensitive
15414 integer types if sign-specific variants are unavailable. */
15415 if ((g_type == NT_signed || g_type == NT_unsigned)
15416 && (types_allowed & N_SU_ALL) == 0)
15417 g_type = NT_integer;
15418
15419 /* If only untyped args are allowed, decay any more specific types to
15420 them. Some instructions only care about signs for some element
15421 sizes, so handle that properly. */
15422 if (((types_allowed & N_UNT) == 0)
15423 && ((g_size == 8 && (types_allowed & N_8) != 0)
15424 || (g_size == 16 && (types_allowed & N_16) != 0)
15425 || (g_size == 32 && (types_allowed & N_32) != 0)
15426 || (g_size == 64 && (types_allowed & N_64) != 0)))
15427 g_type = NT_untyped;
15428
15429 if (pass == 0)
15430 {
15431 if ((thisarg & N_KEY) != 0)
15432 {
15433 k_type = g_type;
15434 k_size = g_size;
15435 key_allowed = thisarg & ~N_KEY;
15436
15437 /* Check architecture constraint on FP16 extension. */
15438 if (k_size == 16
15439 && k_type == NT_float
15440 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15441 {
15442 inst.error = _(BAD_FP16);
15443 return badtype;
15444 }
15445 }
15446 }
15447 else
15448 {
15449 if ((thisarg & N_VFP) != 0)
15450 {
15451 enum neon_shape_el regshape;
15452 unsigned regwidth, match;
15453
15454 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
15455 if (ns == NS_NULL)
15456 {
15457 first_error (_("invalid instruction shape"));
15458 return badtype;
15459 }
15460 regshape = neon_shape_tab[ns].el[i];
15461 regwidth = neon_shape_el_size[regshape];
15462
15463 /* In VFP mode, operands must match register widths. If we
15464 have a key operand, use its width, else use the width of
15465 the current operand. */
15466 if (k_size != -1u)
15467 match = k_size;
15468 else
15469 match = g_size;
15470
15471 /* FP16 will use a single precision register. */
15472 if (regwidth == 32 && match == 16)
15473 {
15474 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15475 match = regwidth;
15476 else
15477 {
15478 inst.error = _(BAD_FP16);
15479 return badtype;
15480 }
15481 }
15482
15483 if (regwidth != match)
15484 {
15485 first_error (_("operand size must match register width"));
15486 return badtype;
15487 }
15488 }
15489
15490 if ((thisarg & N_EQK) == 0)
15491 {
15492 unsigned given_type = type_chk_of_el_type (g_type, g_size);
15493
15494 if ((given_type & types_allowed) == 0)
15495 {
15496 first_error (BAD_SIMD_TYPE);
15497 return badtype;
15498 }
15499 }
15500 else
15501 {
15502 enum neon_el_type mod_k_type = k_type;
15503 unsigned mod_k_size = k_size;
15504 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
15505 if (g_type != mod_k_type || g_size != mod_k_size)
15506 {
15507 first_error (_("inconsistent types in Neon instruction"));
15508 return badtype;
15509 }
15510 }
15511 }
15512 }
15513 }
15514
15515 return inst.vectype.el[key_el];
15516 }
15517
15518 /* Neon-style VFP instruction forwarding. */
15519
15520 /* Thumb VFP instructions have 0xE in the condition field. */
15521
15522 static void
15523 do_vfp_cond_or_thumb (void)
15524 {
15525 inst.is_neon = 1;
15526
15527 if (thumb_mode)
15528 inst.instruction |= 0xe0000000;
15529 else
15530 inst.instruction |= inst.cond << 28;
15531 }
15532
15533 /* Look up and encode a simple mnemonic, for use as a helper function for the
15534 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
15535 etc. It is assumed that operand parsing has already been done, and that the
15536 operands are in the form expected by the given opcode (this isn't necessarily
15537 the same as the form in which they were parsed, hence some massaging must
15538 take place before this function is called).
15539 Checks current arch version against that in the looked-up opcode. */
15540
15541 static void
15542 do_vfp_nsyn_opcode (const char *opname)
15543 {
15544 const struct asm_opcode *opcode;
15545
15546 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
15547
15548 if (!opcode)
15549 abort ();
15550
15551 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
15552 thumb_mode ? *opcode->tvariant : *opcode->avariant),
15553 _(BAD_FPU));
15554
15555 inst.is_neon = 1;
15556
15557 if (thumb_mode)
15558 {
15559 inst.instruction = opcode->tvalue;
15560 opcode->tencode ();
15561 }
15562 else
15563 {
15564 inst.instruction = (inst.cond << 28) | opcode->avalue;
15565 opcode->aencode ();
15566 }
15567 }
15568
15569 static void
15570 do_vfp_nsyn_add_sub (enum neon_shape rs)
15571 {
15572 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
15573
15574 if (rs == NS_FFF || rs == NS_HHH)
15575 {
15576 if (is_add)
15577 do_vfp_nsyn_opcode ("fadds");
15578 else
15579 do_vfp_nsyn_opcode ("fsubs");
15580
15581 /* ARMv8.2 fp16 instruction. */
15582 if (rs == NS_HHH)
15583 do_scalar_fp16_v82_encode ();
15584 }
15585 else
15586 {
15587 if (is_add)
15588 do_vfp_nsyn_opcode ("faddd");
15589 else
15590 do_vfp_nsyn_opcode ("fsubd");
15591 }
15592 }
15593
15594 /* Check operand types to see if this is a VFP instruction, and if so call
15595 PFN (). */
15596
15597 static int
15598 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
15599 {
15600 enum neon_shape rs;
15601 struct neon_type_el et;
15602
15603 switch (args)
15604 {
15605 case 2:
15606 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15607 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15608 break;
15609
15610 case 3:
15611 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15612 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15613 N_F_ALL | N_KEY | N_VFP);
15614 break;
15615
15616 default:
15617 abort ();
15618 }
15619
15620 if (et.type != NT_invtype)
15621 {
15622 pfn (rs);
15623 return SUCCESS;
15624 }
15625
15626 inst.error = NULL;
15627 return FAIL;
15628 }
15629
15630 static void
15631 do_vfp_nsyn_mla_mls (enum neon_shape rs)
15632 {
15633 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
15634
15635 if (rs == NS_FFF || rs == NS_HHH)
15636 {
15637 if (is_mla)
15638 do_vfp_nsyn_opcode ("fmacs");
15639 else
15640 do_vfp_nsyn_opcode ("fnmacs");
15641
15642 /* ARMv8.2 fp16 instruction. */
15643 if (rs == NS_HHH)
15644 do_scalar_fp16_v82_encode ();
15645 }
15646 else
15647 {
15648 if (is_mla)
15649 do_vfp_nsyn_opcode ("fmacd");
15650 else
15651 do_vfp_nsyn_opcode ("fnmacd");
15652 }
15653 }
15654
15655 static void
15656 do_vfp_nsyn_fma_fms (enum neon_shape rs)
15657 {
15658 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
15659
15660 if (rs == NS_FFF || rs == NS_HHH)
15661 {
15662 if (is_fma)
15663 do_vfp_nsyn_opcode ("ffmas");
15664 else
15665 do_vfp_nsyn_opcode ("ffnmas");
15666
15667 /* ARMv8.2 fp16 instruction. */
15668 if (rs == NS_HHH)
15669 do_scalar_fp16_v82_encode ();
15670 }
15671 else
15672 {
15673 if (is_fma)
15674 do_vfp_nsyn_opcode ("ffmad");
15675 else
15676 do_vfp_nsyn_opcode ("ffnmad");
15677 }
15678 }
15679
15680 static void
15681 do_vfp_nsyn_mul (enum neon_shape rs)
15682 {
15683 if (rs == NS_FFF || rs == NS_HHH)
15684 {
15685 do_vfp_nsyn_opcode ("fmuls");
15686
15687 /* ARMv8.2 fp16 instruction. */
15688 if (rs == NS_HHH)
15689 do_scalar_fp16_v82_encode ();
15690 }
15691 else
15692 do_vfp_nsyn_opcode ("fmuld");
15693 }
15694
15695 static void
15696 do_vfp_nsyn_abs_neg (enum neon_shape rs)
15697 {
15698 int is_neg = (inst.instruction & 0x80) != 0;
15699 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
15700
15701 if (rs == NS_FF || rs == NS_HH)
15702 {
15703 if (is_neg)
15704 do_vfp_nsyn_opcode ("fnegs");
15705 else
15706 do_vfp_nsyn_opcode ("fabss");
15707
15708 /* ARMv8.2 fp16 instruction. */
15709 if (rs == NS_HH)
15710 do_scalar_fp16_v82_encode ();
15711 }
15712 else
15713 {
15714 if (is_neg)
15715 do_vfp_nsyn_opcode ("fnegd");
15716 else
15717 do_vfp_nsyn_opcode ("fabsd");
15718 }
15719 }
15720
15721 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
15722 insns belong to Neon, and are handled elsewhere. */
15723
15724 static void
15725 do_vfp_nsyn_ldm_stm (int is_dbmode)
15726 {
15727 int is_ldm = (inst.instruction & (1 << 20)) != 0;
15728 if (is_ldm)
15729 {
15730 if (is_dbmode)
15731 do_vfp_nsyn_opcode ("fldmdbs");
15732 else
15733 do_vfp_nsyn_opcode ("fldmias");
15734 }
15735 else
15736 {
15737 if (is_dbmode)
15738 do_vfp_nsyn_opcode ("fstmdbs");
15739 else
15740 do_vfp_nsyn_opcode ("fstmias");
15741 }
15742 }
15743
15744 static void
15745 do_vfp_nsyn_sqrt (void)
15746 {
15747 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15748 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15749
15750 if (rs == NS_FF || rs == NS_HH)
15751 {
15752 do_vfp_nsyn_opcode ("fsqrts");
15753
15754 /* ARMv8.2 fp16 instruction. */
15755 if (rs == NS_HH)
15756 do_scalar_fp16_v82_encode ();
15757 }
15758 else
15759 do_vfp_nsyn_opcode ("fsqrtd");
15760 }
15761
15762 static void
15763 do_vfp_nsyn_div (void)
15764 {
15765 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15766 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15767 N_F_ALL | N_KEY | N_VFP);
15768
15769 if (rs == NS_FFF || rs == NS_HHH)
15770 {
15771 do_vfp_nsyn_opcode ("fdivs");
15772
15773 /* ARMv8.2 fp16 instruction. */
15774 if (rs == NS_HHH)
15775 do_scalar_fp16_v82_encode ();
15776 }
15777 else
15778 do_vfp_nsyn_opcode ("fdivd");
15779 }
15780
15781 static void
15782 do_vfp_nsyn_nmul (void)
15783 {
15784 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15785 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15786 N_F_ALL | N_KEY | N_VFP);
15787
15788 if (rs == NS_FFF || rs == NS_HHH)
15789 {
15790 NEON_ENCODE (SINGLE, inst);
15791 do_vfp_sp_dyadic ();
15792
15793 /* ARMv8.2 fp16 instruction. */
15794 if (rs == NS_HHH)
15795 do_scalar_fp16_v82_encode ();
15796 }
15797 else
15798 {
15799 NEON_ENCODE (DOUBLE, inst);
15800 do_vfp_dp_rd_rn_rm ();
15801 }
15802 do_vfp_cond_or_thumb ();
15803
15804 }
15805
15806 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
15807 (0, 1, 2, 3). */
15808
15809 static unsigned
15810 neon_logbits (unsigned x)
15811 {
15812 return ffs (x) - 4;
15813 }
15814
15815 #define LOW4(R) ((R) & 0xf)
15816 #define HI1(R) (((R) >> 4) & 1)
15817
15818 static unsigned
15819 mve_get_vcmp_vpt_cond (struct neon_type_el et)
15820 {
15821 switch (et.type)
15822 {
15823 default:
15824 first_error (BAD_EL_TYPE);
15825 return 0;
15826 case NT_float:
15827 switch (inst.operands[0].imm)
15828 {
15829 default:
15830 first_error (_("invalid condition"));
15831 return 0;
15832 case 0x0:
15833 /* eq. */
15834 return 0;
15835 case 0x1:
15836 /* ne. */
15837 return 1;
15838 case 0xa:
15839 /* ge/ */
15840 return 4;
15841 case 0xb:
15842 /* lt. */
15843 return 5;
15844 case 0xc:
15845 /* gt. */
15846 return 6;
15847 case 0xd:
15848 /* le. */
15849 return 7;
15850 }
15851 case NT_integer:
15852 /* only accept eq and ne. */
15853 if (inst.operands[0].imm > 1)
15854 {
15855 first_error (_("invalid condition"));
15856 return 0;
15857 }
15858 return inst.operands[0].imm;
15859 case NT_unsigned:
15860 if (inst.operands[0].imm == 0x2)
15861 return 2;
15862 else if (inst.operands[0].imm == 0x8)
15863 return 3;
15864 else
15865 {
15866 first_error (_("invalid condition"));
15867 return 0;
15868 }
15869 case NT_signed:
15870 switch (inst.operands[0].imm)
15871 {
15872 default:
15873 first_error (_("invalid condition"));
15874 return 0;
15875 case 0xa:
15876 /* ge. */
15877 return 4;
15878 case 0xb:
15879 /* lt. */
15880 return 5;
15881 case 0xc:
15882 /* gt. */
15883 return 6;
15884 case 0xd:
15885 /* le. */
15886 return 7;
15887 }
15888 }
15889 /* Should be unreachable. */
15890 abort ();
15891 }
15892
15893 /* For VCTP (create vector tail predicate) in MVE. */
15894 static void
15895 do_mve_vctp (void)
15896 {
15897 int dt = 0;
15898 unsigned size = 0x0;
15899
15900 if (inst.cond > COND_ALWAYS)
15901 inst.pred_insn_type = INSIDE_VPT_INSN;
15902 else
15903 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15904
15905 /* This is a typical MVE instruction which has no type but have size 8, 16,
15906 32 and 64. For instructions with no type, inst.vectype.el[j].type is set
15907 to NT_untyped and size is updated in inst.vectype.el[j].size. */
15908 if ((inst.operands[0].present) && (inst.vectype.el[0].type == NT_untyped))
15909 dt = inst.vectype.el[0].size;
15910
15911 /* Setting this does not indicate an actual NEON instruction, but only
15912 indicates that the mnemonic accepts neon-style type suffixes. */
15913 inst.is_neon = 1;
15914
15915 switch (dt)
15916 {
15917 case 8:
15918 break;
15919 case 16:
15920 size = 0x1; break;
15921 case 32:
15922 size = 0x2; break;
15923 case 64:
15924 size = 0x3; break;
15925 default:
15926 first_error (_("Type is not allowed for this instruction"));
15927 }
15928 inst.instruction |= size << 20;
15929 inst.instruction |= inst.operands[0].reg << 16;
15930 }
15931
15932 static void
15933 do_mve_vpt (void)
15934 {
15935 /* We are dealing with a vector predicated block. */
15936 if (inst.operands[0].present)
15937 {
15938 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15939 struct neon_type_el et
15940 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15941 N_EQK);
15942
15943 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15944
15945 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15946
15947 if (et.type == NT_invtype)
15948 return;
15949
15950 if (et.type == NT_float)
15951 {
15952 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15953 BAD_FPU);
15954 constraint (et.size != 16 && et.size != 32, BAD_EL_TYPE);
15955 inst.instruction |= (et.size == 16) << 28;
15956 inst.instruction |= 0x3 << 20;
15957 }
15958 else
15959 {
15960 constraint (et.size != 8 && et.size != 16 && et.size != 32,
15961 BAD_EL_TYPE);
15962 inst.instruction |= 1 << 28;
15963 inst.instruction |= neon_logbits (et.size) << 20;
15964 }
15965
15966 if (inst.operands[2].isquad)
15967 {
15968 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15969 inst.instruction |= LOW4 (inst.operands[2].reg);
15970 inst.instruction |= (fcond & 0x2) >> 1;
15971 }
15972 else
15973 {
15974 if (inst.operands[2].reg == REG_SP)
15975 as_tsktsk (MVE_BAD_SP);
15976 inst.instruction |= 1 << 6;
15977 inst.instruction |= (fcond & 0x2) << 4;
15978 inst.instruction |= inst.operands[2].reg;
15979 }
15980 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15981 inst.instruction |= (fcond & 0x4) << 10;
15982 inst.instruction |= (fcond & 0x1) << 7;
15983
15984 }
15985 set_pred_insn_type (VPT_INSN);
15986 now_pred.cc = 0;
15987 now_pred.mask = ((inst.instruction & 0x00400000) >> 19)
15988 | ((inst.instruction & 0xe000) >> 13);
15989 now_pred.warn_deprecated = FALSE;
15990 now_pred.type = VECTOR_PRED;
15991 inst.is_neon = 1;
15992 }
15993
15994 static void
15995 do_mve_vcmp (void)
15996 {
15997 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
15998 if (!inst.operands[1].isreg || !inst.operands[1].isquad)
15999 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
16000 if (!inst.operands[2].present)
16001 first_error (_("MVE vector or ARM register expected"));
16002 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
16003
16004 /* Deal with 'else' conditional MVE's vcmp, it will be parsed as vcmpe. */
16005 if ((inst.instruction & 0xffffffff) == N_MNEM_vcmpe
16006 && inst.operands[1].isquad)
16007 {
16008 inst.instruction = N_MNEM_vcmp;
16009 inst.cond = 0x10;
16010 }
16011
16012 if (inst.cond > COND_ALWAYS)
16013 inst.pred_insn_type = INSIDE_VPT_INSN;
16014 else
16015 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16016
16017 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
16018 struct neon_type_el et
16019 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
16020 N_EQK);
16021
16022 constraint (rs == NS_IQR && inst.operands[2].reg == REG_PC
16023 && !inst.operands[2].iszr, BAD_PC);
16024
16025 unsigned fcond = mve_get_vcmp_vpt_cond (et);
16026
16027 inst.instruction = 0xee010f00;
16028 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16029 inst.instruction |= (fcond & 0x4) << 10;
16030 inst.instruction |= (fcond & 0x1) << 7;
16031 if (et.type == NT_float)
16032 {
16033 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
16034 BAD_FPU);
16035 inst.instruction |= (et.size == 16) << 28;
16036 inst.instruction |= 0x3 << 20;
16037 }
16038 else
16039 {
16040 inst.instruction |= 1 << 28;
16041 inst.instruction |= neon_logbits (et.size) << 20;
16042 }
16043 if (inst.operands[2].isquad)
16044 {
16045 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16046 inst.instruction |= (fcond & 0x2) >> 1;
16047 inst.instruction |= LOW4 (inst.operands[2].reg);
16048 }
16049 else
16050 {
16051 if (inst.operands[2].reg == REG_SP)
16052 as_tsktsk (MVE_BAD_SP);
16053 inst.instruction |= 1 << 6;
16054 inst.instruction |= (fcond & 0x2) << 4;
16055 inst.instruction |= inst.operands[2].reg;
16056 }
16057
16058 inst.is_neon = 1;
16059 return;
16060 }
16061
16062 static void
16063 do_mve_vmaxa_vmina (void)
16064 {
16065 if (inst.cond > COND_ALWAYS)
16066 inst.pred_insn_type = INSIDE_VPT_INSN;
16067 else
16068 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16069
16070 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
16071 struct neon_type_el et
16072 = neon_check_type (2, rs, N_EQK, N_KEY | N_S8 | N_S16 | N_S32);
16073
16074 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16075 inst.instruction |= neon_logbits (et.size) << 18;
16076 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16077 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16078 inst.instruction |= LOW4 (inst.operands[1].reg);
16079 inst.is_neon = 1;
16080 }
16081
16082 static void
16083 do_mve_vfmas (void)
16084 {
16085 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
16086 struct neon_type_el et
16087 = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK, N_EQK);
16088
16089 if (inst.cond > COND_ALWAYS)
16090 inst.pred_insn_type = INSIDE_VPT_INSN;
16091 else
16092 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16093
16094 if (inst.operands[2].reg == REG_SP)
16095 as_tsktsk (MVE_BAD_SP);
16096 else if (inst.operands[2].reg == REG_PC)
16097 as_tsktsk (MVE_BAD_PC);
16098
16099 inst.instruction |= (et.size == 16) << 28;
16100 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16101 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16102 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16103 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16104 inst.instruction |= inst.operands[2].reg;
16105 inst.is_neon = 1;
16106 }
16107
16108 static void
16109 do_mve_viddup (void)
16110 {
16111 if (inst.cond > COND_ALWAYS)
16112 inst.pred_insn_type = INSIDE_VPT_INSN;
16113 else
16114 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16115
16116 unsigned imm = inst.relocs[0].exp.X_add_number;
16117 constraint (imm != 1 && imm != 2 && imm != 4 && imm != 8,
16118 _("immediate must be either 1, 2, 4 or 8"));
16119
16120 enum neon_shape rs;
16121 struct neon_type_el et;
16122 unsigned Rm;
16123 if (inst.instruction == M_MNEM_vddup || inst.instruction == M_MNEM_vidup)
16124 {
16125 rs = neon_select_shape (NS_QRI, NS_NULL);
16126 et = neon_check_type (2, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK);
16127 Rm = 7;
16128 }
16129 else
16130 {
16131 constraint ((inst.operands[2].reg % 2) != 1, BAD_EVEN);
16132 if (inst.operands[2].reg == REG_SP)
16133 as_tsktsk (MVE_BAD_SP);
16134 else if (inst.operands[2].reg == REG_PC)
16135 first_error (BAD_PC);
16136
16137 rs = neon_select_shape (NS_QRRI, NS_NULL);
16138 et = neon_check_type (3, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK, N_EQK);
16139 Rm = inst.operands[2].reg >> 1;
16140 }
16141 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16142 inst.instruction |= neon_logbits (et.size) << 20;
16143 inst.instruction |= inst.operands[1].reg << 16;
16144 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16145 inst.instruction |= (imm > 2) << 7;
16146 inst.instruction |= Rm << 1;
16147 inst.instruction |= (imm == 2 || imm == 8);
16148 inst.is_neon = 1;
16149 }
16150
16151 static void
16152 do_mve_vmlas (void)
16153 {
16154 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
16155 struct neon_type_el et
16156 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
16157
16158 if (inst.operands[2].reg == REG_PC)
16159 as_tsktsk (MVE_BAD_PC);
16160 else if (inst.operands[2].reg == REG_SP)
16161 as_tsktsk (MVE_BAD_SP);
16162
16163 if (inst.cond > COND_ALWAYS)
16164 inst.pred_insn_type = INSIDE_VPT_INSN;
16165 else
16166 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16167
16168 inst.instruction |= (et.type == NT_unsigned) << 28;
16169 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16170 inst.instruction |= neon_logbits (et.size) << 20;
16171 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16172 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16173 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16174 inst.instruction |= inst.operands[2].reg;
16175 inst.is_neon = 1;
16176 }
16177
16178 static void
16179 do_mve_vshll (void)
16180 {
16181 struct neon_type_el et
16182 = neon_check_type (2, NS_QQI, N_EQK, N_S8 | N_U8 | N_S16 | N_U16 | N_KEY);
16183
16184 if (inst.cond > COND_ALWAYS)
16185 inst.pred_insn_type = INSIDE_VPT_INSN;
16186 else
16187 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16188
16189 int imm = inst.operands[2].imm;
16190 constraint (imm < 1 || (unsigned)imm > et.size,
16191 _("immediate value out of range"));
16192
16193 if ((unsigned)imm == et.size)
16194 {
16195 inst.instruction |= neon_logbits (et.size) << 18;
16196 inst.instruction |= 0x110001;
16197 }
16198 else
16199 {
16200 inst.instruction |= (et.size + imm) << 16;
16201 inst.instruction |= 0x800140;
16202 }
16203
16204 inst.instruction |= (et.type == NT_unsigned) << 28;
16205 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16206 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16207 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16208 inst.instruction |= LOW4 (inst.operands[1].reg);
16209 inst.is_neon = 1;
16210 }
16211
16212 static void
16213 do_mve_vshlc (void)
16214 {
16215 if (inst.cond > COND_ALWAYS)
16216 inst.pred_insn_type = INSIDE_VPT_INSN;
16217 else
16218 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16219
16220 if (inst.operands[1].reg == REG_PC)
16221 as_tsktsk (MVE_BAD_PC);
16222 else if (inst.operands[1].reg == REG_SP)
16223 as_tsktsk (MVE_BAD_SP);
16224
16225 int imm = inst.operands[2].imm;
16226 constraint (imm < 1 || imm > 32, _("immediate value out of range"));
16227
16228 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16229 inst.instruction |= (imm & 0x1f) << 16;
16230 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16231 inst.instruction |= inst.operands[1].reg;
16232 inst.is_neon = 1;
16233 }
16234
16235 static void
16236 do_mve_vshrn (void)
16237 {
16238 unsigned types;
16239 switch (inst.instruction)
16240 {
16241 case M_MNEM_vshrnt:
16242 case M_MNEM_vshrnb:
16243 case M_MNEM_vrshrnt:
16244 case M_MNEM_vrshrnb:
16245 types = N_I16 | N_I32;
16246 break;
16247 case M_MNEM_vqshrnt:
16248 case M_MNEM_vqshrnb:
16249 case M_MNEM_vqrshrnt:
16250 case M_MNEM_vqrshrnb:
16251 types = N_U16 | N_U32 | N_S16 | N_S32;
16252 break;
16253 case M_MNEM_vqshrunt:
16254 case M_MNEM_vqshrunb:
16255 case M_MNEM_vqrshrunt:
16256 case M_MNEM_vqrshrunb:
16257 types = N_S16 | N_S32;
16258 break;
16259 default:
16260 abort ();
16261 }
16262
16263 struct neon_type_el et = neon_check_type (2, NS_QQI, N_EQK, types | N_KEY);
16264
16265 if (inst.cond > COND_ALWAYS)
16266 inst.pred_insn_type = INSIDE_VPT_INSN;
16267 else
16268 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16269
16270 unsigned Qd = inst.operands[0].reg;
16271 unsigned Qm = inst.operands[1].reg;
16272 unsigned imm = inst.operands[2].imm;
16273 constraint (imm < 1 || ((unsigned) imm) > (et.size / 2),
16274 et.size == 16
16275 ? _("immediate operand expected in the range [1,8]")
16276 : _("immediate operand expected in the range [1,16]"));
16277
16278 inst.instruction |= (et.type == NT_unsigned) << 28;
16279 inst.instruction |= HI1 (Qd) << 22;
16280 inst.instruction |= (et.size - imm) << 16;
16281 inst.instruction |= LOW4 (Qd) << 12;
16282 inst.instruction |= HI1 (Qm) << 5;
16283 inst.instruction |= LOW4 (Qm);
16284 inst.is_neon = 1;
16285 }
16286
16287 static void
16288 do_mve_vqmovn (void)
16289 {
16290 struct neon_type_el et;
16291 if (inst.instruction == M_MNEM_vqmovnt
16292 || inst.instruction == M_MNEM_vqmovnb)
16293 et = neon_check_type (2, NS_QQ, N_EQK,
16294 N_U16 | N_U32 | N_S16 | N_S32 | N_KEY);
16295 else
16296 et = neon_check_type (2, NS_QQ, N_EQK, N_S16 | N_S32 | N_KEY);
16297
16298 if (inst.cond > COND_ALWAYS)
16299 inst.pred_insn_type = INSIDE_VPT_INSN;
16300 else
16301 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16302
16303 inst.instruction |= (et.type == NT_unsigned) << 28;
16304 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16305 inst.instruction |= (et.size == 32) << 18;
16306 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16307 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16308 inst.instruction |= LOW4 (inst.operands[1].reg);
16309 inst.is_neon = 1;
16310 }
16311
16312 static void
16313 do_mve_vpsel (void)
16314 {
16315 neon_select_shape (NS_QQQ, NS_NULL);
16316
16317 if (inst.cond > COND_ALWAYS)
16318 inst.pred_insn_type = INSIDE_VPT_INSN;
16319 else
16320 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16321
16322 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16323 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16324 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16325 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16326 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16327 inst.instruction |= LOW4 (inst.operands[2].reg);
16328 inst.is_neon = 1;
16329 }
16330
16331 static void
16332 do_mve_vpnot (void)
16333 {
16334 if (inst.cond > COND_ALWAYS)
16335 inst.pred_insn_type = INSIDE_VPT_INSN;
16336 else
16337 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16338 }
16339
16340 static void
16341 do_mve_vmaxnma_vminnma (void)
16342 {
16343 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
16344 struct neon_type_el et
16345 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
16346
16347 if (inst.cond > COND_ALWAYS)
16348 inst.pred_insn_type = INSIDE_VPT_INSN;
16349 else
16350 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16351
16352 inst.instruction |= (et.size == 16) << 28;
16353 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16354 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16355 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16356 inst.instruction |= LOW4 (inst.operands[1].reg);
16357 inst.is_neon = 1;
16358 }
16359
16360 static void
16361 do_mve_vcmul (void)
16362 {
16363 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
16364 struct neon_type_el et
16365 = neon_check_type (3, rs, N_EQK, N_EQK, N_F_MVE | N_KEY);
16366
16367 if (inst.cond > COND_ALWAYS)
16368 inst.pred_insn_type = INSIDE_VPT_INSN;
16369 else
16370 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16371
16372 unsigned rot = inst.relocs[0].exp.X_add_number;
16373 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
16374 _("immediate out of range"));
16375
16376 if (et.size == 32 && (inst.operands[0].reg == inst.operands[1].reg
16377 || inst.operands[0].reg == inst.operands[2].reg))
16378 as_tsktsk (BAD_MVE_SRCDEST);
16379
16380 inst.instruction |= (et.size == 32) << 28;
16381 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16382 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16383 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16384 inst.instruction |= (rot > 90) << 12;
16385 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16386 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16387 inst.instruction |= LOW4 (inst.operands[2].reg);
16388 inst.instruction |= (rot == 90 || rot == 270);
16389 inst.is_neon = 1;
16390 }
16391
16392 /* To handle the Low Overhead Loop instructions
16393 in Armv8.1-M Mainline and MVE. */
16394 static void
16395 do_t_loloop (void)
16396 {
16397 unsigned long insn = inst.instruction;
16398
16399 inst.instruction = THUMB_OP32 (inst.instruction);
16400
16401 if (insn == T_MNEM_lctp)
16402 return;
16403
16404 set_pred_insn_type (MVE_OUTSIDE_PRED_INSN);
16405
16406 if (insn == T_MNEM_wlstp || insn == T_MNEM_dlstp)
16407 {
16408 struct neon_type_el et
16409 = neon_check_type (2, NS_RR, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
16410 inst.instruction |= neon_logbits (et.size) << 20;
16411 inst.is_neon = 1;
16412 }
16413
16414 switch (insn)
16415 {
16416 case T_MNEM_letp:
16417 constraint (!inst.operands[0].present,
16418 _("expected LR"));
16419 /* fall through. */
16420 case T_MNEM_le:
16421 /* le <label>. */
16422 if (!inst.operands[0].present)
16423 inst.instruction |= 1 << 21;
16424
16425 v8_1_loop_reloc (TRUE);
16426 break;
16427
16428 case T_MNEM_wls:
16429 case T_MNEM_wlstp:
16430 v8_1_loop_reloc (FALSE);
16431 /* fall through. */
16432 case T_MNEM_dlstp:
16433 case T_MNEM_dls:
16434 constraint (inst.operands[1].isreg != 1, BAD_ARGS);
16435
16436 if (insn == T_MNEM_wlstp || insn == T_MNEM_dlstp)
16437 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
16438 else if (inst.operands[1].reg == REG_PC)
16439 as_tsktsk (MVE_BAD_PC);
16440 if (inst.operands[1].reg == REG_SP)
16441 as_tsktsk (MVE_BAD_SP);
16442
16443 inst.instruction |= (inst.operands[1].reg << 16);
16444 break;
16445
16446 default:
16447 abort ();
16448 }
16449 }
16450
16451
16452 static void
16453 do_vfp_nsyn_cmp (void)
16454 {
16455 enum neon_shape rs;
16456 if (!inst.operands[0].isreg)
16457 {
16458 do_mve_vcmp ();
16459 return;
16460 }
16461 else
16462 {
16463 constraint (inst.operands[2].present, BAD_SYNTAX);
16464 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd),
16465 BAD_FPU);
16466 }
16467
16468 if (inst.operands[1].isreg)
16469 {
16470 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
16471 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
16472
16473 if (rs == NS_FF || rs == NS_HH)
16474 {
16475 NEON_ENCODE (SINGLE, inst);
16476 do_vfp_sp_monadic ();
16477 }
16478 else
16479 {
16480 NEON_ENCODE (DOUBLE, inst);
16481 do_vfp_dp_rd_rm ();
16482 }
16483 }
16484 else
16485 {
16486 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
16487 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
16488
16489 switch (inst.instruction & 0x0fffffff)
16490 {
16491 case N_MNEM_vcmp:
16492 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
16493 break;
16494 case N_MNEM_vcmpe:
16495 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
16496 break;
16497 default:
16498 abort ();
16499 }
16500
16501 if (rs == NS_FI || rs == NS_HI)
16502 {
16503 NEON_ENCODE (SINGLE, inst);
16504 do_vfp_sp_compare_z ();
16505 }
16506 else
16507 {
16508 NEON_ENCODE (DOUBLE, inst);
16509 do_vfp_dp_rd ();
16510 }
16511 }
16512 do_vfp_cond_or_thumb ();
16513
16514 /* ARMv8.2 fp16 instruction. */
16515 if (rs == NS_HI || rs == NS_HH)
16516 do_scalar_fp16_v82_encode ();
16517 }
16518
16519 static void
16520 nsyn_insert_sp (void)
16521 {
16522 inst.operands[1] = inst.operands[0];
16523 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
16524 inst.operands[0].reg = REG_SP;
16525 inst.operands[0].isreg = 1;
16526 inst.operands[0].writeback = 1;
16527 inst.operands[0].present = 1;
16528 }
16529
16530 static void
16531 do_vfp_nsyn_push (void)
16532 {
16533 nsyn_insert_sp ();
16534
16535 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
16536 _("register list must contain at least 1 and at most 16 "
16537 "registers"));
16538
16539 if (inst.operands[1].issingle)
16540 do_vfp_nsyn_opcode ("fstmdbs");
16541 else
16542 do_vfp_nsyn_opcode ("fstmdbd");
16543 }
16544
16545 static void
16546 do_vfp_nsyn_pop (void)
16547 {
16548 nsyn_insert_sp ();
16549
16550 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
16551 _("register list must contain at least 1 and at most 16 "
16552 "registers"));
16553
16554 if (inst.operands[1].issingle)
16555 do_vfp_nsyn_opcode ("fldmias");
16556 else
16557 do_vfp_nsyn_opcode ("fldmiad");
16558 }
16559
16560 /* Fix up Neon data-processing instructions, ORing in the correct bits for
16561 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
16562
16563 static void
16564 neon_dp_fixup (struct arm_it* insn)
16565 {
16566 unsigned int i = insn->instruction;
16567 insn->is_neon = 1;
16568
16569 if (thumb_mode)
16570 {
16571 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
16572 if (i & (1 << 24))
16573 i |= 1 << 28;
16574
16575 i &= ~(1 << 24);
16576
16577 i |= 0xef000000;
16578 }
16579 else
16580 i |= 0xf2000000;
16581
16582 insn->instruction = i;
16583 }
16584
16585 static void
16586 mve_encode_qqr (int size, int U, int fp)
16587 {
16588 if (inst.operands[2].reg == REG_SP)
16589 as_tsktsk (MVE_BAD_SP);
16590 else if (inst.operands[2].reg == REG_PC)
16591 as_tsktsk (MVE_BAD_PC);
16592
16593 if (fp)
16594 {
16595 /* vadd. */
16596 if (((unsigned)inst.instruction) == 0xd00)
16597 inst.instruction = 0xee300f40;
16598 /* vsub. */
16599 else if (((unsigned)inst.instruction) == 0x200d00)
16600 inst.instruction = 0xee301f40;
16601 /* vmul. */
16602 else if (((unsigned)inst.instruction) == 0x1000d10)
16603 inst.instruction = 0xee310e60;
16604
16605 /* Setting size which is 1 for F16 and 0 for F32. */
16606 inst.instruction |= (size == 16) << 28;
16607 }
16608 else
16609 {
16610 /* vadd. */
16611 if (((unsigned)inst.instruction) == 0x800)
16612 inst.instruction = 0xee010f40;
16613 /* vsub. */
16614 else if (((unsigned)inst.instruction) == 0x1000800)
16615 inst.instruction = 0xee011f40;
16616 /* vhadd. */
16617 else if (((unsigned)inst.instruction) == 0)
16618 inst.instruction = 0xee000f40;
16619 /* vhsub. */
16620 else if (((unsigned)inst.instruction) == 0x200)
16621 inst.instruction = 0xee001f40;
16622 /* vmla. */
16623 else if (((unsigned)inst.instruction) == 0x900)
16624 inst.instruction = 0xee010e40;
16625 /* vmul. */
16626 else if (((unsigned)inst.instruction) == 0x910)
16627 inst.instruction = 0xee011e60;
16628 /* vqadd. */
16629 else if (((unsigned)inst.instruction) == 0x10)
16630 inst.instruction = 0xee000f60;
16631 /* vqsub. */
16632 else if (((unsigned)inst.instruction) == 0x210)
16633 inst.instruction = 0xee001f60;
16634 /* vqrdmlah. */
16635 else if (((unsigned)inst.instruction) == 0x3000b10)
16636 inst.instruction = 0xee000e40;
16637 /* vqdmulh. */
16638 else if (((unsigned)inst.instruction) == 0x0000b00)
16639 inst.instruction = 0xee010e60;
16640 /* vqrdmulh. */
16641 else if (((unsigned)inst.instruction) == 0x1000b00)
16642 inst.instruction = 0xfe010e60;
16643
16644 /* Set U-bit. */
16645 inst.instruction |= U << 28;
16646
16647 /* Setting bits for size. */
16648 inst.instruction |= neon_logbits (size) << 20;
16649 }
16650 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16651 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16652 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16653 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16654 inst.instruction |= inst.operands[2].reg;
16655 inst.is_neon = 1;
16656 }
16657
16658 static void
16659 mve_encode_rqq (unsigned bit28, unsigned size)
16660 {
16661 inst.instruction |= bit28 << 28;
16662 inst.instruction |= neon_logbits (size) << 20;
16663 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16664 inst.instruction |= inst.operands[0].reg << 12;
16665 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16666 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16667 inst.instruction |= LOW4 (inst.operands[2].reg);
16668 inst.is_neon = 1;
16669 }
16670
16671 static void
16672 mve_encode_qqq (int ubit, int size)
16673 {
16674
16675 inst.instruction |= (ubit != 0) << 28;
16676 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16677 inst.instruction |= neon_logbits (size) << 20;
16678 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16679 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16680 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16681 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16682 inst.instruction |= LOW4 (inst.operands[2].reg);
16683
16684 inst.is_neon = 1;
16685 }
16686
16687 static void
16688 mve_encode_rq (unsigned bit28, unsigned size)
16689 {
16690 inst.instruction |= bit28 << 28;
16691 inst.instruction |= neon_logbits (size) << 18;
16692 inst.instruction |= inst.operands[0].reg << 12;
16693 inst.instruction |= LOW4 (inst.operands[1].reg);
16694 inst.is_neon = 1;
16695 }
16696
16697 static void
16698 mve_encode_rrqq (unsigned U, unsigned size)
16699 {
16700 constraint (inst.operands[3].reg > 14, MVE_BAD_QREG);
16701
16702 inst.instruction |= U << 28;
16703 inst.instruction |= (inst.operands[1].reg >> 1) << 20;
16704 inst.instruction |= LOW4 (inst.operands[2].reg) << 16;
16705 inst.instruction |= (size == 32) << 16;
16706 inst.instruction |= inst.operands[0].reg << 12;
16707 inst.instruction |= HI1 (inst.operands[2].reg) << 7;
16708 inst.instruction |= inst.operands[3].reg;
16709 inst.is_neon = 1;
16710 }
16711
16712 /* Helper function for neon_three_same handling the operands. */
16713 static void
16714 neon_three_args (int isquad)
16715 {
16716 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16717 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16718 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16719 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16720 inst.instruction |= LOW4 (inst.operands[2].reg);
16721 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16722 inst.instruction |= (isquad != 0) << 6;
16723 inst.is_neon = 1;
16724 }
16725
16726 /* Encode insns with bit pattern:
16727
16728 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
16729 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
16730
16731 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
16732 different meaning for some instruction. */
16733
16734 static void
16735 neon_three_same (int isquad, int ubit, int size)
16736 {
16737 neon_three_args (isquad);
16738 inst.instruction |= (ubit != 0) << 24;
16739 if (size != -1)
16740 inst.instruction |= neon_logbits (size) << 20;
16741
16742 neon_dp_fixup (&inst);
16743 }
16744
16745 /* Encode instructions of the form:
16746
16747 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
16748 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
16749
16750 Don't write size if SIZE == -1. */
16751
16752 static void
16753 neon_two_same (int qbit, int ubit, int size)
16754 {
16755 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16756 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16757 inst.instruction |= LOW4 (inst.operands[1].reg);
16758 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16759 inst.instruction |= (qbit != 0) << 6;
16760 inst.instruction |= (ubit != 0) << 24;
16761
16762 if (size != -1)
16763 inst.instruction |= neon_logbits (size) << 18;
16764
16765 neon_dp_fixup (&inst);
16766 }
16767
16768 enum vfp_or_neon_is_neon_bits
16769 {
16770 NEON_CHECK_CC = 1,
16771 NEON_CHECK_ARCH = 2,
16772 NEON_CHECK_ARCH8 = 4
16773 };
16774
16775 /* Call this function if an instruction which may have belonged to the VFP or
16776 Neon instruction sets, but turned out to be a Neon instruction (due to the
16777 operand types involved, etc.). We have to check and/or fix-up a couple of
16778 things:
16779
16780 - Make sure the user hasn't attempted to make a Neon instruction
16781 conditional.
16782 - Alter the value in the condition code field if necessary.
16783 - Make sure that the arch supports Neon instructions.
16784
16785 Which of these operations take place depends on bits from enum
16786 vfp_or_neon_is_neon_bits.
16787
16788 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
16789 current instruction's condition is COND_ALWAYS, the condition field is
16790 changed to inst.uncond_value. This is necessary because instructions shared
16791 between VFP and Neon may be conditional for the VFP variants only, and the
16792 unconditional Neon version must have, e.g., 0xF in the condition field. */
16793
16794 static int
16795 vfp_or_neon_is_neon (unsigned check)
16796 {
16797 /* Conditions are always legal in Thumb mode (IT blocks). */
16798 if (!thumb_mode && (check & NEON_CHECK_CC))
16799 {
16800 if (inst.cond != COND_ALWAYS)
16801 {
16802 first_error (_(BAD_COND));
16803 return FAIL;
16804 }
16805 if (inst.uncond_value != -1)
16806 inst.instruction |= inst.uncond_value << 28;
16807 }
16808
16809
16810 if (((check & NEON_CHECK_ARCH) && !mark_feature_used (&fpu_neon_ext_v1))
16811 || ((check & NEON_CHECK_ARCH8)
16812 && !mark_feature_used (&fpu_neon_ext_armv8)))
16813 {
16814 first_error (_(BAD_FPU));
16815 return FAIL;
16816 }
16817
16818 return SUCCESS;
16819 }
16820
16821
16822 /* Return TRUE if the SIMD instruction is available for the current
16823 cpu_variant. FP is set to TRUE if this is a SIMD floating-point
16824 instruction. CHECK contains th. CHECK contains the set of bits to pass to
16825 vfp_or_neon_is_neon for the NEON specific checks. */
16826
16827 static bfd_boolean
16828 check_simd_pred_availability (int fp, unsigned check)
16829 {
16830 if (inst.cond > COND_ALWAYS)
16831 {
16832 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16833 {
16834 inst.error = BAD_FPU;
16835 return FALSE;
16836 }
16837 inst.pred_insn_type = INSIDE_VPT_INSN;
16838 }
16839 else if (inst.cond < COND_ALWAYS)
16840 {
16841 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16842 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16843 else if (vfp_or_neon_is_neon (check) == FAIL)
16844 return FALSE;
16845 }
16846 else
16847 {
16848 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fp ? mve_fp_ext : mve_ext)
16849 && vfp_or_neon_is_neon (check) == FAIL)
16850 return FALSE;
16851
16852 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16853 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16854 }
16855 return TRUE;
16856 }
16857
16858 /* Neon instruction encoders, in approximate order of appearance. */
16859
16860 static void
16861 do_neon_dyadic_i_su (void)
16862 {
16863 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
16864 return;
16865
16866 enum neon_shape rs;
16867 struct neon_type_el et;
16868 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16869 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16870 else
16871 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16872
16873 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_32 | N_KEY);
16874
16875
16876 if (rs != NS_QQR)
16877 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16878 else
16879 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
16880 }
16881
16882 static void
16883 do_neon_dyadic_i64_su (void)
16884 {
16885 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
16886 return;
16887 enum neon_shape rs;
16888 struct neon_type_el et;
16889 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16890 {
16891 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
16892 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
16893 }
16894 else
16895 {
16896 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16897 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_ALL | N_KEY);
16898 }
16899 if (rs == NS_QQR)
16900 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
16901 else
16902 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16903 }
16904
16905 static void
16906 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
16907 unsigned immbits)
16908 {
16909 unsigned size = et.size >> 3;
16910 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16911 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16912 inst.instruction |= LOW4 (inst.operands[1].reg);
16913 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16914 inst.instruction |= (isquad != 0) << 6;
16915 inst.instruction |= immbits << 16;
16916 inst.instruction |= (size >> 3) << 7;
16917 inst.instruction |= (size & 0x7) << 19;
16918 if (write_ubit)
16919 inst.instruction |= (uval != 0) << 24;
16920
16921 neon_dp_fixup (&inst);
16922 }
16923
16924 static void
16925 do_neon_shl (void)
16926 {
16927 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
16928 return;
16929
16930 if (!inst.operands[2].isreg)
16931 {
16932 enum neon_shape rs;
16933 struct neon_type_el et;
16934 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16935 {
16936 rs = neon_select_shape (NS_QQI, NS_NULL);
16937 et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_MVE);
16938 }
16939 else
16940 {
16941 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16942 et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
16943 }
16944 int imm = inst.operands[2].imm;
16945
16946 constraint (imm < 0 || (unsigned)imm >= et.size,
16947 _("immediate out of range for shift"));
16948 NEON_ENCODE (IMMED, inst);
16949 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
16950 }
16951 else
16952 {
16953 enum neon_shape rs;
16954 struct neon_type_el et;
16955 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16956 {
16957 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16958 et = neon_check_type (3, rs, N_EQK, N_SU_MVE | N_KEY, N_EQK | N_EQK);
16959 }
16960 else
16961 {
16962 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16963 et = neon_check_type (3, rs, N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
16964 }
16965
16966
16967 if (rs == NS_QQR)
16968 {
16969 constraint (inst.operands[0].reg != inst.operands[1].reg,
16970 _("invalid instruction shape"));
16971 if (inst.operands[2].reg == REG_SP)
16972 as_tsktsk (MVE_BAD_SP);
16973 else if (inst.operands[2].reg == REG_PC)
16974 as_tsktsk (MVE_BAD_PC);
16975
16976 inst.instruction = 0xee311e60;
16977 inst.instruction |= (et.type == NT_unsigned) << 28;
16978 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16979 inst.instruction |= neon_logbits (et.size) << 18;
16980 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16981 inst.instruction |= inst.operands[2].reg;
16982 inst.is_neon = 1;
16983 }
16984 else
16985 {
16986 unsigned int tmp;
16987
16988 /* VSHL/VQSHL 3-register variants have syntax such as:
16989 vshl.xx Dd, Dm, Dn
16990 whereas other 3-register operations encoded by neon_three_same have
16991 syntax like:
16992 vadd.xx Dd, Dn, Dm
16993 (i.e. with Dn & Dm reversed). Swap operands[1].reg and
16994 operands[2].reg here. */
16995 tmp = inst.operands[2].reg;
16996 inst.operands[2].reg = inst.operands[1].reg;
16997 inst.operands[1].reg = tmp;
16998 NEON_ENCODE (INTEGER, inst);
16999 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
17000 }
17001 }
17002 }
17003
17004 static void
17005 do_neon_qshl (void)
17006 {
17007 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
17008 return;
17009
17010 if (!inst.operands[2].isreg)
17011 {
17012 enum neon_shape rs;
17013 struct neon_type_el et;
17014 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17015 {
17016 rs = neon_select_shape (NS_QQI, NS_NULL);
17017 et = neon_check_type (2, rs, N_EQK, N_KEY | N_SU_MVE);
17018 }
17019 else
17020 {
17021 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17022 et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
17023 }
17024 int imm = inst.operands[2].imm;
17025
17026 constraint (imm < 0 || (unsigned)imm >= et.size,
17027 _("immediate out of range for shift"));
17028 NEON_ENCODE (IMMED, inst);
17029 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
17030 }
17031 else
17032 {
17033 enum neon_shape rs;
17034 struct neon_type_el et;
17035
17036 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17037 {
17038 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
17039 et = neon_check_type (3, rs, N_EQK, N_SU_MVE | N_KEY, N_EQK | N_EQK);
17040 }
17041 else
17042 {
17043 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17044 et = neon_check_type (3, rs, N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
17045 }
17046
17047 if (rs == NS_QQR)
17048 {
17049 constraint (inst.operands[0].reg != inst.operands[1].reg,
17050 _("invalid instruction shape"));
17051 if (inst.operands[2].reg == REG_SP)
17052 as_tsktsk (MVE_BAD_SP);
17053 else if (inst.operands[2].reg == REG_PC)
17054 as_tsktsk (MVE_BAD_PC);
17055
17056 inst.instruction = 0xee311ee0;
17057 inst.instruction |= (et.type == NT_unsigned) << 28;
17058 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17059 inst.instruction |= neon_logbits (et.size) << 18;
17060 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17061 inst.instruction |= inst.operands[2].reg;
17062 inst.is_neon = 1;
17063 }
17064 else
17065 {
17066 unsigned int tmp;
17067
17068 /* See note in do_neon_shl. */
17069 tmp = inst.operands[2].reg;
17070 inst.operands[2].reg = inst.operands[1].reg;
17071 inst.operands[1].reg = tmp;
17072 NEON_ENCODE (INTEGER, inst);
17073 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
17074 }
17075 }
17076 }
17077
17078 static void
17079 do_neon_rshl (void)
17080 {
17081 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
17082 return;
17083
17084 enum neon_shape rs;
17085 struct neon_type_el et;
17086 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17087 {
17088 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
17089 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17090 }
17091 else
17092 {
17093 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17094 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_ALL | N_KEY);
17095 }
17096
17097 unsigned int tmp;
17098
17099 if (rs == NS_QQR)
17100 {
17101 if (inst.operands[2].reg == REG_PC)
17102 as_tsktsk (MVE_BAD_PC);
17103 else if (inst.operands[2].reg == REG_SP)
17104 as_tsktsk (MVE_BAD_SP);
17105
17106 constraint (inst.operands[0].reg != inst.operands[1].reg,
17107 _("invalid instruction shape"));
17108
17109 if (inst.instruction == 0x0000510)
17110 /* We are dealing with vqrshl. */
17111 inst.instruction = 0xee331ee0;
17112 else
17113 /* We are dealing with vrshl. */
17114 inst.instruction = 0xee331e60;
17115
17116 inst.instruction |= (et.type == NT_unsigned) << 28;
17117 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17118 inst.instruction |= neon_logbits (et.size) << 18;
17119 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17120 inst.instruction |= inst.operands[2].reg;
17121 inst.is_neon = 1;
17122 }
17123 else
17124 {
17125 tmp = inst.operands[2].reg;
17126 inst.operands[2].reg = inst.operands[1].reg;
17127 inst.operands[1].reg = tmp;
17128 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
17129 }
17130 }
17131
17132 static int
17133 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
17134 {
17135 /* Handle .I8 pseudo-instructions. */
17136 if (size == 8)
17137 {
17138 /* Unfortunately, this will make everything apart from zero out-of-range.
17139 FIXME is this the intended semantics? There doesn't seem much point in
17140 accepting .I8 if so. */
17141 immediate |= immediate << 8;
17142 size = 16;
17143 }
17144
17145 if (size >= 32)
17146 {
17147 if (immediate == (immediate & 0x000000ff))
17148 {
17149 *immbits = immediate;
17150 return 0x1;
17151 }
17152 else if (immediate == (immediate & 0x0000ff00))
17153 {
17154 *immbits = immediate >> 8;
17155 return 0x3;
17156 }
17157 else if (immediate == (immediate & 0x00ff0000))
17158 {
17159 *immbits = immediate >> 16;
17160 return 0x5;
17161 }
17162 else if (immediate == (immediate & 0xff000000))
17163 {
17164 *immbits = immediate >> 24;
17165 return 0x7;
17166 }
17167 if ((immediate & 0xffff) != (immediate >> 16))
17168 goto bad_immediate;
17169 immediate &= 0xffff;
17170 }
17171
17172 if (immediate == (immediate & 0x000000ff))
17173 {
17174 *immbits = immediate;
17175 return 0x9;
17176 }
17177 else if (immediate == (immediate & 0x0000ff00))
17178 {
17179 *immbits = immediate >> 8;
17180 return 0xb;
17181 }
17182
17183 bad_immediate:
17184 first_error (_("immediate value out of range"));
17185 return FAIL;
17186 }
17187
17188 static void
17189 do_neon_logic (void)
17190 {
17191 if (inst.operands[2].present && inst.operands[2].isreg)
17192 {
17193 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17194 if (rs == NS_QQQ
17195 && !check_simd_pred_availability (FALSE,
17196 NEON_CHECK_ARCH | NEON_CHECK_CC))
17197 return;
17198 else if (rs != NS_QQQ
17199 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
17200 first_error (BAD_FPU);
17201
17202 neon_check_type (3, rs, N_IGNORE_TYPE);
17203 /* U bit and size field were set as part of the bitmask. */
17204 NEON_ENCODE (INTEGER, inst);
17205 neon_three_same (neon_quad (rs), 0, -1);
17206 }
17207 else
17208 {
17209 const int three_ops_form = (inst.operands[2].present
17210 && !inst.operands[2].isreg);
17211 const int immoperand = (three_ops_form ? 2 : 1);
17212 enum neon_shape rs = (three_ops_form
17213 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
17214 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
17215 /* Because neon_select_shape makes the second operand a copy of the first
17216 if the second operand is not present. */
17217 if (rs == NS_QQI
17218 && !check_simd_pred_availability (FALSE,
17219 NEON_CHECK_ARCH | NEON_CHECK_CC))
17220 return;
17221 else if (rs != NS_QQI
17222 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
17223 first_error (BAD_FPU);
17224
17225 struct neon_type_el et;
17226 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17227 et = neon_check_type (2, rs, N_I32 | N_I16 | N_KEY, N_EQK);
17228 else
17229 et = neon_check_type (2, rs, N_I8 | N_I16 | N_I32 | N_I64 | N_F32
17230 | N_KEY, N_EQK);
17231
17232 if (et.type == NT_invtype)
17233 return;
17234 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
17235 unsigned immbits;
17236 int cmode;
17237
17238
17239 if (three_ops_form)
17240 constraint (inst.operands[0].reg != inst.operands[1].reg,
17241 _("first and second operands shall be the same register"));
17242
17243 NEON_ENCODE (IMMED, inst);
17244
17245 immbits = inst.operands[immoperand].imm;
17246 if (et.size == 64)
17247 {
17248 /* .i64 is a pseudo-op, so the immediate must be a repeating
17249 pattern. */
17250 if (immbits != (inst.operands[immoperand].regisimm ?
17251 inst.operands[immoperand].reg : 0))
17252 {
17253 /* Set immbits to an invalid constant. */
17254 immbits = 0xdeadbeef;
17255 }
17256 }
17257
17258 switch (opcode)
17259 {
17260 case N_MNEM_vbic:
17261 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
17262 break;
17263
17264 case N_MNEM_vorr:
17265 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
17266 break;
17267
17268 case N_MNEM_vand:
17269 /* Pseudo-instruction for VBIC. */
17270 neon_invert_size (&immbits, 0, et.size);
17271 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
17272 break;
17273
17274 case N_MNEM_vorn:
17275 /* Pseudo-instruction for VORR. */
17276 neon_invert_size (&immbits, 0, et.size);
17277 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
17278 break;
17279
17280 default:
17281 abort ();
17282 }
17283
17284 if (cmode == FAIL)
17285 return;
17286
17287 inst.instruction |= neon_quad (rs) << 6;
17288 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17289 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17290 inst.instruction |= cmode << 8;
17291 neon_write_immbits (immbits);
17292
17293 neon_dp_fixup (&inst);
17294 }
17295 }
17296
17297 static void
17298 do_neon_bitfield (void)
17299 {
17300 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17301 neon_check_type (3, rs, N_IGNORE_TYPE);
17302 neon_three_same (neon_quad (rs), 0, -1);
17303 }
17304
17305 static void
17306 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
17307 unsigned destbits)
17308 {
17309 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
17310 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
17311 types | N_KEY);
17312 if (et.type == NT_float)
17313 {
17314 NEON_ENCODE (FLOAT, inst);
17315 if (rs == NS_QQR)
17316 mve_encode_qqr (et.size, 0, 1);
17317 else
17318 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
17319 }
17320 else
17321 {
17322 NEON_ENCODE (INTEGER, inst);
17323 if (rs == NS_QQR)
17324 mve_encode_qqr (et.size, et.type == ubit_meaning, 0);
17325 else
17326 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
17327 }
17328 }
17329
17330
17331 static void
17332 do_neon_dyadic_if_su_d (void)
17333 {
17334 /* This version only allow D registers, but that constraint is enforced during
17335 operand parsing so we don't need to do anything extra here. */
17336 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
17337 }
17338
17339 static void
17340 do_neon_dyadic_if_i_d (void)
17341 {
17342 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17343 affected if we specify unsigned args. */
17344 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17345 }
17346
17347 static void
17348 do_mve_vstr_vldr_QI (int size, int elsize, int load)
17349 {
17350 constraint (size < 32, BAD_ADDR_MODE);
17351 constraint (size != elsize, BAD_EL_TYPE);
17352 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
17353 constraint (!inst.operands[1].preind, BAD_ADDR_MODE);
17354 constraint (load && inst.operands[0].reg == inst.operands[1].reg,
17355 _("destination register and offset register may not be the"
17356 " same"));
17357
17358 int imm = inst.relocs[0].exp.X_add_number;
17359 int add = 1;
17360 if (imm < 0)
17361 {
17362 add = 0;
17363 imm = -imm;
17364 }
17365 constraint ((imm % (size / 8) != 0)
17366 || imm > (0x7f << neon_logbits (size)),
17367 (size == 32) ? _("immediate must be a multiple of 4 in the"
17368 " range of +/-[0,508]")
17369 : _("immediate must be a multiple of 8 in the"
17370 " range of +/-[0,1016]"));
17371 inst.instruction |= 0x11 << 24;
17372 inst.instruction |= add << 23;
17373 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17374 inst.instruction |= inst.operands[1].writeback << 21;
17375 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17376 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17377 inst.instruction |= 1 << 12;
17378 inst.instruction |= (size == 64) << 8;
17379 inst.instruction &= 0xffffff00;
17380 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17381 inst.instruction |= imm >> neon_logbits (size);
17382 }
17383
17384 static void
17385 do_mve_vstr_vldr_RQ (int size, int elsize, int load)
17386 {
17387 unsigned os = inst.operands[1].imm >> 5;
17388 unsigned type = inst.vectype.el[0].type;
17389 constraint (os != 0 && size == 8,
17390 _("can not shift offsets when accessing less than half-word"));
17391 constraint (os && os != neon_logbits (size),
17392 _("shift immediate must be 1, 2 or 3 for half-word, word"
17393 " or double-word accesses respectively"));
17394 if (inst.operands[1].reg == REG_PC)
17395 as_tsktsk (MVE_BAD_PC);
17396
17397 switch (size)
17398 {
17399 case 8:
17400 constraint (elsize >= 64, BAD_EL_TYPE);
17401 break;
17402 case 16:
17403 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
17404 break;
17405 case 32:
17406 case 64:
17407 constraint (elsize != size, BAD_EL_TYPE);
17408 break;
17409 default:
17410 break;
17411 }
17412 constraint (inst.operands[1].writeback || !inst.operands[1].preind,
17413 BAD_ADDR_MODE);
17414 if (load)
17415 {
17416 constraint (inst.operands[0].reg == (inst.operands[1].imm & 0x1f),
17417 _("destination register and offset register may not be"
17418 " the same"));
17419 constraint (size == elsize && type == NT_signed, BAD_EL_TYPE);
17420 constraint (size != elsize && type != NT_unsigned && type != NT_signed,
17421 BAD_EL_TYPE);
17422 inst.instruction |= ((size == elsize) || (type == NT_unsigned)) << 28;
17423 }
17424 else
17425 {
17426 constraint (type != NT_untyped, BAD_EL_TYPE);
17427 }
17428
17429 inst.instruction |= 1 << 23;
17430 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17431 inst.instruction |= inst.operands[1].reg << 16;
17432 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17433 inst.instruction |= neon_logbits (elsize) << 7;
17434 inst.instruction |= HI1 (inst.operands[1].imm) << 5;
17435 inst.instruction |= LOW4 (inst.operands[1].imm);
17436 inst.instruction |= !!os;
17437 }
17438
17439 static void
17440 do_mve_vstr_vldr_RI (int size, int elsize, int load)
17441 {
17442 enum neon_el_type type = inst.vectype.el[0].type;
17443
17444 constraint (size >= 64, BAD_ADDR_MODE);
17445 switch (size)
17446 {
17447 case 16:
17448 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
17449 break;
17450 case 32:
17451 constraint (elsize != size, BAD_EL_TYPE);
17452 break;
17453 default:
17454 break;
17455 }
17456 if (load)
17457 {
17458 constraint (elsize != size && type != NT_unsigned
17459 && type != NT_signed, BAD_EL_TYPE);
17460 }
17461 else
17462 {
17463 constraint (elsize != size && type != NT_untyped, BAD_EL_TYPE);
17464 }
17465
17466 int imm = inst.relocs[0].exp.X_add_number;
17467 int add = 1;
17468 if (imm < 0)
17469 {
17470 add = 0;
17471 imm = -imm;
17472 }
17473
17474 if ((imm % (size / 8) != 0) || imm > (0x7f << neon_logbits (size)))
17475 {
17476 switch (size)
17477 {
17478 case 8:
17479 constraint (1, _("immediate must be in the range of +/-[0,127]"));
17480 break;
17481 case 16:
17482 constraint (1, _("immediate must be a multiple of 2 in the"
17483 " range of +/-[0,254]"));
17484 break;
17485 case 32:
17486 constraint (1, _("immediate must be a multiple of 4 in the"
17487 " range of +/-[0,508]"));
17488 break;
17489 }
17490 }
17491
17492 if (size != elsize)
17493 {
17494 constraint (inst.operands[1].reg > 7, BAD_HIREG);
17495 constraint (inst.operands[0].reg > 14,
17496 _("MVE vector register in the range [Q0..Q7] expected"));
17497 inst.instruction |= (load && type == NT_unsigned) << 28;
17498 inst.instruction |= (size == 16) << 19;
17499 inst.instruction |= neon_logbits (elsize) << 7;
17500 }
17501 else
17502 {
17503 if (inst.operands[1].reg == REG_PC)
17504 as_tsktsk (MVE_BAD_PC);
17505 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
17506 as_tsktsk (MVE_BAD_SP);
17507 inst.instruction |= 1 << 12;
17508 inst.instruction |= neon_logbits (size) << 7;
17509 }
17510 inst.instruction |= inst.operands[1].preind << 24;
17511 inst.instruction |= add << 23;
17512 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17513 inst.instruction |= inst.operands[1].writeback << 21;
17514 inst.instruction |= inst.operands[1].reg << 16;
17515 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17516 inst.instruction &= 0xffffff80;
17517 inst.instruction |= imm >> neon_logbits (size);
17518
17519 }
17520
17521 static void
17522 do_mve_vstr_vldr (void)
17523 {
17524 unsigned size;
17525 int load = 0;
17526
17527 if (inst.cond > COND_ALWAYS)
17528 inst.pred_insn_type = INSIDE_VPT_INSN;
17529 else
17530 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17531
17532 switch (inst.instruction)
17533 {
17534 default:
17535 gas_assert (0);
17536 break;
17537 case M_MNEM_vldrb:
17538 load = 1;
17539 /* fall through. */
17540 case M_MNEM_vstrb:
17541 size = 8;
17542 break;
17543 case M_MNEM_vldrh:
17544 load = 1;
17545 /* fall through. */
17546 case M_MNEM_vstrh:
17547 size = 16;
17548 break;
17549 case M_MNEM_vldrw:
17550 load = 1;
17551 /* fall through. */
17552 case M_MNEM_vstrw:
17553 size = 32;
17554 break;
17555 case M_MNEM_vldrd:
17556 load = 1;
17557 /* fall through. */
17558 case M_MNEM_vstrd:
17559 size = 64;
17560 break;
17561 }
17562 unsigned elsize = inst.vectype.el[0].size;
17563
17564 if (inst.operands[1].isquad)
17565 {
17566 /* We are dealing with [Q, imm]{!} cases. */
17567 do_mve_vstr_vldr_QI (size, elsize, load);
17568 }
17569 else
17570 {
17571 if (inst.operands[1].immisreg == 2)
17572 {
17573 /* We are dealing with [R, Q, {UXTW #os}] cases. */
17574 do_mve_vstr_vldr_RQ (size, elsize, load);
17575 }
17576 else if (!inst.operands[1].immisreg)
17577 {
17578 /* We are dealing with [R, Imm]{!}/[R], Imm cases. */
17579 do_mve_vstr_vldr_RI (size, elsize, load);
17580 }
17581 else
17582 constraint (1, BAD_ADDR_MODE);
17583 }
17584
17585 inst.is_neon = 1;
17586 }
17587
17588 static void
17589 do_mve_vst_vld (void)
17590 {
17591 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17592 return;
17593
17594 constraint (!inst.operands[1].preind || inst.relocs[0].exp.X_add_symbol != 0
17595 || inst.relocs[0].exp.X_add_number != 0
17596 || inst.operands[1].immisreg != 0,
17597 BAD_ADDR_MODE);
17598 constraint (inst.vectype.el[0].size > 32, BAD_EL_TYPE);
17599 if (inst.operands[1].reg == REG_PC)
17600 as_tsktsk (MVE_BAD_PC);
17601 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
17602 as_tsktsk (MVE_BAD_SP);
17603
17604
17605 /* These instructions are one of the "exceptions" mentioned in
17606 handle_pred_state. They are MVE instructions that are not VPT compatible
17607 and do not accept a VPT code, thus appending such a code is a syntax
17608 error. */
17609 if (inst.cond > COND_ALWAYS)
17610 first_error (BAD_SYNTAX);
17611 /* If we append a scalar condition code we can set this to
17612 MVE_OUTSIDE_PRED_INSN as it will also lead to a syntax error. */
17613 else if (inst.cond < COND_ALWAYS)
17614 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17615 else
17616 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
17617
17618 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17619 inst.instruction |= inst.operands[1].writeback << 21;
17620 inst.instruction |= inst.operands[1].reg << 16;
17621 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17622 inst.instruction |= neon_logbits (inst.vectype.el[0].size) << 7;
17623 inst.is_neon = 1;
17624 }
17625
17626 static void
17627 do_mve_vaddlv (void)
17628 {
17629 enum neon_shape rs = neon_select_shape (NS_RRQ, NS_NULL);
17630 struct neon_type_el et
17631 = neon_check_type (3, rs, N_EQK, N_EQK, N_S32 | N_U32 | N_KEY);
17632
17633 if (et.type == NT_invtype)
17634 first_error (BAD_EL_TYPE);
17635
17636 if (inst.cond > COND_ALWAYS)
17637 inst.pred_insn_type = INSIDE_VPT_INSN;
17638 else
17639 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17640
17641 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
17642
17643 inst.instruction |= (et.type == NT_unsigned) << 28;
17644 inst.instruction |= inst.operands[1].reg << 19;
17645 inst.instruction |= inst.operands[0].reg << 12;
17646 inst.instruction |= inst.operands[2].reg;
17647 inst.is_neon = 1;
17648 }
17649
17650 static void
17651 do_neon_dyadic_if_su (void)
17652 {
17653 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
17654 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17655 N_SUF_32 | N_KEY);
17656
17657 constraint ((inst.instruction == ((unsigned) N_MNEM_vmax)
17658 || inst.instruction == ((unsigned) N_MNEM_vmin))
17659 && et.type == NT_float
17660 && !ARM_CPU_HAS_FEATURE (cpu_variant,fpu_neon_ext_v1), BAD_FPU);
17661
17662 if (!check_simd_pred_availability (et.type == NT_float,
17663 NEON_CHECK_ARCH | NEON_CHECK_CC))
17664 return;
17665
17666 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
17667 }
17668
17669 static void
17670 do_neon_addsub_if_i (void)
17671 {
17672 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
17673 && try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
17674 return;
17675
17676 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
17677 struct neon_type_el et = neon_check_type (3, rs, N_EQK,
17678 N_EQK, N_IF_32 | N_I64 | N_KEY);
17679
17680 constraint (rs == NS_QQR && et.size == 64, BAD_FPU);
17681 /* If we are parsing Q registers and the element types match MVE, which NEON
17682 also supports, then we must check whether this is an instruction that can
17683 be used by both MVE/NEON. This distinction can be made based on whether
17684 they are predicated or not. */
17685 if ((rs == NS_QQQ || rs == NS_QQR) && et.size != 64)
17686 {
17687 if (!check_simd_pred_availability (et.type == NT_float,
17688 NEON_CHECK_ARCH | NEON_CHECK_CC))
17689 return;
17690 }
17691 else
17692 {
17693 /* If they are either in a D register or are using an unsupported. */
17694 if (rs != NS_QQR
17695 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17696 return;
17697 }
17698
17699 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17700 affected if we specify unsigned args. */
17701 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
17702 }
17703
17704 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
17705 result to be:
17706 V<op> A,B (A is operand 0, B is operand 2)
17707 to mean:
17708 V<op> A,B,A
17709 not:
17710 V<op> A,B,B
17711 so handle that case specially. */
17712
17713 static void
17714 neon_exchange_operands (void)
17715 {
17716 if (inst.operands[1].present)
17717 {
17718 void *scratch = xmalloc (sizeof (inst.operands[0]));
17719
17720 /* Swap operands[1] and operands[2]. */
17721 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
17722 inst.operands[1] = inst.operands[2];
17723 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
17724 free (scratch);
17725 }
17726 else
17727 {
17728 inst.operands[1] = inst.operands[2];
17729 inst.operands[2] = inst.operands[0];
17730 }
17731 }
17732
17733 static void
17734 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
17735 {
17736 if (inst.operands[2].isreg)
17737 {
17738 if (invert)
17739 neon_exchange_operands ();
17740 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
17741 }
17742 else
17743 {
17744 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17745 struct neon_type_el et = neon_check_type (2, rs,
17746 N_EQK | N_SIZ, immtypes | N_KEY);
17747
17748 NEON_ENCODE (IMMED, inst);
17749 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17750 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17751 inst.instruction |= LOW4 (inst.operands[1].reg);
17752 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17753 inst.instruction |= neon_quad (rs) << 6;
17754 inst.instruction |= (et.type == NT_float) << 10;
17755 inst.instruction |= neon_logbits (et.size) << 18;
17756
17757 neon_dp_fixup (&inst);
17758 }
17759 }
17760
17761 static void
17762 do_neon_cmp (void)
17763 {
17764 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
17765 }
17766
17767 static void
17768 do_neon_cmp_inv (void)
17769 {
17770 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
17771 }
17772
17773 static void
17774 do_neon_ceq (void)
17775 {
17776 neon_compare (N_IF_32, N_IF_32, FALSE);
17777 }
17778
17779 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
17780 scalars, which are encoded in 5 bits, M : Rm.
17781 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
17782 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
17783 index in M.
17784
17785 Dot Product instructions are similar to multiply instructions except elsize
17786 should always be 32.
17787
17788 This function translates SCALAR, which is GAS's internal encoding of indexed
17789 scalar register, to raw encoding. There is also register and index range
17790 check based on ELSIZE. */
17791
17792 static unsigned
17793 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
17794 {
17795 unsigned regno = NEON_SCALAR_REG (scalar);
17796 unsigned elno = NEON_SCALAR_INDEX (scalar);
17797
17798 switch (elsize)
17799 {
17800 case 16:
17801 if (regno > 7 || elno > 3)
17802 goto bad_scalar;
17803 return regno | (elno << 3);
17804
17805 case 32:
17806 if (regno > 15 || elno > 1)
17807 goto bad_scalar;
17808 return regno | (elno << 4);
17809
17810 default:
17811 bad_scalar:
17812 first_error (_("scalar out of range for multiply instruction"));
17813 }
17814
17815 return 0;
17816 }
17817
17818 /* Encode multiply / multiply-accumulate scalar instructions. */
17819
17820 static void
17821 neon_mul_mac (struct neon_type_el et, int ubit)
17822 {
17823 unsigned scalar;
17824
17825 /* Give a more helpful error message if we have an invalid type. */
17826 if (et.type == NT_invtype)
17827 return;
17828
17829 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
17830 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17831 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17832 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17833 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17834 inst.instruction |= LOW4 (scalar);
17835 inst.instruction |= HI1 (scalar) << 5;
17836 inst.instruction |= (et.type == NT_float) << 8;
17837 inst.instruction |= neon_logbits (et.size) << 20;
17838 inst.instruction |= (ubit != 0) << 24;
17839
17840 neon_dp_fixup (&inst);
17841 }
17842
17843 static void
17844 do_neon_mac_maybe_scalar (void)
17845 {
17846 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
17847 return;
17848
17849 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
17850 return;
17851
17852 if (inst.operands[2].isscalar)
17853 {
17854 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17855 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17856 struct neon_type_el et = neon_check_type (3, rs,
17857 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
17858 NEON_ENCODE (SCALAR, inst);
17859 neon_mul_mac (et, neon_quad (rs));
17860 }
17861 else if (!inst.operands[2].isvec)
17862 {
17863 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17864
17865 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17866 neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17867
17868 neon_dyadic_misc (NT_unsigned, N_SU_MVE, 0);
17869 }
17870 else
17871 {
17872 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17873 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17874 affected if we specify unsigned args. */
17875 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17876 }
17877 }
17878
17879 static void
17880 do_bfloat_vfma (void)
17881 {
17882 constraint (!mark_feature_used (&fpu_neon_ext_armv8), _(BAD_FPU));
17883 constraint (!mark_feature_used (&arm_ext_bf16), _(BAD_BF16));
17884 enum neon_shape rs;
17885 int t_bit = 0;
17886
17887 if (inst.instruction != B_MNEM_vfmab)
17888 {
17889 t_bit = 1;
17890 inst.instruction = B_MNEM_vfmat;
17891 }
17892
17893 if (inst.operands[2].isscalar)
17894 {
17895 rs = neon_select_shape (NS_QQS, NS_NULL);
17896 neon_check_type (3, rs, N_EQK, N_EQK, N_BF16 | N_KEY);
17897
17898 inst.instruction |= (1 << 25);
17899 int index = inst.operands[2].reg & 0xf;
17900 constraint (!(index < 4), _("index must be in the range 0 to 3"));
17901 inst.operands[2].reg >>= 4;
17902 constraint (!(inst.operands[2].reg < 8),
17903 _("indexed register must be less than 8"));
17904 neon_three_args (t_bit);
17905 inst.instruction |= ((index & 1) << 3);
17906 inst.instruction |= ((index & 2) << 4);
17907 }
17908 else
17909 {
17910 rs = neon_select_shape (NS_QQQ, NS_NULL);
17911 neon_check_type (3, rs, N_EQK, N_EQK, N_BF16 | N_KEY);
17912 neon_three_args (t_bit);
17913 }
17914
17915 }
17916
17917 static void
17918 do_neon_fmac (void)
17919 {
17920 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_fma)
17921 && try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
17922 return;
17923
17924 if (!check_simd_pred_availability (TRUE, NEON_CHECK_CC | NEON_CHECK_ARCH))
17925 return;
17926
17927 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17928 {
17929 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
17930 struct neon_type_el et = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK,
17931 N_EQK);
17932
17933 if (rs == NS_QQR)
17934 {
17935
17936 if (inst.operands[2].reg == REG_SP)
17937 as_tsktsk (MVE_BAD_SP);
17938 else if (inst.operands[2].reg == REG_PC)
17939 as_tsktsk (MVE_BAD_PC);
17940
17941 inst.instruction = 0xee310e40;
17942 inst.instruction |= (et.size == 16) << 28;
17943 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17944 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17945 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17946 inst.instruction |= HI1 (inst.operands[1].reg) << 6;
17947 inst.instruction |= inst.operands[2].reg;
17948 inst.is_neon = 1;
17949 return;
17950 }
17951 }
17952 else
17953 {
17954 constraint (!inst.operands[2].isvec, BAD_FPU);
17955 }
17956
17957 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17958 }
17959
17960 static void
17961 do_mve_vfma (void)
17962 {
17963 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_bf16) &&
17964 inst.cond == COND_ALWAYS)
17965 {
17966 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17967 inst.instruction = N_MNEM_vfma;
17968 inst.pred_insn_type = INSIDE_VPT_INSN;
17969 inst.cond = 0xf;
17970 return do_neon_fmac();
17971 }
17972 else
17973 {
17974 do_bfloat_vfma();
17975 }
17976 }
17977
17978 static void
17979 do_neon_tst (void)
17980 {
17981 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17982 struct neon_type_el et = neon_check_type (3, rs,
17983 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
17984 neon_three_same (neon_quad (rs), 0, et.size);
17985 }
17986
17987 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
17988 same types as the MAC equivalents. The polynomial type for this instruction
17989 is encoded the same as the integer type. */
17990
17991 static void
17992 do_neon_mul (void)
17993 {
17994 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
17995 return;
17996
17997 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
17998 return;
17999
18000 if (inst.operands[2].isscalar)
18001 {
18002 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
18003 do_neon_mac_maybe_scalar ();
18004 }
18005 else
18006 {
18007 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18008 {
18009 enum neon_shape rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
18010 struct neon_type_el et
18011 = neon_check_type (3, rs, N_EQK, N_EQK, N_I_MVE | N_F_MVE | N_KEY);
18012 if (et.type == NT_float)
18013 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
18014 BAD_FPU);
18015
18016 neon_dyadic_misc (NT_float, N_I_MVE | N_F_MVE, 0);
18017 }
18018 else
18019 {
18020 constraint (!inst.operands[2].isvec, BAD_FPU);
18021 neon_dyadic_misc (NT_poly,
18022 N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
18023 }
18024 }
18025 }
18026
18027 static void
18028 do_neon_qdmulh (void)
18029 {
18030 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
18031 return;
18032
18033 if (inst.operands[2].isscalar)
18034 {
18035 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
18036 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
18037 struct neon_type_el et = neon_check_type (3, rs,
18038 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
18039 NEON_ENCODE (SCALAR, inst);
18040 neon_mul_mac (et, neon_quad (rs));
18041 }
18042 else
18043 {
18044 enum neon_shape rs;
18045 struct neon_type_el et;
18046 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18047 {
18048 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
18049 et = neon_check_type (3, rs,
18050 N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
18051 }
18052 else
18053 {
18054 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
18055 et = neon_check_type (3, rs,
18056 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
18057 }
18058
18059 NEON_ENCODE (INTEGER, inst);
18060 if (rs == NS_QQR)
18061 mve_encode_qqr (et.size, 0, 0);
18062 else
18063 /* The U bit (rounding) comes from bit mask. */
18064 neon_three_same (neon_quad (rs), 0, et.size);
18065 }
18066 }
18067
18068 static void
18069 do_mve_vaddv (void)
18070 {
18071 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
18072 struct neon_type_el et
18073 = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
18074
18075 if (et.type == NT_invtype)
18076 first_error (BAD_EL_TYPE);
18077
18078 if (inst.cond > COND_ALWAYS)
18079 inst.pred_insn_type = INSIDE_VPT_INSN;
18080 else
18081 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18082
18083 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
18084
18085 mve_encode_rq (et.type == NT_unsigned, et.size);
18086 }
18087
18088 static void
18089 do_mve_vhcadd (void)
18090 {
18091 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
18092 struct neon_type_el et
18093 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
18094
18095 if (inst.cond > COND_ALWAYS)
18096 inst.pred_insn_type = INSIDE_VPT_INSN;
18097 else
18098 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18099
18100 unsigned rot = inst.relocs[0].exp.X_add_number;
18101 constraint (rot != 90 && rot != 270, _("immediate out of range"));
18102
18103 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
18104 as_tsktsk (_("Warning: 32-bit element size and same first and third "
18105 "operand makes instruction UNPREDICTABLE"));
18106
18107 mve_encode_qqq (0, et.size);
18108 inst.instruction |= (rot == 270) << 12;
18109 inst.is_neon = 1;
18110 }
18111
18112 static void
18113 do_mve_vqdmull (void)
18114 {
18115 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
18116 struct neon_type_el et
18117 = neon_check_type (3, rs, N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
18118
18119 if (et.size == 32
18120 && (inst.operands[0].reg == inst.operands[1].reg
18121 || (rs == NS_QQQ && inst.operands[0].reg == inst.operands[2].reg)))
18122 as_tsktsk (BAD_MVE_SRCDEST);
18123
18124 if (inst.cond > COND_ALWAYS)
18125 inst.pred_insn_type = INSIDE_VPT_INSN;
18126 else
18127 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18128
18129 if (rs == NS_QQQ)
18130 {
18131 mve_encode_qqq (et.size == 32, 64);
18132 inst.instruction |= 1;
18133 }
18134 else
18135 {
18136 mve_encode_qqr (64, et.size == 32, 0);
18137 inst.instruction |= 0x3 << 5;
18138 }
18139 }
18140
18141 static void
18142 do_mve_vadc (void)
18143 {
18144 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
18145 struct neon_type_el et
18146 = neon_check_type (3, rs, N_KEY | N_I32, N_EQK, N_EQK);
18147
18148 if (et.type == NT_invtype)
18149 first_error (BAD_EL_TYPE);
18150
18151 if (inst.cond > COND_ALWAYS)
18152 inst.pred_insn_type = INSIDE_VPT_INSN;
18153 else
18154 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18155
18156 mve_encode_qqq (0, 64);
18157 }
18158
18159 static void
18160 do_mve_vbrsr (void)
18161 {
18162 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
18163 struct neon_type_el et
18164 = neon_check_type (3, rs, N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
18165
18166 if (inst.cond > COND_ALWAYS)
18167 inst.pred_insn_type = INSIDE_VPT_INSN;
18168 else
18169 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18170
18171 mve_encode_qqr (et.size, 0, 0);
18172 }
18173
18174 static void
18175 do_mve_vsbc (void)
18176 {
18177 neon_check_type (3, NS_QQQ, N_EQK, N_EQK, N_I32 | N_KEY);
18178
18179 if (inst.cond > COND_ALWAYS)
18180 inst.pred_insn_type = INSIDE_VPT_INSN;
18181 else
18182 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18183
18184 mve_encode_qqq (1, 64);
18185 }
18186
18187 static void
18188 do_mve_vmulh (void)
18189 {
18190 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
18191 struct neon_type_el et
18192 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
18193
18194 if (inst.cond > COND_ALWAYS)
18195 inst.pred_insn_type = INSIDE_VPT_INSN;
18196 else
18197 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18198
18199 mve_encode_qqq (et.type == NT_unsigned, et.size);
18200 }
18201
18202 static void
18203 do_mve_vqdmlah (void)
18204 {
18205 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
18206 struct neon_type_el et
18207 = neon_check_type (3, rs, N_EQK, N_EQK, N_S_32 | N_KEY);
18208
18209 if (inst.cond > COND_ALWAYS)
18210 inst.pred_insn_type = INSIDE_VPT_INSN;
18211 else
18212 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18213
18214 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
18215 }
18216
18217 static void
18218 do_mve_vqdmladh (void)
18219 {
18220 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
18221 struct neon_type_el et
18222 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
18223
18224 if (inst.cond > COND_ALWAYS)
18225 inst.pred_insn_type = INSIDE_VPT_INSN;
18226 else
18227 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18228
18229 mve_encode_qqq (0, et.size);
18230 }
18231
18232
18233 static void
18234 do_mve_vmull (void)
18235 {
18236
18237 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_DDS,
18238 NS_QQS, NS_QQQ, NS_QQR, NS_NULL);
18239 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18240 && inst.cond == COND_ALWAYS
18241 && ((unsigned)inst.instruction) == M_MNEM_vmullt)
18242 {
18243 if (rs == NS_QQQ)
18244 {
18245
18246 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
18247 N_SUF_32 | N_F64 | N_P8
18248 | N_P16 | N_I_MVE | N_KEY);
18249 if (((et.type == NT_poly) && et.size == 8
18250 && ARM_CPU_IS_ANY (cpu_variant))
18251 || (et.type == NT_integer) || (et.type == NT_float))
18252 goto neon_vmul;
18253 }
18254 else
18255 goto neon_vmul;
18256 }
18257
18258 constraint (rs != NS_QQQ, BAD_FPU);
18259 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
18260 N_SU_32 | N_P8 | N_P16 | N_KEY);
18261
18262 /* We are dealing with MVE's vmullt. */
18263 if (et.size == 32
18264 && (inst.operands[0].reg == inst.operands[1].reg
18265 || inst.operands[0].reg == inst.operands[2].reg))
18266 as_tsktsk (BAD_MVE_SRCDEST);
18267
18268 if (inst.cond > COND_ALWAYS)
18269 inst.pred_insn_type = INSIDE_VPT_INSN;
18270 else
18271 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18272
18273 if (et.type == NT_poly)
18274 mve_encode_qqq (neon_logbits (et.size), 64);
18275 else
18276 mve_encode_qqq (et.type == NT_unsigned, et.size);
18277
18278 return;
18279
18280 neon_vmul:
18281 inst.instruction = N_MNEM_vmul;
18282 inst.cond = 0xb;
18283 if (thumb_mode)
18284 inst.pred_insn_type = INSIDE_IT_INSN;
18285 do_neon_mul ();
18286 }
18287
18288 static void
18289 do_mve_vabav (void)
18290 {
18291 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
18292
18293 if (rs == NS_NULL)
18294 return;
18295
18296 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18297 return;
18298
18299 struct neon_type_el et = neon_check_type (2, NS_NULL, N_EQK, N_KEY | N_S8
18300 | N_S16 | N_S32 | N_U8 | N_U16
18301 | N_U32);
18302
18303 if (inst.cond > COND_ALWAYS)
18304 inst.pred_insn_type = INSIDE_VPT_INSN;
18305 else
18306 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18307
18308 mve_encode_rqq (et.type == NT_unsigned, et.size);
18309 }
18310
18311 static void
18312 do_mve_vmladav (void)
18313 {
18314 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
18315 struct neon_type_el et = neon_check_type (3, rs,
18316 N_EQK, N_EQK, N_SU_MVE | N_KEY);
18317
18318 if (et.type == NT_unsigned
18319 && (inst.instruction == M_MNEM_vmladavx
18320 || inst.instruction == M_MNEM_vmladavax
18321 || inst.instruction == M_MNEM_vmlsdav
18322 || inst.instruction == M_MNEM_vmlsdava
18323 || inst.instruction == M_MNEM_vmlsdavx
18324 || inst.instruction == M_MNEM_vmlsdavax))
18325 first_error (BAD_SIMD_TYPE);
18326
18327 constraint (inst.operands[2].reg > 14,
18328 _("MVE vector register in the range [Q0..Q7] expected"));
18329
18330 if (inst.cond > COND_ALWAYS)
18331 inst.pred_insn_type = INSIDE_VPT_INSN;
18332 else
18333 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18334
18335 if (inst.instruction == M_MNEM_vmlsdav
18336 || inst.instruction == M_MNEM_vmlsdava
18337 || inst.instruction == M_MNEM_vmlsdavx
18338 || inst.instruction == M_MNEM_vmlsdavax)
18339 inst.instruction |= (et.size == 8) << 28;
18340 else
18341 inst.instruction |= (et.size == 8) << 8;
18342
18343 mve_encode_rqq (et.type == NT_unsigned, 64);
18344 inst.instruction |= (et.size == 32) << 16;
18345 }
18346
18347 static void
18348 do_mve_vmlaldav (void)
18349 {
18350 enum neon_shape rs = neon_select_shape (NS_RRQQ, NS_NULL);
18351 struct neon_type_el et
18352 = neon_check_type (4, rs, N_EQK, N_EQK, N_EQK,
18353 N_S16 | N_S32 | N_U16 | N_U32 | N_KEY);
18354
18355 if (et.type == NT_unsigned
18356 && (inst.instruction == M_MNEM_vmlsldav
18357 || inst.instruction == M_MNEM_vmlsldava
18358 || inst.instruction == M_MNEM_vmlsldavx
18359 || inst.instruction == M_MNEM_vmlsldavax))
18360 first_error (BAD_SIMD_TYPE);
18361
18362 if (inst.cond > COND_ALWAYS)
18363 inst.pred_insn_type = INSIDE_VPT_INSN;
18364 else
18365 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18366
18367 mve_encode_rrqq (et.type == NT_unsigned, et.size);
18368 }
18369
18370 static void
18371 do_mve_vrmlaldavh (void)
18372 {
18373 struct neon_type_el et;
18374 if (inst.instruction == M_MNEM_vrmlsldavh
18375 || inst.instruction == M_MNEM_vrmlsldavha
18376 || inst.instruction == M_MNEM_vrmlsldavhx
18377 || inst.instruction == M_MNEM_vrmlsldavhax)
18378 {
18379 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
18380 if (inst.operands[1].reg == REG_SP)
18381 as_tsktsk (MVE_BAD_SP);
18382 }
18383 else
18384 {
18385 if (inst.instruction == M_MNEM_vrmlaldavhx
18386 || inst.instruction == M_MNEM_vrmlaldavhax)
18387 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
18388 else
18389 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK,
18390 N_U32 | N_S32 | N_KEY);
18391 /* vrmlaldavh's encoding with SP as the second, odd, GPR operand may alias
18392 with vmax/min instructions, making the use of SP in assembly really
18393 nonsensical, so instead of issuing a warning like we do for other uses
18394 of SP for the odd register operand we error out. */
18395 constraint (inst.operands[1].reg == REG_SP, BAD_SP);
18396 }
18397
18398 /* Make sure we still check the second operand is an odd one and that PC is
18399 disallowed. This because we are parsing for any GPR operand, to be able
18400 to distinguish between giving a warning or an error for SP as described
18401 above. */
18402 constraint ((inst.operands[1].reg % 2) != 1, BAD_EVEN);
18403 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
18404
18405 if (inst.cond > COND_ALWAYS)
18406 inst.pred_insn_type = INSIDE_VPT_INSN;
18407 else
18408 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18409
18410 mve_encode_rrqq (et.type == NT_unsigned, 0);
18411 }
18412
18413
18414 static void
18415 do_mve_vmaxnmv (void)
18416 {
18417 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
18418 struct neon_type_el et
18419 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
18420
18421 if (inst.cond > COND_ALWAYS)
18422 inst.pred_insn_type = INSIDE_VPT_INSN;
18423 else
18424 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18425
18426 if (inst.operands[0].reg == REG_SP)
18427 as_tsktsk (MVE_BAD_SP);
18428 else if (inst.operands[0].reg == REG_PC)
18429 as_tsktsk (MVE_BAD_PC);
18430
18431 mve_encode_rq (et.size == 16, 64);
18432 }
18433
18434 static void
18435 do_mve_vmaxv (void)
18436 {
18437 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
18438 struct neon_type_el et;
18439
18440 if (inst.instruction == M_MNEM_vmaxv || inst.instruction == M_MNEM_vminv)
18441 et = neon_check_type (2, rs, N_EQK, N_SU_MVE | N_KEY);
18442 else
18443 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
18444
18445 if (inst.cond > COND_ALWAYS)
18446 inst.pred_insn_type = INSIDE_VPT_INSN;
18447 else
18448 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18449
18450 if (inst.operands[0].reg == REG_SP)
18451 as_tsktsk (MVE_BAD_SP);
18452 else if (inst.operands[0].reg == REG_PC)
18453 as_tsktsk (MVE_BAD_PC);
18454
18455 mve_encode_rq (et.type == NT_unsigned, et.size);
18456 }
18457
18458
18459 static void
18460 do_neon_qrdmlah (void)
18461 {
18462 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
18463 return;
18464 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18465 {
18466 /* Check we're on the correct architecture. */
18467 if (!mark_feature_used (&fpu_neon_ext_armv8))
18468 inst.error
18469 = _("instruction form not available on this architecture.");
18470 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
18471 {
18472 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
18473 record_feature_use (&fpu_neon_ext_v8_1);
18474 }
18475 if (inst.operands[2].isscalar)
18476 {
18477 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
18478 struct neon_type_el et = neon_check_type (3, rs,
18479 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
18480 NEON_ENCODE (SCALAR, inst);
18481 neon_mul_mac (et, neon_quad (rs));
18482 }
18483 else
18484 {
18485 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
18486 struct neon_type_el et = neon_check_type (3, rs,
18487 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
18488 NEON_ENCODE (INTEGER, inst);
18489 /* The U bit (rounding) comes from bit mask. */
18490 neon_three_same (neon_quad (rs), 0, et.size);
18491 }
18492 }
18493 else
18494 {
18495 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
18496 struct neon_type_el et
18497 = neon_check_type (3, rs, N_EQK, N_EQK, N_S_32 | N_KEY);
18498
18499 NEON_ENCODE (INTEGER, inst);
18500 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
18501 }
18502 }
18503
18504 static void
18505 do_neon_fcmp_absolute (void)
18506 {
18507 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
18508 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
18509 N_F_16_32 | N_KEY);
18510 /* Size field comes from bit mask. */
18511 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
18512 }
18513
18514 static void
18515 do_neon_fcmp_absolute_inv (void)
18516 {
18517 neon_exchange_operands ();
18518 do_neon_fcmp_absolute ();
18519 }
18520
18521 static void
18522 do_neon_step (void)
18523 {
18524 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
18525 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
18526 N_F_16_32 | N_KEY);
18527 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
18528 }
18529
18530 static void
18531 do_neon_abs_neg (void)
18532 {
18533 enum neon_shape rs;
18534 struct neon_type_el et;
18535
18536 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
18537 return;
18538
18539 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18540 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
18541
18542 if (!check_simd_pred_availability (et.type == NT_float,
18543 NEON_CHECK_ARCH | NEON_CHECK_CC))
18544 return;
18545
18546 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18547 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18548 inst.instruction |= LOW4 (inst.operands[1].reg);
18549 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18550 inst.instruction |= neon_quad (rs) << 6;
18551 inst.instruction |= (et.type == NT_float) << 10;
18552 inst.instruction |= neon_logbits (et.size) << 18;
18553
18554 neon_dp_fixup (&inst);
18555 }
18556
18557 static void
18558 do_neon_sli (void)
18559 {
18560 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
18561 return;
18562
18563 enum neon_shape rs;
18564 struct neon_type_el et;
18565 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18566 {
18567 rs = neon_select_shape (NS_QQI, NS_NULL);
18568 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_KEY);
18569 }
18570 else
18571 {
18572 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
18573 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
18574 }
18575
18576
18577 int imm = inst.operands[2].imm;
18578 constraint (imm < 0 || (unsigned)imm >= et.size,
18579 _("immediate out of range for insert"));
18580 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
18581 }
18582
18583 static void
18584 do_neon_sri (void)
18585 {
18586 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
18587 return;
18588
18589 enum neon_shape rs;
18590 struct neon_type_el et;
18591 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18592 {
18593 rs = neon_select_shape (NS_QQI, NS_NULL);
18594 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_KEY);
18595 }
18596 else
18597 {
18598 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
18599 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
18600 }
18601
18602 int imm = inst.operands[2].imm;
18603 constraint (imm < 1 || (unsigned)imm > et.size,
18604 _("immediate out of range for insert"));
18605 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
18606 }
18607
18608 static void
18609 do_neon_qshlu_imm (void)
18610 {
18611 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
18612 return;
18613
18614 enum neon_shape rs;
18615 struct neon_type_el et;
18616 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18617 {
18618 rs = neon_select_shape (NS_QQI, NS_NULL);
18619 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
18620 }
18621 else
18622 {
18623 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
18624 et = neon_check_type (2, rs, N_EQK | N_UNS,
18625 N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
18626 }
18627
18628 int imm = inst.operands[2].imm;
18629 constraint (imm < 0 || (unsigned)imm >= et.size,
18630 _("immediate out of range for shift"));
18631 /* Only encodes the 'U present' variant of the instruction.
18632 In this case, signed types have OP (bit 8) set to 0.
18633 Unsigned types have OP set to 1. */
18634 inst.instruction |= (et.type == NT_unsigned) << 8;
18635 /* The rest of the bits are the same as other immediate shifts. */
18636 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
18637 }
18638
18639 static void
18640 do_neon_qmovn (void)
18641 {
18642 struct neon_type_el et = neon_check_type (2, NS_DQ,
18643 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
18644 /* Saturating move where operands can be signed or unsigned, and the
18645 destination has the same signedness. */
18646 NEON_ENCODE (INTEGER, inst);
18647 if (et.type == NT_unsigned)
18648 inst.instruction |= 0xc0;
18649 else
18650 inst.instruction |= 0x80;
18651 neon_two_same (0, 1, et.size / 2);
18652 }
18653
18654 static void
18655 do_neon_qmovun (void)
18656 {
18657 struct neon_type_el et = neon_check_type (2, NS_DQ,
18658 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
18659 /* Saturating move with unsigned results. Operands must be signed. */
18660 NEON_ENCODE (INTEGER, inst);
18661 neon_two_same (0, 1, et.size / 2);
18662 }
18663
18664 static void
18665 do_neon_rshift_sat_narrow (void)
18666 {
18667 /* FIXME: Types for narrowing. If operands are signed, results can be signed
18668 or unsigned. If operands are unsigned, results must also be unsigned. */
18669 struct neon_type_el et = neon_check_type (2, NS_DQI,
18670 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
18671 int imm = inst.operands[2].imm;
18672 /* This gets the bounds check, size encoding and immediate bits calculation
18673 right. */
18674 et.size /= 2;
18675
18676 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
18677 VQMOVN.I<size> <Dd>, <Qm>. */
18678 if (imm == 0)
18679 {
18680 inst.operands[2].present = 0;
18681 inst.instruction = N_MNEM_vqmovn;
18682 do_neon_qmovn ();
18683 return;
18684 }
18685
18686 constraint (imm < 1 || (unsigned)imm > et.size,
18687 _("immediate out of range"));
18688 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
18689 }
18690
18691 static void
18692 do_neon_rshift_sat_narrow_u (void)
18693 {
18694 /* FIXME: Types for narrowing. If operands are signed, results can be signed
18695 or unsigned. If operands are unsigned, results must also be unsigned. */
18696 struct neon_type_el et = neon_check_type (2, NS_DQI,
18697 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
18698 int imm = inst.operands[2].imm;
18699 /* This gets the bounds check, size encoding and immediate bits calculation
18700 right. */
18701 et.size /= 2;
18702
18703 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
18704 VQMOVUN.I<size> <Dd>, <Qm>. */
18705 if (imm == 0)
18706 {
18707 inst.operands[2].present = 0;
18708 inst.instruction = N_MNEM_vqmovun;
18709 do_neon_qmovun ();
18710 return;
18711 }
18712
18713 constraint (imm < 1 || (unsigned)imm > et.size,
18714 _("immediate out of range"));
18715 /* FIXME: The manual is kind of unclear about what value U should have in
18716 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
18717 must be 1. */
18718 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
18719 }
18720
18721 static void
18722 do_neon_movn (void)
18723 {
18724 struct neon_type_el et = neon_check_type (2, NS_DQ,
18725 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
18726 NEON_ENCODE (INTEGER, inst);
18727 neon_two_same (0, 1, et.size / 2);
18728 }
18729
18730 static void
18731 do_neon_rshift_narrow (void)
18732 {
18733 struct neon_type_el et = neon_check_type (2, NS_DQI,
18734 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
18735 int imm = inst.operands[2].imm;
18736 /* This gets the bounds check, size encoding and immediate bits calculation
18737 right. */
18738 et.size /= 2;
18739
18740 /* If immediate is zero then we are a pseudo-instruction for
18741 VMOVN.I<size> <Dd>, <Qm> */
18742 if (imm == 0)
18743 {
18744 inst.operands[2].present = 0;
18745 inst.instruction = N_MNEM_vmovn;
18746 do_neon_movn ();
18747 return;
18748 }
18749
18750 constraint (imm < 1 || (unsigned)imm > et.size,
18751 _("immediate out of range for narrowing operation"));
18752 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
18753 }
18754
18755 static void
18756 do_neon_shll (void)
18757 {
18758 /* FIXME: Type checking when lengthening. */
18759 struct neon_type_el et = neon_check_type (2, NS_QDI,
18760 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
18761 unsigned imm = inst.operands[2].imm;
18762
18763 if (imm == et.size)
18764 {
18765 /* Maximum shift variant. */
18766 NEON_ENCODE (INTEGER, inst);
18767 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18768 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18769 inst.instruction |= LOW4 (inst.operands[1].reg);
18770 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18771 inst.instruction |= neon_logbits (et.size) << 18;
18772
18773 neon_dp_fixup (&inst);
18774 }
18775 else
18776 {
18777 /* A more-specific type check for non-max versions. */
18778 et = neon_check_type (2, NS_QDI,
18779 N_EQK | N_DBL, N_SU_32 | N_KEY);
18780 NEON_ENCODE (IMMED, inst);
18781 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
18782 }
18783 }
18784
18785 /* Check the various types for the VCVT instruction, and return which version
18786 the current instruction is. */
18787
18788 #define CVT_FLAVOUR_VAR \
18789 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
18790 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
18791 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
18792 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
18793 /* Half-precision conversions. */ \
18794 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
18795 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
18796 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
18797 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
18798 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
18799 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
18800 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
18801 Compared with single/double precision variants, only the co-processor \
18802 field is different, so the encoding flow is reused here. */ \
18803 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
18804 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
18805 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
18806 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
18807 CVT_VAR (bf16_f32, N_BF16, N_F32, whole_reg, NULL, NULL, NULL) \
18808 /* VFP instructions. */ \
18809 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
18810 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
18811 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
18812 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
18813 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
18814 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
18815 /* VFP instructions with bitshift. */ \
18816 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
18817 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
18818 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
18819 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
18820 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
18821 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
18822 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
18823 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
18824
18825 #define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
18826 neon_cvt_flavour_##C,
18827
18828 /* The different types of conversions we can do. */
18829 enum neon_cvt_flavour
18830 {
18831 CVT_FLAVOUR_VAR
18832 neon_cvt_flavour_invalid,
18833 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
18834 };
18835
18836 #undef CVT_VAR
18837
18838 static enum neon_cvt_flavour
18839 get_neon_cvt_flavour (enum neon_shape rs)
18840 {
18841 #define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
18842 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
18843 if (et.type != NT_invtype) \
18844 { \
18845 inst.error = NULL; \
18846 return (neon_cvt_flavour_##C); \
18847 }
18848
18849 struct neon_type_el et;
18850 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
18851 || rs == NS_FF) ? N_VFP : 0;
18852 /* The instruction versions which take an immediate take one register
18853 argument, which is extended to the width of the full register. Thus the
18854 "source" and "destination" registers must have the same width. Hack that
18855 here by making the size equal to the key (wider, in this case) operand. */
18856 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
18857
18858 CVT_FLAVOUR_VAR;
18859
18860 return neon_cvt_flavour_invalid;
18861 #undef CVT_VAR
18862 }
18863
18864 enum neon_cvt_mode
18865 {
18866 neon_cvt_mode_a,
18867 neon_cvt_mode_n,
18868 neon_cvt_mode_p,
18869 neon_cvt_mode_m,
18870 neon_cvt_mode_z,
18871 neon_cvt_mode_x,
18872 neon_cvt_mode_r
18873 };
18874
18875 /* Neon-syntax VFP conversions. */
18876
18877 static void
18878 do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
18879 {
18880 const char *opname = 0;
18881
18882 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
18883 || rs == NS_FHI || rs == NS_HFI)
18884 {
18885 /* Conversions with immediate bitshift. */
18886 const char *enc[] =
18887 {
18888 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
18889 CVT_FLAVOUR_VAR
18890 NULL
18891 #undef CVT_VAR
18892 };
18893
18894 if (flavour < (int) ARRAY_SIZE (enc))
18895 {
18896 opname = enc[flavour];
18897 constraint (inst.operands[0].reg != inst.operands[1].reg,
18898 _("operands 0 and 1 must be the same register"));
18899 inst.operands[1] = inst.operands[2];
18900 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
18901 }
18902 }
18903 else
18904 {
18905 /* Conversions without bitshift. */
18906 const char *enc[] =
18907 {
18908 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
18909 CVT_FLAVOUR_VAR
18910 NULL
18911 #undef CVT_VAR
18912 };
18913
18914 if (flavour < (int) ARRAY_SIZE (enc))
18915 opname = enc[flavour];
18916 }
18917
18918 if (opname)
18919 do_vfp_nsyn_opcode (opname);
18920
18921 /* ARMv8.2 fp16 VCVT instruction. */
18922 if (flavour == neon_cvt_flavour_s32_f16
18923 || flavour == neon_cvt_flavour_u32_f16
18924 || flavour == neon_cvt_flavour_f16_u32
18925 || flavour == neon_cvt_flavour_f16_s32)
18926 do_scalar_fp16_v82_encode ();
18927 }
18928
18929 static void
18930 do_vfp_nsyn_cvtz (void)
18931 {
18932 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
18933 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18934 const char *enc[] =
18935 {
18936 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
18937 CVT_FLAVOUR_VAR
18938 NULL
18939 #undef CVT_VAR
18940 };
18941
18942 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
18943 do_vfp_nsyn_opcode (enc[flavour]);
18944 }
18945
18946 static void
18947 do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
18948 enum neon_cvt_mode mode)
18949 {
18950 int sz, op;
18951 int rm;
18952
18953 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
18954 D register operands. */
18955 if (flavour == neon_cvt_flavour_s32_f64
18956 || flavour == neon_cvt_flavour_u32_f64)
18957 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18958 _(BAD_FPU));
18959
18960 if (flavour == neon_cvt_flavour_s32_f16
18961 || flavour == neon_cvt_flavour_u32_f16)
18962 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
18963 _(BAD_FP16));
18964
18965 set_pred_insn_type (OUTSIDE_PRED_INSN);
18966
18967 switch (flavour)
18968 {
18969 case neon_cvt_flavour_s32_f64:
18970 sz = 1;
18971 op = 1;
18972 break;
18973 case neon_cvt_flavour_s32_f32:
18974 sz = 0;
18975 op = 1;
18976 break;
18977 case neon_cvt_flavour_s32_f16:
18978 sz = 0;
18979 op = 1;
18980 break;
18981 case neon_cvt_flavour_u32_f64:
18982 sz = 1;
18983 op = 0;
18984 break;
18985 case neon_cvt_flavour_u32_f32:
18986 sz = 0;
18987 op = 0;
18988 break;
18989 case neon_cvt_flavour_u32_f16:
18990 sz = 0;
18991 op = 0;
18992 break;
18993 default:
18994 first_error (_("invalid instruction shape"));
18995 return;
18996 }
18997
18998 switch (mode)
18999 {
19000 case neon_cvt_mode_a: rm = 0; break;
19001 case neon_cvt_mode_n: rm = 1; break;
19002 case neon_cvt_mode_p: rm = 2; break;
19003 case neon_cvt_mode_m: rm = 3; break;
19004 default: first_error (_("invalid rounding mode")); return;
19005 }
19006
19007 NEON_ENCODE (FPV8, inst);
19008 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
19009 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
19010 inst.instruction |= sz << 8;
19011
19012 /* ARMv8.2 fp16 VCVT instruction. */
19013 if (flavour == neon_cvt_flavour_s32_f16
19014 ||flavour == neon_cvt_flavour_u32_f16)
19015 do_scalar_fp16_v82_encode ();
19016 inst.instruction |= op << 7;
19017 inst.instruction |= rm << 16;
19018 inst.instruction |= 0xf0000000;
19019 inst.is_neon = TRUE;
19020 }
19021
19022 static void
19023 do_neon_cvt_1 (enum neon_cvt_mode mode)
19024 {
19025 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
19026 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
19027 NS_FH, NS_HF, NS_FHI, NS_HFI,
19028 NS_NULL);
19029 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
19030
19031 if (flavour == neon_cvt_flavour_invalid)
19032 return;
19033
19034 /* PR11109: Handle round-to-zero for VCVT conversions. */
19035 if (mode == neon_cvt_mode_z
19036 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
19037 && (flavour == neon_cvt_flavour_s16_f16
19038 || flavour == neon_cvt_flavour_u16_f16
19039 || flavour == neon_cvt_flavour_s32_f32
19040 || flavour == neon_cvt_flavour_u32_f32
19041 || flavour == neon_cvt_flavour_s32_f64
19042 || flavour == neon_cvt_flavour_u32_f64)
19043 && (rs == NS_FD || rs == NS_FF))
19044 {
19045 do_vfp_nsyn_cvtz ();
19046 return;
19047 }
19048
19049 /* ARMv8.2 fp16 VCVT conversions. */
19050 if (mode == neon_cvt_mode_z
19051 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
19052 && (flavour == neon_cvt_flavour_s32_f16
19053 || flavour == neon_cvt_flavour_u32_f16)
19054 && (rs == NS_FH))
19055 {
19056 do_vfp_nsyn_cvtz ();
19057 do_scalar_fp16_v82_encode ();
19058 return;
19059 }
19060
19061 /* VFP rather than Neon conversions. */
19062 if (flavour >= neon_cvt_flavour_first_fp)
19063 {
19064 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
19065 do_vfp_nsyn_cvt (rs, flavour);
19066 else
19067 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
19068
19069 return;
19070 }
19071
19072 switch (rs)
19073 {
19074 case NS_QQI:
19075 if (mode == neon_cvt_mode_z
19076 && (flavour == neon_cvt_flavour_f16_s16
19077 || flavour == neon_cvt_flavour_f16_u16
19078 || flavour == neon_cvt_flavour_s16_f16
19079 || flavour == neon_cvt_flavour_u16_f16
19080 || flavour == neon_cvt_flavour_f32_u32
19081 || flavour == neon_cvt_flavour_f32_s32
19082 || flavour == neon_cvt_flavour_s32_f32
19083 || flavour == neon_cvt_flavour_u32_f32))
19084 {
19085 if (!check_simd_pred_availability (TRUE,
19086 NEON_CHECK_CC | NEON_CHECK_ARCH))
19087 return;
19088 }
19089 else if (mode == neon_cvt_mode_n)
19090 {
19091 /* We are dealing with vcvt with the 'ne' condition. */
19092 inst.cond = 0x1;
19093 inst.instruction = N_MNEM_vcvt;
19094 do_neon_cvt_1 (neon_cvt_mode_z);
19095 return;
19096 }
19097 /* fall through. */
19098 case NS_DDI:
19099 {
19100 unsigned immbits;
19101 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
19102 0x0000100, 0x1000100, 0x0, 0x1000000};
19103
19104 if ((rs != NS_QQI || !ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
19105 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
19106 return;
19107
19108 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
19109 {
19110 constraint (inst.operands[2].present && inst.operands[2].imm == 0,
19111 _("immediate value out of range"));
19112 switch (flavour)
19113 {
19114 case neon_cvt_flavour_f16_s16:
19115 case neon_cvt_flavour_f16_u16:
19116 case neon_cvt_flavour_s16_f16:
19117 case neon_cvt_flavour_u16_f16:
19118 constraint (inst.operands[2].imm > 16,
19119 _("immediate value out of range"));
19120 break;
19121 case neon_cvt_flavour_f32_u32:
19122 case neon_cvt_flavour_f32_s32:
19123 case neon_cvt_flavour_s32_f32:
19124 case neon_cvt_flavour_u32_f32:
19125 constraint (inst.operands[2].imm > 32,
19126 _("immediate value out of range"));
19127 break;
19128 default:
19129 inst.error = BAD_FPU;
19130 return;
19131 }
19132 }
19133
19134 /* Fixed-point conversion with #0 immediate is encoded as an
19135 integer conversion. */
19136 if (inst.operands[2].present && inst.operands[2].imm == 0)
19137 goto int_encode;
19138 NEON_ENCODE (IMMED, inst);
19139 if (flavour != neon_cvt_flavour_invalid)
19140 inst.instruction |= enctab[flavour];
19141 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19142 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19143 inst.instruction |= LOW4 (inst.operands[1].reg);
19144 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19145 inst.instruction |= neon_quad (rs) << 6;
19146 inst.instruction |= 1 << 21;
19147 if (flavour < neon_cvt_flavour_s16_f16)
19148 {
19149 inst.instruction |= 1 << 21;
19150 immbits = 32 - inst.operands[2].imm;
19151 inst.instruction |= immbits << 16;
19152 }
19153 else
19154 {
19155 inst.instruction |= 3 << 20;
19156 immbits = 16 - inst.operands[2].imm;
19157 inst.instruction |= immbits << 16;
19158 inst.instruction &= ~(1 << 9);
19159 }
19160
19161 neon_dp_fixup (&inst);
19162 }
19163 break;
19164
19165 case NS_QQ:
19166 if ((mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
19167 || mode == neon_cvt_mode_m || mode == neon_cvt_mode_p)
19168 && (flavour == neon_cvt_flavour_s16_f16
19169 || flavour == neon_cvt_flavour_u16_f16
19170 || flavour == neon_cvt_flavour_s32_f32
19171 || flavour == neon_cvt_flavour_u32_f32))
19172 {
19173 if (!check_simd_pred_availability (TRUE,
19174 NEON_CHECK_CC | NEON_CHECK_ARCH8))
19175 return;
19176 }
19177 else if (mode == neon_cvt_mode_z
19178 && (flavour == neon_cvt_flavour_f16_s16
19179 || flavour == neon_cvt_flavour_f16_u16
19180 || flavour == neon_cvt_flavour_s16_f16
19181 || flavour == neon_cvt_flavour_u16_f16
19182 || flavour == neon_cvt_flavour_f32_u32
19183 || flavour == neon_cvt_flavour_f32_s32
19184 || flavour == neon_cvt_flavour_s32_f32
19185 || flavour == neon_cvt_flavour_u32_f32))
19186 {
19187 if (!check_simd_pred_availability (TRUE,
19188 NEON_CHECK_CC | NEON_CHECK_ARCH))
19189 return;
19190 }
19191 /* fall through. */
19192 case NS_DD:
19193 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
19194 {
19195
19196 NEON_ENCODE (FLOAT, inst);
19197 if (!check_simd_pred_availability (TRUE,
19198 NEON_CHECK_CC | NEON_CHECK_ARCH8))
19199 return;
19200
19201 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19202 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19203 inst.instruction |= LOW4 (inst.operands[1].reg);
19204 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19205 inst.instruction |= neon_quad (rs) << 6;
19206 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
19207 || flavour == neon_cvt_flavour_u32_f32) << 7;
19208 inst.instruction |= mode << 8;
19209 if (flavour == neon_cvt_flavour_u16_f16
19210 || flavour == neon_cvt_flavour_s16_f16)
19211 /* Mask off the original size bits and reencode them. */
19212 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
19213
19214 if (thumb_mode)
19215 inst.instruction |= 0xfc000000;
19216 else
19217 inst.instruction |= 0xf0000000;
19218 }
19219 else
19220 {
19221 int_encode:
19222 {
19223 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
19224 0x100, 0x180, 0x0, 0x080};
19225
19226 NEON_ENCODE (INTEGER, inst);
19227
19228 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
19229 {
19230 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
19231 return;
19232 }
19233
19234 if (flavour != neon_cvt_flavour_invalid)
19235 inst.instruction |= enctab[flavour];
19236
19237 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19238 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19239 inst.instruction |= LOW4 (inst.operands[1].reg);
19240 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19241 inst.instruction |= neon_quad (rs) << 6;
19242 if (flavour >= neon_cvt_flavour_s16_f16
19243 && flavour <= neon_cvt_flavour_f16_u16)
19244 /* Half precision. */
19245 inst.instruction |= 1 << 18;
19246 else
19247 inst.instruction |= 2 << 18;
19248
19249 neon_dp_fixup (&inst);
19250 }
19251 }
19252 break;
19253
19254 /* Half-precision conversions for Advanced SIMD -- neon. */
19255 case NS_QD:
19256 case NS_DQ:
19257 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
19258 return;
19259
19260 if ((rs == NS_DQ)
19261 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
19262 {
19263 as_bad (_("operand size must match register width"));
19264 break;
19265 }
19266
19267 if ((rs == NS_QD)
19268 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
19269 {
19270 as_bad (_("operand size must match register width"));
19271 break;
19272 }
19273
19274 if (rs == NS_DQ)
19275 {
19276 if (flavour == neon_cvt_flavour_bf16_f32)
19277 {
19278 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH8) == FAIL)
19279 return;
19280 constraint (!mark_feature_used (&arm_ext_bf16), _(BAD_BF16));
19281 /* VCVT.bf16.f32. */
19282 inst.instruction = 0x11b60640;
19283 }
19284 else
19285 /* VCVT.f16.f32. */
19286 inst.instruction = 0x3b60600;
19287 }
19288 else
19289 /* VCVT.f32.f16. */
19290 inst.instruction = 0x3b60700;
19291
19292 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19293 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19294 inst.instruction |= LOW4 (inst.operands[1].reg);
19295 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19296 neon_dp_fixup (&inst);
19297 break;
19298
19299 default:
19300 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
19301 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
19302 do_vfp_nsyn_cvt (rs, flavour);
19303 else
19304 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
19305 }
19306 }
19307
19308 static void
19309 do_neon_cvtr (void)
19310 {
19311 do_neon_cvt_1 (neon_cvt_mode_x);
19312 }
19313
19314 static void
19315 do_neon_cvt (void)
19316 {
19317 do_neon_cvt_1 (neon_cvt_mode_z);
19318 }
19319
19320 static void
19321 do_neon_cvta (void)
19322 {
19323 do_neon_cvt_1 (neon_cvt_mode_a);
19324 }
19325
19326 static void
19327 do_neon_cvtn (void)
19328 {
19329 do_neon_cvt_1 (neon_cvt_mode_n);
19330 }
19331
19332 static void
19333 do_neon_cvtp (void)
19334 {
19335 do_neon_cvt_1 (neon_cvt_mode_p);
19336 }
19337
19338 static void
19339 do_neon_cvtm (void)
19340 {
19341 do_neon_cvt_1 (neon_cvt_mode_m);
19342 }
19343
19344 static void
19345 do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
19346 {
19347 if (is_double)
19348 mark_feature_used (&fpu_vfp_ext_armv8);
19349
19350 encode_arm_vfp_reg (inst.operands[0].reg,
19351 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
19352 encode_arm_vfp_reg (inst.operands[1].reg,
19353 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
19354 inst.instruction |= to ? 0x10000 : 0;
19355 inst.instruction |= t ? 0x80 : 0;
19356 inst.instruction |= is_double ? 0x100 : 0;
19357 do_vfp_cond_or_thumb ();
19358 }
19359
19360 static void
19361 do_neon_cvttb_1 (bfd_boolean t)
19362 {
19363 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
19364 NS_DF, NS_DH, NS_QQ, NS_QQI, NS_NULL);
19365
19366 if (rs == NS_NULL)
19367 return;
19368 else if (rs == NS_QQ || rs == NS_QQI)
19369 {
19370 int single_to_half = 0;
19371 if (!check_simd_pred_availability (TRUE, NEON_CHECK_ARCH))
19372 return;
19373
19374 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
19375
19376 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19377 && (flavour == neon_cvt_flavour_u16_f16
19378 || flavour == neon_cvt_flavour_s16_f16
19379 || flavour == neon_cvt_flavour_f16_s16
19380 || flavour == neon_cvt_flavour_f16_u16
19381 || flavour == neon_cvt_flavour_u32_f32
19382 || flavour == neon_cvt_flavour_s32_f32
19383 || flavour == neon_cvt_flavour_f32_s32
19384 || flavour == neon_cvt_flavour_f32_u32))
19385 {
19386 inst.cond = 0xf;
19387 inst.instruction = N_MNEM_vcvt;
19388 set_pred_insn_type (INSIDE_VPT_INSN);
19389 do_neon_cvt_1 (neon_cvt_mode_z);
19390 return;
19391 }
19392 else if (rs == NS_QQ && flavour == neon_cvt_flavour_f32_f16)
19393 single_to_half = 1;
19394 else if (rs == NS_QQ && flavour != neon_cvt_flavour_f16_f32)
19395 {
19396 first_error (BAD_FPU);
19397 return;
19398 }
19399
19400 inst.instruction = 0xee3f0e01;
19401 inst.instruction |= single_to_half << 28;
19402 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19403 inst.instruction |= LOW4 (inst.operands[0].reg) << 13;
19404 inst.instruction |= t << 12;
19405 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19406 inst.instruction |= LOW4 (inst.operands[1].reg) << 1;
19407 inst.is_neon = 1;
19408 }
19409 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
19410 {
19411 inst.error = NULL;
19412 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
19413 }
19414 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
19415 {
19416 inst.error = NULL;
19417 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
19418 }
19419 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
19420 {
19421 /* The VCVTB and VCVTT instructions with D-register operands
19422 don't work for SP only targets. */
19423 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19424 _(BAD_FPU));
19425
19426 inst.error = NULL;
19427 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
19428 }
19429 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
19430 {
19431 /* The VCVTB and VCVTT instructions with D-register operands
19432 don't work for SP only targets. */
19433 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19434 _(BAD_FPU));
19435
19436 inst.error = NULL;
19437 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
19438 }
19439 else if (neon_check_type (2, rs, N_BF16 | N_VFP, N_F32).type != NT_invtype)
19440 {
19441 constraint (!mark_feature_used (&arm_ext_bf16), _(BAD_BF16));
19442 inst.error = NULL;
19443 inst.instruction |= (1 << 8);
19444 inst.instruction &= ~(1 << 9);
19445 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
19446 }
19447 else
19448 return;
19449 }
19450
19451 static void
19452 do_neon_cvtb (void)
19453 {
19454 do_neon_cvttb_1 (FALSE);
19455 }
19456
19457
19458 static void
19459 do_neon_cvtt (void)
19460 {
19461 do_neon_cvttb_1 (TRUE);
19462 }
19463
19464 static void
19465 neon_move_immediate (void)
19466 {
19467 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
19468 struct neon_type_el et = neon_check_type (2, rs,
19469 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
19470 unsigned immlo, immhi = 0, immbits;
19471 int op, cmode, float_p;
19472
19473 constraint (et.type == NT_invtype,
19474 _("operand size must be specified for immediate VMOV"));
19475
19476 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
19477 op = (inst.instruction & (1 << 5)) != 0;
19478
19479 immlo = inst.operands[1].imm;
19480 if (inst.operands[1].regisimm)
19481 immhi = inst.operands[1].reg;
19482
19483 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
19484 _("immediate has bits set outside the operand size"));
19485
19486 float_p = inst.operands[1].immisfloat;
19487
19488 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
19489 et.size, et.type)) == FAIL)
19490 {
19491 /* Invert relevant bits only. */
19492 neon_invert_size (&immlo, &immhi, et.size);
19493 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
19494 with one or the other; those cases are caught by
19495 neon_cmode_for_move_imm. */
19496 op = !op;
19497 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
19498 &op, et.size, et.type)) == FAIL)
19499 {
19500 first_error (_("immediate out of range"));
19501 return;
19502 }
19503 }
19504
19505 inst.instruction &= ~(1 << 5);
19506 inst.instruction |= op << 5;
19507
19508 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19509 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19510 inst.instruction |= neon_quad (rs) << 6;
19511 inst.instruction |= cmode << 8;
19512
19513 neon_write_immbits (immbits);
19514 }
19515
19516 static void
19517 do_neon_mvn (void)
19518 {
19519 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
19520 return;
19521
19522 if (inst.operands[1].isreg)
19523 {
19524 enum neon_shape rs;
19525 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19526 rs = neon_select_shape (NS_QQ, NS_NULL);
19527 else
19528 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19529
19530 NEON_ENCODE (INTEGER, inst);
19531 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19532 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19533 inst.instruction |= LOW4 (inst.operands[1].reg);
19534 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19535 inst.instruction |= neon_quad (rs) << 6;
19536 }
19537 else
19538 {
19539 NEON_ENCODE (IMMED, inst);
19540 neon_move_immediate ();
19541 }
19542
19543 neon_dp_fixup (&inst);
19544
19545 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19546 {
19547 constraint (!inst.operands[1].isreg && !inst.operands[0].isquad, BAD_FPU);
19548 constraint ((inst.instruction & 0xd00) == 0xd00,
19549 _("immediate value out of range"));
19550 }
19551 }
19552
19553 /* Encode instructions of form:
19554
19555 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
19556 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
19557
19558 static void
19559 neon_mixed_length (struct neon_type_el et, unsigned size)
19560 {
19561 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19562 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19563 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19564 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19565 inst.instruction |= LOW4 (inst.operands[2].reg);
19566 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19567 inst.instruction |= (et.type == NT_unsigned) << 24;
19568 inst.instruction |= neon_logbits (size) << 20;
19569
19570 neon_dp_fixup (&inst);
19571 }
19572
19573 static void
19574 do_neon_dyadic_long (void)
19575 {
19576 enum neon_shape rs = neon_select_shape (NS_QDD, NS_QQQ, NS_QQR, NS_NULL);
19577 if (rs == NS_QDD)
19578 {
19579 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH | NEON_CHECK_CC) == FAIL)
19580 return;
19581
19582 NEON_ENCODE (INTEGER, inst);
19583 /* FIXME: Type checking for lengthening op. */
19584 struct neon_type_el et = neon_check_type (3, NS_QDD,
19585 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
19586 neon_mixed_length (et, et.size);
19587 }
19588 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19589 && (inst.cond == 0xf || inst.cond == 0x10))
19590 {
19591 /* If parsing for MVE, vaddl/vsubl/vabdl{e,t} can only be vadd/vsub/vabd
19592 in an IT block with le/lt conditions. */
19593
19594 if (inst.cond == 0xf)
19595 inst.cond = 0xb;
19596 else if (inst.cond == 0x10)
19597 inst.cond = 0xd;
19598
19599 inst.pred_insn_type = INSIDE_IT_INSN;
19600
19601 if (inst.instruction == N_MNEM_vaddl)
19602 {
19603 inst.instruction = N_MNEM_vadd;
19604 do_neon_addsub_if_i ();
19605 }
19606 else if (inst.instruction == N_MNEM_vsubl)
19607 {
19608 inst.instruction = N_MNEM_vsub;
19609 do_neon_addsub_if_i ();
19610 }
19611 else if (inst.instruction == N_MNEM_vabdl)
19612 {
19613 inst.instruction = N_MNEM_vabd;
19614 do_neon_dyadic_if_su ();
19615 }
19616 }
19617 else
19618 first_error (BAD_FPU);
19619 }
19620
19621 static void
19622 do_neon_abal (void)
19623 {
19624 struct neon_type_el et = neon_check_type (3, NS_QDD,
19625 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
19626 neon_mixed_length (et, et.size);
19627 }
19628
19629 static void
19630 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
19631 {
19632 if (inst.operands[2].isscalar)
19633 {
19634 struct neon_type_el et = neon_check_type (3, NS_QDS,
19635 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
19636 NEON_ENCODE (SCALAR, inst);
19637 neon_mul_mac (et, et.type == NT_unsigned);
19638 }
19639 else
19640 {
19641 struct neon_type_el et = neon_check_type (3, NS_QDD,
19642 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
19643 NEON_ENCODE (INTEGER, inst);
19644 neon_mixed_length (et, et.size);
19645 }
19646 }
19647
19648 static void
19649 do_neon_mac_maybe_scalar_long (void)
19650 {
19651 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
19652 }
19653
19654 /* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
19655 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
19656
19657 static unsigned
19658 neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
19659 {
19660 unsigned regno = NEON_SCALAR_REG (scalar);
19661 unsigned elno = NEON_SCALAR_INDEX (scalar);
19662
19663 if (quad_p)
19664 {
19665 if (regno > 7 || elno > 3)
19666 goto bad_scalar;
19667
19668 return ((regno & 0x7)
19669 | ((elno & 0x1) << 3)
19670 | (((elno >> 1) & 0x1) << 5));
19671 }
19672 else
19673 {
19674 if (regno > 15 || elno > 1)
19675 goto bad_scalar;
19676
19677 return (((regno & 0x1) << 5)
19678 | ((regno >> 1) & 0x7)
19679 | ((elno & 0x1) << 3));
19680 }
19681
19682 bad_scalar:
19683 first_error (_("scalar out of range for multiply instruction"));
19684 return 0;
19685 }
19686
19687 static void
19688 do_neon_fmac_maybe_scalar_long (int subtype)
19689 {
19690 enum neon_shape rs;
19691 int high8;
19692 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
19693 field (bits[21:20]) has different meaning. For scalar index variant, it's
19694 used to differentiate add and subtract, otherwise it's with fixed value
19695 0x2. */
19696 int size = -1;
19697
19698 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
19699 be a scalar index register. */
19700 if (inst.operands[2].isscalar)
19701 {
19702 high8 = 0xfe000000;
19703 if (subtype)
19704 size = 16;
19705 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
19706 }
19707 else
19708 {
19709 high8 = 0xfc000000;
19710 size = 32;
19711 if (subtype)
19712 inst.instruction |= (0x1 << 23);
19713 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
19714 }
19715
19716
19717 if (inst.cond != COND_ALWAYS)
19718 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
19719 "behaviour is UNPREDICTABLE"));
19720
19721 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
19722 _(BAD_FP16));
19723
19724 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
19725 _(BAD_FPU));
19726
19727 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
19728 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
19729 so we simply pass -1 as size. */
19730 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
19731 neon_three_same (quad_p, 0, size);
19732
19733 /* Undo neon_dp_fixup. Redo the high eight bits. */
19734 inst.instruction &= 0x00ffffff;
19735 inst.instruction |= high8;
19736
19737 #define LOW1(R) ((R) & 0x1)
19738 #define HI4(R) (((R) >> 1) & 0xf)
19739 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
19740 whether the instruction is in Q form and whether Vm is a scalar indexed
19741 operand. */
19742 if (inst.operands[2].isscalar)
19743 {
19744 unsigned rm
19745 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
19746 inst.instruction &= 0xffffffd0;
19747 inst.instruction |= rm;
19748
19749 if (!quad_p)
19750 {
19751 /* Redo Rn as well. */
19752 inst.instruction &= 0xfff0ff7f;
19753 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
19754 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
19755 }
19756 }
19757 else if (!quad_p)
19758 {
19759 /* Redo Rn and Rm. */
19760 inst.instruction &= 0xfff0ff50;
19761 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
19762 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
19763 inst.instruction |= HI4 (inst.operands[2].reg);
19764 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
19765 }
19766 }
19767
19768 static void
19769 do_neon_vfmal (void)
19770 {
19771 return do_neon_fmac_maybe_scalar_long (0);
19772 }
19773
19774 static void
19775 do_neon_vfmsl (void)
19776 {
19777 return do_neon_fmac_maybe_scalar_long (1);
19778 }
19779
19780 static void
19781 do_neon_dyadic_wide (void)
19782 {
19783 struct neon_type_el et = neon_check_type (3, NS_QQD,
19784 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
19785 neon_mixed_length (et, et.size);
19786 }
19787
19788 static void
19789 do_neon_dyadic_narrow (void)
19790 {
19791 struct neon_type_el et = neon_check_type (3, NS_QDD,
19792 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
19793 /* Operand sign is unimportant, and the U bit is part of the opcode,
19794 so force the operand type to integer. */
19795 et.type = NT_integer;
19796 neon_mixed_length (et, et.size / 2);
19797 }
19798
19799 static void
19800 do_neon_mul_sat_scalar_long (void)
19801 {
19802 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
19803 }
19804
19805 static void
19806 do_neon_vmull (void)
19807 {
19808 if (inst.operands[2].isscalar)
19809 do_neon_mac_maybe_scalar_long ();
19810 else
19811 {
19812 struct neon_type_el et = neon_check_type (3, NS_QDD,
19813 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
19814
19815 if (et.type == NT_poly)
19816 NEON_ENCODE (POLY, inst);
19817 else
19818 NEON_ENCODE (INTEGER, inst);
19819
19820 /* For polynomial encoding the U bit must be zero, and the size must
19821 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
19822 obviously, as 0b10). */
19823 if (et.size == 64)
19824 {
19825 /* Check we're on the correct architecture. */
19826 if (!mark_feature_used (&fpu_crypto_ext_armv8))
19827 inst.error =
19828 _("Instruction form not available on this architecture.");
19829
19830 et.size = 32;
19831 }
19832
19833 neon_mixed_length (et, et.size);
19834 }
19835 }
19836
19837 static void
19838 do_neon_ext (void)
19839 {
19840 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
19841 struct neon_type_el et = neon_check_type (3, rs,
19842 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
19843 unsigned imm = (inst.operands[3].imm * et.size) / 8;
19844
19845 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
19846 _("shift out of range"));
19847 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19848 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19849 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19850 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19851 inst.instruction |= LOW4 (inst.operands[2].reg);
19852 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19853 inst.instruction |= neon_quad (rs) << 6;
19854 inst.instruction |= imm << 8;
19855
19856 neon_dp_fixup (&inst);
19857 }
19858
19859 static void
19860 do_neon_rev (void)
19861 {
19862 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
19863 return;
19864
19865 enum neon_shape rs;
19866 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19867 rs = neon_select_shape (NS_QQ, NS_NULL);
19868 else
19869 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19870
19871 struct neon_type_el et = neon_check_type (2, rs,
19872 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19873
19874 unsigned op = (inst.instruction >> 7) & 3;
19875 /* N (width of reversed regions) is encoded as part of the bitmask. We
19876 extract it here to check the elements to be reversed are smaller.
19877 Otherwise we'd get a reserved instruction. */
19878 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
19879
19880 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext) && elsize == 64
19881 && inst.operands[0].reg == inst.operands[1].reg)
19882 as_tsktsk (_("Warning: 64-bit element size and same destination and source"
19883 " operands makes instruction UNPREDICTABLE"));
19884
19885 gas_assert (elsize != 0);
19886 constraint (et.size >= elsize,
19887 _("elements must be smaller than reversal region"));
19888 neon_two_same (neon_quad (rs), 1, et.size);
19889 }
19890
19891 static void
19892 do_neon_dup (void)
19893 {
19894 if (inst.operands[1].isscalar)
19895 {
19896 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
19897 BAD_FPU);
19898 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
19899 struct neon_type_el et = neon_check_type (2, rs,
19900 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19901 unsigned sizebits = et.size >> 3;
19902 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
19903 int logsize = neon_logbits (et.size);
19904 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
19905
19906 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
19907 return;
19908
19909 NEON_ENCODE (SCALAR, inst);
19910 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19911 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19912 inst.instruction |= LOW4 (dm);
19913 inst.instruction |= HI1 (dm) << 5;
19914 inst.instruction |= neon_quad (rs) << 6;
19915 inst.instruction |= x << 17;
19916 inst.instruction |= sizebits << 16;
19917
19918 neon_dp_fixup (&inst);
19919 }
19920 else
19921 {
19922 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
19923 struct neon_type_el et = neon_check_type (2, rs,
19924 N_8 | N_16 | N_32 | N_KEY, N_EQK);
19925 if (rs == NS_QR)
19926 {
19927 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH))
19928 return;
19929 }
19930 else
19931 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
19932 BAD_FPU);
19933
19934 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19935 {
19936 if (inst.operands[1].reg == REG_SP)
19937 as_tsktsk (MVE_BAD_SP);
19938 else if (inst.operands[1].reg == REG_PC)
19939 as_tsktsk (MVE_BAD_PC);
19940 }
19941
19942 /* Duplicate ARM register to lanes of vector. */
19943 NEON_ENCODE (ARMREG, inst);
19944 switch (et.size)
19945 {
19946 case 8: inst.instruction |= 0x400000; break;
19947 case 16: inst.instruction |= 0x000020; break;
19948 case 32: inst.instruction |= 0x000000; break;
19949 default: break;
19950 }
19951 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
19952 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
19953 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
19954 inst.instruction |= neon_quad (rs) << 21;
19955 /* The encoding for this instruction is identical for the ARM and Thumb
19956 variants, except for the condition field. */
19957 do_vfp_cond_or_thumb ();
19958 }
19959 }
19960
19961 static void
19962 do_mve_mov (int toQ)
19963 {
19964 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19965 return;
19966 if (inst.cond > COND_ALWAYS)
19967 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
19968
19969 unsigned Rt = 0, Rt2 = 1, Q0 = 2, Q1 = 3;
19970 if (toQ)
19971 {
19972 Q0 = 0;
19973 Q1 = 1;
19974 Rt = 2;
19975 Rt2 = 3;
19976 }
19977
19978 constraint (inst.operands[Q0].reg != inst.operands[Q1].reg + 2,
19979 _("Index one must be [2,3] and index two must be two less than"
19980 " index one."));
19981 constraint (inst.operands[Rt].reg == inst.operands[Rt2].reg,
19982 _("General purpose registers may not be the same"));
19983 constraint (inst.operands[Rt].reg == REG_SP
19984 || inst.operands[Rt2].reg == REG_SP,
19985 BAD_SP);
19986 constraint (inst.operands[Rt].reg == REG_PC
19987 || inst.operands[Rt2].reg == REG_PC,
19988 BAD_PC);
19989
19990 inst.instruction = 0xec000f00;
19991 inst.instruction |= HI1 (inst.operands[Q1].reg / 32) << 23;
19992 inst.instruction |= !!toQ << 20;
19993 inst.instruction |= inst.operands[Rt2].reg << 16;
19994 inst.instruction |= LOW4 (inst.operands[Q1].reg / 32) << 13;
19995 inst.instruction |= (inst.operands[Q1].reg % 4) << 4;
19996 inst.instruction |= inst.operands[Rt].reg;
19997 }
19998
19999 static void
20000 do_mve_movn (void)
20001 {
20002 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20003 return;
20004
20005 if (inst.cond > COND_ALWAYS)
20006 inst.pred_insn_type = INSIDE_VPT_INSN;
20007 else
20008 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
20009
20010 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_I16 | N_I32
20011 | N_KEY);
20012
20013 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20014 inst.instruction |= (neon_logbits (et.size) - 1) << 18;
20015 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20016 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20017 inst.instruction |= LOW4 (inst.operands[1].reg);
20018 inst.is_neon = 1;
20019
20020 }
20021
20022 /* VMOV has particularly many variations. It can be one of:
20023 0. VMOV<c><q> <Qd>, <Qm>
20024 1. VMOV<c><q> <Dd>, <Dm>
20025 (Register operations, which are VORR with Rm = Rn.)
20026 2. VMOV<c><q>.<dt> <Qd>, #<imm>
20027 3. VMOV<c><q>.<dt> <Dd>, #<imm>
20028 (Immediate loads.)
20029 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
20030 (ARM register to scalar.)
20031 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
20032 (Two ARM registers to vector.)
20033 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
20034 (Scalar to ARM register.)
20035 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
20036 (Vector to two ARM registers.)
20037 8. VMOV.F32 <Sd>, <Sm>
20038 9. VMOV.F64 <Dd>, <Dm>
20039 (VFP register moves.)
20040 10. VMOV.F32 <Sd>, #imm
20041 11. VMOV.F64 <Dd>, #imm
20042 (VFP float immediate load.)
20043 12. VMOV <Rd>, <Sm>
20044 (VFP single to ARM reg.)
20045 13. VMOV <Sd>, <Rm>
20046 (ARM reg to VFP single.)
20047 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
20048 (Two ARM regs to two VFP singles.)
20049 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
20050 (Two VFP singles to two ARM regs.)
20051 16. VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]>
20052 17. VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2>
20053 18. VMOV<c>.<dt> <Rt>, <Qn[idx]>
20054 19. VMOV<c>.<dt> <Qd[idx]>, <Rt>
20055
20056 These cases can be disambiguated using neon_select_shape, except cases 1/9
20057 and 3/11 which depend on the operand type too.
20058
20059 All the encoded bits are hardcoded by this function.
20060
20061 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
20062 Cases 5, 7 may be used with VFPv2 and above.
20063
20064 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
20065 can specify a type where it doesn't make sense to, and is ignored). */
20066
20067 static void
20068 do_neon_mov (void)
20069 {
20070 enum neon_shape rs = neon_select_shape (NS_RRSS, NS_SSRR, NS_RRFF, NS_FFRR,
20071 NS_DRR, NS_RRD, NS_QQ, NS_DD, NS_QI,
20072 NS_DI, NS_SR, NS_RS, NS_FF, NS_FI,
20073 NS_RF, NS_FR, NS_HR, NS_RH, NS_HI,
20074 NS_NULL);
20075 struct neon_type_el et;
20076 const char *ldconst = 0;
20077
20078 switch (rs)
20079 {
20080 case NS_DD: /* case 1/9. */
20081 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
20082 /* It is not an error here if no type is given. */
20083 inst.error = NULL;
20084
20085 /* In MVE we interpret the following instructions as same, so ignoring
20086 the following type (float) and size (64) checks.
20087 a: VMOV<c><q> <Dd>, <Dm>
20088 b: VMOV<c><q>.F64 <Dd>, <Dm>. */
20089 if ((et.type == NT_float && et.size == 64)
20090 || (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)))
20091 {
20092 do_vfp_nsyn_opcode ("fcpyd");
20093 break;
20094 }
20095 /* fall through. */
20096
20097 case NS_QQ: /* case 0/1. */
20098 {
20099 if (!check_simd_pred_availability (FALSE,
20100 NEON_CHECK_CC | NEON_CHECK_ARCH))
20101 return;
20102 /* The architecture manual I have doesn't explicitly state which
20103 value the U bit should have for register->register moves, but
20104 the equivalent VORR instruction has U = 0, so do that. */
20105 inst.instruction = 0x0200110;
20106 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20107 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20108 inst.instruction |= LOW4 (inst.operands[1].reg);
20109 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20110 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20111 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20112 inst.instruction |= neon_quad (rs) << 6;
20113
20114 neon_dp_fixup (&inst);
20115 }
20116 break;
20117
20118 case NS_DI: /* case 3/11. */
20119 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
20120 inst.error = NULL;
20121 if (et.type == NT_float && et.size == 64)
20122 {
20123 /* case 11 (fconstd). */
20124 ldconst = "fconstd";
20125 goto encode_fconstd;
20126 }
20127 /* fall through. */
20128
20129 case NS_QI: /* case 2/3. */
20130 if (!check_simd_pred_availability (FALSE,
20131 NEON_CHECK_CC | NEON_CHECK_ARCH))
20132 return;
20133 inst.instruction = 0x0800010;
20134 neon_move_immediate ();
20135 neon_dp_fixup (&inst);
20136 break;
20137
20138 case NS_SR: /* case 4. */
20139 {
20140 unsigned bcdebits = 0;
20141 int logsize;
20142 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
20143 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
20144
20145 /* .<size> is optional here, defaulting to .32. */
20146 if (inst.vectype.elems == 0
20147 && inst.operands[0].vectype.type == NT_invtype
20148 && inst.operands[1].vectype.type == NT_invtype)
20149 {
20150 inst.vectype.el[0].type = NT_untyped;
20151 inst.vectype.el[0].size = 32;
20152 inst.vectype.elems = 1;
20153 }
20154
20155 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
20156 logsize = neon_logbits (et.size);
20157
20158 if (et.size != 32)
20159 {
20160 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
20161 && vfp_or_neon_is_neon (NEON_CHECK_ARCH) == FAIL)
20162 return;
20163 }
20164 else
20165 {
20166 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
20167 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
20168 _(BAD_FPU));
20169 }
20170
20171 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20172 {
20173 if (inst.operands[1].reg == REG_SP)
20174 as_tsktsk (MVE_BAD_SP);
20175 else if (inst.operands[1].reg == REG_PC)
20176 as_tsktsk (MVE_BAD_PC);
20177 }
20178 unsigned size = inst.operands[0].isscalar == 1 ? 64 : 128;
20179
20180 constraint (et.type == NT_invtype, _("bad type for scalar"));
20181 constraint (x >= size / et.size, _("scalar index out of range"));
20182
20183
20184 switch (et.size)
20185 {
20186 case 8: bcdebits = 0x8; break;
20187 case 16: bcdebits = 0x1; break;
20188 case 32: bcdebits = 0x0; break;
20189 default: ;
20190 }
20191
20192 bcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
20193
20194 inst.instruction = 0xe000b10;
20195 do_vfp_cond_or_thumb ();
20196 inst.instruction |= LOW4 (dn) << 16;
20197 inst.instruction |= HI1 (dn) << 7;
20198 inst.instruction |= inst.operands[1].reg << 12;
20199 inst.instruction |= (bcdebits & 3) << 5;
20200 inst.instruction |= ((bcdebits >> 2) & 3) << 21;
20201 inst.instruction |= (x >> (3-logsize)) << 16;
20202 }
20203 break;
20204
20205 case NS_DRR: /* case 5 (fmdrr). */
20206 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
20207 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
20208 _(BAD_FPU));
20209
20210 inst.instruction = 0xc400b10;
20211 do_vfp_cond_or_thumb ();
20212 inst.instruction |= LOW4 (inst.operands[0].reg);
20213 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
20214 inst.instruction |= inst.operands[1].reg << 12;
20215 inst.instruction |= inst.operands[2].reg << 16;
20216 break;
20217
20218 case NS_RS: /* case 6. */
20219 {
20220 unsigned logsize;
20221 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
20222 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
20223 unsigned abcdebits = 0;
20224
20225 /* .<dt> is optional here, defaulting to .32. */
20226 if (inst.vectype.elems == 0
20227 && inst.operands[0].vectype.type == NT_invtype
20228 && inst.operands[1].vectype.type == NT_invtype)
20229 {
20230 inst.vectype.el[0].type = NT_untyped;
20231 inst.vectype.el[0].size = 32;
20232 inst.vectype.elems = 1;
20233 }
20234
20235 et = neon_check_type (2, NS_NULL,
20236 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
20237 logsize = neon_logbits (et.size);
20238
20239 if (et.size != 32)
20240 {
20241 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
20242 && vfp_or_neon_is_neon (NEON_CHECK_CC
20243 | NEON_CHECK_ARCH) == FAIL)
20244 return;
20245 }
20246 else
20247 {
20248 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
20249 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
20250 _(BAD_FPU));
20251 }
20252
20253 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20254 {
20255 if (inst.operands[0].reg == REG_SP)
20256 as_tsktsk (MVE_BAD_SP);
20257 else if (inst.operands[0].reg == REG_PC)
20258 as_tsktsk (MVE_BAD_PC);
20259 }
20260
20261 unsigned size = inst.operands[1].isscalar == 1 ? 64 : 128;
20262
20263 constraint (et.type == NT_invtype, _("bad type for scalar"));
20264 constraint (x >= size / et.size, _("scalar index out of range"));
20265
20266 switch (et.size)
20267 {
20268 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
20269 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
20270 case 32: abcdebits = 0x00; break;
20271 default: ;
20272 }
20273
20274 abcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
20275 inst.instruction = 0xe100b10;
20276 do_vfp_cond_or_thumb ();
20277 inst.instruction |= LOW4 (dn) << 16;
20278 inst.instruction |= HI1 (dn) << 7;
20279 inst.instruction |= inst.operands[0].reg << 12;
20280 inst.instruction |= (abcdebits & 3) << 5;
20281 inst.instruction |= (abcdebits >> 2) << 21;
20282 inst.instruction |= (x >> (3-logsize)) << 16;
20283 }
20284 break;
20285
20286 case NS_RRD: /* case 7 (fmrrd). */
20287 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
20288 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
20289 _(BAD_FPU));
20290
20291 inst.instruction = 0xc500b10;
20292 do_vfp_cond_or_thumb ();
20293 inst.instruction |= inst.operands[0].reg << 12;
20294 inst.instruction |= inst.operands[1].reg << 16;
20295 inst.instruction |= LOW4 (inst.operands[2].reg);
20296 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
20297 break;
20298
20299 case NS_FF: /* case 8 (fcpys). */
20300 do_vfp_nsyn_opcode ("fcpys");
20301 break;
20302
20303 case NS_HI:
20304 case NS_FI: /* case 10 (fconsts). */
20305 ldconst = "fconsts";
20306 encode_fconstd:
20307 if (!inst.operands[1].immisfloat)
20308 {
20309 unsigned new_imm;
20310 /* Immediate has to fit in 8 bits so float is enough. */
20311 float imm = (float) inst.operands[1].imm;
20312 memcpy (&new_imm, &imm, sizeof (float));
20313 /* But the assembly may have been written to provide an integer
20314 bit pattern that equates to a float, so check that the
20315 conversion has worked. */
20316 if (is_quarter_float (new_imm))
20317 {
20318 if (is_quarter_float (inst.operands[1].imm))
20319 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
20320
20321 inst.operands[1].imm = new_imm;
20322 inst.operands[1].immisfloat = 1;
20323 }
20324 }
20325
20326 if (is_quarter_float (inst.operands[1].imm))
20327 {
20328 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
20329 do_vfp_nsyn_opcode (ldconst);
20330
20331 /* ARMv8.2 fp16 vmov.f16 instruction. */
20332 if (rs == NS_HI)
20333 do_scalar_fp16_v82_encode ();
20334 }
20335 else
20336 first_error (_("immediate out of range"));
20337 break;
20338
20339 case NS_RH:
20340 case NS_RF: /* case 12 (fmrs). */
20341 do_vfp_nsyn_opcode ("fmrs");
20342 /* ARMv8.2 fp16 vmov.f16 instruction. */
20343 if (rs == NS_RH)
20344 do_scalar_fp16_v82_encode ();
20345 break;
20346
20347 case NS_HR:
20348 case NS_FR: /* case 13 (fmsr). */
20349 do_vfp_nsyn_opcode ("fmsr");
20350 /* ARMv8.2 fp16 vmov.f16 instruction. */
20351 if (rs == NS_HR)
20352 do_scalar_fp16_v82_encode ();
20353 break;
20354
20355 case NS_RRSS:
20356 do_mve_mov (0);
20357 break;
20358 case NS_SSRR:
20359 do_mve_mov (1);
20360 break;
20361
20362 /* The encoders for the fmrrs and fmsrr instructions expect three operands
20363 (one of which is a list), but we have parsed four. Do some fiddling to
20364 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
20365 expect. */
20366 case NS_RRFF: /* case 14 (fmrrs). */
20367 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
20368 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
20369 _(BAD_FPU));
20370 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
20371 _("VFP registers must be adjacent"));
20372 inst.operands[2].imm = 2;
20373 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
20374 do_vfp_nsyn_opcode ("fmrrs");
20375 break;
20376
20377 case NS_FFRR: /* case 15 (fmsrr). */
20378 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
20379 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
20380 _(BAD_FPU));
20381 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
20382 _("VFP registers must be adjacent"));
20383 inst.operands[1] = inst.operands[2];
20384 inst.operands[2] = inst.operands[3];
20385 inst.operands[0].imm = 2;
20386 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
20387 do_vfp_nsyn_opcode ("fmsrr");
20388 break;
20389
20390 case NS_NULL:
20391 /* neon_select_shape has determined that the instruction
20392 shape is wrong and has already set the error message. */
20393 break;
20394
20395 default:
20396 abort ();
20397 }
20398 }
20399
20400 static void
20401 do_mve_movl (void)
20402 {
20403 if (!(inst.operands[0].present && inst.operands[0].isquad
20404 && inst.operands[1].present && inst.operands[1].isquad
20405 && !inst.operands[2].present))
20406 {
20407 inst.instruction = 0;
20408 inst.cond = 0xb;
20409 if (thumb_mode)
20410 set_pred_insn_type (INSIDE_IT_INSN);
20411 do_neon_mov ();
20412 return;
20413 }
20414
20415 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20416 return;
20417
20418 if (inst.cond != COND_ALWAYS)
20419 inst.pred_insn_type = INSIDE_VPT_INSN;
20420
20421 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_S8 | N_U8
20422 | N_S16 | N_U16 | N_KEY);
20423
20424 inst.instruction |= (et.type == NT_unsigned) << 28;
20425 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20426 inst.instruction |= (neon_logbits (et.size) + 1) << 19;
20427 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20428 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20429 inst.instruction |= LOW4 (inst.operands[1].reg);
20430 inst.is_neon = 1;
20431 }
20432
20433 static void
20434 do_neon_rshift_round_imm (void)
20435 {
20436 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
20437 return;
20438
20439 enum neon_shape rs;
20440 struct neon_type_el et;
20441
20442 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20443 {
20444 rs = neon_select_shape (NS_QQI, NS_NULL);
20445 et = neon_check_type (2, rs, N_EQK, N_SU_MVE | N_KEY);
20446 }
20447 else
20448 {
20449 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
20450 et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
20451 }
20452 int imm = inst.operands[2].imm;
20453
20454 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
20455 if (imm == 0)
20456 {
20457 inst.operands[2].present = 0;
20458 do_neon_mov ();
20459 return;
20460 }
20461
20462 constraint (imm < 1 || (unsigned)imm > et.size,
20463 _("immediate out of range for shift"));
20464 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
20465 et.size - imm);
20466 }
20467
20468 static void
20469 do_neon_movhf (void)
20470 {
20471 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
20472 constraint (rs != NS_HH, _("invalid suffix"));
20473
20474 if (inst.cond != COND_ALWAYS)
20475 {
20476 if (thumb_mode)
20477 {
20478 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
20479 " the behaviour is UNPREDICTABLE"));
20480 }
20481 else
20482 {
20483 inst.error = BAD_COND;
20484 return;
20485 }
20486 }
20487
20488 do_vfp_sp_monadic ();
20489
20490 inst.is_neon = 1;
20491 inst.instruction |= 0xf0000000;
20492 }
20493
20494 static void
20495 do_neon_movl (void)
20496 {
20497 struct neon_type_el et = neon_check_type (2, NS_QD,
20498 N_EQK | N_DBL, N_SU_32 | N_KEY);
20499 unsigned sizebits = et.size >> 3;
20500 inst.instruction |= sizebits << 19;
20501 neon_two_same (0, et.type == NT_unsigned, -1);
20502 }
20503
20504 static void
20505 do_neon_trn (void)
20506 {
20507 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20508 struct neon_type_el et = neon_check_type (2, rs,
20509 N_EQK, N_8 | N_16 | N_32 | N_KEY);
20510 NEON_ENCODE (INTEGER, inst);
20511 neon_two_same (neon_quad (rs), 1, et.size);
20512 }
20513
20514 static void
20515 do_neon_zip_uzp (void)
20516 {
20517 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20518 struct neon_type_el et = neon_check_type (2, rs,
20519 N_EQK, N_8 | N_16 | N_32 | N_KEY);
20520 if (rs == NS_DD && et.size == 32)
20521 {
20522 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
20523 inst.instruction = N_MNEM_vtrn;
20524 do_neon_trn ();
20525 return;
20526 }
20527 neon_two_same (neon_quad (rs), 1, et.size);
20528 }
20529
20530 static void
20531 do_neon_sat_abs_neg (void)
20532 {
20533 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
20534 return;
20535
20536 enum neon_shape rs;
20537 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20538 rs = neon_select_shape (NS_QQ, NS_NULL);
20539 else
20540 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20541 struct neon_type_el et = neon_check_type (2, rs,
20542 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
20543 neon_two_same (neon_quad (rs), 1, et.size);
20544 }
20545
20546 static void
20547 do_neon_pair_long (void)
20548 {
20549 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20550 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
20551 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
20552 inst.instruction |= (et.type == NT_unsigned) << 7;
20553 neon_two_same (neon_quad (rs), 1, et.size);
20554 }
20555
20556 static void
20557 do_neon_recip_est (void)
20558 {
20559 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20560 struct neon_type_el et = neon_check_type (2, rs,
20561 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
20562 inst.instruction |= (et.type == NT_float) << 8;
20563 neon_two_same (neon_quad (rs), 1, et.size);
20564 }
20565
20566 static void
20567 do_neon_cls (void)
20568 {
20569 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
20570 return;
20571
20572 enum neon_shape rs;
20573 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20574 rs = neon_select_shape (NS_QQ, NS_NULL);
20575 else
20576 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20577
20578 struct neon_type_el et = neon_check_type (2, rs,
20579 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
20580 neon_two_same (neon_quad (rs), 1, et.size);
20581 }
20582
20583 static void
20584 do_neon_clz (void)
20585 {
20586 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
20587 return;
20588
20589 enum neon_shape rs;
20590 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20591 rs = neon_select_shape (NS_QQ, NS_NULL);
20592 else
20593 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20594
20595 struct neon_type_el et = neon_check_type (2, rs,
20596 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
20597 neon_two_same (neon_quad (rs), 1, et.size);
20598 }
20599
20600 static void
20601 do_neon_cnt (void)
20602 {
20603 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20604 struct neon_type_el et = neon_check_type (2, rs,
20605 N_EQK | N_INT, N_8 | N_KEY);
20606 neon_two_same (neon_quad (rs), 1, et.size);
20607 }
20608
20609 static void
20610 do_neon_swp (void)
20611 {
20612 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20613 neon_two_same (neon_quad (rs), 1, -1);
20614 }
20615
20616 static void
20617 do_neon_tbl_tbx (void)
20618 {
20619 unsigned listlenbits;
20620 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
20621
20622 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
20623 {
20624 first_error (_("bad list length for table lookup"));
20625 return;
20626 }
20627
20628 listlenbits = inst.operands[1].imm - 1;
20629 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20630 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20631 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20632 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20633 inst.instruction |= LOW4 (inst.operands[2].reg);
20634 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
20635 inst.instruction |= listlenbits << 8;
20636
20637 neon_dp_fixup (&inst);
20638 }
20639
20640 static void
20641 do_neon_ldm_stm (void)
20642 {
20643 /* P, U and L bits are part of bitmask. */
20644 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
20645 unsigned offsetbits = inst.operands[1].imm * 2;
20646
20647 if (inst.operands[1].issingle)
20648 {
20649 do_vfp_nsyn_ldm_stm (is_dbmode);
20650 return;
20651 }
20652
20653 constraint (is_dbmode && !inst.operands[0].writeback,
20654 _("writeback (!) must be used for VLDMDB and VSTMDB"));
20655
20656 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
20657 _("register list must contain at least 1 and at most 16 "
20658 "registers"));
20659
20660 inst.instruction |= inst.operands[0].reg << 16;
20661 inst.instruction |= inst.operands[0].writeback << 21;
20662 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
20663 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
20664
20665 inst.instruction |= offsetbits;
20666
20667 do_vfp_cond_or_thumb ();
20668 }
20669
20670 static void
20671 do_neon_ldr_str (void)
20672 {
20673 int is_ldr = (inst.instruction & (1 << 20)) != 0;
20674
20675 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
20676 And is UNPREDICTABLE in thumb mode. */
20677 if (!is_ldr
20678 && inst.operands[1].reg == REG_PC
20679 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
20680 {
20681 if (thumb_mode)
20682 inst.error = _("Use of PC here is UNPREDICTABLE");
20683 else if (warn_on_deprecated)
20684 as_tsktsk (_("Use of PC here is deprecated"));
20685 }
20686
20687 if (inst.operands[0].issingle)
20688 {
20689 if (is_ldr)
20690 do_vfp_nsyn_opcode ("flds");
20691 else
20692 do_vfp_nsyn_opcode ("fsts");
20693
20694 /* ARMv8.2 vldr.16/vstr.16 instruction. */
20695 if (inst.vectype.el[0].size == 16)
20696 do_scalar_fp16_v82_encode ();
20697 }
20698 else
20699 {
20700 if (is_ldr)
20701 do_vfp_nsyn_opcode ("fldd");
20702 else
20703 do_vfp_nsyn_opcode ("fstd");
20704 }
20705 }
20706
20707 static void
20708 do_t_vldr_vstr_sysreg (void)
20709 {
20710 int fp_vldr_bitno = 20, sysreg_vldr_bitno = 20;
20711 bfd_boolean is_vldr = ((inst.instruction & (1 << fp_vldr_bitno)) != 0);
20712
20713 /* Use of PC is UNPREDICTABLE. */
20714 if (inst.operands[1].reg == REG_PC)
20715 inst.error = _("Use of PC here is UNPREDICTABLE");
20716
20717 if (inst.operands[1].immisreg)
20718 inst.error = _("instruction does not accept register index");
20719
20720 if (!inst.operands[1].isreg)
20721 inst.error = _("instruction does not accept PC-relative addressing");
20722
20723 if (abs (inst.operands[1].imm) >= (1 << 7))
20724 inst.error = _("immediate value out of range");
20725
20726 inst.instruction = 0xec000f80;
20727 if (is_vldr)
20728 inst.instruction |= 1 << sysreg_vldr_bitno;
20729 encode_arm_cp_address (1, TRUE, FALSE, BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM);
20730 inst.instruction |= (inst.operands[0].imm & 0x7) << 13;
20731 inst.instruction |= (inst.operands[0].imm & 0x8) << 19;
20732 }
20733
20734 static void
20735 do_vldr_vstr (void)
20736 {
20737 bfd_boolean sysreg_op = !inst.operands[0].isreg;
20738
20739 /* VLDR/VSTR (System Register). */
20740 if (sysreg_op)
20741 {
20742 if (!mark_feature_used (&arm_ext_v8_1m_main))
20743 as_bad (_("Instruction not permitted on this architecture"));
20744
20745 do_t_vldr_vstr_sysreg ();
20746 }
20747 /* VLDR/VSTR. */
20748 else
20749 {
20750 if (!mark_feature_used (&fpu_vfp_ext_v1xd))
20751 as_bad (_("Instruction not permitted on this architecture"));
20752 do_neon_ldr_str ();
20753 }
20754 }
20755
20756 /* "interleave" version also handles non-interleaving register VLD1/VST1
20757 instructions. */
20758
20759 static void
20760 do_neon_ld_st_interleave (void)
20761 {
20762 struct neon_type_el et = neon_check_type (1, NS_NULL,
20763 N_8 | N_16 | N_32 | N_64);
20764 unsigned alignbits = 0;
20765 unsigned idx;
20766 /* The bits in this table go:
20767 0: register stride of one (0) or two (1)
20768 1,2: register list length, minus one (1, 2, 3, 4).
20769 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
20770 We use -1 for invalid entries. */
20771 const int typetable[] =
20772 {
20773 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
20774 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
20775 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
20776 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
20777 };
20778 int typebits;
20779
20780 if (et.type == NT_invtype)
20781 return;
20782
20783 if (inst.operands[1].immisalign)
20784 switch (inst.operands[1].imm >> 8)
20785 {
20786 case 64: alignbits = 1; break;
20787 case 128:
20788 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
20789 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
20790 goto bad_alignment;
20791 alignbits = 2;
20792 break;
20793 case 256:
20794 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
20795 goto bad_alignment;
20796 alignbits = 3;
20797 break;
20798 default:
20799 bad_alignment:
20800 first_error (_("bad alignment"));
20801 return;
20802 }
20803
20804 inst.instruction |= alignbits << 4;
20805 inst.instruction |= neon_logbits (et.size) << 6;
20806
20807 /* Bits [4:6] of the immediate in a list specifier encode register stride
20808 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
20809 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
20810 up the right value for "type" in a table based on this value and the given
20811 list style, then stick it back. */
20812 idx = ((inst.operands[0].imm >> 4) & 7)
20813 | (((inst.instruction >> 8) & 3) << 3);
20814
20815 typebits = typetable[idx];
20816
20817 constraint (typebits == -1, _("bad list type for instruction"));
20818 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
20819 BAD_EL_TYPE);
20820
20821 inst.instruction &= ~0xf00;
20822 inst.instruction |= typebits << 8;
20823 }
20824
20825 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
20826 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
20827 otherwise. The variable arguments are a list of pairs of legal (size, align)
20828 values, terminated with -1. */
20829
20830 static int
20831 neon_alignment_bit (int size, int align, int *do_alignment, ...)
20832 {
20833 va_list ap;
20834 int result = FAIL, thissize, thisalign;
20835
20836 if (!inst.operands[1].immisalign)
20837 {
20838 *do_alignment = 0;
20839 return SUCCESS;
20840 }
20841
20842 va_start (ap, do_alignment);
20843
20844 do
20845 {
20846 thissize = va_arg (ap, int);
20847 if (thissize == -1)
20848 break;
20849 thisalign = va_arg (ap, int);
20850
20851 if (size == thissize && align == thisalign)
20852 result = SUCCESS;
20853 }
20854 while (result != SUCCESS);
20855
20856 va_end (ap);
20857
20858 if (result == SUCCESS)
20859 *do_alignment = 1;
20860 else
20861 first_error (_("unsupported alignment for instruction"));
20862
20863 return result;
20864 }
20865
20866 static void
20867 do_neon_ld_st_lane (void)
20868 {
20869 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
20870 int align_good, do_alignment = 0;
20871 int logsize = neon_logbits (et.size);
20872 int align = inst.operands[1].imm >> 8;
20873 int n = (inst.instruction >> 8) & 3;
20874 int max_el = 64 / et.size;
20875
20876 if (et.type == NT_invtype)
20877 return;
20878
20879 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
20880 _("bad list length"));
20881 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
20882 _("scalar index out of range"));
20883 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
20884 && et.size == 8,
20885 _("stride of 2 unavailable when element size is 8"));
20886
20887 switch (n)
20888 {
20889 case 0: /* VLD1 / VST1. */
20890 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
20891 32, 32, -1);
20892 if (align_good == FAIL)
20893 return;
20894 if (do_alignment)
20895 {
20896 unsigned alignbits = 0;
20897 switch (et.size)
20898 {
20899 case 16: alignbits = 0x1; break;
20900 case 32: alignbits = 0x3; break;
20901 default: ;
20902 }
20903 inst.instruction |= alignbits << 4;
20904 }
20905 break;
20906
20907 case 1: /* VLD2 / VST2. */
20908 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
20909 16, 32, 32, 64, -1);
20910 if (align_good == FAIL)
20911 return;
20912 if (do_alignment)
20913 inst.instruction |= 1 << 4;
20914 break;
20915
20916 case 2: /* VLD3 / VST3. */
20917 constraint (inst.operands[1].immisalign,
20918 _("can't use alignment with this instruction"));
20919 break;
20920
20921 case 3: /* VLD4 / VST4. */
20922 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
20923 16, 64, 32, 64, 32, 128, -1);
20924 if (align_good == FAIL)
20925 return;
20926 if (do_alignment)
20927 {
20928 unsigned alignbits = 0;
20929 switch (et.size)
20930 {
20931 case 8: alignbits = 0x1; break;
20932 case 16: alignbits = 0x1; break;
20933 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
20934 default: ;
20935 }
20936 inst.instruction |= alignbits << 4;
20937 }
20938 break;
20939
20940 default: ;
20941 }
20942
20943 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
20944 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20945 inst.instruction |= 1 << (4 + logsize);
20946
20947 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
20948 inst.instruction |= logsize << 10;
20949 }
20950
20951 /* Encode single n-element structure to all lanes VLD<n> instructions. */
20952
20953 static void
20954 do_neon_ld_dup (void)
20955 {
20956 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
20957 int align_good, do_alignment = 0;
20958
20959 if (et.type == NT_invtype)
20960 return;
20961
20962 switch ((inst.instruction >> 8) & 3)
20963 {
20964 case 0: /* VLD1. */
20965 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
20966 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
20967 &do_alignment, 16, 16, 32, 32, -1);
20968 if (align_good == FAIL)
20969 return;
20970 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
20971 {
20972 case 1: break;
20973 case 2: inst.instruction |= 1 << 5; break;
20974 default: first_error (_("bad list length")); return;
20975 }
20976 inst.instruction |= neon_logbits (et.size) << 6;
20977 break;
20978
20979 case 1: /* VLD2. */
20980 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
20981 &do_alignment, 8, 16, 16, 32, 32, 64,
20982 -1);
20983 if (align_good == FAIL)
20984 return;
20985 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
20986 _("bad list length"));
20987 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20988 inst.instruction |= 1 << 5;
20989 inst.instruction |= neon_logbits (et.size) << 6;
20990 break;
20991
20992 case 2: /* VLD3. */
20993 constraint (inst.operands[1].immisalign,
20994 _("can't use alignment with this instruction"));
20995 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
20996 _("bad list length"));
20997 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20998 inst.instruction |= 1 << 5;
20999 inst.instruction |= neon_logbits (et.size) << 6;
21000 break;
21001
21002 case 3: /* VLD4. */
21003 {
21004 int align = inst.operands[1].imm >> 8;
21005 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
21006 16, 64, 32, 64, 32, 128, -1);
21007 if (align_good == FAIL)
21008 return;
21009 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
21010 _("bad list length"));
21011 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
21012 inst.instruction |= 1 << 5;
21013 if (et.size == 32 && align == 128)
21014 inst.instruction |= 0x3 << 6;
21015 else
21016 inst.instruction |= neon_logbits (et.size) << 6;
21017 }
21018 break;
21019
21020 default: ;
21021 }
21022
21023 inst.instruction |= do_alignment << 4;
21024 }
21025
21026 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
21027 apart from bits [11:4]. */
21028
21029 static void
21030 do_neon_ldx_stx (void)
21031 {
21032 if (inst.operands[1].isreg)
21033 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
21034
21035 switch (NEON_LANE (inst.operands[0].imm))
21036 {
21037 case NEON_INTERLEAVE_LANES:
21038 NEON_ENCODE (INTERLV, inst);
21039 do_neon_ld_st_interleave ();
21040 break;
21041
21042 case NEON_ALL_LANES:
21043 NEON_ENCODE (DUP, inst);
21044 if (inst.instruction == N_INV)
21045 {
21046 first_error ("only loads support such operands");
21047 break;
21048 }
21049 do_neon_ld_dup ();
21050 break;
21051
21052 default:
21053 NEON_ENCODE (LANE, inst);
21054 do_neon_ld_st_lane ();
21055 }
21056
21057 /* L bit comes from bit mask. */
21058 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
21059 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
21060 inst.instruction |= inst.operands[1].reg << 16;
21061
21062 if (inst.operands[1].postind)
21063 {
21064 int postreg = inst.operands[1].imm & 0xf;
21065 constraint (!inst.operands[1].immisreg,
21066 _("post-index must be a register"));
21067 constraint (postreg == 0xd || postreg == 0xf,
21068 _("bad register for post-index"));
21069 inst.instruction |= postreg;
21070 }
21071 else
21072 {
21073 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
21074 constraint (inst.relocs[0].exp.X_op != O_constant
21075 || inst.relocs[0].exp.X_add_number != 0,
21076 BAD_ADDR_MODE);
21077
21078 if (inst.operands[1].writeback)
21079 {
21080 inst.instruction |= 0xd;
21081 }
21082 else
21083 inst.instruction |= 0xf;
21084 }
21085
21086 if (thumb_mode)
21087 inst.instruction |= 0xf9000000;
21088 else
21089 inst.instruction |= 0xf4000000;
21090 }
21091
21092 /* FP v8. */
21093 static void
21094 do_vfp_nsyn_fpv8 (enum neon_shape rs)
21095 {
21096 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
21097 D register operands. */
21098 if (neon_shape_class[rs] == SC_DOUBLE)
21099 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
21100 _(BAD_FPU));
21101
21102 NEON_ENCODE (FPV8, inst);
21103
21104 if (rs == NS_FFF || rs == NS_HHH)
21105 {
21106 do_vfp_sp_dyadic ();
21107
21108 /* ARMv8.2 fp16 instruction. */
21109 if (rs == NS_HHH)
21110 do_scalar_fp16_v82_encode ();
21111 }
21112 else
21113 do_vfp_dp_rd_rn_rm ();
21114
21115 if (rs == NS_DDD)
21116 inst.instruction |= 0x100;
21117
21118 inst.instruction |= 0xf0000000;
21119 }
21120
21121 static void
21122 do_vsel (void)
21123 {
21124 set_pred_insn_type (OUTSIDE_PRED_INSN);
21125
21126 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
21127 first_error (_("invalid instruction shape"));
21128 }
21129
21130 static void
21131 do_vmaxnm (void)
21132 {
21133 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
21134 set_pred_insn_type (OUTSIDE_PRED_INSN);
21135
21136 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
21137 return;
21138
21139 if (!check_simd_pred_availability (TRUE, NEON_CHECK_CC | NEON_CHECK_ARCH8))
21140 return;
21141
21142 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
21143 }
21144
21145 static void
21146 do_vrint_1 (enum neon_cvt_mode mode)
21147 {
21148 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
21149 struct neon_type_el et;
21150
21151 if (rs == NS_NULL)
21152 return;
21153
21154 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
21155 D register operands. */
21156 if (neon_shape_class[rs] == SC_DOUBLE)
21157 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
21158 _(BAD_FPU));
21159
21160 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
21161 | N_VFP);
21162 if (et.type != NT_invtype)
21163 {
21164 /* VFP encodings. */
21165 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
21166 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
21167 set_pred_insn_type (OUTSIDE_PRED_INSN);
21168
21169 NEON_ENCODE (FPV8, inst);
21170 if (rs == NS_FF || rs == NS_HH)
21171 do_vfp_sp_monadic ();
21172 else
21173 do_vfp_dp_rd_rm ();
21174
21175 switch (mode)
21176 {
21177 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
21178 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
21179 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
21180 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
21181 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
21182 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
21183 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
21184 default: abort ();
21185 }
21186
21187 inst.instruction |= (rs == NS_DD) << 8;
21188 do_vfp_cond_or_thumb ();
21189
21190 /* ARMv8.2 fp16 vrint instruction. */
21191 if (rs == NS_HH)
21192 do_scalar_fp16_v82_encode ();
21193 }
21194 else
21195 {
21196 /* Neon encodings (or something broken...). */
21197 inst.error = NULL;
21198 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
21199
21200 if (et.type == NT_invtype)
21201 return;
21202
21203 if (!check_simd_pred_availability (TRUE,
21204 NEON_CHECK_CC | NEON_CHECK_ARCH8))
21205 return;
21206
21207 NEON_ENCODE (FLOAT, inst);
21208
21209 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
21210 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
21211 inst.instruction |= LOW4 (inst.operands[1].reg);
21212 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
21213 inst.instruction |= neon_quad (rs) << 6;
21214 /* Mask off the original size bits and reencode them. */
21215 inst.instruction = ((inst.instruction & 0xfff3ffff)
21216 | neon_logbits (et.size) << 18);
21217
21218 switch (mode)
21219 {
21220 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
21221 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
21222 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
21223 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
21224 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
21225 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
21226 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
21227 default: abort ();
21228 }
21229
21230 if (thumb_mode)
21231 inst.instruction |= 0xfc000000;
21232 else
21233 inst.instruction |= 0xf0000000;
21234 }
21235 }
21236
21237 static void
21238 do_vrintx (void)
21239 {
21240 do_vrint_1 (neon_cvt_mode_x);
21241 }
21242
21243 static void
21244 do_vrintz (void)
21245 {
21246 do_vrint_1 (neon_cvt_mode_z);
21247 }
21248
21249 static void
21250 do_vrintr (void)
21251 {
21252 do_vrint_1 (neon_cvt_mode_r);
21253 }
21254
21255 static void
21256 do_vrinta (void)
21257 {
21258 do_vrint_1 (neon_cvt_mode_a);
21259 }
21260
21261 static void
21262 do_vrintn (void)
21263 {
21264 do_vrint_1 (neon_cvt_mode_n);
21265 }
21266
21267 static void
21268 do_vrintp (void)
21269 {
21270 do_vrint_1 (neon_cvt_mode_p);
21271 }
21272
21273 static void
21274 do_vrintm (void)
21275 {
21276 do_vrint_1 (neon_cvt_mode_m);
21277 }
21278
21279 static unsigned
21280 neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
21281 {
21282 unsigned regno = NEON_SCALAR_REG (opnd);
21283 unsigned elno = NEON_SCALAR_INDEX (opnd);
21284
21285 if (elsize == 16 && elno < 2 && regno < 16)
21286 return regno | (elno << 4);
21287 else if (elsize == 32 && elno == 0)
21288 return regno;
21289
21290 first_error (_("scalar out of range"));
21291 return 0;
21292 }
21293
21294 static void
21295 do_vcmla (void)
21296 {
21297 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext)
21298 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
21299 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
21300 constraint (inst.relocs[0].exp.X_op != O_constant,
21301 _("expression too complex"));
21302 unsigned rot = inst.relocs[0].exp.X_add_number;
21303 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
21304 _("immediate out of range"));
21305 rot /= 90;
21306
21307 if (!check_simd_pred_availability (TRUE,
21308 NEON_CHECK_ARCH8 | NEON_CHECK_CC))
21309 return;
21310
21311 if (inst.operands[2].isscalar)
21312 {
21313 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
21314 first_error (_("invalid instruction shape"));
21315 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
21316 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
21317 N_KEY | N_F16 | N_F32).size;
21318 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
21319 inst.is_neon = 1;
21320 inst.instruction = 0xfe000800;
21321 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
21322 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
21323 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
21324 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
21325 inst.instruction |= LOW4 (m);
21326 inst.instruction |= HI1 (m) << 5;
21327 inst.instruction |= neon_quad (rs) << 6;
21328 inst.instruction |= rot << 20;
21329 inst.instruction |= (size == 32) << 23;
21330 }
21331 else
21332 {
21333 enum neon_shape rs;
21334 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
21335 rs = neon_select_shape (NS_QQQI, NS_NULL);
21336 else
21337 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
21338
21339 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
21340 N_KEY | N_F16 | N_F32).size;
21341 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext) && size == 32
21342 && (inst.operands[0].reg == inst.operands[1].reg
21343 || inst.operands[0].reg == inst.operands[2].reg))
21344 as_tsktsk (BAD_MVE_SRCDEST);
21345
21346 neon_three_same (neon_quad (rs), 0, -1);
21347 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
21348 inst.instruction |= 0xfc200800;
21349 inst.instruction |= rot << 23;
21350 inst.instruction |= (size == 32) << 20;
21351 }
21352 }
21353
21354 static void
21355 do_vcadd (void)
21356 {
21357 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
21358 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
21359 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
21360 constraint (inst.relocs[0].exp.X_op != O_constant,
21361 _("expression too complex"));
21362
21363 unsigned rot = inst.relocs[0].exp.X_add_number;
21364 constraint (rot != 90 && rot != 270, _("immediate out of range"));
21365 enum neon_shape rs;
21366 struct neon_type_el et;
21367 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
21368 {
21369 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
21370 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32);
21371 }
21372 else
21373 {
21374 rs = neon_select_shape (NS_QQQI, NS_NULL);
21375 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32 | N_I8
21376 | N_I16 | N_I32);
21377 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
21378 as_tsktsk (_("Warning: 32-bit element size and same first and third "
21379 "operand makes instruction UNPREDICTABLE"));
21380 }
21381
21382 if (et.type == NT_invtype)
21383 return;
21384
21385 if (!check_simd_pred_availability (et.type == NT_float,
21386 NEON_CHECK_ARCH8 | NEON_CHECK_CC))
21387 return;
21388
21389 if (et.type == NT_float)
21390 {
21391 neon_three_same (neon_quad (rs), 0, -1);
21392 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
21393 inst.instruction |= 0xfc800800;
21394 inst.instruction |= (rot == 270) << 24;
21395 inst.instruction |= (et.size == 32) << 20;
21396 }
21397 else
21398 {
21399 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
21400 inst.instruction = 0xfe000f00;
21401 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
21402 inst.instruction |= neon_logbits (et.size) << 20;
21403 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
21404 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
21405 inst.instruction |= (rot == 270) << 12;
21406 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
21407 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
21408 inst.instruction |= LOW4 (inst.operands[2].reg);
21409 inst.is_neon = 1;
21410 }
21411 }
21412
21413 /* Dot Product instructions encoding support. */
21414
21415 static void
21416 do_neon_dotproduct (int unsigned_p)
21417 {
21418 enum neon_shape rs;
21419 unsigned scalar_oprd2 = 0;
21420 int high8;
21421
21422 if (inst.cond != COND_ALWAYS)
21423 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
21424 "is UNPREDICTABLE"));
21425
21426 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
21427 _(BAD_FPU));
21428
21429 /* Dot Product instructions are in three-same D/Q register format or the third
21430 operand can be a scalar index register. */
21431 if (inst.operands[2].isscalar)
21432 {
21433 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
21434 high8 = 0xfe000000;
21435 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
21436 }
21437 else
21438 {
21439 high8 = 0xfc000000;
21440 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
21441 }
21442
21443 if (unsigned_p)
21444 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
21445 else
21446 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
21447
21448 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
21449 Product instruction, so we pass 0 as the "ubit" parameter. And the
21450 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
21451 neon_three_same (neon_quad (rs), 0, 32);
21452
21453 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
21454 different NEON three-same encoding. */
21455 inst.instruction &= 0x00ffffff;
21456 inst.instruction |= high8;
21457 /* Encode 'U' bit which indicates signedness. */
21458 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
21459 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
21460 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
21461 the instruction encoding. */
21462 if (inst.operands[2].isscalar)
21463 {
21464 inst.instruction &= 0xffffffd0;
21465 inst.instruction |= LOW4 (scalar_oprd2);
21466 inst.instruction |= HI1 (scalar_oprd2) << 5;
21467 }
21468 }
21469
21470 /* Dot Product instructions for signed integer. */
21471
21472 static void
21473 do_neon_dotproduct_s (void)
21474 {
21475 return do_neon_dotproduct (0);
21476 }
21477
21478 /* Dot Product instructions for unsigned integer. */
21479
21480 static void
21481 do_neon_dotproduct_u (void)
21482 {
21483 return do_neon_dotproduct (1);
21484 }
21485
21486 static void
21487 do_vusdot (void)
21488 {
21489 enum neon_shape rs;
21490 set_pred_insn_type (OUTSIDE_PRED_INSN);
21491 if (inst.operands[2].isscalar)
21492 {
21493 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
21494 neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_KEY);
21495
21496 inst.instruction |= (1 << 25);
21497 int index = inst.operands[2].reg & 0xf;
21498 constraint ((index != 1 && index != 0), _("index must be 0 or 1"));
21499 inst.operands[2].reg >>= 4;
21500 constraint (!(inst.operands[2].reg < 16),
21501 _("indexed register must be less than 16"));
21502 neon_three_args (rs == NS_QQS);
21503 inst.instruction |= (index << 5);
21504 }
21505 else
21506 {
21507 inst.instruction |= (1 << 21);
21508 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
21509 neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_KEY);
21510 neon_three_args (rs == NS_QQQ);
21511 }
21512 }
21513
21514 static void
21515 do_vsudot (void)
21516 {
21517 enum neon_shape rs;
21518 set_pred_insn_type (OUTSIDE_PRED_INSN);
21519 if (inst.operands[2].isscalar)
21520 {
21521 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
21522 neon_check_type (3, rs, N_EQK, N_EQK, N_U8 | N_KEY);
21523
21524 inst.instruction |= (1 << 25);
21525 int index = inst.operands[2].reg & 0xf;
21526 constraint ((index != 1 && index != 0), _("index must be 0 or 1"));
21527 inst.operands[2].reg >>= 4;
21528 constraint (!(inst.operands[2].reg < 16),
21529 _("indexed register must be less than 16"));
21530 neon_three_args (rs == NS_QQS);
21531 inst.instruction |= (index << 5);
21532 }
21533 }
21534
21535 static void
21536 do_vsmmla (void)
21537 {
21538 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
21539 neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_KEY);
21540
21541 set_pred_insn_type (OUTSIDE_PRED_INSN);
21542
21543 neon_three_args (1);
21544
21545 }
21546
21547 static void
21548 do_vummla (void)
21549 {
21550 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
21551 neon_check_type (3, rs, N_EQK, N_EQK, N_U8 | N_KEY);
21552
21553 set_pred_insn_type (OUTSIDE_PRED_INSN);
21554
21555 neon_three_args (1);
21556
21557 }
21558
21559 /* Crypto v1 instructions. */
21560 static void
21561 do_crypto_2op_1 (unsigned elttype, int op)
21562 {
21563 set_pred_insn_type (OUTSIDE_PRED_INSN);
21564
21565 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
21566 == NT_invtype)
21567 return;
21568
21569 inst.error = NULL;
21570
21571 NEON_ENCODE (INTEGER, inst);
21572 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
21573 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
21574 inst.instruction |= LOW4 (inst.operands[1].reg);
21575 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
21576 if (op != -1)
21577 inst.instruction |= op << 6;
21578
21579 if (thumb_mode)
21580 inst.instruction |= 0xfc000000;
21581 else
21582 inst.instruction |= 0xf0000000;
21583 }
21584
21585 static void
21586 do_crypto_3op_1 (int u, int op)
21587 {
21588 set_pred_insn_type (OUTSIDE_PRED_INSN);
21589
21590 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
21591 N_32 | N_UNT | N_KEY).type == NT_invtype)
21592 return;
21593
21594 inst.error = NULL;
21595
21596 NEON_ENCODE (INTEGER, inst);
21597 neon_three_same (1, u, 8 << op);
21598 }
21599
21600 static void
21601 do_aese (void)
21602 {
21603 do_crypto_2op_1 (N_8, 0);
21604 }
21605
21606 static void
21607 do_aesd (void)
21608 {
21609 do_crypto_2op_1 (N_8, 1);
21610 }
21611
21612 static void
21613 do_aesmc (void)
21614 {
21615 do_crypto_2op_1 (N_8, 2);
21616 }
21617
21618 static void
21619 do_aesimc (void)
21620 {
21621 do_crypto_2op_1 (N_8, 3);
21622 }
21623
21624 static void
21625 do_sha1c (void)
21626 {
21627 do_crypto_3op_1 (0, 0);
21628 }
21629
21630 static void
21631 do_sha1p (void)
21632 {
21633 do_crypto_3op_1 (0, 1);
21634 }
21635
21636 static void
21637 do_sha1m (void)
21638 {
21639 do_crypto_3op_1 (0, 2);
21640 }
21641
21642 static void
21643 do_sha1su0 (void)
21644 {
21645 do_crypto_3op_1 (0, 3);
21646 }
21647
21648 static void
21649 do_sha256h (void)
21650 {
21651 do_crypto_3op_1 (1, 0);
21652 }
21653
21654 static void
21655 do_sha256h2 (void)
21656 {
21657 do_crypto_3op_1 (1, 1);
21658 }
21659
21660 static void
21661 do_sha256su1 (void)
21662 {
21663 do_crypto_3op_1 (1, 2);
21664 }
21665
21666 static void
21667 do_sha1h (void)
21668 {
21669 do_crypto_2op_1 (N_32, -1);
21670 }
21671
21672 static void
21673 do_sha1su1 (void)
21674 {
21675 do_crypto_2op_1 (N_32, 0);
21676 }
21677
21678 static void
21679 do_sha256su0 (void)
21680 {
21681 do_crypto_2op_1 (N_32, 1);
21682 }
21683
21684 static void
21685 do_crc32_1 (unsigned int poly, unsigned int sz)
21686 {
21687 unsigned int Rd = inst.operands[0].reg;
21688 unsigned int Rn = inst.operands[1].reg;
21689 unsigned int Rm = inst.operands[2].reg;
21690
21691 set_pred_insn_type (OUTSIDE_PRED_INSN);
21692 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
21693 inst.instruction |= LOW4 (Rn) << 16;
21694 inst.instruction |= LOW4 (Rm);
21695 inst.instruction |= sz << (thumb_mode ? 4 : 21);
21696 inst.instruction |= poly << (thumb_mode ? 20 : 9);
21697
21698 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
21699 as_warn (UNPRED_REG ("r15"));
21700 }
21701
21702 static void
21703 do_crc32b (void)
21704 {
21705 do_crc32_1 (0, 0);
21706 }
21707
21708 static void
21709 do_crc32h (void)
21710 {
21711 do_crc32_1 (0, 1);
21712 }
21713
21714 static void
21715 do_crc32w (void)
21716 {
21717 do_crc32_1 (0, 2);
21718 }
21719
21720 static void
21721 do_crc32cb (void)
21722 {
21723 do_crc32_1 (1, 0);
21724 }
21725
21726 static void
21727 do_crc32ch (void)
21728 {
21729 do_crc32_1 (1, 1);
21730 }
21731
21732 static void
21733 do_crc32cw (void)
21734 {
21735 do_crc32_1 (1, 2);
21736 }
21737
21738 static void
21739 do_vjcvt (void)
21740 {
21741 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
21742 _(BAD_FPU));
21743 neon_check_type (2, NS_FD, N_S32, N_F64);
21744 do_vfp_sp_dp_cvt ();
21745 do_vfp_cond_or_thumb ();
21746 }
21747
21748 static void
21749 do_vdot (void)
21750 {
21751 enum neon_shape rs;
21752 constraint (!mark_feature_used (&fpu_neon_ext_armv8), _(BAD_FPU));
21753 set_pred_insn_type (OUTSIDE_PRED_INSN);
21754 if (inst.operands[2].isscalar)
21755 {
21756 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
21757 neon_check_type (3, rs, N_EQK, N_EQK, N_BF16 | N_KEY);
21758
21759 inst.instruction |= (1 << 25);
21760 int index = inst.operands[2].reg & 0xf;
21761 constraint ((index != 1 && index != 0), _("index must be 0 or 1"));
21762 inst.operands[2].reg >>= 4;
21763 constraint (!(inst.operands[2].reg < 16),
21764 _("indexed register must be less than 16"));
21765 neon_three_args (rs == NS_QQS);
21766 inst.instruction |= (index << 5);
21767 }
21768 else
21769 {
21770 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
21771 neon_check_type (3, rs, N_EQK, N_EQK, N_BF16 | N_KEY);
21772 neon_three_args (rs == NS_QQQ);
21773 }
21774 }
21775
21776 static void
21777 do_vmmla (void)
21778 {
21779 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
21780 neon_check_type (3, rs, N_EQK, N_EQK, N_BF16 | N_KEY);
21781
21782 constraint (!mark_feature_used (&fpu_neon_ext_armv8), _(BAD_FPU));
21783 set_pred_insn_type (OUTSIDE_PRED_INSN);
21784
21785 neon_three_args (1);
21786 }
21787
21788 \f
21789 /* Overall per-instruction processing. */
21790
21791 /* We need to be able to fix up arbitrary expressions in some statements.
21792 This is so that we can handle symbols that are an arbitrary distance from
21793 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
21794 which returns part of an address in a form which will be valid for
21795 a data instruction. We do this by pushing the expression into a symbol
21796 in the expr_section, and creating a fix for that. */
21797
21798 static void
21799 fix_new_arm (fragS * frag,
21800 int where,
21801 short int size,
21802 expressionS * exp,
21803 int pc_rel,
21804 int reloc)
21805 {
21806 fixS * new_fix;
21807
21808 switch (exp->X_op)
21809 {
21810 case O_constant:
21811 if (pc_rel)
21812 {
21813 /* Create an absolute valued symbol, so we have something to
21814 refer to in the object file. Unfortunately for us, gas's
21815 generic expression parsing will already have folded out
21816 any use of .set foo/.type foo %function that may have
21817 been used to set type information of the target location,
21818 that's being specified symbolically. We have to presume
21819 the user knows what they are doing. */
21820 char name[16 + 8];
21821 symbolS *symbol;
21822
21823 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
21824
21825 symbol = symbol_find_or_make (name);
21826 S_SET_SEGMENT (symbol, absolute_section);
21827 symbol_set_frag (symbol, &zero_address_frag);
21828 S_SET_VALUE (symbol, exp->X_add_number);
21829 exp->X_op = O_symbol;
21830 exp->X_add_symbol = symbol;
21831 exp->X_add_number = 0;
21832 }
21833 /* FALLTHROUGH */
21834 case O_symbol:
21835 case O_add:
21836 case O_subtract:
21837 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
21838 (enum bfd_reloc_code_real) reloc);
21839 break;
21840
21841 default:
21842 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
21843 pc_rel, (enum bfd_reloc_code_real) reloc);
21844 break;
21845 }
21846
21847 /* Mark whether the fix is to a THUMB instruction, or an ARM
21848 instruction. */
21849 new_fix->tc_fix_data = thumb_mode;
21850 }
21851
21852 /* Create a frg for an instruction requiring relaxation. */
21853 static void
21854 output_relax_insn (void)
21855 {
21856 char * to;
21857 symbolS *sym;
21858 int offset;
21859
21860 /* The size of the instruction is unknown, so tie the debug info to the
21861 start of the instruction. */
21862 dwarf2_emit_insn (0);
21863
21864 switch (inst.relocs[0].exp.X_op)
21865 {
21866 case O_symbol:
21867 sym = inst.relocs[0].exp.X_add_symbol;
21868 offset = inst.relocs[0].exp.X_add_number;
21869 break;
21870 case O_constant:
21871 sym = NULL;
21872 offset = inst.relocs[0].exp.X_add_number;
21873 break;
21874 default:
21875 sym = make_expr_symbol (&inst.relocs[0].exp);
21876 offset = 0;
21877 break;
21878 }
21879 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
21880 inst.relax, sym, offset, NULL/*offset, opcode*/);
21881 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
21882 }
21883
21884 /* Write a 32-bit thumb instruction to buf. */
21885 static void
21886 put_thumb32_insn (char * buf, unsigned long insn)
21887 {
21888 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
21889 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
21890 }
21891
21892 static void
21893 output_inst (const char * str)
21894 {
21895 char * to = NULL;
21896
21897 if (inst.error)
21898 {
21899 as_bad ("%s -- `%s'", inst.error, str);
21900 return;
21901 }
21902 if (inst.relax)
21903 {
21904 output_relax_insn ();
21905 return;
21906 }
21907 if (inst.size == 0)
21908 return;
21909
21910 to = frag_more (inst.size);
21911 /* PR 9814: Record the thumb mode into the current frag so that we know
21912 what type of NOP padding to use, if necessary. We override any previous
21913 setting so that if the mode has changed then the NOPS that we use will
21914 match the encoding of the last instruction in the frag. */
21915 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
21916
21917 if (thumb_mode && (inst.size > THUMB_SIZE))
21918 {
21919 gas_assert (inst.size == (2 * THUMB_SIZE));
21920 put_thumb32_insn (to, inst.instruction);
21921 }
21922 else if (inst.size > INSN_SIZE)
21923 {
21924 gas_assert (inst.size == (2 * INSN_SIZE));
21925 md_number_to_chars (to, inst.instruction, INSN_SIZE);
21926 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
21927 }
21928 else
21929 md_number_to_chars (to, inst.instruction, inst.size);
21930
21931 int r;
21932 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
21933 {
21934 if (inst.relocs[r].type != BFD_RELOC_UNUSED)
21935 fix_new_arm (frag_now, to - frag_now->fr_literal,
21936 inst.size, & inst.relocs[r].exp, inst.relocs[r].pc_rel,
21937 inst.relocs[r].type);
21938 }
21939
21940 dwarf2_emit_insn (inst.size);
21941 }
21942
21943 static char *
21944 output_it_inst (int cond, int mask, char * to)
21945 {
21946 unsigned long instruction = 0xbf00;
21947
21948 mask &= 0xf;
21949 instruction |= mask;
21950 instruction |= cond << 4;
21951
21952 if (to == NULL)
21953 {
21954 to = frag_more (2);
21955 #ifdef OBJ_ELF
21956 dwarf2_emit_insn (2);
21957 #endif
21958 }
21959
21960 md_number_to_chars (to, instruction, 2);
21961
21962 return to;
21963 }
21964
21965 /* Tag values used in struct asm_opcode's tag field. */
21966 enum opcode_tag
21967 {
21968 OT_unconditional, /* Instruction cannot be conditionalized.
21969 The ARM condition field is still 0xE. */
21970 OT_unconditionalF, /* Instruction cannot be conditionalized
21971 and carries 0xF in its ARM condition field. */
21972 OT_csuffix, /* Instruction takes a conditional suffix. */
21973 OT_csuffixF, /* Some forms of the instruction take a scalar
21974 conditional suffix, others place 0xF where the
21975 condition field would be, others take a vector
21976 conditional suffix. */
21977 OT_cinfix3, /* Instruction takes a conditional infix,
21978 beginning at character index 3. (In
21979 unified mode, it becomes a suffix.) */
21980 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
21981 tsts, cmps, cmns, and teqs. */
21982 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
21983 character index 3, even in unified mode. Used for
21984 legacy instructions where suffix and infix forms
21985 may be ambiguous. */
21986 OT_csuf_or_in3, /* Instruction takes either a conditional
21987 suffix or an infix at character index 3. */
21988 OT_odd_infix_unc, /* This is the unconditional variant of an
21989 instruction that takes a conditional infix
21990 at an unusual position. In unified mode,
21991 this variant will accept a suffix. */
21992 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
21993 are the conditional variants of instructions that
21994 take conditional infixes in unusual positions.
21995 The infix appears at character index
21996 (tag - OT_odd_infix_0). These are not accepted
21997 in unified mode. */
21998 };
21999
22000 /* Subroutine of md_assemble, responsible for looking up the primary
22001 opcode from the mnemonic the user wrote. STR points to the
22002 beginning of the mnemonic.
22003
22004 This is not simply a hash table lookup, because of conditional
22005 variants. Most instructions have conditional variants, which are
22006 expressed with a _conditional affix_ to the mnemonic. If we were
22007 to encode each conditional variant as a literal string in the opcode
22008 table, it would have approximately 20,000 entries.
22009
22010 Most mnemonics take this affix as a suffix, and in unified syntax,
22011 'most' is upgraded to 'all'. However, in the divided syntax, some
22012 instructions take the affix as an infix, notably the s-variants of
22013 the arithmetic instructions. Of those instructions, all but six
22014 have the infix appear after the third character of the mnemonic.
22015
22016 Accordingly, the algorithm for looking up primary opcodes given
22017 an identifier is:
22018
22019 1. Look up the identifier in the opcode table.
22020 If we find a match, go to step U.
22021
22022 2. Look up the last two characters of the identifier in the
22023 conditions table. If we find a match, look up the first N-2
22024 characters of the identifier in the opcode table. If we
22025 find a match, go to step CE.
22026
22027 3. Look up the fourth and fifth characters of the identifier in
22028 the conditions table. If we find a match, extract those
22029 characters from the identifier, and look up the remaining
22030 characters in the opcode table. If we find a match, go
22031 to step CM.
22032
22033 4. Fail.
22034
22035 U. Examine the tag field of the opcode structure, in case this is
22036 one of the six instructions with its conditional infix in an
22037 unusual place. If it is, the tag tells us where to find the
22038 infix; look it up in the conditions table and set inst.cond
22039 accordingly. Otherwise, this is an unconditional instruction.
22040 Again set inst.cond accordingly. Return the opcode structure.
22041
22042 CE. Examine the tag field to make sure this is an instruction that
22043 should receive a conditional suffix. If it is not, fail.
22044 Otherwise, set inst.cond from the suffix we already looked up,
22045 and return the opcode structure.
22046
22047 CM. Examine the tag field to make sure this is an instruction that
22048 should receive a conditional infix after the third character.
22049 If it is not, fail. Otherwise, undo the edits to the current
22050 line of input and proceed as for case CE. */
22051
22052 static const struct asm_opcode *
22053 opcode_lookup (char **str)
22054 {
22055 char *end, *base;
22056 char *affix;
22057 const struct asm_opcode *opcode;
22058 const struct asm_cond *cond;
22059 char save[2];
22060
22061 /* Scan up to the end of the mnemonic, which must end in white space,
22062 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
22063 for (base = end = *str; *end != '\0'; end++)
22064 if (*end == ' ' || *end == '.')
22065 break;
22066
22067 if (end == base)
22068 return NULL;
22069
22070 /* Handle a possible width suffix and/or Neon type suffix. */
22071 if (end[0] == '.')
22072 {
22073 int offset = 2;
22074
22075 /* The .w and .n suffixes are only valid if the unified syntax is in
22076 use. */
22077 if (unified_syntax && end[1] == 'w')
22078 inst.size_req = 4;
22079 else if (unified_syntax && end[1] == 'n')
22080 inst.size_req = 2;
22081 else
22082 offset = 0;
22083
22084 inst.vectype.elems = 0;
22085
22086 *str = end + offset;
22087
22088 if (end[offset] == '.')
22089 {
22090 /* See if we have a Neon type suffix (possible in either unified or
22091 non-unified ARM syntax mode). */
22092 if (parse_neon_type (&inst.vectype, str) == FAIL)
22093 return NULL;
22094 }
22095 else if (end[offset] != '\0' && end[offset] != ' ')
22096 return NULL;
22097 }
22098 else
22099 *str = end;
22100
22101 /* Look for unaffixed or special-case affixed mnemonic. */
22102 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
22103 end - base);
22104 if (opcode)
22105 {
22106 /* step U */
22107 if (opcode->tag < OT_odd_infix_0)
22108 {
22109 inst.cond = COND_ALWAYS;
22110 return opcode;
22111 }
22112
22113 if (warn_on_deprecated && unified_syntax)
22114 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
22115 affix = base + (opcode->tag - OT_odd_infix_0);
22116 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
22117 gas_assert (cond);
22118
22119 inst.cond = cond->value;
22120 return opcode;
22121 }
22122 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
22123 {
22124 /* Cannot have a conditional suffix on a mnemonic of less than a character.
22125 */
22126 if (end - base < 2)
22127 return NULL;
22128 affix = end - 1;
22129 cond = (const struct asm_cond *) hash_find_n (arm_vcond_hsh, affix, 1);
22130 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
22131 affix - base);
22132 /* If this opcode can not be vector predicated then don't accept it with a
22133 vector predication code. */
22134 if (opcode && !opcode->mayBeVecPred)
22135 opcode = NULL;
22136 }
22137 if (!opcode || !cond)
22138 {
22139 /* Cannot have a conditional suffix on a mnemonic of less than two
22140 characters. */
22141 if (end - base < 3)
22142 return NULL;
22143
22144 /* Look for suffixed mnemonic. */
22145 affix = end - 2;
22146 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
22147 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
22148 affix - base);
22149 }
22150
22151 if (opcode && cond)
22152 {
22153 /* step CE */
22154 switch (opcode->tag)
22155 {
22156 case OT_cinfix3_legacy:
22157 /* Ignore conditional suffixes matched on infix only mnemonics. */
22158 break;
22159
22160 case OT_cinfix3:
22161 case OT_cinfix3_deprecated:
22162 case OT_odd_infix_unc:
22163 if (!unified_syntax)
22164 return NULL;
22165 /* Fall through. */
22166
22167 case OT_csuffix:
22168 case OT_csuffixF:
22169 case OT_csuf_or_in3:
22170 inst.cond = cond->value;
22171 return opcode;
22172
22173 case OT_unconditional:
22174 case OT_unconditionalF:
22175 if (thumb_mode)
22176 inst.cond = cond->value;
22177 else
22178 {
22179 /* Delayed diagnostic. */
22180 inst.error = BAD_COND;
22181 inst.cond = COND_ALWAYS;
22182 }
22183 return opcode;
22184
22185 default:
22186 return NULL;
22187 }
22188 }
22189
22190 /* Cannot have a usual-position infix on a mnemonic of less than
22191 six characters (five would be a suffix). */
22192 if (end - base < 6)
22193 return NULL;
22194
22195 /* Look for infixed mnemonic in the usual position. */
22196 affix = base + 3;
22197 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
22198 if (!cond)
22199 return NULL;
22200
22201 memcpy (save, affix, 2);
22202 memmove (affix, affix + 2, (end - affix) - 2);
22203 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
22204 (end - base) - 2);
22205 memmove (affix + 2, affix, (end - affix) - 2);
22206 memcpy (affix, save, 2);
22207
22208 if (opcode
22209 && (opcode->tag == OT_cinfix3
22210 || opcode->tag == OT_cinfix3_deprecated
22211 || opcode->tag == OT_csuf_or_in3
22212 || opcode->tag == OT_cinfix3_legacy))
22213 {
22214 /* Step CM. */
22215 if (warn_on_deprecated && unified_syntax
22216 && (opcode->tag == OT_cinfix3
22217 || opcode->tag == OT_cinfix3_deprecated))
22218 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
22219
22220 inst.cond = cond->value;
22221 return opcode;
22222 }
22223
22224 return NULL;
22225 }
22226
22227 /* This function generates an initial IT instruction, leaving its block
22228 virtually open for the new instructions. Eventually,
22229 the mask will be updated by now_pred_add_mask () each time
22230 a new instruction needs to be included in the IT block.
22231 Finally, the block is closed with close_automatic_it_block ().
22232 The block closure can be requested either from md_assemble (),
22233 a tencode (), or due to a label hook. */
22234
22235 static void
22236 new_automatic_it_block (int cond)
22237 {
22238 now_pred.state = AUTOMATIC_PRED_BLOCK;
22239 now_pred.mask = 0x18;
22240 now_pred.cc = cond;
22241 now_pred.block_length = 1;
22242 mapping_state (MAP_THUMB);
22243 now_pred.insn = output_it_inst (cond, now_pred.mask, NULL);
22244 now_pred.warn_deprecated = FALSE;
22245 now_pred.insn_cond = TRUE;
22246 }
22247
22248 /* Close an automatic IT block.
22249 See comments in new_automatic_it_block (). */
22250
22251 static void
22252 close_automatic_it_block (void)
22253 {
22254 now_pred.mask = 0x10;
22255 now_pred.block_length = 0;
22256 }
22257
22258 /* Update the mask of the current automatically-generated IT
22259 instruction. See comments in new_automatic_it_block (). */
22260
22261 static void
22262 now_pred_add_mask (int cond)
22263 {
22264 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
22265 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
22266 | ((bitvalue) << (nbit)))
22267 const int resulting_bit = (cond & 1);
22268
22269 now_pred.mask &= 0xf;
22270 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
22271 resulting_bit,
22272 (5 - now_pred.block_length));
22273 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
22274 1,
22275 ((5 - now_pred.block_length) - 1));
22276 output_it_inst (now_pred.cc, now_pred.mask, now_pred.insn);
22277
22278 #undef CLEAR_BIT
22279 #undef SET_BIT_VALUE
22280 }
22281
22282 /* The IT blocks handling machinery is accessed through the these functions:
22283 it_fsm_pre_encode () from md_assemble ()
22284 set_pred_insn_type () optional, from the tencode functions
22285 set_pred_insn_type_last () ditto
22286 in_pred_block () ditto
22287 it_fsm_post_encode () from md_assemble ()
22288 force_automatic_it_block_close () from label handling functions
22289
22290 Rationale:
22291 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
22292 initializing the IT insn type with a generic initial value depending
22293 on the inst.condition.
22294 2) During the tencode function, two things may happen:
22295 a) The tencode function overrides the IT insn type by
22296 calling either set_pred_insn_type (type) or
22297 set_pred_insn_type_last ().
22298 b) The tencode function queries the IT block state by
22299 calling in_pred_block () (i.e. to determine narrow/not narrow mode).
22300
22301 Both set_pred_insn_type and in_pred_block run the internal FSM state
22302 handling function (handle_pred_state), because: a) setting the IT insn
22303 type may incur in an invalid state (exiting the function),
22304 and b) querying the state requires the FSM to be updated.
22305 Specifically we want to avoid creating an IT block for conditional
22306 branches, so it_fsm_pre_encode is actually a guess and we can't
22307 determine whether an IT block is required until the tencode () routine
22308 has decided what type of instruction this actually it.
22309 Because of this, if set_pred_insn_type and in_pred_block have to be
22310 used, set_pred_insn_type has to be called first.
22311
22312 set_pred_insn_type_last () is a wrapper of set_pred_insn_type (type),
22313 that determines the insn IT type depending on the inst.cond code.
22314 When a tencode () routine encodes an instruction that can be
22315 either outside an IT block, or, in the case of being inside, has to be
22316 the last one, set_pred_insn_type_last () will determine the proper
22317 IT instruction type based on the inst.cond code. Otherwise,
22318 set_pred_insn_type can be called for overriding that logic or
22319 for covering other cases.
22320
22321 Calling handle_pred_state () may not transition the IT block state to
22322 OUTSIDE_PRED_BLOCK immediately, since the (current) state could be
22323 still queried. Instead, if the FSM determines that the state should
22324 be transitioned to OUTSIDE_PRED_BLOCK, a flag is marked to be closed
22325 after the tencode () function: that's what it_fsm_post_encode () does.
22326
22327 Since in_pred_block () calls the state handling function to get an
22328 updated state, an error may occur (due to invalid insns combination).
22329 In that case, inst.error is set.
22330 Therefore, inst.error has to be checked after the execution of
22331 the tencode () routine.
22332
22333 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
22334 any pending state change (if any) that didn't take place in
22335 handle_pred_state () as explained above. */
22336
22337 static void
22338 it_fsm_pre_encode (void)
22339 {
22340 if (inst.cond != COND_ALWAYS)
22341 inst.pred_insn_type = INSIDE_IT_INSN;
22342 else
22343 inst.pred_insn_type = OUTSIDE_PRED_INSN;
22344
22345 now_pred.state_handled = 0;
22346 }
22347
22348 /* IT state FSM handling function. */
22349 /* MVE instructions and non-MVE instructions are handled differently because of
22350 the introduction of VPT blocks.
22351 Specifications say that any non-MVE instruction inside a VPT block is
22352 UNPREDICTABLE, with the exception of the BKPT instruction. Whereas most MVE
22353 instructions are deemed to be UNPREDICTABLE if inside an IT block. For the
22354 few exceptions we have MVE_UNPREDICABLE_INSN.
22355 The error messages provided depending on the different combinations possible
22356 are described in the cases below:
22357 For 'most' MVE instructions:
22358 1) In an IT block, with an IT code: syntax error
22359 2) In an IT block, with a VPT code: error: must be in a VPT block
22360 3) In an IT block, with no code: warning: UNPREDICTABLE
22361 4) In a VPT block, with an IT code: syntax error
22362 5) In a VPT block, with a VPT code: OK!
22363 6) In a VPT block, with no code: error: missing code
22364 7) Outside a pred block, with an IT code: error: syntax error
22365 8) Outside a pred block, with a VPT code: error: should be in a VPT block
22366 9) Outside a pred block, with no code: OK!
22367 For non-MVE instructions:
22368 10) In an IT block, with an IT code: OK!
22369 11) In an IT block, with a VPT code: syntax error
22370 12) In an IT block, with no code: error: missing code
22371 13) In a VPT block, with an IT code: error: should be in an IT block
22372 14) In a VPT block, with a VPT code: syntax error
22373 15) In a VPT block, with no code: UNPREDICTABLE
22374 16) Outside a pred block, with an IT code: error: should be in an IT block
22375 17) Outside a pred block, with a VPT code: syntax error
22376 18) Outside a pred block, with no code: OK!
22377 */
22378
22379
22380 static int
22381 handle_pred_state (void)
22382 {
22383 now_pred.state_handled = 1;
22384 now_pred.insn_cond = FALSE;
22385
22386 switch (now_pred.state)
22387 {
22388 case OUTSIDE_PRED_BLOCK:
22389 switch (inst.pred_insn_type)
22390 {
22391 case MVE_UNPREDICABLE_INSN:
22392 case MVE_OUTSIDE_PRED_INSN:
22393 if (inst.cond < COND_ALWAYS)
22394 {
22395 /* Case 7: Outside a pred block, with an IT code: error: syntax
22396 error. */
22397 inst.error = BAD_SYNTAX;
22398 return FAIL;
22399 }
22400 /* Case 9: Outside a pred block, with no code: OK! */
22401 break;
22402 case OUTSIDE_PRED_INSN:
22403 if (inst.cond > COND_ALWAYS)
22404 {
22405 /* Case 17: Outside a pred block, with a VPT code: syntax error.
22406 */
22407 inst.error = BAD_SYNTAX;
22408 return FAIL;
22409 }
22410 /* Case 18: Outside a pred block, with no code: OK! */
22411 break;
22412
22413 case INSIDE_VPT_INSN:
22414 /* Case 8: Outside a pred block, with a VPT code: error: should be in
22415 a VPT block. */
22416 inst.error = BAD_OUT_VPT;
22417 return FAIL;
22418
22419 case INSIDE_IT_INSN:
22420 case INSIDE_IT_LAST_INSN:
22421 if (inst.cond < COND_ALWAYS)
22422 {
22423 /* Case 16: Outside a pred block, with an IT code: error: should
22424 be in an IT block. */
22425 if (thumb_mode == 0)
22426 {
22427 if (unified_syntax
22428 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
22429 as_tsktsk (_("Warning: conditional outside an IT block"\
22430 " for Thumb."));
22431 }
22432 else
22433 {
22434 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
22435 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
22436 {
22437 /* Automatically generate the IT instruction. */
22438 new_automatic_it_block (inst.cond);
22439 if (inst.pred_insn_type == INSIDE_IT_LAST_INSN)
22440 close_automatic_it_block ();
22441 }
22442 else
22443 {
22444 inst.error = BAD_OUT_IT;
22445 return FAIL;
22446 }
22447 }
22448 break;
22449 }
22450 else if (inst.cond > COND_ALWAYS)
22451 {
22452 /* Case 17: Outside a pred block, with a VPT code: syntax error.
22453 */
22454 inst.error = BAD_SYNTAX;
22455 return FAIL;
22456 }
22457 else
22458 gas_assert (0);
22459 case IF_INSIDE_IT_LAST_INSN:
22460 case NEUTRAL_IT_INSN:
22461 break;
22462
22463 case VPT_INSN:
22464 if (inst.cond != COND_ALWAYS)
22465 first_error (BAD_SYNTAX);
22466 now_pred.state = MANUAL_PRED_BLOCK;
22467 now_pred.block_length = 0;
22468 now_pred.type = VECTOR_PRED;
22469 now_pred.cc = 0;
22470 break;
22471 case IT_INSN:
22472 now_pred.state = MANUAL_PRED_BLOCK;
22473 now_pred.block_length = 0;
22474 now_pred.type = SCALAR_PRED;
22475 break;
22476 }
22477 break;
22478
22479 case AUTOMATIC_PRED_BLOCK:
22480 /* Three things may happen now:
22481 a) We should increment current it block size;
22482 b) We should close current it block (closing insn or 4 insns);
22483 c) We should close current it block and start a new one (due
22484 to incompatible conditions or
22485 4 insns-length block reached). */
22486
22487 switch (inst.pred_insn_type)
22488 {
22489 case INSIDE_VPT_INSN:
22490 case VPT_INSN:
22491 case MVE_UNPREDICABLE_INSN:
22492 case MVE_OUTSIDE_PRED_INSN:
22493 gas_assert (0);
22494 case OUTSIDE_PRED_INSN:
22495 /* The closure of the block shall happen immediately,
22496 so any in_pred_block () call reports the block as closed. */
22497 force_automatic_it_block_close ();
22498 break;
22499
22500 case INSIDE_IT_INSN:
22501 case INSIDE_IT_LAST_INSN:
22502 case IF_INSIDE_IT_LAST_INSN:
22503 now_pred.block_length++;
22504
22505 if (now_pred.block_length > 4
22506 || !now_pred_compatible (inst.cond))
22507 {
22508 force_automatic_it_block_close ();
22509 if (inst.pred_insn_type != IF_INSIDE_IT_LAST_INSN)
22510 new_automatic_it_block (inst.cond);
22511 }
22512 else
22513 {
22514 now_pred.insn_cond = TRUE;
22515 now_pred_add_mask (inst.cond);
22516 }
22517
22518 if (now_pred.state == AUTOMATIC_PRED_BLOCK
22519 && (inst.pred_insn_type == INSIDE_IT_LAST_INSN
22520 || inst.pred_insn_type == IF_INSIDE_IT_LAST_INSN))
22521 close_automatic_it_block ();
22522 break;
22523
22524 case NEUTRAL_IT_INSN:
22525 now_pred.block_length++;
22526 now_pred.insn_cond = TRUE;
22527
22528 if (now_pred.block_length > 4)
22529 force_automatic_it_block_close ();
22530 else
22531 now_pred_add_mask (now_pred.cc & 1);
22532 break;
22533
22534 case IT_INSN:
22535 close_automatic_it_block ();
22536 now_pred.state = MANUAL_PRED_BLOCK;
22537 break;
22538 }
22539 break;
22540
22541 case MANUAL_PRED_BLOCK:
22542 {
22543 int cond, is_last;
22544 if (now_pred.type == SCALAR_PRED)
22545 {
22546 /* Check conditional suffixes. */
22547 cond = now_pred.cc ^ ((now_pred.mask >> 4) & 1) ^ 1;
22548 now_pred.mask <<= 1;
22549 now_pred.mask &= 0x1f;
22550 is_last = (now_pred.mask == 0x10);
22551 }
22552 else
22553 {
22554 now_pred.cc ^= (now_pred.mask >> 4);
22555 cond = now_pred.cc + 0xf;
22556 now_pred.mask <<= 1;
22557 now_pred.mask &= 0x1f;
22558 is_last = now_pred.mask == 0x10;
22559 }
22560 now_pred.insn_cond = TRUE;
22561
22562 switch (inst.pred_insn_type)
22563 {
22564 case OUTSIDE_PRED_INSN:
22565 if (now_pred.type == SCALAR_PRED)
22566 {
22567 if (inst.cond == COND_ALWAYS)
22568 {
22569 /* Case 12: In an IT block, with no code: error: missing
22570 code. */
22571 inst.error = BAD_NOT_IT;
22572 return FAIL;
22573 }
22574 else if (inst.cond > COND_ALWAYS)
22575 {
22576 /* Case 11: In an IT block, with a VPT code: syntax error.
22577 */
22578 inst.error = BAD_SYNTAX;
22579 return FAIL;
22580 }
22581 else if (thumb_mode)
22582 {
22583 /* This is for some special cases where a non-MVE
22584 instruction is not allowed in an IT block, such as cbz,
22585 but are put into one with a condition code.
22586 You could argue this should be a syntax error, but we
22587 gave the 'not allowed in IT block' diagnostic in the
22588 past so we will keep doing so. */
22589 inst.error = BAD_NOT_IT;
22590 return FAIL;
22591 }
22592 break;
22593 }
22594 else
22595 {
22596 /* Case 15: In a VPT block, with no code: UNPREDICTABLE. */
22597 as_tsktsk (MVE_NOT_VPT);
22598 return SUCCESS;
22599 }
22600 case MVE_OUTSIDE_PRED_INSN:
22601 if (now_pred.type == SCALAR_PRED)
22602 {
22603 if (inst.cond == COND_ALWAYS)
22604 {
22605 /* Case 3: In an IT block, with no code: warning:
22606 UNPREDICTABLE. */
22607 as_tsktsk (MVE_NOT_IT);
22608 return SUCCESS;
22609 }
22610 else if (inst.cond < COND_ALWAYS)
22611 {
22612 /* Case 1: In an IT block, with an IT code: syntax error.
22613 */
22614 inst.error = BAD_SYNTAX;
22615 return FAIL;
22616 }
22617 else
22618 gas_assert (0);
22619 }
22620 else
22621 {
22622 if (inst.cond < COND_ALWAYS)
22623 {
22624 /* Case 4: In a VPT block, with an IT code: syntax error.
22625 */
22626 inst.error = BAD_SYNTAX;
22627 return FAIL;
22628 }
22629 else if (inst.cond == COND_ALWAYS)
22630 {
22631 /* Case 6: In a VPT block, with no code: error: missing
22632 code. */
22633 inst.error = BAD_NOT_VPT;
22634 return FAIL;
22635 }
22636 else
22637 {
22638 gas_assert (0);
22639 }
22640 }
22641 case MVE_UNPREDICABLE_INSN:
22642 as_tsktsk (now_pred.type == SCALAR_PRED ? MVE_NOT_IT : MVE_NOT_VPT);
22643 return SUCCESS;
22644 case INSIDE_IT_INSN:
22645 if (inst.cond > COND_ALWAYS)
22646 {
22647 /* Case 11: In an IT block, with a VPT code: syntax error. */
22648 /* Case 14: In a VPT block, with a VPT code: syntax error. */
22649 inst.error = BAD_SYNTAX;
22650 return FAIL;
22651 }
22652 else if (now_pred.type == SCALAR_PRED)
22653 {
22654 /* Case 10: In an IT block, with an IT code: OK! */
22655 if (cond != inst.cond)
22656 {
22657 inst.error = now_pred.type == SCALAR_PRED ? BAD_IT_COND :
22658 BAD_VPT_COND;
22659 return FAIL;
22660 }
22661 }
22662 else
22663 {
22664 /* Case 13: In a VPT block, with an IT code: error: should be
22665 in an IT block. */
22666 inst.error = BAD_OUT_IT;
22667 return FAIL;
22668 }
22669 break;
22670
22671 case INSIDE_VPT_INSN:
22672 if (now_pred.type == SCALAR_PRED)
22673 {
22674 /* Case 2: In an IT block, with a VPT code: error: must be in a
22675 VPT block. */
22676 inst.error = BAD_OUT_VPT;
22677 return FAIL;
22678 }
22679 /* Case 5: In a VPT block, with a VPT code: OK! */
22680 else if (cond != inst.cond)
22681 {
22682 inst.error = BAD_VPT_COND;
22683 return FAIL;
22684 }
22685 break;
22686 case INSIDE_IT_LAST_INSN:
22687 case IF_INSIDE_IT_LAST_INSN:
22688 if (now_pred.type == VECTOR_PRED || inst.cond > COND_ALWAYS)
22689 {
22690 /* Case 4: In a VPT block, with an IT code: syntax error. */
22691 /* Case 11: In an IT block, with a VPT code: syntax error. */
22692 inst.error = BAD_SYNTAX;
22693 return FAIL;
22694 }
22695 else if (cond != inst.cond)
22696 {
22697 inst.error = BAD_IT_COND;
22698 return FAIL;
22699 }
22700 if (!is_last)
22701 {
22702 inst.error = BAD_BRANCH;
22703 return FAIL;
22704 }
22705 break;
22706
22707 case NEUTRAL_IT_INSN:
22708 /* The BKPT instruction is unconditional even in a IT or VPT
22709 block. */
22710 break;
22711
22712 case IT_INSN:
22713 if (now_pred.type == SCALAR_PRED)
22714 {
22715 inst.error = BAD_IT_IT;
22716 return FAIL;
22717 }
22718 /* fall through. */
22719 case VPT_INSN:
22720 if (inst.cond == COND_ALWAYS)
22721 {
22722 /* Executing a VPT/VPST instruction inside an IT block or a
22723 VPT/VPST/IT instruction inside a VPT block is UNPREDICTABLE.
22724 */
22725 if (now_pred.type == SCALAR_PRED)
22726 as_tsktsk (MVE_NOT_IT);
22727 else
22728 as_tsktsk (MVE_NOT_VPT);
22729 return SUCCESS;
22730 }
22731 else
22732 {
22733 /* VPT/VPST do not accept condition codes. */
22734 inst.error = BAD_SYNTAX;
22735 return FAIL;
22736 }
22737 }
22738 }
22739 break;
22740 }
22741
22742 return SUCCESS;
22743 }
22744
22745 struct depr_insn_mask
22746 {
22747 unsigned long pattern;
22748 unsigned long mask;
22749 const char* description;
22750 };
22751
22752 /* List of 16-bit instruction patterns deprecated in an IT block in
22753 ARMv8. */
22754 static const struct depr_insn_mask depr_it_insns[] = {
22755 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
22756 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
22757 { 0xa000, 0xb800, N_("ADR") },
22758 { 0x4800, 0xf800, N_("Literal loads") },
22759 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
22760 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
22761 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
22762 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
22763 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
22764 { 0, 0, NULL }
22765 };
22766
22767 static void
22768 it_fsm_post_encode (void)
22769 {
22770 int is_last;
22771
22772 if (!now_pred.state_handled)
22773 handle_pred_state ();
22774
22775 if (now_pred.insn_cond
22776 && !now_pred.warn_deprecated
22777 && warn_on_deprecated
22778 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)
22779 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m))
22780 {
22781 if (inst.instruction >= 0x10000)
22782 {
22783 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
22784 "performance deprecated in ARMv8-A and ARMv8-R"));
22785 now_pred.warn_deprecated = TRUE;
22786 }
22787 else
22788 {
22789 const struct depr_insn_mask *p = depr_it_insns;
22790
22791 while (p->mask != 0)
22792 {
22793 if ((inst.instruction & p->mask) == p->pattern)
22794 {
22795 as_tsktsk (_("IT blocks containing 16-bit Thumb "
22796 "instructions of the following class are "
22797 "performance deprecated in ARMv8-A and "
22798 "ARMv8-R: %s"), p->description);
22799 now_pred.warn_deprecated = TRUE;
22800 break;
22801 }
22802
22803 ++p;
22804 }
22805 }
22806
22807 if (now_pred.block_length > 1)
22808 {
22809 as_tsktsk (_("IT blocks containing more than one conditional "
22810 "instruction are performance deprecated in ARMv8-A and "
22811 "ARMv8-R"));
22812 now_pred.warn_deprecated = TRUE;
22813 }
22814 }
22815
22816 is_last = (now_pred.mask == 0x10);
22817 if (is_last)
22818 {
22819 now_pred.state = OUTSIDE_PRED_BLOCK;
22820 now_pred.mask = 0;
22821 }
22822 }
22823
22824 static void
22825 force_automatic_it_block_close (void)
22826 {
22827 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
22828 {
22829 close_automatic_it_block ();
22830 now_pred.state = OUTSIDE_PRED_BLOCK;
22831 now_pred.mask = 0;
22832 }
22833 }
22834
22835 static int
22836 in_pred_block (void)
22837 {
22838 if (!now_pred.state_handled)
22839 handle_pred_state ();
22840
22841 return now_pred.state != OUTSIDE_PRED_BLOCK;
22842 }
22843
22844 /* Whether OPCODE only has T32 encoding. Since this function is only used by
22845 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
22846 here, hence the "known" in the function name. */
22847
22848 static bfd_boolean
22849 known_t32_only_insn (const struct asm_opcode *opcode)
22850 {
22851 /* Original Thumb-1 wide instruction. */
22852 if (opcode->tencode == do_t_blx
22853 || opcode->tencode == do_t_branch23
22854 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
22855 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
22856 return TRUE;
22857
22858 /* Wide-only instruction added to ARMv8-M Baseline. */
22859 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
22860 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
22861 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
22862 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
22863 return TRUE;
22864
22865 return FALSE;
22866 }
22867
22868 /* Whether wide instruction variant can be used if available for a valid OPCODE
22869 in ARCH. */
22870
22871 static bfd_boolean
22872 t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
22873 {
22874 if (known_t32_only_insn (opcode))
22875 return TRUE;
22876
22877 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
22878 of variant T3 of B.W is checked in do_t_branch. */
22879 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
22880 && opcode->tencode == do_t_branch)
22881 return TRUE;
22882
22883 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
22884 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
22885 && opcode->tencode == do_t_mov_cmp
22886 /* Make sure CMP instruction is not affected. */
22887 && opcode->aencode == do_mov)
22888 return TRUE;
22889
22890 /* Wide instruction variants of all instructions with narrow *and* wide
22891 variants become available with ARMv6t2. Other opcodes are either
22892 narrow-only or wide-only and are thus available if OPCODE is valid. */
22893 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
22894 return TRUE;
22895
22896 /* OPCODE with narrow only instruction variant or wide variant not
22897 available. */
22898 return FALSE;
22899 }
22900
22901 void
22902 md_assemble (char *str)
22903 {
22904 char *p = str;
22905 const struct asm_opcode * opcode;
22906
22907 /* Align the previous label if needed. */
22908 if (last_label_seen != NULL)
22909 {
22910 symbol_set_frag (last_label_seen, frag_now);
22911 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
22912 S_SET_SEGMENT (last_label_seen, now_seg);
22913 }
22914
22915 memset (&inst, '\0', sizeof (inst));
22916 int r;
22917 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
22918 inst.relocs[r].type = BFD_RELOC_UNUSED;
22919
22920 opcode = opcode_lookup (&p);
22921 if (!opcode)
22922 {
22923 /* It wasn't an instruction, but it might be a register alias of
22924 the form alias .req reg, or a Neon .dn/.qn directive. */
22925 if (! create_register_alias (str, p)
22926 && ! create_neon_reg_alias (str, p))
22927 as_bad (_("bad instruction `%s'"), str);
22928
22929 return;
22930 }
22931
22932 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
22933 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
22934
22935 /* The value which unconditional instructions should have in place of the
22936 condition field. */
22937 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
22938
22939 if (thumb_mode)
22940 {
22941 arm_feature_set variant;
22942
22943 variant = cpu_variant;
22944 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
22945 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
22946 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
22947 /* Check that this instruction is supported for this CPU. */
22948 if (!opcode->tvariant
22949 || (thumb_mode == 1
22950 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
22951 {
22952 if (opcode->tencode == do_t_swi)
22953 as_bad (_("SVC is not permitted on this architecture"));
22954 else
22955 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
22956 return;
22957 }
22958 if (inst.cond != COND_ALWAYS && !unified_syntax
22959 && opcode->tencode != do_t_branch)
22960 {
22961 as_bad (_("Thumb does not support conditional execution"));
22962 return;
22963 }
22964
22965 /* Two things are addressed here:
22966 1) Implicit require narrow instructions on Thumb-1.
22967 This avoids relaxation accidentally introducing Thumb-2
22968 instructions.
22969 2) Reject wide instructions in non Thumb-2 cores.
22970
22971 Only instructions with narrow and wide variants need to be handled
22972 but selecting all non wide-only instructions is easier. */
22973 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
22974 && !t32_insn_ok (variant, opcode))
22975 {
22976 if (inst.size_req == 0)
22977 inst.size_req = 2;
22978 else if (inst.size_req == 4)
22979 {
22980 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
22981 as_bad (_("selected processor does not support 32bit wide "
22982 "variant of instruction `%s'"), str);
22983 else
22984 as_bad (_("selected processor does not support `%s' in "
22985 "Thumb-2 mode"), str);
22986 return;
22987 }
22988 }
22989
22990 inst.instruction = opcode->tvalue;
22991
22992 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
22993 {
22994 /* Prepare the pred_insn_type for those encodings that don't set
22995 it. */
22996 it_fsm_pre_encode ();
22997
22998 opcode->tencode ();
22999
23000 it_fsm_post_encode ();
23001 }
23002
23003 if (!(inst.error || inst.relax))
23004 {
23005 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
23006 inst.size = (inst.instruction > 0xffff ? 4 : 2);
23007 if (inst.size_req && inst.size_req != inst.size)
23008 {
23009 as_bad (_("cannot honor width suffix -- `%s'"), str);
23010 return;
23011 }
23012 }
23013
23014 /* Something has gone badly wrong if we try to relax a fixed size
23015 instruction. */
23016 gas_assert (inst.size_req == 0 || !inst.relax);
23017
23018 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
23019 *opcode->tvariant);
23020 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
23021 set those bits when Thumb-2 32-bit instructions are seen. The impact
23022 of relaxable instructions will be considered later after we finish all
23023 relaxation. */
23024 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
23025 variant = arm_arch_none;
23026 else
23027 variant = cpu_variant;
23028 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
23029 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
23030 arm_ext_v6t2);
23031
23032 check_neon_suffixes;
23033
23034 if (!inst.error)
23035 {
23036 mapping_state (MAP_THUMB);
23037 }
23038 }
23039 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
23040 {
23041 bfd_boolean is_bx;
23042
23043 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
23044 is_bx = (opcode->aencode == do_bx);
23045
23046 /* Check that this instruction is supported for this CPU. */
23047 if (!(is_bx && fix_v4bx)
23048 && !(opcode->avariant &&
23049 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
23050 {
23051 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
23052 return;
23053 }
23054 if (inst.size_req)
23055 {
23056 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
23057 return;
23058 }
23059
23060 inst.instruction = opcode->avalue;
23061 if (opcode->tag == OT_unconditionalF)
23062 inst.instruction |= 0xFU << 28;
23063 else
23064 inst.instruction |= inst.cond << 28;
23065 inst.size = INSN_SIZE;
23066 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
23067 {
23068 it_fsm_pre_encode ();
23069 opcode->aencode ();
23070 it_fsm_post_encode ();
23071 }
23072 /* Arm mode bx is marked as both v4T and v5 because it's still required
23073 on a hypothetical non-thumb v5 core. */
23074 if (is_bx)
23075 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
23076 else
23077 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
23078 *opcode->avariant);
23079
23080 check_neon_suffixes;
23081
23082 if (!inst.error)
23083 {
23084 mapping_state (MAP_ARM);
23085 }
23086 }
23087 else
23088 {
23089 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
23090 "-- `%s'"), str);
23091 return;
23092 }
23093 output_inst (str);
23094 }
23095
23096 static void
23097 check_pred_blocks_finished (void)
23098 {
23099 #ifdef OBJ_ELF
23100 asection *sect;
23101
23102 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
23103 if (seg_info (sect)->tc_segment_info_data.current_pred.state
23104 == MANUAL_PRED_BLOCK)
23105 {
23106 if (now_pred.type == SCALAR_PRED)
23107 as_warn (_("section '%s' finished with an open IT block."),
23108 sect->name);
23109 else
23110 as_warn (_("section '%s' finished with an open VPT/VPST block."),
23111 sect->name);
23112 }
23113 #else
23114 if (now_pred.state == MANUAL_PRED_BLOCK)
23115 {
23116 if (now_pred.type == SCALAR_PRED)
23117 as_warn (_("file finished with an open IT block."));
23118 else
23119 as_warn (_("file finished with an open VPT/VPST block."));
23120 }
23121 #endif
23122 }
23123
23124 /* Various frobbings of labels and their addresses. */
23125
23126 void
23127 arm_start_line_hook (void)
23128 {
23129 last_label_seen = NULL;
23130 }
23131
23132 void
23133 arm_frob_label (symbolS * sym)
23134 {
23135 last_label_seen = sym;
23136
23137 ARM_SET_THUMB (sym, thumb_mode);
23138
23139 #if defined OBJ_COFF || defined OBJ_ELF
23140 ARM_SET_INTERWORK (sym, support_interwork);
23141 #endif
23142
23143 force_automatic_it_block_close ();
23144
23145 /* Note - do not allow local symbols (.Lxxx) to be labelled
23146 as Thumb functions. This is because these labels, whilst
23147 they exist inside Thumb code, are not the entry points for
23148 possible ARM->Thumb calls. Also, these labels can be used
23149 as part of a computed goto or switch statement. eg gcc
23150 can generate code that looks like this:
23151
23152 ldr r2, [pc, .Laaa]
23153 lsl r3, r3, #2
23154 ldr r2, [r3, r2]
23155 mov pc, r2
23156
23157 .Lbbb: .word .Lxxx
23158 .Lccc: .word .Lyyy
23159 ..etc...
23160 .Laaa: .word Lbbb
23161
23162 The first instruction loads the address of the jump table.
23163 The second instruction converts a table index into a byte offset.
23164 The third instruction gets the jump address out of the table.
23165 The fourth instruction performs the jump.
23166
23167 If the address stored at .Laaa is that of a symbol which has the
23168 Thumb_Func bit set, then the linker will arrange for this address
23169 to have the bottom bit set, which in turn would mean that the
23170 address computation performed by the third instruction would end
23171 up with the bottom bit set. Since the ARM is capable of unaligned
23172 word loads, the instruction would then load the incorrect address
23173 out of the jump table, and chaos would ensue. */
23174 if (label_is_thumb_function_name
23175 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
23176 && (bfd_section_flags (now_seg) & SEC_CODE) != 0)
23177 {
23178 /* When the address of a Thumb function is taken the bottom
23179 bit of that address should be set. This will allow
23180 interworking between Arm and Thumb functions to work
23181 correctly. */
23182
23183 THUMB_SET_FUNC (sym, 1);
23184
23185 label_is_thumb_function_name = FALSE;
23186 }
23187
23188 dwarf2_emit_label (sym);
23189 }
23190
23191 bfd_boolean
23192 arm_data_in_code (void)
23193 {
23194 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
23195 {
23196 *input_line_pointer = '/';
23197 input_line_pointer += 5;
23198 *input_line_pointer = 0;
23199 return TRUE;
23200 }
23201
23202 return FALSE;
23203 }
23204
23205 char *
23206 arm_canonicalize_symbol_name (char * name)
23207 {
23208 int len;
23209
23210 if (thumb_mode && (len = strlen (name)) > 5
23211 && streq (name + len - 5, "/data"))
23212 *(name + len - 5) = 0;
23213
23214 return name;
23215 }
23216 \f
23217 /* Table of all register names defined by default. The user can
23218 define additional names with .req. Note that all register names
23219 should appear in both upper and lowercase variants. Some registers
23220 also have mixed-case names. */
23221
23222 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
23223 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
23224 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
23225 #define REGSET(p,t) \
23226 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
23227 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
23228 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
23229 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
23230 #define REGSETH(p,t) \
23231 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
23232 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
23233 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
23234 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
23235 #define REGSET2(p,t) \
23236 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
23237 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
23238 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
23239 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
23240 #define SPLRBANK(base,bank,t) \
23241 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
23242 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
23243 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
23244 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
23245 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
23246 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
23247
23248 static const struct reg_entry reg_names[] =
23249 {
23250 /* ARM integer registers. */
23251 REGSET(r, RN), REGSET(R, RN),
23252
23253 /* ATPCS synonyms. */
23254 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
23255 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
23256 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
23257
23258 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
23259 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
23260 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
23261
23262 /* Well-known aliases. */
23263 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
23264 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
23265
23266 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
23267 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
23268
23269 /* Defining the new Zero register from ARMv8.1-M. */
23270 REGDEF(zr,15,ZR),
23271 REGDEF(ZR,15,ZR),
23272
23273 /* Coprocessor numbers. */
23274 REGSET(p, CP), REGSET(P, CP),
23275
23276 /* Coprocessor register numbers. The "cr" variants are for backward
23277 compatibility. */
23278 REGSET(c, CN), REGSET(C, CN),
23279 REGSET(cr, CN), REGSET(CR, CN),
23280
23281 /* ARM banked registers. */
23282 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
23283 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
23284 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
23285 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
23286 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
23287 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
23288 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
23289
23290 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
23291 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
23292 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
23293 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
23294 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
23295 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
23296 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
23297 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
23298
23299 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
23300 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
23301 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
23302 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
23303 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
23304 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
23305 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
23306 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
23307 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
23308
23309 /* FPA registers. */
23310 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
23311 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
23312
23313 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
23314 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
23315
23316 /* VFP SP registers. */
23317 REGSET(s,VFS), REGSET(S,VFS),
23318 REGSETH(s,VFS), REGSETH(S,VFS),
23319
23320 /* VFP DP Registers. */
23321 REGSET(d,VFD), REGSET(D,VFD),
23322 /* Extra Neon DP registers. */
23323 REGSETH(d,VFD), REGSETH(D,VFD),
23324
23325 /* Neon QP registers. */
23326 REGSET2(q,NQ), REGSET2(Q,NQ),
23327
23328 /* VFP control registers. */
23329 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
23330 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
23331 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
23332 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
23333 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
23334 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
23335 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
23336 REGDEF(fpscr_nzcvqc,2,VFC), REGDEF(FPSCR_nzcvqc,2,VFC),
23337 REGDEF(vpr,12,VFC), REGDEF(VPR,12,VFC),
23338 REGDEF(fpcxt_ns,14,VFC), REGDEF(FPCXT_NS,14,VFC),
23339 REGDEF(fpcxt_s,15,VFC), REGDEF(FPCXT_S,15,VFC),
23340
23341 /* Maverick DSP coprocessor registers. */
23342 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
23343 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
23344
23345 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
23346 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
23347 REGDEF(dspsc,0,DSPSC),
23348
23349 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
23350 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
23351 REGDEF(DSPSC,0,DSPSC),
23352
23353 /* iWMMXt data registers - p0, c0-15. */
23354 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
23355
23356 /* iWMMXt control registers - p1, c0-3. */
23357 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
23358 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
23359 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
23360 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
23361
23362 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
23363 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
23364 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
23365 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
23366 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
23367
23368 /* XScale accumulator registers. */
23369 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
23370 };
23371 #undef REGDEF
23372 #undef REGNUM
23373 #undef REGSET
23374
23375 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
23376 within psr_required_here. */
23377 static const struct asm_psr psrs[] =
23378 {
23379 /* Backward compatibility notation. Note that "all" is no longer
23380 truly all possible PSR bits. */
23381 {"all", PSR_c | PSR_f},
23382 {"flg", PSR_f},
23383 {"ctl", PSR_c},
23384
23385 /* Individual flags. */
23386 {"f", PSR_f},
23387 {"c", PSR_c},
23388 {"x", PSR_x},
23389 {"s", PSR_s},
23390
23391 /* Combinations of flags. */
23392 {"fs", PSR_f | PSR_s},
23393 {"fx", PSR_f | PSR_x},
23394 {"fc", PSR_f | PSR_c},
23395 {"sf", PSR_s | PSR_f},
23396 {"sx", PSR_s | PSR_x},
23397 {"sc", PSR_s | PSR_c},
23398 {"xf", PSR_x | PSR_f},
23399 {"xs", PSR_x | PSR_s},
23400 {"xc", PSR_x | PSR_c},
23401 {"cf", PSR_c | PSR_f},
23402 {"cs", PSR_c | PSR_s},
23403 {"cx", PSR_c | PSR_x},
23404 {"fsx", PSR_f | PSR_s | PSR_x},
23405 {"fsc", PSR_f | PSR_s | PSR_c},
23406 {"fxs", PSR_f | PSR_x | PSR_s},
23407 {"fxc", PSR_f | PSR_x | PSR_c},
23408 {"fcs", PSR_f | PSR_c | PSR_s},
23409 {"fcx", PSR_f | PSR_c | PSR_x},
23410 {"sfx", PSR_s | PSR_f | PSR_x},
23411 {"sfc", PSR_s | PSR_f | PSR_c},
23412 {"sxf", PSR_s | PSR_x | PSR_f},
23413 {"sxc", PSR_s | PSR_x | PSR_c},
23414 {"scf", PSR_s | PSR_c | PSR_f},
23415 {"scx", PSR_s | PSR_c | PSR_x},
23416 {"xfs", PSR_x | PSR_f | PSR_s},
23417 {"xfc", PSR_x | PSR_f | PSR_c},
23418 {"xsf", PSR_x | PSR_s | PSR_f},
23419 {"xsc", PSR_x | PSR_s | PSR_c},
23420 {"xcf", PSR_x | PSR_c | PSR_f},
23421 {"xcs", PSR_x | PSR_c | PSR_s},
23422 {"cfs", PSR_c | PSR_f | PSR_s},
23423 {"cfx", PSR_c | PSR_f | PSR_x},
23424 {"csf", PSR_c | PSR_s | PSR_f},
23425 {"csx", PSR_c | PSR_s | PSR_x},
23426 {"cxf", PSR_c | PSR_x | PSR_f},
23427 {"cxs", PSR_c | PSR_x | PSR_s},
23428 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
23429 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
23430 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
23431 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
23432 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
23433 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
23434 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
23435 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
23436 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
23437 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
23438 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
23439 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
23440 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
23441 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
23442 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
23443 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
23444 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
23445 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
23446 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
23447 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
23448 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
23449 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
23450 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
23451 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
23452 };
23453
23454 /* Table of V7M psr names. */
23455 static const struct asm_psr v7m_psrs[] =
23456 {
23457 {"apsr", 0x0 }, {"APSR", 0x0 },
23458 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
23459 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
23460 {"psr", 0x3 }, {"PSR", 0x3 },
23461 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
23462 {"ipsr", 0x5 }, {"IPSR", 0x5 },
23463 {"epsr", 0x6 }, {"EPSR", 0x6 },
23464 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
23465 {"msp", 0x8 }, {"MSP", 0x8 },
23466 {"psp", 0x9 }, {"PSP", 0x9 },
23467 {"msplim", 0xa }, {"MSPLIM", 0xa },
23468 {"psplim", 0xb }, {"PSPLIM", 0xb },
23469 {"primask", 0x10}, {"PRIMASK", 0x10},
23470 {"basepri", 0x11}, {"BASEPRI", 0x11},
23471 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
23472 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
23473 {"control", 0x14}, {"CONTROL", 0x14},
23474 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
23475 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
23476 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
23477 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
23478 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
23479 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
23480 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
23481 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
23482 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
23483 };
23484
23485 /* Table of all shift-in-operand names. */
23486 static const struct asm_shift_name shift_names [] =
23487 {
23488 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
23489 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
23490 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
23491 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
23492 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
23493 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX },
23494 { "uxtw", SHIFT_UXTW}, { "UXTW", SHIFT_UXTW}
23495 };
23496
23497 /* Table of all explicit relocation names. */
23498 #ifdef OBJ_ELF
23499 static struct reloc_entry reloc_names[] =
23500 {
23501 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
23502 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
23503 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
23504 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
23505 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
23506 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
23507 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
23508 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
23509 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
23510 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
23511 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
23512 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
23513 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
23514 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
23515 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
23516 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
23517 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
23518 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ},
23519 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC },
23520 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC },
23521 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC },
23522 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC },
23523 { "funcdesc", BFD_RELOC_ARM_FUNCDESC },
23524 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC },
23525 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC },
23526 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC },
23527 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC }, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC },
23528 };
23529 #endif
23530
23531 /* Table of all conditional affixes. */
23532 static const struct asm_cond conds[] =
23533 {
23534 {"eq", 0x0},
23535 {"ne", 0x1},
23536 {"cs", 0x2}, {"hs", 0x2},
23537 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
23538 {"mi", 0x4},
23539 {"pl", 0x5},
23540 {"vs", 0x6},
23541 {"vc", 0x7},
23542 {"hi", 0x8},
23543 {"ls", 0x9},
23544 {"ge", 0xa},
23545 {"lt", 0xb},
23546 {"gt", 0xc},
23547 {"le", 0xd},
23548 {"al", 0xe}
23549 };
23550 static const struct asm_cond vconds[] =
23551 {
23552 {"t", 0xf},
23553 {"e", 0x10}
23554 };
23555
23556 #define UL_BARRIER(L,U,CODE,FEAT) \
23557 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
23558 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
23559
23560 static struct asm_barrier_opt barrier_opt_names[] =
23561 {
23562 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
23563 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
23564 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
23565 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
23566 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
23567 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
23568 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
23569 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
23570 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
23571 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
23572 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
23573 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
23574 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
23575 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
23576 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
23577 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
23578 };
23579
23580 #undef UL_BARRIER
23581
23582 /* Table of ARM-format instructions. */
23583
23584 /* Macros for gluing together operand strings. N.B. In all cases
23585 other than OPS0, the trailing OP_stop comes from default
23586 zero-initialization of the unspecified elements of the array. */
23587 #define OPS0() { OP_stop, }
23588 #define OPS1(a) { OP_##a, }
23589 #define OPS2(a,b) { OP_##a,OP_##b, }
23590 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
23591 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
23592 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
23593 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
23594
23595 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
23596 This is useful when mixing operands for ARM and THUMB, i.e. using the
23597 MIX_ARM_THUMB_OPERANDS macro.
23598 In order to use these macros, prefix the number of operands with _
23599 e.g. _3. */
23600 #define OPS_1(a) { a, }
23601 #define OPS_2(a,b) { a,b, }
23602 #define OPS_3(a,b,c) { a,b,c, }
23603 #define OPS_4(a,b,c,d) { a,b,c,d, }
23604 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
23605 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
23606
23607 /* These macros abstract out the exact format of the mnemonic table and
23608 save some repeated characters. */
23609
23610 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
23611 #define TxCE(mnem, op, top, nops, ops, ae, te) \
23612 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
23613 THUMB_VARIANT, do_##ae, do_##te, 0 }
23614
23615 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
23616 a T_MNEM_xyz enumerator. */
23617 #define TCE(mnem, aop, top, nops, ops, ae, te) \
23618 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
23619 #define tCE(mnem, aop, top, nops, ops, ae, te) \
23620 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
23621
23622 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
23623 infix after the third character. */
23624 #define TxC3(mnem, op, top, nops, ops, ae, te) \
23625 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
23626 THUMB_VARIANT, do_##ae, do_##te, 0 }
23627 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
23628 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
23629 THUMB_VARIANT, do_##ae, do_##te, 0 }
23630 #define TC3(mnem, aop, top, nops, ops, ae, te) \
23631 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
23632 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
23633 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
23634 #define tC3(mnem, aop, top, nops, ops, ae, te) \
23635 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
23636 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
23637 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
23638
23639 /* Mnemonic that cannot be conditionalized. The ARM condition-code
23640 field is still 0xE. Many of the Thumb variants can be executed
23641 conditionally, so this is checked separately. */
23642 #define TUE(mnem, op, top, nops, ops, ae, te) \
23643 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
23644 THUMB_VARIANT, do_##ae, do_##te, 0 }
23645
23646 /* Same as TUE but the encoding function for ARM and Thumb modes is the same.
23647 Used by mnemonics that have very minimal differences in the encoding for
23648 ARM and Thumb variants and can be handled in a common function. */
23649 #define TUEc(mnem, op, top, nops, ops, en) \
23650 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
23651 THUMB_VARIANT, do_##en, do_##en, 0 }
23652
23653 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
23654 condition code field. */
23655 #define TUF(mnem, op, top, nops, ops, ae, te) \
23656 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
23657 THUMB_VARIANT, do_##ae, do_##te, 0 }
23658
23659 /* ARM-only variants of all the above. */
23660 #define CE(mnem, op, nops, ops, ae) \
23661 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
23662
23663 #define C3(mnem, op, nops, ops, ae) \
23664 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
23665
23666 /* Thumb-only variants of TCE and TUE. */
23667 #define ToC(mnem, top, nops, ops, te) \
23668 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
23669 do_##te, 0 }
23670
23671 #define ToU(mnem, top, nops, ops, te) \
23672 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
23673 NULL, do_##te, 0 }
23674
23675 /* T_MNEM_xyz enumerator variants of ToC. */
23676 #define toC(mnem, top, nops, ops, te) \
23677 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
23678 do_##te, 0 }
23679
23680 /* T_MNEM_xyz enumerator variants of ToU. */
23681 #define toU(mnem, top, nops, ops, te) \
23682 { mnem, OPS##nops ops, OT_unconditional, 0x0, T_MNEM##top, 0, THUMB_VARIANT, \
23683 NULL, do_##te, 0 }
23684
23685 /* Legacy mnemonics that always have conditional infix after the third
23686 character. */
23687 #define CL(mnem, op, nops, ops, ae) \
23688 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
23689 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
23690
23691 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
23692 #define cCE(mnem, op, nops, ops, ae) \
23693 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
23694
23695 /* mov instructions that are shared between coprocessor and MVE. */
23696 #define mcCE(mnem, op, nops, ops, ae) \
23697 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##ae, 0 }
23698
23699 /* Legacy coprocessor instructions where conditional infix and conditional
23700 suffix are ambiguous. For consistency this includes all FPA instructions,
23701 not just the potentially ambiguous ones. */
23702 #define cCL(mnem, op, nops, ops, ae) \
23703 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
23704 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
23705
23706 /* Coprocessor, takes either a suffix or a position-3 infix
23707 (for an FPA corner case). */
23708 #define C3E(mnem, op, nops, ops, ae) \
23709 { mnem, OPS##nops ops, OT_csuf_or_in3, \
23710 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
23711
23712 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
23713 { m1 #m2 m3, OPS##nops ops, \
23714 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
23715 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
23716
23717 #define CM(m1, m2, op, nops, ops, ae) \
23718 xCM_ (m1, , m2, op, nops, ops, ae), \
23719 xCM_ (m1, eq, m2, op, nops, ops, ae), \
23720 xCM_ (m1, ne, m2, op, nops, ops, ae), \
23721 xCM_ (m1, cs, m2, op, nops, ops, ae), \
23722 xCM_ (m1, hs, m2, op, nops, ops, ae), \
23723 xCM_ (m1, cc, m2, op, nops, ops, ae), \
23724 xCM_ (m1, ul, m2, op, nops, ops, ae), \
23725 xCM_ (m1, lo, m2, op, nops, ops, ae), \
23726 xCM_ (m1, mi, m2, op, nops, ops, ae), \
23727 xCM_ (m1, pl, m2, op, nops, ops, ae), \
23728 xCM_ (m1, vs, m2, op, nops, ops, ae), \
23729 xCM_ (m1, vc, m2, op, nops, ops, ae), \
23730 xCM_ (m1, hi, m2, op, nops, ops, ae), \
23731 xCM_ (m1, ls, m2, op, nops, ops, ae), \
23732 xCM_ (m1, ge, m2, op, nops, ops, ae), \
23733 xCM_ (m1, lt, m2, op, nops, ops, ae), \
23734 xCM_ (m1, gt, m2, op, nops, ops, ae), \
23735 xCM_ (m1, le, m2, op, nops, ops, ae), \
23736 xCM_ (m1, al, m2, op, nops, ops, ae)
23737
23738 #define UE(mnem, op, nops, ops, ae) \
23739 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
23740
23741 #define UF(mnem, op, nops, ops, ae) \
23742 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
23743
23744 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
23745 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
23746 use the same encoding function for each. */
23747 #define NUF(mnem, op, nops, ops, enc) \
23748 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
23749 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
23750
23751 /* Neon data processing, version which indirects through neon_enc_tab for
23752 the various overloaded versions of opcodes. */
23753 #define nUF(mnem, op, nops, ops, enc) \
23754 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
23755 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
23756
23757 /* Neon insn with conditional suffix for the ARM version, non-overloaded
23758 version. */
23759 #define NCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
23760 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
23761 THUMB_VARIANT, do_##enc, do_##enc, mve_p }
23762
23763 #define NCE(mnem, op, nops, ops, enc) \
23764 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
23765
23766 #define NCEF(mnem, op, nops, ops, enc) \
23767 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
23768
23769 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
23770 #define nCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
23771 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
23772 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, mve_p }
23773
23774 #define nCE(mnem, op, nops, ops, enc) \
23775 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
23776
23777 #define nCEF(mnem, op, nops, ops, enc) \
23778 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
23779
23780 /* */
23781 #define mCEF(mnem, op, nops, ops, enc) \
23782 { #mnem, OPS##nops ops, OT_csuffixF, M_MNEM##op, M_MNEM##op, \
23783 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
23784
23785
23786 /* nCEF but for MVE predicated instructions. */
23787 #define mnCEF(mnem, op, nops, ops, enc) \
23788 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
23789
23790 /* nCE but for MVE predicated instructions. */
23791 #define mnCE(mnem, op, nops, ops, enc) \
23792 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
23793
23794 /* NUF but for potentially MVE predicated instructions. */
23795 #define MNUF(mnem, op, nops, ops, enc) \
23796 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
23797 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
23798
23799 /* nUF but for potentially MVE predicated instructions. */
23800 #define mnUF(mnem, op, nops, ops, enc) \
23801 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
23802 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
23803
23804 /* ToC but for potentially MVE predicated instructions. */
23805 #define mToC(mnem, top, nops, ops, te) \
23806 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
23807 do_##te, 1 }
23808
23809 /* NCE but for MVE predicated instructions. */
23810 #define MNCE(mnem, op, nops, ops, enc) \
23811 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
23812
23813 /* NCEF but for MVE predicated instructions. */
23814 #define MNCEF(mnem, op, nops, ops, enc) \
23815 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
23816 #define do_0 0
23817
23818 static const struct asm_opcode insns[] =
23819 {
23820 #define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
23821 #define THUMB_VARIANT & arm_ext_v4t
23822 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
23823 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
23824 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
23825 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
23826 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
23827 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
23828 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
23829 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
23830 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
23831 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
23832 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
23833 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
23834 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
23835 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
23836 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
23837 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
23838
23839 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
23840 for setting PSR flag bits. They are obsolete in V6 and do not
23841 have Thumb equivalents. */
23842 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
23843 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
23844 CL("tstp", 110f000, 2, (RR, SH), cmp),
23845 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
23846 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
23847 CL("cmpp", 150f000, 2, (RR, SH), cmp),
23848 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
23849 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
23850 CL("cmnp", 170f000, 2, (RR, SH), cmp),
23851
23852 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
23853 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
23854 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
23855 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
23856
23857 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
23858 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
23859 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
23860 OP_RRnpc),
23861 OP_ADDRGLDR),ldst, t_ldst),
23862 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
23863
23864 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23865 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23866 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23867 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23868 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23869 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23870
23871 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
23872 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
23873
23874 /* Pseudo ops. */
23875 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
23876 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
23877 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
23878 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
23879
23880 /* Thumb-compatibility pseudo ops. */
23881 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
23882 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
23883 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
23884 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
23885 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
23886 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
23887 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
23888 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
23889 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
23890 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
23891 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
23892 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
23893
23894 /* These may simplify to neg. */
23895 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
23896 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
23897
23898 #undef THUMB_VARIANT
23899 #define THUMB_VARIANT & arm_ext_os
23900
23901 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
23902 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
23903
23904 #undef THUMB_VARIANT
23905 #define THUMB_VARIANT & arm_ext_v6
23906
23907 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
23908
23909 /* V1 instructions with no Thumb analogue prior to V6T2. */
23910 #undef THUMB_VARIANT
23911 #define THUMB_VARIANT & arm_ext_v6t2
23912
23913 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
23914 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
23915 CL("teqp", 130f000, 2, (RR, SH), cmp),
23916
23917 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
23918 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
23919 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
23920 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
23921
23922 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23923 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23924
23925 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23926 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23927
23928 /* V1 instructions with no Thumb analogue at all. */
23929 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
23930 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
23931
23932 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
23933 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
23934 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
23935 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
23936 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
23937 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
23938 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
23939 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
23940
23941 #undef ARM_VARIANT
23942 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
23943 #undef THUMB_VARIANT
23944 #define THUMB_VARIANT & arm_ext_v4t
23945
23946 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
23947 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
23948
23949 #undef THUMB_VARIANT
23950 #define THUMB_VARIANT & arm_ext_v6t2
23951
23952 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
23953 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
23954
23955 /* Generic coprocessor instructions. */
23956 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
23957 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23958 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23959 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23960 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23961 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
23962 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
23963
23964 #undef ARM_VARIANT
23965 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
23966
23967 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
23968 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
23969
23970 #undef ARM_VARIANT
23971 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
23972 #undef THUMB_VARIANT
23973 #define THUMB_VARIANT & arm_ext_msr
23974
23975 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
23976 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
23977
23978 #undef ARM_VARIANT
23979 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
23980 #undef THUMB_VARIANT
23981 #define THUMB_VARIANT & arm_ext_v6t2
23982
23983 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23984 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23985 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23986 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23987 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23988 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23989 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23990 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23991
23992 #undef ARM_VARIANT
23993 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
23994 #undef THUMB_VARIANT
23995 #define THUMB_VARIANT & arm_ext_v4t
23996
23997 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23998 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23999 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
24000 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
24001 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
24002 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
24003
24004 #undef ARM_VARIANT
24005 #define ARM_VARIANT & arm_ext_v4t_5
24006
24007 /* ARM Architecture 4T. */
24008 /* Note: bx (and blx) are required on V5, even if the processor does
24009 not support Thumb. */
24010 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
24011
24012 #undef ARM_VARIANT
24013 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
24014 #undef THUMB_VARIANT
24015 #define THUMB_VARIANT & arm_ext_v5t
24016
24017 /* Note: blx has 2 variants; the .value coded here is for
24018 BLX(2). Only this variant has conditional execution. */
24019 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
24020 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
24021
24022 #undef THUMB_VARIANT
24023 #define THUMB_VARIANT & arm_ext_v6t2
24024
24025 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
24026 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
24027 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
24028 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
24029 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
24030 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
24031 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
24032 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
24033
24034 #undef ARM_VARIANT
24035 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
24036 #undef THUMB_VARIANT
24037 #define THUMB_VARIANT & arm_ext_v5exp
24038
24039 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
24040 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
24041 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
24042 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
24043
24044 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
24045 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
24046
24047 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
24048 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
24049 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
24050 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
24051
24052 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24053 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24054 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24055 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24056
24057 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24058 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24059
24060 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
24061 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
24062 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
24063 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
24064
24065 #undef ARM_VARIANT
24066 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
24067 #undef THUMB_VARIANT
24068 #define THUMB_VARIANT & arm_ext_v6t2
24069
24070 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
24071 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
24072 ldrd, t_ldstd),
24073 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
24074 ADDRGLDRS), ldrd, t_ldstd),
24075
24076 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
24077 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
24078
24079 #undef ARM_VARIANT
24080 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
24081
24082 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
24083
24084 #undef ARM_VARIANT
24085 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
24086 #undef THUMB_VARIANT
24087 #define THUMB_VARIANT & arm_ext_v6
24088
24089 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
24090 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
24091 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
24092 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
24093 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
24094 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
24095 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
24096 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
24097 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
24098 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
24099
24100 #undef THUMB_VARIANT
24101 #define THUMB_VARIANT & arm_ext_v6t2_v8m
24102
24103 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
24104 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
24105 strex, t_strex),
24106 #undef THUMB_VARIANT
24107 #define THUMB_VARIANT & arm_ext_v6t2
24108
24109 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
24110 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
24111
24112 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
24113 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
24114
24115 /* ARM V6 not included in V7M. */
24116 #undef THUMB_VARIANT
24117 #define THUMB_VARIANT & arm_ext_v6_notm
24118 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
24119 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
24120 UF(rfeib, 9900a00, 1, (RRw), rfe),
24121 UF(rfeda, 8100a00, 1, (RRw), rfe),
24122 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
24123 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
24124 UF(rfefa, 8100a00, 1, (RRw), rfe),
24125 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
24126 UF(rfeed, 9900a00, 1, (RRw), rfe),
24127 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
24128 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
24129 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
24130 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
24131 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
24132 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
24133 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
24134 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
24135 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
24136 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
24137
24138 /* ARM V6 not included in V7M (eg. integer SIMD). */
24139 #undef THUMB_VARIANT
24140 #define THUMB_VARIANT & arm_ext_v6_dsp
24141 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
24142 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
24143 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24144 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24145 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24146 /* Old name for QASX. */
24147 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24148 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24149 /* Old name for QSAX. */
24150 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24151 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24152 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24153 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24154 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24155 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24156 /* Old name for SASX. */
24157 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24158 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24159 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24160 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24161 /* Old name for SHASX. */
24162 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24163 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24164 /* Old name for SHSAX. */
24165 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24166 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24167 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24168 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24169 /* Old name for SSAX. */
24170 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24171 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24172 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24173 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24174 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24175 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24176 /* Old name for UASX. */
24177 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24178 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24179 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24180 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24181 /* Old name for UHASX. */
24182 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24183 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24184 /* Old name for UHSAX. */
24185 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24186 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24187 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24188 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24189 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24190 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24191 /* Old name for UQASX. */
24192 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24193 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24194 /* Old name for UQSAX. */
24195 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24196 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24197 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24198 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24199 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24200 /* Old name for USAX. */
24201 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24202 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24203 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
24204 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
24205 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
24206 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
24207 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
24208 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
24209 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
24210 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
24211 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24212 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24213 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24214 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
24215 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
24216 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24217 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24218 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
24219 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
24220 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24221 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24222 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24223 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24224 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24225 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24226 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24227 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24228 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24229 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24230 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
24231 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
24232 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24233 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24234 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
24235
24236 #undef ARM_VARIANT
24237 #define ARM_VARIANT & arm_ext_v6k_v6t2
24238 #undef THUMB_VARIANT
24239 #define THUMB_VARIANT & arm_ext_v6k_v6t2
24240
24241 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
24242 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
24243 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
24244 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
24245
24246 #undef THUMB_VARIANT
24247 #define THUMB_VARIANT & arm_ext_v6_notm
24248 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
24249 ldrexd, t_ldrexd),
24250 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
24251 RRnpcb), strexd, t_strexd),
24252
24253 #undef THUMB_VARIANT
24254 #define THUMB_VARIANT & arm_ext_v6t2_v8m
24255 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
24256 rd_rn, rd_rn),
24257 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
24258 rd_rn, rd_rn),
24259 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
24260 strex, t_strexbh),
24261 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
24262 strex, t_strexbh),
24263 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
24264
24265 #undef ARM_VARIANT
24266 #define ARM_VARIANT & arm_ext_sec
24267 #undef THUMB_VARIANT
24268 #define THUMB_VARIANT & arm_ext_sec
24269
24270 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
24271
24272 #undef ARM_VARIANT
24273 #define ARM_VARIANT & arm_ext_virt
24274 #undef THUMB_VARIANT
24275 #define THUMB_VARIANT & arm_ext_virt
24276
24277 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
24278 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
24279
24280 #undef ARM_VARIANT
24281 #define ARM_VARIANT & arm_ext_pan
24282 #undef THUMB_VARIANT
24283 #define THUMB_VARIANT & arm_ext_pan
24284
24285 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
24286
24287 #undef ARM_VARIANT
24288 #define ARM_VARIANT & arm_ext_v6t2
24289 #undef THUMB_VARIANT
24290 #define THUMB_VARIANT & arm_ext_v6t2
24291
24292 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
24293 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
24294 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
24295 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
24296
24297 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
24298 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
24299
24300 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
24301 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
24302 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
24303 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
24304
24305 #undef ARM_VARIANT
24306 #define ARM_VARIANT & arm_ext_v3
24307 #undef THUMB_VARIANT
24308 #define THUMB_VARIANT & arm_ext_v6t2
24309
24310 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
24311 TUF("ssbb", 57ff040, f3bf8f40, 0, (), noargs, t_csdb),
24312 TUF("pssbb", 57ff044, f3bf8f44, 0, (), noargs, t_csdb),
24313
24314 #undef ARM_VARIANT
24315 #define ARM_VARIANT & arm_ext_v6t2
24316 #undef THUMB_VARIANT
24317 #define THUMB_VARIANT & arm_ext_v6t2_v8m
24318 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
24319 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
24320
24321 /* Thumb-only instructions. */
24322 #undef ARM_VARIANT
24323 #define ARM_VARIANT NULL
24324 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
24325 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
24326
24327 /* ARM does not really have an IT instruction, so always allow it.
24328 The opcode is copied from Thumb in order to allow warnings in
24329 -mimplicit-it=[never | arm] modes. */
24330 #undef ARM_VARIANT
24331 #define ARM_VARIANT & arm_ext_v1
24332 #undef THUMB_VARIANT
24333 #define THUMB_VARIANT & arm_ext_v6t2
24334
24335 TUE("it", bf08, bf08, 1, (COND), it, t_it),
24336 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
24337 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
24338 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
24339 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
24340 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
24341 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
24342 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
24343 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
24344 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
24345 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
24346 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
24347 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
24348 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
24349 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
24350 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
24351 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
24352 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
24353
24354 /* Thumb2 only instructions. */
24355 #undef ARM_VARIANT
24356 #define ARM_VARIANT NULL
24357
24358 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
24359 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
24360 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
24361 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
24362 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
24363 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
24364
24365 /* Hardware division instructions. */
24366 #undef ARM_VARIANT
24367 #define ARM_VARIANT & arm_ext_adiv
24368 #undef THUMB_VARIANT
24369 #define THUMB_VARIANT & arm_ext_div
24370
24371 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
24372 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
24373
24374 /* ARM V6M/V7 instructions. */
24375 #undef ARM_VARIANT
24376 #define ARM_VARIANT & arm_ext_barrier
24377 #undef THUMB_VARIANT
24378 #define THUMB_VARIANT & arm_ext_barrier
24379
24380 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
24381 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
24382 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
24383
24384 /* ARM V7 instructions. */
24385 #undef ARM_VARIANT
24386 #define ARM_VARIANT & arm_ext_v7
24387 #undef THUMB_VARIANT
24388 #define THUMB_VARIANT & arm_ext_v7
24389
24390 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
24391 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
24392
24393 #undef ARM_VARIANT
24394 #define ARM_VARIANT & arm_ext_mp
24395 #undef THUMB_VARIANT
24396 #define THUMB_VARIANT & arm_ext_mp
24397
24398 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
24399
24400 /* AArchv8 instructions. */
24401 #undef ARM_VARIANT
24402 #define ARM_VARIANT & arm_ext_v8
24403
24404 /* Instructions shared between armv8-a and armv8-m. */
24405 #undef THUMB_VARIANT
24406 #define THUMB_VARIANT & arm_ext_atomics
24407
24408 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
24409 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
24410 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
24411 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
24412 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
24413 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
24414 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
24415 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
24416 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
24417 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
24418 stlex, t_stlex),
24419 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
24420 stlex, t_stlex),
24421 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
24422 stlex, t_stlex),
24423 #undef THUMB_VARIANT
24424 #define THUMB_VARIANT & arm_ext_v8
24425
24426 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
24427 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
24428 ldrexd, t_ldrexd),
24429 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
24430 strexd, t_strexd),
24431
24432 /* Defined in V8 but is in undefined encoding space for earlier
24433 architectures. However earlier architectures are required to treat
24434 this instuction as a semihosting trap as well. Hence while not explicitly
24435 defined as such, it is in fact correct to define the instruction for all
24436 architectures. */
24437 #undef THUMB_VARIANT
24438 #define THUMB_VARIANT & arm_ext_v1
24439 #undef ARM_VARIANT
24440 #define ARM_VARIANT & arm_ext_v1
24441 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
24442
24443 /* ARMv8 T32 only. */
24444 #undef ARM_VARIANT
24445 #define ARM_VARIANT NULL
24446 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
24447 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
24448 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
24449
24450 /* FP for ARMv8. */
24451 #undef ARM_VARIANT
24452 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
24453 #undef THUMB_VARIANT
24454 #define THUMB_VARIANT & fpu_vfp_ext_armv8xd
24455
24456 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
24457 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
24458 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
24459 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
24460 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
24461 mnCE(vrintz, _vrintr, 2, (RNSDQMQ, oRNSDQMQ), vrintz),
24462 mnCE(vrintx, _vrintr, 2, (RNSDQMQ, oRNSDQMQ), vrintx),
24463 mnUF(vrinta, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrinta),
24464 mnUF(vrintn, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintn),
24465 mnUF(vrintp, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintp),
24466 mnUF(vrintm, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintm),
24467
24468 /* Crypto v1 extensions. */
24469 #undef ARM_VARIANT
24470 #define ARM_VARIANT & fpu_crypto_ext_armv8
24471 #undef THUMB_VARIANT
24472 #define THUMB_VARIANT & fpu_crypto_ext_armv8
24473
24474 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
24475 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
24476 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
24477 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
24478 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
24479 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
24480 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
24481 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
24482 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
24483 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
24484 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
24485 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
24486 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
24487 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
24488
24489 #undef ARM_VARIANT
24490 #define ARM_VARIANT & crc_ext_armv8
24491 #undef THUMB_VARIANT
24492 #define THUMB_VARIANT & crc_ext_armv8
24493 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
24494 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
24495 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
24496 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
24497 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
24498 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
24499
24500 /* ARMv8.2 RAS extension. */
24501 #undef ARM_VARIANT
24502 #define ARM_VARIANT & arm_ext_ras
24503 #undef THUMB_VARIANT
24504 #define THUMB_VARIANT & arm_ext_ras
24505 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
24506
24507 #undef ARM_VARIANT
24508 #define ARM_VARIANT & arm_ext_v8_3
24509 #undef THUMB_VARIANT
24510 #define THUMB_VARIANT & arm_ext_v8_3
24511 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
24512
24513 #undef ARM_VARIANT
24514 #define ARM_VARIANT & fpu_neon_ext_dotprod
24515 #undef THUMB_VARIANT
24516 #define THUMB_VARIANT & fpu_neon_ext_dotprod
24517 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
24518 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
24519
24520 #undef ARM_VARIANT
24521 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
24522 #undef THUMB_VARIANT
24523 #define THUMB_VARIANT NULL
24524
24525 cCE("wfs", e200110, 1, (RR), rd),
24526 cCE("rfs", e300110, 1, (RR), rd),
24527 cCE("wfc", e400110, 1, (RR), rd),
24528 cCE("rfc", e500110, 1, (RR), rd),
24529
24530 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
24531 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
24532 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
24533 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
24534
24535 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
24536 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
24537 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
24538 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
24539
24540 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
24541 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
24542 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
24543 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
24544 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
24545 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
24546 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
24547 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
24548 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
24549 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
24550 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
24551 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
24552
24553 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
24554 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
24555 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
24556 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
24557 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
24558 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
24559 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
24560 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
24561 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
24562 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
24563 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
24564 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
24565
24566 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
24567 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
24568 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
24569 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
24570 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
24571 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
24572 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
24573 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
24574 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
24575 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
24576 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
24577 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
24578
24579 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
24580 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
24581 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
24582 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
24583 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
24584 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
24585 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
24586 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
24587 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
24588 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
24589 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
24590 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
24591
24592 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
24593 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
24594 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
24595 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
24596 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
24597 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
24598 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
24599 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
24600 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
24601 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
24602 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
24603 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
24604
24605 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
24606 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
24607 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
24608 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
24609 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
24610 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
24611 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
24612 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
24613 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
24614 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
24615 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
24616 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
24617
24618 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
24619 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
24620 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
24621 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
24622 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
24623 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
24624 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
24625 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
24626 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
24627 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
24628 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
24629 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
24630
24631 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
24632 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
24633 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
24634 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
24635 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
24636 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
24637 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
24638 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
24639 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
24640 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
24641 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
24642 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
24643
24644 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
24645 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
24646 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
24647 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
24648 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
24649 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
24650 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
24651 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
24652 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
24653 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
24654 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
24655 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
24656
24657 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
24658 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
24659 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
24660 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
24661 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
24662 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
24663 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
24664 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
24665 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
24666 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
24667 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
24668 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
24669
24670 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
24671 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
24672 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
24673 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
24674 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
24675 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
24676 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
24677 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
24678 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
24679 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
24680 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
24681 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
24682
24683 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
24684 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
24685 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
24686 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
24687 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
24688 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
24689 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
24690 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
24691 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
24692 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
24693 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
24694 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
24695
24696 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
24697 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
24698 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
24699 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
24700 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
24701 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
24702 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
24703 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
24704 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
24705 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
24706 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
24707 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
24708
24709 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
24710 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
24711 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
24712 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
24713 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
24714 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
24715 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
24716 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
24717 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
24718 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
24719 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
24720 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
24721
24722 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
24723 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
24724 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
24725 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
24726 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
24727 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
24728 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
24729 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
24730 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
24731 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
24732 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
24733 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
24734
24735 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
24736 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
24737 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
24738 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
24739 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
24740 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
24741 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
24742 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
24743 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
24744 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
24745 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
24746 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
24747
24748 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
24749 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
24750 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
24751 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
24752 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
24753 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24754 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24755 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24756 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
24757 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
24758 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
24759 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
24760
24761 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
24762 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
24763 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
24764 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
24765 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
24766 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24767 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24768 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24769 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
24770 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
24771 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
24772 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
24773
24774 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
24775 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
24776 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
24777 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
24778 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
24779 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24780 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24781 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24782 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
24783 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
24784 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
24785 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
24786
24787 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
24788 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
24789 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
24790 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
24791 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
24792 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24793 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24794 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24795 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
24796 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
24797 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
24798 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
24799
24800 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
24801 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
24802 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
24803 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
24804 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
24805 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24806 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24807 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24808 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
24809 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
24810 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
24811 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
24812
24813 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
24814 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
24815 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
24816 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
24817 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
24818 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24819 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24820 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24821 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
24822 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
24823 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
24824 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
24825
24826 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
24827 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
24828 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
24829 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
24830 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
24831 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24832 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24833 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24834 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
24835 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
24836 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
24837 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
24838
24839 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
24840 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
24841 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
24842 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
24843 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
24844 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24845 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24846 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24847 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
24848 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
24849 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
24850 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
24851
24852 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
24853 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
24854 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
24855 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
24856 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
24857 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24858 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24859 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24860 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
24861 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
24862 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
24863 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
24864
24865 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
24866 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
24867 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
24868 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
24869 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
24870 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24871 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24872 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24873 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
24874 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
24875 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
24876 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
24877
24878 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
24879 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
24880 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
24881 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
24882 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
24883 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24884 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24885 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24886 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
24887 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
24888 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
24889 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
24890
24891 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
24892 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
24893 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
24894 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
24895 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
24896 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24897 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24898 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24899 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
24900 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
24901 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
24902 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
24903
24904 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
24905 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
24906 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
24907 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
24908 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
24909 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24910 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24911 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24912 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
24913 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
24914 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
24915 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
24916
24917 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
24918 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
24919 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
24920 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
24921
24922 cCL("flts", e000110, 2, (RF, RR), rn_rd),
24923 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
24924 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
24925 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
24926 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
24927 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
24928 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
24929 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
24930 cCL("flte", e080110, 2, (RF, RR), rn_rd),
24931 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
24932 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
24933 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
24934
24935 /* The implementation of the FIX instruction is broken on some
24936 assemblers, in that it accepts a precision specifier as well as a
24937 rounding specifier, despite the fact that this is meaningless.
24938 To be more compatible, we accept it as well, though of course it
24939 does not set any bits. */
24940 cCE("fix", e100110, 2, (RR, RF), rd_rm),
24941 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
24942 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
24943 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
24944 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
24945 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
24946 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
24947 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
24948 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
24949 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
24950 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
24951 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
24952 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
24953
24954 /* Instructions that were new with the real FPA, call them V2. */
24955 #undef ARM_VARIANT
24956 #define ARM_VARIANT & fpu_fpa_ext_v2
24957
24958 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24959 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24960 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24961 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24962 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24963 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24964
24965 #undef ARM_VARIANT
24966 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
24967 #undef THUMB_VARIANT
24968 #define THUMB_VARIANT & arm_ext_v6t2
24969 mcCE(vmrs, ef00a10, 2, (APSR_RR, RVC), vmrs),
24970 mcCE(vmsr, ee00a10, 2, (RVC, RR), vmsr),
24971 #undef THUMB_VARIANT
24972
24973 /* Moves and type conversions. */
24974 cCE("fmstat", ef1fa10, 0, (), noargs),
24975 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
24976 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
24977 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
24978 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
24979 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
24980 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
24981 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
24982 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
24983
24984 /* Memory operations. */
24985 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
24986 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
24987 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24988 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24989 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24990 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24991 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24992 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24993 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24994 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24995 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24996 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24997 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24998 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24999 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
25000 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
25001 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
25002 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
25003
25004 /* Monadic operations. */
25005 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
25006 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
25007 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
25008
25009 /* Dyadic operations. */
25010 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25011 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25012 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25013 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25014 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25015 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25016 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25017 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25018 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25019
25020 /* Comparisons. */
25021 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
25022 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
25023 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
25024 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
25025
25026 /* Double precision load/store are still present on single precision
25027 implementations. */
25028 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
25029 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
25030 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
25031 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
25032 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
25033 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
25034 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
25035 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
25036 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
25037 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
25038
25039 #undef ARM_VARIANT
25040 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
25041
25042 /* Moves and type conversions. */
25043 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
25044 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
25045 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
25046 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
25047 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
25048 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
25049 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
25050 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
25051 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
25052 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
25053 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
25054 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
25055
25056 /* Monadic operations. */
25057 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
25058 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
25059 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
25060
25061 /* Dyadic operations. */
25062 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25063 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25064 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25065 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25066 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25067 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25068 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25069 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25070 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25071
25072 /* Comparisons. */
25073 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
25074 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
25075 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
25076 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
25077
25078 /* Instructions which may belong to either the Neon or VFP instruction sets.
25079 Individual encoder functions perform additional architecture checks. */
25080 #undef ARM_VARIANT
25081 #define ARM_VARIANT & fpu_vfp_ext_v1xd
25082 #undef THUMB_VARIANT
25083 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
25084
25085 /* These mnemonics are unique to VFP. */
25086 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
25087 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
25088 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
25089 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
25090 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
25091 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
25092 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
25093 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
25094
25095 /* Mnemonics shared by Neon and VFP. */
25096 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
25097
25098 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
25099 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
25100 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
25101 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
25102 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
25103 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
25104
25105 mnCEF(vcvt, _vcvt, 3, (RNSDQMQ, RNSDQMQ, oI32z), neon_cvt),
25106 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
25107 MNCEF(vcvtb, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtb),
25108 MNCEF(vcvtt, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtt),
25109
25110
25111 /* NOTE: All VMOV encoding is special-cased! */
25112 NCE(vmovq, 0, 1, (VMOV), neon_mov),
25113
25114 #undef THUMB_VARIANT
25115 /* Could be either VLDR/VSTR or VLDR/VSTR (system register) which are guarded
25116 by different feature bits. Since we are setting the Thumb guard, we can
25117 require Thumb-1 which makes it a nop guard and set the right feature bit in
25118 do_vldr_vstr (). */
25119 #define THUMB_VARIANT & arm_ext_v4t
25120 NCE(vldr, d100b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
25121 NCE(vstr, d000b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
25122
25123 #undef ARM_VARIANT
25124 #define ARM_VARIANT & arm_ext_fp16
25125 #undef THUMB_VARIANT
25126 #define THUMB_VARIANT & arm_ext_fp16
25127 /* New instructions added from v8.2, allowing the extraction and insertion of
25128 the upper 16 bits of a 32-bit vector register. */
25129 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
25130 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
25131
25132 /* New backported fma/fms instructions optional in v8.2. */
25133 NUF (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
25134 NUF (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
25135
25136 #undef THUMB_VARIANT
25137 #define THUMB_VARIANT & fpu_neon_ext_v1
25138 #undef ARM_VARIANT
25139 #define ARM_VARIANT & fpu_neon_ext_v1
25140
25141 /* Data processing with three registers of the same length. */
25142 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
25143 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
25144 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
25145 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
25146 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
25147 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
25148 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
25149 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
25150 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
25151 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
25152 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
25153 /* If not immediate, fall back to neon_dyadic_i64_su.
25154 shl should accept I8 I16 I32 I64,
25155 qshl should accept S8 S16 S32 S64 U8 U16 U32 U64. */
25156 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl),
25157 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl),
25158 /* Logic ops, types optional & ignored. */
25159 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
25160 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
25161 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
25162 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
25163 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
25164 /* Bitfield ops, untyped. */
25165 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
25166 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
25167 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
25168 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
25169 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
25170 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
25171 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
25172 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
25173 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
25174 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
25175 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
25176 back to neon_dyadic_if_su. */
25177 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
25178 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
25179 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
25180 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
25181 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
25182 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
25183 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
25184 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
25185 /* Comparison. Type I8 I16 I32 F32. */
25186 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
25187 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
25188 /* As above, D registers only. */
25189 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
25190 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
25191 /* Int and float variants, signedness unimportant. */
25192 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
25193 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
25194 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
25195 /* Add/sub take types I8 I16 I32 I64 F32. */
25196 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
25197 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
25198 /* vtst takes sizes 8, 16, 32. */
25199 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
25200 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
25201 /* VMUL takes I8 I16 I32 F32 P8. */
25202 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
25203 /* VQD{R}MULH takes S16 S32. */
25204 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
25205 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
25206 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
25207 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
25208 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
25209 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
25210 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
25211 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
25212 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
25213 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
25214 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
25215 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
25216 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
25217 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
25218 /* ARM v8.1 extension. */
25219 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
25220 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
25221 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
25222
25223 /* Two address, int/float. Types S8 S16 S32 F32. */
25224 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
25225 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
25226
25227 /* Data processing with two registers and a shift amount. */
25228 /* Right shifts, and variants with rounding.
25229 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
25230 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
25231 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
25232 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
25233 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
25234 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
25235 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
25236 /* Shift and insert. Sizes accepted 8 16 32 64. */
25237 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
25238 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
25239 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
25240 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
25241 /* Right shift immediate, saturating & narrowing, with rounding variants.
25242 Types accepted S16 S32 S64 U16 U32 U64. */
25243 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
25244 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
25245 /* As above, unsigned. Types accepted S16 S32 S64. */
25246 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
25247 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
25248 /* Right shift narrowing. Types accepted I16 I32 I64. */
25249 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
25250 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
25251 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
25252 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
25253 /* CVT with optional immediate for fixed-point variant. */
25254 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
25255
25256 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
25257
25258 /* Data processing, three registers of different lengths. */
25259 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
25260 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
25261 /* If not scalar, fall back to neon_dyadic_long.
25262 Vector types as above, scalar types S16 S32 U16 U32. */
25263 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
25264 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
25265 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
25266 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
25267 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
25268 /* Dyadic, narrowing insns. Types I16 I32 I64. */
25269 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
25270 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
25271 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
25272 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
25273 /* Saturating doubling multiplies. Types S16 S32. */
25274 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
25275 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
25276 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
25277 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
25278 S16 S32 U16 U32. */
25279 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
25280
25281 /* Extract. Size 8. */
25282 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
25283 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
25284
25285 /* Two registers, miscellaneous. */
25286 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
25287 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
25288 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
25289 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
25290 /* Vector replicate. Sizes 8 16 32. */
25291 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
25292 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
25293 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
25294 /* VMOVN. Types I16 I32 I64. */
25295 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
25296 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
25297 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
25298 /* VQMOVUN. Types S16 S32 S64. */
25299 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
25300 /* VZIP / VUZP. Sizes 8 16 32. */
25301 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
25302 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
25303 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
25304 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
25305 /* VQABS / VQNEG. Types S8 S16 S32. */
25306 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
25307 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
25308 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
25309 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
25310 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
25311 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
25312 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
25313 /* Reciprocal estimates. Types U32 F16 F32. */
25314 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
25315 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
25316 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
25317 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
25318 /* VCLS. Types S8 S16 S32. */
25319 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
25320 /* VCLZ. Types I8 I16 I32. */
25321 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
25322 /* VCNT. Size 8. */
25323 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
25324 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
25325 /* Two address, untyped. */
25326 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
25327 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
25328 /* VTRN. Sizes 8 16 32. */
25329 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
25330 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
25331
25332 /* Table lookup. Size 8. */
25333 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
25334 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
25335
25336 #undef THUMB_VARIANT
25337 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
25338 #undef ARM_VARIANT
25339 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
25340
25341 /* Neon element/structure load/store. */
25342 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
25343 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
25344 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
25345 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
25346 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
25347 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
25348 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
25349 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
25350
25351 #undef THUMB_VARIANT
25352 #define THUMB_VARIANT & fpu_vfp_ext_v3xd
25353 #undef ARM_VARIANT
25354 #define ARM_VARIANT & fpu_vfp_ext_v3xd
25355 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
25356 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
25357 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
25358 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
25359 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
25360 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
25361 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
25362 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
25363 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
25364
25365 #undef THUMB_VARIANT
25366 #define THUMB_VARIANT & fpu_vfp_ext_v3
25367 #undef ARM_VARIANT
25368 #define ARM_VARIANT & fpu_vfp_ext_v3
25369
25370 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
25371 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
25372 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
25373 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
25374 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
25375 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
25376 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
25377 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
25378 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
25379
25380 #undef ARM_VARIANT
25381 #define ARM_VARIANT & fpu_vfp_ext_fma
25382 #undef THUMB_VARIANT
25383 #define THUMB_VARIANT & fpu_vfp_ext_fma
25384 /* Mnemonics shared by Neon, VFP, MVE and BF16. These are included in the
25385 VFP FMA variant; NEON and VFP FMA always includes the NEON
25386 FMA instructions. */
25387 mnCEF(vfma, _vfma, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_fmac),
25388 TUF ("vfmat", c300850, fc300850, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), mve_vfma, mve_vfma),
25389 mnCEF(vfms, _vfms, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), neon_fmac),
25390
25391 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
25392 the v form should always be used. */
25393 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25394 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25395 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25396 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25397 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
25398 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
25399
25400 #undef THUMB_VARIANT
25401 #undef ARM_VARIANT
25402 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
25403
25404 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25405 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25406 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25407 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25408 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25409 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25410 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
25411 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
25412
25413 #undef ARM_VARIANT
25414 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
25415
25416 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
25417 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
25418 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
25419 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
25420 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
25421 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
25422 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
25423 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
25424 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
25425 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
25426 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
25427 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
25428 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
25429 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
25430 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
25431 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
25432 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
25433 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
25434 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
25435 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
25436 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
25437 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
25438 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
25439 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
25440 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
25441 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
25442 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
25443 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
25444 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
25445 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
25446 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
25447 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
25448 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
25449 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
25450 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
25451 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
25452 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
25453 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25454 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25455 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25456 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25457 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25458 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25459 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25460 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25461 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25462 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
25463 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25464 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25465 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25466 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25467 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25468 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25469 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25470 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25471 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25472 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25473 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25474 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25475 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25476 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25477 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25478 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25479 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25480 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25481 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25482 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
25483 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
25484 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
25485 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
25486 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25487 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25488 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25489 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25490 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25491 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25492 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25493 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25494 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25495 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25496 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25497 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25498 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25499 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25500 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25501 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25502 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25503 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25504 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
25505 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25506 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25507 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25508 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25509 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25510 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25511 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25512 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25513 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25514 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25515 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25516 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25517 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25518 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25519 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25520 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25521 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25522 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25523 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25524 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25525 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25526 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
25527 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25528 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25529 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25530 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25531 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25532 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25533 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25534 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25535 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25536 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25537 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25538 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25539 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25540 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25541 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25542 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25543 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25544 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25545 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
25546 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
25547 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
25548 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
25549 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25550 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25551 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25552 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25553 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25554 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25555 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25556 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25557 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25558 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
25559 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
25560 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
25561 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
25562 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
25563 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
25564 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25565 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25566 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25567 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
25568 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
25569 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
25570 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
25571 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
25572 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
25573 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25574 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25575 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25576 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25577 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
25578
25579 #undef ARM_VARIANT
25580 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
25581
25582 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
25583 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
25584 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
25585 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
25586 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
25587 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
25588 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25589 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25590 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25591 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25592 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25593 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25594 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25595 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25596 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25597 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25598 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25599 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25600 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25601 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25602 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
25603 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25604 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25605 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25606 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25607 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25608 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25609 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25610 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25611 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25612 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25613 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25614 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25615 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25616 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25617 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25618 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25619 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25620 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25621 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25622 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25623 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25624 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25625 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25626 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25627 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25628 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25629 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25630 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25631 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25632 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25633 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25634 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25635 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25636 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25637 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25638 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25639
25640 #undef ARM_VARIANT
25641 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
25642
25643 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
25644 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
25645 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
25646 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
25647 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
25648 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
25649 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
25650 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
25651 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
25652 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
25653 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
25654 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
25655 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
25656 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
25657 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
25658 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
25659 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
25660 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
25661 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
25662 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
25663 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
25664 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
25665 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
25666 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
25667 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
25668 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
25669 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
25670 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
25671 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
25672 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
25673 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
25674 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
25675 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
25676 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
25677 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
25678 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
25679 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
25680 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
25681 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
25682 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
25683 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
25684 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
25685 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
25686 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
25687 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
25688 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
25689 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
25690 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
25691 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
25692 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
25693 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
25694 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
25695 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
25696 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
25697 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
25698 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
25699 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
25700 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
25701 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
25702 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
25703 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
25704 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
25705 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
25706 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
25707 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
25708 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
25709 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
25710 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
25711 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
25712 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
25713 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
25714 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
25715 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
25716 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
25717 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
25718 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
25719
25720 /* ARMv8.5-A instructions. */
25721 #undef ARM_VARIANT
25722 #define ARM_VARIANT & arm_ext_sb
25723 #undef THUMB_VARIANT
25724 #define THUMB_VARIANT & arm_ext_sb
25725 TUF("sb", 57ff070, f3bf8f70, 0, (), noargs, noargs),
25726
25727 #undef ARM_VARIANT
25728 #define ARM_VARIANT & arm_ext_predres
25729 #undef THUMB_VARIANT
25730 #define THUMB_VARIANT & arm_ext_predres
25731 CE("cfprctx", e070f93, 1, (RRnpc), rd),
25732 CE("dvprctx", e070fb3, 1, (RRnpc), rd),
25733 CE("cpprctx", e070ff3, 1, (RRnpc), rd),
25734
25735 /* ARMv8-M instructions. */
25736 #undef ARM_VARIANT
25737 #define ARM_VARIANT NULL
25738 #undef THUMB_VARIANT
25739 #define THUMB_VARIANT & arm_ext_v8m
25740 ToU("sg", e97fe97f, 0, (), noargs),
25741 ToC("blxns", 4784, 1, (RRnpc), t_blx),
25742 ToC("bxns", 4704, 1, (RRnpc), t_bx),
25743 ToC("tt", e840f000, 2, (RRnpc, RRnpc), tt),
25744 ToC("ttt", e840f040, 2, (RRnpc, RRnpc), tt),
25745 ToC("tta", e840f080, 2, (RRnpc, RRnpc), tt),
25746 ToC("ttat", e840f0c0, 2, (RRnpc, RRnpc), tt),
25747
25748 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
25749 instructions behave as nop if no VFP is present. */
25750 #undef THUMB_VARIANT
25751 #define THUMB_VARIANT & arm_ext_v8m_main
25752 ToC("vlldm", ec300a00, 1, (RRnpc), rn),
25753 ToC("vlstm", ec200a00, 1, (RRnpc), rn),
25754
25755 /* Armv8.1-M Mainline instructions. */
25756 #undef THUMB_VARIANT
25757 #define THUMB_VARIANT & arm_ext_v8_1m_main
25758 toU("cinc", _cinc, 3, (RRnpcsp, RR_ZR, COND), t_cond),
25759 toU("cinv", _cinv, 3, (RRnpcsp, RR_ZR, COND), t_cond),
25760 toU("cneg", _cneg, 3, (RRnpcsp, RR_ZR, COND), t_cond),
25761 toU("csel", _csel, 4, (RRnpcsp, RR_ZR, RR_ZR, COND), t_cond),
25762 toU("csetm", _csetm, 2, (RRnpcsp, COND), t_cond),
25763 toU("cset", _cset, 2, (RRnpcsp, COND), t_cond),
25764 toU("csinc", _csinc, 4, (RRnpcsp, RR_ZR, RR_ZR, COND), t_cond),
25765 toU("csinv", _csinv, 4, (RRnpcsp, RR_ZR, RR_ZR, COND), t_cond),
25766 toU("csneg", _csneg, 4, (RRnpcsp, RR_ZR, RR_ZR, COND), t_cond),
25767
25768 toC("bf", _bf, 2, (EXPs, EXPs), t_branch_future),
25769 toU("bfcsel", _bfcsel, 4, (EXPs, EXPs, EXPs, COND), t_branch_future),
25770 toC("bfx", _bfx, 2, (EXPs, RRnpcsp), t_branch_future),
25771 toC("bfl", _bfl, 2, (EXPs, EXPs), t_branch_future),
25772 toC("bflx", _bflx, 2, (EXPs, RRnpcsp), t_branch_future),
25773
25774 toU("dls", _dls, 2, (LR, RRnpcsp), t_loloop),
25775 toU("wls", _wls, 3, (LR, RRnpcsp, EXP), t_loloop),
25776 toU("le", _le, 2, (oLR, EXP), t_loloop),
25777
25778 ToC("clrm", e89f0000, 1, (CLRMLST), t_clrm),
25779 ToC("vscclrm", ec9f0a00, 1, (VRSDVLST), t_vscclrm),
25780
25781 #undef THUMB_VARIANT
25782 #define THUMB_VARIANT & mve_ext
25783 ToC("lsll", ea50010d, 3, (RRe, RRo, RRnpcsp_I32), mve_scalar_shift),
25784 ToC("lsrl", ea50011f, 3, (RRe, RRo, I32), mve_scalar_shift),
25785 ToC("asrl", ea50012d, 3, (RRe, RRo, RRnpcsp_I32), mve_scalar_shift),
25786 ToC("uqrshll", ea51010d, 4, (RRe, RRo, I48_I64, RRnpcsp), mve_scalar_shift1),
25787 ToC("sqrshrl", ea51012d, 4, (RRe, RRo, I48_I64, RRnpcsp), mve_scalar_shift1),
25788 ToC("uqshll", ea51010f, 3, (RRe, RRo, I32), mve_scalar_shift),
25789 ToC("urshrl", ea51011f, 3, (RRe, RRo, I32), mve_scalar_shift),
25790 ToC("srshrl", ea51012f, 3, (RRe, RRo, I32), mve_scalar_shift),
25791 ToC("sqshll", ea51013f, 3, (RRe, RRo, I32), mve_scalar_shift),
25792 ToC("uqrshl", ea500f0d, 2, (RRnpcsp, RRnpcsp), mve_scalar_shift),
25793 ToC("sqrshr", ea500f2d, 2, (RRnpcsp, RRnpcsp), mve_scalar_shift),
25794 ToC("uqshl", ea500f0f, 2, (RRnpcsp, I32), mve_scalar_shift),
25795 ToC("urshr", ea500f1f, 2, (RRnpcsp, I32), mve_scalar_shift),
25796 ToC("srshr", ea500f2f, 2, (RRnpcsp, I32), mve_scalar_shift),
25797 ToC("sqshl", ea500f3f, 2, (RRnpcsp, I32), mve_scalar_shift),
25798
25799 ToC("vpt", ee410f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25800 ToC("vptt", ee018f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25801 ToC("vpte", ee418f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25802 ToC("vpttt", ee014f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25803 ToC("vptte", ee01cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25804 ToC("vptet", ee41cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25805 ToC("vptee", ee414f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25806 ToC("vptttt", ee012f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25807 ToC("vpttte", ee016f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25808 ToC("vpttet", ee01ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25809 ToC("vpttee", ee01af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25810 ToC("vptett", ee41af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25811 ToC("vptete", ee41ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25812 ToC("vpteet", ee416f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25813 ToC("vpteee", ee412f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25814
25815 ToC("vpst", fe710f4d, 0, (), mve_vpt),
25816 ToC("vpstt", fe318f4d, 0, (), mve_vpt),
25817 ToC("vpste", fe718f4d, 0, (), mve_vpt),
25818 ToC("vpsttt", fe314f4d, 0, (), mve_vpt),
25819 ToC("vpstte", fe31cf4d, 0, (), mve_vpt),
25820 ToC("vpstet", fe71cf4d, 0, (), mve_vpt),
25821 ToC("vpstee", fe714f4d, 0, (), mve_vpt),
25822 ToC("vpstttt", fe312f4d, 0, (), mve_vpt),
25823 ToC("vpsttte", fe316f4d, 0, (), mve_vpt),
25824 ToC("vpsttet", fe31ef4d, 0, (), mve_vpt),
25825 ToC("vpsttee", fe31af4d, 0, (), mve_vpt),
25826 ToC("vpstett", fe71af4d, 0, (), mve_vpt),
25827 ToC("vpstete", fe71ef4d, 0, (), mve_vpt),
25828 ToC("vpsteet", fe716f4d, 0, (), mve_vpt),
25829 ToC("vpsteee", fe712f4d, 0, (), mve_vpt),
25830
25831 /* MVE and MVE FP only. */
25832 mToC("vhcadd", ee000f00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vhcadd),
25833 mCEF(vctp, _vctp, 1, (RRnpc), mve_vctp),
25834 mCEF(vadc, _vadc, 3, (RMQ, RMQ, RMQ), mve_vadc),
25835 mCEF(vadci, _vadci, 3, (RMQ, RMQ, RMQ), mve_vadc),
25836 mToC("vsbc", fe300f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
25837 mToC("vsbci", fe301f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
25838 mCEF(vmullb, _vmullb, 3, (RMQ, RMQ, RMQ), mve_vmull),
25839 mCEF(vabav, _vabav, 3, (RRnpcsp, RMQ, RMQ), mve_vabav),
25840 mCEF(vmladav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
25841 mCEF(vmladava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
25842 mCEF(vmladavx, _vmladavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
25843 mCEF(vmladavax, _vmladavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
25844 mCEF(vmlav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
25845 mCEF(vmlava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
25846 mCEF(vmlsdav, _vmlsdav, 3, (RRe, RMQ, RMQ), mve_vmladav),
25847 mCEF(vmlsdava, _vmlsdava, 3, (RRe, RMQ, RMQ), mve_vmladav),
25848 mCEF(vmlsdavx, _vmlsdavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
25849 mCEF(vmlsdavax, _vmlsdavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
25850
25851 mCEF(vst20, _vst20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
25852 mCEF(vst21, _vst21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
25853 mCEF(vst40, _vst40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25854 mCEF(vst41, _vst41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25855 mCEF(vst42, _vst42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25856 mCEF(vst43, _vst43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25857 mCEF(vld20, _vld20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
25858 mCEF(vld21, _vld21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
25859 mCEF(vld40, _vld40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25860 mCEF(vld41, _vld41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25861 mCEF(vld42, _vld42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25862 mCEF(vld43, _vld43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25863 mCEF(vstrb, _vstrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25864 mCEF(vstrh, _vstrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25865 mCEF(vstrw, _vstrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25866 mCEF(vstrd, _vstrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25867 mCEF(vldrb, _vldrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25868 mCEF(vldrh, _vldrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25869 mCEF(vldrw, _vldrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25870 mCEF(vldrd, _vldrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25871
25872 mCEF(vmovnt, _vmovnt, 2, (RMQ, RMQ), mve_movn),
25873 mCEF(vmovnb, _vmovnb, 2, (RMQ, RMQ), mve_movn),
25874 mCEF(vbrsr, _vbrsr, 3, (RMQ, RMQ, RR), mve_vbrsr),
25875 mCEF(vaddlv, _vaddlv, 3, (RRe, RRo, RMQ), mve_vaddlv),
25876 mCEF(vaddlva, _vaddlva, 3, (RRe, RRo, RMQ), mve_vaddlv),
25877 mCEF(vaddv, _vaddv, 2, (RRe, RMQ), mve_vaddv),
25878 mCEF(vaddva, _vaddva, 2, (RRe, RMQ), mve_vaddv),
25879 mCEF(vddup, _vddup, 3, (RMQ, RRe, EXPi), mve_viddup),
25880 mCEF(vdwdup, _vdwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
25881 mCEF(vidup, _vidup, 3, (RMQ, RRe, EXPi), mve_viddup),
25882 mCEF(viwdup, _viwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
25883 mToC("vmaxa", ee330e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
25884 mToC("vmina", ee331e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
25885 mCEF(vmaxv, _vmaxv, 2, (RR, RMQ), mve_vmaxv),
25886 mCEF(vmaxav, _vmaxav, 2, (RR, RMQ), mve_vmaxv),
25887 mCEF(vminv, _vminv, 2, (RR, RMQ), mve_vmaxv),
25888 mCEF(vminav, _vminav, 2, (RR, RMQ), mve_vmaxv),
25889
25890 mCEF(vmlaldav, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25891 mCEF(vmlaldava, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25892 mCEF(vmlaldavx, _vmlaldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25893 mCEF(vmlaldavax, _vmlaldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25894 mCEF(vmlalv, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25895 mCEF(vmlalva, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25896 mCEF(vmlsldav, _vmlsldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25897 mCEF(vmlsldava, _vmlsldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25898 mCEF(vmlsldavx, _vmlsldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25899 mCEF(vmlsldavax, _vmlsldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25900 mToC("vrmlaldavh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25901 mToC("vrmlaldavha",ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25902 mCEF(vrmlaldavhx, _vrmlaldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25903 mCEF(vrmlaldavhax, _vrmlaldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25904 mToC("vrmlalvh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25905 mToC("vrmlalvha", ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25906 mCEF(vrmlsldavh, _vrmlsldavh, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25907 mCEF(vrmlsldavha, _vrmlsldavha, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25908 mCEF(vrmlsldavhx, _vrmlsldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25909 mCEF(vrmlsldavhax, _vrmlsldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25910
25911 mToC("vmlas", ee011e40, 3, (RMQ, RMQ, RR), mve_vmlas),
25912 mToC("vmulh", ee010e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
25913 mToC("vrmulh", ee011e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
25914 mToC("vpnot", fe310f4d, 0, (), mve_vpnot),
25915 mToC("vpsel", fe310f01, 3, (RMQ, RMQ, RMQ), mve_vpsel),
25916
25917 mToC("vqdmladh", ee000e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25918 mToC("vqdmladhx", ee001e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25919 mToC("vqrdmladh", ee000e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25920 mToC("vqrdmladhx",ee001e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25921 mToC("vqdmlsdh", fe000e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25922 mToC("vqdmlsdhx", fe001e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25923 mToC("vqrdmlsdh", fe000e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25924 mToC("vqrdmlsdhx",fe001e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25925 mToC("vqdmlah", ee000e60, 3, (RMQ, RMQ, RR), mve_vqdmlah),
25926 mToC("vqdmlash", ee001e60, 3, (RMQ, RMQ, RR), mve_vqdmlah),
25927 mToC("vqrdmlash", ee001e40, 3, (RMQ, RMQ, RR), mve_vqdmlah),
25928 mToC("vqdmullt", ee301f00, 3, (RMQ, RMQ, RMQRR), mve_vqdmull),
25929 mToC("vqdmullb", ee300f00, 3, (RMQ, RMQ, RMQRR), mve_vqdmull),
25930 mCEF(vqmovnt, _vqmovnt, 2, (RMQ, RMQ), mve_vqmovn),
25931 mCEF(vqmovnb, _vqmovnb, 2, (RMQ, RMQ), mve_vqmovn),
25932 mCEF(vqmovunt, _vqmovunt, 2, (RMQ, RMQ), mve_vqmovn),
25933 mCEF(vqmovunb, _vqmovunb, 2, (RMQ, RMQ), mve_vqmovn),
25934
25935 mCEF(vshrnt, _vshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25936 mCEF(vshrnb, _vshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25937 mCEF(vrshrnt, _vrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25938 mCEF(vrshrnb, _vrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25939 mCEF(vqshrnt, _vqrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25940 mCEF(vqshrnb, _vqrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25941 mCEF(vqshrunt, _vqrshrunt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25942 mCEF(vqshrunb, _vqrshrunb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25943 mCEF(vqrshrnt, _vqrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25944 mCEF(vqrshrnb, _vqrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25945 mCEF(vqrshrunt, _vqrshrunt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25946 mCEF(vqrshrunb, _vqrshrunb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25947
25948 mToC("vshlc", eea00fc0, 3, (RMQ, RR, I32z), mve_vshlc),
25949 mToC("vshllt", ee201e00, 3, (RMQ, RMQ, I32), mve_vshll),
25950 mToC("vshllb", ee200e00, 3, (RMQ, RMQ, I32), mve_vshll),
25951
25952 toU("dlstp", _dlstp, 2, (LR, RR), t_loloop),
25953 toU("wlstp", _wlstp, 3, (LR, RR, EXP), t_loloop),
25954 toU("letp", _letp, 2, (LR, EXP), t_loloop),
25955 toU("lctp", _lctp, 0, (), t_loloop),
25956
25957 #undef THUMB_VARIANT
25958 #define THUMB_VARIANT & mve_fp_ext
25959 mToC("vcmul", ee300e00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vcmul),
25960 mToC("vfmas", ee311e40, 3, (RMQ, RMQ, RR), mve_vfmas),
25961 mToC("vmaxnma", ee3f0e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
25962 mToC("vminnma", ee3f1e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
25963 mToC("vmaxnmv", eeee0f00, 2, (RR, RMQ), mve_vmaxnmv),
25964 mToC("vmaxnmav",eeec0f00, 2, (RR, RMQ), mve_vmaxnmv),
25965 mToC("vminnmv", eeee0f80, 2, (RR, RMQ), mve_vmaxnmv),
25966 mToC("vminnmav",eeec0f80, 2, (RR, RMQ), mve_vmaxnmv),
25967
25968 #undef ARM_VARIANT
25969 #define ARM_VARIANT & fpu_vfp_ext_v1
25970 #undef THUMB_VARIANT
25971 #define THUMB_VARIANT & arm_ext_v6t2
25972 mnCEF(vmla, _vmla, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mac_maybe_scalar),
25973 mnCEF(vmul, _vmul, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mul),
25974
25975 mcCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
25976
25977 #undef ARM_VARIANT
25978 #define ARM_VARIANT & fpu_vfp_ext_v1xd
25979
25980 MNCE(vmov, 0, 1, (VMOV), neon_mov),
25981 mcCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
25982 mcCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
25983 mcCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
25984
25985 mCEF(vmullt, _vmullt, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ), mve_vmull),
25986 mnCEF(vadd, _vadd, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
25987 mnCEF(vsub, _vsub, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
25988
25989 MNCEF(vabs, 1b10300, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
25990 MNCEF(vneg, 1b10380, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
25991
25992 mCEF(vmovlt, _vmovlt, 1, (VMOV), mve_movl),
25993 mCEF(vmovlb, _vmovlb, 1, (VMOV), mve_movl),
25994
25995 mnCE(vcmp, _vcmp, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
25996 mnCE(vcmpe, _vcmpe, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
25997
25998 #undef ARM_VARIANT
25999 #define ARM_VARIANT & fpu_vfp_ext_v2
26000
26001 mcCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
26002 mcCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
26003 mcCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
26004 mcCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
26005
26006 #undef ARM_VARIANT
26007 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
26008 mnUF(vcvta, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvta),
26009 mnUF(vcvtp, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtp),
26010 mnUF(vcvtn, _vcvta, 3, (RNSDQMQ, oRNSDQMQ, oI32z), neon_cvtn),
26011 mnUF(vcvtm, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtm),
26012 mnUF(vmaxnm, _vmaxnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
26013 mnUF(vminnm, _vminnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
26014
26015 #undef ARM_VARIANT
26016 #define ARM_VARIANT & fpu_neon_ext_v1
26017 mnUF(vabd, _vabd, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
26018 mnUF(vabdl, _vabdl, 3, (RNQMQ, RNDMQ, RNDMQ), neon_dyadic_long),
26019 mnUF(vaddl, _vaddl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
26020 mnUF(vsubl, _vsubl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
26021 mnUF(vand, _vand, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
26022 mnUF(vbic, _vbic, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
26023 mnUF(vorr, _vorr, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
26024 mnUF(vorn, _vorn, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
26025 mnUF(veor, _veor, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_logic),
26026 MNUF(vcls, 1b00400, 2, (RNDQMQ, RNDQMQ), neon_cls),
26027 MNUF(vclz, 1b00480, 2, (RNDQMQ, RNDQMQ), neon_clz),
26028 mnCE(vdup, _vdup, 2, (RNDQMQ, RR_RNSC), neon_dup),
26029 MNUF(vhadd, 00000000, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
26030 MNUF(vrhadd, 00000100, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_i_su),
26031 MNUF(vhsub, 00000200, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
26032 mnUF(vmin, _vmin, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
26033 mnUF(vmax, _vmax, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
26034 MNUF(vqadd, 0000010, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
26035 MNUF(vqsub, 0000210, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
26036 mnUF(vmvn, _vmvn, 2, (RNDQMQ, RNDQMQ_Ibig), neon_mvn),
26037 MNUF(vqabs, 1b00700, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg),
26038 MNUF(vqneg, 1b00780, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg),
26039 mnUF(vqrdmlah, _vqrdmlah,3, (RNDQMQ, oRNDQMQ, RNDQ_RNSC_RR), neon_qrdmlah),
26040 mnUF(vqdmulh, _vqdmulh, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_RNSC_RR), neon_qdmulh),
26041 mnUF(vqrdmulh, _vqrdmulh,3, (RNDQMQ, oRNDQMQ, RNDQMQ_RNSC_RR), neon_qdmulh),
26042 MNUF(vqrshl, 0000510, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_rshl),
26043 MNUF(vrshl, 0000500, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_rshl),
26044 MNUF(vshr, 0800010, 3, (RNDQMQ, oRNDQMQ, I64z), neon_rshift_round_imm),
26045 MNUF(vrshr, 0800210, 3, (RNDQMQ, oRNDQMQ, I64z), neon_rshift_round_imm),
26046 MNUF(vsli, 1800510, 3, (RNDQMQ, oRNDQMQ, I63), neon_sli),
26047 MNUF(vsri, 1800410, 3, (RNDQMQ, oRNDQMQ, I64z), neon_sri),
26048 MNUF(vrev64, 1b00000, 2, (RNDQMQ, RNDQMQ), neon_rev),
26049 MNUF(vrev32, 1b00080, 2, (RNDQMQ, RNDQMQ), neon_rev),
26050 MNUF(vrev16, 1b00100, 2, (RNDQMQ, RNDQMQ), neon_rev),
26051 mnUF(vshl, _vshl, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_I63b_RR), neon_shl),
26052 mnUF(vqshl, _vqshl, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_I63b_RR), neon_qshl),
26053 MNUF(vqshlu, 1800610, 3, (RNDQMQ, oRNDQMQ, I63), neon_qshlu_imm),
26054
26055 #undef ARM_VARIANT
26056 #define ARM_VARIANT & arm_ext_v8_3
26057 #undef THUMB_VARIANT
26058 #define THUMB_VARIANT & arm_ext_v6t2_v8m
26059 MNUF (vcadd, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ, EXPi), vcadd),
26060 MNUF (vcmla, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ_RNSC, EXPi), vcmla),
26061
26062 #undef ARM_VARIANT
26063 #define ARM_VARIANT &arm_ext_bf16
26064 #undef THUMB_VARIANT
26065 #define THUMB_VARIANT &arm_ext_bf16
26066 TUF ("vdot", c000d00, fc000d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), vdot, vdot),
26067 TUF ("vmmla", c000c40, fc000c40, 3, (RNQ, RNQ, RNQ), vmmla, vmmla),
26068 TUF ("vfmab", c300810, fc300810, 3, (RNDQ, RNDQ, RNDQ_RNSC), bfloat_vfma, bfloat_vfma),
26069
26070 #undef ARM_VARIANT
26071 #define ARM_VARIANT &arm_ext_i8mm
26072 #undef THUMB_VARIANT
26073 #define THUMB_VARIANT &arm_ext_i8mm
26074 TUF ("vsmmla", c200c40, fc200c40, 3, (RNQ, RNQ, RNQ), vsmmla, vsmmla),
26075 TUF ("vummla", c200c50, fc200c50, 3, (RNQ, RNQ, RNQ), vummla, vummla),
26076 TUF ("vusmmla", ca00c40, fca00c40, 3, (RNQ, RNQ, RNQ), vsmmla, vsmmla),
26077 TUF ("vusdot", c800d00, fc800d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), vusdot, vusdot),
26078 TUF ("vsudot", c800d10, fc800d10, 3, (RNDQ, RNDQ, RNSC), vsudot, vsudot),
26079 };
26080 #undef ARM_VARIANT
26081 #undef THUMB_VARIANT
26082 #undef TCE
26083 #undef TUE
26084 #undef TUF
26085 #undef TCC
26086 #undef cCE
26087 #undef cCL
26088 #undef C3E
26089 #undef C3
26090 #undef CE
26091 #undef CM
26092 #undef CL
26093 #undef UE
26094 #undef UF
26095 #undef UT
26096 #undef NUF
26097 #undef nUF
26098 #undef NCE
26099 #undef nCE
26100 #undef OPS0
26101 #undef OPS1
26102 #undef OPS2
26103 #undef OPS3
26104 #undef OPS4
26105 #undef OPS5
26106 #undef OPS6
26107 #undef do_0
26108 #undef ToC
26109 #undef toC
26110 #undef ToU
26111 #undef toU
26112 \f
26113 /* MD interface: bits in the object file. */
26114
26115 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
26116 for use in the a.out file, and stores them in the array pointed to by buf.
26117 This knows about the endian-ness of the target machine and does
26118 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
26119 2 (short) and 4 (long) Floating numbers are put out as a series of
26120 LITTLENUMS (shorts, here at least). */
26121
26122 void
26123 md_number_to_chars (char * buf, valueT val, int n)
26124 {
26125 if (target_big_endian)
26126 number_to_chars_bigendian (buf, val, n);
26127 else
26128 number_to_chars_littleendian (buf, val, n);
26129 }
26130
26131 static valueT
26132 md_chars_to_number (char * buf, int n)
26133 {
26134 valueT result = 0;
26135 unsigned char * where = (unsigned char *) buf;
26136
26137 if (target_big_endian)
26138 {
26139 while (n--)
26140 {
26141 result <<= 8;
26142 result |= (*where++ & 255);
26143 }
26144 }
26145 else
26146 {
26147 while (n--)
26148 {
26149 result <<= 8;
26150 result |= (where[n] & 255);
26151 }
26152 }
26153
26154 return result;
26155 }
26156
26157 /* MD interface: Sections. */
26158
26159 /* Calculate the maximum variable size (i.e., excluding fr_fix)
26160 that an rs_machine_dependent frag may reach. */
26161
26162 unsigned int
26163 arm_frag_max_var (fragS *fragp)
26164 {
26165 /* We only use rs_machine_dependent for variable-size Thumb instructions,
26166 which are either THUMB_SIZE (2) or INSN_SIZE (4).
26167
26168 Note that we generate relaxable instructions even for cases that don't
26169 really need it, like an immediate that's a trivial constant. So we're
26170 overestimating the instruction size for some of those cases. Rather
26171 than putting more intelligence here, it would probably be better to
26172 avoid generating a relaxation frag in the first place when it can be
26173 determined up front that a short instruction will suffice. */
26174
26175 gas_assert (fragp->fr_type == rs_machine_dependent);
26176 return INSN_SIZE;
26177 }
26178
26179 /* Estimate the size of a frag before relaxing. Assume everything fits in
26180 2 bytes. */
26181
26182 int
26183 md_estimate_size_before_relax (fragS * fragp,
26184 segT segtype ATTRIBUTE_UNUSED)
26185 {
26186 fragp->fr_var = 2;
26187 return 2;
26188 }
26189
26190 /* Convert a machine dependent frag. */
26191
26192 void
26193 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
26194 {
26195 unsigned long insn;
26196 unsigned long old_op;
26197 char *buf;
26198 expressionS exp;
26199 fixS *fixp;
26200 int reloc_type;
26201 int pc_rel;
26202 int opcode;
26203
26204 buf = fragp->fr_literal + fragp->fr_fix;
26205
26206 old_op = bfd_get_16(abfd, buf);
26207 if (fragp->fr_symbol)
26208 {
26209 exp.X_op = O_symbol;
26210 exp.X_add_symbol = fragp->fr_symbol;
26211 }
26212 else
26213 {
26214 exp.X_op = O_constant;
26215 }
26216 exp.X_add_number = fragp->fr_offset;
26217 opcode = fragp->fr_subtype;
26218 switch (opcode)
26219 {
26220 case T_MNEM_ldr_pc:
26221 case T_MNEM_ldr_pc2:
26222 case T_MNEM_ldr_sp:
26223 case T_MNEM_str_sp:
26224 case T_MNEM_ldr:
26225 case T_MNEM_ldrb:
26226 case T_MNEM_ldrh:
26227 case T_MNEM_str:
26228 case T_MNEM_strb:
26229 case T_MNEM_strh:
26230 if (fragp->fr_var == 4)
26231 {
26232 insn = THUMB_OP32 (opcode);
26233 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
26234 {
26235 insn |= (old_op & 0x700) << 4;
26236 }
26237 else
26238 {
26239 insn |= (old_op & 7) << 12;
26240 insn |= (old_op & 0x38) << 13;
26241 }
26242 insn |= 0x00000c00;
26243 put_thumb32_insn (buf, insn);
26244 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
26245 }
26246 else
26247 {
26248 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
26249 }
26250 pc_rel = (opcode == T_MNEM_ldr_pc2);
26251 break;
26252 case T_MNEM_adr:
26253 if (fragp->fr_var == 4)
26254 {
26255 insn = THUMB_OP32 (opcode);
26256 insn |= (old_op & 0xf0) << 4;
26257 put_thumb32_insn (buf, insn);
26258 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
26259 }
26260 else
26261 {
26262 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
26263 exp.X_add_number -= 4;
26264 }
26265 pc_rel = 1;
26266 break;
26267 case T_MNEM_mov:
26268 case T_MNEM_movs:
26269 case T_MNEM_cmp:
26270 case T_MNEM_cmn:
26271 if (fragp->fr_var == 4)
26272 {
26273 int r0off = (opcode == T_MNEM_mov
26274 || opcode == T_MNEM_movs) ? 0 : 8;
26275 insn = THUMB_OP32 (opcode);
26276 insn = (insn & 0xe1ffffff) | 0x10000000;
26277 insn |= (old_op & 0x700) << r0off;
26278 put_thumb32_insn (buf, insn);
26279 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
26280 }
26281 else
26282 {
26283 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
26284 }
26285 pc_rel = 0;
26286 break;
26287 case T_MNEM_b:
26288 if (fragp->fr_var == 4)
26289 {
26290 insn = THUMB_OP32(opcode);
26291 put_thumb32_insn (buf, insn);
26292 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
26293 }
26294 else
26295 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
26296 pc_rel = 1;
26297 break;
26298 case T_MNEM_bcond:
26299 if (fragp->fr_var == 4)
26300 {
26301 insn = THUMB_OP32(opcode);
26302 insn |= (old_op & 0xf00) << 14;
26303 put_thumb32_insn (buf, insn);
26304 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
26305 }
26306 else
26307 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
26308 pc_rel = 1;
26309 break;
26310 case T_MNEM_add_sp:
26311 case T_MNEM_add_pc:
26312 case T_MNEM_inc_sp:
26313 case T_MNEM_dec_sp:
26314 if (fragp->fr_var == 4)
26315 {
26316 /* ??? Choose between add and addw. */
26317 insn = THUMB_OP32 (opcode);
26318 insn |= (old_op & 0xf0) << 4;
26319 put_thumb32_insn (buf, insn);
26320 if (opcode == T_MNEM_add_pc)
26321 reloc_type = BFD_RELOC_ARM_T32_IMM12;
26322 else
26323 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
26324 }
26325 else
26326 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
26327 pc_rel = 0;
26328 break;
26329
26330 case T_MNEM_addi:
26331 case T_MNEM_addis:
26332 case T_MNEM_subi:
26333 case T_MNEM_subis:
26334 if (fragp->fr_var == 4)
26335 {
26336 insn = THUMB_OP32 (opcode);
26337 insn |= (old_op & 0xf0) << 4;
26338 insn |= (old_op & 0xf) << 16;
26339 put_thumb32_insn (buf, insn);
26340 if (insn & (1 << 20))
26341 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
26342 else
26343 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
26344 }
26345 else
26346 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
26347 pc_rel = 0;
26348 break;
26349 default:
26350 abort ();
26351 }
26352 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
26353 (enum bfd_reloc_code_real) reloc_type);
26354 fixp->fx_file = fragp->fr_file;
26355 fixp->fx_line = fragp->fr_line;
26356 fragp->fr_fix += fragp->fr_var;
26357
26358 /* Set whether we use thumb-2 ISA based on final relaxation results. */
26359 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
26360 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
26361 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
26362 }
26363
26364 /* Return the size of a relaxable immediate operand instruction.
26365 SHIFT and SIZE specify the form of the allowable immediate. */
26366 static int
26367 relax_immediate (fragS *fragp, int size, int shift)
26368 {
26369 offsetT offset;
26370 offsetT mask;
26371 offsetT low;
26372
26373 /* ??? Should be able to do better than this. */
26374 if (fragp->fr_symbol)
26375 return 4;
26376
26377 low = (1 << shift) - 1;
26378 mask = (1 << (shift + size)) - (1 << shift);
26379 offset = fragp->fr_offset;
26380 /* Force misaligned offsets to 32-bit variant. */
26381 if (offset & low)
26382 return 4;
26383 if (offset & ~mask)
26384 return 4;
26385 return 2;
26386 }
26387
26388 /* Get the address of a symbol during relaxation. */
26389 static addressT
26390 relaxed_symbol_addr (fragS *fragp, long stretch)
26391 {
26392 fragS *sym_frag;
26393 addressT addr;
26394 symbolS *sym;
26395
26396 sym = fragp->fr_symbol;
26397 sym_frag = symbol_get_frag (sym);
26398 know (S_GET_SEGMENT (sym) != absolute_section
26399 || sym_frag == &zero_address_frag);
26400 addr = S_GET_VALUE (sym) + fragp->fr_offset;
26401
26402 /* If frag has yet to be reached on this pass, assume it will
26403 move by STRETCH just as we did. If this is not so, it will
26404 be because some frag between grows, and that will force
26405 another pass. */
26406
26407 if (stretch != 0
26408 && sym_frag->relax_marker != fragp->relax_marker)
26409 {
26410 fragS *f;
26411
26412 /* Adjust stretch for any alignment frag. Note that if have
26413 been expanding the earlier code, the symbol may be
26414 defined in what appears to be an earlier frag. FIXME:
26415 This doesn't handle the fr_subtype field, which specifies
26416 a maximum number of bytes to skip when doing an
26417 alignment. */
26418 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
26419 {
26420 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
26421 {
26422 if (stretch < 0)
26423 stretch = - ((- stretch)
26424 & ~ ((1 << (int) f->fr_offset) - 1));
26425 else
26426 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
26427 if (stretch == 0)
26428 break;
26429 }
26430 }
26431 if (f != NULL)
26432 addr += stretch;
26433 }
26434
26435 return addr;
26436 }
26437
26438 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
26439 load. */
26440 static int
26441 relax_adr (fragS *fragp, asection *sec, long stretch)
26442 {
26443 addressT addr;
26444 offsetT val;
26445
26446 /* Assume worst case for symbols not known to be in the same section. */
26447 if (fragp->fr_symbol == NULL
26448 || !S_IS_DEFINED (fragp->fr_symbol)
26449 || sec != S_GET_SEGMENT (fragp->fr_symbol)
26450 || S_IS_WEAK (fragp->fr_symbol))
26451 return 4;
26452
26453 val = relaxed_symbol_addr (fragp, stretch);
26454 addr = fragp->fr_address + fragp->fr_fix;
26455 addr = (addr + 4) & ~3;
26456 /* Force misaligned targets to 32-bit variant. */
26457 if (val & 3)
26458 return 4;
26459 val -= addr;
26460 if (val < 0 || val > 1020)
26461 return 4;
26462 return 2;
26463 }
26464
26465 /* Return the size of a relaxable add/sub immediate instruction. */
26466 static int
26467 relax_addsub (fragS *fragp, asection *sec)
26468 {
26469 char *buf;
26470 int op;
26471
26472 buf = fragp->fr_literal + fragp->fr_fix;
26473 op = bfd_get_16(sec->owner, buf);
26474 if ((op & 0xf) == ((op >> 4) & 0xf))
26475 return relax_immediate (fragp, 8, 0);
26476 else
26477 return relax_immediate (fragp, 3, 0);
26478 }
26479
26480 /* Return TRUE iff the definition of symbol S could be pre-empted
26481 (overridden) at link or load time. */
26482 static bfd_boolean
26483 symbol_preemptible (symbolS *s)
26484 {
26485 /* Weak symbols can always be pre-empted. */
26486 if (S_IS_WEAK (s))
26487 return TRUE;
26488
26489 /* Non-global symbols cannot be pre-empted. */
26490 if (! S_IS_EXTERNAL (s))
26491 return FALSE;
26492
26493 #ifdef OBJ_ELF
26494 /* In ELF, a global symbol can be marked protected, or private. In that
26495 case it can't be pre-empted (other definitions in the same link unit
26496 would violate the ODR). */
26497 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
26498 return FALSE;
26499 #endif
26500
26501 /* Other global symbols might be pre-empted. */
26502 return TRUE;
26503 }
26504
26505 /* Return the size of a relaxable branch instruction. BITS is the
26506 size of the offset field in the narrow instruction. */
26507
26508 static int
26509 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
26510 {
26511 addressT addr;
26512 offsetT val;
26513 offsetT limit;
26514
26515 /* Assume worst case for symbols not known to be in the same section. */
26516 if (!S_IS_DEFINED (fragp->fr_symbol)
26517 || sec != S_GET_SEGMENT (fragp->fr_symbol)
26518 || S_IS_WEAK (fragp->fr_symbol))
26519 return 4;
26520
26521 #ifdef OBJ_ELF
26522 /* A branch to a function in ARM state will require interworking. */
26523 if (S_IS_DEFINED (fragp->fr_symbol)
26524 && ARM_IS_FUNC (fragp->fr_symbol))
26525 return 4;
26526 #endif
26527
26528 if (symbol_preemptible (fragp->fr_symbol))
26529 return 4;
26530
26531 val = relaxed_symbol_addr (fragp, stretch);
26532 addr = fragp->fr_address + fragp->fr_fix + 4;
26533 val -= addr;
26534
26535 /* Offset is a signed value *2 */
26536 limit = 1 << bits;
26537 if (val >= limit || val < -limit)
26538 return 4;
26539 return 2;
26540 }
26541
26542
26543 /* Relax a machine dependent frag. This returns the amount by which
26544 the current size of the frag should change. */
26545
26546 int
26547 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
26548 {
26549 int oldsize;
26550 int newsize;
26551
26552 oldsize = fragp->fr_var;
26553 switch (fragp->fr_subtype)
26554 {
26555 case T_MNEM_ldr_pc2:
26556 newsize = relax_adr (fragp, sec, stretch);
26557 break;
26558 case T_MNEM_ldr_pc:
26559 case T_MNEM_ldr_sp:
26560 case T_MNEM_str_sp:
26561 newsize = relax_immediate (fragp, 8, 2);
26562 break;
26563 case T_MNEM_ldr:
26564 case T_MNEM_str:
26565 newsize = relax_immediate (fragp, 5, 2);
26566 break;
26567 case T_MNEM_ldrh:
26568 case T_MNEM_strh:
26569 newsize = relax_immediate (fragp, 5, 1);
26570 break;
26571 case T_MNEM_ldrb:
26572 case T_MNEM_strb:
26573 newsize = relax_immediate (fragp, 5, 0);
26574 break;
26575 case T_MNEM_adr:
26576 newsize = relax_adr (fragp, sec, stretch);
26577 break;
26578 case T_MNEM_mov:
26579 case T_MNEM_movs:
26580 case T_MNEM_cmp:
26581 case T_MNEM_cmn:
26582 newsize = relax_immediate (fragp, 8, 0);
26583 break;
26584 case T_MNEM_b:
26585 newsize = relax_branch (fragp, sec, 11, stretch);
26586 break;
26587 case T_MNEM_bcond:
26588 newsize = relax_branch (fragp, sec, 8, stretch);
26589 break;
26590 case T_MNEM_add_sp:
26591 case T_MNEM_add_pc:
26592 newsize = relax_immediate (fragp, 8, 2);
26593 break;
26594 case T_MNEM_inc_sp:
26595 case T_MNEM_dec_sp:
26596 newsize = relax_immediate (fragp, 7, 2);
26597 break;
26598 case T_MNEM_addi:
26599 case T_MNEM_addis:
26600 case T_MNEM_subi:
26601 case T_MNEM_subis:
26602 newsize = relax_addsub (fragp, sec);
26603 break;
26604 default:
26605 abort ();
26606 }
26607
26608 fragp->fr_var = newsize;
26609 /* Freeze wide instructions that are at or before the same location as
26610 in the previous pass. This avoids infinite loops.
26611 Don't freeze them unconditionally because targets may be artificially
26612 misaligned by the expansion of preceding frags. */
26613 if (stretch <= 0 && newsize > 2)
26614 {
26615 md_convert_frag (sec->owner, sec, fragp);
26616 frag_wane (fragp);
26617 }
26618
26619 return newsize - oldsize;
26620 }
26621
26622 /* Round up a section size to the appropriate boundary. */
26623
26624 valueT
26625 md_section_align (segT segment ATTRIBUTE_UNUSED,
26626 valueT size)
26627 {
26628 return size;
26629 }
26630
26631 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
26632 of an rs_align_code fragment. */
26633
26634 void
26635 arm_handle_align (fragS * fragP)
26636 {
26637 static unsigned char const arm_noop[2][2][4] =
26638 {
26639 { /* ARMv1 */
26640 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
26641 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
26642 },
26643 { /* ARMv6k */
26644 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
26645 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
26646 },
26647 };
26648 static unsigned char const thumb_noop[2][2][2] =
26649 {
26650 { /* Thumb-1 */
26651 {0xc0, 0x46}, /* LE */
26652 {0x46, 0xc0}, /* BE */
26653 },
26654 { /* Thumb-2 */
26655 {0x00, 0xbf}, /* LE */
26656 {0xbf, 0x00} /* BE */
26657 }
26658 };
26659 static unsigned char const wide_thumb_noop[2][4] =
26660 { /* Wide Thumb-2 */
26661 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
26662 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
26663 };
26664
26665 unsigned bytes, fix, noop_size;
26666 char * p;
26667 const unsigned char * noop;
26668 const unsigned char *narrow_noop = NULL;
26669 #ifdef OBJ_ELF
26670 enum mstate state;
26671 #endif
26672
26673 if (fragP->fr_type != rs_align_code)
26674 return;
26675
26676 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
26677 p = fragP->fr_literal + fragP->fr_fix;
26678 fix = 0;
26679
26680 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
26681 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
26682
26683 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
26684
26685 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
26686 {
26687 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
26688 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
26689 {
26690 narrow_noop = thumb_noop[1][target_big_endian];
26691 noop = wide_thumb_noop[target_big_endian];
26692 }
26693 else
26694 noop = thumb_noop[0][target_big_endian];
26695 noop_size = 2;
26696 #ifdef OBJ_ELF
26697 state = MAP_THUMB;
26698 #endif
26699 }
26700 else
26701 {
26702 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
26703 ? selected_cpu : arm_arch_none,
26704 arm_ext_v6k) != 0]
26705 [target_big_endian];
26706 noop_size = 4;
26707 #ifdef OBJ_ELF
26708 state = MAP_ARM;
26709 #endif
26710 }
26711
26712 fragP->fr_var = noop_size;
26713
26714 if (bytes & (noop_size - 1))
26715 {
26716 fix = bytes & (noop_size - 1);
26717 #ifdef OBJ_ELF
26718 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
26719 #endif
26720 memset (p, 0, fix);
26721 p += fix;
26722 bytes -= fix;
26723 }
26724
26725 if (narrow_noop)
26726 {
26727 if (bytes & noop_size)
26728 {
26729 /* Insert a narrow noop. */
26730 memcpy (p, narrow_noop, noop_size);
26731 p += noop_size;
26732 bytes -= noop_size;
26733 fix += noop_size;
26734 }
26735
26736 /* Use wide noops for the remainder */
26737 noop_size = 4;
26738 }
26739
26740 while (bytes >= noop_size)
26741 {
26742 memcpy (p, noop, noop_size);
26743 p += noop_size;
26744 bytes -= noop_size;
26745 fix += noop_size;
26746 }
26747
26748 fragP->fr_fix += fix;
26749 }
26750
26751 /* Called from md_do_align. Used to create an alignment
26752 frag in a code section. */
26753
26754 void
26755 arm_frag_align_code (int n, int max)
26756 {
26757 char * p;
26758
26759 /* We assume that there will never be a requirement
26760 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
26761 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
26762 {
26763 char err_msg[128];
26764
26765 sprintf (err_msg,
26766 _("alignments greater than %d bytes not supported in .text sections."),
26767 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
26768 as_fatal ("%s", err_msg);
26769 }
26770
26771 p = frag_var (rs_align_code,
26772 MAX_MEM_FOR_RS_ALIGN_CODE,
26773 1,
26774 (relax_substateT) max,
26775 (symbolS *) NULL,
26776 (offsetT) n,
26777 (char *) NULL);
26778 *p = 0;
26779 }
26780
26781 /* Perform target specific initialisation of a frag.
26782 Note - despite the name this initialisation is not done when the frag
26783 is created, but only when its type is assigned. A frag can be created
26784 and used a long time before its type is set, so beware of assuming that
26785 this initialisation is performed first. */
26786
26787 #ifndef OBJ_ELF
26788 void
26789 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
26790 {
26791 /* Record whether this frag is in an ARM or a THUMB area. */
26792 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
26793 }
26794
26795 #else /* OBJ_ELF is defined. */
26796 void
26797 arm_init_frag (fragS * fragP, int max_chars)
26798 {
26799 bfd_boolean frag_thumb_mode;
26800
26801 /* If the current ARM vs THUMB mode has not already
26802 been recorded into this frag then do so now. */
26803 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
26804 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
26805
26806 /* PR 21809: Do not set a mapping state for debug sections
26807 - it just confuses other tools. */
26808 if (bfd_section_flags (now_seg) & SEC_DEBUGGING)
26809 return;
26810
26811 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
26812
26813 /* Record a mapping symbol for alignment frags. We will delete this
26814 later if the alignment ends up empty. */
26815 switch (fragP->fr_type)
26816 {
26817 case rs_align:
26818 case rs_align_test:
26819 case rs_fill:
26820 mapping_state_2 (MAP_DATA, max_chars);
26821 break;
26822 case rs_align_code:
26823 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
26824 break;
26825 default:
26826 break;
26827 }
26828 }
26829
26830 /* When we change sections we need to issue a new mapping symbol. */
26831
26832 void
26833 arm_elf_change_section (void)
26834 {
26835 /* Link an unlinked unwind index table section to the .text section. */
26836 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
26837 && elf_linked_to_section (now_seg) == NULL)
26838 elf_linked_to_section (now_seg) = text_section;
26839 }
26840
26841 int
26842 arm_elf_section_type (const char * str, size_t len)
26843 {
26844 if (len == 5 && strncmp (str, "exidx", 5) == 0)
26845 return SHT_ARM_EXIDX;
26846
26847 return -1;
26848 }
26849 \f
26850 /* Code to deal with unwinding tables. */
26851
26852 static void add_unwind_adjustsp (offsetT);
26853
26854 /* Generate any deferred unwind frame offset. */
26855
26856 static void
26857 flush_pending_unwind (void)
26858 {
26859 offsetT offset;
26860
26861 offset = unwind.pending_offset;
26862 unwind.pending_offset = 0;
26863 if (offset != 0)
26864 add_unwind_adjustsp (offset);
26865 }
26866
26867 /* Add an opcode to this list for this function. Two-byte opcodes should
26868 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
26869 order. */
26870
26871 static void
26872 add_unwind_opcode (valueT op, int length)
26873 {
26874 /* Add any deferred stack adjustment. */
26875 if (unwind.pending_offset)
26876 flush_pending_unwind ();
26877
26878 unwind.sp_restored = 0;
26879
26880 if (unwind.opcode_count + length > unwind.opcode_alloc)
26881 {
26882 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
26883 if (unwind.opcodes)
26884 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
26885 unwind.opcode_alloc);
26886 else
26887 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
26888 }
26889 while (length > 0)
26890 {
26891 length--;
26892 unwind.opcodes[unwind.opcode_count] = op & 0xff;
26893 op >>= 8;
26894 unwind.opcode_count++;
26895 }
26896 }
26897
26898 /* Add unwind opcodes to adjust the stack pointer. */
26899
26900 static void
26901 add_unwind_adjustsp (offsetT offset)
26902 {
26903 valueT op;
26904
26905 if (offset > 0x200)
26906 {
26907 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
26908 char bytes[5];
26909 int n;
26910 valueT o;
26911
26912 /* Long form: 0xb2, uleb128. */
26913 /* This might not fit in a word so add the individual bytes,
26914 remembering the list is built in reverse order. */
26915 o = (valueT) ((offset - 0x204) >> 2);
26916 if (o == 0)
26917 add_unwind_opcode (0, 1);
26918
26919 /* Calculate the uleb128 encoding of the offset. */
26920 n = 0;
26921 while (o)
26922 {
26923 bytes[n] = o & 0x7f;
26924 o >>= 7;
26925 if (o)
26926 bytes[n] |= 0x80;
26927 n++;
26928 }
26929 /* Add the insn. */
26930 for (; n; n--)
26931 add_unwind_opcode (bytes[n - 1], 1);
26932 add_unwind_opcode (0xb2, 1);
26933 }
26934 else if (offset > 0x100)
26935 {
26936 /* Two short opcodes. */
26937 add_unwind_opcode (0x3f, 1);
26938 op = (offset - 0x104) >> 2;
26939 add_unwind_opcode (op, 1);
26940 }
26941 else if (offset > 0)
26942 {
26943 /* Short opcode. */
26944 op = (offset - 4) >> 2;
26945 add_unwind_opcode (op, 1);
26946 }
26947 else if (offset < 0)
26948 {
26949 offset = -offset;
26950 while (offset > 0x100)
26951 {
26952 add_unwind_opcode (0x7f, 1);
26953 offset -= 0x100;
26954 }
26955 op = ((offset - 4) >> 2) | 0x40;
26956 add_unwind_opcode (op, 1);
26957 }
26958 }
26959
26960 /* Finish the list of unwind opcodes for this function. */
26961
26962 static void
26963 finish_unwind_opcodes (void)
26964 {
26965 valueT op;
26966
26967 if (unwind.fp_used)
26968 {
26969 /* Adjust sp as necessary. */
26970 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
26971 flush_pending_unwind ();
26972
26973 /* After restoring sp from the frame pointer. */
26974 op = 0x90 | unwind.fp_reg;
26975 add_unwind_opcode (op, 1);
26976 }
26977 else
26978 flush_pending_unwind ();
26979 }
26980
26981
26982 /* Start an exception table entry. If idx is nonzero this is an index table
26983 entry. */
26984
26985 static void
26986 start_unwind_section (const segT text_seg, int idx)
26987 {
26988 const char * text_name;
26989 const char * prefix;
26990 const char * prefix_once;
26991 const char * group_name;
26992 char * sec_name;
26993 int type;
26994 int flags;
26995 int linkonce;
26996
26997 if (idx)
26998 {
26999 prefix = ELF_STRING_ARM_unwind;
27000 prefix_once = ELF_STRING_ARM_unwind_once;
27001 type = SHT_ARM_EXIDX;
27002 }
27003 else
27004 {
27005 prefix = ELF_STRING_ARM_unwind_info;
27006 prefix_once = ELF_STRING_ARM_unwind_info_once;
27007 type = SHT_PROGBITS;
27008 }
27009
27010 text_name = segment_name (text_seg);
27011 if (streq (text_name, ".text"))
27012 text_name = "";
27013
27014 if (strncmp (text_name, ".gnu.linkonce.t.",
27015 strlen (".gnu.linkonce.t.")) == 0)
27016 {
27017 prefix = prefix_once;
27018 text_name += strlen (".gnu.linkonce.t.");
27019 }
27020
27021 sec_name = concat (prefix, text_name, (char *) NULL);
27022
27023 flags = SHF_ALLOC;
27024 linkonce = 0;
27025 group_name = 0;
27026
27027 /* Handle COMDAT group. */
27028 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
27029 {
27030 group_name = elf_group_name (text_seg);
27031 if (group_name == NULL)
27032 {
27033 as_bad (_("Group section `%s' has no group signature"),
27034 segment_name (text_seg));
27035 ignore_rest_of_line ();
27036 return;
27037 }
27038 flags |= SHF_GROUP;
27039 linkonce = 1;
27040 }
27041
27042 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
27043 linkonce, 0);
27044
27045 /* Set the section link for index tables. */
27046 if (idx)
27047 elf_linked_to_section (now_seg) = text_seg;
27048 }
27049
27050
27051 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
27052 personality routine data. Returns zero, or the index table value for
27053 an inline entry. */
27054
27055 static valueT
27056 create_unwind_entry (int have_data)
27057 {
27058 int size;
27059 addressT where;
27060 char *ptr;
27061 /* The current word of data. */
27062 valueT data;
27063 /* The number of bytes left in this word. */
27064 int n;
27065
27066 finish_unwind_opcodes ();
27067
27068 /* Remember the current text section. */
27069 unwind.saved_seg = now_seg;
27070 unwind.saved_subseg = now_subseg;
27071
27072 start_unwind_section (now_seg, 0);
27073
27074 if (unwind.personality_routine == NULL)
27075 {
27076 if (unwind.personality_index == -2)
27077 {
27078 if (have_data)
27079 as_bad (_("handlerdata in cantunwind frame"));
27080 return 1; /* EXIDX_CANTUNWIND. */
27081 }
27082
27083 /* Use a default personality routine if none is specified. */
27084 if (unwind.personality_index == -1)
27085 {
27086 if (unwind.opcode_count > 3)
27087 unwind.personality_index = 1;
27088 else
27089 unwind.personality_index = 0;
27090 }
27091
27092 /* Space for the personality routine entry. */
27093 if (unwind.personality_index == 0)
27094 {
27095 if (unwind.opcode_count > 3)
27096 as_bad (_("too many unwind opcodes for personality routine 0"));
27097
27098 if (!have_data)
27099 {
27100 /* All the data is inline in the index table. */
27101 data = 0x80;
27102 n = 3;
27103 while (unwind.opcode_count > 0)
27104 {
27105 unwind.opcode_count--;
27106 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
27107 n--;
27108 }
27109
27110 /* Pad with "finish" opcodes. */
27111 while (n--)
27112 data = (data << 8) | 0xb0;
27113
27114 return data;
27115 }
27116 size = 0;
27117 }
27118 else
27119 /* We get two opcodes "free" in the first word. */
27120 size = unwind.opcode_count - 2;
27121 }
27122 else
27123 {
27124 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
27125 if (unwind.personality_index != -1)
27126 {
27127 as_bad (_("attempt to recreate an unwind entry"));
27128 return 1;
27129 }
27130
27131 /* An extra byte is required for the opcode count. */
27132 size = unwind.opcode_count + 1;
27133 }
27134
27135 size = (size + 3) >> 2;
27136 if (size > 0xff)
27137 as_bad (_("too many unwind opcodes"));
27138
27139 frag_align (2, 0, 0);
27140 record_alignment (now_seg, 2);
27141 unwind.table_entry = expr_build_dot ();
27142
27143 /* Allocate the table entry. */
27144 ptr = frag_more ((size << 2) + 4);
27145 /* PR 13449: Zero the table entries in case some of them are not used. */
27146 memset (ptr, 0, (size << 2) + 4);
27147 where = frag_now_fix () - ((size << 2) + 4);
27148
27149 switch (unwind.personality_index)
27150 {
27151 case -1:
27152 /* ??? Should this be a PLT generating relocation? */
27153 /* Custom personality routine. */
27154 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
27155 BFD_RELOC_ARM_PREL31);
27156
27157 where += 4;
27158 ptr += 4;
27159
27160 /* Set the first byte to the number of additional words. */
27161 data = size > 0 ? size - 1 : 0;
27162 n = 3;
27163 break;
27164
27165 /* ABI defined personality routines. */
27166 case 0:
27167 /* Three opcodes bytes are packed into the first word. */
27168 data = 0x80;
27169 n = 3;
27170 break;
27171
27172 case 1:
27173 case 2:
27174 /* The size and first two opcode bytes go in the first word. */
27175 data = ((0x80 + unwind.personality_index) << 8) | size;
27176 n = 2;
27177 break;
27178
27179 default:
27180 /* Should never happen. */
27181 abort ();
27182 }
27183
27184 /* Pack the opcodes into words (MSB first), reversing the list at the same
27185 time. */
27186 while (unwind.opcode_count > 0)
27187 {
27188 if (n == 0)
27189 {
27190 md_number_to_chars (ptr, data, 4);
27191 ptr += 4;
27192 n = 4;
27193 data = 0;
27194 }
27195 unwind.opcode_count--;
27196 n--;
27197 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
27198 }
27199
27200 /* Finish off the last word. */
27201 if (n < 4)
27202 {
27203 /* Pad with "finish" opcodes. */
27204 while (n--)
27205 data = (data << 8) | 0xb0;
27206
27207 md_number_to_chars (ptr, data, 4);
27208 }
27209
27210 if (!have_data)
27211 {
27212 /* Add an empty descriptor if there is no user-specified data. */
27213 ptr = frag_more (4);
27214 md_number_to_chars (ptr, 0, 4);
27215 }
27216
27217 return 0;
27218 }
27219
27220
27221 /* Initialize the DWARF-2 unwind information for this procedure. */
27222
27223 void
27224 tc_arm_frame_initial_instructions (void)
27225 {
27226 cfi_add_CFA_def_cfa (REG_SP, 0);
27227 }
27228 #endif /* OBJ_ELF */
27229
27230 /* Convert REGNAME to a DWARF-2 register number. */
27231
27232 int
27233 tc_arm_regname_to_dw2regnum (char *regname)
27234 {
27235 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
27236 if (reg != FAIL)
27237 return reg;
27238
27239 /* PR 16694: Allow VFP registers as well. */
27240 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
27241 if (reg != FAIL)
27242 return 64 + reg;
27243
27244 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
27245 if (reg != FAIL)
27246 return reg + 256;
27247
27248 return FAIL;
27249 }
27250
27251 #ifdef TE_PE
27252 void
27253 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
27254 {
27255 expressionS exp;
27256
27257 exp.X_op = O_secrel;
27258 exp.X_add_symbol = symbol;
27259 exp.X_add_number = 0;
27260 emit_expr (&exp, size);
27261 }
27262 #endif
27263
27264 /* MD interface: Symbol and relocation handling. */
27265
27266 /* Return the address within the segment that a PC-relative fixup is
27267 relative to. For ARM, PC-relative fixups applied to instructions
27268 are generally relative to the location of the fixup plus 8 bytes.
27269 Thumb branches are offset by 4, and Thumb loads relative to PC
27270 require special handling. */
27271
27272 long
27273 md_pcrel_from_section (fixS * fixP, segT seg)
27274 {
27275 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
27276
27277 /* If this is pc-relative and we are going to emit a relocation
27278 then we just want to put out any pipeline compensation that the linker
27279 will need. Otherwise we want to use the calculated base.
27280 For WinCE we skip the bias for externals as well, since this
27281 is how the MS ARM-CE assembler behaves and we want to be compatible. */
27282 if (fixP->fx_pcrel
27283 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
27284 || (arm_force_relocation (fixP)
27285 #ifdef TE_WINCE
27286 && !S_IS_EXTERNAL (fixP->fx_addsy)
27287 #endif
27288 )))
27289 base = 0;
27290
27291
27292 switch (fixP->fx_r_type)
27293 {
27294 /* PC relative addressing on the Thumb is slightly odd as the
27295 bottom two bits of the PC are forced to zero for the
27296 calculation. This happens *after* application of the
27297 pipeline offset. However, Thumb adrl already adjusts for
27298 this, so we need not do it again. */
27299 case BFD_RELOC_ARM_THUMB_ADD:
27300 return base & ~3;
27301
27302 case BFD_RELOC_ARM_THUMB_OFFSET:
27303 case BFD_RELOC_ARM_T32_OFFSET_IMM:
27304 case BFD_RELOC_ARM_T32_ADD_PC12:
27305 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
27306 return (base + 4) & ~3;
27307
27308 /* Thumb branches are simply offset by +4. */
27309 case BFD_RELOC_THUMB_PCREL_BRANCH5:
27310 case BFD_RELOC_THUMB_PCREL_BRANCH7:
27311 case BFD_RELOC_THUMB_PCREL_BRANCH9:
27312 case BFD_RELOC_THUMB_PCREL_BRANCH12:
27313 case BFD_RELOC_THUMB_PCREL_BRANCH20:
27314 case BFD_RELOC_THUMB_PCREL_BRANCH25:
27315 case BFD_RELOC_THUMB_PCREL_BFCSEL:
27316 case BFD_RELOC_ARM_THUMB_BF17:
27317 case BFD_RELOC_ARM_THUMB_BF19:
27318 case BFD_RELOC_ARM_THUMB_BF13:
27319 case BFD_RELOC_ARM_THUMB_LOOP12:
27320 return base + 4;
27321
27322 case BFD_RELOC_THUMB_PCREL_BRANCH23:
27323 if (fixP->fx_addsy
27324 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27325 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27326 && ARM_IS_FUNC (fixP->fx_addsy)
27327 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27328 base = fixP->fx_where + fixP->fx_frag->fr_address;
27329 return base + 4;
27330
27331 /* BLX is like branches above, but forces the low two bits of PC to
27332 zero. */
27333 case BFD_RELOC_THUMB_PCREL_BLX:
27334 if (fixP->fx_addsy
27335 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27336 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27337 && THUMB_IS_FUNC (fixP->fx_addsy)
27338 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27339 base = fixP->fx_where + fixP->fx_frag->fr_address;
27340 return (base + 4) & ~3;
27341
27342 /* ARM mode branches are offset by +8. However, the Windows CE
27343 loader expects the relocation not to take this into account. */
27344 case BFD_RELOC_ARM_PCREL_BLX:
27345 if (fixP->fx_addsy
27346 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27347 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27348 && ARM_IS_FUNC (fixP->fx_addsy)
27349 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27350 base = fixP->fx_where + fixP->fx_frag->fr_address;
27351 return base + 8;
27352
27353 case BFD_RELOC_ARM_PCREL_CALL:
27354 if (fixP->fx_addsy
27355 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27356 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27357 && THUMB_IS_FUNC (fixP->fx_addsy)
27358 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27359 base = fixP->fx_where + fixP->fx_frag->fr_address;
27360 return base + 8;
27361
27362 case BFD_RELOC_ARM_PCREL_BRANCH:
27363 case BFD_RELOC_ARM_PCREL_JUMP:
27364 case BFD_RELOC_ARM_PLT32:
27365 #ifdef TE_WINCE
27366 /* When handling fixups immediately, because we have already
27367 discovered the value of a symbol, or the address of the frag involved
27368 we must account for the offset by +8, as the OS loader will never see the reloc.
27369 see fixup_segment() in write.c
27370 The S_IS_EXTERNAL test handles the case of global symbols.
27371 Those need the calculated base, not just the pipe compensation the linker will need. */
27372 if (fixP->fx_pcrel
27373 && fixP->fx_addsy != NULL
27374 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27375 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
27376 return base + 8;
27377 return base;
27378 #else
27379 return base + 8;
27380 #endif
27381
27382
27383 /* ARM mode loads relative to PC are also offset by +8. Unlike
27384 branches, the Windows CE loader *does* expect the relocation
27385 to take this into account. */
27386 case BFD_RELOC_ARM_OFFSET_IMM:
27387 case BFD_RELOC_ARM_OFFSET_IMM8:
27388 case BFD_RELOC_ARM_HWLITERAL:
27389 case BFD_RELOC_ARM_LITERAL:
27390 case BFD_RELOC_ARM_CP_OFF_IMM:
27391 return base + 8;
27392
27393
27394 /* Other PC-relative relocations are un-offset. */
27395 default:
27396 return base;
27397 }
27398 }
27399
27400 static bfd_boolean flag_warn_syms = TRUE;
27401
27402 bfd_boolean
27403 arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
27404 {
27405 /* PR 18347 - Warn if the user attempts to create a symbol with the same
27406 name as an ARM instruction. Whilst strictly speaking it is allowed, it
27407 does mean that the resulting code might be very confusing to the reader.
27408 Also this warning can be triggered if the user omits an operand before
27409 an immediate address, eg:
27410
27411 LDR =foo
27412
27413 GAS treats this as an assignment of the value of the symbol foo to a
27414 symbol LDR, and so (without this code) it will not issue any kind of
27415 warning or error message.
27416
27417 Note - ARM instructions are case-insensitive but the strings in the hash
27418 table are all stored in lower case, so we must first ensure that name is
27419 lower case too. */
27420 if (flag_warn_syms && arm_ops_hsh)
27421 {
27422 char * nbuf = strdup (name);
27423 char * p;
27424
27425 for (p = nbuf; *p; p++)
27426 *p = TOLOWER (*p);
27427 if (hash_find (arm_ops_hsh, nbuf) != NULL)
27428 {
27429 static struct hash_control * already_warned = NULL;
27430
27431 if (already_warned == NULL)
27432 already_warned = hash_new ();
27433 /* Only warn about the symbol once. To keep the code
27434 simple we let hash_insert do the lookup for us. */
27435 if (hash_insert (already_warned, nbuf, NULL) == NULL)
27436 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
27437 }
27438 else
27439 free (nbuf);
27440 }
27441
27442 return FALSE;
27443 }
27444
27445 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
27446 Otherwise we have no need to default values of symbols. */
27447
27448 symbolS *
27449 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
27450 {
27451 #ifdef OBJ_ELF
27452 if (name[0] == '_' && name[1] == 'G'
27453 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
27454 {
27455 if (!GOT_symbol)
27456 {
27457 if (symbol_find (name))
27458 as_bad (_("GOT already in the symbol table"));
27459
27460 GOT_symbol = symbol_new (name, undefined_section,
27461 (valueT) 0, & zero_address_frag);
27462 }
27463
27464 return GOT_symbol;
27465 }
27466 #endif
27467
27468 return NULL;
27469 }
27470
27471 /* Subroutine of md_apply_fix. Check to see if an immediate can be
27472 computed as two separate immediate values, added together. We
27473 already know that this value cannot be computed by just one ARM
27474 instruction. */
27475
27476 static unsigned int
27477 validate_immediate_twopart (unsigned int val,
27478 unsigned int * highpart)
27479 {
27480 unsigned int a;
27481 unsigned int i;
27482
27483 for (i = 0; i < 32; i += 2)
27484 if (((a = rotate_left (val, i)) & 0xff) != 0)
27485 {
27486 if (a & 0xff00)
27487 {
27488 if (a & ~ 0xffff)
27489 continue;
27490 * highpart = (a >> 8) | ((i + 24) << 7);
27491 }
27492 else if (a & 0xff0000)
27493 {
27494 if (a & 0xff000000)
27495 continue;
27496 * highpart = (a >> 16) | ((i + 16) << 7);
27497 }
27498 else
27499 {
27500 gas_assert (a & 0xff000000);
27501 * highpart = (a >> 24) | ((i + 8) << 7);
27502 }
27503
27504 return (a & 0xff) | (i << 7);
27505 }
27506
27507 return FAIL;
27508 }
27509
27510 static int
27511 validate_offset_imm (unsigned int val, int hwse)
27512 {
27513 if ((hwse && val > 255) || val > 4095)
27514 return FAIL;
27515 return val;
27516 }
27517
27518 /* Subroutine of md_apply_fix. Do those data_ops which can take a
27519 negative immediate constant by altering the instruction. A bit of
27520 a hack really.
27521 MOV <-> MVN
27522 AND <-> BIC
27523 ADC <-> SBC
27524 by inverting the second operand, and
27525 ADD <-> SUB
27526 CMP <-> CMN
27527 by negating the second operand. */
27528
27529 static int
27530 negate_data_op (unsigned long * instruction,
27531 unsigned long value)
27532 {
27533 int op, new_inst;
27534 unsigned long negated, inverted;
27535
27536 negated = encode_arm_immediate (-value);
27537 inverted = encode_arm_immediate (~value);
27538
27539 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
27540 switch (op)
27541 {
27542 /* First negates. */
27543 case OPCODE_SUB: /* ADD <-> SUB */
27544 new_inst = OPCODE_ADD;
27545 value = negated;
27546 break;
27547
27548 case OPCODE_ADD:
27549 new_inst = OPCODE_SUB;
27550 value = negated;
27551 break;
27552
27553 case OPCODE_CMP: /* CMP <-> CMN */
27554 new_inst = OPCODE_CMN;
27555 value = negated;
27556 break;
27557
27558 case OPCODE_CMN:
27559 new_inst = OPCODE_CMP;
27560 value = negated;
27561 break;
27562
27563 /* Now Inverted ops. */
27564 case OPCODE_MOV: /* MOV <-> MVN */
27565 new_inst = OPCODE_MVN;
27566 value = inverted;
27567 break;
27568
27569 case OPCODE_MVN:
27570 new_inst = OPCODE_MOV;
27571 value = inverted;
27572 break;
27573
27574 case OPCODE_AND: /* AND <-> BIC */
27575 new_inst = OPCODE_BIC;
27576 value = inverted;
27577 break;
27578
27579 case OPCODE_BIC:
27580 new_inst = OPCODE_AND;
27581 value = inverted;
27582 break;
27583
27584 case OPCODE_ADC: /* ADC <-> SBC */
27585 new_inst = OPCODE_SBC;
27586 value = inverted;
27587 break;
27588
27589 case OPCODE_SBC:
27590 new_inst = OPCODE_ADC;
27591 value = inverted;
27592 break;
27593
27594 /* We cannot do anything. */
27595 default:
27596 return FAIL;
27597 }
27598
27599 if (value == (unsigned) FAIL)
27600 return FAIL;
27601
27602 *instruction &= OPCODE_MASK;
27603 *instruction |= new_inst << DATA_OP_SHIFT;
27604 return value;
27605 }
27606
27607 /* Like negate_data_op, but for Thumb-2. */
27608
27609 static unsigned int
27610 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
27611 {
27612 int op, new_inst;
27613 int rd;
27614 unsigned int negated, inverted;
27615
27616 negated = encode_thumb32_immediate (-value);
27617 inverted = encode_thumb32_immediate (~value);
27618
27619 rd = (*instruction >> 8) & 0xf;
27620 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
27621 switch (op)
27622 {
27623 /* ADD <-> SUB. Includes CMP <-> CMN. */
27624 case T2_OPCODE_SUB:
27625 new_inst = T2_OPCODE_ADD;
27626 value = negated;
27627 break;
27628
27629 case T2_OPCODE_ADD:
27630 new_inst = T2_OPCODE_SUB;
27631 value = negated;
27632 break;
27633
27634 /* ORR <-> ORN. Includes MOV <-> MVN. */
27635 case T2_OPCODE_ORR:
27636 new_inst = T2_OPCODE_ORN;
27637 value = inverted;
27638 break;
27639
27640 case T2_OPCODE_ORN:
27641 new_inst = T2_OPCODE_ORR;
27642 value = inverted;
27643 break;
27644
27645 /* AND <-> BIC. TST has no inverted equivalent. */
27646 case T2_OPCODE_AND:
27647 new_inst = T2_OPCODE_BIC;
27648 if (rd == 15)
27649 value = FAIL;
27650 else
27651 value = inverted;
27652 break;
27653
27654 case T2_OPCODE_BIC:
27655 new_inst = T2_OPCODE_AND;
27656 value = inverted;
27657 break;
27658
27659 /* ADC <-> SBC */
27660 case T2_OPCODE_ADC:
27661 new_inst = T2_OPCODE_SBC;
27662 value = inverted;
27663 break;
27664
27665 case T2_OPCODE_SBC:
27666 new_inst = T2_OPCODE_ADC;
27667 value = inverted;
27668 break;
27669
27670 /* We cannot do anything. */
27671 default:
27672 return FAIL;
27673 }
27674
27675 if (value == (unsigned int)FAIL)
27676 return FAIL;
27677
27678 *instruction &= T2_OPCODE_MASK;
27679 *instruction |= new_inst << T2_DATA_OP_SHIFT;
27680 return value;
27681 }
27682
27683 /* Read a 32-bit thumb instruction from buf. */
27684
27685 static unsigned long
27686 get_thumb32_insn (char * buf)
27687 {
27688 unsigned long insn;
27689 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
27690 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27691
27692 return insn;
27693 }
27694
27695 /* We usually want to set the low bit on the address of thumb function
27696 symbols. In particular .word foo - . should have the low bit set.
27697 Generic code tries to fold the difference of two symbols to
27698 a constant. Prevent this and force a relocation when the first symbols
27699 is a thumb function. */
27700
27701 bfd_boolean
27702 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
27703 {
27704 if (op == O_subtract
27705 && l->X_op == O_symbol
27706 && r->X_op == O_symbol
27707 && THUMB_IS_FUNC (l->X_add_symbol))
27708 {
27709 l->X_op = O_subtract;
27710 l->X_op_symbol = r->X_add_symbol;
27711 l->X_add_number -= r->X_add_number;
27712 return TRUE;
27713 }
27714
27715 /* Process as normal. */
27716 return FALSE;
27717 }
27718
27719 /* Encode Thumb2 unconditional branches and calls. The encoding
27720 for the 2 are identical for the immediate values. */
27721
27722 static void
27723 encode_thumb2_b_bl_offset (char * buf, offsetT value)
27724 {
27725 #define T2I1I2MASK ((1 << 13) | (1 << 11))
27726 offsetT newval;
27727 offsetT newval2;
27728 addressT S, I1, I2, lo, hi;
27729
27730 S = (value >> 24) & 0x01;
27731 I1 = (value >> 23) & 0x01;
27732 I2 = (value >> 22) & 0x01;
27733 hi = (value >> 12) & 0x3ff;
27734 lo = (value >> 1) & 0x7ff;
27735 newval = md_chars_to_number (buf, THUMB_SIZE);
27736 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27737 newval |= (S << 10) | hi;
27738 newval2 &= ~T2I1I2MASK;
27739 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
27740 md_number_to_chars (buf, newval, THUMB_SIZE);
27741 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27742 }
27743
27744 void
27745 md_apply_fix (fixS * fixP,
27746 valueT * valP,
27747 segT seg)
27748 {
27749 offsetT value = * valP;
27750 offsetT newval;
27751 unsigned int newimm;
27752 unsigned long temp;
27753 int sign;
27754 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
27755
27756 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
27757
27758 /* Note whether this will delete the relocation. */
27759
27760 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
27761 fixP->fx_done = 1;
27762
27763 /* On a 64-bit host, silently truncate 'value' to 32 bits for
27764 consistency with the behaviour on 32-bit hosts. Remember value
27765 for emit_reloc. */
27766 value &= 0xffffffff;
27767 value ^= 0x80000000;
27768 value -= 0x80000000;
27769
27770 *valP = value;
27771 fixP->fx_addnumber = value;
27772
27773 /* Same treatment for fixP->fx_offset. */
27774 fixP->fx_offset &= 0xffffffff;
27775 fixP->fx_offset ^= 0x80000000;
27776 fixP->fx_offset -= 0x80000000;
27777
27778 switch (fixP->fx_r_type)
27779 {
27780 case BFD_RELOC_NONE:
27781 /* This will need to go in the object file. */
27782 fixP->fx_done = 0;
27783 break;
27784
27785 case BFD_RELOC_ARM_IMMEDIATE:
27786 /* We claim that this fixup has been processed here,
27787 even if in fact we generate an error because we do
27788 not have a reloc for it, so tc_gen_reloc will reject it. */
27789 fixP->fx_done = 1;
27790
27791 if (fixP->fx_addsy)
27792 {
27793 const char *msg = 0;
27794
27795 if (! S_IS_DEFINED (fixP->fx_addsy))
27796 msg = _("undefined symbol %s used as an immediate value");
27797 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
27798 msg = _("symbol %s is in a different section");
27799 else if (S_IS_WEAK (fixP->fx_addsy))
27800 msg = _("symbol %s is weak and may be overridden later");
27801
27802 if (msg)
27803 {
27804 as_bad_where (fixP->fx_file, fixP->fx_line,
27805 msg, S_GET_NAME (fixP->fx_addsy));
27806 break;
27807 }
27808 }
27809
27810 temp = md_chars_to_number (buf, INSN_SIZE);
27811
27812 /* If the offset is negative, we should use encoding A2 for ADR. */
27813 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
27814 newimm = negate_data_op (&temp, value);
27815 else
27816 {
27817 newimm = encode_arm_immediate (value);
27818
27819 /* If the instruction will fail, see if we can fix things up by
27820 changing the opcode. */
27821 if (newimm == (unsigned int) FAIL)
27822 newimm = negate_data_op (&temp, value);
27823 /* MOV accepts both ARM modified immediate (A1 encoding) and
27824 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
27825 When disassembling, MOV is preferred when there is no encoding
27826 overlap. */
27827 if (newimm == (unsigned int) FAIL
27828 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
27829 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
27830 && !((temp >> SBIT_SHIFT) & 0x1)
27831 && value >= 0 && value <= 0xffff)
27832 {
27833 /* Clear bits[23:20] to change encoding from A1 to A2. */
27834 temp &= 0xff0fffff;
27835 /* Encoding high 4bits imm. Code below will encode the remaining
27836 low 12bits. */
27837 temp |= (value & 0x0000f000) << 4;
27838 newimm = value & 0x00000fff;
27839 }
27840 }
27841
27842 if (newimm == (unsigned int) FAIL)
27843 {
27844 as_bad_where (fixP->fx_file, fixP->fx_line,
27845 _("invalid constant (%lx) after fixup"),
27846 (unsigned long) value);
27847 break;
27848 }
27849
27850 newimm |= (temp & 0xfffff000);
27851 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
27852 break;
27853
27854 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
27855 {
27856 unsigned int highpart = 0;
27857 unsigned int newinsn = 0xe1a00000; /* nop. */
27858
27859 if (fixP->fx_addsy)
27860 {
27861 const char *msg = 0;
27862
27863 if (! S_IS_DEFINED (fixP->fx_addsy))
27864 msg = _("undefined symbol %s used as an immediate value");
27865 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
27866 msg = _("symbol %s is in a different section");
27867 else if (S_IS_WEAK (fixP->fx_addsy))
27868 msg = _("symbol %s is weak and may be overridden later");
27869
27870 if (msg)
27871 {
27872 as_bad_where (fixP->fx_file, fixP->fx_line,
27873 msg, S_GET_NAME (fixP->fx_addsy));
27874 break;
27875 }
27876 }
27877
27878 newimm = encode_arm_immediate (value);
27879 temp = md_chars_to_number (buf, INSN_SIZE);
27880
27881 /* If the instruction will fail, see if we can fix things up by
27882 changing the opcode. */
27883 if (newimm == (unsigned int) FAIL
27884 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
27885 {
27886 /* No ? OK - try using two ADD instructions to generate
27887 the value. */
27888 newimm = validate_immediate_twopart (value, & highpart);
27889
27890 /* Yes - then make sure that the second instruction is
27891 also an add. */
27892 if (newimm != (unsigned int) FAIL)
27893 newinsn = temp;
27894 /* Still No ? Try using a negated value. */
27895 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
27896 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
27897 /* Otherwise - give up. */
27898 else
27899 {
27900 as_bad_where (fixP->fx_file, fixP->fx_line,
27901 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
27902 (long) value);
27903 break;
27904 }
27905
27906 /* Replace the first operand in the 2nd instruction (which
27907 is the PC) with the destination register. We have
27908 already added in the PC in the first instruction and we
27909 do not want to do it again. */
27910 newinsn &= ~ 0xf0000;
27911 newinsn |= ((newinsn & 0x0f000) << 4);
27912 }
27913
27914 newimm |= (temp & 0xfffff000);
27915 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
27916
27917 highpart |= (newinsn & 0xfffff000);
27918 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
27919 }
27920 break;
27921
27922 case BFD_RELOC_ARM_OFFSET_IMM:
27923 if (!fixP->fx_done && seg->use_rela_p)
27924 value = 0;
27925 /* Fall through. */
27926
27927 case BFD_RELOC_ARM_LITERAL:
27928 sign = value > 0;
27929
27930 if (value < 0)
27931 value = - value;
27932
27933 if (validate_offset_imm (value, 0) == FAIL)
27934 {
27935 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
27936 as_bad_where (fixP->fx_file, fixP->fx_line,
27937 _("invalid literal constant: pool needs to be closer"));
27938 else
27939 as_bad_where (fixP->fx_file, fixP->fx_line,
27940 _("bad immediate value for offset (%ld)"),
27941 (long) value);
27942 break;
27943 }
27944
27945 newval = md_chars_to_number (buf, INSN_SIZE);
27946 if (value == 0)
27947 newval &= 0xfffff000;
27948 else
27949 {
27950 newval &= 0xff7ff000;
27951 newval |= value | (sign ? INDEX_UP : 0);
27952 }
27953 md_number_to_chars (buf, newval, INSN_SIZE);
27954 break;
27955
27956 case BFD_RELOC_ARM_OFFSET_IMM8:
27957 case BFD_RELOC_ARM_HWLITERAL:
27958 sign = value > 0;
27959
27960 if (value < 0)
27961 value = - value;
27962
27963 if (validate_offset_imm (value, 1) == FAIL)
27964 {
27965 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
27966 as_bad_where (fixP->fx_file, fixP->fx_line,
27967 _("invalid literal constant: pool needs to be closer"));
27968 else
27969 as_bad_where (fixP->fx_file, fixP->fx_line,
27970 _("bad immediate value for 8-bit offset (%ld)"),
27971 (long) value);
27972 break;
27973 }
27974
27975 newval = md_chars_to_number (buf, INSN_SIZE);
27976 if (value == 0)
27977 newval &= 0xfffff0f0;
27978 else
27979 {
27980 newval &= 0xff7ff0f0;
27981 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
27982 }
27983 md_number_to_chars (buf, newval, INSN_SIZE);
27984 break;
27985
27986 case BFD_RELOC_ARM_T32_OFFSET_U8:
27987 if (value < 0 || value > 1020 || value % 4 != 0)
27988 as_bad_where (fixP->fx_file, fixP->fx_line,
27989 _("bad immediate value for offset (%ld)"), (long) value);
27990 value /= 4;
27991
27992 newval = md_chars_to_number (buf+2, THUMB_SIZE);
27993 newval |= value;
27994 md_number_to_chars (buf+2, newval, THUMB_SIZE);
27995 break;
27996
27997 case BFD_RELOC_ARM_T32_OFFSET_IMM:
27998 /* This is a complicated relocation used for all varieties of Thumb32
27999 load/store instruction with immediate offset:
28000
28001 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
28002 *4, optional writeback(W)
28003 (doubleword load/store)
28004
28005 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
28006 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
28007 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
28008 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
28009 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
28010
28011 Uppercase letters indicate bits that are already encoded at
28012 this point. Lowercase letters are our problem. For the
28013 second block of instructions, the secondary opcode nybble
28014 (bits 8..11) is present, and bit 23 is zero, even if this is
28015 a PC-relative operation. */
28016 newval = md_chars_to_number (buf, THUMB_SIZE);
28017 newval <<= 16;
28018 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
28019
28020 if ((newval & 0xf0000000) == 0xe0000000)
28021 {
28022 /* Doubleword load/store: 8-bit offset, scaled by 4. */
28023 if (value >= 0)
28024 newval |= (1 << 23);
28025 else
28026 value = -value;
28027 if (value % 4 != 0)
28028 {
28029 as_bad_where (fixP->fx_file, fixP->fx_line,
28030 _("offset not a multiple of 4"));
28031 break;
28032 }
28033 value /= 4;
28034 if (value > 0xff)
28035 {
28036 as_bad_where (fixP->fx_file, fixP->fx_line,
28037 _("offset out of range"));
28038 break;
28039 }
28040 newval &= ~0xff;
28041 }
28042 else if ((newval & 0x000f0000) == 0x000f0000)
28043 {
28044 /* PC-relative, 12-bit offset. */
28045 if (value >= 0)
28046 newval |= (1 << 23);
28047 else
28048 value = -value;
28049 if (value > 0xfff)
28050 {
28051 as_bad_where (fixP->fx_file, fixP->fx_line,
28052 _("offset out of range"));
28053 break;
28054 }
28055 newval &= ~0xfff;
28056 }
28057 else if ((newval & 0x00000100) == 0x00000100)
28058 {
28059 /* Writeback: 8-bit, +/- offset. */
28060 if (value >= 0)
28061 newval |= (1 << 9);
28062 else
28063 value = -value;
28064 if (value > 0xff)
28065 {
28066 as_bad_where (fixP->fx_file, fixP->fx_line,
28067 _("offset out of range"));
28068 break;
28069 }
28070 newval &= ~0xff;
28071 }
28072 else if ((newval & 0x00000f00) == 0x00000e00)
28073 {
28074 /* T-instruction: positive 8-bit offset. */
28075 if (value < 0 || value > 0xff)
28076 {
28077 as_bad_where (fixP->fx_file, fixP->fx_line,
28078 _("offset out of range"));
28079 break;
28080 }
28081 newval &= ~0xff;
28082 newval |= value;
28083 }
28084 else
28085 {
28086 /* Positive 12-bit or negative 8-bit offset. */
28087 int limit;
28088 if (value >= 0)
28089 {
28090 newval |= (1 << 23);
28091 limit = 0xfff;
28092 }
28093 else
28094 {
28095 value = -value;
28096 limit = 0xff;
28097 }
28098 if (value > limit)
28099 {
28100 as_bad_where (fixP->fx_file, fixP->fx_line,
28101 _("offset out of range"));
28102 break;
28103 }
28104 newval &= ~limit;
28105 }
28106
28107 newval |= value;
28108 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
28109 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
28110 break;
28111
28112 case BFD_RELOC_ARM_SHIFT_IMM:
28113 newval = md_chars_to_number (buf, INSN_SIZE);
28114 if (((unsigned long) value) > 32
28115 || (value == 32
28116 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
28117 {
28118 as_bad_where (fixP->fx_file, fixP->fx_line,
28119 _("shift expression is too large"));
28120 break;
28121 }
28122
28123 if (value == 0)
28124 /* Shifts of zero must be done as lsl. */
28125 newval &= ~0x60;
28126 else if (value == 32)
28127 value = 0;
28128 newval &= 0xfffff07f;
28129 newval |= (value & 0x1f) << 7;
28130 md_number_to_chars (buf, newval, INSN_SIZE);
28131 break;
28132
28133 case BFD_RELOC_ARM_T32_IMMEDIATE:
28134 case BFD_RELOC_ARM_T32_ADD_IMM:
28135 case BFD_RELOC_ARM_T32_IMM12:
28136 case BFD_RELOC_ARM_T32_ADD_PC12:
28137 /* We claim that this fixup has been processed here,
28138 even if in fact we generate an error because we do
28139 not have a reloc for it, so tc_gen_reloc will reject it. */
28140 fixP->fx_done = 1;
28141
28142 if (fixP->fx_addsy
28143 && ! S_IS_DEFINED (fixP->fx_addsy))
28144 {
28145 as_bad_where (fixP->fx_file, fixP->fx_line,
28146 _("undefined symbol %s used as an immediate value"),
28147 S_GET_NAME (fixP->fx_addsy));
28148 break;
28149 }
28150
28151 newval = md_chars_to_number (buf, THUMB_SIZE);
28152 newval <<= 16;
28153 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
28154
28155 newimm = FAIL;
28156 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
28157 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
28158 Thumb2 modified immediate encoding (T2). */
28159 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
28160 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
28161 {
28162 newimm = encode_thumb32_immediate (value);
28163 if (newimm == (unsigned int) FAIL)
28164 newimm = thumb32_negate_data_op (&newval, value);
28165 }
28166 if (newimm == (unsigned int) FAIL)
28167 {
28168 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
28169 {
28170 /* Turn add/sum into addw/subw. */
28171 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
28172 newval = (newval & 0xfeffffff) | 0x02000000;
28173 /* No flat 12-bit imm encoding for addsw/subsw. */
28174 if ((newval & 0x00100000) == 0)
28175 {
28176 /* 12 bit immediate for addw/subw. */
28177 if (value < 0)
28178 {
28179 value = -value;
28180 newval ^= 0x00a00000;
28181 }
28182 if (value > 0xfff)
28183 newimm = (unsigned int) FAIL;
28184 else
28185 newimm = value;
28186 }
28187 }
28188 else
28189 {
28190 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
28191 UINT16 (T3 encoding), MOVW only accepts UINT16. When
28192 disassembling, MOV is preferred when there is no encoding
28193 overlap. */
28194 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
28195 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
28196 but with the Rn field [19:16] set to 1111. */
28197 && (((newval >> 16) & 0xf) == 0xf)
28198 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
28199 && !((newval >> T2_SBIT_SHIFT) & 0x1)
28200 && value >= 0 && value <= 0xffff)
28201 {
28202 /* Toggle bit[25] to change encoding from T2 to T3. */
28203 newval ^= 1 << 25;
28204 /* Clear bits[19:16]. */
28205 newval &= 0xfff0ffff;
28206 /* Encoding high 4bits imm. Code below will encode the
28207 remaining low 12bits. */
28208 newval |= (value & 0x0000f000) << 4;
28209 newimm = value & 0x00000fff;
28210 }
28211 }
28212 }
28213
28214 if (newimm == (unsigned int)FAIL)
28215 {
28216 as_bad_where (fixP->fx_file, fixP->fx_line,
28217 _("invalid constant (%lx) after fixup"),
28218 (unsigned long) value);
28219 break;
28220 }
28221
28222 newval |= (newimm & 0x800) << 15;
28223 newval |= (newimm & 0x700) << 4;
28224 newval |= (newimm & 0x0ff);
28225
28226 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
28227 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
28228 break;
28229
28230 case BFD_RELOC_ARM_SMC:
28231 if (((unsigned long) value) > 0xf)
28232 as_bad_where (fixP->fx_file, fixP->fx_line,
28233 _("invalid smc expression"));
28234
28235 newval = md_chars_to_number (buf, INSN_SIZE);
28236 newval |= (value & 0xf);
28237 md_number_to_chars (buf, newval, INSN_SIZE);
28238 break;
28239
28240 case BFD_RELOC_ARM_HVC:
28241 if (((unsigned long) value) > 0xffff)
28242 as_bad_where (fixP->fx_file, fixP->fx_line,
28243 _("invalid hvc expression"));
28244 newval = md_chars_to_number (buf, INSN_SIZE);
28245 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
28246 md_number_to_chars (buf, newval, INSN_SIZE);
28247 break;
28248
28249 case BFD_RELOC_ARM_SWI:
28250 if (fixP->tc_fix_data != 0)
28251 {
28252 if (((unsigned long) value) > 0xff)
28253 as_bad_where (fixP->fx_file, fixP->fx_line,
28254 _("invalid swi expression"));
28255 newval = md_chars_to_number (buf, THUMB_SIZE);
28256 newval |= value;
28257 md_number_to_chars (buf, newval, THUMB_SIZE);
28258 }
28259 else
28260 {
28261 if (((unsigned long) value) > 0x00ffffff)
28262 as_bad_where (fixP->fx_file, fixP->fx_line,
28263 _("invalid swi expression"));
28264 newval = md_chars_to_number (buf, INSN_SIZE);
28265 newval |= value;
28266 md_number_to_chars (buf, newval, INSN_SIZE);
28267 }
28268 break;
28269
28270 case BFD_RELOC_ARM_MULTI:
28271 if (((unsigned long) value) > 0xffff)
28272 as_bad_where (fixP->fx_file, fixP->fx_line,
28273 _("invalid expression in load/store multiple"));
28274 newval = value | md_chars_to_number (buf, INSN_SIZE);
28275 md_number_to_chars (buf, newval, INSN_SIZE);
28276 break;
28277
28278 #ifdef OBJ_ELF
28279 case BFD_RELOC_ARM_PCREL_CALL:
28280
28281 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
28282 && fixP->fx_addsy
28283 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28284 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28285 && THUMB_IS_FUNC (fixP->fx_addsy))
28286 /* Flip the bl to blx. This is a simple flip
28287 bit here because we generate PCREL_CALL for
28288 unconditional bls. */
28289 {
28290 newval = md_chars_to_number (buf, INSN_SIZE);
28291 newval = newval | 0x10000000;
28292 md_number_to_chars (buf, newval, INSN_SIZE);
28293 temp = 1;
28294 fixP->fx_done = 1;
28295 }
28296 else
28297 temp = 3;
28298 goto arm_branch_common;
28299
28300 case BFD_RELOC_ARM_PCREL_JUMP:
28301 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
28302 && fixP->fx_addsy
28303 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28304 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28305 && THUMB_IS_FUNC (fixP->fx_addsy))
28306 {
28307 /* This would map to a bl<cond>, b<cond>,
28308 b<always> to a Thumb function. We
28309 need to force a relocation for this particular
28310 case. */
28311 newval = md_chars_to_number (buf, INSN_SIZE);
28312 fixP->fx_done = 0;
28313 }
28314 /* Fall through. */
28315
28316 case BFD_RELOC_ARM_PLT32:
28317 #endif
28318 case BFD_RELOC_ARM_PCREL_BRANCH:
28319 temp = 3;
28320 goto arm_branch_common;
28321
28322 case BFD_RELOC_ARM_PCREL_BLX:
28323
28324 temp = 1;
28325 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
28326 && fixP->fx_addsy
28327 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28328 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28329 && ARM_IS_FUNC (fixP->fx_addsy))
28330 {
28331 /* Flip the blx to a bl and warn. */
28332 const char *name = S_GET_NAME (fixP->fx_addsy);
28333 newval = 0xeb000000;
28334 as_warn_where (fixP->fx_file, fixP->fx_line,
28335 _("blx to '%s' an ARM ISA state function changed to bl"),
28336 name);
28337 md_number_to_chars (buf, newval, INSN_SIZE);
28338 temp = 3;
28339 fixP->fx_done = 1;
28340 }
28341
28342 #ifdef OBJ_ELF
28343 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
28344 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
28345 #endif
28346
28347 arm_branch_common:
28348 /* We are going to store value (shifted right by two) in the
28349 instruction, in a 24 bit, signed field. Bits 26 through 32 either
28350 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
28351 also be clear. */
28352 if (value & temp)
28353 as_bad_where (fixP->fx_file, fixP->fx_line,
28354 _("misaligned branch destination"));
28355 if ((value & (offsetT)0xfe000000) != (offsetT)0
28356 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
28357 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
28358
28359 if (fixP->fx_done || !seg->use_rela_p)
28360 {
28361 newval = md_chars_to_number (buf, INSN_SIZE);
28362 newval |= (value >> 2) & 0x00ffffff;
28363 /* Set the H bit on BLX instructions. */
28364 if (temp == 1)
28365 {
28366 if (value & 2)
28367 newval |= 0x01000000;
28368 else
28369 newval &= ~0x01000000;
28370 }
28371 md_number_to_chars (buf, newval, INSN_SIZE);
28372 }
28373 break;
28374
28375 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
28376 /* CBZ can only branch forward. */
28377
28378 /* Attempts to use CBZ to branch to the next instruction
28379 (which, strictly speaking, are prohibited) will be turned into
28380 no-ops.
28381
28382 FIXME: It may be better to remove the instruction completely and
28383 perform relaxation. */
28384 if (value == -2)
28385 {
28386 newval = md_chars_to_number (buf, THUMB_SIZE);
28387 newval = 0xbf00; /* NOP encoding T1 */
28388 md_number_to_chars (buf, newval, THUMB_SIZE);
28389 }
28390 else
28391 {
28392 if (value & ~0x7e)
28393 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
28394
28395 if (fixP->fx_done || !seg->use_rela_p)
28396 {
28397 newval = md_chars_to_number (buf, THUMB_SIZE);
28398 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
28399 md_number_to_chars (buf, newval, THUMB_SIZE);
28400 }
28401 }
28402 break;
28403
28404 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
28405 if (out_of_range_p (value, 8))
28406 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
28407
28408 if (fixP->fx_done || !seg->use_rela_p)
28409 {
28410 newval = md_chars_to_number (buf, THUMB_SIZE);
28411 newval |= (value & 0x1ff) >> 1;
28412 md_number_to_chars (buf, newval, THUMB_SIZE);
28413 }
28414 break;
28415
28416 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
28417 if (out_of_range_p (value, 11))
28418 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
28419
28420 if (fixP->fx_done || !seg->use_rela_p)
28421 {
28422 newval = md_chars_to_number (buf, THUMB_SIZE);
28423 newval |= (value & 0xfff) >> 1;
28424 md_number_to_chars (buf, newval, THUMB_SIZE);
28425 }
28426 break;
28427
28428 /* This relocation is misnamed, it should be BRANCH21. */
28429 case BFD_RELOC_THUMB_PCREL_BRANCH20:
28430 if (fixP->fx_addsy
28431 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28432 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28433 && ARM_IS_FUNC (fixP->fx_addsy)
28434 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
28435 {
28436 /* Force a relocation for a branch 20 bits wide. */
28437 fixP->fx_done = 0;
28438 }
28439 if (out_of_range_p (value, 20))
28440 as_bad_where (fixP->fx_file, fixP->fx_line,
28441 _("conditional branch out of range"));
28442
28443 if (fixP->fx_done || !seg->use_rela_p)
28444 {
28445 offsetT newval2;
28446 addressT S, J1, J2, lo, hi;
28447
28448 S = (value & 0x00100000) >> 20;
28449 J2 = (value & 0x00080000) >> 19;
28450 J1 = (value & 0x00040000) >> 18;
28451 hi = (value & 0x0003f000) >> 12;
28452 lo = (value & 0x00000ffe) >> 1;
28453
28454 newval = md_chars_to_number (buf, THUMB_SIZE);
28455 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28456 newval |= (S << 10) | hi;
28457 newval2 |= (J1 << 13) | (J2 << 11) | lo;
28458 md_number_to_chars (buf, newval, THUMB_SIZE);
28459 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28460 }
28461 break;
28462
28463 case BFD_RELOC_THUMB_PCREL_BLX:
28464 /* If there is a blx from a thumb state function to
28465 another thumb function flip this to a bl and warn
28466 about it. */
28467
28468 if (fixP->fx_addsy
28469 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28470 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28471 && THUMB_IS_FUNC (fixP->fx_addsy))
28472 {
28473 const char *name = S_GET_NAME (fixP->fx_addsy);
28474 as_warn_where (fixP->fx_file, fixP->fx_line,
28475 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
28476 name);
28477 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28478 newval = newval | 0x1000;
28479 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
28480 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
28481 fixP->fx_done = 1;
28482 }
28483
28484
28485 goto thumb_bl_common;
28486
28487 case BFD_RELOC_THUMB_PCREL_BRANCH23:
28488 /* A bl from Thumb state ISA to an internal ARM state function
28489 is converted to a blx. */
28490 if (fixP->fx_addsy
28491 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28492 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28493 && ARM_IS_FUNC (fixP->fx_addsy)
28494 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
28495 {
28496 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28497 newval = newval & ~0x1000;
28498 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
28499 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
28500 fixP->fx_done = 1;
28501 }
28502
28503 thumb_bl_common:
28504
28505 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
28506 /* For a BLX instruction, make sure that the relocation is rounded up
28507 to a word boundary. This follows the semantics of the instruction
28508 which specifies that bit 1 of the target address will come from bit
28509 1 of the base address. */
28510 value = (value + 3) & ~ 3;
28511
28512 #ifdef OBJ_ELF
28513 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
28514 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
28515 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
28516 #endif
28517
28518 if (out_of_range_p (value, 22))
28519 {
28520 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
28521 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
28522 else if (out_of_range_p (value, 24))
28523 as_bad_where (fixP->fx_file, fixP->fx_line,
28524 _("Thumb2 branch out of range"));
28525 }
28526
28527 if (fixP->fx_done || !seg->use_rela_p)
28528 encode_thumb2_b_bl_offset (buf, value);
28529
28530 break;
28531
28532 case BFD_RELOC_THUMB_PCREL_BRANCH25:
28533 if (out_of_range_p (value, 24))
28534 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
28535
28536 if (fixP->fx_done || !seg->use_rela_p)
28537 encode_thumb2_b_bl_offset (buf, value);
28538
28539 break;
28540
28541 case BFD_RELOC_8:
28542 if (fixP->fx_done || !seg->use_rela_p)
28543 *buf = value;
28544 break;
28545
28546 case BFD_RELOC_16:
28547 if (fixP->fx_done || !seg->use_rela_p)
28548 md_number_to_chars (buf, value, 2);
28549 break;
28550
28551 #ifdef OBJ_ELF
28552 case BFD_RELOC_ARM_TLS_CALL:
28553 case BFD_RELOC_ARM_THM_TLS_CALL:
28554 case BFD_RELOC_ARM_TLS_DESCSEQ:
28555 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
28556 case BFD_RELOC_ARM_TLS_GOTDESC:
28557 case BFD_RELOC_ARM_TLS_GD32:
28558 case BFD_RELOC_ARM_TLS_LE32:
28559 case BFD_RELOC_ARM_TLS_IE32:
28560 case BFD_RELOC_ARM_TLS_LDM32:
28561 case BFD_RELOC_ARM_TLS_LDO32:
28562 S_SET_THREAD_LOCAL (fixP->fx_addsy);
28563 break;
28564
28565 /* Same handling as above, but with the arm_fdpic guard. */
28566 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
28567 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
28568 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
28569 if (arm_fdpic)
28570 {
28571 S_SET_THREAD_LOCAL (fixP->fx_addsy);
28572 }
28573 else
28574 {
28575 as_bad_where (fixP->fx_file, fixP->fx_line,
28576 _("Relocation supported only in FDPIC mode"));
28577 }
28578 break;
28579
28580 case BFD_RELOC_ARM_GOT32:
28581 case BFD_RELOC_ARM_GOTOFF:
28582 break;
28583
28584 case BFD_RELOC_ARM_GOT_PREL:
28585 if (fixP->fx_done || !seg->use_rela_p)
28586 md_number_to_chars (buf, value, 4);
28587 break;
28588
28589 case BFD_RELOC_ARM_TARGET2:
28590 /* TARGET2 is not partial-inplace, so we need to write the
28591 addend here for REL targets, because it won't be written out
28592 during reloc processing later. */
28593 if (fixP->fx_done || !seg->use_rela_p)
28594 md_number_to_chars (buf, fixP->fx_offset, 4);
28595 break;
28596
28597 /* Relocations for FDPIC. */
28598 case BFD_RELOC_ARM_GOTFUNCDESC:
28599 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
28600 case BFD_RELOC_ARM_FUNCDESC:
28601 if (arm_fdpic)
28602 {
28603 if (fixP->fx_done || !seg->use_rela_p)
28604 md_number_to_chars (buf, 0, 4);
28605 }
28606 else
28607 {
28608 as_bad_where (fixP->fx_file, fixP->fx_line,
28609 _("Relocation supported only in FDPIC mode"));
28610 }
28611 break;
28612 #endif
28613
28614 case BFD_RELOC_RVA:
28615 case BFD_RELOC_32:
28616 case BFD_RELOC_ARM_TARGET1:
28617 case BFD_RELOC_ARM_ROSEGREL32:
28618 case BFD_RELOC_ARM_SBREL32:
28619 case BFD_RELOC_32_PCREL:
28620 #ifdef TE_PE
28621 case BFD_RELOC_32_SECREL:
28622 #endif
28623 if (fixP->fx_done || !seg->use_rela_p)
28624 #ifdef TE_WINCE
28625 /* For WinCE we only do this for pcrel fixups. */
28626 if (fixP->fx_done || fixP->fx_pcrel)
28627 #endif
28628 md_number_to_chars (buf, value, 4);
28629 break;
28630
28631 #ifdef OBJ_ELF
28632 case BFD_RELOC_ARM_PREL31:
28633 if (fixP->fx_done || !seg->use_rela_p)
28634 {
28635 newval = md_chars_to_number (buf, 4) & 0x80000000;
28636 if ((value ^ (value >> 1)) & 0x40000000)
28637 {
28638 as_bad_where (fixP->fx_file, fixP->fx_line,
28639 _("rel31 relocation overflow"));
28640 }
28641 newval |= value & 0x7fffffff;
28642 md_number_to_chars (buf, newval, 4);
28643 }
28644 break;
28645 #endif
28646
28647 case BFD_RELOC_ARM_CP_OFF_IMM:
28648 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
28649 case BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM:
28650 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
28651 newval = md_chars_to_number (buf, INSN_SIZE);
28652 else
28653 newval = get_thumb32_insn (buf);
28654 if ((newval & 0x0f200f00) == 0x0d000900)
28655 {
28656 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
28657 has permitted values that are multiples of 2, in the range 0
28658 to 510. */
28659 if (value < -510 || value > 510 || (value & 1))
28660 as_bad_where (fixP->fx_file, fixP->fx_line,
28661 _("co-processor offset out of range"));
28662 }
28663 else if ((newval & 0xfe001f80) == 0xec000f80)
28664 {
28665 if (value < -511 || value > 512 || (value & 3))
28666 as_bad_where (fixP->fx_file, fixP->fx_line,
28667 _("co-processor offset out of range"));
28668 }
28669 else if (value < -1023 || value > 1023 || (value & 3))
28670 as_bad_where (fixP->fx_file, fixP->fx_line,
28671 _("co-processor offset out of range"));
28672 cp_off_common:
28673 sign = value > 0;
28674 if (value < 0)
28675 value = -value;
28676 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
28677 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
28678 newval = md_chars_to_number (buf, INSN_SIZE);
28679 else
28680 newval = get_thumb32_insn (buf);
28681 if (value == 0)
28682 {
28683 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
28684 newval &= 0xffffff80;
28685 else
28686 newval &= 0xffffff00;
28687 }
28688 else
28689 {
28690 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
28691 newval &= 0xff7fff80;
28692 else
28693 newval &= 0xff7fff00;
28694 if ((newval & 0x0f200f00) == 0x0d000900)
28695 {
28696 /* This is a fp16 vstr/vldr.
28697
28698 It requires the immediate offset in the instruction is shifted
28699 left by 1 to be a half-word offset.
28700
28701 Here, left shift by 1 first, and later right shift by 2
28702 should get the right offset. */
28703 value <<= 1;
28704 }
28705 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
28706 }
28707 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
28708 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
28709 md_number_to_chars (buf, newval, INSN_SIZE);
28710 else
28711 put_thumb32_insn (buf, newval);
28712 break;
28713
28714 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
28715 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
28716 if (value < -255 || value > 255)
28717 as_bad_where (fixP->fx_file, fixP->fx_line,
28718 _("co-processor offset out of range"));
28719 value *= 4;
28720 goto cp_off_common;
28721
28722 case BFD_RELOC_ARM_THUMB_OFFSET:
28723 newval = md_chars_to_number (buf, THUMB_SIZE);
28724 /* Exactly what ranges, and where the offset is inserted depends
28725 on the type of instruction, we can establish this from the
28726 top 4 bits. */
28727 switch (newval >> 12)
28728 {
28729 case 4: /* PC load. */
28730 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
28731 forced to zero for these loads; md_pcrel_from has already
28732 compensated for this. */
28733 if (value & 3)
28734 as_bad_where (fixP->fx_file, fixP->fx_line,
28735 _("invalid offset, target not word aligned (0x%08lX)"),
28736 (((unsigned long) fixP->fx_frag->fr_address
28737 + (unsigned long) fixP->fx_where) & ~3)
28738 + (unsigned long) value);
28739
28740 if (value & ~0x3fc)
28741 as_bad_where (fixP->fx_file, fixP->fx_line,
28742 _("invalid offset, value too big (0x%08lX)"),
28743 (long) value);
28744
28745 newval |= value >> 2;
28746 break;
28747
28748 case 9: /* SP load/store. */
28749 if (value & ~0x3fc)
28750 as_bad_where (fixP->fx_file, fixP->fx_line,
28751 _("invalid offset, value too big (0x%08lX)"),
28752 (long) value);
28753 newval |= value >> 2;
28754 break;
28755
28756 case 6: /* Word load/store. */
28757 if (value & ~0x7c)
28758 as_bad_where (fixP->fx_file, fixP->fx_line,
28759 _("invalid offset, value too big (0x%08lX)"),
28760 (long) value);
28761 newval |= value << 4; /* 6 - 2. */
28762 break;
28763
28764 case 7: /* Byte load/store. */
28765 if (value & ~0x1f)
28766 as_bad_where (fixP->fx_file, fixP->fx_line,
28767 _("invalid offset, value too big (0x%08lX)"),
28768 (long) value);
28769 newval |= value << 6;
28770 break;
28771
28772 case 8: /* Halfword load/store. */
28773 if (value & ~0x3e)
28774 as_bad_where (fixP->fx_file, fixP->fx_line,
28775 _("invalid offset, value too big (0x%08lX)"),
28776 (long) value);
28777 newval |= value << 5; /* 6 - 1. */
28778 break;
28779
28780 default:
28781 as_bad_where (fixP->fx_file, fixP->fx_line,
28782 "Unable to process relocation for thumb opcode: %lx",
28783 (unsigned long) newval);
28784 break;
28785 }
28786 md_number_to_chars (buf, newval, THUMB_SIZE);
28787 break;
28788
28789 case BFD_RELOC_ARM_THUMB_ADD:
28790 /* This is a complicated relocation, since we use it for all of
28791 the following immediate relocations:
28792
28793 3bit ADD/SUB
28794 8bit ADD/SUB
28795 9bit ADD/SUB SP word-aligned
28796 10bit ADD PC/SP word-aligned
28797
28798 The type of instruction being processed is encoded in the
28799 instruction field:
28800
28801 0x8000 SUB
28802 0x00F0 Rd
28803 0x000F Rs
28804 */
28805 newval = md_chars_to_number (buf, THUMB_SIZE);
28806 {
28807 int rd = (newval >> 4) & 0xf;
28808 int rs = newval & 0xf;
28809 int subtract = !!(newval & 0x8000);
28810
28811 /* Check for HI regs, only very restricted cases allowed:
28812 Adjusting SP, and using PC or SP to get an address. */
28813 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
28814 || (rs > 7 && rs != REG_SP && rs != REG_PC))
28815 as_bad_where (fixP->fx_file, fixP->fx_line,
28816 _("invalid Hi register with immediate"));
28817
28818 /* If value is negative, choose the opposite instruction. */
28819 if (value < 0)
28820 {
28821 value = -value;
28822 subtract = !subtract;
28823 if (value < 0)
28824 as_bad_where (fixP->fx_file, fixP->fx_line,
28825 _("immediate value out of range"));
28826 }
28827
28828 if (rd == REG_SP)
28829 {
28830 if (value & ~0x1fc)
28831 as_bad_where (fixP->fx_file, fixP->fx_line,
28832 _("invalid immediate for stack address calculation"));
28833 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
28834 newval |= value >> 2;
28835 }
28836 else if (rs == REG_PC || rs == REG_SP)
28837 {
28838 /* PR gas/18541. If the addition is for a defined symbol
28839 within range of an ADR instruction then accept it. */
28840 if (subtract
28841 && value == 4
28842 && fixP->fx_addsy != NULL)
28843 {
28844 subtract = 0;
28845
28846 if (! S_IS_DEFINED (fixP->fx_addsy)
28847 || S_GET_SEGMENT (fixP->fx_addsy) != seg
28848 || S_IS_WEAK (fixP->fx_addsy))
28849 {
28850 as_bad_where (fixP->fx_file, fixP->fx_line,
28851 _("address calculation needs a strongly defined nearby symbol"));
28852 }
28853 else
28854 {
28855 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
28856
28857 /* Round up to the next 4-byte boundary. */
28858 if (v & 3)
28859 v = (v + 3) & ~ 3;
28860 else
28861 v += 4;
28862 v = S_GET_VALUE (fixP->fx_addsy) - v;
28863
28864 if (v & ~0x3fc)
28865 {
28866 as_bad_where (fixP->fx_file, fixP->fx_line,
28867 _("symbol too far away"));
28868 }
28869 else
28870 {
28871 fixP->fx_done = 1;
28872 value = v;
28873 }
28874 }
28875 }
28876
28877 if (subtract || value & ~0x3fc)
28878 as_bad_where (fixP->fx_file, fixP->fx_line,
28879 _("invalid immediate for address calculation (value = 0x%08lX)"),
28880 (unsigned long) (subtract ? - value : value));
28881 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
28882 newval |= rd << 8;
28883 newval |= value >> 2;
28884 }
28885 else if (rs == rd)
28886 {
28887 if (value & ~0xff)
28888 as_bad_where (fixP->fx_file, fixP->fx_line,
28889 _("immediate value out of range"));
28890 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
28891 newval |= (rd << 8) | value;
28892 }
28893 else
28894 {
28895 if (value & ~0x7)
28896 as_bad_where (fixP->fx_file, fixP->fx_line,
28897 _("immediate value out of range"));
28898 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
28899 newval |= rd | (rs << 3) | (value << 6);
28900 }
28901 }
28902 md_number_to_chars (buf, newval, THUMB_SIZE);
28903 break;
28904
28905 case BFD_RELOC_ARM_THUMB_IMM:
28906 newval = md_chars_to_number (buf, THUMB_SIZE);
28907 if (value < 0 || value > 255)
28908 as_bad_where (fixP->fx_file, fixP->fx_line,
28909 _("invalid immediate: %ld is out of range"),
28910 (long) value);
28911 newval |= value;
28912 md_number_to_chars (buf, newval, THUMB_SIZE);
28913 break;
28914
28915 case BFD_RELOC_ARM_THUMB_SHIFT:
28916 /* 5bit shift value (0..32). LSL cannot take 32. */
28917 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
28918 temp = newval & 0xf800;
28919 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
28920 as_bad_where (fixP->fx_file, fixP->fx_line,
28921 _("invalid shift value: %ld"), (long) value);
28922 /* Shifts of zero must be encoded as LSL. */
28923 if (value == 0)
28924 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
28925 /* Shifts of 32 are encoded as zero. */
28926 else if (value == 32)
28927 value = 0;
28928 newval |= value << 6;
28929 md_number_to_chars (buf, newval, THUMB_SIZE);
28930 break;
28931
28932 case BFD_RELOC_VTABLE_INHERIT:
28933 case BFD_RELOC_VTABLE_ENTRY:
28934 fixP->fx_done = 0;
28935 return;
28936
28937 case BFD_RELOC_ARM_MOVW:
28938 case BFD_RELOC_ARM_MOVT:
28939 case BFD_RELOC_ARM_THUMB_MOVW:
28940 case BFD_RELOC_ARM_THUMB_MOVT:
28941 if (fixP->fx_done || !seg->use_rela_p)
28942 {
28943 /* REL format relocations are limited to a 16-bit addend. */
28944 if (!fixP->fx_done)
28945 {
28946 if (value < -0x8000 || value > 0x7fff)
28947 as_bad_where (fixP->fx_file, fixP->fx_line,
28948 _("offset out of range"));
28949 }
28950 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
28951 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
28952 {
28953 value >>= 16;
28954 }
28955
28956 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
28957 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
28958 {
28959 newval = get_thumb32_insn (buf);
28960 newval &= 0xfbf08f00;
28961 newval |= (value & 0xf000) << 4;
28962 newval |= (value & 0x0800) << 15;
28963 newval |= (value & 0x0700) << 4;
28964 newval |= (value & 0x00ff);
28965 put_thumb32_insn (buf, newval);
28966 }
28967 else
28968 {
28969 newval = md_chars_to_number (buf, 4);
28970 newval &= 0xfff0f000;
28971 newval |= value & 0x0fff;
28972 newval |= (value & 0xf000) << 4;
28973 md_number_to_chars (buf, newval, 4);
28974 }
28975 }
28976 return;
28977
28978 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
28979 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
28980 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
28981 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
28982 gas_assert (!fixP->fx_done);
28983 {
28984 bfd_vma insn;
28985 bfd_boolean is_mov;
28986 bfd_vma encoded_addend = value;
28987
28988 /* Check that addend can be encoded in instruction. */
28989 if (!seg->use_rela_p && (value < 0 || value > 255))
28990 as_bad_where (fixP->fx_file, fixP->fx_line,
28991 _("the offset 0x%08lX is not representable"),
28992 (unsigned long) encoded_addend);
28993
28994 /* Extract the instruction. */
28995 insn = md_chars_to_number (buf, THUMB_SIZE);
28996 is_mov = (insn & 0xf800) == 0x2000;
28997
28998 /* Encode insn. */
28999 if (is_mov)
29000 {
29001 if (!seg->use_rela_p)
29002 insn |= encoded_addend;
29003 }
29004 else
29005 {
29006 int rd, rs;
29007
29008 /* Extract the instruction. */
29009 /* Encoding is the following
29010 0x8000 SUB
29011 0x00F0 Rd
29012 0x000F Rs
29013 */
29014 /* The following conditions must be true :
29015 - ADD
29016 - Rd == Rs
29017 - Rd <= 7
29018 */
29019 rd = (insn >> 4) & 0xf;
29020 rs = insn & 0xf;
29021 if ((insn & 0x8000) || (rd != rs) || rd > 7)
29022 as_bad_where (fixP->fx_file, fixP->fx_line,
29023 _("Unable to process relocation for thumb opcode: %lx"),
29024 (unsigned long) insn);
29025
29026 /* Encode as ADD immediate8 thumb 1 code. */
29027 insn = 0x3000 | (rd << 8);
29028
29029 /* Place the encoded addend into the first 8 bits of the
29030 instruction. */
29031 if (!seg->use_rela_p)
29032 insn |= encoded_addend;
29033 }
29034
29035 /* Update the instruction. */
29036 md_number_to_chars (buf, insn, THUMB_SIZE);
29037 }
29038 break;
29039
29040 case BFD_RELOC_ARM_ALU_PC_G0_NC:
29041 case BFD_RELOC_ARM_ALU_PC_G0:
29042 case BFD_RELOC_ARM_ALU_PC_G1_NC:
29043 case BFD_RELOC_ARM_ALU_PC_G1:
29044 case BFD_RELOC_ARM_ALU_PC_G2:
29045 case BFD_RELOC_ARM_ALU_SB_G0_NC:
29046 case BFD_RELOC_ARM_ALU_SB_G0:
29047 case BFD_RELOC_ARM_ALU_SB_G1_NC:
29048 case BFD_RELOC_ARM_ALU_SB_G1:
29049 case BFD_RELOC_ARM_ALU_SB_G2:
29050 gas_assert (!fixP->fx_done);
29051 if (!seg->use_rela_p)
29052 {
29053 bfd_vma insn;
29054 bfd_vma encoded_addend;
29055 bfd_vma addend_abs = llabs (value);
29056
29057 /* Check that the absolute value of the addend can be
29058 expressed as an 8-bit constant plus a rotation. */
29059 encoded_addend = encode_arm_immediate (addend_abs);
29060 if (encoded_addend == (unsigned int) FAIL)
29061 as_bad_where (fixP->fx_file, fixP->fx_line,
29062 _("the offset 0x%08lX is not representable"),
29063 (unsigned long) addend_abs);
29064
29065 /* Extract the instruction. */
29066 insn = md_chars_to_number (buf, INSN_SIZE);
29067
29068 /* If the addend is positive, use an ADD instruction.
29069 Otherwise use a SUB. Take care not to destroy the S bit. */
29070 insn &= 0xff1fffff;
29071 if (value < 0)
29072 insn |= 1 << 22;
29073 else
29074 insn |= 1 << 23;
29075
29076 /* Place the encoded addend into the first 12 bits of the
29077 instruction. */
29078 insn &= 0xfffff000;
29079 insn |= encoded_addend;
29080
29081 /* Update the instruction. */
29082 md_number_to_chars (buf, insn, INSN_SIZE);
29083 }
29084 break;
29085
29086 case BFD_RELOC_ARM_LDR_PC_G0:
29087 case BFD_RELOC_ARM_LDR_PC_G1:
29088 case BFD_RELOC_ARM_LDR_PC_G2:
29089 case BFD_RELOC_ARM_LDR_SB_G0:
29090 case BFD_RELOC_ARM_LDR_SB_G1:
29091 case BFD_RELOC_ARM_LDR_SB_G2:
29092 gas_assert (!fixP->fx_done);
29093 if (!seg->use_rela_p)
29094 {
29095 bfd_vma insn;
29096 bfd_vma addend_abs = llabs (value);
29097
29098 /* Check that the absolute value of the addend can be
29099 encoded in 12 bits. */
29100 if (addend_abs >= 0x1000)
29101 as_bad_where (fixP->fx_file, fixP->fx_line,
29102 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
29103 (unsigned long) addend_abs);
29104
29105 /* Extract the instruction. */
29106 insn = md_chars_to_number (buf, INSN_SIZE);
29107
29108 /* If the addend is negative, clear bit 23 of the instruction.
29109 Otherwise set it. */
29110 if (value < 0)
29111 insn &= ~(1 << 23);
29112 else
29113 insn |= 1 << 23;
29114
29115 /* Place the absolute value of the addend into the first 12 bits
29116 of the instruction. */
29117 insn &= 0xfffff000;
29118 insn |= addend_abs;
29119
29120 /* Update the instruction. */
29121 md_number_to_chars (buf, insn, INSN_SIZE);
29122 }
29123 break;
29124
29125 case BFD_RELOC_ARM_LDRS_PC_G0:
29126 case BFD_RELOC_ARM_LDRS_PC_G1:
29127 case BFD_RELOC_ARM_LDRS_PC_G2:
29128 case BFD_RELOC_ARM_LDRS_SB_G0:
29129 case BFD_RELOC_ARM_LDRS_SB_G1:
29130 case BFD_RELOC_ARM_LDRS_SB_G2:
29131 gas_assert (!fixP->fx_done);
29132 if (!seg->use_rela_p)
29133 {
29134 bfd_vma insn;
29135 bfd_vma addend_abs = llabs (value);
29136
29137 /* Check that the absolute value of the addend can be
29138 encoded in 8 bits. */
29139 if (addend_abs >= 0x100)
29140 as_bad_where (fixP->fx_file, fixP->fx_line,
29141 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
29142 (unsigned long) addend_abs);
29143
29144 /* Extract the instruction. */
29145 insn = md_chars_to_number (buf, INSN_SIZE);
29146
29147 /* If the addend is negative, clear bit 23 of the instruction.
29148 Otherwise set it. */
29149 if (value < 0)
29150 insn &= ~(1 << 23);
29151 else
29152 insn |= 1 << 23;
29153
29154 /* Place the first four bits of the absolute value of the addend
29155 into the first 4 bits of the instruction, and the remaining
29156 four into bits 8 .. 11. */
29157 insn &= 0xfffff0f0;
29158 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
29159
29160 /* Update the instruction. */
29161 md_number_to_chars (buf, insn, INSN_SIZE);
29162 }
29163 break;
29164
29165 case BFD_RELOC_ARM_LDC_PC_G0:
29166 case BFD_RELOC_ARM_LDC_PC_G1:
29167 case BFD_RELOC_ARM_LDC_PC_G2:
29168 case BFD_RELOC_ARM_LDC_SB_G0:
29169 case BFD_RELOC_ARM_LDC_SB_G1:
29170 case BFD_RELOC_ARM_LDC_SB_G2:
29171 gas_assert (!fixP->fx_done);
29172 if (!seg->use_rela_p)
29173 {
29174 bfd_vma insn;
29175 bfd_vma addend_abs = llabs (value);
29176
29177 /* Check that the absolute value of the addend is a multiple of
29178 four and, when divided by four, fits in 8 bits. */
29179 if (addend_abs & 0x3)
29180 as_bad_where (fixP->fx_file, fixP->fx_line,
29181 _("bad offset 0x%08lX (must be word-aligned)"),
29182 (unsigned long) addend_abs);
29183
29184 if ((addend_abs >> 2) > 0xff)
29185 as_bad_where (fixP->fx_file, fixP->fx_line,
29186 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
29187 (unsigned long) addend_abs);
29188
29189 /* Extract the instruction. */
29190 insn = md_chars_to_number (buf, INSN_SIZE);
29191
29192 /* If the addend is negative, clear bit 23 of the instruction.
29193 Otherwise set it. */
29194 if (value < 0)
29195 insn &= ~(1 << 23);
29196 else
29197 insn |= 1 << 23;
29198
29199 /* Place the addend (divided by four) into the first eight
29200 bits of the instruction. */
29201 insn &= 0xfffffff0;
29202 insn |= addend_abs >> 2;
29203
29204 /* Update the instruction. */
29205 md_number_to_chars (buf, insn, INSN_SIZE);
29206 }
29207 break;
29208
29209 case BFD_RELOC_THUMB_PCREL_BRANCH5:
29210 if (fixP->fx_addsy
29211 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
29212 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
29213 && ARM_IS_FUNC (fixP->fx_addsy)
29214 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
29215 {
29216 /* Force a relocation for a branch 5 bits wide. */
29217 fixP->fx_done = 0;
29218 }
29219 if (v8_1_branch_value_check (value, 5, FALSE) == FAIL)
29220 as_bad_where (fixP->fx_file, fixP->fx_line,
29221 BAD_BRANCH_OFF);
29222
29223 if (fixP->fx_done || !seg->use_rela_p)
29224 {
29225 addressT boff = value >> 1;
29226
29227 newval = md_chars_to_number (buf, THUMB_SIZE);
29228 newval |= (boff << 7);
29229 md_number_to_chars (buf, newval, THUMB_SIZE);
29230 }
29231 break;
29232
29233 case BFD_RELOC_THUMB_PCREL_BFCSEL:
29234 if (fixP->fx_addsy
29235 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
29236 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
29237 && ARM_IS_FUNC (fixP->fx_addsy)
29238 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
29239 {
29240 fixP->fx_done = 0;
29241 }
29242 if ((value & ~0x7f) && ((value & ~0x3f) != ~0x3f))
29243 as_bad_where (fixP->fx_file, fixP->fx_line,
29244 _("branch out of range"));
29245
29246 if (fixP->fx_done || !seg->use_rela_p)
29247 {
29248 newval = md_chars_to_number (buf, THUMB_SIZE);
29249
29250 addressT boff = ((newval & 0x0780) >> 7) << 1;
29251 addressT diff = value - boff;
29252
29253 if (diff == 4)
29254 {
29255 newval |= 1 << 1; /* T bit. */
29256 }
29257 else if (diff != 2)
29258 {
29259 as_bad_where (fixP->fx_file, fixP->fx_line,
29260 _("out of range label-relative fixup value"));
29261 }
29262 md_number_to_chars (buf, newval, THUMB_SIZE);
29263 }
29264 break;
29265
29266 case BFD_RELOC_ARM_THUMB_BF17:
29267 if (fixP->fx_addsy
29268 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
29269 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
29270 && ARM_IS_FUNC (fixP->fx_addsy)
29271 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
29272 {
29273 /* Force a relocation for a branch 17 bits wide. */
29274 fixP->fx_done = 0;
29275 }
29276
29277 if (v8_1_branch_value_check (value, 17, TRUE) == FAIL)
29278 as_bad_where (fixP->fx_file, fixP->fx_line,
29279 BAD_BRANCH_OFF);
29280
29281 if (fixP->fx_done || !seg->use_rela_p)
29282 {
29283 offsetT newval2;
29284 addressT immA, immB, immC;
29285
29286 immA = (value & 0x0001f000) >> 12;
29287 immB = (value & 0x00000ffc) >> 2;
29288 immC = (value & 0x00000002) >> 1;
29289
29290 newval = md_chars_to_number (buf, THUMB_SIZE);
29291 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
29292 newval |= immA;
29293 newval2 |= (immC << 11) | (immB << 1);
29294 md_number_to_chars (buf, newval, THUMB_SIZE);
29295 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
29296 }
29297 break;
29298
29299 case BFD_RELOC_ARM_THUMB_BF19:
29300 if (fixP->fx_addsy
29301 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
29302 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
29303 && ARM_IS_FUNC (fixP->fx_addsy)
29304 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
29305 {
29306 /* Force a relocation for a branch 19 bits wide. */
29307 fixP->fx_done = 0;
29308 }
29309
29310 if (v8_1_branch_value_check (value, 19, TRUE) == FAIL)
29311 as_bad_where (fixP->fx_file, fixP->fx_line,
29312 BAD_BRANCH_OFF);
29313
29314 if (fixP->fx_done || !seg->use_rela_p)
29315 {
29316 offsetT newval2;
29317 addressT immA, immB, immC;
29318
29319 immA = (value & 0x0007f000) >> 12;
29320 immB = (value & 0x00000ffc) >> 2;
29321 immC = (value & 0x00000002) >> 1;
29322
29323 newval = md_chars_to_number (buf, THUMB_SIZE);
29324 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
29325 newval |= immA;
29326 newval2 |= (immC << 11) | (immB << 1);
29327 md_number_to_chars (buf, newval, THUMB_SIZE);
29328 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
29329 }
29330 break;
29331
29332 case BFD_RELOC_ARM_THUMB_BF13:
29333 if (fixP->fx_addsy
29334 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
29335 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
29336 && ARM_IS_FUNC (fixP->fx_addsy)
29337 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
29338 {
29339 /* Force a relocation for a branch 13 bits wide. */
29340 fixP->fx_done = 0;
29341 }
29342
29343 if (v8_1_branch_value_check (value, 13, TRUE) == FAIL)
29344 as_bad_where (fixP->fx_file, fixP->fx_line,
29345 BAD_BRANCH_OFF);
29346
29347 if (fixP->fx_done || !seg->use_rela_p)
29348 {
29349 offsetT newval2;
29350 addressT immA, immB, immC;
29351
29352 immA = (value & 0x00001000) >> 12;
29353 immB = (value & 0x00000ffc) >> 2;
29354 immC = (value & 0x00000002) >> 1;
29355
29356 newval = md_chars_to_number (buf, THUMB_SIZE);
29357 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
29358 newval |= immA;
29359 newval2 |= (immC << 11) | (immB << 1);
29360 md_number_to_chars (buf, newval, THUMB_SIZE);
29361 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
29362 }
29363 break;
29364
29365 case BFD_RELOC_ARM_THUMB_LOOP12:
29366 if (fixP->fx_addsy
29367 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
29368 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
29369 && ARM_IS_FUNC (fixP->fx_addsy)
29370 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
29371 {
29372 /* Force a relocation for a branch 12 bits wide. */
29373 fixP->fx_done = 0;
29374 }
29375
29376 bfd_vma insn = get_thumb32_insn (buf);
29377 /* le lr, <label>, le <label> or letp lr, <label> */
29378 if (((insn & 0xffffffff) == 0xf00fc001)
29379 || ((insn & 0xffffffff) == 0xf02fc001)
29380 || ((insn & 0xffffffff) == 0xf01fc001))
29381 value = -value;
29382
29383 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
29384 as_bad_where (fixP->fx_file, fixP->fx_line,
29385 BAD_BRANCH_OFF);
29386 if (fixP->fx_done || !seg->use_rela_p)
29387 {
29388 addressT imml, immh;
29389
29390 immh = (value & 0x00000ffc) >> 2;
29391 imml = (value & 0x00000002) >> 1;
29392
29393 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
29394 newval |= (imml << 11) | (immh << 1);
29395 md_number_to_chars (buf + THUMB_SIZE, newval, THUMB_SIZE);
29396 }
29397 break;
29398
29399 case BFD_RELOC_ARM_V4BX:
29400 /* This will need to go in the object file. */
29401 fixP->fx_done = 0;
29402 break;
29403
29404 case BFD_RELOC_UNUSED:
29405 default:
29406 as_bad_where (fixP->fx_file, fixP->fx_line,
29407 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
29408 }
29409 }
29410
29411 /* Translate internal representation of relocation info to BFD target
29412 format. */
29413
29414 arelent *
29415 tc_gen_reloc (asection *section, fixS *fixp)
29416 {
29417 arelent * reloc;
29418 bfd_reloc_code_real_type code;
29419
29420 reloc = XNEW (arelent);
29421
29422 reloc->sym_ptr_ptr = XNEW (asymbol *);
29423 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
29424 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
29425
29426 if (fixp->fx_pcrel)
29427 {
29428 if (section->use_rela_p)
29429 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
29430 else
29431 fixp->fx_offset = reloc->address;
29432 }
29433 reloc->addend = fixp->fx_offset;
29434
29435 switch (fixp->fx_r_type)
29436 {
29437 case BFD_RELOC_8:
29438 if (fixp->fx_pcrel)
29439 {
29440 code = BFD_RELOC_8_PCREL;
29441 break;
29442 }
29443 /* Fall through. */
29444
29445 case BFD_RELOC_16:
29446 if (fixp->fx_pcrel)
29447 {
29448 code = BFD_RELOC_16_PCREL;
29449 break;
29450 }
29451 /* Fall through. */
29452
29453 case BFD_RELOC_32:
29454 if (fixp->fx_pcrel)
29455 {
29456 code = BFD_RELOC_32_PCREL;
29457 break;
29458 }
29459 /* Fall through. */
29460
29461 case BFD_RELOC_ARM_MOVW:
29462 if (fixp->fx_pcrel)
29463 {
29464 code = BFD_RELOC_ARM_MOVW_PCREL;
29465 break;
29466 }
29467 /* Fall through. */
29468
29469 case BFD_RELOC_ARM_MOVT:
29470 if (fixp->fx_pcrel)
29471 {
29472 code = BFD_RELOC_ARM_MOVT_PCREL;
29473 break;
29474 }
29475 /* Fall through. */
29476
29477 case BFD_RELOC_ARM_THUMB_MOVW:
29478 if (fixp->fx_pcrel)
29479 {
29480 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
29481 break;
29482 }
29483 /* Fall through. */
29484
29485 case BFD_RELOC_ARM_THUMB_MOVT:
29486 if (fixp->fx_pcrel)
29487 {
29488 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
29489 break;
29490 }
29491 /* Fall through. */
29492
29493 case BFD_RELOC_NONE:
29494 case BFD_RELOC_ARM_PCREL_BRANCH:
29495 case BFD_RELOC_ARM_PCREL_BLX:
29496 case BFD_RELOC_RVA:
29497 case BFD_RELOC_THUMB_PCREL_BRANCH7:
29498 case BFD_RELOC_THUMB_PCREL_BRANCH9:
29499 case BFD_RELOC_THUMB_PCREL_BRANCH12:
29500 case BFD_RELOC_THUMB_PCREL_BRANCH20:
29501 case BFD_RELOC_THUMB_PCREL_BRANCH23:
29502 case BFD_RELOC_THUMB_PCREL_BRANCH25:
29503 case BFD_RELOC_VTABLE_ENTRY:
29504 case BFD_RELOC_VTABLE_INHERIT:
29505 #ifdef TE_PE
29506 case BFD_RELOC_32_SECREL:
29507 #endif
29508 code = fixp->fx_r_type;
29509 break;
29510
29511 case BFD_RELOC_THUMB_PCREL_BLX:
29512 #ifdef OBJ_ELF
29513 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
29514 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
29515 else
29516 #endif
29517 code = BFD_RELOC_THUMB_PCREL_BLX;
29518 break;
29519
29520 case BFD_RELOC_ARM_LITERAL:
29521 case BFD_RELOC_ARM_HWLITERAL:
29522 /* If this is called then the a literal has
29523 been referenced across a section boundary. */
29524 as_bad_where (fixp->fx_file, fixp->fx_line,
29525 _("literal referenced across section boundary"));
29526 return NULL;
29527
29528 #ifdef OBJ_ELF
29529 case BFD_RELOC_ARM_TLS_CALL:
29530 case BFD_RELOC_ARM_THM_TLS_CALL:
29531 case BFD_RELOC_ARM_TLS_DESCSEQ:
29532 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
29533 case BFD_RELOC_ARM_GOT32:
29534 case BFD_RELOC_ARM_GOTOFF:
29535 case BFD_RELOC_ARM_GOT_PREL:
29536 case BFD_RELOC_ARM_PLT32:
29537 case BFD_RELOC_ARM_TARGET1:
29538 case BFD_RELOC_ARM_ROSEGREL32:
29539 case BFD_RELOC_ARM_SBREL32:
29540 case BFD_RELOC_ARM_PREL31:
29541 case BFD_RELOC_ARM_TARGET2:
29542 case BFD_RELOC_ARM_TLS_LDO32:
29543 case BFD_RELOC_ARM_PCREL_CALL:
29544 case BFD_RELOC_ARM_PCREL_JUMP:
29545 case BFD_RELOC_ARM_ALU_PC_G0_NC:
29546 case BFD_RELOC_ARM_ALU_PC_G0:
29547 case BFD_RELOC_ARM_ALU_PC_G1_NC:
29548 case BFD_RELOC_ARM_ALU_PC_G1:
29549 case BFD_RELOC_ARM_ALU_PC_G2:
29550 case BFD_RELOC_ARM_LDR_PC_G0:
29551 case BFD_RELOC_ARM_LDR_PC_G1:
29552 case BFD_RELOC_ARM_LDR_PC_G2:
29553 case BFD_RELOC_ARM_LDRS_PC_G0:
29554 case BFD_RELOC_ARM_LDRS_PC_G1:
29555 case BFD_RELOC_ARM_LDRS_PC_G2:
29556 case BFD_RELOC_ARM_LDC_PC_G0:
29557 case BFD_RELOC_ARM_LDC_PC_G1:
29558 case BFD_RELOC_ARM_LDC_PC_G2:
29559 case BFD_RELOC_ARM_ALU_SB_G0_NC:
29560 case BFD_RELOC_ARM_ALU_SB_G0:
29561 case BFD_RELOC_ARM_ALU_SB_G1_NC:
29562 case BFD_RELOC_ARM_ALU_SB_G1:
29563 case BFD_RELOC_ARM_ALU_SB_G2:
29564 case BFD_RELOC_ARM_LDR_SB_G0:
29565 case BFD_RELOC_ARM_LDR_SB_G1:
29566 case BFD_RELOC_ARM_LDR_SB_G2:
29567 case BFD_RELOC_ARM_LDRS_SB_G0:
29568 case BFD_RELOC_ARM_LDRS_SB_G1:
29569 case BFD_RELOC_ARM_LDRS_SB_G2:
29570 case BFD_RELOC_ARM_LDC_SB_G0:
29571 case BFD_RELOC_ARM_LDC_SB_G1:
29572 case BFD_RELOC_ARM_LDC_SB_G2:
29573 case BFD_RELOC_ARM_V4BX:
29574 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
29575 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
29576 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
29577 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
29578 case BFD_RELOC_ARM_GOTFUNCDESC:
29579 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
29580 case BFD_RELOC_ARM_FUNCDESC:
29581 case BFD_RELOC_ARM_THUMB_BF17:
29582 case BFD_RELOC_ARM_THUMB_BF19:
29583 case BFD_RELOC_ARM_THUMB_BF13:
29584 code = fixp->fx_r_type;
29585 break;
29586
29587 case BFD_RELOC_ARM_TLS_GOTDESC:
29588 case BFD_RELOC_ARM_TLS_GD32:
29589 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
29590 case BFD_RELOC_ARM_TLS_LE32:
29591 case BFD_RELOC_ARM_TLS_IE32:
29592 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
29593 case BFD_RELOC_ARM_TLS_LDM32:
29594 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
29595 /* BFD will include the symbol's address in the addend.
29596 But we don't want that, so subtract it out again here. */
29597 if (!S_IS_COMMON (fixp->fx_addsy))
29598 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
29599 code = fixp->fx_r_type;
29600 break;
29601 #endif
29602
29603 case BFD_RELOC_ARM_IMMEDIATE:
29604 as_bad_where (fixp->fx_file, fixp->fx_line,
29605 _("internal relocation (type: IMMEDIATE) not fixed up"));
29606 return NULL;
29607
29608 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
29609 as_bad_where (fixp->fx_file, fixp->fx_line,
29610 _("ADRL used for a symbol not defined in the same file"));
29611 return NULL;
29612
29613 case BFD_RELOC_THUMB_PCREL_BRANCH5:
29614 case BFD_RELOC_THUMB_PCREL_BFCSEL:
29615 case BFD_RELOC_ARM_THUMB_LOOP12:
29616 as_bad_where (fixp->fx_file, fixp->fx_line,
29617 _("%s used for a symbol not defined in the same file"),
29618 bfd_get_reloc_code_name (fixp->fx_r_type));
29619 return NULL;
29620
29621 case BFD_RELOC_ARM_OFFSET_IMM:
29622 if (section->use_rela_p)
29623 {
29624 code = fixp->fx_r_type;
29625 break;
29626 }
29627
29628 if (fixp->fx_addsy != NULL
29629 && !S_IS_DEFINED (fixp->fx_addsy)
29630 && S_IS_LOCAL (fixp->fx_addsy))
29631 {
29632 as_bad_where (fixp->fx_file, fixp->fx_line,
29633 _("undefined local label `%s'"),
29634 S_GET_NAME (fixp->fx_addsy));
29635 return NULL;
29636 }
29637
29638 as_bad_where (fixp->fx_file, fixp->fx_line,
29639 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
29640 return NULL;
29641
29642 default:
29643 {
29644 const char * type;
29645
29646 switch (fixp->fx_r_type)
29647 {
29648 case BFD_RELOC_NONE: type = "NONE"; break;
29649 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
29650 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
29651 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
29652 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
29653 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
29654 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
29655 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
29656 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
29657 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
29658 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
29659 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
29660 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
29661 default: type = _("<unknown>"); break;
29662 }
29663 as_bad_where (fixp->fx_file, fixp->fx_line,
29664 _("cannot represent %s relocation in this object file format"),
29665 type);
29666 return NULL;
29667 }
29668 }
29669
29670 #ifdef OBJ_ELF
29671 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
29672 && GOT_symbol
29673 && fixp->fx_addsy == GOT_symbol)
29674 {
29675 code = BFD_RELOC_ARM_GOTPC;
29676 reloc->addend = fixp->fx_offset = reloc->address;
29677 }
29678 #endif
29679
29680 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
29681
29682 if (reloc->howto == NULL)
29683 {
29684 as_bad_where (fixp->fx_file, fixp->fx_line,
29685 _("cannot represent %s relocation in this object file format"),
29686 bfd_get_reloc_code_name (code));
29687 return NULL;
29688 }
29689
29690 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
29691 vtable entry to be used in the relocation's section offset. */
29692 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
29693 reloc->address = fixp->fx_offset;
29694
29695 return reloc;
29696 }
29697
29698 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
29699
29700 void
29701 cons_fix_new_arm (fragS * frag,
29702 int where,
29703 int size,
29704 expressionS * exp,
29705 bfd_reloc_code_real_type reloc)
29706 {
29707 int pcrel = 0;
29708
29709 /* Pick a reloc.
29710 FIXME: @@ Should look at CPU word size. */
29711 switch (size)
29712 {
29713 case 1:
29714 reloc = BFD_RELOC_8;
29715 break;
29716 case 2:
29717 reloc = BFD_RELOC_16;
29718 break;
29719 case 4:
29720 default:
29721 reloc = BFD_RELOC_32;
29722 break;
29723 case 8:
29724 reloc = BFD_RELOC_64;
29725 break;
29726 }
29727
29728 #ifdef TE_PE
29729 if (exp->X_op == O_secrel)
29730 {
29731 exp->X_op = O_symbol;
29732 reloc = BFD_RELOC_32_SECREL;
29733 }
29734 #endif
29735
29736 fix_new_exp (frag, where, size, exp, pcrel, reloc);
29737 }
29738
29739 #if defined (OBJ_COFF)
29740 void
29741 arm_validate_fix (fixS * fixP)
29742 {
29743 /* If the destination of the branch is a defined symbol which does not have
29744 the THUMB_FUNC attribute, then we must be calling a function which has
29745 the (interfacearm) attribute. We look for the Thumb entry point to that
29746 function and change the branch to refer to that function instead. */
29747 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
29748 && fixP->fx_addsy != NULL
29749 && S_IS_DEFINED (fixP->fx_addsy)
29750 && ! THUMB_IS_FUNC (fixP->fx_addsy))
29751 {
29752 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
29753 }
29754 }
29755 #endif
29756
29757
29758 int
29759 arm_force_relocation (struct fix * fixp)
29760 {
29761 #if defined (OBJ_COFF) && defined (TE_PE)
29762 if (fixp->fx_r_type == BFD_RELOC_RVA)
29763 return 1;
29764 #endif
29765
29766 /* In case we have a call or a branch to a function in ARM ISA mode from
29767 a thumb function or vice-versa force the relocation. These relocations
29768 are cleared off for some cores that might have blx and simple transformations
29769 are possible. */
29770
29771 #ifdef OBJ_ELF
29772 switch (fixp->fx_r_type)
29773 {
29774 case BFD_RELOC_ARM_PCREL_JUMP:
29775 case BFD_RELOC_ARM_PCREL_CALL:
29776 case BFD_RELOC_THUMB_PCREL_BLX:
29777 if (THUMB_IS_FUNC (fixp->fx_addsy))
29778 return 1;
29779 break;
29780
29781 case BFD_RELOC_ARM_PCREL_BLX:
29782 case BFD_RELOC_THUMB_PCREL_BRANCH25:
29783 case BFD_RELOC_THUMB_PCREL_BRANCH20:
29784 case BFD_RELOC_THUMB_PCREL_BRANCH23:
29785 if (ARM_IS_FUNC (fixp->fx_addsy))
29786 return 1;
29787 break;
29788
29789 default:
29790 break;
29791 }
29792 #endif
29793
29794 /* Resolve these relocations even if the symbol is extern or weak.
29795 Technically this is probably wrong due to symbol preemption.
29796 In practice these relocations do not have enough range to be useful
29797 at dynamic link time, and some code (e.g. in the Linux kernel)
29798 expects these references to be resolved. */
29799 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
29800 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
29801 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
29802 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
29803 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
29804 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
29805 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
29806 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
29807 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
29808 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
29809 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
29810 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
29811 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
29812 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
29813 return 0;
29814
29815 /* Always leave these relocations for the linker. */
29816 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
29817 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
29818 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
29819 return 1;
29820
29821 /* Always generate relocations against function symbols. */
29822 if (fixp->fx_r_type == BFD_RELOC_32
29823 && fixp->fx_addsy
29824 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
29825 return 1;
29826
29827 return generic_force_reloc (fixp);
29828 }
29829
29830 #if defined (OBJ_ELF) || defined (OBJ_COFF)
29831 /* Relocations against function names must be left unadjusted,
29832 so that the linker can use this information to generate interworking
29833 stubs. The MIPS version of this function
29834 also prevents relocations that are mips-16 specific, but I do not
29835 know why it does this.
29836
29837 FIXME:
29838 There is one other problem that ought to be addressed here, but
29839 which currently is not: Taking the address of a label (rather
29840 than a function) and then later jumping to that address. Such
29841 addresses also ought to have their bottom bit set (assuming that
29842 they reside in Thumb code), but at the moment they will not. */
29843
29844 bfd_boolean
29845 arm_fix_adjustable (fixS * fixP)
29846 {
29847 if (fixP->fx_addsy == NULL)
29848 return 1;
29849
29850 /* Preserve relocations against symbols with function type. */
29851 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
29852 return FALSE;
29853
29854 if (THUMB_IS_FUNC (fixP->fx_addsy)
29855 && fixP->fx_subsy == NULL)
29856 return FALSE;
29857
29858 /* We need the symbol name for the VTABLE entries. */
29859 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
29860 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
29861 return FALSE;
29862
29863 /* Don't allow symbols to be discarded on GOT related relocs. */
29864 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
29865 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
29866 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
29867 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
29868 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32_FDPIC
29869 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
29870 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
29871 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32_FDPIC
29872 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
29873 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32_FDPIC
29874 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
29875 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
29876 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
29877 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
29878 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
29879 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
29880 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
29881 return FALSE;
29882
29883 /* Similarly for group relocations. */
29884 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
29885 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
29886 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
29887 return FALSE;
29888
29889 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
29890 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
29891 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
29892 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
29893 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
29894 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
29895 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
29896 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
29897 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
29898 return FALSE;
29899
29900 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
29901 offsets, so keep these symbols. */
29902 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
29903 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
29904 return FALSE;
29905
29906 return TRUE;
29907 }
29908 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
29909
29910 #ifdef OBJ_ELF
29911 const char *
29912 elf32_arm_target_format (void)
29913 {
29914 #ifdef TE_SYMBIAN
29915 return (target_big_endian
29916 ? "elf32-bigarm-symbian"
29917 : "elf32-littlearm-symbian");
29918 #elif defined (TE_VXWORKS)
29919 return (target_big_endian
29920 ? "elf32-bigarm-vxworks"
29921 : "elf32-littlearm-vxworks");
29922 #elif defined (TE_NACL)
29923 return (target_big_endian
29924 ? "elf32-bigarm-nacl"
29925 : "elf32-littlearm-nacl");
29926 #else
29927 if (arm_fdpic)
29928 {
29929 if (target_big_endian)
29930 return "elf32-bigarm-fdpic";
29931 else
29932 return "elf32-littlearm-fdpic";
29933 }
29934 else
29935 {
29936 if (target_big_endian)
29937 return "elf32-bigarm";
29938 else
29939 return "elf32-littlearm";
29940 }
29941 #endif
29942 }
29943
29944 void
29945 armelf_frob_symbol (symbolS * symp,
29946 int * puntp)
29947 {
29948 elf_frob_symbol (symp, puntp);
29949 }
29950 #endif
29951
29952 /* MD interface: Finalization. */
29953
29954 void
29955 arm_cleanup (void)
29956 {
29957 literal_pool * pool;
29958
29959 /* Ensure that all the predication blocks are properly closed. */
29960 check_pred_blocks_finished ();
29961
29962 for (pool = list_of_pools; pool; pool = pool->next)
29963 {
29964 /* Put it at the end of the relevant section. */
29965 subseg_set (pool->section, pool->sub_section);
29966 #ifdef OBJ_ELF
29967 arm_elf_change_section ();
29968 #endif
29969 s_ltorg (0);
29970 }
29971 }
29972
29973 #ifdef OBJ_ELF
29974 /* Remove any excess mapping symbols generated for alignment frags in
29975 SEC. We may have created a mapping symbol before a zero byte
29976 alignment; remove it if there's a mapping symbol after the
29977 alignment. */
29978 static void
29979 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
29980 void *dummy ATTRIBUTE_UNUSED)
29981 {
29982 segment_info_type *seginfo = seg_info (sec);
29983 fragS *fragp;
29984
29985 if (seginfo == NULL || seginfo->frchainP == NULL)
29986 return;
29987
29988 for (fragp = seginfo->frchainP->frch_root;
29989 fragp != NULL;
29990 fragp = fragp->fr_next)
29991 {
29992 symbolS *sym = fragp->tc_frag_data.last_map;
29993 fragS *next = fragp->fr_next;
29994
29995 /* Variable-sized frags have been converted to fixed size by
29996 this point. But if this was variable-sized to start with,
29997 there will be a fixed-size frag after it. So don't handle
29998 next == NULL. */
29999 if (sym == NULL || next == NULL)
30000 continue;
30001
30002 if (S_GET_VALUE (sym) < next->fr_address)
30003 /* Not at the end of this frag. */
30004 continue;
30005 know (S_GET_VALUE (sym) == next->fr_address);
30006
30007 do
30008 {
30009 if (next->tc_frag_data.first_map != NULL)
30010 {
30011 /* Next frag starts with a mapping symbol. Discard this
30012 one. */
30013 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
30014 break;
30015 }
30016
30017 if (next->fr_next == NULL)
30018 {
30019 /* This mapping symbol is at the end of the section. Discard
30020 it. */
30021 know (next->fr_fix == 0 && next->fr_var == 0);
30022 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
30023 break;
30024 }
30025
30026 /* As long as we have empty frags without any mapping symbols,
30027 keep looking. */
30028 /* If the next frag is non-empty and does not start with a
30029 mapping symbol, then this mapping symbol is required. */
30030 if (next->fr_address != next->fr_next->fr_address)
30031 break;
30032
30033 next = next->fr_next;
30034 }
30035 while (next != NULL);
30036 }
30037 }
30038 #endif
30039
30040 /* Adjust the symbol table. This marks Thumb symbols as distinct from
30041 ARM ones. */
30042
30043 void
30044 arm_adjust_symtab (void)
30045 {
30046 #ifdef OBJ_COFF
30047 symbolS * sym;
30048
30049 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
30050 {
30051 if (ARM_IS_THUMB (sym))
30052 {
30053 if (THUMB_IS_FUNC (sym))
30054 {
30055 /* Mark the symbol as a Thumb function. */
30056 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
30057 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
30058 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
30059
30060 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
30061 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
30062 else
30063 as_bad (_("%s: unexpected function type: %d"),
30064 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
30065 }
30066 else switch (S_GET_STORAGE_CLASS (sym))
30067 {
30068 case C_EXT:
30069 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
30070 break;
30071 case C_STAT:
30072 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
30073 break;
30074 case C_LABEL:
30075 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
30076 break;
30077 default:
30078 /* Do nothing. */
30079 break;
30080 }
30081 }
30082
30083 if (ARM_IS_INTERWORK (sym))
30084 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
30085 }
30086 #endif
30087 #ifdef OBJ_ELF
30088 symbolS * sym;
30089 char bind;
30090
30091 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
30092 {
30093 if (ARM_IS_THUMB (sym))
30094 {
30095 elf_symbol_type * elf_sym;
30096
30097 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
30098 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
30099
30100 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
30101 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
30102 {
30103 /* If it's a .thumb_func, declare it as so,
30104 otherwise tag label as .code 16. */
30105 if (THUMB_IS_FUNC (sym))
30106 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
30107 ST_BRANCH_TO_THUMB);
30108 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
30109 elf_sym->internal_elf_sym.st_info =
30110 ELF_ST_INFO (bind, STT_ARM_16BIT);
30111 }
30112 }
30113 }
30114
30115 /* Remove any overlapping mapping symbols generated by alignment frags. */
30116 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
30117 /* Now do generic ELF adjustments. */
30118 elf_adjust_symtab ();
30119 #endif
30120 }
30121
30122 /* MD interface: Initialization. */
30123
30124 static void
30125 set_constant_flonums (void)
30126 {
30127 int i;
30128
30129 for (i = 0; i < NUM_FLOAT_VALS; i++)
30130 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
30131 abort ();
30132 }
30133
30134 /* Auto-select Thumb mode if it's the only available instruction set for the
30135 given architecture. */
30136
30137 static void
30138 autoselect_thumb_from_cpu_variant (void)
30139 {
30140 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
30141 opcode_select (16);
30142 }
30143
30144 void
30145 md_begin (void)
30146 {
30147 unsigned mach;
30148 unsigned int i;
30149
30150 if ( (arm_ops_hsh = hash_new ()) == NULL
30151 || (arm_cond_hsh = hash_new ()) == NULL
30152 || (arm_vcond_hsh = hash_new ()) == NULL
30153 || (arm_shift_hsh = hash_new ()) == NULL
30154 || (arm_psr_hsh = hash_new ()) == NULL
30155 || (arm_v7m_psr_hsh = hash_new ()) == NULL
30156 || (arm_reg_hsh = hash_new ()) == NULL
30157 || (arm_reloc_hsh = hash_new ()) == NULL
30158 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
30159 as_fatal (_("virtual memory exhausted"));
30160
30161 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
30162 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
30163 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
30164 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
30165 for (i = 0; i < sizeof (vconds) / sizeof (struct asm_cond); i++)
30166 hash_insert (arm_vcond_hsh, vconds[i].template_name, (void *) (vconds + i));
30167 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
30168 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
30169 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
30170 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
30171 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
30172 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
30173 (void *) (v7m_psrs + i));
30174 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
30175 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
30176 for (i = 0;
30177 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
30178 i++)
30179 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
30180 (void *) (barrier_opt_names + i));
30181 #ifdef OBJ_ELF
30182 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
30183 {
30184 struct reloc_entry * entry = reloc_names + i;
30185
30186 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
30187 /* This makes encode_branch() use the EABI versions of this relocation. */
30188 entry->reloc = BFD_RELOC_UNUSED;
30189
30190 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
30191 }
30192 #endif
30193
30194 set_constant_flonums ();
30195
30196 /* Set the cpu variant based on the command-line options. We prefer
30197 -mcpu= over -march= if both are set (as for GCC); and we prefer
30198 -mfpu= over any other way of setting the floating point unit.
30199 Use of legacy options with new options are faulted. */
30200 if (legacy_cpu)
30201 {
30202 if (mcpu_cpu_opt || march_cpu_opt)
30203 as_bad (_("use of old and new-style options to set CPU type"));
30204
30205 selected_arch = *legacy_cpu;
30206 }
30207 else if (mcpu_cpu_opt)
30208 {
30209 selected_arch = *mcpu_cpu_opt;
30210 selected_ext = *mcpu_ext_opt;
30211 }
30212 else if (march_cpu_opt)
30213 {
30214 selected_arch = *march_cpu_opt;
30215 selected_ext = *march_ext_opt;
30216 }
30217 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
30218
30219 if (legacy_fpu)
30220 {
30221 if (mfpu_opt)
30222 as_bad (_("use of old and new-style options to set FPU type"));
30223
30224 selected_fpu = *legacy_fpu;
30225 }
30226 else if (mfpu_opt)
30227 selected_fpu = *mfpu_opt;
30228 else
30229 {
30230 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
30231 || defined (TE_NetBSD) || defined (TE_VXWORKS))
30232 /* Some environments specify a default FPU. If they don't, infer it
30233 from the processor. */
30234 if (mcpu_fpu_opt)
30235 selected_fpu = *mcpu_fpu_opt;
30236 else if (march_fpu_opt)
30237 selected_fpu = *march_fpu_opt;
30238 #else
30239 selected_fpu = fpu_default;
30240 #endif
30241 }
30242
30243 if (ARM_FEATURE_ZERO (selected_fpu))
30244 {
30245 if (!no_cpu_selected ())
30246 selected_fpu = fpu_default;
30247 else
30248 selected_fpu = fpu_arch_fpa;
30249 }
30250
30251 #ifdef CPU_DEFAULT
30252 if (ARM_FEATURE_ZERO (selected_arch))
30253 {
30254 selected_arch = cpu_default;
30255 selected_cpu = selected_arch;
30256 }
30257 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
30258 #else
30259 /* Autodection of feature mode: allow all features in cpu_variant but leave
30260 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
30261 after all instruction have been processed and we can decide what CPU
30262 should be selected. */
30263 if (ARM_FEATURE_ZERO (selected_arch))
30264 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
30265 else
30266 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
30267 #endif
30268
30269 autoselect_thumb_from_cpu_variant ();
30270
30271 arm_arch_used = thumb_arch_used = arm_arch_none;
30272
30273 #if defined OBJ_COFF || defined OBJ_ELF
30274 {
30275 unsigned int flags = 0;
30276
30277 #if defined OBJ_ELF
30278 flags = meabi_flags;
30279
30280 switch (meabi_flags)
30281 {
30282 case EF_ARM_EABI_UNKNOWN:
30283 #endif
30284 /* Set the flags in the private structure. */
30285 if (uses_apcs_26) flags |= F_APCS26;
30286 if (support_interwork) flags |= F_INTERWORK;
30287 if (uses_apcs_float) flags |= F_APCS_FLOAT;
30288 if (pic_code) flags |= F_PIC;
30289 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
30290 flags |= F_SOFT_FLOAT;
30291
30292 switch (mfloat_abi_opt)
30293 {
30294 case ARM_FLOAT_ABI_SOFT:
30295 case ARM_FLOAT_ABI_SOFTFP:
30296 flags |= F_SOFT_FLOAT;
30297 break;
30298
30299 case ARM_FLOAT_ABI_HARD:
30300 if (flags & F_SOFT_FLOAT)
30301 as_bad (_("hard-float conflicts with specified fpu"));
30302 break;
30303 }
30304
30305 /* Using pure-endian doubles (even if soft-float). */
30306 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
30307 flags |= F_VFP_FLOAT;
30308
30309 #if defined OBJ_ELF
30310 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
30311 flags |= EF_ARM_MAVERICK_FLOAT;
30312 break;
30313
30314 case EF_ARM_EABI_VER4:
30315 case EF_ARM_EABI_VER5:
30316 /* No additional flags to set. */
30317 break;
30318
30319 default:
30320 abort ();
30321 }
30322 #endif
30323 bfd_set_private_flags (stdoutput, flags);
30324
30325 /* We have run out flags in the COFF header to encode the
30326 status of ATPCS support, so instead we create a dummy,
30327 empty, debug section called .arm.atpcs. */
30328 if (atpcs)
30329 {
30330 asection * sec;
30331
30332 sec = bfd_make_section (stdoutput, ".arm.atpcs");
30333
30334 if (sec != NULL)
30335 {
30336 bfd_set_section_flags (sec, SEC_READONLY | SEC_DEBUGGING);
30337 bfd_set_section_size (sec, 0);
30338 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
30339 }
30340 }
30341 }
30342 #endif
30343
30344 /* Record the CPU type as well. */
30345 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
30346 mach = bfd_mach_arm_iWMMXt2;
30347 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
30348 mach = bfd_mach_arm_iWMMXt;
30349 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
30350 mach = bfd_mach_arm_XScale;
30351 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
30352 mach = bfd_mach_arm_ep9312;
30353 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
30354 mach = bfd_mach_arm_5TE;
30355 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
30356 {
30357 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
30358 mach = bfd_mach_arm_5T;
30359 else
30360 mach = bfd_mach_arm_5;
30361 }
30362 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
30363 {
30364 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
30365 mach = bfd_mach_arm_4T;
30366 else
30367 mach = bfd_mach_arm_4;
30368 }
30369 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
30370 mach = bfd_mach_arm_3M;
30371 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
30372 mach = bfd_mach_arm_3;
30373 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
30374 mach = bfd_mach_arm_2a;
30375 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
30376 mach = bfd_mach_arm_2;
30377 else
30378 mach = bfd_mach_arm_unknown;
30379
30380 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
30381 }
30382
30383 /* Command line processing. */
30384
30385 /* md_parse_option
30386 Invocation line includes a switch not recognized by the base assembler.
30387 See if it's a processor-specific option.
30388
30389 This routine is somewhat complicated by the need for backwards
30390 compatibility (since older releases of gcc can't be changed).
30391 The new options try to make the interface as compatible as
30392 possible with GCC.
30393
30394 New options (supported) are:
30395
30396 -mcpu=<cpu name> Assemble for selected processor
30397 -march=<architecture name> Assemble for selected architecture
30398 -mfpu=<fpu architecture> Assemble for selected FPU.
30399 -EB/-mbig-endian Big-endian
30400 -EL/-mlittle-endian Little-endian
30401 -k Generate PIC code
30402 -mthumb Start in Thumb mode
30403 -mthumb-interwork Code supports ARM/Thumb interworking
30404
30405 -m[no-]warn-deprecated Warn about deprecated features
30406 -m[no-]warn-syms Warn when symbols match instructions
30407
30408 For now we will also provide support for:
30409
30410 -mapcs-32 32-bit Program counter
30411 -mapcs-26 26-bit Program counter
30412 -macps-float Floats passed in FP registers
30413 -mapcs-reentrant Reentrant code
30414 -matpcs
30415 (sometime these will probably be replaced with -mapcs=<list of options>
30416 and -matpcs=<list of options>)
30417
30418 The remaining options are only supported for back-wards compatibility.
30419 Cpu variants, the arm part is optional:
30420 -m[arm]1 Currently not supported.
30421 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
30422 -m[arm]3 Arm 3 processor
30423 -m[arm]6[xx], Arm 6 processors
30424 -m[arm]7[xx][t][[d]m] Arm 7 processors
30425 -m[arm]8[10] Arm 8 processors
30426 -m[arm]9[20][tdmi] Arm 9 processors
30427 -mstrongarm[110[0]] StrongARM processors
30428 -mxscale XScale processors
30429 -m[arm]v[2345[t[e]]] Arm architectures
30430 -mall All (except the ARM1)
30431 FP variants:
30432 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
30433 -mfpe-old (No float load/store multiples)
30434 -mvfpxd VFP Single precision
30435 -mvfp All VFP
30436 -mno-fpu Disable all floating point instructions
30437
30438 The following CPU names are recognized:
30439 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
30440 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
30441 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
30442 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
30443 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
30444 arm10t arm10e, arm1020t, arm1020e, arm10200e,
30445 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
30446
30447 */
30448
30449 const char * md_shortopts = "m:k";
30450
30451 #ifdef ARM_BI_ENDIAN
30452 #define OPTION_EB (OPTION_MD_BASE + 0)
30453 #define OPTION_EL (OPTION_MD_BASE + 1)
30454 #else
30455 #if TARGET_BYTES_BIG_ENDIAN
30456 #define OPTION_EB (OPTION_MD_BASE + 0)
30457 #else
30458 #define OPTION_EL (OPTION_MD_BASE + 1)
30459 #endif
30460 #endif
30461 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
30462 #define OPTION_FDPIC (OPTION_MD_BASE + 3)
30463
30464 struct option md_longopts[] =
30465 {
30466 #ifdef OPTION_EB
30467 {"EB", no_argument, NULL, OPTION_EB},
30468 #endif
30469 #ifdef OPTION_EL
30470 {"EL", no_argument, NULL, OPTION_EL},
30471 #endif
30472 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
30473 #ifdef OBJ_ELF
30474 {"fdpic", no_argument, NULL, OPTION_FDPIC},
30475 #endif
30476 {NULL, no_argument, NULL, 0}
30477 };
30478
30479 size_t md_longopts_size = sizeof (md_longopts);
30480
30481 struct arm_option_table
30482 {
30483 const char * option; /* Option name to match. */
30484 const char * help; /* Help information. */
30485 int * var; /* Variable to change. */
30486 int value; /* What to change it to. */
30487 const char * deprecated; /* If non-null, print this message. */
30488 };
30489
30490 struct arm_option_table arm_opts[] =
30491 {
30492 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
30493 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
30494 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
30495 &support_interwork, 1, NULL},
30496 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
30497 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
30498 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
30499 1, NULL},
30500 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
30501 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
30502 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
30503 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
30504 NULL},
30505
30506 /* These are recognized by the assembler, but have no affect on code. */
30507 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
30508 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
30509
30510 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
30511 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
30512 &warn_on_deprecated, 0, NULL},
30513 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
30514 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
30515 {NULL, NULL, NULL, 0, NULL}
30516 };
30517
30518 struct arm_legacy_option_table
30519 {
30520 const char * option; /* Option name to match. */
30521 const arm_feature_set ** var; /* Variable to change. */
30522 const arm_feature_set value; /* What to change it to. */
30523 const char * deprecated; /* If non-null, print this message. */
30524 };
30525
30526 const struct arm_legacy_option_table arm_legacy_opts[] =
30527 {
30528 /* DON'T add any new processors to this list -- we want the whole list
30529 to go away... Add them to the processors table instead. */
30530 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
30531 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
30532 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
30533 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
30534 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
30535 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
30536 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
30537 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
30538 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
30539 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
30540 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
30541 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
30542 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
30543 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
30544 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
30545 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
30546 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
30547 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
30548 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
30549 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
30550 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
30551 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
30552 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
30553 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
30554 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
30555 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
30556 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
30557 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
30558 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
30559 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
30560 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
30561 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
30562 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
30563 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
30564 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
30565 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
30566 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
30567 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
30568 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
30569 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
30570 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
30571 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
30572 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
30573 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
30574 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
30575 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
30576 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
30577 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
30578 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
30579 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
30580 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
30581 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
30582 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
30583 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
30584 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
30585 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
30586 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
30587 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
30588 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
30589 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
30590 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
30591 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
30592 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
30593 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
30594 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
30595 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
30596 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
30597 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
30598 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
30599 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
30600 N_("use -mcpu=strongarm110")},
30601 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
30602 N_("use -mcpu=strongarm1100")},
30603 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
30604 N_("use -mcpu=strongarm1110")},
30605 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
30606 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
30607 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
30608
30609 /* Architecture variants -- don't add any more to this list either. */
30610 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
30611 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
30612 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
30613 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
30614 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
30615 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
30616 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
30617 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
30618 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
30619 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
30620 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
30621 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
30622 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
30623 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
30624 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
30625 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
30626 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
30627 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
30628
30629 /* Floating point variants -- don't add any more to this list either. */
30630 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
30631 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
30632 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
30633 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
30634 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
30635
30636 {NULL, NULL, ARM_ARCH_NONE, NULL}
30637 };
30638
30639 struct arm_cpu_option_table
30640 {
30641 const char * name;
30642 size_t name_len;
30643 const arm_feature_set value;
30644 const arm_feature_set ext;
30645 /* For some CPUs we assume an FPU unless the user explicitly sets
30646 -mfpu=... */
30647 const arm_feature_set default_fpu;
30648 /* The canonical name of the CPU, or NULL to use NAME converted to upper
30649 case. */
30650 const char * canonical_name;
30651 };
30652
30653 /* This list should, at a minimum, contain all the cpu names
30654 recognized by GCC. */
30655 #define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
30656
30657 static const struct arm_cpu_option_table arm_cpus[] =
30658 {
30659 ARM_CPU_OPT ("all", NULL, ARM_ANY,
30660 ARM_ARCH_NONE,
30661 FPU_ARCH_FPA),
30662 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
30663 ARM_ARCH_NONE,
30664 FPU_ARCH_FPA),
30665 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
30666 ARM_ARCH_NONE,
30667 FPU_ARCH_FPA),
30668 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
30669 ARM_ARCH_NONE,
30670 FPU_ARCH_FPA),
30671 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
30672 ARM_ARCH_NONE,
30673 FPU_ARCH_FPA),
30674 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
30675 ARM_ARCH_NONE,
30676 FPU_ARCH_FPA),
30677 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
30678 ARM_ARCH_NONE,
30679 FPU_ARCH_FPA),
30680 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
30681 ARM_ARCH_NONE,
30682 FPU_ARCH_FPA),
30683 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
30684 ARM_ARCH_NONE,
30685 FPU_ARCH_FPA),
30686 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
30687 ARM_ARCH_NONE,
30688 FPU_ARCH_FPA),
30689 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
30690 ARM_ARCH_NONE,
30691 FPU_ARCH_FPA),
30692 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
30693 ARM_ARCH_NONE,
30694 FPU_ARCH_FPA),
30695 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
30696 ARM_ARCH_NONE,
30697 FPU_ARCH_FPA),
30698 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
30699 ARM_ARCH_NONE,
30700 FPU_ARCH_FPA),
30701 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
30702 ARM_ARCH_NONE,
30703 FPU_ARCH_FPA),
30704 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
30705 ARM_ARCH_NONE,
30706 FPU_ARCH_FPA),
30707 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
30708 ARM_ARCH_NONE,
30709 FPU_ARCH_FPA),
30710 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
30711 ARM_ARCH_NONE,
30712 FPU_ARCH_FPA),
30713 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
30714 ARM_ARCH_NONE,
30715 FPU_ARCH_FPA),
30716 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
30717 ARM_ARCH_NONE,
30718 FPU_ARCH_FPA),
30719 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
30720 ARM_ARCH_NONE,
30721 FPU_ARCH_FPA),
30722 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
30723 ARM_ARCH_NONE,
30724 FPU_ARCH_FPA),
30725 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
30726 ARM_ARCH_NONE,
30727 FPU_ARCH_FPA),
30728 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
30729 ARM_ARCH_NONE,
30730 FPU_ARCH_FPA),
30731 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
30732 ARM_ARCH_NONE,
30733 FPU_ARCH_FPA),
30734 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
30735 ARM_ARCH_NONE,
30736 FPU_ARCH_FPA),
30737 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
30738 ARM_ARCH_NONE,
30739 FPU_ARCH_FPA),
30740 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
30741 ARM_ARCH_NONE,
30742 FPU_ARCH_FPA),
30743 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
30744 ARM_ARCH_NONE,
30745 FPU_ARCH_FPA),
30746 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
30747 ARM_ARCH_NONE,
30748 FPU_ARCH_FPA),
30749 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
30750 ARM_ARCH_NONE,
30751 FPU_ARCH_FPA),
30752 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
30753 ARM_ARCH_NONE,
30754 FPU_ARCH_FPA),
30755 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
30756 ARM_ARCH_NONE,
30757 FPU_ARCH_FPA),
30758 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
30759 ARM_ARCH_NONE,
30760 FPU_ARCH_FPA),
30761 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
30762 ARM_ARCH_NONE,
30763 FPU_ARCH_FPA),
30764 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
30765 ARM_ARCH_NONE,
30766 FPU_ARCH_FPA),
30767 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
30768 ARM_ARCH_NONE,
30769 FPU_ARCH_FPA),
30770 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
30771 ARM_ARCH_NONE,
30772 FPU_ARCH_FPA),
30773 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
30774 ARM_ARCH_NONE,
30775 FPU_ARCH_FPA),
30776 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
30777 ARM_ARCH_NONE,
30778 FPU_ARCH_FPA),
30779 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
30780 ARM_ARCH_NONE,
30781 FPU_ARCH_FPA),
30782 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
30783 ARM_ARCH_NONE,
30784 FPU_ARCH_FPA),
30785 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
30786 ARM_ARCH_NONE,
30787 FPU_ARCH_FPA),
30788 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
30789 ARM_ARCH_NONE,
30790 FPU_ARCH_FPA),
30791 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
30792 ARM_ARCH_NONE,
30793 FPU_ARCH_FPA),
30794 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
30795 ARM_ARCH_NONE,
30796 FPU_ARCH_FPA),
30797
30798 /* For V5 or later processors we default to using VFP; but the user
30799 should really set the FPU type explicitly. */
30800 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
30801 ARM_ARCH_NONE,
30802 FPU_ARCH_VFP_V2),
30803 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
30804 ARM_ARCH_NONE,
30805 FPU_ARCH_VFP_V2),
30806 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
30807 ARM_ARCH_NONE,
30808 FPU_ARCH_VFP_V2),
30809 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
30810 ARM_ARCH_NONE,
30811 FPU_ARCH_VFP_V2),
30812 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
30813 ARM_ARCH_NONE,
30814 FPU_ARCH_VFP_V2),
30815 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
30816 ARM_ARCH_NONE,
30817 FPU_ARCH_VFP_V2),
30818 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
30819 ARM_ARCH_NONE,
30820 FPU_ARCH_VFP_V2),
30821 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
30822 ARM_ARCH_NONE,
30823 FPU_ARCH_VFP_V2),
30824 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
30825 ARM_ARCH_NONE,
30826 FPU_ARCH_VFP_V2),
30827 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
30828 ARM_ARCH_NONE,
30829 FPU_ARCH_VFP_V2),
30830 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
30831 ARM_ARCH_NONE,
30832 FPU_ARCH_VFP_V2),
30833 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
30834 ARM_ARCH_NONE,
30835 FPU_ARCH_VFP_V2),
30836 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
30837 ARM_ARCH_NONE,
30838 FPU_ARCH_VFP_V1),
30839 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
30840 ARM_ARCH_NONE,
30841 FPU_ARCH_VFP_V1),
30842 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
30843 ARM_ARCH_NONE,
30844 FPU_ARCH_VFP_V2),
30845 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
30846 ARM_ARCH_NONE,
30847 FPU_ARCH_VFP_V2),
30848 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
30849 ARM_ARCH_NONE,
30850 FPU_ARCH_VFP_V1),
30851 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
30852 ARM_ARCH_NONE,
30853 FPU_ARCH_VFP_V2),
30854 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
30855 ARM_ARCH_NONE,
30856 FPU_ARCH_VFP_V2),
30857 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
30858 ARM_ARCH_NONE,
30859 FPU_ARCH_VFP_V2),
30860 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
30861 ARM_ARCH_NONE,
30862 FPU_ARCH_VFP_V2),
30863 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
30864 ARM_ARCH_NONE,
30865 FPU_ARCH_VFP_V2),
30866 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
30867 ARM_ARCH_NONE,
30868 FPU_ARCH_VFP_V2),
30869 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
30870 ARM_ARCH_NONE,
30871 FPU_ARCH_VFP_V2),
30872 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
30873 ARM_ARCH_NONE,
30874 FPU_ARCH_VFP_V2),
30875 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
30876 ARM_ARCH_NONE,
30877 FPU_ARCH_VFP_V2),
30878 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
30879 ARM_ARCH_NONE,
30880 FPU_NONE),
30881 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
30882 ARM_ARCH_NONE,
30883 FPU_NONE),
30884 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
30885 ARM_ARCH_NONE,
30886 FPU_ARCH_VFP_V2),
30887 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
30888 ARM_ARCH_NONE,
30889 FPU_ARCH_VFP_V2),
30890 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
30891 ARM_ARCH_NONE,
30892 FPU_ARCH_VFP_V2),
30893 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
30894 ARM_ARCH_NONE,
30895 FPU_NONE),
30896 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
30897 ARM_ARCH_NONE,
30898 FPU_NONE),
30899 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
30900 ARM_ARCH_NONE,
30901 FPU_ARCH_VFP_V2),
30902 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
30903 ARM_ARCH_NONE,
30904 FPU_NONE),
30905 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
30906 ARM_ARCH_NONE,
30907 FPU_ARCH_VFP_V2),
30908 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
30909 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
30910 FPU_NONE),
30911 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
30912 ARM_ARCH_NONE,
30913 FPU_ARCH_NEON_VFP_V4),
30914 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
30915 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
30916 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
30917 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
30918 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
30919 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
30920 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
30921 ARM_ARCH_NONE,
30922 FPU_ARCH_NEON_VFP_V4),
30923 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
30924 ARM_ARCH_NONE,
30925 FPU_ARCH_NEON_VFP_V4),
30926 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
30927 ARM_ARCH_NONE,
30928 FPU_ARCH_NEON_VFP_V4),
30929 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
30930 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30931 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30932 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
30933 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30934 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30935 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
30936 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30937 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30938 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
30939 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30940 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
30941 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
30942 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30943 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30944 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
30945 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30946 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30947 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
30948 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30949 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30950 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
30951 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30952 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
30953 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A,
30954 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30955 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
30956 ARM_CPU_OPT ("cortex-a76ae", "Cortex-A76AE", ARM_ARCH_V8_2A,
30957 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30958 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
30959 ARM_CPU_OPT ("cortex-a77", "Cortex-A77", ARM_ARCH_V8_2A,
30960 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30961 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
30962 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A,
30963 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30964 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
30965 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
30966 ARM_ARCH_NONE,
30967 FPU_NONE),
30968 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
30969 ARM_ARCH_NONE,
30970 FPU_ARCH_VFP_V3D16),
30971 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
30972 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
30973 FPU_NONE),
30974 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
30975 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
30976 FPU_ARCH_VFP_V3D16),
30977 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
30978 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
30979 FPU_ARCH_VFP_V3D16),
30980 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
30981 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30982 FPU_ARCH_NEON_VFP_ARMV8),
30983 ARM_CPU_OPT ("cortex-m35p", "Cortex-M35P", ARM_ARCH_V8M_MAIN,
30984 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30985 FPU_NONE),
30986 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
30987 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30988 FPU_NONE),
30989 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
30990 ARM_ARCH_NONE,
30991 FPU_NONE),
30992 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
30993 ARM_ARCH_NONE,
30994 FPU_NONE),
30995 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
30996 ARM_ARCH_NONE,
30997 FPU_NONE),
30998 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
30999 ARM_ARCH_NONE,
31000 FPU_NONE),
31001 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
31002 ARM_ARCH_NONE,
31003 FPU_NONE),
31004 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
31005 ARM_ARCH_NONE,
31006 FPU_NONE),
31007 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
31008 ARM_ARCH_NONE,
31009 FPU_NONE),
31010 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
31011 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
31012 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
31013 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A,
31014 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
31015 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
31016 /* ??? XSCALE is really an architecture. */
31017 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
31018 ARM_ARCH_NONE,
31019 FPU_ARCH_VFP_V2),
31020
31021 /* ??? iwmmxt is not a processor. */
31022 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
31023 ARM_ARCH_NONE,
31024 FPU_ARCH_VFP_V2),
31025 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
31026 ARM_ARCH_NONE,
31027 FPU_ARCH_VFP_V2),
31028 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
31029 ARM_ARCH_NONE,
31030 FPU_ARCH_VFP_V2),
31031
31032 /* Maverick. */
31033 ARM_CPU_OPT ("ep9312", "ARM920T",
31034 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
31035 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
31036
31037 /* Marvell processors. */
31038 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
31039 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
31040 FPU_ARCH_VFP_V3D16),
31041 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
31042 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
31043 FPU_ARCH_NEON_VFP_V4),
31044
31045 /* APM X-Gene family. */
31046 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
31047 ARM_ARCH_NONE,
31048 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
31049 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
31050 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
31051 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
31052
31053 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
31054 };
31055 #undef ARM_CPU_OPT
31056
31057 struct arm_ext_table
31058 {
31059 const char * name;
31060 size_t name_len;
31061 const arm_feature_set merge;
31062 const arm_feature_set clear;
31063 };
31064
31065 struct arm_arch_option_table
31066 {
31067 const char * name;
31068 size_t name_len;
31069 const arm_feature_set value;
31070 const arm_feature_set default_fpu;
31071 const struct arm_ext_table * ext_table;
31072 };
31073
31074 /* Used to add support for +E and +noE extension. */
31075 #define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
31076 /* Used to add support for a +E extension. */
31077 #define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
31078 /* Used to add support for a +noE extension. */
31079 #define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
31080
31081 #define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
31082 ~0 & ~FPU_ENDIAN_PURE)
31083
31084 static const struct arm_ext_table armv5te_ext_table[] =
31085 {
31086 ARM_EXT ("fp", FPU_ARCH_VFP_V2, ALL_FP),
31087 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31088 };
31089
31090 static const struct arm_ext_table armv7_ext_table[] =
31091 {
31092 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
31093 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31094 };
31095
31096 static const struct arm_ext_table armv7ve_ext_table[] =
31097 {
31098 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16, ALL_FP),
31099 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16),
31100 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
31101 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
31102 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
31103 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16), /* Alias for +fp. */
31104 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
31105
31106 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4,
31107 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
31108
31109 /* Aliases for +simd. */
31110 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
31111
31112 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
31113 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
31114 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
31115
31116 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31117 };
31118
31119 static const struct arm_ext_table armv7a_ext_table[] =
31120 {
31121 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
31122 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
31123 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
31124 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
31125 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
31126 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16),
31127 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
31128
31129 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1,
31130 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
31131
31132 /* Aliases for +simd. */
31133 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
31134 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
31135
31136 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
31137 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
31138
31139 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP)),
31140 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC)),
31141 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31142 };
31143
31144 static const struct arm_ext_table armv7r_ext_table[] =
31145 {
31146 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD),
31147 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD), /* Alias for +fp.sp. */
31148 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
31149 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
31150 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16),
31151 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
31152 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
31153 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV)),
31154 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31155 };
31156
31157 static const struct arm_ext_table armv7em_ext_table[] =
31158 {
31159 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16, ALL_FP),
31160 /* Alias for +fp, used to be known as fpv4-sp-d16. */
31161 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16),
31162 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16),
31163 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
31164 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16),
31165 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31166 };
31167
31168 static const struct arm_ext_table armv8a_ext_table[] =
31169 {
31170 ARM_ADD ("crc", ARCH_CRC_ARMV8),
31171 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
31172 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
31173 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
31174
31175 /* Armv8-a does not allow an FP implementation without SIMD, so the user
31176 should use the +simd option to turn on FP. */
31177 ARM_REMOVE ("fp", ALL_FP),
31178 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
31179 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
31180 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31181 };
31182
31183
31184 static const struct arm_ext_table armv81a_ext_table[] =
31185 {
31186 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
31187 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
31188 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
31189
31190 /* Armv8-a does not allow an FP implementation without SIMD, so the user
31191 should use the +simd option to turn on FP. */
31192 ARM_REMOVE ("fp", ALL_FP),
31193 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
31194 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
31195 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31196 };
31197
31198 static const struct arm_ext_table armv82a_ext_table[] =
31199 {
31200 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
31201 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16),
31202 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML),
31203 ARM_ADD ("bf16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_BF16)),
31204 ARM_ADD ("i8mm", ARM_FEATURE_CORE_HIGH (ARM_EXT2_I8MM)),
31205 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
31206 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
31207 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
31208
31209 /* Armv8-a does not allow an FP implementation without SIMD, so the user
31210 should use the +simd option to turn on FP. */
31211 ARM_REMOVE ("fp", ALL_FP),
31212 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
31213 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
31214 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31215 };
31216
31217 static const struct arm_ext_table armv84a_ext_table[] =
31218 {
31219 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
31220 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
31221 ARM_ADD ("bf16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_BF16)),
31222 ARM_ADD ("i8mm", ARM_FEATURE_CORE_HIGH (ARM_EXT2_I8MM)),
31223 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
31224 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
31225
31226 /* Armv8-a does not allow an FP implementation without SIMD, so the user
31227 should use the +simd option to turn on FP. */
31228 ARM_REMOVE ("fp", ALL_FP),
31229 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
31230 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
31231 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31232 };
31233
31234 static const struct arm_ext_table armv85a_ext_table[] =
31235 {
31236 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
31237 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
31238 ARM_ADD ("bf16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_BF16)),
31239 ARM_ADD ("i8mm", ARM_FEATURE_CORE_HIGH (ARM_EXT2_I8MM)),
31240 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
31241 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
31242
31243 /* Armv8-a does not allow an FP implementation without SIMD, so the user
31244 should use the +simd option to turn on FP. */
31245 ARM_REMOVE ("fp", ALL_FP),
31246 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31247 };
31248
31249 static const struct arm_ext_table armv86a_ext_table[] =
31250 {
31251 ARM_ADD ("i8mm", ARM_FEATURE_CORE_HIGH (ARM_EXT2_I8MM)),
31252 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31253 };
31254
31255 static const struct arm_ext_table armv8m_main_ext_table[] =
31256 {
31257 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
31258 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
31259 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16, ALL_FP),
31260 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
31261 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31262 };
31263
31264 static const struct arm_ext_table armv8_1m_main_ext_table[] =
31265 {
31266 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
31267 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
31268 ARM_EXT ("fp",
31269 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
31270 FPU_VFP_V5_SP_D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA),
31271 ALL_FP),
31272 ARM_ADD ("fp.dp",
31273 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
31274 FPU_VFP_V5D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
31275 ARM_EXT ("mve", ARM_FEATURE_COPROC (FPU_MVE),
31276 ARM_FEATURE_COPROC (FPU_MVE | FPU_MVE_FP)),
31277 ARM_ADD ("mve.fp",
31278 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
31279 FPU_MVE | FPU_MVE_FP | FPU_VFP_V5_SP_D16 |
31280 FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
31281 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31282 };
31283
31284 static const struct arm_ext_table armv8r_ext_table[] =
31285 {
31286 ARM_ADD ("crc", ARCH_CRC_ARMV8),
31287 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
31288 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
31289 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
31290 ARM_REMOVE ("fp", ALL_FP),
31291 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16),
31292 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31293 };
31294
31295 /* This list should, at a minimum, contain all the architecture names
31296 recognized by GCC. */
31297 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
31298 #define ARM_ARCH_OPT2(N, V, DF, ext) \
31299 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
31300
31301 static const struct arm_arch_option_table arm_archs[] =
31302 {
31303 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
31304 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
31305 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
31306 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
31307 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
31308 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
31309 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
31310 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
31311 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
31312 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
31313 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
31314 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
31315 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
31316 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
31317 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP, armv5te),
31318 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP, armv5te),
31319 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP, armv5te),
31320 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
31321 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
31322 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP, armv5te),
31323 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP, armv5te),
31324 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
31325 kept to preserve existing behaviour. */
31326 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
31327 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
31328 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP, armv5te),
31329 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP, armv5te),
31330 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP, armv5te),
31331 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
31332 kept to preserve existing behaviour. */
31333 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
31334 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
31335 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
31336 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
31337 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP, armv7),
31338 /* The official spelling of the ARMv7 profile variants is the dashed form.
31339 Accept the non-dashed form for compatibility with old toolchains. */
31340 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
31341 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP, armv7ve),
31342 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
31343 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
31344 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
31345 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
31346 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
31347 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP, armv7em),
31348 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
31349 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP,
31350 armv8m_main),
31351 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN, FPU_ARCH_VFP,
31352 armv8_1m_main),
31353 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP, armv8a),
31354 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP, armv81a),
31355 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP, armv82a),
31356 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP, armv82a),
31357 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP, armv8r),
31358 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP, armv84a),
31359 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A, FPU_ARCH_VFP, armv85a),
31360 ARM_ARCH_OPT2 ("armv8.6-a", ARM_ARCH_V8_6A, FPU_ARCH_VFP, armv86a),
31361 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
31362 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
31363 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2, FPU_ARCH_VFP),
31364 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
31365 };
31366 #undef ARM_ARCH_OPT
31367
31368 /* ISA extensions in the co-processor and main instruction set space. */
31369
31370 struct arm_option_extension_value_table
31371 {
31372 const char * name;
31373 size_t name_len;
31374 const arm_feature_set merge_value;
31375 const arm_feature_set clear_value;
31376 /* List of architectures for which an extension is available. ARM_ARCH_NONE
31377 indicates that an extension is available for all architectures while
31378 ARM_ANY marks an empty entry. */
31379 const arm_feature_set allowed_archs[2];
31380 };
31381
31382 /* The following table must be in alphabetical order with a NULL last entry. */
31383
31384 #define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
31385 #define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
31386
31387 /* DEPRECATED: Refrain from using this table to add any new extensions, instead
31388 use the context sensitive approach using arm_ext_table's. */
31389 static const struct arm_option_extension_value_table arm_extensions[] =
31390 {
31391 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
31392 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
31393 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
31394 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
31395 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
31396 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
31397 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
31398 ARM_ARCH_V8_2A),
31399 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
31400 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
31401 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
31402 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
31403 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
31404 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
31405 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
31406 ARM_ARCH_V8_2A),
31407 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
31408 | ARM_EXT2_FP16_FML),
31409 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
31410 | ARM_EXT2_FP16_FML),
31411 ARM_ARCH_V8_2A),
31412 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
31413 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
31414 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
31415 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
31416 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
31417 Thumb divide instruction. Due to this having the same name as the
31418 previous entry, this will be ignored when doing command-line parsing and
31419 only considered by build attribute selection code. */
31420 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
31421 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
31422 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
31423 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
31424 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
31425 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
31426 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
31427 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
31428 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
31429 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
31430 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
31431 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
31432 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
31433 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
31434 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
31435 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
31436 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
31437 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
31438 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
31439 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
31440 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
31441 ARM_ARCH_V8A),
31442 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
31443 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
31444 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
31445 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
31446 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
31447 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
31448 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
31449 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
31450 ARM_ARCH_V8A),
31451 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
31452 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
31453 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
31454 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
31455 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
31456 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
31457 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
31458 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
31459 | ARM_EXT_DIV),
31460 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
31461 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
31462 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
31463 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
31464 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
31465 };
31466 #undef ARM_EXT_OPT
31467
31468 /* ISA floating-point and Advanced SIMD extensions. */
31469 struct arm_option_fpu_value_table
31470 {
31471 const char * name;
31472 const arm_feature_set value;
31473 };
31474
31475 /* This list should, at a minimum, contain all the fpu names
31476 recognized by GCC. */
31477 static const struct arm_option_fpu_value_table arm_fpus[] =
31478 {
31479 {"softfpa", FPU_NONE},
31480 {"fpe", FPU_ARCH_FPE},
31481 {"fpe2", FPU_ARCH_FPE},
31482 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
31483 {"fpa", FPU_ARCH_FPA},
31484 {"fpa10", FPU_ARCH_FPA},
31485 {"fpa11", FPU_ARCH_FPA},
31486 {"arm7500fe", FPU_ARCH_FPA},
31487 {"softvfp", FPU_ARCH_VFP},
31488 {"softvfp+vfp", FPU_ARCH_VFP_V2},
31489 {"vfp", FPU_ARCH_VFP_V2},
31490 {"vfp9", FPU_ARCH_VFP_V2},
31491 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
31492 {"vfp10", FPU_ARCH_VFP_V2},
31493 {"vfp10-r0", FPU_ARCH_VFP_V1},
31494 {"vfpxd", FPU_ARCH_VFP_V1xD},
31495 {"vfpv2", FPU_ARCH_VFP_V2},
31496 {"vfpv3", FPU_ARCH_VFP_V3},
31497 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
31498 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
31499 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
31500 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
31501 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
31502 {"arm1020t", FPU_ARCH_VFP_V1},
31503 {"arm1020e", FPU_ARCH_VFP_V2},
31504 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
31505 {"arm1136jf-s", FPU_ARCH_VFP_V2},
31506 {"maverick", FPU_ARCH_MAVERICK},
31507 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
31508 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
31509 {"neon-fp16", FPU_ARCH_NEON_FP16},
31510 {"vfpv4", FPU_ARCH_VFP_V4},
31511 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
31512 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
31513 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
31514 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
31515 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
31516 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
31517 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
31518 {"crypto-neon-fp-armv8",
31519 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
31520 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
31521 {"crypto-neon-fp-armv8.1",
31522 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
31523 {NULL, ARM_ARCH_NONE}
31524 };
31525
31526 struct arm_option_value_table
31527 {
31528 const char *name;
31529 long value;
31530 };
31531
31532 static const struct arm_option_value_table arm_float_abis[] =
31533 {
31534 {"hard", ARM_FLOAT_ABI_HARD},
31535 {"softfp", ARM_FLOAT_ABI_SOFTFP},
31536 {"soft", ARM_FLOAT_ABI_SOFT},
31537 {NULL, 0}
31538 };
31539
31540 #ifdef OBJ_ELF
31541 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
31542 static const struct arm_option_value_table arm_eabis[] =
31543 {
31544 {"gnu", EF_ARM_EABI_UNKNOWN},
31545 {"4", EF_ARM_EABI_VER4},
31546 {"5", EF_ARM_EABI_VER5},
31547 {NULL, 0}
31548 };
31549 #endif
31550
31551 struct arm_long_option_table
31552 {
31553 const char * option; /* Substring to match. */
31554 const char * help; /* Help information. */
31555 int (* func) (const char * subopt); /* Function to decode sub-option. */
31556 const char * deprecated; /* If non-null, print this message. */
31557 };
31558
31559 static bfd_boolean
31560 arm_parse_extension (const char *str, const arm_feature_set *opt_set,
31561 arm_feature_set *ext_set,
31562 const struct arm_ext_table *ext_table)
31563 {
31564 /* We insist on extensions being specified in alphabetical order, and with
31565 extensions being added before being removed. We achieve this by having
31566 the global ARM_EXTENSIONS table in alphabetical order, and using the
31567 ADDING_VALUE variable to indicate whether we are adding an extension (1)
31568 or removing it (0) and only allowing it to change in the order
31569 -1 -> 1 -> 0. */
31570 const struct arm_option_extension_value_table * opt = NULL;
31571 const arm_feature_set arm_any = ARM_ANY;
31572 int adding_value = -1;
31573
31574 while (str != NULL && *str != 0)
31575 {
31576 const char *ext;
31577 size_t len;
31578
31579 if (*str != '+')
31580 {
31581 as_bad (_("invalid architectural extension"));
31582 return FALSE;
31583 }
31584
31585 str++;
31586 ext = strchr (str, '+');
31587
31588 if (ext != NULL)
31589 len = ext - str;
31590 else
31591 len = strlen (str);
31592
31593 if (len >= 2 && strncmp (str, "no", 2) == 0)
31594 {
31595 if (adding_value != 0)
31596 {
31597 adding_value = 0;
31598 opt = arm_extensions;
31599 }
31600
31601 len -= 2;
31602 str += 2;
31603 }
31604 else if (len > 0)
31605 {
31606 if (adding_value == -1)
31607 {
31608 adding_value = 1;
31609 opt = arm_extensions;
31610 }
31611 else if (adding_value != 1)
31612 {
31613 as_bad (_("must specify extensions to add before specifying "
31614 "those to remove"));
31615 return FALSE;
31616 }
31617 }
31618
31619 if (len == 0)
31620 {
31621 as_bad (_("missing architectural extension"));
31622 return FALSE;
31623 }
31624
31625 gas_assert (adding_value != -1);
31626 gas_assert (opt != NULL);
31627
31628 if (ext_table != NULL)
31629 {
31630 const struct arm_ext_table * ext_opt = ext_table;
31631 bfd_boolean found = FALSE;
31632 for (; ext_opt->name != NULL; ext_opt++)
31633 if (ext_opt->name_len == len
31634 && strncmp (ext_opt->name, str, len) == 0)
31635 {
31636 if (adding_value)
31637 {
31638 if (ARM_FEATURE_ZERO (ext_opt->merge))
31639 /* TODO: Option not supported. When we remove the
31640 legacy table this case should error out. */
31641 continue;
31642
31643 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, ext_opt->merge);
31644 }
31645 else
31646 {
31647 if (ARM_FEATURE_ZERO (ext_opt->clear))
31648 /* TODO: Option not supported. When we remove the
31649 legacy table this case should error out. */
31650 continue;
31651 ARM_CLEAR_FEATURE (*ext_set, *ext_set, ext_opt->clear);
31652 }
31653 found = TRUE;
31654 break;
31655 }
31656 if (found)
31657 {
31658 str = ext;
31659 continue;
31660 }
31661 }
31662
31663 /* Scan over the options table trying to find an exact match. */
31664 for (; opt->name != NULL; opt++)
31665 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
31666 {
31667 int i, nb_allowed_archs =
31668 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
31669 /* Check we can apply the extension to this architecture. */
31670 for (i = 0; i < nb_allowed_archs; i++)
31671 {
31672 /* Empty entry. */
31673 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
31674 continue;
31675 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
31676 break;
31677 }
31678 if (i == nb_allowed_archs)
31679 {
31680 as_bad (_("extension does not apply to the base architecture"));
31681 return FALSE;
31682 }
31683
31684 /* Add or remove the extension. */
31685 if (adding_value)
31686 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
31687 else
31688 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
31689
31690 /* Allowing Thumb division instructions for ARMv7 in autodetection
31691 rely on this break so that duplicate extensions (extensions
31692 with the same name as a previous extension in the list) are not
31693 considered for command-line parsing. */
31694 break;
31695 }
31696
31697 if (opt->name == NULL)
31698 {
31699 /* Did we fail to find an extension because it wasn't specified in
31700 alphabetical order, or because it does not exist? */
31701
31702 for (opt = arm_extensions; opt->name != NULL; opt++)
31703 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
31704 break;
31705
31706 if (opt->name == NULL)
31707 as_bad (_("unknown architectural extension `%s'"), str);
31708 else
31709 as_bad (_("architectural extensions must be specified in "
31710 "alphabetical order"));
31711
31712 return FALSE;
31713 }
31714 else
31715 {
31716 /* We should skip the extension we've just matched the next time
31717 round. */
31718 opt++;
31719 }
31720
31721 str = ext;
31722 };
31723
31724 return TRUE;
31725 }
31726
31727 static bfd_boolean
31728 arm_parse_fp16_opt (const char *str)
31729 {
31730 if (strcasecmp (str, "ieee") == 0)
31731 fp16_format = ARM_FP16_FORMAT_IEEE;
31732 else if (strcasecmp (str, "alternative") == 0)
31733 fp16_format = ARM_FP16_FORMAT_ALTERNATIVE;
31734 else
31735 {
31736 as_bad (_("unrecognised float16 format \"%s\""), str);
31737 return FALSE;
31738 }
31739
31740 return TRUE;
31741 }
31742
31743 static bfd_boolean
31744 arm_parse_cpu (const char *str)
31745 {
31746 const struct arm_cpu_option_table *opt;
31747 const char *ext = strchr (str, '+');
31748 size_t len;
31749
31750 if (ext != NULL)
31751 len = ext - str;
31752 else
31753 len = strlen (str);
31754
31755 if (len == 0)
31756 {
31757 as_bad (_("missing cpu name `%s'"), str);
31758 return FALSE;
31759 }
31760
31761 for (opt = arm_cpus; opt->name != NULL; opt++)
31762 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
31763 {
31764 mcpu_cpu_opt = &opt->value;
31765 if (mcpu_ext_opt == NULL)
31766 mcpu_ext_opt = XNEW (arm_feature_set);
31767 *mcpu_ext_opt = opt->ext;
31768 mcpu_fpu_opt = &opt->default_fpu;
31769 if (opt->canonical_name)
31770 {
31771 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
31772 strcpy (selected_cpu_name, opt->canonical_name);
31773 }
31774 else
31775 {
31776 size_t i;
31777
31778 if (len >= sizeof selected_cpu_name)
31779 len = (sizeof selected_cpu_name) - 1;
31780
31781 for (i = 0; i < len; i++)
31782 selected_cpu_name[i] = TOUPPER (opt->name[i]);
31783 selected_cpu_name[i] = 0;
31784 }
31785
31786 if (ext != NULL)
31787 return arm_parse_extension (ext, mcpu_cpu_opt, mcpu_ext_opt, NULL);
31788
31789 return TRUE;
31790 }
31791
31792 as_bad (_("unknown cpu `%s'"), str);
31793 return FALSE;
31794 }
31795
31796 static bfd_boolean
31797 arm_parse_arch (const char *str)
31798 {
31799 const struct arm_arch_option_table *opt;
31800 const char *ext = strchr (str, '+');
31801 size_t len;
31802
31803 if (ext != NULL)
31804 len = ext - str;
31805 else
31806 len = strlen (str);
31807
31808 if (len == 0)
31809 {
31810 as_bad (_("missing architecture name `%s'"), str);
31811 return FALSE;
31812 }
31813
31814 for (opt = arm_archs; opt->name != NULL; opt++)
31815 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
31816 {
31817 march_cpu_opt = &opt->value;
31818 if (march_ext_opt == NULL)
31819 march_ext_opt = XNEW (arm_feature_set);
31820 *march_ext_opt = arm_arch_none;
31821 march_fpu_opt = &opt->default_fpu;
31822 selected_ctx_ext_table = opt->ext_table;
31823 strcpy (selected_cpu_name, opt->name);
31824
31825 if (ext != NULL)
31826 return arm_parse_extension (ext, march_cpu_opt, march_ext_opt,
31827 opt->ext_table);
31828
31829 return TRUE;
31830 }
31831
31832 as_bad (_("unknown architecture `%s'\n"), str);
31833 return FALSE;
31834 }
31835
31836 static bfd_boolean
31837 arm_parse_fpu (const char * str)
31838 {
31839 const struct arm_option_fpu_value_table * opt;
31840
31841 for (opt = arm_fpus; opt->name != NULL; opt++)
31842 if (streq (opt->name, str))
31843 {
31844 mfpu_opt = &opt->value;
31845 return TRUE;
31846 }
31847
31848 as_bad (_("unknown floating point format `%s'\n"), str);
31849 return FALSE;
31850 }
31851
31852 static bfd_boolean
31853 arm_parse_float_abi (const char * str)
31854 {
31855 const struct arm_option_value_table * opt;
31856
31857 for (opt = arm_float_abis; opt->name != NULL; opt++)
31858 if (streq (opt->name, str))
31859 {
31860 mfloat_abi_opt = opt->value;
31861 return TRUE;
31862 }
31863
31864 as_bad (_("unknown floating point abi `%s'\n"), str);
31865 return FALSE;
31866 }
31867
31868 #ifdef OBJ_ELF
31869 static bfd_boolean
31870 arm_parse_eabi (const char * str)
31871 {
31872 const struct arm_option_value_table *opt;
31873
31874 for (opt = arm_eabis; opt->name != NULL; opt++)
31875 if (streq (opt->name, str))
31876 {
31877 meabi_flags = opt->value;
31878 return TRUE;
31879 }
31880 as_bad (_("unknown EABI `%s'\n"), str);
31881 return FALSE;
31882 }
31883 #endif
31884
31885 static bfd_boolean
31886 arm_parse_it_mode (const char * str)
31887 {
31888 bfd_boolean ret = TRUE;
31889
31890 if (streq ("arm", str))
31891 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
31892 else if (streq ("thumb", str))
31893 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
31894 else if (streq ("always", str))
31895 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
31896 else if (streq ("never", str))
31897 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
31898 else
31899 {
31900 as_bad (_("unknown implicit IT mode `%s', should be "\
31901 "arm, thumb, always, or never."), str);
31902 ret = FALSE;
31903 }
31904
31905 return ret;
31906 }
31907
31908 static bfd_boolean
31909 arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
31910 {
31911 codecomposer_syntax = TRUE;
31912 arm_comment_chars[0] = ';';
31913 arm_line_separator_chars[0] = 0;
31914 return TRUE;
31915 }
31916
31917 struct arm_long_option_table arm_long_opts[] =
31918 {
31919 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
31920 arm_parse_cpu, NULL},
31921 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
31922 arm_parse_arch, NULL},
31923 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
31924 arm_parse_fpu, NULL},
31925 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
31926 arm_parse_float_abi, NULL},
31927 #ifdef OBJ_ELF
31928 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
31929 arm_parse_eabi, NULL},
31930 #endif
31931 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
31932 arm_parse_it_mode, NULL},
31933 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
31934 arm_ccs_mode, NULL},
31935 {"mfp16-format=",
31936 N_("[ieee|alternative]\n\
31937 set the encoding for half precision floating point "
31938 "numbers to IEEE\n\
31939 or Arm alternative format."),
31940 arm_parse_fp16_opt, NULL },
31941 {NULL, NULL, 0, NULL}
31942 };
31943
31944 int
31945 md_parse_option (int c, const char * arg)
31946 {
31947 struct arm_option_table *opt;
31948 const struct arm_legacy_option_table *fopt;
31949 struct arm_long_option_table *lopt;
31950
31951 switch (c)
31952 {
31953 #ifdef OPTION_EB
31954 case OPTION_EB:
31955 target_big_endian = 1;
31956 break;
31957 #endif
31958
31959 #ifdef OPTION_EL
31960 case OPTION_EL:
31961 target_big_endian = 0;
31962 break;
31963 #endif
31964
31965 case OPTION_FIX_V4BX:
31966 fix_v4bx = TRUE;
31967 break;
31968
31969 #ifdef OBJ_ELF
31970 case OPTION_FDPIC:
31971 arm_fdpic = TRUE;
31972 break;
31973 #endif /* OBJ_ELF */
31974
31975 case 'a':
31976 /* Listing option. Just ignore these, we don't support additional
31977 ones. */
31978 return 0;
31979
31980 default:
31981 for (opt = arm_opts; opt->option != NULL; opt++)
31982 {
31983 if (c == opt->option[0]
31984 && ((arg == NULL && opt->option[1] == 0)
31985 || streq (arg, opt->option + 1)))
31986 {
31987 /* If the option is deprecated, tell the user. */
31988 if (warn_on_deprecated && opt->deprecated != NULL)
31989 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
31990 arg ? arg : "", _(opt->deprecated));
31991
31992 if (opt->var != NULL)
31993 *opt->var = opt->value;
31994
31995 return 1;
31996 }
31997 }
31998
31999 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
32000 {
32001 if (c == fopt->option[0]
32002 && ((arg == NULL && fopt->option[1] == 0)
32003 || streq (arg, fopt->option + 1)))
32004 {
32005 /* If the option is deprecated, tell the user. */
32006 if (warn_on_deprecated && fopt->deprecated != NULL)
32007 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
32008 arg ? arg : "", _(fopt->deprecated));
32009
32010 if (fopt->var != NULL)
32011 *fopt->var = &fopt->value;
32012
32013 return 1;
32014 }
32015 }
32016
32017 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
32018 {
32019 /* These options are expected to have an argument. */
32020 if (c == lopt->option[0]
32021 && arg != NULL
32022 && strncmp (arg, lopt->option + 1,
32023 strlen (lopt->option + 1)) == 0)
32024 {
32025 /* If the option is deprecated, tell the user. */
32026 if (warn_on_deprecated && lopt->deprecated != NULL)
32027 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
32028 _(lopt->deprecated));
32029
32030 /* Call the sup-option parser. */
32031 return lopt->func (arg + strlen (lopt->option) - 1);
32032 }
32033 }
32034
32035 return 0;
32036 }
32037
32038 return 1;
32039 }
32040
32041 void
32042 md_show_usage (FILE * fp)
32043 {
32044 struct arm_option_table *opt;
32045 struct arm_long_option_table *lopt;
32046
32047 fprintf (fp, _(" ARM-specific assembler options:\n"));
32048
32049 for (opt = arm_opts; opt->option != NULL; opt++)
32050 if (opt->help != NULL)
32051 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
32052
32053 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
32054 if (lopt->help != NULL)
32055 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
32056
32057 #ifdef OPTION_EB
32058 fprintf (fp, _("\
32059 -EB assemble code for a big-endian cpu\n"));
32060 #endif
32061
32062 #ifdef OPTION_EL
32063 fprintf (fp, _("\
32064 -EL assemble code for a little-endian cpu\n"));
32065 #endif
32066
32067 fprintf (fp, _("\
32068 --fix-v4bx Allow BX in ARMv4 code\n"));
32069
32070 #ifdef OBJ_ELF
32071 fprintf (fp, _("\
32072 --fdpic generate an FDPIC object file\n"));
32073 #endif /* OBJ_ELF */
32074 }
32075
32076 #ifdef OBJ_ELF
32077
32078 typedef struct
32079 {
32080 int val;
32081 arm_feature_set flags;
32082 } cpu_arch_ver_table;
32083
32084 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
32085 chronologically for architectures, with an exception for ARMv6-M and
32086 ARMv6S-M due to legacy reasons. No new architecture should have a
32087 special case. This allows for build attribute selection results to be
32088 stable when new architectures are added. */
32089 static const cpu_arch_ver_table cpu_arch_ver[] =
32090 {
32091 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V1},
32092 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2},
32093 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2S},
32094 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3},
32095 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3M},
32096 {TAG_CPU_ARCH_V4, ARM_ARCH_V4xM},
32097 {TAG_CPU_ARCH_V4, ARM_ARCH_V4},
32098 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4TxM},
32099 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4T},
32100 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5xM},
32101 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5},
32102 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5TxM},
32103 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5T},
32104 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TExP},
32105 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TE},
32106 {TAG_CPU_ARCH_V5TEJ, ARM_ARCH_V5TEJ},
32107 {TAG_CPU_ARCH_V6, ARM_ARCH_V6},
32108 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6Z},
32109 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6KZ},
32110 {TAG_CPU_ARCH_V6K, ARM_ARCH_V6K},
32111 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6T2},
32112 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KT2},
32113 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6ZT2},
32114 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KZT2},
32115
32116 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
32117 always selected build attributes to match those of ARMv6-M
32118 (resp. ARMv6S-M). However, due to these architectures being a strict
32119 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
32120 would be selected when fully respecting chronology of architectures.
32121 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
32122 move them before ARMv7 architectures. */
32123 {TAG_CPU_ARCH_V6_M, ARM_ARCH_V6M},
32124 {TAG_CPU_ARCH_V6S_M, ARM_ARCH_V6SM},
32125
32126 {TAG_CPU_ARCH_V7, ARM_ARCH_V7},
32127 {TAG_CPU_ARCH_V7, ARM_ARCH_V7A},
32128 {TAG_CPU_ARCH_V7, ARM_ARCH_V7R},
32129 {TAG_CPU_ARCH_V7, ARM_ARCH_V7M},
32130 {TAG_CPU_ARCH_V7, ARM_ARCH_V7VE},
32131 {TAG_CPU_ARCH_V7E_M, ARM_ARCH_V7EM},
32132 {TAG_CPU_ARCH_V8, ARM_ARCH_V8A},
32133 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_1A},
32134 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_2A},
32135 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_3A},
32136 {TAG_CPU_ARCH_V8M_BASE, ARM_ARCH_V8M_BASE},
32137 {TAG_CPU_ARCH_V8M_MAIN, ARM_ARCH_V8M_MAIN},
32138 {TAG_CPU_ARCH_V8R, ARM_ARCH_V8R},
32139 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_4A},
32140 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_5A},
32141 {TAG_CPU_ARCH_V8_1M_MAIN, ARM_ARCH_V8_1M_MAIN},
32142 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_6A},
32143 {-1, ARM_ARCH_NONE}
32144 };
32145
32146 /* Set an attribute if it has not already been set by the user. */
32147
32148 static void
32149 aeabi_set_attribute_int (int tag, int value)
32150 {
32151 if (tag < 1
32152 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
32153 || !attributes_set_explicitly[tag])
32154 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
32155 }
32156
32157 static void
32158 aeabi_set_attribute_string (int tag, const char *value)
32159 {
32160 if (tag < 1
32161 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
32162 || !attributes_set_explicitly[tag])
32163 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
32164 }
32165
32166 /* Return whether features in the *NEEDED feature set are available via
32167 extensions for the architecture whose feature set is *ARCH_FSET. */
32168
32169 static bfd_boolean
32170 have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
32171 const arm_feature_set *needed)
32172 {
32173 int i, nb_allowed_archs;
32174 arm_feature_set ext_fset;
32175 const struct arm_option_extension_value_table *opt;
32176
32177 ext_fset = arm_arch_none;
32178 for (opt = arm_extensions; opt->name != NULL; opt++)
32179 {
32180 /* Extension does not provide any feature we need. */
32181 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
32182 continue;
32183
32184 nb_allowed_archs =
32185 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
32186 for (i = 0; i < nb_allowed_archs; i++)
32187 {
32188 /* Empty entry. */
32189 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
32190 break;
32191
32192 /* Extension is available, add it. */
32193 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
32194 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
32195 }
32196 }
32197
32198 /* Can we enable all features in *needed? */
32199 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
32200 }
32201
32202 /* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
32203 a given architecture feature set *ARCH_EXT_FSET including extension feature
32204 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
32205 - if true, check for an exact match of the architecture modulo extensions;
32206 - otherwise, select build attribute value of the first superset
32207 architecture released so that results remains stable when new architectures
32208 are added.
32209 For -march/-mcpu=all the build attribute value of the most featureful
32210 architecture is returned. Tag_CPU_arch_profile result is returned in
32211 PROFILE. */
32212
32213 static int
32214 get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
32215 const arm_feature_set *ext_fset,
32216 char *profile, int exact_match)
32217 {
32218 arm_feature_set arch_fset;
32219 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
32220
32221 /* Select most featureful architecture with all its extensions if building
32222 for -march=all as the feature sets used to set build attributes. */
32223 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
32224 {
32225 /* Force revisiting of decision for each new architecture. */
32226 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8_1M_MAIN);
32227 *profile = 'A';
32228 return TAG_CPU_ARCH_V8;
32229 }
32230
32231 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
32232
32233 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
32234 {
32235 arm_feature_set known_arch_fset;
32236
32237 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
32238 if (exact_match)
32239 {
32240 /* Base architecture match user-specified architecture and
32241 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
32242 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
32243 {
32244 p_ver_ret = p_ver;
32245 goto found;
32246 }
32247 /* Base architecture match user-specified architecture only
32248 (eg. ARMv6-M in the same case as above). Record it in case we
32249 find a match with above condition. */
32250 else if (p_ver_ret == NULL
32251 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
32252 p_ver_ret = p_ver;
32253 }
32254 else
32255 {
32256
32257 /* Architecture has all features wanted. */
32258 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
32259 {
32260 arm_feature_set added_fset;
32261
32262 /* Compute features added by this architecture over the one
32263 recorded in p_ver_ret. */
32264 if (p_ver_ret != NULL)
32265 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
32266 p_ver_ret->flags);
32267 /* First architecture that match incl. with extensions, or the
32268 only difference in features over the recorded match is
32269 features that were optional and are now mandatory. */
32270 if (p_ver_ret == NULL
32271 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
32272 {
32273 p_ver_ret = p_ver;
32274 goto found;
32275 }
32276 }
32277 else if (p_ver_ret == NULL)
32278 {
32279 arm_feature_set needed_ext_fset;
32280
32281 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
32282
32283 /* Architecture has all features needed when using some
32284 extensions. Record it and continue searching in case there
32285 exist an architecture providing all needed features without
32286 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
32287 OS extension). */
32288 if (have_ext_for_needed_feat_p (&known_arch_fset,
32289 &needed_ext_fset))
32290 p_ver_ret = p_ver;
32291 }
32292 }
32293 }
32294
32295 if (p_ver_ret == NULL)
32296 return -1;
32297
32298 found:
32299 /* Tag_CPU_arch_profile. */
32300 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
32301 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
32302 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
32303 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
32304 *profile = 'A';
32305 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
32306 *profile = 'R';
32307 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
32308 *profile = 'M';
32309 else
32310 *profile = '\0';
32311 return p_ver_ret->val;
32312 }
32313
32314 /* Set the public EABI object attributes. */
32315
32316 static void
32317 aeabi_set_public_attributes (void)
32318 {
32319 char profile = '\0';
32320 int arch = -1;
32321 int virt_sec = 0;
32322 int fp16_optional = 0;
32323 int skip_exact_match = 0;
32324 arm_feature_set flags, flags_arch, flags_ext;
32325
32326 /* Autodetection mode, choose the architecture based the instructions
32327 actually used. */
32328 if (no_cpu_selected ())
32329 {
32330 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
32331
32332 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
32333 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
32334
32335 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
32336 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
32337
32338 /* Code run during relaxation relies on selected_cpu being set. */
32339 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
32340 flags_ext = arm_arch_none;
32341 ARM_CLEAR_FEATURE (selected_arch, flags_arch, flags_ext);
32342 selected_ext = flags_ext;
32343 selected_cpu = flags;
32344 }
32345 /* Otherwise, choose the architecture based on the capabilities of the
32346 requested cpu. */
32347 else
32348 {
32349 ARM_MERGE_FEATURE_SETS (flags_arch, selected_arch, selected_ext);
32350 ARM_CLEAR_FEATURE (flags_arch, flags_arch, fpu_any);
32351 flags_ext = selected_ext;
32352 flags = selected_cpu;
32353 }
32354 ARM_MERGE_FEATURE_SETS (flags, flags, selected_fpu);
32355
32356 /* Allow the user to override the reported architecture. */
32357 if (!ARM_FEATURE_ZERO (selected_object_arch))
32358 {
32359 ARM_CLEAR_FEATURE (flags_arch, selected_object_arch, fpu_any);
32360 flags_ext = arm_arch_none;
32361 }
32362 else
32363 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
32364
32365 /* When this function is run again after relaxation has happened there is no
32366 way to determine whether an architecture or CPU was specified by the user:
32367 - selected_cpu is set above for relaxation to work;
32368 - march_cpu_opt is not set if only -mcpu or .cpu is used;
32369 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
32370 Therefore, if not in -march=all case we first try an exact match and fall
32371 back to autodetection. */
32372 if (!skip_exact_match)
32373 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
32374 if (arch == -1)
32375 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
32376 if (arch == -1)
32377 as_bad (_("no architecture contains all the instructions used\n"));
32378
32379 /* Tag_CPU_name. */
32380 if (selected_cpu_name[0])
32381 {
32382 char *q;
32383
32384 q = selected_cpu_name;
32385 if (strncmp (q, "armv", 4) == 0)
32386 {
32387 int i;
32388
32389 q += 4;
32390 for (i = 0; q[i]; i++)
32391 q[i] = TOUPPER (q[i]);
32392 }
32393 aeabi_set_attribute_string (Tag_CPU_name, q);
32394 }
32395
32396 /* Tag_CPU_arch. */
32397 aeabi_set_attribute_int (Tag_CPU_arch, arch);
32398
32399 /* Tag_CPU_arch_profile. */
32400 if (profile != '\0')
32401 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
32402
32403 /* Tag_DSP_extension. */
32404 if (ARM_CPU_HAS_FEATURE (selected_ext, arm_ext_dsp))
32405 aeabi_set_attribute_int (Tag_DSP_extension, 1);
32406
32407 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
32408 /* Tag_ARM_ISA_use. */
32409 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
32410 || ARM_FEATURE_ZERO (flags_arch))
32411 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
32412
32413 /* Tag_THUMB_ISA_use. */
32414 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
32415 || ARM_FEATURE_ZERO (flags_arch))
32416 {
32417 int thumb_isa_use;
32418
32419 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
32420 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
32421 thumb_isa_use = 3;
32422 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
32423 thumb_isa_use = 2;
32424 else
32425 thumb_isa_use = 1;
32426 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
32427 }
32428
32429 /* Tag_VFP_arch. */
32430 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
32431 aeabi_set_attribute_int (Tag_VFP_arch,
32432 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
32433 ? 7 : 8);
32434 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
32435 aeabi_set_attribute_int (Tag_VFP_arch,
32436 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
32437 ? 5 : 6);
32438 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
32439 {
32440 fp16_optional = 1;
32441 aeabi_set_attribute_int (Tag_VFP_arch, 3);
32442 }
32443 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
32444 {
32445 aeabi_set_attribute_int (Tag_VFP_arch, 4);
32446 fp16_optional = 1;
32447 }
32448 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
32449 aeabi_set_attribute_int (Tag_VFP_arch, 2);
32450 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
32451 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
32452 aeabi_set_attribute_int (Tag_VFP_arch, 1);
32453
32454 /* Tag_ABI_HardFP_use. */
32455 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
32456 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
32457 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
32458
32459 /* Tag_WMMX_arch. */
32460 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
32461 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
32462 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
32463 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
32464
32465 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
32466 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
32467 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
32468 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
32469 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
32470 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
32471 {
32472 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
32473 {
32474 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
32475 }
32476 else
32477 {
32478 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
32479 fp16_optional = 1;
32480 }
32481 }
32482
32483 if (ARM_CPU_HAS_FEATURE (flags, mve_fp_ext))
32484 aeabi_set_attribute_int (Tag_MVE_arch, 2);
32485 else if (ARM_CPU_HAS_FEATURE (flags, mve_ext))
32486 aeabi_set_attribute_int (Tag_MVE_arch, 1);
32487
32488 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
32489 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
32490 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
32491
32492 /* Tag_DIV_use.
32493
32494 We set Tag_DIV_use to two when integer divide instructions have been used
32495 in ARM state, or when Thumb integer divide instructions have been used,
32496 but we have no architecture profile set, nor have we any ARM instructions.
32497
32498 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
32499 by the base architecture.
32500
32501 For new architectures we will have to check these tests. */
32502 gas_assert (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
32503 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
32504 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
32505 aeabi_set_attribute_int (Tag_DIV_use, 0);
32506 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
32507 || (profile == '\0'
32508 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
32509 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
32510 aeabi_set_attribute_int (Tag_DIV_use, 2);
32511
32512 /* Tag_MP_extension_use. */
32513 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
32514 aeabi_set_attribute_int (Tag_MPextension_use, 1);
32515
32516 /* Tag Virtualization_use. */
32517 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
32518 virt_sec |= 1;
32519 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
32520 virt_sec |= 2;
32521 if (virt_sec != 0)
32522 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
32523
32524 if (fp16_format != ARM_FP16_FORMAT_DEFAULT)
32525 aeabi_set_attribute_int (Tag_ABI_FP_16bit_format, fp16_format);
32526 }
32527
32528 /* Post relaxation hook. Recompute ARM attributes now that relaxation is
32529 finished and free extension feature bits which will not be used anymore. */
32530
32531 void
32532 arm_md_post_relax (void)
32533 {
32534 aeabi_set_public_attributes ();
32535 XDELETE (mcpu_ext_opt);
32536 mcpu_ext_opt = NULL;
32537 XDELETE (march_ext_opt);
32538 march_ext_opt = NULL;
32539 }
32540
32541 /* Add the default contents for the .ARM.attributes section. */
32542
32543 void
32544 arm_md_end (void)
32545 {
32546 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
32547 return;
32548
32549 aeabi_set_public_attributes ();
32550 }
32551 #endif /* OBJ_ELF */
32552
32553 /* Parse a .cpu directive. */
32554
32555 static void
32556 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
32557 {
32558 const struct arm_cpu_option_table *opt;
32559 char *name;
32560 char saved_char;
32561
32562 name = input_line_pointer;
32563 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
32564 input_line_pointer++;
32565 saved_char = *input_line_pointer;
32566 *input_line_pointer = 0;
32567
32568 /* Skip the first "all" entry. */
32569 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
32570 if (streq (opt->name, name))
32571 {
32572 selected_arch = opt->value;
32573 selected_ext = opt->ext;
32574 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
32575 if (opt->canonical_name)
32576 strcpy (selected_cpu_name, opt->canonical_name);
32577 else
32578 {
32579 int i;
32580 for (i = 0; opt->name[i]; i++)
32581 selected_cpu_name[i] = TOUPPER (opt->name[i]);
32582
32583 selected_cpu_name[i] = 0;
32584 }
32585 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
32586
32587 *input_line_pointer = saved_char;
32588 demand_empty_rest_of_line ();
32589 return;
32590 }
32591 as_bad (_("unknown cpu `%s'"), name);
32592 *input_line_pointer = saved_char;
32593 ignore_rest_of_line ();
32594 }
32595
32596 /* Parse a .arch directive. */
32597
32598 static void
32599 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
32600 {
32601 const struct arm_arch_option_table *opt;
32602 char saved_char;
32603 char *name;
32604
32605 name = input_line_pointer;
32606 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
32607 input_line_pointer++;
32608 saved_char = *input_line_pointer;
32609 *input_line_pointer = 0;
32610
32611 /* Skip the first "all" entry. */
32612 for (opt = arm_archs + 1; opt->name != NULL; opt++)
32613 if (streq (opt->name, name))
32614 {
32615 selected_arch = opt->value;
32616 selected_ext = arm_arch_none;
32617 selected_cpu = selected_arch;
32618 strcpy (selected_cpu_name, opt->name);
32619 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
32620 *input_line_pointer = saved_char;
32621 demand_empty_rest_of_line ();
32622 return;
32623 }
32624
32625 as_bad (_("unknown architecture `%s'\n"), name);
32626 *input_line_pointer = saved_char;
32627 ignore_rest_of_line ();
32628 }
32629
32630 /* Parse a .object_arch directive. */
32631
32632 static void
32633 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
32634 {
32635 const struct arm_arch_option_table *opt;
32636 char saved_char;
32637 char *name;
32638
32639 name = input_line_pointer;
32640 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
32641 input_line_pointer++;
32642 saved_char = *input_line_pointer;
32643 *input_line_pointer = 0;
32644
32645 /* Skip the first "all" entry. */
32646 for (opt = arm_archs + 1; opt->name != NULL; opt++)
32647 if (streq (opt->name, name))
32648 {
32649 selected_object_arch = opt->value;
32650 *input_line_pointer = saved_char;
32651 demand_empty_rest_of_line ();
32652 return;
32653 }
32654
32655 as_bad (_("unknown architecture `%s'\n"), name);
32656 *input_line_pointer = saved_char;
32657 ignore_rest_of_line ();
32658 }
32659
32660 /* Parse a .arch_extension directive. */
32661
32662 static void
32663 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
32664 {
32665 const struct arm_option_extension_value_table *opt;
32666 char saved_char;
32667 char *name;
32668 int adding_value = 1;
32669
32670 name = input_line_pointer;
32671 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
32672 input_line_pointer++;
32673 saved_char = *input_line_pointer;
32674 *input_line_pointer = 0;
32675
32676 if (strlen (name) >= 2
32677 && strncmp (name, "no", 2) == 0)
32678 {
32679 adding_value = 0;
32680 name += 2;
32681 }
32682
32683 /* Check the context specific extension table */
32684 if (selected_ctx_ext_table)
32685 {
32686 const struct arm_ext_table * ext_opt;
32687 for (ext_opt = selected_ctx_ext_table; ext_opt->name != NULL; ext_opt++)
32688 {
32689 if (streq (ext_opt->name, name))
32690 {
32691 if (adding_value)
32692 {
32693 if (ARM_FEATURE_ZERO (ext_opt->merge))
32694 /* TODO: Option not supported. When we remove the
32695 legacy table this case should error out. */
32696 continue;
32697 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
32698 ext_opt->merge);
32699 }
32700 else
32701 ARM_CLEAR_FEATURE (selected_ext, selected_ext, ext_opt->clear);
32702
32703 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
32704 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
32705 *input_line_pointer = saved_char;
32706 demand_empty_rest_of_line ();
32707 return;
32708 }
32709 }
32710 }
32711
32712 for (opt = arm_extensions; opt->name != NULL; opt++)
32713 if (streq (opt->name, name))
32714 {
32715 int i, nb_allowed_archs =
32716 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
32717 for (i = 0; i < nb_allowed_archs; i++)
32718 {
32719 /* Empty entry. */
32720 if (ARM_CPU_IS_ANY (opt->allowed_archs[i]))
32721 continue;
32722 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], selected_arch))
32723 break;
32724 }
32725
32726 if (i == nb_allowed_archs)
32727 {
32728 as_bad (_("architectural extension `%s' is not allowed for the "
32729 "current base architecture"), name);
32730 break;
32731 }
32732
32733 if (adding_value)
32734 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
32735 opt->merge_value);
32736 else
32737 ARM_CLEAR_FEATURE (selected_ext, selected_ext, opt->clear_value);
32738
32739 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
32740 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
32741 *input_line_pointer = saved_char;
32742 demand_empty_rest_of_line ();
32743 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
32744 on this return so that duplicate extensions (extensions with the
32745 same name as a previous extension in the list) are not considered
32746 for command-line parsing. */
32747 return;
32748 }
32749
32750 if (opt->name == NULL)
32751 as_bad (_("unknown architecture extension `%s'\n"), name);
32752
32753 *input_line_pointer = saved_char;
32754 ignore_rest_of_line ();
32755 }
32756
32757 /* Parse a .fpu directive. */
32758
32759 static void
32760 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
32761 {
32762 const struct arm_option_fpu_value_table *opt;
32763 char saved_char;
32764 char *name;
32765
32766 name = input_line_pointer;
32767 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
32768 input_line_pointer++;
32769 saved_char = *input_line_pointer;
32770 *input_line_pointer = 0;
32771
32772 for (opt = arm_fpus; opt->name != NULL; opt++)
32773 if (streq (opt->name, name))
32774 {
32775 selected_fpu = opt->value;
32776 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, fpu_any);
32777 #ifndef CPU_DEFAULT
32778 if (no_cpu_selected ())
32779 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
32780 else
32781 #endif
32782 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
32783 *input_line_pointer = saved_char;
32784 demand_empty_rest_of_line ();
32785 return;
32786 }
32787
32788 as_bad (_("unknown floating point format `%s'\n"), name);
32789 *input_line_pointer = saved_char;
32790 ignore_rest_of_line ();
32791 }
32792
32793 /* Copy symbol information. */
32794
32795 void
32796 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
32797 {
32798 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
32799 }
32800
32801 #ifdef OBJ_ELF
32802 /* Given a symbolic attribute NAME, return the proper integer value.
32803 Returns -1 if the attribute is not known. */
32804
32805 int
32806 arm_convert_symbolic_attribute (const char *name)
32807 {
32808 static const struct
32809 {
32810 const char * name;
32811 const int tag;
32812 }
32813 attribute_table[] =
32814 {
32815 /* When you modify this table you should
32816 also modify the list in doc/c-arm.texi. */
32817 #define T(tag) {#tag, tag}
32818 T (Tag_CPU_raw_name),
32819 T (Tag_CPU_name),
32820 T (Tag_CPU_arch),
32821 T (Tag_CPU_arch_profile),
32822 T (Tag_ARM_ISA_use),
32823 T (Tag_THUMB_ISA_use),
32824 T (Tag_FP_arch),
32825 T (Tag_VFP_arch),
32826 T (Tag_WMMX_arch),
32827 T (Tag_Advanced_SIMD_arch),
32828 T (Tag_PCS_config),
32829 T (Tag_ABI_PCS_R9_use),
32830 T (Tag_ABI_PCS_RW_data),
32831 T (Tag_ABI_PCS_RO_data),
32832 T (Tag_ABI_PCS_GOT_use),
32833 T (Tag_ABI_PCS_wchar_t),
32834 T (Tag_ABI_FP_rounding),
32835 T (Tag_ABI_FP_denormal),
32836 T (Tag_ABI_FP_exceptions),
32837 T (Tag_ABI_FP_user_exceptions),
32838 T (Tag_ABI_FP_number_model),
32839 T (Tag_ABI_align_needed),
32840 T (Tag_ABI_align8_needed),
32841 T (Tag_ABI_align_preserved),
32842 T (Tag_ABI_align8_preserved),
32843 T (Tag_ABI_enum_size),
32844 T (Tag_ABI_HardFP_use),
32845 T (Tag_ABI_VFP_args),
32846 T (Tag_ABI_WMMX_args),
32847 T (Tag_ABI_optimization_goals),
32848 T (Tag_ABI_FP_optimization_goals),
32849 T (Tag_compatibility),
32850 T (Tag_CPU_unaligned_access),
32851 T (Tag_FP_HP_extension),
32852 T (Tag_VFP_HP_extension),
32853 T (Tag_ABI_FP_16bit_format),
32854 T (Tag_MPextension_use),
32855 T (Tag_DIV_use),
32856 T (Tag_nodefaults),
32857 T (Tag_also_compatible_with),
32858 T (Tag_conformance),
32859 T (Tag_T2EE_use),
32860 T (Tag_Virtualization_use),
32861 T (Tag_DSP_extension),
32862 T (Tag_MVE_arch),
32863 /* We deliberately do not include Tag_MPextension_use_legacy. */
32864 #undef T
32865 };
32866 unsigned int i;
32867
32868 if (name == NULL)
32869 return -1;
32870
32871 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
32872 if (streq (name, attribute_table[i].name))
32873 return attribute_table[i].tag;
32874
32875 return -1;
32876 }
32877
32878 /* Apply sym value for relocations only in the case that they are for
32879 local symbols in the same segment as the fixup and you have the
32880 respective architectural feature for blx and simple switches. */
32881
32882 int
32883 arm_apply_sym_value (struct fix * fixP, segT this_seg)
32884 {
32885 if (fixP->fx_addsy
32886 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
32887 /* PR 17444: If the local symbol is in a different section then a reloc
32888 will always be generated for it, so applying the symbol value now
32889 will result in a double offset being stored in the relocation. */
32890 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
32891 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
32892 {
32893 switch (fixP->fx_r_type)
32894 {
32895 case BFD_RELOC_ARM_PCREL_BLX:
32896 case BFD_RELOC_THUMB_PCREL_BRANCH23:
32897 if (ARM_IS_FUNC (fixP->fx_addsy))
32898 return 1;
32899 break;
32900
32901 case BFD_RELOC_ARM_PCREL_CALL:
32902 case BFD_RELOC_THUMB_PCREL_BLX:
32903 if (THUMB_IS_FUNC (fixP->fx_addsy))
32904 return 1;
32905 break;
32906
32907 default:
32908 break;
32909 }
32910
32911 }
32912 return 0;
32913 }
32914 #endif /* OBJ_ELF */