]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-d10v.c
Thu Nov 14 11:17:49 1996 Martin M. Hunt <hunt@pizza.cygnus.com>
[thirdparty/binutils-gdb.git] / gas / config / tc-d10v.c
1 /* tc-d10v.c -- Assembler code for the Mitsubishi D10V
2
3 Copyright (C) 1996 Free Software Foundation.
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <stdio.h>
23 #include <ctype.h>
24 #include "as.h"
25 #include "subsegs.h"
26 #include "opcode/d10v.h"
27 #include "elf/ppc.h"
28
29 const char comment_chars[] = ";";
30 const char line_comment_chars[] = "#";
31 const char line_separator_chars[] = "";
32 const char *md_shortopts = "O";
33 const char EXP_CHARS[] = "eE";
34 const char FLT_CHARS[] = "dD";
35
36 int Optimizing = 0;
37
38 #define AT_WORD (-1)
39
40 /* fixups */
41 #define MAX_INSN_FIXUPS (5)
42 struct d10v_fixup
43 {
44 expressionS exp;
45 int operand;
46 int pcrel;
47 int size;
48 bfd_reloc_code_real_type reloc;
49 };
50
51 typedef struct _fixups
52 {
53 int fc;
54 struct d10v_fixup fix[MAX_INSN_FIXUPS];
55 struct _fixups *next;
56 } Fixups;
57
58 static Fixups FixUps[2];
59 static Fixups *fixups;
60
61 /* local functions */
62 static int reg_name_search PARAMS ((char *name));
63 static int register_name PARAMS ((expressionS *expressionP));
64 static int check_range PARAMS ((unsigned long num, int bits, int flags));
65 static int postfix PARAMS ((char *p));
66 static bfd_reloc_code_real_type get_reloc PARAMS ((struct d10v_operand *op));
67 static int get_operands PARAMS ((expressionS exp[]));
68 static struct d10v_opcode *find_opcode PARAMS ((struct d10v_opcode *opcode, expressionS ops[]));
69 static unsigned long build_insn PARAMS ((struct d10v_opcode *opcode, expressionS *opers, unsigned long insn));
70 static void write_long PARAMS ((struct d10v_opcode *opcode, unsigned long insn, Fixups *fx));
71 static void write_1_short PARAMS ((struct d10v_opcode *opcode, unsigned long insn, Fixups *fx));
72 static int write_2_short PARAMS ((struct d10v_opcode *opcode1, unsigned long insn1,
73 struct d10v_opcode *opcode2, unsigned long insn2, int exec_type, Fixups *fx));
74 static unsigned long do_assemble PARAMS ((char *str, struct d10v_opcode **opcode));
75 static unsigned long d10v_insert_operand PARAMS (( unsigned long insn, int op_type,
76 offsetT value, int left, fixS *fix));
77 static int parallel_ok PARAMS ((struct d10v_opcode *opcode1, unsigned long insn1,
78 struct d10v_opcode *opcode2, unsigned long insn2));
79
80
81 struct option md_longopts[] = {
82 {NULL, no_argument, NULL, 0}
83 };
84 size_t md_longopts_size = sizeof(md_longopts);
85
86 static void d10v_dot_word PARAMS ((int));
87
88 /* The target specific pseudo-ops which we support. */
89 const pseudo_typeS md_pseudo_table[] =
90 {
91 { "word", d10v_dot_word, 2 },
92 { NULL, NULL, 0 }
93 };
94
95 /* Opcode hash table. */
96 static struct hash_control *d10v_hash;
97
98 /* reg_name_search does a binary search of the pre_defined_registers
99 array to see if "name" is a valid regiter name. Returns the register
100 number from the array on success, or -1 on failure. */
101
102 static int
103 reg_name_search (name)
104 char *name;
105 {
106 int middle, low, high;
107 int cmp;
108
109 low = 0;
110 high = reg_name_cnt() - 1;
111
112 do
113 {
114 middle = (low + high) / 2;
115 cmp = strcasecmp (name, pre_defined_registers[middle].name);
116 if (cmp < 0)
117 high = middle - 1;
118 else if (cmp > 0)
119 low = middle + 1;
120 else
121 return pre_defined_registers[middle].value;
122 }
123 while (low <= high);
124 return -1;
125 }
126
127 /* register_name() checks the string at input_line_pointer
128 to see if it is a valid register name */
129
130 static int
131 register_name (expressionP)
132 expressionS *expressionP;
133 {
134 int reg_number;
135 char c, *p = input_line_pointer;
136
137 while (*p && *p!='\n' && *p!='\r' && *p !=',' && *p!=' ' && *p!=')')
138 p++;
139
140 c = *p;
141 if (c)
142 *p++ = 0;
143
144 /* look to see if it's in the register table */
145 reg_number = reg_name_search (input_line_pointer);
146 if (reg_number >= 0)
147 {
148 expressionP->X_op = O_register;
149 /* temporarily store a pointer to the string here */
150 expressionP->X_op_symbol = (struct symbol *)input_line_pointer;
151 expressionP->X_add_number = reg_number;
152 input_line_pointer = p;
153 return 1;
154 }
155 if (c)
156 *(p-1) = c;
157 return 0;
158 }
159
160
161 static int
162 check_range (num, bits, flags)
163 unsigned long num;
164 int bits;
165 int flags;
166 {
167 long min, max, bit1;
168 int retval=0;
169
170 /* don't bother checking 16-bit values */
171 if (bits == 16)
172 return 0;
173
174 if (flags & OPERAND_SHIFT)
175 {
176 /* all special shift operands are unsigned */
177 /* and <= 16. We allow 0 for now. */
178 if (num>16)
179 return 1;
180 else
181 return 0;
182 }
183
184 if (flags & OPERAND_SIGNED)
185 {
186 max = (1 << (bits - 1))-1;
187 min = - (1 << (bits - 1));
188 if (((long)num > max) || ((long)num < min))
189 retval = 1;
190 }
191 else
192 {
193 max = (1 << bits) - 1;
194 min = 0;
195 if ((num > max) || (num < min))
196 retval = 1;
197 }
198 return retval;
199 }
200
201
202 void
203 md_show_usage (stream)
204 FILE *stream;
205 {
206 fprintf(stream, "D10V options:\n\
207 -O optimize. Will do some operations in parallel.\n");
208 }
209
210 int
211 md_parse_option (c, arg)
212 int c;
213 char *arg;
214 {
215 switch (c)
216 {
217 case 'O':
218 /* Optimize. Will attempt to parallelize operations */
219 Optimizing = 1;
220 break;
221 default:
222 return 0;
223 }
224 return 1;
225 }
226
227 symbolS *
228 md_undefined_symbol (name)
229 char *name;
230 {
231 return 0;
232 }
233
234 /* Turn a string in input_line_pointer into a floating point constant of type
235 type, and store the appropriate bytes in *litP. The number of LITTLENUMS
236 emitted is stored in *sizeP . An error message is returned, or NULL on OK.
237 */
238 char *
239 md_atof (type, litP, sizeP)
240 int type;
241 char *litP;
242 int *sizeP;
243 {
244 int prec;
245 LITTLENUM_TYPE words[4];
246 char *t;
247 int i;
248
249 switch (type)
250 {
251 case 'f':
252 prec = 2;
253 break;
254 case 'd':
255 prec = 4;
256 break;
257 default:
258 *sizeP = 0;
259 return "bad call to md_atof";
260 }
261
262 t = atof_ieee (input_line_pointer, type, words);
263 if (t)
264 input_line_pointer = t;
265
266 *sizeP = prec * 2;
267
268 for (i = 0; i < prec; i++)
269 {
270 md_number_to_chars (litP, (valueT) words[i], 2);
271 litP += 2;
272 }
273 return NULL;
274 }
275
276 void
277 md_convert_frag (abfd, sec, fragP)
278 bfd *abfd;
279 asection *sec;
280 fragS *fragP;
281 {
282 printf ("call to md_convert_frag \n");
283 abort ();
284 }
285
286 valueT
287 md_section_align (seg, addr)
288 asection *seg;
289 valueT addr;
290 {
291 int align = bfd_get_section_alignment (stdoutput, seg);
292 return ((addr + (1 << align) - 1) & (-1 << align));
293 }
294
295
296 void
297 md_begin ()
298 {
299 char *prev_name = "";
300 struct d10v_opcode *opcode;
301 d10v_hash = hash_new();
302
303 /* Insert unique names into hash table. The D10v instruction set
304 has many identical opcode names that have different opcodes based
305 on the operands. This hash table then provides a quick index to
306 the first opcode with a particular name in the opcode table. */
307
308 for (opcode = (struct d10v_opcode *)d10v_opcodes; opcode->name; opcode++)
309 {
310 if (strcmp (prev_name, opcode->name))
311 {
312 prev_name = (char *)opcode->name;
313 hash_insert (d10v_hash, opcode->name, (char *) opcode);
314 }
315 }
316
317 fixups = &FixUps[0];
318 FixUps[0].next = &FixUps[1];
319 FixUps[1].next = &FixUps[0];
320 }
321
322
323 /* this function removes the postincrement or postdecrement
324 operator ( '+' or '-' ) from an expression */
325
326 static int postfix (p)
327 char *p;
328 {
329 while (*p != '-' && *p != '+')
330 {
331 if (*p==0 || *p=='\n' || *p=='\r')
332 break;
333 p++;
334 }
335
336 if (*p == '-')
337 {
338 *p = ' ';
339 return (-1);
340 }
341 if (*p == '+')
342 {
343 *p = ' ';
344 return (1);
345 }
346
347 return (0);
348 }
349
350
351 static bfd_reloc_code_real_type
352 get_reloc (op)
353 struct d10v_operand *op;
354 {
355 int bits = op->bits;
356
357 /* printf("get_reloc: bits=%d address=%d\n",bits,op->flags & OPERAND_ADDR); */
358 if (bits <= 4)
359 return (0);
360
361 if (op->flags & OPERAND_ADDR)
362 {
363 if (bits == 8)
364 return (BFD_RELOC_D10V_10_PCREL_R);
365 else
366 return (BFD_RELOC_D10V_18_PCREL);
367 }
368
369 return (BFD_RELOC_16);
370 }
371
372
373 /* get_operands parses a string of operands and returns
374 an array of expressions */
375
376 static int
377 get_operands (exp)
378 expressionS exp[];
379 {
380 char *p = input_line_pointer;
381 int numops = 0;
382 int post = 0;
383
384 while (*p)
385 {
386 while (*p == ' ' || *p == '\t' || *p == ',')
387 p++;
388 if (*p==0 || *p=='\n' || *p=='\r')
389 break;
390
391 if (*p == '@')
392 {
393 p++;
394 exp[numops].X_op = O_absent;
395 if (*p == '(')
396 {
397 p++;
398 exp[numops].X_add_number = OPERAND_ATPAR;
399 }
400 else if (*p == '-')
401 {
402 p++;
403 exp[numops].X_add_number = OPERAND_ATMINUS;
404 }
405 else
406 {
407 exp[numops].X_add_number = OPERAND_ATSIGN;
408 post = postfix (p);
409 }
410 numops++;
411 continue;
412 }
413
414 if (*p == ')')
415 {
416 /* just skip the trailing paren */
417 p++;
418 continue;
419 }
420
421 input_line_pointer = p;
422
423 /* check to see if it might be a register name */
424 if (!register_name (&exp[numops]))
425 {
426 /* parse as an expression */
427 expression (&exp[numops]);
428 }
429
430 if (!strncasecmp (input_line_pointer, "@word", 5))
431 {
432 if (exp[numops].X_op == O_register)
433 {
434 /* if it looked like a register name but was followed by "@word" */
435 /* then it was really a symbol, so change it to one */
436 exp[numops].X_op = O_symbol;
437 exp[numops].X_add_symbol = symbol_find_or_make ((char *)exp[numops].X_op_symbol);
438 exp[numops].X_op_symbol = NULL;
439 }
440 exp[numops].X_add_number = AT_WORD;
441 input_line_pointer += 5;
442 }
443
444 if (exp[numops].X_op == O_illegal)
445 as_bad ("illegal operand");
446 else if (exp[numops].X_op == O_absent)
447 as_bad ("missing operand");
448
449 numops++;
450 p = input_line_pointer;
451 }
452
453 switch (post)
454 {
455 case -1: /* postdecrement mode */
456 exp[numops].X_op = O_absent;
457 exp[numops++].X_add_number = OPERAND_MINUS;
458 break;
459 case 1: /* postincrement mode */
460 exp[numops].X_op = O_absent;
461 exp[numops++].X_add_number = OPERAND_PLUS;
462 break;
463 }
464
465 exp[numops].X_op = 0;
466 return (numops);
467 }
468
469 static unsigned long
470 d10v_insert_operand (insn, op_type, value, left, fix)
471 unsigned long insn;
472 int op_type;
473 offsetT value;
474 int left;
475 fixS *fix;
476 {
477 int shift, bits;
478
479 shift = d10v_operands[op_type].shift;
480 if (left)
481 shift += 15;
482
483 bits = d10v_operands[op_type].bits;
484
485 /* truncate to the proper number of bits */
486 if (check_range (value, bits, d10v_operands[op_type].flags))
487 as_bad_where (fix->fx_file, fix->fx_line, "operand out of range: %d", value);
488
489 value &= 0x7FFFFFFF >> (31 - bits);
490 insn |= (value << shift);
491
492 return insn;
493 }
494
495
496 /* build_insn takes a pointer to the opcode entry in the opcode table
497 and the array of operand expressions and returns the instruction */
498
499 static unsigned long
500 build_insn (opcode, opers, insn)
501 struct d10v_opcode *opcode;
502 expressionS *opers;
503 unsigned long insn;
504 {
505 int i, bits, shift, flags, format;
506 unsigned int number;
507
508 /* the insn argument is only used for the DIVS kludge */
509 if (insn)
510 format = LONG_R;
511 else
512 {
513 insn = opcode->opcode;
514 format = opcode->format;
515 }
516
517 for (i=0;opcode->operands[i];i++)
518 {
519 flags = d10v_operands[opcode->operands[i]].flags;
520 bits = d10v_operands[opcode->operands[i]].bits;
521 shift = d10v_operands[opcode->operands[i]].shift;
522 number = opers[i].X_add_number;
523
524 if (flags & OPERAND_REG)
525 {
526 number &= REGISTER_MASK;
527 if (format == LONG_L)
528 shift += 15;
529 }
530
531 if (opers[i].X_op != O_register && opers[i].X_op != O_constant)
532 {
533 /* now create a fixup */
534
535 /*
536 printf("need a fixup: ");
537 print_expr_1(stdout,&opers[i]);
538 printf("\n");
539 */
540
541 if (fixups->fc >= MAX_INSN_FIXUPS)
542 as_fatal ("too many fixups");
543
544 if (opers[i].X_op == O_symbol && number == AT_WORD)
545 {
546 number = opers[i].X_add_number = 0;
547 fixups->fix[fixups->fc].reloc = BFD_RELOC_D10V_18;
548 } else
549 fixups->fix[fixups->fc].reloc =
550 get_reloc((struct d10v_operand *)&d10v_operands[opcode->operands[i]]);
551
552 if (fixups->fix[fixups->fc].reloc == BFD_RELOC_16 ||
553 fixups->fix[fixups->fc].reloc == BFD_RELOC_D10V_18)
554 fixups->fix[fixups->fc].size = 2;
555 else
556 fixups->fix[fixups->fc].size = 4;
557
558 fixups->fix[fixups->fc].exp = opers[i];
559 fixups->fix[fixups->fc].operand = opcode->operands[i];
560 fixups->fix[fixups->fc].pcrel = (flags & OPERAND_ADDR) ? true : false;
561 (fixups->fc)++;
562 }
563
564 /* truncate to the proper number of bits */
565 if ((opers[i].X_op == O_constant) && check_range (number, bits, flags))
566 as_bad("operand out of range: %d",number);
567 number &= 0x7FFFFFFF >> (31 - bits);
568 insn = insn | (number << shift);
569 }
570
571 /* kludge: for DIVS, we need to put the operands in twice */
572 /* on the second pass, format is changed to LONG_R to force */
573 /* the second set of operands to not be shifted over 15 */
574 if ((opcode->opcode == OPCODE_DIVS) && (format==LONG_L))
575 insn = build_insn (opcode, opers, insn);
576
577 return insn;
578 }
579
580 /* write out a long form instruction */
581 static void
582 write_long (opcode, insn, fx)
583 struct d10v_opcode *opcode;
584 unsigned long insn;
585 Fixups *fx;
586 {
587 int i, where;
588 char *f = frag_more(4);
589
590 insn |= FM11;
591 /* printf("INSN: %08x\n",insn); */
592 number_to_chars_bigendian (f, insn, 4);
593
594 for (i=0; i < fx->fc; i++)
595 {
596 if (fx->fix[i].reloc)
597 {
598 where = f - frag_now->fr_literal;
599 if (fx->fix[i].size == 2)
600 where += 2;
601 /*
602 printf("fix_new_exp: where:%x size:%d\n ",where,fx->fix[i].size);
603 print_expr_1(stdout,&(fx->fix[i].exp));
604 printf("\n");
605 */
606
607 if (fx->fix[i].reloc == BFD_RELOC_D10V_18)
608 fx->fix[i].operand |= 4096;
609
610 fix_new_exp (frag_now,
611 where,
612 fx->fix[i].size,
613 &(fx->fix[i].exp),
614 fx->fix[i].pcrel,
615 fx->fix[i].operand|2048);
616 }
617 }
618 fx->fc = 0;
619 }
620
621
622 /* write out a short form instruction by itself */
623 static void
624 write_1_short (opcode, insn, fx)
625 struct d10v_opcode *opcode;
626 unsigned long insn;
627 Fixups *fx;
628 {
629 char *f = frag_more(4);
630 int i, where;
631
632 if (opcode->exec_type & PARONLY)
633 as_fatal ("Instruction must be executed in parallel with another instruction.");
634
635 /* the other container needs to be NOP */
636 /* according to 4.3.1: for FM=00, sub-instructions performed only
637 by IU cannot be encoded in L-container. */
638 if (opcode->unit == IU)
639 insn |= FM00 | (NOP << 15); /* right container */
640 else
641 insn = FM00 | (insn << 15) | NOP; /* left container */
642
643 /* printf("INSN: %08x\n",insn); */
644 number_to_chars_bigendian (f, insn, 4);
645 for (i=0; i < fx->fc; i++)
646 {
647 if (fx->fix[i].reloc)
648 {
649 where = f - frag_now->fr_literal;
650 if (fx->fix[i].size == 2)
651 where += 2;
652
653 /*
654 printf("fix_new_exp: where:%x size:%d\n ",where, fx->fix[i].size);
655 print_expr_1(stdout,&(fx->fix[i].exp));
656 printf("\n");
657 */
658
659 if (fx->fix[i].reloc == BFD_RELOC_D10V_18)
660 fx->fix[i].operand |= 4096;
661
662 /* if it's an R reloc, we may have to switch it to L */
663 if ( (fx->fix[i].reloc == BFD_RELOC_D10V_10_PCREL_R) && (opcode->unit != IU) )
664 fx->fix[i].operand |= 1024;
665
666 fix_new_exp (frag_now,
667 where,
668 fx->fix[i].size,
669 &(fx->fix[i].exp),
670 fx->fix[i].pcrel,
671 fx->fix[i].operand|2048);
672 }
673 }
674 fx->fc = 0;
675 }
676
677 /* write out a short form instruction if possible */
678 /* return number of instructions not written out */
679 static int
680 write_2_short (opcode1, insn1, opcode2, insn2, exec_type, fx)
681 struct d10v_opcode *opcode1, *opcode2;
682 unsigned long insn1, insn2;
683 int exec_type;
684 Fixups *fx;
685 {
686 unsigned long insn;
687 char *f;
688 int i,j, where;
689
690 if ( (exec_type != 1) && ((opcode1->exec_type & PARONLY)
691 || (opcode2->exec_type & PARONLY)))
692 as_fatal("Instruction must be executed in parallel");
693
694 if ( (opcode1->format & LONG_OPCODE) || (opcode2->format & LONG_OPCODE))
695 as_fatal ("Long instructions may not be combined.");
696
697 if(opcode1->exec_type & BRANCH_LINK && opcode2->exec_type != PARONLY)
698 {
699 /* subroutines must be called from 32-bit boundaries */
700 /* so the return address will be correct */
701 write_1_short (opcode1, insn1, fx->next);
702 return (1);
703 }
704
705 switch (exec_type)
706 {
707 case 0: /* order not specified */
708 if ( Optimizing && parallel_ok (opcode1, insn1, opcode2, insn2))
709 {
710 /* parallel */
711 if (opcode1->unit == IU)
712 insn = FM00 | (insn2 << 15) | insn1;
713 else if (opcode2->unit == MU)
714 insn = FM00 | (insn2 << 15) | insn1;
715 else
716 {
717 insn = FM00 | (insn1 << 15) | insn2;
718 fx = fx->next;
719 }
720 }
721 else if (opcode1->unit == IU)
722 {
723 /* reverse sequential */
724 insn = FM10 | (insn2 << 15) | insn1;
725 }
726 else
727 {
728 /* sequential */
729 insn = FM01 | (insn1 << 15) | insn2;
730 fx = fx->next;
731 }
732 break;
733 case 1: /* parallel */
734 if (opcode1->exec_type & SEQ || opcode2->exec_type & SEQ)
735 as_fatal ("One of these instructions may not be executed in parallel.");
736
737 if (opcode1->unit == IU)
738 {
739 if (opcode2->unit == IU)
740 as_fatal ("Two IU instructions may not be executed in parallel");
741 as_warn ("Swapping instruction order");
742 insn = FM00 | (insn2 << 15) | insn1;
743 }
744 else if (opcode2->unit == MU)
745 {
746 if (opcode1->unit == MU)
747 as_fatal ("Two MU instructions may not be executed in parallel");
748 as_warn ("Swapping instruction order");
749 insn = FM00 | (insn2 << 15) | insn1;
750 }
751 else
752 {
753 insn = FM00 | (insn1 << 15) | insn2;
754 fx = fx->next;
755 }
756 break;
757 case 2: /* sequential */
758 if (opcode1->unit == IU)
759 as_fatal ("IU instruction may not be in the left container");
760 insn = FM01 | (insn1 << 15) | insn2;
761 fx = fx->next;
762 break;
763 case 3: /* reverse sequential */
764 if (opcode2->unit == MU)
765 as_fatal ("MU instruction may not be in the right container");
766 insn = FM10 | (insn1 << 15) | insn2;
767 fx = fx->next;
768 break;
769 default:
770 as_fatal("unknown execution type passed to write_2_short()");
771 }
772
773 /* printf("INSN: %08x\n",insn); */
774 f = frag_more(4);
775 number_to_chars_bigendian (f, insn, 4);
776
777 for (j=0; j<2; j++)
778 {
779 for (i=0; i < fx->fc; i++)
780 {
781 if (fx->fix[i].reloc)
782 {
783 where = f - frag_now->fr_literal;
784 if (fx->fix[i].size == 2)
785 where += 2;
786
787 if ( (fx->fix[i].reloc == BFD_RELOC_D10V_10_PCREL_R) && (j == 0) )
788 fx->fix[i].operand |= 1024;
789
790 if (fx->fix[i].reloc == BFD_RELOC_D10V_18)
791 fx->fix[i].operand |= 4096;
792
793 /*
794 printf("fix_new_exp: where:%x reloc:%d\n ",where,fx->fix[i].operand);
795 print_expr_1(stdout,&(fx->fix[i].exp));
796 printf("\n");
797 */
798
799 fix_new_exp (frag_now,
800 where,
801 fx->fix[i].size,
802 &(fx->fix[i].exp),
803 fx->fix[i].pcrel,
804 fx->fix[i].operand|2048);
805 }
806 }
807 fx->fc = 0;
808 fx = fx->next;
809 }
810 return (0);
811 }
812
813
814 /* Check 2 instructions and determine if they can be safely */
815 /* executed in parallel. Returns 1 if they can be. */
816 static int
817 parallel_ok (op1, insn1, op2, insn2)
818 struct d10v_opcode *op1, *op2;
819 unsigned long insn1, insn2;
820 {
821 int i, j, flags, mask, shift, regno;
822 unsigned long ins, mod[2], used[2];
823 struct d10v_opcode *op;
824
825 if ((op1->exec_type & SEQ) != 0 || (op2->exec_type & SEQ) != 0
826 || (op1->exec_type & PAR) == 0 || (op2->exec_type & PAR) == 0
827 || (op1->unit == BOTH) || (op2->unit == BOTH)
828 || (op1->unit == IU && op2->unit == IU)
829 || (op1->unit == MU && op2->unit == MU))
830 return 0;
831
832 /* The idea here is to create two sets of bitmasks (mod and used) */
833 /* which indicate which registers are modified or used by each instruction. */
834 /* The operation can only be done in parallel if instruction 1 and instruction 2 */
835 /* modify different registers, and neither instruction modifies any registers */
836 /* the other is using. Accesses to control registers, PSW, and memory are treated */
837 /* as accesses to a single register. So if both instructions write memory or one */
838 /* instruction writes memory and the other reads, then they cannot be done in parallel. */
839 /* Likewise, if one instruction mucks with the psw and the other reads the PSW */
840 /* (which includes C, F0, and F1), then they cannot operate safely in parallel. */
841
842 /* the bitmasks (mod and used) look like this (bit 31 = MSB) */
843 /* r0-r15 0-15 */
844 /* a0-a1 16-17 */
845 /* cr (not psw) 18 */
846 /* psw 19 */
847 /* mem 20 */
848
849 for (j=0;j<2;j++)
850 {
851 if (j == 0)
852 {
853 op = op1;
854 ins = insn1;
855 }
856 else
857 {
858 op = op2;
859 ins = insn2;
860 }
861 mod[j] = used[j] = 0;
862 for (i = 0; op->operands[i]; i++)
863 {
864 flags = d10v_operands[op->operands[i]].flags;
865 shift = d10v_operands[op->operands[i]].shift;
866 mask = 0x7FFFFFFF >> (31 - d10v_operands[op->operands[i]].bits);
867 if (flags & OPERAND_REG)
868 {
869 regno = (ins >> shift) & mask;
870 if (flags & OPERAND_ACC)
871 regno += 16;
872 else if (flags & OPERAND_CONTROL) /* mvtc or mvfc */
873 {
874 if (regno == 0)
875 regno = 19;
876 else
877 regno = 18;
878 }
879 else if (flags & OPERAND_FLAG)
880 regno = 19;
881
882 if ( flags & OPERAND_DEST )
883 {
884 mod[j] |= 1 << regno;
885 if (flags & OPERAND_EVEN)
886 mod[j] |= 1 << (regno + 1);
887 }
888 else
889 {
890 used[j] |= 1 << regno ;
891 if (flags & OPERAND_EVEN)
892 used[j] |= 1 << (regno + 1);
893 }
894 }
895 }
896 if (op->exec_type & RMEM)
897 used[j] |= 1 << 20;
898 else if (op->exec_type & WMEM)
899 mod[j] |= 1 << 20;
900 else if (op->exec_type & RF0)
901 used[j] |= 1 << 19;
902 else if (op->exec_type & WF0)
903 mod[j] |= 1 << 19;
904 else if (op->exec_type & WCAR)
905 mod[j] |= 1 << 19;
906 }
907 if ((mod[0] & mod[1]) == 0 && (mod[0] & used[1]) == 0 && (mod[1] & used[0]) == 0)
908 return 1;
909 return 0;
910 }
911
912
913 /* This is the main entry point for the machine-dependent assembler. str points to a
914 machine-dependent instruction. This function is supposed to emit the frags/bytes
915 it assembles to. For the D10V, it mostly handles the special VLIW parsing and packing
916 and leaves the difficult stuff to do_assemble().
917 */
918
919 static unsigned long prev_insn;
920 static struct d10v_opcode *prev_opcode = 0;
921 static subsegT prev_subseg;
922 static segT prev_seg;
923
924 void
925 md_assemble (str)
926 char *str;
927 {
928 struct d10v_opcode *opcode;
929 unsigned long insn;
930 int extype=0; /* execution type; parallel, etc */
931 static int etype=0; /* saved extype. used for multiline instructions */
932 char *str2;
933
934 /* printf("md_assemble: str=%s\n",str); */
935
936 if (etype == 0)
937 {
938 /* look for the special multiple instruction separators */
939 str2 = strstr (str, "||");
940 if (str2)
941 extype = 1;
942 else
943 {
944 str2 = strstr (str, "->");
945 if (str2)
946 extype = 2;
947 else
948 {
949 str2 = strstr (str, "<-");
950 if (str2)
951 extype = 3;
952 }
953 }
954 /* str2 points to the separator, if one */
955 if (str2)
956 {
957 *str2 = 0;
958
959 /* if two instructions are present and we already have one saved
960 then first write it out */
961 if (prev_opcode)
962 write_1_short (prev_opcode, prev_insn, fixups->next);
963
964 /* assemble first instruction and save it */
965 prev_insn = do_assemble (str, &prev_opcode);
966 if (prev_insn == -1)
967 as_fatal ("can't find opcode ");
968 fixups = fixups->next;
969 str = str2 + 2;
970 }
971 }
972
973 insn = do_assemble (str, &opcode);
974 if (insn == -1)
975 {
976 if (extype)
977 {
978 etype = extype;
979 return;
980 }
981 as_fatal ("can't find opcode ");
982 }
983
984 if (etype)
985 {
986 extype = etype;
987 etype = 0;
988 }
989
990 /* if this is a long instruction, write it and any previous short instruction */
991 if (opcode->format & LONG_OPCODE)
992 {
993 if (extype)
994 as_fatal("Unable to mix instructions as specified");
995 if (prev_opcode)
996 {
997 write_1_short (prev_opcode, prev_insn, fixups->next);
998 prev_opcode = NULL;
999 }
1000 write_long (opcode, insn, fixups);
1001 prev_opcode = NULL;
1002 return;
1003 }
1004
1005 if (prev_opcode && (write_2_short (prev_opcode, prev_insn, opcode, insn, extype, fixups) == 0))
1006 {
1007 /* no instructions saved */
1008 prev_opcode = NULL;
1009 }
1010 else
1011 {
1012 if (extype)
1013 as_fatal("Unable to mix instructions as specified");
1014 /* save off last instruction so it may be packed on next pass */
1015 prev_opcode = opcode;
1016 prev_insn = insn;
1017 prev_seg = now_seg;
1018 prev_subseg = now_subseg;
1019 fixups = fixups->next;
1020 }
1021 }
1022
1023
1024 /* do_assemble assembles a single instruction and returns an opcode */
1025 /* it returns -1 (an invalid opcode) on error */
1026
1027 static unsigned long
1028 do_assemble (str, opcode)
1029 char *str;
1030 struct d10v_opcode **opcode;
1031 {
1032 unsigned char *op_start, *save;
1033 unsigned char *op_end;
1034 char name[20];
1035 int nlen = 0;
1036 expressionS myops[6];
1037 unsigned long insn;
1038
1039 /* printf("do_assemble: str=%s\n",str); */
1040
1041 /* Drop leading whitespace */
1042 while (*str == ' ')
1043 str++;
1044
1045 /* find the opcode end */
1046 for (op_start = op_end = (unsigned char *) (str);
1047 *op_end
1048 && nlen < 20
1049 && !is_end_of_line[*op_end] && *op_end != ' ';
1050 op_end++)
1051 {
1052 name[nlen] = op_start[nlen];
1053 nlen++;
1054 }
1055 name[nlen] = 0;
1056
1057 if (nlen == 0)
1058 return (-1);
1059
1060 /* find the first opcode with the proper name */
1061 *opcode = (struct d10v_opcode *)hash_find (d10v_hash, name);
1062 if (*opcode == NULL)
1063 as_fatal ("unknown opcode: %s",name);
1064
1065 save = input_line_pointer;
1066 input_line_pointer = op_end;
1067 *opcode = find_opcode (*opcode, myops);
1068 if (*opcode == 0)
1069 return -1;
1070 input_line_pointer = save;
1071
1072 insn = build_insn ((*opcode), myops, 0);
1073 /* printf("sub-insn = %lx\n",insn); */
1074 return (insn);
1075 }
1076
1077 /* find_opcode() gets a pointer to an entry in the opcode table. */
1078 /* It must look at all opcodes with the same name and use the operands */
1079 /* to choose the correct opcode. */
1080
1081 static struct d10v_opcode *
1082 find_opcode (opcode, myops)
1083 struct d10v_opcode *opcode;
1084 expressionS myops[];
1085 {
1086 int i, match, done, numops;
1087 struct d10v_opcode *next_opcode;
1088
1089 /* get all the operands and save them as expressions */
1090 numops = get_operands (myops);
1091
1092 /* now see if the operand is a fake. If so, find the correct size */
1093 /* instruction, if possible */
1094 if (opcode->format == OPCODE_FAKE)
1095 {
1096 int opnum = opcode->operands[0];
1097
1098 if (myops[opnum].X_op == O_register)
1099 {
1100 myops[opnum].X_op = O_symbol;
1101 myops[opnum].X_add_symbol = symbol_find_or_make ((char *)myops[opnum].X_op_symbol);
1102 myops[opnum].X_add_number = 0;
1103 myops[opnum].X_op_symbol = NULL;
1104 }
1105
1106 if (myops[opnum].X_op == O_constant || (myops[opnum].X_op == O_symbol &&
1107 S_IS_DEFINED(myops[opnum].X_add_symbol) &&
1108 (S_GET_SEGMENT(myops[opnum].X_add_symbol) == now_seg)))
1109 {
1110 next_opcode=opcode+1;
1111 for (i=0; opcode->operands[i+1]; i++)
1112 {
1113 int bits = d10v_operands[next_opcode->operands[opnum]].bits;
1114 int flags = d10v_operands[next_opcode->operands[opnum]].flags;
1115 if (flags & OPERAND_ADDR)
1116 bits += 2;
1117 if (myops[opnum].X_op == O_constant)
1118 {
1119 if (!check_range (myops[opnum].X_add_number, bits, flags))
1120 return next_opcode;
1121 }
1122 else
1123 {
1124 fragS *f;
1125 long value;
1126 /* calculate the current address by running through the previous frags */
1127 /* and adding our current offset */
1128 for (value = 0, f = frchain_now->frch_root; f; f = f->fr_next)
1129 value += f->fr_fix;
1130
1131 if (flags & OPERAND_ADDR)
1132 value = S_GET_VALUE(myops[opnum].X_add_symbol) - value -
1133 (obstack_next_free(&frchain_now->frch_obstack) - frag_now->fr_literal);
1134 else
1135 value = S_GET_VALUE(myops[opnum].X_add_symbol);
1136
1137 if (myops[opnum].X_add_number == AT_WORD)
1138 {
1139 if (bits > 4)
1140 {
1141 bits += 2;
1142 if (!check_range (value, bits, flags))
1143 return next_opcode;
1144 }
1145 }
1146 else if (!check_range (value, bits, flags))
1147 return next_opcode;
1148 }
1149 next_opcode++;
1150 }
1151 as_fatal ("value out of range");
1152 }
1153 else
1154 {
1155 /* not a constant, so use a long instruction */
1156 return opcode+2;
1157 }
1158 }
1159 else
1160 {
1161 match = 0;
1162 /* now search the opcode table table for one with operands */
1163 /* that matches what we've got */
1164 while (!match)
1165 {
1166 match = 1;
1167 for (i = 0; opcode->operands[i]; i++)
1168 {
1169 int flags = d10v_operands[opcode->operands[i]].flags;
1170 int X_op = myops[i].X_op;
1171 int num = myops[i].X_add_number;
1172
1173 if (X_op==0)
1174 {
1175 match=0;
1176 break;
1177 }
1178
1179 if (flags & OPERAND_REG)
1180 {
1181 if ((X_op != O_register) ||
1182 ((flags & OPERAND_ACC) != (num & OPERAND_ACC)) ||
1183 ((flags & OPERAND_FLAG) != (num & OPERAND_FLAG)) ||
1184 ((flags & OPERAND_CONTROL) != (num & OPERAND_CONTROL)))
1185 {
1186 match=0;
1187 break;
1188 }
1189 }
1190
1191 if (((flags & OPERAND_MINUS) && ((X_op != O_absent) || (num != OPERAND_MINUS))) ||
1192 ((flags & OPERAND_PLUS) && ((X_op != O_absent) || (num != OPERAND_PLUS))) ||
1193 ((flags & OPERAND_ATMINUS) && ((X_op != O_absent) || (num != OPERAND_ATMINUS))) ||
1194 ((flags & OPERAND_ATPAR) && ((X_op != O_absent) || (num != OPERAND_ATPAR))) ||
1195 ((flags & OPERAND_ATSIGN) && ((X_op != O_absent) || (num != OPERAND_ATSIGN))))
1196 {
1197 match=0;
1198 break;
1199 }
1200 }
1201 /* we're only done if the operands matched so far AND there
1202 are no more to check */
1203 if (match && myops[i].X_op==0)
1204 break;
1205 else
1206 match = 0;
1207
1208 next_opcode = opcode+1;
1209 if (next_opcode->opcode == 0)
1210 break;
1211 if (strcmp(next_opcode->name, opcode->name))
1212 break;
1213 opcode = next_opcode;
1214 }
1215 }
1216
1217 if (!match)
1218 {
1219 as_bad ("bad opcode or operands");
1220 return (0);
1221 }
1222
1223 /* Check that all registers that are required to be even are. */
1224 /* Also, if any operands were marked as registers, but were really symbols */
1225 /* fix that here. */
1226 for (i=0; opcode->operands[i]; i++)
1227 {
1228 if ((d10v_operands[opcode->operands[i]].flags & OPERAND_EVEN) &&
1229 (myops[i].X_add_number & 1))
1230 as_fatal("Register number must be EVEN");
1231 if (myops[i].X_op == O_register)
1232 {
1233 if (!(d10v_operands[opcode->operands[i]].flags & OPERAND_REG))
1234 {
1235 myops[i].X_op = O_symbol;
1236 myops[i].X_add_symbol = symbol_find_or_make ((char *)myops[i].X_op_symbol);
1237 myops[i].X_add_number = 0;
1238 myops[i].X_op_symbol = NULL;
1239 }
1240 }
1241 }
1242 return opcode;
1243 }
1244
1245 /* if while processing a fixup, a reloc really needs to be created */
1246 /* then it is done here */
1247
1248 arelent *
1249 tc_gen_reloc (seg, fixp)
1250 asection *seg;
1251 fixS *fixp;
1252 {
1253 arelent *reloc;
1254 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput, sizeof (arelent));
1255 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
1256 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
1257 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
1258 if (reloc->howto == (reloc_howto_type *) NULL)
1259 {
1260 as_bad_where (fixp->fx_file, fixp->fx_line,
1261 "reloc %d not supported by object file format", (int)fixp->fx_r_type);
1262 return NULL;
1263 }
1264 reloc->addend = fixp->fx_addnumber;
1265 /* printf("tc_gen_reloc: addr=%x addend=%x\n", reloc->address, reloc->addend); */
1266 return reloc;
1267 }
1268
1269 int
1270 md_estimate_size_before_relax (fragp, seg)
1271 fragS *fragp;
1272 asection *seg;
1273 {
1274 abort ();
1275 return 0;
1276 }
1277
1278 long
1279 md_pcrel_from_section (fixp, sec)
1280 fixS *fixp;
1281 segT sec;
1282 {
1283 if (fixp->fx_addsy != (symbolS *)NULL && !S_IS_DEFINED (fixp->fx_addsy))
1284 return 0;
1285 /* printf("pcrel_from_section: %x\n", fixp->fx_frag->fr_address + fixp->fx_where); */
1286 return fixp->fx_frag->fr_address + fixp->fx_where;
1287 }
1288
1289 int
1290 md_apply_fix3 (fixp, valuep, seg)
1291 fixS *fixp;
1292 valueT *valuep;
1293 segT seg;
1294 {
1295 char *where;
1296 unsigned long insn;
1297 long value;
1298 int op_type;
1299 int left=0;
1300
1301 if (fixp->fx_addsy == (symbolS *) NULL)
1302 {
1303 value = *valuep;
1304 fixp->fx_done = 1;
1305 }
1306 else if (fixp->fx_pcrel)
1307 value = *valuep;
1308 else
1309 {
1310 value = fixp->fx_offset;
1311 if (fixp->fx_subsy != (symbolS *) NULL)
1312 {
1313 if (S_GET_SEGMENT (fixp->fx_subsy) == absolute_section)
1314 value -= S_GET_VALUE (fixp->fx_subsy);
1315 else
1316 {
1317 /* We don't actually support subtracting a symbol. */
1318 as_bad_where (fixp->fx_file, fixp->fx_line,
1319 "expression too complex");
1320 }
1321 }
1322 }
1323
1324 /* printf("md_apply_fix: value=0x%x type=0x%x where=0x%x size=%d line=%d\n", value, fixp->fx_r_type,fixp->fx_where,fixp->fx_size, fixp->fx_line); */
1325
1326 op_type = fixp->fx_r_type;
1327 if (op_type & 2048)
1328 {
1329 op_type -= 2048;
1330 if (op_type & 1024)
1331 {
1332 op_type -= 1024;
1333 fixp->fx_r_type = BFD_RELOC_D10V_10_PCREL_L;
1334 left = 1;
1335 }
1336 else if (op_type & 4096)
1337 {
1338 op_type -= 4096;
1339 fixp->fx_r_type = BFD_RELOC_D10V_18;
1340 }
1341 else
1342 fixp->fx_r_type = get_reloc((struct d10v_operand *)&d10v_operands[op_type]);
1343 }
1344
1345 /* Fetch the instruction, insert the fully resolved operand
1346 value, and stuff the instruction back again. */
1347 where = fixp->fx_frag->fr_literal + fixp->fx_where;
1348 insn = bfd_getb32 ((unsigned char *) where);
1349
1350 switch (fixp->fx_r_type)
1351 {
1352 case BFD_RELOC_D10V_10_PCREL_L:
1353 case BFD_RELOC_D10V_10_PCREL_R:
1354 case BFD_RELOC_D10V_18_PCREL:
1355 case BFD_RELOC_D10V_18:
1356 /* instruction addresses are always right-shifted by 2 */
1357 value >>= 2;
1358 if (fixp->fx_size == 2)
1359 bfd_putb16 ((bfd_vma) value, (unsigned char *) where);
1360 else
1361 {
1362 /* printf(" insn=%x value=%x where=%x pcrel=%x\n",insn,value,fixp->fx_where,fixp->fx_pcrel); */
1363 insn = d10v_insert_operand (insn, op_type, (offsetT)value, left, fixp);
1364 /* printf(" new insn=%x\n",insn); */
1365 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
1366 }
1367 break;
1368 case BFD_RELOC_32:
1369 bfd_putb32 ((bfd_vma) value, (unsigned char *) where);
1370 break;
1371 case BFD_RELOC_16:
1372 bfd_putb16 ((bfd_vma) value, (unsigned char *) where);
1373 break;
1374 default:
1375 as_fatal ("line %d: unknown relocation type: 0x%x",fixp->fx_line,fixp->fx_r_type);
1376 }
1377 return 0;
1378 }
1379
1380
1381 /* d10v_cleanup() is called after the assembler has finished parsing the input
1382 file or after a label is defined. Because the D10V assembler sometimes saves short
1383 instructions to see if it can package them with the next instruction, there may
1384 be a short instruction that still needs written. */
1385 int
1386 d10v_cleanup (done)
1387 int done;
1388 {
1389 segT seg;
1390 subsegT subseg;
1391
1392 if ( prev_opcode && (done || (now_seg == prev_seg) && (now_subseg == prev_subseg)))
1393 {
1394 seg = now_seg;
1395 subseg = now_subseg;
1396 subseg_set (prev_seg, prev_subseg);
1397 write_1_short (prev_opcode, prev_insn, fixups->next);
1398 subseg_set (seg, subseg);
1399 prev_opcode = NULL;
1400 }
1401 return 1;
1402 }
1403
1404 /* Like normal .word, except support @word */
1405 /* clobbers input_line_pointer, checks end-of-line. */
1406 static void
1407 d10v_dot_word (nbytes)
1408 register int nbytes; /* 1=.byte, 2=.word, 4=.long */
1409 {
1410 expressionS exp;
1411 bfd_reloc_code_real_type reloc;
1412 char *p;
1413 int offset;
1414
1415 if (is_it_end_of_statement ())
1416 {
1417 demand_empty_rest_of_line ();
1418 return;
1419 }
1420
1421 do
1422 {
1423 expression (&exp);
1424 if (!strncasecmp (input_line_pointer, "@word", 5))
1425 {
1426 exp.X_add_number = 0;
1427 input_line_pointer += 5;
1428
1429 p = frag_more (2);
1430 fix_new_exp (frag_now, p - frag_now->fr_literal, 2,
1431 &exp, 0, BFD_RELOC_D10V_18);
1432 }
1433 else
1434 emit_expr (&exp, 2);
1435 }
1436 while (*input_line_pointer++ == ',');
1437
1438 input_line_pointer--; /* Put terminator back into stream. */
1439 demand_empty_rest_of_line ();
1440 }
1441
1442
1443 /* Mitsubishi asked that we support some old syntax that apparently */
1444 /* had immediate operands starting with '#'. This is in some of their */
1445 /* sample code but is not documented (although it appears in some */
1446 /* examples in their assembler manual). For now, we'll solve this */
1447 /* compatibility problem by simply ignoring any '#' at the beginning */
1448 /* of an operand. */
1449
1450 /* operands that begin with '#' should fall through to here */
1451 /* from expr.c */
1452
1453 void
1454 md_operand (expressionP)
1455 expressionS *expressionP;
1456 {
1457 if (*input_line_pointer == '#')
1458 {
1459 input_line_pointer++;
1460 expression (expressionP);
1461 }
1462 }
1463