]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-i386.c
x86: Support VEX/EVEX WIG encoding
[thirdparty/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 /* Intel Syntax. Use a non-ascii letter since since it never appears
85 in instructions. */
86 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
87
88 #define END_OF_INSN '\0'
89
90 /*
91 'templates' is for grouping together 'template' structures for opcodes
92 of the same name. This is only used for storing the insns in the grand
93 ole hash table of insns.
94 The templates themselves start at START and range up to (but not including)
95 END.
96 */
97 typedef struct
98 {
99 const insn_template *start;
100 const insn_template *end;
101 }
102 templates;
103
104 /* 386 operand encoding bytes: see 386 book for details of this. */
105 typedef struct
106 {
107 unsigned int regmem; /* codes register or memory operand */
108 unsigned int reg; /* codes register operand (or extended opcode) */
109 unsigned int mode; /* how to interpret regmem & reg */
110 }
111 modrm_byte;
112
113 /* x86-64 extension prefix. */
114 typedef int rex_byte;
115
116 /* 386 opcode byte to code indirect addressing. */
117 typedef struct
118 {
119 unsigned base;
120 unsigned index;
121 unsigned scale;
122 }
123 sib_byte;
124
125 /* x86 arch names, types and features */
126 typedef struct
127 {
128 const char *name; /* arch name */
129 unsigned int len; /* arch string length */
130 enum processor_type type; /* arch type */
131 i386_cpu_flags flags; /* cpu feature flags */
132 unsigned int skip; /* show_arch should skip this. */
133 }
134 arch_entry;
135
136 /* Used to turn off indicated flags. */
137 typedef struct
138 {
139 const char *name; /* arch name */
140 unsigned int len; /* arch string length */
141 i386_cpu_flags flags; /* cpu feature flags */
142 }
143 noarch_entry;
144
145 static void update_code_flag (int, int);
146 static void set_code_flag (int);
147 static void set_16bit_gcc_code_flag (int);
148 static void set_intel_syntax (int);
149 static void set_intel_mnemonic (int);
150 static void set_allow_index_reg (int);
151 static void set_check (int);
152 static void set_cpu_arch (int);
153 #ifdef TE_PE
154 static void pe_directive_secrel (int);
155 #endif
156 static void signed_cons (int);
157 static char *output_invalid (int c);
158 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
159 const char *);
160 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
161 const char *);
162 static int i386_att_operand (char *);
163 static int i386_intel_operand (char *, int);
164 static int i386_intel_simplify (expressionS *);
165 static int i386_intel_parse_name (const char *, expressionS *);
166 static const reg_entry *parse_register (char *, char **);
167 static char *parse_insn (char *, char *);
168 static char *parse_operands (char *, const char *);
169 static void swap_operands (void);
170 static void swap_2_operands (int, int);
171 static void optimize_imm (void);
172 static void optimize_disp (void);
173 static const insn_template *match_template (char);
174 static int check_string (void);
175 static int process_suffix (void);
176 static int check_byte_reg (void);
177 static int check_long_reg (void);
178 static int check_qword_reg (void);
179 static int check_word_reg (void);
180 static int finalize_imm (void);
181 static int process_operands (void);
182 static const seg_entry *build_modrm_byte (void);
183 static void output_insn (void);
184 static void output_imm (fragS *, offsetT);
185 static void output_disp (fragS *, offsetT);
186 #ifndef I386COFF
187 static void s_bss (int);
188 #endif
189 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
190 static void handle_large_common (int small ATTRIBUTE_UNUSED);
191
192 /* GNU_PROPERTY_X86_ISA_1_USED. */
193 static unsigned int x86_isa_1_used;
194 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
195 static unsigned int x86_feature_2_used;
196 /* Generate x86 used ISA and feature properties. */
197 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
198 #endif
199
200 static const char *default_arch = DEFAULT_ARCH;
201
202 /* This struct describes rounding control and SAE in the instruction. */
203 struct RC_Operation
204 {
205 enum rc_type
206 {
207 rne = 0,
208 rd,
209 ru,
210 rz,
211 saeonly
212 } type;
213 int operand;
214 };
215
216 static struct RC_Operation rc_op;
217
218 /* The struct describes masking, applied to OPERAND in the instruction.
219 MASK is a pointer to the corresponding mask register. ZEROING tells
220 whether merging or zeroing mask is used. */
221 struct Mask_Operation
222 {
223 const reg_entry *mask;
224 unsigned int zeroing;
225 /* The operand where this operation is associated. */
226 int operand;
227 };
228
229 static struct Mask_Operation mask_op;
230
231 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
232 broadcast factor. */
233 struct Broadcast_Operation
234 {
235 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
236 int type;
237
238 /* Index of broadcasted operand. */
239 int operand;
240
241 /* Number of bytes to broadcast. */
242 int bytes;
243 };
244
245 static struct Broadcast_Operation broadcast_op;
246
247 /* VEX prefix. */
248 typedef struct
249 {
250 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
251 unsigned char bytes[4];
252 unsigned int length;
253 /* Destination or source register specifier. */
254 const reg_entry *register_specifier;
255 } vex_prefix;
256
257 /* 'md_assemble ()' gathers together information and puts it into a
258 i386_insn. */
259
260 union i386_op
261 {
262 expressionS *disps;
263 expressionS *imms;
264 const reg_entry *regs;
265 };
266
267 enum i386_error
268 {
269 operand_size_mismatch,
270 operand_type_mismatch,
271 register_type_mismatch,
272 number_of_operands_mismatch,
273 invalid_instruction_suffix,
274 bad_imm4,
275 unsupported_with_intel_mnemonic,
276 unsupported_syntax,
277 unsupported,
278 invalid_vsib_address,
279 invalid_vector_register_set,
280 unsupported_vector_index_register,
281 unsupported_broadcast,
282 broadcast_needed,
283 unsupported_masking,
284 mask_not_on_destination,
285 no_default_mask,
286 unsupported_rc_sae,
287 rc_sae_operand_not_last_imm,
288 invalid_register_operand,
289 };
290
291 struct _i386_insn
292 {
293 /* TM holds the template for the insn were currently assembling. */
294 insn_template tm;
295
296 /* SUFFIX holds the instruction size suffix for byte, word, dword
297 or qword, if given. */
298 char suffix;
299
300 /* OPERANDS gives the number of given operands. */
301 unsigned int operands;
302
303 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
304 of given register, displacement, memory operands and immediate
305 operands. */
306 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
307
308 /* TYPES [i] is the type (see above #defines) which tells us how to
309 use OP[i] for the corresponding operand. */
310 i386_operand_type types[MAX_OPERANDS];
311
312 /* Displacement expression, immediate expression, or register for each
313 operand. */
314 union i386_op op[MAX_OPERANDS];
315
316 /* Flags for operands. */
317 unsigned int flags[MAX_OPERANDS];
318 #define Operand_PCrel 1
319 #define Operand_Mem 2
320
321 /* Relocation type for operand */
322 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
323
324 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
325 the base index byte below. */
326 const reg_entry *base_reg;
327 const reg_entry *index_reg;
328 unsigned int log2_scale_factor;
329
330 /* SEG gives the seg_entries of this insn. They are zero unless
331 explicit segment overrides are given. */
332 const seg_entry *seg[2];
333
334 /* Copied first memory operand string, for re-checking. */
335 char *memop1_string;
336
337 /* PREFIX holds all the given prefix opcodes (usually null).
338 PREFIXES is the number of prefix opcodes. */
339 unsigned int prefixes;
340 unsigned char prefix[MAX_PREFIXES];
341
342 /* Has MMX register operands. */
343 bfd_boolean has_regmmx;
344
345 /* Has XMM register operands. */
346 bfd_boolean has_regxmm;
347
348 /* Has YMM register operands. */
349 bfd_boolean has_regymm;
350
351 /* Has ZMM register operands. */
352 bfd_boolean has_regzmm;
353
354 /* RM and SIB are the modrm byte and the sib byte where the
355 addressing modes of this insn are encoded. */
356 modrm_byte rm;
357 rex_byte rex;
358 rex_byte vrex;
359 sib_byte sib;
360 vex_prefix vex;
361
362 /* Masking attributes. */
363 struct Mask_Operation *mask;
364
365 /* Rounding control and SAE attributes. */
366 struct RC_Operation *rounding;
367
368 /* Broadcasting attributes. */
369 struct Broadcast_Operation *broadcast;
370
371 /* Compressed disp8*N attribute. */
372 unsigned int memshift;
373
374 /* Prefer load or store in encoding. */
375 enum
376 {
377 dir_encoding_default = 0,
378 dir_encoding_load,
379 dir_encoding_store,
380 dir_encoding_swap
381 } dir_encoding;
382
383 /* Prefer 8bit or 32bit displacement in encoding. */
384 enum
385 {
386 disp_encoding_default = 0,
387 disp_encoding_8bit,
388 disp_encoding_32bit
389 } disp_encoding;
390
391 /* Prefer the REX byte in encoding. */
392 bfd_boolean rex_encoding;
393
394 /* Disable instruction size optimization. */
395 bfd_boolean no_optimize;
396
397 /* How to encode vector instructions. */
398 enum
399 {
400 vex_encoding_default = 0,
401 vex_encoding_vex2,
402 vex_encoding_vex3,
403 vex_encoding_evex
404 } vec_encoding;
405
406 /* REP prefix. */
407 const char *rep_prefix;
408
409 /* HLE prefix. */
410 const char *hle_prefix;
411
412 /* Have BND prefix. */
413 const char *bnd_prefix;
414
415 /* Have NOTRACK prefix. */
416 const char *notrack_prefix;
417
418 /* Error message. */
419 enum i386_error error;
420 };
421
422 typedef struct _i386_insn i386_insn;
423
424 /* Link RC type with corresponding string, that'll be looked for in
425 asm. */
426 struct RC_name
427 {
428 enum rc_type type;
429 const char *name;
430 unsigned int len;
431 };
432
433 static const struct RC_name RC_NamesTable[] =
434 {
435 { rne, STRING_COMMA_LEN ("rn-sae") },
436 { rd, STRING_COMMA_LEN ("rd-sae") },
437 { ru, STRING_COMMA_LEN ("ru-sae") },
438 { rz, STRING_COMMA_LEN ("rz-sae") },
439 { saeonly, STRING_COMMA_LEN ("sae") },
440 };
441
442 /* List of chars besides those in app.c:symbol_chars that can start an
443 operand. Used to prevent the scrubber eating vital white-space. */
444 const char extra_symbol_chars[] = "*%-([{}"
445 #ifdef LEX_AT
446 "@"
447 #endif
448 #ifdef LEX_QM
449 "?"
450 #endif
451 ;
452
453 #if (defined (TE_I386AIX) \
454 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
455 && !defined (TE_GNU) \
456 && !defined (TE_LINUX) \
457 && !defined (TE_NACL) \
458 && !defined (TE_FreeBSD) \
459 && !defined (TE_DragonFly) \
460 && !defined (TE_NetBSD)))
461 /* This array holds the chars that always start a comment. If the
462 pre-processor is disabled, these aren't very useful. The option
463 --divide will remove '/' from this list. */
464 const char *i386_comment_chars = "#/";
465 #define SVR4_COMMENT_CHARS 1
466 #define PREFIX_SEPARATOR '\\'
467
468 #else
469 const char *i386_comment_chars = "#";
470 #define PREFIX_SEPARATOR '/'
471 #endif
472
473 /* This array holds the chars that only start a comment at the beginning of
474 a line. If the line seems to have the form '# 123 filename'
475 .line and .file directives will appear in the pre-processed output.
476 Note that input_file.c hand checks for '#' at the beginning of the
477 first line of the input file. This is because the compiler outputs
478 #NO_APP at the beginning of its output.
479 Also note that comments started like this one will always work if
480 '/' isn't otherwise defined. */
481 const char line_comment_chars[] = "#/";
482
483 const char line_separator_chars[] = ";";
484
485 /* Chars that can be used to separate mant from exp in floating point
486 nums. */
487 const char EXP_CHARS[] = "eE";
488
489 /* Chars that mean this number is a floating point constant
490 As in 0f12.456
491 or 0d1.2345e12. */
492 const char FLT_CHARS[] = "fFdDxX";
493
494 /* Tables for lexical analysis. */
495 static char mnemonic_chars[256];
496 static char register_chars[256];
497 static char operand_chars[256];
498 static char identifier_chars[256];
499 static char digit_chars[256];
500
501 /* Lexical macros. */
502 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
503 #define is_operand_char(x) (operand_chars[(unsigned char) x])
504 #define is_register_char(x) (register_chars[(unsigned char) x])
505 #define is_space_char(x) ((x) == ' ')
506 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
507 #define is_digit_char(x) (digit_chars[(unsigned char) x])
508
509 /* All non-digit non-letter characters that may occur in an operand. */
510 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
511
512 /* md_assemble() always leaves the strings it's passed unaltered. To
513 effect this we maintain a stack of saved characters that we've smashed
514 with '\0's (indicating end of strings for various sub-fields of the
515 assembler instruction). */
516 static char save_stack[32];
517 static char *save_stack_p;
518 #define END_STRING_AND_SAVE(s) \
519 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
520 #define RESTORE_END_STRING(s) \
521 do { *(s) = *--save_stack_p; } while (0)
522
523 /* The instruction we're assembling. */
524 static i386_insn i;
525
526 /* Possible templates for current insn. */
527 static const templates *current_templates;
528
529 /* Per instruction expressionS buffers: max displacements & immediates. */
530 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
531 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
532
533 /* Current operand we are working on. */
534 static int this_operand = -1;
535
536 /* We support four different modes. FLAG_CODE variable is used to distinguish
537 these. */
538
539 enum flag_code {
540 CODE_32BIT,
541 CODE_16BIT,
542 CODE_64BIT };
543
544 static enum flag_code flag_code;
545 static unsigned int object_64bit;
546 static unsigned int disallow_64bit_reloc;
547 static int use_rela_relocations = 0;
548
549 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
550 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
551 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
552
553 /* The ELF ABI to use. */
554 enum x86_elf_abi
555 {
556 I386_ABI,
557 X86_64_ABI,
558 X86_64_X32_ABI
559 };
560
561 static enum x86_elf_abi x86_elf_abi = I386_ABI;
562 #endif
563
564 #if defined (TE_PE) || defined (TE_PEP)
565 /* Use big object file format. */
566 static int use_big_obj = 0;
567 #endif
568
569 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570 /* 1 if generating code for a shared library. */
571 static int shared = 0;
572 #endif
573
574 /* 1 for intel syntax,
575 0 if att syntax. */
576 static int intel_syntax = 0;
577
578 /* 1 for Intel64 ISA,
579 0 if AMD64 ISA. */
580 static int intel64;
581
582 /* 1 for intel mnemonic,
583 0 if att mnemonic. */
584 static int intel_mnemonic = !SYSV386_COMPAT;
585
586 /* 1 if pseudo registers are permitted. */
587 static int allow_pseudo_reg = 0;
588
589 /* 1 if register prefix % not required. */
590 static int allow_naked_reg = 0;
591
592 /* 1 if the assembler should add BND prefix for all control-transferring
593 instructions supporting it, even if this prefix wasn't specified
594 explicitly. */
595 static int add_bnd_prefix = 0;
596
597 /* 1 if pseudo index register, eiz/riz, is allowed . */
598 static int allow_index_reg = 0;
599
600 /* 1 if the assembler should ignore LOCK prefix, even if it was
601 specified explicitly. */
602 static int omit_lock_prefix = 0;
603
604 /* 1 if the assembler should encode lfence, mfence, and sfence as
605 "lock addl $0, (%{re}sp)". */
606 static int avoid_fence = 0;
607
608 /* 1 if the assembler should generate relax relocations. */
609
610 static int generate_relax_relocations
611 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
612
613 static enum check_kind
614 {
615 check_none = 0,
616 check_warning,
617 check_error
618 }
619 sse_check, operand_check = check_warning;
620
621 /* Optimization:
622 1. Clear the REX_W bit with register operand if possible.
623 2. Above plus use 128bit vector instruction to clear the full vector
624 register.
625 */
626 static int optimize = 0;
627
628 /* Optimization:
629 1. Clear the REX_W bit with register operand if possible.
630 2. Above plus use 128bit vector instruction to clear the full vector
631 register.
632 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
633 "testb $imm7,%r8".
634 */
635 static int optimize_for_space = 0;
636
637 /* Register prefix used for error message. */
638 static const char *register_prefix = "%";
639
640 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
641 leave, push, and pop instructions so that gcc has the same stack
642 frame as in 32 bit mode. */
643 static char stackop_size = '\0';
644
645 /* Non-zero to optimize code alignment. */
646 int optimize_align_code = 1;
647
648 /* Non-zero to quieten some warnings. */
649 static int quiet_warnings = 0;
650
651 /* CPU name. */
652 static const char *cpu_arch_name = NULL;
653 static char *cpu_sub_arch_name = NULL;
654
655 /* CPU feature flags. */
656 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
657
658 /* If we have selected a cpu we are generating instructions for. */
659 static int cpu_arch_tune_set = 0;
660
661 /* Cpu we are generating instructions for. */
662 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
663
664 /* CPU feature flags of cpu we are generating instructions for. */
665 static i386_cpu_flags cpu_arch_tune_flags;
666
667 /* CPU instruction set architecture used. */
668 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
669
670 /* CPU feature flags of instruction set architecture used. */
671 i386_cpu_flags cpu_arch_isa_flags;
672
673 /* If set, conditional jumps are not automatically promoted to handle
674 larger than a byte offset. */
675 static unsigned int no_cond_jump_promotion = 0;
676
677 /* Encode SSE instructions with VEX prefix. */
678 static unsigned int sse2avx;
679
680 /* Encode scalar AVX instructions with specific vector length. */
681 static enum
682 {
683 vex128 = 0,
684 vex256
685 } avxscalar;
686
687 /* Encode scalar EVEX LIG instructions with specific vector length. */
688 static enum
689 {
690 evexl128 = 0,
691 evexl256,
692 evexl512
693 } evexlig;
694
695 /* Encode EVEX WIG instructions with specific evex.w. */
696 static enum
697 {
698 evexw0 = 0,
699 evexw1
700 } evexwig;
701
702 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
703 static enum rc_type evexrcig = rne;
704
705 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
706 static symbolS *GOT_symbol;
707
708 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
709 unsigned int x86_dwarf2_return_column;
710
711 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
712 int x86_cie_data_alignment;
713
714 /* Interface to relax_segment.
715 There are 3 major relax states for 386 jump insns because the
716 different types of jumps add different sizes to frags when we're
717 figuring out what sort of jump to choose to reach a given label. */
718
719 /* Types. */
720 #define UNCOND_JUMP 0
721 #define COND_JUMP 1
722 #define COND_JUMP86 2
723
724 /* Sizes. */
725 #define CODE16 1
726 #define SMALL 0
727 #define SMALL16 (SMALL | CODE16)
728 #define BIG 2
729 #define BIG16 (BIG | CODE16)
730
731 #ifndef INLINE
732 #ifdef __GNUC__
733 #define INLINE __inline__
734 #else
735 #define INLINE
736 #endif
737 #endif
738
739 #define ENCODE_RELAX_STATE(type, size) \
740 ((relax_substateT) (((type) << 2) | (size)))
741 #define TYPE_FROM_RELAX_STATE(s) \
742 ((s) >> 2)
743 #define DISP_SIZE_FROM_RELAX_STATE(s) \
744 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
745
746 /* This table is used by relax_frag to promote short jumps to long
747 ones where necessary. SMALL (short) jumps may be promoted to BIG
748 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
749 don't allow a short jump in a 32 bit code segment to be promoted to
750 a 16 bit offset jump because it's slower (requires data size
751 prefix), and doesn't work, unless the destination is in the bottom
752 64k of the code segment (The top 16 bits of eip are zeroed). */
753
754 const relax_typeS md_relax_table[] =
755 {
756 /* The fields are:
757 1) most positive reach of this state,
758 2) most negative reach of this state,
759 3) how many bytes this mode will have in the variable part of the frag
760 4) which index into the table to try if we can't fit into this one. */
761
762 /* UNCOND_JUMP states. */
763 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
764 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
765 /* dword jmp adds 4 bytes to frag:
766 0 extra opcode bytes, 4 displacement bytes. */
767 {0, 0, 4, 0},
768 /* word jmp adds 2 byte2 to frag:
769 0 extra opcode bytes, 2 displacement bytes. */
770 {0, 0, 2, 0},
771
772 /* COND_JUMP states. */
773 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
774 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
775 /* dword conditionals adds 5 bytes to frag:
776 1 extra opcode byte, 4 displacement bytes. */
777 {0, 0, 5, 0},
778 /* word conditionals add 3 bytes to frag:
779 1 extra opcode byte, 2 displacement bytes. */
780 {0, 0, 3, 0},
781
782 /* COND_JUMP86 states. */
783 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
784 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
785 /* dword conditionals adds 5 bytes to frag:
786 1 extra opcode byte, 4 displacement bytes. */
787 {0, 0, 5, 0},
788 /* word conditionals add 4 bytes to frag:
789 1 displacement byte and a 3 byte long branch insn. */
790 {0, 0, 4, 0}
791 };
792
793 static const arch_entry cpu_arch[] =
794 {
795 /* Do not replace the first two entries - i386_target_format()
796 relies on them being there in this order. */
797 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
798 CPU_GENERIC32_FLAGS, 0 },
799 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
800 CPU_GENERIC64_FLAGS, 0 },
801 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
802 CPU_NONE_FLAGS, 0 },
803 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
804 CPU_I186_FLAGS, 0 },
805 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
806 CPU_I286_FLAGS, 0 },
807 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
808 CPU_I386_FLAGS, 0 },
809 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
810 CPU_I486_FLAGS, 0 },
811 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
812 CPU_I586_FLAGS, 0 },
813 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
814 CPU_I686_FLAGS, 0 },
815 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
816 CPU_I586_FLAGS, 0 },
817 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
818 CPU_PENTIUMPRO_FLAGS, 0 },
819 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
820 CPU_P2_FLAGS, 0 },
821 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
822 CPU_P3_FLAGS, 0 },
823 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
824 CPU_P4_FLAGS, 0 },
825 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
826 CPU_CORE_FLAGS, 0 },
827 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
828 CPU_NOCONA_FLAGS, 0 },
829 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
830 CPU_CORE_FLAGS, 1 },
831 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
832 CPU_CORE_FLAGS, 0 },
833 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
834 CPU_CORE2_FLAGS, 1 },
835 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
836 CPU_CORE2_FLAGS, 0 },
837 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
838 CPU_COREI7_FLAGS, 0 },
839 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
840 CPU_L1OM_FLAGS, 0 },
841 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
842 CPU_K1OM_FLAGS, 0 },
843 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
844 CPU_IAMCU_FLAGS, 0 },
845 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
846 CPU_K6_FLAGS, 0 },
847 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
848 CPU_K6_2_FLAGS, 0 },
849 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
850 CPU_ATHLON_FLAGS, 0 },
851 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
852 CPU_K8_FLAGS, 1 },
853 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
854 CPU_K8_FLAGS, 0 },
855 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
856 CPU_K8_FLAGS, 0 },
857 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
858 CPU_AMDFAM10_FLAGS, 0 },
859 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
860 CPU_BDVER1_FLAGS, 0 },
861 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
862 CPU_BDVER2_FLAGS, 0 },
863 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
864 CPU_BDVER3_FLAGS, 0 },
865 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
866 CPU_BDVER4_FLAGS, 0 },
867 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
868 CPU_ZNVER1_FLAGS, 0 },
869 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
870 CPU_ZNVER2_FLAGS, 0 },
871 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
872 CPU_BTVER1_FLAGS, 0 },
873 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
874 CPU_BTVER2_FLAGS, 0 },
875 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
876 CPU_8087_FLAGS, 0 },
877 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
878 CPU_287_FLAGS, 0 },
879 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
880 CPU_387_FLAGS, 0 },
881 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
882 CPU_687_FLAGS, 0 },
883 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
884 CPU_CMOV_FLAGS, 0 },
885 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
886 CPU_FXSR_FLAGS, 0 },
887 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
888 CPU_MMX_FLAGS, 0 },
889 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
890 CPU_SSE_FLAGS, 0 },
891 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
892 CPU_SSE2_FLAGS, 0 },
893 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
894 CPU_SSE3_FLAGS, 0 },
895 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
896 CPU_SSSE3_FLAGS, 0 },
897 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
898 CPU_SSE4_1_FLAGS, 0 },
899 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
900 CPU_SSE4_2_FLAGS, 0 },
901 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
902 CPU_SSE4_2_FLAGS, 0 },
903 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
904 CPU_AVX_FLAGS, 0 },
905 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
906 CPU_AVX2_FLAGS, 0 },
907 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
908 CPU_AVX512F_FLAGS, 0 },
909 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
910 CPU_AVX512CD_FLAGS, 0 },
911 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
912 CPU_AVX512ER_FLAGS, 0 },
913 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
914 CPU_AVX512PF_FLAGS, 0 },
915 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
916 CPU_AVX512DQ_FLAGS, 0 },
917 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
918 CPU_AVX512BW_FLAGS, 0 },
919 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
920 CPU_AVX512VL_FLAGS, 0 },
921 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
922 CPU_VMX_FLAGS, 0 },
923 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
924 CPU_VMFUNC_FLAGS, 0 },
925 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
926 CPU_SMX_FLAGS, 0 },
927 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
928 CPU_XSAVE_FLAGS, 0 },
929 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
930 CPU_XSAVEOPT_FLAGS, 0 },
931 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
932 CPU_XSAVEC_FLAGS, 0 },
933 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
934 CPU_XSAVES_FLAGS, 0 },
935 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
936 CPU_AES_FLAGS, 0 },
937 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
938 CPU_PCLMUL_FLAGS, 0 },
939 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
940 CPU_PCLMUL_FLAGS, 1 },
941 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
942 CPU_FSGSBASE_FLAGS, 0 },
943 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
944 CPU_RDRND_FLAGS, 0 },
945 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
946 CPU_F16C_FLAGS, 0 },
947 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
948 CPU_BMI2_FLAGS, 0 },
949 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
950 CPU_FMA_FLAGS, 0 },
951 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
952 CPU_FMA4_FLAGS, 0 },
953 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
954 CPU_XOP_FLAGS, 0 },
955 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
956 CPU_LWP_FLAGS, 0 },
957 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
958 CPU_MOVBE_FLAGS, 0 },
959 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
960 CPU_CX16_FLAGS, 0 },
961 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
962 CPU_EPT_FLAGS, 0 },
963 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
964 CPU_LZCNT_FLAGS, 0 },
965 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
966 CPU_HLE_FLAGS, 0 },
967 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
968 CPU_RTM_FLAGS, 0 },
969 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
970 CPU_INVPCID_FLAGS, 0 },
971 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
972 CPU_CLFLUSH_FLAGS, 0 },
973 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
974 CPU_NOP_FLAGS, 0 },
975 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
976 CPU_SYSCALL_FLAGS, 0 },
977 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
978 CPU_RDTSCP_FLAGS, 0 },
979 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
980 CPU_3DNOW_FLAGS, 0 },
981 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
982 CPU_3DNOWA_FLAGS, 0 },
983 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
984 CPU_PADLOCK_FLAGS, 0 },
985 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
986 CPU_SVME_FLAGS, 1 },
987 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
988 CPU_SVME_FLAGS, 0 },
989 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
990 CPU_SSE4A_FLAGS, 0 },
991 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
992 CPU_ABM_FLAGS, 0 },
993 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
994 CPU_BMI_FLAGS, 0 },
995 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
996 CPU_TBM_FLAGS, 0 },
997 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
998 CPU_ADX_FLAGS, 0 },
999 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1000 CPU_RDSEED_FLAGS, 0 },
1001 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1002 CPU_PRFCHW_FLAGS, 0 },
1003 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1004 CPU_SMAP_FLAGS, 0 },
1005 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1006 CPU_MPX_FLAGS, 0 },
1007 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1008 CPU_SHA_FLAGS, 0 },
1009 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1010 CPU_CLFLUSHOPT_FLAGS, 0 },
1011 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1012 CPU_PREFETCHWT1_FLAGS, 0 },
1013 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1014 CPU_SE1_FLAGS, 0 },
1015 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1016 CPU_CLWB_FLAGS, 0 },
1017 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1018 CPU_AVX512IFMA_FLAGS, 0 },
1019 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1020 CPU_AVX512VBMI_FLAGS, 0 },
1021 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1022 CPU_AVX512_4FMAPS_FLAGS, 0 },
1023 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1024 CPU_AVX512_4VNNIW_FLAGS, 0 },
1025 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1026 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1027 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1028 CPU_AVX512_VBMI2_FLAGS, 0 },
1029 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1030 CPU_AVX512_VNNI_FLAGS, 0 },
1031 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1032 CPU_AVX512_BITALG_FLAGS, 0 },
1033 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1034 CPU_CLZERO_FLAGS, 0 },
1035 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1036 CPU_MWAITX_FLAGS, 0 },
1037 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1038 CPU_OSPKE_FLAGS, 0 },
1039 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1040 CPU_RDPID_FLAGS, 0 },
1041 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1042 CPU_PTWRITE_FLAGS, 0 },
1043 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1044 CPU_IBT_FLAGS, 0 },
1045 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1046 CPU_SHSTK_FLAGS, 0 },
1047 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1048 CPU_GFNI_FLAGS, 0 },
1049 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1050 CPU_VAES_FLAGS, 0 },
1051 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1052 CPU_VPCLMULQDQ_FLAGS, 0 },
1053 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1054 CPU_WBNOINVD_FLAGS, 0 },
1055 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1056 CPU_PCONFIG_FLAGS, 0 },
1057 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1058 CPU_WAITPKG_FLAGS, 0 },
1059 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1060 CPU_CLDEMOTE_FLAGS, 0 },
1061 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1062 CPU_MOVDIRI_FLAGS, 0 },
1063 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1064 CPU_MOVDIR64B_FLAGS, 0 },
1065 };
1066
1067 static const noarch_entry cpu_noarch[] =
1068 {
1069 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1070 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1071 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1072 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1073 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1074 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1075 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1076 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1077 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1078 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1079 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1080 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1081 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1082 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1083 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1084 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1085 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1086 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1087 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1088 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1089 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1090 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1091 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1092 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1093 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1094 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1095 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1096 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1097 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1098 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1099 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1100 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1101 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1102 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1103 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1104 };
1105
1106 #ifdef I386COFF
1107 /* Like s_lcomm_internal in gas/read.c but the alignment string
1108 is allowed to be optional. */
1109
1110 static symbolS *
1111 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1112 {
1113 addressT align = 0;
1114
1115 SKIP_WHITESPACE ();
1116
1117 if (needs_align
1118 && *input_line_pointer == ',')
1119 {
1120 align = parse_align (needs_align - 1);
1121
1122 if (align == (addressT) -1)
1123 return NULL;
1124 }
1125 else
1126 {
1127 if (size >= 8)
1128 align = 3;
1129 else if (size >= 4)
1130 align = 2;
1131 else if (size >= 2)
1132 align = 1;
1133 else
1134 align = 0;
1135 }
1136
1137 bss_alloc (symbolP, size, align);
1138 return symbolP;
1139 }
1140
1141 static void
1142 pe_lcomm (int needs_align)
1143 {
1144 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1145 }
1146 #endif
1147
1148 const pseudo_typeS md_pseudo_table[] =
1149 {
1150 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1151 {"align", s_align_bytes, 0},
1152 #else
1153 {"align", s_align_ptwo, 0},
1154 #endif
1155 {"arch", set_cpu_arch, 0},
1156 #ifndef I386COFF
1157 {"bss", s_bss, 0},
1158 #else
1159 {"lcomm", pe_lcomm, 1},
1160 #endif
1161 {"ffloat", float_cons, 'f'},
1162 {"dfloat", float_cons, 'd'},
1163 {"tfloat", float_cons, 'x'},
1164 {"value", cons, 2},
1165 {"slong", signed_cons, 4},
1166 {"noopt", s_ignore, 0},
1167 {"optim", s_ignore, 0},
1168 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1169 {"code16", set_code_flag, CODE_16BIT},
1170 {"code32", set_code_flag, CODE_32BIT},
1171 #ifdef BFD64
1172 {"code64", set_code_flag, CODE_64BIT},
1173 #endif
1174 {"intel_syntax", set_intel_syntax, 1},
1175 {"att_syntax", set_intel_syntax, 0},
1176 {"intel_mnemonic", set_intel_mnemonic, 1},
1177 {"att_mnemonic", set_intel_mnemonic, 0},
1178 {"allow_index_reg", set_allow_index_reg, 1},
1179 {"disallow_index_reg", set_allow_index_reg, 0},
1180 {"sse_check", set_check, 0},
1181 {"operand_check", set_check, 1},
1182 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1183 {"largecomm", handle_large_common, 0},
1184 #else
1185 {"file", dwarf2_directive_file, 0},
1186 {"loc", dwarf2_directive_loc, 0},
1187 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1188 #endif
1189 #ifdef TE_PE
1190 {"secrel32", pe_directive_secrel, 0},
1191 #endif
1192 {0, 0, 0}
1193 };
1194
1195 /* For interface with expression (). */
1196 extern char *input_line_pointer;
1197
1198 /* Hash table for instruction mnemonic lookup. */
1199 static struct hash_control *op_hash;
1200
1201 /* Hash table for register lookup. */
1202 static struct hash_control *reg_hash;
1203 \f
1204 /* Various efficient no-op patterns for aligning code labels.
1205 Note: Don't try to assemble the instructions in the comments.
1206 0L and 0w are not legal. */
1207 static const unsigned char f32_1[] =
1208 {0x90}; /* nop */
1209 static const unsigned char f32_2[] =
1210 {0x66,0x90}; /* xchg %ax,%ax */
1211 static const unsigned char f32_3[] =
1212 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1213 static const unsigned char f32_4[] =
1214 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1215 static const unsigned char f32_6[] =
1216 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1217 static const unsigned char f32_7[] =
1218 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1219 static const unsigned char f16_3[] =
1220 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1221 static const unsigned char f16_4[] =
1222 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1223 static const unsigned char jump_disp8[] =
1224 {0xeb}; /* jmp disp8 */
1225 static const unsigned char jump32_disp32[] =
1226 {0xe9}; /* jmp disp32 */
1227 static const unsigned char jump16_disp32[] =
1228 {0x66,0xe9}; /* jmp disp32 */
1229 /* 32-bit NOPs patterns. */
1230 static const unsigned char *const f32_patt[] = {
1231 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1232 };
1233 /* 16-bit NOPs patterns. */
1234 static const unsigned char *const f16_patt[] = {
1235 f32_1, f32_2, f16_3, f16_4
1236 };
1237 /* nopl (%[re]ax) */
1238 static const unsigned char alt_3[] =
1239 {0x0f,0x1f,0x00};
1240 /* nopl 0(%[re]ax) */
1241 static const unsigned char alt_4[] =
1242 {0x0f,0x1f,0x40,0x00};
1243 /* nopl 0(%[re]ax,%[re]ax,1) */
1244 static const unsigned char alt_5[] =
1245 {0x0f,0x1f,0x44,0x00,0x00};
1246 /* nopw 0(%[re]ax,%[re]ax,1) */
1247 static const unsigned char alt_6[] =
1248 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1249 /* nopl 0L(%[re]ax) */
1250 static const unsigned char alt_7[] =
1251 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1252 /* nopl 0L(%[re]ax,%[re]ax,1) */
1253 static const unsigned char alt_8[] =
1254 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1255 /* nopw 0L(%[re]ax,%[re]ax,1) */
1256 static const unsigned char alt_9[] =
1257 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1258 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1259 static const unsigned char alt_10[] =
1260 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1261 /* data16 nopw %cs:0L(%eax,%eax,1) */
1262 static const unsigned char alt_11[] =
1263 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1264 /* 32-bit and 64-bit NOPs patterns. */
1265 static const unsigned char *const alt_patt[] = {
1266 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1267 alt_9, alt_10, alt_11
1268 };
1269
1270 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1271 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1272
1273 static void
1274 i386_output_nops (char *where, const unsigned char *const *patt,
1275 int count, int max_single_nop_size)
1276
1277 {
1278 /* Place the longer NOP first. */
1279 int last;
1280 int offset;
1281 const unsigned char *nops = patt[max_single_nop_size - 1];
1282
1283 /* Use the smaller one if the requsted one isn't available. */
1284 if (nops == NULL)
1285 {
1286 max_single_nop_size--;
1287 nops = patt[max_single_nop_size - 1];
1288 }
1289
1290 last = count % max_single_nop_size;
1291
1292 count -= last;
1293 for (offset = 0; offset < count; offset += max_single_nop_size)
1294 memcpy (where + offset, nops, max_single_nop_size);
1295
1296 if (last)
1297 {
1298 nops = patt[last - 1];
1299 if (nops == NULL)
1300 {
1301 /* Use the smaller one plus one-byte NOP if the needed one
1302 isn't available. */
1303 last--;
1304 nops = patt[last - 1];
1305 memcpy (where + offset, nops, last);
1306 where[offset + last] = *patt[0];
1307 }
1308 else
1309 memcpy (where + offset, nops, last);
1310 }
1311 }
1312
1313 static INLINE int
1314 fits_in_imm7 (offsetT num)
1315 {
1316 return (num & 0x7f) == num;
1317 }
1318
1319 static INLINE int
1320 fits_in_imm31 (offsetT num)
1321 {
1322 return (num & 0x7fffffff) == num;
1323 }
1324
1325 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1326 single NOP instruction LIMIT. */
1327
1328 void
1329 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1330 {
1331 const unsigned char *const *patt = NULL;
1332 int max_single_nop_size;
1333 /* Maximum number of NOPs before switching to jump over NOPs. */
1334 int max_number_of_nops;
1335
1336 switch (fragP->fr_type)
1337 {
1338 case rs_fill_nop:
1339 case rs_align_code:
1340 break;
1341 default:
1342 return;
1343 }
1344
1345 /* We need to decide which NOP sequence to use for 32bit and
1346 64bit. When -mtune= is used:
1347
1348 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1349 PROCESSOR_GENERIC32, f32_patt will be used.
1350 2. For the rest, alt_patt will be used.
1351
1352 When -mtune= isn't used, alt_patt will be used if
1353 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1354 be used.
1355
1356 When -march= or .arch is used, we can't use anything beyond
1357 cpu_arch_isa_flags. */
1358
1359 if (flag_code == CODE_16BIT)
1360 {
1361 patt = f16_patt;
1362 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1363 /* Limit number of NOPs to 2 in 16-bit mode. */
1364 max_number_of_nops = 2;
1365 }
1366 else
1367 {
1368 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1369 {
1370 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1371 switch (cpu_arch_tune)
1372 {
1373 case PROCESSOR_UNKNOWN:
1374 /* We use cpu_arch_isa_flags to check if we SHOULD
1375 optimize with nops. */
1376 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1377 patt = alt_patt;
1378 else
1379 patt = f32_patt;
1380 break;
1381 case PROCESSOR_PENTIUM4:
1382 case PROCESSOR_NOCONA:
1383 case PROCESSOR_CORE:
1384 case PROCESSOR_CORE2:
1385 case PROCESSOR_COREI7:
1386 case PROCESSOR_L1OM:
1387 case PROCESSOR_K1OM:
1388 case PROCESSOR_GENERIC64:
1389 case PROCESSOR_K6:
1390 case PROCESSOR_ATHLON:
1391 case PROCESSOR_K8:
1392 case PROCESSOR_AMDFAM10:
1393 case PROCESSOR_BD:
1394 case PROCESSOR_ZNVER:
1395 case PROCESSOR_BT:
1396 patt = alt_patt;
1397 break;
1398 case PROCESSOR_I386:
1399 case PROCESSOR_I486:
1400 case PROCESSOR_PENTIUM:
1401 case PROCESSOR_PENTIUMPRO:
1402 case PROCESSOR_IAMCU:
1403 case PROCESSOR_GENERIC32:
1404 patt = f32_patt;
1405 break;
1406 }
1407 }
1408 else
1409 {
1410 switch (fragP->tc_frag_data.tune)
1411 {
1412 case PROCESSOR_UNKNOWN:
1413 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1414 PROCESSOR_UNKNOWN. */
1415 abort ();
1416 break;
1417
1418 case PROCESSOR_I386:
1419 case PROCESSOR_I486:
1420 case PROCESSOR_PENTIUM:
1421 case PROCESSOR_IAMCU:
1422 case PROCESSOR_K6:
1423 case PROCESSOR_ATHLON:
1424 case PROCESSOR_K8:
1425 case PROCESSOR_AMDFAM10:
1426 case PROCESSOR_BD:
1427 case PROCESSOR_ZNVER:
1428 case PROCESSOR_BT:
1429 case PROCESSOR_GENERIC32:
1430 /* We use cpu_arch_isa_flags to check if we CAN optimize
1431 with nops. */
1432 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1433 patt = alt_patt;
1434 else
1435 patt = f32_patt;
1436 break;
1437 case PROCESSOR_PENTIUMPRO:
1438 case PROCESSOR_PENTIUM4:
1439 case PROCESSOR_NOCONA:
1440 case PROCESSOR_CORE:
1441 case PROCESSOR_CORE2:
1442 case PROCESSOR_COREI7:
1443 case PROCESSOR_L1OM:
1444 case PROCESSOR_K1OM:
1445 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1446 patt = alt_patt;
1447 else
1448 patt = f32_patt;
1449 break;
1450 case PROCESSOR_GENERIC64:
1451 patt = alt_patt;
1452 break;
1453 }
1454 }
1455
1456 if (patt == f32_patt)
1457 {
1458 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1459 /* Limit number of NOPs to 2 for older processors. */
1460 max_number_of_nops = 2;
1461 }
1462 else
1463 {
1464 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1465 /* Limit number of NOPs to 7 for newer processors. */
1466 max_number_of_nops = 7;
1467 }
1468 }
1469
1470 if (limit == 0)
1471 limit = max_single_nop_size;
1472
1473 if (fragP->fr_type == rs_fill_nop)
1474 {
1475 /* Output NOPs for .nop directive. */
1476 if (limit > max_single_nop_size)
1477 {
1478 as_bad_where (fragP->fr_file, fragP->fr_line,
1479 _("invalid single nop size: %d "
1480 "(expect within [0, %d])"),
1481 limit, max_single_nop_size);
1482 return;
1483 }
1484 }
1485 else
1486 fragP->fr_var = count;
1487
1488 if ((count / max_single_nop_size) > max_number_of_nops)
1489 {
1490 /* Generate jump over NOPs. */
1491 offsetT disp = count - 2;
1492 if (fits_in_imm7 (disp))
1493 {
1494 /* Use "jmp disp8" if possible. */
1495 count = disp;
1496 where[0] = jump_disp8[0];
1497 where[1] = count;
1498 where += 2;
1499 }
1500 else
1501 {
1502 unsigned int size_of_jump;
1503
1504 if (flag_code == CODE_16BIT)
1505 {
1506 where[0] = jump16_disp32[0];
1507 where[1] = jump16_disp32[1];
1508 size_of_jump = 2;
1509 }
1510 else
1511 {
1512 where[0] = jump32_disp32[0];
1513 size_of_jump = 1;
1514 }
1515
1516 count -= size_of_jump + 4;
1517 if (!fits_in_imm31 (count))
1518 {
1519 as_bad_where (fragP->fr_file, fragP->fr_line,
1520 _("jump over nop padding out of range"));
1521 return;
1522 }
1523
1524 md_number_to_chars (where + size_of_jump, count, 4);
1525 where += size_of_jump + 4;
1526 }
1527 }
1528
1529 /* Generate multiple NOPs. */
1530 i386_output_nops (where, patt, count, limit);
1531 }
1532
1533 static INLINE int
1534 operand_type_all_zero (const union i386_operand_type *x)
1535 {
1536 switch (ARRAY_SIZE(x->array))
1537 {
1538 case 3:
1539 if (x->array[2])
1540 return 0;
1541 /* Fall through. */
1542 case 2:
1543 if (x->array[1])
1544 return 0;
1545 /* Fall through. */
1546 case 1:
1547 return !x->array[0];
1548 default:
1549 abort ();
1550 }
1551 }
1552
1553 static INLINE void
1554 operand_type_set (union i386_operand_type *x, unsigned int v)
1555 {
1556 switch (ARRAY_SIZE(x->array))
1557 {
1558 case 3:
1559 x->array[2] = v;
1560 /* Fall through. */
1561 case 2:
1562 x->array[1] = v;
1563 /* Fall through. */
1564 case 1:
1565 x->array[0] = v;
1566 /* Fall through. */
1567 break;
1568 default:
1569 abort ();
1570 }
1571 }
1572
1573 static INLINE int
1574 operand_type_equal (const union i386_operand_type *x,
1575 const union i386_operand_type *y)
1576 {
1577 switch (ARRAY_SIZE(x->array))
1578 {
1579 case 3:
1580 if (x->array[2] != y->array[2])
1581 return 0;
1582 /* Fall through. */
1583 case 2:
1584 if (x->array[1] != y->array[1])
1585 return 0;
1586 /* Fall through. */
1587 case 1:
1588 return x->array[0] == y->array[0];
1589 break;
1590 default:
1591 abort ();
1592 }
1593 }
1594
1595 static INLINE int
1596 cpu_flags_all_zero (const union i386_cpu_flags *x)
1597 {
1598 switch (ARRAY_SIZE(x->array))
1599 {
1600 case 4:
1601 if (x->array[3])
1602 return 0;
1603 /* Fall through. */
1604 case 3:
1605 if (x->array[2])
1606 return 0;
1607 /* Fall through. */
1608 case 2:
1609 if (x->array[1])
1610 return 0;
1611 /* Fall through. */
1612 case 1:
1613 return !x->array[0];
1614 default:
1615 abort ();
1616 }
1617 }
1618
1619 static INLINE int
1620 cpu_flags_equal (const union i386_cpu_flags *x,
1621 const union i386_cpu_flags *y)
1622 {
1623 switch (ARRAY_SIZE(x->array))
1624 {
1625 case 4:
1626 if (x->array[3] != y->array[3])
1627 return 0;
1628 /* Fall through. */
1629 case 3:
1630 if (x->array[2] != y->array[2])
1631 return 0;
1632 /* Fall through. */
1633 case 2:
1634 if (x->array[1] != y->array[1])
1635 return 0;
1636 /* Fall through. */
1637 case 1:
1638 return x->array[0] == y->array[0];
1639 break;
1640 default:
1641 abort ();
1642 }
1643 }
1644
1645 static INLINE int
1646 cpu_flags_check_cpu64 (i386_cpu_flags f)
1647 {
1648 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1649 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1650 }
1651
1652 static INLINE i386_cpu_flags
1653 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1654 {
1655 switch (ARRAY_SIZE (x.array))
1656 {
1657 case 4:
1658 x.array [3] &= y.array [3];
1659 /* Fall through. */
1660 case 3:
1661 x.array [2] &= y.array [2];
1662 /* Fall through. */
1663 case 2:
1664 x.array [1] &= y.array [1];
1665 /* Fall through. */
1666 case 1:
1667 x.array [0] &= y.array [0];
1668 break;
1669 default:
1670 abort ();
1671 }
1672 return x;
1673 }
1674
1675 static INLINE i386_cpu_flags
1676 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1677 {
1678 switch (ARRAY_SIZE (x.array))
1679 {
1680 case 4:
1681 x.array [3] |= y.array [3];
1682 /* Fall through. */
1683 case 3:
1684 x.array [2] |= y.array [2];
1685 /* Fall through. */
1686 case 2:
1687 x.array [1] |= y.array [1];
1688 /* Fall through. */
1689 case 1:
1690 x.array [0] |= y.array [0];
1691 break;
1692 default:
1693 abort ();
1694 }
1695 return x;
1696 }
1697
1698 static INLINE i386_cpu_flags
1699 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1700 {
1701 switch (ARRAY_SIZE (x.array))
1702 {
1703 case 4:
1704 x.array [3] &= ~y.array [3];
1705 /* Fall through. */
1706 case 3:
1707 x.array [2] &= ~y.array [2];
1708 /* Fall through. */
1709 case 2:
1710 x.array [1] &= ~y.array [1];
1711 /* Fall through. */
1712 case 1:
1713 x.array [0] &= ~y.array [0];
1714 break;
1715 default:
1716 abort ();
1717 }
1718 return x;
1719 }
1720
1721 #define CPU_FLAGS_ARCH_MATCH 0x1
1722 #define CPU_FLAGS_64BIT_MATCH 0x2
1723
1724 #define CPU_FLAGS_PERFECT_MATCH \
1725 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1726
1727 /* Return CPU flags match bits. */
1728
1729 static int
1730 cpu_flags_match (const insn_template *t)
1731 {
1732 i386_cpu_flags x = t->cpu_flags;
1733 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1734
1735 x.bitfield.cpu64 = 0;
1736 x.bitfield.cpuno64 = 0;
1737
1738 if (cpu_flags_all_zero (&x))
1739 {
1740 /* This instruction is available on all archs. */
1741 match |= CPU_FLAGS_ARCH_MATCH;
1742 }
1743 else
1744 {
1745 /* This instruction is available only on some archs. */
1746 i386_cpu_flags cpu = cpu_arch_flags;
1747
1748 /* AVX512VL is no standalone feature - match it and then strip it. */
1749 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1750 return match;
1751 x.bitfield.cpuavx512vl = 0;
1752
1753 cpu = cpu_flags_and (x, cpu);
1754 if (!cpu_flags_all_zero (&cpu))
1755 {
1756 if (x.bitfield.cpuavx)
1757 {
1758 /* We need to check a few extra flags with AVX. */
1759 if (cpu.bitfield.cpuavx
1760 && (!t->opcode_modifier.sse2avx || sse2avx)
1761 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1762 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1763 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1764 match |= CPU_FLAGS_ARCH_MATCH;
1765 }
1766 else if (x.bitfield.cpuavx512f)
1767 {
1768 /* We need to check a few extra flags with AVX512F. */
1769 if (cpu.bitfield.cpuavx512f
1770 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1771 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1772 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1773 match |= CPU_FLAGS_ARCH_MATCH;
1774 }
1775 else
1776 match |= CPU_FLAGS_ARCH_MATCH;
1777 }
1778 }
1779 return match;
1780 }
1781
1782 static INLINE i386_operand_type
1783 operand_type_and (i386_operand_type x, i386_operand_type y)
1784 {
1785 switch (ARRAY_SIZE (x.array))
1786 {
1787 case 3:
1788 x.array [2] &= y.array [2];
1789 /* Fall through. */
1790 case 2:
1791 x.array [1] &= y.array [1];
1792 /* Fall through. */
1793 case 1:
1794 x.array [0] &= y.array [0];
1795 break;
1796 default:
1797 abort ();
1798 }
1799 return x;
1800 }
1801
1802 static INLINE i386_operand_type
1803 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1804 {
1805 switch (ARRAY_SIZE (x.array))
1806 {
1807 case 3:
1808 x.array [2] &= ~y.array [2];
1809 /* Fall through. */
1810 case 2:
1811 x.array [1] &= ~y.array [1];
1812 /* Fall through. */
1813 case 1:
1814 x.array [0] &= ~y.array [0];
1815 break;
1816 default:
1817 abort ();
1818 }
1819 return x;
1820 }
1821
1822 static INLINE i386_operand_type
1823 operand_type_or (i386_operand_type x, i386_operand_type y)
1824 {
1825 switch (ARRAY_SIZE (x.array))
1826 {
1827 case 3:
1828 x.array [2] |= y.array [2];
1829 /* Fall through. */
1830 case 2:
1831 x.array [1] |= y.array [1];
1832 /* Fall through. */
1833 case 1:
1834 x.array [0] |= y.array [0];
1835 break;
1836 default:
1837 abort ();
1838 }
1839 return x;
1840 }
1841
1842 static INLINE i386_operand_type
1843 operand_type_xor (i386_operand_type x, i386_operand_type y)
1844 {
1845 switch (ARRAY_SIZE (x.array))
1846 {
1847 case 3:
1848 x.array [2] ^= y.array [2];
1849 /* Fall through. */
1850 case 2:
1851 x.array [1] ^= y.array [1];
1852 /* Fall through. */
1853 case 1:
1854 x.array [0] ^= y.array [0];
1855 break;
1856 default:
1857 abort ();
1858 }
1859 return x;
1860 }
1861
1862 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1863 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1864 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1865 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1866 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1867 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1868 static const i386_operand_type anydisp
1869 = OPERAND_TYPE_ANYDISP;
1870 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1871 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1872 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1873 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1874 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1875 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1876 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1877 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1878 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1879 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1880 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1881 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1882
1883 enum operand_type
1884 {
1885 reg,
1886 imm,
1887 disp,
1888 anymem
1889 };
1890
1891 static INLINE int
1892 operand_type_check (i386_operand_type t, enum operand_type c)
1893 {
1894 switch (c)
1895 {
1896 case reg:
1897 return t.bitfield.reg;
1898
1899 case imm:
1900 return (t.bitfield.imm8
1901 || t.bitfield.imm8s
1902 || t.bitfield.imm16
1903 || t.bitfield.imm32
1904 || t.bitfield.imm32s
1905 || t.bitfield.imm64);
1906
1907 case disp:
1908 return (t.bitfield.disp8
1909 || t.bitfield.disp16
1910 || t.bitfield.disp32
1911 || t.bitfield.disp32s
1912 || t.bitfield.disp64);
1913
1914 case anymem:
1915 return (t.bitfield.disp8
1916 || t.bitfield.disp16
1917 || t.bitfield.disp32
1918 || t.bitfield.disp32s
1919 || t.bitfield.disp64
1920 || t.bitfield.baseindex);
1921
1922 default:
1923 abort ();
1924 }
1925
1926 return 0;
1927 }
1928
1929 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1930 between operand GIVEN and opeand WANTED for instruction template T. */
1931
1932 static INLINE int
1933 match_operand_size (const insn_template *t, unsigned int wanted,
1934 unsigned int given)
1935 {
1936 return !((i.types[given].bitfield.byte
1937 && !t->operand_types[wanted].bitfield.byte)
1938 || (i.types[given].bitfield.word
1939 && !t->operand_types[wanted].bitfield.word)
1940 || (i.types[given].bitfield.dword
1941 && !t->operand_types[wanted].bitfield.dword)
1942 || (i.types[given].bitfield.qword
1943 && !t->operand_types[wanted].bitfield.qword)
1944 || (i.types[given].bitfield.tbyte
1945 && !t->operand_types[wanted].bitfield.tbyte));
1946 }
1947
1948 /* Return 1 if there is no conflict in SIMD register between operand
1949 GIVEN and opeand WANTED for instruction template T. */
1950
1951 static INLINE int
1952 match_simd_size (const insn_template *t, unsigned int wanted,
1953 unsigned int given)
1954 {
1955 return !((i.types[given].bitfield.xmmword
1956 && !t->operand_types[wanted].bitfield.xmmword)
1957 || (i.types[given].bitfield.ymmword
1958 && !t->operand_types[wanted].bitfield.ymmword)
1959 || (i.types[given].bitfield.zmmword
1960 && !t->operand_types[wanted].bitfield.zmmword));
1961 }
1962
1963 /* Return 1 if there is no conflict in any size between operand GIVEN
1964 and opeand WANTED for instruction template T. */
1965
1966 static INLINE int
1967 match_mem_size (const insn_template *t, unsigned int wanted,
1968 unsigned int given)
1969 {
1970 return (match_operand_size (t, wanted, given)
1971 && !((i.types[given].bitfield.unspecified
1972 && !i.broadcast
1973 && !t->operand_types[wanted].bitfield.unspecified)
1974 || (i.types[given].bitfield.fword
1975 && !t->operand_types[wanted].bitfield.fword)
1976 /* For scalar opcode templates to allow register and memory
1977 operands at the same time, some special casing is needed
1978 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
1979 down-conversion vpmov*. */
1980 || ((t->operand_types[wanted].bitfield.regsimd
1981 && !t->opcode_modifier.broadcast
1982 && (t->operand_types[wanted].bitfield.byte
1983 || t->operand_types[wanted].bitfield.word
1984 || t->operand_types[wanted].bitfield.dword
1985 || t->operand_types[wanted].bitfield.qword))
1986 ? (i.types[given].bitfield.xmmword
1987 || i.types[given].bitfield.ymmword
1988 || i.types[given].bitfield.zmmword)
1989 : !match_simd_size(t, wanted, given))));
1990 }
1991
1992 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
1993 operands for instruction template T, and it has MATCH_REVERSE set if there
1994 is no size conflict on any operands for the template with operands reversed
1995 (and the template allows for reversing in the first place). */
1996
1997 #define MATCH_STRAIGHT 1
1998 #define MATCH_REVERSE 2
1999
2000 static INLINE unsigned int
2001 operand_size_match (const insn_template *t)
2002 {
2003 unsigned int j, match = MATCH_STRAIGHT;
2004
2005 /* Don't check jump instructions. */
2006 if (t->opcode_modifier.jump
2007 || t->opcode_modifier.jumpbyte
2008 || t->opcode_modifier.jumpdword
2009 || t->opcode_modifier.jumpintersegment)
2010 return match;
2011
2012 /* Check memory and accumulator operand size. */
2013 for (j = 0; j < i.operands; j++)
2014 {
2015 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
2016 && t->operand_types[j].bitfield.anysize)
2017 continue;
2018
2019 if (t->operand_types[j].bitfield.reg
2020 && !match_operand_size (t, j, j))
2021 {
2022 match = 0;
2023 break;
2024 }
2025
2026 if (t->operand_types[j].bitfield.regsimd
2027 && !match_simd_size (t, j, j))
2028 {
2029 match = 0;
2030 break;
2031 }
2032
2033 if (t->operand_types[j].bitfield.acc
2034 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2035 {
2036 match = 0;
2037 break;
2038 }
2039
2040 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2041 {
2042 match = 0;
2043 break;
2044 }
2045 }
2046
2047 if (!t->opcode_modifier.d)
2048 {
2049 mismatch:
2050 if (!match)
2051 i.error = operand_size_mismatch;
2052 return match;
2053 }
2054
2055 /* Check reverse. */
2056 gas_assert (i.operands >= 2 && i.operands <= 3);
2057
2058 for (j = 0; j < i.operands; j++)
2059 {
2060 unsigned int given = i.operands - j - 1;
2061
2062 if (t->operand_types[j].bitfield.reg
2063 && !match_operand_size (t, j, given))
2064 goto mismatch;
2065
2066 if (t->operand_types[j].bitfield.regsimd
2067 && !match_simd_size (t, j, given))
2068 goto mismatch;
2069
2070 if (t->operand_types[j].bitfield.acc
2071 && (!match_operand_size (t, j, given)
2072 || !match_simd_size (t, j, given)))
2073 goto mismatch;
2074
2075 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2076 goto mismatch;
2077 }
2078
2079 return match | MATCH_REVERSE;
2080 }
2081
2082 static INLINE int
2083 operand_type_match (i386_operand_type overlap,
2084 i386_operand_type given)
2085 {
2086 i386_operand_type temp = overlap;
2087
2088 temp.bitfield.jumpabsolute = 0;
2089 temp.bitfield.unspecified = 0;
2090 temp.bitfield.byte = 0;
2091 temp.bitfield.word = 0;
2092 temp.bitfield.dword = 0;
2093 temp.bitfield.fword = 0;
2094 temp.bitfield.qword = 0;
2095 temp.bitfield.tbyte = 0;
2096 temp.bitfield.xmmword = 0;
2097 temp.bitfield.ymmword = 0;
2098 temp.bitfield.zmmword = 0;
2099 if (operand_type_all_zero (&temp))
2100 goto mismatch;
2101
2102 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2103 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2104 return 1;
2105
2106 mismatch:
2107 i.error = operand_type_mismatch;
2108 return 0;
2109 }
2110
2111 /* If given types g0 and g1 are registers they must be of the same type
2112 unless the expected operand type register overlap is null.
2113 Memory operand size of certain SIMD instructions is also being checked
2114 here. */
2115
2116 static INLINE int
2117 operand_type_register_match (i386_operand_type g0,
2118 i386_operand_type t0,
2119 i386_operand_type g1,
2120 i386_operand_type t1)
2121 {
2122 if (!g0.bitfield.reg
2123 && !g0.bitfield.regsimd
2124 && (!operand_type_check (g0, anymem)
2125 || g0.bitfield.unspecified
2126 || !t0.bitfield.regsimd))
2127 return 1;
2128
2129 if (!g1.bitfield.reg
2130 && !g1.bitfield.regsimd
2131 && (!operand_type_check (g1, anymem)
2132 || g1.bitfield.unspecified
2133 || !t1.bitfield.regsimd))
2134 return 1;
2135
2136 if (g0.bitfield.byte == g1.bitfield.byte
2137 && g0.bitfield.word == g1.bitfield.word
2138 && g0.bitfield.dword == g1.bitfield.dword
2139 && g0.bitfield.qword == g1.bitfield.qword
2140 && g0.bitfield.xmmword == g1.bitfield.xmmword
2141 && g0.bitfield.ymmword == g1.bitfield.ymmword
2142 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2143 return 1;
2144
2145 if (!(t0.bitfield.byte & t1.bitfield.byte)
2146 && !(t0.bitfield.word & t1.bitfield.word)
2147 && !(t0.bitfield.dword & t1.bitfield.dword)
2148 && !(t0.bitfield.qword & t1.bitfield.qword)
2149 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2150 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2151 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2152 return 1;
2153
2154 i.error = register_type_mismatch;
2155
2156 return 0;
2157 }
2158
2159 static INLINE unsigned int
2160 register_number (const reg_entry *r)
2161 {
2162 unsigned int nr = r->reg_num;
2163
2164 if (r->reg_flags & RegRex)
2165 nr += 8;
2166
2167 if (r->reg_flags & RegVRex)
2168 nr += 16;
2169
2170 return nr;
2171 }
2172
2173 static INLINE unsigned int
2174 mode_from_disp_size (i386_operand_type t)
2175 {
2176 if (t.bitfield.disp8)
2177 return 1;
2178 else if (t.bitfield.disp16
2179 || t.bitfield.disp32
2180 || t.bitfield.disp32s)
2181 return 2;
2182 else
2183 return 0;
2184 }
2185
2186 static INLINE int
2187 fits_in_signed_byte (addressT num)
2188 {
2189 return num + 0x80 <= 0xff;
2190 }
2191
2192 static INLINE int
2193 fits_in_unsigned_byte (addressT num)
2194 {
2195 return num <= 0xff;
2196 }
2197
2198 static INLINE int
2199 fits_in_unsigned_word (addressT num)
2200 {
2201 return num <= 0xffff;
2202 }
2203
2204 static INLINE int
2205 fits_in_signed_word (addressT num)
2206 {
2207 return num + 0x8000 <= 0xffff;
2208 }
2209
2210 static INLINE int
2211 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2212 {
2213 #ifndef BFD64
2214 return 1;
2215 #else
2216 return num + 0x80000000 <= 0xffffffff;
2217 #endif
2218 } /* fits_in_signed_long() */
2219
2220 static INLINE int
2221 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2222 {
2223 #ifndef BFD64
2224 return 1;
2225 #else
2226 return num <= 0xffffffff;
2227 #endif
2228 } /* fits_in_unsigned_long() */
2229
2230 static INLINE int
2231 fits_in_disp8 (offsetT num)
2232 {
2233 int shift = i.memshift;
2234 unsigned int mask;
2235
2236 if (shift == -1)
2237 abort ();
2238
2239 mask = (1 << shift) - 1;
2240
2241 /* Return 0 if NUM isn't properly aligned. */
2242 if ((num & mask))
2243 return 0;
2244
2245 /* Check if NUM will fit in 8bit after shift. */
2246 return fits_in_signed_byte (num >> shift);
2247 }
2248
2249 static INLINE int
2250 fits_in_imm4 (offsetT num)
2251 {
2252 return (num & 0xf) == num;
2253 }
2254
2255 static i386_operand_type
2256 smallest_imm_type (offsetT num)
2257 {
2258 i386_operand_type t;
2259
2260 operand_type_set (&t, 0);
2261 t.bitfield.imm64 = 1;
2262
2263 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2264 {
2265 /* This code is disabled on the 486 because all the Imm1 forms
2266 in the opcode table are slower on the i486. They're the
2267 versions with the implicitly specified single-position
2268 displacement, which has another syntax if you really want to
2269 use that form. */
2270 t.bitfield.imm1 = 1;
2271 t.bitfield.imm8 = 1;
2272 t.bitfield.imm8s = 1;
2273 t.bitfield.imm16 = 1;
2274 t.bitfield.imm32 = 1;
2275 t.bitfield.imm32s = 1;
2276 }
2277 else if (fits_in_signed_byte (num))
2278 {
2279 t.bitfield.imm8 = 1;
2280 t.bitfield.imm8s = 1;
2281 t.bitfield.imm16 = 1;
2282 t.bitfield.imm32 = 1;
2283 t.bitfield.imm32s = 1;
2284 }
2285 else if (fits_in_unsigned_byte (num))
2286 {
2287 t.bitfield.imm8 = 1;
2288 t.bitfield.imm16 = 1;
2289 t.bitfield.imm32 = 1;
2290 t.bitfield.imm32s = 1;
2291 }
2292 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2293 {
2294 t.bitfield.imm16 = 1;
2295 t.bitfield.imm32 = 1;
2296 t.bitfield.imm32s = 1;
2297 }
2298 else if (fits_in_signed_long (num))
2299 {
2300 t.bitfield.imm32 = 1;
2301 t.bitfield.imm32s = 1;
2302 }
2303 else if (fits_in_unsigned_long (num))
2304 t.bitfield.imm32 = 1;
2305
2306 return t;
2307 }
2308
2309 static offsetT
2310 offset_in_range (offsetT val, int size)
2311 {
2312 addressT mask;
2313
2314 switch (size)
2315 {
2316 case 1: mask = ((addressT) 1 << 8) - 1; break;
2317 case 2: mask = ((addressT) 1 << 16) - 1; break;
2318 case 4: mask = ((addressT) 2 << 31) - 1; break;
2319 #ifdef BFD64
2320 case 8: mask = ((addressT) 2 << 63) - 1; break;
2321 #endif
2322 default: abort ();
2323 }
2324
2325 #ifdef BFD64
2326 /* If BFD64, sign extend val for 32bit address mode. */
2327 if (flag_code != CODE_64BIT
2328 || i.prefix[ADDR_PREFIX])
2329 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2330 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2331 #endif
2332
2333 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2334 {
2335 char buf1[40], buf2[40];
2336
2337 sprint_value (buf1, val);
2338 sprint_value (buf2, val & mask);
2339 as_warn (_("%s shortened to %s"), buf1, buf2);
2340 }
2341 return val & mask;
2342 }
2343
2344 enum PREFIX_GROUP
2345 {
2346 PREFIX_EXIST = 0,
2347 PREFIX_LOCK,
2348 PREFIX_REP,
2349 PREFIX_DS,
2350 PREFIX_OTHER
2351 };
2352
2353 /* Returns
2354 a. PREFIX_EXIST if attempting to add a prefix where one from the
2355 same class already exists.
2356 b. PREFIX_LOCK if lock prefix is added.
2357 c. PREFIX_REP if rep/repne prefix is added.
2358 d. PREFIX_DS if ds prefix is added.
2359 e. PREFIX_OTHER if other prefix is added.
2360 */
2361
2362 static enum PREFIX_GROUP
2363 add_prefix (unsigned int prefix)
2364 {
2365 enum PREFIX_GROUP ret = PREFIX_OTHER;
2366 unsigned int q;
2367
2368 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2369 && flag_code == CODE_64BIT)
2370 {
2371 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2372 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2373 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2374 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2375 ret = PREFIX_EXIST;
2376 q = REX_PREFIX;
2377 }
2378 else
2379 {
2380 switch (prefix)
2381 {
2382 default:
2383 abort ();
2384
2385 case DS_PREFIX_OPCODE:
2386 ret = PREFIX_DS;
2387 /* Fall through. */
2388 case CS_PREFIX_OPCODE:
2389 case ES_PREFIX_OPCODE:
2390 case FS_PREFIX_OPCODE:
2391 case GS_PREFIX_OPCODE:
2392 case SS_PREFIX_OPCODE:
2393 q = SEG_PREFIX;
2394 break;
2395
2396 case REPNE_PREFIX_OPCODE:
2397 case REPE_PREFIX_OPCODE:
2398 q = REP_PREFIX;
2399 ret = PREFIX_REP;
2400 break;
2401
2402 case LOCK_PREFIX_OPCODE:
2403 q = LOCK_PREFIX;
2404 ret = PREFIX_LOCK;
2405 break;
2406
2407 case FWAIT_OPCODE:
2408 q = WAIT_PREFIX;
2409 break;
2410
2411 case ADDR_PREFIX_OPCODE:
2412 q = ADDR_PREFIX;
2413 break;
2414
2415 case DATA_PREFIX_OPCODE:
2416 q = DATA_PREFIX;
2417 break;
2418 }
2419 if (i.prefix[q] != 0)
2420 ret = PREFIX_EXIST;
2421 }
2422
2423 if (ret)
2424 {
2425 if (!i.prefix[q])
2426 ++i.prefixes;
2427 i.prefix[q] |= prefix;
2428 }
2429 else
2430 as_bad (_("same type of prefix used twice"));
2431
2432 return ret;
2433 }
2434
2435 static void
2436 update_code_flag (int value, int check)
2437 {
2438 PRINTF_LIKE ((*as_error));
2439
2440 flag_code = (enum flag_code) value;
2441 if (flag_code == CODE_64BIT)
2442 {
2443 cpu_arch_flags.bitfield.cpu64 = 1;
2444 cpu_arch_flags.bitfield.cpuno64 = 0;
2445 }
2446 else
2447 {
2448 cpu_arch_flags.bitfield.cpu64 = 0;
2449 cpu_arch_flags.bitfield.cpuno64 = 1;
2450 }
2451 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2452 {
2453 if (check)
2454 as_error = as_fatal;
2455 else
2456 as_error = as_bad;
2457 (*as_error) (_("64bit mode not supported on `%s'."),
2458 cpu_arch_name ? cpu_arch_name : default_arch);
2459 }
2460 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2461 {
2462 if (check)
2463 as_error = as_fatal;
2464 else
2465 as_error = as_bad;
2466 (*as_error) (_("32bit mode not supported on `%s'."),
2467 cpu_arch_name ? cpu_arch_name : default_arch);
2468 }
2469 stackop_size = '\0';
2470 }
2471
2472 static void
2473 set_code_flag (int value)
2474 {
2475 update_code_flag (value, 0);
2476 }
2477
2478 static void
2479 set_16bit_gcc_code_flag (int new_code_flag)
2480 {
2481 flag_code = (enum flag_code) new_code_flag;
2482 if (flag_code != CODE_16BIT)
2483 abort ();
2484 cpu_arch_flags.bitfield.cpu64 = 0;
2485 cpu_arch_flags.bitfield.cpuno64 = 1;
2486 stackop_size = LONG_MNEM_SUFFIX;
2487 }
2488
2489 static void
2490 set_intel_syntax (int syntax_flag)
2491 {
2492 /* Find out if register prefixing is specified. */
2493 int ask_naked_reg = 0;
2494
2495 SKIP_WHITESPACE ();
2496 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2497 {
2498 char *string;
2499 int e = get_symbol_name (&string);
2500
2501 if (strcmp (string, "prefix") == 0)
2502 ask_naked_reg = 1;
2503 else if (strcmp (string, "noprefix") == 0)
2504 ask_naked_reg = -1;
2505 else
2506 as_bad (_("bad argument to syntax directive."));
2507 (void) restore_line_pointer (e);
2508 }
2509 demand_empty_rest_of_line ();
2510
2511 intel_syntax = syntax_flag;
2512
2513 if (ask_naked_reg == 0)
2514 allow_naked_reg = (intel_syntax
2515 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2516 else
2517 allow_naked_reg = (ask_naked_reg < 0);
2518
2519 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2520
2521 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2522 identifier_chars['$'] = intel_syntax ? '$' : 0;
2523 register_prefix = allow_naked_reg ? "" : "%";
2524 }
2525
2526 static void
2527 set_intel_mnemonic (int mnemonic_flag)
2528 {
2529 intel_mnemonic = mnemonic_flag;
2530 }
2531
2532 static void
2533 set_allow_index_reg (int flag)
2534 {
2535 allow_index_reg = flag;
2536 }
2537
2538 static void
2539 set_check (int what)
2540 {
2541 enum check_kind *kind;
2542 const char *str;
2543
2544 if (what)
2545 {
2546 kind = &operand_check;
2547 str = "operand";
2548 }
2549 else
2550 {
2551 kind = &sse_check;
2552 str = "sse";
2553 }
2554
2555 SKIP_WHITESPACE ();
2556
2557 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2558 {
2559 char *string;
2560 int e = get_symbol_name (&string);
2561
2562 if (strcmp (string, "none") == 0)
2563 *kind = check_none;
2564 else if (strcmp (string, "warning") == 0)
2565 *kind = check_warning;
2566 else if (strcmp (string, "error") == 0)
2567 *kind = check_error;
2568 else
2569 as_bad (_("bad argument to %s_check directive."), str);
2570 (void) restore_line_pointer (e);
2571 }
2572 else
2573 as_bad (_("missing argument for %s_check directive"), str);
2574
2575 demand_empty_rest_of_line ();
2576 }
2577
2578 static void
2579 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2580 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2581 {
2582 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2583 static const char *arch;
2584
2585 /* Intel LIOM is only supported on ELF. */
2586 if (!IS_ELF)
2587 return;
2588
2589 if (!arch)
2590 {
2591 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2592 use default_arch. */
2593 arch = cpu_arch_name;
2594 if (!arch)
2595 arch = default_arch;
2596 }
2597
2598 /* If we are targeting Intel MCU, we must enable it. */
2599 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2600 || new_flag.bitfield.cpuiamcu)
2601 return;
2602
2603 /* If we are targeting Intel L1OM, we must enable it. */
2604 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2605 || new_flag.bitfield.cpul1om)
2606 return;
2607
2608 /* If we are targeting Intel K1OM, we must enable it. */
2609 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2610 || new_flag.bitfield.cpuk1om)
2611 return;
2612
2613 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2614 #endif
2615 }
2616
2617 static void
2618 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2619 {
2620 SKIP_WHITESPACE ();
2621
2622 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2623 {
2624 char *string;
2625 int e = get_symbol_name (&string);
2626 unsigned int j;
2627 i386_cpu_flags flags;
2628
2629 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2630 {
2631 if (strcmp (string, cpu_arch[j].name) == 0)
2632 {
2633 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2634
2635 if (*string != '.')
2636 {
2637 cpu_arch_name = cpu_arch[j].name;
2638 cpu_sub_arch_name = NULL;
2639 cpu_arch_flags = cpu_arch[j].flags;
2640 if (flag_code == CODE_64BIT)
2641 {
2642 cpu_arch_flags.bitfield.cpu64 = 1;
2643 cpu_arch_flags.bitfield.cpuno64 = 0;
2644 }
2645 else
2646 {
2647 cpu_arch_flags.bitfield.cpu64 = 0;
2648 cpu_arch_flags.bitfield.cpuno64 = 1;
2649 }
2650 cpu_arch_isa = cpu_arch[j].type;
2651 cpu_arch_isa_flags = cpu_arch[j].flags;
2652 if (!cpu_arch_tune_set)
2653 {
2654 cpu_arch_tune = cpu_arch_isa;
2655 cpu_arch_tune_flags = cpu_arch_isa_flags;
2656 }
2657 break;
2658 }
2659
2660 flags = cpu_flags_or (cpu_arch_flags,
2661 cpu_arch[j].flags);
2662
2663 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2664 {
2665 if (cpu_sub_arch_name)
2666 {
2667 char *name = cpu_sub_arch_name;
2668 cpu_sub_arch_name = concat (name,
2669 cpu_arch[j].name,
2670 (const char *) NULL);
2671 free (name);
2672 }
2673 else
2674 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2675 cpu_arch_flags = flags;
2676 cpu_arch_isa_flags = flags;
2677 }
2678 else
2679 cpu_arch_isa_flags
2680 = cpu_flags_or (cpu_arch_isa_flags,
2681 cpu_arch[j].flags);
2682 (void) restore_line_pointer (e);
2683 demand_empty_rest_of_line ();
2684 return;
2685 }
2686 }
2687
2688 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2689 {
2690 /* Disable an ISA extension. */
2691 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2692 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2693 {
2694 flags = cpu_flags_and_not (cpu_arch_flags,
2695 cpu_noarch[j].flags);
2696 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2697 {
2698 if (cpu_sub_arch_name)
2699 {
2700 char *name = cpu_sub_arch_name;
2701 cpu_sub_arch_name = concat (name, string,
2702 (const char *) NULL);
2703 free (name);
2704 }
2705 else
2706 cpu_sub_arch_name = xstrdup (string);
2707 cpu_arch_flags = flags;
2708 cpu_arch_isa_flags = flags;
2709 }
2710 (void) restore_line_pointer (e);
2711 demand_empty_rest_of_line ();
2712 return;
2713 }
2714
2715 j = ARRAY_SIZE (cpu_arch);
2716 }
2717
2718 if (j >= ARRAY_SIZE (cpu_arch))
2719 as_bad (_("no such architecture: `%s'"), string);
2720
2721 *input_line_pointer = e;
2722 }
2723 else
2724 as_bad (_("missing cpu architecture"));
2725
2726 no_cond_jump_promotion = 0;
2727 if (*input_line_pointer == ','
2728 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2729 {
2730 char *string;
2731 char e;
2732
2733 ++input_line_pointer;
2734 e = get_symbol_name (&string);
2735
2736 if (strcmp (string, "nojumps") == 0)
2737 no_cond_jump_promotion = 1;
2738 else if (strcmp (string, "jumps") == 0)
2739 ;
2740 else
2741 as_bad (_("no such architecture modifier: `%s'"), string);
2742
2743 (void) restore_line_pointer (e);
2744 }
2745
2746 demand_empty_rest_of_line ();
2747 }
2748
2749 enum bfd_architecture
2750 i386_arch (void)
2751 {
2752 if (cpu_arch_isa == PROCESSOR_L1OM)
2753 {
2754 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2755 || flag_code != CODE_64BIT)
2756 as_fatal (_("Intel L1OM is 64bit ELF only"));
2757 return bfd_arch_l1om;
2758 }
2759 else if (cpu_arch_isa == PROCESSOR_K1OM)
2760 {
2761 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2762 || flag_code != CODE_64BIT)
2763 as_fatal (_("Intel K1OM is 64bit ELF only"));
2764 return bfd_arch_k1om;
2765 }
2766 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2767 {
2768 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2769 || flag_code == CODE_64BIT)
2770 as_fatal (_("Intel MCU is 32bit ELF only"));
2771 return bfd_arch_iamcu;
2772 }
2773 else
2774 return bfd_arch_i386;
2775 }
2776
2777 unsigned long
2778 i386_mach (void)
2779 {
2780 if (!strncmp (default_arch, "x86_64", 6))
2781 {
2782 if (cpu_arch_isa == PROCESSOR_L1OM)
2783 {
2784 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2785 || default_arch[6] != '\0')
2786 as_fatal (_("Intel L1OM is 64bit ELF only"));
2787 return bfd_mach_l1om;
2788 }
2789 else if (cpu_arch_isa == PROCESSOR_K1OM)
2790 {
2791 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2792 || default_arch[6] != '\0')
2793 as_fatal (_("Intel K1OM is 64bit ELF only"));
2794 return bfd_mach_k1om;
2795 }
2796 else if (default_arch[6] == '\0')
2797 return bfd_mach_x86_64;
2798 else
2799 return bfd_mach_x64_32;
2800 }
2801 else if (!strcmp (default_arch, "i386")
2802 || !strcmp (default_arch, "iamcu"))
2803 {
2804 if (cpu_arch_isa == PROCESSOR_IAMCU)
2805 {
2806 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2807 as_fatal (_("Intel MCU is 32bit ELF only"));
2808 return bfd_mach_i386_iamcu;
2809 }
2810 else
2811 return bfd_mach_i386_i386;
2812 }
2813 else
2814 as_fatal (_("unknown architecture"));
2815 }
2816 \f
2817 void
2818 md_begin (void)
2819 {
2820 const char *hash_err;
2821
2822 /* Support pseudo prefixes like {disp32}. */
2823 lex_type ['{'] = LEX_BEGIN_NAME;
2824
2825 /* Initialize op_hash hash table. */
2826 op_hash = hash_new ();
2827
2828 {
2829 const insn_template *optab;
2830 templates *core_optab;
2831
2832 /* Setup for loop. */
2833 optab = i386_optab;
2834 core_optab = XNEW (templates);
2835 core_optab->start = optab;
2836
2837 while (1)
2838 {
2839 ++optab;
2840 if (optab->name == NULL
2841 || strcmp (optab->name, (optab - 1)->name) != 0)
2842 {
2843 /* different name --> ship out current template list;
2844 add to hash table; & begin anew. */
2845 core_optab->end = optab;
2846 hash_err = hash_insert (op_hash,
2847 (optab - 1)->name,
2848 (void *) core_optab);
2849 if (hash_err)
2850 {
2851 as_fatal (_("can't hash %s: %s"),
2852 (optab - 1)->name,
2853 hash_err);
2854 }
2855 if (optab->name == NULL)
2856 break;
2857 core_optab = XNEW (templates);
2858 core_optab->start = optab;
2859 }
2860 }
2861 }
2862
2863 /* Initialize reg_hash hash table. */
2864 reg_hash = hash_new ();
2865 {
2866 const reg_entry *regtab;
2867 unsigned int regtab_size = i386_regtab_size;
2868
2869 for (regtab = i386_regtab; regtab_size--; regtab++)
2870 {
2871 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2872 if (hash_err)
2873 as_fatal (_("can't hash %s: %s"),
2874 regtab->reg_name,
2875 hash_err);
2876 }
2877 }
2878
2879 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2880 {
2881 int c;
2882 char *p;
2883
2884 for (c = 0; c < 256; c++)
2885 {
2886 if (ISDIGIT (c))
2887 {
2888 digit_chars[c] = c;
2889 mnemonic_chars[c] = c;
2890 register_chars[c] = c;
2891 operand_chars[c] = c;
2892 }
2893 else if (ISLOWER (c))
2894 {
2895 mnemonic_chars[c] = c;
2896 register_chars[c] = c;
2897 operand_chars[c] = c;
2898 }
2899 else if (ISUPPER (c))
2900 {
2901 mnemonic_chars[c] = TOLOWER (c);
2902 register_chars[c] = mnemonic_chars[c];
2903 operand_chars[c] = c;
2904 }
2905 else if (c == '{' || c == '}')
2906 {
2907 mnemonic_chars[c] = c;
2908 operand_chars[c] = c;
2909 }
2910
2911 if (ISALPHA (c) || ISDIGIT (c))
2912 identifier_chars[c] = c;
2913 else if (c >= 128)
2914 {
2915 identifier_chars[c] = c;
2916 operand_chars[c] = c;
2917 }
2918 }
2919
2920 #ifdef LEX_AT
2921 identifier_chars['@'] = '@';
2922 #endif
2923 #ifdef LEX_QM
2924 identifier_chars['?'] = '?';
2925 operand_chars['?'] = '?';
2926 #endif
2927 digit_chars['-'] = '-';
2928 mnemonic_chars['_'] = '_';
2929 mnemonic_chars['-'] = '-';
2930 mnemonic_chars['.'] = '.';
2931 identifier_chars['_'] = '_';
2932 identifier_chars['.'] = '.';
2933
2934 for (p = operand_special_chars; *p != '\0'; p++)
2935 operand_chars[(unsigned char) *p] = *p;
2936 }
2937
2938 if (flag_code == CODE_64BIT)
2939 {
2940 #if defined (OBJ_COFF) && defined (TE_PE)
2941 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2942 ? 32 : 16);
2943 #else
2944 x86_dwarf2_return_column = 16;
2945 #endif
2946 x86_cie_data_alignment = -8;
2947 }
2948 else
2949 {
2950 x86_dwarf2_return_column = 8;
2951 x86_cie_data_alignment = -4;
2952 }
2953 }
2954
2955 void
2956 i386_print_statistics (FILE *file)
2957 {
2958 hash_print_statistics (file, "i386 opcode", op_hash);
2959 hash_print_statistics (file, "i386 register", reg_hash);
2960 }
2961 \f
2962 #ifdef DEBUG386
2963
2964 /* Debugging routines for md_assemble. */
2965 static void pte (insn_template *);
2966 static void pt (i386_operand_type);
2967 static void pe (expressionS *);
2968 static void ps (symbolS *);
2969
2970 static void
2971 pi (char *line, i386_insn *x)
2972 {
2973 unsigned int j;
2974
2975 fprintf (stdout, "%s: template ", line);
2976 pte (&x->tm);
2977 fprintf (stdout, " address: base %s index %s scale %x\n",
2978 x->base_reg ? x->base_reg->reg_name : "none",
2979 x->index_reg ? x->index_reg->reg_name : "none",
2980 x->log2_scale_factor);
2981 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2982 x->rm.mode, x->rm.reg, x->rm.regmem);
2983 fprintf (stdout, " sib: base %x index %x scale %x\n",
2984 x->sib.base, x->sib.index, x->sib.scale);
2985 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2986 (x->rex & REX_W) != 0,
2987 (x->rex & REX_R) != 0,
2988 (x->rex & REX_X) != 0,
2989 (x->rex & REX_B) != 0);
2990 for (j = 0; j < x->operands; j++)
2991 {
2992 fprintf (stdout, " #%d: ", j + 1);
2993 pt (x->types[j]);
2994 fprintf (stdout, "\n");
2995 if (x->types[j].bitfield.reg
2996 || x->types[j].bitfield.regmmx
2997 || x->types[j].bitfield.regsimd
2998 || x->types[j].bitfield.sreg2
2999 || x->types[j].bitfield.sreg3
3000 || x->types[j].bitfield.control
3001 || x->types[j].bitfield.debug
3002 || x->types[j].bitfield.test)
3003 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3004 if (operand_type_check (x->types[j], imm))
3005 pe (x->op[j].imms);
3006 if (operand_type_check (x->types[j], disp))
3007 pe (x->op[j].disps);
3008 }
3009 }
3010
3011 static void
3012 pte (insn_template *t)
3013 {
3014 unsigned int j;
3015 fprintf (stdout, " %d operands ", t->operands);
3016 fprintf (stdout, "opcode %x ", t->base_opcode);
3017 if (t->extension_opcode != None)
3018 fprintf (stdout, "ext %x ", t->extension_opcode);
3019 if (t->opcode_modifier.d)
3020 fprintf (stdout, "D");
3021 if (t->opcode_modifier.w)
3022 fprintf (stdout, "W");
3023 fprintf (stdout, "\n");
3024 for (j = 0; j < t->operands; j++)
3025 {
3026 fprintf (stdout, " #%d type ", j + 1);
3027 pt (t->operand_types[j]);
3028 fprintf (stdout, "\n");
3029 }
3030 }
3031
3032 static void
3033 pe (expressionS *e)
3034 {
3035 fprintf (stdout, " operation %d\n", e->X_op);
3036 fprintf (stdout, " add_number %ld (%lx)\n",
3037 (long) e->X_add_number, (long) e->X_add_number);
3038 if (e->X_add_symbol)
3039 {
3040 fprintf (stdout, " add_symbol ");
3041 ps (e->X_add_symbol);
3042 fprintf (stdout, "\n");
3043 }
3044 if (e->X_op_symbol)
3045 {
3046 fprintf (stdout, " op_symbol ");
3047 ps (e->X_op_symbol);
3048 fprintf (stdout, "\n");
3049 }
3050 }
3051
3052 static void
3053 ps (symbolS *s)
3054 {
3055 fprintf (stdout, "%s type %s%s",
3056 S_GET_NAME (s),
3057 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3058 segment_name (S_GET_SEGMENT (s)));
3059 }
3060
3061 static struct type_name
3062 {
3063 i386_operand_type mask;
3064 const char *name;
3065 }
3066 const type_names[] =
3067 {
3068 { OPERAND_TYPE_REG8, "r8" },
3069 { OPERAND_TYPE_REG16, "r16" },
3070 { OPERAND_TYPE_REG32, "r32" },
3071 { OPERAND_TYPE_REG64, "r64" },
3072 { OPERAND_TYPE_IMM8, "i8" },
3073 { OPERAND_TYPE_IMM8, "i8s" },
3074 { OPERAND_TYPE_IMM16, "i16" },
3075 { OPERAND_TYPE_IMM32, "i32" },
3076 { OPERAND_TYPE_IMM32S, "i32s" },
3077 { OPERAND_TYPE_IMM64, "i64" },
3078 { OPERAND_TYPE_IMM1, "i1" },
3079 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3080 { OPERAND_TYPE_DISP8, "d8" },
3081 { OPERAND_TYPE_DISP16, "d16" },
3082 { OPERAND_TYPE_DISP32, "d32" },
3083 { OPERAND_TYPE_DISP32S, "d32s" },
3084 { OPERAND_TYPE_DISP64, "d64" },
3085 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3086 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3087 { OPERAND_TYPE_CONTROL, "control reg" },
3088 { OPERAND_TYPE_TEST, "test reg" },
3089 { OPERAND_TYPE_DEBUG, "debug reg" },
3090 { OPERAND_TYPE_FLOATREG, "FReg" },
3091 { OPERAND_TYPE_FLOATACC, "FAcc" },
3092 { OPERAND_TYPE_SREG2, "SReg2" },
3093 { OPERAND_TYPE_SREG3, "SReg3" },
3094 { OPERAND_TYPE_ACC, "Acc" },
3095 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3096 { OPERAND_TYPE_REGMMX, "rMMX" },
3097 { OPERAND_TYPE_REGXMM, "rXMM" },
3098 { OPERAND_TYPE_REGYMM, "rYMM" },
3099 { OPERAND_TYPE_REGZMM, "rZMM" },
3100 { OPERAND_TYPE_REGMASK, "Mask reg" },
3101 { OPERAND_TYPE_ESSEG, "es" },
3102 };
3103
3104 static void
3105 pt (i386_operand_type t)
3106 {
3107 unsigned int j;
3108 i386_operand_type a;
3109
3110 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3111 {
3112 a = operand_type_and (t, type_names[j].mask);
3113 if (!operand_type_all_zero (&a))
3114 fprintf (stdout, "%s, ", type_names[j].name);
3115 }
3116 fflush (stdout);
3117 }
3118
3119 #endif /* DEBUG386 */
3120 \f
3121 static bfd_reloc_code_real_type
3122 reloc (unsigned int size,
3123 int pcrel,
3124 int sign,
3125 bfd_reloc_code_real_type other)
3126 {
3127 if (other != NO_RELOC)
3128 {
3129 reloc_howto_type *rel;
3130
3131 if (size == 8)
3132 switch (other)
3133 {
3134 case BFD_RELOC_X86_64_GOT32:
3135 return BFD_RELOC_X86_64_GOT64;
3136 break;
3137 case BFD_RELOC_X86_64_GOTPLT64:
3138 return BFD_RELOC_X86_64_GOTPLT64;
3139 break;
3140 case BFD_RELOC_X86_64_PLTOFF64:
3141 return BFD_RELOC_X86_64_PLTOFF64;
3142 break;
3143 case BFD_RELOC_X86_64_GOTPC32:
3144 other = BFD_RELOC_X86_64_GOTPC64;
3145 break;
3146 case BFD_RELOC_X86_64_GOTPCREL:
3147 other = BFD_RELOC_X86_64_GOTPCREL64;
3148 break;
3149 case BFD_RELOC_X86_64_TPOFF32:
3150 other = BFD_RELOC_X86_64_TPOFF64;
3151 break;
3152 case BFD_RELOC_X86_64_DTPOFF32:
3153 other = BFD_RELOC_X86_64_DTPOFF64;
3154 break;
3155 default:
3156 break;
3157 }
3158
3159 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3160 if (other == BFD_RELOC_SIZE32)
3161 {
3162 if (size == 8)
3163 other = BFD_RELOC_SIZE64;
3164 if (pcrel)
3165 {
3166 as_bad (_("there are no pc-relative size relocations"));
3167 return NO_RELOC;
3168 }
3169 }
3170 #endif
3171
3172 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3173 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3174 sign = -1;
3175
3176 rel = bfd_reloc_type_lookup (stdoutput, other);
3177 if (!rel)
3178 as_bad (_("unknown relocation (%u)"), other);
3179 else if (size != bfd_get_reloc_size (rel))
3180 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3181 bfd_get_reloc_size (rel),
3182 size);
3183 else if (pcrel && !rel->pc_relative)
3184 as_bad (_("non-pc-relative relocation for pc-relative field"));
3185 else if ((rel->complain_on_overflow == complain_overflow_signed
3186 && !sign)
3187 || (rel->complain_on_overflow == complain_overflow_unsigned
3188 && sign > 0))
3189 as_bad (_("relocated field and relocation type differ in signedness"));
3190 else
3191 return other;
3192 return NO_RELOC;
3193 }
3194
3195 if (pcrel)
3196 {
3197 if (!sign)
3198 as_bad (_("there are no unsigned pc-relative relocations"));
3199 switch (size)
3200 {
3201 case 1: return BFD_RELOC_8_PCREL;
3202 case 2: return BFD_RELOC_16_PCREL;
3203 case 4: return BFD_RELOC_32_PCREL;
3204 case 8: return BFD_RELOC_64_PCREL;
3205 }
3206 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3207 }
3208 else
3209 {
3210 if (sign > 0)
3211 switch (size)
3212 {
3213 case 4: return BFD_RELOC_X86_64_32S;
3214 }
3215 else
3216 switch (size)
3217 {
3218 case 1: return BFD_RELOC_8;
3219 case 2: return BFD_RELOC_16;
3220 case 4: return BFD_RELOC_32;
3221 case 8: return BFD_RELOC_64;
3222 }
3223 as_bad (_("cannot do %s %u byte relocation"),
3224 sign > 0 ? "signed" : "unsigned", size);
3225 }
3226
3227 return NO_RELOC;
3228 }
3229
3230 /* Here we decide which fixups can be adjusted to make them relative to
3231 the beginning of the section instead of the symbol. Basically we need
3232 to make sure that the dynamic relocations are done correctly, so in
3233 some cases we force the original symbol to be used. */
3234
3235 int
3236 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3237 {
3238 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3239 if (!IS_ELF)
3240 return 1;
3241
3242 /* Don't adjust pc-relative references to merge sections in 64-bit
3243 mode. */
3244 if (use_rela_relocations
3245 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3246 && fixP->fx_pcrel)
3247 return 0;
3248
3249 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3250 and changed later by validate_fix. */
3251 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3252 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3253 return 0;
3254
3255 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3256 for size relocations. */
3257 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3258 || fixP->fx_r_type == BFD_RELOC_SIZE64
3259 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3260 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3261 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3262 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3263 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3264 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3265 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3266 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3267 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3268 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3269 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3270 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3271 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3272 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3273 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3274 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3275 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3276 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3277 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3278 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3279 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3280 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3281 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3282 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3283 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3284 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3285 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3286 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3287 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3288 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3289 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3290 return 0;
3291 #endif
3292 return 1;
3293 }
3294
3295 static int
3296 intel_float_operand (const char *mnemonic)
3297 {
3298 /* Note that the value returned is meaningful only for opcodes with (memory)
3299 operands, hence the code here is free to improperly handle opcodes that
3300 have no operands (for better performance and smaller code). */
3301
3302 if (mnemonic[0] != 'f')
3303 return 0; /* non-math */
3304
3305 switch (mnemonic[1])
3306 {
3307 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3308 the fs segment override prefix not currently handled because no
3309 call path can make opcodes without operands get here */
3310 case 'i':
3311 return 2 /* integer op */;
3312 case 'l':
3313 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3314 return 3; /* fldcw/fldenv */
3315 break;
3316 case 'n':
3317 if (mnemonic[2] != 'o' /* fnop */)
3318 return 3; /* non-waiting control op */
3319 break;
3320 case 'r':
3321 if (mnemonic[2] == 's')
3322 return 3; /* frstor/frstpm */
3323 break;
3324 case 's':
3325 if (mnemonic[2] == 'a')
3326 return 3; /* fsave */
3327 if (mnemonic[2] == 't')
3328 {
3329 switch (mnemonic[3])
3330 {
3331 case 'c': /* fstcw */
3332 case 'd': /* fstdw */
3333 case 'e': /* fstenv */
3334 case 's': /* fsts[gw] */
3335 return 3;
3336 }
3337 }
3338 break;
3339 case 'x':
3340 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3341 return 0; /* fxsave/fxrstor are not really math ops */
3342 break;
3343 }
3344
3345 return 1;
3346 }
3347
3348 /* Build the VEX prefix. */
3349
3350 static void
3351 build_vex_prefix (const insn_template *t)
3352 {
3353 unsigned int register_specifier;
3354 unsigned int implied_prefix;
3355 unsigned int vector_length;
3356
3357 /* Check register specifier. */
3358 if (i.vex.register_specifier)
3359 {
3360 register_specifier =
3361 ~register_number (i.vex.register_specifier) & 0xf;
3362 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3363 }
3364 else
3365 register_specifier = 0xf;
3366
3367 /* Use 2-byte VEX prefix by swapping destination and source operand
3368 if there are more than 1 register operand. */
3369 if (i.reg_operands > 1
3370 && i.vec_encoding != vex_encoding_vex3
3371 && i.dir_encoding == dir_encoding_default
3372 && i.operands == i.reg_operands
3373 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3374 && i.tm.opcode_modifier.vexopcode == VEX0F
3375 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3376 && i.rex == REX_B)
3377 {
3378 unsigned int xchg = i.operands - 1;
3379 union i386_op temp_op;
3380 i386_operand_type temp_type;
3381
3382 temp_type = i.types[xchg];
3383 i.types[xchg] = i.types[0];
3384 i.types[0] = temp_type;
3385 temp_op = i.op[xchg];
3386 i.op[xchg] = i.op[0];
3387 i.op[0] = temp_op;
3388
3389 gas_assert (i.rm.mode == 3);
3390
3391 i.rex = REX_R;
3392 xchg = i.rm.regmem;
3393 i.rm.regmem = i.rm.reg;
3394 i.rm.reg = xchg;
3395
3396 if (i.tm.opcode_modifier.d)
3397 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3398 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3399 else /* Use the next insn. */
3400 i.tm = t[1];
3401 }
3402
3403 if (i.tm.opcode_modifier.vex == VEXScalar)
3404 vector_length = avxscalar;
3405 else if (i.tm.opcode_modifier.vex == VEX256)
3406 vector_length = 1;
3407 else
3408 {
3409 unsigned int op;
3410
3411 /* Determine vector length from the last multi-length vector
3412 operand. */
3413 vector_length = 0;
3414 for (op = t->operands; op--;)
3415 if (t->operand_types[op].bitfield.xmmword
3416 && t->operand_types[op].bitfield.ymmword
3417 && i.types[op].bitfield.ymmword)
3418 {
3419 vector_length = 1;
3420 break;
3421 }
3422 }
3423
3424 switch ((i.tm.base_opcode >> 8) & 0xff)
3425 {
3426 case 0:
3427 implied_prefix = 0;
3428 break;
3429 case DATA_PREFIX_OPCODE:
3430 implied_prefix = 1;
3431 break;
3432 case REPE_PREFIX_OPCODE:
3433 implied_prefix = 2;
3434 break;
3435 case REPNE_PREFIX_OPCODE:
3436 implied_prefix = 3;
3437 break;
3438 default:
3439 abort ();
3440 }
3441
3442 /* Use 2-byte VEX prefix if possible. */
3443 if (i.vec_encoding != vex_encoding_vex3
3444 && i.tm.opcode_modifier.vexopcode == VEX0F
3445 && i.tm.opcode_modifier.vexw != VEXW1
3446 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3447 {
3448 /* 2-byte VEX prefix. */
3449 unsigned int r;
3450
3451 i.vex.length = 2;
3452 i.vex.bytes[0] = 0xc5;
3453
3454 /* Check the REX.R bit. */
3455 r = (i.rex & REX_R) ? 0 : 1;
3456 i.vex.bytes[1] = (r << 7
3457 | register_specifier << 3
3458 | vector_length << 2
3459 | implied_prefix);
3460 }
3461 else
3462 {
3463 /* 3-byte VEX prefix. */
3464 unsigned int m, w;
3465
3466 i.vex.length = 3;
3467
3468 switch (i.tm.opcode_modifier.vexopcode)
3469 {
3470 case VEX0F:
3471 m = 0x1;
3472 i.vex.bytes[0] = 0xc4;
3473 break;
3474 case VEX0F38:
3475 m = 0x2;
3476 i.vex.bytes[0] = 0xc4;
3477 break;
3478 case VEX0F3A:
3479 m = 0x3;
3480 i.vex.bytes[0] = 0xc4;
3481 break;
3482 case XOP08:
3483 m = 0x8;
3484 i.vex.bytes[0] = 0x8f;
3485 break;
3486 case XOP09:
3487 m = 0x9;
3488 i.vex.bytes[0] = 0x8f;
3489 break;
3490 case XOP0A:
3491 m = 0xa;
3492 i.vex.bytes[0] = 0x8f;
3493 break;
3494 default:
3495 abort ();
3496 }
3497
3498 /* The high 3 bits of the second VEX byte are 1's compliment
3499 of RXB bits from REX. */
3500 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3501
3502 /* Check the REX.W bit and VEXW. */
3503 if (i.tm.opcode_modifier.vexw == VEXWIG)
3504 w = (i.rex & REX_W) ? 1 : 0;
3505 else if (i.tm.opcode_modifier.vexw)
3506 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3507 else
3508 w = (i.rex & REX_W) ? 1 : 0;
3509
3510 i.vex.bytes[2] = (w << 7
3511 | register_specifier << 3
3512 | vector_length << 2
3513 | implied_prefix);
3514 }
3515 }
3516
3517 static INLINE bfd_boolean
3518 is_evex_encoding (const insn_template *t)
3519 {
3520 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3521 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3522 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3523 }
3524
3525 static INLINE bfd_boolean
3526 is_any_vex_encoding (const insn_template *t)
3527 {
3528 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3529 || is_evex_encoding (t);
3530 }
3531
3532 /* Build the EVEX prefix. */
3533
3534 static void
3535 build_evex_prefix (void)
3536 {
3537 unsigned int register_specifier;
3538 unsigned int implied_prefix;
3539 unsigned int m, w;
3540 rex_byte vrex_used = 0;
3541
3542 /* Check register specifier. */
3543 if (i.vex.register_specifier)
3544 {
3545 gas_assert ((i.vrex & REX_X) == 0);
3546
3547 register_specifier = i.vex.register_specifier->reg_num;
3548 if ((i.vex.register_specifier->reg_flags & RegRex))
3549 register_specifier += 8;
3550 /* The upper 16 registers are encoded in the fourth byte of the
3551 EVEX prefix. */
3552 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3553 i.vex.bytes[3] = 0x8;
3554 register_specifier = ~register_specifier & 0xf;
3555 }
3556 else
3557 {
3558 register_specifier = 0xf;
3559
3560 /* Encode upper 16 vector index register in the fourth byte of
3561 the EVEX prefix. */
3562 if (!(i.vrex & REX_X))
3563 i.vex.bytes[3] = 0x8;
3564 else
3565 vrex_used |= REX_X;
3566 }
3567
3568 switch ((i.tm.base_opcode >> 8) & 0xff)
3569 {
3570 case 0:
3571 implied_prefix = 0;
3572 break;
3573 case DATA_PREFIX_OPCODE:
3574 implied_prefix = 1;
3575 break;
3576 case REPE_PREFIX_OPCODE:
3577 implied_prefix = 2;
3578 break;
3579 case REPNE_PREFIX_OPCODE:
3580 implied_prefix = 3;
3581 break;
3582 default:
3583 abort ();
3584 }
3585
3586 /* 4 byte EVEX prefix. */
3587 i.vex.length = 4;
3588 i.vex.bytes[0] = 0x62;
3589
3590 /* mmmm bits. */
3591 switch (i.tm.opcode_modifier.vexopcode)
3592 {
3593 case VEX0F:
3594 m = 1;
3595 break;
3596 case VEX0F38:
3597 m = 2;
3598 break;
3599 case VEX0F3A:
3600 m = 3;
3601 break;
3602 default:
3603 abort ();
3604 break;
3605 }
3606
3607 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3608 bits from REX. */
3609 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3610
3611 /* The fifth bit of the second EVEX byte is 1's compliment of the
3612 REX_R bit in VREX. */
3613 if (!(i.vrex & REX_R))
3614 i.vex.bytes[1] |= 0x10;
3615 else
3616 vrex_used |= REX_R;
3617
3618 if ((i.reg_operands + i.imm_operands) == i.operands)
3619 {
3620 /* When all operands are registers, the REX_X bit in REX is not
3621 used. We reuse it to encode the upper 16 registers, which is
3622 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3623 as 1's compliment. */
3624 if ((i.vrex & REX_B))
3625 {
3626 vrex_used |= REX_B;
3627 i.vex.bytes[1] &= ~0x40;
3628 }
3629 }
3630
3631 /* EVEX instructions shouldn't need the REX prefix. */
3632 i.vrex &= ~vrex_used;
3633 gas_assert (i.vrex == 0);
3634
3635 /* Check the REX.W bit and VEXW. */
3636 if (i.tm.opcode_modifier.vexw == VEXWIG)
3637 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3638 else if (i.tm.opcode_modifier.vexw)
3639 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3640 else
3641 w = (i.rex & REX_W) ? 1 : 0;
3642
3643 /* Encode the U bit. */
3644 implied_prefix |= 0x4;
3645
3646 /* The third byte of the EVEX prefix. */
3647 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3648
3649 /* The fourth byte of the EVEX prefix. */
3650 /* The zeroing-masking bit. */
3651 if (i.mask && i.mask->zeroing)
3652 i.vex.bytes[3] |= 0x80;
3653
3654 /* Don't always set the broadcast bit if there is no RC. */
3655 if (!i.rounding)
3656 {
3657 /* Encode the vector length. */
3658 unsigned int vec_length;
3659
3660 if (!i.tm.opcode_modifier.evex
3661 || i.tm.opcode_modifier.evex == EVEXDYN)
3662 {
3663 unsigned int op;
3664
3665 /* Determine vector length from the last multi-length vector
3666 operand. */
3667 vec_length = 0;
3668 for (op = i.operands; op--;)
3669 if (i.tm.operand_types[op].bitfield.xmmword
3670 + i.tm.operand_types[op].bitfield.ymmword
3671 + i.tm.operand_types[op].bitfield.zmmword > 1)
3672 {
3673 if (i.types[op].bitfield.zmmword)
3674 {
3675 i.tm.opcode_modifier.evex = EVEX512;
3676 break;
3677 }
3678 else if (i.types[op].bitfield.ymmword)
3679 {
3680 i.tm.opcode_modifier.evex = EVEX256;
3681 break;
3682 }
3683 else if (i.types[op].bitfield.xmmword)
3684 {
3685 i.tm.opcode_modifier.evex = EVEX128;
3686 break;
3687 }
3688 else if (i.broadcast && (int) op == i.broadcast->operand)
3689 {
3690 switch (i.broadcast->bytes)
3691 {
3692 case 64:
3693 i.tm.opcode_modifier.evex = EVEX512;
3694 break;
3695 case 32:
3696 i.tm.opcode_modifier.evex = EVEX256;
3697 break;
3698 case 16:
3699 i.tm.opcode_modifier.evex = EVEX128;
3700 break;
3701 default:
3702 abort ();
3703 }
3704 break;
3705 }
3706 }
3707
3708 if (op >= MAX_OPERANDS)
3709 abort ();
3710 }
3711
3712 switch (i.tm.opcode_modifier.evex)
3713 {
3714 case EVEXLIG: /* LL' is ignored */
3715 vec_length = evexlig << 5;
3716 break;
3717 case EVEX128:
3718 vec_length = 0 << 5;
3719 break;
3720 case EVEX256:
3721 vec_length = 1 << 5;
3722 break;
3723 case EVEX512:
3724 vec_length = 2 << 5;
3725 break;
3726 default:
3727 abort ();
3728 break;
3729 }
3730 i.vex.bytes[3] |= vec_length;
3731 /* Encode the broadcast bit. */
3732 if (i.broadcast)
3733 i.vex.bytes[3] |= 0x10;
3734 }
3735 else
3736 {
3737 if (i.rounding->type != saeonly)
3738 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3739 else
3740 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3741 }
3742
3743 if (i.mask && i.mask->mask)
3744 i.vex.bytes[3] |= i.mask->mask->reg_num;
3745 }
3746
3747 static void
3748 process_immext (void)
3749 {
3750 expressionS *exp;
3751
3752 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3753 && i.operands > 0)
3754 {
3755 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3756 with an opcode suffix which is coded in the same place as an
3757 8-bit immediate field would be.
3758 Here we check those operands and remove them afterwards. */
3759 unsigned int x;
3760
3761 for (x = 0; x < i.operands; x++)
3762 if (register_number (i.op[x].regs) != x)
3763 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3764 register_prefix, i.op[x].regs->reg_name, x + 1,
3765 i.tm.name);
3766
3767 i.operands = 0;
3768 }
3769
3770 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3771 {
3772 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3773 suffix which is coded in the same place as an 8-bit immediate
3774 field would be.
3775 Here we check those operands and remove them afterwards. */
3776 unsigned int x;
3777
3778 if (i.operands != 3)
3779 abort();
3780
3781 for (x = 0; x < 2; x++)
3782 if (register_number (i.op[x].regs) != x)
3783 goto bad_register_operand;
3784
3785 /* Check for third operand for mwaitx/monitorx insn. */
3786 if (register_number (i.op[x].regs)
3787 != (x + (i.tm.extension_opcode == 0xfb)))
3788 {
3789 bad_register_operand:
3790 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3791 register_prefix, i.op[x].regs->reg_name, x+1,
3792 i.tm.name);
3793 }
3794
3795 i.operands = 0;
3796 }
3797
3798 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3799 which is coded in the same place as an 8-bit immediate field
3800 would be. Here we fake an 8-bit immediate operand from the
3801 opcode suffix stored in tm.extension_opcode.
3802
3803 AVX instructions also use this encoding, for some of
3804 3 argument instructions. */
3805
3806 gas_assert (i.imm_operands <= 1
3807 && (i.operands <= 2
3808 || (is_any_vex_encoding (&i.tm)
3809 && i.operands <= 4)));
3810
3811 exp = &im_expressions[i.imm_operands++];
3812 i.op[i.operands].imms = exp;
3813 i.types[i.operands] = imm8;
3814 i.operands++;
3815 exp->X_op = O_constant;
3816 exp->X_add_number = i.tm.extension_opcode;
3817 i.tm.extension_opcode = None;
3818 }
3819
3820
3821 static int
3822 check_hle (void)
3823 {
3824 switch (i.tm.opcode_modifier.hleprefixok)
3825 {
3826 default:
3827 abort ();
3828 case HLEPrefixNone:
3829 as_bad (_("invalid instruction `%s' after `%s'"),
3830 i.tm.name, i.hle_prefix);
3831 return 0;
3832 case HLEPrefixLock:
3833 if (i.prefix[LOCK_PREFIX])
3834 return 1;
3835 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3836 return 0;
3837 case HLEPrefixAny:
3838 return 1;
3839 case HLEPrefixRelease:
3840 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3841 {
3842 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3843 i.tm.name);
3844 return 0;
3845 }
3846 if (i.mem_operands == 0
3847 || !operand_type_check (i.types[i.operands - 1], anymem))
3848 {
3849 as_bad (_("memory destination needed for instruction `%s'"
3850 " after `xrelease'"), i.tm.name);
3851 return 0;
3852 }
3853 return 1;
3854 }
3855 }
3856
3857 /* Try the shortest encoding by shortening operand size. */
3858
3859 static void
3860 optimize_encoding (void)
3861 {
3862 int j;
3863
3864 if (optimize_for_space
3865 && i.reg_operands == 1
3866 && i.imm_operands == 1
3867 && !i.types[1].bitfield.byte
3868 && i.op[0].imms->X_op == O_constant
3869 && fits_in_imm7 (i.op[0].imms->X_add_number)
3870 && ((i.tm.base_opcode == 0xa8
3871 && i.tm.extension_opcode == None)
3872 || (i.tm.base_opcode == 0xf6
3873 && i.tm.extension_opcode == 0x0)))
3874 {
3875 /* Optimize: -Os:
3876 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3877 */
3878 unsigned int base_regnum = i.op[1].regs->reg_num;
3879 if (flag_code == CODE_64BIT || base_regnum < 4)
3880 {
3881 i.types[1].bitfield.byte = 1;
3882 /* Ignore the suffix. */
3883 i.suffix = 0;
3884 if (base_regnum >= 4
3885 && !(i.op[1].regs->reg_flags & RegRex))
3886 {
3887 /* Handle SP, BP, SI and DI registers. */
3888 if (i.types[1].bitfield.word)
3889 j = 16;
3890 else if (i.types[1].bitfield.dword)
3891 j = 32;
3892 else
3893 j = 48;
3894 i.op[1].regs -= j;
3895 }
3896 }
3897 }
3898 else if (flag_code == CODE_64BIT
3899 && ((i.types[1].bitfield.qword
3900 && i.reg_operands == 1
3901 && i.imm_operands == 1
3902 && i.op[0].imms->X_op == O_constant
3903 && ((i.tm.base_opcode == 0xb0
3904 && i.tm.extension_opcode == None
3905 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3906 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3907 && (((i.tm.base_opcode == 0x24
3908 || i.tm.base_opcode == 0xa8)
3909 && i.tm.extension_opcode == None)
3910 || (i.tm.base_opcode == 0x80
3911 && i.tm.extension_opcode == 0x4)
3912 || ((i.tm.base_opcode == 0xf6
3913 || i.tm.base_opcode == 0xc6)
3914 && i.tm.extension_opcode == 0x0)))))
3915 || (i.types[0].bitfield.qword
3916 && ((i.reg_operands == 2
3917 && i.op[0].regs == i.op[1].regs
3918 && ((i.tm.base_opcode == 0x30
3919 || i.tm.base_opcode == 0x28)
3920 && i.tm.extension_opcode == None))
3921 || (i.reg_operands == 1
3922 && i.operands == 1
3923 && i.tm.base_opcode == 0x30
3924 && i.tm.extension_opcode == None)))))
3925 {
3926 /* Optimize: -O:
3927 andq $imm31, %r64 -> andl $imm31, %r32
3928 testq $imm31, %r64 -> testl $imm31, %r32
3929 xorq %r64, %r64 -> xorl %r32, %r32
3930 subq %r64, %r64 -> subl %r32, %r32
3931 movq $imm31, %r64 -> movl $imm31, %r32
3932 movq $imm32, %r64 -> movl $imm32, %r32
3933 */
3934 i.tm.opcode_modifier.norex64 = 1;
3935 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3936 {
3937 /* Handle
3938 movq $imm31, %r64 -> movl $imm31, %r32
3939 movq $imm32, %r64 -> movl $imm32, %r32
3940 */
3941 i.tm.operand_types[0].bitfield.imm32 = 1;
3942 i.tm.operand_types[0].bitfield.imm32s = 0;
3943 i.tm.operand_types[0].bitfield.imm64 = 0;
3944 i.types[0].bitfield.imm32 = 1;
3945 i.types[0].bitfield.imm32s = 0;
3946 i.types[0].bitfield.imm64 = 0;
3947 i.types[1].bitfield.dword = 1;
3948 i.types[1].bitfield.qword = 0;
3949 if (i.tm.base_opcode == 0xc6)
3950 {
3951 /* Handle
3952 movq $imm31, %r64 -> movl $imm31, %r32
3953 */
3954 i.tm.base_opcode = 0xb0;
3955 i.tm.extension_opcode = None;
3956 i.tm.opcode_modifier.shortform = 1;
3957 i.tm.opcode_modifier.modrm = 0;
3958 }
3959 }
3960 }
3961 else if (optimize > 1
3962 && i.reg_operands == 3
3963 && i.op[0].regs == i.op[1].regs
3964 && !i.types[2].bitfield.xmmword
3965 && (i.tm.opcode_modifier.vex
3966 || ((!i.mask || i.mask->zeroing)
3967 && !i.rounding
3968 && is_evex_encoding (&i.tm)
3969 && (i.vec_encoding != vex_encoding_evex
3970 || i.tm.cpu_flags.bitfield.cpuavx512vl
3971 || (i.tm.operand_types[2].bitfield.zmmword
3972 && i.types[2].bitfield.ymmword)
3973 || cpu_arch_isa_flags.bitfield.cpuavx512vl)))
3974 && ((i.tm.base_opcode == 0x55
3975 || i.tm.base_opcode == 0x6655
3976 || i.tm.base_opcode == 0x66df
3977 || i.tm.base_opcode == 0x57
3978 || i.tm.base_opcode == 0x6657
3979 || i.tm.base_opcode == 0x66ef
3980 || i.tm.base_opcode == 0x66f8
3981 || i.tm.base_opcode == 0x66f9
3982 || i.tm.base_opcode == 0x66fa
3983 || i.tm.base_opcode == 0x66fb
3984 || i.tm.base_opcode == 0x42
3985 || i.tm.base_opcode == 0x6642
3986 || i.tm.base_opcode == 0x47
3987 || i.tm.base_opcode == 0x6647)
3988 && i.tm.extension_opcode == None))
3989 {
3990 /* Optimize: -O2:
3991 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
3992 vpsubq and vpsubw:
3993 EVEX VOP %zmmM, %zmmM, %zmmN
3994 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3995 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3996 EVEX VOP %ymmM, %ymmM, %ymmN
3997 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3998 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3999 VEX VOP %ymmM, %ymmM, %ymmN
4000 -> VEX VOP %xmmM, %xmmM, %xmmN
4001 VOP, one of vpandn and vpxor:
4002 VEX VOP %ymmM, %ymmM, %ymmN
4003 -> VEX VOP %xmmM, %xmmM, %xmmN
4004 VOP, one of vpandnd and vpandnq:
4005 EVEX VOP %zmmM, %zmmM, %zmmN
4006 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4007 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4008 EVEX VOP %ymmM, %ymmM, %ymmN
4009 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4010 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4011 VOP, one of vpxord and vpxorq:
4012 EVEX VOP %zmmM, %zmmM, %zmmN
4013 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4014 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4015 EVEX VOP %ymmM, %ymmM, %ymmN
4016 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4017 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4018 VOP, one of kxord and kxorq:
4019 VEX VOP %kM, %kM, %kN
4020 -> VEX kxorw %kM, %kM, %kN
4021 VOP, one of kandnd and kandnq:
4022 VEX VOP %kM, %kM, %kN
4023 -> VEX kandnw %kM, %kM, %kN
4024 */
4025 if (is_evex_encoding (&i.tm))
4026 {
4027 if (i.vec_encoding == vex_encoding_evex)
4028 i.tm.opcode_modifier.evex = EVEX128;
4029 else
4030 {
4031 i.tm.opcode_modifier.vex = VEX128;
4032 i.tm.opcode_modifier.vexw = VEXW0;
4033 i.tm.opcode_modifier.evex = 0;
4034 }
4035 }
4036 else if (i.tm.operand_types[0].bitfield.regmask)
4037 {
4038 i.tm.base_opcode &= 0xff;
4039 i.tm.opcode_modifier.vexw = VEXW0;
4040 }
4041 else
4042 i.tm.opcode_modifier.vex = VEX128;
4043
4044 if (i.tm.opcode_modifier.vex)
4045 for (j = 0; j < 3; j++)
4046 {
4047 i.types[j].bitfield.xmmword = 1;
4048 i.types[j].bitfield.ymmword = 0;
4049 }
4050 }
4051 }
4052
4053 /* This is the guts of the machine-dependent assembler. LINE points to a
4054 machine dependent instruction. This function is supposed to emit
4055 the frags/bytes it assembles to. */
4056
4057 void
4058 md_assemble (char *line)
4059 {
4060 unsigned int j;
4061 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4062 const insn_template *t;
4063
4064 /* Initialize globals. */
4065 memset (&i, '\0', sizeof (i));
4066 for (j = 0; j < MAX_OPERANDS; j++)
4067 i.reloc[j] = NO_RELOC;
4068 memset (disp_expressions, '\0', sizeof (disp_expressions));
4069 memset (im_expressions, '\0', sizeof (im_expressions));
4070 save_stack_p = save_stack;
4071
4072 /* First parse an instruction mnemonic & call i386_operand for the operands.
4073 We assume that the scrubber has arranged it so that line[0] is the valid
4074 start of a (possibly prefixed) mnemonic. */
4075
4076 line = parse_insn (line, mnemonic);
4077 if (line == NULL)
4078 return;
4079 mnem_suffix = i.suffix;
4080
4081 line = parse_operands (line, mnemonic);
4082 this_operand = -1;
4083 xfree (i.memop1_string);
4084 i.memop1_string = NULL;
4085 if (line == NULL)
4086 return;
4087
4088 /* Now we've parsed the mnemonic into a set of templates, and have the
4089 operands at hand. */
4090
4091 /* All intel opcodes have reversed operands except for "bound" and
4092 "enter". We also don't reverse intersegment "jmp" and "call"
4093 instructions with 2 immediate operands so that the immediate segment
4094 precedes the offset, as it does when in AT&T mode. */
4095 if (intel_syntax
4096 && i.operands > 1
4097 && (strcmp (mnemonic, "bound") != 0)
4098 && (strcmp (mnemonic, "invlpga") != 0)
4099 && !(operand_type_check (i.types[0], imm)
4100 && operand_type_check (i.types[1], imm)))
4101 swap_operands ();
4102
4103 /* The order of the immediates should be reversed
4104 for 2 immediates extrq and insertq instructions */
4105 if (i.imm_operands == 2
4106 && (strcmp (mnemonic, "extrq") == 0
4107 || strcmp (mnemonic, "insertq") == 0))
4108 swap_2_operands (0, 1);
4109
4110 if (i.imm_operands)
4111 optimize_imm ();
4112
4113 /* Don't optimize displacement for movabs since it only takes 64bit
4114 displacement. */
4115 if (i.disp_operands
4116 && i.disp_encoding != disp_encoding_32bit
4117 && (flag_code != CODE_64BIT
4118 || strcmp (mnemonic, "movabs") != 0))
4119 optimize_disp ();
4120
4121 /* Next, we find a template that matches the given insn,
4122 making sure the overlap of the given operands types is consistent
4123 with the template operand types. */
4124
4125 if (!(t = match_template (mnem_suffix)))
4126 return;
4127
4128 if (sse_check != check_none
4129 && !i.tm.opcode_modifier.noavx
4130 && !i.tm.cpu_flags.bitfield.cpuavx
4131 && (i.tm.cpu_flags.bitfield.cpusse
4132 || i.tm.cpu_flags.bitfield.cpusse2
4133 || i.tm.cpu_flags.bitfield.cpusse3
4134 || i.tm.cpu_flags.bitfield.cpussse3
4135 || i.tm.cpu_flags.bitfield.cpusse4_1
4136 || i.tm.cpu_flags.bitfield.cpusse4_2
4137 || i.tm.cpu_flags.bitfield.cpupclmul
4138 || i.tm.cpu_flags.bitfield.cpuaes
4139 || i.tm.cpu_flags.bitfield.cpugfni))
4140 {
4141 (sse_check == check_warning
4142 ? as_warn
4143 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4144 }
4145
4146 /* Zap movzx and movsx suffix. The suffix has been set from
4147 "word ptr" or "byte ptr" on the source operand in Intel syntax
4148 or extracted from mnemonic in AT&T syntax. But we'll use
4149 the destination register to choose the suffix for encoding. */
4150 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4151 {
4152 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4153 there is no suffix, the default will be byte extension. */
4154 if (i.reg_operands != 2
4155 && !i.suffix
4156 && intel_syntax)
4157 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4158
4159 i.suffix = 0;
4160 }
4161
4162 if (i.tm.opcode_modifier.fwait)
4163 if (!add_prefix (FWAIT_OPCODE))
4164 return;
4165
4166 /* Check if REP prefix is OK. */
4167 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4168 {
4169 as_bad (_("invalid instruction `%s' after `%s'"),
4170 i.tm.name, i.rep_prefix);
4171 return;
4172 }
4173
4174 /* Check for lock without a lockable instruction. Destination operand
4175 must be memory unless it is xchg (0x86). */
4176 if (i.prefix[LOCK_PREFIX]
4177 && (!i.tm.opcode_modifier.islockable
4178 || i.mem_operands == 0
4179 || (i.tm.base_opcode != 0x86
4180 && !operand_type_check (i.types[i.operands - 1], anymem))))
4181 {
4182 as_bad (_("expecting lockable instruction after `lock'"));
4183 return;
4184 }
4185
4186 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4187 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4188 {
4189 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4190 return;
4191 }
4192
4193 /* Check if HLE prefix is OK. */
4194 if (i.hle_prefix && !check_hle ())
4195 return;
4196
4197 /* Check BND prefix. */
4198 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4199 as_bad (_("expecting valid branch instruction after `bnd'"));
4200
4201 /* Check NOTRACK prefix. */
4202 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4203 as_bad (_("expecting indirect branch instruction after `notrack'"));
4204
4205 if (i.tm.cpu_flags.bitfield.cpumpx)
4206 {
4207 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4208 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4209 else if (flag_code != CODE_16BIT
4210 ? i.prefix[ADDR_PREFIX]
4211 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4212 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4213 }
4214
4215 /* Insert BND prefix. */
4216 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4217 {
4218 if (!i.prefix[BND_PREFIX])
4219 add_prefix (BND_PREFIX_OPCODE);
4220 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4221 {
4222 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4223 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4224 }
4225 }
4226
4227 /* Check string instruction segment overrides. */
4228 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
4229 {
4230 if (!check_string ())
4231 return;
4232 i.disp_operands = 0;
4233 }
4234
4235 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4236 optimize_encoding ();
4237
4238 if (!process_suffix ())
4239 return;
4240
4241 /* Update operand types. */
4242 for (j = 0; j < i.operands; j++)
4243 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4244
4245 /* Make still unresolved immediate matches conform to size of immediate
4246 given in i.suffix. */
4247 if (!finalize_imm ())
4248 return;
4249
4250 if (i.types[0].bitfield.imm1)
4251 i.imm_operands = 0; /* kludge for shift insns. */
4252
4253 /* We only need to check those implicit registers for instructions
4254 with 3 operands or less. */
4255 if (i.operands <= 3)
4256 for (j = 0; j < i.operands; j++)
4257 if (i.types[j].bitfield.inoutportreg
4258 || i.types[j].bitfield.shiftcount
4259 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
4260 i.reg_operands--;
4261
4262 /* ImmExt should be processed after SSE2AVX. */
4263 if (!i.tm.opcode_modifier.sse2avx
4264 && i.tm.opcode_modifier.immext)
4265 process_immext ();
4266
4267 /* For insns with operands there are more diddles to do to the opcode. */
4268 if (i.operands)
4269 {
4270 if (!process_operands ())
4271 return;
4272 }
4273 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4274 {
4275 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4276 as_warn (_("translating to `%sp'"), i.tm.name);
4277 }
4278
4279 if (is_any_vex_encoding (&i.tm))
4280 {
4281 if (flag_code == CODE_16BIT)
4282 {
4283 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4284 i.tm.name);
4285 return;
4286 }
4287
4288 if (i.tm.opcode_modifier.vex)
4289 build_vex_prefix (t);
4290 else
4291 build_evex_prefix ();
4292 }
4293
4294 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4295 instructions may define INT_OPCODE as well, so avoid this corner
4296 case for those instructions that use MODRM. */
4297 if (i.tm.base_opcode == INT_OPCODE
4298 && !i.tm.opcode_modifier.modrm
4299 && i.op[0].imms->X_add_number == 3)
4300 {
4301 i.tm.base_opcode = INT3_OPCODE;
4302 i.imm_operands = 0;
4303 }
4304
4305 if ((i.tm.opcode_modifier.jump
4306 || i.tm.opcode_modifier.jumpbyte
4307 || i.tm.opcode_modifier.jumpdword)
4308 && i.op[0].disps->X_op == O_constant)
4309 {
4310 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4311 the absolute address given by the constant. Since ix86 jumps and
4312 calls are pc relative, we need to generate a reloc. */
4313 i.op[0].disps->X_add_symbol = &abs_symbol;
4314 i.op[0].disps->X_op = O_symbol;
4315 }
4316
4317 if (i.tm.opcode_modifier.rex64)
4318 i.rex |= REX_W;
4319
4320 /* For 8 bit registers we need an empty rex prefix. Also if the
4321 instruction already has a prefix, we need to convert old
4322 registers to new ones. */
4323
4324 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
4325 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4326 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
4327 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4328 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4329 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
4330 && i.rex != 0))
4331 {
4332 int x;
4333
4334 i.rex |= REX_OPCODE;
4335 for (x = 0; x < 2; x++)
4336 {
4337 /* Look for 8 bit operand that uses old registers. */
4338 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
4339 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4340 {
4341 /* In case it is "hi" register, give up. */
4342 if (i.op[x].regs->reg_num > 3)
4343 as_bad (_("can't encode register '%s%s' in an "
4344 "instruction requiring REX prefix."),
4345 register_prefix, i.op[x].regs->reg_name);
4346
4347 /* Otherwise it is equivalent to the extended register.
4348 Since the encoding doesn't change this is merely
4349 cosmetic cleanup for debug output. */
4350
4351 i.op[x].regs = i.op[x].regs + 8;
4352 }
4353 }
4354 }
4355
4356 if (i.rex == 0 && i.rex_encoding)
4357 {
4358 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4359 that uses legacy register. If it is "hi" register, don't add
4360 the REX_OPCODE byte. */
4361 int x;
4362 for (x = 0; x < 2; x++)
4363 if (i.types[x].bitfield.reg
4364 && i.types[x].bitfield.byte
4365 && (i.op[x].regs->reg_flags & RegRex64) == 0
4366 && i.op[x].regs->reg_num > 3)
4367 {
4368 i.rex_encoding = FALSE;
4369 break;
4370 }
4371
4372 if (i.rex_encoding)
4373 i.rex = REX_OPCODE;
4374 }
4375
4376 if (i.rex != 0)
4377 add_prefix (REX_OPCODE | i.rex);
4378
4379 /* We are ready to output the insn. */
4380 output_insn ();
4381 }
4382
4383 static char *
4384 parse_insn (char *line, char *mnemonic)
4385 {
4386 char *l = line;
4387 char *token_start = l;
4388 char *mnem_p;
4389 int supported;
4390 const insn_template *t;
4391 char *dot_p = NULL;
4392
4393 while (1)
4394 {
4395 mnem_p = mnemonic;
4396 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4397 {
4398 if (*mnem_p == '.')
4399 dot_p = mnem_p;
4400 mnem_p++;
4401 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4402 {
4403 as_bad (_("no such instruction: `%s'"), token_start);
4404 return NULL;
4405 }
4406 l++;
4407 }
4408 if (!is_space_char (*l)
4409 && *l != END_OF_INSN
4410 && (intel_syntax
4411 || (*l != PREFIX_SEPARATOR
4412 && *l != ',')))
4413 {
4414 as_bad (_("invalid character %s in mnemonic"),
4415 output_invalid (*l));
4416 return NULL;
4417 }
4418 if (token_start == l)
4419 {
4420 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4421 as_bad (_("expecting prefix; got nothing"));
4422 else
4423 as_bad (_("expecting mnemonic; got nothing"));
4424 return NULL;
4425 }
4426
4427 /* Look up instruction (or prefix) via hash table. */
4428 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4429
4430 if (*l != END_OF_INSN
4431 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4432 && current_templates
4433 && current_templates->start->opcode_modifier.isprefix)
4434 {
4435 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4436 {
4437 as_bad ((flag_code != CODE_64BIT
4438 ? _("`%s' is only supported in 64-bit mode")
4439 : _("`%s' is not supported in 64-bit mode")),
4440 current_templates->start->name);
4441 return NULL;
4442 }
4443 /* If we are in 16-bit mode, do not allow addr16 or data16.
4444 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4445 if ((current_templates->start->opcode_modifier.size16
4446 || current_templates->start->opcode_modifier.size32)
4447 && flag_code != CODE_64BIT
4448 && (current_templates->start->opcode_modifier.size32
4449 ^ (flag_code == CODE_16BIT)))
4450 {
4451 as_bad (_("redundant %s prefix"),
4452 current_templates->start->name);
4453 return NULL;
4454 }
4455 if (current_templates->start->opcode_length == 0)
4456 {
4457 /* Handle pseudo prefixes. */
4458 switch (current_templates->start->base_opcode)
4459 {
4460 case 0x0:
4461 /* {disp8} */
4462 i.disp_encoding = disp_encoding_8bit;
4463 break;
4464 case 0x1:
4465 /* {disp32} */
4466 i.disp_encoding = disp_encoding_32bit;
4467 break;
4468 case 0x2:
4469 /* {load} */
4470 i.dir_encoding = dir_encoding_load;
4471 break;
4472 case 0x3:
4473 /* {store} */
4474 i.dir_encoding = dir_encoding_store;
4475 break;
4476 case 0x4:
4477 /* {vex2} */
4478 i.vec_encoding = vex_encoding_vex2;
4479 break;
4480 case 0x5:
4481 /* {vex3} */
4482 i.vec_encoding = vex_encoding_vex3;
4483 break;
4484 case 0x6:
4485 /* {evex} */
4486 i.vec_encoding = vex_encoding_evex;
4487 break;
4488 case 0x7:
4489 /* {rex} */
4490 i.rex_encoding = TRUE;
4491 break;
4492 case 0x8:
4493 /* {nooptimize} */
4494 i.no_optimize = TRUE;
4495 break;
4496 default:
4497 abort ();
4498 }
4499 }
4500 else
4501 {
4502 /* Add prefix, checking for repeated prefixes. */
4503 switch (add_prefix (current_templates->start->base_opcode))
4504 {
4505 case PREFIX_EXIST:
4506 return NULL;
4507 case PREFIX_DS:
4508 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4509 i.notrack_prefix = current_templates->start->name;
4510 break;
4511 case PREFIX_REP:
4512 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4513 i.hle_prefix = current_templates->start->name;
4514 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4515 i.bnd_prefix = current_templates->start->name;
4516 else
4517 i.rep_prefix = current_templates->start->name;
4518 break;
4519 default:
4520 break;
4521 }
4522 }
4523 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4524 token_start = ++l;
4525 }
4526 else
4527 break;
4528 }
4529
4530 if (!current_templates)
4531 {
4532 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4533 Check if we should swap operand or force 32bit displacement in
4534 encoding. */
4535 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4536 i.dir_encoding = dir_encoding_swap;
4537 else if (mnem_p - 3 == dot_p
4538 && dot_p[1] == 'd'
4539 && dot_p[2] == '8')
4540 i.disp_encoding = disp_encoding_8bit;
4541 else if (mnem_p - 4 == dot_p
4542 && dot_p[1] == 'd'
4543 && dot_p[2] == '3'
4544 && dot_p[3] == '2')
4545 i.disp_encoding = disp_encoding_32bit;
4546 else
4547 goto check_suffix;
4548 mnem_p = dot_p;
4549 *dot_p = '\0';
4550 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4551 }
4552
4553 if (!current_templates)
4554 {
4555 check_suffix:
4556 /* See if we can get a match by trimming off a suffix. */
4557 switch (mnem_p[-1])
4558 {
4559 case WORD_MNEM_SUFFIX:
4560 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4561 i.suffix = SHORT_MNEM_SUFFIX;
4562 else
4563 /* Fall through. */
4564 case BYTE_MNEM_SUFFIX:
4565 case QWORD_MNEM_SUFFIX:
4566 i.suffix = mnem_p[-1];
4567 mnem_p[-1] = '\0';
4568 current_templates = (const templates *) hash_find (op_hash,
4569 mnemonic);
4570 break;
4571 case SHORT_MNEM_SUFFIX:
4572 case LONG_MNEM_SUFFIX:
4573 if (!intel_syntax)
4574 {
4575 i.suffix = mnem_p[-1];
4576 mnem_p[-1] = '\0';
4577 current_templates = (const templates *) hash_find (op_hash,
4578 mnemonic);
4579 }
4580 break;
4581
4582 /* Intel Syntax. */
4583 case 'd':
4584 if (intel_syntax)
4585 {
4586 if (intel_float_operand (mnemonic) == 1)
4587 i.suffix = SHORT_MNEM_SUFFIX;
4588 else
4589 i.suffix = LONG_MNEM_SUFFIX;
4590 mnem_p[-1] = '\0';
4591 current_templates = (const templates *) hash_find (op_hash,
4592 mnemonic);
4593 }
4594 break;
4595 }
4596 if (!current_templates)
4597 {
4598 as_bad (_("no such instruction: `%s'"), token_start);
4599 return NULL;
4600 }
4601 }
4602
4603 if (current_templates->start->opcode_modifier.jump
4604 || current_templates->start->opcode_modifier.jumpbyte)
4605 {
4606 /* Check for a branch hint. We allow ",pt" and ",pn" for
4607 predict taken and predict not taken respectively.
4608 I'm not sure that branch hints actually do anything on loop
4609 and jcxz insns (JumpByte) for current Pentium4 chips. They
4610 may work in the future and it doesn't hurt to accept them
4611 now. */
4612 if (l[0] == ',' && l[1] == 'p')
4613 {
4614 if (l[2] == 't')
4615 {
4616 if (!add_prefix (DS_PREFIX_OPCODE))
4617 return NULL;
4618 l += 3;
4619 }
4620 else if (l[2] == 'n')
4621 {
4622 if (!add_prefix (CS_PREFIX_OPCODE))
4623 return NULL;
4624 l += 3;
4625 }
4626 }
4627 }
4628 /* Any other comma loses. */
4629 if (*l == ',')
4630 {
4631 as_bad (_("invalid character %s in mnemonic"),
4632 output_invalid (*l));
4633 return NULL;
4634 }
4635
4636 /* Check if instruction is supported on specified architecture. */
4637 supported = 0;
4638 for (t = current_templates->start; t < current_templates->end; ++t)
4639 {
4640 supported |= cpu_flags_match (t);
4641 if (supported == CPU_FLAGS_PERFECT_MATCH)
4642 {
4643 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4644 as_warn (_("use .code16 to ensure correct addressing mode"));
4645
4646 return l;
4647 }
4648 }
4649
4650 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4651 as_bad (flag_code == CODE_64BIT
4652 ? _("`%s' is not supported in 64-bit mode")
4653 : _("`%s' is only supported in 64-bit mode"),
4654 current_templates->start->name);
4655 else
4656 as_bad (_("`%s' is not supported on `%s%s'"),
4657 current_templates->start->name,
4658 cpu_arch_name ? cpu_arch_name : default_arch,
4659 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4660
4661 return NULL;
4662 }
4663
4664 static char *
4665 parse_operands (char *l, const char *mnemonic)
4666 {
4667 char *token_start;
4668
4669 /* 1 if operand is pending after ','. */
4670 unsigned int expecting_operand = 0;
4671
4672 /* Non-zero if operand parens not balanced. */
4673 unsigned int paren_not_balanced;
4674
4675 while (*l != END_OF_INSN)
4676 {
4677 /* Skip optional white space before operand. */
4678 if (is_space_char (*l))
4679 ++l;
4680 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4681 {
4682 as_bad (_("invalid character %s before operand %d"),
4683 output_invalid (*l),
4684 i.operands + 1);
4685 return NULL;
4686 }
4687 token_start = l; /* After white space. */
4688 paren_not_balanced = 0;
4689 while (paren_not_balanced || *l != ',')
4690 {
4691 if (*l == END_OF_INSN)
4692 {
4693 if (paren_not_balanced)
4694 {
4695 if (!intel_syntax)
4696 as_bad (_("unbalanced parenthesis in operand %d."),
4697 i.operands + 1);
4698 else
4699 as_bad (_("unbalanced brackets in operand %d."),
4700 i.operands + 1);
4701 return NULL;
4702 }
4703 else
4704 break; /* we are done */
4705 }
4706 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4707 {
4708 as_bad (_("invalid character %s in operand %d"),
4709 output_invalid (*l),
4710 i.operands + 1);
4711 return NULL;
4712 }
4713 if (!intel_syntax)
4714 {
4715 if (*l == '(')
4716 ++paren_not_balanced;
4717 if (*l == ')')
4718 --paren_not_balanced;
4719 }
4720 else
4721 {
4722 if (*l == '[')
4723 ++paren_not_balanced;
4724 if (*l == ']')
4725 --paren_not_balanced;
4726 }
4727 l++;
4728 }
4729 if (l != token_start)
4730 { /* Yes, we've read in another operand. */
4731 unsigned int operand_ok;
4732 this_operand = i.operands++;
4733 if (i.operands > MAX_OPERANDS)
4734 {
4735 as_bad (_("spurious operands; (%d operands/instruction max)"),
4736 MAX_OPERANDS);
4737 return NULL;
4738 }
4739 i.types[this_operand].bitfield.unspecified = 1;
4740 /* Now parse operand adding info to 'i' as we go along. */
4741 END_STRING_AND_SAVE (l);
4742
4743 if (i.mem_operands > 1)
4744 {
4745 as_bad (_("too many memory references for `%s'"),
4746 mnemonic);
4747 return 0;
4748 }
4749
4750 if (intel_syntax)
4751 operand_ok =
4752 i386_intel_operand (token_start,
4753 intel_float_operand (mnemonic));
4754 else
4755 operand_ok = i386_att_operand (token_start);
4756
4757 RESTORE_END_STRING (l);
4758 if (!operand_ok)
4759 return NULL;
4760 }
4761 else
4762 {
4763 if (expecting_operand)
4764 {
4765 expecting_operand_after_comma:
4766 as_bad (_("expecting operand after ','; got nothing"));
4767 return NULL;
4768 }
4769 if (*l == ',')
4770 {
4771 as_bad (_("expecting operand before ','; got nothing"));
4772 return NULL;
4773 }
4774 }
4775
4776 /* Now *l must be either ',' or END_OF_INSN. */
4777 if (*l == ',')
4778 {
4779 if (*++l == END_OF_INSN)
4780 {
4781 /* Just skip it, if it's \n complain. */
4782 goto expecting_operand_after_comma;
4783 }
4784 expecting_operand = 1;
4785 }
4786 }
4787 return l;
4788 }
4789
4790 static void
4791 swap_2_operands (int xchg1, int xchg2)
4792 {
4793 union i386_op temp_op;
4794 i386_operand_type temp_type;
4795 unsigned int temp_flags;
4796 enum bfd_reloc_code_real temp_reloc;
4797
4798 temp_type = i.types[xchg2];
4799 i.types[xchg2] = i.types[xchg1];
4800 i.types[xchg1] = temp_type;
4801
4802 temp_flags = i.flags[xchg2];
4803 i.flags[xchg2] = i.flags[xchg1];
4804 i.flags[xchg1] = temp_flags;
4805
4806 temp_op = i.op[xchg2];
4807 i.op[xchg2] = i.op[xchg1];
4808 i.op[xchg1] = temp_op;
4809
4810 temp_reloc = i.reloc[xchg2];
4811 i.reloc[xchg2] = i.reloc[xchg1];
4812 i.reloc[xchg1] = temp_reloc;
4813
4814 if (i.mask)
4815 {
4816 if (i.mask->operand == xchg1)
4817 i.mask->operand = xchg2;
4818 else if (i.mask->operand == xchg2)
4819 i.mask->operand = xchg1;
4820 }
4821 if (i.broadcast)
4822 {
4823 if (i.broadcast->operand == xchg1)
4824 i.broadcast->operand = xchg2;
4825 else if (i.broadcast->operand == xchg2)
4826 i.broadcast->operand = xchg1;
4827 }
4828 if (i.rounding)
4829 {
4830 if (i.rounding->operand == xchg1)
4831 i.rounding->operand = xchg2;
4832 else if (i.rounding->operand == xchg2)
4833 i.rounding->operand = xchg1;
4834 }
4835 }
4836
4837 static void
4838 swap_operands (void)
4839 {
4840 switch (i.operands)
4841 {
4842 case 5:
4843 case 4:
4844 swap_2_operands (1, i.operands - 2);
4845 /* Fall through. */
4846 case 3:
4847 case 2:
4848 swap_2_operands (0, i.operands - 1);
4849 break;
4850 default:
4851 abort ();
4852 }
4853
4854 if (i.mem_operands == 2)
4855 {
4856 const seg_entry *temp_seg;
4857 temp_seg = i.seg[0];
4858 i.seg[0] = i.seg[1];
4859 i.seg[1] = temp_seg;
4860 }
4861 }
4862
4863 /* Try to ensure constant immediates are represented in the smallest
4864 opcode possible. */
4865 static void
4866 optimize_imm (void)
4867 {
4868 char guess_suffix = 0;
4869 int op;
4870
4871 if (i.suffix)
4872 guess_suffix = i.suffix;
4873 else if (i.reg_operands)
4874 {
4875 /* Figure out a suffix from the last register operand specified.
4876 We can't do this properly yet, ie. excluding InOutPortReg,
4877 but the following works for instructions with immediates.
4878 In any case, we can't set i.suffix yet. */
4879 for (op = i.operands; --op >= 0;)
4880 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
4881 {
4882 guess_suffix = BYTE_MNEM_SUFFIX;
4883 break;
4884 }
4885 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
4886 {
4887 guess_suffix = WORD_MNEM_SUFFIX;
4888 break;
4889 }
4890 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
4891 {
4892 guess_suffix = LONG_MNEM_SUFFIX;
4893 break;
4894 }
4895 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
4896 {
4897 guess_suffix = QWORD_MNEM_SUFFIX;
4898 break;
4899 }
4900 }
4901 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4902 guess_suffix = WORD_MNEM_SUFFIX;
4903
4904 for (op = i.operands; --op >= 0;)
4905 if (operand_type_check (i.types[op], imm))
4906 {
4907 switch (i.op[op].imms->X_op)
4908 {
4909 case O_constant:
4910 /* If a suffix is given, this operand may be shortened. */
4911 switch (guess_suffix)
4912 {
4913 case LONG_MNEM_SUFFIX:
4914 i.types[op].bitfield.imm32 = 1;
4915 i.types[op].bitfield.imm64 = 1;
4916 break;
4917 case WORD_MNEM_SUFFIX:
4918 i.types[op].bitfield.imm16 = 1;
4919 i.types[op].bitfield.imm32 = 1;
4920 i.types[op].bitfield.imm32s = 1;
4921 i.types[op].bitfield.imm64 = 1;
4922 break;
4923 case BYTE_MNEM_SUFFIX:
4924 i.types[op].bitfield.imm8 = 1;
4925 i.types[op].bitfield.imm8s = 1;
4926 i.types[op].bitfield.imm16 = 1;
4927 i.types[op].bitfield.imm32 = 1;
4928 i.types[op].bitfield.imm32s = 1;
4929 i.types[op].bitfield.imm64 = 1;
4930 break;
4931 }
4932
4933 /* If this operand is at most 16 bits, convert it
4934 to a signed 16 bit number before trying to see
4935 whether it will fit in an even smaller size.
4936 This allows a 16-bit operand such as $0xffe0 to
4937 be recognised as within Imm8S range. */
4938 if ((i.types[op].bitfield.imm16)
4939 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4940 {
4941 i.op[op].imms->X_add_number =
4942 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4943 }
4944 #ifdef BFD64
4945 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
4946 if ((i.types[op].bitfield.imm32)
4947 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4948 == 0))
4949 {
4950 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4951 ^ ((offsetT) 1 << 31))
4952 - ((offsetT) 1 << 31));
4953 }
4954 #endif
4955 i.types[op]
4956 = operand_type_or (i.types[op],
4957 smallest_imm_type (i.op[op].imms->X_add_number));
4958
4959 /* We must avoid matching of Imm32 templates when 64bit
4960 only immediate is available. */
4961 if (guess_suffix == QWORD_MNEM_SUFFIX)
4962 i.types[op].bitfield.imm32 = 0;
4963 break;
4964
4965 case O_absent:
4966 case O_register:
4967 abort ();
4968
4969 /* Symbols and expressions. */
4970 default:
4971 /* Convert symbolic operand to proper sizes for matching, but don't
4972 prevent matching a set of insns that only supports sizes other
4973 than those matching the insn suffix. */
4974 {
4975 i386_operand_type mask, allowed;
4976 const insn_template *t;
4977
4978 operand_type_set (&mask, 0);
4979 operand_type_set (&allowed, 0);
4980
4981 for (t = current_templates->start;
4982 t < current_templates->end;
4983 ++t)
4984 allowed = operand_type_or (allowed,
4985 t->operand_types[op]);
4986 switch (guess_suffix)
4987 {
4988 case QWORD_MNEM_SUFFIX:
4989 mask.bitfield.imm64 = 1;
4990 mask.bitfield.imm32s = 1;
4991 break;
4992 case LONG_MNEM_SUFFIX:
4993 mask.bitfield.imm32 = 1;
4994 break;
4995 case WORD_MNEM_SUFFIX:
4996 mask.bitfield.imm16 = 1;
4997 break;
4998 case BYTE_MNEM_SUFFIX:
4999 mask.bitfield.imm8 = 1;
5000 break;
5001 default:
5002 break;
5003 }
5004 allowed = operand_type_and (mask, allowed);
5005 if (!operand_type_all_zero (&allowed))
5006 i.types[op] = operand_type_and (i.types[op], mask);
5007 }
5008 break;
5009 }
5010 }
5011 }
5012
5013 /* Try to use the smallest displacement type too. */
5014 static void
5015 optimize_disp (void)
5016 {
5017 int op;
5018
5019 for (op = i.operands; --op >= 0;)
5020 if (operand_type_check (i.types[op], disp))
5021 {
5022 if (i.op[op].disps->X_op == O_constant)
5023 {
5024 offsetT op_disp = i.op[op].disps->X_add_number;
5025
5026 if (i.types[op].bitfield.disp16
5027 && (op_disp & ~(offsetT) 0xffff) == 0)
5028 {
5029 /* If this operand is at most 16 bits, convert
5030 to a signed 16 bit number and don't use 64bit
5031 displacement. */
5032 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5033 i.types[op].bitfield.disp64 = 0;
5034 }
5035 #ifdef BFD64
5036 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5037 if (i.types[op].bitfield.disp32
5038 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5039 {
5040 /* If this operand is at most 32 bits, convert
5041 to a signed 32 bit number and don't use 64bit
5042 displacement. */
5043 op_disp &= (((offsetT) 2 << 31) - 1);
5044 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5045 i.types[op].bitfield.disp64 = 0;
5046 }
5047 #endif
5048 if (!op_disp && i.types[op].bitfield.baseindex)
5049 {
5050 i.types[op].bitfield.disp8 = 0;
5051 i.types[op].bitfield.disp16 = 0;
5052 i.types[op].bitfield.disp32 = 0;
5053 i.types[op].bitfield.disp32s = 0;
5054 i.types[op].bitfield.disp64 = 0;
5055 i.op[op].disps = 0;
5056 i.disp_operands--;
5057 }
5058 else if (flag_code == CODE_64BIT)
5059 {
5060 if (fits_in_signed_long (op_disp))
5061 {
5062 i.types[op].bitfield.disp64 = 0;
5063 i.types[op].bitfield.disp32s = 1;
5064 }
5065 if (i.prefix[ADDR_PREFIX]
5066 && fits_in_unsigned_long (op_disp))
5067 i.types[op].bitfield.disp32 = 1;
5068 }
5069 if ((i.types[op].bitfield.disp32
5070 || i.types[op].bitfield.disp32s
5071 || i.types[op].bitfield.disp16)
5072 && fits_in_disp8 (op_disp))
5073 i.types[op].bitfield.disp8 = 1;
5074 }
5075 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5076 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5077 {
5078 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5079 i.op[op].disps, 0, i.reloc[op]);
5080 i.types[op].bitfield.disp8 = 0;
5081 i.types[op].bitfield.disp16 = 0;
5082 i.types[op].bitfield.disp32 = 0;
5083 i.types[op].bitfield.disp32s = 0;
5084 i.types[op].bitfield.disp64 = 0;
5085 }
5086 else
5087 /* We only support 64bit displacement on constants. */
5088 i.types[op].bitfield.disp64 = 0;
5089 }
5090 }
5091
5092 /* Return 1 if there is a match in broadcast bytes between operand
5093 GIVEN and instruction template T. */
5094
5095 static INLINE int
5096 match_broadcast_size (const insn_template *t, unsigned int given)
5097 {
5098 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5099 && i.types[given].bitfield.byte)
5100 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5101 && i.types[given].bitfield.word)
5102 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5103 && i.types[given].bitfield.dword)
5104 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5105 && i.types[given].bitfield.qword));
5106 }
5107
5108 /* Check if operands are valid for the instruction. */
5109
5110 static int
5111 check_VecOperands (const insn_template *t)
5112 {
5113 unsigned int op;
5114 i386_cpu_flags cpu;
5115 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5116
5117 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5118 any one operand are implicity requiring AVX512VL support if the actual
5119 operand size is YMMword or XMMword. Since this function runs after
5120 template matching, there's no need to check for YMMword/XMMword in
5121 the template. */
5122 cpu = cpu_flags_and (t->cpu_flags, avx512);
5123 if (!cpu_flags_all_zero (&cpu)
5124 && !t->cpu_flags.bitfield.cpuavx512vl
5125 && !cpu_arch_flags.bitfield.cpuavx512vl)
5126 {
5127 for (op = 0; op < t->operands; ++op)
5128 {
5129 if (t->operand_types[op].bitfield.zmmword
5130 && (i.types[op].bitfield.ymmword
5131 || i.types[op].bitfield.xmmword))
5132 {
5133 i.error = unsupported;
5134 return 1;
5135 }
5136 }
5137 }
5138
5139 /* Without VSIB byte, we can't have a vector register for index. */
5140 if (!t->opcode_modifier.vecsib
5141 && i.index_reg
5142 && (i.index_reg->reg_type.bitfield.xmmword
5143 || i.index_reg->reg_type.bitfield.ymmword
5144 || i.index_reg->reg_type.bitfield.zmmword))
5145 {
5146 i.error = unsupported_vector_index_register;
5147 return 1;
5148 }
5149
5150 /* Check if default mask is allowed. */
5151 if (t->opcode_modifier.nodefmask
5152 && (!i.mask || i.mask->mask->reg_num == 0))
5153 {
5154 i.error = no_default_mask;
5155 return 1;
5156 }
5157
5158 /* For VSIB byte, we need a vector register for index, and all vector
5159 registers must be distinct. */
5160 if (t->opcode_modifier.vecsib)
5161 {
5162 if (!i.index_reg
5163 || !((t->opcode_modifier.vecsib == VecSIB128
5164 && i.index_reg->reg_type.bitfield.xmmword)
5165 || (t->opcode_modifier.vecsib == VecSIB256
5166 && i.index_reg->reg_type.bitfield.ymmword)
5167 || (t->opcode_modifier.vecsib == VecSIB512
5168 && i.index_reg->reg_type.bitfield.zmmword)))
5169 {
5170 i.error = invalid_vsib_address;
5171 return 1;
5172 }
5173
5174 gas_assert (i.reg_operands == 2 || i.mask);
5175 if (i.reg_operands == 2 && !i.mask)
5176 {
5177 gas_assert (i.types[0].bitfield.regsimd);
5178 gas_assert (i.types[0].bitfield.xmmword
5179 || i.types[0].bitfield.ymmword);
5180 gas_assert (i.types[2].bitfield.regsimd);
5181 gas_assert (i.types[2].bitfield.xmmword
5182 || i.types[2].bitfield.ymmword);
5183 if (operand_check == check_none)
5184 return 0;
5185 if (register_number (i.op[0].regs)
5186 != register_number (i.index_reg)
5187 && register_number (i.op[2].regs)
5188 != register_number (i.index_reg)
5189 && register_number (i.op[0].regs)
5190 != register_number (i.op[2].regs))
5191 return 0;
5192 if (operand_check == check_error)
5193 {
5194 i.error = invalid_vector_register_set;
5195 return 1;
5196 }
5197 as_warn (_("mask, index, and destination registers should be distinct"));
5198 }
5199 else if (i.reg_operands == 1 && i.mask)
5200 {
5201 if (i.types[1].bitfield.regsimd
5202 && (i.types[1].bitfield.xmmword
5203 || i.types[1].bitfield.ymmword
5204 || i.types[1].bitfield.zmmword)
5205 && (register_number (i.op[1].regs)
5206 == register_number (i.index_reg)))
5207 {
5208 if (operand_check == check_error)
5209 {
5210 i.error = invalid_vector_register_set;
5211 return 1;
5212 }
5213 if (operand_check != check_none)
5214 as_warn (_("index and destination registers should be distinct"));
5215 }
5216 }
5217 }
5218
5219 /* Check if broadcast is supported by the instruction and is applied
5220 to the memory operand. */
5221 if (i.broadcast)
5222 {
5223 i386_operand_type type, overlap;
5224
5225 /* Check if specified broadcast is supported in this instruction,
5226 and its broadcast bytes match the memory operand. */
5227 op = i.broadcast->operand;
5228 if (!t->opcode_modifier.broadcast
5229 || !(i.flags[op] & Operand_Mem)
5230 || (!i.types[op].bitfield.unspecified
5231 && !match_broadcast_size (t, op)))
5232 {
5233 bad_broadcast:
5234 i.error = unsupported_broadcast;
5235 return 1;
5236 }
5237
5238 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5239 * i.broadcast->type);
5240 operand_type_set (&type, 0);
5241 switch (i.broadcast->bytes)
5242 {
5243 case 2:
5244 type.bitfield.word = 1;
5245 break;
5246 case 4:
5247 type.bitfield.dword = 1;
5248 break;
5249 case 8:
5250 type.bitfield.qword = 1;
5251 break;
5252 case 16:
5253 type.bitfield.xmmword = 1;
5254 break;
5255 case 32:
5256 type.bitfield.ymmword = 1;
5257 break;
5258 case 64:
5259 type.bitfield.zmmword = 1;
5260 break;
5261 default:
5262 goto bad_broadcast;
5263 }
5264
5265 overlap = operand_type_and (type, t->operand_types[op]);
5266 if (operand_type_all_zero (&overlap))
5267 goto bad_broadcast;
5268
5269 if (t->opcode_modifier.checkregsize)
5270 {
5271 unsigned int j;
5272
5273 type.bitfield.baseindex = 1;
5274 for (j = 0; j < i.operands; ++j)
5275 {
5276 if (j != op
5277 && !operand_type_register_match(i.types[j],
5278 t->operand_types[j],
5279 type,
5280 t->operand_types[op]))
5281 goto bad_broadcast;
5282 }
5283 }
5284 }
5285 /* If broadcast is supported in this instruction, we need to check if
5286 operand of one-element size isn't specified without broadcast. */
5287 else if (t->opcode_modifier.broadcast && i.mem_operands)
5288 {
5289 /* Find memory operand. */
5290 for (op = 0; op < i.operands; op++)
5291 if (operand_type_check (i.types[op], anymem))
5292 break;
5293 gas_assert (op < i.operands);
5294 /* Check size of the memory operand. */
5295 if (match_broadcast_size (t, op))
5296 {
5297 i.error = broadcast_needed;
5298 return 1;
5299 }
5300 }
5301 else
5302 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5303
5304 /* Check if requested masking is supported. */
5305 if (i.mask)
5306 {
5307 switch (t->opcode_modifier.masking)
5308 {
5309 case BOTH_MASKING:
5310 break;
5311 case MERGING_MASKING:
5312 if (i.mask->zeroing)
5313 {
5314 case 0:
5315 i.error = unsupported_masking;
5316 return 1;
5317 }
5318 break;
5319 case DYNAMIC_MASKING:
5320 /* Memory destinations allow only merging masking. */
5321 if (i.mask->zeroing && i.mem_operands)
5322 {
5323 /* Find memory operand. */
5324 for (op = 0; op < i.operands; op++)
5325 if (i.flags[op] & Operand_Mem)
5326 break;
5327 gas_assert (op < i.operands);
5328 if (op == i.operands - 1)
5329 {
5330 i.error = unsupported_masking;
5331 return 1;
5332 }
5333 }
5334 break;
5335 default:
5336 abort ();
5337 }
5338 }
5339
5340 /* Check if masking is applied to dest operand. */
5341 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5342 {
5343 i.error = mask_not_on_destination;
5344 return 1;
5345 }
5346
5347 /* Check RC/SAE. */
5348 if (i.rounding)
5349 {
5350 if ((i.rounding->type != saeonly
5351 && !t->opcode_modifier.staticrounding)
5352 || (i.rounding->type == saeonly
5353 && (t->opcode_modifier.staticrounding
5354 || !t->opcode_modifier.sae)))
5355 {
5356 i.error = unsupported_rc_sae;
5357 return 1;
5358 }
5359 /* If the instruction has several immediate operands and one of
5360 them is rounding, the rounding operand should be the last
5361 immediate operand. */
5362 if (i.imm_operands > 1
5363 && i.rounding->operand != (int) (i.imm_operands - 1))
5364 {
5365 i.error = rc_sae_operand_not_last_imm;
5366 return 1;
5367 }
5368 }
5369
5370 /* Check vector Disp8 operand. */
5371 if (t->opcode_modifier.disp8memshift
5372 && i.disp_encoding != disp_encoding_32bit)
5373 {
5374 if (i.broadcast)
5375 i.memshift = t->opcode_modifier.broadcast - 1;
5376 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5377 i.memshift = t->opcode_modifier.disp8memshift;
5378 else
5379 {
5380 const i386_operand_type *type = NULL;
5381
5382 i.memshift = 0;
5383 for (op = 0; op < i.operands; op++)
5384 if (operand_type_check (i.types[op], anymem))
5385 {
5386 if (t->opcode_modifier.evex == EVEXLIG)
5387 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5388 else if (t->operand_types[op].bitfield.xmmword
5389 + t->operand_types[op].bitfield.ymmword
5390 + t->operand_types[op].bitfield.zmmword <= 1)
5391 type = &t->operand_types[op];
5392 else if (!i.types[op].bitfield.unspecified)
5393 type = &i.types[op];
5394 }
5395 else if (i.types[op].bitfield.regsimd
5396 && t->opcode_modifier.evex != EVEXLIG)
5397 {
5398 if (i.types[op].bitfield.zmmword)
5399 i.memshift = 6;
5400 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5401 i.memshift = 5;
5402 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5403 i.memshift = 4;
5404 }
5405
5406 if (type)
5407 {
5408 if (type->bitfield.zmmword)
5409 i.memshift = 6;
5410 else if (type->bitfield.ymmword)
5411 i.memshift = 5;
5412 else if (type->bitfield.xmmword)
5413 i.memshift = 4;
5414 }
5415
5416 /* For the check in fits_in_disp8(). */
5417 if (i.memshift == 0)
5418 i.memshift = -1;
5419 }
5420
5421 for (op = 0; op < i.operands; op++)
5422 if (operand_type_check (i.types[op], disp)
5423 && i.op[op].disps->X_op == O_constant)
5424 {
5425 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5426 {
5427 i.types[op].bitfield.disp8 = 1;
5428 return 0;
5429 }
5430 i.types[op].bitfield.disp8 = 0;
5431 }
5432 }
5433
5434 i.memshift = 0;
5435
5436 return 0;
5437 }
5438
5439 /* Check if operands are valid for the instruction. Update VEX
5440 operand types. */
5441
5442 static int
5443 VEX_check_operands (const insn_template *t)
5444 {
5445 if (i.vec_encoding == vex_encoding_evex)
5446 {
5447 /* This instruction must be encoded with EVEX prefix. */
5448 if (!is_evex_encoding (t))
5449 {
5450 i.error = unsupported;
5451 return 1;
5452 }
5453 return 0;
5454 }
5455
5456 if (!t->opcode_modifier.vex)
5457 {
5458 /* This instruction template doesn't have VEX prefix. */
5459 if (i.vec_encoding != vex_encoding_default)
5460 {
5461 i.error = unsupported;
5462 return 1;
5463 }
5464 return 0;
5465 }
5466
5467 /* Only check VEX_Imm4, which must be the first operand. */
5468 if (t->operand_types[0].bitfield.vec_imm4)
5469 {
5470 if (i.op[0].imms->X_op != O_constant
5471 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5472 {
5473 i.error = bad_imm4;
5474 return 1;
5475 }
5476
5477 /* Turn off Imm8 so that update_imm won't complain. */
5478 i.types[0] = vec_imm4;
5479 }
5480
5481 return 0;
5482 }
5483
5484 static const insn_template *
5485 match_template (char mnem_suffix)
5486 {
5487 /* Points to template once we've found it. */
5488 const insn_template *t;
5489 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5490 i386_operand_type overlap4;
5491 unsigned int found_reverse_match;
5492 i386_opcode_modifier suffix_check, mnemsuf_check;
5493 i386_operand_type operand_types [MAX_OPERANDS];
5494 int addr_prefix_disp;
5495 unsigned int j;
5496 unsigned int found_cpu_match, size_match;
5497 unsigned int check_register;
5498 enum i386_error specific_error = 0;
5499
5500 #if MAX_OPERANDS != 5
5501 # error "MAX_OPERANDS must be 5."
5502 #endif
5503
5504 found_reverse_match = 0;
5505 addr_prefix_disp = -1;
5506
5507 memset (&suffix_check, 0, sizeof (suffix_check));
5508 if (intel_syntax && i.broadcast)
5509 /* nothing */;
5510 else if (i.suffix == BYTE_MNEM_SUFFIX)
5511 suffix_check.no_bsuf = 1;
5512 else if (i.suffix == WORD_MNEM_SUFFIX)
5513 suffix_check.no_wsuf = 1;
5514 else if (i.suffix == SHORT_MNEM_SUFFIX)
5515 suffix_check.no_ssuf = 1;
5516 else if (i.suffix == LONG_MNEM_SUFFIX)
5517 suffix_check.no_lsuf = 1;
5518 else if (i.suffix == QWORD_MNEM_SUFFIX)
5519 suffix_check.no_qsuf = 1;
5520 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5521 suffix_check.no_ldsuf = 1;
5522
5523 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5524 if (intel_syntax)
5525 {
5526 switch (mnem_suffix)
5527 {
5528 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5529 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5530 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5531 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5532 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5533 }
5534 }
5535
5536 /* Must have right number of operands. */
5537 i.error = number_of_operands_mismatch;
5538
5539 for (t = current_templates->start; t < current_templates->end; t++)
5540 {
5541 addr_prefix_disp = -1;
5542 found_reverse_match = 0;
5543
5544 if (i.operands != t->operands)
5545 continue;
5546
5547 /* Check processor support. */
5548 i.error = unsupported;
5549 found_cpu_match = (cpu_flags_match (t)
5550 == CPU_FLAGS_PERFECT_MATCH);
5551 if (!found_cpu_match)
5552 continue;
5553
5554 /* Check AT&T mnemonic. */
5555 i.error = unsupported_with_intel_mnemonic;
5556 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5557 continue;
5558
5559 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5560 i.error = unsupported_syntax;
5561 if ((intel_syntax && t->opcode_modifier.attsyntax)
5562 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5563 || (intel64 && t->opcode_modifier.amd64)
5564 || (!intel64 && t->opcode_modifier.intel64))
5565 continue;
5566
5567 /* Check the suffix, except for some instructions in intel mode. */
5568 i.error = invalid_instruction_suffix;
5569 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5570 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5571 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5572 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5573 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5574 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5575 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
5576 continue;
5577 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5578 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5579 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5580 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5581 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5582 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5583 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5584 continue;
5585
5586 size_match = operand_size_match (t);
5587 if (!size_match)
5588 continue;
5589
5590 for (j = 0; j < MAX_OPERANDS; j++)
5591 operand_types[j] = t->operand_types[j];
5592
5593 /* In general, don't allow 64-bit operands in 32-bit mode. */
5594 if (i.suffix == QWORD_MNEM_SUFFIX
5595 && flag_code != CODE_64BIT
5596 && (intel_syntax
5597 ? (!t->opcode_modifier.ignoresize
5598 && !t->opcode_modifier.broadcast
5599 && !intel_float_operand (t->name))
5600 : intel_float_operand (t->name) != 2)
5601 && ((!operand_types[0].bitfield.regmmx
5602 && !operand_types[0].bitfield.regsimd)
5603 || (!operand_types[t->operands > 1].bitfield.regmmx
5604 && !operand_types[t->operands > 1].bitfield.regsimd))
5605 && (t->base_opcode != 0x0fc7
5606 || t->extension_opcode != 1 /* cmpxchg8b */))
5607 continue;
5608
5609 /* In general, don't allow 32-bit operands on pre-386. */
5610 else if (i.suffix == LONG_MNEM_SUFFIX
5611 && !cpu_arch_flags.bitfield.cpui386
5612 && (intel_syntax
5613 ? (!t->opcode_modifier.ignoresize
5614 && !intel_float_operand (t->name))
5615 : intel_float_operand (t->name) != 2)
5616 && ((!operand_types[0].bitfield.regmmx
5617 && !operand_types[0].bitfield.regsimd)
5618 || (!operand_types[t->operands > 1].bitfield.regmmx
5619 && !operand_types[t->operands > 1].bitfield.regsimd)))
5620 continue;
5621
5622 /* Do not verify operands when there are none. */
5623 else
5624 {
5625 if (!t->operands)
5626 /* We've found a match; break out of loop. */
5627 break;
5628 }
5629
5630 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5631 into Disp32/Disp16/Disp32 operand. */
5632 if (i.prefix[ADDR_PREFIX] != 0)
5633 {
5634 /* There should be only one Disp operand. */
5635 switch (flag_code)
5636 {
5637 case CODE_16BIT:
5638 for (j = 0; j < MAX_OPERANDS; j++)
5639 {
5640 if (operand_types[j].bitfield.disp16)
5641 {
5642 addr_prefix_disp = j;
5643 operand_types[j].bitfield.disp32 = 1;
5644 operand_types[j].bitfield.disp16 = 0;
5645 break;
5646 }
5647 }
5648 break;
5649 case CODE_32BIT:
5650 for (j = 0; j < MAX_OPERANDS; j++)
5651 {
5652 if (operand_types[j].bitfield.disp32)
5653 {
5654 addr_prefix_disp = j;
5655 operand_types[j].bitfield.disp32 = 0;
5656 operand_types[j].bitfield.disp16 = 1;
5657 break;
5658 }
5659 }
5660 break;
5661 case CODE_64BIT:
5662 for (j = 0; j < MAX_OPERANDS; j++)
5663 {
5664 if (operand_types[j].bitfield.disp64)
5665 {
5666 addr_prefix_disp = j;
5667 operand_types[j].bitfield.disp64 = 0;
5668 operand_types[j].bitfield.disp32 = 1;
5669 break;
5670 }
5671 }
5672 break;
5673 }
5674 }
5675
5676 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5677 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5678 continue;
5679
5680 /* We check register size if needed. */
5681 if (t->opcode_modifier.checkregsize)
5682 {
5683 check_register = (1 << t->operands) - 1;
5684 if (i.broadcast)
5685 check_register &= ~(1 << i.broadcast->operand);
5686 }
5687 else
5688 check_register = 0;
5689
5690 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5691 switch (t->operands)
5692 {
5693 case 1:
5694 if (!operand_type_match (overlap0, i.types[0]))
5695 continue;
5696 break;
5697 case 2:
5698 /* xchg %eax, %eax is a special case. It is an alias for nop
5699 only in 32bit mode and we can use opcode 0x90. In 64bit
5700 mode, we can't use 0x90 for xchg %eax, %eax since it should
5701 zero-extend %eax to %rax. */
5702 if (flag_code == CODE_64BIT
5703 && t->base_opcode == 0x90
5704 && operand_type_equal (&i.types [0], &acc32)
5705 && operand_type_equal (&i.types [1], &acc32))
5706 continue;
5707 /* xrelease mov %eax, <disp> is another special case. It must not
5708 match the accumulator-only encoding of mov. */
5709 if (flag_code != CODE_64BIT
5710 && i.hle_prefix
5711 && t->base_opcode == 0xa0
5712 && i.types[0].bitfield.acc
5713 && operand_type_check (i.types[1], anymem))
5714 continue;
5715 /* Fall through. */
5716
5717 case 3:
5718 if (!(size_match & MATCH_STRAIGHT))
5719 goto check_reverse;
5720 /* Reverse direction of operands if swapping is possible in the first
5721 place (operands need to be symmetric) and
5722 - the load form is requested, and the template is a store form,
5723 - the store form is requested, and the template is a load form,
5724 - the non-default (swapped) form is requested. */
5725 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
5726 if (t->opcode_modifier.d && i.reg_operands == i.operands
5727 && !operand_type_all_zero (&overlap1))
5728 switch (i.dir_encoding)
5729 {
5730 case dir_encoding_load:
5731 if (operand_type_check (operand_types[i.operands - 1], anymem)
5732 || operand_types[i.operands - 1].bitfield.regmem)
5733 goto check_reverse;
5734 break;
5735
5736 case dir_encoding_store:
5737 if (!operand_type_check (operand_types[i.operands - 1], anymem)
5738 && !operand_types[i.operands - 1].bitfield.regmem)
5739 goto check_reverse;
5740 break;
5741
5742 case dir_encoding_swap:
5743 goto check_reverse;
5744
5745 case dir_encoding_default:
5746 break;
5747 }
5748 /* If we want store form, we skip the current load. */
5749 if ((i.dir_encoding == dir_encoding_store
5750 || i.dir_encoding == dir_encoding_swap)
5751 && i.mem_operands == 0
5752 && t->opcode_modifier.load)
5753 continue;
5754 /* Fall through. */
5755 case 4:
5756 case 5:
5757 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5758 if (!operand_type_match (overlap0, i.types[0])
5759 || !operand_type_match (overlap1, i.types[1])
5760 || ((check_register & 3) == 3
5761 && !operand_type_register_match (i.types[0],
5762 operand_types[0],
5763 i.types[1],
5764 operand_types[1])))
5765 {
5766 /* Check if other direction is valid ... */
5767 if (!t->opcode_modifier.d)
5768 continue;
5769
5770 check_reverse:
5771 if (!(size_match & MATCH_REVERSE))
5772 continue;
5773 /* Try reversing direction of operands. */
5774 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
5775 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
5776 if (!operand_type_match (overlap0, i.types[0])
5777 || !operand_type_match (overlap1, i.types[i.operands - 1])
5778 || (check_register
5779 && !operand_type_register_match (i.types[0],
5780 operand_types[i.operands - 1],
5781 i.types[i.operands - 1],
5782 operand_types[0])))
5783 {
5784 /* Does not match either direction. */
5785 continue;
5786 }
5787 /* found_reverse_match holds which of D or FloatR
5788 we've found. */
5789 if (!t->opcode_modifier.d)
5790 found_reverse_match = 0;
5791 else if (operand_types[0].bitfield.tbyte)
5792 found_reverse_match = Opcode_FloatD;
5793 else if (operand_types[0].bitfield.xmmword
5794 || operand_types[i.operands - 1].bitfield.xmmword
5795 || operand_types[0].bitfield.regmmx
5796 || operand_types[i.operands - 1].bitfield.regmmx
5797 || is_any_vex_encoding(t))
5798 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
5799 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
5800 else
5801 found_reverse_match = Opcode_D;
5802 if (t->opcode_modifier.floatr)
5803 found_reverse_match |= Opcode_FloatR;
5804 }
5805 else
5806 {
5807 /* Found a forward 2 operand match here. */
5808 switch (t->operands)
5809 {
5810 case 5:
5811 overlap4 = operand_type_and (i.types[4],
5812 operand_types[4]);
5813 /* Fall through. */
5814 case 4:
5815 overlap3 = operand_type_and (i.types[3],
5816 operand_types[3]);
5817 /* Fall through. */
5818 case 3:
5819 overlap2 = operand_type_and (i.types[2],
5820 operand_types[2]);
5821 break;
5822 }
5823
5824 switch (t->operands)
5825 {
5826 case 5:
5827 if (!operand_type_match (overlap4, i.types[4])
5828 || !operand_type_register_match (i.types[3],
5829 operand_types[3],
5830 i.types[4],
5831 operand_types[4]))
5832 continue;
5833 /* Fall through. */
5834 case 4:
5835 if (!operand_type_match (overlap3, i.types[3])
5836 || ((check_register & 0xa) == 0xa
5837 && !operand_type_register_match (i.types[1],
5838 operand_types[1],
5839 i.types[3],
5840 operand_types[3]))
5841 || ((check_register & 0xc) == 0xc
5842 && !operand_type_register_match (i.types[2],
5843 operand_types[2],
5844 i.types[3],
5845 operand_types[3])))
5846 continue;
5847 /* Fall through. */
5848 case 3:
5849 /* Here we make use of the fact that there are no
5850 reverse match 3 operand instructions. */
5851 if (!operand_type_match (overlap2, i.types[2])
5852 || ((check_register & 5) == 5
5853 && !operand_type_register_match (i.types[0],
5854 operand_types[0],
5855 i.types[2],
5856 operand_types[2]))
5857 || ((check_register & 6) == 6
5858 && !operand_type_register_match (i.types[1],
5859 operand_types[1],
5860 i.types[2],
5861 operand_types[2])))
5862 continue;
5863 break;
5864 }
5865 }
5866 /* Found either forward/reverse 2, 3 or 4 operand match here:
5867 slip through to break. */
5868 }
5869 if (!found_cpu_match)
5870 continue;
5871
5872 /* Check if vector and VEX operands are valid. */
5873 if (check_VecOperands (t) || VEX_check_operands (t))
5874 {
5875 specific_error = i.error;
5876 continue;
5877 }
5878
5879 /* We've found a match; break out of loop. */
5880 break;
5881 }
5882
5883 if (t == current_templates->end)
5884 {
5885 /* We found no match. */
5886 const char *err_msg;
5887 switch (specific_error ? specific_error : i.error)
5888 {
5889 default:
5890 abort ();
5891 case operand_size_mismatch:
5892 err_msg = _("operand size mismatch");
5893 break;
5894 case operand_type_mismatch:
5895 err_msg = _("operand type mismatch");
5896 break;
5897 case register_type_mismatch:
5898 err_msg = _("register type mismatch");
5899 break;
5900 case number_of_operands_mismatch:
5901 err_msg = _("number of operands mismatch");
5902 break;
5903 case invalid_instruction_suffix:
5904 err_msg = _("invalid instruction suffix");
5905 break;
5906 case bad_imm4:
5907 err_msg = _("constant doesn't fit in 4 bits");
5908 break;
5909 case unsupported_with_intel_mnemonic:
5910 err_msg = _("unsupported with Intel mnemonic");
5911 break;
5912 case unsupported_syntax:
5913 err_msg = _("unsupported syntax");
5914 break;
5915 case unsupported:
5916 as_bad (_("unsupported instruction `%s'"),
5917 current_templates->start->name);
5918 return NULL;
5919 case invalid_vsib_address:
5920 err_msg = _("invalid VSIB address");
5921 break;
5922 case invalid_vector_register_set:
5923 err_msg = _("mask, index, and destination registers must be distinct");
5924 break;
5925 case unsupported_vector_index_register:
5926 err_msg = _("unsupported vector index register");
5927 break;
5928 case unsupported_broadcast:
5929 err_msg = _("unsupported broadcast");
5930 break;
5931 case broadcast_needed:
5932 err_msg = _("broadcast is needed for operand of such type");
5933 break;
5934 case unsupported_masking:
5935 err_msg = _("unsupported masking");
5936 break;
5937 case mask_not_on_destination:
5938 err_msg = _("mask not on destination operand");
5939 break;
5940 case no_default_mask:
5941 err_msg = _("default mask isn't allowed");
5942 break;
5943 case unsupported_rc_sae:
5944 err_msg = _("unsupported static rounding/sae");
5945 break;
5946 case rc_sae_operand_not_last_imm:
5947 if (intel_syntax)
5948 err_msg = _("RC/SAE operand must precede immediate operands");
5949 else
5950 err_msg = _("RC/SAE operand must follow immediate operands");
5951 break;
5952 case invalid_register_operand:
5953 err_msg = _("invalid register operand");
5954 break;
5955 }
5956 as_bad (_("%s for `%s'"), err_msg,
5957 current_templates->start->name);
5958 return NULL;
5959 }
5960
5961 if (!quiet_warnings)
5962 {
5963 if (!intel_syntax
5964 && (i.types[0].bitfield.jumpabsolute
5965 != operand_types[0].bitfield.jumpabsolute))
5966 {
5967 as_warn (_("indirect %s without `*'"), t->name);
5968 }
5969
5970 if (t->opcode_modifier.isprefix
5971 && t->opcode_modifier.ignoresize)
5972 {
5973 /* Warn them that a data or address size prefix doesn't
5974 affect assembly of the next line of code. */
5975 as_warn (_("stand-alone `%s' prefix"), t->name);
5976 }
5977 }
5978
5979 /* Copy the template we found. */
5980 i.tm = *t;
5981
5982 if (addr_prefix_disp != -1)
5983 i.tm.operand_types[addr_prefix_disp]
5984 = operand_types[addr_prefix_disp];
5985
5986 if (found_reverse_match)
5987 {
5988 /* If we found a reverse match we must alter the opcode
5989 direction bit. found_reverse_match holds bits to change
5990 (different for int & float insns). */
5991
5992 i.tm.base_opcode ^= found_reverse_match;
5993
5994 i.tm.operand_types[0] = operand_types[i.operands - 1];
5995 i.tm.operand_types[i.operands - 1] = operand_types[0];
5996 }
5997
5998 return t;
5999 }
6000
6001 static int
6002 check_string (void)
6003 {
6004 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
6005 if (i.tm.operand_types[mem_op].bitfield.esseg)
6006 {
6007 if (i.seg[0] != NULL && i.seg[0] != &es)
6008 {
6009 as_bad (_("`%s' operand %d must use `%ses' segment"),
6010 i.tm.name,
6011 mem_op + 1,
6012 register_prefix);
6013 return 0;
6014 }
6015 /* There's only ever one segment override allowed per instruction.
6016 This instruction possibly has a legal segment override on the
6017 second operand, so copy the segment to where non-string
6018 instructions store it, allowing common code. */
6019 i.seg[0] = i.seg[1];
6020 }
6021 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
6022 {
6023 if (i.seg[1] != NULL && i.seg[1] != &es)
6024 {
6025 as_bad (_("`%s' operand %d must use `%ses' segment"),
6026 i.tm.name,
6027 mem_op + 2,
6028 register_prefix);
6029 return 0;
6030 }
6031 }
6032 return 1;
6033 }
6034
6035 static int
6036 process_suffix (void)
6037 {
6038 /* If matched instruction specifies an explicit instruction mnemonic
6039 suffix, use it. */
6040 if (i.tm.opcode_modifier.size16)
6041 i.suffix = WORD_MNEM_SUFFIX;
6042 else if (i.tm.opcode_modifier.size32)
6043 i.suffix = LONG_MNEM_SUFFIX;
6044 else if (i.tm.opcode_modifier.size64)
6045 i.suffix = QWORD_MNEM_SUFFIX;
6046 else if (i.reg_operands)
6047 {
6048 /* If there's no instruction mnemonic suffix we try to invent one
6049 based on register operands. */
6050 if (!i.suffix)
6051 {
6052 /* We take i.suffix from the last register operand specified,
6053 Destination register type is more significant than source
6054 register type. crc32 in SSE4.2 prefers source register
6055 type. */
6056 if (i.tm.base_opcode == 0xf20f38f0 && i.types[0].bitfield.reg)
6057 {
6058 if (i.types[0].bitfield.byte)
6059 i.suffix = BYTE_MNEM_SUFFIX;
6060 else if (i.types[0].bitfield.word)
6061 i.suffix = WORD_MNEM_SUFFIX;
6062 else if (i.types[0].bitfield.dword)
6063 i.suffix = LONG_MNEM_SUFFIX;
6064 else if (i.types[0].bitfield.qword)
6065 i.suffix = QWORD_MNEM_SUFFIX;
6066 }
6067
6068 if (!i.suffix)
6069 {
6070 int op;
6071
6072 if (i.tm.base_opcode == 0xf20f38f0)
6073 {
6074 /* We have to know the operand size for crc32. */
6075 as_bad (_("ambiguous memory operand size for `%s`"),
6076 i.tm.name);
6077 return 0;
6078 }
6079
6080 for (op = i.operands; --op >= 0;)
6081 if (!i.tm.operand_types[op].bitfield.inoutportreg
6082 && !i.tm.operand_types[op].bitfield.shiftcount)
6083 {
6084 if (!i.types[op].bitfield.reg)
6085 continue;
6086 if (i.types[op].bitfield.byte)
6087 i.suffix = BYTE_MNEM_SUFFIX;
6088 else if (i.types[op].bitfield.word)
6089 i.suffix = WORD_MNEM_SUFFIX;
6090 else if (i.types[op].bitfield.dword)
6091 i.suffix = LONG_MNEM_SUFFIX;
6092 else if (i.types[op].bitfield.qword)
6093 i.suffix = QWORD_MNEM_SUFFIX;
6094 else
6095 continue;
6096 break;
6097 }
6098 }
6099 }
6100 else if (i.suffix == BYTE_MNEM_SUFFIX)
6101 {
6102 if (intel_syntax
6103 && i.tm.opcode_modifier.ignoresize
6104 && i.tm.opcode_modifier.no_bsuf)
6105 i.suffix = 0;
6106 else if (!check_byte_reg ())
6107 return 0;
6108 }
6109 else if (i.suffix == LONG_MNEM_SUFFIX)
6110 {
6111 if (intel_syntax
6112 && i.tm.opcode_modifier.ignoresize
6113 && i.tm.opcode_modifier.no_lsuf
6114 && !i.tm.opcode_modifier.todword
6115 && !i.tm.opcode_modifier.toqword)
6116 i.suffix = 0;
6117 else if (!check_long_reg ())
6118 return 0;
6119 }
6120 else if (i.suffix == QWORD_MNEM_SUFFIX)
6121 {
6122 if (intel_syntax
6123 && i.tm.opcode_modifier.ignoresize
6124 && i.tm.opcode_modifier.no_qsuf
6125 && !i.tm.opcode_modifier.todword
6126 && !i.tm.opcode_modifier.toqword)
6127 i.suffix = 0;
6128 else if (!check_qword_reg ())
6129 return 0;
6130 }
6131 else if (i.suffix == WORD_MNEM_SUFFIX)
6132 {
6133 if (intel_syntax
6134 && i.tm.opcode_modifier.ignoresize
6135 && i.tm.opcode_modifier.no_wsuf)
6136 i.suffix = 0;
6137 else if (!check_word_reg ())
6138 return 0;
6139 }
6140 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
6141 /* Do nothing if the instruction is going to ignore the prefix. */
6142 ;
6143 else
6144 abort ();
6145 }
6146 else if (i.tm.opcode_modifier.defaultsize
6147 && !i.suffix
6148 /* exclude fldenv/frstor/fsave/fstenv */
6149 && i.tm.opcode_modifier.no_ssuf)
6150 {
6151 i.suffix = stackop_size;
6152 }
6153 else if (intel_syntax
6154 && !i.suffix
6155 && (i.tm.operand_types[0].bitfield.jumpabsolute
6156 || i.tm.opcode_modifier.jumpbyte
6157 || i.tm.opcode_modifier.jumpintersegment
6158 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6159 && i.tm.extension_opcode <= 3)))
6160 {
6161 switch (flag_code)
6162 {
6163 case CODE_64BIT:
6164 if (!i.tm.opcode_modifier.no_qsuf)
6165 {
6166 i.suffix = QWORD_MNEM_SUFFIX;
6167 break;
6168 }
6169 /* Fall through. */
6170 case CODE_32BIT:
6171 if (!i.tm.opcode_modifier.no_lsuf)
6172 i.suffix = LONG_MNEM_SUFFIX;
6173 break;
6174 case CODE_16BIT:
6175 if (!i.tm.opcode_modifier.no_wsuf)
6176 i.suffix = WORD_MNEM_SUFFIX;
6177 break;
6178 }
6179 }
6180
6181 if (!i.suffix)
6182 {
6183 if (!intel_syntax)
6184 {
6185 if (i.tm.opcode_modifier.w)
6186 {
6187 as_bad (_("no instruction mnemonic suffix given and "
6188 "no register operands; can't size instruction"));
6189 return 0;
6190 }
6191 }
6192 else
6193 {
6194 unsigned int suffixes;
6195
6196 suffixes = !i.tm.opcode_modifier.no_bsuf;
6197 if (!i.tm.opcode_modifier.no_wsuf)
6198 suffixes |= 1 << 1;
6199 if (!i.tm.opcode_modifier.no_lsuf)
6200 suffixes |= 1 << 2;
6201 if (!i.tm.opcode_modifier.no_ldsuf)
6202 suffixes |= 1 << 3;
6203 if (!i.tm.opcode_modifier.no_ssuf)
6204 suffixes |= 1 << 4;
6205 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6206 suffixes |= 1 << 5;
6207
6208 /* There are more than suffix matches. */
6209 if (i.tm.opcode_modifier.w
6210 || ((suffixes & (suffixes - 1))
6211 && !i.tm.opcode_modifier.defaultsize
6212 && !i.tm.opcode_modifier.ignoresize))
6213 {
6214 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6215 return 0;
6216 }
6217 }
6218 }
6219
6220 /* Change the opcode based on the operand size given by i.suffix. */
6221 switch (i.suffix)
6222 {
6223 /* Size floating point instruction. */
6224 case LONG_MNEM_SUFFIX:
6225 if (i.tm.opcode_modifier.floatmf)
6226 {
6227 i.tm.base_opcode ^= 4;
6228 break;
6229 }
6230 /* fall through */
6231 case WORD_MNEM_SUFFIX:
6232 case QWORD_MNEM_SUFFIX:
6233 /* It's not a byte, select word/dword operation. */
6234 if (i.tm.opcode_modifier.w)
6235 {
6236 if (i.tm.opcode_modifier.shortform)
6237 i.tm.base_opcode |= 8;
6238 else
6239 i.tm.base_opcode |= 1;
6240 }
6241 /* fall through */
6242 case SHORT_MNEM_SUFFIX:
6243 /* Now select between word & dword operations via the operand
6244 size prefix, except for instructions that will ignore this
6245 prefix anyway. */
6246 if (i.reg_operands > 0
6247 && i.types[0].bitfield.reg
6248 && i.tm.opcode_modifier.addrprefixopreg
6249 && (i.tm.opcode_modifier.immext
6250 || i.operands == 1))
6251 {
6252 /* The address size override prefix changes the size of the
6253 first operand. */
6254 if ((flag_code == CODE_32BIT
6255 && i.op[0].regs->reg_type.bitfield.word)
6256 || (flag_code != CODE_32BIT
6257 && i.op[0].regs->reg_type.bitfield.dword))
6258 if (!add_prefix (ADDR_PREFIX_OPCODE))
6259 return 0;
6260 }
6261 else if (i.suffix != QWORD_MNEM_SUFFIX
6262 && !i.tm.opcode_modifier.ignoresize
6263 && !i.tm.opcode_modifier.floatmf
6264 && !i.tm.opcode_modifier.vex
6265 && !i.tm.opcode_modifier.vexopcode
6266 && !is_evex_encoding (&i.tm)
6267 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6268 || (flag_code == CODE_64BIT
6269 && i.tm.opcode_modifier.jumpbyte)))
6270 {
6271 unsigned int prefix = DATA_PREFIX_OPCODE;
6272
6273 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
6274 prefix = ADDR_PREFIX_OPCODE;
6275
6276 if (!add_prefix (prefix))
6277 return 0;
6278 }
6279
6280 /* Set mode64 for an operand. */
6281 if (i.suffix == QWORD_MNEM_SUFFIX
6282 && flag_code == CODE_64BIT
6283 && !i.tm.opcode_modifier.norex64
6284 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6285 need rex64. */
6286 && ! (i.operands == 2
6287 && i.tm.base_opcode == 0x90
6288 && i.tm.extension_opcode == None
6289 && operand_type_equal (&i.types [0], &acc64)
6290 && operand_type_equal (&i.types [1], &acc64)))
6291 i.rex |= REX_W;
6292
6293 break;
6294 }
6295
6296 if (i.reg_operands != 0
6297 && i.operands > 1
6298 && i.tm.opcode_modifier.addrprefixopreg
6299 && !i.tm.opcode_modifier.immext)
6300 {
6301 /* Check invalid register operand when the address size override
6302 prefix changes the size of register operands. */
6303 unsigned int op;
6304 enum { need_word, need_dword, need_qword } need;
6305
6306 if (flag_code == CODE_32BIT)
6307 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6308 else
6309 {
6310 if (i.prefix[ADDR_PREFIX])
6311 need = need_dword;
6312 else
6313 need = flag_code == CODE_64BIT ? need_qword : need_word;
6314 }
6315
6316 for (op = 0; op < i.operands; op++)
6317 if (i.types[op].bitfield.reg
6318 && ((need == need_word
6319 && !i.op[op].regs->reg_type.bitfield.word)
6320 || (need == need_dword
6321 && !i.op[op].regs->reg_type.bitfield.dword)
6322 || (need == need_qword
6323 && !i.op[op].regs->reg_type.bitfield.qword)))
6324 {
6325 as_bad (_("invalid register operand size for `%s'"),
6326 i.tm.name);
6327 return 0;
6328 }
6329 }
6330
6331 return 1;
6332 }
6333
6334 static int
6335 check_byte_reg (void)
6336 {
6337 int op;
6338
6339 for (op = i.operands; --op >= 0;)
6340 {
6341 /* Skip non-register operands. */
6342 if (!i.types[op].bitfield.reg)
6343 continue;
6344
6345 /* If this is an eight bit register, it's OK. If it's the 16 or
6346 32 bit version of an eight bit register, we will just use the
6347 low portion, and that's OK too. */
6348 if (i.types[op].bitfield.byte)
6349 continue;
6350
6351 /* I/O port address operands are OK too. */
6352 if (i.tm.operand_types[op].bitfield.inoutportreg)
6353 continue;
6354
6355 /* crc32 doesn't generate this warning. */
6356 if (i.tm.base_opcode == 0xf20f38f0)
6357 continue;
6358
6359 if ((i.types[op].bitfield.word
6360 || i.types[op].bitfield.dword
6361 || i.types[op].bitfield.qword)
6362 && i.op[op].regs->reg_num < 4
6363 /* Prohibit these changes in 64bit mode, since the lowering
6364 would be more complicated. */
6365 && flag_code != CODE_64BIT)
6366 {
6367 #if REGISTER_WARNINGS
6368 if (!quiet_warnings)
6369 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6370 register_prefix,
6371 (i.op[op].regs + (i.types[op].bitfield.word
6372 ? REGNAM_AL - REGNAM_AX
6373 : REGNAM_AL - REGNAM_EAX))->reg_name,
6374 register_prefix,
6375 i.op[op].regs->reg_name,
6376 i.suffix);
6377 #endif
6378 continue;
6379 }
6380 /* Any other register is bad. */
6381 if (i.types[op].bitfield.reg
6382 || i.types[op].bitfield.regmmx
6383 || i.types[op].bitfield.regsimd
6384 || i.types[op].bitfield.sreg2
6385 || i.types[op].bitfield.sreg3
6386 || i.types[op].bitfield.control
6387 || i.types[op].bitfield.debug
6388 || i.types[op].bitfield.test)
6389 {
6390 as_bad (_("`%s%s' not allowed with `%s%c'"),
6391 register_prefix,
6392 i.op[op].regs->reg_name,
6393 i.tm.name,
6394 i.suffix);
6395 return 0;
6396 }
6397 }
6398 return 1;
6399 }
6400
6401 static int
6402 check_long_reg (void)
6403 {
6404 int op;
6405
6406 for (op = i.operands; --op >= 0;)
6407 /* Skip non-register operands. */
6408 if (!i.types[op].bitfield.reg)
6409 continue;
6410 /* Reject eight bit registers, except where the template requires
6411 them. (eg. movzb) */
6412 else if (i.types[op].bitfield.byte
6413 && (i.tm.operand_types[op].bitfield.reg
6414 || i.tm.operand_types[op].bitfield.acc)
6415 && (i.tm.operand_types[op].bitfield.word
6416 || i.tm.operand_types[op].bitfield.dword))
6417 {
6418 as_bad (_("`%s%s' not allowed with `%s%c'"),
6419 register_prefix,
6420 i.op[op].regs->reg_name,
6421 i.tm.name,
6422 i.suffix);
6423 return 0;
6424 }
6425 /* Warn if the e prefix on a general reg is missing. */
6426 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6427 && i.types[op].bitfield.word
6428 && (i.tm.operand_types[op].bitfield.reg
6429 || i.tm.operand_types[op].bitfield.acc)
6430 && i.tm.operand_types[op].bitfield.dword)
6431 {
6432 /* Prohibit these changes in the 64bit mode, since the
6433 lowering is more complicated. */
6434 if (flag_code == CODE_64BIT)
6435 {
6436 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6437 register_prefix, i.op[op].regs->reg_name,
6438 i.suffix);
6439 return 0;
6440 }
6441 #if REGISTER_WARNINGS
6442 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6443 register_prefix,
6444 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6445 register_prefix, i.op[op].regs->reg_name, i.suffix);
6446 #endif
6447 }
6448 /* Warn if the r prefix on a general reg is present. */
6449 else if (i.types[op].bitfield.qword
6450 && (i.tm.operand_types[op].bitfield.reg
6451 || i.tm.operand_types[op].bitfield.acc)
6452 && i.tm.operand_types[op].bitfield.dword)
6453 {
6454 if (intel_syntax
6455 && i.tm.opcode_modifier.toqword
6456 && !i.types[0].bitfield.regsimd)
6457 {
6458 /* Convert to QWORD. We want REX byte. */
6459 i.suffix = QWORD_MNEM_SUFFIX;
6460 }
6461 else
6462 {
6463 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6464 register_prefix, i.op[op].regs->reg_name,
6465 i.suffix);
6466 return 0;
6467 }
6468 }
6469 return 1;
6470 }
6471
6472 static int
6473 check_qword_reg (void)
6474 {
6475 int op;
6476
6477 for (op = i.operands; --op >= 0; )
6478 /* Skip non-register operands. */
6479 if (!i.types[op].bitfield.reg)
6480 continue;
6481 /* Reject eight bit registers, except where the template requires
6482 them. (eg. movzb) */
6483 else if (i.types[op].bitfield.byte
6484 && (i.tm.operand_types[op].bitfield.reg
6485 || i.tm.operand_types[op].bitfield.acc)
6486 && (i.tm.operand_types[op].bitfield.word
6487 || i.tm.operand_types[op].bitfield.dword))
6488 {
6489 as_bad (_("`%s%s' not allowed with `%s%c'"),
6490 register_prefix,
6491 i.op[op].regs->reg_name,
6492 i.tm.name,
6493 i.suffix);
6494 return 0;
6495 }
6496 /* Warn if the r prefix on a general reg is missing. */
6497 else if ((i.types[op].bitfield.word
6498 || i.types[op].bitfield.dword)
6499 && (i.tm.operand_types[op].bitfield.reg
6500 || i.tm.operand_types[op].bitfield.acc)
6501 && i.tm.operand_types[op].bitfield.qword)
6502 {
6503 /* Prohibit these changes in the 64bit mode, since the
6504 lowering is more complicated. */
6505 if (intel_syntax
6506 && i.tm.opcode_modifier.todword
6507 && !i.types[0].bitfield.regsimd)
6508 {
6509 /* Convert to DWORD. We don't want REX byte. */
6510 i.suffix = LONG_MNEM_SUFFIX;
6511 }
6512 else
6513 {
6514 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6515 register_prefix, i.op[op].regs->reg_name,
6516 i.suffix);
6517 return 0;
6518 }
6519 }
6520 return 1;
6521 }
6522
6523 static int
6524 check_word_reg (void)
6525 {
6526 int op;
6527 for (op = i.operands; --op >= 0;)
6528 /* Skip non-register operands. */
6529 if (!i.types[op].bitfield.reg)
6530 continue;
6531 /* Reject eight bit registers, except where the template requires
6532 them. (eg. movzb) */
6533 else if (i.types[op].bitfield.byte
6534 && (i.tm.operand_types[op].bitfield.reg
6535 || i.tm.operand_types[op].bitfield.acc)
6536 && (i.tm.operand_types[op].bitfield.word
6537 || i.tm.operand_types[op].bitfield.dword))
6538 {
6539 as_bad (_("`%s%s' not allowed with `%s%c'"),
6540 register_prefix,
6541 i.op[op].regs->reg_name,
6542 i.tm.name,
6543 i.suffix);
6544 return 0;
6545 }
6546 /* Warn if the e or r prefix on a general reg is present. */
6547 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6548 && (i.types[op].bitfield.dword
6549 || i.types[op].bitfield.qword)
6550 && (i.tm.operand_types[op].bitfield.reg
6551 || i.tm.operand_types[op].bitfield.acc)
6552 && i.tm.operand_types[op].bitfield.word)
6553 {
6554 /* Prohibit these changes in the 64bit mode, since the
6555 lowering is more complicated. */
6556 if (flag_code == CODE_64BIT)
6557 {
6558 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6559 register_prefix, i.op[op].regs->reg_name,
6560 i.suffix);
6561 return 0;
6562 }
6563 #if REGISTER_WARNINGS
6564 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6565 register_prefix,
6566 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6567 register_prefix, i.op[op].regs->reg_name, i.suffix);
6568 #endif
6569 }
6570 return 1;
6571 }
6572
6573 static int
6574 update_imm (unsigned int j)
6575 {
6576 i386_operand_type overlap = i.types[j];
6577 if ((overlap.bitfield.imm8
6578 || overlap.bitfield.imm8s
6579 || overlap.bitfield.imm16
6580 || overlap.bitfield.imm32
6581 || overlap.bitfield.imm32s
6582 || overlap.bitfield.imm64)
6583 && !operand_type_equal (&overlap, &imm8)
6584 && !operand_type_equal (&overlap, &imm8s)
6585 && !operand_type_equal (&overlap, &imm16)
6586 && !operand_type_equal (&overlap, &imm32)
6587 && !operand_type_equal (&overlap, &imm32s)
6588 && !operand_type_equal (&overlap, &imm64))
6589 {
6590 if (i.suffix)
6591 {
6592 i386_operand_type temp;
6593
6594 operand_type_set (&temp, 0);
6595 if (i.suffix == BYTE_MNEM_SUFFIX)
6596 {
6597 temp.bitfield.imm8 = overlap.bitfield.imm8;
6598 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6599 }
6600 else if (i.suffix == WORD_MNEM_SUFFIX)
6601 temp.bitfield.imm16 = overlap.bitfield.imm16;
6602 else if (i.suffix == QWORD_MNEM_SUFFIX)
6603 {
6604 temp.bitfield.imm64 = overlap.bitfield.imm64;
6605 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6606 }
6607 else
6608 temp.bitfield.imm32 = overlap.bitfield.imm32;
6609 overlap = temp;
6610 }
6611 else if (operand_type_equal (&overlap, &imm16_32_32s)
6612 || operand_type_equal (&overlap, &imm16_32)
6613 || operand_type_equal (&overlap, &imm16_32s))
6614 {
6615 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6616 overlap = imm16;
6617 else
6618 overlap = imm32s;
6619 }
6620 if (!operand_type_equal (&overlap, &imm8)
6621 && !operand_type_equal (&overlap, &imm8s)
6622 && !operand_type_equal (&overlap, &imm16)
6623 && !operand_type_equal (&overlap, &imm32)
6624 && !operand_type_equal (&overlap, &imm32s)
6625 && !operand_type_equal (&overlap, &imm64))
6626 {
6627 as_bad (_("no instruction mnemonic suffix given; "
6628 "can't determine immediate size"));
6629 return 0;
6630 }
6631 }
6632 i.types[j] = overlap;
6633
6634 return 1;
6635 }
6636
6637 static int
6638 finalize_imm (void)
6639 {
6640 unsigned int j, n;
6641
6642 /* Update the first 2 immediate operands. */
6643 n = i.operands > 2 ? 2 : i.operands;
6644 if (n)
6645 {
6646 for (j = 0; j < n; j++)
6647 if (update_imm (j) == 0)
6648 return 0;
6649
6650 /* The 3rd operand can't be immediate operand. */
6651 gas_assert (operand_type_check (i.types[2], imm) == 0);
6652 }
6653
6654 return 1;
6655 }
6656
6657 static int
6658 process_operands (void)
6659 {
6660 /* Default segment register this instruction will use for memory
6661 accesses. 0 means unknown. This is only for optimizing out
6662 unnecessary segment overrides. */
6663 const seg_entry *default_seg = 0;
6664
6665 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6666 {
6667 unsigned int dupl = i.operands;
6668 unsigned int dest = dupl - 1;
6669 unsigned int j;
6670
6671 /* The destination must be an xmm register. */
6672 gas_assert (i.reg_operands
6673 && MAX_OPERANDS > dupl
6674 && operand_type_equal (&i.types[dest], &regxmm));
6675
6676 if (i.tm.operand_types[0].bitfield.acc
6677 && i.tm.operand_types[0].bitfield.xmmword)
6678 {
6679 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6680 {
6681 /* Keep xmm0 for instructions with VEX prefix and 3
6682 sources. */
6683 i.tm.operand_types[0].bitfield.acc = 0;
6684 i.tm.operand_types[0].bitfield.regsimd = 1;
6685 goto duplicate;
6686 }
6687 else
6688 {
6689 /* We remove the first xmm0 and keep the number of
6690 operands unchanged, which in fact duplicates the
6691 destination. */
6692 for (j = 1; j < i.operands; j++)
6693 {
6694 i.op[j - 1] = i.op[j];
6695 i.types[j - 1] = i.types[j];
6696 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6697 }
6698 }
6699 }
6700 else if (i.tm.opcode_modifier.implicit1stxmm0)
6701 {
6702 gas_assert ((MAX_OPERANDS - 1) > dupl
6703 && (i.tm.opcode_modifier.vexsources
6704 == VEX3SOURCES));
6705
6706 /* Add the implicit xmm0 for instructions with VEX prefix
6707 and 3 sources. */
6708 for (j = i.operands; j > 0; j--)
6709 {
6710 i.op[j] = i.op[j - 1];
6711 i.types[j] = i.types[j - 1];
6712 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6713 }
6714 i.op[0].regs
6715 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6716 i.types[0] = regxmm;
6717 i.tm.operand_types[0] = regxmm;
6718
6719 i.operands += 2;
6720 i.reg_operands += 2;
6721 i.tm.operands += 2;
6722
6723 dupl++;
6724 dest++;
6725 i.op[dupl] = i.op[dest];
6726 i.types[dupl] = i.types[dest];
6727 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6728 }
6729 else
6730 {
6731 duplicate:
6732 i.operands++;
6733 i.reg_operands++;
6734 i.tm.operands++;
6735
6736 i.op[dupl] = i.op[dest];
6737 i.types[dupl] = i.types[dest];
6738 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6739 }
6740
6741 if (i.tm.opcode_modifier.immext)
6742 process_immext ();
6743 }
6744 else if (i.tm.operand_types[0].bitfield.acc
6745 && i.tm.operand_types[0].bitfield.xmmword)
6746 {
6747 unsigned int j;
6748
6749 for (j = 1; j < i.operands; j++)
6750 {
6751 i.op[j - 1] = i.op[j];
6752 i.types[j - 1] = i.types[j];
6753
6754 /* We need to adjust fields in i.tm since they are used by
6755 build_modrm_byte. */
6756 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6757 }
6758
6759 i.operands--;
6760 i.reg_operands--;
6761 i.tm.operands--;
6762 }
6763 else if (i.tm.opcode_modifier.implicitquadgroup)
6764 {
6765 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6766
6767 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6768 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
6769 regnum = register_number (i.op[1].regs);
6770 first_reg_in_group = regnum & ~3;
6771 last_reg_in_group = first_reg_in_group + 3;
6772 if (regnum != first_reg_in_group)
6773 as_warn (_("source register `%s%s' implicitly denotes"
6774 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6775 register_prefix, i.op[1].regs->reg_name,
6776 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6777 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6778 i.tm.name);
6779 }
6780 else if (i.tm.opcode_modifier.regkludge)
6781 {
6782 /* The imul $imm, %reg instruction is converted into
6783 imul $imm, %reg, %reg, and the clr %reg instruction
6784 is converted into xor %reg, %reg. */
6785
6786 unsigned int first_reg_op;
6787
6788 if (operand_type_check (i.types[0], reg))
6789 first_reg_op = 0;
6790 else
6791 first_reg_op = 1;
6792 /* Pretend we saw the extra register operand. */
6793 gas_assert (i.reg_operands == 1
6794 && i.op[first_reg_op + 1].regs == 0);
6795 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6796 i.types[first_reg_op + 1] = i.types[first_reg_op];
6797 i.operands++;
6798 i.reg_operands++;
6799 }
6800
6801 if (i.tm.opcode_modifier.shortform)
6802 {
6803 if (i.types[0].bitfield.sreg2
6804 || i.types[0].bitfield.sreg3)
6805 {
6806 if (i.tm.base_opcode == POP_SEG_SHORT
6807 && i.op[0].regs->reg_num == 1)
6808 {
6809 as_bad (_("you can't `pop %scs'"), register_prefix);
6810 return 0;
6811 }
6812 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6813 if ((i.op[0].regs->reg_flags & RegRex) != 0)
6814 i.rex |= REX_B;
6815 }
6816 else
6817 {
6818 /* The register or float register operand is in operand
6819 0 or 1. */
6820 unsigned int op;
6821
6822 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
6823 || operand_type_check (i.types[0], reg))
6824 op = 0;
6825 else
6826 op = 1;
6827 /* Register goes in low 3 bits of opcode. */
6828 i.tm.base_opcode |= i.op[op].regs->reg_num;
6829 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6830 i.rex |= REX_B;
6831 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6832 {
6833 /* Warn about some common errors, but press on regardless.
6834 The first case can be generated by gcc (<= 2.8.1). */
6835 if (i.operands == 2)
6836 {
6837 /* Reversed arguments on faddp, fsubp, etc. */
6838 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6839 register_prefix, i.op[!intel_syntax].regs->reg_name,
6840 register_prefix, i.op[intel_syntax].regs->reg_name);
6841 }
6842 else
6843 {
6844 /* Extraneous `l' suffix on fp insn. */
6845 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6846 register_prefix, i.op[0].regs->reg_name);
6847 }
6848 }
6849 }
6850 }
6851 else if (i.tm.opcode_modifier.modrm)
6852 {
6853 /* The opcode is completed (modulo i.tm.extension_opcode which
6854 must be put into the modrm byte). Now, we make the modrm and
6855 index base bytes based on all the info we've collected. */
6856
6857 default_seg = build_modrm_byte ();
6858 }
6859 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6860 {
6861 default_seg = &ds;
6862 }
6863 else if (i.tm.opcode_modifier.isstring)
6864 {
6865 /* For the string instructions that allow a segment override
6866 on one of their operands, the default segment is ds. */
6867 default_seg = &ds;
6868 }
6869
6870 if (i.tm.base_opcode == 0x8d /* lea */
6871 && i.seg[0]
6872 && !quiet_warnings)
6873 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6874
6875 /* If a segment was explicitly specified, and the specified segment
6876 is not the default, use an opcode prefix to select it. If we
6877 never figured out what the default segment is, then default_seg
6878 will be zero at this point, and the specified segment prefix will
6879 always be used. */
6880 if ((i.seg[0]) && (i.seg[0] != default_seg))
6881 {
6882 if (!add_prefix (i.seg[0]->seg_prefix))
6883 return 0;
6884 }
6885 return 1;
6886 }
6887
6888 static const seg_entry *
6889 build_modrm_byte (void)
6890 {
6891 const seg_entry *default_seg = 0;
6892 unsigned int source, dest;
6893 int vex_3_sources;
6894
6895 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
6896 if (vex_3_sources)
6897 {
6898 unsigned int nds, reg_slot;
6899 expressionS *exp;
6900
6901 dest = i.operands - 1;
6902 nds = dest - 1;
6903
6904 /* There are 2 kinds of instructions:
6905 1. 5 operands: 4 register operands or 3 register operands
6906 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6907 VexW0 or VexW1. The destination must be either XMM, YMM or
6908 ZMM register.
6909 2. 4 operands: 4 register operands or 3 register operands
6910 plus 1 memory operand, with VexXDS. */
6911 gas_assert ((i.reg_operands == 4
6912 || (i.reg_operands == 3 && i.mem_operands == 1))
6913 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6914 && i.tm.opcode_modifier.vexw
6915 && i.tm.operand_types[dest].bitfield.regsimd);
6916
6917 /* If VexW1 is set, the first non-immediate operand is the source and
6918 the second non-immediate one is encoded in the immediate operand. */
6919 if (i.tm.opcode_modifier.vexw == VEXW1)
6920 {
6921 source = i.imm_operands;
6922 reg_slot = i.imm_operands + 1;
6923 }
6924 else
6925 {
6926 source = i.imm_operands + 1;
6927 reg_slot = i.imm_operands;
6928 }
6929
6930 if (i.imm_operands == 0)
6931 {
6932 /* When there is no immediate operand, generate an 8bit
6933 immediate operand to encode the first operand. */
6934 exp = &im_expressions[i.imm_operands++];
6935 i.op[i.operands].imms = exp;
6936 i.types[i.operands] = imm8;
6937 i.operands++;
6938
6939 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6940 exp->X_op = O_constant;
6941 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6942 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6943 }
6944 else
6945 {
6946 unsigned int imm_slot;
6947
6948 gas_assert (i.imm_operands == 1 && i.types[0].bitfield.vec_imm4);
6949
6950 if (i.tm.opcode_modifier.immext)
6951 {
6952 /* When ImmExt is set, the immediate byte is the last
6953 operand. */
6954 imm_slot = i.operands - 1;
6955 source--;
6956 reg_slot--;
6957 }
6958 else
6959 {
6960 imm_slot = 0;
6961
6962 /* Turn on Imm8 so that output_imm will generate it. */
6963 i.types[imm_slot].bitfield.imm8 = 1;
6964 }
6965
6966 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6967 i.op[imm_slot].imms->X_add_number
6968 |= register_number (i.op[reg_slot].regs) << 4;
6969 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6970 }
6971
6972 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
6973 i.vex.register_specifier = i.op[nds].regs;
6974 }
6975 else
6976 source = dest = 0;
6977
6978 /* i.reg_operands MUST be the number of real register operands;
6979 implicit registers do not count. If there are 3 register
6980 operands, it must be a instruction with VexNDS. For a
6981 instruction with VexNDD, the destination register is encoded
6982 in VEX prefix. If there are 4 register operands, it must be
6983 a instruction with VEX prefix and 3 sources. */
6984 if (i.mem_operands == 0
6985 && ((i.reg_operands == 2
6986 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6987 || (i.reg_operands == 3
6988 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6989 || (i.reg_operands == 4 && vex_3_sources)))
6990 {
6991 switch (i.operands)
6992 {
6993 case 2:
6994 source = 0;
6995 break;
6996 case 3:
6997 /* When there are 3 operands, one of them may be immediate,
6998 which may be the first or the last operand. Otherwise,
6999 the first operand must be shift count register (cl) or it
7000 is an instruction with VexNDS. */
7001 gas_assert (i.imm_operands == 1
7002 || (i.imm_operands == 0
7003 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7004 || i.types[0].bitfield.shiftcount)));
7005 if (operand_type_check (i.types[0], imm)
7006 || i.types[0].bitfield.shiftcount)
7007 source = 1;
7008 else
7009 source = 0;
7010 break;
7011 case 4:
7012 /* When there are 4 operands, the first two must be 8bit
7013 immediate operands. The source operand will be the 3rd
7014 one.
7015
7016 For instructions with VexNDS, if the first operand
7017 an imm8, the source operand is the 2nd one. If the last
7018 operand is imm8, the source operand is the first one. */
7019 gas_assert ((i.imm_operands == 2
7020 && i.types[0].bitfield.imm8
7021 && i.types[1].bitfield.imm8)
7022 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7023 && i.imm_operands == 1
7024 && (i.types[0].bitfield.imm8
7025 || i.types[i.operands - 1].bitfield.imm8
7026 || i.rounding)));
7027 if (i.imm_operands == 2)
7028 source = 2;
7029 else
7030 {
7031 if (i.types[0].bitfield.imm8)
7032 source = 1;
7033 else
7034 source = 0;
7035 }
7036 break;
7037 case 5:
7038 if (is_evex_encoding (&i.tm))
7039 {
7040 /* For EVEX instructions, when there are 5 operands, the
7041 first one must be immediate operand. If the second one
7042 is immediate operand, the source operand is the 3th
7043 one. If the last one is immediate operand, the source
7044 operand is the 2nd one. */
7045 gas_assert (i.imm_operands == 2
7046 && i.tm.opcode_modifier.sae
7047 && operand_type_check (i.types[0], imm));
7048 if (operand_type_check (i.types[1], imm))
7049 source = 2;
7050 else if (operand_type_check (i.types[4], imm))
7051 source = 1;
7052 else
7053 abort ();
7054 }
7055 break;
7056 default:
7057 abort ();
7058 }
7059
7060 if (!vex_3_sources)
7061 {
7062 dest = source + 1;
7063
7064 /* RC/SAE operand could be between DEST and SRC. That happens
7065 when one operand is GPR and the other one is XMM/YMM/ZMM
7066 register. */
7067 if (i.rounding && i.rounding->operand == (int) dest)
7068 dest++;
7069
7070 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7071 {
7072 /* For instructions with VexNDS, the register-only source
7073 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7074 register. It is encoded in VEX prefix. We need to
7075 clear RegMem bit before calling operand_type_equal. */
7076
7077 i386_operand_type op;
7078 unsigned int vvvv;
7079
7080 /* Check register-only source operand when two source
7081 operands are swapped. */
7082 if (!i.tm.operand_types[source].bitfield.baseindex
7083 && i.tm.operand_types[dest].bitfield.baseindex)
7084 {
7085 vvvv = source;
7086 source = dest;
7087 }
7088 else
7089 vvvv = dest;
7090
7091 op = i.tm.operand_types[vvvv];
7092 op.bitfield.regmem = 0;
7093 if ((dest + 1) >= i.operands
7094 || ((!op.bitfield.reg
7095 || (!op.bitfield.dword && !op.bitfield.qword))
7096 && !op.bitfield.regsimd
7097 && !operand_type_equal (&op, &regmask)))
7098 abort ();
7099 i.vex.register_specifier = i.op[vvvv].regs;
7100 dest++;
7101 }
7102 }
7103
7104 i.rm.mode = 3;
7105 /* One of the register operands will be encoded in the i.tm.reg
7106 field, the other in the combined i.tm.mode and i.tm.regmem
7107 fields. If no form of this instruction supports a memory
7108 destination operand, then we assume the source operand may
7109 sometimes be a memory operand and so we need to store the
7110 destination in the i.rm.reg field. */
7111 if (!i.tm.operand_types[dest].bitfield.regmem
7112 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7113 {
7114 i.rm.reg = i.op[dest].regs->reg_num;
7115 i.rm.regmem = i.op[source].regs->reg_num;
7116 if (i.op[dest].regs->reg_type.bitfield.regmmx
7117 || i.op[source].regs->reg_type.bitfield.regmmx)
7118 i.has_regmmx = TRUE;
7119 else if (i.op[dest].regs->reg_type.bitfield.regsimd
7120 || i.op[source].regs->reg_type.bitfield.regsimd)
7121 {
7122 if (i.types[dest].bitfield.zmmword
7123 || i.types[source].bitfield.zmmword)
7124 i.has_regzmm = TRUE;
7125 else if (i.types[dest].bitfield.ymmword
7126 || i.types[source].bitfield.ymmword)
7127 i.has_regymm = TRUE;
7128 else
7129 i.has_regxmm = TRUE;
7130 }
7131 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7132 i.rex |= REX_R;
7133 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7134 i.vrex |= REX_R;
7135 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7136 i.rex |= REX_B;
7137 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7138 i.vrex |= REX_B;
7139 }
7140 else
7141 {
7142 i.rm.reg = i.op[source].regs->reg_num;
7143 i.rm.regmem = i.op[dest].regs->reg_num;
7144 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7145 i.rex |= REX_B;
7146 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7147 i.vrex |= REX_B;
7148 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7149 i.rex |= REX_R;
7150 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7151 i.vrex |= REX_R;
7152 }
7153 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7154 {
7155 if (!i.types[i.tm.operand_types[0].bitfield.regmem].bitfield.control)
7156 abort ();
7157 i.rex &= ~REX_R;
7158 add_prefix (LOCK_PREFIX_OPCODE);
7159 }
7160 }
7161 else
7162 { /* If it's not 2 reg operands... */
7163 unsigned int mem;
7164
7165 if (i.mem_operands)
7166 {
7167 unsigned int fake_zero_displacement = 0;
7168 unsigned int op;
7169
7170 for (op = 0; op < i.operands; op++)
7171 if (operand_type_check (i.types[op], anymem))
7172 break;
7173 gas_assert (op < i.operands);
7174
7175 if (i.tm.opcode_modifier.vecsib)
7176 {
7177 if (i.index_reg->reg_num == RegIZ)
7178 abort ();
7179
7180 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7181 if (!i.base_reg)
7182 {
7183 i.sib.base = NO_BASE_REGISTER;
7184 i.sib.scale = i.log2_scale_factor;
7185 i.types[op].bitfield.disp8 = 0;
7186 i.types[op].bitfield.disp16 = 0;
7187 i.types[op].bitfield.disp64 = 0;
7188 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7189 {
7190 /* Must be 32 bit */
7191 i.types[op].bitfield.disp32 = 1;
7192 i.types[op].bitfield.disp32s = 0;
7193 }
7194 else
7195 {
7196 i.types[op].bitfield.disp32 = 0;
7197 i.types[op].bitfield.disp32s = 1;
7198 }
7199 }
7200 i.sib.index = i.index_reg->reg_num;
7201 if ((i.index_reg->reg_flags & RegRex) != 0)
7202 i.rex |= REX_X;
7203 if ((i.index_reg->reg_flags & RegVRex) != 0)
7204 i.vrex |= REX_X;
7205 }
7206
7207 default_seg = &ds;
7208
7209 if (i.base_reg == 0)
7210 {
7211 i.rm.mode = 0;
7212 if (!i.disp_operands)
7213 fake_zero_displacement = 1;
7214 if (i.index_reg == 0)
7215 {
7216 i386_operand_type newdisp;
7217
7218 gas_assert (!i.tm.opcode_modifier.vecsib);
7219 /* Operand is just <disp> */
7220 if (flag_code == CODE_64BIT)
7221 {
7222 /* 64bit mode overwrites the 32bit absolute
7223 addressing by RIP relative addressing and
7224 absolute addressing is encoded by one of the
7225 redundant SIB forms. */
7226 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7227 i.sib.base = NO_BASE_REGISTER;
7228 i.sib.index = NO_INDEX_REGISTER;
7229 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7230 }
7231 else if ((flag_code == CODE_16BIT)
7232 ^ (i.prefix[ADDR_PREFIX] != 0))
7233 {
7234 i.rm.regmem = NO_BASE_REGISTER_16;
7235 newdisp = disp16;
7236 }
7237 else
7238 {
7239 i.rm.regmem = NO_BASE_REGISTER;
7240 newdisp = disp32;
7241 }
7242 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7243 i.types[op] = operand_type_or (i.types[op], newdisp);
7244 }
7245 else if (!i.tm.opcode_modifier.vecsib)
7246 {
7247 /* !i.base_reg && i.index_reg */
7248 if (i.index_reg->reg_num == RegIZ)
7249 i.sib.index = NO_INDEX_REGISTER;
7250 else
7251 i.sib.index = i.index_reg->reg_num;
7252 i.sib.base = NO_BASE_REGISTER;
7253 i.sib.scale = i.log2_scale_factor;
7254 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7255 i.types[op].bitfield.disp8 = 0;
7256 i.types[op].bitfield.disp16 = 0;
7257 i.types[op].bitfield.disp64 = 0;
7258 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7259 {
7260 /* Must be 32 bit */
7261 i.types[op].bitfield.disp32 = 1;
7262 i.types[op].bitfield.disp32s = 0;
7263 }
7264 else
7265 {
7266 i.types[op].bitfield.disp32 = 0;
7267 i.types[op].bitfield.disp32s = 1;
7268 }
7269 if ((i.index_reg->reg_flags & RegRex) != 0)
7270 i.rex |= REX_X;
7271 }
7272 }
7273 /* RIP addressing for 64bit mode. */
7274 else if (i.base_reg->reg_num == RegIP)
7275 {
7276 gas_assert (!i.tm.opcode_modifier.vecsib);
7277 i.rm.regmem = NO_BASE_REGISTER;
7278 i.types[op].bitfield.disp8 = 0;
7279 i.types[op].bitfield.disp16 = 0;
7280 i.types[op].bitfield.disp32 = 0;
7281 i.types[op].bitfield.disp32s = 1;
7282 i.types[op].bitfield.disp64 = 0;
7283 i.flags[op] |= Operand_PCrel;
7284 if (! i.disp_operands)
7285 fake_zero_displacement = 1;
7286 }
7287 else if (i.base_reg->reg_type.bitfield.word)
7288 {
7289 gas_assert (!i.tm.opcode_modifier.vecsib);
7290 switch (i.base_reg->reg_num)
7291 {
7292 case 3: /* (%bx) */
7293 if (i.index_reg == 0)
7294 i.rm.regmem = 7;
7295 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7296 i.rm.regmem = i.index_reg->reg_num - 6;
7297 break;
7298 case 5: /* (%bp) */
7299 default_seg = &ss;
7300 if (i.index_reg == 0)
7301 {
7302 i.rm.regmem = 6;
7303 if (operand_type_check (i.types[op], disp) == 0)
7304 {
7305 /* fake (%bp) into 0(%bp) */
7306 i.types[op].bitfield.disp8 = 1;
7307 fake_zero_displacement = 1;
7308 }
7309 }
7310 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7311 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7312 break;
7313 default: /* (%si) -> 4 or (%di) -> 5 */
7314 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7315 }
7316 i.rm.mode = mode_from_disp_size (i.types[op]);
7317 }
7318 else /* i.base_reg and 32/64 bit mode */
7319 {
7320 if (flag_code == CODE_64BIT
7321 && operand_type_check (i.types[op], disp))
7322 {
7323 i.types[op].bitfield.disp16 = 0;
7324 i.types[op].bitfield.disp64 = 0;
7325 if (i.prefix[ADDR_PREFIX] == 0)
7326 {
7327 i.types[op].bitfield.disp32 = 0;
7328 i.types[op].bitfield.disp32s = 1;
7329 }
7330 else
7331 {
7332 i.types[op].bitfield.disp32 = 1;
7333 i.types[op].bitfield.disp32s = 0;
7334 }
7335 }
7336
7337 if (!i.tm.opcode_modifier.vecsib)
7338 i.rm.regmem = i.base_reg->reg_num;
7339 if ((i.base_reg->reg_flags & RegRex) != 0)
7340 i.rex |= REX_B;
7341 i.sib.base = i.base_reg->reg_num;
7342 /* x86-64 ignores REX prefix bit here to avoid decoder
7343 complications. */
7344 if (!(i.base_reg->reg_flags & RegRex)
7345 && (i.base_reg->reg_num == EBP_REG_NUM
7346 || i.base_reg->reg_num == ESP_REG_NUM))
7347 default_seg = &ss;
7348 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7349 {
7350 fake_zero_displacement = 1;
7351 i.types[op].bitfield.disp8 = 1;
7352 }
7353 i.sib.scale = i.log2_scale_factor;
7354 if (i.index_reg == 0)
7355 {
7356 gas_assert (!i.tm.opcode_modifier.vecsib);
7357 /* <disp>(%esp) becomes two byte modrm with no index
7358 register. We've already stored the code for esp
7359 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7360 Any base register besides %esp will not use the
7361 extra modrm byte. */
7362 i.sib.index = NO_INDEX_REGISTER;
7363 }
7364 else if (!i.tm.opcode_modifier.vecsib)
7365 {
7366 if (i.index_reg->reg_num == RegIZ)
7367 i.sib.index = NO_INDEX_REGISTER;
7368 else
7369 i.sib.index = i.index_reg->reg_num;
7370 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7371 if ((i.index_reg->reg_flags & RegRex) != 0)
7372 i.rex |= REX_X;
7373 }
7374
7375 if (i.disp_operands
7376 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7377 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7378 i.rm.mode = 0;
7379 else
7380 {
7381 if (!fake_zero_displacement
7382 && !i.disp_operands
7383 && i.disp_encoding)
7384 {
7385 fake_zero_displacement = 1;
7386 if (i.disp_encoding == disp_encoding_8bit)
7387 i.types[op].bitfield.disp8 = 1;
7388 else
7389 i.types[op].bitfield.disp32 = 1;
7390 }
7391 i.rm.mode = mode_from_disp_size (i.types[op]);
7392 }
7393 }
7394
7395 if (fake_zero_displacement)
7396 {
7397 /* Fakes a zero displacement assuming that i.types[op]
7398 holds the correct displacement size. */
7399 expressionS *exp;
7400
7401 gas_assert (i.op[op].disps == 0);
7402 exp = &disp_expressions[i.disp_operands++];
7403 i.op[op].disps = exp;
7404 exp->X_op = O_constant;
7405 exp->X_add_number = 0;
7406 exp->X_add_symbol = (symbolS *) 0;
7407 exp->X_op_symbol = (symbolS *) 0;
7408 }
7409
7410 mem = op;
7411 }
7412 else
7413 mem = ~0;
7414
7415 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7416 {
7417 if (operand_type_check (i.types[0], imm))
7418 i.vex.register_specifier = NULL;
7419 else
7420 {
7421 /* VEX.vvvv encodes one of the sources when the first
7422 operand is not an immediate. */
7423 if (i.tm.opcode_modifier.vexw == VEXW0)
7424 i.vex.register_specifier = i.op[0].regs;
7425 else
7426 i.vex.register_specifier = i.op[1].regs;
7427 }
7428
7429 /* Destination is a XMM register encoded in the ModRM.reg
7430 and VEX.R bit. */
7431 i.rm.reg = i.op[2].regs->reg_num;
7432 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7433 i.rex |= REX_R;
7434
7435 /* ModRM.rm and VEX.B encodes the other source. */
7436 if (!i.mem_operands)
7437 {
7438 i.rm.mode = 3;
7439
7440 if (i.tm.opcode_modifier.vexw == VEXW0)
7441 i.rm.regmem = i.op[1].regs->reg_num;
7442 else
7443 i.rm.regmem = i.op[0].regs->reg_num;
7444
7445 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7446 i.rex |= REX_B;
7447 }
7448 }
7449 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7450 {
7451 i.vex.register_specifier = i.op[2].regs;
7452 if (!i.mem_operands)
7453 {
7454 i.rm.mode = 3;
7455 i.rm.regmem = i.op[1].regs->reg_num;
7456 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7457 i.rex |= REX_B;
7458 }
7459 }
7460 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7461 (if any) based on i.tm.extension_opcode. Again, we must be
7462 careful to make sure that segment/control/debug/test/MMX
7463 registers are coded into the i.rm.reg field. */
7464 else if (i.reg_operands)
7465 {
7466 unsigned int op;
7467 unsigned int vex_reg = ~0;
7468
7469 for (op = 0; op < i.operands; op++)
7470 {
7471 if (i.types[op].bitfield.reg
7472 || i.types[op].bitfield.regbnd
7473 || i.types[op].bitfield.regmask
7474 || i.types[op].bitfield.sreg2
7475 || i.types[op].bitfield.sreg3
7476 || i.types[op].bitfield.control
7477 || i.types[op].bitfield.debug
7478 || i.types[op].bitfield.test)
7479 break;
7480 if (i.types[op].bitfield.regsimd)
7481 {
7482 if (i.types[op].bitfield.zmmword)
7483 i.has_regzmm = TRUE;
7484 else if (i.types[op].bitfield.ymmword)
7485 i.has_regymm = TRUE;
7486 else
7487 i.has_regxmm = TRUE;
7488 break;
7489 }
7490 if (i.types[op].bitfield.regmmx)
7491 {
7492 i.has_regmmx = TRUE;
7493 break;
7494 }
7495 }
7496
7497 if (vex_3_sources)
7498 op = dest;
7499 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7500 {
7501 /* For instructions with VexNDS, the register-only
7502 source operand is encoded in VEX prefix. */
7503 gas_assert (mem != (unsigned int) ~0);
7504
7505 if (op > mem)
7506 {
7507 vex_reg = op++;
7508 gas_assert (op < i.operands);
7509 }
7510 else
7511 {
7512 /* Check register-only source operand when two source
7513 operands are swapped. */
7514 if (!i.tm.operand_types[op].bitfield.baseindex
7515 && i.tm.operand_types[op + 1].bitfield.baseindex)
7516 {
7517 vex_reg = op;
7518 op += 2;
7519 gas_assert (mem == (vex_reg + 1)
7520 && op < i.operands);
7521 }
7522 else
7523 {
7524 vex_reg = op + 1;
7525 gas_assert (vex_reg < i.operands);
7526 }
7527 }
7528 }
7529 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7530 {
7531 /* For instructions with VexNDD, the register destination
7532 is encoded in VEX prefix. */
7533 if (i.mem_operands == 0)
7534 {
7535 /* There is no memory operand. */
7536 gas_assert ((op + 2) == i.operands);
7537 vex_reg = op + 1;
7538 }
7539 else
7540 {
7541 /* There are only 2 non-immediate operands. */
7542 gas_assert (op < i.imm_operands + 2
7543 && i.operands == i.imm_operands + 2);
7544 vex_reg = i.imm_operands + 1;
7545 }
7546 }
7547 else
7548 gas_assert (op < i.operands);
7549
7550 if (vex_reg != (unsigned int) ~0)
7551 {
7552 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7553
7554 if ((!type->bitfield.reg
7555 || (!type->bitfield.dword && !type->bitfield.qword))
7556 && !type->bitfield.regsimd
7557 && !operand_type_equal (type, &regmask))
7558 abort ();
7559
7560 i.vex.register_specifier = i.op[vex_reg].regs;
7561 }
7562
7563 /* Don't set OP operand twice. */
7564 if (vex_reg != op)
7565 {
7566 /* If there is an extension opcode to put here, the
7567 register number must be put into the regmem field. */
7568 if (i.tm.extension_opcode != None)
7569 {
7570 i.rm.regmem = i.op[op].regs->reg_num;
7571 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7572 i.rex |= REX_B;
7573 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7574 i.vrex |= REX_B;
7575 }
7576 else
7577 {
7578 i.rm.reg = i.op[op].regs->reg_num;
7579 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7580 i.rex |= REX_R;
7581 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7582 i.vrex |= REX_R;
7583 }
7584 }
7585
7586 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7587 must set it to 3 to indicate this is a register operand
7588 in the regmem field. */
7589 if (!i.mem_operands)
7590 i.rm.mode = 3;
7591 }
7592
7593 /* Fill in i.rm.reg field with extension opcode (if any). */
7594 if (i.tm.extension_opcode != None)
7595 i.rm.reg = i.tm.extension_opcode;
7596 }
7597 return default_seg;
7598 }
7599
7600 static void
7601 output_branch (void)
7602 {
7603 char *p;
7604 int size;
7605 int code16;
7606 int prefix;
7607 relax_substateT subtype;
7608 symbolS *sym;
7609 offsetT off;
7610
7611 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7612 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7613
7614 prefix = 0;
7615 if (i.prefix[DATA_PREFIX] != 0)
7616 {
7617 prefix = 1;
7618 i.prefixes -= 1;
7619 code16 ^= CODE16;
7620 }
7621 /* Pentium4 branch hints. */
7622 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7623 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7624 {
7625 prefix++;
7626 i.prefixes--;
7627 }
7628 if (i.prefix[REX_PREFIX] != 0)
7629 {
7630 prefix++;
7631 i.prefixes--;
7632 }
7633
7634 /* BND prefixed jump. */
7635 if (i.prefix[BND_PREFIX] != 0)
7636 {
7637 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7638 i.prefixes -= 1;
7639 }
7640
7641 if (i.prefixes != 0 && !intel_syntax)
7642 as_warn (_("skipping prefixes on this instruction"));
7643
7644 /* It's always a symbol; End frag & setup for relax.
7645 Make sure there is enough room in this frag for the largest
7646 instruction we may generate in md_convert_frag. This is 2
7647 bytes for the opcode and room for the prefix and largest
7648 displacement. */
7649 frag_grow (prefix + 2 + 4);
7650 /* Prefix and 1 opcode byte go in fr_fix. */
7651 p = frag_more (prefix + 1);
7652 if (i.prefix[DATA_PREFIX] != 0)
7653 *p++ = DATA_PREFIX_OPCODE;
7654 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7655 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7656 *p++ = i.prefix[SEG_PREFIX];
7657 if (i.prefix[REX_PREFIX] != 0)
7658 *p++ = i.prefix[REX_PREFIX];
7659 *p = i.tm.base_opcode;
7660
7661 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7662 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7663 else if (cpu_arch_flags.bitfield.cpui386)
7664 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7665 else
7666 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7667 subtype |= code16;
7668
7669 sym = i.op[0].disps->X_add_symbol;
7670 off = i.op[0].disps->X_add_number;
7671
7672 if (i.op[0].disps->X_op != O_constant
7673 && i.op[0].disps->X_op != O_symbol)
7674 {
7675 /* Handle complex expressions. */
7676 sym = make_expr_symbol (i.op[0].disps);
7677 off = 0;
7678 }
7679
7680 /* 1 possible extra opcode + 4 byte displacement go in var part.
7681 Pass reloc in fr_var. */
7682 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7683 }
7684
7685 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7686 /* Return TRUE iff PLT32 relocation should be used for branching to
7687 symbol S. */
7688
7689 static bfd_boolean
7690 need_plt32_p (symbolS *s)
7691 {
7692 /* PLT32 relocation is ELF only. */
7693 if (!IS_ELF)
7694 return FALSE;
7695
7696 /* Since there is no need to prepare for PLT branch on x86-64, we
7697 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7698 be used as a marker for 32-bit PC-relative branches. */
7699 if (!object_64bit)
7700 return FALSE;
7701
7702 /* Weak or undefined symbol need PLT32 relocation. */
7703 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7704 return TRUE;
7705
7706 /* Non-global symbol doesn't need PLT32 relocation. */
7707 if (! S_IS_EXTERNAL (s))
7708 return FALSE;
7709
7710 /* Other global symbols need PLT32 relocation. NB: Symbol with
7711 non-default visibilities are treated as normal global symbol
7712 so that PLT32 relocation can be used as a marker for 32-bit
7713 PC-relative branches. It is useful for linker relaxation. */
7714 return TRUE;
7715 }
7716 #endif
7717
7718 static void
7719 output_jump (void)
7720 {
7721 char *p;
7722 int size;
7723 fixS *fixP;
7724 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7725
7726 if (i.tm.opcode_modifier.jumpbyte)
7727 {
7728 /* This is a loop or jecxz type instruction. */
7729 size = 1;
7730 if (i.prefix[ADDR_PREFIX] != 0)
7731 {
7732 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7733 i.prefixes -= 1;
7734 }
7735 /* Pentium4 branch hints. */
7736 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7737 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7738 {
7739 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7740 i.prefixes--;
7741 }
7742 }
7743 else
7744 {
7745 int code16;
7746
7747 code16 = 0;
7748 if (flag_code == CODE_16BIT)
7749 code16 = CODE16;
7750
7751 if (i.prefix[DATA_PREFIX] != 0)
7752 {
7753 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7754 i.prefixes -= 1;
7755 code16 ^= CODE16;
7756 }
7757
7758 size = 4;
7759 if (code16)
7760 size = 2;
7761 }
7762
7763 if (i.prefix[REX_PREFIX] != 0)
7764 {
7765 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7766 i.prefixes -= 1;
7767 }
7768
7769 /* BND prefixed jump. */
7770 if (i.prefix[BND_PREFIX] != 0)
7771 {
7772 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7773 i.prefixes -= 1;
7774 }
7775
7776 if (i.prefixes != 0 && !intel_syntax)
7777 as_warn (_("skipping prefixes on this instruction"));
7778
7779 p = frag_more (i.tm.opcode_length + size);
7780 switch (i.tm.opcode_length)
7781 {
7782 case 2:
7783 *p++ = i.tm.base_opcode >> 8;
7784 /* Fall through. */
7785 case 1:
7786 *p++ = i.tm.base_opcode;
7787 break;
7788 default:
7789 abort ();
7790 }
7791
7792 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7793 if (size == 4
7794 && jump_reloc == NO_RELOC
7795 && need_plt32_p (i.op[0].disps->X_add_symbol))
7796 jump_reloc = BFD_RELOC_X86_64_PLT32;
7797 #endif
7798
7799 jump_reloc = reloc (size, 1, 1, jump_reloc);
7800
7801 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7802 i.op[0].disps, 1, jump_reloc);
7803
7804 /* All jumps handled here are signed, but don't use a signed limit
7805 check for 32 and 16 bit jumps as we want to allow wrap around at
7806 4G and 64k respectively. */
7807 if (size == 1)
7808 fixP->fx_signed = 1;
7809 }
7810
7811 static void
7812 output_interseg_jump (void)
7813 {
7814 char *p;
7815 int size;
7816 int prefix;
7817 int code16;
7818
7819 code16 = 0;
7820 if (flag_code == CODE_16BIT)
7821 code16 = CODE16;
7822
7823 prefix = 0;
7824 if (i.prefix[DATA_PREFIX] != 0)
7825 {
7826 prefix = 1;
7827 i.prefixes -= 1;
7828 code16 ^= CODE16;
7829 }
7830 if (i.prefix[REX_PREFIX] != 0)
7831 {
7832 prefix++;
7833 i.prefixes -= 1;
7834 }
7835
7836 size = 4;
7837 if (code16)
7838 size = 2;
7839
7840 if (i.prefixes != 0 && !intel_syntax)
7841 as_warn (_("skipping prefixes on this instruction"));
7842
7843 /* 1 opcode; 2 segment; offset */
7844 p = frag_more (prefix + 1 + 2 + size);
7845
7846 if (i.prefix[DATA_PREFIX] != 0)
7847 *p++ = DATA_PREFIX_OPCODE;
7848
7849 if (i.prefix[REX_PREFIX] != 0)
7850 *p++ = i.prefix[REX_PREFIX];
7851
7852 *p++ = i.tm.base_opcode;
7853 if (i.op[1].imms->X_op == O_constant)
7854 {
7855 offsetT n = i.op[1].imms->X_add_number;
7856
7857 if (size == 2
7858 && !fits_in_unsigned_word (n)
7859 && !fits_in_signed_word (n))
7860 {
7861 as_bad (_("16-bit jump out of range"));
7862 return;
7863 }
7864 md_number_to_chars (p, n, size);
7865 }
7866 else
7867 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7868 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7869 if (i.op[0].imms->X_op != O_constant)
7870 as_bad (_("can't handle non absolute segment in `%s'"),
7871 i.tm.name);
7872 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7873 }
7874
7875 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7876 void
7877 x86_cleanup (void)
7878 {
7879 char *p;
7880 asection *seg = now_seg;
7881 subsegT subseg = now_subseg;
7882 asection *sec;
7883 unsigned int alignment, align_size_1;
7884 unsigned int isa_1_descsz, feature_2_descsz, descsz;
7885 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
7886 unsigned int padding;
7887
7888 if (!IS_ELF || !x86_used_note)
7889 return;
7890
7891 x86_isa_1_used |= GNU_PROPERTY_X86_UINT32_VALID;
7892 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
7893
7894 /* The .note.gnu.property section layout:
7895
7896 Field Length Contents
7897 ---- ---- ----
7898 n_namsz 4 4
7899 n_descsz 4 The note descriptor size
7900 n_type 4 NT_GNU_PROPERTY_TYPE_0
7901 n_name 4 "GNU"
7902 n_desc n_descsz The program property array
7903 .... .... ....
7904 */
7905
7906 /* Create the .note.gnu.property section. */
7907 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
7908 bfd_set_section_flags (stdoutput, sec,
7909 (SEC_ALLOC
7910 | SEC_LOAD
7911 | SEC_DATA
7912 | SEC_HAS_CONTENTS
7913 | SEC_READONLY));
7914
7915 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
7916 {
7917 align_size_1 = 7;
7918 alignment = 3;
7919 }
7920 else
7921 {
7922 align_size_1 = 3;
7923 alignment = 2;
7924 }
7925
7926 bfd_set_section_alignment (stdoutput, sec, alignment);
7927 elf_section_type (sec) = SHT_NOTE;
7928
7929 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
7930 + 4-byte data */
7931 isa_1_descsz_raw = 4 + 4 + 4;
7932 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
7933 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
7934
7935 feature_2_descsz_raw = isa_1_descsz;
7936 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
7937 + 4-byte data */
7938 feature_2_descsz_raw += 4 + 4 + 4;
7939 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
7940 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
7941 & ~align_size_1);
7942
7943 descsz = feature_2_descsz;
7944 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
7945 p = frag_more (4 + 4 + 4 + 4 + descsz);
7946
7947 /* Write n_namsz. */
7948 md_number_to_chars (p, (valueT) 4, 4);
7949
7950 /* Write n_descsz. */
7951 md_number_to_chars (p + 4, (valueT) descsz, 4);
7952
7953 /* Write n_type. */
7954 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
7955
7956 /* Write n_name. */
7957 memcpy (p + 4 * 3, "GNU", 4);
7958
7959 /* Write 4-byte type. */
7960 md_number_to_chars (p + 4 * 4,
7961 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
7962
7963 /* Write 4-byte data size. */
7964 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
7965
7966 /* Write 4-byte data. */
7967 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
7968
7969 /* Zero out paddings. */
7970 padding = isa_1_descsz - isa_1_descsz_raw;
7971 if (padding)
7972 memset (p + 4 * 7, 0, padding);
7973
7974 /* Write 4-byte type. */
7975 md_number_to_chars (p + isa_1_descsz + 4 * 4,
7976 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
7977
7978 /* Write 4-byte data size. */
7979 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
7980
7981 /* Write 4-byte data. */
7982 md_number_to_chars (p + isa_1_descsz + 4 * 6,
7983 (valueT) x86_feature_2_used, 4);
7984
7985 /* Zero out paddings. */
7986 padding = feature_2_descsz - feature_2_descsz_raw;
7987 if (padding)
7988 memset (p + isa_1_descsz + 4 * 7, 0, padding);
7989
7990 /* We probably can't restore the current segment, for there likely
7991 isn't one yet... */
7992 if (seg && subseg)
7993 subseg_set (seg, subseg);
7994 }
7995 #endif
7996
7997 static void
7998 output_insn (void)
7999 {
8000 fragS *insn_start_frag;
8001 offsetT insn_start_off;
8002
8003 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8004 if (IS_ELF && x86_used_note)
8005 {
8006 if (i.tm.cpu_flags.bitfield.cpucmov)
8007 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8008 if (i.tm.cpu_flags.bitfield.cpusse)
8009 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8010 if (i.tm.cpu_flags.bitfield.cpusse2)
8011 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8012 if (i.tm.cpu_flags.bitfield.cpusse3)
8013 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8014 if (i.tm.cpu_flags.bitfield.cpussse3)
8015 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8016 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8017 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8018 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8019 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8020 if (i.tm.cpu_flags.bitfield.cpuavx)
8021 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8022 if (i.tm.cpu_flags.bitfield.cpuavx2)
8023 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8024 if (i.tm.cpu_flags.bitfield.cpufma)
8025 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8026 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8027 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8028 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8029 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8030 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8031 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8032 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8033 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8034 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8035 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8036 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8037 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8038 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8039 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8040 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8041 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8042 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8043 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8044 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8045 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8046 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8047 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8048 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8049 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8050 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8051 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8052 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8053 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8054
8055 if (i.tm.cpu_flags.bitfield.cpu8087
8056 || i.tm.cpu_flags.bitfield.cpu287
8057 || i.tm.cpu_flags.bitfield.cpu387
8058 || i.tm.cpu_flags.bitfield.cpu687
8059 || i.tm.cpu_flags.bitfield.cpufisttp)
8060 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8061 /* Don't set GNU_PROPERTY_X86_FEATURE_2_MMX for prefetchtXXX nor
8062 Xfence instructions. */
8063 if (i.tm.base_opcode != 0xf18
8064 && i.tm.base_opcode != 0xf0d
8065 && i.tm.base_opcode != 0xfae
8066 && (i.has_regmmx
8067 || i.tm.cpu_flags.bitfield.cpummx
8068 || i.tm.cpu_flags.bitfield.cpua3dnow
8069 || i.tm.cpu_flags.bitfield.cpua3dnowa))
8070 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8071 if (i.has_regxmm)
8072 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8073 if (i.has_regymm)
8074 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8075 if (i.has_regzmm)
8076 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8077 if (i.tm.cpu_flags.bitfield.cpufxsr)
8078 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8079 if (i.tm.cpu_flags.bitfield.cpuxsave)
8080 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8081 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8082 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8083 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8084 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8085 }
8086 #endif
8087
8088 /* Tie dwarf2 debug info to the address at the start of the insn.
8089 We can't do this after the insn has been output as the current
8090 frag may have been closed off. eg. by frag_var. */
8091 dwarf2_emit_insn (0);
8092
8093 insn_start_frag = frag_now;
8094 insn_start_off = frag_now_fix ();
8095
8096 /* Output jumps. */
8097 if (i.tm.opcode_modifier.jump)
8098 output_branch ();
8099 else if (i.tm.opcode_modifier.jumpbyte
8100 || i.tm.opcode_modifier.jumpdword)
8101 output_jump ();
8102 else if (i.tm.opcode_modifier.jumpintersegment)
8103 output_interseg_jump ();
8104 else
8105 {
8106 /* Output normal instructions here. */
8107 char *p;
8108 unsigned char *q;
8109 unsigned int j;
8110 unsigned int prefix;
8111
8112 if (avoid_fence
8113 && i.tm.base_opcode == 0xfae
8114 && i.operands == 1
8115 && i.imm_operands == 1
8116 && (i.op[0].imms->X_add_number == 0xe8
8117 || i.op[0].imms->X_add_number == 0xf0
8118 || i.op[0].imms->X_add_number == 0xf8))
8119 {
8120 /* Encode lfence, mfence, and sfence as
8121 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8122 offsetT val = 0x240483f0ULL;
8123 p = frag_more (5);
8124 md_number_to_chars (p, val, 5);
8125 return;
8126 }
8127
8128 /* Some processors fail on LOCK prefix. This options makes
8129 assembler ignore LOCK prefix and serves as a workaround. */
8130 if (omit_lock_prefix)
8131 {
8132 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8133 return;
8134 i.prefix[LOCK_PREFIX] = 0;
8135 }
8136
8137 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8138 don't need the explicit prefix. */
8139 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
8140 {
8141 switch (i.tm.opcode_length)
8142 {
8143 case 3:
8144 if (i.tm.base_opcode & 0xff000000)
8145 {
8146 prefix = (i.tm.base_opcode >> 24) & 0xff;
8147 add_prefix (prefix);
8148 }
8149 break;
8150 case 2:
8151 if ((i.tm.base_opcode & 0xff0000) != 0)
8152 {
8153 prefix = (i.tm.base_opcode >> 16) & 0xff;
8154 if (!i.tm.cpu_flags.bitfield.cpupadlock
8155 || prefix != REPE_PREFIX_OPCODE
8156 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8157 add_prefix (prefix);
8158 }
8159 break;
8160 case 1:
8161 break;
8162 case 0:
8163 /* Check for pseudo prefixes. */
8164 as_bad_where (insn_start_frag->fr_file,
8165 insn_start_frag->fr_line,
8166 _("pseudo prefix without instruction"));
8167 return;
8168 default:
8169 abort ();
8170 }
8171
8172 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8173 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8174 R_X86_64_GOTTPOFF relocation so that linker can safely
8175 perform IE->LE optimization. */
8176 if (x86_elf_abi == X86_64_X32_ABI
8177 && i.operands == 2
8178 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8179 && i.prefix[REX_PREFIX] == 0)
8180 add_prefix (REX_OPCODE);
8181 #endif
8182
8183 /* The prefix bytes. */
8184 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8185 if (*q)
8186 FRAG_APPEND_1_CHAR (*q);
8187 }
8188 else
8189 {
8190 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8191 if (*q)
8192 switch (j)
8193 {
8194 case REX_PREFIX:
8195 /* REX byte is encoded in VEX prefix. */
8196 break;
8197 case SEG_PREFIX:
8198 case ADDR_PREFIX:
8199 FRAG_APPEND_1_CHAR (*q);
8200 break;
8201 default:
8202 /* There should be no other prefixes for instructions
8203 with VEX prefix. */
8204 abort ();
8205 }
8206
8207 /* For EVEX instructions i.vrex should become 0 after
8208 build_evex_prefix. For VEX instructions upper 16 registers
8209 aren't available, so VREX should be 0. */
8210 if (i.vrex)
8211 abort ();
8212 /* Now the VEX prefix. */
8213 p = frag_more (i.vex.length);
8214 for (j = 0; j < i.vex.length; j++)
8215 p[j] = i.vex.bytes[j];
8216 }
8217
8218 /* Now the opcode; be careful about word order here! */
8219 if (i.tm.opcode_length == 1)
8220 {
8221 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8222 }
8223 else
8224 {
8225 switch (i.tm.opcode_length)
8226 {
8227 case 4:
8228 p = frag_more (4);
8229 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8230 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8231 break;
8232 case 3:
8233 p = frag_more (3);
8234 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8235 break;
8236 case 2:
8237 p = frag_more (2);
8238 break;
8239 default:
8240 abort ();
8241 break;
8242 }
8243
8244 /* Put out high byte first: can't use md_number_to_chars! */
8245 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8246 *p = i.tm.base_opcode & 0xff;
8247 }
8248
8249 /* Now the modrm byte and sib byte (if present). */
8250 if (i.tm.opcode_modifier.modrm)
8251 {
8252 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8253 | i.rm.reg << 3
8254 | i.rm.mode << 6));
8255 /* If i.rm.regmem == ESP (4)
8256 && i.rm.mode != (Register mode)
8257 && not 16 bit
8258 ==> need second modrm byte. */
8259 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8260 && i.rm.mode != 3
8261 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
8262 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8263 | i.sib.index << 3
8264 | i.sib.scale << 6));
8265 }
8266
8267 if (i.disp_operands)
8268 output_disp (insn_start_frag, insn_start_off);
8269
8270 if (i.imm_operands)
8271 output_imm (insn_start_frag, insn_start_off);
8272 }
8273
8274 #ifdef DEBUG386
8275 if (flag_debug)
8276 {
8277 pi ("" /*line*/, &i);
8278 }
8279 #endif /* DEBUG386 */
8280 }
8281
8282 /* Return the size of the displacement operand N. */
8283
8284 static int
8285 disp_size (unsigned int n)
8286 {
8287 int size = 4;
8288
8289 if (i.types[n].bitfield.disp64)
8290 size = 8;
8291 else if (i.types[n].bitfield.disp8)
8292 size = 1;
8293 else if (i.types[n].bitfield.disp16)
8294 size = 2;
8295 return size;
8296 }
8297
8298 /* Return the size of the immediate operand N. */
8299
8300 static int
8301 imm_size (unsigned int n)
8302 {
8303 int size = 4;
8304 if (i.types[n].bitfield.imm64)
8305 size = 8;
8306 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8307 size = 1;
8308 else if (i.types[n].bitfield.imm16)
8309 size = 2;
8310 return size;
8311 }
8312
8313 static void
8314 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
8315 {
8316 char *p;
8317 unsigned int n;
8318
8319 for (n = 0; n < i.operands; n++)
8320 {
8321 if (operand_type_check (i.types[n], disp))
8322 {
8323 if (i.op[n].disps->X_op == O_constant)
8324 {
8325 int size = disp_size (n);
8326 offsetT val = i.op[n].disps->X_add_number;
8327
8328 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8329 size);
8330 p = frag_more (size);
8331 md_number_to_chars (p, val, size);
8332 }
8333 else
8334 {
8335 enum bfd_reloc_code_real reloc_type;
8336 int size = disp_size (n);
8337 int sign = i.types[n].bitfield.disp32s;
8338 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
8339 fixS *fixP;
8340
8341 /* We can't have 8 bit displacement here. */
8342 gas_assert (!i.types[n].bitfield.disp8);
8343
8344 /* The PC relative address is computed relative
8345 to the instruction boundary, so in case immediate
8346 fields follows, we need to adjust the value. */
8347 if (pcrel && i.imm_operands)
8348 {
8349 unsigned int n1;
8350 int sz = 0;
8351
8352 for (n1 = 0; n1 < i.operands; n1++)
8353 if (operand_type_check (i.types[n1], imm))
8354 {
8355 /* Only one immediate is allowed for PC
8356 relative address. */
8357 gas_assert (sz == 0);
8358 sz = imm_size (n1);
8359 i.op[n].disps->X_add_number -= sz;
8360 }
8361 /* We should find the immediate. */
8362 gas_assert (sz != 0);
8363 }
8364
8365 p = frag_more (size);
8366 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
8367 if (GOT_symbol
8368 && GOT_symbol == i.op[n].disps->X_add_symbol
8369 && (((reloc_type == BFD_RELOC_32
8370 || reloc_type == BFD_RELOC_X86_64_32S
8371 || (reloc_type == BFD_RELOC_64
8372 && object_64bit))
8373 && (i.op[n].disps->X_op == O_symbol
8374 || (i.op[n].disps->X_op == O_add
8375 && ((symbol_get_value_expression
8376 (i.op[n].disps->X_op_symbol)->X_op)
8377 == O_subtract))))
8378 || reloc_type == BFD_RELOC_32_PCREL))
8379 {
8380 offsetT add;
8381
8382 if (insn_start_frag == frag_now)
8383 add = (p - frag_now->fr_literal) - insn_start_off;
8384 else
8385 {
8386 fragS *fr;
8387
8388 add = insn_start_frag->fr_fix - insn_start_off;
8389 for (fr = insn_start_frag->fr_next;
8390 fr && fr != frag_now; fr = fr->fr_next)
8391 add += fr->fr_fix;
8392 add += p - frag_now->fr_literal;
8393 }
8394
8395 if (!object_64bit)
8396 {
8397 reloc_type = BFD_RELOC_386_GOTPC;
8398 i.op[n].imms->X_add_number += add;
8399 }
8400 else if (reloc_type == BFD_RELOC_64)
8401 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8402 else
8403 /* Don't do the adjustment for x86-64, as there
8404 the pcrel addressing is relative to the _next_
8405 insn, and that is taken care of in other code. */
8406 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8407 }
8408 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8409 size, i.op[n].disps, pcrel,
8410 reloc_type);
8411 /* Check for "call/jmp *mem", "mov mem, %reg",
8412 "test %reg, mem" and "binop mem, %reg" where binop
8413 is one of adc, add, and, cmp, or, sbb, sub, xor
8414 instructions. Always generate R_386_GOT32X for
8415 "sym*GOT" operand in 32-bit mode. */
8416 if ((generate_relax_relocations
8417 || (!object_64bit
8418 && i.rm.mode == 0
8419 && i.rm.regmem == 5))
8420 && (i.rm.mode == 2
8421 || (i.rm.mode == 0 && i.rm.regmem == 5))
8422 && ((i.operands == 1
8423 && i.tm.base_opcode == 0xff
8424 && (i.rm.reg == 2 || i.rm.reg == 4))
8425 || (i.operands == 2
8426 && (i.tm.base_opcode == 0x8b
8427 || i.tm.base_opcode == 0x85
8428 || (i.tm.base_opcode & 0xc7) == 0x03))))
8429 {
8430 if (object_64bit)
8431 {
8432 fixP->fx_tcbit = i.rex != 0;
8433 if (i.base_reg
8434 && (i.base_reg->reg_num == RegIP))
8435 fixP->fx_tcbit2 = 1;
8436 }
8437 else
8438 fixP->fx_tcbit2 = 1;
8439 }
8440 }
8441 }
8442 }
8443 }
8444
8445 static void
8446 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
8447 {
8448 char *p;
8449 unsigned int n;
8450
8451 for (n = 0; n < i.operands; n++)
8452 {
8453 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8454 if (i.rounding && (int) n == i.rounding->operand)
8455 continue;
8456
8457 if (operand_type_check (i.types[n], imm))
8458 {
8459 if (i.op[n].imms->X_op == O_constant)
8460 {
8461 int size = imm_size (n);
8462 offsetT val;
8463
8464 val = offset_in_range (i.op[n].imms->X_add_number,
8465 size);
8466 p = frag_more (size);
8467 md_number_to_chars (p, val, size);
8468 }
8469 else
8470 {
8471 /* Not absolute_section.
8472 Need a 32-bit fixup (don't support 8bit
8473 non-absolute imms). Try to support other
8474 sizes ... */
8475 enum bfd_reloc_code_real reloc_type;
8476 int size = imm_size (n);
8477 int sign;
8478
8479 if (i.types[n].bitfield.imm32s
8480 && (i.suffix == QWORD_MNEM_SUFFIX
8481 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
8482 sign = 1;
8483 else
8484 sign = 0;
8485
8486 p = frag_more (size);
8487 reloc_type = reloc (size, 0, sign, i.reloc[n]);
8488
8489 /* This is tough to explain. We end up with this one if we
8490 * have operands that look like
8491 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8492 * obtain the absolute address of the GOT, and it is strongly
8493 * preferable from a performance point of view to avoid using
8494 * a runtime relocation for this. The actual sequence of
8495 * instructions often look something like:
8496 *
8497 * call .L66
8498 * .L66:
8499 * popl %ebx
8500 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8501 *
8502 * The call and pop essentially return the absolute address
8503 * of the label .L66 and store it in %ebx. The linker itself
8504 * will ultimately change the first operand of the addl so
8505 * that %ebx points to the GOT, but to keep things simple, the
8506 * .o file must have this operand set so that it generates not
8507 * the absolute address of .L66, but the absolute address of
8508 * itself. This allows the linker itself simply treat a GOTPC
8509 * relocation as asking for a pcrel offset to the GOT to be
8510 * added in, and the addend of the relocation is stored in the
8511 * operand field for the instruction itself.
8512 *
8513 * Our job here is to fix the operand so that it would add
8514 * the correct offset so that %ebx would point to itself. The
8515 * thing that is tricky is that .-.L66 will point to the
8516 * beginning of the instruction, so we need to further modify
8517 * the operand so that it will point to itself. There are
8518 * other cases where you have something like:
8519 *
8520 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8521 *
8522 * and here no correction would be required. Internally in
8523 * the assembler we treat operands of this form as not being
8524 * pcrel since the '.' is explicitly mentioned, and I wonder
8525 * whether it would simplify matters to do it this way. Who
8526 * knows. In earlier versions of the PIC patches, the
8527 * pcrel_adjust field was used to store the correction, but
8528 * since the expression is not pcrel, I felt it would be
8529 * confusing to do it this way. */
8530
8531 if ((reloc_type == BFD_RELOC_32
8532 || reloc_type == BFD_RELOC_X86_64_32S
8533 || reloc_type == BFD_RELOC_64)
8534 && GOT_symbol
8535 && GOT_symbol == i.op[n].imms->X_add_symbol
8536 && (i.op[n].imms->X_op == O_symbol
8537 || (i.op[n].imms->X_op == O_add
8538 && ((symbol_get_value_expression
8539 (i.op[n].imms->X_op_symbol)->X_op)
8540 == O_subtract))))
8541 {
8542 offsetT add;
8543
8544 if (insn_start_frag == frag_now)
8545 add = (p - frag_now->fr_literal) - insn_start_off;
8546 else
8547 {
8548 fragS *fr;
8549
8550 add = insn_start_frag->fr_fix - insn_start_off;
8551 for (fr = insn_start_frag->fr_next;
8552 fr && fr != frag_now; fr = fr->fr_next)
8553 add += fr->fr_fix;
8554 add += p - frag_now->fr_literal;
8555 }
8556
8557 if (!object_64bit)
8558 reloc_type = BFD_RELOC_386_GOTPC;
8559 else if (size == 4)
8560 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8561 else if (size == 8)
8562 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8563 i.op[n].imms->X_add_number += add;
8564 }
8565 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8566 i.op[n].imms, 0, reloc_type);
8567 }
8568 }
8569 }
8570 }
8571 \f
8572 /* x86_cons_fix_new is called via the expression parsing code when a
8573 reloc is needed. We use this hook to get the correct .got reloc. */
8574 static int cons_sign = -1;
8575
8576 void
8577 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
8578 expressionS *exp, bfd_reloc_code_real_type r)
8579 {
8580 r = reloc (len, 0, cons_sign, r);
8581
8582 #ifdef TE_PE
8583 if (exp->X_op == O_secrel)
8584 {
8585 exp->X_op = O_symbol;
8586 r = BFD_RELOC_32_SECREL;
8587 }
8588 #endif
8589
8590 fix_new_exp (frag, off, len, exp, 0, r);
8591 }
8592
8593 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8594 purpose of the `.dc.a' internal pseudo-op. */
8595
8596 int
8597 x86_address_bytes (void)
8598 {
8599 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8600 return 4;
8601 return stdoutput->arch_info->bits_per_address / 8;
8602 }
8603
8604 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8605 || defined (LEX_AT)
8606 # define lex_got(reloc, adjust, types) NULL
8607 #else
8608 /* Parse operands of the form
8609 <symbol>@GOTOFF+<nnn>
8610 and similar .plt or .got references.
8611
8612 If we find one, set up the correct relocation in RELOC and copy the
8613 input string, minus the `@GOTOFF' into a malloc'd buffer for
8614 parsing by the calling routine. Return this buffer, and if ADJUST
8615 is non-null set it to the length of the string we removed from the
8616 input line. Otherwise return NULL. */
8617 static char *
8618 lex_got (enum bfd_reloc_code_real *rel,
8619 int *adjust,
8620 i386_operand_type *types)
8621 {
8622 /* Some of the relocations depend on the size of what field is to
8623 be relocated. But in our callers i386_immediate and i386_displacement
8624 we don't yet know the operand size (this will be set by insn
8625 matching). Hence we record the word32 relocation here,
8626 and adjust the reloc according to the real size in reloc(). */
8627 static const struct {
8628 const char *str;
8629 int len;
8630 const enum bfd_reloc_code_real rel[2];
8631 const i386_operand_type types64;
8632 } gotrel[] = {
8633 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8634 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8635 BFD_RELOC_SIZE32 },
8636 OPERAND_TYPE_IMM32_64 },
8637 #endif
8638 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8639 BFD_RELOC_X86_64_PLTOFF64 },
8640 OPERAND_TYPE_IMM64 },
8641 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8642 BFD_RELOC_X86_64_PLT32 },
8643 OPERAND_TYPE_IMM32_32S_DISP32 },
8644 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8645 BFD_RELOC_X86_64_GOTPLT64 },
8646 OPERAND_TYPE_IMM64_DISP64 },
8647 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8648 BFD_RELOC_X86_64_GOTOFF64 },
8649 OPERAND_TYPE_IMM64_DISP64 },
8650 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8651 BFD_RELOC_X86_64_GOTPCREL },
8652 OPERAND_TYPE_IMM32_32S_DISP32 },
8653 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8654 BFD_RELOC_X86_64_TLSGD },
8655 OPERAND_TYPE_IMM32_32S_DISP32 },
8656 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8657 _dummy_first_bfd_reloc_code_real },
8658 OPERAND_TYPE_NONE },
8659 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8660 BFD_RELOC_X86_64_TLSLD },
8661 OPERAND_TYPE_IMM32_32S_DISP32 },
8662 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8663 BFD_RELOC_X86_64_GOTTPOFF },
8664 OPERAND_TYPE_IMM32_32S_DISP32 },
8665 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8666 BFD_RELOC_X86_64_TPOFF32 },
8667 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8668 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8669 _dummy_first_bfd_reloc_code_real },
8670 OPERAND_TYPE_NONE },
8671 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8672 BFD_RELOC_X86_64_DTPOFF32 },
8673 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8674 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8675 _dummy_first_bfd_reloc_code_real },
8676 OPERAND_TYPE_NONE },
8677 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8678 _dummy_first_bfd_reloc_code_real },
8679 OPERAND_TYPE_NONE },
8680 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8681 BFD_RELOC_X86_64_GOT32 },
8682 OPERAND_TYPE_IMM32_32S_64_DISP32 },
8683 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8684 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
8685 OPERAND_TYPE_IMM32_32S_DISP32 },
8686 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8687 BFD_RELOC_X86_64_TLSDESC_CALL },
8688 OPERAND_TYPE_IMM32_32S_DISP32 },
8689 };
8690 char *cp;
8691 unsigned int j;
8692
8693 #if defined (OBJ_MAYBE_ELF)
8694 if (!IS_ELF)
8695 return NULL;
8696 #endif
8697
8698 for (cp = input_line_pointer; *cp != '@'; cp++)
8699 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8700 return NULL;
8701
8702 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8703 {
8704 int len = gotrel[j].len;
8705 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8706 {
8707 if (gotrel[j].rel[object_64bit] != 0)
8708 {
8709 int first, second;
8710 char *tmpbuf, *past_reloc;
8711
8712 *rel = gotrel[j].rel[object_64bit];
8713
8714 if (types)
8715 {
8716 if (flag_code != CODE_64BIT)
8717 {
8718 types->bitfield.imm32 = 1;
8719 types->bitfield.disp32 = 1;
8720 }
8721 else
8722 *types = gotrel[j].types64;
8723 }
8724
8725 if (j != 0 && GOT_symbol == NULL)
8726 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8727
8728 /* The length of the first part of our input line. */
8729 first = cp - input_line_pointer;
8730
8731 /* The second part goes from after the reloc token until
8732 (and including) an end_of_line char or comma. */
8733 past_reloc = cp + 1 + len;
8734 cp = past_reloc;
8735 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8736 ++cp;
8737 second = cp + 1 - past_reloc;
8738
8739 /* Allocate and copy string. The trailing NUL shouldn't
8740 be necessary, but be safe. */
8741 tmpbuf = XNEWVEC (char, first + second + 2);
8742 memcpy (tmpbuf, input_line_pointer, first);
8743 if (second != 0 && *past_reloc != ' ')
8744 /* Replace the relocation token with ' ', so that
8745 errors like foo@GOTOFF1 will be detected. */
8746 tmpbuf[first++] = ' ';
8747 else
8748 /* Increment length by 1 if the relocation token is
8749 removed. */
8750 len++;
8751 if (adjust)
8752 *adjust = len;
8753 memcpy (tmpbuf + first, past_reloc, second);
8754 tmpbuf[first + second] = '\0';
8755 return tmpbuf;
8756 }
8757
8758 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8759 gotrel[j].str, 1 << (5 + object_64bit));
8760 return NULL;
8761 }
8762 }
8763
8764 /* Might be a symbol version string. Don't as_bad here. */
8765 return NULL;
8766 }
8767 #endif
8768
8769 #ifdef TE_PE
8770 #ifdef lex_got
8771 #undef lex_got
8772 #endif
8773 /* Parse operands of the form
8774 <symbol>@SECREL32+<nnn>
8775
8776 If we find one, set up the correct relocation in RELOC and copy the
8777 input string, minus the `@SECREL32' into a malloc'd buffer for
8778 parsing by the calling routine. Return this buffer, and if ADJUST
8779 is non-null set it to the length of the string we removed from the
8780 input line. Otherwise return NULL.
8781
8782 This function is copied from the ELF version above adjusted for PE targets. */
8783
8784 static char *
8785 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8786 int *adjust ATTRIBUTE_UNUSED,
8787 i386_operand_type *types)
8788 {
8789 static const struct
8790 {
8791 const char *str;
8792 int len;
8793 const enum bfd_reloc_code_real rel[2];
8794 const i386_operand_type types64;
8795 }
8796 gotrel[] =
8797 {
8798 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8799 BFD_RELOC_32_SECREL },
8800 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8801 };
8802
8803 char *cp;
8804 unsigned j;
8805
8806 for (cp = input_line_pointer; *cp != '@'; cp++)
8807 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8808 return NULL;
8809
8810 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8811 {
8812 int len = gotrel[j].len;
8813
8814 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8815 {
8816 if (gotrel[j].rel[object_64bit] != 0)
8817 {
8818 int first, second;
8819 char *tmpbuf, *past_reloc;
8820
8821 *rel = gotrel[j].rel[object_64bit];
8822 if (adjust)
8823 *adjust = len;
8824
8825 if (types)
8826 {
8827 if (flag_code != CODE_64BIT)
8828 {
8829 types->bitfield.imm32 = 1;
8830 types->bitfield.disp32 = 1;
8831 }
8832 else
8833 *types = gotrel[j].types64;
8834 }
8835
8836 /* The length of the first part of our input line. */
8837 first = cp - input_line_pointer;
8838
8839 /* The second part goes from after the reloc token until
8840 (and including) an end_of_line char or comma. */
8841 past_reloc = cp + 1 + len;
8842 cp = past_reloc;
8843 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8844 ++cp;
8845 second = cp + 1 - past_reloc;
8846
8847 /* Allocate and copy string. The trailing NUL shouldn't
8848 be necessary, but be safe. */
8849 tmpbuf = XNEWVEC (char, first + second + 2);
8850 memcpy (tmpbuf, input_line_pointer, first);
8851 if (second != 0 && *past_reloc != ' ')
8852 /* Replace the relocation token with ' ', so that
8853 errors like foo@SECLREL321 will be detected. */
8854 tmpbuf[first++] = ' ';
8855 memcpy (tmpbuf + first, past_reloc, second);
8856 tmpbuf[first + second] = '\0';
8857 return tmpbuf;
8858 }
8859
8860 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8861 gotrel[j].str, 1 << (5 + object_64bit));
8862 return NULL;
8863 }
8864 }
8865
8866 /* Might be a symbol version string. Don't as_bad here. */
8867 return NULL;
8868 }
8869
8870 #endif /* TE_PE */
8871
8872 bfd_reloc_code_real_type
8873 x86_cons (expressionS *exp, int size)
8874 {
8875 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8876
8877 intel_syntax = -intel_syntax;
8878
8879 exp->X_md = 0;
8880 if (size == 4 || (object_64bit && size == 8))
8881 {
8882 /* Handle @GOTOFF and the like in an expression. */
8883 char *save;
8884 char *gotfree_input_line;
8885 int adjust = 0;
8886
8887 save = input_line_pointer;
8888 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
8889 if (gotfree_input_line)
8890 input_line_pointer = gotfree_input_line;
8891
8892 expression (exp);
8893
8894 if (gotfree_input_line)
8895 {
8896 /* expression () has merrily parsed up to the end of line,
8897 or a comma - in the wrong buffer. Transfer how far
8898 input_line_pointer has moved to the right buffer. */
8899 input_line_pointer = (save
8900 + (input_line_pointer - gotfree_input_line)
8901 + adjust);
8902 free (gotfree_input_line);
8903 if (exp->X_op == O_constant
8904 || exp->X_op == O_absent
8905 || exp->X_op == O_illegal
8906 || exp->X_op == O_register
8907 || exp->X_op == O_big)
8908 {
8909 char c = *input_line_pointer;
8910 *input_line_pointer = 0;
8911 as_bad (_("missing or invalid expression `%s'"), save);
8912 *input_line_pointer = c;
8913 }
8914 }
8915 }
8916 else
8917 expression (exp);
8918
8919 intel_syntax = -intel_syntax;
8920
8921 if (intel_syntax)
8922 i386_intel_simplify (exp);
8923
8924 return got_reloc;
8925 }
8926
8927 static void
8928 signed_cons (int size)
8929 {
8930 if (flag_code == CODE_64BIT)
8931 cons_sign = 1;
8932 cons (size);
8933 cons_sign = -1;
8934 }
8935
8936 #ifdef TE_PE
8937 static void
8938 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
8939 {
8940 expressionS exp;
8941
8942 do
8943 {
8944 expression (&exp);
8945 if (exp.X_op == O_symbol)
8946 exp.X_op = O_secrel;
8947
8948 emit_expr (&exp, 4);
8949 }
8950 while (*input_line_pointer++ == ',');
8951
8952 input_line_pointer--;
8953 demand_empty_rest_of_line ();
8954 }
8955 #endif
8956
8957 /* Handle Vector operations. */
8958
8959 static char *
8960 check_VecOperations (char *op_string, char *op_end)
8961 {
8962 const reg_entry *mask;
8963 const char *saved;
8964 char *end_op;
8965
8966 while (*op_string
8967 && (op_end == NULL || op_string < op_end))
8968 {
8969 saved = op_string;
8970 if (*op_string == '{')
8971 {
8972 op_string++;
8973
8974 /* Check broadcasts. */
8975 if (strncmp (op_string, "1to", 3) == 0)
8976 {
8977 int bcst_type;
8978
8979 if (i.broadcast)
8980 goto duplicated_vec_op;
8981
8982 op_string += 3;
8983 if (*op_string == '8')
8984 bcst_type = 8;
8985 else if (*op_string == '4')
8986 bcst_type = 4;
8987 else if (*op_string == '2')
8988 bcst_type = 2;
8989 else if (*op_string == '1'
8990 && *(op_string+1) == '6')
8991 {
8992 bcst_type = 16;
8993 op_string++;
8994 }
8995 else
8996 {
8997 as_bad (_("Unsupported broadcast: `%s'"), saved);
8998 return NULL;
8999 }
9000 op_string++;
9001
9002 broadcast_op.type = bcst_type;
9003 broadcast_op.operand = this_operand;
9004 broadcast_op.bytes = 0;
9005 i.broadcast = &broadcast_op;
9006 }
9007 /* Check masking operation. */
9008 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9009 {
9010 /* k0 can't be used for write mask. */
9011 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
9012 {
9013 as_bad (_("`%s%s' can't be used for write mask"),
9014 register_prefix, mask->reg_name);
9015 return NULL;
9016 }
9017
9018 if (!i.mask)
9019 {
9020 mask_op.mask = mask;
9021 mask_op.zeroing = 0;
9022 mask_op.operand = this_operand;
9023 i.mask = &mask_op;
9024 }
9025 else
9026 {
9027 if (i.mask->mask)
9028 goto duplicated_vec_op;
9029
9030 i.mask->mask = mask;
9031
9032 /* Only "{z}" is allowed here. No need to check
9033 zeroing mask explicitly. */
9034 if (i.mask->operand != this_operand)
9035 {
9036 as_bad (_("invalid write mask `%s'"), saved);
9037 return NULL;
9038 }
9039 }
9040
9041 op_string = end_op;
9042 }
9043 /* Check zeroing-flag for masking operation. */
9044 else if (*op_string == 'z')
9045 {
9046 if (!i.mask)
9047 {
9048 mask_op.mask = NULL;
9049 mask_op.zeroing = 1;
9050 mask_op.operand = this_operand;
9051 i.mask = &mask_op;
9052 }
9053 else
9054 {
9055 if (i.mask->zeroing)
9056 {
9057 duplicated_vec_op:
9058 as_bad (_("duplicated `%s'"), saved);
9059 return NULL;
9060 }
9061
9062 i.mask->zeroing = 1;
9063
9064 /* Only "{%k}" is allowed here. No need to check mask
9065 register explicitly. */
9066 if (i.mask->operand != this_operand)
9067 {
9068 as_bad (_("invalid zeroing-masking `%s'"),
9069 saved);
9070 return NULL;
9071 }
9072 }
9073
9074 op_string++;
9075 }
9076 else
9077 goto unknown_vec_op;
9078
9079 if (*op_string != '}')
9080 {
9081 as_bad (_("missing `}' in `%s'"), saved);
9082 return NULL;
9083 }
9084 op_string++;
9085
9086 /* Strip whitespace since the addition of pseudo prefixes
9087 changed how the scrubber treats '{'. */
9088 if (is_space_char (*op_string))
9089 ++op_string;
9090
9091 continue;
9092 }
9093 unknown_vec_op:
9094 /* We don't know this one. */
9095 as_bad (_("unknown vector operation: `%s'"), saved);
9096 return NULL;
9097 }
9098
9099 if (i.mask && i.mask->zeroing && !i.mask->mask)
9100 {
9101 as_bad (_("zeroing-masking only allowed with write mask"));
9102 return NULL;
9103 }
9104
9105 return op_string;
9106 }
9107
9108 static int
9109 i386_immediate (char *imm_start)
9110 {
9111 char *save_input_line_pointer;
9112 char *gotfree_input_line;
9113 segT exp_seg = 0;
9114 expressionS *exp;
9115 i386_operand_type types;
9116
9117 operand_type_set (&types, ~0);
9118
9119 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9120 {
9121 as_bad (_("at most %d immediate operands are allowed"),
9122 MAX_IMMEDIATE_OPERANDS);
9123 return 0;
9124 }
9125
9126 exp = &im_expressions[i.imm_operands++];
9127 i.op[this_operand].imms = exp;
9128
9129 if (is_space_char (*imm_start))
9130 ++imm_start;
9131
9132 save_input_line_pointer = input_line_pointer;
9133 input_line_pointer = imm_start;
9134
9135 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9136 if (gotfree_input_line)
9137 input_line_pointer = gotfree_input_line;
9138
9139 exp_seg = expression (exp);
9140
9141 SKIP_WHITESPACE ();
9142
9143 /* Handle vector operations. */
9144 if (*input_line_pointer == '{')
9145 {
9146 input_line_pointer = check_VecOperations (input_line_pointer,
9147 NULL);
9148 if (input_line_pointer == NULL)
9149 return 0;
9150 }
9151
9152 if (*input_line_pointer)
9153 as_bad (_("junk `%s' after expression"), input_line_pointer);
9154
9155 input_line_pointer = save_input_line_pointer;
9156 if (gotfree_input_line)
9157 {
9158 free (gotfree_input_line);
9159
9160 if (exp->X_op == O_constant || exp->X_op == O_register)
9161 exp->X_op = O_illegal;
9162 }
9163
9164 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9165 }
9166
9167 static int
9168 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9169 i386_operand_type types, const char *imm_start)
9170 {
9171 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
9172 {
9173 if (imm_start)
9174 as_bad (_("missing or invalid immediate expression `%s'"),
9175 imm_start);
9176 return 0;
9177 }
9178 else if (exp->X_op == O_constant)
9179 {
9180 /* Size it properly later. */
9181 i.types[this_operand].bitfield.imm64 = 1;
9182 /* If not 64bit, sign extend val. */
9183 if (flag_code != CODE_64BIT
9184 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9185 exp->X_add_number
9186 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
9187 }
9188 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9189 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
9190 && exp_seg != absolute_section
9191 && exp_seg != text_section
9192 && exp_seg != data_section
9193 && exp_seg != bss_section
9194 && exp_seg != undefined_section
9195 && !bfd_is_com_section (exp_seg))
9196 {
9197 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9198 return 0;
9199 }
9200 #endif
9201 else if (!intel_syntax && exp_seg == reg_section)
9202 {
9203 if (imm_start)
9204 as_bad (_("illegal immediate register operand %s"), imm_start);
9205 return 0;
9206 }
9207 else
9208 {
9209 /* This is an address. The size of the address will be
9210 determined later, depending on destination register,
9211 suffix, or the default for the section. */
9212 i.types[this_operand].bitfield.imm8 = 1;
9213 i.types[this_operand].bitfield.imm16 = 1;
9214 i.types[this_operand].bitfield.imm32 = 1;
9215 i.types[this_operand].bitfield.imm32s = 1;
9216 i.types[this_operand].bitfield.imm64 = 1;
9217 i.types[this_operand] = operand_type_and (i.types[this_operand],
9218 types);
9219 }
9220
9221 return 1;
9222 }
9223
9224 static char *
9225 i386_scale (char *scale)
9226 {
9227 offsetT val;
9228 char *save = input_line_pointer;
9229
9230 input_line_pointer = scale;
9231 val = get_absolute_expression ();
9232
9233 switch (val)
9234 {
9235 case 1:
9236 i.log2_scale_factor = 0;
9237 break;
9238 case 2:
9239 i.log2_scale_factor = 1;
9240 break;
9241 case 4:
9242 i.log2_scale_factor = 2;
9243 break;
9244 case 8:
9245 i.log2_scale_factor = 3;
9246 break;
9247 default:
9248 {
9249 char sep = *input_line_pointer;
9250
9251 *input_line_pointer = '\0';
9252 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9253 scale);
9254 *input_line_pointer = sep;
9255 input_line_pointer = save;
9256 return NULL;
9257 }
9258 }
9259 if (i.log2_scale_factor != 0 && i.index_reg == 0)
9260 {
9261 as_warn (_("scale factor of %d without an index register"),
9262 1 << i.log2_scale_factor);
9263 i.log2_scale_factor = 0;
9264 }
9265 scale = input_line_pointer;
9266 input_line_pointer = save;
9267 return scale;
9268 }
9269
9270 static int
9271 i386_displacement (char *disp_start, char *disp_end)
9272 {
9273 expressionS *exp;
9274 segT exp_seg = 0;
9275 char *save_input_line_pointer;
9276 char *gotfree_input_line;
9277 int override;
9278 i386_operand_type bigdisp, types = anydisp;
9279 int ret;
9280
9281 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9282 {
9283 as_bad (_("at most %d displacement operands are allowed"),
9284 MAX_MEMORY_OPERANDS);
9285 return 0;
9286 }
9287
9288 operand_type_set (&bigdisp, 0);
9289 if ((i.types[this_operand].bitfield.jumpabsolute)
9290 || (!current_templates->start->opcode_modifier.jump
9291 && !current_templates->start->opcode_modifier.jumpdword))
9292 {
9293 bigdisp.bitfield.disp32 = 1;
9294 override = (i.prefix[ADDR_PREFIX] != 0);
9295 if (flag_code == CODE_64BIT)
9296 {
9297 if (!override)
9298 {
9299 bigdisp.bitfield.disp32s = 1;
9300 bigdisp.bitfield.disp64 = 1;
9301 }
9302 }
9303 else if ((flag_code == CODE_16BIT) ^ override)
9304 {
9305 bigdisp.bitfield.disp32 = 0;
9306 bigdisp.bitfield.disp16 = 1;
9307 }
9308 }
9309 else
9310 {
9311 /* For PC-relative branches, the width of the displacement
9312 is dependent upon data size, not address size. */
9313 override = (i.prefix[DATA_PREFIX] != 0);
9314 if (flag_code == CODE_64BIT)
9315 {
9316 if (override || i.suffix == WORD_MNEM_SUFFIX)
9317 bigdisp.bitfield.disp16 = 1;
9318 else
9319 {
9320 bigdisp.bitfield.disp32 = 1;
9321 bigdisp.bitfield.disp32s = 1;
9322 }
9323 }
9324 else
9325 {
9326 if (!override)
9327 override = (i.suffix == (flag_code != CODE_16BIT
9328 ? WORD_MNEM_SUFFIX
9329 : LONG_MNEM_SUFFIX));
9330 bigdisp.bitfield.disp32 = 1;
9331 if ((flag_code == CODE_16BIT) ^ override)
9332 {
9333 bigdisp.bitfield.disp32 = 0;
9334 bigdisp.bitfield.disp16 = 1;
9335 }
9336 }
9337 }
9338 i.types[this_operand] = operand_type_or (i.types[this_operand],
9339 bigdisp);
9340
9341 exp = &disp_expressions[i.disp_operands];
9342 i.op[this_operand].disps = exp;
9343 i.disp_operands++;
9344 save_input_line_pointer = input_line_pointer;
9345 input_line_pointer = disp_start;
9346 END_STRING_AND_SAVE (disp_end);
9347
9348 #ifndef GCC_ASM_O_HACK
9349 #define GCC_ASM_O_HACK 0
9350 #endif
9351 #if GCC_ASM_O_HACK
9352 END_STRING_AND_SAVE (disp_end + 1);
9353 if (i.types[this_operand].bitfield.baseIndex
9354 && displacement_string_end[-1] == '+')
9355 {
9356 /* This hack is to avoid a warning when using the "o"
9357 constraint within gcc asm statements.
9358 For instance:
9359
9360 #define _set_tssldt_desc(n,addr,limit,type) \
9361 __asm__ __volatile__ ( \
9362 "movw %w2,%0\n\t" \
9363 "movw %w1,2+%0\n\t" \
9364 "rorl $16,%1\n\t" \
9365 "movb %b1,4+%0\n\t" \
9366 "movb %4,5+%0\n\t" \
9367 "movb $0,6+%0\n\t" \
9368 "movb %h1,7+%0\n\t" \
9369 "rorl $16,%1" \
9370 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9371
9372 This works great except that the output assembler ends
9373 up looking a bit weird if it turns out that there is
9374 no offset. You end up producing code that looks like:
9375
9376 #APP
9377 movw $235,(%eax)
9378 movw %dx,2+(%eax)
9379 rorl $16,%edx
9380 movb %dl,4+(%eax)
9381 movb $137,5+(%eax)
9382 movb $0,6+(%eax)
9383 movb %dh,7+(%eax)
9384 rorl $16,%edx
9385 #NO_APP
9386
9387 So here we provide the missing zero. */
9388
9389 *displacement_string_end = '0';
9390 }
9391 #endif
9392 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9393 if (gotfree_input_line)
9394 input_line_pointer = gotfree_input_line;
9395
9396 exp_seg = expression (exp);
9397
9398 SKIP_WHITESPACE ();
9399 if (*input_line_pointer)
9400 as_bad (_("junk `%s' after expression"), input_line_pointer);
9401 #if GCC_ASM_O_HACK
9402 RESTORE_END_STRING (disp_end + 1);
9403 #endif
9404 input_line_pointer = save_input_line_pointer;
9405 if (gotfree_input_line)
9406 {
9407 free (gotfree_input_line);
9408
9409 if (exp->X_op == O_constant || exp->X_op == O_register)
9410 exp->X_op = O_illegal;
9411 }
9412
9413 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9414
9415 RESTORE_END_STRING (disp_end);
9416
9417 return ret;
9418 }
9419
9420 static int
9421 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9422 i386_operand_type types, const char *disp_start)
9423 {
9424 i386_operand_type bigdisp;
9425 int ret = 1;
9426
9427 /* We do this to make sure that the section symbol is in
9428 the symbol table. We will ultimately change the relocation
9429 to be relative to the beginning of the section. */
9430 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
9431 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9432 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9433 {
9434 if (exp->X_op != O_symbol)
9435 goto inv_disp;
9436
9437 if (S_IS_LOCAL (exp->X_add_symbol)
9438 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9439 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
9440 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
9441 exp->X_op = O_subtract;
9442 exp->X_op_symbol = GOT_symbol;
9443 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
9444 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
9445 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9446 i.reloc[this_operand] = BFD_RELOC_64;
9447 else
9448 i.reloc[this_operand] = BFD_RELOC_32;
9449 }
9450
9451 else if (exp->X_op == O_absent
9452 || exp->X_op == O_illegal
9453 || exp->X_op == O_big)
9454 {
9455 inv_disp:
9456 as_bad (_("missing or invalid displacement expression `%s'"),
9457 disp_start);
9458 ret = 0;
9459 }
9460
9461 else if (flag_code == CODE_64BIT
9462 && !i.prefix[ADDR_PREFIX]
9463 && exp->X_op == O_constant)
9464 {
9465 /* Since displacement is signed extended to 64bit, don't allow
9466 disp32 and turn off disp32s if they are out of range. */
9467 i.types[this_operand].bitfield.disp32 = 0;
9468 if (!fits_in_signed_long (exp->X_add_number))
9469 {
9470 i.types[this_operand].bitfield.disp32s = 0;
9471 if (i.types[this_operand].bitfield.baseindex)
9472 {
9473 as_bad (_("0x%lx out range of signed 32bit displacement"),
9474 (long) exp->X_add_number);
9475 ret = 0;
9476 }
9477 }
9478 }
9479
9480 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9481 else if (exp->X_op != O_constant
9482 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9483 && exp_seg != absolute_section
9484 && exp_seg != text_section
9485 && exp_seg != data_section
9486 && exp_seg != bss_section
9487 && exp_seg != undefined_section
9488 && !bfd_is_com_section (exp_seg))
9489 {
9490 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9491 ret = 0;
9492 }
9493 #endif
9494
9495 /* Check if this is a displacement only operand. */
9496 bigdisp = i.types[this_operand];
9497 bigdisp.bitfield.disp8 = 0;
9498 bigdisp.bitfield.disp16 = 0;
9499 bigdisp.bitfield.disp32 = 0;
9500 bigdisp.bitfield.disp32s = 0;
9501 bigdisp.bitfield.disp64 = 0;
9502 if (operand_type_all_zero (&bigdisp))
9503 i.types[this_operand] = operand_type_and (i.types[this_operand],
9504 types);
9505
9506 return ret;
9507 }
9508
9509 /* Return the active addressing mode, taking address override and
9510 registers forming the address into consideration. Update the
9511 address override prefix if necessary. */
9512
9513 static enum flag_code
9514 i386_addressing_mode (void)
9515 {
9516 enum flag_code addr_mode;
9517
9518 if (i.prefix[ADDR_PREFIX])
9519 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9520 else
9521 {
9522 addr_mode = flag_code;
9523
9524 #if INFER_ADDR_PREFIX
9525 if (i.mem_operands == 0)
9526 {
9527 /* Infer address prefix from the first memory operand. */
9528 const reg_entry *addr_reg = i.base_reg;
9529
9530 if (addr_reg == NULL)
9531 addr_reg = i.index_reg;
9532
9533 if (addr_reg)
9534 {
9535 if (addr_reg->reg_type.bitfield.dword)
9536 addr_mode = CODE_32BIT;
9537 else if (flag_code != CODE_64BIT
9538 && addr_reg->reg_type.bitfield.word)
9539 addr_mode = CODE_16BIT;
9540
9541 if (addr_mode != flag_code)
9542 {
9543 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9544 i.prefixes += 1;
9545 /* Change the size of any displacement too. At most one
9546 of Disp16 or Disp32 is set.
9547 FIXME. There doesn't seem to be any real need for
9548 separate Disp16 and Disp32 flags. The same goes for
9549 Imm16 and Imm32. Removing them would probably clean
9550 up the code quite a lot. */
9551 if (flag_code != CODE_64BIT
9552 && (i.types[this_operand].bitfield.disp16
9553 || i.types[this_operand].bitfield.disp32))
9554 i.types[this_operand]
9555 = operand_type_xor (i.types[this_operand], disp16_32);
9556 }
9557 }
9558 }
9559 #endif
9560 }
9561
9562 return addr_mode;
9563 }
9564
9565 /* Make sure the memory operand we've been dealt is valid.
9566 Return 1 on success, 0 on a failure. */
9567
9568 static int
9569 i386_index_check (const char *operand_string)
9570 {
9571 const char *kind = "base/index";
9572 enum flag_code addr_mode = i386_addressing_mode ();
9573
9574 if (current_templates->start->opcode_modifier.isstring
9575 && !current_templates->start->opcode_modifier.immext
9576 && (current_templates->end[-1].opcode_modifier.isstring
9577 || i.mem_operands))
9578 {
9579 /* Memory operands of string insns are special in that they only allow
9580 a single register (rDI, rSI, or rBX) as their memory address. */
9581 const reg_entry *expected_reg;
9582 static const char *di_si[][2] =
9583 {
9584 { "esi", "edi" },
9585 { "si", "di" },
9586 { "rsi", "rdi" }
9587 };
9588 static const char *bx[] = { "ebx", "bx", "rbx" };
9589
9590 kind = "string address";
9591
9592 if (current_templates->start->opcode_modifier.repprefixok)
9593 {
9594 i386_operand_type type = current_templates->end[-1].operand_types[0];
9595
9596 if (!type.bitfield.baseindex
9597 || ((!i.mem_operands != !intel_syntax)
9598 && current_templates->end[-1].operand_types[1]
9599 .bitfield.baseindex))
9600 type = current_templates->end[-1].operand_types[1];
9601 expected_reg = hash_find (reg_hash,
9602 di_si[addr_mode][type.bitfield.esseg]);
9603
9604 }
9605 else
9606 expected_reg = hash_find (reg_hash, bx[addr_mode]);
9607
9608 if (i.base_reg != expected_reg
9609 || i.index_reg
9610 || operand_type_check (i.types[this_operand], disp))
9611 {
9612 /* The second memory operand must have the same size as
9613 the first one. */
9614 if (i.mem_operands
9615 && i.base_reg
9616 && !((addr_mode == CODE_64BIT
9617 && i.base_reg->reg_type.bitfield.qword)
9618 || (addr_mode == CODE_32BIT
9619 ? i.base_reg->reg_type.bitfield.dword
9620 : i.base_reg->reg_type.bitfield.word)))
9621 goto bad_address;
9622
9623 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9624 operand_string,
9625 intel_syntax ? '[' : '(',
9626 register_prefix,
9627 expected_reg->reg_name,
9628 intel_syntax ? ']' : ')');
9629 return 1;
9630 }
9631 else
9632 return 1;
9633
9634 bad_address:
9635 as_bad (_("`%s' is not a valid %s expression"),
9636 operand_string, kind);
9637 return 0;
9638 }
9639 else
9640 {
9641 if (addr_mode != CODE_16BIT)
9642 {
9643 /* 32-bit/64-bit checks. */
9644 if ((i.base_reg
9645 && ((addr_mode == CODE_64BIT
9646 ? !i.base_reg->reg_type.bitfield.qword
9647 : !i.base_reg->reg_type.bitfield.dword)
9648 || (i.index_reg && i.base_reg->reg_num == RegIP)
9649 || i.base_reg->reg_num == RegIZ))
9650 || (i.index_reg
9651 && !i.index_reg->reg_type.bitfield.xmmword
9652 && !i.index_reg->reg_type.bitfield.ymmword
9653 && !i.index_reg->reg_type.bitfield.zmmword
9654 && ((addr_mode == CODE_64BIT
9655 ? !i.index_reg->reg_type.bitfield.qword
9656 : !i.index_reg->reg_type.bitfield.dword)
9657 || !i.index_reg->reg_type.bitfield.baseindex)))
9658 goto bad_address;
9659
9660 /* bndmk, bndldx, and bndstx have special restrictions. */
9661 if (current_templates->start->base_opcode == 0xf30f1b
9662 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9663 {
9664 /* They cannot use RIP-relative addressing. */
9665 if (i.base_reg && i.base_reg->reg_num == RegIP)
9666 {
9667 as_bad (_("`%s' cannot be used here"), operand_string);
9668 return 0;
9669 }
9670
9671 /* bndldx and bndstx ignore their scale factor. */
9672 if (current_templates->start->base_opcode != 0xf30f1b
9673 && i.log2_scale_factor)
9674 as_warn (_("register scaling is being ignored here"));
9675 }
9676 }
9677 else
9678 {
9679 /* 16-bit checks. */
9680 if ((i.base_reg
9681 && (!i.base_reg->reg_type.bitfield.word
9682 || !i.base_reg->reg_type.bitfield.baseindex))
9683 || (i.index_reg
9684 && (!i.index_reg->reg_type.bitfield.word
9685 || !i.index_reg->reg_type.bitfield.baseindex
9686 || !(i.base_reg
9687 && i.base_reg->reg_num < 6
9688 && i.index_reg->reg_num >= 6
9689 && i.log2_scale_factor == 0))))
9690 goto bad_address;
9691 }
9692 }
9693 return 1;
9694 }
9695
9696 /* Handle vector immediates. */
9697
9698 static int
9699 RC_SAE_immediate (const char *imm_start)
9700 {
9701 unsigned int match_found, j;
9702 const char *pstr = imm_start;
9703 expressionS *exp;
9704
9705 if (*pstr != '{')
9706 return 0;
9707
9708 pstr++;
9709 match_found = 0;
9710 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9711 {
9712 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9713 {
9714 if (!i.rounding)
9715 {
9716 rc_op.type = RC_NamesTable[j].type;
9717 rc_op.operand = this_operand;
9718 i.rounding = &rc_op;
9719 }
9720 else
9721 {
9722 as_bad (_("duplicated `%s'"), imm_start);
9723 return 0;
9724 }
9725 pstr += RC_NamesTable[j].len;
9726 match_found = 1;
9727 break;
9728 }
9729 }
9730 if (!match_found)
9731 return 0;
9732
9733 if (*pstr++ != '}')
9734 {
9735 as_bad (_("Missing '}': '%s'"), imm_start);
9736 return 0;
9737 }
9738 /* RC/SAE immediate string should contain nothing more. */;
9739 if (*pstr != 0)
9740 {
9741 as_bad (_("Junk after '}': '%s'"), imm_start);
9742 return 0;
9743 }
9744
9745 exp = &im_expressions[i.imm_operands++];
9746 i.op[this_operand].imms = exp;
9747
9748 exp->X_op = O_constant;
9749 exp->X_add_number = 0;
9750 exp->X_add_symbol = (symbolS *) 0;
9751 exp->X_op_symbol = (symbolS *) 0;
9752
9753 i.types[this_operand].bitfield.imm8 = 1;
9754 return 1;
9755 }
9756
9757 /* Only string instructions can have a second memory operand, so
9758 reduce current_templates to just those if it contains any. */
9759 static int
9760 maybe_adjust_templates (void)
9761 {
9762 const insn_template *t;
9763
9764 gas_assert (i.mem_operands == 1);
9765
9766 for (t = current_templates->start; t < current_templates->end; ++t)
9767 if (t->opcode_modifier.isstring)
9768 break;
9769
9770 if (t < current_templates->end)
9771 {
9772 static templates aux_templates;
9773 bfd_boolean recheck;
9774
9775 aux_templates.start = t;
9776 for (; t < current_templates->end; ++t)
9777 if (!t->opcode_modifier.isstring)
9778 break;
9779 aux_templates.end = t;
9780
9781 /* Determine whether to re-check the first memory operand. */
9782 recheck = (aux_templates.start != current_templates->start
9783 || t != current_templates->end);
9784
9785 current_templates = &aux_templates;
9786
9787 if (recheck)
9788 {
9789 i.mem_operands = 0;
9790 if (i.memop1_string != NULL
9791 && i386_index_check (i.memop1_string) == 0)
9792 return 0;
9793 i.mem_operands = 1;
9794 }
9795 }
9796
9797 return 1;
9798 }
9799
9800 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
9801 on error. */
9802
9803 static int
9804 i386_att_operand (char *operand_string)
9805 {
9806 const reg_entry *r;
9807 char *end_op;
9808 char *op_string = operand_string;
9809
9810 if (is_space_char (*op_string))
9811 ++op_string;
9812
9813 /* We check for an absolute prefix (differentiating,
9814 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
9815 if (*op_string == ABSOLUTE_PREFIX)
9816 {
9817 ++op_string;
9818 if (is_space_char (*op_string))
9819 ++op_string;
9820 i.types[this_operand].bitfield.jumpabsolute = 1;
9821 }
9822
9823 /* Check if operand is a register. */
9824 if ((r = parse_register (op_string, &end_op)) != NULL)
9825 {
9826 i386_operand_type temp;
9827
9828 /* Check for a segment override by searching for ':' after a
9829 segment register. */
9830 op_string = end_op;
9831 if (is_space_char (*op_string))
9832 ++op_string;
9833 if (*op_string == ':'
9834 && (r->reg_type.bitfield.sreg2
9835 || r->reg_type.bitfield.sreg3))
9836 {
9837 switch (r->reg_num)
9838 {
9839 case 0:
9840 i.seg[i.mem_operands] = &es;
9841 break;
9842 case 1:
9843 i.seg[i.mem_operands] = &cs;
9844 break;
9845 case 2:
9846 i.seg[i.mem_operands] = &ss;
9847 break;
9848 case 3:
9849 i.seg[i.mem_operands] = &ds;
9850 break;
9851 case 4:
9852 i.seg[i.mem_operands] = &fs;
9853 break;
9854 case 5:
9855 i.seg[i.mem_operands] = &gs;
9856 break;
9857 }
9858
9859 /* Skip the ':' and whitespace. */
9860 ++op_string;
9861 if (is_space_char (*op_string))
9862 ++op_string;
9863
9864 if (!is_digit_char (*op_string)
9865 && !is_identifier_char (*op_string)
9866 && *op_string != '('
9867 && *op_string != ABSOLUTE_PREFIX)
9868 {
9869 as_bad (_("bad memory operand `%s'"), op_string);
9870 return 0;
9871 }
9872 /* Handle case of %es:*foo. */
9873 if (*op_string == ABSOLUTE_PREFIX)
9874 {
9875 ++op_string;
9876 if (is_space_char (*op_string))
9877 ++op_string;
9878 i.types[this_operand].bitfield.jumpabsolute = 1;
9879 }
9880 goto do_memory_reference;
9881 }
9882
9883 /* Handle vector operations. */
9884 if (*op_string == '{')
9885 {
9886 op_string = check_VecOperations (op_string, NULL);
9887 if (op_string == NULL)
9888 return 0;
9889 }
9890
9891 if (*op_string)
9892 {
9893 as_bad (_("junk `%s' after register"), op_string);
9894 return 0;
9895 }
9896 temp = r->reg_type;
9897 temp.bitfield.baseindex = 0;
9898 i.types[this_operand] = operand_type_or (i.types[this_operand],
9899 temp);
9900 i.types[this_operand].bitfield.unspecified = 0;
9901 i.op[this_operand].regs = r;
9902 i.reg_operands++;
9903 }
9904 else if (*op_string == REGISTER_PREFIX)
9905 {
9906 as_bad (_("bad register name `%s'"), op_string);
9907 return 0;
9908 }
9909 else if (*op_string == IMMEDIATE_PREFIX)
9910 {
9911 ++op_string;
9912 if (i.types[this_operand].bitfield.jumpabsolute)
9913 {
9914 as_bad (_("immediate operand illegal with absolute jump"));
9915 return 0;
9916 }
9917 if (!i386_immediate (op_string))
9918 return 0;
9919 }
9920 else if (RC_SAE_immediate (operand_string))
9921 {
9922 /* If it is a RC or SAE immediate, do nothing. */
9923 ;
9924 }
9925 else if (is_digit_char (*op_string)
9926 || is_identifier_char (*op_string)
9927 || *op_string == '"'
9928 || *op_string == '(')
9929 {
9930 /* This is a memory reference of some sort. */
9931 char *base_string;
9932
9933 /* Start and end of displacement string expression (if found). */
9934 char *displacement_string_start;
9935 char *displacement_string_end;
9936 char *vop_start;
9937
9938 do_memory_reference:
9939 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9940 return 0;
9941 if ((i.mem_operands == 1
9942 && !current_templates->start->opcode_modifier.isstring)
9943 || i.mem_operands == 2)
9944 {
9945 as_bad (_("too many memory references for `%s'"),
9946 current_templates->start->name);
9947 return 0;
9948 }
9949
9950 /* Check for base index form. We detect the base index form by
9951 looking for an ')' at the end of the operand, searching
9952 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9953 after the '('. */
9954 base_string = op_string + strlen (op_string);
9955
9956 /* Handle vector operations. */
9957 vop_start = strchr (op_string, '{');
9958 if (vop_start && vop_start < base_string)
9959 {
9960 if (check_VecOperations (vop_start, base_string) == NULL)
9961 return 0;
9962 base_string = vop_start;
9963 }
9964
9965 --base_string;
9966 if (is_space_char (*base_string))
9967 --base_string;
9968
9969 /* If we only have a displacement, set-up for it to be parsed later. */
9970 displacement_string_start = op_string;
9971 displacement_string_end = base_string + 1;
9972
9973 if (*base_string == ')')
9974 {
9975 char *temp_string;
9976 unsigned int parens_balanced = 1;
9977 /* We've already checked that the number of left & right ()'s are
9978 equal, so this loop will not be infinite. */
9979 do
9980 {
9981 base_string--;
9982 if (*base_string == ')')
9983 parens_balanced++;
9984 if (*base_string == '(')
9985 parens_balanced--;
9986 }
9987 while (parens_balanced);
9988
9989 temp_string = base_string;
9990
9991 /* Skip past '(' and whitespace. */
9992 ++base_string;
9993 if (is_space_char (*base_string))
9994 ++base_string;
9995
9996 if (*base_string == ','
9997 || ((i.base_reg = parse_register (base_string, &end_op))
9998 != NULL))
9999 {
10000 displacement_string_end = temp_string;
10001
10002 i.types[this_operand].bitfield.baseindex = 1;
10003
10004 if (i.base_reg)
10005 {
10006 base_string = end_op;
10007 if (is_space_char (*base_string))
10008 ++base_string;
10009 }
10010
10011 /* There may be an index reg or scale factor here. */
10012 if (*base_string == ',')
10013 {
10014 ++base_string;
10015 if (is_space_char (*base_string))
10016 ++base_string;
10017
10018 if ((i.index_reg = parse_register (base_string, &end_op))
10019 != NULL)
10020 {
10021 base_string = end_op;
10022 if (is_space_char (*base_string))
10023 ++base_string;
10024 if (*base_string == ',')
10025 {
10026 ++base_string;
10027 if (is_space_char (*base_string))
10028 ++base_string;
10029 }
10030 else if (*base_string != ')')
10031 {
10032 as_bad (_("expecting `,' or `)' "
10033 "after index register in `%s'"),
10034 operand_string);
10035 return 0;
10036 }
10037 }
10038 else if (*base_string == REGISTER_PREFIX)
10039 {
10040 end_op = strchr (base_string, ',');
10041 if (end_op)
10042 *end_op = '\0';
10043 as_bad (_("bad register name `%s'"), base_string);
10044 return 0;
10045 }
10046
10047 /* Check for scale factor. */
10048 if (*base_string != ')')
10049 {
10050 char *end_scale = i386_scale (base_string);
10051
10052 if (!end_scale)
10053 return 0;
10054
10055 base_string = end_scale;
10056 if (is_space_char (*base_string))
10057 ++base_string;
10058 if (*base_string != ')')
10059 {
10060 as_bad (_("expecting `)' "
10061 "after scale factor in `%s'"),
10062 operand_string);
10063 return 0;
10064 }
10065 }
10066 else if (!i.index_reg)
10067 {
10068 as_bad (_("expecting index register or scale factor "
10069 "after `,'; got '%c'"),
10070 *base_string);
10071 return 0;
10072 }
10073 }
10074 else if (*base_string != ')')
10075 {
10076 as_bad (_("expecting `,' or `)' "
10077 "after base register in `%s'"),
10078 operand_string);
10079 return 0;
10080 }
10081 }
10082 else if (*base_string == REGISTER_PREFIX)
10083 {
10084 end_op = strchr (base_string, ',');
10085 if (end_op)
10086 *end_op = '\0';
10087 as_bad (_("bad register name `%s'"), base_string);
10088 return 0;
10089 }
10090 }
10091
10092 /* If there's an expression beginning the operand, parse it,
10093 assuming displacement_string_start and
10094 displacement_string_end are meaningful. */
10095 if (displacement_string_start != displacement_string_end)
10096 {
10097 if (!i386_displacement (displacement_string_start,
10098 displacement_string_end))
10099 return 0;
10100 }
10101
10102 /* Special case for (%dx) while doing input/output op. */
10103 if (i.base_reg
10104 && i.base_reg->reg_type.bitfield.inoutportreg
10105 && i.index_reg == 0
10106 && i.log2_scale_factor == 0
10107 && i.seg[i.mem_operands] == 0
10108 && !operand_type_check (i.types[this_operand], disp))
10109 {
10110 i.types[this_operand] = i.base_reg->reg_type;
10111 return 1;
10112 }
10113
10114 if (i386_index_check (operand_string) == 0)
10115 return 0;
10116 i.flags[this_operand] |= Operand_Mem;
10117 if (i.mem_operands == 0)
10118 i.memop1_string = xstrdup (operand_string);
10119 i.mem_operands++;
10120 }
10121 else
10122 {
10123 /* It's not a memory operand; argh! */
10124 as_bad (_("invalid char %s beginning operand %d `%s'"),
10125 output_invalid (*op_string),
10126 this_operand + 1,
10127 op_string);
10128 return 0;
10129 }
10130 return 1; /* Normal return. */
10131 }
10132 \f
10133 /* Calculate the maximum variable size (i.e., excluding fr_fix)
10134 that an rs_machine_dependent frag may reach. */
10135
10136 unsigned int
10137 i386_frag_max_var (fragS *frag)
10138 {
10139 /* The only relaxable frags are for jumps.
10140 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10141 gas_assert (frag->fr_type == rs_machine_dependent);
10142 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10143 }
10144
10145 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10146 static int
10147 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
10148 {
10149 /* STT_GNU_IFUNC symbol must go through PLT. */
10150 if ((symbol_get_bfdsym (fr_symbol)->flags
10151 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10152 return 0;
10153
10154 if (!S_IS_EXTERNAL (fr_symbol))
10155 /* Symbol may be weak or local. */
10156 return !S_IS_WEAK (fr_symbol);
10157
10158 /* Global symbols with non-default visibility can't be preempted. */
10159 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10160 return 1;
10161
10162 if (fr_var != NO_RELOC)
10163 switch ((enum bfd_reloc_code_real) fr_var)
10164 {
10165 case BFD_RELOC_386_PLT32:
10166 case BFD_RELOC_X86_64_PLT32:
10167 /* Symbol with PLT relocation may be preempted. */
10168 return 0;
10169 default:
10170 abort ();
10171 }
10172
10173 /* Global symbols with default visibility in a shared library may be
10174 preempted by another definition. */
10175 return !shared;
10176 }
10177 #endif
10178
10179 /* md_estimate_size_before_relax()
10180
10181 Called just before relax() for rs_machine_dependent frags. The x86
10182 assembler uses these frags to handle variable size jump
10183 instructions.
10184
10185 Any symbol that is now undefined will not become defined.
10186 Return the correct fr_subtype in the frag.
10187 Return the initial "guess for variable size of frag" to caller.
10188 The guess is actually the growth beyond the fixed part. Whatever
10189 we do to grow the fixed or variable part contributes to our
10190 returned value. */
10191
10192 int
10193 md_estimate_size_before_relax (fragS *fragP, segT segment)
10194 {
10195 /* We've already got fragP->fr_subtype right; all we have to do is
10196 check for un-relaxable symbols. On an ELF system, we can't relax
10197 an externally visible symbol, because it may be overridden by a
10198 shared library. */
10199 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
10200 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10201 || (IS_ELF
10202 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
10203 fragP->fr_var))
10204 #endif
10205 #if defined (OBJ_COFF) && defined (TE_PE)
10206 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
10207 && S_IS_WEAK (fragP->fr_symbol))
10208 #endif
10209 )
10210 {
10211 /* Symbol is undefined in this segment, or we need to keep a
10212 reloc so that weak symbols can be overridden. */
10213 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
10214 enum bfd_reloc_code_real reloc_type;
10215 unsigned char *opcode;
10216 int old_fr_fix;
10217
10218 if (fragP->fr_var != NO_RELOC)
10219 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
10220 else if (size == 2)
10221 reloc_type = BFD_RELOC_16_PCREL;
10222 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10223 else if (need_plt32_p (fragP->fr_symbol))
10224 reloc_type = BFD_RELOC_X86_64_PLT32;
10225 #endif
10226 else
10227 reloc_type = BFD_RELOC_32_PCREL;
10228
10229 old_fr_fix = fragP->fr_fix;
10230 opcode = (unsigned char *) fragP->fr_opcode;
10231
10232 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
10233 {
10234 case UNCOND_JUMP:
10235 /* Make jmp (0xeb) a (d)word displacement jump. */
10236 opcode[0] = 0xe9;
10237 fragP->fr_fix += size;
10238 fix_new (fragP, old_fr_fix, size,
10239 fragP->fr_symbol,
10240 fragP->fr_offset, 1,
10241 reloc_type);
10242 break;
10243
10244 case COND_JUMP86:
10245 if (size == 2
10246 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
10247 {
10248 /* Negate the condition, and branch past an
10249 unconditional jump. */
10250 opcode[0] ^= 1;
10251 opcode[1] = 3;
10252 /* Insert an unconditional jump. */
10253 opcode[2] = 0xe9;
10254 /* We added two extra opcode bytes, and have a two byte
10255 offset. */
10256 fragP->fr_fix += 2 + 2;
10257 fix_new (fragP, old_fr_fix + 2, 2,
10258 fragP->fr_symbol,
10259 fragP->fr_offset, 1,
10260 reloc_type);
10261 break;
10262 }
10263 /* Fall through. */
10264
10265 case COND_JUMP:
10266 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
10267 {
10268 fixS *fixP;
10269
10270 fragP->fr_fix += 1;
10271 fixP = fix_new (fragP, old_fr_fix, 1,
10272 fragP->fr_symbol,
10273 fragP->fr_offset, 1,
10274 BFD_RELOC_8_PCREL);
10275 fixP->fx_signed = 1;
10276 break;
10277 }
10278
10279 /* This changes the byte-displacement jump 0x7N
10280 to the (d)word-displacement jump 0x0f,0x8N. */
10281 opcode[1] = opcode[0] + 0x10;
10282 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10283 /* We've added an opcode byte. */
10284 fragP->fr_fix += 1 + size;
10285 fix_new (fragP, old_fr_fix + 1, size,
10286 fragP->fr_symbol,
10287 fragP->fr_offset, 1,
10288 reloc_type);
10289 break;
10290
10291 default:
10292 BAD_CASE (fragP->fr_subtype);
10293 break;
10294 }
10295 frag_wane (fragP);
10296 return fragP->fr_fix - old_fr_fix;
10297 }
10298
10299 /* Guess size depending on current relax state. Initially the relax
10300 state will correspond to a short jump and we return 1, because
10301 the variable part of the frag (the branch offset) is one byte
10302 long. However, we can relax a section more than once and in that
10303 case we must either set fr_subtype back to the unrelaxed state,
10304 or return the value for the appropriate branch. */
10305 return md_relax_table[fragP->fr_subtype].rlx_length;
10306 }
10307
10308 /* Called after relax() is finished.
10309
10310 In: Address of frag.
10311 fr_type == rs_machine_dependent.
10312 fr_subtype is what the address relaxed to.
10313
10314 Out: Any fixSs and constants are set up.
10315 Caller will turn frag into a ".space 0". */
10316
10317 void
10318 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10319 fragS *fragP)
10320 {
10321 unsigned char *opcode;
10322 unsigned char *where_to_put_displacement = NULL;
10323 offsetT target_address;
10324 offsetT opcode_address;
10325 unsigned int extension = 0;
10326 offsetT displacement_from_opcode_start;
10327
10328 opcode = (unsigned char *) fragP->fr_opcode;
10329
10330 /* Address we want to reach in file space. */
10331 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
10332
10333 /* Address opcode resides at in file space. */
10334 opcode_address = fragP->fr_address + fragP->fr_fix;
10335
10336 /* Displacement from opcode start to fill into instruction. */
10337 displacement_from_opcode_start = target_address - opcode_address;
10338
10339 if ((fragP->fr_subtype & BIG) == 0)
10340 {
10341 /* Don't have to change opcode. */
10342 extension = 1; /* 1 opcode + 1 displacement */
10343 where_to_put_displacement = &opcode[1];
10344 }
10345 else
10346 {
10347 if (no_cond_jump_promotion
10348 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
10349 as_warn_where (fragP->fr_file, fragP->fr_line,
10350 _("long jump required"));
10351
10352 switch (fragP->fr_subtype)
10353 {
10354 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10355 extension = 4; /* 1 opcode + 4 displacement */
10356 opcode[0] = 0xe9;
10357 where_to_put_displacement = &opcode[1];
10358 break;
10359
10360 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10361 extension = 2; /* 1 opcode + 2 displacement */
10362 opcode[0] = 0xe9;
10363 where_to_put_displacement = &opcode[1];
10364 break;
10365
10366 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10367 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10368 extension = 5; /* 2 opcode + 4 displacement */
10369 opcode[1] = opcode[0] + 0x10;
10370 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10371 where_to_put_displacement = &opcode[2];
10372 break;
10373
10374 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10375 extension = 3; /* 2 opcode + 2 displacement */
10376 opcode[1] = opcode[0] + 0x10;
10377 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10378 where_to_put_displacement = &opcode[2];
10379 break;
10380
10381 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10382 extension = 4;
10383 opcode[0] ^= 1;
10384 opcode[1] = 3;
10385 opcode[2] = 0xe9;
10386 where_to_put_displacement = &opcode[3];
10387 break;
10388
10389 default:
10390 BAD_CASE (fragP->fr_subtype);
10391 break;
10392 }
10393 }
10394
10395 /* If size if less then four we are sure that the operand fits,
10396 but if it's 4, then it could be that the displacement is larger
10397 then -/+ 2GB. */
10398 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10399 && object_64bit
10400 && ((addressT) (displacement_from_opcode_start - extension
10401 + ((addressT) 1 << 31))
10402 > (((addressT) 2 << 31) - 1)))
10403 {
10404 as_bad_where (fragP->fr_file, fragP->fr_line,
10405 _("jump target out of range"));
10406 /* Make us emit 0. */
10407 displacement_from_opcode_start = extension;
10408 }
10409 /* Now put displacement after opcode. */
10410 md_number_to_chars ((char *) where_to_put_displacement,
10411 (valueT) (displacement_from_opcode_start - extension),
10412 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
10413 fragP->fr_fix += extension;
10414 }
10415 \f
10416 /* Apply a fixup (fixP) to segment data, once it has been determined
10417 by our caller that we have all the info we need to fix it up.
10418
10419 Parameter valP is the pointer to the value of the bits.
10420
10421 On the 386, immediates, displacements, and data pointers are all in
10422 the same (little-endian) format, so we don't need to care about which
10423 we are handling. */
10424
10425 void
10426 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
10427 {
10428 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
10429 valueT value = *valP;
10430
10431 #if !defined (TE_Mach)
10432 if (fixP->fx_pcrel)
10433 {
10434 switch (fixP->fx_r_type)
10435 {
10436 default:
10437 break;
10438
10439 case BFD_RELOC_64:
10440 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10441 break;
10442 case BFD_RELOC_32:
10443 case BFD_RELOC_X86_64_32S:
10444 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10445 break;
10446 case BFD_RELOC_16:
10447 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10448 break;
10449 case BFD_RELOC_8:
10450 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10451 break;
10452 }
10453 }
10454
10455 if (fixP->fx_addsy != NULL
10456 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
10457 || fixP->fx_r_type == BFD_RELOC_64_PCREL
10458 || fixP->fx_r_type == BFD_RELOC_16_PCREL
10459 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
10460 && !use_rela_relocations)
10461 {
10462 /* This is a hack. There should be a better way to handle this.
10463 This covers for the fact that bfd_install_relocation will
10464 subtract the current location (for partial_inplace, PC relative
10465 relocations); see more below. */
10466 #ifndef OBJ_AOUT
10467 if (IS_ELF
10468 #ifdef TE_PE
10469 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10470 #endif
10471 )
10472 value += fixP->fx_where + fixP->fx_frag->fr_address;
10473 #endif
10474 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10475 if (IS_ELF)
10476 {
10477 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
10478
10479 if ((sym_seg == seg
10480 || (symbol_section_p (fixP->fx_addsy)
10481 && sym_seg != absolute_section))
10482 && !generic_force_reloc (fixP))
10483 {
10484 /* Yes, we add the values in twice. This is because
10485 bfd_install_relocation subtracts them out again. I think
10486 bfd_install_relocation is broken, but I don't dare change
10487 it. FIXME. */
10488 value += fixP->fx_where + fixP->fx_frag->fr_address;
10489 }
10490 }
10491 #endif
10492 #if defined (OBJ_COFF) && defined (TE_PE)
10493 /* For some reason, the PE format does not store a
10494 section address offset for a PC relative symbol. */
10495 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
10496 || S_IS_WEAK (fixP->fx_addsy))
10497 value += md_pcrel_from (fixP);
10498 #endif
10499 }
10500 #if defined (OBJ_COFF) && defined (TE_PE)
10501 if (fixP->fx_addsy != NULL
10502 && S_IS_WEAK (fixP->fx_addsy)
10503 /* PR 16858: Do not modify weak function references. */
10504 && ! fixP->fx_pcrel)
10505 {
10506 #if !defined (TE_PEP)
10507 /* For x86 PE weak function symbols are neither PC-relative
10508 nor do they set S_IS_FUNCTION. So the only reliable way
10509 to detect them is to check the flags of their containing
10510 section. */
10511 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10512 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10513 ;
10514 else
10515 #endif
10516 value -= S_GET_VALUE (fixP->fx_addsy);
10517 }
10518 #endif
10519
10520 /* Fix a few things - the dynamic linker expects certain values here,
10521 and we must not disappoint it. */
10522 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10523 if (IS_ELF && fixP->fx_addsy)
10524 switch (fixP->fx_r_type)
10525 {
10526 case BFD_RELOC_386_PLT32:
10527 case BFD_RELOC_X86_64_PLT32:
10528 /* Make the jump instruction point to the address of the operand. At
10529 runtime we merely add the offset to the actual PLT entry. */
10530 value = -4;
10531 break;
10532
10533 case BFD_RELOC_386_TLS_GD:
10534 case BFD_RELOC_386_TLS_LDM:
10535 case BFD_RELOC_386_TLS_IE_32:
10536 case BFD_RELOC_386_TLS_IE:
10537 case BFD_RELOC_386_TLS_GOTIE:
10538 case BFD_RELOC_386_TLS_GOTDESC:
10539 case BFD_RELOC_X86_64_TLSGD:
10540 case BFD_RELOC_X86_64_TLSLD:
10541 case BFD_RELOC_X86_64_GOTTPOFF:
10542 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10543 value = 0; /* Fully resolved at runtime. No addend. */
10544 /* Fallthrough */
10545 case BFD_RELOC_386_TLS_LE:
10546 case BFD_RELOC_386_TLS_LDO_32:
10547 case BFD_RELOC_386_TLS_LE_32:
10548 case BFD_RELOC_X86_64_DTPOFF32:
10549 case BFD_RELOC_X86_64_DTPOFF64:
10550 case BFD_RELOC_X86_64_TPOFF32:
10551 case BFD_RELOC_X86_64_TPOFF64:
10552 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10553 break;
10554
10555 case BFD_RELOC_386_TLS_DESC_CALL:
10556 case BFD_RELOC_X86_64_TLSDESC_CALL:
10557 value = 0; /* Fully resolved at runtime. No addend. */
10558 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10559 fixP->fx_done = 0;
10560 return;
10561
10562 case BFD_RELOC_VTABLE_INHERIT:
10563 case BFD_RELOC_VTABLE_ENTRY:
10564 fixP->fx_done = 0;
10565 return;
10566
10567 default:
10568 break;
10569 }
10570 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
10571 *valP = value;
10572 #endif /* !defined (TE_Mach) */
10573
10574 /* Are we finished with this relocation now? */
10575 if (fixP->fx_addsy == NULL)
10576 fixP->fx_done = 1;
10577 #if defined (OBJ_COFF) && defined (TE_PE)
10578 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10579 {
10580 fixP->fx_done = 0;
10581 /* Remember value for tc_gen_reloc. */
10582 fixP->fx_addnumber = value;
10583 /* Clear out the frag for now. */
10584 value = 0;
10585 }
10586 #endif
10587 else if (use_rela_relocations)
10588 {
10589 fixP->fx_no_overflow = 1;
10590 /* Remember value for tc_gen_reloc. */
10591 fixP->fx_addnumber = value;
10592 value = 0;
10593 }
10594
10595 md_number_to_chars (p, value, fixP->fx_size);
10596 }
10597 \f
10598 const char *
10599 md_atof (int type, char *litP, int *sizeP)
10600 {
10601 /* This outputs the LITTLENUMs in REVERSE order;
10602 in accord with the bigendian 386. */
10603 return ieee_md_atof (type, litP, sizeP, FALSE);
10604 }
10605 \f
10606 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
10607
10608 static char *
10609 output_invalid (int c)
10610 {
10611 if (ISPRINT (c))
10612 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10613 "'%c'", c);
10614 else
10615 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10616 "(0x%x)", (unsigned char) c);
10617 return output_invalid_buf;
10618 }
10619
10620 /* REG_STRING starts *before* REGISTER_PREFIX. */
10621
10622 static const reg_entry *
10623 parse_real_register (char *reg_string, char **end_op)
10624 {
10625 char *s = reg_string;
10626 char *p;
10627 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10628 const reg_entry *r;
10629
10630 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10631 if (*s == REGISTER_PREFIX)
10632 ++s;
10633
10634 if (is_space_char (*s))
10635 ++s;
10636
10637 p = reg_name_given;
10638 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
10639 {
10640 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
10641 return (const reg_entry *) NULL;
10642 s++;
10643 }
10644
10645 /* For naked regs, make sure that we are not dealing with an identifier.
10646 This prevents confusing an identifier like `eax_var' with register
10647 `eax'. */
10648 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10649 return (const reg_entry *) NULL;
10650
10651 *end_op = s;
10652
10653 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10654
10655 /* Handle floating point regs, allowing spaces in the (i) part. */
10656 if (r == i386_regtab /* %st is first entry of table */)
10657 {
10658 if (!cpu_arch_flags.bitfield.cpu8087
10659 && !cpu_arch_flags.bitfield.cpu287
10660 && !cpu_arch_flags.bitfield.cpu387)
10661 return (const reg_entry *) NULL;
10662
10663 if (is_space_char (*s))
10664 ++s;
10665 if (*s == '(')
10666 {
10667 ++s;
10668 if (is_space_char (*s))
10669 ++s;
10670 if (*s >= '0' && *s <= '7')
10671 {
10672 int fpr = *s - '0';
10673 ++s;
10674 if (is_space_char (*s))
10675 ++s;
10676 if (*s == ')')
10677 {
10678 *end_op = s + 1;
10679 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
10680 know (r);
10681 return r + fpr;
10682 }
10683 }
10684 /* We have "%st(" then garbage. */
10685 return (const reg_entry *) NULL;
10686 }
10687 }
10688
10689 if (r == NULL || allow_pseudo_reg)
10690 return r;
10691
10692 if (operand_type_all_zero (&r->reg_type))
10693 return (const reg_entry *) NULL;
10694
10695 if ((r->reg_type.bitfield.dword
10696 || r->reg_type.bitfield.sreg3
10697 || r->reg_type.bitfield.control
10698 || r->reg_type.bitfield.debug
10699 || r->reg_type.bitfield.test)
10700 && !cpu_arch_flags.bitfield.cpui386)
10701 return (const reg_entry *) NULL;
10702
10703 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
10704 return (const reg_entry *) NULL;
10705
10706 if (!cpu_arch_flags.bitfield.cpuavx512f)
10707 {
10708 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10709 return (const reg_entry *) NULL;
10710
10711 if (!cpu_arch_flags.bitfield.cpuavx)
10712 {
10713 if (r->reg_type.bitfield.ymmword)
10714 return (const reg_entry *) NULL;
10715
10716 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10717 return (const reg_entry *) NULL;
10718 }
10719 }
10720
10721 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10722 return (const reg_entry *) NULL;
10723
10724 /* Don't allow fake index register unless allow_index_reg isn't 0. */
10725 if (!allow_index_reg && r->reg_num == RegIZ)
10726 return (const reg_entry *) NULL;
10727
10728 /* Upper 16 vector registers are only available with VREX in 64bit
10729 mode, and require EVEX encoding. */
10730 if (r->reg_flags & RegVRex)
10731 {
10732 if (!cpu_arch_flags.bitfield.cpuavx512f
10733 || flag_code != CODE_64BIT)
10734 return (const reg_entry *) NULL;
10735
10736 i.vec_encoding = vex_encoding_evex;
10737 }
10738
10739 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10740 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
10741 && flag_code != CODE_64BIT)
10742 return (const reg_entry *) NULL;
10743
10744 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10745 return (const reg_entry *) NULL;
10746
10747 return r;
10748 }
10749
10750 /* REG_STRING starts *before* REGISTER_PREFIX. */
10751
10752 static const reg_entry *
10753 parse_register (char *reg_string, char **end_op)
10754 {
10755 const reg_entry *r;
10756
10757 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10758 r = parse_real_register (reg_string, end_op);
10759 else
10760 r = NULL;
10761 if (!r)
10762 {
10763 char *save = input_line_pointer;
10764 char c;
10765 symbolS *symbolP;
10766
10767 input_line_pointer = reg_string;
10768 c = get_symbol_name (&reg_string);
10769 symbolP = symbol_find (reg_string);
10770 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10771 {
10772 const expressionS *e = symbol_get_value_expression (symbolP);
10773
10774 know (e->X_op == O_register);
10775 know (e->X_add_number >= 0
10776 && (valueT) e->X_add_number < i386_regtab_size);
10777 r = i386_regtab + e->X_add_number;
10778 if ((r->reg_flags & RegVRex))
10779 i.vec_encoding = vex_encoding_evex;
10780 *end_op = input_line_pointer;
10781 }
10782 *input_line_pointer = c;
10783 input_line_pointer = save;
10784 }
10785 return r;
10786 }
10787
10788 int
10789 i386_parse_name (char *name, expressionS *e, char *nextcharP)
10790 {
10791 const reg_entry *r;
10792 char *end = input_line_pointer;
10793
10794 *end = *nextcharP;
10795 r = parse_register (name, &input_line_pointer);
10796 if (r && end <= input_line_pointer)
10797 {
10798 *nextcharP = *input_line_pointer;
10799 *input_line_pointer = 0;
10800 e->X_op = O_register;
10801 e->X_add_number = r - i386_regtab;
10802 return 1;
10803 }
10804 input_line_pointer = end;
10805 *end = 0;
10806 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
10807 }
10808
10809 void
10810 md_operand (expressionS *e)
10811 {
10812 char *end;
10813 const reg_entry *r;
10814
10815 switch (*input_line_pointer)
10816 {
10817 case REGISTER_PREFIX:
10818 r = parse_real_register (input_line_pointer, &end);
10819 if (r)
10820 {
10821 e->X_op = O_register;
10822 e->X_add_number = r - i386_regtab;
10823 input_line_pointer = end;
10824 }
10825 break;
10826
10827 case '[':
10828 gas_assert (intel_syntax);
10829 end = input_line_pointer++;
10830 expression (e);
10831 if (*input_line_pointer == ']')
10832 {
10833 ++input_line_pointer;
10834 e->X_op_symbol = make_expr_symbol (e);
10835 e->X_add_symbol = NULL;
10836 e->X_add_number = 0;
10837 e->X_op = O_index;
10838 }
10839 else
10840 {
10841 e->X_op = O_absent;
10842 input_line_pointer = end;
10843 }
10844 break;
10845 }
10846 }
10847
10848 \f
10849 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10850 const char *md_shortopts = "kVQ:sqnO::";
10851 #else
10852 const char *md_shortopts = "qnO::";
10853 #endif
10854
10855 #define OPTION_32 (OPTION_MD_BASE + 0)
10856 #define OPTION_64 (OPTION_MD_BASE + 1)
10857 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
10858 #define OPTION_MARCH (OPTION_MD_BASE + 3)
10859 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
10860 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10861 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10862 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10863 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
10864 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
10865 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
10866 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
10867 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10868 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10869 #define OPTION_X32 (OPTION_MD_BASE + 14)
10870 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
10871 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10872 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
10873 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
10874 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
10875 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
10876 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
10877 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10878 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
10879 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
10880 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
10881
10882 struct option md_longopts[] =
10883 {
10884 {"32", no_argument, NULL, OPTION_32},
10885 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10886 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10887 {"64", no_argument, NULL, OPTION_64},
10888 #endif
10889 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10890 {"x32", no_argument, NULL, OPTION_X32},
10891 {"mshared", no_argument, NULL, OPTION_MSHARED},
10892 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
10893 #endif
10894 {"divide", no_argument, NULL, OPTION_DIVIDE},
10895 {"march", required_argument, NULL, OPTION_MARCH},
10896 {"mtune", required_argument, NULL, OPTION_MTUNE},
10897 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10898 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10899 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10900 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
10901 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
10902 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
10903 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
10904 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
10905 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
10906 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10907 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
10908 # if defined (TE_PE) || defined (TE_PEP)
10909 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10910 #endif
10911 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
10912 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
10913 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
10914 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
10915 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10916 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
10917 {NULL, no_argument, NULL, 0}
10918 };
10919 size_t md_longopts_size = sizeof (md_longopts);
10920
10921 int
10922 md_parse_option (int c, const char *arg)
10923 {
10924 unsigned int j;
10925 char *arch, *next, *saved;
10926
10927 switch (c)
10928 {
10929 case 'n':
10930 optimize_align_code = 0;
10931 break;
10932
10933 case 'q':
10934 quiet_warnings = 1;
10935 break;
10936
10937 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10938 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10939 should be emitted or not. FIXME: Not implemented. */
10940 case 'Q':
10941 break;
10942
10943 /* -V: SVR4 argument to print version ID. */
10944 case 'V':
10945 print_version_id ();
10946 break;
10947
10948 /* -k: Ignore for FreeBSD compatibility. */
10949 case 'k':
10950 break;
10951
10952 case 's':
10953 /* -s: On i386 Solaris, this tells the native assembler to use
10954 .stab instead of .stab.excl. We always use .stab anyhow. */
10955 break;
10956
10957 case OPTION_MSHARED:
10958 shared = 1;
10959 break;
10960
10961 case OPTION_X86_USED_NOTE:
10962 if (strcasecmp (arg, "yes") == 0)
10963 x86_used_note = 1;
10964 else if (strcasecmp (arg, "no") == 0)
10965 x86_used_note = 0;
10966 else
10967 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
10968 break;
10969
10970
10971 #endif
10972 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10973 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10974 case OPTION_64:
10975 {
10976 const char **list, **l;
10977
10978 list = bfd_target_list ();
10979 for (l = list; *l != NULL; l++)
10980 if (CONST_STRNEQ (*l, "elf64-x86-64")
10981 || strcmp (*l, "coff-x86-64") == 0
10982 || strcmp (*l, "pe-x86-64") == 0
10983 || strcmp (*l, "pei-x86-64") == 0
10984 || strcmp (*l, "mach-o-x86-64") == 0)
10985 {
10986 default_arch = "x86_64";
10987 break;
10988 }
10989 if (*l == NULL)
10990 as_fatal (_("no compiled in support for x86_64"));
10991 free (list);
10992 }
10993 break;
10994 #endif
10995
10996 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10997 case OPTION_X32:
10998 if (IS_ELF)
10999 {
11000 const char **list, **l;
11001
11002 list = bfd_target_list ();
11003 for (l = list; *l != NULL; l++)
11004 if (CONST_STRNEQ (*l, "elf32-x86-64"))
11005 {
11006 default_arch = "x86_64:32";
11007 break;
11008 }
11009 if (*l == NULL)
11010 as_fatal (_("no compiled in support for 32bit x86_64"));
11011 free (list);
11012 }
11013 else
11014 as_fatal (_("32bit x86_64 is only supported for ELF"));
11015 break;
11016 #endif
11017
11018 case OPTION_32:
11019 default_arch = "i386";
11020 break;
11021
11022 case OPTION_DIVIDE:
11023 #ifdef SVR4_COMMENT_CHARS
11024 {
11025 char *n, *t;
11026 const char *s;
11027
11028 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
11029 t = n;
11030 for (s = i386_comment_chars; *s != '\0'; s++)
11031 if (*s != '/')
11032 *t++ = *s;
11033 *t = '\0';
11034 i386_comment_chars = n;
11035 }
11036 #endif
11037 break;
11038
11039 case OPTION_MARCH:
11040 saved = xstrdup (arg);
11041 arch = saved;
11042 /* Allow -march=+nosse. */
11043 if (*arch == '+')
11044 arch++;
11045 do
11046 {
11047 if (*arch == '.')
11048 as_fatal (_("invalid -march= option: `%s'"), arg);
11049 next = strchr (arch, '+');
11050 if (next)
11051 *next++ = '\0';
11052 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11053 {
11054 if (strcmp (arch, cpu_arch [j].name) == 0)
11055 {
11056 /* Processor. */
11057 if (! cpu_arch[j].flags.bitfield.cpui386)
11058 continue;
11059
11060 cpu_arch_name = cpu_arch[j].name;
11061 cpu_sub_arch_name = NULL;
11062 cpu_arch_flags = cpu_arch[j].flags;
11063 cpu_arch_isa = cpu_arch[j].type;
11064 cpu_arch_isa_flags = cpu_arch[j].flags;
11065 if (!cpu_arch_tune_set)
11066 {
11067 cpu_arch_tune = cpu_arch_isa;
11068 cpu_arch_tune_flags = cpu_arch_isa_flags;
11069 }
11070 break;
11071 }
11072 else if (*cpu_arch [j].name == '.'
11073 && strcmp (arch, cpu_arch [j].name + 1) == 0)
11074 {
11075 /* ISA extension. */
11076 i386_cpu_flags flags;
11077
11078 flags = cpu_flags_or (cpu_arch_flags,
11079 cpu_arch[j].flags);
11080
11081 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11082 {
11083 if (cpu_sub_arch_name)
11084 {
11085 char *name = cpu_sub_arch_name;
11086 cpu_sub_arch_name = concat (name,
11087 cpu_arch[j].name,
11088 (const char *) NULL);
11089 free (name);
11090 }
11091 else
11092 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
11093 cpu_arch_flags = flags;
11094 cpu_arch_isa_flags = flags;
11095 }
11096 else
11097 cpu_arch_isa_flags
11098 = cpu_flags_or (cpu_arch_isa_flags,
11099 cpu_arch[j].flags);
11100 break;
11101 }
11102 }
11103
11104 if (j >= ARRAY_SIZE (cpu_arch))
11105 {
11106 /* Disable an ISA extension. */
11107 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11108 if (strcmp (arch, cpu_noarch [j].name) == 0)
11109 {
11110 i386_cpu_flags flags;
11111
11112 flags = cpu_flags_and_not (cpu_arch_flags,
11113 cpu_noarch[j].flags);
11114 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11115 {
11116 if (cpu_sub_arch_name)
11117 {
11118 char *name = cpu_sub_arch_name;
11119 cpu_sub_arch_name = concat (arch,
11120 (const char *) NULL);
11121 free (name);
11122 }
11123 else
11124 cpu_sub_arch_name = xstrdup (arch);
11125 cpu_arch_flags = flags;
11126 cpu_arch_isa_flags = flags;
11127 }
11128 break;
11129 }
11130
11131 if (j >= ARRAY_SIZE (cpu_noarch))
11132 j = ARRAY_SIZE (cpu_arch);
11133 }
11134
11135 if (j >= ARRAY_SIZE (cpu_arch))
11136 as_fatal (_("invalid -march= option: `%s'"), arg);
11137
11138 arch = next;
11139 }
11140 while (next != NULL);
11141 free (saved);
11142 break;
11143
11144 case OPTION_MTUNE:
11145 if (*arg == '.')
11146 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11147 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11148 {
11149 if (strcmp (arg, cpu_arch [j].name) == 0)
11150 {
11151 cpu_arch_tune_set = 1;
11152 cpu_arch_tune = cpu_arch [j].type;
11153 cpu_arch_tune_flags = cpu_arch[j].flags;
11154 break;
11155 }
11156 }
11157 if (j >= ARRAY_SIZE (cpu_arch))
11158 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11159 break;
11160
11161 case OPTION_MMNEMONIC:
11162 if (strcasecmp (arg, "att") == 0)
11163 intel_mnemonic = 0;
11164 else if (strcasecmp (arg, "intel") == 0)
11165 intel_mnemonic = 1;
11166 else
11167 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
11168 break;
11169
11170 case OPTION_MSYNTAX:
11171 if (strcasecmp (arg, "att") == 0)
11172 intel_syntax = 0;
11173 else if (strcasecmp (arg, "intel") == 0)
11174 intel_syntax = 1;
11175 else
11176 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
11177 break;
11178
11179 case OPTION_MINDEX_REG:
11180 allow_index_reg = 1;
11181 break;
11182
11183 case OPTION_MNAKED_REG:
11184 allow_naked_reg = 1;
11185 break;
11186
11187 case OPTION_MSSE2AVX:
11188 sse2avx = 1;
11189 break;
11190
11191 case OPTION_MSSE_CHECK:
11192 if (strcasecmp (arg, "error") == 0)
11193 sse_check = check_error;
11194 else if (strcasecmp (arg, "warning") == 0)
11195 sse_check = check_warning;
11196 else if (strcasecmp (arg, "none") == 0)
11197 sse_check = check_none;
11198 else
11199 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
11200 break;
11201
11202 case OPTION_MOPERAND_CHECK:
11203 if (strcasecmp (arg, "error") == 0)
11204 operand_check = check_error;
11205 else if (strcasecmp (arg, "warning") == 0)
11206 operand_check = check_warning;
11207 else if (strcasecmp (arg, "none") == 0)
11208 operand_check = check_none;
11209 else
11210 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
11211 break;
11212
11213 case OPTION_MAVXSCALAR:
11214 if (strcasecmp (arg, "128") == 0)
11215 avxscalar = vex128;
11216 else if (strcasecmp (arg, "256") == 0)
11217 avxscalar = vex256;
11218 else
11219 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
11220 break;
11221
11222 case OPTION_MADD_BND_PREFIX:
11223 add_bnd_prefix = 1;
11224 break;
11225
11226 case OPTION_MEVEXLIG:
11227 if (strcmp (arg, "128") == 0)
11228 evexlig = evexl128;
11229 else if (strcmp (arg, "256") == 0)
11230 evexlig = evexl256;
11231 else if (strcmp (arg, "512") == 0)
11232 evexlig = evexl512;
11233 else
11234 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
11235 break;
11236
11237 case OPTION_MEVEXRCIG:
11238 if (strcmp (arg, "rne") == 0)
11239 evexrcig = rne;
11240 else if (strcmp (arg, "rd") == 0)
11241 evexrcig = rd;
11242 else if (strcmp (arg, "ru") == 0)
11243 evexrcig = ru;
11244 else if (strcmp (arg, "rz") == 0)
11245 evexrcig = rz;
11246 else
11247 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
11248 break;
11249
11250 case OPTION_MEVEXWIG:
11251 if (strcmp (arg, "0") == 0)
11252 evexwig = evexw0;
11253 else if (strcmp (arg, "1") == 0)
11254 evexwig = evexw1;
11255 else
11256 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
11257 break;
11258
11259 # if defined (TE_PE) || defined (TE_PEP)
11260 case OPTION_MBIG_OBJ:
11261 use_big_obj = 1;
11262 break;
11263 #endif
11264
11265 case OPTION_MOMIT_LOCK_PREFIX:
11266 if (strcasecmp (arg, "yes") == 0)
11267 omit_lock_prefix = 1;
11268 else if (strcasecmp (arg, "no") == 0)
11269 omit_lock_prefix = 0;
11270 else
11271 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
11272 break;
11273
11274 case OPTION_MFENCE_AS_LOCK_ADD:
11275 if (strcasecmp (arg, "yes") == 0)
11276 avoid_fence = 1;
11277 else if (strcasecmp (arg, "no") == 0)
11278 avoid_fence = 0;
11279 else
11280 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
11281 break;
11282
11283 case OPTION_MRELAX_RELOCATIONS:
11284 if (strcasecmp (arg, "yes") == 0)
11285 generate_relax_relocations = 1;
11286 else if (strcasecmp (arg, "no") == 0)
11287 generate_relax_relocations = 0;
11288 else
11289 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
11290 break;
11291
11292 case OPTION_MAMD64:
11293 intel64 = 0;
11294 break;
11295
11296 case OPTION_MINTEL64:
11297 intel64 = 1;
11298 break;
11299
11300 case 'O':
11301 if (arg == NULL)
11302 {
11303 optimize = 1;
11304 /* Turn off -Os. */
11305 optimize_for_space = 0;
11306 }
11307 else if (*arg == 's')
11308 {
11309 optimize_for_space = 1;
11310 /* Turn on all encoding optimizations. */
11311 optimize = -1;
11312 }
11313 else
11314 {
11315 optimize = atoi (arg);
11316 /* Turn off -Os. */
11317 optimize_for_space = 0;
11318 }
11319 break;
11320
11321 default:
11322 return 0;
11323 }
11324 return 1;
11325 }
11326
11327 #define MESSAGE_TEMPLATE \
11328 " "
11329
11330 static char *
11331 output_message (FILE *stream, char *p, char *message, char *start,
11332 int *left_p, const char *name, int len)
11333 {
11334 int size = sizeof (MESSAGE_TEMPLATE);
11335 int left = *left_p;
11336
11337 /* Reserve 2 spaces for ", " or ",\0" */
11338 left -= len + 2;
11339
11340 /* Check if there is any room. */
11341 if (left >= 0)
11342 {
11343 if (p != start)
11344 {
11345 *p++ = ',';
11346 *p++ = ' ';
11347 }
11348 p = mempcpy (p, name, len);
11349 }
11350 else
11351 {
11352 /* Output the current message now and start a new one. */
11353 *p++ = ',';
11354 *p = '\0';
11355 fprintf (stream, "%s\n", message);
11356 p = start;
11357 left = size - (start - message) - len - 2;
11358
11359 gas_assert (left >= 0);
11360
11361 p = mempcpy (p, name, len);
11362 }
11363
11364 *left_p = left;
11365 return p;
11366 }
11367
11368 static void
11369 show_arch (FILE *stream, int ext, int check)
11370 {
11371 static char message[] = MESSAGE_TEMPLATE;
11372 char *start = message + 27;
11373 char *p;
11374 int size = sizeof (MESSAGE_TEMPLATE);
11375 int left;
11376 const char *name;
11377 int len;
11378 unsigned int j;
11379
11380 p = start;
11381 left = size - (start - message);
11382 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11383 {
11384 /* Should it be skipped? */
11385 if (cpu_arch [j].skip)
11386 continue;
11387
11388 name = cpu_arch [j].name;
11389 len = cpu_arch [j].len;
11390 if (*name == '.')
11391 {
11392 /* It is an extension. Skip if we aren't asked to show it. */
11393 if (ext)
11394 {
11395 name++;
11396 len--;
11397 }
11398 else
11399 continue;
11400 }
11401 else if (ext)
11402 {
11403 /* It is an processor. Skip if we show only extension. */
11404 continue;
11405 }
11406 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11407 {
11408 /* It is an impossible processor - skip. */
11409 continue;
11410 }
11411
11412 p = output_message (stream, p, message, start, &left, name, len);
11413 }
11414
11415 /* Display disabled extensions. */
11416 if (ext)
11417 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11418 {
11419 name = cpu_noarch [j].name;
11420 len = cpu_noarch [j].len;
11421 p = output_message (stream, p, message, start, &left, name,
11422 len);
11423 }
11424
11425 *p = '\0';
11426 fprintf (stream, "%s\n", message);
11427 }
11428
11429 void
11430 md_show_usage (FILE *stream)
11431 {
11432 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11433 fprintf (stream, _("\
11434 -Q ignored\n\
11435 -V print assembler version number\n\
11436 -k ignored\n"));
11437 #endif
11438 fprintf (stream, _("\
11439 -n Do not optimize code alignment\n\
11440 -q quieten some warnings\n"));
11441 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11442 fprintf (stream, _("\
11443 -s ignored\n"));
11444 #endif
11445 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11446 || defined (TE_PE) || defined (TE_PEP))
11447 fprintf (stream, _("\
11448 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
11449 #endif
11450 #ifdef SVR4_COMMENT_CHARS
11451 fprintf (stream, _("\
11452 --divide do not treat `/' as a comment character\n"));
11453 #else
11454 fprintf (stream, _("\
11455 --divide ignored\n"));
11456 #endif
11457 fprintf (stream, _("\
11458 -march=CPU[,+EXTENSION...]\n\
11459 generate code for CPU and EXTENSION, CPU is one of:\n"));
11460 show_arch (stream, 0, 1);
11461 fprintf (stream, _("\
11462 EXTENSION is combination of:\n"));
11463 show_arch (stream, 1, 0);
11464 fprintf (stream, _("\
11465 -mtune=CPU optimize for CPU, CPU is one of:\n"));
11466 show_arch (stream, 0, 0);
11467 fprintf (stream, _("\
11468 -msse2avx encode SSE instructions with VEX prefix\n"));
11469 fprintf (stream, _("\
11470 -msse-check=[none|error|warning] (default: warning)\n\
11471 check SSE instructions\n"));
11472 fprintf (stream, _("\
11473 -moperand-check=[none|error|warning] (default: warning)\n\
11474 check operand combinations for validity\n"));
11475 fprintf (stream, _("\
11476 -mavxscalar=[128|256] (default: 128)\n\
11477 encode scalar AVX instructions with specific vector\n\
11478 length\n"));
11479 fprintf (stream, _("\
11480 -mevexlig=[128|256|512] (default: 128)\n\
11481 encode scalar EVEX instructions with specific vector\n\
11482 length\n"));
11483 fprintf (stream, _("\
11484 -mevexwig=[0|1] (default: 0)\n\
11485 encode EVEX instructions with specific EVEX.W value\n\
11486 for EVEX.W bit ignored instructions\n"));
11487 fprintf (stream, _("\
11488 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
11489 encode EVEX instructions with specific EVEX.RC value\n\
11490 for SAE-only ignored instructions\n"));
11491 fprintf (stream, _("\
11492 -mmnemonic=[att|intel] "));
11493 if (SYSV386_COMPAT)
11494 fprintf (stream, _("(default: att)\n"));
11495 else
11496 fprintf (stream, _("(default: intel)\n"));
11497 fprintf (stream, _("\
11498 use AT&T/Intel mnemonic\n"));
11499 fprintf (stream, _("\
11500 -msyntax=[att|intel] (default: att)\n\
11501 use AT&T/Intel syntax\n"));
11502 fprintf (stream, _("\
11503 -mindex-reg support pseudo index registers\n"));
11504 fprintf (stream, _("\
11505 -mnaked-reg don't require `%%' prefix for registers\n"));
11506 fprintf (stream, _("\
11507 -madd-bnd-prefix add BND prefix for all valid branches\n"));
11508 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11509 fprintf (stream, _("\
11510 -mshared disable branch optimization for shared code\n"));
11511 fprintf (stream, _("\
11512 -mx86-used-note=[no|yes] "));
11513 if (DEFAULT_X86_USED_NOTE)
11514 fprintf (stream, _("(default: yes)\n"));
11515 else
11516 fprintf (stream, _("(default: no)\n"));
11517 fprintf (stream, _("\
11518 generate x86 used ISA and feature properties\n"));
11519 #endif
11520 #if defined (TE_PE) || defined (TE_PEP)
11521 fprintf (stream, _("\
11522 -mbig-obj generate big object files\n"));
11523 #endif
11524 fprintf (stream, _("\
11525 -momit-lock-prefix=[no|yes] (default: no)\n\
11526 strip all lock prefixes\n"));
11527 fprintf (stream, _("\
11528 -mfence-as-lock-add=[no|yes] (default: no)\n\
11529 encode lfence, mfence and sfence as\n\
11530 lock addl $0x0, (%%{re}sp)\n"));
11531 fprintf (stream, _("\
11532 -mrelax-relocations=[no|yes] "));
11533 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
11534 fprintf (stream, _("(default: yes)\n"));
11535 else
11536 fprintf (stream, _("(default: no)\n"));
11537 fprintf (stream, _("\
11538 generate relax relocations\n"));
11539 fprintf (stream, _("\
11540 -mamd64 accept only AMD64 ISA [default]\n"));
11541 fprintf (stream, _("\
11542 -mintel64 accept only Intel64 ISA\n"));
11543 }
11544
11545 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
11546 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11547 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11548
11549 /* Pick the target format to use. */
11550
11551 const char *
11552 i386_target_format (void)
11553 {
11554 if (!strncmp (default_arch, "x86_64", 6))
11555 {
11556 update_code_flag (CODE_64BIT, 1);
11557 if (default_arch[6] == '\0')
11558 x86_elf_abi = X86_64_ABI;
11559 else
11560 x86_elf_abi = X86_64_X32_ABI;
11561 }
11562 else if (!strcmp (default_arch, "i386"))
11563 update_code_flag (CODE_32BIT, 1);
11564 else if (!strcmp (default_arch, "iamcu"))
11565 {
11566 update_code_flag (CODE_32BIT, 1);
11567 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11568 {
11569 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11570 cpu_arch_name = "iamcu";
11571 cpu_sub_arch_name = NULL;
11572 cpu_arch_flags = iamcu_flags;
11573 cpu_arch_isa = PROCESSOR_IAMCU;
11574 cpu_arch_isa_flags = iamcu_flags;
11575 if (!cpu_arch_tune_set)
11576 {
11577 cpu_arch_tune = cpu_arch_isa;
11578 cpu_arch_tune_flags = cpu_arch_isa_flags;
11579 }
11580 }
11581 else if (cpu_arch_isa != PROCESSOR_IAMCU)
11582 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11583 cpu_arch_name);
11584 }
11585 else
11586 as_fatal (_("unknown architecture"));
11587
11588 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11589 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11590 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11591 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11592
11593 switch (OUTPUT_FLAVOR)
11594 {
11595 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
11596 case bfd_target_aout_flavour:
11597 return AOUT_TARGET_FORMAT;
11598 #endif
11599 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11600 # if defined (TE_PE) || defined (TE_PEP)
11601 case bfd_target_coff_flavour:
11602 if (flag_code == CODE_64BIT)
11603 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11604 else
11605 return "pe-i386";
11606 # elif defined (TE_GO32)
11607 case bfd_target_coff_flavour:
11608 return "coff-go32";
11609 # else
11610 case bfd_target_coff_flavour:
11611 return "coff-i386";
11612 # endif
11613 #endif
11614 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11615 case bfd_target_elf_flavour:
11616 {
11617 const char *format;
11618
11619 switch (x86_elf_abi)
11620 {
11621 default:
11622 format = ELF_TARGET_FORMAT;
11623 break;
11624 case X86_64_ABI:
11625 use_rela_relocations = 1;
11626 object_64bit = 1;
11627 format = ELF_TARGET_FORMAT64;
11628 break;
11629 case X86_64_X32_ABI:
11630 use_rela_relocations = 1;
11631 object_64bit = 1;
11632 disallow_64bit_reloc = 1;
11633 format = ELF_TARGET_FORMAT32;
11634 break;
11635 }
11636 if (cpu_arch_isa == PROCESSOR_L1OM)
11637 {
11638 if (x86_elf_abi != X86_64_ABI)
11639 as_fatal (_("Intel L1OM is 64bit only"));
11640 return ELF_TARGET_L1OM_FORMAT;
11641 }
11642 else if (cpu_arch_isa == PROCESSOR_K1OM)
11643 {
11644 if (x86_elf_abi != X86_64_ABI)
11645 as_fatal (_("Intel K1OM is 64bit only"));
11646 return ELF_TARGET_K1OM_FORMAT;
11647 }
11648 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11649 {
11650 if (x86_elf_abi != I386_ABI)
11651 as_fatal (_("Intel MCU is 32bit only"));
11652 return ELF_TARGET_IAMCU_FORMAT;
11653 }
11654 else
11655 return format;
11656 }
11657 #endif
11658 #if defined (OBJ_MACH_O)
11659 case bfd_target_mach_o_flavour:
11660 if (flag_code == CODE_64BIT)
11661 {
11662 use_rela_relocations = 1;
11663 object_64bit = 1;
11664 return "mach-o-x86-64";
11665 }
11666 else
11667 return "mach-o-i386";
11668 #endif
11669 default:
11670 abort ();
11671 return NULL;
11672 }
11673 }
11674
11675 #endif /* OBJ_MAYBE_ more than one */
11676 \f
11677 symbolS *
11678 md_undefined_symbol (char *name)
11679 {
11680 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11681 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11682 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11683 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
11684 {
11685 if (!GOT_symbol)
11686 {
11687 if (symbol_find (name))
11688 as_bad (_("GOT already in symbol table"));
11689 GOT_symbol = symbol_new (name, undefined_section,
11690 (valueT) 0, &zero_address_frag);
11691 };
11692 return GOT_symbol;
11693 }
11694 return 0;
11695 }
11696
11697 /* Round up a section size to the appropriate boundary. */
11698
11699 valueT
11700 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
11701 {
11702 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11703 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11704 {
11705 /* For a.out, force the section size to be aligned. If we don't do
11706 this, BFD will align it for us, but it will not write out the
11707 final bytes of the section. This may be a bug in BFD, but it is
11708 easier to fix it here since that is how the other a.out targets
11709 work. */
11710 int align;
11711
11712 align = bfd_get_section_alignment (stdoutput, segment);
11713 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
11714 }
11715 #endif
11716
11717 return size;
11718 }
11719
11720 /* On the i386, PC-relative offsets are relative to the start of the
11721 next instruction. That is, the address of the offset, plus its
11722 size, since the offset is always the last part of the insn. */
11723
11724 long
11725 md_pcrel_from (fixS *fixP)
11726 {
11727 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11728 }
11729
11730 #ifndef I386COFF
11731
11732 static void
11733 s_bss (int ignore ATTRIBUTE_UNUSED)
11734 {
11735 int temp;
11736
11737 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11738 if (IS_ELF)
11739 obj_elf_section_change_hook ();
11740 #endif
11741 temp = get_absolute_expression ();
11742 subseg_set (bss_section, (subsegT) temp);
11743 demand_empty_rest_of_line ();
11744 }
11745
11746 #endif
11747
11748 void
11749 i386_validate_fix (fixS *fixp)
11750 {
11751 if (fixp->fx_subsy)
11752 {
11753 if (fixp->fx_subsy == GOT_symbol)
11754 {
11755 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11756 {
11757 if (!object_64bit)
11758 abort ();
11759 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11760 if (fixp->fx_tcbit2)
11761 fixp->fx_r_type = (fixp->fx_tcbit
11762 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11763 : BFD_RELOC_X86_64_GOTPCRELX);
11764 else
11765 #endif
11766 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11767 }
11768 else
11769 {
11770 if (!object_64bit)
11771 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11772 else
11773 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11774 }
11775 fixp->fx_subsy = 0;
11776 }
11777 }
11778 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11779 else if (!object_64bit)
11780 {
11781 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11782 && fixp->fx_tcbit2)
11783 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11784 }
11785 #endif
11786 }
11787
11788 arelent *
11789 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
11790 {
11791 arelent *rel;
11792 bfd_reloc_code_real_type code;
11793
11794 switch (fixp->fx_r_type)
11795 {
11796 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11797 case BFD_RELOC_SIZE32:
11798 case BFD_RELOC_SIZE64:
11799 if (S_IS_DEFINED (fixp->fx_addsy)
11800 && !S_IS_EXTERNAL (fixp->fx_addsy))
11801 {
11802 /* Resolve size relocation against local symbol to size of
11803 the symbol plus addend. */
11804 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11805 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11806 && !fits_in_unsigned_long (value))
11807 as_bad_where (fixp->fx_file, fixp->fx_line,
11808 _("symbol size computation overflow"));
11809 fixp->fx_addsy = NULL;
11810 fixp->fx_subsy = NULL;
11811 md_apply_fix (fixp, (valueT *) &value, NULL);
11812 return NULL;
11813 }
11814 #endif
11815 /* Fall through. */
11816
11817 case BFD_RELOC_X86_64_PLT32:
11818 case BFD_RELOC_X86_64_GOT32:
11819 case BFD_RELOC_X86_64_GOTPCREL:
11820 case BFD_RELOC_X86_64_GOTPCRELX:
11821 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11822 case BFD_RELOC_386_PLT32:
11823 case BFD_RELOC_386_GOT32:
11824 case BFD_RELOC_386_GOT32X:
11825 case BFD_RELOC_386_GOTOFF:
11826 case BFD_RELOC_386_GOTPC:
11827 case BFD_RELOC_386_TLS_GD:
11828 case BFD_RELOC_386_TLS_LDM:
11829 case BFD_RELOC_386_TLS_LDO_32:
11830 case BFD_RELOC_386_TLS_IE_32:
11831 case BFD_RELOC_386_TLS_IE:
11832 case BFD_RELOC_386_TLS_GOTIE:
11833 case BFD_RELOC_386_TLS_LE_32:
11834 case BFD_RELOC_386_TLS_LE:
11835 case BFD_RELOC_386_TLS_GOTDESC:
11836 case BFD_RELOC_386_TLS_DESC_CALL:
11837 case BFD_RELOC_X86_64_TLSGD:
11838 case BFD_RELOC_X86_64_TLSLD:
11839 case BFD_RELOC_X86_64_DTPOFF32:
11840 case BFD_RELOC_X86_64_DTPOFF64:
11841 case BFD_RELOC_X86_64_GOTTPOFF:
11842 case BFD_RELOC_X86_64_TPOFF32:
11843 case BFD_RELOC_X86_64_TPOFF64:
11844 case BFD_RELOC_X86_64_GOTOFF64:
11845 case BFD_RELOC_X86_64_GOTPC32:
11846 case BFD_RELOC_X86_64_GOT64:
11847 case BFD_RELOC_X86_64_GOTPCREL64:
11848 case BFD_RELOC_X86_64_GOTPC64:
11849 case BFD_RELOC_X86_64_GOTPLT64:
11850 case BFD_RELOC_X86_64_PLTOFF64:
11851 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11852 case BFD_RELOC_X86_64_TLSDESC_CALL:
11853 case BFD_RELOC_RVA:
11854 case BFD_RELOC_VTABLE_ENTRY:
11855 case BFD_RELOC_VTABLE_INHERIT:
11856 #ifdef TE_PE
11857 case BFD_RELOC_32_SECREL:
11858 #endif
11859 code = fixp->fx_r_type;
11860 break;
11861 case BFD_RELOC_X86_64_32S:
11862 if (!fixp->fx_pcrel)
11863 {
11864 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11865 code = fixp->fx_r_type;
11866 break;
11867 }
11868 /* Fall through. */
11869 default:
11870 if (fixp->fx_pcrel)
11871 {
11872 switch (fixp->fx_size)
11873 {
11874 default:
11875 as_bad_where (fixp->fx_file, fixp->fx_line,
11876 _("can not do %d byte pc-relative relocation"),
11877 fixp->fx_size);
11878 code = BFD_RELOC_32_PCREL;
11879 break;
11880 case 1: code = BFD_RELOC_8_PCREL; break;
11881 case 2: code = BFD_RELOC_16_PCREL; break;
11882 case 4: code = BFD_RELOC_32_PCREL; break;
11883 #ifdef BFD64
11884 case 8: code = BFD_RELOC_64_PCREL; break;
11885 #endif
11886 }
11887 }
11888 else
11889 {
11890 switch (fixp->fx_size)
11891 {
11892 default:
11893 as_bad_where (fixp->fx_file, fixp->fx_line,
11894 _("can not do %d byte relocation"),
11895 fixp->fx_size);
11896 code = BFD_RELOC_32;
11897 break;
11898 case 1: code = BFD_RELOC_8; break;
11899 case 2: code = BFD_RELOC_16; break;
11900 case 4: code = BFD_RELOC_32; break;
11901 #ifdef BFD64
11902 case 8: code = BFD_RELOC_64; break;
11903 #endif
11904 }
11905 }
11906 break;
11907 }
11908
11909 if ((code == BFD_RELOC_32
11910 || code == BFD_RELOC_32_PCREL
11911 || code == BFD_RELOC_X86_64_32S)
11912 && GOT_symbol
11913 && fixp->fx_addsy == GOT_symbol)
11914 {
11915 if (!object_64bit)
11916 code = BFD_RELOC_386_GOTPC;
11917 else
11918 code = BFD_RELOC_X86_64_GOTPC32;
11919 }
11920 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11921 && GOT_symbol
11922 && fixp->fx_addsy == GOT_symbol)
11923 {
11924 code = BFD_RELOC_X86_64_GOTPC64;
11925 }
11926
11927 rel = XNEW (arelent);
11928 rel->sym_ptr_ptr = XNEW (asymbol *);
11929 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11930
11931 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
11932
11933 if (!use_rela_relocations)
11934 {
11935 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11936 vtable entry to be used in the relocation's section offset. */
11937 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11938 rel->address = fixp->fx_offset;
11939 #if defined (OBJ_COFF) && defined (TE_PE)
11940 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11941 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11942 else
11943 #endif
11944 rel->addend = 0;
11945 }
11946 /* Use the rela in 64bit mode. */
11947 else
11948 {
11949 if (disallow_64bit_reloc)
11950 switch (code)
11951 {
11952 case BFD_RELOC_X86_64_DTPOFF64:
11953 case BFD_RELOC_X86_64_TPOFF64:
11954 case BFD_RELOC_64_PCREL:
11955 case BFD_RELOC_X86_64_GOTOFF64:
11956 case BFD_RELOC_X86_64_GOT64:
11957 case BFD_RELOC_X86_64_GOTPCREL64:
11958 case BFD_RELOC_X86_64_GOTPC64:
11959 case BFD_RELOC_X86_64_GOTPLT64:
11960 case BFD_RELOC_X86_64_PLTOFF64:
11961 as_bad_where (fixp->fx_file, fixp->fx_line,
11962 _("cannot represent relocation type %s in x32 mode"),
11963 bfd_get_reloc_code_name (code));
11964 break;
11965 default:
11966 break;
11967 }
11968
11969 if (!fixp->fx_pcrel)
11970 rel->addend = fixp->fx_offset;
11971 else
11972 switch (code)
11973 {
11974 case BFD_RELOC_X86_64_PLT32:
11975 case BFD_RELOC_X86_64_GOT32:
11976 case BFD_RELOC_X86_64_GOTPCREL:
11977 case BFD_RELOC_X86_64_GOTPCRELX:
11978 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11979 case BFD_RELOC_X86_64_TLSGD:
11980 case BFD_RELOC_X86_64_TLSLD:
11981 case BFD_RELOC_X86_64_GOTTPOFF:
11982 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11983 case BFD_RELOC_X86_64_TLSDESC_CALL:
11984 rel->addend = fixp->fx_offset - fixp->fx_size;
11985 break;
11986 default:
11987 rel->addend = (section->vma
11988 - fixp->fx_size
11989 + fixp->fx_addnumber
11990 + md_pcrel_from (fixp));
11991 break;
11992 }
11993 }
11994
11995 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11996 if (rel->howto == NULL)
11997 {
11998 as_bad_where (fixp->fx_file, fixp->fx_line,
11999 _("cannot represent relocation type %s"),
12000 bfd_get_reloc_code_name (code));
12001 /* Set howto to a garbage value so that we can keep going. */
12002 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
12003 gas_assert (rel->howto != NULL);
12004 }
12005
12006 return rel;
12007 }
12008
12009 #include "tc-i386-intel.c"
12010
12011 void
12012 tc_x86_parse_to_dw2regnum (expressionS *exp)
12013 {
12014 int saved_naked_reg;
12015 char saved_register_dot;
12016
12017 saved_naked_reg = allow_naked_reg;
12018 allow_naked_reg = 1;
12019 saved_register_dot = register_chars['.'];
12020 register_chars['.'] = '.';
12021 allow_pseudo_reg = 1;
12022 expression_and_evaluate (exp);
12023 allow_pseudo_reg = 0;
12024 register_chars['.'] = saved_register_dot;
12025 allow_naked_reg = saved_naked_reg;
12026
12027 if (exp->X_op == O_register && exp->X_add_number >= 0)
12028 {
12029 if ((addressT) exp->X_add_number < i386_regtab_size)
12030 {
12031 exp->X_op = O_constant;
12032 exp->X_add_number = i386_regtab[exp->X_add_number]
12033 .dw2_regnum[flag_code >> 1];
12034 }
12035 else
12036 exp->X_op = O_illegal;
12037 }
12038 }
12039
12040 void
12041 tc_x86_frame_initial_instructions (void)
12042 {
12043 static unsigned int sp_regno[2];
12044
12045 if (!sp_regno[flag_code >> 1])
12046 {
12047 char *saved_input = input_line_pointer;
12048 char sp[][4] = {"esp", "rsp"};
12049 expressionS exp;
12050
12051 input_line_pointer = sp[flag_code >> 1];
12052 tc_x86_parse_to_dw2regnum (&exp);
12053 gas_assert (exp.X_op == O_constant);
12054 sp_regno[flag_code >> 1] = exp.X_add_number;
12055 input_line_pointer = saved_input;
12056 }
12057
12058 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
12059 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
12060 }
12061
12062 int
12063 x86_dwarf2_addr_size (void)
12064 {
12065 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12066 if (x86_elf_abi == X86_64_X32_ABI)
12067 return 4;
12068 #endif
12069 return bfd_arch_bits_per_address (stdoutput) / 8;
12070 }
12071
12072 int
12073 i386_elf_section_type (const char *str, size_t len)
12074 {
12075 if (flag_code == CODE_64BIT
12076 && len == sizeof ("unwind") - 1
12077 && strncmp (str, "unwind", 6) == 0)
12078 return SHT_X86_64_UNWIND;
12079
12080 return -1;
12081 }
12082
12083 #ifdef TE_SOLARIS
12084 void
12085 i386_solaris_fix_up_eh_frame (segT sec)
12086 {
12087 if (flag_code == CODE_64BIT)
12088 elf_section_type (sec) = SHT_X86_64_UNWIND;
12089 }
12090 #endif
12091
12092 #ifdef TE_PE
12093 void
12094 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
12095 {
12096 expressionS exp;
12097
12098 exp.X_op = O_secrel;
12099 exp.X_add_symbol = symbol;
12100 exp.X_add_number = 0;
12101 emit_expr (&exp, size);
12102 }
12103 #endif
12104
12105 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12106 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12107
12108 bfd_vma
12109 x86_64_section_letter (int letter, const char **ptr_msg)
12110 {
12111 if (flag_code == CODE_64BIT)
12112 {
12113 if (letter == 'l')
12114 return SHF_X86_64_LARGE;
12115
12116 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
12117 }
12118 else
12119 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
12120 return -1;
12121 }
12122
12123 bfd_vma
12124 x86_64_section_word (char *str, size_t len)
12125 {
12126 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
12127 return SHF_X86_64_LARGE;
12128
12129 return -1;
12130 }
12131
12132 static void
12133 handle_large_common (int small ATTRIBUTE_UNUSED)
12134 {
12135 if (flag_code != CODE_64BIT)
12136 {
12137 s_comm_internal (0, elf_common_parse);
12138 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12139 }
12140 else
12141 {
12142 static segT lbss_section;
12143 asection *saved_com_section_ptr = elf_com_section_ptr;
12144 asection *saved_bss_section = bss_section;
12145
12146 if (lbss_section == NULL)
12147 {
12148 flagword applicable;
12149 segT seg = now_seg;
12150 subsegT subseg = now_subseg;
12151
12152 /* The .lbss section is for local .largecomm symbols. */
12153 lbss_section = subseg_new (".lbss", 0);
12154 applicable = bfd_applicable_section_flags (stdoutput);
12155 bfd_set_section_flags (stdoutput, lbss_section,
12156 applicable & SEC_ALLOC);
12157 seg_info (lbss_section)->bss = 1;
12158
12159 subseg_set (seg, subseg);
12160 }
12161
12162 elf_com_section_ptr = &_bfd_elf_large_com_section;
12163 bss_section = lbss_section;
12164
12165 s_comm_internal (0, elf_common_parse);
12166
12167 elf_com_section_ptr = saved_com_section_ptr;
12168 bss_section = saved_bss_section;
12169 }
12170 }
12171 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */