]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-i386.c
x86: make sure all PUSH/POP honor DefaultSize
[thirdparty/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2019 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifdef HAVE_LIMITS_H
37 #include <limits.h>
38 #else
39 #ifdef HAVE_SYS_PARAM_H
40 #include <sys/param.h>
41 #endif
42 #ifndef INT_MAX
43 #define INT_MAX (int) (((unsigned) (-1)) >> 1)
44 #endif
45 #endif
46
47 #ifndef REGISTER_WARNINGS
48 #define REGISTER_WARNINGS 1
49 #endif
50
51 #ifndef INFER_ADDR_PREFIX
52 #define INFER_ADDR_PREFIX 1
53 #endif
54
55 #ifndef DEFAULT_ARCH
56 #define DEFAULT_ARCH "i386"
57 #endif
58
59 #ifndef INLINE
60 #if __GNUC__ >= 2
61 #define INLINE __inline__
62 #else
63 #define INLINE
64 #endif
65 #endif
66
67 /* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
72 #define WAIT_PREFIX 0
73 #define SEG_PREFIX 1
74 #define ADDR_PREFIX 2
75 #define DATA_PREFIX 3
76 #define REP_PREFIX 4
77 #define HLE_PREFIX REP_PREFIX
78 #define BND_PREFIX REP_PREFIX
79 #define LOCK_PREFIX 5
80 #define REX_PREFIX 6 /* must come last. */
81 #define MAX_PREFIXES 7 /* max prefixes per opcode */
82
83 /* we define the syntax here (modulo base,index,scale syntax) */
84 #define REGISTER_PREFIX '%'
85 #define IMMEDIATE_PREFIX '$'
86 #define ABSOLUTE_PREFIX '*'
87
88 /* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90 #define WORD_MNEM_SUFFIX 'w'
91 #define BYTE_MNEM_SUFFIX 'b'
92 #define SHORT_MNEM_SUFFIX 's'
93 #define LONG_MNEM_SUFFIX 'l'
94 #define QWORD_MNEM_SUFFIX 'q'
95 /* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99 #define END_OF_INSN '\0'
100
101 /* This matches the C -> StaticRounding alias in the opcode table. */
102 #define commutative staticrounding
103
104 /*
105 'templates' is for grouping together 'template' structures for opcodes
106 of the same name. This is only used for storing the insns in the grand
107 ole hash table of insns.
108 The templates themselves start at START and range up to (but not including)
109 END.
110 */
111 typedef struct
112 {
113 const insn_template *start;
114 const insn_template *end;
115 }
116 templates;
117
118 /* 386 operand encoding bytes: see 386 book for details of this. */
119 typedef struct
120 {
121 unsigned int regmem; /* codes register or memory operand */
122 unsigned int reg; /* codes register operand (or extended opcode) */
123 unsigned int mode; /* how to interpret regmem & reg */
124 }
125 modrm_byte;
126
127 /* x86-64 extension prefix. */
128 typedef int rex_byte;
129
130 /* 386 opcode byte to code indirect addressing. */
131 typedef struct
132 {
133 unsigned base;
134 unsigned index;
135 unsigned scale;
136 }
137 sib_byte;
138
139 /* x86 arch names, types and features */
140 typedef struct
141 {
142 const char *name; /* arch name */
143 unsigned int len; /* arch string length */
144 enum processor_type type; /* arch type */
145 i386_cpu_flags flags; /* cpu feature flags */
146 unsigned int skip; /* show_arch should skip this. */
147 }
148 arch_entry;
149
150 /* Used to turn off indicated flags. */
151 typedef struct
152 {
153 const char *name; /* arch name */
154 unsigned int len; /* arch string length */
155 i386_cpu_flags flags; /* cpu feature flags */
156 }
157 noarch_entry;
158
159 static void update_code_flag (int, int);
160 static void set_code_flag (int);
161 static void set_16bit_gcc_code_flag (int);
162 static void set_intel_syntax (int);
163 static void set_intel_mnemonic (int);
164 static void set_allow_index_reg (int);
165 static void set_check (int);
166 static void set_cpu_arch (int);
167 #ifdef TE_PE
168 static void pe_directive_secrel (int);
169 #endif
170 static void signed_cons (int);
171 static char *output_invalid (int c);
172 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
173 const char *);
174 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
175 const char *);
176 static int i386_att_operand (char *);
177 static int i386_intel_operand (char *, int);
178 static int i386_intel_simplify (expressionS *);
179 static int i386_intel_parse_name (const char *, expressionS *);
180 static const reg_entry *parse_register (char *, char **);
181 static char *parse_insn (char *, char *);
182 static char *parse_operands (char *, const char *);
183 static void swap_operands (void);
184 static void swap_2_operands (int, int);
185 static void optimize_imm (void);
186 static void optimize_disp (void);
187 static const insn_template *match_template (char);
188 static int check_string (void);
189 static int process_suffix (void);
190 static int check_byte_reg (void);
191 static int check_long_reg (void);
192 static int check_qword_reg (void);
193 static int check_word_reg (void);
194 static int finalize_imm (void);
195 static int process_operands (void);
196 static const seg_entry *build_modrm_byte (void);
197 static void output_insn (void);
198 static void output_imm (fragS *, offsetT);
199 static void output_disp (fragS *, offsetT);
200 #ifndef I386COFF
201 static void s_bss (int);
202 #endif
203 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
204 static void handle_large_common (int small ATTRIBUTE_UNUSED);
205
206 /* GNU_PROPERTY_X86_ISA_1_USED. */
207 static unsigned int x86_isa_1_used;
208 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
209 static unsigned int x86_feature_2_used;
210 /* Generate x86 used ISA and feature properties. */
211 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
212 #endif
213
214 static const char *default_arch = DEFAULT_ARCH;
215
216 /* This struct describes rounding control and SAE in the instruction. */
217 struct RC_Operation
218 {
219 enum rc_type
220 {
221 rne = 0,
222 rd,
223 ru,
224 rz,
225 saeonly
226 } type;
227 int operand;
228 };
229
230 static struct RC_Operation rc_op;
231
232 /* The struct describes masking, applied to OPERAND in the instruction.
233 MASK is a pointer to the corresponding mask register. ZEROING tells
234 whether merging or zeroing mask is used. */
235 struct Mask_Operation
236 {
237 const reg_entry *mask;
238 unsigned int zeroing;
239 /* The operand where this operation is associated. */
240 int operand;
241 };
242
243 static struct Mask_Operation mask_op;
244
245 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
246 broadcast factor. */
247 struct Broadcast_Operation
248 {
249 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
250 int type;
251
252 /* Index of broadcasted operand. */
253 int operand;
254
255 /* Number of bytes to broadcast. */
256 int bytes;
257 };
258
259 static struct Broadcast_Operation broadcast_op;
260
261 /* VEX prefix. */
262 typedef struct
263 {
264 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
265 unsigned char bytes[4];
266 unsigned int length;
267 /* Destination or source register specifier. */
268 const reg_entry *register_specifier;
269 } vex_prefix;
270
271 /* 'md_assemble ()' gathers together information and puts it into a
272 i386_insn. */
273
274 union i386_op
275 {
276 expressionS *disps;
277 expressionS *imms;
278 const reg_entry *regs;
279 };
280
281 enum i386_error
282 {
283 operand_size_mismatch,
284 operand_type_mismatch,
285 register_type_mismatch,
286 number_of_operands_mismatch,
287 invalid_instruction_suffix,
288 bad_imm4,
289 unsupported_with_intel_mnemonic,
290 unsupported_syntax,
291 unsupported,
292 invalid_vsib_address,
293 invalid_vector_register_set,
294 unsupported_vector_index_register,
295 unsupported_broadcast,
296 broadcast_needed,
297 unsupported_masking,
298 mask_not_on_destination,
299 no_default_mask,
300 unsupported_rc_sae,
301 rc_sae_operand_not_last_imm,
302 invalid_register_operand,
303 };
304
305 struct _i386_insn
306 {
307 /* TM holds the template for the insn were currently assembling. */
308 insn_template tm;
309
310 /* SUFFIX holds the instruction size suffix for byte, word, dword
311 or qword, if given. */
312 char suffix;
313
314 /* OPERANDS gives the number of given operands. */
315 unsigned int operands;
316
317 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
318 of given register, displacement, memory operands and immediate
319 operands. */
320 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
321
322 /* TYPES [i] is the type (see above #defines) which tells us how to
323 use OP[i] for the corresponding operand. */
324 i386_operand_type types[MAX_OPERANDS];
325
326 /* Displacement expression, immediate expression, or register for each
327 operand. */
328 union i386_op op[MAX_OPERANDS];
329
330 /* Flags for operands. */
331 unsigned int flags[MAX_OPERANDS];
332 #define Operand_PCrel 1
333 #define Operand_Mem 2
334
335 /* Relocation type for operand */
336 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
337
338 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
339 the base index byte below. */
340 const reg_entry *base_reg;
341 const reg_entry *index_reg;
342 unsigned int log2_scale_factor;
343
344 /* SEG gives the seg_entries of this insn. They are zero unless
345 explicit segment overrides are given. */
346 const seg_entry *seg[2];
347
348 /* Copied first memory operand string, for re-checking. */
349 char *memop1_string;
350
351 /* PREFIX holds all the given prefix opcodes (usually null).
352 PREFIXES is the number of prefix opcodes. */
353 unsigned int prefixes;
354 unsigned char prefix[MAX_PREFIXES];
355
356 /* The operand to a branch insn indicates an absolute branch. */
357 bfd_boolean jumpabsolute;
358
359 /* Has MMX register operands. */
360 bfd_boolean has_regmmx;
361
362 /* Has XMM register operands. */
363 bfd_boolean has_regxmm;
364
365 /* Has YMM register operands. */
366 bfd_boolean has_regymm;
367
368 /* Has ZMM register operands. */
369 bfd_boolean has_regzmm;
370
371 /* RM and SIB are the modrm byte and the sib byte where the
372 addressing modes of this insn are encoded. */
373 modrm_byte rm;
374 rex_byte rex;
375 rex_byte vrex;
376 sib_byte sib;
377 vex_prefix vex;
378
379 /* Masking attributes. */
380 struct Mask_Operation *mask;
381
382 /* Rounding control and SAE attributes. */
383 struct RC_Operation *rounding;
384
385 /* Broadcasting attributes. */
386 struct Broadcast_Operation *broadcast;
387
388 /* Compressed disp8*N attribute. */
389 unsigned int memshift;
390
391 /* Prefer load or store in encoding. */
392 enum
393 {
394 dir_encoding_default = 0,
395 dir_encoding_load,
396 dir_encoding_store,
397 dir_encoding_swap
398 } dir_encoding;
399
400 /* Prefer 8bit or 32bit displacement in encoding. */
401 enum
402 {
403 disp_encoding_default = 0,
404 disp_encoding_8bit,
405 disp_encoding_32bit
406 } disp_encoding;
407
408 /* Prefer the REX byte in encoding. */
409 bfd_boolean rex_encoding;
410
411 /* Disable instruction size optimization. */
412 bfd_boolean no_optimize;
413
414 /* How to encode vector instructions. */
415 enum
416 {
417 vex_encoding_default = 0,
418 vex_encoding_vex2,
419 vex_encoding_vex3,
420 vex_encoding_evex
421 } vec_encoding;
422
423 /* REP prefix. */
424 const char *rep_prefix;
425
426 /* HLE prefix. */
427 const char *hle_prefix;
428
429 /* Have BND prefix. */
430 const char *bnd_prefix;
431
432 /* Have NOTRACK prefix. */
433 const char *notrack_prefix;
434
435 /* Error message. */
436 enum i386_error error;
437 };
438
439 typedef struct _i386_insn i386_insn;
440
441 /* Link RC type with corresponding string, that'll be looked for in
442 asm. */
443 struct RC_name
444 {
445 enum rc_type type;
446 const char *name;
447 unsigned int len;
448 };
449
450 static const struct RC_name RC_NamesTable[] =
451 {
452 { rne, STRING_COMMA_LEN ("rn-sae") },
453 { rd, STRING_COMMA_LEN ("rd-sae") },
454 { ru, STRING_COMMA_LEN ("ru-sae") },
455 { rz, STRING_COMMA_LEN ("rz-sae") },
456 { saeonly, STRING_COMMA_LEN ("sae") },
457 };
458
459 /* List of chars besides those in app.c:symbol_chars that can start an
460 operand. Used to prevent the scrubber eating vital white-space. */
461 const char extra_symbol_chars[] = "*%-([{}"
462 #ifdef LEX_AT
463 "@"
464 #endif
465 #ifdef LEX_QM
466 "?"
467 #endif
468 ;
469
470 #if (defined (TE_I386AIX) \
471 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
472 && !defined (TE_GNU) \
473 && !defined (TE_LINUX) \
474 && !defined (TE_NACL) \
475 && !defined (TE_FreeBSD) \
476 && !defined (TE_DragonFly) \
477 && !defined (TE_NetBSD)))
478 /* This array holds the chars that always start a comment. If the
479 pre-processor is disabled, these aren't very useful. The option
480 --divide will remove '/' from this list. */
481 const char *i386_comment_chars = "#/";
482 #define SVR4_COMMENT_CHARS 1
483 #define PREFIX_SEPARATOR '\\'
484
485 #else
486 const char *i386_comment_chars = "#";
487 #define PREFIX_SEPARATOR '/'
488 #endif
489
490 /* This array holds the chars that only start a comment at the beginning of
491 a line. If the line seems to have the form '# 123 filename'
492 .line and .file directives will appear in the pre-processed output.
493 Note that input_file.c hand checks for '#' at the beginning of the
494 first line of the input file. This is because the compiler outputs
495 #NO_APP at the beginning of its output.
496 Also note that comments started like this one will always work if
497 '/' isn't otherwise defined. */
498 const char line_comment_chars[] = "#/";
499
500 const char line_separator_chars[] = ";";
501
502 /* Chars that can be used to separate mant from exp in floating point
503 nums. */
504 const char EXP_CHARS[] = "eE";
505
506 /* Chars that mean this number is a floating point constant
507 As in 0f12.456
508 or 0d1.2345e12. */
509 const char FLT_CHARS[] = "fFdDxX";
510
511 /* Tables for lexical analysis. */
512 static char mnemonic_chars[256];
513 static char register_chars[256];
514 static char operand_chars[256];
515 static char identifier_chars[256];
516 static char digit_chars[256];
517
518 /* Lexical macros. */
519 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
520 #define is_operand_char(x) (operand_chars[(unsigned char) x])
521 #define is_register_char(x) (register_chars[(unsigned char) x])
522 #define is_space_char(x) ((x) == ' ')
523 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
524 #define is_digit_char(x) (digit_chars[(unsigned char) x])
525
526 /* All non-digit non-letter characters that may occur in an operand. */
527 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
528
529 /* md_assemble() always leaves the strings it's passed unaltered. To
530 effect this we maintain a stack of saved characters that we've smashed
531 with '\0's (indicating end of strings for various sub-fields of the
532 assembler instruction). */
533 static char save_stack[32];
534 static char *save_stack_p;
535 #define END_STRING_AND_SAVE(s) \
536 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
537 #define RESTORE_END_STRING(s) \
538 do { *(s) = *--save_stack_p; } while (0)
539
540 /* The instruction we're assembling. */
541 static i386_insn i;
542
543 /* Possible templates for current insn. */
544 static const templates *current_templates;
545
546 /* Per instruction expressionS buffers: max displacements & immediates. */
547 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
548 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
549
550 /* Current operand we are working on. */
551 static int this_operand = -1;
552
553 /* We support four different modes. FLAG_CODE variable is used to distinguish
554 these. */
555
556 enum flag_code {
557 CODE_32BIT,
558 CODE_16BIT,
559 CODE_64BIT };
560
561 static enum flag_code flag_code;
562 static unsigned int object_64bit;
563 static unsigned int disallow_64bit_reloc;
564 static int use_rela_relocations = 0;
565
566 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
567 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
568 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
569
570 /* The ELF ABI to use. */
571 enum x86_elf_abi
572 {
573 I386_ABI,
574 X86_64_ABI,
575 X86_64_X32_ABI
576 };
577
578 static enum x86_elf_abi x86_elf_abi = I386_ABI;
579 #endif
580
581 #if defined (TE_PE) || defined (TE_PEP)
582 /* Use big object file format. */
583 static int use_big_obj = 0;
584 #endif
585
586 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
587 /* 1 if generating code for a shared library. */
588 static int shared = 0;
589 #endif
590
591 /* 1 for intel syntax,
592 0 if att syntax. */
593 static int intel_syntax = 0;
594
595 /* 1 for Intel64 ISA,
596 0 if AMD64 ISA. */
597 static int intel64;
598
599 /* 1 for intel mnemonic,
600 0 if att mnemonic. */
601 static int intel_mnemonic = !SYSV386_COMPAT;
602
603 /* 1 if pseudo registers are permitted. */
604 static int allow_pseudo_reg = 0;
605
606 /* 1 if register prefix % not required. */
607 static int allow_naked_reg = 0;
608
609 /* 1 if the assembler should add BND prefix for all control-transferring
610 instructions supporting it, even if this prefix wasn't specified
611 explicitly. */
612 static int add_bnd_prefix = 0;
613
614 /* 1 if pseudo index register, eiz/riz, is allowed . */
615 static int allow_index_reg = 0;
616
617 /* 1 if the assembler should ignore LOCK prefix, even if it was
618 specified explicitly. */
619 static int omit_lock_prefix = 0;
620
621 /* 1 if the assembler should encode lfence, mfence, and sfence as
622 "lock addl $0, (%{re}sp)". */
623 static int avoid_fence = 0;
624
625 /* 1 if the assembler should generate relax relocations. */
626
627 static int generate_relax_relocations
628 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
629
630 static enum check_kind
631 {
632 check_none = 0,
633 check_warning,
634 check_error
635 }
636 sse_check, operand_check = check_warning;
637
638 /* Optimization:
639 1. Clear the REX_W bit with register operand if possible.
640 2. Above plus use 128bit vector instruction to clear the full vector
641 register.
642 */
643 static int optimize = 0;
644
645 /* Optimization:
646 1. Clear the REX_W bit with register operand if possible.
647 2. Above plus use 128bit vector instruction to clear the full vector
648 register.
649 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
650 "testb $imm7,%r8".
651 */
652 static int optimize_for_space = 0;
653
654 /* Register prefix used for error message. */
655 static const char *register_prefix = "%";
656
657 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
658 leave, push, and pop instructions so that gcc has the same stack
659 frame as in 32 bit mode. */
660 static char stackop_size = '\0';
661
662 /* Non-zero to optimize code alignment. */
663 int optimize_align_code = 1;
664
665 /* Non-zero to quieten some warnings. */
666 static int quiet_warnings = 0;
667
668 /* CPU name. */
669 static const char *cpu_arch_name = NULL;
670 static char *cpu_sub_arch_name = NULL;
671
672 /* CPU feature flags. */
673 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
674
675 /* If we have selected a cpu we are generating instructions for. */
676 static int cpu_arch_tune_set = 0;
677
678 /* Cpu we are generating instructions for. */
679 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
680
681 /* CPU feature flags of cpu we are generating instructions for. */
682 static i386_cpu_flags cpu_arch_tune_flags;
683
684 /* CPU instruction set architecture used. */
685 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
686
687 /* CPU feature flags of instruction set architecture used. */
688 i386_cpu_flags cpu_arch_isa_flags;
689
690 /* If set, conditional jumps are not automatically promoted to handle
691 larger than a byte offset. */
692 static unsigned int no_cond_jump_promotion = 0;
693
694 /* Encode SSE instructions with VEX prefix. */
695 static unsigned int sse2avx;
696
697 /* Encode scalar AVX instructions with specific vector length. */
698 static enum
699 {
700 vex128 = 0,
701 vex256
702 } avxscalar;
703
704 /* Encode VEX WIG instructions with specific vex.w. */
705 static enum
706 {
707 vexw0 = 0,
708 vexw1
709 } vexwig;
710
711 /* Encode scalar EVEX LIG instructions with specific vector length. */
712 static enum
713 {
714 evexl128 = 0,
715 evexl256,
716 evexl512
717 } evexlig;
718
719 /* Encode EVEX WIG instructions with specific evex.w. */
720 static enum
721 {
722 evexw0 = 0,
723 evexw1
724 } evexwig;
725
726 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
727 static enum rc_type evexrcig = rne;
728
729 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
730 static symbolS *GOT_symbol;
731
732 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
733 unsigned int x86_dwarf2_return_column;
734
735 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
736 int x86_cie_data_alignment;
737
738 /* Interface to relax_segment.
739 There are 3 major relax states for 386 jump insns because the
740 different types of jumps add different sizes to frags when we're
741 figuring out what sort of jump to choose to reach a given label. */
742
743 /* Types. */
744 #define UNCOND_JUMP 0
745 #define COND_JUMP 1
746 #define COND_JUMP86 2
747
748 /* Sizes. */
749 #define CODE16 1
750 #define SMALL 0
751 #define SMALL16 (SMALL | CODE16)
752 #define BIG 2
753 #define BIG16 (BIG | CODE16)
754
755 #ifndef INLINE
756 #ifdef __GNUC__
757 #define INLINE __inline__
758 #else
759 #define INLINE
760 #endif
761 #endif
762
763 #define ENCODE_RELAX_STATE(type, size) \
764 ((relax_substateT) (((type) << 2) | (size)))
765 #define TYPE_FROM_RELAX_STATE(s) \
766 ((s) >> 2)
767 #define DISP_SIZE_FROM_RELAX_STATE(s) \
768 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
769
770 /* This table is used by relax_frag to promote short jumps to long
771 ones where necessary. SMALL (short) jumps may be promoted to BIG
772 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
773 don't allow a short jump in a 32 bit code segment to be promoted to
774 a 16 bit offset jump because it's slower (requires data size
775 prefix), and doesn't work, unless the destination is in the bottom
776 64k of the code segment (The top 16 bits of eip are zeroed). */
777
778 const relax_typeS md_relax_table[] =
779 {
780 /* The fields are:
781 1) most positive reach of this state,
782 2) most negative reach of this state,
783 3) how many bytes this mode will have in the variable part of the frag
784 4) which index into the table to try if we can't fit into this one. */
785
786 /* UNCOND_JUMP states. */
787 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
788 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
789 /* dword jmp adds 4 bytes to frag:
790 0 extra opcode bytes, 4 displacement bytes. */
791 {0, 0, 4, 0},
792 /* word jmp adds 2 byte2 to frag:
793 0 extra opcode bytes, 2 displacement bytes. */
794 {0, 0, 2, 0},
795
796 /* COND_JUMP states. */
797 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
798 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
799 /* dword conditionals adds 5 bytes to frag:
800 1 extra opcode byte, 4 displacement bytes. */
801 {0, 0, 5, 0},
802 /* word conditionals add 3 bytes to frag:
803 1 extra opcode byte, 2 displacement bytes. */
804 {0, 0, 3, 0},
805
806 /* COND_JUMP86 states. */
807 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
808 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
809 /* dword conditionals adds 5 bytes to frag:
810 1 extra opcode byte, 4 displacement bytes. */
811 {0, 0, 5, 0},
812 /* word conditionals add 4 bytes to frag:
813 1 displacement byte and a 3 byte long branch insn. */
814 {0, 0, 4, 0}
815 };
816
817 static const arch_entry cpu_arch[] =
818 {
819 /* Do not replace the first two entries - i386_target_format()
820 relies on them being there in this order. */
821 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
822 CPU_GENERIC32_FLAGS, 0 },
823 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
824 CPU_GENERIC64_FLAGS, 0 },
825 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
826 CPU_NONE_FLAGS, 0 },
827 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
828 CPU_I186_FLAGS, 0 },
829 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
830 CPU_I286_FLAGS, 0 },
831 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
832 CPU_I386_FLAGS, 0 },
833 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
834 CPU_I486_FLAGS, 0 },
835 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
836 CPU_I586_FLAGS, 0 },
837 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
838 CPU_I686_FLAGS, 0 },
839 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
840 CPU_I586_FLAGS, 0 },
841 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
842 CPU_PENTIUMPRO_FLAGS, 0 },
843 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
844 CPU_P2_FLAGS, 0 },
845 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
846 CPU_P3_FLAGS, 0 },
847 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
848 CPU_P4_FLAGS, 0 },
849 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
850 CPU_CORE_FLAGS, 0 },
851 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
852 CPU_NOCONA_FLAGS, 0 },
853 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
854 CPU_CORE_FLAGS, 1 },
855 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
856 CPU_CORE_FLAGS, 0 },
857 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
858 CPU_CORE2_FLAGS, 1 },
859 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
860 CPU_CORE2_FLAGS, 0 },
861 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
862 CPU_COREI7_FLAGS, 0 },
863 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
864 CPU_L1OM_FLAGS, 0 },
865 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
866 CPU_K1OM_FLAGS, 0 },
867 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
868 CPU_IAMCU_FLAGS, 0 },
869 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
870 CPU_K6_FLAGS, 0 },
871 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
872 CPU_K6_2_FLAGS, 0 },
873 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
874 CPU_ATHLON_FLAGS, 0 },
875 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
876 CPU_K8_FLAGS, 1 },
877 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
878 CPU_K8_FLAGS, 0 },
879 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
880 CPU_K8_FLAGS, 0 },
881 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
882 CPU_AMDFAM10_FLAGS, 0 },
883 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
884 CPU_BDVER1_FLAGS, 0 },
885 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
886 CPU_BDVER2_FLAGS, 0 },
887 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
888 CPU_BDVER3_FLAGS, 0 },
889 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
890 CPU_BDVER4_FLAGS, 0 },
891 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
892 CPU_ZNVER1_FLAGS, 0 },
893 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
894 CPU_ZNVER2_FLAGS, 0 },
895 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
896 CPU_BTVER1_FLAGS, 0 },
897 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
898 CPU_BTVER2_FLAGS, 0 },
899 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
900 CPU_8087_FLAGS, 0 },
901 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
902 CPU_287_FLAGS, 0 },
903 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
904 CPU_387_FLAGS, 0 },
905 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
906 CPU_687_FLAGS, 0 },
907 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
908 CPU_CMOV_FLAGS, 0 },
909 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
910 CPU_FXSR_FLAGS, 0 },
911 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
912 CPU_MMX_FLAGS, 0 },
913 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
914 CPU_SSE_FLAGS, 0 },
915 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
916 CPU_SSE2_FLAGS, 0 },
917 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
918 CPU_SSE3_FLAGS, 0 },
919 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
920 CPU_SSSE3_FLAGS, 0 },
921 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
922 CPU_SSE4_1_FLAGS, 0 },
923 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
924 CPU_SSE4_2_FLAGS, 0 },
925 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
926 CPU_SSE4_2_FLAGS, 0 },
927 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
928 CPU_AVX_FLAGS, 0 },
929 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
930 CPU_AVX2_FLAGS, 0 },
931 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
932 CPU_AVX512F_FLAGS, 0 },
933 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
934 CPU_AVX512CD_FLAGS, 0 },
935 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
936 CPU_AVX512ER_FLAGS, 0 },
937 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
938 CPU_AVX512PF_FLAGS, 0 },
939 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
940 CPU_AVX512DQ_FLAGS, 0 },
941 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
942 CPU_AVX512BW_FLAGS, 0 },
943 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
944 CPU_AVX512VL_FLAGS, 0 },
945 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
946 CPU_VMX_FLAGS, 0 },
947 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
948 CPU_VMFUNC_FLAGS, 0 },
949 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
950 CPU_SMX_FLAGS, 0 },
951 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
952 CPU_XSAVE_FLAGS, 0 },
953 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
954 CPU_XSAVEOPT_FLAGS, 0 },
955 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
956 CPU_XSAVEC_FLAGS, 0 },
957 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
958 CPU_XSAVES_FLAGS, 0 },
959 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
960 CPU_AES_FLAGS, 0 },
961 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
962 CPU_PCLMUL_FLAGS, 0 },
963 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
964 CPU_PCLMUL_FLAGS, 1 },
965 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
966 CPU_FSGSBASE_FLAGS, 0 },
967 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
968 CPU_RDRND_FLAGS, 0 },
969 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
970 CPU_F16C_FLAGS, 0 },
971 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
972 CPU_BMI2_FLAGS, 0 },
973 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
974 CPU_FMA_FLAGS, 0 },
975 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
976 CPU_FMA4_FLAGS, 0 },
977 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
978 CPU_XOP_FLAGS, 0 },
979 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
980 CPU_LWP_FLAGS, 0 },
981 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
982 CPU_MOVBE_FLAGS, 0 },
983 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
984 CPU_CX16_FLAGS, 0 },
985 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
986 CPU_EPT_FLAGS, 0 },
987 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
988 CPU_LZCNT_FLAGS, 0 },
989 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
990 CPU_HLE_FLAGS, 0 },
991 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
992 CPU_RTM_FLAGS, 0 },
993 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
994 CPU_INVPCID_FLAGS, 0 },
995 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
996 CPU_CLFLUSH_FLAGS, 0 },
997 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
998 CPU_NOP_FLAGS, 0 },
999 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
1000 CPU_SYSCALL_FLAGS, 0 },
1001 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
1002 CPU_RDTSCP_FLAGS, 0 },
1003 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
1004 CPU_3DNOW_FLAGS, 0 },
1005 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
1006 CPU_3DNOWA_FLAGS, 0 },
1007 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
1008 CPU_PADLOCK_FLAGS, 0 },
1009 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
1010 CPU_SVME_FLAGS, 1 },
1011 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
1012 CPU_SVME_FLAGS, 0 },
1013 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1014 CPU_SSE4A_FLAGS, 0 },
1015 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
1016 CPU_ABM_FLAGS, 0 },
1017 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
1018 CPU_BMI_FLAGS, 0 },
1019 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
1020 CPU_TBM_FLAGS, 0 },
1021 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
1022 CPU_ADX_FLAGS, 0 },
1023 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1024 CPU_RDSEED_FLAGS, 0 },
1025 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1026 CPU_PRFCHW_FLAGS, 0 },
1027 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1028 CPU_SMAP_FLAGS, 0 },
1029 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1030 CPU_MPX_FLAGS, 0 },
1031 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1032 CPU_SHA_FLAGS, 0 },
1033 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1034 CPU_CLFLUSHOPT_FLAGS, 0 },
1035 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1036 CPU_PREFETCHWT1_FLAGS, 0 },
1037 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1038 CPU_SE1_FLAGS, 0 },
1039 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1040 CPU_CLWB_FLAGS, 0 },
1041 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1042 CPU_AVX512IFMA_FLAGS, 0 },
1043 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1044 CPU_AVX512VBMI_FLAGS, 0 },
1045 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1046 CPU_AVX512_4FMAPS_FLAGS, 0 },
1047 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1048 CPU_AVX512_4VNNIW_FLAGS, 0 },
1049 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1050 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1051 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1052 CPU_AVX512_VBMI2_FLAGS, 0 },
1053 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1054 CPU_AVX512_VNNI_FLAGS, 0 },
1055 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1056 CPU_AVX512_BITALG_FLAGS, 0 },
1057 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1058 CPU_CLZERO_FLAGS, 0 },
1059 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1060 CPU_MWAITX_FLAGS, 0 },
1061 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1062 CPU_OSPKE_FLAGS, 0 },
1063 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1064 CPU_RDPID_FLAGS, 0 },
1065 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1066 CPU_PTWRITE_FLAGS, 0 },
1067 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1068 CPU_IBT_FLAGS, 0 },
1069 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1070 CPU_SHSTK_FLAGS, 0 },
1071 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1072 CPU_GFNI_FLAGS, 0 },
1073 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1074 CPU_VAES_FLAGS, 0 },
1075 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1076 CPU_VPCLMULQDQ_FLAGS, 0 },
1077 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1078 CPU_WBNOINVD_FLAGS, 0 },
1079 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1080 CPU_PCONFIG_FLAGS, 0 },
1081 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1082 CPU_WAITPKG_FLAGS, 0 },
1083 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1084 CPU_CLDEMOTE_FLAGS, 0 },
1085 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1086 CPU_MOVDIRI_FLAGS, 0 },
1087 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1088 CPU_MOVDIR64B_FLAGS, 0 },
1089 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1090 CPU_AVX512_BF16_FLAGS, 0 },
1091 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1092 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
1093 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1094 CPU_ENQCMD_FLAGS, 0 },
1095 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1096 CPU_RDPRU_FLAGS, 0 },
1097 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1098 CPU_MCOMMIT_FLAGS, 0 },
1099 };
1100
1101 static const noarch_entry cpu_noarch[] =
1102 {
1103 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1104 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1105 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1106 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1107 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1108 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1109 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1110 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1111 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1112 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1113 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1114 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1115 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1116 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1117 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1118 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1119 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1120 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1121 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1122 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1123 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1124 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1125 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1126 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1127 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1128 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1129 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1130 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1131 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1132 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1133 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1134 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1135 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1136 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1137 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1138 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
1139 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
1140 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
1141 };
1142
1143 #ifdef I386COFF
1144 /* Like s_lcomm_internal in gas/read.c but the alignment string
1145 is allowed to be optional. */
1146
1147 static symbolS *
1148 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1149 {
1150 addressT align = 0;
1151
1152 SKIP_WHITESPACE ();
1153
1154 if (needs_align
1155 && *input_line_pointer == ',')
1156 {
1157 align = parse_align (needs_align - 1);
1158
1159 if (align == (addressT) -1)
1160 return NULL;
1161 }
1162 else
1163 {
1164 if (size >= 8)
1165 align = 3;
1166 else if (size >= 4)
1167 align = 2;
1168 else if (size >= 2)
1169 align = 1;
1170 else
1171 align = 0;
1172 }
1173
1174 bss_alloc (symbolP, size, align);
1175 return symbolP;
1176 }
1177
1178 static void
1179 pe_lcomm (int needs_align)
1180 {
1181 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1182 }
1183 #endif
1184
1185 const pseudo_typeS md_pseudo_table[] =
1186 {
1187 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1188 {"align", s_align_bytes, 0},
1189 #else
1190 {"align", s_align_ptwo, 0},
1191 #endif
1192 {"arch", set_cpu_arch, 0},
1193 #ifndef I386COFF
1194 {"bss", s_bss, 0},
1195 #else
1196 {"lcomm", pe_lcomm, 1},
1197 #endif
1198 {"ffloat", float_cons, 'f'},
1199 {"dfloat", float_cons, 'd'},
1200 {"tfloat", float_cons, 'x'},
1201 {"value", cons, 2},
1202 {"slong", signed_cons, 4},
1203 {"noopt", s_ignore, 0},
1204 {"optim", s_ignore, 0},
1205 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1206 {"code16", set_code_flag, CODE_16BIT},
1207 {"code32", set_code_flag, CODE_32BIT},
1208 #ifdef BFD64
1209 {"code64", set_code_flag, CODE_64BIT},
1210 #endif
1211 {"intel_syntax", set_intel_syntax, 1},
1212 {"att_syntax", set_intel_syntax, 0},
1213 {"intel_mnemonic", set_intel_mnemonic, 1},
1214 {"att_mnemonic", set_intel_mnemonic, 0},
1215 {"allow_index_reg", set_allow_index_reg, 1},
1216 {"disallow_index_reg", set_allow_index_reg, 0},
1217 {"sse_check", set_check, 0},
1218 {"operand_check", set_check, 1},
1219 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1220 {"largecomm", handle_large_common, 0},
1221 #else
1222 {"file", dwarf2_directive_file, 0},
1223 {"loc", dwarf2_directive_loc, 0},
1224 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1225 #endif
1226 #ifdef TE_PE
1227 {"secrel32", pe_directive_secrel, 0},
1228 #endif
1229 {0, 0, 0}
1230 };
1231
1232 /* For interface with expression (). */
1233 extern char *input_line_pointer;
1234
1235 /* Hash table for instruction mnemonic lookup. */
1236 static struct hash_control *op_hash;
1237
1238 /* Hash table for register lookup. */
1239 static struct hash_control *reg_hash;
1240 \f
1241 /* Various efficient no-op patterns for aligning code labels.
1242 Note: Don't try to assemble the instructions in the comments.
1243 0L and 0w are not legal. */
1244 static const unsigned char f32_1[] =
1245 {0x90}; /* nop */
1246 static const unsigned char f32_2[] =
1247 {0x66,0x90}; /* xchg %ax,%ax */
1248 static const unsigned char f32_3[] =
1249 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1250 static const unsigned char f32_4[] =
1251 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1252 static const unsigned char f32_6[] =
1253 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1254 static const unsigned char f32_7[] =
1255 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1256 static const unsigned char f16_3[] =
1257 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1258 static const unsigned char f16_4[] =
1259 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1260 static const unsigned char jump_disp8[] =
1261 {0xeb}; /* jmp disp8 */
1262 static const unsigned char jump32_disp32[] =
1263 {0xe9}; /* jmp disp32 */
1264 static const unsigned char jump16_disp32[] =
1265 {0x66,0xe9}; /* jmp disp32 */
1266 /* 32-bit NOPs patterns. */
1267 static const unsigned char *const f32_patt[] = {
1268 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1269 };
1270 /* 16-bit NOPs patterns. */
1271 static const unsigned char *const f16_patt[] = {
1272 f32_1, f32_2, f16_3, f16_4
1273 };
1274 /* nopl (%[re]ax) */
1275 static const unsigned char alt_3[] =
1276 {0x0f,0x1f,0x00};
1277 /* nopl 0(%[re]ax) */
1278 static const unsigned char alt_4[] =
1279 {0x0f,0x1f,0x40,0x00};
1280 /* nopl 0(%[re]ax,%[re]ax,1) */
1281 static const unsigned char alt_5[] =
1282 {0x0f,0x1f,0x44,0x00,0x00};
1283 /* nopw 0(%[re]ax,%[re]ax,1) */
1284 static const unsigned char alt_6[] =
1285 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1286 /* nopl 0L(%[re]ax) */
1287 static const unsigned char alt_7[] =
1288 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1289 /* nopl 0L(%[re]ax,%[re]ax,1) */
1290 static const unsigned char alt_8[] =
1291 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1292 /* nopw 0L(%[re]ax,%[re]ax,1) */
1293 static const unsigned char alt_9[] =
1294 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1295 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1296 static const unsigned char alt_10[] =
1297 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1298 /* data16 nopw %cs:0L(%eax,%eax,1) */
1299 static const unsigned char alt_11[] =
1300 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1301 /* 32-bit and 64-bit NOPs patterns. */
1302 static const unsigned char *const alt_patt[] = {
1303 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1304 alt_9, alt_10, alt_11
1305 };
1306
1307 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1308 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1309
1310 static void
1311 i386_output_nops (char *where, const unsigned char *const *patt,
1312 int count, int max_single_nop_size)
1313
1314 {
1315 /* Place the longer NOP first. */
1316 int last;
1317 int offset;
1318 const unsigned char *nops;
1319
1320 if (max_single_nop_size < 1)
1321 {
1322 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1323 max_single_nop_size);
1324 return;
1325 }
1326
1327 nops = patt[max_single_nop_size - 1];
1328
1329 /* Use the smaller one if the requsted one isn't available. */
1330 if (nops == NULL)
1331 {
1332 max_single_nop_size--;
1333 nops = patt[max_single_nop_size - 1];
1334 }
1335
1336 last = count % max_single_nop_size;
1337
1338 count -= last;
1339 for (offset = 0; offset < count; offset += max_single_nop_size)
1340 memcpy (where + offset, nops, max_single_nop_size);
1341
1342 if (last)
1343 {
1344 nops = patt[last - 1];
1345 if (nops == NULL)
1346 {
1347 /* Use the smaller one plus one-byte NOP if the needed one
1348 isn't available. */
1349 last--;
1350 nops = patt[last - 1];
1351 memcpy (where + offset, nops, last);
1352 where[offset + last] = *patt[0];
1353 }
1354 else
1355 memcpy (where + offset, nops, last);
1356 }
1357 }
1358
1359 static INLINE int
1360 fits_in_imm7 (offsetT num)
1361 {
1362 return (num & 0x7f) == num;
1363 }
1364
1365 static INLINE int
1366 fits_in_imm31 (offsetT num)
1367 {
1368 return (num & 0x7fffffff) == num;
1369 }
1370
1371 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1372 single NOP instruction LIMIT. */
1373
1374 void
1375 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1376 {
1377 const unsigned char *const *patt = NULL;
1378 int max_single_nop_size;
1379 /* Maximum number of NOPs before switching to jump over NOPs. */
1380 int max_number_of_nops;
1381
1382 switch (fragP->fr_type)
1383 {
1384 case rs_fill_nop:
1385 case rs_align_code:
1386 break;
1387 default:
1388 return;
1389 }
1390
1391 /* We need to decide which NOP sequence to use for 32bit and
1392 64bit. When -mtune= is used:
1393
1394 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1395 PROCESSOR_GENERIC32, f32_patt will be used.
1396 2. For the rest, alt_patt will be used.
1397
1398 When -mtune= isn't used, alt_patt will be used if
1399 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1400 be used.
1401
1402 When -march= or .arch is used, we can't use anything beyond
1403 cpu_arch_isa_flags. */
1404
1405 if (flag_code == CODE_16BIT)
1406 {
1407 patt = f16_patt;
1408 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1409 /* Limit number of NOPs to 2 in 16-bit mode. */
1410 max_number_of_nops = 2;
1411 }
1412 else
1413 {
1414 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1415 {
1416 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1417 switch (cpu_arch_tune)
1418 {
1419 case PROCESSOR_UNKNOWN:
1420 /* We use cpu_arch_isa_flags to check if we SHOULD
1421 optimize with nops. */
1422 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1423 patt = alt_patt;
1424 else
1425 patt = f32_patt;
1426 break;
1427 case PROCESSOR_PENTIUM4:
1428 case PROCESSOR_NOCONA:
1429 case PROCESSOR_CORE:
1430 case PROCESSOR_CORE2:
1431 case PROCESSOR_COREI7:
1432 case PROCESSOR_L1OM:
1433 case PROCESSOR_K1OM:
1434 case PROCESSOR_GENERIC64:
1435 case PROCESSOR_K6:
1436 case PROCESSOR_ATHLON:
1437 case PROCESSOR_K8:
1438 case PROCESSOR_AMDFAM10:
1439 case PROCESSOR_BD:
1440 case PROCESSOR_ZNVER:
1441 case PROCESSOR_BT:
1442 patt = alt_patt;
1443 break;
1444 case PROCESSOR_I386:
1445 case PROCESSOR_I486:
1446 case PROCESSOR_PENTIUM:
1447 case PROCESSOR_PENTIUMPRO:
1448 case PROCESSOR_IAMCU:
1449 case PROCESSOR_GENERIC32:
1450 patt = f32_patt;
1451 break;
1452 }
1453 }
1454 else
1455 {
1456 switch (fragP->tc_frag_data.tune)
1457 {
1458 case PROCESSOR_UNKNOWN:
1459 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1460 PROCESSOR_UNKNOWN. */
1461 abort ();
1462 break;
1463
1464 case PROCESSOR_I386:
1465 case PROCESSOR_I486:
1466 case PROCESSOR_PENTIUM:
1467 case PROCESSOR_IAMCU:
1468 case PROCESSOR_K6:
1469 case PROCESSOR_ATHLON:
1470 case PROCESSOR_K8:
1471 case PROCESSOR_AMDFAM10:
1472 case PROCESSOR_BD:
1473 case PROCESSOR_ZNVER:
1474 case PROCESSOR_BT:
1475 case PROCESSOR_GENERIC32:
1476 /* We use cpu_arch_isa_flags to check if we CAN optimize
1477 with nops. */
1478 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1479 patt = alt_patt;
1480 else
1481 patt = f32_patt;
1482 break;
1483 case PROCESSOR_PENTIUMPRO:
1484 case PROCESSOR_PENTIUM4:
1485 case PROCESSOR_NOCONA:
1486 case PROCESSOR_CORE:
1487 case PROCESSOR_CORE2:
1488 case PROCESSOR_COREI7:
1489 case PROCESSOR_L1OM:
1490 case PROCESSOR_K1OM:
1491 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1492 patt = alt_patt;
1493 else
1494 patt = f32_patt;
1495 break;
1496 case PROCESSOR_GENERIC64:
1497 patt = alt_patt;
1498 break;
1499 }
1500 }
1501
1502 if (patt == f32_patt)
1503 {
1504 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1505 /* Limit number of NOPs to 2 for older processors. */
1506 max_number_of_nops = 2;
1507 }
1508 else
1509 {
1510 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1511 /* Limit number of NOPs to 7 for newer processors. */
1512 max_number_of_nops = 7;
1513 }
1514 }
1515
1516 if (limit == 0)
1517 limit = max_single_nop_size;
1518
1519 if (fragP->fr_type == rs_fill_nop)
1520 {
1521 /* Output NOPs for .nop directive. */
1522 if (limit > max_single_nop_size)
1523 {
1524 as_bad_where (fragP->fr_file, fragP->fr_line,
1525 _("invalid single nop size: %d "
1526 "(expect within [0, %d])"),
1527 limit, max_single_nop_size);
1528 return;
1529 }
1530 }
1531 else
1532 fragP->fr_var = count;
1533
1534 if ((count / max_single_nop_size) > max_number_of_nops)
1535 {
1536 /* Generate jump over NOPs. */
1537 offsetT disp = count - 2;
1538 if (fits_in_imm7 (disp))
1539 {
1540 /* Use "jmp disp8" if possible. */
1541 count = disp;
1542 where[0] = jump_disp8[0];
1543 where[1] = count;
1544 where += 2;
1545 }
1546 else
1547 {
1548 unsigned int size_of_jump;
1549
1550 if (flag_code == CODE_16BIT)
1551 {
1552 where[0] = jump16_disp32[0];
1553 where[1] = jump16_disp32[1];
1554 size_of_jump = 2;
1555 }
1556 else
1557 {
1558 where[0] = jump32_disp32[0];
1559 size_of_jump = 1;
1560 }
1561
1562 count -= size_of_jump + 4;
1563 if (!fits_in_imm31 (count))
1564 {
1565 as_bad_where (fragP->fr_file, fragP->fr_line,
1566 _("jump over nop padding out of range"));
1567 return;
1568 }
1569
1570 md_number_to_chars (where + size_of_jump, count, 4);
1571 where += size_of_jump + 4;
1572 }
1573 }
1574
1575 /* Generate multiple NOPs. */
1576 i386_output_nops (where, patt, count, limit);
1577 }
1578
1579 static INLINE int
1580 operand_type_all_zero (const union i386_operand_type *x)
1581 {
1582 switch (ARRAY_SIZE(x->array))
1583 {
1584 case 3:
1585 if (x->array[2])
1586 return 0;
1587 /* Fall through. */
1588 case 2:
1589 if (x->array[1])
1590 return 0;
1591 /* Fall through. */
1592 case 1:
1593 return !x->array[0];
1594 default:
1595 abort ();
1596 }
1597 }
1598
1599 static INLINE void
1600 operand_type_set (union i386_operand_type *x, unsigned int v)
1601 {
1602 switch (ARRAY_SIZE(x->array))
1603 {
1604 case 3:
1605 x->array[2] = v;
1606 /* Fall through. */
1607 case 2:
1608 x->array[1] = v;
1609 /* Fall through. */
1610 case 1:
1611 x->array[0] = v;
1612 /* Fall through. */
1613 break;
1614 default:
1615 abort ();
1616 }
1617
1618 x->bitfield.class = ClassNone;
1619 x->bitfield.instance = InstanceNone;
1620 }
1621
1622 static INLINE int
1623 operand_type_equal (const union i386_operand_type *x,
1624 const union i386_operand_type *y)
1625 {
1626 switch (ARRAY_SIZE(x->array))
1627 {
1628 case 3:
1629 if (x->array[2] != y->array[2])
1630 return 0;
1631 /* Fall through. */
1632 case 2:
1633 if (x->array[1] != y->array[1])
1634 return 0;
1635 /* Fall through. */
1636 case 1:
1637 return x->array[0] == y->array[0];
1638 break;
1639 default:
1640 abort ();
1641 }
1642 }
1643
1644 static INLINE int
1645 cpu_flags_all_zero (const union i386_cpu_flags *x)
1646 {
1647 switch (ARRAY_SIZE(x->array))
1648 {
1649 case 4:
1650 if (x->array[3])
1651 return 0;
1652 /* Fall through. */
1653 case 3:
1654 if (x->array[2])
1655 return 0;
1656 /* Fall through. */
1657 case 2:
1658 if (x->array[1])
1659 return 0;
1660 /* Fall through. */
1661 case 1:
1662 return !x->array[0];
1663 default:
1664 abort ();
1665 }
1666 }
1667
1668 static INLINE int
1669 cpu_flags_equal (const union i386_cpu_flags *x,
1670 const union i386_cpu_flags *y)
1671 {
1672 switch (ARRAY_SIZE(x->array))
1673 {
1674 case 4:
1675 if (x->array[3] != y->array[3])
1676 return 0;
1677 /* Fall through. */
1678 case 3:
1679 if (x->array[2] != y->array[2])
1680 return 0;
1681 /* Fall through. */
1682 case 2:
1683 if (x->array[1] != y->array[1])
1684 return 0;
1685 /* Fall through. */
1686 case 1:
1687 return x->array[0] == y->array[0];
1688 break;
1689 default:
1690 abort ();
1691 }
1692 }
1693
1694 static INLINE int
1695 cpu_flags_check_cpu64 (i386_cpu_flags f)
1696 {
1697 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1698 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1699 }
1700
1701 static INLINE i386_cpu_flags
1702 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1703 {
1704 switch (ARRAY_SIZE (x.array))
1705 {
1706 case 4:
1707 x.array [3] &= y.array [3];
1708 /* Fall through. */
1709 case 3:
1710 x.array [2] &= y.array [2];
1711 /* Fall through. */
1712 case 2:
1713 x.array [1] &= y.array [1];
1714 /* Fall through. */
1715 case 1:
1716 x.array [0] &= y.array [0];
1717 break;
1718 default:
1719 abort ();
1720 }
1721 return x;
1722 }
1723
1724 static INLINE i386_cpu_flags
1725 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1726 {
1727 switch (ARRAY_SIZE (x.array))
1728 {
1729 case 4:
1730 x.array [3] |= y.array [3];
1731 /* Fall through. */
1732 case 3:
1733 x.array [2] |= y.array [2];
1734 /* Fall through. */
1735 case 2:
1736 x.array [1] |= y.array [1];
1737 /* Fall through. */
1738 case 1:
1739 x.array [0] |= y.array [0];
1740 break;
1741 default:
1742 abort ();
1743 }
1744 return x;
1745 }
1746
1747 static INLINE i386_cpu_flags
1748 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1749 {
1750 switch (ARRAY_SIZE (x.array))
1751 {
1752 case 4:
1753 x.array [3] &= ~y.array [3];
1754 /* Fall through. */
1755 case 3:
1756 x.array [2] &= ~y.array [2];
1757 /* Fall through. */
1758 case 2:
1759 x.array [1] &= ~y.array [1];
1760 /* Fall through. */
1761 case 1:
1762 x.array [0] &= ~y.array [0];
1763 break;
1764 default:
1765 abort ();
1766 }
1767 return x;
1768 }
1769
1770 #define CPU_FLAGS_ARCH_MATCH 0x1
1771 #define CPU_FLAGS_64BIT_MATCH 0x2
1772
1773 #define CPU_FLAGS_PERFECT_MATCH \
1774 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1775
1776 /* Return CPU flags match bits. */
1777
1778 static int
1779 cpu_flags_match (const insn_template *t)
1780 {
1781 i386_cpu_flags x = t->cpu_flags;
1782 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1783
1784 x.bitfield.cpu64 = 0;
1785 x.bitfield.cpuno64 = 0;
1786
1787 if (cpu_flags_all_zero (&x))
1788 {
1789 /* This instruction is available on all archs. */
1790 match |= CPU_FLAGS_ARCH_MATCH;
1791 }
1792 else
1793 {
1794 /* This instruction is available only on some archs. */
1795 i386_cpu_flags cpu = cpu_arch_flags;
1796
1797 /* AVX512VL is no standalone feature - match it and then strip it. */
1798 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1799 return match;
1800 x.bitfield.cpuavx512vl = 0;
1801
1802 cpu = cpu_flags_and (x, cpu);
1803 if (!cpu_flags_all_zero (&cpu))
1804 {
1805 if (x.bitfield.cpuavx)
1806 {
1807 /* We need to check a few extra flags with AVX. */
1808 if (cpu.bitfield.cpuavx
1809 && (!t->opcode_modifier.sse2avx || sse2avx)
1810 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1811 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1812 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1813 match |= CPU_FLAGS_ARCH_MATCH;
1814 }
1815 else if (x.bitfield.cpuavx512f)
1816 {
1817 /* We need to check a few extra flags with AVX512F. */
1818 if (cpu.bitfield.cpuavx512f
1819 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1820 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1821 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1822 match |= CPU_FLAGS_ARCH_MATCH;
1823 }
1824 else
1825 match |= CPU_FLAGS_ARCH_MATCH;
1826 }
1827 }
1828 return match;
1829 }
1830
1831 static INLINE i386_operand_type
1832 operand_type_and (i386_operand_type x, i386_operand_type y)
1833 {
1834 if (x.bitfield.class != y.bitfield.class)
1835 x.bitfield.class = ClassNone;
1836 if (x.bitfield.instance != y.bitfield.instance)
1837 x.bitfield.instance = InstanceNone;
1838
1839 switch (ARRAY_SIZE (x.array))
1840 {
1841 case 3:
1842 x.array [2] &= y.array [2];
1843 /* Fall through. */
1844 case 2:
1845 x.array [1] &= y.array [1];
1846 /* Fall through. */
1847 case 1:
1848 x.array [0] &= y.array [0];
1849 break;
1850 default:
1851 abort ();
1852 }
1853 return x;
1854 }
1855
1856 static INLINE i386_operand_type
1857 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1858 {
1859 gas_assert (y.bitfield.class == ClassNone);
1860 gas_assert (y.bitfield.instance == InstanceNone);
1861
1862 switch (ARRAY_SIZE (x.array))
1863 {
1864 case 3:
1865 x.array [2] &= ~y.array [2];
1866 /* Fall through. */
1867 case 2:
1868 x.array [1] &= ~y.array [1];
1869 /* Fall through. */
1870 case 1:
1871 x.array [0] &= ~y.array [0];
1872 break;
1873 default:
1874 abort ();
1875 }
1876 return x;
1877 }
1878
1879 static INLINE i386_operand_type
1880 operand_type_or (i386_operand_type x, i386_operand_type y)
1881 {
1882 gas_assert (x.bitfield.class == ClassNone ||
1883 y.bitfield.class == ClassNone ||
1884 x.bitfield.class == y.bitfield.class);
1885 gas_assert (x.bitfield.instance == InstanceNone ||
1886 y.bitfield.instance == InstanceNone ||
1887 x.bitfield.instance == y.bitfield.instance);
1888
1889 switch (ARRAY_SIZE (x.array))
1890 {
1891 case 3:
1892 x.array [2] |= y.array [2];
1893 /* Fall through. */
1894 case 2:
1895 x.array [1] |= y.array [1];
1896 /* Fall through. */
1897 case 1:
1898 x.array [0] |= y.array [0];
1899 break;
1900 default:
1901 abort ();
1902 }
1903 return x;
1904 }
1905
1906 static INLINE i386_operand_type
1907 operand_type_xor (i386_operand_type x, i386_operand_type y)
1908 {
1909 gas_assert (y.bitfield.class == ClassNone);
1910 gas_assert (y.bitfield.instance == InstanceNone);
1911
1912 switch (ARRAY_SIZE (x.array))
1913 {
1914 case 3:
1915 x.array [2] ^= y.array [2];
1916 /* Fall through. */
1917 case 2:
1918 x.array [1] ^= y.array [1];
1919 /* Fall through. */
1920 case 1:
1921 x.array [0] ^= y.array [0];
1922 break;
1923 default:
1924 abort ();
1925 }
1926 return x;
1927 }
1928
1929 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1930 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1931 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1932 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1933 static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
1934 static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
1935 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1936 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1937 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1938 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1939 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1940 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1941 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1942 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1943 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1944 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1945 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1946
1947 enum operand_type
1948 {
1949 reg,
1950 imm,
1951 disp,
1952 anymem
1953 };
1954
1955 static INLINE int
1956 operand_type_check (i386_operand_type t, enum operand_type c)
1957 {
1958 switch (c)
1959 {
1960 case reg:
1961 return t.bitfield.class == Reg;
1962
1963 case imm:
1964 return (t.bitfield.imm8
1965 || t.bitfield.imm8s
1966 || t.bitfield.imm16
1967 || t.bitfield.imm32
1968 || t.bitfield.imm32s
1969 || t.bitfield.imm64);
1970
1971 case disp:
1972 return (t.bitfield.disp8
1973 || t.bitfield.disp16
1974 || t.bitfield.disp32
1975 || t.bitfield.disp32s
1976 || t.bitfield.disp64);
1977
1978 case anymem:
1979 return (t.bitfield.disp8
1980 || t.bitfield.disp16
1981 || t.bitfield.disp32
1982 || t.bitfield.disp32s
1983 || t.bitfield.disp64
1984 || t.bitfield.baseindex);
1985
1986 default:
1987 abort ();
1988 }
1989
1990 return 0;
1991 }
1992
1993 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1994 between operand GIVEN and opeand WANTED for instruction template T. */
1995
1996 static INLINE int
1997 match_operand_size (const insn_template *t, unsigned int wanted,
1998 unsigned int given)
1999 {
2000 return !((i.types[given].bitfield.byte
2001 && !t->operand_types[wanted].bitfield.byte)
2002 || (i.types[given].bitfield.word
2003 && !t->operand_types[wanted].bitfield.word)
2004 || (i.types[given].bitfield.dword
2005 && !t->operand_types[wanted].bitfield.dword)
2006 || (i.types[given].bitfield.qword
2007 && !t->operand_types[wanted].bitfield.qword)
2008 || (i.types[given].bitfield.tbyte
2009 && !t->operand_types[wanted].bitfield.tbyte));
2010 }
2011
2012 /* Return 1 if there is no conflict in SIMD register between operand
2013 GIVEN and opeand WANTED for instruction template T. */
2014
2015 static INLINE int
2016 match_simd_size (const insn_template *t, unsigned int wanted,
2017 unsigned int given)
2018 {
2019 return !((i.types[given].bitfield.xmmword
2020 && !t->operand_types[wanted].bitfield.xmmword)
2021 || (i.types[given].bitfield.ymmword
2022 && !t->operand_types[wanted].bitfield.ymmword)
2023 || (i.types[given].bitfield.zmmword
2024 && !t->operand_types[wanted].bitfield.zmmword));
2025 }
2026
2027 /* Return 1 if there is no conflict in any size between operand GIVEN
2028 and opeand WANTED for instruction template T. */
2029
2030 static INLINE int
2031 match_mem_size (const insn_template *t, unsigned int wanted,
2032 unsigned int given)
2033 {
2034 return (match_operand_size (t, wanted, given)
2035 && !((i.types[given].bitfield.unspecified
2036 && !i.broadcast
2037 && !t->operand_types[wanted].bitfield.unspecified)
2038 || (i.types[given].bitfield.fword
2039 && !t->operand_types[wanted].bitfield.fword)
2040 /* For scalar opcode templates to allow register and memory
2041 operands at the same time, some special casing is needed
2042 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2043 down-conversion vpmov*. */
2044 || ((t->operand_types[wanted].bitfield.class == RegSIMD
2045 && !t->opcode_modifier.broadcast
2046 && (t->operand_types[wanted].bitfield.byte
2047 || t->operand_types[wanted].bitfield.word
2048 || t->operand_types[wanted].bitfield.dword
2049 || t->operand_types[wanted].bitfield.qword))
2050 ? (i.types[given].bitfield.xmmword
2051 || i.types[given].bitfield.ymmword
2052 || i.types[given].bitfield.zmmword)
2053 : !match_simd_size(t, wanted, given))));
2054 }
2055
2056 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2057 operands for instruction template T, and it has MATCH_REVERSE set if there
2058 is no size conflict on any operands for the template with operands reversed
2059 (and the template allows for reversing in the first place). */
2060
2061 #define MATCH_STRAIGHT 1
2062 #define MATCH_REVERSE 2
2063
2064 static INLINE unsigned int
2065 operand_size_match (const insn_template *t)
2066 {
2067 unsigned int j, match = MATCH_STRAIGHT;
2068
2069 /* Don't check non-absolute jump instructions. */
2070 if (t->opcode_modifier.jump
2071 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
2072 return match;
2073
2074 /* Check memory and accumulator operand size. */
2075 for (j = 0; j < i.operands; j++)
2076 {
2077 if (i.types[j].bitfield.class != Reg
2078 && i.types[j].bitfield.class != RegSIMD
2079 && t->opcode_modifier.anysize)
2080 continue;
2081
2082 if (t->operand_types[j].bitfield.class == Reg
2083 && !match_operand_size (t, j, j))
2084 {
2085 match = 0;
2086 break;
2087 }
2088
2089 if (t->operand_types[j].bitfield.class == RegSIMD
2090 && !match_simd_size (t, j, j))
2091 {
2092 match = 0;
2093 break;
2094 }
2095
2096 if (t->operand_types[j].bitfield.instance == Accum
2097 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2098 {
2099 match = 0;
2100 break;
2101 }
2102
2103 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2104 {
2105 match = 0;
2106 break;
2107 }
2108 }
2109
2110 if (!t->opcode_modifier.d)
2111 {
2112 mismatch:
2113 if (!match)
2114 i.error = operand_size_mismatch;
2115 return match;
2116 }
2117
2118 /* Check reverse. */
2119 gas_assert (i.operands >= 2 && i.operands <= 3);
2120
2121 for (j = 0; j < i.operands; j++)
2122 {
2123 unsigned int given = i.operands - j - 1;
2124
2125 if (t->operand_types[j].bitfield.class == Reg
2126 && !match_operand_size (t, j, given))
2127 goto mismatch;
2128
2129 if (t->operand_types[j].bitfield.class == RegSIMD
2130 && !match_simd_size (t, j, given))
2131 goto mismatch;
2132
2133 if (t->operand_types[j].bitfield.instance == Accum
2134 && (!match_operand_size (t, j, given)
2135 || !match_simd_size (t, j, given)))
2136 goto mismatch;
2137
2138 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2139 goto mismatch;
2140 }
2141
2142 return match | MATCH_REVERSE;
2143 }
2144
2145 static INLINE int
2146 operand_type_match (i386_operand_type overlap,
2147 i386_operand_type given)
2148 {
2149 i386_operand_type temp = overlap;
2150
2151 temp.bitfield.unspecified = 0;
2152 temp.bitfield.byte = 0;
2153 temp.bitfield.word = 0;
2154 temp.bitfield.dword = 0;
2155 temp.bitfield.fword = 0;
2156 temp.bitfield.qword = 0;
2157 temp.bitfield.tbyte = 0;
2158 temp.bitfield.xmmword = 0;
2159 temp.bitfield.ymmword = 0;
2160 temp.bitfield.zmmword = 0;
2161 if (operand_type_all_zero (&temp))
2162 goto mismatch;
2163
2164 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
2165 return 1;
2166
2167 mismatch:
2168 i.error = operand_type_mismatch;
2169 return 0;
2170 }
2171
2172 /* If given types g0 and g1 are registers they must be of the same type
2173 unless the expected operand type register overlap is null.
2174 Memory operand size of certain SIMD instructions is also being checked
2175 here. */
2176
2177 static INLINE int
2178 operand_type_register_match (i386_operand_type g0,
2179 i386_operand_type t0,
2180 i386_operand_type g1,
2181 i386_operand_type t1)
2182 {
2183 if (g0.bitfield.class != Reg
2184 && g0.bitfield.class != RegSIMD
2185 && (!operand_type_check (g0, anymem)
2186 || g0.bitfield.unspecified
2187 || t0.bitfield.class != RegSIMD))
2188 return 1;
2189
2190 if (g1.bitfield.class != Reg
2191 && g1.bitfield.class != RegSIMD
2192 && (!operand_type_check (g1, anymem)
2193 || g1.bitfield.unspecified
2194 || t1.bitfield.class != RegSIMD))
2195 return 1;
2196
2197 if (g0.bitfield.byte == g1.bitfield.byte
2198 && g0.bitfield.word == g1.bitfield.word
2199 && g0.bitfield.dword == g1.bitfield.dword
2200 && g0.bitfield.qword == g1.bitfield.qword
2201 && g0.bitfield.xmmword == g1.bitfield.xmmword
2202 && g0.bitfield.ymmword == g1.bitfield.ymmword
2203 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2204 return 1;
2205
2206 if (!(t0.bitfield.byte & t1.bitfield.byte)
2207 && !(t0.bitfield.word & t1.bitfield.word)
2208 && !(t0.bitfield.dword & t1.bitfield.dword)
2209 && !(t0.bitfield.qword & t1.bitfield.qword)
2210 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2211 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2212 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2213 return 1;
2214
2215 i.error = register_type_mismatch;
2216
2217 return 0;
2218 }
2219
2220 static INLINE unsigned int
2221 register_number (const reg_entry *r)
2222 {
2223 unsigned int nr = r->reg_num;
2224
2225 if (r->reg_flags & RegRex)
2226 nr += 8;
2227
2228 if (r->reg_flags & RegVRex)
2229 nr += 16;
2230
2231 return nr;
2232 }
2233
2234 static INLINE unsigned int
2235 mode_from_disp_size (i386_operand_type t)
2236 {
2237 if (t.bitfield.disp8)
2238 return 1;
2239 else if (t.bitfield.disp16
2240 || t.bitfield.disp32
2241 || t.bitfield.disp32s)
2242 return 2;
2243 else
2244 return 0;
2245 }
2246
2247 static INLINE int
2248 fits_in_signed_byte (addressT num)
2249 {
2250 return num + 0x80 <= 0xff;
2251 }
2252
2253 static INLINE int
2254 fits_in_unsigned_byte (addressT num)
2255 {
2256 return num <= 0xff;
2257 }
2258
2259 static INLINE int
2260 fits_in_unsigned_word (addressT num)
2261 {
2262 return num <= 0xffff;
2263 }
2264
2265 static INLINE int
2266 fits_in_signed_word (addressT num)
2267 {
2268 return num + 0x8000 <= 0xffff;
2269 }
2270
2271 static INLINE int
2272 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2273 {
2274 #ifndef BFD64
2275 return 1;
2276 #else
2277 return num + 0x80000000 <= 0xffffffff;
2278 #endif
2279 } /* fits_in_signed_long() */
2280
2281 static INLINE int
2282 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2283 {
2284 #ifndef BFD64
2285 return 1;
2286 #else
2287 return num <= 0xffffffff;
2288 #endif
2289 } /* fits_in_unsigned_long() */
2290
2291 static INLINE int
2292 fits_in_disp8 (offsetT num)
2293 {
2294 int shift = i.memshift;
2295 unsigned int mask;
2296
2297 if (shift == -1)
2298 abort ();
2299
2300 mask = (1 << shift) - 1;
2301
2302 /* Return 0 if NUM isn't properly aligned. */
2303 if ((num & mask))
2304 return 0;
2305
2306 /* Check if NUM will fit in 8bit after shift. */
2307 return fits_in_signed_byte (num >> shift);
2308 }
2309
2310 static INLINE int
2311 fits_in_imm4 (offsetT num)
2312 {
2313 return (num & 0xf) == num;
2314 }
2315
2316 static i386_operand_type
2317 smallest_imm_type (offsetT num)
2318 {
2319 i386_operand_type t;
2320
2321 operand_type_set (&t, 0);
2322 t.bitfield.imm64 = 1;
2323
2324 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2325 {
2326 /* This code is disabled on the 486 because all the Imm1 forms
2327 in the opcode table are slower on the i486. They're the
2328 versions with the implicitly specified single-position
2329 displacement, which has another syntax if you really want to
2330 use that form. */
2331 t.bitfield.imm1 = 1;
2332 t.bitfield.imm8 = 1;
2333 t.bitfield.imm8s = 1;
2334 t.bitfield.imm16 = 1;
2335 t.bitfield.imm32 = 1;
2336 t.bitfield.imm32s = 1;
2337 }
2338 else if (fits_in_signed_byte (num))
2339 {
2340 t.bitfield.imm8 = 1;
2341 t.bitfield.imm8s = 1;
2342 t.bitfield.imm16 = 1;
2343 t.bitfield.imm32 = 1;
2344 t.bitfield.imm32s = 1;
2345 }
2346 else if (fits_in_unsigned_byte (num))
2347 {
2348 t.bitfield.imm8 = 1;
2349 t.bitfield.imm16 = 1;
2350 t.bitfield.imm32 = 1;
2351 t.bitfield.imm32s = 1;
2352 }
2353 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2354 {
2355 t.bitfield.imm16 = 1;
2356 t.bitfield.imm32 = 1;
2357 t.bitfield.imm32s = 1;
2358 }
2359 else if (fits_in_signed_long (num))
2360 {
2361 t.bitfield.imm32 = 1;
2362 t.bitfield.imm32s = 1;
2363 }
2364 else if (fits_in_unsigned_long (num))
2365 t.bitfield.imm32 = 1;
2366
2367 return t;
2368 }
2369
2370 static offsetT
2371 offset_in_range (offsetT val, int size)
2372 {
2373 addressT mask;
2374
2375 switch (size)
2376 {
2377 case 1: mask = ((addressT) 1 << 8) - 1; break;
2378 case 2: mask = ((addressT) 1 << 16) - 1; break;
2379 case 4: mask = ((addressT) 2 << 31) - 1; break;
2380 #ifdef BFD64
2381 case 8: mask = ((addressT) 2 << 63) - 1; break;
2382 #endif
2383 default: abort ();
2384 }
2385
2386 #ifdef BFD64
2387 /* If BFD64, sign extend val for 32bit address mode. */
2388 if (flag_code != CODE_64BIT
2389 || i.prefix[ADDR_PREFIX])
2390 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2391 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2392 #endif
2393
2394 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2395 {
2396 char buf1[40], buf2[40];
2397
2398 sprint_value (buf1, val);
2399 sprint_value (buf2, val & mask);
2400 as_warn (_("%s shortened to %s"), buf1, buf2);
2401 }
2402 return val & mask;
2403 }
2404
2405 enum PREFIX_GROUP
2406 {
2407 PREFIX_EXIST = 0,
2408 PREFIX_LOCK,
2409 PREFIX_REP,
2410 PREFIX_DS,
2411 PREFIX_OTHER
2412 };
2413
2414 /* Returns
2415 a. PREFIX_EXIST if attempting to add a prefix where one from the
2416 same class already exists.
2417 b. PREFIX_LOCK if lock prefix is added.
2418 c. PREFIX_REP if rep/repne prefix is added.
2419 d. PREFIX_DS if ds prefix is added.
2420 e. PREFIX_OTHER if other prefix is added.
2421 */
2422
2423 static enum PREFIX_GROUP
2424 add_prefix (unsigned int prefix)
2425 {
2426 enum PREFIX_GROUP ret = PREFIX_OTHER;
2427 unsigned int q;
2428
2429 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2430 && flag_code == CODE_64BIT)
2431 {
2432 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2433 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2434 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2435 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2436 ret = PREFIX_EXIST;
2437 q = REX_PREFIX;
2438 }
2439 else
2440 {
2441 switch (prefix)
2442 {
2443 default:
2444 abort ();
2445
2446 case DS_PREFIX_OPCODE:
2447 ret = PREFIX_DS;
2448 /* Fall through. */
2449 case CS_PREFIX_OPCODE:
2450 case ES_PREFIX_OPCODE:
2451 case FS_PREFIX_OPCODE:
2452 case GS_PREFIX_OPCODE:
2453 case SS_PREFIX_OPCODE:
2454 q = SEG_PREFIX;
2455 break;
2456
2457 case REPNE_PREFIX_OPCODE:
2458 case REPE_PREFIX_OPCODE:
2459 q = REP_PREFIX;
2460 ret = PREFIX_REP;
2461 break;
2462
2463 case LOCK_PREFIX_OPCODE:
2464 q = LOCK_PREFIX;
2465 ret = PREFIX_LOCK;
2466 break;
2467
2468 case FWAIT_OPCODE:
2469 q = WAIT_PREFIX;
2470 break;
2471
2472 case ADDR_PREFIX_OPCODE:
2473 q = ADDR_PREFIX;
2474 break;
2475
2476 case DATA_PREFIX_OPCODE:
2477 q = DATA_PREFIX;
2478 break;
2479 }
2480 if (i.prefix[q] != 0)
2481 ret = PREFIX_EXIST;
2482 }
2483
2484 if (ret)
2485 {
2486 if (!i.prefix[q])
2487 ++i.prefixes;
2488 i.prefix[q] |= prefix;
2489 }
2490 else
2491 as_bad (_("same type of prefix used twice"));
2492
2493 return ret;
2494 }
2495
2496 static void
2497 update_code_flag (int value, int check)
2498 {
2499 PRINTF_LIKE ((*as_error));
2500
2501 flag_code = (enum flag_code) value;
2502 if (flag_code == CODE_64BIT)
2503 {
2504 cpu_arch_flags.bitfield.cpu64 = 1;
2505 cpu_arch_flags.bitfield.cpuno64 = 0;
2506 }
2507 else
2508 {
2509 cpu_arch_flags.bitfield.cpu64 = 0;
2510 cpu_arch_flags.bitfield.cpuno64 = 1;
2511 }
2512 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2513 {
2514 if (check)
2515 as_error = as_fatal;
2516 else
2517 as_error = as_bad;
2518 (*as_error) (_("64bit mode not supported on `%s'."),
2519 cpu_arch_name ? cpu_arch_name : default_arch);
2520 }
2521 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2522 {
2523 if (check)
2524 as_error = as_fatal;
2525 else
2526 as_error = as_bad;
2527 (*as_error) (_("32bit mode not supported on `%s'."),
2528 cpu_arch_name ? cpu_arch_name : default_arch);
2529 }
2530 stackop_size = '\0';
2531 }
2532
2533 static void
2534 set_code_flag (int value)
2535 {
2536 update_code_flag (value, 0);
2537 }
2538
2539 static void
2540 set_16bit_gcc_code_flag (int new_code_flag)
2541 {
2542 flag_code = (enum flag_code) new_code_flag;
2543 if (flag_code != CODE_16BIT)
2544 abort ();
2545 cpu_arch_flags.bitfield.cpu64 = 0;
2546 cpu_arch_flags.bitfield.cpuno64 = 1;
2547 stackop_size = LONG_MNEM_SUFFIX;
2548 }
2549
2550 static void
2551 set_intel_syntax (int syntax_flag)
2552 {
2553 /* Find out if register prefixing is specified. */
2554 int ask_naked_reg = 0;
2555
2556 SKIP_WHITESPACE ();
2557 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2558 {
2559 char *string;
2560 int e = get_symbol_name (&string);
2561
2562 if (strcmp (string, "prefix") == 0)
2563 ask_naked_reg = 1;
2564 else if (strcmp (string, "noprefix") == 0)
2565 ask_naked_reg = -1;
2566 else
2567 as_bad (_("bad argument to syntax directive."));
2568 (void) restore_line_pointer (e);
2569 }
2570 demand_empty_rest_of_line ();
2571
2572 intel_syntax = syntax_flag;
2573
2574 if (ask_naked_reg == 0)
2575 allow_naked_reg = (intel_syntax
2576 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2577 else
2578 allow_naked_reg = (ask_naked_reg < 0);
2579
2580 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2581
2582 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2583 identifier_chars['$'] = intel_syntax ? '$' : 0;
2584 register_prefix = allow_naked_reg ? "" : "%";
2585 }
2586
2587 static void
2588 set_intel_mnemonic (int mnemonic_flag)
2589 {
2590 intel_mnemonic = mnemonic_flag;
2591 }
2592
2593 static void
2594 set_allow_index_reg (int flag)
2595 {
2596 allow_index_reg = flag;
2597 }
2598
2599 static void
2600 set_check (int what)
2601 {
2602 enum check_kind *kind;
2603 const char *str;
2604
2605 if (what)
2606 {
2607 kind = &operand_check;
2608 str = "operand";
2609 }
2610 else
2611 {
2612 kind = &sse_check;
2613 str = "sse";
2614 }
2615
2616 SKIP_WHITESPACE ();
2617
2618 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2619 {
2620 char *string;
2621 int e = get_symbol_name (&string);
2622
2623 if (strcmp (string, "none") == 0)
2624 *kind = check_none;
2625 else if (strcmp (string, "warning") == 0)
2626 *kind = check_warning;
2627 else if (strcmp (string, "error") == 0)
2628 *kind = check_error;
2629 else
2630 as_bad (_("bad argument to %s_check directive."), str);
2631 (void) restore_line_pointer (e);
2632 }
2633 else
2634 as_bad (_("missing argument for %s_check directive"), str);
2635
2636 demand_empty_rest_of_line ();
2637 }
2638
2639 static void
2640 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2641 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2642 {
2643 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2644 static const char *arch;
2645
2646 /* Intel LIOM is only supported on ELF. */
2647 if (!IS_ELF)
2648 return;
2649
2650 if (!arch)
2651 {
2652 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2653 use default_arch. */
2654 arch = cpu_arch_name;
2655 if (!arch)
2656 arch = default_arch;
2657 }
2658
2659 /* If we are targeting Intel MCU, we must enable it. */
2660 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2661 || new_flag.bitfield.cpuiamcu)
2662 return;
2663
2664 /* If we are targeting Intel L1OM, we must enable it. */
2665 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2666 || new_flag.bitfield.cpul1om)
2667 return;
2668
2669 /* If we are targeting Intel K1OM, we must enable it. */
2670 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2671 || new_flag.bitfield.cpuk1om)
2672 return;
2673
2674 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2675 #endif
2676 }
2677
2678 static void
2679 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2680 {
2681 SKIP_WHITESPACE ();
2682
2683 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2684 {
2685 char *string;
2686 int e = get_symbol_name (&string);
2687 unsigned int j;
2688 i386_cpu_flags flags;
2689
2690 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2691 {
2692 if (strcmp (string, cpu_arch[j].name) == 0)
2693 {
2694 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2695
2696 if (*string != '.')
2697 {
2698 cpu_arch_name = cpu_arch[j].name;
2699 cpu_sub_arch_name = NULL;
2700 cpu_arch_flags = cpu_arch[j].flags;
2701 if (flag_code == CODE_64BIT)
2702 {
2703 cpu_arch_flags.bitfield.cpu64 = 1;
2704 cpu_arch_flags.bitfield.cpuno64 = 0;
2705 }
2706 else
2707 {
2708 cpu_arch_flags.bitfield.cpu64 = 0;
2709 cpu_arch_flags.bitfield.cpuno64 = 1;
2710 }
2711 cpu_arch_isa = cpu_arch[j].type;
2712 cpu_arch_isa_flags = cpu_arch[j].flags;
2713 if (!cpu_arch_tune_set)
2714 {
2715 cpu_arch_tune = cpu_arch_isa;
2716 cpu_arch_tune_flags = cpu_arch_isa_flags;
2717 }
2718 break;
2719 }
2720
2721 flags = cpu_flags_or (cpu_arch_flags,
2722 cpu_arch[j].flags);
2723
2724 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2725 {
2726 if (cpu_sub_arch_name)
2727 {
2728 char *name = cpu_sub_arch_name;
2729 cpu_sub_arch_name = concat (name,
2730 cpu_arch[j].name,
2731 (const char *) NULL);
2732 free (name);
2733 }
2734 else
2735 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2736 cpu_arch_flags = flags;
2737 cpu_arch_isa_flags = flags;
2738 }
2739 else
2740 cpu_arch_isa_flags
2741 = cpu_flags_or (cpu_arch_isa_flags,
2742 cpu_arch[j].flags);
2743 (void) restore_line_pointer (e);
2744 demand_empty_rest_of_line ();
2745 return;
2746 }
2747 }
2748
2749 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2750 {
2751 /* Disable an ISA extension. */
2752 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2753 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2754 {
2755 flags = cpu_flags_and_not (cpu_arch_flags,
2756 cpu_noarch[j].flags);
2757 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2758 {
2759 if (cpu_sub_arch_name)
2760 {
2761 char *name = cpu_sub_arch_name;
2762 cpu_sub_arch_name = concat (name, string,
2763 (const char *) NULL);
2764 free (name);
2765 }
2766 else
2767 cpu_sub_arch_name = xstrdup (string);
2768 cpu_arch_flags = flags;
2769 cpu_arch_isa_flags = flags;
2770 }
2771 (void) restore_line_pointer (e);
2772 demand_empty_rest_of_line ();
2773 return;
2774 }
2775
2776 j = ARRAY_SIZE (cpu_arch);
2777 }
2778
2779 if (j >= ARRAY_SIZE (cpu_arch))
2780 as_bad (_("no such architecture: `%s'"), string);
2781
2782 *input_line_pointer = e;
2783 }
2784 else
2785 as_bad (_("missing cpu architecture"));
2786
2787 no_cond_jump_promotion = 0;
2788 if (*input_line_pointer == ','
2789 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2790 {
2791 char *string;
2792 char e;
2793
2794 ++input_line_pointer;
2795 e = get_symbol_name (&string);
2796
2797 if (strcmp (string, "nojumps") == 0)
2798 no_cond_jump_promotion = 1;
2799 else if (strcmp (string, "jumps") == 0)
2800 ;
2801 else
2802 as_bad (_("no such architecture modifier: `%s'"), string);
2803
2804 (void) restore_line_pointer (e);
2805 }
2806
2807 demand_empty_rest_of_line ();
2808 }
2809
2810 enum bfd_architecture
2811 i386_arch (void)
2812 {
2813 if (cpu_arch_isa == PROCESSOR_L1OM)
2814 {
2815 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2816 || flag_code != CODE_64BIT)
2817 as_fatal (_("Intel L1OM is 64bit ELF only"));
2818 return bfd_arch_l1om;
2819 }
2820 else if (cpu_arch_isa == PROCESSOR_K1OM)
2821 {
2822 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2823 || flag_code != CODE_64BIT)
2824 as_fatal (_("Intel K1OM is 64bit ELF only"));
2825 return bfd_arch_k1om;
2826 }
2827 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2828 {
2829 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2830 || flag_code == CODE_64BIT)
2831 as_fatal (_("Intel MCU is 32bit ELF only"));
2832 return bfd_arch_iamcu;
2833 }
2834 else
2835 return bfd_arch_i386;
2836 }
2837
2838 unsigned long
2839 i386_mach (void)
2840 {
2841 if (!strncmp (default_arch, "x86_64", 6))
2842 {
2843 if (cpu_arch_isa == PROCESSOR_L1OM)
2844 {
2845 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2846 || default_arch[6] != '\0')
2847 as_fatal (_("Intel L1OM is 64bit ELF only"));
2848 return bfd_mach_l1om;
2849 }
2850 else if (cpu_arch_isa == PROCESSOR_K1OM)
2851 {
2852 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2853 || default_arch[6] != '\0')
2854 as_fatal (_("Intel K1OM is 64bit ELF only"));
2855 return bfd_mach_k1om;
2856 }
2857 else if (default_arch[6] == '\0')
2858 return bfd_mach_x86_64;
2859 else
2860 return bfd_mach_x64_32;
2861 }
2862 else if (!strcmp (default_arch, "i386")
2863 || !strcmp (default_arch, "iamcu"))
2864 {
2865 if (cpu_arch_isa == PROCESSOR_IAMCU)
2866 {
2867 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2868 as_fatal (_("Intel MCU is 32bit ELF only"));
2869 return bfd_mach_i386_iamcu;
2870 }
2871 else
2872 return bfd_mach_i386_i386;
2873 }
2874 else
2875 as_fatal (_("unknown architecture"));
2876 }
2877 \f
2878 void
2879 md_begin (void)
2880 {
2881 const char *hash_err;
2882
2883 /* Support pseudo prefixes like {disp32}. */
2884 lex_type ['{'] = LEX_BEGIN_NAME;
2885
2886 /* Initialize op_hash hash table. */
2887 op_hash = hash_new ();
2888
2889 {
2890 const insn_template *optab;
2891 templates *core_optab;
2892
2893 /* Setup for loop. */
2894 optab = i386_optab;
2895 core_optab = XNEW (templates);
2896 core_optab->start = optab;
2897
2898 while (1)
2899 {
2900 ++optab;
2901 if (optab->name == NULL
2902 || strcmp (optab->name, (optab - 1)->name) != 0)
2903 {
2904 /* different name --> ship out current template list;
2905 add to hash table; & begin anew. */
2906 core_optab->end = optab;
2907 hash_err = hash_insert (op_hash,
2908 (optab - 1)->name,
2909 (void *) core_optab);
2910 if (hash_err)
2911 {
2912 as_fatal (_("can't hash %s: %s"),
2913 (optab - 1)->name,
2914 hash_err);
2915 }
2916 if (optab->name == NULL)
2917 break;
2918 core_optab = XNEW (templates);
2919 core_optab->start = optab;
2920 }
2921 }
2922 }
2923
2924 /* Initialize reg_hash hash table. */
2925 reg_hash = hash_new ();
2926 {
2927 const reg_entry *regtab;
2928 unsigned int regtab_size = i386_regtab_size;
2929
2930 for (regtab = i386_regtab; regtab_size--; regtab++)
2931 {
2932 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2933 if (hash_err)
2934 as_fatal (_("can't hash %s: %s"),
2935 regtab->reg_name,
2936 hash_err);
2937 }
2938 }
2939
2940 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2941 {
2942 int c;
2943 char *p;
2944
2945 for (c = 0; c < 256; c++)
2946 {
2947 if (ISDIGIT (c))
2948 {
2949 digit_chars[c] = c;
2950 mnemonic_chars[c] = c;
2951 register_chars[c] = c;
2952 operand_chars[c] = c;
2953 }
2954 else if (ISLOWER (c))
2955 {
2956 mnemonic_chars[c] = c;
2957 register_chars[c] = c;
2958 operand_chars[c] = c;
2959 }
2960 else if (ISUPPER (c))
2961 {
2962 mnemonic_chars[c] = TOLOWER (c);
2963 register_chars[c] = mnemonic_chars[c];
2964 operand_chars[c] = c;
2965 }
2966 else if (c == '{' || c == '}')
2967 {
2968 mnemonic_chars[c] = c;
2969 operand_chars[c] = c;
2970 }
2971
2972 if (ISALPHA (c) || ISDIGIT (c))
2973 identifier_chars[c] = c;
2974 else if (c >= 128)
2975 {
2976 identifier_chars[c] = c;
2977 operand_chars[c] = c;
2978 }
2979 }
2980
2981 #ifdef LEX_AT
2982 identifier_chars['@'] = '@';
2983 #endif
2984 #ifdef LEX_QM
2985 identifier_chars['?'] = '?';
2986 operand_chars['?'] = '?';
2987 #endif
2988 digit_chars['-'] = '-';
2989 mnemonic_chars['_'] = '_';
2990 mnemonic_chars['-'] = '-';
2991 mnemonic_chars['.'] = '.';
2992 identifier_chars['_'] = '_';
2993 identifier_chars['.'] = '.';
2994
2995 for (p = operand_special_chars; *p != '\0'; p++)
2996 operand_chars[(unsigned char) *p] = *p;
2997 }
2998
2999 if (flag_code == CODE_64BIT)
3000 {
3001 #if defined (OBJ_COFF) && defined (TE_PE)
3002 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3003 ? 32 : 16);
3004 #else
3005 x86_dwarf2_return_column = 16;
3006 #endif
3007 x86_cie_data_alignment = -8;
3008 }
3009 else
3010 {
3011 x86_dwarf2_return_column = 8;
3012 x86_cie_data_alignment = -4;
3013 }
3014 }
3015
3016 void
3017 i386_print_statistics (FILE *file)
3018 {
3019 hash_print_statistics (file, "i386 opcode", op_hash);
3020 hash_print_statistics (file, "i386 register", reg_hash);
3021 }
3022 \f
3023 #ifdef DEBUG386
3024
3025 /* Debugging routines for md_assemble. */
3026 static void pte (insn_template *);
3027 static void pt (i386_operand_type);
3028 static void pe (expressionS *);
3029 static void ps (symbolS *);
3030
3031 static void
3032 pi (const char *line, i386_insn *x)
3033 {
3034 unsigned int j;
3035
3036 fprintf (stdout, "%s: template ", line);
3037 pte (&x->tm);
3038 fprintf (stdout, " address: base %s index %s scale %x\n",
3039 x->base_reg ? x->base_reg->reg_name : "none",
3040 x->index_reg ? x->index_reg->reg_name : "none",
3041 x->log2_scale_factor);
3042 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
3043 x->rm.mode, x->rm.reg, x->rm.regmem);
3044 fprintf (stdout, " sib: base %x index %x scale %x\n",
3045 x->sib.base, x->sib.index, x->sib.scale);
3046 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
3047 (x->rex & REX_W) != 0,
3048 (x->rex & REX_R) != 0,
3049 (x->rex & REX_X) != 0,
3050 (x->rex & REX_B) != 0);
3051 for (j = 0; j < x->operands; j++)
3052 {
3053 fprintf (stdout, " #%d: ", j + 1);
3054 pt (x->types[j]);
3055 fprintf (stdout, "\n");
3056 if (x->types[j].bitfield.class == Reg
3057 || x->types[j].bitfield.class == RegMMX
3058 || x->types[j].bitfield.class == RegSIMD
3059 || x->types[j].bitfield.class == SReg
3060 || x->types[j].bitfield.class == RegCR
3061 || x->types[j].bitfield.class == RegDR
3062 || x->types[j].bitfield.class == RegTR)
3063 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3064 if (operand_type_check (x->types[j], imm))
3065 pe (x->op[j].imms);
3066 if (operand_type_check (x->types[j], disp))
3067 pe (x->op[j].disps);
3068 }
3069 }
3070
3071 static void
3072 pte (insn_template *t)
3073 {
3074 unsigned int j;
3075 fprintf (stdout, " %d operands ", t->operands);
3076 fprintf (stdout, "opcode %x ", t->base_opcode);
3077 if (t->extension_opcode != None)
3078 fprintf (stdout, "ext %x ", t->extension_opcode);
3079 if (t->opcode_modifier.d)
3080 fprintf (stdout, "D");
3081 if (t->opcode_modifier.w)
3082 fprintf (stdout, "W");
3083 fprintf (stdout, "\n");
3084 for (j = 0; j < t->operands; j++)
3085 {
3086 fprintf (stdout, " #%d type ", j + 1);
3087 pt (t->operand_types[j]);
3088 fprintf (stdout, "\n");
3089 }
3090 }
3091
3092 static void
3093 pe (expressionS *e)
3094 {
3095 fprintf (stdout, " operation %d\n", e->X_op);
3096 fprintf (stdout, " add_number %ld (%lx)\n",
3097 (long) e->X_add_number, (long) e->X_add_number);
3098 if (e->X_add_symbol)
3099 {
3100 fprintf (stdout, " add_symbol ");
3101 ps (e->X_add_symbol);
3102 fprintf (stdout, "\n");
3103 }
3104 if (e->X_op_symbol)
3105 {
3106 fprintf (stdout, " op_symbol ");
3107 ps (e->X_op_symbol);
3108 fprintf (stdout, "\n");
3109 }
3110 }
3111
3112 static void
3113 ps (symbolS *s)
3114 {
3115 fprintf (stdout, "%s type %s%s",
3116 S_GET_NAME (s),
3117 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3118 segment_name (S_GET_SEGMENT (s)));
3119 }
3120
3121 static struct type_name
3122 {
3123 i386_operand_type mask;
3124 const char *name;
3125 }
3126 const type_names[] =
3127 {
3128 { OPERAND_TYPE_REG8, "r8" },
3129 { OPERAND_TYPE_REG16, "r16" },
3130 { OPERAND_TYPE_REG32, "r32" },
3131 { OPERAND_TYPE_REG64, "r64" },
3132 { OPERAND_TYPE_ACC8, "acc8" },
3133 { OPERAND_TYPE_ACC16, "acc16" },
3134 { OPERAND_TYPE_ACC32, "acc32" },
3135 { OPERAND_TYPE_ACC64, "acc64" },
3136 { OPERAND_TYPE_IMM8, "i8" },
3137 { OPERAND_TYPE_IMM8, "i8s" },
3138 { OPERAND_TYPE_IMM16, "i16" },
3139 { OPERAND_TYPE_IMM32, "i32" },
3140 { OPERAND_TYPE_IMM32S, "i32s" },
3141 { OPERAND_TYPE_IMM64, "i64" },
3142 { OPERAND_TYPE_IMM1, "i1" },
3143 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3144 { OPERAND_TYPE_DISP8, "d8" },
3145 { OPERAND_TYPE_DISP16, "d16" },
3146 { OPERAND_TYPE_DISP32, "d32" },
3147 { OPERAND_TYPE_DISP32S, "d32s" },
3148 { OPERAND_TYPE_DISP64, "d64" },
3149 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3150 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3151 { OPERAND_TYPE_CONTROL, "control reg" },
3152 { OPERAND_TYPE_TEST, "test reg" },
3153 { OPERAND_TYPE_DEBUG, "debug reg" },
3154 { OPERAND_TYPE_FLOATREG, "FReg" },
3155 { OPERAND_TYPE_FLOATACC, "FAcc" },
3156 { OPERAND_TYPE_SREG, "SReg" },
3157 { OPERAND_TYPE_REGMMX, "rMMX" },
3158 { OPERAND_TYPE_REGXMM, "rXMM" },
3159 { OPERAND_TYPE_REGYMM, "rYMM" },
3160 { OPERAND_TYPE_REGZMM, "rZMM" },
3161 { OPERAND_TYPE_REGMASK, "Mask reg" },
3162 };
3163
3164 static void
3165 pt (i386_operand_type t)
3166 {
3167 unsigned int j;
3168 i386_operand_type a;
3169
3170 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3171 {
3172 a = operand_type_and (t, type_names[j].mask);
3173 if (operand_type_equal (&a, &type_names[j].mask))
3174 fprintf (stdout, "%s, ", type_names[j].name);
3175 }
3176 fflush (stdout);
3177 }
3178
3179 #endif /* DEBUG386 */
3180 \f
3181 static bfd_reloc_code_real_type
3182 reloc (unsigned int size,
3183 int pcrel,
3184 int sign,
3185 bfd_reloc_code_real_type other)
3186 {
3187 if (other != NO_RELOC)
3188 {
3189 reloc_howto_type *rel;
3190
3191 if (size == 8)
3192 switch (other)
3193 {
3194 case BFD_RELOC_X86_64_GOT32:
3195 return BFD_RELOC_X86_64_GOT64;
3196 break;
3197 case BFD_RELOC_X86_64_GOTPLT64:
3198 return BFD_RELOC_X86_64_GOTPLT64;
3199 break;
3200 case BFD_RELOC_X86_64_PLTOFF64:
3201 return BFD_RELOC_X86_64_PLTOFF64;
3202 break;
3203 case BFD_RELOC_X86_64_GOTPC32:
3204 other = BFD_RELOC_X86_64_GOTPC64;
3205 break;
3206 case BFD_RELOC_X86_64_GOTPCREL:
3207 other = BFD_RELOC_X86_64_GOTPCREL64;
3208 break;
3209 case BFD_RELOC_X86_64_TPOFF32:
3210 other = BFD_RELOC_X86_64_TPOFF64;
3211 break;
3212 case BFD_RELOC_X86_64_DTPOFF32:
3213 other = BFD_RELOC_X86_64_DTPOFF64;
3214 break;
3215 default:
3216 break;
3217 }
3218
3219 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3220 if (other == BFD_RELOC_SIZE32)
3221 {
3222 if (size == 8)
3223 other = BFD_RELOC_SIZE64;
3224 if (pcrel)
3225 {
3226 as_bad (_("there are no pc-relative size relocations"));
3227 return NO_RELOC;
3228 }
3229 }
3230 #endif
3231
3232 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3233 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3234 sign = -1;
3235
3236 rel = bfd_reloc_type_lookup (stdoutput, other);
3237 if (!rel)
3238 as_bad (_("unknown relocation (%u)"), other);
3239 else if (size != bfd_get_reloc_size (rel))
3240 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3241 bfd_get_reloc_size (rel),
3242 size);
3243 else if (pcrel && !rel->pc_relative)
3244 as_bad (_("non-pc-relative relocation for pc-relative field"));
3245 else if ((rel->complain_on_overflow == complain_overflow_signed
3246 && !sign)
3247 || (rel->complain_on_overflow == complain_overflow_unsigned
3248 && sign > 0))
3249 as_bad (_("relocated field and relocation type differ in signedness"));
3250 else
3251 return other;
3252 return NO_RELOC;
3253 }
3254
3255 if (pcrel)
3256 {
3257 if (!sign)
3258 as_bad (_("there are no unsigned pc-relative relocations"));
3259 switch (size)
3260 {
3261 case 1: return BFD_RELOC_8_PCREL;
3262 case 2: return BFD_RELOC_16_PCREL;
3263 case 4: return BFD_RELOC_32_PCREL;
3264 case 8: return BFD_RELOC_64_PCREL;
3265 }
3266 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3267 }
3268 else
3269 {
3270 if (sign > 0)
3271 switch (size)
3272 {
3273 case 4: return BFD_RELOC_X86_64_32S;
3274 }
3275 else
3276 switch (size)
3277 {
3278 case 1: return BFD_RELOC_8;
3279 case 2: return BFD_RELOC_16;
3280 case 4: return BFD_RELOC_32;
3281 case 8: return BFD_RELOC_64;
3282 }
3283 as_bad (_("cannot do %s %u byte relocation"),
3284 sign > 0 ? "signed" : "unsigned", size);
3285 }
3286
3287 return NO_RELOC;
3288 }
3289
3290 /* Here we decide which fixups can be adjusted to make them relative to
3291 the beginning of the section instead of the symbol. Basically we need
3292 to make sure that the dynamic relocations are done correctly, so in
3293 some cases we force the original symbol to be used. */
3294
3295 int
3296 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3297 {
3298 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3299 if (!IS_ELF)
3300 return 1;
3301
3302 /* Don't adjust pc-relative references to merge sections in 64-bit
3303 mode. */
3304 if (use_rela_relocations
3305 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3306 && fixP->fx_pcrel)
3307 return 0;
3308
3309 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3310 and changed later by validate_fix. */
3311 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3312 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3313 return 0;
3314
3315 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3316 for size relocations. */
3317 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3318 || fixP->fx_r_type == BFD_RELOC_SIZE64
3319 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3320 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3321 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3322 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3323 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3324 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3325 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3326 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3327 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3328 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3329 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3330 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3331 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3332 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3333 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3334 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3335 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3336 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3337 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3338 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3339 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3340 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3341 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3342 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3343 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3344 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3345 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3346 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3347 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3348 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3349 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3350 return 0;
3351 #endif
3352 return 1;
3353 }
3354
3355 static int
3356 intel_float_operand (const char *mnemonic)
3357 {
3358 /* Note that the value returned is meaningful only for opcodes with (memory)
3359 operands, hence the code here is free to improperly handle opcodes that
3360 have no operands (for better performance and smaller code). */
3361
3362 if (mnemonic[0] != 'f')
3363 return 0; /* non-math */
3364
3365 switch (mnemonic[1])
3366 {
3367 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3368 the fs segment override prefix not currently handled because no
3369 call path can make opcodes without operands get here */
3370 case 'i':
3371 return 2 /* integer op */;
3372 case 'l':
3373 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3374 return 3; /* fldcw/fldenv */
3375 break;
3376 case 'n':
3377 if (mnemonic[2] != 'o' /* fnop */)
3378 return 3; /* non-waiting control op */
3379 break;
3380 case 'r':
3381 if (mnemonic[2] == 's')
3382 return 3; /* frstor/frstpm */
3383 break;
3384 case 's':
3385 if (mnemonic[2] == 'a')
3386 return 3; /* fsave */
3387 if (mnemonic[2] == 't')
3388 {
3389 switch (mnemonic[3])
3390 {
3391 case 'c': /* fstcw */
3392 case 'd': /* fstdw */
3393 case 'e': /* fstenv */
3394 case 's': /* fsts[gw] */
3395 return 3;
3396 }
3397 }
3398 break;
3399 case 'x':
3400 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3401 return 0; /* fxsave/fxrstor are not really math ops */
3402 break;
3403 }
3404
3405 return 1;
3406 }
3407
3408 /* Build the VEX prefix. */
3409
3410 static void
3411 build_vex_prefix (const insn_template *t)
3412 {
3413 unsigned int register_specifier;
3414 unsigned int implied_prefix;
3415 unsigned int vector_length;
3416 unsigned int w;
3417
3418 /* Check register specifier. */
3419 if (i.vex.register_specifier)
3420 {
3421 register_specifier =
3422 ~register_number (i.vex.register_specifier) & 0xf;
3423 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3424 }
3425 else
3426 register_specifier = 0xf;
3427
3428 /* Use 2-byte VEX prefix by swapping destination and source operand
3429 if there are more than 1 register operand. */
3430 if (i.reg_operands > 1
3431 && i.vec_encoding != vex_encoding_vex3
3432 && i.dir_encoding == dir_encoding_default
3433 && i.operands == i.reg_operands
3434 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3435 && i.tm.opcode_modifier.vexopcode == VEX0F
3436 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3437 && i.rex == REX_B)
3438 {
3439 unsigned int xchg = i.operands - 1;
3440 union i386_op temp_op;
3441 i386_operand_type temp_type;
3442
3443 temp_type = i.types[xchg];
3444 i.types[xchg] = i.types[0];
3445 i.types[0] = temp_type;
3446 temp_op = i.op[xchg];
3447 i.op[xchg] = i.op[0];
3448 i.op[0] = temp_op;
3449
3450 gas_assert (i.rm.mode == 3);
3451
3452 i.rex = REX_R;
3453 xchg = i.rm.regmem;
3454 i.rm.regmem = i.rm.reg;
3455 i.rm.reg = xchg;
3456
3457 if (i.tm.opcode_modifier.d)
3458 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3459 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3460 else /* Use the next insn. */
3461 i.tm = t[1];
3462 }
3463
3464 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3465 are no memory operands and at least 3 register ones. */
3466 if (i.reg_operands >= 3
3467 && i.vec_encoding != vex_encoding_vex3
3468 && i.reg_operands == i.operands - i.imm_operands
3469 && i.tm.opcode_modifier.vex
3470 && i.tm.opcode_modifier.commutative
3471 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3472 && i.rex == REX_B
3473 && i.vex.register_specifier
3474 && !(i.vex.register_specifier->reg_flags & RegRex))
3475 {
3476 unsigned int xchg = i.operands - i.reg_operands;
3477 union i386_op temp_op;
3478 i386_operand_type temp_type;
3479
3480 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3481 gas_assert (!i.tm.opcode_modifier.sae);
3482 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3483 &i.types[i.operands - 3]));
3484 gas_assert (i.rm.mode == 3);
3485
3486 temp_type = i.types[xchg];
3487 i.types[xchg] = i.types[xchg + 1];
3488 i.types[xchg + 1] = temp_type;
3489 temp_op = i.op[xchg];
3490 i.op[xchg] = i.op[xchg + 1];
3491 i.op[xchg + 1] = temp_op;
3492
3493 i.rex = 0;
3494 xchg = i.rm.regmem | 8;
3495 i.rm.regmem = ~register_specifier & 0xf;
3496 gas_assert (!(i.rm.regmem & 8));
3497 i.vex.register_specifier += xchg - i.rm.regmem;
3498 register_specifier = ~xchg & 0xf;
3499 }
3500
3501 if (i.tm.opcode_modifier.vex == VEXScalar)
3502 vector_length = avxscalar;
3503 else if (i.tm.opcode_modifier.vex == VEX256)
3504 vector_length = 1;
3505 else
3506 {
3507 unsigned int op;
3508
3509 /* Determine vector length from the last multi-length vector
3510 operand. */
3511 vector_length = 0;
3512 for (op = t->operands; op--;)
3513 if (t->operand_types[op].bitfield.xmmword
3514 && t->operand_types[op].bitfield.ymmword
3515 && i.types[op].bitfield.ymmword)
3516 {
3517 vector_length = 1;
3518 break;
3519 }
3520 }
3521
3522 switch ((i.tm.base_opcode >> 8) & 0xff)
3523 {
3524 case 0:
3525 implied_prefix = 0;
3526 break;
3527 case DATA_PREFIX_OPCODE:
3528 implied_prefix = 1;
3529 break;
3530 case REPE_PREFIX_OPCODE:
3531 implied_prefix = 2;
3532 break;
3533 case REPNE_PREFIX_OPCODE:
3534 implied_prefix = 3;
3535 break;
3536 default:
3537 abort ();
3538 }
3539
3540 /* Check the REX.W bit and VEXW. */
3541 if (i.tm.opcode_modifier.vexw == VEXWIG)
3542 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3543 else if (i.tm.opcode_modifier.vexw)
3544 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3545 else
3546 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
3547
3548 /* Use 2-byte VEX prefix if possible. */
3549 if (w == 0
3550 && i.vec_encoding != vex_encoding_vex3
3551 && i.tm.opcode_modifier.vexopcode == VEX0F
3552 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3553 {
3554 /* 2-byte VEX prefix. */
3555 unsigned int r;
3556
3557 i.vex.length = 2;
3558 i.vex.bytes[0] = 0xc5;
3559
3560 /* Check the REX.R bit. */
3561 r = (i.rex & REX_R) ? 0 : 1;
3562 i.vex.bytes[1] = (r << 7
3563 | register_specifier << 3
3564 | vector_length << 2
3565 | implied_prefix);
3566 }
3567 else
3568 {
3569 /* 3-byte VEX prefix. */
3570 unsigned int m;
3571
3572 i.vex.length = 3;
3573
3574 switch (i.tm.opcode_modifier.vexopcode)
3575 {
3576 case VEX0F:
3577 m = 0x1;
3578 i.vex.bytes[0] = 0xc4;
3579 break;
3580 case VEX0F38:
3581 m = 0x2;
3582 i.vex.bytes[0] = 0xc4;
3583 break;
3584 case VEX0F3A:
3585 m = 0x3;
3586 i.vex.bytes[0] = 0xc4;
3587 break;
3588 case XOP08:
3589 m = 0x8;
3590 i.vex.bytes[0] = 0x8f;
3591 break;
3592 case XOP09:
3593 m = 0x9;
3594 i.vex.bytes[0] = 0x8f;
3595 break;
3596 case XOP0A:
3597 m = 0xa;
3598 i.vex.bytes[0] = 0x8f;
3599 break;
3600 default:
3601 abort ();
3602 }
3603
3604 /* The high 3 bits of the second VEX byte are 1's compliment
3605 of RXB bits from REX. */
3606 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3607
3608 i.vex.bytes[2] = (w << 7
3609 | register_specifier << 3
3610 | vector_length << 2
3611 | implied_prefix);
3612 }
3613 }
3614
3615 static INLINE bfd_boolean
3616 is_evex_encoding (const insn_template *t)
3617 {
3618 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3619 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3620 || t->opcode_modifier.sae;
3621 }
3622
3623 static INLINE bfd_boolean
3624 is_any_vex_encoding (const insn_template *t)
3625 {
3626 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3627 || is_evex_encoding (t);
3628 }
3629
3630 /* Build the EVEX prefix. */
3631
3632 static void
3633 build_evex_prefix (void)
3634 {
3635 unsigned int register_specifier;
3636 unsigned int implied_prefix;
3637 unsigned int m, w;
3638 rex_byte vrex_used = 0;
3639
3640 /* Check register specifier. */
3641 if (i.vex.register_specifier)
3642 {
3643 gas_assert ((i.vrex & REX_X) == 0);
3644
3645 register_specifier = i.vex.register_specifier->reg_num;
3646 if ((i.vex.register_specifier->reg_flags & RegRex))
3647 register_specifier += 8;
3648 /* The upper 16 registers are encoded in the fourth byte of the
3649 EVEX prefix. */
3650 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3651 i.vex.bytes[3] = 0x8;
3652 register_specifier = ~register_specifier & 0xf;
3653 }
3654 else
3655 {
3656 register_specifier = 0xf;
3657
3658 /* Encode upper 16 vector index register in the fourth byte of
3659 the EVEX prefix. */
3660 if (!(i.vrex & REX_X))
3661 i.vex.bytes[3] = 0x8;
3662 else
3663 vrex_used |= REX_X;
3664 }
3665
3666 switch ((i.tm.base_opcode >> 8) & 0xff)
3667 {
3668 case 0:
3669 implied_prefix = 0;
3670 break;
3671 case DATA_PREFIX_OPCODE:
3672 implied_prefix = 1;
3673 break;
3674 case REPE_PREFIX_OPCODE:
3675 implied_prefix = 2;
3676 break;
3677 case REPNE_PREFIX_OPCODE:
3678 implied_prefix = 3;
3679 break;
3680 default:
3681 abort ();
3682 }
3683
3684 /* 4 byte EVEX prefix. */
3685 i.vex.length = 4;
3686 i.vex.bytes[0] = 0x62;
3687
3688 /* mmmm bits. */
3689 switch (i.tm.opcode_modifier.vexopcode)
3690 {
3691 case VEX0F:
3692 m = 1;
3693 break;
3694 case VEX0F38:
3695 m = 2;
3696 break;
3697 case VEX0F3A:
3698 m = 3;
3699 break;
3700 default:
3701 abort ();
3702 break;
3703 }
3704
3705 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3706 bits from REX. */
3707 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3708
3709 /* The fifth bit of the second EVEX byte is 1's compliment of the
3710 REX_R bit in VREX. */
3711 if (!(i.vrex & REX_R))
3712 i.vex.bytes[1] |= 0x10;
3713 else
3714 vrex_used |= REX_R;
3715
3716 if ((i.reg_operands + i.imm_operands) == i.operands)
3717 {
3718 /* When all operands are registers, the REX_X bit in REX is not
3719 used. We reuse it to encode the upper 16 registers, which is
3720 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3721 as 1's compliment. */
3722 if ((i.vrex & REX_B))
3723 {
3724 vrex_used |= REX_B;
3725 i.vex.bytes[1] &= ~0x40;
3726 }
3727 }
3728
3729 /* EVEX instructions shouldn't need the REX prefix. */
3730 i.vrex &= ~vrex_used;
3731 gas_assert (i.vrex == 0);
3732
3733 /* Check the REX.W bit and VEXW. */
3734 if (i.tm.opcode_modifier.vexw == VEXWIG)
3735 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3736 else if (i.tm.opcode_modifier.vexw)
3737 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3738 else
3739 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
3740
3741 /* Encode the U bit. */
3742 implied_prefix |= 0x4;
3743
3744 /* The third byte of the EVEX prefix. */
3745 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3746
3747 /* The fourth byte of the EVEX prefix. */
3748 /* The zeroing-masking bit. */
3749 if (i.mask && i.mask->zeroing)
3750 i.vex.bytes[3] |= 0x80;
3751
3752 /* Don't always set the broadcast bit if there is no RC. */
3753 if (!i.rounding)
3754 {
3755 /* Encode the vector length. */
3756 unsigned int vec_length;
3757
3758 if (!i.tm.opcode_modifier.evex
3759 || i.tm.opcode_modifier.evex == EVEXDYN)
3760 {
3761 unsigned int op;
3762
3763 /* Determine vector length from the last multi-length vector
3764 operand. */
3765 vec_length = 0;
3766 for (op = i.operands; op--;)
3767 if (i.tm.operand_types[op].bitfield.xmmword
3768 + i.tm.operand_types[op].bitfield.ymmword
3769 + i.tm.operand_types[op].bitfield.zmmword > 1)
3770 {
3771 if (i.types[op].bitfield.zmmword)
3772 {
3773 i.tm.opcode_modifier.evex = EVEX512;
3774 break;
3775 }
3776 else if (i.types[op].bitfield.ymmword)
3777 {
3778 i.tm.opcode_modifier.evex = EVEX256;
3779 break;
3780 }
3781 else if (i.types[op].bitfield.xmmword)
3782 {
3783 i.tm.opcode_modifier.evex = EVEX128;
3784 break;
3785 }
3786 else if (i.broadcast && (int) op == i.broadcast->operand)
3787 {
3788 switch (i.broadcast->bytes)
3789 {
3790 case 64:
3791 i.tm.opcode_modifier.evex = EVEX512;
3792 break;
3793 case 32:
3794 i.tm.opcode_modifier.evex = EVEX256;
3795 break;
3796 case 16:
3797 i.tm.opcode_modifier.evex = EVEX128;
3798 break;
3799 default:
3800 abort ();
3801 }
3802 break;
3803 }
3804 }
3805
3806 if (op >= MAX_OPERANDS)
3807 abort ();
3808 }
3809
3810 switch (i.tm.opcode_modifier.evex)
3811 {
3812 case EVEXLIG: /* LL' is ignored */
3813 vec_length = evexlig << 5;
3814 break;
3815 case EVEX128:
3816 vec_length = 0 << 5;
3817 break;
3818 case EVEX256:
3819 vec_length = 1 << 5;
3820 break;
3821 case EVEX512:
3822 vec_length = 2 << 5;
3823 break;
3824 default:
3825 abort ();
3826 break;
3827 }
3828 i.vex.bytes[3] |= vec_length;
3829 /* Encode the broadcast bit. */
3830 if (i.broadcast)
3831 i.vex.bytes[3] |= 0x10;
3832 }
3833 else
3834 {
3835 if (i.rounding->type != saeonly)
3836 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3837 else
3838 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3839 }
3840
3841 if (i.mask && i.mask->mask)
3842 i.vex.bytes[3] |= i.mask->mask->reg_num;
3843 }
3844
3845 static void
3846 process_immext (void)
3847 {
3848 expressionS *exp;
3849
3850 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3851 which is coded in the same place as an 8-bit immediate field
3852 would be. Here we fake an 8-bit immediate operand from the
3853 opcode suffix stored in tm.extension_opcode.
3854
3855 AVX instructions also use this encoding, for some of
3856 3 argument instructions. */
3857
3858 gas_assert (i.imm_operands <= 1
3859 && (i.operands <= 2
3860 || (is_any_vex_encoding (&i.tm)
3861 && i.operands <= 4)));
3862
3863 exp = &im_expressions[i.imm_operands++];
3864 i.op[i.operands].imms = exp;
3865 i.types[i.operands] = imm8;
3866 i.operands++;
3867 exp->X_op = O_constant;
3868 exp->X_add_number = i.tm.extension_opcode;
3869 i.tm.extension_opcode = None;
3870 }
3871
3872
3873 static int
3874 check_hle (void)
3875 {
3876 switch (i.tm.opcode_modifier.hleprefixok)
3877 {
3878 default:
3879 abort ();
3880 case HLEPrefixNone:
3881 as_bad (_("invalid instruction `%s' after `%s'"),
3882 i.tm.name, i.hle_prefix);
3883 return 0;
3884 case HLEPrefixLock:
3885 if (i.prefix[LOCK_PREFIX])
3886 return 1;
3887 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3888 return 0;
3889 case HLEPrefixAny:
3890 return 1;
3891 case HLEPrefixRelease:
3892 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3893 {
3894 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3895 i.tm.name);
3896 return 0;
3897 }
3898 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
3899 {
3900 as_bad (_("memory destination needed for instruction `%s'"
3901 " after `xrelease'"), i.tm.name);
3902 return 0;
3903 }
3904 return 1;
3905 }
3906 }
3907
3908 /* Try the shortest encoding by shortening operand size. */
3909
3910 static void
3911 optimize_encoding (void)
3912 {
3913 unsigned int j;
3914
3915 if (optimize_for_space
3916 && i.reg_operands == 1
3917 && i.imm_operands == 1
3918 && !i.types[1].bitfield.byte
3919 && i.op[0].imms->X_op == O_constant
3920 && fits_in_imm7 (i.op[0].imms->X_add_number)
3921 && ((i.tm.base_opcode == 0xa8
3922 && i.tm.extension_opcode == None)
3923 || (i.tm.base_opcode == 0xf6
3924 && i.tm.extension_opcode == 0x0)))
3925 {
3926 /* Optimize: -Os:
3927 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3928 */
3929 unsigned int base_regnum = i.op[1].regs->reg_num;
3930 if (flag_code == CODE_64BIT || base_regnum < 4)
3931 {
3932 i.types[1].bitfield.byte = 1;
3933 /* Ignore the suffix. */
3934 i.suffix = 0;
3935 if (base_regnum >= 4
3936 && !(i.op[1].regs->reg_flags & RegRex))
3937 {
3938 /* Handle SP, BP, SI and DI registers. */
3939 if (i.types[1].bitfield.word)
3940 j = 16;
3941 else if (i.types[1].bitfield.dword)
3942 j = 32;
3943 else
3944 j = 48;
3945 i.op[1].regs -= j;
3946 }
3947 }
3948 }
3949 else if (flag_code == CODE_64BIT
3950 && ((i.types[1].bitfield.qword
3951 && i.reg_operands == 1
3952 && i.imm_operands == 1
3953 && i.op[0].imms->X_op == O_constant
3954 && ((i.tm.base_opcode == 0xb8
3955 && i.tm.extension_opcode == None
3956 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3957 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3958 && (((i.tm.base_opcode == 0x24
3959 || i.tm.base_opcode == 0xa8)
3960 && i.tm.extension_opcode == None)
3961 || (i.tm.base_opcode == 0x80
3962 && i.tm.extension_opcode == 0x4)
3963 || ((i.tm.base_opcode == 0xf6
3964 || (i.tm.base_opcode | 1) == 0xc7)
3965 && i.tm.extension_opcode == 0x0)))
3966 || (fits_in_imm7 (i.op[0].imms->X_add_number)
3967 && i.tm.base_opcode == 0x83
3968 && i.tm.extension_opcode == 0x4)))
3969 || (i.types[0].bitfield.qword
3970 && ((i.reg_operands == 2
3971 && i.op[0].regs == i.op[1].regs
3972 && ((i.tm.base_opcode == 0x30
3973 || i.tm.base_opcode == 0x28)
3974 && i.tm.extension_opcode == None))
3975 || (i.reg_operands == 1
3976 && i.operands == 1
3977 && i.tm.base_opcode == 0x30
3978 && i.tm.extension_opcode == None)))))
3979 {
3980 /* Optimize: -O:
3981 andq $imm31, %r64 -> andl $imm31, %r32
3982 andq $imm7, %r64 -> andl $imm7, %r32
3983 testq $imm31, %r64 -> testl $imm31, %r32
3984 xorq %r64, %r64 -> xorl %r32, %r32
3985 subq %r64, %r64 -> subl %r32, %r32
3986 movq $imm31, %r64 -> movl $imm31, %r32
3987 movq $imm32, %r64 -> movl $imm32, %r32
3988 */
3989 i.tm.opcode_modifier.norex64 = 1;
3990 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
3991 {
3992 /* Handle
3993 movq $imm31, %r64 -> movl $imm31, %r32
3994 movq $imm32, %r64 -> movl $imm32, %r32
3995 */
3996 i.tm.operand_types[0].bitfield.imm32 = 1;
3997 i.tm.operand_types[0].bitfield.imm32s = 0;
3998 i.tm.operand_types[0].bitfield.imm64 = 0;
3999 i.types[0].bitfield.imm32 = 1;
4000 i.types[0].bitfield.imm32s = 0;
4001 i.types[0].bitfield.imm64 = 0;
4002 i.types[1].bitfield.dword = 1;
4003 i.types[1].bitfield.qword = 0;
4004 if ((i.tm.base_opcode | 1) == 0xc7)
4005 {
4006 /* Handle
4007 movq $imm31, %r64 -> movl $imm31, %r32
4008 */
4009 i.tm.base_opcode = 0xb8;
4010 i.tm.extension_opcode = None;
4011 i.tm.opcode_modifier.w = 0;
4012 i.tm.opcode_modifier.shortform = 1;
4013 i.tm.opcode_modifier.modrm = 0;
4014 }
4015 }
4016 }
4017 else if (optimize > 1
4018 && !optimize_for_space
4019 && i.reg_operands == 2
4020 && i.op[0].regs == i.op[1].regs
4021 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4022 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4023 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4024 {
4025 /* Optimize: -O2:
4026 andb %rN, %rN -> testb %rN, %rN
4027 andw %rN, %rN -> testw %rN, %rN
4028 andq %rN, %rN -> testq %rN, %rN
4029 orb %rN, %rN -> testb %rN, %rN
4030 orw %rN, %rN -> testw %rN, %rN
4031 orq %rN, %rN -> testq %rN, %rN
4032
4033 and outside of 64-bit mode
4034
4035 andl %rN, %rN -> testl %rN, %rN
4036 orl %rN, %rN -> testl %rN, %rN
4037 */
4038 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4039 }
4040 else if (i.reg_operands == 3
4041 && i.op[0].regs == i.op[1].regs
4042 && !i.types[2].bitfield.xmmword
4043 && (i.tm.opcode_modifier.vex
4044 || ((!i.mask || i.mask->zeroing)
4045 && !i.rounding
4046 && is_evex_encoding (&i.tm)
4047 && (i.vec_encoding != vex_encoding_evex
4048 || cpu_arch_isa_flags.bitfield.cpuavx512vl
4049 || i.tm.cpu_flags.bitfield.cpuavx512vl
4050 || (i.tm.operand_types[2].bitfield.zmmword
4051 && i.types[2].bitfield.ymmword))))
4052 && ((i.tm.base_opcode == 0x55
4053 || i.tm.base_opcode == 0x6655
4054 || i.tm.base_opcode == 0x66df
4055 || i.tm.base_opcode == 0x57
4056 || i.tm.base_opcode == 0x6657
4057 || i.tm.base_opcode == 0x66ef
4058 || i.tm.base_opcode == 0x66f8
4059 || i.tm.base_opcode == 0x66f9
4060 || i.tm.base_opcode == 0x66fa
4061 || i.tm.base_opcode == 0x66fb
4062 || i.tm.base_opcode == 0x42
4063 || i.tm.base_opcode == 0x6642
4064 || i.tm.base_opcode == 0x47
4065 || i.tm.base_opcode == 0x6647)
4066 && i.tm.extension_opcode == None))
4067 {
4068 /* Optimize: -O1:
4069 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4070 vpsubq and vpsubw:
4071 EVEX VOP %zmmM, %zmmM, %zmmN
4072 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4073 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4074 EVEX VOP %ymmM, %ymmM, %ymmN
4075 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4076 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4077 VEX VOP %ymmM, %ymmM, %ymmN
4078 -> VEX VOP %xmmM, %xmmM, %xmmN
4079 VOP, one of vpandn and vpxor:
4080 VEX VOP %ymmM, %ymmM, %ymmN
4081 -> VEX VOP %xmmM, %xmmM, %xmmN
4082 VOP, one of vpandnd and vpandnq:
4083 EVEX VOP %zmmM, %zmmM, %zmmN
4084 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4085 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4086 EVEX VOP %ymmM, %ymmM, %ymmN
4087 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4088 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4089 VOP, one of vpxord and vpxorq:
4090 EVEX VOP %zmmM, %zmmM, %zmmN
4091 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4092 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4093 EVEX VOP %ymmM, %ymmM, %ymmN
4094 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4095 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4096 VOP, one of kxord and kxorq:
4097 VEX VOP %kM, %kM, %kN
4098 -> VEX kxorw %kM, %kM, %kN
4099 VOP, one of kandnd and kandnq:
4100 VEX VOP %kM, %kM, %kN
4101 -> VEX kandnw %kM, %kM, %kN
4102 */
4103 if (is_evex_encoding (&i.tm))
4104 {
4105 if (i.vec_encoding != vex_encoding_evex)
4106 {
4107 i.tm.opcode_modifier.vex = VEX128;
4108 i.tm.opcode_modifier.vexw = VEXW0;
4109 i.tm.opcode_modifier.evex = 0;
4110 }
4111 else if (optimize > 1)
4112 i.tm.opcode_modifier.evex = EVEX128;
4113 else
4114 return;
4115 }
4116 else if (i.tm.operand_types[0].bitfield.class == RegMask)
4117 {
4118 i.tm.base_opcode &= 0xff;
4119 i.tm.opcode_modifier.vexw = VEXW0;
4120 }
4121 else
4122 i.tm.opcode_modifier.vex = VEX128;
4123
4124 if (i.tm.opcode_modifier.vex)
4125 for (j = 0; j < 3; j++)
4126 {
4127 i.types[j].bitfield.xmmword = 1;
4128 i.types[j].bitfield.ymmword = 0;
4129 }
4130 }
4131 else if (i.vec_encoding != vex_encoding_evex
4132 && !i.types[0].bitfield.zmmword
4133 && !i.types[1].bitfield.zmmword
4134 && !i.mask
4135 && !i.broadcast
4136 && is_evex_encoding (&i.tm)
4137 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4138 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4139 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4140 || (i.tm.base_opcode & ~4) == 0x66db
4141 || (i.tm.base_opcode & ~4) == 0x66eb)
4142 && i.tm.extension_opcode == None)
4143 {
4144 /* Optimize: -O1:
4145 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4146 vmovdqu32 and vmovdqu64:
4147 EVEX VOP %xmmM, %xmmN
4148 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4149 EVEX VOP %ymmM, %ymmN
4150 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4151 EVEX VOP %xmmM, mem
4152 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4153 EVEX VOP %ymmM, mem
4154 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4155 EVEX VOP mem, %xmmN
4156 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4157 EVEX VOP mem, %ymmN
4158 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4159 VOP, one of vpand, vpandn, vpor, vpxor:
4160 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4161 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4162 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4163 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4164 EVEX VOP{d,q} mem, %xmmM, %xmmN
4165 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4166 EVEX VOP{d,q} mem, %ymmM, %ymmN
4167 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
4168 */
4169 for (j = 0; j < i.operands; j++)
4170 if (operand_type_check (i.types[j], disp)
4171 && i.op[j].disps->X_op == O_constant)
4172 {
4173 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4174 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4175 bytes, we choose EVEX Disp8 over VEX Disp32. */
4176 int evex_disp8, vex_disp8;
4177 unsigned int memshift = i.memshift;
4178 offsetT n = i.op[j].disps->X_add_number;
4179
4180 evex_disp8 = fits_in_disp8 (n);
4181 i.memshift = 0;
4182 vex_disp8 = fits_in_disp8 (n);
4183 if (evex_disp8 != vex_disp8)
4184 {
4185 i.memshift = memshift;
4186 return;
4187 }
4188
4189 i.types[j].bitfield.disp8 = vex_disp8;
4190 break;
4191 }
4192 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4193 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
4194 i.tm.opcode_modifier.vex
4195 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4196 i.tm.opcode_modifier.vexw = VEXW0;
4197 /* VPAND, VPOR, and VPXOR are commutative. */
4198 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4199 i.tm.opcode_modifier.commutative = 1;
4200 i.tm.opcode_modifier.evex = 0;
4201 i.tm.opcode_modifier.masking = 0;
4202 i.tm.opcode_modifier.broadcast = 0;
4203 i.tm.opcode_modifier.disp8memshift = 0;
4204 i.memshift = 0;
4205 if (j < i.operands)
4206 i.types[j].bitfield.disp8
4207 = fits_in_disp8 (i.op[j].disps->X_add_number);
4208 }
4209 }
4210
4211 /* This is the guts of the machine-dependent assembler. LINE points to a
4212 machine dependent instruction. This function is supposed to emit
4213 the frags/bytes it assembles to. */
4214
4215 void
4216 md_assemble (char *line)
4217 {
4218 unsigned int j;
4219 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4220 const insn_template *t;
4221
4222 /* Initialize globals. */
4223 memset (&i, '\0', sizeof (i));
4224 for (j = 0; j < MAX_OPERANDS; j++)
4225 i.reloc[j] = NO_RELOC;
4226 memset (disp_expressions, '\0', sizeof (disp_expressions));
4227 memset (im_expressions, '\0', sizeof (im_expressions));
4228 save_stack_p = save_stack;
4229
4230 /* First parse an instruction mnemonic & call i386_operand for the operands.
4231 We assume that the scrubber has arranged it so that line[0] is the valid
4232 start of a (possibly prefixed) mnemonic. */
4233
4234 line = parse_insn (line, mnemonic);
4235 if (line == NULL)
4236 return;
4237 mnem_suffix = i.suffix;
4238
4239 line = parse_operands (line, mnemonic);
4240 this_operand = -1;
4241 xfree (i.memop1_string);
4242 i.memop1_string = NULL;
4243 if (line == NULL)
4244 return;
4245
4246 /* Now we've parsed the mnemonic into a set of templates, and have the
4247 operands at hand. */
4248
4249 /* All intel opcodes have reversed operands except for "bound" and
4250 "enter". We also don't reverse intersegment "jmp" and "call"
4251 instructions with 2 immediate operands so that the immediate segment
4252 precedes the offset, as it does when in AT&T mode. */
4253 if (intel_syntax
4254 && i.operands > 1
4255 && (strcmp (mnemonic, "bound") != 0)
4256 && (strcmp (mnemonic, "invlpga") != 0)
4257 && !(operand_type_check (i.types[0], imm)
4258 && operand_type_check (i.types[1], imm)))
4259 swap_operands ();
4260
4261 /* The order of the immediates should be reversed
4262 for 2 immediates extrq and insertq instructions */
4263 if (i.imm_operands == 2
4264 && (strcmp (mnemonic, "extrq") == 0
4265 || strcmp (mnemonic, "insertq") == 0))
4266 swap_2_operands (0, 1);
4267
4268 if (i.imm_operands)
4269 optimize_imm ();
4270
4271 /* Don't optimize displacement for movabs since it only takes 64bit
4272 displacement. */
4273 if (i.disp_operands
4274 && i.disp_encoding != disp_encoding_32bit
4275 && (flag_code != CODE_64BIT
4276 || strcmp (mnemonic, "movabs") != 0))
4277 optimize_disp ();
4278
4279 /* Next, we find a template that matches the given insn,
4280 making sure the overlap of the given operands types is consistent
4281 with the template operand types. */
4282
4283 if (!(t = match_template (mnem_suffix)))
4284 return;
4285
4286 if (sse_check != check_none
4287 && !i.tm.opcode_modifier.noavx
4288 && !i.tm.cpu_flags.bitfield.cpuavx
4289 && (i.tm.cpu_flags.bitfield.cpusse
4290 || i.tm.cpu_flags.bitfield.cpusse2
4291 || i.tm.cpu_flags.bitfield.cpusse3
4292 || i.tm.cpu_flags.bitfield.cpussse3
4293 || i.tm.cpu_flags.bitfield.cpusse4_1
4294 || i.tm.cpu_flags.bitfield.cpusse4_2
4295 || i.tm.cpu_flags.bitfield.cpupclmul
4296 || i.tm.cpu_flags.bitfield.cpuaes
4297 || i.tm.cpu_flags.bitfield.cpugfni))
4298 {
4299 (sse_check == check_warning
4300 ? as_warn
4301 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4302 }
4303
4304 /* Zap movzx and movsx suffix. The suffix has been set from
4305 "word ptr" or "byte ptr" on the source operand in Intel syntax
4306 or extracted from mnemonic in AT&T syntax. But we'll use
4307 the destination register to choose the suffix for encoding. */
4308 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4309 {
4310 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4311 there is no suffix, the default will be byte extension. */
4312 if (i.reg_operands != 2
4313 && !i.suffix
4314 && intel_syntax)
4315 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4316
4317 i.suffix = 0;
4318 }
4319
4320 if (i.tm.opcode_modifier.fwait)
4321 if (!add_prefix (FWAIT_OPCODE))
4322 return;
4323
4324 /* Check if REP prefix is OK. */
4325 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4326 {
4327 as_bad (_("invalid instruction `%s' after `%s'"),
4328 i.tm.name, i.rep_prefix);
4329 return;
4330 }
4331
4332 /* Check for lock without a lockable instruction. Destination operand
4333 must be memory unless it is xchg (0x86). */
4334 if (i.prefix[LOCK_PREFIX]
4335 && (!i.tm.opcode_modifier.islockable
4336 || i.mem_operands == 0
4337 || (i.tm.base_opcode != 0x86
4338 && !(i.flags[i.operands - 1] & Operand_Mem))))
4339 {
4340 as_bad (_("expecting lockable instruction after `lock'"));
4341 return;
4342 }
4343
4344 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4345 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4346 {
4347 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4348 return;
4349 }
4350
4351 /* Check if HLE prefix is OK. */
4352 if (i.hle_prefix && !check_hle ())
4353 return;
4354
4355 /* Check BND prefix. */
4356 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4357 as_bad (_("expecting valid branch instruction after `bnd'"));
4358
4359 /* Check NOTRACK prefix. */
4360 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4361 as_bad (_("expecting indirect branch instruction after `notrack'"));
4362
4363 if (i.tm.cpu_flags.bitfield.cpumpx)
4364 {
4365 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4366 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4367 else if (flag_code != CODE_16BIT
4368 ? i.prefix[ADDR_PREFIX]
4369 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4370 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4371 }
4372
4373 /* Insert BND prefix. */
4374 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4375 {
4376 if (!i.prefix[BND_PREFIX])
4377 add_prefix (BND_PREFIX_OPCODE);
4378 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4379 {
4380 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4381 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4382 }
4383 }
4384
4385 /* Check string instruction segment overrides. */
4386 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
4387 {
4388 gas_assert (i.mem_operands);
4389 if (!check_string ())
4390 return;
4391 i.disp_operands = 0;
4392 }
4393
4394 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4395 optimize_encoding ();
4396
4397 if (!process_suffix ())
4398 return;
4399
4400 /* Update operand types. */
4401 for (j = 0; j < i.operands; j++)
4402 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4403
4404 /* Make still unresolved immediate matches conform to size of immediate
4405 given in i.suffix. */
4406 if (!finalize_imm ())
4407 return;
4408
4409 if (i.types[0].bitfield.imm1)
4410 i.imm_operands = 0; /* kludge for shift insns. */
4411
4412 /* We only need to check those implicit registers for instructions
4413 with 3 operands or less. */
4414 if (i.operands <= 3)
4415 for (j = 0; j < i.operands; j++)
4416 if (i.types[j].bitfield.instance != InstanceNone
4417 && !i.types[j].bitfield.xmmword)
4418 i.reg_operands--;
4419
4420 /* ImmExt should be processed after SSE2AVX. */
4421 if (!i.tm.opcode_modifier.sse2avx
4422 && i.tm.opcode_modifier.immext)
4423 process_immext ();
4424
4425 /* For insns with operands there are more diddles to do to the opcode. */
4426 if (i.operands)
4427 {
4428 if (!process_operands ())
4429 return;
4430 }
4431 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4432 {
4433 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4434 as_warn (_("translating to `%sp'"), i.tm.name);
4435 }
4436
4437 if (is_any_vex_encoding (&i.tm))
4438 {
4439 if (!cpu_arch_flags.bitfield.cpui286)
4440 {
4441 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
4442 i.tm.name);
4443 return;
4444 }
4445
4446 if (i.tm.opcode_modifier.vex)
4447 build_vex_prefix (t);
4448 else
4449 build_evex_prefix ();
4450 }
4451
4452 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4453 instructions may define INT_OPCODE as well, so avoid this corner
4454 case for those instructions that use MODRM. */
4455 if (i.tm.base_opcode == INT_OPCODE
4456 && !i.tm.opcode_modifier.modrm
4457 && i.op[0].imms->X_add_number == 3)
4458 {
4459 i.tm.base_opcode = INT3_OPCODE;
4460 i.imm_operands = 0;
4461 }
4462
4463 if ((i.tm.opcode_modifier.jump == JUMP
4464 || i.tm.opcode_modifier.jump == JUMP_BYTE
4465 || i.tm.opcode_modifier.jump == JUMP_DWORD)
4466 && i.op[0].disps->X_op == O_constant)
4467 {
4468 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4469 the absolute address given by the constant. Since ix86 jumps and
4470 calls are pc relative, we need to generate a reloc. */
4471 i.op[0].disps->X_add_symbol = &abs_symbol;
4472 i.op[0].disps->X_op = O_symbol;
4473 }
4474
4475 if (i.tm.opcode_modifier.rex64)
4476 i.rex |= REX_W;
4477
4478 /* For 8 bit registers we need an empty rex prefix. Also if the
4479 instruction already has a prefix, we need to convert old
4480 registers to new ones. */
4481
4482 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
4483 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4484 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
4485 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4486 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4487 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
4488 && i.rex != 0))
4489 {
4490 int x;
4491
4492 i.rex |= REX_OPCODE;
4493 for (x = 0; x < 2; x++)
4494 {
4495 /* Look for 8 bit operand that uses old registers. */
4496 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
4497 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4498 {
4499 /* In case it is "hi" register, give up. */
4500 if (i.op[x].regs->reg_num > 3)
4501 as_bad (_("can't encode register '%s%s' in an "
4502 "instruction requiring REX prefix."),
4503 register_prefix, i.op[x].regs->reg_name);
4504
4505 /* Otherwise it is equivalent to the extended register.
4506 Since the encoding doesn't change this is merely
4507 cosmetic cleanup for debug output. */
4508
4509 i.op[x].regs = i.op[x].regs + 8;
4510 }
4511 }
4512 }
4513
4514 if (i.rex == 0 && i.rex_encoding)
4515 {
4516 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4517 that uses legacy register. If it is "hi" register, don't add
4518 the REX_OPCODE byte. */
4519 int x;
4520 for (x = 0; x < 2; x++)
4521 if (i.types[x].bitfield.class == Reg
4522 && i.types[x].bitfield.byte
4523 && (i.op[x].regs->reg_flags & RegRex64) == 0
4524 && i.op[x].regs->reg_num > 3)
4525 {
4526 i.rex_encoding = FALSE;
4527 break;
4528 }
4529
4530 if (i.rex_encoding)
4531 i.rex = REX_OPCODE;
4532 }
4533
4534 if (i.rex != 0)
4535 add_prefix (REX_OPCODE | i.rex);
4536
4537 /* We are ready to output the insn. */
4538 output_insn ();
4539 }
4540
4541 static char *
4542 parse_insn (char *line, char *mnemonic)
4543 {
4544 char *l = line;
4545 char *token_start = l;
4546 char *mnem_p;
4547 int supported;
4548 const insn_template *t;
4549 char *dot_p = NULL;
4550
4551 while (1)
4552 {
4553 mnem_p = mnemonic;
4554 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4555 {
4556 if (*mnem_p == '.')
4557 dot_p = mnem_p;
4558 mnem_p++;
4559 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4560 {
4561 as_bad (_("no such instruction: `%s'"), token_start);
4562 return NULL;
4563 }
4564 l++;
4565 }
4566 if (!is_space_char (*l)
4567 && *l != END_OF_INSN
4568 && (intel_syntax
4569 || (*l != PREFIX_SEPARATOR
4570 && *l != ',')))
4571 {
4572 as_bad (_("invalid character %s in mnemonic"),
4573 output_invalid (*l));
4574 return NULL;
4575 }
4576 if (token_start == l)
4577 {
4578 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4579 as_bad (_("expecting prefix; got nothing"));
4580 else
4581 as_bad (_("expecting mnemonic; got nothing"));
4582 return NULL;
4583 }
4584
4585 /* Look up instruction (or prefix) via hash table. */
4586 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4587
4588 if (*l != END_OF_INSN
4589 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4590 && current_templates
4591 && current_templates->start->opcode_modifier.isprefix)
4592 {
4593 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4594 {
4595 as_bad ((flag_code != CODE_64BIT
4596 ? _("`%s' is only supported in 64-bit mode")
4597 : _("`%s' is not supported in 64-bit mode")),
4598 current_templates->start->name);
4599 return NULL;
4600 }
4601 /* If we are in 16-bit mode, do not allow addr16 or data16.
4602 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4603 if ((current_templates->start->opcode_modifier.size == SIZE16
4604 || current_templates->start->opcode_modifier.size == SIZE32)
4605 && flag_code != CODE_64BIT
4606 && ((current_templates->start->opcode_modifier.size == SIZE32)
4607 ^ (flag_code == CODE_16BIT)))
4608 {
4609 as_bad (_("redundant %s prefix"),
4610 current_templates->start->name);
4611 return NULL;
4612 }
4613 if (current_templates->start->opcode_length == 0)
4614 {
4615 /* Handle pseudo prefixes. */
4616 switch (current_templates->start->base_opcode)
4617 {
4618 case 0x0:
4619 /* {disp8} */
4620 i.disp_encoding = disp_encoding_8bit;
4621 break;
4622 case 0x1:
4623 /* {disp32} */
4624 i.disp_encoding = disp_encoding_32bit;
4625 break;
4626 case 0x2:
4627 /* {load} */
4628 i.dir_encoding = dir_encoding_load;
4629 break;
4630 case 0x3:
4631 /* {store} */
4632 i.dir_encoding = dir_encoding_store;
4633 break;
4634 case 0x4:
4635 /* {vex2} */
4636 i.vec_encoding = vex_encoding_vex2;
4637 break;
4638 case 0x5:
4639 /* {vex3} */
4640 i.vec_encoding = vex_encoding_vex3;
4641 break;
4642 case 0x6:
4643 /* {evex} */
4644 i.vec_encoding = vex_encoding_evex;
4645 break;
4646 case 0x7:
4647 /* {rex} */
4648 i.rex_encoding = TRUE;
4649 break;
4650 case 0x8:
4651 /* {nooptimize} */
4652 i.no_optimize = TRUE;
4653 break;
4654 default:
4655 abort ();
4656 }
4657 }
4658 else
4659 {
4660 /* Add prefix, checking for repeated prefixes. */
4661 switch (add_prefix (current_templates->start->base_opcode))
4662 {
4663 case PREFIX_EXIST:
4664 return NULL;
4665 case PREFIX_DS:
4666 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4667 i.notrack_prefix = current_templates->start->name;
4668 break;
4669 case PREFIX_REP:
4670 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4671 i.hle_prefix = current_templates->start->name;
4672 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4673 i.bnd_prefix = current_templates->start->name;
4674 else
4675 i.rep_prefix = current_templates->start->name;
4676 break;
4677 default:
4678 break;
4679 }
4680 }
4681 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4682 token_start = ++l;
4683 }
4684 else
4685 break;
4686 }
4687
4688 if (!current_templates)
4689 {
4690 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4691 Check if we should swap operand or force 32bit displacement in
4692 encoding. */
4693 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4694 i.dir_encoding = dir_encoding_swap;
4695 else if (mnem_p - 3 == dot_p
4696 && dot_p[1] == 'd'
4697 && dot_p[2] == '8')
4698 i.disp_encoding = disp_encoding_8bit;
4699 else if (mnem_p - 4 == dot_p
4700 && dot_p[1] == 'd'
4701 && dot_p[2] == '3'
4702 && dot_p[3] == '2')
4703 i.disp_encoding = disp_encoding_32bit;
4704 else
4705 goto check_suffix;
4706 mnem_p = dot_p;
4707 *dot_p = '\0';
4708 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4709 }
4710
4711 if (!current_templates)
4712 {
4713 check_suffix:
4714 if (mnem_p > mnemonic)
4715 {
4716 /* See if we can get a match by trimming off a suffix. */
4717 switch (mnem_p[-1])
4718 {
4719 case WORD_MNEM_SUFFIX:
4720 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4721 i.suffix = SHORT_MNEM_SUFFIX;
4722 else
4723 /* Fall through. */
4724 case BYTE_MNEM_SUFFIX:
4725 case QWORD_MNEM_SUFFIX:
4726 i.suffix = mnem_p[-1];
4727 mnem_p[-1] = '\0';
4728 current_templates = (const templates *) hash_find (op_hash,
4729 mnemonic);
4730 break;
4731 case SHORT_MNEM_SUFFIX:
4732 case LONG_MNEM_SUFFIX:
4733 if (!intel_syntax)
4734 {
4735 i.suffix = mnem_p[-1];
4736 mnem_p[-1] = '\0';
4737 current_templates = (const templates *) hash_find (op_hash,
4738 mnemonic);
4739 }
4740 break;
4741
4742 /* Intel Syntax. */
4743 case 'd':
4744 if (intel_syntax)
4745 {
4746 if (intel_float_operand (mnemonic) == 1)
4747 i.suffix = SHORT_MNEM_SUFFIX;
4748 else
4749 i.suffix = LONG_MNEM_SUFFIX;
4750 mnem_p[-1] = '\0';
4751 current_templates = (const templates *) hash_find (op_hash,
4752 mnemonic);
4753 }
4754 break;
4755 }
4756 }
4757
4758 if (!current_templates)
4759 {
4760 as_bad (_("no such instruction: `%s'"), token_start);
4761 return NULL;
4762 }
4763 }
4764
4765 if (current_templates->start->opcode_modifier.jump == JUMP
4766 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
4767 {
4768 /* Check for a branch hint. We allow ",pt" and ",pn" for
4769 predict taken and predict not taken respectively.
4770 I'm not sure that branch hints actually do anything on loop
4771 and jcxz insns (JumpByte) for current Pentium4 chips. They
4772 may work in the future and it doesn't hurt to accept them
4773 now. */
4774 if (l[0] == ',' && l[1] == 'p')
4775 {
4776 if (l[2] == 't')
4777 {
4778 if (!add_prefix (DS_PREFIX_OPCODE))
4779 return NULL;
4780 l += 3;
4781 }
4782 else if (l[2] == 'n')
4783 {
4784 if (!add_prefix (CS_PREFIX_OPCODE))
4785 return NULL;
4786 l += 3;
4787 }
4788 }
4789 }
4790 /* Any other comma loses. */
4791 if (*l == ',')
4792 {
4793 as_bad (_("invalid character %s in mnemonic"),
4794 output_invalid (*l));
4795 return NULL;
4796 }
4797
4798 /* Check if instruction is supported on specified architecture. */
4799 supported = 0;
4800 for (t = current_templates->start; t < current_templates->end; ++t)
4801 {
4802 supported |= cpu_flags_match (t);
4803 if (supported == CPU_FLAGS_PERFECT_MATCH)
4804 {
4805 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4806 as_warn (_("use .code16 to ensure correct addressing mode"));
4807
4808 return l;
4809 }
4810 }
4811
4812 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4813 as_bad (flag_code == CODE_64BIT
4814 ? _("`%s' is not supported in 64-bit mode")
4815 : _("`%s' is only supported in 64-bit mode"),
4816 current_templates->start->name);
4817 else
4818 as_bad (_("`%s' is not supported on `%s%s'"),
4819 current_templates->start->name,
4820 cpu_arch_name ? cpu_arch_name : default_arch,
4821 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4822
4823 return NULL;
4824 }
4825
4826 static char *
4827 parse_operands (char *l, const char *mnemonic)
4828 {
4829 char *token_start;
4830
4831 /* 1 if operand is pending after ','. */
4832 unsigned int expecting_operand = 0;
4833
4834 /* Non-zero if operand parens not balanced. */
4835 unsigned int paren_not_balanced;
4836
4837 while (*l != END_OF_INSN)
4838 {
4839 /* Skip optional white space before operand. */
4840 if (is_space_char (*l))
4841 ++l;
4842 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4843 {
4844 as_bad (_("invalid character %s before operand %d"),
4845 output_invalid (*l),
4846 i.operands + 1);
4847 return NULL;
4848 }
4849 token_start = l; /* After white space. */
4850 paren_not_balanced = 0;
4851 while (paren_not_balanced || *l != ',')
4852 {
4853 if (*l == END_OF_INSN)
4854 {
4855 if (paren_not_balanced)
4856 {
4857 if (!intel_syntax)
4858 as_bad (_("unbalanced parenthesis in operand %d."),
4859 i.operands + 1);
4860 else
4861 as_bad (_("unbalanced brackets in operand %d."),
4862 i.operands + 1);
4863 return NULL;
4864 }
4865 else
4866 break; /* we are done */
4867 }
4868 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4869 {
4870 as_bad (_("invalid character %s in operand %d"),
4871 output_invalid (*l),
4872 i.operands + 1);
4873 return NULL;
4874 }
4875 if (!intel_syntax)
4876 {
4877 if (*l == '(')
4878 ++paren_not_balanced;
4879 if (*l == ')')
4880 --paren_not_balanced;
4881 }
4882 else
4883 {
4884 if (*l == '[')
4885 ++paren_not_balanced;
4886 if (*l == ']')
4887 --paren_not_balanced;
4888 }
4889 l++;
4890 }
4891 if (l != token_start)
4892 { /* Yes, we've read in another operand. */
4893 unsigned int operand_ok;
4894 this_operand = i.operands++;
4895 if (i.operands > MAX_OPERANDS)
4896 {
4897 as_bad (_("spurious operands; (%d operands/instruction max)"),
4898 MAX_OPERANDS);
4899 return NULL;
4900 }
4901 i.types[this_operand].bitfield.unspecified = 1;
4902 /* Now parse operand adding info to 'i' as we go along. */
4903 END_STRING_AND_SAVE (l);
4904
4905 if (i.mem_operands > 1)
4906 {
4907 as_bad (_("too many memory references for `%s'"),
4908 mnemonic);
4909 return 0;
4910 }
4911
4912 if (intel_syntax)
4913 operand_ok =
4914 i386_intel_operand (token_start,
4915 intel_float_operand (mnemonic));
4916 else
4917 operand_ok = i386_att_operand (token_start);
4918
4919 RESTORE_END_STRING (l);
4920 if (!operand_ok)
4921 return NULL;
4922 }
4923 else
4924 {
4925 if (expecting_operand)
4926 {
4927 expecting_operand_after_comma:
4928 as_bad (_("expecting operand after ','; got nothing"));
4929 return NULL;
4930 }
4931 if (*l == ',')
4932 {
4933 as_bad (_("expecting operand before ','; got nothing"));
4934 return NULL;
4935 }
4936 }
4937
4938 /* Now *l must be either ',' or END_OF_INSN. */
4939 if (*l == ',')
4940 {
4941 if (*++l == END_OF_INSN)
4942 {
4943 /* Just skip it, if it's \n complain. */
4944 goto expecting_operand_after_comma;
4945 }
4946 expecting_operand = 1;
4947 }
4948 }
4949 return l;
4950 }
4951
4952 static void
4953 swap_2_operands (int xchg1, int xchg2)
4954 {
4955 union i386_op temp_op;
4956 i386_operand_type temp_type;
4957 unsigned int temp_flags;
4958 enum bfd_reloc_code_real temp_reloc;
4959
4960 temp_type = i.types[xchg2];
4961 i.types[xchg2] = i.types[xchg1];
4962 i.types[xchg1] = temp_type;
4963
4964 temp_flags = i.flags[xchg2];
4965 i.flags[xchg2] = i.flags[xchg1];
4966 i.flags[xchg1] = temp_flags;
4967
4968 temp_op = i.op[xchg2];
4969 i.op[xchg2] = i.op[xchg1];
4970 i.op[xchg1] = temp_op;
4971
4972 temp_reloc = i.reloc[xchg2];
4973 i.reloc[xchg2] = i.reloc[xchg1];
4974 i.reloc[xchg1] = temp_reloc;
4975
4976 if (i.mask)
4977 {
4978 if (i.mask->operand == xchg1)
4979 i.mask->operand = xchg2;
4980 else if (i.mask->operand == xchg2)
4981 i.mask->operand = xchg1;
4982 }
4983 if (i.broadcast)
4984 {
4985 if (i.broadcast->operand == xchg1)
4986 i.broadcast->operand = xchg2;
4987 else if (i.broadcast->operand == xchg2)
4988 i.broadcast->operand = xchg1;
4989 }
4990 if (i.rounding)
4991 {
4992 if (i.rounding->operand == xchg1)
4993 i.rounding->operand = xchg2;
4994 else if (i.rounding->operand == xchg2)
4995 i.rounding->operand = xchg1;
4996 }
4997 }
4998
4999 static void
5000 swap_operands (void)
5001 {
5002 switch (i.operands)
5003 {
5004 case 5:
5005 case 4:
5006 swap_2_operands (1, i.operands - 2);
5007 /* Fall through. */
5008 case 3:
5009 case 2:
5010 swap_2_operands (0, i.operands - 1);
5011 break;
5012 default:
5013 abort ();
5014 }
5015
5016 if (i.mem_operands == 2)
5017 {
5018 const seg_entry *temp_seg;
5019 temp_seg = i.seg[0];
5020 i.seg[0] = i.seg[1];
5021 i.seg[1] = temp_seg;
5022 }
5023 }
5024
5025 /* Try to ensure constant immediates are represented in the smallest
5026 opcode possible. */
5027 static void
5028 optimize_imm (void)
5029 {
5030 char guess_suffix = 0;
5031 int op;
5032
5033 if (i.suffix)
5034 guess_suffix = i.suffix;
5035 else if (i.reg_operands)
5036 {
5037 /* Figure out a suffix from the last register operand specified.
5038 We can't do this properly yet, i.e. excluding special register
5039 instances, but the following works for instructions with
5040 immediates. In any case, we can't set i.suffix yet. */
5041 for (op = i.operands; --op >= 0;)
5042 if (i.types[op].bitfield.class != Reg)
5043 continue;
5044 else if (i.types[op].bitfield.byte)
5045 {
5046 guess_suffix = BYTE_MNEM_SUFFIX;
5047 break;
5048 }
5049 else if (i.types[op].bitfield.word)
5050 {
5051 guess_suffix = WORD_MNEM_SUFFIX;
5052 break;
5053 }
5054 else if (i.types[op].bitfield.dword)
5055 {
5056 guess_suffix = LONG_MNEM_SUFFIX;
5057 break;
5058 }
5059 else if (i.types[op].bitfield.qword)
5060 {
5061 guess_suffix = QWORD_MNEM_SUFFIX;
5062 break;
5063 }
5064 }
5065 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5066 guess_suffix = WORD_MNEM_SUFFIX;
5067
5068 for (op = i.operands; --op >= 0;)
5069 if (operand_type_check (i.types[op], imm))
5070 {
5071 switch (i.op[op].imms->X_op)
5072 {
5073 case O_constant:
5074 /* If a suffix is given, this operand may be shortened. */
5075 switch (guess_suffix)
5076 {
5077 case LONG_MNEM_SUFFIX:
5078 i.types[op].bitfield.imm32 = 1;
5079 i.types[op].bitfield.imm64 = 1;
5080 break;
5081 case WORD_MNEM_SUFFIX:
5082 i.types[op].bitfield.imm16 = 1;
5083 i.types[op].bitfield.imm32 = 1;
5084 i.types[op].bitfield.imm32s = 1;
5085 i.types[op].bitfield.imm64 = 1;
5086 break;
5087 case BYTE_MNEM_SUFFIX:
5088 i.types[op].bitfield.imm8 = 1;
5089 i.types[op].bitfield.imm8s = 1;
5090 i.types[op].bitfield.imm16 = 1;
5091 i.types[op].bitfield.imm32 = 1;
5092 i.types[op].bitfield.imm32s = 1;
5093 i.types[op].bitfield.imm64 = 1;
5094 break;
5095 }
5096
5097 /* If this operand is at most 16 bits, convert it
5098 to a signed 16 bit number before trying to see
5099 whether it will fit in an even smaller size.
5100 This allows a 16-bit operand such as $0xffe0 to
5101 be recognised as within Imm8S range. */
5102 if ((i.types[op].bitfield.imm16)
5103 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
5104 {
5105 i.op[op].imms->X_add_number =
5106 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5107 }
5108 #ifdef BFD64
5109 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
5110 if ((i.types[op].bitfield.imm32)
5111 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5112 == 0))
5113 {
5114 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5115 ^ ((offsetT) 1 << 31))
5116 - ((offsetT) 1 << 31));
5117 }
5118 #endif
5119 i.types[op]
5120 = operand_type_or (i.types[op],
5121 smallest_imm_type (i.op[op].imms->X_add_number));
5122
5123 /* We must avoid matching of Imm32 templates when 64bit
5124 only immediate is available. */
5125 if (guess_suffix == QWORD_MNEM_SUFFIX)
5126 i.types[op].bitfield.imm32 = 0;
5127 break;
5128
5129 case O_absent:
5130 case O_register:
5131 abort ();
5132
5133 /* Symbols and expressions. */
5134 default:
5135 /* Convert symbolic operand to proper sizes for matching, but don't
5136 prevent matching a set of insns that only supports sizes other
5137 than those matching the insn suffix. */
5138 {
5139 i386_operand_type mask, allowed;
5140 const insn_template *t;
5141
5142 operand_type_set (&mask, 0);
5143 operand_type_set (&allowed, 0);
5144
5145 for (t = current_templates->start;
5146 t < current_templates->end;
5147 ++t)
5148 {
5149 allowed = operand_type_or (allowed, t->operand_types[op]);
5150 allowed = operand_type_and (allowed, anyimm);
5151 }
5152 switch (guess_suffix)
5153 {
5154 case QWORD_MNEM_SUFFIX:
5155 mask.bitfield.imm64 = 1;
5156 mask.bitfield.imm32s = 1;
5157 break;
5158 case LONG_MNEM_SUFFIX:
5159 mask.bitfield.imm32 = 1;
5160 break;
5161 case WORD_MNEM_SUFFIX:
5162 mask.bitfield.imm16 = 1;
5163 break;
5164 case BYTE_MNEM_SUFFIX:
5165 mask.bitfield.imm8 = 1;
5166 break;
5167 default:
5168 break;
5169 }
5170 allowed = operand_type_and (mask, allowed);
5171 if (!operand_type_all_zero (&allowed))
5172 i.types[op] = operand_type_and (i.types[op], mask);
5173 }
5174 break;
5175 }
5176 }
5177 }
5178
5179 /* Try to use the smallest displacement type too. */
5180 static void
5181 optimize_disp (void)
5182 {
5183 int op;
5184
5185 for (op = i.operands; --op >= 0;)
5186 if (operand_type_check (i.types[op], disp))
5187 {
5188 if (i.op[op].disps->X_op == O_constant)
5189 {
5190 offsetT op_disp = i.op[op].disps->X_add_number;
5191
5192 if (i.types[op].bitfield.disp16
5193 && (op_disp & ~(offsetT) 0xffff) == 0)
5194 {
5195 /* If this operand is at most 16 bits, convert
5196 to a signed 16 bit number and don't use 64bit
5197 displacement. */
5198 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5199 i.types[op].bitfield.disp64 = 0;
5200 }
5201 #ifdef BFD64
5202 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5203 if (i.types[op].bitfield.disp32
5204 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5205 {
5206 /* If this operand is at most 32 bits, convert
5207 to a signed 32 bit number and don't use 64bit
5208 displacement. */
5209 op_disp &= (((offsetT) 2 << 31) - 1);
5210 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5211 i.types[op].bitfield.disp64 = 0;
5212 }
5213 #endif
5214 if (!op_disp && i.types[op].bitfield.baseindex)
5215 {
5216 i.types[op].bitfield.disp8 = 0;
5217 i.types[op].bitfield.disp16 = 0;
5218 i.types[op].bitfield.disp32 = 0;
5219 i.types[op].bitfield.disp32s = 0;
5220 i.types[op].bitfield.disp64 = 0;
5221 i.op[op].disps = 0;
5222 i.disp_operands--;
5223 }
5224 else if (flag_code == CODE_64BIT)
5225 {
5226 if (fits_in_signed_long (op_disp))
5227 {
5228 i.types[op].bitfield.disp64 = 0;
5229 i.types[op].bitfield.disp32s = 1;
5230 }
5231 if (i.prefix[ADDR_PREFIX]
5232 && fits_in_unsigned_long (op_disp))
5233 i.types[op].bitfield.disp32 = 1;
5234 }
5235 if ((i.types[op].bitfield.disp32
5236 || i.types[op].bitfield.disp32s
5237 || i.types[op].bitfield.disp16)
5238 && fits_in_disp8 (op_disp))
5239 i.types[op].bitfield.disp8 = 1;
5240 }
5241 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5242 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5243 {
5244 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5245 i.op[op].disps, 0, i.reloc[op]);
5246 i.types[op].bitfield.disp8 = 0;
5247 i.types[op].bitfield.disp16 = 0;
5248 i.types[op].bitfield.disp32 = 0;
5249 i.types[op].bitfield.disp32s = 0;
5250 i.types[op].bitfield.disp64 = 0;
5251 }
5252 else
5253 /* We only support 64bit displacement on constants. */
5254 i.types[op].bitfield.disp64 = 0;
5255 }
5256 }
5257
5258 /* Return 1 if there is a match in broadcast bytes between operand
5259 GIVEN and instruction template T. */
5260
5261 static INLINE int
5262 match_broadcast_size (const insn_template *t, unsigned int given)
5263 {
5264 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5265 && i.types[given].bitfield.byte)
5266 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5267 && i.types[given].bitfield.word)
5268 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5269 && i.types[given].bitfield.dword)
5270 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5271 && i.types[given].bitfield.qword));
5272 }
5273
5274 /* Check if operands are valid for the instruction. */
5275
5276 static int
5277 check_VecOperands (const insn_template *t)
5278 {
5279 unsigned int op;
5280 i386_cpu_flags cpu;
5281 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5282
5283 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5284 any one operand are implicity requiring AVX512VL support if the actual
5285 operand size is YMMword or XMMword. Since this function runs after
5286 template matching, there's no need to check for YMMword/XMMword in
5287 the template. */
5288 cpu = cpu_flags_and (t->cpu_flags, avx512);
5289 if (!cpu_flags_all_zero (&cpu)
5290 && !t->cpu_flags.bitfield.cpuavx512vl
5291 && !cpu_arch_flags.bitfield.cpuavx512vl)
5292 {
5293 for (op = 0; op < t->operands; ++op)
5294 {
5295 if (t->operand_types[op].bitfield.zmmword
5296 && (i.types[op].bitfield.ymmword
5297 || i.types[op].bitfield.xmmword))
5298 {
5299 i.error = unsupported;
5300 return 1;
5301 }
5302 }
5303 }
5304
5305 /* Without VSIB byte, we can't have a vector register for index. */
5306 if (!t->opcode_modifier.vecsib
5307 && i.index_reg
5308 && (i.index_reg->reg_type.bitfield.xmmword
5309 || i.index_reg->reg_type.bitfield.ymmword
5310 || i.index_reg->reg_type.bitfield.zmmword))
5311 {
5312 i.error = unsupported_vector_index_register;
5313 return 1;
5314 }
5315
5316 /* Check if default mask is allowed. */
5317 if (t->opcode_modifier.nodefmask
5318 && (!i.mask || i.mask->mask->reg_num == 0))
5319 {
5320 i.error = no_default_mask;
5321 return 1;
5322 }
5323
5324 /* For VSIB byte, we need a vector register for index, and all vector
5325 registers must be distinct. */
5326 if (t->opcode_modifier.vecsib)
5327 {
5328 if (!i.index_reg
5329 || !((t->opcode_modifier.vecsib == VecSIB128
5330 && i.index_reg->reg_type.bitfield.xmmword)
5331 || (t->opcode_modifier.vecsib == VecSIB256
5332 && i.index_reg->reg_type.bitfield.ymmword)
5333 || (t->opcode_modifier.vecsib == VecSIB512
5334 && i.index_reg->reg_type.bitfield.zmmword)))
5335 {
5336 i.error = invalid_vsib_address;
5337 return 1;
5338 }
5339
5340 gas_assert (i.reg_operands == 2 || i.mask);
5341 if (i.reg_operands == 2 && !i.mask)
5342 {
5343 gas_assert (i.types[0].bitfield.class == RegSIMD);
5344 gas_assert (i.types[0].bitfield.xmmword
5345 || i.types[0].bitfield.ymmword);
5346 gas_assert (i.types[2].bitfield.class == RegSIMD);
5347 gas_assert (i.types[2].bitfield.xmmword
5348 || i.types[2].bitfield.ymmword);
5349 if (operand_check == check_none)
5350 return 0;
5351 if (register_number (i.op[0].regs)
5352 != register_number (i.index_reg)
5353 && register_number (i.op[2].regs)
5354 != register_number (i.index_reg)
5355 && register_number (i.op[0].regs)
5356 != register_number (i.op[2].regs))
5357 return 0;
5358 if (operand_check == check_error)
5359 {
5360 i.error = invalid_vector_register_set;
5361 return 1;
5362 }
5363 as_warn (_("mask, index, and destination registers should be distinct"));
5364 }
5365 else if (i.reg_operands == 1 && i.mask)
5366 {
5367 if (i.types[1].bitfield.class == RegSIMD
5368 && (i.types[1].bitfield.xmmword
5369 || i.types[1].bitfield.ymmword
5370 || i.types[1].bitfield.zmmword)
5371 && (register_number (i.op[1].regs)
5372 == register_number (i.index_reg)))
5373 {
5374 if (operand_check == check_error)
5375 {
5376 i.error = invalid_vector_register_set;
5377 return 1;
5378 }
5379 if (operand_check != check_none)
5380 as_warn (_("index and destination registers should be distinct"));
5381 }
5382 }
5383 }
5384
5385 /* Check if broadcast is supported by the instruction and is applied
5386 to the memory operand. */
5387 if (i.broadcast)
5388 {
5389 i386_operand_type type, overlap;
5390
5391 /* Check if specified broadcast is supported in this instruction,
5392 and its broadcast bytes match the memory operand. */
5393 op = i.broadcast->operand;
5394 if (!t->opcode_modifier.broadcast
5395 || !(i.flags[op] & Operand_Mem)
5396 || (!i.types[op].bitfield.unspecified
5397 && !match_broadcast_size (t, op)))
5398 {
5399 bad_broadcast:
5400 i.error = unsupported_broadcast;
5401 return 1;
5402 }
5403
5404 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5405 * i.broadcast->type);
5406 operand_type_set (&type, 0);
5407 switch (i.broadcast->bytes)
5408 {
5409 case 2:
5410 type.bitfield.word = 1;
5411 break;
5412 case 4:
5413 type.bitfield.dword = 1;
5414 break;
5415 case 8:
5416 type.bitfield.qword = 1;
5417 break;
5418 case 16:
5419 type.bitfield.xmmword = 1;
5420 break;
5421 case 32:
5422 type.bitfield.ymmword = 1;
5423 break;
5424 case 64:
5425 type.bitfield.zmmword = 1;
5426 break;
5427 default:
5428 goto bad_broadcast;
5429 }
5430
5431 overlap = operand_type_and (type, t->operand_types[op]);
5432 if (operand_type_all_zero (&overlap))
5433 goto bad_broadcast;
5434
5435 if (t->opcode_modifier.checkregsize)
5436 {
5437 unsigned int j;
5438
5439 type.bitfield.baseindex = 1;
5440 for (j = 0; j < i.operands; ++j)
5441 {
5442 if (j != op
5443 && !operand_type_register_match(i.types[j],
5444 t->operand_types[j],
5445 type,
5446 t->operand_types[op]))
5447 goto bad_broadcast;
5448 }
5449 }
5450 }
5451 /* If broadcast is supported in this instruction, we need to check if
5452 operand of one-element size isn't specified without broadcast. */
5453 else if (t->opcode_modifier.broadcast && i.mem_operands)
5454 {
5455 /* Find memory operand. */
5456 for (op = 0; op < i.operands; op++)
5457 if (i.flags[op] & Operand_Mem)
5458 break;
5459 gas_assert (op < i.operands);
5460 /* Check size of the memory operand. */
5461 if (match_broadcast_size (t, op))
5462 {
5463 i.error = broadcast_needed;
5464 return 1;
5465 }
5466 }
5467 else
5468 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5469
5470 /* Check if requested masking is supported. */
5471 if (i.mask)
5472 {
5473 switch (t->opcode_modifier.masking)
5474 {
5475 case BOTH_MASKING:
5476 break;
5477 case MERGING_MASKING:
5478 if (i.mask->zeroing)
5479 {
5480 case 0:
5481 i.error = unsupported_masking;
5482 return 1;
5483 }
5484 break;
5485 case DYNAMIC_MASKING:
5486 /* Memory destinations allow only merging masking. */
5487 if (i.mask->zeroing && i.mem_operands)
5488 {
5489 /* Find memory operand. */
5490 for (op = 0; op < i.operands; op++)
5491 if (i.flags[op] & Operand_Mem)
5492 break;
5493 gas_assert (op < i.operands);
5494 if (op == i.operands - 1)
5495 {
5496 i.error = unsupported_masking;
5497 return 1;
5498 }
5499 }
5500 break;
5501 default:
5502 abort ();
5503 }
5504 }
5505
5506 /* Check if masking is applied to dest operand. */
5507 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5508 {
5509 i.error = mask_not_on_destination;
5510 return 1;
5511 }
5512
5513 /* Check RC/SAE. */
5514 if (i.rounding)
5515 {
5516 if (!t->opcode_modifier.sae
5517 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
5518 {
5519 i.error = unsupported_rc_sae;
5520 return 1;
5521 }
5522 /* If the instruction has several immediate operands and one of
5523 them is rounding, the rounding operand should be the last
5524 immediate operand. */
5525 if (i.imm_operands > 1
5526 && i.rounding->operand != (int) (i.imm_operands - 1))
5527 {
5528 i.error = rc_sae_operand_not_last_imm;
5529 return 1;
5530 }
5531 }
5532
5533 /* Check vector Disp8 operand. */
5534 if (t->opcode_modifier.disp8memshift
5535 && i.disp_encoding != disp_encoding_32bit)
5536 {
5537 if (i.broadcast)
5538 i.memshift = t->opcode_modifier.broadcast - 1;
5539 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5540 i.memshift = t->opcode_modifier.disp8memshift;
5541 else
5542 {
5543 const i386_operand_type *type = NULL;
5544
5545 i.memshift = 0;
5546 for (op = 0; op < i.operands; op++)
5547 if (i.flags[op] & Operand_Mem)
5548 {
5549 if (t->opcode_modifier.evex == EVEXLIG)
5550 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5551 else if (t->operand_types[op].bitfield.xmmword
5552 + t->operand_types[op].bitfield.ymmword
5553 + t->operand_types[op].bitfield.zmmword <= 1)
5554 type = &t->operand_types[op];
5555 else if (!i.types[op].bitfield.unspecified)
5556 type = &i.types[op];
5557 }
5558 else if (i.types[op].bitfield.class == RegSIMD
5559 && t->opcode_modifier.evex != EVEXLIG)
5560 {
5561 if (i.types[op].bitfield.zmmword)
5562 i.memshift = 6;
5563 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5564 i.memshift = 5;
5565 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5566 i.memshift = 4;
5567 }
5568
5569 if (type)
5570 {
5571 if (type->bitfield.zmmword)
5572 i.memshift = 6;
5573 else if (type->bitfield.ymmword)
5574 i.memshift = 5;
5575 else if (type->bitfield.xmmword)
5576 i.memshift = 4;
5577 }
5578
5579 /* For the check in fits_in_disp8(). */
5580 if (i.memshift == 0)
5581 i.memshift = -1;
5582 }
5583
5584 for (op = 0; op < i.operands; op++)
5585 if (operand_type_check (i.types[op], disp)
5586 && i.op[op].disps->X_op == O_constant)
5587 {
5588 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5589 {
5590 i.types[op].bitfield.disp8 = 1;
5591 return 0;
5592 }
5593 i.types[op].bitfield.disp8 = 0;
5594 }
5595 }
5596
5597 i.memshift = 0;
5598
5599 return 0;
5600 }
5601
5602 /* Check if operands are valid for the instruction. Update VEX
5603 operand types. */
5604
5605 static int
5606 VEX_check_operands (const insn_template *t)
5607 {
5608 if (i.vec_encoding == vex_encoding_evex)
5609 {
5610 /* This instruction must be encoded with EVEX prefix. */
5611 if (!is_evex_encoding (t))
5612 {
5613 i.error = unsupported;
5614 return 1;
5615 }
5616 return 0;
5617 }
5618
5619 if (!t->opcode_modifier.vex)
5620 {
5621 /* This instruction template doesn't have VEX prefix. */
5622 if (i.vec_encoding != vex_encoding_default)
5623 {
5624 i.error = unsupported;
5625 return 1;
5626 }
5627 return 0;
5628 }
5629
5630 /* Check the special Imm4 cases; must be the first operand. */
5631 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
5632 {
5633 if (i.op[0].imms->X_op != O_constant
5634 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5635 {
5636 i.error = bad_imm4;
5637 return 1;
5638 }
5639
5640 /* Turn off Imm<N> so that update_imm won't complain. */
5641 operand_type_set (&i.types[0], 0);
5642 }
5643
5644 return 0;
5645 }
5646
5647 static const insn_template *
5648 match_template (char mnem_suffix)
5649 {
5650 /* Points to template once we've found it. */
5651 const insn_template *t;
5652 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5653 i386_operand_type overlap4;
5654 unsigned int found_reverse_match;
5655 i386_opcode_modifier suffix_check;
5656 i386_operand_type operand_types [MAX_OPERANDS];
5657 int addr_prefix_disp;
5658 unsigned int j;
5659 unsigned int found_cpu_match, size_match;
5660 unsigned int check_register;
5661 enum i386_error specific_error = 0;
5662
5663 #if MAX_OPERANDS != 5
5664 # error "MAX_OPERANDS must be 5."
5665 #endif
5666
5667 found_reverse_match = 0;
5668 addr_prefix_disp = -1;
5669
5670 /* Prepare for mnemonic suffix check. */
5671 memset (&suffix_check, 0, sizeof (suffix_check));
5672 switch (mnem_suffix)
5673 {
5674 case BYTE_MNEM_SUFFIX:
5675 suffix_check.no_bsuf = 1;
5676 break;
5677 case WORD_MNEM_SUFFIX:
5678 suffix_check.no_wsuf = 1;
5679 break;
5680 case SHORT_MNEM_SUFFIX:
5681 suffix_check.no_ssuf = 1;
5682 break;
5683 case LONG_MNEM_SUFFIX:
5684 suffix_check.no_lsuf = 1;
5685 break;
5686 case QWORD_MNEM_SUFFIX:
5687 suffix_check.no_qsuf = 1;
5688 break;
5689 default:
5690 /* NB: In Intel syntax, normally we can check for memory operand
5691 size when there is no mnemonic suffix. But jmp and call have
5692 2 different encodings with Dword memory operand size, one with
5693 No_ldSuf and the other without. i.suffix is set to
5694 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
5695 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5696 suffix_check.no_ldsuf = 1;
5697 }
5698
5699 /* Must have right number of operands. */
5700 i.error = number_of_operands_mismatch;
5701
5702 for (t = current_templates->start; t < current_templates->end; t++)
5703 {
5704 addr_prefix_disp = -1;
5705 found_reverse_match = 0;
5706
5707 if (i.operands != t->operands)
5708 continue;
5709
5710 /* Check processor support. */
5711 i.error = unsupported;
5712 found_cpu_match = (cpu_flags_match (t)
5713 == CPU_FLAGS_PERFECT_MATCH);
5714 if (!found_cpu_match)
5715 continue;
5716
5717 /* Check AT&T mnemonic. */
5718 i.error = unsupported_with_intel_mnemonic;
5719 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5720 continue;
5721
5722 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5723 i.error = unsupported_syntax;
5724 if ((intel_syntax && t->opcode_modifier.attsyntax)
5725 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5726 || (intel64 && t->opcode_modifier.amd64)
5727 || (!intel64 && t->opcode_modifier.intel64))
5728 continue;
5729
5730 /* Check the suffix. */
5731 i.error = invalid_instruction_suffix;
5732 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5733 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5734 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5735 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5736 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5737 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
5738 continue;
5739
5740 size_match = operand_size_match (t);
5741 if (!size_match)
5742 continue;
5743
5744 /* This is intentionally not
5745
5746 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
5747
5748 as the case of a missing * on the operand is accepted (perhaps with
5749 a warning, issued further down). */
5750 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
5751 {
5752 i.error = operand_type_mismatch;
5753 continue;
5754 }
5755
5756 for (j = 0; j < MAX_OPERANDS; j++)
5757 operand_types[j] = t->operand_types[j];
5758
5759 /* In general, don't allow 64-bit operands in 32-bit mode. */
5760 if (i.suffix == QWORD_MNEM_SUFFIX
5761 && flag_code != CODE_64BIT
5762 && (intel_syntax
5763 ? (!t->opcode_modifier.ignoresize
5764 && !t->opcode_modifier.broadcast
5765 && !intel_float_operand (t->name))
5766 : intel_float_operand (t->name) != 2)
5767 && ((operand_types[0].bitfield.class != RegMMX
5768 && operand_types[0].bitfield.class != RegSIMD)
5769 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5770 && operand_types[t->operands > 1].bitfield.class != RegSIMD))
5771 && (t->base_opcode != 0x0fc7
5772 || t->extension_opcode != 1 /* cmpxchg8b */))
5773 continue;
5774
5775 /* In general, don't allow 32-bit operands on pre-386. */
5776 else if (i.suffix == LONG_MNEM_SUFFIX
5777 && !cpu_arch_flags.bitfield.cpui386
5778 && (intel_syntax
5779 ? (!t->opcode_modifier.ignoresize
5780 && !intel_float_operand (t->name))
5781 : intel_float_operand (t->name) != 2)
5782 && ((operand_types[0].bitfield.class != RegMMX
5783 && operand_types[0].bitfield.class != RegSIMD)
5784 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5785 && operand_types[t->operands > 1].bitfield.class
5786 != RegSIMD)))
5787 continue;
5788
5789 /* Do not verify operands when there are none. */
5790 else
5791 {
5792 if (!t->operands)
5793 /* We've found a match; break out of loop. */
5794 break;
5795 }
5796
5797 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5798 into Disp32/Disp16/Disp32 operand. */
5799 if (i.prefix[ADDR_PREFIX] != 0)
5800 {
5801 /* There should be only one Disp operand. */
5802 switch (flag_code)
5803 {
5804 case CODE_16BIT:
5805 for (j = 0; j < MAX_OPERANDS; j++)
5806 {
5807 if (operand_types[j].bitfield.disp16)
5808 {
5809 addr_prefix_disp = j;
5810 operand_types[j].bitfield.disp32 = 1;
5811 operand_types[j].bitfield.disp16 = 0;
5812 break;
5813 }
5814 }
5815 break;
5816 case CODE_32BIT:
5817 for (j = 0; j < MAX_OPERANDS; j++)
5818 {
5819 if (operand_types[j].bitfield.disp32)
5820 {
5821 addr_prefix_disp = j;
5822 operand_types[j].bitfield.disp32 = 0;
5823 operand_types[j].bitfield.disp16 = 1;
5824 break;
5825 }
5826 }
5827 break;
5828 case CODE_64BIT:
5829 for (j = 0; j < MAX_OPERANDS; j++)
5830 {
5831 if (operand_types[j].bitfield.disp64)
5832 {
5833 addr_prefix_disp = j;
5834 operand_types[j].bitfield.disp64 = 0;
5835 operand_types[j].bitfield.disp32 = 1;
5836 break;
5837 }
5838 }
5839 break;
5840 }
5841 }
5842
5843 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5844 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5845 continue;
5846
5847 /* We check register size if needed. */
5848 if (t->opcode_modifier.checkregsize)
5849 {
5850 check_register = (1 << t->operands) - 1;
5851 if (i.broadcast)
5852 check_register &= ~(1 << i.broadcast->operand);
5853 }
5854 else
5855 check_register = 0;
5856
5857 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5858 switch (t->operands)
5859 {
5860 case 1:
5861 if (!operand_type_match (overlap0, i.types[0]))
5862 continue;
5863 break;
5864 case 2:
5865 /* xchg %eax, %eax is a special case. It is an alias for nop
5866 only in 32bit mode and we can use opcode 0x90. In 64bit
5867 mode, we can't use 0x90 for xchg %eax, %eax since it should
5868 zero-extend %eax to %rax. */
5869 if (flag_code == CODE_64BIT
5870 && t->base_opcode == 0x90
5871 && i.types[0].bitfield.instance == Accum
5872 && i.types[0].bitfield.dword
5873 && i.types[1].bitfield.instance == Accum
5874 && i.types[1].bitfield.dword)
5875 continue;
5876 /* xrelease mov %eax, <disp> is another special case. It must not
5877 match the accumulator-only encoding of mov. */
5878 if (flag_code != CODE_64BIT
5879 && i.hle_prefix
5880 && t->base_opcode == 0xa0
5881 && i.types[0].bitfield.instance == Accum
5882 && (i.flags[1] & Operand_Mem))
5883 continue;
5884 /* Fall through. */
5885
5886 case 3:
5887 if (!(size_match & MATCH_STRAIGHT))
5888 goto check_reverse;
5889 /* Reverse direction of operands if swapping is possible in the first
5890 place (operands need to be symmetric) and
5891 - the load form is requested, and the template is a store form,
5892 - the store form is requested, and the template is a load form,
5893 - the non-default (swapped) form is requested. */
5894 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
5895 if (t->opcode_modifier.d && i.reg_operands == i.operands
5896 && !operand_type_all_zero (&overlap1))
5897 switch (i.dir_encoding)
5898 {
5899 case dir_encoding_load:
5900 if (operand_type_check (operand_types[i.operands - 1], anymem)
5901 || t->opcode_modifier.regmem)
5902 goto check_reverse;
5903 break;
5904
5905 case dir_encoding_store:
5906 if (!operand_type_check (operand_types[i.operands - 1], anymem)
5907 && !t->opcode_modifier.regmem)
5908 goto check_reverse;
5909 break;
5910
5911 case dir_encoding_swap:
5912 goto check_reverse;
5913
5914 case dir_encoding_default:
5915 break;
5916 }
5917 /* If we want store form, we skip the current load. */
5918 if ((i.dir_encoding == dir_encoding_store
5919 || i.dir_encoding == dir_encoding_swap)
5920 && i.mem_operands == 0
5921 && t->opcode_modifier.load)
5922 continue;
5923 /* Fall through. */
5924 case 4:
5925 case 5:
5926 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5927 if (!operand_type_match (overlap0, i.types[0])
5928 || !operand_type_match (overlap1, i.types[1])
5929 || ((check_register & 3) == 3
5930 && !operand_type_register_match (i.types[0],
5931 operand_types[0],
5932 i.types[1],
5933 operand_types[1])))
5934 {
5935 /* Check if other direction is valid ... */
5936 if (!t->opcode_modifier.d)
5937 continue;
5938
5939 check_reverse:
5940 if (!(size_match & MATCH_REVERSE))
5941 continue;
5942 /* Try reversing direction of operands. */
5943 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
5944 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
5945 if (!operand_type_match (overlap0, i.types[0])
5946 || !operand_type_match (overlap1, i.types[i.operands - 1])
5947 || (check_register
5948 && !operand_type_register_match (i.types[0],
5949 operand_types[i.operands - 1],
5950 i.types[i.operands - 1],
5951 operand_types[0])))
5952 {
5953 /* Does not match either direction. */
5954 continue;
5955 }
5956 /* found_reverse_match holds which of D or FloatR
5957 we've found. */
5958 if (!t->opcode_modifier.d)
5959 found_reverse_match = 0;
5960 else if (operand_types[0].bitfield.tbyte)
5961 found_reverse_match = Opcode_FloatD;
5962 else if (operand_types[0].bitfield.xmmword
5963 || operand_types[i.operands - 1].bitfield.xmmword
5964 || operand_types[0].bitfield.class == RegMMX
5965 || operand_types[i.operands - 1].bitfield.class == RegMMX
5966 || is_any_vex_encoding(t))
5967 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
5968 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
5969 else
5970 found_reverse_match = Opcode_D;
5971 if (t->opcode_modifier.floatr)
5972 found_reverse_match |= Opcode_FloatR;
5973 }
5974 else
5975 {
5976 /* Found a forward 2 operand match here. */
5977 switch (t->operands)
5978 {
5979 case 5:
5980 overlap4 = operand_type_and (i.types[4],
5981 operand_types[4]);
5982 /* Fall through. */
5983 case 4:
5984 overlap3 = operand_type_and (i.types[3],
5985 operand_types[3]);
5986 /* Fall through. */
5987 case 3:
5988 overlap2 = operand_type_and (i.types[2],
5989 operand_types[2]);
5990 break;
5991 }
5992
5993 switch (t->operands)
5994 {
5995 case 5:
5996 if (!operand_type_match (overlap4, i.types[4])
5997 || !operand_type_register_match (i.types[3],
5998 operand_types[3],
5999 i.types[4],
6000 operand_types[4]))
6001 continue;
6002 /* Fall through. */
6003 case 4:
6004 if (!operand_type_match (overlap3, i.types[3])
6005 || ((check_register & 0xa) == 0xa
6006 && !operand_type_register_match (i.types[1],
6007 operand_types[1],
6008 i.types[3],
6009 operand_types[3]))
6010 || ((check_register & 0xc) == 0xc
6011 && !operand_type_register_match (i.types[2],
6012 operand_types[2],
6013 i.types[3],
6014 operand_types[3])))
6015 continue;
6016 /* Fall through. */
6017 case 3:
6018 /* Here we make use of the fact that there are no
6019 reverse match 3 operand instructions. */
6020 if (!operand_type_match (overlap2, i.types[2])
6021 || ((check_register & 5) == 5
6022 && !operand_type_register_match (i.types[0],
6023 operand_types[0],
6024 i.types[2],
6025 operand_types[2]))
6026 || ((check_register & 6) == 6
6027 && !operand_type_register_match (i.types[1],
6028 operand_types[1],
6029 i.types[2],
6030 operand_types[2])))
6031 continue;
6032 break;
6033 }
6034 }
6035 /* Found either forward/reverse 2, 3 or 4 operand match here:
6036 slip through to break. */
6037 }
6038 if (!found_cpu_match)
6039 continue;
6040
6041 /* Check if vector and VEX operands are valid. */
6042 if (check_VecOperands (t) || VEX_check_operands (t))
6043 {
6044 specific_error = i.error;
6045 continue;
6046 }
6047
6048 /* We've found a match; break out of loop. */
6049 break;
6050 }
6051
6052 if (t == current_templates->end)
6053 {
6054 /* We found no match. */
6055 const char *err_msg;
6056 switch (specific_error ? specific_error : i.error)
6057 {
6058 default:
6059 abort ();
6060 case operand_size_mismatch:
6061 err_msg = _("operand size mismatch");
6062 break;
6063 case operand_type_mismatch:
6064 err_msg = _("operand type mismatch");
6065 break;
6066 case register_type_mismatch:
6067 err_msg = _("register type mismatch");
6068 break;
6069 case number_of_operands_mismatch:
6070 err_msg = _("number of operands mismatch");
6071 break;
6072 case invalid_instruction_suffix:
6073 err_msg = _("invalid instruction suffix");
6074 break;
6075 case bad_imm4:
6076 err_msg = _("constant doesn't fit in 4 bits");
6077 break;
6078 case unsupported_with_intel_mnemonic:
6079 err_msg = _("unsupported with Intel mnemonic");
6080 break;
6081 case unsupported_syntax:
6082 err_msg = _("unsupported syntax");
6083 break;
6084 case unsupported:
6085 as_bad (_("unsupported instruction `%s'"),
6086 current_templates->start->name);
6087 return NULL;
6088 case invalid_vsib_address:
6089 err_msg = _("invalid VSIB address");
6090 break;
6091 case invalid_vector_register_set:
6092 err_msg = _("mask, index, and destination registers must be distinct");
6093 break;
6094 case unsupported_vector_index_register:
6095 err_msg = _("unsupported vector index register");
6096 break;
6097 case unsupported_broadcast:
6098 err_msg = _("unsupported broadcast");
6099 break;
6100 case broadcast_needed:
6101 err_msg = _("broadcast is needed for operand of such type");
6102 break;
6103 case unsupported_masking:
6104 err_msg = _("unsupported masking");
6105 break;
6106 case mask_not_on_destination:
6107 err_msg = _("mask not on destination operand");
6108 break;
6109 case no_default_mask:
6110 err_msg = _("default mask isn't allowed");
6111 break;
6112 case unsupported_rc_sae:
6113 err_msg = _("unsupported static rounding/sae");
6114 break;
6115 case rc_sae_operand_not_last_imm:
6116 if (intel_syntax)
6117 err_msg = _("RC/SAE operand must precede immediate operands");
6118 else
6119 err_msg = _("RC/SAE operand must follow immediate operands");
6120 break;
6121 case invalid_register_operand:
6122 err_msg = _("invalid register operand");
6123 break;
6124 }
6125 as_bad (_("%s for `%s'"), err_msg,
6126 current_templates->start->name);
6127 return NULL;
6128 }
6129
6130 if (!quiet_warnings)
6131 {
6132 if (!intel_syntax
6133 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6134 as_warn (_("indirect %s without `*'"), t->name);
6135
6136 if (t->opcode_modifier.isprefix
6137 && t->opcode_modifier.ignoresize)
6138 {
6139 /* Warn them that a data or address size prefix doesn't
6140 affect assembly of the next line of code. */
6141 as_warn (_("stand-alone `%s' prefix"), t->name);
6142 }
6143 }
6144
6145 /* Copy the template we found. */
6146 i.tm = *t;
6147
6148 if (addr_prefix_disp != -1)
6149 i.tm.operand_types[addr_prefix_disp]
6150 = operand_types[addr_prefix_disp];
6151
6152 if (found_reverse_match)
6153 {
6154 /* If we found a reverse match we must alter the opcode direction
6155 bit and clear/flip the regmem modifier one. found_reverse_match
6156 holds bits to change (different for int & float insns). */
6157
6158 i.tm.base_opcode ^= found_reverse_match;
6159
6160 i.tm.operand_types[0] = operand_types[i.operands - 1];
6161 i.tm.operand_types[i.operands - 1] = operand_types[0];
6162
6163 /* Certain SIMD insns have their load forms specified in the opcode
6164 table, and hence we need to _set_ RegMem instead of clearing it.
6165 We need to avoid setting the bit though on insns like KMOVW. */
6166 i.tm.opcode_modifier.regmem
6167 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6168 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6169 && !i.tm.opcode_modifier.regmem;
6170 }
6171
6172 return t;
6173 }
6174
6175 static int
6176 check_string (void)
6177 {
6178 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6179 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
6180
6181 if (i.seg[op] != NULL && i.seg[op] != &es)
6182 {
6183 as_bad (_("`%s' operand %u must use `%ses' segment"),
6184 i.tm.name,
6185 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6186 register_prefix);
6187 return 0;
6188 }
6189
6190 /* There's only ever one segment override allowed per instruction.
6191 This instruction possibly has a legal segment override on the
6192 second operand, so copy the segment to where non-string
6193 instructions store it, allowing common code. */
6194 i.seg[op] = i.seg[1];
6195
6196 return 1;
6197 }
6198
6199 static int
6200 process_suffix (void)
6201 {
6202 /* If matched instruction specifies an explicit instruction mnemonic
6203 suffix, use it. */
6204 if (i.tm.opcode_modifier.size == SIZE16)
6205 i.suffix = WORD_MNEM_SUFFIX;
6206 else if (i.tm.opcode_modifier.size == SIZE32)
6207 i.suffix = LONG_MNEM_SUFFIX;
6208 else if (i.tm.opcode_modifier.size == SIZE64)
6209 i.suffix = QWORD_MNEM_SUFFIX;
6210 else if (i.reg_operands
6211 && (i.operands > 1 || i.types[0].bitfield.class == Reg))
6212 {
6213 /* If there's no instruction mnemonic suffix we try to invent one
6214 based on GPR operands. */
6215 if (!i.suffix)
6216 {
6217 /* We take i.suffix from the last register operand specified,
6218 Destination register type is more significant than source
6219 register type. crc32 in SSE4.2 prefers source register
6220 type. */
6221 if (i.tm.base_opcode == 0xf20f38f0
6222 && i.types[0].bitfield.class == Reg)
6223 {
6224 if (i.types[0].bitfield.byte)
6225 i.suffix = BYTE_MNEM_SUFFIX;
6226 else if (i.types[0].bitfield.word)
6227 i.suffix = WORD_MNEM_SUFFIX;
6228 else if (i.types[0].bitfield.dword)
6229 i.suffix = LONG_MNEM_SUFFIX;
6230 else if (i.types[0].bitfield.qword)
6231 i.suffix = QWORD_MNEM_SUFFIX;
6232 }
6233
6234 if (!i.suffix)
6235 {
6236 int op;
6237
6238 if (i.tm.base_opcode == 0xf20f38f0)
6239 {
6240 /* We have to know the operand size for crc32. */
6241 as_bad (_("ambiguous memory operand size for `%s`"),
6242 i.tm.name);
6243 return 0;
6244 }
6245
6246 for (op = i.operands; --op >= 0;)
6247 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
6248 || i.tm.operand_types[op].bitfield.instance == Accum)
6249 {
6250 if (i.types[op].bitfield.class != Reg)
6251 continue;
6252 if (i.types[op].bitfield.byte)
6253 i.suffix = BYTE_MNEM_SUFFIX;
6254 else if (i.types[op].bitfield.word)
6255 i.suffix = WORD_MNEM_SUFFIX;
6256 else if (i.types[op].bitfield.dword)
6257 i.suffix = LONG_MNEM_SUFFIX;
6258 else if (i.types[op].bitfield.qword)
6259 i.suffix = QWORD_MNEM_SUFFIX;
6260 else
6261 continue;
6262 break;
6263 }
6264 }
6265 }
6266 else if (i.suffix == BYTE_MNEM_SUFFIX)
6267 {
6268 if (intel_syntax
6269 && i.tm.opcode_modifier.ignoresize
6270 && i.tm.opcode_modifier.no_bsuf)
6271 i.suffix = 0;
6272 else if (!check_byte_reg ())
6273 return 0;
6274 }
6275 else if (i.suffix == LONG_MNEM_SUFFIX)
6276 {
6277 if (intel_syntax
6278 && i.tm.opcode_modifier.ignoresize
6279 && i.tm.opcode_modifier.no_lsuf
6280 && !i.tm.opcode_modifier.todword
6281 && !i.tm.opcode_modifier.toqword)
6282 i.suffix = 0;
6283 else if (!check_long_reg ())
6284 return 0;
6285 }
6286 else if (i.suffix == QWORD_MNEM_SUFFIX)
6287 {
6288 if (intel_syntax
6289 && i.tm.opcode_modifier.ignoresize
6290 && i.tm.opcode_modifier.no_qsuf
6291 && !i.tm.opcode_modifier.todword
6292 && !i.tm.opcode_modifier.toqword)
6293 i.suffix = 0;
6294 else if (!check_qword_reg ())
6295 return 0;
6296 }
6297 else if (i.suffix == WORD_MNEM_SUFFIX)
6298 {
6299 if (intel_syntax
6300 && i.tm.opcode_modifier.ignoresize
6301 && i.tm.opcode_modifier.no_wsuf)
6302 i.suffix = 0;
6303 else if (!check_word_reg ())
6304 return 0;
6305 }
6306 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
6307 /* Do nothing if the instruction is going to ignore the prefix. */
6308 ;
6309 else
6310 abort ();
6311 }
6312 else if (i.tm.opcode_modifier.defaultsize
6313 && !i.suffix
6314 /* exclude fldenv/frstor/fsave/fstenv */
6315 && i.tm.opcode_modifier.no_ssuf
6316 /* exclude sysret */
6317 && i.tm.base_opcode != 0x0f07)
6318 {
6319 i.suffix = stackop_size;
6320 if (stackop_size == LONG_MNEM_SUFFIX)
6321 {
6322 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6323 .code16gcc directive to support 16-bit mode with
6324 32-bit address. For IRET without a suffix, generate
6325 16-bit IRET (opcode 0xcf) to return from an interrupt
6326 handler. */
6327 if (i.tm.base_opcode == 0xcf)
6328 {
6329 i.suffix = WORD_MNEM_SUFFIX;
6330 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6331 }
6332 /* Warn about changed behavior for segment register push/pop. */
6333 else if ((i.tm.base_opcode | 1) == 0x07)
6334 as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
6335 i.tm.name);
6336 }
6337 }
6338 else if (intel_syntax
6339 && !i.suffix
6340 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
6341 || i.tm.opcode_modifier.jump == JUMP_BYTE
6342 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
6343 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6344 && i.tm.extension_opcode <= 3)))
6345 {
6346 switch (flag_code)
6347 {
6348 case CODE_64BIT:
6349 if (!i.tm.opcode_modifier.no_qsuf)
6350 {
6351 i.suffix = QWORD_MNEM_SUFFIX;
6352 break;
6353 }
6354 /* Fall through. */
6355 case CODE_32BIT:
6356 if (!i.tm.opcode_modifier.no_lsuf)
6357 i.suffix = LONG_MNEM_SUFFIX;
6358 break;
6359 case CODE_16BIT:
6360 if (!i.tm.opcode_modifier.no_wsuf)
6361 i.suffix = WORD_MNEM_SUFFIX;
6362 break;
6363 }
6364 }
6365
6366 if (!i.suffix)
6367 {
6368 if (!intel_syntax)
6369 {
6370 if (i.tm.opcode_modifier.w)
6371 {
6372 as_bad (_("no instruction mnemonic suffix given and "
6373 "no register operands; can't size instruction"));
6374 return 0;
6375 }
6376 }
6377 else
6378 {
6379 unsigned int suffixes;
6380
6381 suffixes = !i.tm.opcode_modifier.no_bsuf;
6382 if (!i.tm.opcode_modifier.no_wsuf)
6383 suffixes |= 1 << 1;
6384 if (!i.tm.opcode_modifier.no_lsuf)
6385 suffixes |= 1 << 2;
6386 if (!i.tm.opcode_modifier.no_ldsuf)
6387 suffixes |= 1 << 3;
6388 if (!i.tm.opcode_modifier.no_ssuf)
6389 suffixes |= 1 << 4;
6390 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6391 suffixes |= 1 << 5;
6392
6393 /* There are more than suffix matches. */
6394 if (i.tm.opcode_modifier.w
6395 || ((suffixes & (suffixes - 1))
6396 && !i.tm.opcode_modifier.defaultsize
6397 && !i.tm.opcode_modifier.ignoresize))
6398 {
6399 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6400 return 0;
6401 }
6402 }
6403 }
6404
6405 /* Change the opcode based on the operand size given by i.suffix. */
6406 switch (i.suffix)
6407 {
6408 /* Size floating point instruction. */
6409 case LONG_MNEM_SUFFIX:
6410 if (i.tm.opcode_modifier.floatmf)
6411 {
6412 i.tm.base_opcode ^= 4;
6413 break;
6414 }
6415 /* fall through */
6416 case WORD_MNEM_SUFFIX:
6417 case QWORD_MNEM_SUFFIX:
6418 /* It's not a byte, select word/dword operation. */
6419 if (i.tm.opcode_modifier.w)
6420 {
6421 if (i.tm.opcode_modifier.shortform)
6422 i.tm.base_opcode |= 8;
6423 else
6424 i.tm.base_opcode |= 1;
6425 }
6426 /* fall through */
6427 case SHORT_MNEM_SUFFIX:
6428 /* Now select between word & dword operations via the operand
6429 size prefix, except for instructions that will ignore this
6430 prefix anyway. */
6431 if (i.reg_operands > 0
6432 && i.types[0].bitfield.class == Reg
6433 && i.tm.opcode_modifier.addrprefixopreg
6434 && (i.tm.operand_types[0].bitfield.instance == Accum
6435 || i.operands == 1))
6436 {
6437 /* The address size override prefix changes the size of the
6438 first operand. */
6439 if ((flag_code == CODE_32BIT
6440 && i.op[0].regs->reg_type.bitfield.word)
6441 || (flag_code != CODE_32BIT
6442 && i.op[0].regs->reg_type.bitfield.dword))
6443 if (!add_prefix (ADDR_PREFIX_OPCODE))
6444 return 0;
6445 }
6446 else if (i.suffix != QWORD_MNEM_SUFFIX
6447 && !i.tm.opcode_modifier.ignoresize
6448 && !i.tm.opcode_modifier.floatmf
6449 && !is_any_vex_encoding (&i.tm)
6450 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6451 || (flag_code == CODE_64BIT
6452 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
6453 {
6454 unsigned int prefix = DATA_PREFIX_OPCODE;
6455
6456 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
6457 prefix = ADDR_PREFIX_OPCODE;
6458
6459 if (!add_prefix (prefix))
6460 return 0;
6461 }
6462
6463 /* Set mode64 for an operand. */
6464 if (i.suffix == QWORD_MNEM_SUFFIX
6465 && flag_code == CODE_64BIT
6466 && !i.tm.opcode_modifier.norex64
6467 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6468 need rex64. */
6469 && ! (i.operands == 2
6470 && i.tm.base_opcode == 0x90
6471 && i.tm.extension_opcode == None
6472 && i.types[0].bitfield.instance == Accum
6473 && i.types[0].bitfield.qword
6474 && i.types[1].bitfield.instance == Accum
6475 && i.types[1].bitfield.qword))
6476 i.rex |= REX_W;
6477
6478 break;
6479 }
6480
6481 if (i.reg_operands != 0
6482 && i.operands > 1
6483 && i.tm.opcode_modifier.addrprefixopreg
6484 && i.tm.operand_types[0].bitfield.instance != Accum)
6485 {
6486 /* Check invalid register operand when the address size override
6487 prefix changes the size of register operands. */
6488 unsigned int op;
6489 enum { need_word, need_dword, need_qword } need;
6490
6491 if (flag_code == CODE_32BIT)
6492 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6493 else
6494 {
6495 if (i.prefix[ADDR_PREFIX])
6496 need = need_dword;
6497 else
6498 need = flag_code == CODE_64BIT ? need_qword : need_word;
6499 }
6500
6501 for (op = 0; op < i.operands; op++)
6502 if (i.types[op].bitfield.class == Reg
6503 && ((need == need_word
6504 && !i.op[op].regs->reg_type.bitfield.word)
6505 || (need == need_dword
6506 && !i.op[op].regs->reg_type.bitfield.dword)
6507 || (need == need_qword
6508 && !i.op[op].regs->reg_type.bitfield.qword)))
6509 {
6510 as_bad (_("invalid register operand size for `%s'"),
6511 i.tm.name);
6512 return 0;
6513 }
6514 }
6515
6516 return 1;
6517 }
6518
6519 static int
6520 check_byte_reg (void)
6521 {
6522 int op;
6523
6524 for (op = i.operands; --op >= 0;)
6525 {
6526 /* Skip non-register operands. */
6527 if (i.types[op].bitfield.class != Reg)
6528 continue;
6529
6530 /* If this is an eight bit register, it's OK. If it's the 16 or
6531 32 bit version of an eight bit register, we will just use the
6532 low portion, and that's OK too. */
6533 if (i.types[op].bitfield.byte)
6534 continue;
6535
6536 /* I/O port address operands are OK too. */
6537 if (i.tm.operand_types[op].bitfield.instance == RegD
6538 && i.tm.operand_types[op].bitfield.word)
6539 continue;
6540
6541 /* crc32 doesn't generate this warning. */
6542 if (i.tm.base_opcode == 0xf20f38f0)
6543 continue;
6544
6545 if ((i.types[op].bitfield.word
6546 || i.types[op].bitfield.dword
6547 || i.types[op].bitfield.qword)
6548 && i.op[op].regs->reg_num < 4
6549 /* Prohibit these changes in 64bit mode, since the lowering
6550 would be more complicated. */
6551 && flag_code != CODE_64BIT)
6552 {
6553 #if REGISTER_WARNINGS
6554 if (!quiet_warnings)
6555 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6556 register_prefix,
6557 (i.op[op].regs + (i.types[op].bitfield.word
6558 ? REGNAM_AL - REGNAM_AX
6559 : REGNAM_AL - REGNAM_EAX))->reg_name,
6560 register_prefix,
6561 i.op[op].regs->reg_name,
6562 i.suffix);
6563 #endif
6564 continue;
6565 }
6566 /* Any other register is bad. */
6567 if (i.types[op].bitfield.class == Reg
6568 || i.types[op].bitfield.class == RegMMX
6569 || i.types[op].bitfield.class == RegSIMD
6570 || i.types[op].bitfield.class == SReg
6571 || i.types[op].bitfield.class == RegCR
6572 || i.types[op].bitfield.class == RegDR
6573 || i.types[op].bitfield.class == RegTR)
6574 {
6575 as_bad (_("`%s%s' not allowed with `%s%c'"),
6576 register_prefix,
6577 i.op[op].regs->reg_name,
6578 i.tm.name,
6579 i.suffix);
6580 return 0;
6581 }
6582 }
6583 return 1;
6584 }
6585
6586 static int
6587 check_long_reg (void)
6588 {
6589 int op;
6590
6591 for (op = i.operands; --op >= 0;)
6592 /* Skip non-register operands. */
6593 if (i.types[op].bitfield.class != Reg)
6594 continue;
6595 /* Reject eight bit registers, except where the template requires
6596 them. (eg. movzb) */
6597 else if (i.types[op].bitfield.byte
6598 && (i.tm.operand_types[op].bitfield.class == Reg
6599 || i.tm.operand_types[op].bitfield.instance == Accum)
6600 && (i.tm.operand_types[op].bitfield.word
6601 || i.tm.operand_types[op].bitfield.dword))
6602 {
6603 as_bad (_("`%s%s' not allowed with `%s%c'"),
6604 register_prefix,
6605 i.op[op].regs->reg_name,
6606 i.tm.name,
6607 i.suffix);
6608 return 0;
6609 }
6610 /* Warn if the e prefix on a general reg is missing. */
6611 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6612 && i.types[op].bitfield.word
6613 && (i.tm.operand_types[op].bitfield.class == Reg
6614 || i.tm.operand_types[op].bitfield.instance == Accum)
6615 && i.tm.operand_types[op].bitfield.dword)
6616 {
6617 /* Prohibit these changes in the 64bit mode, since the
6618 lowering is more complicated. */
6619 if (flag_code == CODE_64BIT)
6620 {
6621 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6622 register_prefix, i.op[op].regs->reg_name,
6623 i.suffix);
6624 return 0;
6625 }
6626 #if REGISTER_WARNINGS
6627 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6628 register_prefix,
6629 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6630 register_prefix, i.op[op].regs->reg_name, i.suffix);
6631 #endif
6632 }
6633 /* Warn if the r prefix on a general reg is present. */
6634 else if (i.types[op].bitfield.qword
6635 && (i.tm.operand_types[op].bitfield.class == Reg
6636 || i.tm.operand_types[op].bitfield.instance == Accum)
6637 && i.tm.operand_types[op].bitfield.dword)
6638 {
6639 if (intel_syntax
6640 && i.tm.opcode_modifier.toqword
6641 && i.types[0].bitfield.class != RegSIMD)
6642 {
6643 /* Convert to QWORD. We want REX byte. */
6644 i.suffix = QWORD_MNEM_SUFFIX;
6645 }
6646 else
6647 {
6648 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6649 register_prefix, i.op[op].regs->reg_name,
6650 i.suffix);
6651 return 0;
6652 }
6653 }
6654 return 1;
6655 }
6656
6657 static int
6658 check_qword_reg (void)
6659 {
6660 int op;
6661
6662 for (op = i.operands; --op >= 0; )
6663 /* Skip non-register operands. */
6664 if (i.types[op].bitfield.class != Reg)
6665 continue;
6666 /* Reject eight bit registers, except where the template requires
6667 them. (eg. movzb) */
6668 else if (i.types[op].bitfield.byte
6669 && (i.tm.operand_types[op].bitfield.class == Reg
6670 || i.tm.operand_types[op].bitfield.instance == Accum)
6671 && (i.tm.operand_types[op].bitfield.word
6672 || i.tm.operand_types[op].bitfield.dword))
6673 {
6674 as_bad (_("`%s%s' not allowed with `%s%c'"),
6675 register_prefix,
6676 i.op[op].regs->reg_name,
6677 i.tm.name,
6678 i.suffix);
6679 return 0;
6680 }
6681 /* Warn if the r prefix on a general reg is missing. */
6682 else if ((i.types[op].bitfield.word
6683 || i.types[op].bitfield.dword)
6684 && (i.tm.operand_types[op].bitfield.class == Reg
6685 || i.tm.operand_types[op].bitfield.instance == Accum)
6686 && i.tm.operand_types[op].bitfield.qword)
6687 {
6688 /* Prohibit these changes in the 64bit mode, since the
6689 lowering is more complicated. */
6690 if (intel_syntax
6691 && i.tm.opcode_modifier.todword
6692 && i.types[0].bitfield.class != RegSIMD)
6693 {
6694 /* Convert to DWORD. We don't want REX byte. */
6695 i.suffix = LONG_MNEM_SUFFIX;
6696 }
6697 else
6698 {
6699 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6700 register_prefix, i.op[op].regs->reg_name,
6701 i.suffix);
6702 return 0;
6703 }
6704 }
6705 return 1;
6706 }
6707
6708 static int
6709 check_word_reg (void)
6710 {
6711 int op;
6712 for (op = i.operands; --op >= 0;)
6713 /* Skip non-register operands. */
6714 if (i.types[op].bitfield.class != Reg)
6715 continue;
6716 /* Reject eight bit registers, except where the template requires
6717 them. (eg. movzb) */
6718 else if (i.types[op].bitfield.byte
6719 && (i.tm.operand_types[op].bitfield.class == Reg
6720 || i.tm.operand_types[op].bitfield.instance == Accum)
6721 && (i.tm.operand_types[op].bitfield.word
6722 || i.tm.operand_types[op].bitfield.dword))
6723 {
6724 as_bad (_("`%s%s' not allowed with `%s%c'"),
6725 register_prefix,
6726 i.op[op].regs->reg_name,
6727 i.tm.name,
6728 i.suffix);
6729 return 0;
6730 }
6731 /* Warn if the e or r prefix on a general reg is present. */
6732 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6733 && (i.types[op].bitfield.dword
6734 || i.types[op].bitfield.qword)
6735 && (i.tm.operand_types[op].bitfield.class == Reg
6736 || i.tm.operand_types[op].bitfield.instance == Accum)
6737 && i.tm.operand_types[op].bitfield.word)
6738 {
6739 /* Prohibit these changes in the 64bit mode, since the
6740 lowering is more complicated. */
6741 if (flag_code == CODE_64BIT)
6742 {
6743 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6744 register_prefix, i.op[op].regs->reg_name,
6745 i.suffix);
6746 return 0;
6747 }
6748 #if REGISTER_WARNINGS
6749 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6750 register_prefix,
6751 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6752 register_prefix, i.op[op].regs->reg_name, i.suffix);
6753 #endif
6754 }
6755 return 1;
6756 }
6757
6758 static int
6759 update_imm (unsigned int j)
6760 {
6761 i386_operand_type overlap = i.types[j];
6762 if ((overlap.bitfield.imm8
6763 || overlap.bitfield.imm8s
6764 || overlap.bitfield.imm16
6765 || overlap.bitfield.imm32
6766 || overlap.bitfield.imm32s
6767 || overlap.bitfield.imm64)
6768 && !operand_type_equal (&overlap, &imm8)
6769 && !operand_type_equal (&overlap, &imm8s)
6770 && !operand_type_equal (&overlap, &imm16)
6771 && !operand_type_equal (&overlap, &imm32)
6772 && !operand_type_equal (&overlap, &imm32s)
6773 && !operand_type_equal (&overlap, &imm64))
6774 {
6775 if (i.suffix)
6776 {
6777 i386_operand_type temp;
6778
6779 operand_type_set (&temp, 0);
6780 if (i.suffix == BYTE_MNEM_SUFFIX)
6781 {
6782 temp.bitfield.imm8 = overlap.bitfield.imm8;
6783 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6784 }
6785 else if (i.suffix == WORD_MNEM_SUFFIX)
6786 temp.bitfield.imm16 = overlap.bitfield.imm16;
6787 else if (i.suffix == QWORD_MNEM_SUFFIX)
6788 {
6789 temp.bitfield.imm64 = overlap.bitfield.imm64;
6790 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6791 }
6792 else
6793 temp.bitfield.imm32 = overlap.bitfield.imm32;
6794 overlap = temp;
6795 }
6796 else if (operand_type_equal (&overlap, &imm16_32_32s)
6797 || operand_type_equal (&overlap, &imm16_32)
6798 || operand_type_equal (&overlap, &imm16_32s))
6799 {
6800 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6801 overlap = imm16;
6802 else
6803 overlap = imm32s;
6804 }
6805 if (!operand_type_equal (&overlap, &imm8)
6806 && !operand_type_equal (&overlap, &imm8s)
6807 && !operand_type_equal (&overlap, &imm16)
6808 && !operand_type_equal (&overlap, &imm32)
6809 && !operand_type_equal (&overlap, &imm32s)
6810 && !operand_type_equal (&overlap, &imm64))
6811 {
6812 as_bad (_("no instruction mnemonic suffix given; "
6813 "can't determine immediate size"));
6814 return 0;
6815 }
6816 }
6817 i.types[j] = overlap;
6818
6819 return 1;
6820 }
6821
6822 static int
6823 finalize_imm (void)
6824 {
6825 unsigned int j, n;
6826
6827 /* Update the first 2 immediate operands. */
6828 n = i.operands > 2 ? 2 : i.operands;
6829 if (n)
6830 {
6831 for (j = 0; j < n; j++)
6832 if (update_imm (j) == 0)
6833 return 0;
6834
6835 /* The 3rd operand can't be immediate operand. */
6836 gas_assert (operand_type_check (i.types[2], imm) == 0);
6837 }
6838
6839 return 1;
6840 }
6841
6842 static int
6843 process_operands (void)
6844 {
6845 /* Default segment register this instruction will use for memory
6846 accesses. 0 means unknown. This is only for optimizing out
6847 unnecessary segment overrides. */
6848 const seg_entry *default_seg = 0;
6849
6850 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6851 {
6852 unsigned int dupl = i.operands;
6853 unsigned int dest = dupl - 1;
6854 unsigned int j;
6855
6856 /* The destination must be an xmm register. */
6857 gas_assert (i.reg_operands
6858 && MAX_OPERANDS > dupl
6859 && operand_type_equal (&i.types[dest], &regxmm));
6860
6861 if (i.tm.operand_types[0].bitfield.instance == Accum
6862 && i.tm.operand_types[0].bitfield.xmmword)
6863 {
6864 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6865 {
6866 /* Keep xmm0 for instructions with VEX prefix and 3
6867 sources. */
6868 i.tm.operand_types[0].bitfield.instance = InstanceNone;
6869 i.tm.operand_types[0].bitfield.class = RegSIMD;
6870 goto duplicate;
6871 }
6872 else
6873 {
6874 /* We remove the first xmm0 and keep the number of
6875 operands unchanged, which in fact duplicates the
6876 destination. */
6877 for (j = 1; j < i.operands; j++)
6878 {
6879 i.op[j - 1] = i.op[j];
6880 i.types[j - 1] = i.types[j];
6881 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6882 i.flags[j - 1] = i.flags[j];
6883 }
6884 }
6885 }
6886 else if (i.tm.opcode_modifier.implicit1stxmm0)
6887 {
6888 gas_assert ((MAX_OPERANDS - 1) > dupl
6889 && (i.tm.opcode_modifier.vexsources
6890 == VEX3SOURCES));
6891
6892 /* Add the implicit xmm0 for instructions with VEX prefix
6893 and 3 sources. */
6894 for (j = i.operands; j > 0; j--)
6895 {
6896 i.op[j] = i.op[j - 1];
6897 i.types[j] = i.types[j - 1];
6898 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6899 i.flags[j] = i.flags[j - 1];
6900 }
6901 i.op[0].regs
6902 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6903 i.types[0] = regxmm;
6904 i.tm.operand_types[0] = regxmm;
6905
6906 i.operands += 2;
6907 i.reg_operands += 2;
6908 i.tm.operands += 2;
6909
6910 dupl++;
6911 dest++;
6912 i.op[dupl] = i.op[dest];
6913 i.types[dupl] = i.types[dest];
6914 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6915 i.flags[dupl] = i.flags[dest];
6916 }
6917 else
6918 {
6919 duplicate:
6920 i.operands++;
6921 i.reg_operands++;
6922 i.tm.operands++;
6923
6924 i.op[dupl] = i.op[dest];
6925 i.types[dupl] = i.types[dest];
6926 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6927 i.flags[dupl] = i.flags[dest];
6928 }
6929
6930 if (i.tm.opcode_modifier.immext)
6931 process_immext ();
6932 }
6933 else if (i.tm.operand_types[0].bitfield.instance == Accum
6934 && i.tm.operand_types[0].bitfield.xmmword)
6935 {
6936 unsigned int j;
6937
6938 for (j = 1; j < i.operands; j++)
6939 {
6940 i.op[j - 1] = i.op[j];
6941 i.types[j - 1] = i.types[j];
6942
6943 /* We need to adjust fields in i.tm since they are used by
6944 build_modrm_byte. */
6945 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6946
6947 i.flags[j - 1] = i.flags[j];
6948 }
6949
6950 i.operands--;
6951 i.reg_operands--;
6952 i.tm.operands--;
6953 }
6954 else if (i.tm.opcode_modifier.implicitquadgroup)
6955 {
6956 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6957
6958 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6959 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
6960 regnum = register_number (i.op[1].regs);
6961 first_reg_in_group = regnum & ~3;
6962 last_reg_in_group = first_reg_in_group + 3;
6963 if (regnum != first_reg_in_group)
6964 as_warn (_("source register `%s%s' implicitly denotes"
6965 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6966 register_prefix, i.op[1].regs->reg_name,
6967 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6968 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6969 i.tm.name);
6970 }
6971 else if (i.tm.opcode_modifier.regkludge)
6972 {
6973 /* The imul $imm, %reg instruction is converted into
6974 imul $imm, %reg, %reg, and the clr %reg instruction
6975 is converted into xor %reg, %reg. */
6976
6977 unsigned int first_reg_op;
6978
6979 if (operand_type_check (i.types[0], reg))
6980 first_reg_op = 0;
6981 else
6982 first_reg_op = 1;
6983 /* Pretend we saw the extra register operand. */
6984 gas_assert (i.reg_operands == 1
6985 && i.op[first_reg_op + 1].regs == 0);
6986 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6987 i.types[first_reg_op + 1] = i.types[first_reg_op];
6988 i.operands++;
6989 i.reg_operands++;
6990 }
6991
6992 if (i.tm.opcode_modifier.modrm)
6993 {
6994 /* The opcode is completed (modulo i.tm.extension_opcode which
6995 must be put into the modrm byte). Now, we make the modrm and
6996 index base bytes based on all the info we've collected. */
6997
6998 default_seg = build_modrm_byte ();
6999 }
7000 else if (i.types[0].bitfield.class == SReg)
7001 {
7002 if (flag_code != CODE_64BIT
7003 ? i.tm.base_opcode == POP_SEG_SHORT
7004 && i.op[0].regs->reg_num == 1
7005 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7006 && i.op[0].regs->reg_num < 4)
7007 {
7008 as_bad (_("you can't `%s %s%s'"),
7009 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7010 return 0;
7011 }
7012 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7013 {
7014 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7015 i.tm.opcode_length = 2;
7016 }
7017 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7018 }
7019 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
7020 {
7021 default_seg = &ds;
7022 }
7023 else if (i.tm.opcode_modifier.isstring)
7024 {
7025 /* For the string instructions that allow a segment override
7026 on one of their operands, the default segment is ds. */
7027 default_seg = &ds;
7028 }
7029 else if (i.tm.opcode_modifier.shortform)
7030 {
7031 /* The register or float register operand is in operand
7032 0 or 1. */
7033 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
7034
7035 /* Register goes in low 3 bits of opcode. */
7036 i.tm.base_opcode |= i.op[op].regs->reg_num;
7037 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7038 i.rex |= REX_B;
7039 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7040 {
7041 /* Warn about some common errors, but press on regardless.
7042 The first case can be generated by gcc (<= 2.8.1). */
7043 if (i.operands == 2)
7044 {
7045 /* Reversed arguments on faddp, fsubp, etc. */
7046 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7047 register_prefix, i.op[!intel_syntax].regs->reg_name,
7048 register_prefix, i.op[intel_syntax].regs->reg_name);
7049 }
7050 else
7051 {
7052 /* Extraneous `l' suffix on fp insn. */
7053 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7054 register_prefix, i.op[0].regs->reg_name);
7055 }
7056 }
7057 }
7058
7059 if (i.tm.base_opcode == 0x8d /* lea */
7060 && i.seg[0]
7061 && !quiet_warnings)
7062 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
7063
7064 /* If a segment was explicitly specified, and the specified segment
7065 is not the default, use an opcode prefix to select it. If we
7066 never figured out what the default segment is, then default_seg
7067 will be zero at this point, and the specified segment prefix will
7068 always be used. */
7069 if ((i.seg[0]) && (i.seg[0] != default_seg))
7070 {
7071 if (!add_prefix (i.seg[0]->seg_prefix))
7072 return 0;
7073 }
7074 return 1;
7075 }
7076
7077 static const seg_entry *
7078 build_modrm_byte (void)
7079 {
7080 const seg_entry *default_seg = 0;
7081 unsigned int source, dest;
7082 int vex_3_sources;
7083
7084 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
7085 if (vex_3_sources)
7086 {
7087 unsigned int nds, reg_slot;
7088 expressionS *exp;
7089
7090 dest = i.operands - 1;
7091 nds = dest - 1;
7092
7093 /* There are 2 kinds of instructions:
7094 1. 5 operands: 4 register operands or 3 register operands
7095 plus 1 memory operand plus one Imm4 operand, VexXDS, and
7096 VexW0 or VexW1. The destination must be either XMM, YMM or
7097 ZMM register.
7098 2. 4 operands: 4 register operands or 3 register operands
7099 plus 1 memory operand, with VexXDS. */
7100 gas_assert ((i.reg_operands == 4
7101 || (i.reg_operands == 3 && i.mem_operands == 1))
7102 && i.tm.opcode_modifier.vexvvvv == VEXXDS
7103 && i.tm.opcode_modifier.vexw
7104 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
7105
7106 /* If VexW1 is set, the first non-immediate operand is the source and
7107 the second non-immediate one is encoded in the immediate operand. */
7108 if (i.tm.opcode_modifier.vexw == VEXW1)
7109 {
7110 source = i.imm_operands;
7111 reg_slot = i.imm_operands + 1;
7112 }
7113 else
7114 {
7115 source = i.imm_operands + 1;
7116 reg_slot = i.imm_operands;
7117 }
7118
7119 if (i.imm_operands == 0)
7120 {
7121 /* When there is no immediate operand, generate an 8bit
7122 immediate operand to encode the first operand. */
7123 exp = &im_expressions[i.imm_operands++];
7124 i.op[i.operands].imms = exp;
7125 i.types[i.operands] = imm8;
7126 i.operands++;
7127
7128 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7129 exp->X_op = O_constant;
7130 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
7131 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7132 }
7133 else
7134 {
7135 gas_assert (i.imm_operands == 1);
7136 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7137 gas_assert (!i.tm.opcode_modifier.immext);
7138
7139 /* Turn on Imm8 again so that output_imm will generate it. */
7140 i.types[0].bitfield.imm8 = 1;
7141
7142 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7143 i.op[0].imms->X_add_number
7144 |= register_number (i.op[reg_slot].regs) << 4;
7145 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7146 }
7147
7148 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
7149 i.vex.register_specifier = i.op[nds].regs;
7150 }
7151 else
7152 source = dest = 0;
7153
7154 /* i.reg_operands MUST be the number of real register operands;
7155 implicit registers do not count. If there are 3 register
7156 operands, it must be a instruction with VexNDS. For a
7157 instruction with VexNDD, the destination register is encoded
7158 in VEX prefix. If there are 4 register operands, it must be
7159 a instruction with VEX prefix and 3 sources. */
7160 if (i.mem_operands == 0
7161 && ((i.reg_operands == 2
7162 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7163 || (i.reg_operands == 3
7164 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7165 || (i.reg_operands == 4 && vex_3_sources)))
7166 {
7167 switch (i.operands)
7168 {
7169 case 2:
7170 source = 0;
7171 break;
7172 case 3:
7173 /* When there are 3 operands, one of them may be immediate,
7174 which may be the first or the last operand. Otherwise,
7175 the first operand must be shift count register (cl) or it
7176 is an instruction with VexNDS. */
7177 gas_assert (i.imm_operands == 1
7178 || (i.imm_operands == 0
7179 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7180 || (i.types[0].bitfield.instance == RegC
7181 && i.types[0].bitfield.byte))));
7182 if (operand_type_check (i.types[0], imm)
7183 || (i.types[0].bitfield.instance == RegC
7184 && i.types[0].bitfield.byte))
7185 source = 1;
7186 else
7187 source = 0;
7188 break;
7189 case 4:
7190 /* When there are 4 operands, the first two must be 8bit
7191 immediate operands. The source operand will be the 3rd
7192 one.
7193
7194 For instructions with VexNDS, if the first operand
7195 an imm8, the source operand is the 2nd one. If the last
7196 operand is imm8, the source operand is the first one. */
7197 gas_assert ((i.imm_operands == 2
7198 && i.types[0].bitfield.imm8
7199 && i.types[1].bitfield.imm8)
7200 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7201 && i.imm_operands == 1
7202 && (i.types[0].bitfield.imm8
7203 || i.types[i.operands - 1].bitfield.imm8
7204 || i.rounding)));
7205 if (i.imm_operands == 2)
7206 source = 2;
7207 else
7208 {
7209 if (i.types[0].bitfield.imm8)
7210 source = 1;
7211 else
7212 source = 0;
7213 }
7214 break;
7215 case 5:
7216 if (is_evex_encoding (&i.tm))
7217 {
7218 /* For EVEX instructions, when there are 5 operands, the
7219 first one must be immediate operand. If the second one
7220 is immediate operand, the source operand is the 3th
7221 one. If the last one is immediate operand, the source
7222 operand is the 2nd one. */
7223 gas_assert (i.imm_operands == 2
7224 && i.tm.opcode_modifier.sae
7225 && operand_type_check (i.types[0], imm));
7226 if (operand_type_check (i.types[1], imm))
7227 source = 2;
7228 else if (operand_type_check (i.types[4], imm))
7229 source = 1;
7230 else
7231 abort ();
7232 }
7233 break;
7234 default:
7235 abort ();
7236 }
7237
7238 if (!vex_3_sources)
7239 {
7240 dest = source + 1;
7241
7242 /* RC/SAE operand could be between DEST and SRC. That happens
7243 when one operand is GPR and the other one is XMM/YMM/ZMM
7244 register. */
7245 if (i.rounding && i.rounding->operand == (int) dest)
7246 dest++;
7247
7248 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7249 {
7250 /* For instructions with VexNDS, the register-only source
7251 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7252 register. It is encoded in VEX prefix. */
7253
7254 i386_operand_type op;
7255 unsigned int vvvv;
7256
7257 /* Check register-only source operand when two source
7258 operands are swapped. */
7259 if (!i.tm.operand_types[source].bitfield.baseindex
7260 && i.tm.operand_types[dest].bitfield.baseindex)
7261 {
7262 vvvv = source;
7263 source = dest;
7264 }
7265 else
7266 vvvv = dest;
7267
7268 op = i.tm.operand_types[vvvv];
7269 if ((dest + 1) >= i.operands
7270 || ((op.bitfield.class != Reg
7271 || (!op.bitfield.dword && !op.bitfield.qword))
7272 && op.bitfield.class != RegSIMD
7273 && !operand_type_equal (&op, &regmask)))
7274 abort ();
7275 i.vex.register_specifier = i.op[vvvv].regs;
7276 dest++;
7277 }
7278 }
7279
7280 i.rm.mode = 3;
7281 /* One of the register operands will be encoded in the i.rm.reg
7282 field, the other in the combined i.rm.mode and i.rm.regmem
7283 fields. If no form of this instruction supports a memory
7284 destination operand, then we assume the source operand may
7285 sometimes be a memory operand and so we need to store the
7286 destination in the i.rm.reg field. */
7287 if (!i.tm.opcode_modifier.regmem
7288 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7289 {
7290 i.rm.reg = i.op[dest].regs->reg_num;
7291 i.rm.regmem = i.op[source].regs->reg_num;
7292 if (i.op[dest].regs->reg_type.bitfield.class == RegMMX
7293 || i.op[source].regs->reg_type.bitfield.class == RegMMX)
7294 i.has_regmmx = TRUE;
7295 else if (i.op[dest].regs->reg_type.bitfield.class == RegSIMD
7296 || i.op[source].regs->reg_type.bitfield.class == RegSIMD)
7297 {
7298 if (i.types[dest].bitfield.zmmword
7299 || i.types[source].bitfield.zmmword)
7300 i.has_regzmm = TRUE;
7301 else if (i.types[dest].bitfield.ymmword
7302 || i.types[source].bitfield.ymmword)
7303 i.has_regymm = TRUE;
7304 else
7305 i.has_regxmm = TRUE;
7306 }
7307 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7308 i.rex |= REX_R;
7309 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7310 i.vrex |= REX_R;
7311 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7312 i.rex |= REX_B;
7313 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7314 i.vrex |= REX_B;
7315 }
7316 else
7317 {
7318 i.rm.reg = i.op[source].regs->reg_num;
7319 i.rm.regmem = i.op[dest].regs->reg_num;
7320 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7321 i.rex |= REX_B;
7322 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7323 i.vrex |= REX_B;
7324 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7325 i.rex |= REX_R;
7326 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7327 i.vrex |= REX_R;
7328 }
7329 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7330 {
7331 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
7332 abort ();
7333 i.rex &= ~REX_R;
7334 add_prefix (LOCK_PREFIX_OPCODE);
7335 }
7336 }
7337 else
7338 { /* If it's not 2 reg operands... */
7339 unsigned int mem;
7340
7341 if (i.mem_operands)
7342 {
7343 unsigned int fake_zero_displacement = 0;
7344 unsigned int op;
7345
7346 for (op = 0; op < i.operands; op++)
7347 if (i.flags[op] & Operand_Mem)
7348 break;
7349 gas_assert (op < i.operands);
7350
7351 if (i.tm.opcode_modifier.vecsib)
7352 {
7353 if (i.index_reg->reg_num == RegIZ)
7354 abort ();
7355
7356 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7357 if (!i.base_reg)
7358 {
7359 i.sib.base = NO_BASE_REGISTER;
7360 i.sib.scale = i.log2_scale_factor;
7361 i.types[op].bitfield.disp8 = 0;
7362 i.types[op].bitfield.disp16 = 0;
7363 i.types[op].bitfield.disp64 = 0;
7364 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7365 {
7366 /* Must be 32 bit */
7367 i.types[op].bitfield.disp32 = 1;
7368 i.types[op].bitfield.disp32s = 0;
7369 }
7370 else
7371 {
7372 i.types[op].bitfield.disp32 = 0;
7373 i.types[op].bitfield.disp32s = 1;
7374 }
7375 }
7376 i.sib.index = i.index_reg->reg_num;
7377 if ((i.index_reg->reg_flags & RegRex) != 0)
7378 i.rex |= REX_X;
7379 if ((i.index_reg->reg_flags & RegVRex) != 0)
7380 i.vrex |= REX_X;
7381 }
7382
7383 default_seg = &ds;
7384
7385 if (i.base_reg == 0)
7386 {
7387 i.rm.mode = 0;
7388 if (!i.disp_operands)
7389 fake_zero_displacement = 1;
7390 if (i.index_reg == 0)
7391 {
7392 i386_operand_type newdisp;
7393
7394 gas_assert (!i.tm.opcode_modifier.vecsib);
7395 /* Operand is just <disp> */
7396 if (flag_code == CODE_64BIT)
7397 {
7398 /* 64bit mode overwrites the 32bit absolute
7399 addressing by RIP relative addressing and
7400 absolute addressing is encoded by one of the
7401 redundant SIB forms. */
7402 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7403 i.sib.base = NO_BASE_REGISTER;
7404 i.sib.index = NO_INDEX_REGISTER;
7405 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7406 }
7407 else if ((flag_code == CODE_16BIT)
7408 ^ (i.prefix[ADDR_PREFIX] != 0))
7409 {
7410 i.rm.regmem = NO_BASE_REGISTER_16;
7411 newdisp = disp16;
7412 }
7413 else
7414 {
7415 i.rm.regmem = NO_BASE_REGISTER;
7416 newdisp = disp32;
7417 }
7418 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7419 i.types[op] = operand_type_or (i.types[op], newdisp);
7420 }
7421 else if (!i.tm.opcode_modifier.vecsib)
7422 {
7423 /* !i.base_reg && i.index_reg */
7424 if (i.index_reg->reg_num == RegIZ)
7425 i.sib.index = NO_INDEX_REGISTER;
7426 else
7427 i.sib.index = i.index_reg->reg_num;
7428 i.sib.base = NO_BASE_REGISTER;
7429 i.sib.scale = i.log2_scale_factor;
7430 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7431 i.types[op].bitfield.disp8 = 0;
7432 i.types[op].bitfield.disp16 = 0;
7433 i.types[op].bitfield.disp64 = 0;
7434 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7435 {
7436 /* Must be 32 bit */
7437 i.types[op].bitfield.disp32 = 1;
7438 i.types[op].bitfield.disp32s = 0;
7439 }
7440 else
7441 {
7442 i.types[op].bitfield.disp32 = 0;
7443 i.types[op].bitfield.disp32s = 1;
7444 }
7445 if ((i.index_reg->reg_flags & RegRex) != 0)
7446 i.rex |= REX_X;
7447 }
7448 }
7449 /* RIP addressing for 64bit mode. */
7450 else if (i.base_reg->reg_num == RegIP)
7451 {
7452 gas_assert (!i.tm.opcode_modifier.vecsib);
7453 i.rm.regmem = NO_BASE_REGISTER;
7454 i.types[op].bitfield.disp8 = 0;
7455 i.types[op].bitfield.disp16 = 0;
7456 i.types[op].bitfield.disp32 = 0;
7457 i.types[op].bitfield.disp32s = 1;
7458 i.types[op].bitfield.disp64 = 0;
7459 i.flags[op] |= Operand_PCrel;
7460 if (! i.disp_operands)
7461 fake_zero_displacement = 1;
7462 }
7463 else if (i.base_reg->reg_type.bitfield.word)
7464 {
7465 gas_assert (!i.tm.opcode_modifier.vecsib);
7466 switch (i.base_reg->reg_num)
7467 {
7468 case 3: /* (%bx) */
7469 if (i.index_reg == 0)
7470 i.rm.regmem = 7;
7471 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7472 i.rm.regmem = i.index_reg->reg_num - 6;
7473 break;
7474 case 5: /* (%bp) */
7475 default_seg = &ss;
7476 if (i.index_reg == 0)
7477 {
7478 i.rm.regmem = 6;
7479 if (operand_type_check (i.types[op], disp) == 0)
7480 {
7481 /* fake (%bp) into 0(%bp) */
7482 i.types[op].bitfield.disp8 = 1;
7483 fake_zero_displacement = 1;
7484 }
7485 }
7486 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7487 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7488 break;
7489 default: /* (%si) -> 4 or (%di) -> 5 */
7490 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7491 }
7492 i.rm.mode = mode_from_disp_size (i.types[op]);
7493 }
7494 else /* i.base_reg and 32/64 bit mode */
7495 {
7496 if (flag_code == CODE_64BIT
7497 && operand_type_check (i.types[op], disp))
7498 {
7499 i.types[op].bitfield.disp16 = 0;
7500 i.types[op].bitfield.disp64 = 0;
7501 if (i.prefix[ADDR_PREFIX] == 0)
7502 {
7503 i.types[op].bitfield.disp32 = 0;
7504 i.types[op].bitfield.disp32s = 1;
7505 }
7506 else
7507 {
7508 i.types[op].bitfield.disp32 = 1;
7509 i.types[op].bitfield.disp32s = 0;
7510 }
7511 }
7512
7513 if (!i.tm.opcode_modifier.vecsib)
7514 i.rm.regmem = i.base_reg->reg_num;
7515 if ((i.base_reg->reg_flags & RegRex) != 0)
7516 i.rex |= REX_B;
7517 i.sib.base = i.base_reg->reg_num;
7518 /* x86-64 ignores REX prefix bit here to avoid decoder
7519 complications. */
7520 if (!(i.base_reg->reg_flags & RegRex)
7521 && (i.base_reg->reg_num == EBP_REG_NUM
7522 || i.base_reg->reg_num == ESP_REG_NUM))
7523 default_seg = &ss;
7524 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7525 {
7526 fake_zero_displacement = 1;
7527 i.types[op].bitfield.disp8 = 1;
7528 }
7529 i.sib.scale = i.log2_scale_factor;
7530 if (i.index_reg == 0)
7531 {
7532 gas_assert (!i.tm.opcode_modifier.vecsib);
7533 /* <disp>(%esp) becomes two byte modrm with no index
7534 register. We've already stored the code for esp
7535 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7536 Any base register besides %esp will not use the
7537 extra modrm byte. */
7538 i.sib.index = NO_INDEX_REGISTER;
7539 }
7540 else if (!i.tm.opcode_modifier.vecsib)
7541 {
7542 if (i.index_reg->reg_num == RegIZ)
7543 i.sib.index = NO_INDEX_REGISTER;
7544 else
7545 i.sib.index = i.index_reg->reg_num;
7546 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7547 if ((i.index_reg->reg_flags & RegRex) != 0)
7548 i.rex |= REX_X;
7549 }
7550
7551 if (i.disp_operands
7552 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7553 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7554 i.rm.mode = 0;
7555 else
7556 {
7557 if (!fake_zero_displacement
7558 && !i.disp_operands
7559 && i.disp_encoding)
7560 {
7561 fake_zero_displacement = 1;
7562 if (i.disp_encoding == disp_encoding_8bit)
7563 i.types[op].bitfield.disp8 = 1;
7564 else
7565 i.types[op].bitfield.disp32 = 1;
7566 }
7567 i.rm.mode = mode_from_disp_size (i.types[op]);
7568 }
7569 }
7570
7571 if (fake_zero_displacement)
7572 {
7573 /* Fakes a zero displacement assuming that i.types[op]
7574 holds the correct displacement size. */
7575 expressionS *exp;
7576
7577 gas_assert (i.op[op].disps == 0);
7578 exp = &disp_expressions[i.disp_operands++];
7579 i.op[op].disps = exp;
7580 exp->X_op = O_constant;
7581 exp->X_add_number = 0;
7582 exp->X_add_symbol = (symbolS *) 0;
7583 exp->X_op_symbol = (symbolS *) 0;
7584 }
7585
7586 mem = op;
7587 }
7588 else
7589 mem = ~0;
7590
7591 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7592 {
7593 if (operand_type_check (i.types[0], imm))
7594 i.vex.register_specifier = NULL;
7595 else
7596 {
7597 /* VEX.vvvv encodes one of the sources when the first
7598 operand is not an immediate. */
7599 if (i.tm.opcode_modifier.vexw == VEXW0)
7600 i.vex.register_specifier = i.op[0].regs;
7601 else
7602 i.vex.register_specifier = i.op[1].regs;
7603 }
7604
7605 /* Destination is a XMM register encoded in the ModRM.reg
7606 and VEX.R bit. */
7607 i.rm.reg = i.op[2].regs->reg_num;
7608 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7609 i.rex |= REX_R;
7610
7611 /* ModRM.rm and VEX.B encodes the other source. */
7612 if (!i.mem_operands)
7613 {
7614 i.rm.mode = 3;
7615
7616 if (i.tm.opcode_modifier.vexw == VEXW0)
7617 i.rm.regmem = i.op[1].regs->reg_num;
7618 else
7619 i.rm.regmem = i.op[0].regs->reg_num;
7620
7621 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7622 i.rex |= REX_B;
7623 }
7624 }
7625 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7626 {
7627 i.vex.register_specifier = i.op[2].regs;
7628 if (!i.mem_operands)
7629 {
7630 i.rm.mode = 3;
7631 i.rm.regmem = i.op[1].regs->reg_num;
7632 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7633 i.rex |= REX_B;
7634 }
7635 }
7636 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7637 (if any) based on i.tm.extension_opcode. Again, we must be
7638 careful to make sure that segment/control/debug/test/MMX
7639 registers are coded into the i.rm.reg field. */
7640 else if (i.reg_operands)
7641 {
7642 unsigned int op;
7643 unsigned int vex_reg = ~0;
7644
7645 for (op = 0; op < i.operands; op++)
7646 {
7647 if (i.types[op].bitfield.class == Reg
7648 || i.types[op].bitfield.class == RegBND
7649 || i.types[op].bitfield.class == RegMask
7650 || i.types[op].bitfield.class == SReg
7651 || i.types[op].bitfield.class == RegCR
7652 || i.types[op].bitfield.class == RegDR
7653 || i.types[op].bitfield.class == RegTR)
7654 break;
7655 if (i.types[op].bitfield.class == RegSIMD)
7656 {
7657 if (i.types[op].bitfield.zmmword)
7658 i.has_regzmm = TRUE;
7659 else if (i.types[op].bitfield.ymmword)
7660 i.has_regymm = TRUE;
7661 else
7662 i.has_regxmm = TRUE;
7663 break;
7664 }
7665 if (i.types[op].bitfield.class == RegMMX)
7666 {
7667 i.has_regmmx = TRUE;
7668 break;
7669 }
7670 }
7671
7672 if (vex_3_sources)
7673 op = dest;
7674 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7675 {
7676 /* For instructions with VexNDS, the register-only
7677 source operand is encoded in VEX prefix. */
7678 gas_assert (mem != (unsigned int) ~0);
7679
7680 if (op > mem)
7681 {
7682 vex_reg = op++;
7683 gas_assert (op < i.operands);
7684 }
7685 else
7686 {
7687 /* Check register-only source operand when two source
7688 operands are swapped. */
7689 if (!i.tm.operand_types[op].bitfield.baseindex
7690 && i.tm.operand_types[op + 1].bitfield.baseindex)
7691 {
7692 vex_reg = op;
7693 op += 2;
7694 gas_assert (mem == (vex_reg + 1)
7695 && op < i.operands);
7696 }
7697 else
7698 {
7699 vex_reg = op + 1;
7700 gas_assert (vex_reg < i.operands);
7701 }
7702 }
7703 }
7704 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7705 {
7706 /* For instructions with VexNDD, the register destination
7707 is encoded in VEX prefix. */
7708 if (i.mem_operands == 0)
7709 {
7710 /* There is no memory operand. */
7711 gas_assert ((op + 2) == i.operands);
7712 vex_reg = op + 1;
7713 }
7714 else
7715 {
7716 /* There are only 2 non-immediate operands. */
7717 gas_assert (op < i.imm_operands + 2
7718 && i.operands == i.imm_operands + 2);
7719 vex_reg = i.imm_operands + 1;
7720 }
7721 }
7722 else
7723 gas_assert (op < i.operands);
7724
7725 if (vex_reg != (unsigned int) ~0)
7726 {
7727 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7728
7729 if ((type->bitfield.class != Reg
7730 || (!type->bitfield.dword && !type->bitfield.qword))
7731 && type->bitfield.class != RegSIMD
7732 && !operand_type_equal (type, &regmask))
7733 abort ();
7734
7735 i.vex.register_specifier = i.op[vex_reg].regs;
7736 }
7737
7738 /* Don't set OP operand twice. */
7739 if (vex_reg != op)
7740 {
7741 /* If there is an extension opcode to put here, the
7742 register number must be put into the regmem field. */
7743 if (i.tm.extension_opcode != None)
7744 {
7745 i.rm.regmem = i.op[op].regs->reg_num;
7746 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7747 i.rex |= REX_B;
7748 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7749 i.vrex |= REX_B;
7750 }
7751 else
7752 {
7753 i.rm.reg = i.op[op].regs->reg_num;
7754 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7755 i.rex |= REX_R;
7756 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7757 i.vrex |= REX_R;
7758 }
7759 }
7760
7761 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7762 must set it to 3 to indicate this is a register operand
7763 in the regmem field. */
7764 if (!i.mem_operands)
7765 i.rm.mode = 3;
7766 }
7767
7768 /* Fill in i.rm.reg field with extension opcode (if any). */
7769 if (i.tm.extension_opcode != None)
7770 i.rm.reg = i.tm.extension_opcode;
7771 }
7772 return default_seg;
7773 }
7774
7775 static void
7776 output_branch (void)
7777 {
7778 char *p;
7779 int size;
7780 int code16;
7781 int prefix;
7782 relax_substateT subtype;
7783 symbolS *sym;
7784 offsetT off;
7785
7786 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7787 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7788
7789 prefix = 0;
7790 if (i.prefix[DATA_PREFIX] != 0)
7791 {
7792 prefix = 1;
7793 i.prefixes -= 1;
7794 code16 ^= CODE16;
7795 }
7796 /* Pentium4 branch hints. */
7797 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7798 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7799 {
7800 prefix++;
7801 i.prefixes--;
7802 }
7803 if (i.prefix[REX_PREFIX] != 0)
7804 {
7805 prefix++;
7806 i.prefixes--;
7807 }
7808
7809 /* BND prefixed jump. */
7810 if (i.prefix[BND_PREFIX] != 0)
7811 {
7812 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7813 i.prefixes -= 1;
7814 }
7815
7816 if (i.prefixes != 0 && !intel_syntax)
7817 as_warn (_("skipping prefixes on this instruction"));
7818
7819 /* It's always a symbol; End frag & setup for relax.
7820 Make sure there is enough room in this frag for the largest
7821 instruction we may generate in md_convert_frag. This is 2
7822 bytes for the opcode and room for the prefix and largest
7823 displacement. */
7824 frag_grow (prefix + 2 + 4);
7825 /* Prefix and 1 opcode byte go in fr_fix. */
7826 p = frag_more (prefix + 1);
7827 if (i.prefix[DATA_PREFIX] != 0)
7828 *p++ = DATA_PREFIX_OPCODE;
7829 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7830 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7831 *p++ = i.prefix[SEG_PREFIX];
7832 if (i.prefix[REX_PREFIX] != 0)
7833 *p++ = i.prefix[REX_PREFIX];
7834 *p = i.tm.base_opcode;
7835
7836 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7837 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7838 else if (cpu_arch_flags.bitfield.cpui386)
7839 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7840 else
7841 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7842 subtype |= code16;
7843
7844 sym = i.op[0].disps->X_add_symbol;
7845 off = i.op[0].disps->X_add_number;
7846
7847 if (i.op[0].disps->X_op != O_constant
7848 && i.op[0].disps->X_op != O_symbol)
7849 {
7850 /* Handle complex expressions. */
7851 sym = make_expr_symbol (i.op[0].disps);
7852 off = 0;
7853 }
7854
7855 /* 1 possible extra opcode + 4 byte displacement go in var part.
7856 Pass reloc in fr_var. */
7857 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7858 }
7859
7860 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7861 /* Return TRUE iff PLT32 relocation should be used for branching to
7862 symbol S. */
7863
7864 static bfd_boolean
7865 need_plt32_p (symbolS *s)
7866 {
7867 /* PLT32 relocation is ELF only. */
7868 if (!IS_ELF)
7869 return FALSE;
7870
7871 #ifdef TE_SOLARIS
7872 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7873 krtld support it. */
7874 return FALSE;
7875 #endif
7876
7877 /* Since there is no need to prepare for PLT branch on x86-64, we
7878 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7879 be used as a marker for 32-bit PC-relative branches. */
7880 if (!object_64bit)
7881 return FALSE;
7882
7883 /* Weak or undefined symbol need PLT32 relocation. */
7884 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7885 return TRUE;
7886
7887 /* Non-global symbol doesn't need PLT32 relocation. */
7888 if (! S_IS_EXTERNAL (s))
7889 return FALSE;
7890
7891 /* Other global symbols need PLT32 relocation. NB: Symbol with
7892 non-default visibilities are treated as normal global symbol
7893 so that PLT32 relocation can be used as a marker for 32-bit
7894 PC-relative branches. It is useful for linker relaxation. */
7895 return TRUE;
7896 }
7897 #endif
7898
7899 static void
7900 output_jump (void)
7901 {
7902 char *p;
7903 int size;
7904 fixS *fixP;
7905 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7906
7907 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
7908 {
7909 /* This is a loop or jecxz type instruction. */
7910 size = 1;
7911 if (i.prefix[ADDR_PREFIX] != 0)
7912 {
7913 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7914 i.prefixes -= 1;
7915 }
7916 /* Pentium4 branch hints. */
7917 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7918 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7919 {
7920 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7921 i.prefixes--;
7922 }
7923 }
7924 else
7925 {
7926 int code16;
7927
7928 code16 = 0;
7929 if (flag_code == CODE_16BIT)
7930 code16 = CODE16;
7931
7932 if (i.prefix[DATA_PREFIX] != 0)
7933 {
7934 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7935 i.prefixes -= 1;
7936 code16 ^= CODE16;
7937 }
7938
7939 size = 4;
7940 if (code16)
7941 size = 2;
7942 }
7943
7944 if (i.prefix[REX_PREFIX] != 0)
7945 {
7946 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7947 i.prefixes -= 1;
7948 }
7949
7950 /* BND prefixed jump. */
7951 if (i.prefix[BND_PREFIX] != 0)
7952 {
7953 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7954 i.prefixes -= 1;
7955 }
7956
7957 if (i.prefixes != 0 && !intel_syntax)
7958 as_warn (_("skipping prefixes on this instruction"));
7959
7960 p = frag_more (i.tm.opcode_length + size);
7961 switch (i.tm.opcode_length)
7962 {
7963 case 2:
7964 *p++ = i.tm.base_opcode >> 8;
7965 /* Fall through. */
7966 case 1:
7967 *p++ = i.tm.base_opcode;
7968 break;
7969 default:
7970 abort ();
7971 }
7972
7973 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7974 if (size == 4
7975 && jump_reloc == NO_RELOC
7976 && need_plt32_p (i.op[0].disps->X_add_symbol))
7977 jump_reloc = BFD_RELOC_X86_64_PLT32;
7978 #endif
7979
7980 jump_reloc = reloc (size, 1, 1, jump_reloc);
7981
7982 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7983 i.op[0].disps, 1, jump_reloc);
7984
7985 /* All jumps handled here are signed, but don't use a signed limit
7986 check for 32 and 16 bit jumps as we want to allow wrap around at
7987 4G and 64k respectively. */
7988 if (size == 1)
7989 fixP->fx_signed = 1;
7990 }
7991
7992 static void
7993 output_interseg_jump (void)
7994 {
7995 char *p;
7996 int size;
7997 int prefix;
7998 int code16;
7999
8000 code16 = 0;
8001 if (flag_code == CODE_16BIT)
8002 code16 = CODE16;
8003
8004 prefix = 0;
8005 if (i.prefix[DATA_PREFIX] != 0)
8006 {
8007 prefix = 1;
8008 i.prefixes -= 1;
8009 code16 ^= CODE16;
8010 }
8011 if (i.prefix[REX_PREFIX] != 0)
8012 {
8013 prefix++;
8014 i.prefixes -= 1;
8015 }
8016
8017 size = 4;
8018 if (code16)
8019 size = 2;
8020
8021 if (i.prefixes != 0 && !intel_syntax)
8022 as_warn (_("skipping prefixes on this instruction"));
8023
8024 /* 1 opcode; 2 segment; offset */
8025 p = frag_more (prefix + 1 + 2 + size);
8026
8027 if (i.prefix[DATA_PREFIX] != 0)
8028 *p++ = DATA_PREFIX_OPCODE;
8029
8030 if (i.prefix[REX_PREFIX] != 0)
8031 *p++ = i.prefix[REX_PREFIX];
8032
8033 *p++ = i.tm.base_opcode;
8034 if (i.op[1].imms->X_op == O_constant)
8035 {
8036 offsetT n = i.op[1].imms->X_add_number;
8037
8038 if (size == 2
8039 && !fits_in_unsigned_word (n)
8040 && !fits_in_signed_word (n))
8041 {
8042 as_bad (_("16-bit jump out of range"));
8043 return;
8044 }
8045 md_number_to_chars (p, n, size);
8046 }
8047 else
8048 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8049 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
8050 if (i.op[0].imms->X_op != O_constant)
8051 as_bad (_("can't handle non absolute segment in `%s'"),
8052 i.tm.name);
8053 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8054 }
8055
8056 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8057 void
8058 x86_cleanup (void)
8059 {
8060 char *p;
8061 asection *seg = now_seg;
8062 subsegT subseg = now_subseg;
8063 asection *sec;
8064 unsigned int alignment, align_size_1;
8065 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8066 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8067 unsigned int padding;
8068
8069 if (!IS_ELF || !x86_used_note)
8070 return;
8071
8072 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8073
8074 /* The .note.gnu.property section layout:
8075
8076 Field Length Contents
8077 ---- ---- ----
8078 n_namsz 4 4
8079 n_descsz 4 The note descriptor size
8080 n_type 4 NT_GNU_PROPERTY_TYPE_0
8081 n_name 4 "GNU"
8082 n_desc n_descsz The program property array
8083 .... .... ....
8084 */
8085
8086 /* Create the .note.gnu.property section. */
8087 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8088 bfd_set_section_flags (sec,
8089 (SEC_ALLOC
8090 | SEC_LOAD
8091 | SEC_DATA
8092 | SEC_HAS_CONTENTS
8093 | SEC_READONLY));
8094
8095 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8096 {
8097 align_size_1 = 7;
8098 alignment = 3;
8099 }
8100 else
8101 {
8102 align_size_1 = 3;
8103 alignment = 2;
8104 }
8105
8106 bfd_set_section_alignment (sec, alignment);
8107 elf_section_type (sec) = SHT_NOTE;
8108
8109 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8110 + 4-byte data */
8111 isa_1_descsz_raw = 4 + 4 + 4;
8112 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8113 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8114
8115 feature_2_descsz_raw = isa_1_descsz;
8116 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8117 + 4-byte data */
8118 feature_2_descsz_raw += 4 + 4 + 4;
8119 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8120 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8121 & ~align_size_1);
8122
8123 descsz = feature_2_descsz;
8124 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8125 p = frag_more (4 + 4 + 4 + 4 + descsz);
8126
8127 /* Write n_namsz. */
8128 md_number_to_chars (p, (valueT) 4, 4);
8129
8130 /* Write n_descsz. */
8131 md_number_to_chars (p + 4, (valueT) descsz, 4);
8132
8133 /* Write n_type. */
8134 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8135
8136 /* Write n_name. */
8137 memcpy (p + 4 * 3, "GNU", 4);
8138
8139 /* Write 4-byte type. */
8140 md_number_to_chars (p + 4 * 4,
8141 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8142
8143 /* Write 4-byte data size. */
8144 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8145
8146 /* Write 4-byte data. */
8147 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8148
8149 /* Zero out paddings. */
8150 padding = isa_1_descsz - isa_1_descsz_raw;
8151 if (padding)
8152 memset (p + 4 * 7, 0, padding);
8153
8154 /* Write 4-byte type. */
8155 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8156 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8157
8158 /* Write 4-byte data size. */
8159 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8160
8161 /* Write 4-byte data. */
8162 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8163 (valueT) x86_feature_2_used, 4);
8164
8165 /* Zero out paddings. */
8166 padding = feature_2_descsz - feature_2_descsz_raw;
8167 if (padding)
8168 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8169
8170 /* We probably can't restore the current segment, for there likely
8171 isn't one yet... */
8172 if (seg && subseg)
8173 subseg_set (seg, subseg);
8174 }
8175 #endif
8176
8177 static unsigned int
8178 encoding_length (const fragS *start_frag, offsetT start_off,
8179 const char *frag_now_ptr)
8180 {
8181 unsigned int len = 0;
8182
8183 if (start_frag != frag_now)
8184 {
8185 const fragS *fr = start_frag;
8186
8187 do {
8188 len += fr->fr_fix;
8189 fr = fr->fr_next;
8190 } while (fr && fr != frag_now);
8191 }
8192
8193 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8194 }
8195
8196 static void
8197 output_insn (void)
8198 {
8199 fragS *insn_start_frag;
8200 offsetT insn_start_off;
8201
8202 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8203 if (IS_ELF && x86_used_note)
8204 {
8205 if (i.tm.cpu_flags.bitfield.cpucmov)
8206 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8207 if (i.tm.cpu_flags.bitfield.cpusse)
8208 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8209 if (i.tm.cpu_flags.bitfield.cpusse2)
8210 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8211 if (i.tm.cpu_flags.bitfield.cpusse3)
8212 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8213 if (i.tm.cpu_flags.bitfield.cpussse3)
8214 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8215 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8216 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8217 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8218 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8219 if (i.tm.cpu_flags.bitfield.cpuavx)
8220 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8221 if (i.tm.cpu_flags.bitfield.cpuavx2)
8222 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8223 if (i.tm.cpu_flags.bitfield.cpufma)
8224 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8225 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8226 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8227 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8228 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8229 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8230 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8231 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8232 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8233 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8234 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8235 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8236 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8237 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8238 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8239 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8240 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8241 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8242 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8243 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8244 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8245 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8246 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8247 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8248 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8249 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8250 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8251 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8252 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8253 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8254 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
8255
8256 if (i.tm.cpu_flags.bitfield.cpu8087
8257 || i.tm.cpu_flags.bitfield.cpu287
8258 || i.tm.cpu_flags.bitfield.cpu387
8259 || i.tm.cpu_flags.bitfield.cpu687
8260 || i.tm.cpu_flags.bitfield.cpufisttp)
8261 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8262 /* Don't set GNU_PROPERTY_X86_FEATURE_2_MMX for prefetchtXXX nor
8263 Xfence instructions. */
8264 if (i.tm.base_opcode != 0xf18
8265 && i.tm.base_opcode != 0xf0d
8266 && i.tm.base_opcode != 0xfaef8
8267 && (i.has_regmmx
8268 || i.tm.cpu_flags.bitfield.cpummx
8269 || i.tm.cpu_flags.bitfield.cpua3dnow
8270 || i.tm.cpu_flags.bitfield.cpua3dnowa))
8271 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8272 if (i.has_regxmm)
8273 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8274 if (i.has_regymm)
8275 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8276 if (i.has_regzmm)
8277 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8278 if (i.tm.cpu_flags.bitfield.cpufxsr)
8279 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8280 if (i.tm.cpu_flags.bitfield.cpuxsave)
8281 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8282 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8283 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8284 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8285 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8286 }
8287 #endif
8288
8289 /* Tie dwarf2 debug info to the address at the start of the insn.
8290 We can't do this after the insn has been output as the current
8291 frag may have been closed off. eg. by frag_var. */
8292 dwarf2_emit_insn (0);
8293
8294 insn_start_frag = frag_now;
8295 insn_start_off = frag_now_fix ();
8296
8297 /* Output jumps. */
8298 if (i.tm.opcode_modifier.jump == JUMP)
8299 output_branch ();
8300 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
8301 || i.tm.opcode_modifier.jump == JUMP_DWORD)
8302 output_jump ();
8303 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
8304 output_interseg_jump ();
8305 else
8306 {
8307 /* Output normal instructions here. */
8308 char *p;
8309 unsigned char *q;
8310 unsigned int j;
8311 unsigned int prefix;
8312
8313 if (avoid_fence
8314 && (i.tm.base_opcode == 0xfaee8
8315 || i.tm.base_opcode == 0xfaef0
8316 || i.tm.base_opcode == 0xfaef8))
8317 {
8318 /* Encode lfence, mfence, and sfence as
8319 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8320 offsetT val = 0x240483f0ULL;
8321 p = frag_more (5);
8322 md_number_to_chars (p, val, 5);
8323 return;
8324 }
8325
8326 /* Some processors fail on LOCK prefix. This options makes
8327 assembler ignore LOCK prefix and serves as a workaround. */
8328 if (omit_lock_prefix)
8329 {
8330 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8331 return;
8332 i.prefix[LOCK_PREFIX] = 0;
8333 }
8334
8335 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8336 don't need the explicit prefix. */
8337 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
8338 {
8339 switch (i.tm.opcode_length)
8340 {
8341 case 3:
8342 if (i.tm.base_opcode & 0xff000000)
8343 {
8344 prefix = (i.tm.base_opcode >> 24) & 0xff;
8345 if (!i.tm.cpu_flags.bitfield.cpupadlock
8346 || prefix != REPE_PREFIX_OPCODE
8347 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8348 add_prefix (prefix);
8349 }
8350 break;
8351 case 2:
8352 if ((i.tm.base_opcode & 0xff0000) != 0)
8353 {
8354 prefix = (i.tm.base_opcode >> 16) & 0xff;
8355 add_prefix (prefix);
8356 }
8357 break;
8358 case 1:
8359 break;
8360 case 0:
8361 /* Check for pseudo prefixes. */
8362 as_bad_where (insn_start_frag->fr_file,
8363 insn_start_frag->fr_line,
8364 _("pseudo prefix without instruction"));
8365 return;
8366 default:
8367 abort ();
8368 }
8369
8370 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8371 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8372 R_X86_64_GOTTPOFF relocation so that linker can safely
8373 perform IE->LE optimization. */
8374 if (x86_elf_abi == X86_64_X32_ABI
8375 && i.operands == 2
8376 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8377 && i.prefix[REX_PREFIX] == 0)
8378 add_prefix (REX_OPCODE);
8379 #endif
8380
8381 /* The prefix bytes. */
8382 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8383 if (*q)
8384 FRAG_APPEND_1_CHAR (*q);
8385 }
8386 else
8387 {
8388 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8389 if (*q)
8390 switch (j)
8391 {
8392 case REX_PREFIX:
8393 /* REX byte is encoded in VEX prefix. */
8394 break;
8395 case SEG_PREFIX:
8396 case ADDR_PREFIX:
8397 FRAG_APPEND_1_CHAR (*q);
8398 break;
8399 default:
8400 /* There should be no other prefixes for instructions
8401 with VEX prefix. */
8402 abort ();
8403 }
8404
8405 /* For EVEX instructions i.vrex should become 0 after
8406 build_evex_prefix. For VEX instructions upper 16 registers
8407 aren't available, so VREX should be 0. */
8408 if (i.vrex)
8409 abort ();
8410 /* Now the VEX prefix. */
8411 p = frag_more (i.vex.length);
8412 for (j = 0; j < i.vex.length; j++)
8413 p[j] = i.vex.bytes[j];
8414 }
8415
8416 /* Now the opcode; be careful about word order here! */
8417 if (i.tm.opcode_length == 1)
8418 {
8419 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8420 }
8421 else
8422 {
8423 switch (i.tm.opcode_length)
8424 {
8425 case 4:
8426 p = frag_more (4);
8427 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8428 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8429 break;
8430 case 3:
8431 p = frag_more (3);
8432 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8433 break;
8434 case 2:
8435 p = frag_more (2);
8436 break;
8437 default:
8438 abort ();
8439 break;
8440 }
8441
8442 /* Put out high byte first: can't use md_number_to_chars! */
8443 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8444 *p = i.tm.base_opcode & 0xff;
8445 }
8446
8447 /* Now the modrm byte and sib byte (if present). */
8448 if (i.tm.opcode_modifier.modrm)
8449 {
8450 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8451 | i.rm.reg << 3
8452 | i.rm.mode << 6));
8453 /* If i.rm.regmem == ESP (4)
8454 && i.rm.mode != (Register mode)
8455 && not 16 bit
8456 ==> need second modrm byte. */
8457 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8458 && i.rm.mode != 3
8459 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
8460 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8461 | i.sib.index << 3
8462 | i.sib.scale << 6));
8463 }
8464
8465 if (i.disp_operands)
8466 output_disp (insn_start_frag, insn_start_off);
8467
8468 if (i.imm_operands)
8469 output_imm (insn_start_frag, insn_start_off);
8470
8471 /*
8472 * frag_now_fix () returning plain abs_section_offset when we're in the
8473 * absolute section, and abs_section_offset not getting updated as data
8474 * gets added to the frag breaks the logic below.
8475 */
8476 if (now_seg != absolute_section)
8477 {
8478 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8479 if (j > 15)
8480 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8481 j);
8482 }
8483 }
8484
8485 #ifdef DEBUG386
8486 if (flag_debug)
8487 {
8488 pi ("" /*line*/, &i);
8489 }
8490 #endif /* DEBUG386 */
8491 }
8492
8493 /* Return the size of the displacement operand N. */
8494
8495 static int
8496 disp_size (unsigned int n)
8497 {
8498 int size = 4;
8499
8500 if (i.types[n].bitfield.disp64)
8501 size = 8;
8502 else if (i.types[n].bitfield.disp8)
8503 size = 1;
8504 else if (i.types[n].bitfield.disp16)
8505 size = 2;
8506 return size;
8507 }
8508
8509 /* Return the size of the immediate operand N. */
8510
8511 static int
8512 imm_size (unsigned int n)
8513 {
8514 int size = 4;
8515 if (i.types[n].bitfield.imm64)
8516 size = 8;
8517 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8518 size = 1;
8519 else if (i.types[n].bitfield.imm16)
8520 size = 2;
8521 return size;
8522 }
8523
8524 static void
8525 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
8526 {
8527 char *p;
8528 unsigned int n;
8529
8530 for (n = 0; n < i.operands; n++)
8531 {
8532 if (operand_type_check (i.types[n], disp))
8533 {
8534 if (i.op[n].disps->X_op == O_constant)
8535 {
8536 int size = disp_size (n);
8537 offsetT val = i.op[n].disps->X_add_number;
8538
8539 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8540 size);
8541 p = frag_more (size);
8542 md_number_to_chars (p, val, size);
8543 }
8544 else
8545 {
8546 enum bfd_reloc_code_real reloc_type;
8547 int size = disp_size (n);
8548 int sign = i.types[n].bitfield.disp32s;
8549 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
8550 fixS *fixP;
8551
8552 /* We can't have 8 bit displacement here. */
8553 gas_assert (!i.types[n].bitfield.disp8);
8554
8555 /* The PC relative address is computed relative
8556 to the instruction boundary, so in case immediate
8557 fields follows, we need to adjust the value. */
8558 if (pcrel && i.imm_operands)
8559 {
8560 unsigned int n1;
8561 int sz = 0;
8562
8563 for (n1 = 0; n1 < i.operands; n1++)
8564 if (operand_type_check (i.types[n1], imm))
8565 {
8566 /* Only one immediate is allowed for PC
8567 relative address. */
8568 gas_assert (sz == 0);
8569 sz = imm_size (n1);
8570 i.op[n].disps->X_add_number -= sz;
8571 }
8572 /* We should find the immediate. */
8573 gas_assert (sz != 0);
8574 }
8575
8576 p = frag_more (size);
8577 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
8578 if (GOT_symbol
8579 && GOT_symbol == i.op[n].disps->X_add_symbol
8580 && (((reloc_type == BFD_RELOC_32
8581 || reloc_type == BFD_RELOC_X86_64_32S
8582 || (reloc_type == BFD_RELOC_64
8583 && object_64bit))
8584 && (i.op[n].disps->X_op == O_symbol
8585 || (i.op[n].disps->X_op == O_add
8586 && ((symbol_get_value_expression
8587 (i.op[n].disps->X_op_symbol)->X_op)
8588 == O_subtract))))
8589 || reloc_type == BFD_RELOC_32_PCREL))
8590 {
8591 if (!object_64bit)
8592 {
8593 reloc_type = BFD_RELOC_386_GOTPC;
8594 i.op[n].imms->X_add_number +=
8595 encoding_length (insn_start_frag, insn_start_off, p);
8596 }
8597 else if (reloc_type == BFD_RELOC_64)
8598 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8599 else
8600 /* Don't do the adjustment for x86-64, as there
8601 the pcrel addressing is relative to the _next_
8602 insn, and that is taken care of in other code. */
8603 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8604 }
8605 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8606 size, i.op[n].disps, pcrel,
8607 reloc_type);
8608 /* Check for "call/jmp *mem", "mov mem, %reg",
8609 "test %reg, mem" and "binop mem, %reg" where binop
8610 is one of adc, add, and, cmp, or, sbb, sub, xor
8611 instructions without data prefix. Always generate
8612 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
8613 if (i.prefix[DATA_PREFIX] == 0
8614 && (generate_relax_relocations
8615 || (!object_64bit
8616 && i.rm.mode == 0
8617 && i.rm.regmem == 5))
8618 && (i.rm.mode == 2
8619 || (i.rm.mode == 0 && i.rm.regmem == 5))
8620 && ((i.operands == 1
8621 && i.tm.base_opcode == 0xff
8622 && (i.rm.reg == 2 || i.rm.reg == 4))
8623 || (i.operands == 2
8624 && (i.tm.base_opcode == 0x8b
8625 || i.tm.base_opcode == 0x85
8626 || (i.tm.base_opcode & 0xc7) == 0x03))))
8627 {
8628 if (object_64bit)
8629 {
8630 fixP->fx_tcbit = i.rex != 0;
8631 if (i.base_reg
8632 && (i.base_reg->reg_num == RegIP))
8633 fixP->fx_tcbit2 = 1;
8634 }
8635 else
8636 fixP->fx_tcbit2 = 1;
8637 }
8638 }
8639 }
8640 }
8641 }
8642
8643 static void
8644 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
8645 {
8646 char *p;
8647 unsigned int n;
8648
8649 for (n = 0; n < i.operands; n++)
8650 {
8651 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8652 if (i.rounding && (int) n == i.rounding->operand)
8653 continue;
8654
8655 if (operand_type_check (i.types[n], imm))
8656 {
8657 if (i.op[n].imms->X_op == O_constant)
8658 {
8659 int size = imm_size (n);
8660 offsetT val;
8661
8662 val = offset_in_range (i.op[n].imms->X_add_number,
8663 size);
8664 p = frag_more (size);
8665 md_number_to_chars (p, val, size);
8666 }
8667 else
8668 {
8669 /* Not absolute_section.
8670 Need a 32-bit fixup (don't support 8bit
8671 non-absolute imms). Try to support other
8672 sizes ... */
8673 enum bfd_reloc_code_real reloc_type;
8674 int size = imm_size (n);
8675 int sign;
8676
8677 if (i.types[n].bitfield.imm32s
8678 && (i.suffix == QWORD_MNEM_SUFFIX
8679 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
8680 sign = 1;
8681 else
8682 sign = 0;
8683
8684 p = frag_more (size);
8685 reloc_type = reloc (size, 0, sign, i.reloc[n]);
8686
8687 /* This is tough to explain. We end up with this one if we
8688 * have operands that look like
8689 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8690 * obtain the absolute address of the GOT, and it is strongly
8691 * preferable from a performance point of view to avoid using
8692 * a runtime relocation for this. The actual sequence of
8693 * instructions often look something like:
8694 *
8695 * call .L66
8696 * .L66:
8697 * popl %ebx
8698 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8699 *
8700 * The call and pop essentially return the absolute address
8701 * of the label .L66 and store it in %ebx. The linker itself
8702 * will ultimately change the first operand of the addl so
8703 * that %ebx points to the GOT, but to keep things simple, the
8704 * .o file must have this operand set so that it generates not
8705 * the absolute address of .L66, but the absolute address of
8706 * itself. This allows the linker itself simply treat a GOTPC
8707 * relocation as asking for a pcrel offset to the GOT to be
8708 * added in, and the addend of the relocation is stored in the
8709 * operand field for the instruction itself.
8710 *
8711 * Our job here is to fix the operand so that it would add
8712 * the correct offset so that %ebx would point to itself. The
8713 * thing that is tricky is that .-.L66 will point to the
8714 * beginning of the instruction, so we need to further modify
8715 * the operand so that it will point to itself. There are
8716 * other cases where you have something like:
8717 *
8718 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8719 *
8720 * and here no correction would be required. Internally in
8721 * the assembler we treat operands of this form as not being
8722 * pcrel since the '.' is explicitly mentioned, and I wonder
8723 * whether it would simplify matters to do it this way. Who
8724 * knows. In earlier versions of the PIC patches, the
8725 * pcrel_adjust field was used to store the correction, but
8726 * since the expression is not pcrel, I felt it would be
8727 * confusing to do it this way. */
8728
8729 if ((reloc_type == BFD_RELOC_32
8730 || reloc_type == BFD_RELOC_X86_64_32S
8731 || reloc_type == BFD_RELOC_64)
8732 && GOT_symbol
8733 && GOT_symbol == i.op[n].imms->X_add_symbol
8734 && (i.op[n].imms->X_op == O_symbol
8735 || (i.op[n].imms->X_op == O_add
8736 && ((symbol_get_value_expression
8737 (i.op[n].imms->X_op_symbol)->X_op)
8738 == O_subtract))))
8739 {
8740 if (!object_64bit)
8741 reloc_type = BFD_RELOC_386_GOTPC;
8742 else if (size == 4)
8743 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8744 else if (size == 8)
8745 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8746 i.op[n].imms->X_add_number +=
8747 encoding_length (insn_start_frag, insn_start_off, p);
8748 }
8749 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8750 i.op[n].imms, 0, reloc_type);
8751 }
8752 }
8753 }
8754 }
8755 \f
8756 /* x86_cons_fix_new is called via the expression parsing code when a
8757 reloc is needed. We use this hook to get the correct .got reloc. */
8758 static int cons_sign = -1;
8759
8760 void
8761 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
8762 expressionS *exp, bfd_reloc_code_real_type r)
8763 {
8764 r = reloc (len, 0, cons_sign, r);
8765
8766 #ifdef TE_PE
8767 if (exp->X_op == O_secrel)
8768 {
8769 exp->X_op = O_symbol;
8770 r = BFD_RELOC_32_SECREL;
8771 }
8772 #endif
8773
8774 fix_new_exp (frag, off, len, exp, 0, r);
8775 }
8776
8777 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8778 purpose of the `.dc.a' internal pseudo-op. */
8779
8780 int
8781 x86_address_bytes (void)
8782 {
8783 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8784 return 4;
8785 return stdoutput->arch_info->bits_per_address / 8;
8786 }
8787
8788 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8789 || defined (LEX_AT)
8790 # define lex_got(reloc, adjust, types) NULL
8791 #else
8792 /* Parse operands of the form
8793 <symbol>@GOTOFF+<nnn>
8794 and similar .plt or .got references.
8795
8796 If we find one, set up the correct relocation in RELOC and copy the
8797 input string, minus the `@GOTOFF' into a malloc'd buffer for
8798 parsing by the calling routine. Return this buffer, and if ADJUST
8799 is non-null set it to the length of the string we removed from the
8800 input line. Otherwise return NULL. */
8801 static char *
8802 lex_got (enum bfd_reloc_code_real *rel,
8803 int *adjust,
8804 i386_operand_type *types)
8805 {
8806 /* Some of the relocations depend on the size of what field is to
8807 be relocated. But in our callers i386_immediate and i386_displacement
8808 we don't yet know the operand size (this will be set by insn
8809 matching). Hence we record the word32 relocation here,
8810 and adjust the reloc according to the real size in reloc(). */
8811 static const struct {
8812 const char *str;
8813 int len;
8814 const enum bfd_reloc_code_real rel[2];
8815 const i386_operand_type types64;
8816 } gotrel[] = {
8817 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8818 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8819 BFD_RELOC_SIZE32 },
8820 OPERAND_TYPE_IMM32_64 },
8821 #endif
8822 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8823 BFD_RELOC_X86_64_PLTOFF64 },
8824 OPERAND_TYPE_IMM64 },
8825 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8826 BFD_RELOC_X86_64_PLT32 },
8827 OPERAND_TYPE_IMM32_32S_DISP32 },
8828 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8829 BFD_RELOC_X86_64_GOTPLT64 },
8830 OPERAND_TYPE_IMM64_DISP64 },
8831 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8832 BFD_RELOC_X86_64_GOTOFF64 },
8833 OPERAND_TYPE_IMM64_DISP64 },
8834 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8835 BFD_RELOC_X86_64_GOTPCREL },
8836 OPERAND_TYPE_IMM32_32S_DISP32 },
8837 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8838 BFD_RELOC_X86_64_TLSGD },
8839 OPERAND_TYPE_IMM32_32S_DISP32 },
8840 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8841 _dummy_first_bfd_reloc_code_real },
8842 OPERAND_TYPE_NONE },
8843 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8844 BFD_RELOC_X86_64_TLSLD },
8845 OPERAND_TYPE_IMM32_32S_DISP32 },
8846 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8847 BFD_RELOC_X86_64_GOTTPOFF },
8848 OPERAND_TYPE_IMM32_32S_DISP32 },
8849 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8850 BFD_RELOC_X86_64_TPOFF32 },
8851 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8852 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8853 _dummy_first_bfd_reloc_code_real },
8854 OPERAND_TYPE_NONE },
8855 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8856 BFD_RELOC_X86_64_DTPOFF32 },
8857 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8858 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8859 _dummy_first_bfd_reloc_code_real },
8860 OPERAND_TYPE_NONE },
8861 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8862 _dummy_first_bfd_reloc_code_real },
8863 OPERAND_TYPE_NONE },
8864 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8865 BFD_RELOC_X86_64_GOT32 },
8866 OPERAND_TYPE_IMM32_32S_64_DISP32 },
8867 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8868 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
8869 OPERAND_TYPE_IMM32_32S_DISP32 },
8870 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8871 BFD_RELOC_X86_64_TLSDESC_CALL },
8872 OPERAND_TYPE_IMM32_32S_DISP32 },
8873 };
8874 char *cp;
8875 unsigned int j;
8876
8877 #if defined (OBJ_MAYBE_ELF)
8878 if (!IS_ELF)
8879 return NULL;
8880 #endif
8881
8882 for (cp = input_line_pointer; *cp != '@'; cp++)
8883 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8884 return NULL;
8885
8886 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8887 {
8888 int len = gotrel[j].len;
8889 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8890 {
8891 if (gotrel[j].rel[object_64bit] != 0)
8892 {
8893 int first, second;
8894 char *tmpbuf, *past_reloc;
8895
8896 *rel = gotrel[j].rel[object_64bit];
8897
8898 if (types)
8899 {
8900 if (flag_code != CODE_64BIT)
8901 {
8902 types->bitfield.imm32 = 1;
8903 types->bitfield.disp32 = 1;
8904 }
8905 else
8906 *types = gotrel[j].types64;
8907 }
8908
8909 if (j != 0 && GOT_symbol == NULL)
8910 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8911
8912 /* The length of the first part of our input line. */
8913 first = cp - input_line_pointer;
8914
8915 /* The second part goes from after the reloc token until
8916 (and including) an end_of_line char or comma. */
8917 past_reloc = cp + 1 + len;
8918 cp = past_reloc;
8919 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8920 ++cp;
8921 second = cp + 1 - past_reloc;
8922
8923 /* Allocate and copy string. The trailing NUL shouldn't
8924 be necessary, but be safe. */
8925 tmpbuf = XNEWVEC (char, first + second + 2);
8926 memcpy (tmpbuf, input_line_pointer, first);
8927 if (second != 0 && *past_reloc != ' ')
8928 /* Replace the relocation token with ' ', so that
8929 errors like foo@GOTOFF1 will be detected. */
8930 tmpbuf[first++] = ' ';
8931 else
8932 /* Increment length by 1 if the relocation token is
8933 removed. */
8934 len++;
8935 if (adjust)
8936 *adjust = len;
8937 memcpy (tmpbuf + first, past_reloc, second);
8938 tmpbuf[first + second] = '\0';
8939 return tmpbuf;
8940 }
8941
8942 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8943 gotrel[j].str, 1 << (5 + object_64bit));
8944 return NULL;
8945 }
8946 }
8947
8948 /* Might be a symbol version string. Don't as_bad here. */
8949 return NULL;
8950 }
8951 #endif
8952
8953 #ifdef TE_PE
8954 #ifdef lex_got
8955 #undef lex_got
8956 #endif
8957 /* Parse operands of the form
8958 <symbol>@SECREL32+<nnn>
8959
8960 If we find one, set up the correct relocation in RELOC and copy the
8961 input string, minus the `@SECREL32' into a malloc'd buffer for
8962 parsing by the calling routine. Return this buffer, and if ADJUST
8963 is non-null set it to the length of the string we removed from the
8964 input line. Otherwise return NULL.
8965
8966 This function is copied from the ELF version above adjusted for PE targets. */
8967
8968 static char *
8969 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8970 int *adjust ATTRIBUTE_UNUSED,
8971 i386_operand_type *types)
8972 {
8973 static const struct
8974 {
8975 const char *str;
8976 int len;
8977 const enum bfd_reloc_code_real rel[2];
8978 const i386_operand_type types64;
8979 }
8980 gotrel[] =
8981 {
8982 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8983 BFD_RELOC_32_SECREL },
8984 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8985 };
8986
8987 char *cp;
8988 unsigned j;
8989
8990 for (cp = input_line_pointer; *cp != '@'; cp++)
8991 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8992 return NULL;
8993
8994 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8995 {
8996 int len = gotrel[j].len;
8997
8998 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8999 {
9000 if (gotrel[j].rel[object_64bit] != 0)
9001 {
9002 int first, second;
9003 char *tmpbuf, *past_reloc;
9004
9005 *rel = gotrel[j].rel[object_64bit];
9006 if (adjust)
9007 *adjust = len;
9008
9009 if (types)
9010 {
9011 if (flag_code != CODE_64BIT)
9012 {
9013 types->bitfield.imm32 = 1;
9014 types->bitfield.disp32 = 1;
9015 }
9016 else
9017 *types = gotrel[j].types64;
9018 }
9019
9020 /* The length of the first part of our input line. */
9021 first = cp - input_line_pointer;
9022
9023 /* The second part goes from after the reloc token until
9024 (and including) an end_of_line char or comma. */
9025 past_reloc = cp + 1 + len;
9026 cp = past_reloc;
9027 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9028 ++cp;
9029 second = cp + 1 - past_reloc;
9030
9031 /* Allocate and copy string. The trailing NUL shouldn't
9032 be necessary, but be safe. */
9033 tmpbuf = XNEWVEC (char, first + second + 2);
9034 memcpy (tmpbuf, input_line_pointer, first);
9035 if (second != 0 && *past_reloc != ' ')
9036 /* Replace the relocation token with ' ', so that
9037 errors like foo@SECLREL321 will be detected. */
9038 tmpbuf[first++] = ' ';
9039 memcpy (tmpbuf + first, past_reloc, second);
9040 tmpbuf[first + second] = '\0';
9041 return tmpbuf;
9042 }
9043
9044 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9045 gotrel[j].str, 1 << (5 + object_64bit));
9046 return NULL;
9047 }
9048 }
9049
9050 /* Might be a symbol version string. Don't as_bad here. */
9051 return NULL;
9052 }
9053
9054 #endif /* TE_PE */
9055
9056 bfd_reloc_code_real_type
9057 x86_cons (expressionS *exp, int size)
9058 {
9059 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9060
9061 intel_syntax = -intel_syntax;
9062
9063 exp->X_md = 0;
9064 if (size == 4 || (object_64bit && size == 8))
9065 {
9066 /* Handle @GOTOFF and the like in an expression. */
9067 char *save;
9068 char *gotfree_input_line;
9069 int adjust = 0;
9070
9071 save = input_line_pointer;
9072 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
9073 if (gotfree_input_line)
9074 input_line_pointer = gotfree_input_line;
9075
9076 expression (exp);
9077
9078 if (gotfree_input_line)
9079 {
9080 /* expression () has merrily parsed up to the end of line,
9081 or a comma - in the wrong buffer. Transfer how far
9082 input_line_pointer has moved to the right buffer. */
9083 input_line_pointer = (save
9084 + (input_line_pointer - gotfree_input_line)
9085 + adjust);
9086 free (gotfree_input_line);
9087 if (exp->X_op == O_constant
9088 || exp->X_op == O_absent
9089 || exp->X_op == O_illegal
9090 || exp->X_op == O_register
9091 || exp->X_op == O_big)
9092 {
9093 char c = *input_line_pointer;
9094 *input_line_pointer = 0;
9095 as_bad (_("missing or invalid expression `%s'"), save);
9096 *input_line_pointer = c;
9097 }
9098 else if ((got_reloc == BFD_RELOC_386_PLT32
9099 || got_reloc == BFD_RELOC_X86_64_PLT32)
9100 && exp->X_op != O_symbol)
9101 {
9102 char c = *input_line_pointer;
9103 *input_line_pointer = 0;
9104 as_bad (_("invalid PLT expression `%s'"), save);
9105 *input_line_pointer = c;
9106 }
9107 }
9108 }
9109 else
9110 expression (exp);
9111
9112 intel_syntax = -intel_syntax;
9113
9114 if (intel_syntax)
9115 i386_intel_simplify (exp);
9116
9117 return got_reloc;
9118 }
9119
9120 static void
9121 signed_cons (int size)
9122 {
9123 if (flag_code == CODE_64BIT)
9124 cons_sign = 1;
9125 cons (size);
9126 cons_sign = -1;
9127 }
9128
9129 #ifdef TE_PE
9130 static void
9131 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
9132 {
9133 expressionS exp;
9134
9135 do
9136 {
9137 expression (&exp);
9138 if (exp.X_op == O_symbol)
9139 exp.X_op = O_secrel;
9140
9141 emit_expr (&exp, 4);
9142 }
9143 while (*input_line_pointer++ == ',');
9144
9145 input_line_pointer--;
9146 demand_empty_rest_of_line ();
9147 }
9148 #endif
9149
9150 /* Handle Vector operations. */
9151
9152 static char *
9153 check_VecOperations (char *op_string, char *op_end)
9154 {
9155 const reg_entry *mask;
9156 const char *saved;
9157 char *end_op;
9158
9159 while (*op_string
9160 && (op_end == NULL || op_string < op_end))
9161 {
9162 saved = op_string;
9163 if (*op_string == '{')
9164 {
9165 op_string++;
9166
9167 /* Check broadcasts. */
9168 if (strncmp (op_string, "1to", 3) == 0)
9169 {
9170 int bcst_type;
9171
9172 if (i.broadcast)
9173 goto duplicated_vec_op;
9174
9175 op_string += 3;
9176 if (*op_string == '8')
9177 bcst_type = 8;
9178 else if (*op_string == '4')
9179 bcst_type = 4;
9180 else if (*op_string == '2')
9181 bcst_type = 2;
9182 else if (*op_string == '1'
9183 && *(op_string+1) == '6')
9184 {
9185 bcst_type = 16;
9186 op_string++;
9187 }
9188 else
9189 {
9190 as_bad (_("Unsupported broadcast: `%s'"), saved);
9191 return NULL;
9192 }
9193 op_string++;
9194
9195 broadcast_op.type = bcst_type;
9196 broadcast_op.operand = this_operand;
9197 broadcast_op.bytes = 0;
9198 i.broadcast = &broadcast_op;
9199 }
9200 /* Check masking operation. */
9201 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9202 {
9203 /* k0 can't be used for write mask. */
9204 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
9205 {
9206 as_bad (_("`%s%s' can't be used for write mask"),
9207 register_prefix, mask->reg_name);
9208 return NULL;
9209 }
9210
9211 if (!i.mask)
9212 {
9213 mask_op.mask = mask;
9214 mask_op.zeroing = 0;
9215 mask_op.operand = this_operand;
9216 i.mask = &mask_op;
9217 }
9218 else
9219 {
9220 if (i.mask->mask)
9221 goto duplicated_vec_op;
9222
9223 i.mask->mask = mask;
9224
9225 /* Only "{z}" is allowed here. No need to check
9226 zeroing mask explicitly. */
9227 if (i.mask->operand != this_operand)
9228 {
9229 as_bad (_("invalid write mask `%s'"), saved);
9230 return NULL;
9231 }
9232 }
9233
9234 op_string = end_op;
9235 }
9236 /* Check zeroing-flag for masking operation. */
9237 else if (*op_string == 'z')
9238 {
9239 if (!i.mask)
9240 {
9241 mask_op.mask = NULL;
9242 mask_op.zeroing = 1;
9243 mask_op.operand = this_operand;
9244 i.mask = &mask_op;
9245 }
9246 else
9247 {
9248 if (i.mask->zeroing)
9249 {
9250 duplicated_vec_op:
9251 as_bad (_("duplicated `%s'"), saved);
9252 return NULL;
9253 }
9254
9255 i.mask->zeroing = 1;
9256
9257 /* Only "{%k}" is allowed here. No need to check mask
9258 register explicitly. */
9259 if (i.mask->operand != this_operand)
9260 {
9261 as_bad (_("invalid zeroing-masking `%s'"),
9262 saved);
9263 return NULL;
9264 }
9265 }
9266
9267 op_string++;
9268 }
9269 else
9270 goto unknown_vec_op;
9271
9272 if (*op_string != '}')
9273 {
9274 as_bad (_("missing `}' in `%s'"), saved);
9275 return NULL;
9276 }
9277 op_string++;
9278
9279 /* Strip whitespace since the addition of pseudo prefixes
9280 changed how the scrubber treats '{'. */
9281 if (is_space_char (*op_string))
9282 ++op_string;
9283
9284 continue;
9285 }
9286 unknown_vec_op:
9287 /* We don't know this one. */
9288 as_bad (_("unknown vector operation: `%s'"), saved);
9289 return NULL;
9290 }
9291
9292 if (i.mask && i.mask->zeroing && !i.mask->mask)
9293 {
9294 as_bad (_("zeroing-masking only allowed with write mask"));
9295 return NULL;
9296 }
9297
9298 return op_string;
9299 }
9300
9301 static int
9302 i386_immediate (char *imm_start)
9303 {
9304 char *save_input_line_pointer;
9305 char *gotfree_input_line;
9306 segT exp_seg = 0;
9307 expressionS *exp;
9308 i386_operand_type types;
9309
9310 operand_type_set (&types, ~0);
9311
9312 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9313 {
9314 as_bad (_("at most %d immediate operands are allowed"),
9315 MAX_IMMEDIATE_OPERANDS);
9316 return 0;
9317 }
9318
9319 exp = &im_expressions[i.imm_operands++];
9320 i.op[this_operand].imms = exp;
9321
9322 if (is_space_char (*imm_start))
9323 ++imm_start;
9324
9325 save_input_line_pointer = input_line_pointer;
9326 input_line_pointer = imm_start;
9327
9328 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9329 if (gotfree_input_line)
9330 input_line_pointer = gotfree_input_line;
9331
9332 exp_seg = expression (exp);
9333
9334 SKIP_WHITESPACE ();
9335
9336 /* Handle vector operations. */
9337 if (*input_line_pointer == '{')
9338 {
9339 input_line_pointer = check_VecOperations (input_line_pointer,
9340 NULL);
9341 if (input_line_pointer == NULL)
9342 return 0;
9343 }
9344
9345 if (*input_line_pointer)
9346 as_bad (_("junk `%s' after expression"), input_line_pointer);
9347
9348 input_line_pointer = save_input_line_pointer;
9349 if (gotfree_input_line)
9350 {
9351 free (gotfree_input_line);
9352
9353 if (exp->X_op == O_constant || exp->X_op == O_register)
9354 exp->X_op = O_illegal;
9355 }
9356
9357 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9358 }
9359
9360 static int
9361 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9362 i386_operand_type types, const char *imm_start)
9363 {
9364 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
9365 {
9366 if (imm_start)
9367 as_bad (_("missing or invalid immediate expression `%s'"),
9368 imm_start);
9369 return 0;
9370 }
9371 else if (exp->X_op == O_constant)
9372 {
9373 /* Size it properly later. */
9374 i.types[this_operand].bitfield.imm64 = 1;
9375 /* If not 64bit, sign extend val. */
9376 if (flag_code != CODE_64BIT
9377 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9378 exp->X_add_number
9379 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
9380 }
9381 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9382 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
9383 && exp_seg != absolute_section
9384 && exp_seg != text_section
9385 && exp_seg != data_section
9386 && exp_seg != bss_section
9387 && exp_seg != undefined_section
9388 && !bfd_is_com_section (exp_seg))
9389 {
9390 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9391 return 0;
9392 }
9393 #endif
9394 else if (!intel_syntax && exp_seg == reg_section)
9395 {
9396 if (imm_start)
9397 as_bad (_("illegal immediate register operand %s"), imm_start);
9398 return 0;
9399 }
9400 else
9401 {
9402 /* This is an address. The size of the address will be
9403 determined later, depending on destination register,
9404 suffix, or the default for the section. */
9405 i.types[this_operand].bitfield.imm8 = 1;
9406 i.types[this_operand].bitfield.imm16 = 1;
9407 i.types[this_operand].bitfield.imm32 = 1;
9408 i.types[this_operand].bitfield.imm32s = 1;
9409 i.types[this_operand].bitfield.imm64 = 1;
9410 i.types[this_operand] = operand_type_and (i.types[this_operand],
9411 types);
9412 }
9413
9414 return 1;
9415 }
9416
9417 static char *
9418 i386_scale (char *scale)
9419 {
9420 offsetT val;
9421 char *save = input_line_pointer;
9422
9423 input_line_pointer = scale;
9424 val = get_absolute_expression ();
9425
9426 switch (val)
9427 {
9428 case 1:
9429 i.log2_scale_factor = 0;
9430 break;
9431 case 2:
9432 i.log2_scale_factor = 1;
9433 break;
9434 case 4:
9435 i.log2_scale_factor = 2;
9436 break;
9437 case 8:
9438 i.log2_scale_factor = 3;
9439 break;
9440 default:
9441 {
9442 char sep = *input_line_pointer;
9443
9444 *input_line_pointer = '\0';
9445 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9446 scale);
9447 *input_line_pointer = sep;
9448 input_line_pointer = save;
9449 return NULL;
9450 }
9451 }
9452 if (i.log2_scale_factor != 0 && i.index_reg == 0)
9453 {
9454 as_warn (_("scale factor of %d without an index register"),
9455 1 << i.log2_scale_factor);
9456 i.log2_scale_factor = 0;
9457 }
9458 scale = input_line_pointer;
9459 input_line_pointer = save;
9460 return scale;
9461 }
9462
9463 static int
9464 i386_displacement (char *disp_start, char *disp_end)
9465 {
9466 expressionS *exp;
9467 segT exp_seg = 0;
9468 char *save_input_line_pointer;
9469 char *gotfree_input_line;
9470 int override;
9471 i386_operand_type bigdisp, types = anydisp;
9472 int ret;
9473
9474 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9475 {
9476 as_bad (_("at most %d displacement operands are allowed"),
9477 MAX_MEMORY_OPERANDS);
9478 return 0;
9479 }
9480
9481 operand_type_set (&bigdisp, 0);
9482 if (i.jumpabsolute
9483 || (current_templates->start->opcode_modifier.jump != JUMP
9484 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
9485 {
9486 bigdisp.bitfield.disp32 = 1;
9487 override = (i.prefix[ADDR_PREFIX] != 0);
9488 if (flag_code == CODE_64BIT)
9489 {
9490 if (!override)
9491 {
9492 bigdisp.bitfield.disp32s = 1;
9493 bigdisp.bitfield.disp64 = 1;
9494 }
9495 }
9496 else if ((flag_code == CODE_16BIT) ^ override)
9497 {
9498 bigdisp.bitfield.disp32 = 0;
9499 bigdisp.bitfield.disp16 = 1;
9500 }
9501 }
9502 else
9503 {
9504 /* For PC-relative branches, the width of the displacement
9505 is dependent upon data size, not address size. */
9506 override = (i.prefix[DATA_PREFIX] != 0);
9507 if (flag_code == CODE_64BIT)
9508 {
9509 if (override || i.suffix == WORD_MNEM_SUFFIX)
9510 bigdisp.bitfield.disp16 = 1;
9511 else
9512 {
9513 bigdisp.bitfield.disp32 = 1;
9514 bigdisp.bitfield.disp32s = 1;
9515 }
9516 }
9517 else
9518 {
9519 if (!override)
9520 override = (i.suffix == (flag_code != CODE_16BIT
9521 ? WORD_MNEM_SUFFIX
9522 : LONG_MNEM_SUFFIX));
9523 bigdisp.bitfield.disp32 = 1;
9524 if ((flag_code == CODE_16BIT) ^ override)
9525 {
9526 bigdisp.bitfield.disp32 = 0;
9527 bigdisp.bitfield.disp16 = 1;
9528 }
9529 }
9530 }
9531 i.types[this_operand] = operand_type_or (i.types[this_operand],
9532 bigdisp);
9533
9534 exp = &disp_expressions[i.disp_operands];
9535 i.op[this_operand].disps = exp;
9536 i.disp_operands++;
9537 save_input_line_pointer = input_line_pointer;
9538 input_line_pointer = disp_start;
9539 END_STRING_AND_SAVE (disp_end);
9540
9541 #ifndef GCC_ASM_O_HACK
9542 #define GCC_ASM_O_HACK 0
9543 #endif
9544 #if GCC_ASM_O_HACK
9545 END_STRING_AND_SAVE (disp_end + 1);
9546 if (i.types[this_operand].bitfield.baseIndex
9547 && displacement_string_end[-1] == '+')
9548 {
9549 /* This hack is to avoid a warning when using the "o"
9550 constraint within gcc asm statements.
9551 For instance:
9552
9553 #define _set_tssldt_desc(n,addr,limit,type) \
9554 __asm__ __volatile__ ( \
9555 "movw %w2,%0\n\t" \
9556 "movw %w1,2+%0\n\t" \
9557 "rorl $16,%1\n\t" \
9558 "movb %b1,4+%0\n\t" \
9559 "movb %4,5+%0\n\t" \
9560 "movb $0,6+%0\n\t" \
9561 "movb %h1,7+%0\n\t" \
9562 "rorl $16,%1" \
9563 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9564
9565 This works great except that the output assembler ends
9566 up looking a bit weird if it turns out that there is
9567 no offset. You end up producing code that looks like:
9568
9569 #APP
9570 movw $235,(%eax)
9571 movw %dx,2+(%eax)
9572 rorl $16,%edx
9573 movb %dl,4+(%eax)
9574 movb $137,5+(%eax)
9575 movb $0,6+(%eax)
9576 movb %dh,7+(%eax)
9577 rorl $16,%edx
9578 #NO_APP
9579
9580 So here we provide the missing zero. */
9581
9582 *displacement_string_end = '0';
9583 }
9584 #endif
9585 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9586 if (gotfree_input_line)
9587 input_line_pointer = gotfree_input_line;
9588
9589 exp_seg = expression (exp);
9590
9591 SKIP_WHITESPACE ();
9592 if (*input_line_pointer)
9593 as_bad (_("junk `%s' after expression"), input_line_pointer);
9594 #if GCC_ASM_O_HACK
9595 RESTORE_END_STRING (disp_end + 1);
9596 #endif
9597 input_line_pointer = save_input_line_pointer;
9598 if (gotfree_input_line)
9599 {
9600 free (gotfree_input_line);
9601
9602 if (exp->X_op == O_constant || exp->X_op == O_register)
9603 exp->X_op = O_illegal;
9604 }
9605
9606 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9607
9608 RESTORE_END_STRING (disp_end);
9609
9610 return ret;
9611 }
9612
9613 static int
9614 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9615 i386_operand_type types, const char *disp_start)
9616 {
9617 i386_operand_type bigdisp;
9618 int ret = 1;
9619
9620 /* We do this to make sure that the section symbol is in
9621 the symbol table. We will ultimately change the relocation
9622 to be relative to the beginning of the section. */
9623 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
9624 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9625 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9626 {
9627 if (exp->X_op != O_symbol)
9628 goto inv_disp;
9629
9630 if (S_IS_LOCAL (exp->X_add_symbol)
9631 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9632 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
9633 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
9634 exp->X_op = O_subtract;
9635 exp->X_op_symbol = GOT_symbol;
9636 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
9637 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
9638 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9639 i.reloc[this_operand] = BFD_RELOC_64;
9640 else
9641 i.reloc[this_operand] = BFD_RELOC_32;
9642 }
9643
9644 else if (exp->X_op == O_absent
9645 || exp->X_op == O_illegal
9646 || exp->X_op == O_big)
9647 {
9648 inv_disp:
9649 as_bad (_("missing or invalid displacement expression `%s'"),
9650 disp_start);
9651 ret = 0;
9652 }
9653
9654 else if (flag_code == CODE_64BIT
9655 && !i.prefix[ADDR_PREFIX]
9656 && exp->X_op == O_constant)
9657 {
9658 /* Since displacement is signed extended to 64bit, don't allow
9659 disp32 and turn off disp32s if they are out of range. */
9660 i.types[this_operand].bitfield.disp32 = 0;
9661 if (!fits_in_signed_long (exp->X_add_number))
9662 {
9663 i.types[this_operand].bitfield.disp32s = 0;
9664 if (i.types[this_operand].bitfield.baseindex)
9665 {
9666 as_bad (_("0x%lx out range of signed 32bit displacement"),
9667 (long) exp->X_add_number);
9668 ret = 0;
9669 }
9670 }
9671 }
9672
9673 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9674 else if (exp->X_op != O_constant
9675 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9676 && exp_seg != absolute_section
9677 && exp_seg != text_section
9678 && exp_seg != data_section
9679 && exp_seg != bss_section
9680 && exp_seg != undefined_section
9681 && !bfd_is_com_section (exp_seg))
9682 {
9683 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9684 ret = 0;
9685 }
9686 #endif
9687
9688 /* Check if this is a displacement only operand. */
9689 bigdisp = i.types[this_operand];
9690 bigdisp.bitfield.disp8 = 0;
9691 bigdisp.bitfield.disp16 = 0;
9692 bigdisp.bitfield.disp32 = 0;
9693 bigdisp.bitfield.disp32s = 0;
9694 bigdisp.bitfield.disp64 = 0;
9695 if (operand_type_all_zero (&bigdisp))
9696 i.types[this_operand] = operand_type_and (i.types[this_operand],
9697 types);
9698
9699 return ret;
9700 }
9701
9702 /* Return the active addressing mode, taking address override and
9703 registers forming the address into consideration. Update the
9704 address override prefix if necessary. */
9705
9706 static enum flag_code
9707 i386_addressing_mode (void)
9708 {
9709 enum flag_code addr_mode;
9710
9711 if (i.prefix[ADDR_PREFIX])
9712 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9713 else
9714 {
9715 addr_mode = flag_code;
9716
9717 #if INFER_ADDR_PREFIX
9718 if (i.mem_operands == 0)
9719 {
9720 /* Infer address prefix from the first memory operand. */
9721 const reg_entry *addr_reg = i.base_reg;
9722
9723 if (addr_reg == NULL)
9724 addr_reg = i.index_reg;
9725
9726 if (addr_reg)
9727 {
9728 if (addr_reg->reg_type.bitfield.dword)
9729 addr_mode = CODE_32BIT;
9730 else if (flag_code != CODE_64BIT
9731 && addr_reg->reg_type.bitfield.word)
9732 addr_mode = CODE_16BIT;
9733
9734 if (addr_mode != flag_code)
9735 {
9736 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9737 i.prefixes += 1;
9738 /* Change the size of any displacement too. At most one
9739 of Disp16 or Disp32 is set.
9740 FIXME. There doesn't seem to be any real need for
9741 separate Disp16 and Disp32 flags. The same goes for
9742 Imm16 and Imm32. Removing them would probably clean
9743 up the code quite a lot. */
9744 if (flag_code != CODE_64BIT
9745 && (i.types[this_operand].bitfield.disp16
9746 || i.types[this_operand].bitfield.disp32))
9747 i.types[this_operand]
9748 = operand_type_xor (i.types[this_operand], disp16_32);
9749 }
9750 }
9751 }
9752 #endif
9753 }
9754
9755 return addr_mode;
9756 }
9757
9758 /* Make sure the memory operand we've been dealt is valid.
9759 Return 1 on success, 0 on a failure. */
9760
9761 static int
9762 i386_index_check (const char *operand_string)
9763 {
9764 const char *kind = "base/index";
9765 enum flag_code addr_mode = i386_addressing_mode ();
9766
9767 if (current_templates->start->opcode_modifier.isstring
9768 && !current_templates->start->cpu_flags.bitfield.cpupadlock
9769 && (current_templates->end[-1].opcode_modifier.isstring
9770 || i.mem_operands))
9771 {
9772 /* Memory operands of string insns are special in that they only allow
9773 a single register (rDI, rSI, or rBX) as their memory address. */
9774 const reg_entry *expected_reg;
9775 static const char *di_si[][2] =
9776 {
9777 { "esi", "edi" },
9778 { "si", "di" },
9779 { "rsi", "rdi" }
9780 };
9781 static const char *bx[] = { "ebx", "bx", "rbx" };
9782
9783 kind = "string address";
9784
9785 if (current_templates->start->opcode_modifier.repprefixok)
9786 {
9787 int es_op = current_templates->end[-1].opcode_modifier.isstring
9788 - IS_STRING_ES_OP0;
9789 int op = 0;
9790
9791 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
9792 || ((!i.mem_operands != !intel_syntax)
9793 && current_templates->end[-1].operand_types[1]
9794 .bitfield.baseindex))
9795 op = 1;
9796 expected_reg = hash_find (reg_hash, di_si[addr_mode][op == es_op]);
9797 }
9798 else
9799 expected_reg = hash_find (reg_hash, bx[addr_mode]);
9800
9801 if (i.base_reg != expected_reg
9802 || i.index_reg
9803 || operand_type_check (i.types[this_operand], disp))
9804 {
9805 /* The second memory operand must have the same size as
9806 the first one. */
9807 if (i.mem_operands
9808 && i.base_reg
9809 && !((addr_mode == CODE_64BIT
9810 && i.base_reg->reg_type.bitfield.qword)
9811 || (addr_mode == CODE_32BIT
9812 ? i.base_reg->reg_type.bitfield.dword
9813 : i.base_reg->reg_type.bitfield.word)))
9814 goto bad_address;
9815
9816 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9817 operand_string,
9818 intel_syntax ? '[' : '(',
9819 register_prefix,
9820 expected_reg->reg_name,
9821 intel_syntax ? ']' : ')');
9822 return 1;
9823 }
9824 else
9825 return 1;
9826
9827 bad_address:
9828 as_bad (_("`%s' is not a valid %s expression"),
9829 operand_string, kind);
9830 return 0;
9831 }
9832 else
9833 {
9834 if (addr_mode != CODE_16BIT)
9835 {
9836 /* 32-bit/64-bit checks. */
9837 if ((i.base_reg
9838 && ((addr_mode == CODE_64BIT
9839 ? !i.base_reg->reg_type.bitfield.qword
9840 : !i.base_reg->reg_type.bitfield.dword)
9841 || (i.index_reg && i.base_reg->reg_num == RegIP)
9842 || i.base_reg->reg_num == RegIZ))
9843 || (i.index_reg
9844 && !i.index_reg->reg_type.bitfield.xmmword
9845 && !i.index_reg->reg_type.bitfield.ymmword
9846 && !i.index_reg->reg_type.bitfield.zmmword
9847 && ((addr_mode == CODE_64BIT
9848 ? !i.index_reg->reg_type.bitfield.qword
9849 : !i.index_reg->reg_type.bitfield.dword)
9850 || !i.index_reg->reg_type.bitfield.baseindex)))
9851 goto bad_address;
9852
9853 /* bndmk, bndldx, and bndstx have special restrictions. */
9854 if (current_templates->start->base_opcode == 0xf30f1b
9855 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9856 {
9857 /* They cannot use RIP-relative addressing. */
9858 if (i.base_reg && i.base_reg->reg_num == RegIP)
9859 {
9860 as_bad (_("`%s' cannot be used here"), operand_string);
9861 return 0;
9862 }
9863
9864 /* bndldx and bndstx ignore their scale factor. */
9865 if (current_templates->start->base_opcode != 0xf30f1b
9866 && i.log2_scale_factor)
9867 as_warn (_("register scaling is being ignored here"));
9868 }
9869 }
9870 else
9871 {
9872 /* 16-bit checks. */
9873 if ((i.base_reg
9874 && (!i.base_reg->reg_type.bitfield.word
9875 || !i.base_reg->reg_type.bitfield.baseindex))
9876 || (i.index_reg
9877 && (!i.index_reg->reg_type.bitfield.word
9878 || !i.index_reg->reg_type.bitfield.baseindex
9879 || !(i.base_reg
9880 && i.base_reg->reg_num < 6
9881 && i.index_reg->reg_num >= 6
9882 && i.log2_scale_factor == 0))))
9883 goto bad_address;
9884 }
9885 }
9886 return 1;
9887 }
9888
9889 /* Handle vector immediates. */
9890
9891 static int
9892 RC_SAE_immediate (const char *imm_start)
9893 {
9894 unsigned int match_found, j;
9895 const char *pstr = imm_start;
9896 expressionS *exp;
9897
9898 if (*pstr != '{')
9899 return 0;
9900
9901 pstr++;
9902 match_found = 0;
9903 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9904 {
9905 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9906 {
9907 if (!i.rounding)
9908 {
9909 rc_op.type = RC_NamesTable[j].type;
9910 rc_op.operand = this_operand;
9911 i.rounding = &rc_op;
9912 }
9913 else
9914 {
9915 as_bad (_("duplicated `%s'"), imm_start);
9916 return 0;
9917 }
9918 pstr += RC_NamesTable[j].len;
9919 match_found = 1;
9920 break;
9921 }
9922 }
9923 if (!match_found)
9924 return 0;
9925
9926 if (*pstr++ != '}')
9927 {
9928 as_bad (_("Missing '}': '%s'"), imm_start);
9929 return 0;
9930 }
9931 /* RC/SAE immediate string should contain nothing more. */;
9932 if (*pstr != 0)
9933 {
9934 as_bad (_("Junk after '}': '%s'"), imm_start);
9935 return 0;
9936 }
9937
9938 exp = &im_expressions[i.imm_operands++];
9939 i.op[this_operand].imms = exp;
9940
9941 exp->X_op = O_constant;
9942 exp->X_add_number = 0;
9943 exp->X_add_symbol = (symbolS *) 0;
9944 exp->X_op_symbol = (symbolS *) 0;
9945
9946 i.types[this_operand].bitfield.imm8 = 1;
9947 return 1;
9948 }
9949
9950 /* Only string instructions can have a second memory operand, so
9951 reduce current_templates to just those if it contains any. */
9952 static int
9953 maybe_adjust_templates (void)
9954 {
9955 const insn_template *t;
9956
9957 gas_assert (i.mem_operands == 1);
9958
9959 for (t = current_templates->start; t < current_templates->end; ++t)
9960 if (t->opcode_modifier.isstring)
9961 break;
9962
9963 if (t < current_templates->end)
9964 {
9965 static templates aux_templates;
9966 bfd_boolean recheck;
9967
9968 aux_templates.start = t;
9969 for (; t < current_templates->end; ++t)
9970 if (!t->opcode_modifier.isstring)
9971 break;
9972 aux_templates.end = t;
9973
9974 /* Determine whether to re-check the first memory operand. */
9975 recheck = (aux_templates.start != current_templates->start
9976 || t != current_templates->end);
9977
9978 current_templates = &aux_templates;
9979
9980 if (recheck)
9981 {
9982 i.mem_operands = 0;
9983 if (i.memop1_string != NULL
9984 && i386_index_check (i.memop1_string) == 0)
9985 return 0;
9986 i.mem_operands = 1;
9987 }
9988 }
9989
9990 return 1;
9991 }
9992
9993 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
9994 on error. */
9995
9996 static int
9997 i386_att_operand (char *operand_string)
9998 {
9999 const reg_entry *r;
10000 char *end_op;
10001 char *op_string = operand_string;
10002
10003 if (is_space_char (*op_string))
10004 ++op_string;
10005
10006 /* We check for an absolute prefix (differentiating,
10007 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
10008 if (*op_string == ABSOLUTE_PREFIX)
10009 {
10010 ++op_string;
10011 if (is_space_char (*op_string))
10012 ++op_string;
10013 i.jumpabsolute = TRUE;
10014 }
10015
10016 /* Check if operand is a register. */
10017 if ((r = parse_register (op_string, &end_op)) != NULL)
10018 {
10019 i386_operand_type temp;
10020
10021 /* Check for a segment override by searching for ':' after a
10022 segment register. */
10023 op_string = end_op;
10024 if (is_space_char (*op_string))
10025 ++op_string;
10026 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
10027 {
10028 switch (r->reg_num)
10029 {
10030 case 0:
10031 i.seg[i.mem_operands] = &es;
10032 break;
10033 case 1:
10034 i.seg[i.mem_operands] = &cs;
10035 break;
10036 case 2:
10037 i.seg[i.mem_operands] = &ss;
10038 break;
10039 case 3:
10040 i.seg[i.mem_operands] = &ds;
10041 break;
10042 case 4:
10043 i.seg[i.mem_operands] = &fs;
10044 break;
10045 case 5:
10046 i.seg[i.mem_operands] = &gs;
10047 break;
10048 }
10049
10050 /* Skip the ':' and whitespace. */
10051 ++op_string;
10052 if (is_space_char (*op_string))
10053 ++op_string;
10054
10055 if (!is_digit_char (*op_string)
10056 && !is_identifier_char (*op_string)
10057 && *op_string != '('
10058 && *op_string != ABSOLUTE_PREFIX)
10059 {
10060 as_bad (_("bad memory operand `%s'"), op_string);
10061 return 0;
10062 }
10063 /* Handle case of %es:*foo. */
10064 if (*op_string == ABSOLUTE_PREFIX)
10065 {
10066 ++op_string;
10067 if (is_space_char (*op_string))
10068 ++op_string;
10069 i.jumpabsolute = TRUE;
10070 }
10071 goto do_memory_reference;
10072 }
10073
10074 /* Handle vector operations. */
10075 if (*op_string == '{')
10076 {
10077 op_string = check_VecOperations (op_string, NULL);
10078 if (op_string == NULL)
10079 return 0;
10080 }
10081
10082 if (*op_string)
10083 {
10084 as_bad (_("junk `%s' after register"), op_string);
10085 return 0;
10086 }
10087 temp = r->reg_type;
10088 temp.bitfield.baseindex = 0;
10089 i.types[this_operand] = operand_type_or (i.types[this_operand],
10090 temp);
10091 i.types[this_operand].bitfield.unspecified = 0;
10092 i.op[this_operand].regs = r;
10093 i.reg_operands++;
10094 }
10095 else if (*op_string == REGISTER_PREFIX)
10096 {
10097 as_bad (_("bad register name `%s'"), op_string);
10098 return 0;
10099 }
10100 else if (*op_string == IMMEDIATE_PREFIX)
10101 {
10102 ++op_string;
10103 if (i.jumpabsolute)
10104 {
10105 as_bad (_("immediate operand illegal with absolute jump"));
10106 return 0;
10107 }
10108 if (!i386_immediate (op_string))
10109 return 0;
10110 }
10111 else if (RC_SAE_immediate (operand_string))
10112 {
10113 /* If it is a RC or SAE immediate, do nothing. */
10114 ;
10115 }
10116 else if (is_digit_char (*op_string)
10117 || is_identifier_char (*op_string)
10118 || *op_string == '"'
10119 || *op_string == '(')
10120 {
10121 /* This is a memory reference of some sort. */
10122 char *base_string;
10123
10124 /* Start and end of displacement string expression (if found). */
10125 char *displacement_string_start;
10126 char *displacement_string_end;
10127 char *vop_start;
10128
10129 do_memory_reference:
10130 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10131 return 0;
10132 if ((i.mem_operands == 1
10133 && !current_templates->start->opcode_modifier.isstring)
10134 || i.mem_operands == 2)
10135 {
10136 as_bad (_("too many memory references for `%s'"),
10137 current_templates->start->name);
10138 return 0;
10139 }
10140
10141 /* Check for base index form. We detect the base index form by
10142 looking for an ')' at the end of the operand, searching
10143 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10144 after the '('. */
10145 base_string = op_string + strlen (op_string);
10146
10147 /* Handle vector operations. */
10148 vop_start = strchr (op_string, '{');
10149 if (vop_start && vop_start < base_string)
10150 {
10151 if (check_VecOperations (vop_start, base_string) == NULL)
10152 return 0;
10153 base_string = vop_start;
10154 }
10155
10156 --base_string;
10157 if (is_space_char (*base_string))
10158 --base_string;
10159
10160 /* If we only have a displacement, set-up for it to be parsed later. */
10161 displacement_string_start = op_string;
10162 displacement_string_end = base_string + 1;
10163
10164 if (*base_string == ')')
10165 {
10166 char *temp_string;
10167 unsigned int parens_balanced = 1;
10168 /* We've already checked that the number of left & right ()'s are
10169 equal, so this loop will not be infinite. */
10170 do
10171 {
10172 base_string--;
10173 if (*base_string == ')')
10174 parens_balanced++;
10175 if (*base_string == '(')
10176 parens_balanced--;
10177 }
10178 while (parens_balanced);
10179
10180 temp_string = base_string;
10181
10182 /* Skip past '(' and whitespace. */
10183 ++base_string;
10184 if (is_space_char (*base_string))
10185 ++base_string;
10186
10187 if (*base_string == ','
10188 || ((i.base_reg = parse_register (base_string, &end_op))
10189 != NULL))
10190 {
10191 displacement_string_end = temp_string;
10192
10193 i.types[this_operand].bitfield.baseindex = 1;
10194
10195 if (i.base_reg)
10196 {
10197 base_string = end_op;
10198 if (is_space_char (*base_string))
10199 ++base_string;
10200 }
10201
10202 /* There may be an index reg or scale factor here. */
10203 if (*base_string == ',')
10204 {
10205 ++base_string;
10206 if (is_space_char (*base_string))
10207 ++base_string;
10208
10209 if ((i.index_reg = parse_register (base_string, &end_op))
10210 != NULL)
10211 {
10212 base_string = end_op;
10213 if (is_space_char (*base_string))
10214 ++base_string;
10215 if (*base_string == ',')
10216 {
10217 ++base_string;
10218 if (is_space_char (*base_string))
10219 ++base_string;
10220 }
10221 else if (*base_string != ')')
10222 {
10223 as_bad (_("expecting `,' or `)' "
10224 "after index register in `%s'"),
10225 operand_string);
10226 return 0;
10227 }
10228 }
10229 else if (*base_string == REGISTER_PREFIX)
10230 {
10231 end_op = strchr (base_string, ',');
10232 if (end_op)
10233 *end_op = '\0';
10234 as_bad (_("bad register name `%s'"), base_string);
10235 return 0;
10236 }
10237
10238 /* Check for scale factor. */
10239 if (*base_string != ')')
10240 {
10241 char *end_scale = i386_scale (base_string);
10242
10243 if (!end_scale)
10244 return 0;
10245
10246 base_string = end_scale;
10247 if (is_space_char (*base_string))
10248 ++base_string;
10249 if (*base_string != ')')
10250 {
10251 as_bad (_("expecting `)' "
10252 "after scale factor in `%s'"),
10253 operand_string);
10254 return 0;
10255 }
10256 }
10257 else if (!i.index_reg)
10258 {
10259 as_bad (_("expecting index register or scale factor "
10260 "after `,'; got '%c'"),
10261 *base_string);
10262 return 0;
10263 }
10264 }
10265 else if (*base_string != ')')
10266 {
10267 as_bad (_("expecting `,' or `)' "
10268 "after base register in `%s'"),
10269 operand_string);
10270 return 0;
10271 }
10272 }
10273 else if (*base_string == REGISTER_PREFIX)
10274 {
10275 end_op = strchr (base_string, ',');
10276 if (end_op)
10277 *end_op = '\0';
10278 as_bad (_("bad register name `%s'"), base_string);
10279 return 0;
10280 }
10281 }
10282
10283 /* If there's an expression beginning the operand, parse it,
10284 assuming displacement_string_start and
10285 displacement_string_end are meaningful. */
10286 if (displacement_string_start != displacement_string_end)
10287 {
10288 if (!i386_displacement (displacement_string_start,
10289 displacement_string_end))
10290 return 0;
10291 }
10292
10293 /* Special case for (%dx) while doing input/output op. */
10294 if (i.base_reg
10295 && i.base_reg->reg_type.bitfield.instance == RegD
10296 && i.base_reg->reg_type.bitfield.word
10297 && i.index_reg == 0
10298 && i.log2_scale_factor == 0
10299 && i.seg[i.mem_operands] == 0
10300 && !operand_type_check (i.types[this_operand], disp))
10301 {
10302 i.types[this_operand] = i.base_reg->reg_type;
10303 return 1;
10304 }
10305
10306 if (i386_index_check (operand_string) == 0)
10307 return 0;
10308 i.flags[this_operand] |= Operand_Mem;
10309 if (i.mem_operands == 0)
10310 i.memop1_string = xstrdup (operand_string);
10311 i.mem_operands++;
10312 }
10313 else
10314 {
10315 /* It's not a memory operand; argh! */
10316 as_bad (_("invalid char %s beginning operand %d `%s'"),
10317 output_invalid (*op_string),
10318 this_operand + 1,
10319 op_string);
10320 return 0;
10321 }
10322 return 1; /* Normal return. */
10323 }
10324 \f
10325 /* Calculate the maximum variable size (i.e., excluding fr_fix)
10326 that an rs_machine_dependent frag may reach. */
10327
10328 unsigned int
10329 i386_frag_max_var (fragS *frag)
10330 {
10331 /* The only relaxable frags are for jumps.
10332 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10333 gas_assert (frag->fr_type == rs_machine_dependent);
10334 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10335 }
10336
10337 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10338 static int
10339 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
10340 {
10341 /* STT_GNU_IFUNC symbol must go through PLT. */
10342 if ((symbol_get_bfdsym (fr_symbol)->flags
10343 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10344 return 0;
10345
10346 if (!S_IS_EXTERNAL (fr_symbol))
10347 /* Symbol may be weak or local. */
10348 return !S_IS_WEAK (fr_symbol);
10349
10350 /* Global symbols with non-default visibility can't be preempted. */
10351 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10352 return 1;
10353
10354 if (fr_var != NO_RELOC)
10355 switch ((enum bfd_reloc_code_real) fr_var)
10356 {
10357 case BFD_RELOC_386_PLT32:
10358 case BFD_RELOC_X86_64_PLT32:
10359 /* Symbol with PLT relocation may be preempted. */
10360 return 0;
10361 default:
10362 abort ();
10363 }
10364
10365 /* Global symbols with default visibility in a shared library may be
10366 preempted by another definition. */
10367 return !shared;
10368 }
10369 #endif
10370
10371 /* md_estimate_size_before_relax()
10372
10373 Called just before relax() for rs_machine_dependent frags. The x86
10374 assembler uses these frags to handle variable size jump
10375 instructions.
10376
10377 Any symbol that is now undefined will not become defined.
10378 Return the correct fr_subtype in the frag.
10379 Return the initial "guess for variable size of frag" to caller.
10380 The guess is actually the growth beyond the fixed part. Whatever
10381 we do to grow the fixed or variable part contributes to our
10382 returned value. */
10383
10384 int
10385 md_estimate_size_before_relax (fragS *fragP, segT segment)
10386 {
10387 /* We've already got fragP->fr_subtype right; all we have to do is
10388 check for un-relaxable symbols. On an ELF system, we can't relax
10389 an externally visible symbol, because it may be overridden by a
10390 shared library. */
10391 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
10392 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10393 || (IS_ELF
10394 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
10395 fragP->fr_var))
10396 #endif
10397 #if defined (OBJ_COFF) && defined (TE_PE)
10398 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
10399 && S_IS_WEAK (fragP->fr_symbol))
10400 #endif
10401 )
10402 {
10403 /* Symbol is undefined in this segment, or we need to keep a
10404 reloc so that weak symbols can be overridden. */
10405 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
10406 enum bfd_reloc_code_real reloc_type;
10407 unsigned char *opcode;
10408 int old_fr_fix;
10409
10410 if (fragP->fr_var != NO_RELOC)
10411 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
10412 else if (size == 2)
10413 reloc_type = BFD_RELOC_16_PCREL;
10414 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10415 else if (need_plt32_p (fragP->fr_symbol))
10416 reloc_type = BFD_RELOC_X86_64_PLT32;
10417 #endif
10418 else
10419 reloc_type = BFD_RELOC_32_PCREL;
10420
10421 old_fr_fix = fragP->fr_fix;
10422 opcode = (unsigned char *) fragP->fr_opcode;
10423
10424 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
10425 {
10426 case UNCOND_JUMP:
10427 /* Make jmp (0xeb) a (d)word displacement jump. */
10428 opcode[0] = 0xe9;
10429 fragP->fr_fix += size;
10430 fix_new (fragP, old_fr_fix, size,
10431 fragP->fr_symbol,
10432 fragP->fr_offset, 1,
10433 reloc_type);
10434 break;
10435
10436 case COND_JUMP86:
10437 if (size == 2
10438 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
10439 {
10440 /* Negate the condition, and branch past an
10441 unconditional jump. */
10442 opcode[0] ^= 1;
10443 opcode[1] = 3;
10444 /* Insert an unconditional jump. */
10445 opcode[2] = 0xe9;
10446 /* We added two extra opcode bytes, and have a two byte
10447 offset. */
10448 fragP->fr_fix += 2 + 2;
10449 fix_new (fragP, old_fr_fix + 2, 2,
10450 fragP->fr_symbol,
10451 fragP->fr_offset, 1,
10452 reloc_type);
10453 break;
10454 }
10455 /* Fall through. */
10456
10457 case COND_JUMP:
10458 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
10459 {
10460 fixS *fixP;
10461
10462 fragP->fr_fix += 1;
10463 fixP = fix_new (fragP, old_fr_fix, 1,
10464 fragP->fr_symbol,
10465 fragP->fr_offset, 1,
10466 BFD_RELOC_8_PCREL);
10467 fixP->fx_signed = 1;
10468 break;
10469 }
10470
10471 /* This changes the byte-displacement jump 0x7N
10472 to the (d)word-displacement jump 0x0f,0x8N. */
10473 opcode[1] = opcode[0] + 0x10;
10474 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10475 /* We've added an opcode byte. */
10476 fragP->fr_fix += 1 + size;
10477 fix_new (fragP, old_fr_fix + 1, size,
10478 fragP->fr_symbol,
10479 fragP->fr_offset, 1,
10480 reloc_type);
10481 break;
10482
10483 default:
10484 BAD_CASE (fragP->fr_subtype);
10485 break;
10486 }
10487 frag_wane (fragP);
10488 return fragP->fr_fix - old_fr_fix;
10489 }
10490
10491 /* Guess size depending on current relax state. Initially the relax
10492 state will correspond to a short jump and we return 1, because
10493 the variable part of the frag (the branch offset) is one byte
10494 long. However, we can relax a section more than once and in that
10495 case we must either set fr_subtype back to the unrelaxed state,
10496 or return the value for the appropriate branch. */
10497 return md_relax_table[fragP->fr_subtype].rlx_length;
10498 }
10499
10500 /* Called after relax() is finished.
10501
10502 In: Address of frag.
10503 fr_type == rs_machine_dependent.
10504 fr_subtype is what the address relaxed to.
10505
10506 Out: Any fixSs and constants are set up.
10507 Caller will turn frag into a ".space 0". */
10508
10509 void
10510 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10511 fragS *fragP)
10512 {
10513 unsigned char *opcode;
10514 unsigned char *where_to_put_displacement = NULL;
10515 offsetT target_address;
10516 offsetT opcode_address;
10517 unsigned int extension = 0;
10518 offsetT displacement_from_opcode_start;
10519
10520 opcode = (unsigned char *) fragP->fr_opcode;
10521
10522 /* Address we want to reach in file space. */
10523 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
10524
10525 /* Address opcode resides at in file space. */
10526 opcode_address = fragP->fr_address + fragP->fr_fix;
10527
10528 /* Displacement from opcode start to fill into instruction. */
10529 displacement_from_opcode_start = target_address - opcode_address;
10530
10531 if ((fragP->fr_subtype & BIG) == 0)
10532 {
10533 /* Don't have to change opcode. */
10534 extension = 1; /* 1 opcode + 1 displacement */
10535 where_to_put_displacement = &opcode[1];
10536 }
10537 else
10538 {
10539 if (no_cond_jump_promotion
10540 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
10541 as_warn_where (fragP->fr_file, fragP->fr_line,
10542 _("long jump required"));
10543
10544 switch (fragP->fr_subtype)
10545 {
10546 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10547 extension = 4; /* 1 opcode + 4 displacement */
10548 opcode[0] = 0xe9;
10549 where_to_put_displacement = &opcode[1];
10550 break;
10551
10552 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10553 extension = 2; /* 1 opcode + 2 displacement */
10554 opcode[0] = 0xe9;
10555 where_to_put_displacement = &opcode[1];
10556 break;
10557
10558 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10559 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10560 extension = 5; /* 2 opcode + 4 displacement */
10561 opcode[1] = opcode[0] + 0x10;
10562 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10563 where_to_put_displacement = &opcode[2];
10564 break;
10565
10566 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10567 extension = 3; /* 2 opcode + 2 displacement */
10568 opcode[1] = opcode[0] + 0x10;
10569 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10570 where_to_put_displacement = &opcode[2];
10571 break;
10572
10573 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10574 extension = 4;
10575 opcode[0] ^= 1;
10576 opcode[1] = 3;
10577 opcode[2] = 0xe9;
10578 where_to_put_displacement = &opcode[3];
10579 break;
10580
10581 default:
10582 BAD_CASE (fragP->fr_subtype);
10583 break;
10584 }
10585 }
10586
10587 /* If size if less then four we are sure that the operand fits,
10588 but if it's 4, then it could be that the displacement is larger
10589 then -/+ 2GB. */
10590 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10591 && object_64bit
10592 && ((addressT) (displacement_from_opcode_start - extension
10593 + ((addressT) 1 << 31))
10594 > (((addressT) 2 << 31) - 1)))
10595 {
10596 as_bad_where (fragP->fr_file, fragP->fr_line,
10597 _("jump target out of range"));
10598 /* Make us emit 0. */
10599 displacement_from_opcode_start = extension;
10600 }
10601 /* Now put displacement after opcode. */
10602 md_number_to_chars ((char *) where_to_put_displacement,
10603 (valueT) (displacement_from_opcode_start - extension),
10604 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
10605 fragP->fr_fix += extension;
10606 }
10607 \f
10608 /* Apply a fixup (fixP) to segment data, once it has been determined
10609 by our caller that we have all the info we need to fix it up.
10610
10611 Parameter valP is the pointer to the value of the bits.
10612
10613 On the 386, immediates, displacements, and data pointers are all in
10614 the same (little-endian) format, so we don't need to care about which
10615 we are handling. */
10616
10617 void
10618 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
10619 {
10620 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
10621 valueT value = *valP;
10622
10623 #if !defined (TE_Mach)
10624 if (fixP->fx_pcrel)
10625 {
10626 switch (fixP->fx_r_type)
10627 {
10628 default:
10629 break;
10630
10631 case BFD_RELOC_64:
10632 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10633 break;
10634 case BFD_RELOC_32:
10635 case BFD_RELOC_X86_64_32S:
10636 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10637 break;
10638 case BFD_RELOC_16:
10639 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10640 break;
10641 case BFD_RELOC_8:
10642 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10643 break;
10644 }
10645 }
10646
10647 if (fixP->fx_addsy != NULL
10648 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
10649 || fixP->fx_r_type == BFD_RELOC_64_PCREL
10650 || fixP->fx_r_type == BFD_RELOC_16_PCREL
10651 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
10652 && !use_rela_relocations)
10653 {
10654 /* This is a hack. There should be a better way to handle this.
10655 This covers for the fact that bfd_install_relocation will
10656 subtract the current location (for partial_inplace, PC relative
10657 relocations); see more below. */
10658 #ifndef OBJ_AOUT
10659 if (IS_ELF
10660 #ifdef TE_PE
10661 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10662 #endif
10663 )
10664 value += fixP->fx_where + fixP->fx_frag->fr_address;
10665 #endif
10666 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10667 if (IS_ELF)
10668 {
10669 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
10670
10671 if ((sym_seg == seg
10672 || (symbol_section_p (fixP->fx_addsy)
10673 && sym_seg != absolute_section))
10674 && !generic_force_reloc (fixP))
10675 {
10676 /* Yes, we add the values in twice. This is because
10677 bfd_install_relocation subtracts them out again. I think
10678 bfd_install_relocation is broken, but I don't dare change
10679 it. FIXME. */
10680 value += fixP->fx_where + fixP->fx_frag->fr_address;
10681 }
10682 }
10683 #endif
10684 #if defined (OBJ_COFF) && defined (TE_PE)
10685 /* For some reason, the PE format does not store a
10686 section address offset for a PC relative symbol. */
10687 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
10688 || S_IS_WEAK (fixP->fx_addsy))
10689 value += md_pcrel_from (fixP);
10690 #endif
10691 }
10692 #if defined (OBJ_COFF) && defined (TE_PE)
10693 if (fixP->fx_addsy != NULL
10694 && S_IS_WEAK (fixP->fx_addsy)
10695 /* PR 16858: Do not modify weak function references. */
10696 && ! fixP->fx_pcrel)
10697 {
10698 #if !defined (TE_PEP)
10699 /* For x86 PE weak function symbols are neither PC-relative
10700 nor do they set S_IS_FUNCTION. So the only reliable way
10701 to detect them is to check the flags of their containing
10702 section. */
10703 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10704 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10705 ;
10706 else
10707 #endif
10708 value -= S_GET_VALUE (fixP->fx_addsy);
10709 }
10710 #endif
10711
10712 /* Fix a few things - the dynamic linker expects certain values here,
10713 and we must not disappoint it. */
10714 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10715 if (IS_ELF && fixP->fx_addsy)
10716 switch (fixP->fx_r_type)
10717 {
10718 case BFD_RELOC_386_PLT32:
10719 case BFD_RELOC_X86_64_PLT32:
10720 /* Make the jump instruction point to the address of the operand.
10721 At runtime we merely add the offset to the actual PLT entry.
10722 NB: Subtract the offset size only for jump instructions. */
10723 if (fixP->fx_pcrel)
10724 value = -4;
10725 break;
10726
10727 case BFD_RELOC_386_TLS_GD:
10728 case BFD_RELOC_386_TLS_LDM:
10729 case BFD_RELOC_386_TLS_IE_32:
10730 case BFD_RELOC_386_TLS_IE:
10731 case BFD_RELOC_386_TLS_GOTIE:
10732 case BFD_RELOC_386_TLS_GOTDESC:
10733 case BFD_RELOC_X86_64_TLSGD:
10734 case BFD_RELOC_X86_64_TLSLD:
10735 case BFD_RELOC_X86_64_GOTTPOFF:
10736 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10737 value = 0; /* Fully resolved at runtime. No addend. */
10738 /* Fallthrough */
10739 case BFD_RELOC_386_TLS_LE:
10740 case BFD_RELOC_386_TLS_LDO_32:
10741 case BFD_RELOC_386_TLS_LE_32:
10742 case BFD_RELOC_X86_64_DTPOFF32:
10743 case BFD_RELOC_X86_64_DTPOFF64:
10744 case BFD_RELOC_X86_64_TPOFF32:
10745 case BFD_RELOC_X86_64_TPOFF64:
10746 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10747 break;
10748
10749 case BFD_RELOC_386_TLS_DESC_CALL:
10750 case BFD_RELOC_X86_64_TLSDESC_CALL:
10751 value = 0; /* Fully resolved at runtime. No addend. */
10752 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10753 fixP->fx_done = 0;
10754 return;
10755
10756 case BFD_RELOC_VTABLE_INHERIT:
10757 case BFD_RELOC_VTABLE_ENTRY:
10758 fixP->fx_done = 0;
10759 return;
10760
10761 default:
10762 break;
10763 }
10764 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
10765 *valP = value;
10766 #endif /* !defined (TE_Mach) */
10767
10768 /* Are we finished with this relocation now? */
10769 if (fixP->fx_addsy == NULL)
10770 fixP->fx_done = 1;
10771 #if defined (OBJ_COFF) && defined (TE_PE)
10772 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10773 {
10774 fixP->fx_done = 0;
10775 /* Remember value for tc_gen_reloc. */
10776 fixP->fx_addnumber = value;
10777 /* Clear out the frag for now. */
10778 value = 0;
10779 }
10780 #endif
10781 else if (use_rela_relocations)
10782 {
10783 fixP->fx_no_overflow = 1;
10784 /* Remember value for tc_gen_reloc. */
10785 fixP->fx_addnumber = value;
10786 value = 0;
10787 }
10788
10789 md_number_to_chars (p, value, fixP->fx_size);
10790 }
10791 \f
10792 const char *
10793 md_atof (int type, char *litP, int *sizeP)
10794 {
10795 /* This outputs the LITTLENUMs in REVERSE order;
10796 in accord with the bigendian 386. */
10797 return ieee_md_atof (type, litP, sizeP, FALSE);
10798 }
10799 \f
10800 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
10801
10802 static char *
10803 output_invalid (int c)
10804 {
10805 if (ISPRINT (c))
10806 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10807 "'%c'", c);
10808 else
10809 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10810 "(0x%x)", (unsigned char) c);
10811 return output_invalid_buf;
10812 }
10813
10814 /* REG_STRING starts *before* REGISTER_PREFIX. */
10815
10816 static const reg_entry *
10817 parse_real_register (char *reg_string, char **end_op)
10818 {
10819 char *s = reg_string;
10820 char *p;
10821 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10822 const reg_entry *r;
10823
10824 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10825 if (*s == REGISTER_PREFIX)
10826 ++s;
10827
10828 if (is_space_char (*s))
10829 ++s;
10830
10831 p = reg_name_given;
10832 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
10833 {
10834 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
10835 return (const reg_entry *) NULL;
10836 s++;
10837 }
10838
10839 /* For naked regs, make sure that we are not dealing with an identifier.
10840 This prevents confusing an identifier like `eax_var' with register
10841 `eax'. */
10842 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10843 return (const reg_entry *) NULL;
10844
10845 *end_op = s;
10846
10847 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10848
10849 /* Handle floating point regs, allowing spaces in the (i) part. */
10850 if (r == i386_regtab /* %st is first entry of table */)
10851 {
10852 if (!cpu_arch_flags.bitfield.cpu8087
10853 && !cpu_arch_flags.bitfield.cpu287
10854 && !cpu_arch_flags.bitfield.cpu387)
10855 return (const reg_entry *) NULL;
10856
10857 if (is_space_char (*s))
10858 ++s;
10859 if (*s == '(')
10860 {
10861 ++s;
10862 if (is_space_char (*s))
10863 ++s;
10864 if (*s >= '0' && *s <= '7')
10865 {
10866 int fpr = *s - '0';
10867 ++s;
10868 if (is_space_char (*s))
10869 ++s;
10870 if (*s == ')')
10871 {
10872 *end_op = s + 1;
10873 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
10874 know (r);
10875 return r + fpr;
10876 }
10877 }
10878 /* We have "%st(" then garbage. */
10879 return (const reg_entry *) NULL;
10880 }
10881 }
10882
10883 if (r == NULL || allow_pseudo_reg)
10884 return r;
10885
10886 if (operand_type_all_zero (&r->reg_type))
10887 return (const reg_entry *) NULL;
10888
10889 if ((r->reg_type.bitfield.dword
10890 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
10891 || r->reg_type.bitfield.class == RegCR
10892 || r->reg_type.bitfield.class == RegDR
10893 || r->reg_type.bitfield.class == RegTR)
10894 && !cpu_arch_flags.bitfield.cpui386)
10895 return (const reg_entry *) NULL;
10896
10897 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
10898 return (const reg_entry *) NULL;
10899
10900 if (!cpu_arch_flags.bitfield.cpuavx512f)
10901 {
10902 if (r->reg_type.bitfield.zmmword
10903 || r->reg_type.bitfield.class == RegMask)
10904 return (const reg_entry *) NULL;
10905
10906 if (!cpu_arch_flags.bitfield.cpuavx)
10907 {
10908 if (r->reg_type.bitfield.ymmword)
10909 return (const reg_entry *) NULL;
10910
10911 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10912 return (const reg_entry *) NULL;
10913 }
10914 }
10915
10916 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
10917 return (const reg_entry *) NULL;
10918
10919 /* Don't allow fake index register unless allow_index_reg isn't 0. */
10920 if (!allow_index_reg && r->reg_num == RegIZ)
10921 return (const reg_entry *) NULL;
10922
10923 /* Upper 16 vector registers are only available with VREX in 64bit
10924 mode, and require EVEX encoding. */
10925 if (r->reg_flags & RegVRex)
10926 {
10927 if (!cpu_arch_flags.bitfield.cpuavx512f
10928 || flag_code != CODE_64BIT)
10929 return (const reg_entry *) NULL;
10930
10931 i.vec_encoding = vex_encoding_evex;
10932 }
10933
10934 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10935 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
10936 && flag_code != CODE_64BIT)
10937 return (const reg_entry *) NULL;
10938
10939 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
10940 && !intel_syntax)
10941 return (const reg_entry *) NULL;
10942
10943 return r;
10944 }
10945
10946 /* REG_STRING starts *before* REGISTER_PREFIX. */
10947
10948 static const reg_entry *
10949 parse_register (char *reg_string, char **end_op)
10950 {
10951 const reg_entry *r;
10952
10953 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10954 r = parse_real_register (reg_string, end_op);
10955 else
10956 r = NULL;
10957 if (!r)
10958 {
10959 char *save = input_line_pointer;
10960 char c;
10961 symbolS *symbolP;
10962
10963 input_line_pointer = reg_string;
10964 c = get_symbol_name (&reg_string);
10965 symbolP = symbol_find (reg_string);
10966 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10967 {
10968 const expressionS *e = symbol_get_value_expression (symbolP);
10969
10970 know (e->X_op == O_register);
10971 know (e->X_add_number >= 0
10972 && (valueT) e->X_add_number < i386_regtab_size);
10973 r = i386_regtab + e->X_add_number;
10974 if ((r->reg_flags & RegVRex))
10975 i.vec_encoding = vex_encoding_evex;
10976 *end_op = input_line_pointer;
10977 }
10978 *input_line_pointer = c;
10979 input_line_pointer = save;
10980 }
10981 return r;
10982 }
10983
10984 int
10985 i386_parse_name (char *name, expressionS *e, char *nextcharP)
10986 {
10987 const reg_entry *r;
10988 char *end = input_line_pointer;
10989
10990 *end = *nextcharP;
10991 r = parse_register (name, &input_line_pointer);
10992 if (r && end <= input_line_pointer)
10993 {
10994 *nextcharP = *input_line_pointer;
10995 *input_line_pointer = 0;
10996 e->X_op = O_register;
10997 e->X_add_number = r - i386_regtab;
10998 return 1;
10999 }
11000 input_line_pointer = end;
11001 *end = 0;
11002 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
11003 }
11004
11005 void
11006 md_operand (expressionS *e)
11007 {
11008 char *end;
11009 const reg_entry *r;
11010
11011 switch (*input_line_pointer)
11012 {
11013 case REGISTER_PREFIX:
11014 r = parse_real_register (input_line_pointer, &end);
11015 if (r)
11016 {
11017 e->X_op = O_register;
11018 e->X_add_number = r - i386_regtab;
11019 input_line_pointer = end;
11020 }
11021 break;
11022
11023 case '[':
11024 gas_assert (intel_syntax);
11025 end = input_line_pointer++;
11026 expression (e);
11027 if (*input_line_pointer == ']')
11028 {
11029 ++input_line_pointer;
11030 e->X_op_symbol = make_expr_symbol (e);
11031 e->X_add_symbol = NULL;
11032 e->X_add_number = 0;
11033 e->X_op = O_index;
11034 }
11035 else
11036 {
11037 e->X_op = O_absent;
11038 input_line_pointer = end;
11039 }
11040 break;
11041 }
11042 }
11043
11044 \f
11045 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11046 const char *md_shortopts = "kVQ:sqnO::";
11047 #else
11048 const char *md_shortopts = "qnO::";
11049 #endif
11050
11051 #define OPTION_32 (OPTION_MD_BASE + 0)
11052 #define OPTION_64 (OPTION_MD_BASE + 1)
11053 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
11054 #define OPTION_MARCH (OPTION_MD_BASE + 3)
11055 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
11056 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
11057 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
11058 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
11059 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
11060 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
11061 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
11062 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
11063 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
11064 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
11065 #define OPTION_X32 (OPTION_MD_BASE + 14)
11066 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
11067 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
11068 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
11069 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
11070 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
11071 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
11072 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
11073 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
11074 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
11075 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
11076 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
11077 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
11078
11079 struct option md_longopts[] =
11080 {
11081 {"32", no_argument, NULL, OPTION_32},
11082 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11083 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11084 {"64", no_argument, NULL, OPTION_64},
11085 #endif
11086 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11087 {"x32", no_argument, NULL, OPTION_X32},
11088 {"mshared", no_argument, NULL, OPTION_MSHARED},
11089 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
11090 #endif
11091 {"divide", no_argument, NULL, OPTION_DIVIDE},
11092 {"march", required_argument, NULL, OPTION_MARCH},
11093 {"mtune", required_argument, NULL, OPTION_MTUNE},
11094 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
11095 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
11096 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
11097 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
11098 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
11099 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
11100 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
11101 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
11102 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
11103 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
11104 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
11105 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
11106 # if defined (TE_PE) || defined (TE_PEP)
11107 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
11108 #endif
11109 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
11110 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
11111 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
11112 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
11113 {"mamd64", no_argument, NULL, OPTION_MAMD64},
11114 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
11115 {NULL, no_argument, NULL, 0}
11116 };
11117 size_t md_longopts_size = sizeof (md_longopts);
11118
11119 int
11120 md_parse_option (int c, const char *arg)
11121 {
11122 unsigned int j;
11123 char *arch, *next, *saved;
11124
11125 switch (c)
11126 {
11127 case 'n':
11128 optimize_align_code = 0;
11129 break;
11130
11131 case 'q':
11132 quiet_warnings = 1;
11133 break;
11134
11135 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11136 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
11137 should be emitted or not. FIXME: Not implemented. */
11138 case 'Q':
11139 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
11140 return 0;
11141 break;
11142
11143 /* -V: SVR4 argument to print version ID. */
11144 case 'V':
11145 print_version_id ();
11146 break;
11147
11148 /* -k: Ignore for FreeBSD compatibility. */
11149 case 'k':
11150 break;
11151
11152 case 's':
11153 /* -s: On i386 Solaris, this tells the native assembler to use
11154 .stab instead of .stab.excl. We always use .stab anyhow. */
11155 break;
11156
11157 case OPTION_MSHARED:
11158 shared = 1;
11159 break;
11160
11161 case OPTION_X86_USED_NOTE:
11162 if (strcasecmp (arg, "yes") == 0)
11163 x86_used_note = 1;
11164 else if (strcasecmp (arg, "no") == 0)
11165 x86_used_note = 0;
11166 else
11167 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
11168 break;
11169
11170
11171 #endif
11172 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11173 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11174 case OPTION_64:
11175 {
11176 const char **list, **l;
11177
11178 list = bfd_target_list ();
11179 for (l = list; *l != NULL; l++)
11180 if (CONST_STRNEQ (*l, "elf64-x86-64")
11181 || strcmp (*l, "coff-x86-64") == 0
11182 || strcmp (*l, "pe-x86-64") == 0
11183 || strcmp (*l, "pei-x86-64") == 0
11184 || strcmp (*l, "mach-o-x86-64") == 0)
11185 {
11186 default_arch = "x86_64";
11187 break;
11188 }
11189 if (*l == NULL)
11190 as_fatal (_("no compiled in support for x86_64"));
11191 free (list);
11192 }
11193 break;
11194 #endif
11195
11196 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11197 case OPTION_X32:
11198 if (IS_ELF)
11199 {
11200 const char **list, **l;
11201
11202 list = bfd_target_list ();
11203 for (l = list; *l != NULL; l++)
11204 if (CONST_STRNEQ (*l, "elf32-x86-64"))
11205 {
11206 default_arch = "x86_64:32";
11207 break;
11208 }
11209 if (*l == NULL)
11210 as_fatal (_("no compiled in support for 32bit x86_64"));
11211 free (list);
11212 }
11213 else
11214 as_fatal (_("32bit x86_64 is only supported for ELF"));
11215 break;
11216 #endif
11217
11218 case OPTION_32:
11219 default_arch = "i386";
11220 break;
11221
11222 case OPTION_DIVIDE:
11223 #ifdef SVR4_COMMENT_CHARS
11224 {
11225 char *n, *t;
11226 const char *s;
11227
11228 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
11229 t = n;
11230 for (s = i386_comment_chars; *s != '\0'; s++)
11231 if (*s != '/')
11232 *t++ = *s;
11233 *t = '\0';
11234 i386_comment_chars = n;
11235 }
11236 #endif
11237 break;
11238
11239 case OPTION_MARCH:
11240 saved = xstrdup (arg);
11241 arch = saved;
11242 /* Allow -march=+nosse. */
11243 if (*arch == '+')
11244 arch++;
11245 do
11246 {
11247 if (*arch == '.')
11248 as_fatal (_("invalid -march= option: `%s'"), arg);
11249 next = strchr (arch, '+');
11250 if (next)
11251 *next++ = '\0';
11252 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11253 {
11254 if (strcmp (arch, cpu_arch [j].name) == 0)
11255 {
11256 /* Processor. */
11257 if (! cpu_arch[j].flags.bitfield.cpui386)
11258 continue;
11259
11260 cpu_arch_name = cpu_arch[j].name;
11261 cpu_sub_arch_name = NULL;
11262 cpu_arch_flags = cpu_arch[j].flags;
11263 cpu_arch_isa = cpu_arch[j].type;
11264 cpu_arch_isa_flags = cpu_arch[j].flags;
11265 if (!cpu_arch_tune_set)
11266 {
11267 cpu_arch_tune = cpu_arch_isa;
11268 cpu_arch_tune_flags = cpu_arch_isa_flags;
11269 }
11270 break;
11271 }
11272 else if (*cpu_arch [j].name == '.'
11273 && strcmp (arch, cpu_arch [j].name + 1) == 0)
11274 {
11275 /* ISA extension. */
11276 i386_cpu_flags flags;
11277
11278 flags = cpu_flags_or (cpu_arch_flags,
11279 cpu_arch[j].flags);
11280
11281 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11282 {
11283 if (cpu_sub_arch_name)
11284 {
11285 char *name = cpu_sub_arch_name;
11286 cpu_sub_arch_name = concat (name,
11287 cpu_arch[j].name,
11288 (const char *) NULL);
11289 free (name);
11290 }
11291 else
11292 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
11293 cpu_arch_flags = flags;
11294 cpu_arch_isa_flags = flags;
11295 }
11296 else
11297 cpu_arch_isa_flags
11298 = cpu_flags_or (cpu_arch_isa_flags,
11299 cpu_arch[j].flags);
11300 break;
11301 }
11302 }
11303
11304 if (j >= ARRAY_SIZE (cpu_arch))
11305 {
11306 /* Disable an ISA extension. */
11307 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11308 if (strcmp (arch, cpu_noarch [j].name) == 0)
11309 {
11310 i386_cpu_flags flags;
11311
11312 flags = cpu_flags_and_not (cpu_arch_flags,
11313 cpu_noarch[j].flags);
11314 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11315 {
11316 if (cpu_sub_arch_name)
11317 {
11318 char *name = cpu_sub_arch_name;
11319 cpu_sub_arch_name = concat (arch,
11320 (const char *) NULL);
11321 free (name);
11322 }
11323 else
11324 cpu_sub_arch_name = xstrdup (arch);
11325 cpu_arch_flags = flags;
11326 cpu_arch_isa_flags = flags;
11327 }
11328 break;
11329 }
11330
11331 if (j >= ARRAY_SIZE (cpu_noarch))
11332 j = ARRAY_SIZE (cpu_arch);
11333 }
11334
11335 if (j >= ARRAY_SIZE (cpu_arch))
11336 as_fatal (_("invalid -march= option: `%s'"), arg);
11337
11338 arch = next;
11339 }
11340 while (next != NULL);
11341 free (saved);
11342 break;
11343
11344 case OPTION_MTUNE:
11345 if (*arg == '.')
11346 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11347 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11348 {
11349 if (strcmp (arg, cpu_arch [j].name) == 0)
11350 {
11351 cpu_arch_tune_set = 1;
11352 cpu_arch_tune = cpu_arch [j].type;
11353 cpu_arch_tune_flags = cpu_arch[j].flags;
11354 break;
11355 }
11356 }
11357 if (j >= ARRAY_SIZE (cpu_arch))
11358 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11359 break;
11360
11361 case OPTION_MMNEMONIC:
11362 if (strcasecmp (arg, "att") == 0)
11363 intel_mnemonic = 0;
11364 else if (strcasecmp (arg, "intel") == 0)
11365 intel_mnemonic = 1;
11366 else
11367 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
11368 break;
11369
11370 case OPTION_MSYNTAX:
11371 if (strcasecmp (arg, "att") == 0)
11372 intel_syntax = 0;
11373 else if (strcasecmp (arg, "intel") == 0)
11374 intel_syntax = 1;
11375 else
11376 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
11377 break;
11378
11379 case OPTION_MINDEX_REG:
11380 allow_index_reg = 1;
11381 break;
11382
11383 case OPTION_MNAKED_REG:
11384 allow_naked_reg = 1;
11385 break;
11386
11387 case OPTION_MSSE2AVX:
11388 sse2avx = 1;
11389 break;
11390
11391 case OPTION_MSSE_CHECK:
11392 if (strcasecmp (arg, "error") == 0)
11393 sse_check = check_error;
11394 else if (strcasecmp (arg, "warning") == 0)
11395 sse_check = check_warning;
11396 else if (strcasecmp (arg, "none") == 0)
11397 sse_check = check_none;
11398 else
11399 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
11400 break;
11401
11402 case OPTION_MOPERAND_CHECK:
11403 if (strcasecmp (arg, "error") == 0)
11404 operand_check = check_error;
11405 else if (strcasecmp (arg, "warning") == 0)
11406 operand_check = check_warning;
11407 else if (strcasecmp (arg, "none") == 0)
11408 operand_check = check_none;
11409 else
11410 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
11411 break;
11412
11413 case OPTION_MAVXSCALAR:
11414 if (strcasecmp (arg, "128") == 0)
11415 avxscalar = vex128;
11416 else if (strcasecmp (arg, "256") == 0)
11417 avxscalar = vex256;
11418 else
11419 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
11420 break;
11421
11422 case OPTION_MVEXWIG:
11423 if (strcmp (arg, "0") == 0)
11424 vexwig = vexw0;
11425 else if (strcmp (arg, "1") == 0)
11426 vexwig = vexw1;
11427 else
11428 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
11429 break;
11430
11431 case OPTION_MADD_BND_PREFIX:
11432 add_bnd_prefix = 1;
11433 break;
11434
11435 case OPTION_MEVEXLIG:
11436 if (strcmp (arg, "128") == 0)
11437 evexlig = evexl128;
11438 else if (strcmp (arg, "256") == 0)
11439 evexlig = evexl256;
11440 else if (strcmp (arg, "512") == 0)
11441 evexlig = evexl512;
11442 else
11443 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
11444 break;
11445
11446 case OPTION_MEVEXRCIG:
11447 if (strcmp (arg, "rne") == 0)
11448 evexrcig = rne;
11449 else if (strcmp (arg, "rd") == 0)
11450 evexrcig = rd;
11451 else if (strcmp (arg, "ru") == 0)
11452 evexrcig = ru;
11453 else if (strcmp (arg, "rz") == 0)
11454 evexrcig = rz;
11455 else
11456 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
11457 break;
11458
11459 case OPTION_MEVEXWIG:
11460 if (strcmp (arg, "0") == 0)
11461 evexwig = evexw0;
11462 else if (strcmp (arg, "1") == 0)
11463 evexwig = evexw1;
11464 else
11465 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
11466 break;
11467
11468 # if defined (TE_PE) || defined (TE_PEP)
11469 case OPTION_MBIG_OBJ:
11470 use_big_obj = 1;
11471 break;
11472 #endif
11473
11474 case OPTION_MOMIT_LOCK_PREFIX:
11475 if (strcasecmp (arg, "yes") == 0)
11476 omit_lock_prefix = 1;
11477 else if (strcasecmp (arg, "no") == 0)
11478 omit_lock_prefix = 0;
11479 else
11480 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
11481 break;
11482
11483 case OPTION_MFENCE_AS_LOCK_ADD:
11484 if (strcasecmp (arg, "yes") == 0)
11485 avoid_fence = 1;
11486 else if (strcasecmp (arg, "no") == 0)
11487 avoid_fence = 0;
11488 else
11489 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
11490 break;
11491
11492 case OPTION_MRELAX_RELOCATIONS:
11493 if (strcasecmp (arg, "yes") == 0)
11494 generate_relax_relocations = 1;
11495 else if (strcasecmp (arg, "no") == 0)
11496 generate_relax_relocations = 0;
11497 else
11498 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
11499 break;
11500
11501 case OPTION_MAMD64:
11502 intel64 = 0;
11503 break;
11504
11505 case OPTION_MINTEL64:
11506 intel64 = 1;
11507 break;
11508
11509 case 'O':
11510 if (arg == NULL)
11511 {
11512 optimize = 1;
11513 /* Turn off -Os. */
11514 optimize_for_space = 0;
11515 }
11516 else if (*arg == 's')
11517 {
11518 optimize_for_space = 1;
11519 /* Turn on all encoding optimizations. */
11520 optimize = INT_MAX;
11521 }
11522 else
11523 {
11524 optimize = atoi (arg);
11525 /* Turn off -Os. */
11526 optimize_for_space = 0;
11527 }
11528 break;
11529
11530 default:
11531 return 0;
11532 }
11533 return 1;
11534 }
11535
11536 #define MESSAGE_TEMPLATE \
11537 " "
11538
11539 static char *
11540 output_message (FILE *stream, char *p, char *message, char *start,
11541 int *left_p, const char *name, int len)
11542 {
11543 int size = sizeof (MESSAGE_TEMPLATE);
11544 int left = *left_p;
11545
11546 /* Reserve 2 spaces for ", " or ",\0" */
11547 left -= len + 2;
11548
11549 /* Check if there is any room. */
11550 if (left >= 0)
11551 {
11552 if (p != start)
11553 {
11554 *p++ = ',';
11555 *p++ = ' ';
11556 }
11557 p = mempcpy (p, name, len);
11558 }
11559 else
11560 {
11561 /* Output the current message now and start a new one. */
11562 *p++ = ',';
11563 *p = '\0';
11564 fprintf (stream, "%s\n", message);
11565 p = start;
11566 left = size - (start - message) - len - 2;
11567
11568 gas_assert (left >= 0);
11569
11570 p = mempcpy (p, name, len);
11571 }
11572
11573 *left_p = left;
11574 return p;
11575 }
11576
11577 static void
11578 show_arch (FILE *stream, int ext, int check)
11579 {
11580 static char message[] = MESSAGE_TEMPLATE;
11581 char *start = message + 27;
11582 char *p;
11583 int size = sizeof (MESSAGE_TEMPLATE);
11584 int left;
11585 const char *name;
11586 int len;
11587 unsigned int j;
11588
11589 p = start;
11590 left = size - (start - message);
11591 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11592 {
11593 /* Should it be skipped? */
11594 if (cpu_arch [j].skip)
11595 continue;
11596
11597 name = cpu_arch [j].name;
11598 len = cpu_arch [j].len;
11599 if (*name == '.')
11600 {
11601 /* It is an extension. Skip if we aren't asked to show it. */
11602 if (ext)
11603 {
11604 name++;
11605 len--;
11606 }
11607 else
11608 continue;
11609 }
11610 else if (ext)
11611 {
11612 /* It is an processor. Skip if we show only extension. */
11613 continue;
11614 }
11615 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11616 {
11617 /* It is an impossible processor - skip. */
11618 continue;
11619 }
11620
11621 p = output_message (stream, p, message, start, &left, name, len);
11622 }
11623
11624 /* Display disabled extensions. */
11625 if (ext)
11626 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11627 {
11628 name = cpu_noarch [j].name;
11629 len = cpu_noarch [j].len;
11630 p = output_message (stream, p, message, start, &left, name,
11631 len);
11632 }
11633
11634 *p = '\0';
11635 fprintf (stream, "%s\n", message);
11636 }
11637
11638 void
11639 md_show_usage (FILE *stream)
11640 {
11641 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11642 fprintf (stream, _("\
11643 -Qy, -Qn ignored\n\
11644 -V print assembler version number\n\
11645 -k ignored\n"));
11646 #endif
11647 fprintf (stream, _("\
11648 -n Do not optimize code alignment\n\
11649 -q quieten some warnings\n"));
11650 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11651 fprintf (stream, _("\
11652 -s ignored\n"));
11653 #endif
11654 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11655 || defined (TE_PE) || defined (TE_PEP))
11656 fprintf (stream, _("\
11657 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
11658 #endif
11659 #ifdef SVR4_COMMENT_CHARS
11660 fprintf (stream, _("\
11661 --divide do not treat `/' as a comment character\n"));
11662 #else
11663 fprintf (stream, _("\
11664 --divide ignored\n"));
11665 #endif
11666 fprintf (stream, _("\
11667 -march=CPU[,+EXTENSION...]\n\
11668 generate code for CPU and EXTENSION, CPU is one of:\n"));
11669 show_arch (stream, 0, 1);
11670 fprintf (stream, _("\
11671 EXTENSION is combination of:\n"));
11672 show_arch (stream, 1, 0);
11673 fprintf (stream, _("\
11674 -mtune=CPU optimize for CPU, CPU is one of:\n"));
11675 show_arch (stream, 0, 0);
11676 fprintf (stream, _("\
11677 -msse2avx encode SSE instructions with VEX prefix\n"));
11678 fprintf (stream, _("\
11679 -msse-check=[none|error|warning] (default: warning)\n\
11680 check SSE instructions\n"));
11681 fprintf (stream, _("\
11682 -moperand-check=[none|error|warning] (default: warning)\n\
11683 check operand combinations for validity\n"));
11684 fprintf (stream, _("\
11685 -mavxscalar=[128|256] (default: 128)\n\
11686 encode scalar AVX instructions with specific vector\n\
11687 length\n"));
11688 fprintf (stream, _("\
11689 -mvexwig=[0|1] (default: 0)\n\
11690 encode VEX instructions with specific VEX.W value\n\
11691 for VEX.W bit ignored instructions\n"));
11692 fprintf (stream, _("\
11693 -mevexlig=[128|256|512] (default: 128)\n\
11694 encode scalar EVEX instructions with specific vector\n\
11695 length\n"));
11696 fprintf (stream, _("\
11697 -mevexwig=[0|1] (default: 0)\n\
11698 encode EVEX instructions with specific EVEX.W value\n\
11699 for EVEX.W bit ignored instructions\n"));
11700 fprintf (stream, _("\
11701 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
11702 encode EVEX instructions with specific EVEX.RC value\n\
11703 for SAE-only ignored instructions\n"));
11704 fprintf (stream, _("\
11705 -mmnemonic=[att|intel] "));
11706 if (SYSV386_COMPAT)
11707 fprintf (stream, _("(default: att)\n"));
11708 else
11709 fprintf (stream, _("(default: intel)\n"));
11710 fprintf (stream, _("\
11711 use AT&T/Intel mnemonic\n"));
11712 fprintf (stream, _("\
11713 -msyntax=[att|intel] (default: att)\n\
11714 use AT&T/Intel syntax\n"));
11715 fprintf (stream, _("\
11716 -mindex-reg support pseudo index registers\n"));
11717 fprintf (stream, _("\
11718 -mnaked-reg don't require `%%' prefix for registers\n"));
11719 fprintf (stream, _("\
11720 -madd-bnd-prefix add BND prefix for all valid branches\n"));
11721 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11722 fprintf (stream, _("\
11723 -mshared disable branch optimization for shared code\n"));
11724 fprintf (stream, _("\
11725 -mx86-used-note=[no|yes] "));
11726 if (DEFAULT_X86_USED_NOTE)
11727 fprintf (stream, _("(default: yes)\n"));
11728 else
11729 fprintf (stream, _("(default: no)\n"));
11730 fprintf (stream, _("\
11731 generate x86 used ISA and feature properties\n"));
11732 #endif
11733 #if defined (TE_PE) || defined (TE_PEP)
11734 fprintf (stream, _("\
11735 -mbig-obj generate big object files\n"));
11736 #endif
11737 fprintf (stream, _("\
11738 -momit-lock-prefix=[no|yes] (default: no)\n\
11739 strip all lock prefixes\n"));
11740 fprintf (stream, _("\
11741 -mfence-as-lock-add=[no|yes] (default: no)\n\
11742 encode lfence, mfence and sfence as\n\
11743 lock addl $0x0, (%%{re}sp)\n"));
11744 fprintf (stream, _("\
11745 -mrelax-relocations=[no|yes] "));
11746 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
11747 fprintf (stream, _("(default: yes)\n"));
11748 else
11749 fprintf (stream, _("(default: no)\n"));
11750 fprintf (stream, _("\
11751 generate relax relocations\n"));
11752 fprintf (stream, _("\
11753 -mamd64 accept only AMD64 ISA [default]\n"));
11754 fprintf (stream, _("\
11755 -mintel64 accept only Intel64 ISA\n"));
11756 }
11757
11758 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
11759 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11760 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11761
11762 /* Pick the target format to use. */
11763
11764 const char *
11765 i386_target_format (void)
11766 {
11767 if (!strncmp (default_arch, "x86_64", 6))
11768 {
11769 update_code_flag (CODE_64BIT, 1);
11770 if (default_arch[6] == '\0')
11771 x86_elf_abi = X86_64_ABI;
11772 else
11773 x86_elf_abi = X86_64_X32_ABI;
11774 }
11775 else if (!strcmp (default_arch, "i386"))
11776 update_code_flag (CODE_32BIT, 1);
11777 else if (!strcmp (default_arch, "iamcu"))
11778 {
11779 update_code_flag (CODE_32BIT, 1);
11780 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11781 {
11782 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11783 cpu_arch_name = "iamcu";
11784 cpu_sub_arch_name = NULL;
11785 cpu_arch_flags = iamcu_flags;
11786 cpu_arch_isa = PROCESSOR_IAMCU;
11787 cpu_arch_isa_flags = iamcu_flags;
11788 if (!cpu_arch_tune_set)
11789 {
11790 cpu_arch_tune = cpu_arch_isa;
11791 cpu_arch_tune_flags = cpu_arch_isa_flags;
11792 }
11793 }
11794 else if (cpu_arch_isa != PROCESSOR_IAMCU)
11795 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11796 cpu_arch_name);
11797 }
11798 else
11799 as_fatal (_("unknown architecture"));
11800
11801 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11802 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11803 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11804 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11805
11806 switch (OUTPUT_FLAVOR)
11807 {
11808 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
11809 case bfd_target_aout_flavour:
11810 return AOUT_TARGET_FORMAT;
11811 #endif
11812 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11813 # if defined (TE_PE) || defined (TE_PEP)
11814 case bfd_target_coff_flavour:
11815 if (flag_code == CODE_64BIT)
11816 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11817 else
11818 return "pe-i386";
11819 # elif defined (TE_GO32)
11820 case bfd_target_coff_flavour:
11821 return "coff-go32";
11822 # else
11823 case bfd_target_coff_flavour:
11824 return "coff-i386";
11825 # endif
11826 #endif
11827 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11828 case bfd_target_elf_flavour:
11829 {
11830 const char *format;
11831
11832 switch (x86_elf_abi)
11833 {
11834 default:
11835 format = ELF_TARGET_FORMAT;
11836 break;
11837 case X86_64_ABI:
11838 use_rela_relocations = 1;
11839 object_64bit = 1;
11840 format = ELF_TARGET_FORMAT64;
11841 break;
11842 case X86_64_X32_ABI:
11843 use_rela_relocations = 1;
11844 object_64bit = 1;
11845 disallow_64bit_reloc = 1;
11846 format = ELF_TARGET_FORMAT32;
11847 break;
11848 }
11849 if (cpu_arch_isa == PROCESSOR_L1OM)
11850 {
11851 if (x86_elf_abi != X86_64_ABI)
11852 as_fatal (_("Intel L1OM is 64bit only"));
11853 return ELF_TARGET_L1OM_FORMAT;
11854 }
11855 else if (cpu_arch_isa == PROCESSOR_K1OM)
11856 {
11857 if (x86_elf_abi != X86_64_ABI)
11858 as_fatal (_("Intel K1OM is 64bit only"));
11859 return ELF_TARGET_K1OM_FORMAT;
11860 }
11861 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11862 {
11863 if (x86_elf_abi != I386_ABI)
11864 as_fatal (_("Intel MCU is 32bit only"));
11865 return ELF_TARGET_IAMCU_FORMAT;
11866 }
11867 else
11868 return format;
11869 }
11870 #endif
11871 #if defined (OBJ_MACH_O)
11872 case bfd_target_mach_o_flavour:
11873 if (flag_code == CODE_64BIT)
11874 {
11875 use_rela_relocations = 1;
11876 object_64bit = 1;
11877 return "mach-o-x86-64";
11878 }
11879 else
11880 return "mach-o-i386";
11881 #endif
11882 default:
11883 abort ();
11884 return NULL;
11885 }
11886 }
11887
11888 #endif /* OBJ_MAYBE_ more than one */
11889 \f
11890 symbolS *
11891 md_undefined_symbol (char *name)
11892 {
11893 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11894 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11895 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11896 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
11897 {
11898 if (!GOT_symbol)
11899 {
11900 if (symbol_find (name))
11901 as_bad (_("GOT already in symbol table"));
11902 GOT_symbol = symbol_new (name, undefined_section,
11903 (valueT) 0, &zero_address_frag);
11904 };
11905 return GOT_symbol;
11906 }
11907 return 0;
11908 }
11909
11910 /* Round up a section size to the appropriate boundary. */
11911
11912 valueT
11913 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
11914 {
11915 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11916 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11917 {
11918 /* For a.out, force the section size to be aligned. If we don't do
11919 this, BFD will align it for us, but it will not write out the
11920 final bytes of the section. This may be a bug in BFD, but it is
11921 easier to fix it here since that is how the other a.out targets
11922 work. */
11923 int align;
11924
11925 align = bfd_section_alignment (segment);
11926 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
11927 }
11928 #endif
11929
11930 return size;
11931 }
11932
11933 /* On the i386, PC-relative offsets are relative to the start of the
11934 next instruction. That is, the address of the offset, plus its
11935 size, since the offset is always the last part of the insn. */
11936
11937 long
11938 md_pcrel_from (fixS *fixP)
11939 {
11940 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11941 }
11942
11943 #ifndef I386COFF
11944
11945 static void
11946 s_bss (int ignore ATTRIBUTE_UNUSED)
11947 {
11948 int temp;
11949
11950 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11951 if (IS_ELF)
11952 obj_elf_section_change_hook ();
11953 #endif
11954 temp = get_absolute_expression ();
11955 subseg_set (bss_section, (subsegT) temp);
11956 demand_empty_rest_of_line ();
11957 }
11958
11959 #endif
11960
11961 void
11962 i386_validate_fix (fixS *fixp)
11963 {
11964 if (fixp->fx_subsy)
11965 {
11966 if (fixp->fx_subsy == GOT_symbol)
11967 {
11968 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11969 {
11970 if (!object_64bit)
11971 abort ();
11972 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11973 if (fixp->fx_tcbit2)
11974 fixp->fx_r_type = (fixp->fx_tcbit
11975 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11976 : BFD_RELOC_X86_64_GOTPCRELX);
11977 else
11978 #endif
11979 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11980 }
11981 else
11982 {
11983 if (!object_64bit)
11984 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11985 else
11986 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11987 }
11988 fixp->fx_subsy = 0;
11989 }
11990 }
11991 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11992 else if (!object_64bit)
11993 {
11994 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11995 && fixp->fx_tcbit2)
11996 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11997 }
11998 #endif
11999 }
12000
12001 arelent *
12002 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
12003 {
12004 arelent *rel;
12005 bfd_reloc_code_real_type code;
12006
12007 switch (fixp->fx_r_type)
12008 {
12009 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12010 case BFD_RELOC_SIZE32:
12011 case BFD_RELOC_SIZE64:
12012 if (S_IS_DEFINED (fixp->fx_addsy)
12013 && !S_IS_EXTERNAL (fixp->fx_addsy))
12014 {
12015 /* Resolve size relocation against local symbol to size of
12016 the symbol plus addend. */
12017 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
12018 if (fixp->fx_r_type == BFD_RELOC_SIZE32
12019 && !fits_in_unsigned_long (value))
12020 as_bad_where (fixp->fx_file, fixp->fx_line,
12021 _("symbol size computation overflow"));
12022 fixp->fx_addsy = NULL;
12023 fixp->fx_subsy = NULL;
12024 md_apply_fix (fixp, (valueT *) &value, NULL);
12025 return NULL;
12026 }
12027 #endif
12028 /* Fall through. */
12029
12030 case BFD_RELOC_X86_64_PLT32:
12031 case BFD_RELOC_X86_64_GOT32:
12032 case BFD_RELOC_X86_64_GOTPCREL:
12033 case BFD_RELOC_X86_64_GOTPCRELX:
12034 case BFD_RELOC_X86_64_REX_GOTPCRELX:
12035 case BFD_RELOC_386_PLT32:
12036 case BFD_RELOC_386_GOT32:
12037 case BFD_RELOC_386_GOT32X:
12038 case BFD_RELOC_386_GOTOFF:
12039 case BFD_RELOC_386_GOTPC:
12040 case BFD_RELOC_386_TLS_GD:
12041 case BFD_RELOC_386_TLS_LDM:
12042 case BFD_RELOC_386_TLS_LDO_32:
12043 case BFD_RELOC_386_TLS_IE_32:
12044 case BFD_RELOC_386_TLS_IE:
12045 case BFD_RELOC_386_TLS_GOTIE:
12046 case BFD_RELOC_386_TLS_LE_32:
12047 case BFD_RELOC_386_TLS_LE:
12048 case BFD_RELOC_386_TLS_GOTDESC:
12049 case BFD_RELOC_386_TLS_DESC_CALL:
12050 case BFD_RELOC_X86_64_TLSGD:
12051 case BFD_RELOC_X86_64_TLSLD:
12052 case BFD_RELOC_X86_64_DTPOFF32:
12053 case BFD_RELOC_X86_64_DTPOFF64:
12054 case BFD_RELOC_X86_64_GOTTPOFF:
12055 case BFD_RELOC_X86_64_TPOFF32:
12056 case BFD_RELOC_X86_64_TPOFF64:
12057 case BFD_RELOC_X86_64_GOTOFF64:
12058 case BFD_RELOC_X86_64_GOTPC32:
12059 case BFD_RELOC_X86_64_GOT64:
12060 case BFD_RELOC_X86_64_GOTPCREL64:
12061 case BFD_RELOC_X86_64_GOTPC64:
12062 case BFD_RELOC_X86_64_GOTPLT64:
12063 case BFD_RELOC_X86_64_PLTOFF64:
12064 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12065 case BFD_RELOC_X86_64_TLSDESC_CALL:
12066 case BFD_RELOC_RVA:
12067 case BFD_RELOC_VTABLE_ENTRY:
12068 case BFD_RELOC_VTABLE_INHERIT:
12069 #ifdef TE_PE
12070 case BFD_RELOC_32_SECREL:
12071 #endif
12072 code = fixp->fx_r_type;
12073 break;
12074 case BFD_RELOC_X86_64_32S:
12075 if (!fixp->fx_pcrel)
12076 {
12077 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
12078 code = fixp->fx_r_type;
12079 break;
12080 }
12081 /* Fall through. */
12082 default:
12083 if (fixp->fx_pcrel)
12084 {
12085 switch (fixp->fx_size)
12086 {
12087 default:
12088 as_bad_where (fixp->fx_file, fixp->fx_line,
12089 _("can not do %d byte pc-relative relocation"),
12090 fixp->fx_size);
12091 code = BFD_RELOC_32_PCREL;
12092 break;
12093 case 1: code = BFD_RELOC_8_PCREL; break;
12094 case 2: code = BFD_RELOC_16_PCREL; break;
12095 case 4: code = BFD_RELOC_32_PCREL; break;
12096 #ifdef BFD64
12097 case 8: code = BFD_RELOC_64_PCREL; break;
12098 #endif
12099 }
12100 }
12101 else
12102 {
12103 switch (fixp->fx_size)
12104 {
12105 default:
12106 as_bad_where (fixp->fx_file, fixp->fx_line,
12107 _("can not do %d byte relocation"),
12108 fixp->fx_size);
12109 code = BFD_RELOC_32;
12110 break;
12111 case 1: code = BFD_RELOC_8; break;
12112 case 2: code = BFD_RELOC_16; break;
12113 case 4: code = BFD_RELOC_32; break;
12114 #ifdef BFD64
12115 case 8: code = BFD_RELOC_64; break;
12116 #endif
12117 }
12118 }
12119 break;
12120 }
12121
12122 if ((code == BFD_RELOC_32
12123 || code == BFD_RELOC_32_PCREL
12124 || code == BFD_RELOC_X86_64_32S)
12125 && GOT_symbol
12126 && fixp->fx_addsy == GOT_symbol)
12127 {
12128 if (!object_64bit)
12129 code = BFD_RELOC_386_GOTPC;
12130 else
12131 code = BFD_RELOC_X86_64_GOTPC32;
12132 }
12133 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
12134 && GOT_symbol
12135 && fixp->fx_addsy == GOT_symbol)
12136 {
12137 code = BFD_RELOC_X86_64_GOTPC64;
12138 }
12139
12140 rel = XNEW (arelent);
12141 rel->sym_ptr_ptr = XNEW (asymbol *);
12142 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
12143
12144 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
12145
12146 if (!use_rela_relocations)
12147 {
12148 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
12149 vtable entry to be used in the relocation's section offset. */
12150 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
12151 rel->address = fixp->fx_offset;
12152 #if defined (OBJ_COFF) && defined (TE_PE)
12153 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
12154 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
12155 else
12156 #endif
12157 rel->addend = 0;
12158 }
12159 /* Use the rela in 64bit mode. */
12160 else
12161 {
12162 if (disallow_64bit_reloc)
12163 switch (code)
12164 {
12165 case BFD_RELOC_X86_64_DTPOFF64:
12166 case BFD_RELOC_X86_64_TPOFF64:
12167 case BFD_RELOC_64_PCREL:
12168 case BFD_RELOC_X86_64_GOTOFF64:
12169 case BFD_RELOC_X86_64_GOT64:
12170 case BFD_RELOC_X86_64_GOTPCREL64:
12171 case BFD_RELOC_X86_64_GOTPC64:
12172 case BFD_RELOC_X86_64_GOTPLT64:
12173 case BFD_RELOC_X86_64_PLTOFF64:
12174 as_bad_where (fixp->fx_file, fixp->fx_line,
12175 _("cannot represent relocation type %s in x32 mode"),
12176 bfd_get_reloc_code_name (code));
12177 break;
12178 default:
12179 break;
12180 }
12181
12182 if (!fixp->fx_pcrel)
12183 rel->addend = fixp->fx_offset;
12184 else
12185 switch (code)
12186 {
12187 case BFD_RELOC_X86_64_PLT32:
12188 case BFD_RELOC_X86_64_GOT32:
12189 case BFD_RELOC_X86_64_GOTPCREL:
12190 case BFD_RELOC_X86_64_GOTPCRELX:
12191 case BFD_RELOC_X86_64_REX_GOTPCRELX:
12192 case BFD_RELOC_X86_64_TLSGD:
12193 case BFD_RELOC_X86_64_TLSLD:
12194 case BFD_RELOC_X86_64_GOTTPOFF:
12195 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12196 case BFD_RELOC_X86_64_TLSDESC_CALL:
12197 rel->addend = fixp->fx_offset - fixp->fx_size;
12198 break;
12199 default:
12200 rel->addend = (section->vma
12201 - fixp->fx_size
12202 + fixp->fx_addnumber
12203 + md_pcrel_from (fixp));
12204 break;
12205 }
12206 }
12207
12208 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
12209 if (rel->howto == NULL)
12210 {
12211 as_bad_where (fixp->fx_file, fixp->fx_line,
12212 _("cannot represent relocation type %s"),
12213 bfd_get_reloc_code_name (code));
12214 /* Set howto to a garbage value so that we can keep going. */
12215 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
12216 gas_assert (rel->howto != NULL);
12217 }
12218
12219 return rel;
12220 }
12221
12222 #include "tc-i386-intel.c"
12223
12224 void
12225 tc_x86_parse_to_dw2regnum (expressionS *exp)
12226 {
12227 int saved_naked_reg;
12228 char saved_register_dot;
12229
12230 saved_naked_reg = allow_naked_reg;
12231 allow_naked_reg = 1;
12232 saved_register_dot = register_chars['.'];
12233 register_chars['.'] = '.';
12234 allow_pseudo_reg = 1;
12235 expression_and_evaluate (exp);
12236 allow_pseudo_reg = 0;
12237 register_chars['.'] = saved_register_dot;
12238 allow_naked_reg = saved_naked_reg;
12239
12240 if (exp->X_op == O_register && exp->X_add_number >= 0)
12241 {
12242 if ((addressT) exp->X_add_number < i386_regtab_size)
12243 {
12244 exp->X_op = O_constant;
12245 exp->X_add_number = i386_regtab[exp->X_add_number]
12246 .dw2_regnum[flag_code >> 1];
12247 }
12248 else
12249 exp->X_op = O_illegal;
12250 }
12251 }
12252
12253 void
12254 tc_x86_frame_initial_instructions (void)
12255 {
12256 static unsigned int sp_regno[2];
12257
12258 if (!sp_regno[flag_code >> 1])
12259 {
12260 char *saved_input = input_line_pointer;
12261 char sp[][4] = {"esp", "rsp"};
12262 expressionS exp;
12263
12264 input_line_pointer = sp[flag_code >> 1];
12265 tc_x86_parse_to_dw2regnum (&exp);
12266 gas_assert (exp.X_op == O_constant);
12267 sp_regno[flag_code >> 1] = exp.X_add_number;
12268 input_line_pointer = saved_input;
12269 }
12270
12271 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
12272 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
12273 }
12274
12275 int
12276 x86_dwarf2_addr_size (void)
12277 {
12278 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12279 if (x86_elf_abi == X86_64_X32_ABI)
12280 return 4;
12281 #endif
12282 return bfd_arch_bits_per_address (stdoutput) / 8;
12283 }
12284
12285 int
12286 i386_elf_section_type (const char *str, size_t len)
12287 {
12288 if (flag_code == CODE_64BIT
12289 && len == sizeof ("unwind") - 1
12290 && strncmp (str, "unwind", 6) == 0)
12291 return SHT_X86_64_UNWIND;
12292
12293 return -1;
12294 }
12295
12296 #ifdef TE_SOLARIS
12297 void
12298 i386_solaris_fix_up_eh_frame (segT sec)
12299 {
12300 if (flag_code == CODE_64BIT)
12301 elf_section_type (sec) = SHT_X86_64_UNWIND;
12302 }
12303 #endif
12304
12305 #ifdef TE_PE
12306 void
12307 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
12308 {
12309 expressionS exp;
12310
12311 exp.X_op = O_secrel;
12312 exp.X_add_symbol = symbol;
12313 exp.X_add_number = 0;
12314 emit_expr (&exp, size);
12315 }
12316 #endif
12317
12318 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12319 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12320
12321 bfd_vma
12322 x86_64_section_letter (int letter, const char **ptr_msg)
12323 {
12324 if (flag_code == CODE_64BIT)
12325 {
12326 if (letter == 'l')
12327 return SHF_X86_64_LARGE;
12328
12329 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
12330 }
12331 else
12332 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
12333 return -1;
12334 }
12335
12336 bfd_vma
12337 x86_64_section_word (char *str, size_t len)
12338 {
12339 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
12340 return SHF_X86_64_LARGE;
12341
12342 return -1;
12343 }
12344
12345 static void
12346 handle_large_common (int small ATTRIBUTE_UNUSED)
12347 {
12348 if (flag_code != CODE_64BIT)
12349 {
12350 s_comm_internal (0, elf_common_parse);
12351 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12352 }
12353 else
12354 {
12355 static segT lbss_section;
12356 asection *saved_com_section_ptr = elf_com_section_ptr;
12357 asection *saved_bss_section = bss_section;
12358
12359 if (lbss_section == NULL)
12360 {
12361 flagword applicable;
12362 segT seg = now_seg;
12363 subsegT subseg = now_subseg;
12364
12365 /* The .lbss section is for local .largecomm symbols. */
12366 lbss_section = subseg_new (".lbss", 0);
12367 applicable = bfd_applicable_section_flags (stdoutput);
12368 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
12369 seg_info (lbss_section)->bss = 1;
12370
12371 subseg_set (seg, subseg);
12372 }
12373
12374 elf_com_section_ptr = &_bfd_elf_large_com_section;
12375 bss_section = lbss_section;
12376
12377 s_comm_internal (0, elf_common_parse);
12378
12379 elf_com_section_ptr = saved_com_section_ptr;
12380 bss_section = saved_bss_section;
12381 }
12382 }
12383 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */