]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-i386.c
9dbe6dcd954f90d0948092b5da43c50b7074327a
[thirdparty/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2021 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35 #include <limits.h>
36
37 #ifndef INFER_ADDR_PREFIX
38 #define INFER_ADDR_PREFIX 1
39 #endif
40
41 #ifndef DEFAULT_ARCH
42 #define DEFAULT_ARCH "i386"
43 #endif
44
45 #ifndef INLINE
46 #if __GNUC__ >= 2
47 #define INLINE __inline__
48 #else
49 #define INLINE
50 #endif
51 #endif
52
53 /* Prefixes will be emitted in the order defined below.
54 WAIT_PREFIX must be the first prefix since FWAIT is really is an
55 instruction, and so must come before any prefixes.
56 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
57 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
58 #define WAIT_PREFIX 0
59 #define SEG_PREFIX 1
60 #define ADDR_PREFIX 2
61 #define DATA_PREFIX 3
62 #define REP_PREFIX 4
63 #define HLE_PREFIX REP_PREFIX
64 #define BND_PREFIX REP_PREFIX
65 #define LOCK_PREFIX 5
66 #define REX_PREFIX 6 /* must come last. */
67 #define MAX_PREFIXES 7 /* max prefixes per opcode */
68
69 /* we define the syntax here (modulo base,index,scale syntax) */
70 #define REGISTER_PREFIX '%'
71 #define IMMEDIATE_PREFIX '$'
72 #define ABSOLUTE_PREFIX '*'
73
74 /* these are the instruction mnemonic suffixes in AT&T syntax or
75 memory operand size in Intel syntax. */
76 #define WORD_MNEM_SUFFIX 'w'
77 #define BYTE_MNEM_SUFFIX 'b'
78 #define SHORT_MNEM_SUFFIX 's'
79 #define LONG_MNEM_SUFFIX 'l'
80 #define QWORD_MNEM_SUFFIX 'q'
81 /* Intel Syntax. Use a non-ascii letter since since it never appears
82 in instructions. */
83 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
84
85 #define END_OF_INSN '\0'
86
87 /* This matches the C -> StaticRounding alias in the opcode table. */
88 #define commutative staticrounding
89
90 /*
91 'templates' is for grouping together 'template' structures for opcodes
92 of the same name. This is only used for storing the insns in the grand
93 ole hash table of insns.
94 The templates themselves start at START and range up to (but not including)
95 END.
96 */
97 typedef struct
98 {
99 const insn_template *start;
100 const insn_template *end;
101 }
102 templates;
103
104 /* 386 operand encoding bytes: see 386 book for details of this. */
105 typedef struct
106 {
107 unsigned int regmem; /* codes register or memory operand */
108 unsigned int reg; /* codes register operand (or extended opcode) */
109 unsigned int mode; /* how to interpret regmem & reg */
110 }
111 modrm_byte;
112
113 /* x86-64 extension prefix. */
114 typedef int rex_byte;
115
116 /* 386 opcode byte to code indirect addressing. */
117 typedef struct
118 {
119 unsigned base;
120 unsigned index;
121 unsigned scale;
122 }
123 sib_byte;
124
125 /* x86 arch names, types and features */
126 typedef struct
127 {
128 const char *name; /* arch name */
129 unsigned int len; /* arch string length */
130 enum processor_type type; /* arch type */
131 i386_cpu_flags flags; /* cpu feature flags */
132 unsigned int skip; /* show_arch should skip this. */
133 }
134 arch_entry;
135
136 /* Used to turn off indicated flags. */
137 typedef struct
138 {
139 const char *name; /* arch name */
140 unsigned int len; /* arch string length */
141 i386_cpu_flags flags; /* cpu feature flags */
142 }
143 noarch_entry;
144
145 static void update_code_flag (int, int);
146 static void set_code_flag (int);
147 static void set_16bit_gcc_code_flag (int);
148 static void set_intel_syntax (int);
149 static void set_intel_mnemonic (int);
150 static void set_allow_index_reg (int);
151 static void set_check (int);
152 static void set_cpu_arch (int);
153 #ifdef TE_PE
154 static void pe_directive_secrel (int);
155 #endif
156 static void signed_cons (int);
157 static char *output_invalid (int c);
158 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
159 const char *);
160 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
161 const char *);
162 static int i386_att_operand (char *);
163 static int i386_intel_operand (char *, int);
164 static int i386_intel_simplify (expressionS *);
165 static int i386_intel_parse_name (const char *, expressionS *);
166 static const reg_entry *parse_register (char *, char **);
167 static char *parse_insn (char *, char *);
168 static char *parse_operands (char *, const char *);
169 static void swap_operands (void);
170 static void swap_2_operands (unsigned int, unsigned int);
171 static enum flag_code i386_addressing_mode (void);
172 static void optimize_imm (void);
173 static void optimize_disp (void);
174 static const insn_template *match_template (char);
175 static int check_string (void);
176 static int process_suffix (void);
177 static int check_byte_reg (void);
178 static int check_long_reg (void);
179 static int check_qword_reg (void);
180 static int check_word_reg (void);
181 static int finalize_imm (void);
182 static int process_operands (void);
183 static const reg_entry *build_modrm_byte (void);
184 static void output_insn (void);
185 static void output_imm (fragS *, offsetT);
186 static void output_disp (fragS *, offsetT);
187 #ifndef I386COFF
188 static void s_bss (int);
189 #endif
190 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
191 static void handle_large_common (int small ATTRIBUTE_UNUSED);
192
193 /* GNU_PROPERTY_X86_ISA_1_USED. */
194 static unsigned int x86_isa_1_used;
195 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
196 static unsigned int x86_feature_2_used;
197 /* Generate x86 used ISA and feature properties. */
198 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
199 #endif
200
201 static const char *default_arch = DEFAULT_ARCH;
202
203 /* parse_register() returns this when a register alias cannot be used. */
204 static const reg_entry bad_reg = { "<bad>", OPERAND_TYPE_NONE, 0, 0,
205 { Dw2Inval, Dw2Inval } };
206
207 static const reg_entry *reg_eax;
208 static const reg_entry *reg_ds;
209 static const reg_entry *reg_es;
210 static const reg_entry *reg_ss;
211 static const reg_entry *reg_st0;
212 static const reg_entry *reg_k0;
213
214 /* VEX prefix. */
215 typedef struct
216 {
217 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
218 unsigned char bytes[4];
219 unsigned int length;
220 /* Destination or source register specifier. */
221 const reg_entry *register_specifier;
222 } vex_prefix;
223
224 /* 'md_assemble ()' gathers together information and puts it into a
225 i386_insn. */
226
227 union i386_op
228 {
229 expressionS *disps;
230 expressionS *imms;
231 const reg_entry *regs;
232 };
233
234 enum i386_error
235 {
236 operand_size_mismatch,
237 operand_type_mismatch,
238 register_type_mismatch,
239 number_of_operands_mismatch,
240 invalid_instruction_suffix,
241 bad_imm4,
242 unsupported_with_intel_mnemonic,
243 unsupported_syntax,
244 unsupported,
245 invalid_sib_address,
246 invalid_vsib_address,
247 invalid_vector_register_set,
248 invalid_tmm_register_set,
249 unsupported_vector_index_register,
250 unsupported_broadcast,
251 broadcast_needed,
252 unsupported_masking,
253 mask_not_on_destination,
254 no_default_mask,
255 unsupported_rc_sae,
256 rc_sae_operand_not_last_imm,
257 invalid_register_operand,
258 };
259
260 struct _i386_insn
261 {
262 /* TM holds the template for the insn were currently assembling. */
263 insn_template tm;
264
265 /* SUFFIX holds the instruction size suffix for byte, word, dword
266 or qword, if given. */
267 char suffix;
268
269 /* OPCODE_LENGTH holds the number of base opcode bytes. */
270 unsigned char opcode_length;
271
272 /* OPERANDS gives the number of given operands. */
273 unsigned int operands;
274
275 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
276 of given register, displacement, memory operands and immediate
277 operands. */
278 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
279
280 /* TYPES [i] is the type (see above #defines) which tells us how to
281 use OP[i] for the corresponding operand. */
282 i386_operand_type types[MAX_OPERANDS];
283
284 /* Displacement expression, immediate expression, or register for each
285 operand. */
286 union i386_op op[MAX_OPERANDS];
287
288 /* Flags for operands. */
289 unsigned int flags[MAX_OPERANDS];
290 #define Operand_PCrel 1
291 #define Operand_Mem 2
292
293 /* Relocation type for operand */
294 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
295
296 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
297 the base index byte below. */
298 const reg_entry *base_reg;
299 const reg_entry *index_reg;
300 unsigned int log2_scale_factor;
301
302 /* SEG gives the seg_entries of this insn. They are zero unless
303 explicit segment overrides are given. */
304 const reg_entry *seg[2];
305
306 /* Copied first memory operand string, for re-checking. */
307 char *memop1_string;
308
309 /* PREFIX holds all the given prefix opcodes (usually null).
310 PREFIXES is the number of prefix opcodes. */
311 unsigned int prefixes;
312 unsigned char prefix[MAX_PREFIXES];
313
314 /* Register is in low 3 bits of opcode. */
315 bool short_form;
316
317 /* The operand to a branch insn indicates an absolute branch. */
318 bool jumpabsolute;
319
320 /* Extended states. */
321 enum
322 {
323 /* Use MMX state. */
324 xstate_mmx = 1 << 0,
325 /* Use XMM state. */
326 xstate_xmm = 1 << 1,
327 /* Use YMM state. */
328 xstate_ymm = 1 << 2 | xstate_xmm,
329 /* Use ZMM state. */
330 xstate_zmm = 1 << 3 | xstate_ymm,
331 /* Use TMM state. */
332 xstate_tmm = 1 << 4,
333 /* Use MASK state. */
334 xstate_mask = 1 << 5
335 } xstate;
336
337 /* Has GOTPC or TLS relocation. */
338 bool has_gotpc_tls_reloc;
339
340 /* RM and SIB are the modrm byte and the sib byte where the
341 addressing modes of this insn are encoded. */
342 modrm_byte rm;
343 rex_byte rex;
344 rex_byte vrex;
345 sib_byte sib;
346 vex_prefix vex;
347
348 /* Masking attributes.
349
350 The struct describes masking, applied to OPERAND in the instruction.
351 REG is a pointer to the corresponding mask register. ZEROING tells
352 whether merging or zeroing mask is used. */
353 struct Mask_Operation
354 {
355 const reg_entry *reg;
356 unsigned int zeroing;
357 /* The operand where this operation is associated. */
358 unsigned int operand;
359 } mask;
360
361 /* Rounding control and SAE attributes. */
362 struct RC_Operation
363 {
364 enum rc_type
365 {
366 rc_none = -1,
367 rne,
368 rd,
369 ru,
370 rz,
371 saeonly
372 } type;
373
374 unsigned int operand;
375 } rounding;
376
377 /* Broadcasting attributes.
378
379 The struct describes broadcasting, applied to OPERAND. TYPE is
380 expresses the broadcast factor. */
381 struct Broadcast_Operation
382 {
383 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
384 unsigned int type;
385
386 /* Index of broadcasted operand. */
387 unsigned int operand;
388
389 /* Number of bytes to broadcast. */
390 unsigned int bytes;
391 } broadcast;
392
393 /* Compressed disp8*N attribute. */
394 unsigned int memshift;
395
396 /* Prefer load or store in encoding. */
397 enum
398 {
399 dir_encoding_default = 0,
400 dir_encoding_load,
401 dir_encoding_store,
402 dir_encoding_swap
403 } dir_encoding;
404
405 /* Prefer 8bit, 16bit, 32bit displacement in encoding. */
406 enum
407 {
408 disp_encoding_default = 0,
409 disp_encoding_8bit,
410 disp_encoding_16bit,
411 disp_encoding_32bit
412 } disp_encoding;
413
414 /* Prefer the REX byte in encoding. */
415 bool rex_encoding;
416
417 /* Disable instruction size optimization. */
418 bool no_optimize;
419
420 /* How to encode vector instructions. */
421 enum
422 {
423 vex_encoding_default = 0,
424 vex_encoding_vex,
425 vex_encoding_vex3,
426 vex_encoding_evex,
427 vex_encoding_error
428 } vec_encoding;
429
430 /* REP prefix. */
431 const char *rep_prefix;
432
433 /* HLE prefix. */
434 const char *hle_prefix;
435
436 /* Have BND prefix. */
437 const char *bnd_prefix;
438
439 /* Have NOTRACK prefix. */
440 const char *notrack_prefix;
441
442 /* Error message. */
443 enum i386_error error;
444 };
445
446 typedef struct _i386_insn i386_insn;
447
448 /* Link RC type with corresponding string, that'll be looked for in
449 asm. */
450 struct RC_name
451 {
452 enum rc_type type;
453 const char *name;
454 unsigned int len;
455 };
456
457 static const struct RC_name RC_NamesTable[] =
458 {
459 { rne, STRING_COMMA_LEN ("rn-sae") },
460 { rd, STRING_COMMA_LEN ("rd-sae") },
461 { ru, STRING_COMMA_LEN ("ru-sae") },
462 { rz, STRING_COMMA_LEN ("rz-sae") },
463 { saeonly, STRING_COMMA_LEN ("sae") },
464 };
465
466 /* List of chars besides those in app.c:symbol_chars that can start an
467 operand. Used to prevent the scrubber eating vital white-space. */
468 const char extra_symbol_chars[] = "*%-([{}"
469 #ifdef LEX_AT
470 "@"
471 #endif
472 #ifdef LEX_QM
473 "?"
474 #endif
475 ;
476
477 #if ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
478 && !defined (TE_GNU) \
479 && !defined (TE_LINUX) \
480 && !defined (TE_FreeBSD) \
481 && !defined (TE_DragonFly) \
482 && !defined (TE_NetBSD))
483 /* This array holds the chars that always start a comment. If the
484 pre-processor is disabled, these aren't very useful. The option
485 --divide will remove '/' from this list. */
486 const char *i386_comment_chars = "#/";
487 #define SVR4_COMMENT_CHARS 1
488 #define PREFIX_SEPARATOR '\\'
489
490 #else
491 const char *i386_comment_chars = "#";
492 #define PREFIX_SEPARATOR '/'
493 #endif
494
495 /* This array holds the chars that only start a comment at the beginning of
496 a line. If the line seems to have the form '# 123 filename'
497 .line and .file directives will appear in the pre-processed output.
498 Note that input_file.c hand checks for '#' at the beginning of the
499 first line of the input file. This is because the compiler outputs
500 #NO_APP at the beginning of its output.
501 Also note that comments started like this one will always work if
502 '/' isn't otherwise defined. */
503 const char line_comment_chars[] = "#/";
504
505 const char line_separator_chars[] = ";";
506
507 /* Chars that can be used to separate mant from exp in floating point
508 nums. */
509 const char EXP_CHARS[] = "eE";
510
511 /* Chars that mean this number is a floating point constant
512 As in 0f12.456
513 or 0d1.2345e12. */
514 const char FLT_CHARS[] = "fFdDxX";
515
516 /* Tables for lexical analysis. */
517 static char mnemonic_chars[256];
518 static char register_chars[256];
519 static char operand_chars[256];
520 static char identifier_chars[256];
521
522 /* Lexical macros. */
523 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
524 #define is_operand_char(x) (operand_chars[(unsigned char) x])
525 #define is_register_char(x) (register_chars[(unsigned char) x])
526 #define is_space_char(x) ((x) == ' ')
527 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
528
529 /* All non-digit non-letter characters that may occur in an operand. */
530 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
531
532 /* md_assemble() always leaves the strings it's passed unaltered. To
533 effect this we maintain a stack of saved characters that we've smashed
534 with '\0's (indicating end of strings for various sub-fields of the
535 assembler instruction). */
536 static char save_stack[32];
537 static char *save_stack_p;
538 #define END_STRING_AND_SAVE(s) \
539 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
540 #define RESTORE_END_STRING(s) \
541 do { *(s) = *--save_stack_p; } while (0)
542
543 /* The instruction we're assembling. */
544 static i386_insn i;
545
546 /* Possible templates for current insn. */
547 static const templates *current_templates;
548
549 /* Per instruction expressionS buffers: max displacements & immediates. */
550 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
551 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
552
553 /* Current operand we are working on. */
554 static int this_operand = -1;
555
556 /* We support four different modes. FLAG_CODE variable is used to distinguish
557 these. */
558
559 enum flag_code {
560 CODE_32BIT,
561 CODE_16BIT,
562 CODE_64BIT };
563
564 static enum flag_code flag_code;
565 static unsigned int object_64bit;
566 static unsigned int disallow_64bit_reloc;
567 static int use_rela_relocations = 0;
568 /* __tls_get_addr/___tls_get_addr symbol for TLS. */
569 static const char *tls_get_addr;
570
571 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
572 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
573 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
574
575 /* The ELF ABI to use. */
576 enum x86_elf_abi
577 {
578 I386_ABI,
579 X86_64_ABI,
580 X86_64_X32_ABI
581 };
582
583 static enum x86_elf_abi x86_elf_abi = I386_ABI;
584 #endif
585
586 #if defined (TE_PE) || defined (TE_PEP)
587 /* Use big object file format. */
588 static int use_big_obj = 0;
589 #endif
590
591 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
592 /* 1 if generating code for a shared library. */
593 static int shared = 0;
594 #endif
595
596 /* 1 for intel syntax,
597 0 if att syntax. */
598 static int intel_syntax = 0;
599
600 static enum x86_64_isa
601 {
602 amd64 = 1, /* AMD64 ISA. */
603 intel64 /* Intel64 ISA. */
604 } isa64;
605
606 /* 1 for intel mnemonic,
607 0 if att mnemonic. */
608 static int intel_mnemonic = !SYSV386_COMPAT;
609
610 /* 1 if pseudo registers are permitted. */
611 static int allow_pseudo_reg = 0;
612
613 /* 1 if register prefix % not required. */
614 static int allow_naked_reg = 0;
615
616 /* 1 if the assembler should add BND prefix for all control-transferring
617 instructions supporting it, even if this prefix wasn't specified
618 explicitly. */
619 static int add_bnd_prefix = 0;
620
621 /* 1 if pseudo index register, eiz/riz, is allowed . */
622 static int allow_index_reg = 0;
623
624 /* 1 if the assembler should ignore LOCK prefix, even if it was
625 specified explicitly. */
626 static int omit_lock_prefix = 0;
627
628 /* 1 if the assembler should encode lfence, mfence, and sfence as
629 "lock addl $0, (%{re}sp)". */
630 static int avoid_fence = 0;
631
632 /* 1 if lfence should be inserted after every load. */
633 static int lfence_after_load = 0;
634
635 /* Non-zero if lfence should be inserted before indirect branch. */
636 static enum lfence_before_indirect_branch_kind
637 {
638 lfence_branch_none = 0,
639 lfence_branch_register,
640 lfence_branch_memory,
641 lfence_branch_all
642 }
643 lfence_before_indirect_branch;
644
645 /* Non-zero if lfence should be inserted before ret. */
646 static enum lfence_before_ret_kind
647 {
648 lfence_before_ret_none = 0,
649 lfence_before_ret_not,
650 lfence_before_ret_or,
651 lfence_before_ret_shl
652 }
653 lfence_before_ret;
654
655 /* Types of previous instruction is .byte or prefix. */
656 static struct
657 {
658 segT seg;
659 const char *file;
660 const char *name;
661 unsigned int line;
662 enum last_insn_kind
663 {
664 last_insn_other = 0,
665 last_insn_directive,
666 last_insn_prefix
667 } kind;
668 } last_insn;
669
670 /* 1 if the assembler should generate relax relocations. */
671
672 static int generate_relax_relocations
673 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
674
675 static enum check_kind
676 {
677 check_none = 0,
678 check_warning,
679 check_error
680 }
681 sse_check, operand_check = check_warning;
682
683 /* Non-zero if branches should be aligned within power of 2 boundary. */
684 static int align_branch_power = 0;
685
686 /* Types of branches to align. */
687 enum align_branch_kind
688 {
689 align_branch_none = 0,
690 align_branch_jcc = 1,
691 align_branch_fused = 2,
692 align_branch_jmp = 3,
693 align_branch_call = 4,
694 align_branch_indirect = 5,
695 align_branch_ret = 6
696 };
697
698 /* Type bits of branches to align. */
699 enum align_branch_bit
700 {
701 align_branch_jcc_bit = 1 << align_branch_jcc,
702 align_branch_fused_bit = 1 << align_branch_fused,
703 align_branch_jmp_bit = 1 << align_branch_jmp,
704 align_branch_call_bit = 1 << align_branch_call,
705 align_branch_indirect_bit = 1 << align_branch_indirect,
706 align_branch_ret_bit = 1 << align_branch_ret
707 };
708
709 static unsigned int align_branch = (align_branch_jcc_bit
710 | align_branch_fused_bit
711 | align_branch_jmp_bit);
712
713 /* Types of condition jump used by macro-fusion. */
714 enum mf_jcc_kind
715 {
716 mf_jcc_jo = 0, /* base opcode 0x70 */
717 mf_jcc_jc, /* base opcode 0x72 */
718 mf_jcc_je, /* base opcode 0x74 */
719 mf_jcc_jna, /* base opcode 0x76 */
720 mf_jcc_js, /* base opcode 0x78 */
721 mf_jcc_jp, /* base opcode 0x7a */
722 mf_jcc_jl, /* base opcode 0x7c */
723 mf_jcc_jle, /* base opcode 0x7e */
724 };
725
726 /* Types of compare flag-modifying insntructions used by macro-fusion. */
727 enum mf_cmp_kind
728 {
729 mf_cmp_test_and, /* test/cmp */
730 mf_cmp_alu_cmp, /* add/sub/cmp */
731 mf_cmp_incdec /* inc/dec */
732 };
733
734 /* The maximum padding size for fused jcc. CMP like instruction can
735 be 9 bytes and jcc can be 6 bytes. Leave room just in case for
736 prefixes. */
737 #define MAX_FUSED_JCC_PADDING_SIZE 20
738
739 /* The maximum number of prefixes added for an instruction. */
740 static unsigned int align_branch_prefix_size = 5;
741
742 /* Optimization:
743 1. Clear the REX_W bit with register operand if possible.
744 2. Above plus use 128bit vector instruction to clear the full vector
745 register.
746 */
747 static int optimize = 0;
748
749 /* Optimization:
750 1. Clear the REX_W bit with register operand if possible.
751 2. Above plus use 128bit vector instruction to clear the full vector
752 register.
753 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
754 "testb $imm7,%r8".
755 */
756 static int optimize_for_space = 0;
757
758 /* Register prefix used for error message. */
759 static const char *register_prefix = "%";
760
761 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
762 leave, push, and pop instructions so that gcc has the same stack
763 frame as in 32 bit mode. */
764 static char stackop_size = '\0';
765
766 /* Non-zero to optimize code alignment. */
767 int optimize_align_code = 1;
768
769 /* Non-zero to quieten some warnings. */
770 static int quiet_warnings = 0;
771
772 /* CPU name. */
773 static const char *cpu_arch_name = NULL;
774 static char *cpu_sub_arch_name = NULL;
775
776 /* CPU feature flags. */
777 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
778
779 /* If we have selected a cpu we are generating instructions for. */
780 static int cpu_arch_tune_set = 0;
781
782 /* Cpu we are generating instructions for. */
783 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
784
785 /* CPU feature flags of cpu we are generating instructions for. */
786 static i386_cpu_flags cpu_arch_tune_flags;
787
788 /* CPU instruction set architecture used. */
789 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
790
791 /* CPU feature flags of instruction set architecture used. */
792 i386_cpu_flags cpu_arch_isa_flags;
793
794 /* If set, conditional jumps are not automatically promoted to handle
795 larger than a byte offset. */
796 static unsigned int no_cond_jump_promotion = 0;
797
798 /* Encode SSE instructions with VEX prefix. */
799 static unsigned int sse2avx;
800
801 /* Encode scalar AVX instructions with specific vector length. */
802 static enum
803 {
804 vex128 = 0,
805 vex256
806 } avxscalar;
807
808 /* Encode VEX WIG instructions with specific vex.w. */
809 static enum
810 {
811 vexw0 = 0,
812 vexw1
813 } vexwig;
814
815 /* Encode scalar EVEX LIG instructions with specific vector length. */
816 static enum
817 {
818 evexl128 = 0,
819 evexl256,
820 evexl512
821 } evexlig;
822
823 /* Encode EVEX WIG instructions with specific evex.w. */
824 static enum
825 {
826 evexw0 = 0,
827 evexw1
828 } evexwig;
829
830 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
831 static enum rc_type evexrcig = rne;
832
833 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
834 static symbolS *GOT_symbol;
835
836 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
837 unsigned int x86_dwarf2_return_column;
838
839 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
840 int x86_cie_data_alignment;
841
842 /* Interface to relax_segment.
843 There are 3 major relax states for 386 jump insns because the
844 different types of jumps add different sizes to frags when we're
845 figuring out what sort of jump to choose to reach a given label.
846
847 BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING are used to align
848 branches which are handled by md_estimate_size_before_relax() and
849 i386_generic_table_relax_frag(). */
850
851 /* Types. */
852 #define UNCOND_JUMP 0
853 #define COND_JUMP 1
854 #define COND_JUMP86 2
855 #define BRANCH_PADDING 3
856 #define BRANCH_PREFIX 4
857 #define FUSED_JCC_PADDING 5
858
859 /* Sizes. */
860 #define CODE16 1
861 #define SMALL 0
862 #define SMALL16 (SMALL | CODE16)
863 #define BIG 2
864 #define BIG16 (BIG | CODE16)
865
866 #ifndef INLINE
867 #ifdef __GNUC__
868 #define INLINE __inline__
869 #else
870 #define INLINE
871 #endif
872 #endif
873
874 #define ENCODE_RELAX_STATE(type, size) \
875 ((relax_substateT) (((type) << 2) | (size)))
876 #define TYPE_FROM_RELAX_STATE(s) \
877 ((s) >> 2)
878 #define DISP_SIZE_FROM_RELAX_STATE(s) \
879 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
880
881 /* This table is used by relax_frag to promote short jumps to long
882 ones where necessary. SMALL (short) jumps may be promoted to BIG
883 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
884 don't allow a short jump in a 32 bit code segment to be promoted to
885 a 16 bit offset jump because it's slower (requires data size
886 prefix), and doesn't work, unless the destination is in the bottom
887 64k of the code segment (The top 16 bits of eip are zeroed). */
888
889 const relax_typeS md_relax_table[] =
890 {
891 /* The fields are:
892 1) most positive reach of this state,
893 2) most negative reach of this state,
894 3) how many bytes this mode will have in the variable part of the frag
895 4) which index into the table to try if we can't fit into this one. */
896
897 /* UNCOND_JUMP states. */
898 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
899 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
900 /* dword jmp adds 4 bytes to frag:
901 0 extra opcode bytes, 4 displacement bytes. */
902 {0, 0, 4, 0},
903 /* word jmp adds 2 byte2 to frag:
904 0 extra opcode bytes, 2 displacement bytes. */
905 {0, 0, 2, 0},
906
907 /* COND_JUMP states. */
908 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
909 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
910 /* dword conditionals adds 5 bytes to frag:
911 1 extra opcode byte, 4 displacement bytes. */
912 {0, 0, 5, 0},
913 /* word conditionals add 3 bytes to frag:
914 1 extra opcode byte, 2 displacement bytes. */
915 {0, 0, 3, 0},
916
917 /* COND_JUMP86 states. */
918 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
919 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
920 /* dword conditionals adds 5 bytes to frag:
921 1 extra opcode byte, 4 displacement bytes. */
922 {0, 0, 5, 0},
923 /* word conditionals add 4 bytes to frag:
924 1 displacement byte and a 3 byte long branch insn. */
925 {0, 0, 4, 0}
926 };
927
928 static const arch_entry cpu_arch[] =
929 {
930 /* Do not replace the first two entries - i386_target_format()
931 relies on them being there in this order. */
932 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
933 CPU_GENERIC32_FLAGS, 0 },
934 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
935 CPU_GENERIC64_FLAGS, 0 },
936 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
937 CPU_NONE_FLAGS, 0 },
938 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
939 CPU_I186_FLAGS, 0 },
940 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
941 CPU_I286_FLAGS, 0 },
942 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
943 CPU_I386_FLAGS, 0 },
944 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
945 CPU_I486_FLAGS, 0 },
946 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
947 CPU_I586_FLAGS, 0 },
948 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
949 CPU_I686_FLAGS, 0 },
950 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
951 CPU_I586_FLAGS, 0 },
952 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
953 CPU_PENTIUMPRO_FLAGS, 0 },
954 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
955 CPU_P2_FLAGS, 0 },
956 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
957 CPU_P3_FLAGS, 0 },
958 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
959 CPU_P4_FLAGS, 0 },
960 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
961 CPU_CORE_FLAGS, 0 },
962 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
963 CPU_NOCONA_FLAGS, 0 },
964 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
965 CPU_CORE_FLAGS, 1 },
966 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
967 CPU_CORE_FLAGS, 0 },
968 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
969 CPU_CORE2_FLAGS, 1 },
970 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
971 CPU_CORE2_FLAGS, 0 },
972 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
973 CPU_COREI7_FLAGS, 0 },
974 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
975 CPU_L1OM_FLAGS, 0 },
976 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
977 CPU_K1OM_FLAGS, 0 },
978 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
979 CPU_IAMCU_FLAGS, 0 },
980 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
981 CPU_K6_FLAGS, 0 },
982 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
983 CPU_K6_2_FLAGS, 0 },
984 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
985 CPU_ATHLON_FLAGS, 0 },
986 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
987 CPU_K8_FLAGS, 1 },
988 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
989 CPU_K8_FLAGS, 0 },
990 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
991 CPU_K8_FLAGS, 0 },
992 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
993 CPU_AMDFAM10_FLAGS, 0 },
994 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
995 CPU_BDVER1_FLAGS, 0 },
996 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
997 CPU_BDVER2_FLAGS, 0 },
998 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
999 CPU_BDVER3_FLAGS, 0 },
1000 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
1001 CPU_BDVER4_FLAGS, 0 },
1002 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
1003 CPU_ZNVER1_FLAGS, 0 },
1004 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
1005 CPU_ZNVER2_FLAGS, 0 },
1006 { STRING_COMMA_LEN ("znver3"), PROCESSOR_ZNVER,
1007 CPU_ZNVER3_FLAGS, 0 },
1008 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
1009 CPU_BTVER1_FLAGS, 0 },
1010 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
1011 CPU_BTVER2_FLAGS, 0 },
1012 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
1013 CPU_8087_FLAGS, 0 },
1014 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
1015 CPU_287_FLAGS, 0 },
1016 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
1017 CPU_387_FLAGS, 0 },
1018 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
1019 CPU_687_FLAGS, 0 },
1020 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
1021 CPU_CMOV_FLAGS, 0 },
1022 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
1023 CPU_FXSR_FLAGS, 0 },
1024 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
1025 CPU_MMX_FLAGS, 0 },
1026 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
1027 CPU_SSE_FLAGS, 0 },
1028 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
1029 CPU_SSE2_FLAGS, 0 },
1030 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
1031 CPU_SSE3_FLAGS, 0 },
1032 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1033 CPU_SSE4A_FLAGS, 0 },
1034 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
1035 CPU_SSSE3_FLAGS, 0 },
1036 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
1037 CPU_SSE4_1_FLAGS, 0 },
1038 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
1039 CPU_SSE4_2_FLAGS, 0 },
1040 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
1041 CPU_SSE4_2_FLAGS, 0 },
1042 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
1043 CPU_AVX_FLAGS, 0 },
1044 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
1045 CPU_AVX2_FLAGS, 0 },
1046 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
1047 CPU_AVX512F_FLAGS, 0 },
1048 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
1049 CPU_AVX512CD_FLAGS, 0 },
1050 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
1051 CPU_AVX512ER_FLAGS, 0 },
1052 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
1053 CPU_AVX512PF_FLAGS, 0 },
1054 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
1055 CPU_AVX512DQ_FLAGS, 0 },
1056 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
1057 CPU_AVX512BW_FLAGS, 0 },
1058 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
1059 CPU_AVX512VL_FLAGS, 0 },
1060 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
1061 CPU_VMX_FLAGS, 0 },
1062 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
1063 CPU_VMFUNC_FLAGS, 0 },
1064 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
1065 CPU_SMX_FLAGS, 0 },
1066 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
1067 CPU_XSAVE_FLAGS, 0 },
1068 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
1069 CPU_XSAVEOPT_FLAGS, 0 },
1070 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
1071 CPU_XSAVEC_FLAGS, 0 },
1072 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
1073 CPU_XSAVES_FLAGS, 0 },
1074 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
1075 CPU_AES_FLAGS, 0 },
1076 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
1077 CPU_PCLMUL_FLAGS, 0 },
1078 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
1079 CPU_PCLMUL_FLAGS, 1 },
1080 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
1081 CPU_FSGSBASE_FLAGS, 0 },
1082 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
1083 CPU_RDRND_FLAGS, 0 },
1084 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
1085 CPU_F16C_FLAGS, 0 },
1086 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
1087 CPU_BMI2_FLAGS, 0 },
1088 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
1089 CPU_FMA_FLAGS, 0 },
1090 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
1091 CPU_FMA4_FLAGS, 0 },
1092 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
1093 CPU_XOP_FLAGS, 0 },
1094 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
1095 CPU_LWP_FLAGS, 0 },
1096 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
1097 CPU_MOVBE_FLAGS, 0 },
1098 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
1099 CPU_CX16_FLAGS, 0 },
1100 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
1101 CPU_EPT_FLAGS, 0 },
1102 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
1103 CPU_LZCNT_FLAGS, 0 },
1104 { STRING_COMMA_LEN (".popcnt"), PROCESSOR_UNKNOWN,
1105 CPU_POPCNT_FLAGS, 0 },
1106 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
1107 CPU_HLE_FLAGS, 0 },
1108 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
1109 CPU_RTM_FLAGS, 0 },
1110 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
1111 CPU_INVPCID_FLAGS, 0 },
1112 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
1113 CPU_CLFLUSH_FLAGS, 0 },
1114 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
1115 CPU_NOP_FLAGS, 0 },
1116 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
1117 CPU_SYSCALL_FLAGS, 0 },
1118 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
1119 CPU_RDTSCP_FLAGS, 0 },
1120 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
1121 CPU_3DNOW_FLAGS, 0 },
1122 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
1123 CPU_3DNOWA_FLAGS, 0 },
1124 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
1125 CPU_PADLOCK_FLAGS, 0 },
1126 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
1127 CPU_SVME_FLAGS, 1 },
1128 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
1129 CPU_SVME_FLAGS, 0 },
1130 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1131 CPU_SSE4A_FLAGS, 0 },
1132 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
1133 CPU_ABM_FLAGS, 0 },
1134 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
1135 CPU_BMI_FLAGS, 0 },
1136 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
1137 CPU_TBM_FLAGS, 0 },
1138 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
1139 CPU_ADX_FLAGS, 0 },
1140 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1141 CPU_RDSEED_FLAGS, 0 },
1142 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1143 CPU_PRFCHW_FLAGS, 0 },
1144 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1145 CPU_SMAP_FLAGS, 0 },
1146 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1147 CPU_MPX_FLAGS, 0 },
1148 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1149 CPU_SHA_FLAGS, 0 },
1150 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1151 CPU_CLFLUSHOPT_FLAGS, 0 },
1152 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1153 CPU_PREFETCHWT1_FLAGS, 0 },
1154 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1155 CPU_SE1_FLAGS, 0 },
1156 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1157 CPU_CLWB_FLAGS, 0 },
1158 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1159 CPU_AVX512IFMA_FLAGS, 0 },
1160 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1161 CPU_AVX512VBMI_FLAGS, 0 },
1162 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1163 CPU_AVX512_4FMAPS_FLAGS, 0 },
1164 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1165 CPU_AVX512_4VNNIW_FLAGS, 0 },
1166 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1167 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1168 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1169 CPU_AVX512_VBMI2_FLAGS, 0 },
1170 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1171 CPU_AVX512_VNNI_FLAGS, 0 },
1172 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1173 CPU_AVX512_BITALG_FLAGS, 0 },
1174 { STRING_COMMA_LEN (".avx_vnni"), PROCESSOR_UNKNOWN,
1175 CPU_AVX_VNNI_FLAGS, 0 },
1176 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1177 CPU_CLZERO_FLAGS, 0 },
1178 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1179 CPU_MWAITX_FLAGS, 0 },
1180 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1181 CPU_OSPKE_FLAGS, 0 },
1182 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1183 CPU_RDPID_FLAGS, 0 },
1184 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1185 CPU_PTWRITE_FLAGS, 0 },
1186 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1187 CPU_IBT_FLAGS, 0 },
1188 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1189 CPU_SHSTK_FLAGS, 0 },
1190 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1191 CPU_GFNI_FLAGS, 0 },
1192 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1193 CPU_VAES_FLAGS, 0 },
1194 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1195 CPU_VPCLMULQDQ_FLAGS, 0 },
1196 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1197 CPU_WBNOINVD_FLAGS, 0 },
1198 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1199 CPU_PCONFIG_FLAGS, 0 },
1200 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1201 CPU_WAITPKG_FLAGS, 0 },
1202 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1203 CPU_CLDEMOTE_FLAGS, 0 },
1204 { STRING_COMMA_LEN (".amx_int8"), PROCESSOR_UNKNOWN,
1205 CPU_AMX_INT8_FLAGS, 0 },
1206 { STRING_COMMA_LEN (".amx_bf16"), PROCESSOR_UNKNOWN,
1207 CPU_AMX_BF16_FLAGS, 0 },
1208 { STRING_COMMA_LEN (".amx_tile"), PROCESSOR_UNKNOWN,
1209 CPU_AMX_TILE_FLAGS, 0 },
1210 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1211 CPU_MOVDIRI_FLAGS, 0 },
1212 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1213 CPU_MOVDIR64B_FLAGS, 0 },
1214 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1215 CPU_AVX512_BF16_FLAGS, 0 },
1216 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1217 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
1218 { STRING_COMMA_LEN (".tdx"), PROCESSOR_UNKNOWN,
1219 CPU_TDX_FLAGS, 0 },
1220 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1221 CPU_ENQCMD_FLAGS, 0 },
1222 { STRING_COMMA_LEN (".serialize"), PROCESSOR_UNKNOWN,
1223 CPU_SERIALIZE_FLAGS, 0 },
1224 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1225 CPU_RDPRU_FLAGS, 0 },
1226 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1227 CPU_MCOMMIT_FLAGS, 0 },
1228 { STRING_COMMA_LEN (".sev_es"), PROCESSOR_UNKNOWN,
1229 CPU_SEV_ES_FLAGS, 0 },
1230 { STRING_COMMA_LEN (".tsxldtrk"), PROCESSOR_UNKNOWN,
1231 CPU_TSXLDTRK_FLAGS, 0 },
1232 { STRING_COMMA_LEN (".kl"), PROCESSOR_UNKNOWN,
1233 CPU_KL_FLAGS, 0 },
1234 { STRING_COMMA_LEN (".widekl"), PROCESSOR_UNKNOWN,
1235 CPU_WIDEKL_FLAGS, 0 },
1236 { STRING_COMMA_LEN (".uintr"), PROCESSOR_UNKNOWN,
1237 CPU_UINTR_FLAGS, 0 },
1238 { STRING_COMMA_LEN (".hreset"), PROCESSOR_UNKNOWN,
1239 CPU_HRESET_FLAGS, 0 },
1240 };
1241
1242 static const noarch_entry cpu_noarch[] =
1243 {
1244 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1245 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1246 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1247 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1248 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1249 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1250 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1251 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1252 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1253 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1254 { STRING_COMMA_LEN ("nosse4a"), CPU_ANY_SSE4A_FLAGS },
1255 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1256 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1257 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1258 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1259 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1260 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1261 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1262 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1263 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1264 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1265 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1266 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1267 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1268 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1269 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1270 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1271 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1272 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1273 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1274 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1275 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1276 { STRING_COMMA_LEN ("noavx_vnni"), CPU_ANY_AVX_VNNI_FLAGS },
1277 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1278 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1279 { STRING_COMMA_LEN ("noamx_int8"), CPU_ANY_AMX_INT8_FLAGS },
1280 { STRING_COMMA_LEN ("noamx_bf16"), CPU_ANY_AMX_BF16_FLAGS },
1281 { STRING_COMMA_LEN ("noamx_tile"), CPU_ANY_AMX_TILE_FLAGS },
1282 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1283 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1284 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
1285 { STRING_COMMA_LEN ("noavx512_vp2intersect"),
1286 CPU_ANY_AVX512_VP2INTERSECT_FLAGS },
1287 { STRING_COMMA_LEN ("notdx"), CPU_ANY_TDX_FLAGS },
1288 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
1289 { STRING_COMMA_LEN ("noserialize"), CPU_ANY_SERIALIZE_FLAGS },
1290 { STRING_COMMA_LEN ("notsxldtrk"), CPU_ANY_TSXLDTRK_FLAGS },
1291 { STRING_COMMA_LEN ("nokl"), CPU_ANY_KL_FLAGS },
1292 { STRING_COMMA_LEN ("nowidekl"), CPU_ANY_WIDEKL_FLAGS },
1293 { STRING_COMMA_LEN ("nouintr"), CPU_ANY_UINTR_FLAGS },
1294 { STRING_COMMA_LEN ("nohreset"), CPU_ANY_HRESET_FLAGS },
1295 };
1296
1297 #ifdef I386COFF
1298 /* Like s_lcomm_internal in gas/read.c but the alignment string
1299 is allowed to be optional. */
1300
1301 static symbolS *
1302 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1303 {
1304 addressT align = 0;
1305
1306 SKIP_WHITESPACE ();
1307
1308 if (needs_align
1309 && *input_line_pointer == ',')
1310 {
1311 align = parse_align (needs_align - 1);
1312
1313 if (align == (addressT) -1)
1314 return NULL;
1315 }
1316 else
1317 {
1318 if (size >= 8)
1319 align = 3;
1320 else if (size >= 4)
1321 align = 2;
1322 else if (size >= 2)
1323 align = 1;
1324 else
1325 align = 0;
1326 }
1327
1328 bss_alloc (symbolP, size, align);
1329 return symbolP;
1330 }
1331
1332 static void
1333 pe_lcomm (int needs_align)
1334 {
1335 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1336 }
1337 #endif
1338
1339 const pseudo_typeS md_pseudo_table[] =
1340 {
1341 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1342 {"align", s_align_bytes, 0},
1343 #else
1344 {"align", s_align_ptwo, 0},
1345 #endif
1346 {"arch", set_cpu_arch, 0},
1347 #ifndef I386COFF
1348 {"bss", s_bss, 0},
1349 #else
1350 {"lcomm", pe_lcomm, 1},
1351 #endif
1352 {"ffloat", float_cons, 'f'},
1353 {"dfloat", float_cons, 'd'},
1354 {"tfloat", float_cons, 'x'},
1355 {"value", cons, 2},
1356 {"slong", signed_cons, 4},
1357 {"noopt", s_ignore, 0},
1358 {"optim", s_ignore, 0},
1359 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1360 {"code16", set_code_flag, CODE_16BIT},
1361 {"code32", set_code_flag, CODE_32BIT},
1362 #ifdef BFD64
1363 {"code64", set_code_flag, CODE_64BIT},
1364 #endif
1365 {"intel_syntax", set_intel_syntax, 1},
1366 {"att_syntax", set_intel_syntax, 0},
1367 {"intel_mnemonic", set_intel_mnemonic, 1},
1368 {"att_mnemonic", set_intel_mnemonic, 0},
1369 {"allow_index_reg", set_allow_index_reg, 1},
1370 {"disallow_index_reg", set_allow_index_reg, 0},
1371 {"sse_check", set_check, 0},
1372 {"operand_check", set_check, 1},
1373 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1374 {"largecomm", handle_large_common, 0},
1375 #else
1376 {"file", dwarf2_directive_file, 0},
1377 {"loc", dwarf2_directive_loc, 0},
1378 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1379 #endif
1380 #ifdef TE_PE
1381 {"secrel32", pe_directive_secrel, 0},
1382 #endif
1383 {0, 0, 0}
1384 };
1385
1386 /* For interface with expression (). */
1387 extern char *input_line_pointer;
1388
1389 /* Hash table for instruction mnemonic lookup. */
1390 static htab_t op_hash;
1391
1392 /* Hash table for register lookup. */
1393 static htab_t reg_hash;
1394 \f
1395 /* Various efficient no-op patterns for aligning code labels.
1396 Note: Don't try to assemble the instructions in the comments.
1397 0L and 0w are not legal. */
1398 static const unsigned char f32_1[] =
1399 {0x90}; /* nop */
1400 static const unsigned char f32_2[] =
1401 {0x66,0x90}; /* xchg %ax,%ax */
1402 static const unsigned char f32_3[] =
1403 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1404 static const unsigned char f32_4[] =
1405 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1406 static const unsigned char f32_6[] =
1407 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1408 static const unsigned char f32_7[] =
1409 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1410 static const unsigned char f16_3[] =
1411 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1412 static const unsigned char f16_4[] =
1413 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1414 static const unsigned char jump_disp8[] =
1415 {0xeb}; /* jmp disp8 */
1416 static const unsigned char jump32_disp32[] =
1417 {0xe9}; /* jmp disp32 */
1418 static const unsigned char jump16_disp32[] =
1419 {0x66,0xe9}; /* jmp disp32 */
1420 /* 32-bit NOPs patterns. */
1421 static const unsigned char *const f32_patt[] = {
1422 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1423 };
1424 /* 16-bit NOPs patterns. */
1425 static const unsigned char *const f16_patt[] = {
1426 f32_1, f32_2, f16_3, f16_4
1427 };
1428 /* nopl (%[re]ax) */
1429 static const unsigned char alt_3[] =
1430 {0x0f,0x1f,0x00};
1431 /* nopl 0(%[re]ax) */
1432 static const unsigned char alt_4[] =
1433 {0x0f,0x1f,0x40,0x00};
1434 /* nopl 0(%[re]ax,%[re]ax,1) */
1435 static const unsigned char alt_5[] =
1436 {0x0f,0x1f,0x44,0x00,0x00};
1437 /* nopw 0(%[re]ax,%[re]ax,1) */
1438 static const unsigned char alt_6[] =
1439 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1440 /* nopl 0L(%[re]ax) */
1441 static const unsigned char alt_7[] =
1442 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1443 /* nopl 0L(%[re]ax,%[re]ax,1) */
1444 static const unsigned char alt_8[] =
1445 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1446 /* nopw 0L(%[re]ax,%[re]ax,1) */
1447 static const unsigned char alt_9[] =
1448 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1449 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1450 static const unsigned char alt_10[] =
1451 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1452 /* data16 nopw %cs:0L(%eax,%eax,1) */
1453 static const unsigned char alt_11[] =
1454 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1455 /* 32-bit and 64-bit NOPs patterns. */
1456 static const unsigned char *const alt_patt[] = {
1457 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1458 alt_9, alt_10, alt_11
1459 };
1460
1461 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1462 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1463
1464 static void
1465 i386_output_nops (char *where, const unsigned char *const *patt,
1466 int count, int max_single_nop_size)
1467
1468 {
1469 /* Place the longer NOP first. */
1470 int last;
1471 int offset;
1472 const unsigned char *nops;
1473
1474 if (max_single_nop_size < 1)
1475 {
1476 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1477 max_single_nop_size);
1478 return;
1479 }
1480
1481 nops = patt[max_single_nop_size - 1];
1482
1483 /* Use the smaller one if the requsted one isn't available. */
1484 if (nops == NULL)
1485 {
1486 max_single_nop_size--;
1487 nops = patt[max_single_nop_size - 1];
1488 }
1489
1490 last = count % max_single_nop_size;
1491
1492 count -= last;
1493 for (offset = 0; offset < count; offset += max_single_nop_size)
1494 memcpy (where + offset, nops, max_single_nop_size);
1495
1496 if (last)
1497 {
1498 nops = patt[last - 1];
1499 if (nops == NULL)
1500 {
1501 /* Use the smaller one plus one-byte NOP if the needed one
1502 isn't available. */
1503 last--;
1504 nops = patt[last - 1];
1505 memcpy (where + offset, nops, last);
1506 where[offset + last] = *patt[0];
1507 }
1508 else
1509 memcpy (where + offset, nops, last);
1510 }
1511 }
1512
1513 static INLINE int
1514 fits_in_imm7 (offsetT num)
1515 {
1516 return (num & 0x7f) == num;
1517 }
1518
1519 static INLINE int
1520 fits_in_imm31 (offsetT num)
1521 {
1522 return (num & 0x7fffffff) == num;
1523 }
1524
1525 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1526 single NOP instruction LIMIT. */
1527
1528 void
1529 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1530 {
1531 const unsigned char *const *patt = NULL;
1532 int max_single_nop_size;
1533 /* Maximum number of NOPs before switching to jump over NOPs. */
1534 int max_number_of_nops;
1535
1536 switch (fragP->fr_type)
1537 {
1538 case rs_fill_nop:
1539 case rs_align_code:
1540 break;
1541 case rs_machine_dependent:
1542 /* Allow NOP padding for jumps and calls. */
1543 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
1544 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
1545 break;
1546 /* Fall through. */
1547 default:
1548 return;
1549 }
1550
1551 /* We need to decide which NOP sequence to use for 32bit and
1552 64bit. When -mtune= is used:
1553
1554 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1555 PROCESSOR_GENERIC32, f32_patt will be used.
1556 2. For the rest, alt_patt will be used.
1557
1558 When -mtune= isn't used, alt_patt will be used if
1559 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1560 be used.
1561
1562 When -march= or .arch is used, we can't use anything beyond
1563 cpu_arch_isa_flags. */
1564
1565 if (flag_code == CODE_16BIT)
1566 {
1567 patt = f16_patt;
1568 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1569 /* Limit number of NOPs to 2 in 16-bit mode. */
1570 max_number_of_nops = 2;
1571 }
1572 else
1573 {
1574 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1575 {
1576 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1577 switch (cpu_arch_tune)
1578 {
1579 case PROCESSOR_UNKNOWN:
1580 /* We use cpu_arch_isa_flags to check if we SHOULD
1581 optimize with nops. */
1582 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1583 patt = alt_patt;
1584 else
1585 patt = f32_patt;
1586 break;
1587 case PROCESSOR_PENTIUM4:
1588 case PROCESSOR_NOCONA:
1589 case PROCESSOR_CORE:
1590 case PROCESSOR_CORE2:
1591 case PROCESSOR_COREI7:
1592 case PROCESSOR_L1OM:
1593 case PROCESSOR_K1OM:
1594 case PROCESSOR_GENERIC64:
1595 case PROCESSOR_K6:
1596 case PROCESSOR_ATHLON:
1597 case PROCESSOR_K8:
1598 case PROCESSOR_AMDFAM10:
1599 case PROCESSOR_BD:
1600 case PROCESSOR_ZNVER:
1601 case PROCESSOR_BT:
1602 patt = alt_patt;
1603 break;
1604 case PROCESSOR_I386:
1605 case PROCESSOR_I486:
1606 case PROCESSOR_PENTIUM:
1607 case PROCESSOR_PENTIUMPRO:
1608 case PROCESSOR_IAMCU:
1609 case PROCESSOR_GENERIC32:
1610 patt = f32_patt;
1611 break;
1612 }
1613 }
1614 else
1615 {
1616 switch (fragP->tc_frag_data.tune)
1617 {
1618 case PROCESSOR_UNKNOWN:
1619 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1620 PROCESSOR_UNKNOWN. */
1621 abort ();
1622 break;
1623
1624 case PROCESSOR_I386:
1625 case PROCESSOR_I486:
1626 case PROCESSOR_PENTIUM:
1627 case PROCESSOR_IAMCU:
1628 case PROCESSOR_K6:
1629 case PROCESSOR_ATHLON:
1630 case PROCESSOR_K8:
1631 case PROCESSOR_AMDFAM10:
1632 case PROCESSOR_BD:
1633 case PROCESSOR_ZNVER:
1634 case PROCESSOR_BT:
1635 case PROCESSOR_GENERIC32:
1636 /* We use cpu_arch_isa_flags to check if we CAN optimize
1637 with nops. */
1638 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1639 patt = alt_patt;
1640 else
1641 patt = f32_patt;
1642 break;
1643 case PROCESSOR_PENTIUMPRO:
1644 case PROCESSOR_PENTIUM4:
1645 case PROCESSOR_NOCONA:
1646 case PROCESSOR_CORE:
1647 case PROCESSOR_CORE2:
1648 case PROCESSOR_COREI7:
1649 case PROCESSOR_L1OM:
1650 case PROCESSOR_K1OM:
1651 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1652 patt = alt_patt;
1653 else
1654 patt = f32_patt;
1655 break;
1656 case PROCESSOR_GENERIC64:
1657 patt = alt_patt;
1658 break;
1659 }
1660 }
1661
1662 if (patt == f32_patt)
1663 {
1664 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1665 /* Limit number of NOPs to 2 for older processors. */
1666 max_number_of_nops = 2;
1667 }
1668 else
1669 {
1670 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1671 /* Limit number of NOPs to 7 for newer processors. */
1672 max_number_of_nops = 7;
1673 }
1674 }
1675
1676 if (limit == 0)
1677 limit = max_single_nop_size;
1678
1679 if (fragP->fr_type == rs_fill_nop)
1680 {
1681 /* Output NOPs for .nop directive. */
1682 if (limit > max_single_nop_size)
1683 {
1684 as_bad_where (fragP->fr_file, fragP->fr_line,
1685 _("invalid single nop size: %d "
1686 "(expect within [0, %d])"),
1687 limit, max_single_nop_size);
1688 return;
1689 }
1690 }
1691 else if (fragP->fr_type != rs_machine_dependent)
1692 fragP->fr_var = count;
1693
1694 if ((count / max_single_nop_size) > max_number_of_nops)
1695 {
1696 /* Generate jump over NOPs. */
1697 offsetT disp = count - 2;
1698 if (fits_in_imm7 (disp))
1699 {
1700 /* Use "jmp disp8" if possible. */
1701 count = disp;
1702 where[0] = jump_disp8[0];
1703 where[1] = count;
1704 where += 2;
1705 }
1706 else
1707 {
1708 unsigned int size_of_jump;
1709
1710 if (flag_code == CODE_16BIT)
1711 {
1712 where[0] = jump16_disp32[0];
1713 where[1] = jump16_disp32[1];
1714 size_of_jump = 2;
1715 }
1716 else
1717 {
1718 where[0] = jump32_disp32[0];
1719 size_of_jump = 1;
1720 }
1721
1722 count -= size_of_jump + 4;
1723 if (!fits_in_imm31 (count))
1724 {
1725 as_bad_where (fragP->fr_file, fragP->fr_line,
1726 _("jump over nop padding out of range"));
1727 return;
1728 }
1729
1730 md_number_to_chars (where + size_of_jump, count, 4);
1731 where += size_of_jump + 4;
1732 }
1733 }
1734
1735 /* Generate multiple NOPs. */
1736 i386_output_nops (where, patt, count, limit);
1737 }
1738
1739 static INLINE int
1740 operand_type_all_zero (const union i386_operand_type *x)
1741 {
1742 switch (ARRAY_SIZE(x->array))
1743 {
1744 case 3:
1745 if (x->array[2])
1746 return 0;
1747 /* Fall through. */
1748 case 2:
1749 if (x->array[1])
1750 return 0;
1751 /* Fall through. */
1752 case 1:
1753 return !x->array[0];
1754 default:
1755 abort ();
1756 }
1757 }
1758
1759 static INLINE void
1760 operand_type_set (union i386_operand_type *x, unsigned int v)
1761 {
1762 switch (ARRAY_SIZE(x->array))
1763 {
1764 case 3:
1765 x->array[2] = v;
1766 /* Fall through. */
1767 case 2:
1768 x->array[1] = v;
1769 /* Fall through. */
1770 case 1:
1771 x->array[0] = v;
1772 /* Fall through. */
1773 break;
1774 default:
1775 abort ();
1776 }
1777
1778 x->bitfield.class = ClassNone;
1779 x->bitfield.instance = InstanceNone;
1780 }
1781
1782 static INLINE int
1783 operand_type_equal (const union i386_operand_type *x,
1784 const union i386_operand_type *y)
1785 {
1786 switch (ARRAY_SIZE(x->array))
1787 {
1788 case 3:
1789 if (x->array[2] != y->array[2])
1790 return 0;
1791 /* Fall through. */
1792 case 2:
1793 if (x->array[1] != y->array[1])
1794 return 0;
1795 /* Fall through. */
1796 case 1:
1797 return x->array[0] == y->array[0];
1798 break;
1799 default:
1800 abort ();
1801 }
1802 }
1803
1804 static INLINE int
1805 cpu_flags_all_zero (const union i386_cpu_flags *x)
1806 {
1807 switch (ARRAY_SIZE(x->array))
1808 {
1809 case 4:
1810 if (x->array[3])
1811 return 0;
1812 /* Fall through. */
1813 case 3:
1814 if (x->array[2])
1815 return 0;
1816 /* Fall through. */
1817 case 2:
1818 if (x->array[1])
1819 return 0;
1820 /* Fall through. */
1821 case 1:
1822 return !x->array[0];
1823 default:
1824 abort ();
1825 }
1826 }
1827
1828 static INLINE int
1829 cpu_flags_equal (const union i386_cpu_flags *x,
1830 const union i386_cpu_flags *y)
1831 {
1832 switch (ARRAY_SIZE(x->array))
1833 {
1834 case 4:
1835 if (x->array[3] != y->array[3])
1836 return 0;
1837 /* Fall through. */
1838 case 3:
1839 if (x->array[2] != y->array[2])
1840 return 0;
1841 /* Fall through. */
1842 case 2:
1843 if (x->array[1] != y->array[1])
1844 return 0;
1845 /* Fall through. */
1846 case 1:
1847 return x->array[0] == y->array[0];
1848 break;
1849 default:
1850 abort ();
1851 }
1852 }
1853
1854 static INLINE int
1855 cpu_flags_check_cpu64 (i386_cpu_flags f)
1856 {
1857 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1858 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1859 }
1860
1861 static INLINE i386_cpu_flags
1862 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1863 {
1864 switch (ARRAY_SIZE (x.array))
1865 {
1866 case 4:
1867 x.array [3] &= y.array [3];
1868 /* Fall through. */
1869 case 3:
1870 x.array [2] &= y.array [2];
1871 /* Fall through. */
1872 case 2:
1873 x.array [1] &= y.array [1];
1874 /* Fall through. */
1875 case 1:
1876 x.array [0] &= y.array [0];
1877 break;
1878 default:
1879 abort ();
1880 }
1881 return x;
1882 }
1883
1884 static INLINE i386_cpu_flags
1885 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1886 {
1887 switch (ARRAY_SIZE (x.array))
1888 {
1889 case 4:
1890 x.array [3] |= y.array [3];
1891 /* Fall through. */
1892 case 3:
1893 x.array [2] |= y.array [2];
1894 /* Fall through. */
1895 case 2:
1896 x.array [1] |= y.array [1];
1897 /* Fall through. */
1898 case 1:
1899 x.array [0] |= y.array [0];
1900 break;
1901 default:
1902 abort ();
1903 }
1904 return x;
1905 }
1906
1907 static INLINE i386_cpu_flags
1908 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1909 {
1910 switch (ARRAY_SIZE (x.array))
1911 {
1912 case 4:
1913 x.array [3] &= ~y.array [3];
1914 /* Fall through. */
1915 case 3:
1916 x.array [2] &= ~y.array [2];
1917 /* Fall through. */
1918 case 2:
1919 x.array [1] &= ~y.array [1];
1920 /* Fall through. */
1921 case 1:
1922 x.array [0] &= ~y.array [0];
1923 break;
1924 default:
1925 abort ();
1926 }
1927 return x;
1928 }
1929
1930 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
1931
1932 #define CPU_FLAGS_ARCH_MATCH 0x1
1933 #define CPU_FLAGS_64BIT_MATCH 0x2
1934
1935 #define CPU_FLAGS_PERFECT_MATCH \
1936 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1937
1938 /* Return CPU flags match bits. */
1939
1940 static int
1941 cpu_flags_match (const insn_template *t)
1942 {
1943 i386_cpu_flags x = t->cpu_flags;
1944 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1945
1946 x.bitfield.cpu64 = 0;
1947 x.bitfield.cpuno64 = 0;
1948
1949 if (cpu_flags_all_zero (&x))
1950 {
1951 /* This instruction is available on all archs. */
1952 match |= CPU_FLAGS_ARCH_MATCH;
1953 }
1954 else
1955 {
1956 /* This instruction is available only on some archs. */
1957 i386_cpu_flags cpu = cpu_arch_flags;
1958
1959 /* AVX512VL is no standalone feature - match it and then strip it. */
1960 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1961 return match;
1962 x.bitfield.cpuavx512vl = 0;
1963
1964 cpu = cpu_flags_and (x, cpu);
1965 if (!cpu_flags_all_zero (&cpu))
1966 {
1967 if (x.bitfield.cpuavx)
1968 {
1969 /* We need to check a few extra flags with AVX. */
1970 if (cpu.bitfield.cpuavx
1971 && (!t->opcode_modifier.sse2avx
1972 || (sse2avx && !i.prefix[DATA_PREFIX]))
1973 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1974 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1975 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1976 match |= CPU_FLAGS_ARCH_MATCH;
1977 }
1978 else if (x.bitfield.cpuavx512f)
1979 {
1980 /* We need to check a few extra flags with AVX512F. */
1981 if (cpu.bitfield.cpuavx512f
1982 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1983 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1984 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1985 match |= CPU_FLAGS_ARCH_MATCH;
1986 }
1987 else
1988 match |= CPU_FLAGS_ARCH_MATCH;
1989 }
1990 }
1991 return match;
1992 }
1993
1994 static INLINE i386_operand_type
1995 operand_type_and (i386_operand_type x, i386_operand_type y)
1996 {
1997 if (x.bitfield.class != y.bitfield.class)
1998 x.bitfield.class = ClassNone;
1999 if (x.bitfield.instance != y.bitfield.instance)
2000 x.bitfield.instance = InstanceNone;
2001
2002 switch (ARRAY_SIZE (x.array))
2003 {
2004 case 3:
2005 x.array [2] &= y.array [2];
2006 /* Fall through. */
2007 case 2:
2008 x.array [1] &= y.array [1];
2009 /* Fall through. */
2010 case 1:
2011 x.array [0] &= y.array [0];
2012 break;
2013 default:
2014 abort ();
2015 }
2016 return x;
2017 }
2018
2019 static INLINE i386_operand_type
2020 operand_type_and_not (i386_operand_type x, i386_operand_type y)
2021 {
2022 gas_assert (y.bitfield.class == ClassNone);
2023 gas_assert (y.bitfield.instance == InstanceNone);
2024
2025 switch (ARRAY_SIZE (x.array))
2026 {
2027 case 3:
2028 x.array [2] &= ~y.array [2];
2029 /* Fall through. */
2030 case 2:
2031 x.array [1] &= ~y.array [1];
2032 /* Fall through. */
2033 case 1:
2034 x.array [0] &= ~y.array [0];
2035 break;
2036 default:
2037 abort ();
2038 }
2039 return x;
2040 }
2041
2042 static INLINE i386_operand_type
2043 operand_type_or (i386_operand_type x, i386_operand_type y)
2044 {
2045 gas_assert (x.bitfield.class == ClassNone ||
2046 y.bitfield.class == ClassNone ||
2047 x.bitfield.class == y.bitfield.class);
2048 gas_assert (x.bitfield.instance == InstanceNone ||
2049 y.bitfield.instance == InstanceNone ||
2050 x.bitfield.instance == y.bitfield.instance);
2051
2052 switch (ARRAY_SIZE (x.array))
2053 {
2054 case 3:
2055 x.array [2] |= y.array [2];
2056 /* Fall through. */
2057 case 2:
2058 x.array [1] |= y.array [1];
2059 /* Fall through. */
2060 case 1:
2061 x.array [0] |= y.array [0];
2062 break;
2063 default:
2064 abort ();
2065 }
2066 return x;
2067 }
2068
2069 static INLINE i386_operand_type
2070 operand_type_xor (i386_operand_type x, i386_operand_type y)
2071 {
2072 gas_assert (y.bitfield.class == ClassNone);
2073 gas_assert (y.bitfield.instance == InstanceNone);
2074
2075 switch (ARRAY_SIZE (x.array))
2076 {
2077 case 3:
2078 x.array [2] ^= y.array [2];
2079 /* Fall through. */
2080 case 2:
2081 x.array [1] ^= y.array [1];
2082 /* Fall through. */
2083 case 1:
2084 x.array [0] ^= y.array [0];
2085 break;
2086 default:
2087 abort ();
2088 }
2089 return x;
2090 }
2091
2092 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
2093 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
2094 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
2095 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
2096 static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
2097 static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
2098 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
2099 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
2100 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
2101 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
2102 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
2103 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
2104 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
2105 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
2106 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
2107 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
2108 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
2109
2110 enum operand_type
2111 {
2112 reg,
2113 imm,
2114 disp,
2115 anymem
2116 };
2117
2118 static INLINE int
2119 operand_type_check (i386_operand_type t, enum operand_type c)
2120 {
2121 switch (c)
2122 {
2123 case reg:
2124 return t.bitfield.class == Reg;
2125
2126 case imm:
2127 return (t.bitfield.imm8
2128 || t.bitfield.imm8s
2129 || t.bitfield.imm16
2130 || t.bitfield.imm32
2131 || t.bitfield.imm32s
2132 || t.bitfield.imm64);
2133
2134 case disp:
2135 return (t.bitfield.disp8
2136 || t.bitfield.disp16
2137 || t.bitfield.disp32
2138 || t.bitfield.disp32s
2139 || t.bitfield.disp64);
2140
2141 case anymem:
2142 return (t.bitfield.disp8
2143 || t.bitfield.disp16
2144 || t.bitfield.disp32
2145 || t.bitfield.disp32s
2146 || t.bitfield.disp64
2147 || t.bitfield.baseindex);
2148
2149 default:
2150 abort ();
2151 }
2152
2153 return 0;
2154 }
2155
2156 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
2157 between operand GIVEN and opeand WANTED for instruction template T. */
2158
2159 static INLINE int
2160 match_operand_size (const insn_template *t, unsigned int wanted,
2161 unsigned int given)
2162 {
2163 return !((i.types[given].bitfield.byte
2164 && !t->operand_types[wanted].bitfield.byte)
2165 || (i.types[given].bitfield.word
2166 && !t->operand_types[wanted].bitfield.word)
2167 || (i.types[given].bitfield.dword
2168 && !t->operand_types[wanted].bitfield.dword)
2169 || (i.types[given].bitfield.qword
2170 && !t->operand_types[wanted].bitfield.qword)
2171 || (i.types[given].bitfield.tbyte
2172 && !t->operand_types[wanted].bitfield.tbyte));
2173 }
2174
2175 /* Return 1 if there is no conflict in SIMD register between operand
2176 GIVEN and opeand WANTED for instruction template T. */
2177
2178 static INLINE int
2179 match_simd_size (const insn_template *t, unsigned int wanted,
2180 unsigned int given)
2181 {
2182 return !((i.types[given].bitfield.xmmword
2183 && !t->operand_types[wanted].bitfield.xmmword)
2184 || (i.types[given].bitfield.ymmword
2185 && !t->operand_types[wanted].bitfield.ymmword)
2186 || (i.types[given].bitfield.zmmword
2187 && !t->operand_types[wanted].bitfield.zmmword)
2188 || (i.types[given].bitfield.tmmword
2189 && !t->operand_types[wanted].bitfield.tmmword));
2190 }
2191
2192 /* Return 1 if there is no conflict in any size between operand GIVEN
2193 and opeand WANTED for instruction template T. */
2194
2195 static INLINE int
2196 match_mem_size (const insn_template *t, unsigned int wanted,
2197 unsigned int given)
2198 {
2199 return (match_operand_size (t, wanted, given)
2200 && !((i.types[given].bitfield.unspecified
2201 && !i.broadcast.type
2202 && !t->operand_types[wanted].bitfield.unspecified)
2203 || (i.types[given].bitfield.fword
2204 && !t->operand_types[wanted].bitfield.fword)
2205 /* For scalar opcode templates to allow register and memory
2206 operands at the same time, some special casing is needed
2207 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2208 down-conversion vpmov*. */
2209 || ((t->operand_types[wanted].bitfield.class == RegSIMD
2210 && t->operand_types[wanted].bitfield.byte
2211 + t->operand_types[wanted].bitfield.word
2212 + t->operand_types[wanted].bitfield.dword
2213 + t->operand_types[wanted].bitfield.qword
2214 > !!t->opcode_modifier.broadcast)
2215 ? (i.types[given].bitfield.xmmword
2216 || i.types[given].bitfield.ymmword
2217 || i.types[given].bitfield.zmmword)
2218 : !match_simd_size(t, wanted, given))));
2219 }
2220
2221 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2222 operands for instruction template T, and it has MATCH_REVERSE set if there
2223 is no size conflict on any operands for the template with operands reversed
2224 (and the template allows for reversing in the first place). */
2225
2226 #define MATCH_STRAIGHT 1
2227 #define MATCH_REVERSE 2
2228
2229 static INLINE unsigned int
2230 operand_size_match (const insn_template *t)
2231 {
2232 unsigned int j, match = MATCH_STRAIGHT;
2233
2234 /* Don't check non-absolute jump instructions. */
2235 if (t->opcode_modifier.jump
2236 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
2237 return match;
2238
2239 /* Check memory and accumulator operand size. */
2240 for (j = 0; j < i.operands; j++)
2241 {
2242 if (i.types[j].bitfield.class != Reg
2243 && i.types[j].bitfield.class != RegSIMD
2244 && t->opcode_modifier.anysize)
2245 continue;
2246
2247 if (t->operand_types[j].bitfield.class == Reg
2248 && !match_operand_size (t, j, j))
2249 {
2250 match = 0;
2251 break;
2252 }
2253
2254 if (t->operand_types[j].bitfield.class == RegSIMD
2255 && !match_simd_size (t, j, j))
2256 {
2257 match = 0;
2258 break;
2259 }
2260
2261 if (t->operand_types[j].bitfield.instance == Accum
2262 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2263 {
2264 match = 0;
2265 break;
2266 }
2267
2268 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2269 {
2270 match = 0;
2271 break;
2272 }
2273 }
2274
2275 if (!t->opcode_modifier.d)
2276 {
2277 mismatch:
2278 if (!match)
2279 i.error = operand_size_mismatch;
2280 return match;
2281 }
2282
2283 /* Check reverse. */
2284 gas_assert (i.operands >= 2 && i.operands <= 3);
2285
2286 for (j = 0; j < i.operands; j++)
2287 {
2288 unsigned int given = i.operands - j - 1;
2289
2290 if (t->operand_types[j].bitfield.class == Reg
2291 && !match_operand_size (t, j, given))
2292 goto mismatch;
2293
2294 if (t->operand_types[j].bitfield.class == RegSIMD
2295 && !match_simd_size (t, j, given))
2296 goto mismatch;
2297
2298 if (t->operand_types[j].bitfield.instance == Accum
2299 && (!match_operand_size (t, j, given)
2300 || !match_simd_size (t, j, given)))
2301 goto mismatch;
2302
2303 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2304 goto mismatch;
2305 }
2306
2307 return match | MATCH_REVERSE;
2308 }
2309
2310 static INLINE int
2311 operand_type_match (i386_operand_type overlap,
2312 i386_operand_type given)
2313 {
2314 i386_operand_type temp = overlap;
2315
2316 temp.bitfield.unspecified = 0;
2317 temp.bitfield.byte = 0;
2318 temp.bitfield.word = 0;
2319 temp.bitfield.dword = 0;
2320 temp.bitfield.fword = 0;
2321 temp.bitfield.qword = 0;
2322 temp.bitfield.tbyte = 0;
2323 temp.bitfield.xmmword = 0;
2324 temp.bitfield.ymmword = 0;
2325 temp.bitfield.zmmword = 0;
2326 temp.bitfield.tmmword = 0;
2327 if (operand_type_all_zero (&temp))
2328 goto mismatch;
2329
2330 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
2331 return 1;
2332
2333 mismatch:
2334 i.error = operand_type_mismatch;
2335 return 0;
2336 }
2337
2338 /* If given types g0 and g1 are registers they must be of the same type
2339 unless the expected operand type register overlap is null.
2340 Some Intel syntax memory operand size checking also happens here. */
2341
2342 static INLINE int
2343 operand_type_register_match (i386_operand_type g0,
2344 i386_operand_type t0,
2345 i386_operand_type g1,
2346 i386_operand_type t1)
2347 {
2348 if (g0.bitfield.class != Reg
2349 && g0.bitfield.class != RegSIMD
2350 && (!operand_type_check (g0, anymem)
2351 || g0.bitfield.unspecified
2352 || (t0.bitfield.class != Reg
2353 && t0.bitfield.class != RegSIMD)))
2354 return 1;
2355
2356 if (g1.bitfield.class != Reg
2357 && g1.bitfield.class != RegSIMD
2358 && (!operand_type_check (g1, anymem)
2359 || g1.bitfield.unspecified
2360 || (t1.bitfield.class != Reg
2361 && t1.bitfield.class != RegSIMD)))
2362 return 1;
2363
2364 if (g0.bitfield.byte == g1.bitfield.byte
2365 && g0.bitfield.word == g1.bitfield.word
2366 && g0.bitfield.dword == g1.bitfield.dword
2367 && g0.bitfield.qword == g1.bitfield.qword
2368 && g0.bitfield.xmmword == g1.bitfield.xmmword
2369 && g0.bitfield.ymmword == g1.bitfield.ymmword
2370 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2371 return 1;
2372
2373 if (!(t0.bitfield.byte & t1.bitfield.byte)
2374 && !(t0.bitfield.word & t1.bitfield.word)
2375 && !(t0.bitfield.dword & t1.bitfield.dword)
2376 && !(t0.bitfield.qword & t1.bitfield.qword)
2377 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2378 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2379 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2380 return 1;
2381
2382 i.error = register_type_mismatch;
2383
2384 return 0;
2385 }
2386
2387 static INLINE unsigned int
2388 register_number (const reg_entry *r)
2389 {
2390 unsigned int nr = r->reg_num;
2391
2392 if (r->reg_flags & RegRex)
2393 nr += 8;
2394
2395 if (r->reg_flags & RegVRex)
2396 nr += 16;
2397
2398 return nr;
2399 }
2400
2401 static INLINE unsigned int
2402 mode_from_disp_size (i386_operand_type t)
2403 {
2404 if (t.bitfield.disp8)
2405 return 1;
2406 else if (t.bitfield.disp16
2407 || t.bitfield.disp32
2408 || t.bitfield.disp32s)
2409 return 2;
2410 else
2411 return 0;
2412 }
2413
2414 static INLINE int
2415 fits_in_signed_byte (addressT num)
2416 {
2417 return num + 0x80 <= 0xff;
2418 }
2419
2420 static INLINE int
2421 fits_in_unsigned_byte (addressT num)
2422 {
2423 return num <= 0xff;
2424 }
2425
2426 static INLINE int
2427 fits_in_unsigned_word (addressT num)
2428 {
2429 return num <= 0xffff;
2430 }
2431
2432 static INLINE int
2433 fits_in_signed_word (addressT num)
2434 {
2435 return num + 0x8000 <= 0xffff;
2436 }
2437
2438 static INLINE int
2439 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2440 {
2441 #ifndef BFD64
2442 return 1;
2443 #else
2444 return num + 0x80000000 <= 0xffffffff;
2445 #endif
2446 } /* fits_in_signed_long() */
2447
2448 static INLINE int
2449 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2450 {
2451 #ifndef BFD64
2452 return 1;
2453 #else
2454 return num <= 0xffffffff;
2455 #endif
2456 } /* fits_in_unsigned_long() */
2457
2458 static INLINE valueT extend_to_32bit_address (addressT num)
2459 {
2460 #ifdef BFD64
2461 if (fits_in_unsigned_long(num))
2462 return (num ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2463
2464 if (!fits_in_signed_long (num))
2465 return num & 0xffffffff;
2466 #endif
2467
2468 return num;
2469 }
2470
2471 static INLINE int
2472 fits_in_disp8 (offsetT num)
2473 {
2474 int shift = i.memshift;
2475 unsigned int mask;
2476
2477 if (shift == -1)
2478 abort ();
2479
2480 mask = (1 << shift) - 1;
2481
2482 /* Return 0 if NUM isn't properly aligned. */
2483 if ((num & mask))
2484 return 0;
2485
2486 /* Check if NUM will fit in 8bit after shift. */
2487 return fits_in_signed_byte (num >> shift);
2488 }
2489
2490 static INLINE int
2491 fits_in_imm4 (offsetT num)
2492 {
2493 return (num & 0xf) == num;
2494 }
2495
2496 static i386_operand_type
2497 smallest_imm_type (offsetT num)
2498 {
2499 i386_operand_type t;
2500
2501 operand_type_set (&t, 0);
2502 t.bitfield.imm64 = 1;
2503
2504 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2505 {
2506 /* This code is disabled on the 486 because all the Imm1 forms
2507 in the opcode table are slower on the i486. They're the
2508 versions with the implicitly specified single-position
2509 displacement, which has another syntax if you really want to
2510 use that form. */
2511 t.bitfield.imm1 = 1;
2512 t.bitfield.imm8 = 1;
2513 t.bitfield.imm8s = 1;
2514 t.bitfield.imm16 = 1;
2515 t.bitfield.imm32 = 1;
2516 t.bitfield.imm32s = 1;
2517 }
2518 else if (fits_in_signed_byte (num))
2519 {
2520 t.bitfield.imm8 = 1;
2521 t.bitfield.imm8s = 1;
2522 t.bitfield.imm16 = 1;
2523 t.bitfield.imm32 = 1;
2524 t.bitfield.imm32s = 1;
2525 }
2526 else if (fits_in_unsigned_byte (num))
2527 {
2528 t.bitfield.imm8 = 1;
2529 t.bitfield.imm16 = 1;
2530 t.bitfield.imm32 = 1;
2531 t.bitfield.imm32s = 1;
2532 }
2533 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2534 {
2535 t.bitfield.imm16 = 1;
2536 t.bitfield.imm32 = 1;
2537 t.bitfield.imm32s = 1;
2538 }
2539 else if (fits_in_signed_long (num))
2540 {
2541 t.bitfield.imm32 = 1;
2542 t.bitfield.imm32s = 1;
2543 }
2544 else if (fits_in_unsigned_long (num))
2545 t.bitfield.imm32 = 1;
2546
2547 return t;
2548 }
2549
2550 static offsetT
2551 offset_in_range (offsetT val, int size)
2552 {
2553 addressT mask;
2554
2555 switch (size)
2556 {
2557 case 1: mask = ((addressT) 1 << 8) - 1; break;
2558 case 2: mask = ((addressT) 1 << 16) - 1; break;
2559 case 4: mask = ((addressT) 2 << 31) - 1; break;
2560 #ifdef BFD64
2561 case 8: mask = ((addressT) 2 << 63) - 1; break;
2562 #endif
2563 default: abort ();
2564 }
2565
2566 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2567 {
2568 char buf1[40], buf2[40];
2569
2570 bfd_sprintf_vma (stdoutput, buf1, val);
2571 bfd_sprintf_vma (stdoutput, buf2, val & mask);
2572 as_warn (_("%s shortened to %s"), buf1, buf2);
2573 }
2574 return val & mask;
2575 }
2576
2577 enum PREFIX_GROUP
2578 {
2579 PREFIX_EXIST = 0,
2580 PREFIX_LOCK,
2581 PREFIX_REP,
2582 PREFIX_DS,
2583 PREFIX_OTHER
2584 };
2585
2586 /* Returns
2587 a. PREFIX_EXIST if attempting to add a prefix where one from the
2588 same class already exists.
2589 b. PREFIX_LOCK if lock prefix is added.
2590 c. PREFIX_REP if rep/repne prefix is added.
2591 d. PREFIX_DS if ds prefix is added.
2592 e. PREFIX_OTHER if other prefix is added.
2593 */
2594
2595 static enum PREFIX_GROUP
2596 add_prefix (unsigned int prefix)
2597 {
2598 enum PREFIX_GROUP ret = PREFIX_OTHER;
2599 unsigned int q;
2600
2601 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2602 && flag_code == CODE_64BIT)
2603 {
2604 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2605 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2606 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2607 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2608 ret = PREFIX_EXIST;
2609 q = REX_PREFIX;
2610 }
2611 else
2612 {
2613 switch (prefix)
2614 {
2615 default:
2616 abort ();
2617
2618 case DS_PREFIX_OPCODE:
2619 ret = PREFIX_DS;
2620 /* Fall through. */
2621 case CS_PREFIX_OPCODE:
2622 case ES_PREFIX_OPCODE:
2623 case FS_PREFIX_OPCODE:
2624 case GS_PREFIX_OPCODE:
2625 case SS_PREFIX_OPCODE:
2626 q = SEG_PREFIX;
2627 break;
2628
2629 case REPNE_PREFIX_OPCODE:
2630 case REPE_PREFIX_OPCODE:
2631 q = REP_PREFIX;
2632 ret = PREFIX_REP;
2633 break;
2634
2635 case LOCK_PREFIX_OPCODE:
2636 q = LOCK_PREFIX;
2637 ret = PREFIX_LOCK;
2638 break;
2639
2640 case FWAIT_OPCODE:
2641 q = WAIT_PREFIX;
2642 break;
2643
2644 case ADDR_PREFIX_OPCODE:
2645 q = ADDR_PREFIX;
2646 break;
2647
2648 case DATA_PREFIX_OPCODE:
2649 q = DATA_PREFIX;
2650 break;
2651 }
2652 if (i.prefix[q] != 0)
2653 ret = PREFIX_EXIST;
2654 }
2655
2656 if (ret)
2657 {
2658 if (!i.prefix[q])
2659 ++i.prefixes;
2660 i.prefix[q] |= prefix;
2661 }
2662 else
2663 as_bad (_("same type of prefix used twice"));
2664
2665 return ret;
2666 }
2667
2668 static void
2669 update_code_flag (int value, int check)
2670 {
2671 PRINTF_LIKE ((*as_error));
2672
2673 flag_code = (enum flag_code) value;
2674 if (flag_code == CODE_64BIT)
2675 {
2676 cpu_arch_flags.bitfield.cpu64 = 1;
2677 cpu_arch_flags.bitfield.cpuno64 = 0;
2678 }
2679 else
2680 {
2681 cpu_arch_flags.bitfield.cpu64 = 0;
2682 cpu_arch_flags.bitfield.cpuno64 = 1;
2683 }
2684 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2685 {
2686 if (check)
2687 as_error = as_fatal;
2688 else
2689 as_error = as_bad;
2690 (*as_error) (_("64bit mode not supported on `%s'."),
2691 cpu_arch_name ? cpu_arch_name : default_arch);
2692 }
2693 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2694 {
2695 if (check)
2696 as_error = as_fatal;
2697 else
2698 as_error = as_bad;
2699 (*as_error) (_("32bit mode not supported on `%s'."),
2700 cpu_arch_name ? cpu_arch_name : default_arch);
2701 }
2702 stackop_size = '\0';
2703 }
2704
2705 static void
2706 set_code_flag (int value)
2707 {
2708 update_code_flag (value, 0);
2709 }
2710
2711 static void
2712 set_16bit_gcc_code_flag (int new_code_flag)
2713 {
2714 flag_code = (enum flag_code) new_code_flag;
2715 if (flag_code != CODE_16BIT)
2716 abort ();
2717 cpu_arch_flags.bitfield.cpu64 = 0;
2718 cpu_arch_flags.bitfield.cpuno64 = 1;
2719 stackop_size = LONG_MNEM_SUFFIX;
2720 }
2721
2722 static void
2723 set_intel_syntax (int syntax_flag)
2724 {
2725 /* Find out if register prefixing is specified. */
2726 int ask_naked_reg = 0;
2727
2728 SKIP_WHITESPACE ();
2729 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2730 {
2731 char *string;
2732 int e = get_symbol_name (&string);
2733
2734 if (strcmp (string, "prefix") == 0)
2735 ask_naked_reg = 1;
2736 else if (strcmp (string, "noprefix") == 0)
2737 ask_naked_reg = -1;
2738 else
2739 as_bad (_("bad argument to syntax directive."));
2740 (void) restore_line_pointer (e);
2741 }
2742 demand_empty_rest_of_line ();
2743
2744 intel_syntax = syntax_flag;
2745
2746 if (ask_naked_reg == 0)
2747 allow_naked_reg = (intel_syntax
2748 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2749 else
2750 allow_naked_reg = (ask_naked_reg < 0);
2751
2752 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2753
2754 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2755 identifier_chars['$'] = intel_syntax ? '$' : 0;
2756 register_prefix = allow_naked_reg ? "" : "%";
2757 }
2758
2759 static void
2760 set_intel_mnemonic (int mnemonic_flag)
2761 {
2762 intel_mnemonic = mnemonic_flag;
2763 }
2764
2765 static void
2766 set_allow_index_reg (int flag)
2767 {
2768 allow_index_reg = flag;
2769 }
2770
2771 static void
2772 set_check (int what)
2773 {
2774 enum check_kind *kind;
2775 const char *str;
2776
2777 if (what)
2778 {
2779 kind = &operand_check;
2780 str = "operand";
2781 }
2782 else
2783 {
2784 kind = &sse_check;
2785 str = "sse";
2786 }
2787
2788 SKIP_WHITESPACE ();
2789
2790 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2791 {
2792 char *string;
2793 int e = get_symbol_name (&string);
2794
2795 if (strcmp (string, "none") == 0)
2796 *kind = check_none;
2797 else if (strcmp (string, "warning") == 0)
2798 *kind = check_warning;
2799 else if (strcmp (string, "error") == 0)
2800 *kind = check_error;
2801 else
2802 as_bad (_("bad argument to %s_check directive."), str);
2803 (void) restore_line_pointer (e);
2804 }
2805 else
2806 as_bad (_("missing argument for %s_check directive"), str);
2807
2808 demand_empty_rest_of_line ();
2809 }
2810
2811 static void
2812 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2813 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2814 {
2815 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2816 static const char *arch;
2817
2818 /* Intel LIOM is only supported on ELF. */
2819 if (!IS_ELF)
2820 return;
2821
2822 if (!arch)
2823 {
2824 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2825 use default_arch. */
2826 arch = cpu_arch_name;
2827 if (!arch)
2828 arch = default_arch;
2829 }
2830
2831 /* If we are targeting Intel MCU, we must enable it. */
2832 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2833 || new_flag.bitfield.cpuiamcu)
2834 return;
2835
2836 /* If we are targeting Intel L1OM, we must enable it. */
2837 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2838 || new_flag.bitfield.cpul1om)
2839 return;
2840
2841 /* If we are targeting Intel K1OM, we must enable it. */
2842 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2843 || new_flag.bitfield.cpuk1om)
2844 return;
2845
2846 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2847 #endif
2848 }
2849
2850 static void
2851 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2852 {
2853 SKIP_WHITESPACE ();
2854
2855 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2856 {
2857 char *string;
2858 int e = get_symbol_name (&string);
2859 unsigned int j;
2860 i386_cpu_flags flags;
2861
2862 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2863 {
2864 if (strcmp (string, cpu_arch[j].name) == 0)
2865 {
2866 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2867
2868 if (*string != '.')
2869 {
2870 cpu_arch_name = cpu_arch[j].name;
2871 cpu_sub_arch_name = NULL;
2872 cpu_arch_flags = cpu_arch[j].flags;
2873 if (flag_code == CODE_64BIT)
2874 {
2875 cpu_arch_flags.bitfield.cpu64 = 1;
2876 cpu_arch_flags.bitfield.cpuno64 = 0;
2877 }
2878 else
2879 {
2880 cpu_arch_flags.bitfield.cpu64 = 0;
2881 cpu_arch_flags.bitfield.cpuno64 = 1;
2882 }
2883 cpu_arch_isa = cpu_arch[j].type;
2884 cpu_arch_isa_flags = cpu_arch[j].flags;
2885 if (!cpu_arch_tune_set)
2886 {
2887 cpu_arch_tune = cpu_arch_isa;
2888 cpu_arch_tune_flags = cpu_arch_isa_flags;
2889 }
2890 break;
2891 }
2892
2893 flags = cpu_flags_or (cpu_arch_flags,
2894 cpu_arch[j].flags);
2895
2896 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2897 {
2898 if (cpu_sub_arch_name)
2899 {
2900 char *name = cpu_sub_arch_name;
2901 cpu_sub_arch_name = concat (name,
2902 cpu_arch[j].name,
2903 (const char *) NULL);
2904 free (name);
2905 }
2906 else
2907 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2908 cpu_arch_flags = flags;
2909 cpu_arch_isa_flags = flags;
2910 }
2911 else
2912 cpu_arch_isa_flags
2913 = cpu_flags_or (cpu_arch_isa_flags,
2914 cpu_arch[j].flags);
2915 (void) restore_line_pointer (e);
2916 demand_empty_rest_of_line ();
2917 return;
2918 }
2919 }
2920
2921 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2922 {
2923 /* Disable an ISA extension. */
2924 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2925 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2926 {
2927 flags = cpu_flags_and_not (cpu_arch_flags,
2928 cpu_noarch[j].flags);
2929 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2930 {
2931 if (cpu_sub_arch_name)
2932 {
2933 char *name = cpu_sub_arch_name;
2934 cpu_sub_arch_name = concat (name, string,
2935 (const char *) NULL);
2936 free (name);
2937 }
2938 else
2939 cpu_sub_arch_name = xstrdup (string);
2940 cpu_arch_flags = flags;
2941 cpu_arch_isa_flags = flags;
2942 }
2943 (void) restore_line_pointer (e);
2944 demand_empty_rest_of_line ();
2945 return;
2946 }
2947
2948 j = ARRAY_SIZE (cpu_arch);
2949 }
2950
2951 if (j >= ARRAY_SIZE (cpu_arch))
2952 as_bad (_("no such architecture: `%s'"), string);
2953
2954 *input_line_pointer = e;
2955 }
2956 else
2957 as_bad (_("missing cpu architecture"));
2958
2959 no_cond_jump_promotion = 0;
2960 if (*input_line_pointer == ','
2961 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2962 {
2963 char *string;
2964 char e;
2965
2966 ++input_line_pointer;
2967 e = get_symbol_name (&string);
2968
2969 if (strcmp (string, "nojumps") == 0)
2970 no_cond_jump_promotion = 1;
2971 else if (strcmp (string, "jumps") == 0)
2972 ;
2973 else
2974 as_bad (_("no such architecture modifier: `%s'"), string);
2975
2976 (void) restore_line_pointer (e);
2977 }
2978
2979 demand_empty_rest_of_line ();
2980 }
2981
2982 enum bfd_architecture
2983 i386_arch (void)
2984 {
2985 if (cpu_arch_isa == PROCESSOR_L1OM)
2986 {
2987 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2988 || flag_code != CODE_64BIT)
2989 as_fatal (_("Intel L1OM is 64bit ELF only"));
2990 return bfd_arch_l1om;
2991 }
2992 else if (cpu_arch_isa == PROCESSOR_K1OM)
2993 {
2994 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2995 || flag_code != CODE_64BIT)
2996 as_fatal (_("Intel K1OM is 64bit ELF only"));
2997 return bfd_arch_k1om;
2998 }
2999 else if (cpu_arch_isa == PROCESSOR_IAMCU)
3000 {
3001 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
3002 || flag_code == CODE_64BIT)
3003 as_fatal (_("Intel MCU is 32bit ELF only"));
3004 return bfd_arch_iamcu;
3005 }
3006 else
3007 return bfd_arch_i386;
3008 }
3009
3010 unsigned long
3011 i386_mach (void)
3012 {
3013 if (startswith (default_arch, "x86_64"))
3014 {
3015 if (cpu_arch_isa == PROCESSOR_L1OM)
3016 {
3017 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
3018 || default_arch[6] != '\0')
3019 as_fatal (_("Intel L1OM is 64bit ELF only"));
3020 return bfd_mach_l1om;
3021 }
3022 else if (cpu_arch_isa == PROCESSOR_K1OM)
3023 {
3024 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
3025 || default_arch[6] != '\0')
3026 as_fatal (_("Intel K1OM is 64bit ELF only"));
3027 return bfd_mach_k1om;
3028 }
3029 else if (default_arch[6] == '\0')
3030 return bfd_mach_x86_64;
3031 else
3032 return bfd_mach_x64_32;
3033 }
3034 else if (!strcmp (default_arch, "i386")
3035 || !strcmp (default_arch, "iamcu"))
3036 {
3037 if (cpu_arch_isa == PROCESSOR_IAMCU)
3038 {
3039 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
3040 as_fatal (_("Intel MCU is 32bit ELF only"));
3041 return bfd_mach_i386_iamcu;
3042 }
3043 else
3044 return bfd_mach_i386_i386;
3045 }
3046 else
3047 as_fatal (_("unknown architecture"));
3048 }
3049 \f
3050 void
3051 md_begin (void)
3052 {
3053 /* Support pseudo prefixes like {disp32}. */
3054 lex_type ['{'] = LEX_BEGIN_NAME;
3055
3056 /* Initialize op_hash hash table. */
3057 op_hash = str_htab_create ();
3058
3059 {
3060 const insn_template *optab;
3061 templates *core_optab;
3062
3063 /* Setup for loop. */
3064 optab = i386_optab;
3065 core_optab = XNEW (templates);
3066 core_optab->start = optab;
3067
3068 while (1)
3069 {
3070 ++optab;
3071 if (optab->name == NULL
3072 || strcmp (optab->name, (optab - 1)->name) != 0)
3073 {
3074 /* different name --> ship out current template list;
3075 add to hash table; & begin anew. */
3076 core_optab->end = optab;
3077 if (str_hash_insert (op_hash, (optab - 1)->name, core_optab, 0))
3078 as_fatal (_("duplicate %s"), (optab - 1)->name);
3079
3080 if (optab->name == NULL)
3081 break;
3082 core_optab = XNEW (templates);
3083 core_optab->start = optab;
3084 }
3085 }
3086 }
3087
3088 /* Initialize reg_hash hash table. */
3089 reg_hash = str_htab_create ();
3090 {
3091 const reg_entry *regtab;
3092 unsigned int regtab_size = i386_regtab_size;
3093
3094 for (regtab = i386_regtab; regtab_size--; regtab++)
3095 {
3096 switch (regtab->reg_type.bitfield.class)
3097 {
3098 case Reg:
3099 if (regtab->reg_type.bitfield.dword)
3100 {
3101 if (regtab->reg_type.bitfield.instance == Accum)
3102 reg_eax = regtab;
3103 }
3104 else if (regtab->reg_type.bitfield.tbyte)
3105 {
3106 /* There's no point inserting st(<N>) in the hash table, as
3107 parentheses aren't included in register_chars[] anyway. */
3108 if (regtab->reg_type.bitfield.instance != Accum)
3109 continue;
3110 reg_st0 = regtab;
3111 }
3112 break;
3113
3114 case SReg:
3115 switch (regtab->reg_num)
3116 {
3117 case 0: reg_es = regtab; break;
3118 case 2: reg_ss = regtab; break;
3119 case 3: reg_ds = regtab; break;
3120 }
3121 break;
3122
3123 case RegMask:
3124 if (!regtab->reg_num)
3125 reg_k0 = regtab;
3126 break;
3127 }
3128
3129 if (str_hash_insert (reg_hash, regtab->reg_name, regtab, 0) != NULL)
3130 as_fatal (_("duplicate %s"), regtab->reg_name);
3131 }
3132 }
3133
3134 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
3135 {
3136 int c;
3137 char *p;
3138
3139 for (c = 0; c < 256; c++)
3140 {
3141 if (ISDIGIT (c) || ISLOWER (c))
3142 {
3143 mnemonic_chars[c] = c;
3144 register_chars[c] = c;
3145 operand_chars[c] = c;
3146 }
3147 else if (ISUPPER (c))
3148 {
3149 mnemonic_chars[c] = TOLOWER (c);
3150 register_chars[c] = mnemonic_chars[c];
3151 operand_chars[c] = c;
3152 }
3153 else if (c == '{' || c == '}')
3154 {
3155 mnemonic_chars[c] = c;
3156 operand_chars[c] = c;
3157 }
3158 #ifdef SVR4_COMMENT_CHARS
3159 else if (c == '\\' && strchr (i386_comment_chars, '/'))
3160 operand_chars[c] = c;
3161 #endif
3162
3163 if (ISALPHA (c) || ISDIGIT (c))
3164 identifier_chars[c] = c;
3165 else if (c >= 128)
3166 {
3167 identifier_chars[c] = c;
3168 operand_chars[c] = c;
3169 }
3170 }
3171
3172 #ifdef LEX_AT
3173 identifier_chars['@'] = '@';
3174 #endif
3175 #ifdef LEX_QM
3176 identifier_chars['?'] = '?';
3177 operand_chars['?'] = '?';
3178 #endif
3179 mnemonic_chars['_'] = '_';
3180 mnemonic_chars['-'] = '-';
3181 mnemonic_chars['.'] = '.';
3182 identifier_chars['_'] = '_';
3183 identifier_chars['.'] = '.';
3184
3185 for (p = operand_special_chars; *p != '\0'; p++)
3186 operand_chars[(unsigned char) *p] = *p;
3187 }
3188
3189 if (flag_code == CODE_64BIT)
3190 {
3191 #if defined (OBJ_COFF) && defined (TE_PE)
3192 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3193 ? 32 : 16);
3194 #else
3195 x86_dwarf2_return_column = 16;
3196 #endif
3197 x86_cie_data_alignment = -8;
3198 }
3199 else
3200 {
3201 x86_dwarf2_return_column = 8;
3202 x86_cie_data_alignment = -4;
3203 }
3204
3205 /* NB: FUSED_JCC_PADDING frag must have sufficient room so that it
3206 can be turned into BRANCH_PREFIX frag. */
3207 if (align_branch_prefix_size > MAX_FUSED_JCC_PADDING_SIZE)
3208 abort ();
3209 }
3210
3211 void
3212 i386_print_statistics (FILE *file)
3213 {
3214 htab_print_statistics (file, "i386 opcode", op_hash);
3215 htab_print_statistics (file, "i386 register", reg_hash);
3216 }
3217 \f
3218 #ifdef DEBUG386
3219
3220 /* Debugging routines for md_assemble. */
3221 static void pte (insn_template *);
3222 static void pt (i386_operand_type);
3223 static void pe (expressionS *);
3224 static void ps (symbolS *);
3225
3226 static void
3227 pi (const char *line, i386_insn *x)
3228 {
3229 unsigned int j;
3230
3231 fprintf (stdout, "%s: template ", line);
3232 pte (&x->tm);
3233 fprintf (stdout, " address: base %s index %s scale %x\n",
3234 x->base_reg ? x->base_reg->reg_name : "none",
3235 x->index_reg ? x->index_reg->reg_name : "none",
3236 x->log2_scale_factor);
3237 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
3238 x->rm.mode, x->rm.reg, x->rm.regmem);
3239 fprintf (stdout, " sib: base %x index %x scale %x\n",
3240 x->sib.base, x->sib.index, x->sib.scale);
3241 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
3242 (x->rex & REX_W) != 0,
3243 (x->rex & REX_R) != 0,
3244 (x->rex & REX_X) != 0,
3245 (x->rex & REX_B) != 0);
3246 for (j = 0; j < x->operands; j++)
3247 {
3248 fprintf (stdout, " #%d: ", j + 1);
3249 pt (x->types[j]);
3250 fprintf (stdout, "\n");
3251 if (x->types[j].bitfield.class == Reg
3252 || x->types[j].bitfield.class == RegMMX
3253 || x->types[j].bitfield.class == RegSIMD
3254 || x->types[j].bitfield.class == RegMask
3255 || x->types[j].bitfield.class == SReg
3256 || x->types[j].bitfield.class == RegCR
3257 || x->types[j].bitfield.class == RegDR
3258 || x->types[j].bitfield.class == RegTR
3259 || x->types[j].bitfield.class == RegBND)
3260 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3261 if (operand_type_check (x->types[j], imm))
3262 pe (x->op[j].imms);
3263 if (operand_type_check (x->types[j], disp))
3264 pe (x->op[j].disps);
3265 }
3266 }
3267
3268 static void
3269 pte (insn_template *t)
3270 {
3271 static const unsigned char opc_pfx[] = { 0, 0x66, 0xf3, 0xf2 };
3272 static const char *const opc_spc[] = {
3273 NULL, "0f", "0f38", "0f3a", NULL, NULL, NULL, NULL,
3274 "XOP08", "XOP09", "XOP0A",
3275 };
3276 unsigned int j;
3277
3278 fprintf (stdout, " %d operands ", t->operands);
3279 if (opc_pfx[t->opcode_modifier.opcodeprefix])
3280 fprintf (stdout, "pfx %x ", opc_pfx[t->opcode_modifier.opcodeprefix]);
3281 if (opc_spc[t->opcode_modifier.opcodespace])
3282 fprintf (stdout, "space %s ", opc_spc[t->opcode_modifier.opcodespace]);
3283 fprintf (stdout, "opcode %x ", t->base_opcode);
3284 if (t->extension_opcode != None)
3285 fprintf (stdout, "ext %x ", t->extension_opcode);
3286 if (t->opcode_modifier.d)
3287 fprintf (stdout, "D");
3288 if (t->opcode_modifier.w)
3289 fprintf (stdout, "W");
3290 fprintf (stdout, "\n");
3291 for (j = 0; j < t->operands; j++)
3292 {
3293 fprintf (stdout, " #%d type ", j + 1);
3294 pt (t->operand_types[j]);
3295 fprintf (stdout, "\n");
3296 }
3297 }
3298
3299 static void
3300 pe (expressionS *e)
3301 {
3302 fprintf (stdout, " operation %d\n", e->X_op);
3303 fprintf (stdout, " add_number %" BFD_VMA_FMT "d (%" BFD_VMA_FMT "x)\n",
3304 e->X_add_number, e->X_add_number);
3305 if (e->X_add_symbol)
3306 {
3307 fprintf (stdout, " add_symbol ");
3308 ps (e->X_add_symbol);
3309 fprintf (stdout, "\n");
3310 }
3311 if (e->X_op_symbol)
3312 {
3313 fprintf (stdout, " op_symbol ");
3314 ps (e->X_op_symbol);
3315 fprintf (stdout, "\n");
3316 }
3317 }
3318
3319 static void
3320 ps (symbolS *s)
3321 {
3322 fprintf (stdout, "%s type %s%s",
3323 S_GET_NAME (s),
3324 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3325 segment_name (S_GET_SEGMENT (s)));
3326 }
3327
3328 static struct type_name
3329 {
3330 i386_operand_type mask;
3331 const char *name;
3332 }
3333 const type_names[] =
3334 {
3335 { OPERAND_TYPE_REG8, "r8" },
3336 { OPERAND_TYPE_REG16, "r16" },
3337 { OPERAND_TYPE_REG32, "r32" },
3338 { OPERAND_TYPE_REG64, "r64" },
3339 { OPERAND_TYPE_ACC8, "acc8" },
3340 { OPERAND_TYPE_ACC16, "acc16" },
3341 { OPERAND_TYPE_ACC32, "acc32" },
3342 { OPERAND_TYPE_ACC64, "acc64" },
3343 { OPERAND_TYPE_IMM8, "i8" },
3344 { OPERAND_TYPE_IMM8, "i8s" },
3345 { OPERAND_TYPE_IMM16, "i16" },
3346 { OPERAND_TYPE_IMM32, "i32" },
3347 { OPERAND_TYPE_IMM32S, "i32s" },
3348 { OPERAND_TYPE_IMM64, "i64" },
3349 { OPERAND_TYPE_IMM1, "i1" },
3350 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3351 { OPERAND_TYPE_DISP8, "d8" },
3352 { OPERAND_TYPE_DISP16, "d16" },
3353 { OPERAND_TYPE_DISP32, "d32" },
3354 { OPERAND_TYPE_DISP32S, "d32s" },
3355 { OPERAND_TYPE_DISP64, "d64" },
3356 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3357 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3358 { OPERAND_TYPE_CONTROL, "control reg" },
3359 { OPERAND_TYPE_TEST, "test reg" },
3360 { OPERAND_TYPE_DEBUG, "debug reg" },
3361 { OPERAND_TYPE_FLOATREG, "FReg" },
3362 { OPERAND_TYPE_FLOATACC, "FAcc" },
3363 { OPERAND_TYPE_SREG, "SReg" },
3364 { OPERAND_TYPE_REGMMX, "rMMX" },
3365 { OPERAND_TYPE_REGXMM, "rXMM" },
3366 { OPERAND_TYPE_REGYMM, "rYMM" },
3367 { OPERAND_TYPE_REGZMM, "rZMM" },
3368 { OPERAND_TYPE_REGTMM, "rTMM" },
3369 { OPERAND_TYPE_REGMASK, "Mask reg" },
3370 };
3371
3372 static void
3373 pt (i386_operand_type t)
3374 {
3375 unsigned int j;
3376 i386_operand_type a;
3377
3378 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3379 {
3380 a = operand_type_and (t, type_names[j].mask);
3381 if (operand_type_equal (&a, &type_names[j].mask))
3382 fprintf (stdout, "%s, ", type_names[j].name);
3383 }
3384 fflush (stdout);
3385 }
3386
3387 #endif /* DEBUG386 */
3388 \f
3389 static bfd_reloc_code_real_type
3390 reloc (unsigned int size,
3391 int pcrel,
3392 int sign,
3393 bfd_reloc_code_real_type other)
3394 {
3395 if (other != NO_RELOC)
3396 {
3397 reloc_howto_type *rel;
3398
3399 if (size == 8)
3400 switch (other)
3401 {
3402 case BFD_RELOC_X86_64_GOT32:
3403 return BFD_RELOC_X86_64_GOT64;
3404 break;
3405 case BFD_RELOC_X86_64_GOTPLT64:
3406 return BFD_RELOC_X86_64_GOTPLT64;
3407 break;
3408 case BFD_RELOC_X86_64_PLTOFF64:
3409 return BFD_RELOC_X86_64_PLTOFF64;
3410 break;
3411 case BFD_RELOC_X86_64_GOTPC32:
3412 other = BFD_RELOC_X86_64_GOTPC64;
3413 break;
3414 case BFD_RELOC_X86_64_GOTPCREL:
3415 other = BFD_RELOC_X86_64_GOTPCREL64;
3416 break;
3417 case BFD_RELOC_X86_64_TPOFF32:
3418 other = BFD_RELOC_X86_64_TPOFF64;
3419 break;
3420 case BFD_RELOC_X86_64_DTPOFF32:
3421 other = BFD_RELOC_X86_64_DTPOFF64;
3422 break;
3423 default:
3424 break;
3425 }
3426
3427 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3428 if (other == BFD_RELOC_SIZE32)
3429 {
3430 if (size == 8)
3431 other = BFD_RELOC_SIZE64;
3432 if (pcrel)
3433 {
3434 as_bad (_("there are no pc-relative size relocations"));
3435 return NO_RELOC;
3436 }
3437 }
3438 #endif
3439
3440 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3441 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3442 sign = -1;
3443
3444 rel = bfd_reloc_type_lookup (stdoutput, other);
3445 if (!rel)
3446 as_bad (_("unknown relocation (%u)"), other);
3447 else if (size != bfd_get_reloc_size (rel))
3448 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3449 bfd_get_reloc_size (rel),
3450 size);
3451 else if (pcrel && !rel->pc_relative)
3452 as_bad (_("non-pc-relative relocation for pc-relative field"));
3453 else if ((rel->complain_on_overflow == complain_overflow_signed
3454 && !sign)
3455 || (rel->complain_on_overflow == complain_overflow_unsigned
3456 && sign > 0))
3457 as_bad (_("relocated field and relocation type differ in signedness"));
3458 else
3459 return other;
3460 return NO_RELOC;
3461 }
3462
3463 if (pcrel)
3464 {
3465 if (!sign)
3466 as_bad (_("there are no unsigned pc-relative relocations"));
3467 switch (size)
3468 {
3469 case 1: return BFD_RELOC_8_PCREL;
3470 case 2: return BFD_RELOC_16_PCREL;
3471 case 4: return BFD_RELOC_32_PCREL;
3472 case 8: return BFD_RELOC_64_PCREL;
3473 }
3474 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3475 }
3476 else
3477 {
3478 if (sign > 0)
3479 switch (size)
3480 {
3481 case 4: return BFD_RELOC_X86_64_32S;
3482 }
3483 else
3484 switch (size)
3485 {
3486 case 1: return BFD_RELOC_8;
3487 case 2: return BFD_RELOC_16;
3488 case 4: return BFD_RELOC_32;
3489 case 8: return BFD_RELOC_64;
3490 }
3491 as_bad (_("cannot do %s %u byte relocation"),
3492 sign > 0 ? "signed" : "unsigned", size);
3493 }
3494
3495 return NO_RELOC;
3496 }
3497
3498 /* Here we decide which fixups can be adjusted to make them relative to
3499 the beginning of the section instead of the symbol. Basically we need
3500 to make sure that the dynamic relocations are done correctly, so in
3501 some cases we force the original symbol to be used. */
3502
3503 int
3504 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3505 {
3506 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3507 if (!IS_ELF)
3508 return 1;
3509
3510 /* Don't adjust pc-relative references to merge sections in 64-bit
3511 mode. */
3512 if (use_rela_relocations
3513 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3514 && fixP->fx_pcrel)
3515 return 0;
3516
3517 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3518 and changed later by validate_fix. */
3519 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3520 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3521 return 0;
3522
3523 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3524 for size relocations. */
3525 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3526 || fixP->fx_r_type == BFD_RELOC_SIZE64
3527 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3528 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3529 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3530 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3531 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3532 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3533 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3534 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3535 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3536 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3537 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3538 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3539 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3540 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3541 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3542 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3543 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3544 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3545 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3546 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3547 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3548 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3549 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3550 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3551 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3552 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3553 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3554 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3555 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3556 return 0;
3557 #endif
3558 return 1;
3559 }
3560
3561 static INLINE bool
3562 want_disp32 (const insn_template *t)
3563 {
3564 return flag_code != CODE_64BIT
3565 || i.prefix[ADDR_PREFIX]
3566 || (t->base_opcode == 0x8d
3567 && t->opcode_modifier.opcodespace == SPACE_BASE
3568 && (!i.types[1].bitfield.qword
3569 || t->opcode_modifier.size == SIZE32));
3570 }
3571
3572 static int
3573 intel_float_operand (const char *mnemonic)
3574 {
3575 /* Note that the value returned is meaningful only for opcodes with (memory)
3576 operands, hence the code here is free to improperly handle opcodes that
3577 have no operands (for better performance and smaller code). */
3578
3579 if (mnemonic[0] != 'f')
3580 return 0; /* non-math */
3581
3582 switch (mnemonic[1])
3583 {
3584 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3585 the fs segment override prefix not currently handled because no
3586 call path can make opcodes without operands get here */
3587 case 'i':
3588 return 2 /* integer op */;
3589 case 'l':
3590 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3591 return 3; /* fldcw/fldenv */
3592 break;
3593 case 'n':
3594 if (mnemonic[2] != 'o' /* fnop */)
3595 return 3; /* non-waiting control op */
3596 break;
3597 case 'r':
3598 if (mnemonic[2] == 's')
3599 return 3; /* frstor/frstpm */
3600 break;
3601 case 's':
3602 if (mnemonic[2] == 'a')
3603 return 3; /* fsave */
3604 if (mnemonic[2] == 't')
3605 {
3606 switch (mnemonic[3])
3607 {
3608 case 'c': /* fstcw */
3609 case 'd': /* fstdw */
3610 case 'e': /* fstenv */
3611 case 's': /* fsts[gw] */
3612 return 3;
3613 }
3614 }
3615 break;
3616 case 'x':
3617 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3618 return 0; /* fxsave/fxrstor are not really math ops */
3619 break;
3620 }
3621
3622 return 1;
3623 }
3624
3625 static INLINE void
3626 install_template (const insn_template *t)
3627 {
3628 unsigned int l;
3629
3630 i.tm = *t;
3631
3632 /* Note that for pseudo prefixes this produces a length of 1. But for them
3633 the length isn't interesting at all. */
3634 for (l = 1; l < 4; ++l)
3635 if (!(t->base_opcode >> (8 * l)))
3636 break;
3637
3638 i.opcode_length = l;
3639 }
3640
3641 /* Build the VEX prefix. */
3642
3643 static void
3644 build_vex_prefix (const insn_template *t)
3645 {
3646 unsigned int register_specifier;
3647 unsigned int vector_length;
3648 unsigned int w;
3649
3650 /* Check register specifier. */
3651 if (i.vex.register_specifier)
3652 {
3653 register_specifier =
3654 ~register_number (i.vex.register_specifier) & 0xf;
3655 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3656 }
3657 else
3658 register_specifier = 0xf;
3659
3660 /* Use 2-byte VEX prefix by swapping destination and source operand
3661 if there are more than 1 register operand. */
3662 if (i.reg_operands > 1
3663 && i.vec_encoding != vex_encoding_vex3
3664 && i.dir_encoding == dir_encoding_default
3665 && i.operands == i.reg_operands
3666 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3667 && i.tm.opcode_modifier.opcodespace == SPACE_0F
3668 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3669 && i.rex == REX_B)
3670 {
3671 unsigned int xchg = i.operands - 1;
3672 union i386_op temp_op;
3673 i386_operand_type temp_type;
3674
3675 temp_type = i.types[xchg];
3676 i.types[xchg] = i.types[0];
3677 i.types[0] = temp_type;
3678 temp_op = i.op[xchg];
3679 i.op[xchg] = i.op[0];
3680 i.op[0] = temp_op;
3681
3682 gas_assert (i.rm.mode == 3);
3683
3684 i.rex = REX_R;
3685 xchg = i.rm.regmem;
3686 i.rm.regmem = i.rm.reg;
3687 i.rm.reg = xchg;
3688
3689 if (i.tm.opcode_modifier.d)
3690 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3691 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3692 else /* Use the next insn. */
3693 install_template (&t[1]);
3694 }
3695
3696 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3697 are no memory operands and at least 3 register ones. */
3698 if (i.reg_operands >= 3
3699 && i.vec_encoding != vex_encoding_vex3
3700 && i.reg_operands == i.operands - i.imm_operands
3701 && i.tm.opcode_modifier.vex
3702 && i.tm.opcode_modifier.commutative
3703 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3704 && i.rex == REX_B
3705 && i.vex.register_specifier
3706 && !(i.vex.register_specifier->reg_flags & RegRex))
3707 {
3708 unsigned int xchg = i.operands - i.reg_operands;
3709 union i386_op temp_op;
3710 i386_operand_type temp_type;
3711
3712 gas_assert (i.tm.opcode_modifier.opcodespace == SPACE_0F);
3713 gas_assert (!i.tm.opcode_modifier.sae);
3714 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3715 &i.types[i.operands - 3]));
3716 gas_assert (i.rm.mode == 3);
3717
3718 temp_type = i.types[xchg];
3719 i.types[xchg] = i.types[xchg + 1];
3720 i.types[xchg + 1] = temp_type;
3721 temp_op = i.op[xchg];
3722 i.op[xchg] = i.op[xchg + 1];
3723 i.op[xchg + 1] = temp_op;
3724
3725 i.rex = 0;
3726 xchg = i.rm.regmem | 8;
3727 i.rm.regmem = ~register_specifier & 0xf;
3728 gas_assert (!(i.rm.regmem & 8));
3729 i.vex.register_specifier += xchg - i.rm.regmem;
3730 register_specifier = ~xchg & 0xf;
3731 }
3732
3733 if (i.tm.opcode_modifier.vex == VEXScalar)
3734 vector_length = avxscalar;
3735 else if (i.tm.opcode_modifier.vex == VEX256)
3736 vector_length = 1;
3737 else
3738 {
3739 unsigned int op;
3740
3741 /* Determine vector length from the last multi-length vector
3742 operand. */
3743 vector_length = 0;
3744 for (op = t->operands; op--;)
3745 if (t->operand_types[op].bitfield.xmmword
3746 && t->operand_types[op].bitfield.ymmword
3747 && i.types[op].bitfield.ymmword)
3748 {
3749 vector_length = 1;
3750 break;
3751 }
3752 }
3753
3754 /* Check the REX.W bit and VEXW. */
3755 if (i.tm.opcode_modifier.vexw == VEXWIG)
3756 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3757 else if (i.tm.opcode_modifier.vexw)
3758 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3759 else
3760 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
3761
3762 /* Use 2-byte VEX prefix if possible. */
3763 if (w == 0
3764 && i.vec_encoding != vex_encoding_vex3
3765 && i.tm.opcode_modifier.opcodespace == SPACE_0F
3766 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3767 {
3768 /* 2-byte VEX prefix. */
3769 unsigned int r;
3770
3771 i.vex.length = 2;
3772 i.vex.bytes[0] = 0xc5;
3773
3774 /* Check the REX.R bit. */
3775 r = (i.rex & REX_R) ? 0 : 1;
3776 i.vex.bytes[1] = (r << 7
3777 | register_specifier << 3
3778 | vector_length << 2
3779 | i.tm.opcode_modifier.opcodeprefix);
3780 }
3781 else
3782 {
3783 /* 3-byte VEX prefix. */
3784 i.vex.length = 3;
3785
3786 switch (i.tm.opcode_modifier.opcodespace)
3787 {
3788 case SPACE_0F:
3789 case SPACE_0F38:
3790 case SPACE_0F3A:
3791 i.vex.bytes[0] = 0xc4;
3792 break;
3793 case SPACE_XOP08:
3794 case SPACE_XOP09:
3795 case SPACE_XOP0A:
3796 i.vex.bytes[0] = 0x8f;
3797 break;
3798 default:
3799 abort ();
3800 }
3801
3802 /* The high 3 bits of the second VEX byte are 1's compliment
3803 of RXB bits from REX. */
3804 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | i.tm.opcode_modifier.opcodespace;
3805
3806 i.vex.bytes[2] = (w << 7
3807 | register_specifier << 3
3808 | vector_length << 2
3809 | i.tm.opcode_modifier.opcodeprefix);
3810 }
3811 }
3812
3813 static INLINE bool
3814 is_evex_encoding (const insn_template *t)
3815 {
3816 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3817 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3818 || t->opcode_modifier.sae;
3819 }
3820
3821 static INLINE bool
3822 is_any_vex_encoding (const insn_template *t)
3823 {
3824 return t->opcode_modifier.vex || is_evex_encoding (t);
3825 }
3826
3827 /* Build the EVEX prefix. */
3828
3829 static void
3830 build_evex_prefix (void)
3831 {
3832 unsigned int register_specifier, w;
3833 rex_byte vrex_used = 0;
3834
3835 /* Check register specifier. */
3836 if (i.vex.register_specifier)
3837 {
3838 gas_assert ((i.vrex & REX_X) == 0);
3839
3840 register_specifier = i.vex.register_specifier->reg_num;
3841 if ((i.vex.register_specifier->reg_flags & RegRex))
3842 register_specifier += 8;
3843 /* The upper 16 registers are encoded in the fourth byte of the
3844 EVEX prefix. */
3845 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3846 i.vex.bytes[3] = 0x8;
3847 register_specifier = ~register_specifier & 0xf;
3848 }
3849 else
3850 {
3851 register_specifier = 0xf;
3852
3853 /* Encode upper 16 vector index register in the fourth byte of
3854 the EVEX prefix. */
3855 if (!(i.vrex & REX_X))
3856 i.vex.bytes[3] = 0x8;
3857 else
3858 vrex_used |= REX_X;
3859 }
3860
3861 /* 4 byte EVEX prefix. */
3862 i.vex.length = 4;
3863 i.vex.bytes[0] = 0x62;
3864
3865 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3866 bits from REX. */
3867 gas_assert (i.tm.opcode_modifier.opcodespace >= SPACE_0F);
3868 gas_assert (i.tm.opcode_modifier.opcodespace <= SPACE_0F3A);
3869 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | i.tm.opcode_modifier.opcodespace;
3870
3871 /* The fifth bit of the second EVEX byte is 1's compliment of the
3872 REX_R bit in VREX. */
3873 if (!(i.vrex & REX_R))
3874 i.vex.bytes[1] |= 0x10;
3875 else
3876 vrex_used |= REX_R;
3877
3878 if ((i.reg_operands + i.imm_operands) == i.operands)
3879 {
3880 /* When all operands are registers, the REX_X bit in REX is not
3881 used. We reuse it to encode the upper 16 registers, which is
3882 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3883 as 1's compliment. */
3884 if ((i.vrex & REX_B))
3885 {
3886 vrex_used |= REX_B;
3887 i.vex.bytes[1] &= ~0x40;
3888 }
3889 }
3890
3891 /* EVEX instructions shouldn't need the REX prefix. */
3892 i.vrex &= ~vrex_used;
3893 gas_assert (i.vrex == 0);
3894
3895 /* Check the REX.W bit and VEXW. */
3896 if (i.tm.opcode_modifier.vexw == VEXWIG)
3897 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3898 else if (i.tm.opcode_modifier.vexw)
3899 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3900 else
3901 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
3902
3903 /* The third byte of the EVEX prefix. */
3904 i.vex.bytes[2] = ((w << 7)
3905 | (register_specifier << 3)
3906 | 4 /* Encode the U bit. */
3907 | i.tm.opcode_modifier.opcodeprefix);
3908
3909 /* The fourth byte of the EVEX prefix. */
3910 /* The zeroing-masking bit. */
3911 if (i.mask.reg && i.mask.zeroing)
3912 i.vex.bytes[3] |= 0x80;
3913
3914 /* Don't always set the broadcast bit if there is no RC. */
3915 if (i.rounding.type == rc_none)
3916 {
3917 /* Encode the vector length. */
3918 unsigned int vec_length;
3919
3920 if (!i.tm.opcode_modifier.evex
3921 || i.tm.opcode_modifier.evex == EVEXDYN)
3922 {
3923 unsigned int op;
3924
3925 /* Determine vector length from the last multi-length vector
3926 operand. */
3927 for (op = i.operands; op--;)
3928 if (i.tm.operand_types[op].bitfield.xmmword
3929 + i.tm.operand_types[op].bitfield.ymmword
3930 + i.tm.operand_types[op].bitfield.zmmword > 1)
3931 {
3932 if (i.types[op].bitfield.zmmword)
3933 {
3934 i.tm.opcode_modifier.evex = EVEX512;
3935 break;
3936 }
3937 else if (i.types[op].bitfield.ymmword)
3938 {
3939 i.tm.opcode_modifier.evex = EVEX256;
3940 break;
3941 }
3942 else if (i.types[op].bitfield.xmmword)
3943 {
3944 i.tm.opcode_modifier.evex = EVEX128;
3945 break;
3946 }
3947 else if (i.broadcast.type && op == i.broadcast.operand)
3948 {
3949 switch (i.broadcast.bytes)
3950 {
3951 case 64:
3952 i.tm.opcode_modifier.evex = EVEX512;
3953 break;
3954 case 32:
3955 i.tm.opcode_modifier.evex = EVEX256;
3956 break;
3957 case 16:
3958 i.tm.opcode_modifier.evex = EVEX128;
3959 break;
3960 default:
3961 abort ();
3962 }
3963 break;
3964 }
3965 }
3966
3967 if (op >= MAX_OPERANDS)
3968 abort ();
3969 }
3970
3971 switch (i.tm.opcode_modifier.evex)
3972 {
3973 case EVEXLIG: /* LL' is ignored */
3974 vec_length = evexlig << 5;
3975 break;
3976 case EVEX128:
3977 vec_length = 0 << 5;
3978 break;
3979 case EVEX256:
3980 vec_length = 1 << 5;
3981 break;
3982 case EVEX512:
3983 vec_length = 2 << 5;
3984 break;
3985 default:
3986 abort ();
3987 break;
3988 }
3989 i.vex.bytes[3] |= vec_length;
3990 /* Encode the broadcast bit. */
3991 if (i.broadcast.type)
3992 i.vex.bytes[3] |= 0x10;
3993 }
3994 else if (i.rounding.type != saeonly)
3995 i.vex.bytes[3] |= 0x10 | (i.rounding.type << 5);
3996 else
3997 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3998
3999 if (i.mask.reg)
4000 i.vex.bytes[3] |= i.mask.reg->reg_num;
4001 }
4002
4003 static void
4004 process_immext (void)
4005 {
4006 expressionS *exp;
4007
4008 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
4009 which is coded in the same place as an 8-bit immediate field
4010 would be. Here we fake an 8-bit immediate operand from the
4011 opcode suffix stored in tm.extension_opcode.
4012
4013 AVX instructions also use this encoding, for some of
4014 3 argument instructions. */
4015
4016 gas_assert (i.imm_operands <= 1
4017 && (i.operands <= 2
4018 || (is_any_vex_encoding (&i.tm)
4019 && i.operands <= 4)));
4020
4021 exp = &im_expressions[i.imm_operands++];
4022 i.op[i.operands].imms = exp;
4023 i.types[i.operands] = imm8;
4024 i.operands++;
4025 exp->X_op = O_constant;
4026 exp->X_add_number = i.tm.extension_opcode;
4027 i.tm.extension_opcode = None;
4028 }
4029
4030
4031 static int
4032 check_hle (void)
4033 {
4034 switch (i.tm.opcode_modifier.prefixok)
4035 {
4036 default:
4037 abort ();
4038 case PrefixLock:
4039 case PrefixNone:
4040 case PrefixNoTrack:
4041 case PrefixRep:
4042 as_bad (_("invalid instruction `%s' after `%s'"),
4043 i.tm.name, i.hle_prefix);
4044 return 0;
4045 case PrefixHLELock:
4046 if (i.prefix[LOCK_PREFIX])
4047 return 1;
4048 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
4049 return 0;
4050 case PrefixHLEAny:
4051 return 1;
4052 case PrefixHLERelease:
4053 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
4054 {
4055 as_bad (_("instruction `%s' after `xacquire' not allowed"),
4056 i.tm.name);
4057 return 0;
4058 }
4059 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
4060 {
4061 as_bad (_("memory destination needed for instruction `%s'"
4062 " after `xrelease'"), i.tm.name);
4063 return 0;
4064 }
4065 return 1;
4066 }
4067 }
4068
4069 /* Try the shortest encoding by shortening operand size. */
4070
4071 static void
4072 optimize_encoding (void)
4073 {
4074 unsigned int j;
4075
4076 if (i.tm.opcode_modifier.opcodespace == SPACE_BASE
4077 && i.tm.base_opcode == 0x8d)
4078 {
4079 /* Optimize: -O:
4080 lea symbol, %rN -> mov $symbol, %rN
4081 lea (%rM), %rN -> mov %rM, %rN
4082 lea (,%rM,1), %rN -> mov %rM, %rN
4083
4084 and in 32-bit mode for 16-bit addressing
4085
4086 lea (%rM), %rN -> movzx %rM, %rN
4087
4088 and in 64-bit mode zap 32-bit addressing in favor of using a
4089 32-bit (or less) destination.
4090 */
4091 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4092 {
4093 if (!i.op[1].regs->reg_type.bitfield.word)
4094 i.tm.opcode_modifier.size = SIZE32;
4095 i.prefix[ADDR_PREFIX] = 0;
4096 }
4097
4098 if (!i.index_reg && !i.base_reg)
4099 {
4100 /* Handle:
4101 lea symbol, %rN -> mov $symbol, %rN
4102 */
4103 if (flag_code == CODE_64BIT)
4104 {
4105 /* Don't transform a relocation to a 16-bit one. */
4106 if (i.op[0].disps
4107 && i.op[0].disps->X_op != O_constant
4108 && i.op[1].regs->reg_type.bitfield.word)
4109 return;
4110
4111 if (!i.op[1].regs->reg_type.bitfield.qword
4112 || i.tm.opcode_modifier.size == SIZE32)
4113 {
4114 i.tm.base_opcode = 0xb8;
4115 i.tm.opcode_modifier.modrm = 0;
4116 if (!i.op[1].regs->reg_type.bitfield.word)
4117 i.types[0].bitfield.imm32 = 1;
4118 else
4119 {
4120 i.tm.opcode_modifier.size = SIZE16;
4121 i.types[0].bitfield.imm16 = 1;
4122 }
4123 }
4124 else
4125 {
4126 /* Subject to further optimization below. */
4127 i.tm.base_opcode = 0xc7;
4128 i.tm.extension_opcode = 0;
4129 i.types[0].bitfield.imm32s = 1;
4130 i.types[0].bitfield.baseindex = 0;
4131 }
4132 }
4133 /* Outside of 64-bit mode address and operand sizes have to match if
4134 a relocation is involved, as otherwise we wouldn't (currently) or
4135 even couldn't express the relocation correctly. */
4136 else if (i.op[0].disps
4137 && i.op[0].disps->X_op != O_constant
4138 && ((!i.prefix[ADDR_PREFIX])
4139 != (flag_code == CODE_32BIT
4140 ? i.op[1].regs->reg_type.bitfield.dword
4141 : i.op[1].regs->reg_type.bitfield.word)))
4142 return;
4143 else
4144 {
4145 i.tm.base_opcode = 0xb8;
4146 i.tm.opcode_modifier.modrm = 0;
4147 if (i.op[1].regs->reg_type.bitfield.dword)
4148 i.types[0].bitfield.imm32 = 1;
4149 else
4150 i.types[0].bitfield.imm16 = 1;
4151
4152 if (i.op[0].disps
4153 && i.op[0].disps->X_op == O_constant
4154 && i.op[1].regs->reg_type.bitfield.dword
4155 /* NB: Add () to !i.prefix[ADDR_PREFIX] to silence
4156 GCC 5. */
4157 && (!i.prefix[ADDR_PREFIX]) != (flag_code == CODE_32BIT))
4158 i.op[0].disps->X_add_number &= 0xffff;
4159 }
4160
4161 i.tm.operand_types[0] = i.types[0];
4162 i.imm_operands = 1;
4163 if (!i.op[0].imms)
4164 {
4165 i.op[0].imms = &im_expressions[0];
4166 i.op[0].imms->X_op = O_absent;
4167 }
4168 }
4169 else if (i.op[0].disps
4170 && (i.op[0].disps->X_op != O_constant
4171 || i.op[0].disps->X_add_number))
4172 return;
4173 else
4174 {
4175 /* Handle:
4176 lea (%rM), %rN -> mov %rM, %rN
4177 lea (,%rM,1), %rN -> mov %rM, %rN
4178 lea (%rM), %rN -> movzx %rM, %rN
4179 */
4180 const reg_entry *addr_reg;
4181
4182 if (!i.index_reg && i.base_reg->reg_num != RegIP)
4183 addr_reg = i.base_reg;
4184 else if (!i.base_reg
4185 && i.index_reg->reg_num != RegIZ
4186 && !i.log2_scale_factor)
4187 addr_reg = i.index_reg;
4188 else
4189 return;
4190
4191 if (addr_reg->reg_type.bitfield.word
4192 && i.op[1].regs->reg_type.bitfield.dword)
4193 {
4194 if (flag_code != CODE_32BIT)
4195 return;
4196 i.tm.opcode_modifier.opcodespace = SPACE_0F;
4197 i.tm.base_opcode = 0xb7;
4198 }
4199 else
4200 i.tm.base_opcode = 0x8b;
4201
4202 if (addr_reg->reg_type.bitfield.dword
4203 && i.op[1].regs->reg_type.bitfield.qword)
4204 i.tm.opcode_modifier.size = SIZE32;
4205
4206 i.op[0].regs = addr_reg;
4207 i.reg_operands = 2;
4208 }
4209
4210 i.mem_operands = 0;
4211 i.disp_operands = 0;
4212 i.prefix[ADDR_PREFIX] = 0;
4213 i.prefix[SEG_PREFIX] = 0;
4214 i.seg[0] = NULL;
4215 }
4216
4217 if (optimize_for_space
4218 && i.tm.opcode_modifier.opcodespace == SPACE_BASE
4219 && i.reg_operands == 1
4220 && i.imm_operands == 1
4221 && !i.types[1].bitfield.byte
4222 && i.op[0].imms->X_op == O_constant
4223 && fits_in_imm7 (i.op[0].imms->X_add_number)
4224 && (i.tm.base_opcode == 0xa8
4225 || (i.tm.base_opcode == 0xf6
4226 && i.tm.extension_opcode == 0x0)))
4227 {
4228 /* Optimize: -Os:
4229 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
4230 */
4231 unsigned int base_regnum = i.op[1].regs->reg_num;
4232 if (flag_code == CODE_64BIT || base_regnum < 4)
4233 {
4234 i.types[1].bitfield.byte = 1;
4235 /* Ignore the suffix. */
4236 i.suffix = 0;
4237 /* Convert to byte registers. */
4238 if (i.types[1].bitfield.word)
4239 j = 16;
4240 else if (i.types[1].bitfield.dword)
4241 j = 32;
4242 else
4243 j = 48;
4244 if (!(i.op[1].regs->reg_flags & RegRex) && base_regnum < 4)
4245 j += 8;
4246 i.op[1].regs -= j;
4247 }
4248 }
4249 else if (flag_code == CODE_64BIT
4250 && i.tm.opcode_modifier.opcodespace == SPACE_BASE
4251 && ((i.types[1].bitfield.qword
4252 && i.reg_operands == 1
4253 && i.imm_operands == 1
4254 && i.op[0].imms->X_op == O_constant
4255 && ((i.tm.base_opcode == 0xb8
4256 && i.tm.extension_opcode == None
4257 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
4258 || (fits_in_imm31 (i.op[0].imms->X_add_number)
4259 && ((i.tm.base_opcode == 0x24
4260 || i.tm.base_opcode == 0xa8)
4261 || (i.tm.base_opcode == 0x80
4262 && i.tm.extension_opcode == 0x4)
4263 || ((i.tm.base_opcode == 0xf6
4264 || (i.tm.base_opcode | 1) == 0xc7)
4265 && i.tm.extension_opcode == 0x0)))
4266 || (fits_in_imm7 (i.op[0].imms->X_add_number)
4267 && i.tm.base_opcode == 0x83
4268 && i.tm.extension_opcode == 0x4)))
4269 || (i.types[0].bitfield.qword
4270 && ((i.reg_operands == 2
4271 && i.op[0].regs == i.op[1].regs
4272 && (i.tm.base_opcode == 0x30
4273 || i.tm.base_opcode == 0x28))
4274 || (i.reg_operands == 1
4275 && i.operands == 1
4276 && i.tm.base_opcode == 0x30)))))
4277 {
4278 /* Optimize: -O:
4279 andq $imm31, %r64 -> andl $imm31, %r32
4280 andq $imm7, %r64 -> andl $imm7, %r32
4281 testq $imm31, %r64 -> testl $imm31, %r32
4282 xorq %r64, %r64 -> xorl %r32, %r32
4283 subq %r64, %r64 -> subl %r32, %r32
4284 movq $imm31, %r64 -> movl $imm31, %r32
4285 movq $imm32, %r64 -> movl $imm32, %r32
4286 */
4287 i.tm.opcode_modifier.norex64 = 1;
4288 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
4289 {
4290 /* Handle
4291 movq $imm31, %r64 -> movl $imm31, %r32
4292 movq $imm32, %r64 -> movl $imm32, %r32
4293 */
4294 i.tm.operand_types[0].bitfield.imm32 = 1;
4295 i.tm.operand_types[0].bitfield.imm32s = 0;
4296 i.tm.operand_types[0].bitfield.imm64 = 0;
4297 i.types[0].bitfield.imm32 = 1;
4298 i.types[0].bitfield.imm32s = 0;
4299 i.types[0].bitfield.imm64 = 0;
4300 i.types[1].bitfield.dword = 1;
4301 i.types[1].bitfield.qword = 0;
4302 if ((i.tm.base_opcode | 1) == 0xc7)
4303 {
4304 /* Handle
4305 movq $imm31, %r64 -> movl $imm31, %r32
4306 */
4307 i.tm.base_opcode = 0xb8;
4308 i.tm.extension_opcode = None;
4309 i.tm.opcode_modifier.w = 0;
4310 i.tm.opcode_modifier.modrm = 0;
4311 }
4312 }
4313 }
4314 else if (optimize > 1
4315 && !optimize_for_space
4316 && i.tm.opcode_modifier.opcodespace == SPACE_BASE
4317 && i.reg_operands == 2
4318 && i.op[0].regs == i.op[1].regs
4319 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4320 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4321 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4322 {
4323 /* Optimize: -O2:
4324 andb %rN, %rN -> testb %rN, %rN
4325 andw %rN, %rN -> testw %rN, %rN
4326 andq %rN, %rN -> testq %rN, %rN
4327 orb %rN, %rN -> testb %rN, %rN
4328 orw %rN, %rN -> testw %rN, %rN
4329 orq %rN, %rN -> testq %rN, %rN
4330
4331 and outside of 64-bit mode
4332
4333 andl %rN, %rN -> testl %rN, %rN
4334 orl %rN, %rN -> testl %rN, %rN
4335 */
4336 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4337 }
4338 else if (i.reg_operands == 3
4339 && i.op[0].regs == i.op[1].regs
4340 && !i.types[2].bitfield.xmmword
4341 && (i.tm.opcode_modifier.vex
4342 || ((!i.mask.reg || i.mask.zeroing)
4343 && i.rounding.type == rc_none
4344 && is_evex_encoding (&i.tm)
4345 && (i.vec_encoding != vex_encoding_evex
4346 || cpu_arch_isa_flags.bitfield.cpuavx512vl
4347 || i.tm.cpu_flags.bitfield.cpuavx512vl
4348 || (i.tm.operand_types[2].bitfield.zmmword
4349 && i.types[2].bitfield.ymmword))))
4350 && ((i.tm.base_opcode == 0x55
4351 || i.tm.base_opcode == 0x57
4352 || i.tm.base_opcode == 0xdf
4353 || i.tm.base_opcode == 0xef
4354 || i.tm.base_opcode == 0xf8
4355 || i.tm.base_opcode == 0xf9
4356 || i.tm.base_opcode == 0xfa
4357 || i.tm.base_opcode == 0xfb
4358 || i.tm.base_opcode == 0x42
4359 || i.tm.base_opcode == 0x47)
4360 && i.tm.extension_opcode == None))
4361 {
4362 /* Optimize: -O1:
4363 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4364 vpsubq and vpsubw:
4365 EVEX VOP %zmmM, %zmmM, %zmmN
4366 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4367 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4368 EVEX VOP %ymmM, %ymmM, %ymmN
4369 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4370 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4371 VEX VOP %ymmM, %ymmM, %ymmN
4372 -> VEX VOP %xmmM, %xmmM, %xmmN
4373 VOP, one of vpandn and vpxor:
4374 VEX VOP %ymmM, %ymmM, %ymmN
4375 -> VEX VOP %xmmM, %xmmM, %xmmN
4376 VOP, one of vpandnd and vpandnq:
4377 EVEX VOP %zmmM, %zmmM, %zmmN
4378 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4379 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4380 EVEX VOP %ymmM, %ymmM, %ymmN
4381 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4382 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4383 VOP, one of vpxord and vpxorq:
4384 EVEX VOP %zmmM, %zmmM, %zmmN
4385 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4386 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4387 EVEX VOP %ymmM, %ymmM, %ymmN
4388 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4389 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4390 VOP, one of kxord and kxorq:
4391 VEX VOP %kM, %kM, %kN
4392 -> VEX kxorw %kM, %kM, %kN
4393 VOP, one of kandnd and kandnq:
4394 VEX VOP %kM, %kM, %kN
4395 -> VEX kandnw %kM, %kM, %kN
4396 */
4397 if (is_evex_encoding (&i.tm))
4398 {
4399 if (i.vec_encoding != vex_encoding_evex)
4400 {
4401 i.tm.opcode_modifier.vex = VEX128;
4402 i.tm.opcode_modifier.vexw = VEXW0;
4403 i.tm.opcode_modifier.evex = 0;
4404 }
4405 else if (optimize > 1)
4406 i.tm.opcode_modifier.evex = EVEX128;
4407 else
4408 return;
4409 }
4410 else if (i.tm.operand_types[0].bitfield.class == RegMask)
4411 {
4412 i.tm.opcode_modifier.opcodeprefix = PREFIX_NONE;
4413 i.tm.opcode_modifier.vexw = VEXW0;
4414 }
4415 else
4416 i.tm.opcode_modifier.vex = VEX128;
4417
4418 if (i.tm.opcode_modifier.vex)
4419 for (j = 0; j < 3; j++)
4420 {
4421 i.types[j].bitfield.xmmword = 1;
4422 i.types[j].bitfield.ymmword = 0;
4423 }
4424 }
4425 else if (i.vec_encoding != vex_encoding_evex
4426 && !i.types[0].bitfield.zmmword
4427 && !i.types[1].bitfield.zmmword
4428 && !i.mask.reg
4429 && !i.broadcast.type
4430 && is_evex_encoding (&i.tm)
4431 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x6f
4432 || (i.tm.base_opcode & ~4) == 0xdb
4433 || (i.tm.base_opcode & ~4) == 0xeb)
4434 && i.tm.extension_opcode == None)
4435 {
4436 /* Optimize: -O1:
4437 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4438 vmovdqu32 and vmovdqu64:
4439 EVEX VOP %xmmM, %xmmN
4440 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4441 EVEX VOP %ymmM, %ymmN
4442 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4443 EVEX VOP %xmmM, mem
4444 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4445 EVEX VOP %ymmM, mem
4446 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4447 EVEX VOP mem, %xmmN
4448 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4449 EVEX VOP mem, %ymmN
4450 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4451 VOP, one of vpand, vpandn, vpor, vpxor:
4452 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4453 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4454 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4455 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4456 EVEX VOP{d,q} mem, %xmmM, %xmmN
4457 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4458 EVEX VOP{d,q} mem, %ymmM, %ymmN
4459 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
4460 */
4461 for (j = 0; j < i.operands; j++)
4462 if (operand_type_check (i.types[j], disp)
4463 && i.op[j].disps->X_op == O_constant)
4464 {
4465 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4466 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4467 bytes, we choose EVEX Disp8 over VEX Disp32. */
4468 int evex_disp8, vex_disp8;
4469 unsigned int memshift = i.memshift;
4470 offsetT n = i.op[j].disps->X_add_number;
4471
4472 evex_disp8 = fits_in_disp8 (n);
4473 i.memshift = 0;
4474 vex_disp8 = fits_in_disp8 (n);
4475 if (evex_disp8 != vex_disp8)
4476 {
4477 i.memshift = memshift;
4478 return;
4479 }
4480
4481 i.types[j].bitfield.disp8 = vex_disp8;
4482 break;
4483 }
4484 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x6f
4485 && i.tm.opcode_modifier.opcodeprefix == PREFIX_0XF2)
4486 i.tm.opcode_modifier.opcodeprefix = PREFIX_0XF3;
4487 i.tm.opcode_modifier.vex
4488 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4489 i.tm.opcode_modifier.vexw = VEXW0;
4490 /* VPAND, VPOR, and VPXOR are commutative. */
4491 if (i.reg_operands == 3 && i.tm.base_opcode != 0xdf)
4492 i.tm.opcode_modifier.commutative = 1;
4493 i.tm.opcode_modifier.evex = 0;
4494 i.tm.opcode_modifier.masking = 0;
4495 i.tm.opcode_modifier.broadcast = 0;
4496 i.tm.opcode_modifier.disp8memshift = 0;
4497 i.memshift = 0;
4498 if (j < i.operands)
4499 i.types[j].bitfield.disp8
4500 = fits_in_disp8 (i.op[j].disps->X_add_number);
4501 }
4502 }
4503
4504 /* Return non-zero for load instruction. */
4505
4506 static int
4507 load_insn_p (void)
4508 {
4509 unsigned int dest;
4510 int any_vex_p = is_any_vex_encoding (&i.tm);
4511 unsigned int base_opcode = i.tm.base_opcode | 1;
4512
4513 if (!any_vex_p)
4514 {
4515 /* Anysize insns: lea, invlpg, clflush, prefetchnta, prefetcht0,
4516 prefetcht1, prefetcht2, prefetchtw, bndmk, bndcl, bndcu, bndcn,
4517 bndstx, bndldx, prefetchwt1, clflushopt, clwb, cldemote. */
4518 if (i.tm.opcode_modifier.anysize)
4519 return 0;
4520
4521 /* pop. */
4522 if (strcmp (i.tm.name, "pop") == 0)
4523 return 1;
4524 }
4525
4526 if (i.tm.opcode_modifier.opcodespace == SPACE_BASE)
4527 {
4528 /* popf, popa. */
4529 if (i.tm.base_opcode == 0x9d
4530 || i.tm.base_opcode == 0x61)
4531 return 1;
4532
4533 /* movs, cmps, lods, scas. */
4534 if ((i.tm.base_opcode | 0xb) == 0xaf)
4535 return 1;
4536
4537 /* outs, xlatb. */
4538 if (base_opcode == 0x6f
4539 || i.tm.base_opcode == 0xd7)
4540 return 1;
4541 /* NB: For AMD-specific insns with implicit memory operands,
4542 they're intentionally not covered. */
4543 }
4544
4545 /* No memory operand. */
4546 if (!i.mem_operands)
4547 return 0;
4548
4549 if (any_vex_p)
4550 {
4551 /* vldmxcsr. */
4552 if (i.tm.base_opcode == 0xae
4553 && i.tm.opcode_modifier.vex
4554 && i.tm.opcode_modifier.opcodespace == SPACE_0F
4555 && i.tm.opcode_modifier.opcodeprefix == PREFIX_NONE
4556 && i.tm.extension_opcode == 2)
4557 return 1;
4558 }
4559 else if (i.tm.opcode_modifier.opcodespace == SPACE_BASE)
4560 {
4561 /* test, not, neg, mul, imul, div, idiv. */
4562 if ((i.tm.base_opcode == 0xf6 || i.tm.base_opcode == 0xf7)
4563 && i.tm.extension_opcode != 1)
4564 return 1;
4565
4566 /* inc, dec. */
4567 if (base_opcode == 0xff && i.tm.extension_opcode <= 1)
4568 return 1;
4569
4570 /* add, or, adc, sbb, and, sub, xor, cmp. */
4571 if (i.tm.base_opcode >= 0x80 && i.tm.base_opcode <= 0x83)
4572 return 1;
4573
4574 /* rol, ror, rcl, rcr, shl/sal, shr, sar. */
4575 if ((base_opcode == 0xc1
4576 || (i.tm.base_opcode >= 0xd0 && i.tm.base_opcode <= 0xd3))
4577 && i.tm.extension_opcode != 6)
4578 return 1;
4579
4580 /* Check for x87 instructions. */
4581 if (base_opcode >= 0xd8 && base_opcode <= 0xdf)
4582 {
4583 /* Skip fst, fstp, fstenv, fstcw. */
4584 if (i.tm.base_opcode == 0xd9
4585 && (i.tm.extension_opcode == 2
4586 || i.tm.extension_opcode == 3
4587 || i.tm.extension_opcode == 6
4588 || i.tm.extension_opcode == 7))
4589 return 0;
4590
4591 /* Skip fisttp, fist, fistp, fstp. */
4592 if (i.tm.base_opcode == 0xdb
4593 && (i.tm.extension_opcode == 1
4594 || i.tm.extension_opcode == 2
4595 || i.tm.extension_opcode == 3
4596 || i.tm.extension_opcode == 7))
4597 return 0;
4598
4599 /* Skip fisttp, fst, fstp, fsave, fstsw. */
4600 if (i.tm.base_opcode == 0xdd
4601 && (i.tm.extension_opcode == 1
4602 || i.tm.extension_opcode == 2
4603 || i.tm.extension_opcode == 3
4604 || i.tm.extension_opcode == 6
4605 || i.tm.extension_opcode == 7))
4606 return 0;
4607
4608 /* Skip fisttp, fist, fistp, fbstp, fistp. */
4609 if (i.tm.base_opcode == 0xdf
4610 && (i.tm.extension_opcode == 1
4611 || i.tm.extension_opcode == 2
4612 || i.tm.extension_opcode == 3
4613 || i.tm.extension_opcode == 6
4614 || i.tm.extension_opcode == 7))
4615 return 0;
4616
4617 return 1;
4618 }
4619 }
4620 else if (i.tm.opcode_modifier.opcodespace == SPACE_0F)
4621 {
4622 /* bt, bts, btr, btc. */
4623 if (i.tm.base_opcode == 0xba
4624 && (i.tm.extension_opcode >= 4 && i.tm.extension_opcode <= 7))
4625 return 1;
4626
4627 /* cmpxchg8b, cmpxchg16b, xrstors, vmptrld. */
4628 if (i.tm.base_opcode == 0xc7
4629 && i.tm.opcode_modifier.opcodeprefix == PREFIX_NONE
4630 && (i.tm.extension_opcode == 1 || i.tm.extension_opcode == 3
4631 || i.tm.extension_opcode == 6))
4632 return 1;
4633
4634 /* fxrstor, ldmxcsr, xrstor. */
4635 if (i.tm.base_opcode == 0xae
4636 && (i.tm.extension_opcode == 1
4637 || i.tm.extension_opcode == 2
4638 || i.tm.extension_opcode == 5))
4639 return 1;
4640
4641 /* lgdt, lidt, lmsw. */
4642 if (i.tm.base_opcode == 0x01
4643 && (i.tm.extension_opcode == 2
4644 || i.tm.extension_opcode == 3
4645 || i.tm.extension_opcode == 6))
4646 return 1;
4647 }
4648
4649 dest = i.operands - 1;
4650
4651 /* Check fake imm8 operand and 3 source operands. */
4652 if ((i.tm.opcode_modifier.immext
4653 || i.tm.opcode_modifier.vexsources == VEX3SOURCES)
4654 && i.types[dest].bitfield.imm8)
4655 dest--;
4656
4657 /* add, or, adc, sbb, and, sub, xor, cmp, test, xchg. */
4658 if (i.tm.opcode_modifier.opcodespace == SPACE_BASE
4659 && (base_opcode == 0x1
4660 || base_opcode == 0x9
4661 || base_opcode == 0x11
4662 || base_opcode == 0x19
4663 || base_opcode == 0x21
4664 || base_opcode == 0x29
4665 || base_opcode == 0x31
4666 || base_opcode == 0x39
4667 || (base_opcode | 2) == 0x87))
4668 return 1;
4669
4670 /* xadd. */
4671 if (i.tm.opcode_modifier.opcodespace == SPACE_0F
4672 && base_opcode == 0xc1)
4673 return 1;
4674
4675 /* Check for load instruction. */
4676 return (i.types[dest].bitfield.class != ClassNone
4677 || i.types[dest].bitfield.instance == Accum);
4678 }
4679
4680 /* Output lfence, 0xfaee8, after instruction. */
4681
4682 static void
4683 insert_lfence_after (void)
4684 {
4685 if (lfence_after_load && load_insn_p ())
4686 {
4687 /* There are also two REP string instructions that require
4688 special treatment. Specifically, the compare string (CMPS)
4689 and scan string (SCAS) instructions set EFLAGS in a manner
4690 that depends on the data being compared/scanned. When used
4691 with a REP prefix, the number of iterations may therefore
4692 vary depending on this data. If the data is a program secret
4693 chosen by the adversary using an LVI method,
4694 then this data-dependent behavior may leak some aspect
4695 of the secret. */
4696 if (((i.tm.base_opcode | 0x1) == 0xa7
4697 || (i.tm.base_opcode | 0x1) == 0xaf)
4698 && i.prefix[REP_PREFIX])
4699 {
4700 as_warn (_("`%s` changes flags which would affect control flow behavior"),
4701 i.tm.name);
4702 }
4703 char *p = frag_more (3);
4704 *p++ = 0xf;
4705 *p++ = 0xae;
4706 *p = 0xe8;
4707 }
4708 }
4709
4710 /* Output lfence, 0xfaee8, before instruction. */
4711
4712 static void
4713 insert_lfence_before (void)
4714 {
4715 char *p;
4716
4717 if (i.tm.opcode_modifier.opcodespace != SPACE_BASE)
4718 return;
4719
4720 if (i.tm.base_opcode == 0xff
4721 && (i.tm.extension_opcode == 2 || i.tm.extension_opcode == 4))
4722 {
4723 /* Insert lfence before indirect branch if needed. */
4724
4725 if (lfence_before_indirect_branch == lfence_branch_none)
4726 return;
4727
4728 if (i.operands != 1)
4729 abort ();
4730
4731 if (i.reg_operands == 1)
4732 {
4733 /* Indirect branch via register. Don't insert lfence with
4734 -mlfence-after-load=yes. */
4735 if (lfence_after_load
4736 || lfence_before_indirect_branch == lfence_branch_memory)
4737 return;
4738 }
4739 else if (i.mem_operands == 1
4740 && lfence_before_indirect_branch != lfence_branch_register)
4741 {
4742 as_warn (_("indirect `%s` with memory operand should be avoided"),
4743 i.tm.name);
4744 return;
4745 }
4746 else
4747 return;
4748
4749 if (last_insn.kind != last_insn_other
4750 && last_insn.seg == now_seg)
4751 {
4752 as_warn_where (last_insn.file, last_insn.line,
4753 _("`%s` skips -mlfence-before-indirect-branch on `%s`"),
4754 last_insn.name, i.tm.name);
4755 return;
4756 }
4757
4758 p = frag_more (3);
4759 *p++ = 0xf;
4760 *p++ = 0xae;
4761 *p = 0xe8;
4762 return;
4763 }
4764
4765 /* Output or/not/shl and lfence before near ret. */
4766 if (lfence_before_ret != lfence_before_ret_none
4767 && (i.tm.base_opcode == 0xc2
4768 || i.tm.base_opcode == 0xc3))
4769 {
4770 if (last_insn.kind != last_insn_other
4771 && last_insn.seg == now_seg)
4772 {
4773 as_warn_where (last_insn.file, last_insn.line,
4774 _("`%s` skips -mlfence-before-ret on `%s`"),
4775 last_insn.name, i.tm.name);
4776 return;
4777 }
4778
4779 /* Near ret ingore operand size override under CPU64. */
4780 char prefix = flag_code == CODE_64BIT
4781 ? 0x48
4782 : i.prefix[DATA_PREFIX] ? 0x66 : 0x0;
4783
4784 if (lfence_before_ret == lfence_before_ret_not)
4785 {
4786 /* not: 0xf71424, may add prefix
4787 for operand size override or 64-bit code. */
4788 p = frag_more ((prefix ? 2 : 0) + 6 + 3);
4789 if (prefix)
4790 *p++ = prefix;
4791 *p++ = 0xf7;
4792 *p++ = 0x14;
4793 *p++ = 0x24;
4794 if (prefix)
4795 *p++ = prefix;
4796 *p++ = 0xf7;
4797 *p++ = 0x14;
4798 *p++ = 0x24;
4799 }
4800 else
4801 {
4802 p = frag_more ((prefix ? 1 : 0) + 4 + 3);
4803 if (prefix)
4804 *p++ = prefix;
4805 if (lfence_before_ret == lfence_before_ret_or)
4806 {
4807 /* or: 0x830c2400, may add prefix
4808 for operand size override or 64-bit code. */
4809 *p++ = 0x83;
4810 *p++ = 0x0c;
4811 }
4812 else
4813 {
4814 /* shl: 0xc1242400, may add prefix
4815 for operand size override or 64-bit code. */
4816 *p++ = 0xc1;
4817 *p++ = 0x24;
4818 }
4819
4820 *p++ = 0x24;
4821 *p++ = 0x0;
4822 }
4823
4824 *p++ = 0xf;
4825 *p++ = 0xae;
4826 *p = 0xe8;
4827 }
4828 }
4829
4830 /* This is the guts of the machine-dependent assembler. LINE points to a
4831 machine dependent instruction. This function is supposed to emit
4832 the frags/bytes it assembles to. */
4833
4834 void
4835 md_assemble (char *line)
4836 {
4837 unsigned int j;
4838 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4839 const insn_template *t;
4840
4841 /* Initialize globals. */
4842 memset (&i, '\0', sizeof (i));
4843 i.rounding.type = rc_none;
4844 for (j = 0; j < MAX_OPERANDS; j++)
4845 i.reloc[j] = NO_RELOC;
4846 memset (disp_expressions, '\0', sizeof (disp_expressions));
4847 memset (im_expressions, '\0', sizeof (im_expressions));
4848 save_stack_p = save_stack;
4849
4850 /* First parse an instruction mnemonic & call i386_operand for the operands.
4851 We assume that the scrubber has arranged it so that line[0] is the valid
4852 start of a (possibly prefixed) mnemonic. */
4853
4854 line = parse_insn (line, mnemonic);
4855 if (line == NULL)
4856 return;
4857 mnem_suffix = i.suffix;
4858
4859 line = parse_operands (line, mnemonic);
4860 this_operand = -1;
4861 xfree (i.memop1_string);
4862 i.memop1_string = NULL;
4863 if (line == NULL)
4864 return;
4865
4866 /* Now we've parsed the mnemonic into a set of templates, and have the
4867 operands at hand. */
4868
4869 /* All Intel opcodes have reversed operands except for "bound", "enter",
4870 "invlpg*", "monitor*", "mwait*", "tpause", "umwait", "pvalidate",
4871 "rmpadjust", and "rmpupdate". We also don't reverse intersegment "jmp"
4872 and "call" instructions with 2 immediate operands so that the immediate
4873 segment precedes the offset consistently in Intel and AT&T modes. */
4874 if (intel_syntax
4875 && i.operands > 1
4876 && (strcmp (mnemonic, "bound") != 0)
4877 && (strncmp (mnemonic, "invlpg", 6) != 0)
4878 && !startswith (mnemonic, "monitor")
4879 && !startswith (mnemonic, "mwait")
4880 && (strcmp (mnemonic, "pvalidate") != 0)
4881 && !startswith (mnemonic, "rmp")
4882 && (strcmp (mnemonic, "tpause") != 0)
4883 && (strcmp (mnemonic, "umwait") != 0)
4884 && !(operand_type_check (i.types[0], imm)
4885 && operand_type_check (i.types[1], imm)))
4886 swap_operands ();
4887
4888 /* The order of the immediates should be reversed
4889 for 2 immediates extrq and insertq instructions */
4890 if (i.imm_operands == 2
4891 && (strcmp (mnemonic, "extrq") == 0
4892 || strcmp (mnemonic, "insertq") == 0))
4893 swap_2_operands (0, 1);
4894
4895 if (i.imm_operands)
4896 optimize_imm ();
4897
4898 if (i.disp_operands && !want_disp32 (current_templates->start))
4899 {
4900 for (j = 0; j < i.operands; ++j)
4901 {
4902 const expressionS *exp = i.op[j].disps;
4903
4904 if (!operand_type_check (i.types[j], disp))
4905 continue;
4906
4907 if (exp->X_op != O_constant)
4908 continue;
4909
4910 /* Since displacement is signed extended to 64bit, don't allow
4911 disp32 and turn off disp32s if they are out of range. */
4912 i.types[j].bitfield.disp32 = 0;
4913 if (fits_in_signed_long (exp->X_add_number))
4914 continue;
4915
4916 i.types[j].bitfield.disp32s = 0;
4917 if (i.types[j].bitfield.baseindex)
4918 {
4919 as_bad (_("0x%" BFD_VMA_FMT "x out of range of signed 32bit displacement"),
4920 exp->X_add_number);
4921 return;
4922 }
4923 }
4924 }
4925
4926 /* Don't optimize displacement for movabs since it only takes 64bit
4927 displacement. */
4928 if (i.disp_operands
4929 && i.disp_encoding != disp_encoding_32bit
4930 && (flag_code != CODE_64BIT
4931 || strcmp (mnemonic, "movabs") != 0))
4932 optimize_disp ();
4933
4934 /* Next, we find a template that matches the given insn,
4935 making sure the overlap of the given operands types is consistent
4936 with the template operand types. */
4937
4938 if (!(t = match_template (mnem_suffix)))
4939 return;
4940
4941 if (sse_check != check_none
4942 && !i.tm.opcode_modifier.noavx
4943 && !i.tm.cpu_flags.bitfield.cpuavx
4944 && !i.tm.cpu_flags.bitfield.cpuavx512f
4945 && (i.tm.cpu_flags.bitfield.cpusse
4946 || i.tm.cpu_flags.bitfield.cpusse2
4947 || i.tm.cpu_flags.bitfield.cpusse3
4948 || i.tm.cpu_flags.bitfield.cpussse3
4949 || i.tm.cpu_flags.bitfield.cpusse4_1
4950 || i.tm.cpu_flags.bitfield.cpusse4_2
4951 || i.tm.cpu_flags.bitfield.cpupclmul
4952 || i.tm.cpu_flags.bitfield.cpuaes
4953 || i.tm.cpu_flags.bitfield.cpusha
4954 || i.tm.cpu_flags.bitfield.cpugfni))
4955 {
4956 (sse_check == check_warning
4957 ? as_warn
4958 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4959 }
4960
4961 if (i.tm.opcode_modifier.fwait)
4962 if (!add_prefix (FWAIT_OPCODE))
4963 return;
4964
4965 /* Check if REP prefix is OK. */
4966 if (i.rep_prefix && i.tm.opcode_modifier.prefixok != PrefixRep)
4967 {
4968 as_bad (_("invalid instruction `%s' after `%s'"),
4969 i.tm.name, i.rep_prefix);
4970 return;
4971 }
4972
4973 /* Check for lock without a lockable instruction. Destination operand
4974 must be memory unless it is xchg (0x86). */
4975 if (i.prefix[LOCK_PREFIX]
4976 && (i.tm.opcode_modifier.prefixok < PrefixLock
4977 || i.mem_operands == 0
4978 || (i.tm.base_opcode != 0x86
4979 && !(i.flags[i.operands - 1] & Operand_Mem))))
4980 {
4981 as_bad (_("expecting lockable instruction after `lock'"));
4982 return;
4983 }
4984
4985 /* Check for data size prefix on VEX/XOP/EVEX encoded and SIMD insns. */
4986 if (i.prefix[DATA_PREFIX]
4987 && (is_any_vex_encoding (&i.tm)
4988 || i.tm.operand_types[i.imm_operands].bitfield.class >= RegMMX
4989 || i.tm.operand_types[i.imm_operands + 1].bitfield.class >= RegMMX))
4990 {
4991 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4992 return;
4993 }
4994
4995 /* Check if HLE prefix is OK. */
4996 if (i.hle_prefix && !check_hle ())
4997 return;
4998
4999 /* Check BND prefix. */
5000 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
5001 as_bad (_("expecting valid branch instruction after `bnd'"));
5002
5003 /* Check NOTRACK prefix. */
5004 if (i.notrack_prefix && i.tm.opcode_modifier.prefixok != PrefixNoTrack)
5005 as_bad (_("expecting indirect branch instruction after `notrack'"));
5006
5007 if (i.tm.cpu_flags.bitfield.cpumpx)
5008 {
5009 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
5010 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
5011 else if (flag_code != CODE_16BIT
5012 ? i.prefix[ADDR_PREFIX]
5013 : i.mem_operands && !i.prefix[ADDR_PREFIX])
5014 as_bad (_("16-bit address isn't allowed in MPX instructions"));
5015 }
5016
5017 /* Insert BND prefix. */
5018 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
5019 {
5020 if (!i.prefix[BND_PREFIX])
5021 add_prefix (BND_PREFIX_OPCODE);
5022 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
5023 {
5024 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
5025 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
5026 }
5027 }
5028
5029 /* Check string instruction segment overrides. */
5030 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
5031 {
5032 gas_assert (i.mem_operands);
5033 if (!check_string ())
5034 return;
5035 i.disp_operands = 0;
5036 }
5037
5038 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
5039 optimize_encoding ();
5040
5041 if (!process_suffix ())
5042 return;
5043
5044 /* Update operand types and check extended states. */
5045 for (j = 0; j < i.operands; j++)
5046 {
5047 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
5048 switch (i.tm.operand_types[j].bitfield.class)
5049 {
5050 default:
5051 break;
5052 case RegMMX:
5053 i.xstate |= xstate_mmx;
5054 break;
5055 case RegMask:
5056 i.xstate |= xstate_mask;
5057 break;
5058 case RegSIMD:
5059 if (i.tm.operand_types[j].bitfield.tmmword)
5060 i.xstate |= xstate_tmm;
5061 else if (i.tm.operand_types[j].bitfield.zmmword)
5062 i.xstate |= xstate_zmm;
5063 else if (i.tm.operand_types[j].bitfield.ymmword)
5064 i.xstate |= xstate_ymm;
5065 else if (i.tm.operand_types[j].bitfield.xmmword)
5066 i.xstate |= xstate_xmm;
5067 break;
5068 }
5069 }
5070
5071 /* Make still unresolved immediate matches conform to size of immediate
5072 given in i.suffix. */
5073 if (!finalize_imm ())
5074 return;
5075
5076 if (i.types[0].bitfield.imm1)
5077 i.imm_operands = 0; /* kludge for shift insns. */
5078
5079 /* We only need to check those implicit registers for instructions
5080 with 3 operands or less. */
5081 if (i.operands <= 3)
5082 for (j = 0; j < i.operands; j++)
5083 if (i.types[j].bitfield.instance != InstanceNone
5084 && !i.types[j].bitfield.xmmword)
5085 i.reg_operands--;
5086
5087 /* For insns with operands there are more diddles to do to the opcode. */
5088 if (i.operands)
5089 {
5090 if (!process_operands ())
5091 return;
5092 }
5093 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
5094 {
5095 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
5096 as_warn (_("translating to `%sp'"), i.tm.name);
5097 }
5098
5099 if (is_any_vex_encoding (&i.tm))
5100 {
5101 if (!cpu_arch_flags.bitfield.cpui286)
5102 {
5103 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
5104 i.tm.name);
5105 return;
5106 }
5107
5108 /* Check for explicit REX prefix. */
5109 if (i.prefix[REX_PREFIX] || i.rex_encoding)
5110 {
5111 as_bad (_("REX prefix invalid with `%s'"), i.tm.name);
5112 return;
5113 }
5114
5115 if (i.tm.opcode_modifier.vex)
5116 build_vex_prefix (t);
5117 else
5118 build_evex_prefix ();
5119
5120 /* The individual REX.RXBW bits got consumed. */
5121 i.rex &= REX_OPCODE;
5122 }
5123
5124 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
5125 instructions may define INT_OPCODE as well, so avoid this corner
5126 case for those instructions that use MODRM. */
5127 if (i.tm.opcode_modifier.opcodespace == SPACE_BASE
5128 && i.tm.base_opcode == INT_OPCODE
5129 && !i.tm.opcode_modifier.modrm
5130 && i.op[0].imms->X_add_number == 3)
5131 {
5132 i.tm.base_opcode = INT3_OPCODE;
5133 i.imm_operands = 0;
5134 }
5135
5136 if ((i.tm.opcode_modifier.jump == JUMP
5137 || i.tm.opcode_modifier.jump == JUMP_BYTE
5138 || i.tm.opcode_modifier.jump == JUMP_DWORD)
5139 && i.op[0].disps->X_op == O_constant)
5140 {
5141 /* Convert "jmp constant" (and "call constant") to a jump (call) to
5142 the absolute address given by the constant. Since ix86 jumps and
5143 calls are pc relative, we need to generate a reloc. */
5144 i.op[0].disps->X_add_symbol = &abs_symbol;
5145 i.op[0].disps->X_op = O_symbol;
5146 }
5147
5148 /* For 8 bit registers we need an empty rex prefix. Also if the
5149 instruction already has a prefix, we need to convert old
5150 registers to new ones. */
5151
5152 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
5153 && (i.op[0].regs->reg_flags & RegRex64) != 0)
5154 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
5155 && (i.op[1].regs->reg_flags & RegRex64) != 0)
5156 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
5157 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
5158 && i.rex != 0))
5159 {
5160 int x;
5161
5162 i.rex |= REX_OPCODE;
5163 for (x = 0; x < 2; x++)
5164 {
5165 /* Look for 8 bit operand that uses old registers. */
5166 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
5167 && (i.op[x].regs->reg_flags & RegRex64) == 0)
5168 {
5169 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
5170 /* In case it is "hi" register, give up. */
5171 if (i.op[x].regs->reg_num > 3)
5172 as_bad (_("can't encode register '%s%s' in an "
5173 "instruction requiring REX prefix."),
5174 register_prefix, i.op[x].regs->reg_name);
5175
5176 /* Otherwise it is equivalent to the extended register.
5177 Since the encoding doesn't change this is merely
5178 cosmetic cleanup for debug output. */
5179
5180 i.op[x].regs = i.op[x].regs + 8;
5181 }
5182 }
5183 }
5184
5185 if (i.rex == 0 && i.rex_encoding)
5186 {
5187 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
5188 that uses legacy register. If it is "hi" register, don't add
5189 the REX_OPCODE byte. */
5190 int x;
5191 for (x = 0; x < 2; x++)
5192 if (i.types[x].bitfield.class == Reg
5193 && i.types[x].bitfield.byte
5194 && (i.op[x].regs->reg_flags & RegRex64) == 0
5195 && i.op[x].regs->reg_num > 3)
5196 {
5197 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
5198 i.rex_encoding = false;
5199 break;
5200 }
5201
5202 if (i.rex_encoding)
5203 i.rex = REX_OPCODE;
5204 }
5205
5206 if (i.rex != 0)
5207 add_prefix (REX_OPCODE | i.rex);
5208
5209 insert_lfence_before ();
5210
5211 /* We are ready to output the insn. */
5212 output_insn ();
5213
5214 insert_lfence_after ();
5215
5216 last_insn.seg = now_seg;
5217
5218 if (i.tm.opcode_modifier.isprefix)
5219 {
5220 last_insn.kind = last_insn_prefix;
5221 last_insn.name = i.tm.name;
5222 last_insn.file = as_where (&last_insn.line);
5223 }
5224 else
5225 last_insn.kind = last_insn_other;
5226 }
5227
5228 static char *
5229 parse_insn (char *line, char *mnemonic)
5230 {
5231 char *l = line;
5232 char *token_start = l;
5233 char *mnem_p;
5234 int supported;
5235 const insn_template *t;
5236 char *dot_p = NULL;
5237
5238 while (1)
5239 {
5240 mnem_p = mnemonic;
5241 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
5242 {
5243 if (*mnem_p == '.')
5244 dot_p = mnem_p;
5245 mnem_p++;
5246 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
5247 {
5248 as_bad (_("no such instruction: `%s'"), token_start);
5249 return NULL;
5250 }
5251 l++;
5252 }
5253 if (!is_space_char (*l)
5254 && *l != END_OF_INSN
5255 && (intel_syntax
5256 || (*l != PREFIX_SEPARATOR
5257 && *l != ',')))
5258 {
5259 as_bad (_("invalid character %s in mnemonic"),
5260 output_invalid (*l));
5261 return NULL;
5262 }
5263 if (token_start == l)
5264 {
5265 if (!intel_syntax && *l == PREFIX_SEPARATOR)
5266 as_bad (_("expecting prefix; got nothing"));
5267 else
5268 as_bad (_("expecting mnemonic; got nothing"));
5269 return NULL;
5270 }
5271
5272 /* Look up instruction (or prefix) via hash table. */
5273 current_templates = (const templates *) str_hash_find (op_hash, mnemonic);
5274
5275 if (*l != END_OF_INSN
5276 && (!is_space_char (*l) || l[1] != END_OF_INSN)
5277 && current_templates
5278 && current_templates->start->opcode_modifier.isprefix)
5279 {
5280 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
5281 {
5282 as_bad ((flag_code != CODE_64BIT
5283 ? _("`%s' is only supported in 64-bit mode")
5284 : _("`%s' is not supported in 64-bit mode")),
5285 current_templates->start->name);
5286 return NULL;
5287 }
5288 /* If we are in 16-bit mode, do not allow addr16 or data16.
5289 Similarly, in 32-bit mode, do not allow addr32 or data32. */
5290 if ((current_templates->start->opcode_modifier.size == SIZE16
5291 || current_templates->start->opcode_modifier.size == SIZE32)
5292 && flag_code != CODE_64BIT
5293 && ((current_templates->start->opcode_modifier.size == SIZE32)
5294 ^ (flag_code == CODE_16BIT)))
5295 {
5296 as_bad (_("redundant %s prefix"),
5297 current_templates->start->name);
5298 return NULL;
5299 }
5300
5301 if (current_templates->start->base_opcode == PSEUDO_PREFIX)
5302 {
5303 /* Handle pseudo prefixes. */
5304 switch (current_templates->start->extension_opcode)
5305 {
5306 case Prefix_Disp8:
5307 /* {disp8} */
5308 i.disp_encoding = disp_encoding_8bit;
5309 break;
5310 case Prefix_Disp16:
5311 /* {disp16} */
5312 i.disp_encoding = disp_encoding_16bit;
5313 break;
5314 case Prefix_Disp32:
5315 /* {disp32} */
5316 i.disp_encoding = disp_encoding_32bit;
5317 break;
5318 case Prefix_Load:
5319 /* {load} */
5320 i.dir_encoding = dir_encoding_load;
5321 break;
5322 case Prefix_Store:
5323 /* {store} */
5324 i.dir_encoding = dir_encoding_store;
5325 break;
5326 case Prefix_VEX:
5327 /* {vex} */
5328 i.vec_encoding = vex_encoding_vex;
5329 break;
5330 case Prefix_VEX3:
5331 /* {vex3} */
5332 i.vec_encoding = vex_encoding_vex3;
5333 break;
5334 case Prefix_EVEX:
5335 /* {evex} */
5336 i.vec_encoding = vex_encoding_evex;
5337 break;
5338 case Prefix_REX:
5339 /* {rex} */
5340 i.rex_encoding = true;
5341 break;
5342 case Prefix_NoOptimize:
5343 /* {nooptimize} */
5344 i.no_optimize = true;
5345 break;
5346 default:
5347 abort ();
5348 }
5349 }
5350 else
5351 {
5352 /* Add prefix, checking for repeated prefixes. */
5353 switch (add_prefix (current_templates->start->base_opcode))
5354 {
5355 case PREFIX_EXIST:
5356 return NULL;
5357 case PREFIX_DS:
5358 if (current_templates->start->cpu_flags.bitfield.cpuibt)
5359 i.notrack_prefix = current_templates->start->name;
5360 break;
5361 case PREFIX_REP:
5362 if (current_templates->start->cpu_flags.bitfield.cpuhle)
5363 i.hle_prefix = current_templates->start->name;
5364 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
5365 i.bnd_prefix = current_templates->start->name;
5366 else
5367 i.rep_prefix = current_templates->start->name;
5368 break;
5369 default:
5370 break;
5371 }
5372 }
5373 /* Skip past PREFIX_SEPARATOR and reset token_start. */
5374 token_start = ++l;
5375 }
5376 else
5377 break;
5378 }
5379
5380 if (!current_templates)
5381 {
5382 /* Deprecated functionality (new code should use pseudo-prefixes instead):
5383 Check if we should swap operand or force 32bit displacement in
5384 encoding. */
5385 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
5386 i.dir_encoding = dir_encoding_swap;
5387 else if (mnem_p - 3 == dot_p
5388 && dot_p[1] == 'd'
5389 && dot_p[2] == '8')
5390 i.disp_encoding = disp_encoding_8bit;
5391 else if (mnem_p - 4 == dot_p
5392 && dot_p[1] == 'd'
5393 && dot_p[2] == '3'
5394 && dot_p[3] == '2')
5395 i.disp_encoding = disp_encoding_32bit;
5396 else
5397 goto check_suffix;
5398 mnem_p = dot_p;
5399 *dot_p = '\0';
5400 current_templates = (const templates *) str_hash_find (op_hash, mnemonic);
5401 }
5402
5403 if (!current_templates)
5404 {
5405 check_suffix:
5406 if (mnem_p > mnemonic)
5407 {
5408 /* See if we can get a match by trimming off a suffix. */
5409 switch (mnem_p[-1])
5410 {
5411 case WORD_MNEM_SUFFIX:
5412 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
5413 i.suffix = SHORT_MNEM_SUFFIX;
5414 else
5415 /* Fall through. */
5416 case BYTE_MNEM_SUFFIX:
5417 case QWORD_MNEM_SUFFIX:
5418 i.suffix = mnem_p[-1];
5419 mnem_p[-1] = '\0';
5420 current_templates
5421 = (const templates *) str_hash_find (op_hash, mnemonic);
5422 break;
5423 case SHORT_MNEM_SUFFIX:
5424 case LONG_MNEM_SUFFIX:
5425 if (!intel_syntax)
5426 {
5427 i.suffix = mnem_p[-1];
5428 mnem_p[-1] = '\0';
5429 current_templates
5430 = (const templates *) str_hash_find (op_hash, mnemonic);
5431 }
5432 break;
5433
5434 /* Intel Syntax. */
5435 case 'd':
5436 if (intel_syntax)
5437 {
5438 if (intel_float_operand (mnemonic) == 1)
5439 i.suffix = SHORT_MNEM_SUFFIX;
5440 else
5441 i.suffix = LONG_MNEM_SUFFIX;
5442 mnem_p[-1] = '\0';
5443 current_templates
5444 = (const templates *) str_hash_find (op_hash, mnemonic);
5445 }
5446 break;
5447 }
5448 }
5449
5450 if (!current_templates)
5451 {
5452 as_bad (_("no such instruction: `%s'"), token_start);
5453 return NULL;
5454 }
5455 }
5456
5457 if (current_templates->start->opcode_modifier.jump == JUMP
5458 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
5459 {
5460 /* Check for a branch hint. We allow ",pt" and ",pn" for
5461 predict taken and predict not taken respectively.
5462 I'm not sure that branch hints actually do anything on loop
5463 and jcxz insns (JumpByte) for current Pentium4 chips. They
5464 may work in the future and it doesn't hurt to accept them
5465 now. */
5466 if (l[0] == ',' && l[1] == 'p')
5467 {
5468 if (l[2] == 't')
5469 {
5470 if (!add_prefix (DS_PREFIX_OPCODE))
5471 return NULL;
5472 l += 3;
5473 }
5474 else if (l[2] == 'n')
5475 {
5476 if (!add_prefix (CS_PREFIX_OPCODE))
5477 return NULL;
5478 l += 3;
5479 }
5480 }
5481 }
5482 /* Any other comma loses. */
5483 if (*l == ',')
5484 {
5485 as_bad (_("invalid character %s in mnemonic"),
5486 output_invalid (*l));
5487 return NULL;
5488 }
5489
5490 /* Check if instruction is supported on specified architecture. */
5491 supported = 0;
5492 for (t = current_templates->start; t < current_templates->end; ++t)
5493 {
5494 supported |= cpu_flags_match (t);
5495 if (supported == CPU_FLAGS_PERFECT_MATCH)
5496 {
5497 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
5498 as_warn (_("use .code16 to ensure correct addressing mode"));
5499
5500 return l;
5501 }
5502 }
5503
5504 if (!(supported & CPU_FLAGS_64BIT_MATCH))
5505 as_bad (flag_code == CODE_64BIT
5506 ? _("`%s' is not supported in 64-bit mode")
5507 : _("`%s' is only supported in 64-bit mode"),
5508 current_templates->start->name);
5509 else
5510 as_bad (_("`%s' is not supported on `%s%s'"),
5511 current_templates->start->name,
5512 cpu_arch_name ? cpu_arch_name : default_arch,
5513 cpu_sub_arch_name ? cpu_sub_arch_name : "");
5514
5515 return NULL;
5516 }
5517
5518 static char *
5519 parse_operands (char *l, const char *mnemonic)
5520 {
5521 char *token_start;
5522
5523 /* 1 if operand is pending after ','. */
5524 unsigned int expecting_operand = 0;
5525
5526 while (*l != END_OF_INSN)
5527 {
5528 /* Non-zero if operand parens not balanced. */
5529 unsigned int paren_not_balanced = 0;
5530 /* True if inside double quotes. */
5531 bool in_quotes = false;
5532
5533 /* Skip optional white space before operand. */
5534 if (is_space_char (*l))
5535 ++l;
5536 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
5537 {
5538 as_bad (_("invalid character %s before operand %d"),
5539 output_invalid (*l),
5540 i.operands + 1);
5541 return NULL;
5542 }
5543 token_start = l; /* After white space. */
5544 while (in_quotes || paren_not_balanced || *l != ',')
5545 {
5546 if (*l == END_OF_INSN)
5547 {
5548 if (in_quotes)
5549 {
5550 as_bad (_("unbalanced double quotes in operand %d."),
5551 i.operands + 1);
5552 return NULL;
5553 }
5554 if (paren_not_balanced)
5555 {
5556 know (!intel_syntax);
5557 as_bad (_("unbalanced parenthesis in operand %d."),
5558 i.operands + 1);
5559 return NULL;
5560 }
5561 else
5562 break; /* we are done */
5563 }
5564 else if (*l == '\\' && l[1] == '"')
5565 ++l;
5566 else if (*l == '"')
5567 in_quotes = !in_quotes;
5568 else if (!in_quotes && !is_operand_char (*l) && !is_space_char (*l))
5569 {
5570 as_bad (_("invalid character %s in operand %d"),
5571 output_invalid (*l),
5572 i.operands + 1);
5573 return NULL;
5574 }
5575 if (!intel_syntax && !in_quotes)
5576 {
5577 if (*l == '(')
5578 ++paren_not_balanced;
5579 if (*l == ')')
5580 --paren_not_balanced;
5581 }
5582 l++;
5583 }
5584 if (l != token_start)
5585 { /* Yes, we've read in another operand. */
5586 unsigned int operand_ok;
5587 this_operand = i.operands++;
5588 if (i.operands > MAX_OPERANDS)
5589 {
5590 as_bad (_("spurious operands; (%d operands/instruction max)"),
5591 MAX_OPERANDS);
5592 return NULL;
5593 }
5594 i.types[this_operand].bitfield.unspecified = 1;
5595 /* Now parse operand adding info to 'i' as we go along. */
5596 END_STRING_AND_SAVE (l);
5597
5598 if (i.mem_operands > 1)
5599 {
5600 as_bad (_("too many memory references for `%s'"),
5601 mnemonic);
5602 return 0;
5603 }
5604
5605 if (intel_syntax)
5606 operand_ok =
5607 i386_intel_operand (token_start,
5608 intel_float_operand (mnemonic));
5609 else
5610 operand_ok = i386_att_operand (token_start);
5611
5612 RESTORE_END_STRING (l);
5613 if (!operand_ok)
5614 return NULL;
5615 }
5616 else
5617 {
5618 if (expecting_operand)
5619 {
5620 expecting_operand_after_comma:
5621 as_bad (_("expecting operand after ','; got nothing"));
5622 return NULL;
5623 }
5624 if (*l == ',')
5625 {
5626 as_bad (_("expecting operand before ','; got nothing"));
5627 return NULL;
5628 }
5629 }
5630
5631 /* Now *l must be either ',' or END_OF_INSN. */
5632 if (*l == ',')
5633 {
5634 if (*++l == END_OF_INSN)
5635 {
5636 /* Just skip it, if it's \n complain. */
5637 goto expecting_operand_after_comma;
5638 }
5639 expecting_operand = 1;
5640 }
5641 }
5642 return l;
5643 }
5644
5645 static void
5646 swap_2_operands (unsigned int xchg1, unsigned int xchg2)
5647 {
5648 union i386_op temp_op;
5649 i386_operand_type temp_type;
5650 unsigned int temp_flags;
5651 enum bfd_reloc_code_real temp_reloc;
5652
5653 temp_type = i.types[xchg2];
5654 i.types[xchg2] = i.types[xchg1];
5655 i.types[xchg1] = temp_type;
5656
5657 temp_flags = i.flags[xchg2];
5658 i.flags[xchg2] = i.flags[xchg1];
5659 i.flags[xchg1] = temp_flags;
5660
5661 temp_op = i.op[xchg2];
5662 i.op[xchg2] = i.op[xchg1];
5663 i.op[xchg1] = temp_op;
5664
5665 temp_reloc = i.reloc[xchg2];
5666 i.reloc[xchg2] = i.reloc[xchg1];
5667 i.reloc[xchg1] = temp_reloc;
5668
5669 if (i.mask.reg)
5670 {
5671 if (i.mask.operand == xchg1)
5672 i.mask.operand = xchg2;
5673 else if (i.mask.operand == xchg2)
5674 i.mask.operand = xchg1;
5675 }
5676 if (i.broadcast.type)
5677 {
5678 if (i.broadcast.operand == xchg1)
5679 i.broadcast.operand = xchg2;
5680 else if (i.broadcast.operand == xchg2)
5681 i.broadcast.operand = xchg1;
5682 }
5683 if (i.rounding.type != rc_none)
5684 {
5685 if (i.rounding.operand == xchg1)
5686 i.rounding.operand = xchg2;
5687 else if (i.rounding.operand == xchg2)
5688 i.rounding.operand = xchg1;
5689 }
5690 }
5691
5692 static void
5693 swap_operands (void)
5694 {
5695 switch (i.operands)
5696 {
5697 case 5:
5698 case 4:
5699 swap_2_operands (1, i.operands - 2);
5700 /* Fall through. */
5701 case 3:
5702 case 2:
5703 swap_2_operands (0, i.operands - 1);
5704 break;
5705 default:
5706 abort ();
5707 }
5708
5709 if (i.mem_operands == 2)
5710 {
5711 const reg_entry *temp_seg;
5712 temp_seg = i.seg[0];
5713 i.seg[0] = i.seg[1];
5714 i.seg[1] = temp_seg;
5715 }
5716 }
5717
5718 /* Try to ensure constant immediates are represented in the smallest
5719 opcode possible. */
5720 static void
5721 optimize_imm (void)
5722 {
5723 char guess_suffix = 0;
5724 int op;
5725
5726 if (i.suffix)
5727 guess_suffix = i.suffix;
5728 else if (i.reg_operands)
5729 {
5730 /* Figure out a suffix from the last register operand specified.
5731 We can't do this properly yet, i.e. excluding special register
5732 instances, but the following works for instructions with
5733 immediates. In any case, we can't set i.suffix yet. */
5734 for (op = i.operands; --op >= 0;)
5735 if (i.types[op].bitfield.class != Reg)
5736 continue;
5737 else if (i.types[op].bitfield.byte)
5738 {
5739 guess_suffix = BYTE_MNEM_SUFFIX;
5740 break;
5741 }
5742 else if (i.types[op].bitfield.word)
5743 {
5744 guess_suffix = WORD_MNEM_SUFFIX;
5745 break;
5746 }
5747 else if (i.types[op].bitfield.dword)
5748 {
5749 guess_suffix = LONG_MNEM_SUFFIX;
5750 break;
5751 }
5752 else if (i.types[op].bitfield.qword)
5753 {
5754 guess_suffix = QWORD_MNEM_SUFFIX;
5755 break;
5756 }
5757 }
5758 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5759 guess_suffix = WORD_MNEM_SUFFIX;
5760
5761 for (op = i.operands; --op >= 0;)
5762 if (operand_type_check (i.types[op], imm))
5763 {
5764 switch (i.op[op].imms->X_op)
5765 {
5766 case O_constant:
5767 /* If a suffix is given, this operand may be shortened. */
5768 switch (guess_suffix)
5769 {
5770 case LONG_MNEM_SUFFIX:
5771 i.types[op].bitfield.imm32 = 1;
5772 i.types[op].bitfield.imm64 = 1;
5773 break;
5774 case WORD_MNEM_SUFFIX:
5775 i.types[op].bitfield.imm16 = 1;
5776 i.types[op].bitfield.imm32 = 1;
5777 i.types[op].bitfield.imm32s = 1;
5778 i.types[op].bitfield.imm64 = 1;
5779 break;
5780 case BYTE_MNEM_SUFFIX:
5781 i.types[op].bitfield.imm8 = 1;
5782 i.types[op].bitfield.imm8s = 1;
5783 i.types[op].bitfield.imm16 = 1;
5784 i.types[op].bitfield.imm32 = 1;
5785 i.types[op].bitfield.imm32s = 1;
5786 i.types[op].bitfield.imm64 = 1;
5787 break;
5788 }
5789
5790 /* If this operand is at most 16 bits, convert it
5791 to a signed 16 bit number before trying to see
5792 whether it will fit in an even smaller size.
5793 This allows a 16-bit operand such as $0xffe0 to
5794 be recognised as within Imm8S range. */
5795 if ((i.types[op].bitfield.imm16)
5796 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
5797 {
5798 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5799 ^ 0x8000) - 0x8000);
5800 }
5801 #ifdef BFD64
5802 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
5803 if ((i.types[op].bitfield.imm32)
5804 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5805 == 0))
5806 {
5807 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5808 ^ ((offsetT) 1 << 31))
5809 - ((offsetT) 1 << 31));
5810 }
5811 #endif
5812 i.types[op]
5813 = operand_type_or (i.types[op],
5814 smallest_imm_type (i.op[op].imms->X_add_number));
5815
5816 /* We must avoid matching of Imm32 templates when 64bit
5817 only immediate is available. */
5818 if (guess_suffix == QWORD_MNEM_SUFFIX)
5819 i.types[op].bitfield.imm32 = 0;
5820 break;
5821
5822 case O_absent:
5823 case O_register:
5824 abort ();
5825
5826 /* Symbols and expressions. */
5827 default:
5828 /* Convert symbolic operand to proper sizes for matching, but don't
5829 prevent matching a set of insns that only supports sizes other
5830 than those matching the insn suffix. */
5831 {
5832 i386_operand_type mask, allowed;
5833 const insn_template *t = current_templates->start;
5834
5835 operand_type_set (&mask, 0);
5836 allowed = t->operand_types[op];
5837
5838 while (++t < current_templates->end)
5839 {
5840 allowed = operand_type_and (allowed, anyimm);
5841 allowed = operand_type_or (allowed, t->operand_types[op]);
5842 }
5843 switch (guess_suffix)
5844 {
5845 case QWORD_MNEM_SUFFIX:
5846 mask.bitfield.imm64 = 1;
5847 mask.bitfield.imm32s = 1;
5848 break;
5849 case LONG_MNEM_SUFFIX:
5850 mask.bitfield.imm32 = 1;
5851 break;
5852 case WORD_MNEM_SUFFIX:
5853 mask.bitfield.imm16 = 1;
5854 break;
5855 case BYTE_MNEM_SUFFIX:
5856 mask.bitfield.imm8 = 1;
5857 break;
5858 default:
5859 break;
5860 }
5861 allowed = operand_type_and (mask, allowed);
5862 if (!operand_type_all_zero (&allowed))
5863 i.types[op] = operand_type_and (i.types[op], mask);
5864 }
5865 break;
5866 }
5867 }
5868 }
5869
5870 /* Try to use the smallest displacement type too. */
5871 static void
5872 optimize_disp (void)
5873 {
5874 int op;
5875
5876 for (op = i.operands; --op >= 0;)
5877 if (operand_type_check (i.types[op], disp))
5878 {
5879 if (i.op[op].disps->X_op == O_constant)
5880 {
5881 offsetT op_disp = i.op[op].disps->X_add_number;
5882
5883 if (!op_disp && i.types[op].bitfield.baseindex)
5884 {
5885 i.types[op].bitfield.disp8 = 0;
5886 i.types[op].bitfield.disp16 = 0;
5887 i.types[op].bitfield.disp32 = 0;
5888 i.types[op].bitfield.disp32s = 0;
5889 i.types[op].bitfield.disp64 = 0;
5890 i.op[op].disps = 0;
5891 i.disp_operands--;
5892 continue;
5893 }
5894
5895 if (i.types[op].bitfield.disp16
5896 && (op_disp & ~(offsetT) 0xffff) == 0)
5897 {
5898 /* If this operand is at most 16 bits, convert
5899 to a signed 16 bit number and don't use 64bit
5900 displacement. */
5901 op_disp = ((op_disp ^ 0x8000) - 0x8000);
5902 i.types[op].bitfield.disp64 = 0;
5903 }
5904
5905 #ifdef BFD64
5906 if (flag_code == CODE_64BIT)
5907 {
5908 if (want_disp32 (current_templates->start)
5909 && fits_in_unsigned_long (op_disp))
5910 i.types[op].bitfield.disp32 = 1;
5911
5912 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5913 if (i.types[op].bitfield.disp32
5914 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5915 {
5916 /* If this operand is at most 32 bits, convert
5917 to a signed 32 bit number and don't use 64bit
5918 displacement. */
5919 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5920 i.types[op].bitfield.disp64 = 0;
5921 }
5922
5923 if (fits_in_signed_long (op_disp))
5924 {
5925 i.types[op].bitfield.disp64 = 0;
5926 i.types[op].bitfield.disp32s = 1;
5927 }
5928 }
5929 #endif
5930 if ((i.types[op].bitfield.disp32
5931 || i.types[op].bitfield.disp32s
5932 || i.types[op].bitfield.disp16)
5933 && fits_in_disp8 (op_disp))
5934 i.types[op].bitfield.disp8 = 1;
5935 }
5936 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5937 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5938 {
5939 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5940 i.op[op].disps, 0, i.reloc[op]);
5941 i.types[op].bitfield.disp8 = 0;
5942 i.types[op].bitfield.disp16 = 0;
5943 i.types[op].bitfield.disp32 = 0;
5944 i.types[op].bitfield.disp32s = 0;
5945 i.types[op].bitfield.disp64 = 0;
5946 }
5947 else
5948 /* We only support 64bit displacement on constants. */
5949 i.types[op].bitfield.disp64 = 0;
5950 }
5951 }
5952
5953 /* Return 1 if there is a match in broadcast bytes between operand
5954 GIVEN and instruction template T. */
5955
5956 static INLINE int
5957 match_broadcast_size (const insn_template *t, unsigned int given)
5958 {
5959 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5960 && i.types[given].bitfield.byte)
5961 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5962 && i.types[given].bitfield.word)
5963 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5964 && i.types[given].bitfield.dword)
5965 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5966 && i.types[given].bitfield.qword));
5967 }
5968
5969 /* Check if operands are valid for the instruction. */
5970
5971 static int
5972 check_VecOperands (const insn_template *t)
5973 {
5974 unsigned int op;
5975 i386_cpu_flags cpu;
5976
5977 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5978 any one operand are implicity requiring AVX512VL support if the actual
5979 operand size is YMMword or XMMword. Since this function runs after
5980 template matching, there's no need to check for YMMword/XMMword in
5981 the template. */
5982 cpu = cpu_flags_and (t->cpu_flags, avx512);
5983 if (!cpu_flags_all_zero (&cpu)
5984 && !t->cpu_flags.bitfield.cpuavx512vl
5985 && !cpu_arch_flags.bitfield.cpuavx512vl)
5986 {
5987 for (op = 0; op < t->operands; ++op)
5988 {
5989 if (t->operand_types[op].bitfield.zmmword
5990 && (i.types[op].bitfield.ymmword
5991 || i.types[op].bitfield.xmmword))
5992 {
5993 i.error = unsupported;
5994 return 1;
5995 }
5996 }
5997 }
5998
5999 /* Without VSIB byte, we can't have a vector register for index. */
6000 if (!t->opcode_modifier.sib
6001 && i.index_reg
6002 && (i.index_reg->reg_type.bitfield.xmmword
6003 || i.index_reg->reg_type.bitfield.ymmword
6004 || i.index_reg->reg_type.bitfield.zmmword))
6005 {
6006 i.error = unsupported_vector_index_register;
6007 return 1;
6008 }
6009
6010 /* Check if default mask is allowed. */
6011 if (t->opcode_modifier.nodefmask
6012 && (!i.mask.reg || i.mask.reg->reg_num == 0))
6013 {
6014 i.error = no_default_mask;
6015 return 1;
6016 }
6017
6018 /* For VSIB byte, we need a vector register for index, and all vector
6019 registers must be distinct. */
6020 if (t->opcode_modifier.sib && t->opcode_modifier.sib != SIBMEM)
6021 {
6022 if (!i.index_reg
6023 || !((t->opcode_modifier.sib == VECSIB128
6024 && i.index_reg->reg_type.bitfield.xmmword)
6025 || (t->opcode_modifier.sib == VECSIB256
6026 && i.index_reg->reg_type.bitfield.ymmword)
6027 || (t->opcode_modifier.sib == VECSIB512
6028 && i.index_reg->reg_type.bitfield.zmmword)))
6029 {
6030 i.error = invalid_vsib_address;
6031 return 1;
6032 }
6033
6034 gas_assert (i.reg_operands == 2 || i.mask.reg);
6035 if (i.reg_operands == 2 && !i.mask.reg)
6036 {
6037 gas_assert (i.types[0].bitfield.class == RegSIMD);
6038 gas_assert (i.types[0].bitfield.xmmword
6039 || i.types[0].bitfield.ymmword);
6040 gas_assert (i.types[2].bitfield.class == RegSIMD);
6041 gas_assert (i.types[2].bitfield.xmmword
6042 || i.types[2].bitfield.ymmword);
6043 if (operand_check == check_none)
6044 return 0;
6045 if (register_number (i.op[0].regs)
6046 != register_number (i.index_reg)
6047 && register_number (i.op[2].regs)
6048 != register_number (i.index_reg)
6049 && register_number (i.op[0].regs)
6050 != register_number (i.op[2].regs))
6051 return 0;
6052 if (operand_check == check_error)
6053 {
6054 i.error = invalid_vector_register_set;
6055 return 1;
6056 }
6057 as_warn (_("mask, index, and destination registers should be distinct"));
6058 }
6059 else if (i.reg_operands == 1 && i.mask.reg)
6060 {
6061 if (i.types[1].bitfield.class == RegSIMD
6062 && (i.types[1].bitfield.xmmword
6063 || i.types[1].bitfield.ymmword
6064 || i.types[1].bitfield.zmmword)
6065 && (register_number (i.op[1].regs)
6066 == register_number (i.index_reg)))
6067 {
6068 if (operand_check == check_error)
6069 {
6070 i.error = invalid_vector_register_set;
6071 return 1;
6072 }
6073 if (operand_check != check_none)
6074 as_warn (_("index and destination registers should be distinct"));
6075 }
6076 }
6077 }
6078
6079 /* For AMX instructions with three tmmword operands, all tmmword operand must be
6080 distinct */
6081 if (t->operand_types[0].bitfield.tmmword
6082 && i.reg_operands == 3)
6083 {
6084 if (register_number (i.op[0].regs)
6085 == register_number (i.op[1].regs)
6086 || register_number (i.op[0].regs)
6087 == register_number (i.op[2].regs)
6088 || register_number (i.op[1].regs)
6089 == register_number (i.op[2].regs))
6090 {
6091 i.error = invalid_tmm_register_set;
6092 return 1;
6093 }
6094 }
6095
6096 /* Check if broadcast is supported by the instruction and is applied
6097 to the memory operand. */
6098 if (i.broadcast.type)
6099 {
6100 i386_operand_type type, overlap;
6101
6102 /* Check if specified broadcast is supported in this instruction,
6103 and its broadcast bytes match the memory operand. */
6104 op = i.broadcast.operand;
6105 if (!t->opcode_modifier.broadcast
6106 || !(i.flags[op] & Operand_Mem)
6107 || (!i.types[op].bitfield.unspecified
6108 && !match_broadcast_size (t, op)))
6109 {
6110 bad_broadcast:
6111 i.error = unsupported_broadcast;
6112 return 1;
6113 }
6114
6115 i.broadcast.bytes = ((1 << (t->opcode_modifier.broadcast - 1))
6116 * i.broadcast.type);
6117 operand_type_set (&type, 0);
6118 switch (i.broadcast.bytes)
6119 {
6120 case 2:
6121 type.bitfield.word = 1;
6122 break;
6123 case 4:
6124 type.bitfield.dword = 1;
6125 break;
6126 case 8:
6127 type.bitfield.qword = 1;
6128 break;
6129 case 16:
6130 type.bitfield.xmmword = 1;
6131 break;
6132 case 32:
6133 type.bitfield.ymmword = 1;
6134 break;
6135 case 64:
6136 type.bitfield.zmmword = 1;
6137 break;
6138 default:
6139 goto bad_broadcast;
6140 }
6141
6142 overlap = operand_type_and (type, t->operand_types[op]);
6143 if (t->operand_types[op].bitfield.class == RegSIMD
6144 && t->operand_types[op].bitfield.byte
6145 + t->operand_types[op].bitfield.word
6146 + t->operand_types[op].bitfield.dword
6147 + t->operand_types[op].bitfield.qword > 1)
6148 {
6149 overlap.bitfield.xmmword = 0;
6150 overlap.bitfield.ymmword = 0;
6151 overlap.bitfield.zmmword = 0;
6152 }
6153 if (operand_type_all_zero (&overlap))
6154 goto bad_broadcast;
6155
6156 if (t->opcode_modifier.checkregsize)
6157 {
6158 unsigned int j;
6159
6160 type.bitfield.baseindex = 1;
6161 for (j = 0; j < i.operands; ++j)
6162 {
6163 if (j != op
6164 && !operand_type_register_match(i.types[j],
6165 t->operand_types[j],
6166 type,
6167 t->operand_types[op]))
6168 goto bad_broadcast;
6169 }
6170 }
6171 }
6172 /* If broadcast is supported in this instruction, we need to check if
6173 operand of one-element size isn't specified without broadcast. */
6174 else if (t->opcode_modifier.broadcast && i.mem_operands)
6175 {
6176 /* Find memory operand. */
6177 for (op = 0; op < i.operands; op++)
6178 if (i.flags[op] & Operand_Mem)
6179 break;
6180 gas_assert (op < i.operands);
6181 /* Check size of the memory operand. */
6182 if (match_broadcast_size (t, op))
6183 {
6184 i.error = broadcast_needed;
6185 return 1;
6186 }
6187 }
6188 else
6189 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
6190
6191 /* Check if requested masking is supported. */
6192 if (i.mask.reg)
6193 {
6194 switch (t->opcode_modifier.masking)
6195 {
6196 case BOTH_MASKING:
6197 break;
6198 case MERGING_MASKING:
6199 if (i.mask.zeroing)
6200 {
6201 case 0:
6202 i.error = unsupported_masking;
6203 return 1;
6204 }
6205 break;
6206 case DYNAMIC_MASKING:
6207 /* Memory destinations allow only merging masking. */
6208 if (i.mask.zeroing && i.mem_operands)
6209 {
6210 /* Find memory operand. */
6211 for (op = 0; op < i.operands; op++)
6212 if (i.flags[op] & Operand_Mem)
6213 break;
6214 gas_assert (op < i.operands);
6215 if (op == i.operands - 1)
6216 {
6217 i.error = unsupported_masking;
6218 return 1;
6219 }
6220 }
6221 break;
6222 default:
6223 abort ();
6224 }
6225 }
6226
6227 /* Check if masking is applied to dest operand. */
6228 if (i.mask.reg && (i.mask.operand != i.operands - 1))
6229 {
6230 i.error = mask_not_on_destination;
6231 return 1;
6232 }
6233
6234 /* Check RC/SAE. */
6235 if (i.rounding.type != rc_none)
6236 {
6237 if (!t->opcode_modifier.sae
6238 || (i.rounding.type != saeonly && !t->opcode_modifier.staticrounding))
6239 {
6240 i.error = unsupported_rc_sae;
6241 return 1;
6242 }
6243 /* If the instruction has several immediate operands and one of
6244 them is rounding, the rounding operand should be the last
6245 immediate operand. */
6246 if (i.imm_operands > 1
6247 && i.rounding.operand != i.imm_operands - 1)
6248 {
6249 i.error = rc_sae_operand_not_last_imm;
6250 return 1;
6251 }
6252 }
6253
6254 /* Check the special Imm4 cases; must be the first operand. */
6255 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
6256 {
6257 if (i.op[0].imms->X_op != O_constant
6258 || !fits_in_imm4 (i.op[0].imms->X_add_number))
6259 {
6260 i.error = bad_imm4;
6261 return 1;
6262 }
6263
6264 /* Turn off Imm<N> so that update_imm won't complain. */
6265 operand_type_set (&i.types[0], 0);
6266 }
6267
6268 /* Check vector Disp8 operand. */
6269 if (t->opcode_modifier.disp8memshift
6270 && i.disp_encoding != disp_encoding_32bit)
6271 {
6272 if (i.broadcast.type)
6273 i.memshift = t->opcode_modifier.broadcast - 1;
6274 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
6275 i.memshift = t->opcode_modifier.disp8memshift;
6276 else
6277 {
6278 const i386_operand_type *type = NULL;
6279
6280 i.memshift = 0;
6281 for (op = 0; op < i.operands; op++)
6282 if (i.flags[op] & Operand_Mem)
6283 {
6284 if (t->opcode_modifier.evex == EVEXLIG)
6285 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
6286 else if (t->operand_types[op].bitfield.xmmword
6287 + t->operand_types[op].bitfield.ymmword
6288 + t->operand_types[op].bitfield.zmmword <= 1)
6289 type = &t->operand_types[op];
6290 else if (!i.types[op].bitfield.unspecified)
6291 type = &i.types[op];
6292 }
6293 else if (i.types[op].bitfield.class == RegSIMD
6294 && t->opcode_modifier.evex != EVEXLIG)
6295 {
6296 if (i.types[op].bitfield.zmmword)
6297 i.memshift = 6;
6298 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
6299 i.memshift = 5;
6300 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
6301 i.memshift = 4;
6302 }
6303
6304 if (type)
6305 {
6306 if (type->bitfield.zmmword)
6307 i.memshift = 6;
6308 else if (type->bitfield.ymmword)
6309 i.memshift = 5;
6310 else if (type->bitfield.xmmword)
6311 i.memshift = 4;
6312 }
6313
6314 /* For the check in fits_in_disp8(). */
6315 if (i.memshift == 0)
6316 i.memshift = -1;
6317 }
6318
6319 for (op = 0; op < i.operands; op++)
6320 if (operand_type_check (i.types[op], disp)
6321 && i.op[op].disps->X_op == O_constant)
6322 {
6323 if (fits_in_disp8 (i.op[op].disps->X_add_number))
6324 {
6325 i.types[op].bitfield.disp8 = 1;
6326 return 0;
6327 }
6328 i.types[op].bitfield.disp8 = 0;
6329 }
6330 }
6331
6332 i.memshift = 0;
6333
6334 return 0;
6335 }
6336
6337 /* Check if encoding requirements are met by the instruction. */
6338
6339 static int
6340 VEX_check_encoding (const insn_template *t)
6341 {
6342 if (i.vec_encoding == vex_encoding_error)
6343 {
6344 i.error = unsupported;
6345 return 1;
6346 }
6347
6348 if (i.vec_encoding == vex_encoding_evex)
6349 {
6350 /* This instruction must be encoded with EVEX prefix. */
6351 if (!is_evex_encoding (t))
6352 {
6353 i.error = unsupported;
6354 return 1;
6355 }
6356 return 0;
6357 }
6358
6359 if (!t->opcode_modifier.vex)
6360 {
6361 /* This instruction template doesn't have VEX prefix. */
6362 if (i.vec_encoding != vex_encoding_default)
6363 {
6364 i.error = unsupported;
6365 return 1;
6366 }
6367 return 0;
6368 }
6369
6370 return 0;
6371 }
6372
6373 static const insn_template *
6374 match_template (char mnem_suffix)
6375 {
6376 /* Points to template once we've found it. */
6377 const insn_template *t;
6378 i386_operand_type overlap0, overlap1, overlap2, overlap3;
6379 i386_operand_type overlap4;
6380 unsigned int found_reverse_match;
6381 i386_opcode_modifier suffix_check;
6382 i386_operand_type operand_types [MAX_OPERANDS];
6383 int addr_prefix_disp;
6384 unsigned int j, size_match, check_register;
6385 enum i386_error specific_error = 0;
6386
6387 #if MAX_OPERANDS != 5
6388 # error "MAX_OPERANDS must be 5."
6389 #endif
6390
6391 found_reverse_match = 0;
6392 addr_prefix_disp = -1;
6393
6394 /* Prepare for mnemonic suffix check. */
6395 memset (&suffix_check, 0, sizeof (suffix_check));
6396 switch (mnem_suffix)
6397 {
6398 case BYTE_MNEM_SUFFIX:
6399 suffix_check.no_bsuf = 1;
6400 break;
6401 case WORD_MNEM_SUFFIX:
6402 suffix_check.no_wsuf = 1;
6403 break;
6404 case SHORT_MNEM_SUFFIX:
6405 suffix_check.no_ssuf = 1;
6406 break;
6407 case LONG_MNEM_SUFFIX:
6408 suffix_check.no_lsuf = 1;
6409 break;
6410 case QWORD_MNEM_SUFFIX:
6411 suffix_check.no_qsuf = 1;
6412 break;
6413 default:
6414 /* NB: In Intel syntax, normally we can check for memory operand
6415 size when there is no mnemonic suffix. But jmp and call have
6416 2 different encodings with Dword memory operand size, one with
6417 No_ldSuf and the other without. i.suffix is set to
6418 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
6419 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
6420 suffix_check.no_ldsuf = 1;
6421 }
6422
6423 /* Must have right number of operands. */
6424 i.error = number_of_operands_mismatch;
6425
6426 for (t = current_templates->start; t < current_templates->end; t++)
6427 {
6428 addr_prefix_disp = -1;
6429 found_reverse_match = 0;
6430
6431 if (i.operands != t->operands)
6432 continue;
6433
6434 /* Check processor support. */
6435 i.error = unsupported;
6436 if (cpu_flags_match (t) != CPU_FLAGS_PERFECT_MATCH)
6437 continue;
6438
6439 /* Check Pseudo Prefix. */
6440 i.error = unsupported;
6441 if (t->opcode_modifier.pseudovexprefix
6442 && !(i.vec_encoding == vex_encoding_vex
6443 || i.vec_encoding == vex_encoding_vex3))
6444 continue;
6445
6446 /* Check AT&T mnemonic. */
6447 i.error = unsupported_with_intel_mnemonic;
6448 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
6449 continue;
6450
6451 /* Check AT&T/Intel syntax. */
6452 i.error = unsupported_syntax;
6453 if ((intel_syntax && t->opcode_modifier.attsyntax)
6454 || (!intel_syntax && t->opcode_modifier.intelsyntax))
6455 continue;
6456
6457 /* Check Intel64/AMD64 ISA. */
6458 switch (isa64)
6459 {
6460 default:
6461 /* Default: Don't accept Intel64. */
6462 if (t->opcode_modifier.isa64 == INTEL64)
6463 continue;
6464 break;
6465 case amd64:
6466 /* -mamd64: Don't accept Intel64 and Intel64 only. */
6467 if (t->opcode_modifier.isa64 >= INTEL64)
6468 continue;
6469 break;
6470 case intel64:
6471 /* -mintel64: Don't accept AMD64. */
6472 if (t->opcode_modifier.isa64 == AMD64 && flag_code == CODE_64BIT)
6473 continue;
6474 break;
6475 }
6476
6477 /* Check the suffix. */
6478 i.error = invalid_instruction_suffix;
6479 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
6480 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
6481 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
6482 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
6483 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
6484 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
6485 continue;
6486
6487 size_match = operand_size_match (t);
6488 if (!size_match)
6489 continue;
6490
6491 /* This is intentionally not
6492
6493 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
6494
6495 as the case of a missing * on the operand is accepted (perhaps with
6496 a warning, issued further down). */
6497 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
6498 {
6499 i.error = operand_type_mismatch;
6500 continue;
6501 }
6502
6503 for (j = 0; j < MAX_OPERANDS; j++)
6504 operand_types[j] = t->operand_types[j];
6505
6506 /* In general, don't allow
6507 - 64-bit operands outside of 64-bit mode,
6508 - 32-bit operands on pre-386. */
6509 j = i.imm_operands + (t->operands > i.imm_operands + 1);
6510 if (((i.suffix == QWORD_MNEM_SUFFIX
6511 && flag_code != CODE_64BIT
6512 && !(t->opcode_modifier.opcodespace == SPACE_0F
6513 && t->base_opcode == 0xc7
6514 && t->opcode_modifier.opcodeprefix == PREFIX_NONE
6515 && t->extension_opcode == 1) /* cmpxchg8b */)
6516 || (i.suffix == LONG_MNEM_SUFFIX
6517 && !cpu_arch_flags.bitfield.cpui386))
6518 && (intel_syntax
6519 ? (t->opcode_modifier.mnemonicsize != IGNORESIZE
6520 && !intel_float_operand (t->name))
6521 : intel_float_operand (t->name) != 2)
6522 && (t->operands == i.imm_operands
6523 || (operand_types[i.imm_operands].bitfield.class != RegMMX
6524 && operand_types[i.imm_operands].bitfield.class != RegSIMD
6525 && operand_types[i.imm_operands].bitfield.class != RegMask)
6526 || (operand_types[j].bitfield.class != RegMMX
6527 && operand_types[j].bitfield.class != RegSIMD
6528 && operand_types[j].bitfield.class != RegMask))
6529 && !t->opcode_modifier.sib)
6530 continue;
6531
6532 /* Do not verify operands when there are none. */
6533 if (!t->operands)
6534 {
6535 if (VEX_check_encoding (t))
6536 {
6537 specific_error = i.error;
6538 continue;
6539 }
6540
6541 /* We've found a match; break out of loop. */
6542 break;
6543 }
6544
6545 if (!t->opcode_modifier.jump
6546 || t->opcode_modifier.jump == JUMP_ABSOLUTE)
6547 {
6548 /* There should be only one Disp operand. */
6549 for (j = 0; j < MAX_OPERANDS; j++)
6550 if (operand_type_check (operand_types[j], disp))
6551 break;
6552 if (j < MAX_OPERANDS)
6553 {
6554 bool override = (i.prefix[ADDR_PREFIX] != 0);
6555
6556 addr_prefix_disp = j;
6557
6558 /* Address size prefix will turn Disp64/Disp32S/Disp32/Disp16
6559 operand into Disp32/Disp32/Disp16/Disp32 operand. */
6560 switch (flag_code)
6561 {
6562 case CODE_16BIT:
6563 override = !override;
6564 /* Fall through. */
6565 case CODE_32BIT:
6566 if (operand_types[j].bitfield.disp32
6567 && operand_types[j].bitfield.disp16)
6568 {
6569 operand_types[j].bitfield.disp16 = override;
6570 operand_types[j].bitfield.disp32 = !override;
6571 }
6572 operand_types[j].bitfield.disp32s = 0;
6573 operand_types[j].bitfield.disp64 = 0;
6574 break;
6575
6576 case CODE_64BIT:
6577 if (operand_types[j].bitfield.disp32s
6578 || operand_types[j].bitfield.disp64)
6579 {
6580 operand_types[j].bitfield.disp64 &= !override;
6581 operand_types[j].bitfield.disp32s &= !override;
6582 operand_types[j].bitfield.disp32 = override;
6583 }
6584 operand_types[j].bitfield.disp16 = 0;
6585 break;
6586 }
6587 }
6588 }
6589
6590 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
6591 if (i.reloc[0] == BFD_RELOC_386_GOT32
6592 && t->base_opcode == 0xa0
6593 && t->opcode_modifier.opcodespace == SPACE_BASE)
6594 continue;
6595
6596 /* We check register size if needed. */
6597 if (t->opcode_modifier.checkregsize)
6598 {
6599 check_register = (1 << t->operands) - 1;
6600 if (i.broadcast.type)
6601 check_register &= ~(1 << i.broadcast.operand);
6602 }
6603 else
6604 check_register = 0;
6605
6606 overlap0 = operand_type_and (i.types[0], operand_types[0]);
6607 switch (t->operands)
6608 {
6609 case 1:
6610 if (!operand_type_match (overlap0, i.types[0]))
6611 continue;
6612 break;
6613 case 2:
6614 /* xchg %eax, %eax is a special case. It is an alias for nop
6615 only in 32bit mode and we can use opcode 0x90. In 64bit
6616 mode, we can't use 0x90 for xchg %eax, %eax since it should
6617 zero-extend %eax to %rax. */
6618 if (flag_code == CODE_64BIT
6619 && t->base_opcode == 0x90
6620 && t->opcode_modifier.opcodespace == SPACE_BASE
6621 && i.types[0].bitfield.instance == Accum
6622 && i.types[0].bitfield.dword
6623 && i.types[1].bitfield.instance == Accum
6624 && i.types[1].bitfield.dword)
6625 continue;
6626 /* xrelease mov %eax, <disp> is another special case. It must not
6627 match the accumulator-only encoding of mov. */
6628 if (flag_code != CODE_64BIT
6629 && i.hle_prefix
6630 && t->base_opcode == 0xa0
6631 && t->opcode_modifier.opcodespace == SPACE_BASE
6632 && i.types[0].bitfield.instance == Accum
6633 && (i.flags[1] & Operand_Mem))
6634 continue;
6635 /* Fall through. */
6636
6637 case 3:
6638 if (!(size_match & MATCH_STRAIGHT))
6639 goto check_reverse;
6640 /* Reverse direction of operands if swapping is possible in the first
6641 place (operands need to be symmetric) and
6642 - the load form is requested, and the template is a store form,
6643 - the store form is requested, and the template is a load form,
6644 - the non-default (swapped) form is requested. */
6645 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
6646 if (t->opcode_modifier.d && i.reg_operands == i.operands
6647 && !operand_type_all_zero (&overlap1))
6648 switch (i.dir_encoding)
6649 {
6650 case dir_encoding_load:
6651 if (operand_type_check (operand_types[i.operands - 1], anymem)
6652 || t->opcode_modifier.regmem)
6653 goto check_reverse;
6654 break;
6655
6656 case dir_encoding_store:
6657 if (!operand_type_check (operand_types[i.operands - 1], anymem)
6658 && !t->opcode_modifier.regmem)
6659 goto check_reverse;
6660 break;
6661
6662 case dir_encoding_swap:
6663 goto check_reverse;
6664
6665 case dir_encoding_default:
6666 break;
6667 }
6668 /* If we want store form, we skip the current load. */
6669 if ((i.dir_encoding == dir_encoding_store
6670 || i.dir_encoding == dir_encoding_swap)
6671 && i.mem_operands == 0
6672 && t->opcode_modifier.load)
6673 continue;
6674 /* Fall through. */
6675 case 4:
6676 case 5:
6677 overlap1 = operand_type_and (i.types[1], operand_types[1]);
6678 if (!operand_type_match (overlap0, i.types[0])
6679 || !operand_type_match (overlap1, i.types[1])
6680 || ((check_register & 3) == 3
6681 && !operand_type_register_match (i.types[0],
6682 operand_types[0],
6683 i.types[1],
6684 operand_types[1])))
6685 {
6686 /* Check if other direction is valid ... */
6687 if (!t->opcode_modifier.d)
6688 continue;
6689
6690 check_reverse:
6691 if (!(size_match & MATCH_REVERSE))
6692 continue;
6693 /* Try reversing direction of operands. */
6694 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
6695 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
6696 if (!operand_type_match (overlap0, i.types[0])
6697 || !operand_type_match (overlap1, i.types[i.operands - 1])
6698 || (check_register
6699 && !operand_type_register_match (i.types[0],
6700 operand_types[i.operands - 1],
6701 i.types[i.operands - 1],
6702 operand_types[0])))
6703 {
6704 /* Does not match either direction. */
6705 continue;
6706 }
6707 /* found_reverse_match holds which of D or FloatR
6708 we've found. */
6709 if (!t->opcode_modifier.d)
6710 found_reverse_match = 0;
6711 else if (operand_types[0].bitfield.tbyte)
6712 found_reverse_match = Opcode_FloatD;
6713 else if (operand_types[0].bitfield.xmmword
6714 || operand_types[i.operands - 1].bitfield.xmmword
6715 || operand_types[0].bitfield.class == RegMMX
6716 || operand_types[i.operands - 1].bitfield.class == RegMMX
6717 || is_any_vex_encoding(t))
6718 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
6719 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
6720 else
6721 found_reverse_match = Opcode_D;
6722 if (t->opcode_modifier.floatr)
6723 found_reverse_match |= Opcode_FloatR;
6724 }
6725 else
6726 {
6727 /* Found a forward 2 operand match here. */
6728 switch (t->operands)
6729 {
6730 case 5:
6731 overlap4 = operand_type_and (i.types[4],
6732 operand_types[4]);
6733 /* Fall through. */
6734 case 4:
6735 overlap3 = operand_type_and (i.types[3],
6736 operand_types[3]);
6737 /* Fall through. */
6738 case 3:
6739 overlap2 = operand_type_and (i.types[2],
6740 operand_types[2]);
6741 break;
6742 }
6743
6744 switch (t->operands)
6745 {
6746 case 5:
6747 if (!operand_type_match (overlap4, i.types[4])
6748 || !operand_type_register_match (i.types[3],
6749 operand_types[3],
6750 i.types[4],
6751 operand_types[4]))
6752 continue;
6753 /* Fall through. */
6754 case 4:
6755 if (!operand_type_match (overlap3, i.types[3])
6756 || ((check_register & 0xa) == 0xa
6757 && !operand_type_register_match (i.types[1],
6758 operand_types[1],
6759 i.types[3],
6760 operand_types[3]))
6761 || ((check_register & 0xc) == 0xc
6762 && !operand_type_register_match (i.types[2],
6763 operand_types[2],
6764 i.types[3],
6765 operand_types[3])))
6766 continue;
6767 /* Fall through. */
6768 case 3:
6769 /* Here we make use of the fact that there are no
6770 reverse match 3 operand instructions. */
6771 if (!operand_type_match (overlap2, i.types[2])
6772 || ((check_register & 5) == 5
6773 && !operand_type_register_match (i.types[0],
6774 operand_types[0],
6775 i.types[2],
6776 operand_types[2]))
6777 || ((check_register & 6) == 6
6778 && !operand_type_register_match (i.types[1],
6779 operand_types[1],
6780 i.types[2],
6781 operand_types[2])))
6782 continue;
6783 break;
6784 }
6785 }
6786 /* Found either forward/reverse 2, 3 or 4 operand match here:
6787 slip through to break. */
6788 }
6789
6790 /* Check if vector operands are valid. */
6791 if (check_VecOperands (t))
6792 {
6793 specific_error = i.error;
6794 continue;
6795 }
6796
6797 /* Check if VEX/EVEX encoding requirements can be satisfied. */
6798 if (VEX_check_encoding (t))
6799 {
6800 specific_error = i.error;
6801 continue;
6802 }
6803
6804 /* We've found a match; break out of loop. */
6805 break;
6806 }
6807
6808 if (t == current_templates->end)
6809 {
6810 /* We found no match. */
6811 const char *err_msg;
6812 switch (specific_error ? specific_error : i.error)
6813 {
6814 default:
6815 abort ();
6816 case operand_size_mismatch:
6817 err_msg = _("operand size mismatch");
6818 break;
6819 case operand_type_mismatch:
6820 err_msg = _("operand type mismatch");
6821 break;
6822 case register_type_mismatch:
6823 err_msg = _("register type mismatch");
6824 break;
6825 case number_of_operands_mismatch:
6826 err_msg = _("number of operands mismatch");
6827 break;
6828 case invalid_instruction_suffix:
6829 err_msg = _("invalid instruction suffix");
6830 break;
6831 case bad_imm4:
6832 err_msg = _("constant doesn't fit in 4 bits");
6833 break;
6834 case unsupported_with_intel_mnemonic:
6835 err_msg = _("unsupported with Intel mnemonic");
6836 break;
6837 case unsupported_syntax:
6838 err_msg = _("unsupported syntax");
6839 break;
6840 case unsupported:
6841 as_bad (_("unsupported instruction `%s'"),
6842 current_templates->start->name);
6843 return NULL;
6844 case invalid_sib_address:
6845 err_msg = _("invalid SIB address");
6846 break;
6847 case invalid_vsib_address:
6848 err_msg = _("invalid VSIB address");
6849 break;
6850 case invalid_vector_register_set:
6851 err_msg = _("mask, index, and destination registers must be distinct");
6852 break;
6853 case invalid_tmm_register_set:
6854 err_msg = _("all tmm registers must be distinct");
6855 break;
6856 case unsupported_vector_index_register:
6857 err_msg = _("unsupported vector index register");
6858 break;
6859 case unsupported_broadcast:
6860 err_msg = _("unsupported broadcast");
6861 break;
6862 case broadcast_needed:
6863 err_msg = _("broadcast is needed for operand of such type");
6864 break;
6865 case unsupported_masking:
6866 err_msg = _("unsupported masking");
6867 break;
6868 case mask_not_on_destination:
6869 err_msg = _("mask not on destination operand");
6870 break;
6871 case no_default_mask:
6872 err_msg = _("default mask isn't allowed");
6873 break;
6874 case unsupported_rc_sae:
6875 err_msg = _("unsupported static rounding/sae");
6876 break;
6877 case rc_sae_operand_not_last_imm:
6878 if (intel_syntax)
6879 err_msg = _("RC/SAE operand must precede immediate operands");
6880 else
6881 err_msg = _("RC/SAE operand must follow immediate operands");
6882 break;
6883 case invalid_register_operand:
6884 err_msg = _("invalid register operand");
6885 break;
6886 }
6887 as_bad (_("%s for `%s'"), err_msg,
6888 current_templates->start->name);
6889 return NULL;
6890 }
6891
6892 if (!quiet_warnings)
6893 {
6894 if (!intel_syntax
6895 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6896 as_warn (_("indirect %s without `*'"), t->name);
6897
6898 if (t->opcode_modifier.isprefix
6899 && t->opcode_modifier.mnemonicsize == IGNORESIZE)
6900 {
6901 /* Warn them that a data or address size prefix doesn't
6902 affect assembly of the next line of code. */
6903 as_warn (_("stand-alone `%s' prefix"), t->name);
6904 }
6905 }
6906
6907 /* Copy the template we found. */
6908 install_template (t);
6909
6910 if (addr_prefix_disp != -1)
6911 i.tm.operand_types[addr_prefix_disp]
6912 = operand_types[addr_prefix_disp];
6913
6914 if (found_reverse_match)
6915 {
6916 /* If we found a reverse match we must alter the opcode direction
6917 bit and clear/flip the regmem modifier one. found_reverse_match
6918 holds bits to change (different for int & float insns). */
6919
6920 i.tm.base_opcode ^= found_reverse_match;
6921
6922 i.tm.operand_types[0] = operand_types[i.operands - 1];
6923 i.tm.operand_types[i.operands - 1] = operand_types[0];
6924
6925 /* Certain SIMD insns have their load forms specified in the opcode
6926 table, and hence we need to _set_ RegMem instead of clearing it.
6927 We need to avoid setting the bit though on insns like KMOVW. */
6928 i.tm.opcode_modifier.regmem
6929 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6930 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6931 && !i.tm.opcode_modifier.regmem;
6932 }
6933
6934 return t;
6935 }
6936
6937 static int
6938 check_string (void)
6939 {
6940 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6941 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
6942
6943 if (i.seg[op] != NULL && i.seg[op] != reg_es)
6944 {
6945 as_bad (_("`%s' operand %u must use `%ses' segment"),
6946 i.tm.name,
6947 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6948 register_prefix);
6949 return 0;
6950 }
6951
6952 /* There's only ever one segment override allowed per instruction.
6953 This instruction possibly has a legal segment override on the
6954 second operand, so copy the segment to where non-string
6955 instructions store it, allowing common code. */
6956 i.seg[op] = i.seg[1];
6957
6958 return 1;
6959 }
6960
6961 static int
6962 process_suffix (void)
6963 {
6964 bool is_crc32 = false, is_movx = false;
6965
6966 /* If matched instruction specifies an explicit instruction mnemonic
6967 suffix, use it. */
6968 if (i.tm.opcode_modifier.size == SIZE16)
6969 i.suffix = WORD_MNEM_SUFFIX;
6970 else if (i.tm.opcode_modifier.size == SIZE32)
6971 i.suffix = LONG_MNEM_SUFFIX;
6972 else if (i.tm.opcode_modifier.size == SIZE64)
6973 i.suffix = QWORD_MNEM_SUFFIX;
6974 else if (i.reg_operands
6975 && (i.operands > 1 || i.types[0].bitfield.class == Reg)
6976 && !i.tm.opcode_modifier.addrprefixopreg)
6977 {
6978 unsigned int numop = i.operands;
6979
6980 /* MOVSX/MOVZX */
6981 is_movx = (i.tm.opcode_modifier.opcodespace == SPACE_0F
6982 && (i.tm.base_opcode | 8) == 0xbe)
6983 || (i.tm.opcode_modifier.opcodespace == SPACE_BASE
6984 && i.tm.base_opcode == 0x63
6985 && i.tm.cpu_flags.bitfield.cpu64);
6986
6987 /* CRC32 */
6988 is_crc32 = (i.tm.base_opcode == 0xf0
6989 && i.tm.opcode_modifier.opcodespace == SPACE_0F38
6990 && i.tm.opcode_modifier.opcodeprefix == PREFIX_0XF2);
6991
6992 /* movsx/movzx want only their source operand considered here, for the
6993 ambiguity checking below. The suffix will be replaced afterwards
6994 to represent the destination (register). */
6995 if (is_movx && (i.tm.opcode_modifier.w || i.tm.base_opcode == 0x63))
6996 --i.operands;
6997
6998 /* crc32 needs REX.W set regardless of suffix / source operand size. */
6999 if (is_crc32 && i.tm.operand_types[1].bitfield.qword)
7000 i.rex |= REX_W;
7001
7002 /* If there's no instruction mnemonic suffix we try to invent one
7003 based on GPR operands. */
7004 if (!i.suffix)
7005 {
7006 /* We take i.suffix from the last register operand specified,
7007 Destination register type is more significant than source
7008 register type. crc32 in SSE4.2 prefers source register
7009 type. */
7010 unsigned int op = is_crc32 ? 1 : i.operands;
7011
7012 while (op--)
7013 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
7014 || i.tm.operand_types[op].bitfield.instance == Accum)
7015 {
7016 if (i.types[op].bitfield.class != Reg)
7017 continue;
7018 if (i.types[op].bitfield.byte)
7019 i.suffix = BYTE_MNEM_SUFFIX;
7020 else if (i.types[op].bitfield.word)
7021 i.suffix = WORD_MNEM_SUFFIX;
7022 else if (i.types[op].bitfield.dword)
7023 i.suffix = LONG_MNEM_SUFFIX;
7024 else if (i.types[op].bitfield.qword)
7025 i.suffix = QWORD_MNEM_SUFFIX;
7026 else
7027 continue;
7028 break;
7029 }
7030
7031 /* As an exception, movsx/movzx silently default to a byte source
7032 in AT&T mode. */
7033 if (is_movx && i.tm.opcode_modifier.w && !i.suffix && !intel_syntax)
7034 i.suffix = BYTE_MNEM_SUFFIX;
7035 }
7036 else if (i.suffix == BYTE_MNEM_SUFFIX)
7037 {
7038 if (intel_syntax
7039 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
7040 && i.tm.opcode_modifier.no_bsuf)
7041 i.suffix = 0;
7042 else if (!check_byte_reg ())
7043 return 0;
7044 }
7045 else if (i.suffix == LONG_MNEM_SUFFIX)
7046 {
7047 if (intel_syntax
7048 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
7049 && i.tm.opcode_modifier.no_lsuf
7050 && !i.tm.opcode_modifier.todword
7051 && !i.tm.opcode_modifier.toqword)
7052 i.suffix = 0;
7053 else if (!check_long_reg ())
7054 return 0;
7055 }
7056 else if (i.suffix == QWORD_MNEM_SUFFIX)
7057 {
7058 if (intel_syntax
7059 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
7060 && i.tm.opcode_modifier.no_qsuf
7061 && !i.tm.opcode_modifier.todword
7062 && !i.tm.opcode_modifier.toqword)
7063 i.suffix = 0;
7064 else if (!check_qword_reg ())
7065 return 0;
7066 }
7067 else if (i.suffix == WORD_MNEM_SUFFIX)
7068 {
7069 if (intel_syntax
7070 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
7071 && i.tm.opcode_modifier.no_wsuf)
7072 i.suffix = 0;
7073 else if (!check_word_reg ())
7074 return 0;
7075 }
7076 else if (intel_syntax
7077 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE)
7078 /* Do nothing if the instruction is going to ignore the prefix. */
7079 ;
7080 else
7081 abort ();
7082
7083 /* Undo the movsx/movzx change done above. */
7084 i.operands = numop;
7085 }
7086 else if (i.tm.opcode_modifier.mnemonicsize == DEFAULTSIZE
7087 && !i.suffix)
7088 {
7089 i.suffix = stackop_size;
7090 if (stackop_size == LONG_MNEM_SUFFIX)
7091 {
7092 /* stackop_size is set to LONG_MNEM_SUFFIX for the
7093 .code16gcc directive to support 16-bit mode with
7094 32-bit address. For IRET without a suffix, generate
7095 16-bit IRET (opcode 0xcf) to return from an interrupt
7096 handler. */
7097 if (i.tm.base_opcode == 0xcf)
7098 {
7099 i.suffix = WORD_MNEM_SUFFIX;
7100 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
7101 }
7102 /* Warn about changed behavior for segment register push/pop. */
7103 else if ((i.tm.base_opcode | 1) == 0x07)
7104 as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
7105 i.tm.name);
7106 }
7107 }
7108 else if (!i.suffix
7109 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
7110 || i.tm.opcode_modifier.jump == JUMP_BYTE
7111 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
7112 || (i.tm.opcode_modifier.opcodespace == SPACE_0F
7113 && i.tm.base_opcode == 0x01 /* [ls][gi]dt */
7114 && i.tm.extension_opcode <= 3)))
7115 {
7116 switch (flag_code)
7117 {
7118 case CODE_64BIT:
7119 if (!i.tm.opcode_modifier.no_qsuf)
7120 {
7121 if (i.tm.opcode_modifier.jump == JUMP_BYTE
7122 || i.tm.opcode_modifier.no_lsuf)
7123 i.suffix = QWORD_MNEM_SUFFIX;
7124 break;
7125 }
7126 /* Fall through. */
7127 case CODE_32BIT:
7128 if (!i.tm.opcode_modifier.no_lsuf)
7129 i.suffix = LONG_MNEM_SUFFIX;
7130 break;
7131 case CODE_16BIT:
7132 if (!i.tm.opcode_modifier.no_wsuf)
7133 i.suffix = WORD_MNEM_SUFFIX;
7134 break;
7135 }
7136 }
7137
7138 if (!i.suffix
7139 && (i.tm.opcode_modifier.mnemonicsize != DEFAULTSIZE
7140 /* Also cover lret/retf/iret in 64-bit mode. */
7141 || (flag_code == CODE_64BIT
7142 && !i.tm.opcode_modifier.no_lsuf
7143 && !i.tm.opcode_modifier.no_qsuf))
7144 && i.tm.opcode_modifier.mnemonicsize != IGNORESIZE
7145 /* Explicit sizing prefixes are assumed to disambiguate insns. */
7146 && !i.prefix[DATA_PREFIX] && !(i.prefix[REX_PREFIX] & REX_W)
7147 /* Accept FLDENV et al without suffix. */
7148 && (i.tm.opcode_modifier.no_ssuf || i.tm.opcode_modifier.floatmf))
7149 {
7150 unsigned int suffixes, evex = 0;
7151
7152 suffixes = !i.tm.opcode_modifier.no_bsuf;
7153 if (!i.tm.opcode_modifier.no_wsuf)
7154 suffixes |= 1 << 1;
7155 if (!i.tm.opcode_modifier.no_lsuf)
7156 suffixes |= 1 << 2;
7157 if (!i.tm.opcode_modifier.no_ldsuf)
7158 suffixes |= 1 << 3;
7159 if (!i.tm.opcode_modifier.no_ssuf)
7160 suffixes |= 1 << 4;
7161 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
7162 suffixes |= 1 << 5;
7163
7164 /* For [XYZ]MMWORD operands inspect operand sizes. While generally
7165 also suitable for AT&T syntax mode, it was requested that this be
7166 restricted to just Intel syntax. */
7167 if (intel_syntax && is_any_vex_encoding (&i.tm) && !i.broadcast.type)
7168 {
7169 unsigned int op;
7170
7171 for (op = 0; op < i.tm.operands; ++op)
7172 {
7173 if (is_evex_encoding (&i.tm)
7174 && !cpu_arch_flags.bitfield.cpuavx512vl)
7175 {
7176 if (i.tm.operand_types[op].bitfield.ymmword)
7177 i.tm.operand_types[op].bitfield.xmmword = 0;
7178 if (i.tm.operand_types[op].bitfield.zmmword)
7179 i.tm.operand_types[op].bitfield.ymmword = 0;
7180 if (!i.tm.opcode_modifier.evex
7181 || i.tm.opcode_modifier.evex == EVEXDYN)
7182 i.tm.opcode_modifier.evex = EVEX512;
7183 }
7184
7185 if (i.tm.operand_types[op].bitfield.xmmword
7186 + i.tm.operand_types[op].bitfield.ymmword
7187 + i.tm.operand_types[op].bitfield.zmmword < 2)
7188 continue;
7189
7190 /* Any properly sized operand disambiguates the insn. */
7191 if (i.types[op].bitfield.xmmword
7192 || i.types[op].bitfield.ymmword
7193 || i.types[op].bitfield.zmmword)
7194 {
7195 suffixes &= ~(7 << 6);
7196 evex = 0;
7197 break;
7198 }
7199
7200 if ((i.flags[op] & Operand_Mem)
7201 && i.tm.operand_types[op].bitfield.unspecified)
7202 {
7203 if (i.tm.operand_types[op].bitfield.xmmword)
7204 suffixes |= 1 << 6;
7205 if (i.tm.operand_types[op].bitfield.ymmword)
7206 suffixes |= 1 << 7;
7207 if (i.tm.operand_types[op].bitfield.zmmword)
7208 suffixes |= 1 << 8;
7209 if (is_evex_encoding (&i.tm))
7210 evex = EVEX512;
7211 }
7212 }
7213 }
7214
7215 /* Are multiple suffixes / operand sizes allowed? */
7216 if (suffixes & (suffixes - 1))
7217 {
7218 if (intel_syntax
7219 && (i.tm.opcode_modifier.mnemonicsize != DEFAULTSIZE
7220 || operand_check == check_error))
7221 {
7222 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
7223 return 0;
7224 }
7225 if (operand_check == check_error)
7226 {
7227 as_bad (_("no instruction mnemonic suffix given and "
7228 "no register operands; can't size `%s'"), i.tm.name);
7229 return 0;
7230 }
7231 if (operand_check == check_warning)
7232 as_warn (_("%s; using default for `%s'"),
7233 intel_syntax
7234 ? _("ambiguous operand size")
7235 : _("no instruction mnemonic suffix given and "
7236 "no register operands"),
7237 i.tm.name);
7238
7239 if (i.tm.opcode_modifier.floatmf)
7240 i.suffix = SHORT_MNEM_SUFFIX;
7241 else if (is_movx)
7242 /* handled below */;
7243 else if (evex)
7244 i.tm.opcode_modifier.evex = evex;
7245 else if (flag_code == CODE_16BIT)
7246 i.suffix = WORD_MNEM_SUFFIX;
7247 else if (!i.tm.opcode_modifier.no_lsuf)
7248 i.suffix = LONG_MNEM_SUFFIX;
7249 else
7250 i.suffix = QWORD_MNEM_SUFFIX;
7251 }
7252 }
7253
7254 if (is_movx)
7255 {
7256 /* In Intel syntax, movsx/movzx must have a "suffix" (checked above).
7257 In AT&T syntax, if there is no suffix (warned about above), the default
7258 will be byte extension. */
7259 if (i.tm.opcode_modifier.w && i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
7260 i.tm.base_opcode |= 1;
7261
7262 /* For further processing, the suffix should represent the destination
7263 (register). This is already the case when one was used with
7264 mov[sz][bw]*, but we need to replace it for mov[sz]x, or if there was
7265 no suffix to begin with. */
7266 if (i.tm.opcode_modifier.w || i.tm.base_opcode == 0x63 || !i.suffix)
7267 {
7268 if (i.types[1].bitfield.word)
7269 i.suffix = WORD_MNEM_SUFFIX;
7270 else if (i.types[1].bitfield.qword)
7271 i.suffix = QWORD_MNEM_SUFFIX;
7272 else
7273 i.suffix = LONG_MNEM_SUFFIX;
7274
7275 i.tm.opcode_modifier.w = 0;
7276 }
7277 }
7278
7279 if (!i.tm.opcode_modifier.modrm && i.reg_operands && i.tm.operands < 3)
7280 i.short_form = (i.tm.operand_types[0].bitfield.class == Reg)
7281 != (i.tm.operand_types[1].bitfield.class == Reg);
7282
7283 /* Change the opcode based on the operand size given by i.suffix. */
7284 switch (i.suffix)
7285 {
7286 /* Size floating point instruction. */
7287 case LONG_MNEM_SUFFIX:
7288 if (i.tm.opcode_modifier.floatmf)
7289 {
7290 i.tm.base_opcode ^= 4;
7291 break;
7292 }
7293 /* fall through */
7294 case WORD_MNEM_SUFFIX:
7295 case QWORD_MNEM_SUFFIX:
7296 /* It's not a byte, select word/dword operation. */
7297 if (i.tm.opcode_modifier.w)
7298 {
7299 if (i.short_form)
7300 i.tm.base_opcode |= 8;
7301 else
7302 i.tm.base_opcode |= 1;
7303 }
7304 /* fall through */
7305 case SHORT_MNEM_SUFFIX:
7306 /* Now select between word & dword operations via the operand
7307 size prefix, except for instructions that will ignore this
7308 prefix anyway. */
7309 if (i.suffix != QWORD_MNEM_SUFFIX
7310 && i.tm.opcode_modifier.mnemonicsize != IGNORESIZE
7311 && !i.tm.opcode_modifier.floatmf
7312 && !is_any_vex_encoding (&i.tm)
7313 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
7314 || (flag_code == CODE_64BIT
7315 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
7316 {
7317 unsigned int prefix = DATA_PREFIX_OPCODE;
7318
7319 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
7320 prefix = ADDR_PREFIX_OPCODE;
7321
7322 if (!add_prefix (prefix))
7323 return 0;
7324 }
7325
7326 /* Set mode64 for an operand. */
7327 if (i.suffix == QWORD_MNEM_SUFFIX
7328 && flag_code == CODE_64BIT
7329 && !i.tm.opcode_modifier.norex64
7330 && !i.tm.opcode_modifier.vexw
7331 /* Special case for xchg %rax,%rax. It is NOP and doesn't
7332 need rex64. */
7333 && ! (i.operands == 2
7334 && i.tm.base_opcode == 0x90
7335 && i.tm.extension_opcode == None
7336 && i.types[0].bitfield.instance == Accum
7337 && i.types[0].bitfield.qword
7338 && i.types[1].bitfield.instance == Accum
7339 && i.types[1].bitfield.qword))
7340 i.rex |= REX_W;
7341
7342 break;
7343
7344 case 0:
7345 /* Select word/dword/qword operation with explicit data sizing prefix
7346 when there are no suitable register operands. */
7347 if (i.tm.opcode_modifier.w
7348 && (i.prefix[DATA_PREFIX] || (i.prefix[REX_PREFIX] & REX_W))
7349 && (!i.reg_operands
7350 || (i.reg_operands == 1
7351 /* ShiftCount */
7352 && (i.tm.operand_types[0].bitfield.instance == RegC
7353 /* InOutPortReg */
7354 || i.tm.operand_types[0].bitfield.instance == RegD
7355 || i.tm.operand_types[1].bitfield.instance == RegD
7356 /* CRC32 */
7357 || is_crc32))))
7358 i.tm.base_opcode |= 1;
7359 break;
7360 }
7361
7362 if (i.tm.opcode_modifier.addrprefixopreg)
7363 {
7364 gas_assert (!i.suffix);
7365 gas_assert (i.reg_operands);
7366
7367 if (i.tm.operand_types[0].bitfield.instance == Accum
7368 || i.operands == 1)
7369 {
7370 /* The address size override prefix changes the size of the
7371 first operand. */
7372 if (flag_code == CODE_64BIT
7373 && i.op[0].regs->reg_type.bitfield.word)
7374 {
7375 as_bad (_("16-bit addressing unavailable for `%s'"),
7376 i.tm.name);
7377 return 0;
7378 }
7379
7380 if ((flag_code == CODE_32BIT
7381 ? i.op[0].regs->reg_type.bitfield.word
7382 : i.op[0].regs->reg_type.bitfield.dword)
7383 && !add_prefix (ADDR_PREFIX_OPCODE))
7384 return 0;
7385 }
7386 else
7387 {
7388 /* Check invalid register operand when the address size override
7389 prefix changes the size of register operands. */
7390 unsigned int op;
7391 enum { need_word, need_dword, need_qword } need;
7392
7393 /* Check the register operand for the address size prefix if
7394 the memory operand has no real registers, like symbol, DISP
7395 or bogus (x32-only) symbol(%rip) when symbol(%eip) is meant. */
7396 if (i.mem_operands == 1
7397 && i.reg_operands == 1
7398 && i.operands == 2
7399 && i.types[1].bitfield.class == Reg
7400 && (flag_code == CODE_32BIT
7401 ? i.op[1].regs->reg_type.bitfield.word
7402 : i.op[1].regs->reg_type.bitfield.dword)
7403 && ((i.base_reg == NULL && i.index_reg == NULL)
7404 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7405 || (x86_elf_abi == X86_64_X32_ABI
7406 && i.base_reg
7407 && i.base_reg->reg_num == RegIP
7408 && i.base_reg->reg_type.bitfield.qword))
7409 #else
7410 || 0)
7411 #endif
7412 && !add_prefix (ADDR_PREFIX_OPCODE))
7413 return 0;
7414
7415 if (flag_code == CODE_32BIT)
7416 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
7417 else if (i.prefix[ADDR_PREFIX])
7418 need = need_dword;
7419 else
7420 need = flag_code == CODE_64BIT ? need_qword : need_word;
7421
7422 for (op = 0; op < i.operands; op++)
7423 {
7424 if (i.types[op].bitfield.class != Reg)
7425 continue;
7426
7427 switch (need)
7428 {
7429 case need_word:
7430 if (i.op[op].regs->reg_type.bitfield.word)
7431 continue;
7432 break;
7433 case need_dword:
7434 if (i.op[op].regs->reg_type.bitfield.dword)
7435 continue;
7436 break;
7437 case need_qword:
7438 if (i.op[op].regs->reg_type.bitfield.qword)
7439 continue;
7440 break;
7441 }
7442
7443 as_bad (_("invalid register operand size for `%s'"),
7444 i.tm.name);
7445 return 0;
7446 }
7447 }
7448 }
7449
7450 return 1;
7451 }
7452
7453 static int
7454 check_byte_reg (void)
7455 {
7456 int op;
7457
7458 for (op = i.operands; --op >= 0;)
7459 {
7460 /* Skip non-register operands. */
7461 if (i.types[op].bitfield.class != Reg)
7462 continue;
7463
7464 /* If this is an eight bit register, it's OK. If it's the 16 or
7465 32 bit version of an eight bit register, we will just use the
7466 low portion, and that's OK too. */
7467 if (i.types[op].bitfield.byte)
7468 continue;
7469
7470 /* I/O port address operands are OK too. */
7471 if (i.tm.operand_types[op].bitfield.instance == RegD
7472 && i.tm.operand_types[op].bitfield.word)
7473 continue;
7474
7475 /* crc32 only wants its source operand checked here. */
7476 if (i.tm.base_opcode == 0xf0
7477 && i.tm.opcode_modifier.opcodespace == SPACE_0F38
7478 && i.tm.opcode_modifier.opcodeprefix == PREFIX_0XF2
7479 && op != 0)
7480 continue;
7481
7482 /* Any other register is bad. */
7483 as_bad (_("`%s%s' not allowed with `%s%c'"),
7484 register_prefix, i.op[op].regs->reg_name,
7485 i.tm.name, i.suffix);
7486 return 0;
7487 }
7488 return 1;
7489 }
7490
7491 static int
7492 check_long_reg (void)
7493 {
7494 int op;
7495
7496 for (op = i.operands; --op >= 0;)
7497 /* Skip non-register operands. */
7498 if (i.types[op].bitfield.class != Reg)
7499 continue;
7500 /* Reject eight bit registers, except where the template requires
7501 them. (eg. movzb) */
7502 else if (i.types[op].bitfield.byte
7503 && (i.tm.operand_types[op].bitfield.class == Reg
7504 || i.tm.operand_types[op].bitfield.instance == Accum)
7505 && (i.tm.operand_types[op].bitfield.word
7506 || i.tm.operand_types[op].bitfield.dword))
7507 {
7508 as_bad (_("`%s%s' not allowed with `%s%c'"),
7509 register_prefix,
7510 i.op[op].regs->reg_name,
7511 i.tm.name,
7512 i.suffix);
7513 return 0;
7514 }
7515 /* Error if the e prefix on a general reg is missing. */
7516 else if (i.types[op].bitfield.word
7517 && (i.tm.operand_types[op].bitfield.class == Reg
7518 || i.tm.operand_types[op].bitfield.instance == Accum)
7519 && i.tm.operand_types[op].bitfield.dword)
7520 {
7521 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
7522 register_prefix, i.op[op].regs->reg_name,
7523 i.suffix);
7524 return 0;
7525 }
7526 /* Warn if the r prefix on a general reg is present. */
7527 else if (i.types[op].bitfield.qword
7528 && (i.tm.operand_types[op].bitfield.class == Reg
7529 || i.tm.operand_types[op].bitfield.instance == Accum)
7530 && i.tm.operand_types[op].bitfield.dword)
7531 {
7532 if (intel_syntax
7533 && i.tm.opcode_modifier.toqword
7534 && i.types[0].bitfield.class != RegSIMD)
7535 {
7536 /* Convert to QWORD. We want REX byte. */
7537 i.suffix = QWORD_MNEM_SUFFIX;
7538 }
7539 else
7540 {
7541 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
7542 register_prefix, i.op[op].regs->reg_name,
7543 i.suffix);
7544 return 0;
7545 }
7546 }
7547 return 1;
7548 }
7549
7550 static int
7551 check_qword_reg (void)
7552 {
7553 int op;
7554
7555 for (op = i.operands; --op >= 0; )
7556 /* Skip non-register operands. */
7557 if (i.types[op].bitfield.class != Reg)
7558 continue;
7559 /* Reject eight bit registers, except where the template requires
7560 them. (eg. movzb) */
7561 else if (i.types[op].bitfield.byte
7562 && (i.tm.operand_types[op].bitfield.class == Reg
7563 || i.tm.operand_types[op].bitfield.instance == Accum)
7564 && (i.tm.operand_types[op].bitfield.word
7565 || i.tm.operand_types[op].bitfield.dword))
7566 {
7567 as_bad (_("`%s%s' not allowed with `%s%c'"),
7568 register_prefix,
7569 i.op[op].regs->reg_name,
7570 i.tm.name,
7571 i.suffix);
7572 return 0;
7573 }
7574 /* Warn if the r prefix on a general reg is missing. */
7575 else if ((i.types[op].bitfield.word
7576 || i.types[op].bitfield.dword)
7577 && (i.tm.operand_types[op].bitfield.class == Reg
7578 || i.tm.operand_types[op].bitfield.instance == Accum)
7579 && i.tm.operand_types[op].bitfield.qword)
7580 {
7581 /* Prohibit these changes in the 64bit mode, since the
7582 lowering is more complicated. */
7583 if (intel_syntax
7584 && i.tm.opcode_modifier.todword
7585 && i.types[0].bitfield.class != RegSIMD)
7586 {
7587 /* Convert to DWORD. We don't want REX byte. */
7588 i.suffix = LONG_MNEM_SUFFIX;
7589 }
7590 else
7591 {
7592 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
7593 register_prefix, i.op[op].regs->reg_name,
7594 i.suffix);
7595 return 0;
7596 }
7597 }
7598 return 1;
7599 }
7600
7601 static int
7602 check_word_reg (void)
7603 {
7604 int op;
7605 for (op = i.operands; --op >= 0;)
7606 /* Skip non-register operands. */
7607 if (i.types[op].bitfield.class != Reg)
7608 continue;
7609 /* Reject eight bit registers, except where the template requires
7610 them. (eg. movzb) */
7611 else if (i.types[op].bitfield.byte
7612 && (i.tm.operand_types[op].bitfield.class == Reg
7613 || i.tm.operand_types[op].bitfield.instance == Accum)
7614 && (i.tm.operand_types[op].bitfield.word
7615 || i.tm.operand_types[op].bitfield.dword))
7616 {
7617 as_bad (_("`%s%s' not allowed with `%s%c'"),
7618 register_prefix,
7619 i.op[op].regs->reg_name,
7620 i.tm.name,
7621 i.suffix);
7622 return 0;
7623 }
7624 /* Error if the e or r prefix on a general reg is present. */
7625 else if ((i.types[op].bitfield.dword
7626 || i.types[op].bitfield.qword)
7627 && (i.tm.operand_types[op].bitfield.class == Reg
7628 || i.tm.operand_types[op].bitfield.instance == Accum)
7629 && i.tm.operand_types[op].bitfield.word)
7630 {
7631 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
7632 register_prefix, i.op[op].regs->reg_name,
7633 i.suffix);
7634 return 0;
7635 }
7636 return 1;
7637 }
7638
7639 static int
7640 update_imm (unsigned int j)
7641 {
7642 i386_operand_type overlap = i.types[j];
7643 if ((overlap.bitfield.imm8
7644 || overlap.bitfield.imm8s
7645 || overlap.bitfield.imm16
7646 || overlap.bitfield.imm32
7647 || overlap.bitfield.imm32s
7648 || overlap.bitfield.imm64)
7649 && !operand_type_equal (&overlap, &imm8)
7650 && !operand_type_equal (&overlap, &imm8s)
7651 && !operand_type_equal (&overlap, &imm16)
7652 && !operand_type_equal (&overlap, &imm32)
7653 && !operand_type_equal (&overlap, &imm32s)
7654 && !operand_type_equal (&overlap, &imm64))
7655 {
7656 if (i.suffix)
7657 {
7658 i386_operand_type temp;
7659
7660 operand_type_set (&temp, 0);
7661 if (i.suffix == BYTE_MNEM_SUFFIX)
7662 {
7663 temp.bitfield.imm8 = overlap.bitfield.imm8;
7664 temp.bitfield.imm8s = overlap.bitfield.imm8s;
7665 }
7666 else if (i.suffix == WORD_MNEM_SUFFIX)
7667 temp.bitfield.imm16 = overlap.bitfield.imm16;
7668 else if (i.suffix == QWORD_MNEM_SUFFIX)
7669 {
7670 temp.bitfield.imm64 = overlap.bitfield.imm64;
7671 temp.bitfield.imm32s = overlap.bitfield.imm32s;
7672 }
7673 else
7674 temp.bitfield.imm32 = overlap.bitfield.imm32;
7675 overlap = temp;
7676 }
7677 else if (operand_type_equal (&overlap, &imm16_32_32s)
7678 || operand_type_equal (&overlap, &imm16_32)
7679 || operand_type_equal (&overlap, &imm16_32s))
7680 {
7681 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
7682 overlap = imm16;
7683 else
7684 overlap = imm32s;
7685 }
7686 else if (i.prefix[REX_PREFIX] & REX_W)
7687 overlap = operand_type_and (overlap, imm32s);
7688 else if (i.prefix[DATA_PREFIX])
7689 overlap = operand_type_and (overlap,
7690 flag_code != CODE_16BIT ? imm16 : imm32);
7691 if (!operand_type_equal (&overlap, &imm8)
7692 && !operand_type_equal (&overlap, &imm8s)
7693 && !operand_type_equal (&overlap, &imm16)
7694 && !operand_type_equal (&overlap, &imm32)
7695 && !operand_type_equal (&overlap, &imm32s)
7696 && !operand_type_equal (&overlap, &imm64))
7697 {
7698 as_bad (_("no instruction mnemonic suffix given; "
7699 "can't determine immediate size"));
7700 return 0;
7701 }
7702 }
7703 i.types[j] = overlap;
7704
7705 return 1;
7706 }
7707
7708 static int
7709 finalize_imm (void)
7710 {
7711 unsigned int j, n;
7712
7713 /* Update the first 2 immediate operands. */
7714 n = i.operands > 2 ? 2 : i.operands;
7715 if (n)
7716 {
7717 for (j = 0; j < n; j++)
7718 if (update_imm (j) == 0)
7719 return 0;
7720
7721 /* The 3rd operand can't be immediate operand. */
7722 gas_assert (operand_type_check (i.types[2], imm) == 0);
7723 }
7724
7725 return 1;
7726 }
7727
7728 static int
7729 process_operands (void)
7730 {
7731 /* Default segment register this instruction will use for memory
7732 accesses. 0 means unknown. This is only for optimizing out
7733 unnecessary segment overrides. */
7734 const reg_entry *default_seg = NULL;
7735
7736 if (i.tm.opcode_modifier.sse2avx)
7737 {
7738 /* Legacy encoded insns allow explicit REX prefixes, so these prefixes
7739 need converting. */
7740 i.rex |= i.prefix[REX_PREFIX] & (REX_W | REX_R | REX_X | REX_B);
7741 i.prefix[REX_PREFIX] = 0;
7742 i.rex_encoding = 0;
7743 }
7744 /* ImmExt should be processed after SSE2AVX. */
7745 else if (i.tm.opcode_modifier.immext)
7746 process_immext ();
7747
7748 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
7749 {
7750 unsigned int dupl = i.operands;
7751 unsigned int dest = dupl - 1;
7752 unsigned int j;
7753
7754 /* The destination must be an xmm register. */
7755 gas_assert (i.reg_operands
7756 && MAX_OPERANDS > dupl
7757 && operand_type_equal (&i.types[dest], &regxmm));
7758
7759 if (i.tm.operand_types[0].bitfield.instance == Accum
7760 && i.tm.operand_types[0].bitfield.xmmword)
7761 {
7762 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
7763 {
7764 /* Keep xmm0 for instructions with VEX prefix and 3
7765 sources. */
7766 i.tm.operand_types[0].bitfield.instance = InstanceNone;
7767 i.tm.operand_types[0].bitfield.class = RegSIMD;
7768 goto duplicate;
7769 }
7770 else
7771 {
7772 /* We remove the first xmm0 and keep the number of
7773 operands unchanged, which in fact duplicates the
7774 destination. */
7775 for (j = 1; j < i.operands; j++)
7776 {
7777 i.op[j - 1] = i.op[j];
7778 i.types[j - 1] = i.types[j];
7779 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
7780 i.flags[j - 1] = i.flags[j];
7781 }
7782 }
7783 }
7784 else if (i.tm.opcode_modifier.implicit1stxmm0)
7785 {
7786 gas_assert ((MAX_OPERANDS - 1) > dupl
7787 && (i.tm.opcode_modifier.vexsources
7788 == VEX3SOURCES));
7789
7790 /* Add the implicit xmm0 for instructions with VEX prefix
7791 and 3 sources. */
7792 for (j = i.operands; j > 0; j--)
7793 {
7794 i.op[j] = i.op[j - 1];
7795 i.types[j] = i.types[j - 1];
7796 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
7797 i.flags[j] = i.flags[j - 1];
7798 }
7799 i.op[0].regs
7800 = (const reg_entry *) str_hash_find (reg_hash, "xmm0");
7801 i.types[0] = regxmm;
7802 i.tm.operand_types[0] = regxmm;
7803
7804 i.operands += 2;
7805 i.reg_operands += 2;
7806 i.tm.operands += 2;
7807
7808 dupl++;
7809 dest++;
7810 i.op[dupl] = i.op[dest];
7811 i.types[dupl] = i.types[dest];
7812 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
7813 i.flags[dupl] = i.flags[dest];
7814 }
7815 else
7816 {
7817 duplicate:
7818 i.operands++;
7819 i.reg_operands++;
7820 i.tm.operands++;
7821
7822 i.op[dupl] = i.op[dest];
7823 i.types[dupl] = i.types[dest];
7824 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
7825 i.flags[dupl] = i.flags[dest];
7826 }
7827
7828 if (i.tm.opcode_modifier.immext)
7829 process_immext ();
7830 }
7831 else if (i.tm.operand_types[0].bitfield.instance == Accum
7832 && i.tm.operand_types[0].bitfield.xmmword)
7833 {
7834 unsigned int j;
7835
7836 for (j = 1; j < i.operands; j++)
7837 {
7838 i.op[j - 1] = i.op[j];
7839 i.types[j - 1] = i.types[j];
7840
7841 /* We need to adjust fields in i.tm since they are used by
7842 build_modrm_byte. */
7843 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
7844
7845 i.flags[j - 1] = i.flags[j];
7846 }
7847
7848 i.operands--;
7849 i.reg_operands--;
7850 i.tm.operands--;
7851 }
7852 else if (i.tm.opcode_modifier.implicitquadgroup)
7853 {
7854 unsigned int regnum, first_reg_in_group, last_reg_in_group;
7855
7856 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
7857 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
7858 regnum = register_number (i.op[1].regs);
7859 first_reg_in_group = regnum & ~3;
7860 last_reg_in_group = first_reg_in_group + 3;
7861 if (regnum != first_reg_in_group)
7862 as_warn (_("source register `%s%s' implicitly denotes"
7863 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
7864 register_prefix, i.op[1].regs->reg_name,
7865 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
7866 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
7867 i.tm.name);
7868 }
7869 else if (i.tm.opcode_modifier.regkludge)
7870 {
7871 /* The imul $imm, %reg instruction is converted into
7872 imul $imm, %reg, %reg, and the clr %reg instruction
7873 is converted into xor %reg, %reg. */
7874
7875 unsigned int first_reg_op;
7876
7877 if (operand_type_check (i.types[0], reg))
7878 first_reg_op = 0;
7879 else
7880 first_reg_op = 1;
7881 /* Pretend we saw the extra register operand. */
7882 gas_assert (i.reg_operands == 1
7883 && i.op[first_reg_op + 1].regs == 0);
7884 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7885 i.types[first_reg_op + 1] = i.types[first_reg_op];
7886 i.operands++;
7887 i.reg_operands++;
7888 }
7889
7890 if (i.tm.opcode_modifier.modrm)
7891 {
7892 /* The opcode is completed (modulo i.tm.extension_opcode which
7893 must be put into the modrm byte). Now, we make the modrm and
7894 index base bytes based on all the info we've collected. */
7895
7896 default_seg = build_modrm_byte ();
7897 }
7898 else if (i.types[0].bitfield.class == SReg)
7899 {
7900 if (flag_code != CODE_64BIT
7901 ? i.tm.base_opcode == POP_SEG_SHORT
7902 && i.op[0].regs->reg_num == 1
7903 : (i.tm.base_opcode | 1) == (POP_SEG386_SHORT & 0xff)
7904 && i.op[0].regs->reg_num < 4)
7905 {
7906 as_bad (_("you can't `%s %s%s'"),
7907 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7908 return 0;
7909 }
7910 if (i.op[0].regs->reg_num > 3
7911 && i.tm.opcode_modifier.opcodespace == SPACE_BASE )
7912 {
7913 i.tm.base_opcode ^= (POP_SEG_SHORT ^ POP_SEG386_SHORT) & 0xff;
7914 i.tm.opcode_modifier.opcodespace = SPACE_0F;
7915 }
7916 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7917 }
7918 else if (i.tm.opcode_modifier.opcodespace == SPACE_BASE
7919 && (i.tm.base_opcode & ~3) == MOV_AX_DISP32)
7920 {
7921 default_seg = reg_ds;
7922 }
7923 else if (i.tm.opcode_modifier.isstring)
7924 {
7925 /* For the string instructions that allow a segment override
7926 on one of their operands, the default segment is ds. */
7927 default_seg = reg_ds;
7928 }
7929 else if (i.short_form)
7930 {
7931 /* The register or float register operand is in operand
7932 0 or 1. */
7933 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
7934
7935 /* Register goes in low 3 bits of opcode. */
7936 i.tm.base_opcode |= i.op[op].regs->reg_num;
7937 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7938 i.rex |= REX_B;
7939 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7940 {
7941 /* Warn about some common errors, but press on regardless.
7942 The first case can be generated by gcc (<= 2.8.1). */
7943 if (i.operands == 2)
7944 {
7945 /* Reversed arguments on faddp, fsubp, etc. */
7946 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7947 register_prefix, i.op[!intel_syntax].regs->reg_name,
7948 register_prefix, i.op[intel_syntax].regs->reg_name);
7949 }
7950 else
7951 {
7952 /* Extraneous `l' suffix on fp insn. */
7953 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7954 register_prefix, i.op[0].regs->reg_name);
7955 }
7956 }
7957 }
7958
7959 if ((i.seg[0] || i.prefix[SEG_PREFIX])
7960 && i.tm.base_opcode == 0x8d /* lea */
7961 && i.tm.opcode_modifier.opcodespace == SPACE_BASE
7962 && !is_any_vex_encoding(&i.tm))
7963 {
7964 if (!quiet_warnings)
7965 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
7966 if (optimize)
7967 {
7968 i.seg[0] = NULL;
7969 i.prefix[SEG_PREFIX] = 0;
7970 }
7971 }
7972
7973 /* If a segment was explicitly specified, and the specified segment
7974 is neither the default nor the one already recorded from a prefix,
7975 use an opcode prefix to select it. If we never figured out what
7976 the default segment is, then default_seg will be zero at this
7977 point, and the specified segment prefix will always be used. */
7978 if (i.seg[0]
7979 && i.seg[0] != default_seg
7980 && i386_seg_prefixes[i.seg[0]->reg_num] != i.prefix[SEG_PREFIX])
7981 {
7982 if (!add_prefix (i386_seg_prefixes[i.seg[0]->reg_num]))
7983 return 0;
7984 }
7985 return 1;
7986 }
7987
7988 static INLINE void set_rex_vrex (const reg_entry *r, unsigned int rex_bit,
7989 bool do_sse2avx)
7990 {
7991 if (r->reg_flags & RegRex)
7992 {
7993 if (i.rex & rex_bit)
7994 as_bad (_("same type of prefix used twice"));
7995 i.rex |= rex_bit;
7996 }
7997 else if (do_sse2avx && (i.rex & rex_bit) && i.vex.register_specifier)
7998 {
7999 gas_assert (i.vex.register_specifier == r);
8000 i.vex.register_specifier += 8;
8001 }
8002
8003 if (r->reg_flags & RegVRex)
8004 i.vrex |= rex_bit;
8005 }
8006
8007 static const reg_entry *
8008 build_modrm_byte (void)
8009 {
8010 const reg_entry *default_seg = NULL;
8011 unsigned int source, dest;
8012 int vex_3_sources;
8013
8014 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
8015 if (vex_3_sources)
8016 {
8017 unsigned int nds, reg_slot;
8018 expressionS *exp;
8019
8020 dest = i.operands - 1;
8021 nds = dest - 1;
8022
8023 /* There are 2 kinds of instructions:
8024 1. 5 operands: 4 register operands or 3 register operands
8025 plus 1 memory operand plus one Imm4 operand, VexXDS, and
8026 VexW0 or VexW1. The destination must be either XMM, YMM or
8027 ZMM register.
8028 2. 4 operands: 4 register operands or 3 register operands
8029 plus 1 memory operand, with VexXDS. */
8030 gas_assert ((i.reg_operands == 4
8031 || (i.reg_operands == 3 && i.mem_operands == 1))
8032 && i.tm.opcode_modifier.vexvvvv == VEXXDS
8033 && i.tm.opcode_modifier.vexw
8034 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
8035
8036 /* If VexW1 is set, the first non-immediate operand is the source and
8037 the second non-immediate one is encoded in the immediate operand. */
8038 if (i.tm.opcode_modifier.vexw == VEXW1)
8039 {
8040 source = i.imm_operands;
8041 reg_slot = i.imm_operands + 1;
8042 }
8043 else
8044 {
8045 source = i.imm_operands + 1;
8046 reg_slot = i.imm_operands;
8047 }
8048
8049 if (i.imm_operands == 0)
8050 {
8051 /* When there is no immediate operand, generate an 8bit
8052 immediate operand to encode the first operand. */
8053 exp = &im_expressions[i.imm_operands++];
8054 i.op[i.operands].imms = exp;
8055 i.types[i.operands] = imm8;
8056 i.operands++;
8057
8058 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
8059 exp->X_op = O_constant;
8060 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
8061 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
8062 }
8063 else
8064 {
8065 gas_assert (i.imm_operands == 1);
8066 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
8067 gas_assert (!i.tm.opcode_modifier.immext);
8068
8069 /* Turn on Imm8 again so that output_imm will generate it. */
8070 i.types[0].bitfield.imm8 = 1;
8071
8072 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
8073 i.op[0].imms->X_add_number
8074 |= register_number (i.op[reg_slot].regs) << 4;
8075 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
8076 }
8077
8078 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
8079 i.vex.register_specifier = i.op[nds].regs;
8080 }
8081 else
8082 source = dest = 0;
8083
8084 /* i.reg_operands MUST be the number of real register operands;
8085 implicit registers do not count. If there are 3 register
8086 operands, it must be a instruction with VexNDS. For a
8087 instruction with VexNDD, the destination register is encoded
8088 in VEX prefix. If there are 4 register operands, it must be
8089 a instruction with VEX prefix and 3 sources. */
8090 if (i.mem_operands == 0
8091 && ((i.reg_operands == 2
8092 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
8093 || (i.reg_operands == 3
8094 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
8095 || (i.reg_operands == 4 && vex_3_sources)))
8096 {
8097 switch (i.operands)
8098 {
8099 case 2:
8100 source = 0;
8101 break;
8102 case 3:
8103 /* When there are 3 operands, one of them may be immediate,
8104 which may be the first or the last operand. Otherwise,
8105 the first operand must be shift count register (cl) or it
8106 is an instruction with VexNDS. */
8107 gas_assert (i.imm_operands == 1
8108 || (i.imm_operands == 0
8109 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
8110 || (i.types[0].bitfield.instance == RegC
8111 && i.types[0].bitfield.byte))));
8112 if (operand_type_check (i.types[0], imm)
8113 || (i.types[0].bitfield.instance == RegC
8114 && i.types[0].bitfield.byte))
8115 source = 1;
8116 else
8117 source = 0;
8118 break;
8119 case 4:
8120 /* When there are 4 operands, the first two must be 8bit
8121 immediate operands. The source operand will be the 3rd
8122 one.
8123
8124 For instructions with VexNDS, if the first operand
8125 an imm8, the source operand is the 2nd one. If the last
8126 operand is imm8, the source operand is the first one. */
8127 gas_assert ((i.imm_operands == 2
8128 && i.types[0].bitfield.imm8
8129 && i.types[1].bitfield.imm8)
8130 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
8131 && i.imm_operands == 1
8132 && (i.types[0].bitfield.imm8
8133 || i.types[i.operands - 1].bitfield.imm8
8134 || i.rounding.type != rc_none)));
8135 if (i.imm_operands == 2)
8136 source = 2;
8137 else
8138 {
8139 if (i.types[0].bitfield.imm8)
8140 source = 1;
8141 else
8142 source = 0;
8143 }
8144 break;
8145 case 5:
8146 if (is_evex_encoding (&i.tm))
8147 {
8148 /* For EVEX instructions, when there are 5 operands, the
8149 first one must be immediate operand. If the second one
8150 is immediate operand, the source operand is the 3th
8151 one. If the last one is immediate operand, the source
8152 operand is the 2nd one. */
8153 gas_assert (i.imm_operands == 2
8154 && i.tm.opcode_modifier.sae
8155 && operand_type_check (i.types[0], imm));
8156 if (operand_type_check (i.types[1], imm))
8157 source = 2;
8158 else if (operand_type_check (i.types[4], imm))
8159 source = 1;
8160 else
8161 abort ();
8162 }
8163 break;
8164 default:
8165 abort ();
8166 }
8167
8168 if (!vex_3_sources)
8169 {
8170 dest = source + 1;
8171
8172 /* RC/SAE operand could be between DEST and SRC. That happens
8173 when one operand is GPR and the other one is XMM/YMM/ZMM
8174 register. */
8175 if (i.rounding.type != rc_none && i.rounding.operand == dest)
8176 dest++;
8177
8178 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
8179 {
8180 /* For instructions with VexNDS, the register-only source
8181 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
8182 register. It is encoded in VEX prefix. */
8183
8184 i386_operand_type op;
8185 unsigned int vvvv;
8186
8187 /* Swap two source operands if needed. */
8188 if (i.tm.opcode_modifier.swapsources)
8189 {
8190 vvvv = source;
8191 source = dest;
8192 }
8193 else
8194 vvvv = dest;
8195
8196 op = i.tm.operand_types[vvvv];
8197 if ((dest + 1) >= i.operands
8198 || ((op.bitfield.class != Reg
8199 || (!op.bitfield.dword && !op.bitfield.qword))
8200 && op.bitfield.class != RegSIMD
8201 && !operand_type_equal (&op, &regmask)))
8202 abort ();
8203 i.vex.register_specifier = i.op[vvvv].regs;
8204 dest++;
8205 }
8206 }
8207
8208 i.rm.mode = 3;
8209 /* One of the register operands will be encoded in the i.rm.reg
8210 field, the other in the combined i.rm.mode and i.rm.regmem
8211 fields. If no form of this instruction supports a memory
8212 destination operand, then we assume the source operand may
8213 sometimes be a memory operand and so we need to store the
8214 destination in the i.rm.reg field. */
8215 if (!i.tm.opcode_modifier.regmem
8216 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
8217 {
8218 i.rm.reg = i.op[dest].regs->reg_num;
8219 i.rm.regmem = i.op[source].regs->reg_num;
8220 set_rex_vrex (i.op[dest].regs, REX_R, i.tm.opcode_modifier.sse2avx);
8221 set_rex_vrex (i.op[source].regs, REX_B, false);
8222 }
8223 else
8224 {
8225 i.rm.reg = i.op[source].regs->reg_num;
8226 i.rm.regmem = i.op[dest].regs->reg_num;
8227 set_rex_vrex (i.op[dest].regs, REX_B, i.tm.opcode_modifier.sse2avx);
8228 set_rex_vrex (i.op[source].regs, REX_R, false);
8229 }
8230 if (flag_code != CODE_64BIT && (i.rex & REX_R))
8231 {
8232 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
8233 abort ();
8234 i.rex &= ~REX_R;
8235 add_prefix (LOCK_PREFIX_OPCODE);
8236 }
8237 }
8238 else
8239 { /* If it's not 2 reg operands... */
8240 unsigned int mem;
8241
8242 if (i.mem_operands)
8243 {
8244 unsigned int fake_zero_displacement = 0;
8245 unsigned int op;
8246
8247 for (op = 0; op < i.operands; op++)
8248 if (i.flags[op] & Operand_Mem)
8249 break;
8250 gas_assert (op < i.operands);
8251
8252 if (i.tm.opcode_modifier.sib)
8253 {
8254 /* The index register of VSIB shouldn't be RegIZ. */
8255 if (i.tm.opcode_modifier.sib != SIBMEM
8256 && i.index_reg->reg_num == RegIZ)
8257 abort ();
8258
8259 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
8260 if (!i.base_reg)
8261 {
8262 i.sib.base = NO_BASE_REGISTER;
8263 i.sib.scale = i.log2_scale_factor;
8264 i.types[op].bitfield.disp8 = 0;
8265 i.types[op].bitfield.disp16 = 0;
8266 i.types[op].bitfield.disp64 = 0;
8267 if (want_disp32 (&i.tm))
8268 {
8269 /* Must be 32 bit */
8270 i.types[op].bitfield.disp32 = 1;
8271 i.types[op].bitfield.disp32s = 0;
8272 }
8273 else
8274 {
8275 i.types[op].bitfield.disp32 = 0;
8276 i.types[op].bitfield.disp32s = 1;
8277 }
8278 }
8279
8280 /* Since the mandatory SIB always has index register, so
8281 the code logic remains unchanged. The non-mandatory SIB
8282 without index register is allowed and will be handled
8283 later. */
8284 if (i.index_reg)
8285 {
8286 if (i.index_reg->reg_num == RegIZ)
8287 i.sib.index = NO_INDEX_REGISTER;
8288 else
8289 i.sib.index = i.index_reg->reg_num;
8290 set_rex_vrex (i.index_reg, REX_X, false);
8291 }
8292 }
8293
8294 default_seg = reg_ds;
8295
8296 if (i.base_reg == 0)
8297 {
8298 i.rm.mode = 0;
8299 if (!i.disp_operands)
8300 fake_zero_displacement = 1;
8301 if (i.index_reg == 0)
8302 {
8303 i386_operand_type newdisp;
8304
8305 /* Both check for VSIB and mandatory non-vector SIB. */
8306 gas_assert (!i.tm.opcode_modifier.sib
8307 || i.tm.opcode_modifier.sib == SIBMEM);
8308 /* Operand is just <disp> */
8309 if (flag_code == CODE_64BIT)
8310 {
8311 /* 64bit mode overwrites the 32bit absolute
8312 addressing by RIP relative addressing and
8313 absolute addressing is encoded by one of the
8314 redundant SIB forms. */
8315 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
8316 i.sib.base = NO_BASE_REGISTER;
8317 i.sib.index = NO_INDEX_REGISTER;
8318 newdisp = (want_disp32(&i.tm) ? disp32 : disp32s);
8319 }
8320 else if ((flag_code == CODE_16BIT)
8321 ^ (i.prefix[ADDR_PREFIX] != 0))
8322 {
8323 i.rm.regmem = NO_BASE_REGISTER_16;
8324 newdisp = disp16;
8325 }
8326 else
8327 {
8328 i.rm.regmem = NO_BASE_REGISTER;
8329 newdisp = disp32;
8330 }
8331 i.types[op] = operand_type_and_not (i.types[op], anydisp);
8332 i.types[op] = operand_type_or (i.types[op], newdisp);
8333 }
8334 else if (!i.tm.opcode_modifier.sib)
8335 {
8336 /* !i.base_reg && i.index_reg */
8337 if (i.index_reg->reg_num == RegIZ)
8338 i.sib.index = NO_INDEX_REGISTER;
8339 else
8340 i.sib.index = i.index_reg->reg_num;
8341 i.sib.base = NO_BASE_REGISTER;
8342 i.sib.scale = i.log2_scale_factor;
8343 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
8344 i.types[op].bitfield.disp8 = 0;
8345 i.types[op].bitfield.disp16 = 0;
8346 i.types[op].bitfield.disp64 = 0;
8347 if (want_disp32 (&i.tm))
8348 {
8349 /* Must be 32 bit */
8350 i.types[op].bitfield.disp32 = 1;
8351 i.types[op].bitfield.disp32s = 0;
8352 }
8353 else
8354 {
8355 i.types[op].bitfield.disp32 = 0;
8356 i.types[op].bitfield.disp32s = 1;
8357 }
8358 if ((i.index_reg->reg_flags & RegRex) != 0)
8359 i.rex |= REX_X;
8360 }
8361 }
8362 /* RIP addressing for 64bit mode. */
8363 else if (i.base_reg->reg_num == RegIP)
8364 {
8365 gas_assert (!i.tm.opcode_modifier.sib);
8366 i.rm.regmem = NO_BASE_REGISTER;
8367 i.types[op].bitfield.disp8 = 0;
8368 i.types[op].bitfield.disp16 = 0;
8369 i.types[op].bitfield.disp32 = 0;
8370 i.types[op].bitfield.disp32s = 1;
8371 i.types[op].bitfield.disp64 = 0;
8372 i.flags[op] |= Operand_PCrel;
8373 if (! i.disp_operands)
8374 fake_zero_displacement = 1;
8375 }
8376 else if (i.base_reg->reg_type.bitfield.word)
8377 {
8378 gas_assert (!i.tm.opcode_modifier.sib);
8379 switch (i.base_reg->reg_num)
8380 {
8381 case 3: /* (%bx) */
8382 if (i.index_reg == 0)
8383 i.rm.regmem = 7;
8384 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
8385 i.rm.regmem = i.index_reg->reg_num - 6;
8386 break;
8387 case 5: /* (%bp) */
8388 default_seg = reg_ss;
8389 if (i.index_reg == 0)
8390 {
8391 i.rm.regmem = 6;
8392 if (operand_type_check (i.types[op], disp) == 0)
8393 {
8394 /* fake (%bp) into 0(%bp) */
8395 if (i.disp_encoding == disp_encoding_16bit)
8396 i.types[op].bitfield.disp16 = 1;
8397 else
8398 i.types[op].bitfield.disp8 = 1;
8399 fake_zero_displacement = 1;
8400 }
8401 }
8402 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
8403 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
8404 break;
8405 default: /* (%si) -> 4 or (%di) -> 5 */
8406 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
8407 }
8408 if (!fake_zero_displacement
8409 && !i.disp_operands
8410 && i.disp_encoding)
8411 {
8412 fake_zero_displacement = 1;
8413 if (i.disp_encoding == disp_encoding_8bit)
8414 i.types[op].bitfield.disp8 = 1;
8415 else
8416 i.types[op].bitfield.disp16 = 1;
8417 }
8418 i.rm.mode = mode_from_disp_size (i.types[op]);
8419 }
8420 else /* i.base_reg and 32/64 bit mode */
8421 {
8422 if (operand_type_check (i.types[op], disp))
8423 {
8424 i.types[op].bitfield.disp16 = 0;
8425 i.types[op].bitfield.disp64 = 0;
8426 if (!want_disp32 (&i.tm))
8427 {
8428 i.types[op].bitfield.disp32 = 0;
8429 i.types[op].bitfield.disp32s = 1;
8430 }
8431 else
8432 {
8433 i.types[op].bitfield.disp32 = 1;
8434 i.types[op].bitfield.disp32s = 0;
8435 }
8436 }
8437
8438 if (!i.tm.opcode_modifier.sib)
8439 i.rm.regmem = i.base_reg->reg_num;
8440 if ((i.base_reg->reg_flags & RegRex) != 0)
8441 i.rex |= REX_B;
8442 i.sib.base = i.base_reg->reg_num;
8443 /* x86-64 ignores REX prefix bit here to avoid decoder
8444 complications. */
8445 if (!(i.base_reg->reg_flags & RegRex)
8446 && (i.base_reg->reg_num == EBP_REG_NUM
8447 || i.base_reg->reg_num == ESP_REG_NUM))
8448 default_seg = reg_ss;
8449 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
8450 {
8451 fake_zero_displacement = 1;
8452 if (i.disp_encoding == disp_encoding_32bit)
8453 i.types[op].bitfield.disp32 = 1;
8454 else
8455 i.types[op].bitfield.disp8 = 1;
8456 }
8457 i.sib.scale = i.log2_scale_factor;
8458 if (i.index_reg == 0)
8459 {
8460 /* Only check for VSIB. */
8461 gas_assert (i.tm.opcode_modifier.sib != VECSIB128
8462 && i.tm.opcode_modifier.sib != VECSIB256
8463 && i.tm.opcode_modifier.sib != VECSIB512);
8464
8465 /* <disp>(%esp) becomes two byte modrm with no index
8466 register. We've already stored the code for esp
8467 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
8468 Any base register besides %esp will not use the
8469 extra modrm byte. */
8470 i.sib.index = NO_INDEX_REGISTER;
8471 }
8472 else if (!i.tm.opcode_modifier.sib)
8473 {
8474 if (i.index_reg->reg_num == RegIZ)
8475 i.sib.index = NO_INDEX_REGISTER;
8476 else
8477 i.sib.index = i.index_reg->reg_num;
8478 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
8479 if ((i.index_reg->reg_flags & RegRex) != 0)
8480 i.rex |= REX_X;
8481 }
8482
8483 if (i.disp_operands
8484 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
8485 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
8486 i.rm.mode = 0;
8487 else
8488 {
8489 if (!fake_zero_displacement
8490 && !i.disp_operands
8491 && i.disp_encoding)
8492 {
8493 fake_zero_displacement = 1;
8494 if (i.disp_encoding == disp_encoding_8bit)
8495 i.types[op].bitfield.disp8 = 1;
8496 else
8497 i.types[op].bitfield.disp32 = 1;
8498 }
8499 i.rm.mode = mode_from_disp_size (i.types[op]);
8500 }
8501 }
8502
8503 if (fake_zero_displacement)
8504 {
8505 /* Fakes a zero displacement assuming that i.types[op]
8506 holds the correct displacement size. */
8507 expressionS *exp;
8508
8509 gas_assert (i.op[op].disps == 0);
8510 exp = &disp_expressions[i.disp_operands++];
8511 i.op[op].disps = exp;
8512 exp->X_op = O_constant;
8513 exp->X_add_number = 0;
8514 exp->X_add_symbol = (symbolS *) 0;
8515 exp->X_op_symbol = (symbolS *) 0;
8516 }
8517
8518 mem = op;
8519 }
8520 else
8521 mem = ~0;
8522
8523 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
8524 {
8525 if (operand_type_check (i.types[0], imm))
8526 i.vex.register_specifier = NULL;
8527 else
8528 {
8529 /* VEX.vvvv encodes one of the sources when the first
8530 operand is not an immediate. */
8531 if (i.tm.opcode_modifier.vexw == VEXW0)
8532 i.vex.register_specifier = i.op[0].regs;
8533 else
8534 i.vex.register_specifier = i.op[1].regs;
8535 }
8536
8537 /* Destination is a XMM register encoded in the ModRM.reg
8538 and VEX.R bit. */
8539 i.rm.reg = i.op[2].regs->reg_num;
8540 if ((i.op[2].regs->reg_flags & RegRex) != 0)
8541 i.rex |= REX_R;
8542
8543 /* ModRM.rm and VEX.B encodes the other source. */
8544 if (!i.mem_operands)
8545 {
8546 i.rm.mode = 3;
8547
8548 if (i.tm.opcode_modifier.vexw == VEXW0)
8549 i.rm.regmem = i.op[1].regs->reg_num;
8550 else
8551 i.rm.regmem = i.op[0].regs->reg_num;
8552
8553 if ((i.op[1].regs->reg_flags & RegRex) != 0)
8554 i.rex |= REX_B;
8555 }
8556 }
8557 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
8558 {
8559 i.vex.register_specifier = i.op[2].regs;
8560 if (!i.mem_operands)
8561 {
8562 i.rm.mode = 3;
8563 i.rm.regmem = i.op[1].regs->reg_num;
8564 if ((i.op[1].regs->reg_flags & RegRex) != 0)
8565 i.rex |= REX_B;
8566 }
8567 }
8568 /* Fill in i.rm.reg or i.rm.regmem field with register operand
8569 (if any) based on i.tm.extension_opcode. Again, we must be
8570 careful to make sure that segment/control/debug/test/MMX
8571 registers are coded into the i.rm.reg field. */
8572 else if (i.reg_operands)
8573 {
8574 unsigned int op;
8575 unsigned int vex_reg = ~0;
8576
8577 for (op = 0; op < i.operands; op++)
8578 if (i.types[op].bitfield.class == Reg
8579 || i.types[op].bitfield.class == RegBND
8580 || i.types[op].bitfield.class == RegMask
8581 || i.types[op].bitfield.class == SReg
8582 || i.types[op].bitfield.class == RegCR
8583 || i.types[op].bitfield.class == RegDR
8584 || i.types[op].bitfield.class == RegTR
8585 || i.types[op].bitfield.class == RegSIMD
8586 || i.types[op].bitfield.class == RegMMX)
8587 break;
8588
8589 if (vex_3_sources)
8590 op = dest;
8591 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
8592 {
8593 /* For instructions with VexNDS, the register-only
8594 source operand is encoded in VEX prefix. */
8595 gas_assert (mem != (unsigned int) ~0);
8596
8597 if (op > mem)
8598 {
8599 vex_reg = op++;
8600 gas_assert (op < i.operands);
8601 }
8602 else
8603 {
8604 /* Check register-only source operand when two source
8605 operands are swapped. */
8606 if (!i.tm.operand_types[op].bitfield.baseindex
8607 && i.tm.operand_types[op + 1].bitfield.baseindex)
8608 {
8609 vex_reg = op;
8610 op += 2;
8611 gas_assert (mem == (vex_reg + 1)
8612 && op < i.operands);
8613 }
8614 else
8615 {
8616 vex_reg = op + 1;
8617 gas_assert (vex_reg < i.operands);
8618 }
8619 }
8620 }
8621 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
8622 {
8623 /* For instructions with VexNDD, the register destination
8624 is encoded in VEX prefix. */
8625 if (i.mem_operands == 0)
8626 {
8627 /* There is no memory operand. */
8628 gas_assert ((op + 2) == i.operands);
8629 vex_reg = op + 1;
8630 }
8631 else
8632 {
8633 /* There are only 2 non-immediate operands. */
8634 gas_assert (op < i.imm_operands + 2
8635 && i.operands == i.imm_operands + 2);
8636 vex_reg = i.imm_operands + 1;
8637 }
8638 }
8639 else
8640 gas_assert (op < i.operands);
8641
8642 if (vex_reg != (unsigned int) ~0)
8643 {
8644 i386_operand_type *type = &i.tm.operand_types[vex_reg];
8645
8646 if ((type->bitfield.class != Reg
8647 || (!type->bitfield.dword && !type->bitfield.qword))
8648 && type->bitfield.class != RegSIMD
8649 && !operand_type_equal (type, &regmask))
8650 abort ();
8651
8652 i.vex.register_specifier = i.op[vex_reg].regs;
8653 }
8654
8655 /* Don't set OP operand twice. */
8656 if (vex_reg != op)
8657 {
8658 /* If there is an extension opcode to put here, the
8659 register number must be put into the regmem field. */
8660 if (i.tm.extension_opcode != None)
8661 {
8662 i.rm.regmem = i.op[op].regs->reg_num;
8663 set_rex_vrex (i.op[op].regs, REX_B,
8664 i.tm.opcode_modifier.sse2avx);
8665 }
8666 else
8667 {
8668 i.rm.reg = i.op[op].regs->reg_num;
8669 set_rex_vrex (i.op[op].regs, REX_R,
8670 i.tm.opcode_modifier.sse2avx);
8671 }
8672 }
8673
8674 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
8675 must set it to 3 to indicate this is a register operand
8676 in the regmem field. */
8677 if (!i.mem_operands)
8678 i.rm.mode = 3;
8679 }
8680
8681 /* Fill in i.rm.reg field with extension opcode (if any). */
8682 if (i.tm.extension_opcode != None)
8683 i.rm.reg = i.tm.extension_opcode;
8684 }
8685 return default_seg;
8686 }
8687
8688 static INLINE void
8689 frag_opcode_byte (unsigned char byte)
8690 {
8691 if (now_seg != absolute_section)
8692 FRAG_APPEND_1_CHAR (byte);
8693 else
8694 ++abs_section_offset;
8695 }
8696
8697 static unsigned int
8698 flip_code16 (unsigned int code16)
8699 {
8700 gas_assert (i.tm.operands == 1);
8701
8702 return !(i.prefix[REX_PREFIX] & REX_W)
8703 && (code16 ? i.tm.operand_types[0].bitfield.disp32
8704 || i.tm.operand_types[0].bitfield.disp32s
8705 : i.tm.operand_types[0].bitfield.disp16)
8706 ? CODE16 : 0;
8707 }
8708
8709 static void
8710 output_branch (void)
8711 {
8712 char *p;
8713 int size;
8714 int code16;
8715 int prefix;
8716 relax_substateT subtype;
8717 symbolS *sym;
8718 offsetT off;
8719
8720 if (now_seg == absolute_section)
8721 {
8722 as_bad (_("relaxable branches not supported in absolute section"));
8723 return;
8724 }
8725
8726 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
8727 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
8728
8729 prefix = 0;
8730 if (i.prefix[DATA_PREFIX] != 0)
8731 {
8732 prefix = 1;
8733 i.prefixes -= 1;
8734 code16 ^= flip_code16(code16);
8735 }
8736 /* Pentium4 branch hints. */
8737 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8738 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
8739 {
8740 prefix++;
8741 i.prefixes--;
8742 }
8743 if (i.prefix[REX_PREFIX] != 0)
8744 {
8745 prefix++;
8746 i.prefixes--;
8747 }
8748
8749 /* BND prefixed jump. */
8750 if (i.prefix[BND_PREFIX] != 0)
8751 {
8752 prefix++;
8753 i.prefixes--;
8754 }
8755
8756 if (i.prefixes != 0)
8757 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8758
8759 /* It's always a symbol; End frag & setup for relax.
8760 Make sure there is enough room in this frag for the largest
8761 instruction we may generate in md_convert_frag. This is 2
8762 bytes for the opcode and room for the prefix and largest
8763 displacement. */
8764 frag_grow (prefix + 2 + 4);
8765 /* Prefix and 1 opcode byte go in fr_fix. */
8766 p = frag_more (prefix + 1);
8767 if (i.prefix[DATA_PREFIX] != 0)
8768 *p++ = DATA_PREFIX_OPCODE;
8769 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
8770 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
8771 *p++ = i.prefix[SEG_PREFIX];
8772 if (i.prefix[BND_PREFIX] != 0)
8773 *p++ = BND_PREFIX_OPCODE;
8774 if (i.prefix[REX_PREFIX] != 0)
8775 *p++ = i.prefix[REX_PREFIX];
8776 *p = i.tm.base_opcode;
8777
8778 if ((unsigned char) *p == JUMP_PC_RELATIVE)
8779 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
8780 else if (cpu_arch_flags.bitfield.cpui386)
8781 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
8782 else
8783 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
8784 subtype |= code16;
8785
8786 sym = i.op[0].disps->X_add_symbol;
8787 off = i.op[0].disps->X_add_number;
8788
8789 if (i.op[0].disps->X_op != O_constant
8790 && i.op[0].disps->X_op != O_symbol)
8791 {
8792 /* Handle complex expressions. */
8793 sym = make_expr_symbol (i.op[0].disps);
8794 off = 0;
8795 }
8796
8797 /* 1 possible extra opcode + 4 byte displacement go in var part.
8798 Pass reloc in fr_var. */
8799 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
8800 }
8801
8802 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8803 /* Return TRUE iff PLT32 relocation should be used for branching to
8804 symbol S. */
8805
8806 static bool
8807 need_plt32_p (symbolS *s)
8808 {
8809 /* PLT32 relocation is ELF only. */
8810 if (!IS_ELF)
8811 return false;
8812
8813 #ifdef TE_SOLARIS
8814 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
8815 krtld support it. */
8816 return false;
8817 #endif
8818
8819 /* Since there is no need to prepare for PLT branch on x86-64, we
8820 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
8821 be used as a marker for 32-bit PC-relative branches. */
8822 if (!object_64bit)
8823 return false;
8824
8825 if (s == NULL)
8826 return false;
8827
8828 /* Weak or undefined symbol need PLT32 relocation. */
8829 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
8830 return true;
8831
8832 /* Non-global symbol doesn't need PLT32 relocation. */
8833 if (! S_IS_EXTERNAL (s))
8834 return false;
8835
8836 /* Other global symbols need PLT32 relocation. NB: Symbol with
8837 non-default visibilities are treated as normal global symbol
8838 so that PLT32 relocation can be used as a marker for 32-bit
8839 PC-relative branches. It is useful for linker relaxation. */
8840 return true;
8841 }
8842 #endif
8843
8844 static void
8845 output_jump (void)
8846 {
8847 char *p;
8848 int size;
8849 fixS *fixP;
8850 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
8851
8852 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
8853 {
8854 /* This is a loop or jecxz type instruction. */
8855 size = 1;
8856 if (i.prefix[ADDR_PREFIX] != 0)
8857 {
8858 frag_opcode_byte (ADDR_PREFIX_OPCODE);
8859 i.prefixes -= 1;
8860 }
8861 /* Pentium4 branch hints. */
8862 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8863 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
8864 {
8865 frag_opcode_byte (i.prefix[SEG_PREFIX]);
8866 i.prefixes--;
8867 }
8868 }
8869 else
8870 {
8871 int code16;
8872
8873 code16 = 0;
8874 if (flag_code == CODE_16BIT)
8875 code16 = CODE16;
8876
8877 if (i.prefix[DATA_PREFIX] != 0)
8878 {
8879 frag_opcode_byte (DATA_PREFIX_OPCODE);
8880 i.prefixes -= 1;
8881 code16 ^= flip_code16(code16);
8882 }
8883
8884 size = 4;
8885 if (code16)
8886 size = 2;
8887 }
8888
8889 /* BND prefixed jump. */
8890 if (i.prefix[BND_PREFIX] != 0)
8891 {
8892 frag_opcode_byte (i.prefix[BND_PREFIX]);
8893 i.prefixes -= 1;
8894 }
8895
8896 if (i.prefix[REX_PREFIX] != 0)
8897 {
8898 frag_opcode_byte (i.prefix[REX_PREFIX]);
8899 i.prefixes -= 1;
8900 }
8901
8902 if (i.prefixes != 0)
8903 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8904
8905 if (now_seg == absolute_section)
8906 {
8907 abs_section_offset += i.opcode_length + size;
8908 return;
8909 }
8910
8911 p = frag_more (i.opcode_length + size);
8912 switch (i.opcode_length)
8913 {
8914 case 2:
8915 *p++ = i.tm.base_opcode >> 8;
8916 /* Fall through. */
8917 case 1:
8918 *p++ = i.tm.base_opcode;
8919 break;
8920 default:
8921 abort ();
8922 }
8923
8924 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8925 if (size == 4
8926 && jump_reloc == NO_RELOC
8927 && need_plt32_p (i.op[0].disps->X_add_symbol))
8928 jump_reloc = BFD_RELOC_X86_64_PLT32;
8929 #endif
8930
8931 jump_reloc = reloc (size, 1, 1, jump_reloc);
8932
8933 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8934 i.op[0].disps, 1, jump_reloc);
8935
8936 /* All jumps handled here are signed, but don't unconditionally use a
8937 signed limit check for 32 and 16 bit jumps as we want to allow wrap
8938 around at 4G (outside of 64-bit mode) and 64k (except for XBEGIN)
8939 respectively. */
8940 switch (size)
8941 {
8942 case 1:
8943 fixP->fx_signed = 1;
8944 break;
8945
8946 case 2:
8947 if (i.tm.base_opcode == 0xc7f8)
8948 fixP->fx_signed = 1;
8949 break;
8950
8951 case 4:
8952 if (flag_code == CODE_64BIT)
8953 fixP->fx_signed = 1;
8954 break;
8955 }
8956 }
8957
8958 static void
8959 output_interseg_jump (void)
8960 {
8961 char *p;
8962 int size;
8963 int prefix;
8964 int code16;
8965
8966 code16 = 0;
8967 if (flag_code == CODE_16BIT)
8968 code16 = CODE16;
8969
8970 prefix = 0;
8971 if (i.prefix[DATA_PREFIX] != 0)
8972 {
8973 prefix = 1;
8974 i.prefixes -= 1;
8975 code16 ^= CODE16;
8976 }
8977
8978 gas_assert (!i.prefix[REX_PREFIX]);
8979
8980 size = 4;
8981 if (code16)
8982 size = 2;
8983
8984 if (i.prefixes != 0)
8985 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8986
8987 if (now_seg == absolute_section)
8988 {
8989 abs_section_offset += prefix + 1 + 2 + size;
8990 return;
8991 }
8992
8993 /* 1 opcode; 2 segment; offset */
8994 p = frag_more (prefix + 1 + 2 + size);
8995
8996 if (i.prefix[DATA_PREFIX] != 0)
8997 *p++ = DATA_PREFIX_OPCODE;
8998
8999 if (i.prefix[REX_PREFIX] != 0)
9000 *p++ = i.prefix[REX_PREFIX];
9001
9002 *p++ = i.tm.base_opcode;
9003 if (i.op[1].imms->X_op == O_constant)
9004 {
9005 offsetT n = i.op[1].imms->X_add_number;
9006
9007 if (size == 2
9008 && !fits_in_unsigned_word (n)
9009 && !fits_in_signed_word (n))
9010 {
9011 as_bad (_("16-bit jump out of range"));
9012 return;
9013 }
9014 md_number_to_chars (p, n, size);
9015 }
9016 else
9017 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
9018 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
9019
9020 p += size;
9021 if (i.op[0].imms->X_op == O_constant)
9022 md_number_to_chars (p, (valueT) i.op[0].imms->X_add_number, 2);
9023 else
9024 fix_new_exp (frag_now, p - frag_now->fr_literal, 2,
9025 i.op[0].imms, 0, reloc (2, 0, 0, i.reloc[0]));
9026 }
9027
9028 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9029 void
9030 x86_cleanup (void)
9031 {
9032 char *p;
9033 asection *seg = now_seg;
9034 subsegT subseg = now_subseg;
9035 asection *sec;
9036 unsigned int alignment, align_size_1;
9037 unsigned int isa_1_descsz, feature_2_descsz, descsz;
9038 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
9039 unsigned int padding;
9040
9041 if (!IS_ELF || !x86_used_note)
9042 return;
9043
9044 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
9045
9046 /* The .note.gnu.property section layout:
9047
9048 Field Length Contents
9049 ---- ---- ----
9050 n_namsz 4 4
9051 n_descsz 4 The note descriptor size
9052 n_type 4 NT_GNU_PROPERTY_TYPE_0
9053 n_name 4 "GNU"
9054 n_desc n_descsz The program property array
9055 .... .... ....
9056 */
9057
9058 /* Create the .note.gnu.property section. */
9059 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
9060 bfd_set_section_flags (sec,
9061 (SEC_ALLOC
9062 | SEC_LOAD
9063 | SEC_DATA
9064 | SEC_HAS_CONTENTS
9065 | SEC_READONLY));
9066
9067 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
9068 {
9069 align_size_1 = 7;
9070 alignment = 3;
9071 }
9072 else
9073 {
9074 align_size_1 = 3;
9075 alignment = 2;
9076 }
9077
9078 bfd_set_section_alignment (sec, alignment);
9079 elf_section_type (sec) = SHT_NOTE;
9080
9081 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
9082 + 4-byte data */
9083 isa_1_descsz_raw = 4 + 4 + 4;
9084 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
9085 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
9086
9087 feature_2_descsz_raw = isa_1_descsz;
9088 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
9089 + 4-byte data */
9090 feature_2_descsz_raw += 4 + 4 + 4;
9091 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
9092 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
9093 & ~align_size_1);
9094
9095 descsz = feature_2_descsz;
9096 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
9097 p = frag_more (4 + 4 + 4 + 4 + descsz);
9098
9099 /* Write n_namsz. */
9100 md_number_to_chars (p, (valueT) 4, 4);
9101
9102 /* Write n_descsz. */
9103 md_number_to_chars (p + 4, (valueT) descsz, 4);
9104
9105 /* Write n_type. */
9106 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
9107
9108 /* Write n_name. */
9109 memcpy (p + 4 * 3, "GNU", 4);
9110
9111 /* Write 4-byte type. */
9112 md_number_to_chars (p + 4 * 4,
9113 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
9114
9115 /* Write 4-byte data size. */
9116 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
9117
9118 /* Write 4-byte data. */
9119 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
9120
9121 /* Zero out paddings. */
9122 padding = isa_1_descsz - isa_1_descsz_raw;
9123 if (padding)
9124 memset (p + 4 * 7, 0, padding);
9125
9126 /* Write 4-byte type. */
9127 md_number_to_chars (p + isa_1_descsz + 4 * 4,
9128 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
9129
9130 /* Write 4-byte data size. */
9131 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
9132
9133 /* Write 4-byte data. */
9134 md_number_to_chars (p + isa_1_descsz + 4 * 6,
9135 (valueT) x86_feature_2_used, 4);
9136
9137 /* Zero out paddings. */
9138 padding = feature_2_descsz - feature_2_descsz_raw;
9139 if (padding)
9140 memset (p + isa_1_descsz + 4 * 7, 0, padding);
9141
9142 /* We probably can't restore the current segment, for there likely
9143 isn't one yet... */
9144 if (seg && subseg)
9145 subseg_set (seg, subseg);
9146 }
9147 #endif
9148
9149 static unsigned int
9150 encoding_length (const fragS *start_frag, offsetT start_off,
9151 const char *frag_now_ptr)
9152 {
9153 unsigned int len = 0;
9154
9155 if (start_frag != frag_now)
9156 {
9157 const fragS *fr = start_frag;
9158
9159 do {
9160 len += fr->fr_fix;
9161 fr = fr->fr_next;
9162 } while (fr && fr != frag_now);
9163 }
9164
9165 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
9166 }
9167
9168 /* Return 1 for test, and, cmp, add, sub, inc and dec which may
9169 be macro-fused with conditional jumps.
9170 NB: If TEST/AND/CMP/ADD/SUB/INC/DEC is of RIP relative address,
9171 or is one of the following format:
9172
9173 cmp m, imm
9174 add m, imm
9175 sub m, imm
9176 test m, imm
9177 and m, imm
9178 inc m
9179 dec m
9180
9181 it is unfusible. */
9182
9183 static int
9184 maybe_fused_with_jcc_p (enum mf_cmp_kind* mf_cmp_p)
9185 {
9186 /* No RIP address. */
9187 if (i.base_reg && i.base_reg->reg_num == RegIP)
9188 return 0;
9189
9190 /* No opcodes outside of base encoding space. */
9191 if (i.tm.opcode_modifier.opcodespace != SPACE_BASE)
9192 return 0;
9193
9194 /* add, sub without add/sub m, imm. */
9195 if (i.tm.base_opcode <= 5
9196 || (i.tm.base_opcode >= 0x28 && i.tm.base_opcode <= 0x2d)
9197 || ((i.tm.base_opcode | 3) == 0x83
9198 && (i.tm.extension_opcode == 0x5
9199 || i.tm.extension_opcode == 0x0)))
9200 {
9201 *mf_cmp_p = mf_cmp_alu_cmp;
9202 return !(i.mem_operands && i.imm_operands);
9203 }
9204
9205 /* and without and m, imm. */
9206 if ((i.tm.base_opcode >= 0x20 && i.tm.base_opcode <= 0x25)
9207 || ((i.tm.base_opcode | 3) == 0x83
9208 && i.tm.extension_opcode == 0x4))
9209 {
9210 *mf_cmp_p = mf_cmp_test_and;
9211 return !(i.mem_operands && i.imm_operands);
9212 }
9213
9214 /* test without test m imm. */
9215 if ((i.tm.base_opcode | 1) == 0x85
9216 || (i.tm.base_opcode | 1) == 0xa9
9217 || ((i.tm.base_opcode | 1) == 0xf7
9218 && i.tm.extension_opcode == 0))
9219 {
9220 *mf_cmp_p = mf_cmp_test_and;
9221 return !(i.mem_operands && i.imm_operands);
9222 }
9223
9224 /* cmp without cmp m, imm. */
9225 if ((i.tm.base_opcode >= 0x38 && i.tm.base_opcode <= 0x3d)
9226 || ((i.tm.base_opcode | 3) == 0x83
9227 && (i.tm.extension_opcode == 0x7)))
9228 {
9229 *mf_cmp_p = mf_cmp_alu_cmp;
9230 return !(i.mem_operands && i.imm_operands);
9231 }
9232
9233 /* inc, dec without inc/dec m. */
9234 if ((i.tm.cpu_flags.bitfield.cpuno64
9235 && (i.tm.base_opcode | 0xf) == 0x4f)
9236 || ((i.tm.base_opcode | 1) == 0xff
9237 && i.tm.extension_opcode <= 0x1))
9238 {
9239 *mf_cmp_p = mf_cmp_incdec;
9240 return !i.mem_operands;
9241 }
9242
9243 return 0;
9244 }
9245
9246 /* Return 1 if a FUSED_JCC_PADDING frag should be generated. */
9247
9248 static int
9249 add_fused_jcc_padding_frag_p (enum mf_cmp_kind* mf_cmp_p)
9250 {
9251 /* NB: Don't work with COND_JUMP86 without i386. */
9252 if (!align_branch_power
9253 || now_seg == absolute_section
9254 || !cpu_arch_flags.bitfield.cpui386
9255 || !(align_branch & align_branch_fused_bit))
9256 return 0;
9257
9258 if (maybe_fused_with_jcc_p (mf_cmp_p))
9259 {
9260 if (last_insn.kind == last_insn_other
9261 || last_insn.seg != now_seg)
9262 return 1;
9263 if (flag_debug)
9264 as_warn_where (last_insn.file, last_insn.line,
9265 _("`%s` skips -malign-branch-boundary on `%s`"),
9266 last_insn.name, i.tm.name);
9267 }
9268
9269 return 0;
9270 }
9271
9272 /* Return 1 if a BRANCH_PREFIX frag should be generated. */
9273
9274 static int
9275 add_branch_prefix_frag_p (void)
9276 {
9277 /* NB: Don't work with COND_JUMP86 without i386. Don't add prefix
9278 to PadLock instructions since they include prefixes in opcode. */
9279 if (!align_branch_power
9280 || !align_branch_prefix_size
9281 || now_seg == absolute_section
9282 || i.tm.cpu_flags.bitfield.cpupadlock
9283 || !cpu_arch_flags.bitfield.cpui386)
9284 return 0;
9285
9286 /* Don't add prefix if it is a prefix or there is no operand in case
9287 that segment prefix is special. */
9288 if (!i.operands || i.tm.opcode_modifier.isprefix)
9289 return 0;
9290
9291 if (last_insn.kind == last_insn_other
9292 || last_insn.seg != now_seg)
9293 return 1;
9294
9295 if (flag_debug)
9296 as_warn_where (last_insn.file, last_insn.line,
9297 _("`%s` skips -malign-branch-boundary on `%s`"),
9298 last_insn.name, i.tm.name);
9299
9300 return 0;
9301 }
9302
9303 /* Return 1 if a BRANCH_PADDING frag should be generated. */
9304
9305 static int
9306 add_branch_padding_frag_p (enum align_branch_kind *branch_p,
9307 enum mf_jcc_kind *mf_jcc_p)
9308 {
9309 int add_padding;
9310
9311 /* NB: Don't work with COND_JUMP86 without i386. */
9312 if (!align_branch_power
9313 || now_seg == absolute_section
9314 || !cpu_arch_flags.bitfield.cpui386
9315 || i.tm.opcode_modifier.opcodespace != SPACE_BASE)
9316 return 0;
9317
9318 add_padding = 0;
9319
9320 /* Check for jcc and direct jmp. */
9321 if (i.tm.opcode_modifier.jump == JUMP)
9322 {
9323 if (i.tm.base_opcode == JUMP_PC_RELATIVE)
9324 {
9325 *branch_p = align_branch_jmp;
9326 add_padding = align_branch & align_branch_jmp_bit;
9327 }
9328 else
9329 {
9330 /* Because J<cc> and JN<cc> share same group in macro-fusible table,
9331 igore the lowest bit. */
9332 *mf_jcc_p = (i.tm.base_opcode & 0x0e) >> 1;
9333 *branch_p = align_branch_jcc;
9334 if ((align_branch & align_branch_jcc_bit))
9335 add_padding = 1;
9336 }
9337 }
9338 else if ((i.tm.base_opcode | 1) == 0xc3)
9339 {
9340 /* Near ret. */
9341 *branch_p = align_branch_ret;
9342 if ((align_branch & align_branch_ret_bit))
9343 add_padding = 1;
9344 }
9345 else
9346 {
9347 /* Check for indirect jmp, direct and indirect calls. */
9348 if (i.tm.base_opcode == 0xe8)
9349 {
9350 /* Direct call. */
9351 *branch_p = align_branch_call;
9352 if ((align_branch & align_branch_call_bit))
9353 add_padding = 1;
9354 }
9355 else if (i.tm.base_opcode == 0xff
9356 && (i.tm.extension_opcode == 2
9357 || i.tm.extension_opcode == 4))
9358 {
9359 /* Indirect call and jmp. */
9360 *branch_p = align_branch_indirect;
9361 if ((align_branch & align_branch_indirect_bit))
9362 add_padding = 1;
9363 }
9364
9365 if (add_padding
9366 && i.disp_operands
9367 && tls_get_addr
9368 && (i.op[0].disps->X_op == O_symbol
9369 || (i.op[0].disps->X_op == O_subtract
9370 && i.op[0].disps->X_op_symbol == GOT_symbol)))
9371 {
9372 symbolS *s = i.op[0].disps->X_add_symbol;
9373 /* No padding to call to global or undefined tls_get_addr. */
9374 if ((S_IS_EXTERNAL (s) || !S_IS_DEFINED (s))
9375 && strcmp (S_GET_NAME (s), tls_get_addr) == 0)
9376 return 0;
9377 }
9378 }
9379
9380 if (add_padding
9381 && last_insn.kind != last_insn_other
9382 && last_insn.seg == now_seg)
9383 {
9384 if (flag_debug)
9385 as_warn_where (last_insn.file, last_insn.line,
9386 _("`%s` skips -malign-branch-boundary on `%s`"),
9387 last_insn.name, i.tm.name);
9388 return 0;
9389 }
9390
9391 return add_padding;
9392 }
9393
9394 static void
9395 output_insn (void)
9396 {
9397 fragS *insn_start_frag;
9398 offsetT insn_start_off;
9399 fragS *fragP = NULL;
9400 enum align_branch_kind branch = align_branch_none;
9401 /* The initializer is arbitrary just to avoid uninitialized error.
9402 it's actually either assigned in add_branch_padding_frag_p
9403 or never be used. */
9404 enum mf_jcc_kind mf_jcc = mf_jcc_jo;
9405
9406 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9407 if (IS_ELF && x86_used_note && now_seg != absolute_section)
9408 {
9409 if ((i.xstate & xstate_tmm) == xstate_tmm
9410 || i.tm.cpu_flags.bitfield.cpuamx_tile)
9411 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_TMM;
9412
9413 if (i.tm.cpu_flags.bitfield.cpu8087
9414 || i.tm.cpu_flags.bitfield.cpu287
9415 || i.tm.cpu_flags.bitfield.cpu387
9416 || i.tm.cpu_flags.bitfield.cpu687
9417 || i.tm.cpu_flags.bitfield.cpufisttp)
9418 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
9419
9420 if ((i.xstate & xstate_mmx)
9421 || (i.tm.opcode_modifier.opcodespace == SPACE_0F
9422 && !is_any_vex_encoding (&i.tm)
9423 && (i.tm.base_opcode == 0x77 /* emms */
9424 || i.tm.base_opcode == 0x0e /* femms */)))
9425 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
9426
9427 if (i.index_reg)
9428 {
9429 if (i.index_reg->reg_type.bitfield.zmmword)
9430 i.xstate |= xstate_zmm;
9431 else if (i.index_reg->reg_type.bitfield.ymmword)
9432 i.xstate |= xstate_ymm;
9433 else if (i.index_reg->reg_type.bitfield.xmmword)
9434 i.xstate |= xstate_xmm;
9435 }
9436
9437 /* vzeroall / vzeroupper */
9438 if (i.tm.base_opcode == 0x77 && i.tm.cpu_flags.bitfield.cpuavx)
9439 i.xstate |= xstate_ymm;
9440
9441 if ((i.xstate & xstate_xmm)
9442 /* ldmxcsr / stmxcsr / vldmxcsr / vstmxcsr */
9443 || (i.tm.base_opcode == 0xae
9444 && (i.tm.cpu_flags.bitfield.cpusse
9445 || i.tm.cpu_flags.bitfield.cpuavx))
9446 || i.tm.cpu_flags.bitfield.cpuwidekl
9447 || i.tm.cpu_flags.bitfield.cpukl)
9448 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
9449
9450 if ((i.xstate & xstate_ymm) == xstate_ymm)
9451 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
9452 if ((i.xstate & xstate_zmm) == xstate_zmm)
9453 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
9454 if (i.mask.reg || (i.xstate & xstate_mask) == xstate_mask)
9455 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MASK;
9456 if (i.tm.cpu_flags.bitfield.cpufxsr)
9457 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
9458 if (i.tm.cpu_flags.bitfield.cpuxsave)
9459 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
9460 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
9461 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
9462 if (i.tm.cpu_flags.bitfield.cpuxsavec)
9463 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
9464
9465 if (x86_feature_2_used
9466 || i.tm.cpu_flags.bitfield.cpucmov
9467 || i.tm.cpu_flags.bitfield.cpusyscall
9468 || (i.tm.opcode_modifier.opcodespace == SPACE_0F
9469 && i.tm.base_opcode == 0xc7
9470 && i.tm.opcode_modifier.opcodeprefix == PREFIX_NONE
9471 && i.tm.extension_opcode == 1) /* cmpxchg8b */)
9472 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_BASELINE;
9473 if (i.tm.cpu_flags.bitfield.cpusse3
9474 || i.tm.cpu_flags.bitfield.cpussse3
9475 || i.tm.cpu_flags.bitfield.cpusse4_1
9476 || i.tm.cpu_flags.bitfield.cpusse4_2
9477 || i.tm.cpu_flags.bitfield.cpucx16
9478 || i.tm.cpu_flags.bitfield.cpupopcnt
9479 /* LAHF-SAHF insns in 64-bit mode. */
9480 || (flag_code == CODE_64BIT
9481 && (i.tm.base_opcode | 1) == 0x9f
9482 && i.tm.opcode_modifier.opcodespace == SPACE_BASE))
9483 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_V2;
9484 if (i.tm.cpu_flags.bitfield.cpuavx
9485 || i.tm.cpu_flags.bitfield.cpuavx2
9486 /* Any VEX encoded insns execpt for CpuAVX512F, CpuAVX512BW,
9487 CpuAVX512DQ, LPW, TBM and AMX. */
9488 || (i.tm.opcode_modifier.vex
9489 && !i.tm.cpu_flags.bitfield.cpuavx512f
9490 && !i.tm.cpu_flags.bitfield.cpuavx512bw
9491 && !i.tm.cpu_flags.bitfield.cpuavx512dq
9492 && !i.tm.cpu_flags.bitfield.cpulwp
9493 && !i.tm.cpu_flags.bitfield.cputbm
9494 && !(x86_feature_2_used & GNU_PROPERTY_X86_FEATURE_2_TMM))
9495 || i.tm.cpu_flags.bitfield.cpuf16c
9496 || i.tm.cpu_flags.bitfield.cpufma
9497 || i.tm.cpu_flags.bitfield.cpulzcnt
9498 || i.tm.cpu_flags.bitfield.cpumovbe
9499 || i.tm.cpu_flags.bitfield.cpuxsaves
9500 || (x86_feature_2_used
9501 & (GNU_PROPERTY_X86_FEATURE_2_XSAVE
9502 | GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT
9503 | GNU_PROPERTY_X86_FEATURE_2_XSAVEC)) != 0)
9504 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_V3;
9505 if (i.tm.cpu_flags.bitfield.cpuavx512f
9506 || i.tm.cpu_flags.bitfield.cpuavx512bw
9507 || i.tm.cpu_flags.bitfield.cpuavx512dq
9508 || i.tm.cpu_flags.bitfield.cpuavx512vl
9509 /* Any EVEX encoded insns except for AVX512ER, AVX512PF and
9510 VNNIW. */
9511 || (i.tm.opcode_modifier.evex
9512 && !i.tm.cpu_flags.bitfield.cpuavx512er
9513 && !i.tm.cpu_flags.bitfield.cpuavx512pf
9514 && !i.tm.cpu_flags.bitfield.cpuavx512_4vnniw))
9515 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_V4;
9516 }
9517 #endif
9518
9519 /* Tie dwarf2 debug info to the address at the start of the insn.
9520 We can't do this after the insn has been output as the current
9521 frag may have been closed off. eg. by frag_var. */
9522 dwarf2_emit_insn (0);
9523
9524 insn_start_frag = frag_now;
9525 insn_start_off = frag_now_fix ();
9526
9527 if (add_branch_padding_frag_p (&branch, &mf_jcc))
9528 {
9529 char *p;
9530 /* Branch can be 8 bytes. Leave some room for prefixes. */
9531 unsigned int max_branch_padding_size = 14;
9532
9533 /* Align section to boundary. */
9534 record_alignment (now_seg, align_branch_power);
9535
9536 /* Make room for padding. */
9537 frag_grow (max_branch_padding_size);
9538
9539 /* Start of the padding. */
9540 p = frag_more (0);
9541
9542 fragP = frag_now;
9543
9544 frag_var (rs_machine_dependent, max_branch_padding_size, 0,
9545 ENCODE_RELAX_STATE (BRANCH_PADDING, 0),
9546 NULL, 0, p);
9547
9548 fragP->tc_frag_data.mf_type = mf_jcc;
9549 fragP->tc_frag_data.branch_type = branch;
9550 fragP->tc_frag_data.max_bytes = max_branch_padding_size;
9551 }
9552
9553 /* Output jumps. */
9554 if (i.tm.opcode_modifier.jump == JUMP)
9555 output_branch ();
9556 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
9557 || i.tm.opcode_modifier.jump == JUMP_DWORD)
9558 output_jump ();
9559 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
9560 output_interseg_jump ();
9561 else
9562 {
9563 /* Output normal instructions here. */
9564 char *p;
9565 unsigned char *q;
9566 unsigned int j;
9567 enum mf_cmp_kind mf_cmp;
9568
9569 if (avoid_fence
9570 && (i.tm.base_opcode == 0xaee8
9571 || i.tm.base_opcode == 0xaef0
9572 || i.tm.base_opcode == 0xaef8))
9573 {
9574 /* Encode lfence, mfence, and sfence as
9575 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
9576 if (now_seg != absolute_section)
9577 {
9578 offsetT val = 0x240483f0ULL;
9579
9580 p = frag_more (5);
9581 md_number_to_chars (p, val, 5);
9582 }
9583 else
9584 abs_section_offset += 5;
9585 return;
9586 }
9587
9588 /* Some processors fail on LOCK prefix. This options makes
9589 assembler ignore LOCK prefix and serves as a workaround. */
9590 if (omit_lock_prefix)
9591 {
9592 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE
9593 && i.tm.opcode_modifier.isprefix)
9594 return;
9595 i.prefix[LOCK_PREFIX] = 0;
9596 }
9597
9598 if (branch)
9599 /* Skip if this is a branch. */
9600 ;
9601 else if (add_fused_jcc_padding_frag_p (&mf_cmp))
9602 {
9603 /* Make room for padding. */
9604 frag_grow (MAX_FUSED_JCC_PADDING_SIZE);
9605 p = frag_more (0);
9606
9607 fragP = frag_now;
9608
9609 frag_var (rs_machine_dependent, MAX_FUSED_JCC_PADDING_SIZE, 0,
9610 ENCODE_RELAX_STATE (FUSED_JCC_PADDING, 0),
9611 NULL, 0, p);
9612
9613 fragP->tc_frag_data.mf_type = mf_cmp;
9614 fragP->tc_frag_data.branch_type = align_branch_fused;
9615 fragP->tc_frag_data.max_bytes = MAX_FUSED_JCC_PADDING_SIZE;
9616 }
9617 else if (add_branch_prefix_frag_p ())
9618 {
9619 unsigned int max_prefix_size = align_branch_prefix_size;
9620
9621 /* Make room for padding. */
9622 frag_grow (max_prefix_size);
9623 p = frag_more (0);
9624
9625 fragP = frag_now;
9626
9627 frag_var (rs_machine_dependent, max_prefix_size, 0,
9628 ENCODE_RELAX_STATE (BRANCH_PREFIX, 0),
9629 NULL, 0, p);
9630
9631 fragP->tc_frag_data.max_bytes = max_prefix_size;
9632 }
9633
9634 /* Since the VEX/EVEX prefix contains the implicit prefix, we
9635 don't need the explicit prefix. */
9636 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
9637 {
9638 switch (i.tm.opcode_modifier.opcodeprefix)
9639 {
9640 case PREFIX_0X66:
9641 add_prefix (0x66);
9642 break;
9643 case PREFIX_0XF2:
9644 add_prefix (0xf2);
9645 break;
9646 case PREFIX_0XF3:
9647 if (!i.tm.cpu_flags.bitfield.cpupadlock
9648 || (i.prefix[REP_PREFIX] != 0xf3))
9649 add_prefix (0xf3);
9650 break;
9651 case PREFIX_NONE:
9652 switch (i.opcode_length)
9653 {
9654 case 2:
9655 break;
9656 case 1:
9657 /* Check for pseudo prefixes. */
9658 if (!i.tm.opcode_modifier.isprefix || i.tm.base_opcode)
9659 break;
9660 as_bad_where (insn_start_frag->fr_file,
9661 insn_start_frag->fr_line,
9662 _("pseudo prefix without instruction"));
9663 return;
9664 default:
9665 abort ();
9666 }
9667 break;
9668 default:
9669 abort ();
9670 }
9671
9672 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
9673 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
9674 R_X86_64_GOTTPOFF relocation so that linker can safely
9675 perform IE->LE optimization. A dummy REX_OPCODE prefix
9676 is also needed for lea with R_X86_64_GOTPC32_TLSDESC
9677 relocation for GDesc -> IE/LE optimization. */
9678 if (x86_elf_abi == X86_64_X32_ABI
9679 && i.operands == 2
9680 && (i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
9681 || i.reloc[0] == BFD_RELOC_X86_64_GOTPC32_TLSDESC)
9682 && i.prefix[REX_PREFIX] == 0)
9683 add_prefix (REX_OPCODE);
9684 #endif
9685
9686 /* The prefix bytes. */
9687 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
9688 if (*q)
9689 frag_opcode_byte (*q);
9690 }
9691 else
9692 {
9693 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
9694 if (*q)
9695 switch (j)
9696 {
9697 case SEG_PREFIX:
9698 case ADDR_PREFIX:
9699 frag_opcode_byte (*q);
9700 break;
9701 default:
9702 /* There should be no other prefixes for instructions
9703 with VEX prefix. */
9704 abort ();
9705 }
9706
9707 /* For EVEX instructions i.vrex should become 0 after
9708 build_evex_prefix. For VEX instructions upper 16 registers
9709 aren't available, so VREX should be 0. */
9710 if (i.vrex)
9711 abort ();
9712 /* Now the VEX prefix. */
9713 if (now_seg != absolute_section)
9714 {
9715 p = frag_more (i.vex.length);
9716 for (j = 0; j < i.vex.length; j++)
9717 p[j] = i.vex.bytes[j];
9718 }
9719 else
9720 abs_section_offset += i.vex.length;
9721 }
9722
9723 /* Now the opcode; be careful about word order here! */
9724 j = i.opcode_length;
9725 if (!i.vex.length)
9726 switch (i.tm.opcode_modifier.opcodespace)
9727 {
9728 case SPACE_BASE:
9729 break;
9730 case SPACE_0F:
9731 ++j;
9732 break;
9733 case SPACE_0F38:
9734 case SPACE_0F3A:
9735 j += 2;
9736 break;
9737 default:
9738 abort ();
9739 }
9740
9741 if (now_seg == absolute_section)
9742 abs_section_offset += j;
9743 else if (j == 1)
9744 {
9745 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
9746 }
9747 else
9748 {
9749 p = frag_more (j);
9750 if (!i.vex.length
9751 && i.tm.opcode_modifier.opcodespace != SPACE_BASE)
9752 {
9753 *p++ = 0x0f;
9754 if (i.tm.opcode_modifier.opcodespace != SPACE_0F)
9755 *p++ = i.tm.opcode_modifier.opcodespace == SPACE_0F38
9756 ? 0x38 : 0x3a;
9757 }
9758
9759 switch (i.opcode_length)
9760 {
9761 case 2:
9762 /* Put out high byte first: can't use md_number_to_chars! */
9763 *p++ = (i.tm.base_opcode >> 8) & 0xff;
9764 /* Fall through. */
9765 case 1:
9766 *p = i.tm.base_opcode & 0xff;
9767 break;
9768 default:
9769 abort ();
9770 break;
9771 }
9772
9773 }
9774
9775 /* Now the modrm byte and sib byte (if present). */
9776 if (i.tm.opcode_modifier.modrm)
9777 {
9778 frag_opcode_byte ((i.rm.regmem << 0)
9779 | (i.rm.reg << 3)
9780 | (i.rm.mode << 6));
9781 /* If i.rm.regmem == ESP (4)
9782 && i.rm.mode != (Register mode)
9783 && not 16 bit
9784 ==> need second modrm byte. */
9785 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
9786 && i.rm.mode != 3
9787 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
9788 frag_opcode_byte ((i.sib.base << 0)
9789 | (i.sib.index << 3)
9790 | (i.sib.scale << 6));
9791 }
9792
9793 if (i.disp_operands)
9794 output_disp (insn_start_frag, insn_start_off);
9795
9796 if (i.imm_operands)
9797 output_imm (insn_start_frag, insn_start_off);
9798
9799 /*
9800 * frag_now_fix () returning plain abs_section_offset when we're in the
9801 * absolute section, and abs_section_offset not getting updated as data
9802 * gets added to the frag breaks the logic below.
9803 */
9804 if (now_seg != absolute_section)
9805 {
9806 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
9807 if (j > 15)
9808 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
9809 j);
9810 else if (fragP)
9811 {
9812 /* NB: Don't add prefix with GOTPC relocation since
9813 output_disp() above depends on the fixed encoding
9814 length. Can't add prefix with TLS relocation since
9815 it breaks TLS linker optimization. */
9816 unsigned int max = i.has_gotpc_tls_reloc ? 0 : 15 - j;
9817 /* Prefix count on the current instruction. */
9818 unsigned int count = i.vex.length;
9819 unsigned int k;
9820 for (k = 0; k < ARRAY_SIZE (i.prefix); k++)
9821 /* REX byte is encoded in VEX/EVEX prefix. */
9822 if (i.prefix[k] && (k != REX_PREFIX || !i.vex.length))
9823 count++;
9824
9825 /* Count prefixes for extended opcode maps. */
9826 if (!i.vex.length)
9827 switch (i.tm.opcode_modifier.opcodespace)
9828 {
9829 case SPACE_BASE:
9830 break;
9831 case SPACE_0F:
9832 count++;
9833 break;
9834 case SPACE_0F38:
9835 case SPACE_0F3A:
9836 count += 2;
9837 break;
9838 default:
9839 abort ();
9840 }
9841
9842 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
9843 == BRANCH_PREFIX)
9844 {
9845 /* Set the maximum prefix size in BRANCH_PREFIX
9846 frag. */
9847 if (fragP->tc_frag_data.max_bytes > max)
9848 fragP->tc_frag_data.max_bytes = max;
9849 if (fragP->tc_frag_data.max_bytes > count)
9850 fragP->tc_frag_data.max_bytes -= count;
9851 else
9852 fragP->tc_frag_data.max_bytes = 0;
9853 }
9854 else
9855 {
9856 /* Remember the maximum prefix size in FUSED_JCC_PADDING
9857 frag. */
9858 unsigned int max_prefix_size;
9859 if (align_branch_prefix_size > max)
9860 max_prefix_size = max;
9861 else
9862 max_prefix_size = align_branch_prefix_size;
9863 if (max_prefix_size > count)
9864 fragP->tc_frag_data.max_prefix_length
9865 = max_prefix_size - count;
9866 }
9867
9868 /* Use existing segment prefix if possible. Use CS
9869 segment prefix in 64-bit mode. In 32-bit mode, use SS
9870 segment prefix with ESP/EBP base register and use DS
9871 segment prefix without ESP/EBP base register. */
9872 if (i.prefix[SEG_PREFIX])
9873 fragP->tc_frag_data.default_prefix = i.prefix[SEG_PREFIX];
9874 else if (flag_code == CODE_64BIT)
9875 fragP->tc_frag_data.default_prefix = CS_PREFIX_OPCODE;
9876 else if (i.base_reg
9877 && (i.base_reg->reg_num == 4
9878 || i.base_reg->reg_num == 5))
9879 fragP->tc_frag_data.default_prefix = SS_PREFIX_OPCODE;
9880 else
9881 fragP->tc_frag_data.default_prefix = DS_PREFIX_OPCODE;
9882 }
9883 }
9884 }
9885
9886 /* NB: Don't work with COND_JUMP86 without i386. */
9887 if (align_branch_power
9888 && now_seg != absolute_section
9889 && cpu_arch_flags.bitfield.cpui386)
9890 {
9891 /* Terminate each frag so that we can add prefix and check for
9892 fused jcc. */
9893 frag_wane (frag_now);
9894 frag_new (0);
9895 }
9896
9897 #ifdef DEBUG386
9898 if (flag_debug)
9899 {
9900 pi ("" /*line*/, &i);
9901 }
9902 #endif /* DEBUG386 */
9903 }
9904
9905 /* Return the size of the displacement operand N. */
9906
9907 static int
9908 disp_size (unsigned int n)
9909 {
9910 int size = 4;
9911
9912 if (i.types[n].bitfield.disp64)
9913 size = 8;
9914 else if (i.types[n].bitfield.disp8)
9915 size = 1;
9916 else if (i.types[n].bitfield.disp16)
9917 size = 2;
9918 return size;
9919 }
9920
9921 /* Return the size of the immediate operand N. */
9922
9923 static int
9924 imm_size (unsigned int n)
9925 {
9926 int size = 4;
9927 if (i.types[n].bitfield.imm64)
9928 size = 8;
9929 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
9930 size = 1;
9931 else if (i.types[n].bitfield.imm16)
9932 size = 2;
9933 return size;
9934 }
9935
9936 static void
9937 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
9938 {
9939 char *p;
9940 unsigned int n;
9941
9942 for (n = 0; n < i.operands; n++)
9943 {
9944 if (operand_type_check (i.types[n], disp))
9945 {
9946 int size = disp_size (n);
9947
9948 if (now_seg == absolute_section)
9949 abs_section_offset += size;
9950 else if (i.op[n].disps->X_op == O_constant)
9951 {
9952 offsetT val = i.op[n].disps->X_add_number;
9953
9954 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
9955 size);
9956 p = frag_more (size);
9957 md_number_to_chars (p, val, size);
9958 }
9959 else
9960 {
9961 enum bfd_reloc_code_real reloc_type;
9962 int sign = i.types[n].bitfield.disp32s;
9963 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
9964 fixS *fixP;
9965
9966 /* We can't have 8 bit displacement here. */
9967 gas_assert (!i.types[n].bitfield.disp8);
9968
9969 /* The PC relative address is computed relative
9970 to the instruction boundary, so in case immediate
9971 fields follows, we need to adjust the value. */
9972 if (pcrel && i.imm_operands)
9973 {
9974 unsigned int n1;
9975 int sz = 0;
9976
9977 for (n1 = 0; n1 < i.operands; n1++)
9978 if (operand_type_check (i.types[n1], imm))
9979 {
9980 /* Only one immediate is allowed for PC
9981 relative address. */
9982 gas_assert (sz == 0);
9983 sz = imm_size (n1);
9984 i.op[n].disps->X_add_number -= sz;
9985 }
9986 /* We should find the immediate. */
9987 gas_assert (sz != 0);
9988 }
9989
9990 p = frag_more (size);
9991 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
9992 if (GOT_symbol
9993 && GOT_symbol == i.op[n].disps->X_add_symbol
9994 && (((reloc_type == BFD_RELOC_32
9995 || reloc_type == BFD_RELOC_X86_64_32S
9996 || (reloc_type == BFD_RELOC_64
9997 && object_64bit))
9998 && (i.op[n].disps->X_op == O_symbol
9999 || (i.op[n].disps->X_op == O_add
10000 && ((symbol_get_value_expression
10001 (i.op[n].disps->X_op_symbol)->X_op)
10002 == O_subtract))))
10003 || reloc_type == BFD_RELOC_32_PCREL))
10004 {
10005 if (!object_64bit)
10006 {
10007 reloc_type = BFD_RELOC_386_GOTPC;
10008 i.has_gotpc_tls_reloc = true;
10009 i.op[n].disps->X_add_number +=
10010 encoding_length (insn_start_frag, insn_start_off, p);
10011 }
10012 else if (reloc_type == BFD_RELOC_64)
10013 reloc_type = BFD_RELOC_X86_64_GOTPC64;
10014 else
10015 /* Don't do the adjustment for x86-64, as there
10016 the pcrel addressing is relative to the _next_
10017 insn, and that is taken care of in other code. */
10018 reloc_type = BFD_RELOC_X86_64_GOTPC32;
10019 }
10020 else if (align_branch_power)
10021 {
10022 switch (reloc_type)
10023 {
10024 case BFD_RELOC_386_TLS_GD:
10025 case BFD_RELOC_386_TLS_LDM:
10026 case BFD_RELOC_386_TLS_IE:
10027 case BFD_RELOC_386_TLS_IE_32:
10028 case BFD_RELOC_386_TLS_GOTIE:
10029 case BFD_RELOC_386_TLS_GOTDESC:
10030 case BFD_RELOC_386_TLS_DESC_CALL:
10031 case BFD_RELOC_X86_64_TLSGD:
10032 case BFD_RELOC_X86_64_TLSLD:
10033 case BFD_RELOC_X86_64_GOTTPOFF:
10034 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10035 case BFD_RELOC_X86_64_TLSDESC_CALL:
10036 i.has_gotpc_tls_reloc = true;
10037 default:
10038 break;
10039 }
10040 }
10041 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
10042 size, i.op[n].disps, pcrel,
10043 reloc_type);
10044
10045 if (flag_code == CODE_64BIT && size == 4 && pcrel
10046 && !i.prefix[ADDR_PREFIX])
10047 fixP->fx_signed = 1;
10048
10049 /* Check for "call/jmp *mem", "mov mem, %reg",
10050 "test %reg, mem" and "binop mem, %reg" where binop
10051 is one of adc, add, and, cmp, or, sbb, sub, xor
10052 instructions without data prefix. Always generate
10053 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
10054 if (i.prefix[DATA_PREFIX] == 0
10055 && (generate_relax_relocations
10056 || (!object_64bit
10057 && i.rm.mode == 0
10058 && i.rm.regmem == 5))
10059 && (i.rm.mode == 2
10060 || (i.rm.mode == 0 && i.rm.regmem == 5))
10061 && i.tm.opcode_modifier.opcodespace == SPACE_BASE
10062 && ((i.operands == 1
10063 && i.tm.base_opcode == 0xff
10064 && (i.rm.reg == 2 || i.rm.reg == 4))
10065 || (i.operands == 2
10066 && (i.tm.base_opcode == 0x8b
10067 || i.tm.base_opcode == 0x85
10068 || (i.tm.base_opcode & ~0x38) == 0x03))))
10069 {
10070 if (object_64bit)
10071 {
10072 fixP->fx_tcbit = i.rex != 0;
10073 if (i.base_reg
10074 && (i.base_reg->reg_num == RegIP))
10075 fixP->fx_tcbit2 = 1;
10076 }
10077 else
10078 fixP->fx_tcbit2 = 1;
10079 }
10080 }
10081 }
10082 }
10083 }
10084
10085 static void
10086 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
10087 {
10088 char *p;
10089 unsigned int n;
10090
10091 for (n = 0; n < i.operands; n++)
10092 {
10093 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
10094 if (i.rounding.type != rc_none && n == i.rounding.operand)
10095 continue;
10096
10097 if (operand_type_check (i.types[n], imm))
10098 {
10099 int size = imm_size (n);
10100
10101 if (now_seg == absolute_section)
10102 abs_section_offset += size;
10103 else if (i.op[n].imms->X_op == O_constant)
10104 {
10105 offsetT val;
10106
10107 val = offset_in_range (i.op[n].imms->X_add_number,
10108 size);
10109 p = frag_more (size);
10110 md_number_to_chars (p, val, size);
10111 }
10112 else
10113 {
10114 /* Not absolute_section.
10115 Need a 32-bit fixup (don't support 8bit
10116 non-absolute imms). Try to support other
10117 sizes ... */
10118 enum bfd_reloc_code_real reloc_type;
10119 int sign;
10120
10121 if (i.types[n].bitfield.imm32s
10122 && (i.suffix == QWORD_MNEM_SUFFIX
10123 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
10124 sign = 1;
10125 else
10126 sign = 0;
10127
10128 p = frag_more (size);
10129 reloc_type = reloc (size, 0, sign, i.reloc[n]);
10130
10131 /* This is tough to explain. We end up with this one if we
10132 * have operands that look like
10133 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
10134 * obtain the absolute address of the GOT, and it is strongly
10135 * preferable from a performance point of view to avoid using
10136 * a runtime relocation for this. The actual sequence of
10137 * instructions often look something like:
10138 *
10139 * call .L66
10140 * .L66:
10141 * popl %ebx
10142 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
10143 *
10144 * The call and pop essentially return the absolute address
10145 * of the label .L66 and store it in %ebx. The linker itself
10146 * will ultimately change the first operand of the addl so
10147 * that %ebx points to the GOT, but to keep things simple, the
10148 * .o file must have this operand set so that it generates not
10149 * the absolute address of .L66, but the absolute address of
10150 * itself. This allows the linker itself simply treat a GOTPC
10151 * relocation as asking for a pcrel offset to the GOT to be
10152 * added in, and the addend of the relocation is stored in the
10153 * operand field for the instruction itself.
10154 *
10155 * Our job here is to fix the operand so that it would add
10156 * the correct offset so that %ebx would point to itself. The
10157 * thing that is tricky is that .-.L66 will point to the
10158 * beginning of the instruction, so we need to further modify
10159 * the operand so that it will point to itself. There are
10160 * other cases where you have something like:
10161 *
10162 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
10163 *
10164 * and here no correction would be required. Internally in
10165 * the assembler we treat operands of this form as not being
10166 * pcrel since the '.' is explicitly mentioned, and I wonder
10167 * whether it would simplify matters to do it this way. Who
10168 * knows. In earlier versions of the PIC patches, the
10169 * pcrel_adjust field was used to store the correction, but
10170 * since the expression is not pcrel, I felt it would be
10171 * confusing to do it this way. */
10172
10173 if ((reloc_type == BFD_RELOC_32
10174 || reloc_type == BFD_RELOC_X86_64_32S
10175 || reloc_type == BFD_RELOC_64)
10176 && GOT_symbol
10177 && GOT_symbol == i.op[n].imms->X_add_symbol
10178 && (i.op[n].imms->X_op == O_symbol
10179 || (i.op[n].imms->X_op == O_add
10180 && ((symbol_get_value_expression
10181 (i.op[n].imms->X_op_symbol)->X_op)
10182 == O_subtract))))
10183 {
10184 if (!object_64bit)
10185 reloc_type = BFD_RELOC_386_GOTPC;
10186 else if (size == 4)
10187 reloc_type = BFD_RELOC_X86_64_GOTPC32;
10188 else if (size == 8)
10189 reloc_type = BFD_RELOC_X86_64_GOTPC64;
10190 i.has_gotpc_tls_reloc = true;
10191 i.op[n].imms->X_add_number +=
10192 encoding_length (insn_start_frag, insn_start_off, p);
10193 }
10194 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
10195 i.op[n].imms, 0, reloc_type);
10196 }
10197 }
10198 }
10199 }
10200 \f
10201 /* x86_cons_fix_new is called via the expression parsing code when a
10202 reloc is needed. We use this hook to get the correct .got reloc. */
10203 static int cons_sign = -1;
10204
10205 void
10206 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
10207 expressionS *exp, bfd_reloc_code_real_type r)
10208 {
10209 r = reloc (len, 0, cons_sign, r);
10210
10211 #ifdef TE_PE
10212 if (exp->X_op == O_secrel)
10213 {
10214 exp->X_op = O_symbol;
10215 r = BFD_RELOC_32_SECREL;
10216 }
10217 #endif
10218
10219 fix_new_exp (frag, off, len, exp, 0, r);
10220 }
10221
10222 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
10223 purpose of the `.dc.a' internal pseudo-op. */
10224
10225 int
10226 x86_address_bytes (void)
10227 {
10228 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
10229 return 4;
10230 return stdoutput->arch_info->bits_per_address / 8;
10231 }
10232
10233 #if (!(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
10234 || defined (LEX_AT)) && !defined (TE_PE)
10235 # define lex_got(reloc, adjust, types) NULL
10236 #else
10237 /* Parse operands of the form
10238 <symbol>@GOTOFF+<nnn>
10239 and similar .plt or .got references.
10240
10241 If we find one, set up the correct relocation in RELOC and copy the
10242 input string, minus the `@GOTOFF' into a malloc'd buffer for
10243 parsing by the calling routine. Return this buffer, and if ADJUST
10244 is non-null set it to the length of the string we removed from the
10245 input line. Otherwise return NULL. */
10246 static char *
10247 lex_got (enum bfd_reloc_code_real *rel,
10248 int *adjust,
10249 i386_operand_type *types)
10250 {
10251 /* Some of the relocations depend on the size of what field is to
10252 be relocated. But in our callers i386_immediate and i386_displacement
10253 we don't yet know the operand size (this will be set by insn
10254 matching). Hence we record the word32 relocation here,
10255 and adjust the reloc according to the real size in reloc(). */
10256 static const struct {
10257 const char *str;
10258 int len;
10259 const enum bfd_reloc_code_real rel[2];
10260 const i386_operand_type types64;
10261 bool need_GOT_symbol;
10262 } gotrel[] = {
10263 #ifndef TE_PE
10264 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10265 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
10266 BFD_RELOC_SIZE32 },
10267 OPERAND_TYPE_IMM32_64, false },
10268 #endif
10269 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
10270 BFD_RELOC_X86_64_PLTOFF64 },
10271 OPERAND_TYPE_IMM64, true },
10272 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
10273 BFD_RELOC_X86_64_PLT32 },
10274 OPERAND_TYPE_IMM32_32S_DISP32, false },
10275 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
10276 BFD_RELOC_X86_64_GOTPLT64 },
10277 OPERAND_TYPE_IMM64_DISP64, true },
10278 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
10279 BFD_RELOC_X86_64_GOTOFF64 },
10280 OPERAND_TYPE_IMM64_DISP64, true },
10281 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
10282 BFD_RELOC_X86_64_GOTPCREL },
10283 OPERAND_TYPE_IMM32_32S_DISP32, true },
10284 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
10285 BFD_RELOC_X86_64_TLSGD },
10286 OPERAND_TYPE_IMM32_32S_DISP32, true },
10287 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
10288 _dummy_first_bfd_reloc_code_real },
10289 OPERAND_TYPE_NONE, true },
10290 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
10291 BFD_RELOC_X86_64_TLSLD },
10292 OPERAND_TYPE_IMM32_32S_DISP32, true },
10293 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
10294 BFD_RELOC_X86_64_GOTTPOFF },
10295 OPERAND_TYPE_IMM32_32S_DISP32, true },
10296 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
10297 BFD_RELOC_X86_64_TPOFF32 },
10298 OPERAND_TYPE_IMM32_32S_64_DISP32_64, true },
10299 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
10300 _dummy_first_bfd_reloc_code_real },
10301 OPERAND_TYPE_NONE, true },
10302 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
10303 BFD_RELOC_X86_64_DTPOFF32 },
10304 OPERAND_TYPE_IMM32_32S_64_DISP32_64, true },
10305 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
10306 _dummy_first_bfd_reloc_code_real },
10307 OPERAND_TYPE_NONE, true },
10308 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
10309 _dummy_first_bfd_reloc_code_real },
10310 OPERAND_TYPE_NONE, true },
10311 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
10312 BFD_RELOC_X86_64_GOT32 },
10313 OPERAND_TYPE_IMM32_32S_64_DISP32, true },
10314 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
10315 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
10316 OPERAND_TYPE_IMM32_32S_DISP32, true },
10317 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
10318 BFD_RELOC_X86_64_TLSDESC_CALL },
10319 OPERAND_TYPE_IMM32_32S_DISP32, true },
10320 #else /* TE_PE */
10321 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
10322 BFD_RELOC_32_SECREL },
10323 OPERAND_TYPE_IMM32_32S_64_DISP32_64, false },
10324 #endif
10325 };
10326 char *cp;
10327 unsigned int j;
10328
10329 #if defined (OBJ_MAYBE_ELF) && !defined (TE_PE)
10330 if (!IS_ELF)
10331 return NULL;
10332 #endif
10333
10334 for (cp = input_line_pointer; *cp != '@'; cp++)
10335 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
10336 return NULL;
10337
10338 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
10339 {
10340 int len = gotrel[j].len;
10341 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
10342 {
10343 if (gotrel[j].rel[object_64bit] != 0)
10344 {
10345 int first, second;
10346 char *tmpbuf, *past_reloc;
10347
10348 *rel = gotrel[j].rel[object_64bit];
10349
10350 if (types)
10351 {
10352 if (flag_code != CODE_64BIT)
10353 {
10354 types->bitfield.imm32 = 1;
10355 types->bitfield.disp32 = 1;
10356 }
10357 else
10358 *types = gotrel[j].types64;
10359 }
10360
10361 if (gotrel[j].need_GOT_symbol && GOT_symbol == NULL)
10362 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
10363
10364 /* The length of the first part of our input line. */
10365 first = cp - input_line_pointer;
10366
10367 /* The second part goes from after the reloc token until
10368 (and including) an end_of_line char or comma. */
10369 past_reloc = cp + 1 + len;
10370 cp = past_reloc;
10371 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
10372 ++cp;
10373 second = cp + 1 - past_reloc;
10374
10375 /* Allocate and copy string. The trailing NUL shouldn't
10376 be necessary, but be safe. */
10377 tmpbuf = XNEWVEC (char, first + second + 2);
10378 memcpy (tmpbuf, input_line_pointer, first);
10379 if (second != 0 && *past_reloc != ' ')
10380 /* Replace the relocation token with ' ', so that
10381 errors like foo@GOTOFF1 will be detected. */
10382 tmpbuf[first++] = ' ';
10383 else
10384 /* Increment length by 1 if the relocation token is
10385 removed. */
10386 len++;
10387 if (adjust)
10388 *adjust = len;
10389 memcpy (tmpbuf + first, past_reloc, second);
10390 tmpbuf[first + second] = '\0';
10391 return tmpbuf;
10392 }
10393
10394 as_bad (_("@%s reloc is not supported with %d-bit output format"),
10395 gotrel[j].str, 1 << (5 + object_64bit));
10396 return NULL;
10397 }
10398 }
10399
10400 /* Might be a symbol version string. Don't as_bad here. */
10401 return NULL;
10402 }
10403 #endif
10404
10405 bfd_reloc_code_real_type
10406 x86_cons (expressionS *exp, int size)
10407 {
10408 bfd_reloc_code_real_type got_reloc = NO_RELOC;
10409
10410 intel_syntax = -intel_syntax;
10411
10412 exp->X_md = 0;
10413 if (size == 4 || (object_64bit && size == 8))
10414 {
10415 /* Handle @GOTOFF and the like in an expression. */
10416 char *save;
10417 char *gotfree_input_line;
10418 int adjust = 0;
10419
10420 save = input_line_pointer;
10421 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
10422 if (gotfree_input_line)
10423 input_line_pointer = gotfree_input_line;
10424
10425 expression (exp);
10426
10427 if (gotfree_input_line)
10428 {
10429 /* expression () has merrily parsed up to the end of line,
10430 or a comma - in the wrong buffer. Transfer how far
10431 input_line_pointer has moved to the right buffer. */
10432 input_line_pointer = (save
10433 + (input_line_pointer - gotfree_input_line)
10434 + adjust);
10435 free (gotfree_input_line);
10436 if (exp->X_op == O_constant
10437 || exp->X_op == O_absent
10438 || exp->X_op == O_illegal
10439 || exp->X_op == O_register
10440 || exp->X_op == O_big)
10441 {
10442 char c = *input_line_pointer;
10443 *input_line_pointer = 0;
10444 as_bad (_("missing or invalid expression `%s'"), save);
10445 *input_line_pointer = c;
10446 }
10447 else if ((got_reloc == BFD_RELOC_386_PLT32
10448 || got_reloc == BFD_RELOC_X86_64_PLT32)
10449 && exp->X_op != O_symbol)
10450 {
10451 char c = *input_line_pointer;
10452 *input_line_pointer = 0;
10453 as_bad (_("invalid PLT expression `%s'"), save);
10454 *input_line_pointer = c;
10455 }
10456 }
10457 }
10458 else
10459 expression (exp);
10460
10461 intel_syntax = -intel_syntax;
10462
10463 if (intel_syntax)
10464 i386_intel_simplify (exp);
10465
10466 /* If not 64bit, massage value, to account for wraparound when !BFD64. */
10467 if (size == 4 && exp->X_op == O_constant && !object_64bit)
10468 exp->X_add_number = extend_to_32bit_address (exp->X_add_number);
10469
10470 return got_reloc;
10471 }
10472
10473 static void
10474 signed_cons (int size)
10475 {
10476 if (object_64bit)
10477 cons_sign = 1;
10478 cons (size);
10479 cons_sign = -1;
10480 }
10481
10482 #ifdef TE_PE
10483 static void
10484 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
10485 {
10486 expressionS exp;
10487
10488 do
10489 {
10490 expression (&exp);
10491 if (exp.X_op == O_symbol)
10492 exp.X_op = O_secrel;
10493
10494 emit_expr (&exp, 4);
10495 }
10496 while (*input_line_pointer++ == ',');
10497
10498 input_line_pointer--;
10499 demand_empty_rest_of_line ();
10500 }
10501 #endif
10502
10503 /* Handle Vector operations. */
10504
10505 static char *
10506 check_VecOperations (char *op_string)
10507 {
10508 const reg_entry *mask;
10509 const char *saved;
10510 char *end_op;
10511
10512 while (*op_string)
10513 {
10514 saved = op_string;
10515 if (*op_string == '{')
10516 {
10517 op_string++;
10518
10519 /* Check broadcasts. */
10520 if (startswith (op_string, "1to"))
10521 {
10522 unsigned int bcst_type;
10523
10524 if (i.broadcast.type)
10525 goto duplicated_vec_op;
10526
10527 op_string += 3;
10528 if (*op_string == '8')
10529 bcst_type = 8;
10530 else if (*op_string == '4')
10531 bcst_type = 4;
10532 else if (*op_string == '2')
10533 bcst_type = 2;
10534 else if (*op_string == '1'
10535 && *(op_string+1) == '6')
10536 {
10537 bcst_type = 16;
10538 op_string++;
10539 }
10540 else
10541 {
10542 as_bad (_("Unsupported broadcast: `%s'"), saved);
10543 return NULL;
10544 }
10545 op_string++;
10546
10547 i.broadcast.type = bcst_type;
10548 i.broadcast.operand = this_operand;
10549 }
10550 /* Check masking operation. */
10551 else if ((mask = parse_register (op_string, &end_op)) != NULL)
10552 {
10553 if (mask == &bad_reg)
10554 return NULL;
10555
10556 /* k0 can't be used for write mask. */
10557 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
10558 {
10559 as_bad (_("`%s%s' can't be used for write mask"),
10560 register_prefix, mask->reg_name);
10561 return NULL;
10562 }
10563
10564 if (!i.mask.reg)
10565 {
10566 i.mask.reg = mask;
10567 i.mask.operand = this_operand;
10568 }
10569 else if (i.mask.reg->reg_num)
10570 goto duplicated_vec_op;
10571 else
10572 {
10573 i.mask.reg = mask;
10574
10575 /* Only "{z}" is allowed here. No need to check
10576 zeroing mask explicitly. */
10577 if (i.mask.operand != (unsigned int) this_operand)
10578 {
10579 as_bad (_("invalid write mask `%s'"), saved);
10580 return NULL;
10581 }
10582 }
10583
10584 op_string = end_op;
10585 }
10586 /* Check zeroing-flag for masking operation. */
10587 else if (*op_string == 'z')
10588 {
10589 if (!i.mask.reg)
10590 {
10591 i.mask.reg = reg_k0;
10592 i.mask.zeroing = 1;
10593 i.mask.operand = this_operand;
10594 }
10595 else
10596 {
10597 if (i.mask.zeroing)
10598 {
10599 duplicated_vec_op:
10600 as_bad (_("duplicated `%s'"), saved);
10601 return NULL;
10602 }
10603
10604 i.mask.zeroing = 1;
10605
10606 /* Only "{%k}" is allowed here. No need to check mask
10607 register explicitly. */
10608 if (i.mask.operand != (unsigned int) this_operand)
10609 {
10610 as_bad (_("invalid zeroing-masking `%s'"),
10611 saved);
10612 return NULL;
10613 }
10614 }
10615
10616 op_string++;
10617 }
10618 else
10619 goto unknown_vec_op;
10620
10621 if (*op_string != '}')
10622 {
10623 as_bad (_("missing `}' in `%s'"), saved);
10624 return NULL;
10625 }
10626 op_string++;
10627
10628 /* Strip whitespace since the addition of pseudo prefixes
10629 changed how the scrubber treats '{'. */
10630 if (is_space_char (*op_string))
10631 ++op_string;
10632
10633 continue;
10634 }
10635 unknown_vec_op:
10636 /* We don't know this one. */
10637 as_bad (_("unknown vector operation: `%s'"), saved);
10638 return NULL;
10639 }
10640
10641 if (i.mask.reg && i.mask.zeroing && !i.mask.reg->reg_num)
10642 {
10643 as_bad (_("zeroing-masking only allowed with write mask"));
10644 return NULL;
10645 }
10646
10647 return op_string;
10648 }
10649
10650 static int
10651 i386_immediate (char *imm_start)
10652 {
10653 char *save_input_line_pointer;
10654 char *gotfree_input_line;
10655 segT exp_seg = 0;
10656 expressionS *exp;
10657 i386_operand_type types;
10658
10659 operand_type_set (&types, ~0);
10660
10661 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
10662 {
10663 as_bad (_("at most %d immediate operands are allowed"),
10664 MAX_IMMEDIATE_OPERANDS);
10665 return 0;
10666 }
10667
10668 exp = &im_expressions[i.imm_operands++];
10669 i.op[this_operand].imms = exp;
10670
10671 if (is_space_char (*imm_start))
10672 ++imm_start;
10673
10674 save_input_line_pointer = input_line_pointer;
10675 input_line_pointer = imm_start;
10676
10677 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
10678 if (gotfree_input_line)
10679 input_line_pointer = gotfree_input_line;
10680
10681 exp_seg = expression (exp);
10682
10683 SKIP_WHITESPACE ();
10684 if (*input_line_pointer)
10685 as_bad (_("junk `%s' after expression"), input_line_pointer);
10686
10687 input_line_pointer = save_input_line_pointer;
10688 if (gotfree_input_line)
10689 {
10690 free (gotfree_input_line);
10691
10692 if (exp->X_op == O_constant)
10693 exp->X_op = O_illegal;
10694 }
10695
10696 if (exp_seg == reg_section)
10697 {
10698 as_bad (_("illegal immediate register operand %s"), imm_start);
10699 return 0;
10700 }
10701
10702 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
10703 }
10704
10705 static int
10706 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10707 i386_operand_type types, const char *imm_start)
10708 {
10709 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
10710 {
10711 if (imm_start)
10712 as_bad (_("missing or invalid immediate expression `%s'"),
10713 imm_start);
10714 return 0;
10715 }
10716 else if (exp->X_op == O_constant)
10717 {
10718 /* Size it properly later. */
10719 i.types[this_operand].bitfield.imm64 = 1;
10720
10721 /* If not 64bit, sign/zero extend val, to account for wraparound
10722 when !BFD64. */
10723 if (flag_code != CODE_64BIT)
10724 exp->X_add_number = extend_to_32bit_address (exp->X_add_number);
10725 }
10726 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10727 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
10728 && exp_seg != absolute_section
10729 && exp_seg != text_section
10730 && exp_seg != data_section
10731 && exp_seg != bss_section
10732 && exp_seg != undefined_section
10733 && !bfd_is_com_section (exp_seg))
10734 {
10735 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
10736 return 0;
10737 }
10738 #endif
10739 else
10740 {
10741 /* This is an address. The size of the address will be
10742 determined later, depending on destination register,
10743 suffix, or the default for the section. */
10744 i.types[this_operand].bitfield.imm8 = 1;
10745 i.types[this_operand].bitfield.imm16 = 1;
10746 i.types[this_operand].bitfield.imm32 = 1;
10747 i.types[this_operand].bitfield.imm32s = 1;
10748 i.types[this_operand].bitfield.imm64 = 1;
10749 i.types[this_operand] = operand_type_and (i.types[this_operand],
10750 types);
10751 }
10752
10753 return 1;
10754 }
10755
10756 static char *
10757 i386_scale (char *scale)
10758 {
10759 offsetT val;
10760 char *save = input_line_pointer;
10761
10762 input_line_pointer = scale;
10763 val = get_absolute_expression ();
10764
10765 switch (val)
10766 {
10767 case 1:
10768 i.log2_scale_factor = 0;
10769 break;
10770 case 2:
10771 i.log2_scale_factor = 1;
10772 break;
10773 case 4:
10774 i.log2_scale_factor = 2;
10775 break;
10776 case 8:
10777 i.log2_scale_factor = 3;
10778 break;
10779 default:
10780 {
10781 char sep = *input_line_pointer;
10782
10783 *input_line_pointer = '\0';
10784 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
10785 scale);
10786 *input_line_pointer = sep;
10787 input_line_pointer = save;
10788 return NULL;
10789 }
10790 }
10791 if (i.log2_scale_factor != 0 && i.index_reg == 0)
10792 {
10793 as_warn (_("scale factor of %d without an index register"),
10794 1 << i.log2_scale_factor);
10795 i.log2_scale_factor = 0;
10796 }
10797 scale = input_line_pointer;
10798 input_line_pointer = save;
10799 return scale;
10800 }
10801
10802 static int
10803 i386_displacement (char *disp_start, char *disp_end)
10804 {
10805 expressionS *exp;
10806 segT exp_seg = 0;
10807 char *save_input_line_pointer;
10808 char *gotfree_input_line;
10809 int override;
10810 i386_operand_type bigdisp, types = anydisp;
10811 int ret;
10812
10813 if (i.disp_operands == MAX_MEMORY_OPERANDS)
10814 {
10815 as_bad (_("at most %d displacement operands are allowed"),
10816 MAX_MEMORY_OPERANDS);
10817 return 0;
10818 }
10819
10820 operand_type_set (&bigdisp, 0);
10821 if (i.jumpabsolute
10822 || i.types[this_operand].bitfield.baseindex
10823 || (current_templates->start->opcode_modifier.jump != JUMP
10824 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
10825 {
10826 i386_addressing_mode ();
10827 override = (i.prefix[ADDR_PREFIX] != 0);
10828 if (flag_code == CODE_64BIT)
10829 {
10830 if (!override)
10831 {
10832 bigdisp.bitfield.disp32s = 1;
10833 bigdisp.bitfield.disp64 = 1;
10834 }
10835 else
10836 bigdisp.bitfield.disp32 = 1;
10837 }
10838 else if ((flag_code == CODE_16BIT) ^ override)
10839 bigdisp.bitfield.disp16 = 1;
10840 else
10841 bigdisp.bitfield.disp32 = 1;
10842 }
10843 else
10844 {
10845 /* For PC-relative branches, the width of the displacement may be
10846 dependent upon data size, but is never dependent upon address size.
10847 Also make sure to not unintentionally match against a non-PC-relative
10848 branch template. */
10849 static templates aux_templates;
10850 const insn_template *t = current_templates->start;
10851 bool has_intel64 = false;
10852
10853 aux_templates.start = t;
10854 while (++t < current_templates->end)
10855 {
10856 if (t->opcode_modifier.jump
10857 != current_templates->start->opcode_modifier.jump)
10858 break;
10859 if ((t->opcode_modifier.isa64 >= INTEL64))
10860 has_intel64 = true;
10861 }
10862 if (t < current_templates->end)
10863 {
10864 aux_templates.end = t;
10865 current_templates = &aux_templates;
10866 }
10867
10868 override = (i.prefix[DATA_PREFIX] != 0);
10869 if (flag_code == CODE_64BIT)
10870 {
10871 if ((override || i.suffix == WORD_MNEM_SUFFIX)
10872 && (!intel64 || !has_intel64))
10873 bigdisp.bitfield.disp16 = 1;
10874 else
10875 bigdisp.bitfield.disp32s = 1;
10876 }
10877 else
10878 {
10879 if (!override)
10880 override = (i.suffix == (flag_code != CODE_16BIT
10881 ? WORD_MNEM_SUFFIX
10882 : LONG_MNEM_SUFFIX));
10883 bigdisp.bitfield.disp32 = 1;
10884 if ((flag_code == CODE_16BIT) ^ override)
10885 {
10886 bigdisp.bitfield.disp32 = 0;
10887 bigdisp.bitfield.disp16 = 1;
10888 }
10889 }
10890 }
10891 i.types[this_operand] = operand_type_or (i.types[this_operand],
10892 bigdisp);
10893
10894 exp = &disp_expressions[i.disp_operands];
10895 i.op[this_operand].disps = exp;
10896 i.disp_operands++;
10897 save_input_line_pointer = input_line_pointer;
10898 input_line_pointer = disp_start;
10899 END_STRING_AND_SAVE (disp_end);
10900
10901 #ifndef GCC_ASM_O_HACK
10902 #define GCC_ASM_O_HACK 0
10903 #endif
10904 #if GCC_ASM_O_HACK
10905 END_STRING_AND_SAVE (disp_end + 1);
10906 if (i.types[this_operand].bitfield.baseIndex
10907 && displacement_string_end[-1] == '+')
10908 {
10909 /* This hack is to avoid a warning when using the "o"
10910 constraint within gcc asm statements.
10911 For instance:
10912
10913 #define _set_tssldt_desc(n,addr,limit,type) \
10914 __asm__ __volatile__ ( \
10915 "movw %w2,%0\n\t" \
10916 "movw %w1,2+%0\n\t" \
10917 "rorl $16,%1\n\t" \
10918 "movb %b1,4+%0\n\t" \
10919 "movb %4,5+%0\n\t" \
10920 "movb $0,6+%0\n\t" \
10921 "movb %h1,7+%0\n\t" \
10922 "rorl $16,%1" \
10923 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
10924
10925 This works great except that the output assembler ends
10926 up looking a bit weird if it turns out that there is
10927 no offset. You end up producing code that looks like:
10928
10929 #APP
10930 movw $235,(%eax)
10931 movw %dx,2+(%eax)
10932 rorl $16,%edx
10933 movb %dl,4+(%eax)
10934 movb $137,5+(%eax)
10935 movb $0,6+(%eax)
10936 movb %dh,7+(%eax)
10937 rorl $16,%edx
10938 #NO_APP
10939
10940 So here we provide the missing zero. */
10941
10942 *displacement_string_end = '0';
10943 }
10944 #endif
10945 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
10946 if (gotfree_input_line)
10947 input_line_pointer = gotfree_input_line;
10948
10949 exp_seg = expression (exp);
10950
10951 SKIP_WHITESPACE ();
10952 if (*input_line_pointer)
10953 as_bad (_("junk `%s' after expression"), input_line_pointer);
10954 #if GCC_ASM_O_HACK
10955 RESTORE_END_STRING (disp_end + 1);
10956 #endif
10957 input_line_pointer = save_input_line_pointer;
10958 if (gotfree_input_line)
10959 {
10960 free (gotfree_input_line);
10961
10962 if (exp->X_op == O_constant || exp->X_op == O_register)
10963 exp->X_op = O_illegal;
10964 }
10965
10966 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
10967
10968 RESTORE_END_STRING (disp_end);
10969
10970 return ret;
10971 }
10972
10973 static int
10974 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10975 i386_operand_type types, const char *disp_start)
10976 {
10977 i386_operand_type bigdisp;
10978 int ret = 1;
10979
10980 /* We do this to make sure that the section symbol is in
10981 the symbol table. We will ultimately change the relocation
10982 to be relative to the beginning of the section. */
10983 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
10984 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
10985 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10986 {
10987 if (exp->X_op != O_symbol)
10988 goto inv_disp;
10989
10990 if (S_IS_LOCAL (exp->X_add_symbol)
10991 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
10992 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
10993 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
10994 exp->X_op = O_subtract;
10995 exp->X_op_symbol = GOT_symbol;
10996 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
10997 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
10998 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10999 i.reloc[this_operand] = BFD_RELOC_64;
11000 else
11001 i.reloc[this_operand] = BFD_RELOC_32;
11002 }
11003
11004 else if (exp->X_op == O_absent
11005 || exp->X_op == O_illegal
11006 || exp->X_op == O_big)
11007 {
11008 inv_disp:
11009 as_bad (_("missing or invalid displacement expression `%s'"),
11010 disp_start);
11011 ret = 0;
11012 }
11013
11014 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11015 else if (exp->X_op != O_constant
11016 && OUTPUT_FLAVOR == bfd_target_aout_flavour
11017 && exp_seg != absolute_section
11018 && exp_seg != text_section
11019 && exp_seg != data_section
11020 && exp_seg != bss_section
11021 && exp_seg != undefined_section
11022 && !bfd_is_com_section (exp_seg))
11023 {
11024 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
11025 ret = 0;
11026 }
11027 #endif
11028
11029 if (current_templates->start->opcode_modifier.jump == JUMP_BYTE
11030 /* Constants get taken care of by optimize_disp(). */
11031 && exp->X_op != O_constant)
11032 i.types[this_operand].bitfield.disp8 = 1;
11033
11034 /* Check if this is a displacement only operand. */
11035 bigdisp = i.types[this_operand];
11036 bigdisp.bitfield.disp8 = 0;
11037 bigdisp.bitfield.disp16 = 0;
11038 bigdisp.bitfield.disp32 = 0;
11039 bigdisp.bitfield.disp32s = 0;
11040 bigdisp.bitfield.disp64 = 0;
11041 if (operand_type_all_zero (&bigdisp))
11042 i.types[this_operand] = operand_type_and (i.types[this_operand],
11043 types);
11044
11045 return ret;
11046 }
11047
11048 /* Return the active addressing mode, taking address override and
11049 registers forming the address into consideration. Update the
11050 address override prefix if necessary. */
11051
11052 static enum flag_code
11053 i386_addressing_mode (void)
11054 {
11055 enum flag_code addr_mode;
11056
11057 if (i.prefix[ADDR_PREFIX])
11058 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
11059 else if (flag_code == CODE_16BIT
11060 && current_templates->start->cpu_flags.bitfield.cpumpx
11061 /* Avoid replacing the "16-bit addressing not allowed" diagnostic
11062 from md_assemble() by "is not a valid base/index expression"
11063 when there is a base and/or index. */
11064 && !i.types[this_operand].bitfield.baseindex)
11065 {
11066 /* MPX insn memory operands with neither base nor index must be forced
11067 to use 32-bit addressing in 16-bit mode. */
11068 addr_mode = CODE_32BIT;
11069 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
11070 ++i.prefixes;
11071 gas_assert (!i.types[this_operand].bitfield.disp16);
11072 gas_assert (!i.types[this_operand].bitfield.disp32);
11073 }
11074 else
11075 {
11076 addr_mode = flag_code;
11077
11078 #if INFER_ADDR_PREFIX
11079 if (i.mem_operands == 0)
11080 {
11081 /* Infer address prefix from the first memory operand. */
11082 const reg_entry *addr_reg = i.base_reg;
11083
11084 if (addr_reg == NULL)
11085 addr_reg = i.index_reg;
11086
11087 if (addr_reg)
11088 {
11089 if (addr_reg->reg_type.bitfield.dword)
11090 addr_mode = CODE_32BIT;
11091 else if (flag_code != CODE_64BIT
11092 && addr_reg->reg_type.bitfield.word)
11093 addr_mode = CODE_16BIT;
11094
11095 if (addr_mode != flag_code)
11096 {
11097 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
11098 i.prefixes += 1;
11099 /* Change the size of any displacement too. At most one
11100 of Disp16 or Disp32 is set.
11101 FIXME. There doesn't seem to be any real need for
11102 separate Disp16 and Disp32 flags. The same goes for
11103 Imm16 and Imm32. Removing them would probably clean
11104 up the code quite a lot. */
11105 if (flag_code != CODE_64BIT
11106 && (i.types[this_operand].bitfield.disp16
11107 || i.types[this_operand].bitfield.disp32))
11108 i.types[this_operand]
11109 = operand_type_xor (i.types[this_operand], disp16_32);
11110 }
11111 }
11112 }
11113 #endif
11114 }
11115
11116 return addr_mode;
11117 }
11118
11119 /* Make sure the memory operand we've been dealt is valid.
11120 Return 1 on success, 0 on a failure. */
11121
11122 static int
11123 i386_index_check (const char *operand_string)
11124 {
11125 const char *kind = "base/index";
11126 enum flag_code addr_mode = i386_addressing_mode ();
11127 const insn_template *t = current_templates->start;
11128
11129 if (t->opcode_modifier.isstring
11130 && !t->cpu_flags.bitfield.cpupadlock
11131 && (current_templates->end[-1].opcode_modifier.isstring
11132 || i.mem_operands))
11133 {
11134 /* Memory operands of string insns are special in that they only allow
11135 a single register (rDI, rSI, or rBX) as their memory address. */
11136 const reg_entry *expected_reg;
11137 static const char *di_si[][2] =
11138 {
11139 { "esi", "edi" },
11140 { "si", "di" },
11141 { "rsi", "rdi" }
11142 };
11143 static const char *bx[] = { "ebx", "bx", "rbx" };
11144
11145 kind = "string address";
11146
11147 if (t->opcode_modifier.prefixok == PrefixRep)
11148 {
11149 int es_op = current_templates->end[-1].opcode_modifier.isstring
11150 - IS_STRING_ES_OP0;
11151 int op = 0;
11152
11153 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
11154 || ((!i.mem_operands != !intel_syntax)
11155 && current_templates->end[-1].operand_types[1]
11156 .bitfield.baseindex))
11157 op = 1;
11158 expected_reg
11159 = (const reg_entry *) str_hash_find (reg_hash,
11160 di_si[addr_mode][op == es_op]);
11161 }
11162 else
11163 expected_reg
11164 = (const reg_entry *)str_hash_find (reg_hash, bx[addr_mode]);
11165
11166 if (i.base_reg != expected_reg
11167 || i.index_reg
11168 || operand_type_check (i.types[this_operand], disp))
11169 {
11170 /* The second memory operand must have the same size as
11171 the first one. */
11172 if (i.mem_operands
11173 && i.base_reg
11174 && !((addr_mode == CODE_64BIT
11175 && i.base_reg->reg_type.bitfield.qword)
11176 || (addr_mode == CODE_32BIT
11177 ? i.base_reg->reg_type.bitfield.dword
11178 : i.base_reg->reg_type.bitfield.word)))
11179 goto bad_address;
11180
11181 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
11182 operand_string,
11183 intel_syntax ? '[' : '(',
11184 register_prefix,
11185 expected_reg->reg_name,
11186 intel_syntax ? ']' : ')');
11187 return 1;
11188 }
11189 else
11190 return 1;
11191
11192 bad_address:
11193 as_bad (_("`%s' is not a valid %s expression"),
11194 operand_string, kind);
11195 return 0;
11196 }
11197 else
11198 {
11199 if (addr_mode != CODE_16BIT)
11200 {
11201 /* 32-bit/64-bit checks. */
11202 if (i.disp_encoding == disp_encoding_16bit)
11203 {
11204 bad_disp:
11205 as_bad (_("invalid `%s' prefix"),
11206 addr_mode == CODE_16BIT ? "{disp32}" : "{disp16}");
11207 return 0;
11208 }
11209
11210 if ((i.base_reg
11211 && ((addr_mode == CODE_64BIT
11212 ? !i.base_reg->reg_type.bitfield.qword
11213 : !i.base_reg->reg_type.bitfield.dword)
11214 || (i.index_reg && i.base_reg->reg_num == RegIP)
11215 || i.base_reg->reg_num == RegIZ))
11216 || (i.index_reg
11217 && !i.index_reg->reg_type.bitfield.xmmword
11218 && !i.index_reg->reg_type.bitfield.ymmword
11219 && !i.index_reg->reg_type.bitfield.zmmword
11220 && ((addr_mode == CODE_64BIT
11221 ? !i.index_reg->reg_type.bitfield.qword
11222 : !i.index_reg->reg_type.bitfield.dword)
11223 || !i.index_reg->reg_type.bitfield.baseindex)))
11224 goto bad_address;
11225
11226 /* bndmk, bndldx, bndstx and mandatory non-vector SIB have special restrictions. */
11227 if ((t->opcode_modifier.opcodeprefix == PREFIX_0XF3
11228 && t->opcode_modifier.opcodespace == SPACE_0F
11229 && t->base_opcode == 0x1b)
11230 || (t->opcode_modifier.opcodeprefix == PREFIX_NONE
11231 && t->opcode_modifier.opcodespace == SPACE_0F
11232 && (t->base_opcode & ~1) == 0x1a)
11233 || t->opcode_modifier.sib == SIBMEM)
11234 {
11235 /* They cannot use RIP-relative addressing. */
11236 if (i.base_reg && i.base_reg->reg_num == RegIP)
11237 {
11238 as_bad (_("`%s' cannot be used here"), operand_string);
11239 return 0;
11240 }
11241
11242 /* bndldx and bndstx ignore their scale factor. */
11243 if (t->opcode_modifier.opcodeprefix == PREFIX_NONE
11244 && t->opcode_modifier.opcodespace == SPACE_0F
11245 && (t->base_opcode & ~1) == 0x1a
11246 && i.log2_scale_factor)
11247 as_warn (_("register scaling is being ignored here"));
11248 }
11249 }
11250 else
11251 {
11252 /* 16-bit checks. */
11253 if (i.disp_encoding == disp_encoding_32bit)
11254 goto bad_disp;
11255
11256 if ((i.base_reg
11257 && (!i.base_reg->reg_type.bitfield.word
11258 || !i.base_reg->reg_type.bitfield.baseindex))
11259 || (i.index_reg
11260 && (!i.index_reg->reg_type.bitfield.word
11261 || !i.index_reg->reg_type.bitfield.baseindex
11262 || !(i.base_reg
11263 && i.base_reg->reg_num < 6
11264 && i.index_reg->reg_num >= 6
11265 && i.log2_scale_factor == 0))))
11266 goto bad_address;
11267 }
11268 }
11269 return 1;
11270 }
11271
11272 /* Handle vector immediates. */
11273
11274 static int
11275 RC_SAE_immediate (const char *imm_start)
11276 {
11277 unsigned int match_found, j;
11278 const char *pstr = imm_start;
11279 expressionS *exp;
11280
11281 if (*pstr != '{')
11282 return 0;
11283
11284 pstr++;
11285 match_found = 0;
11286 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
11287 {
11288 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
11289 {
11290 if (i.rounding.type != rc_none)
11291 {
11292 as_bad (_("duplicated `%s'"), imm_start);
11293 return 0;
11294 }
11295
11296 i.rounding.type = RC_NamesTable[j].type;
11297 i.rounding.operand = this_operand;
11298
11299 pstr += RC_NamesTable[j].len;
11300 match_found = 1;
11301 break;
11302 }
11303 }
11304 if (!match_found)
11305 return 0;
11306
11307 if (*pstr++ != '}')
11308 {
11309 as_bad (_("Missing '}': '%s'"), imm_start);
11310 return 0;
11311 }
11312 /* RC/SAE immediate string should contain nothing more. */;
11313 if (*pstr != 0)
11314 {
11315 as_bad (_("Junk after '}': '%s'"), imm_start);
11316 return 0;
11317 }
11318
11319 exp = &im_expressions[i.imm_operands++];
11320 i.op[this_operand].imms = exp;
11321
11322 exp->X_op = O_constant;
11323 exp->X_add_number = 0;
11324 exp->X_add_symbol = (symbolS *) 0;
11325 exp->X_op_symbol = (symbolS *) 0;
11326
11327 i.types[this_operand].bitfield.imm8 = 1;
11328 return 1;
11329 }
11330
11331 /* Only string instructions can have a second memory operand, so
11332 reduce current_templates to just those if it contains any. */
11333 static int
11334 maybe_adjust_templates (void)
11335 {
11336 const insn_template *t;
11337
11338 gas_assert (i.mem_operands == 1);
11339
11340 for (t = current_templates->start; t < current_templates->end; ++t)
11341 if (t->opcode_modifier.isstring)
11342 break;
11343
11344 if (t < current_templates->end)
11345 {
11346 static templates aux_templates;
11347 bool recheck;
11348
11349 aux_templates.start = t;
11350 for (; t < current_templates->end; ++t)
11351 if (!t->opcode_modifier.isstring)
11352 break;
11353 aux_templates.end = t;
11354
11355 /* Determine whether to re-check the first memory operand. */
11356 recheck = (aux_templates.start != current_templates->start
11357 || t != current_templates->end);
11358
11359 current_templates = &aux_templates;
11360
11361 if (recheck)
11362 {
11363 i.mem_operands = 0;
11364 if (i.memop1_string != NULL
11365 && i386_index_check (i.memop1_string) == 0)
11366 return 0;
11367 i.mem_operands = 1;
11368 }
11369 }
11370
11371 return 1;
11372 }
11373
11374 static INLINE bool starts_memory_operand (char c)
11375 {
11376 return ISDIGIT (c)
11377 || is_identifier_char (c)
11378 || strchr ("([\"+-!~", c);
11379 }
11380
11381 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
11382 on error. */
11383
11384 static int
11385 i386_att_operand (char *operand_string)
11386 {
11387 const reg_entry *r;
11388 char *end_op;
11389 char *op_string = operand_string;
11390
11391 if (is_space_char (*op_string))
11392 ++op_string;
11393
11394 /* We check for an absolute prefix (differentiating,
11395 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
11396 if (*op_string == ABSOLUTE_PREFIX)
11397 {
11398 ++op_string;
11399 if (is_space_char (*op_string))
11400 ++op_string;
11401 i.jumpabsolute = true;
11402 }
11403
11404 /* Check if operand is a register. */
11405 if ((r = parse_register (op_string, &end_op)) != NULL)
11406 {
11407 i386_operand_type temp;
11408
11409 if (r == &bad_reg)
11410 return 0;
11411
11412 /* Check for a segment override by searching for ':' after a
11413 segment register. */
11414 op_string = end_op;
11415 if (is_space_char (*op_string))
11416 ++op_string;
11417 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
11418 {
11419 i.seg[i.mem_operands] = r;
11420
11421 /* Skip the ':' and whitespace. */
11422 ++op_string;
11423 if (is_space_char (*op_string))
11424 ++op_string;
11425
11426 /* Handle case of %es:*foo. */
11427 if (!i.jumpabsolute && *op_string == ABSOLUTE_PREFIX)
11428 {
11429 ++op_string;
11430 if (is_space_char (*op_string))
11431 ++op_string;
11432 i.jumpabsolute = true;
11433 }
11434
11435 if (!starts_memory_operand (*op_string))
11436 {
11437 as_bad (_("bad memory operand `%s'"), op_string);
11438 return 0;
11439 }
11440 goto do_memory_reference;
11441 }
11442
11443 /* Handle vector operations. */
11444 if (*op_string == '{')
11445 {
11446 op_string = check_VecOperations (op_string);
11447 if (op_string == NULL)
11448 return 0;
11449 }
11450
11451 if (*op_string)
11452 {
11453 as_bad (_("junk `%s' after register"), op_string);
11454 return 0;
11455 }
11456 temp = r->reg_type;
11457 temp.bitfield.baseindex = 0;
11458 i.types[this_operand] = operand_type_or (i.types[this_operand],
11459 temp);
11460 i.types[this_operand].bitfield.unspecified = 0;
11461 i.op[this_operand].regs = r;
11462 i.reg_operands++;
11463 }
11464 else if (*op_string == REGISTER_PREFIX)
11465 {
11466 as_bad (_("bad register name `%s'"), op_string);
11467 return 0;
11468 }
11469 else if (*op_string == IMMEDIATE_PREFIX)
11470 {
11471 ++op_string;
11472 if (i.jumpabsolute)
11473 {
11474 as_bad (_("immediate operand illegal with absolute jump"));
11475 return 0;
11476 }
11477 if (!i386_immediate (op_string))
11478 return 0;
11479 }
11480 else if (RC_SAE_immediate (operand_string))
11481 {
11482 /* If it is a RC or SAE immediate, do nothing. */
11483 ;
11484 }
11485 else if (starts_memory_operand (*op_string))
11486 {
11487 /* This is a memory reference of some sort. */
11488 char *base_string;
11489
11490 /* Start and end of displacement string expression (if found). */
11491 char *displacement_string_start;
11492 char *displacement_string_end;
11493
11494 do_memory_reference:
11495 if (i.mem_operands == 1 && !maybe_adjust_templates ())
11496 return 0;
11497 if ((i.mem_operands == 1
11498 && !current_templates->start->opcode_modifier.isstring)
11499 || i.mem_operands == 2)
11500 {
11501 as_bad (_("too many memory references for `%s'"),
11502 current_templates->start->name);
11503 return 0;
11504 }
11505
11506 /* Check for base index form. We detect the base index form by
11507 looking for an ')' at the end of the operand, searching
11508 for the '(' matching it, and finding a REGISTER_PREFIX or ','
11509 after the '('. */
11510 base_string = op_string + strlen (op_string);
11511
11512 /* Handle vector operations. */
11513 --base_string;
11514 if (is_space_char (*base_string))
11515 --base_string;
11516
11517 if (*base_string == '}')
11518 {
11519 char *vop_start = NULL;
11520
11521 while (base_string-- > op_string)
11522 {
11523 if (*base_string == '"')
11524 break;
11525 if (*base_string != '{')
11526 continue;
11527
11528 vop_start = base_string;
11529
11530 --base_string;
11531 if (is_space_char (*base_string))
11532 --base_string;
11533
11534 if (*base_string != '}')
11535 break;
11536
11537 vop_start = NULL;
11538 }
11539
11540 if (!vop_start)
11541 {
11542 as_bad (_("unbalanced figure braces"));
11543 return 0;
11544 }
11545
11546 if (check_VecOperations (vop_start) == NULL)
11547 return 0;
11548 }
11549
11550 /* If we only have a displacement, set-up for it to be parsed later. */
11551 displacement_string_start = op_string;
11552 displacement_string_end = base_string + 1;
11553
11554 if (*base_string == ')')
11555 {
11556 char *temp_string;
11557
11558 /* We've already checked that the number of left & right ()'s are
11559 equal, so this loop will not be infinite. */
11560 do
11561 {
11562 base_string--;
11563 }
11564 while (*base_string != '(' && *base_string != ')'
11565 && *base_string != '"');
11566
11567 temp_string = base_string;
11568
11569 /* Skip past '(' and whitespace. */
11570 if (*base_string == '(')
11571 ++base_string;
11572 if (is_space_char (*base_string))
11573 ++base_string;
11574
11575 if (*base_string == ','
11576 || ((i.base_reg = parse_register (base_string, &end_op))
11577 != NULL))
11578 {
11579 displacement_string_end = temp_string;
11580
11581 i.types[this_operand].bitfield.baseindex = 1;
11582
11583 if (i.base_reg)
11584 {
11585 if (i.base_reg == &bad_reg)
11586 return 0;
11587 base_string = end_op;
11588 if (is_space_char (*base_string))
11589 ++base_string;
11590 }
11591
11592 /* There may be an index reg or scale factor here. */
11593 if (*base_string == ',')
11594 {
11595 ++base_string;
11596 if (is_space_char (*base_string))
11597 ++base_string;
11598
11599 if ((i.index_reg = parse_register (base_string, &end_op))
11600 != NULL)
11601 {
11602 if (i.index_reg == &bad_reg)
11603 return 0;
11604 base_string = end_op;
11605 if (is_space_char (*base_string))
11606 ++base_string;
11607 if (*base_string == ',')
11608 {
11609 ++base_string;
11610 if (is_space_char (*base_string))
11611 ++base_string;
11612 }
11613 else if (*base_string != ')')
11614 {
11615 as_bad (_("expecting `,' or `)' "
11616 "after index register in `%s'"),
11617 operand_string);
11618 return 0;
11619 }
11620 }
11621 else if (*base_string == REGISTER_PREFIX)
11622 {
11623 end_op = strchr (base_string, ',');
11624 if (end_op)
11625 *end_op = '\0';
11626 as_bad (_("bad register name `%s'"), base_string);
11627 return 0;
11628 }
11629
11630 /* Check for scale factor. */
11631 if (*base_string != ')')
11632 {
11633 char *end_scale = i386_scale (base_string);
11634
11635 if (!end_scale)
11636 return 0;
11637
11638 base_string = end_scale;
11639 if (is_space_char (*base_string))
11640 ++base_string;
11641 if (*base_string != ')')
11642 {
11643 as_bad (_("expecting `)' "
11644 "after scale factor in `%s'"),
11645 operand_string);
11646 return 0;
11647 }
11648 }
11649 else if (!i.index_reg)
11650 {
11651 as_bad (_("expecting index register or scale factor "
11652 "after `,'; got '%c'"),
11653 *base_string);
11654 return 0;
11655 }
11656 }
11657 else if (*base_string != ')')
11658 {
11659 as_bad (_("expecting `,' or `)' "
11660 "after base register in `%s'"),
11661 operand_string);
11662 return 0;
11663 }
11664 }
11665 else if (*base_string == REGISTER_PREFIX)
11666 {
11667 end_op = strchr (base_string, ',');
11668 if (end_op)
11669 *end_op = '\0';
11670 as_bad (_("bad register name `%s'"), base_string);
11671 return 0;
11672 }
11673 }
11674
11675 /* If there's an expression beginning the operand, parse it,
11676 assuming displacement_string_start and
11677 displacement_string_end are meaningful. */
11678 if (displacement_string_start != displacement_string_end)
11679 {
11680 if (!i386_displacement (displacement_string_start,
11681 displacement_string_end))
11682 return 0;
11683 }
11684
11685 /* Special case for (%dx) while doing input/output op. */
11686 if (i.base_reg
11687 && i.base_reg->reg_type.bitfield.instance == RegD
11688 && i.base_reg->reg_type.bitfield.word
11689 && i.index_reg == 0
11690 && i.log2_scale_factor == 0
11691 && i.seg[i.mem_operands] == 0
11692 && !operand_type_check (i.types[this_operand], disp))
11693 {
11694 i.types[this_operand] = i.base_reg->reg_type;
11695 return 1;
11696 }
11697
11698 if (i386_index_check (operand_string) == 0)
11699 return 0;
11700 i.flags[this_operand] |= Operand_Mem;
11701 if (i.mem_operands == 0)
11702 i.memop1_string = xstrdup (operand_string);
11703 i.mem_operands++;
11704 }
11705 else
11706 {
11707 /* It's not a memory operand; argh! */
11708 as_bad (_("invalid char %s beginning operand %d `%s'"),
11709 output_invalid (*op_string),
11710 this_operand + 1,
11711 op_string);
11712 return 0;
11713 }
11714 return 1; /* Normal return. */
11715 }
11716 \f
11717 /* Calculate the maximum variable size (i.e., excluding fr_fix)
11718 that an rs_machine_dependent frag may reach. */
11719
11720 unsigned int
11721 i386_frag_max_var (fragS *frag)
11722 {
11723 /* The only relaxable frags are for jumps.
11724 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
11725 gas_assert (frag->fr_type == rs_machine_dependent);
11726 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
11727 }
11728
11729 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11730 static int
11731 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
11732 {
11733 /* STT_GNU_IFUNC symbol must go through PLT. */
11734 if ((symbol_get_bfdsym (fr_symbol)->flags
11735 & BSF_GNU_INDIRECT_FUNCTION) != 0)
11736 return 0;
11737
11738 if (!S_IS_EXTERNAL (fr_symbol))
11739 /* Symbol may be weak or local. */
11740 return !S_IS_WEAK (fr_symbol);
11741
11742 /* Global symbols with non-default visibility can't be preempted. */
11743 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
11744 return 1;
11745
11746 if (fr_var != NO_RELOC)
11747 switch ((enum bfd_reloc_code_real) fr_var)
11748 {
11749 case BFD_RELOC_386_PLT32:
11750 case BFD_RELOC_X86_64_PLT32:
11751 /* Symbol with PLT relocation may be preempted. */
11752 return 0;
11753 default:
11754 abort ();
11755 }
11756
11757 /* Global symbols with default visibility in a shared library may be
11758 preempted by another definition. */
11759 return !shared;
11760 }
11761 #endif
11762
11763 /* Table 3-2. Macro-Fusible Instructions in Haswell Microarchitecture
11764 Note also work for Skylake and Cascadelake.
11765 ---------------------------------------------------------------------
11766 | JCC | ADD/SUB/CMP | INC/DEC | TEST/AND |
11767 | ------ | ----------- | ------- | -------- |
11768 | Jo | N | N | Y |
11769 | Jno | N | N | Y |
11770 | Jc/Jb | Y | N | Y |
11771 | Jae/Jnb | Y | N | Y |
11772 | Je/Jz | Y | Y | Y |
11773 | Jne/Jnz | Y | Y | Y |
11774 | Jna/Jbe | Y | N | Y |
11775 | Ja/Jnbe | Y | N | Y |
11776 | Js | N | N | Y |
11777 | Jns | N | N | Y |
11778 | Jp/Jpe | N | N | Y |
11779 | Jnp/Jpo | N | N | Y |
11780 | Jl/Jnge | Y | Y | Y |
11781 | Jge/Jnl | Y | Y | Y |
11782 | Jle/Jng | Y | Y | Y |
11783 | Jg/Jnle | Y | Y | Y |
11784 --------------------------------------------------------------------- */
11785 static int
11786 i386_macro_fusible_p (enum mf_cmp_kind mf_cmp, enum mf_jcc_kind mf_jcc)
11787 {
11788 if (mf_cmp == mf_cmp_alu_cmp)
11789 return ((mf_jcc >= mf_jcc_jc && mf_jcc <= mf_jcc_jna)
11790 || mf_jcc == mf_jcc_jl || mf_jcc == mf_jcc_jle);
11791 if (mf_cmp == mf_cmp_incdec)
11792 return (mf_jcc == mf_jcc_je || mf_jcc == mf_jcc_jl
11793 || mf_jcc == mf_jcc_jle);
11794 if (mf_cmp == mf_cmp_test_and)
11795 return 1;
11796 return 0;
11797 }
11798
11799 /* Return the next non-empty frag. */
11800
11801 static fragS *
11802 i386_next_non_empty_frag (fragS *fragP)
11803 {
11804 /* There may be a frag with a ".fill 0" when there is no room in
11805 the current frag for frag_grow in output_insn. */
11806 for (fragP = fragP->fr_next;
11807 (fragP != NULL
11808 && fragP->fr_type == rs_fill
11809 && fragP->fr_fix == 0);
11810 fragP = fragP->fr_next)
11811 ;
11812 return fragP;
11813 }
11814
11815 /* Return the next jcc frag after BRANCH_PADDING. */
11816
11817 static fragS *
11818 i386_next_fusible_jcc_frag (fragS *maybe_cmp_fragP, fragS *pad_fragP)
11819 {
11820 fragS *branch_fragP;
11821 if (!pad_fragP)
11822 return NULL;
11823
11824 if (pad_fragP->fr_type == rs_machine_dependent
11825 && (TYPE_FROM_RELAX_STATE (pad_fragP->fr_subtype)
11826 == BRANCH_PADDING))
11827 {
11828 branch_fragP = i386_next_non_empty_frag (pad_fragP);
11829 if (branch_fragP->fr_type != rs_machine_dependent)
11830 return NULL;
11831 if (TYPE_FROM_RELAX_STATE (branch_fragP->fr_subtype) == COND_JUMP
11832 && i386_macro_fusible_p (maybe_cmp_fragP->tc_frag_data.mf_type,
11833 pad_fragP->tc_frag_data.mf_type))
11834 return branch_fragP;
11835 }
11836
11837 return NULL;
11838 }
11839
11840 /* Classify BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags. */
11841
11842 static void
11843 i386_classify_machine_dependent_frag (fragS *fragP)
11844 {
11845 fragS *cmp_fragP;
11846 fragS *pad_fragP;
11847 fragS *branch_fragP;
11848 fragS *next_fragP;
11849 unsigned int max_prefix_length;
11850
11851 if (fragP->tc_frag_data.classified)
11852 return;
11853
11854 /* First scan for BRANCH_PADDING and FUSED_JCC_PADDING. Convert
11855 FUSED_JCC_PADDING and merge BRANCH_PADDING. */
11856 for (next_fragP = fragP;
11857 next_fragP != NULL;
11858 next_fragP = next_fragP->fr_next)
11859 {
11860 next_fragP->tc_frag_data.classified = 1;
11861 if (next_fragP->fr_type == rs_machine_dependent)
11862 switch (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype))
11863 {
11864 case BRANCH_PADDING:
11865 /* The BRANCH_PADDING frag must be followed by a branch
11866 frag. */
11867 branch_fragP = i386_next_non_empty_frag (next_fragP);
11868 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
11869 break;
11870 case FUSED_JCC_PADDING:
11871 /* Check if this is a fused jcc:
11872 FUSED_JCC_PADDING
11873 CMP like instruction
11874 BRANCH_PADDING
11875 COND_JUMP
11876 */
11877 cmp_fragP = i386_next_non_empty_frag (next_fragP);
11878 pad_fragP = i386_next_non_empty_frag (cmp_fragP);
11879 branch_fragP = i386_next_fusible_jcc_frag (next_fragP, pad_fragP);
11880 if (branch_fragP)
11881 {
11882 /* The BRANCH_PADDING frag is merged with the
11883 FUSED_JCC_PADDING frag. */
11884 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
11885 /* CMP like instruction size. */
11886 next_fragP->tc_frag_data.cmp_size = cmp_fragP->fr_fix;
11887 frag_wane (pad_fragP);
11888 /* Skip to branch_fragP. */
11889 next_fragP = branch_fragP;
11890 }
11891 else if (next_fragP->tc_frag_data.max_prefix_length)
11892 {
11893 /* Turn FUSED_JCC_PADDING into BRANCH_PREFIX if it isn't
11894 a fused jcc. */
11895 next_fragP->fr_subtype
11896 = ENCODE_RELAX_STATE (BRANCH_PREFIX, 0);
11897 next_fragP->tc_frag_data.max_bytes
11898 = next_fragP->tc_frag_data.max_prefix_length;
11899 /* This will be updated in the BRANCH_PREFIX scan. */
11900 next_fragP->tc_frag_data.max_prefix_length = 0;
11901 }
11902 else
11903 frag_wane (next_fragP);
11904 break;
11905 }
11906 }
11907
11908 /* Stop if there is no BRANCH_PREFIX. */
11909 if (!align_branch_prefix_size)
11910 return;
11911
11912 /* Scan for BRANCH_PREFIX. */
11913 for (; fragP != NULL; fragP = fragP->fr_next)
11914 {
11915 if (fragP->fr_type != rs_machine_dependent
11916 || (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11917 != BRANCH_PREFIX))
11918 continue;
11919
11920 /* Count all BRANCH_PREFIX frags before BRANCH_PADDING and
11921 COND_JUMP_PREFIX. */
11922 max_prefix_length = 0;
11923 for (next_fragP = fragP;
11924 next_fragP != NULL;
11925 next_fragP = next_fragP->fr_next)
11926 {
11927 if (next_fragP->fr_type == rs_fill)
11928 /* Skip rs_fill frags. */
11929 continue;
11930 else if (next_fragP->fr_type != rs_machine_dependent)
11931 /* Stop for all other frags. */
11932 break;
11933
11934 /* rs_machine_dependent frags. */
11935 if (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11936 == BRANCH_PREFIX)
11937 {
11938 /* Count BRANCH_PREFIX frags. */
11939 if (max_prefix_length >= MAX_FUSED_JCC_PADDING_SIZE)
11940 {
11941 max_prefix_length = MAX_FUSED_JCC_PADDING_SIZE;
11942 frag_wane (next_fragP);
11943 }
11944 else
11945 max_prefix_length
11946 += next_fragP->tc_frag_data.max_bytes;
11947 }
11948 else if ((TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11949 == BRANCH_PADDING)
11950 || (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11951 == FUSED_JCC_PADDING))
11952 {
11953 /* Stop at BRANCH_PADDING and FUSED_JCC_PADDING. */
11954 fragP->tc_frag_data.u.padding_fragP = next_fragP;
11955 break;
11956 }
11957 else
11958 /* Stop for other rs_machine_dependent frags. */
11959 break;
11960 }
11961
11962 fragP->tc_frag_data.max_prefix_length = max_prefix_length;
11963
11964 /* Skip to the next frag. */
11965 fragP = next_fragP;
11966 }
11967 }
11968
11969 /* Compute padding size for
11970
11971 FUSED_JCC_PADDING
11972 CMP like instruction
11973 BRANCH_PADDING
11974 COND_JUMP/UNCOND_JUMP
11975
11976 or
11977
11978 BRANCH_PADDING
11979 COND_JUMP/UNCOND_JUMP
11980 */
11981
11982 static int
11983 i386_branch_padding_size (fragS *fragP, offsetT address)
11984 {
11985 unsigned int offset, size, padding_size;
11986 fragS *branch_fragP = fragP->tc_frag_data.u.branch_fragP;
11987
11988 /* The start address of the BRANCH_PADDING or FUSED_JCC_PADDING frag. */
11989 if (!address)
11990 address = fragP->fr_address;
11991 address += fragP->fr_fix;
11992
11993 /* CMP like instrunction size. */
11994 size = fragP->tc_frag_data.cmp_size;
11995
11996 /* The base size of the branch frag. */
11997 size += branch_fragP->fr_fix;
11998
11999 /* Add opcode and displacement bytes for the rs_machine_dependent
12000 branch frag. */
12001 if (branch_fragP->fr_type == rs_machine_dependent)
12002 size += md_relax_table[branch_fragP->fr_subtype].rlx_length;
12003
12004 /* Check if branch is within boundary and doesn't end at the last
12005 byte. */
12006 offset = address & ((1U << align_branch_power) - 1);
12007 if ((offset + size) >= (1U << align_branch_power))
12008 /* Padding needed to avoid crossing boundary. */
12009 padding_size = (1U << align_branch_power) - offset;
12010 else
12011 /* No padding needed. */
12012 padding_size = 0;
12013
12014 /* The return value may be saved in tc_frag_data.length which is
12015 unsigned byte. */
12016 if (!fits_in_unsigned_byte (padding_size))
12017 abort ();
12018
12019 return padding_size;
12020 }
12021
12022 /* i386_generic_table_relax_frag()
12023
12024 Handle BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags to
12025 grow/shrink padding to align branch frags. Hand others to
12026 relax_frag(). */
12027
12028 long
12029 i386_generic_table_relax_frag (segT segment, fragS *fragP, long stretch)
12030 {
12031 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
12032 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
12033 {
12034 long padding_size = i386_branch_padding_size (fragP, 0);
12035 long grow = padding_size - fragP->tc_frag_data.length;
12036
12037 /* When the BRANCH_PREFIX frag is used, the computed address
12038 must match the actual address and there should be no padding. */
12039 if (fragP->tc_frag_data.padding_address
12040 && (fragP->tc_frag_data.padding_address != fragP->fr_address
12041 || padding_size))
12042 abort ();
12043
12044 /* Update the padding size. */
12045 if (grow)
12046 fragP->tc_frag_data.length = padding_size;
12047
12048 return grow;
12049 }
12050 else if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
12051 {
12052 fragS *padding_fragP, *next_fragP;
12053 long padding_size, left_size, last_size;
12054
12055 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
12056 if (!padding_fragP)
12057 /* Use the padding set by the leading BRANCH_PREFIX frag. */
12058 return (fragP->tc_frag_data.length
12059 - fragP->tc_frag_data.last_length);
12060
12061 /* Compute the relative address of the padding frag in the very
12062 first time where the BRANCH_PREFIX frag sizes are zero. */
12063 if (!fragP->tc_frag_data.padding_address)
12064 fragP->tc_frag_data.padding_address
12065 = padding_fragP->fr_address - (fragP->fr_address - stretch);
12066
12067 /* First update the last length from the previous interation. */
12068 left_size = fragP->tc_frag_data.prefix_length;
12069 for (next_fragP = fragP;
12070 next_fragP != padding_fragP;
12071 next_fragP = next_fragP->fr_next)
12072 if (next_fragP->fr_type == rs_machine_dependent
12073 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
12074 == BRANCH_PREFIX))
12075 {
12076 if (left_size)
12077 {
12078 int max = next_fragP->tc_frag_data.max_bytes;
12079 if (max)
12080 {
12081 int size;
12082 if (max > left_size)
12083 size = left_size;
12084 else
12085 size = max;
12086 left_size -= size;
12087 next_fragP->tc_frag_data.last_length = size;
12088 }
12089 }
12090 else
12091 next_fragP->tc_frag_data.last_length = 0;
12092 }
12093
12094 /* Check the padding size for the padding frag. */
12095 padding_size = i386_branch_padding_size
12096 (padding_fragP, (fragP->fr_address
12097 + fragP->tc_frag_data.padding_address));
12098
12099 last_size = fragP->tc_frag_data.prefix_length;
12100 /* Check if there is change from the last interation. */
12101 if (padding_size == last_size)
12102 {
12103 /* Update the expected address of the padding frag. */
12104 padding_fragP->tc_frag_data.padding_address
12105 = (fragP->fr_address + padding_size
12106 + fragP->tc_frag_data.padding_address);
12107 return 0;
12108 }
12109
12110 if (padding_size > fragP->tc_frag_data.max_prefix_length)
12111 {
12112 /* No padding if there is no sufficient room. Clear the
12113 expected address of the padding frag. */
12114 padding_fragP->tc_frag_data.padding_address = 0;
12115 padding_size = 0;
12116 }
12117 else
12118 /* Store the expected address of the padding frag. */
12119 padding_fragP->tc_frag_data.padding_address
12120 = (fragP->fr_address + padding_size
12121 + fragP->tc_frag_data.padding_address);
12122
12123 fragP->tc_frag_data.prefix_length = padding_size;
12124
12125 /* Update the length for the current interation. */
12126 left_size = padding_size;
12127 for (next_fragP = fragP;
12128 next_fragP != padding_fragP;
12129 next_fragP = next_fragP->fr_next)
12130 if (next_fragP->fr_type == rs_machine_dependent
12131 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
12132 == BRANCH_PREFIX))
12133 {
12134 if (left_size)
12135 {
12136 int max = next_fragP->tc_frag_data.max_bytes;
12137 if (max)
12138 {
12139 int size;
12140 if (max > left_size)
12141 size = left_size;
12142 else
12143 size = max;
12144 left_size -= size;
12145 next_fragP->tc_frag_data.length = size;
12146 }
12147 }
12148 else
12149 next_fragP->tc_frag_data.length = 0;
12150 }
12151
12152 return (fragP->tc_frag_data.length
12153 - fragP->tc_frag_data.last_length);
12154 }
12155 return relax_frag (segment, fragP, stretch);
12156 }
12157
12158 /* md_estimate_size_before_relax()
12159
12160 Called just before relax() for rs_machine_dependent frags. The x86
12161 assembler uses these frags to handle variable size jump
12162 instructions.
12163
12164 Any symbol that is now undefined will not become defined.
12165 Return the correct fr_subtype in the frag.
12166 Return the initial "guess for variable size of frag" to caller.
12167 The guess is actually the growth beyond the fixed part. Whatever
12168 we do to grow the fixed or variable part contributes to our
12169 returned value. */
12170
12171 int
12172 md_estimate_size_before_relax (fragS *fragP, segT segment)
12173 {
12174 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
12175 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX
12176 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
12177 {
12178 i386_classify_machine_dependent_frag (fragP);
12179 return fragP->tc_frag_data.length;
12180 }
12181
12182 /* We've already got fragP->fr_subtype right; all we have to do is
12183 check for un-relaxable symbols. On an ELF system, we can't relax
12184 an externally visible symbol, because it may be overridden by a
12185 shared library. */
12186 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
12187 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12188 || (IS_ELF
12189 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
12190 fragP->fr_var))
12191 #endif
12192 #if defined (OBJ_COFF) && defined (TE_PE)
12193 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
12194 && S_IS_WEAK (fragP->fr_symbol))
12195 #endif
12196 )
12197 {
12198 /* Symbol is undefined in this segment, or we need to keep a
12199 reloc so that weak symbols can be overridden. */
12200 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
12201 enum bfd_reloc_code_real reloc_type;
12202 unsigned char *opcode;
12203 int old_fr_fix;
12204 fixS *fixP = NULL;
12205
12206 if (fragP->fr_var != NO_RELOC)
12207 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
12208 else if (size == 2)
12209 reloc_type = BFD_RELOC_16_PCREL;
12210 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12211 else if (need_plt32_p (fragP->fr_symbol))
12212 reloc_type = BFD_RELOC_X86_64_PLT32;
12213 #endif
12214 else
12215 reloc_type = BFD_RELOC_32_PCREL;
12216
12217 old_fr_fix = fragP->fr_fix;
12218 opcode = (unsigned char *) fragP->fr_opcode;
12219
12220 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
12221 {
12222 case UNCOND_JUMP:
12223 /* Make jmp (0xeb) a (d)word displacement jump. */
12224 opcode[0] = 0xe9;
12225 fragP->fr_fix += size;
12226 fixP = fix_new (fragP, old_fr_fix, size,
12227 fragP->fr_symbol,
12228 fragP->fr_offset, 1,
12229 reloc_type);
12230 break;
12231
12232 case COND_JUMP86:
12233 if (size == 2
12234 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
12235 {
12236 /* Negate the condition, and branch past an
12237 unconditional jump. */
12238 opcode[0] ^= 1;
12239 opcode[1] = 3;
12240 /* Insert an unconditional jump. */
12241 opcode[2] = 0xe9;
12242 /* We added two extra opcode bytes, and have a two byte
12243 offset. */
12244 fragP->fr_fix += 2 + 2;
12245 fix_new (fragP, old_fr_fix + 2, 2,
12246 fragP->fr_symbol,
12247 fragP->fr_offset, 1,
12248 reloc_type);
12249 break;
12250 }
12251 /* Fall through. */
12252
12253 case COND_JUMP:
12254 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
12255 {
12256 fragP->fr_fix += 1;
12257 fixP = fix_new (fragP, old_fr_fix, 1,
12258 fragP->fr_symbol,
12259 fragP->fr_offset, 1,
12260 BFD_RELOC_8_PCREL);
12261 fixP->fx_signed = 1;
12262 break;
12263 }
12264
12265 /* This changes the byte-displacement jump 0x7N
12266 to the (d)word-displacement jump 0x0f,0x8N. */
12267 opcode[1] = opcode[0] + 0x10;
12268 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
12269 /* We've added an opcode byte. */
12270 fragP->fr_fix += 1 + size;
12271 fixP = fix_new (fragP, old_fr_fix + 1, size,
12272 fragP->fr_symbol,
12273 fragP->fr_offset, 1,
12274 reloc_type);
12275 break;
12276
12277 default:
12278 BAD_CASE (fragP->fr_subtype);
12279 break;
12280 }
12281
12282 /* All jumps handled here are signed, but don't unconditionally use a
12283 signed limit check for 32 and 16 bit jumps as we want to allow wrap
12284 around at 4G (outside of 64-bit mode) and 64k. */
12285 if (size == 4 && flag_code == CODE_64BIT)
12286 fixP->fx_signed = 1;
12287
12288 frag_wane (fragP);
12289 return fragP->fr_fix - old_fr_fix;
12290 }
12291
12292 /* Guess size depending on current relax state. Initially the relax
12293 state will correspond to a short jump and we return 1, because
12294 the variable part of the frag (the branch offset) is one byte
12295 long. However, we can relax a section more than once and in that
12296 case we must either set fr_subtype back to the unrelaxed state,
12297 or return the value for the appropriate branch. */
12298 return md_relax_table[fragP->fr_subtype].rlx_length;
12299 }
12300
12301 /* Called after relax() is finished.
12302
12303 In: Address of frag.
12304 fr_type == rs_machine_dependent.
12305 fr_subtype is what the address relaxed to.
12306
12307 Out: Any fixSs and constants are set up.
12308 Caller will turn frag into a ".space 0". */
12309
12310 void
12311 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
12312 fragS *fragP)
12313 {
12314 unsigned char *opcode;
12315 unsigned char *where_to_put_displacement = NULL;
12316 offsetT target_address;
12317 offsetT opcode_address;
12318 unsigned int extension = 0;
12319 offsetT displacement_from_opcode_start;
12320
12321 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
12322 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING
12323 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
12324 {
12325 /* Generate nop padding. */
12326 unsigned int size = fragP->tc_frag_data.length;
12327 if (size)
12328 {
12329 if (size > fragP->tc_frag_data.max_bytes)
12330 abort ();
12331
12332 if (flag_debug)
12333 {
12334 const char *msg;
12335 const char *branch = "branch";
12336 const char *prefix = "";
12337 fragS *padding_fragP;
12338 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
12339 == BRANCH_PREFIX)
12340 {
12341 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
12342 switch (fragP->tc_frag_data.default_prefix)
12343 {
12344 default:
12345 abort ();
12346 break;
12347 case CS_PREFIX_OPCODE:
12348 prefix = " cs";
12349 break;
12350 case DS_PREFIX_OPCODE:
12351 prefix = " ds";
12352 break;
12353 case ES_PREFIX_OPCODE:
12354 prefix = " es";
12355 break;
12356 case FS_PREFIX_OPCODE:
12357 prefix = " fs";
12358 break;
12359 case GS_PREFIX_OPCODE:
12360 prefix = " gs";
12361 break;
12362 case SS_PREFIX_OPCODE:
12363 prefix = " ss";
12364 break;
12365 }
12366 if (padding_fragP)
12367 msg = _("%s:%u: add %d%s at 0x%llx to align "
12368 "%s within %d-byte boundary\n");
12369 else
12370 msg = _("%s:%u: add additional %d%s at 0x%llx to "
12371 "align %s within %d-byte boundary\n");
12372 }
12373 else
12374 {
12375 padding_fragP = fragP;
12376 msg = _("%s:%u: add %d%s-byte nop at 0x%llx to align "
12377 "%s within %d-byte boundary\n");
12378 }
12379
12380 if (padding_fragP)
12381 switch (padding_fragP->tc_frag_data.branch_type)
12382 {
12383 case align_branch_jcc:
12384 branch = "jcc";
12385 break;
12386 case align_branch_fused:
12387 branch = "fused jcc";
12388 break;
12389 case align_branch_jmp:
12390 branch = "jmp";
12391 break;
12392 case align_branch_call:
12393 branch = "call";
12394 break;
12395 case align_branch_indirect:
12396 branch = "indiret branch";
12397 break;
12398 case align_branch_ret:
12399 branch = "ret";
12400 break;
12401 default:
12402 break;
12403 }
12404
12405 fprintf (stdout, msg,
12406 fragP->fr_file, fragP->fr_line, size, prefix,
12407 (long long) fragP->fr_address, branch,
12408 1 << align_branch_power);
12409 }
12410 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
12411 memset (fragP->fr_opcode,
12412 fragP->tc_frag_data.default_prefix, size);
12413 else
12414 i386_generate_nops (fragP, (char *) fragP->fr_opcode,
12415 size, 0);
12416 fragP->fr_fix += size;
12417 }
12418 return;
12419 }
12420
12421 opcode = (unsigned char *) fragP->fr_opcode;
12422
12423 /* Address we want to reach in file space. */
12424 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
12425
12426 /* Address opcode resides at in file space. */
12427 opcode_address = fragP->fr_address + fragP->fr_fix;
12428
12429 /* Displacement from opcode start to fill into instruction. */
12430 displacement_from_opcode_start = target_address - opcode_address;
12431
12432 if ((fragP->fr_subtype & BIG) == 0)
12433 {
12434 /* Don't have to change opcode. */
12435 extension = 1; /* 1 opcode + 1 displacement */
12436 where_to_put_displacement = &opcode[1];
12437 }
12438 else
12439 {
12440 if (no_cond_jump_promotion
12441 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
12442 as_warn_where (fragP->fr_file, fragP->fr_line,
12443 _("long jump required"));
12444
12445 switch (fragP->fr_subtype)
12446 {
12447 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
12448 extension = 4; /* 1 opcode + 4 displacement */
12449 opcode[0] = 0xe9;
12450 where_to_put_displacement = &opcode[1];
12451 break;
12452
12453 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
12454 extension = 2; /* 1 opcode + 2 displacement */
12455 opcode[0] = 0xe9;
12456 where_to_put_displacement = &opcode[1];
12457 break;
12458
12459 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
12460 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
12461 extension = 5; /* 2 opcode + 4 displacement */
12462 opcode[1] = opcode[0] + 0x10;
12463 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
12464 where_to_put_displacement = &opcode[2];
12465 break;
12466
12467 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
12468 extension = 3; /* 2 opcode + 2 displacement */
12469 opcode[1] = opcode[0] + 0x10;
12470 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
12471 where_to_put_displacement = &opcode[2];
12472 break;
12473
12474 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
12475 extension = 4;
12476 opcode[0] ^= 1;
12477 opcode[1] = 3;
12478 opcode[2] = 0xe9;
12479 where_to_put_displacement = &opcode[3];
12480 break;
12481
12482 default:
12483 BAD_CASE (fragP->fr_subtype);
12484 break;
12485 }
12486 }
12487
12488 /* If size if less then four we are sure that the operand fits,
12489 but if it's 4, then it could be that the displacement is larger
12490 then -/+ 2GB. */
12491 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
12492 && object_64bit
12493 && ((addressT) (displacement_from_opcode_start - extension
12494 + ((addressT) 1 << 31))
12495 > (((addressT) 2 << 31) - 1)))
12496 {
12497 as_bad_where (fragP->fr_file, fragP->fr_line,
12498 _("jump target out of range"));
12499 /* Make us emit 0. */
12500 displacement_from_opcode_start = extension;
12501 }
12502 /* Now put displacement after opcode. */
12503 md_number_to_chars ((char *) where_to_put_displacement,
12504 (valueT) (displacement_from_opcode_start - extension),
12505 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
12506 fragP->fr_fix += extension;
12507 }
12508 \f
12509 /* Apply a fixup (fixP) to segment data, once it has been determined
12510 by our caller that we have all the info we need to fix it up.
12511
12512 Parameter valP is the pointer to the value of the bits.
12513
12514 On the 386, immediates, displacements, and data pointers are all in
12515 the same (little-endian) format, so we don't need to care about which
12516 we are handling. */
12517
12518 void
12519 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
12520 {
12521 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
12522 valueT value = *valP;
12523
12524 #if !defined (TE_Mach)
12525 if (fixP->fx_pcrel)
12526 {
12527 switch (fixP->fx_r_type)
12528 {
12529 default:
12530 break;
12531
12532 case BFD_RELOC_64:
12533 fixP->fx_r_type = BFD_RELOC_64_PCREL;
12534 break;
12535 case BFD_RELOC_32:
12536 case BFD_RELOC_X86_64_32S:
12537 fixP->fx_r_type = BFD_RELOC_32_PCREL;
12538 break;
12539 case BFD_RELOC_16:
12540 fixP->fx_r_type = BFD_RELOC_16_PCREL;
12541 break;
12542 case BFD_RELOC_8:
12543 fixP->fx_r_type = BFD_RELOC_8_PCREL;
12544 break;
12545 }
12546 }
12547
12548 if (fixP->fx_addsy != NULL
12549 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
12550 || fixP->fx_r_type == BFD_RELOC_64_PCREL
12551 || fixP->fx_r_type == BFD_RELOC_16_PCREL
12552 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
12553 && !use_rela_relocations)
12554 {
12555 /* This is a hack. There should be a better way to handle this.
12556 This covers for the fact that bfd_install_relocation will
12557 subtract the current location (for partial_inplace, PC relative
12558 relocations); see more below. */
12559 #ifndef OBJ_AOUT
12560 if (IS_ELF
12561 #ifdef TE_PE
12562 || OUTPUT_FLAVOR == bfd_target_coff_flavour
12563 #endif
12564 )
12565 value += fixP->fx_where + fixP->fx_frag->fr_address;
12566 #endif
12567 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12568 if (IS_ELF)
12569 {
12570 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
12571
12572 if ((sym_seg == seg
12573 || (symbol_section_p (fixP->fx_addsy)
12574 && sym_seg != absolute_section))
12575 && !generic_force_reloc (fixP))
12576 {
12577 /* Yes, we add the values in twice. This is because
12578 bfd_install_relocation subtracts them out again. I think
12579 bfd_install_relocation is broken, but I don't dare change
12580 it. FIXME. */
12581 value += fixP->fx_where + fixP->fx_frag->fr_address;
12582 }
12583 }
12584 #endif
12585 #if defined (OBJ_COFF) && defined (TE_PE)
12586 /* For some reason, the PE format does not store a
12587 section address offset for a PC relative symbol. */
12588 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
12589 || S_IS_WEAK (fixP->fx_addsy))
12590 value += md_pcrel_from (fixP);
12591 #endif
12592 }
12593 #if defined (OBJ_COFF) && defined (TE_PE)
12594 if (fixP->fx_addsy != NULL
12595 && S_IS_WEAK (fixP->fx_addsy)
12596 /* PR 16858: Do not modify weak function references. */
12597 && ! fixP->fx_pcrel)
12598 {
12599 #if !defined (TE_PEP)
12600 /* For x86 PE weak function symbols are neither PC-relative
12601 nor do they set S_IS_FUNCTION. So the only reliable way
12602 to detect them is to check the flags of their containing
12603 section. */
12604 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
12605 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
12606 ;
12607 else
12608 #endif
12609 value -= S_GET_VALUE (fixP->fx_addsy);
12610 }
12611 #endif
12612
12613 /* Fix a few things - the dynamic linker expects certain values here,
12614 and we must not disappoint it. */
12615 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12616 if (IS_ELF && fixP->fx_addsy)
12617 switch (fixP->fx_r_type)
12618 {
12619 case BFD_RELOC_386_PLT32:
12620 case BFD_RELOC_X86_64_PLT32:
12621 /* Make the jump instruction point to the address of the operand.
12622 At runtime we merely add the offset to the actual PLT entry.
12623 NB: Subtract the offset size only for jump instructions. */
12624 if (fixP->fx_pcrel)
12625 value = -4;
12626 break;
12627
12628 case BFD_RELOC_386_TLS_GD:
12629 case BFD_RELOC_386_TLS_LDM:
12630 case BFD_RELOC_386_TLS_IE_32:
12631 case BFD_RELOC_386_TLS_IE:
12632 case BFD_RELOC_386_TLS_GOTIE:
12633 case BFD_RELOC_386_TLS_GOTDESC:
12634 case BFD_RELOC_X86_64_TLSGD:
12635 case BFD_RELOC_X86_64_TLSLD:
12636 case BFD_RELOC_X86_64_GOTTPOFF:
12637 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12638 value = 0; /* Fully resolved at runtime. No addend. */
12639 /* Fallthrough */
12640 case BFD_RELOC_386_TLS_LE:
12641 case BFD_RELOC_386_TLS_LDO_32:
12642 case BFD_RELOC_386_TLS_LE_32:
12643 case BFD_RELOC_X86_64_DTPOFF32:
12644 case BFD_RELOC_X86_64_DTPOFF64:
12645 case BFD_RELOC_X86_64_TPOFF32:
12646 case BFD_RELOC_X86_64_TPOFF64:
12647 S_SET_THREAD_LOCAL (fixP->fx_addsy);
12648 break;
12649
12650 case BFD_RELOC_386_TLS_DESC_CALL:
12651 case BFD_RELOC_X86_64_TLSDESC_CALL:
12652 value = 0; /* Fully resolved at runtime. No addend. */
12653 S_SET_THREAD_LOCAL (fixP->fx_addsy);
12654 fixP->fx_done = 0;
12655 return;
12656
12657 case BFD_RELOC_VTABLE_INHERIT:
12658 case BFD_RELOC_VTABLE_ENTRY:
12659 fixP->fx_done = 0;
12660 return;
12661
12662 default:
12663 break;
12664 }
12665 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
12666
12667 /* If not 64bit, massage value, to account for wraparound when !BFD64. */
12668 if (!object_64bit)
12669 value = extend_to_32bit_address (value);
12670
12671 *valP = value;
12672 #endif /* !defined (TE_Mach) */
12673
12674 /* Are we finished with this relocation now? */
12675 if (fixP->fx_addsy == NULL)
12676 {
12677 fixP->fx_done = 1;
12678 switch (fixP->fx_r_type)
12679 {
12680 case BFD_RELOC_X86_64_32S:
12681 fixP->fx_signed = 1;
12682 break;
12683
12684 default:
12685 break;
12686 }
12687 }
12688 #if defined (OBJ_COFF) && defined (TE_PE)
12689 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
12690 {
12691 fixP->fx_done = 0;
12692 /* Remember value for tc_gen_reloc. */
12693 fixP->fx_addnumber = value;
12694 /* Clear out the frag for now. */
12695 value = 0;
12696 }
12697 #endif
12698 else if (use_rela_relocations)
12699 {
12700 fixP->fx_no_overflow = 1;
12701 /* Remember value for tc_gen_reloc. */
12702 fixP->fx_addnumber = value;
12703 value = 0;
12704 }
12705
12706 md_number_to_chars (p, value, fixP->fx_size);
12707 }
12708 \f
12709 const char *
12710 md_atof (int type, char *litP, int *sizeP)
12711 {
12712 /* This outputs the LITTLENUMs in REVERSE order;
12713 in accord with the bigendian 386. */
12714 return ieee_md_atof (type, litP, sizeP, false);
12715 }
12716 \f
12717 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
12718
12719 static char *
12720 output_invalid (int c)
12721 {
12722 if (ISPRINT (c))
12723 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
12724 "'%c'", c);
12725 else
12726 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
12727 "(0x%x)", (unsigned char) c);
12728 return output_invalid_buf;
12729 }
12730
12731 /* Verify that @r can be used in the current context. */
12732
12733 static bool check_register (const reg_entry *r)
12734 {
12735 if (allow_pseudo_reg)
12736 return true;
12737
12738 if (operand_type_all_zero (&r->reg_type))
12739 return false;
12740
12741 if ((r->reg_type.bitfield.dword
12742 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
12743 || r->reg_type.bitfield.class == RegCR
12744 || r->reg_type.bitfield.class == RegDR)
12745 && !cpu_arch_flags.bitfield.cpui386)
12746 return false;
12747
12748 if (r->reg_type.bitfield.class == RegTR
12749 && (flag_code == CODE_64BIT
12750 || !cpu_arch_flags.bitfield.cpui386
12751 || cpu_arch_isa_flags.bitfield.cpui586
12752 || cpu_arch_isa_flags.bitfield.cpui686))
12753 return false;
12754
12755 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
12756 return false;
12757
12758 if (!cpu_arch_flags.bitfield.cpuavx512f)
12759 {
12760 if (r->reg_type.bitfield.zmmword
12761 || r->reg_type.bitfield.class == RegMask)
12762 return false;
12763
12764 if (!cpu_arch_flags.bitfield.cpuavx)
12765 {
12766 if (r->reg_type.bitfield.ymmword)
12767 return false;
12768
12769 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
12770 return false;
12771 }
12772 }
12773
12774 if (r->reg_type.bitfield.tmmword
12775 && (!cpu_arch_flags.bitfield.cpuamx_tile
12776 || flag_code != CODE_64BIT))
12777 return false;
12778
12779 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
12780 return false;
12781
12782 /* Don't allow fake index register unless allow_index_reg isn't 0. */
12783 if (!allow_index_reg && r->reg_num == RegIZ)
12784 return false;
12785
12786 /* Upper 16 vector registers are only available with VREX in 64bit
12787 mode, and require EVEX encoding. */
12788 if (r->reg_flags & RegVRex)
12789 {
12790 if (!cpu_arch_flags.bitfield.cpuavx512f
12791 || flag_code != CODE_64BIT)
12792 return false;
12793
12794 if (i.vec_encoding == vex_encoding_default)
12795 i.vec_encoding = vex_encoding_evex;
12796 else if (i.vec_encoding != vex_encoding_evex)
12797 i.vec_encoding = vex_encoding_error;
12798 }
12799
12800 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
12801 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
12802 && flag_code != CODE_64BIT)
12803 return false;
12804
12805 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
12806 && !intel_syntax)
12807 return false;
12808
12809 return true;
12810 }
12811
12812 /* REG_STRING starts *before* REGISTER_PREFIX. */
12813
12814 static const reg_entry *
12815 parse_real_register (char *reg_string, char **end_op)
12816 {
12817 char *s = reg_string;
12818 char *p;
12819 char reg_name_given[MAX_REG_NAME_SIZE + 1];
12820 const reg_entry *r;
12821
12822 /* Skip possible REGISTER_PREFIX and possible whitespace. */
12823 if (*s == REGISTER_PREFIX)
12824 ++s;
12825
12826 if (is_space_char (*s))
12827 ++s;
12828
12829 p = reg_name_given;
12830 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
12831 {
12832 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
12833 return (const reg_entry *) NULL;
12834 s++;
12835 }
12836
12837 /* For naked regs, make sure that we are not dealing with an identifier.
12838 This prevents confusing an identifier like `eax_var' with register
12839 `eax'. */
12840 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
12841 return (const reg_entry *) NULL;
12842
12843 *end_op = s;
12844
12845 r = (const reg_entry *) str_hash_find (reg_hash, reg_name_given);
12846
12847 /* Handle floating point regs, allowing spaces in the (i) part. */
12848 if (r == reg_st0)
12849 {
12850 if (!cpu_arch_flags.bitfield.cpu8087
12851 && !cpu_arch_flags.bitfield.cpu287
12852 && !cpu_arch_flags.bitfield.cpu387
12853 && !allow_pseudo_reg)
12854 return (const reg_entry *) NULL;
12855
12856 if (is_space_char (*s))
12857 ++s;
12858 if (*s == '(')
12859 {
12860 ++s;
12861 if (is_space_char (*s))
12862 ++s;
12863 if (*s >= '0' && *s <= '7')
12864 {
12865 int fpr = *s - '0';
12866 ++s;
12867 if (is_space_char (*s))
12868 ++s;
12869 if (*s == ')')
12870 {
12871 *end_op = s + 1;
12872 know (r[fpr].reg_num == fpr);
12873 return r + fpr;
12874 }
12875 }
12876 /* We have "%st(" then garbage. */
12877 return (const reg_entry *) NULL;
12878 }
12879 }
12880
12881 return r && check_register (r) ? r : NULL;
12882 }
12883
12884 /* REG_STRING starts *before* REGISTER_PREFIX. */
12885
12886 static const reg_entry *
12887 parse_register (char *reg_string, char **end_op)
12888 {
12889 const reg_entry *r;
12890
12891 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
12892 r = parse_real_register (reg_string, end_op);
12893 else
12894 r = NULL;
12895 if (!r)
12896 {
12897 char *save = input_line_pointer;
12898 char c;
12899 symbolS *symbolP;
12900
12901 input_line_pointer = reg_string;
12902 c = get_symbol_name (&reg_string);
12903 symbolP = symbol_find (reg_string);
12904 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
12905 {
12906 const expressionS *e = symbol_get_value_expression (symbolP);
12907
12908 know (e->X_op == O_register);
12909 know (e->X_add_number >= 0
12910 && (valueT) e->X_add_number < i386_regtab_size);
12911 r = i386_regtab + e->X_add_number;
12912 if (!check_register (r))
12913 {
12914 as_bad (_("register '%s%s' cannot be used here"),
12915 register_prefix, r->reg_name);
12916 r = &bad_reg;
12917 }
12918 *end_op = input_line_pointer;
12919 }
12920 *input_line_pointer = c;
12921 input_line_pointer = save;
12922 }
12923 return r;
12924 }
12925
12926 int
12927 i386_parse_name (char *name, expressionS *e, char *nextcharP)
12928 {
12929 const reg_entry *r;
12930 char *end = input_line_pointer;
12931
12932 *end = *nextcharP;
12933 r = parse_register (name, &input_line_pointer);
12934 if (r && end <= input_line_pointer)
12935 {
12936 *nextcharP = *input_line_pointer;
12937 *input_line_pointer = 0;
12938 if (r != &bad_reg)
12939 {
12940 e->X_op = O_register;
12941 e->X_add_number = r - i386_regtab;
12942 }
12943 else
12944 e->X_op = O_illegal;
12945 return 1;
12946 }
12947 input_line_pointer = end;
12948 *end = 0;
12949 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
12950 }
12951
12952 void
12953 md_operand (expressionS *e)
12954 {
12955 char *end;
12956 const reg_entry *r;
12957
12958 switch (*input_line_pointer)
12959 {
12960 case REGISTER_PREFIX:
12961 r = parse_real_register (input_line_pointer, &end);
12962 if (r)
12963 {
12964 e->X_op = O_register;
12965 e->X_add_number = r - i386_regtab;
12966 input_line_pointer = end;
12967 }
12968 break;
12969
12970 case '[':
12971 gas_assert (intel_syntax);
12972 end = input_line_pointer++;
12973 expression (e);
12974 if (*input_line_pointer == ']')
12975 {
12976 ++input_line_pointer;
12977 e->X_op_symbol = make_expr_symbol (e);
12978 e->X_add_symbol = NULL;
12979 e->X_add_number = 0;
12980 e->X_op = O_index;
12981 }
12982 else
12983 {
12984 e->X_op = O_absent;
12985 input_line_pointer = end;
12986 }
12987 break;
12988 }
12989 }
12990
12991 \f
12992 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12993 const char *md_shortopts = "kVQ:sqnO::";
12994 #else
12995 const char *md_shortopts = "qnO::";
12996 #endif
12997
12998 #define OPTION_32 (OPTION_MD_BASE + 0)
12999 #define OPTION_64 (OPTION_MD_BASE + 1)
13000 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
13001 #define OPTION_MARCH (OPTION_MD_BASE + 3)
13002 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
13003 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
13004 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
13005 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
13006 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
13007 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
13008 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
13009 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
13010 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
13011 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
13012 #define OPTION_X32 (OPTION_MD_BASE + 14)
13013 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
13014 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
13015 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
13016 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
13017 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
13018 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
13019 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
13020 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
13021 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
13022 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
13023 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
13024 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
13025 #define OPTION_MALIGN_BRANCH_BOUNDARY (OPTION_MD_BASE + 27)
13026 #define OPTION_MALIGN_BRANCH_PREFIX_SIZE (OPTION_MD_BASE + 28)
13027 #define OPTION_MALIGN_BRANCH (OPTION_MD_BASE + 29)
13028 #define OPTION_MBRANCHES_WITH_32B_BOUNDARIES (OPTION_MD_BASE + 30)
13029 #define OPTION_MLFENCE_AFTER_LOAD (OPTION_MD_BASE + 31)
13030 #define OPTION_MLFENCE_BEFORE_INDIRECT_BRANCH (OPTION_MD_BASE + 32)
13031 #define OPTION_MLFENCE_BEFORE_RET (OPTION_MD_BASE + 33)
13032
13033 struct option md_longopts[] =
13034 {
13035 {"32", no_argument, NULL, OPTION_32},
13036 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
13037 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
13038 {"64", no_argument, NULL, OPTION_64},
13039 #endif
13040 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13041 {"x32", no_argument, NULL, OPTION_X32},
13042 {"mshared", no_argument, NULL, OPTION_MSHARED},
13043 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
13044 #endif
13045 {"divide", no_argument, NULL, OPTION_DIVIDE},
13046 {"march", required_argument, NULL, OPTION_MARCH},
13047 {"mtune", required_argument, NULL, OPTION_MTUNE},
13048 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
13049 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
13050 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
13051 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
13052 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
13053 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
13054 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
13055 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
13056 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
13057 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
13058 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
13059 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
13060 # if defined (TE_PE) || defined (TE_PEP)
13061 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
13062 #endif
13063 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
13064 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
13065 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
13066 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
13067 {"malign-branch-boundary", required_argument, NULL, OPTION_MALIGN_BRANCH_BOUNDARY},
13068 {"malign-branch-prefix-size", required_argument, NULL, OPTION_MALIGN_BRANCH_PREFIX_SIZE},
13069 {"malign-branch", required_argument, NULL, OPTION_MALIGN_BRANCH},
13070 {"mbranches-within-32B-boundaries", no_argument, NULL, OPTION_MBRANCHES_WITH_32B_BOUNDARIES},
13071 {"mlfence-after-load", required_argument, NULL, OPTION_MLFENCE_AFTER_LOAD},
13072 {"mlfence-before-indirect-branch", required_argument, NULL,
13073 OPTION_MLFENCE_BEFORE_INDIRECT_BRANCH},
13074 {"mlfence-before-ret", required_argument, NULL, OPTION_MLFENCE_BEFORE_RET},
13075 {"mamd64", no_argument, NULL, OPTION_MAMD64},
13076 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
13077 {NULL, no_argument, NULL, 0}
13078 };
13079 size_t md_longopts_size = sizeof (md_longopts);
13080
13081 int
13082 md_parse_option (int c, const char *arg)
13083 {
13084 unsigned int j;
13085 char *arch, *next, *saved, *type;
13086
13087 switch (c)
13088 {
13089 case 'n':
13090 optimize_align_code = 0;
13091 break;
13092
13093 case 'q':
13094 quiet_warnings = 1;
13095 break;
13096
13097 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13098 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
13099 should be emitted or not. FIXME: Not implemented. */
13100 case 'Q':
13101 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
13102 return 0;
13103 break;
13104
13105 /* -V: SVR4 argument to print version ID. */
13106 case 'V':
13107 print_version_id ();
13108 break;
13109
13110 /* -k: Ignore for FreeBSD compatibility. */
13111 case 'k':
13112 break;
13113
13114 case 's':
13115 /* -s: On i386 Solaris, this tells the native assembler to use
13116 .stab instead of .stab.excl. We always use .stab anyhow. */
13117 break;
13118
13119 case OPTION_MSHARED:
13120 shared = 1;
13121 break;
13122
13123 case OPTION_X86_USED_NOTE:
13124 if (strcasecmp (arg, "yes") == 0)
13125 x86_used_note = 1;
13126 else if (strcasecmp (arg, "no") == 0)
13127 x86_used_note = 0;
13128 else
13129 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
13130 break;
13131
13132
13133 #endif
13134 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
13135 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
13136 case OPTION_64:
13137 {
13138 const char **list, **l;
13139
13140 list = bfd_target_list ();
13141 for (l = list; *l != NULL; l++)
13142 if (startswith (*l, "elf64-x86-64")
13143 || strcmp (*l, "coff-x86-64") == 0
13144 || strcmp (*l, "pe-x86-64") == 0
13145 || strcmp (*l, "pei-x86-64") == 0
13146 || strcmp (*l, "mach-o-x86-64") == 0)
13147 {
13148 default_arch = "x86_64";
13149 break;
13150 }
13151 if (*l == NULL)
13152 as_fatal (_("no compiled in support for x86_64"));
13153 free (list);
13154 }
13155 break;
13156 #endif
13157
13158 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13159 case OPTION_X32:
13160 if (IS_ELF)
13161 {
13162 const char **list, **l;
13163
13164 list = bfd_target_list ();
13165 for (l = list; *l != NULL; l++)
13166 if (startswith (*l, "elf32-x86-64"))
13167 {
13168 default_arch = "x86_64:32";
13169 break;
13170 }
13171 if (*l == NULL)
13172 as_fatal (_("no compiled in support for 32bit x86_64"));
13173 free (list);
13174 }
13175 else
13176 as_fatal (_("32bit x86_64 is only supported for ELF"));
13177 break;
13178 #endif
13179
13180 case OPTION_32:
13181 default_arch = "i386";
13182 break;
13183
13184 case OPTION_DIVIDE:
13185 #ifdef SVR4_COMMENT_CHARS
13186 {
13187 char *n, *t;
13188 const char *s;
13189
13190 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
13191 t = n;
13192 for (s = i386_comment_chars; *s != '\0'; s++)
13193 if (*s != '/')
13194 *t++ = *s;
13195 *t = '\0';
13196 i386_comment_chars = n;
13197 }
13198 #endif
13199 break;
13200
13201 case OPTION_MARCH:
13202 saved = xstrdup (arg);
13203 arch = saved;
13204 /* Allow -march=+nosse. */
13205 if (*arch == '+')
13206 arch++;
13207 do
13208 {
13209 if (*arch == '.')
13210 as_fatal (_("invalid -march= option: `%s'"), arg);
13211 next = strchr (arch, '+');
13212 if (next)
13213 *next++ = '\0';
13214 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
13215 {
13216 if (strcmp (arch, cpu_arch [j].name) == 0)
13217 {
13218 /* Processor. */
13219 if (! cpu_arch[j].flags.bitfield.cpui386)
13220 continue;
13221
13222 cpu_arch_name = cpu_arch[j].name;
13223 cpu_sub_arch_name = NULL;
13224 cpu_arch_flags = cpu_arch[j].flags;
13225 cpu_arch_isa = cpu_arch[j].type;
13226 cpu_arch_isa_flags = cpu_arch[j].flags;
13227 if (!cpu_arch_tune_set)
13228 {
13229 cpu_arch_tune = cpu_arch_isa;
13230 cpu_arch_tune_flags = cpu_arch_isa_flags;
13231 }
13232 break;
13233 }
13234 else if (*cpu_arch [j].name == '.'
13235 && strcmp (arch, cpu_arch [j].name + 1) == 0)
13236 {
13237 /* ISA extension. */
13238 i386_cpu_flags flags;
13239
13240 flags = cpu_flags_or (cpu_arch_flags,
13241 cpu_arch[j].flags);
13242
13243 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
13244 {
13245 if (cpu_sub_arch_name)
13246 {
13247 char *name = cpu_sub_arch_name;
13248 cpu_sub_arch_name = concat (name,
13249 cpu_arch[j].name,
13250 (const char *) NULL);
13251 free (name);
13252 }
13253 else
13254 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
13255 cpu_arch_flags = flags;
13256 cpu_arch_isa_flags = flags;
13257 }
13258 else
13259 cpu_arch_isa_flags
13260 = cpu_flags_or (cpu_arch_isa_flags,
13261 cpu_arch[j].flags);
13262 break;
13263 }
13264 }
13265
13266 if (j >= ARRAY_SIZE (cpu_arch))
13267 {
13268 /* Disable an ISA extension. */
13269 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
13270 if (strcmp (arch, cpu_noarch [j].name) == 0)
13271 {
13272 i386_cpu_flags flags;
13273
13274 flags = cpu_flags_and_not (cpu_arch_flags,
13275 cpu_noarch[j].flags);
13276 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
13277 {
13278 if (cpu_sub_arch_name)
13279 {
13280 char *name = cpu_sub_arch_name;
13281 cpu_sub_arch_name = concat (arch,
13282 (const char *) NULL);
13283 free (name);
13284 }
13285 else
13286 cpu_sub_arch_name = xstrdup (arch);
13287 cpu_arch_flags = flags;
13288 cpu_arch_isa_flags = flags;
13289 }
13290 break;
13291 }
13292
13293 if (j >= ARRAY_SIZE (cpu_noarch))
13294 j = ARRAY_SIZE (cpu_arch);
13295 }
13296
13297 if (j >= ARRAY_SIZE (cpu_arch))
13298 as_fatal (_("invalid -march= option: `%s'"), arg);
13299
13300 arch = next;
13301 }
13302 while (next != NULL);
13303 free (saved);
13304 break;
13305
13306 case OPTION_MTUNE:
13307 if (*arg == '.')
13308 as_fatal (_("invalid -mtune= option: `%s'"), arg);
13309 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
13310 {
13311 if (strcmp (arg, cpu_arch [j].name) == 0)
13312 {
13313 cpu_arch_tune_set = 1;
13314 cpu_arch_tune = cpu_arch [j].type;
13315 cpu_arch_tune_flags = cpu_arch[j].flags;
13316 break;
13317 }
13318 }
13319 if (j >= ARRAY_SIZE (cpu_arch))
13320 as_fatal (_("invalid -mtune= option: `%s'"), arg);
13321 break;
13322
13323 case OPTION_MMNEMONIC:
13324 if (strcasecmp (arg, "att") == 0)
13325 intel_mnemonic = 0;
13326 else if (strcasecmp (arg, "intel") == 0)
13327 intel_mnemonic = 1;
13328 else
13329 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
13330 break;
13331
13332 case OPTION_MSYNTAX:
13333 if (strcasecmp (arg, "att") == 0)
13334 intel_syntax = 0;
13335 else if (strcasecmp (arg, "intel") == 0)
13336 intel_syntax = 1;
13337 else
13338 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
13339 break;
13340
13341 case OPTION_MINDEX_REG:
13342 allow_index_reg = 1;
13343 break;
13344
13345 case OPTION_MNAKED_REG:
13346 allow_naked_reg = 1;
13347 break;
13348
13349 case OPTION_MSSE2AVX:
13350 sse2avx = 1;
13351 break;
13352
13353 case OPTION_MSSE_CHECK:
13354 if (strcasecmp (arg, "error") == 0)
13355 sse_check = check_error;
13356 else if (strcasecmp (arg, "warning") == 0)
13357 sse_check = check_warning;
13358 else if (strcasecmp (arg, "none") == 0)
13359 sse_check = check_none;
13360 else
13361 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
13362 break;
13363
13364 case OPTION_MOPERAND_CHECK:
13365 if (strcasecmp (arg, "error") == 0)
13366 operand_check = check_error;
13367 else if (strcasecmp (arg, "warning") == 0)
13368 operand_check = check_warning;
13369 else if (strcasecmp (arg, "none") == 0)
13370 operand_check = check_none;
13371 else
13372 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
13373 break;
13374
13375 case OPTION_MAVXSCALAR:
13376 if (strcasecmp (arg, "128") == 0)
13377 avxscalar = vex128;
13378 else if (strcasecmp (arg, "256") == 0)
13379 avxscalar = vex256;
13380 else
13381 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
13382 break;
13383
13384 case OPTION_MVEXWIG:
13385 if (strcmp (arg, "0") == 0)
13386 vexwig = vexw0;
13387 else if (strcmp (arg, "1") == 0)
13388 vexwig = vexw1;
13389 else
13390 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
13391 break;
13392
13393 case OPTION_MADD_BND_PREFIX:
13394 add_bnd_prefix = 1;
13395 break;
13396
13397 case OPTION_MEVEXLIG:
13398 if (strcmp (arg, "128") == 0)
13399 evexlig = evexl128;
13400 else if (strcmp (arg, "256") == 0)
13401 evexlig = evexl256;
13402 else if (strcmp (arg, "512") == 0)
13403 evexlig = evexl512;
13404 else
13405 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
13406 break;
13407
13408 case OPTION_MEVEXRCIG:
13409 if (strcmp (arg, "rne") == 0)
13410 evexrcig = rne;
13411 else if (strcmp (arg, "rd") == 0)
13412 evexrcig = rd;
13413 else if (strcmp (arg, "ru") == 0)
13414 evexrcig = ru;
13415 else if (strcmp (arg, "rz") == 0)
13416 evexrcig = rz;
13417 else
13418 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
13419 break;
13420
13421 case OPTION_MEVEXWIG:
13422 if (strcmp (arg, "0") == 0)
13423 evexwig = evexw0;
13424 else if (strcmp (arg, "1") == 0)
13425 evexwig = evexw1;
13426 else
13427 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
13428 break;
13429
13430 # if defined (TE_PE) || defined (TE_PEP)
13431 case OPTION_MBIG_OBJ:
13432 use_big_obj = 1;
13433 break;
13434 #endif
13435
13436 case OPTION_MOMIT_LOCK_PREFIX:
13437 if (strcasecmp (arg, "yes") == 0)
13438 omit_lock_prefix = 1;
13439 else if (strcasecmp (arg, "no") == 0)
13440 omit_lock_prefix = 0;
13441 else
13442 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
13443 break;
13444
13445 case OPTION_MFENCE_AS_LOCK_ADD:
13446 if (strcasecmp (arg, "yes") == 0)
13447 avoid_fence = 1;
13448 else if (strcasecmp (arg, "no") == 0)
13449 avoid_fence = 0;
13450 else
13451 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
13452 break;
13453
13454 case OPTION_MLFENCE_AFTER_LOAD:
13455 if (strcasecmp (arg, "yes") == 0)
13456 lfence_after_load = 1;
13457 else if (strcasecmp (arg, "no") == 0)
13458 lfence_after_load = 0;
13459 else
13460 as_fatal (_("invalid -mlfence-after-load= option: `%s'"), arg);
13461 break;
13462
13463 case OPTION_MLFENCE_BEFORE_INDIRECT_BRANCH:
13464 if (strcasecmp (arg, "all") == 0)
13465 {
13466 lfence_before_indirect_branch = lfence_branch_all;
13467 if (lfence_before_ret == lfence_before_ret_none)
13468 lfence_before_ret = lfence_before_ret_shl;
13469 }
13470 else if (strcasecmp (arg, "memory") == 0)
13471 lfence_before_indirect_branch = lfence_branch_memory;
13472 else if (strcasecmp (arg, "register") == 0)
13473 lfence_before_indirect_branch = lfence_branch_register;
13474 else if (strcasecmp (arg, "none") == 0)
13475 lfence_before_indirect_branch = lfence_branch_none;
13476 else
13477 as_fatal (_("invalid -mlfence-before-indirect-branch= option: `%s'"),
13478 arg);
13479 break;
13480
13481 case OPTION_MLFENCE_BEFORE_RET:
13482 if (strcasecmp (arg, "or") == 0)
13483 lfence_before_ret = lfence_before_ret_or;
13484 else if (strcasecmp (arg, "not") == 0)
13485 lfence_before_ret = lfence_before_ret_not;
13486 else if (strcasecmp (arg, "shl") == 0 || strcasecmp (arg, "yes") == 0)
13487 lfence_before_ret = lfence_before_ret_shl;
13488 else if (strcasecmp (arg, "none") == 0)
13489 lfence_before_ret = lfence_before_ret_none;
13490 else
13491 as_fatal (_("invalid -mlfence-before-ret= option: `%s'"),
13492 arg);
13493 break;
13494
13495 case OPTION_MRELAX_RELOCATIONS:
13496 if (strcasecmp (arg, "yes") == 0)
13497 generate_relax_relocations = 1;
13498 else if (strcasecmp (arg, "no") == 0)
13499 generate_relax_relocations = 0;
13500 else
13501 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
13502 break;
13503
13504 case OPTION_MALIGN_BRANCH_BOUNDARY:
13505 {
13506 char *end;
13507 long int align = strtoul (arg, &end, 0);
13508 if (*end == '\0')
13509 {
13510 if (align == 0)
13511 {
13512 align_branch_power = 0;
13513 break;
13514 }
13515 else if (align >= 16)
13516 {
13517 int align_power;
13518 for (align_power = 0;
13519 (align & 1) == 0;
13520 align >>= 1, align_power++)
13521 continue;
13522 /* Limit alignment power to 31. */
13523 if (align == 1 && align_power < 32)
13524 {
13525 align_branch_power = align_power;
13526 break;
13527 }
13528 }
13529 }
13530 as_fatal (_("invalid -malign-branch-boundary= value: %s"), arg);
13531 }
13532 break;
13533
13534 case OPTION_MALIGN_BRANCH_PREFIX_SIZE:
13535 {
13536 char *end;
13537 int align = strtoul (arg, &end, 0);
13538 /* Some processors only support 5 prefixes. */
13539 if (*end == '\0' && align >= 0 && align < 6)
13540 {
13541 align_branch_prefix_size = align;
13542 break;
13543 }
13544 as_fatal (_("invalid -malign-branch-prefix-size= value: %s"),
13545 arg);
13546 }
13547 break;
13548
13549 case OPTION_MALIGN_BRANCH:
13550 align_branch = 0;
13551 saved = xstrdup (arg);
13552 type = saved;
13553 do
13554 {
13555 next = strchr (type, '+');
13556 if (next)
13557 *next++ = '\0';
13558 if (strcasecmp (type, "jcc") == 0)
13559 align_branch |= align_branch_jcc_bit;
13560 else if (strcasecmp (type, "fused") == 0)
13561 align_branch |= align_branch_fused_bit;
13562 else if (strcasecmp (type, "jmp") == 0)
13563 align_branch |= align_branch_jmp_bit;
13564 else if (strcasecmp (type, "call") == 0)
13565 align_branch |= align_branch_call_bit;
13566 else if (strcasecmp (type, "ret") == 0)
13567 align_branch |= align_branch_ret_bit;
13568 else if (strcasecmp (type, "indirect") == 0)
13569 align_branch |= align_branch_indirect_bit;
13570 else
13571 as_fatal (_("invalid -malign-branch= option: `%s'"), arg);
13572 type = next;
13573 }
13574 while (next != NULL);
13575 free (saved);
13576 break;
13577
13578 case OPTION_MBRANCHES_WITH_32B_BOUNDARIES:
13579 align_branch_power = 5;
13580 align_branch_prefix_size = 5;
13581 align_branch = (align_branch_jcc_bit
13582 | align_branch_fused_bit
13583 | align_branch_jmp_bit);
13584 break;
13585
13586 case OPTION_MAMD64:
13587 isa64 = amd64;
13588 break;
13589
13590 case OPTION_MINTEL64:
13591 isa64 = intel64;
13592 break;
13593
13594 case 'O':
13595 if (arg == NULL)
13596 {
13597 optimize = 1;
13598 /* Turn off -Os. */
13599 optimize_for_space = 0;
13600 }
13601 else if (*arg == 's')
13602 {
13603 optimize_for_space = 1;
13604 /* Turn on all encoding optimizations. */
13605 optimize = INT_MAX;
13606 }
13607 else
13608 {
13609 optimize = atoi (arg);
13610 /* Turn off -Os. */
13611 optimize_for_space = 0;
13612 }
13613 break;
13614
13615 default:
13616 return 0;
13617 }
13618 return 1;
13619 }
13620
13621 #define MESSAGE_TEMPLATE \
13622 " "
13623
13624 static char *
13625 output_message (FILE *stream, char *p, char *message, char *start,
13626 int *left_p, const char *name, int len)
13627 {
13628 int size = sizeof (MESSAGE_TEMPLATE);
13629 int left = *left_p;
13630
13631 /* Reserve 2 spaces for ", " or ",\0" */
13632 left -= len + 2;
13633
13634 /* Check if there is any room. */
13635 if (left >= 0)
13636 {
13637 if (p != start)
13638 {
13639 *p++ = ',';
13640 *p++ = ' ';
13641 }
13642 p = mempcpy (p, name, len);
13643 }
13644 else
13645 {
13646 /* Output the current message now and start a new one. */
13647 *p++ = ',';
13648 *p = '\0';
13649 fprintf (stream, "%s\n", message);
13650 p = start;
13651 left = size - (start - message) - len - 2;
13652
13653 gas_assert (left >= 0);
13654
13655 p = mempcpy (p, name, len);
13656 }
13657
13658 *left_p = left;
13659 return p;
13660 }
13661
13662 static void
13663 show_arch (FILE *stream, int ext, int check)
13664 {
13665 static char message[] = MESSAGE_TEMPLATE;
13666 char *start = message + 27;
13667 char *p;
13668 int size = sizeof (MESSAGE_TEMPLATE);
13669 int left;
13670 const char *name;
13671 int len;
13672 unsigned int j;
13673
13674 p = start;
13675 left = size - (start - message);
13676 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
13677 {
13678 /* Should it be skipped? */
13679 if (cpu_arch [j].skip)
13680 continue;
13681
13682 name = cpu_arch [j].name;
13683 len = cpu_arch [j].len;
13684 if (*name == '.')
13685 {
13686 /* It is an extension. Skip if we aren't asked to show it. */
13687 if (ext)
13688 {
13689 name++;
13690 len--;
13691 }
13692 else
13693 continue;
13694 }
13695 else if (ext)
13696 {
13697 /* It is an processor. Skip if we show only extension. */
13698 continue;
13699 }
13700 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
13701 {
13702 /* It is an impossible processor - skip. */
13703 continue;
13704 }
13705
13706 p = output_message (stream, p, message, start, &left, name, len);
13707 }
13708
13709 /* Display disabled extensions. */
13710 if (ext)
13711 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
13712 {
13713 name = cpu_noarch [j].name;
13714 len = cpu_noarch [j].len;
13715 p = output_message (stream, p, message, start, &left, name,
13716 len);
13717 }
13718
13719 *p = '\0';
13720 fprintf (stream, "%s\n", message);
13721 }
13722
13723 void
13724 md_show_usage (FILE *stream)
13725 {
13726 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13727 fprintf (stream, _("\
13728 -Qy, -Qn ignored\n\
13729 -V print assembler version number\n\
13730 -k ignored\n"));
13731 #endif
13732 fprintf (stream, _("\
13733 -n Do not optimize code alignment\n\
13734 -q quieten some warnings\n"));
13735 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13736 fprintf (stream, _("\
13737 -s ignored\n"));
13738 #endif
13739 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
13740 || defined (TE_PE) || defined (TE_PEP))
13741 fprintf (stream, _("\
13742 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
13743 #endif
13744 #ifdef SVR4_COMMENT_CHARS
13745 fprintf (stream, _("\
13746 --divide do not treat `/' as a comment character\n"));
13747 #else
13748 fprintf (stream, _("\
13749 --divide ignored\n"));
13750 #endif
13751 fprintf (stream, _("\
13752 -march=CPU[,+EXTENSION...]\n\
13753 generate code for CPU and EXTENSION, CPU is one of:\n"));
13754 show_arch (stream, 0, 1);
13755 fprintf (stream, _("\
13756 EXTENSION is combination of:\n"));
13757 show_arch (stream, 1, 0);
13758 fprintf (stream, _("\
13759 -mtune=CPU optimize for CPU, CPU is one of:\n"));
13760 show_arch (stream, 0, 0);
13761 fprintf (stream, _("\
13762 -msse2avx encode SSE instructions with VEX prefix\n"));
13763 fprintf (stream, _("\
13764 -msse-check=[none|error|warning] (default: warning)\n\
13765 check SSE instructions\n"));
13766 fprintf (stream, _("\
13767 -moperand-check=[none|error|warning] (default: warning)\n\
13768 check operand combinations for validity\n"));
13769 fprintf (stream, _("\
13770 -mavxscalar=[128|256] (default: 128)\n\
13771 encode scalar AVX instructions with specific vector\n\
13772 length\n"));
13773 fprintf (stream, _("\
13774 -mvexwig=[0|1] (default: 0)\n\
13775 encode VEX instructions with specific VEX.W value\n\
13776 for VEX.W bit ignored instructions\n"));
13777 fprintf (stream, _("\
13778 -mevexlig=[128|256|512] (default: 128)\n\
13779 encode scalar EVEX instructions with specific vector\n\
13780 length\n"));
13781 fprintf (stream, _("\
13782 -mevexwig=[0|1] (default: 0)\n\
13783 encode EVEX instructions with specific EVEX.W value\n\
13784 for EVEX.W bit ignored instructions\n"));
13785 fprintf (stream, _("\
13786 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
13787 encode EVEX instructions with specific EVEX.RC value\n\
13788 for SAE-only ignored instructions\n"));
13789 fprintf (stream, _("\
13790 -mmnemonic=[att|intel] "));
13791 if (SYSV386_COMPAT)
13792 fprintf (stream, _("(default: att)\n"));
13793 else
13794 fprintf (stream, _("(default: intel)\n"));
13795 fprintf (stream, _("\
13796 use AT&T/Intel mnemonic\n"));
13797 fprintf (stream, _("\
13798 -msyntax=[att|intel] (default: att)\n\
13799 use AT&T/Intel syntax\n"));
13800 fprintf (stream, _("\
13801 -mindex-reg support pseudo index registers\n"));
13802 fprintf (stream, _("\
13803 -mnaked-reg don't require `%%' prefix for registers\n"));
13804 fprintf (stream, _("\
13805 -madd-bnd-prefix add BND prefix for all valid branches\n"));
13806 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13807 fprintf (stream, _("\
13808 -mshared disable branch optimization for shared code\n"));
13809 fprintf (stream, _("\
13810 -mx86-used-note=[no|yes] "));
13811 if (DEFAULT_X86_USED_NOTE)
13812 fprintf (stream, _("(default: yes)\n"));
13813 else
13814 fprintf (stream, _("(default: no)\n"));
13815 fprintf (stream, _("\
13816 generate x86 used ISA and feature properties\n"));
13817 #endif
13818 #if defined (TE_PE) || defined (TE_PEP)
13819 fprintf (stream, _("\
13820 -mbig-obj generate big object files\n"));
13821 #endif
13822 fprintf (stream, _("\
13823 -momit-lock-prefix=[no|yes] (default: no)\n\
13824 strip all lock prefixes\n"));
13825 fprintf (stream, _("\
13826 -mfence-as-lock-add=[no|yes] (default: no)\n\
13827 encode lfence, mfence and sfence as\n\
13828 lock addl $0x0, (%%{re}sp)\n"));
13829 fprintf (stream, _("\
13830 -mrelax-relocations=[no|yes] "));
13831 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
13832 fprintf (stream, _("(default: yes)\n"));
13833 else
13834 fprintf (stream, _("(default: no)\n"));
13835 fprintf (stream, _("\
13836 generate relax relocations\n"));
13837 fprintf (stream, _("\
13838 -malign-branch-boundary=NUM (default: 0)\n\
13839 align branches within NUM byte boundary\n"));
13840 fprintf (stream, _("\
13841 -malign-branch=TYPE[+TYPE...] (default: jcc+fused+jmp)\n\
13842 TYPE is combination of jcc, fused, jmp, call, ret,\n\
13843 indirect\n\
13844 specify types of branches to align\n"));
13845 fprintf (stream, _("\
13846 -malign-branch-prefix-size=NUM (default: 5)\n\
13847 align branches with NUM prefixes per instruction\n"));
13848 fprintf (stream, _("\
13849 -mbranches-within-32B-boundaries\n\
13850 align branches within 32 byte boundary\n"));
13851 fprintf (stream, _("\
13852 -mlfence-after-load=[no|yes] (default: no)\n\
13853 generate lfence after load\n"));
13854 fprintf (stream, _("\
13855 -mlfence-before-indirect-branch=[none|all|register|memory] (default: none)\n\
13856 generate lfence before indirect near branch\n"));
13857 fprintf (stream, _("\
13858 -mlfence-before-ret=[none|or|not|shl|yes] (default: none)\n\
13859 generate lfence before ret\n"));
13860 fprintf (stream, _("\
13861 -mamd64 accept only AMD64 ISA [default]\n"));
13862 fprintf (stream, _("\
13863 -mintel64 accept only Intel64 ISA\n"));
13864 }
13865
13866 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
13867 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
13868 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
13869
13870 /* Pick the target format to use. */
13871
13872 const char *
13873 i386_target_format (void)
13874 {
13875 if (startswith (default_arch, "x86_64"))
13876 {
13877 update_code_flag (CODE_64BIT, 1);
13878 if (default_arch[6] == '\0')
13879 x86_elf_abi = X86_64_ABI;
13880 else
13881 x86_elf_abi = X86_64_X32_ABI;
13882 }
13883 else if (!strcmp (default_arch, "i386"))
13884 update_code_flag (CODE_32BIT, 1);
13885 else if (!strcmp (default_arch, "iamcu"))
13886 {
13887 update_code_flag (CODE_32BIT, 1);
13888 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
13889 {
13890 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
13891 cpu_arch_name = "iamcu";
13892 cpu_sub_arch_name = NULL;
13893 cpu_arch_flags = iamcu_flags;
13894 cpu_arch_isa = PROCESSOR_IAMCU;
13895 cpu_arch_isa_flags = iamcu_flags;
13896 if (!cpu_arch_tune_set)
13897 {
13898 cpu_arch_tune = cpu_arch_isa;
13899 cpu_arch_tune_flags = cpu_arch_isa_flags;
13900 }
13901 }
13902 else if (cpu_arch_isa != PROCESSOR_IAMCU)
13903 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
13904 cpu_arch_name);
13905 }
13906 else
13907 as_fatal (_("unknown architecture"));
13908
13909 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
13910 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
13911 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
13912 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
13913
13914 switch (OUTPUT_FLAVOR)
13915 {
13916 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
13917 case bfd_target_aout_flavour:
13918 return AOUT_TARGET_FORMAT;
13919 #endif
13920 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
13921 # if defined (TE_PE) || defined (TE_PEP)
13922 case bfd_target_coff_flavour:
13923 if (flag_code == CODE_64BIT)
13924 {
13925 object_64bit = 1;
13926 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
13927 }
13928 return use_big_obj ? "pe-bigobj-i386" : "pe-i386";
13929 # elif defined (TE_GO32)
13930 case bfd_target_coff_flavour:
13931 return "coff-go32";
13932 # else
13933 case bfd_target_coff_flavour:
13934 return "coff-i386";
13935 # endif
13936 #endif
13937 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
13938 case bfd_target_elf_flavour:
13939 {
13940 const char *format;
13941
13942 switch (x86_elf_abi)
13943 {
13944 default:
13945 format = ELF_TARGET_FORMAT;
13946 #ifndef TE_SOLARIS
13947 tls_get_addr = "___tls_get_addr";
13948 #endif
13949 break;
13950 case X86_64_ABI:
13951 use_rela_relocations = 1;
13952 object_64bit = 1;
13953 #ifndef TE_SOLARIS
13954 tls_get_addr = "__tls_get_addr";
13955 #endif
13956 format = ELF_TARGET_FORMAT64;
13957 break;
13958 case X86_64_X32_ABI:
13959 use_rela_relocations = 1;
13960 object_64bit = 1;
13961 #ifndef TE_SOLARIS
13962 tls_get_addr = "__tls_get_addr";
13963 #endif
13964 disallow_64bit_reloc = 1;
13965 format = ELF_TARGET_FORMAT32;
13966 break;
13967 }
13968 if (cpu_arch_isa == PROCESSOR_L1OM)
13969 {
13970 if (x86_elf_abi != X86_64_ABI)
13971 as_fatal (_("Intel L1OM is 64bit only"));
13972 return ELF_TARGET_L1OM_FORMAT;
13973 }
13974 else if (cpu_arch_isa == PROCESSOR_K1OM)
13975 {
13976 if (x86_elf_abi != X86_64_ABI)
13977 as_fatal (_("Intel K1OM is 64bit only"));
13978 return ELF_TARGET_K1OM_FORMAT;
13979 }
13980 else if (cpu_arch_isa == PROCESSOR_IAMCU)
13981 {
13982 if (x86_elf_abi != I386_ABI)
13983 as_fatal (_("Intel MCU is 32bit only"));
13984 return ELF_TARGET_IAMCU_FORMAT;
13985 }
13986 else
13987 return format;
13988 }
13989 #endif
13990 #if defined (OBJ_MACH_O)
13991 case bfd_target_mach_o_flavour:
13992 if (flag_code == CODE_64BIT)
13993 {
13994 use_rela_relocations = 1;
13995 object_64bit = 1;
13996 return "mach-o-x86-64";
13997 }
13998 else
13999 return "mach-o-i386";
14000 #endif
14001 default:
14002 abort ();
14003 return NULL;
14004 }
14005 }
14006
14007 #endif /* OBJ_MAYBE_ more than one */
14008 \f
14009 symbolS *
14010 md_undefined_symbol (char *name)
14011 {
14012 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
14013 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
14014 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
14015 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
14016 {
14017 if (!GOT_symbol)
14018 {
14019 if (symbol_find (name))
14020 as_bad (_("GOT already in symbol table"));
14021 GOT_symbol = symbol_new (name, undefined_section,
14022 &zero_address_frag, 0);
14023 };
14024 return GOT_symbol;
14025 }
14026 return 0;
14027 }
14028
14029 /* Round up a section size to the appropriate boundary. */
14030
14031 valueT
14032 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
14033 {
14034 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
14035 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
14036 {
14037 /* For a.out, force the section size to be aligned. If we don't do
14038 this, BFD will align it for us, but it will not write out the
14039 final bytes of the section. This may be a bug in BFD, but it is
14040 easier to fix it here since that is how the other a.out targets
14041 work. */
14042 int align;
14043
14044 align = bfd_section_alignment (segment);
14045 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
14046 }
14047 #endif
14048
14049 return size;
14050 }
14051
14052 /* On the i386, PC-relative offsets are relative to the start of the
14053 next instruction. That is, the address of the offset, plus its
14054 size, since the offset is always the last part of the insn. */
14055
14056 long
14057 md_pcrel_from (fixS *fixP)
14058 {
14059 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
14060 }
14061
14062 #ifndef I386COFF
14063
14064 static void
14065 s_bss (int ignore ATTRIBUTE_UNUSED)
14066 {
14067 int temp;
14068
14069 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
14070 if (IS_ELF)
14071 obj_elf_section_change_hook ();
14072 #endif
14073 temp = get_absolute_expression ();
14074 subseg_set (bss_section, (subsegT) temp);
14075 demand_empty_rest_of_line ();
14076 }
14077
14078 #endif
14079
14080 /* Remember constant directive. */
14081
14082 void
14083 i386_cons_align (int ignore ATTRIBUTE_UNUSED)
14084 {
14085 if (last_insn.kind != last_insn_directive
14086 && (bfd_section_flags (now_seg) & SEC_CODE))
14087 {
14088 last_insn.seg = now_seg;
14089 last_insn.kind = last_insn_directive;
14090 last_insn.name = "constant directive";
14091 last_insn.file = as_where (&last_insn.line);
14092 if (lfence_before_ret != lfence_before_ret_none)
14093 {
14094 if (lfence_before_indirect_branch != lfence_branch_none)
14095 as_warn (_("constant directive skips -mlfence-before-ret "
14096 "and -mlfence-before-indirect-branch"));
14097 else
14098 as_warn (_("constant directive skips -mlfence-before-ret"));
14099 }
14100 else if (lfence_before_indirect_branch != lfence_branch_none)
14101 as_warn (_("constant directive skips -mlfence-before-indirect-branch"));
14102 }
14103 }
14104
14105 int
14106 i386_validate_fix (fixS *fixp)
14107 {
14108 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
14109 if (fixp->fx_r_type == BFD_RELOC_SIZE32
14110 || fixp->fx_r_type == BFD_RELOC_SIZE64)
14111 return IS_ELF && fixp->fx_addsy
14112 && (!S_IS_DEFINED (fixp->fx_addsy)
14113 || S_IS_EXTERNAL (fixp->fx_addsy));
14114 #endif
14115
14116 if (fixp->fx_subsy)
14117 {
14118 if (fixp->fx_subsy == GOT_symbol)
14119 {
14120 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
14121 {
14122 if (!object_64bit)
14123 abort ();
14124 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
14125 if (fixp->fx_tcbit2)
14126 fixp->fx_r_type = (fixp->fx_tcbit
14127 ? BFD_RELOC_X86_64_REX_GOTPCRELX
14128 : BFD_RELOC_X86_64_GOTPCRELX);
14129 else
14130 #endif
14131 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
14132 }
14133 else
14134 {
14135 if (!object_64bit)
14136 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
14137 else
14138 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
14139 }
14140 fixp->fx_subsy = 0;
14141 }
14142 }
14143 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
14144 else
14145 {
14146 /* NB: Commit 292676c1 resolved PLT32 reloc aganst local symbol
14147 to section. Since PLT32 relocation must be against symbols,
14148 turn such PLT32 relocation into PC32 relocation. */
14149 if (fixp->fx_addsy
14150 && (fixp->fx_r_type == BFD_RELOC_386_PLT32
14151 || fixp->fx_r_type == BFD_RELOC_X86_64_PLT32)
14152 && symbol_section_p (fixp->fx_addsy))
14153 fixp->fx_r_type = BFD_RELOC_32_PCREL;
14154 if (!object_64bit)
14155 {
14156 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
14157 && fixp->fx_tcbit2)
14158 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
14159 }
14160 }
14161 #endif
14162
14163 return 1;
14164 }
14165
14166 arelent *
14167 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
14168 {
14169 arelent *rel;
14170 bfd_reloc_code_real_type code;
14171
14172 switch (fixp->fx_r_type)
14173 {
14174 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
14175 symbolS *sym;
14176
14177 case BFD_RELOC_SIZE32:
14178 case BFD_RELOC_SIZE64:
14179 if (fixp->fx_addsy
14180 && !bfd_is_abs_section (S_GET_SEGMENT (fixp->fx_addsy))
14181 && (!fixp->fx_subsy
14182 || bfd_is_abs_section (S_GET_SEGMENT (fixp->fx_subsy))))
14183 sym = fixp->fx_addsy;
14184 else if (fixp->fx_subsy
14185 && !bfd_is_abs_section (S_GET_SEGMENT (fixp->fx_subsy))
14186 && (!fixp->fx_addsy
14187 || bfd_is_abs_section (S_GET_SEGMENT (fixp->fx_addsy))))
14188 sym = fixp->fx_subsy;
14189 else
14190 sym = NULL;
14191 if (IS_ELF && sym && S_IS_DEFINED (sym) && !S_IS_EXTERNAL (sym))
14192 {
14193 /* Resolve size relocation against local symbol to size of
14194 the symbol plus addend. */
14195 valueT value = S_GET_SIZE (sym);
14196
14197 if (symbol_get_bfdsym (sym)->flags & BSF_SECTION_SYM)
14198 value = bfd_section_size (S_GET_SEGMENT (sym));
14199 if (sym == fixp->fx_subsy)
14200 {
14201 value = -value;
14202 if (fixp->fx_addsy)
14203 value += S_GET_VALUE (fixp->fx_addsy);
14204 }
14205 else if (fixp->fx_subsy)
14206 value -= S_GET_VALUE (fixp->fx_subsy);
14207 value += fixp->fx_offset;
14208 if (fixp->fx_r_type == BFD_RELOC_SIZE32
14209 && object_64bit
14210 && !fits_in_unsigned_long (value))
14211 as_bad_where (fixp->fx_file, fixp->fx_line,
14212 _("symbol size computation overflow"));
14213 fixp->fx_addsy = NULL;
14214 fixp->fx_subsy = NULL;
14215 md_apply_fix (fixp, (valueT *) &value, NULL);
14216 return NULL;
14217 }
14218 if (!fixp->fx_addsy || fixp->fx_subsy)
14219 {
14220 as_bad_where (fixp->fx_file, fixp->fx_line,
14221 "unsupported expression involving @size");
14222 return NULL;
14223 }
14224 #endif
14225 /* Fall through. */
14226
14227 case BFD_RELOC_X86_64_PLT32:
14228 case BFD_RELOC_X86_64_GOT32:
14229 case BFD_RELOC_X86_64_GOTPCREL:
14230 case BFD_RELOC_X86_64_GOTPCRELX:
14231 case BFD_RELOC_X86_64_REX_GOTPCRELX:
14232 case BFD_RELOC_386_PLT32:
14233 case BFD_RELOC_386_GOT32:
14234 case BFD_RELOC_386_GOT32X:
14235 case BFD_RELOC_386_GOTOFF:
14236 case BFD_RELOC_386_GOTPC:
14237 case BFD_RELOC_386_TLS_GD:
14238 case BFD_RELOC_386_TLS_LDM:
14239 case BFD_RELOC_386_TLS_LDO_32:
14240 case BFD_RELOC_386_TLS_IE_32:
14241 case BFD_RELOC_386_TLS_IE:
14242 case BFD_RELOC_386_TLS_GOTIE:
14243 case BFD_RELOC_386_TLS_LE_32:
14244 case BFD_RELOC_386_TLS_LE:
14245 case BFD_RELOC_386_TLS_GOTDESC:
14246 case BFD_RELOC_386_TLS_DESC_CALL:
14247 case BFD_RELOC_X86_64_TLSGD:
14248 case BFD_RELOC_X86_64_TLSLD:
14249 case BFD_RELOC_X86_64_DTPOFF32:
14250 case BFD_RELOC_X86_64_DTPOFF64:
14251 case BFD_RELOC_X86_64_GOTTPOFF:
14252 case BFD_RELOC_X86_64_TPOFF32:
14253 case BFD_RELOC_X86_64_TPOFF64:
14254 case BFD_RELOC_X86_64_GOTOFF64:
14255 case BFD_RELOC_X86_64_GOTPC32:
14256 case BFD_RELOC_X86_64_GOT64:
14257 case BFD_RELOC_X86_64_GOTPCREL64:
14258 case BFD_RELOC_X86_64_GOTPC64:
14259 case BFD_RELOC_X86_64_GOTPLT64:
14260 case BFD_RELOC_X86_64_PLTOFF64:
14261 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
14262 case BFD_RELOC_X86_64_TLSDESC_CALL:
14263 case BFD_RELOC_RVA:
14264 case BFD_RELOC_VTABLE_ENTRY:
14265 case BFD_RELOC_VTABLE_INHERIT:
14266 #ifdef TE_PE
14267 case BFD_RELOC_32_SECREL:
14268 #endif
14269 code = fixp->fx_r_type;
14270 break;
14271 case BFD_RELOC_X86_64_32S:
14272 if (!fixp->fx_pcrel)
14273 {
14274 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
14275 code = fixp->fx_r_type;
14276 break;
14277 }
14278 /* Fall through. */
14279 default:
14280 if (fixp->fx_pcrel)
14281 {
14282 switch (fixp->fx_size)
14283 {
14284 default:
14285 as_bad_where (fixp->fx_file, fixp->fx_line,
14286 _("can not do %d byte pc-relative relocation"),
14287 fixp->fx_size);
14288 code = BFD_RELOC_32_PCREL;
14289 break;
14290 case 1: code = BFD_RELOC_8_PCREL; break;
14291 case 2: code = BFD_RELOC_16_PCREL; break;
14292 case 4: code = BFD_RELOC_32_PCREL; break;
14293 #ifdef BFD64
14294 case 8: code = BFD_RELOC_64_PCREL; break;
14295 #endif
14296 }
14297 }
14298 else
14299 {
14300 switch (fixp->fx_size)
14301 {
14302 default:
14303 as_bad_where (fixp->fx_file, fixp->fx_line,
14304 _("can not do %d byte relocation"),
14305 fixp->fx_size);
14306 code = BFD_RELOC_32;
14307 break;
14308 case 1: code = BFD_RELOC_8; break;
14309 case 2: code = BFD_RELOC_16; break;
14310 case 4: code = BFD_RELOC_32; break;
14311 #ifdef BFD64
14312 case 8: code = BFD_RELOC_64; break;
14313 #endif
14314 }
14315 }
14316 break;
14317 }
14318
14319 if ((code == BFD_RELOC_32
14320 || code == BFD_RELOC_32_PCREL
14321 || code == BFD_RELOC_X86_64_32S)
14322 && GOT_symbol
14323 && fixp->fx_addsy == GOT_symbol)
14324 {
14325 if (!object_64bit)
14326 code = BFD_RELOC_386_GOTPC;
14327 else
14328 code = BFD_RELOC_X86_64_GOTPC32;
14329 }
14330 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
14331 && GOT_symbol
14332 && fixp->fx_addsy == GOT_symbol)
14333 {
14334 code = BFD_RELOC_X86_64_GOTPC64;
14335 }
14336
14337 rel = XNEW (arelent);
14338 rel->sym_ptr_ptr = XNEW (asymbol *);
14339 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
14340
14341 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
14342
14343 if (!use_rela_relocations)
14344 {
14345 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
14346 vtable entry to be used in the relocation's section offset. */
14347 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14348 rel->address = fixp->fx_offset;
14349 #if defined (OBJ_COFF) && defined (TE_PE)
14350 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
14351 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
14352 else
14353 #endif
14354 rel->addend = 0;
14355 }
14356 /* Use the rela in 64bit mode. */
14357 else
14358 {
14359 if (disallow_64bit_reloc)
14360 switch (code)
14361 {
14362 case BFD_RELOC_X86_64_DTPOFF64:
14363 case BFD_RELOC_X86_64_TPOFF64:
14364 case BFD_RELOC_64_PCREL:
14365 case BFD_RELOC_X86_64_GOTOFF64:
14366 case BFD_RELOC_X86_64_GOT64:
14367 case BFD_RELOC_X86_64_GOTPCREL64:
14368 case BFD_RELOC_X86_64_GOTPC64:
14369 case BFD_RELOC_X86_64_GOTPLT64:
14370 case BFD_RELOC_X86_64_PLTOFF64:
14371 as_bad_where (fixp->fx_file, fixp->fx_line,
14372 _("cannot represent relocation type %s in x32 mode"),
14373 bfd_get_reloc_code_name (code));
14374 break;
14375 default:
14376 break;
14377 }
14378
14379 if (!fixp->fx_pcrel)
14380 rel->addend = fixp->fx_offset;
14381 else
14382 switch (code)
14383 {
14384 case BFD_RELOC_X86_64_PLT32:
14385 case BFD_RELOC_X86_64_GOT32:
14386 case BFD_RELOC_X86_64_GOTPCREL:
14387 case BFD_RELOC_X86_64_GOTPCRELX:
14388 case BFD_RELOC_X86_64_REX_GOTPCRELX:
14389 case BFD_RELOC_X86_64_TLSGD:
14390 case BFD_RELOC_X86_64_TLSLD:
14391 case BFD_RELOC_X86_64_GOTTPOFF:
14392 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
14393 case BFD_RELOC_X86_64_TLSDESC_CALL:
14394 rel->addend = fixp->fx_offset - fixp->fx_size;
14395 break;
14396 default:
14397 rel->addend = (section->vma
14398 - fixp->fx_size
14399 + fixp->fx_addnumber
14400 + md_pcrel_from (fixp));
14401 break;
14402 }
14403 }
14404
14405 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
14406 if (rel->howto == NULL)
14407 {
14408 as_bad_where (fixp->fx_file, fixp->fx_line,
14409 _("cannot represent relocation type %s"),
14410 bfd_get_reloc_code_name (code));
14411 /* Set howto to a garbage value so that we can keep going. */
14412 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
14413 gas_assert (rel->howto != NULL);
14414 }
14415
14416 return rel;
14417 }
14418
14419 #include "tc-i386-intel.c"
14420
14421 void
14422 tc_x86_parse_to_dw2regnum (expressionS *exp)
14423 {
14424 int saved_naked_reg;
14425 char saved_register_dot;
14426
14427 saved_naked_reg = allow_naked_reg;
14428 allow_naked_reg = 1;
14429 saved_register_dot = register_chars['.'];
14430 register_chars['.'] = '.';
14431 allow_pseudo_reg = 1;
14432 expression_and_evaluate (exp);
14433 allow_pseudo_reg = 0;
14434 register_chars['.'] = saved_register_dot;
14435 allow_naked_reg = saved_naked_reg;
14436
14437 if (exp->X_op == O_register && exp->X_add_number >= 0)
14438 {
14439 if ((addressT) exp->X_add_number < i386_regtab_size)
14440 {
14441 exp->X_op = O_constant;
14442 exp->X_add_number = i386_regtab[exp->X_add_number]
14443 .dw2_regnum[flag_code >> 1];
14444 }
14445 else
14446 exp->X_op = O_illegal;
14447 }
14448 }
14449
14450 void
14451 tc_x86_frame_initial_instructions (void)
14452 {
14453 static unsigned int sp_regno[2];
14454
14455 if (!sp_regno[flag_code >> 1])
14456 {
14457 char *saved_input = input_line_pointer;
14458 char sp[][4] = {"esp", "rsp"};
14459 expressionS exp;
14460
14461 input_line_pointer = sp[flag_code >> 1];
14462 tc_x86_parse_to_dw2regnum (&exp);
14463 gas_assert (exp.X_op == O_constant);
14464 sp_regno[flag_code >> 1] = exp.X_add_number;
14465 input_line_pointer = saved_input;
14466 }
14467
14468 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
14469 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
14470 }
14471
14472 int
14473 x86_dwarf2_addr_size (void)
14474 {
14475 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
14476 if (x86_elf_abi == X86_64_X32_ABI)
14477 return 4;
14478 #endif
14479 return bfd_arch_bits_per_address (stdoutput) / 8;
14480 }
14481
14482 int
14483 i386_elf_section_type (const char *str, size_t len)
14484 {
14485 if (flag_code == CODE_64BIT
14486 && len == sizeof ("unwind") - 1
14487 && startswith (str, "unwind"))
14488 return SHT_X86_64_UNWIND;
14489
14490 return -1;
14491 }
14492
14493 #ifdef TE_SOLARIS
14494 void
14495 i386_solaris_fix_up_eh_frame (segT sec)
14496 {
14497 if (flag_code == CODE_64BIT)
14498 elf_section_type (sec) = SHT_X86_64_UNWIND;
14499 }
14500 #endif
14501
14502 #ifdef TE_PE
14503 void
14504 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
14505 {
14506 expressionS exp;
14507
14508 exp.X_op = O_secrel;
14509 exp.X_add_symbol = symbol;
14510 exp.X_add_number = 0;
14511 emit_expr (&exp, size);
14512 }
14513 #endif
14514
14515 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
14516 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
14517
14518 bfd_vma
14519 x86_64_section_letter (int letter, const char **ptr_msg)
14520 {
14521 if (flag_code == CODE_64BIT)
14522 {
14523 if (letter == 'l')
14524 return SHF_X86_64_LARGE;
14525
14526 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
14527 }
14528 else
14529 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
14530 return -1;
14531 }
14532
14533 bfd_vma
14534 x86_64_section_word (char *str, size_t len)
14535 {
14536 if (len == 5 && flag_code == CODE_64BIT && startswith (str, "large"))
14537 return SHF_X86_64_LARGE;
14538
14539 return -1;
14540 }
14541
14542 static void
14543 handle_large_common (int small ATTRIBUTE_UNUSED)
14544 {
14545 if (flag_code != CODE_64BIT)
14546 {
14547 s_comm_internal (0, elf_common_parse);
14548 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
14549 }
14550 else
14551 {
14552 static segT lbss_section;
14553 asection *saved_com_section_ptr = elf_com_section_ptr;
14554 asection *saved_bss_section = bss_section;
14555
14556 if (lbss_section == NULL)
14557 {
14558 flagword applicable;
14559 segT seg = now_seg;
14560 subsegT subseg = now_subseg;
14561
14562 /* The .lbss section is for local .largecomm symbols. */
14563 lbss_section = subseg_new (".lbss", 0);
14564 applicable = bfd_applicable_section_flags (stdoutput);
14565 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
14566 seg_info (lbss_section)->bss = 1;
14567
14568 subseg_set (seg, subseg);
14569 }
14570
14571 elf_com_section_ptr = &_bfd_elf_large_com_section;
14572 bss_section = lbss_section;
14573
14574 s_comm_internal (0, elf_common_parse);
14575
14576 elf_com_section_ptr = saved_com_section_ptr;
14577 bss_section = saved_bss_section;
14578 }
14579 }
14580 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */