]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-i386.c
x86: Swap destination/source to encode VEX only if possible
[thirdparty/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 /* Intel Syntax. Use a non-ascii letter since since it never appears
85 in instructions. */
86 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
87
88 #define END_OF_INSN '\0'
89
90 /*
91 'templates' is for grouping together 'template' structures for opcodes
92 of the same name. This is only used for storing the insns in the grand
93 ole hash table of insns.
94 The templates themselves start at START and range up to (but not including)
95 END.
96 */
97 typedef struct
98 {
99 const insn_template *start;
100 const insn_template *end;
101 }
102 templates;
103
104 /* 386 operand encoding bytes: see 386 book for details of this. */
105 typedef struct
106 {
107 unsigned int regmem; /* codes register or memory operand */
108 unsigned int reg; /* codes register operand (or extended opcode) */
109 unsigned int mode; /* how to interpret regmem & reg */
110 }
111 modrm_byte;
112
113 /* x86-64 extension prefix. */
114 typedef int rex_byte;
115
116 /* 386 opcode byte to code indirect addressing. */
117 typedef struct
118 {
119 unsigned base;
120 unsigned index;
121 unsigned scale;
122 }
123 sib_byte;
124
125 /* x86 arch names, types and features */
126 typedef struct
127 {
128 const char *name; /* arch name */
129 unsigned int len; /* arch string length */
130 enum processor_type type; /* arch type */
131 i386_cpu_flags flags; /* cpu feature flags */
132 unsigned int skip; /* show_arch should skip this. */
133 }
134 arch_entry;
135
136 /* Used to turn off indicated flags. */
137 typedef struct
138 {
139 const char *name; /* arch name */
140 unsigned int len; /* arch string length */
141 i386_cpu_flags flags; /* cpu feature flags */
142 }
143 noarch_entry;
144
145 static void update_code_flag (int, int);
146 static void set_code_flag (int);
147 static void set_16bit_gcc_code_flag (int);
148 static void set_intel_syntax (int);
149 static void set_intel_mnemonic (int);
150 static void set_allow_index_reg (int);
151 static void set_check (int);
152 static void set_cpu_arch (int);
153 #ifdef TE_PE
154 static void pe_directive_secrel (int);
155 #endif
156 static void signed_cons (int);
157 static char *output_invalid (int c);
158 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
159 const char *);
160 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
161 const char *);
162 static int i386_att_operand (char *);
163 static int i386_intel_operand (char *, int);
164 static int i386_intel_simplify (expressionS *);
165 static int i386_intel_parse_name (const char *, expressionS *);
166 static const reg_entry *parse_register (char *, char **);
167 static char *parse_insn (char *, char *);
168 static char *parse_operands (char *, const char *);
169 static void swap_operands (void);
170 static void swap_2_operands (int, int);
171 static void optimize_imm (void);
172 static void optimize_disp (void);
173 static const insn_template *match_template (char);
174 static int check_string (void);
175 static int process_suffix (void);
176 static int check_byte_reg (void);
177 static int check_long_reg (void);
178 static int check_qword_reg (void);
179 static int check_word_reg (void);
180 static int finalize_imm (void);
181 static int process_operands (void);
182 static const seg_entry *build_modrm_byte (void);
183 static void output_insn (void);
184 static void output_imm (fragS *, offsetT);
185 static void output_disp (fragS *, offsetT);
186 #ifndef I386COFF
187 static void s_bss (int);
188 #endif
189 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
190 static void handle_large_common (int small ATTRIBUTE_UNUSED);
191
192 /* GNU_PROPERTY_X86_ISA_1_USED. */
193 static unsigned int x86_isa_1_used;
194 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
195 static unsigned int x86_feature_2_used;
196 /* Generate x86 used ISA and feature properties. */
197 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
198 #endif
199
200 static const char *default_arch = DEFAULT_ARCH;
201
202 /* This struct describes rounding control and SAE in the instruction. */
203 struct RC_Operation
204 {
205 enum rc_type
206 {
207 rne = 0,
208 rd,
209 ru,
210 rz,
211 saeonly
212 } type;
213 int operand;
214 };
215
216 static struct RC_Operation rc_op;
217
218 /* The struct describes masking, applied to OPERAND in the instruction.
219 MASK is a pointer to the corresponding mask register. ZEROING tells
220 whether merging or zeroing mask is used. */
221 struct Mask_Operation
222 {
223 const reg_entry *mask;
224 unsigned int zeroing;
225 /* The operand where this operation is associated. */
226 int operand;
227 };
228
229 static struct Mask_Operation mask_op;
230
231 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
232 broadcast factor. */
233 struct Broadcast_Operation
234 {
235 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
236 int type;
237
238 /* Index of broadcasted operand. */
239 int operand;
240
241 /* Number of bytes to broadcast. */
242 int bytes;
243 };
244
245 static struct Broadcast_Operation broadcast_op;
246
247 /* VEX prefix. */
248 typedef struct
249 {
250 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
251 unsigned char bytes[4];
252 unsigned int length;
253 /* Destination or source register specifier. */
254 const reg_entry *register_specifier;
255 } vex_prefix;
256
257 /* 'md_assemble ()' gathers together information and puts it into a
258 i386_insn. */
259
260 union i386_op
261 {
262 expressionS *disps;
263 expressionS *imms;
264 const reg_entry *regs;
265 };
266
267 enum i386_error
268 {
269 operand_size_mismatch,
270 operand_type_mismatch,
271 register_type_mismatch,
272 number_of_operands_mismatch,
273 invalid_instruction_suffix,
274 bad_imm4,
275 unsupported_with_intel_mnemonic,
276 unsupported_syntax,
277 unsupported,
278 invalid_vsib_address,
279 invalid_vector_register_set,
280 unsupported_vector_index_register,
281 unsupported_broadcast,
282 broadcast_needed,
283 unsupported_masking,
284 mask_not_on_destination,
285 no_default_mask,
286 unsupported_rc_sae,
287 rc_sae_operand_not_last_imm,
288 invalid_register_operand,
289 };
290
291 struct _i386_insn
292 {
293 /* TM holds the template for the insn were currently assembling. */
294 insn_template tm;
295
296 /* SUFFIX holds the instruction size suffix for byte, word, dword
297 or qword, if given. */
298 char suffix;
299
300 /* OPERANDS gives the number of given operands. */
301 unsigned int operands;
302
303 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
304 of given register, displacement, memory operands and immediate
305 operands. */
306 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
307
308 /* TYPES [i] is the type (see above #defines) which tells us how to
309 use OP[i] for the corresponding operand. */
310 i386_operand_type types[MAX_OPERANDS];
311
312 /* Displacement expression, immediate expression, or register for each
313 operand. */
314 union i386_op op[MAX_OPERANDS];
315
316 /* Flags for operands. */
317 unsigned int flags[MAX_OPERANDS];
318 #define Operand_PCrel 1
319 #define Operand_Mem 2
320
321 /* Relocation type for operand */
322 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
323
324 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
325 the base index byte below. */
326 const reg_entry *base_reg;
327 const reg_entry *index_reg;
328 unsigned int log2_scale_factor;
329
330 /* SEG gives the seg_entries of this insn. They are zero unless
331 explicit segment overrides are given. */
332 const seg_entry *seg[2];
333
334 /* Copied first memory operand string, for re-checking. */
335 char *memop1_string;
336
337 /* PREFIX holds all the given prefix opcodes (usually null).
338 PREFIXES is the number of prefix opcodes. */
339 unsigned int prefixes;
340 unsigned char prefix[MAX_PREFIXES];
341
342 /* Has MMX register operands. */
343 bfd_boolean has_regmmx;
344
345 /* Has XMM register operands. */
346 bfd_boolean has_regxmm;
347
348 /* Has YMM register operands. */
349 bfd_boolean has_regymm;
350
351 /* Has ZMM register operands. */
352 bfd_boolean has_regzmm;
353
354 /* RM and SIB are the modrm byte and the sib byte where the
355 addressing modes of this insn are encoded. */
356 modrm_byte rm;
357 rex_byte rex;
358 rex_byte vrex;
359 sib_byte sib;
360 vex_prefix vex;
361
362 /* Masking attributes. */
363 struct Mask_Operation *mask;
364
365 /* Rounding control and SAE attributes. */
366 struct RC_Operation *rounding;
367
368 /* Broadcasting attributes. */
369 struct Broadcast_Operation *broadcast;
370
371 /* Compressed disp8*N attribute. */
372 unsigned int memshift;
373
374 /* Prefer load or store in encoding. */
375 enum
376 {
377 dir_encoding_default = 0,
378 dir_encoding_load,
379 dir_encoding_store,
380 dir_encoding_swap
381 } dir_encoding;
382
383 /* Prefer 8bit or 32bit displacement in encoding. */
384 enum
385 {
386 disp_encoding_default = 0,
387 disp_encoding_8bit,
388 disp_encoding_32bit
389 } disp_encoding;
390
391 /* Prefer the REX byte in encoding. */
392 bfd_boolean rex_encoding;
393
394 /* Disable instruction size optimization. */
395 bfd_boolean no_optimize;
396
397 /* How to encode vector instructions. */
398 enum
399 {
400 vex_encoding_default = 0,
401 vex_encoding_vex2,
402 vex_encoding_vex3,
403 vex_encoding_evex
404 } vec_encoding;
405
406 /* REP prefix. */
407 const char *rep_prefix;
408
409 /* HLE prefix. */
410 const char *hle_prefix;
411
412 /* Have BND prefix. */
413 const char *bnd_prefix;
414
415 /* Have NOTRACK prefix. */
416 const char *notrack_prefix;
417
418 /* Error message. */
419 enum i386_error error;
420 };
421
422 typedef struct _i386_insn i386_insn;
423
424 /* Link RC type with corresponding string, that'll be looked for in
425 asm. */
426 struct RC_name
427 {
428 enum rc_type type;
429 const char *name;
430 unsigned int len;
431 };
432
433 static const struct RC_name RC_NamesTable[] =
434 {
435 { rne, STRING_COMMA_LEN ("rn-sae") },
436 { rd, STRING_COMMA_LEN ("rd-sae") },
437 { ru, STRING_COMMA_LEN ("ru-sae") },
438 { rz, STRING_COMMA_LEN ("rz-sae") },
439 { saeonly, STRING_COMMA_LEN ("sae") },
440 };
441
442 /* List of chars besides those in app.c:symbol_chars that can start an
443 operand. Used to prevent the scrubber eating vital white-space. */
444 const char extra_symbol_chars[] = "*%-([{}"
445 #ifdef LEX_AT
446 "@"
447 #endif
448 #ifdef LEX_QM
449 "?"
450 #endif
451 ;
452
453 #if (defined (TE_I386AIX) \
454 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
455 && !defined (TE_GNU) \
456 && !defined (TE_LINUX) \
457 && !defined (TE_NACL) \
458 && !defined (TE_FreeBSD) \
459 && !defined (TE_DragonFly) \
460 && !defined (TE_NetBSD)))
461 /* This array holds the chars that always start a comment. If the
462 pre-processor is disabled, these aren't very useful. The option
463 --divide will remove '/' from this list. */
464 const char *i386_comment_chars = "#/";
465 #define SVR4_COMMENT_CHARS 1
466 #define PREFIX_SEPARATOR '\\'
467
468 #else
469 const char *i386_comment_chars = "#";
470 #define PREFIX_SEPARATOR '/'
471 #endif
472
473 /* This array holds the chars that only start a comment at the beginning of
474 a line. If the line seems to have the form '# 123 filename'
475 .line and .file directives will appear in the pre-processed output.
476 Note that input_file.c hand checks for '#' at the beginning of the
477 first line of the input file. This is because the compiler outputs
478 #NO_APP at the beginning of its output.
479 Also note that comments started like this one will always work if
480 '/' isn't otherwise defined. */
481 const char line_comment_chars[] = "#/";
482
483 const char line_separator_chars[] = ";";
484
485 /* Chars that can be used to separate mant from exp in floating point
486 nums. */
487 const char EXP_CHARS[] = "eE";
488
489 /* Chars that mean this number is a floating point constant
490 As in 0f12.456
491 or 0d1.2345e12. */
492 const char FLT_CHARS[] = "fFdDxX";
493
494 /* Tables for lexical analysis. */
495 static char mnemonic_chars[256];
496 static char register_chars[256];
497 static char operand_chars[256];
498 static char identifier_chars[256];
499 static char digit_chars[256];
500
501 /* Lexical macros. */
502 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
503 #define is_operand_char(x) (operand_chars[(unsigned char) x])
504 #define is_register_char(x) (register_chars[(unsigned char) x])
505 #define is_space_char(x) ((x) == ' ')
506 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
507 #define is_digit_char(x) (digit_chars[(unsigned char) x])
508
509 /* All non-digit non-letter characters that may occur in an operand. */
510 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
511
512 /* md_assemble() always leaves the strings it's passed unaltered. To
513 effect this we maintain a stack of saved characters that we've smashed
514 with '\0's (indicating end of strings for various sub-fields of the
515 assembler instruction). */
516 static char save_stack[32];
517 static char *save_stack_p;
518 #define END_STRING_AND_SAVE(s) \
519 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
520 #define RESTORE_END_STRING(s) \
521 do { *(s) = *--save_stack_p; } while (0)
522
523 /* The instruction we're assembling. */
524 static i386_insn i;
525
526 /* Possible templates for current insn. */
527 static const templates *current_templates;
528
529 /* Per instruction expressionS buffers: max displacements & immediates. */
530 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
531 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
532
533 /* Current operand we are working on. */
534 static int this_operand = -1;
535
536 /* We support four different modes. FLAG_CODE variable is used to distinguish
537 these. */
538
539 enum flag_code {
540 CODE_32BIT,
541 CODE_16BIT,
542 CODE_64BIT };
543
544 static enum flag_code flag_code;
545 static unsigned int object_64bit;
546 static unsigned int disallow_64bit_reloc;
547 static int use_rela_relocations = 0;
548
549 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
550 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
551 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
552
553 /* The ELF ABI to use. */
554 enum x86_elf_abi
555 {
556 I386_ABI,
557 X86_64_ABI,
558 X86_64_X32_ABI
559 };
560
561 static enum x86_elf_abi x86_elf_abi = I386_ABI;
562 #endif
563
564 #if defined (TE_PE) || defined (TE_PEP)
565 /* Use big object file format. */
566 static int use_big_obj = 0;
567 #endif
568
569 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570 /* 1 if generating code for a shared library. */
571 static int shared = 0;
572 #endif
573
574 /* 1 for intel syntax,
575 0 if att syntax. */
576 static int intel_syntax = 0;
577
578 /* 1 for Intel64 ISA,
579 0 if AMD64 ISA. */
580 static int intel64;
581
582 /* 1 for intel mnemonic,
583 0 if att mnemonic. */
584 static int intel_mnemonic = !SYSV386_COMPAT;
585
586 /* 1 if pseudo registers are permitted. */
587 static int allow_pseudo_reg = 0;
588
589 /* 1 if register prefix % not required. */
590 static int allow_naked_reg = 0;
591
592 /* 1 if the assembler should add BND prefix for all control-transferring
593 instructions supporting it, even if this prefix wasn't specified
594 explicitly. */
595 static int add_bnd_prefix = 0;
596
597 /* 1 if pseudo index register, eiz/riz, is allowed . */
598 static int allow_index_reg = 0;
599
600 /* 1 if the assembler should ignore LOCK prefix, even if it was
601 specified explicitly. */
602 static int omit_lock_prefix = 0;
603
604 /* 1 if the assembler should encode lfence, mfence, and sfence as
605 "lock addl $0, (%{re}sp)". */
606 static int avoid_fence = 0;
607
608 /* 1 if the assembler should generate relax relocations. */
609
610 static int generate_relax_relocations
611 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
612
613 static enum check_kind
614 {
615 check_none = 0,
616 check_warning,
617 check_error
618 }
619 sse_check, operand_check = check_warning;
620
621 /* Optimization:
622 1. Clear the REX_W bit with register operand if possible.
623 2. Above plus use 128bit vector instruction to clear the full vector
624 register.
625 */
626 static int optimize = 0;
627
628 /* Optimization:
629 1. Clear the REX_W bit with register operand if possible.
630 2. Above plus use 128bit vector instruction to clear the full vector
631 register.
632 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
633 "testb $imm7,%r8".
634 */
635 static int optimize_for_space = 0;
636
637 /* Register prefix used for error message. */
638 static const char *register_prefix = "%";
639
640 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
641 leave, push, and pop instructions so that gcc has the same stack
642 frame as in 32 bit mode. */
643 static char stackop_size = '\0';
644
645 /* Non-zero to optimize code alignment. */
646 int optimize_align_code = 1;
647
648 /* Non-zero to quieten some warnings. */
649 static int quiet_warnings = 0;
650
651 /* CPU name. */
652 static const char *cpu_arch_name = NULL;
653 static char *cpu_sub_arch_name = NULL;
654
655 /* CPU feature flags. */
656 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
657
658 /* If we have selected a cpu we are generating instructions for. */
659 static int cpu_arch_tune_set = 0;
660
661 /* Cpu we are generating instructions for. */
662 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
663
664 /* CPU feature flags of cpu we are generating instructions for. */
665 static i386_cpu_flags cpu_arch_tune_flags;
666
667 /* CPU instruction set architecture used. */
668 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
669
670 /* CPU feature flags of instruction set architecture used. */
671 i386_cpu_flags cpu_arch_isa_flags;
672
673 /* If set, conditional jumps are not automatically promoted to handle
674 larger than a byte offset. */
675 static unsigned int no_cond_jump_promotion = 0;
676
677 /* Encode SSE instructions with VEX prefix. */
678 static unsigned int sse2avx;
679
680 /* Encode scalar AVX instructions with specific vector length. */
681 static enum
682 {
683 vex128 = 0,
684 vex256
685 } avxscalar;
686
687 /* Encode scalar EVEX LIG instructions with specific vector length. */
688 static enum
689 {
690 evexl128 = 0,
691 evexl256,
692 evexl512
693 } evexlig;
694
695 /* Encode EVEX WIG instructions with specific evex.w. */
696 static enum
697 {
698 evexw0 = 0,
699 evexw1
700 } evexwig;
701
702 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
703 static enum rc_type evexrcig = rne;
704
705 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
706 static symbolS *GOT_symbol;
707
708 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
709 unsigned int x86_dwarf2_return_column;
710
711 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
712 int x86_cie_data_alignment;
713
714 /* Interface to relax_segment.
715 There are 3 major relax states for 386 jump insns because the
716 different types of jumps add different sizes to frags when we're
717 figuring out what sort of jump to choose to reach a given label. */
718
719 /* Types. */
720 #define UNCOND_JUMP 0
721 #define COND_JUMP 1
722 #define COND_JUMP86 2
723
724 /* Sizes. */
725 #define CODE16 1
726 #define SMALL 0
727 #define SMALL16 (SMALL | CODE16)
728 #define BIG 2
729 #define BIG16 (BIG | CODE16)
730
731 #ifndef INLINE
732 #ifdef __GNUC__
733 #define INLINE __inline__
734 #else
735 #define INLINE
736 #endif
737 #endif
738
739 #define ENCODE_RELAX_STATE(type, size) \
740 ((relax_substateT) (((type) << 2) | (size)))
741 #define TYPE_FROM_RELAX_STATE(s) \
742 ((s) >> 2)
743 #define DISP_SIZE_FROM_RELAX_STATE(s) \
744 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
745
746 /* This table is used by relax_frag to promote short jumps to long
747 ones where necessary. SMALL (short) jumps may be promoted to BIG
748 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
749 don't allow a short jump in a 32 bit code segment to be promoted to
750 a 16 bit offset jump because it's slower (requires data size
751 prefix), and doesn't work, unless the destination is in the bottom
752 64k of the code segment (The top 16 bits of eip are zeroed). */
753
754 const relax_typeS md_relax_table[] =
755 {
756 /* The fields are:
757 1) most positive reach of this state,
758 2) most negative reach of this state,
759 3) how many bytes this mode will have in the variable part of the frag
760 4) which index into the table to try if we can't fit into this one. */
761
762 /* UNCOND_JUMP states. */
763 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
764 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
765 /* dword jmp adds 4 bytes to frag:
766 0 extra opcode bytes, 4 displacement bytes. */
767 {0, 0, 4, 0},
768 /* word jmp adds 2 byte2 to frag:
769 0 extra opcode bytes, 2 displacement bytes. */
770 {0, 0, 2, 0},
771
772 /* COND_JUMP states. */
773 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
774 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
775 /* dword conditionals adds 5 bytes to frag:
776 1 extra opcode byte, 4 displacement bytes. */
777 {0, 0, 5, 0},
778 /* word conditionals add 3 bytes to frag:
779 1 extra opcode byte, 2 displacement bytes. */
780 {0, 0, 3, 0},
781
782 /* COND_JUMP86 states. */
783 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
784 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
785 /* dword conditionals adds 5 bytes to frag:
786 1 extra opcode byte, 4 displacement bytes. */
787 {0, 0, 5, 0},
788 /* word conditionals add 4 bytes to frag:
789 1 displacement byte and a 3 byte long branch insn. */
790 {0, 0, 4, 0}
791 };
792
793 static const arch_entry cpu_arch[] =
794 {
795 /* Do not replace the first two entries - i386_target_format()
796 relies on them being there in this order. */
797 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
798 CPU_GENERIC32_FLAGS, 0 },
799 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
800 CPU_GENERIC64_FLAGS, 0 },
801 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
802 CPU_NONE_FLAGS, 0 },
803 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
804 CPU_I186_FLAGS, 0 },
805 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
806 CPU_I286_FLAGS, 0 },
807 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
808 CPU_I386_FLAGS, 0 },
809 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
810 CPU_I486_FLAGS, 0 },
811 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
812 CPU_I586_FLAGS, 0 },
813 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
814 CPU_I686_FLAGS, 0 },
815 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
816 CPU_I586_FLAGS, 0 },
817 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
818 CPU_PENTIUMPRO_FLAGS, 0 },
819 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
820 CPU_P2_FLAGS, 0 },
821 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
822 CPU_P3_FLAGS, 0 },
823 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
824 CPU_P4_FLAGS, 0 },
825 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
826 CPU_CORE_FLAGS, 0 },
827 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
828 CPU_NOCONA_FLAGS, 0 },
829 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
830 CPU_CORE_FLAGS, 1 },
831 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
832 CPU_CORE_FLAGS, 0 },
833 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
834 CPU_CORE2_FLAGS, 1 },
835 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
836 CPU_CORE2_FLAGS, 0 },
837 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
838 CPU_COREI7_FLAGS, 0 },
839 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
840 CPU_L1OM_FLAGS, 0 },
841 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
842 CPU_K1OM_FLAGS, 0 },
843 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
844 CPU_IAMCU_FLAGS, 0 },
845 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
846 CPU_K6_FLAGS, 0 },
847 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
848 CPU_K6_2_FLAGS, 0 },
849 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
850 CPU_ATHLON_FLAGS, 0 },
851 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
852 CPU_K8_FLAGS, 1 },
853 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
854 CPU_K8_FLAGS, 0 },
855 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
856 CPU_K8_FLAGS, 0 },
857 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
858 CPU_AMDFAM10_FLAGS, 0 },
859 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
860 CPU_BDVER1_FLAGS, 0 },
861 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
862 CPU_BDVER2_FLAGS, 0 },
863 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
864 CPU_BDVER3_FLAGS, 0 },
865 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
866 CPU_BDVER4_FLAGS, 0 },
867 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
868 CPU_ZNVER1_FLAGS, 0 },
869 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
870 CPU_ZNVER2_FLAGS, 0 },
871 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
872 CPU_BTVER1_FLAGS, 0 },
873 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
874 CPU_BTVER2_FLAGS, 0 },
875 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
876 CPU_8087_FLAGS, 0 },
877 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
878 CPU_287_FLAGS, 0 },
879 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
880 CPU_387_FLAGS, 0 },
881 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
882 CPU_687_FLAGS, 0 },
883 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
884 CPU_CMOV_FLAGS, 0 },
885 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
886 CPU_FXSR_FLAGS, 0 },
887 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
888 CPU_MMX_FLAGS, 0 },
889 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
890 CPU_SSE_FLAGS, 0 },
891 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
892 CPU_SSE2_FLAGS, 0 },
893 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
894 CPU_SSE3_FLAGS, 0 },
895 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
896 CPU_SSSE3_FLAGS, 0 },
897 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
898 CPU_SSE4_1_FLAGS, 0 },
899 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
900 CPU_SSE4_2_FLAGS, 0 },
901 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
902 CPU_SSE4_2_FLAGS, 0 },
903 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
904 CPU_AVX_FLAGS, 0 },
905 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
906 CPU_AVX2_FLAGS, 0 },
907 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
908 CPU_AVX512F_FLAGS, 0 },
909 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
910 CPU_AVX512CD_FLAGS, 0 },
911 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
912 CPU_AVX512ER_FLAGS, 0 },
913 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
914 CPU_AVX512PF_FLAGS, 0 },
915 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
916 CPU_AVX512DQ_FLAGS, 0 },
917 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
918 CPU_AVX512BW_FLAGS, 0 },
919 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
920 CPU_AVX512VL_FLAGS, 0 },
921 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
922 CPU_VMX_FLAGS, 0 },
923 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
924 CPU_VMFUNC_FLAGS, 0 },
925 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
926 CPU_SMX_FLAGS, 0 },
927 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
928 CPU_XSAVE_FLAGS, 0 },
929 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
930 CPU_XSAVEOPT_FLAGS, 0 },
931 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
932 CPU_XSAVEC_FLAGS, 0 },
933 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
934 CPU_XSAVES_FLAGS, 0 },
935 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
936 CPU_AES_FLAGS, 0 },
937 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
938 CPU_PCLMUL_FLAGS, 0 },
939 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
940 CPU_PCLMUL_FLAGS, 1 },
941 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
942 CPU_FSGSBASE_FLAGS, 0 },
943 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
944 CPU_RDRND_FLAGS, 0 },
945 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
946 CPU_F16C_FLAGS, 0 },
947 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
948 CPU_BMI2_FLAGS, 0 },
949 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
950 CPU_FMA_FLAGS, 0 },
951 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
952 CPU_FMA4_FLAGS, 0 },
953 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
954 CPU_XOP_FLAGS, 0 },
955 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
956 CPU_LWP_FLAGS, 0 },
957 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
958 CPU_MOVBE_FLAGS, 0 },
959 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
960 CPU_CX16_FLAGS, 0 },
961 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
962 CPU_EPT_FLAGS, 0 },
963 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
964 CPU_LZCNT_FLAGS, 0 },
965 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
966 CPU_HLE_FLAGS, 0 },
967 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
968 CPU_RTM_FLAGS, 0 },
969 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
970 CPU_INVPCID_FLAGS, 0 },
971 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
972 CPU_CLFLUSH_FLAGS, 0 },
973 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
974 CPU_NOP_FLAGS, 0 },
975 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
976 CPU_SYSCALL_FLAGS, 0 },
977 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
978 CPU_RDTSCP_FLAGS, 0 },
979 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
980 CPU_3DNOW_FLAGS, 0 },
981 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
982 CPU_3DNOWA_FLAGS, 0 },
983 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
984 CPU_PADLOCK_FLAGS, 0 },
985 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
986 CPU_SVME_FLAGS, 1 },
987 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
988 CPU_SVME_FLAGS, 0 },
989 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
990 CPU_SSE4A_FLAGS, 0 },
991 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
992 CPU_ABM_FLAGS, 0 },
993 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
994 CPU_BMI_FLAGS, 0 },
995 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
996 CPU_TBM_FLAGS, 0 },
997 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
998 CPU_ADX_FLAGS, 0 },
999 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1000 CPU_RDSEED_FLAGS, 0 },
1001 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1002 CPU_PRFCHW_FLAGS, 0 },
1003 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1004 CPU_SMAP_FLAGS, 0 },
1005 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1006 CPU_MPX_FLAGS, 0 },
1007 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1008 CPU_SHA_FLAGS, 0 },
1009 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1010 CPU_CLFLUSHOPT_FLAGS, 0 },
1011 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1012 CPU_PREFETCHWT1_FLAGS, 0 },
1013 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1014 CPU_SE1_FLAGS, 0 },
1015 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1016 CPU_CLWB_FLAGS, 0 },
1017 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1018 CPU_AVX512IFMA_FLAGS, 0 },
1019 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1020 CPU_AVX512VBMI_FLAGS, 0 },
1021 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1022 CPU_AVX512_4FMAPS_FLAGS, 0 },
1023 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1024 CPU_AVX512_4VNNIW_FLAGS, 0 },
1025 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1026 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1027 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1028 CPU_AVX512_VBMI2_FLAGS, 0 },
1029 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1030 CPU_AVX512_VNNI_FLAGS, 0 },
1031 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1032 CPU_AVX512_BITALG_FLAGS, 0 },
1033 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1034 CPU_CLZERO_FLAGS, 0 },
1035 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1036 CPU_MWAITX_FLAGS, 0 },
1037 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1038 CPU_OSPKE_FLAGS, 0 },
1039 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1040 CPU_RDPID_FLAGS, 0 },
1041 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1042 CPU_PTWRITE_FLAGS, 0 },
1043 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1044 CPU_IBT_FLAGS, 0 },
1045 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1046 CPU_SHSTK_FLAGS, 0 },
1047 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1048 CPU_GFNI_FLAGS, 0 },
1049 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1050 CPU_VAES_FLAGS, 0 },
1051 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1052 CPU_VPCLMULQDQ_FLAGS, 0 },
1053 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1054 CPU_WBNOINVD_FLAGS, 0 },
1055 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1056 CPU_PCONFIG_FLAGS, 0 },
1057 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1058 CPU_WAITPKG_FLAGS, 0 },
1059 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1060 CPU_CLDEMOTE_FLAGS, 0 },
1061 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1062 CPU_MOVDIRI_FLAGS, 0 },
1063 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1064 CPU_MOVDIR64B_FLAGS, 0 },
1065 };
1066
1067 static const noarch_entry cpu_noarch[] =
1068 {
1069 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1070 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1071 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1072 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1073 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1074 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1075 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1076 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1077 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1078 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1079 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1080 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1081 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1082 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1083 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1084 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1085 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1086 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1087 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1088 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1089 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1090 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1091 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1092 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1093 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1094 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1095 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1096 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1097 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1098 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1099 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1100 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1101 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1102 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1103 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1104 };
1105
1106 #ifdef I386COFF
1107 /* Like s_lcomm_internal in gas/read.c but the alignment string
1108 is allowed to be optional. */
1109
1110 static symbolS *
1111 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1112 {
1113 addressT align = 0;
1114
1115 SKIP_WHITESPACE ();
1116
1117 if (needs_align
1118 && *input_line_pointer == ',')
1119 {
1120 align = parse_align (needs_align - 1);
1121
1122 if (align == (addressT) -1)
1123 return NULL;
1124 }
1125 else
1126 {
1127 if (size >= 8)
1128 align = 3;
1129 else if (size >= 4)
1130 align = 2;
1131 else if (size >= 2)
1132 align = 1;
1133 else
1134 align = 0;
1135 }
1136
1137 bss_alloc (symbolP, size, align);
1138 return symbolP;
1139 }
1140
1141 static void
1142 pe_lcomm (int needs_align)
1143 {
1144 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1145 }
1146 #endif
1147
1148 const pseudo_typeS md_pseudo_table[] =
1149 {
1150 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1151 {"align", s_align_bytes, 0},
1152 #else
1153 {"align", s_align_ptwo, 0},
1154 #endif
1155 {"arch", set_cpu_arch, 0},
1156 #ifndef I386COFF
1157 {"bss", s_bss, 0},
1158 #else
1159 {"lcomm", pe_lcomm, 1},
1160 #endif
1161 {"ffloat", float_cons, 'f'},
1162 {"dfloat", float_cons, 'd'},
1163 {"tfloat", float_cons, 'x'},
1164 {"value", cons, 2},
1165 {"slong", signed_cons, 4},
1166 {"noopt", s_ignore, 0},
1167 {"optim", s_ignore, 0},
1168 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1169 {"code16", set_code_flag, CODE_16BIT},
1170 {"code32", set_code_flag, CODE_32BIT},
1171 #ifdef BFD64
1172 {"code64", set_code_flag, CODE_64BIT},
1173 #endif
1174 {"intel_syntax", set_intel_syntax, 1},
1175 {"att_syntax", set_intel_syntax, 0},
1176 {"intel_mnemonic", set_intel_mnemonic, 1},
1177 {"att_mnemonic", set_intel_mnemonic, 0},
1178 {"allow_index_reg", set_allow_index_reg, 1},
1179 {"disallow_index_reg", set_allow_index_reg, 0},
1180 {"sse_check", set_check, 0},
1181 {"operand_check", set_check, 1},
1182 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1183 {"largecomm", handle_large_common, 0},
1184 #else
1185 {"file", dwarf2_directive_file, 0},
1186 {"loc", dwarf2_directive_loc, 0},
1187 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1188 #endif
1189 #ifdef TE_PE
1190 {"secrel32", pe_directive_secrel, 0},
1191 #endif
1192 {0, 0, 0}
1193 };
1194
1195 /* For interface with expression (). */
1196 extern char *input_line_pointer;
1197
1198 /* Hash table for instruction mnemonic lookup. */
1199 static struct hash_control *op_hash;
1200
1201 /* Hash table for register lookup. */
1202 static struct hash_control *reg_hash;
1203 \f
1204 /* Various efficient no-op patterns for aligning code labels.
1205 Note: Don't try to assemble the instructions in the comments.
1206 0L and 0w are not legal. */
1207 static const unsigned char f32_1[] =
1208 {0x90}; /* nop */
1209 static const unsigned char f32_2[] =
1210 {0x66,0x90}; /* xchg %ax,%ax */
1211 static const unsigned char f32_3[] =
1212 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1213 static const unsigned char f32_4[] =
1214 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1215 static const unsigned char f32_6[] =
1216 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1217 static const unsigned char f32_7[] =
1218 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1219 static const unsigned char f16_3[] =
1220 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1221 static const unsigned char f16_4[] =
1222 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1223 static const unsigned char jump_disp8[] =
1224 {0xeb}; /* jmp disp8 */
1225 static const unsigned char jump32_disp32[] =
1226 {0xe9}; /* jmp disp32 */
1227 static const unsigned char jump16_disp32[] =
1228 {0x66,0xe9}; /* jmp disp32 */
1229 /* 32-bit NOPs patterns. */
1230 static const unsigned char *const f32_patt[] = {
1231 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1232 };
1233 /* 16-bit NOPs patterns. */
1234 static const unsigned char *const f16_patt[] = {
1235 f32_1, f32_2, f16_3, f16_4
1236 };
1237 /* nopl (%[re]ax) */
1238 static const unsigned char alt_3[] =
1239 {0x0f,0x1f,0x00};
1240 /* nopl 0(%[re]ax) */
1241 static const unsigned char alt_4[] =
1242 {0x0f,0x1f,0x40,0x00};
1243 /* nopl 0(%[re]ax,%[re]ax,1) */
1244 static const unsigned char alt_5[] =
1245 {0x0f,0x1f,0x44,0x00,0x00};
1246 /* nopw 0(%[re]ax,%[re]ax,1) */
1247 static const unsigned char alt_6[] =
1248 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1249 /* nopl 0L(%[re]ax) */
1250 static const unsigned char alt_7[] =
1251 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1252 /* nopl 0L(%[re]ax,%[re]ax,1) */
1253 static const unsigned char alt_8[] =
1254 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1255 /* nopw 0L(%[re]ax,%[re]ax,1) */
1256 static const unsigned char alt_9[] =
1257 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1258 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1259 static const unsigned char alt_10[] =
1260 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1261 /* data16 nopw %cs:0L(%eax,%eax,1) */
1262 static const unsigned char alt_11[] =
1263 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1264 /* 32-bit and 64-bit NOPs patterns. */
1265 static const unsigned char *const alt_patt[] = {
1266 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1267 alt_9, alt_10, alt_11
1268 };
1269
1270 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1271 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1272
1273 static void
1274 i386_output_nops (char *where, const unsigned char *const *patt,
1275 int count, int max_single_nop_size)
1276
1277 {
1278 /* Place the longer NOP first. */
1279 int last;
1280 int offset;
1281 const unsigned char *nops = patt[max_single_nop_size - 1];
1282
1283 /* Use the smaller one if the requsted one isn't available. */
1284 if (nops == NULL)
1285 {
1286 max_single_nop_size--;
1287 nops = patt[max_single_nop_size - 1];
1288 }
1289
1290 last = count % max_single_nop_size;
1291
1292 count -= last;
1293 for (offset = 0; offset < count; offset += max_single_nop_size)
1294 memcpy (where + offset, nops, max_single_nop_size);
1295
1296 if (last)
1297 {
1298 nops = patt[last - 1];
1299 if (nops == NULL)
1300 {
1301 /* Use the smaller one plus one-byte NOP if the needed one
1302 isn't available. */
1303 last--;
1304 nops = patt[last - 1];
1305 memcpy (where + offset, nops, last);
1306 where[offset + last] = *patt[0];
1307 }
1308 else
1309 memcpy (where + offset, nops, last);
1310 }
1311 }
1312
1313 static INLINE int
1314 fits_in_imm7 (offsetT num)
1315 {
1316 return (num & 0x7f) == num;
1317 }
1318
1319 static INLINE int
1320 fits_in_imm31 (offsetT num)
1321 {
1322 return (num & 0x7fffffff) == num;
1323 }
1324
1325 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1326 single NOP instruction LIMIT. */
1327
1328 void
1329 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1330 {
1331 const unsigned char *const *patt = NULL;
1332 int max_single_nop_size;
1333 /* Maximum number of NOPs before switching to jump over NOPs. */
1334 int max_number_of_nops;
1335
1336 switch (fragP->fr_type)
1337 {
1338 case rs_fill_nop:
1339 case rs_align_code:
1340 break;
1341 default:
1342 return;
1343 }
1344
1345 /* We need to decide which NOP sequence to use for 32bit and
1346 64bit. When -mtune= is used:
1347
1348 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1349 PROCESSOR_GENERIC32, f32_patt will be used.
1350 2. For the rest, alt_patt will be used.
1351
1352 When -mtune= isn't used, alt_patt will be used if
1353 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1354 be used.
1355
1356 When -march= or .arch is used, we can't use anything beyond
1357 cpu_arch_isa_flags. */
1358
1359 if (flag_code == CODE_16BIT)
1360 {
1361 patt = f16_patt;
1362 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1363 /* Limit number of NOPs to 2 in 16-bit mode. */
1364 max_number_of_nops = 2;
1365 }
1366 else
1367 {
1368 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1369 {
1370 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1371 switch (cpu_arch_tune)
1372 {
1373 case PROCESSOR_UNKNOWN:
1374 /* We use cpu_arch_isa_flags to check if we SHOULD
1375 optimize with nops. */
1376 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1377 patt = alt_patt;
1378 else
1379 patt = f32_patt;
1380 break;
1381 case PROCESSOR_PENTIUM4:
1382 case PROCESSOR_NOCONA:
1383 case PROCESSOR_CORE:
1384 case PROCESSOR_CORE2:
1385 case PROCESSOR_COREI7:
1386 case PROCESSOR_L1OM:
1387 case PROCESSOR_K1OM:
1388 case PROCESSOR_GENERIC64:
1389 case PROCESSOR_K6:
1390 case PROCESSOR_ATHLON:
1391 case PROCESSOR_K8:
1392 case PROCESSOR_AMDFAM10:
1393 case PROCESSOR_BD:
1394 case PROCESSOR_ZNVER:
1395 case PROCESSOR_BT:
1396 patt = alt_patt;
1397 break;
1398 case PROCESSOR_I386:
1399 case PROCESSOR_I486:
1400 case PROCESSOR_PENTIUM:
1401 case PROCESSOR_PENTIUMPRO:
1402 case PROCESSOR_IAMCU:
1403 case PROCESSOR_GENERIC32:
1404 patt = f32_patt;
1405 break;
1406 }
1407 }
1408 else
1409 {
1410 switch (fragP->tc_frag_data.tune)
1411 {
1412 case PROCESSOR_UNKNOWN:
1413 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1414 PROCESSOR_UNKNOWN. */
1415 abort ();
1416 break;
1417
1418 case PROCESSOR_I386:
1419 case PROCESSOR_I486:
1420 case PROCESSOR_PENTIUM:
1421 case PROCESSOR_IAMCU:
1422 case PROCESSOR_K6:
1423 case PROCESSOR_ATHLON:
1424 case PROCESSOR_K8:
1425 case PROCESSOR_AMDFAM10:
1426 case PROCESSOR_BD:
1427 case PROCESSOR_ZNVER:
1428 case PROCESSOR_BT:
1429 case PROCESSOR_GENERIC32:
1430 /* We use cpu_arch_isa_flags to check if we CAN optimize
1431 with nops. */
1432 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1433 patt = alt_patt;
1434 else
1435 patt = f32_patt;
1436 break;
1437 case PROCESSOR_PENTIUMPRO:
1438 case PROCESSOR_PENTIUM4:
1439 case PROCESSOR_NOCONA:
1440 case PROCESSOR_CORE:
1441 case PROCESSOR_CORE2:
1442 case PROCESSOR_COREI7:
1443 case PROCESSOR_L1OM:
1444 case PROCESSOR_K1OM:
1445 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1446 patt = alt_patt;
1447 else
1448 patt = f32_patt;
1449 break;
1450 case PROCESSOR_GENERIC64:
1451 patt = alt_patt;
1452 break;
1453 }
1454 }
1455
1456 if (patt == f32_patt)
1457 {
1458 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1459 /* Limit number of NOPs to 2 for older processors. */
1460 max_number_of_nops = 2;
1461 }
1462 else
1463 {
1464 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1465 /* Limit number of NOPs to 7 for newer processors. */
1466 max_number_of_nops = 7;
1467 }
1468 }
1469
1470 if (limit == 0)
1471 limit = max_single_nop_size;
1472
1473 if (fragP->fr_type == rs_fill_nop)
1474 {
1475 /* Output NOPs for .nop directive. */
1476 if (limit > max_single_nop_size)
1477 {
1478 as_bad_where (fragP->fr_file, fragP->fr_line,
1479 _("invalid single nop size: %d "
1480 "(expect within [0, %d])"),
1481 limit, max_single_nop_size);
1482 return;
1483 }
1484 }
1485 else
1486 fragP->fr_var = count;
1487
1488 if ((count / max_single_nop_size) > max_number_of_nops)
1489 {
1490 /* Generate jump over NOPs. */
1491 offsetT disp = count - 2;
1492 if (fits_in_imm7 (disp))
1493 {
1494 /* Use "jmp disp8" if possible. */
1495 count = disp;
1496 where[0] = jump_disp8[0];
1497 where[1] = count;
1498 where += 2;
1499 }
1500 else
1501 {
1502 unsigned int size_of_jump;
1503
1504 if (flag_code == CODE_16BIT)
1505 {
1506 where[0] = jump16_disp32[0];
1507 where[1] = jump16_disp32[1];
1508 size_of_jump = 2;
1509 }
1510 else
1511 {
1512 where[0] = jump32_disp32[0];
1513 size_of_jump = 1;
1514 }
1515
1516 count -= size_of_jump + 4;
1517 if (!fits_in_imm31 (count))
1518 {
1519 as_bad_where (fragP->fr_file, fragP->fr_line,
1520 _("jump over nop padding out of range"));
1521 return;
1522 }
1523
1524 md_number_to_chars (where + size_of_jump, count, 4);
1525 where += size_of_jump + 4;
1526 }
1527 }
1528
1529 /* Generate multiple NOPs. */
1530 i386_output_nops (where, patt, count, limit);
1531 }
1532
1533 static INLINE int
1534 operand_type_all_zero (const union i386_operand_type *x)
1535 {
1536 switch (ARRAY_SIZE(x->array))
1537 {
1538 case 3:
1539 if (x->array[2])
1540 return 0;
1541 /* Fall through. */
1542 case 2:
1543 if (x->array[1])
1544 return 0;
1545 /* Fall through. */
1546 case 1:
1547 return !x->array[0];
1548 default:
1549 abort ();
1550 }
1551 }
1552
1553 static INLINE void
1554 operand_type_set (union i386_operand_type *x, unsigned int v)
1555 {
1556 switch (ARRAY_SIZE(x->array))
1557 {
1558 case 3:
1559 x->array[2] = v;
1560 /* Fall through. */
1561 case 2:
1562 x->array[1] = v;
1563 /* Fall through. */
1564 case 1:
1565 x->array[0] = v;
1566 /* Fall through. */
1567 break;
1568 default:
1569 abort ();
1570 }
1571 }
1572
1573 static INLINE int
1574 operand_type_equal (const union i386_operand_type *x,
1575 const union i386_operand_type *y)
1576 {
1577 switch (ARRAY_SIZE(x->array))
1578 {
1579 case 3:
1580 if (x->array[2] != y->array[2])
1581 return 0;
1582 /* Fall through. */
1583 case 2:
1584 if (x->array[1] != y->array[1])
1585 return 0;
1586 /* Fall through. */
1587 case 1:
1588 return x->array[0] == y->array[0];
1589 break;
1590 default:
1591 abort ();
1592 }
1593 }
1594
1595 static INLINE int
1596 cpu_flags_all_zero (const union i386_cpu_flags *x)
1597 {
1598 switch (ARRAY_SIZE(x->array))
1599 {
1600 case 4:
1601 if (x->array[3])
1602 return 0;
1603 /* Fall through. */
1604 case 3:
1605 if (x->array[2])
1606 return 0;
1607 /* Fall through. */
1608 case 2:
1609 if (x->array[1])
1610 return 0;
1611 /* Fall through. */
1612 case 1:
1613 return !x->array[0];
1614 default:
1615 abort ();
1616 }
1617 }
1618
1619 static INLINE int
1620 cpu_flags_equal (const union i386_cpu_flags *x,
1621 const union i386_cpu_flags *y)
1622 {
1623 switch (ARRAY_SIZE(x->array))
1624 {
1625 case 4:
1626 if (x->array[3] != y->array[3])
1627 return 0;
1628 /* Fall through. */
1629 case 3:
1630 if (x->array[2] != y->array[2])
1631 return 0;
1632 /* Fall through. */
1633 case 2:
1634 if (x->array[1] != y->array[1])
1635 return 0;
1636 /* Fall through. */
1637 case 1:
1638 return x->array[0] == y->array[0];
1639 break;
1640 default:
1641 abort ();
1642 }
1643 }
1644
1645 static INLINE int
1646 cpu_flags_check_cpu64 (i386_cpu_flags f)
1647 {
1648 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1649 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1650 }
1651
1652 static INLINE i386_cpu_flags
1653 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1654 {
1655 switch (ARRAY_SIZE (x.array))
1656 {
1657 case 4:
1658 x.array [3] &= y.array [3];
1659 /* Fall through. */
1660 case 3:
1661 x.array [2] &= y.array [2];
1662 /* Fall through. */
1663 case 2:
1664 x.array [1] &= y.array [1];
1665 /* Fall through. */
1666 case 1:
1667 x.array [0] &= y.array [0];
1668 break;
1669 default:
1670 abort ();
1671 }
1672 return x;
1673 }
1674
1675 static INLINE i386_cpu_flags
1676 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1677 {
1678 switch (ARRAY_SIZE (x.array))
1679 {
1680 case 4:
1681 x.array [3] |= y.array [3];
1682 /* Fall through. */
1683 case 3:
1684 x.array [2] |= y.array [2];
1685 /* Fall through. */
1686 case 2:
1687 x.array [1] |= y.array [1];
1688 /* Fall through. */
1689 case 1:
1690 x.array [0] |= y.array [0];
1691 break;
1692 default:
1693 abort ();
1694 }
1695 return x;
1696 }
1697
1698 static INLINE i386_cpu_flags
1699 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1700 {
1701 switch (ARRAY_SIZE (x.array))
1702 {
1703 case 4:
1704 x.array [3] &= ~y.array [3];
1705 /* Fall through. */
1706 case 3:
1707 x.array [2] &= ~y.array [2];
1708 /* Fall through. */
1709 case 2:
1710 x.array [1] &= ~y.array [1];
1711 /* Fall through. */
1712 case 1:
1713 x.array [0] &= ~y.array [0];
1714 break;
1715 default:
1716 abort ();
1717 }
1718 return x;
1719 }
1720
1721 #define CPU_FLAGS_ARCH_MATCH 0x1
1722 #define CPU_FLAGS_64BIT_MATCH 0x2
1723
1724 #define CPU_FLAGS_PERFECT_MATCH \
1725 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1726
1727 /* Return CPU flags match bits. */
1728
1729 static int
1730 cpu_flags_match (const insn_template *t)
1731 {
1732 i386_cpu_flags x = t->cpu_flags;
1733 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1734
1735 x.bitfield.cpu64 = 0;
1736 x.bitfield.cpuno64 = 0;
1737
1738 if (cpu_flags_all_zero (&x))
1739 {
1740 /* This instruction is available on all archs. */
1741 match |= CPU_FLAGS_ARCH_MATCH;
1742 }
1743 else
1744 {
1745 /* This instruction is available only on some archs. */
1746 i386_cpu_flags cpu = cpu_arch_flags;
1747
1748 /* AVX512VL is no standalone feature - match it and then strip it. */
1749 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1750 return match;
1751 x.bitfield.cpuavx512vl = 0;
1752
1753 cpu = cpu_flags_and (x, cpu);
1754 if (!cpu_flags_all_zero (&cpu))
1755 {
1756 if (x.bitfield.cpuavx)
1757 {
1758 /* We need to check a few extra flags with AVX. */
1759 if (cpu.bitfield.cpuavx
1760 && (!t->opcode_modifier.sse2avx || sse2avx)
1761 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1762 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1763 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1764 match |= CPU_FLAGS_ARCH_MATCH;
1765 }
1766 else if (x.bitfield.cpuavx512f)
1767 {
1768 /* We need to check a few extra flags with AVX512F. */
1769 if (cpu.bitfield.cpuavx512f
1770 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1771 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1772 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1773 match |= CPU_FLAGS_ARCH_MATCH;
1774 }
1775 else
1776 match |= CPU_FLAGS_ARCH_MATCH;
1777 }
1778 }
1779 return match;
1780 }
1781
1782 static INLINE i386_operand_type
1783 operand_type_and (i386_operand_type x, i386_operand_type y)
1784 {
1785 switch (ARRAY_SIZE (x.array))
1786 {
1787 case 3:
1788 x.array [2] &= y.array [2];
1789 /* Fall through. */
1790 case 2:
1791 x.array [1] &= y.array [1];
1792 /* Fall through. */
1793 case 1:
1794 x.array [0] &= y.array [0];
1795 break;
1796 default:
1797 abort ();
1798 }
1799 return x;
1800 }
1801
1802 static INLINE i386_operand_type
1803 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1804 {
1805 switch (ARRAY_SIZE (x.array))
1806 {
1807 case 3:
1808 x.array [2] &= ~y.array [2];
1809 /* Fall through. */
1810 case 2:
1811 x.array [1] &= ~y.array [1];
1812 /* Fall through. */
1813 case 1:
1814 x.array [0] &= ~y.array [0];
1815 break;
1816 default:
1817 abort ();
1818 }
1819 return x;
1820 }
1821
1822 static INLINE i386_operand_type
1823 operand_type_or (i386_operand_type x, i386_operand_type y)
1824 {
1825 switch (ARRAY_SIZE (x.array))
1826 {
1827 case 3:
1828 x.array [2] |= y.array [2];
1829 /* Fall through. */
1830 case 2:
1831 x.array [1] |= y.array [1];
1832 /* Fall through. */
1833 case 1:
1834 x.array [0] |= y.array [0];
1835 break;
1836 default:
1837 abort ();
1838 }
1839 return x;
1840 }
1841
1842 static INLINE i386_operand_type
1843 operand_type_xor (i386_operand_type x, i386_operand_type y)
1844 {
1845 switch (ARRAY_SIZE (x.array))
1846 {
1847 case 3:
1848 x.array [2] ^= y.array [2];
1849 /* Fall through. */
1850 case 2:
1851 x.array [1] ^= y.array [1];
1852 /* Fall through. */
1853 case 1:
1854 x.array [0] ^= y.array [0];
1855 break;
1856 default:
1857 abort ();
1858 }
1859 return x;
1860 }
1861
1862 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1863 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1864 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1865 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1866 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1867 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1868 static const i386_operand_type anydisp
1869 = OPERAND_TYPE_ANYDISP;
1870 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1871 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1872 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1873 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1874 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1875 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1876 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1877 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1878 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1879 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1880 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1881 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1882
1883 enum operand_type
1884 {
1885 reg,
1886 imm,
1887 disp,
1888 anymem
1889 };
1890
1891 static INLINE int
1892 operand_type_check (i386_operand_type t, enum operand_type c)
1893 {
1894 switch (c)
1895 {
1896 case reg:
1897 return t.bitfield.reg;
1898
1899 case imm:
1900 return (t.bitfield.imm8
1901 || t.bitfield.imm8s
1902 || t.bitfield.imm16
1903 || t.bitfield.imm32
1904 || t.bitfield.imm32s
1905 || t.bitfield.imm64);
1906
1907 case disp:
1908 return (t.bitfield.disp8
1909 || t.bitfield.disp16
1910 || t.bitfield.disp32
1911 || t.bitfield.disp32s
1912 || t.bitfield.disp64);
1913
1914 case anymem:
1915 return (t.bitfield.disp8
1916 || t.bitfield.disp16
1917 || t.bitfield.disp32
1918 || t.bitfield.disp32s
1919 || t.bitfield.disp64
1920 || t.bitfield.baseindex);
1921
1922 default:
1923 abort ();
1924 }
1925
1926 return 0;
1927 }
1928
1929 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1930 between operand GIVEN and opeand WANTED for instruction template T. */
1931
1932 static INLINE int
1933 match_operand_size (const insn_template *t, unsigned int wanted,
1934 unsigned int given)
1935 {
1936 return !((i.types[given].bitfield.byte
1937 && !t->operand_types[wanted].bitfield.byte)
1938 || (i.types[given].bitfield.word
1939 && !t->operand_types[wanted].bitfield.word)
1940 || (i.types[given].bitfield.dword
1941 && !t->operand_types[wanted].bitfield.dword)
1942 || (i.types[given].bitfield.qword
1943 && !t->operand_types[wanted].bitfield.qword)
1944 || (i.types[given].bitfield.tbyte
1945 && !t->operand_types[wanted].bitfield.tbyte));
1946 }
1947
1948 /* Return 1 if there is no conflict in SIMD register between operand
1949 GIVEN and opeand WANTED for instruction template T. */
1950
1951 static INLINE int
1952 match_simd_size (const insn_template *t, unsigned int wanted,
1953 unsigned int given)
1954 {
1955 return !((i.types[given].bitfield.xmmword
1956 && !t->operand_types[wanted].bitfield.xmmword)
1957 || (i.types[given].bitfield.ymmword
1958 && !t->operand_types[wanted].bitfield.ymmword)
1959 || (i.types[given].bitfield.zmmword
1960 && !t->operand_types[wanted].bitfield.zmmword));
1961 }
1962
1963 /* Return 1 if there is no conflict in any size between operand GIVEN
1964 and opeand WANTED for instruction template T. */
1965
1966 static INLINE int
1967 match_mem_size (const insn_template *t, unsigned int wanted,
1968 unsigned int given)
1969 {
1970 return (match_operand_size (t, wanted, given)
1971 && !((i.types[given].bitfield.unspecified
1972 && !i.broadcast
1973 && !t->operand_types[wanted].bitfield.unspecified)
1974 || (i.types[given].bitfield.fword
1975 && !t->operand_types[wanted].bitfield.fword)
1976 /* For scalar opcode templates to allow register and memory
1977 operands at the same time, some special casing is needed
1978 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
1979 down-conversion vpmov*. */
1980 || ((t->operand_types[wanted].bitfield.regsimd
1981 && !t->opcode_modifier.broadcast
1982 && (t->operand_types[wanted].bitfield.byte
1983 || t->operand_types[wanted].bitfield.word
1984 || t->operand_types[wanted].bitfield.dword
1985 || t->operand_types[wanted].bitfield.qword))
1986 ? (i.types[given].bitfield.xmmword
1987 || i.types[given].bitfield.ymmword
1988 || i.types[given].bitfield.zmmword)
1989 : !match_simd_size(t, wanted, given))));
1990 }
1991
1992 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
1993 operands for instruction template T, and it has MATCH_REVERSE set if there
1994 is no size conflict on any operands for the template with operands reversed
1995 (and the template allows for reversing in the first place). */
1996
1997 #define MATCH_STRAIGHT 1
1998 #define MATCH_REVERSE 2
1999
2000 static INLINE unsigned int
2001 operand_size_match (const insn_template *t)
2002 {
2003 unsigned int j, match = MATCH_STRAIGHT;
2004
2005 /* Don't check jump instructions. */
2006 if (t->opcode_modifier.jump
2007 || t->opcode_modifier.jumpbyte
2008 || t->opcode_modifier.jumpdword
2009 || t->opcode_modifier.jumpintersegment)
2010 return match;
2011
2012 /* Check memory and accumulator operand size. */
2013 for (j = 0; j < i.operands; j++)
2014 {
2015 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
2016 && t->operand_types[j].bitfield.anysize)
2017 continue;
2018
2019 if (t->operand_types[j].bitfield.reg
2020 && !match_operand_size (t, j, j))
2021 {
2022 match = 0;
2023 break;
2024 }
2025
2026 if (t->operand_types[j].bitfield.regsimd
2027 && !match_simd_size (t, j, j))
2028 {
2029 match = 0;
2030 break;
2031 }
2032
2033 if (t->operand_types[j].bitfield.acc
2034 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2035 {
2036 match = 0;
2037 break;
2038 }
2039
2040 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2041 {
2042 match = 0;
2043 break;
2044 }
2045 }
2046
2047 if (!t->opcode_modifier.d)
2048 {
2049 mismatch:
2050 if (!match)
2051 i.error = operand_size_mismatch;
2052 return match;
2053 }
2054
2055 /* Check reverse. */
2056 gas_assert (i.operands >= 2 && i.operands <= 3);
2057
2058 for (j = 0; j < i.operands; j++)
2059 {
2060 unsigned int given = i.operands - j - 1;
2061
2062 if (t->operand_types[j].bitfield.reg
2063 && !match_operand_size (t, j, given))
2064 goto mismatch;
2065
2066 if (t->operand_types[j].bitfield.regsimd
2067 && !match_simd_size (t, j, given))
2068 goto mismatch;
2069
2070 if (t->operand_types[j].bitfield.acc
2071 && (!match_operand_size (t, j, given)
2072 || !match_simd_size (t, j, given)))
2073 goto mismatch;
2074
2075 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2076 goto mismatch;
2077 }
2078
2079 return match | MATCH_REVERSE;
2080 }
2081
2082 static INLINE int
2083 operand_type_match (i386_operand_type overlap,
2084 i386_operand_type given)
2085 {
2086 i386_operand_type temp = overlap;
2087
2088 temp.bitfield.jumpabsolute = 0;
2089 temp.bitfield.unspecified = 0;
2090 temp.bitfield.byte = 0;
2091 temp.bitfield.word = 0;
2092 temp.bitfield.dword = 0;
2093 temp.bitfield.fword = 0;
2094 temp.bitfield.qword = 0;
2095 temp.bitfield.tbyte = 0;
2096 temp.bitfield.xmmword = 0;
2097 temp.bitfield.ymmword = 0;
2098 temp.bitfield.zmmword = 0;
2099 if (operand_type_all_zero (&temp))
2100 goto mismatch;
2101
2102 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2103 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2104 return 1;
2105
2106 mismatch:
2107 i.error = operand_type_mismatch;
2108 return 0;
2109 }
2110
2111 /* If given types g0 and g1 are registers they must be of the same type
2112 unless the expected operand type register overlap is null.
2113 Memory operand size of certain SIMD instructions is also being checked
2114 here. */
2115
2116 static INLINE int
2117 operand_type_register_match (i386_operand_type g0,
2118 i386_operand_type t0,
2119 i386_operand_type g1,
2120 i386_operand_type t1)
2121 {
2122 if (!g0.bitfield.reg
2123 && !g0.bitfield.regsimd
2124 && (!operand_type_check (g0, anymem)
2125 || g0.bitfield.unspecified
2126 || !t0.bitfield.regsimd))
2127 return 1;
2128
2129 if (!g1.bitfield.reg
2130 && !g1.bitfield.regsimd
2131 && (!operand_type_check (g1, anymem)
2132 || g1.bitfield.unspecified
2133 || !t1.bitfield.regsimd))
2134 return 1;
2135
2136 if (g0.bitfield.byte == g1.bitfield.byte
2137 && g0.bitfield.word == g1.bitfield.word
2138 && g0.bitfield.dword == g1.bitfield.dword
2139 && g0.bitfield.qword == g1.bitfield.qword
2140 && g0.bitfield.xmmword == g1.bitfield.xmmword
2141 && g0.bitfield.ymmword == g1.bitfield.ymmword
2142 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2143 return 1;
2144
2145 if (!(t0.bitfield.byte & t1.bitfield.byte)
2146 && !(t0.bitfield.word & t1.bitfield.word)
2147 && !(t0.bitfield.dword & t1.bitfield.dword)
2148 && !(t0.bitfield.qword & t1.bitfield.qword)
2149 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2150 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2151 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2152 return 1;
2153
2154 i.error = register_type_mismatch;
2155
2156 return 0;
2157 }
2158
2159 static INLINE unsigned int
2160 register_number (const reg_entry *r)
2161 {
2162 unsigned int nr = r->reg_num;
2163
2164 if (r->reg_flags & RegRex)
2165 nr += 8;
2166
2167 if (r->reg_flags & RegVRex)
2168 nr += 16;
2169
2170 return nr;
2171 }
2172
2173 static INLINE unsigned int
2174 mode_from_disp_size (i386_operand_type t)
2175 {
2176 if (t.bitfield.disp8)
2177 return 1;
2178 else if (t.bitfield.disp16
2179 || t.bitfield.disp32
2180 || t.bitfield.disp32s)
2181 return 2;
2182 else
2183 return 0;
2184 }
2185
2186 static INLINE int
2187 fits_in_signed_byte (addressT num)
2188 {
2189 return num + 0x80 <= 0xff;
2190 }
2191
2192 static INLINE int
2193 fits_in_unsigned_byte (addressT num)
2194 {
2195 return num <= 0xff;
2196 }
2197
2198 static INLINE int
2199 fits_in_unsigned_word (addressT num)
2200 {
2201 return num <= 0xffff;
2202 }
2203
2204 static INLINE int
2205 fits_in_signed_word (addressT num)
2206 {
2207 return num + 0x8000 <= 0xffff;
2208 }
2209
2210 static INLINE int
2211 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2212 {
2213 #ifndef BFD64
2214 return 1;
2215 #else
2216 return num + 0x80000000 <= 0xffffffff;
2217 #endif
2218 } /* fits_in_signed_long() */
2219
2220 static INLINE int
2221 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2222 {
2223 #ifndef BFD64
2224 return 1;
2225 #else
2226 return num <= 0xffffffff;
2227 #endif
2228 } /* fits_in_unsigned_long() */
2229
2230 static INLINE int
2231 fits_in_disp8 (offsetT num)
2232 {
2233 int shift = i.memshift;
2234 unsigned int mask;
2235
2236 if (shift == -1)
2237 abort ();
2238
2239 mask = (1 << shift) - 1;
2240
2241 /* Return 0 if NUM isn't properly aligned. */
2242 if ((num & mask))
2243 return 0;
2244
2245 /* Check if NUM will fit in 8bit after shift. */
2246 return fits_in_signed_byte (num >> shift);
2247 }
2248
2249 static INLINE int
2250 fits_in_imm4 (offsetT num)
2251 {
2252 return (num & 0xf) == num;
2253 }
2254
2255 static i386_operand_type
2256 smallest_imm_type (offsetT num)
2257 {
2258 i386_operand_type t;
2259
2260 operand_type_set (&t, 0);
2261 t.bitfield.imm64 = 1;
2262
2263 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2264 {
2265 /* This code is disabled on the 486 because all the Imm1 forms
2266 in the opcode table are slower on the i486. They're the
2267 versions with the implicitly specified single-position
2268 displacement, which has another syntax if you really want to
2269 use that form. */
2270 t.bitfield.imm1 = 1;
2271 t.bitfield.imm8 = 1;
2272 t.bitfield.imm8s = 1;
2273 t.bitfield.imm16 = 1;
2274 t.bitfield.imm32 = 1;
2275 t.bitfield.imm32s = 1;
2276 }
2277 else if (fits_in_signed_byte (num))
2278 {
2279 t.bitfield.imm8 = 1;
2280 t.bitfield.imm8s = 1;
2281 t.bitfield.imm16 = 1;
2282 t.bitfield.imm32 = 1;
2283 t.bitfield.imm32s = 1;
2284 }
2285 else if (fits_in_unsigned_byte (num))
2286 {
2287 t.bitfield.imm8 = 1;
2288 t.bitfield.imm16 = 1;
2289 t.bitfield.imm32 = 1;
2290 t.bitfield.imm32s = 1;
2291 }
2292 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2293 {
2294 t.bitfield.imm16 = 1;
2295 t.bitfield.imm32 = 1;
2296 t.bitfield.imm32s = 1;
2297 }
2298 else if (fits_in_signed_long (num))
2299 {
2300 t.bitfield.imm32 = 1;
2301 t.bitfield.imm32s = 1;
2302 }
2303 else if (fits_in_unsigned_long (num))
2304 t.bitfield.imm32 = 1;
2305
2306 return t;
2307 }
2308
2309 static offsetT
2310 offset_in_range (offsetT val, int size)
2311 {
2312 addressT mask;
2313
2314 switch (size)
2315 {
2316 case 1: mask = ((addressT) 1 << 8) - 1; break;
2317 case 2: mask = ((addressT) 1 << 16) - 1; break;
2318 case 4: mask = ((addressT) 2 << 31) - 1; break;
2319 #ifdef BFD64
2320 case 8: mask = ((addressT) 2 << 63) - 1; break;
2321 #endif
2322 default: abort ();
2323 }
2324
2325 #ifdef BFD64
2326 /* If BFD64, sign extend val for 32bit address mode. */
2327 if (flag_code != CODE_64BIT
2328 || i.prefix[ADDR_PREFIX])
2329 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2330 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2331 #endif
2332
2333 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2334 {
2335 char buf1[40], buf2[40];
2336
2337 sprint_value (buf1, val);
2338 sprint_value (buf2, val & mask);
2339 as_warn (_("%s shortened to %s"), buf1, buf2);
2340 }
2341 return val & mask;
2342 }
2343
2344 enum PREFIX_GROUP
2345 {
2346 PREFIX_EXIST = 0,
2347 PREFIX_LOCK,
2348 PREFIX_REP,
2349 PREFIX_DS,
2350 PREFIX_OTHER
2351 };
2352
2353 /* Returns
2354 a. PREFIX_EXIST if attempting to add a prefix where one from the
2355 same class already exists.
2356 b. PREFIX_LOCK if lock prefix is added.
2357 c. PREFIX_REP if rep/repne prefix is added.
2358 d. PREFIX_DS if ds prefix is added.
2359 e. PREFIX_OTHER if other prefix is added.
2360 */
2361
2362 static enum PREFIX_GROUP
2363 add_prefix (unsigned int prefix)
2364 {
2365 enum PREFIX_GROUP ret = PREFIX_OTHER;
2366 unsigned int q;
2367
2368 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2369 && flag_code == CODE_64BIT)
2370 {
2371 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2372 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2373 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2374 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2375 ret = PREFIX_EXIST;
2376 q = REX_PREFIX;
2377 }
2378 else
2379 {
2380 switch (prefix)
2381 {
2382 default:
2383 abort ();
2384
2385 case DS_PREFIX_OPCODE:
2386 ret = PREFIX_DS;
2387 /* Fall through. */
2388 case CS_PREFIX_OPCODE:
2389 case ES_PREFIX_OPCODE:
2390 case FS_PREFIX_OPCODE:
2391 case GS_PREFIX_OPCODE:
2392 case SS_PREFIX_OPCODE:
2393 q = SEG_PREFIX;
2394 break;
2395
2396 case REPNE_PREFIX_OPCODE:
2397 case REPE_PREFIX_OPCODE:
2398 q = REP_PREFIX;
2399 ret = PREFIX_REP;
2400 break;
2401
2402 case LOCK_PREFIX_OPCODE:
2403 q = LOCK_PREFIX;
2404 ret = PREFIX_LOCK;
2405 break;
2406
2407 case FWAIT_OPCODE:
2408 q = WAIT_PREFIX;
2409 break;
2410
2411 case ADDR_PREFIX_OPCODE:
2412 q = ADDR_PREFIX;
2413 break;
2414
2415 case DATA_PREFIX_OPCODE:
2416 q = DATA_PREFIX;
2417 break;
2418 }
2419 if (i.prefix[q] != 0)
2420 ret = PREFIX_EXIST;
2421 }
2422
2423 if (ret)
2424 {
2425 if (!i.prefix[q])
2426 ++i.prefixes;
2427 i.prefix[q] |= prefix;
2428 }
2429 else
2430 as_bad (_("same type of prefix used twice"));
2431
2432 return ret;
2433 }
2434
2435 static void
2436 update_code_flag (int value, int check)
2437 {
2438 PRINTF_LIKE ((*as_error));
2439
2440 flag_code = (enum flag_code) value;
2441 if (flag_code == CODE_64BIT)
2442 {
2443 cpu_arch_flags.bitfield.cpu64 = 1;
2444 cpu_arch_flags.bitfield.cpuno64 = 0;
2445 }
2446 else
2447 {
2448 cpu_arch_flags.bitfield.cpu64 = 0;
2449 cpu_arch_flags.bitfield.cpuno64 = 1;
2450 }
2451 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2452 {
2453 if (check)
2454 as_error = as_fatal;
2455 else
2456 as_error = as_bad;
2457 (*as_error) (_("64bit mode not supported on `%s'."),
2458 cpu_arch_name ? cpu_arch_name : default_arch);
2459 }
2460 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2461 {
2462 if (check)
2463 as_error = as_fatal;
2464 else
2465 as_error = as_bad;
2466 (*as_error) (_("32bit mode not supported on `%s'."),
2467 cpu_arch_name ? cpu_arch_name : default_arch);
2468 }
2469 stackop_size = '\0';
2470 }
2471
2472 static void
2473 set_code_flag (int value)
2474 {
2475 update_code_flag (value, 0);
2476 }
2477
2478 static void
2479 set_16bit_gcc_code_flag (int new_code_flag)
2480 {
2481 flag_code = (enum flag_code) new_code_flag;
2482 if (flag_code != CODE_16BIT)
2483 abort ();
2484 cpu_arch_flags.bitfield.cpu64 = 0;
2485 cpu_arch_flags.bitfield.cpuno64 = 1;
2486 stackop_size = LONG_MNEM_SUFFIX;
2487 }
2488
2489 static void
2490 set_intel_syntax (int syntax_flag)
2491 {
2492 /* Find out if register prefixing is specified. */
2493 int ask_naked_reg = 0;
2494
2495 SKIP_WHITESPACE ();
2496 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2497 {
2498 char *string;
2499 int e = get_symbol_name (&string);
2500
2501 if (strcmp (string, "prefix") == 0)
2502 ask_naked_reg = 1;
2503 else if (strcmp (string, "noprefix") == 0)
2504 ask_naked_reg = -1;
2505 else
2506 as_bad (_("bad argument to syntax directive."));
2507 (void) restore_line_pointer (e);
2508 }
2509 demand_empty_rest_of_line ();
2510
2511 intel_syntax = syntax_flag;
2512
2513 if (ask_naked_reg == 0)
2514 allow_naked_reg = (intel_syntax
2515 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2516 else
2517 allow_naked_reg = (ask_naked_reg < 0);
2518
2519 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2520
2521 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2522 identifier_chars['$'] = intel_syntax ? '$' : 0;
2523 register_prefix = allow_naked_reg ? "" : "%";
2524 }
2525
2526 static void
2527 set_intel_mnemonic (int mnemonic_flag)
2528 {
2529 intel_mnemonic = mnemonic_flag;
2530 }
2531
2532 static void
2533 set_allow_index_reg (int flag)
2534 {
2535 allow_index_reg = flag;
2536 }
2537
2538 static void
2539 set_check (int what)
2540 {
2541 enum check_kind *kind;
2542 const char *str;
2543
2544 if (what)
2545 {
2546 kind = &operand_check;
2547 str = "operand";
2548 }
2549 else
2550 {
2551 kind = &sse_check;
2552 str = "sse";
2553 }
2554
2555 SKIP_WHITESPACE ();
2556
2557 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2558 {
2559 char *string;
2560 int e = get_symbol_name (&string);
2561
2562 if (strcmp (string, "none") == 0)
2563 *kind = check_none;
2564 else if (strcmp (string, "warning") == 0)
2565 *kind = check_warning;
2566 else if (strcmp (string, "error") == 0)
2567 *kind = check_error;
2568 else
2569 as_bad (_("bad argument to %s_check directive."), str);
2570 (void) restore_line_pointer (e);
2571 }
2572 else
2573 as_bad (_("missing argument for %s_check directive"), str);
2574
2575 demand_empty_rest_of_line ();
2576 }
2577
2578 static void
2579 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2580 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2581 {
2582 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2583 static const char *arch;
2584
2585 /* Intel LIOM is only supported on ELF. */
2586 if (!IS_ELF)
2587 return;
2588
2589 if (!arch)
2590 {
2591 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2592 use default_arch. */
2593 arch = cpu_arch_name;
2594 if (!arch)
2595 arch = default_arch;
2596 }
2597
2598 /* If we are targeting Intel MCU, we must enable it. */
2599 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2600 || new_flag.bitfield.cpuiamcu)
2601 return;
2602
2603 /* If we are targeting Intel L1OM, we must enable it. */
2604 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2605 || new_flag.bitfield.cpul1om)
2606 return;
2607
2608 /* If we are targeting Intel K1OM, we must enable it. */
2609 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2610 || new_flag.bitfield.cpuk1om)
2611 return;
2612
2613 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2614 #endif
2615 }
2616
2617 static void
2618 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2619 {
2620 SKIP_WHITESPACE ();
2621
2622 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2623 {
2624 char *string;
2625 int e = get_symbol_name (&string);
2626 unsigned int j;
2627 i386_cpu_flags flags;
2628
2629 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2630 {
2631 if (strcmp (string, cpu_arch[j].name) == 0)
2632 {
2633 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2634
2635 if (*string != '.')
2636 {
2637 cpu_arch_name = cpu_arch[j].name;
2638 cpu_sub_arch_name = NULL;
2639 cpu_arch_flags = cpu_arch[j].flags;
2640 if (flag_code == CODE_64BIT)
2641 {
2642 cpu_arch_flags.bitfield.cpu64 = 1;
2643 cpu_arch_flags.bitfield.cpuno64 = 0;
2644 }
2645 else
2646 {
2647 cpu_arch_flags.bitfield.cpu64 = 0;
2648 cpu_arch_flags.bitfield.cpuno64 = 1;
2649 }
2650 cpu_arch_isa = cpu_arch[j].type;
2651 cpu_arch_isa_flags = cpu_arch[j].flags;
2652 if (!cpu_arch_tune_set)
2653 {
2654 cpu_arch_tune = cpu_arch_isa;
2655 cpu_arch_tune_flags = cpu_arch_isa_flags;
2656 }
2657 break;
2658 }
2659
2660 flags = cpu_flags_or (cpu_arch_flags,
2661 cpu_arch[j].flags);
2662
2663 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2664 {
2665 if (cpu_sub_arch_name)
2666 {
2667 char *name = cpu_sub_arch_name;
2668 cpu_sub_arch_name = concat (name,
2669 cpu_arch[j].name,
2670 (const char *) NULL);
2671 free (name);
2672 }
2673 else
2674 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2675 cpu_arch_flags = flags;
2676 cpu_arch_isa_flags = flags;
2677 }
2678 else
2679 cpu_arch_isa_flags
2680 = cpu_flags_or (cpu_arch_isa_flags,
2681 cpu_arch[j].flags);
2682 (void) restore_line_pointer (e);
2683 demand_empty_rest_of_line ();
2684 return;
2685 }
2686 }
2687
2688 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2689 {
2690 /* Disable an ISA extension. */
2691 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2692 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2693 {
2694 flags = cpu_flags_and_not (cpu_arch_flags,
2695 cpu_noarch[j].flags);
2696 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2697 {
2698 if (cpu_sub_arch_name)
2699 {
2700 char *name = cpu_sub_arch_name;
2701 cpu_sub_arch_name = concat (name, string,
2702 (const char *) NULL);
2703 free (name);
2704 }
2705 else
2706 cpu_sub_arch_name = xstrdup (string);
2707 cpu_arch_flags = flags;
2708 cpu_arch_isa_flags = flags;
2709 }
2710 (void) restore_line_pointer (e);
2711 demand_empty_rest_of_line ();
2712 return;
2713 }
2714
2715 j = ARRAY_SIZE (cpu_arch);
2716 }
2717
2718 if (j >= ARRAY_SIZE (cpu_arch))
2719 as_bad (_("no such architecture: `%s'"), string);
2720
2721 *input_line_pointer = e;
2722 }
2723 else
2724 as_bad (_("missing cpu architecture"));
2725
2726 no_cond_jump_promotion = 0;
2727 if (*input_line_pointer == ','
2728 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2729 {
2730 char *string;
2731 char e;
2732
2733 ++input_line_pointer;
2734 e = get_symbol_name (&string);
2735
2736 if (strcmp (string, "nojumps") == 0)
2737 no_cond_jump_promotion = 1;
2738 else if (strcmp (string, "jumps") == 0)
2739 ;
2740 else
2741 as_bad (_("no such architecture modifier: `%s'"), string);
2742
2743 (void) restore_line_pointer (e);
2744 }
2745
2746 demand_empty_rest_of_line ();
2747 }
2748
2749 enum bfd_architecture
2750 i386_arch (void)
2751 {
2752 if (cpu_arch_isa == PROCESSOR_L1OM)
2753 {
2754 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2755 || flag_code != CODE_64BIT)
2756 as_fatal (_("Intel L1OM is 64bit ELF only"));
2757 return bfd_arch_l1om;
2758 }
2759 else if (cpu_arch_isa == PROCESSOR_K1OM)
2760 {
2761 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2762 || flag_code != CODE_64BIT)
2763 as_fatal (_("Intel K1OM is 64bit ELF only"));
2764 return bfd_arch_k1om;
2765 }
2766 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2767 {
2768 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2769 || flag_code == CODE_64BIT)
2770 as_fatal (_("Intel MCU is 32bit ELF only"));
2771 return bfd_arch_iamcu;
2772 }
2773 else
2774 return bfd_arch_i386;
2775 }
2776
2777 unsigned long
2778 i386_mach (void)
2779 {
2780 if (!strncmp (default_arch, "x86_64", 6))
2781 {
2782 if (cpu_arch_isa == PROCESSOR_L1OM)
2783 {
2784 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2785 || default_arch[6] != '\0')
2786 as_fatal (_("Intel L1OM is 64bit ELF only"));
2787 return bfd_mach_l1om;
2788 }
2789 else if (cpu_arch_isa == PROCESSOR_K1OM)
2790 {
2791 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2792 || default_arch[6] != '\0')
2793 as_fatal (_("Intel K1OM is 64bit ELF only"));
2794 return bfd_mach_k1om;
2795 }
2796 else if (default_arch[6] == '\0')
2797 return bfd_mach_x86_64;
2798 else
2799 return bfd_mach_x64_32;
2800 }
2801 else if (!strcmp (default_arch, "i386")
2802 || !strcmp (default_arch, "iamcu"))
2803 {
2804 if (cpu_arch_isa == PROCESSOR_IAMCU)
2805 {
2806 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2807 as_fatal (_("Intel MCU is 32bit ELF only"));
2808 return bfd_mach_i386_iamcu;
2809 }
2810 else
2811 return bfd_mach_i386_i386;
2812 }
2813 else
2814 as_fatal (_("unknown architecture"));
2815 }
2816 \f
2817 void
2818 md_begin (void)
2819 {
2820 const char *hash_err;
2821
2822 /* Support pseudo prefixes like {disp32}. */
2823 lex_type ['{'] = LEX_BEGIN_NAME;
2824
2825 /* Initialize op_hash hash table. */
2826 op_hash = hash_new ();
2827
2828 {
2829 const insn_template *optab;
2830 templates *core_optab;
2831
2832 /* Setup for loop. */
2833 optab = i386_optab;
2834 core_optab = XNEW (templates);
2835 core_optab->start = optab;
2836
2837 while (1)
2838 {
2839 ++optab;
2840 if (optab->name == NULL
2841 || strcmp (optab->name, (optab - 1)->name) != 0)
2842 {
2843 /* different name --> ship out current template list;
2844 add to hash table; & begin anew. */
2845 core_optab->end = optab;
2846 hash_err = hash_insert (op_hash,
2847 (optab - 1)->name,
2848 (void *) core_optab);
2849 if (hash_err)
2850 {
2851 as_fatal (_("can't hash %s: %s"),
2852 (optab - 1)->name,
2853 hash_err);
2854 }
2855 if (optab->name == NULL)
2856 break;
2857 core_optab = XNEW (templates);
2858 core_optab->start = optab;
2859 }
2860 }
2861 }
2862
2863 /* Initialize reg_hash hash table. */
2864 reg_hash = hash_new ();
2865 {
2866 const reg_entry *regtab;
2867 unsigned int regtab_size = i386_regtab_size;
2868
2869 for (regtab = i386_regtab; regtab_size--; regtab++)
2870 {
2871 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2872 if (hash_err)
2873 as_fatal (_("can't hash %s: %s"),
2874 regtab->reg_name,
2875 hash_err);
2876 }
2877 }
2878
2879 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2880 {
2881 int c;
2882 char *p;
2883
2884 for (c = 0; c < 256; c++)
2885 {
2886 if (ISDIGIT (c))
2887 {
2888 digit_chars[c] = c;
2889 mnemonic_chars[c] = c;
2890 register_chars[c] = c;
2891 operand_chars[c] = c;
2892 }
2893 else if (ISLOWER (c))
2894 {
2895 mnemonic_chars[c] = c;
2896 register_chars[c] = c;
2897 operand_chars[c] = c;
2898 }
2899 else if (ISUPPER (c))
2900 {
2901 mnemonic_chars[c] = TOLOWER (c);
2902 register_chars[c] = mnemonic_chars[c];
2903 operand_chars[c] = c;
2904 }
2905 else if (c == '{' || c == '}')
2906 {
2907 mnemonic_chars[c] = c;
2908 operand_chars[c] = c;
2909 }
2910
2911 if (ISALPHA (c) || ISDIGIT (c))
2912 identifier_chars[c] = c;
2913 else if (c >= 128)
2914 {
2915 identifier_chars[c] = c;
2916 operand_chars[c] = c;
2917 }
2918 }
2919
2920 #ifdef LEX_AT
2921 identifier_chars['@'] = '@';
2922 #endif
2923 #ifdef LEX_QM
2924 identifier_chars['?'] = '?';
2925 operand_chars['?'] = '?';
2926 #endif
2927 digit_chars['-'] = '-';
2928 mnemonic_chars['_'] = '_';
2929 mnemonic_chars['-'] = '-';
2930 mnemonic_chars['.'] = '.';
2931 identifier_chars['_'] = '_';
2932 identifier_chars['.'] = '.';
2933
2934 for (p = operand_special_chars; *p != '\0'; p++)
2935 operand_chars[(unsigned char) *p] = *p;
2936 }
2937
2938 if (flag_code == CODE_64BIT)
2939 {
2940 #if defined (OBJ_COFF) && defined (TE_PE)
2941 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2942 ? 32 : 16);
2943 #else
2944 x86_dwarf2_return_column = 16;
2945 #endif
2946 x86_cie_data_alignment = -8;
2947 }
2948 else
2949 {
2950 x86_dwarf2_return_column = 8;
2951 x86_cie_data_alignment = -4;
2952 }
2953 }
2954
2955 void
2956 i386_print_statistics (FILE *file)
2957 {
2958 hash_print_statistics (file, "i386 opcode", op_hash);
2959 hash_print_statistics (file, "i386 register", reg_hash);
2960 }
2961 \f
2962 #ifdef DEBUG386
2963
2964 /* Debugging routines for md_assemble. */
2965 static void pte (insn_template *);
2966 static void pt (i386_operand_type);
2967 static void pe (expressionS *);
2968 static void ps (symbolS *);
2969
2970 static void
2971 pi (char *line, i386_insn *x)
2972 {
2973 unsigned int j;
2974
2975 fprintf (stdout, "%s: template ", line);
2976 pte (&x->tm);
2977 fprintf (stdout, " address: base %s index %s scale %x\n",
2978 x->base_reg ? x->base_reg->reg_name : "none",
2979 x->index_reg ? x->index_reg->reg_name : "none",
2980 x->log2_scale_factor);
2981 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2982 x->rm.mode, x->rm.reg, x->rm.regmem);
2983 fprintf (stdout, " sib: base %x index %x scale %x\n",
2984 x->sib.base, x->sib.index, x->sib.scale);
2985 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2986 (x->rex & REX_W) != 0,
2987 (x->rex & REX_R) != 0,
2988 (x->rex & REX_X) != 0,
2989 (x->rex & REX_B) != 0);
2990 for (j = 0; j < x->operands; j++)
2991 {
2992 fprintf (stdout, " #%d: ", j + 1);
2993 pt (x->types[j]);
2994 fprintf (stdout, "\n");
2995 if (x->types[j].bitfield.reg
2996 || x->types[j].bitfield.regmmx
2997 || x->types[j].bitfield.regsimd
2998 || x->types[j].bitfield.sreg2
2999 || x->types[j].bitfield.sreg3
3000 || x->types[j].bitfield.control
3001 || x->types[j].bitfield.debug
3002 || x->types[j].bitfield.test)
3003 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3004 if (operand_type_check (x->types[j], imm))
3005 pe (x->op[j].imms);
3006 if (operand_type_check (x->types[j], disp))
3007 pe (x->op[j].disps);
3008 }
3009 }
3010
3011 static void
3012 pte (insn_template *t)
3013 {
3014 unsigned int j;
3015 fprintf (stdout, " %d operands ", t->operands);
3016 fprintf (stdout, "opcode %x ", t->base_opcode);
3017 if (t->extension_opcode != None)
3018 fprintf (stdout, "ext %x ", t->extension_opcode);
3019 if (t->opcode_modifier.d)
3020 fprintf (stdout, "D");
3021 if (t->opcode_modifier.w)
3022 fprintf (stdout, "W");
3023 fprintf (stdout, "\n");
3024 for (j = 0; j < t->operands; j++)
3025 {
3026 fprintf (stdout, " #%d type ", j + 1);
3027 pt (t->operand_types[j]);
3028 fprintf (stdout, "\n");
3029 }
3030 }
3031
3032 static void
3033 pe (expressionS *e)
3034 {
3035 fprintf (stdout, " operation %d\n", e->X_op);
3036 fprintf (stdout, " add_number %ld (%lx)\n",
3037 (long) e->X_add_number, (long) e->X_add_number);
3038 if (e->X_add_symbol)
3039 {
3040 fprintf (stdout, " add_symbol ");
3041 ps (e->X_add_symbol);
3042 fprintf (stdout, "\n");
3043 }
3044 if (e->X_op_symbol)
3045 {
3046 fprintf (stdout, " op_symbol ");
3047 ps (e->X_op_symbol);
3048 fprintf (stdout, "\n");
3049 }
3050 }
3051
3052 static void
3053 ps (symbolS *s)
3054 {
3055 fprintf (stdout, "%s type %s%s",
3056 S_GET_NAME (s),
3057 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3058 segment_name (S_GET_SEGMENT (s)));
3059 }
3060
3061 static struct type_name
3062 {
3063 i386_operand_type mask;
3064 const char *name;
3065 }
3066 const type_names[] =
3067 {
3068 { OPERAND_TYPE_REG8, "r8" },
3069 { OPERAND_TYPE_REG16, "r16" },
3070 { OPERAND_TYPE_REG32, "r32" },
3071 { OPERAND_TYPE_REG64, "r64" },
3072 { OPERAND_TYPE_IMM8, "i8" },
3073 { OPERAND_TYPE_IMM8, "i8s" },
3074 { OPERAND_TYPE_IMM16, "i16" },
3075 { OPERAND_TYPE_IMM32, "i32" },
3076 { OPERAND_TYPE_IMM32S, "i32s" },
3077 { OPERAND_TYPE_IMM64, "i64" },
3078 { OPERAND_TYPE_IMM1, "i1" },
3079 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3080 { OPERAND_TYPE_DISP8, "d8" },
3081 { OPERAND_TYPE_DISP16, "d16" },
3082 { OPERAND_TYPE_DISP32, "d32" },
3083 { OPERAND_TYPE_DISP32S, "d32s" },
3084 { OPERAND_TYPE_DISP64, "d64" },
3085 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3086 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3087 { OPERAND_TYPE_CONTROL, "control reg" },
3088 { OPERAND_TYPE_TEST, "test reg" },
3089 { OPERAND_TYPE_DEBUG, "debug reg" },
3090 { OPERAND_TYPE_FLOATREG, "FReg" },
3091 { OPERAND_TYPE_FLOATACC, "FAcc" },
3092 { OPERAND_TYPE_SREG2, "SReg2" },
3093 { OPERAND_TYPE_SREG3, "SReg3" },
3094 { OPERAND_TYPE_ACC, "Acc" },
3095 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3096 { OPERAND_TYPE_REGMMX, "rMMX" },
3097 { OPERAND_TYPE_REGXMM, "rXMM" },
3098 { OPERAND_TYPE_REGYMM, "rYMM" },
3099 { OPERAND_TYPE_REGZMM, "rZMM" },
3100 { OPERAND_TYPE_REGMASK, "Mask reg" },
3101 { OPERAND_TYPE_ESSEG, "es" },
3102 };
3103
3104 static void
3105 pt (i386_operand_type t)
3106 {
3107 unsigned int j;
3108 i386_operand_type a;
3109
3110 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3111 {
3112 a = operand_type_and (t, type_names[j].mask);
3113 if (!operand_type_all_zero (&a))
3114 fprintf (stdout, "%s, ", type_names[j].name);
3115 }
3116 fflush (stdout);
3117 }
3118
3119 #endif /* DEBUG386 */
3120 \f
3121 static bfd_reloc_code_real_type
3122 reloc (unsigned int size,
3123 int pcrel,
3124 int sign,
3125 bfd_reloc_code_real_type other)
3126 {
3127 if (other != NO_RELOC)
3128 {
3129 reloc_howto_type *rel;
3130
3131 if (size == 8)
3132 switch (other)
3133 {
3134 case BFD_RELOC_X86_64_GOT32:
3135 return BFD_RELOC_X86_64_GOT64;
3136 break;
3137 case BFD_RELOC_X86_64_GOTPLT64:
3138 return BFD_RELOC_X86_64_GOTPLT64;
3139 break;
3140 case BFD_RELOC_X86_64_PLTOFF64:
3141 return BFD_RELOC_X86_64_PLTOFF64;
3142 break;
3143 case BFD_RELOC_X86_64_GOTPC32:
3144 other = BFD_RELOC_X86_64_GOTPC64;
3145 break;
3146 case BFD_RELOC_X86_64_GOTPCREL:
3147 other = BFD_RELOC_X86_64_GOTPCREL64;
3148 break;
3149 case BFD_RELOC_X86_64_TPOFF32:
3150 other = BFD_RELOC_X86_64_TPOFF64;
3151 break;
3152 case BFD_RELOC_X86_64_DTPOFF32:
3153 other = BFD_RELOC_X86_64_DTPOFF64;
3154 break;
3155 default:
3156 break;
3157 }
3158
3159 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3160 if (other == BFD_RELOC_SIZE32)
3161 {
3162 if (size == 8)
3163 other = BFD_RELOC_SIZE64;
3164 if (pcrel)
3165 {
3166 as_bad (_("there are no pc-relative size relocations"));
3167 return NO_RELOC;
3168 }
3169 }
3170 #endif
3171
3172 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3173 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3174 sign = -1;
3175
3176 rel = bfd_reloc_type_lookup (stdoutput, other);
3177 if (!rel)
3178 as_bad (_("unknown relocation (%u)"), other);
3179 else if (size != bfd_get_reloc_size (rel))
3180 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3181 bfd_get_reloc_size (rel),
3182 size);
3183 else if (pcrel && !rel->pc_relative)
3184 as_bad (_("non-pc-relative relocation for pc-relative field"));
3185 else if ((rel->complain_on_overflow == complain_overflow_signed
3186 && !sign)
3187 || (rel->complain_on_overflow == complain_overflow_unsigned
3188 && sign > 0))
3189 as_bad (_("relocated field and relocation type differ in signedness"));
3190 else
3191 return other;
3192 return NO_RELOC;
3193 }
3194
3195 if (pcrel)
3196 {
3197 if (!sign)
3198 as_bad (_("there are no unsigned pc-relative relocations"));
3199 switch (size)
3200 {
3201 case 1: return BFD_RELOC_8_PCREL;
3202 case 2: return BFD_RELOC_16_PCREL;
3203 case 4: return BFD_RELOC_32_PCREL;
3204 case 8: return BFD_RELOC_64_PCREL;
3205 }
3206 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3207 }
3208 else
3209 {
3210 if (sign > 0)
3211 switch (size)
3212 {
3213 case 4: return BFD_RELOC_X86_64_32S;
3214 }
3215 else
3216 switch (size)
3217 {
3218 case 1: return BFD_RELOC_8;
3219 case 2: return BFD_RELOC_16;
3220 case 4: return BFD_RELOC_32;
3221 case 8: return BFD_RELOC_64;
3222 }
3223 as_bad (_("cannot do %s %u byte relocation"),
3224 sign > 0 ? "signed" : "unsigned", size);
3225 }
3226
3227 return NO_RELOC;
3228 }
3229
3230 /* Here we decide which fixups can be adjusted to make them relative to
3231 the beginning of the section instead of the symbol. Basically we need
3232 to make sure that the dynamic relocations are done correctly, so in
3233 some cases we force the original symbol to be used. */
3234
3235 int
3236 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3237 {
3238 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3239 if (!IS_ELF)
3240 return 1;
3241
3242 /* Don't adjust pc-relative references to merge sections in 64-bit
3243 mode. */
3244 if (use_rela_relocations
3245 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3246 && fixP->fx_pcrel)
3247 return 0;
3248
3249 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3250 and changed later by validate_fix. */
3251 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3252 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3253 return 0;
3254
3255 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3256 for size relocations. */
3257 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3258 || fixP->fx_r_type == BFD_RELOC_SIZE64
3259 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3260 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3261 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3262 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3263 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3264 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3265 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3266 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3267 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3268 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3269 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3270 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3271 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3272 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3273 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3274 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3275 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3276 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3277 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3278 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3279 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3280 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3281 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3282 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3283 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3284 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3285 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3286 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3287 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3288 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3289 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3290 return 0;
3291 #endif
3292 return 1;
3293 }
3294
3295 static int
3296 intel_float_operand (const char *mnemonic)
3297 {
3298 /* Note that the value returned is meaningful only for opcodes with (memory)
3299 operands, hence the code here is free to improperly handle opcodes that
3300 have no operands (for better performance and smaller code). */
3301
3302 if (mnemonic[0] != 'f')
3303 return 0; /* non-math */
3304
3305 switch (mnemonic[1])
3306 {
3307 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3308 the fs segment override prefix not currently handled because no
3309 call path can make opcodes without operands get here */
3310 case 'i':
3311 return 2 /* integer op */;
3312 case 'l':
3313 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3314 return 3; /* fldcw/fldenv */
3315 break;
3316 case 'n':
3317 if (mnemonic[2] != 'o' /* fnop */)
3318 return 3; /* non-waiting control op */
3319 break;
3320 case 'r':
3321 if (mnemonic[2] == 's')
3322 return 3; /* frstor/frstpm */
3323 break;
3324 case 's':
3325 if (mnemonic[2] == 'a')
3326 return 3; /* fsave */
3327 if (mnemonic[2] == 't')
3328 {
3329 switch (mnemonic[3])
3330 {
3331 case 'c': /* fstcw */
3332 case 'd': /* fstdw */
3333 case 'e': /* fstenv */
3334 case 's': /* fsts[gw] */
3335 return 3;
3336 }
3337 }
3338 break;
3339 case 'x':
3340 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3341 return 0; /* fxsave/fxrstor are not really math ops */
3342 break;
3343 }
3344
3345 return 1;
3346 }
3347
3348 /* Build the VEX prefix. */
3349
3350 static void
3351 build_vex_prefix (const insn_template *t)
3352 {
3353 unsigned int register_specifier;
3354 unsigned int implied_prefix;
3355 unsigned int vector_length;
3356
3357 /* Check register specifier. */
3358 if (i.vex.register_specifier)
3359 {
3360 register_specifier =
3361 ~register_number (i.vex.register_specifier) & 0xf;
3362 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3363 }
3364 else
3365 register_specifier = 0xf;
3366
3367 /* Use 2-byte VEX prefix by swapping destination and source operand
3368 if there are more than 1 register operand. */
3369 if (i.reg_operands > 1
3370 && i.vec_encoding != vex_encoding_vex3
3371 && i.dir_encoding == dir_encoding_default
3372 && i.operands == i.reg_operands
3373 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3374 && i.tm.opcode_modifier.vexopcode == VEX0F
3375 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3376 && i.rex == REX_B)
3377 {
3378 unsigned int xchg = i.operands - 1;
3379 union i386_op temp_op;
3380 i386_operand_type temp_type;
3381
3382 temp_type = i.types[xchg];
3383 i.types[xchg] = i.types[0];
3384 i.types[0] = temp_type;
3385 temp_op = i.op[xchg];
3386 i.op[xchg] = i.op[0];
3387 i.op[0] = temp_op;
3388
3389 gas_assert (i.rm.mode == 3);
3390
3391 i.rex = REX_R;
3392 xchg = i.rm.regmem;
3393 i.rm.regmem = i.rm.reg;
3394 i.rm.reg = xchg;
3395
3396 if (i.tm.opcode_modifier.d)
3397 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3398 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3399 else /* Use the next insn. */
3400 i.tm = t[1];
3401 }
3402
3403 if (i.tm.opcode_modifier.vex == VEXScalar)
3404 vector_length = avxscalar;
3405 else if (i.tm.opcode_modifier.vex == VEX256)
3406 vector_length = 1;
3407 else
3408 {
3409 unsigned int op;
3410
3411 /* Determine vector length from the last multi-length vector
3412 operand. */
3413 vector_length = 0;
3414 for (op = t->operands; op--;)
3415 if (t->operand_types[op].bitfield.xmmword
3416 && t->operand_types[op].bitfield.ymmword
3417 && i.types[op].bitfield.ymmword)
3418 {
3419 vector_length = 1;
3420 break;
3421 }
3422 }
3423
3424 switch ((i.tm.base_opcode >> 8) & 0xff)
3425 {
3426 case 0:
3427 implied_prefix = 0;
3428 break;
3429 case DATA_PREFIX_OPCODE:
3430 implied_prefix = 1;
3431 break;
3432 case REPE_PREFIX_OPCODE:
3433 implied_prefix = 2;
3434 break;
3435 case REPNE_PREFIX_OPCODE:
3436 implied_prefix = 3;
3437 break;
3438 default:
3439 abort ();
3440 }
3441
3442 /* Use 2-byte VEX prefix if possible. */
3443 if (i.vec_encoding != vex_encoding_vex3
3444 && i.tm.opcode_modifier.vexopcode == VEX0F
3445 && i.tm.opcode_modifier.vexw != VEXW1
3446 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3447 {
3448 /* 2-byte VEX prefix. */
3449 unsigned int r;
3450
3451 i.vex.length = 2;
3452 i.vex.bytes[0] = 0xc5;
3453
3454 /* Check the REX.R bit. */
3455 r = (i.rex & REX_R) ? 0 : 1;
3456 i.vex.bytes[1] = (r << 7
3457 | register_specifier << 3
3458 | vector_length << 2
3459 | implied_prefix);
3460 }
3461 else
3462 {
3463 /* 3-byte VEX prefix. */
3464 unsigned int m, w;
3465
3466 i.vex.length = 3;
3467
3468 switch (i.tm.opcode_modifier.vexopcode)
3469 {
3470 case VEX0F:
3471 m = 0x1;
3472 i.vex.bytes[0] = 0xc4;
3473 break;
3474 case VEX0F38:
3475 m = 0x2;
3476 i.vex.bytes[0] = 0xc4;
3477 break;
3478 case VEX0F3A:
3479 m = 0x3;
3480 i.vex.bytes[0] = 0xc4;
3481 break;
3482 case XOP08:
3483 m = 0x8;
3484 i.vex.bytes[0] = 0x8f;
3485 break;
3486 case XOP09:
3487 m = 0x9;
3488 i.vex.bytes[0] = 0x8f;
3489 break;
3490 case XOP0A:
3491 m = 0xa;
3492 i.vex.bytes[0] = 0x8f;
3493 break;
3494 default:
3495 abort ();
3496 }
3497
3498 /* The high 3 bits of the second VEX byte are 1's compliment
3499 of RXB bits from REX. */
3500 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3501
3502 /* Check the REX.W bit. */
3503 w = (i.rex & REX_W) ? 1 : 0;
3504 if (i.tm.opcode_modifier.vexw == VEXW1)
3505 w = 1;
3506
3507 i.vex.bytes[2] = (w << 7
3508 | register_specifier << 3
3509 | vector_length << 2
3510 | implied_prefix);
3511 }
3512 }
3513
3514 static INLINE bfd_boolean
3515 is_evex_encoding (const insn_template *t)
3516 {
3517 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3518 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3519 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3520 }
3521
3522 static INLINE bfd_boolean
3523 is_any_vex_encoding (const insn_template *t)
3524 {
3525 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3526 || is_evex_encoding (t);
3527 }
3528
3529 /* Build the EVEX prefix. */
3530
3531 static void
3532 build_evex_prefix (void)
3533 {
3534 unsigned int register_specifier;
3535 unsigned int implied_prefix;
3536 unsigned int m, w;
3537 rex_byte vrex_used = 0;
3538
3539 /* Check register specifier. */
3540 if (i.vex.register_specifier)
3541 {
3542 gas_assert ((i.vrex & REX_X) == 0);
3543
3544 register_specifier = i.vex.register_specifier->reg_num;
3545 if ((i.vex.register_specifier->reg_flags & RegRex))
3546 register_specifier += 8;
3547 /* The upper 16 registers are encoded in the fourth byte of the
3548 EVEX prefix. */
3549 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3550 i.vex.bytes[3] = 0x8;
3551 register_specifier = ~register_specifier & 0xf;
3552 }
3553 else
3554 {
3555 register_specifier = 0xf;
3556
3557 /* Encode upper 16 vector index register in the fourth byte of
3558 the EVEX prefix. */
3559 if (!(i.vrex & REX_X))
3560 i.vex.bytes[3] = 0x8;
3561 else
3562 vrex_used |= REX_X;
3563 }
3564
3565 switch ((i.tm.base_opcode >> 8) & 0xff)
3566 {
3567 case 0:
3568 implied_prefix = 0;
3569 break;
3570 case DATA_PREFIX_OPCODE:
3571 implied_prefix = 1;
3572 break;
3573 case REPE_PREFIX_OPCODE:
3574 implied_prefix = 2;
3575 break;
3576 case REPNE_PREFIX_OPCODE:
3577 implied_prefix = 3;
3578 break;
3579 default:
3580 abort ();
3581 }
3582
3583 /* 4 byte EVEX prefix. */
3584 i.vex.length = 4;
3585 i.vex.bytes[0] = 0x62;
3586
3587 /* mmmm bits. */
3588 switch (i.tm.opcode_modifier.vexopcode)
3589 {
3590 case VEX0F:
3591 m = 1;
3592 break;
3593 case VEX0F38:
3594 m = 2;
3595 break;
3596 case VEX0F3A:
3597 m = 3;
3598 break;
3599 default:
3600 abort ();
3601 break;
3602 }
3603
3604 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3605 bits from REX. */
3606 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3607
3608 /* The fifth bit of the second EVEX byte is 1's compliment of the
3609 REX_R bit in VREX. */
3610 if (!(i.vrex & REX_R))
3611 i.vex.bytes[1] |= 0x10;
3612 else
3613 vrex_used |= REX_R;
3614
3615 if ((i.reg_operands + i.imm_operands) == i.operands)
3616 {
3617 /* When all operands are registers, the REX_X bit in REX is not
3618 used. We reuse it to encode the upper 16 registers, which is
3619 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3620 as 1's compliment. */
3621 if ((i.vrex & REX_B))
3622 {
3623 vrex_used |= REX_B;
3624 i.vex.bytes[1] &= ~0x40;
3625 }
3626 }
3627
3628 /* EVEX instructions shouldn't need the REX prefix. */
3629 i.vrex &= ~vrex_used;
3630 gas_assert (i.vrex == 0);
3631
3632 /* Check the REX.W bit. */
3633 w = (i.rex & REX_W) ? 1 : 0;
3634 if (i.tm.opcode_modifier.vexw)
3635 {
3636 if (i.tm.opcode_modifier.vexw == VEXW1)
3637 w = 1;
3638 }
3639 /* If w is not set it means we are dealing with WIG instruction. */
3640 else if (!w)
3641 {
3642 if (evexwig == evexw1)
3643 w = 1;
3644 }
3645
3646 /* Encode the U bit. */
3647 implied_prefix |= 0x4;
3648
3649 /* The third byte of the EVEX prefix. */
3650 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3651
3652 /* The fourth byte of the EVEX prefix. */
3653 /* The zeroing-masking bit. */
3654 if (i.mask && i.mask->zeroing)
3655 i.vex.bytes[3] |= 0x80;
3656
3657 /* Don't always set the broadcast bit if there is no RC. */
3658 if (!i.rounding)
3659 {
3660 /* Encode the vector length. */
3661 unsigned int vec_length;
3662
3663 if (!i.tm.opcode_modifier.evex
3664 || i.tm.opcode_modifier.evex == EVEXDYN)
3665 {
3666 unsigned int op;
3667
3668 /* Determine vector length from the last multi-length vector
3669 operand. */
3670 vec_length = 0;
3671 for (op = i.operands; op--;)
3672 if (i.tm.operand_types[op].bitfield.xmmword
3673 + i.tm.operand_types[op].bitfield.ymmword
3674 + i.tm.operand_types[op].bitfield.zmmword > 1)
3675 {
3676 if (i.types[op].bitfield.zmmword)
3677 {
3678 i.tm.opcode_modifier.evex = EVEX512;
3679 break;
3680 }
3681 else if (i.types[op].bitfield.ymmword)
3682 {
3683 i.tm.opcode_modifier.evex = EVEX256;
3684 break;
3685 }
3686 else if (i.types[op].bitfield.xmmword)
3687 {
3688 i.tm.opcode_modifier.evex = EVEX128;
3689 break;
3690 }
3691 else if (i.broadcast && (int) op == i.broadcast->operand)
3692 {
3693 switch (i.broadcast->bytes)
3694 {
3695 case 64:
3696 i.tm.opcode_modifier.evex = EVEX512;
3697 break;
3698 case 32:
3699 i.tm.opcode_modifier.evex = EVEX256;
3700 break;
3701 case 16:
3702 i.tm.opcode_modifier.evex = EVEX128;
3703 break;
3704 default:
3705 abort ();
3706 }
3707 break;
3708 }
3709 }
3710
3711 if (op >= MAX_OPERANDS)
3712 abort ();
3713 }
3714
3715 switch (i.tm.opcode_modifier.evex)
3716 {
3717 case EVEXLIG: /* LL' is ignored */
3718 vec_length = evexlig << 5;
3719 break;
3720 case EVEX128:
3721 vec_length = 0 << 5;
3722 break;
3723 case EVEX256:
3724 vec_length = 1 << 5;
3725 break;
3726 case EVEX512:
3727 vec_length = 2 << 5;
3728 break;
3729 default:
3730 abort ();
3731 break;
3732 }
3733 i.vex.bytes[3] |= vec_length;
3734 /* Encode the broadcast bit. */
3735 if (i.broadcast)
3736 i.vex.bytes[3] |= 0x10;
3737 }
3738 else
3739 {
3740 if (i.rounding->type != saeonly)
3741 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3742 else
3743 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3744 }
3745
3746 if (i.mask && i.mask->mask)
3747 i.vex.bytes[3] |= i.mask->mask->reg_num;
3748 }
3749
3750 static void
3751 process_immext (void)
3752 {
3753 expressionS *exp;
3754
3755 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3756 && i.operands > 0)
3757 {
3758 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3759 with an opcode suffix which is coded in the same place as an
3760 8-bit immediate field would be.
3761 Here we check those operands and remove them afterwards. */
3762 unsigned int x;
3763
3764 for (x = 0; x < i.operands; x++)
3765 if (register_number (i.op[x].regs) != x)
3766 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3767 register_prefix, i.op[x].regs->reg_name, x + 1,
3768 i.tm.name);
3769
3770 i.operands = 0;
3771 }
3772
3773 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3774 {
3775 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3776 suffix which is coded in the same place as an 8-bit immediate
3777 field would be.
3778 Here we check those operands and remove them afterwards. */
3779 unsigned int x;
3780
3781 if (i.operands != 3)
3782 abort();
3783
3784 for (x = 0; x < 2; x++)
3785 if (register_number (i.op[x].regs) != x)
3786 goto bad_register_operand;
3787
3788 /* Check for third operand for mwaitx/monitorx insn. */
3789 if (register_number (i.op[x].regs)
3790 != (x + (i.tm.extension_opcode == 0xfb)))
3791 {
3792 bad_register_operand:
3793 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3794 register_prefix, i.op[x].regs->reg_name, x+1,
3795 i.tm.name);
3796 }
3797
3798 i.operands = 0;
3799 }
3800
3801 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3802 which is coded in the same place as an 8-bit immediate field
3803 would be. Here we fake an 8-bit immediate operand from the
3804 opcode suffix stored in tm.extension_opcode.
3805
3806 AVX instructions also use this encoding, for some of
3807 3 argument instructions. */
3808
3809 gas_assert (i.imm_operands <= 1
3810 && (i.operands <= 2
3811 || (is_any_vex_encoding (&i.tm)
3812 && i.operands <= 4)));
3813
3814 exp = &im_expressions[i.imm_operands++];
3815 i.op[i.operands].imms = exp;
3816 i.types[i.operands] = imm8;
3817 i.operands++;
3818 exp->X_op = O_constant;
3819 exp->X_add_number = i.tm.extension_opcode;
3820 i.tm.extension_opcode = None;
3821 }
3822
3823
3824 static int
3825 check_hle (void)
3826 {
3827 switch (i.tm.opcode_modifier.hleprefixok)
3828 {
3829 default:
3830 abort ();
3831 case HLEPrefixNone:
3832 as_bad (_("invalid instruction `%s' after `%s'"),
3833 i.tm.name, i.hle_prefix);
3834 return 0;
3835 case HLEPrefixLock:
3836 if (i.prefix[LOCK_PREFIX])
3837 return 1;
3838 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3839 return 0;
3840 case HLEPrefixAny:
3841 return 1;
3842 case HLEPrefixRelease:
3843 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3844 {
3845 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3846 i.tm.name);
3847 return 0;
3848 }
3849 if (i.mem_operands == 0
3850 || !operand_type_check (i.types[i.operands - 1], anymem))
3851 {
3852 as_bad (_("memory destination needed for instruction `%s'"
3853 " after `xrelease'"), i.tm.name);
3854 return 0;
3855 }
3856 return 1;
3857 }
3858 }
3859
3860 /* Try the shortest encoding by shortening operand size. */
3861
3862 static void
3863 optimize_encoding (void)
3864 {
3865 int j;
3866
3867 if (optimize_for_space
3868 && i.reg_operands == 1
3869 && i.imm_operands == 1
3870 && !i.types[1].bitfield.byte
3871 && i.op[0].imms->X_op == O_constant
3872 && fits_in_imm7 (i.op[0].imms->X_add_number)
3873 && ((i.tm.base_opcode == 0xa8
3874 && i.tm.extension_opcode == None)
3875 || (i.tm.base_opcode == 0xf6
3876 && i.tm.extension_opcode == 0x0)))
3877 {
3878 /* Optimize: -Os:
3879 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3880 */
3881 unsigned int base_regnum = i.op[1].regs->reg_num;
3882 if (flag_code == CODE_64BIT || base_regnum < 4)
3883 {
3884 i.types[1].bitfield.byte = 1;
3885 /* Ignore the suffix. */
3886 i.suffix = 0;
3887 if (base_regnum >= 4
3888 && !(i.op[1].regs->reg_flags & RegRex))
3889 {
3890 /* Handle SP, BP, SI and DI registers. */
3891 if (i.types[1].bitfield.word)
3892 j = 16;
3893 else if (i.types[1].bitfield.dword)
3894 j = 32;
3895 else
3896 j = 48;
3897 i.op[1].regs -= j;
3898 }
3899 }
3900 }
3901 else if (flag_code == CODE_64BIT
3902 && ((i.types[1].bitfield.qword
3903 && i.reg_operands == 1
3904 && i.imm_operands == 1
3905 && i.op[0].imms->X_op == O_constant
3906 && ((i.tm.base_opcode == 0xb0
3907 && i.tm.extension_opcode == None
3908 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3909 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3910 && (((i.tm.base_opcode == 0x24
3911 || i.tm.base_opcode == 0xa8)
3912 && i.tm.extension_opcode == None)
3913 || (i.tm.base_opcode == 0x80
3914 && i.tm.extension_opcode == 0x4)
3915 || ((i.tm.base_opcode == 0xf6
3916 || i.tm.base_opcode == 0xc6)
3917 && i.tm.extension_opcode == 0x0)))))
3918 || (i.types[0].bitfield.qword
3919 && ((i.reg_operands == 2
3920 && i.op[0].regs == i.op[1].regs
3921 && ((i.tm.base_opcode == 0x30
3922 || i.tm.base_opcode == 0x28)
3923 && i.tm.extension_opcode == None))
3924 || (i.reg_operands == 1
3925 && i.operands == 1
3926 && i.tm.base_opcode == 0x30
3927 && i.tm.extension_opcode == None)))))
3928 {
3929 /* Optimize: -O:
3930 andq $imm31, %r64 -> andl $imm31, %r32
3931 testq $imm31, %r64 -> testl $imm31, %r32
3932 xorq %r64, %r64 -> xorl %r32, %r32
3933 subq %r64, %r64 -> subl %r32, %r32
3934 movq $imm31, %r64 -> movl $imm31, %r32
3935 movq $imm32, %r64 -> movl $imm32, %r32
3936 */
3937 i.tm.opcode_modifier.norex64 = 1;
3938 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3939 {
3940 /* Handle
3941 movq $imm31, %r64 -> movl $imm31, %r32
3942 movq $imm32, %r64 -> movl $imm32, %r32
3943 */
3944 i.tm.operand_types[0].bitfield.imm32 = 1;
3945 i.tm.operand_types[0].bitfield.imm32s = 0;
3946 i.tm.operand_types[0].bitfield.imm64 = 0;
3947 i.types[0].bitfield.imm32 = 1;
3948 i.types[0].bitfield.imm32s = 0;
3949 i.types[0].bitfield.imm64 = 0;
3950 i.types[1].bitfield.dword = 1;
3951 i.types[1].bitfield.qword = 0;
3952 if (i.tm.base_opcode == 0xc6)
3953 {
3954 /* Handle
3955 movq $imm31, %r64 -> movl $imm31, %r32
3956 */
3957 i.tm.base_opcode = 0xb0;
3958 i.tm.extension_opcode = None;
3959 i.tm.opcode_modifier.shortform = 1;
3960 i.tm.opcode_modifier.modrm = 0;
3961 }
3962 }
3963 }
3964 else if (optimize > 1
3965 && i.reg_operands == 3
3966 && i.op[0].regs == i.op[1].regs
3967 && !i.types[2].bitfield.xmmword
3968 && (i.tm.opcode_modifier.vex
3969 || ((!i.mask || i.mask->zeroing)
3970 && !i.rounding
3971 && is_evex_encoding (&i.tm)
3972 && (i.vec_encoding != vex_encoding_evex
3973 || i.tm.cpu_flags.bitfield.cpuavx512vl
3974 || (i.tm.operand_types[2].bitfield.zmmword
3975 && i.types[2].bitfield.ymmword)
3976 || cpu_arch_isa_flags.bitfield.cpuavx512vl)))
3977 && ((i.tm.base_opcode == 0x55
3978 || i.tm.base_opcode == 0x6655
3979 || i.tm.base_opcode == 0x66df
3980 || i.tm.base_opcode == 0x57
3981 || i.tm.base_opcode == 0x6657
3982 || i.tm.base_opcode == 0x66ef
3983 || i.tm.base_opcode == 0x66f8
3984 || i.tm.base_opcode == 0x66f9
3985 || i.tm.base_opcode == 0x66fa
3986 || i.tm.base_opcode == 0x66fb
3987 || i.tm.base_opcode == 0x42
3988 || i.tm.base_opcode == 0x6642
3989 || i.tm.base_opcode == 0x47
3990 || i.tm.base_opcode == 0x6647)
3991 && i.tm.extension_opcode == None))
3992 {
3993 /* Optimize: -O2:
3994 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
3995 vpsubq and vpsubw:
3996 EVEX VOP %zmmM, %zmmM, %zmmN
3997 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3998 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3999 EVEX VOP %ymmM, %ymmM, %ymmN
4000 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4001 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4002 VEX VOP %ymmM, %ymmM, %ymmN
4003 -> VEX VOP %xmmM, %xmmM, %xmmN
4004 VOP, one of vpandn and vpxor:
4005 VEX VOP %ymmM, %ymmM, %ymmN
4006 -> VEX VOP %xmmM, %xmmM, %xmmN
4007 VOP, one of vpandnd and vpandnq:
4008 EVEX VOP %zmmM, %zmmM, %zmmN
4009 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4010 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4011 EVEX VOP %ymmM, %ymmM, %ymmN
4012 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4013 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4014 VOP, one of vpxord and vpxorq:
4015 EVEX VOP %zmmM, %zmmM, %zmmN
4016 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4017 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4018 EVEX VOP %ymmM, %ymmM, %ymmN
4019 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4020 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4021 VOP, one of kxord and kxorq:
4022 VEX VOP %kM, %kM, %kN
4023 -> VEX kxorw %kM, %kM, %kN
4024 VOP, one of kandnd and kandnq:
4025 VEX VOP %kM, %kM, %kN
4026 -> VEX kandnw %kM, %kM, %kN
4027 */
4028 if (is_evex_encoding (&i.tm))
4029 {
4030 if (i.vec_encoding == vex_encoding_evex)
4031 i.tm.opcode_modifier.evex = EVEX128;
4032 else
4033 {
4034 i.tm.opcode_modifier.vex = VEX128;
4035 i.tm.opcode_modifier.vexw = VEXW0;
4036 i.tm.opcode_modifier.evex = 0;
4037 }
4038 }
4039 else if (i.tm.operand_types[0].bitfield.regmask)
4040 {
4041 i.tm.base_opcode &= 0xff;
4042 i.tm.opcode_modifier.vexw = VEXW0;
4043 }
4044 else
4045 i.tm.opcode_modifier.vex = VEX128;
4046
4047 if (i.tm.opcode_modifier.vex)
4048 for (j = 0; j < 3; j++)
4049 {
4050 i.types[j].bitfield.xmmword = 1;
4051 i.types[j].bitfield.ymmword = 0;
4052 }
4053 }
4054 }
4055
4056 /* This is the guts of the machine-dependent assembler. LINE points to a
4057 machine dependent instruction. This function is supposed to emit
4058 the frags/bytes it assembles to. */
4059
4060 void
4061 md_assemble (char *line)
4062 {
4063 unsigned int j;
4064 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4065 const insn_template *t;
4066
4067 /* Initialize globals. */
4068 memset (&i, '\0', sizeof (i));
4069 for (j = 0; j < MAX_OPERANDS; j++)
4070 i.reloc[j] = NO_RELOC;
4071 memset (disp_expressions, '\0', sizeof (disp_expressions));
4072 memset (im_expressions, '\0', sizeof (im_expressions));
4073 save_stack_p = save_stack;
4074
4075 /* First parse an instruction mnemonic & call i386_operand for the operands.
4076 We assume that the scrubber has arranged it so that line[0] is the valid
4077 start of a (possibly prefixed) mnemonic. */
4078
4079 line = parse_insn (line, mnemonic);
4080 if (line == NULL)
4081 return;
4082 mnem_suffix = i.suffix;
4083
4084 line = parse_operands (line, mnemonic);
4085 this_operand = -1;
4086 xfree (i.memop1_string);
4087 i.memop1_string = NULL;
4088 if (line == NULL)
4089 return;
4090
4091 /* Now we've parsed the mnemonic into a set of templates, and have the
4092 operands at hand. */
4093
4094 /* All intel opcodes have reversed operands except for "bound" and
4095 "enter". We also don't reverse intersegment "jmp" and "call"
4096 instructions with 2 immediate operands so that the immediate segment
4097 precedes the offset, as it does when in AT&T mode. */
4098 if (intel_syntax
4099 && i.operands > 1
4100 && (strcmp (mnemonic, "bound") != 0)
4101 && (strcmp (mnemonic, "invlpga") != 0)
4102 && !(operand_type_check (i.types[0], imm)
4103 && operand_type_check (i.types[1], imm)))
4104 swap_operands ();
4105
4106 /* The order of the immediates should be reversed
4107 for 2 immediates extrq and insertq instructions */
4108 if (i.imm_operands == 2
4109 && (strcmp (mnemonic, "extrq") == 0
4110 || strcmp (mnemonic, "insertq") == 0))
4111 swap_2_operands (0, 1);
4112
4113 if (i.imm_operands)
4114 optimize_imm ();
4115
4116 /* Don't optimize displacement for movabs since it only takes 64bit
4117 displacement. */
4118 if (i.disp_operands
4119 && i.disp_encoding != disp_encoding_32bit
4120 && (flag_code != CODE_64BIT
4121 || strcmp (mnemonic, "movabs") != 0))
4122 optimize_disp ();
4123
4124 /* Next, we find a template that matches the given insn,
4125 making sure the overlap of the given operands types is consistent
4126 with the template operand types. */
4127
4128 if (!(t = match_template (mnem_suffix)))
4129 return;
4130
4131 if (sse_check != check_none
4132 && !i.tm.opcode_modifier.noavx
4133 && !i.tm.cpu_flags.bitfield.cpuavx
4134 && (i.tm.cpu_flags.bitfield.cpusse
4135 || i.tm.cpu_flags.bitfield.cpusse2
4136 || i.tm.cpu_flags.bitfield.cpusse3
4137 || i.tm.cpu_flags.bitfield.cpussse3
4138 || i.tm.cpu_flags.bitfield.cpusse4_1
4139 || i.tm.cpu_flags.bitfield.cpusse4_2
4140 || i.tm.cpu_flags.bitfield.cpupclmul
4141 || i.tm.cpu_flags.bitfield.cpuaes
4142 || i.tm.cpu_flags.bitfield.cpugfni))
4143 {
4144 (sse_check == check_warning
4145 ? as_warn
4146 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4147 }
4148
4149 /* Zap movzx and movsx suffix. The suffix has been set from
4150 "word ptr" or "byte ptr" on the source operand in Intel syntax
4151 or extracted from mnemonic in AT&T syntax. But we'll use
4152 the destination register to choose the suffix for encoding. */
4153 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4154 {
4155 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4156 there is no suffix, the default will be byte extension. */
4157 if (i.reg_operands != 2
4158 && !i.suffix
4159 && intel_syntax)
4160 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4161
4162 i.suffix = 0;
4163 }
4164
4165 if (i.tm.opcode_modifier.fwait)
4166 if (!add_prefix (FWAIT_OPCODE))
4167 return;
4168
4169 /* Check if REP prefix is OK. */
4170 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4171 {
4172 as_bad (_("invalid instruction `%s' after `%s'"),
4173 i.tm.name, i.rep_prefix);
4174 return;
4175 }
4176
4177 /* Check for lock without a lockable instruction. Destination operand
4178 must be memory unless it is xchg (0x86). */
4179 if (i.prefix[LOCK_PREFIX]
4180 && (!i.tm.opcode_modifier.islockable
4181 || i.mem_operands == 0
4182 || (i.tm.base_opcode != 0x86
4183 && !operand_type_check (i.types[i.operands - 1], anymem))))
4184 {
4185 as_bad (_("expecting lockable instruction after `lock'"));
4186 return;
4187 }
4188
4189 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4190 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4191 {
4192 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4193 return;
4194 }
4195
4196 /* Check if HLE prefix is OK. */
4197 if (i.hle_prefix && !check_hle ())
4198 return;
4199
4200 /* Check BND prefix. */
4201 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4202 as_bad (_("expecting valid branch instruction after `bnd'"));
4203
4204 /* Check NOTRACK prefix. */
4205 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4206 as_bad (_("expecting indirect branch instruction after `notrack'"));
4207
4208 if (i.tm.cpu_flags.bitfield.cpumpx)
4209 {
4210 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4211 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4212 else if (flag_code != CODE_16BIT
4213 ? i.prefix[ADDR_PREFIX]
4214 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4215 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4216 }
4217
4218 /* Insert BND prefix. */
4219 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4220 {
4221 if (!i.prefix[BND_PREFIX])
4222 add_prefix (BND_PREFIX_OPCODE);
4223 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4224 {
4225 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4226 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4227 }
4228 }
4229
4230 /* Check string instruction segment overrides. */
4231 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
4232 {
4233 if (!check_string ())
4234 return;
4235 i.disp_operands = 0;
4236 }
4237
4238 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4239 optimize_encoding ();
4240
4241 if (!process_suffix ())
4242 return;
4243
4244 /* Update operand types. */
4245 for (j = 0; j < i.operands; j++)
4246 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4247
4248 /* Make still unresolved immediate matches conform to size of immediate
4249 given in i.suffix. */
4250 if (!finalize_imm ())
4251 return;
4252
4253 if (i.types[0].bitfield.imm1)
4254 i.imm_operands = 0; /* kludge for shift insns. */
4255
4256 /* We only need to check those implicit registers for instructions
4257 with 3 operands or less. */
4258 if (i.operands <= 3)
4259 for (j = 0; j < i.operands; j++)
4260 if (i.types[j].bitfield.inoutportreg
4261 || i.types[j].bitfield.shiftcount
4262 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
4263 i.reg_operands--;
4264
4265 /* ImmExt should be processed after SSE2AVX. */
4266 if (!i.tm.opcode_modifier.sse2avx
4267 && i.tm.opcode_modifier.immext)
4268 process_immext ();
4269
4270 /* For insns with operands there are more diddles to do to the opcode. */
4271 if (i.operands)
4272 {
4273 if (!process_operands ())
4274 return;
4275 }
4276 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4277 {
4278 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4279 as_warn (_("translating to `%sp'"), i.tm.name);
4280 }
4281
4282 if (is_any_vex_encoding (&i.tm))
4283 {
4284 if (flag_code == CODE_16BIT)
4285 {
4286 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4287 i.tm.name);
4288 return;
4289 }
4290
4291 if (i.tm.opcode_modifier.vex)
4292 build_vex_prefix (t);
4293 else
4294 build_evex_prefix ();
4295 }
4296
4297 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4298 instructions may define INT_OPCODE as well, so avoid this corner
4299 case for those instructions that use MODRM. */
4300 if (i.tm.base_opcode == INT_OPCODE
4301 && !i.tm.opcode_modifier.modrm
4302 && i.op[0].imms->X_add_number == 3)
4303 {
4304 i.tm.base_opcode = INT3_OPCODE;
4305 i.imm_operands = 0;
4306 }
4307
4308 if ((i.tm.opcode_modifier.jump
4309 || i.tm.opcode_modifier.jumpbyte
4310 || i.tm.opcode_modifier.jumpdword)
4311 && i.op[0].disps->X_op == O_constant)
4312 {
4313 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4314 the absolute address given by the constant. Since ix86 jumps and
4315 calls are pc relative, we need to generate a reloc. */
4316 i.op[0].disps->X_add_symbol = &abs_symbol;
4317 i.op[0].disps->X_op = O_symbol;
4318 }
4319
4320 if (i.tm.opcode_modifier.rex64)
4321 i.rex |= REX_W;
4322
4323 /* For 8 bit registers we need an empty rex prefix. Also if the
4324 instruction already has a prefix, we need to convert old
4325 registers to new ones. */
4326
4327 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
4328 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4329 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
4330 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4331 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4332 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
4333 && i.rex != 0))
4334 {
4335 int x;
4336
4337 i.rex |= REX_OPCODE;
4338 for (x = 0; x < 2; x++)
4339 {
4340 /* Look for 8 bit operand that uses old registers. */
4341 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
4342 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4343 {
4344 /* In case it is "hi" register, give up. */
4345 if (i.op[x].regs->reg_num > 3)
4346 as_bad (_("can't encode register '%s%s' in an "
4347 "instruction requiring REX prefix."),
4348 register_prefix, i.op[x].regs->reg_name);
4349
4350 /* Otherwise it is equivalent to the extended register.
4351 Since the encoding doesn't change this is merely
4352 cosmetic cleanup for debug output. */
4353
4354 i.op[x].regs = i.op[x].regs + 8;
4355 }
4356 }
4357 }
4358
4359 if (i.rex == 0 && i.rex_encoding)
4360 {
4361 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4362 that uses legacy register. If it is "hi" register, don't add
4363 the REX_OPCODE byte. */
4364 int x;
4365 for (x = 0; x < 2; x++)
4366 if (i.types[x].bitfield.reg
4367 && i.types[x].bitfield.byte
4368 && (i.op[x].regs->reg_flags & RegRex64) == 0
4369 && i.op[x].regs->reg_num > 3)
4370 {
4371 i.rex_encoding = FALSE;
4372 break;
4373 }
4374
4375 if (i.rex_encoding)
4376 i.rex = REX_OPCODE;
4377 }
4378
4379 if (i.rex != 0)
4380 add_prefix (REX_OPCODE | i.rex);
4381
4382 /* We are ready to output the insn. */
4383 output_insn ();
4384 }
4385
4386 static char *
4387 parse_insn (char *line, char *mnemonic)
4388 {
4389 char *l = line;
4390 char *token_start = l;
4391 char *mnem_p;
4392 int supported;
4393 const insn_template *t;
4394 char *dot_p = NULL;
4395
4396 while (1)
4397 {
4398 mnem_p = mnemonic;
4399 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4400 {
4401 if (*mnem_p == '.')
4402 dot_p = mnem_p;
4403 mnem_p++;
4404 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4405 {
4406 as_bad (_("no such instruction: `%s'"), token_start);
4407 return NULL;
4408 }
4409 l++;
4410 }
4411 if (!is_space_char (*l)
4412 && *l != END_OF_INSN
4413 && (intel_syntax
4414 || (*l != PREFIX_SEPARATOR
4415 && *l != ',')))
4416 {
4417 as_bad (_("invalid character %s in mnemonic"),
4418 output_invalid (*l));
4419 return NULL;
4420 }
4421 if (token_start == l)
4422 {
4423 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4424 as_bad (_("expecting prefix; got nothing"));
4425 else
4426 as_bad (_("expecting mnemonic; got nothing"));
4427 return NULL;
4428 }
4429
4430 /* Look up instruction (or prefix) via hash table. */
4431 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4432
4433 if (*l != END_OF_INSN
4434 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4435 && current_templates
4436 && current_templates->start->opcode_modifier.isprefix)
4437 {
4438 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4439 {
4440 as_bad ((flag_code != CODE_64BIT
4441 ? _("`%s' is only supported in 64-bit mode")
4442 : _("`%s' is not supported in 64-bit mode")),
4443 current_templates->start->name);
4444 return NULL;
4445 }
4446 /* If we are in 16-bit mode, do not allow addr16 or data16.
4447 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4448 if ((current_templates->start->opcode_modifier.size16
4449 || current_templates->start->opcode_modifier.size32)
4450 && flag_code != CODE_64BIT
4451 && (current_templates->start->opcode_modifier.size32
4452 ^ (flag_code == CODE_16BIT)))
4453 {
4454 as_bad (_("redundant %s prefix"),
4455 current_templates->start->name);
4456 return NULL;
4457 }
4458 if (current_templates->start->opcode_length == 0)
4459 {
4460 /* Handle pseudo prefixes. */
4461 switch (current_templates->start->base_opcode)
4462 {
4463 case 0x0:
4464 /* {disp8} */
4465 i.disp_encoding = disp_encoding_8bit;
4466 break;
4467 case 0x1:
4468 /* {disp32} */
4469 i.disp_encoding = disp_encoding_32bit;
4470 break;
4471 case 0x2:
4472 /* {load} */
4473 i.dir_encoding = dir_encoding_load;
4474 break;
4475 case 0x3:
4476 /* {store} */
4477 i.dir_encoding = dir_encoding_store;
4478 break;
4479 case 0x4:
4480 /* {vex2} */
4481 i.vec_encoding = vex_encoding_vex2;
4482 break;
4483 case 0x5:
4484 /* {vex3} */
4485 i.vec_encoding = vex_encoding_vex3;
4486 break;
4487 case 0x6:
4488 /* {evex} */
4489 i.vec_encoding = vex_encoding_evex;
4490 break;
4491 case 0x7:
4492 /* {rex} */
4493 i.rex_encoding = TRUE;
4494 break;
4495 case 0x8:
4496 /* {nooptimize} */
4497 i.no_optimize = TRUE;
4498 break;
4499 default:
4500 abort ();
4501 }
4502 }
4503 else
4504 {
4505 /* Add prefix, checking for repeated prefixes. */
4506 switch (add_prefix (current_templates->start->base_opcode))
4507 {
4508 case PREFIX_EXIST:
4509 return NULL;
4510 case PREFIX_DS:
4511 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4512 i.notrack_prefix = current_templates->start->name;
4513 break;
4514 case PREFIX_REP:
4515 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4516 i.hle_prefix = current_templates->start->name;
4517 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4518 i.bnd_prefix = current_templates->start->name;
4519 else
4520 i.rep_prefix = current_templates->start->name;
4521 break;
4522 default:
4523 break;
4524 }
4525 }
4526 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4527 token_start = ++l;
4528 }
4529 else
4530 break;
4531 }
4532
4533 if (!current_templates)
4534 {
4535 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4536 Check if we should swap operand or force 32bit displacement in
4537 encoding. */
4538 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4539 i.dir_encoding = dir_encoding_swap;
4540 else if (mnem_p - 3 == dot_p
4541 && dot_p[1] == 'd'
4542 && dot_p[2] == '8')
4543 i.disp_encoding = disp_encoding_8bit;
4544 else if (mnem_p - 4 == dot_p
4545 && dot_p[1] == 'd'
4546 && dot_p[2] == '3'
4547 && dot_p[3] == '2')
4548 i.disp_encoding = disp_encoding_32bit;
4549 else
4550 goto check_suffix;
4551 mnem_p = dot_p;
4552 *dot_p = '\0';
4553 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4554 }
4555
4556 if (!current_templates)
4557 {
4558 check_suffix:
4559 /* See if we can get a match by trimming off a suffix. */
4560 switch (mnem_p[-1])
4561 {
4562 case WORD_MNEM_SUFFIX:
4563 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4564 i.suffix = SHORT_MNEM_SUFFIX;
4565 else
4566 /* Fall through. */
4567 case BYTE_MNEM_SUFFIX:
4568 case QWORD_MNEM_SUFFIX:
4569 i.suffix = mnem_p[-1];
4570 mnem_p[-1] = '\0';
4571 current_templates = (const templates *) hash_find (op_hash,
4572 mnemonic);
4573 break;
4574 case SHORT_MNEM_SUFFIX:
4575 case LONG_MNEM_SUFFIX:
4576 if (!intel_syntax)
4577 {
4578 i.suffix = mnem_p[-1];
4579 mnem_p[-1] = '\0';
4580 current_templates = (const templates *) hash_find (op_hash,
4581 mnemonic);
4582 }
4583 break;
4584
4585 /* Intel Syntax. */
4586 case 'd':
4587 if (intel_syntax)
4588 {
4589 if (intel_float_operand (mnemonic) == 1)
4590 i.suffix = SHORT_MNEM_SUFFIX;
4591 else
4592 i.suffix = LONG_MNEM_SUFFIX;
4593 mnem_p[-1] = '\0';
4594 current_templates = (const templates *) hash_find (op_hash,
4595 mnemonic);
4596 }
4597 break;
4598 }
4599 if (!current_templates)
4600 {
4601 as_bad (_("no such instruction: `%s'"), token_start);
4602 return NULL;
4603 }
4604 }
4605
4606 if (current_templates->start->opcode_modifier.jump
4607 || current_templates->start->opcode_modifier.jumpbyte)
4608 {
4609 /* Check for a branch hint. We allow ",pt" and ",pn" for
4610 predict taken and predict not taken respectively.
4611 I'm not sure that branch hints actually do anything on loop
4612 and jcxz insns (JumpByte) for current Pentium4 chips. They
4613 may work in the future and it doesn't hurt to accept them
4614 now. */
4615 if (l[0] == ',' && l[1] == 'p')
4616 {
4617 if (l[2] == 't')
4618 {
4619 if (!add_prefix (DS_PREFIX_OPCODE))
4620 return NULL;
4621 l += 3;
4622 }
4623 else if (l[2] == 'n')
4624 {
4625 if (!add_prefix (CS_PREFIX_OPCODE))
4626 return NULL;
4627 l += 3;
4628 }
4629 }
4630 }
4631 /* Any other comma loses. */
4632 if (*l == ',')
4633 {
4634 as_bad (_("invalid character %s in mnemonic"),
4635 output_invalid (*l));
4636 return NULL;
4637 }
4638
4639 /* Check if instruction is supported on specified architecture. */
4640 supported = 0;
4641 for (t = current_templates->start; t < current_templates->end; ++t)
4642 {
4643 supported |= cpu_flags_match (t);
4644 if (supported == CPU_FLAGS_PERFECT_MATCH)
4645 {
4646 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4647 as_warn (_("use .code16 to ensure correct addressing mode"));
4648
4649 return l;
4650 }
4651 }
4652
4653 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4654 as_bad (flag_code == CODE_64BIT
4655 ? _("`%s' is not supported in 64-bit mode")
4656 : _("`%s' is only supported in 64-bit mode"),
4657 current_templates->start->name);
4658 else
4659 as_bad (_("`%s' is not supported on `%s%s'"),
4660 current_templates->start->name,
4661 cpu_arch_name ? cpu_arch_name : default_arch,
4662 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4663
4664 return NULL;
4665 }
4666
4667 static char *
4668 parse_operands (char *l, const char *mnemonic)
4669 {
4670 char *token_start;
4671
4672 /* 1 if operand is pending after ','. */
4673 unsigned int expecting_operand = 0;
4674
4675 /* Non-zero if operand parens not balanced. */
4676 unsigned int paren_not_balanced;
4677
4678 while (*l != END_OF_INSN)
4679 {
4680 /* Skip optional white space before operand. */
4681 if (is_space_char (*l))
4682 ++l;
4683 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4684 {
4685 as_bad (_("invalid character %s before operand %d"),
4686 output_invalid (*l),
4687 i.operands + 1);
4688 return NULL;
4689 }
4690 token_start = l; /* After white space. */
4691 paren_not_balanced = 0;
4692 while (paren_not_balanced || *l != ',')
4693 {
4694 if (*l == END_OF_INSN)
4695 {
4696 if (paren_not_balanced)
4697 {
4698 if (!intel_syntax)
4699 as_bad (_("unbalanced parenthesis in operand %d."),
4700 i.operands + 1);
4701 else
4702 as_bad (_("unbalanced brackets in operand %d."),
4703 i.operands + 1);
4704 return NULL;
4705 }
4706 else
4707 break; /* we are done */
4708 }
4709 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4710 {
4711 as_bad (_("invalid character %s in operand %d"),
4712 output_invalid (*l),
4713 i.operands + 1);
4714 return NULL;
4715 }
4716 if (!intel_syntax)
4717 {
4718 if (*l == '(')
4719 ++paren_not_balanced;
4720 if (*l == ')')
4721 --paren_not_balanced;
4722 }
4723 else
4724 {
4725 if (*l == '[')
4726 ++paren_not_balanced;
4727 if (*l == ']')
4728 --paren_not_balanced;
4729 }
4730 l++;
4731 }
4732 if (l != token_start)
4733 { /* Yes, we've read in another operand. */
4734 unsigned int operand_ok;
4735 this_operand = i.operands++;
4736 if (i.operands > MAX_OPERANDS)
4737 {
4738 as_bad (_("spurious operands; (%d operands/instruction max)"),
4739 MAX_OPERANDS);
4740 return NULL;
4741 }
4742 i.types[this_operand].bitfield.unspecified = 1;
4743 /* Now parse operand adding info to 'i' as we go along. */
4744 END_STRING_AND_SAVE (l);
4745
4746 if (i.mem_operands > 1)
4747 {
4748 as_bad (_("too many memory references for `%s'"),
4749 mnemonic);
4750 return 0;
4751 }
4752
4753 if (intel_syntax)
4754 operand_ok =
4755 i386_intel_operand (token_start,
4756 intel_float_operand (mnemonic));
4757 else
4758 operand_ok = i386_att_operand (token_start);
4759
4760 RESTORE_END_STRING (l);
4761 if (!operand_ok)
4762 return NULL;
4763 }
4764 else
4765 {
4766 if (expecting_operand)
4767 {
4768 expecting_operand_after_comma:
4769 as_bad (_("expecting operand after ','; got nothing"));
4770 return NULL;
4771 }
4772 if (*l == ',')
4773 {
4774 as_bad (_("expecting operand before ','; got nothing"));
4775 return NULL;
4776 }
4777 }
4778
4779 /* Now *l must be either ',' or END_OF_INSN. */
4780 if (*l == ',')
4781 {
4782 if (*++l == END_OF_INSN)
4783 {
4784 /* Just skip it, if it's \n complain. */
4785 goto expecting_operand_after_comma;
4786 }
4787 expecting_operand = 1;
4788 }
4789 }
4790 return l;
4791 }
4792
4793 static void
4794 swap_2_operands (int xchg1, int xchg2)
4795 {
4796 union i386_op temp_op;
4797 i386_operand_type temp_type;
4798 unsigned int temp_flags;
4799 enum bfd_reloc_code_real temp_reloc;
4800
4801 temp_type = i.types[xchg2];
4802 i.types[xchg2] = i.types[xchg1];
4803 i.types[xchg1] = temp_type;
4804
4805 temp_flags = i.flags[xchg2];
4806 i.flags[xchg2] = i.flags[xchg1];
4807 i.flags[xchg1] = temp_flags;
4808
4809 temp_op = i.op[xchg2];
4810 i.op[xchg2] = i.op[xchg1];
4811 i.op[xchg1] = temp_op;
4812
4813 temp_reloc = i.reloc[xchg2];
4814 i.reloc[xchg2] = i.reloc[xchg1];
4815 i.reloc[xchg1] = temp_reloc;
4816
4817 if (i.mask)
4818 {
4819 if (i.mask->operand == xchg1)
4820 i.mask->operand = xchg2;
4821 else if (i.mask->operand == xchg2)
4822 i.mask->operand = xchg1;
4823 }
4824 if (i.broadcast)
4825 {
4826 if (i.broadcast->operand == xchg1)
4827 i.broadcast->operand = xchg2;
4828 else if (i.broadcast->operand == xchg2)
4829 i.broadcast->operand = xchg1;
4830 }
4831 if (i.rounding)
4832 {
4833 if (i.rounding->operand == xchg1)
4834 i.rounding->operand = xchg2;
4835 else if (i.rounding->operand == xchg2)
4836 i.rounding->operand = xchg1;
4837 }
4838 }
4839
4840 static void
4841 swap_operands (void)
4842 {
4843 switch (i.operands)
4844 {
4845 case 5:
4846 case 4:
4847 swap_2_operands (1, i.operands - 2);
4848 /* Fall through. */
4849 case 3:
4850 case 2:
4851 swap_2_operands (0, i.operands - 1);
4852 break;
4853 default:
4854 abort ();
4855 }
4856
4857 if (i.mem_operands == 2)
4858 {
4859 const seg_entry *temp_seg;
4860 temp_seg = i.seg[0];
4861 i.seg[0] = i.seg[1];
4862 i.seg[1] = temp_seg;
4863 }
4864 }
4865
4866 /* Try to ensure constant immediates are represented in the smallest
4867 opcode possible. */
4868 static void
4869 optimize_imm (void)
4870 {
4871 char guess_suffix = 0;
4872 int op;
4873
4874 if (i.suffix)
4875 guess_suffix = i.suffix;
4876 else if (i.reg_operands)
4877 {
4878 /* Figure out a suffix from the last register operand specified.
4879 We can't do this properly yet, ie. excluding InOutPortReg,
4880 but the following works for instructions with immediates.
4881 In any case, we can't set i.suffix yet. */
4882 for (op = i.operands; --op >= 0;)
4883 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
4884 {
4885 guess_suffix = BYTE_MNEM_SUFFIX;
4886 break;
4887 }
4888 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
4889 {
4890 guess_suffix = WORD_MNEM_SUFFIX;
4891 break;
4892 }
4893 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
4894 {
4895 guess_suffix = LONG_MNEM_SUFFIX;
4896 break;
4897 }
4898 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
4899 {
4900 guess_suffix = QWORD_MNEM_SUFFIX;
4901 break;
4902 }
4903 }
4904 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4905 guess_suffix = WORD_MNEM_SUFFIX;
4906
4907 for (op = i.operands; --op >= 0;)
4908 if (operand_type_check (i.types[op], imm))
4909 {
4910 switch (i.op[op].imms->X_op)
4911 {
4912 case O_constant:
4913 /* If a suffix is given, this operand may be shortened. */
4914 switch (guess_suffix)
4915 {
4916 case LONG_MNEM_SUFFIX:
4917 i.types[op].bitfield.imm32 = 1;
4918 i.types[op].bitfield.imm64 = 1;
4919 break;
4920 case WORD_MNEM_SUFFIX:
4921 i.types[op].bitfield.imm16 = 1;
4922 i.types[op].bitfield.imm32 = 1;
4923 i.types[op].bitfield.imm32s = 1;
4924 i.types[op].bitfield.imm64 = 1;
4925 break;
4926 case BYTE_MNEM_SUFFIX:
4927 i.types[op].bitfield.imm8 = 1;
4928 i.types[op].bitfield.imm8s = 1;
4929 i.types[op].bitfield.imm16 = 1;
4930 i.types[op].bitfield.imm32 = 1;
4931 i.types[op].bitfield.imm32s = 1;
4932 i.types[op].bitfield.imm64 = 1;
4933 break;
4934 }
4935
4936 /* If this operand is at most 16 bits, convert it
4937 to a signed 16 bit number before trying to see
4938 whether it will fit in an even smaller size.
4939 This allows a 16-bit operand such as $0xffe0 to
4940 be recognised as within Imm8S range. */
4941 if ((i.types[op].bitfield.imm16)
4942 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4943 {
4944 i.op[op].imms->X_add_number =
4945 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4946 }
4947 #ifdef BFD64
4948 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
4949 if ((i.types[op].bitfield.imm32)
4950 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4951 == 0))
4952 {
4953 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4954 ^ ((offsetT) 1 << 31))
4955 - ((offsetT) 1 << 31));
4956 }
4957 #endif
4958 i.types[op]
4959 = operand_type_or (i.types[op],
4960 smallest_imm_type (i.op[op].imms->X_add_number));
4961
4962 /* We must avoid matching of Imm32 templates when 64bit
4963 only immediate is available. */
4964 if (guess_suffix == QWORD_MNEM_SUFFIX)
4965 i.types[op].bitfield.imm32 = 0;
4966 break;
4967
4968 case O_absent:
4969 case O_register:
4970 abort ();
4971
4972 /* Symbols and expressions. */
4973 default:
4974 /* Convert symbolic operand to proper sizes for matching, but don't
4975 prevent matching a set of insns that only supports sizes other
4976 than those matching the insn suffix. */
4977 {
4978 i386_operand_type mask, allowed;
4979 const insn_template *t;
4980
4981 operand_type_set (&mask, 0);
4982 operand_type_set (&allowed, 0);
4983
4984 for (t = current_templates->start;
4985 t < current_templates->end;
4986 ++t)
4987 allowed = operand_type_or (allowed,
4988 t->operand_types[op]);
4989 switch (guess_suffix)
4990 {
4991 case QWORD_MNEM_SUFFIX:
4992 mask.bitfield.imm64 = 1;
4993 mask.bitfield.imm32s = 1;
4994 break;
4995 case LONG_MNEM_SUFFIX:
4996 mask.bitfield.imm32 = 1;
4997 break;
4998 case WORD_MNEM_SUFFIX:
4999 mask.bitfield.imm16 = 1;
5000 break;
5001 case BYTE_MNEM_SUFFIX:
5002 mask.bitfield.imm8 = 1;
5003 break;
5004 default:
5005 break;
5006 }
5007 allowed = operand_type_and (mask, allowed);
5008 if (!operand_type_all_zero (&allowed))
5009 i.types[op] = operand_type_and (i.types[op], mask);
5010 }
5011 break;
5012 }
5013 }
5014 }
5015
5016 /* Try to use the smallest displacement type too. */
5017 static void
5018 optimize_disp (void)
5019 {
5020 int op;
5021
5022 for (op = i.operands; --op >= 0;)
5023 if (operand_type_check (i.types[op], disp))
5024 {
5025 if (i.op[op].disps->X_op == O_constant)
5026 {
5027 offsetT op_disp = i.op[op].disps->X_add_number;
5028
5029 if (i.types[op].bitfield.disp16
5030 && (op_disp & ~(offsetT) 0xffff) == 0)
5031 {
5032 /* If this operand is at most 16 bits, convert
5033 to a signed 16 bit number and don't use 64bit
5034 displacement. */
5035 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5036 i.types[op].bitfield.disp64 = 0;
5037 }
5038 #ifdef BFD64
5039 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5040 if (i.types[op].bitfield.disp32
5041 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5042 {
5043 /* If this operand is at most 32 bits, convert
5044 to a signed 32 bit number and don't use 64bit
5045 displacement. */
5046 op_disp &= (((offsetT) 2 << 31) - 1);
5047 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5048 i.types[op].bitfield.disp64 = 0;
5049 }
5050 #endif
5051 if (!op_disp && i.types[op].bitfield.baseindex)
5052 {
5053 i.types[op].bitfield.disp8 = 0;
5054 i.types[op].bitfield.disp16 = 0;
5055 i.types[op].bitfield.disp32 = 0;
5056 i.types[op].bitfield.disp32s = 0;
5057 i.types[op].bitfield.disp64 = 0;
5058 i.op[op].disps = 0;
5059 i.disp_operands--;
5060 }
5061 else if (flag_code == CODE_64BIT)
5062 {
5063 if (fits_in_signed_long (op_disp))
5064 {
5065 i.types[op].bitfield.disp64 = 0;
5066 i.types[op].bitfield.disp32s = 1;
5067 }
5068 if (i.prefix[ADDR_PREFIX]
5069 && fits_in_unsigned_long (op_disp))
5070 i.types[op].bitfield.disp32 = 1;
5071 }
5072 if ((i.types[op].bitfield.disp32
5073 || i.types[op].bitfield.disp32s
5074 || i.types[op].bitfield.disp16)
5075 && fits_in_disp8 (op_disp))
5076 i.types[op].bitfield.disp8 = 1;
5077 }
5078 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5079 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5080 {
5081 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5082 i.op[op].disps, 0, i.reloc[op]);
5083 i.types[op].bitfield.disp8 = 0;
5084 i.types[op].bitfield.disp16 = 0;
5085 i.types[op].bitfield.disp32 = 0;
5086 i.types[op].bitfield.disp32s = 0;
5087 i.types[op].bitfield.disp64 = 0;
5088 }
5089 else
5090 /* We only support 64bit displacement on constants. */
5091 i.types[op].bitfield.disp64 = 0;
5092 }
5093 }
5094
5095 /* Return 1 if there is a match in broadcast bytes between operand
5096 GIVEN and instruction template T. */
5097
5098 static INLINE int
5099 match_broadcast_size (const insn_template *t, unsigned int given)
5100 {
5101 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5102 && i.types[given].bitfield.byte)
5103 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5104 && i.types[given].bitfield.word)
5105 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5106 && i.types[given].bitfield.dword)
5107 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5108 && i.types[given].bitfield.qword));
5109 }
5110
5111 /* Check if operands are valid for the instruction. */
5112
5113 static int
5114 check_VecOperands (const insn_template *t)
5115 {
5116 unsigned int op;
5117 i386_cpu_flags cpu;
5118 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5119
5120 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5121 any one operand are implicity requiring AVX512VL support if the actual
5122 operand size is YMMword or XMMword. Since this function runs after
5123 template matching, there's no need to check for YMMword/XMMword in
5124 the template. */
5125 cpu = cpu_flags_and (t->cpu_flags, avx512);
5126 if (!cpu_flags_all_zero (&cpu)
5127 && !t->cpu_flags.bitfield.cpuavx512vl
5128 && !cpu_arch_flags.bitfield.cpuavx512vl)
5129 {
5130 for (op = 0; op < t->operands; ++op)
5131 {
5132 if (t->operand_types[op].bitfield.zmmword
5133 && (i.types[op].bitfield.ymmword
5134 || i.types[op].bitfield.xmmword))
5135 {
5136 i.error = unsupported;
5137 return 1;
5138 }
5139 }
5140 }
5141
5142 /* Without VSIB byte, we can't have a vector register for index. */
5143 if (!t->opcode_modifier.vecsib
5144 && i.index_reg
5145 && (i.index_reg->reg_type.bitfield.xmmword
5146 || i.index_reg->reg_type.bitfield.ymmword
5147 || i.index_reg->reg_type.bitfield.zmmword))
5148 {
5149 i.error = unsupported_vector_index_register;
5150 return 1;
5151 }
5152
5153 /* Check if default mask is allowed. */
5154 if (t->opcode_modifier.nodefmask
5155 && (!i.mask || i.mask->mask->reg_num == 0))
5156 {
5157 i.error = no_default_mask;
5158 return 1;
5159 }
5160
5161 /* For VSIB byte, we need a vector register for index, and all vector
5162 registers must be distinct. */
5163 if (t->opcode_modifier.vecsib)
5164 {
5165 if (!i.index_reg
5166 || !((t->opcode_modifier.vecsib == VecSIB128
5167 && i.index_reg->reg_type.bitfield.xmmword)
5168 || (t->opcode_modifier.vecsib == VecSIB256
5169 && i.index_reg->reg_type.bitfield.ymmword)
5170 || (t->opcode_modifier.vecsib == VecSIB512
5171 && i.index_reg->reg_type.bitfield.zmmword)))
5172 {
5173 i.error = invalid_vsib_address;
5174 return 1;
5175 }
5176
5177 gas_assert (i.reg_operands == 2 || i.mask);
5178 if (i.reg_operands == 2 && !i.mask)
5179 {
5180 gas_assert (i.types[0].bitfield.regsimd);
5181 gas_assert (i.types[0].bitfield.xmmword
5182 || i.types[0].bitfield.ymmword);
5183 gas_assert (i.types[2].bitfield.regsimd);
5184 gas_assert (i.types[2].bitfield.xmmword
5185 || i.types[2].bitfield.ymmword);
5186 if (operand_check == check_none)
5187 return 0;
5188 if (register_number (i.op[0].regs)
5189 != register_number (i.index_reg)
5190 && register_number (i.op[2].regs)
5191 != register_number (i.index_reg)
5192 && register_number (i.op[0].regs)
5193 != register_number (i.op[2].regs))
5194 return 0;
5195 if (operand_check == check_error)
5196 {
5197 i.error = invalid_vector_register_set;
5198 return 1;
5199 }
5200 as_warn (_("mask, index, and destination registers should be distinct"));
5201 }
5202 else if (i.reg_operands == 1 && i.mask)
5203 {
5204 if (i.types[1].bitfield.regsimd
5205 && (i.types[1].bitfield.xmmword
5206 || i.types[1].bitfield.ymmword
5207 || i.types[1].bitfield.zmmword)
5208 && (register_number (i.op[1].regs)
5209 == register_number (i.index_reg)))
5210 {
5211 if (operand_check == check_error)
5212 {
5213 i.error = invalid_vector_register_set;
5214 return 1;
5215 }
5216 if (operand_check != check_none)
5217 as_warn (_("index and destination registers should be distinct"));
5218 }
5219 }
5220 }
5221
5222 /* Check if broadcast is supported by the instruction and is applied
5223 to the memory operand. */
5224 if (i.broadcast)
5225 {
5226 i386_operand_type type, overlap;
5227
5228 /* Check if specified broadcast is supported in this instruction,
5229 and its broadcast bytes match the memory operand. */
5230 op = i.broadcast->operand;
5231 if (!t->opcode_modifier.broadcast
5232 || !(i.flags[op] & Operand_Mem)
5233 || (!i.types[op].bitfield.unspecified
5234 && !match_broadcast_size (t, op)))
5235 {
5236 bad_broadcast:
5237 i.error = unsupported_broadcast;
5238 return 1;
5239 }
5240
5241 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5242 * i.broadcast->type);
5243 operand_type_set (&type, 0);
5244 switch (i.broadcast->bytes)
5245 {
5246 case 2:
5247 type.bitfield.word = 1;
5248 break;
5249 case 4:
5250 type.bitfield.dword = 1;
5251 break;
5252 case 8:
5253 type.bitfield.qword = 1;
5254 break;
5255 case 16:
5256 type.bitfield.xmmword = 1;
5257 break;
5258 case 32:
5259 type.bitfield.ymmword = 1;
5260 break;
5261 case 64:
5262 type.bitfield.zmmword = 1;
5263 break;
5264 default:
5265 goto bad_broadcast;
5266 }
5267
5268 overlap = operand_type_and (type, t->operand_types[op]);
5269 if (operand_type_all_zero (&overlap))
5270 goto bad_broadcast;
5271
5272 if (t->opcode_modifier.checkregsize)
5273 {
5274 unsigned int j;
5275
5276 type.bitfield.baseindex = 1;
5277 for (j = 0; j < i.operands; ++j)
5278 {
5279 if (j != op
5280 && !operand_type_register_match(i.types[j],
5281 t->operand_types[j],
5282 type,
5283 t->operand_types[op]))
5284 goto bad_broadcast;
5285 }
5286 }
5287 }
5288 /* If broadcast is supported in this instruction, we need to check if
5289 operand of one-element size isn't specified without broadcast. */
5290 else if (t->opcode_modifier.broadcast && i.mem_operands)
5291 {
5292 /* Find memory operand. */
5293 for (op = 0; op < i.operands; op++)
5294 if (operand_type_check (i.types[op], anymem))
5295 break;
5296 gas_assert (op < i.operands);
5297 /* Check size of the memory operand. */
5298 if (match_broadcast_size (t, op))
5299 {
5300 i.error = broadcast_needed;
5301 return 1;
5302 }
5303 }
5304 else
5305 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5306
5307 /* Check if requested masking is supported. */
5308 if (i.mask)
5309 {
5310 switch (t->opcode_modifier.masking)
5311 {
5312 case BOTH_MASKING:
5313 break;
5314 case MERGING_MASKING:
5315 if (i.mask->zeroing)
5316 {
5317 case 0:
5318 i.error = unsupported_masking;
5319 return 1;
5320 }
5321 break;
5322 case DYNAMIC_MASKING:
5323 /* Memory destinations allow only merging masking. */
5324 if (i.mask->zeroing && i.mem_operands)
5325 {
5326 /* Find memory operand. */
5327 for (op = 0; op < i.operands; op++)
5328 if (i.flags[op] & Operand_Mem)
5329 break;
5330 gas_assert (op < i.operands);
5331 if (op == i.operands - 1)
5332 {
5333 i.error = unsupported_masking;
5334 return 1;
5335 }
5336 }
5337 break;
5338 default:
5339 abort ();
5340 }
5341 }
5342
5343 /* Check if masking is applied to dest operand. */
5344 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5345 {
5346 i.error = mask_not_on_destination;
5347 return 1;
5348 }
5349
5350 /* Check RC/SAE. */
5351 if (i.rounding)
5352 {
5353 if ((i.rounding->type != saeonly
5354 && !t->opcode_modifier.staticrounding)
5355 || (i.rounding->type == saeonly
5356 && (t->opcode_modifier.staticrounding
5357 || !t->opcode_modifier.sae)))
5358 {
5359 i.error = unsupported_rc_sae;
5360 return 1;
5361 }
5362 /* If the instruction has several immediate operands and one of
5363 them is rounding, the rounding operand should be the last
5364 immediate operand. */
5365 if (i.imm_operands > 1
5366 && i.rounding->operand != (int) (i.imm_operands - 1))
5367 {
5368 i.error = rc_sae_operand_not_last_imm;
5369 return 1;
5370 }
5371 }
5372
5373 /* Check vector Disp8 operand. */
5374 if (t->opcode_modifier.disp8memshift
5375 && i.disp_encoding != disp_encoding_32bit)
5376 {
5377 if (i.broadcast)
5378 i.memshift = t->opcode_modifier.broadcast - 1;
5379 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5380 i.memshift = t->opcode_modifier.disp8memshift;
5381 else
5382 {
5383 const i386_operand_type *type = NULL;
5384
5385 i.memshift = 0;
5386 for (op = 0; op < i.operands; op++)
5387 if (operand_type_check (i.types[op], anymem))
5388 {
5389 if (t->opcode_modifier.evex == EVEXLIG)
5390 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5391 else if (t->operand_types[op].bitfield.xmmword
5392 + t->operand_types[op].bitfield.ymmword
5393 + t->operand_types[op].bitfield.zmmword <= 1)
5394 type = &t->operand_types[op];
5395 else if (!i.types[op].bitfield.unspecified)
5396 type = &i.types[op];
5397 }
5398 else if (i.types[op].bitfield.regsimd
5399 && t->opcode_modifier.evex != EVEXLIG)
5400 {
5401 if (i.types[op].bitfield.zmmword)
5402 i.memshift = 6;
5403 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5404 i.memshift = 5;
5405 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5406 i.memshift = 4;
5407 }
5408
5409 if (type)
5410 {
5411 if (type->bitfield.zmmword)
5412 i.memshift = 6;
5413 else if (type->bitfield.ymmword)
5414 i.memshift = 5;
5415 else if (type->bitfield.xmmword)
5416 i.memshift = 4;
5417 }
5418
5419 /* For the check in fits_in_disp8(). */
5420 if (i.memshift == 0)
5421 i.memshift = -1;
5422 }
5423
5424 for (op = 0; op < i.operands; op++)
5425 if (operand_type_check (i.types[op], disp)
5426 && i.op[op].disps->X_op == O_constant)
5427 {
5428 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5429 {
5430 i.types[op].bitfield.disp8 = 1;
5431 return 0;
5432 }
5433 i.types[op].bitfield.disp8 = 0;
5434 }
5435 }
5436
5437 i.memshift = 0;
5438
5439 return 0;
5440 }
5441
5442 /* Check if operands are valid for the instruction. Update VEX
5443 operand types. */
5444
5445 static int
5446 VEX_check_operands (const insn_template *t)
5447 {
5448 if (i.vec_encoding == vex_encoding_evex)
5449 {
5450 /* This instruction must be encoded with EVEX prefix. */
5451 if (!is_evex_encoding (t))
5452 {
5453 i.error = unsupported;
5454 return 1;
5455 }
5456 return 0;
5457 }
5458
5459 if (!t->opcode_modifier.vex)
5460 {
5461 /* This instruction template doesn't have VEX prefix. */
5462 if (i.vec_encoding != vex_encoding_default)
5463 {
5464 i.error = unsupported;
5465 return 1;
5466 }
5467 return 0;
5468 }
5469
5470 /* Only check VEX_Imm4, which must be the first operand. */
5471 if (t->operand_types[0].bitfield.vec_imm4)
5472 {
5473 if (i.op[0].imms->X_op != O_constant
5474 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5475 {
5476 i.error = bad_imm4;
5477 return 1;
5478 }
5479
5480 /* Turn off Imm8 so that update_imm won't complain. */
5481 i.types[0] = vec_imm4;
5482 }
5483
5484 return 0;
5485 }
5486
5487 static const insn_template *
5488 match_template (char mnem_suffix)
5489 {
5490 /* Points to template once we've found it. */
5491 const insn_template *t;
5492 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5493 i386_operand_type overlap4;
5494 unsigned int found_reverse_match;
5495 i386_opcode_modifier suffix_check, mnemsuf_check;
5496 i386_operand_type operand_types [MAX_OPERANDS];
5497 int addr_prefix_disp;
5498 unsigned int j;
5499 unsigned int found_cpu_match, size_match;
5500 unsigned int check_register;
5501 enum i386_error specific_error = 0;
5502
5503 #if MAX_OPERANDS != 5
5504 # error "MAX_OPERANDS must be 5."
5505 #endif
5506
5507 found_reverse_match = 0;
5508 addr_prefix_disp = -1;
5509
5510 memset (&suffix_check, 0, sizeof (suffix_check));
5511 if (intel_syntax && i.broadcast)
5512 /* nothing */;
5513 else if (i.suffix == BYTE_MNEM_SUFFIX)
5514 suffix_check.no_bsuf = 1;
5515 else if (i.suffix == WORD_MNEM_SUFFIX)
5516 suffix_check.no_wsuf = 1;
5517 else if (i.suffix == SHORT_MNEM_SUFFIX)
5518 suffix_check.no_ssuf = 1;
5519 else if (i.suffix == LONG_MNEM_SUFFIX)
5520 suffix_check.no_lsuf = 1;
5521 else if (i.suffix == QWORD_MNEM_SUFFIX)
5522 suffix_check.no_qsuf = 1;
5523 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5524 suffix_check.no_ldsuf = 1;
5525
5526 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5527 if (intel_syntax)
5528 {
5529 switch (mnem_suffix)
5530 {
5531 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5532 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5533 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5534 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5535 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5536 }
5537 }
5538
5539 /* Must have right number of operands. */
5540 i.error = number_of_operands_mismatch;
5541
5542 for (t = current_templates->start; t < current_templates->end; t++)
5543 {
5544 addr_prefix_disp = -1;
5545 found_reverse_match = 0;
5546
5547 if (i.operands != t->operands)
5548 continue;
5549
5550 /* Check processor support. */
5551 i.error = unsupported;
5552 found_cpu_match = (cpu_flags_match (t)
5553 == CPU_FLAGS_PERFECT_MATCH);
5554 if (!found_cpu_match)
5555 continue;
5556
5557 /* Check AT&T mnemonic. */
5558 i.error = unsupported_with_intel_mnemonic;
5559 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5560 continue;
5561
5562 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5563 i.error = unsupported_syntax;
5564 if ((intel_syntax && t->opcode_modifier.attsyntax)
5565 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5566 || (intel64 && t->opcode_modifier.amd64)
5567 || (!intel64 && t->opcode_modifier.intel64))
5568 continue;
5569
5570 /* Check the suffix, except for some instructions in intel mode. */
5571 i.error = invalid_instruction_suffix;
5572 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5573 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5574 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5575 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5576 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5577 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5578 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
5579 continue;
5580 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5581 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5582 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5583 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5584 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5585 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5586 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5587 continue;
5588
5589 size_match = operand_size_match (t);
5590 if (!size_match)
5591 continue;
5592
5593 for (j = 0; j < MAX_OPERANDS; j++)
5594 operand_types[j] = t->operand_types[j];
5595
5596 /* In general, don't allow 64-bit operands in 32-bit mode. */
5597 if (i.suffix == QWORD_MNEM_SUFFIX
5598 && flag_code != CODE_64BIT
5599 && (intel_syntax
5600 ? (!t->opcode_modifier.ignoresize
5601 && !t->opcode_modifier.broadcast
5602 && !intel_float_operand (t->name))
5603 : intel_float_operand (t->name) != 2)
5604 && ((!operand_types[0].bitfield.regmmx
5605 && !operand_types[0].bitfield.regsimd)
5606 || (!operand_types[t->operands > 1].bitfield.regmmx
5607 && !operand_types[t->operands > 1].bitfield.regsimd))
5608 && (t->base_opcode != 0x0fc7
5609 || t->extension_opcode != 1 /* cmpxchg8b */))
5610 continue;
5611
5612 /* In general, don't allow 32-bit operands on pre-386. */
5613 else if (i.suffix == LONG_MNEM_SUFFIX
5614 && !cpu_arch_flags.bitfield.cpui386
5615 && (intel_syntax
5616 ? (!t->opcode_modifier.ignoresize
5617 && !intel_float_operand (t->name))
5618 : intel_float_operand (t->name) != 2)
5619 && ((!operand_types[0].bitfield.regmmx
5620 && !operand_types[0].bitfield.regsimd)
5621 || (!operand_types[t->operands > 1].bitfield.regmmx
5622 && !operand_types[t->operands > 1].bitfield.regsimd)))
5623 continue;
5624
5625 /* Do not verify operands when there are none. */
5626 else
5627 {
5628 if (!t->operands)
5629 /* We've found a match; break out of loop. */
5630 break;
5631 }
5632
5633 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5634 into Disp32/Disp16/Disp32 operand. */
5635 if (i.prefix[ADDR_PREFIX] != 0)
5636 {
5637 /* There should be only one Disp operand. */
5638 switch (flag_code)
5639 {
5640 case CODE_16BIT:
5641 for (j = 0; j < MAX_OPERANDS; j++)
5642 {
5643 if (operand_types[j].bitfield.disp16)
5644 {
5645 addr_prefix_disp = j;
5646 operand_types[j].bitfield.disp32 = 1;
5647 operand_types[j].bitfield.disp16 = 0;
5648 break;
5649 }
5650 }
5651 break;
5652 case CODE_32BIT:
5653 for (j = 0; j < MAX_OPERANDS; j++)
5654 {
5655 if (operand_types[j].bitfield.disp32)
5656 {
5657 addr_prefix_disp = j;
5658 operand_types[j].bitfield.disp32 = 0;
5659 operand_types[j].bitfield.disp16 = 1;
5660 break;
5661 }
5662 }
5663 break;
5664 case CODE_64BIT:
5665 for (j = 0; j < MAX_OPERANDS; j++)
5666 {
5667 if (operand_types[j].bitfield.disp64)
5668 {
5669 addr_prefix_disp = j;
5670 operand_types[j].bitfield.disp64 = 0;
5671 operand_types[j].bitfield.disp32 = 1;
5672 break;
5673 }
5674 }
5675 break;
5676 }
5677 }
5678
5679 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5680 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5681 continue;
5682
5683 /* We check register size if needed. */
5684 if (t->opcode_modifier.checkregsize)
5685 {
5686 check_register = (1 << t->operands) - 1;
5687 if (i.broadcast)
5688 check_register &= ~(1 << i.broadcast->operand);
5689 }
5690 else
5691 check_register = 0;
5692
5693 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5694 switch (t->operands)
5695 {
5696 case 1:
5697 if (!operand_type_match (overlap0, i.types[0]))
5698 continue;
5699 break;
5700 case 2:
5701 /* xchg %eax, %eax is a special case. It is an alias for nop
5702 only in 32bit mode and we can use opcode 0x90. In 64bit
5703 mode, we can't use 0x90 for xchg %eax, %eax since it should
5704 zero-extend %eax to %rax. */
5705 if (flag_code == CODE_64BIT
5706 && t->base_opcode == 0x90
5707 && operand_type_equal (&i.types [0], &acc32)
5708 && operand_type_equal (&i.types [1], &acc32))
5709 continue;
5710 /* xrelease mov %eax, <disp> is another special case. It must not
5711 match the accumulator-only encoding of mov. */
5712 if (flag_code != CODE_64BIT
5713 && i.hle_prefix
5714 && t->base_opcode == 0xa0
5715 && i.types[0].bitfield.acc
5716 && operand_type_check (i.types[1], anymem))
5717 continue;
5718 /* Fall through. */
5719
5720 case 3:
5721 if (!(size_match & MATCH_STRAIGHT))
5722 goto check_reverse;
5723 /* Reverse direction of operands if swapping is possible in the first
5724 place (operands need to be symmetric) and
5725 - the load form is requested, and the template is a store form,
5726 - the store form is requested, and the template is a load form,
5727 - the non-default (swapped) form is requested. */
5728 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
5729 if (t->opcode_modifier.d && i.reg_operands == i.operands
5730 && !operand_type_all_zero (&overlap1))
5731 switch (i.dir_encoding)
5732 {
5733 case dir_encoding_load:
5734 if (operand_type_check (operand_types[i.operands - 1], anymem)
5735 || operand_types[i.operands - 1].bitfield.regmem)
5736 goto check_reverse;
5737 break;
5738
5739 case dir_encoding_store:
5740 if (!operand_type_check (operand_types[i.operands - 1], anymem)
5741 && !operand_types[i.operands - 1].bitfield.regmem)
5742 goto check_reverse;
5743 break;
5744
5745 case dir_encoding_swap:
5746 goto check_reverse;
5747
5748 case dir_encoding_default:
5749 break;
5750 }
5751 /* If we want store form, we skip the current load. */
5752 if ((i.dir_encoding == dir_encoding_store
5753 || i.dir_encoding == dir_encoding_swap)
5754 && i.mem_operands == 0
5755 && t->opcode_modifier.load)
5756 continue;
5757 /* Fall through. */
5758 case 4:
5759 case 5:
5760 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5761 if (!operand_type_match (overlap0, i.types[0])
5762 || !operand_type_match (overlap1, i.types[1])
5763 || ((check_register & 3) == 3
5764 && !operand_type_register_match (i.types[0],
5765 operand_types[0],
5766 i.types[1],
5767 operand_types[1])))
5768 {
5769 /* Check if other direction is valid ... */
5770 if (!t->opcode_modifier.d)
5771 continue;
5772
5773 check_reverse:
5774 if (!(size_match & MATCH_REVERSE))
5775 continue;
5776 /* Try reversing direction of operands. */
5777 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
5778 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
5779 if (!operand_type_match (overlap0, i.types[0])
5780 || !operand_type_match (overlap1, i.types[i.operands - 1])
5781 || (check_register
5782 && !operand_type_register_match (i.types[0],
5783 operand_types[i.operands - 1],
5784 i.types[i.operands - 1],
5785 operand_types[0])))
5786 {
5787 /* Does not match either direction. */
5788 continue;
5789 }
5790 /* found_reverse_match holds which of D or FloatR
5791 we've found. */
5792 if (!t->opcode_modifier.d)
5793 found_reverse_match = 0;
5794 else if (operand_types[0].bitfield.tbyte)
5795 found_reverse_match = Opcode_FloatD;
5796 else if (operand_types[0].bitfield.xmmword
5797 || operand_types[i.operands - 1].bitfield.xmmword
5798 || operand_types[0].bitfield.regmmx
5799 || operand_types[i.operands - 1].bitfield.regmmx
5800 || is_any_vex_encoding(t))
5801 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
5802 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
5803 else
5804 found_reverse_match = Opcode_D;
5805 if (t->opcode_modifier.floatr)
5806 found_reverse_match |= Opcode_FloatR;
5807 }
5808 else
5809 {
5810 /* Found a forward 2 operand match here. */
5811 switch (t->operands)
5812 {
5813 case 5:
5814 overlap4 = operand_type_and (i.types[4],
5815 operand_types[4]);
5816 /* Fall through. */
5817 case 4:
5818 overlap3 = operand_type_and (i.types[3],
5819 operand_types[3]);
5820 /* Fall through. */
5821 case 3:
5822 overlap2 = operand_type_and (i.types[2],
5823 operand_types[2]);
5824 break;
5825 }
5826
5827 switch (t->operands)
5828 {
5829 case 5:
5830 if (!operand_type_match (overlap4, i.types[4])
5831 || !operand_type_register_match (i.types[3],
5832 operand_types[3],
5833 i.types[4],
5834 operand_types[4]))
5835 continue;
5836 /* Fall through. */
5837 case 4:
5838 if (!operand_type_match (overlap3, i.types[3])
5839 || ((check_register & 0xa) == 0xa
5840 && !operand_type_register_match (i.types[1],
5841 operand_types[1],
5842 i.types[3],
5843 operand_types[3]))
5844 || ((check_register & 0xc) == 0xc
5845 && !operand_type_register_match (i.types[2],
5846 operand_types[2],
5847 i.types[3],
5848 operand_types[3])))
5849 continue;
5850 /* Fall through. */
5851 case 3:
5852 /* Here we make use of the fact that there are no
5853 reverse match 3 operand instructions. */
5854 if (!operand_type_match (overlap2, i.types[2])
5855 || ((check_register & 5) == 5
5856 && !operand_type_register_match (i.types[0],
5857 operand_types[0],
5858 i.types[2],
5859 operand_types[2]))
5860 || ((check_register & 6) == 6
5861 && !operand_type_register_match (i.types[1],
5862 operand_types[1],
5863 i.types[2],
5864 operand_types[2])))
5865 continue;
5866 break;
5867 }
5868 }
5869 /* Found either forward/reverse 2, 3 or 4 operand match here:
5870 slip through to break. */
5871 }
5872 if (!found_cpu_match)
5873 continue;
5874
5875 /* Check if vector and VEX operands are valid. */
5876 if (check_VecOperands (t) || VEX_check_operands (t))
5877 {
5878 specific_error = i.error;
5879 continue;
5880 }
5881
5882 /* We've found a match; break out of loop. */
5883 break;
5884 }
5885
5886 if (t == current_templates->end)
5887 {
5888 /* We found no match. */
5889 const char *err_msg;
5890 switch (specific_error ? specific_error : i.error)
5891 {
5892 default:
5893 abort ();
5894 case operand_size_mismatch:
5895 err_msg = _("operand size mismatch");
5896 break;
5897 case operand_type_mismatch:
5898 err_msg = _("operand type mismatch");
5899 break;
5900 case register_type_mismatch:
5901 err_msg = _("register type mismatch");
5902 break;
5903 case number_of_operands_mismatch:
5904 err_msg = _("number of operands mismatch");
5905 break;
5906 case invalid_instruction_suffix:
5907 err_msg = _("invalid instruction suffix");
5908 break;
5909 case bad_imm4:
5910 err_msg = _("constant doesn't fit in 4 bits");
5911 break;
5912 case unsupported_with_intel_mnemonic:
5913 err_msg = _("unsupported with Intel mnemonic");
5914 break;
5915 case unsupported_syntax:
5916 err_msg = _("unsupported syntax");
5917 break;
5918 case unsupported:
5919 as_bad (_("unsupported instruction `%s'"),
5920 current_templates->start->name);
5921 return NULL;
5922 case invalid_vsib_address:
5923 err_msg = _("invalid VSIB address");
5924 break;
5925 case invalid_vector_register_set:
5926 err_msg = _("mask, index, and destination registers must be distinct");
5927 break;
5928 case unsupported_vector_index_register:
5929 err_msg = _("unsupported vector index register");
5930 break;
5931 case unsupported_broadcast:
5932 err_msg = _("unsupported broadcast");
5933 break;
5934 case broadcast_needed:
5935 err_msg = _("broadcast is needed for operand of such type");
5936 break;
5937 case unsupported_masking:
5938 err_msg = _("unsupported masking");
5939 break;
5940 case mask_not_on_destination:
5941 err_msg = _("mask not on destination operand");
5942 break;
5943 case no_default_mask:
5944 err_msg = _("default mask isn't allowed");
5945 break;
5946 case unsupported_rc_sae:
5947 err_msg = _("unsupported static rounding/sae");
5948 break;
5949 case rc_sae_operand_not_last_imm:
5950 if (intel_syntax)
5951 err_msg = _("RC/SAE operand must precede immediate operands");
5952 else
5953 err_msg = _("RC/SAE operand must follow immediate operands");
5954 break;
5955 case invalid_register_operand:
5956 err_msg = _("invalid register operand");
5957 break;
5958 }
5959 as_bad (_("%s for `%s'"), err_msg,
5960 current_templates->start->name);
5961 return NULL;
5962 }
5963
5964 if (!quiet_warnings)
5965 {
5966 if (!intel_syntax
5967 && (i.types[0].bitfield.jumpabsolute
5968 != operand_types[0].bitfield.jumpabsolute))
5969 {
5970 as_warn (_("indirect %s without `*'"), t->name);
5971 }
5972
5973 if (t->opcode_modifier.isprefix
5974 && t->opcode_modifier.ignoresize)
5975 {
5976 /* Warn them that a data or address size prefix doesn't
5977 affect assembly of the next line of code. */
5978 as_warn (_("stand-alone `%s' prefix"), t->name);
5979 }
5980 }
5981
5982 /* Copy the template we found. */
5983 i.tm = *t;
5984
5985 if (addr_prefix_disp != -1)
5986 i.tm.operand_types[addr_prefix_disp]
5987 = operand_types[addr_prefix_disp];
5988
5989 if (found_reverse_match)
5990 {
5991 /* If we found a reverse match we must alter the opcode
5992 direction bit. found_reverse_match holds bits to change
5993 (different for int & float insns). */
5994
5995 i.tm.base_opcode ^= found_reverse_match;
5996
5997 i.tm.operand_types[0] = operand_types[i.operands - 1];
5998 i.tm.operand_types[i.operands - 1] = operand_types[0];
5999 }
6000
6001 return t;
6002 }
6003
6004 static int
6005 check_string (void)
6006 {
6007 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
6008 if (i.tm.operand_types[mem_op].bitfield.esseg)
6009 {
6010 if (i.seg[0] != NULL && i.seg[0] != &es)
6011 {
6012 as_bad (_("`%s' operand %d must use `%ses' segment"),
6013 i.tm.name,
6014 mem_op + 1,
6015 register_prefix);
6016 return 0;
6017 }
6018 /* There's only ever one segment override allowed per instruction.
6019 This instruction possibly has a legal segment override on the
6020 second operand, so copy the segment to where non-string
6021 instructions store it, allowing common code. */
6022 i.seg[0] = i.seg[1];
6023 }
6024 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
6025 {
6026 if (i.seg[1] != NULL && i.seg[1] != &es)
6027 {
6028 as_bad (_("`%s' operand %d must use `%ses' segment"),
6029 i.tm.name,
6030 mem_op + 2,
6031 register_prefix);
6032 return 0;
6033 }
6034 }
6035 return 1;
6036 }
6037
6038 static int
6039 process_suffix (void)
6040 {
6041 /* If matched instruction specifies an explicit instruction mnemonic
6042 suffix, use it. */
6043 if (i.tm.opcode_modifier.size16)
6044 i.suffix = WORD_MNEM_SUFFIX;
6045 else if (i.tm.opcode_modifier.size32)
6046 i.suffix = LONG_MNEM_SUFFIX;
6047 else if (i.tm.opcode_modifier.size64)
6048 i.suffix = QWORD_MNEM_SUFFIX;
6049 else if (i.reg_operands)
6050 {
6051 /* If there's no instruction mnemonic suffix we try to invent one
6052 based on register operands. */
6053 if (!i.suffix)
6054 {
6055 /* We take i.suffix from the last register operand specified,
6056 Destination register type is more significant than source
6057 register type. crc32 in SSE4.2 prefers source register
6058 type. */
6059 if (i.tm.base_opcode == 0xf20f38f1)
6060 {
6061 if (i.types[0].bitfield.reg && i.types[0].bitfield.word)
6062 i.suffix = WORD_MNEM_SUFFIX;
6063 else if (i.types[0].bitfield.reg && i.types[0].bitfield.dword)
6064 i.suffix = LONG_MNEM_SUFFIX;
6065 else if (i.types[0].bitfield.reg && i.types[0].bitfield.qword)
6066 i.suffix = QWORD_MNEM_SUFFIX;
6067 }
6068 else if (i.tm.base_opcode == 0xf20f38f0)
6069 {
6070 if (i.types[0].bitfield.reg && i.types[0].bitfield.byte)
6071 i.suffix = BYTE_MNEM_SUFFIX;
6072 }
6073
6074 if (!i.suffix)
6075 {
6076 int op;
6077
6078 if (i.tm.base_opcode == 0xf20f38f1
6079 || i.tm.base_opcode == 0xf20f38f0)
6080 {
6081 /* We have to know the operand size for crc32. */
6082 as_bad (_("ambiguous memory operand size for `%s`"),
6083 i.tm.name);
6084 return 0;
6085 }
6086
6087 for (op = i.operands; --op >= 0;)
6088 if (!i.tm.operand_types[op].bitfield.inoutportreg
6089 && !i.tm.operand_types[op].bitfield.shiftcount)
6090 {
6091 if (!i.types[op].bitfield.reg)
6092 continue;
6093 if (i.types[op].bitfield.byte)
6094 i.suffix = BYTE_MNEM_SUFFIX;
6095 else if (i.types[op].bitfield.word)
6096 i.suffix = WORD_MNEM_SUFFIX;
6097 else if (i.types[op].bitfield.dword)
6098 i.suffix = LONG_MNEM_SUFFIX;
6099 else if (i.types[op].bitfield.qword)
6100 i.suffix = QWORD_MNEM_SUFFIX;
6101 else
6102 continue;
6103 break;
6104 }
6105 }
6106 }
6107 else if (i.suffix == BYTE_MNEM_SUFFIX)
6108 {
6109 if (intel_syntax
6110 && i.tm.opcode_modifier.ignoresize
6111 && i.tm.opcode_modifier.no_bsuf)
6112 i.suffix = 0;
6113 else if (!check_byte_reg ())
6114 return 0;
6115 }
6116 else if (i.suffix == LONG_MNEM_SUFFIX)
6117 {
6118 if (intel_syntax
6119 && i.tm.opcode_modifier.ignoresize
6120 && i.tm.opcode_modifier.no_lsuf
6121 && !i.tm.opcode_modifier.todword
6122 && !i.tm.opcode_modifier.toqword)
6123 i.suffix = 0;
6124 else if (!check_long_reg ())
6125 return 0;
6126 }
6127 else if (i.suffix == QWORD_MNEM_SUFFIX)
6128 {
6129 if (intel_syntax
6130 && i.tm.opcode_modifier.ignoresize
6131 && i.tm.opcode_modifier.no_qsuf
6132 && !i.tm.opcode_modifier.todword
6133 && !i.tm.opcode_modifier.toqword)
6134 i.suffix = 0;
6135 else if (!check_qword_reg ())
6136 return 0;
6137 }
6138 else if (i.suffix == WORD_MNEM_SUFFIX)
6139 {
6140 if (intel_syntax
6141 && i.tm.opcode_modifier.ignoresize
6142 && i.tm.opcode_modifier.no_wsuf)
6143 i.suffix = 0;
6144 else if (!check_word_reg ())
6145 return 0;
6146 }
6147 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
6148 /* Do nothing if the instruction is going to ignore the prefix. */
6149 ;
6150 else
6151 abort ();
6152 }
6153 else if (i.tm.opcode_modifier.defaultsize
6154 && !i.suffix
6155 /* exclude fldenv/frstor/fsave/fstenv */
6156 && i.tm.opcode_modifier.no_ssuf)
6157 {
6158 i.suffix = stackop_size;
6159 }
6160 else if (intel_syntax
6161 && !i.suffix
6162 && (i.tm.operand_types[0].bitfield.jumpabsolute
6163 || i.tm.opcode_modifier.jumpbyte
6164 || i.tm.opcode_modifier.jumpintersegment
6165 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6166 && i.tm.extension_opcode <= 3)))
6167 {
6168 switch (flag_code)
6169 {
6170 case CODE_64BIT:
6171 if (!i.tm.opcode_modifier.no_qsuf)
6172 {
6173 i.suffix = QWORD_MNEM_SUFFIX;
6174 break;
6175 }
6176 /* Fall through. */
6177 case CODE_32BIT:
6178 if (!i.tm.opcode_modifier.no_lsuf)
6179 i.suffix = LONG_MNEM_SUFFIX;
6180 break;
6181 case CODE_16BIT:
6182 if (!i.tm.opcode_modifier.no_wsuf)
6183 i.suffix = WORD_MNEM_SUFFIX;
6184 break;
6185 }
6186 }
6187
6188 if (!i.suffix)
6189 {
6190 if (!intel_syntax)
6191 {
6192 if (i.tm.opcode_modifier.w)
6193 {
6194 as_bad (_("no instruction mnemonic suffix given and "
6195 "no register operands; can't size instruction"));
6196 return 0;
6197 }
6198 }
6199 else
6200 {
6201 unsigned int suffixes;
6202
6203 suffixes = !i.tm.opcode_modifier.no_bsuf;
6204 if (!i.tm.opcode_modifier.no_wsuf)
6205 suffixes |= 1 << 1;
6206 if (!i.tm.opcode_modifier.no_lsuf)
6207 suffixes |= 1 << 2;
6208 if (!i.tm.opcode_modifier.no_ldsuf)
6209 suffixes |= 1 << 3;
6210 if (!i.tm.opcode_modifier.no_ssuf)
6211 suffixes |= 1 << 4;
6212 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6213 suffixes |= 1 << 5;
6214
6215 /* There are more than suffix matches. */
6216 if (i.tm.opcode_modifier.w
6217 || ((suffixes & (suffixes - 1))
6218 && !i.tm.opcode_modifier.defaultsize
6219 && !i.tm.opcode_modifier.ignoresize))
6220 {
6221 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6222 return 0;
6223 }
6224 }
6225 }
6226
6227 /* Change the opcode based on the operand size given by i.suffix. */
6228 switch (i.suffix)
6229 {
6230 /* Size floating point instruction. */
6231 case LONG_MNEM_SUFFIX:
6232 if (i.tm.opcode_modifier.floatmf)
6233 {
6234 i.tm.base_opcode ^= 4;
6235 break;
6236 }
6237 /* fall through */
6238 case WORD_MNEM_SUFFIX:
6239 case QWORD_MNEM_SUFFIX:
6240 /* It's not a byte, select word/dword operation. */
6241 if (i.tm.opcode_modifier.w)
6242 {
6243 if (i.tm.opcode_modifier.shortform)
6244 i.tm.base_opcode |= 8;
6245 else
6246 i.tm.base_opcode |= 1;
6247 }
6248 /* fall through */
6249 case SHORT_MNEM_SUFFIX:
6250 /* Now select between word & dword operations via the operand
6251 size prefix, except for instructions that will ignore this
6252 prefix anyway. */
6253 if (i.reg_operands > 0
6254 && i.types[0].bitfield.reg
6255 && i.tm.opcode_modifier.addrprefixopreg
6256 && (i.tm.opcode_modifier.immext
6257 || i.operands == 1))
6258 {
6259 /* The address size override prefix changes the size of the
6260 first operand. */
6261 if ((flag_code == CODE_32BIT
6262 && i.op[0].regs->reg_type.bitfield.word)
6263 || (flag_code != CODE_32BIT
6264 && i.op[0].regs->reg_type.bitfield.dword))
6265 if (!add_prefix (ADDR_PREFIX_OPCODE))
6266 return 0;
6267 }
6268 else if (i.suffix != QWORD_MNEM_SUFFIX
6269 && !i.tm.opcode_modifier.ignoresize
6270 && !i.tm.opcode_modifier.floatmf
6271 && !i.tm.opcode_modifier.vex
6272 && !i.tm.opcode_modifier.vexopcode
6273 && !is_evex_encoding (&i.tm)
6274 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6275 || (flag_code == CODE_64BIT
6276 && i.tm.opcode_modifier.jumpbyte)))
6277 {
6278 unsigned int prefix = DATA_PREFIX_OPCODE;
6279
6280 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
6281 prefix = ADDR_PREFIX_OPCODE;
6282
6283 if (!add_prefix (prefix))
6284 return 0;
6285 }
6286
6287 /* Set mode64 for an operand. */
6288 if (i.suffix == QWORD_MNEM_SUFFIX
6289 && flag_code == CODE_64BIT
6290 && !i.tm.opcode_modifier.norex64
6291 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6292 need rex64. */
6293 && ! (i.operands == 2
6294 && i.tm.base_opcode == 0x90
6295 && i.tm.extension_opcode == None
6296 && operand_type_equal (&i.types [0], &acc64)
6297 && operand_type_equal (&i.types [1], &acc64)))
6298 i.rex |= REX_W;
6299
6300 break;
6301 }
6302
6303 if (i.reg_operands != 0
6304 && i.operands > 1
6305 && i.tm.opcode_modifier.addrprefixopreg
6306 && !i.tm.opcode_modifier.immext)
6307 {
6308 /* Check invalid register operand when the address size override
6309 prefix changes the size of register operands. */
6310 unsigned int op;
6311 enum { need_word, need_dword, need_qword } need;
6312
6313 if (flag_code == CODE_32BIT)
6314 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6315 else
6316 {
6317 if (i.prefix[ADDR_PREFIX])
6318 need = need_dword;
6319 else
6320 need = flag_code == CODE_64BIT ? need_qword : need_word;
6321 }
6322
6323 for (op = 0; op < i.operands; op++)
6324 if (i.types[op].bitfield.reg
6325 && ((need == need_word
6326 && !i.op[op].regs->reg_type.bitfield.word)
6327 || (need == need_dword
6328 && !i.op[op].regs->reg_type.bitfield.dword)
6329 || (need == need_qword
6330 && !i.op[op].regs->reg_type.bitfield.qword)))
6331 {
6332 as_bad (_("invalid register operand size for `%s'"),
6333 i.tm.name);
6334 return 0;
6335 }
6336 }
6337
6338 return 1;
6339 }
6340
6341 static int
6342 check_byte_reg (void)
6343 {
6344 int op;
6345
6346 for (op = i.operands; --op >= 0;)
6347 {
6348 /* Skip non-register operands. */
6349 if (!i.types[op].bitfield.reg)
6350 continue;
6351
6352 /* If this is an eight bit register, it's OK. If it's the 16 or
6353 32 bit version of an eight bit register, we will just use the
6354 low portion, and that's OK too. */
6355 if (i.types[op].bitfield.byte)
6356 continue;
6357
6358 /* I/O port address operands are OK too. */
6359 if (i.tm.operand_types[op].bitfield.inoutportreg)
6360 continue;
6361
6362 /* crc32 doesn't generate this warning. */
6363 if (i.tm.base_opcode == 0xf20f38f0)
6364 continue;
6365
6366 if ((i.types[op].bitfield.word
6367 || i.types[op].bitfield.dword
6368 || i.types[op].bitfield.qword)
6369 && i.op[op].regs->reg_num < 4
6370 /* Prohibit these changes in 64bit mode, since the lowering
6371 would be more complicated. */
6372 && flag_code != CODE_64BIT)
6373 {
6374 #if REGISTER_WARNINGS
6375 if (!quiet_warnings)
6376 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6377 register_prefix,
6378 (i.op[op].regs + (i.types[op].bitfield.word
6379 ? REGNAM_AL - REGNAM_AX
6380 : REGNAM_AL - REGNAM_EAX))->reg_name,
6381 register_prefix,
6382 i.op[op].regs->reg_name,
6383 i.suffix);
6384 #endif
6385 continue;
6386 }
6387 /* Any other register is bad. */
6388 if (i.types[op].bitfield.reg
6389 || i.types[op].bitfield.regmmx
6390 || i.types[op].bitfield.regsimd
6391 || i.types[op].bitfield.sreg2
6392 || i.types[op].bitfield.sreg3
6393 || i.types[op].bitfield.control
6394 || i.types[op].bitfield.debug
6395 || i.types[op].bitfield.test)
6396 {
6397 as_bad (_("`%s%s' not allowed with `%s%c'"),
6398 register_prefix,
6399 i.op[op].regs->reg_name,
6400 i.tm.name,
6401 i.suffix);
6402 return 0;
6403 }
6404 }
6405 return 1;
6406 }
6407
6408 static int
6409 check_long_reg (void)
6410 {
6411 int op;
6412
6413 for (op = i.operands; --op >= 0;)
6414 /* Skip non-register operands. */
6415 if (!i.types[op].bitfield.reg)
6416 continue;
6417 /* Reject eight bit registers, except where the template requires
6418 them. (eg. movzb) */
6419 else if (i.types[op].bitfield.byte
6420 && (i.tm.operand_types[op].bitfield.reg
6421 || i.tm.operand_types[op].bitfield.acc)
6422 && (i.tm.operand_types[op].bitfield.word
6423 || i.tm.operand_types[op].bitfield.dword))
6424 {
6425 as_bad (_("`%s%s' not allowed with `%s%c'"),
6426 register_prefix,
6427 i.op[op].regs->reg_name,
6428 i.tm.name,
6429 i.suffix);
6430 return 0;
6431 }
6432 /* Warn if the e prefix on a general reg is missing. */
6433 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6434 && i.types[op].bitfield.word
6435 && (i.tm.operand_types[op].bitfield.reg
6436 || i.tm.operand_types[op].bitfield.acc)
6437 && i.tm.operand_types[op].bitfield.dword)
6438 {
6439 /* Prohibit these changes in the 64bit mode, since the
6440 lowering is more complicated. */
6441 if (flag_code == CODE_64BIT)
6442 {
6443 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6444 register_prefix, i.op[op].regs->reg_name,
6445 i.suffix);
6446 return 0;
6447 }
6448 #if REGISTER_WARNINGS
6449 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6450 register_prefix,
6451 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6452 register_prefix, i.op[op].regs->reg_name, i.suffix);
6453 #endif
6454 }
6455 /* Warn if the r prefix on a general reg is present. */
6456 else if (i.types[op].bitfield.qword
6457 && (i.tm.operand_types[op].bitfield.reg
6458 || i.tm.operand_types[op].bitfield.acc)
6459 && i.tm.operand_types[op].bitfield.dword)
6460 {
6461 if (intel_syntax
6462 && i.tm.opcode_modifier.toqword
6463 && !i.types[0].bitfield.regsimd)
6464 {
6465 /* Convert to QWORD. We want REX byte. */
6466 i.suffix = QWORD_MNEM_SUFFIX;
6467 }
6468 else
6469 {
6470 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6471 register_prefix, i.op[op].regs->reg_name,
6472 i.suffix);
6473 return 0;
6474 }
6475 }
6476 return 1;
6477 }
6478
6479 static int
6480 check_qword_reg (void)
6481 {
6482 int op;
6483
6484 for (op = i.operands; --op >= 0; )
6485 /* Skip non-register operands. */
6486 if (!i.types[op].bitfield.reg)
6487 continue;
6488 /* Reject eight bit registers, except where the template requires
6489 them. (eg. movzb) */
6490 else if (i.types[op].bitfield.byte
6491 && (i.tm.operand_types[op].bitfield.reg
6492 || i.tm.operand_types[op].bitfield.acc)
6493 && (i.tm.operand_types[op].bitfield.word
6494 || i.tm.operand_types[op].bitfield.dword))
6495 {
6496 as_bad (_("`%s%s' not allowed with `%s%c'"),
6497 register_prefix,
6498 i.op[op].regs->reg_name,
6499 i.tm.name,
6500 i.suffix);
6501 return 0;
6502 }
6503 /* Warn if the r prefix on a general reg is missing. */
6504 else if ((i.types[op].bitfield.word
6505 || i.types[op].bitfield.dword)
6506 && (i.tm.operand_types[op].bitfield.reg
6507 || i.tm.operand_types[op].bitfield.acc)
6508 && i.tm.operand_types[op].bitfield.qword)
6509 {
6510 /* Prohibit these changes in the 64bit mode, since the
6511 lowering is more complicated. */
6512 if (intel_syntax
6513 && i.tm.opcode_modifier.todword
6514 && !i.types[0].bitfield.regsimd)
6515 {
6516 /* Convert to DWORD. We don't want REX byte. */
6517 i.suffix = LONG_MNEM_SUFFIX;
6518 }
6519 else
6520 {
6521 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6522 register_prefix, i.op[op].regs->reg_name,
6523 i.suffix);
6524 return 0;
6525 }
6526 }
6527 return 1;
6528 }
6529
6530 static int
6531 check_word_reg (void)
6532 {
6533 int op;
6534 for (op = i.operands; --op >= 0;)
6535 /* Skip non-register operands. */
6536 if (!i.types[op].bitfield.reg)
6537 continue;
6538 /* Reject eight bit registers, except where the template requires
6539 them. (eg. movzb) */
6540 else if (i.types[op].bitfield.byte
6541 && (i.tm.operand_types[op].bitfield.reg
6542 || i.tm.operand_types[op].bitfield.acc)
6543 && (i.tm.operand_types[op].bitfield.word
6544 || i.tm.operand_types[op].bitfield.dword))
6545 {
6546 as_bad (_("`%s%s' not allowed with `%s%c'"),
6547 register_prefix,
6548 i.op[op].regs->reg_name,
6549 i.tm.name,
6550 i.suffix);
6551 return 0;
6552 }
6553 /* Warn if the e or r prefix on a general reg is present. */
6554 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6555 && (i.types[op].bitfield.dword
6556 || i.types[op].bitfield.qword)
6557 && (i.tm.operand_types[op].bitfield.reg
6558 || i.tm.operand_types[op].bitfield.acc)
6559 && i.tm.operand_types[op].bitfield.word)
6560 {
6561 /* Prohibit these changes in the 64bit mode, since the
6562 lowering is more complicated. */
6563 if (flag_code == CODE_64BIT)
6564 {
6565 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6566 register_prefix, i.op[op].regs->reg_name,
6567 i.suffix);
6568 return 0;
6569 }
6570 #if REGISTER_WARNINGS
6571 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6572 register_prefix,
6573 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6574 register_prefix, i.op[op].regs->reg_name, i.suffix);
6575 #endif
6576 }
6577 return 1;
6578 }
6579
6580 static int
6581 update_imm (unsigned int j)
6582 {
6583 i386_operand_type overlap = i.types[j];
6584 if ((overlap.bitfield.imm8
6585 || overlap.bitfield.imm8s
6586 || overlap.bitfield.imm16
6587 || overlap.bitfield.imm32
6588 || overlap.bitfield.imm32s
6589 || overlap.bitfield.imm64)
6590 && !operand_type_equal (&overlap, &imm8)
6591 && !operand_type_equal (&overlap, &imm8s)
6592 && !operand_type_equal (&overlap, &imm16)
6593 && !operand_type_equal (&overlap, &imm32)
6594 && !operand_type_equal (&overlap, &imm32s)
6595 && !operand_type_equal (&overlap, &imm64))
6596 {
6597 if (i.suffix)
6598 {
6599 i386_operand_type temp;
6600
6601 operand_type_set (&temp, 0);
6602 if (i.suffix == BYTE_MNEM_SUFFIX)
6603 {
6604 temp.bitfield.imm8 = overlap.bitfield.imm8;
6605 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6606 }
6607 else if (i.suffix == WORD_MNEM_SUFFIX)
6608 temp.bitfield.imm16 = overlap.bitfield.imm16;
6609 else if (i.suffix == QWORD_MNEM_SUFFIX)
6610 {
6611 temp.bitfield.imm64 = overlap.bitfield.imm64;
6612 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6613 }
6614 else
6615 temp.bitfield.imm32 = overlap.bitfield.imm32;
6616 overlap = temp;
6617 }
6618 else if (operand_type_equal (&overlap, &imm16_32_32s)
6619 || operand_type_equal (&overlap, &imm16_32)
6620 || operand_type_equal (&overlap, &imm16_32s))
6621 {
6622 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6623 overlap = imm16;
6624 else
6625 overlap = imm32s;
6626 }
6627 if (!operand_type_equal (&overlap, &imm8)
6628 && !operand_type_equal (&overlap, &imm8s)
6629 && !operand_type_equal (&overlap, &imm16)
6630 && !operand_type_equal (&overlap, &imm32)
6631 && !operand_type_equal (&overlap, &imm32s)
6632 && !operand_type_equal (&overlap, &imm64))
6633 {
6634 as_bad (_("no instruction mnemonic suffix given; "
6635 "can't determine immediate size"));
6636 return 0;
6637 }
6638 }
6639 i.types[j] = overlap;
6640
6641 return 1;
6642 }
6643
6644 static int
6645 finalize_imm (void)
6646 {
6647 unsigned int j, n;
6648
6649 /* Update the first 2 immediate operands. */
6650 n = i.operands > 2 ? 2 : i.operands;
6651 if (n)
6652 {
6653 for (j = 0; j < n; j++)
6654 if (update_imm (j) == 0)
6655 return 0;
6656
6657 /* The 3rd operand can't be immediate operand. */
6658 gas_assert (operand_type_check (i.types[2], imm) == 0);
6659 }
6660
6661 return 1;
6662 }
6663
6664 static int
6665 process_operands (void)
6666 {
6667 /* Default segment register this instruction will use for memory
6668 accesses. 0 means unknown. This is only for optimizing out
6669 unnecessary segment overrides. */
6670 const seg_entry *default_seg = 0;
6671
6672 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6673 {
6674 unsigned int dupl = i.operands;
6675 unsigned int dest = dupl - 1;
6676 unsigned int j;
6677
6678 /* The destination must be an xmm register. */
6679 gas_assert (i.reg_operands
6680 && MAX_OPERANDS > dupl
6681 && operand_type_equal (&i.types[dest], &regxmm));
6682
6683 if (i.tm.operand_types[0].bitfield.acc
6684 && i.tm.operand_types[0].bitfield.xmmword)
6685 {
6686 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6687 {
6688 /* Keep xmm0 for instructions with VEX prefix and 3
6689 sources. */
6690 i.tm.operand_types[0].bitfield.acc = 0;
6691 i.tm.operand_types[0].bitfield.regsimd = 1;
6692 goto duplicate;
6693 }
6694 else
6695 {
6696 /* We remove the first xmm0 and keep the number of
6697 operands unchanged, which in fact duplicates the
6698 destination. */
6699 for (j = 1; j < i.operands; j++)
6700 {
6701 i.op[j - 1] = i.op[j];
6702 i.types[j - 1] = i.types[j];
6703 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6704 }
6705 }
6706 }
6707 else if (i.tm.opcode_modifier.implicit1stxmm0)
6708 {
6709 gas_assert ((MAX_OPERANDS - 1) > dupl
6710 && (i.tm.opcode_modifier.vexsources
6711 == VEX3SOURCES));
6712
6713 /* Add the implicit xmm0 for instructions with VEX prefix
6714 and 3 sources. */
6715 for (j = i.operands; j > 0; j--)
6716 {
6717 i.op[j] = i.op[j - 1];
6718 i.types[j] = i.types[j - 1];
6719 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6720 }
6721 i.op[0].regs
6722 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6723 i.types[0] = regxmm;
6724 i.tm.operand_types[0] = regxmm;
6725
6726 i.operands += 2;
6727 i.reg_operands += 2;
6728 i.tm.operands += 2;
6729
6730 dupl++;
6731 dest++;
6732 i.op[dupl] = i.op[dest];
6733 i.types[dupl] = i.types[dest];
6734 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6735 }
6736 else
6737 {
6738 duplicate:
6739 i.operands++;
6740 i.reg_operands++;
6741 i.tm.operands++;
6742
6743 i.op[dupl] = i.op[dest];
6744 i.types[dupl] = i.types[dest];
6745 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6746 }
6747
6748 if (i.tm.opcode_modifier.immext)
6749 process_immext ();
6750 }
6751 else if (i.tm.operand_types[0].bitfield.acc
6752 && i.tm.operand_types[0].bitfield.xmmword)
6753 {
6754 unsigned int j;
6755
6756 for (j = 1; j < i.operands; j++)
6757 {
6758 i.op[j - 1] = i.op[j];
6759 i.types[j - 1] = i.types[j];
6760
6761 /* We need to adjust fields in i.tm since they are used by
6762 build_modrm_byte. */
6763 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6764 }
6765
6766 i.operands--;
6767 i.reg_operands--;
6768 i.tm.operands--;
6769 }
6770 else if (i.tm.opcode_modifier.implicitquadgroup)
6771 {
6772 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6773
6774 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6775 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
6776 regnum = register_number (i.op[1].regs);
6777 first_reg_in_group = regnum & ~3;
6778 last_reg_in_group = first_reg_in_group + 3;
6779 if (regnum != first_reg_in_group)
6780 as_warn (_("source register `%s%s' implicitly denotes"
6781 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6782 register_prefix, i.op[1].regs->reg_name,
6783 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6784 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6785 i.tm.name);
6786 }
6787 else if (i.tm.opcode_modifier.regkludge)
6788 {
6789 /* The imul $imm, %reg instruction is converted into
6790 imul $imm, %reg, %reg, and the clr %reg instruction
6791 is converted into xor %reg, %reg. */
6792
6793 unsigned int first_reg_op;
6794
6795 if (operand_type_check (i.types[0], reg))
6796 first_reg_op = 0;
6797 else
6798 first_reg_op = 1;
6799 /* Pretend we saw the extra register operand. */
6800 gas_assert (i.reg_operands == 1
6801 && i.op[first_reg_op + 1].regs == 0);
6802 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6803 i.types[first_reg_op + 1] = i.types[first_reg_op];
6804 i.operands++;
6805 i.reg_operands++;
6806 }
6807
6808 if (i.tm.opcode_modifier.shortform)
6809 {
6810 if (i.types[0].bitfield.sreg2
6811 || i.types[0].bitfield.sreg3)
6812 {
6813 if (i.tm.base_opcode == POP_SEG_SHORT
6814 && i.op[0].regs->reg_num == 1)
6815 {
6816 as_bad (_("you can't `pop %scs'"), register_prefix);
6817 return 0;
6818 }
6819 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6820 if ((i.op[0].regs->reg_flags & RegRex) != 0)
6821 i.rex |= REX_B;
6822 }
6823 else
6824 {
6825 /* The register or float register operand is in operand
6826 0 or 1. */
6827 unsigned int op;
6828
6829 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
6830 || operand_type_check (i.types[0], reg))
6831 op = 0;
6832 else
6833 op = 1;
6834 /* Register goes in low 3 bits of opcode. */
6835 i.tm.base_opcode |= i.op[op].regs->reg_num;
6836 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6837 i.rex |= REX_B;
6838 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6839 {
6840 /* Warn about some common errors, but press on regardless.
6841 The first case can be generated by gcc (<= 2.8.1). */
6842 if (i.operands == 2)
6843 {
6844 /* Reversed arguments on faddp, fsubp, etc. */
6845 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6846 register_prefix, i.op[!intel_syntax].regs->reg_name,
6847 register_prefix, i.op[intel_syntax].regs->reg_name);
6848 }
6849 else
6850 {
6851 /* Extraneous `l' suffix on fp insn. */
6852 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6853 register_prefix, i.op[0].regs->reg_name);
6854 }
6855 }
6856 }
6857 }
6858 else if (i.tm.opcode_modifier.modrm)
6859 {
6860 /* The opcode is completed (modulo i.tm.extension_opcode which
6861 must be put into the modrm byte). Now, we make the modrm and
6862 index base bytes based on all the info we've collected. */
6863
6864 default_seg = build_modrm_byte ();
6865 }
6866 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6867 {
6868 default_seg = &ds;
6869 }
6870 else if (i.tm.opcode_modifier.isstring)
6871 {
6872 /* For the string instructions that allow a segment override
6873 on one of their operands, the default segment is ds. */
6874 default_seg = &ds;
6875 }
6876
6877 if (i.tm.base_opcode == 0x8d /* lea */
6878 && i.seg[0]
6879 && !quiet_warnings)
6880 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6881
6882 /* If a segment was explicitly specified, and the specified segment
6883 is not the default, use an opcode prefix to select it. If we
6884 never figured out what the default segment is, then default_seg
6885 will be zero at this point, and the specified segment prefix will
6886 always be used. */
6887 if ((i.seg[0]) && (i.seg[0] != default_seg))
6888 {
6889 if (!add_prefix (i.seg[0]->seg_prefix))
6890 return 0;
6891 }
6892 return 1;
6893 }
6894
6895 static const seg_entry *
6896 build_modrm_byte (void)
6897 {
6898 const seg_entry *default_seg = 0;
6899 unsigned int source, dest;
6900 int vex_3_sources;
6901
6902 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
6903 if (vex_3_sources)
6904 {
6905 unsigned int nds, reg_slot;
6906 expressionS *exp;
6907
6908 dest = i.operands - 1;
6909 nds = dest - 1;
6910
6911 /* There are 2 kinds of instructions:
6912 1. 5 operands: 4 register operands or 3 register operands
6913 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6914 VexW0 or VexW1. The destination must be either XMM, YMM or
6915 ZMM register.
6916 2. 4 operands: 4 register operands or 3 register operands
6917 plus 1 memory operand, with VexXDS. */
6918 gas_assert ((i.reg_operands == 4
6919 || (i.reg_operands == 3 && i.mem_operands == 1))
6920 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6921 && i.tm.opcode_modifier.vexw
6922 && i.tm.operand_types[dest].bitfield.regsimd);
6923
6924 /* If VexW1 is set, the first non-immediate operand is the source and
6925 the second non-immediate one is encoded in the immediate operand. */
6926 if (i.tm.opcode_modifier.vexw == VEXW1)
6927 {
6928 source = i.imm_operands;
6929 reg_slot = i.imm_operands + 1;
6930 }
6931 else
6932 {
6933 source = i.imm_operands + 1;
6934 reg_slot = i.imm_operands;
6935 }
6936
6937 if (i.imm_operands == 0)
6938 {
6939 /* When there is no immediate operand, generate an 8bit
6940 immediate operand to encode the first operand. */
6941 exp = &im_expressions[i.imm_operands++];
6942 i.op[i.operands].imms = exp;
6943 i.types[i.operands] = imm8;
6944 i.operands++;
6945
6946 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6947 exp->X_op = O_constant;
6948 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6949 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6950 }
6951 else
6952 {
6953 unsigned int imm_slot;
6954
6955 gas_assert (i.imm_operands == 1 && i.types[0].bitfield.vec_imm4);
6956
6957 if (i.tm.opcode_modifier.immext)
6958 {
6959 /* When ImmExt is set, the immediate byte is the last
6960 operand. */
6961 imm_slot = i.operands - 1;
6962 source--;
6963 reg_slot--;
6964 }
6965 else
6966 {
6967 imm_slot = 0;
6968
6969 /* Turn on Imm8 so that output_imm will generate it. */
6970 i.types[imm_slot].bitfield.imm8 = 1;
6971 }
6972
6973 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6974 i.op[imm_slot].imms->X_add_number
6975 |= register_number (i.op[reg_slot].regs) << 4;
6976 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6977 }
6978
6979 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
6980 i.vex.register_specifier = i.op[nds].regs;
6981 }
6982 else
6983 source = dest = 0;
6984
6985 /* i.reg_operands MUST be the number of real register operands;
6986 implicit registers do not count. If there are 3 register
6987 operands, it must be a instruction with VexNDS. For a
6988 instruction with VexNDD, the destination register is encoded
6989 in VEX prefix. If there are 4 register operands, it must be
6990 a instruction with VEX prefix and 3 sources. */
6991 if (i.mem_operands == 0
6992 && ((i.reg_operands == 2
6993 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6994 || (i.reg_operands == 3
6995 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6996 || (i.reg_operands == 4 && vex_3_sources)))
6997 {
6998 switch (i.operands)
6999 {
7000 case 2:
7001 source = 0;
7002 break;
7003 case 3:
7004 /* When there are 3 operands, one of them may be immediate,
7005 which may be the first or the last operand. Otherwise,
7006 the first operand must be shift count register (cl) or it
7007 is an instruction with VexNDS. */
7008 gas_assert (i.imm_operands == 1
7009 || (i.imm_operands == 0
7010 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7011 || i.types[0].bitfield.shiftcount)));
7012 if (operand_type_check (i.types[0], imm)
7013 || i.types[0].bitfield.shiftcount)
7014 source = 1;
7015 else
7016 source = 0;
7017 break;
7018 case 4:
7019 /* When there are 4 operands, the first two must be 8bit
7020 immediate operands. The source operand will be the 3rd
7021 one.
7022
7023 For instructions with VexNDS, if the first operand
7024 an imm8, the source operand is the 2nd one. If the last
7025 operand is imm8, the source operand is the first one. */
7026 gas_assert ((i.imm_operands == 2
7027 && i.types[0].bitfield.imm8
7028 && i.types[1].bitfield.imm8)
7029 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7030 && i.imm_operands == 1
7031 && (i.types[0].bitfield.imm8
7032 || i.types[i.operands - 1].bitfield.imm8
7033 || i.rounding)));
7034 if (i.imm_operands == 2)
7035 source = 2;
7036 else
7037 {
7038 if (i.types[0].bitfield.imm8)
7039 source = 1;
7040 else
7041 source = 0;
7042 }
7043 break;
7044 case 5:
7045 if (is_evex_encoding (&i.tm))
7046 {
7047 /* For EVEX instructions, when there are 5 operands, the
7048 first one must be immediate operand. If the second one
7049 is immediate operand, the source operand is the 3th
7050 one. If the last one is immediate operand, the source
7051 operand is the 2nd one. */
7052 gas_assert (i.imm_operands == 2
7053 && i.tm.opcode_modifier.sae
7054 && operand_type_check (i.types[0], imm));
7055 if (operand_type_check (i.types[1], imm))
7056 source = 2;
7057 else if (operand_type_check (i.types[4], imm))
7058 source = 1;
7059 else
7060 abort ();
7061 }
7062 break;
7063 default:
7064 abort ();
7065 }
7066
7067 if (!vex_3_sources)
7068 {
7069 dest = source + 1;
7070
7071 /* RC/SAE operand could be between DEST and SRC. That happens
7072 when one operand is GPR and the other one is XMM/YMM/ZMM
7073 register. */
7074 if (i.rounding && i.rounding->operand == (int) dest)
7075 dest++;
7076
7077 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7078 {
7079 /* For instructions with VexNDS, the register-only source
7080 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7081 register. It is encoded in VEX prefix. We need to
7082 clear RegMem bit before calling operand_type_equal. */
7083
7084 i386_operand_type op;
7085 unsigned int vvvv;
7086
7087 /* Check register-only source operand when two source
7088 operands are swapped. */
7089 if (!i.tm.operand_types[source].bitfield.baseindex
7090 && i.tm.operand_types[dest].bitfield.baseindex)
7091 {
7092 vvvv = source;
7093 source = dest;
7094 }
7095 else
7096 vvvv = dest;
7097
7098 op = i.tm.operand_types[vvvv];
7099 op.bitfield.regmem = 0;
7100 if ((dest + 1) >= i.operands
7101 || ((!op.bitfield.reg
7102 || (!op.bitfield.dword && !op.bitfield.qword))
7103 && !op.bitfield.regsimd
7104 && !operand_type_equal (&op, &regmask)))
7105 abort ();
7106 i.vex.register_specifier = i.op[vvvv].regs;
7107 dest++;
7108 }
7109 }
7110
7111 i.rm.mode = 3;
7112 /* One of the register operands will be encoded in the i.tm.reg
7113 field, the other in the combined i.tm.mode and i.tm.regmem
7114 fields. If no form of this instruction supports a memory
7115 destination operand, then we assume the source operand may
7116 sometimes be a memory operand and so we need to store the
7117 destination in the i.rm.reg field. */
7118 if (!i.tm.operand_types[dest].bitfield.regmem
7119 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7120 {
7121 i.rm.reg = i.op[dest].regs->reg_num;
7122 i.rm.regmem = i.op[source].regs->reg_num;
7123 if (i.op[dest].regs->reg_type.bitfield.regmmx
7124 || i.op[source].regs->reg_type.bitfield.regmmx)
7125 i.has_regmmx = TRUE;
7126 else if (i.op[dest].regs->reg_type.bitfield.regsimd
7127 || i.op[source].regs->reg_type.bitfield.regsimd)
7128 {
7129 if (i.types[dest].bitfield.zmmword
7130 || i.types[source].bitfield.zmmword)
7131 i.has_regzmm = TRUE;
7132 else if (i.types[dest].bitfield.ymmword
7133 || i.types[source].bitfield.ymmword)
7134 i.has_regymm = TRUE;
7135 else
7136 i.has_regxmm = TRUE;
7137 }
7138 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7139 i.rex |= REX_R;
7140 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7141 i.vrex |= REX_R;
7142 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7143 i.rex |= REX_B;
7144 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7145 i.vrex |= REX_B;
7146 }
7147 else
7148 {
7149 i.rm.reg = i.op[source].regs->reg_num;
7150 i.rm.regmem = i.op[dest].regs->reg_num;
7151 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7152 i.rex |= REX_B;
7153 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7154 i.vrex |= REX_B;
7155 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7156 i.rex |= REX_R;
7157 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7158 i.vrex |= REX_R;
7159 }
7160 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7161 {
7162 if (!i.types[i.tm.operand_types[0].bitfield.regmem].bitfield.control)
7163 abort ();
7164 i.rex &= ~REX_R;
7165 add_prefix (LOCK_PREFIX_OPCODE);
7166 }
7167 }
7168 else
7169 { /* If it's not 2 reg operands... */
7170 unsigned int mem;
7171
7172 if (i.mem_operands)
7173 {
7174 unsigned int fake_zero_displacement = 0;
7175 unsigned int op;
7176
7177 for (op = 0; op < i.operands; op++)
7178 if (operand_type_check (i.types[op], anymem))
7179 break;
7180 gas_assert (op < i.operands);
7181
7182 if (i.tm.opcode_modifier.vecsib)
7183 {
7184 if (i.index_reg->reg_num == RegIZ)
7185 abort ();
7186
7187 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7188 if (!i.base_reg)
7189 {
7190 i.sib.base = NO_BASE_REGISTER;
7191 i.sib.scale = i.log2_scale_factor;
7192 i.types[op].bitfield.disp8 = 0;
7193 i.types[op].bitfield.disp16 = 0;
7194 i.types[op].bitfield.disp64 = 0;
7195 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7196 {
7197 /* Must be 32 bit */
7198 i.types[op].bitfield.disp32 = 1;
7199 i.types[op].bitfield.disp32s = 0;
7200 }
7201 else
7202 {
7203 i.types[op].bitfield.disp32 = 0;
7204 i.types[op].bitfield.disp32s = 1;
7205 }
7206 }
7207 i.sib.index = i.index_reg->reg_num;
7208 if ((i.index_reg->reg_flags & RegRex) != 0)
7209 i.rex |= REX_X;
7210 if ((i.index_reg->reg_flags & RegVRex) != 0)
7211 i.vrex |= REX_X;
7212 }
7213
7214 default_seg = &ds;
7215
7216 if (i.base_reg == 0)
7217 {
7218 i.rm.mode = 0;
7219 if (!i.disp_operands)
7220 fake_zero_displacement = 1;
7221 if (i.index_reg == 0)
7222 {
7223 i386_operand_type newdisp;
7224
7225 gas_assert (!i.tm.opcode_modifier.vecsib);
7226 /* Operand is just <disp> */
7227 if (flag_code == CODE_64BIT)
7228 {
7229 /* 64bit mode overwrites the 32bit absolute
7230 addressing by RIP relative addressing and
7231 absolute addressing is encoded by one of the
7232 redundant SIB forms. */
7233 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7234 i.sib.base = NO_BASE_REGISTER;
7235 i.sib.index = NO_INDEX_REGISTER;
7236 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7237 }
7238 else if ((flag_code == CODE_16BIT)
7239 ^ (i.prefix[ADDR_PREFIX] != 0))
7240 {
7241 i.rm.regmem = NO_BASE_REGISTER_16;
7242 newdisp = disp16;
7243 }
7244 else
7245 {
7246 i.rm.regmem = NO_BASE_REGISTER;
7247 newdisp = disp32;
7248 }
7249 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7250 i.types[op] = operand_type_or (i.types[op], newdisp);
7251 }
7252 else if (!i.tm.opcode_modifier.vecsib)
7253 {
7254 /* !i.base_reg && i.index_reg */
7255 if (i.index_reg->reg_num == RegIZ)
7256 i.sib.index = NO_INDEX_REGISTER;
7257 else
7258 i.sib.index = i.index_reg->reg_num;
7259 i.sib.base = NO_BASE_REGISTER;
7260 i.sib.scale = i.log2_scale_factor;
7261 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7262 i.types[op].bitfield.disp8 = 0;
7263 i.types[op].bitfield.disp16 = 0;
7264 i.types[op].bitfield.disp64 = 0;
7265 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7266 {
7267 /* Must be 32 bit */
7268 i.types[op].bitfield.disp32 = 1;
7269 i.types[op].bitfield.disp32s = 0;
7270 }
7271 else
7272 {
7273 i.types[op].bitfield.disp32 = 0;
7274 i.types[op].bitfield.disp32s = 1;
7275 }
7276 if ((i.index_reg->reg_flags & RegRex) != 0)
7277 i.rex |= REX_X;
7278 }
7279 }
7280 /* RIP addressing for 64bit mode. */
7281 else if (i.base_reg->reg_num == RegIP)
7282 {
7283 gas_assert (!i.tm.opcode_modifier.vecsib);
7284 i.rm.regmem = NO_BASE_REGISTER;
7285 i.types[op].bitfield.disp8 = 0;
7286 i.types[op].bitfield.disp16 = 0;
7287 i.types[op].bitfield.disp32 = 0;
7288 i.types[op].bitfield.disp32s = 1;
7289 i.types[op].bitfield.disp64 = 0;
7290 i.flags[op] |= Operand_PCrel;
7291 if (! i.disp_operands)
7292 fake_zero_displacement = 1;
7293 }
7294 else if (i.base_reg->reg_type.bitfield.word)
7295 {
7296 gas_assert (!i.tm.opcode_modifier.vecsib);
7297 switch (i.base_reg->reg_num)
7298 {
7299 case 3: /* (%bx) */
7300 if (i.index_reg == 0)
7301 i.rm.regmem = 7;
7302 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7303 i.rm.regmem = i.index_reg->reg_num - 6;
7304 break;
7305 case 5: /* (%bp) */
7306 default_seg = &ss;
7307 if (i.index_reg == 0)
7308 {
7309 i.rm.regmem = 6;
7310 if (operand_type_check (i.types[op], disp) == 0)
7311 {
7312 /* fake (%bp) into 0(%bp) */
7313 i.types[op].bitfield.disp8 = 1;
7314 fake_zero_displacement = 1;
7315 }
7316 }
7317 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7318 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7319 break;
7320 default: /* (%si) -> 4 or (%di) -> 5 */
7321 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7322 }
7323 i.rm.mode = mode_from_disp_size (i.types[op]);
7324 }
7325 else /* i.base_reg and 32/64 bit mode */
7326 {
7327 if (flag_code == CODE_64BIT
7328 && operand_type_check (i.types[op], disp))
7329 {
7330 i.types[op].bitfield.disp16 = 0;
7331 i.types[op].bitfield.disp64 = 0;
7332 if (i.prefix[ADDR_PREFIX] == 0)
7333 {
7334 i.types[op].bitfield.disp32 = 0;
7335 i.types[op].bitfield.disp32s = 1;
7336 }
7337 else
7338 {
7339 i.types[op].bitfield.disp32 = 1;
7340 i.types[op].bitfield.disp32s = 0;
7341 }
7342 }
7343
7344 if (!i.tm.opcode_modifier.vecsib)
7345 i.rm.regmem = i.base_reg->reg_num;
7346 if ((i.base_reg->reg_flags & RegRex) != 0)
7347 i.rex |= REX_B;
7348 i.sib.base = i.base_reg->reg_num;
7349 /* x86-64 ignores REX prefix bit here to avoid decoder
7350 complications. */
7351 if (!(i.base_reg->reg_flags & RegRex)
7352 && (i.base_reg->reg_num == EBP_REG_NUM
7353 || i.base_reg->reg_num == ESP_REG_NUM))
7354 default_seg = &ss;
7355 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7356 {
7357 fake_zero_displacement = 1;
7358 i.types[op].bitfield.disp8 = 1;
7359 }
7360 i.sib.scale = i.log2_scale_factor;
7361 if (i.index_reg == 0)
7362 {
7363 gas_assert (!i.tm.opcode_modifier.vecsib);
7364 /* <disp>(%esp) becomes two byte modrm with no index
7365 register. We've already stored the code for esp
7366 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7367 Any base register besides %esp will not use the
7368 extra modrm byte. */
7369 i.sib.index = NO_INDEX_REGISTER;
7370 }
7371 else if (!i.tm.opcode_modifier.vecsib)
7372 {
7373 if (i.index_reg->reg_num == RegIZ)
7374 i.sib.index = NO_INDEX_REGISTER;
7375 else
7376 i.sib.index = i.index_reg->reg_num;
7377 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7378 if ((i.index_reg->reg_flags & RegRex) != 0)
7379 i.rex |= REX_X;
7380 }
7381
7382 if (i.disp_operands
7383 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7384 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7385 i.rm.mode = 0;
7386 else
7387 {
7388 if (!fake_zero_displacement
7389 && !i.disp_operands
7390 && i.disp_encoding)
7391 {
7392 fake_zero_displacement = 1;
7393 if (i.disp_encoding == disp_encoding_8bit)
7394 i.types[op].bitfield.disp8 = 1;
7395 else
7396 i.types[op].bitfield.disp32 = 1;
7397 }
7398 i.rm.mode = mode_from_disp_size (i.types[op]);
7399 }
7400 }
7401
7402 if (fake_zero_displacement)
7403 {
7404 /* Fakes a zero displacement assuming that i.types[op]
7405 holds the correct displacement size. */
7406 expressionS *exp;
7407
7408 gas_assert (i.op[op].disps == 0);
7409 exp = &disp_expressions[i.disp_operands++];
7410 i.op[op].disps = exp;
7411 exp->X_op = O_constant;
7412 exp->X_add_number = 0;
7413 exp->X_add_symbol = (symbolS *) 0;
7414 exp->X_op_symbol = (symbolS *) 0;
7415 }
7416
7417 mem = op;
7418 }
7419 else
7420 mem = ~0;
7421
7422 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7423 {
7424 if (operand_type_check (i.types[0], imm))
7425 i.vex.register_specifier = NULL;
7426 else
7427 {
7428 /* VEX.vvvv encodes one of the sources when the first
7429 operand is not an immediate. */
7430 if (i.tm.opcode_modifier.vexw == VEXW0)
7431 i.vex.register_specifier = i.op[0].regs;
7432 else
7433 i.vex.register_specifier = i.op[1].regs;
7434 }
7435
7436 /* Destination is a XMM register encoded in the ModRM.reg
7437 and VEX.R bit. */
7438 i.rm.reg = i.op[2].regs->reg_num;
7439 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7440 i.rex |= REX_R;
7441
7442 /* ModRM.rm and VEX.B encodes the other source. */
7443 if (!i.mem_operands)
7444 {
7445 i.rm.mode = 3;
7446
7447 if (i.tm.opcode_modifier.vexw == VEXW0)
7448 i.rm.regmem = i.op[1].regs->reg_num;
7449 else
7450 i.rm.regmem = i.op[0].regs->reg_num;
7451
7452 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7453 i.rex |= REX_B;
7454 }
7455 }
7456 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7457 {
7458 i.vex.register_specifier = i.op[2].regs;
7459 if (!i.mem_operands)
7460 {
7461 i.rm.mode = 3;
7462 i.rm.regmem = i.op[1].regs->reg_num;
7463 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7464 i.rex |= REX_B;
7465 }
7466 }
7467 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7468 (if any) based on i.tm.extension_opcode. Again, we must be
7469 careful to make sure that segment/control/debug/test/MMX
7470 registers are coded into the i.rm.reg field. */
7471 else if (i.reg_operands)
7472 {
7473 unsigned int op;
7474 unsigned int vex_reg = ~0;
7475
7476 for (op = 0; op < i.operands; op++)
7477 {
7478 if (i.types[op].bitfield.reg
7479 || i.types[op].bitfield.regbnd
7480 || i.types[op].bitfield.regmask
7481 || i.types[op].bitfield.sreg2
7482 || i.types[op].bitfield.sreg3
7483 || i.types[op].bitfield.control
7484 || i.types[op].bitfield.debug
7485 || i.types[op].bitfield.test)
7486 break;
7487 if (i.types[op].bitfield.regsimd)
7488 {
7489 if (i.types[op].bitfield.zmmword)
7490 i.has_regzmm = TRUE;
7491 else if (i.types[op].bitfield.ymmword)
7492 i.has_regymm = TRUE;
7493 else
7494 i.has_regxmm = TRUE;
7495 break;
7496 }
7497 if (i.types[op].bitfield.regmmx)
7498 {
7499 i.has_regmmx = TRUE;
7500 break;
7501 }
7502 }
7503
7504 if (vex_3_sources)
7505 op = dest;
7506 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7507 {
7508 /* For instructions with VexNDS, the register-only
7509 source operand is encoded in VEX prefix. */
7510 gas_assert (mem != (unsigned int) ~0);
7511
7512 if (op > mem)
7513 {
7514 vex_reg = op++;
7515 gas_assert (op < i.operands);
7516 }
7517 else
7518 {
7519 /* Check register-only source operand when two source
7520 operands are swapped. */
7521 if (!i.tm.operand_types[op].bitfield.baseindex
7522 && i.tm.operand_types[op + 1].bitfield.baseindex)
7523 {
7524 vex_reg = op;
7525 op += 2;
7526 gas_assert (mem == (vex_reg + 1)
7527 && op < i.operands);
7528 }
7529 else
7530 {
7531 vex_reg = op + 1;
7532 gas_assert (vex_reg < i.operands);
7533 }
7534 }
7535 }
7536 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7537 {
7538 /* For instructions with VexNDD, the register destination
7539 is encoded in VEX prefix. */
7540 if (i.mem_operands == 0)
7541 {
7542 /* There is no memory operand. */
7543 gas_assert ((op + 2) == i.operands);
7544 vex_reg = op + 1;
7545 }
7546 else
7547 {
7548 /* There are only 2 non-immediate operands. */
7549 gas_assert (op < i.imm_operands + 2
7550 && i.operands == i.imm_operands + 2);
7551 vex_reg = i.imm_operands + 1;
7552 }
7553 }
7554 else
7555 gas_assert (op < i.operands);
7556
7557 if (vex_reg != (unsigned int) ~0)
7558 {
7559 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7560
7561 if ((!type->bitfield.reg
7562 || (!type->bitfield.dword && !type->bitfield.qword))
7563 && !type->bitfield.regsimd
7564 && !operand_type_equal (type, &regmask))
7565 abort ();
7566
7567 i.vex.register_specifier = i.op[vex_reg].regs;
7568 }
7569
7570 /* Don't set OP operand twice. */
7571 if (vex_reg != op)
7572 {
7573 /* If there is an extension opcode to put here, the
7574 register number must be put into the regmem field. */
7575 if (i.tm.extension_opcode != None)
7576 {
7577 i.rm.regmem = i.op[op].regs->reg_num;
7578 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7579 i.rex |= REX_B;
7580 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7581 i.vrex |= REX_B;
7582 }
7583 else
7584 {
7585 i.rm.reg = i.op[op].regs->reg_num;
7586 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7587 i.rex |= REX_R;
7588 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7589 i.vrex |= REX_R;
7590 }
7591 }
7592
7593 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7594 must set it to 3 to indicate this is a register operand
7595 in the regmem field. */
7596 if (!i.mem_operands)
7597 i.rm.mode = 3;
7598 }
7599
7600 /* Fill in i.rm.reg field with extension opcode (if any). */
7601 if (i.tm.extension_opcode != None)
7602 i.rm.reg = i.tm.extension_opcode;
7603 }
7604 return default_seg;
7605 }
7606
7607 static void
7608 output_branch (void)
7609 {
7610 char *p;
7611 int size;
7612 int code16;
7613 int prefix;
7614 relax_substateT subtype;
7615 symbolS *sym;
7616 offsetT off;
7617
7618 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7619 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7620
7621 prefix = 0;
7622 if (i.prefix[DATA_PREFIX] != 0)
7623 {
7624 prefix = 1;
7625 i.prefixes -= 1;
7626 code16 ^= CODE16;
7627 }
7628 /* Pentium4 branch hints. */
7629 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7630 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7631 {
7632 prefix++;
7633 i.prefixes--;
7634 }
7635 if (i.prefix[REX_PREFIX] != 0)
7636 {
7637 prefix++;
7638 i.prefixes--;
7639 }
7640
7641 /* BND prefixed jump. */
7642 if (i.prefix[BND_PREFIX] != 0)
7643 {
7644 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7645 i.prefixes -= 1;
7646 }
7647
7648 if (i.prefixes != 0 && !intel_syntax)
7649 as_warn (_("skipping prefixes on this instruction"));
7650
7651 /* It's always a symbol; End frag & setup for relax.
7652 Make sure there is enough room in this frag for the largest
7653 instruction we may generate in md_convert_frag. This is 2
7654 bytes for the opcode and room for the prefix and largest
7655 displacement. */
7656 frag_grow (prefix + 2 + 4);
7657 /* Prefix and 1 opcode byte go in fr_fix. */
7658 p = frag_more (prefix + 1);
7659 if (i.prefix[DATA_PREFIX] != 0)
7660 *p++ = DATA_PREFIX_OPCODE;
7661 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7662 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7663 *p++ = i.prefix[SEG_PREFIX];
7664 if (i.prefix[REX_PREFIX] != 0)
7665 *p++ = i.prefix[REX_PREFIX];
7666 *p = i.tm.base_opcode;
7667
7668 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7669 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7670 else if (cpu_arch_flags.bitfield.cpui386)
7671 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7672 else
7673 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7674 subtype |= code16;
7675
7676 sym = i.op[0].disps->X_add_symbol;
7677 off = i.op[0].disps->X_add_number;
7678
7679 if (i.op[0].disps->X_op != O_constant
7680 && i.op[0].disps->X_op != O_symbol)
7681 {
7682 /* Handle complex expressions. */
7683 sym = make_expr_symbol (i.op[0].disps);
7684 off = 0;
7685 }
7686
7687 /* 1 possible extra opcode + 4 byte displacement go in var part.
7688 Pass reloc in fr_var. */
7689 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7690 }
7691
7692 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7693 /* Return TRUE iff PLT32 relocation should be used for branching to
7694 symbol S. */
7695
7696 static bfd_boolean
7697 need_plt32_p (symbolS *s)
7698 {
7699 /* PLT32 relocation is ELF only. */
7700 if (!IS_ELF)
7701 return FALSE;
7702
7703 /* Since there is no need to prepare for PLT branch on x86-64, we
7704 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7705 be used as a marker for 32-bit PC-relative branches. */
7706 if (!object_64bit)
7707 return FALSE;
7708
7709 /* Weak or undefined symbol need PLT32 relocation. */
7710 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7711 return TRUE;
7712
7713 /* Non-global symbol doesn't need PLT32 relocation. */
7714 if (! S_IS_EXTERNAL (s))
7715 return FALSE;
7716
7717 /* Other global symbols need PLT32 relocation. NB: Symbol with
7718 non-default visibilities are treated as normal global symbol
7719 so that PLT32 relocation can be used as a marker for 32-bit
7720 PC-relative branches. It is useful for linker relaxation. */
7721 return TRUE;
7722 }
7723 #endif
7724
7725 static void
7726 output_jump (void)
7727 {
7728 char *p;
7729 int size;
7730 fixS *fixP;
7731 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7732
7733 if (i.tm.opcode_modifier.jumpbyte)
7734 {
7735 /* This is a loop or jecxz type instruction. */
7736 size = 1;
7737 if (i.prefix[ADDR_PREFIX] != 0)
7738 {
7739 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7740 i.prefixes -= 1;
7741 }
7742 /* Pentium4 branch hints. */
7743 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7744 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7745 {
7746 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7747 i.prefixes--;
7748 }
7749 }
7750 else
7751 {
7752 int code16;
7753
7754 code16 = 0;
7755 if (flag_code == CODE_16BIT)
7756 code16 = CODE16;
7757
7758 if (i.prefix[DATA_PREFIX] != 0)
7759 {
7760 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7761 i.prefixes -= 1;
7762 code16 ^= CODE16;
7763 }
7764
7765 size = 4;
7766 if (code16)
7767 size = 2;
7768 }
7769
7770 if (i.prefix[REX_PREFIX] != 0)
7771 {
7772 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7773 i.prefixes -= 1;
7774 }
7775
7776 /* BND prefixed jump. */
7777 if (i.prefix[BND_PREFIX] != 0)
7778 {
7779 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7780 i.prefixes -= 1;
7781 }
7782
7783 if (i.prefixes != 0 && !intel_syntax)
7784 as_warn (_("skipping prefixes on this instruction"));
7785
7786 p = frag_more (i.tm.opcode_length + size);
7787 switch (i.tm.opcode_length)
7788 {
7789 case 2:
7790 *p++ = i.tm.base_opcode >> 8;
7791 /* Fall through. */
7792 case 1:
7793 *p++ = i.tm.base_opcode;
7794 break;
7795 default:
7796 abort ();
7797 }
7798
7799 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7800 if (size == 4
7801 && jump_reloc == NO_RELOC
7802 && need_plt32_p (i.op[0].disps->X_add_symbol))
7803 jump_reloc = BFD_RELOC_X86_64_PLT32;
7804 #endif
7805
7806 jump_reloc = reloc (size, 1, 1, jump_reloc);
7807
7808 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7809 i.op[0].disps, 1, jump_reloc);
7810
7811 /* All jumps handled here are signed, but don't use a signed limit
7812 check for 32 and 16 bit jumps as we want to allow wrap around at
7813 4G and 64k respectively. */
7814 if (size == 1)
7815 fixP->fx_signed = 1;
7816 }
7817
7818 static void
7819 output_interseg_jump (void)
7820 {
7821 char *p;
7822 int size;
7823 int prefix;
7824 int code16;
7825
7826 code16 = 0;
7827 if (flag_code == CODE_16BIT)
7828 code16 = CODE16;
7829
7830 prefix = 0;
7831 if (i.prefix[DATA_PREFIX] != 0)
7832 {
7833 prefix = 1;
7834 i.prefixes -= 1;
7835 code16 ^= CODE16;
7836 }
7837 if (i.prefix[REX_PREFIX] != 0)
7838 {
7839 prefix++;
7840 i.prefixes -= 1;
7841 }
7842
7843 size = 4;
7844 if (code16)
7845 size = 2;
7846
7847 if (i.prefixes != 0 && !intel_syntax)
7848 as_warn (_("skipping prefixes on this instruction"));
7849
7850 /* 1 opcode; 2 segment; offset */
7851 p = frag_more (prefix + 1 + 2 + size);
7852
7853 if (i.prefix[DATA_PREFIX] != 0)
7854 *p++ = DATA_PREFIX_OPCODE;
7855
7856 if (i.prefix[REX_PREFIX] != 0)
7857 *p++ = i.prefix[REX_PREFIX];
7858
7859 *p++ = i.tm.base_opcode;
7860 if (i.op[1].imms->X_op == O_constant)
7861 {
7862 offsetT n = i.op[1].imms->X_add_number;
7863
7864 if (size == 2
7865 && !fits_in_unsigned_word (n)
7866 && !fits_in_signed_word (n))
7867 {
7868 as_bad (_("16-bit jump out of range"));
7869 return;
7870 }
7871 md_number_to_chars (p, n, size);
7872 }
7873 else
7874 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7875 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7876 if (i.op[0].imms->X_op != O_constant)
7877 as_bad (_("can't handle non absolute segment in `%s'"),
7878 i.tm.name);
7879 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7880 }
7881
7882 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7883 void
7884 x86_cleanup (void)
7885 {
7886 char *p;
7887 asection *seg = now_seg;
7888 subsegT subseg = now_subseg;
7889 asection *sec;
7890 unsigned int alignment, align_size_1;
7891 unsigned int isa_1_descsz, feature_2_descsz, descsz;
7892 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
7893 unsigned int padding;
7894
7895 if (!IS_ELF || !x86_used_note)
7896 return;
7897
7898 x86_isa_1_used |= GNU_PROPERTY_X86_UINT32_VALID;
7899 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
7900
7901 /* The .note.gnu.property section layout:
7902
7903 Field Length Contents
7904 ---- ---- ----
7905 n_namsz 4 4
7906 n_descsz 4 The note descriptor size
7907 n_type 4 NT_GNU_PROPERTY_TYPE_0
7908 n_name 4 "GNU"
7909 n_desc n_descsz The program property array
7910 .... .... ....
7911 */
7912
7913 /* Create the .note.gnu.property section. */
7914 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
7915 bfd_set_section_flags (stdoutput, sec,
7916 (SEC_ALLOC
7917 | SEC_LOAD
7918 | SEC_DATA
7919 | SEC_HAS_CONTENTS
7920 | SEC_READONLY));
7921
7922 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
7923 {
7924 align_size_1 = 7;
7925 alignment = 3;
7926 }
7927 else
7928 {
7929 align_size_1 = 3;
7930 alignment = 2;
7931 }
7932
7933 bfd_set_section_alignment (stdoutput, sec, alignment);
7934 elf_section_type (sec) = SHT_NOTE;
7935
7936 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
7937 + 4-byte data */
7938 isa_1_descsz_raw = 4 + 4 + 4;
7939 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
7940 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
7941
7942 feature_2_descsz_raw = isa_1_descsz;
7943 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
7944 + 4-byte data */
7945 feature_2_descsz_raw += 4 + 4 + 4;
7946 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
7947 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
7948 & ~align_size_1);
7949
7950 descsz = feature_2_descsz;
7951 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
7952 p = frag_more (4 + 4 + 4 + 4 + descsz);
7953
7954 /* Write n_namsz. */
7955 md_number_to_chars (p, (valueT) 4, 4);
7956
7957 /* Write n_descsz. */
7958 md_number_to_chars (p + 4, (valueT) descsz, 4);
7959
7960 /* Write n_type. */
7961 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
7962
7963 /* Write n_name. */
7964 memcpy (p + 4 * 3, "GNU", 4);
7965
7966 /* Write 4-byte type. */
7967 md_number_to_chars (p + 4 * 4,
7968 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
7969
7970 /* Write 4-byte data size. */
7971 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
7972
7973 /* Write 4-byte data. */
7974 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
7975
7976 /* Zero out paddings. */
7977 padding = isa_1_descsz - isa_1_descsz_raw;
7978 if (padding)
7979 memset (p + 4 * 7, 0, padding);
7980
7981 /* Write 4-byte type. */
7982 md_number_to_chars (p + isa_1_descsz + 4 * 4,
7983 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
7984
7985 /* Write 4-byte data size. */
7986 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
7987
7988 /* Write 4-byte data. */
7989 md_number_to_chars (p + isa_1_descsz + 4 * 6,
7990 (valueT) x86_feature_2_used, 4);
7991
7992 /* Zero out paddings. */
7993 padding = feature_2_descsz - feature_2_descsz_raw;
7994 if (padding)
7995 memset (p + isa_1_descsz + 4 * 7, 0, padding);
7996
7997 /* We probably can't restore the current segment, for there likely
7998 isn't one yet... */
7999 if (seg && subseg)
8000 subseg_set (seg, subseg);
8001 }
8002 #endif
8003
8004 static void
8005 output_insn (void)
8006 {
8007 fragS *insn_start_frag;
8008 offsetT insn_start_off;
8009
8010 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8011 if (IS_ELF && x86_used_note)
8012 {
8013 if (i.tm.cpu_flags.bitfield.cpucmov)
8014 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8015 if (i.tm.cpu_flags.bitfield.cpusse)
8016 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8017 if (i.tm.cpu_flags.bitfield.cpusse2)
8018 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8019 if (i.tm.cpu_flags.bitfield.cpusse3)
8020 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8021 if (i.tm.cpu_flags.bitfield.cpussse3)
8022 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8023 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8024 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8025 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8026 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8027 if (i.tm.cpu_flags.bitfield.cpuavx)
8028 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8029 if (i.tm.cpu_flags.bitfield.cpuavx2)
8030 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8031 if (i.tm.cpu_flags.bitfield.cpufma)
8032 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8033 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8034 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8035 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8036 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8037 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8038 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8039 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8040 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8041 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8042 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8043 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8044 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8045 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8046 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8047 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8048 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8049 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8050 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8051 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8052 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8053 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8054 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8055 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8056 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8057 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8058 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8059 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8060 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8061
8062 if (i.tm.cpu_flags.bitfield.cpu8087
8063 || i.tm.cpu_flags.bitfield.cpu287
8064 || i.tm.cpu_flags.bitfield.cpu387
8065 || i.tm.cpu_flags.bitfield.cpu687
8066 || i.tm.cpu_flags.bitfield.cpufisttp)
8067 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8068 /* Don't set GNU_PROPERTY_X86_FEATURE_2_MMX for prefetchtXXX nor
8069 Xfence instructions. */
8070 if (i.tm.base_opcode != 0xf18
8071 && i.tm.base_opcode != 0xf0d
8072 && i.tm.base_opcode != 0xfae
8073 && (i.has_regmmx
8074 || i.tm.cpu_flags.bitfield.cpummx
8075 || i.tm.cpu_flags.bitfield.cpua3dnow
8076 || i.tm.cpu_flags.bitfield.cpua3dnowa))
8077 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8078 if (i.has_regxmm)
8079 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8080 if (i.has_regymm)
8081 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8082 if (i.has_regzmm)
8083 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8084 if (i.tm.cpu_flags.bitfield.cpufxsr)
8085 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8086 if (i.tm.cpu_flags.bitfield.cpuxsave)
8087 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8088 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8089 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8090 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8091 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8092 }
8093 #endif
8094
8095 /* Tie dwarf2 debug info to the address at the start of the insn.
8096 We can't do this after the insn has been output as the current
8097 frag may have been closed off. eg. by frag_var. */
8098 dwarf2_emit_insn (0);
8099
8100 insn_start_frag = frag_now;
8101 insn_start_off = frag_now_fix ();
8102
8103 /* Output jumps. */
8104 if (i.tm.opcode_modifier.jump)
8105 output_branch ();
8106 else if (i.tm.opcode_modifier.jumpbyte
8107 || i.tm.opcode_modifier.jumpdword)
8108 output_jump ();
8109 else if (i.tm.opcode_modifier.jumpintersegment)
8110 output_interseg_jump ();
8111 else
8112 {
8113 /* Output normal instructions here. */
8114 char *p;
8115 unsigned char *q;
8116 unsigned int j;
8117 unsigned int prefix;
8118
8119 if (avoid_fence
8120 && i.tm.base_opcode == 0xfae
8121 && i.operands == 1
8122 && i.imm_operands == 1
8123 && (i.op[0].imms->X_add_number == 0xe8
8124 || i.op[0].imms->X_add_number == 0xf0
8125 || i.op[0].imms->X_add_number == 0xf8))
8126 {
8127 /* Encode lfence, mfence, and sfence as
8128 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8129 offsetT val = 0x240483f0ULL;
8130 p = frag_more (5);
8131 md_number_to_chars (p, val, 5);
8132 return;
8133 }
8134
8135 /* Some processors fail on LOCK prefix. This options makes
8136 assembler ignore LOCK prefix and serves as a workaround. */
8137 if (omit_lock_prefix)
8138 {
8139 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8140 return;
8141 i.prefix[LOCK_PREFIX] = 0;
8142 }
8143
8144 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8145 don't need the explicit prefix. */
8146 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
8147 {
8148 switch (i.tm.opcode_length)
8149 {
8150 case 3:
8151 if (i.tm.base_opcode & 0xff000000)
8152 {
8153 prefix = (i.tm.base_opcode >> 24) & 0xff;
8154 add_prefix (prefix);
8155 }
8156 break;
8157 case 2:
8158 if ((i.tm.base_opcode & 0xff0000) != 0)
8159 {
8160 prefix = (i.tm.base_opcode >> 16) & 0xff;
8161 if (!i.tm.cpu_flags.bitfield.cpupadlock
8162 || prefix != REPE_PREFIX_OPCODE
8163 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8164 add_prefix (prefix);
8165 }
8166 break;
8167 case 1:
8168 break;
8169 case 0:
8170 /* Check for pseudo prefixes. */
8171 as_bad_where (insn_start_frag->fr_file,
8172 insn_start_frag->fr_line,
8173 _("pseudo prefix without instruction"));
8174 return;
8175 default:
8176 abort ();
8177 }
8178
8179 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8180 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8181 R_X86_64_GOTTPOFF relocation so that linker can safely
8182 perform IE->LE optimization. */
8183 if (x86_elf_abi == X86_64_X32_ABI
8184 && i.operands == 2
8185 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8186 && i.prefix[REX_PREFIX] == 0)
8187 add_prefix (REX_OPCODE);
8188 #endif
8189
8190 /* The prefix bytes. */
8191 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8192 if (*q)
8193 FRAG_APPEND_1_CHAR (*q);
8194 }
8195 else
8196 {
8197 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8198 if (*q)
8199 switch (j)
8200 {
8201 case REX_PREFIX:
8202 /* REX byte is encoded in VEX prefix. */
8203 break;
8204 case SEG_PREFIX:
8205 case ADDR_PREFIX:
8206 FRAG_APPEND_1_CHAR (*q);
8207 break;
8208 default:
8209 /* There should be no other prefixes for instructions
8210 with VEX prefix. */
8211 abort ();
8212 }
8213
8214 /* For EVEX instructions i.vrex should become 0 after
8215 build_evex_prefix. For VEX instructions upper 16 registers
8216 aren't available, so VREX should be 0. */
8217 if (i.vrex)
8218 abort ();
8219 /* Now the VEX prefix. */
8220 p = frag_more (i.vex.length);
8221 for (j = 0; j < i.vex.length; j++)
8222 p[j] = i.vex.bytes[j];
8223 }
8224
8225 /* Now the opcode; be careful about word order here! */
8226 if (i.tm.opcode_length == 1)
8227 {
8228 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8229 }
8230 else
8231 {
8232 switch (i.tm.opcode_length)
8233 {
8234 case 4:
8235 p = frag_more (4);
8236 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8237 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8238 break;
8239 case 3:
8240 p = frag_more (3);
8241 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8242 break;
8243 case 2:
8244 p = frag_more (2);
8245 break;
8246 default:
8247 abort ();
8248 break;
8249 }
8250
8251 /* Put out high byte first: can't use md_number_to_chars! */
8252 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8253 *p = i.tm.base_opcode & 0xff;
8254 }
8255
8256 /* Now the modrm byte and sib byte (if present). */
8257 if (i.tm.opcode_modifier.modrm)
8258 {
8259 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8260 | i.rm.reg << 3
8261 | i.rm.mode << 6));
8262 /* If i.rm.regmem == ESP (4)
8263 && i.rm.mode != (Register mode)
8264 && not 16 bit
8265 ==> need second modrm byte. */
8266 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8267 && i.rm.mode != 3
8268 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
8269 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8270 | i.sib.index << 3
8271 | i.sib.scale << 6));
8272 }
8273
8274 if (i.disp_operands)
8275 output_disp (insn_start_frag, insn_start_off);
8276
8277 if (i.imm_operands)
8278 output_imm (insn_start_frag, insn_start_off);
8279 }
8280
8281 #ifdef DEBUG386
8282 if (flag_debug)
8283 {
8284 pi ("" /*line*/, &i);
8285 }
8286 #endif /* DEBUG386 */
8287 }
8288
8289 /* Return the size of the displacement operand N. */
8290
8291 static int
8292 disp_size (unsigned int n)
8293 {
8294 int size = 4;
8295
8296 if (i.types[n].bitfield.disp64)
8297 size = 8;
8298 else if (i.types[n].bitfield.disp8)
8299 size = 1;
8300 else if (i.types[n].bitfield.disp16)
8301 size = 2;
8302 return size;
8303 }
8304
8305 /* Return the size of the immediate operand N. */
8306
8307 static int
8308 imm_size (unsigned int n)
8309 {
8310 int size = 4;
8311 if (i.types[n].bitfield.imm64)
8312 size = 8;
8313 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8314 size = 1;
8315 else if (i.types[n].bitfield.imm16)
8316 size = 2;
8317 return size;
8318 }
8319
8320 static void
8321 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
8322 {
8323 char *p;
8324 unsigned int n;
8325
8326 for (n = 0; n < i.operands; n++)
8327 {
8328 if (operand_type_check (i.types[n], disp))
8329 {
8330 if (i.op[n].disps->X_op == O_constant)
8331 {
8332 int size = disp_size (n);
8333 offsetT val = i.op[n].disps->X_add_number;
8334
8335 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8336 size);
8337 p = frag_more (size);
8338 md_number_to_chars (p, val, size);
8339 }
8340 else
8341 {
8342 enum bfd_reloc_code_real reloc_type;
8343 int size = disp_size (n);
8344 int sign = i.types[n].bitfield.disp32s;
8345 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
8346 fixS *fixP;
8347
8348 /* We can't have 8 bit displacement here. */
8349 gas_assert (!i.types[n].bitfield.disp8);
8350
8351 /* The PC relative address is computed relative
8352 to the instruction boundary, so in case immediate
8353 fields follows, we need to adjust the value. */
8354 if (pcrel && i.imm_operands)
8355 {
8356 unsigned int n1;
8357 int sz = 0;
8358
8359 for (n1 = 0; n1 < i.operands; n1++)
8360 if (operand_type_check (i.types[n1], imm))
8361 {
8362 /* Only one immediate is allowed for PC
8363 relative address. */
8364 gas_assert (sz == 0);
8365 sz = imm_size (n1);
8366 i.op[n].disps->X_add_number -= sz;
8367 }
8368 /* We should find the immediate. */
8369 gas_assert (sz != 0);
8370 }
8371
8372 p = frag_more (size);
8373 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
8374 if (GOT_symbol
8375 && GOT_symbol == i.op[n].disps->X_add_symbol
8376 && (((reloc_type == BFD_RELOC_32
8377 || reloc_type == BFD_RELOC_X86_64_32S
8378 || (reloc_type == BFD_RELOC_64
8379 && object_64bit))
8380 && (i.op[n].disps->X_op == O_symbol
8381 || (i.op[n].disps->X_op == O_add
8382 && ((symbol_get_value_expression
8383 (i.op[n].disps->X_op_symbol)->X_op)
8384 == O_subtract))))
8385 || reloc_type == BFD_RELOC_32_PCREL))
8386 {
8387 offsetT add;
8388
8389 if (insn_start_frag == frag_now)
8390 add = (p - frag_now->fr_literal) - insn_start_off;
8391 else
8392 {
8393 fragS *fr;
8394
8395 add = insn_start_frag->fr_fix - insn_start_off;
8396 for (fr = insn_start_frag->fr_next;
8397 fr && fr != frag_now; fr = fr->fr_next)
8398 add += fr->fr_fix;
8399 add += p - frag_now->fr_literal;
8400 }
8401
8402 if (!object_64bit)
8403 {
8404 reloc_type = BFD_RELOC_386_GOTPC;
8405 i.op[n].imms->X_add_number += add;
8406 }
8407 else if (reloc_type == BFD_RELOC_64)
8408 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8409 else
8410 /* Don't do the adjustment for x86-64, as there
8411 the pcrel addressing is relative to the _next_
8412 insn, and that is taken care of in other code. */
8413 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8414 }
8415 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8416 size, i.op[n].disps, pcrel,
8417 reloc_type);
8418 /* Check for "call/jmp *mem", "mov mem, %reg",
8419 "test %reg, mem" and "binop mem, %reg" where binop
8420 is one of adc, add, and, cmp, or, sbb, sub, xor
8421 instructions. Always generate R_386_GOT32X for
8422 "sym*GOT" operand in 32-bit mode. */
8423 if ((generate_relax_relocations
8424 || (!object_64bit
8425 && i.rm.mode == 0
8426 && i.rm.regmem == 5))
8427 && (i.rm.mode == 2
8428 || (i.rm.mode == 0 && i.rm.regmem == 5))
8429 && ((i.operands == 1
8430 && i.tm.base_opcode == 0xff
8431 && (i.rm.reg == 2 || i.rm.reg == 4))
8432 || (i.operands == 2
8433 && (i.tm.base_opcode == 0x8b
8434 || i.tm.base_opcode == 0x85
8435 || (i.tm.base_opcode & 0xc7) == 0x03))))
8436 {
8437 if (object_64bit)
8438 {
8439 fixP->fx_tcbit = i.rex != 0;
8440 if (i.base_reg
8441 && (i.base_reg->reg_num == RegIP))
8442 fixP->fx_tcbit2 = 1;
8443 }
8444 else
8445 fixP->fx_tcbit2 = 1;
8446 }
8447 }
8448 }
8449 }
8450 }
8451
8452 static void
8453 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
8454 {
8455 char *p;
8456 unsigned int n;
8457
8458 for (n = 0; n < i.operands; n++)
8459 {
8460 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8461 if (i.rounding && (int) n == i.rounding->operand)
8462 continue;
8463
8464 if (operand_type_check (i.types[n], imm))
8465 {
8466 if (i.op[n].imms->X_op == O_constant)
8467 {
8468 int size = imm_size (n);
8469 offsetT val;
8470
8471 val = offset_in_range (i.op[n].imms->X_add_number,
8472 size);
8473 p = frag_more (size);
8474 md_number_to_chars (p, val, size);
8475 }
8476 else
8477 {
8478 /* Not absolute_section.
8479 Need a 32-bit fixup (don't support 8bit
8480 non-absolute imms). Try to support other
8481 sizes ... */
8482 enum bfd_reloc_code_real reloc_type;
8483 int size = imm_size (n);
8484 int sign;
8485
8486 if (i.types[n].bitfield.imm32s
8487 && (i.suffix == QWORD_MNEM_SUFFIX
8488 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
8489 sign = 1;
8490 else
8491 sign = 0;
8492
8493 p = frag_more (size);
8494 reloc_type = reloc (size, 0, sign, i.reloc[n]);
8495
8496 /* This is tough to explain. We end up with this one if we
8497 * have operands that look like
8498 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8499 * obtain the absolute address of the GOT, and it is strongly
8500 * preferable from a performance point of view to avoid using
8501 * a runtime relocation for this. The actual sequence of
8502 * instructions often look something like:
8503 *
8504 * call .L66
8505 * .L66:
8506 * popl %ebx
8507 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8508 *
8509 * The call and pop essentially return the absolute address
8510 * of the label .L66 and store it in %ebx. The linker itself
8511 * will ultimately change the first operand of the addl so
8512 * that %ebx points to the GOT, but to keep things simple, the
8513 * .o file must have this operand set so that it generates not
8514 * the absolute address of .L66, but the absolute address of
8515 * itself. This allows the linker itself simply treat a GOTPC
8516 * relocation as asking for a pcrel offset to the GOT to be
8517 * added in, and the addend of the relocation is stored in the
8518 * operand field for the instruction itself.
8519 *
8520 * Our job here is to fix the operand so that it would add
8521 * the correct offset so that %ebx would point to itself. The
8522 * thing that is tricky is that .-.L66 will point to the
8523 * beginning of the instruction, so we need to further modify
8524 * the operand so that it will point to itself. There are
8525 * other cases where you have something like:
8526 *
8527 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8528 *
8529 * and here no correction would be required. Internally in
8530 * the assembler we treat operands of this form as not being
8531 * pcrel since the '.' is explicitly mentioned, and I wonder
8532 * whether it would simplify matters to do it this way. Who
8533 * knows. In earlier versions of the PIC patches, the
8534 * pcrel_adjust field was used to store the correction, but
8535 * since the expression is not pcrel, I felt it would be
8536 * confusing to do it this way. */
8537
8538 if ((reloc_type == BFD_RELOC_32
8539 || reloc_type == BFD_RELOC_X86_64_32S
8540 || reloc_type == BFD_RELOC_64)
8541 && GOT_symbol
8542 && GOT_symbol == i.op[n].imms->X_add_symbol
8543 && (i.op[n].imms->X_op == O_symbol
8544 || (i.op[n].imms->X_op == O_add
8545 && ((symbol_get_value_expression
8546 (i.op[n].imms->X_op_symbol)->X_op)
8547 == O_subtract))))
8548 {
8549 offsetT add;
8550
8551 if (insn_start_frag == frag_now)
8552 add = (p - frag_now->fr_literal) - insn_start_off;
8553 else
8554 {
8555 fragS *fr;
8556
8557 add = insn_start_frag->fr_fix - insn_start_off;
8558 for (fr = insn_start_frag->fr_next;
8559 fr && fr != frag_now; fr = fr->fr_next)
8560 add += fr->fr_fix;
8561 add += p - frag_now->fr_literal;
8562 }
8563
8564 if (!object_64bit)
8565 reloc_type = BFD_RELOC_386_GOTPC;
8566 else if (size == 4)
8567 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8568 else if (size == 8)
8569 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8570 i.op[n].imms->X_add_number += add;
8571 }
8572 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8573 i.op[n].imms, 0, reloc_type);
8574 }
8575 }
8576 }
8577 }
8578 \f
8579 /* x86_cons_fix_new is called via the expression parsing code when a
8580 reloc is needed. We use this hook to get the correct .got reloc. */
8581 static int cons_sign = -1;
8582
8583 void
8584 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
8585 expressionS *exp, bfd_reloc_code_real_type r)
8586 {
8587 r = reloc (len, 0, cons_sign, r);
8588
8589 #ifdef TE_PE
8590 if (exp->X_op == O_secrel)
8591 {
8592 exp->X_op = O_symbol;
8593 r = BFD_RELOC_32_SECREL;
8594 }
8595 #endif
8596
8597 fix_new_exp (frag, off, len, exp, 0, r);
8598 }
8599
8600 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8601 purpose of the `.dc.a' internal pseudo-op. */
8602
8603 int
8604 x86_address_bytes (void)
8605 {
8606 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8607 return 4;
8608 return stdoutput->arch_info->bits_per_address / 8;
8609 }
8610
8611 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8612 || defined (LEX_AT)
8613 # define lex_got(reloc, adjust, types) NULL
8614 #else
8615 /* Parse operands of the form
8616 <symbol>@GOTOFF+<nnn>
8617 and similar .plt or .got references.
8618
8619 If we find one, set up the correct relocation in RELOC and copy the
8620 input string, minus the `@GOTOFF' into a malloc'd buffer for
8621 parsing by the calling routine. Return this buffer, and if ADJUST
8622 is non-null set it to the length of the string we removed from the
8623 input line. Otherwise return NULL. */
8624 static char *
8625 lex_got (enum bfd_reloc_code_real *rel,
8626 int *adjust,
8627 i386_operand_type *types)
8628 {
8629 /* Some of the relocations depend on the size of what field is to
8630 be relocated. But in our callers i386_immediate and i386_displacement
8631 we don't yet know the operand size (this will be set by insn
8632 matching). Hence we record the word32 relocation here,
8633 and adjust the reloc according to the real size in reloc(). */
8634 static const struct {
8635 const char *str;
8636 int len;
8637 const enum bfd_reloc_code_real rel[2];
8638 const i386_operand_type types64;
8639 } gotrel[] = {
8640 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8641 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8642 BFD_RELOC_SIZE32 },
8643 OPERAND_TYPE_IMM32_64 },
8644 #endif
8645 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8646 BFD_RELOC_X86_64_PLTOFF64 },
8647 OPERAND_TYPE_IMM64 },
8648 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8649 BFD_RELOC_X86_64_PLT32 },
8650 OPERAND_TYPE_IMM32_32S_DISP32 },
8651 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8652 BFD_RELOC_X86_64_GOTPLT64 },
8653 OPERAND_TYPE_IMM64_DISP64 },
8654 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8655 BFD_RELOC_X86_64_GOTOFF64 },
8656 OPERAND_TYPE_IMM64_DISP64 },
8657 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8658 BFD_RELOC_X86_64_GOTPCREL },
8659 OPERAND_TYPE_IMM32_32S_DISP32 },
8660 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8661 BFD_RELOC_X86_64_TLSGD },
8662 OPERAND_TYPE_IMM32_32S_DISP32 },
8663 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8664 _dummy_first_bfd_reloc_code_real },
8665 OPERAND_TYPE_NONE },
8666 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8667 BFD_RELOC_X86_64_TLSLD },
8668 OPERAND_TYPE_IMM32_32S_DISP32 },
8669 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8670 BFD_RELOC_X86_64_GOTTPOFF },
8671 OPERAND_TYPE_IMM32_32S_DISP32 },
8672 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8673 BFD_RELOC_X86_64_TPOFF32 },
8674 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8675 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8676 _dummy_first_bfd_reloc_code_real },
8677 OPERAND_TYPE_NONE },
8678 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8679 BFD_RELOC_X86_64_DTPOFF32 },
8680 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8681 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8682 _dummy_first_bfd_reloc_code_real },
8683 OPERAND_TYPE_NONE },
8684 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8685 _dummy_first_bfd_reloc_code_real },
8686 OPERAND_TYPE_NONE },
8687 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8688 BFD_RELOC_X86_64_GOT32 },
8689 OPERAND_TYPE_IMM32_32S_64_DISP32 },
8690 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8691 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
8692 OPERAND_TYPE_IMM32_32S_DISP32 },
8693 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8694 BFD_RELOC_X86_64_TLSDESC_CALL },
8695 OPERAND_TYPE_IMM32_32S_DISP32 },
8696 };
8697 char *cp;
8698 unsigned int j;
8699
8700 #if defined (OBJ_MAYBE_ELF)
8701 if (!IS_ELF)
8702 return NULL;
8703 #endif
8704
8705 for (cp = input_line_pointer; *cp != '@'; cp++)
8706 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8707 return NULL;
8708
8709 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8710 {
8711 int len = gotrel[j].len;
8712 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8713 {
8714 if (gotrel[j].rel[object_64bit] != 0)
8715 {
8716 int first, second;
8717 char *tmpbuf, *past_reloc;
8718
8719 *rel = gotrel[j].rel[object_64bit];
8720
8721 if (types)
8722 {
8723 if (flag_code != CODE_64BIT)
8724 {
8725 types->bitfield.imm32 = 1;
8726 types->bitfield.disp32 = 1;
8727 }
8728 else
8729 *types = gotrel[j].types64;
8730 }
8731
8732 if (j != 0 && GOT_symbol == NULL)
8733 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8734
8735 /* The length of the first part of our input line. */
8736 first = cp - input_line_pointer;
8737
8738 /* The second part goes from after the reloc token until
8739 (and including) an end_of_line char or comma. */
8740 past_reloc = cp + 1 + len;
8741 cp = past_reloc;
8742 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8743 ++cp;
8744 second = cp + 1 - past_reloc;
8745
8746 /* Allocate and copy string. The trailing NUL shouldn't
8747 be necessary, but be safe. */
8748 tmpbuf = XNEWVEC (char, first + second + 2);
8749 memcpy (tmpbuf, input_line_pointer, first);
8750 if (second != 0 && *past_reloc != ' ')
8751 /* Replace the relocation token with ' ', so that
8752 errors like foo@GOTOFF1 will be detected. */
8753 tmpbuf[first++] = ' ';
8754 else
8755 /* Increment length by 1 if the relocation token is
8756 removed. */
8757 len++;
8758 if (adjust)
8759 *adjust = len;
8760 memcpy (tmpbuf + first, past_reloc, second);
8761 tmpbuf[first + second] = '\0';
8762 return tmpbuf;
8763 }
8764
8765 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8766 gotrel[j].str, 1 << (5 + object_64bit));
8767 return NULL;
8768 }
8769 }
8770
8771 /* Might be a symbol version string. Don't as_bad here. */
8772 return NULL;
8773 }
8774 #endif
8775
8776 #ifdef TE_PE
8777 #ifdef lex_got
8778 #undef lex_got
8779 #endif
8780 /* Parse operands of the form
8781 <symbol>@SECREL32+<nnn>
8782
8783 If we find one, set up the correct relocation in RELOC and copy the
8784 input string, minus the `@SECREL32' into a malloc'd buffer for
8785 parsing by the calling routine. Return this buffer, and if ADJUST
8786 is non-null set it to the length of the string we removed from the
8787 input line. Otherwise return NULL.
8788
8789 This function is copied from the ELF version above adjusted for PE targets. */
8790
8791 static char *
8792 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8793 int *adjust ATTRIBUTE_UNUSED,
8794 i386_operand_type *types)
8795 {
8796 static const struct
8797 {
8798 const char *str;
8799 int len;
8800 const enum bfd_reloc_code_real rel[2];
8801 const i386_operand_type types64;
8802 }
8803 gotrel[] =
8804 {
8805 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8806 BFD_RELOC_32_SECREL },
8807 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8808 };
8809
8810 char *cp;
8811 unsigned j;
8812
8813 for (cp = input_line_pointer; *cp != '@'; cp++)
8814 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8815 return NULL;
8816
8817 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8818 {
8819 int len = gotrel[j].len;
8820
8821 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8822 {
8823 if (gotrel[j].rel[object_64bit] != 0)
8824 {
8825 int first, second;
8826 char *tmpbuf, *past_reloc;
8827
8828 *rel = gotrel[j].rel[object_64bit];
8829 if (adjust)
8830 *adjust = len;
8831
8832 if (types)
8833 {
8834 if (flag_code != CODE_64BIT)
8835 {
8836 types->bitfield.imm32 = 1;
8837 types->bitfield.disp32 = 1;
8838 }
8839 else
8840 *types = gotrel[j].types64;
8841 }
8842
8843 /* The length of the first part of our input line. */
8844 first = cp - input_line_pointer;
8845
8846 /* The second part goes from after the reloc token until
8847 (and including) an end_of_line char or comma. */
8848 past_reloc = cp + 1 + len;
8849 cp = past_reloc;
8850 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8851 ++cp;
8852 second = cp + 1 - past_reloc;
8853
8854 /* Allocate and copy string. The trailing NUL shouldn't
8855 be necessary, but be safe. */
8856 tmpbuf = XNEWVEC (char, first + second + 2);
8857 memcpy (tmpbuf, input_line_pointer, first);
8858 if (second != 0 && *past_reloc != ' ')
8859 /* Replace the relocation token with ' ', so that
8860 errors like foo@SECLREL321 will be detected. */
8861 tmpbuf[first++] = ' ';
8862 memcpy (tmpbuf + first, past_reloc, second);
8863 tmpbuf[first + second] = '\0';
8864 return tmpbuf;
8865 }
8866
8867 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8868 gotrel[j].str, 1 << (5 + object_64bit));
8869 return NULL;
8870 }
8871 }
8872
8873 /* Might be a symbol version string. Don't as_bad here. */
8874 return NULL;
8875 }
8876
8877 #endif /* TE_PE */
8878
8879 bfd_reloc_code_real_type
8880 x86_cons (expressionS *exp, int size)
8881 {
8882 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8883
8884 intel_syntax = -intel_syntax;
8885
8886 exp->X_md = 0;
8887 if (size == 4 || (object_64bit && size == 8))
8888 {
8889 /* Handle @GOTOFF and the like in an expression. */
8890 char *save;
8891 char *gotfree_input_line;
8892 int adjust = 0;
8893
8894 save = input_line_pointer;
8895 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
8896 if (gotfree_input_line)
8897 input_line_pointer = gotfree_input_line;
8898
8899 expression (exp);
8900
8901 if (gotfree_input_line)
8902 {
8903 /* expression () has merrily parsed up to the end of line,
8904 or a comma - in the wrong buffer. Transfer how far
8905 input_line_pointer has moved to the right buffer. */
8906 input_line_pointer = (save
8907 + (input_line_pointer - gotfree_input_line)
8908 + adjust);
8909 free (gotfree_input_line);
8910 if (exp->X_op == O_constant
8911 || exp->X_op == O_absent
8912 || exp->X_op == O_illegal
8913 || exp->X_op == O_register
8914 || exp->X_op == O_big)
8915 {
8916 char c = *input_line_pointer;
8917 *input_line_pointer = 0;
8918 as_bad (_("missing or invalid expression `%s'"), save);
8919 *input_line_pointer = c;
8920 }
8921 }
8922 }
8923 else
8924 expression (exp);
8925
8926 intel_syntax = -intel_syntax;
8927
8928 if (intel_syntax)
8929 i386_intel_simplify (exp);
8930
8931 return got_reloc;
8932 }
8933
8934 static void
8935 signed_cons (int size)
8936 {
8937 if (flag_code == CODE_64BIT)
8938 cons_sign = 1;
8939 cons (size);
8940 cons_sign = -1;
8941 }
8942
8943 #ifdef TE_PE
8944 static void
8945 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
8946 {
8947 expressionS exp;
8948
8949 do
8950 {
8951 expression (&exp);
8952 if (exp.X_op == O_symbol)
8953 exp.X_op = O_secrel;
8954
8955 emit_expr (&exp, 4);
8956 }
8957 while (*input_line_pointer++ == ',');
8958
8959 input_line_pointer--;
8960 demand_empty_rest_of_line ();
8961 }
8962 #endif
8963
8964 /* Handle Vector operations. */
8965
8966 static char *
8967 check_VecOperations (char *op_string, char *op_end)
8968 {
8969 const reg_entry *mask;
8970 const char *saved;
8971 char *end_op;
8972
8973 while (*op_string
8974 && (op_end == NULL || op_string < op_end))
8975 {
8976 saved = op_string;
8977 if (*op_string == '{')
8978 {
8979 op_string++;
8980
8981 /* Check broadcasts. */
8982 if (strncmp (op_string, "1to", 3) == 0)
8983 {
8984 int bcst_type;
8985
8986 if (i.broadcast)
8987 goto duplicated_vec_op;
8988
8989 op_string += 3;
8990 if (*op_string == '8')
8991 bcst_type = 8;
8992 else if (*op_string == '4')
8993 bcst_type = 4;
8994 else if (*op_string == '2')
8995 bcst_type = 2;
8996 else if (*op_string == '1'
8997 && *(op_string+1) == '6')
8998 {
8999 bcst_type = 16;
9000 op_string++;
9001 }
9002 else
9003 {
9004 as_bad (_("Unsupported broadcast: `%s'"), saved);
9005 return NULL;
9006 }
9007 op_string++;
9008
9009 broadcast_op.type = bcst_type;
9010 broadcast_op.operand = this_operand;
9011 broadcast_op.bytes = 0;
9012 i.broadcast = &broadcast_op;
9013 }
9014 /* Check masking operation. */
9015 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9016 {
9017 /* k0 can't be used for write mask. */
9018 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
9019 {
9020 as_bad (_("`%s%s' can't be used for write mask"),
9021 register_prefix, mask->reg_name);
9022 return NULL;
9023 }
9024
9025 if (!i.mask)
9026 {
9027 mask_op.mask = mask;
9028 mask_op.zeroing = 0;
9029 mask_op.operand = this_operand;
9030 i.mask = &mask_op;
9031 }
9032 else
9033 {
9034 if (i.mask->mask)
9035 goto duplicated_vec_op;
9036
9037 i.mask->mask = mask;
9038
9039 /* Only "{z}" is allowed here. No need to check
9040 zeroing mask explicitly. */
9041 if (i.mask->operand != this_operand)
9042 {
9043 as_bad (_("invalid write mask `%s'"), saved);
9044 return NULL;
9045 }
9046 }
9047
9048 op_string = end_op;
9049 }
9050 /* Check zeroing-flag for masking operation. */
9051 else if (*op_string == 'z')
9052 {
9053 if (!i.mask)
9054 {
9055 mask_op.mask = NULL;
9056 mask_op.zeroing = 1;
9057 mask_op.operand = this_operand;
9058 i.mask = &mask_op;
9059 }
9060 else
9061 {
9062 if (i.mask->zeroing)
9063 {
9064 duplicated_vec_op:
9065 as_bad (_("duplicated `%s'"), saved);
9066 return NULL;
9067 }
9068
9069 i.mask->zeroing = 1;
9070
9071 /* Only "{%k}" is allowed here. No need to check mask
9072 register explicitly. */
9073 if (i.mask->operand != this_operand)
9074 {
9075 as_bad (_("invalid zeroing-masking `%s'"),
9076 saved);
9077 return NULL;
9078 }
9079 }
9080
9081 op_string++;
9082 }
9083 else
9084 goto unknown_vec_op;
9085
9086 if (*op_string != '}')
9087 {
9088 as_bad (_("missing `}' in `%s'"), saved);
9089 return NULL;
9090 }
9091 op_string++;
9092
9093 /* Strip whitespace since the addition of pseudo prefixes
9094 changed how the scrubber treats '{'. */
9095 if (is_space_char (*op_string))
9096 ++op_string;
9097
9098 continue;
9099 }
9100 unknown_vec_op:
9101 /* We don't know this one. */
9102 as_bad (_("unknown vector operation: `%s'"), saved);
9103 return NULL;
9104 }
9105
9106 if (i.mask && i.mask->zeroing && !i.mask->mask)
9107 {
9108 as_bad (_("zeroing-masking only allowed with write mask"));
9109 return NULL;
9110 }
9111
9112 return op_string;
9113 }
9114
9115 static int
9116 i386_immediate (char *imm_start)
9117 {
9118 char *save_input_line_pointer;
9119 char *gotfree_input_line;
9120 segT exp_seg = 0;
9121 expressionS *exp;
9122 i386_operand_type types;
9123
9124 operand_type_set (&types, ~0);
9125
9126 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9127 {
9128 as_bad (_("at most %d immediate operands are allowed"),
9129 MAX_IMMEDIATE_OPERANDS);
9130 return 0;
9131 }
9132
9133 exp = &im_expressions[i.imm_operands++];
9134 i.op[this_operand].imms = exp;
9135
9136 if (is_space_char (*imm_start))
9137 ++imm_start;
9138
9139 save_input_line_pointer = input_line_pointer;
9140 input_line_pointer = imm_start;
9141
9142 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9143 if (gotfree_input_line)
9144 input_line_pointer = gotfree_input_line;
9145
9146 exp_seg = expression (exp);
9147
9148 SKIP_WHITESPACE ();
9149
9150 /* Handle vector operations. */
9151 if (*input_line_pointer == '{')
9152 {
9153 input_line_pointer = check_VecOperations (input_line_pointer,
9154 NULL);
9155 if (input_line_pointer == NULL)
9156 return 0;
9157 }
9158
9159 if (*input_line_pointer)
9160 as_bad (_("junk `%s' after expression"), input_line_pointer);
9161
9162 input_line_pointer = save_input_line_pointer;
9163 if (gotfree_input_line)
9164 {
9165 free (gotfree_input_line);
9166
9167 if (exp->X_op == O_constant || exp->X_op == O_register)
9168 exp->X_op = O_illegal;
9169 }
9170
9171 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9172 }
9173
9174 static int
9175 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9176 i386_operand_type types, const char *imm_start)
9177 {
9178 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
9179 {
9180 if (imm_start)
9181 as_bad (_("missing or invalid immediate expression `%s'"),
9182 imm_start);
9183 return 0;
9184 }
9185 else if (exp->X_op == O_constant)
9186 {
9187 /* Size it properly later. */
9188 i.types[this_operand].bitfield.imm64 = 1;
9189 /* If not 64bit, sign extend val. */
9190 if (flag_code != CODE_64BIT
9191 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9192 exp->X_add_number
9193 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
9194 }
9195 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9196 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
9197 && exp_seg != absolute_section
9198 && exp_seg != text_section
9199 && exp_seg != data_section
9200 && exp_seg != bss_section
9201 && exp_seg != undefined_section
9202 && !bfd_is_com_section (exp_seg))
9203 {
9204 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9205 return 0;
9206 }
9207 #endif
9208 else if (!intel_syntax && exp_seg == reg_section)
9209 {
9210 if (imm_start)
9211 as_bad (_("illegal immediate register operand %s"), imm_start);
9212 return 0;
9213 }
9214 else
9215 {
9216 /* This is an address. The size of the address will be
9217 determined later, depending on destination register,
9218 suffix, or the default for the section. */
9219 i.types[this_operand].bitfield.imm8 = 1;
9220 i.types[this_operand].bitfield.imm16 = 1;
9221 i.types[this_operand].bitfield.imm32 = 1;
9222 i.types[this_operand].bitfield.imm32s = 1;
9223 i.types[this_operand].bitfield.imm64 = 1;
9224 i.types[this_operand] = operand_type_and (i.types[this_operand],
9225 types);
9226 }
9227
9228 return 1;
9229 }
9230
9231 static char *
9232 i386_scale (char *scale)
9233 {
9234 offsetT val;
9235 char *save = input_line_pointer;
9236
9237 input_line_pointer = scale;
9238 val = get_absolute_expression ();
9239
9240 switch (val)
9241 {
9242 case 1:
9243 i.log2_scale_factor = 0;
9244 break;
9245 case 2:
9246 i.log2_scale_factor = 1;
9247 break;
9248 case 4:
9249 i.log2_scale_factor = 2;
9250 break;
9251 case 8:
9252 i.log2_scale_factor = 3;
9253 break;
9254 default:
9255 {
9256 char sep = *input_line_pointer;
9257
9258 *input_line_pointer = '\0';
9259 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9260 scale);
9261 *input_line_pointer = sep;
9262 input_line_pointer = save;
9263 return NULL;
9264 }
9265 }
9266 if (i.log2_scale_factor != 0 && i.index_reg == 0)
9267 {
9268 as_warn (_("scale factor of %d without an index register"),
9269 1 << i.log2_scale_factor);
9270 i.log2_scale_factor = 0;
9271 }
9272 scale = input_line_pointer;
9273 input_line_pointer = save;
9274 return scale;
9275 }
9276
9277 static int
9278 i386_displacement (char *disp_start, char *disp_end)
9279 {
9280 expressionS *exp;
9281 segT exp_seg = 0;
9282 char *save_input_line_pointer;
9283 char *gotfree_input_line;
9284 int override;
9285 i386_operand_type bigdisp, types = anydisp;
9286 int ret;
9287
9288 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9289 {
9290 as_bad (_("at most %d displacement operands are allowed"),
9291 MAX_MEMORY_OPERANDS);
9292 return 0;
9293 }
9294
9295 operand_type_set (&bigdisp, 0);
9296 if ((i.types[this_operand].bitfield.jumpabsolute)
9297 || (!current_templates->start->opcode_modifier.jump
9298 && !current_templates->start->opcode_modifier.jumpdword))
9299 {
9300 bigdisp.bitfield.disp32 = 1;
9301 override = (i.prefix[ADDR_PREFIX] != 0);
9302 if (flag_code == CODE_64BIT)
9303 {
9304 if (!override)
9305 {
9306 bigdisp.bitfield.disp32s = 1;
9307 bigdisp.bitfield.disp64 = 1;
9308 }
9309 }
9310 else if ((flag_code == CODE_16BIT) ^ override)
9311 {
9312 bigdisp.bitfield.disp32 = 0;
9313 bigdisp.bitfield.disp16 = 1;
9314 }
9315 }
9316 else
9317 {
9318 /* For PC-relative branches, the width of the displacement
9319 is dependent upon data size, not address size. */
9320 override = (i.prefix[DATA_PREFIX] != 0);
9321 if (flag_code == CODE_64BIT)
9322 {
9323 if (override || i.suffix == WORD_MNEM_SUFFIX)
9324 bigdisp.bitfield.disp16 = 1;
9325 else
9326 {
9327 bigdisp.bitfield.disp32 = 1;
9328 bigdisp.bitfield.disp32s = 1;
9329 }
9330 }
9331 else
9332 {
9333 if (!override)
9334 override = (i.suffix == (flag_code != CODE_16BIT
9335 ? WORD_MNEM_SUFFIX
9336 : LONG_MNEM_SUFFIX));
9337 bigdisp.bitfield.disp32 = 1;
9338 if ((flag_code == CODE_16BIT) ^ override)
9339 {
9340 bigdisp.bitfield.disp32 = 0;
9341 bigdisp.bitfield.disp16 = 1;
9342 }
9343 }
9344 }
9345 i.types[this_operand] = operand_type_or (i.types[this_operand],
9346 bigdisp);
9347
9348 exp = &disp_expressions[i.disp_operands];
9349 i.op[this_operand].disps = exp;
9350 i.disp_operands++;
9351 save_input_line_pointer = input_line_pointer;
9352 input_line_pointer = disp_start;
9353 END_STRING_AND_SAVE (disp_end);
9354
9355 #ifndef GCC_ASM_O_HACK
9356 #define GCC_ASM_O_HACK 0
9357 #endif
9358 #if GCC_ASM_O_HACK
9359 END_STRING_AND_SAVE (disp_end + 1);
9360 if (i.types[this_operand].bitfield.baseIndex
9361 && displacement_string_end[-1] == '+')
9362 {
9363 /* This hack is to avoid a warning when using the "o"
9364 constraint within gcc asm statements.
9365 For instance:
9366
9367 #define _set_tssldt_desc(n,addr,limit,type) \
9368 __asm__ __volatile__ ( \
9369 "movw %w2,%0\n\t" \
9370 "movw %w1,2+%0\n\t" \
9371 "rorl $16,%1\n\t" \
9372 "movb %b1,4+%0\n\t" \
9373 "movb %4,5+%0\n\t" \
9374 "movb $0,6+%0\n\t" \
9375 "movb %h1,7+%0\n\t" \
9376 "rorl $16,%1" \
9377 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9378
9379 This works great except that the output assembler ends
9380 up looking a bit weird if it turns out that there is
9381 no offset. You end up producing code that looks like:
9382
9383 #APP
9384 movw $235,(%eax)
9385 movw %dx,2+(%eax)
9386 rorl $16,%edx
9387 movb %dl,4+(%eax)
9388 movb $137,5+(%eax)
9389 movb $0,6+(%eax)
9390 movb %dh,7+(%eax)
9391 rorl $16,%edx
9392 #NO_APP
9393
9394 So here we provide the missing zero. */
9395
9396 *displacement_string_end = '0';
9397 }
9398 #endif
9399 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9400 if (gotfree_input_line)
9401 input_line_pointer = gotfree_input_line;
9402
9403 exp_seg = expression (exp);
9404
9405 SKIP_WHITESPACE ();
9406 if (*input_line_pointer)
9407 as_bad (_("junk `%s' after expression"), input_line_pointer);
9408 #if GCC_ASM_O_HACK
9409 RESTORE_END_STRING (disp_end + 1);
9410 #endif
9411 input_line_pointer = save_input_line_pointer;
9412 if (gotfree_input_line)
9413 {
9414 free (gotfree_input_line);
9415
9416 if (exp->X_op == O_constant || exp->X_op == O_register)
9417 exp->X_op = O_illegal;
9418 }
9419
9420 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9421
9422 RESTORE_END_STRING (disp_end);
9423
9424 return ret;
9425 }
9426
9427 static int
9428 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9429 i386_operand_type types, const char *disp_start)
9430 {
9431 i386_operand_type bigdisp;
9432 int ret = 1;
9433
9434 /* We do this to make sure that the section symbol is in
9435 the symbol table. We will ultimately change the relocation
9436 to be relative to the beginning of the section. */
9437 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
9438 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9439 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9440 {
9441 if (exp->X_op != O_symbol)
9442 goto inv_disp;
9443
9444 if (S_IS_LOCAL (exp->X_add_symbol)
9445 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9446 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
9447 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
9448 exp->X_op = O_subtract;
9449 exp->X_op_symbol = GOT_symbol;
9450 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
9451 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
9452 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9453 i.reloc[this_operand] = BFD_RELOC_64;
9454 else
9455 i.reloc[this_operand] = BFD_RELOC_32;
9456 }
9457
9458 else if (exp->X_op == O_absent
9459 || exp->X_op == O_illegal
9460 || exp->X_op == O_big)
9461 {
9462 inv_disp:
9463 as_bad (_("missing or invalid displacement expression `%s'"),
9464 disp_start);
9465 ret = 0;
9466 }
9467
9468 else if (flag_code == CODE_64BIT
9469 && !i.prefix[ADDR_PREFIX]
9470 && exp->X_op == O_constant)
9471 {
9472 /* Since displacement is signed extended to 64bit, don't allow
9473 disp32 and turn off disp32s if they are out of range. */
9474 i.types[this_operand].bitfield.disp32 = 0;
9475 if (!fits_in_signed_long (exp->X_add_number))
9476 {
9477 i.types[this_operand].bitfield.disp32s = 0;
9478 if (i.types[this_operand].bitfield.baseindex)
9479 {
9480 as_bad (_("0x%lx out range of signed 32bit displacement"),
9481 (long) exp->X_add_number);
9482 ret = 0;
9483 }
9484 }
9485 }
9486
9487 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9488 else if (exp->X_op != O_constant
9489 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9490 && exp_seg != absolute_section
9491 && exp_seg != text_section
9492 && exp_seg != data_section
9493 && exp_seg != bss_section
9494 && exp_seg != undefined_section
9495 && !bfd_is_com_section (exp_seg))
9496 {
9497 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9498 ret = 0;
9499 }
9500 #endif
9501
9502 /* Check if this is a displacement only operand. */
9503 bigdisp = i.types[this_operand];
9504 bigdisp.bitfield.disp8 = 0;
9505 bigdisp.bitfield.disp16 = 0;
9506 bigdisp.bitfield.disp32 = 0;
9507 bigdisp.bitfield.disp32s = 0;
9508 bigdisp.bitfield.disp64 = 0;
9509 if (operand_type_all_zero (&bigdisp))
9510 i.types[this_operand] = operand_type_and (i.types[this_operand],
9511 types);
9512
9513 return ret;
9514 }
9515
9516 /* Return the active addressing mode, taking address override and
9517 registers forming the address into consideration. Update the
9518 address override prefix if necessary. */
9519
9520 static enum flag_code
9521 i386_addressing_mode (void)
9522 {
9523 enum flag_code addr_mode;
9524
9525 if (i.prefix[ADDR_PREFIX])
9526 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9527 else
9528 {
9529 addr_mode = flag_code;
9530
9531 #if INFER_ADDR_PREFIX
9532 if (i.mem_operands == 0)
9533 {
9534 /* Infer address prefix from the first memory operand. */
9535 const reg_entry *addr_reg = i.base_reg;
9536
9537 if (addr_reg == NULL)
9538 addr_reg = i.index_reg;
9539
9540 if (addr_reg)
9541 {
9542 if (addr_reg->reg_type.bitfield.dword)
9543 addr_mode = CODE_32BIT;
9544 else if (flag_code != CODE_64BIT
9545 && addr_reg->reg_type.bitfield.word)
9546 addr_mode = CODE_16BIT;
9547
9548 if (addr_mode != flag_code)
9549 {
9550 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9551 i.prefixes += 1;
9552 /* Change the size of any displacement too. At most one
9553 of Disp16 or Disp32 is set.
9554 FIXME. There doesn't seem to be any real need for
9555 separate Disp16 and Disp32 flags. The same goes for
9556 Imm16 and Imm32. Removing them would probably clean
9557 up the code quite a lot. */
9558 if (flag_code != CODE_64BIT
9559 && (i.types[this_operand].bitfield.disp16
9560 || i.types[this_operand].bitfield.disp32))
9561 i.types[this_operand]
9562 = operand_type_xor (i.types[this_operand], disp16_32);
9563 }
9564 }
9565 }
9566 #endif
9567 }
9568
9569 return addr_mode;
9570 }
9571
9572 /* Make sure the memory operand we've been dealt is valid.
9573 Return 1 on success, 0 on a failure. */
9574
9575 static int
9576 i386_index_check (const char *operand_string)
9577 {
9578 const char *kind = "base/index";
9579 enum flag_code addr_mode = i386_addressing_mode ();
9580
9581 if (current_templates->start->opcode_modifier.isstring
9582 && !current_templates->start->opcode_modifier.immext
9583 && (current_templates->end[-1].opcode_modifier.isstring
9584 || i.mem_operands))
9585 {
9586 /* Memory operands of string insns are special in that they only allow
9587 a single register (rDI, rSI, or rBX) as their memory address. */
9588 const reg_entry *expected_reg;
9589 static const char *di_si[][2] =
9590 {
9591 { "esi", "edi" },
9592 { "si", "di" },
9593 { "rsi", "rdi" }
9594 };
9595 static const char *bx[] = { "ebx", "bx", "rbx" };
9596
9597 kind = "string address";
9598
9599 if (current_templates->start->opcode_modifier.repprefixok)
9600 {
9601 i386_operand_type type = current_templates->end[-1].operand_types[0];
9602
9603 if (!type.bitfield.baseindex
9604 || ((!i.mem_operands != !intel_syntax)
9605 && current_templates->end[-1].operand_types[1]
9606 .bitfield.baseindex))
9607 type = current_templates->end[-1].operand_types[1];
9608 expected_reg = hash_find (reg_hash,
9609 di_si[addr_mode][type.bitfield.esseg]);
9610
9611 }
9612 else
9613 expected_reg = hash_find (reg_hash, bx[addr_mode]);
9614
9615 if (i.base_reg != expected_reg
9616 || i.index_reg
9617 || operand_type_check (i.types[this_operand], disp))
9618 {
9619 /* The second memory operand must have the same size as
9620 the first one. */
9621 if (i.mem_operands
9622 && i.base_reg
9623 && !((addr_mode == CODE_64BIT
9624 && i.base_reg->reg_type.bitfield.qword)
9625 || (addr_mode == CODE_32BIT
9626 ? i.base_reg->reg_type.bitfield.dword
9627 : i.base_reg->reg_type.bitfield.word)))
9628 goto bad_address;
9629
9630 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9631 operand_string,
9632 intel_syntax ? '[' : '(',
9633 register_prefix,
9634 expected_reg->reg_name,
9635 intel_syntax ? ']' : ')');
9636 return 1;
9637 }
9638 else
9639 return 1;
9640
9641 bad_address:
9642 as_bad (_("`%s' is not a valid %s expression"),
9643 operand_string, kind);
9644 return 0;
9645 }
9646 else
9647 {
9648 if (addr_mode != CODE_16BIT)
9649 {
9650 /* 32-bit/64-bit checks. */
9651 if ((i.base_reg
9652 && ((addr_mode == CODE_64BIT
9653 ? !i.base_reg->reg_type.bitfield.qword
9654 : !i.base_reg->reg_type.bitfield.dword)
9655 || (i.index_reg && i.base_reg->reg_num == RegIP)
9656 || i.base_reg->reg_num == RegIZ))
9657 || (i.index_reg
9658 && !i.index_reg->reg_type.bitfield.xmmword
9659 && !i.index_reg->reg_type.bitfield.ymmword
9660 && !i.index_reg->reg_type.bitfield.zmmword
9661 && ((addr_mode == CODE_64BIT
9662 ? !i.index_reg->reg_type.bitfield.qword
9663 : !i.index_reg->reg_type.bitfield.dword)
9664 || !i.index_reg->reg_type.bitfield.baseindex)))
9665 goto bad_address;
9666
9667 /* bndmk, bndldx, and bndstx have special restrictions. */
9668 if (current_templates->start->base_opcode == 0xf30f1b
9669 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9670 {
9671 /* They cannot use RIP-relative addressing. */
9672 if (i.base_reg && i.base_reg->reg_num == RegIP)
9673 {
9674 as_bad (_("`%s' cannot be used here"), operand_string);
9675 return 0;
9676 }
9677
9678 /* bndldx and bndstx ignore their scale factor. */
9679 if (current_templates->start->base_opcode != 0xf30f1b
9680 && i.log2_scale_factor)
9681 as_warn (_("register scaling is being ignored here"));
9682 }
9683 }
9684 else
9685 {
9686 /* 16-bit checks. */
9687 if ((i.base_reg
9688 && (!i.base_reg->reg_type.bitfield.word
9689 || !i.base_reg->reg_type.bitfield.baseindex))
9690 || (i.index_reg
9691 && (!i.index_reg->reg_type.bitfield.word
9692 || !i.index_reg->reg_type.bitfield.baseindex
9693 || !(i.base_reg
9694 && i.base_reg->reg_num < 6
9695 && i.index_reg->reg_num >= 6
9696 && i.log2_scale_factor == 0))))
9697 goto bad_address;
9698 }
9699 }
9700 return 1;
9701 }
9702
9703 /* Handle vector immediates. */
9704
9705 static int
9706 RC_SAE_immediate (const char *imm_start)
9707 {
9708 unsigned int match_found, j;
9709 const char *pstr = imm_start;
9710 expressionS *exp;
9711
9712 if (*pstr != '{')
9713 return 0;
9714
9715 pstr++;
9716 match_found = 0;
9717 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9718 {
9719 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9720 {
9721 if (!i.rounding)
9722 {
9723 rc_op.type = RC_NamesTable[j].type;
9724 rc_op.operand = this_operand;
9725 i.rounding = &rc_op;
9726 }
9727 else
9728 {
9729 as_bad (_("duplicated `%s'"), imm_start);
9730 return 0;
9731 }
9732 pstr += RC_NamesTable[j].len;
9733 match_found = 1;
9734 break;
9735 }
9736 }
9737 if (!match_found)
9738 return 0;
9739
9740 if (*pstr++ != '}')
9741 {
9742 as_bad (_("Missing '}': '%s'"), imm_start);
9743 return 0;
9744 }
9745 /* RC/SAE immediate string should contain nothing more. */;
9746 if (*pstr != 0)
9747 {
9748 as_bad (_("Junk after '}': '%s'"), imm_start);
9749 return 0;
9750 }
9751
9752 exp = &im_expressions[i.imm_operands++];
9753 i.op[this_operand].imms = exp;
9754
9755 exp->X_op = O_constant;
9756 exp->X_add_number = 0;
9757 exp->X_add_symbol = (symbolS *) 0;
9758 exp->X_op_symbol = (symbolS *) 0;
9759
9760 i.types[this_operand].bitfield.imm8 = 1;
9761 return 1;
9762 }
9763
9764 /* Only string instructions can have a second memory operand, so
9765 reduce current_templates to just those if it contains any. */
9766 static int
9767 maybe_adjust_templates (void)
9768 {
9769 const insn_template *t;
9770
9771 gas_assert (i.mem_operands == 1);
9772
9773 for (t = current_templates->start; t < current_templates->end; ++t)
9774 if (t->opcode_modifier.isstring)
9775 break;
9776
9777 if (t < current_templates->end)
9778 {
9779 static templates aux_templates;
9780 bfd_boolean recheck;
9781
9782 aux_templates.start = t;
9783 for (; t < current_templates->end; ++t)
9784 if (!t->opcode_modifier.isstring)
9785 break;
9786 aux_templates.end = t;
9787
9788 /* Determine whether to re-check the first memory operand. */
9789 recheck = (aux_templates.start != current_templates->start
9790 || t != current_templates->end);
9791
9792 current_templates = &aux_templates;
9793
9794 if (recheck)
9795 {
9796 i.mem_operands = 0;
9797 if (i.memop1_string != NULL
9798 && i386_index_check (i.memop1_string) == 0)
9799 return 0;
9800 i.mem_operands = 1;
9801 }
9802 }
9803
9804 return 1;
9805 }
9806
9807 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
9808 on error. */
9809
9810 static int
9811 i386_att_operand (char *operand_string)
9812 {
9813 const reg_entry *r;
9814 char *end_op;
9815 char *op_string = operand_string;
9816
9817 if (is_space_char (*op_string))
9818 ++op_string;
9819
9820 /* We check for an absolute prefix (differentiating,
9821 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
9822 if (*op_string == ABSOLUTE_PREFIX)
9823 {
9824 ++op_string;
9825 if (is_space_char (*op_string))
9826 ++op_string;
9827 i.types[this_operand].bitfield.jumpabsolute = 1;
9828 }
9829
9830 /* Check if operand is a register. */
9831 if ((r = parse_register (op_string, &end_op)) != NULL)
9832 {
9833 i386_operand_type temp;
9834
9835 /* Check for a segment override by searching for ':' after a
9836 segment register. */
9837 op_string = end_op;
9838 if (is_space_char (*op_string))
9839 ++op_string;
9840 if (*op_string == ':'
9841 && (r->reg_type.bitfield.sreg2
9842 || r->reg_type.bitfield.sreg3))
9843 {
9844 switch (r->reg_num)
9845 {
9846 case 0:
9847 i.seg[i.mem_operands] = &es;
9848 break;
9849 case 1:
9850 i.seg[i.mem_operands] = &cs;
9851 break;
9852 case 2:
9853 i.seg[i.mem_operands] = &ss;
9854 break;
9855 case 3:
9856 i.seg[i.mem_operands] = &ds;
9857 break;
9858 case 4:
9859 i.seg[i.mem_operands] = &fs;
9860 break;
9861 case 5:
9862 i.seg[i.mem_operands] = &gs;
9863 break;
9864 }
9865
9866 /* Skip the ':' and whitespace. */
9867 ++op_string;
9868 if (is_space_char (*op_string))
9869 ++op_string;
9870
9871 if (!is_digit_char (*op_string)
9872 && !is_identifier_char (*op_string)
9873 && *op_string != '('
9874 && *op_string != ABSOLUTE_PREFIX)
9875 {
9876 as_bad (_("bad memory operand `%s'"), op_string);
9877 return 0;
9878 }
9879 /* Handle case of %es:*foo. */
9880 if (*op_string == ABSOLUTE_PREFIX)
9881 {
9882 ++op_string;
9883 if (is_space_char (*op_string))
9884 ++op_string;
9885 i.types[this_operand].bitfield.jumpabsolute = 1;
9886 }
9887 goto do_memory_reference;
9888 }
9889
9890 /* Handle vector operations. */
9891 if (*op_string == '{')
9892 {
9893 op_string = check_VecOperations (op_string, NULL);
9894 if (op_string == NULL)
9895 return 0;
9896 }
9897
9898 if (*op_string)
9899 {
9900 as_bad (_("junk `%s' after register"), op_string);
9901 return 0;
9902 }
9903 temp = r->reg_type;
9904 temp.bitfield.baseindex = 0;
9905 i.types[this_operand] = operand_type_or (i.types[this_operand],
9906 temp);
9907 i.types[this_operand].bitfield.unspecified = 0;
9908 i.op[this_operand].regs = r;
9909 i.reg_operands++;
9910 }
9911 else if (*op_string == REGISTER_PREFIX)
9912 {
9913 as_bad (_("bad register name `%s'"), op_string);
9914 return 0;
9915 }
9916 else if (*op_string == IMMEDIATE_PREFIX)
9917 {
9918 ++op_string;
9919 if (i.types[this_operand].bitfield.jumpabsolute)
9920 {
9921 as_bad (_("immediate operand illegal with absolute jump"));
9922 return 0;
9923 }
9924 if (!i386_immediate (op_string))
9925 return 0;
9926 }
9927 else if (RC_SAE_immediate (operand_string))
9928 {
9929 /* If it is a RC or SAE immediate, do nothing. */
9930 ;
9931 }
9932 else if (is_digit_char (*op_string)
9933 || is_identifier_char (*op_string)
9934 || *op_string == '"'
9935 || *op_string == '(')
9936 {
9937 /* This is a memory reference of some sort. */
9938 char *base_string;
9939
9940 /* Start and end of displacement string expression (if found). */
9941 char *displacement_string_start;
9942 char *displacement_string_end;
9943 char *vop_start;
9944
9945 do_memory_reference:
9946 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9947 return 0;
9948 if ((i.mem_operands == 1
9949 && !current_templates->start->opcode_modifier.isstring)
9950 || i.mem_operands == 2)
9951 {
9952 as_bad (_("too many memory references for `%s'"),
9953 current_templates->start->name);
9954 return 0;
9955 }
9956
9957 /* Check for base index form. We detect the base index form by
9958 looking for an ')' at the end of the operand, searching
9959 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9960 after the '('. */
9961 base_string = op_string + strlen (op_string);
9962
9963 /* Handle vector operations. */
9964 vop_start = strchr (op_string, '{');
9965 if (vop_start && vop_start < base_string)
9966 {
9967 if (check_VecOperations (vop_start, base_string) == NULL)
9968 return 0;
9969 base_string = vop_start;
9970 }
9971
9972 --base_string;
9973 if (is_space_char (*base_string))
9974 --base_string;
9975
9976 /* If we only have a displacement, set-up for it to be parsed later. */
9977 displacement_string_start = op_string;
9978 displacement_string_end = base_string + 1;
9979
9980 if (*base_string == ')')
9981 {
9982 char *temp_string;
9983 unsigned int parens_balanced = 1;
9984 /* We've already checked that the number of left & right ()'s are
9985 equal, so this loop will not be infinite. */
9986 do
9987 {
9988 base_string--;
9989 if (*base_string == ')')
9990 parens_balanced++;
9991 if (*base_string == '(')
9992 parens_balanced--;
9993 }
9994 while (parens_balanced);
9995
9996 temp_string = base_string;
9997
9998 /* Skip past '(' and whitespace. */
9999 ++base_string;
10000 if (is_space_char (*base_string))
10001 ++base_string;
10002
10003 if (*base_string == ','
10004 || ((i.base_reg = parse_register (base_string, &end_op))
10005 != NULL))
10006 {
10007 displacement_string_end = temp_string;
10008
10009 i.types[this_operand].bitfield.baseindex = 1;
10010
10011 if (i.base_reg)
10012 {
10013 base_string = end_op;
10014 if (is_space_char (*base_string))
10015 ++base_string;
10016 }
10017
10018 /* There may be an index reg or scale factor here. */
10019 if (*base_string == ',')
10020 {
10021 ++base_string;
10022 if (is_space_char (*base_string))
10023 ++base_string;
10024
10025 if ((i.index_reg = parse_register (base_string, &end_op))
10026 != NULL)
10027 {
10028 base_string = end_op;
10029 if (is_space_char (*base_string))
10030 ++base_string;
10031 if (*base_string == ',')
10032 {
10033 ++base_string;
10034 if (is_space_char (*base_string))
10035 ++base_string;
10036 }
10037 else if (*base_string != ')')
10038 {
10039 as_bad (_("expecting `,' or `)' "
10040 "after index register in `%s'"),
10041 operand_string);
10042 return 0;
10043 }
10044 }
10045 else if (*base_string == REGISTER_PREFIX)
10046 {
10047 end_op = strchr (base_string, ',');
10048 if (end_op)
10049 *end_op = '\0';
10050 as_bad (_("bad register name `%s'"), base_string);
10051 return 0;
10052 }
10053
10054 /* Check for scale factor. */
10055 if (*base_string != ')')
10056 {
10057 char *end_scale = i386_scale (base_string);
10058
10059 if (!end_scale)
10060 return 0;
10061
10062 base_string = end_scale;
10063 if (is_space_char (*base_string))
10064 ++base_string;
10065 if (*base_string != ')')
10066 {
10067 as_bad (_("expecting `)' "
10068 "after scale factor in `%s'"),
10069 operand_string);
10070 return 0;
10071 }
10072 }
10073 else if (!i.index_reg)
10074 {
10075 as_bad (_("expecting index register or scale factor "
10076 "after `,'; got '%c'"),
10077 *base_string);
10078 return 0;
10079 }
10080 }
10081 else if (*base_string != ')')
10082 {
10083 as_bad (_("expecting `,' or `)' "
10084 "after base register in `%s'"),
10085 operand_string);
10086 return 0;
10087 }
10088 }
10089 else if (*base_string == REGISTER_PREFIX)
10090 {
10091 end_op = strchr (base_string, ',');
10092 if (end_op)
10093 *end_op = '\0';
10094 as_bad (_("bad register name `%s'"), base_string);
10095 return 0;
10096 }
10097 }
10098
10099 /* If there's an expression beginning the operand, parse it,
10100 assuming displacement_string_start and
10101 displacement_string_end are meaningful. */
10102 if (displacement_string_start != displacement_string_end)
10103 {
10104 if (!i386_displacement (displacement_string_start,
10105 displacement_string_end))
10106 return 0;
10107 }
10108
10109 /* Special case for (%dx) while doing input/output op. */
10110 if (i.base_reg
10111 && i.base_reg->reg_type.bitfield.inoutportreg
10112 && i.index_reg == 0
10113 && i.log2_scale_factor == 0
10114 && i.seg[i.mem_operands] == 0
10115 && !operand_type_check (i.types[this_operand], disp))
10116 {
10117 i.types[this_operand] = i.base_reg->reg_type;
10118 return 1;
10119 }
10120
10121 if (i386_index_check (operand_string) == 0)
10122 return 0;
10123 i.flags[this_operand] |= Operand_Mem;
10124 if (i.mem_operands == 0)
10125 i.memop1_string = xstrdup (operand_string);
10126 i.mem_operands++;
10127 }
10128 else
10129 {
10130 /* It's not a memory operand; argh! */
10131 as_bad (_("invalid char %s beginning operand %d `%s'"),
10132 output_invalid (*op_string),
10133 this_operand + 1,
10134 op_string);
10135 return 0;
10136 }
10137 return 1; /* Normal return. */
10138 }
10139 \f
10140 /* Calculate the maximum variable size (i.e., excluding fr_fix)
10141 that an rs_machine_dependent frag may reach. */
10142
10143 unsigned int
10144 i386_frag_max_var (fragS *frag)
10145 {
10146 /* The only relaxable frags are for jumps.
10147 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10148 gas_assert (frag->fr_type == rs_machine_dependent);
10149 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10150 }
10151
10152 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10153 static int
10154 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
10155 {
10156 /* STT_GNU_IFUNC symbol must go through PLT. */
10157 if ((symbol_get_bfdsym (fr_symbol)->flags
10158 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10159 return 0;
10160
10161 if (!S_IS_EXTERNAL (fr_symbol))
10162 /* Symbol may be weak or local. */
10163 return !S_IS_WEAK (fr_symbol);
10164
10165 /* Global symbols with non-default visibility can't be preempted. */
10166 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10167 return 1;
10168
10169 if (fr_var != NO_RELOC)
10170 switch ((enum bfd_reloc_code_real) fr_var)
10171 {
10172 case BFD_RELOC_386_PLT32:
10173 case BFD_RELOC_X86_64_PLT32:
10174 /* Symbol with PLT relocation may be preempted. */
10175 return 0;
10176 default:
10177 abort ();
10178 }
10179
10180 /* Global symbols with default visibility in a shared library may be
10181 preempted by another definition. */
10182 return !shared;
10183 }
10184 #endif
10185
10186 /* md_estimate_size_before_relax()
10187
10188 Called just before relax() for rs_machine_dependent frags. The x86
10189 assembler uses these frags to handle variable size jump
10190 instructions.
10191
10192 Any symbol that is now undefined will not become defined.
10193 Return the correct fr_subtype in the frag.
10194 Return the initial "guess for variable size of frag" to caller.
10195 The guess is actually the growth beyond the fixed part. Whatever
10196 we do to grow the fixed or variable part contributes to our
10197 returned value. */
10198
10199 int
10200 md_estimate_size_before_relax (fragS *fragP, segT segment)
10201 {
10202 /* We've already got fragP->fr_subtype right; all we have to do is
10203 check for un-relaxable symbols. On an ELF system, we can't relax
10204 an externally visible symbol, because it may be overridden by a
10205 shared library. */
10206 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
10207 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10208 || (IS_ELF
10209 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
10210 fragP->fr_var))
10211 #endif
10212 #if defined (OBJ_COFF) && defined (TE_PE)
10213 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
10214 && S_IS_WEAK (fragP->fr_symbol))
10215 #endif
10216 )
10217 {
10218 /* Symbol is undefined in this segment, or we need to keep a
10219 reloc so that weak symbols can be overridden. */
10220 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
10221 enum bfd_reloc_code_real reloc_type;
10222 unsigned char *opcode;
10223 int old_fr_fix;
10224
10225 if (fragP->fr_var != NO_RELOC)
10226 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
10227 else if (size == 2)
10228 reloc_type = BFD_RELOC_16_PCREL;
10229 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10230 else if (need_plt32_p (fragP->fr_symbol))
10231 reloc_type = BFD_RELOC_X86_64_PLT32;
10232 #endif
10233 else
10234 reloc_type = BFD_RELOC_32_PCREL;
10235
10236 old_fr_fix = fragP->fr_fix;
10237 opcode = (unsigned char *) fragP->fr_opcode;
10238
10239 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
10240 {
10241 case UNCOND_JUMP:
10242 /* Make jmp (0xeb) a (d)word displacement jump. */
10243 opcode[0] = 0xe9;
10244 fragP->fr_fix += size;
10245 fix_new (fragP, old_fr_fix, size,
10246 fragP->fr_symbol,
10247 fragP->fr_offset, 1,
10248 reloc_type);
10249 break;
10250
10251 case COND_JUMP86:
10252 if (size == 2
10253 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
10254 {
10255 /* Negate the condition, and branch past an
10256 unconditional jump. */
10257 opcode[0] ^= 1;
10258 opcode[1] = 3;
10259 /* Insert an unconditional jump. */
10260 opcode[2] = 0xe9;
10261 /* We added two extra opcode bytes, and have a two byte
10262 offset. */
10263 fragP->fr_fix += 2 + 2;
10264 fix_new (fragP, old_fr_fix + 2, 2,
10265 fragP->fr_symbol,
10266 fragP->fr_offset, 1,
10267 reloc_type);
10268 break;
10269 }
10270 /* Fall through. */
10271
10272 case COND_JUMP:
10273 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
10274 {
10275 fixS *fixP;
10276
10277 fragP->fr_fix += 1;
10278 fixP = fix_new (fragP, old_fr_fix, 1,
10279 fragP->fr_symbol,
10280 fragP->fr_offset, 1,
10281 BFD_RELOC_8_PCREL);
10282 fixP->fx_signed = 1;
10283 break;
10284 }
10285
10286 /* This changes the byte-displacement jump 0x7N
10287 to the (d)word-displacement jump 0x0f,0x8N. */
10288 opcode[1] = opcode[0] + 0x10;
10289 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10290 /* We've added an opcode byte. */
10291 fragP->fr_fix += 1 + size;
10292 fix_new (fragP, old_fr_fix + 1, size,
10293 fragP->fr_symbol,
10294 fragP->fr_offset, 1,
10295 reloc_type);
10296 break;
10297
10298 default:
10299 BAD_CASE (fragP->fr_subtype);
10300 break;
10301 }
10302 frag_wane (fragP);
10303 return fragP->fr_fix - old_fr_fix;
10304 }
10305
10306 /* Guess size depending on current relax state. Initially the relax
10307 state will correspond to a short jump and we return 1, because
10308 the variable part of the frag (the branch offset) is one byte
10309 long. However, we can relax a section more than once and in that
10310 case we must either set fr_subtype back to the unrelaxed state,
10311 or return the value for the appropriate branch. */
10312 return md_relax_table[fragP->fr_subtype].rlx_length;
10313 }
10314
10315 /* Called after relax() is finished.
10316
10317 In: Address of frag.
10318 fr_type == rs_machine_dependent.
10319 fr_subtype is what the address relaxed to.
10320
10321 Out: Any fixSs and constants are set up.
10322 Caller will turn frag into a ".space 0". */
10323
10324 void
10325 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10326 fragS *fragP)
10327 {
10328 unsigned char *opcode;
10329 unsigned char *where_to_put_displacement = NULL;
10330 offsetT target_address;
10331 offsetT opcode_address;
10332 unsigned int extension = 0;
10333 offsetT displacement_from_opcode_start;
10334
10335 opcode = (unsigned char *) fragP->fr_opcode;
10336
10337 /* Address we want to reach in file space. */
10338 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
10339
10340 /* Address opcode resides at in file space. */
10341 opcode_address = fragP->fr_address + fragP->fr_fix;
10342
10343 /* Displacement from opcode start to fill into instruction. */
10344 displacement_from_opcode_start = target_address - opcode_address;
10345
10346 if ((fragP->fr_subtype & BIG) == 0)
10347 {
10348 /* Don't have to change opcode. */
10349 extension = 1; /* 1 opcode + 1 displacement */
10350 where_to_put_displacement = &opcode[1];
10351 }
10352 else
10353 {
10354 if (no_cond_jump_promotion
10355 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
10356 as_warn_where (fragP->fr_file, fragP->fr_line,
10357 _("long jump required"));
10358
10359 switch (fragP->fr_subtype)
10360 {
10361 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10362 extension = 4; /* 1 opcode + 4 displacement */
10363 opcode[0] = 0xe9;
10364 where_to_put_displacement = &opcode[1];
10365 break;
10366
10367 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10368 extension = 2; /* 1 opcode + 2 displacement */
10369 opcode[0] = 0xe9;
10370 where_to_put_displacement = &opcode[1];
10371 break;
10372
10373 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10374 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10375 extension = 5; /* 2 opcode + 4 displacement */
10376 opcode[1] = opcode[0] + 0x10;
10377 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10378 where_to_put_displacement = &opcode[2];
10379 break;
10380
10381 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10382 extension = 3; /* 2 opcode + 2 displacement */
10383 opcode[1] = opcode[0] + 0x10;
10384 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10385 where_to_put_displacement = &opcode[2];
10386 break;
10387
10388 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10389 extension = 4;
10390 opcode[0] ^= 1;
10391 opcode[1] = 3;
10392 opcode[2] = 0xe9;
10393 where_to_put_displacement = &opcode[3];
10394 break;
10395
10396 default:
10397 BAD_CASE (fragP->fr_subtype);
10398 break;
10399 }
10400 }
10401
10402 /* If size if less then four we are sure that the operand fits,
10403 but if it's 4, then it could be that the displacement is larger
10404 then -/+ 2GB. */
10405 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10406 && object_64bit
10407 && ((addressT) (displacement_from_opcode_start - extension
10408 + ((addressT) 1 << 31))
10409 > (((addressT) 2 << 31) - 1)))
10410 {
10411 as_bad_where (fragP->fr_file, fragP->fr_line,
10412 _("jump target out of range"));
10413 /* Make us emit 0. */
10414 displacement_from_opcode_start = extension;
10415 }
10416 /* Now put displacement after opcode. */
10417 md_number_to_chars ((char *) where_to_put_displacement,
10418 (valueT) (displacement_from_opcode_start - extension),
10419 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
10420 fragP->fr_fix += extension;
10421 }
10422 \f
10423 /* Apply a fixup (fixP) to segment data, once it has been determined
10424 by our caller that we have all the info we need to fix it up.
10425
10426 Parameter valP is the pointer to the value of the bits.
10427
10428 On the 386, immediates, displacements, and data pointers are all in
10429 the same (little-endian) format, so we don't need to care about which
10430 we are handling. */
10431
10432 void
10433 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
10434 {
10435 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
10436 valueT value = *valP;
10437
10438 #if !defined (TE_Mach)
10439 if (fixP->fx_pcrel)
10440 {
10441 switch (fixP->fx_r_type)
10442 {
10443 default:
10444 break;
10445
10446 case BFD_RELOC_64:
10447 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10448 break;
10449 case BFD_RELOC_32:
10450 case BFD_RELOC_X86_64_32S:
10451 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10452 break;
10453 case BFD_RELOC_16:
10454 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10455 break;
10456 case BFD_RELOC_8:
10457 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10458 break;
10459 }
10460 }
10461
10462 if (fixP->fx_addsy != NULL
10463 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
10464 || fixP->fx_r_type == BFD_RELOC_64_PCREL
10465 || fixP->fx_r_type == BFD_RELOC_16_PCREL
10466 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
10467 && !use_rela_relocations)
10468 {
10469 /* This is a hack. There should be a better way to handle this.
10470 This covers for the fact that bfd_install_relocation will
10471 subtract the current location (for partial_inplace, PC relative
10472 relocations); see more below. */
10473 #ifndef OBJ_AOUT
10474 if (IS_ELF
10475 #ifdef TE_PE
10476 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10477 #endif
10478 )
10479 value += fixP->fx_where + fixP->fx_frag->fr_address;
10480 #endif
10481 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10482 if (IS_ELF)
10483 {
10484 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
10485
10486 if ((sym_seg == seg
10487 || (symbol_section_p (fixP->fx_addsy)
10488 && sym_seg != absolute_section))
10489 && !generic_force_reloc (fixP))
10490 {
10491 /* Yes, we add the values in twice. This is because
10492 bfd_install_relocation subtracts them out again. I think
10493 bfd_install_relocation is broken, but I don't dare change
10494 it. FIXME. */
10495 value += fixP->fx_where + fixP->fx_frag->fr_address;
10496 }
10497 }
10498 #endif
10499 #if defined (OBJ_COFF) && defined (TE_PE)
10500 /* For some reason, the PE format does not store a
10501 section address offset for a PC relative symbol. */
10502 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
10503 || S_IS_WEAK (fixP->fx_addsy))
10504 value += md_pcrel_from (fixP);
10505 #endif
10506 }
10507 #if defined (OBJ_COFF) && defined (TE_PE)
10508 if (fixP->fx_addsy != NULL
10509 && S_IS_WEAK (fixP->fx_addsy)
10510 /* PR 16858: Do not modify weak function references. */
10511 && ! fixP->fx_pcrel)
10512 {
10513 #if !defined (TE_PEP)
10514 /* For x86 PE weak function symbols are neither PC-relative
10515 nor do they set S_IS_FUNCTION. So the only reliable way
10516 to detect them is to check the flags of their containing
10517 section. */
10518 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10519 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10520 ;
10521 else
10522 #endif
10523 value -= S_GET_VALUE (fixP->fx_addsy);
10524 }
10525 #endif
10526
10527 /* Fix a few things - the dynamic linker expects certain values here,
10528 and we must not disappoint it. */
10529 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10530 if (IS_ELF && fixP->fx_addsy)
10531 switch (fixP->fx_r_type)
10532 {
10533 case BFD_RELOC_386_PLT32:
10534 case BFD_RELOC_X86_64_PLT32:
10535 /* Make the jump instruction point to the address of the operand. At
10536 runtime we merely add the offset to the actual PLT entry. */
10537 value = -4;
10538 break;
10539
10540 case BFD_RELOC_386_TLS_GD:
10541 case BFD_RELOC_386_TLS_LDM:
10542 case BFD_RELOC_386_TLS_IE_32:
10543 case BFD_RELOC_386_TLS_IE:
10544 case BFD_RELOC_386_TLS_GOTIE:
10545 case BFD_RELOC_386_TLS_GOTDESC:
10546 case BFD_RELOC_X86_64_TLSGD:
10547 case BFD_RELOC_X86_64_TLSLD:
10548 case BFD_RELOC_X86_64_GOTTPOFF:
10549 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10550 value = 0; /* Fully resolved at runtime. No addend. */
10551 /* Fallthrough */
10552 case BFD_RELOC_386_TLS_LE:
10553 case BFD_RELOC_386_TLS_LDO_32:
10554 case BFD_RELOC_386_TLS_LE_32:
10555 case BFD_RELOC_X86_64_DTPOFF32:
10556 case BFD_RELOC_X86_64_DTPOFF64:
10557 case BFD_RELOC_X86_64_TPOFF32:
10558 case BFD_RELOC_X86_64_TPOFF64:
10559 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10560 break;
10561
10562 case BFD_RELOC_386_TLS_DESC_CALL:
10563 case BFD_RELOC_X86_64_TLSDESC_CALL:
10564 value = 0; /* Fully resolved at runtime. No addend. */
10565 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10566 fixP->fx_done = 0;
10567 return;
10568
10569 case BFD_RELOC_VTABLE_INHERIT:
10570 case BFD_RELOC_VTABLE_ENTRY:
10571 fixP->fx_done = 0;
10572 return;
10573
10574 default:
10575 break;
10576 }
10577 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
10578 *valP = value;
10579 #endif /* !defined (TE_Mach) */
10580
10581 /* Are we finished with this relocation now? */
10582 if (fixP->fx_addsy == NULL)
10583 fixP->fx_done = 1;
10584 #if defined (OBJ_COFF) && defined (TE_PE)
10585 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10586 {
10587 fixP->fx_done = 0;
10588 /* Remember value for tc_gen_reloc. */
10589 fixP->fx_addnumber = value;
10590 /* Clear out the frag for now. */
10591 value = 0;
10592 }
10593 #endif
10594 else if (use_rela_relocations)
10595 {
10596 fixP->fx_no_overflow = 1;
10597 /* Remember value for tc_gen_reloc. */
10598 fixP->fx_addnumber = value;
10599 value = 0;
10600 }
10601
10602 md_number_to_chars (p, value, fixP->fx_size);
10603 }
10604 \f
10605 const char *
10606 md_atof (int type, char *litP, int *sizeP)
10607 {
10608 /* This outputs the LITTLENUMs in REVERSE order;
10609 in accord with the bigendian 386. */
10610 return ieee_md_atof (type, litP, sizeP, FALSE);
10611 }
10612 \f
10613 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
10614
10615 static char *
10616 output_invalid (int c)
10617 {
10618 if (ISPRINT (c))
10619 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10620 "'%c'", c);
10621 else
10622 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10623 "(0x%x)", (unsigned char) c);
10624 return output_invalid_buf;
10625 }
10626
10627 /* REG_STRING starts *before* REGISTER_PREFIX. */
10628
10629 static const reg_entry *
10630 parse_real_register (char *reg_string, char **end_op)
10631 {
10632 char *s = reg_string;
10633 char *p;
10634 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10635 const reg_entry *r;
10636
10637 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10638 if (*s == REGISTER_PREFIX)
10639 ++s;
10640
10641 if (is_space_char (*s))
10642 ++s;
10643
10644 p = reg_name_given;
10645 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
10646 {
10647 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
10648 return (const reg_entry *) NULL;
10649 s++;
10650 }
10651
10652 /* For naked regs, make sure that we are not dealing with an identifier.
10653 This prevents confusing an identifier like `eax_var' with register
10654 `eax'. */
10655 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10656 return (const reg_entry *) NULL;
10657
10658 *end_op = s;
10659
10660 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10661
10662 /* Handle floating point regs, allowing spaces in the (i) part. */
10663 if (r == i386_regtab /* %st is first entry of table */)
10664 {
10665 if (!cpu_arch_flags.bitfield.cpu8087
10666 && !cpu_arch_flags.bitfield.cpu287
10667 && !cpu_arch_flags.bitfield.cpu387)
10668 return (const reg_entry *) NULL;
10669
10670 if (is_space_char (*s))
10671 ++s;
10672 if (*s == '(')
10673 {
10674 ++s;
10675 if (is_space_char (*s))
10676 ++s;
10677 if (*s >= '0' && *s <= '7')
10678 {
10679 int fpr = *s - '0';
10680 ++s;
10681 if (is_space_char (*s))
10682 ++s;
10683 if (*s == ')')
10684 {
10685 *end_op = s + 1;
10686 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
10687 know (r);
10688 return r + fpr;
10689 }
10690 }
10691 /* We have "%st(" then garbage. */
10692 return (const reg_entry *) NULL;
10693 }
10694 }
10695
10696 if (r == NULL || allow_pseudo_reg)
10697 return r;
10698
10699 if (operand_type_all_zero (&r->reg_type))
10700 return (const reg_entry *) NULL;
10701
10702 if ((r->reg_type.bitfield.dword
10703 || r->reg_type.bitfield.sreg3
10704 || r->reg_type.bitfield.control
10705 || r->reg_type.bitfield.debug
10706 || r->reg_type.bitfield.test)
10707 && !cpu_arch_flags.bitfield.cpui386)
10708 return (const reg_entry *) NULL;
10709
10710 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
10711 return (const reg_entry *) NULL;
10712
10713 if (!cpu_arch_flags.bitfield.cpuavx512f)
10714 {
10715 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10716 return (const reg_entry *) NULL;
10717
10718 if (!cpu_arch_flags.bitfield.cpuavx)
10719 {
10720 if (r->reg_type.bitfield.ymmword)
10721 return (const reg_entry *) NULL;
10722
10723 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10724 return (const reg_entry *) NULL;
10725 }
10726 }
10727
10728 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10729 return (const reg_entry *) NULL;
10730
10731 /* Don't allow fake index register unless allow_index_reg isn't 0. */
10732 if (!allow_index_reg && r->reg_num == RegIZ)
10733 return (const reg_entry *) NULL;
10734
10735 /* Upper 16 vector registers are only available with VREX in 64bit
10736 mode, and require EVEX encoding. */
10737 if (r->reg_flags & RegVRex)
10738 {
10739 if (!cpu_arch_flags.bitfield.cpuavx512f
10740 || flag_code != CODE_64BIT)
10741 return (const reg_entry *) NULL;
10742
10743 i.vec_encoding = vex_encoding_evex;
10744 }
10745
10746 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10747 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
10748 && flag_code != CODE_64BIT)
10749 return (const reg_entry *) NULL;
10750
10751 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10752 return (const reg_entry *) NULL;
10753
10754 return r;
10755 }
10756
10757 /* REG_STRING starts *before* REGISTER_PREFIX. */
10758
10759 static const reg_entry *
10760 parse_register (char *reg_string, char **end_op)
10761 {
10762 const reg_entry *r;
10763
10764 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10765 r = parse_real_register (reg_string, end_op);
10766 else
10767 r = NULL;
10768 if (!r)
10769 {
10770 char *save = input_line_pointer;
10771 char c;
10772 symbolS *symbolP;
10773
10774 input_line_pointer = reg_string;
10775 c = get_symbol_name (&reg_string);
10776 symbolP = symbol_find (reg_string);
10777 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10778 {
10779 const expressionS *e = symbol_get_value_expression (symbolP);
10780
10781 know (e->X_op == O_register);
10782 know (e->X_add_number >= 0
10783 && (valueT) e->X_add_number < i386_regtab_size);
10784 r = i386_regtab + e->X_add_number;
10785 if ((r->reg_flags & RegVRex))
10786 i.vec_encoding = vex_encoding_evex;
10787 *end_op = input_line_pointer;
10788 }
10789 *input_line_pointer = c;
10790 input_line_pointer = save;
10791 }
10792 return r;
10793 }
10794
10795 int
10796 i386_parse_name (char *name, expressionS *e, char *nextcharP)
10797 {
10798 const reg_entry *r;
10799 char *end = input_line_pointer;
10800
10801 *end = *nextcharP;
10802 r = parse_register (name, &input_line_pointer);
10803 if (r && end <= input_line_pointer)
10804 {
10805 *nextcharP = *input_line_pointer;
10806 *input_line_pointer = 0;
10807 e->X_op = O_register;
10808 e->X_add_number = r - i386_regtab;
10809 return 1;
10810 }
10811 input_line_pointer = end;
10812 *end = 0;
10813 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
10814 }
10815
10816 void
10817 md_operand (expressionS *e)
10818 {
10819 char *end;
10820 const reg_entry *r;
10821
10822 switch (*input_line_pointer)
10823 {
10824 case REGISTER_PREFIX:
10825 r = parse_real_register (input_line_pointer, &end);
10826 if (r)
10827 {
10828 e->X_op = O_register;
10829 e->X_add_number = r - i386_regtab;
10830 input_line_pointer = end;
10831 }
10832 break;
10833
10834 case '[':
10835 gas_assert (intel_syntax);
10836 end = input_line_pointer++;
10837 expression (e);
10838 if (*input_line_pointer == ']')
10839 {
10840 ++input_line_pointer;
10841 e->X_op_symbol = make_expr_symbol (e);
10842 e->X_add_symbol = NULL;
10843 e->X_add_number = 0;
10844 e->X_op = O_index;
10845 }
10846 else
10847 {
10848 e->X_op = O_absent;
10849 input_line_pointer = end;
10850 }
10851 break;
10852 }
10853 }
10854
10855 \f
10856 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10857 const char *md_shortopts = "kVQ:sqnO::";
10858 #else
10859 const char *md_shortopts = "qnO::";
10860 #endif
10861
10862 #define OPTION_32 (OPTION_MD_BASE + 0)
10863 #define OPTION_64 (OPTION_MD_BASE + 1)
10864 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
10865 #define OPTION_MARCH (OPTION_MD_BASE + 3)
10866 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
10867 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10868 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10869 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10870 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
10871 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
10872 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
10873 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
10874 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10875 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10876 #define OPTION_X32 (OPTION_MD_BASE + 14)
10877 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
10878 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10879 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
10880 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
10881 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
10882 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
10883 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
10884 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10885 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
10886 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
10887 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
10888
10889 struct option md_longopts[] =
10890 {
10891 {"32", no_argument, NULL, OPTION_32},
10892 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10893 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10894 {"64", no_argument, NULL, OPTION_64},
10895 #endif
10896 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10897 {"x32", no_argument, NULL, OPTION_X32},
10898 {"mshared", no_argument, NULL, OPTION_MSHARED},
10899 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
10900 #endif
10901 {"divide", no_argument, NULL, OPTION_DIVIDE},
10902 {"march", required_argument, NULL, OPTION_MARCH},
10903 {"mtune", required_argument, NULL, OPTION_MTUNE},
10904 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10905 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10906 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10907 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
10908 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
10909 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
10910 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
10911 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
10912 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
10913 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10914 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
10915 # if defined (TE_PE) || defined (TE_PEP)
10916 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10917 #endif
10918 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
10919 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
10920 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
10921 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
10922 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10923 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
10924 {NULL, no_argument, NULL, 0}
10925 };
10926 size_t md_longopts_size = sizeof (md_longopts);
10927
10928 int
10929 md_parse_option (int c, const char *arg)
10930 {
10931 unsigned int j;
10932 char *arch, *next, *saved;
10933
10934 switch (c)
10935 {
10936 case 'n':
10937 optimize_align_code = 0;
10938 break;
10939
10940 case 'q':
10941 quiet_warnings = 1;
10942 break;
10943
10944 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10945 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10946 should be emitted or not. FIXME: Not implemented. */
10947 case 'Q':
10948 break;
10949
10950 /* -V: SVR4 argument to print version ID. */
10951 case 'V':
10952 print_version_id ();
10953 break;
10954
10955 /* -k: Ignore for FreeBSD compatibility. */
10956 case 'k':
10957 break;
10958
10959 case 's':
10960 /* -s: On i386 Solaris, this tells the native assembler to use
10961 .stab instead of .stab.excl. We always use .stab anyhow. */
10962 break;
10963
10964 case OPTION_MSHARED:
10965 shared = 1;
10966 break;
10967
10968 case OPTION_X86_USED_NOTE:
10969 if (strcasecmp (arg, "yes") == 0)
10970 x86_used_note = 1;
10971 else if (strcasecmp (arg, "no") == 0)
10972 x86_used_note = 0;
10973 else
10974 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
10975 break;
10976
10977
10978 #endif
10979 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10980 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10981 case OPTION_64:
10982 {
10983 const char **list, **l;
10984
10985 list = bfd_target_list ();
10986 for (l = list; *l != NULL; l++)
10987 if (CONST_STRNEQ (*l, "elf64-x86-64")
10988 || strcmp (*l, "coff-x86-64") == 0
10989 || strcmp (*l, "pe-x86-64") == 0
10990 || strcmp (*l, "pei-x86-64") == 0
10991 || strcmp (*l, "mach-o-x86-64") == 0)
10992 {
10993 default_arch = "x86_64";
10994 break;
10995 }
10996 if (*l == NULL)
10997 as_fatal (_("no compiled in support for x86_64"));
10998 free (list);
10999 }
11000 break;
11001 #endif
11002
11003 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11004 case OPTION_X32:
11005 if (IS_ELF)
11006 {
11007 const char **list, **l;
11008
11009 list = bfd_target_list ();
11010 for (l = list; *l != NULL; l++)
11011 if (CONST_STRNEQ (*l, "elf32-x86-64"))
11012 {
11013 default_arch = "x86_64:32";
11014 break;
11015 }
11016 if (*l == NULL)
11017 as_fatal (_("no compiled in support for 32bit x86_64"));
11018 free (list);
11019 }
11020 else
11021 as_fatal (_("32bit x86_64 is only supported for ELF"));
11022 break;
11023 #endif
11024
11025 case OPTION_32:
11026 default_arch = "i386";
11027 break;
11028
11029 case OPTION_DIVIDE:
11030 #ifdef SVR4_COMMENT_CHARS
11031 {
11032 char *n, *t;
11033 const char *s;
11034
11035 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
11036 t = n;
11037 for (s = i386_comment_chars; *s != '\0'; s++)
11038 if (*s != '/')
11039 *t++ = *s;
11040 *t = '\0';
11041 i386_comment_chars = n;
11042 }
11043 #endif
11044 break;
11045
11046 case OPTION_MARCH:
11047 saved = xstrdup (arg);
11048 arch = saved;
11049 /* Allow -march=+nosse. */
11050 if (*arch == '+')
11051 arch++;
11052 do
11053 {
11054 if (*arch == '.')
11055 as_fatal (_("invalid -march= option: `%s'"), arg);
11056 next = strchr (arch, '+');
11057 if (next)
11058 *next++ = '\0';
11059 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11060 {
11061 if (strcmp (arch, cpu_arch [j].name) == 0)
11062 {
11063 /* Processor. */
11064 if (! cpu_arch[j].flags.bitfield.cpui386)
11065 continue;
11066
11067 cpu_arch_name = cpu_arch[j].name;
11068 cpu_sub_arch_name = NULL;
11069 cpu_arch_flags = cpu_arch[j].flags;
11070 cpu_arch_isa = cpu_arch[j].type;
11071 cpu_arch_isa_flags = cpu_arch[j].flags;
11072 if (!cpu_arch_tune_set)
11073 {
11074 cpu_arch_tune = cpu_arch_isa;
11075 cpu_arch_tune_flags = cpu_arch_isa_flags;
11076 }
11077 break;
11078 }
11079 else if (*cpu_arch [j].name == '.'
11080 && strcmp (arch, cpu_arch [j].name + 1) == 0)
11081 {
11082 /* ISA extension. */
11083 i386_cpu_flags flags;
11084
11085 flags = cpu_flags_or (cpu_arch_flags,
11086 cpu_arch[j].flags);
11087
11088 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11089 {
11090 if (cpu_sub_arch_name)
11091 {
11092 char *name = cpu_sub_arch_name;
11093 cpu_sub_arch_name = concat (name,
11094 cpu_arch[j].name,
11095 (const char *) NULL);
11096 free (name);
11097 }
11098 else
11099 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
11100 cpu_arch_flags = flags;
11101 cpu_arch_isa_flags = flags;
11102 }
11103 else
11104 cpu_arch_isa_flags
11105 = cpu_flags_or (cpu_arch_isa_flags,
11106 cpu_arch[j].flags);
11107 break;
11108 }
11109 }
11110
11111 if (j >= ARRAY_SIZE (cpu_arch))
11112 {
11113 /* Disable an ISA extension. */
11114 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11115 if (strcmp (arch, cpu_noarch [j].name) == 0)
11116 {
11117 i386_cpu_flags flags;
11118
11119 flags = cpu_flags_and_not (cpu_arch_flags,
11120 cpu_noarch[j].flags);
11121 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11122 {
11123 if (cpu_sub_arch_name)
11124 {
11125 char *name = cpu_sub_arch_name;
11126 cpu_sub_arch_name = concat (arch,
11127 (const char *) NULL);
11128 free (name);
11129 }
11130 else
11131 cpu_sub_arch_name = xstrdup (arch);
11132 cpu_arch_flags = flags;
11133 cpu_arch_isa_flags = flags;
11134 }
11135 break;
11136 }
11137
11138 if (j >= ARRAY_SIZE (cpu_noarch))
11139 j = ARRAY_SIZE (cpu_arch);
11140 }
11141
11142 if (j >= ARRAY_SIZE (cpu_arch))
11143 as_fatal (_("invalid -march= option: `%s'"), arg);
11144
11145 arch = next;
11146 }
11147 while (next != NULL);
11148 free (saved);
11149 break;
11150
11151 case OPTION_MTUNE:
11152 if (*arg == '.')
11153 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11154 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11155 {
11156 if (strcmp (arg, cpu_arch [j].name) == 0)
11157 {
11158 cpu_arch_tune_set = 1;
11159 cpu_arch_tune = cpu_arch [j].type;
11160 cpu_arch_tune_flags = cpu_arch[j].flags;
11161 break;
11162 }
11163 }
11164 if (j >= ARRAY_SIZE (cpu_arch))
11165 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11166 break;
11167
11168 case OPTION_MMNEMONIC:
11169 if (strcasecmp (arg, "att") == 0)
11170 intel_mnemonic = 0;
11171 else if (strcasecmp (arg, "intel") == 0)
11172 intel_mnemonic = 1;
11173 else
11174 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
11175 break;
11176
11177 case OPTION_MSYNTAX:
11178 if (strcasecmp (arg, "att") == 0)
11179 intel_syntax = 0;
11180 else if (strcasecmp (arg, "intel") == 0)
11181 intel_syntax = 1;
11182 else
11183 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
11184 break;
11185
11186 case OPTION_MINDEX_REG:
11187 allow_index_reg = 1;
11188 break;
11189
11190 case OPTION_MNAKED_REG:
11191 allow_naked_reg = 1;
11192 break;
11193
11194 case OPTION_MSSE2AVX:
11195 sse2avx = 1;
11196 break;
11197
11198 case OPTION_MSSE_CHECK:
11199 if (strcasecmp (arg, "error") == 0)
11200 sse_check = check_error;
11201 else if (strcasecmp (arg, "warning") == 0)
11202 sse_check = check_warning;
11203 else if (strcasecmp (arg, "none") == 0)
11204 sse_check = check_none;
11205 else
11206 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
11207 break;
11208
11209 case OPTION_MOPERAND_CHECK:
11210 if (strcasecmp (arg, "error") == 0)
11211 operand_check = check_error;
11212 else if (strcasecmp (arg, "warning") == 0)
11213 operand_check = check_warning;
11214 else if (strcasecmp (arg, "none") == 0)
11215 operand_check = check_none;
11216 else
11217 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
11218 break;
11219
11220 case OPTION_MAVXSCALAR:
11221 if (strcasecmp (arg, "128") == 0)
11222 avxscalar = vex128;
11223 else if (strcasecmp (arg, "256") == 0)
11224 avxscalar = vex256;
11225 else
11226 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
11227 break;
11228
11229 case OPTION_MADD_BND_PREFIX:
11230 add_bnd_prefix = 1;
11231 break;
11232
11233 case OPTION_MEVEXLIG:
11234 if (strcmp (arg, "128") == 0)
11235 evexlig = evexl128;
11236 else if (strcmp (arg, "256") == 0)
11237 evexlig = evexl256;
11238 else if (strcmp (arg, "512") == 0)
11239 evexlig = evexl512;
11240 else
11241 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
11242 break;
11243
11244 case OPTION_MEVEXRCIG:
11245 if (strcmp (arg, "rne") == 0)
11246 evexrcig = rne;
11247 else if (strcmp (arg, "rd") == 0)
11248 evexrcig = rd;
11249 else if (strcmp (arg, "ru") == 0)
11250 evexrcig = ru;
11251 else if (strcmp (arg, "rz") == 0)
11252 evexrcig = rz;
11253 else
11254 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
11255 break;
11256
11257 case OPTION_MEVEXWIG:
11258 if (strcmp (arg, "0") == 0)
11259 evexwig = evexw0;
11260 else if (strcmp (arg, "1") == 0)
11261 evexwig = evexw1;
11262 else
11263 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
11264 break;
11265
11266 # if defined (TE_PE) || defined (TE_PEP)
11267 case OPTION_MBIG_OBJ:
11268 use_big_obj = 1;
11269 break;
11270 #endif
11271
11272 case OPTION_MOMIT_LOCK_PREFIX:
11273 if (strcasecmp (arg, "yes") == 0)
11274 omit_lock_prefix = 1;
11275 else if (strcasecmp (arg, "no") == 0)
11276 omit_lock_prefix = 0;
11277 else
11278 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
11279 break;
11280
11281 case OPTION_MFENCE_AS_LOCK_ADD:
11282 if (strcasecmp (arg, "yes") == 0)
11283 avoid_fence = 1;
11284 else if (strcasecmp (arg, "no") == 0)
11285 avoid_fence = 0;
11286 else
11287 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
11288 break;
11289
11290 case OPTION_MRELAX_RELOCATIONS:
11291 if (strcasecmp (arg, "yes") == 0)
11292 generate_relax_relocations = 1;
11293 else if (strcasecmp (arg, "no") == 0)
11294 generate_relax_relocations = 0;
11295 else
11296 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
11297 break;
11298
11299 case OPTION_MAMD64:
11300 intel64 = 0;
11301 break;
11302
11303 case OPTION_MINTEL64:
11304 intel64 = 1;
11305 break;
11306
11307 case 'O':
11308 if (arg == NULL)
11309 {
11310 optimize = 1;
11311 /* Turn off -Os. */
11312 optimize_for_space = 0;
11313 }
11314 else if (*arg == 's')
11315 {
11316 optimize_for_space = 1;
11317 /* Turn on all encoding optimizations. */
11318 optimize = -1;
11319 }
11320 else
11321 {
11322 optimize = atoi (arg);
11323 /* Turn off -Os. */
11324 optimize_for_space = 0;
11325 }
11326 break;
11327
11328 default:
11329 return 0;
11330 }
11331 return 1;
11332 }
11333
11334 #define MESSAGE_TEMPLATE \
11335 " "
11336
11337 static char *
11338 output_message (FILE *stream, char *p, char *message, char *start,
11339 int *left_p, const char *name, int len)
11340 {
11341 int size = sizeof (MESSAGE_TEMPLATE);
11342 int left = *left_p;
11343
11344 /* Reserve 2 spaces for ", " or ",\0" */
11345 left -= len + 2;
11346
11347 /* Check if there is any room. */
11348 if (left >= 0)
11349 {
11350 if (p != start)
11351 {
11352 *p++ = ',';
11353 *p++ = ' ';
11354 }
11355 p = mempcpy (p, name, len);
11356 }
11357 else
11358 {
11359 /* Output the current message now and start a new one. */
11360 *p++ = ',';
11361 *p = '\0';
11362 fprintf (stream, "%s\n", message);
11363 p = start;
11364 left = size - (start - message) - len - 2;
11365
11366 gas_assert (left >= 0);
11367
11368 p = mempcpy (p, name, len);
11369 }
11370
11371 *left_p = left;
11372 return p;
11373 }
11374
11375 static void
11376 show_arch (FILE *stream, int ext, int check)
11377 {
11378 static char message[] = MESSAGE_TEMPLATE;
11379 char *start = message + 27;
11380 char *p;
11381 int size = sizeof (MESSAGE_TEMPLATE);
11382 int left;
11383 const char *name;
11384 int len;
11385 unsigned int j;
11386
11387 p = start;
11388 left = size - (start - message);
11389 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11390 {
11391 /* Should it be skipped? */
11392 if (cpu_arch [j].skip)
11393 continue;
11394
11395 name = cpu_arch [j].name;
11396 len = cpu_arch [j].len;
11397 if (*name == '.')
11398 {
11399 /* It is an extension. Skip if we aren't asked to show it. */
11400 if (ext)
11401 {
11402 name++;
11403 len--;
11404 }
11405 else
11406 continue;
11407 }
11408 else if (ext)
11409 {
11410 /* It is an processor. Skip if we show only extension. */
11411 continue;
11412 }
11413 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11414 {
11415 /* It is an impossible processor - skip. */
11416 continue;
11417 }
11418
11419 p = output_message (stream, p, message, start, &left, name, len);
11420 }
11421
11422 /* Display disabled extensions. */
11423 if (ext)
11424 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11425 {
11426 name = cpu_noarch [j].name;
11427 len = cpu_noarch [j].len;
11428 p = output_message (stream, p, message, start, &left, name,
11429 len);
11430 }
11431
11432 *p = '\0';
11433 fprintf (stream, "%s\n", message);
11434 }
11435
11436 void
11437 md_show_usage (FILE *stream)
11438 {
11439 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11440 fprintf (stream, _("\
11441 -Q ignored\n\
11442 -V print assembler version number\n\
11443 -k ignored\n"));
11444 #endif
11445 fprintf (stream, _("\
11446 -n Do not optimize code alignment\n\
11447 -q quieten some warnings\n"));
11448 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11449 fprintf (stream, _("\
11450 -s ignored\n"));
11451 #endif
11452 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11453 || defined (TE_PE) || defined (TE_PEP))
11454 fprintf (stream, _("\
11455 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
11456 #endif
11457 #ifdef SVR4_COMMENT_CHARS
11458 fprintf (stream, _("\
11459 --divide do not treat `/' as a comment character\n"));
11460 #else
11461 fprintf (stream, _("\
11462 --divide ignored\n"));
11463 #endif
11464 fprintf (stream, _("\
11465 -march=CPU[,+EXTENSION...]\n\
11466 generate code for CPU and EXTENSION, CPU is one of:\n"));
11467 show_arch (stream, 0, 1);
11468 fprintf (stream, _("\
11469 EXTENSION is combination of:\n"));
11470 show_arch (stream, 1, 0);
11471 fprintf (stream, _("\
11472 -mtune=CPU optimize for CPU, CPU is one of:\n"));
11473 show_arch (stream, 0, 0);
11474 fprintf (stream, _("\
11475 -msse2avx encode SSE instructions with VEX prefix\n"));
11476 fprintf (stream, _("\
11477 -msse-check=[none|error|warning] (default: warning)\n\
11478 check SSE instructions\n"));
11479 fprintf (stream, _("\
11480 -moperand-check=[none|error|warning] (default: warning)\n\
11481 check operand combinations for validity\n"));
11482 fprintf (stream, _("\
11483 -mavxscalar=[128|256] (default: 128)\n\
11484 encode scalar AVX instructions with specific vector\n\
11485 length\n"));
11486 fprintf (stream, _("\
11487 -mevexlig=[128|256|512] (default: 128)\n\
11488 encode scalar EVEX instructions with specific vector\n\
11489 length\n"));
11490 fprintf (stream, _("\
11491 -mevexwig=[0|1] (default: 0)\n\
11492 encode EVEX instructions with specific EVEX.W value\n\
11493 for EVEX.W bit ignored instructions\n"));
11494 fprintf (stream, _("\
11495 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
11496 encode EVEX instructions with specific EVEX.RC value\n\
11497 for SAE-only ignored instructions\n"));
11498 fprintf (stream, _("\
11499 -mmnemonic=[att|intel] "));
11500 if (SYSV386_COMPAT)
11501 fprintf (stream, _("(default: att)\n"));
11502 else
11503 fprintf (stream, _("(default: intel)\n"));
11504 fprintf (stream, _("\
11505 use AT&T/Intel mnemonic\n"));
11506 fprintf (stream, _("\
11507 -msyntax=[att|intel] (default: att)\n\
11508 use AT&T/Intel syntax\n"));
11509 fprintf (stream, _("\
11510 -mindex-reg support pseudo index registers\n"));
11511 fprintf (stream, _("\
11512 -mnaked-reg don't require `%%' prefix for registers\n"));
11513 fprintf (stream, _("\
11514 -madd-bnd-prefix add BND prefix for all valid branches\n"));
11515 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11516 fprintf (stream, _("\
11517 -mshared disable branch optimization for shared code\n"));
11518 fprintf (stream, _("\
11519 -mx86-used-note=[no|yes] "));
11520 if (DEFAULT_X86_USED_NOTE)
11521 fprintf (stream, _("(default: yes)\n"));
11522 else
11523 fprintf (stream, _("(default: no)\n"));
11524 fprintf (stream, _("\
11525 generate x86 used ISA and feature properties\n"));
11526 #endif
11527 #if defined (TE_PE) || defined (TE_PEP)
11528 fprintf (stream, _("\
11529 -mbig-obj generate big object files\n"));
11530 #endif
11531 fprintf (stream, _("\
11532 -momit-lock-prefix=[no|yes] (default: no)\n\
11533 strip all lock prefixes\n"));
11534 fprintf (stream, _("\
11535 -mfence-as-lock-add=[no|yes] (default: no)\n\
11536 encode lfence, mfence and sfence as\n\
11537 lock addl $0x0, (%%{re}sp)\n"));
11538 fprintf (stream, _("\
11539 -mrelax-relocations=[no|yes] "));
11540 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
11541 fprintf (stream, _("(default: yes)\n"));
11542 else
11543 fprintf (stream, _("(default: no)\n"));
11544 fprintf (stream, _("\
11545 generate relax relocations\n"));
11546 fprintf (stream, _("\
11547 -mamd64 accept only AMD64 ISA [default]\n"));
11548 fprintf (stream, _("\
11549 -mintel64 accept only Intel64 ISA\n"));
11550 }
11551
11552 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
11553 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11554 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11555
11556 /* Pick the target format to use. */
11557
11558 const char *
11559 i386_target_format (void)
11560 {
11561 if (!strncmp (default_arch, "x86_64", 6))
11562 {
11563 update_code_flag (CODE_64BIT, 1);
11564 if (default_arch[6] == '\0')
11565 x86_elf_abi = X86_64_ABI;
11566 else
11567 x86_elf_abi = X86_64_X32_ABI;
11568 }
11569 else if (!strcmp (default_arch, "i386"))
11570 update_code_flag (CODE_32BIT, 1);
11571 else if (!strcmp (default_arch, "iamcu"))
11572 {
11573 update_code_flag (CODE_32BIT, 1);
11574 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11575 {
11576 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11577 cpu_arch_name = "iamcu";
11578 cpu_sub_arch_name = NULL;
11579 cpu_arch_flags = iamcu_flags;
11580 cpu_arch_isa = PROCESSOR_IAMCU;
11581 cpu_arch_isa_flags = iamcu_flags;
11582 if (!cpu_arch_tune_set)
11583 {
11584 cpu_arch_tune = cpu_arch_isa;
11585 cpu_arch_tune_flags = cpu_arch_isa_flags;
11586 }
11587 }
11588 else if (cpu_arch_isa != PROCESSOR_IAMCU)
11589 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11590 cpu_arch_name);
11591 }
11592 else
11593 as_fatal (_("unknown architecture"));
11594
11595 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11596 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11597 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11598 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11599
11600 switch (OUTPUT_FLAVOR)
11601 {
11602 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
11603 case bfd_target_aout_flavour:
11604 return AOUT_TARGET_FORMAT;
11605 #endif
11606 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11607 # if defined (TE_PE) || defined (TE_PEP)
11608 case bfd_target_coff_flavour:
11609 if (flag_code == CODE_64BIT)
11610 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11611 else
11612 return "pe-i386";
11613 # elif defined (TE_GO32)
11614 case bfd_target_coff_flavour:
11615 return "coff-go32";
11616 # else
11617 case bfd_target_coff_flavour:
11618 return "coff-i386";
11619 # endif
11620 #endif
11621 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11622 case bfd_target_elf_flavour:
11623 {
11624 const char *format;
11625
11626 switch (x86_elf_abi)
11627 {
11628 default:
11629 format = ELF_TARGET_FORMAT;
11630 break;
11631 case X86_64_ABI:
11632 use_rela_relocations = 1;
11633 object_64bit = 1;
11634 format = ELF_TARGET_FORMAT64;
11635 break;
11636 case X86_64_X32_ABI:
11637 use_rela_relocations = 1;
11638 object_64bit = 1;
11639 disallow_64bit_reloc = 1;
11640 format = ELF_TARGET_FORMAT32;
11641 break;
11642 }
11643 if (cpu_arch_isa == PROCESSOR_L1OM)
11644 {
11645 if (x86_elf_abi != X86_64_ABI)
11646 as_fatal (_("Intel L1OM is 64bit only"));
11647 return ELF_TARGET_L1OM_FORMAT;
11648 }
11649 else if (cpu_arch_isa == PROCESSOR_K1OM)
11650 {
11651 if (x86_elf_abi != X86_64_ABI)
11652 as_fatal (_("Intel K1OM is 64bit only"));
11653 return ELF_TARGET_K1OM_FORMAT;
11654 }
11655 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11656 {
11657 if (x86_elf_abi != I386_ABI)
11658 as_fatal (_("Intel MCU is 32bit only"));
11659 return ELF_TARGET_IAMCU_FORMAT;
11660 }
11661 else
11662 return format;
11663 }
11664 #endif
11665 #if defined (OBJ_MACH_O)
11666 case bfd_target_mach_o_flavour:
11667 if (flag_code == CODE_64BIT)
11668 {
11669 use_rela_relocations = 1;
11670 object_64bit = 1;
11671 return "mach-o-x86-64";
11672 }
11673 else
11674 return "mach-o-i386";
11675 #endif
11676 default:
11677 abort ();
11678 return NULL;
11679 }
11680 }
11681
11682 #endif /* OBJ_MAYBE_ more than one */
11683 \f
11684 symbolS *
11685 md_undefined_symbol (char *name)
11686 {
11687 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11688 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11689 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11690 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
11691 {
11692 if (!GOT_symbol)
11693 {
11694 if (symbol_find (name))
11695 as_bad (_("GOT already in symbol table"));
11696 GOT_symbol = symbol_new (name, undefined_section,
11697 (valueT) 0, &zero_address_frag);
11698 };
11699 return GOT_symbol;
11700 }
11701 return 0;
11702 }
11703
11704 /* Round up a section size to the appropriate boundary. */
11705
11706 valueT
11707 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
11708 {
11709 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11710 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11711 {
11712 /* For a.out, force the section size to be aligned. If we don't do
11713 this, BFD will align it for us, but it will not write out the
11714 final bytes of the section. This may be a bug in BFD, but it is
11715 easier to fix it here since that is how the other a.out targets
11716 work. */
11717 int align;
11718
11719 align = bfd_get_section_alignment (stdoutput, segment);
11720 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
11721 }
11722 #endif
11723
11724 return size;
11725 }
11726
11727 /* On the i386, PC-relative offsets are relative to the start of the
11728 next instruction. That is, the address of the offset, plus its
11729 size, since the offset is always the last part of the insn. */
11730
11731 long
11732 md_pcrel_from (fixS *fixP)
11733 {
11734 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11735 }
11736
11737 #ifndef I386COFF
11738
11739 static void
11740 s_bss (int ignore ATTRIBUTE_UNUSED)
11741 {
11742 int temp;
11743
11744 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11745 if (IS_ELF)
11746 obj_elf_section_change_hook ();
11747 #endif
11748 temp = get_absolute_expression ();
11749 subseg_set (bss_section, (subsegT) temp);
11750 demand_empty_rest_of_line ();
11751 }
11752
11753 #endif
11754
11755 void
11756 i386_validate_fix (fixS *fixp)
11757 {
11758 if (fixp->fx_subsy)
11759 {
11760 if (fixp->fx_subsy == GOT_symbol)
11761 {
11762 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11763 {
11764 if (!object_64bit)
11765 abort ();
11766 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11767 if (fixp->fx_tcbit2)
11768 fixp->fx_r_type = (fixp->fx_tcbit
11769 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11770 : BFD_RELOC_X86_64_GOTPCRELX);
11771 else
11772 #endif
11773 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11774 }
11775 else
11776 {
11777 if (!object_64bit)
11778 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11779 else
11780 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11781 }
11782 fixp->fx_subsy = 0;
11783 }
11784 }
11785 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11786 else if (!object_64bit)
11787 {
11788 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11789 && fixp->fx_tcbit2)
11790 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11791 }
11792 #endif
11793 }
11794
11795 arelent *
11796 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
11797 {
11798 arelent *rel;
11799 bfd_reloc_code_real_type code;
11800
11801 switch (fixp->fx_r_type)
11802 {
11803 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11804 case BFD_RELOC_SIZE32:
11805 case BFD_RELOC_SIZE64:
11806 if (S_IS_DEFINED (fixp->fx_addsy)
11807 && !S_IS_EXTERNAL (fixp->fx_addsy))
11808 {
11809 /* Resolve size relocation against local symbol to size of
11810 the symbol plus addend. */
11811 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11812 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11813 && !fits_in_unsigned_long (value))
11814 as_bad_where (fixp->fx_file, fixp->fx_line,
11815 _("symbol size computation overflow"));
11816 fixp->fx_addsy = NULL;
11817 fixp->fx_subsy = NULL;
11818 md_apply_fix (fixp, (valueT *) &value, NULL);
11819 return NULL;
11820 }
11821 #endif
11822 /* Fall through. */
11823
11824 case BFD_RELOC_X86_64_PLT32:
11825 case BFD_RELOC_X86_64_GOT32:
11826 case BFD_RELOC_X86_64_GOTPCREL:
11827 case BFD_RELOC_X86_64_GOTPCRELX:
11828 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11829 case BFD_RELOC_386_PLT32:
11830 case BFD_RELOC_386_GOT32:
11831 case BFD_RELOC_386_GOT32X:
11832 case BFD_RELOC_386_GOTOFF:
11833 case BFD_RELOC_386_GOTPC:
11834 case BFD_RELOC_386_TLS_GD:
11835 case BFD_RELOC_386_TLS_LDM:
11836 case BFD_RELOC_386_TLS_LDO_32:
11837 case BFD_RELOC_386_TLS_IE_32:
11838 case BFD_RELOC_386_TLS_IE:
11839 case BFD_RELOC_386_TLS_GOTIE:
11840 case BFD_RELOC_386_TLS_LE_32:
11841 case BFD_RELOC_386_TLS_LE:
11842 case BFD_RELOC_386_TLS_GOTDESC:
11843 case BFD_RELOC_386_TLS_DESC_CALL:
11844 case BFD_RELOC_X86_64_TLSGD:
11845 case BFD_RELOC_X86_64_TLSLD:
11846 case BFD_RELOC_X86_64_DTPOFF32:
11847 case BFD_RELOC_X86_64_DTPOFF64:
11848 case BFD_RELOC_X86_64_GOTTPOFF:
11849 case BFD_RELOC_X86_64_TPOFF32:
11850 case BFD_RELOC_X86_64_TPOFF64:
11851 case BFD_RELOC_X86_64_GOTOFF64:
11852 case BFD_RELOC_X86_64_GOTPC32:
11853 case BFD_RELOC_X86_64_GOT64:
11854 case BFD_RELOC_X86_64_GOTPCREL64:
11855 case BFD_RELOC_X86_64_GOTPC64:
11856 case BFD_RELOC_X86_64_GOTPLT64:
11857 case BFD_RELOC_X86_64_PLTOFF64:
11858 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11859 case BFD_RELOC_X86_64_TLSDESC_CALL:
11860 case BFD_RELOC_RVA:
11861 case BFD_RELOC_VTABLE_ENTRY:
11862 case BFD_RELOC_VTABLE_INHERIT:
11863 #ifdef TE_PE
11864 case BFD_RELOC_32_SECREL:
11865 #endif
11866 code = fixp->fx_r_type;
11867 break;
11868 case BFD_RELOC_X86_64_32S:
11869 if (!fixp->fx_pcrel)
11870 {
11871 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11872 code = fixp->fx_r_type;
11873 break;
11874 }
11875 /* Fall through. */
11876 default:
11877 if (fixp->fx_pcrel)
11878 {
11879 switch (fixp->fx_size)
11880 {
11881 default:
11882 as_bad_where (fixp->fx_file, fixp->fx_line,
11883 _("can not do %d byte pc-relative relocation"),
11884 fixp->fx_size);
11885 code = BFD_RELOC_32_PCREL;
11886 break;
11887 case 1: code = BFD_RELOC_8_PCREL; break;
11888 case 2: code = BFD_RELOC_16_PCREL; break;
11889 case 4: code = BFD_RELOC_32_PCREL; break;
11890 #ifdef BFD64
11891 case 8: code = BFD_RELOC_64_PCREL; break;
11892 #endif
11893 }
11894 }
11895 else
11896 {
11897 switch (fixp->fx_size)
11898 {
11899 default:
11900 as_bad_where (fixp->fx_file, fixp->fx_line,
11901 _("can not do %d byte relocation"),
11902 fixp->fx_size);
11903 code = BFD_RELOC_32;
11904 break;
11905 case 1: code = BFD_RELOC_8; break;
11906 case 2: code = BFD_RELOC_16; break;
11907 case 4: code = BFD_RELOC_32; break;
11908 #ifdef BFD64
11909 case 8: code = BFD_RELOC_64; break;
11910 #endif
11911 }
11912 }
11913 break;
11914 }
11915
11916 if ((code == BFD_RELOC_32
11917 || code == BFD_RELOC_32_PCREL
11918 || code == BFD_RELOC_X86_64_32S)
11919 && GOT_symbol
11920 && fixp->fx_addsy == GOT_symbol)
11921 {
11922 if (!object_64bit)
11923 code = BFD_RELOC_386_GOTPC;
11924 else
11925 code = BFD_RELOC_X86_64_GOTPC32;
11926 }
11927 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11928 && GOT_symbol
11929 && fixp->fx_addsy == GOT_symbol)
11930 {
11931 code = BFD_RELOC_X86_64_GOTPC64;
11932 }
11933
11934 rel = XNEW (arelent);
11935 rel->sym_ptr_ptr = XNEW (asymbol *);
11936 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11937
11938 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
11939
11940 if (!use_rela_relocations)
11941 {
11942 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11943 vtable entry to be used in the relocation's section offset. */
11944 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11945 rel->address = fixp->fx_offset;
11946 #if defined (OBJ_COFF) && defined (TE_PE)
11947 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11948 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11949 else
11950 #endif
11951 rel->addend = 0;
11952 }
11953 /* Use the rela in 64bit mode. */
11954 else
11955 {
11956 if (disallow_64bit_reloc)
11957 switch (code)
11958 {
11959 case BFD_RELOC_X86_64_DTPOFF64:
11960 case BFD_RELOC_X86_64_TPOFF64:
11961 case BFD_RELOC_64_PCREL:
11962 case BFD_RELOC_X86_64_GOTOFF64:
11963 case BFD_RELOC_X86_64_GOT64:
11964 case BFD_RELOC_X86_64_GOTPCREL64:
11965 case BFD_RELOC_X86_64_GOTPC64:
11966 case BFD_RELOC_X86_64_GOTPLT64:
11967 case BFD_RELOC_X86_64_PLTOFF64:
11968 as_bad_where (fixp->fx_file, fixp->fx_line,
11969 _("cannot represent relocation type %s in x32 mode"),
11970 bfd_get_reloc_code_name (code));
11971 break;
11972 default:
11973 break;
11974 }
11975
11976 if (!fixp->fx_pcrel)
11977 rel->addend = fixp->fx_offset;
11978 else
11979 switch (code)
11980 {
11981 case BFD_RELOC_X86_64_PLT32:
11982 case BFD_RELOC_X86_64_GOT32:
11983 case BFD_RELOC_X86_64_GOTPCREL:
11984 case BFD_RELOC_X86_64_GOTPCRELX:
11985 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11986 case BFD_RELOC_X86_64_TLSGD:
11987 case BFD_RELOC_X86_64_TLSLD:
11988 case BFD_RELOC_X86_64_GOTTPOFF:
11989 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11990 case BFD_RELOC_X86_64_TLSDESC_CALL:
11991 rel->addend = fixp->fx_offset - fixp->fx_size;
11992 break;
11993 default:
11994 rel->addend = (section->vma
11995 - fixp->fx_size
11996 + fixp->fx_addnumber
11997 + md_pcrel_from (fixp));
11998 break;
11999 }
12000 }
12001
12002 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
12003 if (rel->howto == NULL)
12004 {
12005 as_bad_where (fixp->fx_file, fixp->fx_line,
12006 _("cannot represent relocation type %s"),
12007 bfd_get_reloc_code_name (code));
12008 /* Set howto to a garbage value so that we can keep going. */
12009 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
12010 gas_assert (rel->howto != NULL);
12011 }
12012
12013 return rel;
12014 }
12015
12016 #include "tc-i386-intel.c"
12017
12018 void
12019 tc_x86_parse_to_dw2regnum (expressionS *exp)
12020 {
12021 int saved_naked_reg;
12022 char saved_register_dot;
12023
12024 saved_naked_reg = allow_naked_reg;
12025 allow_naked_reg = 1;
12026 saved_register_dot = register_chars['.'];
12027 register_chars['.'] = '.';
12028 allow_pseudo_reg = 1;
12029 expression_and_evaluate (exp);
12030 allow_pseudo_reg = 0;
12031 register_chars['.'] = saved_register_dot;
12032 allow_naked_reg = saved_naked_reg;
12033
12034 if (exp->X_op == O_register && exp->X_add_number >= 0)
12035 {
12036 if ((addressT) exp->X_add_number < i386_regtab_size)
12037 {
12038 exp->X_op = O_constant;
12039 exp->X_add_number = i386_regtab[exp->X_add_number]
12040 .dw2_regnum[flag_code >> 1];
12041 }
12042 else
12043 exp->X_op = O_illegal;
12044 }
12045 }
12046
12047 void
12048 tc_x86_frame_initial_instructions (void)
12049 {
12050 static unsigned int sp_regno[2];
12051
12052 if (!sp_regno[flag_code >> 1])
12053 {
12054 char *saved_input = input_line_pointer;
12055 char sp[][4] = {"esp", "rsp"};
12056 expressionS exp;
12057
12058 input_line_pointer = sp[flag_code >> 1];
12059 tc_x86_parse_to_dw2regnum (&exp);
12060 gas_assert (exp.X_op == O_constant);
12061 sp_regno[flag_code >> 1] = exp.X_add_number;
12062 input_line_pointer = saved_input;
12063 }
12064
12065 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
12066 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
12067 }
12068
12069 int
12070 x86_dwarf2_addr_size (void)
12071 {
12072 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12073 if (x86_elf_abi == X86_64_X32_ABI)
12074 return 4;
12075 #endif
12076 return bfd_arch_bits_per_address (stdoutput) / 8;
12077 }
12078
12079 int
12080 i386_elf_section_type (const char *str, size_t len)
12081 {
12082 if (flag_code == CODE_64BIT
12083 && len == sizeof ("unwind") - 1
12084 && strncmp (str, "unwind", 6) == 0)
12085 return SHT_X86_64_UNWIND;
12086
12087 return -1;
12088 }
12089
12090 #ifdef TE_SOLARIS
12091 void
12092 i386_solaris_fix_up_eh_frame (segT sec)
12093 {
12094 if (flag_code == CODE_64BIT)
12095 elf_section_type (sec) = SHT_X86_64_UNWIND;
12096 }
12097 #endif
12098
12099 #ifdef TE_PE
12100 void
12101 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
12102 {
12103 expressionS exp;
12104
12105 exp.X_op = O_secrel;
12106 exp.X_add_symbol = symbol;
12107 exp.X_add_number = 0;
12108 emit_expr (&exp, size);
12109 }
12110 #endif
12111
12112 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12113 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12114
12115 bfd_vma
12116 x86_64_section_letter (int letter, const char **ptr_msg)
12117 {
12118 if (flag_code == CODE_64BIT)
12119 {
12120 if (letter == 'l')
12121 return SHF_X86_64_LARGE;
12122
12123 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
12124 }
12125 else
12126 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
12127 return -1;
12128 }
12129
12130 bfd_vma
12131 x86_64_section_word (char *str, size_t len)
12132 {
12133 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
12134 return SHF_X86_64_LARGE;
12135
12136 return -1;
12137 }
12138
12139 static void
12140 handle_large_common (int small ATTRIBUTE_UNUSED)
12141 {
12142 if (flag_code != CODE_64BIT)
12143 {
12144 s_comm_internal (0, elf_common_parse);
12145 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12146 }
12147 else
12148 {
12149 static segT lbss_section;
12150 asection *saved_com_section_ptr = elf_com_section_ptr;
12151 asection *saved_bss_section = bss_section;
12152
12153 if (lbss_section == NULL)
12154 {
12155 flagword applicable;
12156 segT seg = now_seg;
12157 subsegT subseg = now_subseg;
12158
12159 /* The .lbss section is for local .largecomm symbols. */
12160 lbss_section = subseg_new (".lbss", 0);
12161 applicable = bfd_applicable_section_flags (stdoutput);
12162 bfd_set_section_flags (stdoutput, lbss_section,
12163 applicable & SEC_ALLOC);
12164 seg_info (lbss_section)->bss = 1;
12165
12166 subseg_set (seg, subseg);
12167 }
12168
12169 elf_com_section_ptr = &_bfd_elf_large_com_section;
12170 bss_section = lbss_section;
12171
12172 s_comm_internal (0, elf_common_parse);
12173
12174 elf_com_section_ptr = saved_com_section_ptr;
12175 bss_section = saved_bss_section;
12176 }
12177 }
12178 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */