]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-i386.c
Fix compile time warning messages from gcc version 8 about cast between incompatible...
[thirdparty/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 #define XMMWORD_MNEM_SUFFIX 'x'
85 #define YMMWORD_MNEM_SUFFIX 'y'
86 #define ZMMWORD_MNEM_SUFFIX 'z'
87 /* Intel Syntax. Use a non-ascii letter since since it never appears
88 in instructions. */
89 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
90
91 #define END_OF_INSN '\0'
92
93 /*
94 'templates' is for grouping together 'template' structures for opcodes
95 of the same name. This is only used for storing the insns in the grand
96 ole hash table of insns.
97 The templates themselves start at START and range up to (but not including)
98 END.
99 */
100 typedef struct
101 {
102 const insn_template *start;
103 const insn_template *end;
104 }
105 templates;
106
107 /* 386 operand encoding bytes: see 386 book for details of this. */
108 typedef struct
109 {
110 unsigned int regmem; /* codes register or memory operand */
111 unsigned int reg; /* codes register operand (or extended opcode) */
112 unsigned int mode; /* how to interpret regmem & reg */
113 }
114 modrm_byte;
115
116 /* x86-64 extension prefix. */
117 typedef int rex_byte;
118
119 /* 386 opcode byte to code indirect addressing. */
120 typedef struct
121 {
122 unsigned base;
123 unsigned index;
124 unsigned scale;
125 }
126 sib_byte;
127
128 /* x86 arch names, types and features */
129 typedef struct
130 {
131 const char *name; /* arch name */
132 unsigned int len; /* arch string length */
133 enum processor_type type; /* arch type */
134 i386_cpu_flags flags; /* cpu feature flags */
135 unsigned int skip; /* show_arch should skip this. */
136 }
137 arch_entry;
138
139 /* Used to turn off indicated flags. */
140 typedef struct
141 {
142 const char *name; /* arch name */
143 unsigned int len; /* arch string length */
144 i386_cpu_flags flags; /* cpu feature flags */
145 }
146 noarch_entry;
147
148 static void update_code_flag (int, int);
149 static void set_code_flag (int);
150 static void set_16bit_gcc_code_flag (int);
151 static void set_intel_syntax (int);
152 static void set_intel_mnemonic (int);
153 static void set_allow_index_reg (int);
154 static void set_check (int);
155 static void set_cpu_arch (int);
156 #ifdef TE_PE
157 static void pe_directive_secrel (int);
158 #endif
159 static void signed_cons (int);
160 static char *output_invalid (int c);
161 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
162 const char *);
163 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
164 const char *);
165 static int i386_att_operand (char *);
166 static int i386_intel_operand (char *, int);
167 static int i386_intel_simplify (expressionS *);
168 static int i386_intel_parse_name (const char *, expressionS *);
169 static const reg_entry *parse_register (char *, char **);
170 static char *parse_insn (char *, char *);
171 static char *parse_operands (char *, const char *);
172 static void swap_operands (void);
173 static void swap_2_operands (int, int);
174 static void optimize_imm (void);
175 static void optimize_disp (void);
176 static const insn_template *match_template (char);
177 static int check_string (void);
178 static int process_suffix (void);
179 static int check_byte_reg (void);
180 static int check_long_reg (void);
181 static int check_qword_reg (void);
182 static int check_word_reg (void);
183 static int finalize_imm (void);
184 static int process_operands (void);
185 static const seg_entry *build_modrm_byte (void);
186 static void output_insn (void);
187 static void output_imm (fragS *, offsetT);
188 static void output_disp (fragS *, offsetT);
189 #ifndef I386COFF
190 static void s_bss (int);
191 #endif
192 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
193 static void handle_large_common (int small ATTRIBUTE_UNUSED);
194 #endif
195
196 static const char *default_arch = DEFAULT_ARCH;
197
198 /* This struct describes rounding control and SAE in the instruction. */
199 struct RC_Operation
200 {
201 enum rc_type
202 {
203 rne = 0,
204 rd,
205 ru,
206 rz,
207 saeonly
208 } type;
209 int operand;
210 };
211
212 static struct RC_Operation rc_op;
213
214 /* The struct describes masking, applied to OPERAND in the instruction.
215 MASK is a pointer to the corresponding mask register. ZEROING tells
216 whether merging or zeroing mask is used. */
217 struct Mask_Operation
218 {
219 const reg_entry *mask;
220 unsigned int zeroing;
221 /* The operand where this operation is associated. */
222 int operand;
223 };
224
225 static struct Mask_Operation mask_op;
226
227 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
228 broadcast factor. */
229 struct Broadcast_Operation
230 {
231 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
232 int type;
233
234 /* Index of broadcasted operand. */
235 int operand;
236 };
237
238 static struct Broadcast_Operation broadcast_op;
239
240 /* VEX prefix. */
241 typedef struct
242 {
243 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
244 unsigned char bytes[4];
245 unsigned int length;
246 /* Destination or source register specifier. */
247 const reg_entry *register_specifier;
248 } vex_prefix;
249
250 /* 'md_assemble ()' gathers together information and puts it into a
251 i386_insn. */
252
253 union i386_op
254 {
255 expressionS *disps;
256 expressionS *imms;
257 const reg_entry *regs;
258 };
259
260 enum i386_error
261 {
262 operand_size_mismatch,
263 operand_type_mismatch,
264 register_type_mismatch,
265 number_of_operands_mismatch,
266 invalid_instruction_suffix,
267 bad_imm4,
268 old_gcc_only,
269 unsupported_with_intel_mnemonic,
270 unsupported_syntax,
271 unsupported,
272 invalid_vsib_address,
273 invalid_vector_register_set,
274 unsupported_vector_index_register,
275 unsupported_broadcast,
276 broadcast_not_on_src_operand,
277 broadcast_needed,
278 unsupported_masking,
279 mask_not_on_destination,
280 no_default_mask,
281 unsupported_rc_sae,
282 rc_sae_operand_not_last_imm,
283 invalid_register_operand,
284 };
285
286 struct _i386_insn
287 {
288 /* TM holds the template for the insn were currently assembling. */
289 insn_template tm;
290
291 /* SUFFIX holds the instruction size suffix for byte, word, dword
292 or qword, if given. */
293 char suffix;
294
295 /* OPERANDS gives the number of given operands. */
296 unsigned int operands;
297
298 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
299 of given register, displacement, memory operands and immediate
300 operands. */
301 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
302
303 /* TYPES [i] is the type (see above #defines) which tells us how to
304 use OP[i] for the corresponding operand. */
305 i386_operand_type types[MAX_OPERANDS];
306
307 /* Displacement expression, immediate expression, or register for each
308 operand. */
309 union i386_op op[MAX_OPERANDS];
310
311 /* Flags for operands. */
312 unsigned int flags[MAX_OPERANDS];
313 #define Operand_PCrel 1
314
315 /* Relocation type for operand */
316 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
317
318 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
319 the base index byte below. */
320 const reg_entry *base_reg;
321 const reg_entry *index_reg;
322 unsigned int log2_scale_factor;
323
324 /* SEG gives the seg_entries of this insn. They are zero unless
325 explicit segment overrides are given. */
326 const seg_entry *seg[2];
327
328 /* Copied first memory operand string, for re-checking. */
329 char *memop1_string;
330
331 /* PREFIX holds all the given prefix opcodes (usually null).
332 PREFIXES is the number of prefix opcodes. */
333 unsigned int prefixes;
334 unsigned char prefix[MAX_PREFIXES];
335
336 /* RM and SIB are the modrm byte and the sib byte where the
337 addressing modes of this insn are encoded. */
338 modrm_byte rm;
339 rex_byte rex;
340 rex_byte vrex;
341 sib_byte sib;
342 vex_prefix vex;
343
344 /* Masking attributes. */
345 struct Mask_Operation *mask;
346
347 /* Rounding control and SAE attributes. */
348 struct RC_Operation *rounding;
349
350 /* Broadcasting attributes. */
351 struct Broadcast_Operation *broadcast;
352
353 /* Compressed disp8*N attribute. */
354 unsigned int memshift;
355
356 /* Prefer load or store in encoding. */
357 enum
358 {
359 dir_encoding_default = 0,
360 dir_encoding_load,
361 dir_encoding_store
362 } dir_encoding;
363
364 /* Prefer 8bit or 32bit displacement in encoding. */
365 enum
366 {
367 disp_encoding_default = 0,
368 disp_encoding_8bit,
369 disp_encoding_32bit
370 } disp_encoding;
371
372 /* How to encode vector instructions. */
373 enum
374 {
375 vex_encoding_default = 0,
376 vex_encoding_vex2,
377 vex_encoding_vex3,
378 vex_encoding_evex
379 } vec_encoding;
380
381 /* REP prefix. */
382 const char *rep_prefix;
383
384 /* HLE prefix. */
385 const char *hle_prefix;
386
387 /* Have BND prefix. */
388 const char *bnd_prefix;
389
390 /* Have NOTRACK prefix. */
391 const char *notrack_prefix;
392
393 /* Error message. */
394 enum i386_error error;
395 };
396
397 typedef struct _i386_insn i386_insn;
398
399 /* Link RC type with corresponding string, that'll be looked for in
400 asm. */
401 struct RC_name
402 {
403 enum rc_type type;
404 const char *name;
405 unsigned int len;
406 };
407
408 static const struct RC_name RC_NamesTable[] =
409 {
410 { rne, STRING_COMMA_LEN ("rn-sae") },
411 { rd, STRING_COMMA_LEN ("rd-sae") },
412 { ru, STRING_COMMA_LEN ("ru-sae") },
413 { rz, STRING_COMMA_LEN ("rz-sae") },
414 { saeonly, STRING_COMMA_LEN ("sae") },
415 };
416
417 /* List of chars besides those in app.c:symbol_chars that can start an
418 operand. Used to prevent the scrubber eating vital white-space. */
419 const char extra_symbol_chars[] = "*%-([{}"
420 #ifdef LEX_AT
421 "@"
422 #endif
423 #ifdef LEX_QM
424 "?"
425 #endif
426 ;
427
428 #if (defined (TE_I386AIX) \
429 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
430 && !defined (TE_GNU) \
431 && !defined (TE_LINUX) \
432 && !defined (TE_NACL) \
433 && !defined (TE_NETWARE) \
434 && !defined (TE_FreeBSD) \
435 && !defined (TE_DragonFly) \
436 && !defined (TE_NetBSD)))
437 /* This array holds the chars that always start a comment. If the
438 pre-processor is disabled, these aren't very useful. The option
439 --divide will remove '/' from this list. */
440 const char *i386_comment_chars = "#/";
441 #define SVR4_COMMENT_CHARS 1
442 #define PREFIX_SEPARATOR '\\'
443
444 #else
445 const char *i386_comment_chars = "#";
446 #define PREFIX_SEPARATOR '/'
447 #endif
448
449 /* This array holds the chars that only start a comment at the beginning of
450 a line. If the line seems to have the form '# 123 filename'
451 .line and .file directives will appear in the pre-processed output.
452 Note that input_file.c hand checks for '#' at the beginning of the
453 first line of the input file. This is because the compiler outputs
454 #NO_APP at the beginning of its output.
455 Also note that comments started like this one will always work if
456 '/' isn't otherwise defined. */
457 const char line_comment_chars[] = "#/";
458
459 const char line_separator_chars[] = ";";
460
461 /* Chars that can be used to separate mant from exp in floating point
462 nums. */
463 const char EXP_CHARS[] = "eE";
464
465 /* Chars that mean this number is a floating point constant
466 As in 0f12.456
467 or 0d1.2345e12. */
468 const char FLT_CHARS[] = "fFdDxX";
469
470 /* Tables for lexical analysis. */
471 static char mnemonic_chars[256];
472 static char register_chars[256];
473 static char operand_chars[256];
474 static char identifier_chars[256];
475 static char digit_chars[256];
476
477 /* Lexical macros. */
478 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
479 #define is_operand_char(x) (operand_chars[(unsigned char) x])
480 #define is_register_char(x) (register_chars[(unsigned char) x])
481 #define is_space_char(x) ((x) == ' ')
482 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
483 #define is_digit_char(x) (digit_chars[(unsigned char) x])
484
485 /* All non-digit non-letter characters that may occur in an operand. */
486 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
487
488 /* md_assemble() always leaves the strings it's passed unaltered. To
489 effect this we maintain a stack of saved characters that we've smashed
490 with '\0's (indicating end of strings for various sub-fields of the
491 assembler instruction). */
492 static char save_stack[32];
493 static char *save_stack_p;
494 #define END_STRING_AND_SAVE(s) \
495 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
496 #define RESTORE_END_STRING(s) \
497 do { *(s) = *--save_stack_p; } while (0)
498
499 /* The instruction we're assembling. */
500 static i386_insn i;
501
502 /* Possible templates for current insn. */
503 static const templates *current_templates;
504
505 /* Per instruction expressionS buffers: max displacements & immediates. */
506 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
507 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
508
509 /* Current operand we are working on. */
510 static int this_operand = -1;
511
512 /* We support four different modes. FLAG_CODE variable is used to distinguish
513 these. */
514
515 enum flag_code {
516 CODE_32BIT,
517 CODE_16BIT,
518 CODE_64BIT };
519
520 static enum flag_code flag_code;
521 static unsigned int object_64bit;
522 static unsigned int disallow_64bit_reloc;
523 static int use_rela_relocations = 0;
524
525 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
526 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
527 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
528
529 /* The ELF ABI to use. */
530 enum x86_elf_abi
531 {
532 I386_ABI,
533 X86_64_ABI,
534 X86_64_X32_ABI
535 };
536
537 static enum x86_elf_abi x86_elf_abi = I386_ABI;
538 #endif
539
540 #if defined (TE_PE) || defined (TE_PEP)
541 /* Use big object file format. */
542 static int use_big_obj = 0;
543 #endif
544
545 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
546 /* 1 if generating code for a shared library. */
547 static int shared = 0;
548 #endif
549
550 /* 1 for intel syntax,
551 0 if att syntax. */
552 static int intel_syntax = 0;
553
554 /* 1 for Intel64 ISA,
555 0 if AMD64 ISA. */
556 static int intel64;
557
558 /* 1 for intel mnemonic,
559 0 if att mnemonic. */
560 static int intel_mnemonic = !SYSV386_COMPAT;
561
562 /* 1 if support old (<= 2.8.1) versions of gcc. */
563 static int old_gcc = OLDGCC_COMPAT;
564
565 /* 1 if pseudo registers are permitted. */
566 static int allow_pseudo_reg = 0;
567
568 /* 1 if register prefix % not required. */
569 static int allow_naked_reg = 0;
570
571 /* 1 if the assembler should add BND prefix for all control-transferring
572 instructions supporting it, even if this prefix wasn't specified
573 explicitly. */
574 static int add_bnd_prefix = 0;
575
576 /* 1 if pseudo index register, eiz/riz, is allowed . */
577 static int allow_index_reg = 0;
578
579 /* 1 if the assembler should ignore LOCK prefix, even if it was
580 specified explicitly. */
581 static int omit_lock_prefix = 0;
582
583 /* 1 if the assembler should encode lfence, mfence, and sfence as
584 "lock addl $0, (%{re}sp)". */
585 static int avoid_fence = 0;
586
587 /* 1 if the assembler should generate relax relocations. */
588
589 static int generate_relax_relocations
590 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
591
592 static enum check_kind
593 {
594 check_none = 0,
595 check_warning,
596 check_error
597 }
598 sse_check, operand_check = check_warning;
599
600 /* Register prefix used for error message. */
601 static const char *register_prefix = "%";
602
603 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
604 leave, push, and pop instructions so that gcc has the same stack
605 frame as in 32 bit mode. */
606 static char stackop_size = '\0';
607
608 /* Non-zero to optimize code alignment. */
609 int optimize_align_code = 1;
610
611 /* Non-zero to quieten some warnings. */
612 static int quiet_warnings = 0;
613
614 /* CPU name. */
615 static const char *cpu_arch_name = NULL;
616 static char *cpu_sub_arch_name = NULL;
617
618 /* CPU feature flags. */
619 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
620
621 /* If we have selected a cpu we are generating instructions for. */
622 static int cpu_arch_tune_set = 0;
623
624 /* Cpu we are generating instructions for. */
625 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
626
627 /* CPU feature flags of cpu we are generating instructions for. */
628 static i386_cpu_flags cpu_arch_tune_flags;
629
630 /* CPU instruction set architecture used. */
631 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
632
633 /* CPU feature flags of instruction set architecture used. */
634 i386_cpu_flags cpu_arch_isa_flags;
635
636 /* If set, conditional jumps are not automatically promoted to handle
637 larger than a byte offset. */
638 static unsigned int no_cond_jump_promotion = 0;
639
640 /* Encode SSE instructions with VEX prefix. */
641 static unsigned int sse2avx;
642
643 /* Encode scalar AVX instructions with specific vector length. */
644 static enum
645 {
646 vex128 = 0,
647 vex256
648 } avxscalar;
649
650 /* Encode scalar EVEX LIG instructions with specific vector length. */
651 static enum
652 {
653 evexl128 = 0,
654 evexl256,
655 evexl512
656 } evexlig;
657
658 /* Encode EVEX WIG instructions with specific evex.w. */
659 static enum
660 {
661 evexw0 = 0,
662 evexw1
663 } evexwig;
664
665 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
666 static enum rc_type evexrcig = rne;
667
668 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
669 static symbolS *GOT_symbol;
670
671 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
672 unsigned int x86_dwarf2_return_column;
673
674 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
675 int x86_cie_data_alignment;
676
677 /* Interface to relax_segment.
678 There are 3 major relax states for 386 jump insns because the
679 different types of jumps add different sizes to frags when we're
680 figuring out what sort of jump to choose to reach a given label. */
681
682 /* Types. */
683 #define UNCOND_JUMP 0
684 #define COND_JUMP 1
685 #define COND_JUMP86 2
686
687 /* Sizes. */
688 #define CODE16 1
689 #define SMALL 0
690 #define SMALL16 (SMALL | CODE16)
691 #define BIG 2
692 #define BIG16 (BIG | CODE16)
693
694 #ifndef INLINE
695 #ifdef __GNUC__
696 #define INLINE __inline__
697 #else
698 #define INLINE
699 #endif
700 #endif
701
702 #define ENCODE_RELAX_STATE(type, size) \
703 ((relax_substateT) (((type) << 2) | (size)))
704 #define TYPE_FROM_RELAX_STATE(s) \
705 ((s) >> 2)
706 #define DISP_SIZE_FROM_RELAX_STATE(s) \
707 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
708
709 /* This table is used by relax_frag to promote short jumps to long
710 ones where necessary. SMALL (short) jumps may be promoted to BIG
711 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
712 don't allow a short jump in a 32 bit code segment to be promoted to
713 a 16 bit offset jump because it's slower (requires data size
714 prefix), and doesn't work, unless the destination is in the bottom
715 64k of the code segment (The top 16 bits of eip are zeroed). */
716
717 const relax_typeS md_relax_table[] =
718 {
719 /* The fields are:
720 1) most positive reach of this state,
721 2) most negative reach of this state,
722 3) how many bytes this mode will have in the variable part of the frag
723 4) which index into the table to try if we can't fit into this one. */
724
725 /* UNCOND_JUMP states. */
726 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
727 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
728 /* dword jmp adds 4 bytes to frag:
729 0 extra opcode bytes, 4 displacement bytes. */
730 {0, 0, 4, 0},
731 /* word jmp adds 2 byte2 to frag:
732 0 extra opcode bytes, 2 displacement bytes. */
733 {0, 0, 2, 0},
734
735 /* COND_JUMP states. */
736 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
737 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
738 /* dword conditionals adds 5 bytes to frag:
739 1 extra opcode byte, 4 displacement bytes. */
740 {0, 0, 5, 0},
741 /* word conditionals add 3 bytes to frag:
742 1 extra opcode byte, 2 displacement bytes. */
743 {0, 0, 3, 0},
744
745 /* COND_JUMP86 states. */
746 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
747 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
748 /* dword conditionals adds 5 bytes to frag:
749 1 extra opcode byte, 4 displacement bytes. */
750 {0, 0, 5, 0},
751 /* word conditionals add 4 bytes to frag:
752 1 displacement byte and a 3 byte long branch insn. */
753 {0, 0, 4, 0}
754 };
755
756 static const arch_entry cpu_arch[] =
757 {
758 /* Do not replace the first two entries - i386_target_format()
759 relies on them being there in this order. */
760 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
761 CPU_GENERIC32_FLAGS, 0 },
762 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
763 CPU_GENERIC64_FLAGS, 0 },
764 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
765 CPU_NONE_FLAGS, 0 },
766 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
767 CPU_I186_FLAGS, 0 },
768 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
769 CPU_I286_FLAGS, 0 },
770 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
771 CPU_I386_FLAGS, 0 },
772 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
773 CPU_I486_FLAGS, 0 },
774 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
775 CPU_I586_FLAGS, 0 },
776 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
777 CPU_I686_FLAGS, 0 },
778 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
779 CPU_I586_FLAGS, 0 },
780 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
781 CPU_PENTIUMPRO_FLAGS, 0 },
782 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
783 CPU_P2_FLAGS, 0 },
784 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
785 CPU_P3_FLAGS, 0 },
786 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
787 CPU_P4_FLAGS, 0 },
788 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
789 CPU_CORE_FLAGS, 0 },
790 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
791 CPU_NOCONA_FLAGS, 0 },
792 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
793 CPU_CORE_FLAGS, 1 },
794 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
795 CPU_CORE_FLAGS, 0 },
796 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
797 CPU_CORE2_FLAGS, 1 },
798 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
799 CPU_CORE2_FLAGS, 0 },
800 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
801 CPU_COREI7_FLAGS, 0 },
802 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
803 CPU_L1OM_FLAGS, 0 },
804 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
805 CPU_K1OM_FLAGS, 0 },
806 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
807 CPU_IAMCU_FLAGS, 0 },
808 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
809 CPU_K6_FLAGS, 0 },
810 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
811 CPU_K6_2_FLAGS, 0 },
812 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
813 CPU_ATHLON_FLAGS, 0 },
814 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
815 CPU_K8_FLAGS, 1 },
816 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
817 CPU_K8_FLAGS, 0 },
818 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
819 CPU_K8_FLAGS, 0 },
820 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
821 CPU_AMDFAM10_FLAGS, 0 },
822 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
823 CPU_BDVER1_FLAGS, 0 },
824 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
825 CPU_BDVER2_FLAGS, 0 },
826 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
827 CPU_BDVER3_FLAGS, 0 },
828 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
829 CPU_BDVER4_FLAGS, 0 },
830 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
831 CPU_ZNVER1_FLAGS, 0 },
832 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
833 CPU_BTVER1_FLAGS, 0 },
834 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
835 CPU_BTVER2_FLAGS, 0 },
836 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
837 CPU_8087_FLAGS, 0 },
838 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
839 CPU_287_FLAGS, 0 },
840 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
841 CPU_387_FLAGS, 0 },
842 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
843 CPU_687_FLAGS, 0 },
844 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
845 CPU_MMX_FLAGS, 0 },
846 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
847 CPU_SSE_FLAGS, 0 },
848 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
849 CPU_SSE2_FLAGS, 0 },
850 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
851 CPU_SSE3_FLAGS, 0 },
852 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
853 CPU_SSSE3_FLAGS, 0 },
854 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
855 CPU_SSE4_1_FLAGS, 0 },
856 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
857 CPU_SSE4_2_FLAGS, 0 },
858 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
859 CPU_SSE4_2_FLAGS, 0 },
860 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
861 CPU_AVX_FLAGS, 0 },
862 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
863 CPU_AVX2_FLAGS, 0 },
864 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
865 CPU_AVX512F_FLAGS, 0 },
866 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
867 CPU_AVX512CD_FLAGS, 0 },
868 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
869 CPU_AVX512ER_FLAGS, 0 },
870 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
871 CPU_AVX512PF_FLAGS, 0 },
872 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
873 CPU_AVX512DQ_FLAGS, 0 },
874 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
875 CPU_AVX512BW_FLAGS, 0 },
876 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
877 CPU_AVX512VL_FLAGS, 0 },
878 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
879 CPU_VMX_FLAGS, 0 },
880 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
881 CPU_VMFUNC_FLAGS, 0 },
882 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
883 CPU_SMX_FLAGS, 0 },
884 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
885 CPU_XSAVE_FLAGS, 0 },
886 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
887 CPU_XSAVEOPT_FLAGS, 0 },
888 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
889 CPU_XSAVEC_FLAGS, 0 },
890 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
891 CPU_XSAVES_FLAGS, 0 },
892 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
893 CPU_AES_FLAGS, 0 },
894 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
895 CPU_PCLMUL_FLAGS, 0 },
896 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
897 CPU_PCLMUL_FLAGS, 1 },
898 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
899 CPU_FSGSBASE_FLAGS, 0 },
900 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
901 CPU_RDRND_FLAGS, 0 },
902 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
903 CPU_F16C_FLAGS, 0 },
904 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
905 CPU_BMI2_FLAGS, 0 },
906 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
907 CPU_FMA_FLAGS, 0 },
908 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
909 CPU_FMA4_FLAGS, 0 },
910 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
911 CPU_XOP_FLAGS, 0 },
912 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
913 CPU_LWP_FLAGS, 0 },
914 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
915 CPU_MOVBE_FLAGS, 0 },
916 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
917 CPU_CX16_FLAGS, 0 },
918 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
919 CPU_EPT_FLAGS, 0 },
920 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
921 CPU_LZCNT_FLAGS, 0 },
922 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
923 CPU_HLE_FLAGS, 0 },
924 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
925 CPU_RTM_FLAGS, 0 },
926 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
927 CPU_INVPCID_FLAGS, 0 },
928 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
929 CPU_CLFLUSH_FLAGS, 0 },
930 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
931 CPU_NOP_FLAGS, 0 },
932 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
933 CPU_SYSCALL_FLAGS, 0 },
934 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
935 CPU_RDTSCP_FLAGS, 0 },
936 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
937 CPU_3DNOW_FLAGS, 0 },
938 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
939 CPU_3DNOWA_FLAGS, 0 },
940 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
941 CPU_PADLOCK_FLAGS, 0 },
942 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
943 CPU_SVME_FLAGS, 1 },
944 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
945 CPU_SVME_FLAGS, 0 },
946 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
947 CPU_SSE4A_FLAGS, 0 },
948 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
949 CPU_ABM_FLAGS, 0 },
950 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
951 CPU_BMI_FLAGS, 0 },
952 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
953 CPU_TBM_FLAGS, 0 },
954 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
955 CPU_ADX_FLAGS, 0 },
956 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
957 CPU_RDSEED_FLAGS, 0 },
958 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
959 CPU_PRFCHW_FLAGS, 0 },
960 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
961 CPU_SMAP_FLAGS, 0 },
962 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
963 CPU_MPX_FLAGS, 0 },
964 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
965 CPU_SHA_FLAGS, 0 },
966 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
967 CPU_CLFLUSHOPT_FLAGS, 0 },
968 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
969 CPU_PREFETCHWT1_FLAGS, 0 },
970 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
971 CPU_SE1_FLAGS, 0 },
972 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
973 CPU_CLWB_FLAGS, 0 },
974 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
975 CPU_AVX512IFMA_FLAGS, 0 },
976 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
977 CPU_AVX512VBMI_FLAGS, 0 },
978 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
979 CPU_AVX512_4FMAPS_FLAGS, 0 },
980 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
981 CPU_AVX512_4VNNIW_FLAGS, 0 },
982 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
983 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
984 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
985 CPU_AVX512_VBMI2_FLAGS, 0 },
986 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
987 CPU_AVX512_VNNI_FLAGS, 0 },
988 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
989 CPU_AVX512_BITALG_FLAGS, 0 },
990 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
991 CPU_CLZERO_FLAGS, 0 },
992 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
993 CPU_MWAITX_FLAGS, 0 },
994 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
995 CPU_OSPKE_FLAGS, 0 },
996 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
997 CPU_RDPID_FLAGS, 0 },
998 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
999 CPU_PTWRITE_FLAGS, 0 },
1000 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1001 CPU_IBT_FLAGS, 0 },
1002 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1003 CPU_SHSTK_FLAGS, 0 },
1004 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1005 CPU_GFNI_FLAGS, 0 },
1006 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1007 CPU_VAES_FLAGS, 0 },
1008 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1009 CPU_VPCLMULQDQ_FLAGS, 0 },
1010 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1011 CPU_WBNOINVD_FLAGS, 0 },
1012 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1013 CPU_PCONFIG_FLAGS, 0 },
1014 };
1015
1016 static const noarch_entry cpu_noarch[] =
1017 {
1018 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1019 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1020 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1021 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1022 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1023 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1024 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1025 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1026 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1027 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1028 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1029 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1030 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1031 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1032 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1033 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1034 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1035 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1036 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1037 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1038 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1039 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1040 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1041 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1042 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1043 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1044 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1045 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1046 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1047 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1048 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1049 };
1050
1051 #ifdef I386COFF
1052 /* Like s_lcomm_internal in gas/read.c but the alignment string
1053 is allowed to be optional. */
1054
1055 static symbolS *
1056 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1057 {
1058 addressT align = 0;
1059
1060 SKIP_WHITESPACE ();
1061
1062 if (needs_align
1063 && *input_line_pointer == ',')
1064 {
1065 align = parse_align (needs_align - 1);
1066
1067 if (align == (addressT) -1)
1068 return NULL;
1069 }
1070 else
1071 {
1072 if (size >= 8)
1073 align = 3;
1074 else if (size >= 4)
1075 align = 2;
1076 else if (size >= 2)
1077 align = 1;
1078 else
1079 align = 0;
1080 }
1081
1082 bss_alloc (symbolP, size, align);
1083 return symbolP;
1084 }
1085
1086 static void
1087 pe_lcomm (int needs_align)
1088 {
1089 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1090 }
1091 #endif
1092
1093 const pseudo_typeS md_pseudo_table[] =
1094 {
1095 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1096 {"align", s_align_bytes, 0},
1097 #else
1098 {"align", s_align_ptwo, 0},
1099 #endif
1100 {"arch", set_cpu_arch, 0},
1101 #ifndef I386COFF
1102 {"bss", s_bss, 0},
1103 #else
1104 {"lcomm", pe_lcomm, 1},
1105 #endif
1106 {"ffloat", float_cons, 'f'},
1107 {"dfloat", float_cons, 'd'},
1108 {"tfloat", float_cons, 'x'},
1109 {"value", cons, 2},
1110 {"slong", signed_cons, 4},
1111 {"noopt", s_ignore, 0},
1112 {"optim", s_ignore, 0},
1113 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1114 {"code16", set_code_flag, CODE_16BIT},
1115 {"code32", set_code_flag, CODE_32BIT},
1116 #ifdef BFD64
1117 {"code64", set_code_flag, CODE_64BIT},
1118 #endif
1119 {"intel_syntax", set_intel_syntax, 1},
1120 {"att_syntax", set_intel_syntax, 0},
1121 {"intel_mnemonic", set_intel_mnemonic, 1},
1122 {"att_mnemonic", set_intel_mnemonic, 0},
1123 {"allow_index_reg", set_allow_index_reg, 1},
1124 {"disallow_index_reg", set_allow_index_reg, 0},
1125 {"sse_check", set_check, 0},
1126 {"operand_check", set_check, 1},
1127 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1128 {"largecomm", handle_large_common, 0},
1129 #else
1130 {"file", dwarf2_directive_file, 0},
1131 {"loc", dwarf2_directive_loc, 0},
1132 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1133 #endif
1134 #ifdef TE_PE
1135 {"secrel32", pe_directive_secrel, 0},
1136 #endif
1137 {0, 0, 0}
1138 };
1139
1140 /* For interface with expression (). */
1141 extern char *input_line_pointer;
1142
1143 /* Hash table for instruction mnemonic lookup. */
1144 static struct hash_control *op_hash;
1145
1146 /* Hash table for register lookup. */
1147 static struct hash_control *reg_hash;
1148 \f
1149 void
1150 i386_align_code (fragS *fragP, int count)
1151 {
1152 /* Various efficient no-op patterns for aligning code labels.
1153 Note: Don't try to assemble the instructions in the comments.
1154 0L and 0w are not legal. */
1155 static const unsigned char f32_1[] =
1156 {0x90}; /* nop */
1157 static const unsigned char f32_2[] =
1158 {0x66,0x90}; /* xchg %ax,%ax */
1159 static const unsigned char f32_3[] =
1160 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1161 static const unsigned char f32_4[] =
1162 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1163 static const unsigned char f32_5[] =
1164 {0x90, /* nop */
1165 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1166 static const unsigned char f32_6[] =
1167 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1168 static const unsigned char f32_7[] =
1169 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1170 static const unsigned char f32_8[] =
1171 {0x90, /* nop */
1172 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1173 static const unsigned char f32_9[] =
1174 {0x89,0xf6, /* movl %esi,%esi */
1175 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1176 static const unsigned char f32_10[] =
1177 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
1178 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1179 static const unsigned char f32_11[] =
1180 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
1181 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1182 static const unsigned char f32_12[] =
1183 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1184 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
1185 static const unsigned char f32_13[] =
1186 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1187 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1188 static const unsigned char f32_14[] =
1189 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
1190 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1191 static const unsigned char f16_3[] =
1192 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
1193 static const unsigned char f16_4[] =
1194 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1195 static const unsigned char f16_5[] =
1196 {0x90, /* nop */
1197 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1198 static const unsigned char f16_6[] =
1199 {0x89,0xf6, /* mov %si,%si */
1200 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1201 static const unsigned char f16_7[] =
1202 {0x8d,0x74,0x00, /* lea 0(%si),%si */
1203 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1204 static const unsigned char f16_8[] =
1205 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
1206 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1207 static const unsigned char jump_31[] =
1208 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
1209 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1210 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1211 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
1212 static const unsigned char *const f32_patt[] = {
1213 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
1214 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
1215 };
1216 static const unsigned char *const f16_patt[] = {
1217 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
1218 };
1219 /* nopl (%[re]ax) */
1220 static const unsigned char alt_3[] =
1221 {0x0f,0x1f,0x00};
1222 /* nopl 0(%[re]ax) */
1223 static const unsigned char alt_4[] =
1224 {0x0f,0x1f,0x40,0x00};
1225 /* nopl 0(%[re]ax,%[re]ax,1) */
1226 static const unsigned char alt_5[] =
1227 {0x0f,0x1f,0x44,0x00,0x00};
1228 /* nopw 0(%[re]ax,%[re]ax,1) */
1229 static const unsigned char alt_6[] =
1230 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1231 /* nopl 0L(%[re]ax) */
1232 static const unsigned char alt_7[] =
1233 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1234 /* nopl 0L(%[re]ax,%[re]ax,1) */
1235 static const unsigned char alt_8[] =
1236 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1237 /* nopw 0L(%[re]ax,%[re]ax,1) */
1238 static const unsigned char alt_9[] =
1239 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1240 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1241 static const unsigned char alt_10[] =
1242 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1243 static const unsigned char *const alt_patt[] = {
1244 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1245 alt_9, alt_10
1246 };
1247
1248 /* Only align for at least a positive non-zero boundary. */
1249 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
1250 return;
1251
1252 /* We need to decide which NOP sequence to use for 32bit and
1253 64bit. When -mtune= is used:
1254
1255 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1256 PROCESSOR_GENERIC32, f32_patt will be used.
1257 2. For the rest, alt_patt will be used.
1258
1259 When -mtune= isn't used, alt_patt will be used if
1260 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1261 be used.
1262
1263 When -march= or .arch is used, we can't use anything beyond
1264 cpu_arch_isa_flags. */
1265
1266 if (flag_code == CODE_16BIT)
1267 {
1268 if (count > 8)
1269 {
1270 memcpy (fragP->fr_literal + fragP->fr_fix,
1271 jump_31, count);
1272 /* Adjust jump offset. */
1273 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1274 }
1275 else
1276 memcpy (fragP->fr_literal + fragP->fr_fix,
1277 f16_patt[count - 1], count);
1278 }
1279 else
1280 {
1281 const unsigned char *const *patt = NULL;
1282
1283 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1284 {
1285 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1286 switch (cpu_arch_tune)
1287 {
1288 case PROCESSOR_UNKNOWN:
1289 /* We use cpu_arch_isa_flags to check if we SHOULD
1290 optimize with nops. */
1291 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1292 patt = alt_patt;
1293 else
1294 patt = f32_patt;
1295 break;
1296 case PROCESSOR_PENTIUM4:
1297 case PROCESSOR_NOCONA:
1298 case PROCESSOR_CORE:
1299 case PROCESSOR_CORE2:
1300 case PROCESSOR_COREI7:
1301 case PROCESSOR_L1OM:
1302 case PROCESSOR_K1OM:
1303 case PROCESSOR_GENERIC64:
1304 case PROCESSOR_K6:
1305 case PROCESSOR_ATHLON:
1306 case PROCESSOR_K8:
1307 case PROCESSOR_AMDFAM10:
1308 case PROCESSOR_BD:
1309 case PROCESSOR_ZNVER:
1310 case PROCESSOR_BT:
1311 patt = alt_patt;
1312 break;
1313 case PROCESSOR_I386:
1314 case PROCESSOR_I486:
1315 case PROCESSOR_PENTIUM:
1316 case PROCESSOR_PENTIUMPRO:
1317 case PROCESSOR_IAMCU:
1318 case PROCESSOR_GENERIC32:
1319 patt = f32_patt;
1320 break;
1321 }
1322 }
1323 else
1324 {
1325 switch (fragP->tc_frag_data.tune)
1326 {
1327 case PROCESSOR_UNKNOWN:
1328 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1329 PROCESSOR_UNKNOWN. */
1330 abort ();
1331 break;
1332
1333 case PROCESSOR_I386:
1334 case PROCESSOR_I486:
1335 case PROCESSOR_PENTIUM:
1336 case PROCESSOR_IAMCU:
1337 case PROCESSOR_K6:
1338 case PROCESSOR_ATHLON:
1339 case PROCESSOR_K8:
1340 case PROCESSOR_AMDFAM10:
1341 case PROCESSOR_BD:
1342 case PROCESSOR_ZNVER:
1343 case PROCESSOR_BT:
1344 case PROCESSOR_GENERIC32:
1345 /* We use cpu_arch_isa_flags to check if we CAN optimize
1346 with nops. */
1347 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1348 patt = alt_patt;
1349 else
1350 patt = f32_patt;
1351 break;
1352 case PROCESSOR_PENTIUMPRO:
1353 case PROCESSOR_PENTIUM4:
1354 case PROCESSOR_NOCONA:
1355 case PROCESSOR_CORE:
1356 case PROCESSOR_CORE2:
1357 case PROCESSOR_COREI7:
1358 case PROCESSOR_L1OM:
1359 case PROCESSOR_K1OM:
1360 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1361 patt = alt_patt;
1362 else
1363 patt = f32_patt;
1364 break;
1365 case PROCESSOR_GENERIC64:
1366 patt = alt_patt;
1367 break;
1368 }
1369 }
1370
1371 if (patt == f32_patt)
1372 {
1373 /* If the padding is less than 15 bytes, we use the normal
1374 ones. Otherwise, we use a jump instruction and adjust
1375 its offset. */
1376 int limit;
1377
1378 /* For 64bit, the limit is 3 bytes. */
1379 if (flag_code == CODE_64BIT
1380 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1381 limit = 3;
1382 else
1383 limit = 15;
1384 if (count < limit)
1385 memcpy (fragP->fr_literal + fragP->fr_fix,
1386 patt[count - 1], count);
1387 else
1388 {
1389 memcpy (fragP->fr_literal + fragP->fr_fix,
1390 jump_31, count);
1391 /* Adjust jump offset. */
1392 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1393 }
1394 }
1395 else
1396 {
1397 /* Maximum length of an instruction is 10 byte. If the
1398 padding is greater than 10 bytes and we don't use jump,
1399 we have to break it into smaller pieces. */
1400 int padding = count;
1401 while (padding > 10)
1402 {
1403 padding -= 10;
1404 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1405 patt [9], 10);
1406 }
1407
1408 if (padding)
1409 memcpy (fragP->fr_literal + fragP->fr_fix,
1410 patt [padding - 1], padding);
1411 }
1412 }
1413 fragP->fr_var = count;
1414 }
1415
1416 static INLINE int
1417 operand_type_all_zero (const union i386_operand_type *x)
1418 {
1419 switch (ARRAY_SIZE(x->array))
1420 {
1421 case 3:
1422 if (x->array[2])
1423 return 0;
1424 /* Fall through. */
1425 case 2:
1426 if (x->array[1])
1427 return 0;
1428 /* Fall through. */
1429 case 1:
1430 return !x->array[0];
1431 default:
1432 abort ();
1433 }
1434 }
1435
1436 static INLINE void
1437 operand_type_set (union i386_operand_type *x, unsigned int v)
1438 {
1439 switch (ARRAY_SIZE(x->array))
1440 {
1441 case 3:
1442 x->array[2] = v;
1443 /* Fall through. */
1444 case 2:
1445 x->array[1] = v;
1446 /* Fall through. */
1447 case 1:
1448 x->array[0] = v;
1449 /* Fall through. */
1450 break;
1451 default:
1452 abort ();
1453 }
1454 }
1455
1456 static INLINE int
1457 operand_type_equal (const union i386_operand_type *x,
1458 const union i386_operand_type *y)
1459 {
1460 switch (ARRAY_SIZE(x->array))
1461 {
1462 case 3:
1463 if (x->array[2] != y->array[2])
1464 return 0;
1465 /* Fall through. */
1466 case 2:
1467 if (x->array[1] != y->array[1])
1468 return 0;
1469 /* Fall through. */
1470 case 1:
1471 return x->array[0] == y->array[0];
1472 break;
1473 default:
1474 abort ();
1475 }
1476 }
1477
1478 static INLINE int
1479 cpu_flags_all_zero (const union i386_cpu_flags *x)
1480 {
1481 switch (ARRAY_SIZE(x->array))
1482 {
1483 case 4:
1484 if (x->array[3])
1485 return 0;
1486 /* Fall through. */
1487 case 3:
1488 if (x->array[2])
1489 return 0;
1490 /* Fall through. */
1491 case 2:
1492 if (x->array[1])
1493 return 0;
1494 /* Fall through. */
1495 case 1:
1496 return !x->array[0];
1497 default:
1498 abort ();
1499 }
1500 }
1501
1502 static INLINE int
1503 cpu_flags_equal (const union i386_cpu_flags *x,
1504 const union i386_cpu_flags *y)
1505 {
1506 switch (ARRAY_SIZE(x->array))
1507 {
1508 case 4:
1509 if (x->array[3] != y->array[3])
1510 return 0;
1511 /* Fall through. */
1512 case 3:
1513 if (x->array[2] != y->array[2])
1514 return 0;
1515 /* Fall through. */
1516 case 2:
1517 if (x->array[1] != y->array[1])
1518 return 0;
1519 /* Fall through. */
1520 case 1:
1521 return x->array[0] == y->array[0];
1522 break;
1523 default:
1524 abort ();
1525 }
1526 }
1527
1528 static INLINE int
1529 cpu_flags_check_cpu64 (i386_cpu_flags f)
1530 {
1531 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1532 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1533 }
1534
1535 static INLINE i386_cpu_flags
1536 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1537 {
1538 switch (ARRAY_SIZE (x.array))
1539 {
1540 case 4:
1541 x.array [3] &= y.array [3];
1542 /* Fall through. */
1543 case 3:
1544 x.array [2] &= y.array [2];
1545 /* Fall through. */
1546 case 2:
1547 x.array [1] &= y.array [1];
1548 /* Fall through. */
1549 case 1:
1550 x.array [0] &= y.array [0];
1551 break;
1552 default:
1553 abort ();
1554 }
1555 return x;
1556 }
1557
1558 static INLINE i386_cpu_flags
1559 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1560 {
1561 switch (ARRAY_SIZE (x.array))
1562 {
1563 case 4:
1564 x.array [3] |= y.array [3];
1565 /* Fall through. */
1566 case 3:
1567 x.array [2] |= y.array [2];
1568 /* Fall through. */
1569 case 2:
1570 x.array [1] |= y.array [1];
1571 /* Fall through. */
1572 case 1:
1573 x.array [0] |= y.array [0];
1574 break;
1575 default:
1576 abort ();
1577 }
1578 return x;
1579 }
1580
1581 static INLINE i386_cpu_flags
1582 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1583 {
1584 switch (ARRAY_SIZE (x.array))
1585 {
1586 case 4:
1587 x.array [3] &= ~y.array [3];
1588 /* Fall through. */
1589 case 3:
1590 x.array [2] &= ~y.array [2];
1591 /* Fall through. */
1592 case 2:
1593 x.array [1] &= ~y.array [1];
1594 /* Fall through. */
1595 case 1:
1596 x.array [0] &= ~y.array [0];
1597 break;
1598 default:
1599 abort ();
1600 }
1601 return x;
1602 }
1603
1604 #define CPU_FLAGS_ARCH_MATCH 0x1
1605 #define CPU_FLAGS_64BIT_MATCH 0x2
1606 #define CPU_FLAGS_AES_MATCH 0x4
1607 #define CPU_FLAGS_PCLMUL_MATCH 0x8
1608 #define CPU_FLAGS_AVX_MATCH 0x10
1609
1610 #define CPU_FLAGS_32BIT_MATCH \
1611 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1612 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
1613 #define CPU_FLAGS_PERFECT_MATCH \
1614 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1615
1616 /* Return CPU flags match bits. */
1617
1618 static int
1619 cpu_flags_match (const insn_template *t)
1620 {
1621 i386_cpu_flags x = t->cpu_flags;
1622 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1623
1624 x.bitfield.cpu64 = 0;
1625 x.bitfield.cpuno64 = 0;
1626
1627 if (cpu_flags_all_zero (&x))
1628 {
1629 /* This instruction is available on all archs. */
1630 match |= CPU_FLAGS_32BIT_MATCH;
1631 }
1632 else
1633 {
1634 /* This instruction is available only on some archs. */
1635 i386_cpu_flags cpu = cpu_arch_flags;
1636
1637 cpu = cpu_flags_and (x, cpu);
1638 if (!cpu_flags_all_zero (&cpu))
1639 {
1640 if (x.bitfield.cpuavx)
1641 {
1642 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
1643 if (cpu.bitfield.cpuavx)
1644 {
1645 /* Check SSE2AVX. */
1646 if (!t->opcode_modifier.sse2avx|| sse2avx)
1647 {
1648 match |= (CPU_FLAGS_ARCH_MATCH
1649 | CPU_FLAGS_AVX_MATCH);
1650 /* Check AES. */
1651 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1652 match |= CPU_FLAGS_AES_MATCH;
1653 /* Check PCLMUL. */
1654 if (!x.bitfield.cpupclmul
1655 || cpu.bitfield.cpupclmul)
1656 match |= CPU_FLAGS_PCLMUL_MATCH;
1657 }
1658 }
1659 else
1660 match |= CPU_FLAGS_ARCH_MATCH;
1661 }
1662 else if (x.bitfield.cpuavx512vl)
1663 {
1664 /* Match AVX512VL. */
1665 if (cpu.bitfield.cpuavx512vl)
1666 {
1667 /* Need another match. */
1668 cpu.bitfield.cpuavx512vl = 0;
1669 if (!cpu_flags_all_zero (&cpu))
1670 match |= CPU_FLAGS_32BIT_MATCH;
1671 else
1672 match |= CPU_FLAGS_ARCH_MATCH;
1673 }
1674 else
1675 match |= CPU_FLAGS_ARCH_MATCH;
1676 }
1677 else
1678 match |= CPU_FLAGS_32BIT_MATCH;
1679 }
1680 }
1681 return match;
1682 }
1683
1684 static INLINE i386_operand_type
1685 operand_type_and (i386_operand_type x, i386_operand_type y)
1686 {
1687 switch (ARRAY_SIZE (x.array))
1688 {
1689 case 3:
1690 x.array [2] &= y.array [2];
1691 /* Fall through. */
1692 case 2:
1693 x.array [1] &= y.array [1];
1694 /* Fall through. */
1695 case 1:
1696 x.array [0] &= y.array [0];
1697 break;
1698 default:
1699 abort ();
1700 }
1701 return x;
1702 }
1703
1704 static INLINE i386_operand_type
1705 operand_type_or (i386_operand_type x, i386_operand_type y)
1706 {
1707 switch (ARRAY_SIZE (x.array))
1708 {
1709 case 3:
1710 x.array [2] |= y.array [2];
1711 /* Fall through. */
1712 case 2:
1713 x.array [1] |= y.array [1];
1714 /* Fall through. */
1715 case 1:
1716 x.array [0] |= y.array [0];
1717 break;
1718 default:
1719 abort ();
1720 }
1721 return x;
1722 }
1723
1724 static INLINE i386_operand_type
1725 operand_type_xor (i386_operand_type x, i386_operand_type y)
1726 {
1727 switch (ARRAY_SIZE (x.array))
1728 {
1729 case 3:
1730 x.array [2] ^= y.array [2];
1731 /* Fall through. */
1732 case 2:
1733 x.array [1] ^= y.array [1];
1734 /* Fall through. */
1735 case 1:
1736 x.array [0] ^= y.array [0];
1737 break;
1738 default:
1739 abort ();
1740 }
1741 return x;
1742 }
1743
1744 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1745 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1746 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1747 static const i386_operand_type inoutportreg
1748 = OPERAND_TYPE_INOUTPORTREG;
1749 static const i386_operand_type reg16_inoutportreg
1750 = OPERAND_TYPE_REG16_INOUTPORTREG;
1751 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1752 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1753 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1754 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1755 static const i386_operand_type anydisp
1756 = OPERAND_TYPE_ANYDISP;
1757 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1758 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1759 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1760 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1761 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1762 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1763 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1764 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1765 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1766 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1767 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1768 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1769
1770 enum operand_type
1771 {
1772 reg,
1773 imm,
1774 disp,
1775 anymem
1776 };
1777
1778 static INLINE int
1779 operand_type_check (i386_operand_type t, enum operand_type c)
1780 {
1781 switch (c)
1782 {
1783 case reg:
1784 return t.bitfield.reg;
1785
1786 case imm:
1787 return (t.bitfield.imm8
1788 || t.bitfield.imm8s
1789 || t.bitfield.imm16
1790 || t.bitfield.imm32
1791 || t.bitfield.imm32s
1792 || t.bitfield.imm64);
1793
1794 case disp:
1795 return (t.bitfield.disp8
1796 || t.bitfield.disp16
1797 || t.bitfield.disp32
1798 || t.bitfield.disp32s
1799 || t.bitfield.disp64);
1800
1801 case anymem:
1802 return (t.bitfield.disp8
1803 || t.bitfield.disp16
1804 || t.bitfield.disp32
1805 || t.bitfield.disp32s
1806 || t.bitfield.disp64
1807 || t.bitfield.baseindex);
1808
1809 default:
1810 abort ();
1811 }
1812
1813 return 0;
1814 }
1815
1816 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit on
1817 operand J for instruction template T. */
1818
1819 static INLINE int
1820 match_reg_size (const insn_template *t, unsigned int j)
1821 {
1822 return !((i.types[j].bitfield.byte
1823 && !t->operand_types[j].bitfield.byte)
1824 || (i.types[j].bitfield.word
1825 && !t->operand_types[j].bitfield.word)
1826 || (i.types[j].bitfield.dword
1827 && !t->operand_types[j].bitfield.dword)
1828 || (i.types[j].bitfield.qword
1829 && !t->operand_types[j].bitfield.qword)
1830 || (i.types[j].bitfield.tbyte
1831 && !t->operand_types[j].bitfield.tbyte));
1832 }
1833
1834 /* Return 1 if there is no conflict in SIMD register on
1835 operand J for instruction template T. */
1836
1837 static INLINE int
1838 match_simd_size (const insn_template *t, unsigned int j)
1839 {
1840 return !((i.types[j].bitfield.xmmword
1841 && !t->operand_types[j].bitfield.xmmword)
1842 || (i.types[j].bitfield.ymmword
1843 && !t->operand_types[j].bitfield.ymmword)
1844 || (i.types[j].bitfield.zmmword
1845 && !t->operand_types[j].bitfield.zmmword));
1846 }
1847
1848 /* Return 1 if there is no conflict in any size on operand J for
1849 instruction template T. */
1850
1851 static INLINE int
1852 match_mem_size (const insn_template *t, unsigned int j)
1853 {
1854 return (match_reg_size (t, j)
1855 && !((i.types[j].bitfield.unspecified
1856 && !i.broadcast
1857 && !t->operand_types[j].bitfield.unspecified)
1858 || (i.types[j].bitfield.fword
1859 && !t->operand_types[j].bitfield.fword)
1860 /* For scalar opcode templates to allow register and memory
1861 operands at the same time, some special casing is needed
1862 here. */
1863 || ((t->operand_types[j].bitfield.regsimd
1864 && !t->opcode_modifier.broadcast
1865 && (t->operand_types[j].bitfield.dword
1866 || t->operand_types[j].bitfield.qword))
1867 ? (i.types[j].bitfield.xmmword
1868 || i.types[j].bitfield.ymmword
1869 || i.types[j].bitfield.zmmword)
1870 : !match_simd_size(t, j))));
1871 }
1872
1873 /* Return 1 if there is no size conflict on any operands for
1874 instruction template T. */
1875
1876 static INLINE int
1877 operand_size_match (const insn_template *t)
1878 {
1879 unsigned int j;
1880 int match = 1;
1881
1882 /* Don't check jump instructions. */
1883 if (t->opcode_modifier.jump
1884 || t->opcode_modifier.jumpbyte
1885 || t->opcode_modifier.jumpdword
1886 || t->opcode_modifier.jumpintersegment)
1887 return match;
1888
1889 /* Check memory and accumulator operand size. */
1890 for (j = 0; j < i.operands; j++)
1891 {
1892 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
1893 && t->operand_types[j].bitfield.anysize)
1894 continue;
1895
1896 if (t->operand_types[j].bitfield.reg
1897 && !match_reg_size (t, j))
1898 {
1899 match = 0;
1900 break;
1901 }
1902
1903 if (t->operand_types[j].bitfield.regsimd
1904 && !match_simd_size (t, j))
1905 {
1906 match = 0;
1907 break;
1908 }
1909
1910 if (t->operand_types[j].bitfield.acc
1911 && (!match_reg_size (t, j) || !match_simd_size (t, j)))
1912 {
1913 match = 0;
1914 break;
1915 }
1916
1917 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1918 {
1919 match = 0;
1920 break;
1921 }
1922 }
1923
1924 if (match)
1925 return match;
1926 else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1927 {
1928 mismatch:
1929 i.error = operand_size_mismatch;
1930 return 0;
1931 }
1932
1933 /* Check reverse. */
1934 gas_assert (i.operands == 2);
1935
1936 match = 1;
1937 for (j = 0; j < 2; j++)
1938 {
1939 if ((t->operand_types[j].bitfield.reg
1940 || t->operand_types[j].bitfield.acc)
1941 && !match_reg_size (t, j ? 0 : 1))
1942 goto mismatch;
1943
1944 if (i.types[j].bitfield.mem
1945 && !match_mem_size (t, j ? 0 : 1))
1946 goto mismatch;
1947 }
1948
1949 return match;
1950 }
1951
1952 static INLINE int
1953 operand_type_match (i386_operand_type overlap,
1954 i386_operand_type given)
1955 {
1956 i386_operand_type temp = overlap;
1957
1958 temp.bitfield.jumpabsolute = 0;
1959 temp.bitfield.unspecified = 0;
1960 temp.bitfield.byte = 0;
1961 temp.bitfield.word = 0;
1962 temp.bitfield.dword = 0;
1963 temp.bitfield.fword = 0;
1964 temp.bitfield.qword = 0;
1965 temp.bitfield.tbyte = 0;
1966 temp.bitfield.xmmword = 0;
1967 temp.bitfield.ymmword = 0;
1968 temp.bitfield.zmmword = 0;
1969 if (operand_type_all_zero (&temp))
1970 goto mismatch;
1971
1972 if (given.bitfield.baseindex == overlap.bitfield.baseindex
1973 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
1974 return 1;
1975
1976 mismatch:
1977 i.error = operand_type_mismatch;
1978 return 0;
1979 }
1980
1981 /* If given types g0 and g1 are registers they must be of the same type
1982 unless the expected operand type register overlap is null.
1983 Memory operand size of certain SIMD instructions is also being checked
1984 here. */
1985
1986 static INLINE int
1987 operand_type_register_match (i386_operand_type g0,
1988 i386_operand_type t0,
1989 i386_operand_type g1,
1990 i386_operand_type t1)
1991 {
1992 if (!g0.bitfield.reg
1993 && !g0.bitfield.regsimd
1994 && (!operand_type_check (g0, anymem)
1995 || g0.bitfield.unspecified
1996 || !t0.bitfield.regsimd))
1997 return 1;
1998
1999 if (!g1.bitfield.reg
2000 && !g1.bitfield.regsimd
2001 && (!operand_type_check (g1, anymem)
2002 || g1.bitfield.unspecified
2003 || !t1.bitfield.regsimd))
2004 return 1;
2005
2006 if (g0.bitfield.byte == g1.bitfield.byte
2007 && g0.bitfield.word == g1.bitfield.word
2008 && g0.bitfield.dword == g1.bitfield.dword
2009 && g0.bitfield.qword == g1.bitfield.qword
2010 && g0.bitfield.xmmword == g1.bitfield.xmmword
2011 && g0.bitfield.ymmword == g1.bitfield.ymmword
2012 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2013 return 1;
2014
2015 if (!(t0.bitfield.byte & t1.bitfield.byte)
2016 && !(t0.bitfield.word & t1.bitfield.word)
2017 && !(t0.bitfield.dword & t1.bitfield.dword)
2018 && !(t0.bitfield.qword & t1.bitfield.qword)
2019 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2020 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2021 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2022 return 1;
2023
2024 i.error = register_type_mismatch;
2025
2026 return 0;
2027 }
2028
2029 static INLINE unsigned int
2030 register_number (const reg_entry *r)
2031 {
2032 unsigned int nr = r->reg_num;
2033
2034 if (r->reg_flags & RegRex)
2035 nr += 8;
2036
2037 if (r->reg_flags & RegVRex)
2038 nr += 16;
2039
2040 return nr;
2041 }
2042
2043 static INLINE unsigned int
2044 mode_from_disp_size (i386_operand_type t)
2045 {
2046 if (t.bitfield.disp8)
2047 return 1;
2048 else if (t.bitfield.disp16
2049 || t.bitfield.disp32
2050 || t.bitfield.disp32s)
2051 return 2;
2052 else
2053 return 0;
2054 }
2055
2056 static INLINE int
2057 fits_in_signed_byte (addressT num)
2058 {
2059 return num + 0x80 <= 0xff;
2060 }
2061
2062 static INLINE int
2063 fits_in_unsigned_byte (addressT num)
2064 {
2065 return num <= 0xff;
2066 }
2067
2068 static INLINE int
2069 fits_in_unsigned_word (addressT num)
2070 {
2071 return num <= 0xffff;
2072 }
2073
2074 static INLINE int
2075 fits_in_signed_word (addressT num)
2076 {
2077 return num + 0x8000 <= 0xffff;
2078 }
2079
2080 static INLINE int
2081 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2082 {
2083 #ifndef BFD64
2084 return 1;
2085 #else
2086 return num + 0x80000000 <= 0xffffffff;
2087 #endif
2088 } /* fits_in_signed_long() */
2089
2090 static INLINE int
2091 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2092 {
2093 #ifndef BFD64
2094 return 1;
2095 #else
2096 return num <= 0xffffffff;
2097 #endif
2098 } /* fits_in_unsigned_long() */
2099
2100 static INLINE int
2101 fits_in_disp8 (offsetT num)
2102 {
2103 int shift = i.memshift;
2104 unsigned int mask;
2105
2106 if (shift == -1)
2107 abort ();
2108
2109 mask = (1 << shift) - 1;
2110
2111 /* Return 0 if NUM isn't properly aligned. */
2112 if ((num & mask))
2113 return 0;
2114
2115 /* Check if NUM will fit in 8bit after shift. */
2116 return fits_in_signed_byte (num >> shift);
2117 }
2118
2119 static INLINE int
2120 fits_in_imm4 (offsetT num)
2121 {
2122 return (num & 0xf) == num;
2123 }
2124
2125 static i386_operand_type
2126 smallest_imm_type (offsetT num)
2127 {
2128 i386_operand_type t;
2129
2130 operand_type_set (&t, 0);
2131 t.bitfield.imm64 = 1;
2132
2133 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2134 {
2135 /* This code is disabled on the 486 because all the Imm1 forms
2136 in the opcode table are slower on the i486. They're the
2137 versions with the implicitly specified single-position
2138 displacement, which has another syntax if you really want to
2139 use that form. */
2140 t.bitfield.imm1 = 1;
2141 t.bitfield.imm8 = 1;
2142 t.bitfield.imm8s = 1;
2143 t.bitfield.imm16 = 1;
2144 t.bitfield.imm32 = 1;
2145 t.bitfield.imm32s = 1;
2146 }
2147 else if (fits_in_signed_byte (num))
2148 {
2149 t.bitfield.imm8 = 1;
2150 t.bitfield.imm8s = 1;
2151 t.bitfield.imm16 = 1;
2152 t.bitfield.imm32 = 1;
2153 t.bitfield.imm32s = 1;
2154 }
2155 else if (fits_in_unsigned_byte (num))
2156 {
2157 t.bitfield.imm8 = 1;
2158 t.bitfield.imm16 = 1;
2159 t.bitfield.imm32 = 1;
2160 t.bitfield.imm32s = 1;
2161 }
2162 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2163 {
2164 t.bitfield.imm16 = 1;
2165 t.bitfield.imm32 = 1;
2166 t.bitfield.imm32s = 1;
2167 }
2168 else if (fits_in_signed_long (num))
2169 {
2170 t.bitfield.imm32 = 1;
2171 t.bitfield.imm32s = 1;
2172 }
2173 else if (fits_in_unsigned_long (num))
2174 t.bitfield.imm32 = 1;
2175
2176 return t;
2177 }
2178
2179 static offsetT
2180 offset_in_range (offsetT val, int size)
2181 {
2182 addressT mask;
2183
2184 switch (size)
2185 {
2186 case 1: mask = ((addressT) 1 << 8) - 1; break;
2187 case 2: mask = ((addressT) 1 << 16) - 1; break;
2188 case 4: mask = ((addressT) 2 << 31) - 1; break;
2189 #ifdef BFD64
2190 case 8: mask = ((addressT) 2 << 63) - 1; break;
2191 #endif
2192 default: abort ();
2193 }
2194
2195 #ifdef BFD64
2196 /* If BFD64, sign extend val for 32bit address mode. */
2197 if (flag_code != CODE_64BIT
2198 || i.prefix[ADDR_PREFIX])
2199 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2200 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2201 #endif
2202
2203 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2204 {
2205 char buf1[40], buf2[40];
2206
2207 sprint_value (buf1, val);
2208 sprint_value (buf2, val & mask);
2209 as_warn (_("%s shortened to %s"), buf1, buf2);
2210 }
2211 return val & mask;
2212 }
2213
2214 enum PREFIX_GROUP
2215 {
2216 PREFIX_EXIST = 0,
2217 PREFIX_LOCK,
2218 PREFIX_REP,
2219 PREFIX_DS,
2220 PREFIX_OTHER
2221 };
2222
2223 /* Returns
2224 a. PREFIX_EXIST if attempting to add a prefix where one from the
2225 same class already exists.
2226 b. PREFIX_LOCK if lock prefix is added.
2227 c. PREFIX_REP if rep/repne prefix is added.
2228 d. PREFIX_DS if ds prefix is added.
2229 e. PREFIX_OTHER if other prefix is added.
2230 */
2231
2232 static enum PREFIX_GROUP
2233 add_prefix (unsigned int prefix)
2234 {
2235 enum PREFIX_GROUP ret = PREFIX_OTHER;
2236 unsigned int q;
2237
2238 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2239 && flag_code == CODE_64BIT)
2240 {
2241 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2242 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2243 && (prefix & (REX_R | REX_X | REX_B))))
2244 ret = PREFIX_EXIST;
2245 q = REX_PREFIX;
2246 }
2247 else
2248 {
2249 switch (prefix)
2250 {
2251 default:
2252 abort ();
2253
2254 case DS_PREFIX_OPCODE:
2255 ret = PREFIX_DS;
2256 /* Fall through. */
2257 case CS_PREFIX_OPCODE:
2258 case ES_PREFIX_OPCODE:
2259 case FS_PREFIX_OPCODE:
2260 case GS_PREFIX_OPCODE:
2261 case SS_PREFIX_OPCODE:
2262 q = SEG_PREFIX;
2263 break;
2264
2265 case REPNE_PREFIX_OPCODE:
2266 case REPE_PREFIX_OPCODE:
2267 q = REP_PREFIX;
2268 ret = PREFIX_REP;
2269 break;
2270
2271 case LOCK_PREFIX_OPCODE:
2272 q = LOCK_PREFIX;
2273 ret = PREFIX_LOCK;
2274 break;
2275
2276 case FWAIT_OPCODE:
2277 q = WAIT_PREFIX;
2278 break;
2279
2280 case ADDR_PREFIX_OPCODE:
2281 q = ADDR_PREFIX;
2282 break;
2283
2284 case DATA_PREFIX_OPCODE:
2285 q = DATA_PREFIX;
2286 break;
2287 }
2288 if (i.prefix[q] != 0)
2289 ret = PREFIX_EXIST;
2290 }
2291
2292 if (ret)
2293 {
2294 if (!i.prefix[q])
2295 ++i.prefixes;
2296 i.prefix[q] |= prefix;
2297 }
2298 else
2299 as_bad (_("same type of prefix used twice"));
2300
2301 return ret;
2302 }
2303
2304 static void
2305 update_code_flag (int value, int check)
2306 {
2307 PRINTF_LIKE ((*as_error));
2308
2309 flag_code = (enum flag_code) value;
2310 if (flag_code == CODE_64BIT)
2311 {
2312 cpu_arch_flags.bitfield.cpu64 = 1;
2313 cpu_arch_flags.bitfield.cpuno64 = 0;
2314 }
2315 else
2316 {
2317 cpu_arch_flags.bitfield.cpu64 = 0;
2318 cpu_arch_flags.bitfield.cpuno64 = 1;
2319 }
2320 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2321 {
2322 if (check)
2323 as_error = as_fatal;
2324 else
2325 as_error = as_bad;
2326 (*as_error) (_("64bit mode not supported on `%s'."),
2327 cpu_arch_name ? cpu_arch_name : default_arch);
2328 }
2329 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2330 {
2331 if (check)
2332 as_error = as_fatal;
2333 else
2334 as_error = as_bad;
2335 (*as_error) (_("32bit mode not supported on `%s'."),
2336 cpu_arch_name ? cpu_arch_name : default_arch);
2337 }
2338 stackop_size = '\0';
2339 }
2340
2341 static void
2342 set_code_flag (int value)
2343 {
2344 update_code_flag (value, 0);
2345 }
2346
2347 static void
2348 set_16bit_gcc_code_flag (int new_code_flag)
2349 {
2350 flag_code = (enum flag_code) new_code_flag;
2351 if (flag_code != CODE_16BIT)
2352 abort ();
2353 cpu_arch_flags.bitfield.cpu64 = 0;
2354 cpu_arch_flags.bitfield.cpuno64 = 1;
2355 stackop_size = LONG_MNEM_SUFFIX;
2356 }
2357
2358 static void
2359 set_intel_syntax (int syntax_flag)
2360 {
2361 /* Find out if register prefixing is specified. */
2362 int ask_naked_reg = 0;
2363
2364 SKIP_WHITESPACE ();
2365 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2366 {
2367 char *string;
2368 int e = get_symbol_name (&string);
2369
2370 if (strcmp (string, "prefix") == 0)
2371 ask_naked_reg = 1;
2372 else if (strcmp (string, "noprefix") == 0)
2373 ask_naked_reg = -1;
2374 else
2375 as_bad (_("bad argument to syntax directive."));
2376 (void) restore_line_pointer (e);
2377 }
2378 demand_empty_rest_of_line ();
2379
2380 intel_syntax = syntax_flag;
2381
2382 if (ask_naked_reg == 0)
2383 allow_naked_reg = (intel_syntax
2384 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2385 else
2386 allow_naked_reg = (ask_naked_reg < 0);
2387
2388 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2389
2390 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2391 identifier_chars['$'] = intel_syntax ? '$' : 0;
2392 register_prefix = allow_naked_reg ? "" : "%";
2393 }
2394
2395 static void
2396 set_intel_mnemonic (int mnemonic_flag)
2397 {
2398 intel_mnemonic = mnemonic_flag;
2399 }
2400
2401 static void
2402 set_allow_index_reg (int flag)
2403 {
2404 allow_index_reg = flag;
2405 }
2406
2407 static void
2408 set_check (int what)
2409 {
2410 enum check_kind *kind;
2411 const char *str;
2412
2413 if (what)
2414 {
2415 kind = &operand_check;
2416 str = "operand";
2417 }
2418 else
2419 {
2420 kind = &sse_check;
2421 str = "sse";
2422 }
2423
2424 SKIP_WHITESPACE ();
2425
2426 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2427 {
2428 char *string;
2429 int e = get_symbol_name (&string);
2430
2431 if (strcmp (string, "none") == 0)
2432 *kind = check_none;
2433 else if (strcmp (string, "warning") == 0)
2434 *kind = check_warning;
2435 else if (strcmp (string, "error") == 0)
2436 *kind = check_error;
2437 else
2438 as_bad (_("bad argument to %s_check directive."), str);
2439 (void) restore_line_pointer (e);
2440 }
2441 else
2442 as_bad (_("missing argument for %s_check directive"), str);
2443
2444 demand_empty_rest_of_line ();
2445 }
2446
2447 static void
2448 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2449 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2450 {
2451 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2452 static const char *arch;
2453
2454 /* Intel LIOM is only supported on ELF. */
2455 if (!IS_ELF)
2456 return;
2457
2458 if (!arch)
2459 {
2460 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2461 use default_arch. */
2462 arch = cpu_arch_name;
2463 if (!arch)
2464 arch = default_arch;
2465 }
2466
2467 /* If we are targeting Intel MCU, we must enable it. */
2468 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2469 || new_flag.bitfield.cpuiamcu)
2470 return;
2471
2472 /* If we are targeting Intel L1OM, we must enable it. */
2473 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2474 || new_flag.bitfield.cpul1om)
2475 return;
2476
2477 /* If we are targeting Intel K1OM, we must enable it. */
2478 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2479 || new_flag.bitfield.cpuk1om)
2480 return;
2481
2482 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2483 #endif
2484 }
2485
2486 static void
2487 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2488 {
2489 SKIP_WHITESPACE ();
2490
2491 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2492 {
2493 char *string;
2494 int e = get_symbol_name (&string);
2495 unsigned int j;
2496 i386_cpu_flags flags;
2497
2498 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2499 {
2500 if (strcmp (string, cpu_arch[j].name) == 0)
2501 {
2502 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2503
2504 if (*string != '.')
2505 {
2506 cpu_arch_name = cpu_arch[j].name;
2507 cpu_sub_arch_name = NULL;
2508 cpu_arch_flags = cpu_arch[j].flags;
2509 if (flag_code == CODE_64BIT)
2510 {
2511 cpu_arch_flags.bitfield.cpu64 = 1;
2512 cpu_arch_flags.bitfield.cpuno64 = 0;
2513 }
2514 else
2515 {
2516 cpu_arch_flags.bitfield.cpu64 = 0;
2517 cpu_arch_flags.bitfield.cpuno64 = 1;
2518 }
2519 cpu_arch_isa = cpu_arch[j].type;
2520 cpu_arch_isa_flags = cpu_arch[j].flags;
2521 if (!cpu_arch_tune_set)
2522 {
2523 cpu_arch_tune = cpu_arch_isa;
2524 cpu_arch_tune_flags = cpu_arch_isa_flags;
2525 }
2526 break;
2527 }
2528
2529 flags = cpu_flags_or (cpu_arch_flags,
2530 cpu_arch[j].flags);
2531
2532 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2533 {
2534 if (cpu_sub_arch_name)
2535 {
2536 char *name = cpu_sub_arch_name;
2537 cpu_sub_arch_name = concat (name,
2538 cpu_arch[j].name,
2539 (const char *) NULL);
2540 free (name);
2541 }
2542 else
2543 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2544 cpu_arch_flags = flags;
2545 cpu_arch_isa_flags = flags;
2546 }
2547 (void) restore_line_pointer (e);
2548 demand_empty_rest_of_line ();
2549 return;
2550 }
2551 }
2552
2553 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2554 {
2555 /* Disable an ISA extension. */
2556 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2557 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2558 {
2559 flags = cpu_flags_and_not (cpu_arch_flags,
2560 cpu_noarch[j].flags);
2561 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2562 {
2563 if (cpu_sub_arch_name)
2564 {
2565 char *name = cpu_sub_arch_name;
2566 cpu_sub_arch_name = concat (name, string,
2567 (const char *) NULL);
2568 free (name);
2569 }
2570 else
2571 cpu_sub_arch_name = xstrdup (string);
2572 cpu_arch_flags = flags;
2573 cpu_arch_isa_flags = flags;
2574 }
2575 (void) restore_line_pointer (e);
2576 demand_empty_rest_of_line ();
2577 return;
2578 }
2579
2580 j = ARRAY_SIZE (cpu_arch);
2581 }
2582
2583 if (j >= ARRAY_SIZE (cpu_arch))
2584 as_bad (_("no such architecture: `%s'"), string);
2585
2586 *input_line_pointer = e;
2587 }
2588 else
2589 as_bad (_("missing cpu architecture"));
2590
2591 no_cond_jump_promotion = 0;
2592 if (*input_line_pointer == ','
2593 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2594 {
2595 char *string;
2596 char e;
2597
2598 ++input_line_pointer;
2599 e = get_symbol_name (&string);
2600
2601 if (strcmp (string, "nojumps") == 0)
2602 no_cond_jump_promotion = 1;
2603 else if (strcmp (string, "jumps") == 0)
2604 ;
2605 else
2606 as_bad (_("no such architecture modifier: `%s'"), string);
2607
2608 (void) restore_line_pointer (e);
2609 }
2610
2611 demand_empty_rest_of_line ();
2612 }
2613
2614 enum bfd_architecture
2615 i386_arch (void)
2616 {
2617 if (cpu_arch_isa == PROCESSOR_L1OM)
2618 {
2619 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2620 || flag_code != CODE_64BIT)
2621 as_fatal (_("Intel L1OM is 64bit ELF only"));
2622 return bfd_arch_l1om;
2623 }
2624 else if (cpu_arch_isa == PROCESSOR_K1OM)
2625 {
2626 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2627 || flag_code != CODE_64BIT)
2628 as_fatal (_("Intel K1OM is 64bit ELF only"));
2629 return bfd_arch_k1om;
2630 }
2631 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2632 {
2633 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2634 || flag_code == CODE_64BIT)
2635 as_fatal (_("Intel MCU is 32bit ELF only"));
2636 return bfd_arch_iamcu;
2637 }
2638 else
2639 return bfd_arch_i386;
2640 }
2641
2642 unsigned long
2643 i386_mach (void)
2644 {
2645 if (!strncmp (default_arch, "x86_64", 6))
2646 {
2647 if (cpu_arch_isa == PROCESSOR_L1OM)
2648 {
2649 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2650 || default_arch[6] != '\0')
2651 as_fatal (_("Intel L1OM is 64bit ELF only"));
2652 return bfd_mach_l1om;
2653 }
2654 else if (cpu_arch_isa == PROCESSOR_K1OM)
2655 {
2656 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2657 || default_arch[6] != '\0')
2658 as_fatal (_("Intel K1OM is 64bit ELF only"));
2659 return bfd_mach_k1om;
2660 }
2661 else if (default_arch[6] == '\0')
2662 return bfd_mach_x86_64;
2663 else
2664 return bfd_mach_x64_32;
2665 }
2666 else if (!strcmp (default_arch, "i386")
2667 || !strcmp (default_arch, "iamcu"))
2668 {
2669 if (cpu_arch_isa == PROCESSOR_IAMCU)
2670 {
2671 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2672 as_fatal (_("Intel MCU is 32bit ELF only"));
2673 return bfd_mach_i386_iamcu;
2674 }
2675 else
2676 return bfd_mach_i386_i386;
2677 }
2678 else
2679 as_fatal (_("unknown architecture"));
2680 }
2681 \f
2682 void
2683 md_begin (void)
2684 {
2685 const char *hash_err;
2686
2687 /* Support pseudo prefixes like {disp32}. */
2688 lex_type ['{'] = LEX_BEGIN_NAME;
2689
2690 /* Initialize op_hash hash table. */
2691 op_hash = hash_new ();
2692
2693 {
2694 const insn_template *optab;
2695 templates *core_optab;
2696
2697 /* Setup for loop. */
2698 optab = i386_optab;
2699 core_optab = XNEW (templates);
2700 core_optab->start = optab;
2701
2702 while (1)
2703 {
2704 ++optab;
2705 if (optab->name == NULL
2706 || strcmp (optab->name, (optab - 1)->name) != 0)
2707 {
2708 /* different name --> ship out current template list;
2709 add to hash table; & begin anew. */
2710 core_optab->end = optab;
2711 hash_err = hash_insert (op_hash,
2712 (optab - 1)->name,
2713 (void *) core_optab);
2714 if (hash_err)
2715 {
2716 as_fatal (_("can't hash %s: %s"),
2717 (optab - 1)->name,
2718 hash_err);
2719 }
2720 if (optab->name == NULL)
2721 break;
2722 core_optab = XNEW (templates);
2723 core_optab->start = optab;
2724 }
2725 }
2726 }
2727
2728 /* Initialize reg_hash hash table. */
2729 reg_hash = hash_new ();
2730 {
2731 const reg_entry *regtab;
2732 unsigned int regtab_size = i386_regtab_size;
2733
2734 for (regtab = i386_regtab; regtab_size--; regtab++)
2735 {
2736 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2737 if (hash_err)
2738 as_fatal (_("can't hash %s: %s"),
2739 regtab->reg_name,
2740 hash_err);
2741 }
2742 }
2743
2744 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2745 {
2746 int c;
2747 char *p;
2748
2749 for (c = 0; c < 256; c++)
2750 {
2751 if (ISDIGIT (c))
2752 {
2753 digit_chars[c] = c;
2754 mnemonic_chars[c] = c;
2755 register_chars[c] = c;
2756 operand_chars[c] = c;
2757 }
2758 else if (ISLOWER (c))
2759 {
2760 mnemonic_chars[c] = c;
2761 register_chars[c] = c;
2762 operand_chars[c] = c;
2763 }
2764 else if (ISUPPER (c))
2765 {
2766 mnemonic_chars[c] = TOLOWER (c);
2767 register_chars[c] = mnemonic_chars[c];
2768 operand_chars[c] = c;
2769 }
2770 else if (c == '{' || c == '}')
2771 {
2772 mnemonic_chars[c] = c;
2773 operand_chars[c] = c;
2774 }
2775
2776 if (ISALPHA (c) || ISDIGIT (c))
2777 identifier_chars[c] = c;
2778 else if (c >= 128)
2779 {
2780 identifier_chars[c] = c;
2781 operand_chars[c] = c;
2782 }
2783 }
2784
2785 #ifdef LEX_AT
2786 identifier_chars['@'] = '@';
2787 #endif
2788 #ifdef LEX_QM
2789 identifier_chars['?'] = '?';
2790 operand_chars['?'] = '?';
2791 #endif
2792 digit_chars['-'] = '-';
2793 mnemonic_chars['_'] = '_';
2794 mnemonic_chars['-'] = '-';
2795 mnemonic_chars['.'] = '.';
2796 identifier_chars['_'] = '_';
2797 identifier_chars['.'] = '.';
2798
2799 for (p = operand_special_chars; *p != '\0'; p++)
2800 operand_chars[(unsigned char) *p] = *p;
2801 }
2802
2803 if (flag_code == CODE_64BIT)
2804 {
2805 #if defined (OBJ_COFF) && defined (TE_PE)
2806 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2807 ? 32 : 16);
2808 #else
2809 x86_dwarf2_return_column = 16;
2810 #endif
2811 x86_cie_data_alignment = -8;
2812 }
2813 else
2814 {
2815 x86_dwarf2_return_column = 8;
2816 x86_cie_data_alignment = -4;
2817 }
2818 }
2819
2820 void
2821 i386_print_statistics (FILE *file)
2822 {
2823 hash_print_statistics (file, "i386 opcode", op_hash);
2824 hash_print_statistics (file, "i386 register", reg_hash);
2825 }
2826 \f
2827 #ifdef DEBUG386
2828
2829 /* Debugging routines for md_assemble. */
2830 static void pte (insn_template *);
2831 static void pt (i386_operand_type);
2832 static void pe (expressionS *);
2833 static void ps (symbolS *);
2834
2835 static void
2836 pi (char *line, i386_insn *x)
2837 {
2838 unsigned int j;
2839
2840 fprintf (stdout, "%s: template ", line);
2841 pte (&x->tm);
2842 fprintf (stdout, " address: base %s index %s scale %x\n",
2843 x->base_reg ? x->base_reg->reg_name : "none",
2844 x->index_reg ? x->index_reg->reg_name : "none",
2845 x->log2_scale_factor);
2846 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2847 x->rm.mode, x->rm.reg, x->rm.regmem);
2848 fprintf (stdout, " sib: base %x index %x scale %x\n",
2849 x->sib.base, x->sib.index, x->sib.scale);
2850 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2851 (x->rex & REX_W) != 0,
2852 (x->rex & REX_R) != 0,
2853 (x->rex & REX_X) != 0,
2854 (x->rex & REX_B) != 0);
2855 for (j = 0; j < x->operands; j++)
2856 {
2857 fprintf (stdout, " #%d: ", j + 1);
2858 pt (x->types[j]);
2859 fprintf (stdout, "\n");
2860 if (x->types[j].bitfield.reg
2861 || x->types[j].bitfield.regmmx
2862 || x->types[j].bitfield.regsimd
2863 || x->types[j].bitfield.sreg2
2864 || x->types[j].bitfield.sreg3
2865 || x->types[j].bitfield.control
2866 || x->types[j].bitfield.debug
2867 || x->types[j].bitfield.test)
2868 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2869 if (operand_type_check (x->types[j], imm))
2870 pe (x->op[j].imms);
2871 if (operand_type_check (x->types[j], disp))
2872 pe (x->op[j].disps);
2873 }
2874 }
2875
2876 static void
2877 pte (insn_template *t)
2878 {
2879 unsigned int j;
2880 fprintf (stdout, " %d operands ", t->operands);
2881 fprintf (stdout, "opcode %x ", t->base_opcode);
2882 if (t->extension_opcode != None)
2883 fprintf (stdout, "ext %x ", t->extension_opcode);
2884 if (t->opcode_modifier.d)
2885 fprintf (stdout, "D");
2886 if (t->opcode_modifier.w)
2887 fprintf (stdout, "W");
2888 fprintf (stdout, "\n");
2889 for (j = 0; j < t->operands; j++)
2890 {
2891 fprintf (stdout, " #%d type ", j + 1);
2892 pt (t->operand_types[j]);
2893 fprintf (stdout, "\n");
2894 }
2895 }
2896
2897 static void
2898 pe (expressionS *e)
2899 {
2900 fprintf (stdout, " operation %d\n", e->X_op);
2901 fprintf (stdout, " add_number %ld (%lx)\n",
2902 (long) e->X_add_number, (long) e->X_add_number);
2903 if (e->X_add_symbol)
2904 {
2905 fprintf (stdout, " add_symbol ");
2906 ps (e->X_add_symbol);
2907 fprintf (stdout, "\n");
2908 }
2909 if (e->X_op_symbol)
2910 {
2911 fprintf (stdout, " op_symbol ");
2912 ps (e->X_op_symbol);
2913 fprintf (stdout, "\n");
2914 }
2915 }
2916
2917 static void
2918 ps (symbolS *s)
2919 {
2920 fprintf (stdout, "%s type %s%s",
2921 S_GET_NAME (s),
2922 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2923 segment_name (S_GET_SEGMENT (s)));
2924 }
2925
2926 static struct type_name
2927 {
2928 i386_operand_type mask;
2929 const char *name;
2930 }
2931 const type_names[] =
2932 {
2933 { OPERAND_TYPE_REG8, "r8" },
2934 { OPERAND_TYPE_REG16, "r16" },
2935 { OPERAND_TYPE_REG32, "r32" },
2936 { OPERAND_TYPE_REG64, "r64" },
2937 { OPERAND_TYPE_IMM8, "i8" },
2938 { OPERAND_TYPE_IMM8, "i8s" },
2939 { OPERAND_TYPE_IMM16, "i16" },
2940 { OPERAND_TYPE_IMM32, "i32" },
2941 { OPERAND_TYPE_IMM32S, "i32s" },
2942 { OPERAND_TYPE_IMM64, "i64" },
2943 { OPERAND_TYPE_IMM1, "i1" },
2944 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2945 { OPERAND_TYPE_DISP8, "d8" },
2946 { OPERAND_TYPE_DISP16, "d16" },
2947 { OPERAND_TYPE_DISP32, "d32" },
2948 { OPERAND_TYPE_DISP32S, "d32s" },
2949 { OPERAND_TYPE_DISP64, "d64" },
2950 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2951 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2952 { OPERAND_TYPE_CONTROL, "control reg" },
2953 { OPERAND_TYPE_TEST, "test reg" },
2954 { OPERAND_TYPE_DEBUG, "debug reg" },
2955 { OPERAND_TYPE_FLOATREG, "FReg" },
2956 { OPERAND_TYPE_FLOATACC, "FAcc" },
2957 { OPERAND_TYPE_SREG2, "SReg2" },
2958 { OPERAND_TYPE_SREG3, "SReg3" },
2959 { OPERAND_TYPE_ACC, "Acc" },
2960 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2961 { OPERAND_TYPE_REGMMX, "rMMX" },
2962 { OPERAND_TYPE_REGXMM, "rXMM" },
2963 { OPERAND_TYPE_REGYMM, "rYMM" },
2964 { OPERAND_TYPE_REGZMM, "rZMM" },
2965 { OPERAND_TYPE_REGMASK, "Mask reg" },
2966 { OPERAND_TYPE_ESSEG, "es" },
2967 };
2968
2969 static void
2970 pt (i386_operand_type t)
2971 {
2972 unsigned int j;
2973 i386_operand_type a;
2974
2975 for (j = 0; j < ARRAY_SIZE (type_names); j++)
2976 {
2977 a = operand_type_and (t, type_names[j].mask);
2978 if (!operand_type_all_zero (&a))
2979 fprintf (stdout, "%s, ", type_names[j].name);
2980 }
2981 fflush (stdout);
2982 }
2983
2984 #endif /* DEBUG386 */
2985 \f
2986 static bfd_reloc_code_real_type
2987 reloc (unsigned int size,
2988 int pcrel,
2989 int sign,
2990 bfd_reloc_code_real_type other)
2991 {
2992 if (other != NO_RELOC)
2993 {
2994 reloc_howto_type *rel;
2995
2996 if (size == 8)
2997 switch (other)
2998 {
2999 case BFD_RELOC_X86_64_GOT32:
3000 return BFD_RELOC_X86_64_GOT64;
3001 break;
3002 case BFD_RELOC_X86_64_GOTPLT64:
3003 return BFD_RELOC_X86_64_GOTPLT64;
3004 break;
3005 case BFD_RELOC_X86_64_PLTOFF64:
3006 return BFD_RELOC_X86_64_PLTOFF64;
3007 break;
3008 case BFD_RELOC_X86_64_GOTPC32:
3009 other = BFD_RELOC_X86_64_GOTPC64;
3010 break;
3011 case BFD_RELOC_X86_64_GOTPCREL:
3012 other = BFD_RELOC_X86_64_GOTPCREL64;
3013 break;
3014 case BFD_RELOC_X86_64_TPOFF32:
3015 other = BFD_RELOC_X86_64_TPOFF64;
3016 break;
3017 case BFD_RELOC_X86_64_DTPOFF32:
3018 other = BFD_RELOC_X86_64_DTPOFF64;
3019 break;
3020 default:
3021 break;
3022 }
3023
3024 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3025 if (other == BFD_RELOC_SIZE32)
3026 {
3027 if (size == 8)
3028 other = BFD_RELOC_SIZE64;
3029 if (pcrel)
3030 {
3031 as_bad (_("there are no pc-relative size relocations"));
3032 return NO_RELOC;
3033 }
3034 }
3035 #endif
3036
3037 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3038 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3039 sign = -1;
3040
3041 rel = bfd_reloc_type_lookup (stdoutput, other);
3042 if (!rel)
3043 as_bad (_("unknown relocation (%u)"), other);
3044 else if (size != bfd_get_reloc_size (rel))
3045 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3046 bfd_get_reloc_size (rel),
3047 size);
3048 else if (pcrel && !rel->pc_relative)
3049 as_bad (_("non-pc-relative relocation for pc-relative field"));
3050 else if ((rel->complain_on_overflow == complain_overflow_signed
3051 && !sign)
3052 || (rel->complain_on_overflow == complain_overflow_unsigned
3053 && sign > 0))
3054 as_bad (_("relocated field and relocation type differ in signedness"));
3055 else
3056 return other;
3057 return NO_RELOC;
3058 }
3059
3060 if (pcrel)
3061 {
3062 if (!sign)
3063 as_bad (_("there are no unsigned pc-relative relocations"));
3064 switch (size)
3065 {
3066 case 1: return BFD_RELOC_8_PCREL;
3067 case 2: return BFD_RELOC_16_PCREL;
3068 case 4: return BFD_RELOC_32_PCREL;
3069 case 8: return BFD_RELOC_64_PCREL;
3070 }
3071 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3072 }
3073 else
3074 {
3075 if (sign > 0)
3076 switch (size)
3077 {
3078 case 4: return BFD_RELOC_X86_64_32S;
3079 }
3080 else
3081 switch (size)
3082 {
3083 case 1: return BFD_RELOC_8;
3084 case 2: return BFD_RELOC_16;
3085 case 4: return BFD_RELOC_32;
3086 case 8: return BFD_RELOC_64;
3087 }
3088 as_bad (_("cannot do %s %u byte relocation"),
3089 sign > 0 ? "signed" : "unsigned", size);
3090 }
3091
3092 return NO_RELOC;
3093 }
3094
3095 /* Here we decide which fixups can be adjusted to make them relative to
3096 the beginning of the section instead of the symbol. Basically we need
3097 to make sure that the dynamic relocations are done correctly, so in
3098 some cases we force the original symbol to be used. */
3099
3100 int
3101 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3102 {
3103 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3104 if (!IS_ELF)
3105 return 1;
3106
3107 /* Don't adjust pc-relative references to merge sections in 64-bit
3108 mode. */
3109 if (use_rela_relocations
3110 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3111 && fixP->fx_pcrel)
3112 return 0;
3113
3114 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3115 and changed later by validate_fix. */
3116 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3117 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3118 return 0;
3119
3120 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3121 for size relocations. */
3122 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3123 || fixP->fx_r_type == BFD_RELOC_SIZE64
3124 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3125 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3126 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3127 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3128 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3129 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3130 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3131 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3132 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3133 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3134 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3135 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3136 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3137 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3138 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3139 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3140 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3141 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3142 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3143 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3144 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3145 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3146 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3147 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3148 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3149 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3150 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3151 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3152 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3153 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3154 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3155 return 0;
3156 #endif
3157 return 1;
3158 }
3159
3160 static int
3161 intel_float_operand (const char *mnemonic)
3162 {
3163 /* Note that the value returned is meaningful only for opcodes with (memory)
3164 operands, hence the code here is free to improperly handle opcodes that
3165 have no operands (for better performance and smaller code). */
3166
3167 if (mnemonic[0] != 'f')
3168 return 0; /* non-math */
3169
3170 switch (mnemonic[1])
3171 {
3172 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3173 the fs segment override prefix not currently handled because no
3174 call path can make opcodes without operands get here */
3175 case 'i':
3176 return 2 /* integer op */;
3177 case 'l':
3178 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3179 return 3; /* fldcw/fldenv */
3180 break;
3181 case 'n':
3182 if (mnemonic[2] != 'o' /* fnop */)
3183 return 3; /* non-waiting control op */
3184 break;
3185 case 'r':
3186 if (mnemonic[2] == 's')
3187 return 3; /* frstor/frstpm */
3188 break;
3189 case 's':
3190 if (mnemonic[2] == 'a')
3191 return 3; /* fsave */
3192 if (mnemonic[2] == 't')
3193 {
3194 switch (mnemonic[3])
3195 {
3196 case 'c': /* fstcw */
3197 case 'd': /* fstdw */
3198 case 'e': /* fstenv */
3199 case 's': /* fsts[gw] */
3200 return 3;
3201 }
3202 }
3203 break;
3204 case 'x':
3205 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3206 return 0; /* fxsave/fxrstor are not really math ops */
3207 break;
3208 }
3209
3210 return 1;
3211 }
3212
3213 /* Build the VEX prefix. */
3214
3215 static void
3216 build_vex_prefix (const insn_template *t)
3217 {
3218 unsigned int register_specifier;
3219 unsigned int implied_prefix;
3220 unsigned int vector_length;
3221
3222 /* Check register specifier. */
3223 if (i.vex.register_specifier)
3224 {
3225 register_specifier =
3226 ~register_number (i.vex.register_specifier) & 0xf;
3227 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3228 }
3229 else
3230 register_specifier = 0xf;
3231
3232 /* Use 2-byte VEX prefix by swapping destination and source
3233 operand. */
3234 if (i.vec_encoding != vex_encoding_vex3
3235 && i.dir_encoding == dir_encoding_default
3236 && i.operands == i.reg_operands
3237 && i.tm.opcode_modifier.vexopcode == VEX0F
3238 && i.tm.opcode_modifier.load
3239 && i.rex == REX_B)
3240 {
3241 unsigned int xchg = i.operands - 1;
3242 union i386_op temp_op;
3243 i386_operand_type temp_type;
3244
3245 temp_type = i.types[xchg];
3246 i.types[xchg] = i.types[0];
3247 i.types[0] = temp_type;
3248 temp_op = i.op[xchg];
3249 i.op[xchg] = i.op[0];
3250 i.op[0] = temp_op;
3251
3252 gas_assert (i.rm.mode == 3);
3253
3254 i.rex = REX_R;
3255 xchg = i.rm.regmem;
3256 i.rm.regmem = i.rm.reg;
3257 i.rm.reg = xchg;
3258
3259 /* Use the next insn. */
3260 i.tm = t[1];
3261 }
3262
3263 if (i.tm.opcode_modifier.vex == VEXScalar)
3264 vector_length = avxscalar;
3265 else if (i.tm.opcode_modifier.vex == VEX256)
3266 vector_length = 1;
3267 else
3268 {
3269 unsigned int op;
3270
3271 vector_length = 0;
3272 for (op = 0; op < t->operands; ++op)
3273 if (t->operand_types[op].bitfield.xmmword
3274 && t->operand_types[op].bitfield.ymmword
3275 && i.types[op].bitfield.ymmword)
3276 {
3277 vector_length = 1;
3278 break;
3279 }
3280 }
3281
3282 switch ((i.tm.base_opcode >> 8) & 0xff)
3283 {
3284 case 0:
3285 implied_prefix = 0;
3286 break;
3287 case DATA_PREFIX_OPCODE:
3288 implied_prefix = 1;
3289 break;
3290 case REPE_PREFIX_OPCODE:
3291 implied_prefix = 2;
3292 break;
3293 case REPNE_PREFIX_OPCODE:
3294 implied_prefix = 3;
3295 break;
3296 default:
3297 abort ();
3298 }
3299
3300 /* Use 2-byte VEX prefix if possible. */
3301 if (i.vec_encoding != vex_encoding_vex3
3302 && i.tm.opcode_modifier.vexopcode == VEX0F
3303 && i.tm.opcode_modifier.vexw != VEXW1
3304 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3305 {
3306 /* 2-byte VEX prefix. */
3307 unsigned int r;
3308
3309 i.vex.length = 2;
3310 i.vex.bytes[0] = 0xc5;
3311
3312 /* Check the REX.R bit. */
3313 r = (i.rex & REX_R) ? 0 : 1;
3314 i.vex.bytes[1] = (r << 7
3315 | register_specifier << 3
3316 | vector_length << 2
3317 | implied_prefix);
3318 }
3319 else
3320 {
3321 /* 3-byte VEX prefix. */
3322 unsigned int m, w;
3323
3324 i.vex.length = 3;
3325
3326 switch (i.tm.opcode_modifier.vexopcode)
3327 {
3328 case VEX0F:
3329 m = 0x1;
3330 i.vex.bytes[0] = 0xc4;
3331 break;
3332 case VEX0F38:
3333 m = 0x2;
3334 i.vex.bytes[0] = 0xc4;
3335 break;
3336 case VEX0F3A:
3337 m = 0x3;
3338 i.vex.bytes[0] = 0xc4;
3339 break;
3340 case XOP08:
3341 m = 0x8;
3342 i.vex.bytes[0] = 0x8f;
3343 break;
3344 case XOP09:
3345 m = 0x9;
3346 i.vex.bytes[0] = 0x8f;
3347 break;
3348 case XOP0A:
3349 m = 0xa;
3350 i.vex.bytes[0] = 0x8f;
3351 break;
3352 default:
3353 abort ();
3354 }
3355
3356 /* The high 3 bits of the second VEX byte are 1's compliment
3357 of RXB bits from REX. */
3358 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3359
3360 /* Check the REX.W bit. */
3361 w = (i.rex & REX_W) ? 1 : 0;
3362 if (i.tm.opcode_modifier.vexw == VEXW1)
3363 w = 1;
3364
3365 i.vex.bytes[2] = (w << 7
3366 | register_specifier << 3
3367 | vector_length << 2
3368 | implied_prefix);
3369 }
3370 }
3371
3372 /* Build the EVEX prefix. */
3373
3374 static void
3375 build_evex_prefix (void)
3376 {
3377 unsigned int register_specifier;
3378 unsigned int implied_prefix;
3379 unsigned int m, w;
3380 rex_byte vrex_used = 0;
3381
3382 /* Check register specifier. */
3383 if (i.vex.register_specifier)
3384 {
3385 gas_assert ((i.vrex & REX_X) == 0);
3386
3387 register_specifier = i.vex.register_specifier->reg_num;
3388 if ((i.vex.register_specifier->reg_flags & RegRex))
3389 register_specifier += 8;
3390 /* The upper 16 registers are encoded in the fourth byte of the
3391 EVEX prefix. */
3392 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3393 i.vex.bytes[3] = 0x8;
3394 register_specifier = ~register_specifier & 0xf;
3395 }
3396 else
3397 {
3398 register_specifier = 0xf;
3399
3400 /* Encode upper 16 vector index register in the fourth byte of
3401 the EVEX prefix. */
3402 if (!(i.vrex & REX_X))
3403 i.vex.bytes[3] = 0x8;
3404 else
3405 vrex_used |= REX_X;
3406 }
3407
3408 switch ((i.tm.base_opcode >> 8) & 0xff)
3409 {
3410 case 0:
3411 implied_prefix = 0;
3412 break;
3413 case DATA_PREFIX_OPCODE:
3414 implied_prefix = 1;
3415 break;
3416 case REPE_PREFIX_OPCODE:
3417 implied_prefix = 2;
3418 break;
3419 case REPNE_PREFIX_OPCODE:
3420 implied_prefix = 3;
3421 break;
3422 default:
3423 abort ();
3424 }
3425
3426 /* 4 byte EVEX prefix. */
3427 i.vex.length = 4;
3428 i.vex.bytes[0] = 0x62;
3429
3430 /* mmmm bits. */
3431 switch (i.tm.opcode_modifier.vexopcode)
3432 {
3433 case VEX0F:
3434 m = 1;
3435 break;
3436 case VEX0F38:
3437 m = 2;
3438 break;
3439 case VEX0F3A:
3440 m = 3;
3441 break;
3442 default:
3443 abort ();
3444 break;
3445 }
3446
3447 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3448 bits from REX. */
3449 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3450
3451 /* The fifth bit of the second EVEX byte is 1's compliment of the
3452 REX_R bit in VREX. */
3453 if (!(i.vrex & REX_R))
3454 i.vex.bytes[1] |= 0x10;
3455 else
3456 vrex_used |= REX_R;
3457
3458 if ((i.reg_operands + i.imm_operands) == i.operands)
3459 {
3460 /* When all operands are registers, the REX_X bit in REX is not
3461 used. We reuse it to encode the upper 16 registers, which is
3462 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3463 as 1's compliment. */
3464 if ((i.vrex & REX_B))
3465 {
3466 vrex_used |= REX_B;
3467 i.vex.bytes[1] &= ~0x40;
3468 }
3469 }
3470
3471 /* EVEX instructions shouldn't need the REX prefix. */
3472 i.vrex &= ~vrex_used;
3473 gas_assert (i.vrex == 0);
3474
3475 /* Check the REX.W bit. */
3476 w = (i.rex & REX_W) ? 1 : 0;
3477 if (i.tm.opcode_modifier.vexw)
3478 {
3479 if (i.tm.opcode_modifier.vexw == VEXW1)
3480 w = 1;
3481 }
3482 /* If w is not set it means we are dealing with WIG instruction. */
3483 else if (!w)
3484 {
3485 if (evexwig == evexw1)
3486 w = 1;
3487 }
3488
3489 /* Encode the U bit. */
3490 implied_prefix |= 0x4;
3491
3492 /* The third byte of the EVEX prefix. */
3493 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3494
3495 /* The fourth byte of the EVEX prefix. */
3496 /* The zeroing-masking bit. */
3497 if (i.mask && i.mask->zeroing)
3498 i.vex.bytes[3] |= 0x80;
3499
3500 /* Don't always set the broadcast bit if there is no RC. */
3501 if (!i.rounding)
3502 {
3503 /* Encode the vector length. */
3504 unsigned int vec_length;
3505
3506 switch (i.tm.opcode_modifier.evex)
3507 {
3508 case EVEXLIG: /* LL' is ignored */
3509 vec_length = evexlig << 5;
3510 break;
3511 case EVEX128:
3512 vec_length = 0 << 5;
3513 break;
3514 case EVEX256:
3515 vec_length = 1 << 5;
3516 break;
3517 case EVEX512:
3518 vec_length = 2 << 5;
3519 break;
3520 default:
3521 abort ();
3522 break;
3523 }
3524 i.vex.bytes[3] |= vec_length;
3525 /* Encode the broadcast bit. */
3526 if (i.broadcast)
3527 i.vex.bytes[3] |= 0x10;
3528 }
3529 else
3530 {
3531 if (i.rounding->type != saeonly)
3532 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3533 else
3534 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3535 }
3536
3537 if (i.mask && i.mask->mask)
3538 i.vex.bytes[3] |= i.mask->mask->reg_num;
3539 }
3540
3541 static void
3542 process_immext (void)
3543 {
3544 expressionS *exp;
3545
3546 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3547 && i.operands > 0)
3548 {
3549 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3550 with an opcode suffix which is coded in the same place as an
3551 8-bit immediate field would be.
3552 Here we check those operands and remove them afterwards. */
3553 unsigned int x;
3554
3555 for (x = 0; x < i.operands; x++)
3556 if (register_number (i.op[x].regs) != x)
3557 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3558 register_prefix, i.op[x].regs->reg_name, x + 1,
3559 i.tm.name);
3560
3561 i.operands = 0;
3562 }
3563
3564 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3565 {
3566 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3567 suffix which is coded in the same place as an 8-bit immediate
3568 field would be.
3569 Here we check those operands and remove them afterwards. */
3570 unsigned int x;
3571
3572 if (i.operands != 3)
3573 abort();
3574
3575 for (x = 0; x < 2; x++)
3576 if (register_number (i.op[x].regs) != x)
3577 goto bad_register_operand;
3578
3579 /* Check for third operand for mwaitx/monitorx insn. */
3580 if (register_number (i.op[x].regs)
3581 != (x + (i.tm.extension_opcode == 0xfb)))
3582 {
3583 bad_register_operand:
3584 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3585 register_prefix, i.op[x].regs->reg_name, x+1,
3586 i.tm.name);
3587 }
3588
3589 i.operands = 0;
3590 }
3591
3592 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3593 which is coded in the same place as an 8-bit immediate field
3594 would be. Here we fake an 8-bit immediate operand from the
3595 opcode suffix stored in tm.extension_opcode.
3596
3597 AVX instructions also use this encoding, for some of
3598 3 argument instructions. */
3599
3600 gas_assert (i.imm_operands <= 1
3601 && (i.operands <= 2
3602 || ((i.tm.opcode_modifier.vex
3603 || i.tm.opcode_modifier.evex)
3604 && i.operands <= 4)));
3605
3606 exp = &im_expressions[i.imm_operands++];
3607 i.op[i.operands].imms = exp;
3608 i.types[i.operands] = imm8;
3609 i.operands++;
3610 exp->X_op = O_constant;
3611 exp->X_add_number = i.tm.extension_opcode;
3612 i.tm.extension_opcode = None;
3613 }
3614
3615
3616 static int
3617 check_hle (void)
3618 {
3619 switch (i.tm.opcode_modifier.hleprefixok)
3620 {
3621 default:
3622 abort ();
3623 case HLEPrefixNone:
3624 as_bad (_("invalid instruction `%s' after `%s'"),
3625 i.tm.name, i.hle_prefix);
3626 return 0;
3627 case HLEPrefixLock:
3628 if (i.prefix[LOCK_PREFIX])
3629 return 1;
3630 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3631 return 0;
3632 case HLEPrefixAny:
3633 return 1;
3634 case HLEPrefixRelease:
3635 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3636 {
3637 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3638 i.tm.name);
3639 return 0;
3640 }
3641 if (i.mem_operands == 0
3642 || !operand_type_check (i.types[i.operands - 1], anymem))
3643 {
3644 as_bad (_("memory destination needed for instruction `%s'"
3645 " after `xrelease'"), i.tm.name);
3646 return 0;
3647 }
3648 return 1;
3649 }
3650 }
3651
3652 /* This is the guts of the machine-dependent assembler. LINE points to a
3653 machine dependent instruction. This function is supposed to emit
3654 the frags/bytes it assembles to. */
3655
3656 void
3657 md_assemble (char *line)
3658 {
3659 unsigned int j;
3660 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
3661 const insn_template *t;
3662
3663 /* Initialize globals. */
3664 memset (&i, '\0', sizeof (i));
3665 for (j = 0; j < MAX_OPERANDS; j++)
3666 i.reloc[j] = NO_RELOC;
3667 memset (disp_expressions, '\0', sizeof (disp_expressions));
3668 memset (im_expressions, '\0', sizeof (im_expressions));
3669 save_stack_p = save_stack;
3670
3671 /* First parse an instruction mnemonic & call i386_operand for the operands.
3672 We assume that the scrubber has arranged it so that line[0] is the valid
3673 start of a (possibly prefixed) mnemonic. */
3674
3675 line = parse_insn (line, mnemonic);
3676 if (line == NULL)
3677 return;
3678 mnem_suffix = i.suffix;
3679
3680 line = parse_operands (line, mnemonic);
3681 this_operand = -1;
3682 xfree (i.memop1_string);
3683 i.memop1_string = NULL;
3684 if (line == NULL)
3685 return;
3686
3687 /* Now we've parsed the mnemonic into a set of templates, and have the
3688 operands at hand. */
3689
3690 /* All intel opcodes have reversed operands except for "bound" and
3691 "enter". We also don't reverse intersegment "jmp" and "call"
3692 instructions with 2 immediate operands so that the immediate segment
3693 precedes the offset, as it does when in AT&T mode. */
3694 if (intel_syntax
3695 && i.operands > 1
3696 && (strcmp (mnemonic, "bound") != 0)
3697 && (strcmp (mnemonic, "invlpga") != 0)
3698 && !(operand_type_check (i.types[0], imm)
3699 && operand_type_check (i.types[1], imm)))
3700 swap_operands ();
3701
3702 /* The order of the immediates should be reversed
3703 for 2 immediates extrq and insertq instructions */
3704 if (i.imm_operands == 2
3705 && (strcmp (mnemonic, "extrq") == 0
3706 || strcmp (mnemonic, "insertq") == 0))
3707 swap_2_operands (0, 1);
3708
3709 if (i.imm_operands)
3710 optimize_imm ();
3711
3712 /* Don't optimize displacement for movabs since it only takes 64bit
3713 displacement. */
3714 if (i.disp_operands
3715 && i.disp_encoding != disp_encoding_32bit
3716 && (flag_code != CODE_64BIT
3717 || strcmp (mnemonic, "movabs") != 0))
3718 optimize_disp ();
3719
3720 /* Next, we find a template that matches the given insn,
3721 making sure the overlap of the given operands types is consistent
3722 with the template operand types. */
3723
3724 if (!(t = match_template (mnem_suffix)))
3725 return;
3726
3727 if (sse_check != check_none
3728 && !i.tm.opcode_modifier.noavx
3729 && (i.tm.cpu_flags.bitfield.cpusse
3730 || i.tm.cpu_flags.bitfield.cpusse2
3731 || i.tm.cpu_flags.bitfield.cpusse3
3732 || i.tm.cpu_flags.bitfield.cpussse3
3733 || i.tm.cpu_flags.bitfield.cpusse4_1
3734 || i.tm.cpu_flags.bitfield.cpusse4_2))
3735 {
3736 (sse_check == check_warning
3737 ? as_warn
3738 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
3739 }
3740
3741 /* Zap movzx and movsx suffix. The suffix has been set from
3742 "word ptr" or "byte ptr" on the source operand in Intel syntax
3743 or extracted from mnemonic in AT&T syntax. But we'll use
3744 the destination register to choose the suffix for encoding. */
3745 if ((i.tm.base_opcode & ~9) == 0x0fb6)
3746 {
3747 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
3748 there is no suffix, the default will be byte extension. */
3749 if (i.reg_operands != 2
3750 && !i.suffix
3751 && intel_syntax)
3752 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3753
3754 i.suffix = 0;
3755 }
3756
3757 if (i.tm.opcode_modifier.fwait)
3758 if (!add_prefix (FWAIT_OPCODE))
3759 return;
3760
3761 /* Check if REP prefix is OK. */
3762 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
3763 {
3764 as_bad (_("invalid instruction `%s' after `%s'"),
3765 i.tm.name, i.rep_prefix);
3766 return;
3767 }
3768
3769 /* Check for lock without a lockable instruction. Destination operand
3770 must be memory unless it is xchg (0x86). */
3771 if (i.prefix[LOCK_PREFIX]
3772 && (!i.tm.opcode_modifier.islockable
3773 || i.mem_operands == 0
3774 || (i.tm.base_opcode != 0x86
3775 && !operand_type_check (i.types[i.operands - 1], anymem))))
3776 {
3777 as_bad (_("expecting lockable instruction after `lock'"));
3778 return;
3779 }
3780
3781 /* Check if HLE prefix is OK. */
3782 if (i.hle_prefix && !check_hle ())
3783 return;
3784
3785 /* Check BND prefix. */
3786 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
3787 as_bad (_("expecting valid branch instruction after `bnd'"));
3788
3789 /* Check NOTRACK prefix. */
3790 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
3791 as_bad (_("expecting indirect branch instruction after `notrack'"));
3792
3793 if (i.tm.cpu_flags.bitfield.cpumpx)
3794 {
3795 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
3796 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
3797 else if (flag_code != CODE_16BIT
3798 ? i.prefix[ADDR_PREFIX]
3799 : i.mem_operands && !i.prefix[ADDR_PREFIX])
3800 as_bad (_("16-bit address isn't allowed in MPX instructions"));
3801 }
3802
3803 /* Insert BND prefix. */
3804 if (add_bnd_prefix
3805 && i.tm.opcode_modifier.bndprefixok
3806 && !i.prefix[BND_PREFIX])
3807 add_prefix (BND_PREFIX_OPCODE);
3808
3809 /* Check string instruction segment overrides. */
3810 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
3811 {
3812 if (!check_string ())
3813 return;
3814 i.disp_operands = 0;
3815 }
3816
3817 if (!process_suffix ())
3818 return;
3819
3820 /* Update operand types. */
3821 for (j = 0; j < i.operands; j++)
3822 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3823
3824 /* Make still unresolved immediate matches conform to size of immediate
3825 given in i.suffix. */
3826 if (!finalize_imm ())
3827 return;
3828
3829 if (i.types[0].bitfield.imm1)
3830 i.imm_operands = 0; /* kludge for shift insns. */
3831
3832 /* We only need to check those implicit registers for instructions
3833 with 3 operands or less. */
3834 if (i.operands <= 3)
3835 for (j = 0; j < i.operands; j++)
3836 if (i.types[j].bitfield.inoutportreg
3837 || i.types[j].bitfield.shiftcount
3838 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
3839 i.reg_operands--;
3840
3841 /* ImmExt should be processed after SSE2AVX. */
3842 if (!i.tm.opcode_modifier.sse2avx
3843 && i.tm.opcode_modifier.immext)
3844 process_immext ();
3845
3846 /* For insns with operands there are more diddles to do to the opcode. */
3847 if (i.operands)
3848 {
3849 if (!process_operands ())
3850 return;
3851 }
3852 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
3853 {
3854 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3855 as_warn (_("translating to `%sp'"), i.tm.name);
3856 }
3857
3858 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.evex)
3859 {
3860 if (flag_code == CODE_16BIT)
3861 {
3862 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
3863 i.tm.name);
3864 return;
3865 }
3866
3867 if (i.tm.opcode_modifier.vex)
3868 build_vex_prefix (t);
3869 else
3870 build_evex_prefix ();
3871 }
3872
3873 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3874 instructions may define INT_OPCODE as well, so avoid this corner
3875 case for those instructions that use MODRM. */
3876 if (i.tm.base_opcode == INT_OPCODE
3877 && !i.tm.opcode_modifier.modrm
3878 && i.op[0].imms->X_add_number == 3)
3879 {
3880 i.tm.base_opcode = INT3_OPCODE;
3881 i.imm_operands = 0;
3882 }
3883
3884 if ((i.tm.opcode_modifier.jump
3885 || i.tm.opcode_modifier.jumpbyte
3886 || i.tm.opcode_modifier.jumpdword)
3887 && i.op[0].disps->X_op == O_constant)
3888 {
3889 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3890 the absolute address given by the constant. Since ix86 jumps and
3891 calls are pc relative, we need to generate a reloc. */
3892 i.op[0].disps->X_add_symbol = &abs_symbol;
3893 i.op[0].disps->X_op = O_symbol;
3894 }
3895
3896 if (i.tm.opcode_modifier.rex64)
3897 i.rex |= REX_W;
3898
3899 /* For 8 bit registers we need an empty rex prefix. Also if the
3900 instruction already has a prefix, we need to convert old
3901 registers to new ones. */
3902
3903 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
3904 && (i.op[0].regs->reg_flags & RegRex64) != 0)
3905 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
3906 && (i.op[1].regs->reg_flags & RegRex64) != 0)
3907 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
3908 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
3909 && i.rex != 0))
3910 {
3911 int x;
3912
3913 i.rex |= REX_OPCODE;
3914 for (x = 0; x < 2; x++)
3915 {
3916 /* Look for 8 bit operand that uses old registers. */
3917 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
3918 && (i.op[x].regs->reg_flags & RegRex64) == 0)
3919 {
3920 /* In case it is "hi" register, give up. */
3921 if (i.op[x].regs->reg_num > 3)
3922 as_bad (_("can't encode register '%s%s' in an "
3923 "instruction requiring REX prefix."),
3924 register_prefix, i.op[x].regs->reg_name);
3925
3926 /* Otherwise it is equivalent to the extended register.
3927 Since the encoding doesn't change this is merely
3928 cosmetic cleanup for debug output. */
3929
3930 i.op[x].regs = i.op[x].regs + 8;
3931 }
3932 }
3933 }
3934
3935 if (i.rex != 0)
3936 add_prefix (REX_OPCODE | i.rex);
3937
3938 /* We are ready to output the insn. */
3939 output_insn ();
3940 }
3941
3942 static char *
3943 parse_insn (char *line, char *mnemonic)
3944 {
3945 char *l = line;
3946 char *token_start = l;
3947 char *mnem_p;
3948 int supported;
3949 const insn_template *t;
3950 char *dot_p = NULL;
3951
3952 while (1)
3953 {
3954 mnem_p = mnemonic;
3955 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3956 {
3957 if (*mnem_p == '.')
3958 dot_p = mnem_p;
3959 mnem_p++;
3960 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
3961 {
3962 as_bad (_("no such instruction: `%s'"), token_start);
3963 return NULL;
3964 }
3965 l++;
3966 }
3967 if (!is_space_char (*l)
3968 && *l != END_OF_INSN
3969 && (intel_syntax
3970 || (*l != PREFIX_SEPARATOR
3971 && *l != ',')))
3972 {
3973 as_bad (_("invalid character %s in mnemonic"),
3974 output_invalid (*l));
3975 return NULL;
3976 }
3977 if (token_start == l)
3978 {
3979 if (!intel_syntax && *l == PREFIX_SEPARATOR)
3980 as_bad (_("expecting prefix; got nothing"));
3981 else
3982 as_bad (_("expecting mnemonic; got nothing"));
3983 return NULL;
3984 }
3985
3986 /* Look up instruction (or prefix) via hash table. */
3987 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3988
3989 if (*l != END_OF_INSN
3990 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3991 && current_templates
3992 && current_templates->start->opcode_modifier.isprefix)
3993 {
3994 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
3995 {
3996 as_bad ((flag_code != CODE_64BIT
3997 ? _("`%s' is only supported in 64-bit mode")
3998 : _("`%s' is not supported in 64-bit mode")),
3999 current_templates->start->name);
4000 return NULL;
4001 }
4002 /* If we are in 16-bit mode, do not allow addr16 or data16.
4003 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4004 if ((current_templates->start->opcode_modifier.size16
4005 || current_templates->start->opcode_modifier.size32)
4006 && flag_code != CODE_64BIT
4007 && (current_templates->start->opcode_modifier.size32
4008 ^ (flag_code == CODE_16BIT)))
4009 {
4010 as_bad (_("redundant %s prefix"),
4011 current_templates->start->name);
4012 return NULL;
4013 }
4014 if (current_templates->start->opcode_length == 0)
4015 {
4016 /* Handle pseudo prefixes. */
4017 switch (current_templates->start->base_opcode)
4018 {
4019 case 0x0:
4020 /* {disp8} */
4021 i.disp_encoding = disp_encoding_8bit;
4022 break;
4023 case 0x1:
4024 /* {disp32} */
4025 i.disp_encoding = disp_encoding_32bit;
4026 break;
4027 case 0x2:
4028 /* {load} */
4029 i.dir_encoding = dir_encoding_load;
4030 break;
4031 case 0x3:
4032 /* {store} */
4033 i.dir_encoding = dir_encoding_store;
4034 break;
4035 case 0x4:
4036 /* {vex2} */
4037 i.vec_encoding = vex_encoding_vex2;
4038 break;
4039 case 0x5:
4040 /* {vex3} */
4041 i.vec_encoding = vex_encoding_vex3;
4042 break;
4043 case 0x6:
4044 /* {evex} */
4045 i.vec_encoding = vex_encoding_evex;
4046 break;
4047 default:
4048 abort ();
4049 }
4050 }
4051 else
4052 {
4053 /* Add prefix, checking for repeated prefixes. */
4054 switch (add_prefix (current_templates->start->base_opcode))
4055 {
4056 case PREFIX_EXIST:
4057 return NULL;
4058 case PREFIX_DS:
4059 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4060 i.notrack_prefix = current_templates->start->name;
4061 break;
4062 case PREFIX_REP:
4063 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4064 i.hle_prefix = current_templates->start->name;
4065 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4066 i.bnd_prefix = current_templates->start->name;
4067 else
4068 i.rep_prefix = current_templates->start->name;
4069 break;
4070 default:
4071 break;
4072 }
4073 }
4074 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4075 token_start = ++l;
4076 }
4077 else
4078 break;
4079 }
4080
4081 if (!current_templates)
4082 {
4083 /* Check if we should swap operand or force 32bit displacement in
4084 encoding. */
4085 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4086 i.dir_encoding = dir_encoding_store;
4087 else if (mnem_p - 3 == dot_p
4088 && dot_p[1] == 'd'
4089 && dot_p[2] == '8')
4090 i.disp_encoding = disp_encoding_8bit;
4091 else if (mnem_p - 4 == dot_p
4092 && dot_p[1] == 'd'
4093 && dot_p[2] == '3'
4094 && dot_p[3] == '2')
4095 i.disp_encoding = disp_encoding_32bit;
4096 else
4097 goto check_suffix;
4098 mnem_p = dot_p;
4099 *dot_p = '\0';
4100 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4101 }
4102
4103 if (!current_templates)
4104 {
4105 check_suffix:
4106 /* See if we can get a match by trimming off a suffix. */
4107 switch (mnem_p[-1])
4108 {
4109 case WORD_MNEM_SUFFIX:
4110 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4111 i.suffix = SHORT_MNEM_SUFFIX;
4112 else
4113 /* Fall through. */
4114 case BYTE_MNEM_SUFFIX:
4115 case QWORD_MNEM_SUFFIX:
4116 i.suffix = mnem_p[-1];
4117 mnem_p[-1] = '\0';
4118 current_templates = (const templates *) hash_find (op_hash,
4119 mnemonic);
4120 break;
4121 case SHORT_MNEM_SUFFIX:
4122 case LONG_MNEM_SUFFIX:
4123 if (!intel_syntax)
4124 {
4125 i.suffix = mnem_p[-1];
4126 mnem_p[-1] = '\0';
4127 current_templates = (const templates *) hash_find (op_hash,
4128 mnemonic);
4129 }
4130 break;
4131
4132 /* Intel Syntax. */
4133 case 'd':
4134 if (intel_syntax)
4135 {
4136 if (intel_float_operand (mnemonic) == 1)
4137 i.suffix = SHORT_MNEM_SUFFIX;
4138 else
4139 i.suffix = LONG_MNEM_SUFFIX;
4140 mnem_p[-1] = '\0';
4141 current_templates = (const templates *) hash_find (op_hash,
4142 mnemonic);
4143 }
4144 break;
4145 }
4146 if (!current_templates)
4147 {
4148 as_bad (_("no such instruction: `%s'"), token_start);
4149 return NULL;
4150 }
4151 }
4152
4153 if (current_templates->start->opcode_modifier.jump
4154 || current_templates->start->opcode_modifier.jumpbyte)
4155 {
4156 /* Check for a branch hint. We allow ",pt" and ",pn" for
4157 predict taken and predict not taken respectively.
4158 I'm not sure that branch hints actually do anything on loop
4159 and jcxz insns (JumpByte) for current Pentium4 chips. They
4160 may work in the future and it doesn't hurt to accept them
4161 now. */
4162 if (l[0] == ',' && l[1] == 'p')
4163 {
4164 if (l[2] == 't')
4165 {
4166 if (!add_prefix (DS_PREFIX_OPCODE))
4167 return NULL;
4168 l += 3;
4169 }
4170 else if (l[2] == 'n')
4171 {
4172 if (!add_prefix (CS_PREFIX_OPCODE))
4173 return NULL;
4174 l += 3;
4175 }
4176 }
4177 }
4178 /* Any other comma loses. */
4179 if (*l == ',')
4180 {
4181 as_bad (_("invalid character %s in mnemonic"),
4182 output_invalid (*l));
4183 return NULL;
4184 }
4185
4186 /* Check if instruction is supported on specified architecture. */
4187 supported = 0;
4188 for (t = current_templates->start; t < current_templates->end; ++t)
4189 {
4190 supported |= cpu_flags_match (t);
4191 if (supported == CPU_FLAGS_PERFECT_MATCH)
4192 goto skip;
4193 }
4194
4195 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4196 {
4197 as_bad (flag_code == CODE_64BIT
4198 ? _("`%s' is not supported in 64-bit mode")
4199 : _("`%s' is only supported in 64-bit mode"),
4200 current_templates->start->name);
4201 return NULL;
4202 }
4203 if (supported != CPU_FLAGS_PERFECT_MATCH)
4204 {
4205 as_bad (_("`%s' is not supported on `%s%s'"),
4206 current_templates->start->name,
4207 cpu_arch_name ? cpu_arch_name : default_arch,
4208 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4209 return NULL;
4210 }
4211
4212 skip:
4213 if (!cpu_arch_flags.bitfield.cpui386
4214 && (flag_code != CODE_16BIT))
4215 {
4216 as_warn (_("use .code16 to ensure correct addressing mode"));
4217 }
4218
4219 return l;
4220 }
4221
4222 static char *
4223 parse_operands (char *l, const char *mnemonic)
4224 {
4225 char *token_start;
4226
4227 /* 1 if operand is pending after ','. */
4228 unsigned int expecting_operand = 0;
4229
4230 /* Non-zero if operand parens not balanced. */
4231 unsigned int paren_not_balanced;
4232
4233 while (*l != END_OF_INSN)
4234 {
4235 /* Skip optional white space before operand. */
4236 if (is_space_char (*l))
4237 ++l;
4238 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4239 {
4240 as_bad (_("invalid character %s before operand %d"),
4241 output_invalid (*l),
4242 i.operands + 1);
4243 return NULL;
4244 }
4245 token_start = l; /* After white space. */
4246 paren_not_balanced = 0;
4247 while (paren_not_balanced || *l != ',')
4248 {
4249 if (*l == END_OF_INSN)
4250 {
4251 if (paren_not_balanced)
4252 {
4253 if (!intel_syntax)
4254 as_bad (_("unbalanced parenthesis in operand %d."),
4255 i.operands + 1);
4256 else
4257 as_bad (_("unbalanced brackets in operand %d."),
4258 i.operands + 1);
4259 return NULL;
4260 }
4261 else
4262 break; /* we are done */
4263 }
4264 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4265 {
4266 as_bad (_("invalid character %s in operand %d"),
4267 output_invalid (*l),
4268 i.operands + 1);
4269 return NULL;
4270 }
4271 if (!intel_syntax)
4272 {
4273 if (*l == '(')
4274 ++paren_not_balanced;
4275 if (*l == ')')
4276 --paren_not_balanced;
4277 }
4278 else
4279 {
4280 if (*l == '[')
4281 ++paren_not_balanced;
4282 if (*l == ']')
4283 --paren_not_balanced;
4284 }
4285 l++;
4286 }
4287 if (l != token_start)
4288 { /* Yes, we've read in another operand. */
4289 unsigned int operand_ok;
4290 this_operand = i.operands++;
4291 if (i.operands > MAX_OPERANDS)
4292 {
4293 as_bad (_("spurious operands; (%d operands/instruction max)"),
4294 MAX_OPERANDS);
4295 return NULL;
4296 }
4297 i.types[this_operand].bitfield.unspecified = 1;
4298 /* Now parse operand adding info to 'i' as we go along. */
4299 END_STRING_AND_SAVE (l);
4300
4301 if (intel_syntax)
4302 operand_ok =
4303 i386_intel_operand (token_start,
4304 intel_float_operand (mnemonic));
4305 else
4306 operand_ok = i386_att_operand (token_start);
4307
4308 RESTORE_END_STRING (l);
4309 if (!operand_ok)
4310 return NULL;
4311 }
4312 else
4313 {
4314 if (expecting_operand)
4315 {
4316 expecting_operand_after_comma:
4317 as_bad (_("expecting operand after ','; got nothing"));
4318 return NULL;
4319 }
4320 if (*l == ',')
4321 {
4322 as_bad (_("expecting operand before ','; got nothing"));
4323 return NULL;
4324 }
4325 }
4326
4327 /* Now *l must be either ',' or END_OF_INSN. */
4328 if (*l == ',')
4329 {
4330 if (*++l == END_OF_INSN)
4331 {
4332 /* Just skip it, if it's \n complain. */
4333 goto expecting_operand_after_comma;
4334 }
4335 expecting_operand = 1;
4336 }
4337 }
4338 return l;
4339 }
4340
4341 static void
4342 swap_2_operands (int xchg1, int xchg2)
4343 {
4344 union i386_op temp_op;
4345 i386_operand_type temp_type;
4346 enum bfd_reloc_code_real temp_reloc;
4347
4348 temp_type = i.types[xchg2];
4349 i.types[xchg2] = i.types[xchg1];
4350 i.types[xchg1] = temp_type;
4351 temp_op = i.op[xchg2];
4352 i.op[xchg2] = i.op[xchg1];
4353 i.op[xchg1] = temp_op;
4354 temp_reloc = i.reloc[xchg2];
4355 i.reloc[xchg2] = i.reloc[xchg1];
4356 i.reloc[xchg1] = temp_reloc;
4357
4358 if (i.mask)
4359 {
4360 if (i.mask->operand == xchg1)
4361 i.mask->operand = xchg2;
4362 else if (i.mask->operand == xchg2)
4363 i.mask->operand = xchg1;
4364 }
4365 if (i.broadcast)
4366 {
4367 if (i.broadcast->operand == xchg1)
4368 i.broadcast->operand = xchg2;
4369 else if (i.broadcast->operand == xchg2)
4370 i.broadcast->operand = xchg1;
4371 }
4372 if (i.rounding)
4373 {
4374 if (i.rounding->operand == xchg1)
4375 i.rounding->operand = xchg2;
4376 else if (i.rounding->operand == xchg2)
4377 i.rounding->operand = xchg1;
4378 }
4379 }
4380
4381 static void
4382 swap_operands (void)
4383 {
4384 switch (i.operands)
4385 {
4386 case 5:
4387 case 4:
4388 swap_2_operands (1, i.operands - 2);
4389 /* Fall through. */
4390 case 3:
4391 case 2:
4392 swap_2_operands (0, i.operands - 1);
4393 break;
4394 default:
4395 abort ();
4396 }
4397
4398 if (i.mem_operands == 2)
4399 {
4400 const seg_entry *temp_seg;
4401 temp_seg = i.seg[0];
4402 i.seg[0] = i.seg[1];
4403 i.seg[1] = temp_seg;
4404 }
4405 }
4406
4407 /* Try to ensure constant immediates are represented in the smallest
4408 opcode possible. */
4409 static void
4410 optimize_imm (void)
4411 {
4412 char guess_suffix = 0;
4413 int op;
4414
4415 if (i.suffix)
4416 guess_suffix = i.suffix;
4417 else if (i.reg_operands)
4418 {
4419 /* Figure out a suffix from the last register operand specified.
4420 We can't do this properly yet, ie. excluding InOutPortReg,
4421 but the following works for instructions with immediates.
4422 In any case, we can't set i.suffix yet. */
4423 for (op = i.operands; --op >= 0;)
4424 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
4425 {
4426 guess_suffix = BYTE_MNEM_SUFFIX;
4427 break;
4428 }
4429 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
4430 {
4431 guess_suffix = WORD_MNEM_SUFFIX;
4432 break;
4433 }
4434 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
4435 {
4436 guess_suffix = LONG_MNEM_SUFFIX;
4437 break;
4438 }
4439 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
4440 {
4441 guess_suffix = QWORD_MNEM_SUFFIX;
4442 break;
4443 }
4444 }
4445 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4446 guess_suffix = WORD_MNEM_SUFFIX;
4447
4448 for (op = i.operands; --op >= 0;)
4449 if (operand_type_check (i.types[op], imm))
4450 {
4451 switch (i.op[op].imms->X_op)
4452 {
4453 case O_constant:
4454 /* If a suffix is given, this operand may be shortened. */
4455 switch (guess_suffix)
4456 {
4457 case LONG_MNEM_SUFFIX:
4458 i.types[op].bitfield.imm32 = 1;
4459 i.types[op].bitfield.imm64 = 1;
4460 break;
4461 case WORD_MNEM_SUFFIX:
4462 i.types[op].bitfield.imm16 = 1;
4463 i.types[op].bitfield.imm32 = 1;
4464 i.types[op].bitfield.imm32s = 1;
4465 i.types[op].bitfield.imm64 = 1;
4466 break;
4467 case BYTE_MNEM_SUFFIX:
4468 i.types[op].bitfield.imm8 = 1;
4469 i.types[op].bitfield.imm8s = 1;
4470 i.types[op].bitfield.imm16 = 1;
4471 i.types[op].bitfield.imm32 = 1;
4472 i.types[op].bitfield.imm32s = 1;
4473 i.types[op].bitfield.imm64 = 1;
4474 break;
4475 }
4476
4477 /* If this operand is at most 16 bits, convert it
4478 to a signed 16 bit number before trying to see
4479 whether it will fit in an even smaller size.
4480 This allows a 16-bit operand such as $0xffe0 to
4481 be recognised as within Imm8S range. */
4482 if ((i.types[op].bitfield.imm16)
4483 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4484 {
4485 i.op[op].imms->X_add_number =
4486 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4487 }
4488 #ifdef BFD64
4489 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
4490 if ((i.types[op].bitfield.imm32)
4491 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4492 == 0))
4493 {
4494 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4495 ^ ((offsetT) 1 << 31))
4496 - ((offsetT) 1 << 31));
4497 }
4498 #endif
4499 i.types[op]
4500 = operand_type_or (i.types[op],
4501 smallest_imm_type (i.op[op].imms->X_add_number));
4502
4503 /* We must avoid matching of Imm32 templates when 64bit
4504 only immediate is available. */
4505 if (guess_suffix == QWORD_MNEM_SUFFIX)
4506 i.types[op].bitfield.imm32 = 0;
4507 break;
4508
4509 case O_absent:
4510 case O_register:
4511 abort ();
4512
4513 /* Symbols and expressions. */
4514 default:
4515 /* Convert symbolic operand to proper sizes for matching, but don't
4516 prevent matching a set of insns that only supports sizes other
4517 than those matching the insn suffix. */
4518 {
4519 i386_operand_type mask, allowed;
4520 const insn_template *t;
4521
4522 operand_type_set (&mask, 0);
4523 operand_type_set (&allowed, 0);
4524
4525 for (t = current_templates->start;
4526 t < current_templates->end;
4527 ++t)
4528 allowed = operand_type_or (allowed,
4529 t->operand_types[op]);
4530 switch (guess_suffix)
4531 {
4532 case QWORD_MNEM_SUFFIX:
4533 mask.bitfield.imm64 = 1;
4534 mask.bitfield.imm32s = 1;
4535 break;
4536 case LONG_MNEM_SUFFIX:
4537 mask.bitfield.imm32 = 1;
4538 break;
4539 case WORD_MNEM_SUFFIX:
4540 mask.bitfield.imm16 = 1;
4541 break;
4542 case BYTE_MNEM_SUFFIX:
4543 mask.bitfield.imm8 = 1;
4544 break;
4545 default:
4546 break;
4547 }
4548 allowed = operand_type_and (mask, allowed);
4549 if (!operand_type_all_zero (&allowed))
4550 i.types[op] = operand_type_and (i.types[op], mask);
4551 }
4552 break;
4553 }
4554 }
4555 }
4556
4557 /* Try to use the smallest displacement type too. */
4558 static void
4559 optimize_disp (void)
4560 {
4561 int op;
4562
4563 for (op = i.operands; --op >= 0;)
4564 if (operand_type_check (i.types[op], disp))
4565 {
4566 if (i.op[op].disps->X_op == O_constant)
4567 {
4568 offsetT op_disp = i.op[op].disps->X_add_number;
4569
4570 if (i.types[op].bitfield.disp16
4571 && (op_disp & ~(offsetT) 0xffff) == 0)
4572 {
4573 /* If this operand is at most 16 bits, convert
4574 to a signed 16 bit number and don't use 64bit
4575 displacement. */
4576 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4577 i.types[op].bitfield.disp64 = 0;
4578 }
4579 #ifdef BFD64
4580 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
4581 if (i.types[op].bitfield.disp32
4582 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4583 {
4584 /* If this operand is at most 32 bits, convert
4585 to a signed 32 bit number and don't use 64bit
4586 displacement. */
4587 op_disp &= (((offsetT) 2 << 31) - 1);
4588 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4589 i.types[op].bitfield.disp64 = 0;
4590 }
4591 #endif
4592 if (!op_disp && i.types[op].bitfield.baseindex)
4593 {
4594 i.types[op].bitfield.disp8 = 0;
4595 i.types[op].bitfield.disp16 = 0;
4596 i.types[op].bitfield.disp32 = 0;
4597 i.types[op].bitfield.disp32s = 0;
4598 i.types[op].bitfield.disp64 = 0;
4599 i.op[op].disps = 0;
4600 i.disp_operands--;
4601 }
4602 else if (flag_code == CODE_64BIT)
4603 {
4604 if (fits_in_signed_long (op_disp))
4605 {
4606 i.types[op].bitfield.disp64 = 0;
4607 i.types[op].bitfield.disp32s = 1;
4608 }
4609 if (i.prefix[ADDR_PREFIX]
4610 && fits_in_unsigned_long (op_disp))
4611 i.types[op].bitfield.disp32 = 1;
4612 }
4613 if ((i.types[op].bitfield.disp32
4614 || i.types[op].bitfield.disp32s
4615 || i.types[op].bitfield.disp16)
4616 && fits_in_disp8 (op_disp))
4617 i.types[op].bitfield.disp8 = 1;
4618 }
4619 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4620 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4621 {
4622 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4623 i.op[op].disps, 0, i.reloc[op]);
4624 i.types[op].bitfield.disp8 = 0;
4625 i.types[op].bitfield.disp16 = 0;
4626 i.types[op].bitfield.disp32 = 0;
4627 i.types[op].bitfield.disp32s = 0;
4628 i.types[op].bitfield.disp64 = 0;
4629 }
4630 else
4631 /* We only support 64bit displacement on constants. */
4632 i.types[op].bitfield.disp64 = 0;
4633 }
4634 }
4635
4636 /* Check if operands are valid for the instruction. */
4637
4638 static int
4639 check_VecOperands (const insn_template *t)
4640 {
4641 unsigned int op;
4642
4643 /* Without VSIB byte, we can't have a vector register for index. */
4644 if (!t->opcode_modifier.vecsib
4645 && i.index_reg
4646 && (i.index_reg->reg_type.bitfield.xmmword
4647 || i.index_reg->reg_type.bitfield.ymmword
4648 || i.index_reg->reg_type.bitfield.zmmword))
4649 {
4650 i.error = unsupported_vector_index_register;
4651 return 1;
4652 }
4653
4654 /* Check if default mask is allowed. */
4655 if (t->opcode_modifier.nodefmask
4656 && (!i.mask || i.mask->mask->reg_num == 0))
4657 {
4658 i.error = no_default_mask;
4659 return 1;
4660 }
4661
4662 /* For VSIB byte, we need a vector register for index, and all vector
4663 registers must be distinct. */
4664 if (t->opcode_modifier.vecsib)
4665 {
4666 if (!i.index_reg
4667 || !((t->opcode_modifier.vecsib == VecSIB128
4668 && i.index_reg->reg_type.bitfield.xmmword)
4669 || (t->opcode_modifier.vecsib == VecSIB256
4670 && i.index_reg->reg_type.bitfield.ymmword)
4671 || (t->opcode_modifier.vecsib == VecSIB512
4672 && i.index_reg->reg_type.bitfield.zmmword)))
4673 {
4674 i.error = invalid_vsib_address;
4675 return 1;
4676 }
4677
4678 gas_assert (i.reg_operands == 2 || i.mask);
4679 if (i.reg_operands == 2 && !i.mask)
4680 {
4681 gas_assert (i.types[0].bitfield.regsimd);
4682 gas_assert (i.types[0].bitfield.xmmword
4683 || i.types[0].bitfield.ymmword);
4684 gas_assert (i.types[2].bitfield.regsimd);
4685 gas_assert (i.types[2].bitfield.xmmword
4686 || i.types[2].bitfield.ymmword);
4687 if (operand_check == check_none)
4688 return 0;
4689 if (register_number (i.op[0].regs)
4690 != register_number (i.index_reg)
4691 && register_number (i.op[2].regs)
4692 != register_number (i.index_reg)
4693 && register_number (i.op[0].regs)
4694 != register_number (i.op[2].regs))
4695 return 0;
4696 if (operand_check == check_error)
4697 {
4698 i.error = invalid_vector_register_set;
4699 return 1;
4700 }
4701 as_warn (_("mask, index, and destination registers should be distinct"));
4702 }
4703 else if (i.reg_operands == 1 && i.mask)
4704 {
4705 if (i.types[1].bitfield.regsimd
4706 && (i.types[1].bitfield.xmmword
4707 || i.types[1].bitfield.ymmword
4708 || i.types[1].bitfield.zmmword)
4709 && (register_number (i.op[1].regs)
4710 == register_number (i.index_reg)))
4711 {
4712 if (operand_check == check_error)
4713 {
4714 i.error = invalid_vector_register_set;
4715 return 1;
4716 }
4717 if (operand_check != check_none)
4718 as_warn (_("index and destination registers should be distinct"));
4719 }
4720 }
4721 }
4722
4723 /* Check if broadcast is supported by the instruction and is applied
4724 to the memory operand. */
4725 if (i.broadcast)
4726 {
4727 int broadcasted_opnd_size;
4728
4729 /* Check if specified broadcast is supported in this instruction,
4730 and it's applied to memory operand of DWORD or QWORD type,
4731 depending on VecESize. */
4732 if (i.broadcast->type != t->opcode_modifier.broadcast
4733 || !i.types[i.broadcast->operand].bitfield.mem
4734 || (t->opcode_modifier.vecesize == 0
4735 && !i.types[i.broadcast->operand].bitfield.dword
4736 && !i.types[i.broadcast->operand].bitfield.unspecified)
4737 || (t->opcode_modifier.vecesize == 1
4738 && !i.types[i.broadcast->operand].bitfield.qword
4739 && !i.types[i.broadcast->operand].bitfield.unspecified))
4740 goto bad_broadcast;
4741
4742 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
4743 if (i.broadcast->type == BROADCAST_1TO16)
4744 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
4745 else if (i.broadcast->type == BROADCAST_1TO8)
4746 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
4747 else if (i.broadcast->type == BROADCAST_1TO4)
4748 broadcasted_opnd_size <<= 2; /* Broadcast 1to4. */
4749 else if (i.broadcast->type == BROADCAST_1TO2)
4750 broadcasted_opnd_size <<= 1; /* Broadcast 1to2. */
4751 else
4752 goto bad_broadcast;
4753
4754 if ((broadcasted_opnd_size == 256
4755 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
4756 || (broadcasted_opnd_size == 512
4757 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
4758 {
4759 bad_broadcast:
4760 i.error = unsupported_broadcast;
4761 return 1;
4762 }
4763 }
4764 /* If broadcast is supported in this instruction, we need to check if
4765 operand of one-element size isn't specified without broadcast. */
4766 else if (t->opcode_modifier.broadcast && i.mem_operands)
4767 {
4768 /* Find memory operand. */
4769 for (op = 0; op < i.operands; op++)
4770 if (operand_type_check (i.types[op], anymem))
4771 break;
4772 gas_assert (op < i.operands);
4773 /* Check size of the memory operand. */
4774 if ((t->opcode_modifier.vecesize == 0
4775 && i.types[op].bitfield.dword)
4776 || (t->opcode_modifier.vecesize == 1
4777 && i.types[op].bitfield.qword))
4778 {
4779 i.error = broadcast_needed;
4780 return 1;
4781 }
4782 }
4783
4784 /* Check if requested masking is supported. */
4785 if (i.mask
4786 && (!t->opcode_modifier.masking
4787 || (i.mask->zeroing
4788 && t->opcode_modifier.masking == MERGING_MASKING)))
4789 {
4790 i.error = unsupported_masking;
4791 return 1;
4792 }
4793
4794 /* Check if masking is applied to dest operand. */
4795 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
4796 {
4797 i.error = mask_not_on_destination;
4798 return 1;
4799 }
4800
4801 /* Check RC/SAE. */
4802 if (i.rounding)
4803 {
4804 if ((i.rounding->type != saeonly
4805 && !t->opcode_modifier.staticrounding)
4806 || (i.rounding->type == saeonly
4807 && (t->opcode_modifier.staticrounding
4808 || !t->opcode_modifier.sae)))
4809 {
4810 i.error = unsupported_rc_sae;
4811 return 1;
4812 }
4813 /* If the instruction has several immediate operands and one of
4814 them is rounding, the rounding operand should be the last
4815 immediate operand. */
4816 if (i.imm_operands > 1
4817 && i.rounding->operand != (int) (i.imm_operands - 1))
4818 {
4819 i.error = rc_sae_operand_not_last_imm;
4820 return 1;
4821 }
4822 }
4823
4824 /* Check vector Disp8 operand. */
4825 if (t->opcode_modifier.disp8memshift
4826 && i.disp_encoding != disp_encoding_32bit)
4827 {
4828 if (i.broadcast)
4829 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
4830 else
4831 i.memshift = t->opcode_modifier.disp8memshift;
4832
4833 for (op = 0; op < i.operands; op++)
4834 if (operand_type_check (i.types[op], disp)
4835 && i.op[op].disps->X_op == O_constant)
4836 {
4837 if (fits_in_disp8 (i.op[op].disps->X_add_number))
4838 {
4839 i.types[op].bitfield.disp8 = 1;
4840 return 0;
4841 }
4842 i.types[op].bitfield.disp8 = 0;
4843 }
4844 }
4845
4846 i.memshift = 0;
4847
4848 return 0;
4849 }
4850
4851 /* Check if operands are valid for the instruction. Update VEX
4852 operand types. */
4853
4854 static int
4855 VEX_check_operands (const insn_template *t)
4856 {
4857 if (i.vec_encoding == vex_encoding_evex)
4858 {
4859 /* This instruction must be encoded with EVEX prefix. */
4860 if (!t->opcode_modifier.evex)
4861 {
4862 i.error = unsupported;
4863 return 1;
4864 }
4865 return 0;
4866 }
4867
4868 if (!t->opcode_modifier.vex)
4869 {
4870 /* This instruction template doesn't have VEX prefix. */
4871 if (i.vec_encoding != vex_encoding_default)
4872 {
4873 i.error = unsupported;
4874 return 1;
4875 }
4876 return 0;
4877 }
4878
4879 /* Only check VEX_Imm4, which must be the first operand. */
4880 if (t->operand_types[0].bitfield.vec_imm4)
4881 {
4882 if (i.op[0].imms->X_op != O_constant
4883 || !fits_in_imm4 (i.op[0].imms->X_add_number))
4884 {
4885 i.error = bad_imm4;
4886 return 1;
4887 }
4888
4889 /* Turn off Imm8 so that update_imm won't complain. */
4890 i.types[0] = vec_imm4;
4891 }
4892
4893 return 0;
4894 }
4895
4896 static const insn_template *
4897 match_template (char mnem_suffix)
4898 {
4899 /* Points to template once we've found it. */
4900 const insn_template *t;
4901 i386_operand_type overlap0, overlap1, overlap2, overlap3;
4902 i386_operand_type overlap4;
4903 unsigned int found_reverse_match;
4904 i386_opcode_modifier suffix_check, mnemsuf_check;
4905 i386_operand_type operand_types [MAX_OPERANDS];
4906 int addr_prefix_disp;
4907 unsigned int j;
4908 unsigned int found_cpu_match;
4909 unsigned int check_register;
4910 enum i386_error specific_error = 0;
4911
4912 #if MAX_OPERANDS != 5
4913 # error "MAX_OPERANDS must be 5."
4914 #endif
4915
4916 found_reverse_match = 0;
4917 addr_prefix_disp = -1;
4918
4919 memset (&suffix_check, 0, sizeof (suffix_check));
4920 if (i.suffix == BYTE_MNEM_SUFFIX)
4921 suffix_check.no_bsuf = 1;
4922 else if (i.suffix == WORD_MNEM_SUFFIX)
4923 suffix_check.no_wsuf = 1;
4924 else if (i.suffix == SHORT_MNEM_SUFFIX)
4925 suffix_check.no_ssuf = 1;
4926 else if (i.suffix == LONG_MNEM_SUFFIX)
4927 suffix_check.no_lsuf = 1;
4928 else if (i.suffix == QWORD_MNEM_SUFFIX)
4929 suffix_check.no_qsuf = 1;
4930 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
4931 suffix_check.no_ldsuf = 1;
4932
4933 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
4934 if (intel_syntax)
4935 {
4936 switch (mnem_suffix)
4937 {
4938 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
4939 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
4940 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
4941 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
4942 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
4943 }
4944 }
4945
4946 /* Must have right number of operands. */
4947 i.error = number_of_operands_mismatch;
4948
4949 for (t = current_templates->start; t < current_templates->end; t++)
4950 {
4951 addr_prefix_disp = -1;
4952
4953 if (i.operands != t->operands)
4954 continue;
4955
4956 /* Check processor support. */
4957 i.error = unsupported;
4958 found_cpu_match = (cpu_flags_match (t)
4959 == CPU_FLAGS_PERFECT_MATCH);
4960 if (!found_cpu_match)
4961 continue;
4962
4963 /* Check old gcc support. */
4964 i.error = old_gcc_only;
4965 if (!old_gcc && t->opcode_modifier.oldgcc)
4966 continue;
4967
4968 /* Check AT&T mnemonic. */
4969 i.error = unsupported_with_intel_mnemonic;
4970 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
4971 continue;
4972
4973 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
4974 i.error = unsupported_syntax;
4975 if ((intel_syntax && t->opcode_modifier.attsyntax)
4976 || (!intel_syntax && t->opcode_modifier.intelsyntax)
4977 || (intel64 && t->opcode_modifier.amd64)
4978 || (!intel64 && t->opcode_modifier.intel64))
4979 continue;
4980
4981 /* Check the suffix, except for some instructions in intel mode. */
4982 i.error = invalid_instruction_suffix;
4983 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
4984 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
4985 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
4986 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
4987 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
4988 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
4989 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
4990 continue;
4991 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
4992 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
4993 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
4994 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
4995 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
4996 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
4997 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
4998 continue;
4999
5000 if (!operand_size_match (t))
5001 continue;
5002
5003 for (j = 0; j < MAX_OPERANDS; j++)
5004 operand_types[j] = t->operand_types[j];
5005
5006 /* In general, don't allow 64-bit operands in 32-bit mode. */
5007 if (i.suffix == QWORD_MNEM_SUFFIX
5008 && flag_code != CODE_64BIT
5009 && (intel_syntax
5010 ? (!t->opcode_modifier.ignoresize
5011 && !intel_float_operand (t->name))
5012 : intel_float_operand (t->name) != 2)
5013 && ((!operand_types[0].bitfield.regmmx
5014 && !operand_types[0].bitfield.regsimd)
5015 || (!operand_types[t->operands > 1].bitfield.regmmx
5016 && !operand_types[t->operands > 1].bitfield.regsimd))
5017 && (t->base_opcode != 0x0fc7
5018 || t->extension_opcode != 1 /* cmpxchg8b */))
5019 continue;
5020
5021 /* In general, don't allow 32-bit operands on pre-386. */
5022 else if (i.suffix == LONG_MNEM_SUFFIX
5023 && !cpu_arch_flags.bitfield.cpui386
5024 && (intel_syntax
5025 ? (!t->opcode_modifier.ignoresize
5026 && !intel_float_operand (t->name))
5027 : intel_float_operand (t->name) != 2)
5028 && ((!operand_types[0].bitfield.regmmx
5029 && !operand_types[0].bitfield.regsimd)
5030 || (!operand_types[t->operands > 1].bitfield.regmmx
5031 && !operand_types[t->operands > 1].bitfield.regsimd)))
5032 continue;
5033
5034 /* Do not verify operands when there are none. */
5035 else
5036 {
5037 if (!t->operands)
5038 /* We've found a match; break out of loop. */
5039 break;
5040 }
5041
5042 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5043 into Disp32/Disp16/Disp32 operand. */
5044 if (i.prefix[ADDR_PREFIX] != 0)
5045 {
5046 /* There should be only one Disp operand. */
5047 switch (flag_code)
5048 {
5049 case CODE_16BIT:
5050 for (j = 0; j < MAX_OPERANDS; j++)
5051 {
5052 if (operand_types[j].bitfield.disp16)
5053 {
5054 addr_prefix_disp = j;
5055 operand_types[j].bitfield.disp32 = 1;
5056 operand_types[j].bitfield.disp16 = 0;
5057 break;
5058 }
5059 }
5060 break;
5061 case CODE_32BIT:
5062 for (j = 0; j < MAX_OPERANDS; j++)
5063 {
5064 if (operand_types[j].bitfield.disp32)
5065 {
5066 addr_prefix_disp = j;
5067 operand_types[j].bitfield.disp32 = 0;
5068 operand_types[j].bitfield.disp16 = 1;
5069 break;
5070 }
5071 }
5072 break;
5073 case CODE_64BIT:
5074 for (j = 0; j < MAX_OPERANDS; j++)
5075 {
5076 if (operand_types[j].bitfield.disp64)
5077 {
5078 addr_prefix_disp = j;
5079 operand_types[j].bitfield.disp64 = 0;
5080 operand_types[j].bitfield.disp32 = 1;
5081 break;
5082 }
5083 }
5084 break;
5085 }
5086 }
5087
5088 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5089 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5090 continue;
5091
5092 /* We check register size if needed. */
5093 check_register = t->opcode_modifier.checkregsize;
5094 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5095 switch (t->operands)
5096 {
5097 case 1:
5098 if (!operand_type_match (overlap0, i.types[0]))
5099 continue;
5100 break;
5101 case 2:
5102 /* xchg %eax, %eax is a special case. It is an alias for nop
5103 only in 32bit mode and we can use opcode 0x90. In 64bit
5104 mode, we can't use 0x90 for xchg %eax, %eax since it should
5105 zero-extend %eax to %rax. */
5106 if (flag_code == CODE_64BIT
5107 && t->base_opcode == 0x90
5108 && operand_type_equal (&i.types [0], &acc32)
5109 && operand_type_equal (&i.types [1], &acc32))
5110 continue;
5111 /* If we want store form, we reverse direction of operands. */
5112 if (i.dir_encoding == dir_encoding_store
5113 && t->opcode_modifier.d)
5114 goto check_reverse;
5115 /* Fall through. */
5116
5117 case 3:
5118 /* If we want store form, we skip the current load. */
5119 if (i.dir_encoding == dir_encoding_store
5120 && i.mem_operands == 0
5121 && t->opcode_modifier.load)
5122 continue;
5123 /* Fall through. */
5124 case 4:
5125 case 5:
5126 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5127 if (!operand_type_match (overlap0, i.types[0])
5128 || !operand_type_match (overlap1, i.types[1])
5129 || (check_register
5130 && !operand_type_register_match (i.types[0],
5131 operand_types[0],
5132 i.types[1],
5133 operand_types[1])))
5134 {
5135 /* Check if other direction is valid ... */
5136 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
5137 continue;
5138
5139 check_reverse:
5140 /* Try reversing direction of operands. */
5141 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5142 overlap1 = operand_type_and (i.types[1], operand_types[0]);
5143 if (!operand_type_match (overlap0, i.types[0])
5144 || !operand_type_match (overlap1, i.types[1])
5145 || (check_register
5146 && !operand_type_register_match (i.types[0],
5147 operand_types[1],
5148 i.types[1],
5149 operand_types[0])))
5150 {
5151 /* Does not match either direction. */
5152 continue;
5153 }
5154 /* found_reverse_match holds which of D or FloatDR
5155 we've found. */
5156 if (t->opcode_modifier.d)
5157 found_reverse_match = Opcode_D;
5158 else if (t->opcode_modifier.floatd)
5159 found_reverse_match = Opcode_FloatD;
5160 else
5161 found_reverse_match = 0;
5162 if (t->opcode_modifier.floatr)
5163 found_reverse_match |= Opcode_FloatR;
5164 }
5165 else
5166 {
5167 /* Found a forward 2 operand match here. */
5168 switch (t->operands)
5169 {
5170 case 5:
5171 overlap4 = operand_type_and (i.types[4],
5172 operand_types[4]);
5173 /* Fall through. */
5174 case 4:
5175 overlap3 = operand_type_and (i.types[3],
5176 operand_types[3]);
5177 /* Fall through. */
5178 case 3:
5179 overlap2 = operand_type_and (i.types[2],
5180 operand_types[2]);
5181 break;
5182 }
5183
5184 switch (t->operands)
5185 {
5186 case 5:
5187 if (!operand_type_match (overlap4, i.types[4])
5188 || !operand_type_register_match (i.types[3],
5189 operand_types[3],
5190 i.types[4],
5191 operand_types[4]))
5192 continue;
5193 /* Fall through. */
5194 case 4:
5195 if (!operand_type_match (overlap3, i.types[3])
5196 || (check_register
5197 && !operand_type_register_match (i.types[2],
5198 operand_types[2],
5199 i.types[3],
5200 operand_types[3])))
5201 continue;
5202 /* Fall through. */
5203 case 3:
5204 /* Here we make use of the fact that there are no
5205 reverse match 3 operand instructions, and all 3
5206 operand instructions only need to be checked for
5207 register consistency between operands 2 and 3. */
5208 if (!operand_type_match (overlap2, i.types[2])
5209 || (check_register
5210 && !operand_type_register_match (i.types[1],
5211 operand_types[1],
5212 i.types[2],
5213 operand_types[2])))
5214 continue;
5215 break;
5216 }
5217 }
5218 /* Found either forward/reverse 2, 3 or 4 operand match here:
5219 slip through to break. */
5220 }
5221 if (!found_cpu_match)
5222 {
5223 found_reverse_match = 0;
5224 continue;
5225 }
5226
5227 /* Check if vector and VEX operands are valid. */
5228 if (check_VecOperands (t) || VEX_check_operands (t))
5229 {
5230 specific_error = i.error;
5231 continue;
5232 }
5233
5234 /* We've found a match; break out of loop. */
5235 break;
5236 }
5237
5238 if (t == current_templates->end)
5239 {
5240 /* We found no match. */
5241 const char *err_msg;
5242 switch (specific_error ? specific_error : i.error)
5243 {
5244 default:
5245 abort ();
5246 case operand_size_mismatch:
5247 err_msg = _("operand size mismatch");
5248 break;
5249 case operand_type_mismatch:
5250 err_msg = _("operand type mismatch");
5251 break;
5252 case register_type_mismatch:
5253 err_msg = _("register type mismatch");
5254 break;
5255 case number_of_operands_mismatch:
5256 err_msg = _("number of operands mismatch");
5257 break;
5258 case invalid_instruction_suffix:
5259 err_msg = _("invalid instruction suffix");
5260 break;
5261 case bad_imm4:
5262 err_msg = _("constant doesn't fit in 4 bits");
5263 break;
5264 case old_gcc_only:
5265 err_msg = _("only supported with old gcc");
5266 break;
5267 case unsupported_with_intel_mnemonic:
5268 err_msg = _("unsupported with Intel mnemonic");
5269 break;
5270 case unsupported_syntax:
5271 err_msg = _("unsupported syntax");
5272 break;
5273 case unsupported:
5274 as_bad (_("unsupported instruction `%s'"),
5275 current_templates->start->name);
5276 return NULL;
5277 case invalid_vsib_address:
5278 err_msg = _("invalid VSIB address");
5279 break;
5280 case invalid_vector_register_set:
5281 err_msg = _("mask, index, and destination registers must be distinct");
5282 break;
5283 case unsupported_vector_index_register:
5284 err_msg = _("unsupported vector index register");
5285 break;
5286 case unsupported_broadcast:
5287 err_msg = _("unsupported broadcast");
5288 break;
5289 case broadcast_not_on_src_operand:
5290 err_msg = _("broadcast not on source memory operand");
5291 break;
5292 case broadcast_needed:
5293 err_msg = _("broadcast is needed for operand of such type");
5294 break;
5295 case unsupported_masking:
5296 err_msg = _("unsupported masking");
5297 break;
5298 case mask_not_on_destination:
5299 err_msg = _("mask not on destination operand");
5300 break;
5301 case no_default_mask:
5302 err_msg = _("default mask isn't allowed");
5303 break;
5304 case unsupported_rc_sae:
5305 err_msg = _("unsupported static rounding/sae");
5306 break;
5307 case rc_sae_operand_not_last_imm:
5308 if (intel_syntax)
5309 err_msg = _("RC/SAE operand must precede immediate operands");
5310 else
5311 err_msg = _("RC/SAE operand must follow immediate operands");
5312 break;
5313 case invalid_register_operand:
5314 err_msg = _("invalid register operand");
5315 break;
5316 }
5317 as_bad (_("%s for `%s'"), err_msg,
5318 current_templates->start->name);
5319 return NULL;
5320 }
5321
5322 if (!quiet_warnings)
5323 {
5324 if (!intel_syntax
5325 && (i.types[0].bitfield.jumpabsolute
5326 != operand_types[0].bitfield.jumpabsolute))
5327 {
5328 as_warn (_("indirect %s without `*'"), t->name);
5329 }
5330
5331 if (t->opcode_modifier.isprefix
5332 && t->opcode_modifier.ignoresize)
5333 {
5334 /* Warn them that a data or address size prefix doesn't
5335 affect assembly of the next line of code. */
5336 as_warn (_("stand-alone `%s' prefix"), t->name);
5337 }
5338 }
5339
5340 /* Copy the template we found. */
5341 i.tm = *t;
5342
5343 if (addr_prefix_disp != -1)
5344 i.tm.operand_types[addr_prefix_disp]
5345 = operand_types[addr_prefix_disp];
5346
5347 if (found_reverse_match)
5348 {
5349 /* If we found a reverse match we must alter the opcode
5350 direction bit. found_reverse_match holds bits to change
5351 (different for int & float insns). */
5352
5353 i.tm.base_opcode ^= found_reverse_match;
5354
5355 i.tm.operand_types[0] = operand_types[1];
5356 i.tm.operand_types[1] = operand_types[0];
5357 }
5358
5359 return t;
5360 }
5361
5362 static int
5363 check_string (void)
5364 {
5365 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5366 if (i.tm.operand_types[mem_op].bitfield.esseg)
5367 {
5368 if (i.seg[0] != NULL && i.seg[0] != &es)
5369 {
5370 as_bad (_("`%s' operand %d must use `%ses' segment"),
5371 i.tm.name,
5372 mem_op + 1,
5373 register_prefix);
5374 return 0;
5375 }
5376 /* There's only ever one segment override allowed per instruction.
5377 This instruction possibly has a legal segment override on the
5378 second operand, so copy the segment to where non-string
5379 instructions store it, allowing common code. */
5380 i.seg[0] = i.seg[1];
5381 }
5382 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5383 {
5384 if (i.seg[1] != NULL && i.seg[1] != &es)
5385 {
5386 as_bad (_("`%s' operand %d must use `%ses' segment"),
5387 i.tm.name,
5388 mem_op + 2,
5389 register_prefix);
5390 return 0;
5391 }
5392 }
5393 return 1;
5394 }
5395
5396 static int
5397 process_suffix (void)
5398 {
5399 /* If matched instruction specifies an explicit instruction mnemonic
5400 suffix, use it. */
5401 if (i.tm.opcode_modifier.size16)
5402 i.suffix = WORD_MNEM_SUFFIX;
5403 else if (i.tm.opcode_modifier.size32)
5404 i.suffix = LONG_MNEM_SUFFIX;
5405 else if (i.tm.opcode_modifier.size64)
5406 i.suffix = QWORD_MNEM_SUFFIX;
5407 else if (i.reg_operands)
5408 {
5409 /* If there's no instruction mnemonic suffix we try to invent one
5410 based on register operands. */
5411 if (!i.suffix)
5412 {
5413 /* We take i.suffix from the last register operand specified,
5414 Destination register type is more significant than source
5415 register type. crc32 in SSE4.2 prefers source register
5416 type. */
5417 if (i.tm.base_opcode == 0xf20f38f1)
5418 {
5419 if (i.types[0].bitfield.reg && i.types[0].bitfield.word)
5420 i.suffix = WORD_MNEM_SUFFIX;
5421 else if (i.types[0].bitfield.reg && i.types[0].bitfield.dword)
5422 i.suffix = LONG_MNEM_SUFFIX;
5423 else if (i.types[0].bitfield.reg && i.types[0].bitfield.qword)
5424 i.suffix = QWORD_MNEM_SUFFIX;
5425 }
5426 else if (i.tm.base_opcode == 0xf20f38f0)
5427 {
5428 if (i.types[0].bitfield.reg && i.types[0].bitfield.byte)
5429 i.suffix = BYTE_MNEM_SUFFIX;
5430 }
5431
5432 if (!i.suffix)
5433 {
5434 int op;
5435
5436 if (i.tm.base_opcode == 0xf20f38f1
5437 || i.tm.base_opcode == 0xf20f38f0)
5438 {
5439 /* We have to know the operand size for crc32. */
5440 as_bad (_("ambiguous memory operand size for `%s`"),
5441 i.tm.name);
5442 return 0;
5443 }
5444
5445 for (op = i.operands; --op >= 0;)
5446 if (!i.tm.operand_types[op].bitfield.inoutportreg
5447 && !i.tm.operand_types[op].bitfield.shiftcount)
5448 {
5449 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
5450 {
5451 i.suffix = BYTE_MNEM_SUFFIX;
5452 break;
5453 }
5454 if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
5455 {
5456 i.suffix = WORD_MNEM_SUFFIX;
5457 break;
5458 }
5459 if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
5460 {
5461 i.suffix = LONG_MNEM_SUFFIX;
5462 break;
5463 }
5464 if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
5465 {
5466 i.suffix = QWORD_MNEM_SUFFIX;
5467 break;
5468 }
5469 }
5470 }
5471 }
5472 else if (i.suffix == BYTE_MNEM_SUFFIX)
5473 {
5474 if (intel_syntax
5475 && i.tm.opcode_modifier.ignoresize
5476 && i.tm.opcode_modifier.no_bsuf)
5477 i.suffix = 0;
5478 else if (!check_byte_reg ())
5479 return 0;
5480 }
5481 else if (i.suffix == LONG_MNEM_SUFFIX)
5482 {
5483 if (intel_syntax
5484 && i.tm.opcode_modifier.ignoresize
5485 && i.tm.opcode_modifier.no_lsuf)
5486 i.suffix = 0;
5487 else if (!check_long_reg ())
5488 return 0;
5489 }
5490 else if (i.suffix == QWORD_MNEM_SUFFIX)
5491 {
5492 if (intel_syntax
5493 && i.tm.opcode_modifier.ignoresize
5494 && i.tm.opcode_modifier.no_qsuf)
5495 i.suffix = 0;
5496 else if (!check_qword_reg ())
5497 return 0;
5498 }
5499 else if (i.suffix == WORD_MNEM_SUFFIX)
5500 {
5501 if (intel_syntax
5502 && i.tm.opcode_modifier.ignoresize
5503 && i.tm.opcode_modifier.no_wsuf)
5504 i.suffix = 0;
5505 else if (!check_word_reg ())
5506 return 0;
5507 }
5508 else if (i.suffix == XMMWORD_MNEM_SUFFIX
5509 || i.suffix == YMMWORD_MNEM_SUFFIX
5510 || i.suffix == ZMMWORD_MNEM_SUFFIX)
5511 {
5512 /* Skip if the instruction has x/y/z suffix. match_template
5513 should check if it is a valid suffix. */
5514 }
5515 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5516 /* Do nothing if the instruction is going to ignore the prefix. */
5517 ;
5518 else
5519 abort ();
5520 }
5521 else if (i.tm.opcode_modifier.defaultsize
5522 && !i.suffix
5523 /* exclude fldenv/frstor/fsave/fstenv */
5524 && i.tm.opcode_modifier.no_ssuf)
5525 {
5526 i.suffix = stackop_size;
5527 }
5528 else if (intel_syntax
5529 && !i.suffix
5530 && (i.tm.operand_types[0].bitfield.jumpabsolute
5531 || i.tm.opcode_modifier.jumpbyte
5532 || i.tm.opcode_modifier.jumpintersegment
5533 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5534 && i.tm.extension_opcode <= 3)))
5535 {
5536 switch (flag_code)
5537 {
5538 case CODE_64BIT:
5539 if (!i.tm.opcode_modifier.no_qsuf)
5540 {
5541 i.suffix = QWORD_MNEM_SUFFIX;
5542 break;
5543 }
5544 /* Fall through. */
5545 case CODE_32BIT:
5546 if (!i.tm.opcode_modifier.no_lsuf)
5547 i.suffix = LONG_MNEM_SUFFIX;
5548 break;
5549 case CODE_16BIT:
5550 if (!i.tm.opcode_modifier.no_wsuf)
5551 i.suffix = WORD_MNEM_SUFFIX;
5552 break;
5553 }
5554 }
5555
5556 if (!i.suffix)
5557 {
5558 if (!intel_syntax)
5559 {
5560 if (i.tm.opcode_modifier.w)
5561 {
5562 as_bad (_("no instruction mnemonic suffix given and "
5563 "no register operands; can't size instruction"));
5564 return 0;
5565 }
5566 }
5567 else
5568 {
5569 unsigned int suffixes;
5570
5571 suffixes = !i.tm.opcode_modifier.no_bsuf;
5572 if (!i.tm.opcode_modifier.no_wsuf)
5573 suffixes |= 1 << 1;
5574 if (!i.tm.opcode_modifier.no_lsuf)
5575 suffixes |= 1 << 2;
5576 if (!i.tm.opcode_modifier.no_ldsuf)
5577 suffixes |= 1 << 3;
5578 if (!i.tm.opcode_modifier.no_ssuf)
5579 suffixes |= 1 << 4;
5580 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
5581 suffixes |= 1 << 5;
5582
5583 /* There are more than suffix matches. */
5584 if (i.tm.opcode_modifier.w
5585 || ((suffixes & (suffixes - 1))
5586 && !i.tm.opcode_modifier.defaultsize
5587 && !i.tm.opcode_modifier.ignoresize))
5588 {
5589 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5590 return 0;
5591 }
5592 }
5593 }
5594
5595 /* Change the opcode based on the operand size given by i.suffix;
5596 We don't need to change things for byte insns. */
5597
5598 if (i.suffix
5599 && i.suffix != BYTE_MNEM_SUFFIX
5600 && i.suffix != XMMWORD_MNEM_SUFFIX
5601 && i.suffix != YMMWORD_MNEM_SUFFIX
5602 && i.suffix != ZMMWORD_MNEM_SUFFIX)
5603 {
5604 /* It's not a byte, select word/dword operation. */
5605 if (i.tm.opcode_modifier.w)
5606 {
5607 if (i.tm.opcode_modifier.shortform)
5608 i.tm.base_opcode |= 8;
5609 else
5610 i.tm.base_opcode |= 1;
5611 }
5612
5613 /* Now select between word & dword operations via the operand
5614 size prefix, except for instructions that will ignore this
5615 prefix anyway. */
5616 if (i.tm.opcode_modifier.addrprefixop0)
5617 {
5618 /* The address size override prefix changes the size of the
5619 first operand. */
5620 if ((flag_code == CODE_32BIT
5621 && i.op->regs[0].reg_type.bitfield.word)
5622 || (flag_code != CODE_32BIT
5623 && i.op->regs[0].reg_type.bitfield.dword))
5624 if (!add_prefix (ADDR_PREFIX_OPCODE))
5625 return 0;
5626 }
5627 else if (i.suffix != QWORD_MNEM_SUFFIX
5628 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
5629 && !i.tm.opcode_modifier.ignoresize
5630 && !i.tm.opcode_modifier.floatmf
5631 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5632 || (flag_code == CODE_64BIT
5633 && i.tm.opcode_modifier.jumpbyte)))
5634 {
5635 unsigned int prefix = DATA_PREFIX_OPCODE;
5636
5637 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
5638 prefix = ADDR_PREFIX_OPCODE;
5639
5640 if (!add_prefix (prefix))
5641 return 0;
5642 }
5643
5644 /* Set mode64 for an operand. */
5645 if (i.suffix == QWORD_MNEM_SUFFIX
5646 && flag_code == CODE_64BIT
5647 && !i.tm.opcode_modifier.norex64)
5648 {
5649 /* Special case for xchg %rax,%rax. It is NOP and doesn't
5650 need rex64. cmpxchg8b is also a special case. */
5651 if (! (i.operands == 2
5652 && i.tm.base_opcode == 0x90
5653 && i.tm.extension_opcode == None
5654 && operand_type_equal (&i.types [0], &acc64)
5655 && operand_type_equal (&i.types [1], &acc64))
5656 && ! (i.operands == 1
5657 && i.tm.base_opcode == 0xfc7
5658 && i.tm.extension_opcode == 1
5659 && !operand_type_check (i.types [0], reg)
5660 && operand_type_check (i.types [0], anymem)))
5661 i.rex |= REX_W;
5662 }
5663
5664 /* Size floating point instruction. */
5665 if (i.suffix == LONG_MNEM_SUFFIX)
5666 if (i.tm.opcode_modifier.floatmf)
5667 i.tm.base_opcode ^= 4;
5668 }
5669
5670 return 1;
5671 }
5672
5673 static int
5674 check_byte_reg (void)
5675 {
5676 int op;
5677
5678 for (op = i.operands; --op >= 0;)
5679 {
5680 /* Skip non-register operands. */
5681 if (!i.types[op].bitfield.reg)
5682 continue;
5683
5684 /* If this is an eight bit register, it's OK. If it's the 16 or
5685 32 bit version of an eight bit register, we will just use the
5686 low portion, and that's OK too. */
5687 if (i.types[op].bitfield.byte)
5688 continue;
5689
5690 /* I/O port address operands are OK too. */
5691 if (i.tm.operand_types[op].bitfield.inoutportreg)
5692 continue;
5693
5694 /* crc32 doesn't generate this warning. */
5695 if (i.tm.base_opcode == 0xf20f38f0)
5696 continue;
5697
5698 if ((i.types[op].bitfield.word
5699 || i.types[op].bitfield.dword
5700 || i.types[op].bitfield.qword)
5701 && i.op[op].regs->reg_num < 4
5702 /* Prohibit these changes in 64bit mode, since the lowering
5703 would be more complicated. */
5704 && flag_code != CODE_64BIT)
5705 {
5706 #if REGISTER_WARNINGS
5707 if (!quiet_warnings)
5708 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5709 register_prefix,
5710 (i.op[op].regs + (i.types[op].bitfield.word
5711 ? REGNAM_AL - REGNAM_AX
5712 : REGNAM_AL - REGNAM_EAX))->reg_name,
5713 register_prefix,
5714 i.op[op].regs->reg_name,
5715 i.suffix);
5716 #endif
5717 continue;
5718 }
5719 /* Any other register is bad. */
5720 if (i.types[op].bitfield.reg
5721 || i.types[op].bitfield.regmmx
5722 || i.types[op].bitfield.regsimd
5723 || i.types[op].bitfield.sreg2
5724 || i.types[op].bitfield.sreg3
5725 || i.types[op].bitfield.control
5726 || i.types[op].bitfield.debug
5727 || i.types[op].bitfield.test)
5728 {
5729 as_bad (_("`%s%s' not allowed with `%s%c'"),
5730 register_prefix,
5731 i.op[op].regs->reg_name,
5732 i.tm.name,
5733 i.suffix);
5734 return 0;
5735 }
5736 }
5737 return 1;
5738 }
5739
5740 static int
5741 check_long_reg (void)
5742 {
5743 int op;
5744
5745 for (op = i.operands; --op >= 0;)
5746 /* Skip non-register operands. */
5747 if (!i.types[op].bitfield.reg)
5748 continue;
5749 /* Reject eight bit registers, except where the template requires
5750 them. (eg. movzb) */
5751 else if (i.types[op].bitfield.byte
5752 && (i.tm.operand_types[op].bitfield.reg
5753 || i.tm.operand_types[op].bitfield.acc)
5754 && (i.tm.operand_types[op].bitfield.word
5755 || i.tm.operand_types[op].bitfield.dword))
5756 {
5757 as_bad (_("`%s%s' not allowed with `%s%c'"),
5758 register_prefix,
5759 i.op[op].regs->reg_name,
5760 i.tm.name,
5761 i.suffix);
5762 return 0;
5763 }
5764 /* Warn if the e prefix on a general reg is missing. */
5765 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5766 && i.types[op].bitfield.word
5767 && (i.tm.operand_types[op].bitfield.reg
5768 || i.tm.operand_types[op].bitfield.acc)
5769 && i.tm.operand_types[op].bitfield.dword)
5770 {
5771 /* Prohibit these changes in the 64bit mode, since the
5772 lowering is more complicated. */
5773 if (flag_code == CODE_64BIT)
5774 {
5775 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5776 register_prefix, i.op[op].regs->reg_name,
5777 i.suffix);
5778 return 0;
5779 }
5780 #if REGISTER_WARNINGS
5781 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5782 register_prefix,
5783 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
5784 register_prefix, i.op[op].regs->reg_name, i.suffix);
5785 #endif
5786 }
5787 /* Warn if the r prefix on a general reg is present. */
5788 else if (i.types[op].bitfield.qword
5789 && (i.tm.operand_types[op].bitfield.reg
5790 || i.tm.operand_types[op].bitfield.acc)
5791 && i.tm.operand_types[op].bitfield.dword)
5792 {
5793 if (intel_syntax
5794 && i.tm.opcode_modifier.toqword
5795 && !i.types[0].bitfield.regsimd)
5796 {
5797 /* Convert to QWORD. We want REX byte. */
5798 i.suffix = QWORD_MNEM_SUFFIX;
5799 }
5800 else
5801 {
5802 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5803 register_prefix, i.op[op].regs->reg_name,
5804 i.suffix);
5805 return 0;
5806 }
5807 }
5808 return 1;
5809 }
5810
5811 static int
5812 check_qword_reg (void)
5813 {
5814 int op;
5815
5816 for (op = i.operands; --op >= 0; )
5817 /* Skip non-register operands. */
5818 if (!i.types[op].bitfield.reg)
5819 continue;
5820 /* Reject eight bit registers, except where the template requires
5821 them. (eg. movzb) */
5822 else if (i.types[op].bitfield.byte
5823 && (i.tm.operand_types[op].bitfield.reg
5824 || i.tm.operand_types[op].bitfield.acc)
5825 && (i.tm.operand_types[op].bitfield.word
5826 || i.tm.operand_types[op].bitfield.dword))
5827 {
5828 as_bad (_("`%s%s' not allowed with `%s%c'"),
5829 register_prefix,
5830 i.op[op].regs->reg_name,
5831 i.tm.name,
5832 i.suffix);
5833 return 0;
5834 }
5835 /* Warn if the r prefix on a general reg is missing. */
5836 else if ((i.types[op].bitfield.word
5837 || i.types[op].bitfield.dword)
5838 && (i.tm.operand_types[op].bitfield.reg
5839 || i.tm.operand_types[op].bitfield.acc)
5840 && i.tm.operand_types[op].bitfield.qword)
5841 {
5842 /* Prohibit these changes in the 64bit mode, since the
5843 lowering is more complicated. */
5844 if (intel_syntax
5845 && i.tm.opcode_modifier.todword
5846 && !i.types[0].bitfield.regsimd)
5847 {
5848 /* Convert to DWORD. We don't want REX byte. */
5849 i.suffix = LONG_MNEM_SUFFIX;
5850 }
5851 else
5852 {
5853 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5854 register_prefix, i.op[op].regs->reg_name,
5855 i.suffix);
5856 return 0;
5857 }
5858 }
5859 return 1;
5860 }
5861
5862 static int
5863 check_word_reg (void)
5864 {
5865 int op;
5866 for (op = i.operands; --op >= 0;)
5867 /* Skip non-register operands. */
5868 if (!i.types[op].bitfield.reg)
5869 continue;
5870 /* Reject eight bit registers, except where the template requires
5871 them. (eg. movzb) */
5872 else if (i.types[op].bitfield.byte
5873 && (i.tm.operand_types[op].bitfield.reg
5874 || i.tm.operand_types[op].bitfield.acc)
5875 && (i.tm.operand_types[op].bitfield.word
5876 || i.tm.operand_types[op].bitfield.dword))
5877 {
5878 as_bad (_("`%s%s' not allowed with `%s%c'"),
5879 register_prefix,
5880 i.op[op].regs->reg_name,
5881 i.tm.name,
5882 i.suffix);
5883 return 0;
5884 }
5885 /* Warn if the e or r prefix on a general reg is present. */
5886 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5887 && (i.types[op].bitfield.dword
5888 || i.types[op].bitfield.qword)
5889 && (i.tm.operand_types[op].bitfield.reg
5890 || i.tm.operand_types[op].bitfield.acc)
5891 && i.tm.operand_types[op].bitfield.word)
5892 {
5893 /* Prohibit these changes in the 64bit mode, since the
5894 lowering is more complicated. */
5895 if (flag_code == CODE_64BIT)
5896 {
5897 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5898 register_prefix, i.op[op].regs->reg_name,
5899 i.suffix);
5900 return 0;
5901 }
5902 #if REGISTER_WARNINGS
5903 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5904 register_prefix,
5905 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
5906 register_prefix, i.op[op].regs->reg_name, i.suffix);
5907 #endif
5908 }
5909 return 1;
5910 }
5911
5912 static int
5913 update_imm (unsigned int j)
5914 {
5915 i386_operand_type overlap = i.types[j];
5916 if ((overlap.bitfield.imm8
5917 || overlap.bitfield.imm8s
5918 || overlap.bitfield.imm16
5919 || overlap.bitfield.imm32
5920 || overlap.bitfield.imm32s
5921 || overlap.bitfield.imm64)
5922 && !operand_type_equal (&overlap, &imm8)
5923 && !operand_type_equal (&overlap, &imm8s)
5924 && !operand_type_equal (&overlap, &imm16)
5925 && !operand_type_equal (&overlap, &imm32)
5926 && !operand_type_equal (&overlap, &imm32s)
5927 && !operand_type_equal (&overlap, &imm64))
5928 {
5929 if (i.suffix)
5930 {
5931 i386_operand_type temp;
5932
5933 operand_type_set (&temp, 0);
5934 if (i.suffix == BYTE_MNEM_SUFFIX)
5935 {
5936 temp.bitfield.imm8 = overlap.bitfield.imm8;
5937 temp.bitfield.imm8s = overlap.bitfield.imm8s;
5938 }
5939 else if (i.suffix == WORD_MNEM_SUFFIX)
5940 temp.bitfield.imm16 = overlap.bitfield.imm16;
5941 else if (i.suffix == QWORD_MNEM_SUFFIX)
5942 {
5943 temp.bitfield.imm64 = overlap.bitfield.imm64;
5944 temp.bitfield.imm32s = overlap.bitfield.imm32s;
5945 }
5946 else
5947 temp.bitfield.imm32 = overlap.bitfield.imm32;
5948 overlap = temp;
5949 }
5950 else if (operand_type_equal (&overlap, &imm16_32_32s)
5951 || operand_type_equal (&overlap, &imm16_32)
5952 || operand_type_equal (&overlap, &imm16_32s))
5953 {
5954 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5955 overlap = imm16;
5956 else
5957 overlap = imm32s;
5958 }
5959 if (!operand_type_equal (&overlap, &imm8)
5960 && !operand_type_equal (&overlap, &imm8s)
5961 && !operand_type_equal (&overlap, &imm16)
5962 && !operand_type_equal (&overlap, &imm32)
5963 && !operand_type_equal (&overlap, &imm32s)
5964 && !operand_type_equal (&overlap, &imm64))
5965 {
5966 as_bad (_("no instruction mnemonic suffix given; "
5967 "can't determine immediate size"));
5968 return 0;
5969 }
5970 }
5971 i.types[j] = overlap;
5972
5973 return 1;
5974 }
5975
5976 static int
5977 finalize_imm (void)
5978 {
5979 unsigned int j, n;
5980
5981 /* Update the first 2 immediate operands. */
5982 n = i.operands > 2 ? 2 : i.operands;
5983 if (n)
5984 {
5985 for (j = 0; j < n; j++)
5986 if (update_imm (j) == 0)
5987 return 0;
5988
5989 /* The 3rd operand can't be immediate operand. */
5990 gas_assert (operand_type_check (i.types[2], imm) == 0);
5991 }
5992
5993 return 1;
5994 }
5995
5996 static int
5997 process_operands (void)
5998 {
5999 /* Default segment register this instruction will use for memory
6000 accesses. 0 means unknown. This is only for optimizing out
6001 unnecessary segment overrides. */
6002 const seg_entry *default_seg = 0;
6003
6004 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6005 {
6006 unsigned int dupl = i.operands;
6007 unsigned int dest = dupl - 1;
6008 unsigned int j;
6009
6010 /* The destination must be an xmm register. */
6011 gas_assert (i.reg_operands
6012 && MAX_OPERANDS > dupl
6013 && operand_type_equal (&i.types[dest], &regxmm));
6014
6015 if (i.tm.operand_types[0].bitfield.acc
6016 && i.tm.operand_types[0].bitfield.xmmword)
6017 {
6018 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6019 {
6020 /* Keep xmm0 for instructions with VEX prefix and 3
6021 sources. */
6022 i.tm.operand_types[0].bitfield.acc = 0;
6023 i.tm.operand_types[0].bitfield.regsimd = 1;
6024 goto duplicate;
6025 }
6026 else
6027 {
6028 /* We remove the first xmm0 and keep the number of
6029 operands unchanged, which in fact duplicates the
6030 destination. */
6031 for (j = 1; j < i.operands; j++)
6032 {
6033 i.op[j - 1] = i.op[j];
6034 i.types[j - 1] = i.types[j];
6035 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6036 }
6037 }
6038 }
6039 else if (i.tm.opcode_modifier.implicit1stxmm0)
6040 {
6041 gas_assert ((MAX_OPERANDS - 1) > dupl
6042 && (i.tm.opcode_modifier.vexsources
6043 == VEX3SOURCES));
6044
6045 /* Add the implicit xmm0 for instructions with VEX prefix
6046 and 3 sources. */
6047 for (j = i.operands; j > 0; j--)
6048 {
6049 i.op[j] = i.op[j - 1];
6050 i.types[j] = i.types[j - 1];
6051 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6052 }
6053 i.op[0].regs
6054 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6055 i.types[0] = regxmm;
6056 i.tm.operand_types[0] = regxmm;
6057
6058 i.operands += 2;
6059 i.reg_operands += 2;
6060 i.tm.operands += 2;
6061
6062 dupl++;
6063 dest++;
6064 i.op[dupl] = i.op[dest];
6065 i.types[dupl] = i.types[dest];
6066 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6067 }
6068 else
6069 {
6070 duplicate:
6071 i.operands++;
6072 i.reg_operands++;
6073 i.tm.operands++;
6074
6075 i.op[dupl] = i.op[dest];
6076 i.types[dupl] = i.types[dest];
6077 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6078 }
6079
6080 if (i.tm.opcode_modifier.immext)
6081 process_immext ();
6082 }
6083 else if (i.tm.operand_types[0].bitfield.acc
6084 && i.tm.operand_types[0].bitfield.xmmword)
6085 {
6086 unsigned int j;
6087
6088 for (j = 1; j < i.operands; j++)
6089 {
6090 i.op[j - 1] = i.op[j];
6091 i.types[j - 1] = i.types[j];
6092
6093 /* We need to adjust fields in i.tm since they are used by
6094 build_modrm_byte. */
6095 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6096 }
6097
6098 i.operands--;
6099 i.reg_operands--;
6100 i.tm.operands--;
6101 }
6102 else if (i.tm.opcode_modifier.implicitquadgroup)
6103 {
6104 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6105 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
6106 unsigned int regnum = register_number (i.op[1].regs);
6107 unsigned int first_reg_in_group = regnum & ~3;
6108 unsigned int last_reg_in_group = first_reg_in_group + 3;
6109 if (regnum != first_reg_in_group) {
6110 as_warn (_("the second source register `%s%s' implicitly denotes"
6111 " `%s%.3s%d' to `%s%.3s%d' source group in `%s'"),
6112 register_prefix, i.op[1].regs->reg_name,
6113 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6114 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6115 i.tm.name);
6116 }
6117 }
6118 else if (i.tm.opcode_modifier.regkludge)
6119 {
6120 /* The imul $imm, %reg instruction is converted into
6121 imul $imm, %reg, %reg, and the clr %reg instruction
6122 is converted into xor %reg, %reg. */
6123
6124 unsigned int first_reg_op;
6125
6126 if (operand_type_check (i.types[0], reg))
6127 first_reg_op = 0;
6128 else
6129 first_reg_op = 1;
6130 /* Pretend we saw the extra register operand. */
6131 gas_assert (i.reg_operands == 1
6132 && i.op[first_reg_op + 1].regs == 0);
6133 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6134 i.types[first_reg_op + 1] = i.types[first_reg_op];
6135 i.operands++;
6136 i.reg_operands++;
6137 }
6138
6139 if (i.tm.opcode_modifier.shortform)
6140 {
6141 if (i.types[0].bitfield.sreg2
6142 || i.types[0].bitfield.sreg3)
6143 {
6144 if (i.tm.base_opcode == POP_SEG_SHORT
6145 && i.op[0].regs->reg_num == 1)
6146 {
6147 as_bad (_("you can't `pop %scs'"), register_prefix);
6148 return 0;
6149 }
6150 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6151 if ((i.op[0].regs->reg_flags & RegRex) != 0)
6152 i.rex |= REX_B;
6153 }
6154 else
6155 {
6156 /* The register or float register operand is in operand
6157 0 or 1. */
6158 unsigned int op;
6159
6160 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
6161 || operand_type_check (i.types[0], reg))
6162 op = 0;
6163 else
6164 op = 1;
6165 /* Register goes in low 3 bits of opcode. */
6166 i.tm.base_opcode |= i.op[op].regs->reg_num;
6167 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6168 i.rex |= REX_B;
6169 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6170 {
6171 /* Warn about some common errors, but press on regardless.
6172 The first case can be generated by gcc (<= 2.8.1). */
6173 if (i.operands == 2)
6174 {
6175 /* Reversed arguments on faddp, fsubp, etc. */
6176 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6177 register_prefix, i.op[!intel_syntax].regs->reg_name,
6178 register_prefix, i.op[intel_syntax].regs->reg_name);
6179 }
6180 else
6181 {
6182 /* Extraneous `l' suffix on fp insn. */
6183 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6184 register_prefix, i.op[0].regs->reg_name);
6185 }
6186 }
6187 }
6188 }
6189 else if (i.tm.opcode_modifier.modrm)
6190 {
6191 /* The opcode is completed (modulo i.tm.extension_opcode which
6192 must be put into the modrm byte). Now, we make the modrm and
6193 index base bytes based on all the info we've collected. */
6194
6195 default_seg = build_modrm_byte ();
6196 }
6197 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6198 {
6199 default_seg = &ds;
6200 }
6201 else if (i.tm.opcode_modifier.isstring)
6202 {
6203 /* For the string instructions that allow a segment override
6204 on one of their operands, the default segment is ds. */
6205 default_seg = &ds;
6206 }
6207
6208 if (i.tm.base_opcode == 0x8d /* lea */
6209 && i.seg[0]
6210 && !quiet_warnings)
6211 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6212
6213 /* If a segment was explicitly specified, and the specified segment
6214 is not the default, use an opcode prefix to select it. If we
6215 never figured out what the default segment is, then default_seg
6216 will be zero at this point, and the specified segment prefix will
6217 always be used. */
6218 if ((i.seg[0]) && (i.seg[0] != default_seg))
6219 {
6220 if (!add_prefix (i.seg[0]->seg_prefix))
6221 return 0;
6222 }
6223 return 1;
6224 }
6225
6226 static const seg_entry *
6227 build_modrm_byte (void)
6228 {
6229 const seg_entry *default_seg = 0;
6230 unsigned int source, dest;
6231 int vex_3_sources;
6232
6233 /* The first operand of instructions with VEX prefix and 3 sources
6234 must be VEX_Imm4. */
6235 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
6236 if (vex_3_sources)
6237 {
6238 unsigned int nds, reg_slot;
6239 expressionS *exp;
6240
6241 if (i.tm.opcode_modifier.veximmext
6242 && i.tm.opcode_modifier.immext)
6243 {
6244 dest = i.operands - 2;
6245 gas_assert (dest == 3);
6246 }
6247 else
6248 dest = i.operands - 1;
6249 nds = dest - 1;
6250
6251 /* There are 2 kinds of instructions:
6252 1. 5 operands: 4 register operands or 3 register operands
6253 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6254 VexW0 or VexW1. The destination must be either XMM, YMM or
6255 ZMM register.
6256 2. 4 operands: 4 register operands or 3 register operands
6257 plus 1 memory operand, VexXDS, and VexImmExt */
6258 gas_assert ((i.reg_operands == 4
6259 || (i.reg_operands == 3 && i.mem_operands == 1))
6260 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6261 && (i.tm.opcode_modifier.veximmext
6262 || (i.imm_operands == 1
6263 && i.types[0].bitfield.vec_imm4
6264 && (i.tm.opcode_modifier.vexw == VEXW0
6265 || i.tm.opcode_modifier.vexw == VEXW1)
6266 && i.tm.operand_types[dest].bitfield.regsimd)));
6267
6268 if (i.imm_operands == 0)
6269 {
6270 /* When there is no immediate operand, generate an 8bit
6271 immediate operand to encode the first operand. */
6272 exp = &im_expressions[i.imm_operands++];
6273 i.op[i.operands].imms = exp;
6274 i.types[i.operands] = imm8;
6275 i.operands++;
6276 /* If VexW1 is set, the first operand is the source and
6277 the second operand is encoded in the immediate operand. */
6278 if (i.tm.opcode_modifier.vexw == VEXW1)
6279 {
6280 source = 0;
6281 reg_slot = 1;
6282 }
6283 else
6284 {
6285 source = 1;
6286 reg_slot = 0;
6287 }
6288
6289 /* FMA swaps REG and NDS. */
6290 if (i.tm.cpu_flags.bitfield.cpufma)
6291 {
6292 unsigned int tmp;
6293 tmp = reg_slot;
6294 reg_slot = nds;
6295 nds = tmp;
6296 }
6297
6298 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6299 exp->X_op = O_constant;
6300 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6301 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6302 }
6303 else
6304 {
6305 unsigned int imm_slot;
6306
6307 if (i.tm.opcode_modifier.vexw == VEXW0)
6308 {
6309 /* If VexW0 is set, the third operand is the source and
6310 the second operand is encoded in the immediate
6311 operand. */
6312 source = 2;
6313 reg_slot = 1;
6314 }
6315 else
6316 {
6317 /* VexW1 is set, the second operand is the source and
6318 the third operand is encoded in the immediate
6319 operand. */
6320 source = 1;
6321 reg_slot = 2;
6322 }
6323
6324 if (i.tm.opcode_modifier.immext)
6325 {
6326 /* When ImmExt is set, the immediate byte is the last
6327 operand. */
6328 imm_slot = i.operands - 1;
6329 source--;
6330 reg_slot--;
6331 }
6332 else
6333 {
6334 imm_slot = 0;
6335
6336 /* Turn on Imm8 so that output_imm will generate it. */
6337 i.types[imm_slot].bitfield.imm8 = 1;
6338 }
6339
6340 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6341 i.op[imm_slot].imms->X_add_number
6342 |= register_number (i.op[reg_slot].regs) << 4;
6343 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6344 }
6345
6346 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
6347 i.vex.register_specifier = i.op[nds].regs;
6348 }
6349 else
6350 source = dest = 0;
6351
6352 /* i.reg_operands MUST be the number of real register operands;
6353 implicit registers do not count. If there are 3 register
6354 operands, it must be a instruction with VexNDS. For a
6355 instruction with VexNDD, the destination register is encoded
6356 in VEX prefix. If there are 4 register operands, it must be
6357 a instruction with VEX prefix and 3 sources. */
6358 if (i.mem_operands == 0
6359 && ((i.reg_operands == 2
6360 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6361 || (i.reg_operands == 3
6362 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6363 || (i.reg_operands == 4 && vex_3_sources)))
6364 {
6365 switch (i.operands)
6366 {
6367 case 2:
6368 source = 0;
6369 break;
6370 case 3:
6371 /* When there are 3 operands, one of them may be immediate,
6372 which may be the first or the last operand. Otherwise,
6373 the first operand must be shift count register (cl) or it
6374 is an instruction with VexNDS. */
6375 gas_assert (i.imm_operands == 1
6376 || (i.imm_operands == 0
6377 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6378 || i.types[0].bitfield.shiftcount)));
6379 if (operand_type_check (i.types[0], imm)
6380 || i.types[0].bitfield.shiftcount)
6381 source = 1;
6382 else
6383 source = 0;
6384 break;
6385 case 4:
6386 /* When there are 4 operands, the first two must be 8bit
6387 immediate operands. The source operand will be the 3rd
6388 one.
6389
6390 For instructions with VexNDS, if the first operand
6391 an imm8, the source operand is the 2nd one. If the last
6392 operand is imm8, the source operand is the first one. */
6393 gas_assert ((i.imm_operands == 2
6394 && i.types[0].bitfield.imm8
6395 && i.types[1].bitfield.imm8)
6396 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6397 && i.imm_operands == 1
6398 && (i.types[0].bitfield.imm8
6399 || i.types[i.operands - 1].bitfield.imm8
6400 || i.rounding)));
6401 if (i.imm_operands == 2)
6402 source = 2;
6403 else
6404 {
6405 if (i.types[0].bitfield.imm8)
6406 source = 1;
6407 else
6408 source = 0;
6409 }
6410 break;
6411 case 5:
6412 if (i.tm.opcode_modifier.evex)
6413 {
6414 /* For EVEX instructions, when there are 5 operands, the
6415 first one must be immediate operand. If the second one
6416 is immediate operand, the source operand is the 3th
6417 one. If the last one is immediate operand, the source
6418 operand is the 2nd one. */
6419 gas_assert (i.imm_operands == 2
6420 && i.tm.opcode_modifier.sae
6421 && operand_type_check (i.types[0], imm));
6422 if (operand_type_check (i.types[1], imm))
6423 source = 2;
6424 else if (operand_type_check (i.types[4], imm))
6425 source = 1;
6426 else
6427 abort ();
6428 }
6429 break;
6430 default:
6431 abort ();
6432 }
6433
6434 if (!vex_3_sources)
6435 {
6436 dest = source + 1;
6437
6438 /* RC/SAE operand could be between DEST and SRC. That happens
6439 when one operand is GPR and the other one is XMM/YMM/ZMM
6440 register. */
6441 if (i.rounding && i.rounding->operand == (int) dest)
6442 dest++;
6443
6444 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6445 {
6446 /* For instructions with VexNDS, the register-only source
6447 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
6448 register. It is encoded in VEX prefix. We need to
6449 clear RegMem bit before calling operand_type_equal. */
6450
6451 i386_operand_type op;
6452 unsigned int vvvv;
6453
6454 /* Check register-only source operand when two source
6455 operands are swapped. */
6456 if (!i.tm.operand_types[source].bitfield.baseindex
6457 && i.tm.operand_types[dest].bitfield.baseindex)
6458 {
6459 vvvv = source;
6460 source = dest;
6461 }
6462 else
6463 vvvv = dest;
6464
6465 op = i.tm.operand_types[vvvv];
6466 op.bitfield.regmem = 0;
6467 if ((dest + 1) >= i.operands
6468 || ((!op.bitfield.reg
6469 || (!op.bitfield.dword && !op.bitfield.qword))
6470 && !op.bitfield.regsimd
6471 && !operand_type_equal (&op, &regmask)))
6472 abort ();
6473 i.vex.register_specifier = i.op[vvvv].regs;
6474 dest++;
6475 }
6476 }
6477
6478 i.rm.mode = 3;
6479 /* One of the register operands will be encoded in the i.tm.reg
6480 field, the other in the combined i.tm.mode and i.tm.regmem
6481 fields. If no form of this instruction supports a memory
6482 destination operand, then we assume the source operand may
6483 sometimes be a memory operand and so we need to store the
6484 destination in the i.rm.reg field. */
6485 if (!i.tm.operand_types[dest].bitfield.regmem
6486 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6487 {
6488 i.rm.reg = i.op[dest].regs->reg_num;
6489 i.rm.regmem = i.op[source].regs->reg_num;
6490 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6491 i.rex |= REX_R;
6492 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6493 i.vrex |= REX_R;
6494 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6495 i.rex |= REX_B;
6496 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6497 i.vrex |= REX_B;
6498 }
6499 else
6500 {
6501 i.rm.reg = i.op[source].regs->reg_num;
6502 i.rm.regmem = i.op[dest].regs->reg_num;
6503 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6504 i.rex |= REX_B;
6505 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6506 i.vrex |= REX_B;
6507 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6508 i.rex |= REX_R;
6509 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6510 i.vrex |= REX_R;
6511 }
6512 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
6513 {
6514 if (!i.types[0].bitfield.control
6515 && !i.types[1].bitfield.control)
6516 abort ();
6517 i.rex &= ~(REX_R | REX_B);
6518 add_prefix (LOCK_PREFIX_OPCODE);
6519 }
6520 }
6521 else
6522 { /* If it's not 2 reg operands... */
6523 unsigned int mem;
6524
6525 if (i.mem_operands)
6526 {
6527 unsigned int fake_zero_displacement = 0;
6528 unsigned int op;
6529
6530 for (op = 0; op < i.operands; op++)
6531 if (operand_type_check (i.types[op], anymem))
6532 break;
6533 gas_assert (op < i.operands);
6534
6535 if (i.tm.opcode_modifier.vecsib)
6536 {
6537 if (i.index_reg->reg_num == RegEiz
6538 || i.index_reg->reg_num == RegRiz)
6539 abort ();
6540
6541 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6542 if (!i.base_reg)
6543 {
6544 i.sib.base = NO_BASE_REGISTER;
6545 i.sib.scale = i.log2_scale_factor;
6546 i.types[op].bitfield.disp8 = 0;
6547 i.types[op].bitfield.disp16 = 0;
6548 i.types[op].bitfield.disp64 = 0;
6549 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6550 {
6551 /* Must be 32 bit */
6552 i.types[op].bitfield.disp32 = 1;
6553 i.types[op].bitfield.disp32s = 0;
6554 }
6555 else
6556 {
6557 i.types[op].bitfield.disp32 = 0;
6558 i.types[op].bitfield.disp32s = 1;
6559 }
6560 }
6561 i.sib.index = i.index_reg->reg_num;
6562 if ((i.index_reg->reg_flags & RegRex) != 0)
6563 i.rex |= REX_X;
6564 if ((i.index_reg->reg_flags & RegVRex) != 0)
6565 i.vrex |= REX_X;
6566 }
6567
6568 default_seg = &ds;
6569
6570 if (i.base_reg == 0)
6571 {
6572 i.rm.mode = 0;
6573 if (!i.disp_operands)
6574 fake_zero_displacement = 1;
6575 if (i.index_reg == 0)
6576 {
6577 gas_assert (!i.tm.opcode_modifier.vecsib);
6578 /* Operand is just <disp> */
6579 if (flag_code == CODE_64BIT)
6580 {
6581 /* 64bit mode overwrites the 32bit absolute
6582 addressing by RIP relative addressing and
6583 absolute addressing is encoded by one of the
6584 redundant SIB forms. */
6585 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6586 i.sib.base = NO_BASE_REGISTER;
6587 i.sib.index = NO_INDEX_REGISTER;
6588 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
6589 ? disp32s : disp32);
6590 }
6591 else if ((flag_code == CODE_16BIT)
6592 ^ (i.prefix[ADDR_PREFIX] != 0))
6593 {
6594 i.rm.regmem = NO_BASE_REGISTER_16;
6595 i.types[op] = disp16;
6596 }
6597 else
6598 {
6599 i.rm.regmem = NO_BASE_REGISTER;
6600 i.types[op] = disp32;
6601 }
6602 }
6603 else if (!i.tm.opcode_modifier.vecsib)
6604 {
6605 /* !i.base_reg && i.index_reg */
6606 if (i.index_reg->reg_num == RegEiz
6607 || i.index_reg->reg_num == RegRiz)
6608 i.sib.index = NO_INDEX_REGISTER;
6609 else
6610 i.sib.index = i.index_reg->reg_num;
6611 i.sib.base = NO_BASE_REGISTER;
6612 i.sib.scale = i.log2_scale_factor;
6613 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6614 i.types[op].bitfield.disp8 = 0;
6615 i.types[op].bitfield.disp16 = 0;
6616 i.types[op].bitfield.disp64 = 0;
6617 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6618 {
6619 /* Must be 32 bit */
6620 i.types[op].bitfield.disp32 = 1;
6621 i.types[op].bitfield.disp32s = 0;
6622 }
6623 else
6624 {
6625 i.types[op].bitfield.disp32 = 0;
6626 i.types[op].bitfield.disp32s = 1;
6627 }
6628 if ((i.index_reg->reg_flags & RegRex) != 0)
6629 i.rex |= REX_X;
6630 }
6631 }
6632 /* RIP addressing for 64bit mode. */
6633 else if (i.base_reg->reg_num == RegRip ||
6634 i.base_reg->reg_num == RegEip)
6635 {
6636 gas_assert (!i.tm.opcode_modifier.vecsib);
6637 i.rm.regmem = NO_BASE_REGISTER;
6638 i.types[op].bitfield.disp8 = 0;
6639 i.types[op].bitfield.disp16 = 0;
6640 i.types[op].bitfield.disp32 = 0;
6641 i.types[op].bitfield.disp32s = 1;
6642 i.types[op].bitfield.disp64 = 0;
6643 i.flags[op] |= Operand_PCrel;
6644 if (! i.disp_operands)
6645 fake_zero_displacement = 1;
6646 }
6647 else if (i.base_reg->reg_type.bitfield.word)
6648 {
6649 gas_assert (!i.tm.opcode_modifier.vecsib);
6650 switch (i.base_reg->reg_num)
6651 {
6652 case 3: /* (%bx) */
6653 if (i.index_reg == 0)
6654 i.rm.regmem = 7;
6655 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6656 i.rm.regmem = i.index_reg->reg_num - 6;
6657 break;
6658 case 5: /* (%bp) */
6659 default_seg = &ss;
6660 if (i.index_reg == 0)
6661 {
6662 i.rm.regmem = 6;
6663 if (operand_type_check (i.types[op], disp) == 0)
6664 {
6665 /* fake (%bp) into 0(%bp) */
6666 i.types[op].bitfield.disp8 = 1;
6667 fake_zero_displacement = 1;
6668 }
6669 }
6670 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6671 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6672 break;
6673 default: /* (%si) -> 4 or (%di) -> 5 */
6674 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6675 }
6676 i.rm.mode = mode_from_disp_size (i.types[op]);
6677 }
6678 else /* i.base_reg and 32/64 bit mode */
6679 {
6680 if (flag_code == CODE_64BIT
6681 && operand_type_check (i.types[op], disp))
6682 {
6683 i386_operand_type temp;
6684 operand_type_set (&temp, 0);
6685 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
6686 i.types[op] = temp;
6687 if (i.prefix[ADDR_PREFIX] == 0)
6688 i.types[op].bitfield.disp32s = 1;
6689 else
6690 i.types[op].bitfield.disp32 = 1;
6691 }
6692
6693 if (!i.tm.opcode_modifier.vecsib)
6694 i.rm.regmem = i.base_reg->reg_num;
6695 if ((i.base_reg->reg_flags & RegRex) != 0)
6696 i.rex |= REX_B;
6697 i.sib.base = i.base_reg->reg_num;
6698 /* x86-64 ignores REX prefix bit here to avoid decoder
6699 complications. */
6700 if (!(i.base_reg->reg_flags & RegRex)
6701 && (i.base_reg->reg_num == EBP_REG_NUM
6702 || i.base_reg->reg_num == ESP_REG_NUM))
6703 default_seg = &ss;
6704 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
6705 {
6706 fake_zero_displacement = 1;
6707 i.types[op].bitfield.disp8 = 1;
6708 }
6709 i.sib.scale = i.log2_scale_factor;
6710 if (i.index_reg == 0)
6711 {
6712 gas_assert (!i.tm.opcode_modifier.vecsib);
6713 /* <disp>(%esp) becomes two byte modrm with no index
6714 register. We've already stored the code for esp
6715 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
6716 Any base register besides %esp will not use the
6717 extra modrm byte. */
6718 i.sib.index = NO_INDEX_REGISTER;
6719 }
6720 else if (!i.tm.opcode_modifier.vecsib)
6721 {
6722 if (i.index_reg->reg_num == RegEiz
6723 || i.index_reg->reg_num == RegRiz)
6724 i.sib.index = NO_INDEX_REGISTER;
6725 else
6726 i.sib.index = i.index_reg->reg_num;
6727 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6728 if ((i.index_reg->reg_flags & RegRex) != 0)
6729 i.rex |= REX_X;
6730 }
6731
6732 if (i.disp_operands
6733 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
6734 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
6735 i.rm.mode = 0;
6736 else
6737 {
6738 if (!fake_zero_displacement
6739 && !i.disp_operands
6740 && i.disp_encoding)
6741 {
6742 fake_zero_displacement = 1;
6743 if (i.disp_encoding == disp_encoding_8bit)
6744 i.types[op].bitfield.disp8 = 1;
6745 else
6746 i.types[op].bitfield.disp32 = 1;
6747 }
6748 i.rm.mode = mode_from_disp_size (i.types[op]);
6749 }
6750 }
6751
6752 if (fake_zero_displacement)
6753 {
6754 /* Fakes a zero displacement assuming that i.types[op]
6755 holds the correct displacement size. */
6756 expressionS *exp;
6757
6758 gas_assert (i.op[op].disps == 0);
6759 exp = &disp_expressions[i.disp_operands++];
6760 i.op[op].disps = exp;
6761 exp->X_op = O_constant;
6762 exp->X_add_number = 0;
6763 exp->X_add_symbol = (symbolS *) 0;
6764 exp->X_op_symbol = (symbolS *) 0;
6765 }
6766
6767 mem = op;
6768 }
6769 else
6770 mem = ~0;
6771
6772 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
6773 {
6774 if (operand_type_check (i.types[0], imm))
6775 i.vex.register_specifier = NULL;
6776 else
6777 {
6778 /* VEX.vvvv encodes one of the sources when the first
6779 operand is not an immediate. */
6780 if (i.tm.opcode_modifier.vexw == VEXW0)
6781 i.vex.register_specifier = i.op[0].regs;
6782 else
6783 i.vex.register_specifier = i.op[1].regs;
6784 }
6785
6786 /* Destination is a XMM register encoded in the ModRM.reg
6787 and VEX.R bit. */
6788 i.rm.reg = i.op[2].regs->reg_num;
6789 if ((i.op[2].regs->reg_flags & RegRex) != 0)
6790 i.rex |= REX_R;
6791
6792 /* ModRM.rm and VEX.B encodes the other source. */
6793 if (!i.mem_operands)
6794 {
6795 i.rm.mode = 3;
6796
6797 if (i.tm.opcode_modifier.vexw == VEXW0)
6798 i.rm.regmem = i.op[1].regs->reg_num;
6799 else
6800 i.rm.regmem = i.op[0].regs->reg_num;
6801
6802 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6803 i.rex |= REX_B;
6804 }
6805 }
6806 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
6807 {
6808 i.vex.register_specifier = i.op[2].regs;
6809 if (!i.mem_operands)
6810 {
6811 i.rm.mode = 3;
6812 i.rm.regmem = i.op[1].regs->reg_num;
6813 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6814 i.rex |= REX_B;
6815 }
6816 }
6817 /* Fill in i.rm.reg or i.rm.regmem field with register operand
6818 (if any) based on i.tm.extension_opcode. Again, we must be
6819 careful to make sure that segment/control/debug/test/MMX
6820 registers are coded into the i.rm.reg field. */
6821 else if (i.reg_operands)
6822 {
6823 unsigned int op;
6824 unsigned int vex_reg = ~0;
6825
6826 for (op = 0; op < i.operands; op++)
6827 if (i.types[op].bitfield.reg
6828 || i.types[op].bitfield.regmmx
6829 || i.types[op].bitfield.regsimd
6830 || i.types[op].bitfield.regbnd
6831 || i.types[op].bitfield.regmask
6832 || i.types[op].bitfield.sreg2
6833 || i.types[op].bitfield.sreg3
6834 || i.types[op].bitfield.control
6835 || i.types[op].bitfield.debug
6836 || i.types[op].bitfield.test)
6837 break;
6838
6839 if (vex_3_sources)
6840 op = dest;
6841 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6842 {
6843 /* For instructions with VexNDS, the register-only
6844 source operand is encoded in VEX prefix. */
6845 gas_assert (mem != (unsigned int) ~0);
6846
6847 if (op > mem)
6848 {
6849 vex_reg = op++;
6850 gas_assert (op < i.operands);
6851 }
6852 else
6853 {
6854 /* Check register-only source operand when two source
6855 operands are swapped. */
6856 if (!i.tm.operand_types[op].bitfield.baseindex
6857 && i.tm.operand_types[op + 1].bitfield.baseindex)
6858 {
6859 vex_reg = op;
6860 op += 2;
6861 gas_assert (mem == (vex_reg + 1)
6862 && op < i.operands);
6863 }
6864 else
6865 {
6866 vex_reg = op + 1;
6867 gas_assert (vex_reg < i.operands);
6868 }
6869 }
6870 }
6871 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
6872 {
6873 /* For instructions with VexNDD, the register destination
6874 is encoded in VEX prefix. */
6875 if (i.mem_operands == 0)
6876 {
6877 /* There is no memory operand. */
6878 gas_assert ((op + 2) == i.operands);
6879 vex_reg = op + 1;
6880 }
6881 else
6882 {
6883 /* There are only 2 operands. */
6884 gas_assert (op < 2 && i.operands == 2);
6885 vex_reg = 1;
6886 }
6887 }
6888 else
6889 gas_assert (op < i.operands);
6890
6891 if (vex_reg != (unsigned int) ~0)
6892 {
6893 i386_operand_type *type = &i.tm.operand_types[vex_reg];
6894
6895 if ((!type->bitfield.reg
6896 || (!type->bitfield.dword && !type->bitfield.qword))
6897 && !type->bitfield.regsimd
6898 && !operand_type_equal (type, &regmask))
6899 abort ();
6900
6901 i.vex.register_specifier = i.op[vex_reg].regs;
6902 }
6903
6904 /* Don't set OP operand twice. */
6905 if (vex_reg != op)
6906 {
6907 /* If there is an extension opcode to put here, the
6908 register number must be put into the regmem field. */
6909 if (i.tm.extension_opcode != None)
6910 {
6911 i.rm.regmem = i.op[op].regs->reg_num;
6912 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6913 i.rex |= REX_B;
6914 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6915 i.vrex |= REX_B;
6916 }
6917 else
6918 {
6919 i.rm.reg = i.op[op].regs->reg_num;
6920 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6921 i.rex |= REX_R;
6922 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6923 i.vrex |= REX_R;
6924 }
6925 }
6926
6927 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
6928 must set it to 3 to indicate this is a register operand
6929 in the regmem field. */
6930 if (!i.mem_operands)
6931 i.rm.mode = 3;
6932 }
6933
6934 /* Fill in i.rm.reg field with extension opcode (if any). */
6935 if (i.tm.extension_opcode != None)
6936 i.rm.reg = i.tm.extension_opcode;
6937 }
6938 return default_seg;
6939 }
6940
6941 static void
6942 output_branch (void)
6943 {
6944 char *p;
6945 int size;
6946 int code16;
6947 int prefix;
6948 relax_substateT subtype;
6949 symbolS *sym;
6950 offsetT off;
6951
6952 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
6953 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
6954
6955 prefix = 0;
6956 if (i.prefix[DATA_PREFIX] != 0)
6957 {
6958 prefix = 1;
6959 i.prefixes -= 1;
6960 code16 ^= CODE16;
6961 }
6962 /* Pentium4 branch hints. */
6963 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6964 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6965 {
6966 prefix++;
6967 i.prefixes--;
6968 }
6969 if (i.prefix[REX_PREFIX] != 0)
6970 {
6971 prefix++;
6972 i.prefixes--;
6973 }
6974
6975 /* BND prefixed jump. */
6976 if (i.prefix[BND_PREFIX] != 0)
6977 {
6978 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6979 i.prefixes -= 1;
6980 }
6981
6982 if (i.prefixes != 0 && !intel_syntax)
6983 as_warn (_("skipping prefixes on this instruction"));
6984
6985 /* It's always a symbol; End frag & setup for relax.
6986 Make sure there is enough room in this frag for the largest
6987 instruction we may generate in md_convert_frag. This is 2
6988 bytes for the opcode and room for the prefix and largest
6989 displacement. */
6990 frag_grow (prefix + 2 + 4);
6991 /* Prefix and 1 opcode byte go in fr_fix. */
6992 p = frag_more (prefix + 1);
6993 if (i.prefix[DATA_PREFIX] != 0)
6994 *p++ = DATA_PREFIX_OPCODE;
6995 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
6996 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
6997 *p++ = i.prefix[SEG_PREFIX];
6998 if (i.prefix[REX_PREFIX] != 0)
6999 *p++ = i.prefix[REX_PREFIX];
7000 *p = i.tm.base_opcode;
7001
7002 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7003 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7004 else if (cpu_arch_flags.bitfield.cpui386)
7005 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7006 else
7007 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7008 subtype |= code16;
7009
7010 sym = i.op[0].disps->X_add_symbol;
7011 off = i.op[0].disps->X_add_number;
7012
7013 if (i.op[0].disps->X_op != O_constant
7014 && i.op[0].disps->X_op != O_symbol)
7015 {
7016 /* Handle complex expressions. */
7017 sym = make_expr_symbol (i.op[0].disps);
7018 off = 0;
7019 }
7020
7021 /* 1 possible extra opcode + 4 byte displacement go in var part.
7022 Pass reloc in fr_var. */
7023 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7024 }
7025
7026 static void
7027 output_jump (void)
7028 {
7029 char *p;
7030 int size;
7031 fixS *fixP;
7032
7033 if (i.tm.opcode_modifier.jumpbyte)
7034 {
7035 /* This is a loop or jecxz type instruction. */
7036 size = 1;
7037 if (i.prefix[ADDR_PREFIX] != 0)
7038 {
7039 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7040 i.prefixes -= 1;
7041 }
7042 /* Pentium4 branch hints. */
7043 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7044 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7045 {
7046 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7047 i.prefixes--;
7048 }
7049 }
7050 else
7051 {
7052 int code16;
7053
7054 code16 = 0;
7055 if (flag_code == CODE_16BIT)
7056 code16 = CODE16;
7057
7058 if (i.prefix[DATA_PREFIX] != 0)
7059 {
7060 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7061 i.prefixes -= 1;
7062 code16 ^= CODE16;
7063 }
7064
7065 size = 4;
7066 if (code16)
7067 size = 2;
7068 }
7069
7070 if (i.prefix[REX_PREFIX] != 0)
7071 {
7072 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7073 i.prefixes -= 1;
7074 }
7075
7076 /* BND prefixed jump. */
7077 if (i.prefix[BND_PREFIX] != 0)
7078 {
7079 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7080 i.prefixes -= 1;
7081 }
7082
7083 if (i.prefixes != 0 && !intel_syntax)
7084 as_warn (_("skipping prefixes on this instruction"));
7085
7086 p = frag_more (i.tm.opcode_length + size);
7087 switch (i.tm.opcode_length)
7088 {
7089 case 2:
7090 *p++ = i.tm.base_opcode >> 8;
7091 /* Fall through. */
7092 case 1:
7093 *p++ = i.tm.base_opcode;
7094 break;
7095 default:
7096 abort ();
7097 }
7098
7099 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7100 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
7101
7102 /* All jumps handled here are signed, but don't use a signed limit
7103 check for 32 and 16 bit jumps as we want to allow wrap around at
7104 4G and 64k respectively. */
7105 if (size == 1)
7106 fixP->fx_signed = 1;
7107 }
7108
7109 static void
7110 output_interseg_jump (void)
7111 {
7112 char *p;
7113 int size;
7114 int prefix;
7115 int code16;
7116
7117 code16 = 0;
7118 if (flag_code == CODE_16BIT)
7119 code16 = CODE16;
7120
7121 prefix = 0;
7122 if (i.prefix[DATA_PREFIX] != 0)
7123 {
7124 prefix = 1;
7125 i.prefixes -= 1;
7126 code16 ^= CODE16;
7127 }
7128 if (i.prefix[REX_PREFIX] != 0)
7129 {
7130 prefix++;
7131 i.prefixes -= 1;
7132 }
7133
7134 size = 4;
7135 if (code16)
7136 size = 2;
7137
7138 if (i.prefixes != 0 && !intel_syntax)
7139 as_warn (_("skipping prefixes on this instruction"));
7140
7141 /* 1 opcode; 2 segment; offset */
7142 p = frag_more (prefix + 1 + 2 + size);
7143
7144 if (i.prefix[DATA_PREFIX] != 0)
7145 *p++ = DATA_PREFIX_OPCODE;
7146
7147 if (i.prefix[REX_PREFIX] != 0)
7148 *p++ = i.prefix[REX_PREFIX];
7149
7150 *p++ = i.tm.base_opcode;
7151 if (i.op[1].imms->X_op == O_constant)
7152 {
7153 offsetT n = i.op[1].imms->X_add_number;
7154
7155 if (size == 2
7156 && !fits_in_unsigned_word (n)
7157 && !fits_in_signed_word (n))
7158 {
7159 as_bad (_("16-bit jump out of range"));
7160 return;
7161 }
7162 md_number_to_chars (p, n, size);
7163 }
7164 else
7165 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7166 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7167 if (i.op[0].imms->X_op != O_constant)
7168 as_bad (_("can't handle non absolute segment in `%s'"),
7169 i.tm.name);
7170 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7171 }
7172
7173 static void
7174 output_insn (void)
7175 {
7176 fragS *insn_start_frag;
7177 offsetT insn_start_off;
7178
7179 /* Tie dwarf2 debug info to the address at the start of the insn.
7180 We can't do this after the insn has been output as the current
7181 frag may have been closed off. eg. by frag_var. */
7182 dwarf2_emit_insn (0);
7183
7184 insn_start_frag = frag_now;
7185 insn_start_off = frag_now_fix ();
7186
7187 /* Output jumps. */
7188 if (i.tm.opcode_modifier.jump)
7189 output_branch ();
7190 else if (i.tm.opcode_modifier.jumpbyte
7191 || i.tm.opcode_modifier.jumpdword)
7192 output_jump ();
7193 else if (i.tm.opcode_modifier.jumpintersegment)
7194 output_interseg_jump ();
7195 else
7196 {
7197 /* Output normal instructions here. */
7198 char *p;
7199 unsigned char *q;
7200 unsigned int j;
7201 unsigned int prefix;
7202
7203 if (avoid_fence
7204 && i.tm.base_opcode == 0xfae
7205 && i.operands == 1
7206 && i.imm_operands == 1
7207 && (i.op[0].imms->X_add_number == 0xe8
7208 || i.op[0].imms->X_add_number == 0xf0
7209 || i.op[0].imms->X_add_number == 0xf8))
7210 {
7211 /* Encode lfence, mfence, and sfence as
7212 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7213 offsetT val = 0x240483f0ULL;
7214 p = frag_more (5);
7215 md_number_to_chars (p, val, 5);
7216 return;
7217 }
7218
7219 /* Some processors fail on LOCK prefix. This options makes
7220 assembler ignore LOCK prefix and serves as a workaround. */
7221 if (omit_lock_prefix)
7222 {
7223 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7224 return;
7225 i.prefix[LOCK_PREFIX] = 0;
7226 }
7227
7228 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7229 don't need the explicit prefix. */
7230 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
7231 {
7232 switch (i.tm.opcode_length)
7233 {
7234 case 3:
7235 if (i.tm.base_opcode & 0xff000000)
7236 {
7237 prefix = (i.tm.base_opcode >> 24) & 0xff;
7238 goto check_prefix;
7239 }
7240 break;
7241 case 2:
7242 if ((i.tm.base_opcode & 0xff0000) != 0)
7243 {
7244 prefix = (i.tm.base_opcode >> 16) & 0xff;
7245 if (i.tm.cpu_flags.bitfield.cpupadlock)
7246 {
7247 check_prefix:
7248 if (prefix != REPE_PREFIX_OPCODE
7249 || (i.prefix[REP_PREFIX]
7250 != REPE_PREFIX_OPCODE))
7251 add_prefix (prefix);
7252 }
7253 else
7254 add_prefix (prefix);
7255 }
7256 break;
7257 case 1:
7258 break;
7259 case 0:
7260 /* Check for pseudo prefixes. */
7261 as_bad_where (insn_start_frag->fr_file,
7262 insn_start_frag->fr_line,
7263 _("pseudo prefix without instruction"));
7264 return;
7265 default:
7266 abort ();
7267 }
7268
7269 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7270 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7271 R_X86_64_GOTTPOFF relocation so that linker can safely
7272 perform IE->LE optimization. */
7273 if (x86_elf_abi == X86_64_X32_ABI
7274 && i.operands == 2
7275 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7276 && i.prefix[REX_PREFIX] == 0)
7277 add_prefix (REX_OPCODE);
7278 #endif
7279
7280 /* The prefix bytes. */
7281 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7282 if (*q)
7283 FRAG_APPEND_1_CHAR (*q);
7284 }
7285 else
7286 {
7287 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7288 if (*q)
7289 switch (j)
7290 {
7291 case REX_PREFIX:
7292 /* REX byte is encoded in VEX prefix. */
7293 break;
7294 case SEG_PREFIX:
7295 case ADDR_PREFIX:
7296 FRAG_APPEND_1_CHAR (*q);
7297 break;
7298 default:
7299 /* There should be no other prefixes for instructions
7300 with VEX prefix. */
7301 abort ();
7302 }
7303
7304 /* For EVEX instructions i.vrex should become 0 after
7305 build_evex_prefix. For VEX instructions upper 16 registers
7306 aren't available, so VREX should be 0. */
7307 if (i.vrex)
7308 abort ();
7309 /* Now the VEX prefix. */
7310 p = frag_more (i.vex.length);
7311 for (j = 0; j < i.vex.length; j++)
7312 p[j] = i.vex.bytes[j];
7313 }
7314
7315 /* Now the opcode; be careful about word order here! */
7316 if (i.tm.opcode_length == 1)
7317 {
7318 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7319 }
7320 else
7321 {
7322 switch (i.tm.opcode_length)
7323 {
7324 case 4:
7325 p = frag_more (4);
7326 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7327 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7328 break;
7329 case 3:
7330 p = frag_more (3);
7331 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7332 break;
7333 case 2:
7334 p = frag_more (2);
7335 break;
7336 default:
7337 abort ();
7338 break;
7339 }
7340
7341 /* Put out high byte first: can't use md_number_to_chars! */
7342 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7343 *p = i.tm.base_opcode & 0xff;
7344 }
7345
7346 /* Now the modrm byte and sib byte (if present). */
7347 if (i.tm.opcode_modifier.modrm)
7348 {
7349 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7350 | i.rm.reg << 3
7351 | i.rm.mode << 6));
7352 /* If i.rm.regmem == ESP (4)
7353 && i.rm.mode != (Register mode)
7354 && not 16 bit
7355 ==> need second modrm byte. */
7356 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7357 && i.rm.mode != 3
7358 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
7359 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7360 | i.sib.index << 3
7361 | i.sib.scale << 6));
7362 }
7363
7364 if (i.disp_operands)
7365 output_disp (insn_start_frag, insn_start_off);
7366
7367 if (i.imm_operands)
7368 output_imm (insn_start_frag, insn_start_off);
7369 }
7370
7371 #ifdef DEBUG386
7372 if (flag_debug)
7373 {
7374 pi ("" /*line*/, &i);
7375 }
7376 #endif /* DEBUG386 */
7377 }
7378
7379 /* Return the size of the displacement operand N. */
7380
7381 static int
7382 disp_size (unsigned int n)
7383 {
7384 int size = 4;
7385
7386 if (i.types[n].bitfield.disp64)
7387 size = 8;
7388 else if (i.types[n].bitfield.disp8)
7389 size = 1;
7390 else if (i.types[n].bitfield.disp16)
7391 size = 2;
7392 return size;
7393 }
7394
7395 /* Return the size of the immediate operand N. */
7396
7397 static int
7398 imm_size (unsigned int n)
7399 {
7400 int size = 4;
7401 if (i.types[n].bitfield.imm64)
7402 size = 8;
7403 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7404 size = 1;
7405 else if (i.types[n].bitfield.imm16)
7406 size = 2;
7407 return size;
7408 }
7409
7410 static void
7411 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7412 {
7413 char *p;
7414 unsigned int n;
7415
7416 for (n = 0; n < i.operands; n++)
7417 {
7418 if (operand_type_check (i.types[n], disp))
7419 {
7420 if (i.op[n].disps->X_op == O_constant)
7421 {
7422 int size = disp_size (n);
7423 offsetT val = i.op[n].disps->X_add_number;
7424
7425 val = offset_in_range (val >> i.memshift, size);
7426 p = frag_more (size);
7427 md_number_to_chars (p, val, size);
7428 }
7429 else
7430 {
7431 enum bfd_reloc_code_real reloc_type;
7432 int size = disp_size (n);
7433 int sign = i.types[n].bitfield.disp32s;
7434 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7435 fixS *fixP;
7436
7437 /* We can't have 8 bit displacement here. */
7438 gas_assert (!i.types[n].bitfield.disp8);
7439
7440 /* The PC relative address is computed relative
7441 to the instruction boundary, so in case immediate
7442 fields follows, we need to adjust the value. */
7443 if (pcrel && i.imm_operands)
7444 {
7445 unsigned int n1;
7446 int sz = 0;
7447
7448 for (n1 = 0; n1 < i.operands; n1++)
7449 if (operand_type_check (i.types[n1], imm))
7450 {
7451 /* Only one immediate is allowed for PC
7452 relative address. */
7453 gas_assert (sz == 0);
7454 sz = imm_size (n1);
7455 i.op[n].disps->X_add_number -= sz;
7456 }
7457 /* We should find the immediate. */
7458 gas_assert (sz != 0);
7459 }
7460
7461 p = frag_more (size);
7462 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
7463 if (GOT_symbol
7464 && GOT_symbol == i.op[n].disps->X_add_symbol
7465 && (((reloc_type == BFD_RELOC_32
7466 || reloc_type == BFD_RELOC_X86_64_32S
7467 || (reloc_type == BFD_RELOC_64
7468 && object_64bit))
7469 && (i.op[n].disps->X_op == O_symbol
7470 || (i.op[n].disps->X_op == O_add
7471 && ((symbol_get_value_expression
7472 (i.op[n].disps->X_op_symbol)->X_op)
7473 == O_subtract))))
7474 || reloc_type == BFD_RELOC_32_PCREL))
7475 {
7476 offsetT add;
7477
7478 if (insn_start_frag == frag_now)
7479 add = (p - frag_now->fr_literal) - insn_start_off;
7480 else
7481 {
7482 fragS *fr;
7483
7484 add = insn_start_frag->fr_fix - insn_start_off;
7485 for (fr = insn_start_frag->fr_next;
7486 fr && fr != frag_now; fr = fr->fr_next)
7487 add += fr->fr_fix;
7488 add += p - frag_now->fr_literal;
7489 }
7490
7491 if (!object_64bit)
7492 {
7493 reloc_type = BFD_RELOC_386_GOTPC;
7494 i.op[n].imms->X_add_number += add;
7495 }
7496 else if (reloc_type == BFD_RELOC_64)
7497 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7498 else
7499 /* Don't do the adjustment for x86-64, as there
7500 the pcrel addressing is relative to the _next_
7501 insn, and that is taken care of in other code. */
7502 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7503 }
7504 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7505 size, i.op[n].disps, pcrel,
7506 reloc_type);
7507 /* Check for "call/jmp *mem", "mov mem, %reg",
7508 "test %reg, mem" and "binop mem, %reg" where binop
7509 is one of adc, add, and, cmp, or, sbb, sub, xor
7510 instructions. Always generate R_386_GOT32X for
7511 "sym*GOT" operand in 32-bit mode. */
7512 if ((generate_relax_relocations
7513 || (!object_64bit
7514 && i.rm.mode == 0
7515 && i.rm.regmem == 5))
7516 && (i.rm.mode == 2
7517 || (i.rm.mode == 0 && i.rm.regmem == 5))
7518 && ((i.operands == 1
7519 && i.tm.base_opcode == 0xff
7520 && (i.rm.reg == 2 || i.rm.reg == 4))
7521 || (i.operands == 2
7522 && (i.tm.base_opcode == 0x8b
7523 || i.tm.base_opcode == 0x85
7524 || (i.tm.base_opcode & 0xc7) == 0x03))))
7525 {
7526 if (object_64bit)
7527 {
7528 fixP->fx_tcbit = i.rex != 0;
7529 if (i.base_reg
7530 && (i.base_reg->reg_num == RegRip
7531 || i.base_reg->reg_num == RegEip))
7532 fixP->fx_tcbit2 = 1;
7533 }
7534 else
7535 fixP->fx_tcbit2 = 1;
7536 }
7537 }
7538 }
7539 }
7540 }
7541
7542 static void
7543 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
7544 {
7545 char *p;
7546 unsigned int n;
7547
7548 for (n = 0; n < i.operands; n++)
7549 {
7550 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7551 if (i.rounding && (int) n == i.rounding->operand)
7552 continue;
7553
7554 if (operand_type_check (i.types[n], imm))
7555 {
7556 if (i.op[n].imms->X_op == O_constant)
7557 {
7558 int size = imm_size (n);
7559 offsetT val;
7560
7561 val = offset_in_range (i.op[n].imms->X_add_number,
7562 size);
7563 p = frag_more (size);
7564 md_number_to_chars (p, val, size);
7565 }
7566 else
7567 {
7568 /* Not absolute_section.
7569 Need a 32-bit fixup (don't support 8bit
7570 non-absolute imms). Try to support other
7571 sizes ... */
7572 enum bfd_reloc_code_real reloc_type;
7573 int size = imm_size (n);
7574 int sign;
7575
7576 if (i.types[n].bitfield.imm32s
7577 && (i.suffix == QWORD_MNEM_SUFFIX
7578 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
7579 sign = 1;
7580 else
7581 sign = 0;
7582
7583 p = frag_more (size);
7584 reloc_type = reloc (size, 0, sign, i.reloc[n]);
7585
7586 /* This is tough to explain. We end up with this one if we
7587 * have operands that look like
7588 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7589 * obtain the absolute address of the GOT, and it is strongly
7590 * preferable from a performance point of view to avoid using
7591 * a runtime relocation for this. The actual sequence of
7592 * instructions often look something like:
7593 *
7594 * call .L66
7595 * .L66:
7596 * popl %ebx
7597 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7598 *
7599 * The call and pop essentially return the absolute address
7600 * of the label .L66 and store it in %ebx. The linker itself
7601 * will ultimately change the first operand of the addl so
7602 * that %ebx points to the GOT, but to keep things simple, the
7603 * .o file must have this operand set so that it generates not
7604 * the absolute address of .L66, but the absolute address of
7605 * itself. This allows the linker itself simply treat a GOTPC
7606 * relocation as asking for a pcrel offset to the GOT to be
7607 * added in, and the addend of the relocation is stored in the
7608 * operand field for the instruction itself.
7609 *
7610 * Our job here is to fix the operand so that it would add
7611 * the correct offset so that %ebx would point to itself. The
7612 * thing that is tricky is that .-.L66 will point to the
7613 * beginning of the instruction, so we need to further modify
7614 * the operand so that it will point to itself. There are
7615 * other cases where you have something like:
7616 *
7617 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7618 *
7619 * and here no correction would be required. Internally in
7620 * the assembler we treat operands of this form as not being
7621 * pcrel since the '.' is explicitly mentioned, and I wonder
7622 * whether it would simplify matters to do it this way. Who
7623 * knows. In earlier versions of the PIC patches, the
7624 * pcrel_adjust field was used to store the correction, but
7625 * since the expression is not pcrel, I felt it would be
7626 * confusing to do it this way. */
7627
7628 if ((reloc_type == BFD_RELOC_32
7629 || reloc_type == BFD_RELOC_X86_64_32S
7630 || reloc_type == BFD_RELOC_64)
7631 && GOT_symbol
7632 && GOT_symbol == i.op[n].imms->X_add_symbol
7633 && (i.op[n].imms->X_op == O_symbol
7634 || (i.op[n].imms->X_op == O_add
7635 && ((symbol_get_value_expression
7636 (i.op[n].imms->X_op_symbol)->X_op)
7637 == O_subtract))))
7638 {
7639 offsetT add;
7640
7641 if (insn_start_frag == frag_now)
7642 add = (p - frag_now->fr_literal) - insn_start_off;
7643 else
7644 {
7645 fragS *fr;
7646
7647 add = insn_start_frag->fr_fix - insn_start_off;
7648 for (fr = insn_start_frag->fr_next;
7649 fr && fr != frag_now; fr = fr->fr_next)
7650 add += fr->fr_fix;
7651 add += p - frag_now->fr_literal;
7652 }
7653
7654 if (!object_64bit)
7655 reloc_type = BFD_RELOC_386_GOTPC;
7656 else if (size == 4)
7657 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7658 else if (size == 8)
7659 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7660 i.op[n].imms->X_add_number += add;
7661 }
7662 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7663 i.op[n].imms, 0, reloc_type);
7664 }
7665 }
7666 }
7667 }
7668 \f
7669 /* x86_cons_fix_new is called via the expression parsing code when a
7670 reloc is needed. We use this hook to get the correct .got reloc. */
7671 static int cons_sign = -1;
7672
7673 void
7674 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
7675 expressionS *exp, bfd_reloc_code_real_type r)
7676 {
7677 r = reloc (len, 0, cons_sign, r);
7678
7679 #ifdef TE_PE
7680 if (exp->X_op == O_secrel)
7681 {
7682 exp->X_op = O_symbol;
7683 r = BFD_RELOC_32_SECREL;
7684 }
7685 #endif
7686
7687 fix_new_exp (frag, off, len, exp, 0, r);
7688 }
7689
7690 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
7691 purpose of the `.dc.a' internal pseudo-op. */
7692
7693 int
7694 x86_address_bytes (void)
7695 {
7696 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
7697 return 4;
7698 return stdoutput->arch_info->bits_per_address / 8;
7699 }
7700
7701 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
7702 || defined (LEX_AT)
7703 # define lex_got(reloc, adjust, types) NULL
7704 #else
7705 /* Parse operands of the form
7706 <symbol>@GOTOFF+<nnn>
7707 and similar .plt or .got references.
7708
7709 If we find one, set up the correct relocation in RELOC and copy the
7710 input string, minus the `@GOTOFF' into a malloc'd buffer for
7711 parsing by the calling routine. Return this buffer, and if ADJUST
7712 is non-null set it to the length of the string we removed from the
7713 input line. Otherwise return NULL. */
7714 static char *
7715 lex_got (enum bfd_reloc_code_real *rel,
7716 int *adjust,
7717 i386_operand_type *types)
7718 {
7719 /* Some of the relocations depend on the size of what field is to
7720 be relocated. But in our callers i386_immediate and i386_displacement
7721 we don't yet know the operand size (this will be set by insn
7722 matching). Hence we record the word32 relocation here,
7723 and adjust the reloc according to the real size in reloc(). */
7724 static const struct {
7725 const char *str;
7726 int len;
7727 const enum bfd_reloc_code_real rel[2];
7728 const i386_operand_type types64;
7729 } gotrel[] = {
7730 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7731 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
7732 BFD_RELOC_SIZE32 },
7733 OPERAND_TYPE_IMM32_64 },
7734 #endif
7735 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
7736 BFD_RELOC_X86_64_PLTOFF64 },
7737 OPERAND_TYPE_IMM64 },
7738 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
7739 BFD_RELOC_X86_64_PLT32 },
7740 OPERAND_TYPE_IMM32_32S_DISP32 },
7741 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
7742 BFD_RELOC_X86_64_GOTPLT64 },
7743 OPERAND_TYPE_IMM64_DISP64 },
7744 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
7745 BFD_RELOC_X86_64_GOTOFF64 },
7746 OPERAND_TYPE_IMM64_DISP64 },
7747 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
7748 BFD_RELOC_X86_64_GOTPCREL },
7749 OPERAND_TYPE_IMM32_32S_DISP32 },
7750 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
7751 BFD_RELOC_X86_64_TLSGD },
7752 OPERAND_TYPE_IMM32_32S_DISP32 },
7753 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
7754 _dummy_first_bfd_reloc_code_real },
7755 OPERAND_TYPE_NONE },
7756 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
7757 BFD_RELOC_X86_64_TLSLD },
7758 OPERAND_TYPE_IMM32_32S_DISP32 },
7759 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
7760 BFD_RELOC_X86_64_GOTTPOFF },
7761 OPERAND_TYPE_IMM32_32S_DISP32 },
7762 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
7763 BFD_RELOC_X86_64_TPOFF32 },
7764 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7765 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
7766 _dummy_first_bfd_reloc_code_real },
7767 OPERAND_TYPE_NONE },
7768 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
7769 BFD_RELOC_X86_64_DTPOFF32 },
7770 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7771 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
7772 _dummy_first_bfd_reloc_code_real },
7773 OPERAND_TYPE_NONE },
7774 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
7775 _dummy_first_bfd_reloc_code_real },
7776 OPERAND_TYPE_NONE },
7777 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
7778 BFD_RELOC_X86_64_GOT32 },
7779 OPERAND_TYPE_IMM32_32S_64_DISP32 },
7780 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
7781 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
7782 OPERAND_TYPE_IMM32_32S_DISP32 },
7783 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
7784 BFD_RELOC_X86_64_TLSDESC_CALL },
7785 OPERAND_TYPE_IMM32_32S_DISP32 },
7786 };
7787 char *cp;
7788 unsigned int j;
7789
7790 #if defined (OBJ_MAYBE_ELF)
7791 if (!IS_ELF)
7792 return NULL;
7793 #endif
7794
7795 for (cp = input_line_pointer; *cp != '@'; cp++)
7796 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7797 return NULL;
7798
7799 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7800 {
7801 int len = gotrel[j].len;
7802 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7803 {
7804 if (gotrel[j].rel[object_64bit] != 0)
7805 {
7806 int first, second;
7807 char *tmpbuf, *past_reloc;
7808
7809 *rel = gotrel[j].rel[object_64bit];
7810
7811 if (types)
7812 {
7813 if (flag_code != CODE_64BIT)
7814 {
7815 types->bitfield.imm32 = 1;
7816 types->bitfield.disp32 = 1;
7817 }
7818 else
7819 *types = gotrel[j].types64;
7820 }
7821
7822 if (j != 0 && GOT_symbol == NULL)
7823 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
7824
7825 /* The length of the first part of our input line. */
7826 first = cp - input_line_pointer;
7827
7828 /* The second part goes from after the reloc token until
7829 (and including) an end_of_line char or comma. */
7830 past_reloc = cp + 1 + len;
7831 cp = past_reloc;
7832 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7833 ++cp;
7834 second = cp + 1 - past_reloc;
7835
7836 /* Allocate and copy string. The trailing NUL shouldn't
7837 be necessary, but be safe. */
7838 tmpbuf = XNEWVEC (char, first + second + 2);
7839 memcpy (tmpbuf, input_line_pointer, first);
7840 if (second != 0 && *past_reloc != ' ')
7841 /* Replace the relocation token with ' ', so that
7842 errors like foo@GOTOFF1 will be detected. */
7843 tmpbuf[first++] = ' ';
7844 else
7845 /* Increment length by 1 if the relocation token is
7846 removed. */
7847 len++;
7848 if (adjust)
7849 *adjust = len;
7850 memcpy (tmpbuf + first, past_reloc, second);
7851 tmpbuf[first + second] = '\0';
7852 return tmpbuf;
7853 }
7854
7855 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7856 gotrel[j].str, 1 << (5 + object_64bit));
7857 return NULL;
7858 }
7859 }
7860
7861 /* Might be a symbol version string. Don't as_bad here. */
7862 return NULL;
7863 }
7864 #endif
7865
7866 #ifdef TE_PE
7867 #ifdef lex_got
7868 #undef lex_got
7869 #endif
7870 /* Parse operands of the form
7871 <symbol>@SECREL32+<nnn>
7872
7873 If we find one, set up the correct relocation in RELOC and copy the
7874 input string, minus the `@SECREL32' into a malloc'd buffer for
7875 parsing by the calling routine. Return this buffer, and if ADJUST
7876 is non-null set it to the length of the string we removed from the
7877 input line. Otherwise return NULL.
7878
7879 This function is copied from the ELF version above adjusted for PE targets. */
7880
7881 static char *
7882 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
7883 int *adjust ATTRIBUTE_UNUSED,
7884 i386_operand_type *types)
7885 {
7886 static const struct
7887 {
7888 const char *str;
7889 int len;
7890 const enum bfd_reloc_code_real rel[2];
7891 const i386_operand_type types64;
7892 }
7893 gotrel[] =
7894 {
7895 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
7896 BFD_RELOC_32_SECREL },
7897 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7898 };
7899
7900 char *cp;
7901 unsigned j;
7902
7903 for (cp = input_line_pointer; *cp != '@'; cp++)
7904 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7905 return NULL;
7906
7907 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7908 {
7909 int len = gotrel[j].len;
7910
7911 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7912 {
7913 if (gotrel[j].rel[object_64bit] != 0)
7914 {
7915 int first, second;
7916 char *tmpbuf, *past_reloc;
7917
7918 *rel = gotrel[j].rel[object_64bit];
7919 if (adjust)
7920 *adjust = len;
7921
7922 if (types)
7923 {
7924 if (flag_code != CODE_64BIT)
7925 {
7926 types->bitfield.imm32 = 1;
7927 types->bitfield.disp32 = 1;
7928 }
7929 else
7930 *types = gotrel[j].types64;
7931 }
7932
7933 /* The length of the first part of our input line. */
7934 first = cp - input_line_pointer;
7935
7936 /* The second part goes from after the reloc token until
7937 (and including) an end_of_line char or comma. */
7938 past_reloc = cp + 1 + len;
7939 cp = past_reloc;
7940 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7941 ++cp;
7942 second = cp + 1 - past_reloc;
7943
7944 /* Allocate and copy string. The trailing NUL shouldn't
7945 be necessary, but be safe. */
7946 tmpbuf = XNEWVEC (char, first + second + 2);
7947 memcpy (tmpbuf, input_line_pointer, first);
7948 if (second != 0 && *past_reloc != ' ')
7949 /* Replace the relocation token with ' ', so that
7950 errors like foo@SECLREL321 will be detected. */
7951 tmpbuf[first++] = ' ';
7952 memcpy (tmpbuf + first, past_reloc, second);
7953 tmpbuf[first + second] = '\0';
7954 return tmpbuf;
7955 }
7956
7957 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7958 gotrel[j].str, 1 << (5 + object_64bit));
7959 return NULL;
7960 }
7961 }
7962
7963 /* Might be a symbol version string. Don't as_bad here. */
7964 return NULL;
7965 }
7966
7967 #endif /* TE_PE */
7968
7969 bfd_reloc_code_real_type
7970 x86_cons (expressionS *exp, int size)
7971 {
7972 bfd_reloc_code_real_type got_reloc = NO_RELOC;
7973
7974 intel_syntax = -intel_syntax;
7975
7976 exp->X_md = 0;
7977 if (size == 4 || (object_64bit && size == 8))
7978 {
7979 /* Handle @GOTOFF and the like in an expression. */
7980 char *save;
7981 char *gotfree_input_line;
7982 int adjust = 0;
7983
7984 save = input_line_pointer;
7985 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
7986 if (gotfree_input_line)
7987 input_line_pointer = gotfree_input_line;
7988
7989 expression (exp);
7990
7991 if (gotfree_input_line)
7992 {
7993 /* expression () has merrily parsed up to the end of line,
7994 or a comma - in the wrong buffer. Transfer how far
7995 input_line_pointer has moved to the right buffer. */
7996 input_line_pointer = (save
7997 + (input_line_pointer - gotfree_input_line)
7998 + adjust);
7999 free (gotfree_input_line);
8000 if (exp->X_op == O_constant
8001 || exp->X_op == O_absent
8002 || exp->X_op == O_illegal
8003 || exp->X_op == O_register
8004 || exp->X_op == O_big)
8005 {
8006 char c = *input_line_pointer;
8007 *input_line_pointer = 0;
8008 as_bad (_("missing or invalid expression `%s'"), save);
8009 *input_line_pointer = c;
8010 }
8011 }
8012 }
8013 else
8014 expression (exp);
8015
8016 intel_syntax = -intel_syntax;
8017
8018 if (intel_syntax)
8019 i386_intel_simplify (exp);
8020
8021 return got_reloc;
8022 }
8023
8024 static void
8025 signed_cons (int size)
8026 {
8027 if (flag_code == CODE_64BIT)
8028 cons_sign = 1;
8029 cons (size);
8030 cons_sign = -1;
8031 }
8032
8033 #ifdef TE_PE
8034 static void
8035 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
8036 {
8037 expressionS exp;
8038
8039 do
8040 {
8041 expression (&exp);
8042 if (exp.X_op == O_symbol)
8043 exp.X_op = O_secrel;
8044
8045 emit_expr (&exp, 4);
8046 }
8047 while (*input_line_pointer++ == ',');
8048
8049 input_line_pointer--;
8050 demand_empty_rest_of_line ();
8051 }
8052 #endif
8053
8054 /* Handle Vector operations. */
8055
8056 static char *
8057 check_VecOperations (char *op_string, char *op_end)
8058 {
8059 const reg_entry *mask;
8060 const char *saved;
8061 char *end_op;
8062
8063 while (*op_string
8064 && (op_end == NULL || op_string < op_end))
8065 {
8066 saved = op_string;
8067 if (*op_string == '{')
8068 {
8069 op_string++;
8070
8071 /* Check broadcasts. */
8072 if (strncmp (op_string, "1to", 3) == 0)
8073 {
8074 int bcst_type;
8075
8076 if (i.broadcast)
8077 goto duplicated_vec_op;
8078
8079 op_string += 3;
8080 if (*op_string == '8')
8081 bcst_type = BROADCAST_1TO8;
8082 else if (*op_string == '4')
8083 bcst_type = BROADCAST_1TO4;
8084 else if (*op_string == '2')
8085 bcst_type = BROADCAST_1TO2;
8086 else if (*op_string == '1'
8087 && *(op_string+1) == '6')
8088 {
8089 bcst_type = BROADCAST_1TO16;
8090 op_string++;
8091 }
8092 else
8093 {
8094 as_bad (_("Unsupported broadcast: `%s'"), saved);
8095 return NULL;
8096 }
8097 op_string++;
8098
8099 broadcast_op.type = bcst_type;
8100 broadcast_op.operand = this_operand;
8101 i.broadcast = &broadcast_op;
8102 }
8103 /* Check masking operation. */
8104 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8105 {
8106 /* k0 can't be used for write mask. */
8107 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
8108 {
8109 as_bad (_("`%s%s' can't be used for write mask"),
8110 register_prefix, mask->reg_name);
8111 return NULL;
8112 }
8113
8114 if (!i.mask)
8115 {
8116 mask_op.mask = mask;
8117 mask_op.zeroing = 0;
8118 mask_op.operand = this_operand;
8119 i.mask = &mask_op;
8120 }
8121 else
8122 {
8123 if (i.mask->mask)
8124 goto duplicated_vec_op;
8125
8126 i.mask->mask = mask;
8127
8128 /* Only "{z}" is allowed here. No need to check
8129 zeroing mask explicitly. */
8130 if (i.mask->operand != this_operand)
8131 {
8132 as_bad (_("invalid write mask `%s'"), saved);
8133 return NULL;
8134 }
8135 }
8136
8137 op_string = end_op;
8138 }
8139 /* Check zeroing-flag for masking operation. */
8140 else if (*op_string == 'z')
8141 {
8142 if (!i.mask)
8143 {
8144 mask_op.mask = NULL;
8145 mask_op.zeroing = 1;
8146 mask_op.operand = this_operand;
8147 i.mask = &mask_op;
8148 }
8149 else
8150 {
8151 if (i.mask->zeroing)
8152 {
8153 duplicated_vec_op:
8154 as_bad (_("duplicated `%s'"), saved);
8155 return NULL;
8156 }
8157
8158 i.mask->zeroing = 1;
8159
8160 /* Only "{%k}" is allowed here. No need to check mask
8161 register explicitly. */
8162 if (i.mask->operand != this_operand)
8163 {
8164 as_bad (_("invalid zeroing-masking `%s'"),
8165 saved);
8166 return NULL;
8167 }
8168 }
8169
8170 op_string++;
8171 }
8172 else
8173 goto unknown_vec_op;
8174
8175 if (*op_string != '}')
8176 {
8177 as_bad (_("missing `}' in `%s'"), saved);
8178 return NULL;
8179 }
8180 op_string++;
8181 continue;
8182 }
8183 unknown_vec_op:
8184 /* We don't know this one. */
8185 as_bad (_("unknown vector operation: `%s'"), saved);
8186 return NULL;
8187 }
8188
8189 if (i.mask && i.mask->zeroing && !i.mask->mask)
8190 {
8191 as_bad (_("zeroing-masking only allowed with write mask"));
8192 return NULL;
8193 }
8194
8195 return op_string;
8196 }
8197
8198 static int
8199 i386_immediate (char *imm_start)
8200 {
8201 char *save_input_line_pointer;
8202 char *gotfree_input_line;
8203 segT exp_seg = 0;
8204 expressionS *exp;
8205 i386_operand_type types;
8206
8207 operand_type_set (&types, ~0);
8208
8209 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8210 {
8211 as_bad (_("at most %d immediate operands are allowed"),
8212 MAX_IMMEDIATE_OPERANDS);
8213 return 0;
8214 }
8215
8216 exp = &im_expressions[i.imm_operands++];
8217 i.op[this_operand].imms = exp;
8218
8219 if (is_space_char (*imm_start))
8220 ++imm_start;
8221
8222 save_input_line_pointer = input_line_pointer;
8223 input_line_pointer = imm_start;
8224
8225 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8226 if (gotfree_input_line)
8227 input_line_pointer = gotfree_input_line;
8228
8229 exp_seg = expression (exp);
8230
8231 SKIP_WHITESPACE ();
8232
8233 /* Handle vector operations. */
8234 if (*input_line_pointer == '{')
8235 {
8236 input_line_pointer = check_VecOperations (input_line_pointer,
8237 NULL);
8238 if (input_line_pointer == NULL)
8239 return 0;
8240 }
8241
8242 if (*input_line_pointer)
8243 as_bad (_("junk `%s' after expression"), input_line_pointer);
8244
8245 input_line_pointer = save_input_line_pointer;
8246 if (gotfree_input_line)
8247 {
8248 free (gotfree_input_line);
8249
8250 if (exp->X_op == O_constant || exp->X_op == O_register)
8251 exp->X_op = O_illegal;
8252 }
8253
8254 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8255 }
8256
8257 static int
8258 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8259 i386_operand_type types, const char *imm_start)
8260 {
8261 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
8262 {
8263 if (imm_start)
8264 as_bad (_("missing or invalid immediate expression `%s'"),
8265 imm_start);
8266 return 0;
8267 }
8268 else if (exp->X_op == O_constant)
8269 {
8270 /* Size it properly later. */
8271 i.types[this_operand].bitfield.imm64 = 1;
8272 /* If not 64bit, sign extend val. */
8273 if (flag_code != CODE_64BIT
8274 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8275 exp->X_add_number
8276 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
8277 }
8278 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8279 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
8280 && exp_seg != absolute_section
8281 && exp_seg != text_section
8282 && exp_seg != data_section
8283 && exp_seg != bss_section
8284 && exp_seg != undefined_section
8285 && !bfd_is_com_section (exp_seg))
8286 {
8287 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8288 return 0;
8289 }
8290 #endif
8291 else if (!intel_syntax && exp_seg == reg_section)
8292 {
8293 if (imm_start)
8294 as_bad (_("illegal immediate register operand %s"), imm_start);
8295 return 0;
8296 }
8297 else
8298 {
8299 /* This is an address. The size of the address will be
8300 determined later, depending on destination register,
8301 suffix, or the default for the section. */
8302 i.types[this_operand].bitfield.imm8 = 1;
8303 i.types[this_operand].bitfield.imm16 = 1;
8304 i.types[this_operand].bitfield.imm32 = 1;
8305 i.types[this_operand].bitfield.imm32s = 1;
8306 i.types[this_operand].bitfield.imm64 = 1;
8307 i.types[this_operand] = operand_type_and (i.types[this_operand],
8308 types);
8309 }
8310
8311 return 1;
8312 }
8313
8314 static char *
8315 i386_scale (char *scale)
8316 {
8317 offsetT val;
8318 char *save = input_line_pointer;
8319
8320 input_line_pointer = scale;
8321 val = get_absolute_expression ();
8322
8323 switch (val)
8324 {
8325 case 1:
8326 i.log2_scale_factor = 0;
8327 break;
8328 case 2:
8329 i.log2_scale_factor = 1;
8330 break;
8331 case 4:
8332 i.log2_scale_factor = 2;
8333 break;
8334 case 8:
8335 i.log2_scale_factor = 3;
8336 break;
8337 default:
8338 {
8339 char sep = *input_line_pointer;
8340
8341 *input_line_pointer = '\0';
8342 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8343 scale);
8344 *input_line_pointer = sep;
8345 input_line_pointer = save;
8346 return NULL;
8347 }
8348 }
8349 if (i.log2_scale_factor != 0 && i.index_reg == 0)
8350 {
8351 as_warn (_("scale factor of %d without an index register"),
8352 1 << i.log2_scale_factor);
8353 i.log2_scale_factor = 0;
8354 }
8355 scale = input_line_pointer;
8356 input_line_pointer = save;
8357 return scale;
8358 }
8359
8360 static int
8361 i386_displacement (char *disp_start, char *disp_end)
8362 {
8363 expressionS *exp;
8364 segT exp_seg = 0;
8365 char *save_input_line_pointer;
8366 char *gotfree_input_line;
8367 int override;
8368 i386_operand_type bigdisp, types = anydisp;
8369 int ret;
8370
8371 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8372 {
8373 as_bad (_("at most %d displacement operands are allowed"),
8374 MAX_MEMORY_OPERANDS);
8375 return 0;
8376 }
8377
8378 operand_type_set (&bigdisp, 0);
8379 if ((i.types[this_operand].bitfield.jumpabsolute)
8380 || (!current_templates->start->opcode_modifier.jump
8381 && !current_templates->start->opcode_modifier.jumpdword))
8382 {
8383 bigdisp.bitfield.disp32 = 1;
8384 override = (i.prefix[ADDR_PREFIX] != 0);
8385 if (flag_code == CODE_64BIT)
8386 {
8387 if (!override)
8388 {
8389 bigdisp.bitfield.disp32s = 1;
8390 bigdisp.bitfield.disp64 = 1;
8391 }
8392 }
8393 else if ((flag_code == CODE_16BIT) ^ override)
8394 {
8395 bigdisp.bitfield.disp32 = 0;
8396 bigdisp.bitfield.disp16 = 1;
8397 }
8398 }
8399 else
8400 {
8401 /* For PC-relative branches, the width of the displacement
8402 is dependent upon data size, not address size. */
8403 override = (i.prefix[DATA_PREFIX] != 0);
8404 if (flag_code == CODE_64BIT)
8405 {
8406 if (override || i.suffix == WORD_MNEM_SUFFIX)
8407 bigdisp.bitfield.disp16 = 1;
8408 else
8409 {
8410 bigdisp.bitfield.disp32 = 1;
8411 bigdisp.bitfield.disp32s = 1;
8412 }
8413 }
8414 else
8415 {
8416 if (!override)
8417 override = (i.suffix == (flag_code != CODE_16BIT
8418 ? WORD_MNEM_SUFFIX
8419 : LONG_MNEM_SUFFIX));
8420 bigdisp.bitfield.disp32 = 1;
8421 if ((flag_code == CODE_16BIT) ^ override)
8422 {
8423 bigdisp.bitfield.disp32 = 0;
8424 bigdisp.bitfield.disp16 = 1;
8425 }
8426 }
8427 }
8428 i.types[this_operand] = operand_type_or (i.types[this_operand],
8429 bigdisp);
8430
8431 exp = &disp_expressions[i.disp_operands];
8432 i.op[this_operand].disps = exp;
8433 i.disp_operands++;
8434 save_input_line_pointer = input_line_pointer;
8435 input_line_pointer = disp_start;
8436 END_STRING_AND_SAVE (disp_end);
8437
8438 #ifndef GCC_ASM_O_HACK
8439 #define GCC_ASM_O_HACK 0
8440 #endif
8441 #if GCC_ASM_O_HACK
8442 END_STRING_AND_SAVE (disp_end + 1);
8443 if (i.types[this_operand].bitfield.baseIndex
8444 && displacement_string_end[-1] == '+')
8445 {
8446 /* This hack is to avoid a warning when using the "o"
8447 constraint within gcc asm statements.
8448 For instance:
8449
8450 #define _set_tssldt_desc(n,addr,limit,type) \
8451 __asm__ __volatile__ ( \
8452 "movw %w2,%0\n\t" \
8453 "movw %w1,2+%0\n\t" \
8454 "rorl $16,%1\n\t" \
8455 "movb %b1,4+%0\n\t" \
8456 "movb %4,5+%0\n\t" \
8457 "movb $0,6+%0\n\t" \
8458 "movb %h1,7+%0\n\t" \
8459 "rorl $16,%1" \
8460 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8461
8462 This works great except that the output assembler ends
8463 up looking a bit weird if it turns out that there is
8464 no offset. You end up producing code that looks like:
8465
8466 #APP
8467 movw $235,(%eax)
8468 movw %dx,2+(%eax)
8469 rorl $16,%edx
8470 movb %dl,4+(%eax)
8471 movb $137,5+(%eax)
8472 movb $0,6+(%eax)
8473 movb %dh,7+(%eax)
8474 rorl $16,%edx
8475 #NO_APP
8476
8477 So here we provide the missing zero. */
8478
8479 *displacement_string_end = '0';
8480 }
8481 #endif
8482 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8483 if (gotfree_input_line)
8484 input_line_pointer = gotfree_input_line;
8485
8486 exp_seg = expression (exp);
8487
8488 SKIP_WHITESPACE ();
8489 if (*input_line_pointer)
8490 as_bad (_("junk `%s' after expression"), input_line_pointer);
8491 #if GCC_ASM_O_HACK
8492 RESTORE_END_STRING (disp_end + 1);
8493 #endif
8494 input_line_pointer = save_input_line_pointer;
8495 if (gotfree_input_line)
8496 {
8497 free (gotfree_input_line);
8498
8499 if (exp->X_op == O_constant || exp->X_op == O_register)
8500 exp->X_op = O_illegal;
8501 }
8502
8503 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8504
8505 RESTORE_END_STRING (disp_end);
8506
8507 return ret;
8508 }
8509
8510 static int
8511 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8512 i386_operand_type types, const char *disp_start)
8513 {
8514 i386_operand_type bigdisp;
8515 int ret = 1;
8516
8517 /* We do this to make sure that the section symbol is in
8518 the symbol table. We will ultimately change the relocation
8519 to be relative to the beginning of the section. */
8520 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
8521 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8522 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8523 {
8524 if (exp->X_op != O_symbol)
8525 goto inv_disp;
8526
8527 if (S_IS_LOCAL (exp->X_add_symbol)
8528 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8529 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
8530 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
8531 exp->X_op = O_subtract;
8532 exp->X_op_symbol = GOT_symbol;
8533 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
8534 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
8535 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8536 i.reloc[this_operand] = BFD_RELOC_64;
8537 else
8538 i.reloc[this_operand] = BFD_RELOC_32;
8539 }
8540
8541 else if (exp->X_op == O_absent
8542 || exp->X_op == O_illegal
8543 || exp->X_op == O_big)
8544 {
8545 inv_disp:
8546 as_bad (_("missing or invalid displacement expression `%s'"),
8547 disp_start);
8548 ret = 0;
8549 }
8550
8551 else if (flag_code == CODE_64BIT
8552 && !i.prefix[ADDR_PREFIX]
8553 && exp->X_op == O_constant)
8554 {
8555 /* Since displacement is signed extended to 64bit, don't allow
8556 disp32 and turn off disp32s if they are out of range. */
8557 i.types[this_operand].bitfield.disp32 = 0;
8558 if (!fits_in_signed_long (exp->X_add_number))
8559 {
8560 i.types[this_operand].bitfield.disp32s = 0;
8561 if (i.types[this_operand].bitfield.baseindex)
8562 {
8563 as_bad (_("0x%lx out range of signed 32bit displacement"),
8564 (long) exp->X_add_number);
8565 ret = 0;
8566 }
8567 }
8568 }
8569
8570 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8571 else if (exp->X_op != O_constant
8572 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8573 && exp_seg != absolute_section
8574 && exp_seg != text_section
8575 && exp_seg != data_section
8576 && exp_seg != bss_section
8577 && exp_seg != undefined_section
8578 && !bfd_is_com_section (exp_seg))
8579 {
8580 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8581 ret = 0;
8582 }
8583 #endif
8584
8585 /* Check if this is a displacement only operand. */
8586 bigdisp = i.types[this_operand];
8587 bigdisp.bitfield.disp8 = 0;
8588 bigdisp.bitfield.disp16 = 0;
8589 bigdisp.bitfield.disp32 = 0;
8590 bigdisp.bitfield.disp32s = 0;
8591 bigdisp.bitfield.disp64 = 0;
8592 if (operand_type_all_zero (&bigdisp))
8593 i.types[this_operand] = operand_type_and (i.types[this_operand],
8594 types);
8595
8596 return ret;
8597 }
8598
8599 /* Return the active addressing mode, taking address override and
8600 registers forming the address into consideration. Update the
8601 address override prefix if necessary. */
8602
8603 static enum flag_code
8604 i386_addressing_mode (void)
8605 {
8606 enum flag_code addr_mode;
8607
8608 if (i.prefix[ADDR_PREFIX])
8609 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8610 else
8611 {
8612 addr_mode = flag_code;
8613
8614 #if INFER_ADDR_PREFIX
8615 if (i.mem_operands == 0)
8616 {
8617 /* Infer address prefix from the first memory operand. */
8618 const reg_entry *addr_reg = i.base_reg;
8619
8620 if (addr_reg == NULL)
8621 addr_reg = i.index_reg;
8622
8623 if (addr_reg)
8624 {
8625 if (addr_reg->reg_num == RegEip
8626 || addr_reg->reg_num == RegEiz
8627 || addr_reg->reg_type.bitfield.dword)
8628 addr_mode = CODE_32BIT;
8629 else if (flag_code != CODE_64BIT
8630 && addr_reg->reg_type.bitfield.word)
8631 addr_mode = CODE_16BIT;
8632
8633 if (addr_mode != flag_code)
8634 {
8635 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8636 i.prefixes += 1;
8637 /* Change the size of any displacement too. At most one
8638 of Disp16 or Disp32 is set.
8639 FIXME. There doesn't seem to be any real need for
8640 separate Disp16 and Disp32 flags. The same goes for
8641 Imm16 and Imm32. Removing them would probably clean
8642 up the code quite a lot. */
8643 if (flag_code != CODE_64BIT
8644 && (i.types[this_operand].bitfield.disp16
8645 || i.types[this_operand].bitfield.disp32))
8646 i.types[this_operand]
8647 = operand_type_xor (i.types[this_operand], disp16_32);
8648 }
8649 }
8650 }
8651 #endif
8652 }
8653
8654 return addr_mode;
8655 }
8656
8657 /* Make sure the memory operand we've been dealt is valid.
8658 Return 1 on success, 0 on a failure. */
8659
8660 static int
8661 i386_index_check (const char *operand_string)
8662 {
8663 const char *kind = "base/index";
8664 enum flag_code addr_mode = i386_addressing_mode ();
8665
8666 if (current_templates->start->opcode_modifier.isstring
8667 && !current_templates->start->opcode_modifier.immext
8668 && (current_templates->end[-1].opcode_modifier.isstring
8669 || i.mem_operands))
8670 {
8671 /* Memory operands of string insns are special in that they only allow
8672 a single register (rDI, rSI, or rBX) as their memory address. */
8673 const reg_entry *expected_reg;
8674 static const char *di_si[][2] =
8675 {
8676 { "esi", "edi" },
8677 { "si", "di" },
8678 { "rsi", "rdi" }
8679 };
8680 static const char *bx[] = { "ebx", "bx", "rbx" };
8681
8682 kind = "string address";
8683
8684 if (current_templates->start->opcode_modifier.repprefixok)
8685 {
8686 i386_operand_type type = current_templates->end[-1].operand_types[0];
8687
8688 if (!type.bitfield.baseindex
8689 || ((!i.mem_operands != !intel_syntax)
8690 && current_templates->end[-1].operand_types[1]
8691 .bitfield.baseindex))
8692 type = current_templates->end[-1].operand_types[1];
8693 expected_reg = hash_find (reg_hash,
8694 di_si[addr_mode][type.bitfield.esseg]);
8695
8696 }
8697 else
8698 expected_reg = hash_find (reg_hash, bx[addr_mode]);
8699
8700 if (i.base_reg != expected_reg
8701 || i.index_reg
8702 || operand_type_check (i.types[this_operand], disp))
8703 {
8704 /* The second memory operand must have the same size as
8705 the first one. */
8706 if (i.mem_operands
8707 && i.base_reg
8708 && !((addr_mode == CODE_64BIT
8709 && i.base_reg->reg_type.bitfield.qword)
8710 || (addr_mode == CODE_32BIT
8711 ? i.base_reg->reg_type.bitfield.dword
8712 : i.base_reg->reg_type.bitfield.word)))
8713 goto bad_address;
8714
8715 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
8716 operand_string,
8717 intel_syntax ? '[' : '(',
8718 register_prefix,
8719 expected_reg->reg_name,
8720 intel_syntax ? ']' : ')');
8721 return 1;
8722 }
8723 else
8724 return 1;
8725
8726 bad_address:
8727 as_bad (_("`%s' is not a valid %s expression"),
8728 operand_string, kind);
8729 return 0;
8730 }
8731 else
8732 {
8733 if (addr_mode != CODE_16BIT)
8734 {
8735 /* 32-bit/64-bit checks. */
8736 if ((i.base_reg
8737 && (addr_mode == CODE_64BIT
8738 ? !i.base_reg->reg_type.bitfield.qword
8739 : !i.base_reg->reg_type.bitfield.dword)
8740 && (i.index_reg
8741 || (i.base_reg->reg_num
8742 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
8743 || (i.index_reg
8744 && !i.index_reg->reg_type.bitfield.xmmword
8745 && !i.index_reg->reg_type.bitfield.ymmword
8746 && !i.index_reg->reg_type.bitfield.zmmword
8747 && ((addr_mode == CODE_64BIT
8748 ? !(i.index_reg->reg_type.bitfield.qword
8749 || i.index_reg->reg_num == RegRiz)
8750 : !(i.index_reg->reg_type.bitfield.dword
8751 || i.index_reg->reg_num == RegEiz))
8752 || !i.index_reg->reg_type.bitfield.baseindex)))
8753 goto bad_address;
8754
8755 /* bndmk, bndldx, and bndstx have special restrictions. */
8756 if (current_templates->start->base_opcode == 0xf30f1b
8757 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
8758 {
8759 /* They cannot use RIP-relative addressing. */
8760 if (i.base_reg && i.base_reg->reg_num == RegRip)
8761 {
8762 as_bad (_("`%s' cannot be used here"), operand_string);
8763 return 0;
8764 }
8765
8766 /* bndldx and bndstx ignore their scale factor. */
8767 if (current_templates->start->base_opcode != 0xf30f1b
8768 && i.log2_scale_factor)
8769 as_warn (_("register scaling is being ignored here"));
8770 }
8771 }
8772 else
8773 {
8774 /* 16-bit checks. */
8775 if ((i.base_reg
8776 && (!i.base_reg->reg_type.bitfield.word
8777 || !i.base_reg->reg_type.bitfield.baseindex))
8778 || (i.index_reg
8779 && (!i.index_reg->reg_type.bitfield.word
8780 || !i.index_reg->reg_type.bitfield.baseindex
8781 || !(i.base_reg
8782 && i.base_reg->reg_num < 6
8783 && i.index_reg->reg_num >= 6
8784 && i.log2_scale_factor == 0))))
8785 goto bad_address;
8786 }
8787 }
8788 return 1;
8789 }
8790
8791 /* Handle vector immediates. */
8792
8793 static int
8794 RC_SAE_immediate (const char *imm_start)
8795 {
8796 unsigned int match_found, j;
8797 const char *pstr = imm_start;
8798 expressionS *exp;
8799
8800 if (*pstr != '{')
8801 return 0;
8802
8803 pstr++;
8804 match_found = 0;
8805 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
8806 {
8807 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
8808 {
8809 if (!i.rounding)
8810 {
8811 rc_op.type = RC_NamesTable[j].type;
8812 rc_op.operand = this_operand;
8813 i.rounding = &rc_op;
8814 }
8815 else
8816 {
8817 as_bad (_("duplicated `%s'"), imm_start);
8818 return 0;
8819 }
8820 pstr += RC_NamesTable[j].len;
8821 match_found = 1;
8822 break;
8823 }
8824 }
8825 if (!match_found)
8826 return 0;
8827
8828 if (*pstr++ != '}')
8829 {
8830 as_bad (_("Missing '}': '%s'"), imm_start);
8831 return 0;
8832 }
8833 /* RC/SAE immediate string should contain nothing more. */;
8834 if (*pstr != 0)
8835 {
8836 as_bad (_("Junk after '}': '%s'"), imm_start);
8837 return 0;
8838 }
8839
8840 exp = &im_expressions[i.imm_operands++];
8841 i.op[this_operand].imms = exp;
8842
8843 exp->X_op = O_constant;
8844 exp->X_add_number = 0;
8845 exp->X_add_symbol = (symbolS *) 0;
8846 exp->X_op_symbol = (symbolS *) 0;
8847
8848 i.types[this_operand].bitfield.imm8 = 1;
8849 return 1;
8850 }
8851
8852 /* Only string instructions can have a second memory operand, so
8853 reduce current_templates to just those if it contains any. */
8854 static int
8855 maybe_adjust_templates (void)
8856 {
8857 const insn_template *t;
8858
8859 gas_assert (i.mem_operands == 1);
8860
8861 for (t = current_templates->start; t < current_templates->end; ++t)
8862 if (t->opcode_modifier.isstring)
8863 break;
8864
8865 if (t < current_templates->end)
8866 {
8867 static templates aux_templates;
8868 bfd_boolean recheck;
8869
8870 aux_templates.start = t;
8871 for (; t < current_templates->end; ++t)
8872 if (!t->opcode_modifier.isstring)
8873 break;
8874 aux_templates.end = t;
8875
8876 /* Determine whether to re-check the first memory operand. */
8877 recheck = (aux_templates.start != current_templates->start
8878 || t != current_templates->end);
8879
8880 current_templates = &aux_templates;
8881
8882 if (recheck)
8883 {
8884 i.mem_operands = 0;
8885 if (i.memop1_string != NULL
8886 && i386_index_check (i.memop1_string) == 0)
8887 return 0;
8888 i.mem_operands = 1;
8889 }
8890 }
8891
8892 return 1;
8893 }
8894
8895 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
8896 on error. */
8897
8898 static int
8899 i386_att_operand (char *operand_string)
8900 {
8901 const reg_entry *r;
8902 char *end_op;
8903 char *op_string = operand_string;
8904
8905 if (is_space_char (*op_string))
8906 ++op_string;
8907
8908 /* We check for an absolute prefix (differentiating,
8909 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
8910 if (*op_string == ABSOLUTE_PREFIX)
8911 {
8912 ++op_string;
8913 if (is_space_char (*op_string))
8914 ++op_string;
8915 i.types[this_operand].bitfield.jumpabsolute = 1;
8916 }
8917
8918 /* Check if operand is a register. */
8919 if ((r = parse_register (op_string, &end_op)) != NULL)
8920 {
8921 i386_operand_type temp;
8922
8923 /* Check for a segment override by searching for ':' after a
8924 segment register. */
8925 op_string = end_op;
8926 if (is_space_char (*op_string))
8927 ++op_string;
8928 if (*op_string == ':'
8929 && (r->reg_type.bitfield.sreg2
8930 || r->reg_type.bitfield.sreg3))
8931 {
8932 switch (r->reg_num)
8933 {
8934 case 0:
8935 i.seg[i.mem_operands] = &es;
8936 break;
8937 case 1:
8938 i.seg[i.mem_operands] = &cs;
8939 break;
8940 case 2:
8941 i.seg[i.mem_operands] = &ss;
8942 break;
8943 case 3:
8944 i.seg[i.mem_operands] = &ds;
8945 break;
8946 case 4:
8947 i.seg[i.mem_operands] = &fs;
8948 break;
8949 case 5:
8950 i.seg[i.mem_operands] = &gs;
8951 break;
8952 }
8953
8954 /* Skip the ':' and whitespace. */
8955 ++op_string;
8956 if (is_space_char (*op_string))
8957 ++op_string;
8958
8959 if (!is_digit_char (*op_string)
8960 && !is_identifier_char (*op_string)
8961 && *op_string != '('
8962 && *op_string != ABSOLUTE_PREFIX)
8963 {
8964 as_bad (_("bad memory operand `%s'"), op_string);
8965 return 0;
8966 }
8967 /* Handle case of %es:*foo. */
8968 if (*op_string == ABSOLUTE_PREFIX)
8969 {
8970 ++op_string;
8971 if (is_space_char (*op_string))
8972 ++op_string;
8973 i.types[this_operand].bitfield.jumpabsolute = 1;
8974 }
8975 goto do_memory_reference;
8976 }
8977
8978 /* Handle vector operations. */
8979 if (*op_string == '{')
8980 {
8981 op_string = check_VecOperations (op_string, NULL);
8982 if (op_string == NULL)
8983 return 0;
8984 }
8985
8986 if (*op_string)
8987 {
8988 as_bad (_("junk `%s' after register"), op_string);
8989 return 0;
8990 }
8991 temp = r->reg_type;
8992 temp.bitfield.baseindex = 0;
8993 i.types[this_operand] = operand_type_or (i.types[this_operand],
8994 temp);
8995 i.types[this_operand].bitfield.unspecified = 0;
8996 i.op[this_operand].regs = r;
8997 i.reg_operands++;
8998 }
8999 else if (*op_string == REGISTER_PREFIX)
9000 {
9001 as_bad (_("bad register name `%s'"), op_string);
9002 return 0;
9003 }
9004 else if (*op_string == IMMEDIATE_PREFIX)
9005 {
9006 ++op_string;
9007 if (i.types[this_operand].bitfield.jumpabsolute)
9008 {
9009 as_bad (_("immediate operand illegal with absolute jump"));
9010 return 0;
9011 }
9012 if (!i386_immediate (op_string))
9013 return 0;
9014 }
9015 else if (RC_SAE_immediate (operand_string))
9016 {
9017 /* If it is a RC or SAE immediate, do nothing. */
9018 ;
9019 }
9020 else if (is_digit_char (*op_string)
9021 || is_identifier_char (*op_string)
9022 || *op_string == '"'
9023 || *op_string == '(')
9024 {
9025 /* This is a memory reference of some sort. */
9026 char *base_string;
9027
9028 /* Start and end of displacement string expression (if found). */
9029 char *displacement_string_start;
9030 char *displacement_string_end;
9031 char *vop_start;
9032
9033 do_memory_reference:
9034 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9035 return 0;
9036 if ((i.mem_operands == 1
9037 && !current_templates->start->opcode_modifier.isstring)
9038 || i.mem_operands == 2)
9039 {
9040 as_bad (_("too many memory references for `%s'"),
9041 current_templates->start->name);
9042 return 0;
9043 }
9044
9045 /* Check for base index form. We detect the base index form by
9046 looking for an ')' at the end of the operand, searching
9047 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9048 after the '('. */
9049 base_string = op_string + strlen (op_string);
9050
9051 /* Handle vector operations. */
9052 vop_start = strchr (op_string, '{');
9053 if (vop_start && vop_start < base_string)
9054 {
9055 if (check_VecOperations (vop_start, base_string) == NULL)
9056 return 0;
9057 base_string = vop_start;
9058 }
9059
9060 --base_string;
9061 if (is_space_char (*base_string))
9062 --base_string;
9063
9064 /* If we only have a displacement, set-up for it to be parsed later. */
9065 displacement_string_start = op_string;
9066 displacement_string_end = base_string + 1;
9067
9068 if (*base_string == ')')
9069 {
9070 char *temp_string;
9071 unsigned int parens_balanced = 1;
9072 /* We've already checked that the number of left & right ()'s are
9073 equal, so this loop will not be infinite. */
9074 do
9075 {
9076 base_string--;
9077 if (*base_string == ')')
9078 parens_balanced++;
9079 if (*base_string == '(')
9080 parens_balanced--;
9081 }
9082 while (parens_balanced);
9083
9084 temp_string = base_string;
9085
9086 /* Skip past '(' and whitespace. */
9087 ++base_string;
9088 if (is_space_char (*base_string))
9089 ++base_string;
9090
9091 if (*base_string == ','
9092 || ((i.base_reg = parse_register (base_string, &end_op))
9093 != NULL))
9094 {
9095 displacement_string_end = temp_string;
9096
9097 i.types[this_operand].bitfield.baseindex = 1;
9098
9099 if (i.base_reg)
9100 {
9101 base_string = end_op;
9102 if (is_space_char (*base_string))
9103 ++base_string;
9104 }
9105
9106 /* There may be an index reg or scale factor here. */
9107 if (*base_string == ',')
9108 {
9109 ++base_string;
9110 if (is_space_char (*base_string))
9111 ++base_string;
9112
9113 if ((i.index_reg = parse_register (base_string, &end_op))
9114 != NULL)
9115 {
9116 base_string = end_op;
9117 if (is_space_char (*base_string))
9118 ++base_string;
9119 if (*base_string == ',')
9120 {
9121 ++base_string;
9122 if (is_space_char (*base_string))
9123 ++base_string;
9124 }
9125 else if (*base_string != ')')
9126 {
9127 as_bad (_("expecting `,' or `)' "
9128 "after index register in `%s'"),
9129 operand_string);
9130 return 0;
9131 }
9132 }
9133 else if (*base_string == REGISTER_PREFIX)
9134 {
9135 end_op = strchr (base_string, ',');
9136 if (end_op)
9137 *end_op = '\0';
9138 as_bad (_("bad register name `%s'"), base_string);
9139 return 0;
9140 }
9141
9142 /* Check for scale factor. */
9143 if (*base_string != ')')
9144 {
9145 char *end_scale = i386_scale (base_string);
9146
9147 if (!end_scale)
9148 return 0;
9149
9150 base_string = end_scale;
9151 if (is_space_char (*base_string))
9152 ++base_string;
9153 if (*base_string != ')')
9154 {
9155 as_bad (_("expecting `)' "
9156 "after scale factor in `%s'"),
9157 operand_string);
9158 return 0;
9159 }
9160 }
9161 else if (!i.index_reg)
9162 {
9163 as_bad (_("expecting index register or scale factor "
9164 "after `,'; got '%c'"),
9165 *base_string);
9166 return 0;
9167 }
9168 }
9169 else if (*base_string != ')')
9170 {
9171 as_bad (_("expecting `,' or `)' "
9172 "after base register in `%s'"),
9173 operand_string);
9174 return 0;
9175 }
9176 }
9177 else if (*base_string == REGISTER_PREFIX)
9178 {
9179 end_op = strchr (base_string, ',');
9180 if (end_op)
9181 *end_op = '\0';
9182 as_bad (_("bad register name `%s'"), base_string);
9183 return 0;
9184 }
9185 }
9186
9187 /* If there's an expression beginning the operand, parse it,
9188 assuming displacement_string_start and
9189 displacement_string_end are meaningful. */
9190 if (displacement_string_start != displacement_string_end)
9191 {
9192 if (!i386_displacement (displacement_string_start,
9193 displacement_string_end))
9194 return 0;
9195 }
9196
9197 /* Special case for (%dx) while doing input/output op. */
9198 if (i.base_reg
9199 && operand_type_equal (&i.base_reg->reg_type,
9200 &reg16_inoutportreg)
9201 && i.index_reg == 0
9202 && i.log2_scale_factor == 0
9203 && i.seg[i.mem_operands] == 0
9204 && !operand_type_check (i.types[this_operand], disp))
9205 {
9206 i.types[this_operand] = inoutportreg;
9207 return 1;
9208 }
9209
9210 if (i386_index_check (operand_string) == 0)
9211 return 0;
9212 i.types[this_operand].bitfield.mem = 1;
9213 if (i.mem_operands == 0)
9214 i.memop1_string = xstrdup (operand_string);
9215 i.mem_operands++;
9216 }
9217 else
9218 {
9219 /* It's not a memory operand; argh! */
9220 as_bad (_("invalid char %s beginning operand %d `%s'"),
9221 output_invalid (*op_string),
9222 this_operand + 1,
9223 op_string);
9224 return 0;
9225 }
9226 return 1; /* Normal return. */
9227 }
9228 \f
9229 /* Calculate the maximum variable size (i.e., excluding fr_fix)
9230 that an rs_machine_dependent frag may reach. */
9231
9232 unsigned int
9233 i386_frag_max_var (fragS *frag)
9234 {
9235 /* The only relaxable frags are for jumps.
9236 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9237 gas_assert (frag->fr_type == rs_machine_dependent);
9238 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9239 }
9240
9241 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9242 static int
9243 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
9244 {
9245 /* STT_GNU_IFUNC symbol must go through PLT. */
9246 if ((symbol_get_bfdsym (fr_symbol)->flags
9247 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9248 return 0;
9249
9250 if (!S_IS_EXTERNAL (fr_symbol))
9251 /* Symbol may be weak or local. */
9252 return !S_IS_WEAK (fr_symbol);
9253
9254 /* Global symbols with non-default visibility can't be preempted. */
9255 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9256 return 1;
9257
9258 if (fr_var != NO_RELOC)
9259 switch ((enum bfd_reloc_code_real) fr_var)
9260 {
9261 case BFD_RELOC_386_PLT32:
9262 case BFD_RELOC_X86_64_PLT32:
9263 /* Symbol with PLT relocation may be preempted. */
9264 return 0;
9265 default:
9266 abort ();
9267 }
9268
9269 /* Global symbols with default visibility in a shared library may be
9270 preempted by another definition. */
9271 return !shared;
9272 }
9273 #endif
9274
9275 /* md_estimate_size_before_relax()
9276
9277 Called just before relax() for rs_machine_dependent frags. The x86
9278 assembler uses these frags to handle variable size jump
9279 instructions.
9280
9281 Any symbol that is now undefined will not become defined.
9282 Return the correct fr_subtype in the frag.
9283 Return the initial "guess for variable size of frag" to caller.
9284 The guess is actually the growth beyond the fixed part. Whatever
9285 we do to grow the fixed or variable part contributes to our
9286 returned value. */
9287
9288 int
9289 md_estimate_size_before_relax (fragS *fragP, segT segment)
9290 {
9291 /* We've already got fragP->fr_subtype right; all we have to do is
9292 check for un-relaxable symbols. On an ELF system, we can't relax
9293 an externally visible symbol, because it may be overridden by a
9294 shared library. */
9295 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
9296 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9297 || (IS_ELF
9298 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9299 fragP->fr_var))
9300 #endif
9301 #if defined (OBJ_COFF) && defined (TE_PE)
9302 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
9303 && S_IS_WEAK (fragP->fr_symbol))
9304 #endif
9305 )
9306 {
9307 /* Symbol is undefined in this segment, or we need to keep a
9308 reloc so that weak symbols can be overridden. */
9309 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
9310 enum bfd_reloc_code_real reloc_type;
9311 unsigned char *opcode;
9312 int old_fr_fix;
9313
9314 if (fragP->fr_var != NO_RELOC)
9315 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
9316 else if (size == 2)
9317 reloc_type = BFD_RELOC_16_PCREL;
9318 else
9319 reloc_type = BFD_RELOC_32_PCREL;
9320
9321 old_fr_fix = fragP->fr_fix;
9322 opcode = (unsigned char *) fragP->fr_opcode;
9323
9324 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
9325 {
9326 case UNCOND_JUMP:
9327 /* Make jmp (0xeb) a (d)word displacement jump. */
9328 opcode[0] = 0xe9;
9329 fragP->fr_fix += size;
9330 fix_new (fragP, old_fr_fix, size,
9331 fragP->fr_symbol,
9332 fragP->fr_offset, 1,
9333 reloc_type);
9334 break;
9335
9336 case COND_JUMP86:
9337 if (size == 2
9338 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
9339 {
9340 /* Negate the condition, and branch past an
9341 unconditional jump. */
9342 opcode[0] ^= 1;
9343 opcode[1] = 3;
9344 /* Insert an unconditional jump. */
9345 opcode[2] = 0xe9;
9346 /* We added two extra opcode bytes, and have a two byte
9347 offset. */
9348 fragP->fr_fix += 2 + 2;
9349 fix_new (fragP, old_fr_fix + 2, 2,
9350 fragP->fr_symbol,
9351 fragP->fr_offset, 1,
9352 reloc_type);
9353 break;
9354 }
9355 /* Fall through. */
9356
9357 case COND_JUMP:
9358 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9359 {
9360 fixS *fixP;
9361
9362 fragP->fr_fix += 1;
9363 fixP = fix_new (fragP, old_fr_fix, 1,
9364 fragP->fr_symbol,
9365 fragP->fr_offset, 1,
9366 BFD_RELOC_8_PCREL);
9367 fixP->fx_signed = 1;
9368 break;
9369 }
9370
9371 /* This changes the byte-displacement jump 0x7N
9372 to the (d)word-displacement jump 0x0f,0x8N. */
9373 opcode[1] = opcode[0] + 0x10;
9374 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9375 /* We've added an opcode byte. */
9376 fragP->fr_fix += 1 + size;
9377 fix_new (fragP, old_fr_fix + 1, size,
9378 fragP->fr_symbol,
9379 fragP->fr_offset, 1,
9380 reloc_type);
9381 break;
9382
9383 default:
9384 BAD_CASE (fragP->fr_subtype);
9385 break;
9386 }
9387 frag_wane (fragP);
9388 return fragP->fr_fix - old_fr_fix;
9389 }
9390
9391 /* Guess size depending on current relax state. Initially the relax
9392 state will correspond to a short jump and we return 1, because
9393 the variable part of the frag (the branch offset) is one byte
9394 long. However, we can relax a section more than once and in that
9395 case we must either set fr_subtype back to the unrelaxed state,
9396 or return the value for the appropriate branch. */
9397 return md_relax_table[fragP->fr_subtype].rlx_length;
9398 }
9399
9400 /* Called after relax() is finished.
9401
9402 In: Address of frag.
9403 fr_type == rs_machine_dependent.
9404 fr_subtype is what the address relaxed to.
9405
9406 Out: Any fixSs and constants are set up.
9407 Caller will turn frag into a ".space 0". */
9408
9409 void
9410 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9411 fragS *fragP)
9412 {
9413 unsigned char *opcode;
9414 unsigned char *where_to_put_displacement = NULL;
9415 offsetT target_address;
9416 offsetT opcode_address;
9417 unsigned int extension = 0;
9418 offsetT displacement_from_opcode_start;
9419
9420 opcode = (unsigned char *) fragP->fr_opcode;
9421
9422 /* Address we want to reach in file space. */
9423 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
9424
9425 /* Address opcode resides at in file space. */
9426 opcode_address = fragP->fr_address + fragP->fr_fix;
9427
9428 /* Displacement from opcode start to fill into instruction. */
9429 displacement_from_opcode_start = target_address - opcode_address;
9430
9431 if ((fragP->fr_subtype & BIG) == 0)
9432 {
9433 /* Don't have to change opcode. */
9434 extension = 1; /* 1 opcode + 1 displacement */
9435 where_to_put_displacement = &opcode[1];
9436 }
9437 else
9438 {
9439 if (no_cond_jump_promotion
9440 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
9441 as_warn_where (fragP->fr_file, fragP->fr_line,
9442 _("long jump required"));
9443
9444 switch (fragP->fr_subtype)
9445 {
9446 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9447 extension = 4; /* 1 opcode + 4 displacement */
9448 opcode[0] = 0xe9;
9449 where_to_put_displacement = &opcode[1];
9450 break;
9451
9452 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9453 extension = 2; /* 1 opcode + 2 displacement */
9454 opcode[0] = 0xe9;
9455 where_to_put_displacement = &opcode[1];
9456 break;
9457
9458 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9459 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9460 extension = 5; /* 2 opcode + 4 displacement */
9461 opcode[1] = opcode[0] + 0x10;
9462 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9463 where_to_put_displacement = &opcode[2];
9464 break;
9465
9466 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9467 extension = 3; /* 2 opcode + 2 displacement */
9468 opcode[1] = opcode[0] + 0x10;
9469 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9470 where_to_put_displacement = &opcode[2];
9471 break;
9472
9473 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9474 extension = 4;
9475 opcode[0] ^= 1;
9476 opcode[1] = 3;
9477 opcode[2] = 0xe9;
9478 where_to_put_displacement = &opcode[3];
9479 break;
9480
9481 default:
9482 BAD_CASE (fragP->fr_subtype);
9483 break;
9484 }
9485 }
9486
9487 /* If size if less then four we are sure that the operand fits,
9488 but if it's 4, then it could be that the displacement is larger
9489 then -/+ 2GB. */
9490 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9491 && object_64bit
9492 && ((addressT) (displacement_from_opcode_start - extension
9493 + ((addressT) 1 << 31))
9494 > (((addressT) 2 << 31) - 1)))
9495 {
9496 as_bad_where (fragP->fr_file, fragP->fr_line,
9497 _("jump target out of range"));
9498 /* Make us emit 0. */
9499 displacement_from_opcode_start = extension;
9500 }
9501 /* Now put displacement after opcode. */
9502 md_number_to_chars ((char *) where_to_put_displacement,
9503 (valueT) (displacement_from_opcode_start - extension),
9504 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
9505 fragP->fr_fix += extension;
9506 }
9507 \f
9508 /* Apply a fixup (fixP) to segment data, once it has been determined
9509 by our caller that we have all the info we need to fix it up.
9510
9511 Parameter valP is the pointer to the value of the bits.
9512
9513 On the 386, immediates, displacements, and data pointers are all in
9514 the same (little-endian) format, so we don't need to care about which
9515 we are handling. */
9516
9517 void
9518 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
9519 {
9520 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
9521 valueT value = *valP;
9522
9523 #if !defined (TE_Mach)
9524 if (fixP->fx_pcrel)
9525 {
9526 switch (fixP->fx_r_type)
9527 {
9528 default:
9529 break;
9530
9531 case BFD_RELOC_64:
9532 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9533 break;
9534 case BFD_RELOC_32:
9535 case BFD_RELOC_X86_64_32S:
9536 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9537 break;
9538 case BFD_RELOC_16:
9539 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9540 break;
9541 case BFD_RELOC_8:
9542 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9543 break;
9544 }
9545 }
9546
9547 if (fixP->fx_addsy != NULL
9548 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
9549 || fixP->fx_r_type == BFD_RELOC_64_PCREL
9550 || fixP->fx_r_type == BFD_RELOC_16_PCREL
9551 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
9552 && !use_rela_relocations)
9553 {
9554 /* This is a hack. There should be a better way to handle this.
9555 This covers for the fact that bfd_install_relocation will
9556 subtract the current location (for partial_inplace, PC relative
9557 relocations); see more below. */
9558 #ifndef OBJ_AOUT
9559 if (IS_ELF
9560 #ifdef TE_PE
9561 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9562 #endif
9563 )
9564 value += fixP->fx_where + fixP->fx_frag->fr_address;
9565 #endif
9566 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9567 if (IS_ELF)
9568 {
9569 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
9570
9571 if ((sym_seg == seg
9572 || (symbol_section_p (fixP->fx_addsy)
9573 && sym_seg != absolute_section))
9574 && !generic_force_reloc (fixP))
9575 {
9576 /* Yes, we add the values in twice. This is because
9577 bfd_install_relocation subtracts them out again. I think
9578 bfd_install_relocation is broken, but I don't dare change
9579 it. FIXME. */
9580 value += fixP->fx_where + fixP->fx_frag->fr_address;
9581 }
9582 }
9583 #endif
9584 #if defined (OBJ_COFF) && defined (TE_PE)
9585 /* For some reason, the PE format does not store a
9586 section address offset for a PC relative symbol. */
9587 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
9588 || S_IS_WEAK (fixP->fx_addsy))
9589 value += md_pcrel_from (fixP);
9590 #endif
9591 }
9592 #if defined (OBJ_COFF) && defined (TE_PE)
9593 if (fixP->fx_addsy != NULL
9594 && S_IS_WEAK (fixP->fx_addsy)
9595 /* PR 16858: Do not modify weak function references. */
9596 && ! fixP->fx_pcrel)
9597 {
9598 #if !defined (TE_PEP)
9599 /* For x86 PE weak function symbols are neither PC-relative
9600 nor do they set S_IS_FUNCTION. So the only reliable way
9601 to detect them is to check the flags of their containing
9602 section. */
9603 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9604 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9605 ;
9606 else
9607 #endif
9608 value -= S_GET_VALUE (fixP->fx_addsy);
9609 }
9610 #endif
9611
9612 /* Fix a few things - the dynamic linker expects certain values here,
9613 and we must not disappoint it. */
9614 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9615 if (IS_ELF && fixP->fx_addsy)
9616 switch (fixP->fx_r_type)
9617 {
9618 case BFD_RELOC_386_PLT32:
9619 case BFD_RELOC_X86_64_PLT32:
9620 /* Make the jump instruction point to the address of the operand. At
9621 runtime we merely add the offset to the actual PLT entry. */
9622 value = -4;
9623 break;
9624
9625 case BFD_RELOC_386_TLS_GD:
9626 case BFD_RELOC_386_TLS_LDM:
9627 case BFD_RELOC_386_TLS_IE_32:
9628 case BFD_RELOC_386_TLS_IE:
9629 case BFD_RELOC_386_TLS_GOTIE:
9630 case BFD_RELOC_386_TLS_GOTDESC:
9631 case BFD_RELOC_X86_64_TLSGD:
9632 case BFD_RELOC_X86_64_TLSLD:
9633 case BFD_RELOC_X86_64_GOTTPOFF:
9634 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9635 value = 0; /* Fully resolved at runtime. No addend. */
9636 /* Fallthrough */
9637 case BFD_RELOC_386_TLS_LE:
9638 case BFD_RELOC_386_TLS_LDO_32:
9639 case BFD_RELOC_386_TLS_LE_32:
9640 case BFD_RELOC_X86_64_DTPOFF32:
9641 case BFD_RELOC_X86_64_DTPOFF64:
9642 case BFD_RELOC_X86_64_TPOFF32:
9643 case BFD_RELOC_X86_64_TPOFF64:
9644 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9645 break;
9646
9647 case BFD_RELOC_386_TLS_DESC_CALL:
9648 case BFD_RELOC_X86_64_TLSDESC_CALL:
9649 value = 0; /* Fully resolved at runtime. No addend. */
9650 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9651 fixP->fx_done = 0;
9652 return;
9653
9654 case BFD_RELOC_VTABLE_INHERIT:
9655 case BFD_RELOC_VTABLE_ENTRY:
9656 fixP->fx_done = 0;
9657 return;
9658
9659 default:
9660 break;
9661 }
9662 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
9663 *valP = value;
9664 #endif /* !defined (TE_Mach) */
9665
9666 /* Are we finished with this relocation now? */
9667 if (fixP->fx_addsy == NULL)
9668 fixP->fx_done = 1;
9669 #if defined (OBJ_COFF) && defined (TE_PE)
9670 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9671 {
9672 fixP->fx_done = 0;
9673 /* Remember value for tc_gen_reloc. */
9674 fixP->fx_addnumber = value;
9675 /* Clear out the frag for now. */
9676 value = 0;
9677 }
9678 #endif
9679 else if (use_rela_relocations)
9680 {
9681 fixP->fx_no_overflow = 1;
9682 /* Remember value for tc_gen_reloc. */
9683 fixP->fx_addnumber = value;
9684 value = 0;
9685 }
9686
9687 md_number_to_chars (p, value, fixP->fx_size);
9688 }
9689 \f
9690 const char *
9691 md_atof (int type, char *litP, int *sizeP)
9692 {
9693 /* This outputs the LITTLENUMs in REVERSE order;
9694 in accord with the bigendian 386. */
9695 return ieee_md_atof (type, litP, sizeP, FALSE);
9696 }
9697 \f
9698 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
9699
9700 static char *
9701 output_invalid (int c)
9702 {
9703 if (ISPRINT (c))
9704 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9705 "'%c'", c);
9706 else
9707 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9708 "(0x%x)", (unsigned char) c);
9709 return output_invalid_buf;
9710 }
9711
9712 /* REG_STRING starts *before* REGISTER_PREFIX. */
9713
9714 static const reg_entry *
9715 parse_real_register (char *reg_string, char **end_op)
9716 {
9717 char *s = reg_string;
9718 char *p;
9719 char reg_name_given[MAX_REG_NAME_SIZE + 1];
9720 const reg_entry *r;
9721
9722 /* Skip possible REGISTER_PREFIX and possible whitespace. */
9723 if (*s == REGISTER_PREFIX)
9724 ++s;
9725
9726 if (is_space_char (*s))
9727 ++s;
9728
9729 p = reg_name_given;
9730 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
9731 {
9732 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
9733 return (const reg_entry *) NULL;
9734 s++;
9735 }
9736
9737 /* For naked regs, make sure that we are not dealing with an identifier.
9738 This prevents confusing an identifier like `eax_var' with register
9739 `eax'. */
9740 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
9741 return (const reg_entry *) NULL;
9742
9743 *end_op = s;
9744
9745 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
9746
9747 /* Handle floating point regs, allowing spaces in the (i) part. */
9748 if (r == i386_regtab /* %st is first entry of table */)
9749 {
9750 if (is_space_char (*s))
9751 ++s;
9752 if (*s == '(')
9753 {
9754 ++s;
9755 if (is_space_char (*s))
9756 ++s;
9757 if (*s >= '0' && *s <= '7')
9758 {
9759 int fpr = *s - '0';
9760 ++s;
9761 if (is_space_char (*s))
9762 ++s;
9763 if (*s == ')')
9764 {
9765 *end_op = s + 1;
9766 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
9767 know (r);
9768 return r + fpr;
9769 }
9770 }
9771 /* We have "%st(" then garbage. */
9772 return (const reg_entry *) NULL;
9773 }
9774 }
9775
9776 if (r == NULL || allow_pseudo_reg)
9777 return r;
9778
9779 if (operand_type_all_zero (&r->reg_type))
9780 return (const reg_entry *) NULL;
9781
9782 if ((r->reg_type.bitfield.dword
9783 || r->reg_type.bitfield.sreg3
9784 || r->reg_type.bitfield.control
9785 || r->reg_type.bitfield.debug
9786 || r->reg_type.bitfield.test)
9787 && !cpu_arch_flags.bitfield.cpui386)
9788 return (const reg_entry *) NULL;
9789
9790 if (r->reg_type.bitfield.tbyte
9791 && !cpu_arch_flags.bitfield.cpu8087
9792 && !cpu_arch_flags.bitfield.cpu287
9793 && !cpu_arch_flags.bitfield.cpu387)
9794 return (const reg_entry *) NULL;
9795
9796 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpuregmmx)
9797 return (const reg_entry *) NULL;
9798
9799 if (r->reg_type.bitfield.xmmword && !cpu_arch_flags.bitfield.cpuregxmm)
9800 return (const reg_entry *) NULL;
9801
9802 if (r->reg_type.bitfield.ymmword && !cpu_arch_flags.bitfield.cpuregymm)
9803 return (const reg_entry *) NULL;
9804
9805 if (r->reg_type.bitfield.zmmword && !cpu_arch_flags.bitfield.cpuregzmm)
9806 return (const reg_entry *) NULL;
9807
9808 if (r->reg_type.bitfield.regmask
9809 && !cpu_arch_flags.bitfield.cpuregmask)
9810 return (const reg_entry *) NULL;
9811
9812 /* Don't allow fake index register unless allow_index_reg isn't 0. */
9813 if (!allow_index_reg
9814 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
9815 return (const reg_entry *) NULL;
9816
9817 /* Upper 16 vector register is only available with VREX in 64bit
9818 mode. */
9819 if ((r->reg_flags & RegVRex))
9820 {
9821 if (i.vec_encoding == vex_encoding_default)
9822 i.vec_encoding = vex_encoding_evex;
9823
9824 if (!cpu_arch_flags.bitfield.cpuvrex
9825 || i.vec_encoding != vex_encoding_evex
9826 || flag_code != CODE_64BIT)
9827 return (const reg_entry *) NULL;
9828 }
9829
9830 if (((r->reg_flags & (RegRex64 | RegRex))
9831 || r->reg_type.bitfield.qword)
9832 && (!cpu_arch_flags.bitfield.cpulm
9833 || !operand_type_equal (&r->reg_type, &control))
9834 && flag_code != CODE_64BIT)
9835 return (const reg_entry *) NULL;
9836
9837 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
9838 return (const reg_entry *) NULL;
9839
9840 return r;
9841 }
9842
9843 /* REG_STRING starts *before* REGISTER_PREFIX. */
9844
9845 static const reg_entry *
9846 parse_register (char *reg_string, char **end_op)
9847 {
9848 const reg_entry *r;
9849
9850 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
9851 r = parse_real_register (reg_string, end_op);
9852 else
9853 r = NULL;
9854 if (!r)
9855 {
9856 char *save = input_line_pointer;
9857 char c;
9858 symbolS *symbolP;
9859
9860 input_line_pointer = reg_string;
9861 c = get_symbol_name (&reg_string);
9862 symbolP = symbol_find (reg_string);
9863 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
9864 {
9865 const expressionS *e = symbol_get_value_expression (symbolP);
9866
9867 know (e->X_op == O_register);
9868 know (e->X_add_number >= 0
9869 && (valueT) e->X_add_number < i386_regtab_size);
9870 r = i386_regtab + e->X_add_number;
9871 if ((r->reg_flags & RegVRex))
9872 i.vec_encoding = vex_encoding_evex;
9873 *end_op = input_line_pointer;
9874 }
9875 *input_line_pointer = c;
9876 input_line_pointer = save;
9877 }
9878 return r;
9879 }
9880
9881 int
9882 i386_parse_name (char *name, expressionS *e, char *nextcharP)
9883 {
9884 const reg_entry *r;
9885 char *end = input_line_pointer;
9886
9887 *end = *nextcharP;
9888 r = parse_register (name, &input_line_pointer);
9889 if (r && end <= input_line_pointer)
9890 {
9891 *nextcharP = *input_line_pointer;
9892 *input_line_pointer = 0;
9893 e->X_op = O_register;
9894 e->X_add_number = r - i386_regtab;
9895 return 1;
9896 }
9897 input_line_pointer = end;
9898 *end = 0;
9899 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
9900 }
9901
9902 void
9903 md_operand (expressionS *e)
9904 {
9905 char *end;
9906 const reg_entry *r;
9907
9908 switch (*input_line_pointer)
9909 {
9910 case REGISTER_PREFIX:
9911 r = parse_real_register (input_line_pointer, &end);
9912 if (r)
9913 {
9914 e->X_op = O_register;
9915 e->X_add_number = r - i386_regtab;
9916 input_line_pointer = end;
9917 }
9918 break;
9919
9920 case '[':
9921 gas_assert (intel_syntax);
9922 end = input_line_pointer++;
9923 expression (e);
9924 if (*input_line_pointer == ']')
9925 {
9926 ++input_line_pointer;
9927 e->X_op_symbol = make_expr_symbol (e);
9928 e->X_add_symbol = NULL;
9929 e->X_add_number = 0;
9930 e->X_op = O_index;
9931 }
9932 else
9933 {
9934 e->X_op = O_absent;
9935 input_line_pointer = end;
9936 }
9937 break;
9938 }
9939 }
9940
9941 \f
9942 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9943 const char *md_shortopts = "kVQ:sqn";
9944 #else
9945 const char *md_shortopts = "qn";
9946 #endif
9947
9948 #define OPTION_32 (OPTION_MD_BASE + 0)
9949 #define OPTION_64 (OPTION_MD_BASE + 1)
9950 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9951 #define OPTION_MARCH (OPTION_MD_BASE + 3)
9952 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
9953 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
9954 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
9955 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
9956 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
9957 #define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
9958 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
9959 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
9960 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
9961 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
9962 #define OPTION_X32 (OPTION_MD_BASE + 14)
9963 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
9964 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
9965 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
9966 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
9967 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
9968 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
9969 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
9970 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
9971 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
9972 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
9973 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 25)
9974
9975 struct option md_longopts[] =
9976 {
9977 {"32", no_argument, NULL, OPTION_32},
9978 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9979 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9980 {"64", no_argument, NULL, OPTION_64},
9981 #endif
9982 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9983 {"x32", no_argument, NULL, OPTION_X32},
9984 {"mshared", no_argument, NULL, OPTION_MSHARED},
9985 #endif
9986 {"divide", no_argument, NULL, OPTION_DIVIDE},
9987 {"march", required_argument, NULL, OPTION_MARCH},
9988 {"mtune", required_argument, NULL, OPTION_MTUNE},
9989 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
9990 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
9991 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
9992 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
9993 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
9994 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
9995 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
9996 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
9997 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
9998 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
9999 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10000 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
10001 # if defined (TE_PE) || defined (TE_PEP)
10002 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10003 #endif
10004 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
10005 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
10006 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
10007 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
10008 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10009 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
10010 {NULL, no_argument, NULL, 0}
10011 };
10012 size_t md_longopts_size = sizeof (md_longopts);
10013
10014 int
10015 md_parse_option (int c, const char *arg)
10016 {
10017 unsigned int j;
10018 char *arch, *next, *saved;
10019
10020 switch (c)
10021 {
10022 case 'n':
10023 optimize_align_code = 0;
10024 break;
10025
10026 case 'q':
10027 quiet_warnings = 1;
10028 break;
10029
10030 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10031 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10032 should be emitted or not. FIXME: Not implemented. */
10033 case 'Q':
10034 break;
10035
10036 /* -V: SVR4 argument to print version ID. */
10037 case 'V':
10038 print_version_id ();
10039 break;
10040
10041 /* -k: Ignore for FreeBSD compatibility. */
10042 case 'k':
10043 break;
10044
10045 case 's':
10046 /* -s: On i386 Solaris, this tells the native assembler to use
10047 .stab instead of .stab.excl. We always use .stab anyhow. */
10048 break;
10049
10050 case OPTION_MSHARED:
10051 shared = 1;
10052 break;
10053 #endif
10054 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10055 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10056 case OPTION_64:
10057 {
10058 const char **list, **l;
10059
10060 list = bfd_target_list ();
10061 for (l = list; *l != NULL; l++)
10062 if (CONST_STRNEQ (*l, "elf64-x86-64")
10063 || strcmp (*l, "coff-x86-64") == 0
10064 || strcmp (*l, "pe-x86-64") == 0
10065 || strcmp (*l, "pei-x86-64") == 0
10066 || strcmp (*l, "mach-o-x86-64") == 0)
10067 {
10068 default_arch = "x86_64";
10069 break;
10070 }
10071 if (*l == NULL)
10072 as_fatal (_("no compiled in support for x86_64"));
10073 free (list);
10074 }
10075 break;
10076 #endif
10077
10078 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10079 case OPTION_X32:
10080 if (IS_ELF)
10081 {
10082 const char **list, **l;
10083
10084 list = bfd_target_list ();
10085 for (l = list; *l != NULL; l++)
10086 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10087 {
10088 default_arch = "x86_64:32";
10089 break;
10090 }
10091 if (*l == NULL)
10092 as_fatal (_("no compiled in support for 32bit x86_64"));
10093 free (list);
10094 }
10095 else
10096 as_fatal (_("32bit x86_64 is only supported for ELF"));
10097 break;
10098 #endif
10099
10100 case OPTION_32:
10101 default_arch = "i386";
10102 break;
10103
10104 case OPTION_DIVIDE:
10105 #ifdef SVR4_COMMENT_CHARS
10106 {
10107 char *n, *t;
10108 const char *s;
10109
10110 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
10111 t = n;
10112 for (s = i386_comment_chars; *s != '\0'; s++)
10113 if (*s != '/')
10114 *t++ = *s;
10115 *t = '\0';
10116 i386_comment_chars = n;
10117 }
10118 #endif
10119 break;
10120
10121 case OPTION_MARCH:
10122 saved = xstrdup (arg);
10123 arch = saved;
10124 /* Allow -march=+nosse. */
10125 if (*arch == '+')
10126 arch++;
10127 do
10128 {
10129 if (*arch == '.')
10130 as_fatal (_("invalid -march= option: `%s'"), arg);
10131 next = strchr (arch, '+');
10132 if (next)
10133 *next++ = '\0';
10134 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10135 {
10136 if (strcmp (arch, cpu_arch [j].name) == 0)
10137 {
10138 /* Processor. */
10139 if (! cpu_arch[j].flags.bitfield.cpui386)
10140 continue;
10141
10142 cpu_arch_name = cpu_arch[j].name;
10143 cpu_sub_arch_name = NULL;
10144 cpu_arch_flags = cpu_arch[j].flags;
10145 cpu_arch_isa = cpu_arch[j].type;
10146 cpu_arch_isa_flags = cpu_arch[j].flags;
10147 if (!cpu_arch_tune_set)
10148 {
10149 cpu_arch_tune = cpu_arch_isa;
10150 cpu_arch_tune_flags = cpu_arch_isa_flags;
10151 }
10152 break;
10153 }
10154 else if (*cpu_arch [j].name == '.'
10155 && strcmp (arch, cpu_arch [j].name + 1) == 0)
10156 {
10157 /* ISA extension. */
10158 i386_cpu_flags flags;
10159
10160 flags = cpu_flags_or (cpu_arch_flags,
10161 cpu_arch[j].flags);
10162
10163 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10164 {
10165 if (cpu_sub_arch_name)
10166 {
10167 char *name = cpu_sub_arch_name;
10168 cpu_sub_arch_name = concat (name,
10169 cpu_arch[j].name,
10170 (const char *) NULL);
10171 free (name);
10172 }
10173 else
10174 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
10175 cpu_arch_flags = flags;
10176 cpu_arch_isa_flags = flags;
10177 }
10178 break;
10179 }
10180 }
10181
10182 if (j >= ARRAY_SIZE (cpu_arch))
10183 {
10184 /* Disable an ISA extension. */
10185 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10186 if (strcmp (arch, cpu_noarch [j].name) == 0)
10187 {
10188 i386_cpu_flags flags;
10189
10190 flags = cpu_flags_and_not (cpu_arch_flags,
10191 cpu_noarch[j].flags);
10192 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10193 {
10194 if (cpu_sub_arch_name)
10195 {
10196 char *name = cpu_sub_arch_name;
10197 cpu_sub_arch_name = concat (arch,
10198 (const char *) NULL);
10199 free (name);
10200 }
10201 else
10202 cpu_sub_arch_name = xstrdup (arch);
10203 cpu_arch_flags = flags;
10204 cpu_arch_isa_flags = flags;
10205 }
10206 break;
10207 }
10208
10209 if (j >= ARRAY_SIZE (cpu_noarch))
10210 j = ARRAY_SIZE (cpu_arch);
10211 }
10212
10213 if (j >= ARRAY_SIZE (cpu_arch))
10214 as_fatal (_("invalid -march= option: `%s'"), arg);
10215
10216 arch = next;
10217 }
10218 while (next != NULL);
10219 free (saved);
10220 break;
10221
10222 case OPTION_MTUNE:
10223 if (*arg == '.')
10224 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10225 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10226 {
10227 if (strcmp (arg, cpu_arch [j].name) == 0)
10228 {
10229 cpu_arch_tune_set = 1;
10230 cpu_arch_tune = cpu_arch [j].type;
10231 cpu_arch_tune_flags = cpu_arch[j].flags;
10232 break;
10233 }
10234 }
10235 if (j >= ARRAY_SIZE (cpu_arch))
10236 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10237 break;
10238
10239 case OPTION_MMNEMONIC:
10240 if (strcasecmp (arg, "att") == 0)
10241 intel_mnemonic = 0;
10242 else if (strcasecmp (arg, "intel") == 0)
10243 intel_mnemonic = 1;
10244 else
10245 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
10246 break;
10247
10248 case OPTION_MSYNTAX:
10249 if (strcasecmp (arg, "att") == 0)
10250 intel_syntax = 0;
10251 else if (strcasecmp (arg, "intel") == 0)
10252 intel_syntax = 1;
10253 else
10254 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
10255 break;
10256
10257 case OPTION_MINDEX_REG:
10258 allow_index_reg = 1;
10259 break;
10260
10261 case OPTION_MNAKED_REG:
10262 allow_naked_reg = 1;
10263 break;
10264
10265 case OPTION_MOLD_GCC:
10266 old_gcc = 1;
10267 break;
10268
10269 case OPTION_MSSE2AVX:
10270 sse2avx = 1;
10271 break;
10272
10273 case OPTION_MSSE_CHECK:
10274 if (strcasecmp (arg, "error") == 0)
10275 sse_check = check_error;
10276 else if (strcasecmp (arg, "warning") == 0)
10277 sse_check = check_warning;
10278 else if (strcasecmp (arg, "none") == 0)
10279 sse_check = check_none;
10280 else
10281 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
10282 break;
10283
10284 case OPTION_MOPERAND_CHECK:
10285 if (strcasecmp (arg, "error") == 0)
10286 operand_check = check_error;
10287 else if (strcasecmp (arg, "warning") == 0)
10288 operand_check = check_warning;
10289 else if (strcasecmp (arg, "none") == 0)
10290 operand_check = check_none;
10291 else
10292 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10293 break;
10294
10295 case OPTION_MAVXSCALAR:
10296 if (strcasecmp (arg, "128") == 0)
10297 avxscalar = vex128;
10298 else if (strcasecmp (arg, "256") == 0)
10299 avxscalar = vex256;
10300 else
10301 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
10302 break;
10303
10304 case OPTION_MADD_BND_PREFIX:
10305 add_bnd_prefix = 1;
10306 break;
10307
10308 case OPTION_MEVEXLIG:
10309 if (strcmp (arg, "128") == 0)
10310 evexlig = evexl128;
10311 else if (strcmp (arg, "256") == 0)
10312 evexlig = evexl256;
10313 else if (strcmp (arg, "512") == 0)
10314 evexlig = evexl512;
10315 else
10316 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10317 break;
10318
10319 case OPTION_MEVEXRCIG:
10320 if (strcmp (arg, "rne") == 0)
10321 evexrcig = rne;
10322 else if (strcmp (arg, "rd") == 0)
10323 evexrcig = rd;
10324 else if (strcmp (arg, "ru") == 0)
10325 evexrcig = ru;
10326 else if (strcmp (arg, "rz") == 0)
10327 evexrcig = rz;
10328 else
10329 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10330 break;
10331
10332 case OPTION_MEVEXWIG:
10333 if (strcmp (arg, "0") == 0)
10334 evexwig = evexw0;
10335 else if (strcmp (arg, "1") == 0)
10336 evexwig = evexw1;
10337 else
10338 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10339 break;
10340
10341 # if defined (TE_PE) || defined (TE_PEP)
10342 case OPTION_MBIG_OBJ:
10343 use_big_obj = 1;
10344 break;
10345 #endif
10346
10347 case OPTION_MOMIT_LOCK_PREFIX:
10348 if (strcasecmp (arg, "yes") == 0)
10349 omit_lock_prefix = 1;
10350 else if (strcasecmp (arg, "no") == 0)
10351 omit_lock_prefix = 0;
10352 else
10353 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10354 break;
10355
10356 case OPTION_MFENCE_AS_LOCK_ADD:
10357 if (strcasecmp (arg, "yes") == 0)
10358 avoid_fence = 1;
10359 else if (strcasecmp (arg, "no") == 0)
10360 avoid_fence = 0;
10361 else
10362 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10363 break;
10364
10365 case OPTION_MRELAX_RELOCATIONS:
10366 if (strcasecmp (arg, "yes") == 0)
10367 generate_relax_relocations = 1;
10368 else if (strcasecmp (arg, "no") == 0)
10369 generate_relax_relocations = 0;
10370 else
10371 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10372 break;
10373
10374 case OPTION_MAMD64:
10375 intel64 = 0;
10376 break;
10377
10378 case OPTION_MINTEL64:
10379 intel64 = 1;
10380 break;
10381
10382 default:
10383 return 0;
10384 }
10385 return 1;
10386 }
10387
10388 #define MESSAGE_TEMPLATE \
10389 " "
10390
10391 static char *
10392 output_message (FILE *stream, char *p, char *message, char *start,
10393 int *left_p, const char *name, int len)
10394 {
10395 int size = sizeof (MESSAGE_TEMPLATE);
10396 int left = *left_p;
10397
10398 /* Reserve 2 spaces for ", " or ",\0" */
10399 left -= len + 2;
10400
10401 /* Check if there is any room. */
10402 if (left >= 0)
10403 {
10404 if (p != start)
10405 {
10406 *p++ = ',';
10407 *p++ = ' ';
10408 }
10409 p = mempcpy (p, name, len);
10410 }
10411 else
10412 {
10413 /* Output the current message now and start a new one. */
10414 *p++ = ',';
10415 *p = '\0';
10416 fprintf (stream, "%s\n", message);
10417 p = start;
10418 left = size - (start - message) - len - 2;
10419
10420 gas_assert (left >= 0);
10421
10422 p = mempcpy (p, name, len);
10423 }
10424
10425 *left_p = left;
10426 return p;
10427 }
10428
10429 static void
10430 show_arch (FILE *stream, int ext, int check)
10431 {
10432 static char message[] = MESSAGE_TEMPLATE;
10433 char *start = message + 27;
10434 char *p;
10435 int size = sizeof (MESSAGE_TEMPLATE);
10436 int left;
10437 const char *name;
10438 int len;
10439 unsigned int j;
10440
10441 p = start;
10442 left = size - (start - message);
10443 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10444 {
10445 /* Should it be skipped? */
10446 if (cpu_arch [j].skip)
10447 continue;
10448
10449 name = cpu_arch [j].name;
10450 len = cpu_arch [j].len;
10451 if (*name == '.')
10452 {
10453 /* It is an extension. Skip if we aren't asked to show it. */
10454 if (ext)
10455 {
10456 name++;
10457 len--;
10458 }
10459 else
10460 continue;
10461 }
10462 else if (ext)
10463 {
10464 /* It is an processor. Skip if we show only extension. */
10465 continue;
10466 }
10467 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10468 {
10469 /* It is an impossible processor - skip. */
10470 continue;
10471 }
10472
10473 p = output_message (stream, p, message, start, &left, name, len);
10474 }
10475
10476 /* Display disabled extensions. */
10477 if (ext)
10478 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10479 {
10480 name = cpu_noarch [j].name;
10481 len = cpu_noarch [j].len;
10482 p = output_message (stream, p, message, start, &left, name,
10483 len);
10484 }
10485
10486 *p = '\0';
10487 fprintf (stream, "%s\n", message);
10488 }
10489
10490 void
10491 md_show_usage (FILE *stream)
10492 {
10493 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10494 fprintf (stream, _("\
10495 -Q ignored\n\
10496 -V print assembler version number\n\
10497 -k ignored\n"));
10498 #endif
10499 fprintf (stream, _("\
10500 -n Do not optimize code alignment\n\
10501 -q quieten some warnings\n"));
10502 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10503 fprintf (stream, _("\
10504 -s ignored\n"));
10505 #endif
10506 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10507 || defined (TE_PE) || defined (TE_PEP))
10508 fprintf (stream, _("\
10509 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
10510 #endif
10511 #ifdef SVR4_COMMENT_CHARS
10512 fprintf (stream, _("\
10513 --divide do not treat `/' as a comment character\n"));
10514 #else
10515 fprintf (stream, _("\
10516 --divide ignored\n"));
10517 #endif
10518 fprintf (stream, _("\
10519 -march=CPU[,+EXTENSION...]\n\
10520 generate code for CPU and EXTENSION, CPU is one of:\n"));
10521 show_arch (stream, 0, 1);
10522 fprintf (stream, _("\
10523 EXTENSION is combination of:\n"));
10524 show_arch (stream, 1, 0);
10525 fprintf (stream, _("\
10526 -mtune=CPU optimize for CPU, CPU is one of:\n"));
10527 show_arch (stream, 0, 0);
10528 fprintf (stream, _("\
10529 -msse2avx encode SSE instructions with VEX prefix\n"));
10530 fprintf (stream, _("\
10531 -msse-check=[none|error|warning]\n\
10532 check SSE instructions\n"));
10533 fprintf (stream, _("\
10534 -moperand-check=[none|error|warning]\n\
10535 check operand combinations for validity\n"));
10536 fprintf (stream, _("\
10537 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10538 length\n"));
10539 fprintf (stream, _("\
10540 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10541 length\n"));
10542 fprintf (stream, _("\
10543 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10544 for EVEX.W bit ignored instructions\n"));
10545 fprintf (stream, _("\
10546 -mevexrcig=[rne|rd|ru|rz]\n\
10547 encode EVEX instructions with specific EVEX.RC value\n\
10548 for SAE-only ignored instructions\n"));
10549 fprintf (stream, _("\
10550 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10551 fprintf (stream, _("\
10552 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10553 fprintf (stream, _("\
10554 -mindex-reg support pseudo index registers\n"));
10555 fprintf (stream, _("\
10556 -mnaked-reg don't require `%%' prefix for registers\n"));
10557 fprintf (stream, _("\
10558 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
10559 fprintf (stream, _("\
10560 -madd-bnd-prefix add BND prefix for all valid branches\n"));
10561 fprintf (stream, _("\
10562 -mshared disable branch optimization for shared code\n"));
10563 # if defined (TE_PE) || defined (TE_PEP)
10564 fprintf (stream, _("\
10565 -mbig-obj generate big object files\n"));
10566 #endif
10567 fprintf (stream, _("\
10568 -momit-lock-prefix=[no|yes]\n\
10569 strip all lock prefixes\n"));
10570 fprintf (stream, _("\
10571 -mfence-as-lock-add=[no|yes]\n\
10572 encode lfence, mfence and sfence as\n\
10573 lock addl $0x0, (%%{re}sp)\n"));
10574 fprintf (stream, _("\
10575 -mrelax-relocations=[no|yes]\n\
10576 generate relax relocations\n"));
10577 fprintf (stream, _("\
10578 -mamd64 accept only AMD64 ISA\n"));
10579 fprintf (stream, _("\
10580 -mintel64 accept only Intel64 ISA\n"));
10581 }
10582
10583 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
10584 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10585 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10586
10587 /* Pick the target format to use. */
10588
10589 const char *
10590 i386_target_format (void)
10591 {
10592 if (!strncmp (default_arch, "x86_64", 6))
10593 {
10594 update_code_flag (CODE_64BIT, 1);
10595 if (default_arch[6] == '\0')
10596 x86_elf_abi = X86_64_ABI;
10597 else
10598 x86_elf_abi = X86_64_X32_ABI;
10599 }
10600 else if (!strcmp (default_arch, "i386"))
10601 update_code_flag (CODE_32BIT, 1);
10602 else if (!strcmp (default_arch, "iamcu"))
10603 {
10604 update_code_flag (CODE_32BIT, 1);
10605 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
10606 {
10607 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
10608 cpu_arch_name = "iamcu";
10609 cpu_sub_arch_name = NULL;
10610 cpu_arch_flags = iamcu_flags;
10611 cpu_arch_isa = PROCESSOR_IAMCU;
10612 cpu_arch_isa_flags = iamcu_flags;
10613 if (!cpu_arch_tune_set)
10614 {
10615 cpu_arch_tune = cpu_arch_isa;
10616 cpu_arch_tune_flags = cpu_arch_isa_flags;
10617 }
10618 }
10619 else if (cpu_arch_isa != PROCESSOR_IAMCU)
10620 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
10621 cpu_arch_name);
10622 }
10623 else
10624 as_fatal (_("unknown architecture"));
10625
10626 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
10627 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10628 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
10629 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10630
10631 switch (OUTPUT_FLAVOR)
10632 {
10633 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
10634 case bfd_target_aout_flavour:
10635 return AOUT_TARGET_FORMAT;
10636 #endif
10637 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
10638 # if defined (TE_PE) || defined (TE_PEP)
10639 case bfd_target_coff_flavour:
10640 if (flag_code == CODE_64BIT)
10641 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
10642 else
10643 return "pe-i386";
10644 # elif defined (TE_GO32)
10645 case bfd_target_coff_flavour:
10646 return "coff-go32";
10647 # else
10648 case bfd_target_coff_flavour:
10649 return "coff-i386";
10650 # endif
10651 #endif
10652 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10653 case bfd_target_elf_flavour:
10654 {
10655 const char *format;
10656
10657 switch (x86_elf_abi)
10658 {
10659 default:
10660 format = ELF_TARGET_FORMAT;
10661 break;
10662 case X86_64_ABI:
10663 use_rela_relocations = 1;
10664 object_64bit = 1;
10665 format = ELF_TARGET_FORMAT64;
10666 break;
10667 case X86_64_X32_ABI:
10668 use_rela_relocations = 1;
10669 object_64bit = 1;
10670 disallow_64bit_reloc = 1;
10671 format = ELF_TARGET_FORMAT32;
10672 break;
10673 }
10674 if (cpu_arch_isa == PROCESSOR_L1OM)
10675 {
10676 if (x86_elf_abi != X86_64_ABI)
10677 as_fatal (_("Intel L1OM is 64bit only"));
10678 return ELF_TARGET_L1OM_FORMAT;
10679 }
10680 else if (cpu_arch_isa == PROCESSOR_K1OM)
10681 {
10682 if (x86_elf_abi != X86_64_ABI)
10683 as_fatal (_("Intel K1OM is 64bit only"));
10684 return ELF_TARGET_K1OM_FORMAT;
10685 }
10686 else if (cpu_arch_isa == PROCESSOR_IAMCU)
10687 {
10688 if (x86_elf_abi != I386_ABI)
10689 as_fatal (_("Intel MCU is 32bit only"));
10690 return ELF_TARGET_IAMCU_FORMAT;
10691 }
10692 else
10693 return format;
10694 }
10695 #endif
10696 #if defined (OBJ_MACH_O)
10697 case bfd_target_mach_o_flavour:
10698 if (flag_code == CODE_64BIT)
10699 {
10700 use_rela_relocations = 1;
10701 object_64bit = 1;
10702 return "mach-o-x86-64";
10703 }
10704 else
10705 return "mach-o-i386";
10706 #endif
10707 default:
10708 abort ();
10709 return NULL;
10710 }
10711 }
10712
10713 #endif /* OBJ_MAYBE_ more than one */
10714 \f
10715 symbolS *
10716 md_undefined_symbol (char *name)
10717 {
10718 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
10719 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
10720 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
10721 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
10722 {
10723 if (!GOT_symbol)
10724 {
10725 if (symbol_find (name))
10726 as_bad (_("GOT already in symbol table"));
10727 GOT_symbol = symbol_new (name, undefined_section,
10728 (valueT) 0, &zero_address_frag);
10729 };
10730 return GOT_symbol;
10731 }
10732 return 0;
10733 }
10734
10735 /* Round up a section size to the appropriate boundary. */
10736
10737 valueT
10738 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
10739 {
10740 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10741 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
10742 {
10743 /* For a.out, force the section size to be aligned. If we don't do
10744 this, BFD will align it for us, but it will not write out the
10745 final bytes of the section. This may be a bug in BFD, but it is
10746 easier to fix it here since that is how the other a.out targets
10747 work. */
10748 int align;
10749
10750 align = bfd_get_section_alignment (stdoutput, segment);
10751 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
10752 }
10753 #endif
10754
10755 return size;
10756 }
10757
10758 /* On the i386, PC-relative offsets are relative to the start of the
10759 next instruction. That is, the address of the offset, plus its
10760 size, since the offset is always the last part of the insn. */
10761
10762 long
10763 md_pcrel_from (fixS *fixP)
10764 {
10765 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
10766 }
10767
10768 #ifndef I386COFF
10769
10770 static void
10771 s_bss (int ignore ATTRIBUTE_UNUSED)
10772 {
10773 int temp;
10774
10775 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10776 if (IS_ELF)
10777 obj_elf_section_change_hook ();
10778 #endif
10779 temp = get_absolute_expression ();
10780 subseg_set (bss_section, (subsegT) temp);
10781 demand_empty_rest_of_line ();
10782 }
10783
10784 #endif
10785
10786 void
10787 i386_validate_fix (fixS *fixp)
10788 {
10789 if (fixp->fx_subsy)
10790 {
10791 if (fixp->fx_subsy == GOT_symbol)
10792 {
10793 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
10794 {
10795 if (!object_64bit)
10796 abort ();
10797 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10798 if (fixp->fx_tcbit2)
10799 fixp->fx_r_type = (fixp->fx_tcbit
10800 ? BFD_RELOC_X86_64_REX_GOTPCRELX
10801 : BFD_RELOC_X86_64_GOTPCRELX);
10802 else
10803 #endif
10804 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
10805 }
10806 else
10807 {
10808 if (!object_64bit)
10809 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
10810 else
10811 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
10812 }
10813 fixp->fx_subsy = 0;
10814 }
10815 }
10816 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10817 else if (!object_64bit)
10818 {
10819 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
10820 && fixp->fx_tcbit2)
10821 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
10822 }
10823 #endif
10824 }
10825
10826 arelent *
10827 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
10828 {
10829 arelent *rel;
10830 bfd_reloc_code_real_type code;
10831
10832 switch (fixp->fx_r_type)
10833 {
10834 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10835 case BFD_RELOC_SIZE32:
10836 case BFD_RELOC_SIZE64:
10837 if (S_IS_DEFINED (fixp->fx_addsy)
10838 && !S_IS_EXTERNAL (fixp->fx_addsy))
10839 {
10840 /* Resolve size relocation against local symbol to size of
10841 the symbol plus addend. */
10842 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
10843 if (fixp->fx_r_type == BFD_RELOC_SIZE32
10844 && !fits_in_unsigned_long (value))
10845 as_bad_where (fixp->fx_file, fixp->fx_line,
10846 _("symbol size computation overflow"));
10847 fixp->fx_addsy = NULL;
10848 fixp->fx_subsy = NULL;
10849 md_apply_fix (fixp, (valueT *) &value, NULL);
10850 return NULL;
10851 }
10852 #endif
10853 /* Fall through. */
10854
10855 case BFD_RELOC_X86_64_PLT32:
10856 case BFD_RELOC_X86_64_GOT32:
10857 case BFD_RELOC_X86_64_GOTPCREL:
10858 case BFD_RELOC_X86_64_GOTPCRELX:
10859 case BFD_RELOC_X86_64_REX_GOTPCRELX:
10860 case BFD_RELOC_386_PLT32:
10861 case BFD_RELOC_386_GOT32:
10862 case BFD_RELOC_386_GOT32X:
10863 case BFD_RELOC_386_GOTOFF:
10864 case BFD_RELOC_386_GOTPC:
10865 case BFD_RELOC_386_TLS_GD:
10866 case BFD_RELOC_386_TLS_LDM:
10867 case BFD_RELOC_386_TLS_LDO_32:
10868 case BFD_RELOC_386_TLS_IE_32:
10869 case BFD_RELOC_386_TLS_IE:
10870 case BFD_RELOC_386_TLS_GOTIE:
10871 case BFD_RELOC_386_TLS_LE_32:
10872 case BFD_RELOC_386_TLS_LE:
10873 case BFD_RELOC_386_TLS_GOTDESC:
10874 case BFD_RELOC_386_TLS_DESC_CALL:
10875 case BFD_RELOC_X86_64_TLSGD:
10876 case BFD_RELOC_X86_64_TLSLD:
10877 case BFD_RELOC_X86_64_DTPOFF32:
10878 case BFD_RELOC_X86_64_DTPOFF64:
10879 case BFD_RELOC_X86_64_GOTTPOFF:
10880 case BFD_RELOC_X86_64_TPOFF32:
10881 case BFD_RELOC_X86_64_TPOFF64:
10882 case BFD_RELOC_X86_64_GOTOFF64:
10883 case BFD_RELOC_X86_64_GOTPC32:
10884 case BFD_RELOC_X86_64_GOT64:
10885 case BFD_RELOC_X86_64_GOTPCREL64:
10886 case BFD_RELOC_X86_64_GOTPC64:
10887 case BFD_RELOC_X86_64_GOTPLT64:
10888 case BFD_RELOC_X86_64_PLTOFF64:
10889 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10890 case BFD_RELOC_X86_64_TLSDESC_CALL:
10891 case BFD_RELOC_RVA:
10892 case BFD_RELOC_VTABLE_ENTRY:
10893 case BFD_RELOC_VTABLE_INHERIT:
10894 #ifdef TE_PE
10895 case BFD_RELOC_32_SECREL:
10896 #endif
10897 code = fixp->fx_r_type;
10898 break;
10899 case BFD_RELOC_X86_64_32S:
10900 if (!fixp->fx_pcrel)
10901 {
10902 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
10903 code = fixp->fx_r_type;
10904 break;
10905 }
10906 /* Fall through. */
10907 default:
10908 if (fixp->fx_pcrel)
10909 {
10910 switch (fixp->fx_size)
10911 {
10912 default:
10913 as_bad_where (fixp->fx_file, fixp->fx_line,
10914 _("can not do %d byte pc-relative relocation"),
10915 fixp->fx_size);
10916 code = BFD_RELOC_32_PCREL;
10917 break;
10918 case 1: code = BFD_RELOC_8_PCREL; break;
10919 case 2: code = BFD_RELOC_16_PCREL; break;
10920 case 4: code = BFD_RELOC_32_PCREL; break;
10921 #ifdef BFD64
10922 case 8: code = BFD_RELOC_64_PCREL; break;
10923 #endif
10924 }
10925 }
10926 else
10927 {
10928 switch (fixp->fx_size)
10929 {
10930 default:
10931 as_bad_where (fixp->fx_file, fixp->fx_line,
10932 _("can not do %d byte relocation"),
10933 fixp->fx_size);
10934 code = BFD_RELOC_32;
10935 break;
10936 case 1: code = BFD_RELOC_8; break;
10937 case 2: code = BFD_RELOC_16; break;
10938 case 4: code = BFD_RELOC_32; break;
10939 #ifdef BFD64
10940 case 8: code = BFD_RELOC_64; break;
10941 #endif
10942 }
10943 }
10944 break;
10945 }
10946
10947 if ((code == BFD_RELOC_32
10948 || code == BFD_RELOC_32_PCREL
10949 || code == BFD_RELOC_X86_64_32S)
10950 && GOT_symbol
10951 && fixp->fx_addsy == GOT_symbol)
10952 {
10953 if (!object_64bit)
10954 code = BFD_RELOC_386_GOTPC;
10955 else
10956 code = BFD_RELOC_X86_64_GOTPC32;
10957 }
10958 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
10959 && GOT_symbol
10960 && fixp->fx_addsy == GOT_symbol)
10961 {
10962 code = BFD_RELOC_X86_64_GOTPC64;
10963 }
10964
10965 rel = XNEW (arelent);
10966 rel->sym_ptr_ptr = XNEW (asymbol *);
10967 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
10968
10969 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
10970
10971 if (!use_rela_relocations)
10972 {
10973 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
10974 vtable entry to be used in the relocation's section offset. */
10975 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
10976 rel->address = fixp->fx_offset;
10977 #if defined (OBJ_COFF) && defined (TE_PE)
10978 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
10979 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
10980 else
10981 #endif
10982 rel->addend = 0;
10983 }
10984 /* Use the rela in 64bit mode. */
10985 else
10986 {
10987 if (disallow_64bit_reloc)
10988 switch (code)
10989 {
10990 case BFD_RELOC_X86_64_DTPOFF64:
10991 case BFD_RELOC_X86_64_TPOFF64:
10992 case BFD_RELOC_64_PCREL:
10993 case BFD_RELOC_X86_64_GOTOFF64:
10994 case BFD_RELOC_X86_64_GOT64:
10995 case BFD_RELOC_X86_64_GOTPCREL64:
10996 case BFD_RELOC_X86_64_GOTPC64:
10997 case BFD_RELOC_X86_64_GOTPLT64:
10998 case BFD_RELOC_X86_64_PLTOFF64:
10999 as_bad_where (fixp->fx_file, fixp->fx_line,
11000 _("cannot represent relocation type %s in x32 mode"),
11001 bfd_get_reloc_code_name (code));
11002 break;
11003 default:
11004 break;
11005 }
11006
11007 if (!fixp->fx_pcrel)
11008 rel->addend = fixp->fx_offset;
11009 else
11010 switch (code)
11011 {
11012 case BFD_RELOC_X86_64_PLT32:
11013 case BFD_RELOC_X86_64_GOT32:
11014 case BFD_RELOC_X86_64_GOTPCREL:
11015 case BFD_RELOC_X86_64_GOTPCRELX:
11016 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11017 case BFD_RELOC_X86_64_TLSGD:
11018 case BFD_RELOC_X86_64_TLSLD:
11019 case BFD_RELOC_X86_64_GOTTPOFF:
11020 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11021 case BFD_RELOC_X86_64_TLSDESC_CALL:
11022 rel->addend = fixp->fx_offset - fixp->fx_size;
11023 break;
11024 default:
11025 rel->addend = (section->vma
11026 - fixp->fx_size
11027 + fixp->fx_addnumber
11028 + md_pcrel_from (fixp));
11029 break;
11030 }
11031 }
11032
11033 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11034 if (rel->howto == NULL)
11035 {
11036 as_bad_where (fixp->fx_file, fixp->fx_line,
11037 _("cannot represent relocation type %s"),
11038 bfd_get_reloc_code_name (code));
11039 /* Set howto to a garbage value so that we can keep going. */
11040 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
11041 gas_assert (rel->howto != NULL);
11042 }
11043
11044 return rel;
11045 }
11046
11047 #include "tc-i386-intel.c"
11048
11049 void
11050 tc_x86_parse_to_dw2regnum (expressionS *exp)
11051 {
11052 int saved_naked_reg;
11053 char saved_register_dot;
11054
11055 saved_naked_reg = allow_naked_reg;
11056 allow_naked_reg = 1;
11057 saved_register_dot = register_chars['.'];
11058 register_chars['.'] = '.';
11059 allow_pseudo_reg = 1;
11060 expression_and_evaluate (exp);
11061 allow_pseudo_reg = 0;
11062 register_chars['.'] = saved_register_dot;
11063 allow_naked_reg = saved_naked_reg;
11064
11065 if (exp->X_op == O_register && exp->X_add_number >= 0)
11066 {
11067 if ((addressT) exp->X_add_number < i386_regtab_size)
11068 {
11069 exp->X_op = O_constant;
11070 exp->X_add_number = i386_regtab[exp->X_add_number]
11071 .dw2_regnum[flag_code >> 1];
11072 }
11073 else
11074 exp->X_op = O_illegal;
11075 }
11076 }
11077
11078 void
11079 tc_x86_frame_initial_instructions (void)
11080 {
11081 static unsigned int sp_regno[2];
11082
11083 if (!sp_regno[flag_code >> 1])
11084 {
11085 char *saved_input = input_line_pointer;
11086 char sp[][4] = {"esp", "rsp"};
11087 expressionS exp;
11088
11089 input_line_pointer = sp[flag_code >> 1];
11090 tc_x86_parse_to_dw2regnum (&exp);
11091 gas_assert (exp.X_op == O_constant);
11092 sp_regno[flag_code >> 1] = exp.X_add_number;
11093 input_line_pointer = saved_input;
11094 }
11095
11096 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11097 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
11098 }
11099
11100 int
11101 x86_dwarf2_addr_size (void)
11102 {
11103 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11104 if (x86_elf_abi == X86_64_X32_ABI)
11105 return 4;
11106 #endif
11107 return bfd_arch_bits_per_address (stdoutput) / 8;
11108 }
11109
11110 int
11111 i386_elf_section_type (const char *str, size_t len)
11112 {
11113 if (flag_code == CODE_64BIT
11114 && len == sizeof ("unwind") - 1
11115 && strncmp (str, "unwind", 6) == 0)
11116 return SHT_X86_64_UNWIND;
11117
11118 return -1;
11119 }
11120
11121 #ifdef TE_SOLARIS
11122 void
11123 i386_solaris_fix_up_eh_frame (segT sec)
11124 {
11125 if (flag_code == CODE_64BIT)
11126 elf_section_type (sec) = SHT_X86_64_UNWIND;
11127 }
11128 #endif
11129
11130 #ifdef TE_PE
11131 void
11132 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11133 {
11134 expressionS exp;
11135
11136 exp.X_op = O_secrel;
11137 exp.X_add_symbol = symbol;
11138 exp.X_add_number = 0;
11139 emit_expr (&exp, size);
11140 }
11141 #endif
11142
11143 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11144 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11145
11146 bfd_vma
11147 x86_64_section_letter (int letter, const char **ptr_msg)
11148 {
11149 if (flag_code == CODE_64BIT)
11150 {
11151 if (letter == 'l')
11152 return SHF_X86_64_LARGE;
11153
11154 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
11155 }
11156 else
11157 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
11158 return -1;
11159 }
11160
11161 bfd_vma
11162 x86_64_section_word (char *str, size_t len)
11163 {
11164 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
11165 return SHF_X86_64_LARGE;
11166
11167 return -1;
11168 }
11169
11170 static void
11171 handle_large_common (int small ATTRIBUTE_UNUSED)
11172 {
11173 if (flag_code != CODE_64BIT)
11174 {
11175 s_comm_internal (0, elf_common_parse);
11176 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11177 }
11178 else
11179 {
11180 static segT lbss_section;
11181 asection *saved_com_section_ptr = elf_com_section_ptr;
11182 asection *saved_bss_section = bss_section;
11183
11184 if (lbss_section == NULL)
11185 {
11186 flagword applicable;
11187 segT seg = now_seg;
11188 subsegT subseg = now_subseg;
11189
11190 /* The .lbss section is for local .largecomm symbols. */
11191 lbss_section = subseg_new (".lbss", 0);
11192 applicable = bfd_applicable_section_flags (stdoutput);
11193 bfd_set_section_flags (stdoutput, lbss_section,
11194 applicable & SEC_ALLOC);
11195 seg_info (lbss_section)->bss = 1;
11196
11197 subseg_set (seg, subseg);
11198 }
11199
11200 elf_com_section_ptr = &_bfd_elf_large_com_section;
11201 bss_section = lbss_section;
11202
11203 s_comm_internal (0, elf_common_parse);
11204
11205 elf_com_section_ptr = saved_com_section_ptr;
11206 bss_section = saved_bss_section;
11207 }
11208 }
11209 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */