]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-i386.c
Fix support for PECOFF weak symbols
[thirdparty/binutils-gdb.git] / gas / config / tc-i386.c
1 /* i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004
4 Free Software Foundation, Inc.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
29
30 #include "as.h"
31 #include "safe-ctype.h"
32 #include "subsegs.h"
33 #include "dwarf2dbg.h"
34 #include "dw2gencfi.h"
35 #include "opcode/i386.h"
36 #include "elf/x86-64.h"
37
38 #ifndef REGISTER_WARNINGS
39 #define REGISTER_WARNINGS 1
40 #endif
41
42 #ifndef INFER_ADDR_PREFIX
43 #define INFER_ADDR_PREFIX 1
44 #endif
45
46 #ifndef SCALE1_WHEN_NO_INDEX
47 /* Specifying a scale factor besides 1 when there is no index is
48 futile. eg. `mov (%ebx,2),%al' does exactly the same as
49 `mov (%ebx),%al'. To slavishly follow what the programmer
50 specified, set SCALE1_WHEN_NO_INDEX to 0. */
51 #define SCALE1_WHEN_NO_INDEX 1
52 #endif
53
54 #ifndef DEFAULT_ARCH
55 #define DEFAULT_ARCH "i386"
56 #endif
57
58 #ifndef INLINE
59 #if __GNUC__ >= 2
60 #define INLINE __inline__
61 #else
62 #define INLINE
63 #endif
64 #endif
65
66 static INLINE unsigned int mode_from_disp_size PARAMS ((unsigned int));
67 static INLINE int fits_in_signed_byte PARAMS ((offsetT));
68 static INLINE int fits_in_unsigned_byte PARAMS ((offsetT));
69 static INLINE int fits_in_unsigned_word PARAMS ((offsetT));
70 static INLINE int fits_in_signed_word PARAMS ((offsetT));
71 static INLINE int fits_in_unsigned_long PARAMS ((offsetT));
72 static INLINE int fits_in_signed_long PARAMS ((offsetT));
73 static int smallest_imm_type PARAMS ((offsetT));
74 static offsetT offset_in_range PARAMS ((offsetT, int));
75 static int add_prefix PARAMS ((unsigned int));
76 static void set_code_flag PARAMS ((int));
77 static void set_16bit_gcc_code_flag PARAMS ((int));
78 static void set_intel_syntax PARAMS ((int));
79 static void set_cpu_arch PARAMS ((int));
80 #ifdef TE_PE
81 static void pe_directive_secrel PARAMS ((int));
82 #endif
83 static char *output_invalid PARAMS ((int c));
84 static int i386_operand PARAMS ((char *operand_string));
85 static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
86 static const reg_entry *parse_register PARAMS ((char *reg_string,
87 char **end_op));
88 static char *parse_insn PARAMS ((char *, char *));
89 static char *parse_operands PARAMS ((char *, const char *));
90 static void swap_operands PARAMS ((void));
91 static void optimize_imm PARAMS ((void));
92 static void optimize_disp PARAMS ((void));
93 static int match_template PARAMS ((void));
94 static int check_string PARAMS ((void));
95 static int process_suffix PARAMS ((void));
96 static int check_byte_reg PARAMS ((void));
97 static int check_long_reg PARAMS ((void));
98 static int check_qword_reg PARAMS ((void));
99 static int check_word_reg PARAMS ((void));
100 static int finalize_imm PARAMS ((void));
101 static int process_operands PARAMS ((void));
102 static const seg_entry *build_modrm_byte PARAMS ((void));
103 static void output_insn PARAMS ((void));
104 static void output_branch PARAMS ((void));
105 static void output_jump PARAMS ((void));
106 static void output_interseg_jump PARAMS ((void));
107 static void output_imm PARAMS ((fragS *insn_start_frag,
108 offsetT insn_start_off));
109 static void output_disp PARAMS ((fragS *insn_start_frag,
110 offsetT insn_start_off));
111 #ifndef I386COFF
112 static void s_bss PARAMS ((int));
113 #endif
114
115 static const char *default_arch = DEFAULT_ARCH;
116
117 /* 'md_assemble ()' gathers together information and puts it into a
118 i386_insn. */
119
120 union i386_op
121 {
122 expressionS *disps;
123 expressionS *imms;
124 const reg_entry *regs;
125 };
126
127 struct _i386_insn
128 {
129 /* TM holds the template for the insn were currently assembling. */
130 template tm;
131
132 /* SUFFIX holds the instruction mnemonic suffix if given.
133 (e.g. 'l' for 'movl') */
134 char suffix;
135
136 /* OPERANDS gives the number of given operands. */
137 unsigned int operands;
138
139 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
140 of given register, displacement, memory operands and immediate
141 operands. */
142 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
143
144 /* TYPES [i] is the type (see above #defines) which tells us how to
145 use OP[i] for the corresponding operand. */
146 unsigned int types[MAX_OPERANDS];
147
148 /* Displacement expression, immediate expression, or register for each
149 operand. */
150 union i386_op op[MAX_OPERANDS];
151
152 /* Flags for operands. */
153 unsigned int flags[MAX_OPERANDS];
154 #define Operand_PCrel 1
155
156 /* Relocation type for operand */
157 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
158
159 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
160 the base index byte below. */
161 const reg_entry *base_reg;
162 const reg_entry *index_reg;
163 unsigned int log2_scale_factor;
164
165 /* SEG gives the seg_entries of this insn. They are zero unless
166 explicit segment overrides are given. */
167 const seg_entry *seg[2];
168
169 /* PREFIX holds all the given prefix opcodes (usually null).
170 PREFIXES is the number of prefix opcodes. */
171 unsigned int prefixes;
172 unsigned char prefix[MAX_PREFIXES];
173
174 /* RM and SIB are the modrm byte and the sib byte where the
175 addressing modes of this insn are encoded. */
176
177 modrm_byte rm;
178 rex_byte rex;
179 sib_byte sib;
180 };
181
182 typedef struct _i386_insn i386_insn;
183
184 /* List of chars besides those in app.c:symbol_chars that can start an
185 operand. Used to prevent the scrubber eating vital white-space. */
186 const char extra_symbol_chars[] = "*%-(["
187 #ifdef LEX_AT
188 "@"
189 #endif
190 #ifdef LEX_QM
191 "?"
192 #endif
193 ;
194
195 #if (defined (TE_I386AIX) \
196 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
197 && !defined (TE_LINUX) \
198 && !defined (TE_NETWARE) \
199 && !defined (TE_FreeBSD) \
200 && !defined (TE_NetBSD)))
201 /* This array holds the chars that always start a comment. If the
202 pre-processor is disabled, these aren't very useful. */
203 const char comment_chars[] = "#/";
204 #define PREFIX_SEPARATOR '\\'
205
206 /* This array holds the chars that only start a comment at the beginning of
207 a line. If the line seems to have the form '# 123 filename'
208 .line and .file directives will appear in the pre-processed output.
209 Note that input_file.c hand checks for '#' at the beginning of the
210 first line of the input file. This is because the compiler outputs
211 #NO_APP at the beginning of its output.
212 Also note that comments started like this one will always work if
213 '/' isn't otherwise defined. */
214 const char line_comment_chars[] = "#";
215
216 #else
217 /* Putting '/' here makes it impossible to use the divide operator.
218 However, we need it for compatibility with SVR4 systems. */
219 const char comment_chars[] = "#";
220 #define PREFIX_SEPARATOR '/'
221
222 const char line_comment_chars[] = "/#";
223 #endif
224
225 const char line_separator_chars[] = ";";
226
227 /* Chars that can be used to separate mant from exp in floating point
228 nums. */
229 const char EXP_CHARS[] = "eE";
230
231 /* Chars that mean this number is a floating point constant
232 As in 0f12.456
233 or 0d1.2345e12. */
234 const char FLT_CHARS[] = "fFdDxX";
235
236 /* Tables for lexical analysis. */
237 static char mnemonic_chars[256];
238 static char register_chars[256];
239 static char operand_chars[256];
240 static char identifier_chars[256];
241 static char digit_chars[256];
242
243 /* Lexical macros. */
244 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
245 #define is_operand_char(x) (operand_chars[(unsigned char) x])
246 #define is_register_char(x) (register_chars[(unsigned char) x])
247 #define is_space_char(x) ((x) == ' ')
248 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
249 #define is_digit_char(x) (digit_chars[(unsigned char) x])
250
251 /* All non-digit non-letter characters that may occur in an operand. */
252 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
253
254 /* md_assemble() always leaves the strings it's passed unaltered. To
255 effect this we maintain a stack of saved characters that we've smashed
256 with '\0's (indicating end of strings for various sub-fields of the
257 assembler instruction). */
258 static char save_stack[32];
259 static char *save_stack_p;
260 #define END_STRING_AND_SAVE(s) \
261 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
262 #define RESTORE_END_STRING(s) \
263 do { *(s) = *--save_stack_p; } while (0)
264
265 /* The instruction we're assembling. */
266 static i386_insn i;
267
268 /* Possible templates for current insn. */
269 static const templates *current_templates;
270
271 /* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
272 static expressionS disp_expressions[2], im_expressions[2];
273
274 /* Current operand we are working on. */
275 static int this_operand;
276
277 /* We support four different modes. FLAG_CODE variable is used to distinguish
278 these. */
279
280 enum flag_code {
281 CODE_32BIT,
282 CODE_16BIT,
283 CODE_64BIT };
284 #define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
285
286 static enum flag_code flag_code;
287 static int use_rela_relocations = 0;
288
289 /* The names used to print error messages. */
290 static const char *flag_code_names[] =
291 {
292 "32",
293 "16",
294 "64"
295 };
296
297 /* 1 for intel syntax,
298 0 if att syntax. */
299 static int intel_syntax = 0;
300
301 /* 1 if register prefix % not required. */
302 static int allow_naked_reg = 0;
303
304 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
305 leave, push, and pop instructions so that gcc has the same stack
306 frame as in 32 bit mode. */
307 static char stackop_size = '\0';
308
309 /* Non-zero to optimize code alignment. */
310 int optimize_align_code = 1;
311
312 /* Non-zero to quieten some warnings. */
313 static int quiet_warnings = 0;
314
315 /* CPU name. */
316 static const char *cpu_arch_name = NULL;
317
318 /* CPU feature flags. */
319 static unsigned int cpu_arch_flags = CpuUnknownFlags | CpuNo64;
320
321 /* If set, conditional jumps are not automatically promoted to handle
322 larger than a byte offset. */
323 static unsigned int no_cond_jump_promotion = 0;
324
325 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
326 symbolS *GOT_symbol;
327
328 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
329 unsigned int x86_dwarf2_return_column;
330
331 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
332 int x86_cie_data_alignment;
333
334 /* Interface to relax_segment.
335 There are 3 major relax states for 386 jump insns because the
336 different types of jumps add different sizes to frags when we're
337 figuring out what sort of jump to choose to reach a given label. */
338
339 /* Types. */
340 #define UNCOND_JUMP 0
341 #define COND_JUMP 1
342 #define COND_JUMP86 2
343
344 /* Sizes. */
345 #define CODE16 1
346 #define SMALL 0
347 #define SMALL16 (SMALL | CODE16)
348 #define BIG 2
349 #define BIG16 (BIG | CODE16)
350
351 #ifndef INLINE
352 #ifdef __GNUC__
353 #define INLINE __inline__
354 #else
355 #define INLINE
356 #endif
357 #endif
358
359 #define ENCODE_RELAX_STATE(type, size) \
360 ((relax_substateT) (((type) << 2) | (size)))
361 #define TYPE_FROM_RELAX_STATE(s) \
362 ((s) >> 2)
363 #define DISP_SIZE_FROM_RELAX_STATE(s) \
364 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
365
366 /* This table is used by relax_frag to promote short jumps to long
367 ones where necessary. SMALL (short) jumps may be promoted to BIG
368 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
369 don't allow a short jump in a 32 bit code segment to be promoted to
370 a 16 bit offset jump because it's slower (requires data size
371 prefix), and doesn't work, unless the destination is in the bottom
372 64k of the code segment (The top 16 bits of eip are zeroed). */
373
374 const relax_typeS md_relax_table[] =
375 {
376 /* The fields are:
377 1) most positive reach of this state,
378 2) most negative reach of this state,
379 3) how many bytes this mode will have in the variable part of the frag
380 4) which index into the table to try if we can't fit into this one. */
381
382 /* UNCOND_JUMP states. */
383 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
384 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
385 /* dword jmp adds 4 bytes to frag:
386 0 extra opcode bytes, 4 displacement bytes. */
387 {0, 0, 4, 0},
388 /* word jmp adds 2 byte2 to frag:
389 0 extra opcode bytes, 2 displacement bytes. */
390 {0, 0, 2, 0},
391
392 /* COND_JUMP states. */
393 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
394 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
395 /* dword conditionals adds 5 bytes to frag:
396 1 extra opcode byte, 4 displacement bytes. */
397 {0, 0, 5, 0},
398 /* word conditionals add 3 bytes to frag:
399 1 extra opcode byte, 2 displacement bytes. */
400 {0, 0, 3, 0},
401
402 /* COND_JUMP86 states. */
403 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
404 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
405 /* dword conditionals adds 5 bytes to frag:
406 1 extra opcode byte, 4 displacement bytes. */
407 {0, 0, 5, 0},
408 /* word conditionals add 4 bytes to frag:
409 1 displacement byte and a 3 byte long branch insn. */
410 {0, 0, 4, 0}
411 };
412
413 static const arch_entry cpu_arch[] = {
414 {"i8086", Cpu086 },
415 {"i186", Cpu086|Cpu186 },
416 {"i286", Cpu086|Cpu186|Cpu286 },
417 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
418 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
419 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
420 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
421 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
422 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
423 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuSSE|CpuSSE2 },
424 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
425 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|Cpu3dnow },
426 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|Cpu3dnow|CpuSSE|CpuSSE2 },
427 {NULL, 0 }
428 };
429
430 const pseudo_typeS md_pseudo_table[] =
431 {
432 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
433 {"align", s_align_bytes, 0},
434 #else
435 {"align", s_align_ptwo, 0},
436 #endif
437 {"arch", set_cpu_arch, 0},
438 #ifndef I386COFF
439 {"bss", s_bss, 0},
440 #endif
441 {"ffloat", float_cons, 'f'},
442 {"dfloat", float_cons, 'd'},
443 {"tfloat", float_cons, 'x'},
444 {"value", cons, 2},
445 {"noopt", s_ignore, 0},
446 {"optim", s_ignore, 0},
447 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
448 {"code16", set_code_flag, CODE_16BIT},
449 {"code32", set_code_flag, CODE_32BIT},
450 {"code64", set_code_flag, CODE_64BIT},
451 {"intel_syntax", set_intel_syntax, 1},
452 {"att_syntax", set_intel_syntax, 0},
453 {"file", (void (*) PARAMS ((int))) dwarf2_directive_file, 0},
454 {"loc", dwarf2_directive_loc, 0},
455 #ifdef TE_PE
456 {"secrel32", pe_directive_secrel, 0},
457 #endif
458 {0, 0, 0}
459 };
460
461 /* For interface with expression (). */
462 extern char *input_line_pointer;
463
464 /* Hash table for instruction mnemonic lookup. */
465 static struct hash_control *op_hash;
466
467 /* Hash table for register lookup. */
468 static struct hash_control *reg_hash;
469 \f
470 void
471 i386_align_code (fragP, count)
472 fragS *fragP;
473 int count;
474 {
475 /* Various efficient no-op patterns for aligning code labels.
476 Note: Don't try to assemble the instructions in the comments.
477 0L and 0w are not legal. */
478 static const char f32_1[] =
479 {0x90}; /* nop */
480 static const char f32_2[] =
481 {0x89,0xf6}; /* movl %esi,%esi */
482 static const char f32_3[] =
483 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
484 static const char f32_4[] =
485 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
486 static const char f32_5[] =
487 {0x90, /* nop */
488 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
489 static const char f32_6[] =
490 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
491 static const char f32_7[] =
492 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
493 static const char f32_8[] =
494 {0x90, /* nop */
495 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
496 static const char f32_9[] =
497 {0x89,0xf6, /* movl %esi,%esi */
498 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
499 static const char f32_10[] =
500 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
501 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
502 static const char f32_11[] =
503 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
504 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
505 static const char f32_12[] =
506 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
507 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
508 static const char f32_13[] =
509 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
510 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
511 static const char f32_14[] =
512 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
513 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
514 static const char f32_15[] =
515 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
516 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
517 static const char f16_3[] =
518 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
519 static const char f16_4[] =
520 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
521 static const char f16_5[] =
522 {0x90, /* nop */
523 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
524 static const char f16_6[] =
525 {0x89,0xf6, /* mov %si,%si */
526 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
527 static const char f16_7[] =
528 {0x8d,0x74,0x00, /* lea 0(%si),%si */
529 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
530 static const char f16_8[] =
531 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
532 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
533 static const char *const f32_patt[] = {
534 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
535 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
536 };
537 static const char *const f16_patt[] = {
538 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
539 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
540 };
541
542 if (count <= 0 || count > 15)
543 return;
544
545 /* The recommended way to pad 64bit code is to use NOPs preceded by
546 maximally four 0x66 prefixes. Balance the size of nops. */
547 if (flag_code == CODE_64BIT)
548 {
549 int i;
550 int nnops = (count + 3) / 4;
551 int len = count / nnops;
552 int remains = count - nnops * len;
553 int pos = 0;
554
555 for (i = 0; i < remains; i++)
556 {
557 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len);
558 fragP->fr_literal[fragP->fr_fix + pos + len] = 0x90;
559 pos += len + 1;
560 }
561 for (; i < nnops; i++)
562 {
563 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len - 1);
564 fragP->fr_literal[fragP->fr_fix + pos + len - 1] = 0x90;
565 pos += len;
566 }
567 }
568 else
569 if (flag_code == CODE_16BIT)
570 {
571 memcpy (fragP->fr_literal + fragP->fr_fix,
572 f16_patt[count - 1], count);
573 if (count > 8)
574 /* Adjust jump offset. */
575 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
576 }
577 else
578 memcpy (fragP->fr_literal + fragP->fr_fix,
579 f32_patt[count - 1], count);
580 fragP->fr_var = count;
581 }
582
583 static INLINE unsigned int
584 mode_from_disp_size (t)
585 unsigned int t;
586 {
587 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
588 }
589
590 static INLINE int
591 fits_in_signed_byte (num)
592 offsetT num;
593 {
594 return (num >= -128) && (num <= 127);
595 }
596
597 static INLINE int
598 fits_in_unsigned_byte (num)
599 offsetT num;
600 {
601 return (num & 0xff) == num;
602 }
603
604 static INLINE int
605 fits_in_unsigned_word (num)
606 offsetT num;
607 {
608 return (num & 0xffff) == num;
609 }
610
611 static INLINE int
612 fits_in_signed_word (num)
613 offsetT num;
614 {
615 return (-32768 <= num) && (num <= 32767);
616 }
617 static INLINE int
618 fits_in_signed_long (num)
619 offsetT num ATTRIBUTE_UNUSED;
620 {
621 #ifndef BFD64
622 return 1;
623 #else
624 return (!(((offsetT) -1 << 31) & num)
625 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
626 #endif
627 } /* fits_in_signed_long() */
628 static INLINE int
629 fits_in_unsigned_long (num)
630 offsetT num ATTRIBUTE_UNUSED;
631 {
632 #ifndef BFD64
633 return 1;
634 #else
635 return (num & (((offsetT) 2 << 31) - 1)) == num;
636 #endif
637 } /* fits_in_unsigned_long() */
638
639 static int
640 smallest_imm_type (num)
641 offsetT num;
642 {
643 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
644 {
645 /* This code is disabled on the 486 because all the Imm1 forms
646 in the opcode table are slower on the i486. They're the
647 versions with the implicitly specified single-position
648 displacement, which has another syntax if you really want to
649 use that form. */
650 if (num == 1)
651 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
652 }
653 return (fits_in_signed_byte (num)
654 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
655 : fits_in_unsigned_byte (num)
656 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
657 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
658 ? (Imm16 | Imm32 | Imm32S | Imm64)
659 : fits_in_signed_long (num)
660 ? (Imm32 | Imm32S | Imm64)
661 : fits_in_unsigned_long (num)
662 ? (Imm32 | Imm64)
663 : Imm64);
664 }
665
666 static offsetT
667 offset_in_range (val, size)
668 offsetT val;
669 int size;
670 {
671 addressT mask;
672
673 switch (size)
674 {
675 case 1: mask = ((addressT) 1 << 8) - 1; break;
676 case 2: mask = ((addressT) 1 << 16) - 1; break;
677 case 4: mask = ((addressT) 2 << 31) - 1; break;
678 #ifdef BFD64
679 case 8: mask = ((addressT) 2 << 63) - 1; break;
680 #endif
681 default: abort ();
682 }
683
684 /* If BFD64, sign extend val. */
685 if (!use_rela_relocations)
686 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
687 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
688
689 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
690 {
691 char buf1[40], buf2[40];
692
693 sprint_value (buf1, val);
694 sprint_value (buf2, val & mask);
695 as_warn (_("%s shortened to %s"), buf1, buf2);
696 }
697 return val & mask;
698 }
699
700 /* Returns 0 if attempting to add a prefix where one from the same
701 class already exists, 1 if non rep/repne added, 2 if rep/repne
702 added. */
703 static int
704 add_prefix (prefix)
705 unsigned int prefix;
706 {
707 int ret = 1;
708 int q;
709
710 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
711 && flag_code == CODE_64BIT)
712 q = REX_PREFIX;
713 else
714 switch (prefix)
715 {
716 default:
717 abort ();
718
719 case CS_PREFIX_OPCODE:
720 case DS_PREFIX_OPCODE:
721 case ES_PREFIX_OPCODE:
722 case FS_PREFIX_OPCODE:
723 case GS_PREFIX_OPCODE:
724 case SS_PREFIX_OPCODE:
725 q = SEG_PREFIX;
726 break;
727
728 case REPNE_PREFIX_OPCODE:
729 case REPE_PREFIX_OPCODE:
730 ret = 2;
731 /* fall thru */
732 case LOCK_PREFIX_OPCODE:
733 q = LOCKREP_PREFIX;
734 break;
735
736 case FWAIT_OPCODE:
737 q = WAIT_PREFIX;
738 break;
739
740 case ADDR_PREFIX_OPCODE:
741 q = ADDR_PREFIX;
742 break;
743
744 case DATA_PREFIX_OPCODE:
745 q = DATA_PREFIX;
746 break;
747 }
748
749 if (i.prefix[q] != 0)
750 {
751 as_bad (_("same type of prefix used twice"));
752 return 0;
753 }
754
755 i.prefixes += 1;
756 i.prefix[q] = prefix;
757 return ret;
758 }
759
760 static void
761 set_code_flag (value)
762 int value;
763 {
764 flag_code = value;
765 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
766 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
767 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
768 {
769 as_bad (_("64bit mode not supported on this CPU."));
770 }
771 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
772 {
773 as_bad (_("32bit mode not supported on this CPU."));
774 }
775 stackop_size = '\0';
776 }
777
778 static void
779 set_16bit_gcc_code_flag (new_code_flag)
780 int new_code_flag;
781 {
782 flag_code = new_code_flag;
783 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
784 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
785 stackop_size = LONG_MNEM_SUFFIX;
786 }
787
788 static void
789 set_intel_syntax (syntax_flag)
790 int syntax_flag;
791 {
792 /* Find out if register prefixing is specified. */
793 int ask_naked_reg = 0;
794
795 SKIP_WHITESPACE ();
796 if (!is_end_of_line[(unsigned char) *input_line_pointer])
797 {
798 char *string = input_line_pointer;
799 int e = get_symbol_end ();
800
801 if (strcmp (string, "prefix") == 0)
802 ask_naked_reg = 1;
803 else if (strcmp (string, "noprefix") == 0)
804 ask_naked_reg = -1;
805 else
806 as_bad (_("bad argument to syntax directive."));
807 *input_line_pointer = e;
808 }
809 demand_empty_rest_of_line ();
810
811 intel_syntax = syntax_flag;
812
813 if (ask_naked_reg == 0)
814 allow_naked_reg = (intel_syntax
815 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
816 else
817 allow_naked_reg = (ask_naked_reg < 0);
818
819 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
820 identifier_chars['$'] = intel_syntax ? '$' : 0;
821 }
822
823 static void
824 set_cpu_arch (dummy)
825 int dummy ATTRIBUTE_UNUSED;
826 {
827 SKIP_WHITESPACE ();
828
829 if (!is_end_of_line[(unsigned char) *input_line_pointer])
830 {
831 char *string = input_line_pointer;
832 int e = get_symbol_end ();
833 int i;
834
835 for (i = 0; cpu_arch[i].name; i++)
836 {
837 if (strcmp (string, cpu_arch[i].name) == 0)
838 {
839 cpu_arch_name = cpu_arch[i].name;
840 cpu_arch_flags = (cpu_arch[i].flags
841 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
842 break;
843 }
844 }
845 if (!cpu_arch[i].name)
846 as_bad (_("no such architecture: `%s'"), string);
847
848 *input_line_pointer = e;
849 }
850 else
851 as_bad (_("missing cpu architecture"));
852
853 no_cond_jump_promotion = 0;
854 if (*input_line_pointer == ','
855 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
856 {
857 char *string = ++input_line_pointer;
858 int e = get_symbol_end ();
859
860 if (strcmp (string, "nojumps") == 0)
861 no_cond_jump_promotion = 1;
862 else if (strcmp (string, "jumps") == 0)
863 ;
864 else
865 as_bad (_("no such architecture modifier: `%s'"), string);
866
867 *input_line_pointer = e;
868 }
869
870 demand_empty_rest_of_line ();
871 }
872
873 unsigned long
874 i386_mach ()
875 {
876 if (!strcmp (default_arch, "x86_64"))
877 return bfd_mach_x86_64;
878 else if (!strcmp (default_arch, "i386"))
879 return bfd_mach_i386_i386;
880 else
881 as_fatal (_("Unknown architecture"));
882 }
883 \f
884 void
885 md_begin ()
886 {
887 const char *hash_err;
888
889 /* Initialize op_hash hash table. */
890 op_hash = hash_new ();
891
892 {
893 const template *optab;
894 templates *core_optab;
895
896 /* Setup for loop. */
897 optab = i386_optab;
898 core_optab = (templates *) xmalloc (sizeof (templates));
899 core_optab->start = optab;
900
901 while (1)
902 {
903 ++optab;
904 if (optab->name == NULL
905 || strcmp (optab->name, (optab - 1)->name) != 0)
906 {
907 /* different name --> ship out current template list;
908 add to hash table; & begin anew. */
909 core_optab->end = optab;
910 hash_err = hash_insert (op_hash,
911 (optab - 1)->name,
912 (PTR) core_optab);
913 if (hash_err)
914 {
915 as_fatal (_("Internal Error: Can't hash %s: %s"),
916 (optab - 1)->name,
917 hash_err);
918 }
919 if (optab->name == NULL)
920 break;
921 core_optab = (templates *) xmalloc (sizeof (templates));
922 core_optab->start = optab;
923 }
924 }
925 }
926
927 /* Initialize reg_hash hash table. */
928 reg_hash = hash_new ();
929 {
930 const reg_entry *regtab;
931
932 for (regtab = i386_regtab;
933 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
934 regtab++)
935 {
936 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
937 if (hash_err)
938 as_fatal (_("Internal Error: Can't hash %s: %s"),
939 regtab->reg_name,
940 hash_err);
941 }
942 }
943
944 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
945 {
946 int c;
947 char *p;
948
949 for (c = 0; c < 256; c++)
950 {
951 if (ISDIGIT (c))
952 {
953 digit_chars[c] = c;
954 mnemonic_chars[c] = c;
955 register_chars[c] = c;
956 operand_chars[c] = c;
957 }
958 else if (ISLOWER (c))
959 {
960 mnemonic_chars[c] = c;
961 register_chars[c] = c;
962 operand_chars[c] = c;
963 }
964 else if (ISUPPER (c))
965 {
966 mnemonic_chars[c] = TOLOWER (c);
967 register_chars[c] = mnemonic_chars[c];
968 operand_chars[c] = c;
969 }
970
971 if (ISALPHA (c) || ISDIGIT (c))
972 identifier_chars[c] = c;
973 else if (c >= 128)
974 {
975 identifier_chars[c] = c;
976 operand_chars[c] = c;
977 }
978 }
979
980 #ifdef LEX_AT
981 identifier_chars['@'] = '@';
982 #endif
983 #ifdef LEX_QM
984 identifier_chars['?'] = '?';
985 operand_chars['?'] = '?';
986 #endif
987 digit_chars['-'] = '-';
988 identifier_chars['_'] = '_';
989 identifier_chars['.'] = '.';
990
991 for (p = operand_special_chars; *p != '\0'; p++)
992 operand_chars[(unsigned char) *p] = *p;
993 }
994
995 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
996 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
997 {
998 record_alignment (text_section, 2);
999 record_alignment (data_section, 2);
1000 record_alignment (bss_section, 2);
1001 }
1002 #endif
1003
1004 if (flag_code == CODE_64BIT)
1005 {
1006 x86_dwarf2_return_column = 16;
1007 x86_cie_data_alignment = -8;
1008 }
1009 else
1010 {
1011 x86_dwarf2_return_column = 8;
1012 x86_cie_data_alignment = -4;
1013 }
1014 }
1015
1016 void
1017 i386_print_statistics (file)
1018 FILE *file;
1019 {
1020 hash_print_statistics (file, "i386 opcode", op_hash);
1021 hash_print_statistics (file, "i386 register", reg_hash);
1022 }
1023 \f
1024 #ifdef DEBUG386
1025
1026 /* Debugging routines for md_assemble. */
1027 static void pi PARAMS ((char *, i386_insn *));
1028 static void pte PARAMS ((template *));
1029 static void pt PARAMS ((unsigned int));
1030 static void pe PARAMS ((expressionS *));
1031 static void ps PARAMS ((symbolS *));
1032
1033 static void
1034 pi (line, x)
1035 char *line;
1036 i386_insn *x;
1037 {
1038 unsigned int i;
1039
1040 fprintf (stdout, "%s: template ", line);
1041 pte (&x->tm);
1042 fprintf (stdout, " address: base %s index %s scale %x\n",
1043 x->base_reg ? x->base_reg->reg_name : "none",
1044 x->index_reg ? x->index_reg->reg_name : "none",
1045 x->log2_scale_factor);
1046 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
1047 x->rm.mode, x->rm.reg, x->rm.regmem);
1048 fprintf (stdout, " sib: base %x index %x scale %x\n",
1049 x->sib.base, x->sib.index, x->sib.scale);
1050 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
1051 (x->rex & REX_MODE64) != 0,
1052 (x->rex & REX_EXTX) != 0,
1053 (x->rex & REX_EXTY) != 0,
1054 (x->rex & REX_EXTZ) != 0);
1055 for (i = 0; i < x->operands; i++)
1056 {
1057 fprintf (stdout, " #%d: ", i + 1);
1058 pt (x->types[i]);
1059 fprintf (stdout, "\n");
1060 if (x->types[i]
1061 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
1062 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
1063 if (x->types[i] & Imm)
1064 pe (x->op[i].imms);
1065 if (x->types[i] & Disp)
1066 pe (x->op[i].disps);
1067 }
1068 }
1069
1070 static void
1071 pte (t)
1072 template *t;
1073 {
1074 unsigned int i;
1075 fprintf (stdout, " %d operands ", t->operands);
1076 fprintf (stdout, "opcode %x ", t->base_opcode);
1077 if (t->extension_opcode != None)
1078 fprintf (stdout, "ext %x ", t->extension_opcode);
1079 if (t->opcode_modifier & D)
1080 fprintf (stdout, "D");
1081 if (t->opcode_modifier & W)
1082 fprintf (stdout, "W");
1083 fprintf (stdout, "\n");
1084 for (i = 0; i < t->operands; i++)
1085 {
1086 fprintf (stdout, " #%d type ", i + 1);
1087 pt (t->operand_types[i]);
1088 fprintf (stdout, "\n");
1089 }
1090 }
1091
1092 static void
1093 pe (e)
1094 expressionS *e;
1095 {
1096 fprintf (stdout, " operation %d\n", e->X_op);
1097 fprintf (stdout, " add_number %ld (%lx)\n",
1098 (long) e->X_add_number, (long) e->X_add_number);
1099 if (e->X_add_symbol)
1100 {
1101 fprintf (stdout, " add_symbol ");
1102 ps (e->X_add_symbol);
1103 fprintf (stdout, "\n");
1104 }
1105 if (e->X_op_symbol)
1106 {
1107 fprintf (stdout, " op_symbol ");
1108 ps (e->X_op_symbol);
1109 fprintf (stdout, "\n");
1110 }
1111 }
1112
1113 static void
1114 ps (s)
1115 symbolS *s;
1116 {
1117 fprintf (stdout, "%s type %s%s",
1118 S_GET_NAME (s),
1119 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1120 segment_name (S_GET_SEGMENT (s)));
1121 }
1122
1123 struct type_name
1124 {
1125 unsigned int mask;
1126 char *tname;
1127 }
1128
1129 static const type_names[] =
1130 {
1131 { Reg8, "r8" },
1132 { Reg16, "r16" },
1133 { Reg32, "r32" },
1134 { Reg64, "r64" },
1135 { Imm8, "i8" },
1136 { Imm8S, "i8s" },
1137 { Imm16, "i16" },
1138 { Imm32, "i32" },
1139 { Imm32S, "i32s" },
1140 { Imm64, "i64" },
1141 { Imm1, "i1" },
1142 { BaseIndex, "BaseIndex" },
1143 { Disp8, "d8" },
1144 { Disp16, "d16" },
1145 { Disp32, "d32" },
1146 { Disp32S, "d32s" },
1147 { Disp64, "d64" },
1148 { InOutPortReg, "InOutPortReg" },
1149 { ShiftCount, "ShiftCount" },
1150 { Control, "control reg" },
1151 { Test, "test reg" },
1152 { Debug, "debug reg" },
1153 { FloatReg, "FReg" },
1154 { FloatAcc, "FAcc" },
1155 { SReg2, "SReg2" },
1156 { SReg3, "SReg3" },
1157 { Acc, "Acc" },
1158 { JumpAbsolute, "Jump Absolute" },
1159 { RegMMX, "rMMX" },
1160 { RegXMM, "rXMM" },
1161 { EsSeg, "es" },
1162 { 0, "" }
1163 };
1164
1165 static void
1166 pt (t)
1167 unsigned int t;
1168 {
1169 const struct type_name *ty;
1170
1171 for (ty = type_names; ty->mask; ty++)
1172 if (t & ty->mask)
1173 fprintf (stdout, "%s, ", ty->tname);
1174 fflush (stdout);
1175 }
1176
1177 #endif /* DEBUG386 */
1178 \f
1179 static bfd_reloc_code_real_type reloc
1180 PARAMS ((int, int, int, bfd_reloc_code_real_type));
1181
1182 static bfd_reloc_code_real_type
1183 reloc (size, pcrel, sign, other)
1184 int size;
1185 int pcrel;
1186 int sign;
1187 bfd_reloc_code_real_type other;
1188 {
1189 if (other != NO_RELOC)
1190 return other;
1191
1192 if (pcrel)
1193 {
1194 if (!sign)
1195 as_bad (_("There are no unsigned pc-relative relocations"));
1196 switch (size)
1197 {
1198 case 1: return BFD_RELOC_8_PCREL;
1199 case 2: return BFD_RELOC_16_PCREL;
1200 case 4: return BFD_RELOC_32_PCREL;
1201 }
1202 as_bad (_("can not do %d byte pc-relative relocation"), size);
1203 }
1204 else
1205 {
1206 if (sign)
1207 switch (size)
1208 {
1209 case 4: return BFD_RELOC_X86_64_32S;
1210 }
1211 else
1212 switch (size)
1213 {
1214 case 1: return BFD_RELOC_8;
1215 case 2: return BFD_RELOC_16;
1216 case 4: return BFD_RELOC_32;
1217 case 8: return BFD_RELOC_64;
1218 }
1219 as_bad (_("can not do %s %d byte relocation"),
1220 sign ? "signed" : "unsigned", size);
1221 }
1222
1223 abort ();
1224 return BFD_RELOC_NONE;
1225 }
1226
1227 /* Here we decide which fixups can be adjusted to make them relative to
1228 the beginning of the section instead of the symbol. Basically we need
1229 to make sure that the dynamic relocations are done correctly, so in
1230 some cases we force the original symbol to be used. */
1231
1232 int
1233 tc_i386_fix_adjustable (fixP)
1234 fixS *fixP ATTRIBUTE_UNUSED;
1235 {
1236 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1237 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
1238 return 1;
1239
1240 /* Don't adjust pc-relative references to merge sections in 64-bit
1241 mode. */
1242 if (use_rela_relocations
1243 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
1244 && fixP->fx_pcrel)
1245 return 0;
1246
1247 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
1248 and changed later by validate_fix. */
1249 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
1250 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
1251 return 0;
1252
1253 /* adjust_reloc_syms doesn't know about the GOT. */
1254 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1255 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1256 || fixP->fx_r_type == BFD_RELOC_386_GOT32
1257 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
1258 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
1259 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
1260 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
1261 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
1262 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
1263 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
1264 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
1265 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1266 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
1267 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
1268 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
1269 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
1270 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
1271 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
1272 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
1273 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1274 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1275 return 0;
1276 #endif
1277 return 1;
1278 }
1279
1280 static int intel_float_operand PARAMS ((const char *mnemonic));
1281
1282 static int
1283 intel_float_operand (mnemonic)
1284 const char *mnemonic;
1285 {
1286 /* Note that the value returned is meaningful only for opcodes with (memory)
1287 operands, hence the code here is free to improperly handle opcodes that
1288 have no operands (for better performance and smaller code). */
1289
1290 if (mnemonic[0] != 'f')
1291 return 0; /* non-math */
1292
1293 switch (mnemonic[1])
1294 {
1295 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
1296 the fs segment override prefix not currently handled because no
1297 call path can make opcodes without operands get here */
1298 case 'i':
1299 return 2 /* integer op */;
1300 case 'l':
1301 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
1302 return 3; /* fldcw/fldenv */
1303 break;
1304 case 'n':
1305 if (mnemonic[2] != 'o' /* fnop */)
1306 return 3; /* non-waiting control op */
1307 break;
1308 case 'r':
1309 if (mnemonic[2] == 's')
1310 return 3; /* frstor/frstpm */
1311 break;
1312 case 's':
1313 if (mnemonic[2] == 'a')
1314 return 3; /* fsave */
1315 if (mnemonic[2] == 't')
1316 {
1317 switch (mnemonic[3])
1318 {
1319 case 'c': /* fstcw */
1320 case 'd': /* fstdw */
1321 case 'e': /* fstenv */
1322 case 's': /* fsts[gw] */
1323 return 3;
1324 }
1325 }
1326 break;
1327 case 'x':
1328 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
1329 return 0; /* fxsave/fxrstor are not really math ops */
1330 break;
1331 }
1332
1333 return 1;
1334 }
1335
1336 /* This is the guts of the machine-dependent assembler. LINE points to a
1337 machine dependent instruction. This function is supposed to emit
1338 the frags/bytes it assembles to. */
1339
1340 void
1341 md_assemble (line)
1342 char *line;
1343 {
1344 int j;
1345 char mnemonic[MAX_MNEM_SIZE];
1346
1347 /* Initialize globals. */
1348 memset (&i, '\0', sizeof (i));
1349 for (j = 0; j < MAX_OPERANDS; j++)
1350 i.reloc[j] = NO_RELOC;
1351 memset (disp_expressions, '\0', sizeof (disp_expressions));
1352 memset (im_expressions, '\0', sizeof (im_expressions));
1353 save_stack_p = save_stack;
1354
1355 /* First parse an instruction mnemonic & call i386_operand for the operands.
1356 We assume that the scrubber has arranged it so that line[0] is the valid
1357 start of a (possibly prefixed) mnemonic. */
1358
1359 line = parse_insn (line, mnemonic);
1360 if (line == NULL)
1361 return;
1362
1363 line = parse_operands (line, mnemonic);
1364 if (line == NULL)
1365 return;
1366
1367 /* Now we've parsed the mnemonic into a set of templates, and have the
1368 operands at hand. */
1369
1370 /* All intel opcodes have reversed operands except for "bound" and
1371 "enter". We also don't reverse intersegment "jmp" and "call"
1372 instructions with 2 immediate operands so that the immediate segment
1373 precedes the offset, as it does when in AT&T mode. "enter" and the
1374 intersegment "jmp" and "call" instructions are the only ones that
1375 have two immediate operands. */
1376 if (intel_syntax && i.operands > 1
1377 && (strcmp (mnemonic, "bound") != 0)
1378 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1379 swap_operands ();
1380
1381 if (i.imm_operands)
1382 optimize_imm ();
1383
1384 if (i.disp_operands)
1385 optimize_disp ();
1386
1387 /* Next, we find a template that matches the given insn,
1388 making sure the overlap of the given operands types is consistent
1389 with the template operand types. */
1390
1391 if (!match_template ())
1392 return;
1393
1394 if (intel_syntax)
1395 {
1396 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1397 if (SYSV386_COMPAT
1398 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1399 i.tm.base_opcode ^= FloatR;
1400
1401 /* Zap movzx and movsx suffix. The suffix may have been set from
1402 "word ptr" or "byte ptr" on the source operand, but we'll use
1403 the suffix later to choose the destination register. */
1404 if ((i.tm.base_opcode & ~9) == 0x0fb6)
1405 {
1406 if (i.reg_operands < 2
1407 && !i.suffix
1408 && (~i.tm.opcode_modifier
1409 & (No_bSuf
1410 | No_wSuf
1411 | No_lSuf
1412 | No_sSuf
1413 | No_xSuf
1414 | No_qSuf)))
1415 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
1416
1417 i.suffix = 0;
1418 }
1419 }
1420
1421 if (i.tm.opcode_modifier & FWait)
1422 if (!add_prefix (FWAIT_OPCODE))
1423 return;
1424
1425 /* Check string instruction segment overrides. */
1426 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1427 {
1428 if (!check_string ())
1429 return;
1430 }
1431
1432 if (!process_suffix ())
1433 return;
1434
1435 /* Make still unresolved immediate matches conform to size of immediate
1436 given in i.suffix. */
1437 if (!finalize_imm ())
1438 return;
1439
1440 if (i.types[0] & Imm1)
1441 i.imm_operands = 0; /* kludge for shift insns. */
1442 if (i.types[0] & ImplicitRegister)
1443 i.reg_operands--;
1444 if (i.types[1] & ImplicitRegister)
1445 i.reg_operands--;
1446 if (i.types[2] & ImplicitRegister)
1447 i.reg_operands--;
1448
1449 if (i.tm.opcode_modifier & ImmExt)
1450 {
1451 expressionS *exp;
1452
1453 if ((i.tm.cpu_flags & CpuPNI) && i.operands > 0)
1454 {
1455 /* These Intel Prescott New Instructions have the fixed
1456 operands with an opcode suffix which is coded in the same
1457 place as an 8-bit immediate field would be. Here we check
1458 those operands and remove them afterwards. */
1459 unsigned int x;
1460
1461 for (x = 0; x < i.operands; x++)
1462 if (i.op[x].regs->reg_num != x)
1463 as_bad (_("can't use register '%%%s' as operand %d in '%s'."),
1464 i.op[x].regs->reg_name, x + 1, i.tm.name);
1465 i.operands = 0;
1466 }
1467
1468 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1469 opcode suffix which is coded in the same place as an 8-bit
1470 immediate field would be. Here we fake an 8-bit immediate
1471 operand from the opcode suffix stored in tm.extension_opcode. */
1472
1473 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
1474
1475 exp = &im_expressions[i.imm_operands++];
1476 i.op[i.operands].imms = exp;
1477 i.types[i.operands++] = Imm8;
1478 exp->X_op = O_constant;
1479 exp->X_add_number = i.tm.extension_opcode;
1480 i.tm.extension_opcode = None;
1481 }
1482
1483 /* For insns with operands there are more diddles to do to the opcode. */
1484 if (i.operands)
1485 {
1486 if (!process_operands ())
1487 return;
1488 }
1489 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
1490 {
1491 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
1492 as_warn (_("translating to `%sp'"), i.tm.name);
1493 }
1494
1495 /* Handle conversion of 'int $3' --> special int3 insn. */
1496 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
1497 {
1498 i.tm.base_opcode = INT3_OPCODE;
1499 i.imm_operands = 0;
1500 }
1501
1502 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
1503 && i.op[0].disps->X_op == O_constant)
1504 {
1505 /* Convert "jmp constant" (and "call constant") to a jump (call) to
1506 the absolute address given by the constant. Since ix86 jumps and
1507 calls are pc relative, we need to generate a reloc. */
1508 i.op[0].disps->X_add_symbol = &abs_symbol;
1509 i.op[0].disps->X_op = O_symbol;
1510 }
1511
1512 if ((i.tm.opcode_modifier & Rex64) != 0)
1513 i.rex |= REX_MODE64;
1514
1515 /* For 8 bit registers we need an empty rex prefix. Also if the
1516 instruction already has a prefix, we need to convert old
1517 registers to new ones. */
1518
1519 if (((i.types[0] & Reg8) != 0
1520 && (i.op[0].regs->reg_flags & RegRex64) != 0)
1521 || ((i.types[1] & Reg8) != 0
1522 && (i.op[1].regs->reg_flags & RegRex64) != 0)
1523 || (((i.types[0] & Reg8) != 0 || (i.types[1] & Reg8) != 0)
1524 && i.rex != 0))
1525 {
1526 int x;
1527
1528 i.rex |= REX_OPCODE;
1529 for (x = 0; x < 2; x++)
1530 {
1531 /* Look for 8 bit operand that uses old registers. */
1532 if ((i.types[x] & Reg8) != 0
1533 && (i.op[x].regs->reg_flags & RegRex64) == 0)
1534 {
1535 /* In case it is "hi" register, give up. */
1536 if (i.op[x].regs->reg_num > 3)
1537 as_bad (_("can't encode register '%%%s' in an instruction requiring REX prefix."),
1538 i.op[x].regs->reg_name);
1539
1540 /* Otherwise it is equivalent to the extended register.
1541 Since the encoding doesn't change this is merely
1542 cosmetic cleanup for debug output. */
1543
1544 i.op[x].regs = i.op[x].regs + 8;
1545 }
1546 }
1547 }
1548
1549 if (i.rex != 0)
1550 add_prefix (REX_OPCODE | i.rex);
1551
1552 /* We are ready to output the insn. */
1553 output_insn ();
1554 }
1555
1556 static char *
1557 parse_insn (line, mnemonic)
1558 char *line;
1559 char *mnemonic;
1560 {
1561 char *l = line;
1562 char *token_start = l;
1563 char *mnem_p;
1564
1565 /* Non-zero if we found a prefix only acceptable with string insns. */
1566 const char *expecting_string_instruction = NULL;
1567
1568 while (1)
1569 {
1570 mnem_p = mnemonic;
1571 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1572 {
1573 mnem_p++;
1574 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
1575 {
1576 as_bad (_("no such instruction: `%s'"), token_start);
1577 return NULL;
1578 }
1579 l++;
1580 }
1581 if (!is_space_char (*l)
1582 && *l != END_OF_INSN
1583 && *l != PREFIX_SEPARATOR
1584 && *l != ',')
1585 {
1586 as_bad (_("invalid character %s in mnemonic"),
1587 output_invalid (*l));
1588 return NULL;
1589 }
1590 if (token_start == l)
1591 {
1592 if (*l == PREFIX_SEPARATOR)
1593 as_bad (_("expecting prefix; got nothing"));
1594 else
1595 as_bad (_("expecting mnemonic; got nothing"));
1596 return NULL;
1597 }
1598
1599 /* Look up instruction (or prefix) via hash table. */
1600 current_templates = hash_find (op_hash, mnemonic);
1601
1602 if (*l != END_OF_INSN
1603 && (!is_space_char (*l) || l[1] != END_OF_INSN)
1604 && current_templates
1605 && (current_templates->start->opcode_modifier & IsPrefix))
1606 {
1607 /* If we are in 16-bit mode, do not allow addr16 or data16.
1608 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1609 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1610 && flag_code != CODE_64BIT
1611 && (((current_templates->start->opcode_modifier & Size32) != 0)
1612 ^ (flag_code == CODE_16BIT)))
1613 {
1614 as_bad (_("redundant %s prefix"),
1615 current_templates->start->name);
1616 return NULL;
1617 }
1618 /* Add prefix, checking for repeated prefixes. */
1619 switch (add_prefix (current_templates->start->base_opcode))
1620 {
1621 case 0:
1622 return NULL;
1623 case 2:
1624 expecting_string_instruction = current_templates->start->name;
1625 break;
1626 }
1627 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1628 token_start = ++l;
1629 }
1630 else
1631 break;
1632 }
1633
1634 if (!current_templates)
1635 {
1636 /* See if we can get a match by trimming off a suffix. */
1637 switch (mnem_p[-1])
1638 {
1639 case WORD_MNEM_SUFFIX:
1640 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
1641 i.suffix = SHORT_MNEM_SUFFIX;
1642 else
1643 case BYTE_MNEM_SUFFIX:
1644 case QWORD_MNEM_SUFFIX:
1645 i.suffix = mnem_p[-1];
1646 mnem_p[-1] = '\0';
1647 current_templates = hash_find (op_hash, mnemonic);
1648 break;
1649 case SHORT_MNEM_SUFFIX:
1650 case LONG_MNEM_SUFFIX:
1651 if (!intel_syntax)
1652 {
1653 i.suffix = mnem_p[-1];
1654 mnem_p[-1] = '\0';
1655 current_templates = hash_find (op_hash, mnemonic);
1656 }
1657 break;
1658
1659 /* Intel Syntax. */
1660 case 'd':
1661 if (intel_syntax)
1662 {
1663 if (intel_float_operand (mnemonic) == 1)
1664 i.suffix = SHORT_MNEM_SUFFIX;
1665 else
1666 i.suffix = LONG_MNEM_SUFFIX;
1667 mnem_p[-1] = '\0';
1668 current_templates = hash_find (op_hash, mnemonic);
1669 }
1670 break;
1671 }
1672 if (!current_templates)
1673 {
1674 as_bad (_("no such instruction: `%s'"), token_start);
1675 return NULL;
1676 }
1677 }
1678
1679 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
1680 {
1681 /* Check for a branch hint. We allow ",pt" and ",pn" for
1682 predict taken and predict not taken respectively.
1683 I'm not sure that branch hints actually do anything on loop
1684 and jcxz insns (JumpByte) for current Pentium4 chips. They
1685 may work in the future and it doesn't hurt to accept them
1686 now. */
1687 if (l[0] == ',' && l[1] == 'p')
1688 {
1689 if (l[2] == 't')
1690 {
1691 if (!add_prefix (DS_PREFIX_OPCODE))
1692 return NULL;
1693 l += 3;
1694 }
1695 else if (l[2] == 'n')
1696 {
1697 if (!add_prefix (CS_PREFIX_OPCODE))
1698 return NULL;
1699 l += 3;
1700 }
1701 }
1702 }
1703 /* Any other comma loses. */
1704 if (*l == ',')
1705 {
1706 as_bad (_("invalid character %s in mnemonic"),
1707 output_invalid (*l));
1708 return NULL;
1709 }
1710
1711 /* Check if instruction is supported on specified architecture. */
1712 if ((current_templates->start->cpu_flags & ~(Cpu64 | CpuNo64))
1713 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64)))
1714 {
1715 as_warn (_("`%s' is not supported on `%s'"),
1716 current_templates->start->name, cpu_arch_name);
1717 }
1718 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
1719 {
1720 as_warn (_("use .code16 to ensure correct addressing mode"));
1721 }
1722
1723 /* Check for rep/repne without a string instruction. */
1724 if (expecting_string_instruction
1725 && !(current_templates->start->opcode_modifier & IsString))
1726 {
1727 as_bad (_("expecting string instruction after `%s'"),
1728 expecting_string_instruction);
1729 return NULL;
1730 }
1731
1732 return l;
1733 }
1734
1735 static char *
1736 parse_operands (l, mnemonic)
1737 char *l;
1738 const char *mnemonic;
1739 {
1740 char *token_start;
1741
1742 /* 1 if operand is pending after ','. */
1743 unsigned int expecting_operand = 0;
1744
1745 /* Non-zero if operand parens not balanced. */
1746 unsigned int paren_not_balanced;
1747
1748 while (*l != END_OF_INSN)
1749 {
1750 /* Skip optional white space before operand. */
1751 if (is_space_char (*l))
1752 ++l;
1753 if (!is_operand_char (*l) && *l != END_OF_INSN)
1754 {
1755 as_bad (_("invalid character %s before operand %d"),
1756 output_invalid (*l),
1757 i.operands + 1);
1758 return NULL;
1759 }
1760 token_start = l; /* after white space */
1761 paren_not_balanced = 0;
1762 while (paren_not_balanced || *l != ',')
1763 {
1764 if (*l == END_OF_INSN)
1765 {
1766 if (paren_not_balanced)
1767 {
1768 if (!intel_syntax)
1769 as_bad (_("unbalanced parenthesis in operand %d."),
1770 i.operands + 1);
1771 else
1772 as_bad (_("unbalanced brackets in operand %d."),
1773 i.operands + 1);
1774 return NULL;
1775 }
1776 else
1777 break; /* we are done */
1778 }
1779 else if (!is_operand_char (*l) && !is_space_char (*l))
1780 {
1781 as_bad (_("invalid character %s in operand %d"),
1782 output_invalid (*l),
1783 i.operands + 1);
1784 return NULL;
1785 }
1786 if (!intel_syntax)
1787 {
1788 if (*l == '(')
1789 ++paren_not_balanced;
1790 if (*l == ')')
1791 --paren_not_balanced;
1792 }
1793 else
1794 {
1795 if (*l == '[')
1796 ++paren_not_balanced;
1797 if (*l == ']')
1798 --paren_not_balanced;
1799 }
1800 l++;
1801 }
1802 if (l != token_start)
1803 { /* Yes, we've read in another operand. */
1804 unsigned int operand_ok;
1805 this_operand = i.operands++;
1806 if (i.operands > MAX_OPERANDS)
1807 {
1808 as_bad (_("spurious operands; (%d operands/instruction max)"),
1809 MAX_OPERANDS);
1810 return NULL;
1811 }
1812 /* Now parse operand adding info to 'i' as we go along. */
1813 END_STRING_AND_SAVE (l);
1814
1815 if (intel_syntax)
1816 operand_ok =
1817 i386_intel_operand (token_start,
1818 intel_float_operand (mnemonic));
1819 else
1820 operand_ok = i386_operand (token_start);
1821
1822 RESTORE_END_STRING (l);
1823 if (!operand_ok)
1824 return NULL;
1825 }
1826 else
1827 {
1828 if (expecting_operand)
1829 {
1830 expecting_operand_after_comma:
1831 as_bad (_("expecting operand after ','; got nothing"));
1832 return NULL;
1833 }
1834 if (*l == ',')
1835 {
1836 as_bad (_("expecting operand before ','; got nothing"));
1837 return NULL;
1838 }
1839 }
1840
1841 /* Now *l must be either ',' or END_OF_INSN. */
1842 if (*l == ',')
1843 {
1844 if (*++l == END_OF_INSN)
1845 {
1846 /* Just skip it, if it's \n complain. */
1847 goto expecting_operand_after_comma;
1848 }
1849 expecting_operand = 1;
1850 }
1851 }
1852 return l;
1853 }
1854
1855 static void
1856 swap_operands ()
1857 {
1858 union i386_op temp_op;
1859 unsigned int temp_type;
1860 enum bfd_reloc_code_real temp_reloc;
1861 int xchg1 = 0;
1862 int xchg2 = 0;
1863
1864 if (i.operands == 2)
1865 {
1866 xchg1 = 0;
1867 xchg2 = 1;
1868 }
1869 else if (i.operands == 3)
1870 {
1871 xchg1 = 0;
1872 xchg2 = 2;
1873 }
1874 temp_type = i.types[xchg2];
1875 i.types[xchg2] = i.types[xchg1];
1876 i.types[xchg1] = temp_type;
1877 temp_op = i.op[xchg2];
1878 i.op[xchg2] = i.op[xchg1];
1879 i.op[xchg1] = temp_op;
1880 temp_reloc = i.reloc[xchg2];
1881 i.reloc[xchg2] = i.reloc[xchg1];
1882 i.reloc[xchg1] = temp_reloc;
1883
1884 if (i.mem_operands == 2)
1885 {
1886 const seg_entry *temp_seg;
1887 temp_seg = i.seg[0];
1888 i.seg[0] = i.seg[1];
1889 i.seg[1] = temp_seg;
1890 }
1891 }
1892
1893 /* Try to ensure constant immediates are represented in the smallest
1894 opcode possible. */
1895 static void
1896 optimize_imm ()
1897 {
1898 char guess_suffix = 0;
1899 int op;
1900
1901 if (i.suffix)
1902 guess_suffix = i.suffix;
1903 else if (i.reg_operands)
1904 {
1905 /* Figure out a suffix from the last register operand specified.
1906 We can't do this properly yet, ie. excluding InOutPortReg,
1907 but the following works for instructions with immediates.
1908 In any case, we can't set i.suffix yet. */
1909 for (op = i.operands; --op >= 0;)
1910 if (i.types[op] & Reg)
1911 {
1912 if (i.types[op] & Reg8)
1913 guess_suffix = BYTE_MNEM_SUFFIX;
1914 else if (i.types[op] & Reg16)
1915 guess_suffix = WORD_MNEM_SUFFIX;
1916 else if (i.types[op] & Reg32)
1917 guess_suffix = LONG_MNEM_SUFFIX;
1918 else if (i.types[op] & Reg64)
1919 guess_suffix = QWORD_MNEM_SUFFIX;
1920 break;
1921 }
1922 }
1923 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
1924 guess_suffix = WORD_MNEM_SUFFIX;
1925
1926 for (op = i.operands; --op >= 0;)
1927 if (i.types[op] & Imm)
1928 {
1929 switch (i.op[op].imms->X_op)
1930 {
1931 case O_constant:
1932 /* If a suffix is given, this operand may be shortened. */
1933 switch (guess_suffix)
1934 {
1935 case LONG_MNEM_SUFFIX:
1936 i.types[op] |= Imm32 | Imm64;
1937 break;
1938 case WORD_MNEM_SUFFIX:
1939 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
1940 break;
1941 case BYTE_MNEM_SUFFIX:
1942 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
1943 break;
1944 }
1945
1946 /* If this operand is at most 16 bits, convert it
1947 to a signed 16 bit number before trying to see
1948 whether it will fit in an even smaller size.
1949 This allows a 16-bit operand such as $0xffe0 to
1950 be recognised as within Imm8S range. */
1951 if ((i.types[op] & Imm16)
1952 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
1953 {
1954 i.op[op].imms->X_add_number =
1955 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1956 }
1957 if ((i.types[op] & Imm32)
1958 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
1959 == 0))
1960 {
1961 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
1962 ^ ((offsetT) 1 << 31))
1963 - ((offsetT) 1 << 31));
1964 }
1965 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
1966
1967 /* We must avoid matching of Imm32 templates when 64bit
1968 only immediate is available. */
1969 if (guess_suffix == QWORD_MNEM_SUFFIX)
1970 i.types[op] &= ~Imm32;
1971 break;
1972
1973 case O_absent:
1974 case O_register:
1975 abort ();
1976
1977 /* Symbols and expressions. */
1978 default:
1979 /* Convert symbolic operand to proper sizes for matching. */
1980 switch (guess_suffix)
1981 {
1982 case QWORD_MNEM_SUFFIX:
1983 i.types[op] = Imm64 | Imm32S;
1984 break;
1985 case LONG_MNEM_SUFFIX:
1986 i.types[op] = Imm32;
1987 break;
1988 case WORD_MNEM_SUFFIX:
1989 i.types[op] = Imm16;
1990 break;
1991 case BYTE_MNEM_SUFFIX:
1992 i.types[op] = Imm8 | Imm8S;
1993 break;
1994 }
1995 break;
1996 }
1997 }
1998 }
1999
2000 /* Try to use the smallest displacement type too. */
2001 static void
2002 optimize_disp ()
2003 {
2004 int op;
2005
2006 for (op = i.operands; --op >= 0;)
2007 if ((i.types[op] & Disp) && i.op[op].disps->X_op == O_constant)
2008 {
2009 offsetT disp = i.op[op].disps->X_add_number;
2010
2011 if (i.types[op] & Disp16)
2012 {
2013 /* We know this operand is at most 16 bits, so
2014 convert to a signed 16 bit number before trying
2015 to see whether it will fit in an even smaller
2016 size. */
2017
2018 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
2019 }
2020 else if (i.types[op] & Disp32)
2021 {
2022 /* We know this operand is at most 32 bits, so convert to a
2023 signed 32 bit number before trying to see whether it will
2024 fit in an even smaller size. */
2025 disp &= (((offsetT) 2 << 31) - 1);
2026 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
2027 }
2028 if (flag_code == CODE_64BIT)
2029 {
2030 if (fits_in_signed_long (disp))
2031 i.types[op] |= Disp32S;
2032 if (fits_in_unsigned_long (disp))
2033 i.types[op] |= Disp32;
2034 }
2035 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
2036 && fits_in_signed_byte (disp))
2037 i.types[op] |= Disp8;
2038 }
2039 }
2040
2041 static int
2042 match_template ()
2043 {
2044 /* Points to template once we've found it. */
2045 const template *t;
2046 unsigned int overlap0, overlap1, overlap2;
2047 unsigned int found_reverse_match;
2048 int suffix_check;
2049
2050 #define MATCH(overlap, given, template) \
2051 ((overlap & ~JumpAbsolute) \
2052 && (((given) & (BaseIndex | JumpAbsolute)) \
2053 == ((overlap) & (BaseIndex | JumpAbsolute))))
2054
2055 /* If given types r0 and r1 are registers they must be of the same type
2056 unless the expected operand type register overlap is null.
2057 Note that Acc in a template matches every size of reg. */
2058 #define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
2059 (((g0) & Reg) == 0 || ((g1) & Reg) == 0 \
2060 || ((g0) & Reg) == ((g1) & Reg) \
2061 || ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
2062
2063 overlap0 = 0;
2064 overlap1 = 0;
2065 overlap2 = 0;
2066 found_reverse_match = 0;
2067 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
2068 ? No_bSuf
2069 : (i.suffix == WORD_MNEM_SUFFIX
2070 ? No_wSuf
2071 : (i.suffix == SHORT_MNEM_SUFFIX
2072 ? No_sSuf
2073 : (i.suffix == LONG_MNEM_SUFFIX
2074 ? No_lSuf
2075 : (i.suffix == QWORD_MNEM_SUFFIX
2076 ? No_qSuf
2077 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX
2078 ? No_xSuf : 0))))));
2079
2080 t = current_templates->start;
2081 if (i.suffix == QWORD_MNEM_SUFFIX
2082 && flag_code != CODE_64BIT
2083 && (intel_syntax
2084 ? !(t->opcode_modifier & IgnoreSize)
2085 && !intel_float_operand (t->name)
2086 : intel_float_operand (t->name) != 2)
2087 && (!(t->operand_types[0] & (RegMMX | RegXMM))
2088 || !(t->operand_types[t->operands > 1] & (RegMMX | RegXMM)))
2089 && (t->base_opcode != 0x0fc7
2090 || t->extension_opcode != 1 /* cmpxchg8b */))
2091 t = current_templates->end;
2092 for (; t < current_templates->end; t++)
2093 {
2094 /* Must have right number of operands. */
2095 if (i.operands != t->operands)
2096 continue;
2097
2098 /* Check the suffix, except for some instructions in intel mode. */
2099 if ((t->opcode_modifier & suffix_check)
2100 && !(intel_syntax
2101 && (t->opcode_modifier & IgnoreSize)))
2102 continue;
2103
2104 /* Do not verify operands when there are none. */
2105 else if (!t->operands)
2106 {
2107 if (t->cpu_flags & ~cpu_arch_flags)
2108 continue;
2109 /* We've found a match; break out of loop. */
2110 break;
2111 }
2112
2113 overlap0 = i.types[0] & t->operand_types[0];
2114 switch (t->operands)
2115 {
2116 case 1:
2117 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
2118 continue;
2119 break;
2120 case 2:
2121 case 3:
2122 overlap1 = i.types[1] & t->operand_types[1];
2123 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
2124 || !MATCH (overlap1, i.types[1], t->operand_types[1])
2125 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2126 t->operand_types[0],
2127 overlap1, i.types[1],
2128 t->operand_types[1]))
2129 {
2130 /* Check if other direction is valid ... */
2131 if ((t->opcode_modifier & (D | FloatD)) == 0)
2132 continue;
2133
2134 /* Try reversing direction of operands. */
2135 overlap0 = i.types[0] & t->operand_types[1];
2136 overlap1 = i.types[1] & t->operand_types[0];
2137 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
2138 || !MATCH (overlap1, i.types[1], t->operand_types[0])
2139 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2140 t->operand_types[1],
2141 overlap1, i.types[1],
2142 t->operand_types[0]))
2143 {
2144 /* Does not match either direction. */
2145 continue;
2146 }
2147 /* found_reverse_match holds which of D or FloatDR
2148 we've found. */
2149 found_reverse_match = t->opcode_modifier & (D | FloatDR);
2150 }
2151 /* Found a forward 2 operand match here. */
2152 else if (t->operands == 3)
2153 {
2154 /* Here we make use of the fact that there are no
2155 reverse match 3 operand instructions, and all 3
2156 operand instructions only need to be checked for
2157 register consistency between operands 2 and 3. */
2158 overlap2 = i.types[2] & t->operand_types[2];
2159 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
2160 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
2161 t->operand_types[1],
2162 overlap2, i.types[2],
2163 t->operand_types[2]))
2164
2165 continue;
2166 }
2167 /* Found either forward/reverse 2 or 3 operand match here:
2168 slip through to break. */
2169 }
2170 if (t->cpu_flags & ~cpu_arch_flags)
2171 {
2172 found_reverse_match = 0;
2173 continue;
2174 }
2175 /* We've found a match; break out of loop. */
2176 break;
2177 }
2178
2179 if (t == current_templates->end)
2180 {
2181 /* We found no match. */
2182 as_bad (_("suffix or operands invalid for `%s'"),
2183 current_templates->start->name);
2184 return 0;
2185 }
2186
2187 if (!quiet_warnings)
2188 {
2189 if (!intel_syntax
2190 && ((i.types[0] & JumpAbsolute)
2191 != (t->operand_types[0] & JumpAbsolute)))
2192 {
2193 as_warn (_("indirect %s without `*'"), t->name);
2194 }
2195
2196 if ((t->opcode_modifier & (IsPrefix | IgnoreSize))
2197 == (IsPrefix | IgnoreSize))
2198 {
2199 /* Warn them that a data or address size prefix doesn't
2200 affect assembly of the next line of code. */
2201 as_warn (_("stand-alone `%s' prefix"), t->name);
2202 }
2203 }
2204
2205 /* Copy the template we found. */
2206 i.tm = *t;
2207 if (found_reverse_match)
2208 {
2209 /* If we found a reverse match we must alter the opcode
2210 direction bit. found_reverse_match holds bits to change
2211 (different for int & float insns). */
2212
2213 i.tm.base_opcode ^= found_reverse_match;
2214
2215 i.tm.operand_types[0] = t->operand_types[1];
2216 i.tm.operand_types[1] = t->operand_types[0];
2217 }
2218
2219 return 1;
2220 }
2221
2222 static int
2223 check_string ()
2224 {
2225 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
2226 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
2227 {
2228 if (i.seg[0] != NULL && i.seg[0] != &es)
2229 {
2230 as_bad (_("`%s' operand %d must use `%%es' segment"),
2231 i.tm.name,
2232 mem_op + 1);
2233 return 0;
2234 }
2235 /* There's only ever one segment override allowed per instruction.
2236 This instruction possibly has a legal segment override on the
2237 second operand, so copy the segment to where non-string
2238 instructions store it, allowing common code. */
2239 i.seg[0] = i.seg[1];
2240 }
2241 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
2242 {
2243 if (i.seg[1] != NULL && i.seg[1] != &es)
2244 {
2245 as_bad (_("`%s' operand %d must use `%%es' segment"),
2246 i.tm.name,
2247 mem_op + 2);
2248 return 0;
2249 }
2250 }
2251 return 1;
2252 }
2253
2254 static int
2255 process_suffix (void)
2256 {
2257 /* If matched instruction specifies an explicit instruction mnemonic
2258 suffix, use it. */
2259 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
2260 {
2261 if (i.tm.opcode_modifier & Size16)
2262 i.suffix = WORD_MNEM_SUFFIX;
2263 else if (i.tm.opcode_modifier & Size64)
2264 i.suffix = QWORD_MNEM_SUFFIX;
2265 else
2266 i.suffix = LONG_MNEM_SUFFIX;
2267 }
2268 else if (i.reg_operands)
2269 {
2270 /* If there's no instruction mnemonic suffix we try to invent one
2271 based on register operands. */
2272 if (!i.suffix)
2273 {
2274 /* We take i.suffix from the last register operand specified,
2275 Destination register type is more significant than source
2276 register type. */
2277 int op;
2278
2279 for (op = i.operands; --op >= 0;)
2280 if ((i.types[op] & Reg)
2281 && !(i.tm.operand_types[op] & InOutPortReg))
2282 {
2283 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
2284 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
2285 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
2286 LONG_MNEM_SUFFIX);
2287 break;
2288 }
2289 }
2290 else if (i.suffix == BYTE_MNEM_SUFFIX)
2291 {
2292 if (!check_byte_reg ())
2293 return 0;
2294 }
2295 else if (i.suffix == LONG_MNEM_SUFFIX)
2296 {
2297 if (!check_long_reg ())
2298 return 0;
2299 }
2300 else if (i.suffix == QWORD_MNEM_SUFFIX)
2301 {
2302 if (!check_qword_reg ())
2303 return 0;
2304 }
2305 else if (i.suffix == WORD_MNEM_SUFFIX)
2306 {
2307 if (!check_word_reg ())
2308 return 0;
2309 }
2310 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2311 /* Do nothing if the instruction is going to ignore the prefix. */
2312 ;
2313 else
2314 abort ();
2315 }
2316 else if ((i.tm.opcode_modifier & DefaultSize)
2317 && !i.suffix
2318 /* exclude fldenv/frstor/fsave/fstenv */
2319 && (i.tm.opcode_modifier & No_sSuf))
2320 {
2321 i.suffix = stackop_size;
2322 if (i.suffix == QWORD_MNEM_SUFFIX
2323 && (i.tm.opcode_modifier & No_qSuf))
2324 i.suffix = LONG_MNEM_SUFFIX;
2325 }
2326 else if (intel_syntax
2327 && !i.suffix
2328 && ((i.tm.operand_types[0] & JumpAbsolute)
2329 || (i.tm.opcode_modifier & (JumpByte|JumpInterSegment))
2330 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
2331 && i.tm.extension_opcode <= 3)))
2332 {
2333 switch (flag_code)
2334 {
2335 case CODE_64BIT:
2336 if (!(i.tm.opcode_modifier & No_qSuf))
2337 {
2338 i.suffix = QWORD_MNEM_SUFFIX;
2339 break;
2340 }
2341 case CODE_32BIT:
2342 if (!(i.tm.opcode_modifier & No_lSuf))
2343 i.suffix = LONG_MNEM_SUFFIX;
2344 break;
2345 case CODE_16BIT:
2346 if (!(i.tm.opcode_modifier & No_wSuf))
2347 i.suffix = WORD_MNEM_SUFFIX;
2348 break;
2349 }
2350 }
2351
2352 if (!i.suffix)
2353 {
2354 if (!intel_syntax)
2355 {
2356 if (i.tm.opcode_modifier & W)
2357 {
2358 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2359 return 0;
2360 }
2361 }
2362 else
2363 {
2364 unsigned int suffixes = ~i.tm.opcode_modifier
2365 & (No_bSuf
2366 | No_wSuf
2367 | No_lSuf
2368 | No_sSuf
2369 | No_xSuf
2370 | No_qSuf);
2371
2372 if ((i.tm.opcode_modifier & W)
2373 || ((suffixes & (suffixes - 1))
2374 && !(i.tm.opcode_modifier & (DefaultSize | IgnoreSize))))
2375 {
2376 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
2377 return 0;
2378 }
2379 }
2380 }
2381
2382 /* Change the opcode based on the operand size given by i.suffix;
2383 We don't need to change things for byte insns. */
2384
2385 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2386 {
2387 /* It's not a byte, select word/dword operation. */
2388 if (i.tm.opcode_modifier & W)
2389 {
2390 if (i.tm.opcode_modifier & ShortForm)
2391 i.tm.base_opcode |= 8;
2392 else
2393 i.tm.base_opcode |= 1;
2394 }
2395
2396 /* Now select between word & dword operations via the operand
2397 size prefix, except for instructions that will ignore this
2398 prefix anyway. */
2399 if (i.suffix != QWORD_MNEM_SUFFIX
2400 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
2401 && !(i.tm.opcode_modifier & (IgnoreSize | FloatMF))
2402 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
2403 || (flag_code == CODE_64BIT
2404 && (i.tm.opcode_modifier & JumpByte))))
2405 {
2406 unsigned int prefix = DATA_PREFIX_OPCODE;
2407
2408 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2409 prefix = ADDR_PREFIX_OPCODE;
2410
2411 if (!add_prefix (prefix))
2412 return 0;
2413 }
2414
2415 /* Set mode64 for an operand. */
2416 if (i.suffix == QWORD_MNEM_SUFFIX
2417 && flag_code == CODE_64BIT
2418 && (i.tm.opcode_modifier & NoRex64) == 0)
2419 i.rex |= REX_MODE64;
2420
2421 /* Size floating point instruction. */
2422 if (i.suffix == LONG_MNEM_SUFFIX)
2423 if (i.tm.opcode_modifier & FloatMF)
2424 i.tm.base_opcode ^= 4;
2425 }
2426
2427 return 1;
2428 }
2429
2430 static int
2431 check_byte_reg (void)
2432 {
2433 int op;
2434
2435 for (op = i.operands; --op >= 0;)
2436 {
2437 /* If this is an eight bit register, it's OK. If it's the 16 or
2438 32 bit version of an eight bit register, we will just use the
2439 low portion, and that's OK too. */
2440 if (i.types[op] & Reg8)
2441 continue;
2442
2443 /* movzx and movsx should not generate this warning. */
2444 if (intel_syntax
2445 && (i.tm.base_opcode == 0xfb7
2446 || i.tm.base_opcode == 0xfb6
2447 || i.tm.base_opcode == 0x63
2448 || i.tm.base_opcode == 0xfbe
2449 || i.tm.base_opcode == 0xfbf))
2450 continue;
2451
2452 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4
2453 #if 0
2454 /* Check that the template allows eight bit regs. This
2455 kills insns such as `orb $1,%edx', which maybe should be
2456 allowed. */
2457 && (i.tm.operand_types[op] & (Reg8 | InOutPortReg))
2458 #endif
2459 )
2460 {
2461 /* Prohibit these changes in the 64bit mode, since the
2462 lowering is more complicated. */
2463 if (flag_code == CODE_64BIT
2464 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2465 {
2466 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2467 i.op[op].regs->reg_name,
2468 i.suffix);
2469 return 0;
2470 }
2471 #if REGISTER_WARNINGS
2472 if (!quiet_warnings
2473 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2474 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2475 (i.op[op].regs + (i.types[op] & Reg16
2476 ? REGNAM_AL - REGNAM_AX
2477 : REGNAM_AL - REGNAM_EAX))->reg_name,
2478 i.op[op].regs->reg_name,
2479 i.suffix);
2480 #endif
2481 continue;
2482 }
2483 /* Any other register is bad. */
2484 if (i.types[op] & (Reg | RegMMX | RegXMM
2485 | SReg2 | SReg3
2486 | Control | Debug | Test
2487 | FloatReg | FloatAcc))
2488 {
2489 as_bad (_("`%%%s' not allowed with `%s%c'"),
2490 i.op[op].regs->reg_name,
2491 i.tm.name,
2492 i.suffix);
2493 return 0;
2494 }
2495 }
2496 return 1;
2497 }
2498
2499 static int
2500 check_long_reg ()
2501 {
2502 int op;
2503
2504 for (op = i.operands; --op >= 0;)
2505 /* Reject eight bit registers, except where the template requires
2506 them. (eg. movzb) */
2507 if ((i.types[op] & Reg8) != 0
2508 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2509 {
2510 as_bad (_("`%%%s' not allowed with `%s%c'"),
2511 i.op[op].regs->reg_name,
2512 i.tm.name,
2513 i.suffix);
2514 return 0;
2515 }
2516 /* Warn if the e prefix on a general reg is missing. */
2517 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2518 && (i.types[op] & Reg16) != 0
2519 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2520 {
2521 /* Prohibit these changes in the 64bit mode, since the
2522 lowering is more complicated. */
2523 if (flag_code == CODE_64BIT)
2524 {
2525 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2526 i.op[op].regs->reg_name,
2527 i.suffix);
2528 return 0;
2529 }
2530 #if REGISTER_WARNINGS
2531 else
2532 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2533 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
2534 i.op[op].regs->reg_name,
2535 i.suffix);
2536 #endif
2537 }
2538 /* Warn if the r prefix on a general reg is missing. */
2539 else if ((i.types[op] & Reg64) != 0
2540 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2541 {
2542 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2543 i.op[op].regs->reg_name,
2544 i.suffix);
2545 return 0;
2546 }
2547 return 1;
2548 }
2549
2550 static int
2551 check_qword_reg ()
2552 {
2553 int op;
2554
2555 for (op = i.operands; --op >= 0; )
2556 /* Reject eight bit registers, except where the template requires
2557 them. (eg. movzb) */
2558 if ((i.types[op] & Reg8) != 0
2559 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2560 {
2561 as_bad (_("`%%%s' not allowed with `%s%c'"),
2562 i.op[op].regs->reg_name,
2563 i.tm.name,
2564 i.suffix);
2565 return 0;
2566 }
2567 /* Warn if the e prefix on a general reg is missing. */
2568 else if (((i.types[op] & Reg16) != 0
2569 || (i.types[op] & Reg32) != 0)
2570 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2571 {
2572 /* Prohibit these changes in the 64bit mode, since the
2573 lowering is more complicated. */
2574 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2575 i.op[op].regs->reg_name,
2576 i.suffix);
2577 return 0;
2578 }
2579 return 1;
2580 }
2581
2582 static int
2583 check_word_reg ()
2584 {
2585 int op;
2586 for (op = i.operands; --op >= 0;)
2587 /* Reject eight bit registers, except where the template requires
2588 them. (eg. movzb) */
2589 if ((i.types[op] & Reg8) != 0
2590 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2591 {
2592 as_bad (_("`%%%s' not allowed with `%s%c'"),
2593 i.op[op].regs->reg_name,
2594 i.tm.name,
2595 i.suffix);
2596 return 0;
2597 }
2598 /* Warn if the e prefix on a general reg is present. */
2599 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2600 && (i.types[op] & Reg32) != 0
2601 && (i.tm.operand_types[op] & (Reg16 | Acc)) != 0)
2602 {
2603 /* Prohibit these changes in the 64bit mode, since the
2604 lowering is more complicated. */
2605 if (flag_code == CODE_64BIT)
2606 {
2607 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2608 i.op[op].regs->reg_name,
2609 i.suffix);
2610 return 0;
2611 }
2612 else
2613 #if REGISTER_WARNINGS
2614 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2615 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
2616 i.op[op].regs->reg_name,
2617 i.suffix);
2618 #endif
2619 }
2620 return 1;
2621 }
2622
2623 static int
2624 finalize_imm ()
2625 {
2626 unsigned int overlap0, overlap1, overlap2;
2627
2628 overlap0 = i.types[0] & i.tm.operand_types[0];
2629 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64))
2630 && overlap0 != Imm8 && overlap0 != Imm8S
2631 && overlap0 != Imm16 && overlap0 != Imm32S
2632 && overlap0 != Imm32 && overlap0 != Imm64)
2633 {
2634 if (i.suffix)
2635 {
2636 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX
2637 ? Imm8 | Imm8S
2638 : (i.suffix == WORD_MNEM_SUFFIX
2639 ? Imm16
2640 : (i.suffix == QWORD_MNEM_SUFFIX
2641 ? Imm64 | Imm32S
2642 : Imm32)));
2643 }
2644 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2645 || overlap0 == (Imm16 | Imm32)
2646 || overlap0 == (Imm16 | Imm32S))
2647 {
2648 overlap0 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2649 ? Imm16 : Imm32S);
2650 }
2651 if (overlap0 != Imm8 && overlap0 != Imm8S
2652 && overlap0 != Imm16 && overlap0 != Imm32S
2653 && overlap0 != Imm32 && overlap0 != Imm64)
2654 {
2655 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2656 return 0;
2657 }
2658 }
2659 i.types[0] = overlap0;
2660
2661 overlap1 = i.types[1] & i.tm.operand_types[1];
2662 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32))
2663 && overlap1 != Imm8 && overlap1 != Imm8S
2664 && overlap1 != Imm16 && overlap1 != Imm32S
2665 && overlap1 != Imm32 && overlap1 != Imm64)
2666 {
2667 if (i.suffix)
2668 {
2669 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX
2670 ? Imm8 | Imm8S
2671 : (i.suffix == WORD_MNEM_SUFFIX
2672 ? Imm16
2673 : (i.suffix == QWORD_MNEM_SUFFIX
2674 ? Imm64 | Imm32S
2675 : Imm32)));
2676 }
2677 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2678 || overlap1 == (Imm16 | Imm32)
2679 || overlap1 == (Imm16 | Imm32S))
2680 {
2681 overlap1 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2682 ? Imm16 : Imm32S);
2683 }
2684 if (overlap1 != Imm8 && overlap1 != Imm8S
2685 && overlap1 != Imm16 && overlap1 != Imm32S
2686 && overlap1 != Imm32 && overlap1 != Imm64)
2687 {
2688 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
2689 return 0;
2690 }
2691 }
2692 i.types[1] = overlap1;
2693
2694 overlap2 = i.types[2] & i.tm.operand_types[2];
2695 assert ((overlap2 & Imm) == 0);
2696 i.types[2] = overlap2;
2697
2698 return 1;
2699 }
2700
2701 static int
2702 process_operands ()
2703 {
2704 /* Default segment register this instruction will use for memory
2705 accesses. 0 means unknown. This is only for optimizing out
2706 unnecessary segment overrides. */
2707 const seg_entry *default_seg = 0;
2708
2709 /* The imul $imm, %reg instruction is converted into
2710 imul $imm, %reg, %reg, and the clr %reg instruction
2711 is converted into xor %reg, %reg. */
2712 if (i.tm.opcode_modifier & regKludge)
2713 {
2714 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
2715 /* Pretend we saw the extra register operand. */
2716 assert (i.op[first_reg_op + 1].regs == 0);
2717 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2718 i.types[first_reg_op + 1] = i.types[first_reg_op];
2719 i.reg_operands = 2;
2720 }
2721
2722 if (i.tm.opcode_modifier & ShortForm)
2723 {
2724 /* The register or float register operand is in operand 0 or 1. */
2725 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
2726 /* Register goes in low 3 bits of opcode. */
2727 i.tm.base_opcode |= i.op[op].regs->reg_num;
2728 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2729 i.rex |= REX_EXTZ;
2730 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2731 {
2732 /* Warn about some common errors, but press on regardless.
2733 The first case can be generated by gcc (<= 2.8.1). */
2734 if (i.operands == 2)
2735 {
2736 /* Reversed arguments on faddp, fsubp, etc. */
2737 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
2738 i.op[1].regs->reg_name,
2739 i.op[0].regs->reg_name);
2740 }
2741 else
2742 {
2743 /* Extraneous `l' suffix on fp insn. */
2744 as_warn (_("translating to `%s %%%s'"), i.tm.name,
2745 i.op[0].regs->reg_name);
2746 }
2747 }
2748 }
2749 else if (i.tm.opcode_modifier & Modrm)
2750 {
2751 /* The opcode is completed (modulo i.tm.extension_opcode which
2752 must be put into the modrm byte). Now, we make the modrm and
2753 index base bytes based on all the info we've collected. */
2754
2755 default_seg = build_modrm_byte ();
2756 }
2757 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2758 {
2759 if (i.tm.base_opcode == POP_SEG_SHORT
2760 && i.op[0].regs->reg_num == 1)
2761 {
2762 as_bad (_("you can't `pop %%cs'"));
2763 return 0;
2764 }
2765 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
2766 if ((i.op[0].regs->reg_flags & RegRex) != 0)
2767 i.rex |= REX_EXTZ;
2768 }
2769 else if ((i.tm.base_opcode & ~(D | W)) == MOV_AX_DISP32)
2770 {
2771 default_seg = &ds;
2772 }
2773 else if ((i.tm.opcode_modifier & IsString) != 0)
2774 {
2775 /* For the string instructions that allow a segment override
2776 on one of their operands, the default segment is ds. */
2777 default_seg = &ds;
2778 }
2779
2780 if (i.tm.base_opcode == 0x8d /* lea */ && i.seg[0] && !quiet_warnings)
2781 as_warn (_("segment override on `lea' is ineffectual"));
2782
2783 /* If a segment was explicitly specified, and the specified segment
2784 is not the default, use an opcode prefix to select it. If we
2785 never figured out what the default segment is, then default_seg
2786 will be zero at this point, and the specified segment prefix will
2787 always be used. */
2788 if ((i.seg[0]) && (i.seg[0] != default_seg))
2789 {
2790 if (!add_prefix (i.seg[0]->seg_prefix))
2791 return 0;
2792 }
2793 return 1;
2794 }
2795
2796 static const seg_entry *
2797 build_modrm_byte ()
2798 {
2799 const seg_entry *default_seg = 0;
2800
2801 /* i.reg_operands MUST be the number of real register operands;
2802 implicit registers do not count. */
2803 if (i.reg_operands == 2)
2804 {
2805 unsigned int source, dest;
2806 source = ((i.types[0]
2807 & (Reg | RegMMX | RegXMM
2808 | SReg2 | SReg3
2809 | Control | Debug | Test))
2810 ? 0 : 1);
2811 dest = source + 1;
2812
2813 i.rm.mode = 3;
2814 /* One of the register operands will be encoded in the i.tm.reg
2815 field, the other in the combined i.tm.mode and i.tm.regmem
2816 fields. If no form of this instruction supports a memory
2817 destination operand, then we assume the source operand may
2818 sometimes be a memory operand and so we need to store the
2819 destination in the i.rm.reg field. */
2820 if ((i.tm.operand_types[dest] & AnyMem) == 0)
2821 {
2822 i.rm.reg = i.op[dest].regs->reg_num;
2823 i.rm.regmem = i.op[source].regs->reg_num;
2824 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2825 i.rex |= REX_EXTX;
2826 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2827 i.rex |= REX_EXTZ;
2828 }
2829 else
2830 {
2831 i.rm.reg = i.op[source].regs->reg_num;
2832 i.rm.regmem = i.op[dest].regs->reg_num;
2833 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2834 i.rex |= REX_EXTZ;
2835 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2836 i.rex |= REX_EXTX;
2837 }
2838 }
2839 else
2840 { /* If it's not 2 reg operands... */
2841 if (i.mem_operands)
2842 {
2843 unsigned int fake_zero_displacement = 0;
2844 unsigned int op = ((i.types[0] & AnyMem)
2845 ? 0
2846 : (i.types[1] & AnyMem) ? 1 : 2);
2847
2848 default_seg = &ds;
2849
2850 if (i.base_reg == 0)
2851 {
2852 i.rm.mode = 0;
2853 if (!i.disp_operands)
2854 fake_zero_displacement = 1;
2855 if (i.index_reg == 0)
2856 {
2857 /* Operand is just <disp> */
2858 if (flag_code == CODE_64BIT)
2859 {
2860 /* 64bit mode overwrites the 32bit absolute
2861 addressing by RIP relative addressing and
2862 absolute addressing is encoded by one of the
2863 redundant SIB forms. */
2864 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2865 i.sib.base = NO_BASE_REGISTER;
2866 i.sib.index = NO_INDEX_REGISTER;
2867 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0) ? Disp32S : Disp32);
2868 }
2869 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
2870 {
2871 i.rm.regmem = NO_BASE_REGISTER_16;
2872 i.types[op] = Disp16;
2873 }
2874 else
2875 {
2876 i.rm.regmem = NO_BASE_REGISTER;
2877 i.types[op] = Disp32;
2878 }
2879 }
2880 else /* !i.base_reg && i.index_reg */
2881 {
2882 i.sib.index = i.index_reg->reg_num;
2883 i.sib.base = NO_BASE_REGISTER;
2884 i.sib.scale = i.log2_scale_factor;
2885 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2886 i.types[op] &= ~Disp;
2887 if (flag_code != CODE_64BIT)
2888 i.types[op] |= Disp32; /* Must be 32 bit */
2889 else
2890 i.types[op] |= Disp32S;
2891 if ((i.index_reg->reg_flags & RegRex) != 0)
2892 i.rex |= REX_EXTY;
2893 }
2894 }
2895 /* RIP addressing for 64bit mode. */
2896 else if (i.base_reg->reg_type == BaseIndex)
2897 {
2898 i.rm.regmem = NO_BASE_REGISTER;
2899 i.types[op] &= ~ Disp;
2900 i.types[op] |= Disp32S;
2901 i.flags[op] = Operand_PCrel;
2902 if (! i.disp_operands)
2903 fake_zero_displacement = 1;
2904 }
2905 else if (i.base_reg->reg_type & Reg16)
2906 {
2907 switch (i.base_reg->reg_num)
2908 {
2909 case 3: /* (%bx) */
2910 if (i.index_reg == 0)
2911 i.rm.regmem = 7;
2912 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
2913 i.rm.regmem = i.index_reg->reg_num - 6;
2914 break;
2915 case 5: /* (%bp) */
2916 default_seg = &ss;
2917 if (i.index_reg == 0)
2918 {
2919 i.rm.regmem = 6;
2920 if ((i.types[op] & Disp) == 0)
2921 {
2922 /* fake (%bp) into 0(%bp) */
2923 i.types[op] |= Disp8;
2924 fake_zero_displacement = 1;
2925 }
2926 }
2927 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
2928 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2929 break;
2930 default: /* (%si) -> 4 or (%di) -> 5 */
2931 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2932 }
2933 i.rm.mode = mode_from_disp_size (i.types[op]);
2934 }
2935 else /* i.base_reg and 32/64 bit mode */
2936 {
2937 if (flag_code == CODE_64BIT
2938 && (i.types[op] & Disp))
2939 i.types[op] = (i.types[op] & Disp8) | (i.prefix[ADDR_PREFIX] == 0 ? Disp32S : Disp32);
2940
2941 i.rm.regmem = i.base_reg->reg_num;
2942 if ((i.base_reg->reg_flags & RegRex) != 0)
2943 i.rex |= REX_EXTZ;
2944 i.sib.base = i.base_reg->reg_num;
2945 /* x86-64 ignores REX prefix bit here to avoid decoder
2946 complications. */
2947 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
2948 {
2949 default_seg = &ss;
2950 if (i.disp_operands == 0)
2951 {
2952 fake_zero_displacement = 1;
2953 i.types[op] |= Disp8;
2954 }
2955 }
2956 else if (i.base_reg->reg_num == ESP_REG_NUM)
2957 {
2958 default_seg = &ss;
2959 }
2960 i.sib.scale = i.log2_scale_factor;
2961 if (i.index_reg == 0)
2962 {
2963 /* <disp>(%esp) becomes two byte modrm with no index
2964 register. We've already stored the code for esp
2965 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
2966 Any base register besides %esp will not use the
2967 extra modrm byte. */
2968 i.sib.index = NO_INDEX_REGISTER;
2969 #if !SCALE1_WHEN_NO_INDEX
2970 /* Another case where we force the second modrm byte. */
2971 if (i.log2_scale_factor)
2972 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2973 #endif
2974 }
2975 else
2976 {
2977 i.sib.index = i.index_reg->reg_num;
2978 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2979 if ((i.index_reg->reg_flags & RegRex) != 0)
2980 i.rex |= REX_EXTY;
2981 }
2982 i.rm.mode = mode_from_disp_size (i.types[op]);
2983 }
2984
2985 if (fake_zero_displacement)
2986 {
2987 /* Fakes a zero displacement assuming that i.types[op]
2988 holds the correct displacement size. */
2989 expressionS *exp;
2990
2991 assert (i.op[op].disps == 0);
2992 exp = &disp_expressions[i.disp_operands++];
2993 i.op[op].disps = exp;
2994 exp->X_op = O_constant;
2995 exp->X_add_number = 0;
2996 exp->X_add_symbol = (symbolS *) 0;
2997 exp->X_op_symbol = (symbolS *) 0;
2998 }
2999 }
3000
3001 /* Fill in i.rm.reg or i.rm.regmem field with register operand
3002 (if any) based on i.tm.extension_opcode. Again, we must be
3003 careful to make sure that segment/control/debug/test/MMX
3004 registers are coded into the i.rm.reg field. */
3005 if (i.reg_operands)
3006 {
3007 unsigned int op =
3008 ((i.types[0]
3009 & (Reg | RegMMX | RegXMM
3010 | SReg2 | SReg3
3011 | Control | Debug | Test))
3012 ? 0
3013 : ((i.types[1]
3014 & (Reg | RegMMX | RegXMM
3015 | SReg2 | SReg3
3016 | Control | Debug | Test))
3017 ? 1
3018 : 2));
3019 /* If there is an extension opcode to put here, the register
3020 number must be put into the regmem field. */
3021 if (i.tm.extension_opcode != None)
3022 {
3023 i.rm.regmem = i.op[op].regs->reg_num;
3024 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3025 i.rex |= REX_EXTZ;
3026 }
3027 else
3028 {
3029 i.rm.reg = i.op[op].regs->reg_num;
3030 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3031 i.rex |= REX_EXTX;
3032 }
3033
3034 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
3035 must set it to 3 to indicate this is a register operand
3036 in the regmem field. */
3037 if (!i.mem_operands)
3038 i.rm.mode = 3;
3039 }
3040
3041 /* Fill in i.rm.reg field with extension opcode (if any). */
3042 if (i.tm.extension_opcode != None)
3043 i.rm.reg = i.tm.extension_opcode;
3044 }
3045 return default_seg;
3046 }
3047
3048 static void
3049 output_branch ()
3050 {
3051 char *p;
3052 int code16;
3053 int prefix;
3054 relax_substateT subtype;
3055 symbolS *sym;
3056 offsetT off;
3057
3058 code16 = 0;
3059 if (flag_code == CODE_16BIT)
3060 code16 = CODE16;
3061
3062 prefix = 0;
3063 if (i.prefix[DATA_PREFIX] != 0)
3064 {
3065 prefix = 1;
3066 i.prefixes -= 1;
3067 code16 ^= CODE16;
3068 }
3069 /* Pentium4 branch hints. */
3070 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3071 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3072 {
3073 prefix++;
3074 i.prefixes--;
3075 }
3076 if (i.prefix[REX_PREFIX] != 0)
3077 {
3078 prefix++;
3079 i.prefixes--;
3080 }
3081
3082 if (i.prefixes != 0 && !intel_syntax)
3083 as_warn (_("skipping prefixes on this instruction"));
3084
3085 /* It's always a symbol; End frag & setup for relax.
3086 Make sure there is enough room in this frag for the largest
3087 instruction we may generate in md_convert_frag. This is 2
3088 bytes for the opcode and room for the prefix and largest
3089 displacement. */
3090 frag_grow (prefix + 2 + 4);
3091 /* Prefix and 1 opcode byte go in fr_fix. */
3092 p = frag_more (prefix + 1);
3093 if (i.prefix[DATA_PREFIX] != 0)
3094 *p++ = DATA_PREFIX_OPCODE;
3095 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
3096 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
3097 *p++ = i.prefix[SEG_PREFIX];
3098 if (i.prefix[REX_PREFIX] != 0)
3099 *p++ = i.prefix[REX_PREFIX];
3100 *p = i.tm.base_opcode;
3101
3102 if ((unsigned char) *p == JUMP_PC_RELATIVE)
3103 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
3104 else if ((cpu_arch_flags & Cpu386) != 0)
3105 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
3106 else
3107 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
3108 subtype |= code16;
3109
3110 sym = i.op[0].disps->X_add_symbol;
3111 off = i.op[0].disps->X_add_number;
3112
3113 if (i.op[0].disps->X_op != O_constant
3114 && i.op[0].disps->X_op != O_symbol)
3115 {
3116 /* Handle complex expressions. */
3117 sym = make_expr_symbol (i.op[0].disps);
3118 off = 0;
3119 }
3120
3121 /* 1 possible extra opcode + 4 byte displacement go in var part.
3122 Pass reloc in fr_var. */
3123 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
3124 }
3125
3126 static void
3127 output_jump ()
3128 {
3129 char *p;
3130 int size;
3131 fixS *fixP;
3132
3133 if (i.tm.opcode_modifier & JumpByte)
3134 {
3135 /* This is a loop or jecxz type instruction. */
3136 size = 1;
3137 if (i.prefix[ADDR_PREFIX] != 0)
3138 {
3139 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
3140 i.prefixes -= 1;
3141 }
3142 /* Pentium4 branch hints. */
3143 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3144 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3145 {
3146 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
3147 i.prefixes--;
3148 }
3149 }
3150 else
3151 {
3152 int code16;
3153
3154 code16 = 0;
3155 if (flag_code == CODE_16BIT)
3156 code16 = CODE16;
3157
3158 if (i.prefix[DATA_PREFIX] != 0)
3159 {
3160 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
3161 i.prefixes -= 1;
3162 code16 ^= CODE16;
3163 }
3164
3165 size = 4;
3166 if (code16)
3167 size = 2;
3168 }
3169
3170 if (i.prefix[REX_PREFIX] != 0)
3171 {
3172 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3173 i.prefixes -= 1;
3174 }
3175
3176 if (i.prefixes != 0 && !intel_syntax)
3177 as_warn (_("skipping prefixes on this instruction"));
3178
3179 p = frag_more (1 + size);
3180 *p++ = i.tm.base_opcode;
3181
3182 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3183 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3184
3185 /* All jumps handled here are signed, but don't use a signed limit
3186 check for 32 and 16 bit jumps as we want to allow wrap around at
3187 4G and 64k respectively. */
3188 if (size == 1)
3189 fixP->fx_signed = 1;
3190 }
3191
3192 static void
3193 output_interseg_jump ()
3194 {
3195 char *p;
3196 int size;
3197 int prefix;
3198 int code16;
3199
3200 code16 = 0;
3201 if (flag_code == CODE_16BIT)
3202 code16 = CODE16;
3203
3204 prefix = 0;
3205 if (i.prefix[DATA_PREFIX] != 0)
3206 {
3207 prefix = 1;
3208 i.prefixes -= 1;
3209 code16 ^= CODE16;
3210 }
3211 if (i.prefix[REX_PREFIX] != 0)
3212 {
3213 prefix++;
3214 i.prefixes -= 1;
3215 }
3216
3217 size = 4;
3218 if (code16)
3219 size = 2;
3220
3221 if (i.prefixes != 0 && !intel_syntax)
3222 as_warn (_("skipping prefixes on this instruction"));
3223
3224 /* 1 opcode; 2 segment; offset */
3225 p = frag_more (prefix + 1 + 2 + size);
3226
3227 if (i.prefix[DATA_PREFIX] != 0)
3228 *p++ = DATA_PREFIX_OPCODE;
3229
3230 if (i.prefix[REX_PREFIX] != 0)
3231 *p++ = i.prefix[REX_PREFIX];
3232
3233 *p++ = i.tm.base_opcode;
3234 if (i.op[1].imms->X_op == O_constant)
3235 {
3236 offsetT n = i.op[1].imms->X_add_number;
3237
3238 if (size == 2
3239 && !fits_in_unsigned_word (n)
3240 && !fits_in_signed_word (n))
3241 {
3242 as_bad (_("16-bit jump out of range"));
3243 return;
3244 }
3245 md_number_to_chars (p, n, size);
3246 }
3247 else
3248 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3249 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
3250 if (i.op[0].imms->X_op != O_constant)
3251 as_bad (_("can't handle non absolute segment in `%s'"),
3252 i.tm.name);
3253 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
3254 }
3255
3256 static void
3257 output_insn ()
3258 {
3259 fragS *insn_start_frag;
3260 offsetT insn_start_off;
3261
3262 /* Tie dwarf2 debug info to the address at the start of the insn.
3263 We can't do this after the insn has been output as the current
3264 frag may have been closed off. eg. by frag_var. */
3265 dwarf2_emit_insn (0);
3266
3267 insn_start_frag = frag_now;
3268 insn_start_off = frag_now_fix ();
3269
3270 /* Output jumps. */
3271 if (i.tm.opcode_modifier & Jump)
3272 output_branch ();
3273 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
3274 output_jump ();
3275 else if (i.tm.opcode_modifier & JumpInterSegment)
3276 output_interseg_jump ();
3277 else
3278 {
3279 /* Output normal instructions here. */
3280 char *p;
3281 unsigned char *q;
3282
3283 /* All opcodes on i386 have either 1 or 2 bytes, PadLock instructions
3284 have 3 bytes. We may use one more higher byte to specify a prefix
3285 the instruction requires. */
3286 if ((i.tm.cpu_flags & CpuPadLock) != 0
3287 && (i.tm.base_opcode & 0xff000000) != 0)
3288 {
3289 unsigned int prefix;
3290 prefix = (i.tm.base_opcode >> 24) & 0xff;
3291
3292 if (prefix != REPE_PREFIX_OPCODE
3293 || i.prefix[LOCKREP_PREFIX] != REPE_PREFIX_OPCODE)
3294 add_prefix (prefix);
3295 }
3296 else
3297 if ((i.tm.cpu_flags & CpuPadLock) == 0
3298 && (i.tm.base_opcode & 0xff0000) != 0)
3299 add_prefix ((i.tm.base_opcode >> 16) & 0xff);
3300
3301 /* The prefix bytes. */
3302 for (q = i.prefix;
3303 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
3304 q++)
3305 {
3306 if (*q)
3307 {
3308 p = frag_more (1);
3309 md_number_to_chars (p, (valueT) *q, 1);
3310 }
3311 }
3312
3313 /* Now the opcode; be careful about word order here! */
3314 if (fits_in_unsigned_byte (i.tm.base_opcode))
3315 {
3316 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
3317 }
3318 else
3319 {
3320 if ((i.tm.cpu_flags & CpuPadLock) != 0)
3321 {
3322 p = frag_more (3);
3323 *p++ = (i.tm.base_opcode >> 16) & 0xff;
3324 }
3325 else
3326 p = frag_more (2);
3327
3328 /* Put out high byte first: can't use md_number_to_chars! */
3329 *p++ = (i.tm.base_opcode >> 8) & 0xff;
3330 *p = i.tm.base_opcode & 0xff;
3331 }
3332
3333 /* Now the modrm byte and sib byte (if present). */
3334 if (i.tm.opcode_modifier & Modrm)
3335 {
3336 p = frag_more (1);
3337 md_number_to_chars (p,
3338 (valueT) (i.rm.regmem << 0
3339 | i.rm.reg << 3
3340 | i.rm.mode << 6),
3341 1);
3342 /* If i.rm.regmem == ESP (4)
3343 && i.rm.mode != (Register mode)
3344 && not 16 bit
3345 ==> need second modrm byte. */
3346 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
3347 && i.rm.mode != 3
3348 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
3349 {
3350 p = frag_more (1);
3351 md_number_to_chars (p,
3352 (valueT) (i.sib.base << 0
3353 | i.sib.index << 3
3354 | i.sib.scale << 6),
3355 1);
3356 }
3357 }
3358
3359 if (i.disp_operands)
3360 output_disp (insn_start_frag, insn_start_off);
3361
3362 if (i.imm_operands)
3363 output_imm (insn_start_frag, insn_start_off);
3364 }
3365
3366 #ifdef DEBUG386
3367 if (flag_debug)
3368 {
3369 pi (line, &i);
3370 }
3371 #endif /* DEBUG386 */
3372 }
3373
3374 static void
3375 output_disp (insn_start_frag, insn_start_off)
3376 fragS *insn_start_frag;
3377 offsetT insn_start_off;
3378 {
3379 char *p;
3380 unsigned int n;
3381
3382 for (n = 0; n < i.operands; n++)
3383 {
3384 if (i.types[n] & Disp)
3385 {
3386 if (i.op[n].disps->X_op == O_constant)
3387 {
3388 int size;
3389 offsetT val;
3390
3391 size = 4;
3392 if (i.types[n] & (Disp8 | Disp16 | Disp64))
3393 {
3394 size = 2;
3395 if (i.types[n] & Disp8)
3396 size = 1;
3397 if (i.types[n] & Disp64)
3398 size = 8;
3399 }
3400 val = offset_in_range (i.op[n].disps->X_add_number,
3401 size);
3402 p = frag_more (size);
3403 md_number_to_chars (p, val, size);
3404 }
3405 else
3406 {
3407 enum bfd_reloc_code_real reloc_type;
3408 int size = 4;
3409 int sign = 0;
3410 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
3411
3412 /* The PC relative address is computed relative
3413 to the instruction boundary, so in case immediate
3414 fields follows, we need to adjust the value. */
3415 if (pcrel && i.imm_operands)
3416 {
3417 int imm_size = 4;
3418 unsigned int n1;
3419
3420 for (n1 = 0; n1 < i.operands; n1++)
3421 if (i.types[n1] & Imm)
3422 {
3423 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
3424 {
3425 imm_size = 2;
3426 if (i.types[n1] & (Imm8 | Imm8S))
3427 imm_size = 1;
3428 if (i.types[n1] & Imm64)
3429 imm_size = 8;
3430 }
3431 break;
3432 }
3433 /* We should find the immediate. */
3434 if (n1 == i.operands)
3435 abort ();
3436 i.op[n].disps->X_add_number -= imm_size;
3437 }
3438
3439 if (i.types[n] & Disp32S)
3440 sign = 1;
3441
3442 if (i.types[n] & (Disp16 | Disp64))
3443 {
3444 size = 2;
3445 if (i.types[n] & Disp64)
3446 size = 8;
3447 }
3448
3449 p = frag_more (size);
3450 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
3451 if (reloc_type == BFD_RELOC_32
3452 && GOT_symbol
3453 && GOT_symbol == i.op[n].disps->X_add_symbol
3454 && (i.op[n].disps->X_op == O_symbol
3455 || (i.op[n].disps->X_op == O_add
3456 && ((symbol_get_value_expression
3457 (i.op[n].disps->X_op_symbol)->X_op)
3458 == O_subtract))))
3459 {
3460 offsetT add;
3461
3462 if (insn_start_frag == frag_now)
3463 add = (p - frag_now->fr_literal) - insn_start_off;
3464 else
3465 {
3466 fragS *fr;
3467
3468 add = insn_start_frag->fr_fix - insn_start_off;
3469 for (fr = insn_start_frag->fr_next;
3470 fr && fr != frag_now; fr = fr->fr_next)
3471 add += fr->fr_fix;
3472 add += p - frag_now->fr_literal;
3473 }
3474
3475 /* We don't support dynamic linking on x86-64 yet. */
3476 if (flag_code == CODE_64BIT)
3477 abort ();
3478 reloc_type = BFD_RELOC_386_GOTPC;
3479 i.op[n].disps->X_add_number += add;
3480 }
3481 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3482 i.op[n].disps, pcrel, reloc_type);
3483 }
3484 }
3485 }
3486 }
3487
3488 static void
3489 output_imm (insn_start_frag, insn_start_off)
3490 fragS *insn_start_frag;
3491 offsetT insn_start_off;
3492 {
3493 char *p;
3494 unsigned int n;
3495
3496 for (n = 0; n < i.operands; n++)
3497 {
3498 if (i.types[n] & Imm)
3499 {
3500 if (i.op[n].imms->X_op == O_constant)
3501 {
3502 int size;
3503 offsetT val;
3504
3505 size = 4;
3506 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3507 {
3508 size = 2;
3509 if (i.types[n] & (Imm8 | Imm8S))
3510 size = 1;
3511 else if (i.types[n] & Imm64)
3512 size = 8;
3513 }
3514 val = offset_in_range (i.op[n].imms->X_add_number,
3515 size);
3516 p = frag_more (size);
3517 md_number_to_chars (p, val, size);
3518 }
3519 else
3520 {
3521 /* Not absolute_section.
3522 Need a 32-bit fixup (don't support 8bit
3523 non-absolute imms). Try to support other
3524 sizes ... */
3525 enum bfd_reloc_code_real reloc_type;
3526 int size = 4;
3527 int sign = 0;
3528
3529 if ((i.types[n] & (Imm32S))
3530 && i.suffix == QWORD_MNEM_SUFFIX)
3531 sign = 1;
3532 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3533 {
3534 size = 2;
3535 if (i.types[n] & (Imm8 | Imm8S))
3536 size = 1;
3537 if (i.types[n] & Imm64)
3538 size = 8;
3539 }
3540
3541 p = frag_more (size);
3542 reloc_type = reloc (size, 0, sign, i.reloc[n]);
3543
3544 /* This is tough to explain. We end up with this one if we
3545 * have operands that look like
3546 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
3547 * obtain the absolute address of the GOT, and it is strongly
3548 * preferable from a performance point of view to avoid using
3549 * a runtime relocation for this. The actual sequence of
3550 * instructions often look something like:
3551 *
3552 * call .L66
3553 * .L66:
3554 * popl %ebx
3555 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
3556 *
3557 * The call and pop essentially return the absolute address
3558 * of the label .L66 and store it in %ebx. The linker itself
3559 * will ultimately change the first operand of the addl so
3560 * that %ebx points to the GOT, but to keep things simple, the
3561 * .o file must have this operand set so that it generates not
3562 * the absolute address of .L66, but the absolute address of
3563 * itself. This allows the linker itself simply treat a GOTPC
3564 * relocation as asking for a pcrel offset to the GOT to be
3565 * added in, and the addend of the relocation is stored in the
3566 * operand field for the instruction itself.
3567 *
3568 * Our job here is to fix the operand so that it would add
3569 * the correct offset so that %ebx would point to itself. The
3570 * thing that is tricky is that .-.L66 will point to the
3571 * beginning of the instruction, so we need to further modify
3572 * the operand so that it will point to itself. There are
3573 * other cases where you have something like:
3574 *
3575 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
3576 *
3577 * and here no correction would be required. Internally in
3578 * the assembler we treat operands of this form as not being
3579 * pcrel since the '.' is explicitly mentioned, and I wonder
3580 * whether it would simplify matters to do it this way. Who
3581 * knows. In earlier versions of the PIC patches, the
3582 * pcrel_adjust field was used to store the correction, but
3583 * since the expression is not pcrel, I felt it would be
3584 * confusing to do it this way. */
3585
3586 if (reloc_type == BFD_RELOC_32
3587 && GOT_symbol
3588 && GOT_symbol == i.op[n].imms->X_add_symbol
3589 && (i.op[n].imms->X_op == O_symbol
3590 || (i.op[n].imms->X_op == O_add
3591 && ((symbol_get_value_expression
3592 (i.op[n].imms->X_op_symbol)->X_op)
3593 == O_subtract))))
3594 {
3595 offsetT add;
3596
3597 if (insn_start_frag == frag_now)
3598 add = (p - frag_now->fr_literal) - insn_start_off;
3599 else
3600 {
3601 fragS *fr;
3602
3603 add = insn_start_frag->fr_fix - insn_start_off;
3604 for (fr = insn_start_frag->fr_next;
3605 fr && fr != frag_now; fr = fr->fr_next)
3606 add += fr->fr_fix;
3607 add += p - frag_now->fr_literal;
3608 }
3609
3610 /* We don't support dynamic linking on x86-64 yet. */
3611 if (flag_code == CODE_64BIT)
3612 abort ();
3613 reloc_type = BFD_RELOC_386_GOTPC;
3614 i.op[n].imms->X_add_number += add;
3615 }
3616 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3617 i.op[n].imms, 0, reloc_type);
3618 }
3619 }
3620 }
3621 }
3622 \f
3623 #ifndef LEX_AT
3624 static char *lex_got PARAMS ((enum bfd_reloc_code_real *, int *));
3625
3626 /* Parse operands of the form
3627 <symbol>@GOTOFF+<nnn>
3628 and similar .plt or .got references.
3629
3630 If we find one, set up the correct relocation in RELOC and copy the
3631 input string, minus the `@GOTOFF' into a malloc'd buffer for
3632 parsing by the calling routine. Return this buffer, and if ADJUST
3633 is non-null set it to the length of the string we removed from the
3634 input line. Otherwise return NULL. */
3635 static char *
3636 lex_got (reloc, adjust)
3637 enum bfd_reloc_code_real *reloc;
3638 int *adjust;
3639 {
3640 static const char * const mode_name[NUM_FLAG_CODE] = { "32", "16", "64" };
3641 static const struct {
3642 const char *str;
3643 const enum bfd_reloc_code_real rel[NUM_FLAG_CODE];
3644 } gotrel[] = {
3645 { "PLT", { BFD_RELOC_386_PLT32, 0, BFD_RELOC_X86_64_PLT32 } },
3646 { "GOTOFF", { BFD_RELOC_386_GOTOFF, 0, 0 } },
3647 { "GOTPCREL", { 0, 0, BFD_RELOC_X86_64_GOTPCREL } },
3648 { "TLSGD", { BFD_RELOC_386_TLS_GD, 0, BFD_RELOC_X86_64_TLSGD } },
3649 { "TLSLDM", { BFD_RELOC_386_TLS_LDM, 0, 0 } },
3650 { "TLSLD", { 0, 0, BFD_RELOC_X86_64_TLSLD } },
3651 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32, 0, BFD_RELOC_X86_64_GOTTPOFF } },
3652 { "TPOFF", { BFD_RELOC_386_TLS_LE_32, 0, BFD_RELOC_X86_64_TPOFF32 } },
3653 { "NTPOFF", { BFD_RELOC_386_TLS_LE, 0, 0 } },
3654 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32, 0, BFD_RELOC_X86_64_DTPOFF32 } },
3655 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE, 0, 0 } },
3656 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE, 0, 0 } },
3657 { "GOT", { BFD_RELOC_386_GOT32, 0, BFD_RELOC_X86_64_GOT32 } }
3658 };
3659 char *cp;
3660 unsigned int j;
3661
3662 for (cp = input_line_pointer; *cp != '@'; cp++)
3663 if (is_end_of_line[(unsigned char) *cp])
3664 return NULL;
3665
3666 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
3667 {
3668 int len;
3669
3670 len = strlen (gotrel[j].str);
3671 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
3672 {
3673 if (gotrel[j].rel[(unsigned int) flag_code] != 0)
3674 {
3675 int first, second;
3676 char *tmpbuf, *past_reloc;
3677
3678 *reloc = gotrel[j].rel[(unsigned int) flag_code];
3679 if (adjust)
3680 *adjust = len;
3681
3682 if (GOT_symbol == NULL)
3683 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3684
3685 /* Replace the relocation token with ' ', so that
3686 errors like foo@GOTOFF1 will be detected. */
3687
3688 /* The length of the first part of our input line. */
3689 first = cp - input_line_pointer;
3690
3691 /* The second part goes from after the reloc token until
3692 (and including) an end_of_line char. Don't use strlen
3693 here as the end_of_line char may not be a NUL. */
3694 past_reloc = cp + 1 + len;
3695 for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
3696 ;
3697 second = cp - past_reloc;
3698
3699 /* Allocate and copy string. The trailing NUL shouldn't
3700 be necessary, but be safe. */
3701 tmpbuf = xmalloc (first + second + 2);
3702 memcpy (tmpbuf, input_line_pointer, first);
3703 tmpbuf[first] = ' ';
3704 memcpy (tmpbuf + first + 1, past_reloc, second);
3705 tmpbuf[first + second + 1] = '\0';
3706 return tmpbuf;
3707 }
3708
3709 as_bad (_("@%s reloc is not supported in %s bit mode"),
3710 gotrel[j].str, mode_name[(unsigned int) flag_code]);
3711 return NULL;
3712 }
3713 }
3714
3715 /* Might be a symbol version string. Don't as_bad here. */
3716 return NULL;
3717 }
3718
3719 /* x86_cons_fix_new is called via the expression parsing code when a
3720 reloc is needed. We use this hook to get the correct .got reloc. */
3721 static enum bfd_reloc_code_real got_reloc = NO_RELOC;
3722
3723 void
3724 x86_cons_fix_new (frag, off, len, exp)
3725 fragS *frag;
3726 unsigned int off;
3727 unsigned int len;
3728 expressionS *exp;
3729 {
3730 enum bfd_reloc_code_real r = reloc (len, 0, 0, got_reloc);
3731 got_reloc = NO_RELOC;
3732 fix_new_exp (frag, off, len, exp, 0, r);
3733 }
3734
3735 void
3736 x86_cons (exp, size)
3737 expressionS *exp;
3738 int size;
3739 {
3740 if (size == 4)
3741 {
3742 /* Handle @GOTOFF and the like in an expression. */
3743 char *save;
3744 char *gotfree_input_line;
3745 int adjust;
3746
3747 save = input_line_pointer;
3748 gotfree_input_line = lex_got (&got_reloc, &adjust);
3749 if (gotfree_input_line)
3750 input_line_pointer = gotfree_input_line;
3751
3752 expression (exp);
3753
3754 if (gotfree_input_line)
3755 {
3756 /* expression () has merrily parsed up to the end of line,
3757 or a comma - in the wrong buffer. Transfer how far
3758 input_line_pointer has moved to the right buffer. */
3759 input_line_pointer = (save
3760 + (input_line_pointer - gotfree_input_line)
3761 + adjust);
3762 free (gotfree_input_line);
3763 }
3764 }
3765 else
3766 expression (exp);
3767 }
3768 #endif
3769
3770 #ifdef TE_PE
3771
3772 void
3773 x86_pe_cons_fix_new (frag, off, len, exp)
3774 fragS *frag;
3775 unsigned int off;
3776 unsigned int len;
3777 expressionS *exp;
3778 {
3779 enum bfd_reloc_code_real r = reloc (len, 0, 0, NO_RELOC);
3780
3781 if (exp->X_op == O_secrel)
3782 {
3783 exp->X_op = O_symbol;
3784 r = BFD_RELOC_32_SECREL;
3785 }
3786
3787 fix_new_exp (frag, off, len, exp, 0, r);
3788 }
3789
3790 static void
3791 pe_directive_secrel (dummy)
3792 int dummy ATTRIBUTE_UNUSED;
3793 {
3794 expressionS exp;
3795
3796 do
3797 {
3798 expression (&exp);
3799 if (exp.X_op == O_symbol)
3800 exp.X_op = O_secrel;
3801
3802 emit_expr (&exp, 4);
3803 }
3804 while (*input_line_pointer++ == ',');
3805
3806 input_line_pointer--;
3807 demand_empty_rest_of_line ();
3808 }
3809
3810 #endif
3811
3812 static int i386_immediate PARAMS ((char *));
3813
3814 static int
3815 i386_immediate (imm_start)
3816 char *imm_start;
3817 {
3818 char *save_input_line_pointer;
3819 #ifndef LEX_AT
3820 char *gotfree_input_line;
3821 #endif
3822 segT exp_seg = 0;
3823 expressionS *exp;
3824
3825 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
3826 {
3827 as_bad (_("only 1 or 2 immediate operands are allowed"));
3828 return 0;
3829 }
3830
3831 exp = &im_expressions[i.imm_operands++];
3832 i.op[this_operand].imms = exp;
3833
3834 if (is_space_char (*imm_start))
3835 ++imm_start;
3836
3837 save_input_line_pointer = input_line_pointer;
3838 input_line_pointer = imm_start;
3839
3840 #ifndef LEX_AT
3841 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3842 if (gotfree_input_line)
3843 input_line_pointer = gotfree_input_line;
3844 #endif
3845
3846 exp_seg = expression (exp);
3847
3848 SKIP_WHITESPACE ();
3849 if (*input_line_pointer)
3850 as_bad (_("junk `%s' after expression"), input_line_pointer);
3851
3852 input_line_pointer = save_input_line_pointer;
3853 #ifndef LEX_AT
3854 if (gotfree_input_line)
3855 free (gotfree_input_line);
3856 #endif
3857
3858 if (exp->X_op == O_absent || exp->X_op == O_big)
3859 {
3860 /* Missing or bad expr becomes absolute 0. */
3861 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
3862 imm_start);
3863 exp->X_op = O_constant;
3864 exp->X_add_number = 0;
3865 exp->X_add_symbol = (symbolS *) 0;
3866 exp->X_op_symbol = (symbolS *) 0;
3867 }
3868 else if (exp->X_op == O_constant)
3869 {
3870 /* Size it properly later. */
3871 i.types[this_operand] |= Imm64;
3872 /* If BFD64, sign extend val. */
3873 if (!use_rela_relocations)
3874 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
3875 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
3876 }
3877 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3878 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
3879 && exp_seg != absolute_section
3880 && exp_seg != text_section
3881 && exp_seg != data_section
3882 && exp_seg != bss_section
3883 && exp_seg != undefined_section
3884 && !bfd_is_com_section (exp_seg))
3885 {
3886 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3887 return 0;
3888 }
3889 #endif
3890 else
3891 {
3892 /* This is an address. The size of the address will be
3893 determined later, depending on destination register,
3894 suffix, or the default for the section. */
3895 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
3896 }
3897
3898 return 1;
3899 }
3900
3901 static char *i386_scale PARAMS ((char *));
3902
3903 static char *
3904 i386_scale (scale)
3905 char *scale;
3906 {
3907 offsetT val;
3908 char *save = input_line_pointer;
3909
3910 input_line_pointer = scale;
3911 val = get_absolute_expression ();
3912
3913 switch (val)
3914 {
3915 case 0:
3916 case 1:
3917 i.log2_scale_factor = 0;
3918 break;
3919 case 2:
3920 i.log2_scale_factor = 1;
3921 break;
3922 case 4:
3923 i.log2_scale_factor = 2;
3924 break;
3925 case 8:
3926 i.log2_scale_factor = 3;
3927 break;
3928 default:
3929 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
3930 scale);
3931 input_line_pointer = save;
3932 return NULL;
3933 }
3934 if (i.log2_scale_factor != 0 && i.index_reg == 0)
3935 {
3936 as_warn (_("scale factor of %d without an index register"),
3937 1 << i.log2_scale_factor);
3938 #if SCALE1_WHEN_NO_INDEX
3939 i.log2_scale_factor = 0;
3940 #endif
3941 }
3942 scale = input_line_pointer;
3943 input_line_pointer = save;
3944 return scale;
3945 }
3946
3947 static int i386_displacement PARAMS ((char *, char *));
3948
3949 static int
3950 i386_displacement (disp_start, disp_end)
3951 char *disp_start;
3952 char *disp_end;
3953 {
3954 expressionS *exp;
3955 segT exp_seg = 0;
3956 char *save_input_line_pointer;
3957 #ifndef LEX_AT
3958 char *gotfree_input_line;
3959 #endif
3960 int bigdisp = Disp32;
3961
3962 if (flag_code == CODE_64BIT)
3963 {
3964 if (i.prefix[ADDR_PREFIX] == 0)
3965 bigdisp = Disp64;
3966 }
3967 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3968 bigdisp = Disp16;
3969 i.types[this_operand] |= bigdisp;
3970
3971 exp = &disp_expressions[i.disp_operands];
3972 i.op[this_operand].disps = exp;
3973 i.disp_operands++;
3974 save_input_line_pointer = input_line_pointer;
3975 input_line_pointer = disp_start;
3976 END_STRING_AND_SAVE (disp_end);
3977
3978 #ifndef GCC_ASM_O_HACK
3979 #define GCC_ASM_O_HACK 0
3980 #endif
3981 #if GCC_ASM_O_HACK
3982 END_STRING_AND_SAVE (disp_end + 1);
3983 if ((i.types[this_operand] & BaseIndex) != 0
3984 && displacement_string_end[-1] == '+')
3985 {
3986 /* This hack is to avoid a warning when using the "o"
3987 constraint within gcc asm statements.
3988 For instance:
3989
3990 #define _set_tssldt_desc(n,addr,limit,type) \
3991 __asm__ __volatile__ ( \
3992 "movw %w2,%0\n\t" \
3993 "movw %w1,2+%0\n\t" \
3994 "rorl $16,%1\n\t" \
3995 "movb %b1,4+%0\n\t" \
3996 "movb %4,5+%0\n\t" \
3997 "movb $0,6+%0\n\t" \
3998 "movb %h1,7+%0\n\t" \
3999 "rorl $16,%1" \
4000 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
4001
4002 This works great except that the output assembler ends
4003 up looking a bit weird if it turns out that there is
4004 no offset. You end up producing code that looks like:
4005
4006 #APP
4007 movw $235,(%eax)
4008 movw %dx,2+(%eax)
4009 rorl $16,%edx
4010 movb %dl,4+(%eax)
4011 movb $137,5+(%eax)
4012 movb $0,6+(%eax)
4013 movb %dh,7+(%eax)
4014 rorl $16,%edx
4015 #NO_APP
4016
4017 So here we provide the missing zero. */
4018
4019 *displacement_string_end = '0';
4020 }
4021 #endif
4022 #ifndef LEX_AT
4023 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
4024 if (gotfree_input_line)
4025 input_line_pointer = gotfree_input_line;
4026 #endif
4027
4028 exp_seg = expression (exp);
4029
4030 SKIP_WHITESPACE ();
4031 if (*input_line_pointer)
4032 as_bad (_("junk `%s' after expression"), input_line_pointer);
4033 #if GCC_ASM_O_HACK
4034 RESTORE_END_STRING (disp_end + 1);
4035 #endif
4036 RESTORE_END_STRING (disp_end);
4037 input_line_pointer = save_input_line_pointer;
4038 #ifndef LEX_AT
4039 if (gotfree_input_line)
4040 free (gotfree_input_line);
4041 #endif
4042
4043 /* We do this to make sure that the section symbol is in
4044 the symbol table. We will ultimately change the relocation
4045 to be relative to the beginning of the section. */
4046 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
4047 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
4048 {
4049 if (exp->X_op != O_symbol)
4050 {
4051 as_bad (_("bad expression used with @%s"),
4052 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
4053 ? "GOTPCREL"
4054 : "GOTOFF"));
4055 return 0;
4056 }
4057
4058 if (S_IS_LOCAL (exp->X_add_symbol)
4059 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
4060 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
4061 exp->X_op = O_subtract;
4062 exp->X_op_symbol = GOT_symbol;
4063 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
4064 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
4065 else
4066 i.reloc[this_operand] = BFD_RELOC_32;
4067 }
4068
4069 if (exp->X_op == O_absent || exp->X_op == O_big)
4070 {
4071 /* Missing or bad expr becomes absolute 0. */
4072 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
4073 disp_start);
4074 exp->X_op = O_constant;
4075 exp->X_add_number = 0;
4076 exp->X_add_symbol = (symbolS *) 0;
4077 exp->X_op_symbol = (symbolS *) 0;
4078 }
4079
4080 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4081 if (exp->X_op != O_constant
4082 && OUTPUT_FLAVOR == bfd_target_aout_flavour
4083 && exp_seg != absolute_section
4084 && exp_seg != text_section
4085 && exp_seg != data_section
4086 && exp_seg != bss_section
4087 && exp_seg != undefined_section
4088 && !bfd_is_com_section (exp_seg))
4089 {
4090 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4091 return 0;
4092 }
4093 #endif
4094 else if (flag_code == CODE_64BIT)
4095 i.types[this_operand] |= Disp32S | Disp32;
4096 return 1;
4097 }
4098
4099 static int i386_index_check PARAMS ((const char *));
4100
4101 /* Make sure the memory operand we've been dealt is valid.
4102 Return 1 on success, 0 on a failure. */
4103
4104 static int
4105 i386_index_check (operand_string)
4106 const char *operand_string;
4107 {
4108 int ok;
4109 #if INFER_ADDR_PREFIX
4110 int fudged = 0;
4111
4112 tryprefix:
4113 #endif
4114 ok = 1;
4115 if (flag_code == CODE_64BIT)
4116 {
4117 unsigned RegXX = (i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32);
4118
4119 if ((i.base_reg
4120 && ((i.base_reg->reg_type & RegXX) == 0)
4121 && (i.base_reg->reg_type != BaseIndex
4122 || i.index_reg))
4123 || (i.index_reg
4124 && ((i.index_reg->reg_type & (RegXX | BaseIndex))
4125 != (RegXX | BaseIndex))))
4126 ok = 0;
4127 }
4128 else
4129 {
4130 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
4131 {
4132 /* 16bit checks. */
4133 if ((i.base_reg
4134 && ((i.base_reg->reg_type & (Reg16 | BaseIndex | RegRex))
4135 != (Reg16 | BaseIndex)))
4136 || (i.index_reg
4137 && (((i.index_reg->reg_type & (Reg16 | BaseIndex))
4138 != (Reg16 | BaseIndex))
4139 || !(i.base_reg
4140 && i.base_reg->reg_num < 6
4141 && i.index_reg->reg_num >= 6
4142 && i.log2_scale_factor == 0))))
4143 ok = 0;
4144 }
4145 else
4146 {
4147 /* 32bit checks. */
4148 if ((i.base_reg
4149 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
4150 || (i.index_reg
4151 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
4152 != (Reg32 | BaseIndex))))
4153 ok = 0;
4154 }
4155 }
4156 if (!ok)
4157 {
4158 #if INFER_ADDR_PREFIX
4159 if (i.prefix[ADDR_PREFIX] == 0)
4160 {
4161 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
4162 i.prefixes += 1;
4163 /* Change the size of any displacement too. At most one of
4164 Disp16 or Disp32 is set.
4165 FIXME. There doesn't seem to be any real need for separate
4166 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
4167 Removing them would probably clean up the code quite a lot. */
4168 if (flag_code != CODE_64BIT && (i.types[this_operand] & (Disp16 | Disp32)))
4169 i.types[this_operand] ^= (Disp16 | Disp32);
4170 fudged = 1;
4171 goto tryprefix;
4172 }
4173 if (fudged)
4174 as_bad (_("`%s' is not a valid base/index expression"),
4175 operand_string);
4176 else
4177 #endif
4178 as_bad (_("`%s' is not a valid %s bit base/index expression"),
4179 operand_string,
4180 flag_code_names[flag_code]);
4181 }
4182 return ok;
4183 }
4184
4185 /* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
4186 on error. */
4187
4188 static int
4189 i386_operand (operand_string)
4190 char *operand_string;
4191 {
4192 const reg_entry *r;
4193 char *end_op;
4194 char *op_string = operand_string;
4195
4196 if (is_space_char (*op_string))
4197 ++op_string;
4198
4199 /* We check for an absolute prefix (differentiating,
4200 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
4201 if (*op_string == ABSOLUTE_PREFIX)
4202 {
4203 ++op_string;
4204 if (is_space_char (*op_string))
4205 ++op_string;
4206 i.types[this_operand] |= JumpAbsolute;
4207 }
4208
4209 /* Check if operand is a register. */
4210 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
4211 && (r = parse_register (op_string, &end_op)) != NULL)
4212 {
4213 /* Check for a segment override by searching for ':' after a
4214 segment register. */
4215 op_string = end_op;
4216 if (is_space_char (*op_string))
4217 ++op_string;
4218 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
4219 {
4220 switch (r->reg_num)
4221 {
4222 case 0:
4223 i.seg[i.mem_operands] = &es;
4224 break;
4225 case 1:
4226 i.seg[i.mem_operands] = &cs;
4227 break;
4228 case 2:
4229 i.seg[i.mem_operands] = &ss;
4230 break;
4231 case 3:
4232 i.seg[i.mem_operands] = &ds;
4233 break;
4234 case 4:
4235 i.seg[i.mem_operands] = &fs;
4236 break;
4237 case 5:
4238 i.seg[i.mem_operands] = &gs;
4239 break;
4240 }
4241
4242 /* Skip the ':' and whitespace. */
4243 ++op_string;
4244 if (is_space_char (*op_string))
4245 ++op_string;
4246
4247 if (!is_digit_char (*op_string)
4248 && !is_identifier_char (*op_string)
4249 && *op_string != '('
4250 && *op_string != ABSOLUTE_PREFIX)
4251 {
4252 as_bad (_("bad memory operand `%s'"), op_string);
4253 return 0;
4254 }
4255 /* Handle case of %es:*foo. */
4256 if (*op_string == ABSOLUTE_PREFIX)
4257 {
4258 ++op_string;
4259 if (is_space_char (*op_string))
4260 ++op_string;
4261 i.types[this_operand] |= JumpAbsolute;
4262 }
4263 goto do_memory_reference;
4264 }
4265 if (*op_string)
4266 {
4267 as_bad (_("junk `%s' after register"), op_string);
4268 return 0;
4269 }
4270 i.types[this_operand] |= r->reg_type & ~BaseIndex;
4271 i.op[this_operand].regs = r;
4272 i.reg_operands++;
4273 }
4274 else if (*op_string == REGISTER_PREFIX)
4275 {
4276 as_bad (_("bad register name `%s'"), op_string);
4277 return 0;
4278 }
4279 else if (*op_string == IMMEDIATE_PREFIX)
4280 {
4281 ++op_string;
4282 if (i.types[this_operand] & JumpAbsolute)
4283 {
4284 as_bad (_("immediate operand illegal with absolute jump"));
4285 return 0;
4286 }
4287 if (!i386_immediate (op_string))
4288 return 0;
4289 }
4290 else if (is_digit_char (*op_string)
4291 || is_identifier_char (*op_string)
4292 || *op_string == '(')
4293 {
4294 /* This is a memory reference of some sort. */
4295 char *base_string;
4296
4297 /* Start and end of displacement string expression (if found). */
4298 char *displacement_string_start;
4299 char *displacement_string_end;
4300
4301 do_memory_reference:
4302 if ((i.mem_operands == 1
4303 && (current_templates->start->opcode_modifier & IsString) == 0)
4304 || i.mem_operands == 2)
4305 {
4306 as_bad (_("too many memory references for `%s'"),
4307 current_templates->start->name);
4308 return 0;
4309 }
4310
4311 /* Check for base index form. We detect the base index form by
4312 looking for an ')' at the end of the operand, searching
4313 for the '(' matching it, and finding a REGISTER_PREFIX or ','
4314 after the '('. */
4315 base_string = op_string + strlen (op_string);
4316
4317 --base_string;
4318 if (is_space_char (*base_string))
4319 --base_string;
4320
4321 /* If we only have a displacement, set-up for it to be parsed later. */
4322 displacement_string_start = op_string;
4323 displacement_string_end = base_string + 1;
4324
4325 if (*base_string == ')')
4326 {
4327 char *temp_string;
4328 unsigned int parens_balanced = 1;
4329 /* We've already checked that the number of left & right ()'s are
4330 equal, so this loop will not be infinite. */
4331 do
4332 {
4333 base_string--;
4334 if (*base_string == ')')
4335 parens_balanced++;
4336 if (*base_string == '(')
4337 parens_balanced--;
4338 }
4339 while (parens_balanced);
4340
4341 temp_string = base_string;
4342
4343 /* Skip past '(' and whitespace. */
4344 ++base_string;
4345 if (is_space_char (*base_string))
4346 ++base_string;
4347
4348 if (*base_string == ','
4349 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4350 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
4351 {
4352 displacement_string_end = temp_string;
4353
4354 i.types[this_operand] |= BaseIndex;
4355
4356 if (i.base_reg)
4357 {
4358 base_string = end_op;
4359 if (is_space_char (*base_string))
4360 ++base_string;
4361 }
4362
4363 /* There may be an index reg or scale factor here. */
4364 if (*base_string == ',')
4365 {
4366 ++base_string;
4367 if (is_space_char (*base_string))
4368 ++base_string;
4369
4370 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4371 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
4372 {
4373 base_string = end_op;
4374 if (is_space_char (*base_string))
4375 ++base_string;
4376 if (*base_string == ',')
4377 {
4378 ++base_string;
4379 if (is_space_char (*base_string))
4380 ++base_string;
4381 }
4382 else if (*base_string != ')')
4383 {
4384 as_bad (_("expecting `,' or `)' after index register in `%s'"),
4385 operand_string);
4386 return 0;
4387 }
4388 }
4389 else if (*base_string == REGISTER_PREFIX)
4390 {
4391 as_bad (_("bad register name `%s'"), base_string);
4392 return 0;
4393 }
4394
4395 /* Check for scale factor. */
4396 if (*base_string != ')')
4397 {
4398 char *end_scale = i386_scale (base_string);
4399
4400 if (!end_scale)
4401 return 0;
4402
4403 base_string = end_scale;
4404 if (is_space_char (*base_string))
4405 ++base_string;
4406 if (*base_string != ')')
4407 {
4408 as_bad (_("expecting `)' after scale factor in `%s'"),
4409 operand_string);
4410 return 0;
4411 }
4412 }
4413 else if (!i.index_reg)
4414 {
4415 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
4416 *base_string);
4417 return 0;
4418 }
4419 }
4420 else if (*base_string != ')')
4421 {
4422 as_bad (_("expecting `,' or `)' after base register in `%s'"),
4423 operand_string);
4424 return 0;
4425 }
4426 }
4427 else if (*base_string == REGISTER_PREFIX)
4428 {
4429 as_bad (_("bad register name `%s'"), base_string);
4430 return 0;
4431 }
4432 }
4433
4434 /* If there's an expression beginning the operand, parse it,
4435 assuming displacement_string_start and
4436 displacement_string_end are meaningful. */
4437 if (displacement_string_start != displacement_string_end)
4438 {
4439 if (!i386_displacement (displacement_string_start,
4440 displacement_string_end))
4441 return 0;
4442 }
4443
4444 /* Special case for (%dx) while doing input/output op. */
4445 if (i.base_reg
4446 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
4447 && i.index_reg == 0
4448 && i.log2_scale_factor == 0
4449 && i.seg[i.mem_operands] == 0
4450 && (i.types[this_operand] & Disp) == 0)
4451 {
4452 i.types[this_operand] = InOutPortReg;
4453 return 1;
4454 }
4455
4456 if (i386_index_check (operand_string) == 0)
4457 return 0;
4458 i.mem_operands++;
4459 }
4460 else
4461 {
4462 /* It's not a memory operand; argh! */
4463 as_bad (_("invalid char %s beginning operand %d `%s'"),
4464 output_invalid (*op_string),
4465 this_operand + 1,
4466 op_string);
4467 return 0;
4468 }
4469 return 1; /* Normal return. */
4470 }
4471 \f
4472 /* md_estimate_size_before_relax()
4473
4474 Called just before relax() for rs_machine_dependent frags. The x86
4475 assembler uses these frags to handle variable size jump
4476 instructions.
4477
4478 Any symbol that is now undefined will not become defined.
4479 Return the correct fr_subtype in the frag.
4480 Return the initial "guess for variable size of frag" to caller.
4481 The guess is actually the growth beyond the fixed part. Whatever
4482 we do to grow the fixed or variable part contributes to our
4483 returned value. */
4484
4485 int
4486 md_estimate_size_before_relax (fragP, segment)
4487 fragS *fragP;
4488 segT segment;
4489 {
4490 /* We've already got fragP->fr_subtype right; all we have to do is
4491 check for un-relaxable symbols. On an ELF system, we can't relax
4492 an externally visible symbol, because it may be overridden by a
4493 shared library. */
4494 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
4495 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4496 || (OUTPUT_FLAVOR == bfd_target_elf_flavour
4497 && (S_IS_EXTERNAL (fragP->fr_symbol)
4498 || S_IS_WEAK (fragP->fr_symbol)))
4499 #endif
4500 )
4501 {
4502 /* Symbol is undefined in this segment, or we need to keep a
4503 reloc so that weak symbols can be overridden. */
4504 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
4505 enum bfd_reloc_code_real reloc_type;
4506 unsigned char *opcode;
4507 int old_fr_fix;
4508
4509 if (fragP->fr_var != NO_RELOC)
4510 reloc_type = fragP->fr_var;
4511 else if (size == 2)
4512 reloc_type = BFD_RELOC_16_PCREL;
4513 else
4514 reloc_type = BFD_RELOC_32_PCREL;
4515
4516 old_fr_fix = fragP->fr_fix;
4517 opcode = (unsigned char *) fragP->fr_opcode;
4518
4519 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
4520 {
4521 case UNCOND_JUMP:
4522 /* Make jmp (0xeb) a (d)word displacement jump. */
4523 opcode[0] = 0xe9;
4524 fragP->fr_fix += size;
4525 fix_new (fragP, old_fr_fix, size,
4526 fragP->fr_symbol,
4527 fragP->fr_offset, 1,
4528 reloc_type);
4529 break;
4530
4531 case COND_JUMP86:
4532 if (size == 2
4533 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
4534 {
4535 /* Negate the condition, and branch past an
4536 unconditional jump. */
4537 opcode[0] ^= 1;
4538 opcode[1] = 3;
4539 /* Insert an unconditional jump. */
4540 opcode[2] = 0xe9;
4541 /* We added two extra opcode bytes, and have a two byte
4542 offset. */
4543 fragP->fr_fix += 2 + 2;
4544 fix_new (fragP, old_fr_fix + 2, 2,
4545 fragP->fr_symbol,
4546 fragP->fr_offset, 1,
4547 reloc_type);
4548 break;
4549 }
4550 /* Fall through. */
4551
4552 case COND_JUMP:
4553 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
4554 {
4555 fixS *fixP;
4556
4557 fragP->fr_fix += 1;
4558 fixP = fix_new (fragP, old_fr_fix, 1,
4559 fragP->fr_symbol,
4560 fragP->fr_offset, 1,
4561 BFD_RELOC_8_PCREL);
4562 fixP->fx_signed = 1;
4563 break;
4564 }
4565
4566 /* This changes the byte-displacement jump 0x7N
4567 to the (d)word-displacement jump 0x0f,0x8N. */
4568 opcode[1] = opcode[0] + 0x10;
4569 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4570 /* We've added an opcode byte. */
4571 fragP->fr_fix += 1 + size;
4572 fix_new (fragP, old_fr_fix + 1, size,
4573 fragP->fr_symbol,
4574 fragP->fr_offset, 1,
4575 reloc_type);
4576 break;
4577
4578 default:
4579 BAD_CASE (fragP->fr_subtype);
4580 break;
4581 }
4582 frag_wane (fragP);
4583 return fragP->fr_fix - old_fr_fix;
4584 }
4585
4586 /* Guess size depending on current relax state. Initially the relax
4587 state will correspond to a short jump and we return 1, because
4588 the variable part of the frag (the branch offset) is one byte
4589 long. However, we can relax a section more than once and in that
4590 case we must either set fr_subtype back to the unrelaxed state,
4591 or return the value for the appropriate branch. */
4592 return md_relax_table[fragP->fr_subtype].rlx_length;
4593 }
4594
4595 /* Called after relax() is finished.
4596
4597 In: Address of frag.
4598 fr_type == rs_machine_dependent.
4599 fr_subtype is what the address relaxed to.
4600
4601 Out: Any fixSs and constants are set up.
4602 Caller will turn frag into a ".space 0". */
4603
4604 void
4605 md_convert_frag (abfd, sec, fragP)
4606 bfd *abfd ATTRIBUTE_UNUSED;
4607 segT sec ATTRIBUTE_UNUSED;
4608 fragS *fragP;
4609 {
4610 unsigned char *opcode;
4611 unsigned char *where_to_put_displacement = NULL;
4612 offsetT target_address;
4613 offsetT opcode_address;
4614 unsigned int extension = 0;
4615 offsetT displacement_from_opcode_start;
4616
4617 opcode = (unsigned char *) fragP->fr_opcode;
4618
4619 /* Address we want to reach in file space. */
4620 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
4621
4622 /* Address opcode resides at in file space. */
4623 opcode_address = fragP->fr_address + fragP->fr_fix;
4624
4625 /* Displacement from opcode start to fill into instruction. */
4626 displacement_from_opcode_start = target_address - opcode_address;
4627
4628 if ((fragP->fr_subtype & BIG) == 0)
4629 {
4630 /* Don't have to change opcode. */
4631 extension = 1; /* 1 opcode + 1 displacement */
4632 where_to_put_displacement = &opcode[1];
4633 }
4634 else
4635 {
4636 if (no_cond_jump_promotion
4637 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4638 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
4639
4640 switch (fragP->fr_subtype)
4641 {
4642 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
4643 extension = 4; /* 1 opcode + 4 displacement */
4644 opcode[0] = 0xe9;
4645 where_to_put_displacement = &opcode[1];
4646 break;
4647
4648 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
4649 extension = 2; /* 1 opcode + 2 displacement */
4650 opcode[0] = 0xe9;
4651 where_to_put_displacement = &opcode[1];
4652 break;
4653
4654 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
4655 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
4656 extension = 5; /* 2 opcode + 4 displacement */
4657 opcode[1] = opcode[0] + 0x10;
4658 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4659 where_to_put_displacement = &opcode[2];
4660 break;
4661
4662 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
4663 extension = 3; /* 2 opcode + 2 displacement */
4664 opcode[1] = opcode[0] + 0x10;
4665 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4666 where_to_put_displacement = &opcode[2];
4667 break;
4668
4669 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
4670 extension = 4;
4671 opcode[0] ^= 1;
4672 opcode[1] = 3;
4673 opcode[2] = 0xe9;
4674 where_to_put_displacement = &opcode[3];
4675 break;
4676
4677 default:
4678 BAD_CASE (fragP->fr_subtype);
4679 break;
4680 }
4681 }
4682
4683 /* Now put displacement after opcode. */
4684 md_number_to_chars ((char *) where_to_put_displacement,
4685 (valueT) (displacement_from_opcode_start - extension),
4686 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
4687 fragP->fr_fix += extension;
4688 }
4689 \f
4690 /* Size of byte displacement jmp. */
4691 int md_short_jump_size = 2;
4692
4693 /* Size of dword displacement jmp. */
4694 int md_long_jump_size = 5;
4695
4696 /* Size of relocation record. */
4697 const int md_reloc_size = 8;
4698
4699 void
4700 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
4701 char *ptr;
4702 addressT from_addr, to_addr;
4703 fragS *frag ATTRIBUTE_UNUSED;
4704 symbolS *to_symbol ATTRIBUTE_UNUSED;
4705 {
4706 offsetT offset;
4707
4708 offset = to_addr - (from_addr + 2);
4709 /* Opcode for byte-disp jump. */
4710 md_number_to_chars (ptr, (valueT) 0xeb, 1);
4711 md_number_to_chars (ptr + 1, (valueT) offset, 1);
4712 }
4713
4714 void
4715 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
4716 char *ptr;
4717 addressT from_addr, to_addr;
4718 fragS *frag ATTRIBUTE_UNUSED;
4719 symbolS *to_symbol ATTRIBUTE_UNUSED;
4720 {
4721 offsetT offset;
4722
4723 offset = to_addr - (from_addr + 5);
4724 md_number_to_chars (ptr, (valueT) 0xe9, 1);
4725 md_number_to_chars (ptr + 1, (valueT) offset, 4);
4726 }
4727 \f
4728 /* Apply a fixup (fixS) to segment data, once it has been determined
4729 by our caller that we have all the info we need to fix it up.
4730
4731 On the 386, immediates, displacements, and data pointers are all in
4732 the same (little-endian) format, so we don't need to care about which
4733 we are handling. */
4734
4735 void
4736 md_apply_fix3 (fixP, valP, seg)
4737 /* The fix we're to put in. */
4738 fixS *fixP;
4739 /* Pointer to the value of the bits. */
4740 valueT *valP;
4741 /* Segment fix is from. */
4742 segT seg ATTRIBUTE_UNUSED;
4743 {
4744 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
4745 valueT value = *valP;
4746
4747 #if !defined (TE_Mach)
4748 if (fixP->fx_pcrel)
4749 {
4750 switch (fixP->fx_r_type)
4751 {
4752 default:
4753 break;
4754
4755 case BFD_RELOC_32:
4756 fixP->fx_r_type = BFD_RELOC_32_PCREL;
4757 break;
4758 case BFD_RELOC_16:
4759 fixP->fx_r_type = BFD_RELOC_16_PCREL;
4760 break;
4761 case BFD_RELOC_8:
4762 fixP->fx_r_type = BFD_RELOC_8_PCREL;
4763 break;
4764 }
4765 }
4766
4767 if (fixP->fx_addsy != NULL
4768 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
4769 || fixP->fx_r_type == BFD_RELOC_16_PCREL
4770 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
4771 && !use_rela_relocations)
4772 {
4773 /* This is a hack. There should be a better way to handle this.
4774 This covers for the fact that bfd_install_relocation will
4775 subtract the current location (for partial_inplace, PC relative
4776 relocations); see more below. */
4777 #ifndef OBJ_AOUT
4778 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4779 #ifdef TE_PE
4780 || OUTPUT_FLAVOR == bfd_target_coff_flavour
4781 #endif
4782 )
4783 value += fixP->fx_where + fixP->fx_frag->fr_address;
4784 #endif
4785 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4786 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
4787 {
4788 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
4789
4790 if ((sym_seg == seg
4791 || (symbol_section_p (fixP->fx_addsy)
4792 && sym_seg != absolute_section))
4793 && !generic_force_reloc (fixP))
4794 {
4795 /* Yes, we add the values in twice. This is because
4796 bfd_install_relocation subtracts them out again. I think
4797 bfd_install_relocation is broken, but I don't dare change
4798 it. FIXME. */
4799 value += fixP->fx_where + fixP->fx_frag->fr_address;
4800 }
4801 }
4802 #endif
4803 #if defined (OBJ_COFF) && defined (TE_PE)
4804 /* For some reason, the PE format does not store a
4805 section address offset for a PC relative symbol. */
4806 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
4807 #if defined(BFD_ASSEMBLER) || defined(S_IS_WEAK)
4808 || S_IS_WEAK (fixP->fx_addsy)
4809 #endif
4810 )
4811 value += md_pcrel_from (fixP);
4812 #endif
4813 }
4814
4815 /* Fix a few things - the dynamic linker expects certain values here,
4816 and we must not disappoint it. */
4817 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4818 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4819 && fixP->fx_addsy)
4820 switch (fixP->fx_r_type)
4821 {
4822 case BFD_RELOC_386_PLT32:
4823 case BFD_RELOC_X86_64_PLT32:
4824 /* Make the jump instruction point to the address of the operand. At
4825 runtime we merely add the offset to the actual PLT entry. */
4826 value = -4;
4827 break;
4828
4829 case BFD_RELOC_386_TLS_GD:
4830 case BFD_RELOC_386_TLS_LDM:
4831 case BFD_RELOC_386_TLS_IE_32:
4832 case BFD_RELOC_386_TLS_IE:
4833 case BFD_RELOC_386_TLS_GOTIE:
4834 case BFD_RELOC_X86_64_TLSGD:
4835 case BFD_RELOC_X86_64_TLSLD:
4836 case BFD_RELOC_X86_64_GOTTPOFF:
4837 value = 0; /* Fully resolved at runtime. No addend. */
4838 /* Fallthrough */
4839 case BFD_RELOC_386_TLS_LE:
4840 case BFD_RELOC_386_TLS_LDO_32:
4841 case BFD_RELOC_386_TLS_LE_32:
4842 case BFD_RELOC_X86_64_DTPOFF32:
4843 case BFD_RELOC_X86_64_TPOFF32:
4844 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4845 break;
4846
4847 case BFD_RELOC_386_GOT32:
4848 case BFD_RELOC_X86_64_GOT32:
4849 value = 0; /* Fully resolved at runtime. No addend. */
4850 break;
4851
4852 case BFD_RELOC_VTABLE_INHERIT:
4853 case BFD_RELOC_VTABLE_ENTRY:
4854 fixP->fx_done = 0;
4855 return;
4856
4857 default:
4858 break;
4859 }
4860 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
4861 *valP = value;
4862 #endif /* !defined (TE_Mach) */
4863
4864 /* Are we finished with this relocation now? */
4865 if (fixP->fx_addsy == NULL)
4866 fixP->fx_done = 1;
4867 else if (use_rela_relocations)
4868 {
4869 fixP->fx_no_overflow = 1;
4870 /* Remember value for tc_gen_reloc. */
4871 fixP->fx_addnumber = value;
4872 value = 0;
4873 }
4874
4875 md_number_to_chars (p, value, fixP->fx_size);
4876 }
4877 \f
4878 #define MAX_LITTLENUMS 6
4879
4880 /* Turn the string pointed to by litP into a floating point constant
4881 of type TYPE, and emit the appropriate bytes. The number of
4882 LITTLENUMS emitted is stored in *SIZEP. An error message is
4883 returned, or NULL on OK. */
4884
4885 char *
4886 md_atof (type, litP, sizeP)
4887 int type;
4888 char *litP;
4889 int *sizeP;
4890 {
4891 int prec;
4892 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4893 LITTLENUM_TYPE *wordP;
4894 char *t;
4895
4896 switch (type)
4897 {
4898 case 'f':
4899 case 'F':
4900 prec = 2;
4901 break;
4902
4903 case 'd':
4904 case 'D':
4905 prec = 4;
4906 break;
4907
4908 case 'x':
4909 case 'X':
4910 prec = 5;
4911 break;
4912
4913 default:
4914 *sizeP = 0;
4915 return _("Bad call to md_atof ()");
4916 }
4917 t = atof_ieee (input_line_pointer, type, words);
4918 if (t)
4919 input_line_pointer = t;
4920
4921 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4922 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4923 the bigendian 386. */
4924 for (wordP = words + prec - 1; prec--;)
4925 {
4926 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4927 litP += sizeof (LITTLENUM_TYPE);
4928 }
4929 return 0;
4930 }
4931 \f
4932 char output_invalid_buf[8];
4933
4934 static char *
4935 output_invalid (c)
4936 int c;
4937 {
4938 if (ISPRINT (c))
4939 sprintf (output_invalid_buf, "'%c'", c);
4940 else
4941 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4942 return output_invalid_buf;
4943 }
4944
4945 /* REG_STRING starts *before* REGISTER_PREFIX. */
4946
4947 static const reg_entry *
4948 parse_register (reg_string, end_op)
4949 char *reg_string;
4950 char **end_op;
4951 {
4952 char *s = reg_string;
4953 char *p;
4954 char reg_name_given[MAX_REG_NAME_SIZE + 1];
4955 const reg_entry *r;
4956
4957 /* Skip possible REGISTER_PREFIX and possible whitespace. */
4958 if (*s == REGISTER_PREFIX)
4959 ++s;
4960
4961 if (is_space_char (*s))
4962 ++s;
4963
4964 p = reg_name_given;
4965 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
4966 {
4967 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
4968 return (const reg_entry *) NULL;
4969 s++;
4970 }
4971
4972 /* For naked regs, make sure that we are not dealing with an identifier.
4973 This prevents confusing an identifier like `eax_var' with register
4974 `eax'. */
4975 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
4976 return (const reg_entry *) NULL;
4977
4978 *end_op = s;
4979
4980 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
4981
4982 /* Handle floating point regs, allowing spaces in the (i) part. */
4983 if (r == i386_regtab /* %st is first entry of table */)
4984 {
4985 if (is_space_char (*s))
4986 ++s;
4987 if (*s == '(')
4988 {
4989 ++s;
4990 if (is_space_char (*s))
4991 ++s;
4992 if (*s >= '0' && *s <= '7')
4993 {
4994 r = &i386_float_regtab[*s - '0'];
4995 ++s;
4996 if (is_space_char (*s))
4997 ++s;
4998 if (*s == ')')
4999 {
5000 *end_op = s + 1;
5001 return r;
5002 }
5003 }
5004 /* We have "%st(" then garbage. */
5005 return (const reg_entry *) NULL;
5006 }
5007 }
5008
5009 if (r != NULL
5010 && ((r->reg_flags & (RegRex64 | RegRex)) | (r->reg_type & Reg64)) != 0
5011 && flag_code != CODE_64BIT)
5012 return (const reg_entry *) NULL;
5013
5014 return r;
5015 }
5016 \f
5017 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5018 const char *md_shortopts = "kVQ:sqn";
5019 #else
5020 const char *md_shortopts = "qn";
5021 #endif
5022
5023 struct option md_longopts[] = {
5024 #define OPTION_32 (OPTION_MD_BASE + 0)
5025 {"32", no_argument, NULL, OPTION_32},
5026 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5027 #define OPTION_64 (OPTION_MD_BASE + 1)
5028 {"64", no_argument, NULL, OPTION_64},
5029 #endif
5030 {NULL, no_argument, NULL, 0}
5031 };
5032 size_t md_longopts_size = sizeof (md_longopts);
5033
5034 int
5035 md_parse_option (c, arg)
5036 int c;
5037 char *arg ATTRIBUTE_UNUSED;
5038 {
5039 switch (c)
5040 {
5041 case 'n':
5042 optimize_align_code = 0;
5043 break;
5044
5045 case 'q':
5046 quiet_warnings = 1;
5047 break;
5048
5049 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5050 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
5051 should be emitted or not. FIXME: Not implemented. */
5052 case 'Q':
5053 break;
5054
5055 /* -V: SVR4 argument to print version ID. */
5056 case 'V':
5057 print_version_id ();
5058 break;
5059
5060 /* -k: Ignore for FreeBSD compatibility. */
5061 case 'k':
5062 break;
5063
5064 case 's':
5065 /* -s: On i386 Solaris, this tells the native assembler to use
5066 .stab instead of .stab.excl. We always use .stab anyhow. */
5067 break;
5068
5069 case OPTION_64:
5070 {
5071 const char **list, **l;
5072
5073 list = bfd_target_list ();
5074 for (l = list; *l != NULL; l++)
5075 if (strcmp (*l, "elf64-x86-64") == 0)
5076 {
5077 default_arch = "x86_64";
5078 break;
5079 }
5080 if (*l == NULL)
5081 as_fatal (_("No compiled in support for x86_64"));
5082 free (list);
5083 }
5084 break;
5085 #endif
5086
5087 case OPTION_32:
5088 default_arch = "i386";
5089 break;
5090
5091 default:
5092 return 0;
5093 }
5094 return 1;
5095 }
5096
5097 void
5098 md_show_usage (stream)
5099 FILE *stream;
5100 {
5101 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5102 fprintf (stream, _("\
5103 -Q ignored\n\
5104 -V print assembler version number\n\
5105 -k ignored\n\
5106 -n Do not optimize code alignment\n\
5107 -q quieten some warnings\n\
5108 -s ignored\n"));
5109 #else
5110 fprintf (stream, _("\
5111 -n Do not optimize code alignment\n\
5112 -q quieten some warnings\n"));
5113 #endif
5114 }
5115
5116 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
5117 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
5118
5119 /* Pick the target format to use. */
5120
5121 const char *
5122 i386_target_format ()
5123 {
5124 if (!strcmp (default_arch, "x86_64"))
5125 set_code_flag (CODE_64BIT);
5126 else if (!strcmp (default_arch, "i386"))
5127 set_code_flag (CODE_32BIT);
5128 else
5129 as_fatal (_("Unknown architecture"));
5130 switch (OUTPUT_FLAVOR)
5131 {
5132 #ifdef OBJ_MAYBE_AOUT
5133 case bfd_target_aout_flavour:
5134 return AOUT_TARGET_FORMAT;
5135 #endif
5136 #ifdef OBJ_MAYBE_COFF
5137 case bfd_target_coff_flavour:
5138 return "coff-i386";
5139 #endif
5140 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
5141 case bfd_target_elf_flavour:
5142 {
5143 if (flag_code == CODE_64BIT)
5144 use_rela_relocations = 1;
5145 return flag_code == CODE_64BIT ? "elf64-x86-64" : ELF_TARGET_FORMAT;
5146 }
5147 #endif
5148 default:
5149 abort ();
5150 return NULL;
5151 }
5152 }
5153
5154 #endif /* OBJ_MAYBE_ more than one */
5155
5156 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
5157 void i386_elf_emit_arch_note ()
5158 {
5159 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
5160 && cpu_arch_name != NULL)
5161 {
5162 char *p;
5163 asection *seg = now_seg;
5164 subsegT subseg = now_subseg;
5165 Elf_Internal_Note i_note;
5166 Elf_External_Note e_note;
5167 asection *note_secp;
5168 int len;
5169
5170 /* Create the .note section. */
5171 note_secp = subseg_new (".note", 0);
5172 bfd_set_section_flags (stdoutput,
5173 note_secp,
5174 SEC_HAS_CONTENTS | SEC_READONLY);
5175
5176 /* Process the arch string. */
5177 len = strlen (cpu_arch_name);
5178
5179 i_note.namesz = len + 1;
5180 i_note.descsz = 0;
5181 i_note.type = NT_ARCH;
5182 p = frag_more (sizeof (e_note.namesz));
5183 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
5184 p = frag_more (sizeof (e_note.descsz));
5185 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
5186 p = frag_more (sizeof (e_note.type));
5187 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
5188 p = frag_more (len + 1);
5189 strcpy (p, cpu_arch_name);
5190
5191 frag_align (2, 0, 0);
5192
5193 subseg_set (seg, subseg);
5194 }
5195 }
5196 #endif
5197 \f
5198 symbolS *
5199 md_undefined_symbol (name)
5200 char *name;
5201 {
5202 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
5203 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
5204 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
5205 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
5206 {
5207 if (!GOT_symbol)
5208 {
5209 if (symbol_find (name))
5210 as_bad (_("GOT already in symbol table"));
5211 GOT_symbol = symbol_new (name, undefined_section,
5212 (valueT) 0, &zero_address_frag);
5213 };
5214 return GOT_symbol;
5215 }
5216 return 0;
5217 }
5218
5219 /* Round up a section size to the appropriate boundary. */
5220
5221 valueT
5222 md_section_align (segment, size)
5223 segT segment ATTRIBUTE_UNUSED;
5224 valueT size;
5225 {
5226 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
5227 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
5228 {
5229 /* For a.out, force the section size to be aligned. If we don't do
5230 this, BFD will align it for us, but it will not write out the
5231 final bytes of the section. This may be a bug in BFD, but it is
5232 easier to fix it here since that is how the other a.out targets
5233 work. */
5234 int align;
5235
5236 align = bfd_get_section_alignment (stdoutput, segment);
5237 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
5238 }
5239 #endif
5240
5241 return size;
5242 }
5243
5244 /* On the i386, PC-relative offsets are relative to the start of the
5245 next instruction. That is, the address of the offset, plus its
5246 size, since the offset is always the last part of the insn. */
5247
5248 long
5249 md_pcrel_from (fixP)
5250 fixS *fixP;
5251 {
5252 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
5253 }
5254
5255 #ifndef I386COFF
5256
5257 static void
5258 s_bss (ignore)
5259 int ignore ATTRIBUTE_UNUSED;
5260 {
5261 int temp;
5262
5263 temp = get_absolute_expression ();
5264 subseg_set (bss_section, (subsegT) temp);
5265 demand_empty_rest_of_line ();
5266 }
5267
5268 #endif
5269
5270 void
5271 i386_validate_fix (fixp)
5272 fixS *fixp;
5273 {
5274 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
5275 {
5276 /* GOTOFF relocation are nonsense in 64bit mode. */
5277 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
5278 {
5279 if (flag_code != CODE_64BIT)
5280 abort ();
5281 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
5282 }
5283 else
5284 {
5285 if (flag_code == CODE_64BIT)
5286 abort ();
5287 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
5288 }
5289 fixp->fx_subsy = 0;
5290 }
5291 }
5292
5293 arelent *
5294 tc_gen_reloc (section, fixp)
5295 asection *section ATTRIBUTE_UNUSED;
5296 fixS *fixp;
5297 {
5298 arelent *rel;
5299 bfd_reloc_code_real_type code;
5300
5301 switch (fixp->fx_r_type)
5302 {
5303 case BFD_RELOC_X86_64_PLT32:
5304 case BFD_RELOC_X86_64_GOT32:
5305 case BFD_RELOC_X86_64_GOTPCREL:
5306 case BFD_RELOC_386_PLT32:
5307 case BFD_RELOC_386_GOT32:
5308 case BFD_RELOC_386_GOTOFF:
5309 case BFD_RELOC_386_GOTPC:
5310 case BFD_RELOC_386_TLS_GD:
5311 case BFD_RELOC_386_TLS_LDM:
5312 case BFD_RELOC_386_TLS_LDO_32:
5313 case BFD_RELOC_386_TLS_IE_32:
5314 case BFD_RELOC_386_TLS_IE:
5315 case BFD_RELOC_386_TLS_GOTIE:
5316 case BFD_RELOC_386_TLS_LE_32:
5317 case BFD_RELOC_386_TLS_LE:
5318 case BFD_RELOC_X86_64_32S:
5319 case BFD_RELOC_X86_64_TLSGD:
5320 case BFD_RELOC_X86_64_TLSLD:
5321 case BFD_RELOC_X86_64_DTPOFF32:
5322 case BFD_RELOC_X86_64_GOTTPOFF:
5323 case BFD_RELOC_X86_64_TPOFF32:
5324 case BFD_RELOC_RVA:
5325 case BFD_RELOC_VTABLE_ENTRY:
5326 case BFD_RELOC_VTABLE_INHERIT:
5327 #ifdef TE_PE
5328 case BFD_RELOC_32_SECREL:
5329 #endif
5330 code = fixp->fx_r_type;
5331 break;
5332 default:
5333 if (fixp->fx_pcrel)
5334 {
5335 switch (fixp->fx_size)
5336 {
5337 default:
5338 as_bad_where (fixp->fx_file, fixp->fx_line,
5339 _("can not do %d byte pc-relative relocation"),
5340 fixp->fx_size);
5341 code = BFD_RELOC_32_PCREL;
5342 break;
5343 case 1: code = BFD_RELOC_8_PCREL; break;
5344 case 2: code = BFD_RELOC_16_PCREL; break;
5345 case 4: code = BFD_RELOC_32_PCREL; break;
5346 }
5347 }
5348 else
5349 {
5350 switch (fixp->fx_size)
5351 {
5352 default:
5353 as_bad_where (fixp->fx_file, fixp->fx_line,
5354 _("can not do %d byte relocation"),
5355 fixp->fx_size);
5356 code = BFD_RELOC_32;
5357 break;
5358 case 1: code = BFD_RELOC_8; break;
5359 case 2: code = BFD_RELOC_16; break;
5360 case 4: code = BFD_RELOC_32; break;
5361 #ifdef BFD64
5362 case 8: code = BFD_RELOC_64; break;
5363 #endif
5364 }
5365 }
5366 break;
5367 }
5368
5369 if (code == BFD_RELOC_32
5370 && GOT_symbol
5371 && fixp->fx_addsy == GOT_symbol)
5372 {
5373 /* We don't support GOTPC on 64bit targets. */
5374 if (flag_code == CODE_64BIT)
5375 abort ();
5376 code = BFD_RELOC_386_GOTPC;
5377 }
5378
5379 rel = (arelent *) xmalloc (sizeof (arelent));
5380 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
5381 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
5382
5383 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
5384
5385 if (!use_rela_relocations)
5386 {
5387 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
5388 vtable entry to be used in the relocation's section offset. */
5389 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5390 rel->address = fixp->fx_offset;
5391
5392 rel->addend = 0;
5393 }
5394 /* Use the rela in 64bit mode. */
5395 else
5396 {
5397 if (!fixp->fx_pcrel)
5398 rel->addend = fixp->fx_offset;
5399 else
5400 switch (code)
5401 {
5402 case BFD_RELOC_X86_64_PLT32:
5403 case BFD_RELOC_X86_64_GOT32:
5404 case BFD_RELOC_X86_64_GOTPCREL:
5405 case BFD_RELOC_X86_64_TLSGD:
5406 case BFD_RELOC_X86_64_TLSLD:
5407 case BFD_RELOC_X86_64_GOTTPOFF:
5408 rel->addend = fixp->fx_offset - fixp->fx_size;
5409 break;
5410 default:
5411 rel->addend = (section->vma
5412 - fixp->fx_size
5413 + fixp->fx_addnumber
5414 + md_pcrel_from (fixp));
5415 break;
5416 }
5417 }
5418
5419 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
5420 if (rel->howto == NULL)
5421 {
5422 as_bad_where (fixp->fx_file, fixp->fx_line,
5423 _("cannot represent relocation type %s"),
5424 bfd_get_reloc_code_name (code));
5425 /* Set howto to a garbage value so that we can keep going. */
5426 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
5427 assert (rel->howto != NULL);
5428 }
5429
5430 return rel;
5431 }
5432
5433 \f
5434 /* Parse operands using Intel syntax. This implements a recursive descent
5435 parser based on the BNF grammar published in Appendix B of the MASM 6.1
5436 Programmer's Guide.
5437
5438 FIXME: We do not recognize the full operand grammar defined in the MASM
5439 documentation. In particular, all the structure/union and
5440 high-level macro operands are missing.
5441
5442 Uppercase words are terminals, lower case words are non-terminals.
5443 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
5444 bars '|' denote choices. Most grammar productions are implemented in
5445 functions called 'intel_<production>'.
5446
5447 Initial production is 'expr'.
5448
5449 addOp + | -
5450
5451 alpha [a-zA-Z]
5452
5453 binOp & | AND | \| | OR | ^ | XOR
5454
5455 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
5456
5457 constant digits [[ radixOverride ]]
5458
5459 dataType BYTE | WORD | DWORD | FWORD | QWORD | TBYTE | OWORD | XMMWORD
5460
5461 digits decdigit
5462 | digits decdigit
5463 | digits hexdigit
5464
5465 decdigit [0-9]
5466
5467 e04 e04 addOp e05
5468 | e05
5469
5470 e05 e05 binOp e06
5471 | e06
5472
5473 e06 e06 mulOp e09
5474 | e09
5475
5476 e09 OFFSET e10
5477 | ~ e10
5478 | NOT e10
5479 | e09 PTR e10
5480 | e09 : e10
5481 | e10
5482
5483 e10 e10 [ expr ]
5484 | e11
5485
5486 e11 ( expr )
5487 | [ expr ]
5488 | constant
5489 | dataType
5490 | id
5491 | $
5492 | register
5493
5494 => expr SHORT e04
5495 | e04
5496
5497 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
5498 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
5499
5500 hexdigit a | b | c | d | e | f
5501 | A | B | C | D | E | F
5502
5503 id alpha
5504 | id alpha
5505 | id decdigit
5506
5507 mulOp * | / | % | MOD | << | SHL | >> | SHR
5508
5509 quote " | '
5510
5511 register specialRegister
5512 | gpRegister
5513 | byteRegister
5514
5515 segmentRegister CS | DS | ES | FS | GS | SS
5516
5517 specialRegister CR0 | CR2 | CR3 | CR4
5518 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
5519 | TR3 | TR4 | TR5 | TR6 | TR7
5520
5521 We simplify the grammar in obvious places (e.g., register parsing is
5522 done by calling parse_register) and eliminate immediate left recursion
5523 to implement a recursive-descent parser.
5524
5525 expr SHORT e04
5526 | e04
5527
5528 e04 e05 e04'
5529
5530 e04' addOp e05 e04'
5531 | Empty
5532
5533 e05 e06 e05'
5534
5535 e05' binOp e06 e05'
5536 | Empty
5537
5538 e06 e09 e06'
5539
5540 e06' mulOp e09 e06'
5541 | Empty
5542
5543 e09 OFFSET e10 e09'
5544 | ~ e10
5545 | NOT e10
5546 | e10 e09'
5547
5548 e09' PTR e10 e09'
5549 | : e10 e09'
5550 | Empty
5551
5552 e10 e11 e10'
5553
5554 e10' [ expr ] e10'
5555 | Empty
5556
5557 e11 ( expr )
5558 | [ expr ]
5559 | BYTE
5560 | WORD
5561 | DWORD
5562 | FWORD
5563 | QWORD
5564 | TBYTE
5565 | OWORD
5566 | XMMWORD
5567 | .
5568 | $
5569 | register
5570 | id
5571 | constant */
5572
5573 /* Parsing structure for the intel syntax parser. Used to implement the
5574 semantic actions for the operand grammar. */
5575 struct intel_parser_s
5576 {
5577 char *op_string; /* The string being parsed. */
5578 int got_a_float; /* Whether the operand is a float. */
5579 int op_modifier; /* Operand modifier. */
5580 int is_mem; /* 1 if operand is memory reference. */
5581 const reg_entry *reg; /* Last register reference found. */
5582 char *disp; /* Displacement string being built. */
5583 };
5584
5585 static struct intel_parser_s intel_parser;
5586
5587 /* Token structure for parsing intel syntax. */
5588 struct intel_token
5589 {
5590 int code; /* Token code. */
5591 const reg_entry *reg; /* Register entry for register tokens. */
5592 char *str; /* String representation. */
5593 };
5594
5595 static struct intel_token cur_token, prev_token;
5596
5597 /* Token codes for the intel parser. Since T_SHORT is already used
5598 by COFF, undefine it first to prevent a warning. */
5599 #define T_NIL -1
5600 #define T_CONST 1
5601 #define T_REG 2
5602 #define T_BYTE 3
5603 #define T_WORD 4
5604 #define T_DWORD 5
5605 #define T_FWORD 6
5606 #define T_QWORD 7
5607 #define T_TBYTE 8
5608 #define T_XMMWORD 9
5609 #undef T_SHORT
5610 #define T_SHORT 10
5611 #define T_OFFSET 11
5612 #define T_PTR 12
5613 #define T_ID 13
5614 #define T_SHL 14
5615 #define T_SHR 15
5616
5617 /* Prototypes for intel parser functions. */
5618 static int intel_match_token PARAMS ((int code));
5619 static void intel_get_token PARAMS ((void));
5620 static void intel_putback_token PARAMS ((void));
5621 static int intel_expr PARAMS ((void));
5622 static int intel_e04 PARAMS ((void));
5623 static int intel_e04_1 PARAMS ((void));
5624 static int intel_e05 PARAMS ((void));
5625 static int intel_e05_1 PARAMS ((void));
5626 static int intel_e06 PARAMS ((void));
5627 static int intel_e06_1 PARAMS ((void));
5628 static int intel_e09 PARAMS ((void));
5629 static int intel_e09_1 PARAMS ((void));
5630 static int intel_e10 PARAMS ((void));
5631 static int intel_e10_1 PARAMS ((void));
5632 static int intel_e11 PARAMS ((void));
5633
5634 static int
5635 i386_intel_operand (operand_string, got_a_float)
5636 char *operand_string;
5637 int got_a_float;
5638 {
5639 int ret;
5640 char *p;
5641
5642 /* Initialize token holders. */
5643 cur_token.code = prev_token.code = T_NIL;
5644 cur_token.reg = prev_token.reg = NULL;
5645 cur_token.str = prev_token.str = NULL;
5646
5647 /* Initialize parser structure. */
5648 p = intel_parser.op_string = (char *) malloc (strlen (operand_string) + 1);
5649 if (p == NULL)
5650 abort ();
5651 strcpy (intel_parser.op_string, operand_string);
5652 intel_parser.got_a_float = got_a_float;
5653 intel_parser.op_modifier = -1;
5654 intel_parser.is_mem = 0;
5655 intel_parser.reg = NULL;
5656 intel_parser.disp = (char *) malloc (strlen (operand_string) + 1);
5657 if (intel_parser.disp == NULL)
5658 abort ();
5659 intel_parser.disp[0] = '\0';
5660
5661 /* Read the first token and start the parser. */
5662 intel_get_token ();
5663 ret = intel_expr ();
5664
5665 if (ret)
5666 {
5667 if (cur_token.code != T_NIL)
5668 {
5669 as_bad (_("invalid operand for '%s' ('%s' unexpected)"),
5670 current_templates->start->name, cur_token.str);
5671 ret = 0;
5672 }
5673 /* If we found a memory reference, hand it over to i386_displacement
5674 to fill in the rest of the operand fields. */
5675 else if (intel_parser.is_mem)
5676 {
5677 if ((i.mem_operands == 1
5678 && (current_templates->start->opcode_modifier & IsString) == 0)
5679 || i.mem_operands == 2)
5680 {
5681 as_bad (_("too many memory references for '%s'"),
5682 current_templates->start->name);
5683 ret = 0;
5684 }
5685 else
5686 {
5687 char *s = intel_parser.disp;
5688 i.mem_operands++;
5689
5690 /* Add the displacement expression. */
5691 if (*s != '\0')
5692 ret = i386_displacement (s, s + strlen (s));
5693 if (ret)
5694 ret = i386_index_check (operand_string);
5695 }
5696 }
5697
5698 /* Constant and OFFSET expressions are handled by i386_immediate. */
5699 else if (intel_parser.op_modifier == T_OFFSET
5700 || intel_parser.reg == NULL)
5701 ret = i386_immediate (intel_parser.disp);
5702 }
5703
5704 free (p);
5705 free (intel_parser.disp);
5706
5707 return ret;
5708 }
5709
5710 /* expr SHORT e04
5711 | e04 */
5712 static int
5713 intel_expr ()
5714 {
5715 /* expr SHORT e04 */
5716 if (cur_token.code == T_SHORT)
5717 {
5718 intel_parser.op_modifier = T_SHORT;
5719 intel_match_token (T_SHORT);
5720
5721 return (intel_e04 ());
5722 }
5723
5724 /* expr e04 */
5725 else
5726 return intel_e04 ();
5727 }
5728
5729 /* e04 e06 e04'
5730
5731 e04' addOp e06 e04'
5732 | Empty */
5733 static int
5734 intel_e04 ()
5735 {
5736 return (intel_e05 () && intel_e04_1 ());
5737 }
5738
5739 static int
5740 intel_e04_1 ()
5741 {
5742 /* e04' addOp e05 e04' */
5743 if (cur_token.code == '+' || cur_token.code == '-')
5744 {
5745 char str[2];
5746
5747 str[0] = cur_token.code;
5748 str[1] = 0;
5749 strcat (intel_parser.disp, str);
5750 intel_match_token (cur_token.code);
5751
5752 return (intel_e05 () && intel_e04_1 ());
5753 }
5754
5755 /* e04' Empty */
5756 else
5757 return 1;
5758 }
5759
5760 /* e05 e06 e05'
5761
5762 e05' binOp e06 e05'
5763 | Empty */
5764 static int
5765 intel_e05 ()
5766 {
5767 return (intel_e06 () && intel_e05_1 ());
5768 }
5769
5770 static int
5771 intel_e05_1 ()
5772 {
5773 /* e05' binOp e06 e05' */
5774 if (cur_token.code == '&' || cur_token.code == '|' || cur_token.code == '^')
5775 {
5776 char str[2];
5777
5778 str[0] = cur_token.code;
5779 str[1] = 0;
5780 strcat (intel_parser.disp, str);
5781 intel_match_token (cur_token.code);
5782
5783 return (intel_e06 () && intel_e05_1 ());
5784 }
5785
5786 /* e05' Empty */
5787 else
5788 return 1;
5789 }
5790
5791 /* e06 e09 e06'
5792
5793 e06' mulOp e09 e06'
5794 | Empty */
5795 static int
5796 intel_e06 ()
5797 {
5798 return (intel_e09 () && intel_e06_1 ());
5799 }
5800
5801 static int
5802 intel_e06_1 ()
5803 {
5804 /* e06' mulOp e09 e06' */
5805 if (cur_token.code == '*' || cur_token.code == '/' || cur_token.code == '%')
5806 {
5807 char str[2];
5808
5809 str[0] = cur_token.code;
5810 str[1] = 0;
5811 strcat (intel_parser.disp, str);
5812 intel_match_token (cur_token.code);
5813
5814 return (intel_e09 () && intel_e06_1 ());
5815 }
5816 else if (cur_token.code == T_SHL)
5817 {
5818 strcat (intel_parser.disp, "<<");
5819 intel_match_token (cur_token.code);
5820
5821 return (intel_e09 () && intel_e06_1 ());
5822 }
5823 else if (cur_token.code == T_SHR)
5824 {
5825 strcat (intel_parser.disp, ">>");
5826 intel_match_token (cur_token.code);
5827
5828 return (intel_e09 () && intel_e06_1 ());
5829 }
5830
5831 /* e06' Empty */
5832 else
5833 return 1;
5834 }
5835
5836 /* e09 OFFSET e10 e09'
5837 | e10 e09'
5838
5839 e09 ~ e10 e09'
5840 | NOT e10 e09'
5841 | e10 e09'
5842
5843 e09' PTR e10 e09'
5844 | : e10 e09'
5845 | Empty */
5846 static int
5847 intel_e09 ()
5848 {
5849 /* e09 OFFSET e10 e09' */
5850 if (cur_token.code == T_OFFSET)
5851 {
5852 intel_parser.is_mem = 0;
5853 intel_parser.op_modifier = T_OFFSET;
5854 intel_match_token (T_OFFSET);
5855
5856 return (intel_e10 () && intel_e09_1 ());
5857 }
5858
5859 /* e09 NOT e10 e09' */
5860 else if (cur_token.code == '~')
5861 {
5862 char str[2];
5863
5864 str[0] = cur_token.code;
5865 str[1] = 0;
5866 strcat (intel_parser.disp, str);
5867 intel_match_token (cur_token.code);
5868
5869 return (intel_e10 () && intel_e09_1 ());
5870 }
5871
5872 /* e09 e10 e09' */
5873 else
5874 return (intel_e10 () && intel_e09_1 ());
5875 }
5876
5877 static int
5878 intel_e09_1 ()
5879 {
5880 /* e09' PTR e10 e09' */
5881 if (cur_token.code == T_PTR)
5882 {
5883 char suffix;
5884
5885 if (prev_token.code == T_BYTE)
5886 suffix = BYTE_MNEM_SUFFIX;
5887
5888 else if (prev_token.code == T_WORD)
5889 {
5890 if (current_templates->start->name[0] == 'l'
5891 && current_templates->start->name[2] == 's'
5892 && current_templates->start->name[3] == 0)
5893 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
5894 else if (intel_parser.got_a_float == 2) /* "fi..." */
5895 suffix = SHORT_MNEM_SUFFIX;
5896 else
5897 suffix = WORD_MNEM_SUFFIX;
5898 }
5899
5900 else if (prev_token.code == T_DWORD)
5901 {
5902 if (current_templates->start->name[0] == 'l'
5903 && current_templates->start->name[2] == 's'
5904 && current_templates->start->name[3] == 0)
5905 suffix = WORD_MNEM_SUFFIX;
5906 else if (flag_code == CODE_16BIT
5907 && (current_templates->start->opcode_modifier
5908 & (Jump|JumpDword|JumpInterSegment)))
5909 suffix = LONG_DOUBLE_MNEM_SUFFIX;
5910 else if (intel_parser.got_a_float == 1) /* "f..." */
5911 suffix = SHORT_MNEM_SUFFIX;
5912 else
5913 suffix = LONG_MNEM_SUFFIX;
5914 }
5915
5916 else if (prev_token.code == T_FWORD)
5917 {
5918 if (current_templates->start->name[0] == 'l'
5919 && current_templates->start->name[2] == 's'
5920 && current_templates->start->name[3] == 0)
5921 suffix = LONG_MNEM_SUFFIX;
5922 else if (!intel_parser.got_a_float)
5923 {
5924 if (flag_code == CODE_16BIT)
5925 add_prefix (DATA_PREFIX_OPCODE);
5926 suffix = LONG_DOUBLE_MNEM_SUFFIX;
5927 }
5928 else
5929 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
5930 }
5931
5932 else if (prev_token.code == T_QWORD)
5933 {
5934 if (intel_parser.got_a_float == 1) /* "f..." */
5935 suffix = LONG_MNEM_SUFFIX;
5936 else
5937 suffix = QWORD_MNEM_SUFFIX;
5938 }
5939
5940 else if (prev_token.code == T_TBYTE)
5941 {
5942 if (intel_parser.got_a_float == 1)
5943 suffix = LONG_DOUBLE_MNEM_SUFFIX;
5944 else
5945 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
5946 }
5947
5948 else if (prev_token.code == T_XMMWORD)
5949 {
5950 /* XXX ignored for now, but accepted since gcc uses it */
5951 suffix = 0;
5952 }
5953
5954 else
5955 {
5956 as_bad (_("Unknown operand modifier `%s'"), prev_token.str);
5957 return 0;
5958 }
5959
5960 if (current_templates->start->base_opcode == 0x8d /* lea */)
5961 ;
5962 else if (!i.suffix)
5963 i.suffix = suffix;
5964 else if (i.suffix != suffix)
5965 {
5966 as_bad (_("Conflicting operand modifiers"));
5967 return 0;
5968 }
5969
5970 intel_match_token (T_PTR);
5971
5972 return (intel_e10 () && intel_e09_1 ());
5973 }
5974
5975 /* e09 : e10 e09' */
5976 else if (cur_token.code == ':')
5977 {
5978 /* Mark as a memory operand only if it's not already known to be an
5979 offset expression. */
5980 if (intel_parser.op_modifier != T_OFFSET)
5981 intel_parser.is_mem = 1;
5982
5983 return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
5984 }
5985
5986 /* e09' Empty */
5987 else
5988 return 1;
5989 }
5990
5991 /* e10 e11 e10'
5992
5993 e10' [ expr ] e10'
5994 | Empty */
5995 static int
5996 intel_e10 ()
5997 {
5998 return (intel_e11 () && intel_e10_1 ());
5999 }
6000
6001 static int
6002 intel_e10_1 ()
6003 {
6004 /* e10' [ expr ] e10' */
6005 if (cur_token.code == '[')
6006 {
6007 intel_match_token ('[');
6008
6009 /* Mark as a memory operand only if it's not already known to be an
6010 offset expression. If it's an offset expression, we need to keep
6011 the brace in. */
6012 if (intel_parser.op_modifier != T_OFFSET)
6013 intel_parser.is_mem = 1;
6014 else
6015 strcat (intel_parser.disp, "[");
6016
6017 /* Add a '+' to the displacement string if necessary. */
6018 if (*intel_parser.disp != '\0'
6019 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
6020 strcat (intel_parser.disp, "+");
6021
6022 if (intel_expr () && intel_match_token (']'))
6023 {
6024 /* Preserve brackets when the operand is an offset expression. */
6025 if (intel_parser.op_modifier == T_OFFSET)
6026 strcat (intel_parser.disp, "]");
6027
6028 return intel_e10_1 ();
6029 }
6030 else
6031 return 0;
6032 }
6033
6034 /* e10' Empty */
6035 else
6036 return 1;
6037 }
6038
6039 /* e11 ( expr )
6040 | [ expr ]
6041 | BYTE
6042 | WORD
6043 | DWORD
6044 | FWORD
6045 | QWORD
6046 | TBYTE
6047 | OWORD
6048 | XMMWORD
6049 | $
6050 | .
6051 | register
6052 | id
6053 | constant */
6054 static int
6055 intel_e11 ()
6056 {
6057 /* e11 ( expr ) */
6058 if (cur_token.code == '(')
6059 {
6060 intel_match_token ('(');
6061 strcat (intel_parser.disp, "(");
6062
6063 if (intel_expr () && intel_match_token (')'))
6064 {
6065 strcat (intel_parser.disp, ")");
6066 return 1;
6067 }
6068 else
6069 return 0;
6070 }
6071
6072 /* e11 [ expr ] */
6073 else if (cur_token.code == '[')
6074 {
6075 intel_match_token ('[');
6076
6077 /* Mark as a memory operand only if it's not already known to be an
6078 offset expression. If it's an offset expression, we need to keep
6079 the brace in. */
6080 if (intel_parser.op_modifier != T_OFFSET)
6081 intel_parser.is_mem = 1;
6082 else
6083 strcat (intel_parser.disp, "[");
6084
6085 /* Operands for jump/call inside brackets denote absolute addresses. */
6086 if (current_templates->start->opcode_modifier
6087 & (Jump|JumpDword|JumpByte|JumpInterSegment))
6088 i.types[this_operand] |= JumpAbsolute;
6089
6090 /* Add a '+' to the displacement string if necessary. */
6091 if (*intel_parser.disp != '\0'
6092 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
6093 strcat (intel_parser.disp, "+");
6094
6095 if (intel_expr () && intel_match_token (']'))
6096 {
6097 /* Preserve brackets when the operand is an offset expression. */
6098 if (intel_parser.op_modifier == T_OFFSET)
6099 strcat (intel_parser.disp, "]");
6100
6101 return 1;
6102 }
6103 else
6104 return 0;
6105 }
6106
6107 /* e11 BYTE
6108 | WORD
6109 | DWORD
6110 | FWORD
6111 | QWORD
6112 | TBYTE
6113 | OWORD
6114 | XMMWORD */
6115 else if (cur_token.code == T_BYTE
6116 || cur_token.code == T_WORD
6117 || cur_token.code == T_DWORD
6118 || cur_token.code == T_FWORD
6119 || cur_token.code == T_QWORD
6120 || cur_token.code == T_TBYTE
6121 || cur_token.code == T_XMMWORD)
6122 {
6123 intel_match_token (cur_token.code);
6124
6125 return 1;
6126 }
6127
6128 /* e11 $
6129 | . */
6130 else if (cur_token.code == '.')
6131 {
6132 strcat (intel_parser.disp, cur_token.str);
6133 intel_match_token (cur_token.code);
6134
6135 /* Mark as a memory operand only if it's not already known to be an
6136 offset expression. */
6137 if (intel_parser.op_modifier != T_OFFSET)
6138 intel_parser.is_mem = 1;
6139
6140 return 1;
6141 }
6142
6143 /* e11 register */
6144 else if (cur_token.code == T_REG)
6145 {
6146 const reg_entry *reg = intel_parser.reg = cur_token.reg;
6147
6148 intel_match_token (T_REG);
6149
6150 /* Check for segment change. */
6151 if (cur_token.code == ':')
6152 {
6153 if (reg->reg_type & (SReg2 | SReg3))
6154 {
6155 switch (reg->reg_num)
6156 {
6157 case 0:
6158 i.seg[i.mem_operands] = &es;
6159 break;
6160 case 1:
6161 i.seg[i.mem_operands] = &cs;
6162 break;
6163 case 2:
6164 i.seg[i.mem_operands] = &ss;
6165 break;
6166 case 3:
6167 i.seg[i.mem_operands] = &ds;
6168 break;
6169 case 4:
6170 i.seg[i.mem_operands] = &fs;
6171 break;
6172 case 5:
6173 i.seg[i.mem_operands] = &gs;
6174 break;
6175 }
6176 }
6177 else
6178 {
6179 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
6180 return 0;
6181 }
6182 }
6183
6184 /* Not a segment register. Check for register scaling. */
6185 else if (cur_token.code == '*')
6186 {
6187 if (!intel_parser.is_mem)
6188 {
6189 as_bad (_("Register scaling only allowed in memory operands."));
6190 return 0;
6191 }
6192
6193 /* What follows must be a valid scale. */
6194 if (intel_match_token ('*')
6195 && strchr ("01248", *cur_token.str))
6196 {
6197 i.index_reg = reg;
6198 i.types[this_operand] |= BaseIndex;
6199
6200 /* Set the scale after setting the register (otherwise,
6201 i386_scale will complain) */
6202 i386_scale (cur_token.str);
6203 intel_match_token (T_CONST);
6204 }
6205 else
6206 {
6207 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
6208 cur_token.str);
6209 return 0;
6210 }
6211 }
6212
6213 /* No scaling. If this is a memory operand, the register is either a
6214 base register (first occurrence) or an index register (second
6215 occurrence). */
6216 else if (intel_parser.is_mem && !(reg->reg_type & (SReg2 | SReg3)))
6217 {
6218 if (i.base_reg && i.index_reg)
6219 {
6220 as_bad (_("Too many register references in memory operand."));
6221 return 0;
6222 }
6223
6224 if (i.base_reg == NULL)
6225 i.base_reg = reg;
6226 else
6227 i.index_reg = reg;
6228
6229 i.types[this_operand] |= BaseIndex;
6230 }
6231
6232 /* Offset modifier. Add the register to the displacement string to be
6233 parsed as an immediate expression after we're done. */
6234 else if (intel_parser.op_modifier == T_OFFSET)
6235 strcat (intel_parser.disp, reg->reg_name);
6236
6237 /* It's neither base nor index nor offset. */
6238 else
6239 {
6240 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
6241 i.op[this_operand].regs = reg;
6242 i.reg_operands++;
6243 }
6244
6245 /* Since registers are not part of the displacement string (except
6246 when we're parsing offset operands), we may need to remove any
6247 preceding '+' from the displacement string. */
6248 if (*intel_parser.disp != '\0'
6249 && intel_parser.op_modifier != T_OFFSET)
6250 {
6251 char *s = intel_parser.disp;
6252 s += strlen (s) - 1;
6253 if (*s == '+')
6254 *s = '\0';
6255 }
6256
6257 return 1;
6258 }
6259
6260 /* e11 id */
6261 else if (cur_token.code == T_ID)
6262 {
6263 /* Add the identifier to the displacement string. */
6264 strcat (intel_parser.disp, cur_token.str);
6265
6266 /* The identifier represents a memory reference only if it's not
6267 preceded by an offset modifier and if it's not an equate. */
6268 if (intel_parser.op_modifier != T_OFFSET)
6269 {
6270 symbolS *symbolP;
6271
6272 symbolP = symbol_find(cur_token.str);
6273 if (!symbolP || S_GET_SEGMENT(symbolP) != absolute_section)
6274 intel_parser.is_mem = 1;
6275 }
6276
6277 intel_match_token (T_ID);
6278 return 1;
6279 }
6280
6281 /* e11 constant */
6282 else if (cur_token.code == T_CONST
6283 || cur_token.code == '-'
6284 || cur_token.code == '+')
6285 {
6286 char *save_str;
6287
6288 /* Allow constants that start with `+' or `-'. */
6289 if (cur_token.code == '-' || cur_token.code == '+')
6290 {
6291 strcat (intel_parser.disp, cur_token.str);
6292 intel_match_token (cur_token.code);
6293 if (cur_token.code != T_CONST)
6294 {
6295 as_bad (_("Syntax error. Expecting a constant. Got `%s'."),
6296 cur_token.str);
6297 return 0;
6298 }
6299 }
6300
6301 save_str = (char *) malloc (strlen (cur_token.str) + 1);
6302 if (save_str == NULL)
6303 abort ();
6304 strcpy (save_str, cur_token.str);
6305
6306 /* Get the next token to check for register scaling. */
6307 intel_match_token (cur_token.code);
6308
6309 /* Check if this constant is a scaling factor for an index register. */
6310 if (cur_token.code == '*')
6311 {
6312 if (intel_match_token ('*') && cur_token.code == T_REG)
6313 {
6314 if (!intel_parser.is_mem)
6315 {
6316 as_bad (_("Register scaling only allowed in memory operands."));
6317 return 0;
6318 }
6319
6320 /* The constant is followed by `* reg', so it must be
6321 a valid scale. */
6322 if (strchr ("01248", *save_str))
6323 {
6324 i.index_reg = cur_token.reg;
6325 i.types[this_operand] |= BaseIndex;
6326
6327 /* Set the scale after setting the register (otherwise,
6328 i386_scale will complain) */
6329 i386_scale (save_str);
6330 intel_match_token (T_REG);
6331
6332 /* Since registers are not part of the displacement
6333 string, we may need to remove any preceding '+' from
6334 the displacement string. */
6335 if (*intel_parser.disp != '\0')
6336 {
6337 char *s = intel_parser.disp;
6338 s += strlen (s) - 1;
6339 if (*s == '+')
6340 *s = '\0';
6341 }
6342
6343 free (save_str);
6344
6345 return 1;
6346 }
6347 else
6348 return 0;
6349 }
6350
6351 /* The constant was not used for register scaling. Since we have
6352 already consumed the token following `*' we now need to put it
6353 back in the stream. */
6354 else
6355 intel_putback_token ();
6356 }
6357
6358 /* Add the constant to the displacement string. */
6359 strcat (intel_parser.disp, save_str);
6360 free (save_str);
6361
6362 return 1;
6363 }
6364
6365 as_bad (_("Unrecognized token '%s'"), cur_token.str);
6366 return 0;
6367 }
6368
6369 /* Match the given token against cur_token. If they match, read the next
6370 token from the operand string. */
6371 static int
6372 intel_match_token (code)
6373 int code;
6374 {
6375 if (cur_token.code == code)
6376 {
6377 intel_get_token ();
6378 return 1;
6379 }
6380 else
6381 {
6382 as_bad (_("Unexpected token `%s'"), cur_token.str);
6383 return 0;
6384 }
6385 }
6386
6387 /* Read a new token from intel_parser.op_string and store it in cur_token. */
6388 static void
6389 intel_get_token ()
6390 {
6391 char *end_op;
6392 const reg_entry *reg;
6393 struct intel_token new_token;
6394
6395 new_token.code = T_NIL;
6396 new_token.reg = NULL;
6397 new_token.str = NULL;
6398
6399 /* Free the memory allocated to the previous token and move
6400 cur_token to prev_token. */
6401 if (prev_token.str)
6402 free (prev_token.str);
6403
6404 prev_token = cur_token;
6405
6406 /* Skip whitespace. */
6407 while (is_space_char (*intel_parser.op_string))
6408 intel_parser.op_string++;
6409
6410 /* Return an empty token if we find nothing else on the line. */
6411 if (*intel_parser.op_string == '\0')
6412 {
6413 cur_token = new_token;
6414 return;
6415 }
6416
6417 /* The new token cannot be larger than the remainder of the operand
6418 string. */
6419 new_token.str = (char *) malloc (strlen (intel_parser.op_string) + 1);
6420 if (new_token.str == NULL)
6421 abort ();
6422 new_token.str[0] = '\0';
6423
6424 if (strchr ("0123456789", *intel_parser.op_string))
6425 {
6426 char *p = new_token.str;
6427 char *q = intel_parser.op_string;
6428 new_token.code = T_CONST;
6429
6430 /* Allow any kind of identifier char to encompass floating point and
6431 hexadecimal numbers. */
6432 while (is_identifier_char (*q))
6433 *p++ = *q++;
6434 *p = '\0';
6435
6436 /* Recognize special symbol names [0-9][bf]. */
6437 if (strlen (intel_parser.op_string) == 2
6438 && (intel_parser.op_string[1] == 'b'
6439 || intel_parser.op_string[1] == 'f'))
6440 new_token.code = T_ID;
6441 }
6442
6443 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
6444 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
6445 {
6446 new_token.code = T_REG;
6447 new_token.reg = reg;
6448
6449 if (*intel_parser.op_string == REGISTER_PREFIX)
6450 {
6451 new_token.str[0] = REGISTER_PREFIX;
6452 new_token.str[1] = '\0';
6453 }
6454
6455 strcat (new_token.str, reg->reg_name);
6456 }
6457
6458 else if (is_identifier_char (*intel_parser.op_string))
6459 {
6460 char *p = new_token.str;
6461 char *q = intel_parser.op_string;
6462
6463 /* A '.' or '$' followed by an identifier char is an identifier.
6464 Otherwise, it's operator '.' followed by an expression. */
6465 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
6466 {
6467 new_token.code = '.';
6468 new_token.str[0] = '.';
6469 new_token.str[1] = '\0';
6470 }
6471 else
6472 {
6473 while (is_identifier_char (*q) || *q == '@')
6474 *p++ = *q++;
6475 *p = '\0';
6476
6477 if (strcasecmp (new_token.str, "NOT") == 0)
6478 new_token.code = '~';
6479
6480 else if (strcasecmp (new_token.str, "MOD") == 0)
6481 new_token.code = '%';
6482
6483 else if (strcasecmp (new_token.str, "AND") == 0)
6484 new_token.code = '&';
6485
6486 else if (strcasecmp (new_token.str, "OR") == 0)
6487 new_token.code = '|';
6488
6489 else if (strcasecmp (new_token.str, "XOR") == 0)
6490 new_token.code = '^';
6491
6492 else if (strcasecmp (new_token.str, "SHL") == 0)
6493 new_token.code = T_SHL;
6494
6495 else if (strcasecmp (new_token.str, "SHR") == 0)
6496 new_token.code = T_SHR;
6497
6498 else if (strcasecmp (new_token.str, "BYTE") == 0)
6499 new_token.code = T_BYTE;
6500
6501 else if (strcasecmp (new_token.str, "WORD") == 0)
6502 new_token.code = T_WORD;
6503
6504 else if (strcasecmp (new_token.str, "DWORD") == 0)
6505 new_token.code = T_DWORD;
6506
6507 else if (strcasecmp (new_token.str, "FWORD") == 0)
6508 new_token.code = T_FWORD;
6509
6510 else if (strcasecmp (new_token.str, "QWORD") == 0)
6511 new_token.code = T_QWORD;
6512
6513 else if (strcasecmp (new_token.str, "TBYTE") == 0
6514 /* XXX remove (gcc still uses it) */
6515 || strcasecmp (new_token.str, "XWORD") == 0)
6516 new_token.code = T_TBYTE;
6517
6518 else if (strcasecmp (new_token.str, "XMMWORD") == 0
6519 || strcasecmp (new_token.str, "OWORD") == 0)
6520 new_token.code = T_XMMWORD;
6521
6522 else if (strcasecmp (new_token.str, "PTR") == 0)
6523 new_token.code = T_PTR;
6524
6525 else if (strcasecmp (new_token.str, "SHORT") == 0)
6526 new_token.code = T_SHORT;
6527
6528 else if (strcasecmp (new_token.str, "OFFSET") == 0)
6529 {
6530 new_token.code = T_OFFSET;
6531
6532 /* ??? This is not mentioned in the MASM grammar but gcc
6533 makes use of it with -mintel-syntax. OFFSET may be
6534 followed by FLAT: */
6535 if (strncasecmp (q, " FLAT:", 6) == 0)
6536 strcat (new_token.str, " FLAT:");
6537 }
6538
6539 /* ??? This is not mentioned in the MASM grammar. */
6540 else if (strcasecmp (new_token.str, "FLAT") == 0)
6541 new_token.code = T_OFFSET;
6542
6543 else
6544 new_token.code = T_ID;
6545 }
6546 }
6547
6548 else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
6549 {
6550 new_token.code = *intel_parser.op_string;
6551 new_token.str[0] = *intel_parser.op_string;
6552 new_token.str[1] = '\0';
6553 }
6554
6555 else if (strchr ("<>", *intel_parser.op_string)
6556 && *intel_parser.op_string == *(intel_parser.op_string + 1))
6557 {
6558 new_token.code = *intel_parser.op_string == '<' ? T_SHL : T_SHR;
6559 new_token.str[0] = *intel_parser.op_string;
6560 new_token.str[1] = *intel_parser.op_string;
6561 new_token.str[2] = '\0';
6562 }
6563
6564 else
6565 as_bad (_("Unrecognized token `%s'"), intel_parser.op_string);
6566
6567 intel_parser.op_string += strlen (new_token.str);
6568 cur_token = new_token;
6569 }
6570
6571 /* Put cur_token back into the token stream and make cur_token point to
6572 prev_token. */
6573 static void
6574 intel_putback_token ()
6575 {
6576 intel_parser.op_string -= strlen (cur_token.str);
6577 free (cur_token.str);
6578 cur_token = prev_token;
6579
6580 /* Forget prev_token. */
6581 prev_token.code = T_NIL;
6582 prev_token.reg = NULL;
6583 prev_token.str = NULL;
6584 }
6585
6586 int
6587 tc_x86_regname_to_dw2regnum (const char *regname)
6588 {
6589 unsigned int regnum;
6590 unsigned int regnames_count;
6591 char *regnames_32[] =
6592 {
6593 "eax", "ecx", "edx", "ebx",
6594 "esp", "ebp", "esi", "edi",
6595 "eip"
6596 };
6597 char *regnames_64[] =
6598 {
6599 "rax", "rbx", "rcx", "rdx",
6600 "rdi", "rsi", "rbp", "rsp",
6601 "r8", "r9", "r10", "r11",
6602 "r12", "r13", "r14", "r15",
6603 "rip"
6604 };
6605 char **regnames;
6606
6607 if (flag_code == CODE_64BIT)
6608 {
6609 regnames = regnames_64;
6610 regnames_count = ARRAY_SIZE (regnames_64);
6611 }
6612 else
6613 {
6614 regnames = regnames_32;
6615 regnames_count = ARRAY_SIZE (regnames_32);
6616 }
6617
6618 for (regnum = 0; regnum < regnames_count; regnum++)
6619 if (strcmp (regname, regnames[regnum]) == 0)
6620 return regnum;
6621
6622 return -1;
6623 }
6624
6625 void
6626 tc_x86_frame_initial_instructions (void)
6627 {
6628 static unsigned int sp_regno;
6629
6630 if (!sp_regno)
6631 sp_regno = tc_x86_regname_to_dw2regnum (flag_code == CODE_64BIT
6632 ? "rsp" : "esp");
6633
6634 cfi_add_CFA_def_cfa (sp_regno, -x86_cie_data_alignment);
6635 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
6636 }
6637
6638 int
6639 i386_elf_section_type (const char *str, size_t len)
6640 {
6641 if (flag_code == CODE_64BIT
6642 && len == sizeof ("unwind") - 1
6643 && strncmp (str, "unwind", 6) == 0)
6644 return SHT_X86_64_UNWIND;
6645
6646 return -1;
6647 }
6648
6649 #ifdef TE_PE
6650 void
6651 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
6652 {
6653 expressionS expr;
6654
6655 expr.X_op = O_secrel;
6656 expr.X_add_symbol = symbol;
6657 expr.X_add_number = 0;
6658 emit_expr (&expr, size);
6659 }
6660 #endif