]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-h8300.c
* README-vms: Delete.
[thirdparty/binutils-gdb.git] / gas / config / tc-h8300.c
1 /* tc-h8300.c -- Assemble code for the Renesas H8/300
2 Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 2000,
3 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* Written By Steve Chamberlain <sac@cygnus.com>. */
23
24 #include <stdio.h>
25 #include "as.h"
26 #include "subsegs.h"
27 #include "bfd.h"
28 #include "dwarf2dbg.h"
29
30 #define DEFINE_TABLE
31 #define h8_opcodes ops
32 #include "opcode/h8300.h"
33 #include "safe-ctype.h"
34
35 #ifdef OBJ_ELF
36 #include "elf/h8.h"
37 #endif
38
39 const char comment_chars[] = ";";
40 const char line_comment_chars[] = "#";
41 const char line_separator_chars[] = "";
42
43 static void sbranch (int);
44 static void h8300hmode (int);
45 static void h8300smode (int);
46 static void h8300hnmode (int);
47 static void h8300snmode (int);
48 static void h8300sxmode (int);
49 static void h8300sxnmode (int);
50 static void pint (int);
51
52 int Hmode;
53 int Smode;
54 int Nmode;
55 int SXmode;
56
57 #define PSIZE (Hmode && !Nmode ? L_32 : L_16)
58
59 static int bsize = L_8; /* Default branch displacement. */
60
61 struct h8_instruction
62 {
63 int length;
64 int noperands;
65 int idx;
66 int size;
67 const struct h8_opcode *opcode;
68 };
69
70 static struct h8_instruction *h8_instructions;
71
72 static void
73 h8300hmode (int arg ATTRIBUTE_UNUSED)
74 {
75 Hmode = 1;
76 Smode = 0;
77 if (!bfd_set_arch_mach (stdoutput, bfd_arch_h8300, bfd_mach_h8300h))
78 as_warn (_("could not set architecture and machine"));
79 }
80
81 static void
82 h8300smode (int arg ATTRIBUTE_UNUSED)
83 {
84 Smode = 1;
85 Hmode = 1;
86 if (!bfd_set_arch_mach (stdoutput, bfd_arch_h8300, bfd_mach_h8300s))
87 as_warn (_("could not set architecture and machine"));
88 }
89
90 static void
91 h8300hnmode (int arg ATTRIBUTE_UNUSED)
92 {
93 Hmode = 1;
94 Smode = 0;
95 Nmode = 1;
96 if (!bfd_set_arch_mach (stdoutput, bfd_arch_h8300, bfd_mach_h8300hn))
97 as_warn (_("could not set architecture and machine"));
98 }
99
100 static void
101 h8300snmode (int arg ATTRIBUTE_UNUSED)
102 {
103 Smode = 1;
104 Hmode = 1;
105 Nmode = 1;
106 if (!bfd_set_arch_mach (stdoutput, bfd_arch_h8300, bfd_mach_h8300sn))
107 as_warn (_("could not set architecture and machine"));
108 }
109
110 static void
111 h8300sxmode (int arg ATTRIBUTE_UNUSED)
112 {
113 Smode = 1;
114 Hmode = 1;
115 SXmode = 1;
116 if (!bfd_set_arch_mach (stdoutput, bfd_arch_h8300, bfd_mach_h8300sx))
117 as_warn (_("could not set architecture and machine"));
118 }
119
120 static void
121 h8300sxnmode (int arg ATTRIBUTE_UNUSED)
122 {
123 Smode = 1;
124 Hmode = 1;
125 SXmode = 1;
126 Nmode = 1;
127 if (!bfd_set_arch_mach (stdoutput, bfd_arch_h8300, bfd_mach_h8300sxn))
128 as_warn (_("could not set architecture and machine"));
129 }
130
131 static void
132 sbranch (int size)
133 {
134 bsize = size;
135 }
136
137 static void
138 pint (int arg ATTRIBUTE_UNUSED)
139 {
140 cons (Hmode ? 4 : 2);
141 }
142
143 /* This table describes all the machine specific pseudo-ops the assembler
144 has to support. The fields are:
145 pseudo-op name without dot
146 function to call to execute this pseudo-op
147 Integer arg to pass to the function. */
148
149 const pseudo_typeS md_pseudo_table[] =
150 {
151 {"h8300h", h8300hmode, 0},
152 {"h8300hn", h8300hnmode, 0},
153 {"h8300s", h8300smode, 0},
154 {"h8300sn", h8300snmode, 0},
155 {"h8300sx", h8300sxmode, 0},
156 {"h8300sxn", h8300sxnmode, 0},
157 {"sbranch", sbranch, L_8},
158 {"lbranch", sbranch, L_16},
159
160 {"int", pint, 0},
161 {"data.b", cons, 1},
162 {"data.w", cons, 2},
163 {"data.l", cons, 4},
164 {"form", listing_psize, 0},
165 {"heading", listing_title, 0},
166 {"import", s_ignore, 0},
167 {"page", listing_eject, 0},
168 {"program", s_ignore, 0},
169 {0, 0, 0}
170 };
171
172 const char EXP_CHARS[] = "eE";
173
174 /* Chars that mean this number is a floating point constant
175 As in 0f12.456
176 or 0d1.2345e12. */
177 const char FLT_CHARS[] = "rRsSfFdDxXpP";
178
179 static struct hash_control *opcode_hash_control; /* Opcode mnemonics. */
180
181 /* This function is called once, at assembler startup time. This
182 should set up all the tables, etc. that the MD part of the assembler
183 needs. */
184
185 void
186 md_begin (void)
187 {
188 unsigned int nopcodes;
189 struct h8_opcode *p, *p1;
190 struct h8_instruction *pi;
191 char prev_buffer[100];
192 int idx = 0;
193
194 if (!bfd_set_arch_mach (stdoutput, bfd_arch_h8300, bfd_mach_h8300))
195 as_warn (_("could not set architecture and machine"));
196
197 opcode_hash_control = hash_new ();
198 prev_buffer[0] = 0;
199
200 nopcodes = sizeof (h8_opcodes) / sizeof (struct h8_opcode);
201
202 h8_instructions = (struct h8_instruction *)
203 xmalloc (nopcodes * sizeof (struct h8_instruction));
204
205 pi = h8_instructions;
206 p1 = h8_opcodes;
207 /* We do a minimum amount of sorting on the opcode table; this is to
208 make it easy to describe the mova instructions without unnecessary
209 code duplication.
210 Sorting only takes place inside blocks of instructions of the form
211 X/Y, so for example mova/b, mova/w and mova/l can be intermixed. */
212 while (p1)
213 {
214 struct h8_opcode *first_skipped = 0;
215 int len, cmplen = 0;
216 char *src = p1->name;
217 char *dst, *buffer;
218
219 if (p1->name == 0)
220 break;
221 /* Strip off any . part when inserting the opcode and only enter
222 unique codes into the hash table. */
223 dst = buffer = malloc (strlen (src) + 1);
224 while (*src)
225 {
226 if (*src == '.')
227 {
228 src++;
229 break;
230 }
231 if (*src == '/')
232 cmplen = src - p1->name + 1;
233 *dst++ = *src++;
234 }
235 *dst = 0;
236 len = dst - buffer;
237 if (cmplen == 0)
238 cmplen = len;
239 hash_insert (opcode_hash_control, buffer, (char *) pi);
240 strcpy (prev_buffer, buffer);
241 idx++;
242
243 for (p = p1; p->name; p++)
244 {
245 /* A negative TIME is used to indicate that we've added this opcode
246 already. */
247 if (p->time == -1)
248 continue;
249 if (strncmp (p->name, buffer, cmplen) != 0
250 || (p->name[cmplen] != '\0' && p->name[cmplen] != '.'
251 && p->name[cmplen - 1] != '/'))
252 {
253 if (first_skipped == 0)
254 first_skipped = p;
255 break;
256 }
257 if (strncmp (p->name, buffer, len) != 0)
258 {
259 if (first_skipped == 0)
260 first_skipped = p;
261 continue;
262 }
263
264 p->time = -1;
265 pi->size = p->name[len] == '.' ? p->name[len + 1] : 0;
266 pi->idx = idx;
267
268 /* Find the number of operands. */
269 pi->noperands = 0;
270 while (pi->noperands < 3 && p->args.nib[pi->noperands] != (op_type) E)
271 pi->noperands++;
272
273 /* Find the length of the opcode in bytes. */
274 pi->length = 0;
275 while (p->data.nib[pi->length * 2] != (op_type) E)
276 pi->length++;
277
278 pi->opcode = p;
279 pi++;
280 }
281 p1 = first_skipped;
282 }
283
284 /* Add entry for the NULL vector terminator. */
285 pi->length = 0;
286 pi->noperands = 0;
287 pi->idx = 0;
288 pi->size = 0;
289 pi->opcode = 0;
290
291 linkrelax = 1;
292 }
293
294 struct h8_op
295 {
296 op_type mode;
297 unsigned reg;
298 expressionS exp;
299 };
300
301 static void clever_message (const struct h8_instruction *, struct h8_op *);
302 static void fix_operand_size (struct h8_op *, int);
303 static void build_bytes (const struct h8_instruction *, struct h8_op *);
304 static void do_a_fix_imm (int, int, struct h8_op *, int);
305 static void check_operand (struct h8_op *, unsigned int, char *);
306 static const struct h8_instruction * get_specific (const struct h8_instruction *, struct h8_op *, int) ;
307 static char *get_operands (unsigned, char *, struct h8_op *);
308 static void get_operand (char **, struct h8_op *, int);
309 static int parse_reg (char *, op_type *, unsigned *, int);
310 static char *skip_colonthing (char *, int *);
311 static char *parse_exp (char *, struct h8_op *);
312
313 static int constant_fits_width_p (struct h8_op *, unsigned int);
314 static int constant_fits_size_p (struct h8_op *, int, int);
315
316 /*
317 parse operands
318 WREG r0,r1,r2,r3,r4,r5,r6,r7,fp,sp
319 r0l,r0h,..r7l,r7h
320 @WREG
321 @WREG+
322 @-WREG
323 #const
324 ccr
325 */
326
327 /* Try to parse a reg name. Return the number of chars consumed. */
328
329 static int
330 parse_reg (char *src, op_type *mode, unsigned int *reg, int direction)
331 {
332 char *end;
333 int len;
334
335 /* Cribbed from get_symbol_end. */
336 if (!is_name_beginner (*src) || *src == '\001')
337 return 0;
338 end = src + 1;
339 while ((is_part_of_name (*end) && *end != '.') || *end == '\001')
340 end++;
341 len = end - src;
342
343 if (len == 2 && TOLOWER (src[0]) == 's' && TOLOWER (src[1]) == 'p')
344 {
345 *mode = PSIZE | REG | direction;
346 *reg = 7;
347 return len;
348 }
349 if (len == 3 &&
350 TOLOWER (src[0]) == 'c' &&
351 TOLOWER (src[1]) == 'c' &&
352 TOLOWER (src[2]) == 'r')
353 {
354 *mode = CCR;
355 *reg = 0;
356 return len;
357 }
358 if (len == 3 &&
359 TOLOWER (src[0]) == 'e' &&
360 TOLOWER (src[1]) == 'x' &&
361 TOLOWER (src[2]) == 'r')
362 {
363 *mode = EXR;
364 *reg = 1;
365 return len;
366 }
367 if (len == 3 &&
368 TOLOWER (src[0]) == 'v' &&
369 TOLOWER (src[1]) == 'b' &&
370 TOLOWER (src[2]) == 'r')
371 {
372 *mode = VBR;
373 *reg = 6;
374 return len;
375 }
376 if (len == 3 &&
377 TOLOWER (src[0]) == 's' &&
378 TOLOWER (src[1]) == 'b' &&
379 TOLOWER (src[2]) == 'r')
380 {
381 *mode = SBR;
382 *reg = 7;
383 return len;
384 }
385 if (len == 2 && TOLOWER (src[0]) == 'f' && TOLOWER (src[1]) == 'p')
386 {
387 *mode = PSIZE | REG | direction;
388 *reg = 6;
389 return len;
390 }
391 if (len == 3 && TOLOWER (src[0]) == 'e' && TOLOWER (src[1]) == 'r' &&
392 src[2] >= '0' && src[2] <= '7')
393 {
394 *mode = L_32 | REG | direction;
395 *reg = src[2] - '0';
396 if (!Hmode)
397 as_warn (_("Reg not valid for H8/300"));
398 return len;
399 }
400 if (len == 2 && TOLOWER (src[0]) == 'e' && src[1] >= '0' && src[1] <= '7')
401 {
402 *mode = L_16 | REG | direction;
403 *reg = src[1] - '0' + 8;
404 if (!Hmode)
405 as_warn (_("Reg not valid for H8/300"));
406 return len;
407 }
408
409 if (TOLOWER (src[0]) == 'r')
410 {
411 if (src[1] >= '0' && src[1] <= '7')
412 {
413 if (len == 3 && TOLOWER (src[2]) == 'l')
414 {
415 *mode = L_8 | REG | direction;
416 *reg = (src[1] - '0') + 8;
417 return len;
418 }
419 if (len == 3 && TOLOWER (src[2]) == 'h')
420 {
421 *mode = L_8 | REG | direction;
422 *reg = (src[1] - '0');
423 return len;
424 }
425 if (len == 2)
426 {
427 *mode = L_16 | REG | direction;
428 *reg = (src[1] - '0');
429 return len;
430 }
431 }
432 }
433
434 return 0;
435 }
436
437
438 /* Parse an immediate or address-related constant and store it in OP.
439 If the user also specifies the operand's size, store that size
440 in OP->MODE, otherwise leave it for later code to decide. */
441
442 static char *
443 parse_exp (char *src, struct h8_op *op)
444 {
445 char *save;
446
447 save = input_line_pointer;
448 input_line_pointer = src;
449 expression (&op->exp);
450 if (op->exp.X_op == O_absent)
451 as_bad (_("missing operand"));
452 src = input_line_pointer;
453 input_line_pointer = save;
454
455 return skip_colonthing (src, &op->mode);
456 }
457
458
459 /* If SRC starts with an explicit operand size, skip it and store the size
460 in *MODE. Leave *MODE unchanged otherwise. */
461
462 static char *
463 skip_colonthing (char *src, int *mode)
464 {
465 if (*src == ':')
466 {
467 src++;
468 *mode &= ~SIZE;
469 if (src[0] == '8' && !ISDIGIT (src[1]))
470 *mode |= L_8;
471 else if (src[0] == '2' && !ISDIGIT (src[1]))
472 *mode |= L_2;
473 else if (src[0] == '3' && !ISDIGIT (src[1]))
474 *mode |= L_3;
475 else if (src[0] == '4' && !ISDIGIT (src[1]))
476 *mode |= L_4;
477 else if (src[0] == '5' && !ISDIGIT (src[1]))
478 *mode |= L_5;
479 else if (src[0] == '2' && src[1] == '4' && !ISDIGIT (src[2]))
480 *mode |= L_24;
481 else if (src[0] == '3' && src[1] == '2' && !ISDIGIT (src[2]))
482 *mode |= L_32;
483 else if (src[0] == '1' && src[1] == '6' && !ISDIGIT (src[2]))
484 *mode |= L_16;
485 else
486 as_bad (_("invalid operand size requested"));
487
488 while (ISDIGIT (*src))
489 src++;
490 }
491 return src;
492 }
493
494 /* The many forms of operand:
495
496 Rn Register direct
497 @Rn Register indirect
498 @(exp[:16], Rn) Register indirect with displacement
499 @Rn+
500 @-Rn
501 @aa:8 absolute 8 bit
502 @aa:16 absolute 16 bit
503 @aa absolute 16 bit
504
505 #xx[:size] immediate data
506 @(exp:[8], pc) pc rel
507 @@aa[:8] memory indirect. */
508
509 static int
510 constant_fits_width_p (struct h8_op *operand, unsigned int width)
511 {
512 return ((operand->exp.X_add_number & ~width) == 0
513 || (operand->exp.X_add_number | width) == (unsigned)(~0));
514 }
515
516 static int
517 constant_fits_size_p (struct h8_op *operand, int size, int no_symbols)
518 {
519 offsetT num = operand->exp.X_add_number;
520 if (no_symbols
521 && (operand->exp.X_add_symbol != 0 || operand->exp.X_op_symbol != 0))
522 return 0;
523 switch (size)
524 {
525 case L_2:
526 return (num & ~3) == 0;
527 case L_3:
528 return (num & ~7) == 0;
529 case L_3NZ:
530 return num >= 1 && num < 8;
531 case L_4:
532 return (num & ~15) == 0;
533 case L_5:
534 return num >= 1 && num < 32;
535 case L_8:
536 return (num & ~0xFF) == 0 || ((unsigned)num | 0x7F) == ~0u;
537 case L_8U:
538 return (num & ~0xFF) == 0;
539 case L_16:
540 return (num & ~0xFFFF) == 0 || ((unsigned)num | 0x7FFF) == ~0u;
541 case L_16U:
542 return (num & ~0xFFFF) == 0;
543 case L_32:
544 return 1;
545 default:
546 abort ();
547 }
548 }
549
550 static void
551 get_operand (char **ptr, struct h8_op *op, int direction)
552 {
553 char *src = *ptr;
554 op_type mode;
555 unsigned int num;
556 unsigned int len;
557
558 op->mode = 0;
559
560 /* Check for '(' and ')' for instructions ldm and stm. */
561 if (src[0] == '(' && src[8] == ')')
562 ++ src;
563
564 /* Gross. Gross. ldm and stm have a format not easily handled
565 by get_operand. We deal with it explicitly here. */
566 if (TOLOWER (src[0]) == 'e' && TOLOWER (src[1]) == 'r' &&
567 ISDIGIT (src[2]) && src[3] == '-' &&
568 TOLOWER (src[4]) == 'e' && TOLOWER (src[5]) == 'r' && ISDIGIT (src[6]))
569 {
570 int low, high;
571
572 low = src[2] - '0';
573 high = src[6] - '0';
574
575 /* Check register pair's validity as per tech note TN-H8*-193A/E
576 from Renesas for H8S and H8SX hardware manual. */
577 if ( !(low == 0 && (high == 1 || high == 2 || high == 3))
578 && !(low == 1 && (high == 2 || high == 3 || high == 4) && SXmode)
579 && !(low == 2 && (high == 3 || ((high == 4 || high == 5) && SXmode)))
580 && !(low == 3 && (high == 4 || high == 5 || high == 6) && SXmode)
581 && !(low == 4 && (high == 5 || high == 6))
582 && !(low == 4 && high == 7 && SXmode)
583 && !(low == 5 && (high == 6 || high == 7) && SXmode)
584 && !(low == 6 && high == 7 && SXmode))
585 as_bad (_("Invalid register list for ldm/stm\n"));
586
587 /* Even sicker. We encode two registers into op->reg. One
588 for the low register to save, the other for the high
589 register to save; we also set the high bit in op->reg
590 so we know this is "very special". */
591 op->reg = 0x80000000 | (high << 8) | low;
592 op->mode = REG;
593 if (src[7] == ')')
594 *ptr = src + 8;
595 else
596 *ptr = src + 7;
597 return;
598 }
599
600 len = parse_reg (src, &op->mode, &op->reg, direction);
601 if (len)
602 {
603 src += len;
604 if (*src == '.')
605 {
606 int size = op->mode & SIZE;
607 switch (src[1])
608 {
609 case 'l': case 'L':
610 if (size != L_32)
611 as_warn (_("mismatch between register and suffix"));
612 op->mode = (op->mode & ~MODE) | LOWREG;
613 break;
614 case 'w': case 'W':
615 if (size != L_32 && size != L_16)
616 as_warn (_("mismatch between register and suffix"));
617 op->mode = (op->mode & ~MODE) | LOWREG;
618 op->mode = (op->mode & ~SIZE) | L_16;
619 break;
620 case 'b': case 'B':
621 op->mode = (op->mode & ~MODE) | LOWREG;
622 if (size != L_32 && size != L_8)
623 as_warn (_("mismatch between register and suffix"));
624 op->mode = (op->mode & ~MODE) | LOWREG;
625 op->mode = (op->mode & ~SIZE) | L_8;
626 break;
627 default:
628 as_warn ("invalid suffix after register.");
629 break;
630 }
631 src += 2;
632 }
633 *ptr = src;
634 return;
635 }
636
637 if (*src == '@')
638 {
639 src++;
640 if (*src == '@')
641 {
642 *ptr = parse_exp (src + 1, op);
643 if (op->exp.X_add_number >= 0x100)
644 {
645 int divisor = 1;
646
647 op->mode = VECIND;
648 /* FIXME : 2? or 4? */
649 if (op->exp.X_add_number >= 0x400)
650 as_bad (_("address too high for vector table jmp/jsr"));
651 else if (op->exp.X_add_number >= 0x200)
652 divisor = 4;
653 else
654 divisor = 2;
655
656 op->exp.X_add_number = op->exp.X_add_number / divisor - 0x80;
657 }
658 else
659 op->mode = MEMIND;
660 return;
661 }
662
663 if (*src == '-' || *src == '+')
664 {
665 len = parse_reg (src + 1, &mode, &num, direction);
666 if (len == 0)
667 {
668 /* Oops, not a reg after all, must be ordinary exp. */
669 op->mode = ABS | direction;
670 *ptr = parse_exp (src, op);
671 return;
672 }
673
674 if (((mode & SIZE) != PSIZE)
675 /* For Normal mode accept 16 bit and 32 bit pointer registers. */
676 && (!Nmode || ((mode & SIZE) != L_32)))
677 as_bad (_("Wrong size pointer register for architecture."));
678
679 op->mode = src[0] == '-' ? RDPREDEC : RDPREINC;
680 op->reg = num;
681 *ptr = src + 1 + len;
682 return;
683 }
684 if (*src == '(')
685 {
686 src++;
687
688 /* See if this is @(ERn.x, PC). */
689 len = parse_reg (src, &mode, &op->reg, direction);
690 if (len != 0 && (mode & MODE) == REG && src[len] == '.')
691 {
692 switch (TOLOWER (src[len + 1]))
693 {
694 case 'b':
695 mode = PCIDXB | direction;
696 break;
697 case 'w':
698 mode = PCIDXW | direction;
699 break;
700 case 'l':
701 mode = PCIDXL | direction;
702 break;
703 default:
704 mode = 0;
705 break;
706 }
707 if (mode
708 && src[len + 2] == ','
709 && TOLOWER (src[len + 3]) != 'p'
710 && TOLOWER (src[len + 4]) != 'c'
711 && src[len + 5] != ')')
712 {
713 *ptr = src + len + 6;
714 op->mode |= mode;
715 return;
716 }
717 /* Fall through into disp case - the grammar is somewhat
718 ambiguous, so we should try whether it's a DISP operand
719 after all ("ER3.L" might be a poorly named label...). */
720 }
721
722 /* Disp. */
723
724 /* Start off assuming a 16 bit offset. */
725
726 src = parse_exp (src, op);
727 if (*src == ')')
728 {
729 op->mode |= ABS | direction;
730 *ptr = src + 1;
731 return;
732 }
733
734 if (*src != ',')
735 {
736 as_bad (_("expected @(exp, reg16)"));
737 return;
738 }
739 src++;
740
741 len = parse_reg (src, &mode, &op->reg, direction);
742 if (len == 0 || (mode & MODE) != REG)
743 {
744 as_bad (_("expected @(exp, reg16)"));
745 return;
746 }
747 src += len;
748 if (src[0] == '.')
749 {
750 switch (TOLOWER (src[1]))
751 {
752 case 'b':
753 op->mode |= INDEXB | direction;
754 break;
755 case 'w':
756 op->mode |= INDEXW | direction;
757 break;
758 case 'l':
759 op->mode |= INDEXL | direction;
760 break;
761 default:
762 as_bad (_("expected .L, .W or .B for register in indexed addressing mode"));
763 }
764 src += 2;
765 op->reg &= 7;
766 }
767 else
768 op->mode |= DISP | direction;
769 src = skip_colonthing (src, &op->mode);
770
771 if (*src != ')' && '(')
772 {
773 as_bad (_("expected @(exp, reg16)"));
774 return;
775 }
776 *ptr = src + 1;
777 return;
778 }
779 len = parse_reg (src, &mode, &num, direction);
780
781 if (len)
782 {
783 src += len;
784 if (*src == '+' || *src == '-')
785 {
786 if (((mode & SIZE) != PSIZE)
787 /* For Normal mode accept 16 bit and 32 bit pointer registers. */
788 && (!Nmode || ((mode & SIZE) != L_32)))
789 as_bad (_("Wrong size pointer register for architecture."));
790 op->mode = *src == '+' ? RSPOSTINC : RSPOSTDEC;
791 op->reg = num;
792 src++;
793 *ptr = src;
794 return;
795 }
796 if (((mode & SIZE) != PSIZE)
797 /* For Normal mode accept 16 bit and 32 bit pointer registers. */
798 && (!Nmode || ((mode & SIZE) != L_32)))
799 as_bad (_("Wrong size pointer register for architecture."));
800
801 op->mode = direction | IND | PSIZE;
802 op->reg = num;
803 *ptr = src;
804
805 return;
806 }
807 else
808 {
809 /* must be a symbol */
810
811 op->mode = ABS | direction;
812 *ptr = parse_exp (src, op);
813 return;
814 }
815 }
816
817 if (*src == '#')
818 {
819 op->mode = IMM;
820 *ptr = parse_exp (src + 1, op);
821 return;
822 }
823 else if (strncmp (src, "mach", 4) == 0 ||
824 strncmp (src, "macl", 4) == 0 ||
825 strncmp (src, "MACH", 4) == 0 ||
826 strncmp (src, "MACL", 4) == 0)
827 {
828 op->reg = TOLOWER (src[3]) == 'l';
829 op->mode = MACREG;
830 *ptr = src + 4;
831 return;
832 }
833 else
834 {
835 op->mode = PCREL;
836 *ptr = parse_exp (src, op);
837 }
838 }
839
840 static char *
841 get_operands (unsigned int noperands, char *op_end, struct h8_op *operand)
842 {
843 char *ptr = op_end;
844
845 switch (noperands)
846 {
847 case 0:
848 break;
849
850 case 1:
851 ptr++;
852 get_operand (&ptr, operand + 0, SRC);
853 if (*ptr == ',')
854 {
855 ptr++;
856 get_operand (&ptr, operand + 1, DST);
857 }
858 break;
859
860 case 2:
861 ptr++;
862 get_operand (&ptr, operand + 0, SRC);
863 if (*ptr == ',')
864 ptr++;
865 get_operand (&ptr, operand + 1, DST);
866 break;
867
868 case 3:
869 ptr++;
870 get_operand (&ptr, operand + 0, SRC);
871 if (*ptr == ',')
872 ptr++;
873 get_operand (&ptr, operand + 1, DST);
874 if (*ptr == ',')
875 ptr++;
876 get_operand (&ptr, operand + 2, OP3);
877 break;
878
879 default:
880 abort ();
881 }
882
883 return ptr;
884 }
885
886 /* MOVA has special requirements. Rather than adding twice the amount of
887 addressing modes, we simply special case it a bit. */
888 static void
889 get_mova_operands (char *op_end, struct h8_op *operand)
890 {
891 char *ptr = op_end;
892
893 if (ptr[1] != '@' || ptr[2] != '(')
894 goto error;
895 ptr += 3;
896 operand[0].mode = 0;
897 ptr = parse_exp (ptr, &operand[0]);
898
899 if (*ptr !=',')
900 goto error;
901 ptr++;
902 get_operand (&ptr, operand + 1, DST);
903
904 if (*ptr =='.')
905 {
906 ptr++;
907 switch (*ptr++)
908 {
909 case 'b': case 'B':
910 operand[0].mode = (operand[0].mode & ~MODE) | INDEXB;
911 break;
912 case 'w': case 'W':
913 operand[0].mode = (operand[0].mode & ~MODE) | INDEXW;
914 break;
915 case 'l': case 'L':
916 operand[0].mode = (operand[0].mode & ~MODE) | INDEXL;
917 break;
918 default:
919 goto error;
920 }
921 }
922 else if ((operand[1].mode & MODE) == LOWREG)
923 {
924 switch (operand[1].mode & SIZE)
925 {
926 case L_8:
927 operand[0].mode = (operand[0].mode & ~MODE) | INDEXB;
928 break;
929 case L_16:
930 operand[0].mode = (operand[0].mode & ~MODE) | INDEXW;
931 break;
932 case L_32:
933 operand[0].mode = (operand[0].mode & ~MODE) | INDEXL;
934 break;
935 default:
936 goto error;
937 }
938 }
939 else
940 goto error;
941
942 if (*ptr++ != ')' || *ptr++ != ',')
943 goto error;
944 get_operand (&ptr, operand + 2, OP3);
945 /* See if we can use the short form of MOVA. */
946 if (((operand[1].mode & MODE) == REG || (operand[1].mode & MODE) == LOWREG)
947 && (operand[2].mode & MODE) == REG
948 && (operand[1].reg & 7) == (operand[2].reg & 7))
949 {
950 operand[1].mode = operand[2].mode = 0;
951 operand[0].reg = operand[2].reg & 7;
952 }
953 return;
954
955 error:
956 as_bad (_("expected valid addressing mode for mova: \"@(disp, ea.sz),ERn\""));
957 }
958
959 static void
960 get_rtsl_operands (char *ptr, struct h8_op *operand)
961 {
962 int mode, len, type = 0;
963 unsigned int num, num2;
964
965 ptr++;
966 if (*ptr == '(')
967 {
968 ptr++;
969 type = 1;
970 }
971 len = parse_reg (ptr, &mode, &num, SRC);
972 if (len == 0 || (mode & MODE) != REG)
973 {
974 as_bad (_("expected register"));
975 return;
976 }
977 ptr += len;
978 if (*ptr == '-')
979 {
980 len = parse_reg (++ptr, &mode, &num2, SRC);
981 if (len == 0 || (mode & MODE) != REG)
982 {
983 as_bad (_("expected register"));
984 return;
985 }
986 ptr += len;
987 /* CONST_xxx are used as placeholders in the opcode table. */
988 num = num2 - num;
989 if (num > 3)
990 {
991 as_bad (_("invalid register list"));
992 return;
993 }
994 }
995 else
996 num2 = num, num = 0;
997 if (type == 1 && *ptr++ != ')')
998 {
999 as_bad (_("expected closing paren"));
1000 return;
1001 }
1002 operand[0].mode = RS32;
1003 operand[1].mode = RD32;
1004 operand[0].reg = num;
1005 operand[1].reg = num2;
1006 }
1007
1008 /* Passed a pointer to a list of opcodes which use different
1009 addressing modes, return the opcode which matches the opcodes
1010 provided. */
1011
1012 static const struct h8_instruction *
1013 get_specific (const struct h8_instruction *instruction,
1014 struct h8_op *operands, int size)
1015 {
1016 const struct h8_instruction *this_try = instruction;
1017 const struct h8_instruction *found_other = 0, *found_mismatched = 0;
1018 int found = 0;
1019 int this_index = instruction->idx;
1020 int noperands = 0;
1021
1022 /* There's only one ldm/stm and it's easier to just
1023 get out quick for them. */
1024 if (OP_KIND (instruction->opcode->how) == O_LDM
1025 || OP_KIND (instruction->opcode->how) == O_STM)
1026 return this_try;
1027
1028 while (noperands < 3 && operands[noperands].mode != 0)
1029 noperands++;
1030
1031 while (this_index == instruction->idx && !found)
1032 {
1033 int this_size;
1034
1035 found = 1;
1036 this_try = instruction++;
1037 this_size = this_try->opcode->how & SN;
1038
1039 if (this_try->noperands != noperands)
1040 found = 0;
1041 else if (this_try->noperands > 0)
1042 {
1043 int i;
1044
1045 for (i = 0; i < this_try->noperands && found; i++)
1046 {
1047 op_type op = this_try->opcode->args.nib[i];
1048 int op_mode = op & MODE;
1049 int op_size = op & SIZE;
1050 int x = operands[i].mode;
1051 int x_mode = x & MODE;
1052 int x_size = x & SIZE;
1053
1054 if (op_mode == LOWREG && (x_mode == REG || x_mode == LOWREG))
1055 {
1056 if ((x_size == L_8 && (operands[i].reg & 8) == 0)
1057 || (x_size == L_16 && (operands[i].reg & 8) == 8))
1058 as_warn (_("can't use high part of register in operand %d"), i);
1059
1060 if (x_size != op_size)
1061 found = 0;
1062 }
1063 else if (op_mode == REG)
1064 {
1065 if (x_mode == LOWREG)
1066 x_mode = REG;
1067 if (x_mode != REG)
1068 found = 0;
1069
1070 if (x_size == L_P)
1071 x_size = (Hmode ? L_32 : L_16);
1072 if (op_size == L_P)
1073 op_size = (Hmode ? L_32 : L_16);
1074
1075 /* The size of the reg is v important. */
1076 if (op_size != x_size)
1077 found = 0;
1078 }
1079 else if (op_mode & CTRL) /* control register */
1080 {
1081 if (!(x_mode & CTRL))
1082 found = 0;
1083
1084 switch (x_mode)
1085 {
1086 case CCR:
1087 if (op_mode != CCR &&
1088 op_mode != CCR_EXR &&
1089 op_mode != CC_EX_VB_SB)
1090 found = 0;
1091 break;
1092 case EXR:
1093 if (op_mode != EXR &&
1094 op_mode != CCR_EXR &&
1095 op_mode != CC_EX_VB_SB)
1096 found = 0;
1097 break;
1098 case MACH:
1099 if (op_mode != MACH &&
1100 op_mode != MACREG)
1101 found = 0;
1102 break;
1103 case MACL:
1104 if (op_mode != MACL &&
1105 op_mode != MACREG)
1106 found = 0;
1107 break;
1108 case VBR:
1109 if (op_mode != VBR &&
1110 op_mode != VBR_SBR &&
1111 op_mode != CC_EX_VB_SB)
1112 found = 0;
1113 break;
1114 case SBR:
1115 if (op_mode != SBR &&
1116 op_mode != VBR_SBR &&
1117 op_mode != CC_EX_VB_SB)
1118 found = 0;
1119 break;
1120 }
1121 }
1122 else if ((op & ABSJMP) && (x_mode == ABS || x_mode == PCREL))
1123 {
1124 operands[i].mode &= ~MODE;
1125 operands[i].mode |= ABSJMP;
1126 /* But it may not be 24 bits long. */
1127 if (x_mode == ABS && !Hmode)
1128 {
1129 operands[i].mode &= ~SIZE;
1130 operands[i].mode |= L_16;
1131 }
1132 if ((operands[i].mode & SIZE) == L_32
1133 && (op_mode & SIZE) != L_32)
1134 found = 0;
1135 }
1136 else if (x_mode == IMM && op_mode != IMM)
1137 {
1138 offsetT num = operands[i].exp.X_add_number;
1139 if (op_mode == KBIT || op_mode == DBIT)
1140 /* This is ok if the immediate value is sensible. */;
1141 else if (op_mode == CONST_2)
1142 found = num == 2;
1143 else if (op_mode == CONST_4)
1144 found = num == 4;
1145 else if (op_mode == CONST_8)
1146 found = num == 8;
1147 else if (op_mode == CONST_16)
1148 found = num == 16;
1149 else
1150 found = 0;
1151 }
1152 else if (op_mode == PCREL && op_mode == x_mode)
1153 {
1154 /* movsd, bsr/bc and bsr/bs only come in PCREL16 flavour:
1155 If x_size is L_8, promote it. */
1156 if (OP_KIND (this_try->opcode->how) == O_MOVSD
1157 || OP_KIND (this_try->opcode->how) == O_BSRBC
1158 || OP_KIND (this_try->opcode->how) == O_BSRBS)
1159 if (x_size == L_8)
1160 x_size = L_16;
1161
1162 /* The size of the displacement is important. */
1163 if (op_size != x_size)
1164 found = 0;
1165 }
1166 else if ((op_mode == DISP || op_mode == IMM || op_mode == ABS
1167 || op_mode == INDEXB || op_mode == INDEXW
1168 || op_mode == INDEXL)
1169 && op_mode == x_mode)
1170 {
1171 /* Promote a L_24 to L_32 if it makes us match. */
1172 if (x_size == L_24 && op_size == L_32)
1173 {
1174 x &= ~SIZE;
1175 x |= x_size = L_32;
1176 }
1177
1178 if (((x_size == L_16 && op_size == L_16U)
1179 || (x_size == L_8 && op_size == L_8U)
1180 || (x_size == L_3 && op_size == L_3NZ))
1181 /* We're deliberately more permissive for ABS modes. */
1182 && (op_mode == ABS
1183 || constant_fits_size_p (operands + i, op_size,
1184 op & NO_SYMBOLS)))
1185 x_size = op_size;
1186
1187 if (x_size != 0 && op_size != x_size)
1188 found = 0;
1189 else if (x_size == 0
1190 && ! constant_fits_size_p (operands + i, op_size,
1191 op & NO_SYMBOLS))
1192 found = 0;
1193 }
1194 else if (op_mode != x_mode)
1195 {
1196 found = 0;
1197 }
1198 }
1199 }
1200 if (found)
1201 {
1202 if ((this_try->opcode->available == AV_H8SX && ! SXmode)
1203 || (this_try->opcode->available == AV_H8S && ! Smode)
1204 || (this_try->opcode->available == AV_H8H && ! Hmode))
1205 found = 0, found_other = this_try;
1206 else if (this_size != size && (this_size != SN && size != SN))
1207 found_mismatched = this_try, found = 0;
1208
1209 }
1210 }
1211 if (found)
1212 return this_try;
1213 if (found_other)
1214 {
1215 as_warn (_("Opcode `%s' with these operand types not available in %s mode"),
1216 found_other->opcode->name,
1217 (! Hmode && ! Smode ? "H8/300"
1218 : SXmode ? "H8sx"
1219 : Smode ? "H8/300S"
1220 : "H8/300H"));
1221 }
1222 else if (found_mismatched)
1223 {
1224 as_warn (_("mismatch between opcode size and operand size"));
1225 return found_mismatched;
1226 }
1227 return 0;
1228 }
1229
1230 static void
1231 check_operand (struct h8_op *operand, unsigned int width, char *string)
1232 {
1233 if (operand->exp.X_add_symbol == 0
1234 && operand->exp.X_op_symbol == 0)
1235 {
1236 /* No symbol involved, let's look at offset, it's dangerous if
1237 any of the high bits are not 0 or ff's, find out by oring or
1238 anding with the width and seeing if the answer is 0 or all
1239 fs. */
1240
1241 if (! constant_fits_width_p (operand, width))
1242 {
1243 if (width == 255
1244 && (operand->exp.X_add_number & 0xff00) == 0xff00)
1245 {
1246 /* Just ignore this one - which happens when trying to
1247 fit a 16 bit address truncated into an 8 bit address
1248 of something like bset. */
1249 }
1250 else if (strcmp (string, "@") == 0
1251 && width == 0xffff
1252 && (operand->exp.X_add_number & 0xff8000) == 0xff8000)
1253 {
1254 /* Just ignore this one - which happens when trying to
1255 fit a 24 bit address truncated into a 16 bit address
1256 of something like mov.w. */
1257 }
1258 else
1259 {
1260 as_warn (_("operand %s0x%lx out of range."), string,
1261 (unsigned long) operand->exp.X_add_number);
1262 }
1263 }
1264 }
1265 }
1266
1267 /* RELAXMODE has one of 3 values:
1268
1269 0 Output a "normal" reloc, no relaxing possible for this insn/reloc
1270
1271 1 Output a relaxable 24bit absolute mov.w address relocation
1272 (may relax into a 16bit absolute address).
1273
1274 2 Output a relaxable 16/24 absolute mov.b address relocation
1275 (may relax into an 8bit absolute address). */
1276
1277 static void
1278 do_a_fix_imm (int offset, int nibble, struct h8_op *operand, int relaxmode)
1279 {
1280 int idx;
1281 int size;
1282 int where;
1283 char *bytes = frag_now->fr_literal + offset;
1284
1285 char *t = ((operand->mode & MODE) == IMM) ? "#" : "@";
1286
1287 if (operand->exp.X_add_symbol == 0)
1288 {
1289 switch (operand->mode & SIZE)
1290 {
1291 case L_2:
1292 check_operand (operand, 0x3, t);
1293 bytes[0] |= (operand->exp.X_add_number & 3) << (nibble ? 0 : 4);
1294 break;
1295 case L_3:
1296 case L_3NZ:
1297 check_operand (operand, 0x7, t);
1298 bytes[0] |= (operand->exp.X_add_number & 7) << (nibble ? 0 : 4);
1299 break;
1300 case L_4:
1301 check_operand (operand, 0xF, t);
1302 bytes[0] |= (operand->exp.X_add_number & 15) << (nibble ? 0 : 4);
1303 break;
1304 case L_5:
1305 check_operand (operand, 0x1F, t);
1306 bytes[0] |= operand->exp.X_add_number & 31;
1307 break;
1308 case L_8:
1309 case L_8U:
1310 check_operand (operand, 0xff, t);
1311 bytes[0] |= operand->exp.X_add_number;
1312 break;
1313 case L_16:
1314 case L_16U:
1315 check_operand (operand, 0xffff, t);
1316 bytes[0] |= operand->exp.X_add_number >> 8;
1317 bytes[1] |= operand->exp.X_add_number >> 0;
1318 break;
1319 case L_24:
1320 check_operand (operand, 0xffffff, t);
1321 bytes[0] |= operand->exp.X_add_number >> 16;
1322 bytes[1] |= operand->exp.X_add_number >> 8;
1323 bytes[2] |= operand->exp.X_add_number >> 0;
1324 break;
1325
1326 case L_32:
1327 /* This should be done with bfd. */
1328 bytes[0] |= operand->exp.X_add_number >> 24;
1329 bytes[1] |= operand->exp.X_add_number >> 16;
1330 bytes[2] |= operand->exp.X_add_number >> 8;
1331 bytes[3] |= operand->exp.X_add_number >> 0;
1332 if (relaxmode != 0)
1333 {
1334 idx = (relaxmode == 2) ? R_MOV24B1 : R_MOVL1;
1335 fix_new_exp (frag_now, offset, 4, &operand->exp, 0, idx);
1336 }
1337 break;
1338 }
1339 }
1340 else
1341 {
1342 switch (operand->mode & SIZE)
1343 {
1344 case L_24:
1345 case L_32:
1346 size = 4;
1347 where = (operand->mode & SIZE) == L_24 ? -1 : 0;
1348 if (relaxmode == 2)
1349 idx = R_MOV24B1;
1350 else if (relaxmode == 1)
1351 idx = R_MOVL1;
1352 else
1353 idx = R_RELLONG;
1354 break;
1355 default:
1356 as_bad (_("Can't work out size of operand.\n"));
1357 case L_16:
1358 case L_16U:
1359 size = 2;
1360 where = 0;
1361 if (relaxmode == 2)
1362 idx = R_MOV16B1;
1363 else
1364 idx = R_RELWORD;
1365 operand->exp.X_add_number =
1366 ((operand->exp.X_add_number & 0xffff) ^ 0x8000) - 0x8000;
1367 operand->exp.X_add_number |= (bytes[0] << 8) | bytes[1];
1368 break;
1369 case L_8:
1370 size = 1;
1371 where = 0;
1372 idx = R_RELBYTE;
1373 operand->exp.X_add_number =
1374 ((operand->exp.X_add_number & 0xff) ^ 0x80) - 0x80;
1375 operand->exp.X_add_number |= bytes[0];
1376 }
1377
1378 fix_new_exp (frag_now,
1379 offset + where,
1380 size,
1381 &operand->exp,
1382 0,
1383 idx);
1384 }
1385 }
1386
1387 /* Now we know what sort of opcodes it is, let's build the bytes. */
1388
1389 static void
1390 build_bytes (const struct h8_instruction *this_try, struct h8_op *operand)
1391 {
1392 int i;
1393 char *output = frag_more (this_try->length);
1394 op_type *nibble_ptr = this_try->opcode->data.nib;
1395 op_type c;
1396 unsigned int nibble_count = 0;
1397 int op_at[3];
1398 int nib = 0;
1399 int movb = 0;
1400 char asnibbles[100];
1401 char *p = asnibbles;
1402 int high, low;
1403
1404 if (!Hmode && this_try->opcode->available != AV_H8)
1405 as_warn (_("Opcode `%s' with these operand types not available in H8/300 mode"),
1406 this_try->opcode->name);
1407 else if (!Smode
1408 && this_try->opcode->available != AV_H8
1409 && this_try->opcode->available != AV_H8H)
1410 as_warn (_("Opcode `%s' with these operand types not available in H8/300H mode"),
1411 this_try->opcode->name);
1412 else if (!SXmode
1413 && this_try->opcode->available != AV_H8
1414 && this_try->opcode->available != AV_H8H
1415 && this_try->opcode->available != AV_H8S)
1416 as_warn (_("Opcode `%s' with these operand types not available in H8/300S mode"),
1417 this_try->opcode->name);
1418
1419 while (*nibble_ptr != (op_type) E)
1420 {
1421 int d;
1422
1423 nib = 0;
1424 c = *nibble_ptr++;
1425
1426 d = (c & OP3) == OP3 ? 2 : (c & DST) == DST ? 1 : 0;
1427
1428 if (c < 16)
1429 nib = c;
1430 else
1431 {
1432 int c2 = c & MODE;
1433
1434 if (c2 == REG || c2 == LOWREG
1435 || c2 == IND || c2 == PREINC || c2 == PREDEC
1436 || c2 == POSTINC || c2 == POSTDEC)
1437 {
1438 nib = operand[d].reg;
1439 if (c2 == LOWREG)
1440 nib &= 7;
1441 }
1442
1443 else if (c & CTRL) /* Control reg operand. */
1444 nib = operand[d].reg;
1445
1446 else if ((c & DISPREG) == (DISPREG))
1447 {
1448 nib = operand[d].reg;
1449 }
1450 else if (c2 == ABS)
1451 {
1452 operand[d].mode = c;
1453 op_at[d] = nibble_count;
1454 nib = 0;
1455 }
1456 else if (c2 == IMM || c2 == PCREL || c2 == ABS
1457 || (c & ABSJMP) || c2 == DISP)
1458 {
1459 operand[d].mode = c;
1460 op_at[d] = nibble_count;
1461 nib = 0;
1462 }
1463 else if ((c & IGNORE) || (c & DATA))
1464 nib = 0;
1465
1466 else if (c2 == DBIT)
1467 {
1468 switch (operand[0].exp.X_add_number)
1469 {
1470 case 1:
1471 nib = c;
1472 break;
1473 case 2:
1474 nib = 0x8 | c;
1475 break;
1476 default:
1477 as_bad (_("Need #1 or #2 here"));
1478 }
1479 }
1480 else if (c2 == KBIT)
1481 {
1482 switch (operand[0].exp.X_add_number)
1483 {
1484 case 1:
1485 nib = 0;
1486 break;
1487 case 2:
1488 nib = 8;
1489 break;
1490 case 4:
1491 if (!Hmode)
1492 as_warn (_("#4 not valid on H8/300."));
1493 nib = 9;
1494 break;
1495
1496 default:
1497 as_bad (_("Need #1 or #2 here"));
1498 break;
1499 }
1500 /* Stop it making a fix. */
1501 operand[0].mode = 0;
1502 }
1503
1504 if (c & MEMRELAX)
1505 operand[d].mode |= MEMRELAX;
1506
1507 if (c & B31)
1508 nib |= 0x8;
1509
1510 if (c & B21)
1511 nib |= 0x4;
1512
1513 if (c & B11)
1514 nib |= 0x2;
1515
1516 if (c & B01)
1517 nib |= 0x1;
1518
1519 if (c2 == MACREG)
1520 {
1521 if (operand[0].mode == MACREG)
1522 /* stmac has mac[hl] as the first operand. */
1523 nib = 2 + operand[0].reg;
1524 else
1525 /* ldmac has mac[hl] as the second operand. */
1526 nib = 2 + operand[1].reg;
1527 }
1528 }
1529 nibble_count++;
1530
1531 *p++ = nib;
1532 }
1533
1534 /* Disgusting. Why, oh why didn't someone ask us for advice
1535 on the assembler format. */
1536 if (OP_KIND (this_try->opcode->how) == O_LDM)
1537 {
1538 high = (operand[1].reg >> 8) & 0xf;
1539 low = (operand[1].reg) & 0xf;
1540 asnibbles[2] = high - low;
1541 asnibbles[7] = high;
1542 }
1543 else if (OP_KIND (this_try->opcode->how) == O_STM)
1544 {
1545 high = (operand[0].reg >> 8) & 0xf;
1546 low = (operand[0].reg) & 0xf;
1547 asnibbles[2] = high - low;
1548 asnibbles[7] = low;
1549 }
1550
1551 for (i = 0; i < this_try->length; i++)
1552 output[i] = (asnibbles[i * 2] << 4) | asnibbles[i * 2 + 1];
1553
1554 /* Note if this is a movb or a bit manipulation instruction
1555 there is a special relaxation which only applies. */
1556 if ( this_try->opcode->how == O (O_MOV, SB)
1557 || this_try->opcode->how == O (O_BCLR, SB)
1558 || this_try->opcode->how == O (O_BAND, SB)
1559 || this_try->opcode->how == O (O_BIAND, SB)
1560 || this_try->opcode->how == O (O_BILD, SB)
1561 || this_try->opcode->how == O (O_BIOR, SB)
1562 || this_try->opcode->how == O (O_BIST, SB)
1563 || this_try->opcode->how == O (O_BIXOR, SB)
1564 || this_try->opcode->how == O (O_BLD, SB)
1565 || this_try->opcode->how == O (O_BNOT, SB)
1566 || this_try->opcode->how == O (O_BOR, SB)
1567 || this_try->opcode->how == O (O_BSET, SB)
1568 || this_try->opcode->how == O (O_BST, SB)
1569 || this_try->opcode->how == O (O_BTST, SB)
1570 || this_try->opcode->how == O (O_BXOR, SB))
1571 movb = 1;
1572
1573 /* Output any fixes. */
1574 for (i = 0; i < this_try->noperands; i++)
1575 {
1576 int x = operand[i].mode;
1577 int x_mode = x & MODE;
1578
1579 if (x_mode == IMM || x_mode == DISP)
1580 do_a_fix_imm (output - frag_now->fr_literal + op_at[i] / 2,
1581 op_at[i] & 1, operand + i, (x & MEMRELAX) != 0);
1582
1583 else if (x_mode == ABS)
1584 do_a_fix_imm (output - frag_now->fr_literal + op_at[i] / 2,
1585 op_at[i] & 1, operand + i,
1586 (x & MEMRELAX) ? movb + 1 : 0);
1587
1588 else if (x_mode == PCREL)
1589 {
1590 int size16 = (x & SIZE) == L_16;
1591 int size = size16 ? 2 : 1;
1592 int type = size16 ? R_PCRWORD : R_PCRBYTE;
1593 fixS *fixP;
1594
1595 check_operand (operand + i, size16 ? 0x7fff : 0x7f, "@");
1596
1597 if (operand[i].exp.X_add_number & 1)
1598 as_warn (_("branch operand has odd offset (%lx)\n"),
1599 (unsigned long) operand->exp.X_add_number);
1600 #ifndef OBJ_ELF
1601 /* The COFF port has always been off by one, changing it
1602 now would be an incompatible change, so we leave it as-is.
1603
1604 We don't want to do this for ELF as we want to be
1605 compatible with the proposed ELF format from Hitachi. */
1606 operand[i].exp.X_add_number -= 1;
1607 #endif
1608 if (size16)
1609 {
1610 operand[i].exp.X_add_number =
1611 ((operand[i].exp.X_add_number & 0xffff) ^ 0x8000) - 0x8000;
1612 }
1613 else
1614 {
1615 operand[i].exp.X_add_number =
1616 ((operand[i].exp.X_add_number & 0xff) ^ 0x80) - 0x80;
1617 }
1618
1619 /* For BRA/S. */
1620 if (! size16)
1621 operand[i].exp.X_add_number |= output[op_at[i] / 2];
1622
1623 fixP = fix_new_exp (frag_now,
1624 output - frag_now->fr_literal + op_at[i] / 2,
1625 size,
1626 &operand[i].exp,
1627 1,
1628 type);
1629 fixP->fx_signed = 1;
1630 }
1631 else if (x_mode == MEMIND)
1632 {
1633 check_operand (operand + i, 0xff, "@@");
1634 fix_new_exp (frag_now,
1635 output - frag_now->fr_literal + 1,
1636 1,
1637 &operand[i].exp,
1638 0,
1639 R_MEM_INDIRECT);
1640 }
1641 else if (x_mode == VECIND)
1642 {
1643 check_operand (operand + i, 0x7f, "@@");
1644 /* FIXME: approximating the effect of "B31" here...
1645 This is very hackish, and ought to be done a better way. */
1646 operand[i].exp.X_add_number |= 0x80;
1647 fix_new_exp (frag_now,
1648 output - frag_now->fr_literal + 1,
1649 1,
1650 &operand[i].exp,
1651 0,
1652 R_MEM_INDIRECT);
1653 }
1654 else if (x & ABSJMP)
1655 {
1656 int where = 0;
1657 bfd_reloc_code_real_type reloc_type = R_JMPL1;
1658
1659 #ifdef OBJ_ELF
1660 /* To be compatible with the proposed H8 ELF format, we
1661 want the relocation's offset to point to the first byte
1662 that will be modified, not to the start of the instruction. */
1663
1664 if ((operand->mode & SIZE) == L_32)
1665 {
1666 where = 2;
1667 reloc_type = R_RELLONG;
1668 }
1669 else
1670 where = 1;
1671 #endif
1672
1673 /* This jmp may be a jump or a branch. */
1674
1675 check_operand (operand + i,
1676 SXmode ? 0xffffffff : Hmode ? 0xffffff : 0xffff,
1677 "@");
1678
1679 if (operand[i].exp.X_add_number & 1)
1680 as_warn (_("branch operand has odd offset (%lx)\n"),
1681 (unsigned long) operand->exp.X_add_number);
1682
1683 if (!Hmode)
1684 operand[i].exp.X_add_number =
1685 ((operand[i].exp.X_add_number & 0xffff) ^ 0x8000) - 0x8000;
1686 fix_new_exp (frag_now,
1687 output - frag_now->fr_literal + where,
1688 4,
1689 &operand[i].exp,
1690 0,
1691 reloc_type);
1692 }
1693 }
1694 }
1695
1696 /* Try to give an intelligent error message for common and simple to
1697 detect errors. */
1698
1699 static void
1700 clever_message (const struct h8_instruction *instruction,
1701 struct h8_op *operand)
1702 {
1703 /* Find out if there was more than one possible opcode. */
1704
1705 if ((instruction + 1)->idx != instruction->idx)
1706 {
1707 int argn;
1708
1709 /* Only one opcode of this flavour, try to guess which operand
1710 didn't match. */
1711 for (argn = 0; argn < instruction->noperands; argn++)
1712 {
1713 switch (instruction->opcode->args.nib[argn])
1714 {
1715 case RD16:
1716 if (operand[argn].mode != RD16)
1717 {
1718 as_bad (_("destination operand must be 16 bit register"));
1719 return;
1720
1721 }
1722 break;
1723
1724 case RS8:
1725 if (operand[argn].mode != RS8)
1726 {
1727 as_bad (_("source operand must be 8 bit register"));
1728 return;
1729 }
1730 break;
1731
1732 case ABS16DST:
1733 if (operand[argn].mode != ABS16DST)
1734 {
1735 as_bad (_("destination operand must be 16bit absolute address"));
1736 return;
1737 }
1738 break;
1739 case RD8:
1740 if (operand[argn].mode != RD8)
1741 {
1742 as_bad (_("destination operand must be 8 bit register"));
1743 return;
1744 }
1745 break;
1746
1747 case ABS16SRC:
1748 if (operand[argn].mode != ABS16SRC)
1749 {
1750 as_bad (_("source operand must be 16bit absolute address"));
1751 return;
1752 }
1753 break;
1754
1755 }
1756 }
1757 }
1758 as_bad (_("invalid operands"));
1759 }
1760
1761
1762 /* If OPERAND is part of an address, adjust its size and value given
1763 that it addresses SIZE bytes.
1764
1765 This function decides how big non-immediate constants are when no
1766 size was explicitly given. It also scales down the assembly-level
1767 displacement in an @(d:2,ERn) operand. */
1768
1769 static void
1770 fix_operand_size (struct h8_op *operand, int size)
1771 {
1772 if (SXmode && (operand->mode & MODE) == DISP)
1773 {
1774 /* If the user didn't specify an operand width, see if we
1775 can use @(d:2,ERn). */
1776 if ((operand->mode & SIZE) == 0
1777 && operand->exp.X_add_symbol == 0
1778 && operand->exp.X_op_symbol == 0
1779 && (operand->exp.X_add_number == size
1780 || operand->exp.X_add_number == size * 2
1781 || operand->exp.X_add_number == size * 3))
1782 operand->mode |= L_2;
1783
1784 /* Scale down the displacement in an @(d:2,ERn) operand.
1785 X_add_number then contains the desired field value. */
1786 if ((operand->mode & SIZE) == L_2)
1787 {
1788 if (operand->exp.X_add_number % size != 0)
1789 as_warn (_("operand/size mis-match"));
1790 operand->exp.X_add_number /= size;
1791 }
1792 }
1793
1794 if ((operand->mode & SIZE) == 0)
1795 switch (operand->mode & MODE)
1796 {
1797 case DISP:
1798 case INDEXB:
1799 case INDEXW:
1800 case INDEXL:
1801 case ABS:
1802 /* Pick a 24-bit address unless we know that a 16-bit address
1803 is safe. get_specific() will relax L_24 into L_32 where
1804 necessary. */
1805 if (Hmode
1806 && !Nmode
1807 && (operand->exp.X_add_number < -32768
1808 || operand->exp.X_add_number > 32767
1809 || operand->exp.X_add_symbol != 0
1810 || operand->exp.X_op_symbol != 0))
1811 operand->mode |= L_24;
1812 else
1813 operand->mode |= L_16;
1814 break;
1815
1816 case PCREL:
1817 /* This condition is long standing, though somewhat suspect. */
1818 if (operand->exp.X_add_number > -128
1819 && operand->exp.X_add_number < 127)
1820 operand->mode |= L_8;
1821 else
1822 operand->mode |= L_16;
1823 break;
1824 }
1825 }
1826
1827
1828 /* This is the guts of the machine-dependent assembler. STR points to
1829 a machine dependent instruction. This function is supposed to emit
1830 the frags/bytes it assembles. */
1831
1832 void
1833 md_assemble (char *str)
1834 {
1835 char *op_start;
1836 char *op_end;
1837 struct h8_op operand[3];
1838 const struct h8_instruction *instruction;
1839 const struct h8_instruction *prev_instruction;
1840
1841 char *dot = 0;
1842 char *slash = 0;
1843 char c;
1844 int size, i;
1845
1846 /* Drop leading whitespace. */
1847 while (*str == ' ')
1848 str++;
1849
1850 /* Find the op code end. */
1851 for (op_start = op_end = str;
1852 *op_end != 0 && *op_end != ' ';
1853 op_end++)
1854 {
1855 if (*op_end == '.')
1856 {
1857 dot = op_end + 1;
1858 *op_end = 0;
1859 op_end += 2;
1860 break;
1861 }
1862 else if (*op_end == '/' && ! slash)
1863 slash = op_end;
1864 }
1865
1866 if (op_end == op_start)
1867 {
1868 as_bad (_("can't find opcode "));
1869 }
1870 c = *op_end;
1871
1872 *op_end = 0;
1873
1874 /* The assembler stops scanning the opcode at slashes, so it fails
1875 to make characters following them lower case. Fix them. */
1876 if (slash)
1877 while (*++slash)
1878 *slash = TOLOWER (*slash);
1879
1880 instruction = (const struct h8_instruction *)
1881 hash_find (opcode_hash_control, op_start);
1882
1883 if (instruction == NULL)
1884 {
1885 as_bad (_("unknown opcode"));
1886 return;
1887 }
1888
1889 /* We used to set input_line_pointer to the result of get_operands,
1890 but that is wrong. Our caller assumes we don't change it. */
1891
1892 operand[0].mode = 0;
1893 operand[1].mode = 0;
1894 operand[2].mode = 0;
1895
1896 if (OP_KIND (instruction->opcode->how) == O_MOVAB
1897 || OP_KIND (instruction->opcode->how) == O_MOVAW
1898 || OP_KIND (instruction->opcode->how) == O_MOVAL)
1899 get_mova_operands (op_end, operand);
1900 else if (OP_KIND (instruction->opcode->how) == O_RTEL
1901 || OP_KIND (instruction->opcode->how) == O_RTSL)
1902 get_rtsl_operands (op_end, operand);
1903 else
1904 get_operands (instruction->noperands, op_end, operand);
1905
1906 *op_end = c;
1907 prev_instruction = instruction;
1908
1909 /* Now we have operands from instruction.
1910 Let's check them out for ldm and stm. */
1911 if (OP_KIND (instruction->opcode->how) == O_LDM)
1912 {
1913 /* The first operand must be @er7+, and the
1914 second operand must be a register pair. */
1915 if ((operand[0].mode != RSINC)
1916 || (operand[0].reg != 7)
1917 || ((operand[1].reg & 0x80000000) == 0))
1918 as_bad (_("invalid operand in ldm"));
1919 }
1920 else if (OP_KIND (instruction->opcode->how) == O_STM)
1921 {
1922 /* The first operand must be a register pair,
1923 and the second operand must be @-er7. */
1924 if (((operand[0].reg & 0x80000000) == 0)
1925 || (operand[1].mode != RDDEC)
1926 || (operand[1].reg != 7))
1927 as_bad (_("invalid operand in stm"));
1928 }
1929
1930 size = SN;
1931 if (dot)
1932 {
1933 switch (TOLOWER (*dot))
1934 {
1935 case 'b':
1936 size = SB;
1937 break;
1938
1939 case 'w':
1940 size = SW;
1941 break;
1942
1943 case 'l':
1944 size = SL;
1945 break;
1946 }
1947 }
1948 if (OP_KIND (instruction->opcode->how) == O_MOVAB ||
1949 OP_KIND (instruction->opcode->how) == O_MOVAW ||
1950 OP_KIND (instruction->opcode->how) == O_MOVAL)
1951 {
1952 switch (operand[0].mode & MODE)
1953 {
1954 case INDEXB:
1955 default:
1956 fix_operand_size (&operand[1], 1);
1957 break;
1958 case INDEXW:
1959 fix_operand_size (&operand[1], 2);
1960 break;
1961 case INDEXL:
1962 fix_operand_size (&operand[1], 4);
1963 break;
1964 }
1965 }
1966 else
1967 {
1968 for (i = 0; i < 3 && operand[i].mode != 0; i++)
1969 switch (size)
1970 {
1971 case SN:
1972 case SB:
1973 default:
1974 fix_operand_size (&operand[i], 1);
1975 break;
1976 case SW:
1977 fix_operand_size (&operand[i], 2);
1978 break;
1979 case SL:
1980 fix_operand_size (&operand[i], 4);
1981 break;
1982 }
1983 }
1984
1985 instruction = get_specific (instruction, operand, size);
1986
1987 if (instruction == 0)
1988 {
1989 /* Couldn't find an opcode which matched the operands. */
1990 char *where = frag_more (2);
1991
1992 where[0] = 0x0;
1993 where[1] = 0x0;
1994 clever_message (prev_instruction, operand);
1995
1996 return;
1997 }
1998
1999 build_bytes (instruction, operand);
2000
2001 dwarf2_emit_insn (instruction->length);
2002 }
2003
2004 symbolS *
2005 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
2006 {
2007 return 0;
2008 }
2009
2010 /* Various routines to kill one day */
2011 /* Equal to MAX_PRECISION in atof-ieee.c */
2012 #define MAX_LITTLENUMS 6
2013
2014 /* Turn a string in input_line_pointer into a floating point constant
2015 of type TYPE, and store the appropriate bytes in *LITP. The number
2016 of LITTLENUMS emitted is stored in *SIZEP. An error message is
2017 returned, or NULL on OK. */
2018
2019 char *
2020 md_atof (int type, char *litP, int *sizeP)
2021 {
2022 int prec;
2023 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2024 LITTLENUM_TYPE *wordP;
2025 char *t;
2026
2027 switch (type)
2028 {
2029 case 'f':
2030 case 'F':
2031 case 's':
2032 case 'S':
2033 prec = 2;
2034 break;
2035
2036 case 'd':
2037 case 'D':
2038 case 'r':
2039 case 'R':
2040 prec = 4;
2041 break;
2042
2043 case 'x':
2044 case 'X':
2045 prec = 6;
2046 break;
2047
2048 case 'p':
2049 case 'P':
2050 prec = 6;
2051 break;
2052
2053 default:
2054 *sizeP = 0;
2055 return _("Bad call to MD_ATOF()");
2056 }
2057 t = atof_ieee (input_line_pointer, type, words);
2058 if (t)
2059 input_line_pointer = t;
2060
2061 *sizeP = prec * sizeof (LITTLENUM_TYPE);
2062 for (wordP = words; prec--;)
2063 {
2064 md_number_to_chars (litP, (long) (*wordP++), sizeof (LITTLENUM_TYPE));
2065 litP += sizeof (LITTLENUM_TYPE);
2066 }
2067 return 0;
2068 }
2069 \f
2070 const char *md_shortopts = "";
2071 struct option md_longopts[] = {
2072 {NULL, no_argument, NULL, 0}
2073 };
2074
2075 size_t md_longopts_size = sizeof (md_longopts);
2076
2077 int
2078 md_parse_option (int c ATTRIBUTE_UNUSED, char *arg ATTRIBUTE_UNUSED)
2079 {
2080 return 0;
2081 }
2082
2083 void
2084 md_show_usage (FILE *stream ATTRIBUTE_UNUSED)
2085 {
2086 }
2087 \f
2088 void tc_aout_fix_to_chars (void);
2089
2090 void
2091 tc_aout_fix_to_chars (void)
2092 {
2093 printf (_("call to tc_aout_fix_to_chars \n"));
2094 abort ();
2095 }
2096
2097 void
2098 md_convert_frag (bfd *headers ATTRIBUTE_UNUSED,
2099 segT seg ATTRIBUTE_UNUSED,
2100 fragS *fragP ATTRIBUTE_UNUSED)
2101 {
2102 printf (_("call to md_convert_frag \n"));
2103 abort ();
2104 }
2105
2106 valueT
2107 md_section_align (segT segment, valueT size)
2108 {
2109 int align = bfd_get_section_alignment (stdoutput, segment);
2110 return ((size + (1 << align) - 1) & (-1 << align));
2111 }
2112
2113 void
2114 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
2115 {
2116 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
2117 long val = *valP;
2118
2119 switch (fixP->fx_size)
2120 {
2121 case 1:
2122 *buf++ = val;
2123 break;
2124 case 2:
2125 *buf++ = (val >> 8);
2126 *buf++ = val;
2127 break;
2128 case 4:
2129 *buf++ = (val >> 24);
2130 *buf++ = (val >> 16);
2131 *buf++ = (val >> 8);
2132 *buf++ = val;
2133 break;
2134 default:
2135 abort ();
2136 }
2137
2138 if (fixP->fx_addsy == NULL && fixP->fx_pcrel == 0)
2139 fixP->fx_done = 1;
2140 }
2141
2142 int
2143 md_estimate_size_before_relax (register fragS *fragP ATTRIBUTE_UNUSED,
2144 register segT segment_type ATTRIBUTE_UNUSED)
2145 {
2146 printf (_("call tomd_estimate_size_before_relax \n"));
2147 abort ();
2148 }
2149
2150 /* Put number into target byte order. */
2151 void
2152 md_number_to_chars (char *ptr, valueT use, int nbytes)
2153 {
2154 number_to_chars_bigendian (ptr, use, nbytes);
2155 }
2156
2157 long
2158 md_pcrel_from (fixS *fixP ATTRIBUTE_UNUSED)
2159 {
2160 abort ();
2161 }
2162
2163 arelent *
2164 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
2165 {
2166 arelent *rel;
2167 bfd_reloc_code_real_type r_type;
2168
2169 if (fixp->fx_addsy && fixp->fx_subsy)
2170 {
2171 if ((S_GET_SEGMENT (fixp->fx_addsy) != S_GET_SEGMENT (fixp->fx_subsy))
2172 || S_GET_SEGMENT (fixp->fx_addsy) == undefined_section)
2173 {
2174 as_bad_where (fixp->fx_file, fixp->fx_line,
2175 "Difference of symbols in different sections is not supported");
2176 return NULL;
2177 }
2178 }
2179
2180 rel = (arelent *) xmalloc (sizeof (arelent));
2181 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
2182 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
2183 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
2184 rel->addend = fixp->fx_offset;
2185
2186 r_type = fixp->fx_r_type;
2187
2188 #define DEBUG 0
2189 #if DEBUG
2190 fprintf (stderr, "%s\n", bfd_get_reloc_code_name (r_type));
2191 fflush(stderr);
2192 #endif
2193 rel->howto = bfd_reloc_type_lookup (stdoutput, r_type);
2194 if (rel->howto == NULL)
2195 {
2196 as_bad_where (fixp->fx_file, fixp->fx_line,
2197 _("Cannot represent relocation type %s"),
2198 bfd_get_reloc_code_name (r_type));
2199 return NULL;
2200 }
2201
2202 return rel;
2203 }