]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-d30v.c
Update all uses of md_apply_fix to use md_apply_fix3. Make it a void function.
[thirdparty/binutils-gdb.git] / gas / config / tc-d30v.c
1 /* tc-d30v.c -- Assembler code for the Mitsubishi D30V
2 Copyright 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include <stdio.h>
22 #include "as.h"
23 #include "safe-ctype.h"
24 #include "subsegs.h"
25 #include "opcode/d30v.h"
26
27 const char comment_chars[] = ";";
28 const char line_comment_chars[] = "#";
29 const char line_separator_chars[] = "";
30 const char *md_shortopts = "OnNcC";
31 const char EXP_CHARS[] = "eE";
32 const char FLT_CHARS[] = "dD";
33
34 #if HAVE_LIMITS_H
35 #include <limits.h>
36 #endif
37
38 #ifndef CHAR_BIT
39 #define CHAR_BIT 8
40 #endif
41
42 #define NOP_MULTIPLY 1
43 #define NOP_ALL 2
44 static int warn_nops = 0;
45 static int Optimizing = 0;
46 static int warn_register_name_conflicts = 1;
47
48 #define FORCE_SHORT 1
49 #define FORCE_LONG 2
50
51 /* EXEC types. */
52 typedef enum _exec_type
53 {
54 EXEC_UNKNOWN, /* no order specified */
55 EXEC_PARALLEL, /* done in parallel (FM=00) */
56 EXEC_SEQ, /* sequential (FM=01) */
57 EXEC_REVSEQ /* reverse sequential (FM=10) */
58 } exec_type_enum;
59
60 /* Fixups. */
61 #define MAX_INSN_FIXUPS (5)
62 struct d30v_fixup
63 {
64 expressionS exp;
65 int operand;
66 int pcrel;
67 int size;
68 bfd_reloc_code_real_type reloc;
69 };
70
71 typedef struct _fixups
72 {
73 int fc;
74 struct d30v_fixup fix[MAX_INSN_FIXUPS];
75 struct _fixups *next;
76 } Fixups;
77
78 static Fixups FixUps[2];
79 static Fixups *fixups;
80
81 /* Whether current and previous instruction are word multiply insns. */
82 static int cur_mul32_p = 0;
83 static int prev_mul32_p = 0;
84
85 /* The flag_explicitly_parallel is true iff the instruction being assembled
86 has been explicitly written as a parallel short-instruction pair by the
87 human programmer. It is used in parallel_ok () to distinguish between
88 those dangerous parallelizations attempted by the human, which are to be
89 allowed, and those attempted by the assembler, which are not. It is set
90 from md_assemble (). */
91 static int flag_explicitly_parallel = 0;
92 static int flag_xp_state = 0;
93
94 /* Whether current and previous left sub-instruction disables
95 execution of right sub-instruction. */
96 static int cur_left_kills_right_p = 0;
97 static int prev_left_kills_right_p = 0;
98
99 /* The known current alignment of the current section. */
100 static int d30v_current_align;
101 static segT d30v_current_align_seg;
102
103 /* The last seen label in the current section. This is used to auto-align
104 labels preceeding instructions. */
105 static symbolS *d30v_last_label;
106
107 /* Two nops. */
108 #define NOP_LEFT ((long long) NOP << 32)
109 #define NOP_RIGHT ((long long) NOP)
110 #define NOP2 (FM00 | NOP_LEFT | NOP_RIGHT)
111
112 /* Local functions. */
113 static int reg_name_search PARAMS ((char *name));
114 static int register_name PARAMS ((expressionS *expressionP));
115 static int check_range PARAMS ((unsigned long num, int bits, int flags));
116 static int postfix PARAMS ((char *p));
117 static bfd_reloc_code_real_type get_reloc PARAMS ((struct d30v_operand *op, int rel_flag));
118 static int get_operands PARAMS ((expressionS exp[], int cmp_hack));
119 static struct d30v_format *find_format PARAMS ((struct d30v_opcode *opcode,
120 expressionS ops[],int fsize, int cmp_hack));
121 static long long build_insn PARAMS ((struct d30v_insn *opcode, expressionS *opers));
122 static void write_long PARAMS ((struct d30v_insn *opcode, long long insn, Fixups *fx));
123 static void write_1_short PARAMS ((struct d30v_insn *opcode, long long insn,
124 Fixups *fx, int use_sequential));
125 static int write_2_short PARAMS ((struct d30v_insn *opcode1, long long insn1,
126 struct d30v_insn *opcode2, long long insn2, exec_type_enum exec_type, Fixups *fx));
127 static long long do_assemble PARAMS ((char *str, struct d30v_insn *opcode,
128 int shortp, int is_parallel));
129 static int parallel_ok PARAMS ((struct d30v_insn *opcode1, unsigned long insn1,
130 struct d30v_insn *opcode2, unsigned long insn2,
131 exec_type_enum exec_type));
132 static void d30v_number_to_chars PARAMS ((char *buf, long long value, int nbytes));
133 static void check_size PARAMS ((long value, int bits, char *file, int line));
134 static void d30v_align PARAMS ((int, char *, symbolS *));
135 static void s_d30v_align PARAMS ((int));
136 static void s_d30v_text PARAMS ((int));
137 static void s_d30v_data PARAMS ((int));
138 static void s_d30v_section PARAMS ((int));
139
140 struct option md_longopts[] =
141 {
142 {NULL, no_argument, NULL, 0}
143 };
144
145 size_t md_longopts_size = sizeof (md_longopts);
146
147 /* The target specific pseudo-ops which we support. */
148 const pseudo_typeS md_pseudo_table[] =
149 {
150 { "word", cons, 4 },
151 { "hword", cons, 2 },
152 { "align", s_d30v_align, 0 },
153 { "text", s_d30v_text, 0 },
154 { "data", s_d30v_data, 0 },
155 { "section", s_d30v_section, 0 },
156 { "section.s", s_d30v_section, 0 },
157 { "sect", s_d30v_section, 0 },
158 { "sect.s", s_d30v_section, 0 },
159 { NULL, NULL, 0 }
160 };
161
162 /* Opcode hash table. */
163 static struct hash_control *d30v_hash;
164
165 /* Do a binary search of the pre_defined_registers array to see if
166 NAME is a valid regiter name. Return the register number from the
167 array on success, or -1 on failure. */
168
169 static int
170 reg_name_search (name)
171 char *name;
172 {
173 int middle, low, high;
174 int cmp;
175
176 low = 0;
177 high = reg_name_cnt () - 1;
178
179 do
180 {
181 middle = (low + high) / 2;
182 cmp = strcasecmp (name, pre_defined_registers[middle].name);
183 if (cmp < 0)
184 high = middle - 1;
185 else if (cmp > 0)
186 low = middle + 1;
187 else
188 {
189 if (symbol_find (name) != NULL)
190 {
191 if (warn_register_name_conflicts)
192 as_warn (_("Register name %s conflicts with symbol of the same name"),
193 name);
194 }
195
196 return pre_defined_registers[middle].value;
197 }
198 }
199 while (low <= high);
200
201 return -1;
202 }
203
204 /* Check the string at input_line_pointer to see if it is a valid
205 register name. */
206
207 static int
208 register_name (expressionP)
209 expressionS *expressionP;
210 {
211 int reg_number;
212 char c, *p = input_line_pointer;
213
214 while (*p && *p != '\n' && *p != '\r' && *p != ',' && *p != ' ' && *p != ')')
215 p++;
216
217 c = *p;
218 if (c)
219 *p++ = 0;
220
221 /* Look to see if it's in the register table. */
222 reg_number = reg_name_search (input_line_pointer);
223 if (reg_number >= 0)
224 {
225 expressionP->X_op = O_register;
226 /* Temporarily store a pointer to the string here. */
227 expressionP->X_op_symbol = (symbolS *) input_line_pointer;
228 expressionP->X_add_number = reg_number;
229 input_line_pointer = p;
230 return 1;
231 }
232 if (c)
233 *(p - 1) = c;
234 return 0;
235 }
236
237 static int
238 check_range (num, bits, flags)
239 unsigned long num;
240 int bits;
241 int flags;
242 {
243 long min, max;
244
245 /* Don't bother checking 32-bit values. */
246 if (bits == 32)
247 {
248 if (sizeof (unsigned long) * CHAR_BIT == 32)
249 return 0;
250
251 /* We don't record signed or unsigned for 32-bit quantities.
252 Allow either. */
253 min = -((unsigned long) 1 << (bits - 1));
254 max = ((unsigned long) 1 << bits) - 1;
255 return (long)num < min || (long)num > max;
256 }
257
258 if (flags & OPERAND_SHIFT)
259 {
260 /* We know that all shifts are right by three bits. */
261
262 if (flags & OPERAND_SIGNED)
263 num = (unsigned long) ((long) num >= 0)
264 ? (((long) num) >> 3)
265 : ((num >> 3) | ~(~(unsigned long) 0 >> 3));
266 else
267 num >>= 3;
268 }
269
270 if (flags & OPERAND_SIGNED)
271 {
272 max = ((unsigned long) 1 << (bits - 1)) - 1;
273 min = - ((unsigned long) 1 << (bits - 1));
274 return (long)num > max || (long)num < min;
275 }
276 else
277 {
278 max = ((unsigned long) 1 << bits) - 1;
279 min = 0;
280 return num > max || num < min;
281 }
282 }
283
284 void
285 md_show_usage (stream)
286 FILE *stream;
287 {
288 fprintf (stream, _("\nD30V options:\n\
289 -O Make adjacent short instructions parallel if possible.\n\
290 -n Warn about all NOPs inserted by the assembler.\n\
291 -N Warn about NOPs inserted after word multiplies.\n\
292 -c Warn about symbols whoes names match register names.\n\
293 -C Opposite of -C. -c is the default.\n"));
294 }
295
296 int
297 md_parse_option (c, arg)
298 int c;
299 char *arg;
300 {
301 switch (c)
302 {
303 /* Optimize. Will attempt to parallelize operations. */
304 case 'O':
305 Optimizing = 1;
306 break;
307
308 /* Warn about all NOPS that the assembler inserts. */
309 case 'n':
310 warn_nops = NOP_ALL;
311 break;
312
313 /* Warn about the NOPS that the assembler inserts because of the
314 multiply hazard. */
315 case 'N':
316 warn_nops = NOP_MULTIPLY;
317 break;
318
319 case 'c':
320 warn_register_name_conflicts = 1;
321 break;
322
323 case 'C':
324 warn_register_name_conflicts = 0;
325 break;
326
327 default:
328 return 0;
329 }
330 return 1;
331 }
332
333 symbolS *
334 md_undefined_symbol (name)
335 char *name;
336 {
337 return 0;
338 }
339
340 /* Turn a string in input_line_pointer into a floating point constant
341 of type TYPE, and store the appropriate bytes in *LITP. The number
342 of LITTLENUMS emitted is stored in *SIZEP. An error message is
343 returned, or NULL on OK. */
344
345 char *
346 md_atof (type, litP, sizeP)
347 int type;
348 char *litP;
349 int *sizeP;
350 {
351 int prec;
352 LITTLENUM_TYPE words[4];
353 char *t;
354 int i;
355
356 switch (type)
357 {
358 case 'f':
359 prec = 2;
360 break;
361 case 'd':
362 prec = 4;
363 break;
364 default:
365 *sizeP = 0;
366 return _("bad call to md_atof");
367 }
368
369 t = atof_ieee (input_line_pointer, type, words);
370 if (t)
371 input_line_pointer = t;
372
373 *sizeP = prec * 2;
374
375 for (i = 0; i < prec; i++)
376 {
377 md_number_to_chars (litP, (valueT) words[i], 2);
378 litP += 2;
379 }
380 return NULL;
381 }
382
383 void
384 md_convert_frag (abfd, sec, fragP)
385 bfd *abfd;
386 asection *sec;
387 fragS *fragP;
388 {
389 abort ();
390 }
391
392 valueT
393 md_section_align (seg, addr)
394 asection *seg;
395 valueT addr;
396 {
397 int align = bfd_get_section_alignment (stdoutput, seg);
398 return ((addr + (1 << align) - 1) & (-1 << align));
399 }
400
401 void
402 md_begin ()
403 {
404 struct d30v_opcode *opcode;
405 d30v_hash = hash_new ();
406
407 /* Insert opcode names into a hash table. */
408 for (opcode = (struct d30v_opcode *) d30v_opcode_table; opcode->name; opcode++)
409 hash_insert (d30v_hash, opcode->name, (char *) opcode);
410
411 fixups = &FixUps[0];
412 FixUps[0].next = &FixUps[1];
413 FixUps[1].next = &FixUps[0];
414
415 d30v_current_align_seg = now_seg;
416 }
417
418 /* Remove the postincrement or postdecrement operator ( '+' or '-' )
419 from an expression. */
420
421 static int
422 postfix (p)
423 char *p;
424 {
425 while (*p != '-' && *p != '+')
426 {
427 if (*p == 0 || *p == '\n' || *p == '\r' || *p == ' ' || *p == ',')
428 break;
429 p++;
430 }
431
432 if (*p == '-')
433 {
434 *p = ' ';
435 return -1;
436 }
437
438 if (*p == '+')
439 {
440 *p = ' ';
441 return 1;
442 }
443
444 return 0;
445 }
446
447 static bfd_reloc_code_real_type
448 get_reloc (op, rel_flag)
449 struct d30v_operand *op;
450 int rel_flag;
451 {
452 switch (op->bits)
453 {
454 case 6:
455 if (op->flags & OPERAND_SHIFT)
456 return BFD_RELOC_D30V_9_PCREL;
457 else
458 return BFD_RELOC_D30V_6;
459 break;
460 case 12:
461 if (!(op->flags & OPERAND_SHIFT))
462 as_warn (_("unexpected 12-bit reloc type"));
463 if (rel_flag == RELOC_PCREL)
464 return BFD_RELOC_D30V_15_PCREL;
465 else
466 return BFD_RELOC_D30V_15;
467 case 18:
468 if (!(op->flags & OPERAND_SHIFT))
469 as_warn (_("unexpected 18-bit reloc type"));
470 if (rel_flag == RELOC_PCREL)
471 return BFD_RELOC_D30V_21_PCREL;
472 else
473 return BFD_RELOC_D30V_21;
474 case 32:
475 if (rel_flag == RELOC_PCREL)
476 return BFD_RELOC_D30V_32_PCREL;
477 else
478 return BFD_RELOC_D30V_32;
479 default:
480 return 0;
481 }
482 }
483
484 /* Parse a string of operands and return an array of expressions. */
485
486 static int
487 get_operands (exp, cmp_hack)
488 expressionS exp[];
489 int cmp_hack;
490 {
491 char *p = input_line_pointer;
492 int numops = 0;
493 int post = 0;
494
495 if (cmp_hack)
496 {
497 exp[numops].X_op = O_absent;
498 exp[numops++].X_add_number = cmp_hack - 1;
499 }
500
501 while (*p)
502 {
503 while (*p == ' ' || *p == '\t' || *p == ',')
504 p++;
505
506 if (*p == 0 || *p == '\n' || *p == '\r')
507 break;
508
509 if (*p == '@')
510 {
511 p++;
512 exp[numops].X_op = O_absent;
513 if (*p == '(')
514 {
515 p++;
516 exp[numops].X_add_number = OPERAND_ATPAR;
517 post = postfix (p);
518 }
519 else if (*p == '-')
520 {
521 p++;
522 exp[numops].X_add_number = OPERAND_ATMINUS;
523 }
524 else
525 {
526 exp[numops].X_add_number = OPERAND_ATSIGN;
527 post = postfix (p);
528 }
529 numops++;
530 continue;
531 }
532
533 if (*p == ')')
534 {
535 /* Just skip the trailing paren. */
536 p++;
537 continue;
538 }
539
540 input_line_pointer = p;
541
542 /* Check to see if it might be a register name. */
543 if (!register_name (&exp[numops]))
544 {
545 /* Parse as an expression. */
546 expression (&exp[numops]);
547 }
548
549 if (exp[numops].X_op == O_illegal)
550 as_bad (_("illegal operand"));
551 else if (exp[numops].X_op == O_absent)
552 as_bad (_("missing operand"));
553
554 numops++;
555 p = input_line_pointer;
556
557 switch (post)
558 {
559 case -1:
560 /* Postdecrement mode. */
561 exp[numops].X_op = O_absent;
562 exp[numops++].X_add_number = OPERAND_MINUS;
563 break;
564 case 1:
565 /* Postincrement mode. */
566 exp[numops].X_op = O_absent;
567 exp[numops++].X_add_number = OPERAND_PLUS;
568 break;
569 }
570 post = 0;
571 }
572
573 exp[numops].X_op = 0;
574
575 return numops;
576 }
577
578 /* Generate the instruction.
579 It does everything but write the FM bits. */
580
581 static long long
582 build_insn (opcode, opers)
583 struct d30v_insn *opcode;
584 expressionS *opers;
585 {
586 int i, length, bits, shift, flags;
587 unsigned long number, id = 0;
588 long long insn;
589 struct d30v_opcode *op = opcode->op;
590 struct d30v_format *form = opcode->form;
591
592 insn =
593 opcode->ecc << 28 | op->op1 << 25 | op->op2 << 20 | form->modifier << 18;
594
595 for (i = 0; form->operands[i]; i++)
596 {
597 flags = d30v_operand_table[form->operands[i]].flags;
598
599 /* Must be a register or number. */
600 if (!(flags & OPERAND_REG) && !(flags & OPERAND_NUM)
601 && !(flags & OPERAND_NAME) && !(flags & OPERAND_SPECIAL))
602 continue;
603
604 bits = d30v_operand_table[form->operands[i]].bits;
605 if (flags & OPERAND_SHIFT)
606 bits += 3;
607
608 length = d30v_operand_table[form->operands[i]].length;
609 shift = 12 - d30v_operand_table[form->operands[i]].position;
610 if (opers[i].X_op != O_symbol)
611 number = opers[i].X_add_number;
612 else
613 number = 0;
614 if (flags & OPERAND_REG)
615 {
616 /* Check for mvfsys or mvtsys control registers. */
617 if (flags & OPERAND_CONTROL && (number & 0x7f) > MAX_CONTROL_REG)
618 {
619 /* PSWL or PSWH. */
620 id = (number & 0x7f) - MAX_CONTROL_REG;
621 number = 0;
622 }
623 else if (number & OPERAND_FLAG)
624 {
625 /* NUMBER is a flag register. */
626 id = 3;
627 }
628 number &= 0x7F;
629 }
630 else if (flags & OPERAND_SPECIAL)
631 {
632 number = id;
633 }
634
635 if (opers[i].X_op != O_register && opers[i].X_op != O_constant
636 && !(flags & OPERAND_NAME))
637 {
638 /* Now create a fixup. */
639 if (fixups->fc >= MAX_INSN_FIXUPS)
640 as_fatal (_("too many fixups"));
641
642 fixups->fix[fixups->fc].reloc =
643 get_reloc ((struct d30v_operand *) &d30v_operand_table[form->operands[i]], op->reloc_flag);
644 fixups->fix[fixups->fc].size = 4;
645 fixups->fix[fixups->fc].exp = opers[i];
646 fixups->fix[fixups->fc].operand = form->operands[i];
647 if (fixups->fix[fixups->fc].reloc == BFD_RELOC_D30V_9_PCREL)
648 fixups->fix[fixups->fc].pcrel = RELOC_PCREL;
649 else
650 fixups->fix[fixups->fc].pcrel = op->reloc_flag;
651 (fixups->fc)++;
652 }
653
654 /* Truncate to the proper number of bits. */
655 if ((opers[i].X_op == O_constant) && check_range (number, bits, flags))
656 as_bad (_("operand out of range: %d"), number);
657 if (bits < 31)
658 number &= 0x7FFFFFFF >> (31 - bits);
659 if (flags & OPERAND_SHIFT)
660 number >>= 3;
661 if (bits == 32)
662 {
663 /* It's a LONG instruction. */
664 insn |= ((number & 0xffffffff) >> 26); /* top 6 bits */
665 insn <<= 32; /* shift the first word over */
666 insn |= ((number & 0x03FC0000) << 2); /* next 8 bits */
667 insn |= number & 0x0003FFFF; /* bottom 18 bits */
668 }
669 else
670 insn |= number << shift;
671 }
672
673 return insn;
674 }
675
676 /* Write out a long form instruction. */
677
678 static void
679 write_long (opcode, insn, fx)
680 struct d30v_insn *opcode;
681 long long insn;
682 Fixups *fx;
683 {
684 int i, where;
685 char *f = frag_more (8);
686
687 insn |= FM11;
688 d30v_number_to_chars (f, insn, 8);
689
690 for (i = 0; i < fx->fc; i++)
691 {
692 if (fx->fix[i].reloc)
693 {
694 where = f - frag_now->fr_literal;
695 fix_new_exp (frag_now,
696 where,
697 fx->fix[i].size,
698 &(fx->fix[i].exp),
699 fx->fix[i].pcrel,
700 fx->fix[i].reloc);
701 }
702 }
703
704 fx->fc = 0;
705 }
706
707 /* Write out a short form instruction by itself. */
708
709 static void
710 write_1_short (opcode, insn, fx, use_sequential)
711 struct d30v_insn *opcode;
712 long long insn;
713 Fixups *fx;
714 int use_sequential;
715 {
716 char *f = frag_more (8);
717 int i, where;
718
719 if (warn_nops == NOP_ALL)
720 as_warn (_("%s NOP inserted"), use_sequential ?
721 _("sequential") : _("parallel"));
722
723 /* The other container needs to be NOP. */
724 if (use_sequential)
725 {
726 /* Use a sequential NOP rather than a parallel one,
727 as the current instruction is a FLAG_MUL32 type one
728 and the next instruction is a load. */
729
730 /* According to 4.3.1: for FM=01, sub-instructions performed
731 only by IU cannot be encoded in L-container. */
732
733 if (opcode->op->unit == IU)
734 /* Right then left. */
735 insn |= FM10 | NOP_LEFT;
736 else
737 /* Left then right. */
738 insn = FM01 | (insn << 32) | NOP_RIGHT;
739 }
740 else
741 {
742 /* According to 4.3.1: for FM=00, sub-instructions performed
743 only by IU cannot be encoded in L-container. */
744
745 if (opcode->op->unit == IU)
746 /* Right container. */
747 insn |= FM00 | NOP_LEFT;
748 else
749 /* Left container. */
750 insn = FM00 | (insn << 32) | NOP_RIGHT;
751 }
752
753 d30v_number_to_chars (f, insn, 8);
754
755 for (i = 0; i < fx->fc; i++)
756 {
757 if (fx->fix[i].reloc)
758 {
759 where = f - frag_now->fr_literal;
760 fix_new_exp (frag_now,
761 where,
762 fx->fix[i].size,
763 &(fx->fix[i].exp),
764 fx->fix[i].pcrel,
765 fx->fix[i].reloc);
766 }
767 }
768
769 fx->fc = 0;
770 }
771
772 /* Write out a short form instruction if possible.
773 Return number of instructions not written out. */
774
775 static int
776 write_2_short (opcode1, insn1, opcode2, insn2, exec_type, fx)
777 struct d30v_insn *opcode1, *opcode2;
778 long long insn1, insn2;
779 exec_type_enum exec_type;
780 Fixups *fx;
781 {
782 long long insn = NOP2;
783 char *f;
784 int i, j, where;
785
786 if (exec_type == EXEC_SEQ
787 && (opcode1->op->flags_used & (FLAG_JMP | FLAG_JSR))
788 && ((opcode1->op->flags_used & FLAG_DELAY) == 0)
789 && ((opcode1->ecc == ECC_AL) || ! Optimizing))
790 {
791 /* Unconditional, non-delayed branches kill instructions in
792 the right bin. Conditional branches don't always but if
793 we are not optimizing, then we have been asked to produce
794 an error about such constructs. For the purposes of this
795 test, subroutine calls are considered to be branches. */
796 write_1_short (opcode1, insn1, fx->next, false);
797 return 1;
798 }
799
800 /* Note: we do not have to worry about subroutine calls occuring
801 in the right hand container. The return address is always
802 aligned to the next 64 bit boundary, be that 64 or 32 bit away. */
803 switch (exec_type)
804 {
805 case EXEC_UNKNOWN: /* Order not specified. */
806 if (Optimizing
807 && parallel_ok (opcode1, insn1, opcode2, insn2, exec_type)
808 && ! ( (opcode1->op->unit == EITHER_BUT_PREFER_MU
809 || opcode1->op->unit == MU)
810 &&
811 ( opcode2->op->unit == EITHER_BUT_PREFER_MU
812 || opcode2->op->unit == MU)))
813 {
814 /* Parallel. */
815 exec_type = EXEC_PARALLEL;
816
817 if (opcode1->op->unit == IU
818 || opcode2->op->unit == MU
819 || opcode2->op->unit == EITHER_BUT_PREFER_MU)
820 insn = FM00 | (insn2 << 32) | insn1;
821 else
822 {
823 insn = FM00 | (insn1 << 32) | insn2;
824 fx = fx->next;
825 }
826 }
827 else if ((opcode1->op->flags_used & (FLAG_JMP | FLAG_JSR)
828 && ((opcode1->op->flags_used & FLAG_DELAY) == 0))
829 || opcode1->op->flags_used & FLAG_RP)
830 {
831 /* We must emit (non-delayed) branch type instructions
832 on their own with nothing in the right container. */
833 /* We must treat repeat instructions likewise, since the
834 following instruction has to be separate from the repeat
835 in order to be repeated. */
836 write_1_short (opcode1, insn1, fx->next, false);
837 return 1;
838 }
839 else if (prev_left_kills_right_p)
840 {
841 /* The left instruction kils the right slot, so we
842 must leave it empty. */
843 write_1_short (opcode1, insn1, fx->next, false);
844 return 1;
845 }
846 else if (opcode1->op->unit == IU)
847 {
848 if (opcode2->op->unit == EITHER_BUT_PREFER_MU)
849 {
850 /* Case 103810 is a request from Mitsubishi that opcodes
851 with EITHER_BUT_PREFER_MU should not be executed in
852 reverse sequential order. */
853 write_1_short (opcode1, insn1, fx->next, false);
854 return 1;
855 }
856
857 /* Reverse sequential. */
858 insn = FM10 | (insn2 << 32) | insn1;
859 exec_type = EXEC_REVSEQ;
860 }
861 else
862 {
863 /* Sequential. */
864 insn = FM01 | (insn1 << 32) | insn2;
865 fx = fx->next;
866 exec_type = EXEC_SEQ;
867 }
868 break;
869
870 case EXEC_PARALLEL: /* Parallel. */
871 flag_explicitly_parallel = flag_xp_state;
872 if (! parallel_ok (opcode1, insn1, opcode2, insn2, exec_type))
873 as_bad (_("Instructions may not be executed in parallel"));
874 else if (opcode1->op->unit == IU)
875 {
876 if (opcode2->op->unit == IU)
877 as_bad (_("Two IU instructions may not be executed in parallel"));
878 as_warn (_("Swapping instruction order"));
879 insn = FM00 | (insn2 << 32) | insn1;
880 }
881 else if (opcode2->op->unit == MU)
882 {
883 if (opcode1->op->unit == MU)
884 as_bad (_("Two MU instructions may not be executed in parallel"));
885 else if (opcode1->op->unit == EITHER_BUT_PREFER_MU)
886 as_warn (_("Executing %s in IU may not work"), opcode1->op->name);
887 as_warn (_("Swapping instruction order"));
888 insn = FM00 | (insn2 << 32) | insn1;
889 }
890 else
891 {
892 if (opcode2->op->unit == EITHER_BUT_PREFER_MU)
893 as_warn (_("Executing %s in IU may not work in parallel execution"),
894 opcode2->op->name);
895
896 insn = FM00 | (insn1 << 32) | insn2;
897 fx = fx->next;
898 }
899 flag_explicitly_parallel = 0;
900 break;
901
902 case EXEC_SEQ: /* Sequential. */
903 if (opcode1->op->unit == IU)
904 as_bad (_("IU instruction may not be in the left container"));
905 if (prev_left_kills_right_p)
906 as_bad (_("special left instruction `%s' kills instruction "
907 "`%s' in right container"),
908 opcode1->op->name, opcode2->op->name);
909 insn = FM01 | (insn1 << 32) | insn2;
910 fx = fx->next;
911 break;
912
913 case EXEC_REVSEQ: /* Reverse sequential. */
914 if (opcode2->op->unit == MU)
915 as_bad (_("MU instruction may not be in the right container"));
916 if (opcode1->op->unit == EITHER_BUT_PREFER_MU)
917 as_warn (_("Executing %s in reverse serial with %s may not work"),
918 opcode1->op->name, opcode2->op->name);
919 else if (opcode2->op->unit == EITHER_BUT_PREFER_MU)
920 as_warn (_("Executing %s in IU in reverse serial may not work"),
921 opcode2->op->name);
922 insn = FM10 | (insn1 << 32) | insn2;
923 fx = fx->next;
924 break;
925
926 default:
927 as_fatal (_("unknown execution type passed to write_2_short()"));
928 }
929
930 #if 0
931 printf ("writing out %llx\n", insn);
932 #endif
933 f = frag_more (8);
934 d30v_number_to_chars (f, insn, 8);
935
936 /* If the previous instruction was a 32-bit multiply but it is put into a
937 parallel container, mark the current instruction as being a 32-bit
938 multiply. */
939 if (prev_mul32_p && exec_type == EXEC_PARALLEL)
940 cur_mul32_p = 1;
941
942 for (j = 0; j < 2; j++)
943 {
944 for (i = 0; i < fx->fc; i++)
945 {
946 if (fx->fix[i].reloc)
947 {
948 where = (f - frag_now->fr_literal) + 4 * j;
949
950 fix_new_exp (frag_now,
951 where,
952 fx->fix[i].size,
953 &(fx->fix[i].exp),
954 fx->fix[i].pcrel,
955 fx->fix[i].reloc);
956 }
957 }
958
959 fx->fc = 0;
960 fx = fx->next;
961 }
962
963 return 0;
964 }
965
966 /* Check 2 instructions and determine if they can be safely
967 executed in parallel. Return 1 if they can be. */
968
969 static int
970 parallel_ok (op1, insn1, op2, insn2, exec_type)
971 struct d30v_insn *op1, *op2;
972 unsigned long insn1, insn2;
973 exec_type_enum exec_type;
974 {
975 int i, j, shift, regno, bits, ecc;
976 unsigned long flags, mask, flags_set1, flags_set2, flags_used1, flags_used2;
977 unsigned long ins, mod_reg[2][3], used_reg[2][3], flag_reg[2];
978 struct d30v_format *f;
979 struct d30v_opcode *op;
980
981 /* Section 4.3: Both instructions must not be IU or MU only. */
982 if ((op1->op->unit == IU && op2->op->unit == IU)
983 || (op1->op->unit == MU && op2->op->unit == MU))
984 return 0;
985
986 /* First instruction must not be a jump to safely optimize, unless this
987 is an explicit parallel operation. */
988 if (exec_type != EXEC_PARALLEL
989 && (op1->op->flags_used & (FLAG_JMP | FLAG_JSR)))
990 return 0;
991
992 /* If one instruction is /TX or /XT and the other is /FX or /XF respectively,
993 then it is safe to allow the two to be done as parallel ops, since only
994 one will ever be executed at a time. */
995 if ((op1->ecc == ECC_TX && op2->ecc == ECC_FX)
996 || (op1->ecc == ECC_FX && op2->ecc == ECC_TX)
997 || (op1->ecc == ECC_XT && op2->ecc == ECC_XF)
998 || (op1->ecc == ECC_XF && op2->ecc == ECC_XT))
999 return 1;
1000
1001 /* [0] r0-r31
1002 [1] r32-r63
1003 [2] a0, a1, flag registers. */
1004 for (j = 0; j < 2; j++)
1005 {
1006 if (j == 0)
1007 {
1008 f = op1->form;
1009 op = op1->op;
1010 ecc = op1->ecc;
1011 ins = insn1;
1012 }
1013 else
1014 {
1015 f = op2->form;
1016 op = op2->op;
1017 ecc = op2->ecc;
1018 ins = insn2;
1019 }
1020
1021 flag_reg[j] = 0;
1022 mod_reg[j][0] = mod_reg[j][1] = 0;
1023 used_reg[j][0] = used_reg[j][1] = 0;
1024
1025 if (flag_explicitly_parallel)
1026 {
1027 /* For human specified parallel instructions we have been asked
1028 to ignore the possibility that both instructions could modify
1029 bits in the PSW, so we initialise the mod & used arrays to 0.
1030 We have been asked, however, to refuse to allow parallel
1031 instructions which explicitly set the same flag register,
1032 eg "cmpne f0,r1,0x10 || cmpeq f0, r5, 0x2", so further on we test
1033 for the use of a flag register and set a bit in the mod or used
1034 array appropriately. */
1035 mod_reg[j][2] = 0;
1036 used_reg[j][2] = 0;
1037 }
1038 else
1039 {
1040 mod_reg[j][2] = (op->flags_set & FLAG_ALL);
1041 used_reg[j][2] = (op->flags_used & FLAG_ALL);
1042 }
1043
1044 /* BSR/JSR always sets R62. */
1045 if (op->flags_used & FLAG_JSR)
1046 mod_reg[j][1] = (1L << (62 - 32));
1047
1048 /* Conditional execution affects the flags_used. */
1049 switch (ecc)
1050 {
1051 case ECC_TX:
1052 case ECC_FX:
1053 used_reg[j][2] |= flag_reg[j] = FLAG_0;
1054 break;
1055
1056 case ECC_XT:
1057 case ECC_XF:
1058 used_reg[j][2] |= flag_reg[j] = FLAG_1;
1059 break;
1060
1061 case ECC_TT:
1062 case ECC_TF:
1063 used_reg[j][2] |= flag_reg[j] = (FLAG_0 | FLAG_1);
1064 break;
1065 }
1066
1067 for (i = 0; f->operands[i]; i++)
1068 {
1069 flags = d30v_operand_table[f->operands[i]].flags;
1070 shift = 12 - d30v_operand_table[f->operands[i]].position;
1071 bits = d30v_operand_table[f->operands[i]].bits;
1072 if (bits == 32)
1073 mask = 0xffffffff;
1074 else
1075 mask = 0x7FFFFFFF >> (31 - bits);
1076
1077 if ((flags & OPERAND_PLUS) || (flags & OPERAND_MINUS))
1078 {
1079 /* This is a post-increment or post-decrement.
1080 The previous register needs to be marked as modified. */
1081 shift = 12 - d30v_operand_table[f->operands[i - 1]].position;
1082 regno = (ins >> shift) & 0x3f;
1083 if (regno >= 32)
1084 mod_reg[j][1] |= 1L << (regno - 32);
1085 else
1086 mod_reg[j][0] |= 1L << regno;
1087 }
1088 else if (flags & OPERAND_REG)
1089 {
1090 regno = (ins >> shift) & mask;
1091 /* The memory write functions don't have a destination
1092 register. */
1093 if ((flags & OPERAND_DEST) && !(op->flags_set & FLAG_MEM))
1094 {
1095 /* MODIFIED registers and flags. */
1096 if (flags & OPERAND_ACC)
1097 {
1098 if (regno == 0)
1099 mod_reg[j][2] |= FLAG_A0;
1100 else if (regno == 1)
1101 mod_reg[j][2] |= FLAG_A1;
1102 else
1103 abort ();
1104 }
1105 else if (flags & OPERAND_FLAG)
1106 mod_reg[j][2] |= 1L << regno;
1107 else if (!(flags & OPERAND_CONTROL))
1108 {
1109 int r, z;
1110
1111 /* Need to check if there are two destination
1112 registers, for example ld2w. */
1113 if (flags & OPERAND_2REG)
1114 z = 1;
1115 else
1116 z = 0;
1117
1118 for (r = regno; r <= regno + z; r++)
1119 {
1120 if (r >= 32)
1121 mod_reg[j][1] |= 1L << (r - 32);
1122 else
1123 mod_reg[j][0] |= 1L << r;
1124 }
1125 }
1126 }
1127 else
1128 {
1129 /* USED, but not modified registers and flags. */
1130 if (flags & OPERAND_ACC)
1131 {
1132 if (regno == 0)
1133 used_reg[j][2] |= FLAG_A0;
1134 else if (regno == 1)
1135 used_reg[j][2] |= FLAG_A1;
1136 else
1137 abort ();
1138 }
1139 else if (flags & OPERAND_FLAG)
1140 used_reg[j][2] |= 1L << regno;
1141 else if (!(flags & OPERAND_CONTROL))
1142 {
1143 int r, z;
1144
1145 /* Need to check if there are two source
1146 registers, for example st2w. */
1147 if (flags & OPERAND_2REG)
1148 z = 1;
1149 else
1150 z = 0;
1151
1152 for (r = regno; r <= regno + z; r++)
1153 {
1154 if (r >= 32)
1155 used_reg[j][1] |= 1L << (r - 32);
1156 else
1157 used_reg[j][0] |= 1L << r;
1158 }
1159 }
1160 }
1161 }
1162 }
1163 }
1164
1165 flags_set1 = op1->op->flags_set;
1166 flags_set2 = op2->op->flags_set;
1167 flags_used1 = op1->op->flags_used;
1168 flags_used2 = op2->op->flags_used;
1169
1170 /* Check for illegal combinations with ADDppp/SUBppp. */
1171 if (((flags_set1 & FLAG_NOT_WITH_ADDSUBppp) != 0
1172 && (flags_used2 & FLAG_ADDSUBppp) != 0)
1173 || ((flags_set2 & FLAG_NOT_WITH_ADDSUBppp) != 0
1174 && (flags_used1 & FLAG_ADDSUBppp) != 0))
1175 return 0;
1176
1177 /* Load instruction combined with half-word multiply is illegal. */
1178 if (((flags_used1 & FLAG_MEM) != 0 && (flags_used2 & FLAG_MUL16))
1179 || ((flags_used2 & FLAG_MEM) != 0 && (flags_used1 & FLAG_MUL16)))
1180 return 0;
1181
1182 /* Specifically allow add || add by removing carry, overflow bits dependency.
1183 This is safe, even if an addc follows since the IU takes the argument in
1184 the right container, and it writes its results last.
1185 However, don't paralellize add followed by addc or sub followed by
1186 subb. */
1187 if (mod_reg[0][2] == FLAG_CVVA && mod_reg[1][2] == FLAG_CVVA
1188 && (used_reg[0][2] & ~flag_reg[0]) == 0
1189 && (used_reg[1][2] & ~flag_reg[1]) == 0
1190 && op1->op->unit == EITHER && op2->op->unit == EITHER)
1191 {
1192 mod_reg[0][2] = mod_reg[1][2] = 0;
1193 }
1194
1195 for (j = 0; j < 3; j++)
1196 {
1197 /* If the second instruction depends on the first, we obviously
1198 cannot parallelize. Note, the mod flag implies use, so
1199 check that as well. */
1200 /* If flag_explicitly_parallel is set, then the case of the
1201 second instruction using a register the first instruction
1202 modifies is assumed to be okay; we trust the human. We
1203 don't trust the human if both instructions modify the same
1204 register but we do trust the human if they modify the same
1205 flags. */
1206 /* We have now been requested not to trust the human if the
1207 instructions modify the same flag registers either. */
1208 if (flag_explicitly_parallel)
1209 {
1210 if ((mod_reg[0][j] & mod_reg[1][j]) != 0)
1211 return 0;
1212 }
1213 else
1214 if ((mod_reg[0][j] & (mod_reg[1][j] | used_reg[1][j])) != 0)
1215 return 0;
1216 }
1217
1218 return 1;
1219 }
1220
1221 /* This is the main entry point for the machine-dependent assembler.
1222 STR points to a machine-dependent instruction. This function is
1223 supposed to emit the frags/bytes it assembles to. For the D30V, it
1224 mostly handles the special VLIW parsing and packing and leaves the
1225 difficult stuff to do_assemble (). */
1226
1227 static long long prev_insn = -1;
1228 static struct d30v_insn prev_opcode;
1229 static subsegT prev_subseg;
1230 static segT prev_seg = 0;
1231
1232 void
1233 md_assemble (str)
1234 char *str;
1235 {
1236 struct d30v_insn opcode;
1237 long long insn;
1238 /* Execution type; parallel, etc. */
1239 exec_type_enum extype = EXEC_UNKNOWN;
1240 /* Saved extype. Used for multiline instructions. */
1241 static exec_type_enum etype = EXEC_UNKNOWN;
1242 char *str2;
1243
1244 if ((prev_insn != -1) && prev_seg
1245 && ((prev_seg != now_seg) || (prev_subseg != now_subseg)))
1246 d30v_cleanup (false);
1247
1248 if (d30v_current_align < 3)
1249 d30v_align (3, NULL, d30v_last_label);
1250 else if (d30v_current_align > 3)
1251 d30v_current_align = 3;
1252 d30v_last_label = NULL;
1253
1254 flag_explicitly_parallel = 0;
1255 flag_xp_state = 0;
1256 if (etype == EXEC_UNKNOWN)
1257 {
1258 /* Look for the special multiple instruction separators. */
1259 str2 = strstr (str, "||");
1260 if (str2)
1261 {
1262 extype = EXEC_PARALLEL;
1263 flag_xp_state = 1;
1264 }
1265 else
1266 {
1267 str2 = strstr (str, "->");
1268 if (str2)
1269 extype = EXEC_SEQ;
1270 else
1271 {
1272 str2 = strstr (str, "<-");
1273 if (str2)
1274 extype = EXEC_REVSEQ;
1275 }
1276 }
1277
1278 /* STR2 points to the separator, if one. */
1279 if (str2)
1280 {
1281 *str2 = 0;
1282
1283 /* If two instructions are present and we already have one saved,
1284 then first write it out. */
1285 d30v_cleanup (false);
1286
1287 /* Assemble first instruction and save it. */
1288 prev_insn = do_assemble (str, &prev_opcode, 1, 0);
1289 if (prev_insn == -1)
1290 as_bad (_("Cannot assemble instruction"));
1291 if (prev_opcode.form != NULL && prev_opcode.form->form >= LONG)
1292 as_bad (_("First opcode is long. Unable to mix instructions as specified."));
1293 fixups = fixups->next;
1294 str = str2 + 2;
1295 prev_seg = now_seg;
1296 prev_subseg = now_subseg;
1297 }
1298 }
1299
1300 insn = do_assemble (str, &opcode,
1301 (extype != EXEC_UNKNOWN || etype != EXEC_UNKNOWN),
1302 extype == EXEC_PARALLEL);
1303 if (insn == -1)
1304 {
1305 if (extype != EXEC_UNKNOWN)
1306 etype = extype;
1307 as_bad (_("Cannot assemble instruction"));
1308 return;
1309 }
1310
1311 if (etype != EXEC_UNKNOWN)
1312 {
1313 extype = etype;
1314 etype = EXEC_UNKNOWN;
1315 }
1316
1317 /* Word multiply instructions must not be followed by either a load or a
1318 16-bit multiply instruction in the next cycle. */
1319 if ( (extype != EXEC_REVSEQ)
1320 && prev_mul32_p
1321 && (opcode.op->flags_used & (FLAG_MEM | FLAG_MUL16)))
1322 {
1323 /* However, load and multiply should able to be combined in a parallel
1324 operation, so check for that first. */
1325 if (prev_insn != -1
1326 && (opcode.op->flags_used & FLAG_MEM)
1327 && opcode.form->form < LONG
1328 && (extype == EXEC_PARALLEL || (Optimizing && extype == EXEC_UNKNOWN))
1329 && parallel_ok (&prev_opcode, (long) prev_insn,
1330 &opcode, (long) insn, extype)
1331 && write_2_short (&prev_opcode, (long) prev_insn,
1332 &opcode, (long) insn, extype, fixups) == 0)
1333 {
1334 /* No instructions saved. */
1335 prev_insn = -1;
1336 return;
1337 }
1338 else
1339 {
1340 /* Can't parallelize, flush previous instruction and emit a
1341 word of NOPS, unless the previous instruction is a NOP,
1342 in which case just flush it, as this will generate a word
1343 of NOPs for us. */
1344
1345 if (prev_insn != -1 && (strcmp (prev_opcode.op->name, "nop") == 0))
1346 d30v_cleanup (false);
1347 else
1348 {
1349 char *f;
1350
1351 if (prev_insn != -1)
1352 d30v_cleanup (true);
1353 else
1354 {
1355 f = frag_more (8);
1356 d30v_number_to_chars (f, NOP2, 8);
1357
1358 if (warn_nops == NOP_ALL || warn_nops == NOP_MULTIPLY)
1359 {
1360 if (opcode.op->flags_used & FLAG_MEM)
1361 as_warn (_("word of NOPs added between word multiply and load"));
1362 else
1363 as_warn (_("word of NOPs added between word multiply and 16-bit multiply"));
1364 }
1365 }
1366 }
1367
1368 extype = EXEC_UNKNOWN;
1369 }
1370 }
1371 else if ( (extype == EXEC_REVSEQ)
1372 && cur_mul32_p
1373 && (prev_opcode.op->flags_used & (FLAG_MEM | FLAG_MUL16)))
1374 {
1375 /* Can't parallelize, flush current instruction and add a
1376 sequential NOP. */
1377 write_1_short (&opcode, (long) insn, fixups->next->next, true);
1378
1379 /* Make the previous instruction the current one. */
1380 extype = EXEC_UNKNOWN;
1381 insn = prev_insn;
1382 now_seg = prev_seg;
1383 now_subseg = prev_subseg;
1384 prev_insn = -1;
1385 cur_mul32_p = prev_mul32_p;
1386 prev_mul32_p = 0;
1387 memcpy (&opcode, &prev_opcode, sizeof (prev_opcode));
1388 }
1389
1390 /* If this is a long instruction, write it and any previous short
1391 instruction. */
1392 if (opcode.form->form >= LONG)
1393 {
1394 if (extype != EXEC_UNKNOWN)
1395 as_bad (_("Instruction uses long version, so it cannot be mixed as specified"));
1396 d30v_cleanup (false);
1397 write_long (&opcode, insn, fixups);
1398 prev_insn = -1;
1399 }
1400 else if ((prev_insn != -1)
1401 && (write_2_short
1402 (&prev_opcode, (long) prev_insn, &opcode,
1403 (long) insn, extype, fixups) == 0))
1404 {
1405 /* No instructions saved. */
1406 prev_insn = -1;
1407 }
1408 else
1409 {
1410 if (extype != EXEC_UNKNOWN)
1411 as_bad (_("Unable to mix instructions as specified"));
1412
1413 /* Save off last instruction so it may be packed on next pass. */
1414 memcpy (&prev_opcode, &opcode, sizeof (prev_opcode));
1415 prev_insn = insn;
1416 prev_seg = now_seg;
1417 prev_subseg = now_subseg;
1418 fixups = fixups->next;
1419 prev_mul32_p = cur_mul32_p;
1420 }
1421 }
1422
1423 /* Assemble a single instruction and return an opcode.
1424 Return -1 (an invalid opcode) on error. */
1425
1426 #define NAME_BUF_LEN 20
1427
1428 static long long
1429 do_assemble (str, opcode, shortp, is_parallel)
1430 char *str;
1431 struct d30v_insn *opcode;
1432 int shortp;
1433 int is_parallel;
1434 {
1435 unsigned char *op_start;
1436 unsigned char *save;
1437 unsigned char *op_end;
1438 char name[NAME_BUF_LEN];
1439 int cmp_hack;
1440 int nlen = 0;
1441 int fsize = (shortp ? FORCE_SHORT : 0);
1442 expressionS myops[6];
1443 long long insn;
1444
1445 /* Drop leading whitespace. */
1446 while (*str == ' ')
1447 str++;
1448
1449 /* Find the opcode end. */
1450 for (op_start = op_end = (unsigned char *) (str);
1451 *op_end
1452 && nlen < (NAME_BUF_LEN - 1)
1453 && *op_end != '/'
1454 && !is_end_of_line[*op_end] && *op_end != ' ';
1455 op_end++)
1456 {
1457 name[nlen] = TOLOWER (op_start[nlen]);
1458 nlen++;
1459 }
1460
1461 if (nlen == 0)
1462 return -1;
1463
1464 name[nlen] = 0;
1465
1466 /* If there is an execution condition code, handle it. */
1467 if (*op_end == '/')
1468 {
1469 int i = 0;
1470 while ((i < ECC_MAX) && strncasecmp (d30v_ecc_names[i], op_end + 1, 2))
1471 i++;
1472
1473 if (i == ECC_MAX)
1474 {
1475 char tmp[4];
1476 strncpy (tmp, op_end + 1, 2);
1477 tmp[2] = 0;
1478 as_bad (_("unknown condition code: %s"), tmp);
1479 return -1;
1480 }
1481 #if 0
1482 printf ("condition code=%d\n", i);
1483 #endif
1484 opcode->ecc = i;
1485 op_end += 3;
1486 }
1487 else
1488 opcode->ecc = ECC_AL;
1489
1490 /* CMP and CMPU change their name based on condition codes. */
1491 if (!strncmp (name, "cmp", 3))
1492 {
1493 int p, i;
1494 char **str = (char **) d30v_cc_names;
1495 if (name[3] == 'u')
1496 p = 4;
1497 else
1498 p = 3;
1499
1500 for (i = 1; *str && strncmp (*str, &name[p], 2); i++, str++)
1501 ;
1502
1503 /* cmpu only supports some condition codes. */
1504 if (p == 4)
1505 {
1506 if (i < 3 || i > 6)
1507 {
1508 name[p + 2] = 0;
1509 as_bad (_("cmpu doesn't support condition code %s"), &name[p]);
1510 }
1511 }
1512
1513 if (!*str)
1514 {
1515 name[p + 2] = 0;
1516 as_bad (_("unknown condition code: %s"), &name[p]);
1517 }
1518
1519 cmp_hack = i;
1520 name[p] = 0;
1521 }
1522 else
1523 cmp_hack = 0;
1524
1525 #if 0
1526 printf ("cmp_hack=%d\n", cmp_hack);
1527 #endif
1528
1529 /* Need to look for .s or .l. */
1530 if (name[nlen - 2] == '.')
1531 {
1532 switch (name[nlen - 1])
1533 {
1534 case 's':
1535 fsize = FORCE_SHORT;
1536 break;
1537 case 'l':
1538 fsize = FORCE_LONG;
1539 break;
1540 }
1541 name[nlen - 2] = 0;
1542 }
1543
1544 /* Find the first opcode with the proper name. */
1545 opcode->op = (struct d30v_opcode *) hash_find (d30v_hash, name);
1546 if (opcode->op == NULL)
1547 {
1548 as_bad (_("unknown opcode: %s"), name);
1549 return -1;
1550 }
1551
1552 save = input_line_pointer;
1553 input_line_pointer = op_end;
1554 while (!(opcode->form = find_format (opcode->op, myops, fsize, cmp_hack)))
1555 {
1556 opcode->op++;
1557 if (opcode->op->name == NULL || strcmp (opcode->op->name, name))
1558 {
1559 as_bad (_("operands for opcode `%s' do not match any valid format"),
1560 name);
1561 return -1;
1562 }
1563 }
1564 input_line_pointer = save;
1565
1566 insn = build_insn (opcode, myops);
1567
1568 /* Propigate multiply status. */
1569 if (insn != -1)
1570 {
1571 if (is_parallel && prev_mul32_p)
1572 cur_mul32_p = 1;
1573 else
1574 {
1575 prev_mul32_p = cur_mul32_p;
1576 cur_mul32_p = (opcode->op->flags_used & FLAG_MUL32) != 0;
1577 }
1578 }
1579
1580 /* Propagate left_kills_right status. */
1581 if (insn != -1)
1582 {
1583 prev_left_kills_right_p = cur_left_kills_right_p;
1584
1585 if (opcode->op->flags_set & FLAG_LKR)
1586 {
1587 cur_left_kills_right_p = 1;
1588
1589 if (strcmp (opcode->op->name, "mvtsys") == 0)
1590 {
1591 /* Left kills right for only mvtsys only for
1592 PSW/PSWH/PSWL/flags target. */
1593 if ((myops[0].X_op == O_register) &&
1594 ((myops[0].X_add_number == OPERAND_CONTROL) || /* psw */
1595 (myops[0].X_add_number == OPERAND_CONTROL+MAX_CONTROL_REG+2) || /* pswh */
1596 (myops[0].X_add_number == OPERAND_CONTROL+MAX_CONTROL_REG+1) || /* pswl */
1597 (myops[0].X_add_number == OPERAND_FLAG+0) || /* f0 */
1598 (myops[0].X_add_number == OPERAND_FLAG+1) || /* f1 */
1599 (myops[0].X_add_number == OPERAND_FLAG+2) || /* f2 */
1600 (myops[0].X_add_number == OPERAND_FLAG+3) || /* f3 */
1601 (myops[0].X_add_number == OPERAND_FLAG+4) || /* f4 */
1602 (myops[0].X_add_number == OPERAND_FLAG+5) || /* f5 */
1603 (myops[0].X_add_number == OPERAND_FLAG+6) || /* f6 */
1604 (myops[0].X_add_number == OPERAND_FLAG+7))) /* f7 */
1605 {
1606 cur_left_kills_right_p = 1;
1607 }
1608 else
1609 {
1610 /* Other mvtsys target registers don't kill right
1611 instruction. */
1612 cur_left_kills_right_p = 0;
1613 }
1614 } /* mvtsys */
1615 }
1616 else
1617 cur_left_kills_right_p = 0;
1618 }
1619
1620 return insn;
1621 }
1622
1623 /* Get a pointer to an entry in the format table.
1624 It must look at all formats for an opcode and use the operands
1625 to choose the correct one. Return NULL on error. */
1626
1627 static struct d30v_format *
1628 find_format (opcode, myops, fsize, cmp_hack)
1629 struct d30v_opcode *opcode;
1630 expressionS myops[];
1631 int fsize;
1632 int cmp_hack;
1633 {
1634 int numops, match, index, i = 0, j, k;
1635 struct d30v_format *fm;
1636
1637 if (opcode == NULL)
1638 return NULL;
1639
1640 /* Get all the operands and save them as expressions. */
1641 numops = get_operands (myops, cmp_hack);
1642
1643 while ((index = opcode->format[i++]) != 0)
1644 {
1645 if (fsize == FORCE_SHORT && index >= LONG)
1646 continue;
1647
1648 if (fsize == FORCE_LONG && index < LONG)
1649 continue;
1650
1651 fm = (struct d30v_format *) &d30v_format_table[index];
1652 k = index;
1653 while (fm->form == index)
1654 {
1655 match = 1;
1656 /* Now check the operands for compatibility. */
1657 for (j = 0; match && fm->operands[j]; j++)
1658 {
1659 int flags = d30v_operand_table[fm->operands[j]].flags;
1660 int bits = d30v_operand_table[fm->operands[j]].bits;
1661 int X_op = myops[j].X_op;
1662 int num = myops[j].X_add_number;
1663
1664 if (flags & OPERAND_SPECIAL)
1665 break;
1666 else if (X_op == O_illegal)
1667 match = 0;
1668 else if (flags & OPERAND_REG)
1669 {
1670 if (X_op != O_register
1671 || ((flags & OPERAND_ACC) && !(num & OPERAND_ACC))
1672 || (!(flags & OPERAND_ACC) && (num & OPERAND_ACC))
1673 || ((flags & OPERAND_FLAG) && !(num & OPERAND_FLAG))
1674 || (!(flags & (OPERAND_FLAG | OPERAND_CONTROL)) && (num & OPERAND_FLAG))
1675 || ((flags & OPERAND_CONTROL)
1676 && !(num & (OPERAND_CONTROL | OPERAND_FLAG))))
1677 {
1678 match = 0;
1679 }
1680 }
1681 else if (((flags & OPERAND_MINUS)
1682 && (X_op != O_absent || num != OPERAND_MINUS))
1683 || ((flags & OPERAND_PLUS)
1684 && (X_op != O_absent || num != OPERAND_PLUS))
1685 || ((flags & OPERAND_ATMINUS)
1686 && (X_op != O_absent || num != OPERAND_ATMINUS))
1687 || ((flags & OPERAND_ATPAR)
1688 && (X_op != O_absent || num != OPERAND_ATPAR))
1689 || ((flags & OPERAND_ATSIGN)
1690 && (X_op != O_absent || num != OPERAND_ATSIGN)))
1691 {
1692 match = 0;
1693 }
1694 else if (flags & OPERAND_NUM)
1695 {
1696 /* A number can be a constant or symbol expression. */
1697
1698 /* If we have found a register name, but that name
1699 also matches a symbol, then re-parse the name as
1700 an expression. */
1701 if (X_op == O_register
1702 && symbol_find ((char *) myops[j].X_op_symbol))
1703 {
1704 input_line_pointer = (char *) myops[j].X_op_symbol;
1705 expression (&myops[j]);
1706 }
1707
1708 /* Turn an expression into a symbol for later resolution. */
1709 if (X_op != O_absent && X_op != O_constant
1710 && X_op != O_symbol && X_op != O_register
1711 && X_op != O_big)
1712 {
1713 symbolS *sym = make_expr_symbol (&myops[j]);
1714 myops[j].X_op = X_op = O_symbol;
1715 myops[j].X_add_symbol = sym;
1716 myops[j].X_add_number = num = 0;
1717 }
1718
1719 if (fm->form >= LONG)
1720 {
1721 /* If we're testing for a LONG format, either fits. */
1722 if (X_op != O_constant && X_op != O_symbol)
1723 match = 0;
1724 }
1725 else if (fm->form < LONG
1726 && ((fsize == FORCE_SHORT && X_op == O_symbol)
1727 || (fm->form == SHORT_D2 && j == 0)))
1728 match = 1;
1729
1730 /* This is the tricky part. Will the constant or symbol
1731 fit into the space in the current format? */
1732 else if (X_op == O_constant)
1733 {
1734 if (check_range (num, bits, flags))
1735 match = 0;
1736 }
1737 else if (X_op == O_symbol
1738 && S_IS_DEFINED (myops[j].X_add_symbol)
1739 && S_GET_SEGMENT (myops[j].X_add_symbol) == now_seg
1740 && opcode->reloc_flag == RELOC_PCREL)
1741 {
1742 /* If the symbol is defined, see if the value will fit
1743 into the form we're considering. */
1744 fragS *f;
1745 long value;
1746
1747 /* Calculate the current address by running through the
1748 previous frags and adding our current offset. */
1749 value = 0;
1750 for (f = frchain_now->frch_root; f; f = f->fr_next)
1751 value += f->fr_fix + f->fr_offset;
1752 value = (S_GET_VALUE (myops[j].X_add_symbol) - value
1753 - (obstack_next_free (&frchain_now->frch_obstack)
1754 - frag_now->fr_literal));
1755 if (check_range (value, bits, flags))
1756 match = 0;
1757 }
1758 else
1759 match = 0;
1760 }
1761 }
1762 #if 0
1763 printf ("through the loop: match=%d\n", match);
1764 #endif
1765 /* We're only done if the operands matched so far AND there
1766 are no more to check. */
1767 if (match && myops[j].X_op == 0)
1768 {
1769 /* Final check - issue a warning if an odd numbered register
1770 is used as the first register in an instruction that reads
1771 or writes 2 registers. */
1772
1773 for (j = 0; fm->operands[j]; j++)
1774 if (myops[j].X_op == O_register
1775 && (myops[j].X_add_number & 1)
1776 && (d30v_operand_table[fm->operands[j]].flags & OPERAND_2REG))
1777 as_warn (_("Odd numbered register used as target of multi-register instruction"));
1778
1779 return fm;
1780 }
1781 fm = (struct d30v_format *) &d30v_format_table[++k];
1782 }
1783 #if 0
1784 printf ("trying another format: i=%d\n", i);
1785 #endif
1786 }
1787 return NULL;
1788 }
1789
1790 /* If while processing a fixup, a reloc really needs to be created,
1791 then it is done here. */
1792
1793 arelent *
1794 tc_gen_reloc (seg, fixp)
1795 asection *seg;
1796 fixS *fixp;
1797 {
1798 arelent *reloc;
1799 reloc = (arelent *) xmalloc (sizeof (arelent));
1800 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
1801 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
1802 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
1803 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
1804 if (reloc->howto == (reloc_howto_type *) NULL)
1805 {
1806 as_bad_where (fixp->fx_file, fixp->fx_line,
1807 _("reloc %d not supported by object file format"),
1808 (int) fixp->fx_r_type);
1809 return NULL;
1810 }
1811 reloc->addend = fixp->fx_addnumber;
1812 return reloc;
1813 }
1814
1815 int
1816 md_estimate_size_before_relax (fragp, seg)
1817 fragS *fragp;
1818 asection *seg;
1819 {
1820 abort ();
1821 return 0;
1822 }
1823
1824 long
1825 md_pcrel_from_section (fixp, sec)
1826 fixS *fixp;
1827 segT sec;
1828 {
1829 if (fixp->fx_addsy != (symbolS *) NULL
1830 && (!S_IS_DEFINED (fixp->fx_addsy)
1831 || (S_GET_SEGMENT (fixp->fx_addsy) != sec)))
1832 return 0;
1833 return fixp->fx_frag->fr_address + fixp->fx_where;
1834 }
1835
1836 void
1837 md_apply_fix3 (fixP, valP, seg)
1838 fixS *fixP;
1839 valueT * valP;
1840 segT seg;
1841 {
1842 char *where;
1843 unsigned long insn, insn2;
1844 long value = * (long *) valP;
1845
1846 if (fixP->fx_addsy == (symbolS *) NULL)
1847 fixP->fx_done = 1;
1848
1849 else if (fixP->fx_pcrel)
1850 ;
1851
1852 else
1853 {
1854 value = fixP->fx_offset;
1855
1856 if (fixP->fx_subsy != (symbolS *) NULL)
1857 {
1858 if (S_GET_SEGMENT (fixP->fx_subsy) == absolute_section)
1859 value -= S_GET_VALUE (fixP->fx_subsy);
1860 else
1861 /* We don't actually support subtracting a symbol. */
1862 as_bad_where (fixP->fx_file, fixP->fx_line,
1863 _("expression too complex"));
1864 }
1865 }
1866
1867 /* Fetch the instruction, insert the fully resolved operand
1868 value, and stuff the instruction back again. */
1869 where = fixP->fx_frag->fr_literal + fixP->fx_where;
1870 insn = bfd_getb32 ((unsigned char *) where);
1871
1872 switch (fixP->fx_r_type)
1873 {
1874 case BFD_RELOC_8: /* Check for a bad .byte directive. */
1875 if (fixP->fx_addsy != NULL)
1876 as_bad (_("line %d: unable to place address of symbol '%s' into a byte"),
1877 fixP->fx_line, S_GET_NAME (fixP->fx_addsy));
1878 else if (((unsigned)value) > 0xff)
1879 as_bad (_("line %d: unable to place value %x into a byte"),
1880 fixP->fx_line, value);
1881 else
1882 *(unsigned char *) where = value;
1883 break;
1884
1885 case BFD_RELOC_16: /* Check for a bad .short directive. */
1886 if (fixP->fx_addsy != NULL)
1887 as_bad (_("line %d: unable to place address of symbol '%s' into a short"),
1888 fixP->fx_line, S_GET_NAME (fixP->fx_addsy));
1889 else if (((unsigned)value) > 0xffff)
1890 as_bad (_("line %d: unable to place value %x into a short"),
1891 fixP->fx_line, value);
1892 else
1893 bfd_putb16 ((bfd_vma) value, (unsigned char *) where);
1894 break;
1895
1896 case BFD_RELOC_64: /* Check for a bad .quad directive. */
1897 if (fixP->fx_addsy != NULL)
1898 as_bad (_("line %d: unable to place address of symbol '%s' into a quad"),
1899 fixP->fx_line, S_GET_NAME (fixP->fx_addsy));
1900 else
1901 {
1902 bfd_putb32 ((bfd_vma) value, (unsigned char *) where);
1903 bfd_putb32 (0, ((unsigned char *) where) + 4);
1904 }
1905 break;
1906
1907 case BFD_RELOC_D30V_6:
1908 check_size (value, 6, fixP->fx_file, fixP->fx_line);
1909 insn |= value & 0x3F;
1910 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
1911 break;
1912
1913 case BFD_RELOC_D30V_9_PCREL:
1914 if (fixP->fx_where & 0x7)
1915 {
1916 if (fixP->fx_done)
1917 value += 4;
1918 else
1919 fixP->fx_r_type = BFD_RELOC_D30V_9_PCREL_R;
1920 }
1921 check_size (value, 9, fixP->fx_file, fixP->fx_line);
1922 insn |= ((value >> 3) & 0x3F) << 12;
1923 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
1924 break;
1925
1926 case BFD_RELOC_D30V_15:
1927 check_size (value, 15, fixP->fx_file, fixP->fx_line);
1928 insn |= (value >> 3) & 0xFFF;
1929 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
1930 break;
1931
1932 case BFD_RELOC_D30V_15_PCREL:
1933 if (fixP->fx_where & 0x7)
1934 {
1935 if (fixP->fx_done)
1936 value += 4;
1937 else
1938 fixP->fx_r_type = BFD_RELOC_D30V_15_PCREL_R;
1939 }
1940 check_size (value, 15, fixP->fx_file, fixP->fx_line);
1941 insn |= (value >> 3) & 0xFFF;
1942 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
1943 break;
1944
1945 case BFD_RELOC_D30V_21:
1946 check_size (value, 21, fixP->fx_file, fixP->fx_line);
1947 insn |= (value >> 3) & 0x3FFFF;
1948 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
1949 break;
1950
1951 case BFD_RELOC_D30V_21_PCREL:
1952 if (fixP->fx_where & 0x7)
1953 {
1954 if (fixP->fx_done)
1955 value += 4;
1956 else
1957 fixP->fx_r_type = BFD_RELOC_D30V_21_PCREL_R;
1958 }
1959 check_size (value, 21, fixP->fx_file, fixP->fx_line);
1960 insn |= (value >> 3) & 0x3FFFF;
1961 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
1962 break;
1963
1964 case BFD_RELOC_D30V_32:
1965 insn2 = bfd_getb32 ((unsigned char *) where + 4);
1966 insn |= (value >> 26) & 0x3F; /* Top 6 bits. */
1967 insn2 |= ((value & 0x03FC0000) << 2); /* Next 8 bits. */
1968 insn2 |= value & 0x0003FFFF; /* Bottom 18 bits. */
1969 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
1970 bfd_putb32 ((bfd_vma) insn2, (unsigned char *) where + 4);
1971 break;
1972
1973 case BFD_RELOC_D30V_32_PCREL:
1974 insn2 = bfd_getb32 ((unsigned char *) where + 4);
1975 insn |= (value >> 26) & 0x3F; /* Top 6 bits. */
1976 insn2 |= ((value & 0x03FC0000) << 2); /* Next 8 bits. */
1977 insn2 |= value & 0x0003FFFF; /* Bottom 18 bits. */
1978 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
1979 bfd_putb32 ((bfd_vma) insn2, (unsigned char *) where + 4);
1980 break;
1981
1982 case BFD_RELOC_32:
1983 bfd_putb32 ((bfd_vma) value, (unsigned char *) where);
1984 break;
1985
1986 default:
1987 as_bad (_("line %d: unknown relocation type: 0x%x"),
1988 fixP->fx_line, fixP->fx_r_type);
1989 }
1990 }
1991
1992 /* Called after the assembler has finished parsing the input file or
1993 after a label is defined. Because the D30V assembler sometimes
1994 saves short instructions to see if it can package them with the
1995 next instruction, there may be a short instruction that still needs
1996 written. */
1997
1998 int
1999 d30v_cleanup (use_sequential)
2000 int use_sequential;
2001 {
2002 segT seg;
2003 subsegT subseg;
2004
2005 if (prev_insn != -1)
2006 {
2007 seg = now_seg;
2008 subseg = now_subseg;
2009 subseg_set (prev_seg, prev_subseg);
2010 write_1_short (&prev_opcode, (long) prev_insn, fixups->next,
2011 use_sequential);
2012 subseg_set (seg, subseg);
2013 prev_insn = -1;
2014 if (use_sequential)
2015 prev_mul32_p = false;
2016 }
2017
2018 return 1;
2019 }
2020
2021 static void
2022 d30v_number_to_chars (buf, value, n)
2023 char *buf; /* Return 'nbytes' of chars here. */
2024 long long value; /* The value of the bits. */
2025 int n; /* Number of bytes in the output. */
2026 {
2027 while (n--)
2028 {
2029 buf[n] = value & 0xff;
2030 value >>= 8;
2031 }
2032 }
2033
2034 /* This function is called at the start of every line. It checks to
2035 see if the first character is a '.', which indicates the start of a
2036 pseudo-op. If it is, then write out any unwritten instructions. */
2037
2038 void
2039 d30v_start_line ()
2040 {
2041 char *c = input_line_pointer;
2042
2043 while (ISSPACE (*c))
2044 c++;
2045
2046 if (*c == '.')
2047 d30v_cleanup (false);
2048 }
2049
2050 static void
2051 check_size (value, bits, file, line)
2052 long value;
2053 int bits;
2054 char *file;
2055 int line;
2056 {
2057 int tmp, max;
2058
2059 if (value < 0)
2060 tmp = ~value;
2061 else
2062 tmp = value;
2063
2064 max = (1 << (bits - 1)) - 1;
2065
2066 if (tmp > max)
2067 as_bad_where (file, line, _("value too large to fit in %d bits"), bits);
2068
2069 return;
2070 }
2071
2072 /* d30v_frob_label() is called when after a label is recognized. */
2073
2074 void
2075 d30v_frob_label (lab)
2076 symbolS *lab;
2077 {
2078 /* Emit any pending instructions. */
2079 d30v_cleanup (false);
2080
2081 /* Update the label's address with the current output pointer. */
2082 symbol_set_frag (lab, frag_now);
2083 S_SET_VALUE (lab, (valueT) frag_now_fix ());
2084
2085 /* Record this label for future adjustment after we find out what
2086 kind of data it references, and the required alignment therewith. */
2087 d30v_last_label = lab;
2088 }
2089
2090 /* Hook into cons for capturing alignment changes. */
2091
2092 void
2093 d30v_cons_align (size)
2094 int size;
2095 {
2096 int log_size;
2097
2098 log_size = 0;
2099 while ((size >>= 1) != 0)
2100 ++log_size;
2101
2102 if (d30v_current_align < log_size)
2103 d30v_align (log_size, (char *) NULL, NULL);
2104 else if (d30v_current_align > log_size)
2105 d30v_current_align = log_size;
2106 d30v_last_label = NULL;
2107 }
2108
2109 /* Called internally to handle all alignment needs. This takes care
2110 of eliding calls to frag_align if'n the cached current alignment
2111 says we've already got it, as well as taking care of the auto-aligning
2112 labels wrt code. */
2113
2114 static void
2115 d30v_align (n, pfill, label)
2116 int n;
2117 char *pfill;
2118 symbolS *label;
2119 {
2120 /* The front end is prone to changing segments out from under us
2121 temporarily when -g is in effect. */
2122 int switched_seg_p = (d30v_current_align_seg != now_seg);
2123
2124 /* Do not assume that if 'd30v_current_align >= n' and
2125 '! switched_seg_p' that it is safe to avoid performing
2126 this alignement request. The alignment of the current frag
2127 can be changed under our feet, for example by a .ascii
2128 directive in the source code. cf testsuite/gas/d30v/reloc.s */
2129 d30v_cleanup (false);
2130
2131 if (pfill == NULL)
2132 {
2133 if (n > 2
2134 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
2135 {
2136 static char const nop[4] = { 0x00, 0xf0, 0x00, 0x00 };
2137
2138 /* First, make sure we're on a four-byte boundary, in case
2139 someone has been putting .byte values the text section. */
2140 if (d30v_current_align < 2 || switched_seg_p)
2141 frag_align (2, 0, 0);
2142 frag_align_pattern (n, nop, sizeof nop, 0);
2143 }
2144 else
2145 frag_align (n, 0, 0);
2146 }
2147 else
2148 frag_align (n, *pfill, 0);
2149
2150 if (!switched_seg_p)
2151 d30v_current_align = n;
2152
2153 if (label != NULL)
2154 {
2155 symbolS *sym;
2156 int label_seen = false;
2157 struct frag *old_frag;
2158 valueT old_value;
2159 valueT new_value;
2160
2161 assert (S_GET_SEGMENT (label) == now_seg);
2162
2163 old_frag = symbol_get_frag (label);
2164 old_value = S_GET_VALUE (label);
2165 new_value = (valueT) frag_now_fix ();
2166
2167 /* It is possible to have more than one label at a particular
2168 address, especially if debugging is enabled, so we must
2169 take care to adjust all the labels at this address in this
2170 fragment. To save time we search from the end of the symbol
2171 list, backwards, since the symbols we are interested in are
2172 almost certainly the ones that were most recently added.
2173 Also to save time we stop searching once we have seen at least
2174 one matching label, and we encounter a label that is no longer
2175 in the target fragment. Note, this search is guaranteed to
2176 find at least one match when sym == label, so no special case
2177 code is necessary. */
2178 for (sym = symbol_lastP; sym != NULL; sym = symbol_previous (sym))
2179 {
2180 if (symbol_get_frag (sym) == old_frag
2181 && S_GET_VALUE (sym) == old_value)
2182 {
2183 label_seen = true;
2184 symbol_set_frag (sym, frag_now);
2185 S_SET_VALUE (sym, new_value);
2186 }
2187 else if (label_seen && symbol_get_frag (sym) != old_frag)
2188 break;
2189 }
2190 }
2191
2192 record_alignment (now_seg, n);
2193 }
2194
2195 /* Handle the .align pseudo-op. This aligns to a power of two. We
2196 hook here to latch the current alignment. */
2197
2198 static void
2199 s_d30v_align (ignore)
2200 int ignore;
2201 {
2202 int align;
2203 char fill, *pfill = NULL;
2204 long max_alignment = 15;
2205
2206 align = get_absolute_expression ();
2207 if (align > max_alignment)
2208 {
2209 align = max_alignment;
2210 as_warn (_("Alignment too large: %d assumed"), align);
2211 }
2212 else if (align < 0)
2213 {
2214 as_warn (_("Alignment negative: 0 assumed"));
2215 align = 0;
2216 }
2217
2218 if (*input_line_pointer == ',')
2219 {
2220 input_line_pointer++;
2221 fill = get_absolute_expression ();
2222 pfill = &fill;
2223 }
2224
2225 d30v_last_label = NULL;
2226 d30v_align (align, pfill, NULL);
2227
2228 demand_empty_rest_of_line ();
2229 }
2230
2231 /* Handle the .text pseudo-op. This is like the usual one, but it
2232 clears the saved last label and resets known alignment. */
2233
2234 static void
2235 s_d30v_text (i)
2236 int i;
2237
2238 {
2239 s_text (i);
2240 d30v_last_label = NULL;
2241 d30v_current_align = 0;
2242 d30v_current_align_seg = now_seg;
2243 }
2244
2245 /* Handle the .data pseudo-op. This is like the usual one, but it
2246 clears the saved last label and resets known alignment. */
2247
2248 static void
2249 s_d30v_data (i)
2250 int i;
2251 {
2252 s_data (i);
2253 d30v_last_label = NULL;
2254 d30v_current_align = 0;
2255 d30v_current_align_seg = now_seg;
2256 }
2257
2258 /* Handle the .section pseudo-op. This is like the usual one, but it
2259 clears the saved last label and resets known alignment. */
2260
2261 static void
2262 s_d30v_section (ignore)
2263 int ignore;
2264 {
2265 obj_elf_section (ignore);
2266 d30v_last_label = NULL;
2267 d30v_current_align = 0;
2268 d30v_current_align_seg = now_seg;
2269 }