]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-arm.c
Consolidate Thumb-1/Thumb-2 ISA detection
[thirdparty/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright (C) 1994-2015 Free Software Foundation, Inc.
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25
26 #include "as.h"
27 #include <limits.h>
28 #include <stdarg.h>
29 #define NO_RELOC 0
30 #include "safe-ctype.h"
31 #include "subsegs.h"
32 #include "obstack.h"
33 #include "libiberty.h"
34 #include "opcode/arm.h"
35
36 #ifdef OBJ_ELF
37 #include "elf/arm.h"
38 #include "dw2gencfi.h"
39 #endif
40
41 #include "dwarf2dbg.h"
42
43 #ifdef OBJ_ELF
44 /* Must be at least the size of the largest unwind opcode (currently two). */
45 #define ARM_OPCODE_CHUNK_SIZE 8
46
47 /* This structure holds the unwinding state. */
48
49 static struct
50 {
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
55 /* The segment containing the function. */
56 segT saved_seg;
57 subsegT saved_subseg;
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
60 int opcode_count;
61 int opcode_alloc;
62 /* The number of bytes pushed to the stack. */
63 offsetT frame_size;
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
67 offsetT pending_offset;
68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
72 /* Nonzero if an unwind_setfp directive has been seen. */
73 unsigned fp_used:1;
74 /* Nonzero if the last opcode restores sp from fp_reg. */
75 unsigned sp_restored:1;
76 } unwind;
77
78 #endif /* OBJ_ELF */
79
80 /* Results from operand parsing worker functions. */
81
82 typedef enum
83 {
84 PARSE_OPERAND_SUCCESS,
85 PARSE_OPERAND_FAIL,
86 PARSE_OPERAND_FAIL_NO_BACKTRACK
87 } parse_operand_result;
88
89 enum arm_float_abi
90 {
91 ARM_FLOAT_ABI_HARD,
92 ARM_FLOAT_ABI_SOFTFP,
93 ARM_FLOAT_ABI_SOFT
94 };
95
96 /* Types of processor to assemble for. */
97 #ifndef CPU_DEFAULT
98 /* The code that was here used to select a default CPU depending on compiler
99 pre-defines which were only present when doing native builds, thus
100 changing gas' default behaviour depending upon the build host.
101
102 If you have a target that requires a default CPU option then the you
103 should define CPU_DEFAULT here. */
104 #endif
105
106 #ifndef FPU_DEFAULT
107 # ifdef TE_LINUX
108 # define FPU_DEFAULT FPU_ARCH_FPA
109 # elif defined (TE_NetBSD)
110 # ifdef OBJ_ELF
111 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
112 # else
113 /* Legacy a.out format. */
114 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
115 # endif
116 # elif defined (TE_VXWORKS)
117 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
118 # else
119 /* For backwards compatibility, default to FPA. */
120 # define FPU_DEFAULT FPU_ARCH_FPA
121 # endif
122 #endif /* ifndef FPU_DEFAULT */
123
124 #define streq(a, b) (strcmp (a, b) == 0)
125
126 static arm_feature_set cpu_variant;
127 static arm_feature_set arm_arch_used;
128 static arm_feature_set thumb_arch_used;
129
130 /* Flags stored in private area of BFD structure. */
131 static int uses_apcs_26 = FALSE;
132 static int atpcs = FALSE;
133 static int support_interwork = FALSE;
134 static int uses_apcs_float = FALSE;
135 static int pic_code = FALSE;
136 static int fix_v4bx = FALSE;
137 /* Warn on using deprecated features. */
138 static int warn_on_deprecated = TRUE;
139
140 /* Understand CodeComposer Studio assembly syntax. */
141 bfd_boolean codecomposer_syntax = FALSE;
142
143 /* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
146 static const arm_feature_set *legacy_cpu = NULL;
147 static const arm_feature_set *legacy_fpu = NULL;
148
149 static const arm_feature_set *mcpu_cpu_opt = NULL;
150 static const arm_feature_set *mcpu_fpu_opt = NULL;
151 static const arm_feature_set *march_cpu_opt = NULL;
152 static const arm_feature_set *march_fpu_opt = NULL;
153 static const arm_feature_set *mfpu_opt = NULL;
154 static const arm_feature_set *object_arch = NULL;
155
156 /* Constants for known architecture features. */
157 static const arm_feature_set fpu_default = FPU_DEFAULT;
158 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
160 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
162 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167 #ifdef CPU_DEFAULT
168 static const arm_feature_set cpu_default = CPU_DEFAULT;
169 #endif
170
171 static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
172 static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
173 static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
174 static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
175 static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
176 static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
177 static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
178 static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
179 static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
181 static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
182 static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
183 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
184 static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
185 static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
186 static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
187 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
188 static const arm_feature_set arm_ext_v6m = ARM_FEATURE_CORE_LOW (ARM_EXT_V6M);
189 static const arm_feature_set arm_ext_v6_notm =
190 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
191 static const arm_feature_set arm_ext_v6_dsp =
192 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
193 static const arm_feature_set arm_ext_barrier =
194 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
195 static const arm_feature_set arm_ext_msr =
196 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
197 static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
198 static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
199 static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
200 static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
201 static const arm_feature_set arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
202 static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
203 static const arm_feature_set arm_ext_m =
204 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M | ARM_EXT_OS | ARM_EXT_V7M);
205 static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
206 static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
207 static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
208 static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
209 static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
210 static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
211
212 static const arm_feature_set arm_arch_any = ARM_ANY;
213 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1, -1);
214 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
215 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
216 static const arm_feature_set arm_arch_v6m_only = ARM_ARCH_V6M_ONLY;
217
218 static const arm_feature_set arm_cext_iwmmxt2 =
219 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
220 static const arm_feature_set arm_cext_iwmmxt =
221 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
222 static const arm_feature_set arm_cext_xscale =
223 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
224 static const arm_feature_set arm_cext_maverick =
225 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
226 static const arm_feature_set fpu_fpa_ext_v1 =
227 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
228 static const arm_feature_set fpu_fpa_ext_v2 =
229 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
230 static const arm_feature_set fpu_vfp_ext_v1xd =
231 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
232 static const arm_feature_set fpu_vfp_ext_v1 =
233 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
234 static const arm_feature_set fpu_vfp_ext_v2 =
235 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
236 static const arm_feature_set fpu_vfp_ext_v3xd =
237 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
238 static const arm_feature_set fpu_vfp_ext_v3 =
239 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
240 static const arm_feature_set fpu_vfp_ext_d32 =
241 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
242 static const arm_feature_set fpu_neon_ext_v1 =
243 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
244 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
245 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
246 static const arm_feature_set fpu_vfp_fp16 =
247 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
248 static const arm_feature_set fpu_neon_ext_fma =
249 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
250 static const arm_feature_set fpu_vfp_ext_fma =
251 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
252 static const arm_feature_set fpu_vfp_ext_armv8 =
253 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
254 static const arm_feature_set fpu_vfp_ext_armv8xd =
255 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
256 static const arm_feature_set fpu_neon_ext_armv8 =
257 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
258 static const arm_feature_set fpu_crypto_ext_armv8 =
259 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
260 static const arm_feature_set crc_ext_armv8 =
261 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
262 static const arm_feature_set fpu_neon_ext_v8_1 =
263 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8 | FPU_NEON_EXT_RDMA);
264
265 static int mfloat_abi_opt = -1;
266 /* Record user cpu selection for object attributes. */
267 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
268 /* Must be long enough to hold any of the names in arm_cpus. */
269 static char selected_cpu_name[20];
270
271 extern FLONUM_TYPE generic_floating_point_number;
272
273 /* Return if no cpu was selected on command-line. */
274 static bfd_boolean
275 no_cpu_selected (void)
276 {
277 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
278 }
279
280 #ifdef OBJ_ELF
281 # ifdef EABI_DEFAULT
282 static int meabi_flags = EABI_DEFAULT;
283 # else
284 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
285 # endif
286
287 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
288
289 bfd_boolean
290 arm_is_eabi (void)
291 {
292 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
293 }
294 #endif
295
296 #ifdef OBJ_ELF
297 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
298 symbolS * GOT_symbol;
299 #endif
300
301 /* 0: assemble for ARM,
302 1: assemble for Thumb,
303 2: assemble for Thumb even though target CPU does not support thumb
304 instructions. */
305 static int thumb_mode = 0;
306 /* A value distinct from the possible values for thumb_mode that we
307 can use to record whether thumb_mode has been copied into the
308 tc_frag_data field of a frag. */
309 #define MODE_RECORDED (1 << 4)
310
311 /* Specifies the intrinsic IT insn behavior mode. */
312 enum implicit_it_mode
313 {
314 IMPLICIT_IT_MODE_NEVER = 0x00,
315 IMPLICIT_IT_MODE_ARM = 0x01,
316 IMPLICIT_IT_MODE_THUMB = 0x02,
317 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
318 };
319 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
320
321 /* If unified_syntax is true, we are processing the new unified
322 ARM/Thumb syntax. Important differences from the old ARM mode:
323
324 - Immediate operands do not require a # prefix.
325 - Conditional affixes always appear at the end of the
326 instruction. (For backward compatibility, those instructions
327 that formerly had them in the middle, continue to accept them
328 there.)
329 - The IT instruction may appear, and if it does is validated
330 against subsequent conditional affixes. It does not generate
331 machine code.
332
333 Important differences from the old Thumb mode:
334
335 - Immediate operands do not require a # prefix.
336 - Most of the V6T2 instructions are only available in unified mode.
337 - The .N and .W suffixes are recognized and honored (it is an error
338 if they cannot be honored).
339 - All instructions set the flags if and only if they have an 's' affix.
340 - Conditional affixes may be used. They are validated against
341 preceding IT instructions. Unlike ARM mode, you cannot use a
342 conditional affix except in the scope of an IT instruction. */
343
344 static bfd_boolean unified_syntax = FALSE;
345
346 /* An immediate operand can start with #, and ld*, st*, pld operands
347 can contain [ and ]. We need to tell APP not to elide whitespace
348 before a [, which can appear as the first operand for pld.
349 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
350 const char arm_symbol_chars[] = "#[]{}";
351
352 enum neon_el_type
353 {
354 NT_invtype,
355 NT_untyped,
356 NT_integer,
357 NT_float,
358 NT_poly,
359 NT_signed,
360 NT_unsigned
361 };
362
363 struct neon_type_el
364 {
365 enum neon_el_type type;
366 unsigned size;
367 };
368
369 #define NEON_MAX_TYPE_ELS 4
370
371 struct neon_type
372 {
373 struct neon_type_el el[NEON_MAX_TYPE_ELS];
374 unsigned elems;
375 };
376
377 enum it_instruction_type
378 {
379 OUTSIDE_IT_INSN,
380 INSIDE_IT_INSN,
381 INSIDE_IT_LAST_INSN,
382 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
383 if inside, should be the last one. */
384 NEUTRAL_IT_INSN, /* This could be either inside or outside,
385 i.e. BKPT and NOP. */
386 IT_INSN /* The IT insn has been parsed. */
387 };
388
389 /* The maximum number of operands we need. */
390 #define ARM_IT_MAX_OPERANDS 6
391
392 struct arm_it
393 {
394 const char * error;
395 unsigned long instruction;
396 int size;
397 int size_req;
398 int cond;
399 /* "uncond_value" is set to the value in place of the conditional field in
400 unconditional versions of the instruction, or -1 if nothing is
401 appropriate. */
402 int uncond_value;
403 struct neon_type vectype;
404 /* This does not indicate an actual NEON instruction, only that
405 the mnemonic accepts neon-style type suffixes. */
406 int is_neon;
407 /* Set to the opcode if the instruction needs relaxation.
408 Zero if the instruction is not relaxed. */
409 unsigned long relax;
410 struct
411 {
412 bfd_reloc_code_real_type type;
413 expressionS exp;
414 int pc_rel;
415 } reloc;
416
417 enum it_instruction_type it_insn_type;
418
419 struct
420 {
421 unsigned reg;
422 signed int imm;
423 struct neon_type_el vectype;
424 unsigned present : 1; /* Operand present. */
425 unsigned isreg : 1; /* Operand was a register. */
426 unsigned immisreg : 1; /* .imm field is a second register. */
427 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
428 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
429 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
430 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
431 instructions. This allows us to disambiguate ARM <-> vector insns. */
432 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
433 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
434 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
435 unsigned issingle : 1; /* Operand is VFP single-precision register. */
436 unsigned hasreloc : 1; /* Operand has relocation suffix. */
437 unsigned writeback : 1; /* Operand has trailing ! */
438 unsigned preind : 1; /* Preindexed address. */
439 unsigned postind : 1; /* Postindexed address. */
440 unsigned negative : 1; /* Index register was negated. */
441 unsigned shifted : 1; /* Shift applied to operation. */
442 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
443 } operands[ARM_IT_MAX_OPERANDS];
444 };
445
446 static struct arm_it inst;
447
448 #define NUM_FLOAT_VALS 8
449
450 const char * fp_const[] =
451 {
452 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
453 };
454
455 /* Number of littlenums required to hold an extended precision number. */
456 #define MAX_LITTLENUMS 6
457
458 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
459
460 #define FAIL (-1)
461 #define SUCCESS (0)
462
463 #define SUFF_S 1
464 #define SUFF_D 2
465 #define SUFF_E 3
466 #define SUFF_P 4
467
468 #define CP_T_X 0x00008000
469 #define CP_T_Y 0x00400000
470
471 #define CONDS_BIT 0x00100000
472 #define LOAD_BIT 0x00100000
473
474 #define DOUBLE_LOAD_FLAG 0x00000001
475
476 struct asm_cond
477 {
478 const char * template_name;
479 unsigned long value;
480 };
481
482 #define COND_ALWAYS 0xE
483
484 struct asm_psr
485 {
486 const char * template_name;
487 unsigned long field;
488 };
489
490 struct asm_barrier_opt
491 {
492 const char * template_name;
493 unsigned long value;
494 const arm_feature_set arch;
495 };
496
497 /* The bit that distinguishes CPSR and SPSR. */
498 #define SPSR_BIT (1 << 22)
499
500 /* The individual PSR flag bits. */
501 #define PSR_c (1 << 16)
502 #define PSR_x (1 << 17)
503 #define PSR_s (1 << 18)
504 #define PSR_f (1 << 19)
505
506 struct reloc_entry
507 {
508 char * name;
509 bfd_reloc_code_real_type reloc;
510 };
511
512 enum vfp_reg_pos
513 {
514 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
515 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
516 };
517
518 enum vfp_ldstm_type
519 {
520 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
521 };
522
523 /* Bits for DEFINED field in neon_typed_alias. */
524 #define NTA_HASTYPE 1
525 #define NTA_HASINDEX 2
526
527 struct neon_typed_alias
528 {
529 unsigned char defined;
530 unsigned char index;
531 struct neon_type_el eltype;
532 };
533
534 /* ARM register categories. This includes coprocessor numbers and various
535 architecture extensions' registers. */
536 enum arm_reg_type
537 {
538 REG_TYPE_RN,
539 REG_TYPE_CP,
540 REG_TYPE_CN,
541 REG_TYPE_FN,
542 REG_TYPE_VFS,
543 REG_TYPE_VFD,
544 REG_TYPE_NQ,
545 REG_TYPE_VFSD,
546 REG_TYPE_NDQ,
547 REG_TYPE_NSDQ,
548 REG_TYPE_VFC,
549 REG_TYPE_MVF,
550 REG_TYPE_MVD,
551 REG_TYPE_MVFX,
552 REG_TYPE_MVDX,
553 REG_TYPE_MVAX,
554 REG_TYPE_DSPSC,
555 REG_TYPE_MMXWR,
556 REG_TYPE_MMXWC,
557 REG_TYPE_MMXWCG,
558 REG_TYPE_XSCALE,
559 REG_TYPE_RNB
560 };
561
562 /* Structure for a hash table entry for a register.
563 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
564 information which states whether a vector type or index is specified (for a
565 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
566 struct reg_entry
567 {
568 const char * name;
569 unsigned int number;
570 unsigned char type;
571 unsigned char builtin;
572 struct neon_typed_alias * neon;
573 };
574
575 /* Diagnostics used when we don't get a register of the expected type. */
576 const char * const reg_expected_msgs[] =
577 {
578 N_("ARM register expected"),
579 N_("bad or missing co-processor number"),
580 N_("co-processor register expected"),
581 N_("FPA register expected"),
582 N_("VFP single precision register expected"),
583 N_("VFP/Neon double precision register expected"),
584 N_("Neon quad precision register expected"),
585 N_("VFP single or double precision register expected"),
586 N_("Neon double or quad precision register expected"),
587 N_("VFP single, double or Neon quad precision register expected"),
588 N_("VFP system register expected"),
589 N_("Maverick MVF register expected"),
590 N_("Maverick MVD register expected"),
591 N_("Maverick MVFX register expected"),
592 N_("Maverick MVDX register expected"),
593 N_("Maverick MVAX register expected"),
594 N_("Maverick DSPSC register expected"),
595 N_("iWMMXt data register expected"),
596 N_("iWMMXt control register expected"),
597 N_("iWMMXt scalar register expected"),
598 N_("XScale accumulator register expected"),
599 };
600
601 /* Some well known registers that we refer to directly elsewhere. */
602 #define REG_R12 12
603 #define REG_SP 13
604 #define REG_LR 14
605 #define REG_PC 15
606
607 /* ARM instructions take 4bytes in the object file, Thumb instructions
608 take 2: */
609 #define INSN_SIZE 4
610
611 struct asm_opcode
612 {
613 /* Basic string to match. */
614 const char * template_name;
615
616 /* Parameters to instruction. */
617 unsigned int operands[8];
618
619 /* Conditional tag - see opcode_lookup. */
620 unsigned int tag : 4;
621
622 /* Basic instruction code. */
623 unsigned int avalue : 28;
624
625 /* Thumb-format instruction code. */
626 unsigned int tvalue;
627
628 /* Which architecture variant provides this instruction. */
629 const arm_feature_set * avariant;
630 const arm_feature_set * tvariant;
631
632 /* Function to call to encode instruction in ARM format. */
633 void (* aencode) (void);
634
635 /* Function to call to encode instruction in Thumb format. */
636 void (* tencode) (void);
637 };
638
639 /* Defines for various bits that we will want to toggle. */
640 #define INST_IMMEDIATE 0x02000000
641 #define OFFSET_REG 0x02000000
642 #define HWOFFSET_IMM 0x00400000
643 #define SHIFT_BY_REG 0x00000010
644 #define PRE_INDEX 0x01000000
645 #define INDEX_UP 0x00800000
646 #define WRITE_BACK 0x00200000
647 #define LDM_TYPE_2_OR_3 0x00400000
648 #define CPSI_MMOD 0x00020000
649
650 #define LITERAL_MASK 0xf000f000
651 #define OPCODE_MASK 0xfe1fffff
652 #define V4_STR_BIT 0x00000020
653 #define VLDR_VMOV_SAME 0x0040f000
654
655 #define T2_SUBS_PC_LR 0xf3de8f00
656
657 #define DATA_OP_SHIFT 21
658
659 #define T2_OPCODE_MASK 0xfe1fffff
660 #define T2_DATA_OP_SHIFT 21
661
662 #define A_COND_MASK 0xf0000000
663 #define A_PUSH_POP_OP_MASK 0x0fff0000
664
665 /* Opcodes for pushing/poping registers to/from the stack. */
666 #define A1_OPCODE_PUSH 0x092d0000
667 #define A2_OPCODE_PUSH 0x052d0004
668 #define A2_OPCODE_POP 0x049d0004
669
670 /* Codes to distinguish the arithmetic instructions. */
671 #define OPCODE_AND 0
672 #define OPCODE_EOR 1
673 #define OPCODE_SUB 2
674 #define OPCODE_RSB 3
675 #define OPCODE_ADD 4
676 #define OPCODE_ADC 5
677 #define OPCODE_SBC 6
678 #define OPCODE_RSC 7
679 #define OPCODE_TST 8
680 #define OPCODE_TEQ 9
681 #define OPCODE_CMP 10
682 #define OPCODE_CMN 11
683 #define OPCODE_ORR 12
684 #define OPCODE_MOV 13
685 #define OPCODE_BIC 14
686 #define OPCODE_MVN 15
687
688 #define T2_OPCODE_AND 0
689 #define T2_OPCODE_BIC 1
690 #define T2_OPCODE_ORR 2
691 #define T2_OPCODE_ORN 3
692 #define T2_OPCODE_EOR 4
693 #define T2_OPCODE_ADD 8
694 #define T2_OPCODE_ADC 10
695 #define T2_OPCODE_SBC 11
696 #define T2_OPCODE_SUB 13
697 #define T2_OPCODE_RSB 14
698
699 #define T_OPCODE_MUL 0x4340
700 #define T_OPCODE_TST 0x4200
701 #define T_OPCODE_CMN 0x42c0
702 #define T_OPCODE_NEG 0x4240
703 #define T_OPCODE_MVN 0x43c0
704
705 #define T_OPCODE_ADD_R3 0x1800
706 #define T_OPCODE_SUB_R3 0x1a00
707 #define T_OPCODE_ADD_HI 0x4400
708 #define T_OPCODE_ADD_ST 0xb000
709 #define T_OPCODE_SUB_ST 0xb080
710 #define T_OPCODE_ADD_SP 0xa800
711 #define T_OPCODE_ADD_PC 0xa000
712 #define T_OPCODE_ADD_I8 0x3000
713 #define T_OPCODE_SUB_I8 0x3800
714 #define T_OPCODE_ADD_I3 0x1c00
715 #define T_OPCODE_SUB_I3 0x1e00
716
717 #define T_OPCODE_ASR_R 0x4100
718 #define T_OPCODE_LSL_R 0x4080
719 #define T_OPCODE_LSR_R 0x40c0
720 #define T_OPCODE_ROR_R 0x41c0
721 #define T_OPCODE_ASR_I 0x1000
722 #define T_OPCODE_LSL_I 0x0000
723 #define T_OPCODE_LSR_I 0x0800
724
725 #define T_OPCODE_MOV_I8 0x2000
726 #define T_OPCODE_CMP_I8 0x2800
727 #define T_OPCODE_CMP_LR 0x4280
728 #define T_OPCODE_MOV_HR 0x4600
729 #define T_OPCODE_CMP_HR 0x4500
730
731 #define T_OPCODE_LDR_PC 0x4800
732 #define T_OPCODE_LDR_SP 0x9800
733 #define T_OPCODE_STR_SP 0x9000
734 #define T_OPCODE_LDR_IW 0x6800
735 #define T_OPCODE_STR_IW 0x6000
736 #define T_OPCODE_LDR_IH 0x8800
737 #define T_OPCODE_STR_IH 0x8000
738 #define T_OPCODE_LDR_IB 0x7800
739 #define T_OPCODE_STR_IB 0x7000
740 #define T_OPCODE_LDR_RW 0x5800
741 #define T_OPCODE_STR_RW 0x5000
742 #define T_OPCODE_LDR_RH 0x5a00
743 #define T_OPCODE_STR_RH 0x5200
744 #define T_OPCODE_LDR_RB 0x5c00
745 #define T_OPCODE_STR_RB 0x5400
746
747 #define T_OPCODE_PUSH 0xb400
748 #define T_OPCODE_POP 0xbc00
749
750 #define T_OPCODE_BRANCH 0xe000
751
752 #define THUMB_SIZE 2 /* Size of thumb instruction. */
753 #define THUMB_PP_PC_LR 0x0100
754 #define THUMB_LOAD_BIT 0x0800
755 #define THUMB2_LOAD_BIT 0x00100000
756
757 #define BAD_ARGS _("bad arguments to instruction")
758 #define BAD_SP _("r13 not allowed here")
759 #define BAD_PC _("r15 not allowed here")
760 #define BAD_COND _("instruction cannot be conditional")
761 #define BAD_OVERLAP _("registers may not be the same")
762 #define BAD_HIREG _("lo register required")
763 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
764 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
765 #define BAD_BRANCH _("branch must be last instruction in IT block")
766 #define BAD_NOT_IT _("instruction not allowed in IT block")
767 #define BAD_FPU _("selected FPU does not support instruction")
768 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
769 #define BAD_IT_COND _("incorrect condition in IT block")
770 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
771 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
772 #define BAD_PC_ADDRESSING \
773 _("cannot use register index with PC-relative addressing")
774 #define BAD_PC_WRITEBACK \
775 _("cannot use writeback with PC-relative addressing")
776 #define BAD_RANGE _("branch out of range")
777 #define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
778
779 static struct hash_control * arm_ops_hsh;
780 static struct hash_control * arm_cond_hsh;
781 static struct hash_control * arm_shift_hsh;
782 static struct hash_control * arm_psr_hsh;
783 static struct hash_control * arm_v7m_psr_hsh;
784 static struct hash_control * arm_reg_hsh;
785 static struct hash_control * arm_reloc_hsh;
786 static struct hash_control * arm_barrier_opt_hsh;
787
788 /* Stuff needed to resolve the label ambiguity
789 As:
790 ...
791 label: <insn>
792 may differ from:
793 ...
794 label:
795 <insn> */
796
797 symbolS * last_label_seen;
798 static int label_is_thumb_function_name = FALSE;
799
800 /* Literal pool structure. Held on a per-section
801 and per-sub-section basis. */
802
803 #define MAX_LITERAL_POOL_SIZE 1024
804 typedef struct literal_pool
805 {
806 expressionS literals [MAX_LITERAL_POOL_SIZE];
807 unsigned int next_free_entry;
808 unsigned int id;
809 symbolS * symbol;
810 segT section;
811 subsegT sub_section;
812 #ifdef OBJ_ELF
813 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
814 #endif
815 struct literal_pool * next;
816 unsigned int alignment;
817 } literal_pool;
818
819 /* Pointer to a linked list of literal pools. */
820 literal_pool * list_of_pools = NULL;
821
822 typedef enum asmfunc_states
823 {
824 OUTSIDE_ASMFUNC,
825 WAITING_ASMFUNC_NAME,
826 WAITING_ENDASMFUNC
827 } asmfunc_states;
828
829 static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
830
831 #ifdef OBJ_ELF
832 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
833 #else
834 static struct current_it now_it;
835 #endif
836
837 static inline int
838 now_it_compatible (int cond)
839 {
840 return (cond & ~1) == (now_it.cc & ~1);
841 }
842
843 static inline int
844 conditional_insn (void)
845 {
846 return inst.cond != COND_ALWAYS;
847 }
848
849 static int in_it_block (void);
850
851 static int handle_it_state (void);
852
853 static void force_automatic_it_block_close (void);
854
855 static void it_fsm_post_encode (void);
856
857 #define set_it_insn_type(type) \
858 do \
859 { \
860 inst.it_insn_type = type; \
861 if (handle_it_state () == FAIL) \
862 return; \
863 } \
864 while (0)
865
866 #define set_it_insn_type_nonvoid(type, failret) \
867 do \
868 { \
869 inst.it_insn_type = type; \
870 if (handle_it_state () == FAIL) \
871 return failret; \
872 } \
873 while(0)
874
875 #define set_it_insn_type_last() \
876 do \
877 { \
878 if (inst.cond == COND_ALWAYS) \
879 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
880 else \
881 set_it_insn_type (INSIDE_IT_LAST_INSN); \
882 } \
883 while (0)
884
885 /* Pure syntax. */
886
887 /* This array holds the chars that always start a comment. If the
888 pre-processor is disabled, these aren't very useful. */
889 char arm_comment_chars[] = "@";
890
891 /* This array holds the chars that only start a comment at the beginning of
892 a line. If the line seems to have the form '# 123 filename'
893 .line and .file directives will appear in the pre-processed output. */
894 /* Note that input_file.c hand checks for '#' at the beginning of the
895 first line of the input file. This is because the compiler outputs
896 #NO_APP at the beginning of its output. */
897 /* Also note that comments like this one will always work. */
898 const char line_comment_chars[] = "#";
899
900 char arm_line_separator_chars[] = ";";
901
902 /* Chars that can be used to separate mant
903 from exp in floating point numbers. */
904 const char EXP_CHARS[] = "eE";
905
906 /* Chars that mean this number is a floating point constant. */
907 /* As in 0f12.456 */
908 /* or 0d1.2345e12 */
909
910 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
911
912 /* Prefix characters that indicate the start of an immediate
913 value. */
914 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
915
916 /* Separator character handling. */
917
918 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
919
920 static inline int
921 skip_past_char (char ** str, char c)
922 {
923 /* PR gas/14987: Allow for whitespace before the expected character. */
924 skip_whitespace (*str);
925
926 if (**str == c)
927 {
928 (*str)++;
929 return SUCCESS;
930 }
931 else
932 return FAIL;
933 }
934
935 #define skip_past_comma(str) skip_past_char (str, ',')
936
937 /* Arithmetic expressions (possibly involving symbols). */
938
939 /* Return TRUE if anything in the expression is a bignum. */
940
941 static int
942 walk_no_bignums (symbolS * sp)
943 {
944 if (symbol_get_value_expression (sp)->X_op == O_big)
945 return 1;
946
947 if (symbol_get_value_expression (sp)->X_add_symbol)
948 {
949 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
950 || (symbol_get_value_expression (sp)->X_op_symbol
951 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
952 }
953
954 return 0;
955 }
956
957 static int in_my_get_expression = 0;
958
959 /* Third argument to my_get_expression. */
960 #define GE_NO_PREFIX 0
961 #define GE_IMM_PREFIX 1
962 #define GE_OPT_PREFIX 2
963 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
964 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
965 #define GE_OPT_PREFIX_BIG 3
966
967 static int
968 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
969 {
970 char * save_in;
971 segT seg;
972
973 /* In unified syntax, all prefixes are optional. */
974 if (unified_syntax)
975 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
976 : GE_OPT_PREFIX;
977
978 switch (prefix_mode)
979 {
980 case GE_NO_PREFIX: break;
981 case GE_IMM_PREFIX:
982 if (!is_immediate_prefix (**str))
983 {
984 inst.error = _("immediate expression requires a # prefix");
985 return FAIL;
986 }
987 (*str)++;
988 break;
989 case GE_OPT_PREFIX:
990 case GE_OPT_PREFIX_BIG:
991 if (is_immediate_prefix (**str))
992 (*str)++;
993 break;
994 default: abort ();
995 }
996
997 memset (ep, 0, sizeof (expressionS));
998
999 save_in = input_line_pointer;
1000 input_line_pointer = *str;
1001 in_my_get_expression = 1;
1002 seg = expression (ep);
1003 in_my_get_expression = 0;
1004
1005 if (ep->X_op == O_illegal || ep->X_op == O_absent)
1006 {
1007 /* We found a bad or missing expression in md_operand(). */
1008 *str = input_line_pointer;
1009 input_line_pointer = save_in;
1010 if (inst.error == NULL)
1011 inst.error = (ep->X_op == O_absent
1012 ? _("missing expression") :_("bad expression"));
1013 return 1;
1014 }
1015
1016 #ifdef OBJ_AOUT
1017 if (seg != absolute_section
1018 && seg != text_section
1019 && seg != data_section
1020 && seg != bss_section
1021 && seg != undefined_section)
1022 {
1023 inst.error = _("bad segment");
1024 *str = input_line_pointer;
1025 input_line_pointer = save_in;
1026 return 1;
1027 }
1028 #else
1029 (void) seg;
1030 #endif
1031
1032 /* Get rid of any bignums now, so that we don't generate an error for which
1033 we can't establish a line number later on. Big numbers are never valid
1034 in instructions, which is where this routine is always called. */
1035 if (prefix_mode != GE_OPT_PREFIX_BIG
1036 && (ep->X_op == O_big
1037 || (ep->X_add_symbol
1038 && (walk_no_bignums (ep->X_add_symbol)
1039 || (ep->X_op_symbol
1040 && walk_no_bignums (ep->X_op_symbol))))))
1041 {
1042 inst.error = _("invalid constant");
1043 *str = input_line_pointer;
1044 input_line_pointer = save_in;
1045 return 1;
1046 }
1047
1048 *str = input_line_pointer;
1049 input_line_pointer = save_in;
1050 return 0;
1051 }
1052
1053 /* Turn a string in input_line_pointer into a floating point constant
1054 of type TYPE, and store the appropriate bytes in *LITP. The number
1055 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1056 returned, or NULL on OK.
1057
1058 Note that fp constants aren't represent in the normal way on the ARM.
1059 In big endian mode, things are as expected. However, in little endian
1060 mode fp constants are big-endian word-wise, and little-endian byte-wise
1061 within the words. For example, (double) 1.1 in big endian mode is
1062 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1063 the byte sequence 99 99 f1 3f 9a 99 99 99.
1064
1065 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1066
1067 char *
1068 md_atof (int type, char * litP, int * sizeP)
1069 {
1070 int prec;
1071 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1072 char *t;
1073 int i;
1074
1075 switch (type)
1076 {
1077 case 'f':
1078 case 'F':
1079 case 's':
1080 case 'S':
1081 prec = 2;
1082 break;
1083
1084 case 'd':
1085 case 'D':
1086 case 'r':
1087 case 'R':
1088 prec = 4;
1089 break;
1090
1091 case 'x':
1092 case 'X':
1093 prec = 5;
1094 break;
1095
1096 case 'p':
1097 case 'P':
1098 prec = 5;
1099 break;
1100
1101 default:
1102 *sizeP = 0;
1103 return _("Unrecognized or unsupported floating point constant");
1104 }
1105
1106 t = atof_ieee (input_line_pointer, type, words);
1107 if (t)
1108 input_line_pointer = t;
1109 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1110
1111 if (target_big_endian)
1112 {
1113 for (i = 0; i < prec; i++)
1114 {
1115 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1116 litP += sizeof (LITTLENUM_TYPE);
1117 }
1118 }
1119 else
1120 {
1121 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1122 for (i = prec - 1; i >= 0; i--)
1123 {
1124 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1125 litP += sizeof (LITTLENUM_TYPE);
1126 }
1127 else
1128 /* For a 4 byte float the order of elements in `words' is 1 0.
1129 For an 8 byte float the order is 1 0 3 2. */
1130 for (i = 0; i < prec; i += 2)
1131 {
1132 md_number_to_chars (litP, (valueT) words[i + 1],
1133 sizeof (LITTLENUM_TYPE));
1134 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1135 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1136 litP += 2 * sizeof (LITTLENUM_TYPE);
1137 }
1138 }
1139
1140 return NULL;
1141 }
1142
1143 /* We handle all bad expressions here, so that we can report the faulty
1144 instruction in the error message. */
1145 void
1146 md_operand (expressionS * exp)
1147 {
1148 if (in_my_get_expression)
1149 exp->X_op = O_illegal;
1150 }
1151
1152 /* Immediate values. */
1153
1154 /* Generic immediate-value read function for use in directives.
1155 Accepts anything that 'expression' can fold to a constant.
1156 *val receives the number. */
1157 #ifdef OBJ_ELF
1158 static int
1159 immediate_for_directive (int *val)
1160 {
1161 expressionS exp;
1162 exp.X_op = O_illegal;
1163
1164 if (is_immediate_prefix (*input_line_pointer))
1165 {
1166 input_line_pointer++;
1167 expression (&exp);
1168 }
1169
1170 if (exp.X_op != O_constant)
1171 {
1172 as_bad (_("expected #constant"));
1173 ignore_rest_of_line ();
1174 return FAIL;
1175 }
1176 *val = exp.X_add_number;
1177 return SUCCESS;
1178 }
1179 #endif
1180
1181 /* Register parsing. */
1182
1183 /* Generic register parser. CCP points to what should be the
1184 beginning of a register name. If it is indeed a valid register
1185 name, advance CCP over it and return the reg_entry structure;
1186 otherwise return NULL. Does not issue diagnostics. */
1187
1188 static struct reg_entry *
1189 arm_reg_parse_multi (char **ccp)
1190 {
1191 char *start = *ccp;
1192 char *p;
1193 struct reg_entry *reg;
1194
1195 skip_whitespace (start);
1196
1197 #ifdef REGISTER_PREFIX
1198 if (*start != REGISTER_PREFIX)
1199 return NULL;
1200 start++;
1201 #endif
1202 #ifdef OPTIONAL_REGISTER_PREFIX
1203 if (*start == OPTIONAL_REGISTER_PREFIX)
1204 start++;
1205 #endif
1206
1207 p = start;
1208 if (!ISALPHA (*p) || !is_name_beginner (*p))
1209 return NULL;
1210
1211 do
1212 p++;
1213 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1214
1215 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1216
1217 if (!reg)
1218 return NULL;
1219
1220 *ccp = p;
1221 return reg;
1222 }
1223
1224 static int
1225 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1226 enum arm_reg_type type)
1227 {
1228 /* Alternative syntaxes are accepted for a few register classes. */
1229 switch (type)
1230 {
1231 case REG_TYPE_MVF:
1232 case REG_TYPE_MVD:
1233 case REG_TYPE_MVFX:
1234 case REG_TYPE_MVDX:
1235 /* Generic coprocessor register names are allowed for these. */
1236 if (reg && reg->type == REG_TYPE_CN)
1237 return reg->number;
1238 break;
1239
1240 case REG_TYPE_CP:
1241 /* For backward compatibility, a bare number is valid here. */
1242 {
1243 unsigned long processor = strtoul (start, ccp, 10);
1244 if (*ccp != start && processor <= 15)
1245 return processor;
1246 }
1247
1248 case REG_TYPE_MMXWC:
1249 /* WC includes WCG. ??? I'm not sure this is true for all
1250 instructions that take WC registers. */
1251 if (reg && reg->type == REG_TYPE_MMXWCG)
1252 return reg->number;
1253 break;
1254
1255 default:
1256 break;
1257 }
1258
1259 return FAIL;
1260 }
1261
1262 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1263 return value is the register number or FAIL. */
1264
1265 static int
1266 arm_reg_parse (char **ccp, enum arm_reg_type type)
1267 {
1268 char *start = *ccp;
1269 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1270 int ret;
1271
1272 /* Do not allow a scalar (reg+index) to parse as a register. */
1273 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1274 return FAIL;
1275
1276 if (reg && reg->type == type)
1277 return reg->number;
1278
1279 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1280 return ret;
1281
1282 *ccp = start;
1283 return FAIL;
1284 }
1285
1286 /* Parse a Neon type specifier. *STR should point at the leading '.'
1287 character. Does no verification at this stage that the type fits the opcode
1288 properly. E.g.,
1289
1290 .i32.i32.s16
1291 .s32.f32
1292 .u16
1293
1294 Can all be legally parsed by this function.
1295
1296 Fills in neon_type struct pointer with parsed information, and updates STR
1297 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1298 type, FAIL if not. */
1299
1300 static int
1301 parse_neon_type (struct neon_type *type, char **str)
1302 {
1303 char *ptr = *str;
1304
1305 if (type)
1306 type->elems = 0;
1307
1308 while (type->elems < NEON_MAX_TYPE_ELS)
1309 {
1310 enum neon_el_type thistype = NT_untyped;
1311 unsigned thissize = -1u;
1312
1313 if (*ptr != '.')
1314 break;
1315
1316 ptr++;
1317
1318 /* Just a size without an explicit type. */
1319 if (ISDIGIT (*ptr))
1320 goto parsesize;
1321
1322 switch (TOLOWER (*ptr))
1323 {
1324 case 'i': thistype = NT_integer; break;
1325 case 'f': thistype = NT_float; break;
1326 case 'p': thistype = NT_poly; break;
1327 case 's': thistype = NT_signed; break;
1328 case 'u': thistype = NT_unsigned; break;
1329 case 'd':
1330 thistype = NT_float;
1331 thissize = 64;
1332 ptr++;
1333 goto done;
1334 default:
1335 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1336 return FAIL;
1337 }
1338
1339 ptr++;
1340
1341 /* .f is an abbreviation for .f32. */
1342 if (thistype == NT_float && !ISDIGIT (*ptr))
1343 thissize = 32;
1344 else
1345 {
1346 parsesize:
1347 thissize = strtoul (ptr, &ptr, 10);
1348
1349 if (thissize != 8 && thissize != 16 && thissize != 32
1350 && thissize != 64)
1351 {
1352 as_bad (_("bad size %d in type specifier"), thissize);
1353 return FAIL;
1354 }
1355 }
1356
1357 done:
1358 if (type)
1359 {
1360 type->el[type->elems].type = thistype;
1361 type->el[type->elems].size = thissize;
1362 type->elems++;
1363 }
1364 }
1365
1366 /* Empty/missing type is not a successful parse. */
1367 if (type->elems == 0)
1368 return FAIL;
1369
1370 *str = ptr;
1371
1372 return SUCCESS;
1373 }
1374
1375 /* Errors may be set multiple times during parsing or bit encoding
1376 (particularly in the Neon bits), but usually the earliest error which is set
1377 will be the most meaningful. Avoid overwriting it with later (cascading)
1378 errors by calling this function. */
1379
1380 static void
1381 first_error (const char *err)
1382 {
1383 if (!inst.error)
1384 inst.error = err;
1385 }
1386
1387 /* Parse a single type, e.g. ".s32", leading period included. */
1388 static int
1389 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1390 {
1391 char *str = *ccp;
1392 struct neon_type optype;
1393
1394 if (*str == '.')
1395 {
1396 if (parse_neon_type (&optype, &str) == SUCCESS)
1397 {
1398 if (optype.elems == 1)
1399 *vectype = optype.el[0];
1400 else
1401 {
1402 first_error (_("only one type should be specified for operand"));
1403 return FAIL;
1404 }
1405 }
1406 else
1407 {
1408 first_error (_("vector type expected"));
1409 return FAIL;
1410 }
1411 }
1412 else
1413 return FAIL;
1414
1415 *ccp = str;
1416
1417 return SUCCESS;
1418 }
1419
1420 /* Special meanings for indices (which have a range of 0-7), which will fit into
1421 a 4-bit integer. */
1422
1423 #define NEON_ALL_LANES 15
1424 #define NEON_INTERLEAVE_LANES 14
1425
1426 /* Parse either a register or a scalar, with an optional type. Return the
1427 register number, and optionally fill in the actual type of the register
1428 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1429 type/index information in *TYPEINFO. */
1430
1431 static int
1432 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1433 enum arm_reg_type *rtype,
1434 struct neon_typed_alias *typeinfo)
1435 {
1436 char *str = *ccp;
1437 struct reg_entry *reg = arm_reg_parse_multi (&str);
1438 struct neon_typed_alias atype;
1439 struct neon_type_el parsetype;
1440
1441 atype.defined = 0;
1442 atype.index = -1;
1443 atype.eltype.type = NT_invtype;
1444 atype.eltype.size = -1;
1445
1446 /* Try alternate syntax for some types of register. Note these are mutually
1447 exclusive with the Neon syntax extensions. */
1448 if (reg == NULL)
1449 {
1450 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1451 if (altreg != FAIL)
1452 *ccp = str;
1453 if (typeinfo)
1454 *typeinfo = atype;
1455 return altreg;
1456 }
1457
1458 /* Undo polymorphism when a set of register types may be accepted. */
1459 if ((type == REG_TYPE_NDQ
1460 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1461 || (type == REG_TYPE_VFSD
1462 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1463 || (type == REG_TYPE_NSDQ
1464 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1465 || reg->type == REG_TYPE_NQ))
1466 || (type == REG_TYPE_MMXWC
1467 && (reg->type == REG_TYPE_MMXWCG)))
1468 type = (enum arm_reg_type) reg->type;
1469
1470 if (type != reg->type)
1471 return FAIL;
1472
1473 if (reg->neon)
1474 atype = *reg->neon;
1475
1476 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1477 {
1478 if ((atype.defined & NTA_HASTYPE) != 0)
1479 {
1480 first_error (_("can't redefine type for operand"));
1481 return FAIL;
1482 }
1483 atype.defined |= NTA_HASTYPE;
1484 atype.eltype = parsetype;
1485 }
1486
1487 if (skip_past_char (&str, '[') == SUCCESS)
1488 {
1489 if (type != REG_TYPE_VFD)
1490 {
1491 first_error (_("only D registers may be indexed"));
1492 return FAIL;
1493 }
1494
1495 if ((atype.defined & NTA_HASINDEX) != 0)
1496 {
1497 first_error (_("can't change index for operand"));
1498 return FAIL;
1499 }
1500
1501 atype.defined |= NTA_HASINDEX;
1502
1503 if (skip_past_char (&str, ']') == SUCCESS)
1504 atype.index = NEON_ALL_LANES;
1505 else
1506 {
1507 expressionS exp;
1508
1509 my_get_expression (&exp, &str, GE_NO_PREFIX);
1510
1511 if (exp.X_op != O_constant)
1512 {
1513 first_error (_("constant expression required"));
1514 return FAIL;
1515 }
1516
1517 if (skip_past_char (&str, ']') == FAIL)
1518 return FAIL;
1519
1520 atype.index = exp.X_add_number;
1521 }
1522 }
1523
1524 if (typeinfo)
1525 *typeinfo = atype;
1526
1527 if (rtype)
1528 *rtype = type;
1529
1530 *ccp = str;
1531
1532 return reg->number;
1533 }
1534
1535 /* Like arm_reg_parse, but allow allow the following extra features:
1536 - If RTYPE is non-zero, return the (possibly restricted) type of the
1537 register (e.g. Neon double or quad reg when either has been requested).
1538 - If this is a Neon vector type with additional type information, fill
1539 in the struct pointed to by VECTYPE (if non-NULL).
1540 This function will fault on encountering a scalar. */
1541
1542 static int
1543 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1544 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1545 {
1546 struct neon_typed_alias atype;
1547 char *str = *ccp;
1548 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1549
1550 if (reg == FAIL)
1551 return FAIL;
1552
1553 /* Do not allow regname(... to parse as a register. */
1554 if (*str == '(')
1555 return FAIL;
1556
1557 /* Do not allow a scalar (reg+index) to parse as a register. */
1558 if ((atype.defined & NTA_HASINDEX) != 0)
1559 {
1560 first_error (_("register operand expected, but got scalar"));
1561 return FAIL;
1562 }
1563
1564 if (vectype)
1565 *vectype = atype.eltype;
1566
1567 *ccp = str;
1568
1569 return reg;
1570 }
1571
1572 #define NEON_SCALAR_REG(X) ((X) >> 4)
1573 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1574
1575 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1576 have enough information to be able to do a good job bounds-checking. So, we
1577 just do easy checks here, and do further checks later. */
1578
1579 static int
1580 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1581 {
1582 int reg;
1583 char *str = *ccp;
1584 struct neon_typed_alias atype;
1585
1586 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1587
1588 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1589 return FAIL;
1590
1591 if (atype.index == NEON_ALL_LANES)
1592 {
1593 first_error (_("scalar must have an index"));
1594 return FAIL;
1595 }
1596 else if (atype.index >= 64 / elsize)
1597 {
1598 first_error (_("scalar index out of range"));
1599 return FAIL;
1600 }
1601
1602 if (type)
1603 *type = atype.eltype;
1604
1605 *ccp = str;
1606
1607 return reg * 16 + atype.index;
1608 }
1609
1610 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1611
1612 static long
1613 parse_reg_list (char ** strp)
1614 {
1615 char * str = * strp;
1616 long range = 0;
1617 int another_range;
1618
1619 /* We come back here if we get ranges concatenated by '+' or '|'. */
1620 do
1621 {
1622 skip_whitespace (str);
1623
1624 another_range = 0;
1625
1626 if (*str == '{')
1627 {
1628 int in_range = 0;
1629 int cur_reg = -1;
1630
1631 str++;
1632 do
1633 {
1634 int reg;
1635
1636 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1637 {
1638 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1639 return FAIL;
1640 }
1641
1642 if (in_range)
1643 {
1644 int i;
1645
1646 if (reg <= cur_reg)
1647 {
1648 first_error (_("bad range in register list"));
1649 return FAIL;
1650 }
1651
1652 for (i = cur_reg + 1; i < reg; i++)
1653 {
1654 if (range & (1 << i))
1655 as_tsktsk
1656 (_("Warning: duplicated register (r%d) in register list"),
1657 i);
1658 else
1659 range |= 1 << i;
1660 }
1661 in_range = 0;
1662 }
1663
1664 if (range & (1 << reg))
1665 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1666 reg);
1667 else if (reg <= cur_reg)
1668 as_tsktsk (_("Warning: register range not in ascending order"));
1669
1670 range |= 1 << reg;
1671 cur_reg = reg;
1672 }
1673 while (skip_past_comma (&str) != FAIL
1674 || (in_range = 1, *str++ == '-'));
1675 str--;
1676
1677 if (skip_past_char (&str, '}') == FAIL)
1678 {
1679 first_error (_("missing `}'"));
1680 return FAIL;
1681 }
1682 }
1683 else
1684 {
1685 expressionS exp;
1686
1687 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1688 return FAIL;
1689
1690 if (exp.X_op == O_constant)
1691 {
1692 if (exp.X_add_number
1693 != (exp.X_add_number & 0x0000ffff))
1694 {
1695 inst.error = _("invalid register mask");
1696 return FAIL;
1697 }
1698
1699 if ((range & exp.X_add_number) != 0)
1700 {
1701 int regno = range & exp.X_add_number;
1702
1703 regno &= -regno;
1704 regno = (1 << regno) - 1;
1705 as_tsktsk
1706 (_("Warning: duplicated register (r%d) in register list"),
1707 regno);
1708 }
1709
1710 range |= exp.X_add_number;
1711 }
1712 else
1713 {
1714 if (inst.reloc.type != 0)
1715 {
1716 inst.error = _("expression too complex");
1717 return FAIL;
1718 }
1719
1720 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
1721 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1722 inst.reloc.pc_rel = 0;
1723 }
1724 }
1725
1726 if (*str == '|' || *str == '+')
1727 {
1728 str++;
1729 another_range = 1;
1730 }
1731 }
1732 while (another_range);
1733
1734 *strp = str;
1735 return range;
1736 }
1737
1738 /* Types of registers in a list. */
1739
1740 enum reg_list_els
1741 {
1742 REGLIST_VFP_S,
1743 REGLIST_VFP_D,
1744 REGLIST_NEON_D
1745 };
1746
1747 /* Parse a VFP register list. If the string is invalid return FAIL.
1748 Otherwise return the number of registers, and set PBASE to the first
1749 register. Parses registers of type ETYPE.
1750 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1751 - Q registers can be used to specify pairs of D registers
1752 - { } can be omitted from around a singleton register list
1753 FIXME: This is not implemented, as it would require backtracking in
1754 some cases, e.g.:
1755 vtbl.8 d3,d4,d5
1756 This could be done (the meaning isn't really ambiguous), but doesn't
1757 fit in well with the current parsing framework.
1758 - 32 D registers may be used (also true for VFPv3).
1759 FIXME: Types are ignored in these register lists, which is probably a
1760 bug. */
1761
1762 static int
1763 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1764 {
1765 char *str = *ccp;
1766 int base_reg;
1767 int new_base;
1768 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1769 int max_regs = 0;
1770 int count = 0;
1771 int warned = 0;
1772 unsigned long mask = 0;
1773 int i;
1774
1775 if (skip_past_char (&str, '{') == FAIL)
1776 {
1777 inst.error = _("expecting {");
1778 return FAIL;
1779 }
1780
1781 switch (etype)
1782 {
1783 case REGLIST_VFP_S:
1784 regtype = REG_TYPE_VFS;
1785 max_regs = 32;
1786 break;
1787
1788 case REGLIST_VFP_D:
1789 regtype = REG_TYPE_VFD;
1790 break;
1791
1792 case REGLIST_NEON_D:
1793 regtype = REG_TYPE_NDQ;
1794 break;
1795 }
1796
1797 if (etype != REGLIST_VFP_S)
1798 {
1799 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1800 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1801 {
1802 max_regs = 32;
1803 if (thumb_mode)
1804 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1805 fpu_vfp_ext_d32);
1806 else
1807 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1808 fpu_vfp_ext_d32);
1809 }
1810 else
1811 max_regs = 16;
1812 }
1813
1814 base_reg = max_regs;
1815
1816 do
1817 {
1818 int setmask = 1, addregs = 1;
1819
1820 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1821
1822 if (new_base == FAIL)
1823 {
1824 first_error (_(reg_expected_msgs[regtype]));
1825 return FAIL;
1826 }
1827
1828 if (new_base >= max_regs)
1829 {
1830 first_error (_("register out of range in list"));
1831 return FAIL;
1832 }
1833
1834 /* Note: a value of 2 * n is returned for the register Q<n>. */
1835 if (regtype == REG_TYPE_NQ)
1836 {
1837 setmask = 3;
1838 addregs = 2;
1839 }
1840
1841 if (new_base < base_reg)
1842 base_reg = new_base;
1843
1844 if (mask & (setmask << new_base))
1845 {
1846 first_error (_("invalid register list"));
1847 return FAIL;
1848 }
1849
1850 if ((mask >> new_base) != 0 && ! warned)
1851 {
1852 as_tsktsk (_("register list not in ascending order"));
1853 warned = 1;
1854 }
1855
1856 mask |= setmask << new_base;
1857 count += addregs;
1858
1859 if (*str == '-') /* We have the start of a range expression */
1860 {
1861 int high_range;
1862
1863 str++;
1864
1865 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1866 == FAIL)
1867 {
1868 inst.error = gettext (reg_expected_msgs[regtype]);
1869 return FAIL;
1870 }
1871
1872 if (high_range >= max_regs)
1873 {
1874 first_error (_("register out of range in list"));
1875 return FAIL;
1876 }
1877
1878 if (regtype == REG_TYPE_NQ)
1879 high_range = high_range + 1;
1880
1881 if (high_range <= new_base)
1882 {
1883 inst.error = _("register range not in ascending order");
1884 return FAIL;
1885 }
1886
1887 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1888 {
1889 if (mask & (setmask << new_base))
1890 {
1891 inst.error = _("invalid register list");
1892 return FAIL;
1893 }
1894
1895 mask |= setmask << new_base;
1896 count += addregs;
1897 }
1898 }
1899 }
1900 while (skip_past_comma (&str) != FAIL);
1901
1902 str++;
1903
1904 /* Sanity check -- should have raised a parse error above. */
1905 if (count == 0 || count > max_regs)
1906 abort ();
1907
1908 *pbase = base_reg;
1909
1910 /* Final test -- the registers must be consecutive. */
1911 mask >>= base_reg;
1912 for (i = 0; i < count; i++)
1913 {
1914 if ((mask & (1u << i)) == 0)
1915 {
1916 inst.error = _("non-contiguous register range");
1917 return FAIL;
1918 }
1919 }
1920
1921 *ccp = str;
1922
1923 return count;
1924 }
1925
1926 /* True if two alias types are the same. */
1927
1928 static bfd_boolean
1929 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1930 {
1931 if (!a && !b)
1932 return TRUE;
1933
1934 if (!a || !b)
1935 return FALSE;
1936
1937 if (a->defined != b->defined)
1938 return FALSE;
1939
1940 if ((a->defined & NTA_HASTYPE) != 0
1941 && (a->eltype.type != b->eltype.type
1942 || a->eltype.size != b->eltype.size))
1943 return FALSE;
1944
1945 if ((a->defined & NTA_HASINDEX) != 0
1946 && (a->index != b->index))
1947 return FALSE;
1948
1949 return TRUE;
1950 }
1951
1952 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1953 The base register is put in *PBASE.
1954 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1955 the return value.
1956 The register stride (minus one) is put in bit 4 of the return value.
1957 Bits [6:5] encode the list length (minus one).
1958 The type of the list elements is put in *ELTYPE, if non-NULL. */
1959
1960 #define NEON_LANE(X) ((X) & 0xf)
1961 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1962 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1963
1964 static int
1965 parse_neon_el_struct_list (char **str, unsigned *pbase,
1966 struct neon_type_el *eltype)
1967 {
1968 char *ptr = *str;
1969 int base_reg = -1;
1970 int reg_incr = -1;
1971 int count = 0;
1972 int lane = -1;
1973 int leading_brace = 0;
1974 enum arm_reg_type rtype = REG_TYPE_NDQ;
1975 const char *const incr_error = _("register stride must be 1 or 2");
1976 const char *const type_error = _("mismatched element/structure types in list");
1977 struct neon_typed_alias firsttype;
1978
1979 if (skip_past_char (&ptr, '{') == SUCCESS)
1980 leading_brace = 1;
1981
1982 do
1983 {
1984 struct neon_typed_alias atype;
1985 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1986
1987 if (getreg == FAIL)
1988 {
1989 first_error (_(reg_expected_msgs[rtype]));
1990 return FAIL;
1991 }
1992
1993 if (base_reg == -1)
1994 {
1995 base_reg = getreg;
1996 if (rtype == REG_TYPE_NQ)
1997 {
1998 reg_incr = 1;
1999 }
2000 firsttype = atype;
2001 }
2002 else if (reg_incr == -1)
2003 {
2004 reg_incr = getreg - base_reg;
2005 if (reg_incr < 1 || reg_incr > 2)
2006 {
2007 first_error (_(incr_error));
2008 return FAIL;
2009 }
2010 }
2011 else if (getreg != base_reg + reg_incr * count)
2012 {
2013 first_error (_(incr_error));
2014 return FAIL;
2015 }
2016
2017 if (! neon_alias_types_same (&atype, &firsttype))
2018 {
2019 first_error (_(type_error));
2020 return FAIL;
2021 }
2022
2023 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
2024 modes. */
2025 if (ptr[0] == '-')
2026 {
2027 struct neon_typed_alias htype;
2028 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2029 if (lane == -1)
2030 lane = NEON_INTERLEAVE_LANES;
2031 else if (lane != NEON_INTERLEAVE_LANES)
2032 {
2033 first_error (_(type_error));
2034 return FAIL;
2035 }
2036 if (reg_incr == -1)
2037 reg_incr = 1;
2038 else if (reg_incr != 1)
2039 {
2040 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2041 return FAIL;
2042 }
2043 ptr++;
2044 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2045 if (hireg == FAIL)
2046 {
2047 first_error (_(reg_expected_msgs[rtype]));
2048 return FAIL;
2049 }
2050 if (! neon_alias_types_same (&htype, &firsttype))
2051 {
2052 first_error (_(type_error));
2053 return FAIL;
2054 }
2055 count += hireg + dregs - getreg;
2056 continue;
2057 }
2058
2059 /* If we're using Q registers, we can't use [] or [n] syntax. */
2060 if (rtype == REG_TYPE_NQ)
2061 {
2062 count += 2;
2063 continue;
2064 }
2065
2066 if ((atype.defined & NTA_HASINDEX) != 0)
2067 {
2068 if (lane == -1)
2069 lane = atype.index;
2070 else if (lane != atype.index)
2071 {
2072 first_error (_(type_error));
2073 return FAIL;
2074 }
2075 }
2076 else if (lane == -1)
2077 lane = NEON_INTERLEAVE_LANES;
2078 else if (lane != NEON_INTERLEAVE_LANES)
2079 {
2080 first_error (_(type_error));
2081 return FAIL;
2082 }
2083 count++;
2084 }
2085 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2086
2087 /* No lane set by [x]. We must be interleaving structures. */
2088 if (lane == -1)
2089 lane = NEON_INTERLEAVE_LANES;
2090
2091 /* Sanity check. */
2092 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2093 || (count > 1 && reg_incr == -1))
2094 {
2095 first_error (_("error parsing element/structure list"));
2096 return FAIL;
2097 }
2098
2099 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2100 {
2101 first_error (_("expected }"));
2102 return FAIL;
2103 }
2104
2105 if (reg_incr == -1)
2106 reg_incr = 1;
2107
2108 if (eltype)
2109 *eltype = firsttype.eltype;
2110
2111 *pbase = base_reg;
2112 *str = ptr;
2113
2114 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2115 }
2116
2117 /* Parse an explicit relocation suffix on an expression. This is
2118 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2119 arm_reloc_hsh contains no entries, so this function can only
2120 succeed if there is no () after the word. Returns -1 on error,
2121 BFD_RELOC_UNUSED if there wasn't any suffix. */
2122
2123 static int
2124 parse_reloc (char **str)
2125 {
2126 struct reloc_entry *r;
2127 char *p, *q;
2128
2129 if (**str != '(')
2130 return BFD_RELOC_UNUSED;
2131
2132 p = *str + 1;
2133 q = p;
2134
2135 while (*q && *q != ')' && *q != ',')
2136 q++;
2137 if (*q != ')')
2138 return -1;
2139
2140 if ((r = (struct reloc_entry *)
2141 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2142 return -1;
2143
2144 *str = q + 1;
2145 return r->reloc;
2146 }
2147
2148 /* Directives: register aliases. */
2149
2150 static struct reg_entry *
2151 insert_reg_alias (char *str, unsigned number, int type)
2152 {
2153 struct reg_entry *new_reg;
2154 const char *name;
2155
2156 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2157 {
2158 if (new_reg->builtin)
2159 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2160
2161 /* Only warn about a redefinition if it's not defined as the
2162 same register. */
2163 else if (new_reg->number != number || new_reg->type != type)
2164 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2165
2166 return NULL;
2167 }
2168
2169 name = xstrdup (str);
2170 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
2171
2172 new_reg->name = name;
2173 new_reg->number = number;
2174 new_reg->type = type;
2175 new_reg->builtin = FALSE;
2176 new_reg->neon = NULL;
2177
2178 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2179 abort ();
2180
2181 return new_reg;
2182 }
2183
2184 static void
2185 insert_neon_reg_alias (char *str, int number, int type,
2186 struct neon_typed_alias *atype)
2187 {
2188 struct reg_entry *reg = insert_reg_alias (str, number, type);
2189
2190 if (!reg)
2191 {
2192 first_error (_("attempt to redefine typed alias"));
2193 return;
2194 }
2195
2196 if (atype)
2197 {
2198 reg->neon = (struct neon_typed_alias *)
2199 xmalloc (sizeof (struct neon_typed_alias));
2200 *reg->neon = *atype;
2201 }
2202 }
2203
2204 /* Look for the .req directive. This is of the form:
2205
2206 new_register_name .req existing_register_name
2207
2208 If we find one, or if it looks sufficiently like one that we want to
2209 handle any error here, return TRUE. Otherwise return FALSE. */
2210
2211 static bfd_boolean
2212 create_register_alias (char * newname, char *p)
2213 {
2214 struct reg_entry *old;
2215 char *oldname, *nbuf;
2216 size_t nlen;
2217
2218 /* The input scrubber ensures that whitespace after the mnemonic is
2219 collapsed to single spaces. */
2220 oldname = p;
2221 if (strncmp (oldname, " .req ", 6) != 0)
2222 return FALSE;
2223
2224 oldname += 6;
2225 if (*oldname == '\0')
2226 return FALSE;
2227
2228 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2229 if (!old)
2230 {
2231 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2232 return TRUE;
2233 }
2234
2235 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2236 the desired alias name, and p points to its end. If not, then
2237 the desired alias name is in the global original_case_string. */
2238 #ifdef TC_CASE_SENSITIVE
2239 nlen = p - newname;
2240 #else
2241 newname = original_case_string;
2242 nlen = strlen (newname);
2243 #endif
2244
2245 nbuf = (char *) alloca (nlen + 1);
2246 memcpy (nbuf, newname, nlen);
2247 nbuf[nlen] = '\0';
2248
2249 /* Create aliases under the new name as stated; an all-lowercase
2250 version of the new name; and an all-uppercase version of the new
2251 name. */
2252 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2253 {
2254 for (p = nbuf; *p; p++)
2255 *p = TOUPPER (*p);
2256
2257 if (strncmp (nbuf, newname, nlen))
2258 {
2259 /* If this attempt to create an additional alias fails, do not bother
2260 trying to create the all-lower case alias. We will fail and issue
2261 a second, duplicate error message. This situation arises when the
2262 programmer does something like:
2263 foo .req r0
2264 Foo .req r1
2265 The second .req creates the "Foo" alias but then fails to create
2266 the artificial FOO alias because it has already been created by the
2267 first .req. */
2268 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2269 return TRUE;
2270 }
2271
2272 for (p = nbuf; *p; p++)
2273 *p = TOLOWER (*p);
2274
2275 if (strncmp (nbuf, newname, nlen))
2276 insert_reg_alias (nbuf, old->number, old->type);
2277 }
2278
2279 return TRUE;
2280 }
2281
2282 /* Create a Neon typed/indexed register alias using directives, e.g.:
2283 X .dn d5.s32[1]
2284 Y .qn 6.s16
2285 Z .dn d7
2286 T .dn Z[0]
2287 These typed registers can be used instead of the types specified after the
2288 Neon mnemonic, so long as all operands given have types. Types can also be
2289 specified directly, e.g.:
2290 vadd d0.s32, d1.s32, d2.s32 */
2291
2292 static bfd_boolean
2293 create_neon_reg_alias (char *newname, char *p)
2294 {
2295 enum arm_reg_type basetype;
2296 struct reg_entry *basereg;
2297 struct reg_entry mybasereg;
2298 struct neon_type ntype;
2299 struct neon_typed_alias typeinfo;
2300 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2301 int namelen;
2302
2303 typeinfo.defined = 0;
2304 typeinfo.eltype.type = NT_invtype;
2305 typeinfo.eltype.size = -1;
2306 typeinfo.index = -1;
2307
2308 nameend = p;
2309
2310 if (strncmp (p, " .dn ", 5) == 0)
2311 basetype = REG_TYPE_VFD;
2312 else if (strncmp (p, " .qn ", 5) == 0)
2313 basetype = REG_TYPE_NQ;
2314 else
2315 return FALSE;
2316
2317 p += 5;
2318
2319 if (*p == '\0')
2320 return FALSE;
2321
2322 basereg = arm_reg_parse_multi (&p);
2323
2324 if (basereg && basereg->type != basetype)
2325 {
2326 as_bad (_("bad type for register"));
2327 return FALSE;
2328 }
2329
2330 if (basereg == NULL)
2331 {
2332 expressionS exp;
2333 /* Try parsing as an integer. */
2334 my_get_expression (&exp, &p, GE_NO_PREFIX);
2335 if (exp.X_op != O_constant)
2336 {
2337 as_bad (_("expression must be constant"));
2338 return FALSE;
2339 }
2340 basereg = &mybasereg;
2341 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2342 : exp.X_add_number;
2343 basereg->neon = 0;
2344 }
2345
2346 if (basereg->neon)
2347 typeinfo = *basereg->neon;
2348
2349 if (parse_neon_type (&ntype, &p) == SUCCESS)
2350 {
2351 /* We got a type. */
2352 if (typeinfo.defined & NTA_HASTYPE)
2353 {
2354 as_bad (_("can't redefine the type of a register alias"));
2355 return FALSE;
2356 }
2357
2358 typeinfo.defined |= NTA_HASTYPE;
2359 if (ntype.elems != 1)
2360 {
2361 as_bad (_("you must specify a single type only"));
2362 return FALSE;
2363 }
2364 typeinfo.eltype = ntype.el[0];
2365 }
2366
2367 if (skip_past_char (&p, '[') == SUCCESS)
2368 {
2369 expressionS exp;
2370 /* We got a scalar index. */
2371
2372 if (typeinfo.defined & NTA_HASINDEX)
2373 {
2374 as_bad (_("can't redefine the index of a scalar alias"));
2375 return FALSE;
2376 }
2377
2378 my_get_expression (&exp, &p, GE_NO_PREFIX);
2379
2380 if (exp.X_op != O_constant)
2381 {
2382 as_bad (_("scalar index must be constant"));
2383 return FALSE;
2384 }
2385
2386 typeinfo.defined |= NTA_HASINDEX;
2387 typeinfo.index = exp.X_add_number;
2388
2389 if (skip_past_char (&p, ']') == FAIL)
2390 {
2391 as_bad (_("expecting ]"));
2392 return FALSE;
2393 }
2394 }
2395
2396 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2397 the desired alias name, and p points to its end. If not, then
2398 the desired alias name is in the global original_case_string. */
2399 #ifdef TC_CASE_SENSITIVE
2400 namelen = nameend - newname;
2401 #else
2402 newname = original_case_string;
2403 namelen = strlen (newname);
2404 #endif
2405
2406 namebuf = (char *) alloca (namelen + 1);
2407 strncpy (namebuf, newname, namelen);
2408 namebuf[namelen] = '\0';
2409
2410 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2411 typeinfo.defined != 0 ? &typeinfo : NULL);
2412
2413 /* Insert name in all uppercase. */
2414 for (p = namebuf; *p; p++)
2415 *p = TOUPPER (*p);
2416
2417 if (strncmp (namebuf, newname, namelen))
2418 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2419 typeinfo.defined != 0 ? &typeinfo : NULL);
2420
2421 /* Insert name in all lowercase. */
2422 for (p = namebuf; *p; p++)
2423 *p = TOLOWER (*p);
2424
2425 if (strncmp (namebuf, newname, namelen))
2426 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2427 typeinfo.defined != 0 ? &typeinfo : NULL);
2428
2429 return TRUE;
2430 }
2431
2432 /* Should never be called, as .req goes between the alias and the
2433 register name, not at the beginning of the line. */
2434
2435 static void
2436 s_req (int a ATTRIBUTE_UNUSED)
2437 {
2438 as_bad (_("invalid syntax for .req directive"));
2439 }
2440
2441 static void
2442 s_dn (int a ATTRIBUTE_UNUSED)
2443 {
2444 as_bad (_("invalid syntax for .dn directive"));
2445 }
2446
2447 static void
2448 s_qn (int a ATTRIBUTE_UNUSED)
2449 {
2450 as_bad (_("invalid syntax for .qn directive"));
2451 }
2452
2453 /* The .unreq directive deletes an alias which was previously defined
2454 by .req. For example:
2455
2456 my_alias .req r11
2457 .unreq my_alias */
2458
2459 static void
2460 s_unreq (int a ATTRIBUTE_UNUSED)
2461 {
2462 char * name;
2463 char saved_char;
2464
2465 name = input_line_pointer;
2466
2467 while (*input_line_pointer != 0
2468 && *input_line_pointer != ' '
2469 && *input_line_pointer != '\n')
2470 ++input_line_pointer;
2471
2472 saved_char = *input_line_pointer;
2473 *input_line_pointer = 0;
2474
2475 if (!*name)
2476 as_bad (_("invalid syntax for .unreq directive"));
2477 else
2478 {
2479 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2480 name);
2481
2482 if (!reg)
2483 as_bad (_("unknown register alias '%s'"), name);
2484 else if (reg->builtin)
2485 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2486 name);
2487 else
2488 {
2489 char * p;
2490 char * nbuf;
2491
2492 hash_delete (arm_reg_hsh, name, FALSE);
2493 free ((char *) reg->name);
2494 if (reg->neon)
2495 free (reg->neon);
2496 free (reg);
2497
2498 /* Also locate the all upper case and all lower case versions.
2499 Do not complain if we cannot find one or the other as it
2500 was probably deleted above. */
2501
2502 nbuf = strdup (name);
2503 for (p = nbuf; *p; p++)
2504 *p = TOUPPER (*p);
2505 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2506 if (reg)
2507 {
2508 hash_delete (arm_reg_hsh, nbuf, FALSE);
2509 free ((char *) reg->name);
2510 if (reg->neon)
2511 free (reg->neon);
2512 free (reg);
2513 }
2514
2515 for (p = nbuf; *p; p++)
2516 *p = TOLOWER (*p);
2517 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2518 if (reg)
2519 {
2520 hash_delete (arm_reg_hsh, nbuf, FALSE);
2521 free ((char *) reg->name);
2522 if (reg->neon)
2523 free (reg->neon);
2524 free (reg);
2525 }
2526
2527 free (nbuf);
2528 }
2529 }
2530
2531 *input_line_pointer = saved_char;
2532 demand_empty_rest_of_line ();
2533 }
2534
2535 /* Directives: Instruction set selection. */
2536
2537 #ifdef OBJ_ELF
2538 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2539 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2540 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2541 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2542
2543 /* Create a new mapping symbol for the transition to STATE. */
2544
2545 static void
2546 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2547 {
2548 symbolS * symbolP;
2549 const char * symname;
2550 int type;
2551
2552 switch (state)
2553 {
2554 case MAP_DATA:
2555 symname = "$d";
2556 type = BSF_NO_FLAGS;
2557 break;
2558 case MAP_ARM:
2559 symname = "$a";
2560 type = BSF_NO_FLAGS;
2561 break;
2562 case MAP_THUMB:
2563 symname = "$t";
2564 type = BSF_NO_FLAGS;
2565 break;
2566 default:
2567 abort ();
2568 }
2569
2570 symbolP = symbol_new (symname, now_seg, value, frag);
2571 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2572
2573 switch (state)
2574 {
2575 case MAP_ARM:
2576 THUMB_SET_FUNC (symbolP, 0);
2577 ARM_SET_THUMB (symbolP, 0);
2578 ARM_SET_INTERWORK (symbolP, support_interwork);
2579 break;
2580
2581 case MAP_THUMB:
2582 THUMB_SET_FUNC (symbolP, 1);
2583 ARM_SET_THUMB (symbolP, 1);
2584 ARM_SET_INTERWORK (symbolP, support_interwork);
2585 break;
2586
2587 case MAP_DATA:
2588 default:
2589 break;
2590 }
2591
2592 /* Save the mapping symbols for future reference. Also check that
2593 we do not place two mapping symbols at the same offset within a
2594 frag. We'll handle overlap between frags in
2595 check_mapping_symbols.
2596
2597 If .fill or other data filling directive generates zero sized data,
2598 the mapping symbol for the following code will have the same value
2599 as the one generated for the data filling directive. In this case,
2600 we replace the old symbol with the new one at the same address. */
2601 if (value == 0)
2602 {
2603 if (frag->tc_frag_data.first_map != NULL)
2604 {
2605 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2606 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2607 }
2608 frag->tc_frag_data.first_map = symbolP;
2609 }
2610 if (frag->tc_frag_data.last_map != NULL)
2611 {
2612 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2613 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2614 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2615 }
2616 frag->tc_frag_data.last_map = symbolP;
2617 }
2618
2619 /* We must sometimes convert a region marked as code to data during
2620 code alignment, if an odd number of bytes have to be padded. The
2621 code mapping symbol is pushed to an aligned address. */
2622
2623 static void
2624 insert_data_mapping_symbol (enum mstate state,
2625 valueT value, fragS *frag, offsetT bytes)
2626 {
2627 /* If there was already a mapping symbol, remove it. */
2628 if (frag->tc_frag_data.last_map != NULL
2629 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2630 {
2631 symbolS *symp = frag->tc_frag_data.last_map;
2632
2633 if (value == 0)
2634 {
2635 know (frag->tc_frag_data.first_map == symp);
2636 frag->tc_frag_data.first_map = NULL;
2637 }
2638 frag->tc_frag_data.last_map = NULL;
2639 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2640 }
2641
2642 make_mapping_symbol (MAP_DATA, value, frag);
2643 make_mapping_symbol (state, value + bytes, frag);
2644 }
2645
2646 static void mapping_state_2 (enum mstate state, int max_chars);
2647
2648 /* Set the mapping state to STATE. Only call this when about to
2649 emit some STATE bytes to the file. */
2650
2651 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2652 void
2653 mapping_state (enum mstate state)
2654 {
2655 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2656
2657 if (mapstate == state)
2658 /* The mapping symbol has already been emitted.
2659 There is nothing else to do. */
2660 return;
2661
2662 if (state == MAP_ARM || state == MAP_THUMB)
2663 /* PR gas/12931
2664 All ARM instructions require 4-byte alignment.
2665 (Almost) all Thumb instructions require 2-byte alignment.
2666
2667 When emitting instructions into any section, mark the section
2668 appropriately.
2669
2670 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2671 but themselves require 2-byte alignment; this applies to some
2672 PC- relative forms. However, these cases will invovle implicit
2673 literal pool generation or an explicit .align >=2, both of
2674 which will cause the section to me marked with sufficient
2675 alignment. Thus, we don't handle those cases here. */
2676 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2677
2678 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2679 /* This case will be evaluated later. */
2680 return;
2681
2682 mapping_state_2 (state, 0);
2683 }
2684
2685 /* Same as mapping_state, but MAX_CHARS bytes have already been
2686 allocated. Put the mapping symbol that far back. */
2687
2688 static void
2689 mapping_state_2 (enum mstate state, int max_chars)
2690 {
2691 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2692
2693 if (!SEG_NORMAL (now_seg))
2694 return;
2695
2696 if (mapstate == state)
2697 /* The mapping symbol has already been emitted.
2698 There is nothing else to do. */
2699 return;
2700
2701 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2702 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2703 {
2704 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2705 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2706
2707 if (add_symbol)
2708 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2709 }
2710
2711 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2712 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2713 }
2714 #undef TRANSITION
2715 #else
2716 #define mapping_state(x) ((void)0)
2717 #define mapping_state_2(x, y) ((void)0)
2718 #endif
2719
2720 /* Find the real, Thumb encoded start of a Thumb function. */
2721
2722 #ifdef OBJ_COFF
2723 static symbolS *
2724 find_real_start (symbolS * symbolP)
2725 {
2726 char * real_start;
2727 const char * name = S_GET_NAME (symbolP);
2728 symbolS * new_target;
2729
2730 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2731 #define STUB_NAME ".real_start_of"
2732
2733 if (name == NULL)
2734 abort ();
2735
2736 /* The compiler may generate BL instructions to local labels because
2737 it needs to perform a branch to a far away location. These labels
2738 do not have a corresponding ".real_start_of" label. We check
2739 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2740 the ".real_start_of" convention for nonlocal branches. */
2741 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2742 return symbolP;
2743
2744 real_start = ACONCAT ((STUB_NAME, name, NULL));
2745 new_target = symbol_find (real_start);
2746
2747 if (new_target == NULL)
2748 {
2749 as_warn (_("Failed to find real start of function: %s\n"), name);
2750 new_target = symbolP;
2751 }
2752
2753 return new_target;
2754 }
2755 #endif
2756
2757 static void
2758 opcode_select (int width)
2759 {
2760 switch (width)
2761 {
2762 case 16:
2763 if (! thumb_mode)
2764 {
2765 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2766 as_bad (_("selected processor does not support THUMB opcodes"));
2767
2768 thumb_mode = 1;
2769 /* No need to force the alignment, since we will have been
2770 coming from ARM mode, which is word-aligned. */
2771 record_alignment (now_seg, 1);
2772 }
2773 break;
2774
2775 case 32:
2776 if (thumb_mode)
2777 {
2778 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2779 as_bad (_("selected processor does not support ARM opcodes"));
2780
2781 thumb_mode = 0;
2782
2783 if (!need_pass_2)
2784 frag_align (2, 0, 0);
2785
2786 record_alignment (now_seg, 1);
2787 }
2788 break;
2789
2790 default:
2791 as_bad (_("invalid instruction size selected (%d)"), width);
2792 }
2793 }
2794
2795 static void
2796 s_arm (int ignore ATTRIBUTE_UNUSED)
2797 {
2798 opcode_select (32);
2799 demand_empty_rest_of_line ();
2800 }
2801
2802 static void
2803 s_thumb (int ignore ATTRIBUTE_UNUSED)
2804 {
2805 opcode_select (16);
2806 demand_empty_rest_of_line ();
2807 }
2808
2809 static void
2810 s_code (int unused ATTRIBUTE_UNUSED)
2811 {
2812 int temp;
2813
2814 temp = get_absolute_expression ();
2815 switch (temp)
2816 {
2817 case 16:
2818 case 32:
2819 opcode_select (temp);
2820 break;
2821
2822 default:
2823 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2824 }
2825 }
2826
2827 static void
2828 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2829 {
2830 /* If we are not already in thumb mode go into it, EVEN if
2831 the target processor does not support thumb instructions.
2832 This is used by gcc/config/arm/lib1funcs.asm for example
2833 to compile interworking support functions even if the
2834 target processor should not support interworking. */
2835 if (! thumb_mode)
2836 {
2837 thumb_mode = 2;
2838 record_alignment (now_seg, 1);
2839 }
2840
2841 demand_empty_rest_of_line ();
2842 }
2843
2844 static void
2845 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2846 {
2847 s_thumb (0);
2848
2849 /* The following label is the name/address of the start of a Thumb function.
2850 We need to know this for the interworking support. */
2851 label_is_thumb_function_name = TRUE;
2852 }
2853
2854 /* Perform a .set directive, but also mark the alias as
2855 being a thumb function. */
2856
2857 static void
2858 s_thumb_set (int equiv)
2859 {
2860 /* XXX the following is a duplicate of the code for s_set() in read.c
2861 We cannot just call that code as we need to get at the symbol that
2862 is created. */
2863 char * name;
2864 char delim;
2865 char * end_name;
2866 symbolS * symbolP;
2867
2868 /* Especial apologies for the random logic:
2869 This just grew, and could be parsed much more simply!
2870 Dean - in haste. */
2871 delim = get_symbol_name (& name);
2872 end_name = input_line_pointer;
2873 (void) restore_line_pointer (delim);
2874
2875 if (*input_line_pointer != ',')
2876 {
2877 *end_name = 0;
2878 as_bad (_("expected comma after name \"%s\""), name);
2879 *end_name = delim;
2880 ignore_rest_of_line ();
2881 return;
2882 }
2883
2884 input_line_pointer++;
2885 *end_name = 0;
2886
2887 if (name[0] == '.' && name[1] == '\0')
2888 {
2889 /* XXX - this should not happen to .thumb_set. */
2890 abort ();
2891 }
2892
2893 if ((symbolP = symbol_find (name)) == NULL
2894 && (symbolP = md_undefined_symbol (name)) == NULL)
2895 {
2896 #ifndef NO_LISTING
2897 /* When doing symbol listings, play games with dummy fragments living
2898 outside the normal fragment chain to record the file and line info
2899 for this symbol. */
2900 if (listing & LISTING_SYMBOLS)
2901 {
2902 extern struct list_info_struct * listing_tail;
2903 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
2904
2905 memset (dummy_frag, 0, sizeof (fragS));
2906 dummy_frag->fr_type = rs_fill;
2907 dummy_frag->line = listing_tail;
2908 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2909 dummy_frag->fr_symbol = symbolP;
2910 }
2911 else
2912 #endif
2913 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2914
2915 #ifdef OBJ_COFF
2916 /* "set" symbols are local unless otherwise specified. */
2917 SF_SET_LOCAL (symbolP);
2918 #endif /* OBJ_COFF */
2919 } /* Make a new symbol. */
2920
2921 symbol_table_insert (symbolP);
2922
2923 * end_name = delim;
2924
2925 if (equiv
2926 && S_IS_DEFINED (symbolP)
2927 && S_GET_SEGMENT (symbolP) != reg_section)
2928 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2929
2930 pseudo_set (symbolP);
2931
2932 demand_empty_rest_of_line ();
2933
2934 /* XXX Now we come to the Thumb specific bit of code. */
2935
2936 THUMB_SET_FUNC (symbolP, 1);
2937 ARM_SET_THUMB (symbolP, 1);
2938 #if defined OBJ_ELF || defined OBJ_COFF
2939 ARM_SET_INTERWORK (symbolP, support_interwork);
2940 #endif
2941 }
2942
2943 /* Directives: Mode selection. */
2944
2945 /* .syntax [unified|divided] - choose the new unified syntax
2946 (same for Arm and Thumb encoding, modulo slight differences in what
2947 can be represented) or the old divergent syntax for each mode. */
2948 static void
2949 s_syntax (int unused ATTRIBUTE_UNUSED)
2950 {
2951 char *name, delim;
2952
2953 delim = get_symbol_name (& name);
2954
2955 if (!strcasecmp (name, "unified"))
2956 unified_syntax = TRUE;
2957 else if (!strcasecmp (name, "divided"))
2958 unified_syntax = FALSE;
2959 else
2960 {
2961 as_bad (_("unrecognized syntax mode \"%s\""), name);
2962 return;
2963 }
2964 (void) restore_line_pointer (delim);
2965 demand_empty_rest_of_line ();
2966 }
2967
2968 /* Directives: sectioning and alignment. */
2969
2970 static void
2971 s_bss (int ignore ATTRIBUTE_UNUSED)
2972 {
2973 /* We don't support putting frags in the BSS segment, we fake it by
2974 marking in_bss, then looking at s_skip for clues. */
2975 subseg_set (bss_section, 0);
2976 demand_empty_rest_of_line ();
2977
2978 #ifdef md_elf_section_change_hook
2979 md_elf_section_change_hook ();
2980 #endif
2981 }
2982
2983 static void
2984 s_even (int ignore ATTRIBUTE_UNUSED)
2985 {
2986 /* Never make frag if expect extra pass. */
2987 if (!need_pass_2)
2988 frag_align (1, 0, 0);
2989
2990 record_alignment (now_seg, 1);
2991
2992 demand_empty_rest_of_line ();
2993 }
2994
2995 /* Directives: CodeComposer Studio. */
2996
2997 /* .ref (for CodeComposer Studio syntax only). */
2998 static void
2999 s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3000 {
3001 if (codecomposer_syntax)
3002 ignore_rest_of_line ();
3003 else
3004 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3005 }
3006
3007 /* If name is not NULL, then it is used for marking the beginning of a
3008 function, wherease if it is NULL then it means the function end. */
3009 static void
3010 asmfunc_debug (const char * name)
3011 {
3012 static const char * last_name = NULL;
3013
3014 if (name != NULL)
3015 {
3016 gas_assert (last_name == NULL);
3017 last_name = name;
3018
3019 if (debug_type == DEBUG_STABS)
3020 stabs_generate_asm_func (name, name);
3021 }
3022 else
3023 {
3024 gas_assert (last_name != NULL);
3025
3026 if (debug_type == DEBUG_STABS)
3027 stabs_generate_asm_endfunc (last_name, last_name);
3028
3029 last_name = NULL;
3030 }
3031 }
3032
3033 static void
3034 s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3035 {
3036 if (codecomposer_syntax)
3037 {
3038 switch (asmfunc_state)
3039 {
3040 case OUTSIDE_ASMFUNC:
3041 asmfunc_state = WAITING_ASMFUNC_NAME;
3042 break;
3043
3044 case WAITING_ASMFUNC_NAME:
3045 as_bad (_(".asmfunc repeated."));
3046 break;
3047
3048 case WAITING_ENDASMFUNC:
3049 as_bad (_(".asmfunc without function."));
3050 break;
3051 }
3052 demand_empty_rest_of_line ();
3053 }
3054 else
3055 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3056 }
3057
3058 static void
3059 s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3060 {
3061 if (codecomposer_syntax)
3062 {
3063 switch (asmfunc_state)
3064 {
3065 case OUTSIDE_ASMFUNC:
3066 as_bad (_(".endasmfunc without a .asmfunc."));
3067 break;
3068
3069 case WAITING_ASMFUNC_NAME:
3070 as_bad (_(".endasmfunc without function."));
3071 break;
3072
3073 case WAITING_ENDASMFUNC:
3074 asmfunc_state = OUTSIDE_ASMFUNC;
3075 asmfunc_debug (NULL);
3076 break;
3077 }
3078 demand_empty_rest_of_line ();
3079 }
3080 else
3081 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3082 }
3083
3084 static void
3085 s_ccs_def (int name)
3086 {
3087 if (codecomposer_syntax)
3088 s_globl (name);
3089 else
3090 as_bad (_(".def pseudo-op only available with -mccs flag."));
3091 }
3092
3093 /* Directives: Literal pools. */
3094
3095 static literal_pool *
3096 find_literal_pool (void)
3097 {
3098 literal_pool * pool;
3099
3100 for (pool = list_of_pools; pool != NULL; pool = pool->next)
3101 {
3102 if (pool->section == now_seg
3103 && pool->sub_section == now_subseg)
3104 break;
3105 }
3106
3107 return pool;
3108 }
3109
3110 static literal_pool *
3111 find_or_make_literal_pool (void)
3112 {
3113 /* Next literal pool ID number. */
3114 static unsigned int latest_pool_num = 1;
3115 literal_pool * pool;
3116
3117 pool = find_literal_pool ();
3118
3119 if (pool == NULL)
3120 {
3121 /* Create a new pool. */
3122 pool = (literal_pool *) xmalloc (sizeof (* pool));
3123 if (! pool)
3124 return NULL;
3125
3126 pool->next_free_entry = 0;
3127 pool->section = now_seg;
3128 pool->sub_section = now_subseg;
3129 pool->next = list_of_pools;
3130 pool->symbol = NULL;
3131 pool->alignment = 2;
3132
3133 /* Add it to the list. */
3134 list_of_pools = pool;
3135 }
3136
3137 /* New pools, and emptied pools, will have a NULL symbol. */
3138 if (pool->symbol == NULL)
3139 {
3140 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3141 (valueT) 0, &zero_address_frag);
3142 pool->id = latest_pool_num ++;
3143 }
3144
3145 /* Done. */
3146 return pool;
3147 }
3148
3149 /* Add the literal in the global 'inst'
3150 structure to the relevant literal pool. */
3151
3152 static int
3153 add_to_lit_pool (unsigned int nbytes)
3154 {
3155 #define PADDING_SLOT 0x1
3156 #define LIT_ENTRY_SIZE_MASK 0xFF
3157 literal_pool * pool;
3158 unsigned int entry, pool_size = 0;
3159 bfd_boolean padding_slot_p = FALSE;
3160 unsigned imm1 = 0;
3161 unsigned imm2 = 0;
3162
3163 if (nbytes == 8)
3164 {
3165 imm1 = inst.operands[1].imm;
3166 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
3167 : inst.reloc.exp.X_unsigned ? 0
3168 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
3169 if (target_big_endian)
3170 {
3171 imm1 = imm2;
3172 imm2 = inst.operands[1].imm;
3173 }
3174 }
3175
3176 pool = find_or_make_literal_pool ();
3177
3178 /* Check if this literal value is already in the pool. */
3179 for (entry = 0; entry < pool->next_free_entry; entry ++)
3180 {
3181 if (nbytes == 4)
3182 {
3183 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3184 && (inst.reloc.exp.X_op == O_constant)
3185 && (pool->literals[entry].X_add_number
3186 == inst.reloc.exp.X_add_number)
3187 && (pool->literals[entry].X_md == nbytes)
3188 && (pool->literals[entry].X_unsigned
3189 == inst.reloc.exp.X_unsigned))
3190 break;
3191
3192 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3193 && (inst.reloc.exp.X_op == O_symbol)
3194 && (pool->literals[entry].X_add_number
3195 == inst.reloc.exp.X_add_number)
3196 && (pool->literals[entry].X_add_symbol
3197 == inst.reloc.exp.X_add_symbol)
3198 && (pool->literals[entry].X_op_symbol
3199 == inst.reloc.exp.X_op_symbol)
3200 && (pool->literals[entry].X_md == nbytes))
3201 break;
3202 }
3203 else if ((nbytes == 8)
3204 && !(pool_size & 0x7)
3205 && ((entry + 1) != pool->next_free_entry)
3206 && (pool->literals[entry].X_op == O_constant)
3207 && (pool->literals[entry].X_add_number == (offsetT) imm1)
3208 && (pool->literals[entry].X_unsigned
3209 == inst.reloc.exp.X_unsigned)
3210 && (pool->literals[entry + 1].X_op == O_constant)
3211 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
3212 && (pool->literals[entry + 1].X_unsigned
3213 == inst.reloc.exp.X_unsigned))
3214 break;
3215
3216 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3217 if (padding_slot_p && (nbytes == 4))
3218 break;
3219
3220 pool_size += 4;
3221 }
3222
3223 /* Do we need to create a new entry? */
3224 if (entry == pool->next_free_entry)
3225 {
3226 if (entry >= MAX_LITERAL_POOL_SIZE)
3227 {
3228 inst.error = _("literal pool overflow");
3229 return FAIL;
3230 }
3231
3232 if (nbytes == 8)
3233 {
3234 /* For 8-byte entries, we align to an 8-byte boundary,
3235 and split it into two 4-byte entries, because on 32-bit
3236 host, 8-byte constants are treated as big num, thus
3237 saved in "generic_bignum" which will be overwritten
3238 by later assignments.
3239
3240 We also need to make sure there is enough space for
3241 the split.
3242
3243 We also check to make sure the literal operand is a
3244 constant number. */
3245 if (!(inst.reloc.exp.X_op == O_constant
3246 || inst.reloc.exp.X_op == O_big))
3247 {
3248 inst.error = _("invalid type for literal pool");
3249 return FAIL;
3250 }
3251 else if (pool_size & 0x7)
3252 {
3253 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3254 {
3255 inst.error = _("literal pool overflow");
3256 return FAIL;
3257 }
3258
3259 pool->literals[entry] = inst.reloc.exp;
3260 pool->literals[entry].X_add_number = 0;
3261 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3262 pool->next_free_entry += 1;
3263 pool_size += 4;
3264 }
3265 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3266 {
3267 inst.error = _("literal pool overflow");
3268 return FAIL;
3269 }
3270
3271 pool->literals[entry] = inst.reloc.exp;
3272 pool->literals[entry].X_op = O_constant;
3273 pool->literals[entry].X_add_number = imm1;
3274 pool->literals[entry].X_unsigned = inst.reloc.exp.X_unsigned;
3275 pool->literals[entry++].X_md = 4;
3276 pool->literals[entry] = inst.reloc.exp;
3277 pool->literals[entry].X_op = O_constant;
3278 pool->literals[entry].X_add_number = imm2;
3279 pool->literals[entry].X_unsigned = inst.reloc.exp.X_unsigned;
3280 pool->literals[entry].X_md = 4;
3281 pool->alignment = 3;
3282 pool->next_free_entry += 1;
3283 }
3284 else
3285 {
3286 pool->literals[entry] = inst.reloc.exp;
3287 pool->literals[entry].X_md = 4;
3288 }
3289
3290 #ifdef OBJ_ELF
3291 /* PR ld/12974: Record the location of the first source line to reference
3292 this entry in the literal pool. If it turns out during linking that the
3293 symbol does not exist we will be able to give an accurate line number for
3294 the (first use of the) missing reference. */
3295 if (debug_type == DEBUG_DWARF2)
3296 dwarf2_where (pool->locs + entry);
3297 #endif
3298 pool->next_free_entry += 1;
3299 }
3300 else if (padding_slot_p)
3301 {
3302 pool->literals[entry] = inst.reloc.exp;
3303 pool->literals[entry].X_md = nbytes;
3304 }
3305
3306 inst.reloc.exp.X_op = O_symbol;
3307 inst.reloc.exp.X_add_number = pool_size;
3308 inst.reloc.exp.X_add_symbol = pool->symbol;
3309
3310 return SUCCESS;
3311 }
3312
3313 bfd_boolean
3314 tc_start_label_without_colon (void)
3315 {
3316 bfd_boolean ret = TRUE;
3317
3318 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3319 {
3320 const char *label = input_line_pointer;
3321
3322 while (!is_end_of_line[(int) label[-1]])
3323 --label;
3324
3325 if (*label == '.')
3326 {
3327 as_bad (_("Invalid label '%s'"), label);
3328 ret = FALSE;
3329 }
3330
3331 asmfunc_debug (label);
3332
3333 asmfunc_state = WAITING_ENDASMFUNC;
3334 }
3335
3336 return ret;
3337 }
3338
3339 /* Can't use symbol_new here, so have to create a symbol and then at
3340 a later date assign it a value. Thats what these functions do. */
3341
3342 static void
3343 symbol_locate (symbolS * symbolP,
3344 const char * name, /* It is copied, the caller can modify. */
3345 segT segment, /* Segment identifier (SEG_<something>). */
3346 valueT valu, /* Symbol value. */
3347 fragS * frag) /* Associated fragment. */
3348 {
3349 size_t name_length;
3350 char * preserved_copy_of_name;
3351
3352 name_length = strlen (name) + 1; /* +1 for \0. */
3353 obstack_grow (&notes, name, name_length);
3354 preserved_copy_of_name = (char *) obstack_finish (&notes);
3355
3356 #ifdef tc_canonicalize_symbol_name
3357 preserved_copy_of_name =
3358 tc_canonicalize_symbol_name (preserved_copy_of_name);
3359 #endif
3360
3361 S_SET_NAME (symbolP, preserved_copy_of_name);
3362
3363 S_SET_SEGMENT (symbolP, segment);
3364 S_SET_VALUE (symbolP, valu);
3365 symbol_clear_list_pointers (symbolP);
3366
3367 symbol_set_frag (symbolP, frag);
3368
3369 /* Link to end of symbol chain. */
3370 {
3371 extern int symbol_table_frozen;
3372
3373 if (symbol_table_frozen)
3374 abort ();
3375 }
3376
3377 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3378
3379 obj_symbol_new_hook (symbolP);
3380
3381 #ifdef tc_symbol_new_hook
3382 tc_symbol_new_hook (symbolP);
3383 #endif
3384
3385 #ifdef DEBUG_SYMS
3386 verify_symbol_chain (symbol_rootP, symbol_lastP);
3387 #endif /* DEBUG_SYMS */
3388 }
3389
3390 static void
3391 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3392 {
3393 unsigned int entry;
3394 literal_pool * pool;
3395 char sym_name[20];
3396
3397 pool = find_literal_pool ();
3398 if (pool == NULL
3399 || pool->symbol == NULL
3400 || pool->next_free_entry == 0)
3401 return;
3402
3403 /* Align pool as you have word accesses.
3404 Only make a frag if we have to. */
3405 if (!need_pass_2)
3406 frag_align (pool->alignment, 0, 0);
3407
3408 record_alignment (now_seg, 2);
3409
3410 #ifdef OBJ_ELF
3411 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3412 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
3413 #endif
3414 sprintf (sym_name, "$$lit_\002%x", pool->id);
3415
3416 symbol_locate (pool->symbol, sym_name, now_seg,
3417 (valueT) frag_now_fix (), frag_now);
3418 symbol_table_insert (pool->symbol);
3419
3420 ARM_SET_THUMB (pool->symbol, thumb_mode);
3421
3422 #if defined OBJ_COFF || defined OBJ_ELF
3423 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3424 #endif
3425
3426 for (entry = 0; entry < pool->next_free_entry; entry ++)
3427 {
3428 #ifdef OBJ_ELF
3429 if (debug_type == DEBUG_DWARF2)
3430 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3431 #endif
3432 /* First output the expression in the instruction to the pool. */
3433 emit_expr (&(pool->literals[entry]),
3434 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
3435 }
3436
3437 /* Mark the pool as empty. */
3438 pool->next_free_entry = 0;
3439 pool->symbol = NULL;
3440 }
3441
3442 #ifdef OBJ_ELF
3443 /* Forward declarations for functions below, in the MD interface
3444 section. */
3445 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3446 static valueT create_unwind_entry (int);
3447 static void start_unwind_section (const segT, int);
3448 static void add_unwind_opcode (valueT, int);
3449 static void flush_pending_unwind (void);
3450
3451 /* Directives: Data. */
3452
3453 static void
3454 s_arm_elf_cons (int nbytes)
3455 {
3456 expressionS exp;
3457
3458 #ifdef md_flush_pending_output
3459 md_flush_pending_output ();
3460 #endif
3461
3462 if (is_it_end_of_statement ())
3463 {
3464 demand_empty_rest_of_line ();
3465 return;
3466 }
3467
3468 #ifdef md_cons_align
3469 md_cons_align (nbytes);
3470 #endif
3471
3472 mapping_state (MAP_DATA);
3473 do
3474 {
3475 int reloc;
3476 char *base = input_line_pointer;
3477
3478 expression (& exp);
3479
3480 if (exp.X_op != O_symbol)
3481 emit_expr (&exp, (unsigned int) nbytes);
3482 else
3483 {
3484 char *before_reloc = input_line_pointer;
3485 reloc = parse_reloc (&input_line_pointer);
3486 if (reloc == -1)
3487 {
3488 as_bad (_("unrecognized relocation suffix"));
3489 ignore_rest_of_line ();
3490 return;
3491 }
3492 else if (reloc == BFD_RELOC_UNUSED)
3493 emit_expr (&exp, (unsigned int) nbytes);
3494 else
3495 {
3496 reloc_howto_type *howto = (reloc_howto_type *)
3497 bfd_reloc_type_lookup (stdoutput,
3498 (bfd_reloc_code_real_type) reloc);
3499 int size = bfd_get_reloc_size (howto);
3500
3501 if (reloc == BFD_RELOC_ARM_PLT32)
3502 {
3503 as_bad (_("(plt) is only valid on branch targets"));
3504 reloc = BFD_RELOC_UNUSED;
3505 size = 0;
3506 }
3507
3508 if (size > nbytes)
3509 as_bad (_("%s relocations do not fit in %d bytes"),
3510 howto->name, nbytes);
3511 else
3512 {
3513 /* We've parsed an expression stopping at O_symbol.
3514 But there may be more expression left now that we
3515 have parsed the relocation marker. Parse it again.
3516 XXX Surely there is a cleaner way to do this. */
3517 char *p = input_line_pointer;
3518 int offset;
3519 char *save_buf = (char *) alloca (input_line_pointer - base);
3520 memcpy (save_buf, base, input_line_pointer - base);
3521 memmove (base + (input_line_pointer - before_reloc),
3522 base, before_reloc - base);
3523
3524 input_line_pointer = base + (input_line_pointer-before_reloc);
3525 expression (&exp);
3526 memcpy (base, save_buf, p - base);
3527
3528 offset = nbytes - size;
3529 p = frag_more (nbytes);
3530 memset (p, 0, nbytes);
3531 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3532 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3533 }
3534 }
3535 }
3536 }
3537 while (*input_line_pointer++ == ',');
3538
3539 /* Put terminator back into stream. */
3540 input_line_pointer --;
3541 demand_empty_rest_of_line ();
3542 }
3543
3544 /* Emit an expression containing a 32-bit thumb instruction.
3545 Implementation based on put_thumb32_insn. */
3546
3547 static void
3548 emit_thumb32_expr (expressionS * exp)
3549 {
3550 expressionS exp_high = *exp;
3551
3552 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3553 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3554 exp->X_add_number &= 0xffff;
3555 emit_expr (exp, (unsigned int) THUMB_SIZE);
3556 }
3557
3558 /* Guess the instruction size based on the opcode. */
3559
3560 static int
3561 thumb_insn_size (int opcode)
3562 {
3563 if ((unsigned int) opcode < 0xe800u)
3564 return 2;
3565 else if ((unsigned int) opcode >= 0xe8000000u)
3566 return 4;
3567 else
3568 return 0;
3569 }
3570
3571 static bfd_boolean
3572 emit_insn (expressionS *exp, int nbytes)
3573 {
3574 int size = 0;
3575
3576 if (exp->X_op == O_constant)
3577 {
3578 size = nbytes;
3579
3580 if (size == 0)
3581 size = thumb_insn_size (exp->X_add_number);
3582
3583 if (size != 0)
3584 {
3585 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3586 {
3587 as_bad (_(".inst.n operand too big. "\
3588 "Use .inst.w instead"));
3589 size = 0;
3590 }
3591 else
3592 {
3593 if (now_it.state == AUTOMATIC_IT_BLOCK)
3594 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3595 else
3596 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3597
3598 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3599 emit_thumb32_expr (exp);
3600 else
3601 emit_expr (exp, (unsigned int) size);
3602
3603 it_fsm_post_encode ();
3604 }
3605 }
3606 else
3607 as_bad (_("cannot determine Thumb instruction size. " \
3608 "Use .inst.n/.inst.w instead"));
3609 }
3610 else
3611 as_bad (_("constant expression required"));
3612
3613 return (size != 0);
3614 }
3615
3616 /* Like s_arm_elf_cons but do not use md_cons_align and
3617 set the mapping state to MAP_ARM/MAP_THUMB. */
3618
3619 static void
3620 s_arm_elf_inst (int nbytes)
3621 {
3622 if (is_it_end_of_statement ())
3623 {
3624 demand_empty_rest_of_line ();
3625 return;
3626 }
3627
3628 /* Calling mapping_state () here will not change ARM/THUMB,
3629 but will ensure not to be in DATA state. */
3630
3631 if (thumb_mode)
3632 mapping_state (MAP_THUMB);
3633 else
3634 {
3635 if (nbytes != 0)
3636 {
3637 as_bad (_("width suffixes are invalid in ARM mode"));
3638 ignore_rest_of_line ();
3639 return;
3640 }
3641
3642 nbytes = 4;
3643
3644 mapping_state (MAP_ARM);
3645 }
3646
3647 do
3648 {
3649 expressionS exp;
3650
3651 expression (& exp);
3652
3653 if (! emit_insn (& exp, nbytes))
3654 {
3655 ignore_rest_of_line ();
3656 return;
3657 }
3658 }
3659 while (*input_line_pointer++ == ',');
3660
3661 /* Put terminator back into stream. */
3662 input_line_pointer --;
3663 demand_empty_rest_of_line ();
3664 }
3665
3666 /* Parse a .rel31 directive. */
3667
3668 static void
3669 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3670 {
3671 expressionS exp;
3672 char *p;
3673 valueT highbit;
3674
3675 highbit = 0;
3676 if (*input_line_pointer == '1')
3677 highbit = 0x80000000;
3678 else if (*input_line_pointer != '0')
3679 as_bad (_("expected 0 or 1"));
3680
3681 input_line_pointer++;
3682 if (*input_line_pointer != ',')
3683 as_bad (_("missing comma"));
3684 input_line_pointer++;
3685
3686 #ifdef md_flush_pending_output
3687 md_flush_pending_output ();
3688 #endif
3689
3690 #ifdef md_cons_align
3691 md_cons_align (4);
3692 #endif
3693
3694 mapping_state (MAP_DATA);
3695
3696 expression (&exp);
3697
3698 p = frag_more (4);
3699 md_number_to_chars (p, highbit, 4);
3700 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3701 BFD_RELOC_ARM_PREL31);
3702
3703 demand_empty_rest_of_line ();
3704 }
3705
3706 /* Directives: AEABI stack-unwind tables. */
3707
3708 /* Parse an unwind_fnstart directive. Simply records the current location. */
3709
3710 static void
3711 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3712 {
3713 demand_empty_rest_of_line ();
3714 if (unwind.proc_start)
3715 {
3716 as_bad (_("duplicate .fnstart directive"));
3717 return;
3718 }
3719
3720 /* Mark the start of the function. */
3721 unwind.proc_start = expr_build_dot ();
3722
3723 /* Reset the rest of the unwind info. */
3724 unwind.opcode_count = 0;
3725 unwind.table_entry = NULL;
3726 unwind.personality_routine = NULL;
3727 unwind.personality_index = -1;
3728 unwind.frame_size = 0;
3729 unwind.fp_offset = 0;
3730 unwind.fp_reg = REG_SP;
3731 unwind.fp_used = 0;
3732 unwind.sp_restored = 0;
3733 }
3734
3735
3736 /* Parse a handlerdata directive. Creates the exception handling table entry
3737 for the function. */
3738
3739 static void
3740 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3741 {
3742 demand_empty_rest_of_line ();
3743 if (!unwind.proc_start)
3744 as_bad (MISSING_FNSTART);
3745
3746 if (unwind.table_entry)
3747 as_bad (_("duplicate .handlerdata directive"));
3748
3749 create_unwind_entry (1);
3750 }
3751
3752 /* Parse an unwind_fnend directive. Generates the index table entry. */
3753
3754 static void
3755 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3756 {
3757 long where;
3758 char *ptr;
3759 valueT val;
3760 unsigned int marked_pr_dependency;
3761
3762 demand_empty_rest_of_line ();
3763
3764 if (!unwind.proc_start)
3765 {
3766 as_bad (_(".fnend directive without .fnstart"));
3767 return;
3768 }
3769
3770 /* Add eh table entry. */
3771 if (unwind.table_entry == NULL)
3772 val = create_unwind_entry (0);
3773 else
3774 val = 0;
3775
3776 /* Add index table entry. This is two words. */
3777 start_unwind_section (unwind.saved_seg, 1);
3778 frag_align (2, 0, 0);
3779 record_alignment (now_seg, 2);
3780
3781 ptr = frag_more (8);
3782 memset (ptr, 0, 8);
3783 where = frag_now_fix () - 8;
3784
3785 /* Self relative offset of the function start. */
3786 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3787 BFD_RELOC_ARM_PREL31);
3788
3789 /* Indicate dependency on EHABI-defined personality routines to the
3790 linker, if it hasn't been done already. */
3791 marked_pr_dependency
3792 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
3793 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3794 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3795 {
3796 static const char *const name[] =
3797 {
3798 "__aeabi_unwind_cpp_pr0",
3799 "__aeabi_unwind_cpp_pr1",
3800 "__aeabi_unwind_cpp_pr2"
3801 };
3802 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3803 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3804 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3805 |= 1 << unwind.personality_index;
3806 }
3807
3808 if (val)
3809 /* Inline exception table entry. */
3810 md_number_to_chars (ptr + 4, val, 4);
3811 else
3812 /* Self relative offset of the table entry. */
3813 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3814 BFD_RELOC_ARM_PREL31);
3815
3816 /* Restore the original section. */
3817 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3818
3819 unwind.proc_start = NULL;
3820 }
3821
3822
3823 /* Parse an unwind_cantunwind directive. */
3824
3825 static void
3826 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3827 {
3828 demand_empty_rest_of_line ();
3829 if (!unwind.proc_start)
3830 as_bad (MISSING_FNSTART);
3831
3832 if (unwind.personality_routine || unwind.personality_index != -1)
3833 as_bad (_("personality routine specified for cantunwind frame"));
3834
3835 unwind.personality_index = -2;
3836 }
3837
3838
3839 /* Parse a personalityindex directive. */
3840
3841 static void
3842 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3843 {
3844 expressionS exp;
3845
3846 if (!unwind.proc_start)
3847 as_bad (MISSING_FNSTART);
3848
3849 if (unwind.personality_routine || unwind.personality_index != -1)
3850 as_bad (_("duplicate .personalityindex directive"));
3851
3852 expression (&exp);
3853
3854 if (exp.X_op != O_constant
3855 || exp.X_add_number < 0 || exp.X_add_number > 15)
3856 {
3857 as_bad (_("bad personality routine number"));
3858 ignore_rest_of_line ();
3859 return;
3860 }
3861
3862 unwind.personality_index = exp.X_add_number;
3863
3864 demand_empty_rest_of_line ();
3865 }
3866
3867
3868 /* Parse a personality directive. */
3869
3870 static void
3871 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3872 {
3873 char *name, *p, c;
3874
3875 if (!unwind.proc_start)
3876 as_bad (MISSING_FNSTART);
3877
3878 if (unwind.personality_routine || unwind.personality_index != -1)
3879 as_bad (_("duplicate .personality directive"));
3880
3881 c = get_symbol_name (& name);
3882 p = input_line_pointer;
3883 if (c == '"')
3884 ++ input_line_pointer;
3885 unwind.personality_routine = symbol_find_or_make (name);
3886 *p = c;
3887 demand_empty_rest_of_line ();
3888 }
3889
3890
3891 /* Parse a directive saving core registers. */
3892
3893 static void
3894 s_arm_unwind_save_core (void)
3895 {
3896 valueT op;
3897 long range;
3898 int n;
3899
3900 range = parse_reg_list (&input_line_pointer);
3901 if (range == FAIL)
3902 {
3903 as_bad (_("expected register list"));
3904 ignore_rest_of_line ();
3905 return;
3906 }
3907
3908 demand_empty_rest_of_line ();
3909
3910 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3911 into .unwind_save {..., sp...}. We aren't bothered about the value of
3912 ip because it is clobbered by calls. */
3913 if (unwind.sp_restored && unwind.fp_reg == 12
3914 && (range & 0x3000) == 0x1000)
3915 {
3916 unwind.opcode_count--;
3917 unwind.sp_restored = 0;
3918 range = (range | 0x2000) & ~0x1000;
3919 unwind.pending_offset = 0;
3920 }
3921
3922 /* Pop r4-r15. */
3923 if (range & 0xfff0)
3924 {
3925 /* See if we can use the short opcodes. These pop a block of up to 8
3926 registers starting with r4, plus maybe r14. */
3927 for (n = 0; n < 8; n++)
3928 {
3929 /* Break at the first non-saved register. */
3930 if ((range & (1 << (n + 4))) == 0)
3931 break;
3932 }
3933 /* See if there are any other bits set. */
3934 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3935 {
3936 /* Use the long form. */
3937 op = 0x8000 | ((range >> 4) & 0xfff);
3938 add_unwind_opcode (op, 2);
3939 }
3940 else
3941 {
3942 /* Use the short form. */
3943 if (range & 0x4000)
3944 op = 0xa8; /* Pop r14. */
3945 else
3946 op = 0xa0; /* Do not pop r14. */
3947 op |= (n - 1);
3948 add_unwind_opcode (op, 1);
3949 }
3950 }
3951
3952 /* Pop r0-r3. */
3953 if (range & 0xf)
3954 {
3955 op = 0xb100 | (range & 0xf);
3956 add_unwind_opcode (op, 2);
3957 }
3958
3959 /* Record the number of bytes pushed. */
3960 for (n = 0; n < 16; n++)
3961 {
3962 if (range & (1 << n))
3963 unwind.frame_size += 4;
3964 }
3965 }
3966
3967
3968 /* Parse a directive saving FPA registers. */
3969
3970 static void
3971 s_arm_unwind_save_fpa (int reg)
3972 {
3973 expressionS exp;
3974 int num_regs;
3975 valueT op;
3976
3977 /* Get Number of registers to transfer. */
3978 if (skip_past_comma (&input_line_pointer) != FAIL)
3979 expression (&exp);
3980 else
3981 exp.X_op = O_illegal;
3982
3983 if (exp.X_op != O_constant)
3984 {
3985 as_bad (_("expected , <constant>"));
3986 ignore_rest_of_line ();
3987 return;
3988 }
3989
3990 num_regs = exp.X_add_number;
3991
3992 if (num_regs < 1 || num_regs > 4)
3993 {
3994 as_bad (_("number of registers must be in the range [1:4]"));
3995 ignore_rest_of_line ();
3996 return;
3997 }
3998
3999 demand_empty_rest_of_line ();
4000
4001 if (reg == 4)
4002 {
4003 /* Short form. */
4004 op = 0xb4 | (num_regs - 1);
4005 add_unwind_opcode (op, 1);
4006 }
4007 else
4008 {
4009 /* Long form. */
4010 op = 0xc800 | (reg << 4) | (num_regs - 1);
4011 add_unwind_opcode (op, 2);
4012 }
4013 unwind.frame_size += num_regs * 12;
4014 }
4015
4016
4017 /* Parse a directive saving VFP registers for ARMv6 and above. */
4018
4019 static void
4020 s_arm_unwind_save_vfp_armv6 (void)
4021 {
4022 int count;
4023 unsigned int start;
4024 valueT op;
4025 int num_vfpv3_regs = 0;
4026 int num_regs_below_16;
4027
4028 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
4029 if (count == FAIL)
4030 {
4031 as_bad (_("expected register list"));
4032 ignore_rest_of_line ();
4033 return;
4034 }
4035
4036 demand_empty_rest_of_line ();
4037
4038 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4039 than FSTMX/FLDMX-style ones). */
4040
4041 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4042 if (start >= 16)
4043 num_vfpv3_regs = count;
4044 else if (start + count > 16)
4045 num_vfpv3_regs = start + count - 16;
4046
4047 if (num_vfpv3_regs > 0)
4048 {
4049 int start_offset = start > 16 ? start - 16 : 0;
4050 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4051 add_unwind_opcode (op, 2);
4052 }
4053
4054 /* Generate opcode for registers numbered in the range 0 .. 15. */
4055 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
4056 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
4057 if (num_regs_below_16 > 0)
4058 {
4059 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4060 add_unwind_opcode (op, 2);
4061 }
4062
4063 unwind.frame_size += count * 8;
4064 }
4065
4066
4067 /* Parse a directive saving VFP registers for pre-ARMv6. */
4068
4069 static void
4070 s_arm_unwind_save_vfp (void)
4071 {
4072 int count;
4073 unsigned int reg;
4074 valueT op;
4075
4076 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
4077 if (count == FAIL)
4078 {
4079 as_bad (_("expected register list"));
4080 ignore_rest_of_line ();
4081 return;
4082 }
4083
4084 demand_empty_rest_of_line ();
4085
4086 if (reg == 8)
4087 {
4088 /* Short form. */
4089 op = 0xb8 | (count - 1);
4090 add_unwind_opcode (op, 1);
4091 }
4092 else
4093 {
4094 /* Long form. */
4095 op = 0xb300 | (reg << 4) | (count - 1);
4096 add_unwind_opcode (op, 2);
4097 }
4098 unwind.frame_size += count * 8 + 4;
4099 }
4100
4101
4102 /* Parse a directive saving iWMMXt data registers. */
4103
4104 static void
4105 s_arm_unwind_save_mmxwr (void)
4106 {
4107 int reg;
4108 int hi_reg;
4109 int i;
4110 unsigned mask = 0;
4111 valueT op;
4112
4113 if (*input_line_pointer == '{')
4114 input_line_pointer++;
4115
4116 do
4117 {
4118 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4119
4120 if (reg == FAIL)
4121 {
4122 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4123 goto error;
4124 }
4125
4126 if (mask >> reg)
4127 as_tsktsk (_("register list not in ascending order"));
4128 mask |= 1 << reg;
4129
4130 if (*input_line_pointer == '-')
4131 {
4132 input_line_pointer++;
4133 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4134 if (hi_reg == FAIL)
4135 {
4136 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4137 goto error;
4138 }
4139 else if (reg >= hi_reg)
4140 {
4141 as_bad (_("bad register range"));
4142 goto error;
4143 }
4144 for (; reg < hi_reg; reg++)
4145 mask |= 1 << reg;
4146 }
4147 }
4148 while (skip_past_comma (&input_line_pointer) != FAIL);
4149
4150 skip_past_char (&input_line_pointer, '}');
4151
4152 demand_empty_rest_of_line ();
4153
4154 /* Generate any deferred opcodes because we're going to be looking at
4155 the list. */
4156 flush_pending_unwind ();
4157
4158 for (i = 0; i < 16; i++)
4159 {
4160 if (mask & (1 << i))
4161 unwind.frame_size += 8;
4162 }
4163
4164 /* Attempt to combine with a previous opcode. We do this because gcc
4165 likes to output separate unwind directives for a single block of
4166 registers. */
4167 if (unwind.opcode_count > 0)
4168 {
4169 i = unwind.opcodes[unwind.opcode_count - 1];
4170 if ((i & 0xf8) == 0xc0)
4171 {
4172 i &= 7;
4173 /* Only merge if the blocks are contiguous. */
4174 if (i < 6)
4175 {
4176 if ((mask & 0xfe00) == (1 << 9))
4177 {
4178 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4179 unwind.opcode_count--;
4180 }
4181 }
4182 else if (i == 6 && unwind.opcode_count >= 2)
4183 {
4184 i = unwind.opcodes[unwind.opcode_count - 2];
4185 reg = i >> 4;
4186 i &= 0xf;
4187
4188 op = 0xffff << (reg - 1);
4189 if (reg > 0
4190 && ((mask & op) == (1u << (reg - 1))))
4191 {
4192 op = (1 << (reg + i + 1)) - 1;
4193 op &= ~((1 << reg) - 1);
4194 mask |= op;
4195 unwind.opcode_count -= 2;
4196 }
4197 }
4198 }
4199 }
4200
4201 hi_reg = 15;
4202 /* We want to generate opcodes in the order the registers have been
4203 saved, ie. descending order. */
4204 for (reg = 15; reg >= -1; reg--)
4205 {
4206 /* Save registers in blocks. */
4207 if (reg < 0
4208 || !(mask & (1 << reg)))
4209 {
4210 /* We found an unsaved reg. Generate opcodes to save the
4211 preceding block. */
4212 if (reg != hi_reg)
4213 {
4214 if (reg == 9)
4215 {
4216 /* Short form. */
4217 op = 0xc0 | (hi_reg - 10);
4218 add_unwind_opcode (op, 1);
4219 }
4220 else
4221 {
4222 /* Long form. */
4223 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4224 add_unwind_opcode (op, 2);
4225 }
4226 }
4227 hi_reg = reg - 1;
4228 }
4229 }
4230
4231 return;
4232 error:
4233 ignore_rest_of_line ();
4234 }
4235
4236 static void
4237 s_arm_unwind_save_mmxwcg (void)
4238 {
4239 int reg;
4240 int hi_reg;
4241 unsigned mask = 0;
4242 valueT op;
4243
4244 if (*input_line_pointer == '{')
4245 input_line_pointer++;
4246
4247 skip_whitespace (input_line_pointer);
4248
4249 do
4250 {
4251 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4252
4253 if (reg == FAIL)
4254 {
4255 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4256 goto error;
4257 }
4258
4259 reg -= 8;
4260 if (mask >> reg)
4261 as_tsktsk (_("register list not in ascending order"));
4262 mask |= 1 << reg;
4263
4264 if (*input_line_pointer == '-')
4265 {
4266 input_line_pointer++;
4267 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4268 if (hi_reg == FAIL)
4269 {
4270 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4271 goto error;
4272 }
4273 else if (reg >= hi_reg)
4274 {
4275 as_bad (_("bad register range"));
4276 goto error;
4277 }
4278 for (; reg < hi_reg; reg++)
4279 mask |= 1 << reg;
4280 }
4281 }
4282 while (skip_past_comma (&input_line_pointer) != FAIL);
4283
4284 skip_past_char (&input_line_pointer, '}');
4285
4286 demand_empty_rest_of_line ();
4287
4288 /* Generate any deferred opcodes because we're going to be looking at
4289 the list. */
4290 flush_pending_unwind ();
4291
4292 for (reg = 0; reg < 16; reg++)
4293 {
4294 if (mask & (1 << reg))
4295 unwind.frame_size += 4;
4296 }
4297 op = 0xc700 | mask;
4298 add_unwind_opcode (op, 2);
4299 return;
4300 error:
4301 ignore_rest_of_line ();
4302 }
4303
4304
4305 /* Parse an unwind_save directive.
4306 If the argument is non-zero, this is a .vsave directive. */
4307
4308 static void
4309 s_arm_unwind_save (int arch_v6)
4310 {
4311 char *peek;
4312 struct reg_entry *reg;
4313 bfd_boolean had_brace = FALSE;
4314
4315 if (!unwind.proc_start)
4316 as_bad (MISSING_FNSTART);
4317
4318 /* Figure out what sort of save we have. */
4319 peek = input_line_pointer;
4320
4321 if (*peek == '{')
4322 {
4323 had_brace = TRUE;
4324 peek++;
4325 }
4326
4327 reg = arm_reg_parse_multi (&peek);
4328
4329 if (!reg)
4330 {
4331 as_bad (_("register expected"));
4332 ignore_rest_of_line ();
4333 return;
4334 }
4335
4336 switch (reg->type)
4337 {
4338 case REG_TYPE_FN:
4339 if (had_brace)
4340 {
4341 as_bad (_("FPA .unwind_save does not take a register list"));
4342 ignore_rest_of_line ();
4343 return;
4344 }
4345 input_line_pointer = peek;
4346 s_arm_unwind_save_fpa (reg->number);
4347 return;
4348
4349 case REG_TYPE_RN:
4350 s_arm_unwind_save_core ();
4351 return;
4352
4353 case REG_TYPE_VFD:
4354 if (arch_v6)
4355 s_arm_unwind_save_vfp_armv6 ();
4356 else
4357 s_arm_unwind_save_vfp ();
4358 return;
4359
4360 case REG_TYPE_MMXWR:
4361 s_arm_unwind_save_mmxwr ();
4362 return;
4363
4364 case REG_TYPE_MMXWCG:
4365 s_arm_unwind_save_mmxwcg ();
4366 return;
4367
4368 default:
4369 as_bad (_(".unwind_save does not support this kind of register"));
4370 ignore_rest_of_line ();
4371 }
4372 }
4373
4374
4375 /* Parse an unwind_movsp directive. */
4376
4377 static void
4378 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4379 {
4380 int reg;
4381 valueT op;
4382 int offset;
4383
4384 if (!unwind.proc_start)
4385 as_bad (MISSING_FNSTART);
4386
4387 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4388 if (reg == FAIL)
4389 {
4390 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4391 ignore_rest_of_line ();
4392 return;
4393 }
4394
4395 /* Optional constant. */
4396 if (skip_past_comma (&input_line_pointer) != FAIL)
4397 {
4398 if (immediate_for_directive (&offset) == FAIL)
4399 return;
4400 }
4401 else
4402 offset = 0;
4403
4404 demand_empty_rest_of_line ();
4405
4406 if (reg == REG_SP || reg == REG_PC)
4407 {
4408 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4409 return;
4410 }
4411
4412 if (unwind.fp_reg != REG_SP)
4413 as_bad (_("unexpected .unwind_movsp directive"));
4414
4415 /* Generate opcode to restore the value. */
4416 op = 0x90 | reg;
4417 add_unwind_opcode (op, 1);
4418
4419 /* Record the information for later. */
4420 unwind.fp_reg = reg;
4421 unwind.fp_offset = unwind.frame_size - offset;
4422 unwind.sp_restored = 1;
4423 }
4424
4425 /* Parse an unwind_pad directive. */
4426
4427 static void
4428 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4429 {
4430 int offset;
4431
4432 if (!unwind.proc_start)
4433 as_bad (MISSING_FNSTART);
4434
4435 if (immediate_for_directive (&offset) == FAIL)
4436 return;
4437
4438 if (offset & 3)
4439 {
4440 as_bad (_("stack increment must be multiple of 4"));
4441 ignore_rest_of_line ();
4442 return;
4443 }
4444
4445 /* Don't generate any opcodes, just record the details for later. */
4446 unwind.frame_size += offset;
4447 unwind.pending_offset += offset;
4448
4449 demand_empty_rest_of_line ();
4450 }
4451
4452 /* Parse an unwind_setfp directive. */
4453
4454 static void
4455 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4456 {
4457 int sp_reg;
4458 int fp_reg;
4459 int offset;
4460
4461 if (!unwind.proc_start)
4462 as_bad (MISSING_FNSTART);
4463
4464 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4465 if (skip_past_comma (&input_line_pointer) == FAIL)
4466 sp_reg = FAIL;
4467 else
4468 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4469
4470 if (fp_reg == FAIL || sp_reg == FAIL)
4471 {
4472 as_bad (_("expected <reg>, <reg>"));
4473 ignore_rest_of_line ();
4474 return;
4475 }
4476
4477 /* Optional constant. */
4478 if (skip_past_comma (&input_line_pointer) != FAIL)
4479 {
4480 if (immediate_for_directive (&offset) == FAIL)
4481 return;
4482 }
4483 else
4484 offset = 0;
4485
4486 demand_empty_rest_of_line ();
4487
4488 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4489 {
4490 as_bad (_("register must be either sp or set by a previous"
4491 "unwind_movsp directive"));
4492 return;
4493 }
4494
4495 /* Don't generate any opcodes, just record the information for later. */
4496 unwind.fp_reg = fp_reg;
4497 unwind.fp_used = 1;
4498 if (sp_reg == REG_SP)
4499 unwind.fp_offset = unwind.frame_size - offset;
4500 else
4501 unwind.fp_offset -= offset;
4502 }
4503
4504 /* Parse an unwind_raw directive. */
4505
4506 static void
4507 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4508 {
4509 expressionS exp;
4510 /* This is an arbitrary limit. */
4511 unsigned char op[16];
4512 int count;
4513
4514 if (!unwind.proc_start)
4515 as_bad (MISSING_FNSTART);
4516
4517 expression (&exp);
4518 if (exp.X_op == O_constant
4519 && skip_past_comma (&input_line_pointer) != FAIL)
4520 {
4521 unwind.frame_size += exp.X_add_number;
4522 expression (&exp);
4523 }
4524 else
4525 exp.X_op = O_illegal;
4526
4527 if (exp.X_op != O_constant)
4528 {
4529 as_bad (_("expected <offset>, <opcode>"));
4530 ignore_rest_of_line ();
4531 return;
4532 }
4533
4534 count = 0;
4535
4536 /* Parse the opcode. */
4537 for (;;)
4538 {
4539 if (count >= 16)
4540 {
4541 as_bad (_("unwind opcode too long"));
4542 ignore_rest_of_line ();
4543 }
4544 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4545 {
4546 as_bad (_("invalid unwind opcode"));
4547 ignore_rest_of_line ();
4548 return;
4549 }
4550 op[count++] = exp.X_add_number;
4551
4552 /* Parse the next byte. */
4553 if (skip_past_comma (&input_line_pointer) == FAIL)
4554 break;
4555
4556 expression (&exp);
4557 }
4558
4559 /* Add the opcode bytes in reverse order. */
4560 while (count--)
4561 add_unwind_opcode (op[count], 1);
4562
4563 demand_empty_rest_of_line ();
4564 }
4565
4566
4567 /* Parse a .eabi_attribute directive. */
4568
4569 static void
4570 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4571 {
4572 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
4573
4574 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4575 attributes_set_explicitly[tag] = 1;
4576 }
4577
4578 /* Emit a tls fix for the symbol. */
4579
4580 static void
4581 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4582 {
4583 char *p;
4584 expressionS exp;
4585 #ifdef md_flush_pending_output
4586 md_flush_pending_output ();
4587 #endif
4588
4589 #ifdef md_cons_align
4590 md_cons_align (4);
4591 #endif
4592
4593 /* Since we're just labelling the code, there's no need to define a
4594 mapping symbol. */
4595 expression (&exp);
4596 p = obstack_next_free (&frchain_now->frch_obstack);
4597 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4598 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4599 : BFD_RELOC_ARM_TLS_DESCSEQ);
4600 }
4601 #endif /* OBJ_ELF */
4602
4603 static void s_arm_arch (int);
4604 static void s_arm_object_arch (int);
4605 static void s_arm_cpu (int);
4606 static void s_arm_fpu (int);
4607 static void s_arm_arch_extension (int);
4608
4609 #ifdef TE_PE
4610
4611 static void
4612 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4613 {
4614 expressionS exp;
4615
4616 do
4617 {
4618 expression (&exp);
4619 if (exp.X_op == O_symbol)
4620 exp.X_op = O_secrel;
4621
4622 emit_expr (&exp, 4);
4623 }
4624 while (*input_line_pointer++ == ',');
4625
4626 input_line_pointer--;
4627 demand_empty_rest_of_line ();
4628 }
4629 #endif /* TE_PE */
4630
4631 /* This table describes all the machine specific pseudo-ops the assembler
4632 has to support. The fields are:
4633 pseudo-op name without dot
4634 function to call to execute this pseudo-op
4635 Integer arg to pass to the function. */
4636
4637 const pseudo_typeS md_pseudo_table[] =
4638 {
4639 /* Never called because '.req' does not start a line. */
4640 { "req", s_req, 0 },
4641 /* Following two are likewise never called. */
4642 { "dn", s_dn, 0 },
4643 { "qn", s_qn, 0 },
4644 { "unreq", s_unreq, 0 },
4645 { "bss", s_bss, 0 },
4646 { "align", s_align_ptwo, 2 },
4647 { "arm", s_arm, 0 },
4648 { "thumb", s_thumb, 0 },
4649 { "code", s_code, 0 },
4650 { "force_thumb", s_force_thumb, 0 },
4651 { "thumb_func", s_thumb_func, 0 },
4652 { "thumb_set", s_thumb_set, 0 },
4653 { "even", s_even, 0 },
4654 { "ltorg", s_ltorg, 0 },
4655 { "pool", s_ltorg, 0 },
4656 { "syntax", s_syntax, 0 },
4657 { "cpu", s_arm_cpu, 0 },
4658 { "arch", s_arm_arch, 0 },
4659 { "object_arch", s_arm_object_arch, 0 },
4660 { "fpu", s_arm_fpu, 0 },
4661 { "arch_extension", s_arm_arch_extension, 0 },
4662 #ifdef OBJ_ELF
4663 { "word", s_arm_elf_cons, 4 },
4664 { "long", s_arm_elf_cons, 4 },
4665 { "inst.n", s_arm_elf_inst, 2 },
4666 { "inst.w", s_arm_elf_inst, 4 },
4667 { "inst", s_arm_elf_inst, 0 },
4668 { "rel31", s_arm_rel31, 0 },
4669 { "fnstart", s_arm_unwind_fnstart, 0 },
4670 { "fnend", s_arm_unwind_fnend, 0 },
4671 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4672 { "personality", s_arm_unwind_personality, 0 },
4673 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4674 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4675 { "save", s_arm_unwind_save, 0 },
4676 { "vsave", s_arm_unwind_save, 1 },
4677 { "movsp", s_arm_unwind_movsp, 0 },
4678 { "pad", s_arm_unwind_pad, 0 },
4679 { "setfp", s_arm_unwind_setfp, 0 },
4680 { "unwind_raw", s_arm_unwind_raw, 0 },
4681 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4682 { "tlsdescseq", s_arm_tls_descseq, 0 },
4683 #else
4684 { "word", cons, 4},
4685
4686 /* These are used for dwarf. */
4687 {"2byte", cons, 2},
4688 {"4byte", cons, 4},
4689 {"8byte", cons, 8},
4690 /* These are used for dwarf2. */
4691 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4692 { "loc", dwarf2_directive_loc, 0 },
4693 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4694 #endif
4695 { "extend", float_cons, 'x' },
4696 { "ldouble", float_cons, 'x' },
4697 { "packed", float_cons, 'p' },
4698 #ifdef TE_PE
4699 {"secrel32", pe_directive_secrel, 0},
4700 #endif
4701
4702 /* These are for compatibility with CodeComposer Studio. */
4703 {"ref", s_ccs_ref, 0},
4704 {"def", s_ccs_def, 0},
4705 {"asmfunc", s_ccs_asmfunc, 0},
4706 {"endasmfunc", s_ccs_endasmfunc, 0},
4707
4708 { 0, 0, 0 }
4709 };
4710 \f
4711 /* Parser functions used exclusively in instruction operands. */
4712
4713 /* Generic immediate-value read function for use in insn parsing.
4714 STR points to the beginning of the immediate (the leading #);
4715 VAL receives the value; if the value is outside [MIN, MAX]
4716 issue an error. PREFIX_OPT is true if the immediate prefix is
4717 optional. */
4718
4719 static int
4720 parse_immediate (char **str, int *val, int min, int max,
4721 bfd_boolean prefix_opt)
4722 {
4723 expressionS exp;
4724 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4725 if (exp.X_op != O_constant)
4726 {
4727 inst.error = _("constant expression required");
4728 return FAIL;
4729 }
4730
4731 if (exp.X_add_number < min || exp.X_add_number > max)
4732 {
4733 inst.error = _("immediate value out of range");
4734 return FAIL;
4735 }
4736
4737 *val = exp.X_add_number;
4738 return SUCCESS;
4739 }
4740
4741 /* Less-generic immediate-value read function with the possibility of loading a
4742 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4743 instructions. Puts the result directly in inst.operands[i]. */
4744
4745 static int
4746 parse_big_immediate (char **str, int i, expressionS *in_exp,
4747 bfd_boolean allow_symbol_p)
4748 {
4749 expressionS exp;
4750 expressionS *exp_p = in_exp ? in_exp : &exp;
4751 char *ptr = *str;
4752
4753 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
4754
4755 if (exp_p->X_op == O_constant)
4756 {
4757 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
4758 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4759 O_constant. We have to be careful not to break compilation for
4760 32-bit X_add_number, though. */
4761 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
4762 {
4763 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
4764 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
4765 & 0xffffffff);
4766 inst.operands[i].regisimm = 1;
4767 }
4768 }
4769 else if (exp_p->X_op == O_big
4770 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
4771 {
4772 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4773
4774 /* Bignums have their least significant bits in
4775 generic_bignum[0]. Make sure we put 32 bits in imm and
4776 32 bits in reg, in a (hopefully) portable way. */
4777 gas_assert (parts != 0);
4778
4779 /* Make sure that the number is not too big.
4780 PR 11972: Bignums can now be sign-extended to the
4781 size of a .octa so check that the out of range bits
4782 are all zero or all one. */
4783 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
4784 {
4785 LITTLENUM_TYPE m = -1;
4786
4787 if (generic_bignum[parts * 2] != 0
4788 && generic_bignum[parts * 2] != m)
4789 return FAIL;
4790
4791 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
4792 if (generic_bignum[j] != generic_bignum[j-1])
4793 return FAIL;
4794 }
4795
4796 inst.operands[i].imm = 0;
4797 for (j = 0; j < parts; j++, idx++)
4798 inst.operands[i].imm |= generic_bignum[idx]
4799 << (LITTLENUM_NUMBER_OF_BITS * j);
4800 inst.operands[i].reg = 0;
4801 for (j = 0; j < parts; j++, idx++)
4802 inst.operands[i].reg |= generic_bignum[idx]
4803 << (LITTLENUM_NUMBER_OF_BITS * j);
4804 inst.operands[i].regisimm = 1;
4805 }
4806 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
4807 return FAIL;
4808
4809 *str = ptr;
4810
4811 return SUCCESS;
4812 }
4813
4814 /* Returns the pseudo-register number of an FPA immediate constant,
4815 or FAIL if there isn't a valid constant here. */
4816
4817 static int
4818 parse_fpa_immediate (char ** str)
4819 {
4820 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4821 char * save_in;
4822 expressionS exp;
4823 int i;
4824 int j;
4825
4826 /* First try and match exact strings, this is to guarantee
4827 that some formats will work even for cross assembly. */
4828
4829 for (i = 0; fp_const[i]; i++)
4830 {
4831 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4832 {
4833 char *start = *str;
4834
4835 *str += strlen (fp_const[i]);
4836 if (is_end_of_line[(unsigned char) **str])
4837 return i + 8;
4838 *str = start;
4839 }
4840 }
4841
4842 /* Just because we didn't get a match doesn't mean that the constant
4843 isn't valid, just that it is in a format that we don't
4844 automatically recognize. Try parsing it with the standard
4845 expression routines. */
4846
4847 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4848
4849 /* Look for a raw floating point number. */
4850 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4851 && is_end_of_line[(unsigned char) *save_in])
4852 {
4853 for (i = 0; i < NUM_FLOAT_VALS; i++)
4854 {
4855 for (j = 0; j < MAX_LITTLENUMS; j++)
4856 {
4857 if (words[j] != fp_values[i][j])
4858 break;
4859 }
4860
4861 if (j == MAX_LITTLENUMS)
4862 {
4863 *str = save_in;
4864 return i + 8;
4865 }
4866 }
4867 }
4868
4869 /* Try and parse a more complex expression, this will probably fail
4870 unless the code uses a floating point prefix (eg "0f"). */
4871 save_in = input_line_pointer;
4872 input_line_pointer = *str;
4873 if (expression (&exp) == absolute_section
4874 && exp.X_op == O_big
4875 && exp.X_add_number < 0)
4876 {
4877 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4878 Ditto for 15. */
4879 #define X_PRECISION 5
4880 #define E_PRECISION 15L
4881 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
4882 {
4883 for (i = 0; i < NUM_FLOAT_VALS; i++)
4884 {
4885 for (j = 0; j < MAX_LITTLENUMS; j++)
4886 {
4887 if (words[j] != fp_values[i][j])
4888 break;
4889 }
4890
4891 if (j == MAX_LITTLENUMS)
4892 {
4893 *str = input_line_pointer;
4894 input_line_pointer = save_in;
4895 return i + 8;
4896 }
4897 }
4898 }
4899 }
4900
4901 *str = input_line_pointer;
4902 input_line_pointer = save_in;
4903 inst.error = _("invalid FPA immediate expression");
4904 return FAIL;
4905 }
4906
4907 /* Returns 1 if a number has "quarter-precision" float format
4908 0baBbbbbbc defgh000 00000000 00000000. */
4909
4910 static int
4911 is_quarter_float (unsigned imm)
4912 {
4913 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4914 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4915 }
4916
4917
4918 /* Detect the presence of a floating point or integer zero constant,
4919 i.e. #0.0 or #0. */
4920
4921 static bfd_boolean
4922 parse_ifimm_zero (char **in)
4923 {
4924 int error_code;
4925
4926 if (!is_immediate_prefix (**in))
4927 return FALSE;
4928
4929 ++*in;
4930
4931 /* Accept #0x0 as a synonym for #0. */
4932 if (strncmp (*in, "0x", 2) == 0)
4933 {
4934 int val;
4935 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
4936 return FALSE;
4937 return TRUE;
4938 }
4939
4940 error_code = atof_generic (in, ".", EXP_CHARS,
4941 &generic_floating_point_number);
4942
4943 if (!error_code
4944 && generic_floating_point_number.sign == '+'
4945 && (generic_floating_point_number.low
4946 > generic_floating_point_number.leader))
4947 return TRUE;
4948
4949 return FALSE;
4950 }
4951
4952 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4953 0baBbbbbbc defgh000 00000000 00000000.
4954 The zero and minus-zero cases need special handling, since they can't be
4955 encoded in the "quarter-precision" float format, but can nonetheless be
4956 loaded as integer constants. */
4957
4958 static unsigned
4959 parse_qfloat_immediate (char **ccp, int *immed)
4960 {
4961 char *str = *ccp;
4962 char *fpnum;
4963 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4964 int found_fpchar = 0;
4965
4966 skip_past_char (&str, '#');
4967
4968 /* We must not accidentally parse an integer as a floating-point number. Make
4969 sure that the value we parse is not an integer by checking for special
4970 characters '.' or 'e'.
4971 FIXME: This is a horrible hack, but doing better is tricky because type
4972 information isn't in a very usable state at parse time. */
4973 fpnum = str;
4974 skip_whitespace (fpnum);
4975
4976 if (strncmp (fpnum, "0x", 2) == 0)
4977 return FAIL;
4978 else
4979 {
4980 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4981 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4982 {
4983 found_fpchar = 1;
4984 break;
4985 }
4986
4987 if (!found_fpchar)
4988 return FAIL;
4989 }
4990
4991 if ((str = atof_ieee (str, 's', words)) != NULL)
4992 {
4993 unsigned fpword = 0;
4994 int i;
4995
4996 /* Our FP word must be 32 bits (single-precision FP). */
4997 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4998 {
4999 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5000 fpword |= words[i];
5001 }
5002
5003 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
5004 *immed = fpword;
5005 else
5006 return FAIL;
5007
5008 *ccp = str;
5009
5010 return SUCCESS;
5011 }
5012
5013 return FAIL;
5014 }
5015
5016 /* Shift operands. */
5017 enum shift_kind
5018 {
5019 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
5020 };
5021
5022 struct asm_shift_name
5023 {
5024 const char *name;
5025 enum shift_kind kind;
5026 };
5027
5028 /* Third argument to parse_shift. */
5029 enum parse_shift_mode
5030 {
5031 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5032 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5033 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5034 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5035 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
5036 };
5037
5038 /* Parse a <shift> specifier on an ARM data processing instruction.
5039 This has three forms:
5040
5041 (LSL|LSR|ASL|ASR|ROR) Rs
5042 (LSL|LSR|ASL|ASR|ROR) #imm
5043 RRX
5044
5045 Note that ASL is assimilated to LSL in the instruction encoding, and
5046 RRX to ROR #0 (which cannot be written as such). */
5047
5048 static int
5049 parse_shift (char **str, int i, enum parse_shift_mode mode)
5050 {
5051 const struct asm_shift_name *shift_name;
5052 enum shift_kind shift;
5053 char *s = *str;
5054 char *p = s;
5055 int reg;
5056
5057 for (p = *str; ISALPHA (*p); p++)
5058 ;
5059
5060 if (p == *str)
5061 {
5062 inst.error = _("shift expression expected");
5063 return FAIL;
5064 }
5065
5066 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
5067 p - *str);
5068
5069 if (shift_name == NULL)
5070 {
5071 inst.error = _("shift expression expected");
5072 return FAIL;
5073 }
5074
5075 shift = shift_name->kind;
5076
5077 switch (mode)
5078 {
5079 case NO_SHIFT_RESTRICT:
5080 case SHIFT_IMMEDIATE: break;
5081
5082 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5083 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5084 {
5085 inst.error = _("'LSL' or 'ASR' required");
5086 return FAIL;
5087 }
5088 break;
5089
5090 case SHIFT_LSL_IMMEDIATE:
5091 if (shift != SHIFT_LSL)
5092 {
5093 inst.error = _("'LSL' required");
5094 return FAIL;
5095 }
5096 break;
5097
5098 case SHIFT_ASR_IMMEDIATE:
5099 if (shift != SHIFT_ASR)
5100 {
5101 inst.error = _("'ASR' required");
5102 return FAIL;
5103 }
5104 break;
5105
5106 default: abort ();
5107 }
5108
5109 if (shift != SHIFT_RRX)
5110 {
5111 /* Whitespace can appear here if the next thing is a bare digit. */
5112 skip_whitespace (p);
5113
5114 if (mode == NO_SHIFT_RESTRICT
5115 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5116 {
5117 inst.operands[i].imm = reg;
5118 inst.operands[i].immisreg = 1;
5119 }
5120 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5121 return FAIL;
5122 }
5123 inst.operands[i].shift_kind = shift;
5124 inst.operands[i].shifted = 1;
5125 *str = p;
5126 return SUCCESS;
5127 }
5128
5129 /* Parse a <shifter_operand> for an ARM data processing instruction:
5130
5131 #<immediate>
5132 #<immediate>, <rotate>
5133 <Rm>
5134 <Rm>, <shift>
5135
5136 where <shift> is defined by parse_shift above, and <rotate> is a
5137 multiple of 2 between 0 and 30. Validation of immediate operands
5138 is deferred to md_apply_fix. */
5139
5140 static int
5141 parse_shifter_operand (char **str, int i)
5142 {
5143 int value;
5144 expressionS exp;
5145
5146 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
5147 {
5148 inst.operands[i].reg = value;
5149 inst.operands[i].isreg = 1;
5150
5151 /* parse_shift will override this if appropriate */
5152 inst.reloc.exp.X_op = O_constant;
5153 inst.reloc.exp.X_add_number = 0;
5154
5155 if (skip_past_comma (str) == FAIL)
5156 return SUCCESS;
5157
5158 /* Shift operation on register. */
5159 return parse_shift (str, i, NO_SHIFT_RESTRICT);
5160 }
5161
5162 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
5163 return FAIL;
5164
5165 if (skip_past_comma (str) == SUCCESS)
5166 {
5167 /* #x, y -- ie explicit rotation by Y. */
5168 if (my_get_expression (&exp, str, GE_NO_PREFIX))
5169 return FAIL;
5170
5171 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
5172 {
5173 inst.error = _("constant expression expected");
5174 return FAIL;
5175 }
5176
5177 value = exp.X_add_number;
5178 if (value < 0 || value > 30 || value % 2 != 0)
5179 {
5180 inst.error = _("invalid rotation");
5181 return FAIL;
5182 }
5183 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
5184 {
5185 inst.error = _("invalid constant");
5186 return FAIL;
5187 }
5188
5189 /* Encode as specified. */
5190 inst.operands[i].imm = inst.reloc.exp.X_add_number | value << 7;
5191 return SUCCESS;
5192 }
5193
5194 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
5195 inst.reloc.pc_rel = 0;
5196 return SUCCESS;
5197 }
5198
5199 /* Group relocation information. Each entry in the table contains the
5200 textual name of the relocation as may appear in assembler source
5201 and must end with a colon.
5202 Along with this textual name are the relocation codes to be used if
5203 the corresponding instruction is an ALU instruction (ADD or SUB only),
5204 an LDR, an LDRS, or an LDC. */
5205
5206 struct group_reloc_table_entry
5207 {
5208 const char *name;
5209 int alu_code;
5210 int ldr_code;
5211 int ldrs_code;
5212 int ldc_code;
5213 };
5214
5215 typedef enum
5216 {
5217 /* Varieties of non-ALU group relocation. */
5218
5219 GROUP_LDR,
5220 GROUP_LDRS,
5221 GROUP_LDC
5222 } group_reloc_type;
5223
5224 static struct group_reloc_table_entry group_reloc_table[] =
5225 { /* Program counter relative: */
5226 { "pc_g0_nc",
5227 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5228 0, /* LDR */
5229 0, /* LDRS */
5230 0 }, /* LDC */
5231 { "pc_g0",
5232 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5233 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5234 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5235 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5236 { "pc_g1_nc",
5237 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5238 0, /* LDR */
5239 0, /* LDRS */
5240 0 }, /* LDC */
5241 { "pc_g1",
5242 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5243 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5244 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5245 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5246 { "pc_g2",
5247 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5248 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5249 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5250 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5251 /* Section base relative */
5252 { "sb_g0_nc",
5253 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5254 0, /* LDR */
5255 0, /* LDRS */
5256 0 }, /* LDC */
5257 { "sb_g0",
5258 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5259 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5260 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5261 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5262 { "sb_g1_nc",
5263 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5264 0, /* LDR */
5265 0, /* LDRS */
5266 0 }, /* LDC */
5267 { "sb_g1",
5268 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5269 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5270 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5271 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5272 { "sb_g2",
5273 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5274 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5275 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
5276 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5277 /* Absolute thumb alu relocations. */
5278 { "lower0_7",
5279 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5280 0, /* LDR. */
5281 0, /* LDRS. */
5282 0 }, /* LDC. */
5283 { "lower8_15",
5284 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5285 0, /* LDR. */
5286 0, /* LDRS. */
5287 0 }, /* LDC. */
5288 { "upper0_7",
5289 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5290 0, /* LDR. */
5291 0, /* LDRS. */
5292 0 }, /* LDC. */
5293 { "upper8_15",
5294 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5295 0, /* LDR. */
5296 0, /* LDRS. */
5297 0 } }; /* LDC. */
5298
5299 /* Given the address of a pointer pointing to the textual name of a group
5300 relocation as may appear in assembler source, attempt to find its details
5301 in group_reloc_table. The pointer will be updated to the character after
5302 the trailing colon. On failure, FAIL will be returned; SUCCESS
5303 otherwise. On success, *entry will be updated to point at the relevant
5304 group_reloc_table entry. */
5305
5306 static int
5307 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5308 {
5309 unsigned int i;
5310 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5311 {
5312 int length = strlen (group_reloc_table[i].name);
5313
5314 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5315 && (*str)[length] == ':')
5316 {
5317 *out = &group_reloc_table[i];
5318 *str += (length + 1);
5319 return SUCCESS;
5320 }
5321 }
5322
5323 return FAIL;
5324 }
5325
5326 /* Parse a <shifter_operand> for an ARM data processing instruction
5327 (as for parse_shifter_operand) where group relocations are allowed:
5328
5329 #<immediate>
5330 #<immediate>, <rotate>
5331 #:<group_reloc>:<expression>
5332 <Rm>
5333 <Rm>, <shift>
5334
5335 where <group_reloc> is one of the strings defined in group_reloc_table.
5336 The hashes are optional.
5337
5338 Everything else is as for parse_shifter_operand. */
5339
5340 static parse_operand_result
5341 parse_shifter_operand_group_reloc (char **str, int i)
5342 {
5343 /* Determine if we have the sequence of characters #: or just :
5344 coming next. If we do, then we check for a group relocation.
5345 If we don't, punt the whole lot to parse_shifter_operand. */
5346
5347 if (((*str)[0] == '#' && (*str)[1] == ':')
5348 || (*str)[0] == ':')
5349 {
5350 struct group_reloc_table_entry *entry;
5351
5352 if ((*str)[0] == '#')
5353 (*str) += 2;
5354 else
5355 (*str)++;
5356
5357 /* Try to parse a group relocation. Anything else is an error. */
5358 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5359 {
5360 inst.error = _("unknown group relocation");
5361 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5362 }
5363
5364 /* We now have the group relocation table entry corresponding to
5365 the name in the assembler source. Next, we parse the expression. */
5366 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
5367 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5368
5369 /* Record the relocation type (always the ALU variant here). */
5370 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
5371 gas_assert (inst.reloc.type != 0);
5372
5373 return PARSE_OPERAND_SUCCESS;
5374 }
5375 else
5376 return parse_shifter_operand (str, i) == SUCCESS
5377 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5378
5379 /* Never reached. */
5380 }
5381
5382 /* Parse a Neon alignment expression. Information is written to
5383 inst.operands[i]. We assume the initial ':' has been skipped.
5384
5385 align .imm = align << 8, .immisalign=1, .preind=0 */
5386 static parse_operand_result
5387 parse_neon_alignment (char **str, int i)
5388 {
5389 char *p = *str;
5390 expressionS exp;
5391
5392 my_get_expression (&exp, &p, GE_NO_PREFIX);
5393
5394 if (exp.X_op != O_constant)
5395 {
5396 inst.error = _("alignment must be constant");
5397 return PARSE_OPERAND_FAIL;
5398 }
5399
5400 inst.operands[i].imm = exp.X_add_number << 8;
5401 inst.operands[i].immisalign = 1;
5402 /* Alignments are not pre-indexes. */
5403 inst.operands[i].preind = 0;
5404
5405 *str = p;
5406 return PARSE_OPERAND_SUCCESS;
5407 }
5408
5409 /* Parse all forms of an ARM address expression. Information is written
5410 to inst.operands[i] and/or inst.reloc.
5411
5412 Preindexed addressing (.preind=1):
5413
5414 [Rn, #offset] .reg=Rn .reloc.exp=offset
5415 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5416 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5417 .shift_kind=shift .reloc.exp=shift_imm
5418
5419 These three may have a trailing ! which causes .writeback to be set also.
5420
5421 Postindexed addressing (.postind=1, .writeback=1):
5422
5423 [Rn], #offset .reg=Rn .reloc.exp=offset
5424 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5425 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5426 .shift_kind=shift .reloc.exp=shift_imm
5427
5428 Unindexed addressing (.preind=0, .postind=0):
5429
5430 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5431
5432 Other:
5433
5434 [Rn]{!} shorthand for [Rn,#0]{!}
5435 =immediate .isreg=0 .reloc.exp=immediate
5436 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
5437
5438 It is the caller's responsibility to check for addressing modes not
5439 supported by the instruction, and to set inst.reloc.type. */
5440
5441 static parse_operand_result
5442 parse_address_main (char **str, int i, int group_relocations,
5443 group_reloc_type group_type)
5444 {
5445 char *p = *str;
5446 int reg;
5447
5448 if (skip_past_char (&p, '[') == FAIL)
5449 {
5450 if (skip_past_char (&p, '=') == FAIL)
5451 {
5452 /* Bare address - translate to PC-relative offset. */
5453 inst.reloc.pc_rel = 1;
5454 inst.operands[i].reg = REG_PC;
5455 inst.operands[i].isreg = 1;
5456 inst.operands[i].preind = 1;
5457
5458 if (my_get_expression (&inst.reloc.exp, &p, GE_OPT_PREFIX_BIG))
5459 return PARSE_OPERAND_FAIL;
5460 }
5461 else if (parse_big_immediate (&p, i, &inst.reloc.exp,
5462 /*allow_symbol_p=*/TRUE))
5463 return PARSE_OPERAND_FAIL;
5464
5465 *str = p;
5466 return PARSE_OPERAND_SUCCESS;
5467 }
5468
5469 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5470 skip_whitespace (p);
5471
5472 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5473 {
5474 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5475 return PARSE_OPERAND_FAIL;
5476 }
5477 inst.operands[i].reg = reg;
5478 inst.operands[i].isreg = 1;
5479
5480 if (skip_past_comma (&p) == SUCCESS)
5481 {
5482 inst.operands[i].preind = 1;
5483
5484 if (*p == '+') p++;
5485 else if (*p == '-') p++, inst.operands[i].negative = 1;
5486
5487 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5488 {
5489 inst.operands[i].imm = reg;
5490 inst.operands[i].immisreg = 1;
5491
5492 if (skip_past_comma (&p) == SUCCESS)
5493 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5494 return PARSE_OPERAND_FAIL;
5495 }
5496 else if (skip_past_char (&p, ':') == SUCCESS)
5497 {
5498 /* FIXME: '@' should be used here, but it's filtered out by generic
5499 code before we get to see it here. This may be subject to
5500 change. */
5501 parse_operand_result result = parse_neon_alignment (&p, i);
5502
5503 if (result != PARSE_OPERAND_SUCCESS)
5504 return result;
5505 }
5506 else
5507 {
5508 if (inst.operands[i].negative)
5509 {
5510 inst.operands[i].negative = 0;
5511 p--;
5512 }
5513
5514 if (group_relocations
5515 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5516 {
5517 struct group_reloc_table_entry *entry;
5518
5519 /* Skip over the #: or : sequence. */
5520 if (*p == '#')
5521 p += 2;
5522 else
5523 p++;
5524
5525 /* Try to parse a group relocation. Anything else is an
5526 error. */
5527 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5528 {
5529 inst.error = _("unknown group relocation");
5530 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5531 }
5532
5533 /* We now have the group relocation table entry corresponding to
5534 the name in the assembler source. Next, we parse the
5535 expression. */
5536 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5537 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5538
5539 /* Record the relocation type. */
5540 switch (group_type)
5541 {
5542 case GROUP_LDR:
5543 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
5544 break;
5545
5546 case GROUP_LDRS:
5547 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
5548 break;
5549
5550 case GROUP_LDC:
5551 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
5552 break;
5553
5554 default:
5555 gas_assert (0);
5556 }
5557
5558 if (inst.reloc.type == 0)
5559 {
5560 inst.error = _("this group relocation is not allowed on this instruction");
5561 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5562 }
5563 }
5564 else
5565 {
5566 char *q = p;
5567 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5568 return PARSE_OPERAND_FAIL;
5569 /* If the offset is 0, find out if it's a +0 or -0. */
5570 if (inst.reloc.exp.X_op == O_constant
5571 && inst.reloc.exp.X_add_number == 0)
5572 {
5573 skip_whitespace (q);
5574 if (*q == '#')
5575 {
5576 q++;
5577 skip_whitespace (q);
5578 }
5579 if (*q == '-')
5580 inst.operands[i].negative = 1;
5581 }
5582 }
5583 }
5584 }
5585 else if (skip_past_char (&p, ':') == SUCCESS)
5586 {
5587 /* FIXME: '@' should be used here, but it's filtered out by generic code
5588 before we get to see it here. This may be subject to change. */
5589 parse_operand_result result = parse_neon_alignment (&p, i);
5590
5591 if (result != PARSE_OPERAND_SUCCESS)
5592 return result;
5593 }
5594
5595 if (skip_past_char (&p, ']') == FAIL)
5596 {
5597 inst.error = _("']' expected");
5598 return PARSE_OPERAND_FAIL;
5599 }
5600
5601 if (skip_past_char (&p, '!') == SUCCESS)
5602 inst.operands[i].writeback = 1;
5603
5604 else if (skip_past_comma (&p) == SUCCESS)
5605 {
5606 if (skip_past_char (&p, '{') == SUCCESS)
5607 {
5608 /* [Rn], {expr} - unindexed, with option */
5609 if (parse_immediate (&p, &inst.operands[i].imm,
5610 0, 255, TRUE) == FAIL)
5611 return PARSE_OPERAND_FAIL;
5612
5613 if (skip_past_char (&p, '}') == FAIL)
5614 {
5615 inst.error = _("'}' expected at end of 'option' field");
5616 return PARSE_OPERAND_FAIL;
5617 }
5618 if (inst.operands[i].preind)
5619 {
5620 inst.error = _("cannot combine index with option");
5621 return PARSE_OPERAND_FAIL;
5622 }
5623 *str = p;
5624 return PARSE_OPERAND_SUCCESS;
5625 }
5626 else
5627 {
5628 inst.operands[i].postind = 1;
5629 inst.operands[i].writeback = 1;
5630
5631 if (inst.operands[i].preind)
5632 {
5633 inst.error = _("cannot combine pre- and post-indexing");
5634 return PARSE_OPERAND_FAIL;
5635 }
5636
5637 if (*p == '+') p++;
5638 else if (*p == '-') p++, inst.operands[i].negative = 1;
5639
5640 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5641 {
5642 /* We might be using the immediate for alignment already. If we
5643 are, OR the register number into the low-order bits. */
5644 if (inst.operands[i].immisalign)
5645 inst.operands[i].imm |= reg;
5646 else
5647 inst.operands[i].imm = reg;
5648 inst.operands[i].immisreg = 1;
5649
5650 if (skip_past_comma (&p) == SUCCESS)
5651 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5652 return PARSE_OPERAND_FAIL;
5653 }
5654 else
5655 {
5656 char *q = p;
5657 if (inst.operands[i].negative)
5658 {
5659 inst.operands[i].negative = 0;
5660 p--;
5661 }
5662 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5663 return PARSE_OPERAND_FAIL;
5664 /* If the offset is 0, find out if it's a +0 or -0. */
5665 if (inst.reloc.exp.X_op == O_constant
5666 && inst.reloc.exp.X_add_number == 0)
5667 {
5668 skip_whitespace (q);
5669 if (*q == '#')
5670 {
5671 q++;
5672 skip_whitespace (q);
5673 }
5674 if (*q == '-')
5675 inst.operands[i].negative = 1;
5676 }
5677 }
5678 }
5679 }
5680
5681 /* If at this point neither .preind nor .postind is set, we have a
5682 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5683 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5684 {
5685 inst.operands[i].preind = 1;
5686 inst.reloc.exp.X_op = O_constant;
5687 inst.reloc.exp.X_add_number = 0;
5688 }
5689 *str = p;
5690 return PARSE_OPERAND_SUCCESS;
5691 }
5692
5693 static int
5694 parse_address (char **str, int i)
5695 {
5696 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
5697 ? SUCCESS : FAIL;
5698 }
5699
5700 static parse_operand_result
5701 parse_address_group_reloc (char **str, int i, group_reloc_type type)
5702 {
5703 return parse_address_main (str, i, 1, type);
5704 }
5705
5706 /* Parse an operand for a MOVW or MOVT instruction. */
5707 static int
5708 parse_half (char **str)
5709 {
5710 char * p;
5711
5712 p = *str;
5713 skip_past_char (&p, '#');
5714 if (strncasecmp (p, ":lower16:", 9) == 0)
5715 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5716 else if (strncasecmp (p, ":upper16:", 9) == 0)
5717 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5718
5719 if (inst.reloc.type != BFD_RELOC_UNUSED)
5720 {
5721 p += 9;
5722 skip_whitespace (p);
5723 }
5724
5725 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5726 return FAIL;
5727
5728 if (inst.reloc.type == BFD_RELOC_UNUSED)
5729 {
5730 if (inst.reloc.exp.X_op != O_constant)
5731 {
5732 inst.error = _("constant expression expected");
5733 return FAIL;
5734 }
5735 if (inst.reloc.exp.X_add_number < 0
5736 || inst.reloc.exp.X_add_number > 0xffff)
5737 {
5738 inst.error = _("immediate value out of range");
5739 return FAIL;
5740 }
5741 }
5742 *str = p;
5743 return SUCCESS;
5744 }
5745
5746 /* Miscellaneous. */
5747
5748 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5749 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5750 static int
5751 parse_psr (char **str, bfd_boolean lhs)
5752 {
5753 char *p;
5754 unsigned long psr_field;
5755 const struct asm_psr *psr;
5756 char *start;
5757 bfd_boolean is_apsr = FALSE;
5758 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
5759
5760 /* PR gas/12698: If the user has specified -march=all then m_profile will
5761 be TRUE, but we want to ignore it in this case as we are building for any
5762 CPU type, including non-m variants. */
5763 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
5764 m_profile = FALSE;
5765
5766 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5767 feature for ease of use and backwards compatibility. */
5768 p = *str;
5769 if (strncasecmp (p, "SPSR", 4) == 0)
5770 {
5771 if (m_profile)
5772 goto unsupported_psr;
5773
5774 psr_field = SPSR_BIT;
5775 }
5776 else if (strncasecmp (p, "CPSR", 4) == 0)
5777 {
5778 if (m_profile)
5779 goto unsupported_psr;
5780
5781 psr_field = 0;
5782 }
5783 else if (strncasecmp (p, "APSR", 4) == 0)
5784 {
5785 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5786 and ARMv7-R architecture CPUs. */
5787 is_apsr = TRUE;
5788 psr_field = 0;
5789 }
5790 else if (m_profile)
5791 {
5792 start = p;
5793 do
5794 p++;
5795 while (ISALNUM (*p) || *p == '_');
5796
5797 if (strncasecmp (start, "iapsr", 5) == 0
5798 || strncasecmp (start, "eapsr", 5) == 0
5799 || strncasecmp (start, "xpsr", 4) == 0
5800 || strncasecmp (start, "psr", 3) == 0)
5801 p = start + strcspn (start, "rR") + 1;
5802
5803 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5804 p - start);
5805
5806 if (!psr)
5807 return FAIL;
5808
5809 /* If APSR is being written, a bitfield may be specified. Note that
5810 APSR itself is handled above. */
5811 if (psr->field <= 3)
5812 {
5813 psr_field = psr->field;
5814 is_apsr = TRUE;
5815 goto check_suffix;
5816 }
5817
5818 *str = p;
5819 /* M-profile MSR instructions have the mask field set to "10", except
5820 *PSR variants which modify APSR, which may use a different mask (and
5821 have been handled already). Do that by setting the PSR_f field
5822 here. */
5823 return psr->field | (lhs ? PSR_f : 0);
5824 }
5825 else
5826 goto unsupported_psr;
5827
5828 p += 4;
5829 check_suffix:
5830 if (*p == '_')
5831 {
5832 /* A suffix follows. */
5833 p++;
5834 start = p;
5835
5836 do
5837 p++;
5838 while (ISALNUM (*p) || *p == '_');
5839
5840 if (is_apsr)
5841 {
5842 /* APSR uses a notation for bits, rather than fields. */
5843 unsigned int nzcvq_bits = 0;
5844 unsigned int g_bit = 0;
5845 char *bit;
5846
5847 for (bit = start; bit != p; bit++)
5848 {
5849 switch (TOLOWER (*bit))
5850 {
5851 case 'n':
5852 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5853 break;
5854
5855 case 'z':
5856 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5857 break;
5858
5859 case 'c':
5860 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5861 break;
5862
5863 case 'v':
5864 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5865 break;
5866
5867 case 'q':
5868 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5869 break;
5870
5871 case 'g':
5872 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5873 break;
5874
5875 default:
5876 inst.error = _("unexpected bit specified after APSR");
5877 return FAIL;
5878 }
5879 }
5880
5881 if (nzcvq_bits == 0x1f)
5882 psr_field |= PSR_f;
5883
5884 if (g_bit == 0x1)
5885 {
5886 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
5887 {
5888 inst.error = _("selected processor does not "
5889 "support DSP extension");
5890 return FAIL;
5891 }
5892
5893 psr_field |= PSR_s;
5894 }
5895
5896 if ((nzcvq_bits & 0x20) != 0
5897 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
5898 || (g_bit & 0x2) != 0)
5899 {
5900 inst.error = _("bad bitmask specified after APSR");
5901 return FAIL;
5902 }
5903 }
5904 else
5905 {
5906 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5907 p - start);
5908 if (!psr)
5909 goto error;
5910
5911 psr_field |= psr->field;
5912 }
5913 }
5914 else
5915 {
5916 if (ISALNUM (*p))
5917 goto error; /* Garbage after "[CS]PSR". */
5918
5919 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
5920 is deprecated, but allow it anyway. */
5921 if (is_apsr && lhs)
5922 {
5923 psr_field |= PSR_f;
5924 as_tsktsk (_("writing to APSR without specifying a bitmask is "
5925 "deprecated"));
5926 }
5927 else if (!m_profile)
5928 /* These bits are never right for M-profile devices: don't set them
5929 (only code paths which read/write APSR reach here). */
5930 psr_field |= (PSR_c | PSR_f);
5931 }
5932 *str = p;
5933 return psr_field;
5934
5935 unsupported_psr:
5936 inst.error = _("selected processor does not support requested special "
5937 "purpose register");
5938 return FAIL;
5939
5940 error:
5941 inst.error = _("flag for {c}psr instruction expected");
5942 return FAIL;
5943 }
5944
5945 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5946 value suitable for splatting into the AIF field of the instruction. */
5947
5948 static int
5949 parse_cps_flags (char **str)
5950 {
5951 int val = 0;
5952 int saw_a_flag = 0;
5953 char *s = *str;
5954
5955 for (;;)
5956 switch (*s++)
5957 {
5958 case '\0': case ',':
5959 goto done;
5960
5961 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5962 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5963 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
5964
5965 default:
5966 inst.error = _("unrecognized CPS flag");
5967 return FAIL;
5968 }
5969
5970 done:
5971 if (saw_a_flag == 0)
5972 {
5973 inst.error = _("missing CPS flags");
5974 return FAIL;
5975 }
5976
5977 *str = s - 1;
5978 return val;
5979 }
5980
5981 /* Parse an endian specifier ("BE" or "LE", case insensitive);
5982 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
5983
5984 static int
5985 parse_endian_specifier (char **str)
5986 {
5987 int little_endian;
5988 char *s = *str;
5989
5990 if (strncasecmp (s, "BE", 2))
5991 little_endian = 0;
5992 else if (strncasecmp (s, "LE", 2))
5993 little_endian = 1;
5994 else
5995 {
5996 inst.error = _("valid endian specifiers are be or le");
5997 return FAIL;
5998 }
5999
6000 if (ISALNUM (s[2]) || s[2] == '_')
6001 {
6002 inst.error = _("valid endian specifiers are be or le");
6003 return FAIL;
6004 }
6005
6006 *str = s + 2;
6007 return little_endian;
6008 }
6009
6010 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6011 value suitable for poking into the rotate field of an sxt or sxta
6012 instruction, or FAIL on error. */
6013
6014 static int
6015 parse_ror (char **str)
6016 {
6017 int rot;
6018 char *s = *str;
6019
6020 if (strncasecmp (s, "ROR", 3) == 0)
6021 s += 3;
6022 else
6023 {
6024 inst.error = _("missing rotation field after comma");
6025 return FAIL;
6026 }
6027
6028 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6029 return FAIL;
6030
6031 switch (rot)
6032 {
6033 case 0: *str = s; return 0x0;
6034 case 8: *str = s; return 0x1;
6035 case 16: *str = s; return 0x2;
6036 case 24: *str = s; return 0x3;
6037
6038 default:
6039 inst.error = _("rotation can only be 0, 8, 16, or 24");
6040 return FAIL;
6041 }
6042 }
6043
6044 /* Parse a conditional code (from conds[] below). The value returned is in the
6045 range 0 .. 14, or FAIL. */
6046 static int
6047 parse_cond (char **str)
6048 {
6049 char *q;
6050 const struct asm_cond *c;
6051 int n;
6052 /* Condition codes are always 2 characters, so matching up to
6053 3 characters is sufficient. */
6054 char cond[3];
6055
6056 q = *str;
6057 n = 0;
6058 while (ISALPHA (*q) && n < 3)
6059 {
6060 cond[n] = TOLOWER (*q);
6061 q++;
6062 n++;
6063 }
6064
6065 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
6066 if (!c)
6067 {
6068 inst.error = _("condition required");
6069 return FAIL;
6070 }
6071
6072 *str = q;
6073 return c->value;
6074 }
6075
6076 /* If the given feature available in the selected CPU, mark it as used.
6077 Returns TRUE iff feature is available. */
6078 static bfd_boolean
6079 mark_feature_used (const arm_feature_set *feature)
6080 {
6081 /* Ensure the option is valid on the current architecture. */
6082 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
6083 return FALSE;
6084
6085 /* Add the appropriate architecture feature for the barrier option used.
6086 */
6087 if (thumb_mode)
6088 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
6089 else
6090 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
6091
6092 return TRUE;
6093 }
6094
6095 /* Parse an option for a barrier instruction. Returns the encoding for the
6096 option, or FAIL. */
6097 static int
6098 parse_barrier (char **str)
6099 {
6100 char *p, *q;
6101 const struct asm_barrier_opt *o;
6102
6103 p = q = *str;
6104 while (ISALPHA (*q))
6105 q++;
6106
6107 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
6108 q - p);
6109 if (!o)
6110 return FAIL;
6111
6112 if (!mark_feature_used (&o->arch))
6113 return FAIL;
6114
6115 *str = q;
6116 return o->value;
6117 }
6118
6119 /* Parse the operands of a table branch instruction. Similar to a memory
6120 operand. */
6121 static int
6122 parse_tb (char **str)
6123 {
6124 char * p = *str;
6125 int reg;
6126
6127 if (skip_past_char (&p, '[') == FAIL)
6128 {
6129 inst.error = _("'[' expected");
6130 return FAIL;
6131 }
6132
6133 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6134 {
6135 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6136 return FAIL;
6137 }
6138 inst.operands[0].reg = reg;
6139
6140 if (skip_past_comma (&p) == FAIL)
6141 {
6142 inst.error = _("',' expected");
6143 return FAIL;
6144 }
6145
6146 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6147 {
6148 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6149 return FAIL;
6150 }
6151 inst.operands[0].imm = reg;
6152
6153 if (skip_past_comma (&p) == SUCCESS)
6154 {
6155 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6156 return FAIL;
6157 if (inst.reloc.exp.X_add_number != 1)
6158 {
6159 inst.error = _("invalid shift");
6160 return FAIL;
6161 }
6162 inst.operands[0].shifted = 1;
6163 }
6164
6165 if (skip_past_char (&p, ']') == FAIL)
6166 {
6167 inst.error = _("']' expected");
6168 return FAIL;
6169 }
6170 *str = p;
6171 return SUCCESS;
6172 }
6173
6174 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6175 information on the types the operands can take and how they are encoded.
6176 Up to four operands may be read; this function handles setting the
6177 ".present" field for each read operand itself.
6178 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6179 else returns FAIL. */
6180
6181 static int
6182 parse_neon_mov (char **str, int *which_operand)
6183 {
6184 int i = *which_operand, val;
6185 enum arm_reg_type rtype;
6186 char *ptr = *str;
6187 struct neon_type_el optype;
6188
6189 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
6190 {
6191 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6192 inst.operands[i].reg = val;
6193 inst.operands[i].isscalar = 1;
6194 inst.operands[i].vectype = optype;
6195 inst.operands[i++].present = 1;
6196
6197 if (skip_past_comma (&ptr) == FAIL)
6198 goto wanted_comma;
6199
6200 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6201 goto wanted_arm;
6202
6203 inst.operands[i].reg = val;
6204 inst.operands[i].isreg = 1;
6205 inst.operands[i].present = 1;
6206 }
6207 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6208 != FAIL)
6209 {
6210 /* Cases 0, 1, 2, 3, 5 (D only). */
6211 if (skip_past_comma (&ptr) == FAIL)
6212 goto wanted_comma;
6213
6214 inst.operands[i].reg = val;
6215 inst.operands[i].isreg = 1;
6216 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6217 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6218 inst.operands[i].isvec = 1;
6219 inst.operands[i].vectype = optype;
6220 inst.operands[i++].present = 1;
6221
6222 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6223 {
6224 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6225 Case 13: VMOV <Sd>, <Rm> */
6226 inst.operands[i].reg = val;
6227 inst.operands[i].isreg = 1;
6228 inst.operands[i].present = 1;
6229
6230 if (rtype == REG_TYPE_NQ)
6231 {
6232 first_error (_("can't use Neon quad register here"));
6233 return FAIL;
6234 }
6235 else if (rtype != REG_TYPE_VFS)
6236 {
6237 i++;
6238 if (skip_past_comma (&ptr) == FAIL)
6239 goto wanted_comma;
6240 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6241 goto wanted_arm;
6242 inst.operands[i].reg = val;
6243 inst.operands[i].isreg = 1;
6244 inst.operands[i].present = 1;
6245 }
6246 }
6247 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
6248 &optype)) != FAIL)
6249 {
6250 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6251 Case 1: VMOV<c><q> <Dd>, <Dm>
6252 Case 8: VMOV.F32 <Sd>, <Sm>
6253 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6254
6255 inst.operands[i].reg = val;
6256 inst.operands[i].isreg = 1;
6257 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6258 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6259 inst.operands[i].isvec = 1;
6260 inst.operands[i].vectype = optype;
6261 inst.operands[i].present = 1;
6262
6263 if (skip_past_comma (&ptr) == SUCCESS)
6264 {
6265 /* Case 15. */
6266 i++;
6267
6268 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6269 goto wanted_arm;
6270
6271 inst.operands[i].reg = val;
6272 inst.operands[i].isreg = 1;
6273 inst.operands[i++].present = 1;
6274
6275 if (skip_past_comma (&ptr) == FAIL)
6276 goto wanted_comma;
6277
6278 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6279 goto wanted_arm;
6280
6281 inst.operands[i].reg = val;
6282 inst.operands[i].isreg = 1;
6283 inst.operands[i].present = 1;
6284 }
6285 }
6286 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
6287 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6288 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6289 Case 10: VMOV.F32 <Sd>, #<imm>
6290 Case 11: VMOV.F64 <Dd>, #<imm> */
6291 inst.operands[i].immisfloat = 1;
6292 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6293 == SUCCESS)
6294 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6295 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6296 ;
6297 else
6298 {
6299 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6300 return FAIL;
6301 }
6302 }
6303 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6304 {
6305 /* Cases 6, 7. */
6306 inst.operands[i].reg = val;
6307 inst.operands[i].isreg = 1;
6308 inst.operands[i++].present = 1;
6309
6310 if (skip_past_comma (&ptr) == FAIL)
6311 goto wanted_comma;
6312
6313 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
6314 {
6315 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6316 inst.operands[i].reg = val;
6317 inst.operands[i].isscalar = 1;
6318 inst.operands[i].present = 1;
6319 inst.operands[i].vectype = optype;
6320 }
6321 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6322 {
6323 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6324 inst.operands[i].reg = val;
6325 inst.operands[i].isreg = 1;
6326 inst.operands[i++].present = 1;
6327
6328 if (skip_past_comma (&ptr) == FAIL)
6329 goto wanted_comma;
6330
6331 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6332 == FAIL)
6333 {
6334 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
6335 return FAIL;
6336 }
6337
6338 inst.operands[i].reg = val;
6339 inst.operands[i].isreg = 1;
6340 inst.operands[i].isvec = 1;
6341 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6342 inst.operands[i].vectype = optype;
6343 inst.operands[i].present = 1;
6344
6345 if (rtype == REG_TYPE_VFS)
6346 {
6347 /* Case 14. */
6348 i++;
6349 if (skip_past_comma (&ptr) == FAIL)
6350 goto wanted_comma;
6351 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6352 &optype)) == FAIL)
6353 {
6354 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6355 return FAIL;
6356 }
6357 inst.operands[i].reg = val;
6358 inst.operands[i].isreg = 1;
6359 inst.operands[i].isvec = 1;
6360 inst.operands[i].issingle = 1;
6361 inst.operands[i].vectype = optype;
6362 inst.operands[i].present = 1;
6363 }
6364 }
6365 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6366 != FAIL)
6367 {
6368 /* Case 13. */
6369 inst.operands[i].reg = val;
6370 inst.operands[i].isreg = 1;
6371 inst.operands[i].isvec = 1;
6372 inst.operands[i].issingle = 1;
6373 inst.operands[i].vectype = optype;
6374 inst.operands[i].present = 1;
6375 }
6376 }
6377 else
6378 {
6379 first_error (_("parse error"));
6380 return FAIL;
6381 }
6382
6383 /* Successfully parsed the operands. Update args. */
6384 *which_operand = i;
6385 *str = ptr;
6386 return SUCCESS;
6387
6388 wanted_comma:
6389 first_error (_("expected comma"));
6390 return FAIL;
6391
6392 wanted_arm:
6393 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6394 return FAIL;
6395 }
6396
6397 /* Use this macro when the operand constraints are different
6398 for ARM and THUMB (e.g. ldrd). */
6399 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6400 ((arm_operand) | ((thumb_operand) << 16))
6401
6402 /* Matcher codes for parse_operands. */
6403 enum operand_parse_code
6404 {
6405 OP_stop, /* end of line */
6406
6407 OP_RR, /* ARM register */
6408 OP_RRnpc, /* ARM register, not r15 */
6409 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6410 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6411 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6412 optional trailing ! */
6413 OP_RRw, /* ARM register, not r15, optional trailing ! */
6414 OP_RCP, /* Coprocessor number */
6415 OP_RCN, /* Coprocessor register */
6416 OP_RF, /* FPA register */
6417 OP_RVS, /* VFP single precision register */
6418 OP_RVD, /* VFP double precision register (0..15) */
6419 OP_RND, /* Neon double precision register (0..31) */
6420 OP_RNQ, /* Neon quad precision register */
6421 OP_RVSD, /* VFP single or double precision register */
6422 OP_RNDQ, /* Neon double or quad precision register */
6423 OP_RNSDQ, /* Neon single, double or quad precision register */
6424 OP_RNSC, /* Neon scalar D[X] */
6425 OP_RVC, /* VFP control register */
6426 OP_RMF, /* Maverick F register */
6427 OP_RMD, /* Maverick D register */
6428 OP_RMFX, /* Maverick FX register */
6429 OP_RMDX, /* Maverick DX register */
6430 OP_RMAX, /* Maverick AX register */
6431 OP_RMDS, /* Maverick DSPSC register */
6432 OP_RIWR, /* iWMMXt wR register */
6433 OP_RIWC, /* iWMMXt wC register */
6434 OP_RIWG, /* iWMMXt wCG register */
6435 OP_RXA, /* XScale accumulator register */
6436
6437 OP_REGLST, /* ARM register list */
6438 OP_VRSLST, /* VFP single-precision register list */
6439 OP_VRDLST, /* VFP double-precision register list */
6440 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6441 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6442 OP_NSTRLST, /* Neon element/structure list */
6443
6444 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6445 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6446 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
6447 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6448 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6449 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6450 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6451 OP_VMOV, /* Neon VMOV operands. */
6452 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6453 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6454 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6455
6456 OP_I0, /* immediate zero */
6457 OP_I7, /* immediate value 0 .. 7 */
6458 OP_I15, /* 0 .. 15 */
6459 OP_I16, /* 1 .. 16 */
6460 OP_I16z, /* 0 .. 16 */
6461 OP_I31, /* 0 .. 31 */
6462 OP_I31w, /* 0 .. 31, optional trailing ! */
6463 OP_I32, /* 1 .. 32 */
6464 OP_I32z, /* 0 .. 32 */
6465 OP_I63, /* 0 .. 63 */
6466 OP_I63s, /* -64 .. 63 */
6467 OP_I64, /* 1 .. 64 */
6468 OP_I64z, /* 0 .. 64 */
6469 OP_I255, /* 0 .. 255 */
6470
6471 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6472 OP_I7b, /* 0 .. 7 */
6473 OP_I15b, /* 0 .. 15 */
6474 OP_I31b, /* 0 .. 31 */
6475
6476 OP_SH, /* shifter operand */
6477 OP_SHG, /* shifter operand with possible group relocation */
6478 OP_ADDR, /* Memory address expression (any mode) */
6479 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6480 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6481 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
6482 OP_EXP, /* arbitrary expression */
6483 OP_EXPi, /* same, with optional immediate prefix */
6484 OP_EXPr, /* same, with optional relocation suffix */
6485 OP_HALF, /* 0 .. 65535 or low/high reloc. */
6486
6487 OP_CPSF, /* CPS flags */
6488 OP_ENDI, /* Endianness specifier */
6489 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6490 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
6491 OP_COND, /* conditional code */
6492 OP_TB, /* Table branch. */
6493
6494 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6495
6496 OP_RRnpc_I0, /* ARM register or literal 0 */
6497 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
6498 OP_RR_EXi, /* ARM register or expression with imm prefix */
6499 OP_RF_IF, /* FPA register or immediate */
6500 OP_RIWR_RIWC, /* iWMMXt R or C reg */
6501 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
6502
6503 /* Optional operands. */
6504 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6505 OP_oI31b, /* 0 .. 31 */
6506 OP_oI32b, /* 1 .. 32 */
6507 OP_oI32z, /* 0 .. 32 */
6508 OP_oIffffb, /* 0 .. 65535 */
6509 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6510
6511 OP_oRR, /* ARM register */
6512 OP_oRRnpc, /* ARM register, not the PC */
6513 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
6514 OP_oRRw, /* ARM register, not r15, optional trailing ! */
6515 OP_oRND, /* Optional Neon double precision register */
6516 OP_oRNQ, /* Optional Neon quad precision register */
6517 OP_oRNDQ, /* Optional Neon double or quad precision register */
6518 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
6519 OP_oSHll, /* LSL immediate */
6520 OP_oSHar, /* ASR immediate */
6521 OP_oSHllar, /* LSL or ASR immediate */
6522 OP_oROR, /* ROR 0/8/16/24 */
6523 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
6524
6525 /* Some pre-defined mixed (ARM/THUMB) operands. */
6526 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6527 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6528 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6529
6530 OP_FIRST_OPTIONAL = OP_oI7b
6531 };
6532
6533 /* Generic instruction operand parser. This does no encoding and no
6534 semantic validation; it merely squirrels values away in the inst
6535 structure. Returns SUCCESS or FAIL depending on whether the
6536 specified grammar matched. */
6537 static int
6538 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
6539 {
6540 unsigned const int *upat = pattern;
6541 char *backtrack_pos = 0;
6542 const char *backtrack_error = 0;
6543 int i, val = 0, backtrack_index = 0;
6544 enum arm_reg_type rtype;
6545 parse_operand_result result;
6546 unsigned int op_parse_code;
6547
6548 #define po_char_or_fail(chr) \
6549 do \
6550 { \
6551 if (skip_past_char (&str, chr) == FAIL) \
6552 goto bad_args; \
6553 } \
6554 while (0)
6555
6556 #define po_reg_or_fail(regtype) \
6557 do \
6558 { \
6559 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6560 & inst.operands[i].vectype); \
6561 if (val == FAIL) \
6562 { \
6563 first_error (_(reg_expected_msgs[regtype])); \
6564 goto failure; \
6565 } \
6566 inst.operands[i].reg = val; \
6567 inst.operands[i].isreg = 1; \
6568 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6569 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6570 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6571 || rtype == REG_TYPE_VFD \
6572 || rtype == REG_TYPE_NQ); \
6573 } \
6574 while (0)
6575
6576 #define po_reg_or_goto(regtype, label) \
6577 do \
6578 { \
6579 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6580 & inst.operands[i].vectype); \
6581 if (val == FAIL) \
6582 goto label; \
6583 \
6584 inst.operands[i].reg = val; \
6585 inst.operands[i].isreg = 1; \
6586 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6587 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6588 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6589 || rtype == REG_TYPE_VFD \
6590 || rtype == REG_TYPE_NQ); \
6591 } \
6592 while (0)
6593
6594 #define po_imm_or_fail(min, max, popt) \
6595 do \
6596 { \
6597 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6598 goto failure; \
6599 inst.operands[i].imm = val; \
6600 } \
6601 while (0)
6602
6603 #define po_scalar_or_goto(elsz, label) \
6604 do \
6605 { \
6606 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6607 if (val == FAIL) \
6608 goto label; \
6609 inst.operands[i].reg = val; \
6610 inst.operands[i].isscalar = 1; \
6611 } \
6612 while (0)
6613
6614 #define po_misc_or_fail(expr) \
6615 do \
6616 { \
6617 if (expr) \
6618 goto failure; \
6619 } \
6620 while (0)
6621
6622 #define po_misc_or_fail_no_backtrack(expr) \
6623 do \
6624 { \
6625 result = expr; \
6626 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6627 backtrack_pos = 0; \
6628 if (result != PARSE_OPERAND_SUCCESS) \
6629 goto failure; \
6630 } \
6631 while (0)
6632
6633 #define po_barrier_or_imm(str) \
6634 do \
6635 { \
6636 val = parse_barrier (&str); \
6637 if (val == FAIL && ! ISALPHA (*str)) \
6638 goto immediate; \
6639 if (val == FAIL \
6640 /* ISB can only take SY as an option. */ \
6641 || ((inst.instruction & 0xf0) == 0x60 \
6642 && val != 0xf)) \
6643 { \
6644 inst.error = _("invalid barrier type"); \
6645 backtrack_pos = 0; \
6646 goto failure; \
6647 } \
6648 } \
6649 while (0)
6650
6651 skip_whitespace (str);
6652
6653 for (i = 0; upat[i] != OP_stop; i++)
6654 {
6655 op_parse_code = upat[i];
6656 if (op_parse_code >= 1<<16)
6657 op_parse_code = thumb ? (op_parse_code >> 16)
6658 : (op_parse_code & ((1<<16)-1));
6659
6660 if (op_parse_code >= OP_FIRST_OPTIONAL)
6661 {
6662 /* Remember where we are in case we need to backtrack. */
6663 gas_assert (!backtrack_pos);
6664 backtrack_pos = str;
6665 backtrack_error = inst.error;
6666 backtrack_index = i;
6667 }
6668
6669 if (i > 0 && (i > 1 || inst.operands[0].present))
6670 po_char_or_fail (',');
6671
6672 switch (op_parse_code)
6673 {
6674 /* Registers */
6675 case OP_oRRnpc:
6676 case OP_oRRnpcsp:
6677 case OP_RRnpc:
6678 case OP_RRnpcsp:
6679 case OP_oRR:
6680 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6681 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6682 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6683 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6684 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6685 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
6686 case OP_oRND:
6687 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
6688 case OP_RVC:
6689 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6690 break;
6691 /* Also accept generic coprocessor regs for unknown registers. */
6692 coproc_reg:
6693 po_reg_or_fail (REG_TYPE_CN);
6694 break;
6695 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6696 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6697 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6698 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6699 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6700 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6701 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6702 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6703 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6704 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
6705 case OP_oRNQ:
6706 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6707 case OP_oRNDQ:
6708 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
6709 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6710 case OP_oRNSDQ:
6711 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6712
6713 /* Neon scalar. Using an element size of 8 means that some invalid
6714 scalars are accepted here, so deal with those in later code. */
6715 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6716
6717 case OP_RNDQ_I0:
6718 {
6719 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6720 break;
6721 try_imm0:
6722 po_imm_or_fail (0, 0, TRUE);
6723 }
6724 break;
6725
6726 case OP_RVSD_I0:
6727 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6728 break;
6729
6730 case OP_RSVD_FI0:
6731 {
6732 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
6733 break;
6734 try_ifimm0:
6735 if (parse_ifimm_zero (&str))
6736 inst.operands[i].imm = 0;
6737 else
6738 {
6739 inst.error
6740 = _("only floating point zero is allowed as immediate value");
6741 goto failure;
6742 }
6743 }
6744 break;
6745
6746 case OP_RR_RNSC:
6747 {
6748 po_scalar_or_goto (8, try_rr);
6749 break;
6750 try_rr:
6751 po_reg_or_fail (REG_TYPE_RN);
6752 }
6753 break;
6754
6755 case OP_RNSDQ_RNSC:
6756 {
6757 po_scalar_or_goto (8, try_nsdq);
6758 break;
6759 try_nsdq:
6760 po_reg_or_fail (REG_TYPE_NSDQ);
6761 }
6762 break;
6763
6764 case OP_RNDQ_RNSC:
6765 {
6766 po_scalar_or_goto (8, try_ndq);
6767 break;
6768 try_ndq:
6769 po_reg_or_fail (REG_TYPE_NDQ);
6770 }
6771 break;
6772
6773 case OP_RND_RNSC:
6774 {
6775 po_scalar_or_goto (8, try_vfd);
6776 break;
6777 try_vfd:
6778 po_reg_or_fail (REG_TYPE_VFD);
6779 }
6780 break;
6781
6782 case OP_VMOV:
6783 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6784 not careful then bad things might happen. */
6785 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6786 break;
6787
6788 case OP_RNDQ_Ibig:
6789 {
6790 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6791 break;
6792 try_immbig:
6793 /* There's a possibility of getting a 64-bit immediate here, so
6794 we need special handling. */
6795 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
6796 == FAIL)
6797 {
6798 inst.error = _("immediate value is out of range");
6799 goto failure;
6800 }
6801 }
6802 break;
6803
6804 case OP_RNDQ_I63b:
6805 {
6806 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6807 break;
6808 try_shimm:
6809 po_imm_or_fail (0, 63, TRUE);
6810 }
6811 break;
6812
6813 case OP_RRnpcb:
6814 po_char_or_fail ('[');
6815 po_reg_or_fail (REG_TYPE_RN);
6816 po_char_or_fail (']');
6817 break;
6818
6819 case OP_RRnpctw:
6820 case OP_RRw:
6821 case OP_oRRw:
6822 po_reg_or_fail (REG_TYPE_RN);
6823 if (skip_past_char (&str, '!') == SUCCESS)
6824 inst.operands[i].writeback = 1;
6825 break;
6826
6827 /* Immediates */
6828 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6829 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6830 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
6831 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
6832 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6833 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
6834 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
6835 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
6836 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6837 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6838 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
6839 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
6840
6841 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6842 case OP_oI7b:
6843 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6844 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6845 case OP_oI31b:
6846 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
6847 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6848 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
6849 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6850
6851 /* Immediate variants */
6852 case OP_oI255c:
6853 po_char_or_fail ('{');
6854 po_imm_or_fail (0, 255, TRUE);
6855 po_char_or_fail ('}');
6856 break;
6857
6858 case OP_I31w:
6859 /* The expression parser chokes on a trailing !, so we have
6860 to find it first and zap it. */
6861 {
6862 char *s = str;
6863 while (*s && *s != ',')
6864 s++;
6865 if (s[-1] == '!')
6866 {
6867 s[-1] = '\0';
6868 inst.operands[i].writeback = 1;
6869 }
6870 po_imm_or_fail (0, 31, TRUE);
6871 if (str == s - 1)
6872 str = s;
6873 }
6874 break;
6875
6876 /* Expressions */
6877 case OP_EXPi: EXPi:
6878 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6879 GE_OPT_PREFIX));
6880 break;
6881
6882 case OP_EXP:
6883 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6884 GE_NO_PREFIX));
6885 break;
6886
6887 case OP_EXPr: EXPr:
6888 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6889 GE_NO_PREFIX));
6890 if (inst.reloc.exp.X_op == O_symbol)
6891 {
6892 val = parse_reloc (&str);
6893 if (val == -1)
6894 {
6895 inst.error = _("unrecognized relocation suffix");
6896 goto failure;
6897 }
6898 else if (val != BFD_RELOC_UNUSED)
6899 {
6900 inst.operands[i].imm = val;
6901 inst.operands[i].hasreloc = 1;
6902 }
6903 }
6904 break;
6905
6906 /* Operand for MOVW or MOVT. */
6907 case OP_HALF:
6908 po_misc_or_fail (parse_half (&str));
6909 break;
6910
6911 /* Register or expression. */
6912 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6913 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
6914
6915 /* Register or immediate. */
6916 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6917 I0: po_imm_or_fail (0, 0, FALSE); break;
6918
6919 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6920 IF:
6921 if (!is_immediate_prefix (*str))
6922 goto bad_args;
6923 str++;
6924 val = parse_fpa_immediate (&str);
6925 if (val == FAIL)
6926 goto failure;
6927 /* FPA immediates are encoded as registers 8-15.
6928 parse_fpa_immediate has already applied the offset. */
6929 inst.operands[i].reg = val;
6930 inst.operands[i].isreg = 1;
6931 break;
6932
6933 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6934 I32z: po_imm_or_fail (0, 32, FALSE); break;
6935
6936 /* Two kinds of register. */
6937 case OP_RIWR_RIWC:
6938 {
6939 struct reg_entry *rege = arm_reg_parse_multi (&str);
6940 if (!rege
6941 || (rege->type != REG_TYPE_MMXWR
6942 && rege->type != REG_TYPE_MMXWC
6943 && rege->type != REG_TYPE_MMXWCG))
6944 {
6945 inst.error = _("iWMMXt data or control register expected");
6946 goto failure;
6947 }
6948 inst.operands[i].reg = rege->number;
6949 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6950 }
6951 break;
6952
6953 case OP_RIWC_RIWG:
6954 {
6955 struct reg_entry *rege = arm_reg_parse_multi (&str);
6956 if (!rege
6957 || (rege->type != REG_TYPE_MMXWC
6958 && rege->type != REG_TYPE_MMXWCG))
6959 {
6960 inst.error = _("iWMMXt control register expected");
6961 goto failure;
6962 }
6963 inst.operands[i].reg = rege->number;
6964 inst.operands[i].isreg = 1;
6965 }
6966 break;
6967
6968 /* Misc */
6969 case OP_CPSF: val = parse_cps_flags (&str); break;
6970 case OP_ENDI: val = parse_endian_specifier (&str); break;
6971 case OP_oROR: val = parse_ror (&str); break;
6972 case OP_COND: val = parse_cond (&str); break;
6973 case OP_oBARRIER_I15:
6974 po_barrier_or_imm (str); break;
6975 immediate:
6976 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
6977 goto failure;
6978 break;
6979
6980 case OP_wPSR:
6981 case OP_rPSR:
6982 po_reg_or_goto (REG_TYPE_RNB, try_psr);
6983 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
6984 {
6985 inst.error = _("Banked registers are not available with this "
6986 "architecture.");
6987 goto failure;
6988 }
6989 break;
6990 try_psr:
6991 val = parse_psr (&str, op_parse_code == OP_wPSR);
6992 break;
6993
6994 case OP_APSR_RR:
6995 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6996 break;
6997 try_apsr:
6998 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6999 instruction). */
7000 if (strncasecmp (str, "APSR_", 5) == 0)
7001 {
7002 unsigned found = 0;
7003 str += 5;
7004 while (found < 15)
7005 switch (*str++)
7006 {
7007 case 'c': found = (found & 1) ? 16 : found | 1; break;
7008 case 'n': found = (found & 2) ? 16 : found | 2; break;
7009 case 'z': found = (found & 4) ? 16 : found | 4; break;
7010 case 'v': found = (found & 8) ? 16 : found | 8; break;
7011 default: found = 16;
7012 }
7013 if (found != 15)
7014 goto failure;
7015 inst.operands[i].isvec = 1;
7016 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7017 inst.operands[i].reg = REG_PC;
7018 }
7019 else
7020 goto failure;
7021 break;
7022
7023 case OP_TB:
7024 po_misc_or_fail (parse_tb (&str));
7025 break;
7026
7027 /* Register lists. */
7028 case OP_REGLST:
7029 val = parse_reg_list (&str);
7030 if (*str == '^')
7031 {
7032 inst.operands[i].writeback = 1;
7033 str++;
7034 }
7035 break;
7036
7037 case OP_VRSLST:
7038 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
7039 break;
7040
7041 case OP_VRDLST:
7042 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
7043 break;
7044
7045 case OP_VRSDLST:
7046 /* Allow Q registers too. */
7047 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7048 REGLIST_NEON_D);
7049 if (val == FAIL)
7050 {
7051 inst.error = NULL;
7052 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7053 REGLIST_VFP_S);
7054 inst.operands[i].issingle = 1;
7055 }
7056 break;
7057
7058 case OP_NRDLST:
7059 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7060 REGLIST_NEON_D);
7061 break;
7062
7063 case OP_NSTRLST:
7064 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7065 &inst.operands[i].vectype);
7066 break;
7067
7068 /* Addressing modes */
7069 case OP_ADDR:
7070 po_misc_or_fail (parse_address (&str, i));
7071 break;
7072
7073 case OP_ADDRGLDR:
7074 po_misc_or_fail_no_backtrack (
7075 parse_address_group_reloc (&str, i, GROUP_LDR));
7076 break;
7077
7078 case OP_ADDRGLDRS:
7079 po_misc_or_fail_no_backtrack (
7080 parse_address_group_reloc (&str, i, GROUP_LDRS));
7081 break;
7082
7083 case OP_ADDRGLDC:
7084 po_misc_or_fail_no_backtrack (
7085 parse_address_group_reloc (&str, i, GROUP_LDC));
7086 break;
7087
7088 case OP_SH:
7089 po_misc_or_fail (parse_shifter_operand (&str, i));
7090 break;
7091
7092 case OP_SHG:
7093 po_misc_or_fail_no_backtrack (
7094 parse_shifter_operand_group_reloc (&str, i));
7095 break;
7096
7097 case OP_oSHll:
7098 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7099 break;
7100
7101 case OP_oSHar:
7102 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7103 break;
7104
7105 case OP_oSHllar:
7106 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7107 break;
7108
7109 default:
7110 as_fatal (_("unhandled operand code %d"), op_parse_code);
7111 }
7112
7113 /* Various value-based sanity checks and shared operations. We
7114 do not signal immediate failures for the register constraints;
7115 this allows a syntax error to take precedence. */
7116 switch (op_parse_code)
7117 {
7118 case OP_oRRnpc:
7119 case OP_RRnpc:
7120 case OP_RRnpcb:
7121 case OP_RRw:
7122 case OP_oRRw:
7123 case OP_RRnpc_I0:
7124 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7125 inst.error = BAD_PC;
7126 break;
7127
7128 case OP_oRRnpcsp:
7129 case OP_RRnpcsp:
7130 if (inst.operands[i].isreg)
7131 {
7132 if (inst.operands[i].reg == REG_PC)
7133 inst.error = BAD_PC;
7134 else if (inst.operands[i].reg == REG_SP)
7135 inst.error = BAD_SP;
7136 }
7137 break;
7138
7139 case OP_RRnpctw:
7140 if (inst.operands[i].isreg
7141 && inst.operands[i].reg == REG_PC
7142 && (inst.operands[i].writeback || thumb))
7143 inst.error = BAD_PC;
7144 break;
7145
7146 case OP_CPSF:
7147 case OP_ENDI:
7148 case OP_oROR:
7149 case OP_wPSR:
7150 case OP_rPSR:
7151 case OP_COND:
7152 case OP_oBARRIER_I15:
7153 case OP_REGLST:
7154 case OP_VRSLST:
7155 case OP_VRDLST:
7156 case OP_VRSDLST:
7157 case OP_NRDLST:
7158 case OP_NSTRLST:
7159 if (val == FAIL)
7160 goto failure;
7161 inst.operands[i].imm = val;
7162 break;
7163
7164 default:
7165 break;
7166 }
7167
7168 /* If we get here, this operand was successfully parsed. */
7169 inst.operands[i].present = 1;
7170 continue;
7171
7172 bad_args:
7173 inst.error = BAD_ARGS;
7174
7175 failure:
7176 if (!backtrack_pos)
7177 {
7178 /* The parse routine should already have set inst.error, but set a
7179 default here just in case. */
7180 if (!inst.error)
7181 inst.error = _("syntax error");
7182 return FAIL;
7183 }
7184
7185 /* Do not backtrack over a trailing optional argument that
7186 absorbed some text. We will only fail again, with the
7187 'garbage following instruction' error message, which is
7188 probably less helpful than the current one. */
7189 if (backtrack_index == i && backtrack_pos != str
7190 && upat[i+1] == OP_stop)
7191 {
7192 if (!inst.error)
7193 inst.error = _("syntax error");
7194 return FAIL;
7195 }
7196
7197 /* Try again, skipping the optional argument at backtrack_pos. */
7198 str = backtrack_pos;
7199 inst.error = backtrack_error;
7200 inst.operands[backtrack_index].present = 0;
7201 i = backtrack_index;
7202 backtrack_pos = 0;
7203 }
7204
7205 /* Check that we have parsed all the arguments. */
7206 if (*str != '\0' && !inst.error)
7207 inst.error = _("garbage following instruction");
7208
7209 return inst.error ? FAIL : SUCCESS;
7210 }
7211
7212 #undef po_char_or_fail
7213 #undef po_reg_or_fail
7214 #undef po_reg_or_goto
7215 #undef po_imm_or_fail
7216 #undef po_scalar_or_fail
7217 #undef po_barrier_or_imm
7218
7219 /* Shorthand macro for instruction encoding functions issuing errors. */
7220 #define constraint(expr, err) \
7221 do \
7222 { \
7223 if (expr) \
7224 { \
7225 inst.error = err; \
7226 return; \
7227 } \
7228 } \
7229 while (0)
7230
7231 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7232 instructions are unpredictable if these registers are used. This
7233 is the BadReg predicate in ARM's Thumb-2 documentation. */
7234 #define reject_bad_reg(reg) \
7235 do \
7236 if (reg == REG_SP || reg == REG_PC) \
7237 { \
7238 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
7239 return; \
7240 } \
7241 while (0)
7242
7243 /* If REG is R13 (the stack pointer), warn that its use is
7244 deprecated. */
7245 #define warn_deprecated_sp(reg) \
7246 do \
7247 if (warn_on_deprecated && reg == REG_SP) \
7248 as_tsktsk (_("use of r13 is deprecated")); \
7249 while (0)
7250
7251 /* Functions for operand encoding. ARM, then Thumb. */
7252
7253 #define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
7254
7255 /* If VAL can be encoded in the immediate field of an ARM instruction,
7256 return the encoded form. Otherwise, return FAIL. */
7257
7258 static unsigned int
7259 encode_arm_immediate (unsigned int val)
7260 {
7261 unsigned int a, i;
7262
7263 for (i = 0; i < 32; i += 2)
7264 if ((a = rotate_left (val, i)) <= 0xff)
7265 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
7266
7267 return FAIL;
7268 }
7269
7270 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
7271 return the encoded form. Otherwise, return FAIL. */
7272 static unsigned int
7273 encode_thumb32_immediate (unsigned int val)
7274 {
7275 unsigned int a, i;
7276
7277 if (val <= 0xff)
7278 return val;
7279
7280 for (i = 1; i <= 24; i++)
7281 {
7282 a = val >> i;
7283 if ((val & ~(0xff << i)) == 0)
7284 return ((val >> i) & 0x7f) | ((32 - i) << 7);
7285 }
7286
7287 a = val & 0xff;
7288 if (val == ((a << 16) | a))
7289 return 0x100 | a;
7290 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
7291 return 0x300 | a;
7292
7293 a = val & 0xff00;
7294 if (val == ((a << 16) | a))
7295 return 0x200 | (a >> 8);
7296
7297 return FAIL;
7298 }
7299 /* Encode a VFP SP or DP register number into inst.instruction. */
7300
7301 static void
7302 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
7303 {
7304 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
7305 && reg > 15)
7306 {
7307 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
7308 {
7309 if (thumb_mode)
7310 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
7311 fpu_vfp_ext_d32);
7312 else
7313 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
7314 fpu_vfp_ext_d32);
7315 }
7316 else
7317 {
7318 first_error (_("D register out of range for selected VFP version"));
7319 return;
7320 }
7321 }
7322
7323 switch (pos)
7324 {
7325 case VFP_REG_Sd:
7326 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
7327 break;
7328
7329 case VFP_REG_Sn:
7330 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
7331 break;
7332
7333 case VFP_REG_Sm:
7334 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
7335 break;
7336
7337 case VFP_REG_Dd:
7338 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
7339 break;
7340
7341 case VFP_REG_Dn:
7342 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
7343 break;
7344
7345 case VFP_REG_Dm:
7346 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
7347 break;
7348
7349 default:
7350 abort ();
7351 }
7352 }
7353
7354 /* Encode a <shift> in an ARM-format instruction. The immediate,
7355 if any, is handled by md_apply_fix. */
7356 static void
7357 encode_arm_shift (int i)
7358 {
7359 if (inst.operands[i].shift_kind == SHIFT_RRX)
7360 inst.instruction |= SHIFT_ROR << 5;
7361 else
7362 {
7363 inst.instruction |= inst.operands[i].shift_kind << 5;
7364 if (inst.operands[i].immisreg)
7365 {
7366 inst.instruction |= SHIFT_BY_REG;
7367 inst.instruction |= inst.operands[i].imm << 8;
7368 }
7369 else
7370 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7371 }
7372 }
7373
7374 static void
7375 encode_arm_shifter_operand (int i)
7376 {
7377 if (inst.operands[i].isreg)
7378 {
7379 inst.instruction |= inst.operands[i].reg;
7380 encode_arm_shift (i);
7381 }
7382 else
7383 {
7384 inst.instruction |= INST_IMMEDIATE;
7385 if (inst.reloc.type != BFD_RELOC_ARM_IMMEDIATE)
7386 inst.instruction |= inst.operands[i].imm;
7387 }
7388 }
7389
7390 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
7391 static void
7392 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
7393 {
7394 /* PR 14260:
7395 Generate an error if the operand is not a register. */
7396 constraint (!inst.operands[i].isreg,
7397 _("Instruction does not support =N addresses"));
7398
7399 inst.instruction |= inst.operands[i].reg << 16;
7400
7401 if (inst.operands[i].preind)
7402 {
7403 if (is_t)
7404 {
7405 inst.error = _("instruction does not accept preindexed addressing");
7406 return;
7407 }
7408 inst.instruction |= PRE_INDEX;
7409 if (inst.operands[i].writeback)
7410 inst.instruction |= WRITE_BACK;
7411
7412 }
7413 else if (inst.operands[i].postind)
7414 {
7415 gas_assert (inst.operands[i].writeback);
7416 if (is_t)
7417 inst.instruction |= WRITE_BACK;
7418 }
7419 else /* unindexed - only for coprocessor */
7420 {
7421 inst.error = _("instruction does not accept unindexed addressing");
7422 return;
7423 }
7424
7425 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7426 && (((inst.instruction & 0x000f0000) >> 16)
7427 == ((inst.instruction & 0x0000f000) >> 12)))
7428 as_warn ((inst.instruction & LOAD_BIT)
7429 ? _("destination register same as write-back base")
7430 : _("source register same as write-back base"));
7431 }
7432
7433 /* inst.operands[i] was set up by parse_address. Encode it into an
7434 ARM-format mode 2 load or store instruction. If is_t is true,
7435 reject forms that cannot be used with a T instruction (i.e. not
7436 post-indexed). */
7437 static void
7438 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
7439 {
7440 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7441
7442 encode_arm_addr_mode_common (i, is_t);
7443
7444 if (inst.operands[i].immisreg)
7445 {
7446 constraint ((inst.operands[i].imm == REG_PC
7447 || (is_pc && inst.operands[i].writeback)),
7448 BAD_PC_ADDRESSING);
7449 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7450 inst.instruction |= inst.operands[i].imm;
7451 if (!inst.operands[i].negative)
7452 inst.instruction |= INDEX_UP;
7453 if (inst.operands[i].shifted)
7454 {
7455 if (inst.operands[i].shift_kind == SHIFT_RRX)
7456 inst.instruction |= SHIFT_ROR << 5;
7457 else
7458 {
7459 inst.instruction |= inst.operands[i].shift_kind << 5;
7460 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7461 }
7462 }
7463 }
7464 else /* immediate offset in inst.reloc */
7465 {
7466 if (is_pc && !inst.reloc.pc_rel)
7467 {
7468 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
7469
7470 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7471 cannot use PC in addressing.
7472 PC cannot be used in writeback addressing, either. */
7473 constraint ((is_t || inst.operands[i].writeback),
7474 BAD_PC_ADDRESSING);
7475
7476 /* Use of PC in str is deprecated for ARMv7. */
7477 if (warn_on_deprecated
7478 && !is_load
7479 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
7480 as_tsktsk (_("use of PC in this instruction is deprecated"));
7481 }
7482
7483 if (inst.reloc.type == BFD_RELOC_UNUSED)
7484 {
7485 /* Prefer + for zero encoded value. */
7486 if (!inst.operands[i].negative)
7487 inst.instruction |= INDEX_UP;
7488 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
7489 }
7490 }
7491 }
7492
7493 /* inst.operands[i] was set up by parse_address. Encode it into an
7494 ARM-format mode 3 load or store instruction. Reject forms that
7495 cannot be used with such instructions. If is_t is true, reject
7496 forms that cannot be used with a T instruction (i.e. not
7497 post-indexed). */
7498 static void
7499 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
7500 {
7501 if (inst.operands[i].immisreg && inst.operands[i].shifted)
7502 {
7503 inst.error = _("instruction does not accept scaled register index");
7504 return;
7505 }
7506
7507 encode_arm_addr_mode_common (i, is_t);
7508
7509 if (inst.operands[i].immisreg)
7510 {
7511 constraint ((inst.operands[i].imm == REG_PC
7512 || (is_t && inst.operands[i].reg == REG_PC)),
7513 BAD_PC_ADDRESSING);
7514 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
7515 BAD_PC_WRITEBACK);
7516 inst.instruction |= inst.operands[i].imm;
7517 if (!inst.operands[i].negative)
7518 inst.instruction |= INDEX_UP;
7519 }
7520 else /* immediate offset in inst.reloc */
7521 {
7522 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
7523 && inst.operands[i].writeback),
7524 BAD_PC_WRITEBACK);
7525 inst.instruction |= HWOFFSET_IMM;
7526 if (inst.reloc.type == BFD_RELOC_UNUSED)
7527 {
7528 /* Prefer + for zero encoded value. */
7529 if (!inst.operands[i].negative)
7530 inst.instruction |= INDEX_UP;
7531
7532 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
7533 }
7534 }
7535 }
7536
7537 /* Write immediate bits [7:0] to the following locations:
7538
7539 |28/24|23 19|18 16|15 4|3 0|
7540 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
7541
7542 This function is used by VMOV/VMVN/VORR/VBIC. */
7543
7544 static void
7545 neon_write_immbits (unsigned immbits)
7546 {
7547 inst.instruction |= immbits & 0xf;
7548 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
7549 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
7550 }
7551
7552 /* Invert low-order SIZE bits of XHI:XLO. */
7553
7554 static void
7555 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
7556 {
7557 unsigned immlo = xlo ? *xlo : 0;
7558 unsigned immhi = xhi ? *xhi : 0;
7559
7560 switch (size)
7561 {
7562 case 8:
7563 immlo = (~immlo) & 0xff;
7564 break;
7565
7566 case 16:
7567 immlo = (~immlo) & 0xffff;
7568 break;
7569
7570 case 64:
7571 immhi = (~immhi) & 0xffffffff;
7572 /* fall through. */
7573
7574 case 32:
7575 immlo = (~immlo) & 0xffffffff;
7576 break;
7577
7578 default:
7579 abort ();
7580 }
7581
7582 if (xlo)
7583 *xlo = immlo;
7584
7585 if (xhi)
7586 *xhi = immhi;
7587 }
7588
7589 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
7590 A, B, C, D. */
7591
7592 static int
7593 neon_bits_same_in_bytes (unsigned imm)
7594 {
7595 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
7596 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
7597 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
7598 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
7599 }
7600
7601 /* For immediate of above form, return 0bABCD. */
7602
7603 static unsigned
7604 neon_squash_bits (unsigned imm)
7605 {
7606 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
7607 | ((imm & 0x01000000) >> 21);
7608 }
7609
7610 /* Compress quarter-float representation to 0b...000 abcdefgh. */
7611
7612 static unsigned
7613 neon_qfloat_bits (unsigned imm)
7614 {
7615 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
7616 }
7617
7618 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
7619 the instruction. *OP is passed as the initial value of the op field, and
7620 may be set to a different value depending on the constant (i.e.
7621 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
7622 MVN). If the immediate looks like a repeated pattern then also
7623 try smaller element sizes. */
7624
7625 static int
7626 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
7627 unsigned *immbits, int *op, int size,
7628 enum neon_el_type type)
7629 {
7630 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
7631 float. */
7632 if (type == NT_float && !float_p)
7633 return FAIL;
7634
7635 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
7636 {
7637 if (size != 32 || *op == 1)
7638 return FAIL;
7639 *immbits = neon_qfloat_bits (immlo);
7640 return 0xf;
7641 }
7642
7643 if (size == 64)
7644 {
7645 if (neon_bits_same_in_bytes (immhi)
7646 && neon_bits_same_in_bytes (immlo))
7647 {
7648 if (*op == 1)
7649 return FAIL;
7650 *immbits = (neon_squash_bits (immhi) << 4)
7651 | neon_squash_bits (immlo);
7652 *op = 1;
7653 return 0xe;
7654 }
7655
7656 if (immhi != immlo)
7657 return FAIL;
7658 }
7659
7660 if (size >= 32)
7661 {
7662 if (immlo == (immlo & 0x000000ff))
7663 {
7664 *immbits = immlo;
7665 return 0x0;
7666 }
7667 else if (immlo == (immlo & 0x0000ff00))
7668 {
7669 *immbits = immlo >> 8;
7670 return 0x2;
7671 }
7672 else if (immlo == (immlo & 0x00ff0000))
7673 {
7674 *immbits = immlo >> 16;
7675 return 0x4;
7676 }
7677 else if (immlo == (immlo & 0xff000000))
7678 {
7679 *immbits = immlo >> 24;
7680 return 0x6;
7681 }
7682 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
7683 {
7684 *immbits = (immlo >> 8) & 0xff;
7685 return 0xc;
7686 }
7687 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
7688 {
7689 *immbits = (immlo >> 16) & 0xff;
7690 return 0xd;
7691 }
7692
7693 if ((immlo & 0xffff) != (immlo >> 16))
7694 return FAIL;
7695 immlo &= 0xffff;
7696 }
7697
7698 if (size >= 16)
7699 {
7700 if (immlo == (immlo & 0x000000ff))
7701 {
7702 *immbits = immlo;
7703 return 0x8;
7704 }
7705 else if (immlo == (immlo & 0x0000ff00))
7706 {
7707 *immbits = immlo >> 8;
7708 return 0xa;
7709 }
7710
7711 if ((immlo & 0xff) != (immlo >> 8))
7712 return FAIL;
7713 immlo &= 0xff;
7714 }
7715
7716 if (immlo == (immlo & 0x000000ff))
7717 {
7718 /* Don't allow MVN with 8-bit immediate. */
7719 if (*op == 1)
7720 return FAIL;
7721 *immbits = immlo;
7722 return 0xe;
7723 }
7724
7725 return FAIL;
7726 }
7727
7728 #if defined BFD_HOST_64_BIT
7729 /* Returns TRUE if double precision value V may be cast
7730 to single precision without loss of accuracy. */
7731
7732 static bfd_boolean
7733 is_double_a_single (bfd_int64_t v)
7734 {
7735 int exp = (int)((v >> 52) & 0x7FF);
7736 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
7737
7738 return (exp == 0 || exp == 0x7FF
7739 || (exp >= 1023 - 126 && exp <= 1023 + 127))
7740 && (mantissa & 0x1FFFFFFFl) == 0;
7741 }
7742
7743 /* Returns a double precision value casted to single precision
7744 (ignoring the least significant bits in exponent and mantissa). */
7745
7746 static int
7747 double_to_single (bfd_int64_t v)
7748 {
7749 int sign = (int) ((v >> 63) & 1l);
7750 int exp = (int) ((v >> 52) & 0x7FF);
7751 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
7752
7753 if (exp == 0x7FF)
7754 exp = 0xFF;
7755 else
7756 {
7757 exp = exp - 1023 + 127;
7758 if (exp >= 0xFF)
7759 {
7760 /* Infinity. */
7761 exp = 0x7F;
7762 mantissa = 0;
7763 }
7764 else if (exp < 0)
7765 {
7766 /* No denormalized numbers. */
7767 exp = 0;
7768 mantissa = 0;
7769 }
7770 }
7771 mantissa >>= 29;
7772 return (sign << 31) | (exp << 23) | mantissa;
7773 }
7774 #endif /* BFD_HOST_64_BIT */
7775
7776 enum lit_type
7777 {
7778 CONST_THUMB,
7779 CONST_ARM,
7780 CONST_VEC
7781 };
7782
7783 static void do_vfp_nsyn_opcode (const char *);
7784
7785 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
7786 Determine whether it can be performed with a move instruction; if
7787 it can, convert inst.instruction to that move instruction and
7788 return TRUE; if it can't, convert inst.instruction to a literal-pool
7789 load and return FALSE. If this is not a valid thing to do in the
7790 current context, set inst.error and return TRUE.
7791
7792 inst.operands[i] describes the destination register. */
7793
7794 static bfd_boolean
7795 move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
7796 {
7797 unsigned long tbit;
7798 bfd_boolean thumb_p = (t == CONST_THUMB);
7799 bfd_boolean arm_p = (t == CONST_ARM);
7800
7801 if (thumb_p)
7802 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7803 else
7804 tbit = LOAD_BIT;
7805
7806 if ((inst.instruction & tbit) == 0)
7807 {
7808 inst.error = _("invalid pseudo operation");
7809 return TRUE;
7810 }
7811
7812 if (inst.reloc.exp.X_op != O_constant
7813 && inst.reloc.exp.X_op != O_symbol
7814 && inst.reloc.exp.X_op != O_big)
7815 {
7816 inst.error = _("constant expression expected");
7817 return TRUE;
7818 }
7819
7820 if (inst.reloc.exp.X_op == O_constant
7821 || inst.reloc.exp.X_op == O_big)
7822 {
7823 #if defined BFD_HOST_64_BIT
7824 bfd_int64_t v;
7825 #else
7826 offsetT v;
7827 #endif
7828 if (inst.reloc.exp.X_op == O_big)
7829 {
7830 LITTLENUM_TYPE w[X_PRECISION];
7831 LITTLENUM_TYPE * l;
7832
7833 if (inst.reloc.exp.X_add_number == -1)
7834 {
7835 gen_to_words (w, X_PRECISION, E_PRECISION);
7836 l = w;
7837 /* FIXME: Should we check words w[2..5] ? */
7838 }
7839 else
7840 l = generic_bignum;
7841
7842 #if defined BFD_HOST_64_BIT
7843 v =
7844 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
7845 << LITTLENUM_NUMBER_OF_BITS)
7846 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
7847 << LITTLENUM_NUMBER_OF_BITS)
7848 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
7849 << LITTLENUM_NUMBER_OF_BITS)
7850 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
7851 #else
7852 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
7853 | (l[0] & LITTLENUM_MASK);
7854 #endif
7855 }
7856 else
7857 v = inst.reloc.exp.X_add_number;
7858
7859 if (!inst.operands[i].issingle)
7860 {
7861 if (thumb_p)
7862 {
7863 /* This can be encoded only for a low register. */
7864 if ((v & ~0xFF) == 0 && (inst.operands[i].reg < 8))
7865 {
7866 /* This can be done with a mov(1) instruction. */
7867 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
7868 inst.instruction |= v;
7869 return TRUE;
7870 }
7871
7872 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
7873 {
7874 /* Check if on thumb2 it can be done with a mov.w, mvn or
7875 movw instruction. */
7876 unsigned int newimm;
7877 bfd_boolean isNegated;
7878
7879 newimm = encode_thumb32_immediate (v);
7880 if (newimm != (unsigned int) FAIL)
7881 isNegated = FALSE;
7882 else
7883 {
7884 newimm = encode_thumb32_immediate (~v);
7885 if (newimm != (unsigned int) FAIL)
7886 isNegated = TRUE;
7887 }
7888
7889 /* The number can be loaded with a mov.w or mvn
7890 instruction. */
7891 if (newimm != (unsigned int) FAIL)
7892 {
7893 inst.instruction = (0xf04f0000 /* MOV.W. */
7894 | (inst.operands[i].reg << 8));
7895 /* Change to MOVN. */
7896 inst.instruction |= (isNegated ? 0x200000 : 0);
7897 inst.instruction |= (newimm & 0x800) << 15;
7898 inst.instruction |= (newimm & 0x700) << 4;
7899 inst.instruction |= (newimm & 0x0ff);
7900 return TRUE;
7901 }
7902 /* The number can be loaded with a movw instruction. */
7903 else if ((v & ~0xFFFF) == 0)
7904 {
7905 int imm = v & 0xFFFF;
7906
7907 inst.instruction = 0xf2400000; /* MOVW. */
7908 inst.instruction |= (inst.operands[i].reg << 8);
7909 inst.instruction |= (imm & 0xf000) << 4;
7910 inst.instruction |= (imm & 0x0800) << 15;
7911 inst.instruction |= (imm & 0x0700) << 4;
7912 inst.instruction |= (imm & 0x00ff);
7913 return TRUE;
7914 }
7915 }
7916 }
7917 else if (arm_p)
7918 {
7919 int value = encode_arm_immediate (v);
7920
7921 if (value != FAIL)
7922 {
7923 /* This can be done with a mov instruction. */
7924 inst.instruction &= LITERAL_MASK;
7925 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
7926 inst.instruction |= value & 0xfff;
7927 return TRUE;
7928 }
7929
7930 value = encode_arm_immediate (~ v);
7931 if (value != FAIL)
7932 {
7933 /* This can be done with a mvn instruction. */
7934 inst.instruction &= LITERAL_MASK;
7935 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
7936 inst.instruction |= value & 0xfff;
7937 return TRUE;
7938 }
7939 }
7940 else if (t == CONST_VEC)
7941 {
7942 int op = 0;
7943 unsigned immbits = 0;
7944 unsigned immlo = inst.operands[1].imm;
7945 unsigned immhi = inst.operands[1].regisimm
7946 ? inst.operands[1].reg
7947 : inst.reloc.exp.X_unsigned
7948 ? 0
7949 : ((bfd_int64_t)((int) immlo)) >> 32;
7950 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
7951 &op, 64, NT_invtype);
7952
7953 if (cmode == FAIL)
7954 {
7955 neon_invert_size (&immlo, &immhi, 64);
7956 op = !op;
7957 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
7958 &op, 64, NT_invtype);
7959 }
7960
7961 if (cmode != FAIL)
7962 {
7963 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
7964 | (1 << 23)
7965 | (cmode << 8)
7966 | (op << 5)
7967 | (1 << 4);
7968
7969 /* Fill other bits in vmov encoding for both thumb and arm. */
7970 if (thumb_mode)
7971 inst.instruction |= (0x7U << 29) | (0xF << 24);
7972 else
7973 inst.instruction |= (0xFU << 28) | (0x1 << 25);
7974 neon_write_immbits (immbits);
7975 return TRUE;
7976 }
7977 }
7978 }
7979
7980 if (t == CONST_VEC)
7981 {
7982 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
7983 if (inst.operands[i].issingle
7984 && is_quarter_float (inst.operands[1].imm)
7985 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
7986 {
7987 inst.operands[1].imm =
7988 neon_qfloat_bits (v);
7989 do_vfp_nsyn_opcode ("fconsts");
7990 return TRUE;
7991 }
7992
7993 /* If our host does not support a 64-bit type then we cannot perform
7994 the following optimization. This mean that there will be a
7995 discrepancy between the output produced by an assembler built for
7996 a 32-bit-only host and the output produced from a 64-bit host, but
7997 this cannot be helped. */
7998 #if defined BFD_HOST_64_BIT
7999 else if (!inst.operands[1].issingle
8000 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8001 {
8002 if (is_double_a_single (v)
8003 && is_quarter_float (double_to_single (v)))
8004 {
8005 inst.operands[1].imm =
8006 neon_qfloat_bits (double_to_single (v));
8007 do_vfp_nsyn_opcode ("fconstd");
8008 return TRUE;
8009 }
8010 }
8011 #endif
8012 }
8013 }
8014
8015 if (add_to_lit_pool ((!inst.operands[i].isvec
8016 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8017 return TRUE;
8018
8019 inst.operands[1].reg = REG_PC;
8020 inst.operands[1].isreg = 1;
8021 inst.operands[1].preind = 1;
8022 inst.reloc.pc_rel = 1;
8023 inst.reloc.type = (thumb_p
8024 ? BFD_RELOC_ARM_THUMB_OFFSET
8025 : (mode_3
8026 ? BFD_RELOC_ARM_HWLITERAL
8027 : BFD_RELOC_ARM_LITERAL));
8028 return FALSE;
8029 }
8030
8031 /* inst.operands[i] was set up by parse_address. Encode it into an
8032 ARM-format instruction. Reject all forms which cannot be encoded
8033 into a coprocessor load/store instruction. If wb_ok is false,
8034 reject use of writeback; if unind_ok is false, reject use of
8035 unindexed addressing. If reloc_override is not 0, use it instead
8036 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8037 (in which case it is preserved). */
8038
8039 static int
8040 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8041 {
8042 if (!inst.operands[i].isreg)
8043 {
8044 /* PR 18256 */
8045 if (! inst.operands[0].isvec)
8046 {
8047 inst.error = _("invalid co-processor operand");
8048 return FAIL;
8049 }
8050 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8051 return SUCCESS;
8052 }
8053
8054 inst.instruction |= inst.operands[i].reg << 16;
8055
8056 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8057
8058 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8059 {
8060 gas_assert (!inst.operands[i].writeback);
8061 if (!unind_ok)
8062 {
8063 inst.error = _("instruction does not support unindexed addressing");
8064 return FAIL;
8065 }
8066 inst.instruction |= inst.operands[i].imm;
8067 inst.instruction |= INDEX_UP;
8068 return SUCCESS;
8069 }
8070
8071 if (inst.operands[i].preind)
8072 inst.instruction |= PRE_INDEX;
8073
8074 if (inst.operands[i].writeback)
8075 {
8076 if (inst.operands[i].reg == REG_PC)
8077 {
8078 inst.error = _("pc may not be used with write-back");
8079 return FAIL;
8080 }
8081 if (!wb_ok)
8082 {
8083 inst.error = _("instruction does not support writeback");
8084 return FAIL;
8085 }
8086 inst.instruction |= WRITE_BACK;
8087 }
8088
8089 if (reloc_override)
8090 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
8091 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
8092 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
8093 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
8094 {
8095 if (thumb_mode)
8096 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8097 else
8098 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
8099 }
8100
8101 /* Prefer + for zero encoded value. */
8102 if (!inst.operands[i].negative)
8103 inst.instruction |= INDEX_UP;
8104
8105 return SUCCESS;
8106 }
8107
8108 /* Functions for instruction encoding, sorted by sub-architecture.
8109 First some generics; their names are taken from the conventional
8110 bit positions for register arguments in ARM format instructions. */
8111
8112 static void
8113 do_noargs (void)
8114 {
8115 }
8116
8117 static void
8118 do_rd (void)
8119 {
8120 inst.instruction |= inst.operands[0].reg << 12;
8121 }
8122
8123 static void
8124 do_rd_rm (void)
8125 {
8126 inst.instruction |= inst.operands[0].reg << 12;
8127 inst.instruction |= inst.operands[1].reg;
8128 }
8129
8130 static void
8131 do_rm_rn (void)
8132 {
8133 inst.instruction |= inst.operands[0].reg;
8134 inst.instruction |= inst.operands[1].reg << 16;
8135 }
8136
8137 static void
8138 do_rd_rn (void)
8139 {
8140 inst.instruction |= inst.operands[0].reg << 12;
8141 inst.instruction |= inst.operands[1].reg << 16;
8142 }
8143
8144 static void
8145 do_rn_rd (void)
8146 {
8147 inst.instruction |= inst.operands[0].reg << 16;
8148 inst.instruction |= inst.operands[1].reg << 12;
8149 }
8150
8151 static bfd_boolean
8152 check_obsolete (const arm_feature_set *feature, const char *msg)
8153 {
8154 if (ARM_CPU_IS_ANY (cpu_variant))
8155 {
8156 as_tsktsk ("%s", msg);
8157 return TRUE;
8158 }
8159 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
8160 {
8161 as_bad ("%s", msg);
8162 return TRUE;
8163 }
8164
8165 return FALSE;
8166 }
8167
8168 static void
8169 do_rd_rm_rn (void)
8170 {
8171 unsigned Rn = inst.operands[2].reg;
8172 /* Enforce restrictions on SWP instruction. */
8173 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
8174 {
8175 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
8176 _("Rn must not overlap other operands"));
8177
8178 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8179 */
8180 if (!check_obsolete (&arm_ext_v8,
8181 _("swp{b} use is obsoleted for ARMv8 and later"))
8182 && warn_on_deprecated
8183 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
8184 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
8185 }
8186
8187 inst.instruction |= inst.operands[0].reg << 12;
8188 inst.instruction |= inst.operands[1].reg;
8189 inst.instruction |= Rn << 16;
8190 }
8191
8192 static void
8193 do_rd_rn_rm (void)
8194 {
8195 inst.instruction |= inst.operands[0].reg << 12;
8196 inst.instruction |= inst.operands[1].reg << 16;
8197 inst.instruction |= inst.operands[2].reg;
8198 }
8199
8200 static void
8201 do_rm_rd_rn (void)
8202 {
8203 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
8204 constraint (((inst.reloc.exp.X_op != O_constant
8205 && inst.reloc.exp.X_op != O_illegal)
8206 || inst.reloc.exp.X_add_number != 0),
8207 BAD_ADDR_MODE);
8208 inst.instruction |= inst.operands[0].reg;
8209 inst.instruction |= inst.operands[1].reg << 12;
8210 inst.instruction |= inst.operands[2].reg << 16;
8211 }
8212
8213 static void
8214 do_imm0 (void)
8215 {
8216 inst.instruction |= inst.operands[0].imm;
8217 }
8218
8219 static void
8220 do_rd_cpaddr (void)
8221 {
8222 inst.instruction |= inst.operands[0].reg << 12;
8223 encode_arm_cp_address (1, TRUE, TRUE, 0);
8224 }
8225
8226 /* ARM instructions, in alphabetical order by function name (except
8227 that wrapper functions appear immediately after the function they
8228 wrap). */
8229
8230 /* This is a pseudo-op of the form "adr rd, label" to be converted
8231 into a relative address of the form "add rd, pc, #label-.-8". */
8232
8233 static void
8234 do_adr (void)
8235 {
8236 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
8237
8238 /* Frag hacking will turn this into a sub instruction if the offset turns
8239 out to be negative. */
8240 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
8241 inst.reloc.pc_rel = 1;
8242 inst.reloc.exp.X_add_number -= 8;
8243 }
8244
8245 /* This is a pseudo-op of the form "adrl rd, label" to be converted
8246 into a relative address of the form:
8247 add rd, pc, #low(label-.-8)"
8248 add rd, rd, #high(label-.-8)" */
8249
8250 static void
8251 do_adrl (void)
8252 {
8253 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
8254
8255 /* Frag hacking will turn this into a sub instruction if the offset turns
8256 out to be negative. */
8257 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
8258 inst.reloc.pc_rel = 1;
8259 inst.size = INSN_SIZE * 2;
8260 inst.reloc.exp.X_add_number -= 8;
8261 }
8262
8263 static void
8264 do_arit (void)
8265 {
8266 if (!inst.operands[1].present)
8267 inst.operands[1].reg = inst.operands[0].reg;
8268 inst.instruction |= inst.operands[0].reg << 12;
8269 inst.instruction |= inst.operands[1].reg << 16;
8270 encode_arm_shifter_operand (2);
8271 }
8272
8273 static void
8274 do_barrier (void)
8275 {
8276 if (inst.operands[0].present)
8277 inst.instruction |= inst.operands[0].imm;
8278 else
8279 inst.instruction |= 0xf;
8280 }
8281
8282 static void
8283 do_bfc (void)
8284 {
8285 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
8286 constraint (msb > 32, _("bit-field extends past end of register"));
8287 /* The instruction encoding stores the LSB and MSB,
8288 not the LSB and width. */
8289 inst.instruction |= inst.operands[0].reg << 12;
8290 inst.instruction |= inst.operands[1].imm << 7;
8291 inst.instruction |= (msb - 1) << 16;
8292 }
8293
8294 static void
8295 do_bfi (void)
8296 {
8297 unsigned int msb;
8298
8299 /* #0 in second position is alternative syntax for bfc, which is
8300 the same instruction but with REG_PC in the Rm field. */
8301 if (!inst.operands[1].isreg)
8302 inst.operands[1].reg = REG_PC;
8303
8304 msb = inst.operands[2].imm + inst.operands[3].imm;
8305 constraint (msb > 32, _("bit-field extends past end of register"));
8306 /* The instruction encoding stores the LSB and MSB,
8307 not the LSB and width. */
8308 inst.instruction |= inst.operands[0].reg << 12;
8309 inst.instruction |= inst.operands[1].reg;
8310 inst.instruction |= inst.operands[2].imm << 7;
8311 inst.instruction |= (msb - 1) << 16;
8312 }
8313
8314 static void
8315 do_bfx (void)
8316 {
8317 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
8318 _("bit-field extends past end of register"));
8319 inst.instruction |= inst.operands[0].reg << 12;
8320 inst.instruction |= inst.operands[1].reg;
8321 inst.instruction |= inst.operands[2].imm << 7;
8322 inst.instruction |= (inst.operands[3].imm - 1) << 16;
8323 }
8324
8325 /* ARM V5 breakpoint instruction (argument parse)
8326 BKPT <16 bit unsigned immediate>
8327 Instruction is not conditional.
8328 The bit pattern given in insns[] has the COND_ALWAYS condition,
8329 and it is an error if the caller tried to override that. */
8330
8331 static void
8332 do_bkpt (void)
8333 {
8334 /* Top 12 of 16 bits to bits 19:8. */
8335 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
8336
8337 /* Bottom 4 of 16 bits to bits 3:0. */
8338 inst.instruction |= inst.operands[0].imm & 0xf;
8339 }
8340
8341 static void
8342 encode_branch (int default_reloc)
8343 {
8344 if (inst.operands[0].hasreloc)
8345 {
8346 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
8347 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
8348 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
8349 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
8350 ? BFD_RELOC_ARM_PLT32
8351 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
8352 }
8353 else
8354 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
8355 inst.reloc.pc_rel = 1;
8356 }
8357
8358 static void
8359 do_branch (void)
8360 {
8361 #ifdef OBJ_ELF
8362 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8363 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
8364 else
8365 #endif
8366 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
8367 }
8368
8369 static void
8370 do_bl (void)
8371 {
8372 #ifdef OBJ_ELF
8373 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8374 {
8375 if (inst.cond == COND_ALWAYS)
8376 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
8377 else
8378 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
8379 }
8380 else
8381 #endif
8382 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
8383 }
8384
8385 /* ARM V5 branch-link-exchange instruction (argument parse)
8386 BLX <target_addr> ie BLX(1)
8387 BLX{<condition>} <Rm> ie BLX(2)
8388 Unfortunately, there are two different opcodes for this mnemonic.
8389 So, the insns[].value is not used, and the code here zaps values
8390 into inst.instruction.
8391 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
8392
8393 static void
8394 do_blx (void)
8395 {
8396 if (inst.operands[0].isreg)
8397 {
8398 /* Arg is a register; the opcode provided by insns[] is correct.
8399 It is not illegal to do "blx pc", just useless. */
8400 if (inst.operands[0].reg == REG_PC)
8401 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
8402
8403 inst.instruction |= inst.operands[0].reg;
8404 }
8405 else
8406 {
8407 /* Arg is an address; this instruction cannot be executed
8408 conditionally, and the opcode must be adjusted.
8409 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
8410 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
8411 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8412 inst.instruction = 0xfa000000;
8413 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
8414 }
8415 }
8416
8417 static void
8418 do_bx (void)
8419 {
8420 bfd_boolean want_reloc;
8421
8422 if (inst.operands[0].reg == REG_PC)
8423 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
8424
8425 inst.instruction |= inst.operands[0].reg;
8426 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
8427 it is for ARMv4t or earlier. */
8428 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
8429 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
8430 want_reloc = TRUE;
8431
8432 #ifdef OBJ_ELF
8433 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
8434 #endif
8435 want_reloc = FALSE;
8436
8437 if (want_reloc)
8438 inst.reloc.type = BFD_RELOC_ARM_V4BX;
8439 }
8440
8441
8442 /* ARM v5TEJ. Jump to Jazelle code. */
8443
8444 static void
8445 do_bxj (void)
8446 {
8447 if (inst.operands[0].reg == REG_PC)
8448 as_tsktsk (_("use of r15 in bxj is not really useful"));
8449
8450 inst.instruction |= inst.operands[0].reg;
8451 }
8452
8453 /* Co-processor data operation:
8454 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
8455 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
8456 static void
8457 do_cdp (void)
8458 {
8459 inst.instruction |= inst.operands[0].reg << 8;
8460 inst.instruction |= inst.operands[1].imm << 20;
8461 inst.instruction |= inst.operands[2].reg << 12;
8462 inst.instruction |= inst.operands[3].reg << 16;
8463 inst.instruction |= inst.operands[4].reg;
8464 inst.instruction |= inst.operands[5].imm << 5;
8465 }
8466
8467 static void
8468 do_cmp (void)
8469 {
8470 inst.instruction |= inst.operands[0].reg << 16;
8471 encode_arm_shifter_operand (1);
8472 }
8473
8474 /* Transfer between coprocessor and ARM registers.
8475 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
8476 MRC2
8477 MCR{cond}
8478 MCR2
8479
8480 No special properties. */
8481
8482 struct deprecated_coproc_regs_s
8483 {
8484 unsigned cp;
8485 int opc1;
8486 unsigned crn;
8487 unsigned crm;
8488 int opc2;
8489 arm_feature_set deprecated;
8490 arm_feature_set obsoleted;
8491 const char *dep_msg;
8492 const char *obs_msg;
8493 };
8494
8495 #define DEPR_ACCESS_V8 \
8496 N_("This coprocessor register access is deprecated in ARMv8")
8497
8498 /* Table of all deprecated coprocessor registers. */
8499 static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
8500 {
8501 {15, 0, 7, 10, 5, /* CP15DMB. */
8502 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8503 DEPR_ACCESS_V8, NULL},
8504 {15, 0, 7, 10, 4, /* CP15DSB. */
8505 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8506 DEPR_ACCESS_V8, NULL},
8507 {15, 0, 7, 5, 4, /* CP15ISB. */
8508 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8509 DEPR_ACCESS_V8, NULL},
8510 {14, 6, 1, 0, 0, /* TEEHBR. */
8511 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8512 DEPR_ACCESS_V8, NULL},
8513 {14, 6, 0, 0, 0, /* TEECR. */
8514 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8515 DEPR_ACCESS_V8, NULL},
8516 };
8517
8518 #undef DEPR_ACCESS_V8
8519
8520 static const size_t deprecated_coproc_reg_count =
8521 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
8522
8523 static void
8524 do_co_reg (void)
8525 {
8526 unsigned Rd;
8527 size_t i;
8528
8529 Rd = inst.operands[2].reg;
8530 if (thumb_mode)
8531 {
8532 if (inst.instruction == 0xee000010
8533 || inst.instruction == 0xfe000010)
8534 /* MCR, MCR2 */
8535 reject_bad_reg (Rd);
8536 else
8537 /* MRC, MRC2 */
8538 constraint (Rd == REG_SP, BAD_SP);
8539 }
8540 else
8541 {
8542 /* MCR */
8543 if (inst.instruction == 0xe000010)
8544 constraint (Rd == REG_PC, BAD_PC);
8545 }
8546
8547 for (i = 0; i < deprecated_coproc_reg_count; ++i)
8548 {
8549 const struct deprecated_coproc_regs_s *r =
8550 deprecated_coproc_regs + i;
8551
8552 if (inst.operands[0].reg == r->cp
8553 && inst.operands[1].imm == r->opc1
8554 && inst.operands[3].reg == r->crn
8555 && inst.operands[4].reg == r->crm
8556 && inst.operands[5].imm == r->opc2)
8557 {
8558 if (! ARM_CPU_IS_ANY (cpu_variant)
8559 && warn_on_deprecated
8560 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
8561 as_tsktsk ("%s", r->dep_msg);
8562 }
8563 }
8564
8565 inst.instruction |= inst.operands[0].reg << 8;
8566 inst.instruction |= inst.operands[1].imm << 21;
8567 inst.instruction |= Rd << 12;
8568 inst.instruction |= inst.operands[3].reg << 16;
8569 inst.instruction |= inst.operands[4].reg;
8570 inst.instruction |= inst.operands[5].imm << 5;
8571 }
8572
8573 /* Transfer between coprocessor register and pair of ARM registers.
8574 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
8575 MCRR2
8576 MRRC{cond}
8577 MRRC2
8578
8579 Two XScale instructions are special cases of these:
8580
8581 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
8582 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
8583
8584 Result unpredictable if Rd or Rn is R15. */
8585
8586 static void
8587 do_co_reg2c (void)
8588 {
8589 unsigned Rd, Rn;
8590
8591 Rd = inst.operands[2].reg;
8592 Rn = inst.operands[3].reg;
8593
8594 if (thumb_mode)
8595 {
8596 reject_bad_reg (Rd);
8597 reject_bad_reg (Rn);
8598 }
8599 else
8600 {
8601 constraint (Rd == REG_PC, BAD_PC);
8602 constraint (Rn == REG_PC, BAD_PC);
8603 }
8604
8605 inst.instruction |= inst.operands[0].reg << 8;
8606 inst.instruction |= inst.operands[1].imm << 4;
8607 inst.instruction |= Rd << 12;
8608 inst.instruction |= Rn << 16;
8609 inst.instruction |= inst.operands[4].reg;
8610 }
8611
8612 static void
8613 do_cpsi (void)
8614 {
8615 inst.instruction |= inst.operands[0].imm << 6;
8616 if (inst.operands[1].present)
8617 {
8618 inst.instruction |= CPSI_MMOD;
8619 inst.instruction |= inst.operands[1].imm;
8620 }
8621 }
8622
8623 static void
8624 do_dbg (void)
8625 {
8626 inst.instruction |= inst.operands[0].imm;
8627 }
8628
8629 static void
8630 do_div (void)
8631 {
8632 unsigned Rd, Rn, Rm;
8633
8634 Rd = inst.operands[0].reg;
8635 Rn = (inst.operands[1].present
8636 ? inst.operands[1].reg : Rd);
8637 Rm = inst.operands[2].reg;
8638
8639 constraint ((Rd == REG_PC), BAD_PC);
8640 constraint ((Rn == REG_PC), BAD_PC);
8641 constraint ((Rm == REG_PC), BAD_PC);
8642
8643 inst.instruction |= Rd << 16;
8644 inst.instruction |= Rn << 0;
8645 inst.instruction |= Rm << 8;
8646 }
8647
8648 static void
8649 do_it (void)
8650 {
8651 /* There is no IT instruction in ARM mode. We
8652 process it to do the validation as if in
8653 thumb mode, just in case the code gets
8654 assembled for thumb using the unified syntax. */
8655
8656 inst.size = 0;
8657 if (unified_syntax)
8658 {
8659 set_it_insn_type (IT_INSN);
8660 now_it.mask = (inst.instruction & 0xf) | 0x10;
8661 now_it.cc = inst.operands[0].imm;
8662 }
8663 }
8664
8665 /* If there is only one register in the register list,
8666 then return its register number. Otherwise return -1. */
8667 static int
8668 only_one_reg_in_list (int range)
8669 {
8670 int i = ffs (range) - 1;
8671 return (i > 15 || range != (1 << i)) ? -1 : i;
8672 }
8673
8674 static void
8675 encode_ldmstm(int from_push_pop_mnem)
8676 {
8677 int base_reg = inst.operands[0].reg;
8678 int range = inst.operands[1].imm;
8679 int one_reg;
8680
8681 inst.instruction |= base_reg << 16;
8682 inst.instruction |= range;
8683
8684 if (inst.operands[1].writeback)
8685 inst.instruction |= LDM_TYPE_2_OR_3;
8686
8687 if (inst.operands[0].writeback)
8688 {
8689 inst.instruction |= WRITE_BACK;
8690 /* Check for unpredictable uses of writeback. */
8691 if (inst.instruction & LOAD_BIT)
8692 {
8693 /* Not allowed in LDM type 2. */
8694 if ((inst.instruction & LDM_TYPE_2_OR_3)
8695 && ((range & (1 << REG_PC)) == 0))
8696 as_warn (_("writeback of base register is UNPREDICTABLE"));
8697 /* Only allowed if base reg not in list for other types. */
8698 else if (range & (1 << base_reg))
8699 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
8700 }
8701 else /* STM. */
8702 {
8703 /* Not allowed for type 2. */
8704 if (inst.instruction & LDM_TYPE_2_OR_3)
8705 as_warn (_("writeback of base register is UNPREDICTABLE"));
8706 /* Only allowed if base reg not in list, or first in list. */
8707 else if ((range & (1 << base_reg))
8708 && (range & ((1 << base_reg) - 1)))
8709 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
8710 }
8711 }
8712
8713 /* If PUSH/POP has only one register, then use the A2 encoding. */
8714 one_reg = only_one_reg_in_list (range);
8715 if (from_push_pop_mnem && one_reg >= 0)
8716 {
8717 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
8718
8719 inst.instruction &= A_COND_MASK;
8720 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
8721 inst.instruction |= one_reg << 12;
8722 }
8723 }
8724
8725 static void
8726 do_ldmstm (void)
8727 {
8728 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
8729 }
8730
8731 /* ARMv5TE load-consecutive (argument parse)
8732 Mode is like LDRH.
8733
8734 LDRccD R, mode
8735 STRccD R, mode. */
8736
8737 static void
8738 do_ldrd (void)
8739 {
8740 constraint (inst.operands[0].reg % 2 != 0,
8741 _("first transfer register must be even"));
8742 constraint (inst.operands[1].present
8743 && inst.operands[1].reg != inst.operands[0].reg + 1,
8744 _("can only transfer two consecutive registers"));
8745 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8746 constraint (!inst.operands[2].isreg, _("'[' expected"));
8747
8748 if (!inst.operands[1].present)
8749 inst.operands[1].reg = inst.operands[0].reg + 1;
8750
8751 /* encode_arm_addr_mode_3 will diagnose overlap between the base
8752 register and the first register written; we have to diagnose
8753 overlap between the base and the second register written here. */
8754
8755 if (inst.operands[2].reg == inst.operands[1].reg
8756 && (inst.operands[2].writeback || inst.operands[2].postind))
8757 as_warn (_("base register written back, and overlaps "
8758 "second transfer register"));
8759
8760 if (!(inst.instruction & V4_STR_BIT))
8761 {
8762 /* For an index-register load, the index register must not overlap the
8763 destination (even if not write-back). */
8764 if (inst.operands[2].immisreg
8765 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
8766 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
8767 as_warn (_("index register overlaps transfer register"));
8768 }
8769 inst.instruction |= inst.operands[0].reg << 12;
8770 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
8771 }
8772
8773 static void
8774 do_ldrex (void)
8775 {
8776 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
8777 || inst.operands[1].postind || inst.operands[1].writeback
8778 || inst.operands[1].immisreg || inst.operands[1].shifted
8779 || inst.operands[1].negative
8780 /* This can arise if the programmer has written
8781 strex rN, rM, foo
8782 or if they have mistakenly used a register name as the last
8783 operand, eg:
8784 strex rN, rM, rX
8785 It is very difficult to distinguish between these two cases
8786 because "rX" might actually be a label. ie the register
8787 name has been occluded by a symbol of the same name. So we
8788 just generate a general 'bad addressing mode' type error
8789 message and leave it up to the programmer to discover the
8790 true cause and fix their mistake. */
8791 || (inst.operands[1].reg == REG_PC),
8792 BAD_ADDR_MODE);
8793
8794 constraint (inst.reloc.exp.X_op != O_constant
8795 || inst.reloc.exp.X_add_number != 0,
8796 _("offset must be zero in ARM encoding"));
8797
8798 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
8799
8800 inst.instruction |= inst.operands[0].reg << 12;
8801 inst.instruction |= inst.operands[1].reg << 16;
8802 inst.reloc.type = BFD_RELOC_UNUSED;
8803 }
8804
8805 static void
8806 do_ldrexd (void)
8807 {
8808 constraint (inst.operands[0].reg % 2 != 0,
8809 _("even register required"));
8810 constraint (inst.operands[1].present
8811 && inst.operands[1].reg != inst.operands[0].reg + 1,
8812 _("can only load two consecutive registers"));
8813 /* If op 1 were present and equal to PC, this function wouldn't
8814 have been called in the first place. */
8815 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8816
8817 inst.instruction |= inst.operands[0].reg << 12;
8818 inst.instruction |= inst.operands[2].reg << 16;
8819 }
8820
8821 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
8822 which is not a multiple of four is UNPREDICTABLE. */
8823 static void
8824 check_ldr_r15_aligned (void)
8825 {
8826 constraint (!(inst.operands[1].immisreg)
8827 && (inst.operands[0].reg == REG_PC
8828 && inst.operands[1].reg == REG_PC
8829 && (inst.reloc.exp.X_add_number & 0x3)),
8830 _("ldr to register 15 must be 4-byte alligned"));
8831 }
8832
8833 static void
8834 do_ldst (void)
8835 {
8836 inst.instruction |= inst.operands[0].reg << 12;
8837 if (!inst.operands[1].isreg)
8838 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
8839 return;
8840 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
8841 check_ldr_r15_aligned ();
8842 }
8843
8844 static void
8845 do_ldstt (void)
8846 {
8847 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8848 reject [Rn,...]. */
8849 if (inst.operands[1].preind)
8850 {
8851 constraint (inst.reloc.exp.X_op != O_constant
8852 || inst.reloc.exp.X_add_number != 0,
8853 _("this instruction requires a post-indexed address"));
8854
8855 inst.operands[1].preind = 0;
8856 inst.operands[1].postind = 1;
8857 inst.operands[1].writeback = 1;
8858 }
8859 inst.instruction |= inst.operands[0].reg << 12;
8860 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
8861 }
8862
8863 /* Halfword and signed-byte load/store operations. */
8864
8865 static void
8866 do_ldstv4 (void)
8867 {
8868 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
8869 inst.instruction |= inst.operands[0].reg << 12;
8870 if (!inst.operands[1].isreg)
8871 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
8872 return;
8873 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
8874 }
8875
8876 static void
8877 do_ldsttv4 (void)
8878 {
8879 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8880 reject [Rn,...]. */
8881 if (inst.operands[1].preind)
8882 {
8883 constraint (inst.reloc.exp.X_op != O_constant
8884 || inst.reloc.exp.X_add_number != 0,
8885 _("this instruction requires a post-indexed address"));
8886
8887 inst.operands[1].preind = 0;
8888 inst.operands[1].postind = 1;
8889 inst.operands[1].writeback = 1;
8890 }
8891 inst.instruction |= inst.operands[0].reg << 12;
8892 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
8893 }
8894
8895 /* Co-processor register load/store.
8896 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
8897 static void
8898 do_lstc (void)
8899 {
8900 inst.instruction |= inst.operands[0].reg << 8;
8901 inst.instruction |= inst.operands[1].reg << 12;
8902 encode_arm_cp_address (2, TRUE, TRUE, 0);
8903 }
8904
8905 static void
8906 do_mlas (void)
8907 {
8908 /* This restriction does not apply to mls (nor to mla in v6 or later). */
8909 if (inst.operands[0].reg == inst.operands[1].reg
8910 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
8911 && !(inst.instruction & 0x00400000))
8912 as_tsktsk (_("Rd and Rm should be different in mla"));
8913
8914 inst.instruction |= inst.operands[0].reg << 16;
8915 inst.instruction |= inst.operands[1].reg;
8916 inst.instruction |= inst.operands[2].reg << 8;
8917 inst.instruction |= inst.operands[3].reg << 12;
8918 }
8919
8920 static void
8921 do_mov (void)
8922 {
8923 inst.instruction |= inst.operands[0].reg << 12;
8924 encode_arm_shifter_operand (1);
8925 }
8926
8927 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
8928 static void
8929 do_mov16 (void)
8930 {
8931 bfd_vma imm;
8932 bfd_boolean top;
8933
8934 top = (inst.instruction & 0x00400000) != 0;
8935 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
8936 _(":lower16: not allowed this instruction"));
8937 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
8938 _(":upper16: not allowed instruction"));
8939 inst.instruction |= inst.operands[0].reg << 12;
8940 if (inst.reloc.type == BFD_RELOC_UNUSED)
8941 {
8942 imm = inst.reloc.exp.X_add_number;
8943 /* The value is in two pieces: 0:11, 16:19. */
8944 inst.instruction |= (imm & 0x00000fff);
8945 inst.instruction |= (imm & 0x0000f000) << 4;
8946 }
8947 }
8948
8949 static int
8950 do_vfp_nsyn_mrs (void)
8951 {
8952 if (inst.operands[0].isvec)
8953 {
8954 if (inst.operands[1].reg != 1)
8955 first_error (_("operand 1 must be FPSCR"));
8956 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
8957 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
8958 do_vfp_nsyn_opcode ("fmstat");
8959 }
8960 else if (inst.operands[1].isvec)
8961 do_vfp_nsyn_opcode ("fmrx");
8962 else
8963 return FAIL;
8964
8965 return SUCCESS;
8966 }
8967
8968 static int
8969 do_vfp_nsyn_msr (void)
8970 {
8971 if (inst.operands[0].isvec)
8972 do_vfp_nsyn_opcode ("fmxr");
8973 else
8974 return FAIL;
8975
8976 return SUCCESS;
8977 }
8978
8979 static void
8980 do_vmrs (void)
8981 {
8982 unsigned Rt = inst.operands[0].reg;
8983
8984 if (thumb_mode && Rt == REG_SP)
8985 {
8986 inst.error = BAD_SP;
8987 return;
8988 }
8989
8990 /* APSR_ sets isvec. All other refs to PC are illegal. */
8991 if (!inst.operands[0].isvec && Rt == REG_PC)
8992 {
8993 inst.error = BAD_PC;
8994 return;
8995 }
8996
8997 /* If we get through parsing the register name, we just insert the number
8998 generated into the instruction without further validation. */
8999 inst.instruction |= (inst.operands[1].reg << 16);
9000 inst.instruction |= (Rt << 12);
9001 }
9002
9003 static void
9004 do_vmsr (void)
9005 {
9006 unsigned Rt = inst.operands[1].reg;
9007
9008 if (thumb_mode)
9009 reject_bad_reg (Rt);
9010 else if (Rt == REG_PC)
9011 {
9012 inst.error = BAD_PC;
9013 return;
9014 }
9015
9016 /* If we get through parsing the register name, we just insert the number
9017 generated into the instruction without further validation. */
9018 inst.instruction |= (inst.operands[0].reg << 16);
9019 inst.instruction |= (Rt << 12);
9020 }
9021
9022 static void
9023 do_mrs (void)
9024 {
9025 unsigned br;
9026
9027 if (do_vfp_nsyn_mrs () == SUCCESS)
9028 return;
9029
9030 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9031 inst.instruction |= inst.operands[0].reg << 12;
9032
9033 if (inst.operands[1].isreg)
9034 {
9035 br = inst.operands[1].reg;
9036 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
9037 as_bad (_("bad register for mrs"));
9038 }
9039 else
9040 {
9041 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9042 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
9043 != (PSR_c|PSR_f),
9044 _("'APSR', 'CPSR' or 'SPSR' expected"));
9045 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
9046 }
9047
9048 inst.instruction |= br;
9049 }
9050
9051 /* Two possible forms:
9052 "{C|S}PSR_<field>, Rm",
9053 "{C|S}PSR_f, #expression". */
9054
9055 static void
9056 do_msr (void)
9057 {
9058 if (do_vfp_nsyn_msr () == SUCCESS)
9059 return;
9060
9061 inst.instruction |= inst.operands[0].imm;
9062 if (inst.operands[1].isreg)
9063 inst.instruction |= inst.operands[1].reg;
9064 else
9065 {
9066 inst.instruction |= INST_IMMEDIATE;
9067 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
9068 inst.reloc.pc_rel = 0;
9069 }
9070 }
9071
9072 static void
9073 do_mul (void)
9074 {
9075 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
9076
9077 if (!inst.operands[2].present)
9078 inst.operands[2].reg = inst.operands[0].reg;
9079 inst.instruction |= inst.operands[0].reg << 16;
9080 inst.instruction |= inst.operands[1].reg;
9081 inst.instruction |= inst.operands[2].reg << 8;
9082
9083 if (inst.operands[0].reg == inst.operands[1].reg
9084 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9085 as_tsktsk (_("Rd and Rm should be different in mul"));
9086 }
9087
9088 /* Long Multiply Parser
9089 UMULL RdLo, RdHi, Rm, Rs
9090 SMULL RdLo, RdHi, Rm, Rs
9091 UMLAL RdLo, RdHi, Rm, Rs
9092 SMLAL RdLo, RdHi, Rm, Rs. */
9093
9094 static void
9095 do_mull (void)
9096 {
9097 inst.instruction |= inst.operands[0].reg << 12;
9098 inst.instruction |= inst.operands[1].reg << 16;
9099 inst.instruction |= inst.operands[2].reg;
9100 inst.instruction |= inst.operands[3].reg << 8;
9101
9102 /* rdhi and rdlo must be different. */
9103 if (inst.operands[0].reg == inst.operands[1].reg)
9104 as_tsktsk (_("rdhi and rdlo must be different"));
9105
9106 /* rdhi, rdlo and rm must all be different before armv6. */
9107 if ((inst.operands[0].reg == inst.operands[2].reg
9108 || inst.operands[1].reg == inst.operands[2].reg)
9109 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9110 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9111 }
9112
9113 static void
9114 do_nop (void)
9115 {
9116 if (inst.operands[0].present
9117 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
9118 {
9119 /* Architectural NOP hints are CPSR sets with no bits selected. */
9120 inst.instruction &= 0xf0000000;
9121 inst.instruction |= 0x0320f000;
9122 if (inst.operands[0].present)
9123 inst.instruction |= inst.operands[0].imm;
9124 }
9125 }
9126
9127 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9128 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9129 Condition defaults to COND_ALWAYS.
9130 Error if Rd, Rn or Rm are R15. */
9131
9132 static void
9133 do_pkhbt (void)
9134 {
9135 inst.instruction |= inst.operands[0].reg << 12;
9136 inst.instruction |= inst.operands[1].reg << 16;
9137 inst.instruction |= inst.operands[2].reg;
9138 if (inst.operands[3].present)
9139 encode_arm_shift (3);
9140 }
9141
9142 /* ARM V6 PKHTB (Argument Parse). */
9143
9144 static void
9145 do_pkhtb (void)
9146 {
9147 if (!inst.operands[3].present)
9148 {
9149 /* If the shift specifier is omitted, turn the instruction
9150 into pkhbt rd, rm, rn. */
9151 inst.instruction &= 0xfff00010;
9152 inst.instruction |= inst.operands[0].reg << 12;
9153 inst.instruction |= inst.operands[1].reg;
9154 inst.instruction |= inst.operands[2].reg << 16;
9155 }
9156 else
9157 {
9158 inst.instruction |= inst.operands[0].reg << 12;
9159 inst.instruction |= inst.operands[1].reg << 16;
9160 inst.instruction |= inst.operands[2].reg;
9161 encode_arm_shift (3);
9162 }
9163 }
9164
9165 /* ARMv5TE: Preload-Cache
9166 MP Extensions: Preload for write
9167
9168 PLD(W) <addr_mode>
9169
9170 Syntactically, like LDR with B=1, W=0, L=1. */
9171
9172 static void
9173 do_pld (void)
9174 {
9175 constraint (!inst.operands[0].isreg,
9176 _("'[' expected after PLD mnemonic"));
9177 constraint (inst.operands[0].postind,
9178 _("post-indexed expression used in preload instruction"));
9179 constraint (inst.operands[0].writeback,
9180 _("writeback used in preload instruction"));
9181 constraint (!inst.operands[0].preind,
9182 _("unindexed addressing used in preload instruction"));
9183 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9184 }
9185
9186 /* ARMv7: PLI <addr_mode> */
9187 static void
9188 do_pli (void)
9189 {
9190 constraint (!inst.operands[0].isreg,
9191 _("'[' expected after PLI mnemonic"));
9192 constraint (inst.operands[0].postind,
9193 _("post-indexed expression used in preload instruction"));
9194 constraint (inst.operands[0].writeback,
9195 _("writeback used in preload instruction"));
9196 constraint (!inst.operands[0].preind,
9197 _("unindexed addressing used in preload instruction"));
9198 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9199 inst.instruction &= ~PRE_INDEX;
9200 }
9201
9202 static void
9203 do_push_pop (void)
9204 {
9205 constraint (inst.operands[0].writeback,
9206 _("push/pop do not support {reglist}^"));
9207 inst.operands[1] = inst.operands[0];
9208 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
9209 inst.operands[0].isreg = 1;
9210 inst.operands[0].writeback = 1;
9211 inst.operands[0].reg = REG_SP;
9212 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
9213 }
9214
9215 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
9216 word at the specified address and the following word
9217 respectively.
9218 Unconditionally executed.
9219 Error if Rn is R15. */
9220
9221 static void
9222 do_rfe (void)
9223 {
9224 inst.instruction |= inst.operands[0].reg << 16;
9225 if (inst.operands[0].writeback)
9226 inst.instruction |= WRITE_BACK;
9227 }
9228
9229 /* ARM V6 ssat (argument parse). */
9230
9231 static void
9232 do_ssat (void)
9233 {
9234 inst.instruction |= inst.operands[0].reg << 12;
9235 inst.instruction |= (inst.operands[1].imm - 1) << 16;
9236 inst.instruction |= inst.operands[2].reg;
9237
9238 if (inst.operands[3].present)
9239 encode_arm_shift (3);
9240 }
9241
9242 /* ARM V6 usat (argument parse). */
9243
9244 static void
9245 do_usat (void)
9246 {
9247 inst.instruction |= inst.operands[0].reg << 12;
9248 inst.instruction |= inst.operands[1].imm << 16;
9249 inst.instruction |= inst.operands[2].reg;
9250
9251 if (inst.operands[3].present)
9252 encode_arm_shift (3);
9253 }
9254
9255 /* ARM V6 ssat16 (argument parse). */
9256
9257 static void
9258 do_ssat16 (void)
9259 {
9260 inst.instruction |= inst.operands[0].reg << 12;
9261 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
9262 inst.instruction |= inst.operands[2].reg;
9263 }
9264
9265 static void
9266 do_usat16 (void)
9267 {
9268 inst.instruction |= inst.operands[0].reg << 12;
9269 inst.instruction |= inst.operands[1].imm << 16;
9270 inst.instruction |= inst.operands[2].reg;
9271 }
9272
9273 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
9274 preserving the other bits.
9275
9276 setend <endian_specifier>, where <endian_specifier> is either
9277 BE or LE. */
9278
9279 static void
9280 do_setend (void)
9281 {
9282 if (warn_on_deprecated
9283 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
9284 as_tsktsk (_("setend use is deprecated for ARMv8"));
9285
9286 if (inst.operands[0].imm)
9287 inst.instruction |= 0x200;
9288 }
9289
9290 static void
9291 do_shift (void)
9292 {
9293 unsigned int Rm = (inst.operands[1].present
9294 ? inst.operands[1].reg
9295 : inst.operands[0].reg);
9296
9297 inst.instruction |= inst.operands[0].reg << 12;
9298 inst.instruction |= Rm;
9299 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
9300 {
9301 inst.instruction |= inst.operands[2].reg << 8;
9302 inst.instruction |= SHIFT_BY_REG;
9303 /* PR 12854: Error on extraneous shifts. */
9304 constraint (inst.operands[2].shifted,
9305 _("extraneous shift as part of operand to shift insn"));
9306 }
9307 else
9308 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
9309 }
9310
9311 static void
9312 do_smc (void)
9313 {
9314 inst.reloc.type = BFD_RELOC_ARM_SMC;
9315 inst.reloc.pc_rel = 0;
9316 }
9317
9318 static void
9319 do_hvc (void)
9320 {
9321 inst.reloc.type = BFD_RELOC_ARM_HVC;
9322 inst.reloc.pc_rel = 0;
9323 }
9324
9325 static void
9326 do_swi (void)
9327 {
9328 inst.reloc.type = BFD_RELOC_ARM_SWI;
9329 inst.reloc.pc_rel = 0;
9330 }
9331
9332 static void
9333 do_setpan (void)
9334 {
9335 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
9336 _("selected processor does not support SETPAN instruction"));
9337
9338 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
9339 }
9340
9341 static void
9342 do_t_setpan (void)
9343 {
9344 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
9345 _("selected processor does not support SETPAN instruction"));
9346
9347 inst.instruction |= (inst.operands[0].imm << 3);
9348 }
9349
9350 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
9351 SMLAxy{cond} Rd,Rm,Rs,Rn
9352 SMLAWy{cond} Rd,Rm,Rs,Rn
9353 Error if any register is R15. */
9354
9355 static void
9356 do_smla (void)
9357 {
9358 inst.instruction |= inst.operands[0].reg << 16;
9359 inst.instruction |= inst.operands[1].reg;
9360 inst.instruction |= inst.operands[2].reg << 8;
9361 inst.instruction |= inst.operands[3].reg << 12;
9362 }
9363
9364 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
9365 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
9366 Error if any register is R15.
9367 Warning if Rdlo == Rdhi. */
9368
9369 static void
9370 do_smlal (void)
9371 {
9372 inst.instruction |= inst.operands[0].reg << 12;
9373 inst.instruction |= inst.operands[1].reg << 16;
9374 inst.instruction |= inst.operands[2].reg;
9375 inst.instruction |= inst.operands[3].reg << 8;
9376
9377 if (inst.operands[0].reg == inst.operands[1].reg)
9378 as_tsktsk (_("rdhi and rdlo must be different"));
9379 }
9380
9381 /* ARM V5E (El Segundo) signed-multiply (argument parse)
9382 SMULxy{cond} Rd,Rm,Rs
9383 Error if any register is R15. */
9384
9385 static void
9386 do_smul (void)
9387 {
9388 inst.instruction |= inst.operands[0].reg << 16;
9389 inst.instruction |= inst.operands[1].reg;
9390 inst.instruction |= inst.operands[2].reg << 8;
9391 }
9392
9393 /* ARM V6 srs (argument parse). The variable fields in the encoding are
9394 the same for both ARM and Thumb-2. */
9395
9396 static void
9397 do_srs (void)
9398 {
9399 int reg;
9400
9401 if (inst.operands[0].present)
9402 {
9403 reg = inst.operands[0].reg;
9404 constraint (reg != REG_SP, _("SRS base register must be r13"));
9405 }
9406 else
9407 reg = REG_SP;
9408
9409 inst.instruction |= reg << 16;
9410 inst.instruction |= inst.operands[1].imm;
9411 if (inst.operands[0].writeback || inst.operands[1].writeback)
9412 inst.instruction |= WRITE_BACK;
9413 }
9414
9415 /* ARM V6 strex (argument parse). */
9416
9417 static void
9418 do_strex (void)
9419 {
9420 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
9421 || inst.operands[2].postind || inst.operands[2].writeback
9422 || inst.operands[2].immisreg || inst.operands[2].shifted
9423 || inst.operands[2].negative
9424 /* See comment in do_ldrex(). */
9425 || (inst.operands[2].reg == REG_PC),
9426 BAD_ADDR_MODE);
9427
9428 constraint (inst.operands[0].reg == inst.operands[1].reg
9429 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9430
9431 constraint (inst.reloc.exp.X_op != O_constant
9432 || inst.reloc.exp.X_add_number != 0,
9433 _("offset must be zero in ARM encoding"));
9434
9435 inst.instruction |= inst.operands[0].reg << 12;
9436 inst.instruction |= inst.operands[1].reg;
9437 inst.instruction |= inst.operands[2].reg << 16;
9438 inst.reloc.type = BFD_RELOC_UNUSED;
9439 }
9440
9441 static void
9442 do_t_strexbh (void)
9443 {
9444 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
9445 || inst.operands[2].postind || inst.operands[2].writeback
9446 || inst.operands[2].immisreg || inst.operands[2].shifted
9447 || inst.operands[2].negative,
9448 BAD_ADDR_MODE);
9449
9450 constraint (inst.operands[0].reg == inst.operands[1].reg
9451 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9452
9453 do_rm_rd_rn ();
9454 }
9455
9456 static void
9457 do_strexd (void)
9458 {
9459 constraint (inst.operands[1].reg % 2 != 0,
9460 _("even register required"));
9461 constraint (inst.operands[2].present
9462 && inst.operands[2].reg != inst.operands[1].reg + 1,
9463 _("can only store two consecutive registers"));
9464 /* If op 2 were present and equal to PC, this function wouldn't
9465 have been called in the first place. */
9466 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
9467
9468 constraint (inst.operands[0].reg == inst.operands[1].reg
9469 || inst.operands[0].reg == inst.operands[1].reg + 1
9470 || inst.operands[0].reg == inst.operands[3].reg,
9471 BAD_OVERLAP);
9472
9473 inst.instruction |= inst.operands[0].reg << 12;
9474 inst.instruction |= inst.operands[1].reg;
9475 inst.instruction |= inst.operands[3].reg << 16;
9476 }
9477
9478 /* ARM V8 STRL. */
9479 static void
9480 do_stlex (void)
9481 {
9482 constraint (inst.operands[0].reg == inst.operands[1].reg
9483 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9484
9485 do_rd_rm_rn ();
9486 }
9487
9488 static void
9489 do_t_stlex (void)
9490 {
9491 constraint (inst.operands[0].reg == inst.operands[1].reg
9492 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9493
9494 do_rm_rd_rn ();
9495 }
9496
9497 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
9498 extends it to 32-bits, and adds the result to a value in another
9499 register. You can specify a rotation by 0, 8, 16, or 24 bits
9500 before extracting the 16-bit value.
9501 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
9502 Condition defaults to COND_ALWAYS.
9503 Error if any register uses R15. */
9504
9505 static void
9506 do_sxtah (void)
9507 {
9508 inst.instruction |= inst.operands[0].reg << 12;
9509 inst.instruction |= inst.operands[1].reg << 16;
9510 inst.instruction |= inst.operands[2].reg;
9511 inst.instruction |= inst.operands[3].imm << 10;
9512 }
9513
9514 /* ARM V6 SXTH.
9515
9516 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
9517 Condition defaults to COND_ALWAYS.
9518 Error if any register uses R15. */
9519
9520 static void
9521 do_sxth (void)
9522 {
9523 inst.instruction |= inst.operands[0].reg << 12;
9524 inst.instruction |= inst.operands[1].reg;
9525 inst.instruction |= inst.operands[2].imm << 10;
9526 }
9527 \f
9528 /* VFP instructions. In a logical order: SP variant first, monad
9529 before dyad, arithmetic then move then load/store. */
9530
9531 static void
9532 do_vfp_sp_monadic (void)
9533 {
9534 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9535 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
9536 }
9537
9538 static void
9539 do_vfp_sp_dyadic (void)
9540 {
9541 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9542 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
9543 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
9544 }
9545
9546 static void
9547 do_vfp_sp_compare_z (void)
9548 {
9549 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9550 }
9551
9552 static void
9553 do_vfp_dp_sp_cvt (void)
9554 {
9555 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9556 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
9557 }
9558
9559 static void
9560 do_vfp_sp_dp_cvt (void)
9561 {
9562 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9563 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
9564 }
9565
9566 static void
9567 do_vfp_reg_from_sp (void)
9568 {
9569 inst.instruction |= inst.operands[0].reg << 12;
9570 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
9571 }
9572
9573 static void
9574 do_vfp_reg2_from_sp2 (void)
9575 {
9576 constraint (inst.operands[2].imm != 2,
9577 _("only two consecutive VFP SP registers allowed here"));
9578 inst.instruction |= inst.operands[0].reg << 12;
9579 inst.instruction |= inst.operands[1].reg << 16;
9580 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
9581 }
9582
9583 static void
9584 do_vfp_sp_from_reg (void)
9585 {
9586 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
9587 inst.instruction |= inst.operands[1].reg << 12;
9588 }
9589
9590 static void
9591 do_vfp_sp2_from_reg2 (void)
9592 {
9593 constraint (inst.operands[0].imm != 2,
9594 _("only two consecutive VFP SP registers allowed here"));
9595 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
9596 inst.instruction |= inst.operands[1].reg << 12;
9597 inst.instruction |= inst.operands[2].reg << 16;
9598 }
9599
9600 static void
9601 do_vfp_sp_ldst (void)
9602 {
9603 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9604 encode_arm_cp_address (1, FALSE, TRUE, 0);
9605 }
9606
9607 static void
9608 do_vfp_dp_ldst (void)
9609 {
9610 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9611 encode_arm_cp_address (1, FALSE, TRUE, 0);
9612 }
9613
9614
9615 static void
9616 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
9617 {
9618 if (inst.operands[0].writeback)
9619 inst.instruction |= WRITE_BACK;
9620 else
9621 constraint (ldstm_type != VFP_LDSTMIA,
9622 _("this addressing mode requires base-register writeback"));
9623 inst.instruction |= inst.operands[0].reg << 16;
9624 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
9625 inst.instruction |= inst.operands[1].imm;
9626 }
9627
9628 static void
9629 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
9630 {
9631 int count;
9632
9633 if (inst.operands[0].writeback)
9634 inst.instruction |= WRITE_BACK;
9635 else
9636 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
9637 _("this addressing mode requires base-register writeback"));
9638
9639 inst.instruction |= inst.operands[0].reg << 16;
9640 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9641
9642 count = inst.operands[1].imm << 1;
9643 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
9644 count += 1;
9645
9646 inst.instruction |= count;
9647 }
9648
9649 static void
9650 do_vfp_sp_ldstmia (void)
9651 {
9652 vfp_sp_ldstm (VFP_LDSTMIA);
9653 }
9654
9655 static void
9656 do_vfp_sp_ldstmdb (void)
9657 {
9658 vfp_sp_ldstm (VFP_LDSTMDB);
9659 }
9660
9661 static void
9662 do_vfp_dp_ldstmia (void)
9663 {
9664 vfp_dp_ldstm (VFP_LDSTMIA);
9665 }
9666
9667 static void
9668 do_vfp_dp_ldstmdb (void)
9669 {
9670 vfp_dp_ldstm (VFP_LDSTMDB);
9671 }
9672
9673 static void
9674 do_vfp_xp_ldstmia (void)
9675 {
9676 vfp_dp_ldstm (VFP_LDSTMIAX);
9677 }
9678
9679 static void
9680 do_vfp_xp_ldstmdb (void)
9681 {
9682 vfp_dp_ldstm (VFP_LDSTMDBX);
9683 }
9684
9685 static void
9686 do_vfp_dp_rd_rm (void)
9687 {
9688 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9689 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
9690 }
9691
9692 static void
9693 do_vfp_dp_rn_rd (void)
9694 {
9695 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
9696 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9697 }
9698
9699 static void
9700 do_vfp_dp_rd_rn (void)
9701 {
9702 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9703 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
9704 }
9705
9706 static void
9707 do_vfp_dp_rd_rn_rm (void)
9708 {
9709 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9710 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
9711 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
9712 }
9713
9714 static void
9715 do_vfp_dp_rd (void)
9716 {
9717 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9718 }
9719
9720 static void
9721 do_vfp_dp_rm_rd_rn (void)
9722 {
9723 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
9724 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9725 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
9726 }
9727
9728 /* VFPv3 instructions. */
9729 static void
9730 do_vfp_sp_const (void)
9731 {
9732 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9733 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9734 inst.instruction |= (inst.operands[1].imm & 0x0f);
9735 }
9736
9737 static void
9738 do_vfp_dp_const (void)
9739 {
9740 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9741 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9742 inst.instruction |= (inst.operands[1].imm & 0x0f);
9743 }
9744
9745 static void
9746 vfp_conv (int srcsize)
9747 {
9748 int immbits = srcsize - inst.operands[1].imm;
9749
9750 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
9751 {
9752 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
9753 i.e. immbits must be in range 0 - 16. */
9754 inst.error = _("immediate value out of range, expected range [0, 16]");
9755 return;
9756 }
9757 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
9758 {
9759 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
9760 i.e. immbits must be in range 0 - 31. */
9761 inst.error = _("immediate value out of range, expected range [1, 32]");
9762 return;
9763 }
9764
9765 inst.instruction |= (immbits & 1) << 5;
9766 inst.instruction |= (immbits >> 1);
9767 }
9768
9769 static void
9770 do_vfp_sp_conv_16 (void)
9771 {
9772 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9773 vfp_conv (16);
9774 }
9775
9776 static void
9777 do_vfp_dp_conv_16 (void)
9778 {
9779 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9780 vfp_conv (16);
9781 }
9782
9783 static void
9784 do_vfp_sp_conv_32 (void)
9785 {
9786 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9787 vfp_conv (32);
9788 }
9789
9790 static void
9791 do_vfp_dp_conv_32 (void)
9792 {
9793 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9794 vfp_conv (32);
9795 }
9796 \f
9797 /* FPA instructions. Also in a logical order. */
9798
9799 static void
9800 do_fpa_cmp (void)
9801 {
9802 inst.instruction |= inst.operands[0].reg << 16;
9803 inst.instruction |= inst.operands[1].reg;
9804 }
9805
9806 static void
9807 do_fpa_ldmstm (void)
9808 {
9809 inst.instruction |= inst.operands[0].reg << 12;
9810 switch (inst.operands[1].imm)
9811 {
9812 case 1: inst.instruction |= CP_T_X; break;
9813 case 2: inst.instruction |= CP_T_Y; break;
9814 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
9815 case 4: break;
9816 default: abort ();
9817 }
9818
9819 if (inst.instruction & (PRE_INDEX | INDEX_UP))
9820 {
9821 /* The instruction specified "ea" or "fd", so we can only accept
9822 [Rn]{!}. The instruction does not really support stacking or
9823 unstacking, so we have to emulate these by setting appropriate
9824 bits and offsets. */
9825 constraint (inst.reloc.exp.X_op != O_constant
9826 || inst.reloc.exp.X_add_number != 0,
9827 _("this instruction does not support indexing"));
9828
9829 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
9830 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
9831
9832 if (!(inst.instruction & INDEX_UP))
9833 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
9834
9835 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
9836 {
9837 inst.operands[2].preind = 0;
9838 inst.operands[2].postind = 1;
9839 }
9840 }
9841
9842 encode_arm_cp_address (2, TRUE, TRUE, 0);
9843 }
9844 \f
9845 /* iWMMXt instructions: strictly in alphabetical order. */
9846
9847 static void
9848 do_iwmmxt_tandorc (void)
9849 {
9850 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
9851 }
9852
9853 static void
9854 do_iwmmxt_textrc (void)
9855 {
9856 inst.instruction |= inst.operands[0].reg << 12;
9857 inst.instruction |= inst.operands[1].imm;
9858 }
9859
9860 static void
9861 do_iwmmxt_textrm (void)
9862 {
9863 inst.instruction |= inst.operands[0].reg << 12;
9864 inst.instruction |= inst.operands[1].reg << 16;
9865 inst.instruction |= inst.operands[2].imm;
9866 }
9867
9868 static void
9869 do_iwmmxt_tinsr (void)
9870 {
9871 inst.instruction |= inst.operands[0].reg << 16;
9872 inst.instruction |= inst.operands[1].reg << 12;
9873 inst.instruction |= inst.operands[2].imm;
9874 }
9875
9876 static void
9877 do_iwmmxt_tmia (void)
9878 {
9879 inst.instruction |= inst.operands[0].reg << 5;
9880 inst.instruction |= inst.operands[1].reg;
9881 inst.instruction |= inst.operands[2].reg << 12;
9882 }
9883
9884 static void
9885 do_iwmmxt_waligni (void)
9886 {
9887 inst.instruction |= inst.operands[0].reg << 12;
9888 inst.instruction |= inst.operands[1].reg << 16;
9889 inst.instruction |= inst.operands[2].reg;
9890 inst.instruction |= inst.operands[3].imm << 20;
9891 }
9892
9893 static void
9894 do_iwmmxt_wmerge (void)
9895 {
9896 inst.instruction |= inst.operands[0].reg << 12;
9897 inst.instruction |= inst.operands[1].reg << 16;
9898 inst.instruction |= inst.operands[2].reg;
9899 inst.instruction |= inst.operands[3].imm << 21;
9900 }
9901
9902 static void
9903 do_iwmmxt_wmov (void)
9904 {
9905 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
9906 inst.instruction |= inst.operands[0].reg << 12;
9907 inst.instruction |= inst.operands[1].reg << 16;
9908 inst.instruction |= inst.operands[1].reg;
9909 }
9910
9911 static void
9912 do_iwmmxt_wldstbh (void)
9913 {
9914 int reloc;
9915 inst.instruction |= inst.operands[0].reg << 12;
9916 if (thumb_mode)
9917 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
9918 else
9919 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
9920 encode_arm_cp_address (1, TRUE, FALSE, reloc);
9921 }
9922
9923 static void
9924 do_iwmmxt_wldstw (void)
9925 {
9926 /* RIWR_RIWC clears .isreg for a control register. */
9927 if (!inst.operands[0].isreg)
9928 {
9929 constraint (inst.cond != COND_ALWAYS, BAD_COND);
9930 inst.instruction |= 0xf0000000;
9931 }
9932
9933 inst.instruction |= inst.operands[0].reg << 12;
9934 encode_arm_cp_address (1, TRUE, TRUE, 0);
9935 }
9936
9937 static void
9938 do_iwmmxt_wldstd (void)
9939 {
9940 inst.instruction |= inst.operands[0].reg << 12;
9941 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
9942 && inst.operands[1].immisreg)
9943 {
9944 inst.instruction &= ~0x1a000ff;
9945 inst.instruction |= (0xfU << 28);
9946 if (inst.operands[1].preind)
9947 inst.instruction |= PRE_INDEX;
9948 if (!inst.operands[1].negative)
9949 inst.instruction |= INDEX_UP;
9950 if (inst.operands[1].writeback)
9951 inst.instruction |= WRITE_BACK;
9952 inst.instruction |= inst.operands[1].reg << 16;
9953 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9954 inst.instruction |= inst.operands[1].imm;
9955 }
9956 else
9957 encode_arm_cp_address (1, TRUE, FALSE, 0);
9958 }
9959
9960 static void
9961 do_iwmmxt_wshufh (void)
9962 {
9963 inst.instruction |= inst.operands[0].reg << 12;
9964 inst.instruction |= inst.operands[1].reg << 16;
9965 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
9966 inst.instruction |= (inst.operands[2].imm & 0x0f);
9967 }
9968
9969 static void
9970 do_iwmmxt_wzero (void)
9971 {
9972 /* WZERO reg is an alias for WANDN reg, reg, reg. */
9973 inst.instruction |= inst.operands[0].reg;
9974 inst.instruction |= inst.operands[0].reg << 12;
9975 inst.instruction |= inst.operands[0].reg << 16;
9976 }
9977
9978 static void
9979 do_iwmmxt_wrwrwr_or_imm5 (void)
9980 {
9981 if (inst.operands[2].isreg)
9982 do_rd_rn_rm ();
9983 else {
9984 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
9985 _("immediate operand requires iWMMXt2"));
9986 do_rd_rn ();
9987 if (inst.operands[2].imm == 0)
9988 {
9989 switch ((inst.instruction >> 20) & 0xf)
9990 {
9991 case 4:
9992 case 5:
9993 case 6:
9994 case 7:
9995 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
9996 inst.operands[2].imm = 16;
9997 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
9998 break;
9999 case 8:
10000 case 9:
10001 case 10:
10002 case 11:
10003 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10004 inst.operands[2].imm = 32;
10005 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
10006 break;
10007 case 12:
10008 case 13:
10009 case 14:
10010 case 15:
10011 {
10012 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10013 unsigned long wrn;
10014 wrn = (inst.instruction >> 16) & 0xf;
10015 inst.instruction &= 0xff0fff0f;
10016 inst.instruction |= wrn;
10017 /* Bail out here; the instruction is now assembled. */
10018 return;
10019 }
10020 }
10021 }
10022 /* Map 32 -> 0, etc. */
10023 inst.operands[2].imm &= 0x1f;
10024 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
10025 }
10026 }
10027 \f
10028 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10029 operations first, then control, shift, and load/store. */
10030
10031 /* Insns like "foo X,Y,Z". */
10032
10033 static void
10034 do_mav_triple (void)
10035 {
10036 inst.instruction |= inst.operands[0].reg << 16;
10037 inst.instruction |= inst.operands[1].reg;
10038 inst.instruction |= inst.operands[2].reg << 12;
10039 }
10040
10041 /* Insns like "foo W,X,Y,Z".
10042 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
10043
10044 static void
10045 do_mav_quad (void)
10046 {
10047 inst.instruction |= inst.operands[0].reg << 5;
10048 inst.instruction |= inst.operands[1].reg << 12;
10049 inst.instruction |= inst.operands[2].reg << 16;
10050 inst.instruction |= inst.operands[3].reg;
10051 }
10052
10053 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10054 static void
10055 do_mav_dspsc (void)
10056 {
10057 inst.instruction |= inst.operands[1].reg << 12;
10058 }
10059
10060 /* Maverick shift immediate instructions.
10061 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10062 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
10063
10064 static void
10065 do_mav_shift (void)
10066 {
10067 int imm = inst.operands[2].imm;
10068
10069 inst.instruction |= inst.operands[0].reg << 12;
10070 inst.instruction |= inst.operands[1].reg << 16;
10071
10072 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10073 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10074 Bit 4 should be 0. */
10075 imm = (imm & 0xf) | ((imm & 0x70) << 1);
10076
10077 inst.instruction |= imm;
10078 }
10079 \f
10080 /* XScale instructions. Also sorted arithmetic before move. */
10081
10082 /* Xscale multiply-accumulate (argument parse)
10083 MIAcc acc0,Rm,Rs
10084 MIAPHcc acc0,Rm,Rs
10085 MIAxycc acc0,Rm,Rs. */
10086
10087 static void
10088 do_xsc_mia (void)
10089 {
10090 inst.instruction |= inst.operands[1].reg;
10091 inst.instruction |= inst.operands[2].reg << 12;
10092 }
10093
10094 /* Xscale move-accumulator-register (argument parse)
10095
10096 MARcc acc0,RdLo,RdHi. */
10097
10098 static void
10099 do_xsc_mar (void)
10100 {
10101 inst.instruction |= inst.operands[1].reg << 12;
10102 inst.instruction |= inst.operands[2].reg << 16;
10103 }
10104
10105 /* Xscale move-register-accumulator (argument parse)
10106
10107 MRAcc RdLo,RdHi,acc0. */
10108
10109 static void
10110 do_xsc_mra (void)
10111 {
10112 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
10113 inst.instruction |= inst.operands[0].reg << 12;
10114 inst.instruction |= inst.operands[1].reg << 16;
10115 }
10116 \f
10117 /* Encoding functions relevant only to Thumb. */
10118
10119 /* inst.operands[i] is a shifted-register operand; encode
10120 it into inst.instruction in the format used by Thumb32. */
10121
10122 static void
10123 encode_thumb32_shifted_operand (int i)
10124 {
10125 unsigned int value = inst.reloc.exp.X_add_number;
10126 unsigned int shift = inst.operands[i].shift_kind;
10127
10128 constraint (inst.operands[i].immisreg,
10129 _("shift by register not allowed in thumb mode"));
10130 inst.instruction |= inst.operands[i].reg;
10131 if (shift == SHIFT_RRX)
10132 inst.instruction |= SHIFT_ROR << 4;
10133 else
10134 {
10135 constraint (inst.reloc.exp.X_op != O_constant,
10136 _("expression too complex"));
10137
10138 constraint (value > 32
10139 || (value == 32 && (shift == SHIFT_LSL
10140 || shift == SHIFT_ROR)),
10141 _("shift expression is too large"));
10142
10143 if (value == 0)
10144 shift = SHIFT_LSL;
10145 else if (value == 32)
10146 value = 0;
10147
10148 inst.instruction |= shift << 4;
10149 inst.instruction |= (value & 0x1c) << 10;
10150 inst.instruction |= (value & 0x03) << 6;
10151 }
10152 }
10153
10154
10155 /* inst.operands[i] was set up by parse_address. Encode it into a
10156 Thumb32 format load or store instruction. Reject forms that cannot
10157 be used with such instructions. If is_t is true, reject forms that
10158 cannot be used with a T instruction; if is_d is true, reject forms
10159 that cannot be used with a D instruction. If it is a store insn,
10160 reject PC in Rn. */
10161
10162 static void
10163 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
10164 {
10165 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
10166
10167 constraint (!inst.operands[i].isreg,
10168 _("Instruction does not support =N addresses"));
10169
10170 inst.instruction |= inst.operands[i].reg << 16;
10171 if (inst.operands[i].immisreg)
10172 {
10173 constraint (is_pc, BAD_PC_ADDRESSING);
10174 constraint (is_t || is_d, _("cannot use register index with this instruction"));
10175 constraint (inst.operands[i].negative,
10176 _("Thumb does not support negative register indexing"));
10177 constraint (inst.operands[i].postind,
10178 _("Thumb does not support register post-indexing"));
10179 constraint (inst.operands[i].writeback,
10180 _("Thumb does not support register indexing with writeback"));
10181 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
10182 _("Thumb supports only LSL in shifted register indexing"));
10183
10184 inst.instruction |= inst.operands[i].imm;
10185 if (inst.operands[i].shifted)
10186 {
10187 constraint (inst.reloc.exp.X_op != O_constant,
10188 _("expression too complex"));
10189 constraint (inst.reloc.exp.X_add_number < 0
10190 || inst.reloc.exp.X_add_number > 3,
10191 _("shift out of range"));
10192 inst.instruction |= inst.reloc.exp.X_add_number << 4;
10193 }
10194 inst.reloc.type = BFD_RELOC_UNUSED;
10195 }
10196 else if (inst.operands[i].preind)
10197 {
10198 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
10199 constraint (is_t && inst.operands[i].writeback,
10200 _("cannot use writeback with this instruction"));
10201 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
10202 BAD_PC_ADDRESSING);
10203
10204 if (is_d)
10205 {
10206 inst.instruction |= 0x01000000;
10207 if (inst.operands[i].writeback)
10208 inst.instruction |= 0x00200000;
10209 }
10210 else
10211 {
10212 inst.instruction |= 0x00000c00;
10213 if (inst.operands[i].writeback)
10214 inst.instruction |= 0x00000100;
10215 }
10216 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
10217 }
10218 else if (inst.operands[i].postind)
10219 {
10220 gas_assert (inst.operands[i].writeback);
10221 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
10222 constraint (is_t, _("cannot use post-indexing with this instruction"));
10223
10224 if (is_d)
10225 inst.instruction |= 0x00200000;
10226 else
10227 inst.instruction |= 0x00000900;
10228 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
10229 }
10230 else /* unindexed - only for coprocessor */
10231 inst.error = _("instruction does not accept unindexed addressing");
10232 }
10233
10234 /* Table of Thumb instructions which exist in both 16- and 32-bit
10235 encodings (the latter only in post-V6T2 cores). The index is the
10236 value used in the insns table below. When there is more than one
10237 possible 16-bit encoding for the instruction, this table always
10238 holds variant (1).
10239 Also contains several pseudo-instructions used during relaxation. */
10240 #define T16_32_TAB \
10241 X(_adc, 4140, eb400000), \
10242 X(_adcs, 4140, eb500000), \
10243 X(_add, 1c00, eb000000), \
10244 X(_adds, 1c00, eb100000), \
10245 X(_addi, 0000, f1000000), \
10246 X(_addis, 0000, f1100000), \
10247 X(_add_pc,000f, f20f0000), \
10248 X(_add_sp,000d, f10d0000), \
10249 X(_adr, 000f, f20f0000), \
10250 X(_and, 4000, ea000000), \
10251 X(_ands, 4000, ea100000), \
10252 X(_asr, 1000, fa40f000), \
10253 X(_asrs, 1000, fa50f000), \
10254 X(_b, e000, f000b000), \
10255 X(_bcond, d000, f0008000), \
10256 X(_bic, 4380, ea200000), \
10257 X(_bics, 4380, ea300000), \
10258 X(_cmn, 42c0, eb100f00), \
10259 X(_cmp, 2800, ebb00f00), \
10260 X(_cpsie, b660, f3af8400), \
10261 X(_cpsid, b670, f3af8600), \
10262 X(_cpy, 4600, ea4f0000), \
10263 X(_dec_sp,80dd, f1ad0d00), \
10264 X(_eor, 4040, ea800000), \
10265 X(_eors, 4040, ea900000), \
10266 X(_inc_sp,00dd, f10d0d00), \
10267 X(_ldmia, c800, e8900000), \
10268 X(_ldr, 6800, f8500000), \
10269 X(_ldrb, 7800, f8100000), \
10270 X(_ldrh, 8800, f8300000), \
10271 X(_ldrsb, 5600, f9100000), \
10272 X(_ldrsh, 5e00, f9300000), \
10273 X(_ldr_pc,4800, f85f0000), \
10274 X(_ldr_pc2,4800, f85f0000), \
10275 X(_ldr_sp,9800, f85d0000), \
10276 X(_lsl, 0000, fa00f000), \
10277 X(_lsls, 0000, fa10f000), \
10278 X(_lsr, 0800, fa20f000), \
10279 X(_lsrs, 0800, fa30f000), \
10280 X(_mov, 2000, ea4f0000), \
10281 X(_movs, 2000, ea5f0000), \
10282 X(_mul, 4340, fb00f000), \
10283 X(_muls, 4340, ffffffff), /* no 32b muls */ \
10284 X(_mvn, 43c0, ea6f0000), \
10285 X(_mvns, 43c0, ea7f0000), \
10286 X(_neg, 4240, f1c00000), /* rsb #0 */ \
10287 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
10288 X(_orr, 4300, ea400000), \
10289 X(_orrs, 4300, ea500000), \
10290 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
10291 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
10292 X(_rev, ba00, fa90f080), \
10293 X(_rev16, ba40, fa90f090), \
10294 X(_revsh, bac0, fa90f0b0), \
10295 X(_ror, 41c0, fa60f000), \
10296 X(_rors, 41c0, fa70f000), \
10297 X(_sbc, 4180, eb600000), \
10298 X(_sbcs, 4180, eb700000), \
10299 X(_stmia, c000, e8800000), \
10300 X(_str, 6000, f8400000), \
10301 X(_strb, 7000, f8000000), \
10302 X(_strh, 8000, f8200000), \
10303 X(_str_sp,9000, f84d0000), \
10304 X(_sub, 1e00, eba00000), \
10305 X(_subs, 1e00, ebb00000), \
10306 X(_subi, 8000, f1a00000), \
10307 X(_subis, 8000, f1b00000), \
10308 X(_sxtb, b240, fa4ff080), \
10309 X(_sxth, b200, fa0ff080), \
10310 X(_tst, 4200, ea100f00), \
10311 X(_uxtb, b2c0, fa5ff080), \
10312 X(_uxth, b280, fa1ff080), \
10313 X(_nop, bf00, f3af8000), \
10314 X(_yield, bf10, f3af8001), \
10315 X(_wfe, bf20, f3af8002), \
10316 X(_wfi, bf30, f3af8003), \
10317 X(_sev, bf40, f3af8004), \
10318 X(_sevl, bf50, f3af8005), \
10319 X(_udf, de00, f7f0a000)
10320
10321 /* To catch errors in encoding functions, the codes are all offset by
10322 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
10323 as 16-bit instructions. */
10324 #define X(a,b,c) T_MNEM##a
10325 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
10326 #undef X
10327
10328 #define X(a,b,c) 0x##b
10329 static const unsigned short thumb_op16[] = { T16_32_TAB };
10330 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
10331 #undef X
10332
10333 #define X(a,b,c) 0x##c
10334 static const unsigned int thumb_op32[] = { T16_32_TAB };
10335 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
10336 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
10337 #undef X
10338 #undef T16_32_TAB
10339
10340 /* Thumb instruction encoders, in alphabetical order. */
10341
10342 /* ADDW or SUBW. */
10343
10344 static void
10345 do_t_add_sub_w (void)
10346 {
10347 int Rd, Rn;
10348
10349 Rd = inst.operands[0].reg;
10350 Rn = inst.operands[1].reg;
10351
10352 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
10353 is the SP-{plus,minus}-immediate form of the instruction. */
10354 if (Rn == REG_SP)
10355 constraint (Rd == REG_PC, BAD_PC);
10356 else
10357 reject_bad_reg (Rd);
10358
10359 inst.instruction |= (Rn << 16) | (Rd << 8);
10360 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
10361 }
10362
10363 /* Parse an add or subtract instruction. We get here with inst.instruction
10364 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
10365
10366 static void
10367 do_t_add_sub (void)
10368 {
10369 int Rd, Rs, Rn;
10370
10371 Rd = inst.operands[0].reg;
10372 Rs = (inst.operands[1].present
10373 ? inst.operands[1].reg /* Rd, Rs, foo */
10374 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10375
10376 if (Rd == REG_PC)
10377 set_it_insn_type_last ();
10378
10379 if (unified_syntax)
10380 {
10381 bfd_boolean flags;
10382 bfd_boolean narrow;
10383 int opcode;
10384
10385 flags = (inst.instruction == T_MNEM_adds
10386 || inst.instruction == T_MNEM_subs);
10387 if (flags)
10388 narrow = !in_it_block ();
10389 else
10390 narrow = in_it_block ();
10391 if (!inst.operands[2].isreg)
10392 {
10393 int add;
10394
10395 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
10396
10397 add = (inst.instruction == T_MNEM_add
10398 || inst.instruction == T_MNEM_adds);
10399 opcode = 0;
10400 if (inst.size_req != 4)
10401 {
10402 /* Attempt to use a narrow opcode, with relaxation if
10403 appropriate. */
10404 if (Rd == REG_SP && Rs == REG_SP && !flags)
10405 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
10406 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
10407 opcode = T_MNEM_add_sp;
10408 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
10409 opcode = T_MNEM_add_pc;
10410 else if (Rd <= 7 && Rs <= 7 && narrow)
10411 {
10412 if (flags)
10413 opcode = add ? T_MNEM_addis : T_MNEM_subis;
10414 else
10415 opcode = add ? T_MNEM_addi : T_MNEM_subi;
10416 }
10417 if (opcode)
10418 {
10419 inst.instruction = THUMB_OP16(opcode);
10420 inst.instruction |= (Rd << 4) | Rs;
10421 if (inst.reloc.type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
10422 || inst.reloc.type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
10423 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
10424 if (inst.size_req != 2)
10425 inst.relax = opcode;
10426 }
10427 else
10428 constraint (inst.size_req == 2, BAD_HIREG);
10429 }
10430 if (inst.size_req == 4
10431 || (inst.size_req != 2 && !opcode))
10432 {
10433 if (Rd == REG_PC)
10434 {
10435 constraint (add, BAD_PC);
10436 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
10437 _("only SUBS PC, LR, #const allowed"));
10438 constraint (inst.reloc.exp.X_op != O_constant,
10439 _("expression too complex"));
10440 constraint (inst.reloc.exp.X_add_number < 0
10441 || inst.reloc.exp.X_add_number > 0xff,
10442 _("immediate value out of range"));
10443 inst.instruction = T2_SUBS_PC_LR
10444 | inst.reloc.exp.X_add_number;
10445 inst.reloc.type = BFD_RELOC_UNUSED;
10446 return;
10447 }
10448 else if (Rs == REG_PC)
10449 {
10450 /* Always use addw/subw. */
10451 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
10452 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
10453 }
10454 else
10455 {
10456 inst.instruction = THUMB_OP32 (inst.instruction);
10457 inst.instruction = (inst.instruction & 0xe1ffffff)
10458 | 0x10000000;
10459 if (flags)
10460 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10461 else
10462 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
10463 }
10464 inst.instruction |= Rd << 8;
10465 inst.instruction |= Rs << 16;
10466 }
10467 }
10468 else
10469 {
10470 unsigned int value = inst.reloc.exp.X_add_number;
10471 unsigned int shift = inst.operands[2].shift_kind;
10472
10473 Rn = inst.operands[2].reg;
10474 /* See if we can do this with a 16-bit instruction. */
10475 if (!inst.operands[2].shifted && inst.size_req != 4)
10476 {
10477 if (Rd > 7 || Rs > 7 || Rn > 7)
10478 narrow = FALSE;
10479
10480 if (narrow)
10481 {
10482 inst.instruction = ((inst.instruction == T_MNEM_adds
10483 || inst.instruction == T_MNEM_add)
10484 ? T_OPCODE_ADD_R3
10485 : T_OPCODE_SUB_R3);
10486 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
10487 return;
10488 }
10489
10490 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
10491 {
10492 /* Thumb-1 cores (except v6-M) require at least one high
10493 register in a narrow non flag setting add. */
10494 if (Rd > 7 || Rn > 7
10495 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
10496 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
10497 {
10498 if (Rd == Rn)
10499 {
10500 Rn = Rs;
10501 Rs = Rd;
10502 }
10503 inst.instruction = T_OPCODE_ADD_HI;
10504 inst.instruction |= (Rd & 8) << 4;
10505 inst.instruction |= (Rd & 7);
10506 inst.instruction |= Rn << 3;
10507 return;
10508 }
10509 }
10510 }
10511
10512 constraint (Rd == REG_PC, BAD_PC);
10513 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
10514 constraint (Rs == REG_PC, BAD_PC);
10515 reject_bad_reg (Rn);
10516
10517 /* If we get here, it can't be done in 16 bits. */
10518 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
10519 _("shift must be constant"));
10520 inst.instruction = THUMB_OP32 (inst.instruction);
10521 inst.instruction |= Rd << 8;
10522 inst.instruction |= Rs << 16;
10523 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
10524 _("shift value over 3 not allowed in thumb mode"));
10525 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
10526 _("only LSL shift allowed in thumb mode"));
10527 encode_thumb32_shifted_operand (2);
10528 }
10529 }
10530 else
10531 {
10532 constraint (inst.instruction == T_MNEM_adds
10533 || inst.instruction == T_MNEM_subs,
10534 BAD_THUMB32);
10535
10536 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
10537 {
10538 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
10539 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
10540 BAD_HIREG);
10541
10542 inst.instruction = (inst.instruction == T_MNEM_add
10543 ? 0x0000 : 0x8000);
10544 inst.instruction |= (Rd << 4) | Rs;
10545 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
10546 return;
10547 }
10548
10549 Rn = inst.operands[2].reg;
10550 constraint (inst.operands[2].shifted, _("unshifted register required"));
10551
10552 /* We now have Rd, Rs, and Rn set to registers. */
10553 if (Rd > 7 || Rs > 7 || Rn > 7)
10554 {
10555 /* Can't do this for SUB. */
10556 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
10557 inst.instruction = T_OPCODE_ADD_HI;
10558 inst.instruction |= (Rd & 8) << 4;
10559 inst.instruction |= (Rd & 7);
10560 if (Rs == Rd)
10561 inst.instruction |= Rn << 3;
10562 else if (Rn == Rd)
10563 inst.instruction |= Rs << 3;
10564 else
10565 constraint (1, _("dest must overlap one source register"));
10566 }
10567 else
10568 {
10569 inst.instruction = (inst.instruction == T_MNEM_add
10570 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
10571 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
10572 }
10573 }
10574 }
10575
10576 static void
10577 do_t_adr (void)
10578 {
10579 unsigned Rd;
10580
10581 Rd = inst.operands[0].reg;
10582 reject_bad_reg (Rd);
10583
10584 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
10585 {
10586 /* Defer to section relaxation. */
10587 inst.relax = inst.instruction;
10588 inst.instruction = THUMB_OP16 (inst.instruction);
10589 inst.instruction |= Rd << 4;
10590 }
10591 else if (unified_syntax && inst.size_req != 2)
10592 {
10593 /* Generate a 32-bit opcode. */
10594 inst.instruction = THUMB_OP32 (inst.instruction);
10595 inst.instruction |= Rd << 8;
10596 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
10597 inst.reloc.pc_rel = 1;
10598 }
10599 else
10600 {
10601 /* Generate a 16-bit opcode. */
10602 inst.instruction = THUMB_OP16 (inst.instruction);
10603 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
10604 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
10605 inst.reloc.pc_rel = 1;
10606
10607 inst.instruction |= Rd << 4;
10608 }
10609 }
10610
10611 /* Arithmetic instructions for which there is just one 16-bit
10612 instruction encoding, and it allows only two low registers.
10613 For maximal compatibility with ARM syntax, we allow three register
10614 operands even when Thumb-32 instructions are not available, as long
10615 as the first two are identical. For instance, both "sbc r0,r1" and
10616 "sbc r0,r0,r1" are allowed. */
10617 static void
10618 do_t_arit3 (void)
10619 {
10620 int Rd, Rs, Rn;
10621
10622 Rd = inst.operands[0].reg;
10623 Rs = (inst.operands[1].present
10624 ? inst.operands[1].reg /* Rd, Rs, foo */
10625 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10626 Rn = inst.operands[2].reg;
10627
10628 reject_bad_reg (Rd);
10629 reject_bad_reg (Rs);
10630 if (inst.operands[2].isreg)
10631 reject_bad_reg (Rn);
10632
10633 if (unified_syntax)
10634 {
10635 if (!inst.operands[2].isreg)
10636 {
10637 /* For an immediate, we always generate a 32-bit opcode;
10638 section relaxation will shrink it later if possible. */
10639 inst.instruction = THUMB_OP32 (inst.instruction);
10640 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10641 inst.instruction |= Rd << 8;
10642 inst.instruction |= Rs << 16;
10643 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10644 }
10645 else
10646 {
10647 bfd_boolean narrow;
10648
10649 /* See if we can do this with a 16-bit instruction. */
10650 if (THUMB_SETS_FLAGS (inst.instruction))
10651 narrow = !in_it_block ();
10652 else
10653 narrow = in_it_block ();
10654
10655 if (Rd > 7 || Rn > 7 || Rs > 7)
10656 narrow = FALSE;
10657 if (inst.operands[2].shifted)
10658 narrow = FALSE;
10659 if (inst.size_req == 4)
10660 narrow = FALSE;
10661
10662 if (narrow
10663 && Rd == Rs)
10664 {
10665 inst.instruction = THUMB_OP16 (inst.instruction);
10666 inst.instruction |= Rd;
10667 inst.instruction |= Rn << 3;
10668 return;
10669 }
10670
10671 /* If we get here, it can't be done in 16 bits. */
10672 constraint (inst.operands[2].shifted
10673 && inst.operands[2].immisreg,
10674 _("shift must be constant"));
10675 inst.instruction = THUMB_OP32 (inst.instruction);
10676 inst.instruction |= Rd << 8;
10677 inst.instruction |= Rs << 16;
10678 encode_thumb32_shifted_operand (2);
10679 }
10680 }
10681 else
10682 {
10683 /* On its face this is a lie - the instruction does set the
10684 flags. However, the only supported mnemonic in this mode
10685 says it doesn't. */
10686 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10687
10688 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
10689 _("unshifted register required"));
10690 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
10691 constraint (Rd != Rs,
10692 _("dest and source1 must be the same register"));
10693
10694 inst.instruction = THUMB_OP16 (inst.instruction);
10695 inst.instruction |= Rd;
10696 inst.instruction |= Rn << 3;
10697 }
10698 }
10699
10700 /* Similarly, but for instructions where the arithmetic operation is
10701 commutative, so we can allow either of them to be different from
10702 the destination operand in a 16-bit instruction. For instance, all
10703 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
10704 accepted. */
10705 static void
10706 do_t_arit3c (void)
10707 {
10708 int Rd, Rs, Rn;
10709
10710 Rd = inst.operands[0].reg;
10711 Rs = (inst.operands[1].present
10712 ? inst.operands[1].reg /* Rd, Rs, foo */
10713 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10714 Rn = inst.operands[2].reg;
10715
10716 reject_bad_reg (Rd);
10717 reject_bad_reg (Rs);
10718 if (inst.operands[2].isreg)
10719 reject_bad_reg (Rn);
10720
10721 if (unified_syntax)
10722 {
10723 if (!inst.operands[2].isreg)
10724 {
10725 /* For an immediate, we always generate a 32-bit opcode;
10726 section relaxation will shrink it later if possible. */
10727 inst.instruction = THUMB_OP32 (inst.instruction);
10728 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10729 inst.instruction |= Rd << 8;
10730 inst.instruction |= Rs << 16;
10731 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10732 }
10733 else
10734 {
10735 bfd_boolean narrow;
10736
10737 /* See if we can do this with a 16-bit instruction. */
10738 if (THUMB_SETS_FLAGS (inst.instruction))
10739 narrow = !in_it_block ();
10740 else
10741 narrow = in_it_block ();
10742
10743 if (Rd > 7 || Rn > 7 || Rs > 7)
10744 narrow = FALSE;
10745 if (inst.operands[2].shifted)
10746 narrow = FALSE;
10747 if (inst.size_req == 4)
10748 narrow = FALSE;
10749
10750 if (narrow)
10751 {
10752 if (Rd == Rs)
10753 {
10754 inst.instruction = THUMB_OP16 (inst.instruction);
10755 inst.instruction |= Rd;
10756 inst.instruction |= Rn << 3;
10757 return;
10758 }
10759 if (Rd == Rn)
10760 {
10761 inst.instruction = THUMB_OP16 (inst.instruction);
10762 inst.instruction |= Rd;
10763 inst.instruction |= Rs << 3;
10764 return;
10765 }
10766 }
10767
10768 /* If we get here, it can't be done in 16 bits. */
10769 constraint (inst.operands[2].shifted
10770 && inst.operands[2].immisreg,
10771 _("shift must be constant"));
10772 inst.instruction = THUMB_OP32 (inst.instruction);
10773 inst.instruction |= Rd << 8;
10774 inst.instruction |= Rs << 16;
10775 encode_thumb32_shifted_operand (2);
10776 }
10777 }
10778 else
10779 {
10780 /* On its face this is a lie - the instruction does set the
10781 flags. However, the only supported mnemonic in this mode
10782 says it doesn't. */
10783 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10784
10785 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
10786 _("unshifted register required"));
10787 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
10788
10789 inst.instruction = THUMB_OP16 (inst.instruction);
10790 inst.instruction |= Rd;
10791
10792 if (Rd == Rs)
10793 inst.instruction |= Rn << 3;
10794 else if (Rd == Rn)
10795 inst.instruction |= Rs << 3;
10796 else
10797 constraint (1, _("dest must overlap one source register"));
10798 }
10799 }
10800
10801 static void
10802 do_t_bfc (void)
10803 {
10804 unsigned Rd;
10805 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
10806 constraint (msb > 32, _("bit-field extends past end of register"));
10807 /* The instruction encoding stores the LSB and MSB,
10808 not the LSB and width. */
10809 Rd = inst.operands[0].reg;
10810 reject_bad_reg (Rd);
10811 inst.instruction |= Rd << 8;
10812 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
10813 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
10814 inst.instruction |= msb - 1;
10815 }
10816
10817 static void
10818 do_t_bfi (void)
10819 {
10820 int Rd, Rn;
10821 unsigned int msb;
10822
10823 Rd = inst.operands[0].reg;
10824 reject_bad_reg (Rd);
10825
10826 /* #0 in second position is alternative syntax for bfc, which is
10827 the same instruction but with REG_PC in the Rm field. */
10828 if (!inst.operands[1].isreg)
10829 Rn = REG_PC;
10830 else
10831 {
10832 Rn = inst.operands[1].reg;
10833 reject_bad_reg (Rn);
10834 }
10835
10836 msb = inst.operands[2].imm + inst.operands[3].imm;
10837 constraint (msb > 32, _("bit-field extends past end of register"));
10838 /* The instruction encoding stores the LSB and MSB,
10839 not the LSB and width. */
10840 inst.instruction |= Rd << 8;
10841 inst.instruction |= Rn << 16;
10842 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
10843 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
10844 inst.instruction |= msb - 1;
10845 }
10846
10847 static void
10848 do_t_bfx (void)
10849 {
10850 unsigned Rd, Rn;
10851
10852 Rd = inst.operands[0].reg;
10853 Rn = inst.operands[1].reg;
10854
10855 reject_bad_reg (Rd);
10856 reject_bad_reg (Rn);
10857
10858 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
10859 _("bit-field extends past end of register"));
10860 inst.instruction |= Rd << 8;
10861 inst.instruction |= Rn << 16;
10862 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
10863 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
10864 inst.instruction |= inst.operands[3].imm - 1;
10865 }
10866
10867 /* ARM V5 Thumb BLX (argument parse)
10868 BLX <target_addr> which is BLX(1)
10869 BLX <Rm> which is BLX(2)
10870 Unfortunately, there are two different opcodes for this mnemonic.
10871 So, the insns[].value is not used, and the code here zaps values
10872 into inst.instruction.
10873
10874 ??? How to take advantage of the additional two bits of displacement
10875 available in Thumb32 mode? Need new relocation? */
10876
10877 static void
10878 do_t_blx (void)
10879 {
10880 set_it_insn_type_last ();
10881
10882 if (inst.operands[0].isreg)
10883 {
10884 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
10885 /* We have a register, so this is BLX(2). */
10886 inst.instruction |= inst.operands[0].reg << 3;
10887 }
10888 else
10889 {
10890 /* No register. This must be BLX(1). */
10891 inst.instruction = 0xf000e800;
10892 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
10893 }
10894 }
10895
10896 static void
10897 do_t_branch (void)
10898 {
10899 int opcode;
10900 int cond;
10901 int reloc;
10902
10903 cond = inst.cond;
10904 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
10905
10906 if (in_it_block ())
10907 {
10908 /* Conditional branches inside IT blocks are encoded as unconditional
10909 branches. */
10910 cond = COND_ALWAYS;
10911 }
10912 else
10913 cond = inst.cond;
10914
10915 if (cond != COND_ALWAYS)
10916 opcode = T_MNEM_bcond;
10917 else
10918 opcode = inst.instruction;
10919
10920 if (unified_syntax
10921 && (inst.size_req == 4
10922 || (inst.size_req != 2
10923 && (inst.operands[0].hasreloc
10924 || inst.reloc.exp.X_op == O_constant))))
10925 {
10926 inst.instruction = THUMB_OP32(opcode);
10927 if (cond == COND_ALWAYS)
10928 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
10929 else
10930 {
10931 gas_assert (cond != 0xF);
10932 inst.instruction |= cond << 22;
10933 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
10934 }
10935 }
10936 else
10937 {
10938 inst.instruction = THUMB_OP16(opcode);
10939 if (cond == COND_ALWAYS)
10940 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
10941 else
10942 {
10943 inst.instruction |= cond << 8;
10944 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
10945 }
10946 /* Allow section relaxation. */
10947 if (unified_syntax && inst.size_req != 2)
10948 inst.relax = opcode;
10949 }
10950 inst.reloc.type = reloc;
10951 inst.reloc.pc_rel = 1;
10952 }
10953
10954 /* Actually do the work for Thumb state bkpt and hlt. The only difference
10955 between the two is the maximum immediate allowed - which is passed in
10956 RANGE. */
10957 static void
10958 do_t_bkpt_hlt1 (int range)
10959 {
10960 constraint (inst.cond != COND_ALWAYS,
10961 _("instruction is always unconditional"));
10962 if (inst.operands[0].present)
10963 {
10964 constraint (inst.operands[0].imm > range,
10965 _("immediate value out of range"));
10966 inst.instruction |= inst.operands[0].imm;
10967 }
10968
10969 set_it_insn_type (NEUTRAL_IT_INSN);
10970 }
10971
10972 static void
10973 do_t_hlt (void)
10974 {
10975 do_t_bkpt_hlt1 (63);
10976 }
10977
10978 static void
10979 do_t_bkpt (void)
10980 {
10981 do_t_bkpt_hlt1 (255);
10982 }
10983
10984 static void
10985 do_t_branch23 (void)
10986 {
10987 set_it_insn_type_last ();
10988 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
10989
10990 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
10991 this file. We used to simply ignore the PLT reloc type here --
10992 the branch encoding is now needed to deal with TLSCALL relocs.
10993 So if we see a PLT reloc now, put it back to how it used to be to
10994 keep the preexisting behaviour. */
10995 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
10996 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
10997
10998 #if defined(OBJ_COFF)
10999 /* If the destination of the branch is a defined symbol which does not have
11000 the THUMB_FUNC attribute, then we must be calling a function which has
11001 the (interfacearm) attribute. We look for the Thumb entry point to that
11002 function and change the branch to refer to that function instead. */
11003 if ( inst.reloc.exp.X_op == O_symbol
11004 && inst.reloc.exp.X_add_symbol != NULL
11005 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
11006 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
11007 inst.reloc.exp.X_add_symbol =
11008 find_real_start (inst.reloc.exp.X_add_symbol);
11009 #endif
11010 }
11011
11012 static void
11013 do_t_bx (void)
11014 {
11015 set_it_insn_type_last ();
11016 inst.instruction |= inst.operands[0].reg << 3;
11017 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11018 should cause the alignment to be checked once it is known. This is
11019 because BX PC only works if the instruction is word aligned. */
11020 }
11021
11022 static void
11023 do_t_bxj (void)
11024 {
11025 int Rm;
11026
11027 set_it_insn_type_last ();
11028 Rm = inst.operands[0].reg;
11029 reject_bad_reg (Rm);
11030 inst.instruction |= Rm << 16;
11031 }
11032
11033 static void
11034 do_t_clz (void)
11035 {
11036 unsigned Rd;
11037 unsigned Rm;
11038
11039 Rd = inst.operands[0].reg;
11040 Rm = inst.operands[1].reg;
11041
11042 reject_bad_reg (Rd);
11043 reject_bad_reg (Rm);
11044
11045 inst.instruction |= Rd << 8;
11046 inst.instruction |= Rm << 16;
11047 inst.instruction |= Rm;
11048 }
11049
11050 static void
11051 do_t_cps (void)
11052 {
11053 set_it_insn_type (OUTSIDE_IT_INSN);
11054 inst.instruction |= inst.operands[0].imm;
11055 }
11056
11057 static void
11058 do_t_cpsi (void)
11059 {
11060 set_it_insn_type (OUTSIDE_IT_INSN);
11061 if (unified_syntax
11062 && (inst.operands[1].present || inst.size_req == 4)
11063 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
11064 {
11065 unsigned int imod = (inst.instruction & 0x0030) >> 4;
11066 inst.instruction = 0xf3af8000;
11067 inst.instruction |= imod << 9;
11068 inst.instruction |= inst.operands[0].imm << 5;
11069 if (inst.operands[1].present)
11070 inst.instruction |= 0x100 | inst.operands[1].imm;
11071 }
11072 else
11073 {
11074 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
11075 && (inst.operands[0].imm & 4),
11076 _("selected processor does not support 'A' form "
11077 "of this instruction"));
11078 constraint (inst.operands[1].present || inst.size_req == 4,
11079 _("Thumb does not support the 2-argument "
11080 "form of this instruction"));
11081 inst.instruction |= inst.operands[0].imm;
11082 }
11083 }
11084
11085 /* THUMB CPY instruction (argument parse). */
11086
11087 static void
11088 do_t_cpy (void)
11089 {
11090 if (inst.size_req == 4)
11091 {
11092 inst.instruction = THUMB_OP32 (T_MNEM_mov);
11093 inst.instruction |= inst.operands[0].reg << 8;
11094 inst.instruction |= inst.operands[1].reg;
11095 }
11096 else
11097 {
11098 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
11099 inst.instruction |= (inst.operands[0].reg & 0x7);
11100 inst.instruction |= inst.operands[1].reg << 3;
11101 }
11102 }
11103
11104 static void
11105 do_t_cbz (void)
11106 {
11107 set_it_insn_type (OUTSIDE_IT_INSN);
11108 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11109 inst.instruction |= inst.operands[0].reg;
11110 inst.reloc.pc_rel = 1;
11111 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
11112 }
11113
11114 static void
11115 do_t_dbg (void)
11116 {
11117 inst.instruction |= inst.operands[0].imm;
11118 }
11119
11120 static void
11121 do_t_div (void)
11122 {
11123 unsigned Rd, Rn, Rm;
11124
11125 Rd = inst.operands[0].reg;
11126 Rn = (inst.operands[1].present
11127 ? inst.operands[1].reg : Rd);
11128 Rm = inst.operands[2].reg;
11129
11130 reject_bad_reg (Rd);
11131 reject_bad_reg (Rn);
11132 reject_bad_reg (Rm);
11133
11134 inst.instruction |= Rd << 8;
11135 inst.instruction |= Rn << 16;
11136 inst.instruction |= Rm;
11137 }
11138
11139 static void
11140 do_t_hint (void)
11141 {
11142 if (unified_syntax && inst.size_req == 4)
11143 inst.instruction = THUMB_OP32 (inst.instruction);
11144 else
11145 inst.instruction = THUMB_OP16 (inst.instruction);
11146 }
11147
11148 static void
11149 do_t_it (void)
11150 {
11151 unsigned int cond = inst.operands[0].imm;
11152
11153 set_it_insn_type (IT_INSN);
11154 now_it.mask = (inst.instruction & 0xf) | 0x10;
11155 now_it.cc = cond;
11156 now_it.warn_deprecated = FALSE;
11157
11158 /* If the condition is a negative condition, invert the mask. */
11159 if ((cond & 0x1) == 0x0)
11160 {
11161 unsigned int mask = inst.instruction & 0x000f;
11162
11163 if ((mask & 0x7) == 0)
11164 {
11165 /* No conversion needed. */
11166 now_it.block_length = 1;
11167 }
11168 else if ((mask & 0x3) == 0)
11169 {
11170 mask ^= 0x8;
11171 now_it.block_length = 2;
11172 }
11173 else if ((mask & 0x1) == 0)
11174 {
11175 mask ^= 0xC;
11176 now_it.block_length = 3;
11177 }
11178 else
11179 {
11180 mask ^= 0xE;
11181 now_it.block_length = 4;
11182 }
11183
11184 inst.instruction &= 0xfff0;
11185 inst.instruction |= mask;
11186 }
11187
11188 inst.instruction |= cond << 4;
11189 }
11190
11191 /* Helper function used for both push/pop and ldm/stm. */
11192 static void
11193 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
11194 {
11195 bfd_boolean load;
11196
11197 load = (inst.instruction & (1 << 20)) != 0;
11198
11199 if (mask & (1 << 13))
11200 inst.error = _("SP not allowed in register list");
11201
11202 if ((mask & (1 << base)) != 0
11203 && writeback)
11204 inst.error = _("having the base register in the register list when "
11205 "using write back is UNPREDICTABLE");
11206
11207 if (load)
11208 {
11209 if (mask & (1 << 15))
11210 {
11211 if (mask & (1 << 14))
11212 inst.error = _("LR and PC should not both be in register list");
11213 else
11214 set_it_insn_type_last ();
11215 }
11216 }
11217 else
11218 {
11219 if (mask & (1 << 15))
11220 inst.error = _("PC not allowed in register list");
11221 }
11222
11223 if ((mask & (mask - 1)) == 0)
11224 {
11225 /* Single register transfers implemented as str/ldr. */
11226 if (writeback)
11227 {
11228 if (inst.instruction & (1 << 23))
11229 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
11230 else
11231 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
11232 }
11233 else
11234 {
11235 if (inst.instruction & (1 << 23))
11236 inst.instruction = 0x00800000; /* ia -> [base] */
11237 else
11238 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
11239 }
11240
11241 inst.instruction |= 0xf8400000;
11242 if (load)
11243 inst.instruction |= 0x00100000;
11244
11245 mask = ffs (mask) - 1;
11246 mask <<= 12;
11247 }
11248 else if (writeback)
11249 inst.instruction |= WRITE_BACK;
11250
11251 inst.instruction |= mask;
11252 inst.instruction |= base << 16;
11253 }
11254
11255 static void
11256 do_t_ldmstm (void)
11257 {
11258 /* This really doesn't seem worth it. */
11259 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11260 _("expression too complex"));
11261 constraint (inst.operands[1].writeback,
11262 _("Thumb load/store multiple does not support {reglist}^"));
11263
11264 if (unified_syntax)
11265 {
11266 bfd_boolean narrow;
11267 unsigned mask;
11268
11269 narrow = FALSE;
11270 /* See if we can use a 16-bit instruction. */
11271 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
11272 && inst.size_req != 4
11273 && !(inst.operands[1].imm & ~0xff))
11274 {
11275 mask = 1 << inst.operands[0].reg;
11276
11277 if (inst.operands[0].reg <= 7)
11278 {
11279 if (inst.instruction == T_MNEM_stmia
11280 ? inst.operands[0].writeback
11281 : (inst.operands[0].writeback
11282 == !(inst.operands[1].imm & mask)))
11283 {
11284 if (inst.instruction == T_MNEM_stmia
11285 && (inst.operands[1].imm & mask)
11286 && (inst.operands[1].imm & (mask - 1)))
11287 as_warn (_("value stored for r%d is UNKNOWN"),
11288 inst.operands[0].reg);
11289
11290 inst.instruction = THUMB_OP16 (inst.instruction);
11291 inst.instruction |= inst.operands[0].reg << 8;
11292 inst.instruction |= inst.operands[1].imm;
11293 narrow = TRUE;
11294 }
11295 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
11296 {
11297 /* This means 1 register in reg list one of 3 situations:
11298 1. Instruction is stmia, but without writeback.
11299 2. lmdia without writeback, but with Rn not in
11300 reglist.
11301 3. ldmia with writeback, but with Rn in reglist.
11302 Case 3 is UNPREDICTABLE behaviour, so we handle
11303 case 1 and 2 which can be converted into a 16-bit
11304 str or ldr. The SP cases are handled below. */
11305 unsigned long opcode;
11306 /* First, record an error for Case 3. */
11307 if (inst.operands[1].imm & mask
11308 && inst.operands[0].writeback)
11309 inst.error =
11310 _("having the base register in the register list when "
11311 "using write back is UNPREDICTABLE");
11312
11313 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
11314 : T_MNEM_ldr);
11315 inst.instruction = THUMB_OP16 (opcode);
11316 inst.instruction |= inst.operands[0].reg << 3;
11317 inst.instruction |= (ffs (inst.operands[1].imm)-1);
11318 narrow = TRUE;
11319 }
11320 }
11321 else if (inst.operands[0] .reg == REG_SP)
11322 {
11323 if (inst.operands[0].writeback)
11324 {
11325 inst.instruction =
11326 THUMB_OP16 (inst.instruction == T_MNEM_stmia
11327 ? T_MNEM_push : T_MNEM_pop);
11328 inst.instruction |= inst.operands[1].imm;
11329 narrow = TRUE;
11330 }
11331 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
11332 {
11333 inst.instruction =
11334 THUMB_OP16 (inst.instruction == T_MNEM_stmia
11335 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
11336 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
11337 narrow = TRUE;
11338 }
11339 }
11340 }
11341
11342 if (!narrow)
11343 {
11344 if (inst.instruction < 0xffff)
11345 inst.instruction = THUMB_OP32 (inst.instruction);
11346
11347 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
11348 inst.operands[0].writeback);
11349 }
11350 }
11351 else
11352 {
11353 constraint (inst.operands[0].reg > 7
11354 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
11355 constraint (inst.instruction != T_MNEM_ldmia
11356 && inst.instruction != T_MNEM_stmia,
11357 _("Thumb-2 instruction only valid in unified syntax"));
11358 if (inst.instruction == T_MNEM_stmia)
11359 {
11360 if (!inst.operands[0].writeback)
11361 as_warn (_("this instruction will write back the base register"));
11362 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
11363 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
11364 as_warn (_("value stored for r%d is UNKNOWN"),
11365 inst.operands[0].reg);
11366 }
11367 else
11368 {
11369 if (!inst.operands[0].writeback
11370 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
11371 as_warn (_("this instruction will write back the base register"));
11372 else if (inst.operands[0].writeback
11373 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
11374 as_warn (_("this instruction will not write back the base register"));
11375 }
11376
11377 inst.instruction = THUMB_OP16 (inst.instruction);
11378 inst.instruction |= inst.operands[0].reg << 8;
11379 inst.instruction |= inst.operands[1].imm;
11380 }
11381 }
11382
11383 static void
11384 do_t_ldrex (void)
11385 {
11386 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
11387 || inst.operands[1].postind || inst.operands[1].writeback
11388 || inst.operands[1].immisreg || inst.operands[1].shifted
11389 || inst.operands[1].negative,
11390 BAD_ADDR_MODE);
11391
11392 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
11393
11394 inst.instruction |= inst.operands[0].reg << 12;
11395 inst.instruction |= inst.operands[1].reg << 16;
11396 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
11397 }
11398
11399 static void
11400 do_t_ldrexd (void)
11401 {
11402 if (!inst.operands[1].present)
11403 {
11404 constraint (inst.operands[0].reg == REG_LR,
11405 _("r14 not allowed as first register "
11406 "when second register is omitted"));
11407 inst.operands[1].reg = inst.operands[0].reg + 1;
11408 }
11409 constraint (inst.operands[0].reg == inst.operands[1].reg,
11410 BAD_OVERLAP);
11411
11412 inst.instruction |= inst.operands[0].reg << 12;
11413 inst.instruction |= inst.operands[1].reg << 8;
11414 inst.instruction |= inst.operands[2].reg << 16;
11415 }
11416
11417 static void
11418 do_t_ldst (void)
11419 {
11420 unsigned long opcode;
11421 int Rn;
11422
11423 if (inst.operands[0].isreg
11424 && !inst.operands[0].preind
11425 && inst.operands[0].reg == REG_PC)
11426 set_it_insn_type_last ();
11427
11428 opcode = inst.instruction;
11429 if (unified_syntax)
11430 {
11431 if (!inst.operands[1].isreg)
11432 {
11433 if (opcode <= 0xffff)
11434 inst.instruction = THUMB_OP32 (opcode);
11435 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
11436 return;
11437 }
11438 if (inst.operands[1].isreg
11439 && !inst.operands[1].writeback
11440 && !inst.operands[1].shifted && !inst.operands[1].postind
11441 && !inst.operands[1].negative && inst.operands[0].reg <= 7
11442 && opcode <= 0xffff
11443 && inst.size_req != 4)
11444 {
11445 /* Insn may have a 16-bit form. */
11446 Rn = inst.operands[1].reg;
11447 if (inst.operands[1].immisreg)
11448 {
11449 inst.instruction = THUMB_OP16 (opcode);
11450 /* [Rn, Rik] */
11451 if (Rn <= 7 && inst.operands[1].imm <= 7)
11452 goto op16;
11453 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
11454 reject_bad_reg (inst.operands[1].imm);
11455 }
11456 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
11457 && opcode != T_MNEM_ldrsb)
11458 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
11459 || (Rn == REG_SP && opcode == T_MNEM_str))
11460 {
11461 /* [Rn, #const] */
11462 if (Rn > 7)
11463 {
11464 if (Rn == REG_PC)
11465 {
11466 if (inst.reloc.pc_rel)
11467 opcode = T_MNEM_ldr_pc2;
11468 else
11469 opcode = T_MNEM_ldr_pc;
11470 }
11471 else
11472 {
11473 if (opcode == T_MNEM_ldr)
11474 opcode = T_MNEM_ldr_sp;
11475 else
11476 opcode = T_MNEM_str_sp;
11477 }
11478 inst.instruction = inst.operands[0].reg << 8;
11479 }
11480 else
11481 {
11482 inst.instruction = inst.operands[0].reg;
11483 inst.instruction |= inst.operands[1].reg << 3;
11484 }
11485 inst.instruction |= THUMB_OP16 (opcode);
11486 if (inst.size_req == 2)
11487 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
11488 else
11489 inst.relax = opcode;
11490 return;
11491 }
11492 }
11493 /* Definitely a 32-bit variant. */
11494
11495 /* Warning for Erratum 752419. */
11496 if (opcode == T_MNEM_ldr
11497 && inst.operands[0].reg == REG_SP
11498 && inst.operands[1].writeback == 1
11499 && !inst.operands[1].immisreg)
11500 {
11501 if (no_cpu_selected ()
11502 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
11503 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
11504 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
11505 as_warn (_("This instruction may be unpredictable "
11506 "if executed on M-profile cores "
11507 "with interrupts enabled."));
11508 }
11509
11510 /* Do some validations regarding addressing modes. */
11511 if (inst.operands[1].immisreg)
11512 reject_bad_reg (inst.operands[1].imm);
11513
11514 constraint (inst.operands[1].writeback == 1
11515 && inst.operands[0].reg == inst.operands[1].reg,
11516 BAD_OVERLAP);
11517
11518 inst.instruction = THUMB_OP32 (opcode);
11519 inst.instruction |= inst.operands[0].reg << 12;
11520 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
11521 check_ldr_r15_aligned ();
11522 return;
11523 }
11524
11525 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11526
11527 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
11528 {
11529 /* Only [Rn,Rm] is acceptable. */
11530 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
11531 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
11532 || inst.operands[1].postind || inst.operands[1].shifted
11533 || inst.operands[1].negative,
11534 _("Thumb does not support this addressing mode"));
11535 inst.instruction = THUMB_OP16 (inst.instruction);
11536 goto op16;
11537 }
11538
11539 inst.instruction = THUMB_OP16 (inst.instruction);
11540 if (!inst.operands[1].isreg)
11541 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
11542 return;
11543
11544 constraint (!inst.operands[1].preind
11545 || inst.operands[1].shifted
11546 || inst.operands[1].writeback,
11547 _("Thumb does not support this addressing mode"));
11548 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
11549 {
11550 constraint (inst.instruction & 0x0600,
11551 _("byte or halfword not valid for base register"));
11552 constraint (inst.operands[1].reg == REG_PC
11553 && !(inst.instruction & THUMB_LOAD_BIT),
11554 _("r15 based store not allowed"));
11555 constraint (inst.operands[1].immisreg,
11556 _("invalid base register for register offset"));
11557
11558 if (inst.operands[1].reg == REG_PC)
11559 inst.instruction = T_OPCODE_LDR_PC;
11560 else if (inst.instruction & THUMB_LOAD_BIT)
11561 inst.instruction = T_OPCODE_LDR_SP;
11562 else
11563 inst.instruction = T_OPCODE_STR_SP;
11564
11565 inst.instruction |= inst.operands[0].reg << 8;
11566 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
11567 return;
11568 }
11569
11570 constraint (inst.operands[1].reg > 7, BAD_HIREG);
11571 if (!inst.operands[1].immisreg)
11572 {
11573 /* Immediate offset. */
11574 inst.instruction |= inst.operands[0].reg;
11575 inst.instruction |= inst.operands[1].reg << 3;
11576 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
11577 return;
11578 }
11579
11580 /* Register offset. */
11581 constraint (inst.operands[1].imm > 7, BAD_HIREG);
11582 constraint (inst.operands[1].negative,
11583 _("Thumb does not support this addressing mode"));
11584
11585 op16:
11586 switch (inst.instruction)
11587 {
11588 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
11589 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
11590 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
11591 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
11592 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
11593 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
11594 case 0x5600 /* ldrsb */:
11595 case 0x5e00 /* ldrsh */: break;
11596 default: abort ();
11597 }
11598
11599 inst.instruction |= inst.operands[0].reg;
11600 inst.instruction |= inst.operands[1].reg << 3;
11601 inst.instruction |= inst.operands[1].imm << 6;
11602 }
11603
11604 static void
11605 do_t_ldstd (void)
11606 {
11607 if (!inst.operands[1].present)
11608 {
11609 inst.operands[1].reg = inst.operands[0].reg + 1;
11610 constraint (inst.operands[0].reg == REG_LR,
11611 _("r14 not allowed here"));
11612 constraint (inst.operands[0].reg == REG_R12,
11613 _("r12 not allowed here"));
11614 }
11615
11616 if (inst.operands[2].writeback
11617 && (inst.operands[0].reg == inst.operands[2].reg
11618 || inst.operands[1].reg == inst.operands[2].reg))
11619 as_warn (_("base register written back, and overlaps "
11620 "one of transfer registers"));
11621
11622 inst.instruction |= inst.operands[0].reg << 12;
11623 inst.instruction |= inst.operands[1].reg << 8;
11624 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
11625 }
11626
11627 static void
11628 do_t_ldstt (void)
11629 {
11630 inst.instruction |= inst.operands[0].reg << 12;
11631 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
11632 }
11633
11634 static void
11635 do_t_mla (void)
11636 {
11637 unsigned Rd, Rn, Rm, Ra;
11638
11639 Rd = inst.operands[0].reg;
11640 Rn = inst.operands[1].reg;
11641 Rm = inst.operands[2].reg;
11642 Ra = inst.operands[3].reg;
11643
11644 reject_bad_reg (Rd);
11645 reject_bad_reg (Rn);
11646 reject_bad_reg (Rm);
11647 reject_bad_reg (Ra);
11648
11649 inst.instruction |= Rd << 8;
11650 inst.instruction |= Rn << 16;
11651 inst.instruction |= Rm;
11652 inst.instruction |= Ra << 12;
11653 }
11654
11655 static void
11656 do_t_mlal (void)
11657 {
11658 unsigned RdLo, RdHi, Rn, Rm;
11659
11660 RdLo = inst.operands[0].reg;
11661 RdHi = inst.operands[1].reg;
11662 Rn = inst.operands[2].reg;
11663 Rm = inst.operands[3].reg;
11664
11665 reject_bad_reg (RdLo);
11666 reject_bad_reg (RdHi);
11667 reject_bad_reg (Rn);
11668 reject_bad_reg (Rm);
11669
11670 inst.instruction |= RdLo << 12;
11671 inst.instruction |= RdHi << 8;
11672 inst.instruction |= Rn << 16;
11673 inst.instruction |= Rm;
11674 }
11675
11676 static void
11677 do_t_mov_cmp (void)
11678 {
11679 unsigned Rn, Rm;
11680
11681 Rn = inst.operands[0].reg;
11682 Rm = inst.operands[1].reg;
11683
11684 if (Rn == REG_PC)
11685 set_it_insn_type_last ();
11686
11687 if (unified_syntax)
11688 {
11689 int r0off = (inst.instruction == T_MNEM_mov
11690 || inst.instruction == T_MNEM_movs) ? 8 : 16;
11691 unsigned long opcode;
11692 bfd_boolean narrow;
11693 bfd_boolean low_regs;
11694
11695 low_regs = (Rn <= 7 && Rm <= 7);
11696 opcode = inst.instruction;
11697 if (in_it_block ())
11698 narrow = opcode != T_MNEM_movs;
11699 else
11700 narrow = opcode != T_MNEM_movs || low_regs;
11701 if (inst.size_req == 4
11702 || inst.operands[1].shifted)
11703 narrow = FALSE;
11704
11705 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
11706 if (opcode == T_MNEM_movs && inst.operands[1].isreg
11707 && !inst.operands[1].shifted
11708 && Rn == REG_PC
11709 && Rm == REG_LR)
11710 {
11711 inst.instruction = T2_SUBS_PC_LR;
11712 return;
11713 }
11714
11715 if (opcode == T_MNEM_cmp)
11716 {
11717 constraint (Rn == REG_PC, BAD_PC);
11718 if (narrow)
11719 {
11720 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
11721 but valid. */
11722 warn_deprecated_sp (Rm);
11723 /* R15 was documented as a valid choice for Rm in ARMv6,
11724 but as UNPREDICTABLE in ARMv7. ARM's proprietary
11725 tools reject R15, so we do too. */
11726 constraint (Rm == REG_PC, BAD_PC);
11727 }
11728 else
11729 reject_bad_reg (Rm);
11730 }
11731 else if (opcode == T_MNEM_mov
11732 || opcode == T_MNEM_movs)
11733 {
11734 if (inst.operands[1].isreg)
11735 {
11736 if (opcode == T_MNEM_movs)
11737 {
11738 reject_bad_reg (Rn);
11739 reject_bad_reg (Rm);
11740 }
11741 else if (narrow)
11742 {
11743 /* This is mov.n. */
11744 if ((Rn == REG_SP || Rn == REG_PC)
11745 && (Rm == REG_SP || Rm == REG_PC))
11746 {
11747 as_tsktsk (_("Use of r%u as a source register is "
11748 "deprecated when r%u is the destination "
11749 "register."), Rm, Rn);
11750 }
11751 }
11752 else
11753 {
11754 /* This is mov.w. */
11755 constraint (Rn == REG_PC, BAD_PC);
11756 constraint (Rm == REG_PC, BAD_PC);
11757 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
11758 }
11759 }
11760 else
11761 reject_bad_reg (Rn);
11762 }
11763
11764 if (!inst.operands[1].isreg)
11765 {
11766 /* Immediate operand. */
11767 if (!in_it_block () && opcode == T_MNEM_mov)
11768 narrow = 0;
11769 if (low_regs && narrow)
11770 {
11771 inst.instruction = THUMB_OP16 (opcode);
11772 inst.instruction |= Rn << 8;
11773 if (inst.size_req == 2)
11774 {
11775 if (inst.reloc.type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11776 || inst.reloc.type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
11777 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
11778 }
11779 else
11780 inst.relax = opcode;
11781 }
11782 else
11783 {
11784 inst.instruction = THUMB_OP32 (inst.instruction);
11785 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11786 inst.instruction |= Rn << r0off;
11787 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11788 }
11789 }
11790 else if (inst.operands[1].shifted && inst.operands[1].immisreg
11791 && (inst.instruction == T_MNEM_mov
11792 || inst.instruction == T_MNEM_movs))
11793 {
11794 /* Register shifts are encoded as separate shift instructions. */
11795 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
11796
11797 if (in_it_block ())
11798 narrow = !flags;
11799 else
11800 narrow = flags;
11801
11802 if (inst.size_req == 4)
11803 narrow = FALSE;
11804
11805 if (!low_regs || inst.operands[1].imm > 7)
11806 narrow = FALSE;
11807
11808 if (Rn != Rm)
11809 narrow = FALSE;
11810
11811 switch (inst.operands[1].shift_kind)
11812 {
11813 case SHIFT_LSL:
11814 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
11815 break;
11816 case SHIFT_ASR:
11817 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
11818 break;
11819 case SHIFT_LSR:
11820 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
11821 break;
11822 case SHIFT_ROR:
11823 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
11824 break;
11825 default:
11826 abort ();
11827 }
11828
11829 inst.instruction = opcode;
11830 if (narrow)
11831 {
11832 inst.instruction |= Rn;
11833 inst.instruction |= inst.operands[1].imm << 3;
11834 }
11835 else
11836 {
11837 if (flags)
11838 inst.instruction |= CONDS_BIT;
11839
11840 inst.instruction |= Rn << 8;
11841 inst.instruction |= Rm << 16;
11842 inst.instruction |= inst.operands[1].imm;
11843 }
11844 }
11845 else if (!narrow)
11846 {
11847 /* Some mov with immediate shift have narrow variants.
11848 Register shifts are handled above. */
11849 if (low_regs && inst.operands[1].shifted
11850 && (inst.instruction == T_MNEM_mov
11851 || inst.instruction == T_MNEM_movs))
11852 {
11853 if (in_it_block ())
11854 narrow = (inst.instruction == T_MNEM_mov);
11855 else
11856 narrow = (inst.instruction == T_MNEM_movs);
11857 }
11858
11859 if (narrow)
11860 {
11861 switch (inst.operands[1].shift_kind)
11862 {
11863 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11864 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11865 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11866 default: narrow = FALSE; break;
11867 }
11868 }
11869
11870 if (narrow)
11871 {
11872 inst.instruction |= Rn;
11873 inst.instruction |= Rm << 3;
11874 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11875 }
11876 else
11877 {
11878 inst.instruction = THUMB_OP32 (inst.instruction);
11879 inst.instruction |= Rn << r0off;
11880 encode_thumb32_shifted_operand (1);
11881 }
11882 }
11883 else
11884 switch (inst.instruction)
11885 {
11886 case T_MNEM_mov:
11887 /* In v4t or v5t a move of two lowregs produces unpredictable
11888 results. Don't allow this. */
11889 if (low_regs)
11890 {
11891 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
11892 "MOV Rd, Rs with two low registers is not "
11893 "permitted on this architecture");
11894 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
11895 arm_ext_v6);
11896 }
11897
11898 inst.instruction = T_OPCODE_MOV_HR;
11899 inst.instruction |= (Rn & 0x8) << 4;
11900 inst.instruction |= (Rn & 0x7);
11901 inst.instruction |= Rm << 3;
11902 break;
11903
11904 case T_MNEM_movs:
11905 /* We know we have low registers at this point.
11906 Generate LSLS Rd, Rs, #0. */
11907 inst.instruction = T_OPCODE_LSL_I;
11908 inst.instruction |= Rn;
11909 inst.instruction |= Rm << 3;
11910 break;
11911
11912 case T_MNEM_cmp:
11913 if (low_regs)
11914 {
11915 inst.instruction = T_OPCODE_CMP_LR;
11916 inst.instruction |= Rn;
11917 inst.instruction |= Rm << 3;
11918 }
11919 else
11920 {
11921 inst.instruction = T_OPCODE_CMP_HR;
11922 inst.instruction |= (Rn & 0x8) << 4;
11923 inst.instruction |= (Rn & 0x7);
11924 inst.instruction |= Rm << 3;
11925 }
11926 break;
11927 }
11928 return;
11929 }
11930
11931 inst.instruction = THUMB_OP16 (inst.instruction);
11932
11933 /* PR 10443: Do not silently ignore shifted operands. */
11934 constraint (inst.operands[1].shifted,
11935 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
11936
11937 if (inst.operands[1].isreg)
11938 {
11939 if (Rn < 8 && Rm < 8)
11940 {
11941 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
11942 since a MOV instruction produces unpredictable results. */
11943 if (inst.instruction == T_OPCODE_MOV_I8)
11944 inst.instruction = T_OPCODE_ADD_I3;
11945 else
11946 inst.instruction = T_OPCODE_CMP_LR;
11947
11948 inst.instruction |= Rn;
11949 inst.instruction |= Rm << 3;
11950 }
11951 else
11952 {
11953 if (inst.instruction == T_OPCODE_MOV_I8)
11954 inst.instruction = T_OPCODE_MOV_HR;
11955 else
11956 inst.instruction = T_OPCODE_CMP_HR;
11957 do_t_cpy ();
11958 }
11959 }
11960 else
11961 {
11962 constraint (Rn > 7,
11963 _("only lo regs allowed with immediate"));
11964 inst.instruction |= Rn << 8;
11965 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
11966 }
11967 }
11968
11969 static void
11970 do_t_mov16 (void)
11971 {
11972 unsigned Rd;
11973 bfd_vma imm;
11974 bfd_boolean top;
11975
11976 top = (inst.instruction & 0x00800000) != 0;
11977 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
11978 {
11979 constraint (top, _(":lower16: not allowed this instruction"));
11980 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
11981 }
11982 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
11983 {
11984 constraint (!top, _(":upper16: not allowed this instruction"));
11985 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
11986 }
11987
11988 Rd = inst.operands[0].reg;
11989 reject_bad_reg (Rd);
11990
11991 inst.instruction |= Rd << 8;
11992 if (inst.reloc.type == BFD_RELOC_UNUSED)
11993 {
11994 imm = inst.reloc.exp.X_add_number;
11995 inst.instruction |= (imm & 0xf000) << 4;
11996 inst.instruction |= (imm & 0x0800) << 15;
11997 inst.instruction |= (imm & 0x0700) << 4;
11998 inst.instruction |= (imm & 0x00ff);
11999 }
12000 }
12001
12002 static void
12003 do_t_mvn_tst (void)
12004 {
12005 unsigned Rn, Rm;
12006
12007 Rn = inst.operands[0].reg;
12008 Rm = inst.operands[1].reg;
12009
12010 if (inst.instruction == T_MNEM_cmp
12011 || inst.instruction == T_MNEM_cmn)
12012 constraint (Rn == REG_PC, BAD_PC);
12013 else
12014 reject_bad_reg (Rn);
12015 reject_bad_reg (Rm);
12016
12017 if (unified_syntax)
12018 {
12019 int r0off = (inst.instruction == T_MNEM_mvn
12020 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
12021 bfd_boolean narrow;
12022
12023 if (inst.size_req == 4
12024 || inst.instruction > 0xffff
12025 || inst.operands[1].shifted
12026 || Rn > 7 || Rm > 7)
12027 narrow = FALSE;
12028 else if (inst.instruction == T_MNEM_cmn
12029 || inst.instruction == T_MNEM_tst)
12030 narrow = TRUE;
12031 else if (THUMB_SETS_FLAGS (inst.instruction))
12032 narrow = !in_it_block ();
12033 else
12034 narrow = in_it_block ();
12035
12036 if (!inst.operands[1].isreg)
12037 {
12038 /* For an immediate, we always generate a 32-bit opcode;
12039 section relaxation will shrink it later if possible. */
12040 if (inst.instruction < 0xffff)
12041 inst.instruction = THUMB_OP32 (inst.instruction);
12042 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12043 inst.instruction |= Rn << r0off;
12044 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
12045 }
12046 else
12047 {
12048 /* See if we can do this with a 16-bit instruction. */
12049 if (narrow)
12050 {
12051 inst.instruction = THUMB_OP16 (inst.instruction);
12052 inst.instruction |= Rn;
12053 inst.instruction |= Rm << 3;
12054 }
12055 else
12056 {
12057 constraint (inst.operands[1].shifted
12058 && inst.operands[1].immisreg,
12059 _("shift must be constant"));
12060 if (inst.instruction < 0xffff)
12061 inst.instruction = THUMB_OP32 (inst.instruction);
12062 inst.instruction |= Rn << r0off;
12063 encode_thumb32_shifted_operand (1);
12064 }
12065 }
12066 }
12067 else
12068 {
12069 constraint (inst.instruction > 0xffff
12070 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
12071 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
12072 _("unshifted register required"));
12073 constraint (Rn > 7 || Rm > 7,
12074 BAD_HIREG);
12075
12076 inst.instruction = THUMB_OP16 (inst.instruction);
12077 inst.instruction |= Rn;
12078 inst.instruction |= Rm << 3;
12079 }
12080 }
12081
12082 static void
12083 do_t_mrs (void)
12084 {
12085 unsigned Rd;
12086
12087 if (do_vfp_nsyn_mrs () == SUCCESS)
12088 return;
12089
12090 Rd = inst.operands[0].reg;
12091 reject_bad_reg (Rd);
12092 inst.instruction |= Rd << 8;
12093
12094 if (inst.operands[1].isreg)
12095 {
12096 unsigned br = inst.operands[1].reg;
12097 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
12098 as_bad (_("bad register for mrs"));
12099
12100 inst.instruction |= br & (0xf << 16);
12101 inst.instruction |= (br & 0x300) >> 4;
12102 inst.instruction |= (br & SPSR_BIT) >> 2;
12103 }
12104 else
12105 {
12106 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
12107
12108 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
12109 {
12110 /* PR gas/12698: The constraint is only applied for m_profile.
12111 If the user has specified -march=all, we want to ignore it as
12112 we are building for any CPU type, including non-m variants. */
12113 bfd_boolean m_profile =
12114 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
12115 constraint ((flags != 0) && m_profile, _("selected processor does "
12116 "not support requested special purpose register"));
12117 }
12118 else
12119 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
12120 devices). */
12121 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
12122 _("'APSR', 'CPSR' or 'SPSR' expected"));
12123
12124 inst.instruction |= (flags & SPSR_BIT) >> 2;
12125 inst.instruction |= inst.operands[1].imm & 0xff;
12126 inst.instruction |= 0xf0000;
12127 }
12128 }
12129
12130 static void
12131 do_t_msr (void)
12132 {
12133 int flags;
12134 unsigned Rn;
12135
12136 if (do_vfp_nsyn_msr () == SUCCESS)
12137 return;
12138
12139 constraint (!inst.operands[1].isreg,
12140 _("Thumb encoding does not support an immediate here"));
12141
12142 if (inst.operands[0].isreg)
12143 flags = (int)(inst.operands[0].reg);
12144 else
12145 flags = inst.operands[0].imm;
12146
12147 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
12148 {
12149 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
12150
12151 /* PR gas/12698: The constraint is only applied for m_profile.
12152 If the user has specified -march=all, we want to ignore it as
12153 we are building for any CPU type, including non-m variants. */
12154 bfd_boolean m_profile =
12155 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
12156 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
12157 && (bits & ~(PSR_s | PSR_f)) != 0)
12158 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
12159 && bits != PSR_f)) && m_profile,
12160 _("selected processor does not support requested special "
12161 "purpose register"));
12162 }
12163 else
12164 constraint ((flags & 0xff) != 0, _("selected processor does not support "
12165 "requested special purpose register"));
12166
12167 Rn = inst.operands[1].reg;
12168 reject_bad_reg (Rn);
12169
12170 inst.instruction |= (flags & SPSR_BIT) >> 2;
12171 inst.instruction |= (flags & 0xf0000) >> 8;
12172 inst.instruction |= (flags & 0x300) >> 4;
12173 inst.instruction |= (flags & 0xff);
12174 inst.instruction |= Rn << 16;
12175 }
12176
12177 static void
12178 do_t_mul (void)
12179 {
12180 bfd_boolean narrow;
12181 unsigned Rd, Rn, Rm;
12182
12183 if (!inst.operands[2].present)
12184 inst.operands[2].reg = inst.operands[0].reg;
12185
12186 Rd = inst.operands[0].reg;
12187 Rn = inst.operands[1].reg;
12188 Rm = inst.operands[2].reg;
12189
12190 if (unified_syntax)
12191 {
12192 if (inst.size_req == 4
12193 || (Rd != Rn
12194 && Rd != Rm)
12195 || Rn > 7
12196 || Rm > 7)
12197 narrow = FALSE;
12198 else if (inst.instruction == T_MNEM_muls)
12199 narrow = !in_it_block ();
12200 else
12201 narrow = in_it_block ();
12202 }
12203 else
12204 {
12205 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
12206 constraint (Rn > 7 || Rm > 7,
12207 BAD_HIREG);
12208 narrow = TRUE;
12209 }
12210
12211 if (narrow)
12212 {
12213 /* 16-bit MULS/Conditional MUL. */
12214 inst.instruction = THUMB_OP16 (inst.instruction);
12215 inst.instruction |= Rd;
12216
12217 if (Rd == Rn)
12218 inst.instruction |= Rm << 3;
12219 else if (Rd == Rm)
12220 inst.instruction |= Rn << 3;
12221 else
12222 constraint (1, _("dest must overlap one source register"));
12223 }
12224 else
12225 {
12226 constraint (inst.instruction != T_MNEM_mul,
12227 _("Thumb-2 MUL must not set flags"));
12228 /* 32-bit MUL. */
12229 inst.instruction = THUMB_OP32 (inst.instruction);
12230 inst.instruction |= Rd << 8;
12231 inst.instruction |= Rn << 16;
12232 inst.instruction |= Rm << 0;
12233
12234 reject_bad_reg (Rd);
12235 reject_bad_reg (Rn);
12236 reject_bad_reg (Rm);
12237 }
12238 }
12239
12240 static void
12241 do_t_mull (void)
12242 {
12243 unsigned RdLo, RdHi, Rn, Rm;
12244
12245 RdLo = inst.operands[0].reg;
12246 RdHi = inst.operands[1].reg;
12247 Rn = inst.operands[2].reg;
12248 Rm = inst.operands[3].reg;
12249
12250 reject_bad_reg (RdLo);
12251 reject_bad_reg (RdHi);
12252 reject_bad_reg (Rn);
12253 reject_bad_reg (Rm);
12254
12255 inst.instruction |= RdLo << 12;
12256 inst.instruction |= RdHi << 8;
12257 inst.instruction |= Rn << 16;
12258 inst.instruction |= Rm;
12259
12260 if (RdLo == RdHi)
12261 as_tsktsk (_("rdhi and rdlo must be different"));
12262 }
12263
12264 static void
12265 do_t_nop (void)
12266 {
12267 set_it_insn_type (NEUTRAL_IT_INSN);
12268
12269 if (unified_syntax)
12270 {
12271 if (inst.size_req == 4 || inst.operands[0].imm > 15)
12272 {
12273 inst.instruction = THUMB_OP32 (inst.instruction);
12274 inst.instruction |= inst.operands[0].imm;
12275 }
12276 else
12277 {
12278 /* PR9722: Check for Thumb2 availability before
12279 generating a thumb2 nop instruction. */
12280 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
12281 {
12282 inst.instruction = THUMB_OP16 (inst.instruction);
12283 inst.instruction |= inst.operands[0].imm << 4;
12284 }
12285 else
12286 inst.instruction = 0x46c0;
12287 }
12288 }
12289 else
12290 {
12291 constraint (inst.operands[0].present,
12292 _("Thumb does not support NOP with hints"));
12293 inst.instruction = 0x46c0;
12294 }
12295 }
12296
12297 static void
12298 do_t_neg (void)
12299 {
12300 if (unified_syntax)
12301 {
12302 bfd_boolean narrow;
12303
12304 if (THUMB_SETS_FLAGS (inst.instruction))
12305 narrow = !in_it_block ();
12306 else
12307 narrow = in_it_block ();
12308 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
12309 narrow = FALSE;
12310 if (inst.size_req == 4)
12311 narrow = FALSE;
12312
12313 if (!narrow)
12314 {
12315 inst.instruction = THUMB_OP32 (inst.instruction);
12316 inst.instruction |= inst.operands[0].reg << 8;
12317 inst.instruction |= inst.operands[1].reg << 16;
12318 }
12319 else
12320 {
12321 inst.instruction = THUMB_OP16 (inst.instruction);
12322 inst.instruction |= inst.operands[0].reg;
12323 inst.instruction |= inst.operands[1].reg << 3;
12324 }
12325 }
12326 else
12327 {
12328 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
12329 BAD_HIREG);
12330 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
12331
12332 inst.instruction = THUMB_OP16 (inst.instruction);
12333 inst.instruction |= inst.operands[0].reg;
12334 inst.instruction |= inst.operands[1].reg << 3;
12335 }
12336 }
12337
12338 static void
12339 do_t_orn (void)
12340 {
12341 unsigned Rd, Rn;
12342
12343 Rd = inst.operands[0].reg;
12344 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
12345
12346 reject_bad_reg (Rd);
12347 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
12348 reject_bad_reg (Rn);
12349
12350 inst.instruction |= Rd << 8;
12351 inst.instruction |= Rn << 16;
12352
12353 if (!inst.operands[2].isreg)
12354 {
12355 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12356 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
12357 }
12358 else
12359 {
12360 unsigned Rm;
12361
12362 Rm = inst.operands[2].reg;
12363 reject_bad_reg (Rm);
12364
12365 constraint (inst.operands[2].shifted
12366 && inst.operands[2].immisreg,
12367 _("shift must be constant"));
12368 encode_thumb32_shifted_operand (2);
12369 }
12370 }
12371
12372 static void
12373 do_t_pkhbt (void)
12374 {
12375 unsigned Rd, Rn, Rm;
12376
12377 Rd = inst.operands[0].reg;
12378 Rn = inst.operands[1].reg;
12379 Rm = inst.operands[2].reg;
12380
12381 reject_bad_reg (Rd);
12382 reject_bad_reg (Rn);
12383 reject_bad_reg (Rm);
12384
12385 inst.instruction |= Rd << 8;
12386 inst.instruction |= Rn << 16;
12387 inst.instruction |= Rm;
12388 if (inst.operands[3].present)
12389 {
12390 unsigned int val = inst.reloc.exp.X_add_number;
12391 constraint (inst.reloc.exp.X_op != O_constant,
12392 _("expression too complex"));
12393 inst.instruction |= (val & 0x1c) << 10;
12394 inst.instruction |= (val & 0x03) << 6;
12395 }
12396 }
12397
12398 static void
12399 do_t_pkhtb (void)
12400 {
12401 if (!inst.operands[3].present)
12402 {
12403 unsigned Rtmp;
12404
12405 inst.instruction &= ~0x00000020;
12406
12407 /* PR 10168. Swap the Rm and Rn registers. */
12408 Rtmp = inst.operands[1].reg;
12409 inst.operands[1].reg = inst.operands[2].reg;
12410 inst.operands[2].reg = Rtmp;
12411 }
12412 do_t_pkhbt ();
12413 }
12414
12415 static void
12416 do_t_pld (void)
12417 {
12418 if (inst.operands[0].immisreg)
12419 reject_bad_reg (inst.operands[0].imm);
12420
12421 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
12422 }
12423
12424 static void
12425 do_t_push_pop (void)
12426 {
12427 unsigned mask;
12428
12429 constraint (inst.operands[0].writeback,
12430 _("push/pop do not support {reglist}^"));
12431 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
12432 _("expression too complex"));
12433
12434 mask = inst.operands[0].imm;
12435 if (inst.size_req != 4 && (mask & ~0xff) == 0)
12436 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
12437 else if (inst.size_req != 4
12438 && (mask & ~0xff) == (1 << (inst.instruction == T_MNEM_push
12439 ? REG_LR : REG_PC)))
12440 {
12441 inst.instruction = THUMB_OP16 (inst.instruction);
12442 inst.instruction |= THUMB_PP_PC_LR;
12443 inst.instruction |= mask & 0xff;
12444 }
12445 else if (unified_syntax)
12446 {
12447 inst.instruction = THUMB_OP32 (inst.instruction);
12448 encode_thumb2_ldmstm (13, mask, TRUE);
12449 }
12450 else
12451 {
12452 inst.error = _("invalid register list to push/pop instruction");
12453 return;
12454 }
12455 }
12456
12457 static void
12458 do_t_rbit (void)
12459 {
12460 unsigned Rd, Rm;
12461
12462 Rd = inst.operands[0].reg;
12463 Rm = inst.operands[1].reg;
12464
12465 reject_bad_reg (Rd);
12466 reject_bad_reg (Rm);
12467
12468 inst.instruction |= Rd << 8;
12469 inst.instruction |= Rm << 16;
12470 inst.instruction |= Rm;
12471 }
12472
12473 static void
12474 do_t_rev (void)
12475 {
12476 unsigned Rd, Rm;
12477
12478 Rd = inst.operands[0].reg;
12479 Rm = inst.operands[1].reg;
12480
12481 reject_bad_reg (Rd);
12482 reject_bad_reg (Rm);
12483
12484 if (Rd <= 7 && Rm <= 7
12485 && inst.size_req != 4)
12486 {
12487 inst.instruction = THUMB_OP16 (inst.instruction);
12488 inst.instruction |= Rd;
12489 inst.instruction |= Rm << 3;
12490 }
12491 else if (unified_syntax)
12492 {
12493 inst.instruction = THUMB_OP32 (inst.instruction);
12494 inst.instruction |= Rd << 8;
12495 inst.instruction |= Rm << 16;
12496 inst.instruction |= Rm;
12497 }
12498 else
12499 inst.error = BAD_HIREG;
12500 }
12501
12502 static void
12503 do_t_rrx (void)
12504 {
12505 unsigned Rd, Rm;
12506
12507 Rd = inst.operands[0].reg;
12508 Rm = inst.operands[1].reg;
12509
12510 reject_bad_reg (Rd);
12511 reject_bad_reg (Rm);
12512
12513 inst.instruction |= Rd << 8;
12514 inst.instruction |= Rm;
12515 }
12516
12517 static void
12518 do_t_rsb (void)
12519 {
12520 unsigned Rd, Rs;
12521
12522 Rd = inst.operands[0].reg;
12523 Rs = (inst.operands[1].present
12524 ? inst.operands[1].reg /* Rd, Rs, foo */
12525 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
12526
12527 reject_bad_reg (Rd);
12528 reject_bad_reg (Rs);
12529 if (inst.operands[2].isreg)
12530 reject_bad_reg (inst.operands[2].reg);
12531
12532 inst.instruction |= Rd << 8;
12533 inst.instruction |= Rs << 16;
12534 if (!inst.operands[2].isreg)
12535 {
12536 bfd_boolean narrow;
12537
12538 if ((inst.instruction & 0x00100000) != 0)
12539 narrow = !in_it_block ();
12540 else
12541 narrow = in_it_block ();
12542
12543 if (Rd > 7 || Rs > 7)
12544 narrow = FALSE;
12545
12546 if (inst.size_req == 4 || !unified_syntax)
12547 narrow = FALSE;
12548
12549 if (inst.reloc.exp.X_op != O_constant
12550 || inst.reloc.exp.X_add_number != 0)
12551 narrow = FALSE;
12552
12553 /* Turn rsb #0 into 16-bit neg. We should probably do this via
12554 relaxation, but it doesn't seem worth the hassle. */
12555 if (narrow)
12556 {
12557 inst.reloc.type = BFD_RELOC_UNUSED;
12558 inst.instruction = THUMB_OP16 (T_MNEM_negs);
12559 inst.instruction |= Rs << 3;
12560 inst.instruction |= Rd;
12561 }
12562 else
12563 {
12564 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12565 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
12566 }
12567 }
12568 else
12569 encode_thumb32_shifted_operand (2);
12570 }
12571
12572 static void
12573 do_t_setend (void)
12574 {
12575 if (warn_on_deprecated
12576 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12577 as_tsktsk (_("setend use is deprecated for ARMv8"));
12578
12579 set_it_insn_type (OUTSIDE_IT_INSN);
12580 if (inst.operands[0].imm)
12581 inst.instruction |= 0x8;
12582 }
12583
12584 static void
12585 do_t_shift (void)
12586 {
12587 if (!inst.operands[1].present)
12588 inst.operands[1].reg = inst.operands[0].reg;
12589
12590 if (unified_syntax)
12591 {
12592 bfd_boolean narrow;
12593 int shift_kind;
12594
12595 switch (inst.instruction)
12596 {
12597 case T_MNEM_asr:
12598 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
12599 case T_MNEM_lsl:
12600 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
12601 case T_MNEM_lsr:
12602 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
12603 case T_MNEM_ror:
12604 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
12605 default: abort ();
12606 }
12607
12608 if (THUMB_SETS_FLAGS (inst.instruction))
12609 narrow = !in_it_block ();
12610 else
12611 narrow = in_it_block ();
12612 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
12613 narrow = FALSE;
12614 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
12615 narrow = FALSE;
12616 if (inst.operands[2].isreg
12617 && (inst.operands[1].reg != inst.operands[0].reg
12618 || inst.operands[2].reg > 7))
12619 narrow = FALSE;
12620 if (inst.size_req == 4)
12621 narrow = FALSE;
12622
12623 reject_bad_reg (inst.operands[0].reg);
12624 reject_bad_reg (inst.operands[1].reg);
12625
12626 if (!narrow)
12627 {
12628 if (inst.operands[2].isreg)
12629 {
12630 reject_bad_reg (inst.operands[2].reg);
12631 inst.instruction = THUMB_OP32 (inst.instruction);
12632 inst.instruction |= inst.operands[0].reg << 8;
12633 inst.instruction |= inst.operands[1].reg << 16;
12634 inst.instruction |= inst.operands[2].reg;
12635
12636 /* PR 12854: Error on extraneous shifts. */
12637 constraint (inst.operands[2].shifted,
12638 _("extraneous shift as part of operand to shift insn"));
12639 }
12640 else
12641 {
12642 inst.operands[1].shifted = 1;
12643 inst.operands[1].shift_kind = shift_kind;
12644 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
12645 ? T_MNEM_movs : T_MNEM_mov);
12646 inst.instruction |= inst.operands[0].reg << 8;
12647 encode_thumb32_shifted_operand (1);
12648 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
12649 inst.reloc.type = BFD_RELOC_UNUSED;
12650 }
12651 }
12652 else
12653 {
12654 if (inst.operands[2].isreg)
12655 {
12656 switch (shift_kind)
12657 {
12658 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
12659 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
12660 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
12661 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
12662 default: abort ();
12663 }
12664
12665 inst.instruction |= inst.operands[0].reg;
12666 inst.instruction |= inst.operands[2].reg << 3;
12667
12668 /* PR 12854: Error on extraneous shifts. */
12669 constraint (inst.operands[2].shifted,
12670 _("extraneous shift as part of operand to shift insn"));
12671 }
12672 else
12673 {
12674 switch (shift_kind)
12675 {
12676 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12677 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12678 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12679 default: abort ();
12680 }
12681 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
12682 inst.instruction |= inst.operands[0].reg;
12683 inst.instruction |= inst.operands[1].reg << 3;
12684 }
12685 }
12686 }
12687 else
12688 {
12689 constraint (inst.operands[0].reg > 7
12690 || inst.operands[1].reg > 7, BAD_HIREG);
12691 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
12692
12693 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
12694 {
12695 constraint (inst.operands[2].reg > 7, BAD_HIREG);
12696 constraint (inst.operands[0].reg != inst.operands[1].reg,
12697 _("source1 and dest must be same register"));
12698
12699 switch (inst.instruction)
12700 {
12701 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
12702 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
12703 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
12704 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
12705 default: abort ();
12706 }
12707
12708 inst.instruction |= inst.operands[0].reg;
12709 inst.instruction |= inst.operands[2].reg << 3;
12710
12711 /* PR 12854: Error on extraneous shifts. */
12712 constraint (inst.operands[2].shifted,
12713 _("extraneous shift as part of operand to shift insn"));
12714 }
12715 else
12716 {
12717 switch (inst.instruction)
12718 {
12719 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
12720 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
12721 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
12722 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
12723 default: abort ();
12724 }
12725 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
12726 inst.instruction |= inst.operands[0].reg;
12727 inst.instruction |= inst.operands[1].reg << 3;
12728 }
12729 }
12730 }
12731
12732 static void
12733 do_t_simd (void)
12734 {
12735 unsigned Rd, Rn, Rm;
12736
12737 Rd = inst.operands[0].reg;
12738 Rn = inst.operands[1].reg;
12739 Rm = inst.operands[2].reg;
12740
12741 reject_bad_reg (Rd);
12742 reject_bad_reg (Rn);
12743 reject_bad_reg (Rm);
12744
12745 inst.instruction |= Rd << 8;
12746 inst.instruction |= Rn << 16;
12747 inst.instruction |= Rm;
12748 }
12749
12750 static void
12751 do_t_simd2 (void)
12752 {
12753 unsigned Rd, Rn, Rm;
12754
12755 Rd = inst.operands[0].reg;
12756 Rm = inst.operands[1].reg;
12757 Rn = inst.operands[2].reg;
12758
12759 reject_bad_reg (Rd);
12760 reject_bad_reg (Rn);
12761 reject_bad_reg (Rm);
12762
12763 inst.instruction |= Rd << 8;
12764 inst.instruction |= Rn << 16;
12765 inst.instruction |= Rm;
12766 }
12767
12768 static void
12769 do_t_smc (void)
12770 {
12771 unsigned int value = inst.reloc.exp.X_add_number;
12772 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
12773 _("SMC is not permitted on this architecture"));
12774 constraint (inst.reloc.exp.X_op != O_constant,
12775 _("expression too complex"));
12776 inst.reloc.type = BFD_RELOC_UNUSED;
12777 inst.instruction |= (value & 0xf000) >> 12;
12778 inst.instruction |= (value & 0x0ff0);
12779 inst.instruction |= (value & 0x000f) << 16;
12780 /* PR gas/15623: SMC instructions must be last in an IT block. */
12781 set_it_insn_type_last ();
12782 }
12783
12784 static void
12785 do_t_hvc (void)
12786 {
12787 unsigned int value = inst.reloc.exp.X_add_number;
12788
12789 inst.reloc.type = BFD_RELOC_UNUSED;
12790 inst.instruction |= (value & 0x0fff);
12791 inst.instruction |= (value & 0xf000) << 4;
12792 }
12793
12794 static void
12795 do_t_ssat_usat (int bias)
12796 {
12797 unsigned Rd, Rn;
12798
12799 Rd = inst.operands[0].reg;
12800 Rn = inst.operands[2].reg;
12801
12802 reject_bad_reg (Rd);
12803 reject_bad_reg (Rn);
12804
12805 inst.instruction |= Rd << 8;
12806 inst.instruction |= inst.operands[1].imm - bias;
12807 inst.instruction |= Rn << 16;
12808
12809 if (inst.operands[3].present)
12810 {
12811 offsetT shift_amount = inst.reloc.exp.X_add_number;
12812
12813 inst.reloc.type = BFD_RELOC_UNUSED;
12814
12815 constraint (inst.reloc.exp.X_op != O_constant,
12816 _("expression too complex"));
12817
12818 if (shift_amount != 0)
12819 {
12820 constraint (shift_amount > 31,
12821 _("shift expression is too large"));
12822
12823 if (inst.operands[3].shift_kind == SHIFT_ASR)
12824 inst.instruction |= 0x00200000; /* sh bit. */
12825
12826 inst.instruction |= (shift_amount & 0x1c) << 10;
12827 inst.instruction |= (shift_amount & 0x03) << 6;
12828 }
12829 }
12830 }
12831
12832 static void
12833 do_t_ssat (void)
12834 {
12835 do_t_ssat_usat (1);
12836 }
12837
12838 static void
12839 do_t_ssat16 (void)
12840 {
12841 unsigned Rd, Rn;
12842
12843 Rd = inst.operands[0].reg;
12844 Rn = inst.operands[2].reg;
12845
12846 reject_bad_reg (Rd);
12847 reject_bad_reg (Rn);
12848
12849 inst.instruction |= Rd << 8;
12850 inst.instruction |= inst.operands[1].imm - 1;
12851 inst.instruction |= Rn << 16;
12852 }
12853
12854 static void
12855 do_t_strex (void)
12856 {
12857 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
12858 || inst.operands[2].postind || inst.operands[2].writeback
12859 || inst.operands[2].immisreg || inst.operands[2].shifted
12860 || inst.operands[2].negative,
12861 BAD_ADDR_MODE);
12862
12863 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
12864
12865 inst.instruction |= inst.operands[0].reg << 8;
12866 inst.instruction |= inst.operands[1].reg << 12;
12867 inst.instruction |= inst.operands[2].reg << 16;
12868 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
12869 }
12870
12871 static void
12872 do_t_strexd (void)
12873 {
12874 if (!inst.operands[2].present)
12875 inst.operands[2].reg = inst.operands[1].reg + 1;
12876
12877 constraint (inst.operands[0].reg == inst.operands[1].reg
12878 || inst.operands[0].reg == inst.operands[2].reg
12879 || inst.operands[0].reg == inst.operands[3].reg,
12880 BAD_OVERLAP);
12881
12882 inst.instruction |= inst.operands[0].reg;
12883 inst.instruction |= inst.operands[1].reg << 12;
12884 inst.instruction |= inst.operands[2].reg << 8;
12885 inst.instruction |= inst.operands[3].reg << 16;
12886 }
12887
12888 static void
12889 do_t_sxtah (void)
12890 {
12891 unsigned Rd, Rn, Rm;
12892
12893 Rd = inst.operands[0].reg;
12894 Rn = inst.operands[1].reg;
12895 Rm = inst.operands[2].reg;
12896
12897 reject_bad_reg (Rd);
12898 reject_bad_reg (Rn);
12899 reject_bad_reg (Rm);
12900
12901 inst.instruction |= Rd << 8;
12902 inst.instruction |= Rn << 16;
12903 inst.instruction |= Rm;
12904 inst.instruction |= inst.operands[3].imm << 4;
12905 }
12906
12907 static void
12908 do_t_sxth (void)
12909 {
12910 unsigned Rd, Rm;
12911
12912 Rd = inst.operands[0].reg;
12913 Rm = inst.operands[1].reg;
12914
12915 reject_bad_reg (Rd);
12916 reject_bad_reg (Rm);
12917
12918 if (inst.instruction <= 0xffff
12919 && inst.size_req != 4
12920 && Rd <= 7 && Rm <= 7
12921 && (!inst.operands[2].present || inst.operands[2].imm == 0))
12922 {
12923 inst.instruction = THUMB_OP16 (inst.instruction);
12924 inst.instruction |= Rd;
12925 inst.instruction |= Rm << 3;
12926 }
12927 else if (unified_syntax)
12928 {
12929 if (inst.instruction <= 0xffff)
12930 inst.instruction = THUMB_OP32 (inst.instruction);
12931 inst.instruction |= Rd << 8;
12932 inst.instruction |= Rm;
12933 inst.instruction |= inst.operands[2].imm << 4;
12934 }
12935 else
12936 {
12937 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
12938 _("Thumb encoding does not support rotation"));
12939 constraint (1, BAD_HIREG);
12940 }
12941 }
12942
12943 static void
12944 do_t_swi (void)
12945 {
12946 /* We have to do the following check manually as ARM_EXT_OS only applies
12947 to ARM_EXT_V6M. */
12948 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6m))
12949 {
12950 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_os)
12951 /* This only applies to the v6m howver, not later architectures. */
12952 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7))
12953 as_bad (_("SVC is not permitted on this architecture"));
12954 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_os);
12955 }
12956
12957 inst.reloc.type = BFD_RELOC_ARM_SWI;
12958 }
12959
12960 static void
12961 do_t_tb (void)
12962 {
12963 unsigned Rn, Rm;
12964 int half;
12965
12966 half = (inst.instruction & 0x10) != 0;
12967 set_it_insn_type_last ();
12968 constraint (inst.operands[0].immisreg,
12969 _("instruction requires register index"));
12970
12971 Rn = inst.operands[0].reg;
12972 Rm = inst.operands[0].imm;
12973
12974 constraint (Rn == REG_SP, BAD_SP);
12975 reject_bad_reg (Rm);
12976
12977 constraint (!half && inst.operands[0].shifted,
12978 _("instruction does not allow shifted index"));
12979 inst.instruction |= (Rn << 16) | Rm;
12980 }
12981
12982 static void
12983 do_t_udf (void)
12984 {
12985 if (!inst.operands[0].present)
12986 inst.operands[0].imm = 0;
12987
12988 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
12989 {
12990 constraint (inst.size_req == 2,
12991 _("immediate value out of range"));
12992 inst.instruction = THUMB_OP32 (inst.instruction);
12993 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
12994 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
12995 }
12996 else
12997 {
12998 inst.instruction = THUMB_OP16 (inst.instruction);
12999 inst.instruction |= inst.operands[0].imm;
13000 }
13001
13002 set_it_insn_type (NEUTRAL_IT_INSN);
13003 }
13004
13005
13006 static void
13007 do_t_usat (void)
13008 {
13009 do_t_ssat_usat (0);
13010 }
13011
13012 static void
13013 do_t_usat16 (void)
13014 {
13015 unsigned Rd, Rn;
13016
13017 Rd = inst.operands[0].reg;
13018 Rn = inst.operands[2].reg;
13019
13020 reject_bad_reg (Rd);
13021 reject_bad_reg (Rn);
13022
13023 inst.instruction |= Rd << 8;
13024 inst.instruction |= inst.operands[1].imm;
13025 inst.instruction |= Rn << 16;
13026 }
13027
13028 /* Neon instruction encoder helpers. */
13029
13030 /* Encodings for the different types for various Neon opcodes. */
13031
13032 /* An "invalid" code for the following tables. */
13033 #define N_INV -1u
13034
13035 struct neon_tab_entry
13036 {
13037 unsigned integer;
13038 unsigned float_or_poly;
13039 unsigned scalar_or_imm;
13040 };
13041
13042 /* Map overloaded Neon opcodes to their respective encodings. */
13043 #define NEON_ENC_TAB \
13044 X(vabd, 0x0000700, 0x1200d00, N_INV), \
13045 X(vmax, 0x0000600, 0x0000f00, N_INV), \
13046 X(vmin, 0x0000610, 0x0200f00, N_INV), \
13047 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
13048 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
13049 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
13050 X(vadd, 0x0000800, 0x0000d00, N_INV), \
13051 X(vsub, 0x1000800, 0x0200d00, N_INV), \
13052 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
13053 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
13054 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
13055 /* Register variants of the following two instructions are encoded as
13056 vcge / vcgt with the operands reversed. */ \
13057 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
13058 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
13059 X(vfma, N_INV, 0x0000c10, N_INV), \
13060 X(vfms, N_INV, 0x0200c10, N_INV), \
13061 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
13062 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
13063 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
13064 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
13065 X(vmlal, 0x0800800, N_INV, 0x0800240), \
13066 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
13067 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
13068 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
13069 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
13070 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
13071 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
13072 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
13073 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
13074 X(vshl, 0x0000400, N_INV, 0x0800510), \
13075 X(vqshl, 0x0000410, N_INV, 0x0800710), \
13076 X(vand, 0x0000110, N_INV, 0x0800030), \
13077 X(vbic, 0x0100110, N_INV, 0x0800030), \
13078 X(veor, 0x1000110, N_INV, N_INV), \
13079 X(vorn, 0x0300110, N_INV, 0x0800010), \
13080 X(vorr, 0x0200110, N_INV, 0x0800010), \
13081 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
13082 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
13083 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
13084 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
13085 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
13086 X(vst1, 0x0000000, 0x0800000, N_INV), \
13087 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
13088 X(vst2, 0x0000100, 0x0800100, N_INV), \
13089 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
13090 X(vst3, 0x0000200, 0x0800200, N_INV), \
13091 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
13092 X(vst4, 0x0000300, 0x0800300, N_INV), \
13093 X(vmovn, 0x1b20200, N_INV, N_INV), \
13094 X(vtrn, 0x1b20080, N_INV, N_INV), \
13095 X(vqmovn, 0x1b20200, N_INV, N_INV), \
13096 X(vqmovun, 0x1b20240, N_INV, N_INV), \
13097 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
13098 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
13099 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
13100 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
13101 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
13102 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
13103 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
13104 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
13105 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
13106 X(vseleq, 0xe000a00, N_INV, N_INV), \
13107 X(vselvs, 0xe100a00, N_INV, N_INV), \
13108 X(vselge, 0xe200a00, N_INV, N_INV), \
13109 X(vselgt, 0xe300a00, N_INV, N_INV), \
13110 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
13111 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
13112 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
13113 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
13114 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
13115 X(aes, 0x3b00300, N_INV, N_INV), \
13116 X(sha3op, 0x2000c00, N_INV, N_INV), \
13117 X(sha1h, 0x3b902c0, N_INV, N_INV), \
13118 X(sha2op, 0x3ba0380, N_INV, N_INV)
13119
13120 enum neon_opc
13121 {
13122 #define X(OPC,I,F,S) N_MNEM_##OPC
13123 NEON_ENC_TAB
13124 #undef X
13125 };
13126
13127 static const struct neon_tab_entry neon_enc_tab[] =
13128 {
13129 #define X(OPC,I,F,S) { (I), (F), (S) }
13130 NEON_ENC_TAB
13131 #undef X
13132 };
13133
13134 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
13135 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13136 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13137 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13138 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13139 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13140 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13141 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13142 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13143 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13144 #define NEON_ENC_SINGLE_(X) \
13145 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
13146 #define NEON_ENC_DOUBLE_(X) \
13147 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
13148 #define NEON_ENC_FPV8_(X) \
13149 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
13150
13151 #define NEON_ENCODE(type, inst) \
13152 do \
13153 { \
13154 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
13155 inst.is_neon = 1; \
13156 } \
13157 while (0)
13158
13159 #define check_neon_suffixes \
13160 do \
13161 { \
13162 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
13163 { \
13164 as_bad (_("invalid neon suffix for non neon instruction")); \
13165 return; \
13166 } \
13167 } \
13168 while (0)
13169
13170 /* Define shapes for instruction operands. The following mnemonic characters
13171 are used in this table:
13172
13173 F - VFP S<n> register
13174 D - Neon D<n> register
13175 Q - Neon Q<n> register
13176 I - Immediate
13177 S - Scalar
13178 R - ARM register
13179 L - D<n> register list
13180
13181 This table is used to generate various data:
13182 - enumerations of the form NS_DDR to be used as arguments to
13183 neon_select_shape.
13184 - a table classifying shapes into single, double, quad, mixed.
13185 - a table used to drive neon_select_shape. */
13186
13187 #define NEON_SHAPE_DEF \
13188 X(3, (D, D, D), DOUBLE), \
13189 X(3, (Q, Q, Q), QUAD), \
13190 X(3, (D, D, I), DOUBLE), \
13191 X(3, (Q, Q, I), QUAD), \
13192 X(3, (D, D, S), DOUBLE), \
13193 X(3, (Q, Q, S), QUAD), \
13194 X(2, (D, D), DOUBLE), \
13195 X(2, (Q, Q), QUAD), \
13196 X(2, (D, S), DOUBLE), \
13197 X(2, (Q, S), QUAD), \
13198 X(2, (D, R), DOUBLE), \
13199 X(2, (Q, R), QUAD), \
13200 X(2, (D, I), DOUBLE), \
13201 X(2, (Q, I), QUAD), \
13202 X(3, (D, L, D), DOUBLE), \
13203 X(2, (D, Q), MIXED), \
13204 X(2, (Q, D), MIXED), \
13205 X(3, (D, Q, I), MIXED), \
13206 X(3, (Q, D, I), MIXED), \
13207 X(3, (Q, D, D), MIXED), \
13208 X(3, (D, Q, Q), MIXED), \
13209 X(3, (Q, Q, D), MIXED), \
13210 X(3, (Q, D, S), MIXED), \
13211 X(3, (D, Q, S), MIXED), \
13212 X(4, (D, D, D, I), DOUBLE), \
13213 X(4, (Q, Q, Q, I), QUAD), \
13214 X(2, (F, F), SINGLE), \
13215 X(3, (F, F, F), SINGLE), \
13216 X(2, (F, I), SINGLE), \
13217 X(2, (F, D), MIXED), \
13218 X(2, (D, F), MIXED), \
13219 X(3, (F, F, I), MIXED), \
13220 X(4, (R, R, F, F), SINGLE), \
13221 X(4, (F, F, R, R), SINGLE), \
13222 X(3, (D, R, R), DOUBLE), \
13223 X(3, (R, R, D), DOUBLE), \
13224 X(2, (S, R), SINGLE), \
13225 X(2, (R, S), SINGLE), \
13226 X(2, (F, R), SINGLE), \
13227 X(2, (R, F), SINGLE)
13228
13229 #define S2(A,B) NS_##A##B
13230 #define S3(A,B,C) NS_##A##B##C
13231 #define S4(A,B,C,D) NS_##A##B##C##D
13232
13233 #define X(N, L, C) S##N L
13234
13235 enum neon_shape
13236 {
13237 NEON_SHAPE_DEF,
13238 NS_NULL
13239 };
13240
13241 #undef X
13242 #undef S2
13243 #undef S3
13244 #undef S4
13245
13246 enum neon_shape_class
13247 {
13248 SC_SINGLE,
13249 SC_DOUBLE,
13250 SC_QUAD,
13251 SC_MIXED
13252 };
13253
13254 #define X(N, L, C) SC_##C
13255
13256 static enum neon_shape_class neon_shape_class[] =
13257 {
13258 NEON_SHAPE_DEF
13259 };
13260
13261 #undef X
13262
13263 enum neon_shape_el
13264 {
13265 SE_F,
13266 SE_D,
13267 SE_Q,
13268 SE_I,
13269 SE_S,
13270 SE_R,
13271 SE_L
13272 };
13273
13274 /* Register widths of above. */
13275 static unsigned neon_shape_el_size[] =
13276 {
13277 32,
13278 64,
13279 128,
13280 0,
13281 32,
13282 32,
13283 0
13284 };
13285
13286 struct neon_shape_info
13287 {
13288 unsigned els;
13289 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
13290 };
13291
13292 #define S2(A,B) { SE_##A, SE_##B }
13293 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
13294 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
13295
13296 #define X(N, L, C) { N, S##N L }
13297
13298 static struct neon_shape_info neon_shape_tab[] =
13299 {
13300 NEON_SHAPE_DEF
13301 };
13302
13303 #undef X
13304 #undef S2
13305 #undef S3
13306 #undef S4
13307
13308 /* Bit masks used in type checking given instructions.
13309 'N_EQK' means the type must be the same as (or based on in some way) the key
13310 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
13311 set, various other bits can be set as well in order to modify the meaning of
13312 the type constraint. */
13313
13314 enum neon_type_mask
13315 {
13316 N_S8 = 0x0000001,
13317 N_S16 = 0x0000002,
13318 N_S32 = 0x0000004,
13319 N_S64 = 0x0000008,
13320 N_U8 = 0x0000010,
13321 N_U16 = 0x0000020,
13322 N_U32 = 0x0000040,
13323 N_U64 = 0x0000080,
13324 N_I8 = 0x0000100,
13325 N_I16 = 0x0000200,
13326 N_I32 = 0x0000400,
13327 N_I64 = 0x0000800,
13328 N_8 = 0x0001000,
13329 N_16 = 0x0002000,
13330 N_32 = 0x0004000,
13331 N_64 = 0x0008000,
13332 N_P8 = 0x0010000,
13333 N_P16 = 0x0020000,
13334 N_F16 = 0x0040000,
13335 N_F32 = 0x0080000,
13336 N_F64 = 0x0100000,
13337 N_P64 = 0x0200000,
13338 N_KEY = 0x1000000, /* Key element (main type specifier). */
13339 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
13340 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
13341 N_UNT = 0x8000000, /* Must be explicitly untyped. */
13342 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
13343 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
13344 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
13345 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
13346 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
13347 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
13348 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
13349 N_UTYP = 0,
13350 N_MAX_NONSPECIAL = N_P64
13351 };
13352
13353 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
13354
13355 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
13356 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
13357 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
13358 #define N_SUF_32 (N_SU_32 | N_F32)
13359 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
13360 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
13361
13362 /* Pass this as the first type argument to neon_check_type to ignore types
13363 altogether. */
13364 #define N_IGNORE_TYPE (N_KEY | N_EQK)
13365
13366 /* Select a "shape" for the current instruction (describing register types or
13367 sizes) from a list of alternatives. Return NS_NULL if the current instruction
13368 doesn't fit. For non-polymorphic shapes, checking is usually done as a
13369 function of operand parsing, so this function doesn't need to be called.
13370 Shapes should be listed in order of decreasing length. */
13371
13372 static enum neon_shape
13373 neon_select_shape (enum neon_shape shape, ...)
13374 {
13375 va_list ap;
13376 enum neon_shape first_shape = shape;
13377
13378 /* Fix missing optional operands. FIXME: we don't know at this point how
13379 many arguments we should have, so this makes the assumption that we have
13380 > 1. This is true of all current Neon opcodes, I think, but may not be
13381 true in the future. */
13382 if (!inst.operands[1].present)
13383 inst.operands[1] = inst.operands[0];
13384
13385 va_start (ap, shape);
13386
13387 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
13388 {
13389 unsigned j;
13390 int matches = 1;
13391
13392 for (j = 0; j < neon_shape_tab[shape].els; j++)
13393 {
13394 if (!inst.operands[j].present)
13395 {
13396 matches = 0;
13397 break;
13398 }
13399
13400 switch (neon_shape_tab[shape].el[j])
13401 {
13402 case SE_F:
13403 if (!(inst.operands[j].isreg
13404 && inst.operands[j].isvec
13405 && inst.operands[j].issingle
13406 && !inst.operands[j].isquad))
13407 matches = 0;
13408 break;
13409
13410 case SE_D:
13411 if (!(inst.operands[j].isreg
13412 && inst.operands[j].isvec
13413 && !inst.operands[j].isquad
13414 && !inst.operands[j].issingle))
13415 matches = 0;
13416 break;
13417
13418 case SE_R:
13419 if (!(inst.operands[j].isreg
13420 && !inst.operands[j].isvec))
13421 matches = 0;
13422 break;
13423
13424 case SE_Q:
13425 if (!(inst.operands[j].isreg
13426 && inst.operands[j].isvec
13427 && inst.operands[j].isquad
13428 && !inst.operands[j].issingle))
13429 matches = 0;
13430 break;
13431
13432 case SE_I:
13433 if (!(!inst.operands[j].isreg
13434 && !inst.operands[j].isscalar))
13435 matches = 0;
13436 break;
13437
13438 case SE_S:
13439 if (!(!inst.operands[j].isreg
13440 && inst.operands[j].isscalar))
13441 matches = 0;
13442 break;
13443
13444 case SE_L:
13445 break;
13446 }
13447 if (!matches)
13448 break;
13449 }
13450 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
13451 /* We've matched all the entries in the shape table, and we don't
13452 have any left over operands which have not been matched. */
13453 break;
13454 }
13455
13456 va_end (ap);
13457
13458 if (shape == NS_NULL && first_shape != NS_NULL)
13459 first_error (_("invalid instruction shape"));
13460
13461 return shape;
13462 }
13463
13464 /* True if SHAPE is predominantly a quadword operation (most of the time, this
13465 means the Q bit should be set). */
13466
13467 static int
13468 neon_quad (enum neon_shape shape)
13469 {
13470 return neon_shape_class[shape] == SC_QUAD;
13471 }
13472
13473 static void
13474 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
13475 unsigned *g_size)
13476 {
13477 /* Allow modification to be made to types which are constrained to be
13478 based on the key element, based on bits set alongside N_EQK. */
13479 if ((typebits & N_EQK) != 0)
13480 {
13481 if ((typebits & N_HLF) != 0)
13482 *g_size /= 2;
13483 else if ((typebits & N_DBL) != 0)
13484 *g_size *= 2;
13485 if ((typebits & N_SGN) != 0)
13486 *g_type = NT_signed;
13487 else if ((typebits & N_UNS) != 0)
13488 *g_type = NT_unsigned;
13489 else if ((typebits & N_INT) != 0)
13490 *g_type = NT_integer;
13491 else if ((typebits & N_FLT) != 0)
13492 *g_type = NT_float;
13493 else if ((typebits & N_SIZ) != 0)
13494 *g_type = NT_untyped;
13495 }
13496 }
13497
13498 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
13499 operand type, i.e. the single type specified in a Neon instruction when it
13500 is the only one given. */
13501
13502 static struct neon_type_el
13503 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
13504 {
13505 struct neon_type_el dest = *key;
13506
13507 gas_assert ((thisarg & N_EQK) != 0);
13508
13509 neon_modify_type_size (thisarg, &dest.type, &dest.size);
13510
13511 return dest;
13512 }
13513
13514 /* Convert Neon type and size into compact bitmask representation. */
13515
13516 static enum neon_type_mask
13517 type_chk_of_el_type (enum neon_el_type type, unsigned size)
13518 {
13519 switch (type)
13520 {
13521 case NT_untyped:
13522 switch (size)
13523 {
13524 case 8: return N_8;
13525 case 16: return N_16;
13526 case 32: return N_32;
13527 case 64: return N_64;
13528 default: ;
13529 }
13530 break;
13531
13532 case NT_integer:
13533 switch (size)
13534 {
13535 case 8: return N_I8;
13536 case 16: return N_I16;
13537 case 32: return N_I32;
13538 case 64: return N_I64;
13539 default: ;
13540 }
13541 break;
13542
13543 case NT_float:
13544 switch (size)
13545 {
13546 case 16: return N_F16;
13547 case 32: return N_F32;
13548 case 64: return N_F64;
13549 default: ;
13550 }
13551 break;
13552
13553 case NT_poly:
13554 switch (size)
13555 {
13556 case 8: return N_P8;
13557 case 16: return N_P16;
13558 case 64: return N_P64;
13559 default: ;
13560 }
13561 break;
13562
13563 case NT_signed:
13564 switch (size)
13565 {
13566 case 8: return N_S8;
13567 case 16: return N_S16;
13568 case 32: return N_S32;
13569 case 64: return N_S64;
13570 default: ;
13571 }
13572 break;
13573
13574 case NT_unsigned:
13575 switch (size)
13576 {
13577 case 8: return N_U8;
13578 case 16: return N_U16;
13579 case 32: return N_U32;
13580 case 64: return N_U64;
13581 default: ;
13582 }
13583 break;
13584
13585 default: ;
13586 }
13587
13588 return N_UTYP;
13589 }
13590
13591 /* Convert compact Neon bitmask type representation to a type and size. Only
13592 handles the case where a single bit is set in the mask. */
13593
13594 static int
13595 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
13596 enum neon_type_mask mask)
13597 {
13598 if ((mask & N_EQK) != 0)
13599 return FAIL;
13600
13601 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
13602 *size = 8;
13603 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
13604 *size = 16;
13605 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
13606 *size = 32;
13607 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
13608 *size = 64;
13609 else
13610 return FAIL;
13611
13612 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
13613 *type = NT_signed;
13614 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
13615 *type = NT_unsigned;
13616 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
13617 *type = NT_integer;
13618 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
13619 *type = NT_untyped;
13620 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
13621 *type = NT_poly;
13622 else if ((mask & (N_F16 | N_F32 | N_F64)) != 0)
13623 *type = NT_float;
13624 else
13625 return FAIL;
13626
13627 return SUCCESS;
13628 }
13629
13630 /* Modify a bitmask of allowed types. This is only needed for type
13631 relaxation. */
13632
13633 static unsigned
13634 modify_types_allowed (unsigned allowed, unsigned mods)
13635 {
13636 unsigned size;
13637 enum neon_el_type type;
13638 unsigned destmask;
13639 int i;
13640
13641 destmask = 0;
13642
13643 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
13644 {
13645 if (el_type_of_type_chk (&type, &size,
13646 (enum neon_type_mask) (allowed & i)) == SUCCESS)
13647 {
13648 neon_modify_type_size (mods, &type, &size);
13649 destmask |= type_chk_of_el_type (type, size);
13650 }
13651 }
13652
13653 return destmask;
13654 }
13655
13656 /* Check type and return type classification.
13657 The manual states (paraphrase): If one datatype is given, it indicates the
13658 type given in:
13659 - the second operand, if there is one
13660 - the operand, if there is no second operand
13661 - the result, if there are no operands.
13662 This isn't quite good enough though, so we use a concept of a "key" datatype
13663 which is set on a per-instruction basis, which is the one which matters when
13664 only one data type is written.
13665 Note: this function has side-effects (e.g. filling in missing operands). All
13666 Neon instructions should call it before performing bit encoding. */
13667
13668 static struct neon_type_el
13669 neon_check_type (unsigned els, enum neon_shape ns, ...)
13670 {
13671 va_list ap;
13672 unsigned i, pass, key_el = 0;
13673 unsigned types[NEON_MAX_TYPE_ELS];
13674 enum neon_el_type k_type = NT_invtype;
13675 unsigned k_size = -1u;
13676 struct neon_type_el badtype = {NT_invtype, -1};
13677 unsigned key_allowed = 0;
13678
13679 /* Optional registers in Neon instructions are always (not) in operand 1.
13680 Fill in the missing operand here, if it was omitted. */
13681 if (els > 1 && !inst.operands[1].present)
13682 inst.operands[1] = inst.operands[0];
13683
13684 /* Suck up all the varargs. */
13685 va_start (ap, ns);
13686 for (i = 0; i < els; i++)
13687 {
13688 unsigned thisarg = va_arg (ap, unsigned);
13689 if (thisarg == N_IGNORE_TYPE)
13690 {
13691 va_end (ap);
13692 return badtype;
13693 }
13694 types[i] = thisarg;
13695 if ((thisarg & N_KEY) != 0)
13696 key_el = i;
13697 }
13698 va_end (ap);
13699
13700 if (inst.vectype.elems > 0)
13701 for (i = 0; i < els; i++)
13702 if (inst.operands[i].vectype.type != NT_invtype)
13703 {
13704 first_error (_("types specified in both the mnemonic and operands"));
13705 return badtype;
13706 }
13707
13708 /* Duplicate inst.vectype elements here as necessary.
13709 FIXME: No idea if this is exactly the same as the ARM assembler,
13710 particularly when an insn takes one register and one non-register
13711 operand. */
13712 if (inst.vectype.elems == 1 && els > 1)
13713 {
13714 unsigned j;
13715 inst.vectype.elems = els;
13716 inst.vectype.el[key_el] = inst.vectype.el[0];
13717 for (j = 0; j < els; j++)
13718 if (j != key_el)
13719 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
13720 types[j]);
13721 }
13722 else if (inst.vectype.elems == 0 && els > 0)
13723 {
13724 unsigned j;
13725 /* No types were given after the mnemonic, so look for types specified
13726 after each operand. We allow some flexibility here; as long as the
13727 "key" operand has a type, we can infer the others. */
13728 for (j = 0; j < els; j++)
13729 if (inst.operands[j].vectype.type != NT_invtype)
13730 inst.vectype.el[j] = inst.operands[j].vectype;
13731
13732 if (inst.operands[key_el].vectype.type != NT_invtype)
13733 {
13734 for (j = 0; j < els; j++)
13735 if (inst.operands[j].vectype.type == NT_invtype)
13736 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
13737 types[j]);
13738 }
13739 else
13740 {
13741 first_error (_("operand types can't be inferred"));
13742 return badtype;
13743 }
13744 }
13745 else if (inst.vectype.elems != els)
13746 {
13747 first_error (_("type specifier has the wrong number of parts"));
13748 return badtype;
13749 }
13750
13751 for (pass = 0; pass < 2; pass++)
13752 {
13753 for (i = 0; i < els; i++)
13754 {
13755 unsigned thisarg = types[i];
13756 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
13757 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
13758 enum neon_el_type g_type = inst.vectype.el[i].type;
13759 unsigned g_size = inst.vectype.el[i].size;
13760
13761 /* Decay more-specific signed & unsigned types to sign-insensitive
13762 integer types if sign-specific variants are unavailable. */
13763 if ((g_type == NT_signed || g_type == NT_unsigned)
13764 && (types_allowed & N_SU_ALL) == 0)
13765 g_type = NT_integer;
13766
13767 /* If only untyped args are allowed, decay any more specific types to
13768 them. Some instructions only care about signs for some element
13769 sizes, so handle that properly. */
13770 if (((types_allowed & N_UNT) == 0)
13771 && ((g_size == 8 && (types_allowed & N_8) != 0)
13772 || (g_size == 16 && (types_allowed & N_16) != 0)
13773 || (g_size == 32 && (types_allowed & N_32) != 0)
13774 || (g_size == 64 && (types_allowed & N_64) != 0)))
13775 g_type = NT_untyped;
13776
13777 if (pass == 0)
13778 {
13779 if ((thisarg & N_KEY) != 0)
13780 {
13781 k_type = g_type;
13782 k_size = g_size;
13783 key_allowed = thisarg & ~N_KEY;
13784 }
13785 }
13786 else
13787 {
13788 if ((thisarg & N_VFP) != 0)
13789 {
13790 enum neon_shape_el regshape;
13791 unsigned regwidth, match;
13792
13793 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
13794 if (ns == NS_NULL)
13795 {
13796 first_error (_("invalid instruction shape"));
13797 return badtype;
13798 }
13799 regshape = neon_shape_tab[ns].el[i];
13800 regwidth = neon_shape_el_size[regshape];
13801
13802 /* In VFP mode, operands must match register widths. If we
13803 have a key operand, use its width, else use the width of
13804 the current operand. */
13805 if (k_size != -1u)
13806 match = k_size;
13807 else
13808 match = g_size;
13809
13810 if (regwidth != match)
13811 {
13812 first_error (_("operand size must match register width"));
13813 return badtype;
13814 }
13815 }
13816
13817 if ((thisarg & N_EQK) == 0)
13818 {
13819 unsigned given_type = type_chk_of_el_type (g_type, g_size);
13820
13821 if ((given_type & types_allowed) == 0)
13822 {
13823 first_error (_("bad type in Neon instruction"));
13824 return badtype;
13825 }
13826 }
13827 else
13828 {
13829 enum neon_el_type mod_k_type = k_type;
13830 unsigned mod_k_size = k_size;
13831 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
13832 if (g_type != mod_k_type || g_size != mod_k_size)
13833 {
13834 first_error (_("inconsistent types in Neon instruction"));
13835 return badtype;
13836 }
13837 }
13838 }
13839 }
13840 }
13841
13842 return inst.vectype.el[key_el];
13843 }
13844
13845 /* Neon-style VFP instruction forwarding. */
13846
13847 /* Thumb VFP instructions have 0xE in the condition field. */
13848
13849 static void
13850 do_vfp_cond_or_thumb (void)
13851 {
13852 inst.is_neon = 1;
13853
13854 if (thumb_mode)
13855 inst.instruction |= 0xe0000000;
13856 else
13857 inst.instruction |= inst.cond << 28;
13858 }
13859
13860 /* Look up and encode a simple mnemonic, for use as a helper function for the
13861 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
13862 etc. It is assumed that operand parsing has already been done, and that the
13863 operands are in the form expected by the given opcode (this isn't necessarily
13864 the same as the form in which they were parsed, hence some massaging must
13865 take place before this function is called).
13866 Checks current arch version against that in the looked-up opcode. */
13867
13868 static void
13869 do_vfp_nsyn_opcode (const char *opname)
13870 {
13871 const struct asm_opcode *opcode;
13872
13873 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
13874
13875 if (!opcode)
13876 abort ();
13877
13878 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
13879 thumb_mode ? *opcode->tvariant : *opcode->avariant),
13880 _(BAD_FPU));
13881
13882 inst.is_neon = 1;
13883
13884 if (thumb_mode)
13885 {
13886 inst.instruction = opcode->tvalue;
13887 opcode->tencode ();
13888 }
13889 else
13890 {
13891 inst.instruction = (inst.cond << 28) | opcode->avalue;
13892 opcode->aencode ();
13893 }
13894 }
13895
13896 static void
13897 do_vfp_nsyn_add_sub (enum neon_shape rs)
13898 {
13899 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
13900
13901 if (rs == NS_FFF)
13902 {
13903 if (is_add)
13904 do_vfp_nsyn_opcode ("fadds");
13905 else
13906 do_vfp_nsyn_opcode ("fsubs");
13907 }
13908 else
13909 {
13910 if (is_add)
13911 do_vfp_nsyn_opcode ("faddd");
13912 else
13913 do_vfp_nsyn_opcode ("fsubd");
13914 }
13915 }
13916
13917 /* Check operand types to see if this is a VFP instruction, and if so call
13918 PFN (). */
13919
13920 static int
13921 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
13922 {
13923 enum neon_shape rs;
13924 struct neon_type_el et;
13925
13926 switch (args)
13927 {
13928 case 2:
13929 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13930 et = neon_check_type (2, rs,
13931 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13932 break;
13933
13934 case 3:
13935 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13936 et = neon_check_type (3, rs,
13937 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13938 break;
13939
13940 default:
13941 abort ();
13942 }
13943
13944 if (et.type != NT_invtype)
13945 {
13946 pfn (rs);
13947 return SUCCESS;
13948 }
13949
13950 inst.error = NULL;
13951 return FAIL;
13952 }
13953
13954 static void
13955 do_vfp_nsyn_mla_mls (enum neon_shape rs)
13956 {
13957 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
13958
13959 if (rs == NS_FFF)
13960 {
13961 if (is_mla)
13962 do_vfp_nsyn_opcode ("fmacs");
13963 else
13964 do_vfp_nsyn_opcode ("fnmacs");
13965 }
13966 else
13967 {
13968 if (is_mla)
13969 do_vfp_nsyn_opcode ("fmacd");
13970 else
13971 do_vfp_nsyn_opcode ("fnmacd");
13972 }
13973 }
13974
13975 static void
13976 do_vfp_nsyn_fma_fms (enum neon_shape rs)
13977 {
13978 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
13979
13980 if (rs == NS_FFF)
13981 {
13982 if (is_fma)
13983 do_vfp_nsyn_opcode ("ffmas");
13984 else
13985 do_vfp_nsyn_opcode ("ffnmas");
13986 }
13987 else
13988 {
13989 if (is_fma)
13990 do_vfp_nsyn_opcode ("ffmad");
13991 else
13992 do_vfp_nsyn_opcode ("ffnmad");
13993 }
13994 }
13995
13996 static void
13997 do_vfp_nsyn_mul (enum neon_shape rs)
13998 {
13999 if (rs == NS_FFF)
14000 do_vfp_nsyn_opcode ("fmuls");
14001 else
14002 do_vfp_nsyn_opcode ("fmuld");
14003 }
14004
14005 static void
14006 do_vfp_nsyn_abs_neg (enum neon_shape rs)
14007 {
14008 int is_neg = (inst.instruction & 0x80) != 0;
14009 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
14010
14011 if (rs == NS_FF)
14012 {
14013 if (is_neg)
14014 do_vfp_nsyn_opcode ("fnegs");
14015 else
14016 do_vfp_nsyn_opcode ("fabss");
14017 }
14018 else
14019 {
14020 if (is_neg)
14021 do_vfp_nsyn_opcode ("fnegd");
14022 else
14023 do_vfp_nsyn_opcode ("fabsd");
14024 }
14025 }
14026
14027 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
14028 insns belong to Neon, and are handled elsewhere. */
14029
14030 static void
14031 do_vfp_nsyn_ldm_stm (int is_dbmode)
14032 {
14033 int is_ldm = (inst.instruction & (1 << 20)) != 0;
14034 if (is_ldm)
14035 {
14036 if (is_dbmode)
14037 do_vfp_nsyn_opcode ("fldmdbs");
14038 else
14039 do_vfp_nsyn_opcode ("fldmias");
14040 }
14041 else
14042 {
14043 if (is_dbmode)
14044 do_vfp_nsyn_opcode ("fstmdbs");
14045 else
14046 do_vfp_nsyn_opcode ("fstmias");
14047 }
14048 }
14049
14050 static void
14051 do_vfp_nsyn_sqrt (void)
14052 {
14053 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
14054 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
14055
14056 if (rs == NS_FF)
14057 do_vfp_nsyn_opcode ("fsqrts");
14058 else
14059 do_vfp_nsyn_opcode ("fsqrtd");
14060 }
14061
14062 static void
14063 do_vfp_nsyn_div (void)
14064 {
14065 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
14066 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
14067 N_F32 | N_F64 | N_KEY | N_VFP);
14068
14069 if (rs == NS_FFF)
14070 do_vfp_nsyn_opcode ("fdivs");
14071 else
14072 do_vfp_nsyn_opcode ("fdivd");
14073 }
14074
14075 static void
14076 do_vfp_nsyn_nmul (void)
14077 {
14078 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
14079 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
14080 N_F32 | N_F64 | N_KEY | N_VFP);
14081
14082 if (rs == NS_FFF)
14083 {
14084 NEON_ENCODE (SINGLE, inst);
14085 do_vfp_sp_dyadic ();
14086 }
14087 else
14088 {
14089 NEON_ENCODE (DOUBLE, inst);
14090 do_vfp_dp_rd_rn_rm ();
14091 }
14092 do_vfp_cond_or_thumb ();
14093 }
14094
14095 static void
14096 do_vfp_nsyn_cmp (void)
14097 {
14098 if (inst.operands[1].isreg)
14099 {
14100 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
14101 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
14102
14103 if (rs == NS_FF)
14104 {
14105 NEON_ENCODE (SINGLE, inst);
14106 do_vfp_sp_monadic ();
14107 }
14108 else
14109 {
14110 NEON_ENCODE (DOUBLE, inst);
14111 do_vfp_dp_rd_rm ();
14112 }
14113 }
14114 else
14115 {
14116 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
14117 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
14118
14119 switch (inst.instruction & 0x0fffffff)
14120 {
14121 case N_MNEM_vcmp:
14122 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
14123 break;
14124 case N_MNEM_vcmpe:
14125 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
14126 break;
14127 default:
14128 abort ();
14129 }
14130
14131 if (rs == NS_FI)
14132 {
14133 NEON_ENCODE (SINGLE, inst);
14134 do_vfp_sp_compare_z ();
14135 }
14136 else
14137 {
14138 NEON_ENCODE (DOUBLE, inst);
14139 do_vfp_dp_rd ();
14140 }
14141 }
14142 do_vfp_cond_or_thumb ();
14143 }
14144
14145 static void
14146 nsyn_insert_sp (void)
14147 {
14148 inst.operands[1] = inst.operands[0];
14149 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
14150 inst.operands[0].reg = REG_SP;
14151 inst.operands[0].isreg = 1;
14152 inst.operands[0].writeback = 1;
14153 inst.operands[0].present = 1;
14154 }
14155
14156 static void
14157 do_vfp_nsyn_push (void)
14158 {
14159 nsyn_insert_sp ();
14160 if (inst.operands[1].issingle)
14161 do_vfp_nsyn_opcode ("fstmdbs");
14162 else
14163 do_vfp_nsyn_opcode ("fstmdbd");
14164 }
14165
14166 static void
14167 do_vfp_nsyn_pop (void)
14168 {
14169 nsyn_insert_sp ();
14170 if (inst.operands[1].issingle)
14171 do_vfp_nsyn_opcode ("fldmias");
14172 else
14173 do_vfp_nsyn_opcode ("fldmiad");
14174 }
14175
14176 /* Fix up Neon data-processing instructions, ORing in the correct bits for
14177 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
14178
14179 static void
14180 neon_dp_fixup (struct arm_it* insn)
14181 {
14182 unsigned int i = insn->instruction;
14183 insn->is_neon = 1;
14184
14185 if (thumb_mode)
14186 {
14187 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
14188 if (i & (1 << 24))
14189 i |= 1 << 28;
14190
14191 i &= ~(1 << 24);
14192
14193 i |= 0xef000000;
14194 }
14195 else
14196 i |= 0xf2000000;
14197
14198 insn->instruction = i;
14199 }
14200
14201 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
14202 (0, 1, 2, 3). */
14203
14204 static unsigned
14205 neon_logbits (unsigned x)
14206 {
14207 return ffs (x) - 4;
14208 }
14209
14210 #define LOW4(R) ((R) & 0xf)
14211 #define HI1(R) (((R) >> 4) & 1)
14212
14213 /* Encode insns with bit pattern:
14214
14215 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
14216 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
14217
14218 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
14219 different meaning for some instruction. */
14220
14221 static void
14222 neon_three_same (int isquad, int ubit, int size)
14223 {
14224 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14225 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14226 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14227 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14228 inst.instruction |= LOW4 (inst.operands[2].reg);
14229 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14230 inst.instruction |= (isquad != 0) << 6;
14231 inst.instruction |= (ubit != 0) << 24;
14232 if (size != -1)
14233 inst.instruction |= neon_logbits (size) << 20;
14234
14235 neon_dp_fixup (&inst);
14236 }
14237
14238 /* Encode instructions of the form:
14239
14240 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
14241 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
14242
14243 Don't write size if SIZE == -1. */
14244
14245 static void
14246 neon_two_same (int qbit, int ubit, int size)
14247 {
14248 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14249 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14250 inst.instruction |= LOW4 (inst.operands[1].reg);
14251 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14252 inst.instruction |= (qbit != 0) << 6;
14253 inst.instruction |= (ubit != 0) << 24;
14254
14255 if (size != -1)
14256 inst.instruction |= neon_logbits (size) << 18;
14257
14258 neon_dp_fixup (&inst);
14259 }
14260
14261 /* Neon instruction encoders, in approximate order of appearance. */
14262
14263 static void
14264 do_neon_dyadic_i_su (void)
14265 {
14266 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14267 struct neon_type_el et = neon_check_type (3, rs,
14268 N_EQK, N_EQK, N_SU_32 | N_KEY);
14269 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14270 }
14271
14272 static void
14273 do_neon_dyadic_i64_su (void)
14274 {
14275 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14276 struct neon_type_el et = neon_check_type (3, rs,
14277 N_EQK, N_EQK, N_SU_ALL | N_KEY);
14278 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14279 }
14280
14281 static void
14282 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
14283 unsigned immbits)
14284 {
14285 unsigned size = et.size >> 3;
14286 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14287 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14288 inst.instruction |= LOW4 (inst.operands[1].reg);
14289 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14290 inst.instruction |= (isquad != 0) << 6;
14291 inst.instruction |= immbits << 16;
14292 inst.instruction |= (size >> 3) << 7;
14293 inst.instruction |= (size & 0x7) << 19;
14294 if (write_ubit)
14295 inst.instruction |= (uval != 0) << 24;
14296
14297 neon_dp_fixup (&inst);
14298 }
14299
14300 static void
14301 do_neon_shl_imm (void)
14302 {
14303 if (!inst.operands[2].isreg)
14304 {
14305 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14306 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
14307 int imm = inst.operands[2].imm;
14308
14309 constraint (imm < 0 || (unsigned)imm >= et.size,
14310 _("immediate out of range for shift"));
14311 NEON_ENCODE (IMMED, inst);
14312 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14313 }
14314 else
14315 {
14316 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14317 struct neon_type_el et = neon_check_type (3, rs,
14318 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
14319 unsigned int tmp;
14320
14321 /* VSHL/VQSHL 3-register variants have syntax such as:
14322 vshl.xx Dd, Dm, Dn
14323 whereas other 3-register operations encoded by neon_three_same have
14324 syntax like:
14325 vadd.xx Dd, Dn, Dm
14326 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
14327 here. */
14328 tmp = inst.operands[2].reg;
14329 inst.operands[2].reg = inst.operands[1].reg;
14330 inst.operands[1].reg = tmp;
14331 NEON_ENCODE (INTEGER, inst);
14332 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14333 }
14334 }
14335
14336 static void
14337 do_neon_qshl_imm (void)
14338 {
14339 if (!inst.operands[2].isreg)
14340 {
14341 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14342 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
14343 int imm = inst.operands[2].imm;
14344
14345 constraint (imm < 0 || (unsigned)imm >= et.size,
14346 _("immediate out of range for shift"));
14347 NEON_ENCODE (IMMED, inst);
14348 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
14349 }
14350 else
14351 {
14352 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14353 struct neon_type_el et = neon_check_type (3, rs,
14354 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
14355 unsigned int tmp;
14356
14357 /* See note in do_neon_shl_imm. */
14358 tmp = inst.operands[2].reg;
14359 inst.operands[2].reg = inst.operands[1].reg;
14360 inst.operands[1].reg = tmp;
14361 NEON_ENCODE (INTEGER, inst);
14362 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14363 }
14364 }
14365
14366 static void
14367 do_neon_rshl (void)
14368 {
14369 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14370 struct neon_type_el et = neon_check_type (3, rs,
14371 N_EQK, N_EQK, N_SU_ALL | N_KEY);
14372 unsigned int tmp;
14373
14374 tmp = inst.operands[2].reg;
14375 inst.operands[2].reg = inst.operands[1].reg;
14376 inst.operands[1].reg = tmp;
14377 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14378 }
14379
14380 static int
14381 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
14382 {
14383 /* Handle .I8 pseudo-instructions. */
14384 if (size == 8)
14385 {
14386 /* Unfortunately, this will make everything apart from zero out-of-range.
14387 FIXME is this the intended semantics? There doesn't seem much point in
14388 accepting .I8 if so. */
14389 immediate |= immediate << 8;
14390 size = 16;
14391 }
14392
14393 if (size >= 32)
14394 {
14395 if (immediate == (immediate & 0x000000ff))
14396 {
14397 *immbits = immediate;
14398 return 0x1;
14399 }
14400 else if (immediate == (immediate & 0x0000ff00))
14401 {
14402 *immbits = immediate >> 8;
14403 return 0x3;
14404 }
14405 else if (immediate == (immediate & 0x00ff0000))
14406 {
14407 *immbits = immediate >> 16;
14408 return 0x5;
14409 }
14410 else if (immediate == (immediate & 0xff000000))
14411 {
14412 *immbits = immediate >> 24;
14413 return 0x7;
14414 }
14415 if ((immediate & 0xffff) != (immediate >> 16))
14416 goto bad_immediate;
14417 immediate &= 0xffff;
14418 }
14419
14420 if (immediate == (immediate & 0x000000ff))
14421 {
14422 *immbits = immediate;
14423 return 0x9;
14424 }
14425 else if (immediate == (immediate & 0x0000ff00))
14426 {
14427 *immbits = immediate >> 8;
14428 return 0xb;
14429 }
14430
14431 bad_immediate:
14432 first_error (_("immediate value out of range"));
14433 return FAIL;
14434 }
14435
14436 static void
14437 do_neon_logic (void)
14438 {
14439 if (inst.operands[2].present && inst.operands[2].isreg)
14440 {
14441 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14442 neon_check_type (3, rs, N_IGNORE_TYPE);
14443 /* U bit and size field were set as part of the bitmask. */
14444 NEON_ENCODE (INTEGER, inst);
14445 neon_three_same (neon_quad (rs), 0, -1);
14446 }
14447 else
14448 {
14449 const int three_ops_form = (inst.operands[2].present
14450 && !inst.operands[2].isreg);
14451 const int immoperand = (three_ops_form ? 2 : 1);
14452 enum neon_shape rs = (three_ops_form
14453 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
14454 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
14455 struct neon_type_el et = neon_check_type (2, rs,
14456 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
14457 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
14458 unsigned immbits;
14459 int cmode;
14460
14461 if (et.type == NT_invtype)
14462 return;
14463
14464 if (three_ops_form)
14465 constraint (inst.operands[0].reg != inst.operands[1].reg,
14466 _("first and second operands shall be the same register"));
14467
14468 NEON_ENCODE (IMMED, inst);
14469
14470 immbits = inst.operands[immoperand].imm;
14471 if (et.size == 64)
14472 {
14473 /* .i64 is a pseudo-op, so the immediate must be a repeating
14474 pattern. */
14475 if (immbits != (inst.operands[immoperand].regisimm ?
14476 inst.operands[immoperand].reg : 0))
14477 {
14478 /* Set immbits to an invalid constant. */
14479 immbits = 0xdeadbeef;
14480 }
14481 }
14482
14483 switch (opcode)
14484 {
14485 case N_MNEM_vbic:
14486 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14487 break;
14488
14489 case N_MNEM_vorr:
14490 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14491 break;
14492
14493 case N_MNEM_vand:
14494 /* Pseudo-instruction for VBIC. */
14495 neon_invert_size (&immbits, 0, et.size);
14496 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14497 break;
14498
14499 case N_MNEM_vorn:
14500 /* Pseudo-instruction for VORR. */
14501 neon_invert_size (&immbits, 0, et.size);
14502 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14503 break;
14504
14505 default:
14506 abort ();
14507 }
14508
14509 if (cmode == FAIL)
14510 return;
14511
14512 inst.instruction |= neon_quad (rs) << 6;
14513 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14514 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14515 inst.instruction |= cmode << 8;
14516 neon_write_immbits (immbits);
14517
14518 neon_dp_fixup (&inst);
14519 }
14520 }
14521
14522 static void
14523 do_neon_bitfield (void)
14524 {
14525 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14526 neon_check_type (3, rs, N_IGNORE_TYPE);
14527 neon_three_same (neon_quad (rs), 0, -1);
14528 }
14529
14530 static void
14531 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
14532 unsigned destbits)
14533 {
14534 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14535 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
14536 types | N_KEY);
14537 if (et.type == NT_float)
14538 {
14539 NEON_ENCODE (FLOAT, inst);
14540 neon_three_same (neon_quad (rs), 0, -1);
14541 }
14542 else
14543 {
14544 NEON_ENCODE (INTEGER, inst);
14545 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
14546 }
14547 }
14548
14549 static void
14550 do_neon_dyadic_if_su (void)
14551 {
14552 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
14553 }
14554
14555 static void
14556 do_neon_dyadic_if_su_d (void)
14557 {
14558 /* This version only allow D registers, but that constraint is enforced during
14559 operand parsing so we don't need to do anything extra here. */
14560 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
14561 }
14562
14563 static void
14564 do_neon_dyadic_if_i_d (void)
14565 {
14566 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14567 affected if we specify unsigned args. */
14568 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14569 }
14570
14571 enum vfp_or_neon_is_neon_bits
14572 {
14573 NEON_CHECK_CC = 1,
14574 NEON_CHECK_ARCH = 2,
14575 NEON_CHECK_ARCH8 = 4
14576 };
14577
14578 /* Call this function if an instruction which may have belonged to the VFP or
14579 Neon instruction sets, but turned out to be a Neon instruction (due to the
14580 operand types involved, etc.). We have to check and/or fix-up a couple of
14581 things:
14582
14583 - Make sure the user hasn't attempted to make a Neon instruction
14584 conditional.
14585 - Alter the value in the condition code field if necessary.
14586 - Make sure that the arch supports Neon instructions.
14587
14588 Which of these operations take place depends on bits from enum
14589 vfp_or_neon_is_neon_bits.
14590
14591 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
14592 current instruction's condition is COND_ALWAYS, the condition field is
14593 changed to inst.uncond_value. This is necessary because instructions shared
14594 between VFP and Neon may be conditional for the VFP variants only, and the
14595 unconditional Neon version must have, e.g., 0xF in the condition field. */
14596
14597 static int
14598 vfp_or_neon_is_neon (unsigned check)
14599 {
14600 /* Conditions are always legal in Thumb mode (IT blocks). */
14601 if (!thumb_mode && (check & NEON_CHECK_CC))
14602 {
14603 if (inst.cond != COND_ALWAYS)
14604 {
14605 first_error (_(BAD_COND));
14606 return FAIL;
14607 }
14608 if (inst.uncond_value != -1)
14609 inst.instruction |= inst.uncond_value << 28;
14610 }
14611
14612 if ((check & NEON_CHECK_ARCH)
14613 && !mark_feature_used (&fpu_neon_ext_v1))
14614 {
14615 first_error (_(BAD_FPU));
14616 return FAIL;
14617 }
14618
14619 if ((check & NEON_CHECK_ARCH8)
14620 && !mark_feature_used (&fpu_neon_ext_armv8))
14621 {
14622 first_error (_(BAD_FPU));
14623 return FAIL;
14624 }
14625
14626 return SUCCESS;
14627 }
14628
14629 static void
14630 do_neon_addsub_if_i (void)
14631 {
14632 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
14633 return;
14634
14635 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14636 return;
14637
14638 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14639 affected if we specify unsigned args. */
14640 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
14641 }
14642
14643 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
14644 result to be:
14645 V<op> A,B (A is operand 0, B is operand 2)
14646 to mean:
14647 V<op> A,B,A
14648 not:
14649 V<op> A,B,B
14650 so handle that case specially. */
14651
14652 static void
14653 neon_exchange_operands (void)
14654 {
14655 void *scratch = alloca (sizeof (inst.operands[0]));
14656 if (inst.operands[1].present)
14657 {
14658 /* Swap operands[1] and operands[2]. */
14659 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
14660 inst.operands[1] = inst.operands[2];
14661 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
14662 }
14663 else
14664 {
14665 inst.operands[1] = inst.operands[2];
14666 inst.operands[2] = inst.operands[0];
14667 }
14668 }
14669
14670 static void
14671 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
14672 {
14673 if (inst.operands[2].isreg)
14674 {
14675 if (invert)
14676 neon_exchange_operands ();
14677 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
14678 }
14679 else
14680 {
14681 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14682 struct neon_type_el et = neon_check_type (2, rs,
14683 N_EQK | N_SIZ, immtypes | N_KEY);
14684
14685 NEON_ENCODE (IMMED, inst);
14686 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14687 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14688 inst.instruction |= LOW4 (inst.operands[1].reg);
14689 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14690 inst.instruction |= neon_quad (rs) << 6;
14691 inst.instruction |= (et.type == NT_float) << 10;
14692 inst.instruction |= neon_logbits (et.size) << 18;
14693
14694 neon_dp_fixup (&inst);
14695 }
14696 }
14697
14698 static void
14699 do_neon_cmp (void)
14700 {
14701 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
14702 }
14703
14704 static void
14705 do_neon_cmp_inv (void)
14706 {
14707 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
14708 }
14709
14710 static void
14711 do_neon_ceq (void)
14712 {
14713 neon_compare (N_IF_32, N_IF_32, FALSE);
14714 }
14715
14716 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
14717 scalars, which are encoded in 5 bits, M : Rm.
14718 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
14719 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
14720 index in M. */
14721
14722 static unsigned
14723 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
14724 {
14725 unsigned regno = NEON_SCALAR_REG (scalar);
14726 unsigned elno = NEON_SCALAR_INDEX (scalar);
14727
14728 switch (elsize)
14729 {
14730 case 16:
14731 if (regno > 7 || elno > 3)
14732 goto bad_scalar;
14733 return regno | (elno << 3);
14734
14735 case 32:
14736 if (regno > 15 || elno > 1)
14737 goto bad_scalar;
14738 return regno | (elno << 4);
14739
14740 default:
14741 bad_scalar:
14742 first_error (_("scalar out of range for multiply instruction"));
14743 }
14744
14745 return 0;
14746 }
14747
14748 /* Encode multiply / multiply-accumulate scalar instructions. */
14749
14750 static void
14751 neon_mul_mac (struct neon_type_el et, int ubit)
14752 {
14753 unsigned scalar;
14754
14755 /* Give a more helpful error message if we have an invalid type. */
14756 if (et.type == NT_invtype)
14757 return;
14758
14759 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
14760 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14761 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14762 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14763 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14764 inst.instruction |= LOW4 (scalar);
14765 inst.instruction |= HI1 (scalar) << 5;
14766 inst.instruction |= (et.type == NT_float) << 8;
14767 inst.instruction |= neon_logbits (et.size) << 20;
14768 inst.instruction |= (ubit != 0) << 24;
14769
14770 neon_dp_fixup (&inst);
14771 }
14772
14773 static void
14774 do_neon_mac_maybe_scalar (void)
14775 {
14776 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
14777 return;
14778
14779 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14780 return;
14781
14782 if (inst.operands[2].isscalar)
14783 {
14784 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
14785 struct neon_type_el et = neon_check_type (3, rs,
14786 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
14787 NEON_ENCODE (SCALAR, inst);
14788 neon_mul_mac (et, neon_quad (rs));
14789 }
14790 else
14791 {
14792 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14793 affected if we specify unsigned args. */
14794 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14795 }
14796 }
14797
14798 static void
14799 do_neon_fmac (void)
14800 {
14801 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
14802 return;
14803
14804 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14805 return;
14806
14807 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14808 }
14809
14810 static void
14811 do_neon_tst (void)
14812 {
14813 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14814 struct neon_type_el et = neon_check_type (3, rs,
14815 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
14816 neon_three_same (neon_quad (rs), 0, et.size);
14817 }
14818
14819 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
14820 same types as the MAC equivalents. The polynomial type for this instruction
14821 is encoded the same as the integer type. */
14822
14823 static void
14824 do_neon_mul (void)
14825 {
14826 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
14827 return;
14828
14829 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14830 return;
14831
14832 if (inst.operands[2].isscalar)
14833 do_neon_mac_maybe_scalar ();
14834 else
14835 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
14836 }
14837
14838 static void
14839 do_neon_qdmulh (void)
14840 {
14841 if (inst.operands[2].isscalar)
14842 {
14843 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
14844 struct neon_type_el et = neon_check_type (3, rs,
14845 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
14846 NEON_ENCODE (SCALAR, inst);
14847 neon_mul_mac (et, neon_quad (rs));
14848 }
14849 else
14850 {
14851 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14852 struct neon_type_el et = neon_check_type (3, rs,
14853 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
14854 NEON_ENCODE (INTEGER, inst);
14855 /* The U bit (rounding) comes from bit mask. */
14856 neon_three_same (neon_quad (rs), 0, et.size);
14857 }
14858 }
14859
14860 static void
14861 do_neon_fcmp_absolute (void)
14862 {
14863 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14864 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
14865 /* Size field comes from bit mask. */
14866 neon_three_same (neon_quad (rs), 1, -1);
14867 }
14868
14869 static void
14870 do_neon_fcmp_absolute_inv (void)
14871 {
14872 neon_exchange_operands ();
14873 do_neon_fcmp_absolute ();
14874 }
14875
14876 static void
14877 do_neon_step (void)
14878 {
14879 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14880 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
14881 neon_three_same (neon_quad (rs), 0, -1);
14882 }
14883
14884 static void
14885 do_neon_abs_neg (void)
14886 {
14887 enum neon_shape rs;
14888 struct neon_type_el et;
14889
14890 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
14891 return;
14892
14893 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14894 return;
14895
14896 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14897 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
14898
14899 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14900 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14901 inst.instruction |= LOW4 (inst.operands[1].reg);
14902 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14903 inst.instruction |= neon_quad (rs) << 6;
14904 inst.instruction |= (et.type == NT_float) << 10;
14905 inst.instruction |= neon_logbits (et.size) << 18;
14906
14907 neon_dp_fixup (&inst);
14908 }
14909
14910 static void
14911 do_neon_sli (void)
14912 {
14913 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14914 struct neon_type_el et = neon_check_type (2, rs,
14915 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14916 int imm = inst.operands[2].imm;
14917 constraint (imm < 0 || (unsigned)imm >= et.size,
14918 _("immediate out of range for insert"));
14919 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14920 }
14921
14922 static void
14923 do_neon_sri (void)
14924 {
14925 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14926 struct neon_type_el et = neon_check_type (2, rs,
14927 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14928 int imm = inst.operands[2].imm;
14929 constraint (imm < 1 || (unsigned)imm > et.size,
14930 _("immediate out of range for insert"));
14931 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
14932 }
14933
14934 static void
14935 do_neon_qshlu_imm (void)
14936 {
14937 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14938 struct neon_type_el et = neon_check_type (2, rs,
14939 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
14940 int imm = inst.operands[2].imm;
14941 constraint (imm < 0 || (unsigned)imm >= et.size,
14942 _("immediate out of range for shift"));
14943 /* Only encodes the 'U present' variant of the instruction.
14944 In this case, signed types have OP (bit 8) set to 0.
14945 Unsigned types have OP set to 1. */
14946 inst.instruction |= (et.type == NT_unsigned) << 8;
14947 /* The rest of the bits are the same as other immediate shifts. */
14948 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14949 }
14950
14951 static void
14952 do_neon_qmovn (void)
14953 {
14954 struct neon_type_el et = neon_check_type (2, NS_DQ,
14955 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14956 /* Saturating move where operands can be signed or unsigned, and the
14957 destination has the same signedness. */
14958 NEON_ENCODE (INTEGER, inst);
14959 if (et.type == NT_unsigned)
14960 inst.instruction |= 0xc0;
14961 else
14962 inst.instruction |= 0x80;
14963 neon_two_same (0, 1, et.size / 2);
14964 }
14965
14966 static void
14967 do_neon_qmovun (void)
14968 {
14969 struct neon_type_el et = neon_check_type (2, NS_DQ,
14970 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14971 /* Saturating move with unsigned results. Operands must be signed. */
14972 NEON_ENCODE (INTEGER, inst);
14973 neon_two_same (0, 1, et.size / 2);
14974 }
14975
14976 static void
14977 do_neon_rshift_sat_narrow (void)
14978 {
14979 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14980 or unsigned. If operands are unsigned, results must also be unsigned. */
14981 struct neon_type_el et = neon_check_type (2, NS_DQI,
14982 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14983 int imm = inst.operands[2].imm;
14984 /* This gets the bounds check, size encoding and immediate bits calculation
14985 right. */
14986 et.size /= 2;
14987
14988 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
14989 VQMOVN.I<size> <Dd>, <Qm>. */
14990 if (imm == 0)
14991 {
14992 inst.operands[2].present = 0;
14993 inst.instruction = N_MNEM_vqmovn;
14994 do_neon_qmovn ();
14995 return;
14996 }
14997
14998 constraint (imm < 1 || (unsigned)imm > et.size,
14999 _("immediate out of range"));
15000 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
15001 }
15002
15003 static void
15004 do_neon_rshift_sat_narrow_u (void)
15005 {
15006 /* FIXME: Types for narrowing. If operands are signed, results can be signed
15007 or unsigned. If operands are unsigned, results must also be unsigned. */
15008 struct neon_type_el et = neon_check_type (2, NS_DQI,
15009 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
15010 int imm = inst.operands[2].imm;
15011 /* This gets the bounds check, size encoding and immediate bits calculation
15012 right. */
15013 et.size /= 2;
15014
15015 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
15016 VQMOVUN.I<size> <Dd>, <Qm>. */
15017 if (imm == 0)
15018 {
15019 inst.operands[2].present = 0;
15020 inst.instruction = N_MNEM_vqmovun;
15021 do_neon_qmovun ();
15022 return;
15023 }
15024
15025 constraint (imm < 1 || (unsigned)imm > et.size,
15026 _("immediate out of range"));
15027 /* FIXME: The manual is kind of unclear about what value U should have in
15028 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
15029 must be 1. */
15030 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
15031 }
15032
15033 static void
15034 do_neon_movn (void)
15035 {
15036 struct neon_type_el et = neon_check_type (2, NS_DQ,
15037 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
15038 NEON_ENCODE (INTEGER, inst);
15039 neon_two_same (0, 1, et.size / 2);
15040 }
15041
15042 static void
15043 do_neon_rshift_narrow (void)
15044 {
15045 struct neon_type_el et = neon_check_type (2, NS_DQI,
15046 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
15047 int imm = inst.operands[2].imm;
15048 /* This gets the bounds check, size encoding and immediate bits calculation
15049 right. */
15050 et.size /= 2;
15051
15052 /* If immediate is zero then we are a pseudo-instruction for
15053 VMOVN.I<size> <Dd>, <Qm> */
15054 if (imm == 0)
15055 {
15056 inst.operands[2].present = 0;
15057 inst.instruction = N_MNEM_vmovn;
15058 do_neon_movn ();
15059 return;
15060 }
15061
15062 constraint (imm < 1 || (unsigned)imm > et.size,
15063 _("immediate out of range for narrowing operation"));
15064 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
15065 }
15066
15067 static void
15068 do_neon_shll (void)
15069 {
15070 /* FIXME: Type checking when lengthening. */
15071 struct neon_type_el et = neon_check_type (2, NS_QDI,
15072 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
15073 unsigned imm = inst.operands[2].imm;
15074
15075 if (imm == et.size)
15076 {
15077 /* Maximum shift variant. */
15078 NEON_ENCODE (INTEGER, inst);
15079 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15080 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15081 inst.instruction |= LOW4 (inst.operands[1].reg);
15082 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15083 inst.instruction |= neon_logbits (et.size) << 18;
15084
15085 neon_dp_fixup (&inst);
15086 }
15087 else
15088 {
15089 /* A more-specific type check for non-max versions. */
15090 et = neon_check_type (2, NS_QDI,
15091 N_EQK | N_DBL, N_SU_32 | N_KEY);
15092 NEON_ENCODE (IMMED, inst);
15093 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
15094 }
15095 }
15096
15097 /* Check the various types for the VCVT instruction, and return which version
15098 the current instruction is. */
15099
15100 #define CVT_FLAVOUR_VAR \
15101 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
15102 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
15103 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
15104 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
15105 /* Half-precision conversions. */ \
15106 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
15107 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
15108 /* VFP instructions. */ \
15109 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
15110 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
15111 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
15112 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
15113 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
15114 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
15115 /* VFP instructions with bitshift. */ \
15116 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
15117 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
15118 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
15119 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
15120 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
15121 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
15122 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
15123 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
15124
15125 #define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
15126 neon_cvt_flavour_##C,
15127
15128 /* The different types of conversions we can do. */
15129 enum neon_cvt_flavour
15130 {
15131 CVT_FLAVOUR_VAR
15132 neon_cvt_flavour_invalid,
15133 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
15134 };
15135
15136 #undef CVT_VAR
15137
15138 static enum neon_cvt_flavour
15139 get_neon_cvt_flavour (enum neon_shape rs)
15140 {
15141 #define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
15142 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
15143 if (et.type != NT_invtype) \
15144 { \
15145 inst.error = NULL; \
15146 return (neon_cvt_flavour_##C); \
15147 }
15148
15149 struct neon_type_el et;
15150 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
15151 || rs == NS_FF) ? N_VFP : 0;
15152 /* The instruction versions which take an immediate take one register
15153 argument, which is extended to the width of the full register. Thus the
15154 "source" and "destination" registers must have the same width. Hack that
15155 here by making the size equal to the key (wider, in this case) operand. */
15156 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
15157
15158 CVT_FLAVOUR_VAR;
15159
15160 return neon_cvt_flavour_invalid;
15161 #undef CVT_VAR
15162 }
15163
15164 enum neon_cvt_mode
15165 {
15166 neon_cvt_mode_a,
15167 neon_cvt_mode_n,
15168 neon_cvt_mode_p,
15169 neon_cvt_mode_m,
15170 neon_cvt_mode_z,
15171 neon_cvt_mode_x,
15172 neon_cvt_mode_r
15173 };
15174
15175 /* Neon-syntax VFP conversions. */
15176
15177 static void
15178 do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
15179 {
15180 const char *opname = 0;
15181
15182 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
15183 {
15184 /* Conversions with immediate bitshift. */
15185 const char *enc[] =
15186 {
15187 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
15188 CVT_FLAVOUR_VAR
15189 NULL
15190 #undef CVT_VAR
15191 };
15192
15193 if (flavour < (int) ARRAY_SIZE (enc))
15194 {
15195 opname = enc[flavour];
15196 constraint (inst.operands[0].reg != inst.operands[1].reg,
15197 _("operands 0 and 1 must be the same register"));
15198 inst.operands[1] = inst.operands[2];
15199 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
15200 }
15201 }
15202 else
15203 {
15204 /* Conversions without bitshift. */
15205 const char *enc[] =
15206 {
15207 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
15208 CVT_FLAVOUR_VAR
15209 NULL
15210 #undef CVT_VAR
15211 };
15212
15213 if (flavour < (int) ARRAY_SIZE (enc))
15214 opname = enc[flavour];
15215 }
15216
15217 if (opname)
15218 do_vfp_nsyn_opcode (opname);
15219 }
15220
15221 static void
15222 do_vfp_nsyn_cvtz (void)
15223 {
15224 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
15225 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
15226 const char *enc[] =
15227 {
15228 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
15229 CVT_FLAVOUR_VAR
15230 NULL
15231 #undef CVT_VAR
15232 };
15233
15234 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
15235 do_vfp_nsyn_opcode (enc[flavour]);
15236 }
15237
15238 static void
15239 do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
15240 enum neon_cvt_mode mode)
15241 {
15242 int sz, op;
15243 int rm;
15244
15245 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
15246 D register operands. */
15247 if (flavour == neon_cvt_flavour_s32_f64
15248 || flavour == neon_cvt_flavour_u32_f64)
15249 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
15250 _(BAD_FPU));
15251
15252 set_it_insn_type (OUTSIDE_IT_INSN);
15253
15254 switch (flavour)
15255 {
15256 case neon_cvt_flavour_s32_f64:
15257 sz = 1;
15258 op = 1;
15259 break;
15260 case neon_cvt_flavour_s32_f32:
15261 sz = 0;
15262 op = 1;
15263 break;
15264 case neon_cvt_flavour_u32_f64:
15265 sz = 1;
15266 op = 0;
15267 break;
15268 case neon_cvt_flavour_u32_f32:
15269 sz = 0;
15270 op = 0;
15271 break;
15272 default:
15273 first_error (_("invalid instruction shape"));
15274 return;
15275 }
15276
15277 switch (mode)
15278 {
15279 case neon_cvt_mode_a: rm = 0; break;
15280 case neon_cvt_mode_n: rm = 1; break;
15281 case neon_cvt_mode_p: rm = 2; break;
15282 case neon_cvt_mode_m: rm = 3; break;
15283 default: first_error (_("invalid rounding mode")); return;
15284 }
15285
15286 NEON_ENCODE (FPV8, inst);
15287 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
15288 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
15289 inst.instruction |= sz << 8;
15290 inst.instruction |= op << 7;
15291 inst.instruction |= rm << 16;
15292 inst.instruction |= 0xf0000000;
15293 inst.is_neon = TRUE;
15294 }
15295
15296 static void
15297 do_neon_cvt_1 (enum neon_cvt_mode mode)
15298 {
15299 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
15300 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
15301 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
15302
15303 /* PR11109: Handle round-to-zero for VCVT conversions. */
15304 if (mode == neon_cvt_mode_z
15305 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
15306 && (flavour == neon_cvt_flavour_s32_f32
15307 || flavour == neon_cvt_flavour_u32_f32
15308 || flavour == neon_cvt_flavour_s32_f64
15309 || flavour == neon_cvt_flavour_u32_f64)
15310 && (rs == NS_FD || rs == NS_FF))
15311 {
15312 do_vfp_nsyn_cvtz ();
15313 return;
15314 }
15315
15316 /* VFP rather than Neon conversions. */
15317 if (flavour >= neon_cvt_flavour_first_fp)
15318 {
15319 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
15320 do_vfp_nsyn_cvt (rs, flavour);
15321 else
15322 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
15323
15324 return;
15325 }
15326
15327 switch (rs)
15328 {
15329 case NS_DDI:
15330 case NS_QQI:
15331 {
15332 unsigned immbits;
15333 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
15334
15335 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15336 return;
15337
15338 /* Fixed-point conversion with #0 immediate is encoded as an
15339 integer conversion. */
15340 if (inst.operands[2].present && inst.operands[2].imm == 0)
15341 goto int_encode;
15342 immbits = 32 - inst.operands[2].imm;
15343 NEON_ENCODE (IMMED, inst);
15344 if (flavour != neon_cvt_flavour_invalid)
15345 inst.instruction |= enctab[flavour];
15346 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15347 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15348 inst.instruction |= LOW4 (inst.operands[1].reg);
15349 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15350 inst.instruction |= neon_quad (rs) << 6;
15351 inst.instruction |= 1 << 21;
15352 inst.instruction |= immbits << 16;
15353
15354 neon_dp_fixup (&inst);
15355 }
15356 break;
15357
15358 case NS_DD:
15359 case NS_QQ:
15360 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
15361 {
15362 NEON_ENCODE (FLOAT, inst);
15363 set_it_insn_type (OUTSIDE_IT_INSN);
15364
15365 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
15366 return;
15367
15368 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15369 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15370 inst.instruction |= LOW4 (inst.operands[1].reg);
15371 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15372 inst.instruction |= neon_quad (rs) << 6;
15373 inst.instruction |= (flavour == neon_cvt_flavour_u32_f32) << 7;
15374 inst.instruction |= mode << 8;
15375 if (thumb_mode)
15376 inst.instruction |= 0xfc000000;
15377 else
15378 inst.instruction |= 0xf0000000;
15379 }
15380 else
15381 {
15382 int_encode:
15383 {
15384 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
15385
15386 NEON_ENCODE (INTEGER, inst);
15387
15388 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15389 return;
15390
15391 if (flavour != neon_cvt_flavour_invalid)
15392 inst.instruction |= enctab[flavour];
15393
15394 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15395 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15396 inst.instruction |= LOW4 (inst.operands[1].reg);
15397 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15398 inst.instruction |= neon_quad (rs) << 6;
15399 inst.instruction |= 2 << 18;
15400
15401 neon_dp_fixup (&inst);
15402 }
15403 }
15404 break;
15405
15406 /* Half-precision conversions for Advanced SIMD -- neon. */
15407 case NS_QD:
15408 case NS_DQ:
15409
15410 if ((rs == NS_DQ)
15411 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
15412 {
15413 as_bad (_("operand size must match register width"));
15414 break;
15415 }
15416
15417 if ((rs == NS_QD)
15418 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
15419 {
15420 as_bad (_("operand size must match register width"));
15421 break;
15422 }
15423
15424 if (rs == NS_DQ)
15425 inst.instruction = 0x3b60600;
15426 else
15427 inst.instruction = 0x3b60700;
15428
15429 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15430 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15431 inst.instruction |= LOW4 (inst.operands[1].reg);
15432 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15433 neon_dp_fixup (&inst);
15434 break;
15435
15436 default:
15437 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
15438 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
15439 do_vfp_nsyn_cvt (rs, flavour);
15440 else
15441 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
15442 }
15443 }
15444
15445 static void
15446 do_neon_cvtr (void)
15447 {
15448 do_neon_cvt_1 (neon_cvt_mode_x);
15449 }
15450
15451 static void
15452 do_neon_cvt (void)
15453 {
15454 do_neon_cvt_1 (neon_cvt_mode_z);
15455 }
15456
15457 static void
15458 do_neon_cvta (void)
15459 {
15460 do_neon_cvt_1 (neon_cvt_mode_a);
15461 }
15462
15463 static void
15464 do_neon_cvtn (void)
15465 {
15466 do_neon_cvt_1 (neon_cvt_mode_n);
15467 }
15468
15469 static void
15470 do_neon_cvtp (void)
15471 {
15472 do_neon_cvt_1 (neon_cvt_mode_p);
15473 }
15474
15475 static void
15476 do_neon_cvtm (void)
15477 {
15478 do_neon_cvt_1 (neon_cvt_mode_m);
15479 }
15480
15481 static void
15482 do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
15483 {
15484 if (is_double)
15485 mark_feature_used (&fpu_vfp_ext_armv8);
15486
15487 encode_arm_vfp_reg (inst.operands[0].reg,
15488 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
15489 encode_arm_vfp_reg (inst.operands[1].reg,
15490 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
15491 inst.instruction |= to ? 0x10000 : 0;
15492 inst.instruction |= t ? 0x80 : 0;
15493 inst.instruction |= is_double ? 0x100 : 0;
15494 do_vfp_cond_or_thumb ();
15495 }
15496
15497 static void
15498 do_neon_cvttb_1 (bfd_boolean t)
15499 {
15500 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_DF, NS_NULL);
15501
15502 if (rs == NS_NULL)
15503 return;
15504 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
15505 {
15506 inst.error = NULL;
15507 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
15508 }
15509 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
15510 {
15511 inst.error = NULL;
15512 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
15513 }
15514 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
15515 {
15516 /* The VCVTB and VCVTT instructions with D-register operands
15517 don't work for SP only targets. */
15518 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
15519 _(BAD_FPU));
15520
15521 inst.error = NULL;
15522 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
15523 }
15524 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
15525 {
15526 /* The VCVTB and VCVTT instructions with D-register operands
15527 don't work for SP only targets. */
15528 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
15529 _(BAD_FPU));
15530
15531 inst.error = NULL;
15532 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
15533 }
15534 else
15535 return;
15536 }
15537
15538 static void
15539 do_neon_cvtb (void)
15540 {
15541 do_neon_cvttb_1 (FALSE);
15542 }
15543
15544
15545 static void
15546 do_neon_cvtt (void)
15547 {
15548 do_neon_cvttb_1 (TRUE);
15549 }
15550
15551 static void
15552 neon_move_immediate (void)
15553 {
15554 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
15555 struct neon_type_el et = neon_check_type (2, rs,
15556 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
15557 unsigned immlo, immhi = 0, immbits;
15558 int op, cmode, float_p;
15559
15560 constraint (et.type == NT_invtype,
15561 _("operand size must be specified for immediate VMOV"));
15562
15563 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
15564 op = (inst.instruction & (1 << 5)) != 0;
15565
15566 immlo = inst.operands[1].imm;
15567 if (inst.operands[1].regisimm)
15568 immhi = inst.operands[1].reg;
15569
15570 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
15571 _("immediate has bits set outside the operand size"));
15572
15573 float_p = inst.operands[1].immisfloat;
15574
15575 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
15576 et.size, et.type)) == FAIL)
15577 {
15578 /* Invert relevant bits only. */
15579 neon_invert_size (&immlo, &immhi, et.size);
15580 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
15581 with one or the other; those cases are caught by
15582 neon_cmode_for_move_imm. */
15583 op = !op;
15584 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
15585 &op, et.size, et.type)) == FAIL)
15586 {
15587 first_error (_("immediate out of range"));
15588 return;
15589 }
15590 }
15591
15592 inst.instruction &= ~(1 << 5);
15593 inst.instruction |= op << 5;
15594
15595 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15596 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15597 inst.instruction |= neon_quad (rs) << 6;
15598 inst.instruction |= cmode << 8;
15599
15600 neon_write_immbits (immbits);
15601 }
15602
15603 static void
15604 do_neon_mvn (void)
15605 {
15606 if (inst.operands[1].isreg)
15607 {
15608 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15609
15610 NEON_ENCODE (INTEGER, inst);
15611 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15612 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15613 inst.instruction |= LOW4 (inst.operands[1].reg);
15614 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15615 inst.instruction |= neon_quad (rs) << 6;
15616 }
15617 else
15618 {
15619 NEON_ENCODE (IMMED, inst);
15620 neon_move_immediate ();
15621 }
15622
15623 neon_dp_fixup (&inst);
15624 }
15625
15626 /* Encode instructions of form:
15627
15628 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
15629 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
15630
15631 static void
15632 neon_mixed_length (struct neon_type_el et, unsigned size)
15633 {
15634 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15635 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15636 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15637 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15638 inst.instruction |= LOW4 (inst.operands[2].reg);
15639 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15640 inst.instruction |= (et.type == NT_unsigned) << 24;
15641 inst.instruction |= neon_logbits (size) << 20;
15642
15643 neon_dp_fixup (&inst);
15644 }
15645
15646 static void
15647 do_neon_dyadic_long (void)
15648 {
15649 /* FIXME: Type checking for lengthening op. */
15650 struct neon_type_el et = neon_check_type (3, NS_QDD,
15651 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
15652 neon_mixed_length (et, et.size);
15653 }
15654
15655 static void
15656 do_neon_abal (void)
15657 {
15658 struct neon_type_el et = neon_check_type (3, NS_QDD,
15659 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
15660 neon_mixed_length (et, et.size);
15661 }
15662
15663 static void
15664 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
15665 {
15666 if (inst.operands[2].isscalar)
15667 {
15668 struct neon_type_el et = neon_check_type (3, NS_QDS,
15669 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
15670 NEON_ENCODE (SCALAR, inst);
15671 neon_mul_mac (et, et.type == NT_unsigned);
15672 }
15673 else
15674 {
15675 struct neon_type_el et = neon_check_type (3, NS_QDD,
15676 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
15677 NEON_ENCODE (INTEGER, inst);
15678 neon_mixed_length (et, et.size);
15679 }
15680 }
15681
15682 static void
15683 do_neon_mac_maybe_scalar_long (void)
15684 {
15685 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
15686 }
15687
15688 static void
15689 do_neon_dyadic_wide (void)
15690 {
15691 struct neon_type_el et = neon_check_type (3, NS_QQD,
15692 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
15693 neon_mixed_length (et, et.size);
15694 }
15695
15696 static void
15697 do_neon_dyadic_narrow (void)
15698 {
15699 struct neon_type_el et = neon_check_type (3, NS_QDD,
15700 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
15701 /* Operand sign is unimportant, and the U bit is part of the opcode,
15702 so force the operand type to integer. */
15703 et.type = NT_integer;
15704 neon_mixed_length (et, et.size / 2);
15705 }
15706
15707 static void
15708 do_neon_mul_sat_scalar_long (void)
15709 {
15710 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
15711 }
15712
15713 static void
15714 do_neon_vmull (void)
15715 {
15716 if (inst.operands[2].isscalar)
15717 do_neon_mac_maybe_scalar_long ();
15718 else
15719 {
15720 struct neon_type_el et = neon_check_type (3, NS_QDD,
15721 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
15722
15723 if (et.type == NT_poly)
15724 NEON_ENCODE (POLY, inst);
15725 else
15726 NEON_ENCODE (INTEGER, inst);
15727
15728 /* For polynomial encoding the U bit must be zero, and the size must
15729 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
15730 obviously, as 0b10). */
15731 if (et.size == 64)
15732 {
15733 /* Check we're on the correct architecture. */
15734 if (!mark_feature_used (&fpu_crypto_ext_armv8))
15735 inst.error =
15736 _("Instruction form not available on this architecture.");
15737
15738 et.size = 32;
15739 }
15740
15741 neon_mixed_length (et, et.size);
15742 }
15743 }
15744
15745 static void
15746 do_neon_ext (void)
15747 {
15748 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
15749 struct neon_type_el et = neon_check_type (3, rs,
15750 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
15751 unsigned imm = (inst.operands[3].imm * et.size) / 8;
15752
15753 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
15754 _("shift out of range"));
15755 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15756 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15757 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15758 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15759 inst.instruction |= LOW4 (inst.operands[2].reg);
15760 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15761 inst.instruction |= neon_quad (rs) << 6;
15762 inst.instruction |= imm << 8;
15763
15764 neon_dp_fixup (&inst);
15765 }
15766
15767 static void
15768 do_neon_rev (void)
15769 {
15770 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15771 struct neon_type_el et = neon_check_type (2, rs,
15772 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15773 unsigned op = (inst.instruction >> 7) & 3;
15774 /* N (width of reversed regions) is encoded as part of the bitmask. We
15775 extract it here to check the elements to be reversed are smaller.
15776 Otherwise we'd get a reserved instruction. */
15777 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
15778 gas_assert (elsize != 0);
15779 constraint (et.size >= elsize,
15780 _("elements must be smaller than reversal region"));
15781 neon_two_same (neon_quad (rs), 1, et.size);
15782 }
15783
15784 static void
15785 do_neon_dup (void)
15786 {
15787 if (inst.operands[1].isscalar)
15788 {
15789 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
15790 struct neon_type_el et = neon_check_type (2, rs,
15791 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15792 unsigned sizebits = et.size >> 3;
15793 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
15794 int logsize = neon_logbits (et.size);
15795 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
15796
15797 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
15798 return;
15799
15800 NEON_ENCODE (SCALAR, inst);
15801 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15802 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15803 inst.instruction |= LOW4 (dm);
15804 inst.instruction |= HI1 (dm) << 5;
15805 inst.instruction |= neon_quad (rs) << 6;
15806 inst.instruction |= x << 17;
15807 inst.instruction |= sizebits << 16;
15808
15809 neon_dp_fixup (&inst);
15810 }
15811 else
15812 {
15813 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
15814 struct neon_type_el et = neon_check_type (2, rs,
15815 N_8 | N_16 | N_32 | N_KEY, N_EQK);
15816 /* Duplicate ARM register to lanes of vector. */
15817 NEON_ENCODE (ARMREG, inst);
15818 switch (et.size)
15819 {
15820 case 8: inst.instruction |= 0x400000; break;
15821 case 16: inst.instruction |= 0x000020; break;
15822 case 32: inst.instruction |= 0x000000; break;
15823 default: break;
15824 }
15825 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15826 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
15827 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
15828 inst.instruction |= neon_quad (rs) << 21;
15829 /* The encoding for this instruction is identical for the ARM and Thumb
15830 variants, except for the condition field. */
15831 do_vfp_cond_or_thumb ();
15832 }
15833 }
15834
15835 /* VMOV has particularly many variations. It can be one of:
15836 0. VMOV<c><q> <Qd>, <Qm>
15837 1. VMOV<c><q> <Dd>, <Dm>
15838 (Register operations, which are VORR with Rm = Rn.)
15839 2. VMOV<c><q>.<dt> <Qd>, #<imm>
15840 3. VMOV<c><q>.<dt> <Dd>, #<imm>
15841 (Immediate loads.)
15842 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
15843 (ARM register to scalar.)
15844 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
15845 (Two ARM registers to vector.)
15846 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
15847 (Scalar to ARM register.)
15848 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
15849 (Vector to two ARM registers.)
15850 8. VMOV.F32 <Sd>, <Sm>
15851 9. VMOV.F64 <Dd>, <Dm>
15852 (VFP register moves.)
15853 10. VMOV.F32 <Sd>, #imm
15854 11. VMOV.F64 <Dd>, #imm
15855 (VFP float immediate load.)
15856 12. VMOV <Rd>, <Sm>
15857 (VFP single to ARM reg.)
15858 13. VMOV <Sd>, <Rm>
15859 (ARM reg to VFP single.)
15860 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
15861 (Two ARM regs to two VFP singles.)
15862 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
15863 (Two VFP singles to two ARM regs.)
15864
15865 These cases can be disambiguated using neon_select_shape, except cases 1/9
15866 and 3/11 which depend on the operand type too.
15867
15868 All the encoded bits are hardcoded by this function.
15869
15870 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
15871 Cases 5, 7 may be used with VFPv2 and above.
15872
15873 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
15874 can specify a type where it doesn't make sense to, and is ignored). */
15875
15876 static void
15877 do_neon_mov (void)
15878 {
15879 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
15880 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
15881 NS_NULL);
15882 struct neon_type_el et;
15883 const char *ldconst = 0;
15884
15885 switch (rs)
15886 {
15887 case NS_DD: /* case 1/9. */
15888 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
15889 /* It is not an error here if no type is given. */
15890 inst.error = NULL;
15891 if (et.type == NT_float && et.size == 64)
15892 {
15893 do_vfp_nsyn_opcode ("fcpyd");
15894 break;
15895 }
15896 /* fall through. */
15897
15898 case NS_QQ: /* case 0/1. */
15899 {
15900 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15901 return;
15902 /* The architecture manual I have doesn't explicitly state which
15903 value the U bit should have for register->register moves, but
15904 the equivalent VORR instruction has U = 0, so do that. */
15905 inst.instruction = 0x0200110;
15906 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15907 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15908 inst.instruction |= LOW4 (inst.operands[1].reg);
15909 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15910 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15911 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15912 inst.instruction |= neon_quad (rs) << 6;
15913
15914 neon_dp_fixup (&inst);
15915 }
15916 break;
15917
15918 case NS_DI: /* case 3/11. */
15919 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
15920 inst.error = NULL;
15921 if (et.type == NT_float && et.size == 64)
15922 {
15923 /* case 11 (fconstd). */
15924 ldconst = "fconstd";
15925 goto encode_fconstd;
15926 }
15927 /* fall through. */
15928
15929 case NS_QI: /* case 2/3. */
15930 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15931 return;
15932 inst.instruction = 0x0800010;
15933 neon_move_immediate ();
15934 neon_dp_fixup (&inst);
15935 break;
15936
15937 case NS_SR: /* case 4. */
15938 {
15939 unsigned bcdebits = 0;
15940 int logsize;
15941 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
15942 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
15943
15944 /* .<size> is optional here, defaulting to .32. */
15945 if (inst.vectype.elems == 0
15946 && inst.operands[0].vectype.type == NT_invtype
15947 && inst.operands[1].vectype.type == NT_invtype)
15948 {
15949 inst.vectype.el[0].type = NT_untyped;
15950 inst.vectype.el[0].size = 32;
15951 inst.vectype.elems = 1;
15952 }
15953
15954 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
15955 logsize = neon_logbits (et.size);
15956
15957 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
15958 _(BAD_FPU));
15959 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
15960 && et.size != 32, _(BAD_FPU));
15961 constraint (et.type == NT_invtype, _("bad type for scalar"));
15962 constraint (x >= 64 / et.size, _("scalar index out of range"));
15963
15964 switch (et.size)
15965 {
15966 case 8: bcdebits = 0x8; break;
15967 case 16: bcdebits = 0x1; break;
15968 case 32: bcdebits = 0x0; break;
15969 default: ;
15970 }
15971
15972 bcdebits |= x << logsize;
15973
15974 inst.instruction = 0xe000b10;
15975 do_vfp_cond_or_thumb ();
15976 inst.instruction |= LOW4 (dn) << 16;
15977 inst.instruction |= HI1 (dn) << 7;
15978 inst.instruction |= inst.operands[1].reg << 12;
15979 inst.instruction |= (bcdebits & 3) << 5;
15980 inst.instruction |= (bcdebits >> 2) << 21;
15981 }
15982 break;
15983
15984 case NS_DRR: /* case 5 (fmdrr). */
15985 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
15986 _(BAD_FPU));
15987
15988 inst.instruction = 0xc400b10;
15989 do_vfp_cond_or_thumb ();
15990 inst.instruction |= LOW4 (inst.operands[0].reg);
15991 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
15992 inst.instruction |= inst.operands[1].reg << 12;
15993 inst.instruction |= inst.operands[2].reg << 16;
15994 break;
15995
15996 case NS_RS: /* case 6. */
15997 {
15998 unsigned logsize;
15999 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
16000 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
16001 unsigned abcdebits = 0;
16002
16003 /* .<dt> is optional here, defaulting to .32. */
16004 if (inst.vectype.elems == 0
16005 && inst.operands[0].vectype.type == NT_invtype
16006 && inst.operands[1].vectype.type == NT_invtype)
16007 {
16008 inst.vectype.el[0].type = NT_untyped;
16009 inst.vectype.el[0].size = 32;
16010 inst.vectype.elems = 1;
16011 }
16012
16013 et = neon_check_type (2, NS_NULL,
16014 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
16015 logsize = neon_logbits (et.size);
16016
16017 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
16018 _(BAD_FPU));
16019 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
16020 && et.size != 32, _(BAD_FPU));
16021 constraint (et.type == NT_invtype, _("bad type for scalar"));
16022 constraint (x >= 64 / et.size, _("scalar index out of range"));
16023
16024 switch (et.size)
16025 {
16026 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
16027 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
16028 case 32: abcdebits = 0x00; break;
16029 default: ;
16030 }
16031
16032 abcdebits |= x << logsize;
16033 inst.instruction = 0xe100b10;
16034 do_vfp_cond_or_thumb ();
16035 inst.instruction |= LOW4 (dn) << 16;
16036 inst.instruction |= HI1 (dn) << 7;
16037 inst.instruction |= inst.operands[0].reg << 12;
16038 inst.instruction |= (abcdebits & 3) << 5;
16039 inst.instruction |= (abcdebits >> 2) << 21;
16040 }
16041 break;
16042
16043 case NS_RRD: /* case 7 (fmrrd). */
16044 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
16045 _(BAD_FPU));
16046
16047 inst.instruction = 0xc500b10;
16048 do_vfp_cond_or_thumb ();
16049 inst.instruction |= inst.operands[0].reg << 12;
16050 inst.instruction |= inst.operands[1].reg << 16;
16051 inst.instruction |= LOW4 (inst.operands[2].reg);
16052 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16053 break;
16054
16055 case NS_FF: /* case 8 (fcpys). */
16056 do_vfp_nsyn_opcode ("fcpys");
16057 break;
16058
16059 case NS_FI: /* case 10 (fconsts). */
16060 ldconst = "fconsts";
16061 encode_fconstd:
16062 if (is_quarter_float (inst.operands[1].imm))
16063 {
16064 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
16065 do_vfp_nsyn_opcode (ldconst);
16066 }
16067 else
16068 first_error (_("immediate out of range"));
16069 break;
16070
16071 case NS_RF: /* case 12 (fmrs). */
16072 do_vfp_nsyn_opcode ("fmrs");
16073 break;
16074
16075 case NS_FR: /* case 13 (fmsr). */
16076 do_vfp_nsyn_opcode ("fmsr");
16077 break;
16078
16079 /* The encoders for the fmrrs and fmsrr instructions expect three operands
16080 (one of which is a list), but we have parsed four. Do some fiddling to
16081 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
16082 expect. */
16083 case NS_RRFF: /* case 14 (fmrrs). */
16084 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
16085 _("VFP registers must be adjacent"));
16086 inst.operands[2].imm = 2;
16087 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
16088 do_vfp_nsyn_opcode ("fmrrs");
16089 break;
16090
16091 case NS_FFRR: /* case 15 (fmsrr). */
16092 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
16093 _("VFP registers must be adjacent"));
16094 inst.operands[1] = inst.operands[2];
16095 inst.operands[2] = inst.operands[3];
16096 inst.operands[0].imm = 2;
16097 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
16098 do_vfp_nsyn_opcode ("fmsrr");
16099 break;
16100
16101 case NS_NULL:
16102 /* neon_select_shape has determined that the instruction
16103 shape is wrong and has already set the error message. */
16104 break;
16105
16106 default:
16107 abort ();
16108 }
16109 }
16110
16111 static void
16112 do_neon_rshift_round_imm (void)
16113 {
16114 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16115 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
16116 int imm = inst.operands[2].imm;
16117
16118 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
16119 if (imm == 0)
16120 {
16121 inst.operands[2].present = 0;
16122 do_neon_mov ();
16123 return;
16124 }
16125
16126 constraint (imm < 1 || (unsigned)imm > et.size,
16127 _("immediate out of range for shift"));
16128 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
16129 et.size - imm);
16130 }
16131
16132 static void
16133 do_neon_movl (void)
16134 {
16135 struct neon_type_el et = neon_check_type (2, NS_QD,
16136 N_EQK | N_DBL, N_SU_32 | N_KEY);
16137 unsigned sizebits = et.size >> 3;
16138 inst.instruction |= sizebits << 19;
16139 neon_two_same (0, et.type == NT_unsigned, -1);
16140 }
16141
16142 static void
16143 do_neon_trn (void)
16144 {
16145 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16146 struct neon_type_el et = neon_check_type (2, rs,
16147 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16148 NEON_ENCODE (INTEGER, inst);
16149 neon_two_same (neon_quad (rs), 1, et.size);
16150 }
16151
16152 static void
16153 do_neon_zip_uzp (void)
16154 {
16155 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16156 struct neon_type_el et = neon_check_type (2, rs,
16157 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16158 if (rs == NS_DD && et.size == 32)
16159 {
16160 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
16161 inst.instruction = N_MNEM_vtrn;
16162 do_neon_trn ();
16163 return;
16164 }
16165 neon_two_same (neon_quad (rs), 1, et.size);
16166 }
16167
16168 static void
16169 do_neon_sat_abs_neg (void)
16170 {
16171 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16172 struct neon_type_el et = neon_check_type (2, rs,
16173 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
16174 neon_two_same (neon_quad (rs), 1, et.size);
16175 }
16176
16177 static void
16178 do_neon_pair_long (void)
16179 {
16180 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16181 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
16182 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
16183 inst.instruction |= (et.type == NT_unsigned) << 7;
16184 neon_two_same (neon_quad (rs), 1, et.size);
16185 }
16186
16187 static void
16188 do_neon_recip_est (void)
16189 {
16190 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16191 struct neon_type_el et = neon_check_type (2, rs,
16192 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
16193 inst.instruction |= (et.type == NT_float) << 8;
16194 neon_two_same (neon_quad (rs), 1, et.size);
16195 }
16196
16197 static void
16198 do_neon_cls (void)
16199 {
16200 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16201 struct neon_type_el et = neon_check_type (2, rs,
16202 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
16203 neon_two_same (neon_quad (rs), 1, et.size);
16204 }
16205
16206 static void
16207 do_neon_clz (void)
16208 {
16209 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16210 struct neon_type_el et = neon_check_type (2, rs,
16211 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
16212 neon_two_same (neon_quad (rs), 1, et.size);
16213 }
16214
16215 static void
16216 do_neon_cnt (void)
16217 {
16218 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16219 struct neon_type_el et = neon_check_type (2, rs,
16220 N_EQK | N_INT, N_8 | N_KEY);
16221 neon_two_same (neon_quad (rs), 1, et.size);
16222 }
16223
16224 static void
16225 do_neon_swp (void)
16226 {
16227 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16228 neon_two_same (neon_quad (rs), 1, -1);
16229 }
16230
16231 static void
16232 do_neon_tbl_tbx (void)
16233 {
16234 unsigned listlenbits;
16235 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
16236
16237 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
16238 {
16239 first_error (_("bad list length for table lookup"));
16240 return;
16241 }
16242
16243 listlenbits = inst.operands[1].imm - 1;
16244 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16245 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16246 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16247 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16248 inst.instruction |= LOW4 (inst.operands[2].reg);
16249 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16250 inst.instruction |= listlenbits << 8;
16251
16252 neon_dp_fixup (&inst);
16253 }
16254
16255 static void
16256 do_neon_ldm_stm (void)
16257 {
16258 /* P, U and L bits are part of bitmask. */
16259 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
16260 unsigned offsetbits = inst.operands[1].imm * 2;
16261
16262 if (inst.operands[1].issingle)
16263 {
16264 do_vfp_nsyn_ldm_stm (is_dbmode);
16265 return;
16266 }
16267
16268 constraint (is_dbmode && !inst.operands[0].writeback,
16269 _("writeback (!) must be used for VLDMDB and VSTMDB"));
16270
16271 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
16272 _("register list must contain at least 1 and at most 16 "
16273 "registers"));
16274
16275 inst.instruction |= inst.operands[0].reg << 16;
16276 inst.instruction |= inst.operands[0].writeback << 21;
16277 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
16278 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
16279
16280 inst.instruction |= offsetbits;
16281
16282 do_vfp_cond_or_thumb ();
16283 }
16284
16285 static void
16286 do_neon_ldr_str (void)
16287 {
16288 int is_ldr = (inst.instruction & (1 << 20)) != 0;
16289
16290 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
16291 And is UNPREDICTABLE in thumb mode. */
16292 if (!is_ldr
16293 && inst.operands[1].reg == REG_PC
16294 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
16295 {
16296 if (thumb_mode)
16297 inst.error = _("Use of PC here is UNPREDICTABLE");
16298 else if (warn_on_deprecated)
16299 as_tsktsk (_("Use of PC here is deprecated"));
16300 }
16301
16302 if (inst.operands[0].issingle)
16303 {
16304 if (is_ldr)
16305 do_vfp_nsyn_opcode ("flds");
16306 else
16307 do_vfp_nsyn_opcode ("fsts");
16308 }
16309 else
16310 {
16311 if (is_ldr)
16312 do_vfp_nsyn_opcode ("fldd");
16313 else
16314 do_vfp_nsyn_opcode ("fstd");
16315 }
16316 }
16317
16318 /* "interleave" version also handles non-interleaving register VLD1/VST1
16319 instructions. */
16320
16321 static void
16322 do_neon_ld_st_interleave (void)
16323 {
16324 struct neon_type_el et = neon_check_type (1, NS_NULL,
16325 N_8 | N_16 | N_32 | N_64);
16326 unsigned alignbits = 0;
16327 unsigned idx;
16328 /* The bits in this table go:
16329 0: register stride of one (0) or two (1)
16330 1,2: register list length, minus one (1, 2, 3, 4).
16331 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
16332 We use -1 for invalid entries. */
16333 const int typetable[] =
16334 {
16335 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
16336 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
16337 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
16338 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
16339 };
16340 int typebits;
16341
16342 if (et.type == NT_invtype)
16343 return;
16344
16345 if (inst.operands[1].immisalign)
16346 switch (inst.operands[1].imm >> 8)
16347 {
16348 case 64: alignbits = 1; break;
16349 case 128:
16350 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
16351 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
16352 goto bad_alignment;
16353 alignbits = 2;
16354 break;
16355 case 256:
16356 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
16357 goto bad_alignment;
16358 alignbits = 3;
16359 break;
16360 default:
16361 bad_alignment:
16362 first_error (_("bad alignment"));
16363 return;
16364 }
16365
16366 inst.instruction |= alignbits << 4;
16367 inst.instruction |= neon_logbits (et.size) << 6;
16368
16369 /* Bits [4:6] of the immediate in a list specifier encode register stride
16370 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
16371 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
16372 up the right value for "type" in a table based on this value and the given
16373 list style, then stick it back. */
16374 idx = ((inst.operands[0].imm >> 4) & 7)
16375 | (((inst.instruction >> 8) & 3) << 3);
16376
16377 typebits = typetable[idx];
16378
16379 constraint (typebits == -1, _("bad list type for instruction"));
16380 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
16381 _("bad element type for instruction"));
16382
16383 inst.instruction &= ~0xf00;
16384 inst.instruction |= typebits << 8;
16385 }
16386
16387 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
16388 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
16389 otherwise. The variable arguments are a list of pairs of legal (size, align)
16390 values, terminated with -1. */
16391
16392 static int
16393 neon_alignment_bit (int size, int align, int *do_align, ...)
16394 {
16395 va_list ap;
16396 int result = FAIL, thissize, thisalign;
16397
16398 if (!inst.operands[1].immisalign)
16399 {
16400 *do_align = 0;
16401 return SUCCESS;
16402 }
16403
16404 va_start (ap, do_align);
16405
16406 do
16407 {
16408 thissize = va_arg (ap, int);
16409 if (thissize == -1)
16410 break;
16411 thisalign = va_arg (ap, int);
16412
16413 if (size == thissize && align == thisalign)
16414 result = SUCCESS;
16415 }
16416 while (result != SUCCESS);
16417
16418 va_end (ap);
16419
16420 if (result == SUCCESS)
16421 *do_align = 1;
16422 else
16423 first_error (_("unsupported alignment for instruction"));
16424
16425 return result;
16426 }
16427
16428 static void
16429 do_neon_ld_st_lane (void)
16430 {
16431 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
16432 int align_good, do_align = 0;
16433 int logsize = neon_logbits (et.size);
16434 int align = inst.operands[1].imm >> 8;
16435 int n = (inst.instruction >> 8) & 3;
16436 int max_el = 64 / et.size;
16437
16438 if (et.type == NT_invtype)
16439 return;
16440
16441 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
16442 _("bad list length"));
16443 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
16444 _("scalar index out of range"));
16445 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
16446 && et.size == 8,
16447 _("stride of 2 unavailable when element size is 8"));
16448
16449 switch (n)
16450 {
16451 case 0: /* VLD1 / VST1. */
16452 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
16453 32, 32, -1);
16454 if (align_good == FAIL)
16455 return;
16456 if (do_align)
16457 {
16458 unsigned alignbits = 0;
16459 switch (et.size)
16460 {
16461 case 16: alignbits = 0x1; break;
16462 case 32: alignbits = 0x3; break;
16463 default: ;
16464 }
16465 inst.instruction |= alignbits << 4;
16466 }
16467 break;
16468
16469 case 1: /* VLD2 / VST2. */
16470 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
16471 32, 64, -1);
16472 if (align_good == FAIL)
16473 return;
16474 if (do_align)
16475 inst.instruction |= 1 << 4;
16476 break;
16477
16478 case 2: /* VLD3 / VST3. */
16479 constraint (inst.operands[1].immisalign,
16480 _("can't use alignment with this instruction"));
16481 break;
16482
16483 case 3: /* VLD4 / VST4. */
16484 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
16485 16, 64, 32, 64, 32, 128, -1);
16486 if (align_good == FAIL)
16487 return;
16488 if (do_align)
16489 {
16490 unsigned alignbits = 0;
16491 switch (et.size)
16492 {
16493 case 8: alignbits = 0x1; break;
16494 case 16: alignbits = 0x1; break;
16495 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
16496 default: ;
16497 }
16498 inst.instruction |= alignbits << 4;
16499 }
16500 break;
16501
16502 default: ;
16503 }
16504
16505 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
16506 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
16507 inst.instruction |= 1 << (4 + logsize);
16508
16509 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
16510 inst.instruction |= logsize << 10;
16511 }
16512
16513 /* Encode single n-element structure to all lanes VLD<n> instructions. */
16514
16515 static void
16516 do_neon_ld_dup (void)
16517 {
16518 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
16519 int align_good, do_align = 0;
16520
16521 if (et.type == NT_invtype)
16522 return;
16523
16524 switch ((inst.instruction >> 8) & 3)
16525 {
16526 case 0: /* VLD1. */
16527 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
16528 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
16529 &do_align, 16, 16, 32, 32, -1);
16530 if (align_good == FAIL)
16531 return;
16532 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
16533 {
16534 case 1: break;
16535 case 2: inst.instruction |= 1 << 5; break;
16536 default: first_error (_("bad list length")); return;
16537 }
16538 inst.instruction |= neon_logbits (et.size) << 6;
16539 break;
16540
16541 case 1: /* VLD2. */
16542 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
16543 &do_align, 8, 16, 16, 32, 32, 64, -1);
16544 if (align_good == FAIL)
16545 return;
16546 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
16547 _("bad list length"));
16548 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
16549 inst.instruction |= 1 << 5;
16550 inst.instruction |= neon_logbits (et.size) << 6;
16551 break;
16552
16553 case 2: /* VLD3. */
16554 constraint (inst.operands[1].immisalign,
16555 _("can't use alignment with this instruction"));
16556 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
16557 _("bad list length"));
16558 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
16559 inst.instruction |= 1 << 5;
16560 inst.instruction |= neon_logbits (et.size) << 6;
16561 break;
16562
16563 case 3: /* VLD4. */
16564 {
16565 int align = inst.operands[1].imm >> 8;
16566 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
16567 16, 64, 32, 64, 32, 128, -1);
16568 if (align_good == FAIL)
16569 return;
16570 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
16571 _("bad list length"));
16572 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
16573 inst.instruction |= 1 << 5;
16574 if (et.size == 32 && align == 128)
16575 inst.instruction |= 0x3 << 6;
16576 else
16577 inst.instruction |= neon_logbits (et.size) << 6;
16578 }
16579 break;
16580
16581 default: ;
16582 }
16583
16584 inst.instruction |= do_align << 4;
16585 }
16586
16587 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
16588 apart from bits [11:4]. */
16589
16590 static void
16591 do_neon_ldx_stx (void)
16592 {
16593 if (inst.operands[1].isreg)
16594 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
16595
16596 switch (NEON_LANE (inst.operands[0].imm))
16597 {
16598 case NEON_INTERLEAVE_LANES:
16599 NEON_ENCODE (INTERLV, inst);
16600 do_neon_ld_st_interleave ();
16601 break;
16602
16603 case NEON_ALL_LANES:
16604 NEON_ENCODE (DUP, inst);
16605 if (inst.instruction == N_INV)
16606 {
16607 first_error ("only loads support such operands");
16608 break;
16609 }
16610 do_neon_ld_dup ();
16611 break;
16612
16613 default:
16614 NEON_ENCODE (LANE, inst);
16615 do_neon_ld_st_lane ();
16616 }
16617
16618 /* L bit comes from bit mask. */
16619 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16620 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16621 inst.instruction |= inst.operands[1].reg << 16;
16622
16623 if (inst.operands[1].postind)
16624 {
16625 int postreg = inst.operands[1].imm & 0xf;
16626 constraint (!inst.operands[1].immisreg,
16627 _("post-index must be a register"));
16628 constraint (postreg == 0xd || postreg == 0xf,
16629 _("bad register for post-index"));
16630 inst.instruction |= postreg;
16631 }
16632 else
16633 {
16634 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
16635 constraint (inst.reloc.exp.X_op != O_constant
16636 || inst.reloc.exp.X_add_number != 0,
16637 BAD_ADDR_MODE);
16638
16639 if (inst.operands[1].writeback)
16640 {
16641 inst.instruction |= 0xd;
16642 }
16643 else
16644 inst.instruction |= 0xf;
16645 }
16646
16647 if (thumb_mode)
16648 inst.instruction |= 0xf9000000;
16649 else
16650 inst.instruction |= 0xf4000000;
16651 }
16652
16653 /* FP v8. */
16654 static void
16655 do_vfp_nsyn_fpv8 (enum neon_shape rs)
16656 {
16657 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
16658 D register operands. */
16659 if (neon_shape_class[rs] == SC_DOUBLE)
16660 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
16661 _(BAD_FPU));
16662
16663 NEON_ENCODE (FPV8, inst);
16664
16665 if (rs == NS_FFF)
16666 do_vfp_sp_dyadic ();
16667 else
16668 do_vfp_dp_rd_rn_rm ();
16669
16670 if (rs == NS_DDD)
16671 inst.instruction |= 0x100;
16672
16673 inst.instruction |= 0xf0000000;
16674 }
16675
16676 static void
16677 do_vsel (void)
16678 {
16679 set_it_insn_type (OUTSIDE_IT_INSN);
16680
16681 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
16682 first_error (_("invalid instruction shape"));
16683 }
16684
16685 static void
16686 do_vmaxnm (void)
16687 {
16688 set_it_insn_type (OUTSIDE_IT_INSN);
16689
16690 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
16691 return;
16692
16693 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
16694 return;
16695
16696 neon_dyadic_misc (NT_untyped, N_F32, 0);
16697 }
16698
16699 static void
16700 do_vrint_1 (enum neon_cvt_mode mode)
16701 {
16702 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_QQ, NS_NULL);
16703 struct neon_type_el et;
16704
16705 if (rs == NS_NULL)
16706 return;
16707
16708 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
16709 D register operands. */
16710 if (neon_shape_class[rs] == SC_DOUBLE)
16711 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
16712 _(BAD_FPU));
16713
16714 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
16715 if (et.type != NT_invtype)
16716 {
16717 /* VFP encodings. */
16718 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
16719 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
16720 set_it_insn_type (OUTSIDE_IT_INSN);
16721
16722 NEON_ENCODE (FPV8, inst);
16723 if (rs == NS_FF)
16724 do_vfp_sp_monadic ();
16725 else
16726 do_vfp_dp_rd_rm ();
16727
16728 switch (mode)
16729 {
16730 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
16731 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
16732 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
16733 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
16734 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
16735 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
16736 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
16737 default: abort ();
16738 }
16739
16740 inst.instruction |= (rs == NS_DD) << 8;
16741 do_vfp_cond_or_thumb ();
16742 }
16743 else
16744 {
16745 /* Neon encodings (or something broken...). */
16746 inst.error = NULL;
16747 et = neon_check_type (2, rs, N_EQK, N_F32 | N_KEY);
16748
16749 if (et.type == NT_invtype)
16750 return;
16751
16752 set_it_insn_type (OUTSIDE_IT_INSN);
16753 NEON_ENCODE (FLOAT, inst);
16754
16755 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
16756 return;
16757
16758 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16759 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16760 inst.instruction |= LOW4 (inst.operands[1].reg);
16761 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16762 inst.instruction |= neon_quad (rs) << 6;
16763 switch (mode)
16764 {
16765 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
16766 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
16767 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
16768 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
16769 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
16770 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
16771 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
16772 default: abort ();
16773 }
16774
16775 if (thumb_mode)
16776 inst.instruction |= 0xfc000000;
16777 else
16778 inst.instruction |= 0xf0000000;
16779 }
16780 }
16781
16782 static void
16783 do_vrintx (void)
16784 {
16785 do_vrint_1 (neon_cvt_mode_x);
16786 }
16787
16788 static void
16789 do_vrintz (void)
16790 {
16791 do_vrint_1 (neon_cvt_mode_z);
16792 }
16793
16794 static void
16795 do_vrintr (void)
16796 {
16797 do_vrint_1 (neon_cvt_mode_r);
16798 }
16799
16800 static void
16801 do_vrinta (void)
16802 {
16803 do_vrint_1 (neon_cvt_mode_a);
16804 }
16805
16806 static void
16807 do_vrintn (void)
16808 {
16809 do_vrint_1 (neon_cvt_mode_n);
16810 }
16811
16812 static void
16813 do_vrintp (void)
16814 {
16815 do_vrint_1 (neon_cvt_mode_p);
16816 }
16817
16818 static void
16819 do_vrintm (void)
16820 {
16821 do_vrint_1 (neon_cvt_mode_m);
16822 }
16823
16824 /* Crypto v1 instructions. */
16825 static void
16826 do_crypto_2op_1 (unsigned elttype, int op)
16827 {
16828 set_it_insn_type (OUTSIDE_IT_INSN);
16829
16830 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
16831 == NT_invtype)
16832 return;
16833
16834 inst.error = NULL;
16835
16836 NEON_ENCODE (INTEGER, inst);
16837 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16838 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16839 inst.instruction |= LOW4 (inst.operands[1].reg);
16840 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16841 if (op != -1)
16842 inst.instruction |= op << 6;
16843
16844 if (thumb_mode)
16845 inst.instruction |= 0xfc000000;
16846 else
16847 inst.instruction |= 0xf0000000;
16848 }
16849
16850 static void
16851 do_crypto_3op_1 (int u, int op)
16852 {
16853 set_it_insn_type (OUTSIDE_IT_INSN);
16854
16855 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
16856 N_32 | N_UNT | N_KEY).type == NT_invtype)
16857 return;
16858
16859 inst.error = NULL;
16860
16861 NEON_ENCODE (INTEGER, inst);
16862 neon_three_same (1, u, 8 << op);
16863 }
16864
16865 static void
16866 do_aese (void)
16867 {
16868 do_crypto_2op_1 (N_8, 0);
16869 }
16870
16871 static void
16872 do_aesd (void)
16873 {
16874 do_crypto_2op_1 (N_8, 1);
16875 }
16876
16877 static void
16878 do_aesmc (void)
16879 {
16880 do_crypto_2op_1 (N_8, 2);
16881 }
16882
16883 static void
16884 do_aesimc (void)
16885 {
16886 do_crypto_2op_1 (N_8, 3);
16887 }
16888
16889 static void
16890 do_sha1c (void)
16891 {
16892 do_crypto_3op_1 (0, 0);
16893 }
16894
16895 static void
16896 do_sha1p (void)
16897 {
16898 do_crypto_3op_1 (0, 1);
16899 }
16900
16901 static void
16902 do_sha1m (void)
16903 {
16904 do_crypto_3op_1 (0, 2);
16905 }
16906
16907 static void
16908 do_sha1su0 (void)
16909 {
16910 do_crypto_3op_1 (0, 3);
16911 }
16912
16913 static void
16914 do_sha256h (void)
16915 {
16916 do_crypto_3op_1 (1, 0);
16917 }
16918
16919 static void
16920 do_sha256h2 (void)
16921 {
16922 do_crypto_3op_1 (1, 1);
16923 }
16924
16925 static void
16926 do_sha256su1 (void)
16927 {
16928 do_crypto_3op_1 (1, 2);
16929 }
16930
16931 static void
16932 do_sha1h (void)
16933 {
16934 do_crypto_2op_1 (N_32, -1);
16935 }
16936
16937 static void
16938 do_sha1su1 (void)
16939 {
16940 do_crypto_2op_1 (N_32, 0);
16941 }
16942
16943 static void
16944 do_sha256su0 (void)
16945 {
16946 do_crypto_2op_1 (N_32, 1);
16947 }
16948
16949 static void
16950 do_crc32_1 (unsigned int poly, unsigned int sz)
16951 {
16952 unsigned int Rd = inst.operands[0].reg;
16953 unsigned int Rn = inst.operands[1].reg;
16954 unsigned int Rm = inst.operands[2].reg;
16955
16956 set_it_insn_type (OUTSIDE_IT_INSN);
16957 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
16958 inst.instruction |= LOW4 (Rn) << 16;
16959 inst.instruction |= LOW4 (Rm);
16960 inst.instruction |= sz << (thumb_mode ? 4 : 21);
16961 inst.instruction |= poly << (thumb_mode ? 20 : 9);
16962
16963 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
16964 as_warn (UNPRED_REG ("r15"));
16965 if (thumb_mode && (Rd == REG_SP || Rn == REG_SP || Rm == REG_SP))
16966 as_warn (UNPRED_REG ("r13"));
16967 }
16968
16969 static void
16970 do_crc32b (void)
16971 {
16972 do_crc32_1 (0, 0);
16973 }
16974
16975 static void
16976 do_crc32h (void)
16977 {
16978 do_crc32_1 (0, 1);
16979 }
16980
16981 static void
16982 do_crc32w (void)
16983 {
16984 do_crc32_1 (0, 2);
16985 }
16986
16987 static void
16988 do_crc32cb (void)
16989 {
16990 do_crc32_1 (1, 0);
16991 }
16992
16993 static void
16994 do_crc32ch (void)
16995 {
16996 do_crc32_1 (1, 1);
16997 }
16998
16999 static void
17000 do_crc32cw (void)
17001 {
17002 do_crc32_1 (1, 2);
17003 }
17004
17005 \f
17006 /* Overall per-instruction processing. */
17007
17008 /* We need to be able to fix up arbitrary expressions in some statements.
17009 This is so that we can handle symbols that are an arbitrary distance from
17010 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
17011 which returns part of an address in a form which will be valid for
17012 a data instruction. We do this by pushing the expression into a symbol
17013 in the expr_section, and creating a fix for that. */
17014
17015 static void
17016 fix_new_arm (fragS * frag,
17017 int where,
17018 short int size,
17019 expressionS * exp,
17020 int pc_rel,
17021 int reloc)
17022 {
17023 fixS * new_fix;
17024
17025 switch (exp->X_op)
17026 {
17027 case O_constant:
17028 if (pc_rel)
17029 {
17030 /* Create an absolute valued symbol, so we have something to
17031 refer to in the object file. Unfortunately for us, gas's
17032 generic expression parsing will already have folded out
17033 any use of .set foo/.type foo %function that may have
17034 been used to set type information of the target location,
17035 that's being specified symbolically. We have to presume
17036 the user knows what they are doing. */
17037 char name[16 + 8];
17038 symbolS *symbol;
17039
17040 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
17041
17042 symbol = symbol_find_or_make (name);
17043 S_SET_SEGMENT (symbol, absolute_section);
17044 symbol_set_frag (symbol, &zero_address_frag);
17045 S_SET_VALUE (symbol, exp->X_add_number);
17046 exp->X_op = O_symbol;
17047 exp->X_add_symbol = symbol;
17048 exp->X_add_number = 0;
17049 }
17050 /* FALLTHROUGH */
17051 case O_symbol:
17052 case O_add:
17053 case O_subtract:
17054 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
17055 (enum bfd_reloc_code_real) reloc);
17056 break;
17057
17058 default:
17059 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
17060 pc_rel, (enum bfd_reloc_code_real) reloc);
17061 break;
17062 }
17063
17064 /* Mark whether the fix is to a THUMB instruction, or an ARM
17065 instruction. */
17066 new_fix->tc_fix_data = thumb_mode;
17067 }
17068
17069 /* Create a frg for an instruction requiring relaxation. */
17070 static void
17071 output_relax_insn (void)
17072 {
17073 char * to;
17074 symbolS *sym;
17075 int offset;
17076
17077 /* The size of the instruction is unknown, so tie the debug info to the
17078 start of the instruction. */
17079 dwarf2_emit_insn (0);
17080
17081 switch (inst.reloc.exp.X_op)
17082 {
17083 case O_symbol:
17084 sym = inst.reloc.exp.X_add_symbol;
17085 offset = inst.reloc.exp.X_add_number;
17086 break;
17087 case O_constant:
17088 sym = NULL;
17089 offset = inst.reloc.exp.X_add_number;
17090 break;
17091 default:
17092 sym = make_expr_symbol (&inst.reloc.exp);
17093 offset = 0;
17094 break;
17095 }
17096 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
17097 inst.relax, sym, offset, NULL/*offset, opcode*/);
17098 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
17099 }
17100
17101 /* Write a 32-bit thumb instruction to buf. */
17102 static void
17103 put_thumb32_insn (char * buf, unsigned long insn)
17104 {
17105 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
17106 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
17107 }
17108
17109 static void
17110 output_inst (const char * str)
17111 {
17112 char * to = NULL;
17113
17114 if (inst.error)
17115 {
17116 as_bad ("%s -- `%s'", inst.error, str);
17117 return;
17118 }
17119 if (inst.relax)
17120 {
17121 output_relax_insn ();
17122 return;
17123 }
17124 if (inst.size == 0)
17125 return;
17126
17127 to = frag_more (inst.size);
17128 /* PR 9814: Record the thumb mode into the current frag so that we know
17129 what type of NOP padding to use, if necessary. We override any previous
17130 setting so that if the mode has changed then the NOPS that we use will
17131 match the encoding of the last instruction in the frag. */
17132 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
17133
17134 if (thumb_mode && (inst.size > THUMB_SIZE))
17135 {
17136 gas_assert (inst.size == (2 * THUMB_SIZE));
17137 put_thumb32_insn (to, inst.instruction);
17138 }
17139 else if (inst.size > INSN_SIZE)
17140 {
17141 gas_assert (inst.size == (2 * INSN_SIZE));
17142 md_number_to_chars (to, inst.instruction, INSN_SIZE);
17143 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
17144 }
17145 else
17146 md_number_to_chars (to, inst.instruction, inst.size);
17147
17148 if (inst.reloc.type != BFD_RELOC_UNUSED)
17149 fix_new_arm (frag_now, to - frag_now->fr_literal,
17150 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
17151 inst.reloc.type);
17152
17153 dwarf2_emit_insn (inst.size);
17154 }
17155
17156 static char *
17157 output_it_inst (int cond, int mask, char * to)
17158 {
17159 unsigned long instruction = 0xbf00;
17160
17161 mask &= 0xf;
17162 instruction |= mask;
17163 instruction |= cond << 4;
17164
17165 if (to == NULL)
17166 {
17167 to = frag_more (2);
17168 #ifdef OBJ_ELF
17169 dwarf2_emit_insn (2);
17170 #endif
17171 }
17172
17173 md_number_to_chars (to, instruction, 2);
17174
17175 return to;
17176 }
17177
17178 /* Tag values used in struct asm_opcode's tag field. */
17179 enum opcode_tag
17180 {
17181 OT_unconditional, /* Instruction cannot be conditionalized.
17182 The ARM condition field is still 0xE. */
17183 OT_unconditionalF, /* Instruction cannot be conditionalized
17184 and carries 0xF in its ARM condition field. */
17185 OT_csuffix, /* Instruction takes a conditional suffix. */
17186 OT_csuffixF, /* Some forms of the instruction take a conditional
17187 suffix, others place 0xF where the condition field
17188 would be. */
17189 OT_cinfix3, /* Instruction takes a conditional infix,
17190 beginning at character index 3. (In
17191 unified mode, it becomes a suffix.) */
17192 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
17193 tsts, cmps, cmns, and teqs. */
17194 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
17195 character index 3, even in unified mode. Used for
17196 legacy instructions where suffix and infix forms
17197 may be ambiguous. */
17198 OT_csuf_or_in3, /* Instruction takes either a conditional
17199 suffix or an infix at character index 3. */
17200 OT_odd_infix_unc, /* This is the unconditional variant of an
17201 instruction that takes a conditional infix
17202 at an unusual position. In unified mode,
17203 this variant will accept a suffix. */
17204 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
17205 are the conditional variants of instructions that
17206 take conditional infixes in unusual positions.
17207 The infix appears at character index
17208 (tag - OT_odd_infix_0). These are not accepted
17209 in unified mode. */
17210 };
17211
17212 /* Subroutine of md_assemble, responsible for looking up the primary
17213 opcode from the mnemonic the user wrote. STR points to the
17214 beginning of the mnemonic.
17215
17216 This is not simply a hash table lookup, because of conditional
17217 variants. Most instructions have conditional variants, which are
17218 expressed with a _conditional affix_ to the mnemonic. If we were
17219 to encode each conditional variant as a literal string in the opcode
17220 table, it would have approximately 20,000 entries.
17221
17222 Most mnemonics take this affix as a suffix, and in unified syntax,
17223 'most' is upgraded to 'all'. However, in the divided syntax, some
17224 instructions take the affix as an infix, notably the s-variants of
17225 the arithmetic instructions. Of those instructions, all but six
17226 have the infix appear after the third character of the mnemonic.
17227
17228 Accordingly, the algorithm for looking up primary opcodes given
17229 an identifier is:
17230
17231 1. Look up the identifier in the opcode table.
17232 If we find a match, go to step U.
17233
17234 2. Look up the last two characters of the identifier in the
17235 conditions table. If we find a match, look up the first N-2
17236 characters of the identifier in the opcode table. If we
17237 find a match, go to step CE.
17238
17239 3. Look up the fourth and fifth characters of the identifier in
17240 the conditions table. If we find a match, extract those
17241 characters from the identifier, and look up the remaining
17242 characters in the opcode table. If we find a match, go
17243 to step CM.
17244
17245 4. Fail.
17246
17247 U. Examine the tag field of the opcode structure, in case this is
17248 one of the six instructions with its conditional infix in an
17249 unusual place. If it is, the tag tells us where to find the
17250 infix; look it up in the conditions table and set inst.cond
17251 accordingly. Otherwise, this is an unconditional instruction.
17252 Again set inst.cond accordingly. Return the opcode structure.
17253
17254 CE. Examine the tag field to make sure this is an instruction that
17255 should receive a conditional suffix. If it is not, fail.
17256 Otherwise, set inst.cond from the suffix we already looked up,
17257 and return the opcode structure.
17258
17259 CM. Examine the tag field to make sure this is an instruction that
17260 should receive a conditional infix after the third character.
17261 If it is not, fail. Otherwise, undo the edits to the current
17262 line of input and proceed as for case CE. */
17263
17264 static const struct asm_opcode *
17265 opcode_lookup (char **str)
17266 {
17267 char *end, *base;
17268 char *affix;
17269 const struct asm_opcode *opcode;
17270 const struct asm_cond *cond;
17271 char save[2];
17272
17273 /* Scan up to the end of the mnemonic, which must end in white space,
17274 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
17275 for (base = end = *str; *end != '\0'; end++)
17276 if (*end == ' ' || *end == '.')
17277 break;
17278
17279 if (end == base)
17280 return NULL;
17281
17282 /* Handle a possible width suffix and/or Neon type suffix. */
17283 if (end[0] == '.')
17284 {
17285 int offset = 2;
17286
17287 /* The .w and .n suffixes are only valid if the unified syntax is in
17288 use. */
17289 if (unified_syntax && end[1] == 'w')
17290 inst.size_req = 4;
17291 else if (unified_syntax && end[1] == 'n')
17292 inst.size_req = 2;
17293 else
17294 offset = 0;
17295
17296 inst.vectype.elems = 0;
17297
17298 *str = end + offset;
17299
17300 if (end[offset] == '.')
17301 {
17302 /* See if we have a Neon type suffix (possible in either unified or
17303 non-unified ARM syntax mode). */
17304 if (parse_neon_type (&inst.vectype, str) == FAIL)
17305 return NULL;
17306 }
17307 else if (end[offset] != '\0' && end[offset] != ' ')
17308 return NULL;
17309 }
17310 else
17311 *str = end;
17312
17313 /* Look for unaffixed or special-case affixed mnemonic. */
17314 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
17315 end - base);
17316 if (opcode)
17317 {
17318 /* step U */
17319 if (opcode->tag < OT_odd_infix_0)
17320 {
17321 inst.cond = COND_ALWAYS;
17322 return opcode;
17323 }
17324
17325 if (warn_on_deprecated && unified_syntax)
17326 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
17327 affix = base + (opcode->tag - OT_odd_infix_0);
17328 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
17329 gas_assert (cond);
17330
17331 inst.cond = cond->value;
17332 return opcode;
17333 }
17334
17335 /* Cannot have a conditional suffix on a mnemonic of less than two
17336 characters. */
17337 if (end - base < 3)
17338 return NULL;
17339
17340 /* Look for suffixed mnemonic. */
17341 affix = end - 2;
17342 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
17343 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
17344 affix - base);
17345 if (opcode && cond)
17346 {
17347 /* step CE */
17348 switch (opcode->tag)
17349 {
17350 case OT_cinfix3_legacy:
17351 /* Ignore conditional suffixes matched on infix only mnemonics. */
17352 break;
17353
17354 case OT_cinfix3:
17355 case OT_cinfix3_deprecated:
17356 case OT_odd_infix_unc:
17357 if (!unified_syntax)
17358 return 0;
17359 /* else fall through */
17360
17361 case OT_csuffix:
17362 case OT_csuffixF:
17363 case OT_csuf_or_in3:
17364 inst.cond = cond->value;
17365 return opcode;
17366
17367 case OT_unconditional:
17368 case OT_unconditionalF:
17369 if (thumb_mode)
17370 inst.cond = cond->value;
17371 else
17372 {
17373 /* Delayed diagnostic. */
17374 inst.error = BAD_COND;
17375 inst.cond = COND_ALWAYS;
17376 }
17377 return opcode;
17378
17379 default:
17380 return NULL;
17381 }
17382 }
17383
17384 /* Cannot have a usual-position infix on a mnemonic of less than
17385 six characters (five would be a suffix). */
17386 if (end - base < 6)
17387 return NULL;
17388
17389 /* Look for infixed mnemonic in the usual position. */
17390 affix = base + 3;
17391 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
17392 if (!cond)
17393 return NULL;
17394
17395 memcpy (save, affix, 2);
17396 memmove (affix, affix + 2, (end - affix) - 2);
17397 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
17398 (end - base) - 2);
17399 memmove (affix + 2, affix, (end - affix) - 2);
17400 memcpy (affix, save, 2);
17401
17402 if (opcode
17403 && (opcode->tag == OT_cinfix3
17404 || opcode->tag == OT_cinfix3_deprecated
17405 || opcode->tag == OT_csuf_or_in3
17406 || opcode->tag == OT_cinfix3_legacy))
17407 {
17408 /* Step CM. */
17409 if (warn_on_deprecated && unified_syntax
17410 && (opcode->tag == OT_cinfix3
17411 || opcode->tag == OT_cinfix3_deprecated))
17412 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
17413
17414 inst.cond = cond->value;
17415 return opcode;
17416 }
17417
17418 return NULL;
17419 }
17420
17421 /* This function generates an initial IT instruction, leaving its block
17422 virtually open for the new instructions. Eventually,
17423 the mask will be updated by now_it_add_mask () each time
17424 a new instruction needs to be included in the IT block.
17425 Finally, the block is closed with close_automatic_it_block ().
17426 The block closure can be requested either from md_assemble (),
17427 a tencode (), or due to a label hook. */
17428
17429 static void
17430 new_automatic_it_block (int cond)
17431 {
17432 now_it.state = AUTOMATIC_IT_BLOCK;
17433 now_it.mask = 0x18;
17434 now_it.cc = cond;
17435 now_it.block_length = 1;
17436 mapping_state (MAP_THUMB);
17437 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
17438 now_it.warn_deprecated = FALSE;
17439 now_it.insn_cond = TRUE;
17440 }
17441
17442 /* Close an automatic IT block.
17443 See comments in new_automatic_it_block (). */
17444
17445 static void
17446 close_automatic_it_block (void)
17447 {
17448 now_it.mask = 0x10;
17449 now_it.block_length = 0;
17450 }
17451
17452 /* Update the mask of the current automatically-generated IT
17453 instruction. See comments in new_automatic_it_block (). */
17454
17455 static void
17456 now_it_add_mask (int cond)
17457 {
17458 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
17459 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
17460 | ((bitvalue) << (nbit)))
17461 const int resulting_bit = (cond & 1);
17462
17463 now_it.mask &= 0xf;
17464 now_it.mask = SET_BIT_VALUE (now_it.mask,
17465 resulting_bit,
17466 (5 - now_it.block_length));
17467 now_it.mask = SET_BIT_VALUE (now_it.mask,
17468 1,
17469 ((5 - now_it.block_length) - 1) );
17470 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
17471
17472 #undef CLEAR_BIT
17473 #undef SET_BIT_VALUE
17474 }
17475
17476 /* The IT blocks handling machinery is accessed through the these functions:
17477 it_fsm_pre_encode () from md_assemble ()
17478 set_it_insn_type () optional, from the tencode functions
17479 set_it_insn_type_last () ditto
17480 in_it_block () ditto
17481 it_fsm_post_encode () from md_assemble ()
17482 force_automatic_it_block_close () from label habdling functions
17483
17484 Rationale:
17485 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
17486 initializing the IT insn type with a generic initial value depending
17487 on the inst.condition.
17488 2) During the tencode function, two things may happen:
17489 a) The tencode function overrides the IT insn type by
17490 calling either set_it_insn_type (type) or set_it_insn_type_last ().
17491 b) The tencode function queries the IT block state by
17492 calling in_it_block () (i.e. to determine narrow/not narrow mode).
17493
17494 Both set_it_insn_type and in_it_block run the internal FSM state
17495 handling function (handle_it_state), because: a) setting the IT insn
17496 type may incur in an invalid state (exiting the function),
17497 and b) querying the state requires the FSM to be updated.
17498 Specifically we want to avoid creating an IT block for conditional
17499 branches, so it_fsm_pre_encode is actually a guess and we can't
17500 determine whether an IT block is required until the tencode () routine
17501 has decided what type of instruction this actually it.
17502 Because of this, if set_it_insn_type and in_it_block have to be used,
17503 set_it_insn_type has to be called first.
17504
17505 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
17506 determines the insn IT type depending on the inst.cond code.
17507 When a tencode () routine encodes an instruction that can be
17508 either outside an IT block, or, in the case of being inside, has to be
17509 the last one, set_it_insn_type_last () will determine the proper
17510 IT instruction type based on the inst.cond code. Otherwise,
17511 set_it_insn_type can be called for overriding that logic or
17512 for covering other cases.
17513
17514 Calling handle_it_state () may not transition the IT block state to
17515 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
17516 still queried. Instead, if the FSM determines that the state should
17517 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
17518 after the tencode () function: that's what it_fsm_post_encode () does.
17519
17520 Since in_it_block () calls the state handling function to get an
17521 updated state, an error may occur (due to invalid insns combination).
17522 In that case, inst.error is set.
17523 Therefore, inst.error has to be checked after the execution of
17524 the tencode () routine.
17525
17526 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
17527 any pending state change (if any) that didn't take place in
17528 handle_it_state () as explained above. */
17529
17530 static void
17531 it_fsm_pre_encode (void)
17532 {
17533 if (inst.cond != COND_ALWAYS)
17534 inst.it_insn_type = INSIDE_IT_INSN;
17535 else
17536 inst.it_insn_type = OUTSIDE_IT_INSN;
17537
17538 now_it.state_handled = 0;
17539 }
17540
17541 /* IT state FSM handling function. */
17542
17543 static int
17544 handle_it_state (void)
17545 {
17546 now_it.state_handled = 1;
17547 now_it.insn_cond = FALSE;
17548
17549 switch (now_it.state)
17550 {
17551 case OUTSIDE_IT_BLOCK:
17552 switch (inst.it_insn_type)
17553 {
17554 case OUTSIDE_IT_INSN:
17555 break;
17556
17557 case INSIDE_IT_INSN:
17558 case INSIDE_IT_LAST_INSN:
17559 if (thumb_mode == 0)
17560 {
17561 if (unified_syntax
17562 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
17563 as_tsktsk (_("Warning: conditional outside an IT block"\
17564 " for Thumb."));
17565 }
17566 else
17567 {
17568 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
17569 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
17570 {
17571 /* Automatically generate the IT instruction. */
17572 new_automatic_it_block (inst.cond);
17573 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
17574 close_automatic_it_block ();
17575 }
17576 else
17577 {
17578 inst.error = BAD_OUT_IT;
17579 return FAIL;
17580 }
17581 }
17582 break;
17583
17584 case IF_INSIDE_IT_LAST_INSN:
17585 case NEUTRAL_IT_INSN:
17586 break;
17587
17588 case IT_INSN:
17589 now_it.state = MANUAL_IT_BLOCK;
17590 now_it.block_length = 0;
17591 break;
17592 }
17593 break;
17594
17595 case AUTOMATIC_IT_BLOCK:
17596 /* Three things may happen now:
17597 a) We should increment current it block size;
17598 b) We should close current it block (closing insn or 4 insns);
17599 c) We should close current it block and start a new one (due
17600 to incompatible conditions or
17601 4 insns-length block reached). */
17602
17603 switch (inst.it_insn_type)
17604 {
17605 case OUTSIDE_IT_INSN:
17606 /* The closure of the block shall happen immediatelly,
17607 so any in_it_block () call reports the block as closed. */
17608 force_automatic_it_block_close ();
17609 break;
17610
17611 case INSIDE_IT_INSN:
17612 case INSIDE_IT_LAST_INSN:
17613 case IF_INSIDE_IT_LAST_INSN:
17614 now_it.block_length++;
17615
17616 if (now_it.block_length > 4
17617 || !now_it_compatible (inst.cond))
17618 {
17619 force_automatic_it_block_close ();
17620 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
17621 new_automatic_it_block (inst.cond);
17622 }
17623 else
17624 {
17625 now_it.insn_cond = TRUE;
17626 now_it_add_mask (inst.cond);
17627 }
17628
17629 if (now_it.state == AUTOMATIC_IT_BLOCK
17630 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
17631 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
17632 close_automatic_it_block ();
17633 break;
17634
17635 case NEUTRAL_IT_INSN:
17636 now_it.block_length++;
17637 now_it.insn_cond = TRUE;
17638
17639 if (now_it.block_length > 4)
17640 force_automatic_it_block_close ();
17641 else
17642 now_it_add_mask (now_it.cc & 1);
17643 break;
17644
17645 case IT_INSN:
17646 close_automatic_it_block ();
17647 now_it.state = MANUAL_IT_BLOCK;
17648 break;
17649 }
17650 break;
17651
17652 case MANUAL_IT_BLOCK:
17653 {
17654 /* Check conditional suffixes. */
17655 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
17656 int is_last;
17657 now_it.mask <<= 1;
17658 now_it.mask &= 0x1f;
17659 is_last = (now_it.mask == 0x10);
17660 now_it.insn_cond = TRUE;
17661
17662 switch (inst.it_insn_type)
17663 {
17664 case OUTSIDE_IT_INSN:
17665 inst.error = BAD_NOT_IT;
17666 return FAIL;
17667
17668 case INSIDE_IT_INSN:
17669 if (cond != inst.cond)
17670 {
17671 inst.error = BAD_IT_COND;
17672 return FAIL;
17673 }
17674 break;
17675
17676 case INSIDE_IT_LAST_INSN:
17677 case IF_INSIDE_IT_LAST_INSN:
17678 if (cond != inst.cond)
17679 {
17680 inst.error = BAD_IT_COND;
17681 return FAIL;
17682 }
17683 if (!is_last)
17684 {
17685 inst.error = BAD_BRANCH;
17686 return FAIL;
17687 }
17688 break;
17689
17690 case NEUTRAL_IT_INSN:
17691 /* The BKPT instruction is unconditional even in an IT block. */
17692 break;
17693
17694 case IT_INSN:
17695 inst.error = BAD_IT_IT;
17696 return FAIL;
17697 }
17698 }
17699 break;
17700 }
17701
17702 return SUCCESS;
17703 }
17704
17705 struct depr_insn_mask
17706 {
17707 unsigned long pattern;
17708 unsigned long mask;
17709 const char* description;
17710 };
17711
17712 /* List of 16-bit instruction patterns deprecated in an IT block in
17713 ARMv8. */
17714 static const struct depr_insn_mask depr_it_insns[] = {
17715 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
17716 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
17717 { 0xa000, 0xb800, N_("ADR") },
17718 { 0x4800, 0xf800, N_("Literal loads") },
17719 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
17720 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
17721 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
17722 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
17723 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
17724 { 0, 0, NULL }
17725 };
17726
17727 static void
17728 it_fsm_post_encode (void)
17729 {
17730 int is_last;
17731
17732 if (!now_it.state_handled)
17733 handle_it_state ();
17734
17735 if (now_it.insn_cond
17736 && !now_it.warn_deprecated
17737 && warn_on_deprecated
17738 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
17739 {
17740 if (inst.instruction >= 0x10000)
17741 {
17742 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
17743 "deprecated in ARMv8"));
17744 now_it.warn_deprecated = TRUE;
17745 }
17746 else
17747 {
17748 const struct depr_insn_mask *p = depr_it_insns;
17749
17750 while (p->mask != 0)
17751 {
17752 if ((inst.instruction & p->mask) == p->pattern)
17753 {
17754 as_tsktsk (_("IT blocks containing 16-bit Thumb instructions "
17755 "of the following class are deprecated in ARMv8: "
17756 "%s"), p->description);
17757 now_it.warn_deprecated = TRUE;
17758 break;
17759 }
17760
17761 ++p;
17762 }
17763 }
17764
17765 if (now_it.block_length > 1)
17766 {
17767 as_tsktsk (_("IT blocks containing more than one conditional "
17768 "instruction are deprecated in ARMv8"));
17769 now_it.warn_deprecated = TRUE;
17770 }
17771 }
17772
17773 is_last = (now_it.mask == 0x10);
17774 if (is_last)
17775 {
17776 now_it.state = OUTSIDE_IT_BLOCK;
17777 now_it.mask = 0;
17778 }
17779 }
17780
17781 static void
17782 force_automatic_it_block_close (void)
17783 {
17784 if (now_it.state == AUTOMATIC_IT_BLOCK)
17785 {
17786 close_automatic_it_block ();
17787 now_it.state = OUTSIDE_IT_BLOCK;
17788 now_it.mask = 0;
17789 }
17790 }
17791
17792 static int
17793 in_it_block (void)
17794 {
17795 if (!now_it.state_handled)
17796 handle_it_state ();
17797
17798 return now_it.state != OUTSIDE_IT_BLOCK;
17799 }
17800
17801 /* Whether OPCODE only has T32 encoding and makes build attribute
17802 Tag_THUMB_ISA_use be set to 1 if assembled without any cpu or arch info. */
17803
17804 static bfd_boolean
17805 t1_isa_t32_only_insn (const struct asm_opcode *opcode)
17806 {
17807 /* Original Thumb-1 wide instruction. */
17808 if (opcode->tencode == do_t_blx
17809 || opcode->tencode == do_t_branch23
17810 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
17811 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
17812 return TRUE;
17813
17814 return FALSE;
17815 }
17816
17817 void
17818 md_assemble (char *str)
17819 {
17820 char *p = str;
17821 const struct asm_opcode * opcode;
17822
17823 /* Align the previous label if needed. */
17824 if (last_label_seen != NULL)
17825 {
17826 symbol_set_frag (last_label_seen, frag_now);
17827 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
17828 S_SET_SEGMENT (last_label_seen, now_seg);
17829 }
17830
17831 memset (&inst, '\0', sizeof (inst));
17832 inst.reloc.type = BFD_RELOC_UNUSED;
17833
17834 opcode = opcode_lookup (&p);
17835 if (!opcode)
17836 {
17837 /* It wasn't an instruction, but it might be a register alias of
17838 the form alias .req reg, or a Neon .dn/.qn directive. */
17839 if (! create_register_alias (str, p)
17840 && ! create_neon_reg_alias (str, p))
17841 as_bad (_("bad instruction `%s'"), str);
17842
17843 return;
17844 }
17845
17846 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
17847 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
17848
17849 /* The value which unconditional instructions should have in place of the
17850 condition field. */
17851 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
17852
17853 if (thumb_mode)
17854 {
17855 arm_feature_set variant;
17856
17857 variant = cpu_variant;
17858 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
17859 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
17860 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
17861 /* Check that this instruction is supported for this CPU. */
17862 if (!opcode->tvariant
17863 || (thumb_mode == 1
17864 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
17865 {
17866 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
17867 return;
17868 }
17869 if (inst.cond != COND_ALWAYS && !unified_syntax
17870 && opcode->tencode != do_t_branch)
17871 {
17872 as_bad (_("Thumb does not support conditional execution"));
17873 return;
17874 }
17875
17876 /* Two things are addressed here:
17877 1) Implicit require narrow instructions on Thumb-1.
17878 This avoids relaxation accidentally introducing Thumb-2
17879 instructions.
17880 2) Reject wide instructions in non Thumb-2 cores.
17881
17882 Only instructions with narrow and wide variants need to be handled
17883 but selecting all non wide-only instructions is easier. */
17884 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
17885 && !t1_isa_t32_only_insn (opcode))
17886 {
17887 if (inst.size_req == 0)
17888 inst.size_req = 2;
17889 else if (inst.size_req == 4)
17890 {
17891 as_bad (_("selected processor does not support `%s' in Thumb-2 "
17892 "mode"), str);
17893 return;
17894 }
17895 }
17896
17897 inst.instruction = opcode->tvalue;
17898
17899 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
17900 {
17901 /* Prepare the it_insn_type for those encodings that don't set
17902 it. */
17903 it_fsm_pre_encode ();
17904
17905 opcode->tencode ();
17906
17907 it_fsm_post_encode ();
17908 }
17909
17910 if (!(inst.error || inst.relax))
17911 {
17912 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
17913 inst.size = (inst.instruction > 0xffff ? 4 : 2);
17914 if (inst.size_req && inst.size_req != inst.size)
17915 {
17916 as_bad (_("cannot honor width suffix -- `%s'"), str);
17917 return;
17918 }
17919 }
17920
17921 /* Something has gone badly wrong if we try to relax a fixed size
17922 instruction. */
17923 gas_assert (inst.size_req == 0 || !inst.relax);
17924
17925 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
17926 *opcode->tvariant);
17927 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
17928 set those bits when Thumb-2 32-bit instructions are seen. The impact
17929 of relaxable instructions will be considered later after we finish all
17930 relaxation. */
17931 if (inst.size == 4 && !t1_isa_t32_only_insn (opcode))
17932 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
17933 arm_ext_v6t2);
17934
17935 check_neon_suffixes;
17936
17937 if (!inst.error)
17938 {
17939 mapping_state (MAP_THUMB);
17940 }
17941 }
17942 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
17943 {
17944 bfd_boolean is_bx;
17945
17946 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
17947 is_bx = (opcode->aencode == do_bx);
17948
17949 /* Check that this instruction is supported for this CPU. */
17950 if (!(is_bx && fix_v4bx)
17951 && !(opcode->avariant &&
17952 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
17953 {
17954 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
17955 return;
17956 }
17957 if (inst.size_req)
17958 {
17959 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
17960 return;
17961 }
17962
17963 inst.instruction = opcode->avalue;
17964 if (opcode->tag == OT_unconditionalF)
17965 inst.instruction |= 0xFU << 28;
17966 else
17967 inst.instruction |= inst.cond << 28;
17968 inst.size = INSN_SIZE;
17969 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
17970 {
17971 it_fsm_pre_encode ();
17972 opcode->aencode ();
17973 it_fsm_post_encode ();
17974 }
17975 /* Arm mode bx is marked as both v4T and v5 because it's still required
17976 on a hypothetical non-thumb v5 core. */
17977 if (is_bx)
17978 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
17979 else
17980 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
17981 *opcode->avariant);
17982
17983 check_neon_suffixes;
17984
17985 if (!inst.error)
17986 {
17987 mapping_state (MAP_ARM);
17988 }
17989 }
17990 else
17991 {
17992 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
17993 "-- `%s'"), str);
17994 return;
17995 }
17996 output_inst (str);
17997 }
17998
17999 static void
18000 check_it_blocks_finished (void)
18001 {
18002 #ifdef OBJ_ELF
18003 asection *sect;
18004
18005 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
18006 if (seg_info (sect)->tc_segment_info_data.current_it.state
18007 == MANUAL_IT_BLOCK)
18008 {
18009 as_warn (_("section '%s' finished with an open IT block."),
18010 sect->name);
18011 }
18012 #else
18013 if (now_it.state == MANUAL_IT_BLOCK)
18014 as_warn (_("file finished with an open IT block."));
18015 #endif
18016 }
18017
18018 /* Various frobbings of labels and their addresses. */
18019
18020 void
18021 arm_start_line_hook (void)
18022 {
18023 last_label_seen = NULL;
18024 }
18025
18026 void
18027 arm_frob_label (symbolS * sym)
18028 {
18029 last_label_seen = sym;
18030
18031 ARM_SET_THUMB (sym, thumb_mode);
18032
18033 #if defined OBJ_COFF || defined OBJ_ELF
18034 ARM_SET_INTERWORK (sym, support_interwork);
18035 #endif
18036
18037 force_automatic_it_block_close ();
18038
18039 /* Note - do not allow local symbols (.Lxxx) to be labelled
18040 as Thumb functions. This is because these labels, whilst
18041 they exist inside Thumb code, are not the entry points for
18042 possible ARM->Thumb calls. Also, these labels can be used
18043 as part of a computed goto or switch statement. eg gcc
18044 can generate code that looks like this:
18045
18046 ldr r2, [pc, .Laaa]
18047 lsl r3, r3, #2
18048 ldr r2, [r3, r2]
18049 mov pc, r2
18050
18051 .Lbbb: .word .Lxxx
18052 .Lccc: .word .Lyyy
18053 ..etc...
18054 .Laaa: .word Lbbb
18055
18056 The first instruction loads the address of the jump table.
18057 The second instruction converts a table index into a byte offset.
18058 The third instruction gets the jump address out of the table.
18059 The fourth instruction performs the jump.
18060
18061 If the address stored at .Laaa is that of a symbol which has the
18062 Thumb_Func bit set, then the linker will arrange for this address
18063 to have the bottom bit set, which in turn would mean that the
18064 address computation performed by the third instruction would end
18065 up with the bottom bit set. Since the ARM is capable of unaligned
18066 word loads, the instruction would then load the incorrect address
18067 out of the jump table, and chaos would ensue. */
18068 if (label_is_thumb_function_name
18069 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
18070 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
18071 {
18072 /* When the address of a Thumb function is taken the bottom
18073 bit of that address should be set. This will allow
18074 interworking between Arm and Thumb functions to work
18075 correctly. */
18076
18077 THUMB_SET_FUNC (sym, 1);
18078
18079 label_is_thumb_function_name = FALSE;
18080 }
18081
18082 dwarf2_emit_label (sym);
18083 }
18084
18085 bfd_boolean
18086 arm_data_in_code (void)
18087 {
18088 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
18089 {
18090 *input_line_pointer = '/';
18091 input_line_pointer += 5;
18092 *input_line_pointer = 0;
18093 return TRUE;
18094 }
18095
18096 return FALSE;
18097 }
18098
18099 char *
18100 arm_canonicalize_symbol_name (char * name)
18101 {
18102 int len;
18103
18104 if (thumb_mode && (len = strlen (name)) > 5
18105 && streq (name + len - 5, "/data"))
18106 *(name + len - 5) = 0;
18107
18108 return name;
18109 }
18110 \f
18111 /* Table of all register names defined by default. The user can
18112 define additional names with .req. Note that all register names
18113 should appear in both upper and lowercase variants. Some registers
18114 also have mixed-case names. */
18115
18116 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
18117 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
18118 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
18119 #define REGSET(p,t) \
18120 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
18121 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
18122 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
18123 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
18124 #define REGSETH(p,t) \
18125 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
18126 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
18127 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
18128 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
18129 #define REGSET2(p,t) \
18130 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
18131 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
18132 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
18133 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
18134 #define SPLRBANK(base,bank,t) \
18135 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
18136 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
18137 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
18138 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
18139 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
18140 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
18141
18142 static const struct reg_entry reg_names[] =
18143 {
18144 /* ARM integer registers. */
18145 REGSET(r, RN), REGSET(R, RN),
18146
18147 /* ATPCS synonyms. */
18148 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
18149 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
18150 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
18151
18152 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
18153 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
18154 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
18155
18156 /* Well-known aliases. */
18157 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
18158 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
18159
18160 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
18161 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
18162
18163 /* Coprocessor numbers. */
18164 REGSET(p, CP), REGSET(P, CP),
18165
18166 /* Coprocessor register numbers. The "cr" variants are for backward
18167 compatibility. */
18168 REGSET(c, CN), REGSET(C, CN),
18169 REGSET(cr, CN), REGSET(CR, CN),
18170
18171 /* ARM banked registers. */
18172 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
18173 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
18174 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
18175 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
18176 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
18177 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
18178 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
18179
18180 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
18181 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
18182 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
18183 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
18184 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
18185 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
18186 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
18187 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
18188
18189 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
18190 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
18191 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
18192 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
18193 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
18194 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
18195 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
18196 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
18197 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
18198
18199 /* FPA registers. */
18200 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
18201 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
18202
18203 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
18204 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
18205
18206 /* VFP SP registers. */
18207 REGSET(s,VFS), REGSET(S,VFS),
18208 REGSETH(s,VFS), REGSETH(S,VFS),
18209
18210 /* VFP DP Registers. */
18211 REGSET(d,VFD), REGSET(D,VFD),
18212 /* Extra Neon DP registers. */
18213 REGSETH(d,VFD), REGSETH(D,VFD),
18214
18215 /* Neon QP registers. */
18216 REGSET2(q,NQ), REGSET2(Q,NQ),
18217
18218 /* VFP control registers. */
18219 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
18220 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
18221 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
18222 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
18223 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
18224 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
18225
18226 /* Maverick DSP coprocessor registers. */
18227 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
18228 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
18229
18230 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
18231 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
18232 REGDEF(dspsc,0,DSPSC),
18233
18234 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
18235 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
18236 REGDEF(DSPSC,0,DSPSC),
18237
18238 /* iWMMXt data registers - p0, c0-15. */
18239 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
18240
18241 /* iWMMXt control registers - p1, c0-3. */
18242 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
18243 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
18244 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
18245 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
18246
18247 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
18248 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
18249 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
18250 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
18251 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
18252
18253 /* XScale accumulator registers. */
18254 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
18255 };
18256 #undef REGDEF
18257 #undef REGNUM
18258 #undef REGSET
18259
18260 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
18261 within psr_required_here. */
18262 static const struct asm_psr psrs[] =
18263 {
18264 /* Backward compatibility notation. Note that "all" is no longer
18265 truly all possible PSR bits. */
18266 {"all", PSR_c | PSR_f},
18267 {"flg", PSR_f},
18268 {"ctl", PSR_c},
18269
18270 /* Individual flags. */
18271 {"f", PSR_f},
18272 {"c", PSR_c},
18273 {"x", PSR_x},
18274 {"s", PSR_s},
18275
18276 /* Combinations of flags. */
18277 {"fs", PSR_f | PSR_s},
18278 {"fx", PSR_f | PSR_x},
18279 {"fc", PSR_f | PSR_c},
18280 {"sf", PSR_s | PSR_f},
18281 {"sx", PSR_s | PSR_x},
18282 {"sc", PSR_s | PSR_c},
18283 {"xf", PSR_x | PSR_f},
18284 {"xs", PSR_x | PSR_s},
18285 {"xc", PSR_x | PSR_c},
18286 {"cf", PSR_c | PSR_f},
18287 {"cs", PSR_c | PSR_s},
18288 {"cx", PSR_c | PSR_x},
18289 {"fsx", PSR_f | PSR_s | PSR_x},
18290 {"fsc", PSR_f | PSR_s | PSR_c},
18291 {"fxs", PSR_f | PSR_x | PSR_s},
18292 {"fxc", PSR_f | PSR_x | PSR_c},
18293 {"fcs", PSR_f | PSR_c | PSR_s},
18294 {"fcx", PSR_f | PSR_c | PSR_x},
18295 {"sfx", PSR_s | PSR_f | PSR_x},
18296 {"sfc", PSR_s | PSR_f | PSR_c},
18297 {"sxf", PSR_s | PSR_x | PSR_f},
18298 {"sxc", PSR_s | PSR_x | PSR_c},
18299 {"scf", PSR_s | PSR_c | PSR_f},
18300 {"scx", PSR_s | PSR_c | PSR_x},
18301 {"xfs", PSR_x | PSR_f | PSR_s},
18302 {"xfc", PSR_x | PSR_f | PSR_c},
18303 {"xsf", PSR_x | PSR_s | PSR_f},
18304 {"xsc", PSR_x | PSR_s | PSR_c},
18305 {"xcf", PSR_x | PSR_c | PSR_f},
18306 {"xcs", PSR_x | PSR_c | PSR_s},
18307 {"cfs", PSR_c | PSR_f | PSR_s},
18308 {"cfx", PSR_c | PSR_f | PSR_x},
18309 {"csf", PSR_c | PSR_s | PSR_f},
18310 {"csx", PSR_c | PSR_s | PSR_x},
18311 {"cxf", PSR_c | PSR_x | PSR_f},
18312 {"cxs", PSR_c | PSR_x | PSR_s},
18313 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
18314 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
18315 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
18316 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
18317 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
18318 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
18319 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
18320 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
18321 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
18322 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
18323 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
18324 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
18325 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
18326 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
18327 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
18328 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
18329 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
18330 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
18331 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
18332 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
18333 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
18334 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
18335 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
18336 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
18337 };
18338
18339 /* Table of V7M psr names. */
18340 static const struct asm_psr v7m_psrs[] =
18341 {
18342 {"apsr", 0 }, {"APSR", 0 },
18343 {"iapsr", 1 }, {"IAPSR", 1 },
18344 {"eapsr", 2 }, {"EAPSR", 2 },
18345 {"psr", 3 }, {"PSR", 3 },
18346 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
18347 {"ipsr", 5 }, {"IPSR", 5 },
18348 {"epsr", 6 }, {"EPSR", 6 },
18349 {"iepsr", 7 }, {"IEPSR", 7 },
18350 {"msp", 8 }, {"MSP", 8 },
18351 {"psp", 9 }, {"PSP", 9 },
18352 {"primask", 16}, {"PRIMASK", 16},
18353 {"basepri", 17}, {"BASEPRI", 17},
18354 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
18355 {"basepri_max", 18}, {"BASEPRI_MASK", 18}, /* Typo, preserved for backwards compatibility. */
18356 {"faultmask", 19}, {"FAULTMASK", 19},
18357 {"control", 20}, {"CONTROL", 20}
18358 };
18359
18360 /* Table of all shift-in-operand names. */
18361 static const struct asm_shift_name shift_names [] =
18362 {
18363 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
18364 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
18365 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
18366 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
18367 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
18368 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
18369 };
18370
18371 /* Table of all explicit relocation names. */
18372 #ifdef OBJ_ELF
18373 static struct reloc_entry reloc_names[] =
18374 {
18375 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
18376 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
18377 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
18378 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
18379 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
18380 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
18381 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
18382 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
18383 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
18384 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
18385 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
18386 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
18387 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
18388 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
18389 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
18390 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
18391 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
18392 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ}
18393 };
18394 #endif
18395
18396 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
18397 static const struct asm_cond conds[] =
18398 {
18399 {"eq", 0x0},
18400 {"ne", 0x1},
18401 {"cs", 0x2}, {"hs", 0x2},
18402 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
18403 {"mi", 0x4},
18404 {"pl", 0x5},
18405 {"vs", 0x6},
18406 {"vc", 0x7},
18407 {"hi", 0x8},
18408 {"ls", 0x9},
18409 {"ge", 0xa},
18410 {"lt", 0xb},
18411 {"gt", 0xc},
18412 {"le", 0xd},
18413 {"al", 0xe}
18414 };
18415
18416 #define UL_BARRIER(L,U,CODE,FEAT) \
18417 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
18418 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
18419
18420 static struct asm_barrier_opt barrier_opt_names[] =
18421 {
18422 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
18423 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
18424 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
18425 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
18426 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
18427 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
18428 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
18429 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
18430 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
18431 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
18432 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
18433 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
18434 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
18435 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
18436 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
18437 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
18438 };
18439
18440 #undef UL_BARRIER
18441
18442 /* Table of ARM-format instructions. */
18443
18444 /* Macros for gluing together operand strings. N.B. In all cases
18445 other than OPS0, the trailing OP_stop comes from default
18446 zero-initialization of the unspecified elements of the array. */
18447 #define OPS0() { OP_stop, }
18448 #define OPS1(a) { OP_##a, }
18449 #define OPS2(a,b) { OP_##a,OP_##b, }
18450 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
18451 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
18452 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
18453 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
18454
18455 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
18456 This is useful when mixing operands for ARM and THUMB, i.e. using the
18457 MIX_ARM_THUMB_OPERANDS macro.
18458 In order to use these macros, prefix the number of operands with _
18459 e.g. _3. */
18460 #define OPS_1(a) { a, }
18461 #define OPS_2(a,b) { a,b, }
18462 #define OPS_3(a,b,c) { a,b,c, }
18463 #define OPS_4(a,b,c,d) { a,b,c,d, }
18464 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
18465 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
18466
18467 /* These macros abstract out the exact format of the mnemonic table and
18468 save some repeated characters. */
18469
18470 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
18471 #define TxCE(mnem, op, top, nops, ops, ae, te) \
18472 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
18473 THUMB_VARIANT, do_##ae, do_##te }
18474
18475 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
18476 a T_MNEM_xyz enumerator. */
18477 #define TCE(mnem, aop, top, nops, ops, ae, te) \
18478 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
18479 #define tCE(mnem, aop, top, nops, ops, ae, te) \
18480 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
18481
18482 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
18483 infix after the third character. */
18484 #define TxC3(mnem, op, top, nops, ops, ae, te) \
18485 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
18486 THUMB_VARIANT, do_##ae, do_##te }
18487 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
18488 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
18489 THUMB_VARIANT, do_##ae, do_##te }
18490 #define TC3(mnem, aop, top, nops, ops, ae, te) \
18491 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
18492 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
18493 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
18494 #define tC3(mnem, aop, top, nops, ops, ae, te) \
18495 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
18496 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
18497 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
18498
18499 /* Mnemonic that cannot be conditionalized. The ARM condition-code
18500 field is still 0xE. Many of the Thumb variants can be executed
18501 conditionally, so this is checked separately. */
18502 #define TUE(mnem, op, top, nops, ops, ae, te) \
18503 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
18504 THUMB_VARIANT, do_##ae, do_##te }
18505
18506 /* Same as TUE but the encoding function for ARM and Thumb modes is the same.
18507 Used by mnemonics that have very minimal differences in the encoding for
18508 ARM and Thumb variants and can be handled in a common function. */
18509 #define TUEc(mnem, op, top, nops, ops, en) \
18510 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
18511 THUMB_VARIANT, do_##en, do_##en }
18512
18513 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
18514 condition code field. */
18515 #define TUF(mnem, op, top, nops, ops, ae, te) \
18516 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
18517 THUMB_VARIANT, do_##ae, do_##te }
18518
18519 /* ARM-only variants of all the above. */
18520 #define CE(mnem, op, nops, ops, ae) \
18521 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
18522
18523 #define C3(mnem, op, nops, ops, ae) \
18524 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
18525
18526 /* Legacy mnemonics that always have conditional infix after the third
18527 character. */
18528 #define CL(mnem, op, nops, ops, ae) \
18529 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
18530 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
18531
18532 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
18533 #define cCE(mnem, op, nops, ops, ae) \
18534 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
18535
18536 /* Legacy coprocessor instructions where conditional infix and conditional
18537 suffix are ambiguous. For consistency this includes all FPA instructions,
18538 not just the potentially ambiguous ones. */
18539 #define cCL(mnem, op, nops, ops, ae) \
18540 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
18541 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
18542
18543 /* Coprocessor, takes either a suffix or a position-3 infix
18544 (for an FPA corner case). */
18545 #define C3E(mnem, op, nops, ops, ae) \
18546 { mnem, OPS##nops ops, OT_csuf_or_in3, \
18547 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
18548
18549 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
18550 { m1 #m2 m3, OPS##nops ops, \
18551 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
18552 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
18553
18554 #define CM(m1, m2, op, nops, ops, ae) \
18555 xCM_ (m1, , m2, op, nops, ops, ae), \
18556 xCM_ (m1, eq, m2, op, nops, ops, ae), \
18557 xCM_ (m1, ne, m2, op, nops, ops, ae), \
18558 xCM_ (m1, cs, m2, op, nops, ops, ae), \
18559 xCM_ (m1, hs, m2, op, nops, ops, ae), \
18560 xCM_ (m1, cc, m2, op, nops, ops, ae), \
18561 xCM_ (m1, ul, m2, op, nops, ops, ae), \
18562 xCM_ (m1, lo, m2, op, nops, ops, ae), \
18563 xCM_ (m1, mi, m2, op, nops, ops, ae), \
18564 xCM_ (m1, pl, m2, op, nops, ops, ae), \
18565 xCM_ (m1, vs, m2, op, nops, ops, ae), \
18566 xCM_ (m1, vc, m2, op, nops, ops, ae), \
18567 xCM_ (m1, hi, m2, op, nops, ops, ae), \
18568 xCM_ (m1, ls, m2, op, nops, ops, ae), \
18569 xCM_ (m1, ge, m2, op, nops, ops, ae), \
18570 xCM_ (m1, lt, m2, op, nops, ops, ae), \
18571 xCM_ (m1, gt, m2, op, nops, ops, ae), \
18572 xCM_ (m1, le, m2, op, nops, ops, ae), \
18573 xCM_ (m1, al, m2, op, nops, ops, ae)
18574
18575 #define UE(mnem, op, nops, ops, ae) \
18576 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
18577
18578 #define UF(mnem, op, nops, ops, ae) \
18579 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
18580
18581 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
18582 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
18583 use the same encoding function for each. */
18584 #define NUF(mnem, op, nops, ops, enc) \
18585 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
18586 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
18587
18588 /* Neon data processing, version which indirects through neon_enc_tab for
18589 the various overloaded versions of opcodes. */
18590 #define nUF(mnem, op, nops, ops, enc) \
18591 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
18592 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
18593
18594 /* Neon insn with conditional suffix for the ARM version, non-overloaded
18595 version. */
18596 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
18597 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
18598 THUMB_VARIANT, do_##enc, do_##enc }
18599
18600 #define NCE(mnem, op, nops, ops, enc) \
18601 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
18602
18603 #define NCEF(mnem, op, nops, ops, enc) \
18604 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
18605
18606 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
18607 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
18608 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
18609 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
18610
18611 #define nCE(mnem, op, nops, ops, enc) \
18612 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
18613
18614 #define nCEF(mnem, op, nops, ops, enc) \
18615 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
18616
18617 #define do_0 0
18618
18619 static const struct asm_opcode insns[] =
18620 {
18621 #define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
18622 #define THUMB_VARIANT & arm_ext_v4t
18623 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
18624 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
18625 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
18626 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
18627 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
18628 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
18629 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
18630 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
18631 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
18632 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
18633 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
18634 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
18635 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
18636 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
18637 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
18638 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
18639
18640 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
18641 for setting PSR flag bits. They are obsolete in V6 and do not
18642 have Thumb equivalents. */
18643 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
18644 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
18645 CL("tstp", 110f000, 2, (RR, SH), cmp),
18646 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
18647 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
18648 CL("cmpp", 150f000, 2, (RR, SH), cmp),
18649 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
18650 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
18651 CL("cmnp", 170f000, 2, (RR, SH), cmp),
18652
18653 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
18654 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
18655 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
18656 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
18657
18658 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
18659 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
18660 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
18661 OP_RRnpc),
18662 OP_ADDRGLDR),ldst, t_ldst),
18663 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
18664
18665 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18666 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18667 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18668 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18669 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18670 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18671
18672 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
18673 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
18674 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
18675 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
18676
18677 /* Pseudo ops. */
18678 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
18679 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
18680 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
18681 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
18682
18683 /* Thumb-compatibility pseudo ops. */
18684 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
18685 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
18686 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
18687 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
18688 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
18689 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
18690 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
18691 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
18692 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
18693 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
18694 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
18695 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
18696
18697 /* These may simplify to neg. */
18698 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
18699 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
18700
18701 #undef THUMB_VARIANT
18702 #define THUMB_VARIANT & arm_ext_v6
18703
18704 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
18705
18706 /* V1 instructions with no Thumb analogue prior to V6T2. */
18707 #undef THUMB_VARIANT
18708 #define THUMB_VARIANT & arm_ext_v6t2
18709
18710 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
18711 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
18712 CL("teqp", 130f000, 2, (RR, SH), cmp),
18713
18714 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
18715 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
18716 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
18717 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
18718
18719 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18720 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18721
18722 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18723 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18724
18725 /* V1 instructions with no Thumb analogue at all. */
18726 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
18727 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
18728
18729 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
18730 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
18731 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
18732 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
18733 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
18734 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
18735 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
18736 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
18737
18738 #undef ARM_VARIANT
18739 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
18740 #undef THUMB_VARIANT
18741 #define THUMB_VARIANT & arm_ext_v4t
18742
18743 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
18744 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
18745
18746 #undef THUMB_VARIANT
18747 #define THUMB_VARIANT & arm_ext_v6t2
18748
18749 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
18750 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
18751
18752 /* Generic coprocessor instructions. */
18753 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
18754 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18755 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18756 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18757 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18758 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
18759 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
18760
18761 #undef ARM_VARIANT
18762 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
18763
18764 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
18765 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
18766
18767 #undef ARM_VARIANT
18768 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
18769 #undef THUMB_VARIANT
18770 #define THUMB_VARIANT & arm_ext_msr
18771
18772 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
18773 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
18774
18775 #undef ARM_VARIANT
18776 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
18777 #undef THUMB_VARIANT
18778 #define THUMB_VARIANT & arm_ext_v6t2
18779
18780 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
18781 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
18782 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
18783 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
18784 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
18785 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
18786 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
18787 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
18788
18789 #undef ARM_VARIANT
18790 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
18791 #undef THUMB_VARIANT
18792 #define THUMB_VARIANT & arm_ext_v4t
18793
18794 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18795 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18796 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18797 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18798 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18799 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18800
18801 #undef ARM_VARIANT
18802 #define ARM_VARIANT & arm_ext_v4t_5
18803
18804 /* ARM Architecture 4T. */
18805 /* Note: bx (and blx) are required on V5, even if the processor does
18806 not support Thumb. */
18807 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
18808
18809 #undef ARM_VARIANT
18810 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
18811 #undef THUMB_VARIANT
18812 #define THUMB_VARIANT & arm_ext_v5t
18813
18814 /* Note: blx has 2 variants; the .value coded here is for
18815 BLX(2). Only this variant has conditional execution. */
18816 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
18817 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
18818
18819 #undef THUMB_VARIANT
18820 #define THUMB_VARIANT & arm_ext_v6t2
18821
18822 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
18823 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18824 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18825 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18826 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18827 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
18828 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
18829 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
18830
18831 #undef ARM_VARIANT
18832 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
18833 #undef THUMB_VARIANT
18834 #define THUMB_VARIANT & arm_ext_v5exp
18835
18836 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18837 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18838 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18839 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18840
18841 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18842 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18843
18844 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
18845 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
18846 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
18847 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
18848
18849 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18850 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18851 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18852 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18853
18854 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18855 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18856
18857 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
18858 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
18859 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
18860 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
18861
18862 #undef ARM_VARIANT
18863 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
18864 #undef THUMB_VARIANT
18865 #define THUMB_VARIANT & arm_ext_v6t2
18866
18867 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
18868 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
18869 ldrd, t_ldstd),
18870 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
18871 ADDRGLDRS), ldrd, t_ldstd),
18872
18873 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
18874 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
18875
18876 #undef ARM_VARIANT
18877 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
18878
18879 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
18880
18881 #undef ARM_VARIANT
18882 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
18883 #undef THUMB_VARIANT
18884 #define THUMB_VARIANT & arm_ext_v6
18885
18886 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
18887 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
18888 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
18889 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
18890 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
18891 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18892 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18893 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18894 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18895 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
18896
18897 #undef THUMB_VARIANT
18898 #define THUMB_VARIANT & arm_ext_v6t2
18899
18900 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
18901 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
18902 strex, t_strex),
18903 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
18904 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
18905
18906 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
18907 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
18908
18909 /* ARM V6 not included in V7M. */
18910 #undef THUMB_VARIANT
18911 #define THUMB_VARIANT & arm_ext_v6_notm
18912 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
18913 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
18914 UF(rfeib, 9900a00, 1, (RRw), rfe),
18915 UF(rfeda, 8100a00, 1, (RRw), rfe),
18916 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
18917 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
18918 UF(rfefa, 8100a00, 1, (RRw), rfe),
18919 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
18920 UF(rfeed, 9900a00, 1, (RRw), rfe),
18921 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
18922 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
18923 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
18924 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
18925 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
18926 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
18927 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
18928 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
18929 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
18930 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
18931
18932 /* ARM V6 not included in V7M (eg. integer SIMD). */
18933 #undef THUMB_VARIANT
18934 #define THUMB_VARIANT & arm_ext_v6_dsp
18935 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
18936 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
18937 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18938 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18939 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18940 /* Old name for QASX. */
18941 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18942 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18943 /* Old name for QSAX. */
18944 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18945 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18946 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18947 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18948 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18949 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18950 /* Old name for SASX. */
18951 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18952 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18953 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18954 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18955 /* Old name for SHASX. */
18956 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18957 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18958 /* Old name for SHSAX. */
18959 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18960 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18961 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18962 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18963 /* Old name for SSAX. */
18964 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18965 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18966 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18967 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18968 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18969 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18970 /* Old name for UASX. */
18971 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18972 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18973 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18974 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18975 /* Old name for UHASX. */
18976 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18977 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18978 /* Old name for UHSAX. */
18979 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18980 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18981 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18982 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18983 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18984 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18985 /* Old name for UQASX. */
18986 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18987 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18988 /* Old name for UQSAX. */
18989 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18990 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18991 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18992 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18993 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18994 /* Old name for USAX. */
18995 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18996 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18997 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18998 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18999 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19000 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19001 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19002 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19003 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19004 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19005 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19006 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19007 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19008 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
19009 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
19010 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19011 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19012 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
19013 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
19014 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19015 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19016 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19017 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19018 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19019 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19020 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19021 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19022 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19023 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19024 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
19025 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
19026 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19027 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19028 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
19029
19030 #undef ARM_VARIANT
19031 #define ARM_VARIANT & arm_ext_v6k
19032 #undef THUMB_VARIANT
19033 #define THUMB_VARIANT & arm_ext_v6k
19034
19035 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
19036 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
19037 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
19038 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
19039
19040 #undef THUMB_VARIANT
19041 #define THUMB_VARIANT & arm_ext_v6_notm
19042 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
19043 ldrexd, t_ldrexd),
19044 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
19045 RRnpcb), strexd, t_strexd),
19046
19047 #undef THUMB_VARIANT
19048 #define THUMB_VARIANT & arm_ext_v6t2
19049 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
19050 rd_rn, rd_rn),
19051 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
19052 rd_rn, rd_rn),
19053 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
19054 strex, t_strexbh),
19055 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
19056 strex, t_strexbh),
19057 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
19058
19059 #undef ARM_VARIANT
19060 #define ARM_VARIANT & arm_ext_sec
19061 #undef THUMB_VARIANT
19062 #define THUMB_VARIANT & arm_ext_sec
19063
19064 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
19065
19066 #undef ARM_VARIANT
19067 #define ARM_VARIANT & arm_ext_virt
19068 #undef THUMB_VARIANT
19069 #define THUMB_VARIANT & arm_ext_virt
19070
19071 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
19072 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
19073
19074 #undef ARM_VARIANT
19075 #define ARM_VARIANT & arm_ext_pan
19076 #undef THUMB_VARIANT
19077 #define THUMB_VARIANT & arm_ext_pan
19078
19079 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
19080
19081 #undef ARM_VARIANT
19082 #define ARM_VARIANT & arm_ext_v6t2
19083 #undef THUMB_VARIANT
19084 #define THUMB_VARIANT & arm_ext_v6t2
19085
19086 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
19087 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
19088 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
19089 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
19090
19091 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
19092 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
19093 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
19094 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
19095
19096 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
19097 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
19098 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
19099 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
19100
19101 /* Thumb-only instructions. */
19102 #undef ARM_VARIANT
19103 #define ARM_VARIANT NULL
19104 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
19105 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
19106
19107 /* ARM does not really have an IT instruction, so always allow it.
19108 The opcode is copied from Thumb in order to allow warnings in
19109 -mimplicit-it=[never | arm] modes. */
19110 #undef ARM_VARIANT
19111 #define ARM_VARIANT & arm_ext_v1
19112
19113 TUE("it", bf08, bf08, 1, (COND), it, t_it),
19114 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
19115 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
19116 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
19117 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
19118 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
19119 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
19120 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
19121 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
19122 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
19123 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
19124 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
19125 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
19126 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
19127 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
19128 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
19129 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
19130 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
19131
19132 /* Thumb2 only instructions. */
19133 #undef ARM_VARIANT
19134 #define ARM_VARIANT NULL
19135
19136 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
19137 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
19138 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
19139 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
19140 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
19141 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
19142
19143 /* Hardware division instructions. */
19144 #undef ARM_VARIANT
19145 #define ARM_VARIANT & arm_ext_adiv
19146 #undef THUMB_VARIANT
19147 #define THUMB_VARIANT & arm_ext_div
19148
19149 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
19150 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
19151
19152 /* ARM V6M/V7 instructions. */
19153 #undef ARM_VARIANT
19154 #define ARM_VARIANT & arm_ext_barrier
19155 #undef THUMB_VARIANT
19156 #define THUMB_VARIANT & arm_ext_barrier
19157
19158 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
19159 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
19160 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
19161
19162 /* ARM V7 instructions. */
19163 #undef ARM_VARIANT
19164 #define ARM_VARIANT & arm_ext_v7
19165 #undef THUMB_VARIANT
19166 #define THUMB_VARIANT & arm_ext_v7
19167
19168 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
19169 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
19170
19171 #undef ARM_VARIANT
19172 #define ARM_VARIANT & arm_ext_mp
19173 #undef THUMB_VARIANT
19174 #define THUMB_VARIANT & arm_ext_mp
19175
19176 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
19177
19178 /* AArchv8 instructions. */
19179 #undef ARM_VARIANT
19180 #define ARM_VARIANT & arm_ext_v8
19181 #undef THUMB_VARIANT
19182 #define THUMB_VARIANT & arm_ext_v8
19183
19184 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
19185 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
19186 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
19187 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
19188 ldrexd, t_ldrexd),
19189 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
19190 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
19191 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
19192 stlex, t_stlex),
19193 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
19194 strexd, t_strexd),
19195 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
19196 stlex, t_stlex),
19197 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
19198 stlex, t_stlex),
19199 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
19200 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
19201 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
19202 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
19203 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
19204 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
19205
19206 /* ARMv8 T32 only. */
19207 #undef ARM_VARIANT
19208 #define ARM_VARIANT NULL
19209 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
19210 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
19211 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
19212
19213 /* FP for ARMv8. */
19214 #undef ARM_VARIANT
19215 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
19216 #undef THUMB_VARIANT
19217 #define THUMB_VARIANT & fpu_vfp_ext_armv8xd
19218
19219 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
19220 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
19221 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
19222 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
19223 nUF(vmaxnm, _vmaxnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
19224 nUF(vminnm, _vminnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
19225 nUF(vcvta, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvta),
19226 nUF(vcvtn, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtn),
19227 nUF(vcvtp, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtp),
19228 nUF(vcvtm, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtm),
19229 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
19230 nCE(vrintz, _vrintr, 2, (RNSDQ, oRNSDQ), vrintz),
19231 nCE(vrintx, _vrintr, 2, (RNSDQ, oRNSDQ), vrintx),
19232 nUF(vrinta, _vrinta, 2, (RNSDQ, oRNSDQ), vrinta),
19233 nUF(vrintn, _vrinta, 2, (RNSDQ, oRNSDQ), vrintn),
19234 nUF(vrintp, _vrinta, 2, (RNSDQ, oRNSDQ), vrintp),
19235 nUF(vrintm, _vrinta, 2, (RNSDQ, oRNSDQ), vrintm),
19236
19237 /* Crypto v1 extensions. */
19238 #undef ARM_VARIANT
19239 #define ARM_VARIANT & fpu_crypto_ext_armv8
19240 #undef THUMB_VARIANT
19241 #define THUMB_VARIANT & fpu_crypto_ext_armv8
19242
19243 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
19244 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
19245 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
19246 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
19247 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
19248 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
19249 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
19250 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
19251 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
19252 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
19253 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
19254 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
19255 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
19256 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
19257
19258 #undef ARM_VARIANT
19259 #define ARM_VARIANT & crc_ext_armv8
19260 #undef THUMB_VARIANT
19261 #define THUMB_VARIANT & crc_ext_armv8
19262 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
19263 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
19264 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
19265 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
19266 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
19267 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
19268
19269 #undef ARM_VARIANT
19270 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
19271 #undef THUMB_VARIANT
19272 #define THUMB_VARIANT NULL
19273
19274 cCE("wfs", e200110, 1, (RR), rd),
19275 cCE("rfs", e300110, 1, (RR), rd),
19276 cCE("wfc", e400110, 1, (RR), rd),
19277 cCE("rfc", e500110, 1, (RR), rd),
19278
19279 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
19280 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
19281 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
19282 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
19283
19284 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
19285 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
19286 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
19287 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
19288
19289 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
19290 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
19291 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
19292 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
19293 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
19294 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
19295 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
19296 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
19297 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
19298 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
19299 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
19300 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
19301
19302 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
19303 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
19304 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
19305 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
19306 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
19307 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
19308 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
19309 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
19310 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
19311 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
19312 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
19313 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
19314
19315 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
19316 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
19317 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
19318 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
19319 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
19320 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
19321 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
19322 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
19323 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
19324 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
19325 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
19326 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
19327
19328 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
19329 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
19330 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
19331 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
19332 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
19333 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
19334 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
19335 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
19336 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
19337 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
19338 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
19339 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
19340
19341 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
19342 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
19343 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
19344 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
19345 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
19346 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
19347 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
19348 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
19349 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
19350 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
19351 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
19352 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
19353
19354 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
19355 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
19356 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
19357 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
19358 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
19359 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
19360 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
19361 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
19362 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
19363 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
19364 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
19365 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
19366
19367 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
19368 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
19369 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
19370 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
19371 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
19372 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
19373 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
19374 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
19375 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
19376 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
19377 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
19378 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
19379
19380 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
19381 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
19382 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
19383 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
19384 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
19385 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
19386 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
19387 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
19388 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
19389 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
19390 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
19391 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
19392
19393 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
19394 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
19395 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
19396 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
19397 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
19398 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
19399 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
19400 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
19401 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
19402 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
19403 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
19404 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
19405
19406 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
19407 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
19408 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
19409 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
19410 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
19411 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
19412 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
19413 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
19414 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
19415 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
19416 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
19417 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
19418
19419 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
19420 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
19421 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
19422 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
19423 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
19424 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
19425 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
19426 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
19427 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
19428 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
19429 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
19430 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
19431
19432 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
19433 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
19434 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
19435 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
19436 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
19437 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
19438 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
19439 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
19440 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
19441 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
19442 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
19443 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
19444
19445 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
19446 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
19447 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
19448 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
19449 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
19450 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
19451 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
19452 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
19453 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
19454 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
19455 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
19456 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
19457
19458 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
19459 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
19460 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
19461 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
19462 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
19463 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
19464 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
19465 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
19466 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
19467 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
19468 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
19469 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
19470
19471 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
19472 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
19473 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
19474 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
19475 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
19476 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
19477 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
19478 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
19479 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
19480 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
19481 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
19482 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
19483
19484 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
19485 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
19486 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
19487 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
19488 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
19489 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
19490 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
19491 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
19492 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
19493 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
19494 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
19495 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
19496
19497 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
19498 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
19499 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
19500 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
19501 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
19502 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19503 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19504 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19505 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
19506 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
19507 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
19508 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
19509
19510 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
19511 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
19512 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
19513 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
19514 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
19515 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19516 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19517 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19518 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
19519 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
19520 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
19521 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
19522
19523 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
19524 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
19525 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
19526 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
19527 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
19528 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19529 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19530 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19531 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
19532 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
19533 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
19534 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
19535
19536 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
19537 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
19538 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
19539 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
19540 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
19541 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19542 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19543 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19544 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
19545 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
19546 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
19547 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
19548
19549 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
19550 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
19551 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
19552 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
19553 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
19554 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19555 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19556 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19557 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
19558 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
19559 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
19560 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
19561
19562 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
19563 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
19564 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
19565 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
19566 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
19567 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19568 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19569 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19570 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
19571 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
19572 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
19573 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
19574
19575 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
19576 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
19577 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
19578 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
19579 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
19580 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19581 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19582 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19583 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
19584 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
19585 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
19586 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
19587
19588 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
19589 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
19590 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
19591 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
19592 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
19593 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19594 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19595 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19596 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
19597 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
19598 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
19599 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
19600
19601 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
19602 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
19603 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
19604 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
19605 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
19606 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19607 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19608 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19609 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
19610 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
19611 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
19612 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
19613
19614 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
19615 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
19616 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
19617 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
19618 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
19619 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19620 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19621 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19622 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
19623 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
19624 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
19625 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
19626
19627 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
19628 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
19629 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
19630 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
19631 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
19632 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19633 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19634 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19635 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
19636 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
19637 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
19638 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
19639
19640 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
19641 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
19642 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
19643 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
19644 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
19645 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19646 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19647 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19648 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
19649 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
19650 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
19651 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
19652
19653 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
19654 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
19655 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
19656 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
19657 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
19658 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19659 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19660 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19661 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
19662 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
19663 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
19664 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
19665
19666 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
19667 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
19668 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
19669 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
19670
19671 cCL("flts", e000110, 2, (RF, RR), rn_rd),
19672 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
19673 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
19674 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
19675 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
19676 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
19677 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
19678 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
19679 cCL("flte", e080110, 2, (RF, RR), rn_rd),
19680 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
19681 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
19682 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
19683
19684 /* The implementation of the FIX instruction is broken on some
19685 assemblers, in that it accepts a precision specifier as well as a
19686 rounding specifier, despite the fact that this is meaningless.
19687 To be more compatible, we accept it as well, though of course it
19688 does not set any bits. */
19689 cCE("fix", e100110, 2, (RR, RF), rd_rm),
19690 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
19691 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
19692 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
19693 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
19694 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
19695 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
19696 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
19697 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
19698 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
19699 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
19700 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
19701 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
19702
19703 /* Instructions that were new with the real FPA, call them V2. */
19704 #undef ARM_VARIANT
19705 #define ARM_VARIANT & fpu_fpa_ext_v2
19706
19707 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
19708 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
19709 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
19710 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
19711 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
19712 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
19713
19714 #undef ARM_VARIANT
19715 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
19716
19717 /* Moves and type conversions. */
19718 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
19719 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
19720 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
19721 cCE("fmstat", ef1fa10, 0, (), noargs),
19722 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
19723 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
19724 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
19725 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
19726 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
19727 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
19728 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
19729 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
19730 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
19731 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
19732
19733 /* Memory operations. */
19734 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
19735 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
19736 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
19737 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
19738 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
19739 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
19740 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
19741 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
19742 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
19743 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
19744 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
19745 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
19746 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
19747 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
19748 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
19749 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
19750 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
19751 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
19752
19753 /* Monadic operations. */
19754 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
19755 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
19756 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
19757
19758 /* Dyadic operations. */
19759 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19760 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19761 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19762 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19763 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19764 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19765 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19766 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19767 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19768
19769 /* Comparisons. */
19770 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
19771 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
19772 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
19773 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
19774
19775 /* Double precision load/store are still present on single precision
19776 implementations. */
19777 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
19778 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
19779 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
19780 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
19781 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
19782 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
19783 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
19784 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
19785 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
19786 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
19787
19788 #undef ARM_VARIANT
19789 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
19790
19791 /* Moves and type conversions. */
19792 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
19793 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
19794 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
19795 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
19796 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
19797 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
19798 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
19799 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
19800 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
19801 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
19802 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
19803 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
19804 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
19805
19806 /* Monadic operations. */
19807 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
19808 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
19809 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
19810
19811 /* Dyadic operations. */
19812 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19813 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19814 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19815 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19816 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19817 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19818 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19819 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19820 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19821
19822 /* Comparisons. */
19823 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
19824 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
19825 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
19826 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
19827
19828 #undef ARM_VARIANT
19829 #define ARM_VARIANT & fpu_vfp_ext_v2
19830
19831 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
19832 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
19833 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
19834 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
19835
19836 /* Instructions which may belong to either the Neon or VFP instruction sets.
19837 Individual encoder functions perform additional architecture checks. */
19838 #undef ARM_VARIANT
19839 #define ARM_VARIANT & fpu_vfp_ext_v1xd
19840 #undef THUMB_VARIANT
19841 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
19842
19843 /* These mnemonics are unique to VFP. */
19844 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
19845 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
19846 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19847 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19848 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19849 nCE(vcmp, _vcmp, 2, (RVSD, RSVD_FI0), vfp_nsyn_cmp),
19850 nCE(vcmpe, _vcmpe, 2, (RVSD, RSVD_FI0), vfp_nsyn_cmp),
19851 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
19852 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
19853 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
19854
19855 /* Mnemonics shared by Neon and VFP. */
19856 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
19857 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
19858 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
19859
19860 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
19861 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
19862
19863 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
19864 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
19865
19866 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19867 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19868 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19869 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19870 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19871 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19872 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
19873 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
19874
19875 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32z), neon_cvt),
19876 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
19877 NCEF(vcvtb, eb20a40, 2, (RVSD, RVSD), neon_cvtb),
19878 NCEF(vcvtt, eb20a40, 2, (RVSD, RVSD), neon_cvtt),
19879
19880
19881 /* NOTE: All VMOV encoding is special-cased! */
19882 NCE(vmov, 0, 1, (VMOV), neon_mov),
19883 NCE(vmovq, 0, 1, (VMOV), neon_mov),
19884
19885 #undef THUMB_VARIANT
19886 #define THUMB_VARIANT & fpu_neon_ext_v1
19887 #undef ARM_VARIANT
19888 #define ARM_VARIANT & fpu_neon_ext_v1
19889
19890 /* Data processing with three registers of the same length. */
19891 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
19892 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
19893 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
19894 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
19895 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
19896 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
19897 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
19898 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
19899 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
19900 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
19901 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
19902 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
19903 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
19904 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
19905 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
19906 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
19907 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
19908 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
19909 /* If not immediate, fall back to neon_dyadic_i64_su.
19910 shl_imm should accept I8 I16 I32 I64,
19911 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
19912 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
19913 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
19914 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
19915 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
19916 /* Logic ops, types optional & ignored. */
19917 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
19918 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
19919 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
19920 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
19921 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
19922 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
19923 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
19924 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
19925 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
19926 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
19927 /* Bitfield ops, untyped. */
19928 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
19929 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
19930 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
19931 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
19932 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
19933 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
19934 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
19935 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
19936 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
19937 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
19938 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
19939 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
19940 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
19941 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
19942 back to neon_dyadic_if_su. */
19943 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
19944 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
19945 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
19946 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
19947 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
19948 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
19949 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
19950 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
19951 /* Comparison. Type I8 I16 I32 F32. */
19952 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
19953 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
19954 /* As above, D registers only. */
19955 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
19956 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
19957 /* Int and float variants, signedness unimportant. */
19958 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
19959 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
19960 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
19961 /* Add/sub take types I8 I16 I32 I64 F32. */
19962 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
19963 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
19964 /* vtst takes sizes 8, 16, 32. */
19965 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
19966 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
19967 /* VMUL takes I8 I16 I32 F32 P8. */
19968 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
19969 /* VQD{R}MULH takes S16 S32. */
19970 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
19971 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
19972 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
19973 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
19974 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
19975 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
19976 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
19977 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
19978 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
19979 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
19980 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
19981 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
19982 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
19983 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
19984 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
19985 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
19986 /* ARM v8.1 extension. */
19987 nUF(vqrdmlah, _vqrdmlah, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
19988 nUF(vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
19989 nUF(vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
19990 nUF(vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
19991
19992 /* Two address, int/float. Types S8 S16 S32 F32. */
19993 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
19994 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
19995
19996 /* Data processing with two registers and a shift amount. */
19997 /* Right shifts, and variants with rounding.
19998 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
19999 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
20000 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
20001 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
20002 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
20003 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
20004 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
20005 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
20006 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
20007 /* Shift and insert. Sizes accepted 8 16 32 64. */
20008 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
20009 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
20010 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
20011 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
20012 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
20013 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
20014 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
20015 /* Right shift immediate, saturating & narrowing, with rounding variants.
20016 Types accepted S16 S32 S64 U16 U32 U64. */
20017 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
20018 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
20019 /* As above, unsigned. Types accepted S16 S32 S64. */
20020 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
20021 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
20022 /* Right shift narrowing. Types accepted I16 I32 I64. */
20023 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
20024 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
20025 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
20026 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
20027 /* CVT with optional immediate for fixed-point variant. */
20028 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
20029
20030 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
20031 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
20032
20033 /* Data processing, three registers of different lengths. */
20034 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
20035 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
20036 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
20037 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
20038 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
20039 /* If not scalar, fall back to neon_dyadic_long.
20040 Vector types as above, scalar types S16 S32 U16 U32. */
20041 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
20042 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
20043 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
20044 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
20045 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
20046 /* Dyadic, narrowing insns. Types I16 I32 I64. */
20047 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
20048 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
20049 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
20050 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
20051 /* Saturating doubling multiplies. Types S16 S32. */
20052 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
20053 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
20054 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
20055 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
20056 S16 S32 U16 U32. */
20057 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
20058
20059 /* Extract. Size 8. */
20060 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
20061 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
20062
20063 /* Two registers, miscellaneous. */
20064 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
20065 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
20066 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
20067 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
20068 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
20069 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
20070 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
20071 /* Vector replicate. Sizes 8 16 32. */
20072 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
20073 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
20074 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
20075 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
20076 /* VMOVN. Types I16 I32 I64. */
20077 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
20078 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
20079 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
20080 /* VQMOVUN. Types S16 S32 S64. */
20081 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
20082 /* VZIP / VUZP. Sizes 8 16 32. */
20083 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
20084 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
20085 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
20086 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
20087 /* VQABS / VQNEG. Types S8 S16 S32. */
20088 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
20089 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
20090 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
20091 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
20092 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
20093 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
20094 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
20095 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
20096 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
20097 /* Reciprocal estimates. Types U32 F32. */
20098 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
20099 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
20100 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
20101 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
20102 /* VCLS. Types S8 S16 S32. */
20103 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
20104 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
20105 /* VCLZ. Types I8 I16 I32. */
20106 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
20107 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
20108 /* VCNT. Size 8. */
20109 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
20110 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
20111 /* Two address, untyped. */
20112 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
20113 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
20114 /* VTRN. Sizes 8 16 32. */
20115 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
20116 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
20117
20118 /* Table lookup. Size 8. */
20119 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
20120 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
20121
20122 #undef THUMB_VARIANT
20123 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
20124 #undef ARM_VARIANT
20125 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
20126
20127 /* Neon element/structure load/store. */
20128 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
20129 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
20130 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
20131 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
20132 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
20133 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
20134 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
20135 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
20136
20137 #undef THUMB_VARIANT
20138 #define THUMB_VARIANT & fpu_vfp_ext_v3xd
20139 #undef ARM_VARIANT
20140 #define ARM_VARIANT & fpu_vfp_ext_v3xd
20141 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
20142 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
20143 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
20144 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
20145 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
20146 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
20147 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
20148 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
20149 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
20150
20151 #undef THUMB_VARIANT
20152 #define THUMB_VARIANT & fpu_vfp_ext_v3
20153 #undef ARM_VARIANT
20154 #define ARM_VARIANT & fpu_vfp_ext_v3
20155
20156 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
20157 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
20158 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
20159 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
20160 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
20161 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
20162 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
20163 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
20164 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
20165
20166 #undef ARM_VARIANT
20167 #define ARM_VARIANT & fpu_vfp_ext_fma
20168 #undef THUMB_VARIANT
20169 #define THUMB_VARIANT & fpu_vfp_ext_fma
20170 /* Mnemonics shared by Neon and VFP. These are included in the
20171 VFP FMA variant; NEON and VFP FMA always includes the NEON
20172 FMA instructions. */
20173 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
20174 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
20175 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
20176 the v form should always be used. */
20177 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20178 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20179 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20180 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20181 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
20182 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
20183
20184 #undef THUMB_VARIANT
20185 #undef ARM_VARIANT
20186 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
20187
20188 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
20189 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
20190 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
20191 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
20192 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
20193 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
20194 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
20195 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
20196
20197 #undef ARM_VARIANT
20198 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
20199
20200 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
20201 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
20202 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
20203 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
20204 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
20205 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
20206 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
20207 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
20208 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
20209 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
20210 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
20211 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
20212 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
20213 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
20214 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
20215 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
20216 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
20217 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
20218 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
20219 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
20220 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
20221 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
20222 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
20223 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
20224 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
20225 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
20226 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
20227 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
20228 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
20229 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
20230 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
20231 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
20232 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
20233 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
20234 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
20235 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
20236 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
20237 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20238 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20239 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20240 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20241 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20242 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20243 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20244 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20245 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20246 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
20247 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20248 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20249 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20250 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20251 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20252 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20253 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20254 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20255 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20256 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20257 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20258 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20259 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20260 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20261 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20262 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20263 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20264 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20265 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20266 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
20267 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
20268 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
20269 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
20270 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20271 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20272 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20273 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20274 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20275 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20276 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20277 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20278 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20279 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20280 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20281 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20282 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20283 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20284 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20285 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20286 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20287 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20288 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
20289 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20290 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20291 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20292 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20293 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20294 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20295 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20296 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20297 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20298 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20299 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20300 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20301 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20302 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20303 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20304 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20305 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20306 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20307 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20308 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20309 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20310 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
20311 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20312 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20313 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20314 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20315 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20316 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20317 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20318 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20319 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20320 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20321 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20322 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20323 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20324 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20325 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20326 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20327 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20328 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20329 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
20330 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
20331 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
20332 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
20333 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20334 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20335 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20336 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20337 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20338 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20339 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20340 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20341 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20342 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
20343 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
20344 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
20345 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
20346 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
20347 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
20348 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20349 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20350 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20351 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
20352 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
20353 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
20354 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
20355 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
20356 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
20357 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20358 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20359 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20360 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20361 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
20362
20363 #undef ARM_VARIANT
20364 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
20365
20366 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
20367 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
20368 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
20369 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
20370 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
20371 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
20372 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20373 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20374 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20375 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20376 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20377 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20378 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20379 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20380 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20381 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20382 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20383 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20384 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20385 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20386 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
20387 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20388 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20389 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20390 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20391 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20392 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20393 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20394 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20395 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20396 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20397 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20398 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20399 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20400 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20401 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20402 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20403 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20404 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20405 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20406 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20407 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20408 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20409 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20410 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20411 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20412 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20413 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20414 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20415 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20416 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20417 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20418 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20419 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20420 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20421 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20422 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20423
20424 #undef ARM_VARIANT
20425 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
20426
20427 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
20428 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
20429 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
20430 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
20431 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
20432 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
20433 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
20434 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
20435 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
20436 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
20437 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
20438 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
20439 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
20440 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
20441 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
20442 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
20443 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
20444 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
20445 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
20446 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
20447 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
20448 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
20449 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
20450 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
20451 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
20452 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
20453 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
20454 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
20455 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
20456 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
20457 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
20458 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
20459 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
20460 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
20461 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
20462 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
20463 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
20464 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
20465 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
20466 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
20467 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
20468 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
20469 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
20470 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
20471 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
20472 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
20473 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
20474 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
20475 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
20476 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
20477 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
20478 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
20479 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
20480 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
20481 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
20482 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
20483 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
20484 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
20485 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
20486 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
20487 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
20488 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
20489 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
20490 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
20491 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
20492 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
20493 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
20494 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
20495 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
20496 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
20497 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
20498 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
20499 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
20500 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
20501 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
20502 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
20503 };
20504 #undef ARM_VARIANT
20505 #undef THUMB_VARIANT
20506 #undef TCE
20507 #undef TUE
20508 #undef TUF
20509 #undef TCC
20510 #undef cCE
20511 #undef cCL
20512 #undef C3E
20513 #undef CE
20514 #undef CM
20515 #undef UE
20516 #undef UF
20517 #undef UT
20518 #undef NUF
20519 #undef nUF
20520 #undef NCE
20521 #undef nCE
20522 #undef OPS0
20523 #undef OPS1
20524 #undef OPS2
20525 #undef OPS3
20526 #undef OPS4
20527 #undef OPS5
20528 #undef OPS6
20529 #undef do_0
20530 \f
20531 /* MD interface: bits in the object file. */
20532
20533 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
20534 for use in the a.out file, and stores them in the array pointed to by buf.
20535 This knows about the endian-ness of the target machine and does
20536 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
20537 2 (short) and 4 (long) Floating numbers are put out as a series of
20538 LITTLENUMS (shorts, here at least). */
20539
20540 void
20541 md_number_to_chars (char * buf, valueT val, int n)
20542 {
20543 if (target_big_endian)
20544 number_to_chars_bigendian (buf, val, n);
20545 else
20546 number_to_chars_littleendian (buf, val, n);
20547 }
20548
20549 static valueT
20550 md_chars_to_number (char * buf, int n)
20551 {
20552 valueT result = 0;
20553 unsigned char * where = (unsigned char *) buf;
20554
20555 if (target_big_endian)
20556 {
20557 while (n--)
20558 {
20559 result <<= 8;
20560 result |= (*where++ & 255);
20561 }
20562 }
20563 else
20564 {
20565 while (n--)
20566 {
20567 result <<= 8;
20568 result |= (where[n] & 255);
20569 }
20570 }
20571
20572 return result;
20573 }
20574
20575 /* MD interface: Sections. */
20576
20577 /* Calculate the maximum variable size (i.e., excluding fr_fix)
20578 that an rs_machine_dependent frag may reach. */
20579
20580 unsigned int
20581 arm_frag_max_var (fragS *fragp)
20582 {
20583 /* We only use rs_machine_dependent for variable-size Thumb instructions,
20584 which are either THUMB_SIZE (2) or INSN_SIZE (4).
20585
20586 Note that we generate relaxable instructions even for cases that don't
20587 really need it, like an immediate that's a trivial constant. So we're
20588 overestimating the instruction size for some of those cases. Rather
20589 than putting more intelligence here, it would probably be better to
20590 avoid generating a relaxation frag in the first place when it can be
20591 determined up front that a short instruction will suffice. */
20592
20593 gas_assert (fragp->fr_type == rs_machine_dependent);
20594 return INSN_SIZE;
20595 }
20596
20597 /* Estimate the size of a frag before relaxing. Assume everything fits in
20598 2 bytes. */
20599
20600 int
20601 md_estimate_size_before_relax (fragS * fragp,
20602 segT segtype ATTRIBUTE_UNUSED)
20603 {
20604 fragp->fr_var = 2;
20605 return 2;
20606 }
20607
20608 /* Convert a machine dependent frag. */
20609
20610 void
20611 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
20612 {
20613 unsigned long insn;
20614 unsigned long old_op;
20615 char *buf;
20616 expressionS exp;
20617 fixS *fixp;
20618 int reloc_type;
20619 int pc_rel;
20620 int opcode;
20621
20622 buf = fragp->fr_literal + fragp->fr_fix;
20623
20624 old_op = bfd_get_16(abfd, buf);
20625 if (fragp->fr_symbol)
20626 {
20627 exp.X_op = O_symbol;
20628 exp.X_add_symbol = fragp->fr_symbol;
20629 }
20630 else
20631 {
20632 exp.X_op = O_constant;
20633 }
20634 exp.X_add_number = fragp->fr_offset;
20635 opcode = fragp->fr_subtype;
20636 switch (opcode)
20637 {
20638 case T_MNEM_ldr_pc:
20639 case T_MNEM_ldr_pc2:
20640 case T_MNEM_ldr_sp:
20641 case T_MNEM_str_sp:
20642 case T_MNEM_ldr:
20643 case T_MNEM_ldrb:
20644 case T_MNEM_ldrh:
20645 case T_MNEM_str:
20646 case T_MNEM_strb:
20647 case T_MNEM_strh:
20648 if (fragp->fr_var == 4)
20649 {
20650 insn = THUMB_OP32 (opcode);
20651 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
20652 {
20653 insn |= (old_op & 0x700) << 4;
20654 }
20655 else
20656 {
20657 insn |= (old_op & 7) << 12;
20658 insn |= (old_op & 0x38) << 13;
20659 }
20660 insn |= 0x00000c00;
20661 put_thumb32_insn (buf, insn);
20662 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
20663 }
20664 else
20665 {
20666 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
20667 }
20668 pc_rel = (opcode == T_MNEM_ldr_pc2);
20669 break;
20670 case T_MNEM_adr:
20671 if (fragp->fr_var == 4)
20672 {
20673 insn = THUMB_OP32 (opcode);
20674 insn |= (old_op & 0xf0) << 4;
20675 put_thumb32_insn (buf, insn);
20676 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
20677 }
20678 else
20679 {
20680 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
20681 exp.X_add_number -= 4;
20682 }
20683 pc_rel = 1;
20684 break;
20685 case T_MNEM_mov:
20686 case T_MNEM_movs:
20687 case T_MNEM_cmp:
20688 case T_MNEM_cmn:
20689 if (fragp->fr_var == 4)
20690 {
20691 int r0off = (opcode == T_MNEM_mov
20692 || opcode == T_MNEM_movs) ? 0 : 8;
20693 insn = THUMB_OP32 (opcode);
20694 insn = (insn & 0xe1ffffff) | 0x10000000;
20695 insn |= (old_op & 0x700) << r0off;
20696 put_thumb32_insn (buf, insn);
20697 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
20698 }
20699 else
20700 {
20701 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
20702 }
20703 pc_rel = 0;
20704 break;
20705 case T_MNEM_b:
20706 if (fragp->fr_var == 4)
20707 {
20708 insn = THUMB_OP32(opcode);
20709 put_thumb32_insn (buf, insn);
20710 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
20711 }
20712 else
20713 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
20714 pc_rel = 1;
20715 break;
20716 case T_MNEM_bcond:
20717 if (fragp->fr_var == 4)
20718 {
20719 insn = THUMB_OP32(opcode);
20720 insn |= (old_op & 0xf00) << 14;
20721 put_thumb32_insn (buf, insn);
20722 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
20723 }
20724 else
20725 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
20726 pc_rel = 1;
20727 break;
20728 case T_MNEM_add_sp:
20729 case T_MNEM_add_pc:
20730 case T_MNEM_inc_sp:
20731 case T_MNEM_dec_sp:
20732 if (fragp->fr_var == 4)
20733 {
20734 /* ??? Choose between add and addw. */
20735 insn = THUMB_OP32 (opcode);
20736 insn |= (old_op & 0xf0) << 4;
20737 put_thumb32_insn (buf, insn);
20738 if (opcode == T_MNEM_add_pc)
20739 reloc_type = BFD_RELOC_ARM_T32_IMM12;
20740 else
20741 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
20742 }
20743 else
20744 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
20745 pc_rel = 0;
20746 break;
20747
20748 case T_MNEM_addi:
20749 case T_MNEM_addis:
20750 case T_MNEM_subi:
20751 case T_MNEM_subis:
20752 if (fragp->fr_var == 4)
20753 {
20754 insn = THUMB_OP32 (opcode);
20755 insn |= (old_op & 0xf0) << 4;
20756 insn |= (old_op & 0xf) << 16;
20757 put_thumb32_insn (buf, insn);
20758 if (insn & (1 << 20))
20759 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
20760 else
20761 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
20762 }
20763 else
20764 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
20765 pc_rel = 0;
20766 break;
20767 default:
20768 abort ();
20769 }
20770 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
20771 (enum bfd_reloc_code_real) reloc_type);
20772 fixp->fx_file = fragp->fr_file;
20773 fixp->fx_line = fragp->fr_line;
20774 fragp->fr_fix += fragp->fr_var;
20775
20776 /* Set whether we use thumb-2 ISA based on final relaxation results. */
20777 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
20778 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
20779 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
20780 }
20781
20782 /* Return the size of a relaxable immediate operand instruction.
20783 SHIFT and SIZE specify the form of the allowable immediate. */
20784 static int
20785 relax_immediate (fragS *fragp, int size, int shift)
20786 {
20787 offsetT offset;
20788 offsetT mask;
20789 offsetT low;
20790
20791 /* ??? Should be able to do better than this. */
20792 if (fragp->fr_symbol)
20793 return 4;
20794
20795 low = (1 << shift) - 1;
20796 mask = (1 << (shift + size)) - (1 << shift);
20797 offset = fragp->fr_offset;
20798 /* Force misaligned offsets to 32-bit variant. */
20799 if (offset & low)
20800 return 4;
20801 if (offset & ~mask)
20802 return 4;
20803 return 2;
20804 }
20805
20806 /* Get the address of a symbol during relaxation. */
20807 static addressT
20808 relaxed_symbol_addr (fragS *fragp, long stretch)
20809 {
20810 fragS *sym_frag;
20811 addressT addr;
20812 symbolS *sym;
20813
20814 sym = fragp->fr_symbol;
20815 sym_frag = symbol_get_frag (sym);
20816 know (S_GET_SEGMENT (sym) != absolute_section
20817 || sym_frag == &zero_address_frag);
20818 addr = S_GET_VALUE (sym) + fragp->fr_offset;
20819
20820 /* If frag has yet to be reached on this pass, assume it will
20821 move by STRETCH just as we did. If this is not so, it will
20822 be because some frag between grows, and that will force
20823 another pass. */
20824
20825 if (stretch != 0
20826 && sym_frag->relax_marker != fragp->relax_marker)
20827 {
20828 fragS *f;
20829
20830 /* Adjust stretch for any alignment frag. Note that if have
20831 been expanding the earlier code, the symbol may be
20832 defined in what appears to be an earlier frag. FIXME:
20833 This doesn't handle the fr_subtype field, which specifies
20834 a maximum number of bytes to skip when doing an
20835 alignment. */
20836 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
20837 {
20838 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
20839 {
20840 if (stretch < 0)
20841 stretch = - ((- stretch)
20842 & ~ ((1 << (int) f->fr_offset) - 1));
20843 else
20844 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
20845 if (stretch == 0)
20846 break;
20847 }
20848 }
20849 if (f != NULL)
20850 addr += stretch;
20851 }
20852
20853 return addr;
20854 }
20855
20856 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
20857 load. */
20858 static int
20859 relax_adr (fragS *fragp, asection *sec, long stretch)
20860 {
20861 addressT addr;
20862 offsetT val;
20863
20864 /* Assume worst case for symbols not known to be in the same section. */
20865 if (fragp->fr_symbol == NULL
20866 || !S_IS_DEFINED (fragp->fr_symbol)
20867 || sec != S_GET_SEGMENT (fragp->fr_symbol)
20868 || S_IS_WEAK (fragp->fr_symbol))
20869 return 4;
20870
20871 val = relaxed_symbol_addr (fragp, stretch);
20872 addr = fragp->fr_address + fragp->fr_fix;
20873 addr = (addr + 4) & ~3;
20874 /* Force misaligned targets to 32-bit variant. */
20875 if (val & 3)
20876 return 4;
20877 val -= addr;
20878 if (val < 0 || val > 1020)
20879 return 4;
20880 return 2;
20881 }
20882
20883 /* Return the size of a relaxable add/sub immediate instruction. */
20884 static int
20885 relax_addsub (fragS *fragp, asection *sec)
20886 {
20887 char *buf;
20888 int op;
20889
20890 buf = fragp->fr_literal + fragp->fr_fix;
20891 op = bfd_get_16(sec->owner, buf);
20892 if ((op & 0xf) == ((op >> 4) & 0xf))
20893 return relax_immediate (fragp, 8, 0);
20894 else
20895 return relax_immediate (fragp, 3, 0);
20896 }
20897
20898 /* Return TRUE iff the definition of symbol S could be pre-empted
20899 (overridden) at link or load time. */
20900 static bfd_boolean
20901 symbol_preemptible (symbolS *s)
20902 {
20903 /* Weak symbols can always be pre-empted. */
20904 if (S_IS_WEAK (s))
20905 return TRUE;
20906
20907 /* Non-global symbols cannot be pre-empted. */
20908 if (! S_IS_EXTERNAL (s))
20909 return FALSE;
20910
20911 #ifdef OBJ_ELF
20912 /* In ELF, a global symbol can be marked protected, or private. In that
20913 case it can't be pre-empted (other definitions in the same link unit
20914 would violate the ODR). */
20915 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
20916 return FALSE;
20917 #endif
20918
20919 /* Other global symbols might be pre-empted. */
20920 return TRUE;
20921 }
20922
20923 /* Return the size of a relaxable branch instruction. BITS is the
20924 size of the offset field in the narrow instruction. */
20925
20926 static int
20927 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
20928 {
20929 addressT addr;
20930 offsetT val;
20931 offsetT limit;
20932
20933 /* Assume worst case for symbols not known to be in the same section. */
20934 if (!S_IS_DEFINED (fragp->fr_symbol)
20935 || sec != S_GET_SEGMENT (fragp->fr_symbol)
20936 || S_IS_WEAK (fragp->fr_symbol))
20937 return 4;
20938
20939 #ifdef OBJ_ELF
20940 /* A branch to a function in ARM state will require interworking. */
20941 if (S_IS_DEFINED (fragp->fr_symbol)
20942 && ARM_IS_FUNC (fragp->fr_symbol))
20943 return 4;
20944 #endif
20945
20946 if (symbol_preemptible (fragp->fr_symbol))
20947 return 4;
20948
20949 val = relaxed_symbol_addr (fragp, stretch);
20950 addr = fragp->fr_address + fragp->fr_fix + 4;
20951 val -= addr;
20952
20953 /* Offset is a signed value *2 */
20954 limit = 1 << bits;
20955 if (val >= limit || val < -limit)
20956 return 4;
20957 return 2;
20958 }
20959
20960
20961 /* Relax a machine dependent frag. This returns the amount by which
20962 the current size of the frag should change. */
20963
20964 int
20965 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
20966 {
20967 int oldsize;
20968 int newsize;
20969
20970 oldsize = fragp->fr_var;
20971 switch (fragp->fr_subtype)
20972 {
20973 case T_MNEM_ldr_pc2:
20974 newsize = relax_adr (fragp, sec, stretch);
20975 break;
20976 case T_MNEM_ldr_pc:
20977 case T_MNEM_ldr_sp:
20978 case T_MNEM_str_sp:
20979 newsize = relax_immediate (fragp, 8, 2);
20980 break;
20981 case T_MNEM_ldr:
20982 case T_MNEM_str:
20983 newsize = relax_immediate (fragp, 5, 2);
20984 break;
20985 case T_MNEM_ldrh:
20986 case T_MNEM_strh:
20987 newsize = relax_immediate (fragp, 5, 1);
20988 break;
20989 case T_MNEM_ldrb:
20990 case T_MNEM_strb:
20991 newsize = relax_immediate (fragp, 5, 0);
20992 break;
20993 case T_MNEM_adr:
20994 newsize = relax_adr (fragp, sec, stretch);
20995 break;
20996 case T_MNEM_mov:
20997 case T_MNEM_movs:
20998 case T_MNEM_cmp:
20999 case T_MNEM_cmn:
21000 newsize = relax_immediate (fragp, 8, 0);
21001 break;
21002 case T_MNEM_b:
21003 newsize = relax_branch (fragp, sec, 11, stretch);
21004 break;
21005 case T_MNEM_bcond:
21006 newsize = relax_branch (fragp, sec, 8, stretch);
21007 break;
21008 case T_MNEM_add_sp:
21009 case T_MNEM_add_pc:
21010 newsize = relax_immediate (fragp, 8, 2);
21011 break;
21012 case T_MNEM_inc_sp:
21013 case T_MNEM_dec_sp:
21014 newsize = relax_immediate (fragp, 7, 2);
21015 break;
21016 case T_MNEM_addi:
21017 case T_MNEM_addis:
21018 case T_MNEM_subi:
21019 case T_MNEM_subis:
21020 newsize = relax_addsub (fragp, sec);
21021 break;
21022 default:
21023 abort ();
21024 }
21025
21026 fragp->fr_var = newsize;
21027 /* Freeze wide instructions that are at or before the same location as
21028 in the previous pass. This avoids infinite loops.
21029 Don't freeze them unconditionally because targets may be artificially
21030 misaligned by the expansion of preceding frags. */
21031 if (stretch <= 0 && newsize > 2)
21032 {
21033 md_convert_frag (sec->owner, sec, fragp);
21034 frag_wane (fragp);
21035 }
21036
21037 return newsize - oldsize;
21038 }
21039
21040 /* Round up a section size to the appropriate boundary. */
21041
21042 valueT
21043 md_section_align (segT segment ATTRIBUTE_UNUSED,
21044 valueT size)
21045 {
21046 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
21047 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
21048 {
21049 /* For a.out, force the section size to be aligned. If we don't do
21050 this, BFD will align it for us, but it will not write out the
21051 final bytes of the section. This may be a bug in BFD, but it is
21052 easier to fix it here since that is how the other a.out targets
21053 work. */
21054 int align;
21055
21056 align = bfd_get_section_alignment (stdoutput, segment);
21057 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
21058 }
21059 #endif
21060
21061 return size;
21062 }
21063
21064 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
21065 of an rs_align_code fragment. */
21066
21067 void
21068 arm_handle_align (fragS * fragP)
21069 {
21070 static char const arm_noop[2][2][4] =
21071 {
21072 { /* ARMv1 */
21073 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
21074 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
21075 },
21076 { /* ARMv6k */
21077 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
21078 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
21079 },
21080 };
21081 static char const thumb_noop[2][2][2] =
21082 {
21083 { /* Thumb-1 */
21084 {0xc0, 0x46}, /* LE */
21085 {0x46, 0xc0}, /* BE */
21086 },
21087 { /* Thumb-2 */
21088 {0x00, 0xbf}, /* LE */
21089 {0xbf, 0x00} /* BE */
21090 }
21091 };
21092 static char const wide_thumb_noop[2][4] =
21093 { /* Wide Thumb-2 */
21094 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
21095 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
21096 };
21097
21098 unsigned bytes, fix, noop_size;
21099 char * p;
21100 const char * noop;
21101 const char *narrow_noop = NULL;
21102 #ifdef OBJ_ELF
21103 enum mstate state;
21104 #endif
21105
21106 if (fragP->fr_type != rs_align_code)
21107 return;
21108
21109 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
21110 p = fragP->fr_literal + fragP->fr_fix;
21111 fix = 0;
21112
21113 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
21114 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
21115
21116 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
21117
21118 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
21119 {
21120 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
21121 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
21122 {
21123 narrow_noop = thumb_noop[1][target_big_endian];
21124 noop = wide_thumb_noop[target_big_endian];
21125 }
21126 else
21127 noop = thumb_noop[0][target_big_endian];
21128 noop_size = 2;
21129 #ifdef OBJ_ELF
21130 state = MAP_THUMB;
21131 #endif
21132 }
21133 else
21134 {
21135 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
21136 ? selected_cpu : arm_arch_none,
21137 arm_ext_v6k) != 0]
21138 [target_big_endian];
21139 noop_size = 4;
21140 #ifdef OBJ_ELF
21141 state = MAP_ARM;
21142 #endif
21143 }
21144
21145 fragP->fr_var = noop_size;
21146
21147 if (bytes & (noop_size - 1))
21148 {
21149 fix = bytes & (noop_size - 1);
21150 #ifdef OBJ_ELF
21151 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
21152 #endif
21153 memset (p, 0, fix);
21154 p += fix;
21155 bytes -= fix;
21156 }
21157
21158 if (narrow_noop)
21159 {
21160 if (bytes & noop_size)
21161 {
21162 /* Insert a narrow noop. */
21163 memcpy (p, narrow_noop, noop_size);
21164 p += noop_size;
21165 bytes -= noop_size;
21166 fix += noop_size;
21167 }
21168
21169 /* Use wide noops for the remainder */
21170 noop_size = 4;
21171 }
21172
21173 while (bytes >= noop_size)
21174 {
21175 memcpy (p, noop, noop_size);
21176 p += noop_size;
21177 bytes -= noop_size;
21178 fix += noop_size;
21179 }
21180
21181 fragP->fr_fix += fix;
21182 }
21183
21184 /* Called from md_do_align. Used to create an alignment
21185 frag in a code section. */
21186
21187 void
21188 arm_frag_align_code (int n, int max)
21189 {
21190 char * p;
21191
21192 /* We assume that there will never be a requirement
21193 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
21194 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
21195 {
21196 char err_msg[128];
21197
21198 sprintf (err_msg,
21199 _("alignments greater than %d bytes not supported in .text sections."),
21200 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
21201 as_fatal ("%s", err_msg);
21202 }
21203
21204 p = frag_var (rs_align_code,
21205 MAX_MEM_FOR_RS_ALIGN_CODE,
21206 1,
21207 (relax_substateT) max,
21208 (symbolS *) NULL,
21209 (offsetT) n,
21210 (char *) NULL);
21211 *p = 0;
21212 }
21213
21214 /* Perform target specific initialisation of a frag.
21215 Note - despite the name this initialisation is not done when the frag
21216 is created, but only when its type is assigned. A frag can be created
21217 and used a long time before its type is set, so beware of assuming that
21218 this initialisationis performed first. */
21219
21220 #ifndef OBJ_ELF
21221 void
21222 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
21223 {
21224 /* Record whether this frag is in an ARM or a THUMB area. */
21225 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
21226 }
21227
21228 #else /* OBJ_ELF is defined. */
21229 void
21230 arm_init_frag (fragS * fragP, int max_chars)
21231 {
21232 int frag_thumb_mode;
21233
21234 /* If the current ARM vs THUMB mode has not already
21235 been recorded into this frag then do so now. */
21236 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
21237 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
21238
21239 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
21240
21241 /* Record a mapping symbol for alignment frags. We will delete this
21242 later if the alignment ends up empty. */
21243 switch (fragP->fr_type)
21244 {
21245 case rs_align:
21246 case rs_align_test:
21247 case rs_fill:
21248 mapping_state_2 (MAP_DATA, max_chars);
21249 break;
21250 case rs_align_code:
21251 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
21252 break;
21253 default:
21254 break;
21255 }
21256 }
21257
21258 /* When we change sections we need to issue a new mapping symbol. */
21259
21260 void
21261 arm_elf_change_section (void)
21262 {
21263 /* Link an unlinked unwind index table section to the .text section. */
21264 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
21265 && elf_linked_to_section (now_seg) == NULL)
21266 elf_linked_to_section (now_seg) = text_section;
21267 }
21268
21269 int
21270 arm_elf_section_type (const char * str, size_t len)
21271 {
21272 if (len == 5 && strncmp (str, "exidx", 5) == 0)
21273 return SHT_ARM_EXIDX;
21274
21275 return -1;
21276 }
21277 \f
21278 /* Code to deal with unwinding tables. */
21279
21280 static void add_unwind_adjustsp (offsetT);
21281
21282 /* Generate any deferred unwind frame offset. */
21283
21284 static void
21285 flush_pending_unwind (void)
21286 {
21287 offsetT offset;
21288
21289 offset = unwind.pending_offset;
21290 unwind.pending_offset = 0;
21291 if (offset != 0)
21292 add_unwind_adjustsp (offset);
21293 }
21294
21295 /* Add an opcode to this list for this function. Two-byte opcodes should
21296 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
21297 order. */
21298
21299 static void
21300 add_unwind_opcode (valueT op, int length)
21301 {
21302 /* Add any deferred stack adjustment. */
21303 if (unwind.pending_offset)
21304 flush_pending_unwind ();
21305
21306 unwind.sp_restored = 0;
21307
21308 if (unwind.opcode_count + length > unwind.opcode_alloc)
21309 {
21310 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
21311 if (unwind.opcodes)
21312 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
21313 unwind.opcode_alloc);
21314 else
21315 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
21316 }
21317 while (length > 0)
21318 {
21319 length--;
21320 unwind.opcodes[unwind.opcode_count] = op & 0xff;
21321 op >>= 8;
21322 unwind.opcode_count++;
21323 }
21324 }
21325
21326 /* Add unwind opcodes to adjust the stack pointer. */
21327
21328 static void
21329 add_unwind_adjustsp (offsetT offset)
21330 {
21331 valueT op;
21332
21333 if (offset > 0x200)
21334 {
21335 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
21336 char bytes[5];
21337 int n;
21338 valueT o;
21339
21340 /* Long form: 0xb2, uleb128. */
21341 /* This might not fit in a word so add the individual bytes,
21342 remembering the list is built in reverse order. */
21343 o = (valueT) ((offset - 0x204) >> 2);
21344 if (o == 0)
21345 add_unwind_opcode (0, 1);
21346
21347 /* Calculate the uleb128 encoding of the offset. */
21348 n = 0;
21349 while (o)
21350 {
21351 bytes[n] = o & 0x7f;
21352 o >>= 7;
21353 if (o)
21354 bytes[n] |= 0x80;
21355 n++;
21356 }
21357 /* Add the insn. */
21358 for (; n; n--)
21359 add_unwind_opcode (bytes[n - 1], 1);
21360 add_unwind_opcode (0xb2, 1);
21361 }
21362 else if (offset > 0x100)
21363 {
21364 /* Two short opcodes. */
21365 add_unwind_opcode (0x3f, 1);
21366 op = (offset - 0x104) >> 2;
21367 add_unwind_opcode (op, 1);
21368 }
21369 else if (offset > 0)
21370 {
21371 /* Short opcode. */
21372 op = (offset - 4) >> 2;
21373 add_unwind_opcode (op, 1);
21374 }
21375 else if (offset < 0)
21376 {
21377 offset = -offset;
21378 while (offset > 0x100)
21379 {
21380 add_unwind_opcode (0x7f, 1);
21381 offset -= 0x100;
21382 }
21383 op = ((offset - 4) >> 2) | 0x40;
21384 add_unwind_opcode (op, 1);
21385 }
21386 }
21387
21388 /* Finish the list of unwind opcodes for this function. */
21389 static void
21390 finish_unwind_opcodes (void)
21391 {
21392 valueT op;
21393
21394 if (unwind.fp_used)
21395 {
21396 /* Adjust sp as necessary. */
21397 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
21398 flush_pending_unwind ();
21399
21400 /* After restoring sp from the frame pointer. */
21401 op = 0x90 | unwind.fp_reg;
21402 add_unwind_opcode (op, 1);
21403 }
21404 else
21405 flush_pending_unwind ();
21406 }
21407
21408
21409 /* Start an exception table entry. If idx is nonzero this is an index table
21410 entry. */
21411
21412 static void
21413 start_unwind_section (const segT text_seg, int idx)
21414 {
21415 const char * text_name;
21416 const char * prefix;
21417 const char * prefix_once;
21418 const char * group_name;
21419 size_t prefix_len;
21420 size_t text_len;
21421 char * sec_name;
21422 size_t sec_name_len;
21423 int type;
21424 int flags;
21425 int linkonce;
21426
21427 if (idx)
21428 {
21429 prefix = ELF_STRING_ARM_unwind;
21430 prefix_once = ELF_STRING_ARM_unwind_once;
21431 type = SHT_ARM_EXIDX;
21432 }
21433 else
21434 {
21435 prefix = ELF_STRING_ARM_unwind_info;
21436 prefix_once = ELF_STRING_ARM_unwind_info_once;
21437 type = SHT_PROGBITS;
21438 }
21439
21440 text_name = segment_name (text_seg);
21441 if (streq (text_name, ".text"))
21442 text_name = "";
21443
21444 if (strncmp (text_name, ".gnu.linkonce.t.",
21445 strlen (".gnu.linkonce.t.")) == 0)
21446 {
21447 prefix = prefix_once;
21448 text_name += strlen (".gnu.linkonce.t.");
21449 }
21450
21451 prefix_len = strlen (prefix);
21452 text_len = strlen (text_name);
21453 sec_name_len = prefix_len + text_len;
21454 sec_name = (char *) xmalloc (sec_name_len + 1);
21455 memcpy (sec_name, prefix, prefix_len);
21456 memcpy (sec_name + prefix_len, text_name, text_len);
21457 sec_name[prefix_len + text_len] = '\0';
21458
21459 flags = SHF_ALLOC;
21460 linkonce = 0;
21461 group_name = 0;
21462
21463 /* Handle COMDAT group. */
21464 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
21465 {
21466 group_name = elf_group_name (text_seg);
21467 if (group_name == NULL)
21468 {
21469 as_bad (_("Group section `%s' has no group signature"),
21470 segment_name (text_seg));
21471 ignore_rest_of_line ();
21472 return;
21473 }
21474 flags |= SHF_GROUP;
21475 linkonce = 1;
21476 }
21477
21478 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
21479
21480 /* Set the section link for index tables. */
21481 if (idx)
21482 elf_linked_to_section (now_seg) = text_seg;
21483 }
21484
21485
21486 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
21487 personality routine data. Returns zero, or the index table value for
21488 an inline entry. */
21489
21490 static valueT
21491 create_unwind_entry (int have_data)
21492 {
21493 int size;
21494 addressT where;
21495 char *ptr;
21496 /* The current word of data. */
21497 valueT data;
21498 /* The number of bytes left in this word. */
21499 int n;
21500
21501 finish_unwind_opcodes ();
21502
21503 /* Remember the current text section. */
21504 unwind.saved_seg = now_seg;
21505 unwind.saved_subseg = now_subseg;
21506
21507 start_unwind_section (now_seg, 0);
21508
21509 if (unwind.personality_routine == NULL)
21510 {
21511 if (unwind.personality_index == -2)
21512 {
21513 if (have_data)
21514 as_bad (_("handlerdata in cantunwind frame"));
21515 return 1; /* EXIDX_CANTUNWIND. */
21516 }
21517
21518 /* Use a default personality routine if none is specified. */
21519 if (unwind.personality_index == -1)
21520 {
21521 if (unwind.opcode_count > 3)
21522 unwind.personality_index = 1;
21523 else
21524 unwind.personality_index = 0;
21525 }
21526
21527 /* Space for the personality routine entry. */
21528 if (unwind.personality_index == 0)
21529 {
21530 if (unwind.opcode_count > 3)
21531 as_bad (_("too many unwind opcodes for personality routine 0"));
21532
21533 if (!have_data)
21534 {
21535 /* All the data is inline in the index table. */
21536 data = 0x80;
21537 n = 3;
21538 while (unwind.opcode_count > 0)
21539 {
21540 unwind.opcode_count--;
21541 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
21542 n--;
21543 }
21544
21545 /* Pad with "finish" opcodes. */
21546 while (n--)
21547 data = (data << 8) | 0xb0;
21548
21549 return data;
21550 }
21551 size = 0;
21552 }
21553 else
21554 /* We get two opcodes "free" in the first word. */
21555 size = unwind.opcode_count - 2;
21556 }
21557 else
21558 {
21559 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
21560 if (unwind.personality_index != -1)
21561 {
21562 as_bad (_("attempt to recreate an unwind entry"));
21563 return 1;
21564 }
21565
21566 /* An extra byte is required for the opcode count. */
21567 size = unwind.opcode_count + 1;
21568 }
21569
21570 size = (size + 3) >> 2;
21571 if (size > 0xff)
21572 as_bad (_("too many unwind opcodes"));
21573
21574 frag_align (2, 0, 0);
21575 record_alignment (now_seg, 2);
21576 unwind.table_entry = expr_build_dot ();
21577
21578 /* Allocate the table entry. */
21579 ptr = frag_more ((size << 2) + 4);
21580 /* PR 13449: Zero the table entries in case some of them are not used. */
21581 memset (ptr, 0, (size << 2) + 4);
21582 where = frag_now_fix () - ((size << 2) + 4);
21583
21584 switch (unwind.personality_index)
21585 {
21586 case -1:
21587 /* ??? Should this be a PLT generating relocation? */
21588 /* Custom personality routine. */
21589 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
21590 BFD_RELOC_ARM_PREL31);
21591
21592 where += 4;
21593 ptr += 4;
21594
21595 /* Set the first byte to the number of additional words. */
21596 data = size > 0 ? size - 1 : 0;
21597 n = 3;
21598 break;
21599
21600 /* ABI defined personality routines. */
21601 case 0:
21602 /* Three opcodes bytes are packed into the first word. */
21603 data = 0x80;
21604 n = 3;
21605 break;
21606
21607 case 1:
21608 case 2:
21609 /* The size and first two opcode bytes go in the first word. */
21610 data = ((0x80 + unwind.personality_index) << 8) | size;
21611 n = 2;
21612 break;
21613
21614 default:
21615 /* Should never happen. */
21616 abort ();
21617 }
21618
21619 /* Pack the opcodes into words (MSB first), reversing the list at the same
21620 time. */
21621 while (unwind.opcode_count > 0)
21622 {
21623 if (n == 0)
21624 {
21625 md_number_to_chars (ptr, data, 4);
21626 ptr += 4;
21627 n = 4;
21628 data = 0;
21629 }
21630 unwind.opcode_count--;
21631 n--;
21632 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
21633 }
21634
21635 /* Finish off the last word. */
21636 if (n < 4)
21637 {
21638 /* Pad with "finish" opcodes. */
21639 while (n--)
21640 data = (data << 8) | 0xb0;
21641
21642 md_number_to_chars (ptr, data, 4);
21643 }
21644
21645 if (!have_data)
21646 {
21647 /* Add an empty descriptor if there is no user-specified data. */
21648 ptr = frag_more (4);
21649 md_number_to_chars (ptr, 0, 4);
21650 }
21651
21652 return 0;
21653 }
21654
21655
21656 /* Initialize the DWARF-2 unwind information for this procedure. */
21657
21658 void
21659 tc_arm_frame_initial_instructions (void)
21660 {
21661 cfi_add_CFA_def_cfa (REG_SP, 0);
21662 }
21663 #endif /* OBJ_ELF */
21664
21665 /* Convert REGNAME to a DWARF-2 register number. */
21666
21667 int
21668 tc_arm_regname_to_dw2regnum (char *regname)
21669 {
21670 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
21671 if (reg != FAIL)
21672 return reg;
21673
21674 /* PR 16694: Allow VFP registers as well. */
21675 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
21676 if (reg != FAIL)
21677 return 64 + reg;
21678
21679 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
21680 if (reg != FAIL)
21681 return reg + 256;
21682
21683 return -1;
21684 }
21685
21686 #ifdef TE_PE
21687 void
21688 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
21689 {
21690 expressionS exp;
21691
21692 exp.X_op = O_secrel;
21693 exp.X_add_symbol = symbol;
21694 exp.X_add_number = 0;
21695 emit_expr (&exp, size);
21696 }
21697 #endif
21698
21699 /* MD interface: Symbol and relocation handling. */
21700
21701 /* Return the address within the segment that a PC-relative fixup is
21702 relative to. For ARM, PC-relative fixups applied to instructions
21703 are generally relative to the location of the fixup plus 8 bytes.
21704 Thumb branches are offset by 4, and Thumb loads relative to PC
21705 require special handling. */
21706
21707 long
21708 md_pcrel_from_section (fixS * fixP, segT seg)
21709 {
21710 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
21711
21712 /* If this is pc-relative and we are going to emit a relocation
21713 then we just want to put out any pipeline compensation that the linker
21714 will need. Otherwise we want to use the calculated base.
21715 For WinCE we skip the bias for externals as well, since this
21716 is how the MS ARM-CE assembler behaves and we want to be compatible. */
21717 if (fixP->fx_pcrel
21718 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
21719 || (arm_force_relocation (fixP)
21720 #ifdef TE_WINCE
21721 && !S_IS_EXTERNAL (fixP->fx_addsy)
21722 #endif
21723 )))
21724 base = 0;
21725
21726
21727 switch (fixP->fx_r_type)
21728 {
21729 /* PC relative addressing on the Thumb is slightly odd as the
21730 bottom two bits of the PC are forced to zero for the
21731 calculation. This happens *after* application of the
21732 pipeline offset. However, Thumb adrl already adjusts for
21733 this, so we need not do it again. */
21734 case BFD_RELOC_ARM_THUMB_ADD:
21735 return base & ~3;
21736
21737 case BFD_RELOC_ARM_THUMB_OFFSET:
21738 case BFD_RELOC_ARM_T32_OFFSET_IMM:
21739 case BFD_RELOC_ARM_T32_ADD_PC12:
21740 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
21741 return (base + 4) & ~3;
21742
21743 /* Thumb branches are simply offset by +4. */
21744 case BFD_RELOC_THUMB_PCREL_BRANCH7:
21745 case BFD_RELOC_THUMB_PCREL_BRANCH9:
21746 case BFD_RELOC_THUMB_PCREL_BRANCH12:
21747 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21748 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21749 return base + 4;
21750
21751 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21752 if (fixP->fx_addsy
21753 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21754 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21755 && ARM_IS_FUNC (fixP->fx_addsy)
21756 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21757 base = fixP->fx_where + fixP->fx_frag->fr_address;
21758 return base + 4;
21759
21760 /* BLX is like branches above, but forces the low two bits of PC to
21761 zero. */
21762 case BFD_RELOC_THUMB_PCREL_BLX:
21763 if (fixP->fx_addsy
21764 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21765 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21766 && THUMB_IS_FUNC (fixP->fx_addsy)
21767 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21768 base = fixP->fx_where + fixP->fx_frag->fr_address;
21769 return (base + 4) & ~3;
21770
21771 /* ARM mode branches are offset by +8. However, the Windows CE
21772 loader expects the relocation not to take this into account. */
21773 case BFD_RELOC_ARM_PCREL_BLX:
21774 if (fixP->fx_addsy
21775 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21776 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21777 && ARM_IS_FUNC (fixP->fx_addsy)
21778 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21779 base = fixP->fx_where + fixP->fx_frag->fr_address;
21780 return base + 8;
21781
21782 case BFD_RELOC_ARM_PCREL_CALL:
21783 if (fixP->fx_addsy
21784 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21785 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21786 && THUMB_IS_FUNC (fixP->fx_addsy)
21787 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21788 base = fixP->fx_where + fixP->fx_frag->fr_address;
21789 return base + 8;
21790
21791 case BFD_RELOC_ARM_PCREL_BRANCH:
21792 case BFD_RELOC_ARM_PCREL_JUMP:
21793 case BFD_RELOC_ARM_PLT32:
21794 #ifdef TE_WINCE
21795 /* When handling fixups immediately, because we have already
21796 discovered the value of a symbol, or the address of the frag involved
21797 we must account for the offset by +8, as the OS loader will never see the reloc.
21798 see fixup_segment() in write.c
21799 The S_IS_EXTERNAL test handles the case of global symbols.
21800 Those need the calculated base, not just the pipe compensation the linker will need. */
21801 if (fixP->fx_pcrel
21802 && fixP->fx_addsy != NULL
21803 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21804 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
21805 return base + 8;
21806 return base;
21807 #else
21808 return base + 8;
21809 #endif
21810
21811
21812 /* ARM mode loads relative to PC are also offset by +8. Unlike
21813 branches, the Windows CE loader *does* expect the relocation
21814 to take this into account. */
21815 case BFD_RELOC_ARM_OFFSET_IMM:
21816 case BFD_RELOC_ARM_OFFSET_IMM8:
21817 case BFD_RELOC_ARM_HWLITERAL:
21818 case BFD_RELOC_ARM_LITERAL:
21819 case BFD_RELOC_ARM_CP_OFF_IMM:
21820 return base + 8;
21821
21822
21823 /* Other PC-relative relocations are un-offset. */
21824 default:
21825 return base;
21826 }
21827 }
21828
21829 static bfd_boolean flag_warn_syms = TRUE;
21830
21831 bfd_boolean
21832 arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
21833 {
21834 /* PR 18347 - Warn if the user attempts to create a symbol with the same
21835 name as an ARM instruction. Whilst strictly speaking it is allowed, it
21836 does mean that the resulting code might be very confusing to the reader.
21837 Also this warning can be triggered if the user omits an operand before
21838 an immediate address, eg:
21839
21840 LDR =foo
21841
21842 GAS treats this as an assignment of the value of the symbol foo to a
21843 symbol LDR, and so (without this code) it will not issue any kind of
21844 warning or error message.
21845
21846 Note - ARM instructions are case-insensitive but the strings in the hash
21847 table are all stored in lower case, so we must first ensure that name is
21848 lower case too. */
21849 if (flag_warn_syms && arm_ops_hsh)
21850 {
21851 char * nbuf = strdup (name);
21852 char * p;
21853
21854 for (p = nbuf; *p; p++)
21855 *p = TOLOWER (*p);
21856 if (hash_find (arm_ops_hsh, nbuf) != NULL)
21857 {
21858 static struct hash_control * already_warned = NULL;
21859
21860 if (already_warned == NULL)
21861 already_warned = hash_new ();
21862 /* Only warn about the symbol once. To keep the code
21863 simple we let hash_insert do the lookup for us. */
21864 if (hash_insert (already_warned, name, NULL) == NULL)
21865 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
21866 }
21867 else
21868 free (nbuf);
21869 }
21870
21871 return FALSE;
21872 }
21873
21874 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
21875 Otherwise we have no need to default values of symbols. */
21876
21877 symbolS *
21878 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
21879 {
21880 #ifdef OBJ_ELF
21881 if (name[0] == '_' && name[1] == 'G'
21882 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
21883 {
21884 if (!GOT_symbol)
21885 {
21886 if (symbol_find (name))
21887 as_bad (_("GOT already in the symbol table"));
21888
21889 GOT_symbol = symbol_new (name, undefined_section,
21890 (valueT) 0, & zero_address_frag);
21891 }
21892
21893 return GOT_symbol;
21894 }
21895 #endif
21896
21897 return NULL;
21898 }
21899
21900 /* Subroutine of md_apply_fix. Check to see if an immediate can be
21901 computed as two separate immediate values, added together. We
21902 already know that this value cannot be computed by just one ARM
21903 instruction. */
21904
21905 static unsigned int
21906 validate_immediate_twopart (unsigned int val,
21907 unsigned int * highpart)
21908 {
21909 unsigned int a;
21910 unsigned int i;
21911
21912 for (i = 0; i < 32; i += 2)
21913 if (((a = rotate_left (val, i)) & 0xff) != 0)
21914 {
21915 if (a & 0xff00)
21916 {
21917 if (a & ~ 0xffff)
21918 continue;
21919 * highpart = (a >> 8) | ((i + 24) << 7);
21920 }
21921 else if (a & 0xff0000)
21922 {
21923 if (a & 0xff000000)
21924 continue;
21925 * highpart = (a >> 16) | ((i + 16) << 7);
21926 }
21927 else
21928 {
21929 gas_assert (a & 0xff000000);
21930 * highpart = (a >> 24) | ((i + 8) << 7);
21931 }
21932
21933 return (a & 0xff) | (i << 7);
21934 }
21935
21936 return FAIL;
21937 }
21938
21939 static int
21940 validate_offset_imm (unsigned int val, int hwse)
21941 {
21942 if ((hwse && val > 255) || val > 4095)
21943 return FAIL;
21944 return val;
21945 }
21946
21947 /* Subroutine of md_apply_fix. Do those data_ops which can take a
21948 negative immediate constant by altering the instruction. A bit of
21949 a hack really.
21950 MOV <-> MVN
21951 AND <-> BIC
21952 ADC <-> SBC
21953 by inverting the second operand, and
21954 ADD <-> SUB
21955 CMP <-> CMN
21956 by negating the second operand. */
21957
21958 static int
21959 negate_data_op (unsigned long * instruction,
21960 unsigned long value)
21961 {
21962 int op, new_inst;
21963 unsigned long negated, inverted;
21964
21965 negated = encode_arm_immediate (-value);
21966 inverted = encode_arm_immediate (~value);
21967
21968 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
21969 switch (op)
21970 {
21971 /* First negates. */
21972 case OPCODE_SUB: /* ADD <-> SUB */
21973 new_inst = OPCODE_ADD;
21974 value = negated;
21975 break;
21976
21977 case OPCODE_ADD:
21978 new_inst = OPCODE_SUB;
21979 value = negated;
21980 break;
21981
21982 case OPCODE_CMP: /* CMP <-> CMN */
21983 new_inst = OPCODE_CMN;
21984 value = negated;
21985 break;
21986
21987 case OPCODE_CMN:
21988 new_inst = OPCODE_CMP;
21989 value = negated;
21990 break;
21991
21992 /* Now Inverted ops. */
21993 case OPCODE_MOV: /* MOV <-> MVN */
21994 new_inst = OPCODE_MVN;
21995 value = inverted;
21996 break;
21997
21998 case OPCODE_MVN:
21999 new_inst = OPCODE_MOV;
22000 value = inverted;
22001 break;
22002
22003 case OPCODE_AND: /* AND <-> BIC */
22004 new_inst = OPCODE_BIC;
22005 value = inverted;
22006 break;
22007
22008 case OPCODE_BIC:
22009 new_inst = OPCODE_AND;
22010 value = inverted;
22011 break;
22012
22013 case OPCODE_ADC: /* ADC <-> SBC */
22014 new_inst = OPCODE_SBC;
22015 value = inverted;
22016 break;
22017
22018 case OPCODE_SBC:
22019 new_inst = OPCODE_ADC;
22020 value = inverted;
22021 break;
22022
22023 /* We cannot do anything. */
22024 default:
22025 return FAIL;
22026 }
22027
22028 if (value == (unsigned) FAIL)
22029 return FAIL;
22030
22031 *instruction &= OPCODE_MASK;
22032 *instruction |= new_inst << DATA_OP_SHIFT;
22033 return value;
22034 }
22035
22036 /* Like negate_data_op, but for Thumb-2. */
22037
22038 static unsigned int
22039 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
22040 {
22041 int op, new_inst;
22042 int rd;
22043 unsigned int negated, inverted;
22044
22045 negated = encode_thumb32_immediate (-value);
22046 inverted = encode_thumb32_immediate (~value);
22047
22048 rd = (*instruction >> 8) & 0xf;
22049 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
22050 switch (op)
22051 {
22052 /* ADD <-> SUB. Includes CMP <-> CMN. */
22053 case T2_OPCODE_SUB:
22054 new_inst = T2_OPCODE_ADD;
22055 value = negated;
22056 break;
22057
22058 case T2_OPCODE_ADD:
22059 new_inst = T2_OPCODE_SUB;
22060 value = negated;
22061 break;
22062
22063 /* ORR <-> ORN. Includes MOV <-> MVN. */
22064 case T2_OPCODE_ORR:
22065 new_inst = T2_OPCODE_ORN;
22066 value = inverted;
22067 break;
22068
22069 case T2_OPCODE_ORN:
22070 new_inst = T2_OPCODE_ORR;
22071 value = inverted;
22072 break;
22073
22074 /* AND <-> BIC. TST has no inverted equivalent. */
22075 case T2_OPCODE_AND:
22076 new_inst = T2_OPCODE_BIC;
22077 if (rd == 15)
22078 value = FAIL;
22079 else
22080 value = inverted;
22081 break;
22082
22083 case T2_OPCODE_BIC:
22084 new_inst = T2_OPCODE_AND;
22085 value = inverted;
22086 break;
22087
22088 /* ADC <-> SBC */
22089 case T2_OPCODE_ADC:
22090 new_inst = T2_OPCODE_SBC;
22091 value = inverted;
22092 break;
22093
22094 case T2_OPCODE_SBC:
22095 new_inst = T2_OPCODE_ADC;
22096 value = inverted;
22097 break;
22098
22099 /* We cannot do anything. */
22100 default:
22101 return FAIL;
22102 }
22103
22104 if (value == (unsigned int)FAIL)
22105 return FAIL;
22106
22107 *instruction &= T2_OPCODE_MASK;
22108 *instruction |= new_inst << T2_DATA_OP_SHIFT;
22109 return value;
22110 }
22111
22112 /* Read a 32-bit thumb instruction from buf. */
22113 static unsigned long
22114 get_thumb32_insn (char * buf)
22115 {
22116 unsigned long insn;
22117 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
22118 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
22119
22120 return insn;
22121 }
22122
22123
22124 /* We usually want to set the low bit on the address of thumb function
22125 symbols. In particular .word foo - . should have the low bit set.
22126 Generic code tries to fold the difference of two symbols to
22127 a constant. Prevent this and force a relocation when the first symbols
22128 is a thumb function. */
22129
22130 bfd_boolean
22131 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
22132 {
22133 if (op == O_subtract
22134 && l->X_op == O_symbol
22135 && r->X_op == O_symbol
22136 && THUMB_IS_FUNC (l->X_add_symbol))
22137 {
22138 l->X_op = O_subtract;
22139 l->X_op_symbol = r->X_add_symbol;
22140 l->X_add_number -= r->X_add_number;
22141 return TRUE;
22142 }
22143
22144 /* Process as normal. */
22145 return FALSE;
22146 }
22147
22148 /* Encode Thumb2 unconditional branches and calls. The encoding
22149 for the 2 are identical for the immediate values. */
22150
22151 static void
22152 encode_thumb2_b_bl_offset (char * buf, offsetT value)
22153 {
22154 #define T2I1I2MASK ((1 << 13) | (1 << 11))
22155 offsetT newval;
22156 offsetT newval2;
22157 addressT S, I1, I2, lo, hi;
22158
22159 S = (value >> 24) & 0x01;
22160 I1 = (value >> 23) & 0x01;
22161 I2 = (value >> 22) & 0x01;
22162 hi = (value >> 12) & 0x3ff;
22163 lo = (value >> 1) & 0x7ff;
22164 newval = md_chars_to_number (buf, THUMB_SIZE);
22165 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
22166 newval |= (S << 10) | hi;
22167 newval2 &= ~T2I1I2MASK;
22168 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
22169 md_number_to_chars (buf, newval, THUMB_SIZE);
22170 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
22171 }
22172
22173 void
22174 md_apply_fix (fixS * fixP,
22175 valueT * valP,
22176 segT seg)
22177 {
22178 offsetT value = * valP;
22179 offsetT newval;
22180 unsigned int newimm;
22181 unsigned long temp;
22182 int sign;
22183 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
22184
22185 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
22186
22187 /* Note whether this will delete the relocation. */
22188
22189 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
22190 fixP->fx_done = 1;
22191
22192 /* On a 64-bit host, silently truncate 'value' to 32 bits for
22193 consistency with the behaviour on 32-bit hosts. Remember value
22194 for emit_reloc. */
22195 value &= 0xffffffff;
22196 value ^= 0x80000000;
22197 value -= 0x80000000;
22198
22199 *valP = value;
22200 fixP->fx_addnumber = value;
22201
22202 /* Same treatment for fixP->fx_offset. */
22203 fixP->fx_offset &= 0xffffffff;
22204 fixP->fx_offset ^= 0x80000000;
22205 fixP->fx_offset -= 0x80000000;
22206
22207 switch (fixP->fx_r_type)
22208 {
22209 case BFD_RELOC_NONE:
22210 /* This will need to go in the object file. */
22211 fixP->fx_done = 0;
22212 break;
22213
22214 case BFD_RELOC_ARM_IMMEDIATE:
22215 /* We claim that this fixup has been processed here,
22216 even if in fact we generate an error because we do
22217 not have a reloc for it, so tc_gen_reloc will reject it. */
22218 fixP->fx_done = 1;
22219
22220 if (fixP->fx_addsy)
22221 {
22222 const char *msg = 0;
22223
22224 if (! S_IS_DEFINED (fixP->fx_addsy))
22225 msg = _("undefined symbol %s used as an immediate value");
22226 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
22227 msg = _("symbol %s is in a different section");
22228 else if (S_IS_WEAK (fixP->fx_addsy))
22229 msg = _("symbol %s is weak and may be overridden later");
22230
22231 if (msg)
22232 {
22233 as_bad_where (fixP->fx_file, fixP->fx_line,
22234 msg, S_GET_NAME (fixP->fx_addsy));
22235 break;
22236 }
22237 }
22238
22239 temp = md_chars_to_number (buf, INSN_SIZE);
22240
22241 /* If the offset is negative, we should use encoding A2 for ADR. */
22242 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
22243 newimm = negate_data_op (&temp, value);
22244 else
22245 {
22246 newimm = encode_arm_immediate (value);
22247
22248 /* If the instruction will fail, see if we can fix things up by
22249 changing the opcode. */
22250 if (newimm == (unsigned int) FAIL)
22251 newimm = negate_data_op (&temp, value);
22252 }
22253
22254 if (newimm == (unsigned int) FAIL)
22255 {
22256 as_bad_where (fixP->fx_file, fixP->fx_line,
22257 _("invalid constant (%lx) after fixup"),
22258 (unsigned long) value);
22259 break;
22260 }
22261
22262 newimm |= (temp & 0xfffff000);
22263 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
22264 break;
22265
22266 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
22267 {
22268 unsigned int highpart = 0;
22269 unsigned int newinsn = 0xe1a00000; /* nop. */
22270
22271 if (fixP->fx_addsy)
22272 {
22273 const char *msg = 0;
22274
22275 if (! S_IS_DEFINED (fixP->fx_addsy))
22276 msg = _("undefined symbol %s used as an immediate value");
22277 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
22278 msg = _("symbol %s is in a different section");
22279 else if (S_IS_WEAK (fixP->fx_addsy))
22280 msg = _("symbol %s is weak and may be overridden later");
22281
22282 if (msg)
22283 {
22284 as_bad_where (fixP->fx_file, fixP->fx_line,
22285 msg, S_GET_NAME (fixP->fx_addsy));
22286 break;
22287 }
22288 }
22289
22290 newimm = encode_arm_immediate (value);
22291 temp = md_chars_to_number (buf, INSN_SIZE);
22292
22293 /* If the instruction will fail, see if we can fix things up by
22294 changing the opcode. */
22295 if (newimm == (unsigned int) FAIL
22296 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
22297 {
22298 /* No ? OK - try using two ADD instructions to generate
22299 the value. */
22300 newimm = validate_immediate_twopart (value, & highpart);
22301
22302 /* Yes - then make sure that the second instruction is
22303 also an add. */
22304 if (newimm != (unsigned int) FAIL)
22305 newinsn = temp;
22306 /* Still No ? Try using a negated value. */
22307 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
22308 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
22309 /* Otherwise - give up. */
22310 else
22311 {
22312 as_bad_where (fixP->fx_file, fixP->fx_line,
22313 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
22314 (long) value);
22315 break;
22316 }
22317
22318 /* Replace the first operand in the 2nd instruction (which
22319 is the PC) with the destination register. We have
22320 already added in the PC in the first instruction and we
22321 do not want to do it again. */
22322 newinsn &= ~ 0xf0000;
22323 newinsn |= ((newinsn & 0x0f000) << 4);
22324 }
22325
22326 newimm |= (temp & 0xfffff000);
22327 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
22328
22329 highpart |= (newinsn & 0xfffff000);
22330 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
22331 }
22332 break;
22333
22334 case BFD_RELOC_ARM_OFFSET_IMM:
22335 if (!fixP->fx_done && seg->use_rela_p)
22336 value = 0;
22337
22338 case BFD_RELOC_ARM_LITERAL:
22339 sign = value > 0;
22340
22341 if (value < 0)
22342 value = - value;
22343
22344 if (validate_offset_imm (value, 0) == FAIL)
22345 {
22346 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
22347 as_bad_where (fixP->fx_file, fixP->fx_line,
22348 _("invalid literal constant: pool needs to be closer"));
22349 else
22350 as_bad_where (fixP->fx_file, fixP->fx_line,
22351 _("bad immediate value for offset (%ld)"),
22352 (long) value);
22353 break;
22354 }
22355
22356 newval = md_chars_to_number (buf, INSN_SIZE);
22357 if (value == 0)
22358 newval &= 0xfffff000;
22359 else
22360 {
22361 newval &= 0xff7ff000;
22362 newval |= value | (sign ? INDEX_UP : 0);
22363 }
22364 md_number_to_chars (buf, newval, INSN_SIZE);
22365 break;
22366
22367 case BFD_RELOC_ARM_OFFSET_IMM8:
22368 case BFD_RELOC_ARM_HWLITERAL:
22369 sign = value > 0;
22370
22371 if (value < 0)
22372 value = - value;
22373
22374 if (validate_offset_imm (value, 1) == FAIL)
22375 {
22376 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
22377 as_bad_where (fixP->fx_file, fixP->fx_line,
22378 _("invalid literal constant: pool needs to be closer"));
22379 else
22380 as_bad_where (fixP->fx_file, fixP->fx_line,
22381 _("bad immediate value for 8-bit offset (%ld)"),
22382 (long) value);
22383 break;
22384 }
22385
22386 newval = md_chars_to_number (buf, INSN_SIZE);
22387 if (value == 0)
22388 newval &= 0xfffff0f0;
22389 else
22390 {
22391 newval &= 0xff7ff0f0;
22392 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
22393 }
22394 md_number_to_chars (buf, newval, INSN_SIZE);
22395 break;
22396
22397 case BFD_RELOC_ARM_T32_OFFSET_U8:
22398 if (value < 0 || value > 1020 || value % 4 != 0)
22399 as_bad_where (fixP->fx_file, fixP->fx_line,
22400 _("bad immediate value for offset (%ld)"), (long) value);
22401 value /= 4;
22402
22403 newval = md_chars_to_number (buf+2, THUMB_SIZE);
22404 newval |= value;
22405 md_number_to_chars (buf+2, newval, THUMB_SIZE);
22406 break;
22407
22408 case BFD_RELOC_ARM_T32_OFFSET_IMM:
22409 /* This is a complicated relocation used for all varieties of Thumb32
22410 load/store instruction with immediate offset:
22411
22412 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
22413 *4, optional writeback(W)
22414 (doubleword load/store)
22415
22416 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
22417 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
22418 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
22419 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
22420 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
22421
22422 Uppercase letters indicate bits that are already encoded at
22423 this point. Lowercase letters are our problem. For the
22424 second block of instructions, the secondary opcode nybble
22425 (bits 8..11) is present, and bit 23 is zero, even if this is
22426 a PC-relative operation. */
22427 newval = md_chars_to_number (buf, THUMB_SIZE);
22428 newval <<= 16;
22429 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
22430
22431 if ((newval & 0xf0000000) == 0xe0000000)
22432 {
22433 /* Doubleword load/store: 8-bit offset, scaled by 4. */
22434 if (value >= 0)
22435 newval |= (1 << 23);
22436 else
22437 value = -value;
22438 if (value % 4 != 0)
22439 {
22440 as_bad_where (fixP->fx_file, fixP->fx_line,
22441 _("offset not a multiple of 4"));
22442 break;
22443 }
22444 value /= 4;
22445 if (value > 0xff)
22446 {
22447 as_bad_where (fixP->fx_file, fixP->fx_line,
22448 _("offset out of range"));
22449 break;
22450 }
22451 newval &= ~0xff;
22452 }
22453 else if ((newval & 0x000f0000) == 0x000f0000)
22454 {
22455 /* PC-relative, 12-bit offset. */
22456 if (value >= 0)
22457 newval |= (1 << 23);
22458 else
22459 value = -value;
22460 if (value > 0xfff)
22461 {
22462 as_bad_where (fixP->fx_file, fixP->fx_line,
22463 _("offset out of range"));
22464 break;
22465 }
22466 newval &= ~0xfff;
22467 }
22468 else if ((newval & 0x00000100) == 0x00000100)
22469 {
22470 /* Writeback: 8-bit, +/- offset. */
22471 if (value >= 0)
22472 newval |= (1 << 9);
22473 else
22474 value = -value;
22475 if (value > 0xff)
22476 {
22477 as_bad_where (fixP->fx_file, fixP->fx_line,
22478 _("offset out of range"));
22479 break;
22480 }
22481 newval &= ~0xff;
22482 }
22483 else if ((newval & 0x00000f00) == 0x00000e00)
22484 {
22485 /* T-instruction: positive 8-bit offset. */
22486 if (value < 0 || value > 0xff)
22487 {
22488 as_bad_where (fixP->fx_file, fixP->fx_line,
22489 _("offset out of range"));
22490 break;
22491 }
22492 newval &= ~0xff;
22493 newval |= value;
22494 }
22495 else
22496 {
22497 /* Positive 12-bit or negative 8-bit offset. */
22498 int limit;
22499 if (value >= 0)
22500 {
22501 newval |= (1 << 23);
22502 limit = 0xfff;
22503 }
22504 else
22505 {
22506 value = -value;
22507 limit = 0xff;
22508 }
22509 if (value > limit)
22510 {
22511 as_bad_where (fixP->fx_file, fixP->fx_line,
22512 _("offset out of range"));
22513 break;
22514 }
22515 newval &= ~limit;
22516 }
22517
22518 newval |= value;
22519 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
22520 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
22521 break;
22522
22523 case BFD_RELOC_ARM_SHIFT_IMM:
22524 newval = md_chars_to_number (buf, INSN_SIZE);
22525 if (((unsigned long) value) > 32
22526 || (value == 32
22527 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
22528 {
22529 as_bad_where (fixP->fx_file, fixP->fx_line,
22530 _("shift expression is too large"));
22531 break;
22532 }
22533
22534 if (value == 0)
22535 /* Shifts of zero must be done as lsl. */
22536 newval &= ~0x60;
22537 else if (value == 32)
22538 value = 0;
22539 newval &= 0xfffff07f;
22540 newval |= (value & 0x1f) << 7;
22541 md_number_to_chars (buf, newval, INSN_SIZE);
22542 break;
22543
22544 case BFD_RELOC_ARM_T32_IMMEDIATE:
22545 case BFD_RELOC_ARM_T32_ADD_IMM:
22546 case BFD_RELOC_ARM_T32_IMM12:
22547 case BFD_RELOC_ARM_T32_ADD_PC12:
22548 /* We claim that this fixup has been processed here,
22549 even if in fact we generate an error because we do
22550 not have a reloc for it, so tc_gen_reloc will reject it. */
22551 fixP->fx_done = 1;
22552
22553 if (fixP->fx_addsy
22554 && ! S_IS_DEFINED (fixP->fx_addsy))
22555 {
22556 as_bad_where (fixP->fx_file, fixP->fx_line,
22557 _("undefined symbol %s used as an immediate value"),
22558 S_GET_NAME (fixP->fx_addsy));
22559 break;
22560 }
22561
22562 newval = md_chars_to_number (buf, THUMB_SIZE);
22563 newval <<= 16;
22564 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
22565
22566 newimm = FAIL;
22567 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
22568 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
22569 {
22570 newimm = encode_thumb32_immediate (value);
22571 if (newimm == (unsigned int) FAIL)
22572 newimm = thumb32_negate_data_op (&newval, value);
22573 }
22574 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
22575 && newimm == (unsigned int) FAIL)
22576 {
22577 /* Turn add/sum into addw/subw. */
22578 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
22579 newval = (newval & 0xfeffffff) | 0x02000000;
22580 /* No flat 12-bit imm encoding for addsw/subsw. */
22581 if ((newval & 0x00100000) == 0)
22582 {
22583 /* 12 bit immediate for addw/subw. */
22584 if (value < 0)
22585 {
22586 value = -value;
22587 newval ^= 0x00a00000;
22588 }
22589 if (value > 0xfff)
22590 newimm = (unsigned int) FAIL;
22591 else
22592 newimm = value;
22593 }
22594 }
22595
22596 if (newimm == (unsigned int)FAIL)
22597 {
22598 as_bad_where (fixP->fx_file, fixP->fx_line,
22599 _("invalid constant (%lx) after fixup"),
22600 (unsigned long) value);
22601 break;
22602 }
22603
22604 newval |= (newimm & 0x800) << 15;
22605 newval |= (newimm & 0x700) << 4;
22606 newval |= (newimm & 0x0ff);
22607
22608 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
22609 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
22610 break;
22611
22612 case BFD_RELOC_ARM_SMC:
22613 if (((unsigned long) value) > 0xffff)
22614 as_bad_where (fixP->fx_file, fixP->fx_line,
22615 _("invalid smc expression"));
22616 newval = md_chars_to_number (buf, INSN_SIZE);
22617 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
22618 md_number_to_chars (buf, newval, INSN_SIZE);
22619 break;
22620
22621 case BFD_RELOC_ARM_HVC:
22622 if (((unsigned long) value) > 0xffff)
22623 as_bad_where (fixP->fx_file, fixP->fx_line,
22624 _("invalid hvc expression"));
22625 newval = md_chars_to_number (buf, INSN_SIZE);
22626 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
22627 md_number_to_chars (buf, newval, INSN_SIZE);
22628 break;
22629
22630 case BFD_RELOC_ARM_SWI:
22631 if (fixP->tc_fix_data != 0)
22632 {
22633 if (((unsigned long) value) > 0xff)
22634 as_bad_where (fixP->fx_file, fixP->fx_line,
22635 _("invalid swi expression"));
22636 newval = md_chars_to_number (buf, THUMB_SIZE);
22637 newval |= value;
22638 md_number_to_chars (buf, newval, THUMB_SIZE);
22639 }
22640 else
22641 {
22642 if (((unsigned long) value) > 0x00ffffff)
22643 as_bad_where (fixP->fx_file, fixP->fx_line,
22644 _("invalid swi expression"));
22645 newval = md_chars_to_number (buf, INSN_SIZE);
22646 newval |= value;
22647 md_number_to_chars (buf, newval, INSN_SIZE);
22648 }
22649 break;
22650
22651 case BFD_RELOC_ARM_MULTI:
22652 if (((unsigned long) value) > 0xffff)
22653 as_bad_where (fixP->fx_file, fixP->fx_line,
22654 _("invalid expression in load/store multiple"));
22655 newval = value | md_chars_to_number (buf, INSN_SIZE);
22656 md_number_to_chars (buf, newval, INSN_SIZE);
22657 break;
22658
22659 #ifdef OBJ_ELF
22660 case BFD_RELOC_ARM_PCREL_CALL:
22661
22662 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
22663 && fixP->fx_addsy
22664 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22665 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22666 && THUMB_IS_FUNC (fixP->fx_addsy))
22667 /* Flip the bl to blx. This is a simple flip
22668 bit here because we generate PCREL_CALL for
22669 unconditional bls. */
22670 {
22671 newval = md_chars_to_number (buf, INSN_SIZE);
22672 newval = newval | 0x10000000;
22673 md_number_to_chars (buf, newval, INSN_SIZE);
22674 temp = 1;
22675 fixP->fx_done = 1;
22676 }
22677 else
22678 temp = 3;
22679 goto arm_branch_common;
22680
22681 case BFD_RELOC_ARM_PCREL_JUMP:
22682 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
22683 && fixP->fx_addsy
22684 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22685 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22686 && THUMB_IS_FUNC (fixP->fx_addsy))
22687 {
22688 /* This would map to a bl<cond>, b<cond>,
22689 b<always> to a Thumb function. We
22690 need to force a relocation for this particular
22691 case. */
22692 newval = md_chars_to_number (buf, INSN_SIZE);
22693 fixP->fx_done = 0;
22694 }
22695
22696 case BFD_RELOC_ARM_PLT32:
22697 #endif
22698 case BFD_RELOC_ARM_PCREL_BRANCH:
22699 temp = 3;
22700 goto arm_branch_common;
22701
22702 case BFD_RELOC_ARM_PCREL_BLX:
22703
22704 temp = 1;
22705 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
22706 && fixP->fx_addsy
22707 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22708 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22709 && ARM_IS_FUNC (fixP->fx_addsy))
22710 {
22711 /* Flip the blx to a bl and warn. */
22712 const char *name = S_GET_NAME (fixP->fx_addsy);
22713 newval = 0xeb000000;
22714 as_warn_where (fixP->fx_file, fixP->fx_line,
22715 _("blx to '%s' an ARM ISA state function changed to bl"),
22716 name);
22717 md_number_to_chars (buf, newval, INSN_SIZE);
22718 temp = 3;
22719 fixP->fx_done = 1;
22720 }
22721
22722 #ifdef OBJ_ELF
22723 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
22724 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
22725 #endif
22726
22727 arm_branch_common:
22728 /* We are going to store value (shifted right by two) in the
22729 instruction, in a 24 bit, signed field. Bits 26 through 32 either
22730 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
22731 also be be clear. */
22732 if (value & temp)
22733 as_bad_where (fixP->fx_file, fixP->fx_line,
22734 _("misaligned branch destination"));
22735 if ((value & (offsetT)0xfe000000) != (offsetT)0
22736 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
22737 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
22738
22739 if (fixP->fx_done || !seg->use_rela_p)
22740 {
22741 newval = md_chars_to_number (buf, INSN_SIZE);
22742 newval |= (value >> 2) & 0x00ffffff;
22743 /* Set the H bit on BLX instructions. */
22744 if (temp == 1)
22745 {
22746 if (value & 2)
22747 newval |= 0x01000000;
22748 else
22749 newval &= ~0x01000000;
22750 }
22751 md_number_to_chars (buf, newval, INSN_SIZE);
22752 }
22753 break;
22754
22755 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
22756 /* CBZ can only branch forward. */
22757
22758 /* Attempts to use CBZ to branch to the next instruction
22759 (which, strictly speaking, are prohibited) will be turned into
22760 no-ops.
22761
22762 FIXME: It may be better to remove the instruction completely and
22763 perform relaxation. */
22764 if (value == -2)
22765 {
22766 newval = md_chars_to_number (buf, THUMB_SIZE);
22767 newval = 0xbf00; /* NOP encoding T1 */
22768 md_number_to_chars (buf, newval, THUMB_SIZE);
22769 }
22770 else
22771 {
22772 if (value & ~0x7e)
22773 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
22774
22775 if (fixP->fx_done || !seg->use_rela_p)
22776 {
22777 newval = md_chars_to_number (buf, THUMB_SIZE);
22778 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
22779 md_number_to_chars (buf, newval, THUMB_SIZE);
22780 }
22781 }
22782 break;
22783
22784 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
22785 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
22786 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
22787
22788 if (fixP->fx_done || !seg->use_rela_p)
22789 {
22790 newval = md_chars_to_number (buf, THUMB_SIZE);
22791 newval |= (value & 0x1ff) >> 1;
22792 md_number_to_chars (buf, newval, THUMB_SIZE);
22793 }
22794 break;
22795
22796 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
22797 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
22798 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
22799
22800 if (fixP->fx_done || !seg->use_rela_p)
22801 {
22802 newval = md_chars_to_number (buf, THUMB_SIZE);
22803 newval |= (value & 0xfff) >> 1;
22804 md_number_to_chars (buf, newval, THUMB_SIZE);
22805 }
22806 break;
22807
22808 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22809 if (fixP->fx_addsy
22810 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22811 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22812 && ARM_IS_FUNC (fixP->fx_addsy)
22813 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22814 {
22815 /* Force a relocation for a branch 20 bits wide. */
22816 fixP->fx_done = 0;
22817 }
22818 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
22819 as_bad_where (fixP->fx_file, fixP->fx_line,
22820 _("conditional branch out of range"));
22821
22822 if (fixP->fx_done || !seg->use_rela_p)
22823 {
22824 offsetT newval2;
22825 addressT S, J1, J2, lo, hi;
22826
22827 S = (value & 0x00100000) >> 20;
22828 J2 = (value & 0x00080000) >> 19;
22829 J1 = (value & 0x00040000) >> 18;
22830 hi = (value & 0x0003f000) >> 12;
22831 lo = (value & 0x00000ffe) >> 1;
22832
22833 newval = md_chars_to_number (buf, THUMB_SIZE);
22834 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
22835 newval |= (S << 10) | hi;
22836 newval2 |= (J1 << 13) | (J2 << 11) | lo;
22837 md_number_to_chars (buf, newval, THUMB_SIZE);
22838 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
22839 }
22840 break;
22841
22842 case BFD_RELOC_THUMB_PCREL_BLX:
22843 /* If there is a blx from a thumb state function to
22844 another thumb function flip this to a bl and warn
22845 about it. */
22846
22847 if (fixP->fx_addsy
22848 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22849 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22850 && THUMB_IS_FUNC (fixP->fx_addsy))
22851 {
22852 const char *name = S_GET_NAME (fixP->fx_addsy);
22853 as_warn_where (fixP->fx_file, fixP->fx_line,
22854 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
22855 name);
22856 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
22857 newval = newval | 0x1000;
22858 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
22859 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
22860 fixP->fx_done = 1;
22861 }
22862
22863
22864 goto thumb_bl_common;
22865
22866 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22867 /* A bl from Thumb state ISA to an internal ARM state function
22868 is converted to a blx. */
22869 if (fixP->fx_addsy
22870 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22871 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22872 && ARM_IS_FUNC (fixP->fx_addsy)
22873 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22874 {
22875 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
22876 newval = newval & ~0x1000;
22877 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
22878 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
22879 fixP->fx_done = 1;
22880 }
22881
22882 thumb_bl_common:
22883
22884 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
22885 /* For a BLX instruction, make sure that the relocation is rounded up
22886 to a word boundary. This follows the semantics of the instruction
22887 which specifies that bit 1 of the target address will come from bit
22888 1 of the base address. */
22889 value = (value + 3) & ~ 3;
22890
22891 #ifdef OBJ_ELF
22892 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
22893 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
22894 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
22895 #endif
22896
22897 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
22898 {
22899 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
22900 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
22901 else if ((value & ~0x1ffffff)
22902 && ((value & ~0x1ffffff) != ~0x1ffffff))
22903 as_bad_where (fixP->fx_file, fixP->fx_line,
22904 _("Thumb2 branch out of range"));
22905 }
22906
22907 if (fixP->fx_done || !seg->use_rela_p)
22908 encode_thumb2_b_bl_offset (buf, value);
22909
22910 break;
22911
22912 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22913 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
22914 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
22915
22916 if (fixP->fx_done || !seg->use_rela_p)
22917 encode_thumb2_b_bl_offset (buf, value);
22918
22919 break;
22920
22921 case BFD_RELOC_8:
22922 if (fixP->fx_done || !seg->use_rela_p)
22923 *buf = value;
22924 break;
22925
22926 case BFD_RELOC_16:
22927 if (fixP->fx_done || !seg->use_rela_p)
22928 md_number_to_chars (buf, value, 2);
22929 break;
22930
22931 #ifdef OBJ_ELF
22932 case BFD_RELOC_ARM_TLS_CALL:
22933 case BFD_RELOC_ARM_THM_TLS_CALL:
22934 case BFD_RELOC_ARM_TLS_DESCSEQ:
22935 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
22936 case BFD_RELOC_ARM_TLS_GOTDESC:
22937 case BFD_RELOC_ARM_TLS_GD32:
22938 case BFD_RELOC_ARM_TLS_LE32:
22939 case BFD_RELOC_ARM_TLS_IE32:
22940 case BFD_RELOC_ARM_TLS_LDM32:
22941 case BFD_RELOC_ARM_TLS_LDO32:
22942 S_SET_THREAD_LOCAL (fixP->fx_addsy);
22943 break;
22944
22945 case BFD_RELOC_ARM_GOT32:
22946 case BFD_RELOC_ARM_GOTOFF:
22947 break;
22948
22949 case BFD_RELOC_ARM_GOT_PREL:
22950 if (fixP->fx_done || !seg->use_rela_p)
22951 md_number_to_chars (buf, value, 4);
22952 break;
22953
22954 case BFD_RELOC_ARM_TARGET2:
22955 /* TARGET2 is not partial-inplace, so we need to write the
22956 addend here for REL targets, because it won't be written out
22957 during reloc processing later. */
22958 if (fixP->fx_done || !seg->use_rela_p)
22959 md_number_to_chars (buf, fixP->fx_offset, 4);
22960 break;
22961 #endif
22962
22963 case BFD_RELOC_RVA:
22964 case BFD_RELOC_32:
22965 case BFD_RELOC_ARM_TARGET1:
22966 case BFD_RELOC_ARM_ROSEGREL32:
22967 case BFD_RELOC_ARM_SBREL32:
22968 case BFD_RELOC_32_PCREL:
22969 #ifdef TE_PE
22970 case BFD_RELOC_32_SECREL:
22971 #endif
22972 if (fixP->fx_done || !seg->use_rela_p)
22973 #ifdef TE_WINCE
22974 /* For WinCE we only do this for pcrel fixups. */
22975 if (fixP->fx_done || fixP->fx_pcrel)
22976 #endif
22977 md_number_to_chars (buf, value, 4);
22978 break;
22979
22980 #ifdef OBJ_ELF
22981 case BFD_RELOC_ARM_PREL31:
22982 if (fixP->fx_done || !seg->use_rela_p)
22983 {
22984 newval = md_chars_to_number (buf, 4) & 0x80000000;
22985 if ((value ^ (value >> 1)) & 0x40000000)
22986 {
22987 as_bad_where (fixP->fx_file, fixP->fx_line,
22988 _("rel31 relocation overflow"));
22989 }
22990 newval |= value & 0x7fffffff;
22991 md_number_to_chars (buf, newval, 4);
22992 }
22993 break;
22994 #endif
22995
22996 case BFD_RELOC_ARM_CP_OFF_IMM:
22997 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
22998 if (value < -1023 || value > 1023 || (value & 3))
22999 as_bad_where (fixP->fx_file, fixP->fx_line,
23000 _("co-processor offset out of range"));
23001 cp_off_common:
23002 sign = value > 0;
23003 if (value < 0)
23004 value = -value;
23005 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
23006 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
23007 newval = md_chars_to_number (buf, INSN_SIZE);
23008 else
23009 newval = get_thumb32_insn (buf);
23010 if (value == 0)
23011 newval &= 0xffffff00;
23012 else
23013 {
23014 newval &= 0xff7fff00;
23015 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
23016 }
23017 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
23018 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
23019 md_number_to_chars (buf, newval, INSN_SIZE);
23020 else
23021 put_thumb32_insn (buf, newval);
23022 break;
23023
23024 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
23025 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
23026 if (value < -255 || value > 255)
23027 as_bad_where (fixP->fx_file, fixP->fx_line,
23028 _("co-processor offset out of range"));
23029 value *= 4;
23030 goto cp_off_common;
23031
23032 case BFD_RELOC_ARM_THUMB_OFFSET:
23033 newval = md_chars_to_number (buf, THUMB_SIZE);
23034 /* Exactly what ranges, and where the offset is inserted depends
23035 on the type of instruction, we can establish this from the
23036 top 4 bits. */
23037 switch (newval >> 12)
23038 {
23039 case 4: /* PC load. */
23040 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
23041 forced to zero for these loads; md_pcrel_from has already
23042 compensated for this. */
23043 if (value & 3)
23044 as_bad_where (fixP->fx_file, fixP->fx_line,
23045 _("invalid offset, target not word aligned (0x%08lX)"),
23046 (((unsigned long) fixP->fx_frag->fr_address
23047 + (unsigned long) fixP->fx_where) & ~3)
23048 + (unsigned long) value);
23049
23050 if (value & ~0x3fc)
23051 as_bad_where (fixP->fx_file, fixP->fx_line,
23052 _("invalid offset, value too big (0x%08lX)"),
23053 (long) value);
23054
23055 newval |= value >> 2;
23056 break;
23057
23058 case 9: /* SP load/store. */
23059 if (value & ~0x3fc)
23060 as_bad_where (fixP->fx_file, fixP->fx_line,
23061 _("invalid offset, value too big (0x%08lX)"),
23062 (long) value);
23063 newval |= value >> 2;
23064 break;
23065
23066 case 6: /* Word load/store. */
23067 if (value & ~0x7c)
23068 as_bad_where (fixP->fx_file, fixP->fx_line,
23069 _("invalid offset, value too big (0x%08lX)"),
23070 (long) value);
23071 newval |= value << 4; /* 6 - 2. */
23072 break;
23073
23074 case 7: /* Byte load/store. */
23075 if (value & ~0x1f)
23076 as_bad_where (fixP->fx_file, fixP->fx_line,
23077 _("invalid offset, value too big (0x%08lX)"),
23078 (long) value);
23079 newval |= value << 6;
23080 break;
23081
23082 case 8: /* Halfword load/store. */
23083 if (value & ~0x3e)
23084 as_bad_where (fixP->fx_file, fixP->fx_line,
23085 _("invalid offset, value too big (0x%08lX)"),
23086 (long) value);
23087 newval |= value << 5; /* 6 - 1. */
23088 break;
23089
23090 default:
23091 as_bad_where (fixP->fx_file, fixP->fx_line,
23092 "Unable to process relocation for thumb opcode: %lx",
23093 (unsigned long) newval);
23094 break;
23095 }
23096 md_number_to_chars (buf, newval, THUMB_SIZE);
23097 break;
23098
23099 case BFD_RELOC_ARM_THUMB_ADD:
23100 /* This is a complicated relocation, since we use it for all of
23101 the following immediate relocations:
23102
23103 3bit ADD/SUB
23104 8bit ADD/SUB
23105 9bit ADD/SUB SP word-aligned
23106 10bit ADD PC/SP word-aligned
23107
23108 The type of instruction being processed is encoded in the
23109 instruction field:
23110
23111 0x8000 SUB
23112 0x00F0 Rd
23113 0x000F Rs
23114 */
23115 newval = md_chars_to_number (buf, THUMB_SIZE);
23116 {
23117 int rd = (newval >> 4) & 0xf;
23118 int rs = newval & 0xf;
23119 int subtract = !!(newval & 0x8000);
23120
23121 /* Check for HI regs, only very restricted cases allowed:
23122 Adjusting SP, and using PC or SP to get an address. */
23123 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
23124 || (rs > 7 && rs != REG_SP && rs != REG_PC))
23125 as_bad_where (fixP->fx_file, fixP->fx_line,
23126 _("invalid Hi register with immediate"));
23127
23128 /* If value is negative, choose the opposite instruction. */
23129 if (value < 0)
23130 {
23131 value = -value;
23132 subtract = !subtract;
23133 if (value < 0)
23134 as_bad_where (fixP->fx_file, fixP->fx_line,
23135 _("immediate value out of range"));
23136 }
23137
23138 if (rd == REG_SP)
23139 {
23140 if (value & ~0x1fc)
23141 as_bad_where (fixP->fx_file, fixP->fx_line,
23142 _("invalid immediate for stack address calculation"));
23143 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
23144 newval |= value >> 2;
23145 }
23146 else if (rs == REG_PC || rs == REG_SP)
23147 {
23148 /* PR gas/18541. If the addition is for a defined symbol
23149 within range of an ADR instruction then accept it. */
23150 if (subtract
23151 && value == 4
23152 && fixP->fx_addsy != NULL)
23153 {
23154 subtract = 0;
23155
23156 if (! S_IS_DEFINED (fixP->fx_addsy)
23157 || S_GET_SEGMENT (fixP->fx_addsy) != seg
23158 || S_IS_WEAK (fixP->fx_addsy))
23159 {
23160 as_bad_where (fixP->fx_file, fixP->fx_line,
23161 _("address calculation needs a strongly defined nearby symbol"));
23162 }
23163 else
23164 {
23165 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
23166
23167 /* Round up to the next 4-byte boundary. */
23168 if (v & 3)
23169 v = (v + 3) & ~ 3;
23170 else
23171 v += 4;
23172 v = S_GET_VALUE (fixP->fx_addsy) - v;
23173
23174 if (v & ~0x3fc)
23175 {
23176 as_bad_where (fixP->fx_file, fixP->fx_line,
23177 _("symbol too far away"));
23178 }
23179 else
23180 {
23181 fixP->fx_done = 1;
23182 value = v;
23183 }
23184 }
23185 }
23186
23187 if (subtract || value & ~0x3fc)
23188 as_bad_where (fixP->fx_file, fixP->fx_line,
23189 _("invalid immediate for address calculation (value = 0x%08lX)"),
23190 (unsigned long) (subtract ? - value : value));
23191 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
23192 newval |= rd << 8;
23193 newval |= value >> 2;
23194 }
23195 else if (rs == rd)
23196 {
23197 if (value & ~0xff)
23198 as_bad_where (fixP->fx_file, fixP->fx_line,
23199 _("immediate value out of range"));
23200 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
23201 newval |= (rd << 8) | value;
23202 }
23203 else
23204 {
23205 if (value & ~0x7)
23206 as_bad_where (fixP->fx_file, fixP->fx_line,
23207 _("immediate value out of range"));
23208 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
23209 newval |= rd | (rs << 3) | (value << 6);
23210 }
23211 }
23212 md_number_to_chars (buf, newval, THUMB_SIZE);
23213 break;
23214
23215 case BFD_RELOC_ARM_THUMB_IMM:
23216 newval = md_chars_to_number (buf, THUMB_SIZE);
23217 if (value < 0 || value > 255)
23218 as_bad_where (fixP->fx_file, fixP->fx_line,
23219 _("invalid immediate: %ld is out of range"),
23220 (long) value);
23221 newval |= value;
23222 md_number_to_chars (buf, newval, THUMB_SIZE);
23223 break;
23224
23225 case BFD_RELOC_ARM_THUMB_SHIFT:
23226 /* 5bit shift value (0..32). LSL cannot take 32. */
23227 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
23228 temp = newval & 0xf800;
23229 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
23230 as_bad_where (fixP->fx_file, fixP->fx_line,
23231 _("invalid shift value: %ld"), (long) value);
23232 /* Shifts of zero must be encoded as LSL. */
23233 if (value == 0)
23234 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
23235 /* Shifts of 32 are encoded as zero. */
23236 else if (value == 32)
23237 value = 0;
23238 newval |= value << 6;
23239 md_number_to_chars (buf, newval, THUMB_SIZE);
23240 break;
23241
23242 case BFD_RELOC_VTABLE_INHERIT:
23243 case BFD_RELOC_VTABLE_ENTRY:
23244 fixP->fx_done = 0;
23245 return;
23246
23247 case BFD_RELOC_ARM_MOVW:
23248 case BFD_RELOC_ARM_MOVT:
23249 case BFD_RELOC_ARM_THUMB_MOVW:
23250 case BFD_RELOC_ARM_THUMB_MOVT:
23251 if (fixP->fx_done || !seg->use_rela_p)
23252 {
23253 /* REL format relocations are limited to a 16-bit addend. */
23254 if (!fixP->fx_done)
23255 {
23256 if (value < -0x8000 || value > 0x7fff)
23257 as_bad_where (fixP->fx_file, fixP->fx_line,
23258 _("offset out of range"));
23259 }
23260 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
23261 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
23262 {
23263 value >>= 16;
23264 }
23265
23266 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
23267 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
23268 {
23269 newval = get_thumb32_insn (buf);
23270 newval &= 0xfbf08f00;
23271 newval |= (value & 0xf000) << 4;
23272 newval |= (value & 0x0800) << 15;
23273 newval |= (value & 0x0700) << 4;
23274 newval |= (value & 0x00ff);
23275 put_thumb32_insn (buf, newval);
23276 }
23277 else
23278 {
23279 newval = md_chars_to_number (buf, 4);
23280 newval &= 0xfff0f000;
23281 newval |= value & 0x0fff;
23282 newval |= (value & 0xf000) << 4;
23283 md_number_to_chars (buf, newval, 4);
23284 }
23285 }
23286 return;
23287
23288 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
23289 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
23290 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
23291 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
23292 gas_assert (!fixP->fx_done);
23293 {
23294 bfd_vma insn;
23295 bfd_boolean is_mov;
23296 bfd_vma encoded_addend = value;
23297
23298 /* Check that addend can be encoded in instruction. */
23299 if (!seg->use_rela_p && (value < 0 || value > 255))
23300 as_bad_where (fixP->fx_file, fixP->fx_line,
23301 _("the offset 0x%08lX is not representable"),
23302 (unsigned long) encoded_addend);
23303
23304 /* Extract the instruction. */
23305 insn = md_chars_to_number (buf, THUMB_SIZE);
23306 is_mov = (insn & 0xf800) == 0x2000;
23307
23308 /* Encode insn. */
23309 if (is_mov)
23310 {
23311 if (!seg->use_rela_p)
23312 insn |= encoded_addend;
23313 }
23314 else
23315 {
23316 int rd, rs;
23317
23318 /* Extract the instruction. */
23319 /* Encoding is the following
23320 0x8000 SUB
23321 0x00F0 Rd
23322 0x000F Rs
23323 */
23324 /* The following conditions must be true :
23325 - ADD
23326 - Rd == Rs
23327 - Rd <= 7
23328 */
23329 rd = (insn >> 4) & 0xf;
23330 rs = insn & 0xf;
23331 if ((insn & 0x8000) || (rd != rs) || rd > 7)
23332 as_bad_where (fixP->fx_file, fixP->fx_line,
23333 _("Unable to process relocation for thumb opcode: %lx"),
23334 (unsigned long) insn);
23335
23336 /* Encode as ADD immediate8 thumb 1 code. */
23337 insn = 0x3000 | (rd << 8);
23338
23339 /* Place the encoded addend into the first 8 bits of the
23340 instruction. */
23341 if (!seg->use_rela_p)
23342 insn |= encoded_addend;
23343 }
23344
23345 /* Update the instruction. */
23346 md_number_to_chars (buf, insn, THUMB_SIZE);
23347 }
23348 break;
23349
23350 case BFD_RELOC_ARM_ALU_PC_G0_NC:
23351 case BFD_RELOC_ARM_ALU_PC_G0:
23352 case BFD_RELOC_ARM_ALU_PC_G1_NC:
23353 case BFD_RELOC_ARM_ALU_PC_G1:
23354 case BFD_RELOC_ARM_ALU_PC_G2:
23355 case BFD_RELOC_ARM_ALU_SB_G0_NC:
23356 case BFD_RELOC_ARM_ALU_SB_G0:
23357 case BFD_RELOC_ARM_ALU_SB_G1_NC:
23358 case BFD_RELOC_ARM_ALU_SB_G1:
23359 case BFD_RELOC_ARM_ALU_SB_G2:
23360 gas_assert (!fixP->fx_done);
23361 if (!seg->use_rela_p)
23362 {
23363 bfd_vma insn;
23364 bfd_vma encoded_addend;
23365 bfd_vma addend_abs = abs (value);
23366
23367 /* Check that the absolute value of the addend can be
23368 expressed as an 8-bit constant plus a rotation. */
23369 encoded_addend = encode_arm_immediate (addend_abs);
23370 if (encoded_addend == (unsigned int) FAIL)
23371 as_bad_where (fixP->fx_file, fixP->fx_line,
23372 _("the offset 0x%08lX is not representable"),
23373 (unsigned long) addend_abs);
23374
23375 /* Extract the instruction. */
23376 insn = md_chars_to_number (buf, INSN_SIZE);
23377
23378 /* If the addend is positive, use an ADD instruction.
23379 Otherwise use a SUB. Take care not to destroy the S bit. */
23380 insn &= 0xff1fffff;
23381 if (value < 0)
23382 insn |= 1 << 22;
23383 else
23384 insn |= 1 << 23;
23385
23386 /* Place the encoded addend into the first 12 bits of the
23387 instruction. */
23388 insn &= 0xfffff000;
23389 insn |= encoded_addend;
23390
23391 /* Update the instruction. */
23392 md_number_to_chars (buf, insn, INSN_SIZE);
23393 }
23394 break;
23395
23396 case BFD_RELOC_ARM_LDR_PC_G0:
23397 case BFD_RELOC_ARM_LDR_PC_G1:
23398 case BFD_RELOC_ARM_LDR_PC_G2:
23399 case BFD_RELOC_ARM_LDR_SB_G0:
23400 case BFD_RELOC_ARM_LDR_SB_G1:
23401 case BFD_RELOC_ARM_LDR_SB_G2:
23402 gas_assert (!fixP->fx_done);
23403 if (!seg->use_rela_p)
23404 {
23405 bfd_vma insn;
23406 bfd_vma addend_abs = abs (value);
23407
23408 /* Check that the absolute value of the addend can be
23409 encoded in 12 bits. */
23410 if (addend_abs >= 0x1000)
23411 as_bad_where (fixP->fx_file, fixP->fx_line,
23412 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
23413 (unsigned long) addend_abs);
23414
23415 /* Extract the instruction. */
23416 insn = md_chars_to_number (buf, INSN_SIZE);
23417
23418 /* If the addend is negative, clear bit 23 of the instruction.
23419 Otherwise set it. */
23420 if (value < 0)
23421 insn &= ~(1 << 23);
23422 else
23423 insn |= 1 << 23;
23424
23425 /* Place the absolute value of the addend into the first 12 bits
23426 of the instruction. */
23427 insn &= 0xfffff000;
23428 insn |= addend_abs;
23429
23430 /* Update the instruction. */
23431 md_number_to_chars (buf, insn, INSN_SIZE);
23432 }
23433 break;
23434
23435 case BFD_RELOC_ARM_LDRS_PC_G0:
23436 case BFD_RELOC_ARM_LDRS_PC_G1:
23437 case BFD_RELOC_ARM_LDRS_PC_G2:
23438 case BFD_RELOC_ARM_LDRS_SB_G0:
23439 case BFD_RELOC_ARM_LDRS_SB_G1:
23440 case BFD_RELOC_ARM_LDRS_SB_G2:
23441 gas_assert (!fixP->fx_done);
23442 if (!seg->use_rela_p)
23443 {
23444 bfd_vma insn;
23445 bfd_vma addend_abs = abs (value);
23446
23447 /* Check that the absolute value of the addend can be
23448 encoded in 8 bits. */
23449 if (addend_abs >= 0x100)
23450 as_bad_where (fixP->fx_file, fixP->fx_line,
23451 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
23452 (unsigned long) addend_abs);
23453
23454 /* Extract the instruction. */
23455 insn = md_chars_to_number (buf, INSN_SIZE);
23456
23457 /* If the addend is negative, clear bit 23 of the instruction.
23458 Otherwise set it. */
23459 if (value < 0)
23460 insn &= ~(1 << 23);
23461 else
23462 insn |= 1 << 23;
23463
23464 /* Place the first four bits of the absolute value of the addend
23465 into the first 4 bits of the instruction, and the remaining
23466 four into bits 8 .. 11. */
23467 insn &= 0xfffff0f0;
23468 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
23469
23470 /* Update the instruction. */
23471 md_number_to_chars (buf, insn, INSN_SIZE);
23472 }
23473 break;
23474
23475 case BFD_RELOC_ARM_LDC_PC_G0:
23476 case BFD_RELOC_ARM_LDC_PC_G1:
23477 case BFD_RELOC_ARM_LDC_PC_G2:
23478 case BFD_RELOC_ARM_LDC_SB_G0:
23479 case BFD_RELOC_ARM_LDC_SB_G1:
23480 case BFD_RELOC_ARM_LDC_SB_G2:
23481 gas_assert (!fixP->fx_done);
23482 if (!seg->use_rela_p)
23483 {
23484 bfd_vma insn;
23485 bfd_vma addend_abs = abs (value);
23486
23487 /* Check that the absolute value of the addend is a multiple of
23488 four and, when divided by four, fits in 8 bits. */
23489 if (addend_abs & 0x3)
23490 as_bad_where (fixP->fx_file, fixP->fx_line,
23491 _("bad offset 0x%08lX (must be word-aligned)"),
23492 (unsigned long) addend_abs);
23493
23494 if ((addend_abs >> 2) > 0xff)
23495 as_bad_where (fixP->fx_file, fixP->fx_line,
23496 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
23497 (unsigned long) addend_abs);
23498
23499 /* Extract the instruction. */
23500 insn = md_chars_to_number (buf, INSN_SIZE);
23501
23502 /* If the addend is negative, clear bit 23 of the instruction.
23503 Otherwise set it. */
23504 if (value < 0)
23505 insn &= ~(1 << 23);
23506 else
23507 insn |= 1 << 23;
23508
23509 /* Place the addend (divided by four) into the first eight
23510 bits of the instruction. */
23511 insn &= 0xfffffff0;
23512 insn |= addend_abs >> 2;
23513
23514 /* Update the instruction. */
23515 md_number_to_chars (buf, insn, INSN_SIZE);
23516 }
23517 break;
23518
23519 case BFD_RELOC_ARM_V4BX:
23520 /* This will need to go in the object file. */
23521 fixP->fx_done = 0;
23522 break;
23523
23524 case BFD_RELOC_UNUSED:
23525 default:
23526 as_bad_where (fixP->fx_file, fixP->fx_line,
23527 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
23528 }
23529 }
23530
23531 /* Translate internal representation of relocation info to BFD target
23532 format. */
23533
23534 arelent *
23535 tc_gen_reloc (asection *section, fixS *fixp)
23536 {
23537 arelent * reloc;
23538 bfd_reloc_code_real_type code;
23539
23540 reloc = (arelent *) xmalloc (sizeof (arelent));
23541
23542 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
23543 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
23544 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
23545
23546 if (fixp->fx_pcrel)
23547 {
23548 if (section->use_rela_p)
23549 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
23550 else
23551 fixp->fx_offset = reloc->address;
23552 }
23553 reloc->addend = fixp->fx_offset;
23554
23555 switch (fixp->fx_r_type)
23556 {
23557 case BFD_RELOC_8:
23558 if (fixp->fx_pcrel)
23559 {
23560 code = BFD_RELOC_8_PCREL;
23561 break;
23562 }
23563
23564 case BFD_RELOC_16:
23565 if (fixp->fx_pcrel)
23566 {
23567 code = BFD_RELOC_16_PCREL;
23568 break;
23569 }
23570
23571 case BFD_RELOC_32:
23572 if (fixp->fx_pcrel)
23573 {
23574 code = BFD_RELOC_32_PCREL;
23575 break;
23576 }
23577
23578 case BFD_RELOC_ARM_MOVW:
23579 if (fixp->fx_pcrel)
23580 {
23581 code = BFD_RELOC_ARM_MOVW_PCREL;
23582 break;
23583 }
23584
23585 case BFD_RELOC_ARM_MOVT:
23586 if (fixp->fx_pcrel)
23587 {
23588 code = BFD_RELOC_ARM_MOVT_PCREL;
23589 break;
23590 }
23591
23592 case BFD_RELOC_ARM_THUMB_MOVW:
23593 if (fixp->fx_pcrel)
23594 {
23595 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
23596 break;
23597 }
23598
23599 case BFD_RELOC_ARM_THUMB_MOVT:
23600 if (fixp->fx_pcrel)
23601 {
23602 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
23603 break;
23604 }
23605
23606 case BFD_RELOC_NONE:
23607 case BFD_RELOC_ARM_PCREL_BRANCH:
23608 case BFD_RELOC_ARM_PCREL_BLX:
23609 case BFD_RELOC_RVA:
23610 case BFD_RELOC_THUMB_PCREL_BRANCH7:
23611 case BFD_RELOC_THUMB_PCREL_BRANCH9:
23612 case BFD_RELOC_THUMB_PCREL_BRANCH12:
23613 case BFD_RELOC_THUMB_PCREL_BRANCH20:
23614 case BFD_RELOC_THUMB_PCREL_BRANCH23:
23615 case BFD_RELOC_THUMB_PCREL_BRANCH25:
23616 case BFD_RELOC_VTABLE_ENTRY:
23617 case BFD_RELOC_VTABLE_INHERIT:
23618 #ifdef TE_PE
23619 case BFD_RELOC_32_SECREL:
23620 #endif
23621 code = fixp->fx_r_type;
23622 break;
23623
23624 case BFD_RELOC_THUMB_PCREL_BLX:
23625 #ifdef OBJ_ELF
23626 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
23627 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
23628 else
23629 #endif
23630 code = BFD_RELOC_THUMB_PCREL_BLX;
23631 break;
23632
23633 case BFD_RELOC_ARM_LITERAL:
23634 case BFD_RELOC_ARM_HWLITERAL:
23635 /* If this is called then the a literal has
23636 been referenced across a section boundary. */
23637 as_bad_where (fixp->fx_file, fixp->fx_line,
23638 _("literal referenced across section boundary"));
23639 return NULL;
23640
23641 #ifdef OBJ_ELF
23642 case BFD_RELOC_ARM_TLS_CALL:
23643 case BFD_RELOC_ARM_THM_TLS_CALL:
23644 case BFD_RELOC_ARM_TLS_DESCSEQ:
23645 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
23646 case BFD_RELOC_ARM_GOT32:
23647 case BFD_RELOC_ARM_GOTOFF:
23648 case BFD_RELOC_ARM_GOT_PREL:
23649 case BFD_RELOC_ARM_PLT32:
23650 case BFD_RELOC_ARM_TARGET1:
23651 case BFD_RELOC_ARM_ROSEGREL32:
23652 case BFD_RELOC_ARM_SBREL32:
23653 case BFD_RELOC_ARM_PREL31:
23654 case BFD_RELOC_ARM_TARGET2:
23655 case BFD_RELOC_ARM_TLS_LDO32:
23656 case BFD_RELOC_ARM_PCREL_CALL:
23657 case BFD_RELOC_ARM_PCREL_JUMP:
23658 case BFD_RELOC_ARM_ALU_PC_G0_NC:
23659 case BFD_RELOC_ARM_ALU_PC_G0:
23660 case BFD_RELOC_ARM_ALU_PC_G1_NC:
23661 case BFD_RELOC_ARM_ALU_PC_G1:
23662 case BFD_RELOC_ARM_ALU_PC_G2:
23663 case BFD_RELOC_ARM_LDR_PC_G0:
23664 case BFD_RELOC_ARM_LDR_PC_G1:
23665 case BFD_RELOC_ARM_LDR_PC_G2:
23666 case BFD_RELOC_ARM_LDRS_PC_G0:
23667 case BFD_RELOC_ARM_LDRS_PC_G1:
23668 case BFD_RELOC_ARM_LDRS_PC_G2:
23669 case BFD_RELOC_ARM_LDC_PC_G0:
23670 case BFD_RELOC_ARM_LDC_PC_G1:
23671 case BFD_RELOC_ARM_LDC_PC_G2:
23672 case BFD_RELOC_ARM_ALU_SB_G0_NC:
23673 case BFD_RELOC_ARM_ALU_SB_G0:
23674 case BFD_RELOC_ARM_ALU_SB_G1_NC:
23675 case BFD_RELOC_ARM_ALU_SB_G1:
23676 case BFD_RELOC_ARM_ALU_SB_G2:
23677 case BFD_RELOC_ARM_LDR_SB_G0:
23678 case BFD_RELOC_ARM_LDR_SB_G1:
23679 case BFD_RELOC_ARM_LDR_SB_G2:
23680 case BFD_RELOC_ARM_LDRS_SB_G0:
23681 case BFD_RELOC_ARM_LDRS_SB_G1:
23682 case BFD_RELOC_ARM_LDRS_SB_G2:
23683 case BFD_RELOC_ARM_LDC_SB_G0:
23684 case BFD_RELOC_ARM_LDC_SB_G1:
23685 case BFD_RELOC_ARM_LDC_SB_G2:
23686 case BFD_RELOC_ARM_V4BX:
23687 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
23688 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
23689 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
23690 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
23691 code = fixp->fx_r_type;
23692 break;
23693
23694 case BFD_RELOC_ARM_TLS_GOTDESC:
23695 case BFD_RELOC_ARM_TLS_GD32:
23696 case BFD_RELOC_ARM_TLS_LE32:
23697 case BFD_RELOC_ARM_TLS_IE32:
23698 case BFD_RELOC_ARM_TLS_LDM32:
23699 /* BFD will include the symbol's address in the addend.
23700 But we don't want that, so subtract it out again here. */
23701 if (!S_IS_COMMON (fixp->fx_addsy))
23702 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
23703 code = fixp->fx_r_type;
23704 break;
23705 #endif
23706
23707 case BFD_RELOC_ARM_IMMEDIATE:
23708 as_bad_where (fixp->fx_file, fixp->fx_line,
23709 _("internal relocation (type: IMMEDIATE) not fixed up"));
23710 return NULL;
23711
23712 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
23713 as_bad_where (fixp->fx_file, fixp->fx_line,
23714 _("ADRL used for a symbol not defined in the same file"));
23715 return NULL;
23716
23717 case BFD_RELOC_ARM_OFFSET_IMM:
23718 if (section->use_rela_p)
23719 {
23720 code = fixp->fx_r_type;
23721 break;
23722 }
23723
23724 if (fixp->fx_addsy != NULL
23725 && !S_IS_DEFINED (fixp->fx_addsy)
23726 && S_IS_LOCAL (fixp->fx_addsy))
23727 {
23728 as_bad_where (fixp->fx_file, fixp->fx_line,
23729 _("undefined local label `%s'"),
23730 S_GET_NAME (fixp->fx_addsy));
23731 return NULL;
23732 }
23733
23734 as_bad_where (fixp->fx_file, fixp->fx_line,
23735 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
23736 return NULL;
23737
23738 default:
23739 {
23740 char * type;
23741
23742 switch (fixp->fx_r_type)
23743 {
23744 case BFD_RELOC_NONE: type = "NONE"; break;
23745 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
23746 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
23747 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
23748 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
23749 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
23750 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
23751 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
23752 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
23753 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
23754 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
23755 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
23756 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
23757 default: type = _("<unknown>"); break;
23758 }
23759 as_bad_where (fixp->fx_file, fixp->fx_line,
23760 _("cannot represent %s relocation in this object file format"),
23761 type);
23762 return NULL;
23763 }
23764 }
23765
23766 #ifdef OBJ_ELF
23767 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
23768 && GOT_symbol
23769 && fixp->fx_addsy == GOT_symbol)
23770 {
23771 code = BFD_RELOC_ARM_GOTPC;
23772 reloc->addend = fixp->fx_offset = reloc->address;
23773 }
23774 #endif
23775
23776 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
23777
23778 if (reloc->howto == NULL)
23779 {
23780 as_bad_where (fixp->fx_file, fixp->fx_line,
23781 _("cannot represent %s relocation in this object file format"),
23782 bfd_get_reloc_code_name (code));
23783 return NULL;
23784 }
23785
23786 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
23787 vtable entry to be used in the relocation's section offset. */
23788 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
23789 reloc->address = fixp->fx_offset;
23790
23791 return reloc;
23792 }
23793
23794 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
23795
23796 void
23797 cons_fix_new_arm (fragS * frag,
23798 int where,
23799 int size,
23800 expressionS * exp,
23801 bfd_reloc_code_real_type reloc)
23802 {
23803 int pcrel = 0;
23804
23805 /* Pick a reloc.
23806 FIXME: @@ Should look at CPU word size. */
23807 switch (size)
23808 {
23809 case 1:
23810 reloc = BFD_RELOC_8;
23811 break;
23812 case 2:
23813 reloc = BFD_RELOC_16;
23814 break;
23815 case 4:
23816 default:
23817 reloc = BFD_RELOC_32;
23818 break;
23819 case 8:
23820 reloc = BFD_RELOC_64;
23821 break;
23822 }
23823
23824 #ifdef TE_PE
23825 if (exp->X_op == O_secrel)
23826 {
23827 exp->X_op = O_symbol;
23828 reloc = BFD_RELOC_32_SECREL;
23829 }
23830 #endif
23831
23832 fix_new_exp (frag, where, size, exp, pcrel, reloc);
23833 }
23834
23835 #if defined (OBJ_COFF)
23836 void
23837 arm_validate_fix (fixS * fixP)
23838 {
23839 /* If the destination of the branch is a defined symbol which does not have
23840 the THUMB_FUNC attribute, then we must be calling a function which has
23841 the (interfacearm) attribute. We look for the Thumb entry point to that
23842 function and change the branch to refer to that function instead. */
23843 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
23844 && fixP->fx_addsy != NULL
23845 && S_IS_DEFINED (fixP->fx_addsy)
23846 && ! THUMB_IS_FUNC (fixP->fx_addsy))
23847 {
23848 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
23849 }
23850 }
23851 #endif
23852
23853
23854 int
23855 arm_force_relocation (struct fix * fixp)
23856 {
23857 #if defined (OBJ_COFF) && defined (TE_PE)
23858 if (fixp->fx_r_type == BFD_RELOC_RVA)
23859 return 1;
23860 #endif
23861
23862 /* In case we have a call or a branch to a function in ARM ISA mode from
23863 a thumb function or vice-versa force the relocation. These relocations
23864 are cleared off for some cores that might have blx and simple transformations
23865 are possible. */
23866
23867 #ifdef OBJ_ELF
23868 switch (fixp->fx_r_type)
23869 {
23870 case BFD_RELOC_ARM_PCREL_JUMP:
23871 case BFD_RELOC_ARM_PCREL_CALL:
23872 case BFD_RELOC_THUMB_PCREL_BLX:
23873 if (THUMB_IS_FUNC (fixp->fx_addsy))
23874 return 1;
23875 break;
23876
23877 case BFD_RELOC_ARM_PCREL_BLX:
23878 case BFD_RELOC_THUMB_PCREL_BRANCH25:
23879 case BFD_RELOC_THUMB_PCREL_BRANCH20:
23880 case BFD_RELOC_THUMB_PCREL_BRANCH23:
23881 if (ARM_IS_FUNC (fixp->fx_addsy))
23882 return 1;
23883 break;
23884
23885 default:
23886 break;
23887 }
23888 #endif
23889
23890 /* Resolve these relocations even if the symbol is extern or weak.
23891 Technically this is probably wrong due to symbol preemption.
23892 In practice these relocations do not have enough range to be useful
23893 at dynamic link time, and some code (e.g. in the Linux kernel)
23894 expects these references to be resolved. */
23895 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
23896 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
23897 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
23898 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
23899 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
23900 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
23901 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
23902 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
23903 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
23904 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
23905 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
23906 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
23907 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
23908 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
23909 return 0;
23910
23911 /* Always leave these relocations for the linker. */
23912 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
23913 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
23914 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
23915 return 1;
23916
23917 /* Always generate relocations against function symbols. */
23918 if (fixp->fx_r_type == BFD_RELOC_32
23919 && fixp->fx_addsy
23920 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
23921 return 1;
23922
23923 return generic_force_reloc (fixp);
23924 }
23925
23926 #if defined (OBJ_ELF) || defined (OBJ_COFF)
23927 /* Relocations against function names must be left unadjusted,
23928 so that the linker can use this information to generate interworking
23929 stubs. The MIPS version of this function
23930 also prevents relocations that are mips-16 specific, but I do not
23931 know why it does this.
23932
23933 FIXME:
23934 There is one other problem that ought to be addressed here, but
23935 which currently is not: Taking the address of a label (rather
23936 than a function) and then later jumping to that address. Such
23937 addresses also ought to have their bottom bit set (assuming that
23938 they reside in Thumb code), but at the moment they will not. */
23939
23940 bfd_boolean
23941 arm_fix_adjustable (fixS * fixP)
23942 {
23943 if (fixP->fx_addsy == NULL)
23944 return 1;
23945
23946 /* Preserve relocations against symbols with function type. */
23947 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
23948 return FALSE;
23949
23950 if (THUMB_IS_FUNC (fixP->fx_addsy)
23951 && fixP->fx_subsy == NULL)
23952 return FALSE;
23953
23954 /* We need the symbol name for the VTABLE entries. */
23955 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
23956 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
23957 return FALSE;
23958
23959 /* Don't allow symbols to be discarded on GOT related relocs. */
23960 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
23961 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
23962 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
23963 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
23964 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
23965 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
23966 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
23967 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
23968 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
23969 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
23970 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
23971 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
23972 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
23973 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
23974 return FALSE;
23975
23976 /* Similarly for group relocations. */
23977 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
23978 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
23979 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
23980 return FALSE;
23981
23982 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
23983 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
23984 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
23985 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
23986 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
23987 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
23988 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
23989 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
23990 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
23991 return FALSE;
23992
23993 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
23994 offsets, so keep these symbols. */
23995 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
23996 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
23997 return FALSE;
23998
23999 return TRUE;
24000 }
24001 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
24002
24003 #ifdef OBJ_ELF
24004
24005 const char *
24006 elf32_arm_target_format (void)
24007 {
24008 #ifdef TE_SYMBIAN
24009 return (target_big_endian
24010 ? "elf32-bigarm-symbian"
24011 : "elf32-littlearm-symbian");
24012 #elif defined (TE_VXWORKS)
24013 return (target_big_endian
24014 ? "elf32-bigarm-vxworks"
24015 : "elf32-littlearm-vxworks");
24016 #elif defined (TE_NACL)
24017 return (target_big_endian
24018 ? "elf32-bigarm-nacl"
24019 : "elf32-littlearm-nacl");
24020 #else
24021 if (target_big_endian)
24022 return "elf32-bigarm";
24023 else
24024 return "elf32-littlearm";
24025 #endif
24026 }
24027
24028 void
24029 armelf_frob_symbol (symbolS * symp,
24030 int * puntp)
24031 {
24032 elf_frob_symbol (symp, puntp);
24033 }
24034 #endif
24035
24036 /* MD interface: Finalization. */
24037
24038 void
24039 arm_cleanup (void)
24040 {
24041 literal_pool * pool;
24042
24043 /* Ensure that all the IT blocks are properly closed. */
24044 check_it_blocks_finished ();
24045
24046 for (pool = list_of_pools; pool; pool = pool->next)
24047 {
24048 /* Put it at the end of the relevant section. */
24049 subseg_set (pool->section, pool->sub_section);
24050 #ifdef OBJ_ELF
24051 arm_elf_change_section ();
24052 #endif
24053 s_ltorg (0);
24054 }
24055 }
24056
24057 #ifdef OBJ_ELF
24058 /* Remove any excess mapping symbols generated for alignment frags in
24059 SEC. We may have created a mapping symbol before a zero byte
24060 alignment; remove it if there's a mapping symbol after the
24061 alignment. */
24062 static void
24063 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
24064 void *dummy ATTRIBUTE_UNUSED)
24065 {
24066 segment_info_type *seginfo = seg_info (sec);
24067 fragS *fragp;
24068
24069 if (seginfo == NULL || seginfo->frchainP == NULL)
24070 return;
24071
24072 for (fragp = seginfo->frchainP->frch_root;
24073 fragp != NULL;
24074 fragp = fragp->fr_next)
24075 {
24076 symbolS *sym = fragp->tc_frag_data.last_map;
24077 fragS *next = fragp->fr_next;
24078
24079 /* Variable-sized frags have been converted to fixed size by
24080 this point. But if this was variable-sized to start with,
24081 there will be a fixed-size frag after it. So don't handle
24082 next == NULL. */
24083 if (sym == NULL || next == NULL)
24084 continue;
24085
24086 if (S_GET_VALUE (sym) < next->fr_address)
24087 /* Not at the end of this frag. */
24088 continue;
24089 know (S_GET_VALUE (sym) == next->fr_address);
24090
24091 do
24092 {
24093 if (next->tc_frag_data.first_map != NULL)
24094 {
24095 /* Next frag starts with a mapping symbol. Discard this
24096 one. */
24097 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
24098 break;
24099 }
24100
24101 if (next->fr_next == NULL)
24102 {
24103 /* This mapping symbol is at the end of the section. Discard
24104 it. */
24105 know (next->fr_fix == 0 && next->fr_var == 0);
24106 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
24107 break;
24108 }
24109
24110 /* As long as we have empty frags without any mapping symbols,
24111 keep looking. */
24112 /* If the next frag is non-empty and does not start with a
24113 mapping symbol, then this mapping symbol is required. */
24114 if (next->fr_address != next->fr_next->fr_address)
24115 break;
24116
24117 next = next->fr_next;
24118 }
24119 while (next != NULL);
24120 }
24121 }
24122 #endif
24123
24124 /* Adjust the symbol table. This marks Thumb symbols as distinct from
24125 ARM ones. */
24126
24127 void
24128 arm_adjust_symtab (void)
24129 {
24130 #ifdef OBJ_COFF
24131 symbolS * sym;
24132
24133 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
24134 {
24135 if (ARM_IS_THUMB (sym))
24136 {
24137 if (THUMB_IS_FUNC (sym))
24138 {
24139 /* Mark the symbol as a Thumb function. */
24140 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
24141 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
24142 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
24143
24144 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
24145 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
24146 else
24147 as_bad (_("%s: unexpected function type: %d"),
24148 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
24149 }
24150 else switch (S_GET_STORAGE_CLASS (sym))
24151 {
24152 case C_EXT:
24153 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
24154 break;
24155 case C_STAT:
24156 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
24157 break;
24158 case C_LABEL:
24159 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
24160 break;
24161 default:
24162 /* Do nothing. */
24163 break;
24164 }
24165 }
24166
24167 if (ARM_IS_INTERWORK (sym))
24168 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
24169 }
24170 #endif
24171 #ifdef OBJ_ELF
24172 symbolS * sym;
24173 char bind;
24174
24175 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
24176 {
24177 if (ARM_IS_THUMB (sym))
24178 {
24179 elf_symbol_type * elf_sym;
24180
24181 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
24182 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
24183
24184 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
24185 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
24186 {
24187 /* If it's a .thumb_func, declare it as so,
24188 otherwise tag label as .code 16. */
24189 if (THUMB_IS_FUNC (sym))
24190 elf_sym->internal_elf_sym.st_target_internal
24191 = ST_BRANCH_TO_THUMB;
24192 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
24193 elf_sym->internal_elf_sym.st_info =
24194 ELF_ST_INFO (bind, STT_ARM_16BIT);
24195 }
24196 }
24197 }
24198
24199 /* Remove any overlapping mapping symbols generated by alignment frags. */
24200 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
24201 /* Now do generic ELF adjustments. */
24202 elf_adjust_symtab ();
24203 #endif
24204 }
24205
24206 /* MD interface: Initialization. */
24207
24208 static void
24209 set_constant_flonums (void)
24210 {
24211 int i;
24212
24213 for (i = 0; i < NUM_FLOAT_VALS; i++)
24214 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
24215 abort ();
24216 }
24217
24218 /* Auto-select Thumb mode if it's the only available instruction set for the
24219 given architecture. */
24220
24221 static void
24222 autoselect_thumb_from_cpu_variant (void)
24223 {
24224 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
24225 opcode_select (16);
24226 }
24227
24228 void
24229 md_begin (void)
24230 {
24231 unsigned mach;
24232 unsigned int i;
24233
24234 if ( (arm_ops_hsh = hash_new ()) == NULL
24235 || (arm_cond_hsh = hash_new ()) == NULL
24236 || (arm_shift_hsh = hash_new ()) == NULL
24237 || (arm_psr_hsh = hash_new ()) == NULL
24238 || (arm_v7m_psr_hsh = hash_new ()) == NULL
24239 || (arm_reg_hsh = hash_new ()) == NULL
24240 || (arm_reloc_hsh = hash_new ()) == NULL
24241 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
24242 as_fatal (_("virtual memory exhausted"));
24243
24244 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
24245 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
24246 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
24247 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
24248 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
24249 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
24250 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
24251 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
24252 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
24253 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
24254 (void *) (v7m_psrs + i));
24255 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
24256 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
24257 for (i = 0;
24258 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
24259 i++)
24260 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
24261 (void *) (barrier_opt_names + i));
24262 #ifdef OBJ_ELF
24263 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
24264 {
24265 struct reloc_entry * entry = reloc_names + i;
24266
24267 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
24268 /* This makes encode_branch() use the EABI versions of this relocation. */
24269 entry->reloc = BFD_RELOC_UNUSED;
24270
24271 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
24272 }
24273 #endif
24274
24275 set_constant_flonums ();
24276
24277 /* Set the cpu variant based on the command-line options. We prefer
24278 -mcpu= over -march= if both are set (as for GCC); and we prefer
24279 -mfpu= over any other way of setting the floating point unit.
24280 Use of legacy options with new options are faulted. */
24281 if (legacy_cpu)
24282 {
24283 if (mcpu_cpu_opt || march_cpu_opt)
24284 as_bad (_("use of old and new-style options to set CPU type"));
24285
24286 mcpu_cpu_opt = legacy_cpu;
24287 }
24288 else if (!mcpu_cpu_opt)
24289 mcpu_cpu_opt = march_cpu_opt;
24290
24291 if (legacy_fpu)
24292 {
24293 if (mfpu_opt)
24294 as_bad (_("use of old and new-style options to set FPU type"));
24295
24296 mfpu_opt = legacy_fpu;
24297 }
24298 else if (!mfpu_opt)
24299 {
24300 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
24301 || defined (TE_NetBSD) || defined (TE_VXWORKS))
24302 /* Some environments specify a default FPU. If they don't, infer it
24303 from the processor. */
24304 if (mcpu_fpu_opt)
24305 mfpu_opt = mcpu_fpu_opt;
24306 else
24307 mfpu_opt = march_fpu_opt;
24308 #else
24309 mfpu_opt = &fpu_default;
24310 #endif
24311 }
24312
24313 if (!mfpu_opt)
24314 {
24315 if (mcpu_cpu_opt != NULL)
24316 mfpu_opt = &fpu_default;
24317 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
24318 mfpu_opt = &fpu_arch_vfp_v2;
24319 else
24320 mfpu_opt = &fpu_arch_fpa;
24321 }
24322
24323 #ifdef CPU_DEFAULT
24324 if (!mcpu_cpu_opt)
24325 {
24326 mcpu_cpu_opt = &cpu_default;
24327 selected_cpu = cpu_default;
24328 }
24329 else if (no_cpu_selected ())
24330 selected_cpu = cpu_default;
24331 #else
24332 if (mcpu_cpu_opt)
24333 selected_cpu = *mcpu_cpu_opt;
24334 else
24335 mcpu_cpu_opt = &arm_arch_any;
24336 #endif
24337
24338 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24339
24340 autoselect_thumb_from_cpu_variant ();
24341
24342 arm_arch_used = thumb_arch_used = arm_arch_none;
24343
24344 #if defined OBJ_COFF || defined OBJ_ELF
24345 {
24346 unsigned int flags = 0;
24347
24348 #if defined OBJ_ELF
24349 flags = meabi_flags;
24350
24351 switch (meabi_flags)
24352 {
24353 case EF_ARM_EABI_UNKNOWN:
24354 #endif
24355 /* Set the flags in the private structure. */
24356 if (uses_apcs_26) flags |= F_APCS26;
24357 if (support_interwork) flags |= F_INTERWORK;
24358 if (uses_apcs_float) flags |= F_APCS_FLOAT;
24359 if (pic_code) flags |= F_PIC;
24360 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
24361 flags |= F_SOFT_FLOAT;
24362
24363 switch (mfloat_abi_opt)
24364 {
24365 case ARM_FLOAT_ABI_SOFT:
24366 case ARM_FLOAT_ABI_SOFTFP:
24367 flags |= F_SOFT_FLOAT;
24368 break;
24369
24370 case ARM_FLOAT_ABI_HARD:
24371 if (flags & F_SOFT_FLOAT)
24372 as_bad (_("hard-float conflicts with specified fpu"));
24373 break;
24374 }
24375
24376 /* Using pure-endian doubles (even if soft-float). */
24377 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
24378 flags |= F_VFP_FLOAT;
24379
24380 #if defined OBJ_ELF
24381 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
24382 flags |= EF_ARM_MAVERICK_FLOAT;
24383 break;
24384
24385 case EF_ARM_EABI_VER4:
24386 case EF_ARM_EABI_VER5:
24387 /* No additional flags to set. */
24388 break;
24389
24390 default:
24391 abort ();
24392 }
24393 #endif
24394 bfd_set_private_flags (stdoutput, flags);
24395
24396 /* We have run out flags in the COFF header to encode the
24397 status of ATPCS support, so instead we create a dummy,
24398 empty, debug section called .arm.atpcs. */
24399 if (atpcs)
24400 {
24401 asection * sec;
24402
24403 sec = bfd_make_section (stdoutput, ".arm.atpcs");
24404
24405 if (sec != NULL)
24406 {
24407 bfd_set_section_flags
24408 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
24409 bfd_set_section_size (stdoutput, sec, 0);
24410 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
24411 }
24412 }
24413 }
24414 #endif
24415
24416 /* Record the CPU type as well. */
24417 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
24418 mach = bfd_mach_arm_iWMMXt2;
24419 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
24420 mach = bfd_mach_arm_iWMMXt;
24421 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
24422 mach = bfd_mach_arm_XScale;
24423 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
24424 mach = bfd_mach_arm_ep9312;
24425 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
24426 mach = bfd_mach_arm_5TE;
24427 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
24428 {
24429 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
24430 mach = bfd_mach_arm_5T;
24431 else
24432 mach = bfd_mach_arm_5;
24433 }
24434 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
24435 {
24436 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
24437 mach = bfd_mach_arm_4T;
24438 else
24439 mach = bfd_mach_arm_4;
24440 }
24441 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
24442 mach = bfd_mach_arm_3M;
24443 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
24444 mach = bfd_mach_arm_3;
24445 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
24446 mach = bfd_mach_arm_2a;
24447 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
24448 mach = bfd_mach_arm_2;
24449 else
24450 mach = bfd_mach_arm_unknown;
24451
24452 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
24453 }
24454
24455 /* Command line processing. */
24456
24457 /* md_parse_option
24458 Invocation line includes a switch not recognized by the base assembler.
24459 See if it's a processor-specific option.
24460
24461 This routine is somewhat complicated by the need for backwards
24462 compatibility (since older releases of gcc can't be changed).
24463 The new options try to make the interface as compatible as
24464 possible with GCC.
24465
24466 New options (supported) are:
24467
24468 -mcpu=<cpu name> Assemble for selected processor
24469 -march=<architecture name> Assemble for selected architecture
24470 -mfpu=<fpu architecture> Assemble for selected FPU.
24471 -EB/-mbig-endian Big-endian
24472 -EL/-mlittle-endian Little-endian
24473 -k Generate PIC code
24474 -mthumb Start in Thumb mode
24475 -mthumb-interwork Code supports ARM/Thumb interworking
24476
24477 -m[no-]warn-deprecated Warn about deprecated features
24478 -m[no-]warn-syms Warn when symbols match instructions
24479
24480 For now we will also provide support for:
24481
24482 -mapcs-32 32-bit Program counter
24483 -mapcs-26 26-bit Program counter
24484 -macps-float Floats passed in FP registers
24485 -mapcs-reentrant Reentrant code
24486 -matpcs
24487 (sometime these will probably be replaced with -mapcs=<list of options>
24488 and -matpcs=<list of options>)
24489
24490 The remaining options are only supported for back-wards compatibility.
24491 Cpu variants, the arm part is optional:
24492 -m[arm]1 Currently not supported.
24493 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
24494 -m[arm]3 Arm 3 processor
24495 -m[arm]6[xx], Arm 6 processors
24496 -m[arm]7[xx][t][[d]m] Arm 7 processors
24497 -m[arm]8[10] Arm 8 processors
24498 -m[arm]9[20][tdmi] Arm 9 processors
24499 -mstrongarm[110[0]] StrongARM processors
24500 -mxscale XScale processors
24501 -m[arm]v[2345[t[e]]] Arm architectures
24502 -mall All (except the ARM1)
24503 FP variants:
24504 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
24505 -mfpe-old (No float load/store multiples)
24506 -mvfpxd VFP Single precision
24507 -mvfp All VFP
24508 -mno-fpu Disable all floating point instructions
24509
24510 The following CPU names are recognized:
24511 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
24512 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
24513 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
24514 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
24515 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
24516 arm10t arm10e, arm1020t, arm1020e, arm10200e,
24517 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
24518
24519 */
24520
24521 const char * md_shortopts = "m:k";
24522
24523 #ifdef ARM_BI_ENDIAN
24524 #define OPTION_EB (OPTION_MD_BASE + 0)
24525 #define OPTION_EL (OPTION_MD_BASE + 1)
24526 #else
24527 #if TARGET_BYTES_BIG_ENDIAN
24528 #define OPTION_EB (OPTION_MD_BASE + 0)
24529 #else
24530 #define OPTION_EL (OPTION_MD_BASE + 1)
24531 #endif
24532 #endif
24533 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
24534
24535 struct option md_longopts[] =
24536 {
24537 #ifdef OPTION_EB
24538 {"EB", no_argument, NULL, OPTION_EB},
24539 #endif
24540 #ifdef OPTION_EL
24541 {"EL", no_argument, NULL, OPTION_EL},
24542 #endif
24543 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
24544 {NULL, no_argument, NULL, 0}
24545 };
24546
24547
24548 size_t md_longopts_size = sizeof (md_longopts);
24549
24550 struct arm_option_table
24551 {
24552 char *option; /* Option name to match. */
24553 char *help; /* Help information. */
24554 int *var; /* Variable to change. */
24555 int value; /* What to change it to. */
24556 char *deprecated; /* If non-null, print this message. */
24557 };
24558
24559 struct arm_option_table arm_opts[] =
24560 {
24561 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
24562 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
24563 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
24564 &support_interwork, 1, NULL},
24565 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
24566 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
24567 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
24568 1, NULL},
24569 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
24570 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
24571 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
24572 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
24573 NULL},
24574
24575 /* These are recognized by the assembler, but have no affect on code. */
24576 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
24577 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
24578
24579 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
24580 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
24581 &warn_on_deprecated, 0, NULL},
24582 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
24583 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
24584 {NULL, NULL, NULL, 0, NULL}
24585 };
24586
24587 struct arm_legacy_option_table
24588 {
24589 char *option; /* Option name to match. */
24590 const arm_feature_set **var; /* Variable to change. */
24591 const arm_feature_set value; /* What to change it to. */
24592 char *deprecated; /* If non-null, print this message. */
24593 };
24594
24595 const struct arm_legacy_option_table arm_legacy_opts[] =
24596 {
24597 /* DON'T add any new processors to this list -- we want the whole list
24598 to go away... Add them to the processors table instead. */
24599 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
24600 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
24601 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
24602 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
24603 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
24604 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
24605 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
24606 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
24607 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
24608 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
24609 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
24610 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
24611 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
24612 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
24613 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
24614 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
24615 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
24616 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
24617 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
24618 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
24619 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
24620 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
24621 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
24622 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
24623 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
24624 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
24625 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
24626 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
24627 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
24628 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
24629 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
24630 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
24631 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
24632 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
24633 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
24634 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
24635 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
24636 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
24637 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
24638 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
24639 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
24640 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
24641 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
24642 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
24643 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
24644 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
24645 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
24646 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
24647 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
24648 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
24649 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
24650 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
24651 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
24652 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
24653 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
24654 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
24655 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
24656 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
24657 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
24658 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
24659 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
24660 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
24661 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
24662 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
24663 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
24664 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
24665 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
24666 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
24667 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
24668 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
24669 N_("use -mcpu=strongarm110")},
24670 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
24671 N_("use -mcpu=strongarm1100")},
24672 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
24673 N_("use -mcpu=strongarm1110")},
24674 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
24675 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
24676 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
24677
24678 /* Architecture variants -- don't add any more to this list either. */
24679 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
24680 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
24681 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
24682 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
24683 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
24684 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
24685 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
24686 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
24687 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
24688 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
24689 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
24690 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
24691 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
24692 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
24693 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
24694 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
24695 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
24696 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
24697
24698 /* Floating point variants -- don't add any more to this list either. */
24699 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
24700 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
24701 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
24702 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
24703 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
24704
24705 {NULL, NULL, ARM_ARCH_NONE, NULL}
24706 };
24707
24708 struct arm_cpu_option_table
24709 {
24710 char *name;
24711 size_t name_len;
24712 const arm_feature_set value;
24713 /* For some CPUs we assume an FPU unless the user explicitly sets
24714 -mfpu=... */
24715 const arm_feature_set default_fpu;
24716 /* The canonical name of the CPU, or NULL to use NAME converted to upper
24717 case. */
24718 const char *canonical_name;
24719 };
24720
24721 /* This list should, at a minimum, contain all the cpu names
24722 recognized by GCC. */
24723 #define ARM_CPU_OPT(N, V, DF, CN) { N, sizeof (N) - 1, V, DF, CN }
24724 static const struct arm_cpu_option_table arm_cpus[] =
24725 {
24726 ARM_CPU_OPT ("all", ARM_ANY, FPU_ARCH_FPA, NULL),
24727 ARM_CPU_OPT ("arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL),
24728 ARM_CPU_OPT ("arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL),
24729 ARM_CPU_OPT ("arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
24730 ARM_CPU_OPT ("arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
24731 ARM_CPU_OPT ("arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24732 ARM_CPU_OPT ("arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24733 ARM_CPU_OPT ("arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24734 ARM_CPU_OPT ("arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24735 ARM_CPU_OPT ("arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24736 ARM_CPU_OPT ("arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24737 ARM_CPU_OPT ("arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
24738 ARM_CPU_OPT ("arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24739 ARM_CPU_OPT ("arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
24740 ARM_CPU_OPT ("arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24741 ARM_CPU_OPT ("arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
24742 ARM_CPU_OPT ("arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24743 ARM_CPU_OPT ("arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24744 ARM_CPU_OPT ("arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24745 ARM_CPU_OPT ("arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24746 ARM_CPU_OPT ("arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24747 ARM_CPU_OPT ("arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24748 ARM_CPU_OPT ("arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24749 ARM_CPU_OPT ("arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24750 ARM_CPU_OPT ("arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24751 ARM_CPU_OPT ("arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24752 ARM_CPU_OPT ("arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24753 ARM_CPU_OPT ("arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24754 ARM_CPU_OPT ("arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24755 ARM_CPU_OPT ("arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24756 ARM_CPU_OPT ("arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24757 ARM_CPU_OPT ("arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
24758 ARM_CPU_OPT ("arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
24759 ARM_CPU_OPT ("strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
24760 ARM_CPU_OPT ("strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
24761 ARM_CPU_OPT ("strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
24762 ARM_CPU_OPT ("strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
24763 ARM_CPU_OPT ("strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
24764 ARM_CPU_OPT ("arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24765 ARM_CPU_OPT ("arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"),
24766 ARM_CPU_OPT ("arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24767 ARM_CPU_OPT ("arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24768 ARM_CPU_OPT ("arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24769 ARM_CPU_OPT ("arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24770 ARM_CPU_OPT ("fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
24771 ARM_CPU_OPT ("fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
24772 /* For V5 or later processors we default to using VFP; but the user
24773 should really set the FPU type explicitly. */
24774 ARM_CPU_OPT ("arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
24775 ARM_CPU_OPT ("arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24776 ARM_CPU_OPT ("arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
24777 ARM_CPU_OPT ("arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
24778 ARM_CPU_OPT ("arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
24779 ARM_CPU_OPT ("arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
24780 ARM_CPU_OPT ("arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"),
24781 ARM_CPU_OPT ("arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24782 ARM_CPU_OPT ("arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
24783 ARM_CPU_OPT ("arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"),
24784 ARM_CPU_OPT ("arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24785 ARM_CPU_OPT ("arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24786 ARM_CPU_OPT ("arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
24787 ARM_CPU_OPT ("arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
24788 ARM_CPU_OPT ("arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24789 ARM_CPU_OPT ("arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"),
24790 ARM_CPU_OPT ("arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
24791 ARM_CPU_OPT ("arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24792 ARM_CPU_OPT ("arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24793 ARM_CPU_OPT ("arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2,
24794 "ARM1026EJ-S"),
24795 ARM_CPU_OPT ("arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
24796 ARM_CPU_OPT ("fa606te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24797 ARM_CPU_OPT ("fa616te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24798 ARM_CPU_OPT ("fa626te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24799 ARM_CPU_OPT ("fmp626", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24800 ARM_CPU_OPT ("fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24801 ARM_CPU_OPT ("arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"),
24802 ARM_CPU_OPT ("arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL),
24803 ARM_CPU_OPT ("arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2,
24804 "ARM1136JF-S"),
24805 ARM_CPU_OPT ("arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL),
24806 ARM_CPU_OPT ("mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, "MPCore"),
24807 ARM_CPU_OPT ("mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, "MPCore"),
24808 ARM_CPU_OPT ("arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL),
24809 ARM_CPU_OPT ("arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL),
24810 ARM_CPU_OPT ("arm1176jz-s", ARM_ARCH_V6KZ, FPU_NONE, NULL),
24811 ARM_CPU_OPT ("arm1176jzf-s", ARM_ARCH_V6KZ, FPU_ARCH_VFP_V2, NULL),
24812 ARM_CPU_OPT ("cortex-a5", ARM_ARCH_V7A_MP_SEC,
24813 FPU_NONE, "Cortex-A5"),
24814 ARM_CPU_OPT ("cortex-a7", ARM_ARCH_V7VE, FPU_ARCH_NEON_VFP_V4,
24815 "Cortex-A7"),
24816 ARM_CPU_OPT ("cortex-a8", ARM_ARCH_V7A_SEC,
24817 ARM_FEATURE_COPROC (FPU_VFP_V3
24818 | FPU_NEON_EXT_V1),
24819 "Cortex-A8"),
24820 ARM_CPU_OPT ("cortex-a9", ARM_ARCH_V7A_MP_SEC,
24821 ARM_FEATURE_COPROC (FPU_VFP_V3
24822 | FPU_NEON_EXT_V1),
24823 "Cortex-A9"),
24824 ARM_CPU_OPT ("cortex-a12", ARM_ARCH_V7VE, FPU_ARCH_NEON_VFP_V4,
24825 "Cortex-A12"),
24826 ARM_CPU_OPT ("cortex-a15", ARM_ARCH_V7VE, FPU_ARCH_NEON_VFP_V4,
24827 "Cortex-A15"),
24828 ARM_CPU_OPT ("cortex-a17", ARM_ARCH_V7VE, FPU_ARCH_NEON_VFP_V4,
24829 "Cortex-A17"),
24830 ARM_CPU_OPT ("cortex-a35", ARM_ARCH_V8A, FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
24831 "Cortex-A35"),
24832 ARM_CPU_OPT ("cortex-a53", ARM_ARCH_V8A, FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
24833 "Cortex-A53"),
24834 ARM_CPU_OPT ("cortex-a57", ARM_ARCH_V8A, FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
24835 "Cortex-A57"),
24836 ARM_CPU_OPT ("cortex-a72", ARM_ARCH_V8A, FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
24837 "Cortex-A72"),
24838 ARM_CPU_OPT ("cortex-r4", ARM_ARCH_V7R, FPU_NONE, "Cortex-R4"),
24839 ARM_CPU_OPT ("cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16,
24840 "Cortex-R4F"),
24841 ARM_CPU_OPT ("cortex-r5", ARM_ARCH_V7R_IDIV,
24842 FPU_NONE, "Cortex-R5"),
24843 ARM_CPU_OPT ("cortex-r7", ARM_ARCH_V7R_IDIV,
24844 FPU_ARCH_VFP_V3D16,
24845 "Cortex-R7"),
24846 ARM_CPU_OPT ("cortex-m7", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M7"),
24847 ARM_CPU_OPT ("cortex-m4", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M4"),
24848 ARM_CPU_OPT ("cortex-m3", ARM_ARCH_V7M, FPU_NONE, "Cortex-M3"),
24849 ARM_CPU_OPT ("cortex-m1", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M1"),
24850 ARM_CPU_OPT ("cortex-m0", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0"),
24851 ARM_CPU_OPT ("cortex-m0plus", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0+"),
24852 ARM_CPU_OPT ("exynos-m1", ARM_ARCH_V8A, FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
24853 "Samsung " \
24854 "Exynos M1"),
24855 ARM_CPU_OPT ("qdf24xx", ARM_ARCH_V8A, FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
24856 "Qualcomm "
24857 "QDF24XX"),
24858
24859 /* ??? XSCALE is really an architecture. */
24860 ARM_CPU_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
24861 /* ??? iwmmxt is not a processor. */
24862 ARM_CPU_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL),
24863 ARM_CPU_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL),
24864 ARM_CPU_OPT ("i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
24865 /* Maverick */
24866 ARM_CPU_OPT ("ep9312", ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
24867 FPU_ARCH_MAVERICK, "ARM920T"),
24868 /* Marvell processors. */
24869 ARM_CPU_OPT ("marvell-pj4", ARM_FEATURE_CORE_LOW (ARM_AEXT_V7A | ARM_EXT_MP
24870 | ARM_EXT_SEC),
24871 FPU_ARCH_VFP_V3D16, NULL),
24872 ARM_CPU_OPT ("marvell-whitney", ARM_FEATURE_CORE_LOW (ARM_AEXT_V7A | ARM_EXT_MP
24873 | ARM_EXT_SEC),
24874 FPU_ARCH_NEON_VFP_V4, NULL),
24875 /* APM X-Gene family. */
24876 ARM_CPU_OPT ("xgene1", ARM_ARCH_V8A, FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
24877 "APM X-Gene 1"),
24878 ARM_CPU_OPT ("xgene2", ARM_ARCH_V8A, FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
24879 "APM X-Gene 2"),
24880
24881 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
24882 };
24883 #undef ARM_CPU_OPT
24884
24885 struct arm_arch_option_table
24886 {
24887 char *name;
24888 size_t name_len;
24889 const arm_feature_set value;
24890 const arm_feature_set default_fpu;
24891 };
24892
24893 /* This list should, at a minimum, contain all the architecture names
24894 recognized by GCC. */
24895 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF }
24896 static const struct arm_arch_option_table arm_archs[] =
24897 {
24898 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
24899 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
24900 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
24901 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
24902 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
24903 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
24904 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
24905 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
24906 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
24907 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
24908 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
24909 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
24910 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
24911 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
24912 ARM_ARCH_OPT ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP),
24913 ARM_ARCH_OPT ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP),
24914 ARM_ARCH_OPT ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP),
24915 ARM_ARCH_OPT ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP),
24916 ARM_ARCH_OPT ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP),
24917 ARM_ARCH_OPT ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP),
24918 ARM_ARCH_OPT ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP),
24919 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
24920 kept to preserve existing behaviour. */
24921 ARM_ARCH_OPT ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP),
24922 ARM_ARCH_OPT ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP),
24923 ARM_ARCH_OPT ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP),
24924 ARM_ARCH_OPT ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP),
24925 ARM_ARCH_OPT ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP),
24926 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
24927 kept to preserve existing behaviour. */
24928 ARM_ARCH_OPT ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP),
24929 ARM_ARCH_OPT ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP),
24930 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
24931 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
24932 ARM_ARCH_OPT ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP),
24933 /* The official spelling of the ARMv7 profile variants is the dashed form.
24934 Accept the non-dashed form for compatibility with old toolchains. */
24935 ARM_ARCH_OPT ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP),
24936 ARM_ARCH_OPT ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP),
24937 ARM_ARCH_OPT ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP),
24938 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
24939 ARM_ARCH_OPT ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP),
24940 ARM_ARCH_OPT ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP),
24941 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
24942 ARM_ARCH_OPT ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP),
24943 ARM_ARCH_OPT ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP),
24944 ARM_ARCH_OPT ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP),
24945 ARM_ARCH_OPT ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP),
24946 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
24947 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
24948 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP),
24949 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
24950 };
24951 #undef ARM_ARCH_OPT
24952
24953 /* ISA extensions in the co-processor and main instruction set space. */
24954 struct arm_option_extension_value_table
24955 {
24956 char *name;
24957 size_t name_len;
24958 const arm_feature_set merge_value;
24959 const arm_feature_set clear_value;
24960 const arm_feature_set allowed_archs;
24961 };
24962
24963 /* The following table must be in alphabetical order with a NULL last entry.
24964 */
24965 #define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, AA }
24966 static const struct arm_option_extension_value_table arm_extensions[] =
24967 {
24968 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
24969 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
24970 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
24971 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
24972 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
24973 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
24974 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
24975 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
24976 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
24977 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A | ARM_EXT_V7R)),
24978 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
24979 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ANY),
24980 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
24981 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ANY),
24982 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
24983 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ANY),
24984 ARM_EXT_OPT ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
24985 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
24986 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A | ARM_EXT_V7R)),
24987 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
24988 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
24989 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
24990 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
24991 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
24992 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
24993 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
24994 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
24995 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
24996 ARM_EXT_OPT ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
24997 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
24998 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V7A)),
24999 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
25000 | ARM_EXT_DIV),
25001 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
25002 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
25003 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8,
25004 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
25005 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
25006 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
25007 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ANY),
25008 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE }
25009 };
25010 #undef ARM_EXT_OPT
25011
25012 /* ISA floating-point and Advanced SIMD extensions. */
25013 struct arm_option_fpu_value_table
25014 {
25015 char *name;
25016 const arm_feature_set value;
25017 };
25018
25019 /* This list should, at a minimum, contain all the fpu names
25020 recognized by GCC. */
25021 static const struct arm_option_fpu_value_table arm_fpus[] =
25022 {
25023 {"softfpa", FPU_NONE},
25024 {"fpe", FPU_ARCH_FPE},
25025 {"fpe2", FPU_ARCH_FPE},
25026 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
25027 {"fpa", FPU_ARCH_FPA},
25028 {"fpa10", FPU_ARCH_FPA},
25029 {"fpa11", FPU_ARCH_FPA},
25030 {"arm7500fe", FPU_ARCH_FPA},
25031 {"softvfp", FPU_ARCH_VFP},
25032 {"softvfp+vfp", FPU_ARCH_VFP_V2},
25033 {"vfp", FPU_ARCH_VFP_V2},
25034 {"vfp9", FPU_ARCH_VFP_V2},
25035 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
25036 {"vfp10", FPU_ARCH_VFP_V2},
25037 {"vfp10-r0", FPU_ARCH_VFP_V1},
25038 {"vfpxd", FPU_ARCH_VFP_V1xD},
25039 {"vfpv2", FPU_ARCH_VFP_V2},
25040 {"vfpv3", FPU_ARCH_VFP_V3},
25041 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
25042 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
25043 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
25044 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
25045 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
25046 {"arm1020t", FPU_ARCH_VFP_V1},
25047 {"arm1020e", FPU_ARCH_VFP_V2},
25048 {"arm1136jfs", FPU_ARCH_VFP_V2},
25049 {"arm1136jf-s", FPU_ARCH_VFP_V2},
25050 {"maverick", FPU_ARCH_MAVERICK},
25051 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
25052 {"neon-fp16", FPU_ARCH_NEON_FP16},
25053 {"vfpv4", FPU_ARCH_VFP_V4},
25054 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
25055 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
25056 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
25057 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
25058 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
25059 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
25060 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
25061 {"crypto-neon-fp-armv8",
25062 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
25063 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
25064 {"crypto-neon-fp-armv8.1",
25065 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
25066 {NULL, ARM_ARCH_NONE}
25067 };
25068
25069 struct arm_option_value_table
25070 {
25071 char *name;
25072 long value;
25073 };
25074
25075 static const struct arm_option_value_table arm_float_abis[] =
25076 {
25077 {"hard", ARM_FLOAT_ABI_HARD},
25078 {"softfp", ARM_FLOAT_ABI_SOFTFP},
25079 {"soft", ARM_FLOAT_ABI_SOFT},
25080 {NULL, 0}
25081 };
25082
25083 #ifdef OBJ_ELF
25084 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
25085 static const struct arm_option_value_table arm_eabis[] =
25086 {
25087 {"gnu", EF_ARM_EABI_UNKNOWN},
25088 {"4", EF_ARM_EABI_VER4},
25089 {"5", EF_ARM_EABI_VER5},
25090 {NULL, 0}
25091 };
25092 #endif
25093
25094 struct arm_long_option_table
25095 {
25096 char * option; /* Substring to match. */
25097 char * help; /* Help information. */
25098 int (* func) (char * subopt); /* Function to decode sub-option. */
25099 char * deprecated; /* If non-null, print this message. */
25100 };
25101
25102 static bfd_boolean
25103 arm_parse_extension (char *str, const arm_feature_set **opt_p)
25104 {
25105 arm_feature_set *ext_set = (arm_feature_set *)
25106 xmalloc (sizeof (arm_feature_set));
25107
25108 /* We insist on extensions being specified in alphabetical order, and with
25109 extensions being added before being removed. We achieve this by having
25110 the global ARM_EXTENSIONS table in alphabetical order, and using the
25111 ADDING_VALUE variable to indicate whether we are adding an extension (1)
25112 or removing it (0) and only allowing it to change in the order
25113 -1 -> 1 -> 0. */
25114 const struct arm_option_extension_value_table * opt = NULL;
25115 int adding_value = -1;
25116
25117 /* Copy the feature set, so that we can modify it. */
25118 *ext_set = **opt_p;
25119 *opt_p = ext_set;
25120
25121 while (str != NULL && *str != 0)
25122 {
25123 char *ext;
25124 size_t len;
25125
25126 if (*str != '+')
25127 {
25128 as_bad (_("invalid architectural extension"));
25129 return FALSE;
25130 }
25131
25132 str++;
25133 ext = strchr (str, '+');
25134
25135 if (ext != NULL)
25136 len = ext - str;
25137 else
25138 len = strlen (str);
25139
25140 if (len >= 2 && strncmp (str, "no", 2) == 0)
25141 {
25142 if (adding_value != 0)
25143 {
25144 adding_value = 0;
25145 opt = arm_extensions;
25146 }
25147
25148 len -= 2;
25149 str += 2;
25150 }
25151 else if (len > 0)
25152 {
25153 if (adding_value == -1)
25154 {
25155 adding_value = 1;
25156 opt = arm_extensions;
25157 }
25158 else if (adding_value != 1)
25159 {
25160 as_bad (_("must specify extensions to add before specifying "
25161 "those to remove"));
25162 return FALSE;
25163 }
25164 }
25165
25166 if (len == 0)
25167 {
25168 as_bad (_("missing architectural extension"));
25169 return FALSE;
25170 }
25171
25172 gas_assert (adding_value != -1);
25173 gas_assert (opt != NULL);
25174
25175 /* Scan over the options table trying to find an exact match. */
25176 for (; opt->name != NULL; opt++)
25177 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
25178 {
25179 /* Check we can apply the extension to this architecture. */
25180 if (!ARM_CPU_HAS_FEATURE (*ext_set, opt->allowed_archs))
25181 {
25182 as_bad (_("extension does not apply to the base architecture"));
25183 return FALSE;
25184 }
25185
25186 /* Add or remove the extension. */
25187 if (adding_value)
25188 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
25189 else
25190 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
25191
25192 break;
25193 }
25194
25195 if (opt->name == NULL)
25196 {
25197 /* Did we fail to find an extension because it wasn't specified in
25198 alphabetical order, or because it does not exist? */
25199
25200 for (opt = arm_extensions; opt->name != NULL; opt++)
25201 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
25202 break;
25203
25204 if (opt->name == NULL)
25205 as_bad (_("unknown architectural extension `%s'"), str);
25206 else
25207 as_bad (_("architectural extensions must be specified in "
25208 "alphabetical order"));
25209
25210 return FALSE;
25211 }
25212 else
25213 {
25214 /* We should skip the extension we've just matched the next time
25215 round. */
25216 opt++;
25217 }
25218
25219 str = ext;
25220 };
25221
25222 return TRUE;
25223 }
25224
25225 static bfd_boolean
25226 arm_parse_cpu (char *str)
25227 {
25228 const struct arm_cpu_option_table *opt;
25229 char *ext = strchr (str, '+');
25230 size_t len;
25231
25232 if (ext != NULL)
25233 len = ext - str;
25234 else
25235 len = strlen (str);
25236
25237 if (len == 0)
25238 {
25239 as_bad (_("missing cpu name `%s'"), str);
25240 return FALSE;
25241 }
25242
25243 for (opt = arm_cpus; opt->name != NULL; opt++)
25244 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
25245 {
25246 mcpu_cpu_opt = &opt->value;
25247 mcpu_fpu_opt = &opt->default_fpu;
25248 if (opt->canonical_name)
25249 {
25250 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
25251 strcpy (selected_cpu_name, opt->canonical_name);
25252 }
25253 else
25254 {
25255 size_t i;
25256
25257 if (len >= sizeof selected_cpu_name)
25258 len = (sizeof selected_cpu_name) - 1;
25259
25260 for (i = 0; i < len; i++)
25261 selected_cpu_name[i] = TOUPPER (opt->name[i]);
25262 selected_cpu_name[i] = 0;
25263 }
25264
25265 if (ext != NULL)
25266 return arm_parse_extension (ext, &mcpu_cpu_opt);
25267
25268 return TRUE;
25269 }
25270
25271 as_bad (_("unknown cpu `%s'"), str);
25272 return FALSE;
25273 }
25274
25275 static bfd_boolean
25276 arm_parse_arch (char *str)
25277 {
25278 const struct arm_arch_option_table *opt;
25279 char *ext = strchr (str, '+');
25280 size_t len;
25281
25282 if (ext != NULL)
25283 len = ext - str;
25284 else
25285 len = strlen (str);
25286
25287 if (len == 0)
25288 {
25289 as_bad (_("missing architecture name `%s'"), str);
25290 return FALSE;
25291 }
25292
25293 for (opt = arm_archs; opt->name != NULL; opt++)
25294 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
25295 {
25296 march_cpu_opt = &opt->value;
25297 march_fpu_opt = &opt->default_fpu;
25298 strcpy (selected_cpu_name, opt->name);
25299
25300 if (ext != NULL)
25301 return arm_parse_extension (ext, &march_cpu_opt);
25302
25303 return TRUE;
25304 }
25305
25306 as_bad (_("unknown architecture `%s'\n"), str);
25307 return FALSE;
25308 }
25309
25310 static bfd_boolean
25311 arm_parse_fpu (char * str)
25312 {
25313 const struct arm_option_fpu_value_table * opt;
25314
25315 for (opt = arm_fpus; opt->name != NULL; opt++)
25316 if (streq (opt->name, str))
25317 {
25318 mfpu_opt = &opt->value;
25319 return TRUE;
25320 }
25321
25322 as_bad (_("unknown floating point format `%s'\n"), str);
25323 return FALSE;
25324 }
25325
25326 static bfd_boolean
25327 arm_parse_float_abi (char * str)
25328 {
25329 const struct arm_option_value_table * opt;
25330
25331 for (opt = arm_float_abis; opt->name != NULL; opt++)
25332 if (streq (opt->name, str))
25333 {
25334 mfloat_abi_opt = opt->value;
25335 return TRUE;
25336 }
25337
25338 as_bad (_("unknown floating point abi `%s'\n"), str);
25339 return FALSE;
25340 }
25341
25342 #ifdef OBJ_ELF
25343 static bfd_boolean
25344 arm_parse_eabi (char * str)
25345 {
25346 const struct arm_option_value_table *opt;
25347
25348 for (opt = arm_eabis; opt->name != NULL; opt++)
25349 if (streq (opt->name, str))
25350 {
25351 meabi_flags = opt->value;
25352 return TRUE;
25353 }
25354 as_bad (_("unknown EABI `%s'\n"), str);
25355 return FALSE;
25356 }
25357 #endif
25358
25359 static bfd_boolean
25360 arm_parse_it_mode (char * str)
25361 {
25362 bfd_boolean ret = TRUE;
25363
25364 if (streq ("arm", str))
25365 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
25366 else if (streq ("thumb", str))
25367 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
25368 else if (streq ("always", str))
25369 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
25370 else if (streq ("never", str))
25371 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
25372 else
25373 {
25374 as_bad (_("unknown implicit IT mode `%s', should be "\
25375 "arm, thumb, always, or never."), str);
25376 ret = FALSE;
25377 }
25378
25379 return ret;
25380 }
25381
25382 static bfd_boolean
25383 arm_ccs_mode (char * unused ATTRIBUTE_UNUSED)
25384 {
25385 codecomposer_syntax = TRUE;
25386 arm_comment_chars[0] = ';';
25387 arm_line_separator_chars[0] = 0;
25388 return TRUE;
25389 }
25390
25391 struct arm_long_option_table arm_long_opts[] =
25392 {
25393 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
25394 arm_parse_cpu, NULL},
25395 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
25396 arm_parse_arch, NULL},
25397 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
25398 arm_parse_fpu, NULL},
25399 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
25400 arm_parse_float_abi, NULL},
25401 #ifdef OBJ_ELF
25402 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
25403 arm_parse_eabi, NULL},
25404 #endif
25405 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
25406 arm_parse_it_mode, NULL},
25407 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
25408 arm_ccs_mode, NULL},
25409 {NULL, NULL, 0, NULL}
25410 };
25411
25412 int
25413 md_parse_option (int c, char * arg)
25414 {
25415 struct arm_option_table *opt;
25416 const struct arm_legacy_option_table *fopt;
25417 struct arm_long_option_table *lopt;
25418
25419 switch (c)
25420 {
25421 #ifdef OPTION_EB
25422 case OPTION_EB:
25423 target_big_endian = 1;
25424 break;
25425 #endif
25426
25427 #ifdef OPTION_EL
25428 case OPTION_EL:
25429 target_big_endian = 0;
25430 break;
25431 #endif
25432
25433 case OPTION_FIX_V4BX:
25434 fix_v4bx = TRUE;
25435 break;
25436
25437 case 'a':
25438 /* Listing option. Just ignore these, we don't support additional
25439 ones. */
25440 return 0;
25441
25442 default:
25443 for (opt = arm_opts; opt->option != NULL; opt++)
25444 {
25445 if (c == opt->option[0]
25446 && ((arg == NULL && opt->option[1] == 0)
25447 || streq (arg, opt->option + 1)))
25448 {
25449 /* If the option is deprecated, tell the user. */
25450 if (warn_on_deprecated && opt->deprecated != NULL)
25451 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
25452 arg ? arg : "", _(opt->deprecated));
25453
25454 if (opt->var != NULL)
25455 *opt->var = opt->value;
25456
25457 return 1;
25458 }
25459 }
25460
25461 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
25462 {
25463 if (c == fopt->option[0]
25464 && ((arg == NULL && fopt->option[1] == 0)
25465 || streq (arg, fopt->option + 1)))
25466 {
25467 /* If the option is deprecated, tell the user. */
25468 if (warn_on_deprecated && fopt->deprecated != NULL)
25469 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
25470 arg ? arg : "", _(fopt->deprecated));
25471
25472 if (fopt->var != NULL)
25473 *fopt->var = &fopt->value;
25474
25475 return 1;
25476 }
25477 }
25478
25479 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
25480 {
25481 /* These options are expected to have an argument. */
25482 if (c == lopt->option[0]
25483 && arg != NULL
25484 && strncmp (arg, lopt->option + 1,
25485 strlen (lopt->option + 1)) == 0)
25486 {
25487 /* If the option is deprecated, tell the user. */
25488 if (warn_on_deprecated && lopt->deprecated != NULL)
25489 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
25490 _(lopt->deprecated));
25491
25492 /* Call the sup-option parser. */
25493 return lopt->func (arg + strlen (lopt->option) - 1);
25494 }
25495 }
25496
25497 return 0;
25498 }
25499
25500 return 1;
25501 }
25502
25503 void
25504 md_show_usage (FILE * fp)
25505 {
25506 struct arm_option_table *opt;
25507 struct arm_long_option_table *lopt;
25508
25509 fprintf (fp, _(" ARM-specific assembler options:\n"));
25510
25511 for (opt = arm_opts; opt->option != NULL; opt++)
25512 if (opt->help != NULL)
25513 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
25514
25515 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
25516 if (lopt->help != NULL)
25517 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
25518
25519 #ifdef OPTION_EB
25520 fprintf (fp, _("\
25521 -EB assemble code for a big-endian cpu\n"));
25522 #endif
25523
25524 #ifdef OPTION_EL
25525 fprintf (fp, _("\
25526 -EL assemble code for a little-endian cpu\n"));
25527 #endif
25528
25529 fprintf (fp, _("\
25530 --fix-v4bx Allow BX in ARMv4 code\n"));
25531 }
25532
25533
25534 #ifdef OBJ_ELF
25535 typedef struct
25536 {
25537 int val;
25538 arm_feature_set flags;
25539 } cpu_arch_ver_table;
25540
25541 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
25542 least features first. */
25543 static const cpu_arch_ver_table cpu_arch_ver[] =
25544 {
25545 {1, ARM_ARCH_V4},
25546 {2, ARM_ARCH_V4T},
25547 {3, ARM_ARCH_V5},
25548 {3, ARM_ARCH_V5T},
25549 {4, ARM_ARCH_V5TE},
25550 {5, ARM_ARCH_V5TEJ},
25551 {6, ARM_ARCH_V6},
25552 {9, ARM_ARCH_V6K},
25553 {7, ARM_ARCH_V6Z},
25554 {11, ARM_ARCH_V6M},
25555 {12, ARM_ARCH_V6SM},
25556 {8, ARM_ARCH_V6T2},
25557 {10, ARM_ARCH_V7VE},
25558 {10, ARM_ARCH_V7R},
25559 {10, ARM_ARCH_V7M},
25560 {14, ARM_ARCH_V8A},
25561 {0, ARM_ARCH_NONE}
25562 };
25563
25564 /* Set an attribute if it has not already been set by the user. */
25565 static void
25566 aeabi_set_attribute_int (int tag, int value)
25567 {
25568 if (tag < 1
25569 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
25570 || !attributes_set_explicitly[tag])
25571 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
25572 }
25573
25574 static void
25575 aeabi_set_attribute_string (int tag, const char *value)
25576 {
25577 if (tag < 1
25578 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
25579 || !attributes_set_explicitly[tag])
25580 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
25581 }
25582
25583 /* Set the public EABI object attributes. */
25584 void
25585 aeabi_set_public_attributes (void)
25586 {
25587 int arch;
25588 char profile;
25589 int virt_sec = 0;
25590 int fp16_optional = 0;
25591 arm_feature_set flags;
25592 arm_feature_set tmp;
25593 const cpu_arch_ver_table *p;
25594
25595 /* Choose the architecture based on the capabilities of the requested cpu
25596 (if any) and/or the instructions actually used. */
25597 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
25598 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
25599 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
25600
25601 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
25602 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
25603
25604 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
25605 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
25606
25607 selected_cpu = flags;
25608
25609 /* Allow the user to override the reported architecture. */
25610 if (object_arch)
25611 {
25612 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
25613 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
25614 }
25615
25616 /* We need to make sure that the attributes do not identify us as v6S-M
25617 when the only v6S-M feature in use is the Operating System Extensions. */
25618 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_os))
25619 if (!ARM_CPU_HAS_FEATURE (flags, arm_arch_v6m_only))
25620 ARM_CLEAR_FEATURE (flags, flags, arm_ext_os);
25621
25622 tmp = flags;
25623 arch = 0;
25624 for (p = cpu_arch_ver; p->val; p++)
25625 {
25626 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
25627 {
25628 arch = p->val;
25629 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
25630 }
25631 }
25632
25633 /* The table lookup above finds the last architecture to contribute
25634 a new feature. Unfortunately, Tag13 is a subset of the union of
25635 v6T2 and v7-M, so it is never seen as contributing a new feature.
25636 We can not search for the last entry which is entirely used,
25637 because if no CPU is specified we build up only those flags
25638 actually used. Perhaps we should separate out the specified
25639 and implicit cases. Avoid taking this path for -march=all by
25640 checking for contradictory v7-A / v7-M features. */
25641 if (arch == 10
25642 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
25643 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
25644 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
25645 arch = 13;
25646
25647 /* Tag_CPU_name. */
25648 if (selected_cpu_name[0])
25649 {
25650 char *q;
25651
25652 q = selected_cpu_name;
25653 if (strncmp (q, "armv", 4) == 0)
25654 {
25655 int i;
25656
25657 q += 4;
25658 for (i = 0; q[i]; i++)
25659 q[i] = TOUPPER (q[i]);
25660 }
25661 aeabi_set_attribute_string (Tag_CPU_name, q);
25662 }
25663
25664 /* Tag_CPU_arch. */
25665 aeabi_set_attribute_int (Tag_CPU_arch, arch);
25666
25667 /* Tag_CPU_arch_profile. */
25668 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
25669 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8))
25670 profile = 'A';
25671 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
25672 profile = 'R';
25673 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
25674 profile = 'M';
25675 else
25676 profile = '\0';
25677
25678 if (profile != '\0')
25679 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
25680
25681 /* Tag_ARM_ISA_use. */
25682 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
25683 || arch == 0)
25684 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
25685
25686 /* Tag_THUMB_ISA_use. */
25687 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
25688 || arch == 0)
25689 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
25690 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
25691
25692 /* Tag_VFP_arch. */
25693 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
25694 aeabi_set_attribute_int (Tag_VFP_arch,
25695 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
25696 ? 7 : 8);
25697 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
25698 aeabi_set_attribute_int (Tag_VFP_arch,
25699 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
25700 ? 5 : 6);
25701 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
25702 {
25703 fp16_optional = 1;
25704 aeabi_set_attribute_int (Tag_VFP_arch, 3);
25705 }
25706 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
25707 {
25708 aeabi_set_attribute_int (Tag_VFP_arch, 4);
25709 fp16_optional = 1;
25710 }
25711 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
25712 aeabi_set_attribute_int (Tag_VFP_arch, 2);
25713 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
25714 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
25715 aeabi_set_attribute_int (Tag_VFP_arch, 1);
25716
25717 /* Tag_ABI_HardFP_use. */
25718 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
25719 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
25720 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
25721
25722 /* Tag_WMMX_arch. */
25723 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
25724 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
25725 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
25726 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
25727
25728 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
25729 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
25730 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
25731 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
25732 {
25733 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
25734 {
25735 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
25736 }
25737 else
25738 {
25739 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
25740 fp16_optional = 1;
25741 }
25742 }
25743
25744 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
25745 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
25746 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
25747
25748 /* Tag_DIV_use.
25749
25750 We set Tag_DIV_use to two when integer divide instructions have been used
25751 in ARM state, or when Thumb integer divide instructions have been used,
25752 but we have no architecture profile set, nor have we any ARM instructions.
25753
25754 For ARMv8 we set the tag to 0 as integer divide is implied by the base
25755 architecture.
25756
25757 For new architectures we will have to check these tests. */
25758 gas_assert (arch <= TAG_CPU_ARCH_V8);
25759 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8))
25760 aeabi_set_attribute_int (Tag_DIV_use, 0);
25761 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
25762 || (profile == '\0'
25763 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
25764 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
25765 aeabi_set_attribute_int (Tag_DIV_use, 2);
25766
25767 /* Tag_MP_extension_use. */
25768 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
25769 aeabi_set_attribute_int (Tag_MPextension_use, 1);
25770
25771 /* Tag Virtualization_use. */
25772 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
25773 virt_sec |= 1;
25774 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
25775 virt_sec |= 2;
25776 if (virt_sec != 0)
25777 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
25778 }
25779
25780 /* Add the default contents for the .ARM.attributes section. */
25781 void
25782 arm_md_end (void)
25783 {
25784 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
25785 return;
25786
25787 aeabi_set_public_attributes ();
25788 }
25789 #endif /* OBJ_ELF */
25790
25791
25792 /* Parse a .cpu directive. */
25793
25794 static void
25795 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
25796 {
25797 const struct arm_cpu_option_table *opt;
25798 char *name;
25799 char saved_char;
25800
25801 name = input_line_pointer;
25802 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
25803 input_line_pointer++;
25804 saved_char = *input_line_pointer;
25805 *input_line_pointer = 0;
25806
25807 /* Skip the first "all" entry. */
25808 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
25809 if (streq (opt->name, name))
25810 {
25811 mcpu_cpu_opt = &opt->value;
25812 selected_cpu = opt->value;
25813 if (opt->canonical_name)
25814 strcpy (selected_cpu_name, opt->canonical_name);
25815 else
25816 {
25817 int i;
25818 for (i = 0; opt->name[i]; i++)
25819 selected_cpu_name[i] = TOUPPER (opt->name[i]);
25820
25821 selected_cpu_name[i] = 0;
25822 }
25823 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
25824 *input_line_pointer = saved_char;
25825 demand_empty_rest_of_line ();
25826 return;
25827 }
25828 as_bad (_("unknown cpu `%s'"), name);
25829 *input_line_pointer = saved_char;
25830 ignore_rest_of_line ();
25831 }
25832
25833
25834 /* Parse a .arch directive. */
25835
25836 static void
25837 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
25838 {
25839 const struct arm_arch_option_table *opt;
25840 char saved_char;
25841 char *name;
25842
25843 name = input_line_pointer;
25844 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
25845 input_line_pointer++;
25846 saved_char = *input_line_pointer;
25847 *input_line_pointer = 0;
25848
25849 /* Skip the first "all" entry. */
25850 for (opt = arm_archs + 1; opt->name != NULL; opt++)
25851 if (streq (opt->name, name))
25852 {
25853 mcpu_cpu_opt = &opt->value;
25854 selected_cpu = opt->value;
25855 strcpy (selected_cpu_name, opt->name);
25856 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
25857 *input_line_pointer = saved_char;
25858 demand_empty_rest_of_line ();
25859 return;
25860 }
25861
25862 as_bad (_("unknown architecture `%s'\n"), name);
25863 *input_line_pointer = saved_char;
25864 ignore_rest_of_line ();
25865 }
25866
25867
25868 /* Parse a .object_arch directive. */
25869
25870 static void
25871 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
25872 {
25873 const struct arm_arch_option_table *opt;
25874 char saved_char;
25875 char *name;
25876
25877 name = input_line_pointer;
25878 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
25879 input_line_pointer++;
25880 saved_char = *input_line_pointer;
25881 *input_line_pointer = 0;
25882
25883 /* Skip the first "all" entry. */
25884 for (opt = arm_archs + 1; opt->name != NULL; opt++)
25885 if (streq (opt->name, name))
25886 {
25887 object_arch = &opt->value;
25888 *input_line_pointer = saved_char;
25889 demand_empty_rest_of_line ();
25890 return;
25891 }
25892
25893 as_bad (_("unknown architecture `%s'\n"), name);
25894 *input_line_pointer = saved_char;
25895 ignore_rest_of_line ();
25896 }
25897
25898 /* Parse a .arch_extension directive. */
25899
25900 static void
25901 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
25902 {
25903 const struct arm_option_extension_value_table *opt;
25904 char saved_char;
25905 char *name;
25906 int adding_value = 1;
25907
25908 name = input_line_pointer;
25909 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
25910 input_line_pointer++;
25911 saved_char = *input_line_pointer;
25912 *input_line_pointer = 0;
25913
25914 if (strlen (name) >= 2
25915 && strncmp (name, "no", 2) == 0)
25916 {
25917 adding_value = 0;
25918 name += 2;
25919 }
25920
25921 for (opt = arm_extensions; opt->name != NULL; opt++)
25922 if (streq (opt->name, name))
25923 {
25924 if (!ARM_CPU_HAS_FEATURE (*mcpu_cpu_opt, opt->allowed_archs))
25925 {
25926 as_bad (_("architectural extension `%s' is not allowed for the "
25927 "current base architecture"), name);
25928 break;
25929 }
25930
25931 if (adding_value)
25932 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_cpu,
25933 opt->merge_value);
25934 else
25935 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, opt->clear_value);
25936
25937 mcpu_cpu_opt = &selected_cpu;
25938 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
25939 *input_line_pointer = saved_char;
25940 demand_empty_rest_of_line ();
25941 return;
25942 }
25943
25944 if (opt->name == NULL)
25945 as_bad (_("unknown architecture extension `%s'\n"), name);
25946
25947 *input_line_pointer = saved_char;
25948 ignore_rest_of_line ();
25949 }
25950
25951 /* Parse a .fpu directive. */
25952
25953 static void
25954 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
25955 {
25956 const struct arm_option_fpu_value_table *opt;
25957 char saved_char;
25958 char *name;
25959
25960 name = input_line_pointer;
25961 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
25962 input_line_pointer++;
25963 saved_char = *input_line_pointer;
25964 *input_line_pointer = 0;
25965
25966 for (opt = arm_fpus; opt->name != NULL; opt++)
25967 if (streq (opt->name, name))
25968 {
25969 mfpu_opt = &opt->value;
25970 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
25971 *input_line_pointer = saved_char;
25972 demand_empty_rest_of_line ();
25973 return;
25974 }
25975
25976 as_bad (_("unknown floating point format `%s'\n"), name);
25977 *input_line_pointer = saved_char;
25978 ignore_rest_of_line ();
25979 }
25980
25981 /* Copy symbol information. */
25982
25983 void
25984 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
25985 {
25986 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
25987 }
25988
25989 #ifdef OBJ_ELF
25990 /* Given a symbolic attribute NAME, return the proper integer value.
25991 Returns -1 if the attribute is not known. */
25992
25993 int
25994 arm_convert_symbolic_attribute (const char *name)
25995 {
25996 static const struct
25997 {
25998 const char * name;
25999 const int tag;
26000 }
26001 attribute_table[] =
26002 {
26003 /* When you modify this table you should
26004 also modify the list in doc/c-arm.texi. */
26005 #define T(tag) {#tag, tag}
26006 T (Tag_CPU_raw_name),
26007 T (Tag_CPU_name),
26008 T (Tag_CPU_arch),
26009 T (Tag_CPU_arch_profile),
26010 T (Tag_ARM_ISA_use),
26011 T (Tag_THUMB_ISA_use),
26012 T (Tag_FP_arch),
26013 T (Tag_VFP_arch),
26014 T (Tag_WMMX_arch),
26015 T (Tag_Advanced_SIMD_arch),
26016 T (Tag_PCS_config),
26017 T (Tag_ABI_PCS_R9_use),
26018 T (Tag_ABI_PCS_RW_data),
26019 T (Tag_ABI_PCS_RO_data),
26020 T (Tag_ABI_PCS_GOT_use),
26021 T (Tag_ABI_PCS_wchar_t),
26022 T (Tag_ABI_FP_rounding),
26023 T (Tag_ABI_FP_denormal),
26024 T (Tag_ABI_FP_exceptions),
26025 T (Tag_ABI_FP_user_exceptions),
26026 T (Tag_ABI_FP_number_model),
26027 T (Tag_ABI_align_needed),
26028 T (Tag_ABI_align8_needed),
26029 T (Tag_ABI_align_preserved),
26030 T (Tag_ABI_align8_preserved),
26031 T (Tag_ABI_enum_size),
26032 T (Tag_ABI_HardFP_use),
26033 T (Tag_ABI_VFP_args),
26034 T (Tag_ABI_WMMX_args),
26035 T (Tag_ABI_optimization_goals),
26036 T (Tag_ABI_FP_optimization_goals),
26037 T (Tag_compatibility),
26038 T (Tag_CPU_unaligned_access),
26039 T (Tag_FP_HP_extension),
26040 T (Tag_VFP_HP_extension),
26041 T (Tag_ABI_FP_16bit_format),
26042 T (Tag_MPextension_use),
26043 T (Tag_DIV_use),
26044 T (Tag_nodefaults),
26045 T (Tag_also_compatible_with),
26046 T (Tag_conformance),
26047 T (Tag_T2EE_use),
26048 T (Tag_Virtualization_use),
26049 /* We deliberately do not include Tag_MPextension_use_legacy. */
26050 #undef T
26051 };
26052 unsigned int i;
26053
26054 if (name == NULL)
26055 return -1;
26056
26057 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
26058 if (streq (name, attribute_table[i].name))
26059 return attribute_table[i].tag;
26060
26061 return -1;
26062 }
26063
26064
26065 /* Apply sym value for relocations only in the case that they are for
26066 local symbols in the same segment as the fixup and you have the
26067 respective architectural feature for blx and simple switches. */
26068 int
26069 arm_apply_sym_value (struct fix * fixP, segT this_seg)
26070 {
26071 if (fixP->fx_addsy
26072 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
26073 /* PR 17444: If the local symbol is in a different section then a reloc
26074 will always be generated for it, so applying the symbol value now
26075 will result in a double offset being stored in the relocation. */
26076 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
26077 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
26078 {
26079 switch (fixP->fx_r_type)
26080 {
26081 case BFD_RELOC_ARM_PCREL_BLX:
26082 case BFD_RELOC_THUMB_PCREL_BRANCH23:
26083 if (ARM_IS_FUNC (fixP->fx_addsy))
26084 return 1;
26085 break;
26086
26087 case BFD_RELOC_ARM_PCREL_CALL:
26088 case BFD_RELOC_THUMB_PCREL_BLX:
26089 if (THUMB_IS_FUNC (fixP->fx_addsy))
26090 return 1;
26091 break;
26092
26093 default:
26094 break;
26095 }
26096
26097 }
26098 return 0;
26099 }
26100 #endif /* OBJ_ELF */