]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-i386.c
x86: warn about insns exceeding the 15-byte limit
[thirdparty/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2019 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifdef HAVE_LIMITS_H
37 #include <limits.h>
38 #else
39 #ifdef HAVE_SYS_PARAM_H
40 #include <sys/param.h>
41 #endif
42 #ifndef INT_MAX
43 #define INT_MAX (int) (((unsigned) (-1)) >> 1)
44 #endif
45 #endif
46
47 #ifndef REGISTER_WARNINGS
48 #define REGISTER_WARNINGS 1
49 #endif
50
51 #ifndef INFER_ADDR_PREFIX
52 #define INFER_ADDR_PREFIX 1
53 #endif
54
55 #ifndef DEFAULT_ARCH
56 #define DEFAULT_ARCH "i386"
57 #endif
58
59 #ifndef INLINE
60 #if __GNUC__ >= 2
61 #define INLINE __inline__
62 #else
63 #define INLINE
64 #endif
65 #endif
66
67 /* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
72 #define WAIT_PREFIX 0
73 #define SEG_PREFIX 1
74 #define ADDR_PREFIX 2
75 #define DATA_PREFIX 3
76 #define REP_PREFIX 4
77 #define HLE_PREFIX REP_PREFIX
78 #define BND_PREFIX REP_PREFIX
79 #define LOCK_PREFIX 5
80 #define REX_PREFIX 6 /* must come last. */
81 #define MAX_PREFIXES 7 /* max prefixes per opcode */
82
83 /* we define the syntax here (modulo base,index,scale syntax) */
84 #define REGISTER_PREFIX '%'
85 #define IMMEDIATE_PREFIX '$'
86 #define ABSOLUTE_PREFIX '*'
87
88 /* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90 #define WORD_MNEM_SUFFIX 'w'
91 #define BYTE_MNEM_SUFFIX 'b'
92 #define SHORT_MNEM_SUFFIX 's'
93 #define LONG_MNEM_SUFFIX 'l'
94 #define QWORD_MNEM_SUFFIX 'q'
95 /* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99 #define END_OF_INSN '\0'
100
101 /*
102 'templates' is for grouping together 'template' structures for opcodes
103 of the same name. This is only used for storing the insns in the grand
104 ole hash table of insns.
105 The templates themselves start at START and range up to (but not including)
106 END.
107 */
108 typedef struct
109 {
110 const insn_template *start;
111 const insn_template *end;
112 }
113 templates;
114
115 /* 386 operand encoding bytes: see 386 book for details of this. */
116 typedef struct
117 {
118 unsigned int regmem; /* codes register or memory operand */
119 unsigned int reg; /* codes register operand (or extended opcode) */
120 unsigned int mode; /* how to interpret regmem & reg */
121 }
122 modrm_byte;
123
124 /* x86-64 extension prefix. */
125 typedef int rex_byte;
126
127 /* 386 opcode byte to code indirect addressing. */
128 typedef struct
129 {
130 unsigned base;
131 unsigned index;
132 unsigned scale;
133 }
134 sib_byte;
135
136 /* x86 arch names, types and features */
137 typedef struct
138 {
139 const char *name; /* arch name */
140 unsigned int len; /* arch string length */
141 enum processor_type type; /* arch type */
142 i386_cpu_flags flags; /* cpu feature flags */
143 unsigned int skip; /* show_arch should skip this. */
144 }
145 arch_entry;
146
147 /* Used to turn off indicated flags. */
148 typedef struct
149 {
150 const char *name; /* arch name */
151 unsigned int len; /* arch string length */
152 i386_cpu_flags flags; /* cpu feature flags */
153 }
154 noarch_entry;
155
156 static void update_code_flag (int, int);
157 static void set_code_flag (int);
158 static void set_16bit_gcc_code_flag (int);
159 static void set_intel_syntax (int);
160 static void set_intel_mnemonic (int);
161 static void set_allow_index_reg (int);
162 static void set_check (int);
163 static void set_cpu_arch (int);
164 #ifdef TE_PE
165 static void pe_directive_secrel (int);
166 #endif
167 static void signed_cons (int);
168 static char *output_invalid (int c);
169 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
170 const char *);
171 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
172 const char *);
173 static int i386_att_operand (char *);
174 static int i386_intel_operand (char *, int);
175 static int i386_intel_simplify (expressionS *);
176 static int i386_intel_parse_name (const char *, expressionS *);
177 static const reg_entry *parse_register (char *, char **);
178 static char *parse_insn (char *, char *);
179 static char *parse_operands (char *, const char *);
180 static void swap_operands (void);
181 static void swap_2_operands (int, int);
182 static void optimize_imm (void);
183 static void optimize_disp (void);
184 static const insn_template *match_template (char);
185 static int check_string (void);
186 static int process_suffix (void);
187 static int check_byte_reg (void);
188 static int check_long_reg (void);
189 static int check_qword_reg (void);
190 static int check_word_reg (void);
191 static int finalize_imm (void);
192 static int process_operands (void);
193 static const seg_entry *build_modrm_byte (void);
194 static void output_insn (void);
195 static void output_imm (fragS *, offsetT);
196 static void output_disp (fragS *, offsetT);
197 #ifndef I386COFF
198 static void s_bss (int);
199 #endif
200 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
201 static void handle_large_common (int small ATTRIBUTE_UNUSED);
202
203 /* GNU_PROPERTY_X86_ISA_1_USED. */
204 static unsigned int x86_isa_1_used;
205 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
206 static unsigned int x86_feature_2_used;
207 /* Generate x86 used ISA and feature properties. */
208 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
209 #endif
210
211 static const char *default_arch = DEFAULT_ARCH;
212
213 /* This struct describes rounding control and SAE in the instruction. */
214 struct RC_Operation
215 {
216 enum rc_type
217 {
218 rne = 0,
219 rd,
220 ru,
221 rz,
222 saeonly
223 } type;
224 int operand;
225 };
226
227 static struct RC_Operation rc_op;
228
229 /* The struct describes masking, applied to OPERAND in the instruction.
230 MASK is a pointer to the corresponding mask register. ZEROING tells
231 whether merging or zeroing mask is used. */
232 struct Mask_Operation
233 {
234 const reg_entry *mask;
235 unsigned int zeroing;
236 /* The operand where this operation is associated. */
237 int operand;
238 };
239
240 static struct Mask_Operation mask_op;
241
242 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
243 broadcast factor. */
244 struct Broadcast_Operation
245 {
246 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
247 int type;
248
249 /* Index of broadcasted operand. */
250 int operand;
251
252 /* Number of bytes to broadcast. */
253 int bytes;
254 };
255
256 static struct Broadcast_Operation broadcast_op;
257
258 /* VEX prefix. */
259 typedef struct
260 {
261 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
262 unsigned char bytes[4];
263 unsigned int length;
264 /* Destination or source register specifier. */
265 const reg_entry *register_specifier;
266 } vex_prefix;
267
268 /* 'md_assemble ()' gathers together information and puts it into a
269 i386_insn. */
270
271 union i386_op
272 {
273 expressionS *disps;
274 expressionS *imms;
275 const reg_entry *regs;
276 };
277
278 enum i386_error
279 {
280 operand_size_mismatch,
281 operand_type_mismatch,
282 register_type_mismatch,
283 number_of_operands_mismatch,
284 invalid_instruction_suffix,
285 bad_imm4,
286 unsupported_with_intel_mnemonic,
287 unsupported_syntax,
288 unsupported,
289 invalid_vsib_address,
290 invalid_vector_register_set,
291 unsupported_vector_index_register,
292 unsupported_broadcast,
293 broadcast_needed,
294 unsupported_masking,
295 mask_not_on_destination,
296 no_default_mask,
297 unsupported_rc_sae,
298 rc_sae_operand_not_last_imm,
299 invalid_register_operand,
300 };
301
302 struct _i386_insn
303 {
304 /* TM holds the template for the insn were currently assembling. */
305 insn_template tm;
306
307 /* SUFFIX holds the instruction size suffix for byte, word, dword
308 or qword, if given. */
309 char suffix;
310
311 /* OPERANDS gives the number of given operands. */
312 unsigned int operands;
313
314 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
315 of given register, displacement, memory operands and immediate
316 operands. */
317 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
318
319 /* TYPES [i] is the type (see above #defines) which tells us how to
320 use OP[i] for the corresponding operand. */
321 i386_operand_type types[MAX_OPERANDS];
322
323 /* Displacement expression, immediate expression, or register for each
324 operand. */
325 union i386_op op[MAX_OPERANDS];
326
327 /* Flags for operands. */
328 unsigned int flags[MAX_OPERANDS];
329 #define Operand_PCrel 1
330 #define Operand_Mem 2
331
332 /* Relocation type for operand */
333 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
334
335 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
336 the base index byte below. */
337 const reg_entry *base_reg;
338 const reg_entry *index_reg;
339 unsigned int log2_scale_factor;
340
341 /* SEG gives the seg_entries of this insn. They are zero unless
342 explicit segment overrides are given. */
343 const seg_entry *seg[2];
344
345 /* Copied first memory operand string, for re-checking. */
346 char *memop1_string;
347
348 /* PREFIX holds all the given prefix opcodes (usually null).
349 PREFIXES is the number of prefix opcodes. */
350 unsigned int prefixes;
351 unsigned char prefix[MAX_PREFIXES];
352
353 /* Has MMX register operands. */
354 bfd_boolean has_regmmx;
355
356 /* Has XMM register operands. */
357 bfd_boolean has_regxmm;
358
359 /* Has YMM register operands. */
360 bfd_boolean has_regymm;
361
362 /* Has ZMM register operands. */
363 bfd_boolean has_regzmm;
364
365 /* RM and SIB are the modrm byte and the sib byte where the
366 addressing modes of this insn are encoded. */
367 modrm_byte rm;
368 rex_byte rex;
369 rex_byte vrex;
370 sib_byte sib;
371 vex_prefix vex;
372
373 /* Masking attributes. */
374 struct Mask_Operation *mask;
375
376 /* Rounding control and SAE attributes. */
377 struct RC_Operation *rounding;
378
379 /* Broadcasting attributes. */
380 struct Broadcast_Operation *broadcast;
381
382 /* Compressed disp8*N attribute. */
383 unsigned int memshift;
384
385 /* Prefer load or store in encoding. */
386 enum
387 {
388 dir_encoding_default = 0,
389 dir_encoding_load,
390 dir_encoding_store,
391 dir_encoding_swap
392 } dir_encoding;
393
394 /* Prefer 8bit or 32bit displacement in encoding. */
395 enum
396 {
397 disp_encoding_default = 0,
398 disp_encoding_8bit,
399 disp_encoding_32bit
400 } disp_encoding;
401
402 /* Prefer the REX byte in encoding. */
403 bfd_boolean rex_encoding;
404
405 /* Disable instruction size optimization. */
406 bfd_boolean no_optimize;
407
408 /* How to encode vector instructions. */
409 enum
410 {
411 vex_encoding_default = 0,
412 vex_encoding_vex2,
413 vex_encoding_vex3,
414 vex_encoding_evex
415 } vec_encoding;
416
417 /* REP prefix. */
418 const char *rep_prefix;
419
420 /* HLE prefix. */
421 const char *hle_prefix;
422
423 /* Have BND prefix. */
424 const char *bnd_prefix;
425
426 /* Have NOTRACK prefix. */
427 const char *notrack_prefix;
428
429 /* Error message. */
430 enum i386_error error;
431 };
432
433 typedef struct _i386_insn i386_insn;
434
435 /* Link RC type with corresponding string, that'll be looked for in
436 asm. */
437 struct RC_name
438 {
439 enum rc_type type;
440 const char *name;
441 unsigned int len;
442 };
443
444 static const struct RC_name RC_NamesTable[] =
445 {
446 { rne, STRING_COMMA_LEN ("rn-sae") },
447 { rd, STRING_COMMA_LEN ("rd-sae") },
448 { ru, STRING_COMMA_LEN ("ru-sae") },
449 { rz, STRING_COMMA_LEN ("rz-sae") },
450 { saeonly, STRING_COMMA_LEN ("sae") },
451 };
452
453 /* List of chars besides those in app.c:symbol_chars that can start an
454 operand. Used to prevent the scrubber eating vital white-space. */
455 const char extra_symbol_chars[] = "*%-([{}"
456 #ifdef LEX_AT
457 "@"
458 #endif
459 #ifdef LEX_QM
460 "?"
461 #endif
462 ;
463
464 #if (defined (TE_I386AIX) \
465 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
466 && !defined (TE_GNU) \
467 && !defined (TE_LINUX) \
468 && !defined (TE_NACL) \
469 && !defined (TE_FreeBSD) \
470 && !defined (TE_DragonFly) \
471 && !defined (TE_NetBSD)))
472 /* This array holds the chars that always start a comment. If the
473 pre-processor is disabled, these aren't very useful. The option
474 --divide will remove '/' from this list. */
475 const char *i386_comment_chars = "#/";
476 #define SVR4_COMMENT_CHARS 1
477 #define PREFIX_SEPARATOR '\\'
478
479 #else
480 const char *i386_comment_chars = "#";
481 #define PREFIX_SEPARATOR '/'
482 #endif
483
484 /* This array holds the chars that only start a comment at the beginning of
485 a line. If the line seems to have the form '# 123 filename'
486 .line and .file directives will appear in the pre-processed output.
487 Note that input_file.c hand checks for '#' at the beginning of the
488 first line of the input file. This is because the compiler outputs
489 #NO_APP at the beginning of its output.
490 Also note that comments started like this one will always work if
491 '/' isn't otherwise defined. */
492 const char line_comment_chars[] = "#/";
493
494 const char line_separator_chars[] = ";";
495
496 /* Chars that can be used to separate mant from exp in floating point
497 nums. */
498 const char EXP_CHARS[] = "eE";
499
500 /* Chars that mean this number is a floating point constant
501 As in 0f12.456
502 or 0d1.2345e12. */
503 const char FLT_CHARS[] = "fFdDxX";
504
505 /* Tables for lexical analysis. */
506 static char mnemonic_chars[256];
507 static char register_chars[256];
508 static char operand_chars[256];
509 static char identifier_chars[256];
510 static char digit_chars[256];
511
512 /* Lexical macros. */
513 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
514 #define is_operand_char(x) (operand_chars[(unsigned char) x])
515 #define is_register_char(x) (register_chars[(unsigned char) x])
516 #define is_space_char(x) ((x) == ' ')
517 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
518 #define is_digit_char(x) (digit_chars[(unsigned char) x])
519
520 /* All non-digit non-letter characters that may occur in an operand. */
521 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
522
523 /* md_assemble() always leaves the strings it's passed unaltered. To
524 effect this we maintain a stack of saved characters that we've smashed
525 with '\0's (indicating end of strings for various sub-fields of the
526 assembler instruction). */
527 static char save_stack[32];
528 static char *save_stack_p;
529 #define END_STRING_AND_SAVE(s) \
530 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
531 #define RESTORE_END_STRING(s) \
532 do { *(s) = *--save_stack_p; } while (0)
533
534 /* The instruction we're assembling. */
535 static i386_insn i;
536
537 /* Possible templates for current insn. */
538 static const templates *current_templates;
539
540 /* Per instruction expressionS buffers: max displacements & immediates. */
541 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
542 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
543
544 /* Current operand we are working on. */
545 static int this_operand = -1;
546
547 /* We support four different modes. FLAG_CODE variable is used to distinguish
548 these. */
549
550 enum flag_code {
551 CODE_32BIT,
552 CODE_16BIT,
553 CODE_64BIT };
554
555 static enum flag_code flag_code;
556 static unsigned int object_64bit;
557 static unsigned int disallow_64bit_reloc;
558 static int use_rela_relocations = 0;
559
560 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
561 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
562 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
563
564 /* The ELF ABI to use. */
565 enum x86_elf_abi
566 {
567 I386_ABI,
568 X86_64_ABI,
569 X86_64_X32_ABI
570 };
571
572 static enum x86_elf_abi x86_elf_abi = I386_ABI;
573 #endif
574
575 #if defined (TE_PE) || defined (TE_PEP)
576 /* Use big object file format. */
577 static int use_big_obj = 0;
578 #endif
579
580 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
581 /* 1 if generating code for a shared library. */
582 static int shared = 0;
583 #endif
584
585 /* 1 for intel syntax,
586 0 if att syntax. */
587 static int intel_syntax = 0;
588
589 /* 1 for Intel64 ISA,
590 0 if AMD64 ISA. */
591 static int intel64;
592
593 /* 1 for intel mnemonic,
594 0 if att mnemonic. */
595 static int intel_mnemonic = !SYSV386_COMPAT;
596
597 /* 1 if pseudo registers are permitted. */
598 static int allow_pseudo_reg = 0;
599
600 /* 1 if register prefix % not required. */
601 static int allow_naked_reg = 0;
602
603 /* 1 if the assembler should add BND prefix for all control-transferring
604 instructions supporting it, even if this prefix wasn't specified
605 explicitly. */
606 static int add_bnd_prefix = 0;
607
608 /* 1 if pseudo index register, eiz/riz, is allowed . */
609 static int allow_index_reg = 0;
610
611 /* 1 if the assembler should ignore LOCK prefix, even if it was
612 specified explicitly. */
613 static int omit_lock_prefix = 0;
614
615 /* 1 if the assembler should encode lfence, mfence, and sfence as
616 "lock addl $0, (%{re}sp)". */
617 static int avoid_fence = 0;
618
619 /* 1 if the assembler should generate relax relocations. */
620
621 static int generate_relax_relocations
622 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
623
624 static enum check_kind
625 {
626 check_none = 0,
627 check_warning,
628 check_error
629 }
630 sse_check, operand_check = check_warning;
631
632 /* Optimization:
633 1. Clear the REX_W bit with register operand if possible.
634 2. Above plus use 128bit vector instruction to clear the full vector
635 register.
636 */
637 static int optimize = 0;
638
639 /* Optimization:
640 1. Clear the REX_W bit with register operand if possible.
641 2. Above plus use 128bit vector instruction to clear the full vector
642 register.
643 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
644 "testb $imm7,%r8".
645 */
646 static int optimize_for_space = 0;
647
648 /* Register prefix used for error message. */
649 static const char *register_prefix = "%";
650
651 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
652 leave, push, and pop instructions so that gcc has the same stack
653 frame as in 32 bit mode. */
654 static char stackop_size = '\0';
655
656 /* Non-zero to optimize code alignment. */
657 int optimize_align_code = 1;
658
659 /* Non-zero to quieten some warnings. */
660 static int quiet_warnings = 0;
661
662 /* CPU name. */
663 static const char *cpu_arch_name = NULL;
664 static char *cpu_sub_arch_name = NULL;
665
666 /* CPU feature flags. */
667 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
668
669 /* If we have selected a cpu we are generating instructions for. */
670 static int cpu_arch_tune_set = 0;
671
672 /* Cpu we are generating instructions for. */
673 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
674
675 /* CPU feature flags of cpu we are generating instructions for. */
676 static i386_cpu_flags cpu_arch_tune_flags;
677
678 /* CPU instruction set architecture used. */
679 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
680
681 /* CPU feature flags of instruction set architecture used. */
682 i386_cpu_flags cpu_arch_isa_flags;
683
684 /* If set, conditional jumps are not automatically promoted to handle
685 larger than a byte offset. */
686 static unsigned int no_cond_jump_promotion = 0;
687
688 /* Encode SSE instructions with VEX prefix. */
689 static unsigned int sse2avx;
690
691 /* Encode scalar AVX instructions with specific vector length. */
692 static enum
693 {
694 vex128 = 0,
695 vex256
696 } avxscalar;
697
698 /* Encode VEX WIG instructions with specific vex.w. */
699 static enum
700 {
701 vexw0 = 0,
702 vexw1
703 } vexwig;
704
705 /* Encode scalar EVEX LIG instructions with specific vector length. */
706 static enum
707 {
708 evexl128 = 0,
709 evexl256,
710 evexl512
711 } evexlig;
712
713 /* Encode EVEX WIG instructions with specific evex.w. */
714 static enum
715 {
716 evexw0 = 0,
717 evexw1
718 } evexwig;
719
720 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
721 static enum rc_type evexrcig = rne;
722
723 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
724 static symbolS *GOT_symbol;
725
726 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
727 unsigned int x86_dwarf2_return_column;
728
729 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
730 int x86_cie_data_alignment;
731
732 /* Interface to relax_segment.
733 There are 3 major relax states for 386 jump insns because the
734 different types of jumps add different sizes to frags when we're
735 figuring out what sort of jump to choose to reach a given label. */
736
737 /* Types. */
738 #define UNCOND_JUMP 0
739 #define COND_JUMP 1
740 #define COND_JUMP86 2
741
742 /* Sizes. */
743 #define CODE16 1
744 #define SMALL 0
745 #define SMALL16 (SMALL | CODE16)
746 #define BIG 2
747 #define BIG16 (BIG | CODE16)
748
749 #ifndef INLINE
750 #ifdef __GNUC__
751 #define INLINE __inline__
752 #else
753 #define INLINE
754 #endif
755 #endif
756
757 #define ENCODE_RELAX_STATE(type, size) \
758 ((relax_substateT) (((type) << 2) | (size)))
759 #define TYPE_FROM_RELAX_STATE(s) \
760 ((s) >> 2)
761 #define DISP_SIZE_FROM_RELAX_STATE(s) \
762 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
763
764 /* This table is used by relax_frag to promote short jumps to long
765 ones where necessary. SMALL (short) jumps may be promoted to BIG
766 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
767 don't allow a short jump in a 32 bit code segment to be promoted to
768 a 16 bit offset jump because it's slower (requires data size
769 prefix), and doesn't work, unless the destination is in the bottom
770 64k of the code segment (The top 16 bits of eip are zeroed). */
771
772 const relax_typeS md_relax_table[] =
773 {
774 /* The fields are:
775 1) most positive reach of this state,
776 2) most negative reach of this state,
777 3) how many bytes this mode will have in the variable part of the frag
778 4) which index into the table to try if we can't fit into this one. */
779
780 /* UNCOND_JUMP states. */
781 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
782 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
783 /* dword jmp adds 4 bytes to frag:
784 0 extra opcode bytes, 4 displacement bytes. */
785 {0, 0, 4, 0},
786 /* word jmp adds 2 byte2 to frag:
787 0 extra opcode bytes, 2 displacement bytes. */
788 {0, 0, 2, 0},
789
790 /* COND_JUMP states. */
791 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
792 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
793 /* dword conditionals adds 5 bytes to frag:
794 1 extra opcode byte, 4 displacement bytes. */
795 {0, 0, 5, 0},
796 /* word conditionals add 3 bytes to frag:
797 1 extra opcode byte, 2 displacement bytes. */
798 {0, 0, 3, 0},
799
800 /* COND_JUMP86 states. */
801 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
802 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
803 /* dword conditionals adds 5 bytes to frag:
804 1 extra opcode byte, 4 displacement bytes. */
805 {0, 0, 5, 0},
806 /* word conditionals add 4 bytes to frag:
807 1 displacement byte and a 3 byte long branch insn. */
808 {0, 0, 4, 0}
809 };
810
811 static const arch_entry cpu_arch[] =
812 {
813 /* Do not replace the first two entries - i386_target_format()
814 relies on them being there in this order. */
815 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
816 CPU_GENERIC32_FLAGS, 0 },
817 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
818 CPU_GENERIC64_FLAGS, 0 },
819 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
820 CPU_NONE_FLAGS, 0 },
821 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
822 CPU_I186_FLAGS, 0 },
823 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
824 CPU_I286_FLAGS, 0 },
825 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
826 CPU_I386_FLAGS, 0 },
827 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
828 CPU_I486_FLAGS, 0 },
829 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
830 CPU_I586_FLAGS, 0 },
831 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
832 CPU_I686_FLAGS, 0 },
833 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
834 CPU_I586_FLAGS, 0 },
835 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
836 CPU_PENTIUMPRO_FLAGS, 0 },
837 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
838 CPU_P2_FLAGS, 0 },
839 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
840 CPU_P3_FLAGS, 0 },
841 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
842 CPU_P4_FLAGS, 0 },
843 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
844 CPU_CORE_FLAGS, 0 },
845 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
846 CPU_NOCONA_FLAGS, 0 },
847 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
848 CPU_CORE_FLAGS, 1 },
849 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
850 CPU_CORE_FLAGS, 0 },
851 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
852 CPU_CORE2_FLAGS, 1 },
853 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
854 CPU_CORE2_FLAGS, 0 },
855 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
856 CPU_COREI7_FLAGS, 0 },
857 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
858 CPU_L1OM_FLAGS, 0 },
859 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
860 CPU_K1OM_FLAGS, 0 },
861 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
862 CPU_IAMCU_FLAGS, 0 },
863 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
864 CPU_K6_FLAGS, 0 },
865 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
866 CPU_K6_2_FLAGS, 0 },
867 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
868 CPU_ATHLON_FLAGS, 0 },
869 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
870 CPU_K8_FLAGS, 1 },
871 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
872 CPU_K8_FLAGS, 0 },
873 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
874 CPU_K8_FLAGS, 0 },
875 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
876 CPU_AMDFAM10_FLAGS, 0 },
877 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
878 CPU_BDVER1_FLAGS, 0 },
879 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
880 CPU_BDVER2_FLAGS, 0 },
881 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
882 CPU_BDVER3_FLAGS, 0 },
883 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
884 CPU_BDVER4_FLAGS, 0 },
885 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
886 CPU_ZNVER1_FLAGS, 0 },
887 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
888 CPU_ZNVER2_FLAGS, 0 },
889 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
890 CPU_BTVER1_FLAGS, 0 },
891 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
892 CPU_BTVER2_FLAGS, 0 },
893 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
894 CPU_8087_FLAGS, 0 },
895 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
896 CPU_287_FLAGS, 0 },
897 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
898 CPU_387_FLAGS, 0 },
899 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
900 CPU_687_FLAGS, 0 },
901 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
902 CPU_CMOV_FLAGS, 0 },
903 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
904 CPU_FXSR_FLAGS, 0 },
905 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
906 CPU_MMX_FLAGS, 0 },
907 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
908 CPU_SSE_FLAGS, 0 },
909 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
910 CPU_SSE2_FLAGS, 0 },
911 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
912 CPU_SSE3_FLAGS, 0 },
913 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
914 CPU_SSSE3_FLAGS, 0 },
915 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
916 CPU_SSE4_1_FLAGS, 0 },
917 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
918 CPU_SSE4_2_FLAGS, 0 },
919 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
920 CPU_SSE4_2_FLAGS, 0 },
921 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
922 CPU_AVX_FLAGS, 0 },
923 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
924 CPU_AVX2_FLAGS, 0 },
925 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
926 CPU_AVX512F_FLAGS, 0 },
927 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
928 CPU_AVX512CD_FLAGS, 0 },
929 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
930 CPU_AVX512ER_FLAGS, 0 },
931 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
932 CPU_AVX512PF_FLAGS, 0 },
933 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
934 CPU_AVX512DQ_FLAGS, 0 },
935 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
936 CPU_AVX512BW_FLAGS, 0 },
937 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
938 CPU_AVX512VL_FLAGS, 0 },
939 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
940 CPU_VMX_FLAGS, 0 },
941 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
942 CPU_VMFUNC_FLAGS, 0 },
943 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
944 CPU_SMX_FLAGS, 0 },
945 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
946 CPU_XSAVE_FLAGS, 0 },
947 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
948 CPU_XSAVEOPT_FLAGS, 0 },
949 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
950 CPU_XSAVEC_FLAGS, 0 },
951 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
952 CPU_XSAVES_FLAGS, 0 },
953 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
954 CPU_AES_FLAGS, 0 },
955 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
956 CPU_PCLMUL_FLAGS, 0 },
957 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
958 CPU_PCLMUL_FLAGS, 1 },
959 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
960 CPU_FSGSBASE_FLAGS, 0 },
961 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
962 CPU_RDRND_FLAGS, 0 },
963 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
964 CPU_F16C_FLAGS, 0 },
965 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
966 CPU_BMI2_FLAGS, 0 },
967 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
968 CPU_FMA_FLAGS, 0 },
969 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
970 CPU_FMA4_FLAGS, 0 },
971 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
972 CPU_XOP_FLAGS, 0 },
973 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
974 CPU_LWP_FLAGS, 0 },
975 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
976 CPU_MOVBE_FLAGS, 0 },
977 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
978 CPU_CX16_FLAGS, 0 },
979 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
980 CPU_EPT_FLAGS, 0 },
981 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
982 CPU_LZCNT_FLAGS, 0 },
983 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
984 CPU_HLE_FLAGS, 0 },
985 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
986 CPU_RTM_FLAGS, 0 },
987 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
988 CPU_INVPCID_FLAGS, 0 },
989 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
990 CPU_CLFLUSH_FLAGS, 0 },
991 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
992 CPU_NOP_FLAGS, 0 },
993 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
994 CPU_SYSCALL_FLAGS, 0 },
995 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
996 CPU_RDTSCP_FLAGS, 0 },
997 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
998 CPU_3DNOW_FLAGS, 0 },
999 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
1000 CPU_3DNOWA_FLAGS, 0 },
1001 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
1002 CPU_PADLOCK_FLAGS, 0 },
1003 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
1004 CPU_SVME_FLAGS, 1 },
1005 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
1006 CPU_SVME_FLAGS, 0 },
1007 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1008 CPU_SSE4A_FLAGS, 0 },
1009 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
1010 CPU_ABM_FLAGS, 0 },
1011 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
1012 CPU_BMI_FLAGS, 0 },
1013 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
1014 CPU_TBM_FLAGS, 0 },
1015 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
1016 CPU_ADX_FLAGS, 0 },
1017 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1018 CPU_RDSEED_FLAGS, 0 },
1019 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1020 CPU_PRFCHW_FLAGS, 0 },
1021 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1022 CPU_SMAP_FLAGS, 0 },
1023 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1024 CPU_MPX_FLAGS, 0 },
1025 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1026 CPU_SHA_FLAGS, 0 },
1027 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1028 CPU_CLFLUSHOPT_FLAGS, 0 },
1029 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1030 CPU_PREFETCHWT1_FLAGS, 0 },
1031 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1032 CPU_SE1_FLAGS, 0 },
1033 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1034 CPU_CLWB_FLAGS, 0 },
1035 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1036 CPU_AVX512IFMA_FLAGS, 0 },
1037 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1038 CPU_AVX512VBMI_FLAGS, 0 },
1039 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1040 CPU_AVX512_4FMAPS_FLAGS, 0 },
1041 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1042 CPU_AVX512_4VNNIW_FLAGS, 0 },
1043 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1044 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1045 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1046 CPU_AVX512_VBMI2_FLAGS, 0 },
1047 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1048 CPU_AVX512_VNNI_FLAGS, 0 },
1049 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1050 CPU_AVX512_BITALG_FLAGS, 0 },
1051 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1052 CPU_CLZERO_FLAGS, 0 },
1053 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1054 CPU_MWAITX_FLAGS, 0 },
1055 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1056 CPU_OSPKE_FLAGS, 0 },
1057 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1058 CPU_RDPID_FLAGS, 0 },
1059 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1060 CPU_PTWRITE_FLAGS, 0 },
1061 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1062 CPU_IBT_FLAGS, 0 },
1063 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1064 CPU_SHSTK_FLAGS, 0 },
1065 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1066 CPU_GFNI_FLAGS, 0 },
1067 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1068 CPU_VAES_FLAGS, 0 },
1069 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1070 CPU_VPCLMULQDQ_FLAGS, 0 },
1071 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1072 CPU_WBNOINVD_FLAGS, 0 },
1073 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1074 CPU_PCONFIG_FLAGS, 0 },
1075 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1076 CPU_WAITPKG_FLAGS, 0 },
1077 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1078 CPU_CLDEMOTE_FLAGS, 0 },
1079 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1080 CPU_MOVDIRI_FLAGS, 0 },
1081 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1082 CPU_MOVDIR64B_FLAGS, 0 },
1083 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1084 CPU_AVX512_BF16_FLAGS, 0 },
1085 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1086 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
1087 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1088 CPU_ENQCMD_FLAGS, 0 },
1089 };
1090
1091 static const noarch_entry cpu_noarch[] =
1092 {
1093 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1094 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1095 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1096 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1097 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1098 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1099 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1100 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1101 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1102 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1103 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1104 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1105 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1106 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1107 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1108 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1109 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1110 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1111 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1112 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1113 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1114 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1115 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1116 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1117 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1118 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1119 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1120 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1121 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1122 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1123 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1124 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1125 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1126 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1127 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1128 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
1129 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
1130 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
1131 };
1132
1133 #ifdef I386COFF
1134 /* Like s_lcomm_internal in gas/read.c but the alignment string
1135 is allowed to be optional. */
1136
1137 static symbolS *
1138 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1139 {
1140 addressT align = 0;
1141
1142 SKIP_WHITESPACE ();
1143
1144 if (needs_align
1145 && *input_line_pointer == ',')
1146 {
1147 align = parse_align (needs_align - 1);
1148
1149 if (align == (addressT) -1)
1150 return NULL;
1151 }
1152 else
1153 {
1154 if (size >= 8)
1155 align = 3;
1156 else if (size >= 4)
1157 align = 2;
1158 else if (size >= 2)
1159 align = 1;
1160 else
1161 align = 0;
1162 }
1163
1164 bss_alloc (symbolP, size, align);
1165 return symbolP;
1166 }
1167
1168 static void
1169 pe_lcomm (int needs_align)
1170 {
1171 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1172 }
1173 #endif
1174
1175 const pseudo_typeS md_pseudo_table[] =
1176 {
1177 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1178 {"align", s_align_bytes, 0},
1179 #else
1180 {"align", s_align_ptwo, 0},
1181 #endif
1182 {"arch", set_cpu_arch, 0},
1183 #ifndef I386COFF
1184 {"bss", s_bss, 0},
1185 #else
1186 {"lcomm", pe_lcomm, 1},
1187 #endif
1188 {"ffloat", float_cons, 'f'},
1189 {"dfloat", float_cons, 'd'},
1190 {"tfloat", float_cons, 'x'},
1191 {"value", cons, 2},
1192 {"slong", signed_cons, 4},
1193 {"noopt", s_ignore, 0},
1194 {"optim", s_ignore, 0},
1195 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1196 {"code16", set_code_flag, CODE_16BIT},
1197 {"code32", set_code_flag, CODE_32BIT},
1198 #ifdef BFD64
1199 {"code64", set_code_flag, CODE_64BIT},
1200 #endif
1201 {"intel_syntax", set_intel_syntax, 1},
1202 {"att_syntax", set_intel_syntax, 0},
1203 {"intel_mnemonic", set_intel_mnemonic, 1},
1204 {"att_mnemonic", set_intel_mnemonic, 0},
1205 {"allow_index_reg", set_allow_index_reg, 1},
1206 {"disallow_index_reg", set_allow_index_reg, 0},
1207 {"sse_check", set_check, 0},
1208 {"operand_check", set_check, 1},
1209 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1210 {"largecomm", handle_large_common, 0},
1211 #else
1212 {"file", dwarf2_directive_file, 0},
1213 {"loc", dwarf2_directive_loc, 0},
1214 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1215 #endif
1216 #ifdef TE_PE
1217 {"secrel32", pe_directive_secrel, 0},
1218 #endif
1219 {0, 0, 0}
1220 };
1221
1222 /* For interface with expression (). */
1223 extern char *input_line_pointer;
1224
1225 /* Hash table for instruction mnemonic lookup. */
1226 static struct hash_control *op_hash;
1227
1228 /* Hash table for register lookup. */
1229 static struct hash_control *reg_hash;
1230 \f
1231 /* Various efficient no-op patterns for aligning code labels.
1232 Note: Don't try to assemble the instructions in the comments.
1233 0L and 0w are not legal. */
1234 static const unsigned char f32_1[] =
1235 {0x90}; /* nop */
1236 static const unsigned char f32_2[] =
1237 {0x66,0x90}; /* xchg %ax,%ax */
1238 static const unsigned char f32_3[] =
1239 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1240 static const unsigned char f32_4[] =
1241 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1242 static const unsigned char f32_6[] =
1243 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1244 static const unsigned char f32_7[] =
1245 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1246 static const unsigned char f16_3[] =
1247 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1248 static const unsigned char f16_4[] =
1249 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1250 static const unsigned char jump_disp8[] =
1251 {0xeb}; /* jmp disp8 */
1252 static const unsigned char jump32_disp32[] =
1253 {0xe9}; /* jmp disp32 */
1254 static const unsigned char jump16_disp32[] =
1255 {0x66,0xe9}; /* jmp disp32 */
1256 /* 32-bit NOPs patterns. */
1257 static const unsigned char *const f32_patt[] = {
1258 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1259 };
1260 /* 16-bit NOPs patterns. */
1261 static const unsigned char *const f16_patt[] = {
1262 f32_1, f32_2, f16_3, f16_4
1263 };
1264 /* nopl (%[re]ax) */
1265 static const unsigned char alt_3[] =
1266 {0x0f,0x1f,0x00};
1267 /* nopl 0(%[re]ax) */
1268 static const unsigned char alt_4[] =
1269 {0x0f,0x1f,0x40,0x00};
1270 /* nopl 0(%[re]ax,%[re]ax,1) */
1271 static const unsigned char alt_5[] =
1272 {0x0f,0x1f,0x44,0x00,0x00};
1273 /* nopw 0(%[re]ax,%[re]ax,1) */
1274 static const unsigned char alt_6[] =
1275 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1276 /* nopl 0L(%[re]ax) */
1277 static const unsigned char alt_7[] =
1278 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1279 /* nopl 0L(%[re]ax,%[re]ax,1) */
1280 static const unsigned char alt_8[] =
1281 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1282 /* nopw 0L(%[re]ax,%[re]ax,1) */
1283 static const unsigned char alt_9[] =
1284 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1285 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1286 static const unsigned char alt_10[] =
1287 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1288 /* data16 nopw %cs:0L(%eax,%eax,1) */
1289 static const unsigned char alt_11[] =
1290 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1291 /* 32-bit and 64-bit NOPs patterns. */
1292 static const unsigned char *const alt_patt[] = {
1293 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1294 alt_9, alt_10, alt_11
1295 };
1296
1297 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1298 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1299
1300 static void
1301 i386_output_nops (char *where, const unsigned char *const *patt,
1302 int count, int max_single_nop_size)
1303
1304 {
1305 /* Place the longer NOP first. */
1306 int last;
1307 int offset;
1308 const unsigned char *nops;
1309
1310 if (max_single_nop_size < 1)
1311 {
1312 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1313 max_single_nop_size);
1314 return;
1315 }
1316
1317 nops = patt[max_single_nop_size - 1];
1318
1319 /* Use the smaller one if the requsted one isn't available. */
1320 if (nops == NULL)
1321 {
1322 max_single_nop_size--;
1323 nops = patt[max_single_nop_size - 1];
1324 }
1325
1326 last = count % max_single_nop_size;
1327
1328 count -= last;
1329 for (offset = 0; offset < count; offset += max_single_nop_size)
1330 memcpy (where + offset, nops, max_single_nop_size);
1331
1332 if (last)
1333 {
1334 nops = patt[last - 1];
1335 if (nops == NULL)
1336 {
1337 /* Use the smaller one plus one-byte NOP if the needed one
1338 isn't available. */
1339 last--;
1340 nops = patt[last - 1];
1341 memcpy (where + offset, nops, last);
1342 where[offset + last] = *patt[0];
1343 }
1344 else
1345 memcpy (where + offset, nops, last);
1346 }
1347 }
1348
1349 static INLINE int
1350 fits_in_imm7 (offsetT num)
1351 {
1352 return (num & 0x7f) == num;
1353 }
1354
1355 static INLINE int
1356 fits_in_imm31 (offsetT num)
1357 {
1358 return (num & 0x7fffffff) == num;
1359 }
1360
1361 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1362 single NOP instruction LIMIT. */
1363
1364 void
1365 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1366 {
1367 const unsigned char *const *patt = NULL;
1368 int max_single_nop_size;
1369 /* Maximum number of NOPs before switching to jump over NOPs. */
1370 int max_number_of_nops;
1371
1372 switch (fragP->fr_type)
1373 {
1374 case rs_fill_nop:
1375 case rs_align_code:
1376 break;
1377 default:
1378 return;
1379 }
1380
1381 /* We need to decide which NOP sequence to use for 32bit and
1382 64bit. When -mtune= is used:
1383
1384 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1385 PROCESSOR_GENERIC32, f32_patt will be used.
1386 2. For the rest, alt_patt will be used.
1387
1388 When -mtune= isn't used, alt_patt will be used if
1389 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1390 be used.
1391
1392 When -march= or .arch is used, we can't use anything beyond
1393 cpu_arch_isa_flags. */
1394
1395 if (flag_code == CODE_16BIT)
1396 {
1397 patt = f16_patt;
1398 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1399 /* Limit number of NOPs to 2 in 16-bit mode. */
1400 max_number_of_nops = 2;
1401 }
1402 else
1403 {
1404 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1405 {
1406 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1407 switch (cpu_arch_tune)
1408 {
1409 case PROCESSOR_UNKNOWN:
1410 /* We use cpu_arch_isa_flags to check if we SHOULD
1411 optimize with nops. */
1412 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1413 patt = alt_patt;
1414 else
1415 patt = f32_patt;
1416 break;
1417 case PROCESSOR_PENTIUM4:
1418 case PROCESSOR_NOCONA:
1419 case PROCESSOR_CORE:
1420 case PROCESSOR_CORE2:
1421 case PROCESSOR_COREI7:
1422 case PROCESSOR_L1OM:
1423 case PROCESSOR_K1OM:
1424 case PROCESSOR_GENERIC64:
1425 case PROCESSOR_K6:
1426 case PROCESSOR_ATHLON:
1427 case PROCESSOR_K8:
1428 case PROCESSOR_AMDFAM10:
1429 case PROCESSOR_BD:
1430 case PROCESSOR_ZNVER:
1431 case PROCESSOR_BT:
1432 patt = alt_patt;
1433 break;
1434 case PROCESSOR_I386:
1435 case PROCESSOR_I486:
1436 case PROCESSOR_PENTIUM:
1437 case PROCESSOR_PENTIUMPRO:
1438 case PROCESSOR_IAMCU:
1439 case PROCESSOR_GENERIC32:
1440 patt = f32_patt;
1441 break;
1442 }
1443 }
1444 else
1445 {
1446 switch (fragP->tc_frag_data.tune)
1447 {
1448 case PROCESSOR_UNKNOWN:
1449 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1450 PROCESSOR_UNKNOWN. */
1451 abort ();
1452 break;
1453
1454 case PROCESSOR_I386:
1455 case PROCESSOR_I486:
1456 case PROCESSOR_PENTIUM:
1457 case PROCESSOR_IAMCU:
1458 case PROCESSOR_K6:
1459 case PROCESSOR_ATHLON:
1460 case PROCESSOR_K8:
1461 case PROCESSOR_AMDFAM10:
1462 case PROCESSOR_BD:
1463 case PROCESSOR_ZNVER:
1464 case PROCESSOR_BT:
1465 case PROCESSOR_GENERIC32:
1466 /* We use cpu_arch_isa_flags to check if we CAN optimize
1467 with nops. */
1468 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1469 patt = alt_patt;
1470 else
1471 patt = f32_patt;
1472 break;
1473 case PROCESSOR_PENTIUMPRO:
1474 case PROCESSOR_PENTIUM4:
1475 case PROCESSOR_NOCONA:
1476 case PROCESSOR_CORE:
1477 case PROCESSOR_CORE2:
1478 case PROCESSOR_COREI7:
1479 case PROCESSOR_L1OM:
1480 case PROCESSOR_K1OM:
1481 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1482 patt = alt_patt;
1483 else
1484 patt = f32_patt;
1485 break;
1486 case PROCESSOR_GENERIC64:
1487 patt = alt_patt;
1488 break;
1489 }
1490 }
1491
1492 if (patt == f32_patt)
1493 {
1494 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1495 /* Limit number of NOPs to 2 for older processors. */
1496 max_number_of_nops = 2;
1497 }
1498 else
1499 {
1500 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1501 /* Limit number of NOPs to 7 for newer processors. */
1502 max_number_of_nops = 7;
1503 }
1504 }
1505
1506 if (limit == 0)
1507 limit = max_single_nop_size;
1508
1509 if (fragP->fr_type == rs_fill_nop)
1510 {
1511 /* Output NOPs for .nop directive. */
1512 if (limit > max_single_nop_size)
1513 {
1514 as_bad_where (fragP->fr_file, fragP->fr_line,
1515 _("invalid single nop size: %d "
1516 "(expect within [0, %d])"),
1517 limit, max_single_nop_size);
1518 return;
1519 }
1520 }
1521 else
1522 fragP->fr_var = count;
1523
1524 if ((count / max_single_nop_size) > max_number_of_nops)
1525 {
1526 /* Generate jump over NOPs. */
1527 offsetT disp = count - 2;
1528 if (fits_in_imm7 (disp))
1529 {
1530 /* Use "jmp disp8" if possible. */
1531 count = disp;
1532 where[0] = jump_disp8[0];
1533 where[1] = count;
1534 where += 2;
1535 }
1536 else
1537 {
1538 unsigned int size_of_jump;
1539
1540 if (flag_code == CODE_16BIT)
1541 {
1542 where[0] = jump16_disp32[0];
1543 where[1] = jump16_disp32[1];
1544 size_of_jump = 2;
1545 }
1546 else
1547 {
1548 where[0] = jump32_disp32[0];
1549 size_of_jump = 1;
1550 }
1551
1552 count -= size_of_jump + 4;
1553 if (!fits_in_imm31 (count))
1554 {
1555 as_bad_where (fragP->fr_file, fragP->fr_line,
1556 _("jump over nop padding out of range"));
1557 return;
1558 }
1559
1560 md_number_to_chars (where + size_of_jump, count, 4);
1561 where += size_of_jump + 4;
1562 }
1563 }
1564
1565 /* Generate multiple NOPs. */
1566 i386_output_nops (where, patt, count, limit);
1567 }
1568
1569 static INLINE int
1570 operand_type_all_zero (const union i386_operand_type *x)
1571 {
1572 switch (ARRAY_SIZE(x->array))
1573 {
1574 case 3:
1575 if (x->array[2])
1576 return 0;
1577 /* Fall through. */
1578 case 2:
1579 if (x->array[1])
1580 return 0;
1581 /* Fall through. */
1582 case 1:
1583 return !x->array[0];
1584 default:
1585 abort ();
1586 }
1587 }
1588
1589 static INLINE void
1590 operand_type_set (union i386_operand_type *x, unsigned int v)
1591 {
1592 switch (ARRAY_SIZE(x->array))
1593 {
1594 case 3:
1595 x->array[2] = v;
1596 /* Fall through. */
1597 case 2:
1598 x->array[1] = v;
1599 /* Fall through. */
1600 case 1:
1601 x->array[0] = v;
1602 /* Fall through. */
1603 break;
1604 default:
1605 abort ();
1606 }
1607 }
1608
1609 static INLINE int
1610 operand_type_equal (const union i386_operand_type *x,
1611 const union i386_operand_type *y)
1612 {
1613 switch (ARRAY_SIZE(x->array))
1614 {
1615 case 3:
1616 if (x->array[2] != y->array[2])
1617 return 0;
1618 /* Fall through. */
1619 case 2:
1620 if (x->array[1] != y->array[1])
1621 return 0;
1622 /* Fall through. */
1623 case 1:
1624 return x->array[0] == y->array[0];
1625 break;
1626 default:
1627 abort ();
1628 }
1629 }
1630
1631 static INLINE int
1632 cpu_flags_all_zero (const union i386_cpu_flags *x)
1633 {
1634 switch (ARRAY_SIZE(x->array))
1635 {
1636 case 4:
1637 if (x->array[3])
1638 return 0;
1639 /* Fall through. */
1640 case 3:
1641 if (x->array[2])
1642 return 0;
1643 /* Fall through. */
1644 case 2:
1645 if (x->array[1])
1646 return 0;
1647 /* Fall through. */
1648 case 1:
1649 return !x->array[0];
1650 default:
1651 abort ();
1652 }
1653 }
1654
1655 static INLINE int
1656 cpu_flags_equal (const union i386_cpu_flags *x,
1657 const union i386_cpu_flags *y)
1658 {
1659 switch (ARRAY_SIZE(x->array))
1660 {
1661 case 4:
1662 if (x->array[3] != y->array[3])
1663 return 0;
1664 /* Fall through. */
1665 case 3:
1666 if (x->array[2] != y->array[2])
1667 return 0;
1668 /* Fall through. */
1669 case 2:
1670 if (x->array[1] != y->array[1])
1671 return 0;
1672 /* Fall through. */
1673 case 1:
1674 return x->array[0] == y->array[0];
1675 break;
1676 default:
1677 abort ();
1678 }
1679 }
1680
1681 static INLINE int
1682 cpu_flags_check_cpu64 (i386_cpu_flags f)
1683 {
1684 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1685 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1686 }
1687
1688 static INLINE i386_cpu_flags
1689 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1690 {
1691 switch (ARRAY_SIZE (x.array))
1692 {
1693 case 4:
1694 x.array [3] &= y.array [3];
1695 /* Fall through. */
1696 case 3:
1697 x.array [2] &= y.array [2];
1698 /* Fall through. */
1699 case 2:
1700 x.array [1] &= y.array [1];
1701 /* Fall through. */
1702 case 1:
1703 x.array [0] &= y.array [0];
1704 break;
1705 default:
1706 abort ();
1707 }
1708 return x;
1709 }
1710
1711 static INLINE i386_cpu_flags
1712 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1713 {
1714 switch (ARRAY_SIZE (x.array))
1715 {
1716 case 4:
1717 x.array [3] |= y.array [3];
1718 /* Fall through. */
1719 case 3:
1720 x.array [2] |= y.array [2];
1721 /* Fall through. */
1722 case 2:
1723 x.array [1] |= y.array [1];
1724 /* Fall through. */
1725 case 1:
1726 x.array [0] |= y.array [0];
1727 break;
1728 default:
1729 abort ();
1730 }
1731 return x;
1732 }
1733
1734 static INLINE i386_cpu_flags
1735 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1736 {
1737 switch (ARRAY_SIZE (x.array))
1738 {
1739 case 4:
1740 x.array [3] &= ~y.array [3];
1741 /* Fall through. */
1742 case 3:
1743 x.array [2] &= ~y.array [2];
1744 /* Fall through. */
1745 case 2:
1746 x.array [1] &= ~y.array [1];
1747 /* Fall through. */
1748 case 1:
1749 x.array [0] &= ~y.array [0];
1750 break;
1751 default:
1752 abort ();
1753 }
1754 return x;
1755 }
1756
1757 #define CPU_FLAGS_ARCH_MATCH 0x1
1758 #define CPU_FLAGS_64BIT_MATCH 0x2
1759
1760 #define CPU_FLAGS_PERFECT_MATCH \
1761 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1762
1763 /* Return CPU flags match bits. */
1764
1765 static int
1766 cpu_flags_match (const insn_template *t)
1767 {
1768 i386_cpu_flags x = t->cpu_flags;
1769 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1770
1771 x.bitfield.cpu64 = 0;
1772 x.bitfield.cpuno64 = 0;
1773
1774 if (cpu_flags_all_zero (&x))
1775 {
1776 /* This instruction is available on all archs. */
1777 match |= CPU_FLAGS_ARCH_MATCH;
1778 }
1779 else
1780 {
1781 /* This instruction is available only on some archs. */
1782 i386_cpu_flags cpu = cpu_arch_flags;
1783
1784 /* AVX512VL is no standalone feature - match it and then strip it. */
1785 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1786 return match;
1787 x.bitfield.cpuavx512vl = 0;
1788
1789 cpu = cpu_flags_and (x, cpu);
1790 if (!cpu_flags_all_zero (&cpu))
1791 {
1792 if (x.bitfield.cpuavx)
1793 {
1794 /* We need to check a few extra flags with AVX. */
1795 if (cpu.bitfield.cpuavx
1796 && (!t->opcode_modifier.sse2avx || sse2avx)
1797 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1798 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1799 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1800 match |= CPU_FLAGS_ARCH_MATCH;
1801 }
1802 else if (x.bitfield.cpuavx512f)
1803 {
1804 /* We need to check a few extra flags with AVX512F. */
1805 if (cpu.bitfield.cpuavx512f
1806 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1807 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1808 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1809 match |= CPU_FLAGS_ARCH_MATCH;
1810 }
1811 else
1812 match |= CPU_FLAGS_ARCH_MATCH;
1813 }
1814 }
1815 return match;
1816 }
1817
1818 static INLINE i386_operand_type
1819 operand_type_and (i386_operand_type x, i386_operand_type y)
1820 {
1821 switch (ARRAY_SIZE (x.array))
1822 {
1823 case 3:
1824 x.array [2] &= y.array [2];
1825 /* Fall through. */
1826 case 2:
1827 x.array [1] &= y.array [1];
1828 /* Fall through. */
1829 case 1:
1830 x.array [0] &= y.array [0];
1831 break;
1832 default:
1833 abort ();
1834 }
1835 return x;
1836 }
1837
1838 static INLINE i386_operand_type
1839 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1840 {
1841 switch (ARRAY_SIZE (x.array))
1842 {
1843 case 3:
1844 x.array [2] &= ~y.array [2];
1845 /* Fall through. */
1846 case 2:
1847 x.array [1] &= ~y.array [1];
1848 /* Fall through. */
1849 case 1:
1850 x.array [0] &= ~y.array [0];
1851 break;
1852 default:
1853 abort ();
1854 }
1855 return x;
1856 }
1857
1858 static INLINE i386_operand_type
1859 operand_type_or (i386_operand_type x, i386_operand_type y)
1860 {
1861 switch (ARRAY_SIZE (x.array))
1862 {
1863 case 3:
1864 x.array [2] |= y.array [2];
1865 /* Fall through. */
1866 case 2:
1867 x.array [1] |= y.array [1];
1868 /* Fall through. */
1869 case 1:
1870 x.array [0] |= y.array [0];
1871 break;
1872 default:
1873 abort ();
1874 }
1875 return x;
1876 }
1877
1878 static INLINE i386_operand_type
1879 operand_type_xor (i386_operand_type x, i386_operand_type y)
1880 {
1881 switch (ARRAY_SIZE (x.array))
1882 {
1883 case 3:
1884 x.array [2] ^= y.array [2];
1885 /* Fall through. */
1886 case 2:
1887 x.array [1] ^= y.array [1];
1888 /* Fall through. */
1889 case 1:
1890 x.array [0] ^= y.array [0];
1891 break;
1892 default:
1893 abort ();
1894 }
1895 return x;
1896 }
1897
1898 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1899 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1900 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1901 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1902 static const i386_operand_type anydisp
1903 = OPERAND_TYPE_ANYDISP;
1904 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1905 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1906 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1907 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1908 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1909 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1910 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1911 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1912 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1913 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1914 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1915 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1916
1917 enum operand_type
1918 {
1919 reg,
1920 imm,
1921 disp,
1922 anymem
1923 };
1924
1925 static INLINE int
1926 operand_type_check (i386_operand_type t, enum operand_type c)
1927 {
1928 switch (c)
1929 {
1930 case reg:
1931 return t.bitfield.reg;
1932
1933 case imm:
1934 return (t.bitfield.imm8
1935 || t.bitfield.imm8s
1936 || t.bitfield.imm16
1937 || t.bitfield.imm32
1938 || t.bitfield.imm32s
1939 || t.bitfield.imm64);
1940
1941 case disp:
1942 return (t.bitfield.disp8
1943 || t.bitfield.disp16
1944 || t.bitfield.disp32
1945 || t.bitfield.disp32s
1946 || t.bitfield.disp64);
1947
1948 case anymem:
1949 return (t.bitfield.disp8
1950 || t.bitfield.disp16
1951 || t.bitfield.disp32
1952 || t.bitfield.disp32s
1953 || t.bitfield.disp64
1954 || t.bitfield.baseindex);
1955
1956 default:
1957 abort ();
1958 }
1959
1960 return 0;
1961 }
1962
1963 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1964 between operand GIVEN and opeand WANTED for instruction template T. */
1965
1966 static INLINE int
1967 match_operand_size (const insn_template *t, unsigned int wanted,
1968 unsigned int given)
1969 {
1970 return !((i.types[given].bitfield.byte
1971 && !t->operand_types[wanted].bitfield.byte)
1972 || (i.types[given].bitfield.word
1973 && !t->operand_types[wanted].bitfield.word)
1974 || (i.types[given].bitfield.dword
1975 && !t->operand_types[wanted].bitfield.dword)
1976 || (i.types[given].bitfield.qword
1977 && !t->operand_types[wanted].bitfield.qword)
1978 || (i.types[given].bitfield.tbyte
1979 && !t->operand_types[wanted].bitfield.tbyte));
1980 }
1981
1982 /* Return 1 if there is no conflict in SIMD register between operand
1983 GIVEN and opeand WANTED for instruction template T. */
1984
1985 static INLINE int
1986 match_simd_size (const insn_template *t, unsigned int wanted,
1987 unsigned int given)
1988 {
1989 return !((i.types[given].bitfield.xmmword
1990 && !t->operand_types[wanted].bitfield.xmmword)
1991 || (i.types[given].bitfield.ymmword
1992 && !t->operand_types[wanted].bitfield.ymmword)
1993 || (i.types[given].bitfield.zmmword
1994 && !t->operand_types[wanted].bitfield.zmmword));
1995 }
1996
1997 /* Return 1 if there is no conflict in any size between operand GIVEN
1998 and opeand WANTED for instruction template T. */
1999
2000 static INLINE int
2001 match_mem_size (const insn_template *t, unsigned int wanted,
2002 unsigned int given)
2003 {
2004 return (match_operand_size (t, wanted, given)
2005 && !((i.types[given].bitfield.unspecified
2006 && !i.broadcast
2007 && !t->operand_types[wanted].bitfield.unspecified)
2008 || (i.types[given].bitfield.fword
2009 && !t->operand_types[wanted].bitfield.fword)
2010 /* For scalar opcode templates to allow register and memory
2011 operands at the same time, some special casing is needed
2012 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2013 down-conversion vpmov*. */
2014 || ((t->operand_types[wanted].bitfield.regsimd
2015 && !t->opcode_modifier.broadcast
2016 && (t->operand_types[wanted].bitfield.byte
2017 || t->operand_types[wanted].bitfield.word
2018 || t->operand_types[wanted].bitfield.dword
2019 || t->operand_types[wanted].bitfield.qword))
2020 ? (i.types[given].bitfield.xmmword
2021 || i.types[given].bitfield.ymmword
2022 || i.types[given].bitfield.zmmword)
2023 : !match_simd_size(t, wanted, given))));
2024 }
2025
2026 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2027 operands for instruction template T, and it has MATCH_REVERSE set if there
2028 is no size conflict on any operands for the template with operands reversed
2029 (and the template allows for reversing in the first place). */
2030
2031 #define MATCH_STRAIGHT 1
2032 #define MATCH_REVERSE 2
2033
2034 static INLINE unsigned int
2035 operand_size_match (const insn_template *t)
2036 {
2037 unsigned int j, match = MATCH_STRAIGHT;
2038
2039 /* Don't check jump instructions. */
2040 if (t->opcode_modifier.jump
2041 || t->opcode_modifier.jumpbyte
2042 || t->opcode_modifier.jumpdword
2043 || t->opcode_modifier.jumpintersegment)
2044 return match;
2045
2046 /* Check memory and accumulator operand size. */
2047 for (j = 0; j < i.operands; j++)
2048 {
2049 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
2050 && t->operand_types[j].bitfield.anysize)
2051 continue;
2052
2053 if (t->operand_types[j].bitfield.reg
2054 && !match_operand_size (t, j, j))
2055 {
2056 match = 0;
2057 break;
2058 }
2059
2060 if (t->operand_types[j].bitfield.regsimd
2061 && !match_simd_size (t, j, j))
2062 {
2063 match = 0;
2064 break;
2065 }
2066
2067 if (t->operand_types[j].bitfield.acc
2068 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2069 {
2070 match = 0;
2071 break;
2072 }
2073
2074 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2075 {
2076 match = 0;
2077 break;
2078 }
2079 }
2080
2081 if (!t->opcode_modifier.d)
2082 {
2083 mismatch:
2084 if (!match)
2085 i.error = operand_size_mismatch;
2086 return match;
2087 }
2088
2089 /* Check reverse. */
2090 gas_assert (i.operands >= 2 && i.operands <= 3);
2091
2092 for (j = 0; j < i.operands; j++)
2093 {
2094 unsigned int given = i.operands - j - 1;
2095
2096 if (t->operand_types[j].bitfield.reg
2097 && !match_operand_size (t, j, given))
2098 goto mismatch;
2099
2100 if (t->operand_types[j].bitfield.regsimd
2101 && !match_simd_size (t, j, given))
2102 goto mismatch;
2103
2104 if (t->operand_types[j].bitfield.acc
2105 && (!match_operand_size (t, j, given)
2106 || !match_simd_size (t, j, given)))
2107 goto mismatch;
2108
2109 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2110 goto mismatch;
2111 }
2112
2113 return match | MATCH_REVERSE;
2114 }
2115
2116 static INLINE int
2117 operand_type_match (i386_operand_type overlap,
2118 i386_operand_type given)
2119 {
2120 i386_operand_type temp = overlap;
2121
2122 temp.bitfield.jumpabsolute = 0;
2123 temp.bitfield.unspecified = 0;
2124 temp.bitfield.byte = 0;
2125 temp.bitfield.word = 0;
2126 temp.bitfield.dword = 0;
2127 temp.bitfield.fword = 0;
2128 temp.bitfield.qword = 0;
2129 temp.bitfield.tbyte = 0;
2130 temp.bitfield.xmmword = 0;
2131 temp.bitfield.ymmword = 0;
2132 temp.bitfield.zmmword = 0;
2133 if (operand_type_all_zero (&temp))
2134 goto mismatch;
2135
2136 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2137 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2138 return 1;
2139
2140 mismatch:
2141 i.error = operand_type_mismatch;
2142 return 0;
2143 }
2144
2145 /* If given types g0 and g1 are registers they must be of the same type
2146 unless the expected operand type register overlap is null.
2147 Memory operand size of certain SIMD instructions is also being checked
2148 here. */
2149
2150 static INLINE int
2151 operand_type_register_match (i386_operand_type g0,
2152 i386_operand_type t0,
2153 i386_operand_type g1,
2154 i386_operand_type t1)
2155 {
2156 if (!g0.bitfield.reg
2157 && !g0.bitfield.regsimd
2158 && (!operand_type_check (g0, anymem)
2159 || g0.bitfield.unspecified
2160 || !t0.bitfield.regsimd))
2161 return 1;
2162
2163 if (!g1.bitfield.reg
2164 && !g1.bitfield.regsimd
2165 && (!operand_type_check (g1, anymem)
2166 || g1.bitfield.unspecified
2167 || !t1.bitfield.regsimd))
2168 return 1;
2169
2170 if (g0.bitfield.byte == g1.bitfield.byte
2171 && g0.bitfield.word == g1.bitfield.word
2172 && g0.bitfield.dword == g1.bitfield.dword
2173 && g0.bitfield.qword == g1.bitfield.qword
2174 && g0.bitfield.xmmword == g1.bitfield.xmmword
2175 && g0.bitfield.ymmword == g1.bitfield.ymmword
2176 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2177 return 1;
2178
2179 if (!(t0.bitfield.byte & t1.bitfield.byte)
2180 && !(t0.bitfield.word & t1.bitfield.word)
2181 && !(t0.bitfield.dword & t1.bitfield.dword)
2182 && !(t0.bitfield.qword & t1.bitfield.qword)
2183 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2184 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2185 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2186 return 1;
2187
2188 i.error = register_type_mismatch;
2189
2190 return 0;
2191 }
2192
2193 static INLINE unsigned int
2194 register_number (const reg_entry *r)
2195 {
2196 unsigned int nr = r->reg_num;
2197
2198 if (r->reg_flags & RegRex)
2199 nr += 8;
2200
2201 if (r->reg_flags & RegVRex)
2202 nr += 16;
2203
2204 return nr;
2205 }
2206
2207 static INLINE unsigned int
2208 mode_from_disp_size (i386_operand_type t)
2209 {
2210 if (t.bitfield.disp8)
2211 return 1;
2212 else if (t.bitfield.disp16
2213 || t.bitfield.disp32
2214 || t.bitfield.disp32s)
2215 return 2;
2216 else
2217 return 0;
2218 }
2219
2220 static INLINE int
2221 fits_in_signed_byte (addressT num)
2222 {
2223 return num + 0x80 <= 0xff;
2224 }
2225
2226 static INLINE int
2227 fits_in_unsigned_byte (addressT num)
2228 {
2229 return num <= 0xff;
2230 }
2231
2232 static INLINE int
2233 fits_in_unsigned_word (addressT num)
2234 {
2235 return num <= 0xffff;
2236 }
2237
2238 static INLINE int
2239 fits_in_signed_word (addressT num)
2240 {
2241 return num + 0x8000 <= 0xffff;
2242 }
2243
2244 static INLINE int
2245 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2246 {
2247 #ifndef BFD64
2248 return 1;
2249 #else
2250 return num + 0x80000000 <= 0xffffffff;
2251 #endif
2252 } /* fits_in_signed_long() */
2253
2254 static INLINE int
2255 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2256 {
2257 #ifndef BFD64
2258 return 1;
2259 #else
2260 return num <= 0xffffffff;
2261 #endif
2262 } /* fits_in_unsigned_long() */
2263
2264 static INLINE int
2265 fits_in_disp8 (offsetT num)
2266 {
2267 int shift = i.memshift;
2268 unsigned int mask;
2269
2270 if (shift == -1)
2271 abort ();
2272
2273 mask = (1 << shift) - 1;
2274
2275 /* Return 0 if NUM isn't properly aligned. */
2276 if ((num & mask))
2277 return 0;
2278
2279 /* Check if NUM will fit in 8bit after shift. */
2280 return fits_in_signed_byte (num >> shift);
2281 }
2282
2283 static INLINE int
2284 fits_in_imm4 (offsetT num)
2285 {
2286 return (num & 0xf) == num;
2287 }
2288
2289 static i386_operand_type
2290 smallest_imm_type (offsetT num)
2291 {
2292 i386_operand_type t;
2293
2294 operand_type_set (&t, 0);
2295 t.bitfield.imm64 = 1;
2296
2297 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2298 {
2299 /* This code is disabled on the 486 because all the Imm1 forms
2300 in the opcode table are slower on the i486. They're the
2301 versions with the implicitly specified single-position
2302 displacement, which has another syntax if you really want to
2303 use that form. */
2304 t.bitfield.imm1 = 1;
2305 t.bitfield.imm8 = 1;
2306 t.bitfield.imm8s = 1;
2307 t.bitfield.imm16 = 1;
2308 t.bitfield.imm32 = 1;
2309 t.bitfield.imm32s = 1;
2310 }
2311 else if (fits_in_signed_byte (num))
2312 {
2313 t.bitfield.imm8 = 1;
2314 t.bitfield.imm8s = 1;
2315 t.bitfield.imm16 = 1;
2316 t.bitfield.imm32 = 1;
2317 t.bitfield.imm32s = 1;
2318 }
2319 else if (fits_in_unsigned_byte (num))
2320 {
2321 t.bitfield.imm8 = 1;
2322 t.bitfield.imm16 = 1;
2323 t.bitfield.imm32 = 1;
2324 t.bitfield.imm32s = 1;
2325 }
2326 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2327 {
2328 t.bitfield.imm16 = 1;
2329 t.bitfield.imm32 = 1;
2330 t.bitfield.imm32s = 1;
2331 }
2332 else if (fits_in_signed_long (num))
2333 {
2334 t.bitfield.imm32 = 1;
2335 t.bitfield.imm32s = 1;
2336 }
2337 else if (fits_in_unsigned_long (num))
2338 t.bitfield.imm32 = 1;
2339
2340 return t;
2341 }
2342
2343 static offsetT
2344 offset_in_range (offsetT val, int size)
2345 {
2346 addressT mask;
2347
2348 switch (size)
2349 {
2350 case 1: mask = ((addressT) 1 << 8) - 1; break;
2351 case 2: mask = ((addressT) 1 << 16) - 1; break;
2352 case 4: mask = ((addressT) 2 << 31) - 1; break;
2353 #ifdef BFD64
2354 case 8: mask = ((addressT) 2 << 63) - 1; break;
2355 #endif
2356 default: abort ();
2357 }
2358
2359 #ifdef BFD64
2360 /* If BFD64, sign extend val for 32bit address mode. */
2361 if (flag_code != CODE_64BIT
2362 || i.prefix[ADDR_PREFIX])
2363 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2364 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2365 #endif
2366
2367 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2368 {
2369 char buf1[40], buf2[40];
2370
2371 sprint_value (buf1, val);
2372 sprint_value (buf2, val & mask);
2373 as_warn (_("%s shortened to %s"), buf1, buf2);
2374 }
2375 return val & mask;
2376 }
2377
2378 enum PREFIX_GROUP
2379 {
2380 PREFIX_EXIST = 0,
2381 PREFIX_LOCK,
2382 PREFIX_REP,
2383 PREFIX_DS,
2384 PREFIX_OTHER
2385 };
2386
2387 /* Returns
2388 a. PREFIX_EXIST if attempting to add a prefix where one from the
2389 same class already exists.
2390 b. PREFIX_LOCK if lock prefix is added.
2391 c. PREFIX_REP if rep/repne prefix is added.
2392 d. PREFIX_DS if ds prefix is added.
2393 e. PREFIX_OTHER if other prefix is added.
2394 */
2395
2396 static enum PREFIX_GROUP
2397 add_prefix (unsigned int prefix)
2398 {
2399 enum PREFIX_GROUP ret = PREFIX_OTHER;
2400 unsigned int q;
2401
2402 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2403 && flag_code == CODE_64BIT)
2404 {
2405 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2406 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2407 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2408 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2409 ret = PREFIX_EXIST;
2410 q = REX_PREFIX;
2411 }
2412 else
2413 {
2414 switch (prefix)
2415 {
2416 default:
2417 abort ();
2418
2419 case DS_PREFIX_OPCODE:
2420 ret = PREFIX_DS;
2421 /* Fall through. */
2422 case CS_PREFIX_OPCODE:
2423 case ES_PREFIX_OPCODE:
2424 case FS_PREFIX_OPCODE:
2425 case GS_PREFIX_OPCODE:
2426 case SS_PREFIX_OPCODE:
2427 q = SEG_PREFIX;
2428 break;
2429
2430 case REPNE_PREFIX_OPCODE:
2431 case REPE_PREFIX_OPCODE:
2432 q = REP_PREFIX;
2433 ret = PREFIX_REP;
2434 break;
2435
2436 case LOCK_PREFIX_OPCODE:
2437 q = LOCK_PREFIX;
2438 ret = PREFIX_LOCK;
2439 break;
2440
2441 case FWAIT_OPCODE:
2442 q = WAIT_PREFIX;
2443 break;
2444
2445 case ADDR_PREFIX_OPCODE:
2446 q = ADDR_PREFIX;
2447 break;
2448
2449 case DATA_PREFIX_OPCODE:
2450 q = DATA_PREFIX;
2451 break;
2452 }
2453 if (i.prefix[q] != 0)
2454 ret = PREFIX_EXIST;
2455 }
2456
2457 if (ret)
2458 {
2459 if (!i.prefix[q])
2460 ++i.prefixes;
2461 i.prefix[q] |= prefix;
2462 }
2463 else
2464 as_bad (_("same type of prefix used twice"));
2465
2466 return ret;
2467 }
2468
2469 static void
2470 update_code_flag (int value, int check)
2471 {
2472 PRINTF_LIKE ((*as_error));
2473
2474 flag_code = (enum flag_code) value;
2475 if (flag_code == CODE_64BIT)
2476 {
2477 cpu_arch_flags.bitfield.cpu64 = 1;
2478 cpu_arch_flags.bitfield.cpuno64 = 0;
2479 }
2480 else
2481 {
2482 cpu_arch_flags.bitfield.cpu64 = 0;
2483 cpu_arch_flags.bitfield.cpuno64 = 1;
2484 }
2485 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2486 {
2487 if (check)
2488 as_error = as_fatal;
2489 else
2490 as_error = as_bad;
2491 (*as_error) (_("64bit mode not supported on `%s'."),
2492 cpu_arch_name ? cpu_arch_name : default_arch);
2493 }
2494 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2495 {
2496 if (check)
2497 as_error = as_fatal;
2498 else
2499 as_error = as_bad;
2500 (*as_error) (_("32bit mode not supported on `%s'."),
2501 cpu_arch_name ? cpu_arch_name : default_arch);
2502 }
2503 stackop_size = '\0';
2504 }
2505
2506 static void
2507 set_code_flag (int value)
2508 {
2509 update_code_flag (value, 0);
2510 }
2511
2512 static void
2513 set_16bit_gcc_code_flag (int new_code_flag)
2514 {
2515 flag_code = (enum flag_code) new_code_flag;
2516 if (flag_code != CODE_16BIT)
2517 abort ();
2518 cpu_arch_flags.bitfield.cpu64 = 0;
2519 cpu_arch_flags.bitfield.cpuno64 = 1;
2520 stackop_size = LONG_MNEM_SUFFIX;
2521 }
2522
2523 static void
2524 set_intel_syntax (int syntax_flag)
2525 {
2526 /* Find out if register prefixing is specified. */
2527 int ask_naked_reg = 0;
2528
2529 SKIP_WHITESPACE ();
2530 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2531 {
2532 char *string;
2533 int e = get_symbol_name (&string);
2534
2535 if (strcmp (string, "prefix") == 0)
2536 ask_naked_reg = 1;
2537 else if (strcmp (string, "noprefix") == 0)
2538 ask_naked_reg = -1;
2539 else
2540 as_bad (_("bad argument to syntax directive."));
2541 (void) restore_line_pointer (e);
2542 }
2543 demand_empty_rest_of_line ();
2544
2545 intel_syntax = syntax_flag;
2546
2547 if (ask_naked_reg == 0)
2548 allow_naked_reg = (intel_syntax
2549 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2550 else
2551 allow_naked_reg = (ask_naked_reg < 0);
2552
2553 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2554
2555 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2556 identifier_chars['$'] = intel_syntax ? '$' : 0;
2557 register_prefix = allow_naked_reg ? "" : "%";
2558 }
2559
2560 static void
2561 set_intel_mnemonic (int mnemonic_flag)
2562 {
2563 intel_mnemonic = mnemonic_flag;
2564 }
2565
2566 static void
2567 set_allow_index_reg (int flag)
2568 {
2569 allow_index_reg = flag;
2570 }
2571
2572 static void
2573 set_check (int what)
2574 {
2575 enum check_kind *kind;
2576 const char *str;
2577
2578 if (what)
2579 {
2580 kind = &operand_check;
2581 str = "operand";
2582 }
2583 else
2584 {
2585 kind = &sse_check;
2586 str = "sse";
2587 }
2588
2589 SKIP_WHITESPACE ();
2590
2591 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2592 {
2593 char *string;
2594 int e = get_symbol_name (&string);
2595
2596 if (strcmp (string, "none") == 0)
2597 *kind = check_none;
2598 else if (strcmp (string, "warning") == 0)
2599 *kind = check_warning;
2600 else if (strcmp (string, "error") == 0)
2601 *kind = check_error;
2602 else
2603 as_bad (_("bad argument to %s_check directive."), str);
2604 (void) restore_line_pointer (e);
2605 }
2606 else
2607 as_bad (_("missing argument for %s_check directive"), str);
2608
2609 demand_empty_rest_of_line ();
2610 }
2611
2612 static void
2613 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2614 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2615 {
2616 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2617 static const char *arch;
2618
2619 /* Intel LIOM is only supported on ELF. */
2620 if (!IS_ELF)
2621 return;
2622
2623 if (!arch)
2624 {
2625 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2626 use default_arch. */
2627 arch = cpu_arch_name;
2628 if (!arch)
2629 arch = default_arch;
2630 }
2631
2632 /* If we are targeting Intel MCU, we must enable it. */
2633 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2634 || new_flag.bitfield.cpuiamcu)
2635 return;
2636
2637 /* If we are targeting Intel L1OM, we must enable it. */
2638 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2639 || new_flag.bitfield.cpul1om)
2640 return;
2641
2642 /* If we are targeting Intel K1OM, we must enable it. */
2643 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2644 || new_flag.bitfield.cpuk1om)
2645 return;
2646
2647 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2648 #endif
2649 }
2650
2651 static void
2652 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2653 {
2654 SKIP_WHITESPACE ();
2655
2656 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2657 {
2658 char *string;
2659 int e = get_symbol_name (&string);
2660 unsigned int j;
2661 i386_cpu_flags flags;
2662
2663 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2664 {
2665 if (strcmp (string, cpu_arch[j].name) == 0)
2666 {
2667 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2668
2669 if (*string != '.')
2670 {
2671 cpu_arch_name = cpu_arch[j].name;
2672 cpu_sub_arch_name = NULL;
2673 cpu_arch_flags = cpu_arch[j].flags;
2674 if (flag_code == CODE_64BIT)
2675 {
2676 cpu_arch_flags.bitfield.cpu64 = 1;
2677 cpu_arch_flags.bitfield.cpuno64 = 0;
2678 }
2679 else
2680 {
2681 cpu_arch_flags.bitfield.cpu64 = 0;
2682 cpu_arch_flags.bitfield.cpuno64 = 1;
2683 }
2684 cpu_arch_isa = cpu_arch[j].type;
2685 cpu_arch_isa_flags = cpu_arch[j].flags;
2686 if (!cpu_arch_tune_set)
2687 {
2688 cpu_arch_tune = cpu_arch_isa;
2689 cpu_arch_tune_flags = cpu_arch_isa_flags;
2690 }
2691 break;
2692 }
2693
2694 flags = cpu_flags_or (cpu_arch_flags,
2695 cpu_arch[j].flags);
2696
2697 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2698 {
2699 if (cpu_sub_arch_name)
2700 {
2701 char *name = cpu_sub_arch_name;
2702 cpu_sub_arch_name = concat (name,
2703 cpu_arch[j].name,
2704 (const char *) NULL);
2705 free (name);
2706 }
2707 else
2708 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2709 cpu_arch_flags = flags;
2710 cpu_arch_isa_flags = flags;
2711 }
2712 else
2713 cpu_arch_isa_flags
2714 = cpu_flags_or (cpu_arch_isa_flags,
2715 cpu_arch[j].flags);
2716 (void) restore_line_pointer (e);
2717 demand_empty_rest_of_line ();
2718 return;
2719 }
2720 }
2721
2722 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2723 {
2724 /* Disable an ISA extension. */
2725 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2726 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2727 {
2728 flags = cpu_flags_and_not (cpu_arch_flags,
2729 cpu_noarch[j].flags);
2730 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2731 {
2732 if (cpu_sub_arch_name)
2733 {
2734 char *name = cpu_sub_arch_name;
2735 cpu_sub_arch_name = concat (name, string,
2736 (const char *) NULL);
2737 free (name);
2738 }
2739 else
2740 cpu_sub_arch_name = xstrdup (string);
2741 cpu_arch_flags = flags;
2742 cpu_arch_isa_flags = flags;
2743 }
2744 (void) restore_line_pointer (e);
2745 demand_empty_rest_of_line ();
2746 return;
2747 }
2748
2749 j = ARRAY_SIZE (cpu_arch);
2750 }
2751
2752 if (j >= ARRAY_SIZE (cpu_arch))
2753 as_bad (_("no such architecture: `%s'"), string);
2754
2755 *input_line_pointer = e;
2756 }
2757 else
2758 as_bad (_("missing cpu architecture"));
2759
2760 no_cond_jump_promotion = 0;
2761 if (*input_line_pointer == ','
2762 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2763 {
2764 char *string;
2765 char e;
2766
2767 ++input_line_pointer;
2768 e = get_symbol_name (&string);
2769
2770 if (strcmp (string, "nojumps") == 0)
2771 no_cond_jump_promotion = 1;
2772 else if (strcmp (string, "jumps") == 0)
2773 ;
2774 else
2775 as_bad (_("no such architecture modifier: `%s'"), string);
2776
2777 (void) restore_line_pointer (e);
2778 }
2779
2780 demand_empty_rest_of_line ();
2781 }
2782
2783 enum bfd_architecture
2784 i386_arch (void)
2785 {
2786 if (cpu_arch_isa == PROCESSOR_L1OM)
2787 {
2788 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2789 || flag_code != CODE_64BIT)
2790 as_fatal (_("Intel L1OM is 64bit ELF only"));
2791 return bfd_arch_l1om;
2792 }
2793 else if (cpu_arch_isa == PROCESSOR_K1OM)
2794 {
2795 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2796 || flag_code != CODE_64BIT)
2797 as_fatal (_("Intel K1OM is 64bit ELF only"));
2798 return bfd_arch_k1om;
2799 }
2800 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2801 {
2802 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2803 || flag_code == CODE_64BIT)
2804 as_fatal (_("Intel MCU is 32bit ELF only"));
2805 return bfd_arch_iamcu;
2806 }
2807 else
2808 return bfd_arch_i386;
2809 }
2810
2811 unsigned long
2812 i386_mach (void)
2813 {
2814 if (!strncmp (default_arch, "x86_64", 6))
2815 {
2816 if (cpu_arch_isa == PROCESSOR_L1OM)
2817 {
2818 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2819 || default_arch[6] != '\0')
2820 as_fatal (_("Intel L1OM is 64bit ELF only"));
2821 return bfd_mach_l1om;
2822 }
2823 else if (cpu_arch_isa == PROCESSOR_K1OM)
2824 {
2825 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2826 || default_arch[6] != '\0')
2827 as_fatal (_("Intel K1OM is 64bit ELF only"));
2828 return bfd_mach_k1om;
2829 }
2830 else if (default_arch[6] == '\0')
2831 return bfd_mach_x86_64;
2832 else
2833 return bfd_mach_x64_32;
2834 }
2835 else if (!strcmp (default_arch, "i386")
2836 || !strcmp (default_arch, "iamcu"))
2837 {
2838 if (cpu_arch_isa == PROCESSOR_IAMCU)
2839 {
2840 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2841 as_fatal (_("Intel MCU is 32bit ELF only"));
2842 return bfd_mach_i386_iamcu;
2843 }
2844 else
2845 return bfd_mach_i386_i386;
2846 }
2847 else
2848 as_fatal (_("unknown architecture"));
2849 }
2850 \f
2851 void
2852 md_begin (void)
2853 {
2854 const char *hash_err;
2855
2856 /* Support pseudo prefixes like {disp32}. */
2857 lex_type ['{'] = LEX_BEGIN_NAME;
2858
2859 /* Initialize op_hash hash table. */
2860 op_hash = hash_new ();
2861
2862 {
2863 const insn_template *optab;
2864 templates *core_optab;
2865
2866 /* Setup for loop. */
2867 optab = i386_optab;
2868 core_optab = XNEW (templates);
2869 core_optab->start = optab;
2870
2871 while (1)
2872 {
2873 ++optab;
2874 if (optab->name == NULL
2875 || strcmp (optab->name, (optab - 1)->name) != 0)
2876 {
2877 /* different name --> ship out current template list;
2878 add to hash table; & begin anew. */
2879 core_optab->end = optab;
2880 hash_err = hash_insert (op_hash,
2881 (optab - 1)->name,
2882 (void *) core_optab);
2883 if (hash_err)
2884 {
2885 as_fatal (_("can't hash %s: %s"),
2886 (optab - 1)->name,
2887 hash_err);
2888 }
2889 if (optab->name == NULL)
2890 break;
2891 core_optab = XNEW (templates);
2892 core_optab->start = optab;
2893 }
2894 }
2895 }
2896
2897 /* Initialize reg_hash hash table. */
2898 reg_hash = hash_new ();
2899 {
2900 const reg_entry *regtab;
2901 unsigned int regtab_size = i386_regtab_size;
2902
2903 for (regtab = i386_regtab; regtab_size--; regtab++)
2904 {
2905 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2906 if (hash_err)
2907 as_fatal (_("can't hash %s: %s"),
2908 regtab->reg_name,
2909 hash_err);
2910 }
2911 }
2912
2913 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2914 {
2915 int c;
2916 char *p;
2917
2918 for (c = 0; c < 256; c++)
2919 {
2920 if (ISDIGIT (c))
2921 {
2922 digit_chars[c] = c;
2923 mnemonic_chars[c] = c;
2924 register_chars[c] = c;
2925 operand_chars[c] = c;
2926 }
2927 else if (ISLOWER (c))
2928 {
2929 mnemonic_chars[c] = c;
2930 register_chars[c] = c;
2931 operand_chars[c] = c;
2932 }
2933 else if (ISUPPER (c))
2934 {
2935 mnemonic_chars[c] = TOLOWER (c);
2936 register_chars[c] = mnemonic_chars[c];
2937 operand_chars[c] = c;
2938 }
2939 else if (c == '{' || c == '}')
2940 {
2941 mnemonic_chars[c] = c;
2942 operand_chars[c] = c;
2943 }
2944
2945 if (ISALPHA (c) || ISDIGIT (c))
2946 identifier_chars[c] = c;
2947 else if (c >= 128)
2948 {
2949 identifier_chars[c] = c;
2950 operand_chars[c] = c;
2951 }
2952 }
2953
2954 #ifdef LEX_AT
2955 identifier_chars['@'] = '@';
2956 #endif
2957 #ifdef LEX_QM
2958 identifier_chars['?'] = '?';
2959 operand_chars['?'] = '?';
2960 #endif
2961 digit_chars['-'] = '-';
2962 mnemonic_chars['_'] = '_';
2963 mnemonic_chars['-'] = '-';
2964 mnemonic_chars['.'] = '.';
2965 identifier_chars['_'] = '_';
2966 identifier_chars['.'] = '.';
2967
2968 for (p = operand_special_chars; *p != '\0'; p++)
2969 operand_chars[(unsigned char) *p] = *p;
2970 }
2971
2972 if (flag_code == CODE_64BIT)
2973 {
2974 #if defined (OBJ_COFF) && defined (TE_PE)
2975 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2976 ? 32 : 16);
2977 #else
2978 x86_dwarf2_return_column = 16;
2979 #endif
2980 x86_cie_data_alignment = -8;
2981 }
2982 else
2983 {
2984 x86_dwarf2_return_column = 8;
2985 x86_cie_data_alignment = -4;
2986 }
2987 }
2988
2989 void
2990 i386_print_statistics (FILE *file)
2991 {
2992 hash_print_statistics (file, "i386 opcode", op_hash);
2993 hash_print_statistics (file, "i386 register", reg_hash);
2994 }
2995 \f
2996 #ifdef DEBUG386
2997
2998 /* Debugging routines for md_assemble. */
2999 static void pte (insn_template *);
3000 static void pt (i386_operand_type);
3001 static void pe (expressionS *);
3002 static void ps (symbolS *);
3003
3004 static void
3005 pi (const char *line, i386_insn *x)
3006 {
3007 unsigned int j;
3008
3009 fprintf (stdout, "%s: template ", line);
3010 pte (&x->tm);
3011 fprintf (stdout, " address: base %s index %s scale %x\n",
3012 x->base_reg ? x->base_reg->reg_name : "none",
3013 x->index_reg ? x->index_reg->reg_name : "none",
3014 x->log2_scale_factor);
3015 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
3016 x->rm.mode, x->rm.reg, x->rm.regmem);
3017 fprintf (stdout, " sib: base %x index %x scale %x\n",
3018 x->sib.base, x->sib.index, x->sib.scale);
3019 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
3020 (x->rex & REX_W) != 0,
3021 (x->rex & REX_R) != 0,
3022 (x->rex & REX_X) != 0,
3023 (x->rex & REX_B) != 0);
3024 for (j = 0; j < x->operands; j++)
3025 {
3026 fprintf (stdout, " #%d: ", j + 1);
3027 pt (x->types[j]);
3028 fprintf (stdout, "\n");
3029 if (x->types[j].bitfield.reg
3030 || x->types[j].bitfield.regmmx
3031 || x->types[j].bitfield.regsimd
3032 || x->types[j].bitfield.sreg2
3033 || x->types[j].bitfield.sreg3
3034 || x->types[j].bitfield.control
3035 || x->types[j].bitfield.debug
3036 || x->types[j].bitfield.test)
3037 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3038 if (operand_type_check (x->types[j], imm))
3039 pe (x->op[j].imms);
3040 if (operand_type_check (x->types[j], disp))
3041 pe (x->op[j].disps);
3042 }
3043 }
3044
3045 static void
3046 pte (insn_template *t)
3047 {
3048 unsigned int j;
3049 fprintf (stdout, " %d operands ", t->operands);
3050 fprintf (stdout, "opcode %x ", t->base_opcode);
3051 if (t->extension_opcode != None)
3052 fprintf (stdout, "ext %x ", t->extension_opcode);
3053 if (t->opcode_modifier.d)
3054 fprintf (stdout, "D");
3055 if (t->opcode_modifier.w)
3056 fprintf (stdout, "W");
3057 fprintf (stdout, "\n");
3058 for (j = 0; j < t->operands; j++)
3059 {
3060 fprintf (stdout, " #%d type ", j + 1);
3061 pt (t->operand_types[j]);
3062 fprintf (stdout, "\n");
3063 }
3064 }
3065
3066 static void
3067 pe (expressionS *e)
3068 {
3069 fprintf (stdout, " operation %d\n", e->X_op);
3070 fprintf (stdout, " add_number %ld (%lx)\n",
3071 (long) e->X_add_number, (long) e->X_add_number);
3072 if (e->X_add_symbol)
3073 {
3074 fprintf (stdout, " add_symbol ");
3075 ps (e->X_add_symbol);
3076 fprintf (stdout, "\n");
3077 }
3078 if (e->X_op_symbol)
3079 {
3080 fprintf (stdout, " op_symbol ");
3081 ps (e->X_op_symbol);
3082 fprintf (stdout, "\n");
3083 }
3084 }
3085
3086 static void
3087 ps (symbolS *s)
3088 {
3089 fprintf (stdout, "%s type %s%s",
3090 S_GET_NAME (s),
3091 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3092 segment_name (S_GET_SEGMENT (s)));
3093 }
3094
3095 static struct type_name
3096 {
3097 i386_operand_type mask;
3098 const char *name;
3099 }
3100 const type_names[] =
3101 {
3102 { OPERAND_TYPE_REG8, "r8" },
3103 { OPERAND_TYPE_REG16, "r16" },
3104 { OPERAND_TYPE_REG32, "r32" },
3105 { OPERAND_TYPE_REG64, "r64" },
3106 { OPERAND_TYPE_ACC8, "acc8" },
3107 { OPERAND_TYPE_ACC16, "acc16" },
3108 { OPERAND_TYPE_ACC32, "acc32" },
3109 { OPERAND_TYPE_ACC64, "acc64" },
3110 { OPERAND_TYPE_IMM8, "i8" },
3111 { OPERAND_TYPE_IMM8, "i8s" },
3112 { OPERAND_TYPE_IMM16, "i16" },
3113 { OPERAND_TYPE_IMM32, "i32" },
3114 { OPERAND_TYPE_IMM32S, "i32s" },
3115 { OPERAND_TYPE_IMM64, "i64" },
3116 { OPERAND_TYPE_IMM1, "i1" },
3117 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3118 { OPERAND_TYPE_DISP8, "d8" },
3119 { OPERAND_TYPE_DISP16, "d16" },
3120 { OPERAND_TYPE_DISP32, "d32" },
3121 { OPERAND_TYPE_DISP32S, "d32s" },
3122 { OPERAND_TYPE_DISP64, "d64" },
3123 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3124 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3125 { OPERAND_TYPE_CONTROL, "control reg" },
3126 { OPERAND_TYPE_TEST, "test reg" },
3127 { OPERAND_TYPE_DEBUG, "debug reg" },
3128 { OPERAND_TYPE_FLOATREG, "FReg" },
3129 { OPERAND_TYPE_FLOATACC, "FAcc" },
3130 { OPERAND_TYPE_SREG2, "SReg2" },
3131 { OPERAND_TYPE_SREG3, "SReg3" },
3132 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3133 { OPERAND_TYPE_REGMMX, "rMMX" },
3134 { OPERAND_TYPE_REGXMM, "rXMM" },
3135 { OPERAND_TYPE_REGYMM, "rYMM" },
3136 { OPERAND_TYPE_REGZMM, "rZMM" },
3137 { OPERAND_TYPE_REGMASK, "Mask reg" },
3138 { OPERAND_TYPE_ESSEG, "es" },
3139 };
3140
3141 static void
3142 pt (i386_operand_type t)
3143 {
3144 unsigned int j;
3145 i386_operand_type a;
3146
3147 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3148 {
3149 a = operand_type_and (t, type_names[j].mask);
3150 if (operand_type_equal (&a, &type_names[j].mask))
3151 fprintf (stdout, "%s, ", type_names[j].name);
3152 }
3153 fflush (stdout);
3154 }
3155
3156 #endif /* DEBUG386 */
3157 \f
3158 static bfd_reloc_code_real_type
3159 reloc (unsigned int size,
3160 int pcrel,
3161 int sign,
3162 bfd_reloc_code_real_type other)
3163 {
3164 if (other != NO_RELOC)
3165 {
3166 reloc_howto_type *rel;
3167
3168 if (size == 8)
3169 switch (other)
3170 {
3171 case BFD_RELOC_X86_64_GOT32:
3172 return BFD_RELOC_X86_64_GOT64;
3173 break;
3174 case BFD_RELOC_X86_64_GOTPLT64:
3175 return BFD_RELOC_X86_64_GOTPLT64;
3176 break;
3177 case BFD_RELOC_X86_64_PLTOFF64:
3178 return BFD_RELOC_X86_64_PLTOFF64;
3179 break;
3180 case BFD_RELOC_X86_64_GOTPC32:
3181 other = BFD_RELOC_X86_64_GOTPC64;
3182 break;
3183 case BFD_RELOC_X86_64_GOTPCREL:
3184 other = BFD_RELOC_X86_64_GOTPCREL64;
3185 break;
3186 case BFD_RELOC_X86_64_TPOFF32:
3187 other = BFD_RELOC_X86_64_TPOFF64;
3188 break;
3189 case BFD_RELOC_X86_64_DTPOFF32:
3190 other = BFD_RELOC_X86_64_DTPOFF64;
3191 break;
3192 default:
3193 break;
3194 }
3195
3196 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3197 if (other == BFD_RELOC_SIZE32)
3198 {
3199 if (size == 8)
3200 other = BFD_RELOC_SIZE64;
3201 if (pcrel)
3202 {
3203 as_bad (_("there are no pc-relative size relocations"));
3204 return NO_RELOC;
3205 }
3206 }
3207 #endif
3208
3209 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3210 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3211 sign = -1;
3212
3213 rel = bfd_reloc_type_lookup (stdoutput, other);
3214 if (!rel)
3215 as_bad (_("unknown relocation (%u)"), other);
3216 else if (size != bfd_get_reloc_size (rel))
3217 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3218 bfd_get_reloc_size (rel),
3219 size);
3220 else if (pcrel && !rel->pc_relative)
3221 as_bad (_("non-pc-relative relocation for pc-relative field"));
3222 else if ((rel->complain_on_overflow == complain_overflow_signed
3223 && !sign)
3224 || (rel->complain_on_overflow == complain_overflow_unsigned
3225 && sign > 0))
3226 as_bad (_("relocated field and relocation type differ in signedness"));
3227 else
3228 return other;
3229 return NO_RELOC;
3230 }
3231
3232 if (pcrel)
3233 {
3234 if (!sign)
3235 as_bad (_("there are no unsigned pc-relative relocations"));
3236 switch (size)
3237 {
3238 case 1: return BFD_RELOC_8_PCREL;
3239 case 2: return BFD_RELOC_16_PCREL;
3240 case 4: return BFD_RELOC_32_PCREL;
3241 case 8: return BFD_RELOC_64_PCREL;
3242 }
3243 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3244 }
3245 else
3246 {
3247 if (sign > 0)
3248 switch (size)
3249 {
3250 case 4: return BFD_RELOC_X86_64_32S;
3251 }
3252 else
3253 switch (size)
3254 {
3255 case 1: return BFD_RELOC_8;
3256 case 2: return BFD_RELOC_16;
3257 case 4: return BFD_RELOC_32;
3258 case 8: return BFD_RELOC_64;
3259 }
3260 as_bad (_("cannot do %s %u byte relocation"),
3261 sign > 0 ? "signed" : "unsigned", size);
3262 }
3263
3264 return NO_RELOC;
3265 }
3266
3267 /* Here we decide which fixups can be adjusted to make them relative to
3268 the beginning of the section instead of the symbol. Basically we need
3269 to make sure that the dynamic relocations are done correctly, so in
3270 some cases we force the original symbol to be used. */
3271
3272 int
3273 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3274 {
3275 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3276 if (!IS_ELF)
3277 return 1;
3278
3279 /* Don't adjust pc-relative references to merge sections in 64-bit
3280 mode. */
3281 if (use_rela_relocations
3282 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3283 && fixP->fx_pcrel)
3284 return 0;
3285
3286 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3287 and changed later by validate_fix. */
3288 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3289 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3290 return 0;
3291
3292 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3293 for size relocations. */
3294 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3295 || fixP->fx_r_type == BFD_RELOC_SIZE64
3296 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3297 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3298 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3299 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3300 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3301 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3302 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3303 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3304 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3305 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3306 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3307 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3308 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3309 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3310 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3311 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3312 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3313 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3314 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3315 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3316 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3317 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3318 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3319 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3320 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3321 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3322 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3323 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3324 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3325 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3326 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3327 return 0;
3328 #endif
3329 return 1;
3330 }
3331
3332 static int
3333 intel_float_operand (const char *mnemonic)
3334 {
3335 /* Note that the value returned is meaningful only for opcodes with (memory)
3336 operands, hence the code here is free to improperly handle opcodes that
3337 have no operands (for better performance and smaller code). */
3338
3339 if (mnemonic[0] != 'f')
3340 return 0; /* non-math */
3341
3342 switch (mnemonic[1])
3343 {
3344 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3345 the fs segment override prefix not currently handled because no
3346 call path can make opcodes without operands get here */
3347 case 'i':
3348 return 2 /* integer op */;
3349 case 'l':
3350 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3351 return 3; /* fldcw/fldenv */
3352 break;
3353 case 'n':
3354 if (mnemonic[2] != 'o' /* fnop */)
3355 return 3; /* non-waiting control op */
3356 break;
3357 case 'r':
3358 if (mnemonic[2] == 's')
3359 return 3; /* frstor/frstpm */
3360 break;
3361 case 's':
3362 if (mnemonic[2] == 'a')
3363 return 3; /* fsave */
3364 if (mnemonic[2] == 't')
3365 {
3366 switch (mnemonic[3])
3367 {
3368 case 'c': /* fstcw */
3369 case 'd': /* fstdw */
3370 case 'e': /* fstenv */
3371 case 's': /* fsts[gw] */
3372 return 3;
3373 }
3374 }
3375 break;
3376 case 'x':
3377 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3378 return 0; /* fxsave/fxrstor are not really math ops */
3379 break;
3380 }
3381
3382 return 1;
3383 }
3384
3385 /* Build the VEX prefix. */
3386
3387 static void
3388 build_vex_prefix (const insn_template *t)
3389 {
3390 unsigned int register_specifier;
3391 unsigned int implied_prefix;
3392 unsigned int vector_length;
3393 unsigned int w;
3394
3395 /* Check register specifier. */
3396 if (i.vex.register_specifier)
3397 {
3398 register_specifier =
3399 ~register_number (i.vex.register_specifier) & 0xf;
3400 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3401 }
3402 else
3403 register_specifier = 0xf;
3404
3405 /* Use 2-byte VEX prefix by swapping destination and source operand
3406 if there are more than 1 register operand. */
3407 if (i.reg_operands > 1
3408 && i.vec_encoding != vex_encoding_vex3
3409 && i.dir_encoding == dir_encoding_default
3410 && i.operands == i.reg_operands
3411 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3412 && i.tm.opcode_modifier.vexopcode == VEX0F
3413 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3414 && i.rex == REX_B)
3415 {
3416 unsigned int xchg = i.operands - 1;
3417 union i386_op temp_op;
3418 i386_operand_type temp_type;
3419
3420 temp_type = i.types[xchg];
3421 i.types[xchg] = i.types[0];
3422 i.types[0] = temp_type;
3423 temp_op = i.op[xchg];
3424 i.op[xchg] = i.op[0];
3425 i.op[0] = temp_op;
3426
3427 gas_assert (i.rm.mode == 3);
3428
3429 i.rex = REX_R;
3430 xchg = i.rm.regmem;
3431 i.rm.regmem = i.rm.reg;
3432 i.rm.reg = xchg;
3433
3434 if (i.tm.opcode_modifier.d)
3435 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3436 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3437 else /* Use the next insn. */
3438 i.tm = t[1];
3439 }
3440
3441 if (i.tm.opcode_modifier.vex == VEXScalar)
3442 vector_length = avxscalar;
3443 else if (i.tm.opcode_modifier.vex == VEX256)
3444 vector_length = 1;
3445 else
3446 {
3447 unsigned int op;
3448
3449 /* Determine vector length from the last multi-length vector
3450 operand. */
3451 vector_length = 0;
3452 for (op = t->operands; op--;)
3453 if (t->operand_types[op].bitfield.xmmword
3454 && t->operand_types[op].bitfield.ymmword
3455 && i.types[op].bitfield.ymmword)
3456 {
3457 vector_length = 1;
3458 break;
3459 }
3460 }
3461
3462 switch ((i.tm.base_opcode >> 8) & 0xff)
3463 {
3464 case 0:
3465 implied_prefix = 0;
3466 break;
3467 case DATA_PREFIX_OPCODE:
3468 implied_prefix = 1;
3469 break;
3470 case REPE_PREFIX_OPCODE:
3471 implied_prefix = 2;
3472 break;
3473 case REPNE_PREFIX_OPCODE:
3474 implied_prefix = 3;
3475 break;
3476 default:
3477 abort ();
3478 }
3479
3480 /* Check the REX.W bit and VEXW. */
3481 if (i.tm.opcode_modifier.vexw == VEXWIG)
3482 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3483 else if (i.tm.opcode_modifier.vexw)
3484 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3485 else
3486 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
3487
3488 /* Use 2-byte VEX prefix if possible. */
3489 if (w == 0
3490 && i.vec_encoding != vex_encoding_vex3
3491 && i.tm.opcode_modifier.vexopcode == VEX0F
3492 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3493 {
3494 /* 2-byte VEX prefix. */
3495 unsigned int r;
3496
3497 i.vex.length = 2;
3498 i.vex.bytes[0] = 0xc5;
3499
3500 /* Check the REX.R bit. */
3501 r = (i.rex & REX_R) ? 0 : 1;
3502 i.vex.bytes[1] = (r << 7
3503 | register_specifier << 3
3504 | vector_length << 2
3505 | implied_prefix);
3506 }
3507 else
3508 {
3509 /* 3-byte VEX prefix. */
3510 unsigned int m;
3511
3512 i.vex.length = 3;
3513
3514 switch (i.tm.opcode_modifier.vexopcode)
3515 {
3516 case VEX0F:
3517 m = 0x1;
3518 i.vex.bytes[0] = 0xc4;
3519 break;
3520 case VEX0F38:
3521 m = 0x2;
3522 i.vex.bytes[0] = 0xc4;
3523 break;
3524 case VEX0F3A:
3525 m = 0x3;
3526 i.vex.bytes[0] = 0xc4;
3527 break;
3528 case XOP08:
3529 m = 0x8;
3530 i.vex.bytes[0] = 0x8f;
3531 break;
3532 case XOP09:
3533 m = 0x9;
3534 i.vex.bytes[0] = 0x8f;
3535 break;
3536 case XOP0A:
3537 m = 0xa;
3538 i.vex.bytes[0] = 0x8f;
3539 break;
3540 default:
3541 abort ();
3542 }
3543
3544 /* The high 3 bits of the second VEX byte are 1's compliment
3545 of RXB bits from REX. */
3546 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3547
3548 i.vex.bytes[2] = (w << 7
3549 | register_specifier << 3
3550 | vector_length << 2
3551 | implied_prefix);
3552 }
3553 }
3554
3555 static INLINE bfd_boolean
3556 is_evex_encoding (const insn_template *t)
3557 {
3558 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3559 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3560 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3561 }
3562
3563 static INLINE bfd_boolean
3564 is_any_vex_encoding (const insn_template *t)
3565 {
3566 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3567 || is_evex_encoding (t);
3568 }
3569
3570 /* Build the EVEX prefix. */
3571
3572 static void
3573 build_evex_prefix (void)
3574 {
3575 unsigned int register_specifier;
3576 unsigned int implied_prefix;
3577 unsigned int m, w;
3578 rex_byte vrex_used = 0;
3579
3580 /* Check register specifier. */
3581 if (i.vex.register_specifier)
3582 {
3583 gas_assert ((i.vrex & REX_X) == 0);
3584
3585 register_specifier = i.vex.register_specifier->reg_num;
3586 if ((i.vex.register_specifier->reg_flags & RegRex))
3587 register_specifier += 8;
3588 /* The upper 16 registers are encoded in the fourth byte of the
3589 EVEX prefix. */
3590 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3591 i.vex.bytes[3] = 0x8;
3592 register_specifier = ~register_specifier & 0xf;
3593 }
3594 else
3595 {
3596 register_specifier = 0xf;
3597
3598 /* Encode upper 16 vector index register in the fourth byte of
3599 the EVEX prefix. */
3600 if (!(i.vrex & REX_X))
3601 i.vex.bytes[3] = 0x8;
3602 else
3603 vrex_used |= REX_X;
3604 }
3605
3606 switch ((i.tm.base_opcode >> 8) & 0xff)
3607 {
3608 case 0:
3609 implied_prefix = 0;
3610 break;
3611 case DATA_PREFIX_OPCODE:
3612 implied_prefix = 1;
3613 break;
3614 case REPE_PREFIX_OPCODE:
3615 implied_prefix = 2;
3616 break;
3617 case REPNE_PREFIX_OPCODE:
3618 implied_prefix = 3;
3619 break;
3620 default:
3621 abort ();
3622 }
3623
3624 /* 4 byte EVEX prefix. */
3625 i.vex.length = 4;
3626 i.vex.bytes[0] = 0x62;
3627
3628 /* mmmm bits. */
3629 switch (i.tm.opcode_modifier.vexopcode)
3630 {
3631 case VEX0F:
3632 m = 1;
3633 break;
3634 case VEX0F38:
3635 m = 2;
3636 break;
3637 case VEX0F3A:
3638 m = 3;
3639 break;
3640 default:
3641 abort ();
3642 break;
3643 }
3644
3645 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3646 bits from REX. */
3647 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3648
3649 /* The fifth bit of the second EVEX byte is 1's compliment of the
3650 REX_R bit in VREX. */
3651 if (!(i.vrex & REX_R))
3652 i.vex.bytes[1] |= 0x10;
3653 else
3654 vrex_used |= REX_R;
3655
3656 if ((i.reg_operands + i.imm_operands) == i.operands)
3657 {
3658 /* When all operands are registers, the REX_X bit in REX is not
3659 used. We reuse it to encode the upper 16 registers, which is
3660 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3661 as 1's compliment. */
3662 if ((i.vrex & REX_B))
3663 {
3664 vrex_used |= REX_B;
3665 i.vex.bytes[1] &= ~0x40;
3666 }
3667 }
3668
3669 /* EVEX instructions shouldn't need the REX prefix. */
3670 i.vrex &= ~vrex_used;
3671 gas_assert (i.vrex == 0);
3672
3673 /* Check the REX.W bit and VEXW. */
3674 if (i.tm.opcode_modifier.vexw == VEXWIG)
3675 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3676 else if (i.tm.opcode_modifier.vexw)
3677 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3678 else
3679 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
3680
3681 /* Encode the U bit. */
3682 implied_prefix |= 0x4;
3683
3684 /* The third byte of the EVEX prefix. */
3685 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3686
3687 /* The fourth byte of the EVEX prefix. */
3688 /* The zeroing-masking bit. */
3689 if (i.mask && i.mask->zeroing)
3690 i.vex.bytes[3] |= 0x80;
3691
3692 /* Don't always set the broadcast bit if there is no RC. */
3693 if (!i.rounding)
3694 {
3695 /* Encode the vector length. */
3696 unsigned int vec_length;
3697
3698 if (!i.tm.opcode_modifier.evex
3699 || i.tm.opcode_modifier.evex == EVEXDYN)
3700 {
3701 unsigned int op;
3702
3703 /* Determine vector length from the last multi-length vector
3704 operand. */
3705 vec_length = 0;
3706 for (op = i.operands; op--;)
3707 if (i.tm.operand_types[op].bitfield.xmmword
3708 + i.tm.operand_types[op].bitfield.ymmword
3709 + i.tm.operand_types[op].bitfield.zmmword > 1)
3710 {
3711 if (i.types[op].bitfield.zmmword)
3712 {
3713 i.tm.opcode_modifier.evex = EVEX512;
3714 break;
3715 }
3716 else if (i.types[op].bitfield.ymmword)
3717 {
3718 i.tm.opcode_modifier.evex = EVEX256;
3719 break;
3720 }
3721 else if (i.types[op].bitfield.xmmword)
3722 {
3723 i.tm.opcode_modifier.evex = EVEX128;
3724 break;
3725 }
3726 else if (i.broadcast && (int) op == i.broadcast->operand)
3727 {
3728 switch (i.broadcast->bytes)
3729 {
3730 case 64:
3731 i.tm.opcode_modifier.evex = EVEX512;
3732 break;
3733 case 32:
3734 i.tm.opcode_modifier.evex = EVEX256;
3735 break;
3736 case 16:
3737 i.tm.opcode_modifier.evex = EVEX128;
3738 break;
3739 default:
3740 abort ();
3741 }
3742 break;
3743 }
3744 }
3745
3746 if (op >= MAX_OPERANDS)
3747 abort ();
3748 }
3749
3750 switch (i.tm.opcode_modifier.evex)
3751 {
3752 case EVEXLIG: /* LL' is ignored */
3753 vec_length = evexlig << 5;
3754 break;
3755 case EVEX128:
3756 vec_length = 0 << 5;
3757 break;
3758 case EVEX256:
3759 vec_length = 1 << 5;
3760 break;
3761 case EVEX512:
3762 vec_length = 2 << 5;
3763 break;
3764 default:
3765 abort ();
3766 break;
3767 }
3768 i.vex.bytes[3] |= vec_length;
3769 /* Encode the broadcast bit. */
3770 if (i.broadcast)
3771 i.vex.bytes[3] |= 0x10;
3772 }
3773 else
3774 {
3775 if (i.rounding->type != saeonly)
3776 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3777 else
3778 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3779 }
3780
3781 if (i.mask && i.mask->mask)
3782 i.vex.bytes[3] |= i.mask->mask->reg_num;
3783 }
3784
3785 static void
3786 process_immext (void)
3787 {
3788 expressionS *exp;
3789
3790 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3791 && i.operands > 0)
3792 {
3793 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3794 with an opcode suffix which is coded in the same place as an
3795 8-bit immediate field would be.
3796 Here we check those operands and remove them afterwards. */
3797 unsigned int x;
3798
3799 for (x = 0; x < i.operands; x++)
3800 if (register_number (i.op[x].regs) != x)
3801 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3802 register_prefix, i.op[x].regs->reg_name, x + 1,
3803 i.tm.name);
3804
3805 i.operands = 0;
3806 }
3807
3808 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3809 {
3810 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3811 suffix which is coded in the same place as an 8-bit immediate
3812 field would be.
3813 Here we check those operands and remove them afterwards. */
3814 unsigned int x;
3815
3816 if (i.operands != 3)
3817 abort();
3818
3819 for (x = 0; x < 2; x++)
3820 if (register_number (i.op[x].regs) != x)
3821 goto bad_register_operand;
3822
3823 /* Check for third operand for mwaitx/monitorx insn. */
3824 if (register_number (i.op[x].regs)
3825 != (x + (i.tm.extension_opcode == 0xfb)))
3826 {
3827 bad_register_operand:
3828 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3829 register_prefix, i.op[x].regs->reg_name, x+1,
3830 i.tm.name);
3831 }
3832
3833 i.operands = 0;
3834 }
3835
3836 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3837 which is coded in the same place as an 8-bit immediate field
3838 would be. Here we fake an 8-bit immediate operand from the
3839 opcode suffix stored in tm.extension_opcode.
3840
3841 AVX instructions also use this encoding, for some of
3842 3 argument instructions. */
3843
3844 gas_assert (i.imm_operands <= 1
3845 && (i.operands <= 2
3846 || (is_any_vex_encoding (&i.tm)
3847 && i.operands <= 4)));
3848
3849 exp = &im_expressions[i.imm_operands++];
3850 i.op[i.operands].imms = exp;
3851 i.types[i.operands] = imm8;
3852 i.operands++;
3853 exp->X_op = O_constant;
3854 exp->X_add_number = i.tm.extension_opcode;
3855 i.tm.extension_opcode = None;
3856 }
3857
3858
3859 static int
3860 check_hle (void)
3861 {
3862 switch (i.tm.opcode_modifier.hleprefixok)
3863 {
3864 default:
3865 abort ();
3866 case HLEPrefixNone:
3867 as_bad (_("invalid instruction `%s' after `%s'"),
3868 i.tm.name, i.hle_prefix);
3869 return 0;
3870 case HLEPrefixLock:
3871 if (i.prefix[LOCK_PREFIX])
3872 return 1;
3873 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3874 return 0;
3875 case HLEPrefixAny:
3876 return 1;
3877 case HLEPrefixRelease:
3878 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3879 {
3880 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3881 i.tm.name);
3882 return 0;
3883 }
3884 if (i.mem_operands == 0
3885 || !operand_type_check (i.types[i.operands - 1], anymem))
3886 {
3887 as_bad (_("memory destination needed for instruction `%s'"
3888 " after `xrelease'"), i.tm.name);
3889 return 0;
3890 }
3891 return 1;
3892 }
3893 }
3894
3895 /* Try the shortest encoding by shortening operand size. */
3896
3897 static void
3898 optimize_encoding (void)
3899 {
3900 int j;
3901
3902 if (optimize_for_space
3903 && i.reg_operands == 1
3904 && i.imm_operands == 1
3905 && !i.types[1].bitfield.byte
3906 && i.op[0].imms->X_op == O_constant
3907 && fits_in_imm7 (i.op[0].imms->X_add_number)
3908 && ((i.tm.base_opcode == 0xa8
3909 && i.tm.extension_opcode == None)
3910 || (i.tm.base_opcode == 0xf6
3911 && i.tm.extension_opcode == 0x0)))
3912 {
3913 /* Optimize: -Os:
3914 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3915 */
3916 unsigned int base_regnum = i.op[1].regs->reg_num;
3917 if (flag_code == CODE_64BIT || base_regnum < 4)
3918 {
3919 i.types[1].bitfield.byte = 1;
3920 /* Ignore the suffix. */
3921 i.suffix = 0;
3922 if (base_regnum >= 4
3923 && !(i.op[1].regs->reg_flags & RegRex))
3924 {
3925 /* Handle SP, BP, SI and DI registers. */
3926 if (i.types[1].bitfield.word)
3927 j = 16;
3928 else if (i.types[1].bitfield.dword)
3929 j = 32;
3930 else
3931 j = 48;
3932 i.op[1].regs -= j;
3933 }
3934 }
3935 }
3936 else if (flag_code == CODE_64BIT
3937 && ((i.types[1].bitfield.qword
3938 && i.reg_operands == 1
3939 && i.imm_operands == 1
3940 && i.op[0].imms->X_op == O_constant
3941 && ((i.tm.base_opcode == 0xb0
3942 && i.tm.extension_opcode == None
3943 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3944 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3945 && (((i.tm.base_opcode == 0x24
3946 || i.tm.base_opcode == 0xa8)
3947 && i.tm.extension_opcode == None)
3948 || (i.tm.base_opcode == 0x80
3949 && i.tm.extension_opcode == 0x4)
3950 || ((i.tm.base_opcode == 0xf6
3951 || i.tm.base_opcode == 0xc6)
3952 && i.tm.extension_opcode == 0x0)))
3953 || (fits_in_imm7 (i.op[0].imms->X_add_number)
3954 && i.tm.base_opcode == 0x83
3955 && i.tm.extension_opcode == 0x4)))
3956 || (i.types[0].bitfield.qword
3957 && ((i.reg_operands == 2
3958 && i.op[0].regs == i.op[1].regs
3959 && ((i.tm.base_opcode == 0x30
3960 || i.tm.base_opcode == 0x28)
3961 && i.tm.extension_opcode == None))
3962 || (i.reg_operands == 1
3963 && i.operands == 1
3964 && i.tm.base_opcode == 0x30
3965 && i.tm.extension_opcode == None)))))
3966 {
3967 /* Optimize: -O:
3968 andq $imm31, %r64 -> andl $imm31, %r32
3969 andq $imm7, %r64 -> andl $imm7, %r32
3970 testq $imm31, %r64 -> testl $imm31, %r32
3971 xorq %r64, %r64 -> xorl %r32, %r32
3972 subq %r64, %r64 -> subl %r32, %r32
3973 movq $imm31, %r64 -> movl $imm31, %r32
3974 movq $imm32, %r64 -> movl $imm32, %r32
3975 */
3976 i.tm.opcode_modifier.norex64 = 1;
3977 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3978 {
3979 /* Handle
3980 movq $imm31, %r64 -> movl $imm31, %r32
3981 movq $imm32, %r64 -> movl $imm32, %r32
3982 */
3983 i.tm.operand_types[0].bitfield.imm32 = 1;
3984 i.tm.operand_types[0].bitfield.imm32s = 0;
3985 i.tm.operand_types[0].bitfield.imm64 = 0;
3986 i.types[0].bitfield.imm32 = 1;
3987 i.types[0].bitfield.imm32s = 0;
3988 i.types[0].bitfield.imm64 = 0;
3989 i.types[1].bitfield.dword = 1;
3990 i.types[1].bitfield.qword = 0;
3991 if (i.tm.base_opcode == 0xc6)
3992 {
3993 /* Handle
3994 movq $imm31, %r64 -> movl $imm31, %r32
3995 */
3996 i.tm.base_opcode = 0xb0;
3997 i.tm.extension_opcode = None;
3998 i.tm.opcode_modifier.shortform = 1;
3999 i.tm.opcode_modifier.modrm = 0;
4000 }
4001 }
4002 }
4003 else if (i.reg_operands == 3
4004 && i.op[0].regs == i.op[1].regs
4005 && !i.types[2].bitfield.xmmword
4006 && (i.tm.opcode_modifier.vex
4007 || ((!i.mask || i.mask->zeroing)
4008 && !i.rounding
4009 && is_evex_encoding (&i.tm)
4010 && (i.vec_encoding != vex_encoding_evex
4011 || cpu_arch_isa_flags.bitfield.cpuavx512vl
4012 || i.tm.cpu_flags.bitfield.cpuavx512vl
4013 || (i.tm.operand_types[2].bitfield.zmmword
4014 && i.types[2].bitfield.ymmword))))
4015 && ((i.tm.base_opcode == 0x55
4016 || i.tm.base_opcode == 0x6655
4017 || i.tm.base_opcode == 0x66df
4018 || i.tm.base_opcode == 0x57
4019 || i.tm.base_opcode == 0x6657
4020 || i.tm.base_opcode == 0x66ef
4021 || i.tm.base_opcode == 0x66f8
4022 || i.tm.base_opcode == 0x66f9
4023 || i.tm.base_opcode == 0x66fa
4024 || i.tm.base_opcode == 0x66fb
4025 || i.tm.base_opcode == 0x42
4026 || i.tm.base_opcode == 0x6642
4027 || i.tm.base_opcode == 0x47
4028 || i.tm.base_opcode == 0x6647)
4029 && i.tm.extension_opcode == None))
4030 {
4031 /* Optimize: -O1:
4032 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4033 vpsubq and vpsubw:
4034 EVEX VOP %zmmM, %zmmM, %zmmN
4035 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4036 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4037 EVEX VOP %ymmM, %ymmM, %ymmN
4038 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4039 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4040 VEX VOP %ymmM, %ymmM, %ymmN
4041 -> VEX VOP %xmmM, %xmmM, %xmmN
4042 VOP, one of vpandn and vpxor:
4043 VEX VOP %ymmM, %ymmM, %ymmN
4044 -> VEX VOP %xmmM, %xmmM, %xmmN
4045 VOP, one of vpandnd and vpandnq:
4046 EVEX VOP %zmmM, %zmmM, %zmmN
4047 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4048 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4049 EVEX VOP %ymmM, %ymmM, %ymmN
4050 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4051 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4052 VOP, one of vpxord and vpxorq:
4053 EVEX VOP %zmmM, %zmmM, %zmmN
4054 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4055 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4056 EVEX VOP %ymmM, %ymmM, %ymmN
4057 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4058 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4059 VOP, one of kxord and kxorq:
4060 VEX VOP %kM, %kM, %kN
4061 -> VEX kxorw %kM, %kM, %kN
4062 VOP, one of kandnd and kandnq:
4063 VEX VOP %kM, %kM, %kN
4064 -> VEX kandnw %kM, %kM, %kN
4065 */
4066 if (is_evex_encoding (&i.tm))
4067 {
4068 if (i.vec_encoding != vex_encoding_evex)
4069 {
4070 i.tm.opcode_modifier.vex = VEX128;
4071 i.tm.opcode_modifier.vexw = VEXW0;
4072 i.tm.opcode_modifier.evex = 0;
4073 }
4074 else if (optimize > 1)
4075 i.tm.opcode_modifier.evex = EVEX128;
4076 else
4077 return;
4078 }
4079 else if (i.tm.operand_types[0].bitfield.regmask)
4080 {
4081 i.tm.base_opcode &= 0xff;
4082 i.tm.opcode_modifier.vexw = VEXW0;
4083 }
4084 else
4085 i.tm.opcode_modifier.vex = VEX128;
4086
4087 if (i.tm.opcode_modifier.vex)
4088 for (j = 0; j < 3; j++)
4089 {
4090 i.types[j].bitfield.xmmword = 1;
4091 i.types[j].bitfield.ymmword = 0;
4092 }
4093 }
4094 else if (i.vec_encoding != vex_encoding_evex
4095 && !i.types[0].bitfield.zmmword
4096 && !i.types[1].bitfield.zmmword
4097 && !i.mask
4098 && is_evex_encoding (&i.tm)
4099 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4100 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4101 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4102 && i.tm.extension_opcode == None)
4103 {
4104 /* Optimize: -O1:
4105 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4106 vmovdqu32 and vmovdqu64:
4107 EVEX VOP %xmmM, %xmmN
4108 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4109 EVEX VOP %ymmM, %ymmN
4110 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4111 EVEX VOP %xmmM, mem
4112 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4113 EVEX VOP %ymmM, mem
4114 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4115 EVEX VOP mem, %xmmN
4116 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4117 EVEX VOP mem, %ymmN
4118 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4119 */
4120 for (j = 0; j < 2; j++)
4121 if (operand_type_check (i.types[j], disp)
4122 && i.op[j].disps->X_op == O_constant)
4123 {
4124 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4125 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4126 bytes, we choose EVEX Disp8 over VEX Disp32. */
4127 int evex_disp8, vex_disp8;
4128 unsigned int memshift = i.memshift;
4129 offsetT n = i.op[j].disps->X_add_number;
4130
4131 evex_disp8 = fits_in_disp8 (n);
4132 i.memshift = 0;
4133 vex_disp8 = fits_in_disp8 (n);
4134 if (evex_disp8 != vex_disp8)
4135 {
4136 i.memshift = memshift;
4137 return;
4138 }
4139
4140 i.types[j].bitfield.disp8 = vex_disp8;
4141 break;
4142 }
4143 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4144 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
4145 i.tm.opcode_modifier.vex
4146 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4147 i.tm.opcode_modifier.vexw = VEXW0;
4148 i.tm.opcode_modifier.evex = 0;
4149 i.tm.opcode_modifier.masking = 0;
4150 i.tm.opcode_modifier.disp8memshift = 0;
4151 i.memshift = 0;
4152 for (j = 0; j < 2; j++)
4153 if (operand_type_check (i.types[j], disp)
4154 && i.op[j].disps->X_op == O_constant)
4155 {
4156 i.types[j].bitfield.disp8
4157 = fits_in_disp8 (i.op[j].disps->X_add_number);
4158 break;
4159 }
4160 }
4161 }
4162
4163 /* This is the guts of the machine-dependent assembler. LINE points to a
4164 machine dependent instruction. This function is supposed to emit
4165 the frags/bytes it assembles to. */
4166
4167 void
4168 md_assemble (char *line)
4169 {
4170 unsigned int j;
4171 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4172 const insn_template *t;
4173
4174 /* Initialize globals. */
4175 memset (&i, '\0', sizeof (i));
4176 for (j = 0; j < MAX_OPERANDS; j++)
4177 i.reloc[j] = NO_RELOC;
4178 memset (disp_expressions, '\0', sizeof (disp_expressions));
4179 memset (im_expressions, '\0', sizeof (im_expressions));
4180 save_stack_p = save_stack;
4181
4182 /* First parse an instruction mnemonic & call i386_operand for the operands.
4183 We assume that the scrubber has arranged it so that line[0] is the valid
4184 start of a (possibly prefixed) mnemonic. */
4185
4186 line = parse_insn (line, mnemonic);
4187 if (line == NULL)
4188 return;
4189 mnem_suffix = i.suffix;
4190
4191 line = parse_operands (line, mnemonic);
4192 this_operand = -1;
4193 xfree (i.memop1_string);
4194 i.memop1_string = NULL;
4195 if (line == NULL)
4196 return;
4197
4198 /* Now we've parsed the mnemonic into a set of templates, and have the
4199 operands at hand. */
4200
4201 /* All intel opcodes have reversed operands except for "bound" and
4202 "enter". We also don't reverse intersegment "jmp" and "call"
4203 instructions with 2 immediate operands so that the immediate segment
4204 precedes the offset, as it does when in AT&T mode. */
4205 if (intel_syntax
4206 && i.operands > 1
4207 && (strcmp (mnemonic, "bound") != 0)
4208 && (strcmp (mnemonic, "invlpga") != 0)
4209 && !(operand_type_check (i.types[0], imm)
4210 && operand_type_check (i.types[1], imm)))
4211 swap_operands ();
4212
4213 /* The order of the immediates should be reversed
4214 for 2 immediates extrq and insertq instructions */
4215 if (i.imm_operands == 2
4216 && (strcmp (mnemonic, "extrq") == 0
4217 || strcmp (mnemonic, "insertq") == 0))
4218 swap_2_operands (0, 1);
4219
4220 if (i.imm_operands)
4221 optimize_imm ();
4222
4223 /* Don't optimize displacement for movabs since it only takes 64bit
4224 displacement. */
4225 if (i.disp_operands
4226 && i.disp_encoding != disp_encoding_32bit
4227 && (flag_code != CODE_64BIT
4228 || strcmp (mnemonic, "movabs") != 0))
4229 optimize_disp ();
4230
4231 /* Next, we find a template that matches the given insn,
4232 making sure the overlap of the given operands types is consistent
4233 with the template operand types. */
4234
4235 if (!(t = match_template (mnem_suffix)))
4236 return;
4237
4238 if (sse_check != check_none
4239 && !i.tm.opcode_modifier.noavx
4240 && !i.tm.cpu_flags.bitfield.cpuavx
4241 && (i.tm.cpu_flags.bitfield.cpusse
4242 || i.tm.cpu_flags.bitfield.cpusse2
4243 || i.tm.cpu_flags.bitfield.cpusse3
4244 || i.tm.cpu_flags.bitfield.cpussse3
4245 || i.tm.cpu_flags.bitfield.cpusse4_1
4246 || i.tm.cpu_flags.bitfield.cpusse4_2
4247 || i.tm.cpu_flags.bitfield.cpupclmul
4248 || i.tm.cpu_flags.bitfield.cpuaes
4249 || i.tm.cpu_flags.bitfield.cpugfni))
4250 {
4251 (sse_check == check_warning
4252 ? as_warn
4253 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4254 }
4255
4256 /* Zap movzx and movsx suffix. The suffix has been set from
4257 "word ptr" or "byte ptr" on the source operand in Intel syntax
4258 or extracted from mnemonic in AT&T syntax. But we'll use
4259 the destination register to choose the suffix for encoding. */
4260 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4261 {
4262 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4263 there is no suffix, the default will be byte extension. */
4264 if (i.reg_operands != 2
4265 && !i.suffix
4266 && intel_syntax)
4267 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4268
4269 i.suffix = 0;
4270 }
4271
4272 if (i.tm.opcode_modifier.fwait)
4273 if (!add_prefix (FWAIT_OPCODE))
4274 return;
4275
4276 /* Check if REP prefix is OK. */
4277 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4278 {
4279 as_bad (_("invalid instruction `%s' after `%s'"),
4280 i.tm.name, i.rep_prefix);
4281 return;
4282 }
4283
4284 /* Check for lock without a lockable instruction. Destination operand
4285 must be memory unless it is xchg (0x86). */
4286 if (i.prefix[LOCK_PREFIX]
4287 && (!i.tm.opcode_modifier.islockable
4288 || i.mem_operands == 0
4289 || (i.tm.base_opcode != 0x86
4290 && !operand_type_check (i.types[i.operands - 1], anymem))))
4291 {
4292 as_bad (_("expecting lockable instruction after `lock'"));
4293 return;
4294 }
4295
4296 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4297 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4298 {
4299 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4300 return;
4301 }
4302
4303 /* Check if HLE prefix is OK. */
4304 if (i.hle_prefix && !check_hle ())
4305 return;
4306
4307 /* Check BND prefix. */
4308 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4309 as_bad (_("expecting valid branch instruction after `bnd'"));
4310
4311 /* Check NOTRACK prefix. */
4312 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4313 as_bad (_("expecting indirect branch instruction after `notrack'"));
4314
4315 if (i.tm.cpu_flags.bitfield.cpumpx)
4316 {
4317 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4318 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4319 else if (flag_code != CODE_16BIT
4320 ? i.prefix[ADDR_PREFIX]
4321 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4322 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4323 }
4324
4325 /* Insert BND prefix. */
4326 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4327 {
4328 if (!i.prefix[BND_PREFIX])
4329 add_prefix (BND_PREFIX_OPCODE);
4330 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4331 {
4332 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4333 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4334 }
4335 }
4336
4337 /* Check string instruction segment overrides. */
4338 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
4339 {
4340 if (!check_string ())
4341 return;
4342 i.disp_operands = 0;
4343 }
4344
4345 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4346 optimize_encoding ();
4347
4348 if (!process_suffix ())
4349 return;
4350
4351 /* Update operand types. */
4352 for (j = 0; j < i.operands; j++)
4353 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4354
4355 /* Make still unresolved immediate matches conform to size of immediate
4356 given in i.suffix. */
4357 if (!finalize_imm ())
4358 return;
4359
4360 if (i.types[0].bitfield.imm1)
4361 i.imm_operands = 0; /* kludge for shift insns. */
4362
4363 /* We only need to check those implicit registers for instructions
4364 with 3 operands or less. */
4365 if (i.operands <= 3)
4366 for (j = 0; j < i.operands; j++)
4367 if (i.types[j].bitfield.inoutportreg
4368 || i.types[j].bitfield.shiftcount
4369 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
4370 i.reg_operands--;
4371
4372 /* ImmExt should be processed after SSE2AVX. */
4373 if (!i.tm.opcode_modifier.sse2avx
4374 && i.tm.opcode_modifier.immext)
4375 process_immext ();
4376
4377 /* For insns with operands there are more diddles to do to the opcode. */
4378 if (i.operands)
4379 {
4380 if (!process_operands ())
4381 return;
4382 }
4383 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4384 {
4385 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4386 as_warn (_("translating to `%sp'"), i.tm.name);
4387 }
4388
4389 if (is_any_vex_encoding (&i.tm))
4390 {
4391 if (!cpu_arch_flags.bitfield.cpui286)
4392 {
4393 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
4394 i.tm.name);
4395 return;
4396 }
4397
4398 if (i.tm.opcode_modifier.vex)
4399 build_vex_prefix (t);
4400 else
4401 build_evex_prefix ();
4402 }
4403
4404 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4405 instructions may define INT_OPCODE as well, so avoid this corner
4406 case for those instructions that use MODRM. */
4407 if (i.tm.base_opcode == INT_OPCODE
4408 && !i.tm.opcode_modifier.modrm
4409 && i.op[0].imms->X_add_number == 3)
4410 {
4411 i.tm.base_opcode = INT3_OPCODE;
4412 i.imm_operands = 0;
4413 }
4414
4415 if ((i.tm.opcode_modifier.jump
4416 || i.tm.opcode_modifier.jumpbyte
4417 || i.tm.opcode_modifier.jumpdword)
4418 && i.op[0].disps->X_op == O_constant)
4419 {
4420 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4421 the absolute address given by the constant. Since ix86 jumps and
4422 calls are pc relative, we need to generate a reloc. */
4423 i.op[0].disps->X_add_symbol = &abs_symbol;
4424 i.op[0].disps->X_op = O_symbol;
4425 }
4426
4427 if (i.tm.opcode_modifier.rex64)
4428 i.rex |= REX_W;
4429
4430 /* For 8 bit registers we need an empty rex prefix. Also if the
4431 instruction already has a prefix, we need to convert old
4432 registers to new ones. */
4433
4434 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
4435 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4436 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
4437 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4438 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4439 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
4440 && i.rex != 0))
4441 {
4442 int x;
4443
4444 i.rex |= REX_OPCODE;
4445 for (x = 0; x < 2; x++)
4446 {
4447 /* Look for 8 bit operand that uses old registers. */
4448 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
4449 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4450 {
4451 /* In case it is "hi" register, give up. */
4452 if (i.op[x].regs->reg_num > 3)
4453 as_bad (_("can't encode register '%s%s' in an "
4454 "instruction requiring REX prefix."),
4455 register_prefix, i.op[x].regs->reg_name);
4456
4457 /* Otherwise it is equivalent to the extended register.
4458 Since the encoding doesn't change this is merely
4459 cosmetic cleanup for debug output. */
4460
4461 i.op[x].regs = i.op[x].regs + 8;
4462 }
4463 }
4464 }
4465
4466 if (i.rex == 0 && i.rex_encoding)
4467 {
4468 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4469 that uses legacy register. If it is "hi" register, don't add
4470 the REX_OPCODE byte. */
4471 int x;
4472 for (x = 0; x < 2; x++)
4473 if (i.types[x].bitfield.reg
4474 && i.types[x].bitfield.byte
4475 && (i.op[x].regs->reg_flags & RegRex64) == 0
4476 && i.op[x].regs->reg_num > 3)
4477 {
4478 i.rex_encoding = FALSE;
4479 break;
4480 }
4481
4482 if (i.rex_encoding)
4483 i.rex = REX_OPCODE;
4484 }
4485
4486 if (i.rex != 0)
4487 add_prefix (REX_OPCODE | i.rex);
4488
4489 /* We are ready to output the insn. */
4490 output_insn ();
4491 }
4492
4493 static char *
4494 parse_insn (char *line, char *mnemonic)
4495 {
4496 char *l = line;
4497 char *token_start = l;
4498 char *mnem_p;
4499 int supported;
4500 const insn_template *t;
4501 char *dot_p = NULL;
4502
4503 while (1)
4504 {
4505 mnem_p = mnemonic;
4506 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4507 {
4508 if (*mnem_p == '.')
4509 dot_p = mnem_p;
4510 mnem_p++;
4511 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4512 {
4513 as_bad (_("no such instruction: `%s'"), token_start);
4514 return NULL;
4515 }
4516 l++;
4517 }
4518 if (!is_space_char (*l)
4519 && *l != END_OF_INSN
4520 && (intel_syntax
4521 || (*l != PREFIX_SEPARATOR
4522 && *l != ',')))
4523 {
4524 as_bad (_("invalid character %s in mnemonic"),
4525 output_invalid (*l));
4526 return NULL;
4527 }
4528 if (token_start == l)
4529 {
4530 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4531 as_bad (_("expecting prefix; got nothing"));
4532 else
4533 as_bad (_("expecting mnemonic; got nothing"));
4534 return NULL;
4535 }
4536
4537 /* Look up instruction (or prefix) via hash table. */
4538 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4539
4540 if (*l != END_OF_INSN
4541 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4542 && current_templates
4543 && current_templates->start->opcode_modifier.isprefix)
4544 {
4545 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4546 {
4547 as_bad ((flag_code != CODE_64BIT
4548 ? _("`%s' is only supported in 64-bit mode")
4549 : _("`%s' is not supported in 64-bit mode")),
4550 current_templates->start->name);
4551 return NULL;
4552 }
4553 /* If we are in 16-bit mode, do not allow addr16 or data16.
4554 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4555 if ((current_templates->start->opcode_modifier.size == SIZE16
4556 || current_templates->start->opcode_modifier.size == SIZE32)
4557 && flag_code != CODE_64BIT
4558 && ((current_templates->start->opcode_modifier.size == SIZE32)
4559 ^ (flag_code == CODE_16BIT)))
4560 {
4561 as_bad (_("redundant %s prefix"),
4562 current_templates->start->name);
4563 return NULL;
4564 }
4565 if (current_templates->start->opcode_length == 0)
4566 {
4567 /* Handle pseudo prefixes. */
4568 switch (current_templates->start->base_opcode)
4569 {
4570 case 0x0:
4571 /* {disp8} */
4572 i.disp_encoding = disp_encoding_8bit;
4573 break;
4574 case 0x1:
4575 /* {disp32} */
4576 i.disp_encoding = disp_encoding_32bit;
4577 break;
4578 case 0x2:
4579 /* {load} */
4580 i.dir_encoding = dir_encoding_load;
4581 break;
4582 case 0x3:
4583 /* {store} */
4584 i.dir_encoding = dir_encoding_store;
4585 break;
4586 case 0x4:
4587 /* {vex2} */
4588 i.vec_encoding = vex_encoding_vex2;
4589 break;
4590 case 0x5:
4591 /* {vex3} */
4592 i.vec_encoding = vex_encoding_vex3;
4593 break;
4594 case 0x6:
4595 /* {evex} */
4596 i.vec_encoding = vex_encoding_evex;
4597 break;
4598 case 0x7:
4599 /* {rex} */
4600 i.rex_encoding = TRUE;
4601 break;
4602 case 0x8:
4603 /* {nooptimize} */
4604 i.no_optimize = TRUE;
4605 break;
4606 default:
4607 abort ();
4608 }
4609 }
4610 else
4611 {
4612 /* Add prefix, checking for repeated prefixes. */
4613 switch (add_prefix (current_templates->start->base_opcode))
4614 {
4615 case PREFIX_EXIST:
4616 return NULL;
4617 case PREFIX_DS:
4618 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4619 i.notrack_prefix = current_templates->start->name;
4620 break;
4621 case PREFIX_REP:
4622 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4623 i.hle_prefix = current_templates->start->name;
4624 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4625 i.bnd_prefix = current_templates->start->name;
4626 else
4627 i.rep_prefix = current_templates->start->name;
4628 break;
4629 default:
4630 break;
4631 }
4632 }
4633 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4634 token_start = ++l;
4635 }
4636 else
4637 break;
4638 }
4639
4640 if (!current_templates)
4641 {
4642 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4643 Check if we should swap operand or force 32bit displacement in
4644 encoding. */
4645 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4646 i.dir_encoding = dir_encoding_swap;
4647 else if (mnem_p - 3 == dot_p
4648 && dot_p[1] == 'd'
4649 && dot_p[2] == '8')
4650 i.disp_encoding = disp_encoding_8bit;
4651 else if (mnem_p - 4 == dot_p
4652 && dot_p[1] == 'd'
4653 && dot_p[2] == '3'
4654 && dot_p[3] == '2')
4655 i.disp_encoding = disp_encoding_32bit;
4656 else
4657 goto check_suffix;
4658 mnem_p = dot_p;
4659 *dot_p = '\0';
4660 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4661 }
4662
4663 if (!current_templates)
4664 {
4665 check_suffix:
4666 if (mnem_p > mnemonic)
4667 {
4668 /* See if we can get a match by trimming off a suffix. */
4669 switch (mnem_p[-1])
4670 {
4671 case WORD_MNEM_SUFFIX:
4672 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4673 i.suffix = SHORT_MNEM_SUFFIX;
4674 else
4675 /* Fall through. */
4676 case BYTE_MNEM_SUFFIX:
4677 case QWORD_MNEM_SUFFIX:
4678 i.suffix = mnem_p[-1];
4679 mnem_p[-1] = '\0';
4680 current_templates = (const templates *) hash_find (op_hash,
4681 mnemonic);
4682 break;
4683 case SHORT_MNEM_SUFFIX:
4684 case LONG_MNEM_SUFFIX:
4685 if (!intel_syntax)
4686 {
4687 i.suffix = mnem_p[-1];
4688 mnem_p[-1] = '\0';
4689 current_templates = (const templates *) hash_find (op_hash,
4690 mnemonic);
4691 }
4692 break;
4693
4694 /* Intel Syntax. */
4695 case 'd':
4696 if (intel_syntax)
4697 {
4698 if (intel_float_operand (mnemonic) == 1)
4699 i.suffix = SHORT_MNEM_SUFFIX;
4700 else
4701 i.suffix = LONG_MNEM_SUFFIX;
4702 mnem_p[-1] = '\0';
4703 current_templates = (const templates *) hash_find (op_hash,
4704 mnemonic);
4705 }
4706 break;
4707 }
4708 }
4709
4710 if (!current_templates)
4711 {
4712 as_bad (_("no such instruction: `%s'"), token_start);
4713 return NULL;
4714 }
4715 }
4716
4717 if (current_templates->start->opcode_modifier.jump
4718 || current_templates->start->opcode_modifier.jumpbyte)
4719 {
4720 /* Check for a branch hint. We allow ",pt" and ",pn" for
4721 predict taken and predict not taken respectively.
4722 I'm not sure that branch hints actually do anything on loop
4723 and jcxz insns (JumpByte) for current Pentium4 chips. They
4724 may work in the future and it doesn't hurt to accept them
4725 now. */
4726 if (l[0] == ',' && l[1] == 'p')
4727 {
4728 if (l[2] == 't')
4729 {
4730 if (!add_prefix (DS_PREFIX_OPCODE))
4731 return NULL;
4732 l += 3;
4733 }
4734 else if (l[2] == 'n')
4735 {
4736 if (!add_prefix (CS_PREFIX_OPCODE))
4737 return NULL;
4738 l += 3;
4739 }
4740 }
4741 }
4742 /* Any other comma loses. */
4743 if (*l == ',')
4744 {
4745 as_bad (_("invalid character %s in mnemonic"),
4746 output_invalid (*l));
4747 return NULL;
4748 }
4749
4750 /* Check if instruction is supported on specified architecture. */
4751 supported = 0;
4752 for (t = current_templates->start; t < current_templates->end; ++t)
4753 {
4754 supported |= cpu_flags_match (t);
4755 if (supported == CPU_FLAGS_PERFECT_MATCH)
4756 {
4757 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4758 as_warn (_("use .code16 to ensure correct addressing mode"));
4759
4760 return l;
4761 }
4762 }
4763
4764 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4765 as_bad (flag_code == CODE_64BIT
4766 ? _("`%s' is not supported in 64-bit mode")
4767 : _("`%s' is only supported in 64-bit mode"),
4768 current_templates->start->name);
4769 else
4770 as_bad (_("`%s' is not supported on `%s%s'"),
4771 current_templates->start->name,
4772 cpu_arch_name ? cpu_arch_name : default_arch,
4773 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4774
4775 return NULL;
4776 }
4777
4778 static char *
4779 parse_operands (char *l, const char *mnemonic)
4780 {
4781 char *token_start;
4782
4783 /* 1 if operand is pending after ','. */
4784 unsigned int expecting_operand = 0;
4785
4786 /* Non-zero if operand parens not balanced. */
4787 unsigned int paren_not_balanced;
4788
4789 while (*l != END_OF_INSN)
4790 {
4791 /* Skip optional white space before operand. */
4792 if (is_space_char (*l))
4793 ++l;
4794 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4795 {
4796 as_bad (_("invalid character %s before operand %d"),
4797 output_invalid (*l),
4798 i.operands + 1);
4799 return NULL;
4800 }
4801 token_start = l; /* After white space. */
4802 paren_not_balanced = 0;
4803 while (paren_not_balanced || *l != ',')
4804 {
4805 if (*l == END_OF_INSN)
4806 {
4807 if (paren_not_balanced)
4808 {
4809 if (!intel_syntax)
4810 as_bad (_("unbalanced parenthesis in operand %d."),
4811 i.operands + 1);
4812 else
4813 as_bad (_("unbalanced brackets in operand %d."),
4814 i.operands + 1);
4815 return NULL;
4816 }
4817 else
4818 break; /* we are done */
4819 }
4820 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4821 {
4822 as_bad (_("invalid character %s in operand %d"),
4823 output_invalid (*l),
4824 i.operands + 1);
4825 return NULL;
4826 }
4827 if (!intel_syntax)
4828 {
4829 if (*l == '(')
4830 ++paren_not_balanced;
4831 if (*l == ')')
4832 --paren_not_balanced;
4833 }
4834 else
4835 {
4836 if (*l == '[')
4837 ++paren_not_balanced;
4838 if (*l == ']')
4839 --paren_not_balanced;
4840 }
4841 l++;
4842 }
4843 if (l != token_start)
4844 { /* Yes, we've read in another operand. */
4845 unsigned int operand_ok;
4846 this_operand = i.operands++;
4847 if (i.operands > MAX_OPERANDS)
4848 {
4849 as_bad (_("spurious operands; (%d operands/instruction max)"),
4850 MAX_OPERANDS);
4851 return NULL;
4852 }
4853 i.types[this_operand].bitfield.unspecified = 1;
4854 /* Now parse operand adding info to 'i' as we go along. */
4855 END_STRING_AND_SAVE (l);
4856
4857 if (i.mem_operands > 1)
4858 {
4859 as_bad (_("too many memory references for `%s'"),
4860 mnemonic);
4861 return 0;
4862 }
4863
4864 if (intel_syntax)
4865 operand_ok =
4866 i386_intel_operand (token_start,
4867 intel_float_operand (mnemonic));
4868 else
4869 operand_ok = i386_att_operand (token_start);
4870
4871 RESTORE_END_STRING (l);
4872 if (!operand_ok)
4873 return NULL;
4874 }
4875 else
4876 {
4877 if (expecting_operand)
4878 {
4879 expecting_operand_after_comma:
4880 as_bad (_("expecting operand after ','; got nothing"));
4881 return NULL;
4882 }
4883 if (*l == ',')
4884 {
4885 as_bad (_("expecting operand before ','; got nothing"));
4886 return NULL;
4887 }
4888 }
4889
4890 /* Now *l must be either ',' or END_OF_INSN. */
4891 if (*l == ',')
4892 {
4893 if (*++l == END_OF_INSN)
4894 {
4895 /* Just skip it, if it's \n complain. */
4896 goto expecting_operand_after_comma;
4897 }
4898 expecting_operand = 1;
4899 }
4900 }
4901 return l;
4902 }
4903
4904 static void
4905 swap_2_operands (int xchg1, int xchg2)
4906 {
4907 union i386_op temp_op;
4908 i386_operand_type temp_type;
4909 unsigned int temp_flags;
4910 enum bfd_reloc_code_real temp_reloc;
4911
4912 temp_type = i.types[xchg2];
4913 i.types[xchg2] = i.types[xchg1];
4914 i.types[xchg1] = temp_type;
4915
4916 temp_flags = i.flags[xchg2];
4917 i.flags[xchg2] = i.flags[xchg1];
4918 i.flags[xchg1] = temp_flags;
4919
4920 temp_op = i.op[xchg2];
4921 i.op[xchg2] = i.op[xchg1];
4922 i.op[xchg1] = temp_op;
4923
4924 temp_reloc = i.reloc[xchg2];
4925 i.reloc[xchg2] = i.reloc[xchg1];
4926 i.reloc[xchg1] = temp_reloc;
4927
4928 if (i.mask)
4929 {
4930 if (i.mask->operand == xchg1)
4931 i.mask->operand = xchg2;
4932 else if (i.mask->operand == xchg2)
4933 i.mask->operand = xchg1;
4934 }
4935 if (i.broadcast)
4936 {
4937 if (i.broadcast->operand == xchg1)
4938 i.broadcast->operand = xchg2;
4939 else if (i.broadcast->operand == xchg2)
4940 i.broadcast->operand = xchg1;
4941 }
4942 if (i.rounding)
4943 {
4944 if (i.rounding->operand == xchg1)
4945 i.rounding->operand = xchg2;
4946 else if (i.rounding->operand == xchg2)
4947 i.rounding->operand = xchg1;
4948 }
4949 }
4950
4951 static void
4952 swap_operands (void)
4953 {
4954 switch (i.operands)
4955 {
4956 case 5:
4957 case 4:
4958 swap_2_operands (1, i.operands - 2);
4959 /* Fall through. */
4960 case 3:
4961 case 2:
4962 swap_2_operands (0, i.operands - 1);
4963 break;
4964 default:
4965 abort ();
4966 }
4967
4968 if (i.mem_operands == 2)
4969 {
4970 const seg_entry *temp_seg;
4971 temp_seg = i.seg[0];
4972 i.seg[0] = i.seg[1];
4973 i.seg[1] = temp_seg;
4974 }
4975 }
4976
4977 /* Try to ensure constant immediates are represented in the smallest
4978 opcode possible. */
4979 static void
4980 optimize_imm (void)
4981 {
4982 char guess_suffix = 0;
4983 int op;
4984
4985 if (i.suffix)
4986 guess_suffix = i.suffix;
4987 else if (i.reg_operands)
4988 {
4989 /* Figure out a suffix from the last register operand specified.
4990 We can't do this properly yet, ie. excluding InOutPortReg,
4991 but the following works for instructions with immediates.
4992 In any case, we can't set i.suffix yet. */
4993 for (op = i.operands; --op >= 0;)
4994 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
4995 {
4996 guess_suffix = BYTE_MNEM_SUFFIX;
4997 break;
4998 }
4999 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
5000 {
5001 guess_suffix = WORD_MNEM_SUFFIX;
5002 break;
5003 }
5004 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
5005 {
5006 guess_suffix = LONG_MNEM_SUFFIX;
5007 break;
5008 }
5009 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
5010 {
5011 guess_suffix = QWORD_MNEM_SUFFIX;
5012 break;
5013 }
5014 }
5015 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5016 guess_suffix = WORD_MNEM_SUFFIX;
5017
5018 for (op = i.operands; --op >= 0;)
5019 if (operand_type_check (i.types[op], imm))
5020 {
5021 switch (i.op[op].imms->X_op)
5022 {
5023 case O_constant:
5024 /* If a suffix is given, this operand may be shortened. */
5025 switch (guess_suffix)
5026 {
5027 case LONG_MNEM_SUFFIX:
5028 i.types[op].bitfield.imm32 = 1;
5029 i.types[op].bitfield.imm64 = 1;
5030 break;
5031 case WORD_MNEM_SUFFIX:
5032 i.types[op].bitfield.imm16 = 1;
5033 i.types[op].bitfield.imm32 = 1;
5034 i.types[op].bitfield.imm32s = 1;
5035 i.types[op].bitfield.imm64 = 1;
5036 break;
5037 case BYTE_MNEM_SUFFIX:
5038 i.types[op].bitfield.imm8 = 1;
5039 i.types[op].bitfield.imm8s = 1;
5040 i.types[op].bitfield.imm16 = 1;
5041 i.types[op].bitfield.imm32 = 1;
5042 i.types[op].bitfield.imm32s = 1;
5043 i.types[op].bitfield.imm64 = 1;
5044 break;
5045 }
5046
5047 /* If this operand is at most 16 bits, convert it
5048 to a signed 16 bit number before trying to see
5049 whether it will fit in an even smaller size.
5050 This allows a 16-bit operand such as $0xffe0 to
5051 be recognised as within Imm8S range. */
5052 if ((i.types[op].bitfield.imm16)
5053 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
5054 {
5055 i.op[op].imms->X_add_number =
5056 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5057 }
5058 #ifdef BFD64
5059 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
5060 if ((i.types[op].bitfield.imm32)
5061 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5062 == 0))
5063 {
5064 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5065 ^ ((offsetT) 1 << 31))
5066 - ((offsetT) 1 << 31));
5067 }
5068 #endif
5069 i.types[op]
5070 = operand_type_or (i.types[op],
5071 smallest_imm_type (i.op[op].imms->X_add_number));
5072
5073 /* We must avoid matching of Imm32 templates when 64bit
5074 only immediate is available. */
5075 if (guess_suffix == QWORD_MNEM_SUFFIX)
5076 i.types[op].bitfield.imm32 = 0;
5077 break;
5078
5079 case O_absent:
5080 case O_register:
5081 abort ();
5082
5083 /* Symbols and expressions. */
5084 default:
5085 /* Convert symbolic operand to proper sizes for matching, but don't
5086 prevent matching a set of insns that only supports sizes other
5087 than those matching the insn suffix. */
5088 {
5089 i386_operand_type mask, allowed;
5090 const insn_template *t;
5091
5092 operand_type_set (&mask, 0);
5093 operand_type_set (&allowed, 0);
5094
5095 for (t = current_templates->start;
5096 t < current_templates->end;
5097 ++t)
5098 allowed = operand_type_or (allowed,
5099 t->operand_types[op]);
5100 switch (guess_suffix)
5101 {
5102 case QWORD_MNEM_SUFFIX:
5103 mask.bitfield.imm64 = 1;
5104 mask.bitfield.imm32s = 1;
5105 break;
5106 case LONG_MNEM_SUFFIX:
5107 mask.bitfield.imm32 = 1;
5108 break;
5109 case WORD_MNEM_SUFFIX:
5110 mask.bitfield.imm16 = 1;
5111 break;
5112 case BYTE_MNEM_SUFFIX:
5113 mask.bitfield.imm8 = 1;
5114 break;
5115 default:
5116 break;
5117 }
5118 allowed = operand_type_and (mask, allowed);
5119 if (!operand_type_all_zero (&allowed))
5120 i.types[op] = operand_type_and (i.types[op], mask);
5121 }
5122 break;
5123 }
5124 }
5125 }
5126
5127 /* Try to use the smallest displacement type too. */
5128 static void
5129 optimize_disp (void)
5130 {
5131 int op;
5132
5133 for (op = i.operands; --op >= 0;)
5134 if (operand_type_check (i.types[op], disp))
5135 {
5136 if (i.op[op].disps->X_op == O_constant)
5137 {
5138 offsetT op_disp = i.op[op].disps->X_add_number;
5139
5140 if (i.types[op].bitfield.disp16
5141 && (op_disp & ~(offsetT) 0xffff) == 0)
5142 {
5143 /* If this operand is at most 16 bits, convert
5144 to a signed 16 bit number and don't use 64bit
5145 displacement. */
5146 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5147 i.types[op].bitfield.disp64 = 0;
5148 }
5149 #ifdef BFD64
5150 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5151 if (i.types[op].bitfield.disp32
5152 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5153 {
5154 /* If this operand is at most 32 bits, convert
5155 to a signed 32 bit number and don't use 64bit
5156 displacement. */
5157 op_disp &= (((offsetT) 2 << 31) - 1);
5158 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5159 i.types[op].bitfield.disp64 = 0;
5160 }
5161 #endif
5162 if (!op_disp && i.types[op].bitfield.baseindex)
5163 {
5164 i.types[op].bitfield.disp8 = 0;
5165 i.types[op].bitfield.disp16 = 0;
5166 i.types[op].bitfield.disp32 = 0;
5167 i.types[op].bitfield.disp32s = 0;
5168 i.types[op].bitfield.disp64 = 0;
5169 i.op[op].disps = 0;
5170 i.disp_operands--;
5171 }
5172 else if (flag_code == CODE_64BIT)
5173 {
5174 if (fits_in_signed_long (op_disp))
5175 {
5176 i.types[op].bitfield.disp64 = 0;
5177 i.types[op].bitfield.disp32s = 1;
5178 }
5179 if (i.prefix[ADDR_PREFIX]
5180 && fits_in_unsigned_long (op_disp))
5181 i.types[op].bitfield.disp32 = 1;
5182 }
5183 if ((i.types[op].bitfield.disp32
5184 || i.types[op].bitfield.disp32s
5185 || i.types[op].bitfield.disp16)
5186 && fits_in_disp8 (op_disp))
5187 i.types[op].bitfield.disp8 = 1;
5188 }
5189 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5190 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5191 {
5192 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5193 i.op[op].disps, 0, i.reloc[op]);
5194 i.types[op].bitfield.disp8 = 0;
5195 i.types[op].bitfield.disp16 = 0;
5196 i.types[op].bitfield.disp32 = 0;
5197 i.types[op].bitfield.disp32s = 0;
5198 i.types[op].bitfield.disp64 = 0;
5199 }
5200 else
5201 /* We only support 64bit displacement on constants. */
5202 i.types[op].bitfield.disp64 = 0;
5203 }
5204 }
5205
5206 /* Return 1 if there is a match in broadcast bytes between operand
5207 GIVEN and instruction template T. */
5208
5209 static INLINE int
5210 match_broadcast_size (const insn_template *t, unsigned int given)
5211 {
5212 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5213 && i.types[given].bitfield.byte)
5214 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5215 && i.types[given].bitfield.word)
5216 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5217 && i.types[given].bitfield.dword)
5218 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5219 && i.types[given].bitfield.qword));
5220 }
5221
5222 /* Check if operands are valid for the instruction. */
5223
5224 static int
5225 check_VecOperands (const insn_template *t)
5226 {
5227 unsigned int op;
5228 i386_cpu_flags cpu;
5229 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5230
5231 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5232 any one operand are implicity requiring AVX512VL support if the actual
5233 operand size is YMMword or XMMword. Since this function runs after
5234 template matching, there's no need to check for YMMword/XMMword in
5235 the template. */
5236 cpu = cpu_flags_and (t->cpu_flags, avx512);
5237 if (!cpu_flags_all_zero (&cpu)
5238 && !t->cpu_flags.bitfield.cpuavx512vl
5239 && !cpu_arch_flags.bitfield.cpuavx512vl)
5240 {
5241 for (op = 0; op < t->operands; ++op)
5242 {
5243 if (t->operand_types[op].bitfield.zmmword
5244 && (i.types[op].bitfield.ymmword
5245 || i.types[op].bitfield.xmmword))
5246 {
5247 i.error = unsupported;
5248 return 1;
5249 }
5250 }
5251 }
5252
5253 /* Without VSIB byte, we can't have a vector register for index. */
5254 if (!t->opcode_modifier.vecsib
5255 && i.index_reg
5256 && (i.index_reg->reg_type.bitfield.xmmword
5257 || i.index_reg->reg_type.bitfield.ymmword
5258 || i.index_reg->reg_type.bitfield.zmmword))
5259 {
5260 i.error = unsupported_vector_index_register;
5261 return 1;
5262 }
5263
5264 /* Check if default mask is allowed. */
5265 if (t->opcode_modifier.nodefmask
5266 && (!i.mask || i.mask->mask->reg_num == 0))
5267 {
5268 i.error = no_default_mask;
5269 return 1;
5270 }
5271
5272 /* For VSIB byte, we need a vector register for index, and all vector
5273 registers must be distinct. */
5274 if (t->opcode_modifier.vecsib)
5275 {
5276 if (!i.index_reg
5277 || !((t->opcode_modifier.vecsib == VecSIB128
5278 && i.index_reg->reg_type.bitfield.xmmword)
5279 || (t->opcode_modifier.vecsib == VecSIB256
5280 && i.index_reg->reg_type.bitfield.ymmword)
5281 || (t->opcode_modifier.vecsib == VecSIB512
5282 && i.index_reg->reg_type.bitfield.zmmword)))
5283 {
5284 i.error = invalid_vsib_address;
5285 return 1;
5286 }
5287
5288 gas_assert (i.reg_operands == 2 || i.mask);
5289 if (i.reg_operands == 2 && !i.mask)
5290 {
5291 gas_assert (i.types[0].bitfield.regsimd);
5292 gas_assert (i.types[0].bitfield.xmmword
5293 || i.types[0].bitfield.ymmword);
5294 gas_assert (i.types[2].bitfield.regsimd);
5295 gas_assert (i.types[2].bitfield.xmmword
5296 || i.types[2].bitfield.ymmword);
5297 if (operand_check == check_none)
5298 return 0;
5299 if (register_number (i.op[0].regs)
5300 != register_number (i.index_reg)
5301 && register_number (i.op[2].regs)
5302 != register_number (i.index_reg)
5303 && register_number (i.op[0].regs)
5304 != register_number (i.op[2].regs))
5305 return 0;
5306 if (operand_check == check_error)
5307 {
5308 i.error = invalid_vector_register_set;
5309 return 1;
5310 }
5311 as_warn (_("mask, index, and destination registers should be distinct"));
5312 }
5313 else if (i.reg_operands == 1 && i.mask)
5314 {
5315 if (i.types[1].bitfield.regsimd
5316 && (i.types[1].bitfield.xmmword
5317 || i.types[1].bitfield.ymmword
5318 || i.types[1].bitfield.zmmword)
5319 && (register_number (i.op[1].regs)
5320 == register_number (i.index_reg)))
5321 {
5322 if (operand_check == check_error)
5323 {
5324 i.error = invalid_vector_register_set;
5325 return 1;
5326 }
5327 if (operand_check != check_none)
5328 as_warn (_("index and destination registers should be distinct"));
5329 }
5330 }
5331 }
5332
5333 /* Check if broadcast is supported by the instruction and is applied
5334 to the memory operand. */
5335 if (i.broadcast)
5336 {
5337 i386_operand_type type, overlap;
5338
5339 /* Check if specified broadcast is supported in this instruction,
5340 and its broadcast bytes match the memory operand. */
5341 op = i.broadcast->operand;
5342 if (!t->opcode_modifier.broadcast
5343 || !(i.flags[op] & Operand_Mem)
5344 || (!i.types[op].bitfield.unspecified
5345 && !match_broadcast_size (t, op)))
5346 {
5347 bad_broadcast:
5348 i.error = unsupported_broadcast;
5349 return 1;
5350 }
5351
5352 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5353 * i.broadcast->type);
5354 operand_type_set (&type, 0);
5355 switch (i.broadcast->bytes)
5356 {
5357 case 2:
5358 type.bitfield.word = 1;
5359 break;
5360 case 4:
5361 type.bitfield.dword = 1;
5362 break;
5363 case 8:
5364 type.bitfield.qword = 1;
5365 break;
5366 case 16:
5367 type.bitfield.xmmword = 1;
5368 break;
5369 case 32:
5370 type.bitfield.ymmword = 1;
5371 break;
5372 case 64:
5373 type.bitfield.zmmword = 1;
5374 break;
5375 default:
5376 goto bad_broadcast;
5377 }
5378
5379 overlap = operand_type_and (type, t->operand_types[op]);
5380 if (operand_type_all_zero (&overlap))
5381 goto bad_broadcast;
5382
5383 if (t->opcode_modifier.checkregsize)
5384 {
5385 unsigned int j;
5386
5387 type.bitfield.baseindex = 1;
5388 for (j = 0; j < i.operands; ++j)
5389 {
5390 if (j != op
5391 && !operand_type_register_match(i.types[j],
5392 t->operand_types[j],
5393 type,
5394 t->operand_types[op]))
5395 goto bad_broadcast;
5396 }
5397 }
5398 }
5399 /* If broadcast is supported in this instruction, we need to check if
5400 operand of one-element size isn't specified without broadcast. */
5401 else if (t->opcode_modifier.broadcast && i.mem_operands)
5402 {
5403 /* Find memory operand. */
5404 for (op = 0; op < i.operands; op++)
5405 if (operand_type_check (i.types[op], anymem))
5406 break;
5407 gas_assert (op < i.operands);
5408 /* Check size of the memory operand. */
5409 if (match_broadcast_size (t, op))
5410 {
5411 i.error = broadcast_needed;
5412 return 1;
5413 }
5414 }
5415 else
5416 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5417
5418 /* Check if requested masking is supported. */
5419 if (i.mask)
5420 {
5421 switch (t->opcode_modifier.masking)
5422 {
5423 case BOTH_MASKING:
5424 break;
5425 case MERGING_MASKING:
5426 if (i.mask->zeroing)
5427 {
5428 case 0:
5429 i.error = unsupported_masking;
5430 return 1;
5431 }
5432 break;
5433 case DYNAMIC_MASKING:
5434 /* Memory destinations allow only merging masking. */
5435 if (i.mask->zeroing && i.mem_operands)
5436 {
5437 /* Find memory operand. */
5438 for (op = 0; op < i.operands; op++)
5439 if (i.flags[op] & Operand_Mem)
5440 break;
5441 gas_assert (op < i.operands);
5442 if (op == i.operands - 1)
5443 {
5444 i.error = unsupported_masking;
5445 return 1;
5446 }
5447 }
5448 break;
5449 default:
5450 abort ();
5451 }
5452 }
5453
5454 /* Check if masking is applied to dest operand. */
5455 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5456 {
5457 i.error = mask_not_on_destination;
5458 return 1;
5459 }
5460
5461 /* Check RC/SAE. */
5462 if (i.rounding)
5463 {
5464 if ((i.rounding->type != saeonly
5465 && !t->opcode_modifier.staticrounding)
5466 || (i.rounding->type == saeonly
5467 && (t->opcode_modifier.staticrounding
5468 || !t->opcode_modifier.sae)))
5469 {
5470 i.error = unsupported_rc_sae;
5471 return 1;
5472 }
5473 /* If the instruction has several immediate operands and one of
5474 them is rounding, the rounding operand should be the last
5475 immediate operand. */
5476 if (i.imm_operands > 1
5477 && i.rounding->operand != (int) (i.imm_operands - 1))
5478 {
5479 i.error = rc_sae_operand_not_last_imm;
5480 return 1;
5481 }
5482 }
5483
5484 /* Check vector Disp8 operand. */
5485 if (t->opcode_modifier.disp8memshift
5486 && i.disp_encoding != disp_encoding_32bit)
5487 {
5488 if (i.broadcast)
5489 i.memshift = t->opcode_modifier.broadcast - 1;
5490 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5491 i.memshift = t->opcode_modifier.disp8memshift;
5492 else
5493 {
5494 const i386_operand_type *type = NULL;
5495
5496 i.memshift = 0;
5497 for (op = 0; op < i.operands; op++)
5498 if (operand_type_check (i.types[op], anymem))
5499 {
5500 if (t->opcode_modifier.evex == EVEXLIG)
5501 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5502 else if (t->operand_types[op].bitfield.xmmword
5503 + t->operand_types[op].bitfield.ymmword
5504 + t->operand_types[op].bitfield.zmmword <= 1)
5505 type = &t->operand_types[op];
5506 else if (!i.types[op].bitfield.unspecified)
5507 type = &i.types[op];
5508 }
5509 else if (i.types[op].bitfield.regsimd
5510 && t->opcode_modifier.evex != EVEXLIG)
5511 {
5512 if (i.types[op].bitfield.zmmword)
5513 i.memshift = 6;
5514 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5515 i.memshift = 5;
5516 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5517 i.memshift = 4;
5518 }
5519
5520 if (type)
5521 {
5522 if (type->bitfield.zmmword)
5523 i.memshift = 6;
5524 else if (type->bitfield.ymmword)
5525 i.memshift = 5;
5526 else if (type->bitfield.xmmword)
5527 i.memshift = 4;
5528 }
5529
5530 /* For the check in fits_in_disp8(). */
5531 if (i.memshift == 0)
5532 i.memshift = -1;
5533 }
5534
5535 for (op = 0; op < i.operands; op++)
5536 if (operand_type_check (i.types[op], disp)
5537 && i.op[op].disps->X_op == O_constant)
5538 {
5539 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5540 {
5541 i.types[op].bitfield.disp8 = 1;
5542 return 0;
5543 }
5544 i.types[op].bitfield.disp8 = 0;
5545 }
5546 }
5547
5548 i.memshift = 0;
5549
5550 return 0;
5551 }
5552
5553 /* Check if operands are valid for the instruction. Update VEX
5554 operand types. */
5555
5556 static int
5557 VEX_check_operands (const insn_template *t)
5558 {
5559 if (i.vec_encoding == vex_encoding_evex)
5560 {
5561 /* This instruction must be encoded with EVEX prefix. */
5562 if (!is_evex_encoding (t))
5563 {
5564 i.error = unsupported;
5565 return 1;
5566 }
5567 return 0;
5568 }
5569
5570 if (!t->opcode_modifier.vex)
5571 {
5572 /* This instruction template doesn't have VEX prefix. */
5573 if (i.vec_encoding != vex_encoding_default)
5574 {
5575 i.error = unsupported;
5576 return 1;
5577 }
5578 return 0;
5579 }
5580
5581 /* Only check VEX_Imm4, which must be the first operand. */
5582 if (t->operand_types[0].bitfield.vec_imm4)
5583 {
5584 if (i.op[0].imms->X_op != O_constant
5585 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5586 {
5587 i.error = bad_imm4;
5588 return 1;
5589 }
5590
5591 /* Turn off Imm8 so that update_imm won't complain. */
5592 i.types[0] = vec_imm4;
5593 }
5594
5595 return 0;
5596 }
5597
5598 static const insn_template *
5599 match_template (char mnem_suffix)
5600 {
5601 /* Points to template once we've found it. */
5602 const insn_template *t;
5603 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5604 i386_operand_type overlap4;
5605 unsigned int found_reverse_match;
5606 i386_opcode_modifier suffix_check, mnemsuf_check;
5607 i386_operand_type operand_types [MAX_OPERANDS];
5608 int addr_prefix_disp;
5609 unsigned int j;
5610 unsigned int found_cpu_match, size_match;
5611 unsigned int check_register;
5612 enum i386_error specific_error = 0;
5613
5614 #if MAX_OPERANDS != 5
5615 # error "MAX_OPERANDS must be 5."
5616 #endif
5617
5618 found_reverse_match = 0;
5619 addr_prefix_disp = -1;
5620
5621 memset (&suffix_check, 0, sizeof (suffix_check));
5622 if (intel_syntax && i.broadcast)
5623 /* nothing */;
5624 else if (i.suffix == BYTE_MNEM_SUFFIX)
5625 suffix_check.no_bsuf = 1;
5626 else if (i.suffix == WORD_MNEM_SUFFIX)
5627 suffix_check.no_wsuf = 1;
5628 else if (i.suffix == SHORT_MNEM_SUFFIX)
5629 suffix_check.no_ssuf = 1;
5630 else if (i.suffix == LONG_MNEM_SUFFIX)
5631 suffix_check.no_lsuf = 1;
5632 else if (i.suffix == QWORD_MNEM_SUFFIX)
5633 suffix_check.no_qsuf = 1;
5634 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5635 suffix_check.no_ldsuf = 1;
5636
5637 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5638 if (intel_syntax)
5639 {
5640 switch (mnem_suffix)
5641 {
5642 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5643 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5644 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5645 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5646 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5647 }
5648 }
5649
5650 /* Must have right number of operands. */
5651 i.error = number_of_operands_mismatch;
5652
5653 for (t = current_templates->start; t < current_templates->end; t++)
5654 {
5655 addr_prefix_disp = -1;
5656 found_reverse_match = 0;
5657
5658 if (i.operands != t->operands)
5659 continue;
5660
5661 /* Check processor support. */
5662 i.error = unsupported;
5663 found_cpu_match = (cpu_flags_match (t)
5664 == CPU_FLAGS_PERFECT_MATCH);
5665 if (!found_cpu_match)
5666 continue;
5667
5668 /* Check AT&T mnemonic. */
5669 i.error = unsupported_with_intel_mnemonic;
5670 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5671 continue;
5672
5673 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5674 i.error = unsupported_syntax;
5675 if ((intel_syntax && t->opcode_modifier.attsyntax)
5676 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5677 || (intel64 && t->opcode_modifier.amd64)
5678 || (!intel64 && t->opcode_modifier.intel64))
5679 continue;
5680
5681 /* Check the suffix, except for some instructions in intel mode. */
5682 i.error = invalid_instruction_suffix;
5683 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5684 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5685 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5686 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5687 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5688 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5689 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
5690 continue;
5691 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5692 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5693 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5694 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5695 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5696 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5697 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5698 continue;
5699
5700 size_match = operand_size_match (t);
5701 if (!size_match)
5702 continue;
5703
5704 for (j = 0; j < MAX_OPERANDS; j++)
5705 operand_types[j] = t->operand_types[j];
5706
5707 /* In general, don't allow 64-bit operands in 32-bit mode. */
5708 if (i.suffix == QWORD_MNEM_SUFFIX
5709 && flag_code != CODE_64BIT
5710 && (intel_syntax
5711 ? (!t->opcode_modifier.ignoresize
5712 && !t->opcode_modifier.broadcast
5713 && !intel_float_operand (t->name))
5714 : intel_float_operand (t->name) != 2)
5715 && ((!operand_types[0].bitfield.regmmx
5716 && !operand_types[0].bitfield.regsimd)
5717 || (!operand_types[t->operands > 1].bitfield.regmmx
5718 && !operand_types[t->operands > 1].bitfield.regsimd))
5719 && (t->base_opcode != 0x0fc7
5720 || t->extension_opcode != 1 /* cmpxchg8b */))
5721 continue;
5722
5723 /* In general, don't allow 32-bit operands on pre-386. */
5724 else if (i.suffix == LONG_MNEM_SUFFIX
5725 && !cpu_arch_flags.bitfield.cpui386
5726 && (intel_syntax
5727 ? (!t->opcode_modifier.ignoresize
5728 && !intel_float_operand (t->name))
5729 : intel_float_operand (t->name) != 2)
5730 && ((!operand_types[0].bitfield.regmmx
5731 && !operand_types[0].bitfield.regsimd)
5732 || (!operand_types[t->operands > 1].bitfield.regmmx
5733 && !operand_types[t->operands > 1].bitfield.regsimd)))
5734 continue;
5735
5736 /* Do not verify operands when there are none. */
5737 else
5738 {
5739 if (!t->operands)
5740 /* We've found a match; break out of loop. */
5741 break;
5742 }
5743
5744 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5745 into Disp32/Disp16/Disp32 operand. */
5746 if (i.prefix[ADDR_PREFIX] != 0)
5747 {
5748 /* There should be only one Disp operand. */
5749 switch (flag_code)
5750 {
5751 case CODE_16BIT:
5752 for (j = 0; j < MAX_OPERANDS; j++)
5753 {
5754 if (operand_types[j].bitfield.disp16)
5755 {
5756 addr_prefix_disp = j;
5757 operand_types[j].bitfield.disp32 = 1;
5758 operand_types[j].bitfield.disp16 = 0;
5759 break;
5760 }
5761 }
5762 break;
5763 case CODE_32BIT:
5764 for (j = 0; j < MAX_OPERANDS; j++)
5765 {
5766 if (operand_types[j].bitfield.disp32)
5767 {
5768 addr_prefix_disp = j;
5769 operand_types[j].bitfield.disp32 = 0;
5770 operand_types[j].bitfield.disp16 = 1;
5771 break;
5772 }
5773 }
5774 break;
5775 case CODE_64BIT:
5776 for (j = 0; j < MAX_OPERANDS; j++)
5777 {
5778 if (operand_types[j].bitfield.disp64)
5779 {
5780 addr_prefix_disp = j;
5781 operand_types[j].bitfield.disp64 = 0;
5782 operand_types[j].bitfield.disp32 = 1;
5783 break;
5784 }
5785 }
5786 break;
5787 }
5788 }
5789
5790 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5791 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5792 continue;
5793
5794 /* We check register size if needed. */
5795 if (t->opcode_modifier.checkregsize)
5796 {
5797 check_register = (1 << t->operands) - 1;
5798 if (i.broadcast)
5799 check_register &= ~(1 << i.broadcast->operand);
5800 }
5801 else
5802 check_register = 0;
5803
5804 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5805 switch (t->operands)
5806 {
5807 case 1:
5808 if (!operand_type_match (overlap0, i.types[0]))
5809 continue;
5810 break;
5811 case 2:
5812 /* xchg %eax, %eax is a special case. It is an alias for nop
5813 only in 32bit mode and we can use opcode 0x90. In 64bit
5814 mode, we can't use 0x90 for xchg %eax, %eax since it should
5815 zero-extend %eax to %rax. */
5816 if (flag_code == CODE_64BIT
5817 && t->base_opcode == 0x90
5818 && i.types[0].bitfield.acc && i.types[0].bitfield.dword
5819 && i.types[1].bitfield.acc && i.types[1].bitfield.dword)
5820 continue;
5821 /* xrelease mov %eax, <disp> is another special case. It must not
5822 match the accumulator-only encoding of mov. */
5823 if (flag_code != CODE_64BIT
5824 && i.hle_prefix
5825 && t->base_opcode == 0xa0
5826 && i.types[0].bitfield.acc
5827 && operand_type_check (i.types[1], anymem))
5828 continue;
5829 /* Fall through. */
5830
5831 case 3:
5832 if (!(size_match & MATCH_STRAIGHT))
5833 goto check_reverse;
5834 /* Reverse direction of operands if swapping is possible in the first
5835 place (operands need to be symmetric) and
5836 - the load form is requested, and the template is a store form,
5837 - the store form is requested, and the template is a load form,
5838 - the non-default (swapped) form is requested. */
5839 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
5840 if (t->opcode_modifier.d && i.reg_operands == i.operands
5841 && !operand_type_all_zero (&overlap1))
5842 switch (i.dir_encoding)
5843 {
5844 case dir_encoding_load:
5845 if (operand_type_check (operand_types[i.operands - 1], anymem)
5846 || operand_types[i.operands - 1].bitfield.regmem)
5847 goto check_reverse;
5848 break;
5849
5850 case dir_encoding_store:
5851 if (!operand_type_check (operand_types[i.operands - 1], anymem)
5852 && !operand_types[i.operands - 1].bitfield.regmem)
5853 goto check_reverse;
5854 break;
5855
5856 case dir_encoding_swap:
5857 goto check_reverse;
5858
5859 case dir_encoding_default:
5860 break;
5861 }
5862 /* If we want store form, we skip the current load. */
5863 if ((i.dir_encoding == dir_encoding_store
5864 || i.dir_encoding == dir_encoding_swap)
5865 && i.mem_operands == 0
5866 && t->opcode_modifier.load)
5867 continue;
5868 /* Fall through. */
5869 case 4:
5870 case 5:
5871 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5872 if (!operand_type_match (overlap0, i.types[0])
5873 || !operand_type_match (overlap1, i.types[1])
5874 || ((check_register & 3) == 3
5875 && !operand_type_register_match (i.types[0],
5876 operand_types[0],
5877 i.types[1],
5878 operand_types[1])))
5879 {
5880 /* Check if other direction is valid ... */
5881 if (!t->opcode_modifier.d)
5882 continue;
5883
5884 check_reverse:
5885 if (!(size_match & MATCH_REVERSE))
5886 continue;
5887 /* Try reversing direction of operands. */
5888 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
5889 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
5890 if (!operand_type_match (overlap0, i.types[0])
5891 || !operand_type_match (overlap1, i.types[i.operands - 1])
5892 || (check_register
5893 && !operand_type_register_match (i.types[0],
5894 operand_types[i.operands - 1],
5895 i.types[i.operands - 1],
5896 operand_types[0])))
5897 {
5898 /* Does not match either direction. */
5899 continue;
5900 }
5901 /* found_reverse_match holds which of D or FloatR
5902 we've found. */
5903 if (!t->opcode_modifier.d)
5904 found_reverse_match = 0;
5905 else if (operand_types[0].bitfield.tbyte)
5906 found_reverse_match = Opcode_FloatD;
5907 else if (operand_types[0].bitfield.xmmword
5908 || operand_types[i.operands - 1].bitfield.xmmword
5909 || operand_types[0].bitfield.regmmx
5910 || operand_types[i.operands - 1].bitfield.regmmx
5911 || is_any_vex_encoding(t))
5912 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
5913 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
5914 else
5915 found_reverse_match = Opcode_D;
5916 if (t->opcode_modifier.floatr)
5917 found_reverse_match |= Opcode_FloatR;
5918 }
5919 else
5920 {
5921 /* Found a forward 2 operand match here. */
5922 switch (t->operands)
5923 {
5924 case 5:
5925 overlap4 = operand_type_and (i.types[4],
5926 operand_types[4]);
5927 /* Fall through. */
5928 case 4:
5929 overlap3 = operand_type_and (i.types[3],
5930 operand_types[3]);
5931 /* Fall through. */
5932 case 3:
5933 overlap2 = operand_type_and (i.types[2],
5934 operand_types[2]);
5935 break;
5936 }
5937
5938 switch (t->operands)
5939 {
5940 case 5:
5941 if (!operand_type_match (overlap4, i.types[4])
5942 || !operand_type_register_match (i.types[3],
5943 operand_types[3],
5944 i.types[4],
5945 operand_types[4]))
5946 continue;
5947 /* Fall through. */
5948 case 4:
5949 if (!operand_type_match (overlap3, i.types[3])
5950 || ((check_register & 0xa) == 0xa
5951 && !operand_type_register_match (i.types[1],
5952 operand_types[1],
5953 i.types[3],
5954 operand_types[3]))
5955 || ((check_register & 0xc) == 0xc
5956 && !operand_type_register_match (i.types[2],
5957 operand_types[2],
5958 i.types[3],
5959 operand_types[3])))
5960 continue;
5961 /* Fall through. */
5962 case 3:
5963 /* Here we make use of the fact that there are no
5964 reverse match 3 operand instructions. */
5965 if (!operand_type_match (overlap2, i.types[2])
5966 || ((check_register & 5) == 5
5967 && !operand_type_register_match (i.types[0],
5968 operand_types[0],
5969 i.types[2],
5970 operand_types[2]))
5971 || ((check_register & 6) == 6
5972 && !operand_type_register_match (i.types[1],
5973 operand_types[1],
5974 i.types[2],
5975 operand_types[2])))
5976 continue;
5977 break;
5978 }
5979 }
5980 /* Found either forward/reverse 2, 3 or 4 operand match here:
5981 slip through to break. */
5982 }
5983 if (!found_cpu_match)
5984 continue;
5985
5986 /* Check if vector and VEX operands are valid. */
5987 if (check_VecOperands (t) || VEX_check_operands (t))
5988 {
5989 specific_error = i.error;
5990 continue;
5991 }
5992
5993 /* We've found a match; break out of loop. */
5994 break;
5995 }
5996
5997 if (t == current_templates->end)
5998 {
5999 /* We found no match. */
6000 const char *err_msg;
6001 switch (specific_error ? specific_error : i.error)
6002 {
6003 default:
6004 abort ();
6005 case operand_size_mismatch:
6006 err_msg = _("operand size mismatch");
6007 break;
6008 case operand_type_mismatch:
6009 err_msg = _("operand type mismatch");
6010 break;
6011 case register_type_mismatch:
6012 err_msg = _("register type mismatch");
6013 break;
6014 case number_of_operands_mismatch:
6015 err_msg = _("number of operands mismatch");
6016 break;
6017 case invalid_instruction_suffix:
6018 err_msg = _("invalid instruction suffix");
6019 break;
6020 case bad_imm4:
6021 err_msg = _("constant doesn't fit in 4 bits");
6022 break;
6023 case unsupported_with_intel_mnemonic:
6024 err_msg = _("unsupported with Intel mnemonic");
6025 break;
6026 case unsupported_syntax:
6027 err_msg = _("unsupported syntax");
6028 break;
6029 case unsupported:
6030 as_bad (_("unsupported instruction `%s'"),
6031 current_templates->start->name);
6032 return NULL;
6033 case invalid_vsib_address:
6034 err_msg = _("invalid VSIB address");
6035 break;
6036 case invalid_vector_register_set:
6037 err_msg = _("mask, index, and destination registers must be distinct");
6038 break;
6039 case unsupported_vector_index_register:
6040 err_msg = _("unsupported vector index register");
6041 break;
6042 case unsupported_broadcast:
6043 err_msg = _("unsupported broadcast");
6044 break;
6045 case broadcast_needed:
6046 err_msg = _("broadcast is needed for operand of such type");
6047 break;
6048 case unsupported_masking:
6049 err_msg = _("unsupported masking");
6050 break;
6051 case mask_not_on_destination:
6052 err_msg = _("mask not on destination operand");
6053 break;
6054 case no_default_mask:
6055 err_msg = _("default mask isn't allowed");
6056 break;
6057 case unsupported_rc_sae:
6058 err_msg = _("unsupported static rounding/sae");
6059 break;
6060 case rc_sae_operand_not_last_imm:
6061 if (intel_syntax)
6062 err_msg = _("RC/SAE operand must precede immediate operands");
6063 else
6064 err_msg = _("RC/SAE operand must follow immediate operands");
6065 break;
6066 case invalid_register_operand:
6067 err_msg = _("invalid register operand");
6068 break;
6069 }
6070 as_bad (_("%s for `%s'"), err_msg,
6071 current_templates->start->name);
6072 return NULL;
6073 }
6074
6075 if (!quiet_warnings)
6076 {
6077 if (!intel_syntax
6078 && (i.types[0].bitfield.jumpabsolute
6079 != operand_types[0].bitfield.jumpabsolute))
6080 {
6081 as_warn (_("indirect %s without `*'"), t->name);
6082 }
6083
6084 if (t->opcode_modifier.isprefix
6085 && t->opcode_modifier.ignoresize)
6086 {
6087 /* Warn them that a data or address size prefix doesn't
6088 affect assembly of the next line of code. */
6089 as_warn (_("stand-alone `%s' prefix"), t->name);
6090 }
6091 }
6092
6093 /* Copy the template we found. */
6094 i.tm = *t;
6095
6096 if (addr_prefix_disp != -1)
6097 i.tm.operand_types[addr_prefix_disp]
6098 = operand_types[addr_prefix_disp];
6099
6100 if (found_reverse_match)
6101 {
6102 /* If we found a reverse match we must alter the opcode
6103 direction bit. found_reverse_match holds bits to change
6104 (different for int & float insns). */
6105
6106 i.tm.base_opcode ^= found_reverse_match;
6107
6108 i.tm.operand_types[0] = operand_types[i.operands - 1];
6109 i.tm.operand_types[i.operands - 1] = operand_types[0];
6110 }
6111
6112 return t;
6113 }
6114
6115 static int
6116 check_string (void)
6117 {
6118 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
6119 if (i.tm.operand_types[mem_op].bitfield.esseg)
6120 {
6121 if (i.seg[0] != NULL && i.seg[0] != &es)
6122 {
6123 as_bad (_("`%s' operand %d must use `%ses' segment"),
6124 i.tm.name,
6125 mem_op + 1,
6126 register_prefix);
6127 return 0;
6128 }
6129 /* There's only ever one segment override allowed per instruction.
6130 This instruction possibly has a legal segment override on the
6131 second operand, so copy the segment to where non-string
6132 instructions store it, allowing common code. */
6133 i.seg[0] = i.seg[1];
6134 }
6135 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
6136 {
6137 if (i.seg[1] != NULL && i.seg[1] != &es)
6138 {
6139 as_bad (_("`%s' operand %d must use `%ses' segment"),
6140 i.tm.name,
6141 mem_op + 2,
6142 register_prefix);
6143 return 0;
6144 }
6145 }
6146 return 1;
6147 }
6148
6149 static int
6150 process_suffix (void)
6151 {
6152 /* If matched instruction specifies an explicit instruction mnemonic
6153 suffix, use it. */
6154 if (i.tm.opcode_modifier.size == SIZE16)
6155 i.suffix = WORD_MNEM_SUFFIX;
6156 else if (i.tm.opcode_modifier.size == SIZE32)
6157 i.suffix = LONG_MNEM_SUFFIX;
6158 else if (i.tm.opcode_modifier.size == SIZE64)
6159 i.suffix = QWORD_MNEM_SUFFIX;
6160 else if (i.reg_operands)
6161 {
6162 /* If there's no instruction mnemonic suffix we try to invent one
6163 based on register operands. */
6164 if (!i.suffix)
6165 {
6166 /* We take i.suffix from the last register operand specified,
6167 Destination register type is more significant than source
6168 register type. crc32 in SSE4.2 prefers source register
6169 type. */
6170 if (i.tm.base_opcode == 0xf20f38f0 && i.types[0].bitfield.reg)
6171 {
6172 if (i.types[0].bitfield.byte)
6173 i.suffix = BYTE_MNEM_SUFFIX;
6174 else if (i.types[0].bitfield.word)
6175 i.suffix = WORD_MNEM_SUFFIX;
6176 else if (i.types[0].bitfield.dword)
6177 i.suffix = LONG_MNEM_SUFFIX;
6178 else if (i.types[0].bitfield.qword)
6179 i.suffix = QWORD_MNEM_SUFFIX;
6180 }
6181
6182 if (!i.suffix)
6183 {
6184 int op;
6185
6186 if (i.tm.base_opcode == 0xf20f38f0)
6187 {
6188 /* We have to know the operand size for crc32. */
6189 as_bad (_("ambiguous memory operand size for `%s`"),
6190 i.tm.name);
6191 return 0;
6192 }
6193
6194 for (op = i.operands; --op >= 0;)
6195 if (!i.tm.operand_types[op].bitfield.inoutportreg
6196 && !i.tm.operand_types[op].bitfield.shiftcount)
6197 {
6198 if (!i.types[op].bitfield.reg)
6199 continue;
6200 if (i.types[op].bitfield.byte)
6201 i.suffix = BYTE_MNEM_SUFFIX;
6202 else if (i.types[op].bitfield.word)
6203 i.suffix = WORD_MNEM_SUFFIX;
6204 else if (i.types[op].bitfield.dword)
6205 i.suffix = LONG_MNEM_SUFFIX;
6206 else if (i.types[op].bitfield.qword)
6207 i.suffix = QWORD_MNEM_SUFFIX;
6208 else
6209 continue;
6210 break;
6211 }
6212 }
6213 }
6214 else if (i.suffix == BYTE_MNEM_SUFFIX)
6215 {
6216 if (intel_syntax
6217 && i.tm.opcode_modifier.ignoresize
6218 && i.tm.opcode_modifier.no_bsuf)
6219 i.suffix = 0;
6220 else if (!check_byte_reg ())
6221 return 0;
6222 }
6223 else if (i.suffix == LONG_MNEM_SUFFIX)
6224 {
6225 if (intel_syntax
6226 && i.tm.opcode_modifier.ignoresize
6227 && i.tm.opcode_modifier.no_lsuf
6228 && !i.tm.opcode_modifier.todword
6229 && !i.tm.opcode_modifier.toqword)
6230 i.suffix = 0;
6231 else if (!check_long_reg ())
6232 return 0;
6233 }
6234 else if (i.suffix == QWORD_MNEM_SUFFIX)
6235 {
6236 if (intel_syntax
6237 && i.tm.opcode_modifier.ignoresize
6238 && i.tm.opcode_modifier.no_qsuf
6239 && !i.tm.opcode_modifier.todword
6240 && !i.tm.opcode_modifier.toqword)
6241 i.suffix = 0;
6242 else if (!check_qword_reg ())
6243 return 0;
6244 }
6245 else if (i.suffix == WORD_MNEM_SUFFIX)
6246 {
6247 if (intel_syntax
6248 && i.tm.opcode_modifier.ignoresize
6249 && i.tm.opcode_modifier.no_wsuf)
6250 i.suffix = 0;
6251 else if (!check_word_reg ())
6252 return 0;
6253 }
6254 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
6255 /* Do nothing if the instruction is going to ignore the prefix. */
6256 ;
6257 else
6258 abort ();
6259 }
6260 else if (i.tm.opcode_modifier.defaultsize
6261 && !i.suffix
6262 /* exclude fldenv/frstor/fsave/fstenv */
6263 && i.tm.opcode_modifier.no_ssuf)
6264 {
6265 if (stackop_size == LONG_MNEM_SUFFIX
6266 && i.tm.base_opcode == 0xcf)
6267 {
6268 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6269 .code16gcc directive to support 16-bit mode with
6270 32-bit address. For IRET without a suffix, generate
6271 16-bit IRET (opcode 0xcf) to return from an interrupt
6272 handler. */
6273 i.suffix = WORD_MNEM_SUFFIX;
6274 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6275 }
6276 else
6277 i.suffix = stackop_size;
6278 }
6279 else if (intel_syntax
6280 && !i.suffix
6281 && (i.tm.operand_types[0].bitfield.jumpabsolute
6282 || i.tm.opcode_modifier.jumpbyte
6283 || i.tm.opcode_modifier.jumpintersegment
6284 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6285 && i.tm.extension_opcode <= 3)))
6286 {
6287 switch (flag_code)
6288 {
6289 case CODE_64BIT:
6290 if (!i.tm.opcode_modifier.no_qsuf)
6291 {
6292 i.suffix = QWORD_MNEM_SUFFIX;
6293 break;
6294 }
6295 /* Fall through. */
6296 case CODE_32BIT:
6297 if (!i.tm.opcode_modifier.no_lsuf)
6298 i.suffix = LONG_MNEM_SUFFIX;
6299 break;
6300 case CODE_16BIT:
6301 if (!i.tm.opcode_modifier.no_wsuf)
6302 i.suffix = WORD_MNEM_SUFFIX;
6303 break;
6304 }
6305 }
6306
6307 if (!i.suffix)
6308 {
6309 if (!intel_syntax)
6310 {
6311 if (i.tm.opcode_modifier.w)
6312 {
6313 as_bad (_("no instruction mnemonic suffix given and "
6314 "no register operands; can't size instruction"));
6315 return 0;
6316 }
6317 }
6318 else
6319 {
6320 unsigned int suffixes;
6321
6322 suffixes = !i.tm.opcode_modifier.no_bsuf;
6323 if (!i.tm.opcode_modifier.no_wsuf)
6324 suffixes |= 1 << 1;
6325 if (!i.tm.opcode_modifier.no_lsuf)
6326 suffixes |= 1 << 2;
6327 if (!i.tm.opcode_modifier.no_ldsuf)
6328 suffixes |= 1 << 3;
6329 if (!i.tm.opcode_modifier.no_ssuf)
6330 suffixes |= 1 << 4;
6331 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6332 suffixes |= 1 << 5;
6333
6334 /* There are more than suffix matches. */
6335 if (i.tm.opcode_modifier.w
6336 || ((suffixes & (suffixes - 1))
6337 && !i.tm.opcode_modifier.defaultsize
6338 && !i.tm.opcode_modifier.ignoresize))
6339 {
6340 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6341 return 0;
6342 }
6343 }
6344 }
6345
6346 /* Change the opcode based on the operand size given by i.suffix. */
6347 switch (i.suffix)
6348 {
6349 /* Size floating point instruction. */
6350 case LONG_MNEM_SUFFIX:
6351 if (i.tm.opcode_modifier.floatmf)
6352 {
6353 i.tm.base_opcode ^= 4;
6354 break;
6355 }
6356 /* fall through */
6357 case WORD_MNEM_SUFFIX:
6358 case QWORD_MNEM_SUFFIX:
6359 /* It's not a byte, select word/dword operation. */
6360 if (i.tm.opcode_modifier.w)
6361 {
6362 if (i.tm.opcode_modifier.shortform)
6363 i.tm.base_opcode |= 8;
6364 else
6365 i.tm.base_opcode |= 1;
6366 }
6367 /* fall through */
6368 case SHORT_MNEM_SUFFIX:
6369 /* Now select between word & dword operations via the operand
6370 size prefix, except for instructions that will ignore this
6371 prefix anyway. */
6372 if (i.reg_operands > 0
6373 && i.types[0].bitfield.reg
6374 && i.tm.opcode_modifier.addrprefixopreg
6375 && (i.tm.opcode_modifier.immext
6376 || i.operands == 1))
6377 {
6378 /* The address size override prefix changes the size of the
6379 first operand. */
6380 if ((flag_code == CODE_32BIT
6381 && i.op[0].regs->reg_type.bitfield.word)
6382 || (flag_code != CODE_32BIT
6383 && i.op[0].regs->reg_type.bitfield.dword))
6384 if (!add_prefix (ADDR_PREFIX_OPCODE))
6385 return 0;
6386 }
6387 else if (i.suffix != QWORD_MNEM_SUFFIX
6388 && !i.tm.opcode_modifier.ignoresize
6389 && !i.tm.opcode_modifier.floatmf
6390 && !is_any_vex_encoding (&i.tm)
6391 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6392 || (flag_code == CODE_64BIT
6393 && i.tm.opcode_modifier.jumpbyte)))
6394 {
6395 unsigned int prefix = DATA_PREFIX_OPCODE;
6396
6397 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
6398 prefix = ADDR_PREFIX_OPCODE;
6399
6400 if (!add_prefix (prefix))
6401 return 0;
6402 }
6403
6404 /* Set mode64 for an operand. */
6405 if (i.suffix == QWORD_MNEM_SUFFIX
6406 && flag_code == CODE_64BIT
6407 && !i.tm.opcode_modifier.norex64
6408 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6409 need rex64. */
6410 && ! (i.operands == 2
6411 && i.tm.base_opcode == 0x90
6412 && i.tm.extension_opcode == None
6413 && i.types[0].bitfield.acc && i.types[0].bitfield.qword
6414 && i.types[1].bitfield.acc && i.types[1].bitfield.qword))
6415 i.rex |= REX_W;
6416
6417 break;
6418 }
6419
6420 if (i.reg_operands != 0
6421 && i.operands > 1
6422 && i.tm.opcode_modifier.addrprefixopreg
6423 && !i.tm.opcode_modifier.immext)
6424 {
6425 /* Check invalid register operand when the address size override
6426 prefix changes the size of register operands. */
6427 unsigned int op;
6428 enum { need_word, need_dword, need_qword } need;
6429
6430 if (flag_code == CODE_32BIT)
6431 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6432 else
6433 {
6434 if (i.prefix[ADDR_PREFIX])
6435 need = need_dword;
6436 else
6437 need = flag_code == CODE_64BIT ? need_qword : need_word;
6438 }
6439
6440 for (op = 0; op < i.operands; op++)
6441 if (i.types[op].bitfield.reg
6442 && ((need == need_word
6443 && !i.op[op].regs->reg_type.bitfield.word)
6444 || (need == need_dword
6445 && !i.op[op].regs->reg_type.bitfield.dword)
6446 || (need == need_qword
6447 && !i.op[op].regs->reg_type.bitfield.qword)))
6448 {
6449 as_bad (_("invalid register operand size for `%s'"),
6450 i.tm.name);
6451 return 0;
6452 }
6453 }
6454
6455 return 1;
6456 }
6457
6458 static int
6459 check_byte_reg (void)
6460 {
6461 int op;
6462
6463 for (op = i.operands; --op >= 0;)
6464 {
6465 /* Skip non-register operands. */
6466 if (!i.types[op].bitfield.reg)
6467 continue;
6468
6469 /* If this is an eight bit register, it's OK. If it's the 16 or
6470 32 bit version of an eight bit register, we will just use the
6471 low portion, and that's OK too. */
6472 if (i.types[op].bitfield.byte)
6473 continue;
6474
6475 /* I/O port address operands are OK too. */
6476 if (i.tm.operand_types[op].bitfield.inoutportreg)
6477 continue;
6478
6479 /* crc32 doesn't generate this warning. */
6480 if (i.tm.base_opcode == 0xf20f38f0)
6481 continue;
6482
6483 if ((i.types[op].bitfield.word
6484 || i.types[op].bitfield.dword
6485 || i.types[op].bitfield.qword)
6486 && i.op[op].regs->reg_num < 4
6487 /* Prohibit these changes in 64bit mode, since the lowering
6488 would be more complicated. */
6489 && flag_code != CODE_64BIT)
6490 {
6491 #if REGISTER_WARNINGS
6492 if (!quiet_warnings)
6493 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6494 register_prefix,
6495 (i.op[op].regs + (i.types[op].bitfield.word
6496 ? REGNAM_AL - REGNAM_AX
6497 : REGNAM_AL - REGNAM_EAX))->reg_name,
6498 register_prefix,
6499 i.op[op].regs->reg_name,
6500 i.suffix);
6501 #endif
6502 continue;
6503 }
6504 /* Any other register is bad. */
6505 if (i.types[op].bitfield.reg
6506 || i.types[op].bitfield.regmmx
6507 || i.types[op].bitfield.regsimd
6508 || i.types[op].bitfield.sreg2
6509 || i.types[op].bitfield.sreg3
6510 || i.types[op].bitfield.control
6511 || i.types[op].bitfield.debug
6512 || i.types[op].bitfield.test)
6513 {
6514 as_bad (_("`%s%s' not allowed with `%s%c'"),
6515 register_prefix,
6516 i.op[op].regs->reg_name,
6517 i.tm.name,
6518 i.suffix);
6519 return 0;
6520 }
6521 }
6522 return 1;
6523 }
6524
6525 static int
6526 check_long_reg (void)
6527 {
6528 int op;
6529
6530 for (op = i.operands; --op >= 0;)
6531 /* Skip non-register operands. */
6532 if (!i.types[op].bitfield.reg)
6533 continue;
6534 /* Reject eight bit registers, except where the template requires
6535 them. (eg. movzb) */
6536 else if (i.types[op].bitfield.byte
6537 && (i.tm.operand_types[op].bitfield.reg
6538 || i.tm.operand_types[op].bitfield.acc)
6539 && (i.tm.operand_types[op].bitfield.word
6540 || i.tm.operand_types[op].bitfield.dword))
6541 {
6542 as_bad (_("`%s%s' not allowed with `%s%c'"),
6543 register_prefix,
6544 i.op[op].regs->reg_name,
6545 i.tm.name,
6546 i.suffix);
6547 return 0;
6548 }
6549 /* Warn if the e prefix on a general reg is missing. */
6550 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6551 && i.types[op].bitfield.word
6552 && (i.tm.operand_types[op].bitfield.reg
6553 || i.tm.operand_types[op].bitfield.acc)
6554 && i.tm.operand_types[op].bitfield.dword)
6555 {
6556 /* Prohibit these changes in the 64bit mode, since the
6557 lowering is more complicated. */
6558 if (flag_code == CODE_64BIT)
6559 {
6560 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6561 register_prefix, i.op[op].regs->reg_name,
6562 i.suffix);
6563 return 0;
6564 }
6565 #if REGISTER_WARNINGS
6566 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6567 register_prefix,
6568 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6569 register_prefix, i.op[op].regs->reg_name, i.suffix);
6570 #endif
6571 }
6572 /* Warn if the r prefix on a general reg is present. */
6573 else if (i.types[op].bitfield.qword
6574 && (i.tm.operand_types[op].bitfield.reg
6575 || i.tm.operand_types[op].bitfield.acc)
6576 && i.tm.operand_types[op].bitfield.dword)
6577 {
6578 if (intel_syntax
6579 && i.tm.opcode_modifier.toqword
6580 && !i.types[0].bitfield.regsimd)
6581 {
6582 /* Convert to QWORD. We want REX byte. */
6583 i.suffix = QWORD_MNEM_SUFFIX;
6584 }
6585 else
6586 {
6587 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6588 register_prefix, i.op[op].regs->reg_name,
6589 i.suffix);
6590 return 0;
6591 }
6592 }
6593 return 1;
6594 }
6595
6596 static int
6597 check_qword_reg (void)
6598 {
6599 int op;
6600
6601 for (op = i.operands; --op >= 0; )
6602 /* Skip non-register operands. */
6603 if (!i.types[op].bitfield.reg)
6604 continue;
6605 /* Reject eight bit registers, except where the template requires
6606 them. (eg. movzb) */
6607 else if (i.types[op].bitfield.byte
6608 && (i.tm.operand_types[op].bitfield.reg
6609 || i.tm.operand_types[op].bitfield.acc)
6610 && (i.tm.operand_types[op].bitfield.word
6611 || i.tm.operand_types[op].bitfield.dword))
6612 {
6613 as_bad (_("`%s%s' not allowed with `%s%c'"),
6614 register_prefix,
6615 i.op[op].regs->reg_name,
6616 i.tm.name,
6617 i.suffix);
6618 return 0;
6619 }
6620 /* Warn if the r prefix on a general reg is missing. */
6621 else if ((i.types[op].bitfield.word
6622 || i.types[op].bitfield.dword)
6623 && (i.tm.operand_types[op].bitfield.reg
6624 || i.tm.operand_types[op].bitfield.acc)
6625 && i.tm.operand_types[op].bitfield.qword)
6626 {
6627 /* Prohibit these changes in the 64bit mode, since the
6628 lowering is more complicated. */
6629 if (intel_syntax
6630 && i.tm.opcode_modifier.todword
6631 && !i.types[0].bitfield.regsimd)
6632 {
6633 /* Convert to DWORD. We don't want REX byte. */
6634 i.suffix = LONG_MNEM_SUFFIX;
6635 }
6636 else
6637 {
6638 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6639 register_prefix, i.op[op].regs->reg_name,
6640 i.suffix);
6641 return 0;
6642 }
6643 }
6644 return 1;
6645 }
6646
6647 static int
6648 check_word_reg (void)
6649 {
6650 int op;
6651 for (op = i.operands; --op >= 0;)
6652 /* Skip non-register operands. */
6653 if (!i.types[op].bitfield.reg)
6654 continue;
6655 /* Reject eight bit registers, except where the template requires
6656 them. (eg. movzb) */
6657 else if (i.types[op].bitfield.byte
6658 && (i.tm.operand_types[op].bitfield.reg
6659 || i.tm.operand_types[op].bitfield.acc)
6660 && (i.tm.operand_types[op].bitfield.word
6661 || i.tm.operand_types[op].bitfield.dword))
6662 {
6663 as_bad (_("`%s%s' not allowed with `%s%c'"),
6664 register_prefix,
6665 i.op[op].regs->reg_name,
6666 i.tm.name,
6667 i.suffix);
6668 return 0;
6669 }
6670 /* Warn if the e or r prefix on a general reg is present. */
6671 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6672 && (i.types[op].bitfield.dword
6673 || i.types[op].bitfield.qword)
6674 && (i.tm.operand_types[op].bitfield.reg
6675 || i.tm.operand_types[op].bitfield.acc)
6676 && i.tm.operand_types[op].bitfield.word)
6677 {
6678 /* Prohibit these changes in the 64bit mode, since the
6679 lowering is more complicated. */
6680 if (flag_code == CODE_64BIT)
6681 {
6682 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6683 register_prefix, i.op[op].regs->reg_name,
6684 i.suffix);
6685 return 0;
6686 }
6687 #if REGISTER_WARNINGS
6688 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6689 register_prefix,
6690 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6691 register_prefix, i.op[op].regs->reg_name, i.suffix);
6692 #endif
6693 }
6694 return 1;
6695 }
6696
6697 static int
6698 update_imm (unsigned int j)
6699 {
6700 i386_operand_type overlap = i.types[j];
6701 if ((overlap.bitfield.imm8
6702 || overlap.bitfield.imm8s
6703 || overlap.bitfield.imm16
6704 || overlap.bitfield.imm32
6705 || overlap.bitfield.imm32s
6706 || overlap.bitfield.imm64)
6707 && !operand_type_equal (&overlap, &imm8)
6708 && !operand_type_equal (&overlap, &imm8s)
6709 && !operand_type_equal (&overlap, &imm16)
6710 && !operand_type_equal (&overlap, &imm32)
6711 && !operand_type_equal (&overlap, &imm32s)
6712 && !operand_type_equal (&overlap, &imm64))
6713 {
6714 if (i.suffix)
6715 {
6716 i386_operand_type temp;
6717
6718 operand_type_set (&temp, 0);
6719 if (i.suffix == BYTE_MNEM_SUFFIX)
6720 {
6721 temp.bitfield.imm8 = overlap.bitfield.imm8;
6722 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6723 }
6724 else if (i.suffix == WORD_MNEM_SUFFIX)
6725 temp.bitfield.imm16 = overlap.bitfield.imm16;
6726 else if (i.suffix == QWORD_MNEM_SUFFIX)
6727 {
6728 temp.bitfield.imm64 = overlap.bitfield.imm64;
6729 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6730 }
6731 else
6732 temp.bitfield.imm32 = overlap.bitfield.imm32;
6733 overlap = temp;
6734 }
6735 else if (operand_type_equal (&overlap, &imm16_32_32s)
6736 || operand_type_equal (&overlap, &imm16_32)
6737 || operand_type_equal (&overlap, &imm16_32s))
6738 {
6739 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6740 overlap = imm16;
6741 else
6742 overlap = imm32s;
6743 }
6744 if (!operand_type_equal (&overlap, &imm8)
6745 && !operand_type_equal (&overlap, &imm8s)
6746 && !operand_type_equal (&overlap, &imm16)
6747 && !operand_type_equal (&overlap, &imm32)
6748 && !operand_type_equal (&overlap, &imm32s)
6749 && !operand_type_equal (&overlap, &imm64))
6750 {
6751 as_bad (_("no instruction mnemonic suffix given; "
6752 "can't determine immediate size"));
6753 return 0;
6754 }
6755 }
6756 i.types[j] = overlap;
6757
6758 return 1;
6759 }
6760
6761 static int
6762 finalize_imm (void)
6763 {
6764 unsigned int j, n;
6765
6766 /* Update the first 2 immediate operands. */
6767 n = i.operands > 2 ? 2 : i.operands;
6768 if (n)
6769 {
6770 for (j = 0; j < n; j++)
6771 if (update_imm (j) == 0)
6772 return 0;
6773
6774 /* The 3rd operand can't be immediate operand. */
6775 gas_assert (operand_type_check (i.types[2], imm) == 0);
6776 }
6777
6778 return 1;
6779 }
6780
6781 static int
6782 process_operands (void)
6783 {
6784 /* Default segment register this instruction will use for memory
6785 accesses. 0 means unknown. This is only for optimizing out
6786 unnecessary segment overrides. */
6787 const seg_entry *default_seg = 0;
6788
6789 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6790 {
6791 unsigned int dupl = i.operands;
6792 unsigned int dest = dupl - 1;
6793 unsigned int j;
6794
6795 /* The destination must be an xmm register. */
6796 gas_assert (i.reg_operands
6797 && MAX_OPERANDS > dupl
6798 && operand_type_equal (&i.types[dest], &regxmm));
6799
6800 if (i.tm.operand_types[0].bitfield.acc
6801 && i.tm.operand_types[0].bitfield.xmmword)
6802 {
6803 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6804 {
6805 /* Keep xmm0 for instructions with VEX prefix and 3
6806 sources. */
6807 i.tm.operand_types[0].bitfield.acc = 0;
6808 i.tm.operand_types[0].bitfield.regsimd = 1;
6809 goto duplicate;
6810 }
6811 else
6812 {
6813 /* We remove the first xmm0 and keep the number of
6814 operands unchanged, which in fact duplicates the
6815 destination. */
6816 for (j = 1; j < i.operands; j++)
6817 {
6818 i.op[j - 1] = i.op[j];
6819 i.types[j - 1] = i.types[j];
6820 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6821 }
6822 }
6823 }
6824 else if (i.tm.opcode_modifier.implicit1stxmm0)
6825 {
6826 gas_assert ((MAX_OPERANDS - 1) > dupl
6827 && (i.tm.opcode_modifier.vexsources
6828 == VEX3SOURCES));
6829
6830 /* Add the implicit xmm0 for instructions with VEX prefix
6831 and 3 sources. */
6832 for (j = i.operands; j > 0; j--)
6833 {
6834 i.op[j] = i.op[j - 1];
6835 i.types[j] = i.types[j - 1];
6836 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6837 }
6838 i.op[0].regs
6839 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6840 i.types[0] = regxmm;
6841 i.tm.operand_types[0] = regxmm;
6842
6843 i.operands += 2;
6844 i.reg_operands += 2;
6845 i.tm.operands += 2;
6846
6847 dupl++;
6848 dest++;
6849 i.op[dupl] = i.op[dest];
6850 i.types[dupl] = i.types[dest];
6851 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6852 }
6853 else
6854 {
6855 duplicate:
6856 i.operands++;
6857 i.reg_operands++;
6858 i.tm.operands++;
6859
6860 i.op[dupl] = i.op[dest];
6861 i.types[dupl] = i.types[dest];
6862 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6863 }
6864
6865 if (i.tm.opcode_modifier.immext)
6866 process_immext ();
6867 }
6868 else if (i.tm.operand_types[0].bitfield.acc
6869 && i.tm.operand_types[0].bitfield.xmmword)
6870 {
6871 unsigned int j;
6872
6873 for (j = 1; j < i.operands; j++)
6874 {
6875 i.op[j - 1] = i.op[j];
6876 i.types[j - 1] = i.types[j];
6877
6878 /* We need to adjust fields in i.tm since they are used by
6879 build_modrm_byte. */
6880 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6881 }
6882
6883 i.operands--;
6884 i.reg_operands--;
6885 i.tm.operands--;
6886 }
6887 else if (i.tm.opcode_modifier.implicitquadgroup)
6888 {
6889 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6890
6891 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6892 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
6893 regnum = register_number (i.op[1].regs);
6894 first_reg_in_group = regnum & ~3;
6895 last_reg_in_group = first_reg_in_group + 3;
6896 if (regnum != first_reg_in_group)
6897 as_warn (_("source register `%s%s' implicitly denotes"
6898 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6899 register_prefix, i.op[1].regs->reg_name,
6900 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6901 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6902 i.tm.name);
6903 }
6904 else if (i.tm.opcode_modifier.regkludge)
6905 {
6906 /* The imul $imm, %reg instruction is converted into
6907 imul $imm, %reg, %reg, and the clr %reg instruction
6908 is converted into xor %reg, %reg. */
6909
6910 unsigned int first_reg_op;
6911
6912 if (operand_type_check (i.types[0], reg))
6913 first_reg_op = 0;
6914 else
6915 first_reg_op = 1;
6916 /* Pretend we saw the extra register operand. */
6917 gas_assert (i.reg_operands == 1
6918 && i.op[first_reg_op + 1].regs == 0);
6919 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6920 i.types[first_reg_op + 1] = i.types[first_reg_op];
6921 i.operands++;
6922 i.reg_operands++;
6923 }
6924
6925 if (i.tm.opcode_modifier.shortform)
6926 {
6927 if (i.types[0].bitfield.sreg2
6928 || i.types[0].bitfield.sreg3)
6929 {
6930 if (i.tm.base_opcode == POP_SEG_SHORT
6931 && i.op[0].regs->reg_num == 1)
6932 {
6933 as_bad (_("you can't `pop %scs'"), register_prefix);
6934 return 0;
6935 }
6936 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6937 if ((i.op[0].regs->reg_flags & RegRex) != 0)
6938 i.rex |= REX_B;
6939 }
6940 else
6941 {
6942 /* The register or float register operand is in operand
6943 0 or 1. */
6944 unsigned int op;
6945
6946 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
6947 || operand_type_check (i.types[0], reg))
6948 op = 0;
6949 else
6950 op = 1;
6951 /* Register goes in low 3 bits of opcode. */
6952 i.tm.base_opcode |= i.op[op].regs->reg_num;
6953 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6954 i.rex |= REX_B;
6955 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6956 {
6957 /* Warn about some common errors, but press on regardless.
6958 The first case can be generated by gcc (<= 2.8.1). */
6959 if (i.operands == 2)
6960 {
6961 /* Reversed arguments on faddp, fsubp, etc. */
6962 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6963 register_prefix, i.op[!intel_syntax].regs->reg_name,
6964 register_prefix, i.op[intel_syntax].regs->reg_name);
6965 }
6966 else
6967 {
6968 /* Extraneous `l' suffix on fp insn. */
6969 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6970 register_prefix, i.op[0].regs->reg_name);
6971 }
6972 }
6973 }
6974 }
6975 else if (i.tm.opcode_modifier.modrm)
6976 {
6977 /* The opcode is completed (modulo i.tm.extension_opcode which
6978 must be put into the modrm byte). Now, we make the modrm and
6979 index base bytes based on all the info we've collected. */
6980
6981 default_seg = build_modrm_byte ();
6982 }
6983 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6984 {
6985 default_seg = &ds;
6986 }
6987 else if (i.tm.opcode_modifier.isstring)
6988 {
6989 /* For the string instructions that allow a segment override
6990 on one of their operands, the default segment is ds. */
6991 default_seg = &ds;
6992 }
6993
6994 if (i.tm.base_opcode == 0x8d /* lea */
6995 && i.seg[0]
6996 && !quiet_warnings)
6997 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6998
6999 /* If a segment was explicitly specified, and the specified segment
7000 is not the default, use an opcode prefix to select it. If we
7001 never figured out what the default segment is, then default_seg
7002 will be zero at this point, and the specified segment prefix will
7003 always be used. */
7004 if ((i.seg[0]) && (i.seg[0] != default_seg))
7005 {
7006 if (!add_prefix (i.seg[0]->seg_prefix))
7007 return 0;
7008 }
7009 return 1;
7010 }
7011
7012 static const seg_entry *
7013 build_modrm_byte (void)
7014 {
7015 const seg_entry *default_seg = 0;
7016 unsigned int source, dest;
7017 int vex_3_sources;
7018
7019 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
7020 if (vex_3_sources)
7021 {
7022 unsigned int nds, reg_slot;
7023 expressionS *exp;
7024
7025 dest = i.operands - 1;
7026 nds = dest - 1;
7027
7028 /* There are 2 kinds of instructions:
7029 1. 5 operands: 4 register operands or 3 register operands
7030 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
7031 VexW0 or VexW1. The destination must be either XMM, YMM or
7032 ZMM register.
7033 2. 4 operands: 4 register operands or 3 register operands
7034 plus 1 memory operand, with VexXDS. */
7035 gas_assert ((i.reg_operands == 4
7036 || (i.reg_operands == 3 && i.mem_operands == 1))
7037 && i.tm.opcode_modifier.vexvvvv == VEXXDS
7038 && i.tm.opcode_modifier.vexw
7039 && i.tm.operand_types[dest].bitfield.regsimd);
7040
7041 /* If VexW1 is set, the first non-immediate operand is the source and
7042 the second non-immediate one is encoded in the immediate operand. */
7043 if (i.tm.opcode_modifier.vexw == VEXW1)
7044 {
7045 source = i.imm_operands;
7046 reg_slot = i.imm_operands + 1;
7047 }
7048 else
7049 {
7050 source = i.imm_operands + 1;
7051 reg_slot = i.imm_operands;
7052 }
7053
7054 if (i.imm_operands == 0)
7055 {
7056 /* When there is no immediate operand, generate an 8bit
7057 immediate operand to encode the first operand. */
7058 exp = &im_expressions[i.imm_operands++];
7059 i.op[i.operands].imms = exp;
7060 i.types[i.operands] = imm8;
7061 i.operands++;
7062
7063 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
7064 exp->X_op = O_constant;
7065 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
7066 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7067 }
7068 else
7069 {
7070 unsigned int imm_slot;
7071
7072 gas_assert (i.imm_operands == 1 && i.types[0].bitfield.vec_imm4);
7073
7074 if (i.tm.opcode_modifier.immext)
7075 {
7076 /* When ImmExt is set, the immediate byte is the last
7077 operand. */
7078 imm_slot = i.operands - 1;
7079 source--;
7080 reg_slot--;
7081 }
7082 else
7083 {
7084 imm_slot = 0;
7085
7086 /* Turn on Imm8 so that output_imm will generate it. */
7087 i.types[imm_slot].bitfield.imm8 = 1;
7088 }
7089
7090 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
7091 i.op[imm_slot].imms->X_add_number
7092 |= register_number (i.op[reg_slot].regs) << 4;
7093 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7094 }
7095
7096 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
7097 i.vex.register_specifier = i.op[nds].regs;
7098 }
7099 else
7100 source = dest = 0;
7101
7102 /* i.reg_operands MUST be the number of real register operands;
7103 implicit registers do not count. If there are 3 register
7104 operands, it must be a instruction with VexNDS. For a
7105 instruction with VexNDD, the destination register is encoded
7106 in VEX prefix. If there are 4 register operands, it must be
7107 a instruction with VEX prefix and 3 sources. */
7108 if (i.mem_operands == 0
7109 && ((i.reg_operands == 2
7110 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7111 || (i.reg_operands == 3
7112 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7113 || (i.reg_operands == 4 && vex_3_sources)))
7114 {
7115 switch (i.operands)
7116 {
7117 case 2:
7118 source = 0;
7119 break;
7120 case 3:
7121 /* When there are 3 operands, one of them may be immediate,
7122 which may be the first or the last operand. Otherwise,
7123 the first operand must be shift count register (cl) or it
7124 is an instruction with VexNDS. */
7125 gas_assert (i.imm_operands == 1
7126 || (i.imm_operands == 0
7127 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7128 || i.types[0].bitfield.shiftcount)));
7129 if (operand_type_check (i.types[0], imm)
7130 || i.types[0].bitfield.shiftcount)
7131 source = 1;
7132 else
7133 source = 0;
7134 break;
7135 case 4:
7136 /* When there are 4 operands, the first two must be 8bit
7137 immediate operands. The source operand will be the 3rd
7138 one.
7139
7140 For instructions with VexNDS, if the first operand
7141 an imm8, the source operand is the 2nd one. If the last
7142 operand is imm8, the source operand is the first one. */
7143 gas_assert ((i.imm_operands == 2
7144 && i.types[0].bitfield.imm8
7145 && i.types[1].bitfield.imm8)
7146 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7147 && i.imm_operands == 1
7148 && (i.types[0].bitfield.imm8
7149 || i.types[i.operands - 1].bitfield.imm8
7150 || i.rounding)));
7151 if (i.imm_operands == 2)
7152 source = 2;
7153 else
7154 {
7155 if (i.types[0].bitfield.imm8)
7156 source = 1;
7157 else
7158 source = 0;
7159 }
7160 break;
7161 case 5:
7162 if (is_evex_encoding (&i.tm))
7163 {
7164 /* For EVEX instructions, when there are 5 operands, the
7165 first one must be immediate operand. If the second one
7166 is immediate operand, the source operand is the 3th
7167 one. If the last one is immediate operand, the source
7168 operand is the 2nd one. */
7169 gas_assert (i.imm_operands == 2
7170 && i.tm.opcode_modifier.sae
7171 && operand_type_check (i.types[0], imm));
7172 if (operand_type_check (i.types[1], imm))
7173 source = 2;
7174 else if (operand_type_check (i.types[4], imm))
7175 source = 1;
7176 else
7177 abort ();
7178 }
7179 break;
7180 default:
7181 abort ();
7182 }
7183
7184 if (!vex_3_sources)
7185 {
7186 dest = source + 1;
7187
7188 /* RC/SAE operand could be between DEST and SRC. That happens
7189 when one operand is GPR and the other one is XMM/YMM/ZMM
7190 register. */
7191 if (i.rounding && i.rounding->operand == (int) dest)
7192 dest++;
7193
7194 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7195 {
7196 /* For instructions with VexNDS, the register-only source
7197 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7198 register. It is encoded in VEX prefix. We need to
7199 clear RegMem bit before calling operand_type_equal. */
7200
7201 i386_operand_type op;
7202 unsigned int vvvv;
7203
7204 /* Check register-only source operand when two source
7205 operands are swapped. */
7206 if (!i.tm.operand_types[source].bitfield.baseindex
7207 && i.tm.operand_types[dest].bitfield.baseindex)
7208 {
7209 vvvv = source;
7210 source = dest;
7211 }
7212 else
7213 vvvv = dest;
7214
7215 op = i.tm.operand_types[vvvv];
7216 op.bitfield.regmem = 0;
7217 if ((dest + 1) >= i.operands
7218 || ((!op.bitfield.reg
7219 || (!op.bitfield.dword && !op.bitfield.qword))
7220 && !op.bitfield.regsimd
7221 && !operand_type_equal (&op, &regmask)))
7222 abort ();
7223 i.vex.register_specifier = i.op[vvvv].regs;
7224 dest++;
7225 }
7226 }
7227
7228 i.rm.mode = 3;
7229 /* One of the register operands will be encoded in the i.tm.reg
7230 field, the other in the combined i.tm.mode and i.tm.regmem
7231 fields. If no form of this instruction supports a memory
7232 destination operand, then we assume the source operand may
7233 sometimes be a memory operand and so we need to store the
7234 destination in the i.rm.reg field. */
7235 if (!i.tm.operand_types[dest].bitfield.regmem
7236 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7237 {
7238 i.rm.reg = i.op[dest].regs->reg_num;
7239 i.rm.regmem = i.op[source].regs->reg_num;
7240 if (i.op[dest].regs->reg_type.bitfield.regmmx
7241 || i.op[source].regs->reg_type.bitfield.regmmx)
7242 i.has_regmmx = TRUE;
7243 else if (i.op[dest].regs->reg_type.bitfield.regsimd
7244 || i.op[source].regs->reg_type.bitfield.regsimd)
7245 {
7246 if (i.types[dest].bitfield.zmmword
7247 || i.types[source].bitfield.zmmword)
7248 i.has_regzmm = TRUE;
7249 else if (i.types[dest].bitfield.ymmword
7250 || i.types[source].bitfield.ymmword)
7251 i.has_regymm = TRUE;
7252 else
7253 i.has_regxmm = TRUE;
7254 }
7255 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7256 i.rex |= REX_R;
7257 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7258 i.vrex |= REX_R;
7259 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7260 i.rex |= REX_B;
7261 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7262 i.vrex |= REX_B;
7263 }
7264 else
7265 {
7266 i.rm.reg = i.op[source].regs->reg_num;
7267 i.rm.regmem = i.op[dest].regs->reg_num;
7268 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7269 i.rex |= REX_B;
7270 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7271 i.vrex |= REX_B;
7272 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7273 i.rex |= REX_R;
7274 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7275 i.vrex |= REX_R;
7276 }
7277 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7278 {
7279 if (!i.types[i.tm.operand_types[0].bitfield.regmem].bitfield.control)
7280 abort ();
7281 i.rex &= ~REX_R;
7282 add_prefix (LOCK_PREFIX_OPCODE);
7283 }
7284 }
7285 else
7286 { /* If it's not 2 reg operands... */
7287 unsigned int mem;
7288
7289 if (i.mem_operands)
7290 {
7291 unsigned int fake_zero_displacement = 0;
7292 unsigned int op;
7293
7294 for (op = 0; op < i.operands; op++)
7295 if (operand_type_check (i.types[op], anymem))
7296 break;
7297 gas_assert (op < i.operands);
7298
7299 if (i.tm.opcode_modifier.vecsib)
7300 {
7301 if (i.index_reg->reg_num == RegIZ)
7302 abort ();
7303
7304 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7305 if (!i.base_reg)
7306 {
7307 i.sib.base = NO_BASE_REGISTER;
7308 i.sib.scale = i.log2_scale_factor;
7309 i.types[op].bitfield.disp8 = 0;
7310 i.types[op].bitfield.disp16 = 0;
7311 i.types[op].bitfield.disp64 = 0;
7312 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7313 {
7314 /* Must be 32 bit */
7315 i.types[op].bitfield.disp32 = 1;
7316 i.types[op].bitfield.disp32s = 0;
7317 }
7318 else
7319 {
7320 i.types[op].bitfield.disp32 = 0;
7321 i.types[op].bitfield.disp32s = 1;
7322 }
7323 }
7324 i.sib.index = i.index_reg->reg_num;
7325 if ((i.index_reg->reg_flags & RegRex) != 0)
7326 i.rex |= REX_X;
7327 if ((i.index_reg->reg_flags & RegVRex) != 0)
7328 i.vrex |= REX_X;
7329 }
7330
7331 default_seg = &ds;
7332
7333 if (i.base_reg == 0)
7334 {
7335 i.rm.mode = 0;
7336 if (!i.disp_operands)
7337 fake_zero_displacement = 1;
7338 if (i.index_reg == 0)
7339 {
7340 i386_operand_type newdisp;
7341
7342 gas_assert (!i.tm.opcode_modifier.vecsib);
7343 /* Operand is just <disp> */
7344 if (flag_code == CODE_64BIT)
7345 {
7346 /* 64bit mode overwrites the 32bit absolute
7347 addressing by RIP relative addressing and
7348 absolute addressing is encoded by one of the
7349 redundant SIB forms. */
7350 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7351 i.sib.base = NO_BASE_REGISTER;
7352 i.sib.index = NO_INDEX_REGISTER;
7353 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7354 }
7355 else if ((flag_code == CODE_16BIT)
7356 ^ (i.prefix[ADDR_PREFIX] != 0))
7357 {
7358 i.rm.regmem = NO_BASE_REGISTER_16;
7359 newdisp = disp16;
7360 }
7361 else
7362 {
7363 i.rm.regmem = NO_BASE_REGISTER;
7364 newdisp = disp32;
7365 }
7366 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7367 i.types[op] = operand_type_or (i.types[op], newdisp);
7368 }
7369 else if (!i.tm.opcode_modifier.vecsib)
7370 {
7371 /* !i.base_reg && i.index_reg */
7372 if (i.index_reg->reg_num == RegIZ)
7373 i.sib.index = NO_INDEX_REGISTER;
7374 else
7375 i.sib.index = i.index_reg->reg_num;
7376 i.sib.base = NO_BASE_REGISTER;
7377 i.sib.scale = i.log2_scale_factor;
7378 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7379 i.types[op].bitfield.disp8 = 0;
7380 i.types[op].bitfield.disp16 = 0;
7381 i.types[op].bitfield.disp64 = 0;
7382 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7383 {
7384 /* Must be 32 bit */
7385 i.types[op].bitfield.disp32 = 1;
7386 i.types[op].bitfield.disp32s = 0;
7387 }
7388 else
7389 {
7390 i.types[op].bitfield.disp32 = 0;
7391 i.types[op].bitfield.disp32s = 1;
7392 }
7393 if ((i.index_reg->reg_flags & RegRex) != 0)
7394 i.rex |= REX_X;
7395 }
7396 }
7397 /* RIP addressing for 64bit mode. */
7398 else if (i.base_reg->reg_num == RegIP)
7399 {
7400 gas_assert (!i.tm.opcode_modifier.vecsib);
7401 i.rm.regmem = NO_BASE_REGISTER;
7402 i.types[op].bitfield.disp8 = 0;
7403 i.types[op].bitfield.disp16 = 0;
7404 i.types[op].bitfield.disp32 = 0;
7405 i.types[op].bitfield.disp32s = 1;
7406 i.types[op].bitfield.disp64 = 0;
7407 i.flags[op] |= Operand_PCrel;
7408 if (! i.disp_operands)
7409 fake_zero_displacement = 1;
7410 }
7411 else if (i.base_reg->reg_type.bitfield.word)
7412 {
7413 gas_assert (!i.tm.opcode_modifier.vecsib);
7414 switch (i.base_reg->reg_num)
7415 {
7416 case 3: /* (%bx) */
7417 if (i.index_reg == 0)
7418 i.rm.regmem = 7;
7419 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7420 i.rm.regmem = i.index_reg->reg_num - 6;
7421 break;
7422 case 5: /* (%bp) */
7423 default_seg = &ss;
7424 if (i.index_reg == 0)
7425 {
7426 i.rm.regmem = 6;
7427 if (operand_type_check (i.types[op], disp) == 0)
7428 {
7429 /* fake (%bp) into 0(%bp) */
7430 i.types[op].bitfield.disp8 = 1;
7431 fake_zero_displacement = 1;
7432 }
7433 }
7434 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7435 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7436 break;
7437 default: /* (%si) -> 4 or (%di) -> 5 */
7438 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7439 }
7440 i.rm.mode = mode_from_disp_size (i.types[op]);
7441 }
7442 else /* i.base_reg and 32/64 bit mode */
7443 {
7444 if (flag_code == CODE_64BIT
7445 && operand_type_check (i.types[op], disp))
7446 {
7447 i.types[op].bitfield.disp16 = 0;
7448 i.types[op].bitfield.disp64 = 0;
7449 if (i.prefix[ADDR_PREFIX] == 0)
7450 {
7451 i.types[op].bitfield.disp32 = 0;
7452 i.types[op].bitfield.disp32s = 1;
7453 }
7454 else
7455 {
7456 i.types[op].bitfield.disp32 = 1;
7457 i.types[op].bitfield.disp32s = 0;
7458 }
7459 }
7460
7461 if (!i.tm.opcode_modifier.vecsib)
7462 i.rm.regmem = i.base_reg->reg_num;
7463 if ((i.base_reg->reg_flags & RegRex) != 0)
7464 i.rex |= REX_B;
7465 i.sib.base = i.base_reg->reg_num;
7466 /* x86-64 ignores REX prefix bit here to avoid decoder
7467 complications. */
7468 if (!(i.base_reg->reg_flags & RegRex)
7469 && (i.base_reg->reg_num == EBP_REG_NUM
7470 || i.base_reg->reg_num == ESP_REG_NUM))
7471 default_seg = &ss;
7472 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7473 {
7474 fake_zero_displacement = 1;
7475 i.types[op].bitfield.disp8 = 1;
7476 }
7477 i.sib.scale = i.log2_scale_factor;
7478 if (i.index_reg == 0)
7479 {
7480 gas_assert (!i.tm.opcode_modifier.vecsib);
7481 /* <disp>(%esp) becomes two byte modrm with no index
7482 register. We've already stored the code for esp
7483 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7484 Any base register besides %esp will not use the
7485 extra modrm byte. */
7486 i.sib.index = NO_INDEX_REGISTER;
7487 }
7488 else if (!i.tm.opcode_modifier.vecsib)
7489 {
7490 if (i.index_reg->reg_num == RegIZ)
7491 i.sib.index = NO_INDEX_REGISTER;
7492 else
7493 i.sib.index = i.index_reg->reg_num;
7494 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7495 if ((i.index_reg->reg_flags & RegRex) != 0)
7496 i.rex |= REX_X;
7497 }
7498
7499 if (i.disp_operands
7500 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7501 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7502 i.rm.mode = 0;
7503 else
7504 {
7505 if (!fake_zero_displacement
7506 && !i.disp_operands
7507 && i.disp_encoding)
7508 {
7509 fake_zero_displacement = 1;
7510 if (i.disp_encoding == disp_encoding_8bit)
7511 i.types[op].bitfield.disp8 = 1;
7512 else
7513 i.types[op].bitfield.disp32 = 1;
7514 }
7515 i.rm.mode = mode_from_disp_size (i.types[op]);
7516 }
7517 }
7518
7519 if (fake_zero_displacement)
7520 {
7521 /* Fakes a zero displacement assuming that i.types[op]
7522 holds the correct displacement size. */
7523 expressionS *exp;
7524
7525 gas_assert (i.op[op].disps == 0);
7526 exp = &disp_expressions[i.disp_operands++];
7527 i.op[op].disps = exp;
7528 exp->X_op = O_constant;
7529 exp->X_add_number = 0;
7530 exp->X_add_symbol = (symbolS *) 0;
7531 exp->X_op_symbol = (symbolS *) 0;
7532 }
7533
7534 mem = op;
7535 }
7536 else
7537 mem = ~0;
7538
7539 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7540 {
7541 if (operand_type_check (i.types[0], imm))
7542 i.vex.register_specifier = NULL;
7543 else
7544 {
7545 /* VEX.vvvv encodes one of the sources when the first
7546 operand is not an immediate. */
7547 if (i.tm.opcode_modifier.vexw == VEXW0)
7548 i.vex.register_specifier = i.op[0].regs;
7549 else
7550 i.vex.register_specifier = i.op[1].regs;
7551 }
7552
7553 /* Destination is a XMM register encoded in the ModRM.reg
7554 and VEX.R bit. */
7555 i.rm.reg = i.op[2].regs->reg_num;
7556 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7557 i.rex |= REX_R;
7558
7559 /* ModRM.rm and VEX.B encodes the other source. */
7560 if (!i.mem_operands)
7561 {
7562 i.rm.mode = 3;
7563
7564 if (i.tm.opcode_modifier.vexw == VEXW0)
7565 i.rm.regmem = i.op[1].regs->reg_num;
7566 else
7567 i.rm.regmem = i.op[0].regs->reg_num;
7568
7569 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7570 i.rex |= REX_B;
7571 }
7572 }
7573 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7574 {
7575 i.vex.register_specifier = i.op[2].regs;
7576 if (!i.mem_operands)
7577 {
7578 i.rm.mode = 3;
7579 i.rm.regmem = i.op[1].regs->reg_num;
7580 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7581 i.rex |= REX_B;
7582 }
7583 }
7584 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7585 (if any) based on i.tm.extension_opcode. Again, we must be
7586 careful to make sure that segment/control/debug/test/MMX
7587 registers are coded into the i.rm.reg field. */
7588 else if (i.reg_operands)
7589 {
7590 unsigned int op;
7591 unsigned int vex_reg = ~0;
7592
7593 for (op = 0; op < i.operands; op++)
7594 {
7595 if (i.types[op].bitfield.reg
7596 || i.types[op].bitfield.regbnd
7597 || i.types[op].bitfield.regmask
7598 || i.types[op].bitfield.sreg2
7599 || i.types[op].bitfield.sreg3
7600 || i.types[op].bitfield.control
7601 || i.types[op].bitfield.debug
7602 || i.types[op].bitfield.test)
7603 break;
7604 if (i.types[op].bitfield.regsimd)
7605 {
7606 if (i.types[op].bitfield.zmmword)
7607 i.has_regzmm = TRUE;
7608 else if (i.types[op].bitfield.ymmword)
7609 i.has_regymm = TRUE;
7610 else
7611 i.has_regxmm = TRUE;
7612 break;
7613 }
7614 if (i.types[op].bitfield.regmmx)
7615 {
7616 i.has_regmmx = TRUE;
7617 break;
7618 }
7619 }
7620
7621 if (vex_3_sources)
7622 op = dest;
7623 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7624 {
7625 /* For instructions with VexNDS, the register-only
7626 source operand is encoded in VEX prefix. */
7627 gas_assert (mem != (unsigned int) ~0);
7628
7629 if (op > mem)
7630 {
7631 vex_reg = op++;
7632 gas_assert (op < i.operands);
7633 }
7634 else
7635 {
7636 /* Check register-only source operand when two source
7637 operands are swapped. */
7638 if (!i.tm.operand_types[op].bitfield.baseindex
7639 && i.tm.operand_types[op + 1].bitfield.baseindex)
7640 {
7641 vex_reg = op;
7642 op += 2;
7643 gas_assert (mem == (vex_reg + 1)
7644 && op < i.operands);
7645 }
7646 else
7647 {
7648 vex_reg = op + 1;
7649 gas_assert (vex_reg < i.operands);
7650 }
7651 }
7652 }
7653 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7654 {
7655 /* For instructions with VexNDD, the register destination
7656 is encoded in VEX prefix. */
7657 if (i.mem_operands == 0)
7658 {
7659 /* There is no memory operand. */
7660 gas_assert ((op + 2) == i.operands);
7661 vex_reg = op + 1;
7662 }
7663 else
7664 {
7665 /* There are only 2 non-immediate operands. */
7666 gas_assert (op < i.imm_operands + 2
7667 && i.operands == i.imm_operands + 2);
7668 vex_reg = i.imm_operands + 1;
7669 }
7670 }
7671 else
7672 gas_assert (op < i.operands);
7673
7674 if (vex_reg != (unsigned int) ~0)
7675 {
7676 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7677
7678 if ((!type->bitfield.reg
7679 || (!type->bitfield.dword && !type->bitfield.qword))
7680 && !type->bitfield.regsimd
7681 && !operand_type_equal (type, &regmask))
7682 abort ();
7683
7684 i.vex.register_specifier = i.op[vex_reg].regs;
7685 }
7686
7687 /* Don't set OP operand twice. */
7688 if (vex_reg != op)
7689 {
7690 /* If there is an extension opcode to put here, the
7691 register number must be put into the regmem field. */
7692 if (i.tm.extension_opcode != None)
7693 {
7694 i.rm.regmem = i.op[op].regs->reg_num;
7695 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7696 i.rex |= REX_B;
7697 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7698 i.vrex |= REX_B;
7699 }
7700 else
7701 {
7702 i.rm.reg = i.op[op].regs->reg_num;
7703 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7704 i.rex |= REX_R;
7705 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7706 i.vrex |= REX_R;
7707 }
7708 }
7709
7710 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7711 must set it to 3 to indicate this is a register operand
7712 in the regmem field. */
7713 if (!i.mem_operands)
7714 i.rm.mode = 3;
7715 }
7716
7717 /* Fill in i.rm.reg field with extension opcode (if any). */
7718 if (i.tm.extension_opcode != None)
7719 i.rm.reg = i.tm.extension_opcode;
7720 }
7721 return default_seg;
7722 }
7723
7724 static void
7725 output_branch (void)
7726 {
7727 char *p;
7728 int size;
7729 int code16;
7730 int prefix;
7731 relax_substateT subtype;
7732 symbolS *sym;
7733 offsetT off;
7734
7735 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7736 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7737
7738 prefix = 0;
7739 if (i.prefix[DATA_PREFIX] != 0)
7740 {
7741 prefix = 1;
7742 i.prefixes -= 1;
7743 code16 ^= CODE16;
7744 }
7745 /* Pentium4 branch hints. */
7746 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7747 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7748 {
7749 prefix++;
7750 i.prefixes--;
7751 }
7752 if (i.prefix[REX_PREFIX] != 0)
7753 {
7754 prefix++;
7755 i.prefixes--;
7756 }
7757
7758 /* BND prefixed jump. */
7759 if (i.prefix[BND_PREFIX] != 0)
7760 {
7761 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7762 i.prefixes -= 1;
7763 }
7764
7765 if (i.prefixes != 0 && !intel_syntax)
7766 as_warn (_("skipping prefixes on this instruction"));
7767
7768 /* It's always a symbol; End frag & setup for relax.
7769 Make sure there is enough room in this frag for the largest
7770 instruction we may generate in md_convert_frag. This is 2
7771 bytes for the opcode and room for the prefix and largest
7772 displacement. */
7773 frag_grow (prefix + 2 + 4);
7774 /* Prefix and 1 opcode byte go in fr_fix. */
7775 p = frag_more (prefix + 1);
7776 if (i.prefix[DATA_PREFIX] != 0)
7777 *p++ = DATA_PREFIX_OPCODE;
7778 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7779 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7780 *p++ = i.prefix[SEG_PREFIX];
7781 if (i.prefix[REX_PREFIX] != 0)
7782 *p++ = i.prefix[REX_PREFIX];
7783 *p = i.tm.base_opcode;
7784
7785 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7786 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7787 else if (cpu_arch_flags.bitfield.cpui386)
7788 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7789 else
7790 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7791 subtype |= code16;
7792
7793 sym = i.op[0].disps->X_add_symbol;
7794 off = i.op[0].disps->X_add_number;
7795
7796 if (i.op[0].disps->X_op != O_constant
7797 && i.op[0].disps->X_op != O_symbol)
7798 {
7799 /* Handle complex expressions. */
7800 sym = make_expr_symbol (i.op[0].disps);
7801 off = 0;
7802 }
7803
7804 /* 1 possible extra opcode + 4 byte displacement go in var part.
7805 Pass reloc in fr_var. */
7806 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7807 }
7808
7809 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7810 /* Return TRUE iff PLT32 relocation should be used for branching to
7811 symbol S. */
7812
7813 static bfd_boolean
7814 need_plt32_p (symbolS *s)
7815 {
7816 /* PLT32 relocation is ELF only. */
7817 if (!IS_ELF)
7818 return FALSE;
7819
7820 #ifdef TE_SOLARIS
7821 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7822 krtld support it. */
7823 return FALSE;
7824 #endif
7825
7826 /* Since there is no need to prepare for PLT branch on x86-64, we
7827 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7828 be used as a marker for 32-bit PC-relative branches. */
7829 if (!object_64bit)
7830 return FALSE;
7831
7832 /* Weak or undefined symbol need PLT32 relocation. */
7833 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7834 return TRUE;
7835
7836 /* Non-global symbol doesn't need PLT32 relocation. */
7837 if (! S_IS_EXTERNAL (s))
7838 return FALSE;
7839
7840 /* Other global symbols need PLT32 relocation. NB: Symbol with
7841 non-default visibilities are treated as normal global symbol
7842 so that PLT32 relocation can be used as a marker for 32-bit
7843 PC-relative branches. It is useful for linker relaxation. */
7844 return TRUE;
7845 }
7846 #endif
7847
7848 static void
7849 output_jump (void)
7850 {
7851 char *p;
7852 int size;
7853 fixS *fixP;
7854 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7855
7856 if (i.tm.opcode_modifier.jumpbyte)
7857 {
7858 /* This is a loop or jecxz type instruction. */
7859 size = 1;
7860 if (i.prefix[ADDR_PREFIX] != 0)
7861 {
7862 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7863 i.prefixes -= 1;
7864 }
7865 /* Pentium4 branch hints. */
7866 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7867 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7868 {
7869 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7870 i.prefixes--;
7871 }
7872 }
7873 else
7874 {
7875 int code16;
7876
7877 code16 = 0;
7878 if (flag_code == CODE_16BIT)
7879 code16 = CODE16;
7880
7881 if (i.prefix[DATA_PREFIX] != 0)
7882 {
7883 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7884 i.prefixes -= 1;
7885 code16 ^= CODE16;
7886 }
7887
7888 size = 4;
7889 if (code16)
7890 size = 2;
7891 }
7892
7893 if (i.prefix[REX_PREFIX] != 0)
7894 {
7895 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7896 i.prefixes -= 1;
7897 }
7898
7899 /* BND prefixed jump. */
7900 if (i.prefix[BND_PREFIX] != 0)
7901 {
7902 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7903 i.prefixes -= 1;
7904 }
7905
7906 if (i.prefixes != 0 && !intel_syntax)
7907 as_warn (_("skipping prefixes on this instruction"));
7908
7909 p = frag_more (i.tm.opcode_length + size);
7910 switch (i.tm.opcode_length)
7911 {
7912 case 2:
7913 *p++ = i.tm.base_opcode >> 8;
7914 /* Fall through. */
7915 case 1:
7916 *p++ = i.tm.base_opcode;
7917 break;
7918 default:
7919 abort ();
7920 }
7921
7922 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7923 if (size == 4
7924 && jump_reloc == NO_RELOC
7925 && need_plt32_p (i.op[0].disps->X_add_symbol))
7926 jump_reloc = BFD_RELOC_X86_64_PLT32;
7927 #endif
7928
7929 jump_reloc = reloc (size, 1, 1, jump_reloc);
7930
7931 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7932 i.op[0].disps, 1, jump_reloc);
7933
7934 /* All jumps handled here are signed, but don't use a signed limit
7935 check for 32 and 16 bit jumps as we want to allow wrap around at
7936 4G and 64k respectively. */
7937 if (size == 1)
7938 fixP->fx_signed = 1;
7939 }
7940
7941 static void
7942 output_interseg_jump (void)
7943 {
7944 char *p;
7945 int size;
7946 int prefix;
7947 int code16;
7948
7949 code16 = 0;
7950 if (flag_code == CODE_16BIT)
7951 code16 = CODE16;
7952
7953 prefix = 0;
7954 if (i.prefix[DATA_PREFIX] != 0)
7955 {
7956 prefix = 1;
7957 i.prefixes -= 1;
7958 code16 ^= CODE16;
7959 }
7960 if (i.prefix[REX_PREFIX] != 0)
7961 {
7962 prefix++;
7963 i.prefixes -= 1;
7964 }
7965
7966 size = 4;
7967 if (code16)
7968 size = 2;
7969
7970 if (i.prefixes != 0 && !intel_syntax)
7971 as_warn (_("skipping prefixes on this instruction"));
7972
7973 /* 1 opcode; 2 segment; offset */
7974 p = frag_more (prefix + 1 + 2 + size);
7975
7976 if (i.prefix[DATA_PREFIX] != 0)
7977 *p++ = DATA_PREFIX_OPCODE;
7978
7979 if (i.prefix[REX_PREFIX] != 0)
7980 *p++ = i.prefix[REX_PREFIX];
7981
7982 *p++ = i.tm.base_opcode;
7983 if (i.op[1].imms->X_op == O_constant)
7984 {
7985 offsetT n = i.op[1].imms->X_add_number;
7986
7987 if (size == 2
7988 && !fits_in_unsigned_word (n)
7989 && !fits_in_signed_word (n))
7990 {
7991 as_bad (_("16-bit jump out of range"));
7992 return;
7993 }
7994 md_number_to_chars (p, n, size);
7995 }
7996 else
7997 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7998 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7999 if (i.op[0].imms->X_op != O_constant)
8000 as_bad (_("can't handle non absolute segment in `%s'"),
8001 i.tm.name);
8002 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8003 }
8004
8005 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8006 void
8007 x86_cleanup (void)
8008 {
8009 char *p;
8010 asection *seg = now_seg;
8011 subsegT subseg = now_subseg;
8012 asection *sec;
8013 unsigned int alignment, align_size_1;
8014 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8015 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8016 unsigned int padding;
8017
8018 if (!IS_ELF || !x86_used_note)
8019 return;
8020
8021 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8022
8023 /* The .note.gnu.property section layout:
8024
8025 Field Length Contents
8026 ---- ---- ----
8027 n_namsz 4 4
8028 n_descsz 4 The note descriptor size
8029 n_type 4 NT_GNU_PROPERTY_TYPE_0
8030 n_name 4 "GNU"
8031 n_desc n_descsz The program property array
8032 .... .... ....
8033 */
8034
8035 /* Create the .note.gnu.property section. */
8036 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8037 bfd_set_section_flags (stdoutput, sec,
8038 (SEC_ALLOC
8039 | SEC_LOAD
8040 | SEC_DATA
8041 | SEC_HAS_CONTENTS
8042 | SEC_READONLY));
8043
8044 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8045 {
8046 align_size_1 = 7;
8047 alignment = 3;
8048 }
8049 else
8050 {
8051 align_size_1 = 3;
8052 alignment = 2;
8053 }
8054
8055 bfd_set_section_alignment (stdoutput, sec, alignment);
8056 elf_section_type (sec) = SHT_NOTE;
8057
8058 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8059 + 4-byte data */
8060 isa_1_descsz_raw = 4 + 4 + 4;
8061 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8062 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8063
8064 feature_2_descsz_raw = isa_1_descsz;
8065 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8066 + 4-byte data */
8067 feature_2_descsz_raw += 4 + 4 + 4;
8068 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8069 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8070 & ~align_size_1);
8071
8072 descsz = feature_2_descsz;
8073 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8074 p = frag_more (4 + 4 + 4 + 4 + descsz);
8075
8076 /* Write n_namsz. */
8077 md_number_to_chars (p, (valueT) 4, 4);
8078
8079 /* Write n_descsz. */
8080 md_number_to_chars (p + 4, (valueT) descsz, 4);
8081
8082 /* Write n_type. */
8083 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8084
8085 /* Write n_name. */
8086 memcpy (p + 4 * 3, "GNU", 4);
8087
8088 /* Write 4-byte type. */
8089 md_number_to_chars (p + 4 * 4,
8090 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8091
8092 /* Write 4-byte data size. */
8093 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8094
8095 /* Write 4-byte data. */
8096 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8097
8098 /* Zero out paddings. */
8099 padding = isa_1_descsz - isa_1_descsz_raw;
8100 if (padding)
8101 memset (p + 4 * 7, 0, padding);
8102
8103 /* Write 4-byte type. */
8104 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8105 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8106
8107 /* Write 4-byte data size. */
8108 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8109
8110 /* Write 4-byte data. */
8111 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8112 (valueT) x86_feature_2_used, 4);
8113
8114 /* Zero out paddings. */
8115 padding = feature_2_descsz - feature_2_descsz_raw;
8116 if (padding)
8117 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8118
8119 /* We probably can't restore the current segment, for there likely
8120 isn't one yet... */
8121 if (seg && subseg)
8122 subseg_set (seg, subseg);
8123 }
8124 #endif
8125
8126 static unsigned int
8127 encoding_length (const fragS *start_frag, offsetT start_off,
8128 const char *frag_now_ptr)
8129 {
8130 unsigned int len = 0;
8131
8132 if (start_frag != frag_now)
8133 {
8134 const fragS *fr = start_frag;
8135
8136 do {
8137 len += fr->fr_fix;
8138 fr = fr->fr_next;
8139 } while (fr && fr != frag_now);
8140 }
8141
8142 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8143 }
8144
8145 static void
8146 output_insn (void)
8147 {
8148 fragS *insn_start_frag;
8149 offsetT insn_start_off;
8150
8151 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8152 if (IS_ELF && x86_used_note)
8153 {
8154 if (i.tm.cpu_flags.bitfield.cpucmov)
8155 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8156 if (i.tm.cpu_flags.bitfield.cpusse)
8157 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8158 if (i.tm.cpu_flags.bitfield.cpusse2)
8159 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8160 if (i.tm.cpu_flags.bitfield.cpusse3)
8161 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8162 if (i.tm.cpu_flags.bitfield.cpussse3)
8163 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8164 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8165 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8166 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8167 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8168 if (i.tm.cpu_flags.bitfield.cpuavx)
8169 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8170 if (i.tm.cpu_flags.bitfield.cpuavx2)
8171 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8172 if (i.tm.cpu_flags.bitfield.cpufma)
8173 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8174 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8175 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8176 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8177 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8178 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8179 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8180 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8181 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8182 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8183 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8184 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8185 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8186 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8187 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8188 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8189 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8190 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8191 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8192 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8193 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8194 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8195 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8196 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8197 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8198 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8199 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8200 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8201 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8202 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8203 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
8204
8205 if (i.tm.cpu_flags.bitfield.cpu8087
8206 || i.tm.cpu_flags.bitfield.cpu287
8207 || i.tm.cpu_flags.bitfield.cpu387
8208 || i.tm.cpu_flags.bitfield.cpu687
8209 || i.tm.cpu_flags.bitfield.cpufisttp)
8210 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8211 /* Don't set GNU_PROPERTY_X86_FEATURE_2_MMX for prefetchtXXX nor
8212 Xfence instructions. */
8213 if (i.tm.base_opcode != 0xf18
8214 && i.tm.base_opcode != 0xf0d
8215 && i.tm.base_opcode != 0xfae
8216 && (i.has_regmmx
8217 || i.tm.cpu_flags.bitfield.cpummx
8218 || i.tm.cpu_flags.bitfield.cpua3dnow
8219 || i.tm.cpu_flags.bitfield.cpua3dnowa))
8220 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8221 if (i.has_regxmm)
8222 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8223 if (i.has_regymm)
8224 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8225 if (i.has_regzmm)
8226 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8227 if (i.tm.cpu_flags.bitfield.cpufxsr)
8228 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8229 if (i.tm.cpu_flags.bitfield.cpuxsave)
8230 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8231 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8232 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8233 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8234 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8235 }
8236 #endif
8237
8238 /* Tie dwarf2 debug info to the address at the start of the insn.
8239 We can't do this after the insn has been output as the current
8240 frag may have been closed off. eg. by frag_var. */
8241 dwarf2_emit_insn (0);
8242
8243 insn_start_frag = frag_now;
8244 insn_start_off = frag_now_fix ();
8245
8246 /* Output jumps. */
8247 if (i.tm.opcode_modifier.jump)
8248 output_branch ();
8249 else if (i.tm.opcode_modifier.jumpbyte
8250 || i.tm.opcode_modifier.jumpdword)
8251 output_jump ();
8252 else if (i.tm.opcode_modifier.jumpintersegment)
8253 output_interseg_jump ();
8254 else
8255 {
8256 /* Output normal instructions here. */
8257 char *p;
8258 unsigned char *q;
8259 unsigned int j;
8260 unsigned int prefix;
8261
8262 if (avoid_fence
8263 && i.tm.base_opcode == 0xfae
8264 && i.operands == 1
8265 && i.imm_operands == 1
8266 && (i.op[0].imms->X_add_number == 0xe8
8267 || i.op[0].imms->X_add_number == 0xf0
8268 || i.op[0].imms->X_add_number == 0xf8))
8269 {
8270 /* Encode lfence, mfence, and sfence as
8271 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8272 offsetT val = 0x240483f0ULL;
8273 p = frag_more (5);
8274 md_number_to_chars (p, val, 5);
8275 return;
8276 }
8277
8278 /* Some processors fail on LOCK prefix. This options makes
8279 assembler ignore LOCK prefix and serves as a workaround. */
8280 if (omit_lock_prefix)
8281 {
8282 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8283 return;
8284 i.prefix[LOCK_PREFIX] = 0;
8285 }
8286
8287 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8288 don't need the explicit prefix. */
8289 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
8290 {
8291 switch (i.tm.opcode_length)
8292 {
8293 case 3:
8294 if (i.tm.base_opcode & 0xff000000)
8295 {
8296 prefix = (i.tm.base_opcode >> 24) & 0xff;
8297 add_prefix (prefix);
8298 }
8299 break;
8300 case 2:
8301 if ((i.tm.base_opcode & 0xff0000) != 0)
8302 {
8303 prefix = (i.tm.base_opcode >> 16) & 0xff;
8304 if (!i.tm.cpu_flags.bitfield.cpupadlock
8305 || prefix != REPE_PREFIX_OPCODE
8306 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8307 add_prefix (prefix);
8308 }
8309 break;
8310 case 1:
8311 break;
8312 case 0:
8313 /* Check for pseudo prefixes. */
8314 as_bad_where (insn_start_frag->fr_file,
8315 insn_start_frag->fr_line,
8316 _("pseudo prefix without instruction"));
8317 return;
8318 default:
8319 abort ();
8320 }
8321
8322 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8323 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8324 R_X86_64_GOTTPOFF relocation so that linker can safely
8325 perform IE->LE optimization. */
8326 if (x86_elf_abi == X86_64_X32_ABI
8327 && i.operands == 2
8328 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8329 && i.prefix[REX_PREFIX] == 0)
8330 add_prefix (REX_OPCODE);
8331 #endif
8332
8333 /* The prefix bytes. */
8334 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8335 if (*q)
8336 FRAG_APPEND_1_CHAR (*q);
8337 }
8338 else
8339 {
8340 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8341 if (*q)
8342 switch (j)
8343 {
8344 case REX_PREFIX:
8345 /* REX byte is encoded in VEX prefix. */
8346 break;
8347 case SEG_PREFIX:
8348 case ADDR_PREFIX:
8349 FRAG_APPEND_1_CHAR (*q);
8350 break;
8351 default:
8352 /* There should be no other prefixes for instructions
8353 with VEX prefix. */
8354 abort ();
8355 }
8356
8357 /* For EVEX instructions i.vrex should become 0 after
8358 build_evex_prefix. For VEX instructions upper 16 registers
8359 aren't available, so VREX should be 0. */
8360 if (i.vrex)
8361 abort ();
8362 /* Now the VEX prefix. */
8363 p = frag_more (i.vex.length);
8364 for (j = 0; j < i.vex.length; j++)
8365 p[j] = i.vex.bytes[j];
8366 }
8367
8368 /* Now the opcode; be careful about word order here! */
8369 if (i.tm.opcode_length == 1)
8370 {
8371 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8372 }
8373 else
8374 {
8375 switch (i.tm.opcode_length)
8376 {
8377 case 4:
8378 p = frag_more (4);
8379 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8380 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8381 break;
8382 case 3:
8383 p = frag_more (3);
8384 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8385 break;
8386 case 2:
8387 p = frag_more (2);
8388 break;
8389 default:
8390 abort ();
8391 break;
8392 }
8393
8394 /* Put out high byte first: can't use md_number_to_chars! */
8395 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8396 *p = i.tm.base_opcode & 0xff;
8397 }
8398
8399 /* Now the modrm byte and sib byte (if present). */
8400 if (i.tm.opcode_modifier.modrm)
8401 {
8402 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8403 | i.rm.reg << 3
8404 | i.rm.mode << 6));
8405 /* If i.rm.regmem == ESP (4)
8406 && i.rm.mode != (Register mode)
8407 && not 16 bit
8408 ==> need second modrm byte. */
8409 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8410 && i.rm.mode != 3
8411 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
8412 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8413 | i.sib.index << 3
8414 | i.sib.scale << 6));
8415 }
8416
8417 if (i.disp_operands)
8418 output_disp (insn_start_frag, insn_start_off);
8419
8420 if (i.imm_operands)
8421 output_imm (insn_start_frag, insn_start_off);
8422
8423 /*
8424 * frag_now_fix () returning plain abs_section_offset when we're in the
8425 * absolute section, and abs_section_offset not getting updated as data
8426 * gets added to the frag breaks the logic below.
8427 */
8428 if (now_seg != absolute_section)
8429 {
8430 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8431 if (j > 15)
8432 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8433 j);
8434 }
8435 }
8436
8437 #ifdef DEBUG386
8438 if (flag_debug)
8439 {
8440 pi ("" /*line*/, &i);
8441 }
8442 #endif /* DEBUG386 */
8443 }
8444
8445 /* Return the size of the displacement operand N. */
8446
8447 static int
8448 disp_size (unsigned int n)
8449 {
8450 int size = 4;
8451
8452 if (i.types[n].bitfield.disp64)
8453 size = 8;
8454 else if (i.types[n].bitfield.disp8)
8455 size = 1;
8456 else if (i.types[n].bitfield.disp16)
8457 size = 2;
8458 return size;
8459 }
8460
8461 /* Return the size of the immediate operand N. */
8462
8463 static int
8464 imm_size (unsigned int n)
8465 {
8466 int size = 4;
8467 if (i.types[n].bitfield.imm64)
8468 size = 8;
8469 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8470 size = 1;
8471 else if (i.types[n].bitfield.imm16)
8472 size = 2;
8473 return size;
8474 }
8475
8476 static void
8477 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
8478 {
8479 char *p;
8480 unsigned int n;
8481
8482 for (n = 0; n < i.operands; n++)
8483 {
8484 if (operand_type_check (i.types[n], disp))
8485 {
8486 if (i.op[n].disps->X_op == O_constant)
8487 {
8488 int size = disp_size (n);
8489 offsetT val = i.op[n].disps->X_add_number;
8490
8491 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8492 size);
8493 p = frag_more (size);
8494 md_number_to_chars (p, val, size);
8495 }
8496 else
8497 {
8498 enum bfd_reloc_code_real reloc_type;
8499 int size = disp_size (n);
8500 int sign = i.types[n].bitfield.disp32s;
8501 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
8502 fixS *fixP;
8503
8504 /* We can't have 8 bit displacement here. */
8505 gas_assert (!i.types[n].bitfield.disp8);
8506
8507 /* The PC relative address is computed relative
8508 to the instruction boundary, so in case immediate
8509 fields follows, we need to adjust the value. */
8510 if (pcrel && i.imm_operands)
8511 {
8512 unsigned int n1;
8513 int sz = 0;
8514
8515 for (n1 = 0; n1 < i.operands; n1++)
8516 if (operand_type_check (i.types[n1], imm))
8517 {
8518 /* Only one immediate is allowed for PC
8519 relative address. */
8520 gas_assert (sz == 0);
8521 sz = imm_size (n1);
8522 i.op[n].disps->X_add_number -= sz;
8523 }
8524 /* We should find the immediate. */
8525 gas_assert (sz != 0);
8526 }
8527
8528 p = frag_more (size);
8529 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
8530 if (GOT_symbol
8531 && GOT_symbol == i.op[n].disps->X_add_symbol
8532 && (((reloc_type == BFD_RELOC_32
8533 || reloc_type == BFD_RELOC_X86_64_32S
8534 || (reloc_type == BFD_RELOC_64
8535 && object_64bit))
8536 && (i.op[n].disps->X_op == O_symbol
8537 || (i.op[n].disps->X_op == O_add
8538 && ((symbol_get_value_expression
8539 (i.op[n].disps->X_op_symbol)->X_op)
8540 == O_subtract))))
8541 || reloc_type == BFD_RELOC_32_PCREL))
8542 {
8543 offsetT add;
8544
8545 if (insn_start_frag == frag_now)
8546 add = (p - frag_now->fr_literal) - insn_start_off;
8547 else
8548 {
8549 fragS *fr;
8550
8551 add = insn_start_frag->fr_fix - insn_start_off;
8552 for (fr = insn_start_frag->fr_next;
8553 fr && fr != frag_now; fr = fr->fr_next)
8554 add += fr->fr_fix;
8555 add += p - frag_now->fr_literal;
8556 }
8557
8558 if (!object_64bit)
8559 {
8560 reloc_type = BFD_RELOC_386_GOTPC;
8561 i.op[n].imms->X_add_number += add;
8562 }
8563 else if (reloc_type == BFD_RELOC_64)
8564 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8565 else
8566 /* Don't do the adjustment for x86-64, as there
8567 the pcrel addressing is relative to the _next_
8568 insn, and that is taken care of in other code. */
8569 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8570 }
8571 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8572 size, i.op[n].disps, pcrel,
8573 reloc_type);
8574 /* Check for "call/jmp *mem", "mov mem, %reg",
8575 "test %reg, mem" and "binop mem, %reg" where binop
8576 is one of adc, add, and, cmp, or, sbb, sub, xor
8577 instructions without data prefix. Always generate
8578 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
8579 if (i.prefix[DATA_PREFIX] == 0
8580 && (generate_relax_relocations
8581 || (!object_64bit
8582 && i.rm.mode == 0
8583 && i.rm.regmem == 5))
8584 && (i.rm.mode == 2
8585 || (i.rm.mode == 0 && i.rm.regmem == 5))
8586 && ((i.operands == 1
8587 && i.tm.base_opcode == 0xff
8588 && (i.rm.reg == 2 || i.rm.reg == 4))
8589 || (i.operands == 2
8590 && (i.tm.base_opcode == 0x8b
8591 || i.tm.base_opcode == 0x85
8592 || (i.tm.base_opcode & 0xc7) == 0x03))))
8593 {
8594 if (object_64bit)
8595 {
8596 fixP->fx_tcbit = i.rex != 0;
8597 if (i.base_reg
8598 && (i.base_reg->reg_num == RegIP))
8599 fixP->fx_tcbit2 = 1;
8600 }
8601 else
8602 fixP->fx_tcbit2 = 1;
8603 }
8604 }
8605 }
8606 }
8607 }
8608
8609 static void
8610 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
8611 {
8612 char *p;
8613 unsigned int n;
8614
8615 for (n = 0; n < i.operands; n++)
8616 {
8617 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8618 if (i.rounding && (int) n == i.rounding->operand)
8619 continue;
8620
8621 if (operand_type_check (i.types[n], imm))
8622 {
8623 if (i.op[n].imms->X_op == O_constant)
8624 {
8625 int size = imm_size (n);
8626 offsetT val;
8627
8628 val = offset_in_range (i.op[n].imms->X_add_number,
8629 size);
8630 p = frag_more (size);
8631 md_number_to_chars (p, val, size);
8632 }
8633 else
8634 {
8635 /* Not absolute_section.
8636 Need a 32-bit fixup (don't support 8bit
8637 non-absolute imms). Try to support other
8638 sizes ... */
8639 enum bfd_reloc_code_real reloc_type;
8640 int size = imm_size (n);
8641 int sign;
8642
8643 if (i.types[n].bitfield.imm32s
8644 && (i.suffix == QWORD_MNEM_SUFFIX
8645 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
8646 sign = 1;
8647 else
8648 sign = 0;
8649
8650 p = frag_more (size);
8651 reloc_type = reloc (size, 0, sign, i.reloc[n]);
8652
8653 /* This is tough to explain. We end up with this one if we
8654 * have operands that look like
8655 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8656 * obtain the absolute address of the GOT, and it is strongly
8657 * preferable from a performance point of view to avoid using
8658 * a runtime relocation for this. The actual sequence of
8659 * instructions often look something like:
8660 *
8661 * call .L66
8662 * .L66:
8663 * popl %ebx
8664 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8665 *
8666 * The call and pop essentially return the absolute address
8667 * of the label .L66 and store it in %ebx. The linker itself
8668 * will ultimately change the first operand of the addl so
8669 * that %ebx points to the GOT, but to keep things simple, the
8670 * .o file must have this operand set so that it generates not
8671 * the absolute address of .L66, but the absolute address of
8672 * itself. This allows the linker itself simply treat a GOTPC
8673 * relocation as asking for a pcrel offset to the GOT to be
8674 * added in, and the addend of the relocation is stored in the
8675 * operand field for the instruction itself.
8676 *
8677 * Our job here is to fix the operand so that it would add
8678 * the correct offset so that %ebx would point to itself. The
8679 * thing that is tricky is that .-.L66 will point to the
8680 * beginning of the instruction, so we need to further modify
8681 * the operand so that it will point to itself. There are
8682 * other cases where you have something like:
8683 *
8684 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8685 *
8686 * and here no correction would be required. Internally in
8687 * the assembler we treat operands of this form as not being
8688 * pcrel since the '.' is explicitly mentioned, and I wonder
8689 * whether it would simplify matters to do it this way. Who
8690 * knows. In earlier versions of the PIC patches, the
8691 * pcrel_adjust field was used to store the correction, but
8692 * since the expression is not pcrel, I felt it would be
8693 * confusing to do it this way. */
8694
8695 if ((reloc_type == BFD_RELOC_32
8696 || reloc_type == BFD_RELOC_X86_64_32S
8697 || reloc_type == BFD_RELOC_64)
8698 && GOT_symbol
8699 && GOT_symbol == i.op[n].imms->X_add_symbol
8700 && (i.op[n].imms->X_op == O_symbol
8701 || (i.op[n].imms->X_op == O_add
8702 && ((symbol_get_value_expression
8703 (i.op[n].imms->X_op_symbol)->X_op)
8704 == O_subtract))))
8705 {
8706 offsetT add;
8707
8708 if (insn_start_frag == frag_now)
8709 add = (p - frag_now->fr_literal) - insn_start_off;
8710 else
8711 {
8712 fragS *fr;
8713
8714 add = insn_start_frag->fr_fix - insn_start_off;
8715 for (fr = insn_start_frag->fr_next;
8716 fr && fr != frag_now; fr = fr->fr_next)
8717 add += fr->fr_fix;
8718 add += p - frag_now->fr_literal;
8719 }
8720
8721 if (!object_64bit)
8722 reloc_type = BFD_RELOC_386_GOTPC;
8723 else if (size == 4)
8724 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8725 else if (size == 8)
8726 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8727 i.op[n].imms->X_add_number += add;
8728 }
8729 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8730 i.op[n].imms, 0, reloc_type);
8731 }
8732 }
8733 }
8734 }
8735 \f
8736 /* x86_cons_fix_new is called via the expression parsing code when a
8737 reloc is needed. We use this hook to get the correct .got reloc. */
8738 static int cons_sign = -1;
8739
8740 void
8741 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
8742 expressionS *exp, bfd_reloc_code_real_type r)
8743 {
8744 r = reloc (len, 0, cons_sign, r);
8745
8746 #ifdef TE_PE
8747 if (exp->X_op == O_secrel)
8748 {
8749 exp->X_op = O_symbol;
8750 r = BFD_RELOC_32_SECREL;
8751 }
8752 #endif
8753
8754 fix_new_exp (frag, off, len, exp, 0, r);
8755 }
8756
8757 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8758 purpose of the `.dc.a' internal pseudo-op. */
8759
8760 int
8761 x86_address_bytes (void)
8762 {
8763 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8764 return 4;
8765 return stdoutput->arch_info->bits_per_address / 8;
8766 }
8767
8768 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8769 || defined (LEX_AT)
8770 # define lex_got(reloc, adjust, types) NULL
8771 #else
8772 /* Parse operands of the form
8773 <symbol>@GOTOFF+<nnn>
8774 and similar .plt or .got references.
8775
8776 If we find one, set up the correct relocation in RELOC and copy the
8777 input string, minus the `@GOTOFF' into a malloc'd buffer for
8778 parsing by the calling routine. Return this buffer, and if ADJUST
8779 is non-null set it to the length of the string we removed from the
8780 input line. Otherwise return NULL. */
8781 static char *
8782 lex_got (enum bfd_reloc_code_real *rel,
8783 int *adjust,
8784 i386_operand_type *types)
8785 {
8786 /* Some of the relocations depend on the size of what field is to
8787 be relocated. But in our callers i386_immediate and i386_displacement
8788 we don't yet know the operand size (this will be set by insn
8789 matching). Hence we record the word32 relocation here,
8790 and adjust the reloc according to the real size in reloc(). */
8791 static const struct {
8792 const char *str;
8793 int len;
8794 const enum bfd_reloc_code_real rel[2];
8795 const i386_operand_type types64;
8796 } gotrel[] = {
8797 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8798 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8799 BFD_RELOC_SIZE32 },
8800 OPERAND_TYPE_IMM32_64 },
8801 #endif
8802 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8803 BFD_RELOC_X86_64_PLTOFF64 },
8804 OPERAND_TYPE_IMM64 },
8805 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8806 BFD_RELOC_X86_64_PLT32 },
8807 OPERAND_TYPE_IMM32_32S_DISP32 },
8808 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8809 BFD_RELOC_X86_64_GOTPLT64 },
8810 OPERAND_TYPE_IMM64_DISP64 },
8811 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8812 BFD_RELOC_X86_64_GOTOFF64 },
8813 OPERAND_TYPE_IMM64_DISP64 },
8814 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8815 BFD_RELOC_X86_64_GOTPCREL },
8816 OPERAND_TYPE_IMM32_32S_DISP32 },
8817 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8818 BFD_RELOC_X86_64_TLSGD },
8819 OPERAND_TYPE_IMM32_32S_DISP32 },
8820 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8821 _dummy_first_bfd_reloc_code_real },
8822 OPERAND_TYPE_NONE },
8823 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8824 BFD_RELOC_X86_64_TLSLD },
8825 OPERAND_TYPE_IMM32_32S_DISP32 },
8826 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8827 BFD_RELOC_X86_64_GOTTPOFF },
8828 OPERAND_TYPE_IMM32_32S_DISP32 },
8829 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8830 BFD_RELOC_X86_64_TPOFF32 },
8831 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8832 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8833 _dummy_first_bfd_reloc_code_real },
8834 OPERAND_TYPE_NONE },
8835 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8836 BFD_RELOC_X86_64_DTPOFF32 },
8837 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8838 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8839 _dummy_first_bfd_reloc_code_real },
8840 OPERAND_TYPE_NONE },
8841 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8842 _dummy_first_bfd_reloc_code_real },
8843 OPERAND_TYPE_NONE },
8844 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8845 BFD_RELOC_X86_64_GOT32 },
8846 OPERAND_TYPE_IMM32_32S_64_DISP32 },
8847 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8848 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
8849 OPERAND_TYPE_IMM32_32S_DISP32 },
8850 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8851 BFD_RELOC_X86_64_TLSDESC_CALL },
8852 OPERAND_TYPE_IMM32_32S_DISP32 },
8853 };
8854 char *cp;
8855 unsigned int j;
8856
8857 #if defined (OBJ_MAYBE_ELF)
8858 if (!IS_ELF)
8859 return NULL;
8860 #endif
8861
8862 for (cp = input_line_pointer; *cp != '@'; cp++)
8863 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8864 return NULL;
8865
8866 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8867 {
8868 int len = gotrel[j].len;
8869 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8870 {
8871 if (gotrel[j].rel[object_64bit] != 0)
8872 {
8873 int first, second;
8874 char *tmpbuf, *past_reloc;
8875
8876 *rel = gotrel[j].rel[object_64bit];
8877
8878 if (types)
8879 {
8880 if (flag_code != CODE_64BIT)
8881 {
8882 types->bitfield.imm32 = 1;
8883 types->bitfield.disp32 = 1;
8884 }
8885 else
8886 *types = gotrel[j].types64;
8887 }
8888
8889 if (j != 0 && GOT_symbol == NULL)
8890 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8891
8892 /* The length of the first part of our input line. */
8893 first = cp - input_line_pointer;
8894
8895 /* The second part goes from after the reloc token until
8896 (and including) an end_of_line char or comma. */
8897 past_reloc = cp + 1 + len;
8898 cp = past_reloc;
8899 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8900 ++cp;
8901 second = cp + 1 - past_reloc;
8902
8903 /* Allocate and copy string. The trailing NUL shouldn't
8904 be necessary, but be safe. */
8905 tmpbuf = XNEWVEC (char, first + second + 2);
8906 memcpy (tmpbuf, input_line_pointer, first);
8907 if (second != 0 && *past_reloc != ' ')
8908 /* Replace the relocation token with ' ', so that
8909 errors like foo@GOTOFF1 will be detected. */
8910 tmpbuf[first++] = ' ';
8911 else
8912 /* Increment length by 1 if the relocation token is
8913 removed. */
8914 len++;
8915 if (adjust)
8916 *adjust = len;
8917 memcpy (tmpbuf + first, past_reloc, second);
8918 tmpbuf[first + second] = '\0';
8919 return tmpbuf;
8920 }
8921
8922 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8923 gotrel[j].str, 1 << (5 + object_64bit));
8924 return NULL;
8925 }
8926 }
8927
8928 /* Might be a symbol version string. Don't as_bad here. */
8929 return NULL;
8930 }
8931 #endif
8932
8933 #ifdef TE_PE
8934 #ifdef lex_got
8935 #undef lex_got
8936 #endif
8937 /* Parse operands of the form
8938 <symbol>@SECREL32+<nnn>
8939
8940 If we find one, set up the correct relocation in RELOC and copy the
8941 input string, minus the `@SECREL32' into a malloc'd buffer for
8942 parsing by the calling routine. Return this buffer, and if ADJUST
8943 is non-null set it to the length of the string we removed from the
8944 input line. Otherwise return NULL.
8945
8946 This function is copied from the ELF version above adjusted for PE targets. */
8947
8948 static char *
8949 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8950 int *adjust ATTRIBUTE_UNUSED,
8951 i386_operand_type *types)
8952 {
8953 static const struct
8954 {
8955 const char *str;
8956 int len;
8957 const enum bfd_reloc_code_real rel[2];
8958 const i386_operand_type types64;
8959 }
8960 gotrel[] =
8961 {
8962 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8963 BFD_RELOC_32_SECREL },
8964 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8965 };
8966
8967 char *cp;
8968 unsigned j;
8969
8970 for (cp = input_line_pointer; *cp != '@'; cp++)
8971 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8972 return NULL;
8973
8974 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8975 {
8976 int len = gotrel[j].len;
8977
8978 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8979 {
8980 if (gotrel[j].rel[object_64bit] != 0)
8981 {
8982 int first, second;
8983 char *tmpbuf, *past_reloc;
8984
8985 *rel = gotrel[j].rel[object_64bit];
8986 if (adjust)
8987 *adjust = len;
8988
8989 if (types)
8990 {
8991 if (flag_code != CODE_64BIT)
8992 {
8993 types->bitfield.imm32 = 1;
8994 types->bitfield.disp32 = 1;
8995 }
8996 else
8997 *types = gotrel[j].types64;
8998 }
8999
9000 /* The length of the first part of our input line. */
9001 first = cp - input_line_pointer;
9002
9003 /* The second part goes from after the reloc token until
9004 (and including) an end_of_line char or comma. */
9005 past_reloc = cp + 1 + len;
9006 cp = past_reloc;
9007 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9008 ++cp;
9009 second = cp + 1 - past_reloc;
9010
9011 /* Allocate and copy string. The trailing NUL shouldn't
9012 be necessary, but be safe. */
9013 tmpbuf = XNEWVEC (char, first + second + 2);
9014 memcpy (tmpbuf, input_line_pointer, first);
9015 if (second != 0 && *past_reloc != ' ')
9016 /* Replace the relocation token with ' ', so that
9017 errors like foo@SECLREL321 will be detected. */
9018 tmpbuf[first++] = ' ';
9019 memcpy (tmpbuf + first, past_reloc, second);
9020 tmpbuf[first + second] = '\0';
9021 return tmpbuf;
9022 }
9023
9024 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9025 gotrel[j].str, 1 << (5 + object_64bit));
9026 return NULL;
9027 }
9028 }
9029
9030 /* Might be a symbol version string. Don't as_bad here. */
9031 return NULL;
9032 }
9033
9034 #endif /* TE_PE */
9035
9036 bfd_reloc_code_real_type
9037 x86_cons (expressionS *exp, int size)
9038 {
9039 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9040
9041 intel_syntax = -intel_syntax;
9042
9043 exp->X_md = 0;
9044 if (size == 4 || (object_64bit && size == 8))
9045 {
9046 /* Handle @GOTOFF and the like in an expression. */
9047 char *save;
9048 char *gotfree_input_line;
9049 int adjust = 0;
9050
9051 save = input_line_pointer;
9052 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
9053 if (gotfree_input_line)
9054 input_line_pointer = gotfree_input_line;
9055
9056 expression (exp);
9057
9058 if (gotfree_input_line)
9059 {
9060 /* expression () has merrily parsed up to the end of line,
9061 or a comma - in the wrong buffer. Transfer how far
9062 input_line_pointer has moved to the right buffer. */
9063 input_line_pointer = (save
9064 + (input_line_pointer - gotfree_input_line)
9065 + adjust);
9066 free (gotfree_input_line);
9067 if (exp->X_op == O_constant
9068 || exp->X_op == O_absent
9069 || exp->X_op == O_illegal
9070 || exp->X_op == O_register
9071 || exp->X_op == O_big)
9072 {
9073 char c = *input_line_pointer;
9074 *input_line_pointer = 0;
9075 as_bad (_("missing or invalid expression `%s'"), save);
9076 *input_line_pointer = c;
9077 }
9078 else if ((got_reloc == BFD_RELOC_386_PLT32
9079 || got_reloc == BFD_RELOC_X86_64_PLT32)
9080 && exp->X_op != O_symbol)
9081 {
9082 char c = *input_line_pointer;
9083 *input_line_pointer = 0;
9084 as_bad (_("invalid PLT expression `%s'"), save);
9085 *input_line_pointer = c;
9086 }
9087 }
9088 }
9089 else
9090 expression (exp);
9091
9092 intel_syntax = -intel_syntax;
9093
9094 if (intel_syntax)
9095 i386_intel_simplify (exp);
9096
9097 return got_reloc;
9098 }
9099
9100 static void
9101 signed_cons (int size)
9102 {
9103 if (flag_code == CODE_64BIT)
9104 cons_sign = 1;
9105 cons (size);
9106 cons_sign = -1;
9107 }
9108
9109 #ifdef TE_PE
9110 static void
9111 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
9112 {
9113 expressionS exp;
9114
9115 do
9116 {
9117 expression (&exp);
9118 if (exp.X_op == O_symbol)
9119 exp.X_op = O_secrel;
9120
9121 emit_expr (&exp, 4);
9122 }
9123 while (*input_line_pointer++ == ',');
9124
9125 input_line_pointer--;
9126 demand_empty_rest_of_line ();
9127 }
9128 #endif
9129
9130 /* Handle Vector operations. */
9131
9132 static char *
9133 check_VecOperations (char *op_string, char *op_end)
9134 {
9135 const reg_entry *mask;
9136 const char *saved;
9137 char *end_op;
9138
9139 while (*op_string
9140 && (op_end == NULL || op_string < op_end))
9141 {
9142 saved = op_string;
9143 if (*op_string == '{')
9144 {
9145 op_string++;
9146
9147 /* Check broadcasts. */
9148 if (strncmp (op_string, "1to", 3) == 0)
9149 {
9150 int bcst_type;
9151
9152 if (i.broadcast)
9153 goto duplicated_vec_op;
9154
9155 op_string += 3;
9156 if (*op_string == '8')
9157 bcst_type = 8;
9158 else if (*op_string == '4')
9159 bcst_type = 4;
9160 else if (*op_string == '2')
9161 bcst_type = 2;
9162 else if (*op_string == '1'
9163 && *(op_string+1) == '6')
9164 {
9165 bcst_type = 16;
9166 op_string++;
9167 }
9168 else
9169 {
9170 as_bad (_("Unsupported broadcast: `%s'"), saved);
9171 return NULL;
9172 }
9173 op_string++;
9174
9175 broadcast_op.type = bcst_type;
9176 broadcast_op.operand = this_operand;
9177 broadcast_op.bytes = 0;
9178 i.broadcast = &broadcast_op;
9179 }
9180 /* Check masking operation. */
9181 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9182 {
9183 /* k0 can't be used for write mask. */
9184 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
9185 {
9186 as_bad (_("`%s%s' can't be used for write mask"),
9187 register_prefix, mask->reg_name);
9188 return NULL;
9189 }
9190
9191 if (!i.mask)
9192 {
9193 mask_op.mask = mask;
9194 mask_op.zeroing = 0;
9195 mask_op.operand = this_operand;
9196 i.mask = &mask_op;
9197 }
9198 else
9199 {
9200 if (i.mask->mask)
9201 goto duplicated_vec_op;
9202
9203 i.mask->mask = mask;
9204
9205 /* Only "{z}" is allowed here. No need to check
9206 zeroing mask explicitly. */
9207 if (i.mask->operand != this_operand)
9208 {
9209 as_bad (_("invalid write mask `%s'"), saved);
9210 return NULL;
9211 }
9212 }
9213
9214 op_string = end_op;
9215 }
9216 /* Check zeroing-flag for masking operation. */
9217 else if (*op_string == 'z')
9218 {
9219 if (!i.mask)
9220 {
9221 mask_op.mask = NULL;
9222 mask_op.zeroing = 1;
9223 mask_op.operand = this_operand;
9224 i.mask = &mask_op;
9225 }
9226 else
9227 {
9228 if (i.mask->zeroing)
9229 {
9230 duplicated_vec_op:
9231 as_bad (_("duplicated `%s'"), saved);
9232 return NULL;
9233 }
9234
9235 i.mask->zeroing = 1;
9236
9237 /* Only "{%k}" is allowed here. No need to check mask
9238 register explicitly. */
9239 if (i.mask->operand != this_operand)
9240 {
9241 as_bad (_("invalid zeroing-masking `%s'"),
9242 saved);
9243 return NULL;
9244 }
9245 }
9246
9247 op_string++;
9248 }
9249 else
9250 goto unknown_vec_op;
9251
9252 if (*op_string != '}')
9253 {
9254 as_bad (_("missing `}' in `%s'"), saved);
9255 return NULL;
9256 }
9257 op_string++;
9258
9259 /* Strip whitespace since the addition of pseudo prefixes
9260 changed how the scrubber treats '{'. */
9261 if (is_space_char (*op_string))
9262 ++op_string;
9263
9264 continue;
9265 }
9266 unknown_vec_op:
9267 /* We don't know this one. */
9268 as_bad (_("unknown vector operation: `%s'"), saved);
9269 return NULL;
9270 }
9271
9272 if (i.mask && i.mask->zeroing && !i.mask->mask)
9273 {
9274 as_bad (_("zeroing-masking only allowed with write mask"));
9275 return NULL;
9276 }
9277
9278 return op_string;
9279 }
9280
9281 static int
9282 i386_immediate (char *imm_start)
9283 {
9284 char *save_input_line_pointer;
9285 char *gotfree_input_line;
9286 segT exp_seg = 0;
9287 expressionS *exp;
9288 i386_operand_type types;
9289
9290 operand_type_set (&types, ~0);
9291
9292 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9293 {
9294 as_bad (_("at most %d immediate operands are allowed"),
9295 MAX_IMMEDIATE_OPERANDS);
9296 return 0;
9297 }
9298
9299 exp = &im_expressions[i.imm_operands++];
9300 i.op[this_operand].imms = exp;
9301
9302 if (is_space_char (*imm_start))
9303 ++imm_start;
9304
9305 save_input_line_pointer = input_line_pointer;
9306 input_line_pointer = imm_start;
9307
9308 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9309 if (gotfree_input_line)
9310 input_line_pointer = gotfree_input_line;
9311
9312 exp_seg = expression (exp);
9313
9314 SKIP_WHITESPACE ();
9315
9316 /* Handle vector operations. */
9317 if (*input_line_pointer == '{')
9318 {
9319 input_line_pointer = check_VecOperations (input_line_pointer,
9320 NULL);
9321 if (input_line_pointer == NULL)
9322 return 0;
9323 }
9324
9325 if (*input_line_pointer)
9326 as_bad (_("junk `%s' after expression"), input_line_pointer);
9327
9328 input_line_pointer = save_input_line_pointer;
9329 if (gotfree_input_line)
9330 {
9331 free (gotfree_input_line);
9332
9333 if (exp->X_op == O_constant || exp->X_op == O_register)
9334 exp->X_op = O_illegal;
9335 }
9336
9337 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9338 }
9339
9340 static int
9341 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9342 i386_operand_type types, const char *imm_start)
9343 {
9344 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
9345 {
9346 if (imm_start)
9347 as_bad (_("missing or invalid immediate expression `%s'"),
9348 imm_start);
9349 return 0;
9350 }
9351 else if (exp->X_op == O_constant)
9352 {
9353 /* Size it properly later. */
9354 i.types[this_operand].bitfield.imm64 = 1;
9355 /* If not 64bit, sign extend val. */
9356 if (flag_code != CODE_64BIT
9357 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9358 exp->X_add_number
9359 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
9360 }
9361 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9362 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
9363 && exp_seg != absolute_section
9364 && exp_seg != text_section
9365 && exp_seg != data_section
9366 && exp_seg != bss_section
9367 && exp_seg != undefined_section
9368 && !bfd_is_com_section (exp_seg))
9369 {
9370 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9371 return 0;
9372 }
9373 #endif
9374 else if (!intel_syntax && exp_seg == reg_section)
9375 {
9376 if (imm_start)
9377 as_bad (_("illegal immediate register operand %s"), imm_start);
9378 return 0;
9379 }
9380 else
9381 {
9382 /* This is an address. The size of the address will be
9383 determined later, depending on destination register,
9384 suffix, or the default for the section. */
9385 i.types[this_operand].bitfield.imm8 = 1;
9386 i.types[this_operand].bitfield.imm16 = 1;
9387 i.types[this_operand].bitfield.imm32 = 1;
9388 i.types[this_operand].bitfield.imm32s = 1;
9389 i.types[this_operand].bitfield.imm64 = 1;
9390 i.types[this_operand] = operand_type_and (i.types[this_operand],
9391 types);
9392 }
9393
9394 return 1;
9395 }
9396
9397 static char *
9398 i386_scale (char *scale)
9399 {
9400 offsetT val;
9401 char *save = input_line_pointer;
9402
9403 input_line_pointer = scale;
9404 val = get_absolute_expression ();
9405
9406 switch (val)
9407 {
9408 case 1:
9409 i.log2_scale_factor = 0;
9410 break;
9411 case 2:
9412 i.log2_scale_factor = 1;
9413 break;
9414 case 4:
9415 i.log2_scale_factor = 2;
9416 break;
9417 case 8:
9418 i.log2_scale_factor = 3;
9419 break;
9420 default:
9421 {
9422 char sep = *input_line_pointer;
9423
9424 *input_line_pointer = '\0';
9425 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9426 scale);
9427 *input_line_pointer = sep;
9428 input_line_pointer = save;
9429 return NULL;
9430 }
9431 }
9432 if (i.log2_scale_factor != 0 && i.index_reg == 0)
9433 {
9434 as_warn (_("scale factor of %d without an index register"),
9435 1 << i.log2_scale_factor);
9436 i.log2_scale_factor = 0;
9437 }
9438 scale = input_line_pointer;
9439 input_line_pointer = save;
9440 return scale;
9441 }
9442
9443 static int
9444 i386_displacement (char *disp_start, char *disp_end)
9445 {
9446 expressionS *exp;
9447 segT exp_seg = 0;
9448 char *save_input_line_pointer;
9449 char *gotfree_input_line;
9450 int override;
9451 i386_operand_type bigdisp, types = anydisp;
9452 int ret;
9453
9454 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9455 {
9456 as_bad (_("at most %d displacement operands are allowed"),
9457 MAX_MEMORY_OPERANDS);
9458 return 0;
9459 }
9460
9461 operand_type_set (&bigdisp, 0);
9462 if ((i.types[this_operand].bitfield.jumpabsolute)
9463 || (!current_templates->start->opcode_modifier.jump
9464 && !current_templates->start->opcode_modifier.jumpdword))
9465 {
9466 bigdisp.bitfield.disp32 = 1;
9467 override = (i.prefix[ADDR_PREFIX] != 0);
9468 if (flag_code == CODE_64BIT)
9469 {
9470 if (!override)
9471 {
9472 bigdisp.bitfield.disp32s = 1;
9473 bigdisp.bitfield.disp64 = 1;
9474 }
9475 }
9476 else if ((flag_code == CODE_16BIT) ^ override)
9477 {
9478 bigdisp.bitfield.disp32 = 0;
9479 bigdisp.bitfield.disp16 = 1;
9480 }
9481 }
9482 else
9483 {
9484 /* For PC-relative branches, the width of the displacement
9485 is dependent upon data size, not address size. */
9486 override = (i.prefix[DATA_PREFIX] != 0);
9487 if (flag_code == CODE_64BIT)
9488 {
9489 if (override || i.suffix == WORD_MNEM_SUFFIX)
9490 bigdisp.bitfield.disp16 = 1;
9491 else
9492 {
9493 bigdisp.bitfield.disp32 = 1;
9494 bigdisp.bitfield.disp32s = 1;
9495 }
9496 }
9497 else
9498 {
9499 if (!override)
9500 override = (i.suffix == (flag_code != CODE_16BIT
9501 ? WORD_MNEM_SUFFIX
9502 : LONG_MNEM_SUFFIX));
9503 bigdisp.bitfield.disp32 = 1;
9504 if ((flag_code == CODE_16BIT) ^ override)
9505 {
9506 bigdisp.bitfield.disp32 = 0;
9507 bigdisp.bitfield.disp16 = 1;
9508 }
9509 }
9510 }
9511 i.types[this_operand] = operand_type_or (i.types[this_operand],
9512 bigdisp);
9513
9514 exp = &disp_expressions[i.disp_operands];
9515 i.op[this_operand].disps = exp;
9516 i.disp_operands++;
9517 save_input_line_pointer = input_line_pointer;
9518 input_line_pointer = disp_start;
9519 END_STRING_AND_SAVE (disp_end);
9520
9521 #ifndef GCC_ASM_O_HACK
9522 #define GCC_ASM_O_HACK 0
9523 #endif
9524 #if GCC_ASM_O_HACK
9525 END_STRING_AND_SAVE (disp_end + 1);
9526 if (i.types[this_operand].bitfield.baseIndex
9527 && displacement_string_end[-1] == '+')
9528 {
9529 /* This hack is to avoid a warning when using the "o"
9530 constraint within gcc asm statements.
9531 For instance:
9532
9533 #define _set_tssldt_desc(n,addr,limit,type) \
9534 __asm__ __volatile__ ( \
9535 "movw %w2,%0\n\t" \
9536 "movw %w1,2+%0\n\t" \
9537 "rorl $16,%1\n\t" \
9538 "movb %b1,4+%0\n\t" \
9539 "movb %4,5+%0\n\t" \
9540 "movb $0,6+%0\n\t" \
9541 "movb %h1,7+%0\n\t" \
9542 "rorl $16,%1" \
9543 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9544
9545 This works great except that the output assembler ends
9546 up looking a bit weird if it turns out that there is
9547 no offset. You end up producing code that looks like:
9548
9549 #APP
9550 movw $235,(%eax)
9551 movw %dx,2+(%eax)
9552 rorl $16,%edx
9553 movb %dl,4+(%eax)
9554 movb $137,5+(%eax)
9555 movb $0,6+(%eax)
9556 movb %dh,7+(%eax)
9557 rorl $16,%edx
9558 #NO_APP
9559
9560 So here we provide the missing zero. */
9561
9562 *displacement_string_end = '0';
9563 }
9564 #endif
9565 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9566 if (gotfree_input_line)
9567 input_line_pointer = gotfree_input_line;
9568
9569 exp_seg = expression (exp);
9570
9571 SKIP_WHITESPACE ();
9572 if (*input_line_pointer)
9573 as_bad (_("junk `%s' after expression"), input_line_pointer);
9574 #if GCC_ASM_O_HACK
9575 RESTORE_END_STRING (disp_end + 1);
9576 #endif
9577 input_line_pointer = save_input_line_pointer;
9578 if (gotfree_input_line)
9579 {
9580 free (gotfree_input_line);
9581
9582 if (exp->X_op == O_constant || exp->X_op == O_register)
9583 exp->X_op = O_illegal;
9584 }
9585
9586 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9587
9588 RESTORE_END_STRING (disp_end);
9589
9590 return ret;
9591 }
9592
9593 static int
9594 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9595 i386_operand_type types, const char *disp_start)
9596 {
9597 i386_operand_type bigdisp;
9598 int ret = 1;
9599
9600 /* We do this to make sure that the section symbol is in
9601 the symbol table. We will ultimately change the relocation
9602 to be relative to the beginning of the section. */
9603 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
9604 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9605 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9606 {
9607 if (exp->X_op != O_symbol)
9608 goto inv_disp;
9609
9610 if (S_IS_LOCAL (exp->X_add_symbol)
9611 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9612 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
9613 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
9614 exp->X_op = O_subtract;
9615 exp->X_op_symbol = GOT_symbol;
9616 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
9617 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
9618 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9619 i.reloc[this_operand] = BFD_RELOC_64;
9620 else
9621 i.reloc[this_operand] = BFD_RELOC_32;
9622 }
9623
9624 else if (exp->X_op == O_absent
9625 || exp->X_op == O_illegal
9626 || exp->X_op == O_big)
9627 {
9628 inv_disp:
9629 as_bad (_("missing or invalid displacement expression `%s'"),
9630 disp_start);
9631 ret = 0;
9632 }
9633
9634 else if (flag_code == CODE_64BIT
9635 && !i.prefix[ADDR_PREFIX]
9636 && exp->X_op == O_constant)
9637 {
9638 /* Since displacement is signed extended to 64bit, don't allow
9639 disp32 and turn off disp32s if they are out of range. */
9640 i.types[this_operand].bitfield.disp32 = 0;
9641 if (!fits_in_signed_long (exp->X_add_number))
9642 {
9643 i.types[this_operand].bitfield.disp32s = 0;
9644 if (i.types[this_operand].bitfield.baseindex)
9645 {
9646 as_bad (_("0x%lx out range of signed 32bit displacement"),
9647 (long) exp->X_add_number);
9648 ret = 0;
9649 }
9650 }
9651 }
9652
9653 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9654 else if (exp->X_op != O_constant
9655 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9656 && exp_seg != absolute_section
9657 && exp_seg != text_section
9658 && exp_seg != data_section
9659 && exp_seg != bss_section
9660 && exp_seg != undefined_section
9661 && !bfd_is_com_section (exp_seg))
9662 {
9663 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9664 ret = 0;
9665 }
9666 #endif
9667
9668 /* Check if this is a displacement only operand. */
9669 bigdisp = i.types[this_operand];
9670 bigdisp.bitfield.disp8 = 0;
9671 bigdisp.bitfield.disp16 = 0;
9672 bigdisp.bitfield.disp32 = 0;
9673 bigdisp.bitfield.disp32s = 0;
9674 bigdisp.bitfield.disp64 = 0;
9675 if (operand_type_all_zero (&bigdisp))
9676 i.types[this_operand] = operand_type_and (i.types[this_operand],
9677 types);
9678
9679 return ret;
9680 }
9681
9682 /* Return the active addressing mode, taking address override and
9683 registers forming the address into consideration. Update the
9684 address override prefix if necessary. */
9685
9686 static enum flag_code
9687 i386_addressing_mode (void)
9688 {
9689 enum flag_code addr_mode;
9690
9691 if (i.prefix[ADDR_PREFIX])
9692 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9693 else
9694 {
9695 addr_mode = flag_code;
9696
9697 #if INFER_ADDR_PREFIX
9698 if (i.mem_operands == 0)
9699 {
9700 /* Infer address prefix from the first memory operand. */
9701 const reg_entry *addr_reg = i.base_reg;
9702
9703 if (addr_reg == NULL)
9704 addr_reg = i.index_reg;
9705
9706 if (addr_reg)
9707 {
9708 if (addr_reg->reg_type.bitfield.dword)
9709 addr_mode = CODE_32BIT;
9710 else if (flag_code != CODE_64BIT
9711 && addr_reg->reg_type.bitfield.word)
9712 addr_mode = CODE_16BIT;
9713
9714 if (addr_mode != flag_code)
9715 {
9716 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9717 i.prefixes += 1;
9718 /* Change the size of any displacement too. At most one
9719 of Disp16 or Disp32 is set.
9720 FIXME. There doesn't seem to be any real need for
9721 separate Disp16 and Disp32 flags. The same goes for
9722 Imm16 and Imm32. Removing them would probably clean
9723 up the code quite a lot. */
9724 if (flag_code != CODE_64BIT
9725 && (i.types[this_operand].bitfield.disp16
9726 || i.types[this_operand].bitfield.disp32))
9727 i.types[this_operand]
9728 = operand_type_xor (i.types[this_operand], disp16_32);
9729 }
9730 }
9731 }
9732 #endif
9733 }
9734
9735 return addr_mode;
9736 }
9737
9738 /* Make sure the memory operand we've been dealt is valid.
9739 Return 1 on success, 0 on a failure. */
9740
9741 static int
9742 i386_index_check (const char *operand_string)
9743 {
9744 const char *kind = "base/index";
9745 enum flag_code addr_mode = i386_addressing_mode ();
9746
9747 if (current_templates->start->opcode_modifier.isstring
9748 && !current_templates->start->opcode_modifier.immext
9749 && (current_templates->end[-1].opcode_modifier.isstring
9750 || i.mem_operands))
9751 {
9752 /* Memory operands of string insns are special in that they only allow
9753 a single register (rDI, rSI, or rBX) as their memory address. */
9754 const reg_entry *expected_reg;
9755 static const char *di_si[][2] =
9756 {
9757 { "esi", "edi" },
9758 { "si", "di" },
9759 { "rsi", "rdi" }
9760 };
9761 static const char *bx[] = { "ebx", "bx", "rbx" };
9762
9763 kind = "string address";
9764
9765 if (current_templates->start->opcode_modifier.repprefixok)
9766 {
9767 i386_operand_type type = current_templates->end[-1].operand_types[0];
9768
9769 if (!type.bitfield.baseindex
9770 || ((!i.mem_operands != !intel_syntax)
9771 && current_templates->end[-1].operand_types[1]
9772 .bitfield.baseindex))
9773 type = current_templates->end[-1].operand_types[1];
9774 expected_reg = hash_find (reg_hash,
9775 di_si[addr_mode][type.bitfield.esseg]);
9776
9777 }
9778 else
9779 expected_reg = hash_find (reg_hash, bx[addr_mode]);
9780
9781 if (i.base_reg != expected_reg
9782 || i.index_reg
9783 || operand_type_check (i.types[this_operand], disp))
9784 {
9785 /* The second memory operand must have the same size as
9786 the first one. */
9787 if (i.mem_operands
9788 && i.base_reg
9789 && !((addr_mode == CODE_64BIT
9790 && i.base_reg->reg_type.bitfield.qword)
9791 || (addr_mode == CODE_32BIT
9792 ? i.base_reg->reg_type.bitfield.dword
9793 : i.base_reg->reg_type.bitfield.word)))
9794 goto bad_address;
9795
9796 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9797 operand_string,
9798 intel_syntax ? '[' : '(',
9799 register_prefix,
9800 expected_reg->reg_name,
9801 intel_syntax ? ']' : ')');
9802 return 1;
9803 }
9804 else
9805 return 1;
9806
9807 bad_address:
9808 as_bad (_("`%s' is not a valid %s expression"),
9809 operand_string, kind);
9810 return 0;
9811 }
9812 else
9813 {
9814 if (addr_mode != CODE_16BIT)
9815 {
9816 /* 32-bit/64-bit checks. */
9817 if ((i.base_reg
9818 && ((addr_mode == CODE_64BIT
9819 ? !i.base_reg->reg_type.bitfield.qword
9820 : !i.base_reg->reg_type.bitfield.dword)
9821 || (i.index_reg && i.base_reg->reg_num == RegIP)
9822 || i.base_reg->reg_num == RegIZ))
9823 || (i.index_reg
9824 && !i.index_reg->reg_type.bitfield.xmmword
9825 && !i.index_reg->reg_type.bitfield.ymmword
9826 && !i.index_reg->reg_type.bitfield.zmmword
9827 && ((addr_mode == CODE_64BIT
9828 ? !i.index_reg->reg_type.bitfield.qword
9829 : !i.index_reg->reg_type.bitfield.dword)
9830 || !i.index_reg->reg_type.bitfield.baseindex)))
9831 goto bad_address;
9832
9833 /* bndmk, bndldx, and bndstx have special restrictions. */
9834 if (current_templates->start->base_opcode == 0xf30f1b
9835 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9836 {
9837 /* They cannot use RIP-relative addressing. */
9838 if (i.base_reg && i.base_reg->reg_num == RegIP)
9839 {
9840 as_bad (_("`%s' cannot be used here"), operand_string);
9841 return 0;
9842 }
9843
9844 /* bndldx and bndstx ignore their scale factor. */
9845 if (current_templates->start->base_opcode != 0xf30f1b
9846 && i.log2_scale_factor)
9847 as_warn (_("register scaling is being ignored here"));
9848 }
9849 }
9850 else
9851 {
9852 /* 16-bit checks. */
9853 if ((i.base_reg
9854 && (!i.base_reg->reg_type.bitfield.word
9855 || !i.base_reg->reg_type.bitfield.baseindex))
9856 || (i.index_reg
9857 && (!i.index_reg->reg_type.bitfield.word
9858 || !i.index_reg->reg_type.bitfield.baseindex
9859 || !(i.base_reg
9860 && i.base_reg->reg_num < 6
9861 && i.index_reg->reg_num >= 6
9862 && i.log2_scale_factor == 0))))
9863 goto bad_address;
9864 }
9865 }
9866 return 1;
9867 }
9868
9869 /* Handle vector immediates. */
9870
9871 static int
9872 RC_SAE_immediate (const char *imm_start)
9873 {
9874 unsigned int match_found, j;
9875 const char *pstr = imm_start;
9876 expressionS *exp;
9877
9878 if (*pstr != '{')
9879 return 0;
9880
9881 pstr++;
9882 match_found = 0;
9883 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9884 {
9885 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9886 {
9887 if (!i.rounding)
9888 {
9889 rc_op.type = RC_NamesTable[j].type;
9890 rc_op.operand = this_operand;
9891 i.rounding = &rc_op;
9892 }
9893 else
9894 {
9895 as_bad (_("duplicated `%s'"), imm_start);
9896 return 0;
9897 }
9898 pstr += RC_NamesTable[j].len;
9899 match_found = 1;
9900 break;
9901 }
9902 }
9903 if (!match_found)
9904 return 0;
9905
9906 if (*pstr++ != '}')
9907 {
9908 as_bad (_("Missing '}': '%s'"), imm_start);
9909 return 0;
9910 }
9911 /* RC/SAE immediate string should contain nothing more. */;
9912 if (*pstr != 0)
9913 {
9914 as_bad (_("Junk after '}': '%s'"), imm_start);
9915 return 0;
9916 }
9917
9918 exp = &im_expressions[i.imm_operands++];
9919 i.op[this_operand].imms = exp;
9920
9921 exp->X_op = O_constant;
9922 exp->X_add_number = 0;
9923 exp->X_add_symbol = (symbolS *) 0;
9924 exp->X_op_symbol = (symbolS *) 0;
9925
9926 i.types[this_operand].bitfield.imm8 = 1;
9927 return 1;
9928 }
9929
9930 /* Only string instructions can have a second memory operand, so
9931 reduce current_templates to just those if it contains any. */
9932 static int
9933 maybe_adjust_templates (void)
9934 {
9935 const insn_template *t;
9936
9937 gas_assert (i.mem_operands == 1);
9938
9939 for (t = current_templates->start; t < current_templates->end; ++t)
9940 if (t->opcode_modifier.isstring)
9941 break;
9942
9943 if (t < current_templates->end)
9944 {
9945 static templates aux_templates;
9946 bfd_boolean recheck;
9947
9948 aux_templates.start = t;
9949 for (; t < current_templates->end; ++t)
9950 if (!t->opcode_modifier.isstring)
9951 break;
9952 aux_templates.end = t;
9953
9954 /* Determine whether to re-check the first memory operand. */
9955 recheck = (aux_templates.start != current_templates->start
9956 || t != current_templates->end);
9957
9958 current_templates = &aux_templates;
9959
9960 if (recheck)
9961 {
9962 i.mem_operands = 0;
9963 if (i.memop1_string != NULL
9964 && i386_index_check (i.memop1_string) == 0)
9965 return 0;
9966 i.mem_operands = 1;
9967 }
9968 }
9969
9970 return 1;
9971 }
9972
9973 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
9974 on error. */
9975
9976 static int
9977 i386_att_operand (char *operand_string)
9978 {
9979 const reg_entry *r;
9980 char *end_op;
9981 char *op_string = operand_string;
9982
9983 if (is_space_char (*op_string))
9984 ++op_string;
9985
9986 /* We check for an absolute prefix (differentiating,
9987 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
9988 if (*op_string == ABSOLUTE_PREFIX)
9989 {
9990 ++op_string;
9991 if (is_space_char (*op_string))
9992 ++op_string;
9993 i.types[this_operand].bitfield.jumpabsolute = 1;
9994 }
9995
9996 /* Check if operand is a register. */
9997 if ((r = parse_register (op_string, &end_op)) != NULL)
9998 {
9999 i386_operand_type temp;
10000
10001 /* Check for a segment override by searching for ':' after a
10002 segment register. */
10003 op_string = end_op;
10004 if (is_space_char (*op_string))
10005 ++op_string;
10006 if (*op_string == ':'
10007 && (r->reg_type.bitfield.sreg2
10008 || r->reg_type.bitfield.sreg3))
10009 {
10010 switch (r->reg_num)
10011 {
10012 case 0:
10013 i.seg[i.mem_operands] = &es;
10014 break;
10015 case 1:
10016 i.seg[i.mem_operands] = &cs;
10017 break;
10018 case 2:
10019 i.seg[i.mem_operands] = &ss;
10020 break;
10021 case 3:
10022 i.seg[i.mem_operands] = &ds;
10023 break;
10024 case 4:
10025 i.seg[i.mem_operands] = &fs;
10026 break;
10027 case 5:
10028 i.seg[i.mem_operands] = &gs;
10029 break;
10030 }
10031
10032 /* Skip the ':' and whitespace. */
10033 ++op_string;
10034 if (is_space_char (*op_string))
10035 ++op_string;
10036
10037 if (!is_digit_char (*op_string)
10038 && !is_identifier_char (*op_string)
10039 && *op_string != '('
10040 && *op_string != ABSOLUTE_PREFIX)
10041 {
10042 as_bad (_("bad memory operand `%s'"), op_string);
10043 return 0;
10044 }
10045 /* Handle case of %es:*foo. */
10046 if (*op_string == ABSOLUTE_PREFIX)
10047 {
10048 ++op_string;
10049 if (is_space_char (*op_string))
10050 ++op_string;
10051 i.types[this_operand].bitfield.jumpabsolute = 1;
10052 }
10053 goto do_memory_reference;
10054 }
10055
10056 /* Handle vector operations. */
10057 if (*op_string == '{')
10058 {
10059 op_string = check_VecOperations (op_string, NULL);
10060 if (op_string == NULL)
10061 return 0;
10062 }
10063
10064 if (*op_string)
10065 {
10066 as_bad (_("junk `%s' after register"), op_string);
10067 return 0;
10068 }
10069 temp = r->reg_type;
10070 temp.bitfield.baseindex = 0;
10071 i.types[this_operand] = operand_type_or (i.types[this_operand],
10072 temp);
10073 i.types[this_operand].bitfield.unspecified = 0;
10074 i.op[this_operand].regs = r;
10075 i.reg_operands++;
10076 }
10077 else if (*op_string == REGISTER_PREFIX)
10078 {
10079 as_bad (_("bad register name `%s'"), op_string);
10080 return 0;
10081 }
10082 else if (*op_string == IMMEDIATE_PREFIX)
10083 {
10084 ++op_string;
10085 if (i.types[this_operand].bitfield.jumpabsolute)
10086 {
10087 as_bad (_("immediate operand illegal with absolute jump"));
10088 return 0;
10089 }
10090 if (!i386_immediate (op_string))
10091 return 0;
10092 }
10093 else if (RC_SAE_immediate (operand_string))
10094 {
10095 /* If it is a RC or SAE immediate, do nothing. */
10096 ;
10097 }
10098 else if (is_digit_char (*op_string)
10099 || is_identifier_char (*op_string)
10100 || *op_string == '"'
10101 || *op_string == '(')
10102 {
10103 /* This is a memory reference of some sort. */
10104 char *base_string;
10105
10106 /* Start and end of displacement string expression (if found). */
10107 char *displacement_string_start;
10108 char *displacement_string_end;
10109 char *vop_start;
10110
10111 do_memory_reference:
10112 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10113 return 0;
10114 if ((i.mem_operands == 1
10115 && !current_templates->start->opcode_modifier.isstring)
10116 || i.mem_operands == 2)
10117 {
10118 as_bad (_("too many memory references for `%s'"),
10119 current_templates->start->name);
10120 return 0;
10121 }
10122
10123 /* Check for base index form. We detect the base index form by
10124 looking for an ')' at the end of the operand, searching
10125 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10126 after the '('. */
10127 base_string = op_string + strlen (op_string);
10128
10129 /* Handle vector operations. */
10130 vop_start = strchr (op_string, '{');
10131 if (vop_start && vop_start < base_string)
10132 {
10133 if (check_VecOperations (vop_start, base_string) == NULL)
10134 return 0;
10135 base_string = vop_start;
10136 }
10137
10138 --base_string;
10139 if (is_space_char (*base_string))
10140 --base_string;
10141
10142 /* If we only have a displacement, set-up for it to be parsed later. */
10143 displacement_string_start = op_string;
10144 displacement_string_end = base_string + 1;
10145
10146 if (*base_string == ')')
10147 {
10148 char *temp_string;
10149 unsigned int parens_balanced = 1;
10150 /* We've already checked that the number of left & right ()'s are
10151 equal, so this loop will not be infinite. */
10152 do
10153 {
10154 base_string--;
10155 if (*base_string == ')')
10156 parens_balanced++;
10157 if (*base_string == '(')
10158 parens_balanced--;
10159 }
10160 while (parens_balanced);
10161
10162 temp_string = base_string;
10163
10164 /* Skip past '(' and whitespace. */
10165 ++base_string;
10166 if (is_space_char (*base_string))
10167 ++base_string;
10168
10169 if (*base_string == ','
10170 || ((i.base_reg = parse_register (base_string, &end_op))
10171 != NULL))
10172 {
10173 displacement_string_end = temp_string;
10174
10175 i.types[this_operand].bitfield.baseindex = 1;
10176
10177 if (i.base_reg)
10178 {
10179 base_string = end_op;
10180 if (is_space_char (*base_string))
10181 ++base_string;
10182 }
10183
10184 /* There may be an index reg or scale factor here. */
10185 if (*base_string == ',')
10186 {
10187 ++base_string;
10188 if (is_space_char (*base_string))
10189 ++base_string;
10190
10191 if ((i.index_reg = parse_register (base_string, &end_op))
10192 != NULL)
10193 {
10194 base_string = end_op;
10195 if (is_space_char (*base_string))
10196 ++base_string;
10197 if (*base_string == ',')
10198 {
10199 ++base_string;
10200 if (is_space_char (*base_string))
10201 ++base_string;
10202 }
10203 else if (*base_string != ')')
10204 {
10205 as_bad (_("expecting `,' or `)' "
10206 "after index register in `%s'"),
10207 operand_string);
10208 return 0;
10209 }
10210 }
10211 else if (*base_string == REGISTER_PREFIX)
10212 {
10213 end_op = strchr (base_string, ',');
10214 if (end_op)
10215 *end_op = '\0';
10216 as_bad (_("bad register name `%s'"), base_string);
10217 return 0;
10218 }
10219
10220 /* Check for scale factor. */
10221 if (*base_string != ')')
10222 {
10223 char *end_scale = i386_scale (base_string);
10224
10225 if (!end_scale)
10226 return 0;
10227
10228 base_string = end_scale;
10229 if (is_space_char (*base_string))
10230 ++base_string;
10231 if (*base_string != ')')
10232 {
10233 as_bad (_("expecting `)' "
10234 "after scale factor in `%s'"),
10235 operand_string);
10236 return 0;
10237 }
10238 }
10239 else if (!i.index_reg)
10240 {
10241 as_bad (_("expecting index register or scale factor "
10242 "after `,'; got '%c'"),
10243 *base_string);
10244 return 0;
10245 }
10246 }
10247 else if (*base_string != ')')
10248 {
10249 as_bad (_("expecting `,' or `)' "
10250 "after base register in `%s'"),
10251 operand_string);
10252 return 0;
10253 }
10254 }
10255 else if (*base_string == REGISTER_PREFIX)
10256 {
10257 end_op = strchr (base_string, ',');
10258 if (end_op)
10259 *end_op = '\0';
10260 as_bad (_("bad register name `%s'"), base_string);
10261 return 0;
10262 }
10263 }
10264
10265 /* If there's an expression beginning the operand, parse it,
10266 assuming displacement_string_start and
10267 displacement_string_end are meaningful. */
10268 if (displacement_string_start != displacement_string_end)
10269 {
10270 if (!i386_displacement (displacement_string_start,
10271 displacement_string_end))
10272 return 0;
10273 }
10274
10275 /* Special case for (%dx) while doing input/output op. */
10276 if (i.base_reg
10277 && i.base_reg->reg_type.bitfield.inoutportreg
10278 && i.index_reg == 0
10279 && i.log2_scale_factor == 0
10280 && i.seg[i.mem_operands] == 0
10281 && !operand_type_check (i.types[this_operand], disp))
10282 {
10283 i.types[this_operand] = i.base_reg->reg_type;
10284 return 1;
10285 }
10286
10287 if (i386_index_check (operand_string) == 0)
10288 return 0;
10289 i.flags[this_operand] |= Operand_Mem;
10290 if (i.mem_operands == 0)
10291 i.memop1_string = xstrdup (operand_string);
10292 i.mem_operands++;
10293 }
10294 else
10295 {
10296 /* It's not a memory operand; argh! */
10297 as_bad (_("invalid char %s beginning operand %d `%s'"),
10298 output_invalid (*op_string),
10299 this_operand + 1,
10300 op_string);
10301 return 0;
10302 }
10303 return 1; /* Normal return. */
10304 }
10305 \f
10306 /* Calculate the maximum variable size (i.e., excluding fr_fix)
10307 that an rs_machine_dependent frag may reach. */
10308
10309 unsigned int
10310 i386_frag_max_var (fragS *frag)
10311 {
10312 /* The only relaxable frags are for jumps.
10313 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10314 gas_assert (frag->fr_type == rs_machine_dependent);
10315 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10316 }
10317
10318 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10319 static int
10320 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
10321 {
10322 /* STT_GNU_IFUNC symbol must go through PLT. */
10323 if ((symbol_get_bfdsym (fr_symbol)->flags
10324 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10325 return 0;
10326
10327 if (!S_IS_EXTERNAL (fr_symbol))
10328 /* Symbol may be weak or local. */
10329 return !S_IS_WEAK (fr_symbol);
10330
10331 /* Global symbols with non-default visibility can't be preempted. */
10332 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10333 return 1;
10334
10335 if (fr_var != NO_RELOC)
10336 switch ((enum bfd_reloc_code_real) fr_var)
10337 {
10338 case BFD_RELOC_386_PLT32:
10339 case BFD_RELOC_X86_64_PLT32:
10340 /* Symbol with PLT relocation may be preempted. */
10341 return 0;
10342 default:
10343 abort ();
10344 }
10345
10346 /* Global symbols with default visibility in a shared library may be
10347 preempted by another definition. */
10348 return !shared;
10349 }
10350 #endif
10351
10352 /* md_estimate_size_before_relax()
10353
10354 Called just before relax() for rs_machine_dependent frags. The x86
10355 assembler uses these frags to handle variable size jump
10356 instructions.
10357
10358 Any symbol that is now undefined will not become defined.
10359 Return the correct fr_subtype in the frag.
10360 Return the initial "guess for variable size of frag" to caller.
10361 The guess is actually the growth beyond the fixed part. Whatever
10362 we do to grow the fixed or variable part contributes to our
10363 returned value. */
10364
10365 int
10366 md_estimate_size_before_relax (fragS *fragP, segT segment)
10367 {
10368 /* We've already got fragP->fr_subtype right; all we have to do is
10369 check for un-relaxable symbols. On an ELF system, we can't relax
10370 an externally visible symbol, because it may be overridden by a
10371 shared library. */
10372 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
10373 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10374 || (IS_ELF
10375 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
10376 fragP->fr_var))
10377 #endif
10378 #if defined (OBJ_COFF) && defined (TE_PE)
10379 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
10380 && S_IS_WEAK (fragP->fr_symbol))
10381 #endif
10382 )
10383 {
10384 /* Symbol is undefined in this segment, or we need to keep a
10385 reloc so that weak symbols can be overridden. */
10386 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
10387 enum bfd_reloc_code_real reloc_type;
10388 unsigned char *opcode;
10389 int old_fr_fix;
10390
10391 if (fragP->fr_var != NO_RELOC)
10392 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
10393 else if (size == 2)
10394 reloc_type = BFD_RELOC_16_PCREL;
10395 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10396 else if (need_plt32_p (fragP->fr_symbol))
10397 reloc_type = BFD_RELOC_X86_64_PLT32;
10398 #endif
10399 else
10400 reloc_type = BFD_RELOC_32_PCREL;
10401
10402 old_fr_fix = fragP->fr_fix;
10403 opcode = (unsigned char *) fragP->fr_opcode;
10404
10405 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
10406 {
10407 case UNCOND_JUMP:
10408 /* Make jmp (0xeb) a (d)word displacement jump. */
10409 opcode[0] = 0xe9;
10410 fragP->fr_fix += size;
10411 fix_new (fragP, old_fr_fix, size,
10412 fragP->fr_symbol,
10413 fragP->fr_offset, 1,
10414 reloc_type);
10415 break;
10416
10417 case COND_JUMP86:
10418 if (size == 2
10419 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
10420 {
10421 /* Negate the condition, and branch past an
10422 unconditional jump. */
10423 opcode[0] ^= 1;
10424 opcode[1] = 3;
10425 /* Insert an unconditional jump. */
10426 opcode[2] = 0xe9;
10427 /* We added two extra opcode bytes, and have a two byte
10428 offset. */
10429 fragP->fr_fix += 2 + 2;
10430 fix_new (fragP, old_fr_fix + 2, 2,
10431 fragP->fr_symbol,
10432 fragP->fr_offset, 1,
10433 reloc_type);
10434 break;
10435 }
10436 /* Fall through. */
10437
10438 case COND_JUMP:
10439 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
10440 {
10441 fixS *fixP;
10442
10443 fragP->fr_fix += 1;
10444 fixP = fix_new (fragP, old_fr_fix, 1,
10445 fragP->fr_symbol,
10446 fragP->fr_offset, 1,
10447 BFD_RELOC_8_PCREL);
10448 fixP->fx_signed = 1;
10449 break;
10450 }
10451
10452 /* This changes the byte-displacement jump 0x7N
10453 to the (d)word-displacement jump 0x0f,0x8N. */
10454 opcode[1] = opcode[0] + 0x10;
10455 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10456 /* We've added an opcode byte. */
10457 fragP->fr_fix += 1 + size;
10458 fix_new (fragP, old_fr_fix + 1, size,
10459 fragP->fr_symbol,
10460 fragP->fr_offset, 1,
10461 reloc_type);
10462 break;
10463
10464 default:
10465 BAD_CASE (fragP->fr_subtype);
10466 break;
10467 }
10468 frag_wane (fragP);
10469 return fragP->fr_fix - old_fr_fix;
10470 }
10471
10472 /* Guess size depending on current relax state. Initially the relax
10473 state will correspond to a short jump and we return 1, because
10474 the variable part of the frag (the branch offset) is one byte
10475 long. However, we can relax a section more than once and in that
10476 case we must either set fr_subtype back to the unrelaxed state,
10477 or return the value for the appropriate branch. */
10478 return md_relax_table[fragP->fr_subtype].rlx_length;
10479 }
10480
10481 /* Called after relax() is finished.
10482
10483 In: Address of frag.
10484 fr_type == rs_machine_dependent.
10485 fr_subtype is what the address relaxed to.
10486
10487 Out: Any fixSs and constants are set up.
10488 Caller will turn frag into a ".space 0". */
10489
10490 void
10491 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10492 fragS *fragP)
10493 {
10494 unsigned char *opcode;
10495 unsigned char *where_to_put_displacement = NULL;
10496 offsetT target_address;
10497 offsetT opcode_address;
10498 unsigned int extension = 0;
10499 offsetT displacement_from_opcode_start;
10500
10501 opcode = (unsigned char *) fragP->fr_opcode;
10502
10503 /* Address we want to reach in file space. */
10504 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
10505
10506 /* Address opcode resides at in file space. */
10507 opcode_address = fragP->fr_address + fragP->fr_fix;
10508
10509 /* Displacement from opcode start to fill into instruction. */
10510 displacement_from_opcode_start = target_address - opcode_address;
10511
10512 if ((fragP->fr_subtype & BIG) == 0)
10513 {
10514 /* Don't have to change opcode. */
10515 extension = 1; /* 1 opcode + 1 displacement */
10516 where_to_put_displacement = &opcode[1];
10517 }
10518 else
10519 {
10520 if (no_cond_jump_promotion
10521 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
10522 as_warn_where (fragP->fr_file, fragP->fr_line,
10523 _("long jump required"));
10524
10525 switch (fragP->fr_subtype)
10526 {
10527 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10528 extension = 4; /* 1 opcode + 4 displacement */
10529 opcode[0] = 0xe9;
10530 where_to_put_displacement = &opcode[1];
10531 break;
10532
10533 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10534 extension = 2; /* 1 opcode + 2 displacement */
10535 opcode[0] = 0xe9;
10536 where_to_put_displacement = &opcode[1];
10537 break;
10538
10539 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10540 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10541 extension = 5; /* 2 opcode + 4 displacement */
10542 opcode[1] = opcode[0] + 0x10;
10543 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10544 where_to_put_displacement = &opcode[2];
10545 break;
10546
10547 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10548 extension = 3; /* 2 opcode + 2 displacement */
10549 opcode[1] = opcode[0] + 0x10;
10550 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10551 where_to_put_displacement = &opcode[2];
10552 break;
10553
10554 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10555 extension = 4;
10556 opcode[0] ^= 1;
10557 opcode[1] = 3;
10558 opcode[2] = 0xe9;
10559 where_to_put_displacement = &opcode[3];
10560 break;
10561
10562 default:
10563 BAD_CASE (fragP->fr_subtype);
10564 break;
10565 }
10566 }
10567
10568 /* If size if less then four we are sure that the operand fits,
10569 but if it's 4, then it could be that the displacement is larger
10570 then -/+ 2GB. */
10571 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10572 && object_64bit
10573 && ((addressT) (displacement_from_opcode_start - extension
10574 + ((addressT) 1 << 31))
10575 > (((addressT) 2 << 31) - 1)))
10576 {
10577 as_bad_where (fragP->fr_file, fragP->fr_line,
10578 _("jump target out of range"));
10579 /* Make us emit 0. */
10580 displacement_from_opcode_start = extension;
10581 }
10582 /* Now put displacement after opcode. */
10583 md_number_to_chars ((char *) where_to_put_displacement,
10584 (valueT) (displacement_from_opcode_start - extension),
10585 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
10586 fragP->fr_fix += extension;
10587 }
10588 \f
10589 /* Apply a fixup (fixP) to segment data, once it has been determined
10590 by our caller that we have all the info we need to fix it up.
10591
10592 Parameter valP is the pointer to the value of the bits.
10593
10594 On the 386, immediates, displacements, and data pointers are all in
10595 the same (little-endian) format, so we don't need to care about which
10596 we are handling. */
10597
10598 void
10599 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
10600 {
10601 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
10602 valueT value = *valP;
10603
10604 #if !defined (TE_Mach)
10605 if (fixP->fx_pcrel)
10606 {
10607 switch (fixP->fx_r_type)
10608 {
10609 default:
10610 break;
10611
10612 case BFD_RELOC_64:
10613 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10614 break;
10615 case BFD_RELOC_32:
10616 case BFD_RELOC_X86_64_32S:
10617 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10618 break;
10619 case BFD_RELOC_16:
10620 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10621 break;
10622 case BFD_RELOC_8:
10623 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10624 break;
10625 }
10626 }
10627
10628 if (fixP->fx_addsy != NULL
10629 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
10630 || fixP->fx_r_type == BFD_RELOC_64_PCREL
10631 || fixP->fx_r_type == BFD_RELOC_16_PCREL
10632 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
10633 && !use_rela_relocations)
10634 {
10635 /* This is a hack. There should be a better way to handle this.
10636 This covers for the fact that bfd_install_relocation will
10637 subtract the current location (for partial_inplace, PC relative
10638 relocations); see more below. */
10639 #ifndef OBJ_AOUT
10640 if (IS_ELF
10641 #ifdef TE_PE
10642 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10643 #endif
10644 )
10645 value += fixP->fx_where + fixP->fx_frag->fr_address;
10646 #endif
10647 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10648 if (IS_ELF)
10649 {
10650 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
10651
10652 if ((sym_seg == seg
10653 || (symbol_section_p (fixP->fx_addsy)
10654 && sym_seg != absolute_section))
10655 && !generic_force_reloc (fixP))
10656 {
10657 /* Yes, we add the values in twice. This is because
10658 bfd_install_relocation subtracts them out again. I think
10659 bfd_install_relocation is broken, but I don't dare change
10660 it. FIXME. */
10661 value += fixP->fx_where + fixP->fx_frag->fr_address;
10662 }
10663 }
10664 #endif
10665 #if defined (OBJ_COFF) && defined (TE_PE)
10666 /* For some reason, the PE format does not store a
10667 section address offset for a PC relative symbol. */
10668 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
10669 || S_IS_WEAK (fixP->fx_addsy))
10670 value += md_pcrel_from (fixP);
10671 #endif
10672 }
10673 #if defined (OBJ_COFF) && defined (TE_PE)
10674 if (fixP->fx_addsy != NULL
10675 && S_IS_WEAK (fixP->fx_addsy)
10676 /* PR 16858: Do not modify weak function references. */
10677 && ! fixP->fx_pcrel)
10678 {
10679 #if !defined (TE_PEP)
10680 /* For x86 PE weak function symbols are neither PC-relative
10681 nor do they set S_IS_FUNCTION. So the only reliable way
10682 to detect them is to check the flags of their containing
10683 section. */
10684 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10685 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10686 ;
10687 else
10688 #endif
10689 value -= S_GET_VALUE (fixP->fx_addsy);
10690 }
10691 #endif
10692
10693 /* Fix a few things - the dynamic linker expects certain values here,
10694 and we must not disappoint it. */
10695 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10696 if (IS_ELF && fixP->fx_addsy)
10697 switch (fixP->fx_r_type)
10698 {
10699 case BFD_RELOC_386_PLT32:
10700 case BFD_RELOC_X86_64_PLT32:
10701 /* Make the jump instruction point to the address of the operand.
10702 At runtime we merely add the offset to the actual PLT entry.
10703 NB: Subtract the offset size only for jump instructions. */
10704 if (fixP->fx_pcrel)
10705 value = -4;
10706 break;
10707
10708 case BFD_RELOC_386_TLS_GD:
10709 case BFD_RELOC_386_TLS_LDM:
10710 case BFD_RELOC_386_TLS_IE_32:
10711 case BFD_RELOC_386_TLS_IE:
10712 case BFD_RELOC_386_TLS_GOTIE:
10713 case BFD_RELOC_386_TLS_GOTDESC:
10714 case BFD_RELOC_X86_64_TLSGD:
10715 case BFD_RELOC_X86_64_TLSLD:
10716 case BFD_RELOC_X86_64_GOTTPOFF:
10717 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10718 value = 0; /* Fully resolved at runtime. No addend. */
10719 /* Fallthrough */
10720 case BFD_RELOC_386_TLS_LE:
10721 case BFD_RELOC_386_TLS_LDO_32:
10722 case BFD_RELOC_386_TLS_LE_32:
10723 case BFD_RELOC_X86_64_DTPOFF32:
10724 case BFD_RELOC_X86_64_DTPOFF64:
10725 case BFD_RELOC_X86_64_TPOFF32:
10726 case BFD_RELOC_X86_64_TPOFF64:
10727 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10728 break;
10729
10730 case BFD_RELOC_386_TLS_DESC_CALL:
10731 case BFD_RELOC_X86_64_TLSDESC_CALL:
10732 value = 0; /* Fully resolved at runtime. No addend. */
10733 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10734 fixP->fx_done = 0;
10735 return;
10736
10737 case BFD_RELOC_VTABLE_INHERIT:
10738 case BFD_RELOC_VTABLE_ENTRY:
10739 fixP->fx_done = 0;
10740 return;
10741
10742 default:
10743 break;
10744 }
10745 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
10746 *valP = value;
10747 #endif /* !defined (TE_Mach) */
10748
10749 /* Are we finished with this relocation now? */
10750 if (fixP->fx_addsy == NULL)
10751 fixP->fx_done = 1;
10752 #if defined (OBJ_COFF) && defined (TE_PE)
10753 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10754 {
10755 fixP->fx_done = 0;
10756 /* Remember value for tc_gen_reloc. */
10757 fixP->fx_addnumber = value;
10758 /* Clear out the frag for now. */
10759 value = 0;
10760 }
10761 #endif
10762 else if (use_rela_relocations)
10763 {
10764 fixP->fx_no_overflow = 1;
10765 /* Remember value for tc_gen_reloc. */
10766 fixP->fx_addnumber = value;
10767 value = 0;
10768 }
10769
10770 md_number_to_chars (p, value, fixP->fx_size);
10771 }
10772 \f
10773 const char *
10774 md_atof (int type, char *litP, int *sizeP)
10775 {
10776 /* This outputs the LITTLENUMs in REVERSE order;
10777 in accord with the bigendian 386. */
10778 return ieee_md_atof (type, litP, sizeP, FALSE);
10779 }
10780 \f
10781 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
10782
10783 static char *
10784 output_invalid (int c)
10785 {
10786 if (ISPRINT (c))
10787 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10788 "'%c'", c);
10789 else
10790 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10791 "(0x%x)", (unsigned char) c);
10792 return output_invalid_buf;
10793 }
10794
10795 /* REG_STRING starts *before* REGISTER_PREFIX. */
10796
10797 static const reg_entry *
10798 parse_real_register (char *reg_string, char **end_op)
10799 {
10800 char *s = reg_string;
10801 char *p;
10802 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10803 const reg_entry *r;
10804
10805 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10806 if (*s == REGISTER_PREFIX)
10807 ++s;
10808
10809 if (is_space_char (*s))
10810 ++s;
10811
10812 p = reg_name_given;
10813 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
10814 {
10815 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
10816 return (const reg_entry *) NULL;
10817 s++;
10818 }
10819
10820 /* For naked regs, make sure that we are not dealing with an identifier.
10821 This prevents confusing an identifier like `eax_var' with register
10822 `eax'. */
10823 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10824 return (const reg_entry *) NULL;
10825
10826 *end_op = s;
10827
10828 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10829
10830 /* Handle floating point regs, allowing spaces in the (i) part. */
10831 if (r == i386_regtab /* %st is first entry of table */)
10832 {
10833 if (!cpu_arch_flags.bitfield.cpu8087
10834 && !cpu_arch_flags.bitfield.cpu287
10835 && !cpu_arch_flags.bitfield.cpu387)
10836 return (const reg_entry *) NULL;
10837
10838 if (is_space_char (*s))
10839 ++s;
10840 if (*s == '(')
10841 {
10842 ++s;
10843 if (is_space_char (*s))
10844 ++s;
10845 if (*s >= '0' && *s <= '7')
10846 {
10847 int fpr = *s - '0';
10848 ++s;
10849 if (is_space_char (*s))
10850 ++s;
10851 if (*s == ')')
10852 {
10853 *end_op = s + 1;
10854 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
10855 know (r);
10856 return r + fpr;
10857 }
10858 }
10859 /* We have "%st(" then garbage. */
10860 return (const reg_entry *) NULL;
10861 }
10862 }
10863
10864 if (r == NULL || allow_pseudo_reg)
10865 return r;
10866
10867 if (operand_type_all_zero (&r->reg_type))
10868 return (const reg_entry *) NULL;
10869
10870 if ((r->reg_type.bitfield.dword
10871 || r->reg_type.bitfield.sreg3
10872 || r->reg_type.bitfield.control
10873 || r->reg_type.bitfield.debug
10874 || r->reg_type.bitfield.test)
10875 && !cpu_arch_flags.bitfield.cpui386)
10876 return (const reg_entry *) NULL;
10877
10878 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
10879 return (const reg_entry *) NULL;
10880
10881 if (!cpu_arch_flags.bitfield.cpuavx512f)
10882 {
10883 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10884 return (const reg_entry *) NULL;
10885
10886 if (!cpu_arch_flags.bitfield.cpuavx)
10887 {
10888 if (r->reg_type.bitfield.ymmword)
10889 return (const reg_entry *) NULL;
10890
10891 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10892 return (const reg_entry *) NULL;
10893 }
10894 }
10895
10896 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10897 return (const reg_entry *) NULL;
10898
10899 /* Don't allow fake index register unless allow_index_reg isn't 0. */
10900 if (!allow_index_reg && r->reg_num == RegIZ)
10901 return (const reg_entry *) NULL;
10902
10903 /* Upper 16 vector registers are only available with VREX in 64bit
10904 mode, and require EVEX encoding. */
10905 if (r->reg_flags & RegVRex)
10906 {
10907 if (!cpu_arch_flags.bitfield.cpuavx512f
10908 || flag_code != CODE_64BIT)
10909 return (const reg_entry *) NULL;
10910
10911 i.vec_encoding = vex_encoding_evex;
10912 }
10913
10914 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10915 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
10916 && flag_code != CODE_64BIT)
10917 return (const reg_entry *) NULL;
10918
10919 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10920 return (const reg_entry *) NULL;
10921
10922 return r;
10923 }
10924
10925 /* REG_STRING starts *before* REGISTER_PREFIX. */
10926
10927 static const reg_entry *
10928 parse_register (char *reg_string, char **end_op)
10929 {
10930 const reg_entry *r;
10931
10932 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10933 r = parse_real_register (reg_string, end_op);
10934 else
10935 r = NULL;
10936 if (!r)
10937 {
10938 char *save = input_line_pointer;
10939 char c;
10940 symbolS *symbolP;
10941
10942 input_line_pointer = reg_string;
10943 c = get_symbol_name (&reg_string);
10944 symbolP = symbol_find (reg_string);
10945 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10946 {
10947 const expressionS *e = symbol_get_value_expression (symbolP);
10948
10949 know (e->X_op == O_register);
10950 know (e->X_add_number >= 0
10951 && (valueT) e->X_add_number < i386_regtab_size);
10952 r = i386_regtab + e->X_add_number;
10953 if ((r->reg_flags & RegVRex))
10954 i.vec_encoding = vex_encoding_evex;
10955 *end_op = input_line_pointer;
10956 }
10957 *input_line_pointer = c;
10958 input_line_pointer = save;
10959 }
10960 return r;
10961 }
10962
10963 int
10964 i386_parse_name (char *name, expressionS *e, char *nextcharP)
10965 {
10966 const reg_entry *r;
10967 char *end = input_line_pointer;
10968
10969 *end = *nextcharP;
10970 r = parse_register (name, &input_line_pointer);
10971 if (r && end <= input_line_pointer)
10972 {
10973 *nextcharP = *input_line_pointer;
10974 *input_line_pointer = 0;
10975 e->X_op = O_register;
10976 e->X_add_number = r - i386_regtab;
10977 return 1;
10978 }
10979 input_line_pointer = end;
10980 *end = 0;
10981 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
10982 }
10983
10984 void
10985 md_operand (expressionS *e)
10986 {
10987 char *end;
10988 const reg_entry *r;
10989
10990 switch (*input_line_pointer)
10991 {
10992 case REGISTER_PREFIX:
10993 r = parse_real_register (input_line_pointer, &end);
10994 if (r)
10995 {
10996 e->X_op = O_register;
10997 e->X_add_number = r - i386_regtab;
10998 input_line_pointer = end;
10999 }
11000 break;
11001
11002 case '[':
11003 gas_assert (intel_syntax);
11004 end = input_line_pointer++;
11005 expression (e);
11006 if (*input_line_pointer == ']')
11007 {
11008 ++input_line_pointer;
11009 e->X_op_symbol = make_expr_symbol (e);
11010 e->X_add_symbol = NULL;
11011 e->X_add_number = 0;
11012 e->X_op = O_index;
11013 }
11014 else
11015 {
11016 e->X_op = O_absent;
11017 input_line_pointer = end;
11018 }
11019 break;
11020 }
11021 }
11022
11023 \f
11024 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11025 const char *md_shortopts = "kVQ:sqnO::";
11026 #else
11027 const char *md_shortopts = "qnO::";
11028 #endif
11029
11030 #define OPTION_32 (OPTION_MD_BASE + 0)
11031 #define OPTION_64 (OPTION_MD_BASE + 1)
11032 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
11033 #define OPTION_MARCH (OPTION_MD_BASE + 3)
11034 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
11035 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
11036 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
11037 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
11038 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
11039 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
11040 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
11041 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
11042 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
11043 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
11044 #define OPTION_X32 (OPTION_MD_BASE + 14)
11045 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
11046 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
11047 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
11048 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
11049 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
11050 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
11051 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
11052 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
11053 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
11054 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
11055 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
11056 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
11057
11058 struct option md_longopts[] =
11059 {
11060 {"32", no_argument, NULL, OPTION_32},
11061 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11062 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11063 {"64", no_argument, NULL, OPTION_64},
11064 #endif
11065 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11066 {"x32", no_argument, NULL, OPTION_X32},
11067 {"mshared", no_argument, NULL, OPTION_MSHARED},
11068 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
11069 #endif
11070 {"divide", no_argument, NULL, OPTION_DIVIDE},
11071 {"march", required_argument, NULL, OPTION_MARCH},
11072 {"mtune", required_argument, NULL, OPTION_MTUNE},
11073 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
11074 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
11075 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
11076 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
11077 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
11078 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
11079 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
11080 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
11081 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
11082 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
11083 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
11084 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
11085 # if defined (TE_PE) || defined (TE_PEP)
11086 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
11087 #endif
11088 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
11089 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
11090 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
11091 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
11092 {"mamd64", no_argument, NULL, OPTION_MAMD64},
11093 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
11094 {NULL, no_argument, NULL, 0}
11095 };
11096 size_t md_longopts_size = sizeof (md_longopts);
11097
11098 int
11099 md_parse_option (int c, const char *arg)
11100 {
11101 unsigned int j;
11102 char *arch, *next, *saved;
11103
11104 switch (c)
11105 {
11106 case 'n':
11107 optimize_align_code = 0;
11108 break;
11109
11110 case 'q':
11111 quiet_warnings = 1;
11112 break;
11113
11114 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11115 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
11116 should be emitted or not. FIXME: Not implemented. */
11117 case 'Q':
11118 break;
11119
11120 /* -V: SVR4 argument to print version ID. */
11121 case 'V':
11122 print_version_id ();
11123 break;
11124
11125 /* -k: Ignore for FreeBSD compatibility. */
11126 case 'k':
11127 break;
11128
11129 case 's':
11130 /* -s: On i386 Solaris, this tells the native assembler to use
11131 .stab instead of .stab.excl. We always use .stab anyhow. */
11132 break;
11133
11134 case OPTION_MSHARED:
11135 shared = 1;
11136 break;
11137
11138 case OPTION_X86_USED_NOTE:
11139 if (strcasecmp (arg, "yes") == 0)
11140 x86_used_note = 1;
11141 else if (strcasecmp (arg, "no") == 0)
11142 x86_used_note = 0;
11143 else
11144 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
11145 break;
11146
11147
11148 #endif
11149 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11150 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11151 case OPTION_64:
11152 {
11153 const char **list, **l;
11154
11155 list = bfd_target_list ();
11156 for (l = list; *l != NULL; l++)
11157 if (CONST_STRNEQ (*l, "elf64-x86-64")
11158 || strcmp (*l, "coff-x86-64") == 0
11159 || strcmp (*l, "pe-x86-64") == 0
11160 || strcmp (*l, "pei-x86-64") == 0
11161 || strcmp (*l, "mach-o-x86-64") == 0)
11162 {
11163 default_arch = "x86_64";
11164 break;
11165 }
11166 if (*l == NULL)
11167 as_fatal (_("no compiled in support for x86_64"));
11168 free (list);
11169 }
11170 break;
11171 #endif
11172
11173 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11174 case OPTION_X32:
11175 if (IS_ELF)
11176 {
11177 const char **list, **l;
11178
11179 list = bfd_target_list ();
11180 for (l = list; *l != NULL; l++)
11181 if (CONST_STRNEQ (*l, "elf32-x86-64"))
11182 {
11183 default_arch = "x86_64:32";
11184 break;
11185 }
11186 if (*l == NULL)
11187 as_fatal (_("no compiled in support for 32bit x86_64"));
11188 free (list);
11189 }
11190 else
11191 as_fatal (_("32bit x86_64 is only supported for ELF"));
11192 break;
11193 #endif
11194
11195 case OPTION_32:
11196 default_arch = "i386";
11197 break;
11198
11199 case OPTION_DIVIDE:
11200 #ifdef SVR4_COMMENT_CHARS
11201 {
11202 char *n, *t;
11203 const char *s;
11204
11205 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
11206 t = n;
11207 for (s = i386_comment_chars; *s != '\0'; s++)
11208 if (*s != '/')
11209 *t++ = *s;
11210 *t = '\0';
11211 i386_comment_chars = n;
11212 }
11213 #endif
11214 break;
11215
11216 case OPTION_MARCH:
11217 saved = xstrdup (arg);
11218 arch = saved;
11219 /* Allow -march=+nosse. */
11220 if (*arch == '+')
11221 arch++;
11222 do
11223 {
11224 if (*arch == '.')
11225 as_fatal (_("invalid -march= option: `%s'"), arg);
11226 next = strchr (arch, '+');
11227 if (next)
11228 *next++ = '\0';
11229 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11230 {
11231 if (strcmp (arch, cpu_arch [j].name) == 0)
11232 {
11233 /* Processor. */
11234 if (! cpu_arch[j].flags.bitfield.cpui386)
11235 continue;
11236
11237 cpu_arch_name = cpu_arch[j].name;
11238 cpu_sub_arch_name = NULL;
11239 cpu_arch_flags = cpu_arch[j].flags;
11240 cpu_arch_isa = cpu_arch[j].type;
11241 cpu_arch_isa_flags = cpu_arch[j].flags;
11242 if (!cpu_arch_tune_set)
11243 {
11244 cpu_arch_tune = cpu_arch_isa;
11245 cpu_arch_tune_flags = cpu_arch_isa_flags;
11246 }
11247 break;
11248 }
11249 else if (*cpu_arch [j].name == '.'
11250 && strcmp (arch, cpu_arch [j].name + 1) == 0)
11251 {
11252 /* ISA extension. */
11253 i386_cpu_flags flags;
11254
11255 flags = cpu_flags_or (cpu_arch_flags,
11256 cpu_arch[j].flags);
11257
11258 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11259 {
11260 if (cpu_sub_arch_name)
11261 {
11262 char *name = cpu_sub_arch_name;
11263 cpu_sub_arch_name = concat (name,
11264 cpu_arch[j].name,
11265 (const char *) NULL);
11266 free (name);
11267 }
11268 else
11269 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
11270 cpu_arch_flags = flags;
11271 cpu_arch_isa_flags = flags;
11272 }
11273 else
11274 cpu_arch_isa_flags
11275 = cpu_flags_or (cpu_arch_isa_flags,
11276 cpu_arch[j].flags);
11277 break;
11278 }
11279 }
11280
11281 if (j >= ARRAY_SIZE (cpu_arch))
11282 {
11283 /* Disable an ISA extension. */
11284 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11285 if (strcmp (arch, cpu_noarch [j].name) == 0)
11286 {
11287 i386_cpu_flags flags;
11288
11289 flags = cpu_flags_and_not (cpu_arch_flags,
11290 cpu_noarch[j].flags);
11291 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11292 {
11293 if (cpu_sub_arch_name)
11294 {
11295 char *name = cpu_sub_arch_name;
11296 cpu_sub_arch_name = concat (arch,
11297 (const char *) NULL);
11298 free (name);
11299 }
11300 else
11301 cpu_sub_arch_name = xstrdup (arch);
11302 cpu_arch_flags = flags;
11303 cpu_arch_isa_flags = flags;
11304 }
11305 break;
11306 }
11307
11308 if (j >= ARRAY_SIZE (cpu_noarch))
11309 j = ARRAY_SIZE (cpu_arch);
11310 }
11311
11312 if (j >= ARRAY_SIZE (cpu_arch))
11313 as_fatal (_("invalid -march= option: `%s'"), arg);
11314
11315 arch = next;
11316 }
11317 while (next != NULL);
11318 free (saved);
11319 break;
11320
11321 case OPTION_MTUNE:
11322 if (*arg == '.')
11323 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11324 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11325 {
11326 if (strcmp (arg, cpu_arch [j].name) == 0)
11327 {
11328 cpu_arch_tune_set = 1;
11329 cpu_arch_tune = cpu_arch [j].type;
11330 cpu_arch_tune_flags = cpu_arch[j].flags;
11331 break;
11332 }
11333 }
11334 if (j >= ARRAY_SIZE (cpu_arch))
11335 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11336 break;
11337
11338 case OPTION_MMNEMONIC:
11339 if (strcasecmp (arg, "att") == 0)
11340 intel_mnemonic = 0;
11341 else if (strcasecmp (arg, "intel") == 0)
11342 intel_mnemonic = 1;
11343 else
11344 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
11345 break;
11346
11347 case OPTION_MSYNTAX:
11348 if (strcasecmp (arg, "att") == 0)
11349 intel_syntax = 0;
11350 else if (strcasecmp (arg, "intel") == 0)
11351 intel_syntax = 1;
11352 else
11353 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
11354 break;
11355
11356 case OPTION_MINDEX_REG:
11357 allow_index_reg = 1;
11358 break;
11359
11360 case OPTION_MNAKED_REG:
11361 allow_naked_reg = 1;
11362 break;
11363
11364 case OPTION_MSSE2AVX:
11365 sse2avx = 1;
11366 break;
11367
11368 case OPTION_MSSE_CHECK:
11369 if (strcasecmp (arg, "error") == 0)
11370 sse_check = check_error;
11371 else if (strcasecmp (arg, "warning") == 0)
11372 sse_check = check_warning;
11373 else if (strcasecmp (arg, "none") == 0)
11374 sse_check = check_none;
11375 else
11376 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
11377 break;
11378
11379 case OPTION_MOPERAND_CHECK:
11380 if (strcasecmp (arg, "error") == 0)
11381 operand_check = check_error;
11382 else if (strcasecmp (arg, "warning") == 0)
11383 operand_check = check_warning;
11384 else if (strcasecmp (arg, "none") == 0)
11385 operand_check = check_none;
11386 else
11387 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
11388 break;
11389
11390 case OPTION_MAVXSCALAR:
11391 if (strcasecmp (arg, "128") == 0)
11392 avxscalar = vex128;
11393 else if (strcasecmp (arg, "256") == 0)
11394 avxscalar = vex256;
11395 else
11396 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
11397 break;
11398
11399 case OPTION_MVEXWIG:
11400 if (strcmp (arg, "0") == 0)
11401 vexwig = evexw0;
11402 else if (strcmp (arg, "1") == 0)
11403 vexwig = evexw1;
11404 else
11405 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
11406 break;
11407
11408 case OPTION_MADD_BND_PREFIX:
11409 add_bnd_prefix = 1;
11410 break;
11411
11412 case OPTION_MEVEXLIG:
11413 if (strcmp (arg, "128") == 0)
11414 evexlig = evexl128;
11415 else if (strcmp (arg, "256") == 0)
11416 evexlig = evexl256;
11417 else if (strcmp (arg, "512") == 0)
11418 evexlig = evexl512;
11419 else
11420 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
11421 break;
11422
11423 case OPTION_MEVEXRCIG:
11424 if (strcmp (arg, "rne") == 0)
11425 evexrcig = rne;
11426 else if (strcmp (arg, "rd") == 0)
11427 evexrcig = rd;
11428 else if (strcmp (arg, "ru") == 0)
11429 evexrcig = ru;
11430 else if (strcmp (arg, "rz") == 0)
11431 evexrcig = rz;
11432 else
11433 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
11434 break;
11435
11436 case OPTION_MEVEXWIG:
11437 if (strcmp (arg, "0") == 0)
11438 evexwig = evexw0;
11439 else if (strcmp (arg, "1") == 0)
11440 evexwig = evexw1;
11441 else
11442 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
11443 break;
11444
11445 # if defined (TE_PE) || defined (TE_PEP)
11446 case OPTION_MBIG_OBJ:
11447 use_big_obj = 1;
11448 break;
11449 #endif
11450
11451 case OPTION_MOMIT_LOCK_PREFIX:
11452 if (strcasecmp (arg, "yes") == 0)
11453 omit_lock_prefix = 1;
11454 else if (strcasecmp (arg, "no") == 0)
11455 omit_lock_prefix = 0;
11456 else
11457 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
11458 break;
11459
11460 case OPTION_MFENCE_AS_LOCK_ADD:
11461 if (strcasecmp (arg, "yes") == 0)
11462 avoid_fence = 1;
11463 else if (strcasecmp (arg, "no") == 0)
11464 avoid_fence = 0;
11465 else
11466 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
11467 break;
11468
11469 case OPTION_MRELAX_RELOCATIONS:
11470 if (strcasecmp (arg, "yes") == 0)
11471 generate_relax_relocations = 1;
11472 else if (strcasecmp (arg, "no") == 0)
11473 generate_relax_relocations = 0;
11474 else
11475 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
11476 break;
11477
11478 case OPTION_MAMD64:
11479 intel64 = 0;
11480 break;
11481
11482 case OPTION_MINTEL64:
11483 intel64 = 1;
11484 break;
11485
11486 case 'O':
11487 if (arg == NULL)
11488 {
11489 optimize = 1;
11490 /* Turn off -Os. */
11491 optimize_for_space = 0;
11492 }
11493 else if (*arg == 's')
11494 {
11495 optimize_for_space = 1;
11496 /* Turn on all encoding optimizations. */
11497 optimize = INT_MAX;
11498 }
11499 else
11500 {
11501 optimize = atoi (arg);
11502 /* Turn off -Os. */
11503 optimize_for_space = 0;
11504 }
11505 break;
11506
11507 default:
11508 return 0;
11509 }
11510 return 1;
11511 }
11512
11513 #define MESSAGE_TEMPLATE \
11514 " "
11515
11516 static char *
11517 output_message (FILE *stream, char *p, char *message, char *start,
11518 int *left_p, const char *name, int len)
11519 {
11520 int size = sizeof (MESSAGE_TEMPLATE);
11521 int left = *left_p;
11522
11523 /* Reserve 2 spaces for ", " or ",\0" */
11524 left -= len + 2;
11525
11526 /* Check if there is any room. */
11527 if (left >= 0)
11528 {
11529 if (p != start)
11530 {
11531 *p++ = ',';
11532 *p++ = ' ';
11533 }
11534 p = mempcpy (p, name, len);
11535 }
11536 else
11537 {
11538 /* Output the current message now and start a new one. */
11539 *p++ = ',';
11540 *p = '\0';
11541 fprintf (stream, "%s\n", message);
11542 p = start;
11543 left = size - (start - message) - len - 2;
11544
11545 gas_assert (left >= 0);
11546
11547 p = mempcpy (p, name, len);
11548 }
11549
11550 *left_p = left;
11551 return p;
11552 }
11553
11554 static void
11555 show_arch (FILE *stream, int ext, int check)
11556 {
11557 static char message[] = MESSAGE_TEMPLATE;
11558 char *start = message + 27;
11559 char *p;
11560 int size = sizeof (MESSAGE_TEMPLATE);
11561 int left;
11562 const char *name;
11563 int len;
11564 unsigned int j;
11565
11566 p = start;
11567 left = size - (start - message);
11568 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11569 {
11570 /* Should it be skipped? */
11571 if (cpu_arch [j].skip)
11572 continue;
11573
11574 name = cpu_arch [j].name;
11575 len = cpu_arch [j].len;
11576 if (*name == '.')
11577 {
11578 /* It is an extension. Skip if we aren't asked to show it. */
11579 if (ext)
11580 {
11581 name++;
11582 len--;
11583 }
11584 else
11585 continue;
11586 }
11587 else if (ext)
11588 {
11589 /* It is an processor. Skip if we show only extension. */
11590 continue;
11591 }
11592 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11593 {
11594 /* It is an impossible processor - skip. */
11595 continue;
11596 }
11597
11598 p = output_message (stream, p, message, start, &left, name, len);
11599 }
11600
11601 /* Display disabled extensions. */
11602 if (ext)
11603 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11604 {
11605 name = cpu_noarch [j].name;
11606 len = cpu_noarch [j].len;
11607 p = output_message (stream, p, message, start, &left, name,
11608 len);
11609 }
11610
11611 *p = '\0';
11612 fprintf (stream, "%s\n", message);
11613 }
11614
11615 void
11616 md_show_usage (FILE *stream)
11617 {
11618 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11619 fprintf (stream, _("\
11620 -Q ignored\n\
11621 -V print assembler version number\n\
11622 -k ignored\n"));
11623 #endif
11624 fprintf (stream, _("\
11625 -n Do not optimize code alignment\n\
11626 -q quieten some warnings\n"));
11627 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11628 fprintf (stream, _("\
11629 -s ignored\n"));
11630 #endif
11631 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11632 || defined (TE_PE) || defined (TE_PEP))
11633 fprintf (stream, _("\
11634 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
11635 #endif
11636 #ifdef SVR4_COMMENT_CHARS
11637 fprintf (stream, _("\
11638 --divide do not treat `/' as a comment character\n"));
11639 #else
11640 fprintf (stream, _("\
11641 --divide ignored\n"));
11642 #endif
11643 fprintf (stream, _("\
11644 -march=CPU[,+EXTENSION...]\n\
11645 generate code for CPU and EXTENSION, CPU is one of:\n"));
11646 show_arch (stream, 0, 1);
11647 fprintf (stream, _("\
11648 EXTENSION is combination of:\n"));
11649 show_arch (stream, 1, 0);
11650 fprintf (stream, _("\
11651 -mtune=CPU optimize for CPU, CPU is one of:\n"));
11652 show_arch (stream, 0, 0);
11653 fprintf (stream, _("\
11654 -msse2avx encode SSE instructions with VEX prefix\n"));
11655 fprintf (stream, _("\
11656 -msse-check=[none|error|warning] (default: warning)\n\
11657 check SSE instructions\n"));
11658 fprintf (stream, _("\
11659 -moperand-check=[none|error|warning] (default: warning)\n\
11660 check operand combinations for validity\n"));
11661 fprintf (stream, _("\
11662 -mavxscalar=[128|256] (default: 128)\n\
11663 encode scalar AVX instructions with specific vector\n\
11664 length\n"));
11665 fprintf (stream, _("\
11666 -mvexwig=[0|1] (default: 0)\n\
11667 encode VEX instructions with specific VEX.W value\n\
11668 for VEX.W bit ignored instructions\n"));
11669 fprintf (stream, _("\
11670 -mevexlig=[128|256|512] (default: 128)\n\
11671 encode scalar EVEX instructions with specific vector\n\
11672 length\n"));
11673 fprintf (stream, _("\
11674 -mevexwig=[0|1] (default: 0)\n\
11675 encode EVEX instructions with specific EVEX.W value\n\
11676 for EVEX.W bit ignored instructions\n"));
11677 fprintf (stream, _("\
11678 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
11679 encode EVEX instructions with specific EVEX.RC value\n\
11680 for SAE-only ignored instructions\n"));
11681 fprintf (stream, _("\
11682 -mmnemonic=[att|intel] "));
11683 if (SYSV386_COMPAT)
11684 fprintf (stream, _("(default: att)\n"));
11685 else
11686 fprintf (stream, _("(default: intel)\n"));
11687 fprintf (stream, _("\
11688 use AT&T/Intel mnemonic\n"));
11689 fprintf (stream, _("\
11690 -msyntax=[att|intel] (default: att)\n\
11691 use AT&T/Intel syntax\n"));
11692 fprintf (stream, _("\
11693 -mindex-reg support pseudo index registers\n"));
11694 fprintf (stream, _("\
11695 -mnaked-reg don't require `%%' prefix for registers\n"));
11696 fprintf (stream, _("\
11697 -madd-bnd-prefix add BND prefix for all valid branches\n"));
11698 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11699 fprintf (stream, _("\
11700 -mshared disable branch optimization for shared code\n"));
11701 fprintf (stream, _("\
11702 -mx86-used-note=[no|yes] "));
11703 if (DEFAULT_X86_USED_NOTE)
11704 fprintf (stream, _("(default: yes)\n"));
11705 else
11706 fprintf (stream, _("(default: no)\n"));
11707 fprintf (stream, _("\
11708 generate x86 used ISA and feature properties\n"));
11709 #endif
11710 #if defined (TE_PE) || defined (TE_PEP)
11711 fprintf (stream, _("\
11712 -mbig-obj generate big object files\n"));
11713 #endif
11714 fprintf (stream, _("\
11715 -momit-lock-prefix=[no|yes] (default: no)\n\
11716 strip all lock prefixes\n"));
11717 fprintf (stream, _("\
11718 -mfence-as-lock-add=[no|yes] (default: no)\n\
11719 encode lfence, mfence and sfence as\n\
11720 lock addl $0x0, (%%{re}sp)\n"));
11721 fprintf (stream, _("\
11722 -mrelax-relocations=[no|yes] "));
11723 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
11724 fprintf (stream, _("(default: yes)\n"));
11725 else
11726 fprintf (stream, _("(default: no)\n"));
11727 fprintf (stream, _("\
11728 generate relax relocations\n"));
11729 fprintf (stream, _("\
11730 -mamd64 accept only AMD64 ISA [default]\n"));
11731 fprintf (stream, _("\
11732 -mintel64 accept only Intel64 ISA\n"));
11733 }
11734
11735 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
11736 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11737 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11738
11739 /* Pick the target format to use. */
11740
11741 const char *
11742 i386_target_format (void)
11743 {
11744 if (!strncmp (default_arch, "x86_64", 6))
11745 {
11746 update_code_flag (CODE_64BIT, 1);
11747 if (default_arch[6] == '\0')
11748 x86_elf_abi = X86_64_ABI;
11749 else
11750 x86_elf_abi = X86_64_X32_ABI;
11751 }
11752 else if (!strcmp (default_arch, "i386"))
11753 update_code_flag (CODE_32BIT, 1);
11754 else if (!strcmp (default_arch, "iamcu"))
11755 {
11756 update_code_flag (CODE_32BIT, 1);
11757 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11758 {
11759 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11760 cpu_arch_name = "iamcu";
11761 cpu_sub_arch_name = NULL;
11762 cpu_arch_flags = iamcu_flags;
11763 cpu_arch_isa = PROCESSOR_IAMCU;
11764 cpu_arch_isa_flags = iamcu_flags;
11765 if (!cpu_arch_tune_set)
11766 {
11767 cpu_arch_tune = cpu_arch_isa;
11768 cpu_arch_tune_flags = cpu_arch_isa_flags;
11769 }
11770 }
11771 else if (cpu_arch_isa != PROCESSOR_IAMCU)
11772 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11773 cpu_arch_name);
11774 }
11775 else
11776 as_fatal (_("unknown architecture"));
11777
11778 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11779 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11780 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11781 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11782
11783 switch (OUTPUT_FLAVOR)
11784 {
11785 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
11786 case bfd_target_aout_flavour:
11787 return AOUT_TARGET_FORMAT;
11788 #endif
11789 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11790 # if defined (TE_PE) || defined (TE_PEP)
11791 case bfd_target_coff_flavour:
11792 if (flag_code == CODE_64BIT)
11793 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11794 else
11795 return "pe-i386";
11796 # elif defined (TE_GO32)
11797 case bfd_target_coff_flavour:
11798 return "coff-go32";
11799 # else
11800 case bfd_target_coff_flavour:
11801 return "coff-i386";
11802 # endif
11803 #endif
11804 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11805 case bfd_target_elf_flavour:
11806 {
11807 const char *format;
11808
11809 switch (x86_elf_abi)
11810 {
11811 default:
11812 format = ELF_TARGET_FORMAT;
11813 break;
11814 case X86_64_ABI:
11815 use_rela_relocations = 1;
11816 object_64bit = 1;
11817 format = ELF_TARGET_FORMAT64;
11818 break;
11819 case X86_64_X32_ABI:
11820 use_rela_relocations = 1;
11821 object_64bit = 1;
11822 disallow_64bit_reloc = 1;
11823 format = ELF_TARGET_FORMAT32;
11824 break;
11825 }
11826 if (cpu_arch_isa == PROCESSOR_L1OM)
11827 {
11828 if (x86_elf_abi != X86_64_ABI)
11829 as_fatal (_("Intel L1OM is 64bit only"));
11830 return ELF_TARGET_L1OM_FORMAT;
11831 }
11832 else if (cpu_arch_isa == PROCESSOR_K1OM)
11833 {
11834 if (x86_elf_abi != X86_64_ABI)
11835 as_fatal (_("Intel K1OM is 64bit only"));
11836 return ELF_TARGET_K1OM_FORMAT;
11837 }
11838 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11839 {
11840 if (x86_elf_abi != I386_ABI)
11841 as_fatal (_("Intel MCU is 32bit only"));
11842 return ELF_TARGET_IAMCU_FORMAT;
11843 }
11844 else
11845 return format;
11846 }
11847 #endif
11848 #if defined (OBJ_MACH_O)
11849 case bfd_target_mach_o_flavour:
11850 if (flag_code == CODE_64BIT)
11851 {
11852 use_rela_relocations = 1;
11853 object_64bit = 1;
11854 return "mach-o-x86-64";
11855 }
11856 else
11857 return "mach-o-i386";
11858 #endif
11859 default:
11860 abort ();
11861 return NULL;
11862 }
11863 }
11864
11865 #endif /* OBJ_MAYBE_ more than one */
11866 \f
11867 symbolS *
11868 md_undefined_symbol (char *name)
11869 {
11870 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11871 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11872 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11873 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
11874 {
11875 if (!GOT_symbol)
11876 {
11877 if (symbol_find (name))
11878 as_bad (_("GOT already in symbol table"));
11879 GOT_symbol = symbol_new (name, undefined_section,
11880 (valueT) 0, &zero_address_frag);
11881 };
11882 return GOT_symbol;
11883 }
11884 return 0;
11885 }
11886
11887 /* Round up a section size to the appropriate boundary. */
11888
11889 valueT
11890 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
11891 {
11892 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11893 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11894 {
11895 /* For a.out, force the section size to be aligned. If we don't do
11896 this, BFD will align it for us, but it will not write out the
11897 final bytes of the section. This may be a bug in BFD, but it is
11898 easier to fix it here since that is how the other a.out targets
11899 work. */
11900 int align;
11901
11902 align = bfd_get_section_alignment (stdoutput, segment);
11903 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
11904 }
11905 #endif
11906
11907 return size;
11908 }
11909
11910 /* On the i386, PC-relative offsets are relative to the start of the
11911 next instruction. That is, the address of the offset, plus its
11912 size, since the offset is always the last part of the insn. */
11913
11914 long
11915 md_pcrel_from (fixS *fixP)
11916 {
11917 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11918 }
11919
11920 #ifndef I386COFF
11921
11922 static void
11923 s_bss (int ignore ATTRIBUTE_UNUSED)
11924 {
11925 int temp;
11926
11927 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11928 if (IS_ELF)
11929 obj_elf_section_change_hook ();
11930 #endif
11931 temp = get_absolute_expression ();
11932 subseg_set (bss_section, (subsegT) temp);
11933 demand_empty_rest_of_line ();
11934 }
11935
11936 #endif
11937
11938 void
11939 i386_validate_fix (fixS *fixp)
11940 {
11941 if (fixp->fx_subsy)
11942 {
11943 if (fixp->fx_subsy == GOT_symbol)
11944 {
11945 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11946 {
11947 if (!object_64bit)
11948 abort ();
11949 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11950 if (fixp->fx_tcbit2)
11951 fixp->fx_r_type = (fixp->fx_tcbit
11952 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11953 : BFD_RELOC_X86_64_GOTPCRELX);
11954 else
11955 #endif
11956 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11957 }
11958 else
11959 {
11960 if (!object_64bit)
11961 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11962 else
11963 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11964 }
11965 fixp->fx_subsy = 0;
11966 }
11967 }
11968 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11969 else if (!object_64bit)
11970 {
11971 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11972 && fixp->fx_tcbit2)
11973 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11974 }
11975 #endif
11976 }
11977
11978 arelent *
11979 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
11980 {
11981 arelent *rel;
11982 bfd_reloc_code_real_type code;
11983
11984 switch (fixp->fx_r_type)
11985 {
11986 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11987 case BFD_RELOC_SIZE32:
11988 case BFD_RELOC_SIZE64:
11989 if (S_IS_DEFINED (fixp->fx_addsy)
11990 && !S_IS_EXTERNAL (fixp->fx_addsy))
11991 {
11992 /* Resolve size relocation against local symbol to size of
11993 the symbol plus addend. */
11994 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11995 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11996 && !fits_in_unsigned_long (value))
11997 as_bad_where (fixp->fx_file, fixp->fx_line,
11998 _("symbol size computation overflow"));
11999 fixp->fx_addsy = NULL;
12000 fixp->fx_subsy = NULL;
12001 md_apply_fix (fixp, (valueT *) &value, NULL);
12002 return NULL;
12003 }
12004 #endif
12005 /* Fall through. */
12006
12007 case BFD_RELOC_X86_64_PLT32:
12008 case BFD_RELOC_X86_64_GOT32:
12009 case BFD_RELOC_X86_64_GOTPCREL:
12010 case BFD_RELOC_X86_64_GOTPCRELX:
12011 case BFD_RELOC_X86_64_REX_GOTPCRELX:
12012 case BFD_RELOC_386_PLT32:
12013 case BFD_RELOC_386_GOT32:
12014 case BFD_RELOC_386_GOT32X:
12015 case BFD_RELOC_386_GOTOFF:
12016 case BFD_RELOC_386_GOTPC:
12017 case BFD_RELOC_386_TLS_GD:
12018 case BFD_RELOC_386_TLS_LDM:
12019 case BFD_RELOC_386_TLS_LDO_32:
12020 case BFD_RELOC_386_TLS_IE_32:
12021 case BFD_RELOC_386_TLS_IE:
12022 case BFD_RELOC_386_TLS_GOTIE:
12023 case BFD_RELOC_386_TLS_LE_32:
12024 case BFD_RELOC_386_TLS_LE:
12025 case BFD_RELOC_386_TLS_GOTDESC:
12026 case BFD_RELOC_386_TLS_DESC_CALL:
12027 case BFD_RELOC_X86_64_TLSGD:
12028 case BFD_RELOC_X86_64_TLSLD:
12029 case BFD_RELOC_X86_64_DTPOFF32:
12030 case BFD_RELOC_X86_64_DTPOFF64:
12031 case BFD_RELOC_X86_64_GOTTPOFF:
12032 case BFD_RELOC_X86_64_TPOFF32:
12033 case BFD_RELOC_X86_64_TPOFF64:
12034 case BFD_RELOC_X86_64_GOTOFF64:
12035 case BFD_RELOC_X86_64_GOTPC32:
12036 case BFD_RELOC_X86_64_GOT64:
12037 case BFD_RELOC_X86_64_GOTPCREL64:
12038 case BFD_RELOC_X86_64_GOTPC64:
12039 case BFD_RELOC_X86_64_GOTPLT64:
12040 case BFD_RELOC_X86_64_PLTOFF64:
12041 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12042 case BFD_RELOC_X86_64_TLSDESC_CALL:
12043 case BFD_RELOC_RVA:
12044 case BFD_RELOC_VTABLE_ENTRY:
12045 case BFD_RELOC_VTABLE_INHERIT:
12046 #ifdef TE_PE
12047 case BFD_RELOC_32_SECREL:
12048 #endif
12049 code = fixp->fx_r_type;
12050 break;
12051 case BFD_RELOC_X86_64_32S:
12052 if (!fixp->fx_pcrel)
12053 {
12054 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
12055 code = fixp->fx_r_type;
12056 break;
12057 }
12058 /* Fall through. */
12059 default:
12060 if (fixp->fx_pcrel)
12061 {
12062 switch (fixp->fx_size)
12063 {
12064 default:
12065 as_bad_where (fixp->fx_file, fixp->fx_line,
12066 _("can not do %d byte pc-relative relocation"),
12067 fixp->fx_size);
12068 code = BFD_RELOC_32_PCREL;
12069 break;
12070 case 1: code = BFD_RELOC_8_PCREL; break;
12071 case 2: code = BFD_RELOC_16_PCREL; break;
12072 case 4: code = BFD_RELOC_32_PCREL; break;
12073 #ifdef BFD64
12074 case 8: code = BFD_RELOC_64_PCREL; break;
12075 #endif
12076 }
12077 }
12078 else
12079 {
12080 switch (fixp->fx_size)
12081 {
12082 default:
12083 as_bad_where (fixp->fx_file, fixp->fx_line,
12084 _("can not do %d byte relocation"),
12085 fixp->fx_size);
12086 code = BFD_RELOC_32;
12087 break;
12088 case 1: code = BFD_RELOC_8; break;
12089 case 2: code = BFD_RELOC_16; break;
12090 case 4: code = BFD_RELOC_32; break;
12091 #ifdef BFD64
12092 case 8: code = BFD_RELOC_64; break;
12093 #endif
12094 }
12095 }
12096 break;
12097 }
12098
12099 if ((code == BFD_RELOC_32
12100 || code == BFD_RELOC_32_PCREL
12101 || code == BFD_RELOC_X86_64_32S)
12102 && GOT_symbol
12103 && fixp->fx_addsy == GOT_symbol)
12104 {
12105 if (!object_64bit)
12106 code = BFD_RELOC_386_GOTPC;
12107 else
12108 code = BFD_RELOC_X86_64_GOTPC32;
12109 }
12110 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
12111 && GOT_symbol
12112 && fixp->fx_addsy == GOT_symbol)
12113 {
12114 code = BFD_RELOC_X86_64_GOTPC64;
12115 }
12116
12117 rel = XNEW (arelent);
12118 rel->sym_ptr_ptr = XNEW (asymbol *);
12119 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
12120
12121 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
12122
12123 if (!use_rela_relocations)
12124 {
12125 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
12126 vtable entry to be used in the relocation's section offset. */
12127 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
12128 rel->address = fixp->fx_offset;
12129 #if defined (OBJ_COFF) && defined (TE_PE)
12130 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
12131 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
12132 else
12133 #endif
12134 rel->addend = 0;
12135 }
12136 /* Use the rela in 64bit mode. */
12137 else
12138 {
12139 if (disallow_64bit_reloc)
12140 switch (code)
12141 {
12142 case BFD_RELOC_X86_64_DTPOFF64:
12143 case BFD_RELOC_X86_64_TPOFF64:
12144 case BFD_RELOC_64_PCREL:
12145 case BFD_RELOC_X86_64_GOTOFF64:
12146 case BFD_RELOC_X86_64_GOT64:
12147 case BFD_RELOC_X86_64_GOTPCREL64:
12148 case BFD_RELOC_X86_64_GOTPC64:
12149 case BFD_RELOC_X86_64_GOTPLT64:
12150 case BFD_RELOC_X86_64_PLTOFF64:
12151 as_bad_where (fixp->fx_file, fixp->fx_line,
12152 _("cannot represent relocation type %s in x32 mode"),
12153 bfd_get_reloc_code_name (code));
12154 break;
12155 default:
12156 break;
12157 }
12158
12159 if (!fixp->fx_pcrel)
12160 rel->addend = fixp->fx_offset;
12161 else
12162 switch (code)
12163 {
12164 case BFD_RELOC_X86_64_PLT32:
12165 case BFD_RELOC_X86_64_GOT32:
12166 case BFD_RELOC_X86_64_GOTPCREL:
12167 case BFD_RELOC_X86_64_GOTPCRELX:
12168 case BFD_RELOC_X86_64_REX_GOTPCRELX:
12169 case BFD_RELOC_X86_64_TLSGD:
12170 case BFD_RELOC_X86_64_TLSLD:
12171 case BFD_RELOC_X86_64_GOTTPOFF:
12172 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12173 case BFD_RELOC_X86_64_TLSDESC_CALL:
12174 rel->addend = fixp->fx_offset - fixp->fx_size;
12175 break;
12176 default:
12177 rel->addend = (section->vma
12178 - fixp->fx_size
12179 + fixp->fx_addnumber
12180 + md_pcrel_from (fixp));
12181 break;
12182 }
12183 }
12184
12185 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
12186 if (rel->howto == NULL)
12187 {
12188 as_bad_where (fixp->fx_file, fixp->fx_line,
12189 _("cannot represent relocation type %s"),
12190 bfd_get_reloc_code_name (code));
12191 /* Set howto to a garbage value so that we can keep going. */
12192 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
12193 gas_assert (rel->howto != NULL);
12194 }
12195
12196 return rel;
12197 }
12198
12199 #include "tc-i386-intel.c"
12200
12201 void
12202 tc_x86_parse_to_dw2regnum (expressionS *exp)
12203 {
12204 int saved_naked_reg;
12205 char saved_register_dot;
12206
12207 saved_naked_reg = allow_naked_reg;
12208 allow_naked_reg = 1;
12209 saved_register_dot = register_chars['.'];
12210 register_chars['.'] = '.';
12211 allow_pseudo_reg = 1;
12212 expression_and_evaluate (exp);
12213 allow_pseudo_reg = 0;
12214 register_chars['.'] = saved_register_dot;
12215 allow_naked_reg = saved_naked_reg;
12216
12217 if (exp->X_op == O_register && exp->X_add_number >= 0)
12218 {
12219 if ((addressT) exp->X_add_number < i386_regtab_size)
12220 {
12221 exp->X_op = O_constant;
12222 exp->X_add_number = i386_regtab[exp->X_add_number]
12223 .dw2_regnum[flag_code >> 1];
12224 }
12225 else
12226 exp->X_op = O_illegal;
12227 }
12228 }
12229
12230 void
12231 tc_x86_frame_initial_instructions (void)
12232 {
12233 static unsigned int sp_regno[2];
12234
12235 if (!sp_regno[flag_code >> 1])
12236 {
12237 char *saved_input = input_line_pointer;
12238 char sp[][4] = {"esp", "rsp"};
12239 expressionS exp;
12240
12241 input_line_pointer = sp[flag_code >> 1];
12242 tc_x86_parse_to_dw2regnum (&exp);
12243 gas_assert (exp.X_op == O_constant);
12244 sp_regno[flag_code >> 1] = exp.X_add_number;
12245 input_line_pointer = saved_input;
12246 }
12247
12248 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
12249 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
12250 }
12251
12252 int
12253 x86_dwarf2_addr_size (void)
12254 {
12255 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12256 if (x86_elf_abi == X86_64_X32_ABI)
12257 return 4;
12258 #endif
12259 return bfd_arch_bits_per_address (stdoutput) / 8;
12260 }
12261
12262 int
12263 i386_elf_section_type (const char *str, size_t len)
12264 {
12265 if (flag_code == CODE_64BIT
12266 && len == sizeof ("unwind") - 1
12267 && strncmp (str, "unwind", 6) == 0)
12268 return SHT_X86_64_UNWIND;
12269
12270 return -1;
12271 }
12272
12273 #ifdef TE_SOLARIS
12274 void
12275 i386_solaris_fix_up_eh_frame (segT sec)
12276 {
12277 if (flag_code == CODE_64BIT)
12278 elf_section_type (sec) = SHT_X86_64_UNWIND;
12279 }
12280 #endif
12281
12282 #ifdef TE_PE
12283 void
12284 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
12285 {
12286 expressionS exp;
12287
12288 exp.X_op = O_secrel;
12289 exp.X_add_symbol = symbol;
12290 exp.X_add_number = 0;
12291 emit_expr (&exp, size);
12292 }
12293 #endif
12294
12295 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12296 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12297
12298 bfd_vma
12299 x86_64_section_letter (int letter, const char **ptr_msg)
12300 {
12301 if (flag_code == CODE_64BIT)
12302 {
12303 if (letter == 'l')
12304 return SHF_X86_64_LARGE;
12305
12306 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
12307 }
12308 else
12309 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
12310 return -1;
12311 }
12312
12313 bfd_vma
12314 x86_64_section_word (char *str, size_t len)
12315 {
12316 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
12317 return SHF_X86_64_LARGE;
12318
12319 return -1;
12320 }
12321
12322 static void
12323 handle_large_common (int small ATTRIBUTE_UNUSED)
12324 {
12325 if (flag_code != CODE_64BIT)
12326 {
12327 s_comm_internal (0, elf_common_parse);
12328 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12329 }
12330 else
12331 {
12332 static segT lbss_section;
12333 asection *saved_com_section_ptr = elf_com_section_ptr;
12334 asection *saved_bss_section = bss_section;
12335
12336 if (lbss_section == NULL)
12337 {
12338 flagword applicable;
12339 segT seg = now_seg;
12340 subsegT subseg = now_subseg;
12341
12342 /* The .lbss section is for local .largecomm symbols. */
12343 lbss_section = subseg_new (".lbss", 0);
12344 applicable = bfd_applicable_section_flags (stdoutput);
12345 bfd_set_section_flags (stdoutput, lbss_section,
12346 applicable & SEC_ALLOC);
12347 seg_info (lbss_section)->bss = 1;
12348
12349 subseg_set (seg, subseg);
12350 }
12351
12352 elf_com_section_ptr = &_bfd_elf_large_com_section;
12353 bss_section = lbss_section;
12354
12355 s_comm_internal (0, elf_common_parse);
12356
12357 elf_com_section_ptr = saved_com_section_ptr;
12358 bss_section = saved_bss_section;
12359 }
12360 }
12361 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */