]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-i386.c
x86: Remove broadcast_not_on_src_operand
[thirdparty/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 /* Intel Syntax. Use a non-ascii letter since since it never appears
85 in instructions. */
86 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
87
88 #define END_OF_INSN '\0'
89
90 /*
91 'templates' is for grouping together 'template' structures for opcodes
92 of the same name. This is only used for storing the insns in the grand
93 ole hash table of insns.
94 The templates themselves start at START and range up to (but not including)
95 END.
96 */
97 typedef struct
98 {
99 const insn_template *start;
100 const insn_template *end;
101 }
102 templates;
103
104 /* 386 operand encoding bytes: see 386 book for details of this. */
105 typedef struct
106 {
107 unsigned int regmem; /* codes register or memory operand */
108 unsigned int reg; /* codes register operand (or extended opcode) */
109 unsigned int mode; /* how to interpret regmem & reg */
110 }
111 modrm_byte;
112
113 /* x86-64 extension prefix. */
114 typedef int rex_byte;
115
116 /* 386 opcode byte to code indirect addressing. */
117 typedef struct
118 {
119 unsigned base;
120 unsigned index;
121 unsigned scale;
122 }
123 sib_byte;
124
125 /* x86 arch names, types and features */
126 typedef struct
127 {
128 const char *name; /* arch name */
129 unsigned int len; /* arch string length */
130 enum processor_type type; /* arch type */
131 i386_cpu_flags flags; /* cpu feature flags */
132 unsigned int skip; /* show_arch should skip this. */
133 }
134 arch_entry;
135
136 /* Used to turn off indicated flags. */
137 typedef struct
138 {
139 const char *name; /* arch name */
140 unsigned int len; /* arch string length */
141 i386_cpu_flags flags; /* cpu feature flags */
142 }
143 noarch_entry;
144
145 static void update_code_flag (int, int);
146 static void set_code_flag (int);
147 static void set_16bit_gcc_code_flag (int);
148 static void set_intel_syntax (int);
149 static void set_intel_mnemonic (int);
150 static void set_allow_index_reg (int);
151 static void set_check (int);
152 static void set_cpu_arch (int);
153 #ifdef TE_PE
154 static void pe_directive_secrel (int);
155 #endif
156 static void signed_cons (int);
157 static char *output_invalid (int c);
158 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
159 const char *);
160 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
161 const char *);
162 static int i386_att_operand (char *);
163 static int i386_intel_operand (char *, int);
164 static int i386_intel_simplify (expressionS *);
165 static int i386_intel_parse_name (const char *, expressionS *);
166 static const reg_entry *parse_register (char *, char **);
167 static char *parse_insn (char *, char *);
168 static char *parse_operands (char *, const char *);
169 static void swap_operands (void);
170 static void swap_2_operands (int, int);
171 static void optimize_imm (void);
172 static void optimize_disp (void);
173 static const insn_template *match_template (char);
174 static int check_string (void);
175 static int process_suffix (void);
176 static int check_byte_reg (void);
177 static int check_long_reg (void);
178 static int check_qword_reg (void);
179 static int check_word_reg (void);
180 static int finalize_imm (void);
181 static int process_operands (void);
182 static const seg_entry *build_modrm_byte (void);
183 static void output_insn (void);
184 static void output_imm (fragS *, offsetT);
185 static void output_disp (fragS *, offsetT);
186 #ifndef I386COFF
187 static void s_bss (int);
188 #endif
189 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
190 static void handle_large_common (int small ATTRIBUTE_UNUSED);
191 #endif
192
193 static const char *default_arch = DEFAULT_ARCH;
194
195 /* This struct describes rounding control and SAE in the instruction. */
196 struct RC_Operation
197 {
198 enum rc_type
199 {
200 rne = 0,
201 rd,
202 ru,
203 rz,
204 saeonly
205 } type;
206 int operand;
207 };
208
209 static struct RC_Operation rc_op;
210
211 /* The struct describes masking, applied to OPERAND in the instruction.
212 MASK is a pointer to the corresponding mask register. ZEROING tells
213 whether merging or zeroing mask is used. */
214 struct Mask_Operation
215 {
216 const reg_entry *mask;
217 unsigned int zeroing;
218 /* The operand where this operation is associated. */
219 int operand;
220 };
221
222 static struct Mask_Operation mask_op;
223
224 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
225 broadcast factor. */
226 struct Broadcast_Operation
227 {
228 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
229 int type;
230
231 /* Index of broadcasted operand. */
232 int operand;
233 };
234
235 static struct Broadcast_Operation broadcast_op;
236
237 /* VEX prefix. */
238 typedef struct
239 {
240 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
241 unsigned char bytes[4];
242 unsigned int length;
243 /* Destination or source register specifier. */
244 const reg_entry *register_specifier;
245 } vex_prefix;
246
247 /* 'md_assemble ()' gathers together information and puts it into a
248 i386_insn. */
249
250 union i386_op
251 {
252 expressionS *disps;
253 expressionS *imms;
254 const reg_entry *regs;
255 };
256
257 enum i386_error
258 {
259 operand_size_mismatch,
260 operand_type_mismatch,
261 register_type_mismatch,
262 number_of_operands_mismatch,
263 invalid_instruction_suffix,
264 bad_imm4,
265 unsupported_with_intel_mnemonic,
266 unsupported_syntax,
267 unsupported,
268 invalid_vsib_address,
269 invalid_vector_register_set,
270 unsupported_vector_index_register,
271 unsupported_broadcast,
272 broadcast_needed,
273 unsupported_masking,
274 mask_not_on_destination,
275 no_default_mask,
276 unsupported_rc_sae,
277 rc_sae_operand_not_last_imm,
278 invalid_register_operand,
279 };
280
281 struct _i386_insn
282 {
283 /* TM holds the template for the insn were currently assembling. */
284 insn_template tm;
285
286 /* SUFFIX holds the instruction size suffix for byte, word, dword
287 or qword, if given. */
288 char suffix;
289
290 /* OPERANDS gives the number of given operands. */
291 unsigned int operands;
292
293 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
294 of given register, displacement, memory operands and immediate
295 operands. */
296 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
297
298 /* TYPES [i] is the type (see above #defines) which tells us how to
299 use OP[i] for the corresponding operand. */
300 i386_operand_type types[MAX_OPERANDS];
301
302 /* Displacement expression, immediate expression, or register for each
303 operand. */
304 union i386_op op[MAX_OPERANDS];
305
306 /* Flags for operands. */
307 unsigned int flags[MAX_OPERANDS];
308 #define Operand_PCrel 1
309
310 /* Relocation type for operand */
311 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
312
313 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
314 the base index byte below. */
315 const reg_entry *base_reg;
316 const reg_entry *index_reg;
317 unsigned int log2_scale_factor;
318
319 /* SEG gives the seg_entries of this insn. They are zero unless
320 explicit segment overrides are given. */
321 const seg_entry *seg[2];
322
323 /* Copied first memory operand string, for re-checking. */
324 char *memop1_string;
325
326 /* PREFIX holds all the given prefix opcodes (usually null).
327 PREFIXES is the number of prefix opcodes. */
328 unsigned int prefixes;
329 unsigned char prefix[MAX_PREFIXES];
330
331 /* RM and SIB are the modrm byte and the sib byte where the
332 addressing modes of this insn are encoded. */
333 modrm_byte rm;
334 rex_byte rex;
335 rex_byte vrex;
336 sib_byte sib;
337 vex_prefix vex;
338
339 /* Masking attributes. */
340 struct Mask_Operation *mask;
341
342 /* Rounding control and SAE attributes. */
343 struct RC_Operation *rounding;
344
345 /* Broadcasting attributes. */
346 struct Broadcast_Operation *broadcast;
347
348 /* Compressed disp8*N attribute. */
349 unsigned int memshift;
350
351 /* Prefer load or store in encoding. */
352 enum
353 {
354 dir_encoding_default = 0,
355 dir_encoding_load,
356 dir_encoding_store
357 } dir_encoding;
358
359 /* Prefer 8bit or 32bit displacement in encoding. */
360 enum
361 {
362 disp_encoding_default = 0,
363 disp_encoding_8bit,
364 disp_encoding_32bit
365 } disp_encoding;
366
367 /* Prefer the REX byte in encoding. */
368 bfd_boolean rex_encoding;
369
370 /* Disable instruction size optimization. */
371 bfd_boolean no_optimize;
372
373 /* How to encode vector instructions. */
374 enum
375 {
376 vex_encoding_default = 0,
377 vex_encoding_vex2,
378 vex_encoding_vex3,
379 vex_encoding_evex
380 } vec_encoding;
381
382 /* REP prefix. */
383 const char *rep_prefix;
384
385 /* HLE prefix. */
386 const char *hle_prefix;
387
388 /* Have BND prefix. */
389 const char *bnd_prefix;
390
391 /* Have NOTRACK prefix. */
392 const char *notrack_prefix;
393
394 /* Error message. */
395 enum i386_error error;
396 };
397
398 typedef struct _i386_insn i386_insn;
399
400 /* Link RC type with corresponding string, that'll be looked for in
401 asm. */
402 struct RC_name
403 {
404 enum rc_type type;
405 const char *name;
406 unsigned int len;
407 };
408
409 static const struct RC_name RC_NamesTable[] =
410 {
411 { rne, STRING_COMMA_LEN ("rn-sae") },
412 { rd, STRING_COMMA_LEN ("rd-sae") },
413 { ru, STRING_COMMA_LEN ("ru-sae") },
414 { rz, STRING_COMMA_LEN ("rz-sae") },
415 { saeonly, STRING_COMMA_LEN ("sae") },
416 };
417
418 /* List of chars besides those in app.c:symbol_chars that can start an
419 operand. Used to prevent the scrubber eating vital white-space. */
420 const char extra_symbol_chars[] = "*%-([{}"
421 #ifdef LEX_AT
422 "@"
423 #endif
424 #ifdef LEX_QM
425 "?"
426 #endif
427 ;
428
429 #if (defined (TE_I386AIX) \
430 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
431 && !defined (TE_GNU) \
432 && !defined (TE_LINUX) \
433 && !defined (TE_NACL) \
434 && !defined (TE_FreeBSD) \
435 && !defined (TE_DragonFly) \
436 && !defined (TE_NetBSD)))
437 /* This array holds the chars that always start a comment. If the
438 pre-processor is disabled, these aren't very useful. The option
439 --divide will remove '/' from this list. */
440 const char *i386_comment_chars = "#/";
441 #define SVR4_COMMENT_CHARS 1
442 #define PREFIX_SEPARATOR '\\'
443
444 #else
445 const char *i386_comment_chars = "#";
446 #define PREFIX_SEPARATOR '/'
447 #endif
448
449 /* This array holds the chars that only start a comment at the beginning of
450 a line. If the line seems to have the form '# 123 filename'
451 .line and .file directives will appear in the pre-processed output.
452 Note that input_file.c hand checks for '#' at the beginning of the
453 first line of the input file. This is because the compiler outputs
454 #NO_APP at the beginning of its output.
455 Also note that comments started like this one will always work if
456 '/' isn't otherwise defined. */
457 const char line_comment_chars[] = "#/";
458
459 const char line_separator_chars[] = ";";
460
461 /* Chars that can be used to separate mant from exp in floating point
462 nums. */
463 const char EXP_CHARS[] = "eE";
464
465 /* Chars that mean this number is a floating point constant
466 As in 0f12.456
467 or 0d1.2345e12. */
468 const char FLT_CHARS[] = "fFdDxX";
469
470 /* Tables for lexical analysis. */
471 static char mnemonic_chars[256];
472 static char register_chars[256];
473 static char operand_chars[256];
474 static char identifier_chars[256];
475 static char digit_chars[256];
476
477 /* Lexical macros. */
478 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
479 #define is_operand_char(x) (operand_chars[(unsigned char) x])
480 #define is_register_char(x) (register_chars[(unsigned char) x])
481 #define is_space_char(x) ((x) == ' ')
482 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
483 #define is_digit_char(x) (digit_chars[(unsigned char) x])
484
485 /* All non-digit non-letter characters that may occur in an operand. */
486 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
487
488 /* md_assemble() always leaves the strings it's passed unaltered. To
489 effect this we maintain a stack of saved characters that we've smashed
490 with '\0's (indicating end of strings for various sub-fields of the
491 assembler instruction). */
492 static char save_stack[32];
493 static char *save_stack_p;
494 #define END_STRING_AND_SAVE(s) \
495 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
496 #define RESTORE_END_STRING(s) \
497 do { *(s) = *--save_stack_p; } while (0)
498
499 /* The instruction we're assembling. */
500 static i386_insn i;
501
502 /* Possible templates for current insn. */
503 static const templates *current_templates;
504
505 /* Per instruction expressionS buffers: max displacements & immediates. */
506 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
507 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
508
509 /* Current operand we are working on. */
510 static int this_operand = -1;
511
512 /* We support four different modes. FLAG_CODE variable is used to distinguish
513 these. */
514
515 enum flag_code {
516 CODE_32BIT,
517 CODE_16BIT,
518 CODE_64BIT };
519
520 static enum flag_code flag_code;
521 static unsigned int object_64bit;
522 static unsigned int disallow_64bit_reloc;
523 static int use_rela_relocations = 0;
524
525 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
526 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
527 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
528
529 /* The ELF ABI to use. */
530 enum x86_elf_abi
531 {
532 I386_ABI,
533 X86_64_ABI,
534 X86_64_X32_ABI
535 };
536
537 static enum x86_elf_abi x86_elf_abi = I386_ABI;
538 #endif
539
540 #if defined (TE_PE) || defined (TE_PEP)
541 /* Use big object file format. */
542 static int use_big_obj = 0;
543 #endif
544
545 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
546 /* 1 if generating code for a shared library. */
547 static int shared = 0;
548 #endif
549
550 /* 1 for intel syntax,
551 0 if att syntax. */
552 static int intel_syntax = 0;
553
554 /* 1 for Intel64 ISA,
555 0 if AMD64 ISA. */
556 static int intel64;
557
558 /* 1 for intel mnemonic,
559 0 if att mnemonic. */
560 static int intel_mnemonic = !SYSV386_COMPAT;
561
562 /* 1 if pseudo registers are permitted. */
563 static int allow_pseudo_reg = 0;
564
565 /* 1 if register prefix % not required. */
566 static int allow_naked_reg = 0;
567
568 /* 1 if the assembler should add BND prefix for all control-transferring
569 instructions supporting it, even if this prefix wasn't specified
570 explicitly. */
571 static int add_bnd_prefix = 0;
572
573 /* 1 if pseudo index register, eiz/riz, is allowed . */
574 static int allow_index_reg = 0;
575
576 /* 1 if the assembler should ignore LOCK prefix, even if it was
577 specified explicitly. */
578 static int omit_lock_prefix = 0;
579
580 /* 1 if the assembler should encode lfence, mfence, and sfence as
581 "lock addl $0, (%{re}sp)". */
582 static int avoid_fence = 0;
583
584 /* 1 if the assembler should generate relax relocations. */
585
586 static int generate_relax_relocations
587 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
588
589 static enum check_kind
590 {
591 check_none = 0,
592 check_warning,
593 check_error
594 }
595 sse_check, operand_check = check_warning;
596
597 /* Optimization:
598 1. Clear the REX_W bit with register operand if possible.
599 2. Above plus use 128bit vector instruction to clear the full vector
600 register.
601 */
602 static int optimize = 0;
603
604 /* Optimization:
605 1. Clear the REX_W bit with register operand if possible.
606 2. Above plus use 128bit vector instruction to clear the full vector
607 register.
608 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
609 "testb $imm7,%r8".
610 */
611 static int optimize_for_space = 0;
612
613 /* Register prefix used for error message. */
614 static const char *register_prefix = "%";
615
616 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
617 leave, push, and pop instructions so that gcc has the same stack
618 frame as in 32 bit mode. */
619 static char stackop_size = '\0';
620
621 /* Non-zero to optimize code alignment. */
622 int optimize_align_code = 1;
623
624 /* Non-zero to quieten some warnings. */
625 static int quiet_warnings = 0;
626
627 /* CPU name. */
628 static const char *cpu_arch_name = NULL;
629 static char *cpu_sub_arch_name = NULL;
630
631 /* CPU feature flags. */
632 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
633
634 /* If we have selected a cpu we are generating instructions for. */
635 static int cpu_arch_tune_set = 0;
636
637 /* Cpu we are generating instructions for. */
638 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
639
640 /* CPU feature flags of cpu we are generating instructions for. */
641 static i386_cpu_flags cpu_arch_tune_flags;
642
643 /* CPU instruction set architecture used. */
644 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
645
646 /* CPU feature flags of instruction set architecture used. */
647 i386_cpu_flags cpu_arch_isa_flags;
648
649 /* If set, conditional jumps are not automatically promoted to handle
650 larger than a byte offset. */
651 static unsigned int no_cond_jump_promotion = 0;
652
653 /* Encode SSE instructions with VEX prefix. */
654 static unsigned int sse2avx;
655
656 /* Encode scalar AVX instructions with specific vector length. */
657 static enum
658 {
659 vex128 = 0,
660 vex256
661 } avxscalar;
662
663 /* Encode scalar EVEX LIG instructions with specific vector length. */
664 static enum
665 {
666 evexl128 = 0,
667 evexl256,
668 evexl512
669 } evexlig;
670
671 /* Encode EVEX WIG instructions with specific evex.w. */
672 static enum
673 {
674 evexw0 = 0,
675 evexw1
676 } evexwig;
677
678 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
679 static enum rc_type evexrcig = rne;
680
681 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
682 static symbolS *GOT_symbol;
683
684 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
685 unsigned int x86_dwarf2_return_column;
686
687 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
688 int x86_cie_data_alignment;
689
690 /* Interface to relax_segment.
691 There are 3 major relax states for 386 jump insns because the
692 different types of jumps add different sizes to frags when we're
693 figuring out what sort of jump to choose to reach a given label. */
694
695 /* Types. */
696 #define UNCOND_JUMP 0
697 #define COND_JUMP 1
698 #define COND_JUMP86 2
699
700 /* Sizes. */
701 #define CODE16 1
702 #define SMALL 0
703 #define SMALL16 (SMALL | CODE16)
704 #define BIG 2
705 #define BIG16 (BIG | CODE16)
706
707 #ifndef INLINE
708 #ifdef __GNUC__
709 #define INLINE __inline__
710 #else
711 #define INLINE
712 #endif
713 #endif
714
715 #define ENCODE_RELAX_STATE(type, size) \
716 ((relax_substateT) (((type) << 2) | (size)))
717 #define TYPE_FROM_RELAX_STATE(s) \
718 ((s) >> 2)
719 #define DISP_SIZE_FROM_RELAX_STATE(s) \
720 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
721
722 /* This table is used by relax_frag to promote short jumps to long
723 ones where necessary. SMALL (short) jumps may be promoted to BIG
724 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
725 don't allow a short jump in a 32 bit code segment to be promoted to
726 a 16 bit offset jump because it's slower (requires data size
727 prefix), and doesn't work, unless the destination is in the bottom
728 64k of the code segment (The top 16 bits of eip are zeroed). */
729
730 const relax_typeS md_relax_table[] =
731 {
732 /* The fields are:
733 1) most positive reach of this state,
734 2) most negative reach of this state,
735 3) how many bytes this mode will have in the variable part of the frag
736 4) which index into the table to try if we can't fit into this one. */
737
738 /* UNCOND_JUMP states. */
739 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
740 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
741 /* dword jmp adds 4 bytes to frag:
742 0 extra opcode bytes, 4 displacement bytes. */
743 {0, 0, 4, 0},
744 /* word jmp adds 2 byte2 to frag:
745 0 extra opcode bytes, 2 displacement bytes. */
746 {0, 0, 2, 0},
747
748 /* COND_JUMP states. */
749 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
750 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
751 /* dword conditionals adds 5 bytes to frag:
752 1 extra opcode byte, 4 displacement bytes. */
753 {0, 0, 5, 0},
754 /* word conditionals add 3 bytes to frag:
755 1 extra opcode byte, 2 displacement bytes. */
756 {0, 0, 3, 0},
757
758 /* COND_JUMP86 states. */
759 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
760 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
761 /* dword conditionals adds 5 bytes to frag:
762 1 extra opcode byte, 4 displacement bytes. */
763 {0, 0, 5, 0},
764 /* word conditionals add 4 bytes to frag:
765 1 displacement byte and a 3 byte long branch insn. */
766 {0, 0, 4, 0}
767 };
768
769 static const arch_entry cpu_arch[] =
770 {
771 /* Do not replace the first two entries - i386_target_format()
772 relies on them being there in this order. */
773 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
774 CPU_GENERIC32_FLAGS, 0 },
775 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
776 CPU_GENERIC64_FLAGS, 0 },
777 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
778 CPU_NONE_FLAGS, 0 },
779 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
780 CPU_I186_FLAGS, 0 },
781 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
782 CPU_I286_FLAGS, 0 },
783 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
784 CPU_I386_FLAGS, 0 },
785 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
786 CPU_I486_FLAGS, 0 },
787 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
788 CPU_I586_FLAGS, 0 },
789 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
790 CPU_I686_FLAGS, 0 },
791 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
792 CPU_I586_FLAGS, 0 },
793 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
794 CPU_PENTIUMPRO_FLAGS, 0 },
795 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
796 CPU_P2_FLAGS, 0 },
797 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
798 CPU_P3_FLAGS, 0 },
799 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
800 CPU_P4_FLAGS, 0 },
801 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
802 CPU_CORE_FLAGS, 0 },
803 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
804 CPU_NOCONA_FLAGS, 0 },
805 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
806 CPU_CORE_FLAGS, 1 },
807 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
808 CPU_CORE_FLAGS, 0 },
809 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
810 CPU_CORE2_FLAGS, 1 },
811 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
812 CPU_CORE2_FLAGS, 0 },
813 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
814 CPU_COREI7_FLAGS, 0 },
815 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
816 CPU_L1OM_FLAGS, 0 },
817 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
818 CPU_K1OM_FLAGS, 0 },
819 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
820 CPU_IAMCU_FLAGS, 0 },
821 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
822 CPU_K6_FLAGS, 0 },
823 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
824 CPU_K6_2_FLAGS, 0 },
825 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
826 CPU_ATHLON_FLAGS, 0 },
827 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
828 CPU_K8_FLAGS, 1 },
829 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
830 CPU_K8_FLAGS, 0 },
831 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
832 CPU_K8_FLAGS, 0 },
833 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
834 CPU_AMDFAM10_FLAGS, 0 },
835 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
836 CPU_BDVER1_FLAGS, 0 },
837 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
838 CPU_BDVER2_FLAGS, 0 },
839 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
840 CPU_BDVER3_FLAGS, 0 },
841 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
842 CPU_BDVER4_FLAGS, 0 },
843 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
844 CPU_ZNVER1_FLAGS, 0 },
845 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
846 CPU_ZNVER2_FLAGS, 0 },
847 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
848 CPU_BTVER1_FLAGS, 0 },
849 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
850 CPU_BTVER2_FLAGS, 0 },
851 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
852 CPU_8087_FLAGS, 0 },
853 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
854 CPU_287_FLAGS, 0 },
855 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
856 CPU_387_FLAGS, 0 },
857 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
858 CPU_687_FLAGS, 0 },
859 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
860 CPU_MMX_FLAGS, 0 },
861 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
862 CPU_SSE_FLAGS, 0 },
863 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
864 CPU_SSE2_FLAGS, 0 },
865 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
866 CPU_SSE3_FLAGS, 0 },
867 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
868 CPU_SSSE3_FLAGS, 0 },
869 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
870 CPU_SSE4_1_FLAGS, 0 },
871 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
872 CPU_SSE4_2_FLAGS, 0 },
873 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
874 CPU_SSE4_2_FLAGS, 0 },
875 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
876 CPU_AVX_FLAGS, 0 },
877 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
878 CPU_AVX2_FLAGS, 0 },
879 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
880 CPU_AVX512F_FLAGS, 0 },
881 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
882 CPU_AVX512CD_FLAGS, 0 },
883 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
884 CPU_AVX512ER_FLAGS, 0 },
885 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
886 CPU_AVX512PF_FLAGS, 0 },
887 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
888 CPU_AVX512DQ_FLAGS, 0 },
889 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
890 CPU_AVX512BW_FLAGS, 0 },
891 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
892 CPU_AVX512VL_FLAGS, 0 },
893 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
894 CPU_VMX_FLAGS, 0 },
895 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
896 CPU_VMFUNC_FLAGS, 0 },
897 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
898 CPU_SMX_FLAGS, 0 },
899 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
900 CPU_XSAVE_FLAGS, 0 },
901 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
902 CPU_XSAVEOPT_FLAGS, 0 },
903 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
904 CPU_XSAVEC_FLAGS, 0 },
905 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
906 CPU_XSAVES_FLAGS, 0 },
907 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
908 CPU_AES_FLAGS, 0 },
909 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
910 CPU_PCLMUL_FLAGS, 0 },
911 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
912 CPU_PCLMUL_FLAGS, 1 },
913 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
914 CPU_FSGSBASE_FLAGS, 0 },
915 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
916 CPU_RDRND_FLAGS, 0 },
917 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
918 CPU_F16C_FLAGS, 0 },
919 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
920 CPU_BMI2_FLAGS, 0 },
921 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
922 CPU_FMA_FLAGS, 0 },
923 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
924 CPU_FMA4_FLAGS, 0 },
925 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
926 CPU_XOP_FLAGS, 0 },
927 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
928 CPU_LWP_FLAGS, 0 },
929 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
930 CPU_MOVBE_FLAGS, 0 },
931 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
932 CPU_CX16_FLAGS, 0 },
933 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
934 CPU_EPT_FLAGS, 0 },
935 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
936 CPU_LZCNT_FLAGS, 0 },
937 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
938 CPU_HLE_FLAGS, 0 },
939 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
940 CPU_RTM_FLAGS, 0 },
941 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
942 CPU_INVPCID_FLAGS, 0 },
943 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
944 CPU_CLFLUSH_FLAGS, 0 },
945 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
946 CPU_NOP_FLAGS, 0 },
947 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
948 CPU_SYSCALL_FLAGS, 0 },
949 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
950 CPU_RDTSCP_FLAGS, 0 },
951 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
952 CPU_3DNOW_FLAGS, 0 },
953 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
954 CPU_3DNOWA_FLAGS, 0 },
955 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
956 CPU_PADLOCK_FLAGS, 0 },
957 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
958 CPU_SVME_FLAGS, 1 },
959 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
960 CPU_SVME_FLAGS, 0 },
961 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
962 CPU_SSE4A_FLAGS, 0 },
963 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
964 CPU_ABM_FLAGS, 0 },
965 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
966 CPU_BMI_FLAGS, 0 },
967 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
968 CPU_TBM_FLAGS, 0 },
969 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
970 CPU_ADX_FLAGS, 0 },
971 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
972 CPU_RDSEED_FLAGS, 0 },
973 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
974 CPU_PRFCHW_FLAGS, 0 },
975 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
976 CPU_SMAP_FLAGS, 0 },
977 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
978 CPU_MPX_FLAGS, 0 },
979 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
980 CPU_SHA_FLAGS, 0 },
981 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
982 CPU_CLFLUSHOPT_FLAGS, 0 },
983 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
984 CPU_PREFETCHWT1_FLAGS, 0 },
985 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
986 CPU_SE1_FLAGS, 0 },
987 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
988 CPU_CLWB_FLAGS, 0 },
989 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
990 CPU_AVX512IFMA_FLAGS, 0 },
991 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
992 CPU_AVX512VBMI_FLAGS, 0 },
993 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
994 CPU_AVX512_4FMAPS_FLAGS, 0 },
995 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
996 CPU_AVX512_4VNNIW_FLAGS, 0 },
997 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
998 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
999 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1000 CPU_AVX512_VBMI2_FLAGS, 0 },
1001 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1002 CPU_AVX512_VNNI_FLAGS, 0 },
1003 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1004 CPU_AVX512_BITALG_FLAGS, 0 },
1005 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1006 CPU_CLZERO_FLAGS, 0 },
1007 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1008 CPU_MWAITX_FLAGS, 0 },
1009 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1010 CPU_OSPKE_FLAGS, 0 },
1011 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1012 CPU_RDPID_FLAGS, 0 },
1013 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1014 CPU_PTWRITE_FLAGS, 0 },
1015 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1016 CPU_IBT_FLAGS, 0 },
1017 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1018 CPU_SHSTK_FLAGS, 0 },
1019 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1020 CPU_GFNI_FLAGS, 0 },
1021 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1022 CPU_VAES_FLAGS, 0 },
1023 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1024 CPU_VPCLMULQDQ_FLAGS, 0 },
1025 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1026 CPU_WBNOINVD_FLAGS, 0 },
1027 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1028 CPU_PCONFIG_FLAGS, 0 },
1029 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1030 CPU_WAITPKG_FLAGS, 0 },
1031 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1032 CPU_CLDEMOTE_FLAGS, 0 },
1033 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1034 CPU_MOVDIRI_FLAGS, 0 },
1035 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1036 CPU_MOVDIR64B_FLAGS, 0 },
1037 };
1038
1039 static const noarch_entry cpu_noarch[] =
1040 {
1041 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1042 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1043 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1044 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1045 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1046 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1047 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1048 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1049 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1050 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1051 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1052 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1053 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1054 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1055 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1056 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1057 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1058 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1059 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1060 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1061 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1062 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1063 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1064 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1065 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1066 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1067 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1068 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1069 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1070 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1071 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1072 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1073 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1074 };
1075
1076 #ifdef I386COFF
1077 /* Like s_lcomm_internal in gas/read.c but the alignment string
1078 is allowed to be optional. */
1079
1080 static symbolS *
1081 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1082 {
1083 addressT align = 0;
1084
1085 SKIP_WHITESPACE ();
1086
1087 if (needs_align
1088 && *input_line_pointer == ',')
1089 {
1090 align = parse_align (needs_align - 1);
1091
1092 if (align == (addressT) -1)
1093 return NULL;
1094 }
1095 else
1096 {
1097 if (size >= 8)
1098 align = 3;
1099 else if (size >= 4)
1100 align = 2;
1101 else if (size >= 2)
1102 align = 1;
1103 else
1104 align = 0;
1105 }
1106
1107 bss_alloc (symbolP, size, align);
1108 return symbolP;
1109 }
1110
1111 static void
1112 pe_lcomm (int needs_align)
1113 {
1114 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1115 }
1116 #endif
1117
1118 const pseudo_typeS md_pseudo_table[] =
1119 {
1120 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1121 {"align", s_align_bytes, 0},
1122 #else
1123 {"align", s_align_ptwo, 0},
1124 #endif
1125 {"arch", set_cpu_arch, 0},
1126 #ifndef I386COFF
1127 {"bss", s_bss, 0},
1128 #else
1129 {"lcomm", pe_lcomm, 1},
1130 #endif
1131 {"ffloat", float_cons, 'f'},
1132 {"dfloat", float_cons, 'd'},
1133 {"tfloat", float_cons, 'x'},
1134 {"value", cons, 2},
1135 {"slong", signed_cons, 4},
1136 {"noopt", s_ignore, 0},
1137 {"optim", s_ignore, 0},
1138 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1139 {"code16", set_code_flag, CODE_16BIT},
1140 {"code32", set_code_flag, CODE_32BIT},
1141 #ifdef BFD64
1142 {"code64", set_code_flag, CODE_64BIT},
1143 #endif
1144 {"intel_syntax", set_intel_syntax, 1},
1145 {"att_syntax", set_intel_syntax, 0},
1146 {"intel_mnemonic", set_intel_mnemonic, 1},
1147 {"att_mnemonic", set_intel_mnemonic, 0},
1148 {"allow_index_reg", set_allow_index_reg, 1},
1149 {"disallow_index_reg", set_allow_index_reg, 0},
1150 {"sse_check", set_check, 0},
1151 {"operand_check", set_check, 1},
1152 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1153 {"largecomm", handle_large_common, 0},
1154 #else
1155 {"file", dwarf2_directive_file, 0},
1156 {"loc", dwarf2_directive_loc, 0},
1157 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1158 #endif
1159 #ifdef TE_PE
1160 {"secrel32", pe_directive_secrel, 0},
1161 #endif
1162 {0, 0, 0}
1163 };
1164
1165 /* For interface with expression (). */
1166 extern char *input_line_pointer;
1167
1168 /* Hash table for instruction mnemonic lookup. */
1169 static struct hash_control *op_hash;
1170
1171 /* Hash table for register lookup. */
1172 static struct hash_control *reg_hash;
1173 \f
1174 /* Various efficient no-op patterns for aligning code labels.
1175 Note: Don't try to assemble the instructions in the comments.
1176 0L and 0w are not legal. */
1177 static const unsigned char f32_1[] =
1178 {0x90}; /* nop */
1179 static const unsigned char f32_2[] =
1180 {0x66,0x90}; /* xchg %ax,%ax */
1181 static const unsigned char f32_3[] =
1182 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1183 static const unsigned char f32_4[] =
1184 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1185 static const unsigned char f32_6[] =
1186 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1187 static const unsigned char f32_7[] =
1188 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1189 static const unsigned char f16_3[] =
1190 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1191 static const unsigned char f16_4[] =
1192 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1193 static const unsigned char jump_disp8[] =
1194 {0xeb}; /* jmp disp8 */
1195 static const unsigned char jump32_disp32[] =
1196 {0xe9}; /* jmp disp32 */
1197 static const unsigned char jump16_disp32[] =
1198 {0x66,0xe9}; /* jmp disp32 */
1199 /* 32-bit NOPs patterns. */
1200 static const unsigned char *const f32_patt[] = {
1201 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1202 };
1203 /* 16-bit NOPs patterns. */
1204 static const unsigned char *const f16_patt[] = {
1205 f32_1, f32_2, f16_3, f16_4
1206 };
1207 /* nopl (%[re]ax) */
1208 static const unsigned char alt_3[] =
1209 {0x0f,0x1f,0x00};
1210 /* nopl 0(%[re]ax) */
1211 static const unsigned char alt_4[] =
1212 {0x0f,0x1f,0x40,0x00};
1213 /* nopl 0(%[re]ax,%[re]ax,1) */
1214 static const unsigned char alt_5[] =
1215 {0x0f,0x1f,0x44,0x00,0x00};
1216 /* nopw 0(%[re]ax,%[re]ax,1) */
1217 static const unsigned char alt_6[] =
1218 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1219 /* nopl 0L(%[re]ax) */
1220 static const unsigned char alt_7[] =
1221 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1222 /* nopl 0L(%[re]ax,%[re]ax,1) */
1223 static const unsigned char alt_8[] =
1224 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1225 /* nopw 0L(%[re]ax,%[re]ax,1) */
1226 static const unsigned char alt_9[] =
1227 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1228 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1229 static const unsigned char alt_10[] =
1230 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1231 /* data16 nopw %cs:0L(%eax,%eax,1) */
1232 static const unsigned char alt_11[] =
1233 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1234 /* 32-bit and 64-bit NOPs patterns. */
1235 static const unsigned char *const alt_patt[] = {
1236 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1237 alt_9, alt_10, alt_11
1238 };
1239
1240 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1241 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1242
1243 static void
1244 i386_output_nops (char *where, const unsigned char *const *patt,
1245 int count, int max_single_nop_size)
1246
1247 {
1248 /* Place the longer NOP first. */
1249 int last;
1250 int offset;
1251 const unsigned char *nops = patt[max_single_nop_size - 1];
1252
1253 /* Use the smaller one if the requsted one isn't available. */
1254 if (nops == NULL)
1255 {
1256 max_single_nop_size--;
1257 nops = patt[max_single_nop_size - 1];
1258 }
1259
1260 last = count % max_single_nop_size;
1261
1262 count -= last;
1263 for (offset = 0; offset < count; offset += max_single_nop_size)
1264 memcpy (where + offset, nops, max_single_nop_size);
1265
1266 if (last)
1267 {
1268 nops = patt[last - 1];
1269 if (nops == NULL)
1270 {
1271 /* Use the smaller one plus one-byte NOP if the needed one
1272 isn't available. */
1273 last--;
1274 nops = patt[last - 1];
1275 memcpy (where + offset, nops, last);
1276 where[offset + last] = *patt[0];
1277 }
1278 else
1279 memcpy (where + offset, nops, last);
1280 }
1281 }
1282
1283 static INLINE int
1284 fits_in_imm7 (offsetT num)
1285 {
1286 return (num & 0x7f) == num;
1287 }
1288
1289 static INLINE int
1290 fits_in_imm31 (offsetT num)
1291 {
1292 return (num & 0x7fffffff) == num;
1293 }
1294
1295 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1296 single NOP instruction LIMIT. */
1297
1298 void
1299 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1300 {
1301 const unsigned char *const *patt = NULL;
1302 int max_single_nop_size;
1303 /* Maximum number of NOPs before switching to jump over NOPs. */
1304 int max_number_of_nops;
1305
1306 switch (fragP->fr_type)
1307 {
1308 case rs_fill_nop:
1309 case rs_align_code:
1310 break;
1311 default:
1312 return;
1313 }
1314
1315 /* We need to decide which NOP sequence to use for 32bit and
1316 64bit. When -mtune= is used:
1317
1318 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1319 PROCESSOR_GENERIC32, f32_patt will be used.
1320 2. For the rest, alt_patt will be used.
1321
1322 When -mtune= isn't used, alt_patt will be used if
1323 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1324 be used.
1325
1326 When -march= or .arch is used, we can't use anything beyond
1327 cpu_arch_isa_flags. */
1328
1329 if (flag_code == CODE_16BIT)
1330 {
1331 patt = f16_patt;
1332 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1333 /* Limit number of NOPs to 2 in 16-bit mode. */
1334 max_number_of_nops = 2;
1335 }
1336 else
1337 {
1338 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1339 {
1340 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1341 switch (cpu_arch_tune)
1342 {
1343 case PROCESSOR_UNKNOWN:
1344 /* We use cpu_arch_isa_flags to check if we SHOULD
1345 optimize with nops. */
1346 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1347 patt = alt_patt;
1348 else
1349 patt = f32_patt;
1350 break;
1351 case PROCESSOR_PENTIUM4:
1352 case PROCESSOR_NOCONA:
1353 case PROCESSOR_CORE:
1354 case PROCESSOR_CORE2:
1355 case PROCESSOR_COREI7:
1356 case PROCESSOR_L1OM:
1357 case PROCESSOR_K1OM:
1358 case PROCESSOR_GENERIC64:
1359 case PROCESSOR_K6:
1360 case PROCESSOR_ATHLON:
1361 case PROCESSOR_K8:
1362 case PROCESSOR_AMDFAM10:
1363 case PROCESSOR_BD:
1364 case PROCESSOR_ZNVER:
1365 case PROCESSOR_BT:
1366 patt = alt_patt;
1367 break;
1368 case PROCESSOR_I386:
1369 case PROCESSOR_I486:
1370 case PROCESSOR_PENTIUM:
1371 case PROCESSOR_PENTIUMPRO:
1372 case PROCESSOR_IAMCU:
1373 case PROCESSOR_GENERIC32:
1374 patt = f32_patt;
1375 break;
1376 }
1377 }
1378 else
1379 {
1380 switch (fragP->tc_frag_data.tune)
1381 {
1382 case PROCESSOR_UNKNOWN:
1383 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1384 PROCESSOR_UNKNOWN. */
1385 abort ();
1386 break;
1387
1388 case PROCESSOR_I386:
1389 case PROCESSOR_I486:
1390 case PROCESSOR_PENTIUM:
1391 case PROCESSOR_IAMCU:
1392 case PROCESSOR_K6:
1393 case PROCESSOR_ATHLON:
1394 case PROCESSOR_K8:
1395 case PROCESSOR_AMDFAM10:
1396 case PROCESSOR_BD:
1397 case PROCESSOR_ZNVER:
1398 case PROCESSOR_BT:
1399 case PROCESSOR_GENERIC32:
1400 /* We use cpu_arch_isa_flags to check if we CAN optimize
1401 with nops. */
1402 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1403 patt = alt_patt;
1404 else
1405 patt = f32_patt;
1406 break;
1407 case PROCESSOR_PENTIUMPRO:
1408 case PROCESSOR_PENTIUM4:
1409 case PROCESSOR_NOCONA:
1410 case PROCESSOR_CORE:
1411 case PROCESSOR_CORE2:
1412 case PROCESSOR_COREI7:
1413 case PROCESSOR_L1OM:
1414 case PROCESSOR_K1OM:
1415 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1416 patt = alt_patt;
1417 else
1418 patt = f32_patt;
1419 break;
1420 case PROCESSOR_GENERIC64:
1421 patt = alt_patt;
1422 break;
1423 }
1424 }
1425
1426 if (patt == f32_patt)
1427 {
1428 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1429 /* Limit number of NOPs to 2 for older processors. */
1430 max_number_of_nops = 2;
1431 }
1432 else
1433 {
1434 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1435 /* Limit number of NOPs to 7 for newer processors. */
1436 max_number_of_nops = 7;
1437 }
1438 }
1439
1440 if (limit == 0)
1441 limit = max_single_nop_size;
1442
1443 if (fragP->fr_type == rs_fill_nop)
1444 {
1445 /* Output NOPs for .nop directive. */
1446 if (limit > max_single_nop_size)
1447 {
1448 as_bad_where (fragP->fr_file, fragP->fr_line,
1449 _("invalid single nop size: %d "
1450 "(expect within [0, %d])"),
1451 limit, max_single_nop_size);
1452 return;
1453 }
1454 }
1455 else
1456 fragP->fr_var = count;
1457
1458 if ((count / max_single_nop_size) > max_number_of_nops)
1459 {
1460 /* Generate jump over NOPs. */
1461 offsetT disp = count - 2;
1462 if (fits_in_imm7 (disp))
1463 {
1464 /* Use "jmp disp8" if possible. */
1465 count = disp;
1466 where[0] = jump_disp8[0];
1467 where[1] = count;
1468 where += 2;
1469 }
1470 else
1471 {
1472 unsigned int size_of_jump;
1473
1474 if (flag_code == CODE_16BIT)
1475 {
1476 where[0] = jump16_disp32[0];
1477 where[1] = jump16_disp32[1];
1478 size_of_jump = 2;
1479 }
1480 else
1481 {
1482 where[0] = jump32_disp32[0];
1483 size_of_jump = 1;
1484 }
1485
1486 count -= size_of_jump + 4;
1487 if (!fits_in_imm31 (count))
1488 {
1489 as_bad_where (fragP->fr_file, fragP->fr_line,
1490 _("jump over nop padding out of range"));
1491 return;
1492 }
1493
1494 md_number_to_chars (where + size_of_jump, count, 4);
1495 where += size_of_jump + 4;
1496 }
1497 }
1498
1499 /* Generate multiple NOPs. */
1500 i386_output_nops (where, patt, count, limit);
1501 }
1502
1503 static INLINE int
1504 operand_type_all_zero (const union i386_operand_type *x)
1505 {
1506 switch (ARRAY_SIZE(x->array))
1507 {
1508 case 3:
1509 if (x->array[2])
1510 return 0;
1511 /* Fall through. */
1512 case 2:
1513 if (x->array[1])
1514 return 0;
1515 /* Fall through. */
1516 case 1:
1517 return !x->array[0];
1518 default:
1519 abort ();
1520 }
1521 }
1522
1523 static INLINE void
1524 operand_type_set (union i386_operand_type *x, unsigned int v)
1525 {
1526 switch (ARRAY_SIZE(x->array))
1527 {
1528 case 3:
1529 x->array[2] = v;
1530 /* Fall through. */
1531 case 2:
1532 x->array[1] = v;
1533 /* Fall through. */
1534 case 1:
1535 x->array[0] = v;
1536 /* Fall through. */
1537 break;
1538 default:
1539 abort ();
1540 }
1541 }
1542
1543 static INLINE int
1544 operand_type_equal (const union i386_operand_type *x,
1545 const union i386_operand_type *y)
1546 {
1547 switch (ARRAY_SIZE(x->array))
1548 {
1549 case 3:
1550 if (x->array[2] != y->array[2])
1551 return 0;
1552 /* Fall through. */
1553 case 2:
1554 if (x->array[1] != y->array[1])
1555 return 0;
1556 /* Fall through. */
1557 case 1:
1558 return x->array[0] == y->array[0];
1559 break;
1560 default:
1561 abort ();
1562 }
1563 }
1564
1565 static INLINE int
1566 cpu_flags_all_zero (const union i386_cpu_flags *x)
1567 {
1568 switch (ARRAY_SIZE(x->array))
1569 {
1570 case 4:
1571 if (x->array[3])
1572 return 0;
1573 /* Fall through. */
1574 case 3:
1575 if (x->array[2])
1576 return 0;
1577 /* Fall through. */
1578 case 2:
1579 if (x->array[1])
1580 return 0;
1581 /* Fall through. */
1582 case 1:
1583 return !x->array[0];
1584 default:
1585 abort ();
1586 }
1587 }
1588
1589 static INLINE int
1590 cpu_flags_equal (const union i386_cpu_flags *x,
1591 const union i386_cpu_flags *y)
1592 {
1593 switch (ARRAY_SIZE(x->array))
1594 {
1595 case 4:
1596 if (x->array[3] != y->array[3])
1597 return 0;
1598 /* Fall through. */
1599 case 3:
1600 if (x->array[2] != y->array[2])
1601 return 0;
1602 /* Fall through. */
1603 case 2:
1604 if (x->array[1] != y->array[1])
1605 return 0;
1606 /* Fall through. */
1607 case 1:
1608 return x->array[0] == y->array[0];
1609 break;
1610 default:
1611 abort ();
1612 }
1613 }
1614
1615 static INLINE int
1616 cpu_flags_check_cpu64 (i386_cpu_flags f)
1617 {
1618 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1619 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1620 }
1621
1622 static INLINE i386_cpu_flags
1623 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1624 {
1625 switch (ARRAY_SIZE (x.array))
1626 {
1627 case 4:
1628 x.array [3] &= y.array [3];
1629 /* Fall through. */
1630 case 3:
1631 x.array [2] &= y.array [2];
1632 /* Fall through. */
1633 case 2:
1634 x.array [1] &= y.array [1];
1635 /* Fall through. */
1636 case 1:
1637 x.array [0] &= y.array [0];
1638 break;
1639 default:
1640 abort ();
1641 }
1642 return x;
1643 }
1644
1645 static INLINE i386_cpu_flags
1646 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1647 {
1648 switch (ARRAY_SIZE (x.array))
1649 {
1650 case 4:
1651 x.array [3] |= y.array [3];
1652 /* Fall through. */
1653 case 3:
1654 x.array [2] |= y.array [2];
1655 /* Fall through. */
1656 case 2:
1657 x.array [1] |= y.array [1];
1658 /* Fall through. */
1659 case 1:
1660 x.array [0] |= y.array [0];
1661 break;
1662 default:
1663 abort ();
1664 }
1665 return x;
1666 }
1667
1668 static INLINE i386_cpu_flags
1669 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1670 {
1671 switch (ARRAY_SIZE (x.array))
1672 {
1673 case 4:
1674 x.array [3] &= ~y.array [3];
1675 /* Fall through. */
1676 case 3:
1677 x.array [2] &= ~y.array [2];
1678 /* Fall through. */
1679 case 2:
1680 x.array [1] &= ~y.array [1];
1681 /* Fall through. */
1682 case 1:
1683 x.array [0] &= ~y.array [0];
1684 break;
1685 default:
1686 abort ();
1687 }
1688 return x;
1689 }
1690
1691 #define CPU_FLAGS_ARCH_MATCH 0x1
1692 #define CPU_FLAGS_64BIT_MATCH 0x2
1693
1694 #define CPU_FLAGS_PERFECT_MATCH \
1695 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1696
1697 /* Return CPU flags match bits. */
1698
1699 static int
1700 cpu_flags_match (const insn_template *t)
1701 {
1702 i386_cpu_flags x = t->cpu_flags;
1703 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1704
1705 x.bitfield.cpu64 = 0;
1706 x.bitfield.cpuno64 = 0;
1707
1708 if (cpu_flags_all_zero (&x))
1709 {
1710 /* This instruction is available on all archs. */
1711 match |= CPU_FLAGS_ARCH_MATCH;
1712 }
1713 else
1714 {
1715 /* This instruction is available only on some archs. */
1716 i386_cpu_flags cpu = cpu_arch_flags;
1717
1718 /* AVX512VL is no standalone feature - match it and then strip it. */
1719 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1720 return match;
1721 x.bitfield.cpuavx512vl = 0;
1722
1723 cpu = cpu_flags_and (x, cpu);
1724 if (!cpu_flags_all_zero (&cpu))
1725 {
1726 if (x.bitfield.cpuavx)
1727 {
1728 /* We need to check a few extra flags with AVX. */
1729 if (cpu.bitfield.cpuavx
1730 && (!t->opcode_modifier.sse2avx || sse2avx)
1731 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1732 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1733 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1734 match |= CPU_FLAGS_ARCH_MATCH;
1735 }
1736 else if (x.bitfield.cpuavx512f)
1737 {
1738 /* We need to check a few extra flags with AVX512F. */
1739 if (cpu.bitfield.cpuavx512f
1740 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1741 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1742 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1743 match |= CPU_FLAGS_ARCH_MATCH;
1744 }
1745 else
1746 match |= CPU_FLAGS_ARCH_MATCH;
1747 }
1748 }
1749 return match;
1750 }
1751
1752 static INLINE i386_operand_type
1753 operand_type_and (i386_operand_type x, i386_operand_type y)
1754 {
1755 switch (ARRAY_SIZE (x.array))
1756 {
1757 case 3:
1758 x.array [2] &= y.array [2];
1759 /* Fall through. */
1760 case 2:
1761 x.array [1] &= y.array [1];
1762 /* Fall through. */
1763 case 1:
1764 x.array [0] &= y.array [0];
1765 break;
1766 default:
1767 abort ();
1768 }
1769 return x;
1770 }
1771
1772 static INLINE i386_operand_type
1773 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1774 {
1775 switch (ARRAY_SIZE (x.array))
1776 {
1777 case 3:
1778 x.array [2] &= ~y.array [2];
1779 /* Fall through. */
1780 case 2:
1781 x.array [1] &= ~y.array [1];
1782 /* Fall through. */
1783 case 1:
1784 x.array [0] &= ~y.array [0];
1785 break;
1786 default:
1787 abort ();
1788 }
1789 return x;
1790 }
1791
1792 static INLINE i386_operand_type
1793 operand_type_or (i386_operand_type x, i386_operand_type y)
1794 {
1795 switch (ARRAY_SIZE (x.array))
1796 {
1797 case 3:
1798 x.array [2] |= y.array [2];
1799 /* Fall through. */
1800 case 2:
1801 x.array [1] |= y.array [1];
1802 /* Fall through. */
1803 case 1:
1804 x.array [0] |= y.array [0];
1805 break;
1806 default:
1807 abort ();
1808 }
1809 return x;
1810 }
1811
1812 static INLINE i386_operand_type
1813 operand_type_xor (i386_operand_type x, i386_operand_type y)
1814 {
1815 switch (ARRAY_SIZE (x.array))
1816 {
1817 case 3:
1818 x.array [2] ^= y.array [2];
1819 /* Fall through. */
1820 case 2:
1821 x.array [1] ^= y.array [1];
1822 /* Fall through. */
1823 case 1:
1824 x.array [0] ^= y.array [0];
1825 break;
1826 default:
1827 abort ();
1828 }
1829 return x;
1830 }
1831
1832 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1833 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1834 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1835 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1836 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1837 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1838 static const i386_operand_type anydisp
1839 = OPERAND_TYPE_ANYDISP;
1840 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1841 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1842 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1843 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1844 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1845 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1846 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1847 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1848 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1849 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1850 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1851 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1852
1853 enum operand_type
1854 {
1855 reg,
1856 imm,
1857 disp,
1858 anymem
1859 };
1860
1861 static INLINE int
1862 operand_type_check (i386_operand_type t, enum operand_type c)
1863 {
1864 switch (c)
1865 {
1866 case reg:
1867 return t.bitfield.reg;
1868
1869 case imm:
1870 return (t.bitfield.imm8
1871 || t.bitfield.imm8s
1872 || t.bitfield.imm16
1873 || t.bitfield.imm32
1874 || t.bitfield.imm32s
1875 || t.bitfield.imm64);
1876
1877 case disp:
1878 return (t.bitfield.disp8
1879 || t.bitfield.disp16
1880 || t.bitfield.disp32
1881 || t.bitfield.disp32s
1882 || t.bitfield.disp64);
1883
1884 case anymem:
1885 return (t.bitfield.disp8
1886 || t.bitfield.disp16
1887 || t.bitfield.disp32
1888 || t.bitfield.disp32s
1889 || t.bitfield.disp64
1890 || t.bitfield.baseindex);
1891
1892 default:
1893 abort ();
1894 }
1895
1896 return 0;
1897 }
1898
1899 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1900 between operand GIVEN and opeand WANTED for instruction template T. */
1901
1902 static INLINE int
1903 match_operand_size (const insn_template *t, unsigned int wanted,
1904 unsigned int given)
1905 {
1906 return !((i.types[given].bitfield.byte
1907 && !t->operand_types[wanted].bitfield.byte)
1908 || (i.types[given].bitfield.word
1909 && !t->operand_types[wanted].bitfield.word)
1910 || (i.types[given].bitfield.dword
1911 && !t->operand_types[wanted].bitfield.dword)
1912 || (i.types[given].bitfield.qword
1913 && !t->operand_types[wanted].bitfield.qword)
1914 || (i.types[given].bitfield.tbyte
1915 && !t->operand_types[wanted].bitfield.tbyte));
1916 }
1917
1918 /* Return 1 if there is no conflict in SIMD register between operand
1919 GIVEN and opeand WANTED for instruction template T. */
1920
1921 static INLINE int
1922 match_simd_size (const insn_template *t, unsigned int wanted,
1923 unsigned int given)
1924 {
1925 return !((i.types[given].bitfield.xmmword
1926 && !t->operand_types[wanted].bitfield.xmmword)
1927 || (i.types[given].bitfield.ymmword
1928 && !t->operand_types[wanted].bitfield.ymmword)
1929 || (i.types[given].bitfield.zmmword
1930 && !t->operand_types[wanted].bitfield.zmmword));
1931 }
1932
1933 /* Return 1 if there is no conflict in any size between operand GIVEN
1934 and opeand WANTED for instruction template T. */
1935
1936 static INLINE int
1937 match_mem_size (const insn_template *t, unsigned int wanted,
1938 unsigned int given)
1939 {
1940 return (match_operand_size (t, wanted, given)
1941 && !((i.types[given].bitfield.unspecified
1942 && !i.broadcast
1943 && !t->operand_types[wanted].bitfield.unspecified)
1944 || (i.types[given].bitfield.fword
1945 && !t->operand_types[wanted].bitfield.fword)
1946 /* For scalar opcode templates to allow register and memory
1947 operands at the same time, some special casing is needed
1948 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
1949 down-conversion vpmov*. */
1950 || ((t->operand_types[wanted].bitfield.regsimd
1951 && !t->opcode_modifier.broadcast
1952 && (t->operand_types[wanted].bitfield.byte
1953 || t->operand_types[wanted].bitfield.word
1954 || t->operand_types[wanted].bitfield.dword
1955 || t->operand_types[wanted].bitfield.qword))
1956 ? (i.types[given].bitfield.xmmword
1957 || i.types[given].bitfield.ymmword
1958 || i.types[given].bitfield.zmmword)
1959 : !match_simd_size(t, wanted, given))));
1960 }
1961
1962 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
1963 operands for instruction template T, and it has MATCH_REVERSE set if there
1964 is no size conflict on any operands for the template with operands reversed
1965 (and the template allows for reversing in the first place). */
1966
1967 #define MATCH_STRAIGHT 1
1968 #define MATCH_REVERSE 2
1969
1970 static INLINE unsigned int
1971 operand_size_match (const insn_template *t)
1972 {
1973 unsigned int j, match = MATCH_STRAIGHT;
1974
1975 /* Don't check jump instructions. */
1976 if (t->opcode_modifier.jump
1977 || t->opcode_modifier.jumpbyte
1978 || t->opcode_modifier.jumpdword
1979 || t->opcode_modifier.jumpintersegment)
1980 return match;
1981
1982 /* Check memory and accumulator operand size. */
1983 for (j = 0; j < i.operands; j++)
1984 {
1985 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
1986 && t->operand_types[j].bitfield.anysize)
1987 continue;
1988
1989 if (t->operand_types[j].bitfield.reg
1990 && !match_operand_size (t, j, j))
1991 {
1992 match = 0;
1993 break;
1994 }
1995
1996 if (t->operand_types[j].bitfield.regsimd
1997 && !match_simd_size (t, j, j))
1998 {
1999 match = 0;
2000 break;
2001 }
2002
2003 if (t->operand_types[j].bitfield.acc
2004 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2005 {
2006 match = 0;
2007 break;
2008 }
2009
2010 if (i.types[j].bitfield.mem && !match_mem_size (t, j, j))
2011 {
2012 match = 0;
2013 break;
2014 }
2015 }
2016
2017 if (!t->opcode_modifier.d)
2018 {
2019 mismatch:
2020 if (!match)
2021 i.error = operand_size_mismatch;
2022 return match;
2023 }
2024
2025 /* Check reverse. */
2026 gas_assert (i.operands == 2);
2027
2028 for (j = 0; j < 2; j++)
2029 {
2030 if ((t->operand_types[j].bitfield.reg
2031 || t->operand_types[j].bitfield.acc)
2032 && !match_operand_size (t, j, !j))
2033 goto mismatch;
2034
2035 if (i.types[!j].bitfield.mem
2036 && !match_mem_size (t, j, !j))
2037 goto mismatch;
2038 }
2039
2040 return match | MATCH_REVERSE;
2041 }
2042
2043 static INLINE int
2044 operand_type_match (i386_operand_type overlap,
2045 i386_operand_type given)
2046 {
2047 i386_operand_type temp = overlap;
2048
2049 temp.bitfield.jumpabsolute = 0;
2050 temp.bitfield.unspecified = 0;
2051 temp.bitfield.byte = 0;
2052 temp.bitfield.word = 0;
2053 temp.bitfield.dword = 0;
2054 temp.bitfield.fword = 0;
2055 temp.bitfield.qword = 0;
2056 temp.bitfield.tbyte = 0;
2057 temp.bitfield.xmmword = 0;
2058 temp.bitfield.ymmword = 0;
2059 temp.bitfield.zmmword = 0;
2060 if (operand_type_all_zero (&temp))
2061 goto mismatch;
2062
2063 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2064 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2065 return 1;
2066
2067 mismatch:
2068 i.error = operand_type_mismatch;
2069 return 0;
2070 }
2071
2072 /* If given types g0 and g1 are registers they must be of the same type
2073 unless the expected operand type register overlap is null.
2074 Memory operand size of certain SIMD instructions is also being checked
2075 here. */
2076
2077 static INLINE int
2078 operand_type_register_match (i386_operand_type g0,
2079 i386_operand_type t0,
2080 i386_operand_type g1,
2081 i386_operand_type t1)
2082 {
2083 if (!g0.bitfield.reg
2084 && !g0.bitfield.regsimd
2085 && (!operand_type_check (g0, anymem)
2086 || g0.bitfield.unspecified
2087 || !t0.bitfield.regsimd))
2088 return 1;
2089
2090 if (!g1.bitfield.reg
2091 && !g1.bitfield.regsimd
2092 && (!operand_type_check (g1, anymem)
2093 || g1.bitfield.unspecified
2094 || !t1.bitfield.regsimd))
2095 return 1;
2096
2097 if (g0.bitfield.byte == g1.bitfield.byte
2098 && g0.bitfield.word == g1.bitfield.word
2099 && g0.bitfield.dword == g1.bitfield.dword
2100 && g0.bitfield.qword == g1.bitfield.qword
2101 && g0.bitfield.xmmword == g1.bitfield.xmmword
2102 && g0.bitfield.ymmword == g1.bitfield.ymmword
2103 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2104 return 1;
2105
2106 if (!(t0.bitfield.byte & t1.bitfield.byte)
2107 && !(t0.bitfield.word & t1.bitfield.word)
2108 && !(t0.bitfield.dword & t1.bitfield.dword)
2109 && !(t0.bitfield.qword & t1.bitfield.qword)
2110 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2111 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2112 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2113 return 1;
2114
2115 i.error = register_type_mismatch;
2116
2117 return 0;
2118 }
2119
2120 static INLINE unsigned int
2121 register_number (const reg_entry *r)
2122 {
2123 unsigned int nr = r->reg_num;
2124
2125 if (r->reg_flags & RegRex)
2126 nr += 8;
2127
2128 if (r->reg_flags & RegVRex)
2129 nr += 16;
2130
2131 return nr;
2132 }
2133
2134 static INLINE unsigned int
2135 mode_from_disp_size (i386_operand_type t)
2136 {
2137 if (t.bitfield.disp8)
2138 return 1;
2139 else if (t.bitfield.disp16
2140 || t.bitfield.disp32
2141 || t.bitfield.disp32s)
2142 return 2;
2143 else
2144 return 0;
2145 }
2146
2147 static INLINE int
2148 fits_in_signed_byte (addressT num)
2149 {
2150 return num + 0x80 <= 0xff;
2151 }
2152
2153 static INLINE int
2154 fits_in_unsigned_byte (addressT num)
2155 {
2156 return num <= 0xff;
2157 }
2158
2159 static INLINE int
2160 fits_in_unsigned_word (addressT num)
2161 {
2162 return num <= 0xffff;
2163 }
2164
2165 static INLINE int
2166 fits_in_signed_word (addressT num)
2167 {
2168 return num + 0x8000 <= 0xffff;
2169 }
2170
2171 static INLINE int
2172 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2173 {
2174 #ifndef BFD64
2175 return 1;
2176 #else
2177 return num + 0x80000000 <= 0xffffffff;
2178 #endif
2179 } /* fits_in_signed_long() */
2180
2181 static INLINE int
2182 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2183 {
2184 #ifndef BFD64
2185 return 1;
2186 #else
2187 return num <= 0xffffffff;
2188 #endif
2189 } /* fits_in_unsigned_long() */
2190
2191 static INLINE int
2192 fits_in_disp8 (offsetT num)
2193 {
2194 int shift = i.memshift;
2195 unsigned int mask;
2196
2197 if (shift == -1)
2198 abort ();
2199
2200 mask = (1 << shift) - 1;
2201
2202 /* Return 0 if NUM isn't properly aligned. */
2203 if ((num & mask))
2204 return 0;
2205
2206 /* Check if NUM will fit in 8bit after shift. */
2207 return fits_in_signed_byte (num >> shift);
2208 }
2209
2210 static INLINE int
2211 fits_in_imm4 (offsetT num)
2212 {
2213 return (num & 0xf) == num;
2214 }
2215
2216 static i386_operand_type
2217 smallest_imm_type (offsetT num)
2218 {
2219 i386_operand_type t;
2220
2221 operand_type_set (&t, 0);
2222 t.bitfield.imm64 = 1;
2223
2224 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2225 {
2226 /* This code is disabled on the 486 because all the Imm1 forms
2227 in the opcode table are slower on the i486. They're the
2228 versions with the implicitly specified single-position
2229 displacement, which has another syntax if you really want to
2230 use that form. */
2231 t.bitfield.imm1 = 1;
2232 t.bitfield.imm8 = 1;
2233 t.bitfield.imm8s = 1;
2234 t.bitfield.imm16 = 1;
2235 t.bitfield.imm32 = 1;
2236 t.bitfield.imm32s = 1;
2237 }
2238 else if (fits_in_signed_byte (num))
2239 {
2240 t.bitfield.imm8 = 1;
2241 t.bitfield.imm8s = 1;
2242 t.bitfield.imm16 = 1;
2243 t.bitfield.imm32 = 1;
2244 t.bitfield.imm32s = 1;
2245 }
2246 else if (fits_in_unsigned_byte (num))
2247 {
2248 t.bitfield.imm8 = 1;
2249 t.bitfield.imm16 = 1;
2250 t.bitfield.imm32 = 1;
2251 t.bitfield.imm32s = 1;
2252 }
2253 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2254 {
2255 t.bitfield.imm16 = 1;
2256 t.bitfield.imm32 = 1;
2257 t.bitfield.imm32s = 1;
2258 }
2259 else if (fits_in_signed_long (num))
2260 {
2261 t.bitfield.imm32 = 1;
2262 t.bitfield.imm32s = 1;
2263 }
2264 else if (fits_in_unsigned_long (num))
2265 t.bitfield.imm32 = 1;
2266
2267 return t;
2268 }
2269
2270 static offsetT
2271 offset_in_range (offsetT val, int size)
2272 {
2273 addressT mask;
2274
2275 switch (size)
2276 {
2277 case 1: mask = ((addressT) 1 << 8) - 1; break;
2278 case 2: mask = ((addressT) 1 << 16) - 1; break;
2279 case 4: mask = ((addressT) 2 << 31) - 1; break;
2280 #ifdef BFD64
2281 case 8: mask = ((addressT) 2 << 63) - 1; break;
2282 #endif
2283 default: abort ();
2284 }
2285
2286 #ifdef BFD64
2287 /* If BFD64, sign extend val for 32bit address mode. */
2288 if (flag_code != CODE_64BIT
2289 || i.prefix[ADDR_PREFIX])
2290 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2291 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2292 #endif
2293
2294 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2295 {
2296 char buf1[40], buf2[40];
2297
2298 sprint_value (buf1, val);
2299 sprint_value (buf2, val & mask);
2300 as_warn (_("%s shortened to %s"), buf1, buf2);
2301 }
2302 return val & mask;
2303 }
2304
2305 enum PREFIX_GROUP
2306 {
2307 PREFIX_EXIST = 0,
2308 PREFIX_LOCK,
2309 PREFIX_REP,
2310 PREFIX_DS,
2311 PREFIX_OTHER
2312 };
2313
2314 /* Returns
2315 a. PREFIX_EXIST if attempting to add a prefix where one from the
2316 same class already exists.
2317 b. PREFIX_LOCK if lock prefix is added.
2318 c. PREFIX_REP if rep/repne prefix is added.
2319 d. PREFIX_DS if ds prefix is added.
2320 e. PREFIX_OTHER if other prefix is added.
2321 */
2322
2323 static enum PREFIX_GROUP
2324 add_prefix (unsigned int prefix)
2325 {
2326 enum PREFIX_GROUP ret = PREFIX_OTHER;
2327 unsigned int q;
2328
2329 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2330 && flag_code == CODE_64BIT)
2331 {
2332 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2333 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2334 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2335 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2336 ret = PREFIX_EXIST;
2337 q = REX_PREFIX;
2338 }
2339 else
2340 {
2341 switch (prefix)
2342 {
2343 default:
2344 abort ();
2345
2346 case DS_PREFIX_OPCODE:
2347 ret = PREFIX_DS;
2348 /* Fall through. */
2349 case CS_PREFIX_OPCODE:
2350 case ES_PREFIX_OPCODE:
2351 case FS_PREFIX_OPCODE:
2352 case GS_PREFIX_OPCODE:
2353 case SS_PREFIX_OPCODE:
2354 q = SEG_PREFIX;
2355 break;
2356
2357 case REPNE_PREFIX_OPCODE:
2358 case REPE_PREFIX_OPCODE:
2359 q = REP_PREFIX;
2360 ret = PREFIX_REP;
2361 break;
2362
2363 case LOCK_PREFIX_OPCODE:
2364 q = LOCK_PREFIX;
2365 ret = PREFIX_LOCK;
2366 break;
2367
2368 case FWAIT_OPCODE:
2369 q = WAIT_PREFIX;
2370 break;
2371
2372 case ADDR_PREFIX_OPCODE:
2373 q = ADDR_PREFIX;
2374 break;
2375
2376 case DATA_PREFIX_OPCODE:
2377 q = DATA_PREFIX;
2378 break;
2379 }
2380 if (i.prefix[q] != 0)
2381 ret = PREFIX_EXIST;
2382 }
2383
2384 if (ret)
2385 {
2386 if (!i.prefix[q])
2387 ++i.prefixes;
2388 i.prefix[q] |= prefix;
2389 }
2390 else
2391 as_bad (_("same type of prefix used twice"));
2392
2393 return ret;
2394 }
2395
2396 static void
2397 update_code_flag (int value, int check)
2398 {
2399 PRINTF_LIKE ((*as_error));
2400
2401 flag_code = (enum flag_code) value;
2402 if (flag_code == CODE_64BIT)
2403 {
2404 cpu_arch_flags.bitfield.cpu64 = 1;
2405 cpu_arch_flags.bitfield.cpuno64 = 0;
2406 }
2407 else
2408 {
2409 cpu_arch_flags.bitfield.cpu64 = 0;
2410 cpu_arch_flags.bitfield.cpuno64 = 1;
2411 }
2412 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2413 {
2414 if (check)
2415 as_error = as_fatal;
2416 else
2417 as_error = as_bad;
2418 (*as_error) (_("64bit mode not supported on `%s'."),
2419 cpu_arch_name ? cpu_arch_name : default_arch);
2420 }
2421 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2422 {
2423 if (check)
2424 as_error = as_fatal;
2425 else
2426 as_error = as_bad;
2427 (*as_error) (_("32bit mode not supported on `%s'."),
2428 cpu_arch_name ? cpu_arch_name : default_arch);
2429 }
2430 stackop_size = '\0';
2431 }
2432
2433 static void
2434 set_code_flag (int value)
2435 {
2436 update_code_flag (value, 0);
2437 }
2438
2439 static void
2440 set_16bit_gcc_code_flag (int new_code_flag)
2441 {
2442 flag_code = (enum flag_code) new_code_flag;
2443 if (flag_code != CODE_16BIT)
2444 abort ();
2445 cpu_arch_flags.bitfield.cpu64 = 0;
2446 cpu_arch_flags.bitfield.cpuno64 = 1;
2447 stackop_size = LONG_MNEM_SUFFIX;
2448 }
2449
2450 static void
2451 set_intel_syntax (int syntax_flag)
2452 {
2453 /* Find out if register prefixing is specified. */
2454 int ask_naked_reg = 0;
2455
2456 SKIP_WHITESPACE ();
2457 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2458 {
2459 char *string;
2460 int e = get_symbol_name (&string);
2461
2462 if (strcmp (string, "prefix") == 0)
2463 ask_naked_reg = 1;
2464 else if (strcmp (string, "noprefix") == 0)
2465 ask_naked_reg = -1;
2466 else
2467 as_bad (_("bad argument to syntax directive."));
2468 (void) restore_line_pointer (e);
2469 }
2470 demand_empty_rest_of_line ();
2471
2472 intel_syntax = syntax_flag;
2473
2474 if (ask_naked_reg == 0)
2475 allow_naked_reg = (intel_syntax
2476 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2477 else
2478 allow_naked_reg = (ask_naked_reg < 0);
2479
2480 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2481
2482 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2483 identifier_chars['$'] = intel_syntax ? '$' : 0;
2484 register_prefix = allow_naked_reg ? "" : "%";
2485 }
2486
2487 static void
2488 set_intel_mnemonic (int mnemonic_flag)
2489 {
2490 intel_mnemonic = mnemonic_flag;
2491 }
2492
2493 static void
2494 set_allow_index_reg (int flag)
2495 {
2496 allow_index_reg = flag;
2497 }
2498
2499 static void
2500 set_check (int what)
2501 {
2502 enum check_kind *kind;
2503 const char *str;
2504
2505 if (what)
2506 {
2507 kind = &operand_check;
2508 str = "operand";
2509 }
2510 else
2511 {
2512 kind = &sse_check;
2513 str = "sse";
2514 }
2515
2516 SKIP_WHITESPACE ();
2517
2518 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2519 {
2520 char *string;
2521 int e = get_symbol_name (&string);
2522
2523 if (strcmp (string, "none") == 0)
2524 *kind = check_none;
2525 else if (strcmp (string, "warning") == 0)
2526 *kind = check_warning;
2527 else if (strcmp (string, "error") == 0)
2528 *kind = check_error;
2529 else
2530 as_bad (_("bad argument to %s_check directive."), str);
2531 (void) restore_line_pointer (e);
2532 }
2533 else
2534 as_bad (_("missing argument for %s_check directive"), str);
2535
2536 demand_empty_rest_of_line ();
2537 }
2538
2539 static void
2540 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2541 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2542 {
2543 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2544 static const char *arch;
2545
2546 /* Intel LIOM is only supported on ELF. */
2547 if (!IS_ELF)
2548 return;
2549
2550 if (!arch)
2551 {
2552 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2553 use default_arch. */
2554 arch = cpu_arch_name;
2555 if (!arch)
2556 arch = default_arch;
2557 }
2558
2559 /* If we are targeting Intel MCU, we must enable it. */
2560 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2561 || new_flag.bitfield.cpuiamcu)
2562 return;
2563
2564 /* If we are targeting Intel L1OM, we must enable it. */
2565 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2566 || new_flag.bitfield.cpul1om)
2567 return;
2568
2569 /* If we are targeting Intel K1OM, we must enable it. */
2570 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2571 || new_flag.bitfield.cpuk1om)
2572 return;
2573
2574 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2575 #endif
2576 }
2577
2578 static void
2579 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2580 {
2581 SKIP_WHITESPACE ();
2582
2583 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2584 {
2585 char *string;
2586 int e = get_symbol_name (&string);
2587 unsigned int j;
2588 i386_cpu_flags flags;
2589
2590 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2591 {
2592 if (strcmp (string, cpu_arch[j].name) == 0)
2593 {
2594 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2595
2596 if (*string != '.')
2597 {
2598 cpu_arch_name = cpu_arch[j].name;
2599 cpu_sub_arch_name = NULL;
2600 cpu_arch_flags = cpu_arch[j].flags;
2601 if (flag_code == CODE_64BIT)
2602 {
2603 cpu_arch_flags.bitfield.cpu64 = 1;
2604 cpu_arch_flags.bitfield.cpuno64 = 0;
2605 }
2606 else
2607 {
2608 cpu_arch_flags.bitfield.cpu64 = 0;
2609 cpu_arch_flags.bitfield.cpuno64 = 1;
2610 }
2611 cpu_arch_isa = cpu_arch[j].type;
2612 cpu_arch_isa_flags = cpu_arch[j].flags;
2613 if (!cpu_arch_tune_set)
2614 {
2615 cpu_arch_tune = cpu_arch_isa;
2616 cpu_arch_tune_flags = cpu_arch_isa_flags;
2617 }
2618 break;
2619 }
2620
2621 flags = cpu_flags_or (cpu_arch_flags,
2622 cpu_arch[j].flags);
2623
2624 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2625 {
2626 if (cpu_sub_arch_name)
2627 {
2628 char *name = cpu_sub_arch_name;
2629 cpu_sub_arch_name = concat (name,
2630 cpu_arch[j].name,
2631 (const char *) NULL);
2632 free (name);
2633 }
2634 else
2635 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2636 cpu_arch_flags = flags;
2637 cpu_arch_isa_flags = flags;
2638 }
2639 else
2640 cpu_arch_isa_flags
2641 = cpu_flags_or (cpu_arch_isa_flags,
2642 cpu_arch[j].flags);
2643 (void) restore_line_pointer (e);
2644 demand_empty_rest_of_line ();
2645 return;
2646 }
2647 }
2648
2649 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2650 {
2651 /* Disable an ISA extension. */
2652 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2653 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2654 {
2655 flags = cpu_flags_and_not (cpu_arch_flags,
2656 cpu_noarch[j].flags);
2657 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2658 {
2659 if (cpu_sub_arch_name)
2660 {
2661 char *name = cpu_sub_arch_name;
2662 cpu_sub_arch_name = concat (name, string,
2663 (const char *) NULL);
2664 free (name);
2665 }
2666 else
2667 cpu_sub_arch_name = xstrdup (string);
2668 cpu_arch_flags = flags;
2669 cpu_arch_isa_flags = flags;
2670 }
2671 (void) restore_line_pointer (e);
2672 demand_empty_rest_of_line ();
2673 return;
2674 }
2675
2676 j = ARRAY_SIZE (cpu_arch);
2677 }
2678
2679 if (j >= ARRAY_SIZE (cpu_arch))
2680 as_bad (_("no such architecture: `%s'"), string);
2681
2682 *input_line_pointer = e;
2683 }
2684 else
2685 as_bad (_("missing cpu architecture"));
2686
2687 no_cond_jump_promotion = 0;
2688 if (*input_line_pointer == ','
2689 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2690 {
2691 char *string;
2692 char e;
2693
2694 ++input_line_pointer;
2695 e = get_symbol_name (&string);
2696
2697 if (strcmp (string, "nojumps") == 0)
2698 no_cond_jump_promotion = 1;
2699 else if (strcmp (string, "jumps") == 0)
2700 ;
2701 else
2702 as_bad (_("no such architecture modifier: `%s'"), string);
2703
2704 (void) restore_line_pointer (e);
2705 }
2706
2707 demand_empty_rest_of_line ();
2708 }
2709
2710 enum bfd_architecture
2711 i386_arch (void)
2712 {
2713 if (cpu_arch_isa == PROCESSOR_L1OM)
2714 {
2715 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2716 || flag_code != CODE_64BIT)
2717 as_fatal (_("Intel L1OM is 64bit ELF only"));
2718 return bfd_arch_l1om;
2719 }
2720 else if (cpu_arch_isa == PROCESSOR_K1OM)
2721 {
2722 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2723 || flag_code != CODE_64BIT)
2724 as_fatal (_("Intel K1OM is 64bit ELF only"));
2725 return bfd_arch_k1om;
2726 }
2727 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2728 {
2729 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2730 || flag_code == CODE_64BIT)
2731 as_fatal (_("Intel MCU is 32bit ELF only"));
2732 return bfd_arch_iamcu;
2733 }
2734 else
2735 return bfd_arch_i386;
2736 }
2737
2738 unsigned long
2739 i386_mach (void)
2740 {
2741 if (!strncmp (default_arch, "x86_64", 6))
2742 {
2743 if (cpu_arch_isa == PROCESSOR_L1OM)
2744 {
2745 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2746 || default_arch[6] != '\0')
2747 as_fatal (_("Intel L1OM is 64bit ELF only"));
2748 return bfd_mach_l1om;
2749 }
2750 else if (cpu_arch_isa == PROCESSOR_K1OM)
2751 {
2752 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2753 || default_arch[6] != '\0')
2754 as_fatal (_("Intel K1OM is 64bit ELF only"));
2755 return bfd_mach_k1om;
2756 }
2757 else if (default_arch[6] == '\0')
2758 return bfd_mach_x86_64;
2759 else
2760 return bfd_mach_x64_32;
2761 }
2762 else if (!strcmp (default_arch, "i386")
2763 || !strcmp (default_arch, "iamcu"))
2764 {
2765 if (cpu_arch_isa == PROCESSOR_IAMCU)
2766 {
2767 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2768 as_fatal (_("Intel MCU is 32bit ELF only"));
2769 return bfd_mach_i386_iamcu;
2770 }
2771 else
2772 return bfd_mach_i386_i386;
2773 }
2774 else
2775 as_fatal (_("unknown architecture"));
2776 }
2777 \f
2778 void
2779 md_begin (void)
2780 {
2781 const char *hash_err;
2782
2783 /* Support pseudo prefixes like {disp32}. */
2784 lex_type ['{'] = LEX_BEGIN_NAME;
2785
2786 /* Initialize op_hash hash table. */
2787 op_hash = hash_new ();
2788
2789 {
2790 const insn_template *optab;
2791 templates *core_optab;
2792
2793 /* Setup for loop. */
2794 optab = i386_optab;
2795 core_optab = XNEW (templates);
2796 core_optab->start = optab;
2797
2798 while (1)
2799 {
2800 ++optab;
2801 if (optab->name == NULL
2802 || strcmp (optab->name, (optab - 1)->name) != 0)
2803 {
2804 /* different name --> ship out current template list;
2805 add to hash table; & begin anew. */
2806 core_optab->end = optab;
2807 hash_err = hash_insert (op_hash,
2808 (optab - 1)->name,
2809 (void *) core_optab);
2810 if (hash_err)
2811 {
2812 as_fatal (_("can't hash %s: %s"),
2813 (optab - 1)->name,
2814 hash_err);
2815 }
2816 if (optab->name == NULL)
2817 break;
2818 core_optab = XNEW (templates);
2819 core_optab->start = optab;
2820 }
2821 }
2822 }
2823
2824 /* Initialize reg_hash hash table. */
2825 reg_hash = hash_new ();
2826 {
2827 const reg_entry *regtab;
2828 unsigned int regtab_size = i386_regtab_size;
2829
2830 for (regtab = i386_regtab; regtab_size--; regtab++)
2831 {
2832 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2833 if (hash_err)
2834 as_fatal (_("can't hash %s: %s"),
2835 regtab->reg_name,
2836 hash_err);
2837 }
2838 }
2839
2840 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2841 {
2842 int c;
2843 char *p;
2844
2845 for (c = 0; c < 256; c++)
2846 {
2847 if (ISDIGIT (c))
2848 {
2849 digit_chars[c] = c;
2850 mnemonic_chars[c] = c;
2851 register_chars[c] = c;
2852 operand_chars[c] = c;
2853 }
2854 else if (ISLOWER (c))
2855 {
2856 mnemonic_chars[c] = c;
2857 register_chars[c] = c;
2858 operand_chars[c] = c;
2859 }
2860 else if (ISUPPER (c))
2861 {
2862 mnemonic_chars[c] = TOLOWER (c);
2863 register_chars[c] = mnemonic_chars[c];
2864 operand_chars[c] = c;
2865 }
2866 else if (c == '{' || c == '}')
2867 {
2868 mnemonic_chars[c] = c;
2869 operand_chars[c] = c;
2870 }
2871
2872 if (ISALPHA (c) || ISDIGIT (c))
2873 identifier_chars[c] = c;
2874 else if (c >= 128)
2875 {
2876 identifier_chars[c] = c;
2877 operand_chars[c] = c;
2878 }
2879 }
2880
2881 #ifdef LEX_AT
2882 identifier_chars['@'] = '@';
2883 #endif
2884 #ifdef LEX_QM
2885 identifier_chars['?'] = '?';
2886 operand_chars['?'] = '?';
2887 #endif
2888 digit_chars['-'] = '-';
2889 mnemonic_chars['_'] = '_';
2890 mnemonic_chars['-'] = '-';
2891 mnemonic_chars['.'] = '.';
2892 identifier_chars['_'] = '_';
2893 identifier_chars['.'] = '.';
2894
2895 for (p = operand_special_chars; *p != '\0'; p++)
2896 operand_chars[(unsigned char) *p] = *p;
2897 }
2898
2899 if (flag_code == CODE_64BIT)
2900 {
2901 #if defined (OBJ_COFF) && defined (TE_PE)
2902 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2903 ? 32 : 16);
2904 #else
2905 x86_dwarf2_return_column = 16;
2906 #endif
2907 x86_cie_data_alignment = -8;
2908 }
2909 else
2910 {
2911 x86_dwarf2_return_column = 8;
2912 x86_cie_data_alignment = -4;
2913 }
2914 }
2915
2916 void
2917 i386_print_statistics (FILE *file)
2918 {
2919 hash_print_statistics (file, "i386 opcode", op_hash);
2920 hash_print_statistics (file, "i386 register", reg_hash);
2921 }
2922 \f
2923 #ifdef DEBUG386
2924
2925 /* Debugging routines for md_assemble. */
2926 static void pte (insn_template *);
2927 static void pt (i386_operand_type);
2928 static void pe (expressionS *);
2929 static void ps (symbolS *);
2930
2931 static void
2932 pi (char *line, i386_insn *x)
2933 {
2934 unsigned int j;
2935
2936 fprintf (stdout, "%s: template ", line);
2937 pte (&x->tm);
2938 fprintf (stdout, " address: base %s index %s scale %x\n",
2939 x->base_reg ? x->base_reg->reg_name : "none",
2940 x->index_reg ? x->index_reg->reg_name : "none",
2941 x->log2_scale_factor);
2942 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2943 x->rm.mode, x->rm.reg, x->rm.regmem);
2944 fprintf (stdout, " sib: base %x index %x scale %x\n",
2945 x->sib.base, x->sib.index, x->sib.scale);
2946 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2947 (x->rex & REX_W) != 0,
2948 (x->rex & REX_R) != 0,
2949 (x->rex & REX_X) != 0,
2950 (x->rex & REX_B) != 0);
2951 for (j = 0; j < x->operands; j++)
2952 {
2953 fprintf (stdout, " #%d: ", j + 1);
2954 pt (x->types[j]);
2955 fprintf (stdout, "\n");
2956 if (x->types[j].bitfield.reg
2957 || x->types[j].bitfield.regmmx
2958 || x->types[j].bitfield.regsimd
2959 || x->types[j].bitfield.sreg2
2960 || x->types[j].bitfield.sreg3
2961 || x->types[j].bitfield.control
2962 || x->types[j].bitfield.debug
2963 || x->types[j].bitfield.test)
2964 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2965 if (operand_type_check (x->types[j], imm))
2966 pe (x->op[j].imms);
2967 if (operand_type_check (x->types[j], disp))
2968 pe (x->op[j].disps);
2969 }
2970 }
2971
2972 static void
2973 pte (insn_template *t)
2974 {
2975 unsigned int j;
2976 fprintf (stdout, " %d operands ", t->operands);
2977 fprintf (stdout, "opcode %x ", t->base_opcode);
2978 if (t->extension_opcode != None)
2979 fprintf (stdout, "ext %x ", t->extension_opcode);
2980 if (t->opcode_modifier.d)
2981 fprintf (stdout, "D");
2982 if (t->opcode_modifier.w)
2983 fprintf (stdout, "W");
2984 fprintf (stdout, "\n");
2985 for (j = 0; j < t->operands; j++)
2986 {
2987 fprintf (stdout, " #%d type ", j + 1);
2988 pt (t->operand_types[j]);
2989 fprintf (stdout, "\n");
2990 }
2991 }
2992
2993 static void
2994 pe (expressionS *e)
2995 {
2996 fprintf (stdout, " operation %d\n", e->X_op);
2997 fprintf (stdout, " add_number %ld (%lx)\n",
2998 (long) e->X_add_number, (long) e->X_add_number);
2999 if (e->X_add_symbol)
3000 {
3001 fprintf (stdout, " add_symbol ");
3002 ps (e->X_add_symbol);
3003 fprintf (stdout, "\n");
3004 }
3005 if (e->X_op_symbol)
3006 {
3007 fprintf (stdout, " op_symbol ");
3008 ps (e->X_op_symbol);
3009 fprintf (stdout, "\n");
3010 }
3011 }
3012
3013 static void
3014 ps (symbolS *s)
3015 {
3016 fprintf (stdout, "%s type %s%s",
3017 S_GET_NAME (s),
3018 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3019 segment_name (S_GET_SEGMENT (s)));
3020 }
3021
3022 static struct type_name
3023 {
3024 i386_operand_type mask;
3025 const char *name;
3026 }
3027 const type_names[] =
3028 {
3029 { OPERAND_TYPE_REG8, "r8" },
3030 { OPERAND_TYPE_REG16, "r16" },
3031 { OPERAND_TYPE_REG32, "r32" },
3032 { OPERAND_TYPE_REG64, "r64" },
3033 { OPERAND_TYPE_IMM8, "i8" },
3034 { OPERAND_TYPE_IMM8, "i8s" },
3035 { OPERAND_TYPE_IMM16, "i16" },
3036 { OPERAND_TYPE_IMM32, "i32" },
3037 { OPERAND_TYPE_IMM32S, "i32s" },
3038 { OPERAND_TYPE_IMM64, "i64" },
3039 { OPERAND_TYPE_IMM1, "i1" },
3040 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3041 { OPERAND_TYPE_DISP8, "d8" },
3042 { OPERAND_TYPE_DISP16, "d16" },
3043 { OPERAND_TYPE_DISP32, "d32" },
3044 { OPERAND_TYPE_DISP32S, "d32s" },
3045 { OPERAND_TYPE_DISP64, "d64" },
3046 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3047 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3048 { OPERAND_TYPE_CONTROL, "control reg" },
3049 { OPERAND_TYPE_TEST, "test reg" },
3050 { OPERAND_TYPE_DEBUG, "debug reg" },
3051 { OPERAND_TYPE_FLOATREG, "FReg" },
3052 { OPERAND_TYPE_FLOATACC, "FAcc" },
3053 { OPERAND_TYPE_SREG2, "SReg2" },
3054 { OPERAND_TYPE_SREG3, "SReg3" },
3055 { OPERAND_TYPE_ACC, "Acc" },
3056 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3057 { OPERAND_TYPE_REGMMX, "rMMX" },
3058 { OPERAND_TYPE_REGXMM, "rXMM" },
3059 { OPERAND_TYPE_REGYMM, "rYMM" },
3060 { OPERAND_TYPE_REGZMM, "rZMM" },
3061 { OPERAND_TYPE_REGMASK, "Mask reg" },
3062 { OPERAND_TYPE_ESSEG, "es" },
3063 };
3064
3065 static void
3066 pt (i386_operand_type t)
3067 {
3068 unsigned int j;
3069 i386_operand_type a;
3070
3071 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3072 {
3073 a = operand_type_and (t, type_names[j].mask);
3074 if (!operand_type_all_zero (&a))
3075 fprintf (stdout, "%s, ", type_names[j].name);
3076 }
3077 fflush (stdout);
3078 }
3079
3080 #endif /* DEBUG386 */
3081 \f
3082 static bfd_reloc_code_real_type
3083 reloc (unsigned int size,
3084 int pcrel,
3085 int sign,
3086 bfd_reloc_code_real_type other)
3087 {
3088 if (other != NO_RELOC)
3089 {
3090 reloc_howto_type *rel;
3091
3092 if (size == 8)
3093 switch (other)
3094 {
3095 case BFD_RELOC_X86_64_GOT32:
3096 return BFD_RELOC_X86_64_GOT64;
3097 break;
3098 case BFD_RELOC_X86_64_GOTPLT64:
3099 return BFD_RELOC_X86_64_GOTPLT64;
3100 break;
3101 case BFD_RELOC_X86_64_PLTOFF64:
3102 return BFD_RELOC_X86_64_PLTOFF64;
3103 break;
3104 case BFD_RELOC_X86_64_GOTPC32:
3105 other = BFD_RELOC_X86_64_GOTPC64;
3106 break;
3107 case BFD_RELOC_X86_64_GOTPCREL:
3108 other = BFD_RELOC_X86_64_GOTPCREL64;
3109 break;
3110 case BFD_RELOC_X86_64_TPOFF32:
3111 other = BFD_RELOC_X86_64_TPOFF64;
3112 break;
3113 case BFD_RELOC_X86_64_DTPOFF32:
3114 other = BFD_RELOC_X86_64_DTPOFF64;
3115 break;
3116 default:
3117 break;
3118 }
3119
3120 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3121 if (other == BFD_RELOC_SIZE32)
3122 {
3123 if (size == 8)
3124 other = BFD_RELOC_SIZE64;
3125 if (pcrel)
3126 {
3127 as_bad (_("there are no pc-relative size relocations"));
3128 return NO_RELOC;
3129 }
3130 }
3131 #endif
3132
3133 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3134 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3135 sign = -1;
3136
3137 rel = bfd_reloc_type_lookup (stdoutput, other);
3138 if (!rel)
3139 as_bad (_("unknown relocation (%u)"), other);
3140 else if (size != bfd_get_reloc_size (rel))
3141 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3142 bfd_get_reloc_size (rel),
3143 size);
3144 else if (pcrel && !rel->pc_relative)
3145 as_bad (_("non-pc-relative relocation for pc-relative field"));
3146 else if ((rel->complain_on_overflow == complain_overflow_signed
3147 && !sign)
3148 || (rel->complain_on_overflow == complain_overflow_unsigned
3149 && sign > 0))
3150 as_bad (_("relocated field and relocation type differ in signedness"));
3151 else
3152 return other;
3153 return NO_RELOC;
3154 }
3155
3156 if (pcrel)
3157 {
3158 if (!sign)
3159 as_bad (_("there are no unsigned pc-relative relocations"));
3160 switch (size)
3161 {
3162 case 1: return BFD_RELOC_8_PCREL;
3163 case 2: return BFD_RELOC_16_PCREL;
3164 case 4: return BFD_RELOC_32_PCREL;
3165 case 8: return BFD_RELOC_64_PCREL;
3166 }
3167 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3168 }
3169 else
3170 {
3171 if (sign > 0)
3172 switch (size)
3173 {
3174 case 4: return BFD_RELOC_X86_64_32S;
3175 }
3176 else
3177 switch (size)
3178 {
3179 case 1: return BFD_RELOC_8;
3180 case 2: return BFD_RELOC_16;
3181 case 4: return BFD_RELOC_32;
3182 case 8: return BFD_RELOC_64;
3183 }
3184 as_bad (_("cannot do %s %u byte relocation"),
3185 sign > 0 ? "signed" : "unsigned", size);
3186 }
3187
3188 return NO_RELOC;
3189 }
3190
3191 /* Here we decide which fixups can be adjusted to make them relative to
3192 the beginning of the section instead of the symbol. Basically we need
3193 to make sure that the dynamic relocations are done correctly, so in
3194 some cases we force the original symbol to be used. */
3195
3196 int
3197 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3198 {
3199 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3200 if (!IS_ELF)
3201 return 1;
3202
3203 /* Don't adjust pc-relative references to merge sections in 64-bit
3204 mode. */
3205 if (use_rela_relocations
3206 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3207 && fixP->fx_pcrel)
3208 return 0;
3209
3210 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3211 and changed later by validate_fix. */
3212 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3213 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3214 return 0;
3215
3216 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3217 for size relocations. */
3218 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3219 || fixP->fx_r_type == BFD_RELOC_SIZE64
3220 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3221 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3222 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3223 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3224 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3225 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3226 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3227 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3228 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3229 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3230 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3231 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3232 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3233 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3234 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3235 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3236 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3237 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3238 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3239 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3240 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3241 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3242 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3243 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3244 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3245 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3246 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3247 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3248 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3249 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3250 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3251 return 0;
3252 #endif
3253 return 1;
3254 }
3255
3256 static int
3257 intel_float_operand (const char *mnemonic)
3258 {
3259 /* Note that the value returned is meaningful only for opcodes with (memory)
3260 operands, hence the code here is free to improperly handle opcodes that
3261 have no operands (for better performance and smaller code). */
3262
3263 if (mnemonic[0] != 'f')
3264 return 0; /* non-math */
3265
3266 switch (mnemonic[1])
3267 {
3268 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3269 the fs segment override prefix not currently handled because no
3270 call path can make opcodes without operands get here */
3271 case 'i':
3272 return 2 /* integer op */;
3273 case 'l':
3274 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3275 return 3; /* fldcw/fldenv */
3276 break;
3277 case 'n':
3278 if (mnemonic[2] != 'o' /* fnop */)
3279 return 3; /* non-waiting control op */
3280 break;
3281 case 'r':
3282 if (mnemonic[2] == 's')
3283 return 3; /* frstor/frstpm */
3284 break;
3285 case 's':
3286 if (mnemonic[2] == 'a')
3287 return 3; /* fsave */
3288 if (mnemonic[2] == 't')
3289 {
3290 switch (mnemonic[3])
3291 {
3292 case 'c': /* fstcw */
3293 case 'd': /* fstdw */
3294 case 'e': /* fstenv */
3295 case 's': /* fsts[gw] */
3296 return 3;
3297 }
3298 }
3299 break;
3300 case 'x':
3301 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3302 return 0; /* fxsave/fxrstor are not really math ops */
3303 break;
3304 }
3305
3306 return 1;
3307 }
3308
3309 /* Build the VEX prefix. */
3310
3311 static void
3312 build_vex_prefix (const insn_template *t)
3313 {
3314 unsigned int register_specifier;
3315 unsigned int implied_prefix;
3316 unsigned int vector_length;
3317
3318 /* Check register specifier. */
3319 if (i.vex.register_specifier)
3320 {
3321 register_specifier =
3322 ~register_number (i.vex.register_specifier) & 0xf;
3323 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3324 }
3325 else
3326 register_specifier = 0xf;
3327
3328 /* Use 2-byte VEX prefix by swapping destination and source
3329 operand. */
3330 if (i.vec_encoding != vex_encoding_vex3
3331 && i.dir_encoding == dir_encoding_default
3332 && i.operands == i.reg_operands
3333 && i.tm.opcode_modifier.vexopcode == VEX0F
3334 && i.tm.opcode_modifier.load
3335 && i.rex == REX_B)
3336 {
3337 unsigned int xchg = i.operands - 1;
3338 union i386_op temp_op;
3339 i386_operand_type temp_type;
3340
3341 temp_type = i.types[xchg];
3342 i.types[xchg] = i.types[0];
3343 i.types[0] = temp_type;
3344 temp_op = i.op[xchg];
3345 i.op[xchg] = i.op[0];
3346 i.op[0] = temp_op;
3347
3348 gas_assert (i.rm.mode == 3);
3349
3350 i.rex = REX_R;
3351 xchg = i.rm.regmem;
3352 i.rm.regmem = i.rm.reg;
3353 i.rm.reg = xchg;
3354
3355 /* Use the next insn. */
3356 i.tm = t[1];
3357 }
3358
3359 if (i.tm.opcode_modifier.vex == VEXScalar)
3360 vector_length = avxscalar;
3361 else if (i.tm.opcode_modifier.vex == VEX256)
3362 vector_length = 1;
3363 else
3364 {
3365 int op;
3366
3367 /* Determine vector length from the last multi-length vector
3368 operand. */
3369 vector_length = 0;
3370 for (op = t->operands - 1; op >= 0; op--)
3371 if (t->operand_types[op].bitfield.xmmword
3372 && t->operand_types[op].bitfield.ymmword
3373 && i.types[op].bitfield.ymmword)
3374 {
3375 vector_length = 1;
3376 break;
3377 }
3378 }
3379
3380 switch ((i.tm.base_opcode >> 8) & 0xff)
3381 {
3382 case 0:
3383 implied_prefix = 0;
3384 break;
3385 case DATA_PREFIX_OPCODE:
3386 implied_prefix = 1;
3387 break;
3388 case REPE_PREFIX_OPCODE:
3389 implied_prefix = 2;
3390 break;
3391 case REPNE_PREFIX_OPCODE:
3392 implied_prefix = 3;
3393 break;
3394 default:
3395 abort ();
3396 }
3397
3398 /* Use 2-byte VEX prefix if possible. */
3399 if (i.vec_encoding != vex_encoding_vex3
3400 && i.tm.opcode_modifier.vexopcode == VEX0F
3401 && i.tm.opcode_modifier.vexw != VEXW1
3402 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3403 {
3404 /* 2-byte VEX prefix. */
3405 unsigned int r;
3406
3407 i.vex.length = 2;
3408 i.vex.bytes[0] = 0xc5;
3409
3410 /* Check the REX.R bit. */
3411 r = (i.rex & REX_R) ? 0 : 1;
3412 i.vex.bytes[1] = (r << 7
3413 | register_specifier << 3
3414 | vector_length << 2
3415 | implied_prefix);
3416 }
3417 else
3418 {
3419 /* 3-byte VEX prefix. */
3420 unsigned int m, w;
3421
3422 i.vex.length = 3;
3423
3424 switch (i.tm.opcode_modifier.vexopcode)
3425 {
3426 case VEX0F:
3427 m = 0x1;
3428 i.vex.bytes[0] = 0xc4;
3429 break;
3430 case VEX0F38:
3431 m = 0x2;
3432 i.vex.bytes[0] = 0xc4;
3433 break;
3434 case VEX0F3A:
3435 m = 0x3;
3436 i.vex.bytes[0] = 0xc4;
3437 break;
3438 case XOP08:
3439 m = 0x8;
3440 i.vex.bytes[0] = 0x8f;
3441 break;
3442 case XOP09:
3443 m = 0x9;
3444 i.vex.bytes[0] = 0x8f;
3445 break;
3446 case XOP0A:
3447 m = 0xa;
3448 i.vex.bytes[0] = 0x8f;
3449 break;
3450 default:
3451 abort ();
3452 }
3453
3454 /* The high 3 bits of the second VEX byte are 1's compliment
3455 of RXB bits from REX. */
3456 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3457
3458 /* Check the REX.W bit. */
3459 w = (i.rex & REX_W) ? 1 : 0;
3460 if (i.tm.opcode_modifier.vexw == VEXW1)
3461 w = 1;
3462
3463 i.vex.bytes[2] = (w << 7
3464 | register_specifier << 3
3465 | vector_length << 2
3466 | implied_prefix);
3467 }
3468 }
3469
3470 static INLINE bfd_boolean
3471 is_evex_encoding (const insn_template *t)
3472 {
3473 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3474 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3475 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3476 }
3477
3478 /* Build the EVEX prefix. */
3479
3480 static void
3481 build_evex_prefix (void)
3482 {
3483 unsigned int register_specifier;
3484 unsigned int implied_prefix;
3485 unsigned int m, w;
3486 rex_byte vrex_used = 0;
3487
3488 /* Check register specifier. */
3489 if (i.vex.register_specifier)
3490 {
3491 gas_assert ((i.vrex & REX_X) == 0);
3492
3493 register_specifier = i.vex.register_specifier->reg_num;
3494 if ((i.vex.register_specifier->reg_flags & RegRex))
3495 register_specifier += 8;
3496 /* The upper 16 registers are encoded in the fourth byte of the
3497 EVEX prefix. */
3498 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3499 i.vex.bytes[3] = 0x8;
3500 register_specifier = ~register_specifier & 0xf;
3501 }
3502 else
3503 {
3504 register_specifier = 0xf;
3505
3506 /* Encode upper 16 vector index register in the fourth byte of
3507 the EVEX prefix. */
3508 if (!(i.vrex & REX_X))
3509 i.vex.bytes[3] = 0x8;
3510 else
3511 vrex_used |= REX_X;
3512 }
3513
3514 switch ((i.tm.base_opcode >> 8) & 0xff)
3515 {
3516 case 0:
3517 implied_prefix = 0;
3518 break;
3519 case DATA_PREFIX_OPCODE:
3520 implied_prefix = 1;
3521 break;
3522 case REPE_PREFIX_OPCODE:
3523 implied_prefix = 2;
3524 break;
3525 case REPNE_PREFIX_OPCODE:
3526 implied_prefix = 3;
3527 break;
3528 default:
3529 abort ();
3530 }
3531
3532 /* 4 byte EVEX prefix. */
3533 i.vex.length = 4;
3534 i.vex.bytes[0] = 0x62;
3535
3536 /* mmmm bits. */
3537 switch (i.tm.opcode_modifier.vexopcode)
3538 {
3539 case VEX0F:
3540 m = 1;
3541 break;
3542 case VEX0F38:
3543 m = 2;
3544 break;
3545 case VEX0F3A:
3546 m = 3;
3547 break;
3548 default:
3549 abort ();
3550 break;
3551 }
3552
3553 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3554 bits from REX. */
3555 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3556
3557 /* The fifth bit of the second EVEX byte is 1's compliment of the
3558 REX_R bit in VREX. */
3559 if (!(i.vrex & REX_R))
3560 i.vex.bytes[1] |= 0x10;
3561 else
3562 vrex_used |= REX_R;
3563
3564 if ((i.reg_operands + i.imm_operands) == i.operands)
3565 {
3566 /* When all operands are registers, the REX_X bit in REX is not
3567 used. We reuse it to encode the upper 16 registers, which is
3568 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3569 as 1's compliment. */
3570 if ((i.vrex & REX_B))
3571 {
3572 vrex_used |= REX_B;
3573 i.vex.bytes[1] &= ~0x40;
3574 }
3575 }
3576
3577 /* EVEX instructions shouldn't need the REX prefix. */
3578 i.vrex &= ~vrex_used;
3579 gas_assert (i.vrex == 0);
3580
3581 /* Check the REX.W bit. */
3582 w = (i.rex & REX_W) ? 1 : 0;
3583 if (i.tm.opcode_modifier.vexw)
3584 {
3585 if (i.tm.opcode_modifier.vexw == VEXW1)
3586 w = 1;
3587 }
3588 /* If w is not set it means we are dealing with WIG instruction. */
3589 else if (!w)
3590 {
3591 if (evexwig == evexw1)
3592 w = 1;
3593 }
3594
3595 /* Encode the U bit. */
3596 implied_prefix |= 0x4;
3597
3598 /* The third byte of the EVEX prefix. */
3599 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3600
3601 /* The fourth byte of the EVEX prefix. */
3602 /* The zeroing-masking bit. */
3603 if (i.mask && i.mask->zeroing)
3604 i.vex.bytes[3] |= 0x80;
3605
3606 /* Don't always set the broadcast bit if there is no RC. */
3607 if (!i.rounding)
3608 {
3609 /* Encode the vector length. */
3610 unsigned int vec_length;
3611
3612 if (!i.tm.opcode_modifier.evex
3613 || i.tm.opcode_modifier.evex == EVEXDYN)
3614 {
3615 int op;
3616
3617 /* Determine vector length from the last multi-length vector
3618 operand. */
3619 vec_length = 0;
3620 for (op = i.operands - 1; op >= 0; op--)
3621 if (i.tm.operand_types[op].bitfield.xmmword
3622 + i.tm.operand_types[op].bitfield.ymmword
3623 + i.tm.operand_types[op].bitfield.zmmword > 1)
3624 {
3625 if (i.types[op].bitfield.zmmword)
3626 {
3627 i.tm.opcode_modifier.evex = EVEX512;
3628 break;
3629 }
3630 else if (i.types[op].bitfield.ymmword)
3631 {
3632 i.tm.opcode_modifier.evex = EVEX256;
3633 break;
3634 }
3635 else if (i.types[op].bitfield.xmmword)
3636 {
3637 i.tm.opcode_modifier.evex = EVEX128;
3638 break;
3639 }
3640 else if (i.broadcast && (int) op == i.broadcast->operand)
3641 {
3642 switch ((i.tm.operand_types[op].bitfield.dword ? 4 : 8)
3643 * i.broadcast->type)
3644 {
3645 case 64:
3646 i.tm.opcode_modifier.evex = EVEX512;
3647 break;
3648 case 32:
3649 i.tm.opcode_modifier.evex = EVEX256;
3650 break;
3651 case 16:
3652 i.tm.opcode_modifier.evex = EVEX128;
3653 break;
3654 default:
3655 abort ();
3656 }
3657 break;
3658 }
3659 }
3660
3661 if (op < 0)
3662 abort ();
3663 }
3664
3665 switch (i.tm.opcode_modifier.evex)
3666 {
3667 case EVEXLIG: /* LL' is ignored */
3668 vec_length = evexlig << 5;
3669 break;
3670 case EVEX128:
3671 vec_length = 0 << 5;
3672 break;
3673 case EVEX256:
3674 vec_length = 1 << 5;
3675 break;
3676 case EVEX512:
3677 vec_length = 2 << 5;
3678 break;
3679 default:
3680 abort ();
3681 break;
3682 }
3683 i.vex.bytes[3] |= vec_length;
3684 /* Encode the broadcast bit. */
3685 if (i.broadcast)
3686 i.vex.bytes[3] |= 0x10;
3687 }
3688 else
3689 {
3690 if (i.rounding->type != saeonly)
3691 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3692 else
3693 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3694 }
3695
3696 if (i.mask && i.mask->mask)
3697 i.vex.bytes[3] |= i.mask->mask->reg_num;
3698 }
3699
3700 static void
3701 process_immext (void)
3702 {
3703 expressionS *exp;
3704
3705 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3706 && i.operands > 0)
3707 {
3708 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3709 with an opcode suffix which is coded in the same place as an
3710 8-bit immediate field would be.
3711 Here we check those operands and remove them afterwards. */
3712 unsigned int x;
3713
3714 for (x = 0; x < i.operands; x++)
3715 if (register_number (i.op[x].regs) != x)
3716 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3717 register_prefix, i.op[x].regs->reg_name, x + 1,
3718 i.tm.name);
3719
3720 i.operands = 0;
3721 }
3722
3723 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3724 {
3725 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3726 suffix which is coded in the same place as an 8-bit immediate
3727 field would be.
3728 Here we check those operands and remove them afterwards. */
3729 unsigned int x;
3730
3731 if (i.operands != 3)
3732 abort();
3733
3734 for (x = 0; x < 2; x++)
3735 if (register_number (i.op[x].regs) != x)
3736 goto bad_register_operand;
3737
3738 /* Check for third operand for mwaitx/monitorx insn. */
3739 if (register_number (i.op[x].regs)
3740 != (x + (i.tm.extension_opcode == 0xfb)))
3741 {
3742 bad_register_operand:
3743 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3744 register_prefix, i.op[x].regs->reg_name, x+1,
3745 i.tm.name);
3746 }
3747
3748 i.operands = 0;
3749 }
3750
3751 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3752 which is coded in the same place as an 8-bit immediate field
3753 would be. Here we fake an 8-bit immediate operand from the
3754 opcode suffix stored in tm.extension_opcode.
3755
3756 AVX instructions also use this encoding, for some of
3757 3 argument instructions. */
3758
3759 gas_assert (i.imm_operands <= 1
3760 && (i.operands <= 2
3761 || ((i.tm.opcode_modifier.vex
3762 || i.tm.opcode_modifier.vexopcode
3763 || is_evex_encoding (&i.tm))
3764 && i.operands <= 4)));
3765
3766 exp = &im_expressions[i.imm_operands++];
3767 i.op[i.operands].imms = exp;
3768 i.types[i.operands] = imm8;
3769 i.operands++;
3770 exp->X_op = O_constant;
3771 exp->X_add_number = i.tm.extension_opcode;
3772 i.tm.extension_opcode = None;
3773 }
3774
3775
3776 static int
3777 check_hle (void)
3778 {
3779 switch (i.tm.opcode_modifier.hleprefixok)
3780 {
3781 default:
3782 abort ();
3783 case HLEPrefixNone:
3784 as_bad (_("invalid instruction `%s' after `%s'"),
3785 i.tm.name, i.hle_prefix);
3786 return 0;
3787 case HLEPrefixLock:
3788 if (i.prefix[LOCK_PREFIX])
3789 return 1;
3790 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3791 return 0;
3792 case HLEPrefixAny:
3793 return 1;
3794 case HLEPrefixRelease:
3795 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3796 {
3797 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3798 i.tm.name);
3799 return 0;
3800 }
3801 if (i.mem_operands == 0
3802 || !operand_type_check (i.types[i.operands - 1], anymem))
3803 {
3804 as_bad (_("memory destination needed for instruction `%s'"
3805 " after `xrelease'"), i.tm.name);
3806 return 0;
3807 }
3808 return 1;
3809 }
3810 }
3811
3812 /* Try the shortest encoding by shortening operand size. */
3813
3814 static void
3815 optimize_encoding (void)
3816 {
3817 int j;
3818
3819 if (optimize_for_space
3820 && i.reg_operands == 1
3821 && i.imm_operands == 1
3822 && !i.types[1].bitfield.byte
3823 && i.op[0].imms->X_op == O_constant
3824 && fits_in_imm7 (i.op[0].imms->X_add_number)
3825 && ((i.tm.base_opcode == 0xa8
3826 && i.tm.extension_opcode == None)
3827 || (i.tm.base_opcode == 0xf6
3828 && i.tm.extension_opcode == 0x0)))
3829 {
3830 /* Optimize: -Os:
3831 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3832 */
3833 unsigned int base_regnum = i.op[1].regs->reg_num;
3834 if (flag_code == CODE_64BIT || base_regnum < 4)
3835 {
3836 i.types[1].bitfield.byte = 1;
3837 /* Ignore the suffix. */
3838 i.suffix = 0;
3839 if (base_regnum >= 4
3840 && !(i.op[1].regs->reg_flags & RegRex))
3841 {
3842 /* Handle SP, BP, SI and DI registers. */
3843 if (i.types[1].bitfield.word)
3844 j = 16;
3845 else if (i.types[1].bitfield.dword)
3846 j = 32;
3847 else
3848 j = 48;
3849 i.op[1].regs -= j;
3850 }
3851 }
3852 }
3853 else if (flag_code == CODE_64BIT
3854 && ((i.types[1].bitfield.qword
3855 && i.reg_operands == 1
3856 && i.imm_operands == 1
3857 && i.op[0].imms->X_op == O_constant
3858 && ((i.tm.base_opcode == 0xb0
3859 && i.tm.extension_opcode == None
3860 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3861 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3862 && (((i.tm.base_opcode == 0x24
3863 || i.tm.base_opcode == 0xa8)
3864 && i.tm.extension_opcode == None)
3865 || (i.tm.base_opcode == 0x80
3866 && i.tm.extension_opcode == 0x4)
3867 || ((i.tm.base_opcode == 0xf6
3868 || i.tm.base_opcode == 0xc6)
3869 && i.tm.extension_opcode == 0x0)))))
3870 || (i.types[0].bitfield.qword
3871 && ((i.reg_operands == 2
3872 && i.op[0].regs == i.op[1].regs
3873 && ((i.tm.base_opcode == 0x30
3874 || i.tm.base_opcode == 0x28)
3875 && i.tm.extension_opcode == None))
3876 || (i.reg_operands == 1
3877 && i.operands == 1
3878 && i.tm.base_opcode == 0x30
3879 && i.tm.extension_opcode == None)))))
3880 {
3881 /* Optimize: -O:
3882 andq $imm31, %r64 -> andl $imm31, %r32
3883 testq $imm31, %r64 -> testl $imm31, %r32
3884 xorq %r64, %r64 -> xorl %r32, %r32
3885 subq %r64, %r64 -> subl %r32, %r32
3886 movq $imm31, %r64 -> movl $imm31, %r32
3887 movq $imm32, %r64 -> movl $imm32, %r32
3888 */
3889 i.tm.opcode_modifier.norex64 = 1;
3890 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3891 {
3892 /* Handle
3893 movq $imm31, %r64 -> movl $imm31, %r32
3894 movq $imm32, %r64 -> movl $imm32, %r32
3895 */
3896 i.tm.operand_types[0].bitfield.imm32 = 1;
3897 i.tm.operand_types[0].bitfield.imm32s = 0;
3898 i.tm.operand_types[0].bitfield.imm64 = 0;
3899 i.types[0].bitfield.imm32 = 1;
3900 i.types[0].bitfield.imm32s = 0;
3901 i.types[0].bitfield.imm64 = 0;
3902 i.types[1].bitfield.dword = 1;
3903 i.types[1].bitfield.qword = 0;
3904 if (i.tm.base_opcode == 0xc6)
3905 {
3906 /* Handle
3907 movq $imm31, %r64 -> movl $imm31, %r32
3908 */
3909 i.tm.base_opcode = 0xb0;
3910 i.tm.extension_opcode = None;
3911 i.tm.opcode_modifier.shortform = 1;
3912 i.tm.opcode_modifier.modrm = 0;
3913 }
3914 }
3915 }
3916 else if (optimize > 1
3917 && i.reg_operands == 3
3918 && i.op[0].regs == i.op[1].regs
3919 && !i.types[2].bitfield.xmmword
3920 && (i.tm.opcode_modifier.vex
3921 || ((!i.mask || i.mask->zeroing)
3922 && !i.rounding
3923 && is_evex_encoding (&i.tm)
3924 && (i.vec_encoding != vex_encoding_evex
3925 || i.tm.cpu_flags.bitfield.cpuavx512vl
3926 || (i.tm.operand_types[2].bitfield.zmmword
3927 && i.types[2].bitfield.ymmword)
3928 || cpu_arch_isa_flags.bitfield.cpuavx512vl)))
3929 && ((i.tm.base_opcode == 0x55
3930 || i.tm.base_opcode == 0x6655
3931 || i.tm.base_opcode == 0x66df
3932 || i.tm.base_opcode == 0x57
3933 || i.tm.base_opcode == 0x6657
3934 || i.tm.base_opcode == 0x66ef
3935 || i.tm.base_opcode == 0x66f8
3936 || i.tm.base_opcode == 0x66f9
3937 || i.tm.base_opcode == 0x66fa
3938 || i.tm.base_opcode == 0x66fb)
3939 && i.tm.extension_opcode == None))
3940 {
3941 /* Optimize: -O2:
3942 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
3943 vpsubq and vpsubw:
3944 EVEX VOP %zmmM, %zmmM, %zmmN
3945 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3946 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3947 EVEX VOP %ymmM, %ymmM, %ymmN
3948 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3949 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3950 VEX VOP %ymmM, %ymmM, %ymmN
3951 -> VEX VOP %xmmM, %xmmM, %xmmN
3952 VOP, one of vpandn and vpxor:
3953 VEX VOP %ymmM, %ymmM, %ymmN
3954 -> VEX VOP %xmmM, %xmmM, %xmmN
3955 VOP, one of vpandnd and vpandnq:
3956 EVEX VOP %zmmM, %zmmM, %zmmN
3957 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3958 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3959 EVEX VOP %ymmM, %ymmM, %ymmN
3960 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3961 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3962 VOP, one of vpxord and vpxorq:
3963 EVEX VOP %zmmM, %zmmM, %zmmN
3964 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3965 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3966 EVEX VOP %ymmM, %ymmM, %ymmN
3967 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3968 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3969 */
3970 if (is_evex_encoding (&i.tm))
3971 {
3972 if (i.vec_encoding == vex_encoding_evex)
3973 i.tm.opcode_modifier.evex = EVEX128;
3974 else
3975 {
3976 i.tm.opcode_modifier.vex = VEX128;
3977 i.tm.opcode_modifier.vexw = VEXW0;
3978 i.tm.opcode_modifier.evex = 0;
3979 }
3980 }
3981 else
3982 i.tm.opcode_modifier.vex = VEX128;
3983
3984 if (i.tm.opcode_modifier.vex)
3985 for (j = 0; j < 3; j++)
3986 {
3987 i.types[j].bitfield.xmmword = 1;
3988 i.types[j].bitfield.ymmword = 0;
3989 }
3990 }
3991 }
3992
3993 /* This is the guts of the machine-dependent assembler. LINE points to a
3994 machine dependent instruction. This function is supposed to emit
3995 the frags/bytes it assembles to. */
3996
3997 void
3998 md_assemble (char *line)
3999 {
4000 unsigned int j;
4001 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4002 const insn_template *t;
4003
4004 /* Initialize globals. */
4005 memset (&i, '\0', sizeof (i));
4006 for (j = 0; j < MAX_OPERANDS; j++)
4007 i.reloc[j] = NO_RELOC;
4008 memset (disp_expressions, '\0', sizeof (disp_expressions));
4009 memset (im_expressions, '\0', sizeof (im_expressions));
4010 save_stack_p = save_stack;
4011
4012 /* First parse an instruction mnemonic & call i386_operand for the operands.
4013 We assume that the scrubber has arranged it so that line[0] is the valid
4014 start of a (possibly prefixed) mnemonic. */
4015
4016 line = parse_insn (line, mnemonic);
4017 if (line == NULL)
4018 return;
4019 mnem_suffix = i.suffix;
4020
4021 line = parse_operands (line, mnemonic);
4022 this_operand = -1;
4023 xfree (i.memop1_string);
4024 i.memop1_string = NULL;
4025 if (line == NULL)
4026 return;
4027
4028 /* Now we've parsed the mnemonic into a set of templates, and have the
4029 operands at hand. */
4030
4031 /* All intel opcodes have reversed operands except for "bound" and
4032 "enter". We also don't reverse intersegment "jmp" and "call"
4033 instructions with 2 immediate operands so that the immediate segment
4034 precedes the offset, as it does when in AT&T mode. */
4035 if (intel_syntax
4036 && i.operands > 1
4037 && (strcmp (mnemonic, "bound") != 0)
4038 && (strcmp (mnemonic, "invlpga") != 0)
4039 && !(operand_type_check (i.types[0], imm)
4040 && operand_type_check (i.types[1], imm)))
4041 swap_operands ();
4042
4043 /* The order of the immediates should be reversed
4044 for 2 immediates extrq and insertq instructions */
4045 if (i.imm_operands == 2
4046 && (strcmp (mnemonic, "extrq") == 0
4047 || strcmp (mnemonic, "insertq") == 0))
4048 swap_2_operands (0, 1);
4049
4050 if (i.imm_operands)
4051 optimize_imm ();
4052
4053 /* Don't optimize displacement for movabs since it only takes 64bit
4054 displacement. */
4055 if (i.disp_operands
4056 && i.disp_encoding != disp_encoding_32bit
4057 && (flag_code != CODE_64BIT
4058 || strcmp (mnemonic, "movabs") != 0))
4059 optimize_disp ();
4060
4061 /* Next, we find a template that matches the given insn,
4062 making sure the overlap of the given operands types is consistent
4063 with the template operand types. */
4064
4065 if (!(t = match_template (mnem_suffix)))
4066 return;
4067
4068 if (sse_check != check_none
4069 && !i.tm.opcode_modifier.noavx
4070 && !i.tm.cpu_flags.bitfield.cpuavx
4071 && (i.tm.cpu_flags.bitfield.cpusse
4072 || i.tm.cpu_flags.bitfield.cpusse2
4073 || i.tm.cpu_flags.bitfield.cpusse3
4074 || i.tm.cpu_flags.bitfield.cpussse3
4075 || i.tm.cpu_flags.bitfield.cpusse4_1
4076 || i.tm.cpu_flags.bitfield.cpusse4_2
4077 || i.tm.cpu_flags.bitfield.cpupclmul
4078 || i.tm.cpu_flags.bitfield.cpuaes
4079 || i.tm.cpu_flags.bitfield.cpugfni))
4080 {
4081 (sse_check == check_warning
4082 ? as_warn
4083 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4084 }
4085
4086 /* Zap movzx and movsx suffix. The suffix has been set from
4087 "word ptr" or "byte ptr" on the source operand in Intel syntax
4088 or extracted from mnemonic in AT&T syntax. But we'll use
4089 the destination register to choose the suffix for encoding. */
4090 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4091 {
4092 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4093 there is no suffix, the default will be byte extension. */
4094 if (i.reg_operands != 2
4095 && !i.suffix
4096 && intel_syntax)
4097 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4098
4099 i.suffix = 0;
4100 }
4101
4102 if (i.tm.opcode_modifier.fwait)
4103 if (!add_prefix (FWAIT_OPCODE))
4104 return;
4105
4106 /* Check if REP prefix is OK. */
4107 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4108 {
4109 as_bad (_("invalid instruction `%s' after `%s'"),
4110 i.tm.name, i.rep_prefix);
4111 return;
4112 }
4113
4114 /* Check for lock without a lockable instruction. Destination operand
4115 must be memory unless it is xchg (0x86). */
4116 if (i.prefix[LOCK_PREFIX]
4117 && (!i.tm.opcode_modifier.islockable
4118 || i.mem_operands == 0
4119 || (i.tm.base_opcode != 0x86
4120 && !operand_type_check (i.types[i.operands - 1], anymem))))
4121 {
4122 as_bad (_("expecting lockable instruction after `lock'"));
4123 return;
4124 }
4125
4126 /* Check if HLE prefix is OK. */
4127 if (i.hle_prefix && !check_hle ())
4128 return;
4129
4130 /* Check BND prefix. */
4131 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4132 as_bad (_("expecting valid branch instruction after `bnd'"));
4133
4134 /* Check NOTRACK prefix. */
4135 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4136 as_bad (_("expecting indirect branch instruction after `notrack'"));
4137
4138 if (i.tm.cpu_flags.bitfield.cpumpx)
4139 {
4140 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4141 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4142 else if (flag_code != CODE_16BIT
4143 ? i.prefix[ADDR_PREFIX]
4144 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4145 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4146 }
4147
4148 /* Insert BND prefix. */
4149 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4150 {
4151 if (!i.prefix[BND_PREFIX])
4152 add_prefix (BND_PREFIX_OPCODE);
4153 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4154 {
4155 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4156 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4157 }
4158 }
4159
4160 /* Check string instruction segment overrides. */
4161 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
4162 {
4163 if (!check_string ())
4164 return;
4165 i.disp_operands = 0;
4166 }
4167
4168 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4169 optimize_encoding ();
4170
4171 if (!process_suffix ())
4172 return;
4173
4174 /* Update operand types. */
4175 for (j = 0; j < i.operands; j++)
4176 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4177
4178 /* Make still unresolved immediate matches conform to size of immediate
4179 given in i.suffix. */
4180 if (!finalize_imm ())
4181 return;
4182
4183 if (i.types[0].bitfield.imm1)
4184 i.imm_operands = 0; /* kludge for shift insns. */
4185
4186 /* We only need to check those implicit registers for instructions
4187 with 3 operands or less. */
4188 if (i.operands <= 3)
4189 for (j = 0; j < i.operands; j++)
4190 if (i.types[j].bitfield.inoutportreg
4191 || i.types[j].bitfield.shiftcount
4192 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
4193 i.reg_operands--;
4194
4195 /* ImmExt should be processed after SSE2AVX. */
4196 if (!i.tm.opcode_modifier.sse2avx
4197 && i.tm.opcode_modifier.immext)
4198 process_immext ();
4199
4200 /* For insns with operands there are more diddles to do to the opcode. */
4201 if (i.operands)
4202 {
4203 if (!process_operands ())
4204 return;
4205 }
4206 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4207 {
4208 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4209 as_warn (_("translating to `%sp'"), i.tm.name);
4210 }
4211
4212 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.vexopcode
4213 || is_evex_encoding (&i.tm))
4214 {
4215 if (flag_code == CODE_16BIT)
4216 {
4217 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4218 i.tm.name);
4219 return;
4220 }
4221
4222 if (i.tm.opcode_modifier.vex)
4223 build_vex_prefix (t);
4224 else
4225 build_evex_prefix ();
4226 }
4227
4228 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4229 instructions may define INT_OPCODE as well, so avoid this corner
4230 case for those instructions that use MODRM. */
4231 if (i.tm.base_opcode == INT_OPCODE
4232 && !i.tm.opcode_modifier.modrm
4233 && i.op[0].imms->X_add_number == 3)
4234 {
4235 i.tm.base_opcode = INT3_OPCODE;
4236 i.imm_operands = 0;
4237 }
4238
4239 if ((i.tm.opcode_modifier.jump
4240 || i.tm.opcode_modifier.jumpbyte
4241 || i.tm.opcode_modifier.jumpdword)
4242 && i.op[0].disps->X_op == O_constant)
4243 {
4244 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4245 the absolute address given by the constant. Since ix86 jumps and
4246 calls are pc relative, we need to generate a reloc. */
4247 i.op[0].disps->X_add_symbol = &abs_symbol;
4248 i.op[0].disps->X_op = O_symbol;
4249 }
4250
4251 if (i.tm.opcode_modifier.rex64)
4252 i.rex |= REX_W;
4253
4254 /* For 8 bit registers we need an empty rex prefix. Also if the
4255 instruction already has a prefix, we need to convert old
4256 registers to new ones. */
4257
4258 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
4259 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4260 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
4261 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4262 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4263 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
4264 && i.rex != 0))
4265 {
4266 int x;
4267
4268 i.rex |= REX_OPCODE;
4269 for (x = 0; x < 2; x++)
4270 {
4271 /* Look for 8 bit operand that uses old registers. */
4272 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
4273 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4274 {
4275 /* In case it is "hi" register, give up. */
4276 if (i.op[x].regs->reg_num > 3)
4277 as_bad (_("can't encode register '%s%s' in an "
4278 "instruction requiring REX prefix."),
4279 register_prefix, i.op[x].regs->reg_name);
4280
4281 /* Otherwise it is equivalent to the extended register.
4282 Since the encoding doesn't change this is merely
4283 cosmetic cleanup for debug output. */
4284
4285 i.op[x].regs = i.op[x].regs + 8;
4286 }
4287 }
4288 }
4289
4290 if (i.rex == 0 && i.rex_encoding)
4291 {
4292 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4293 that uses legacy register. If it is "hi" register, don't add
4294 the REX_OPCODE byte. */
4295 int x;
4296 for (x = 0; x < 2; x++)
4297 if (i.types[x].bitfield.reg
4298 && i.types[x].bitfield.byte
4299 && (i.op[x].regs->reg_flags & RegRex64) == 0
4300 && i.op[x].regs->reg_num > 3)
4301 {
4302 i.rex_encoding = FALSE;
4303 break;
4304 }
4305
4306 if (i.rex_encoding)
4307 i.rex = REX_OPCODE;
4308 }
4309
4310 if (i.rex != 0)
4311 add_prefix (REX_OPCODE | i.rex);
4312
4313 /* We are ready to output the insn. */
4314 output_insn ();
4315 }
4316
4317 static char *
4318 parse_insn (char *line, char *mnemonic)
4319 {
4320 char *l = line;
4321 char *token_start = l;
4322 char *mnem_p;
4323 int supported;
4324 const insn_template *t;
4325 char *dot_p = NULL;
4326
4327 while (1)
4328 {
4329 mnem_p = mnemonic;
4330 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4331 {
4332 if (*mnem_p == '.')
4333 dot_p = mnem_p;
4334 mnem_p++;
4335 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4336 {
4337 as_bad (_("no such instruction: `%s'"), token_start);
4338 return NULL;
4339 }
4340 l++;
4341 }
4342 if (!is_space_char (*l)
4343 && *l != END_OF_INSN
4344 && (intel_syntax
4345 || (*l != PREFIX_SEPARATOR
4346 && *l != ',')))
4347 {
4348 as_bad (_("invalid character %s in mnemonic"),
4349 output_invalid (*l));
4350 return NULL;
4351 }
4352 if (token_start == l)
4353 {
4354 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4355 as_bad (_("expecting prefix; got nothing"));
4356 else
4357 as_bad (_("expecting mnemonic; got nothing"));
4358 return NULL;
4359 }
4360
4361 /* Look up instruction (or prefix) via hash table. */
4362 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4363
4364 if (*l != END_OF_INSN
4365 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4366 && current_templates
4367 && current_templates->start->opcode_modifier.isprefix)
4368 {
4369 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4370 {
4371 as_bad ((flag_code != CODE_64BIT
4372 ? _("`%s' is only supported in 64-bit mode")
4373 : _("`%s' is not supported in 64-bit mode")),
4374 current_templates->start->name);
4375 return NULL;
4376 }
4377 /* If we are in 16-bit mode, do not allow addr16 or data16.
4378 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4379 if ((current_templates->start->opcode_modifier.size16
4380 || current_templates->start->opcode_modifier.size32)
4381 && flag_code != CODE_64BIT
4382 && (current_templates->start->opcode_modifier.size32
4383 ^ (flag_code == CODE_16BIT)))
4384 {
4385 as_bad (_("redundant %s prefix"),
4386 current_templates->start->name);
4387 return NULL;
4388 }
4389 if (current_templates->start->opcode_length == 0)
4390 {
4391 /* Handle pseudo prefixes. */
4392 switch (current_templates->start->base_opcode)
4393 {
4394 case 0x0:
4395 /* {disp8} */
4396 i.disp_encoding = disp_encoding_8bit;
4397 break;
4398 case 0x1:
4399 /* {disp32} */
4400 i.disp_encoding = disp_encoding_32bit;
4401 break;
4402 case 0x2:
4403 /* {load} */
4404 i.dir_encoding = dir_encoding_load;
4405 break;
4406 case 0x3:
4407 /* {store} */
4408 i.dir_encoding = dir_encoding_store;
4409 break;
4410 case 0x4:
4411 /* {vex2} */
4412 i.vec_encoding = vex_encoding_vex2;
4413 break;
4414 case 0x5:
4415 /* {vex3} */
4416 i.vec_encoding = vex_encoding_vex3;
4417 break;
4418 case 0x6:
4419 /* {evex} */
4420 i.vec_encoding = vex_encoding_evex;
4421 break;
4422 case 0x7:
4423 /* {rex} */
4424 i.rex_encoding = TRUE;
4425 break;
4426 case 0x8:
4427 /* {nooptimize} */
4428 i.no_optimize = TRUE;
4429 break;
4430 default:
4431 abort ();
4432 }
4433 }
4434 else
4435 {
4436 /* Add prefix, checking for repeated prefixes. */
4437 switch (add_prefix (current_templates->start->base_opcode))
4438 {
4439 case PREFIX_EXIST:
4440 return NULL;
4441 case PREFIX_DS:
4442 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4443 i.notrack_prefix = current_templates->start->name;
4444 break;
4445 case PREFIX_REP:
4446 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4447 i.hle_prefix = current_templates->start->name;
4448 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4449 i.bnd_prefix = current_templates->start->name;
4450 else
4451 i.rep_prefix = current_templates->start->name;
4452 break;
4453 default:
4454 break;
4455 }
4456 }
4457 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4458 token_start = ++l;
4459 }
4460 else
4461 break;
4462 }
4463
4464 if (!current_templates)
4465 {
4466 /* Check if we should swap operand or force 32bit displacement in
4467 encoding. */
4468 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4469 i.dir_encoding = dir_encoding_store;
4470 else if (mnem_p - 3 == dot_p
4471 && dot_p[1] == 'd'
4472 && dot_p[2] == '8')
4473 i.disp_encoding = disp_encoding_8bit;
4474 else if (mnem_p - 4 == dot_p
4475 && dot_p[1] == 'd'
4476 && dot_p[2] == '3'
4477 && dot_p[3] == '2')
4478 i.disp_encoding = disp_encoding_32bit;
4479 else
4480 goto check_suffix;
4481 mnem_p = dot_p;
4482 *dot_p = '\0';
4483 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4484 }
4485
4486 if (!current_templates)
4487 {
4488 check_suffix:
4489 /* See if we can get a match by trimming off a suffix. */
4490 switch (mnem_p[-1])
4491 {
4492 case WORD_MNEM_SUFFIX:
4493 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4494 i.suffix = SHORT_MNEM_SUFFIX;
4495 else
4496 /* Fall through. */
4497 case BYTE_MNEM_SUFFIX:
4498 case QWORD_MNEM_SUFFIX:
4499 i.suffix = mnem_p[-1];
4500 mnem_p[-1] = '\0';
4501 current_templates = (const templates *) hash_find (op_hash,
4502 mnemonic);
4503 break;
4504 case SHORT_MNEM_SUFFIX:
4505 case LONG_MNEM_SUFFIX:
4506 if (!intel_syntax)
4507 {
4508 i.suffix = mnem_p[-1];
4509 mnem_p[-1] = '\0';
4510 current_templates = (const templates *) hash_find (op_hash,
4511 mnemonic);
4512 }
4513 break;
4514
4515 /* Intel Syntax. */
4516 case 'd':
4517 if (intel_syntax)
4518 {
4519 if (intel_float_operand (mnemonic) == 1)
4520 i.suffix = SHORT_MNEM_SUFFIX;
4521 else
4522 i.suffix = LONG_MNEM_SUFFIX;
4523 mnem_p[-1] = '\0';
4524 current_templates = (const templates *) hash_find (op_hash,
4525 mnemonic);
4526 }
4527 break;
4528 }
4529 if (!current_templates)
4530 {
4531 as_bad (_("no such instruction: `%s'"), token_start);
4532 return NULL;
4533 }
4534 }
4535
4536 if (current_templates->start->opcode_modifier.jump
4537 || current_templates->start->opcode_modifier.jumpbyte)
4538 {
4539 /* Check for a branch hint. We allow ",pt" and ",pn" for
4540 predict taken and predict not taken respectively.
4541 I'm not sure that branch hints actually do anything on loop
4542 and jcxz insns (JumpByte) for current Pentium4 chips. They
4543 may work in the future and it doesn't hurt to accept them
4544 now. */
4545 if (l[0] == ',' && l[1] == 'p')
4546 {
4547 if (l[2] == 't')
4548 {
4549 if (!add_prefix (DS_PREFIX_OPCODE))
4550 return NULL;
4551 l += 3;
4552 }
4553 else if (l[2] == 'n')
4554 {
4555 if (!add_prefix (CS_PREFIX_OPCODE))
4556 return NULL;
4557 l += 3;
4558 }
4559 }
4560 }
4561 /* Any other comma loses. */
4562 if (*l == ',')
4563 {
4564 as_bad (_("invalid character %s in mnemonic"),
4565 output_invalid (*l));
4566 return NULL;
4567 }
4568
4569 /* Check if instruction is supported on specified architecture. */
4570 supported = 0;
4571 for (t = current_templates->start; t < current_templates->end; ++t)
4572 {
4573 supported |= cpu_flags_match (t);
4574 if (supported == CPU_FLAGS_PERFECT_MATCH)
4575 {
4576 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4577 as_warn (_("use .code16 to ensure correct addressing mode"));
4578
4579 return l;
4580 }
4581 }
4582
4583 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4584 as_bad (flag_code == CODE_64BIT
4585 ? _("`%s' is not supported in 64-bit mode")
4586 : _("`%s' is only supported in 64-bit mode"),
4587 current_templates->start->name);
4588 else
4589 as_bad (_("`%s' is not supported on `%s%s'"),
4590 current_templates->start->name,
4591 cpu_arch_name ? cpu_arch_name : default_arch,
4592 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4593
4594 return NULL;
4595 }
4596
4597 static char *
4598 parse_operands (char *l, const char *mnemonic)
4599 {
4600 char *token_start;
4601
4602 /* 1 if operand is pending after ','. */
4603 unsigned int expecting_operand = 0;
4604
4605 /* Non-zero if operand parens not balanced. */
4606 unsigned int paren_not_balanced;
4607
4608 while (*l != END_OF_INSN)
4609 {
4610 /* Skip optional white space before operand. */
4611 if (is_space_char (*l))
4612 ++l;
4613 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4614 {
4615 as_bad (_("invalid character %s before operand %d"),
4616 output_invalid (*l),
4617 i.operands + 1);
4618 return NULL;
4619 }
4620 token_start = l; /* After white space. */
4621 paren_not_balanced = 0;
4622 while (paren_not_balanced || *l != ',')
4623 {
4624 if (*l == END_OF_INSN)
4625 {
4626 if (paren_not_balanced)
4627 {
4628 if (!intel_syntax)
4629 as_bad (_("unbalanced parenthesis in operand %d."),
4630 i.operands + 1);
4631 else
4632 as_bad (_("unbalanced brackets in operand %d."),
4633 i.operands + 1);
4634 return NULL;
4635 }
4636 else
4637 break; /* we are done */
4638 }
4639 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4640 {
4641 as_bad (_("invalid character %s in operand %d"),
4642 output_invalid (*l),
4643 i.operands + 1);
4644 return NULL;
4645 }
4646 if (!intel_syntax)
4647 {
4648 if (*l == '(')
4649 ++paren_not_balanced;
4650 if (*l == ')')
4651 --paren_not_balanced;
4652 }
4653 else
4654 {
4655 if (*l == '[')
4656 ++paren_not_balanced;
4657 if (*l == ']')
4658 --paren_not_balanced;
4659 }
4660 l++;
4661 }
4662 if (l != token_start)
4663 { /* Yes, we've read in another operand. */
4664 unsigned int operand_ok;
4665 this_operand = i.operands++;
4666 if (i.operands > MAX_OPERANDS)
4667 {
4668 as_bad (_("spurious operands; (%d operands/instruction max)"),
4669 MAX_OPERANDS);
4670 return NULL;
4671 }
4672 i.types[this_operand].bitfield.unspecified = 1;
4673 /* Now parse operand adding info to 'i' as we go along. */
4674 END_STRING_AND_SAVE (l);
4675
4676 if (intel_syntax)
4677 operand_ok =
4678 i386_intel_operand (token_start,
4679 intel_float_operand (mnemonic));
4680 else
4681 operand_ok = i386_att_operand (token_start);
4682
4683 RESTORE_END_STRING (l);
4684 if (!operand_ok)
4685 return NULL;
4686 }
4687 else
4688 {
4689 if (expecting_operand)
4690 {
4691 expecting_operand_after_comma:
4692 as_bad (_("expecting operand after ','; got nothing"));
4693 return NULL;
4694 }
4695 if (*l == ',')
4696 {
4697 as_bad (_("expecting operand before ','; got nothing"));
4698 return NULL;
4699 }
4700 }
4701
4702 /* Now *l must be either ',' or END_OF_INSN. */
4703 if (*l == ',')
4704 {
4705 if (*++l == END_OF_INSN)
4706 {
4707 /* Just skip it, if it's \n complain. */
4708 goto expecting_operand_after_comma;
4709 }
4710 expecting_operand = 1;
4711 }
4712 }
4713 return l;
4714 }
4715
4716 static void
4717 swap_2_operands (int xchg1, int xchg2)
4718 {
4719 union i386_op temp_op;
4720 i386_operand_type temp_type;
4721 enum bfd_reloc_code_real temp_reloc;
4722
4723 temp_type = i.types[xchg2];
4724 i.types[xchg2] = i.types[xchg1];
4725 i.types[xchg1] = temp_type;
4726 temp_op = i.op[xchg2];
4727 i.op[xchg2] = i.op[xchg1];
4728 i.op[xchg1] = temp_op;
4729 temp_reloc = i.reloc[xchg2];
4730 i.reloc[xchg2] = i.reloc[xchg1];
4731 i.reloc[xchg1] = temp_reloc;
4732
4733 if (i.mask)
4734 {
4735 if (i.mask->operand == xchg1)
4736 i.mask->operand = xchg2;
4737 else if (i.mask->operand == xchg2)
4738 i.mask->operand = xchg1;
4739 }
4740 if (i.broadcast)
4741 {
4742 if (i.broadcast->operand == xchg1)
4743 i.broadcast->operand = xchg2;
4744 else if (i.broadcast->operand == xchg2)
4745 i.broadcast->operand = xchg1;
4746 }
4747 if (i.rounding)
4748 {
4749 if (i.rounding->operand == xchg1)
4750 i.rounding->operand = xchg2;
4751 else if (i.rounding->operand == xchg2)
4752 i.rounding->operand = xchg1;
4753 }
4754 }
4755
4756 static void
4757 swap_operands (void)
4758 {
4759 switch (i.operands)
4760 {
4761 case 5:
4762 case 4:
4763 swap_2_operands (1, i.operands - 2);
4764 /* Fall through. */
4765 case 3:
4766 case 2:
4767 swap_2_operands (0, i.operands - 1);
4768 break;
4769 default:
4770 abort ();
4771 }
4772
4773 if (i.mem_operands == 2)
4774 {
4775 const seg_entry *temp_seg;
4776 temp_seg = i.seg[0];
4777 i.seg[0] = i.seg[1];
4778 i.seg[1] = temp_seg;
4779 }
4780 }
4781
4782 /* Try to ensure constant immediates are represented in the smallest
4783 opcode possible. */
4784 static void
4785 optimize_imm (void)
4786 {
4787 char guess_suffix = 0;
4788 int op;
4789
4790 if (i.suffix)
4791 guess_suffix = i.suffix;
4792 else if (i.reg_operands)
4793 {
4794 /* Figure out a suffix from the last register operand specified.
4795 We can't do this properly yet, ie. excluding InOutPortReg,
4796 but the following works for instructions with immediates.
4797 In any case, we can't set i.suffix yet. */
4798 for (op = i.operands; --op >= 0;)
4799 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
4800 {
4801 guess_suffix = BYTE_MNEM_SUFFIX;
4802 break;
4803 }
4804 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
4805 {
4806 guess_suffix = WORD_MNEM_SUFFIX;
4807 break;
4808 }
4809 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
4810 {
4811 guess_suffix = LONG_MNEM_SUFFIX;
4812 break;
4813 }
4814 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
4815 {
4816 guess_suffix = QWORD_MNEM_SUFFIX;
4817 break;
4818 }
4819 }
4820 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4821 guess_suffix = WORD_MNEM_SUFFIX;
4822
4823 for (op = i.operands; --op >= 0;)
4824 if (operand_type_check (i.types[op], imm))
4825 {
4826 switch (i.op[op].imms->X_op)
4827 {
4828 case O_constant:
4829 /* If a suffix is given, this operand may be shortened. */
4830 switch (guess_suffix)
4831 {
4832 case LONG_MNEM_SUFFIX:
4833 i.types[op].bitfield.imm32 = 1;
4834 i.types[op].bitfield.imm64 = 1;
4835 break;
4836 case WORD_MNEM_SUFFIX:
4837 i.types[op].bitfield.imm16 = 1;
4838 i.types[op].bitfield.imm32 = 1;
4839 i.types[op].bitfield.imm32s = 1;
4840 i.types[op].bitfield.imm64 = 1;
4841 break;
4842 case BYTE_MNEM_SUFFIX:
4843 i.types[op].bitfield.imm8 = 1;
4844 i.types[op].bitfield.imm8s = 1;
4845 i.types[op].bitfield.imm16 = 1;
4846 i.types[op].bitfield.imm32 = 1;
4847 i.types[op].bitfield.imm32s = 1;
4848 i.types[op].bitfield.imm64 = 1;
4849 break;
4850 }
4851
4852 /* If this operand is at most 16 bits, convert it
4853 to a signed 16 bit number before trying to see
4854 whether it will fit in an even smaller size.
4855 This allows a 16-bit operand such as $0xffe0 to
4856 be recognised as within Imm8S range. */
4857 if ((i.types[op].bitfield.imm16)
4858 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4859 {
4860 i.op[op].imms->X_add_number =
4861 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4862 }
4863 #ifdef BFD64
4864 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
4865 if ((i.types[op].bitfield.imm32)
4866 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4867 == 0))
4868 {
4869 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4870 ^ ((offsetT) 1 << 31))
4871 - ((offsetT) 1 << 31));
4872 }
4873 #endif
4874 i.types[op]
4875 = operand_type_or (i.types[op],
4876 smallest_imm_type (i.op[op].imms->X_add_number));
4877
4878 /* We must avoid matching of Imm32 templates when 64bit
4879 only immediate is available. */
4880 if (guess_suffix == QWORD_MNEM_SUFFIX)
4881 i.types[op].bitfield.imm32 = 0;
4882 break;
4883
4884 case O_absent:
4885 case O_register:
4886 abort ();
4887
4888 /* Symbols and expressions. */
4889 default:
4890 /* Convert symbolic operand to proper sizes for matching, but don't
4891 prevent matching a set of insns that only supports sizes other
4892 than those matching the insn suffix. */
4893 {
4894 i386_operand_type mask, allowed;
4895 const insn_template *t;
4896
4897 operand_type_set (&mask, 0);
4898 operand_type_set (&allowed, 0);
4899
4900 for (t = current_templates->start;
4901 t < current_templates->end;
4902 ++t)
4903 allowed = operand_type_or (allowed,
4904 t->operand_types[op]);
4905 switch (guess_suffix)
4906 {
4907 case QWORD_MNEM_SUFFIX:
4908 mask.bitfield.imm64 = 1;
4909 mask.bitfield.imm32s = 1;
4910 break;
4911 case LONG_MNEM_SUFFIX:
4912 mask.bitfield.imm32 = 1;
4913 break;
4914 case WORD_MNEM_SUFFIX:
4915 mask.bitfield.imm16 = 1;
4916 break;
4917 case BYTE_MNEM_SUFFIX:
4918 mask.bitfield.imm8 = 1;
4919 break;
4920 default:
4921 break;
4922 }
4923 allowed = operand_type_and (mask, allowed);
4924 if (!operand_type_all_zero (&allowed))
4925 i.types[op] = operand_type_and (i.types[op], mask);
4926 }
4927 break;
4928 }
4929 }
4930 }
4931
4932 /* Try to use the smallest displacement type too. */
4933 static void
4934 optimize_disp (void)
4935 {
4936 int op;
4937
4938 for (op = i.operands; --op >= 0;)
4939 if (operand_type_check (i.types[op], disp))
4940 {
4941 if (i.op[op].disps->X_op == O_constant)
4942 {
4943 offsetT op_disp = i.op[op].disps->X_add_number;
4944
4945 if (i.types[op].bitfield.disp16
4946 && (op_disp & ~(offsetT) 0xffff) == 0)
4947 {
4948 /* If this operand is at most 16 bits, convert
4949 to a signed 16 bit number and don't use 64bit
4950 displacement. */
4951 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4952 i.types[op].bitfield.disp64 = 0;
4953 }
4954 #ifdef BFD64
4955 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
4956 if (i.types[op].bitfield.disp32
4957 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4958 {
4959 /* If this operand is at most 32 bits, convert
4960 to a signed 32 bit number and don't use 64bit
4961 displacement. */
4962 op_disp &= (((offsetT) 2 << 31) - 1);
4963 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4964 i.types[op].bitfield.disp64 = 0;
4965 }
4966 #endif
4967 if (!op_disp && i.types[op].bitfield.baseindex)
4968 {
4969 i.types[op].bitfield.disp8 = 0;
4970 i.types[op].bitfield.disp16 = 0;
4971 i.types[op].bitfield.disp32 = 0;
4972 i.types[op].bitfield.disp32s = 0;
4973 i.types[op].bitfield.disp64 = 0;
4974 i.op[op].disps = 0;
4975 i.disp_operands--;
4976 }
4977 else if (flag_code == CODE_64BIT)
4978 {
4979 if (fits_in_signed_long (op_disp))
4980 {
4981 i.types[op].bitfield.disp64 = 0;
4982 i.types[op].bitfield.disp32s = 1;
4983 }
4984 if (i.prefix[ADDR_PREFIX]
4985 && fits_in_unsigned_long (op_disp))
4986 i.types[op].bitfield.disp32 = 1;
4987 }
4988 if ((i.types[op].bitfield.disp32
4989 || i.types[op].bitfield.disp32s
4990 || i.types[op].bitfield.disp16)
4991 && fits_in_disp8 (op_disp))
4992 i.types[op].bitfield.disp8 = 1;
4993 }
4994 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4995 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4996 {
4997 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4998 i.op[op].disps, 0, i.reloc[op]);
4999 i.types[op].bitfield.disp8 = 0;
5000 i.types[op].bitfield.disp16 = 0;
5001 i.types[op].bitfield.disp32 = 0;
5002 i.types[op].bitfield.disp32s = 0;
5003 i.types[op].bitfield.disp64 = 0;
5004 }
5005 else
5006 /* We only support 64bit displacement on constants. */
5007 i.types[op].bitfield.disp64 = 0;
5008 }
5009 }
5010
5011 /* Check if operands are valid for the instruction. */
5012
5013 static int
5014 check_VecOperands (const insn_template *t)
5015 {
5016 unsigned int op;
5017 i386_cpu_flags cpu;
5018 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5019
5020 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5021 any one operand are implicity requiring AVX512VL support if the actual
5022 operand size is YMMword or XMMword. Since this function runs after
5023 template matching, there's no need to check for YMMword/XMMword in
5024 the template. */
5025 cpu = cpu_flags_and (t->cpu_flags, avx512);
5026 if (!cpu_flags_all_zero (&cpu)
5027 && !t->cpu_flags.bitfield.cpuavx512vl
5028 && !cpu_arch_flags.bitfield.cpuavx512vl)
5029 {
5030 for (op = 0; op < t->operands; ++op)
5031 {
5032 if (t->operand_types[op].bitfield.zmmword
5033 && (i.types[op].bitfield.ymmword
5034 || i.types[op].bitfield.xmmword))
5035 {
5036 i.error = unsupported;
5037 return 1;
5038 }
5039 }
5040 }
5041
5042 /* Without VSIB byte, we can't have a vector register for index. */
5043 if (!t->opcode_modifier.vecsib
5044 && i.index_reg
5045 && (i.index_reg->reg_type.bitfield.xmmword
5046 || i.index_reg->reg_type.bitfield.ymmword
5047 || i.index_reg->reg_type.bitfield.zmmword))
5048 {
5049 i.error = unsupported_vector_index_register;
5050 return 1;
5051 }
5052
5053 /* Check if default mask is allowed. */
5054 if (t->opcode_modifier.nodefmask
5055 && (!i.mask || i.mask->mask->reg_num == 0))
5056 {
5057 i.error = no_default_mask;
5058 return 1;
5059 }
5060
5061 /* For VSIB byte, we need a vector register for index, and all vector
5062 registers must be distinct. */
5063 if (t->opcode_modifier.vecsib)
5064 {
5065 if (!i.index_reg
5066 || !((t->opcode_modifier.vecsib == VecSIB128
5067 && i.index_reg->reg_type.bitfield.xmmword)
5068 || (t->opcode_modifier.vecsib == VecSIB256
5069 && i.index_reg->reg_type.bitfield.ymmword)
5070 || (t->opcode_modifier.vecsib == VecSIB512
5071 && i.index_reg->reg_type.bitfield.zmmword)))
5072 {
5073 i.error = invalid_vsib_address;
5074 return 1;
5075 }
5076
5077 gas_assert (i.reg_operands == 2 || i.mask);
5078 if (i.reg_operands == 2 && !i.mask)
5079 {
5080 gas_assert (i.types[0].bitfield.regsimd);
5081 gas_assert (i.types[0].bitfield.xmmword
5082 || i.types[0].bitfield.ymmword);
5083 gas_assert (i.types[2].bitfield.regsimd);
5084 gas_assert (i.types[2].bitfield.xmmword
5085 || i.types[2].bitfield.ymmword);
5086 if (operand_check == check_none)
5087 return 0;
5088 if (register_number (i.op[0].regs)
5089 != register_number (i.index_reg)
5090 && register_number (i.op[2].regs)
5091 != register_number (i.index_reg)
5092 && register_number (i.op[0].regs)
5093 != register_number (i.op[2].regs))
5094 return 0;
5095 if (operand_check == check_error)
5096 {
5097 i.error = invalid_vector_register_set;
5098 return 1;
5099 }
5100 as_warn (_("mask, index, and destination registers should be distinct"));
5101 }
5102 else if (i.reg_operands == 1 && i.mask)
5103 {
5104 if (i.types[1].bitfield.regsimd
5105 && (i.types[1].bitfield.xmmword
5106 || i.types[1].bitfield.ymmword
5107 || i.types[1].bitfield.zmmword)
5108 && (register_number (i.op[1].regs)
5109 == register_number (i.index_reg)))
5110 {
5111 if (operand_check == check_error)
5112 {
5113 i.error = invalid_vector_register_set;
5114 return 1;
5115 }
5116 if (operand_check != check_none)
5117 as_warn (_("index and destination registers should be distinct"));
5118 }
5119 }
5120 }
5121
5122 /* Check if broadcast is supported by the instruction and is applied
5123 to the memory operand. */
5124 if (i.broadcast)
5125 {
5126 i386_operand_type type, overlap;
5127
5128 /* Check if specified broadcast is supported in this instruction,
5129 and it's applied to memory operand of DWORD or QWORD type. */
5130 op = i.broadcast->operand;
5131 if (!t->opcode_modifier.broadcast
5132 || !i.types[op].bitfield.mem
5133 || (!i.types[op].bitfield.unspecified
5134 && (t->operand_types[op].bitfield.dword
5135 ? !i.types[op].bitfield.dword
5136 : !i.types[op].bitfield.qword)))
5137 {
5138 bad_broadcast:
5139 i.error = unsupported_broadcast;
5140 return 1;
5141 }
5142
5143 operand_type_set (&type, 0);
5144 switch ((t->operand_types[op].bitfield.dword ? 4 : 8) * i.broadcast->type)
5145 {
5146 case 8:
5147 type.bitfield.qword = 1;
5148 break;
5149 case 16:
5150 type.bitfield.xmmword = 1;
5151 break;
5152 case 32:
5153 type.bitfield.ymmword = 1;
5154 break;
5155 case 64:
5156 type.bitfield.zmmword = 1;
5157 break;
5158 default:
5159 goto bad_broadcast;
5160 }
5161
5162 overlap = operand_type_and (type, t->operand_types[op]);
5163 if (operand_type_all_zero (&overlap))
5164 goto bad_broadcast;
5165
5166 if (t->opcode_modifier.checkregsize)
5167 {
5168 unsigned int j;
5169
5170 type.bitfield.baseindex = 1;
5171 for (j = 0; j < i.operands; ++j)
5172 {
5173 if (j != op
5174 && !operand_type_register_match(i.types[j],
5175 t->operand_types[j],
5176 type,
5177 t->operand_types[op]))
5178 goto bad_broadcast;
5179 }
5180 }
5181 }
5182 /* If broadcast is supported in this instruction, we need to check if
5183 operand of one-element size isn't specified without broadcast. */
5184 else if (t->opcode_modifier.broadcast && i.mem_operands)
5185 {
5186 /* Find memory operand. */
5187 for (op = 0; op < i.operands; op++)
5188 if (operand_type_check (i.types[op], anymem))
5189 break;
5190 gas_assert (op < i.operands);
5191 /* Check size of the memory operand. */
5192 if (t->operand_types[op].bitfield.dword
5193 ? i.types[op].bitfield.dword
5194 : i.types[op].bitfield.qword)
5195 {
5196 i.error = broadcast_needed;
5197 return 1;
5198 }
5199 }
5200 else
5201 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5202
5203 /* Check if requested masking is supported. */
5204 if (i.mask
5205 && (!t->opcode_modifier.masking
5206 || (i.mask->zeroing
5207 && t->opcode_modifier.masking == MERGING_MASKING)))
5208 {
5209 i.error = unsupported_masking;
5210 return 1;
5211 }
5212
5213 /* Check if masking is applied to dest operand. */
5214 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5215 {
5216 i.error = mask_not_on_destination;
5217 return 1;
5218 }
5219
5220 /* Check RC/SAE. */
5221 if (i.rounding)
5222 {
5223 if ((i.rounding->type != saeonly
5224 && !t->opcode_modifier.staticrounding)
5225 || (i.rounding->type == saeonly
5226 && (t->opcode_modifier.staticrounding
5227 || !t->opcode_modifier.sae)))
5228 {
5229 i.error = unsupported_rc_sae;
5230 return 1;
5231 }
5232 /* If the instruction has several immediate operands and one of
5233 them is rounding, the rounding operand should be the last
5234 immediate operand. */
5235 if (i.imm_operands > 1
5236 && i.rounding->operand != (int) (i.imm_operands - 1))
5237 {
5238 i.error = rc_sae_operand_not_last_imm;
5239 return 1;
5240 }
5241 }
5242
5243 /* Check vector Disp8 operand. */
5244 if (t->opcode_modifier.disp8memshift
5245 && i.disp_encoding != disp_encoding_32bit)
5246 {
5247 if (i.broadcast)
5248 i.memshift = t->operand_types[op].bitfield.dword ? 2 : 3;
5249 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5250 i.memshift = t->opcode_modifier.disp8memshift;
5251 else
5252 {
5253 const i386_operand_type *type = NULL;
5254
5255 i.memshift = 0;
5256 for (op = 0; op < i.operands; op++)
5257 if (operand_type_check (i.types[op], anymem))
5258 {
5259 if (t->operand_types[op].bitfield.xmmword
5260 + t->operand_types[op].bitfield.ymmword
5261 + t->operand_types[op].bitfield.zmmword <= 1)
5262 type = &t->operand_types[op];
5263 else if (!i.types[op].bitfield.unspecified)
5264 type = &i.types[op];
5265 }
5266 else if (i.types[op].bitfield.regsimd)
5267 {
5268 if (i.types[op].bitfield.zmmword)
5269 i.memshift = 6;
5270 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5271 i.memshift = 5;
5272 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5273 i.memshift = 4;
5274 }
5275
5276 if (type)
5277 {
5278 if (type->bitfield.zmmword)
5279 i.memshift = 6;
5280 else if (type->bitfield.ymmword)
5281 i.memshift = 5;
5282 else if (type->bitfield.xmmword)
5283 i.memshift = 4;
5284 }
5285
5286 /* For the check in fits_in_disp8(). */
5287 if (i.memshift == 0)
5288 i.memshift = -1;
5289 }
5290
5291 for (op = 0; op < i.operands; op++)
5292 if (operand_type_check (i.types[op], disp)
5293 && i.op[op].disps->X_op == O_constant)
5294 {
5295 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5296 {
5297 i.types[op].bitfield.disp8 = 1;
5298 return 0;
5299 }
5300 i.types[op].bitfield.disp8 = 0;
5301 }
5302 }
5303
5304 i.memshift = 0;
5305
5306 return 0;
5307 }
5308
5309 /* Check if operands are valid for the instruction. Update VEX
5310 operand types. */
5311
5312 static int
5313 VEX_check_operands (const insn_template *t)
5314 {
5315 if (i.vec_encoding == vex_encoding_evex)
5316 {
5317 /* This instruction must be encoded with EVEX prefix. */
5318 if (!is_evex_encoding (t))
5319 {
5320 i.error = unsupported;
5321 return 1;
5322 }
5323 return 0;
5324 }
5325
5326 if (!t->opcode_modifier.vex)
5327 {
5328 /* This instruction template doesn't have VEX prefix. */
5329 if (i.vec_encoding != vex_encoding_default)
5330 {
5331 i.error = unsupported;
5332 return 1;
5333 }
5334 return 0;
5335 }
5336
5337 /* Only check VEX_Imm4, which must be the first operand. */
5338 if (t->operand_types[0].bitfield.vec_imm4)
5339 {
5340 if (i.op[0].imms->X_op != O_constant
5341 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5342 {
5343 i.error = bad_imm4;
5344 return 1;
5345 }
5346
5347 /* Turn off Imm8 so that update_imm won't complain. */
5348 i.types[0] = vec_imm4;
5349 }
5350
5351 return 0;
5352 }
5353
5354 static const insn_template *
5355 match_template (char mnem_suffix)
5356 {
5357 /* Points to template once we've found it. */
5358 const insn_template *t;
5359 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5360 i386_operand_type overlap4;
5361 unsigned int found_reverse_match;
5362 i386_opcode_modifier suffix_check, mnemsuf_check;
5363 i386_operand_type operand_types [MAX_OPERANDS];
5364 int addr_prefix_disp;
5365 unsigned int j;
5366 unsigned int found_cpu_match, size_match;
5367 unsigned int check_register;
5368 enum i386_error specific_error = 0;
5369
5370 #if MAX_OPERANDS != 5
5371 # error "MAX_OPERANDS must be 5."
5372 #endif
5373
5374 found_reverse_match = 0;
5375 addr_prefix_disp = -1;
5376
5377 memset (&suffix_check, 0, sizeof (suffix_check));
5378 if (intel_syntax && i.broadcast)
5379 /* nothing */;
5380 else if (i.suffix == BYTE_MNEM_SUFFIX)
5381 suffix_check.no_bsuf = 1;
5382 else if (i.suffix == WORD_MNEM_SUFFIX)
5383 suffix_check.no_wsuf = 1;
5384 else if (i.suffix == SHORT_MNEM_SUFFIX)
5385 suffix_check.no_ssuf = 1;
5386 else if (i.suffix == LONG_MNEM_SUFFIX)
5387 suffix_check.no_lsuf = 1;
5388 else if (i.suffix == QWORD_MNEM_SUFFIX)
5389 suffix_check.no_qsuf = 1;
5390 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5391 suffix_check.no_ldsuf = 1;
5392
5393 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5394 if (intel_syntax)
5395 {
5396 switch (mnem_suffix)
5397 {
5398 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5399 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5400 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5401 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5402 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5403 }
5404 }
5405
5406 /* Must have right number of operands. */
5407 i.error = number_of_operands_mismatch;
5408
5409 for (t = current_templates->start; t < current_templates->end; t++)
5410 {
5411 addr_prefix_disp = -1;
5412
5413 if (i.operands != t->operands)
5414 continue;
5415
5416 /* Check processor support. */
5417 i.error = unsupported;
5418 found_cpu_match = (cpu_flags_match (t)
5419 == CPU_FLAGS_PERFECT_MATCH);
5420 if (!found_cpu_match)
5421 continue;
5422
5423 /* Check AT&T mnemonic. */
5424 i.error = unsupported_with_intel_mnemonic;
5425 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5426 continue;
5427
5428 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5429 i.error = unsupported_syntax;
5430 if ((intel_syntax && t->opcode_modifier.attsyntax)
5431 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5432 || (intel64 && t->opcode_modifier.amd64)
5433 || (!intel64 && t->opcode_modifier.intel64))
5434 continue;
5435
5436 /* Check the suffix, except for some instructions in intel mode. */
5437 i.error = invalid_instruction_suffix;
5438 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5439 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5440 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5441 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5442 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5443 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5444 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
5445 continue;
5446 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5447 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5448 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5449 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5450 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5451 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5452 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5453 continue;
5454
5455 size_match = operand_size_match (t);
5456 if (!size_match)
5457 continue;
5458
5459 for (j = 0; j < MAX_OPERANDS; j++)
5460 operand_types[j] = t->operand_types[j];
5461
5462 /* In general, don't allow 64-bit operands in 32-bit mode. */
5463 if (i.suffix == QWORD_MNEM_SUFFIX
5464 && flag_code != CODE_64BIT
5465 && (intel_syntax
5466 ? (!t->opcode_modifier.ignoresize
5467 && !t->opcode_modifier.broadcast
5468 && !intel_float_operand (t->name))
5469 : intel_float_operand (t->name) != 2)
5470 && ((!operand_types[0].bitfield.regmmx
5471 && !operand_types[0].bitfield.regsimd)
5472 || (!operand_types[t->operands > 1].bitfield.regmmx
5473 && !operand_types[t->operands > 1].bitfield.regsimd))
5474 && (t->base_opcode != 0x0fc7
5475 || t->extension_opcode != 1 /* cmpxchg8b */))
5476 continue;
5477
5478 /* In general, don't allow 32-bit operands on pre-386. */
5479 else if (i.suffix == LONG_MNEM_SUFFIX
5480 && !cpu_arch_flags.bitfield.cpui386
5481 && (intel_syntax
5482 ? (!t->opcode_modifier.ignoresize
5483 && !intel_float_operand (t->name))
5484 : intel_float_operand (t->name) != 2)
5485 && ((!operand_types[0].bitfield.regmmx
5486 && !operand_types[0].bitfield.regsimd)
5487 || (!operand_types[t->operands > 1].bitfield.regmmx
5488 && !operand_types[t->operands > 1].bitfield.regsimd)))
5489 continue;
5490
5491 /* Do not verify operands when there are none. */
5492 else
5493 {
5494 if (!t->operands)
5495 /* We've found a match; break out of loop. */
5496 break;
5497 }
5498
5499 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5500 into Disp32/Disp16/Disp32 operand. */
5501 if (i.prefix[ADDR_PREFIX] != 0)
5502 {
5503 /* There should be only one Disp operand. */
5504 switch (flag_code)
5505 {
5506 case CODE_16BIT:
5507 for (j = 0; j < MAX_OPERANDS; j++)
5508 {
5509 if (operand_types[j].bitfield.disp16)
5510 {
5511 addr_prefix_disp = j;
5512 operand_types[j].bitfield.disp32 = 1;
5513 operand_types[j].bitfield.disp16 = 0;
5514 break;
5515 }
5516 }
5517 break;
5518 case CODE_32BIT:
5519 for (j = 0; j < MAX_OPERANDS; j++)
5520 {
5521 if (operand_types[j].bitfield.disp32)
5522 {
5523 addr_prefix_disp = j;
5524 operand_types[j].bitfield.disp32 = 0;
5525 operand_types[j].bitfield.disp16 = 1;
5526 break;
5527 }
5528 }
5529 break;
5530 case CODE_64BIT:
5531 for (j = 0; j < MAX_OPERANDS; j++)
5532 {
5533 if (operand_types[j].bitfield.disp64)
5534 {
5535 addr_prefix_disp = j;
5536 operand_types[j].bitfield.disp64 = 0;
5537 operand_types[j].bitfield.disp32 = 1;
5538 break;
5539 }
5540 }
5541 break;
5542 }
5543 }
5544
5545 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5546 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5547 continue;
5548
5549 /* We check register size if needed. */
5550 if (t->opcode_modifier.checkregsize)
5551 {
5552 check_register = (1 << t->operands) - 1;
5553 if (i.broadcast)
5554 check_register &= ~(1 << i.broadcast->operand);
5555 }
5556 else
5557 check_register = 0;
5558
5559 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5560 switch (t->operands)
5561 {
5562 case 1:
5563 if (!operand_type_match (overlap0, i.types[0]))
5564 continue;
5565 break;
5566 case 2:
5567 /* xchg %eax, %eax is a special case. It is an alias for nop
5568 only in 32bit mode and we can use opcode 0x90. In 64bit
5569 mode, we can't use 0x90 for xchg %eax, %eax since it should
5570 zero-extend %eax to %rax. */
5571 if (flag_code == CODE_64BIT
5572 && t->base_opcode == 0x90
5573 && operand_type_equal (&i.types [0], &acc32)
5574 && operand_type_equal (&i.types [1], &acc32))
5575 continue;
5576 /* xrelease mov %eax, <disp> is another special case. It must not
5577 match the accumulator-only encoding of mov. */
5578 if (flag_code != CODE_64BIT
5579 && i.hle_prefix
5580 && t->base_opcode == 0xa0
5581 && i.types[0].bitfield.acc
5582 && operand_type_check (i.types[1], anymem))
5583 continue;
5584 if (!(size_match & MATCH_STRAIGHT))
5585 goto check_reverse;
5586 /* If we want store form, we reverse direction of operands. */
5587 if (i.dir_encoding == dir_encoding_store
5588 && t->opcode_modifier.d)
5589 goto check_reverse;
5590 /* Fall through. */
5591
5592 case 3:
5593 /* If we want store form, we skip the current load. */
5594 if (i.dir_encoding == dir_encoding_store
5595 && i.mem_operands == 0
5596 && t->opcode_modifier.load)
5597 continue;
5598 /* Fall through. */
5599 case 4:
5600 case 5:
5601 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5602 if (!operand_type_match (overlap0, i.types[0])
5603 || !operand_type_match (overlap1, i.types[1])
5604 || ((check_register & 3) == 3
5605 && !operand_type_register_match (i.types[0],
5606 operand_types[0],
5607 i.types[1],
5608 operand_types[1])))
5609 {
5610 /* Check if other direction is valid ... */
5611 if (!t->opcode_modifier.d)
5612 continue;
5613
5614 check_reverse:
5615 if (!(size_match & MATCH_REVERSE))
5616 continue;
5617 /* Try reversing direction of operands. */
5618 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5619 overlap1 = operand_type_and (i.types[1], operand_types[0]);
5620 if (!operand_type_match (overlap0, i.types[0])
5621 || !operand_type_match (overlap1, i.types[1])
5622 || (check_register
5623 && !operand_type_register_match (i.types[0],
5624 operand_types[1],
5625 i.types[1],
5626 operand_types[0])))
5627 {
5628 /* Does not match either direction. */
5629 continue;
5630 }
5631 /* found_reverse_match holds which of D or FloatR
5632 we've found. */
5633 if (!t->opcode_modifier.d)
5634 found_reverse_match = 0;
5635 else if (operand_types[0].bitfield.tbyte)
5636 found_reverse_match = Opcode_FloatD;
5637 else
5638 found_reverse_match = Opcode_D;
5639 if (t->opcode_modifier.floatr)
5640 found_reverse_match |= Opcode_FloatR;
5641 }
5642 else
5643 {
5644 /* Found a forward 2 operand match here. */
5645 switch (t->operands)
5646 {
5647 case 5:
5648 overlap4 = operand_type_and (i.types[4],
5649 operand_types[4]);
5650 /* Fall through. */
5651 case 4:
5652 overlap3 = operand_type_and (i.types[3],
5653 operand_types[3]);
5654 /* Fall through. */
5655 case 3:
5656 overlap2 = operand_type_and (i.types[2],
5657 operand_types[2]);
5658 break;
5659 }
5660
5661 switch (t->operands)
5662 {
5663 case 5:
5664 if (!operand_type_match (overlap4, i.types[4])
5665 || !operand_type_register_match (i.types[3],
5666 operand_types[3],
5667 i.types[4],
5668 operand_types[4]))
5669 continue;
5670 /* Fall through. */
5671 case 4:
5672 if (!operand_type_match (overlap3, i.types[3])
5673 || ((check_register & 0xa) == 0xa
5674 && !operand_type_register_match (i.types[1],
5675 operand_types[1],
5676 i.types[3],
5677 operand_types[3]))
5678 || ((check_register & 0xc) == 0xc
5679 && !operand_type_register_match (i.types[2],
5680 operand_types[2],
5681 i.types[3],
5682 operand_types[3])))
5683 continue;
5684 /* Fall through. */
5685 case 3:
5686 /* Here we make use of the fact that there are no
5687 reverse match 3 operand instructions. */
5688 if (!operand_type_match (overlap2, i.types[2])
5689 || ((check_register & 5) == 5
5690 && !operand_type_register_match (i.types[0],
5691 operand_types[0],
5692 i.types[2],
5693 operand_types[2]))
5694 || ((check_register & 6) == 6
5695 && !operand_type_register_match (i.types[1],
5696 operand_types[1],
5697 i.types[2],
5698 operand_types[2])))
5699 continue;
5700 break;
5701 }
5702 }
5703 /* Found either forward/reverse 2, 3 or 4 operand match here:
5704 slip through to break. */
5705 }
5706 if (!found_cpu_match)
5707 {
5708 found_reverse_match = 0;
5709 continue;
5710 }
5711
5712 /* Check if vector and VEX operands are valid. */
5713 if (check_VecOperands (t) || VEX_check_operands (t))
5714 {
5715 specific_error = i.error;
5716 continue;
5717 }
5718
5719 /* We've found a match; break out of loop. */
5720 break;
5721 }
5722
5723 if (t == current_templates->end)
5724 {
5725 /* We found no match. */
5726 const char *err_msg;
5727 switch (specific_error ? specific_error : i.error)
5728 {
5729 default:
5730 abort ();
5731 case operand_size_mismatch:
5732 err_msg = _("operand size mismatch");
5733 break;
5734 case operand_type_mismatch:
5735 err_msg = _("operand type mismatch");
5736 break;
5737 case register_type_mismatch:
5738 err_msg = _("register type mismatch");
5739 break;
5740 case number_of_operands_mismatch:
5741 err_msg = _("number of operands mismatch");
5742 break;
5743 case invalid_instruction_suffix:
5744 err_msg = _("invalid instruction suffix");
5745 break;
5746 case bad_imm4:
5747 err_msg = _("constant doesn't fit in 4 bits");
5748 break;
5749 case unsupported_with_intel_mnemonic:
5750 err_msg = _("unsupported with Intel mnemonic");
5751 break;
5752 case unsupported_syntax:
5753 err_msg = _("unsupported syntax");
5754 break;
5755 case unsupported:
5756 as_bad (_("unsupported instruction `%s'"),
5757 current_templates->start->name);
5758 return NULL;
5759 case invalid_vsib_address:
5760 err_msg = _("invalid VSIB address");
5761 break;
5762 case invalid_vector_register_set:
5763 err_msg = _("mask, index, and destination registers must be distinct");
5764 break;
5765 case unsupported_vector_index_register:
5766 err_msg = _("unsupported vector index register");
5767 break;
5768 case unsupported_broadcast:
5769 err_msg = _("unsupported broadcast");
5770 break;
5771 case broadcast_needed:
5772 err_msg = _("broadcast is needed for operand of such type");
5773 break;
5774 case unsupported_masking:
5775 err_msg = _("unsupported masking");
5776 break;
5777 case mask_not_on_destination:
5778 err_msg = _("mask not on destination operand");
5779 break;
5780 case no_default_mask:
5781 err_msg = _("default mask isn't allowed");
5782 break;
5783 case unsupported_rc_sae:
5784 err_msg = _("unsupported static rounding/sae");
5785 break;
5786 case rc_sae_operand_not_last_imm:
5787 if (intel_syntax)
5788 err_msg = _("RC/SAE operand must precede immediate operands");
5789 else
5790 err_msg = _("RC/SAE operand must follow immediate operands");
5791 break;
5792 case invalid_register_operand:
5793 err_msg = _("invalid register operand");
5794 break;
5795 }
5796 as_bad (_("%s for `%s'"), err_msg,
5797 current_templates->start->name);
5798 return NULL;
5799 }
5800
5801 if (!quiet_warnings)
5802 {
5803 if (!intel_syntax
5804 && (i.types[0].bitfield.jumpabsolute
5805 != operand_types[0].bitfield.jumpabsolute))
5806 {
5807 as_warn (_("indirect %s without `*'"), t->name);
5808 }
5809
5810 if (t->opcode_modifier.isprefix
5811 && t->opcode_modifier.ignoresize)
5812 {
5813 /* Warn them that a data or address size prefix doesn't
5814 affect assembly of the next line of code. */
5815 as_warn (_("stand-alone `%s' prefix"), t->name);
5816 }
5817 }
5818
5819 /* Copy the template we found. */
5820 i.tm = *t;
5821
5822 if (addr_prefix_disp != -1)
5823 i.tm.operand_types[addr_prefix_disp]
5824 = operand_types[addr_prefix_disp];
5825
5826 if (found_reverse_match)
5827 {
5828 /* If we found a reverse match we must alter the opcode
5829 direction bit. found_reverse_match holds bits to change
5830 (different for int & float insns). */
5831
5832 i.tm.base_opcode ^= found_reverse_match;
5833
5834 i.tm.operand_types[0] = operand_types[1];
5835 i.tm.operand_types[1] = operand_types[0];
5836 }
5837
5838 return t;
5839 }
5840
5841 static int
5842 check_string (void)
5843 {
5844 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5845 if (i.tm.operand_types[mem_op].bitfield.esseg)
5846 {
5847 if (i.seg[0] != NULL && i.seg[0] != &es)
5848 {
5849 as_bad (_("`%s' operand %d must use `%ses' segment"),
5850 i.tm.name,
5851 mem_op + 1,
5852 register_prefix);
5853 return 0;
5854 }
5855 /* There's only ever one segment override allowed per instruction.
5856 This instruction possibly has a legal segment override on the
5857 second operand, so copy the segment to where non-string
5858 instructions store it, allowing common code. */
5859 i.seg[0] = i.seg[1];
5860 }
5861 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5862 {
5863 if (i.seg[1] != NULL && i.seg[1] != &es)
5864 {
5865 as_bad (_("`%s' operand %d must use `%ses' segment"),
5866 i.tm.name,
5867 mem_op + 2,
5868 register_prefix);
5869 return 0;
5870 }
5871 }
5872 return 1;
5873 }
5874
5875 static int
5876 process_suffix (void)
5877 {
5878 /* If matched instruction specifies an explicit instruction mnemonic
5879 suffix, use it. */
5880 if (i.tm.opcode_modifier.size16)
5881 i.suffix = WORD_MNEM_SUFFIX;
5882 else if (i.tm.opcode_modifier.size32)
5883 i.suffix = LONG_MNEM_SUFFIX;
5884 else if (i.tm.opcode_modifier.size64)
5885 i.suffix = QWORD_MNEM_SUFFIX;
5886 else if (i.reg_operands)
5887 {
5888 /* If there's no instruction mnemonic suffix we try to invent one
5889 based on register operands. */
5890 if (!i.suffix)
5891 {
5892 /* We take i.suffix from the last register operand specified,
5893 Destination register type is more significant than source
5894 register type. crc32 in SSE4.2 prefers source register
5895 type. */
5896 if (i.tm.base_opcode == 0xf20f38f1)
5897 {
5898 if (i.types[0].bitfield.reg && i.types[0].bitfield.word)
5899 i.suffix = WORD_MNEM_SUFFIX;
5900 else if (i.types[0].bitfield.reg && i.types[0].bitfield.dword)
5901 i.suffix = LONG_MNEM_SUFFIX;
5902 else if (i.types[0].bitfield.reg && i.types[0].bitfield.qword)
5903 i.suffix = QWORD_MNEM_SUFFIX;
5904 }
5905 else if (i.tm.base_opcode == 0xf20f38f0)
5906 {
5907 if (i.types[0].bitfield.reg && i.types[0].bitfield.byte)
5908 i.suffix = BYTE_MNEM_SUFFIX;
5909 }
5910
5911 if (!i.suffix)
5912 {
5913 int op;
5914
5915 if (i.tm.base_opcode == 0xf20f38f1
5916 || i.tm.base_opcode == 0xf20f38f0)
5917 {
5918 /* We have to know the operand size for crc32. */
5919 as_bad (_("ambiguous memory operand size for `%s`"),
5920 i.tm.name);
5921 return 0;
5922 }
5923
5924 for (op = i.operands; --op >= 0;)
5925 if (!i.tm.operand_types[op].bitfield.inoutportreg
5926 && !i.tm.operand_types[op].bitfield.shiftcount)
5927 {
5928 if (!i.types[op].bitfield.reg)
5929 continue;
5930 if (i.types[op].bitfield.byte)
5931 i.suffix = BYTE_MNEM_SUFFIX;
5932 else if (i.types[op].bitfield.word)
5933 i.suffix = WORD_MNEM_SUFFIX;
5934 else if (i.types[op].bitfield.dword)
5935 i.suffix = LONG_MNEM_SUFFIX;
5936 else if (i.types[op].bitfield.qword)
5937 i.suffix = QWORD_MNEM_SUFFIX;
5938 else
5939 continue;
5940 break;
5941 }
5942 }
5943 }
5944 else if (i.suffix == BYTE_MNEM_SUFFIX)
5945 {
5946 if (intel_syntax
5947 && i.tm.opcode_modifier.ignoresize
5948 && i.tm.opcode_modifier.no_bsuf)
5949 i.suffix = 0;
5950 else if (!check_byte_reg ())
5951 return 0;
5952 }
5953 else if (i.suffix == LONG_MNEM_SUFFIX)
5954 {
5955 if (intel_syntax
5956 && i.tm.opcode_modifier.ignoresize
5957 && i.tm.opcode_modifier.no_lsuf
5958 && !i.tm.opcode_modifier.todword
5959 && !i.tm.opcode_modifier.toqword)
5960 i.suffix = 0;
5961 else if (!check_long_reg ())
5962 return 0;
5963 }
5964 else if (i.suffix == QWORD_MNEM_SUFFIX)
5965 {
5966 if (intel_syntax
5967 && i.tm.opcode_modifier.ignoresize
5968 && i.tm.opcode_modifier.no_qsuf
5969 && !i.tm.opcode_modifier.todword
5970 && !i.tm.opcode_modifier.toqword)
5971 i.suffix = 0;
5972 else if (!check_qword_reg ())
5973 return 0;
5974 }
5975 else if (i.suffix == WORD_MNEM_SUFFIX)
5976 {
5977 if (intel_syntax
5978 && i.tm.opcode_modifier.ignoresize
5979 && i.tm.opcode_modifier.no_wsuf)
5980 i.suffix = 0;
5981 else if (!check_word_reg ())
5982 return 0;
5983 }
5984 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5985 /* Do nothing if the instruction is going to ignore the prefix. */
5986 ;
5987 else
5988 abort ();
5989 }
5990 else if (i.tm.opcode_modifier.defaultsize
5991 && !i.suffix
5992 /* exclude fldenv/frstor/fsave/fstenv */
5993 && i.tm.opcode_modifier.no_ssuf)
5994 {
5995 i.suffix = stackop_size;
5996 }
5997 else if (intel_syntax
5998 && !i.suffix
5999 && (i.tm.operand_types[0].bitfield.jumpabsolute
6000 || i.tm.opcode_modifier.jumpbyte
6001 || i.tm.opcode_modifier.jumpintersegment
6002 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6003 && i.tm.extension_opcode <= 3)))
6004 {
6005 switch (flag_code)
6006 {
6007 case CODE_64BIT:
6008 if (!i.tm.opcode_modifier.no_qsuf)
6009 {
6010 i.suffix = QWORD_MNEM_SUFFIX;
6011 break;
6012 }
6013 /* Fall through. */
6014 case CODE_32BIT:
6015 if (!i.tm.opcode_modifier.no_lsuf)
6016 i.suffix = LONG_MNEM_SUFFIX;
6017 break;
6018 case CODE_16BIT:
6019 if (!i.tm.opcode_modifier.no_wsuf)
6020 i.suffix = WORD_MNEM_SUFFIX;
6021 break;
6022 }
6023 }
6024
6025 if (!i.suffix)
6026 {
6027 if (!intel_syntax)
6028 {
6029 if (i.tm.opcode_modifier.w)
6030 {
6031 as_bad (_("no instruction mnemonic suffix given and "
6032 "no register operands; can't size instruction"));
6033 return 0;
6034 }
6035 }
6036 else
6037 {
6038 unsigned int suffixes;
6039
6040 suffixes = !i.tm.opcode_modifier.no_bsuf;
6041 if (!i.tm.opcode_modifier.no_wsuf)
6042 suffixes |= 1 << 1;
6043 if (!i.tm.opcode_modifier.no_lsuf)
6044 suffixes |= 1 << 2;
6045 if (!i.tm.opcode_modifier.no_ldsuf)
6046 suffixes |= 1 << 3;
6047 if (!i.tm.opcode_modifier.no_ssuf)
6048 suffixes |= 1 << 4;
6049 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6050 suffixes |= 1 << 5;
6051
6052 /* There are more than suffix matches. */
6053 if (i.tm.opcode_modifier.w
6054 || ((suffixes & (suffixes - 1))
6055 && !i.tm.opcode_modifier.defaultsize
6056 && !i.tm.opcode_modifier.ignoresize))
6057 {
6058 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6059 return 0;
6060 }
6061 }
6062 }
6063
6064 /* Change the opcode based on the operand size given by i.suffix. */
6065 switch (i.suffix)
6066 {
6067 /* Size floating point instruction. */
6068 case LONG_MNEM_SUFFIX:
6069 if (i.tm.opcode_modifier.floatmf)
6070 {
6071 i.tm.base_opcode ^= 4;
6072 break;
6073 }
6074 /* fall through */
6075 case WORD_MNEM_SUFFIX:
6076 case QWORD_MNEM_SUFFIX:
6077 /* It's not a byte, select word/dword operation. */
6078 if (i.tm.opcode_modifier.w)
6079 {
6080 if (i.tm.opcode_modifier.shortform)
6081 i.tm.base_opcode |= 8;
6082 else
6083 i.tm.base_opcode |= 1;
6084 }
6085 /* fall through */
6086 case SHORT_MNEM_SUFFIX:
6087 /* Now select between word & dword operations via the operand
6088 size prefix, except for instructions that will ignore this
6089 prefix anyway. */
6090 if (i.reg_operands > 0
6091 && i.types[0].bitfield.reg
6092 && i.tm.opcode_modifier.addrprefixopreg
6093 && (i.tm.opcode_modifier.immext
6094 || i.operands == 1))
6095 {
6096 /* The address size override prefix changes the size of the
6097 first operand. */
6098 if ((flag_code == CODE_32BIT
6099 && i.op[0].regs->reg_type.bitfield.word)
6100 || (flag_code != CODE_32BIT
6101 && i.op[0].regs->reg_type.bitfield.dword))
6102 if (!add_prefix (ADDR_PREFIX_OPCODE))
6103 return 0;
6104 }
6105 else if (i.suffix != QWORD_MNEM_SUFFIX
6106 && !i.tm.opcode_modifier.ignoresize
6107 && !i.tm.opcode_modifier.floatmf
6108 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6109 || (flag_code == CODE_64BIT
6110 && i.tm.opcode_modifier.jumpbyte)))
6111 {
6112 unsigned int prefix = DATA_PREFIX_OPCODE;
6113
6114 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
6115 prefix = ADDR_PREFIX_OPCODE;
6116
6117 if (!add_prefix (prefix))
6118 return 0;
6119 }
6120
6121 /* Set mode64 for an operand. */
6122 if (i.suffix == QWORD_MNEM_SUFFIX
6123 && flag_code == CODE_64BIT
6124 && !i.tm.opcode_modifier.norex64
6125 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6126 need rex64. */
6127 && ! (i.operands == 2
6128 && i.tm.base_opcode == 0x90
6129 && i.tm.extension_opcode == None
6130 && operand_type_equal (&i.types [0], &acc64)
6131 && operand_type_equal (&i.types [1], &acc64)))
6132 i.rex |= REX_W;
6133
6134 break;
6135 }
6136
6137 if (i.reg_operands != 0
6138 && i.operands > 1
6139 && i.tm.opcode_modifier.addrprefixopreg
6140 && !i.tm.opcode_modifier.immext)
6141 {
6142 /* Check invalid register operand when the address size override
6143 prefix changes the size of register operands. */
6144 unsigned int op;
6145 enum { need_word, need_dword, need_qword } need;
6146
6147 if (flag_code == CODE_32BIT)
6148 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6149 else
6150 {
6151 if (i.prefix[ADDR_PREFIX])
6152 need = need_dword;
6153 else
6154 need = flag_code == CODE_64BIT ? need_qword : need_word;
6155 }
6156
6157 for (op = 0; op < i.operands; op++)
6158 if (i.types[op].bitfield.reg
6159 && ((need == need_word
6160 && !i.op[op].regs->reg_type.bitfield.word)
6161 || (need == need_dword
6162 && !i.op[op].regs->reg_type.bitfield.dword)
6163 || (need == need_qword
6164 && !i.op[op].regs->reg_type.bitfield.qword)))
6165 {
6166 as_bad (_("invalid register operand size for `%s'"),
6167 i.tm.name);
6168 return 0;
6169 }
6170 }
6171
6172 return 1;
6173 }
6174
6175 static int
6176 check_byte_reg (void)
6177 {
6178 int op;
6179
6180 for (op = i.operands; --op >= 0;)
6181 {
6182 /* Skip non-register operands. */
6183 if (!i.types[op].bitfield.reg)
6184 continue;
6185
6186 /* If this is an eight bit register, it's OK. If it's the 16 or
6187 32 bit version of an eight bit register, we will just use the
6188 low portion, and that's OK too. */
6189 if (i.types[op].bitfield.byte)
6190 continue;
6191
6192 /* I/O port address operands are OK too. */
6193 if (i.tm.operand_types[op].bitfield.inoutportreg)
6194 continue;
6195
6196 /* crc32 doesn't generate this warning. */
6197 if (i.tm.base_opcode == 0xf20f38f0)
6198 continue;
6199
6200 if ((i.types[op].bitfield.word
6201 || i.types[op].bitfield.dword
6202 || i.types[op].bitfield.qword)
6203 && i.op[op].regs->reg_num < 4
6204 /* Prohibit these changes in 64bit mode, since the lowering
6205 would be more complicated. */
6206 && flag_code != CODE_64BIT)
6207 {
6208 #if REGISTER_WARNINGS
6209 if (!quiet_warnings)
6210 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6211 register_prefix,
6212 (i.op[op].regs + (i.types[op].bitfield.word
6213 ? REGNAM_AL - REGNAM_AX
6214 : REGNAM_AL - REGNAM_EAX))->reg_name,
6215 register_prefix,
6216 i.op[op].regs->reg_name,
6217 i.suffix);
6218 #endif
6219 continue;
6220 }
6221 /* Any other register is bad. */
6222 if (i.types[op].bitfield.reg
6223 || i.types[op].bitfield.regmmx
6224 || i.types[op].bitfield.regsimd
6225 || i.types[op].bitfield.sreg2
6226 || i.types[op].bitfield.sreg3
6227 || i.types[op].bitfield.control
6228 || i.types[op].bitfield.debug
6229 || i.types[op].bitfield.test)
6230 {
6231 as_bad (_("`%s%s' not allowed with `%s%c'"),
6232 register_prefix,
6233 i.op[op].regs->reg_name,
6234 i.tm.name,
6235 i.suffix);
6236 return 0;
6237 }
6238 }
6239 return 1;
6240 }
6241
6242 static int
6243 check_long_reg (void)
6244 {
6245 int op;
6246
6247 for (op = i.operands; --op >= 0;)
6248 /* Skip non-register operands. */
6249 if (!i.types[op].bitfield.reg)
6250 continue;
6251 /* Reject eight bit registers, except where the template requires
6252 them. (eg. movzb) */
6253 else if (i.types[op].bitfield.byte
6254 && (i.tm.operand_types[op].bitfield.reg
6255 || i.tm.operand_types[op].bitfield.acc)
6256 && (i.tm.operand_types[op].bitfield.word
6257 || i.tm.operand_types[op].bitfield.dword))
6258 {
6259 as_bad (_("`%s%s' not allowed with `%s%c'"),
6260 register_prefix,
6261 i.op[op].regs->reg_name,
6262 i.tm.name,
6263 i.suffix);
6264 return 0;
6265 }
6266 /* Warn if the e prefix on a general reg is missing. */
6267 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6268 && i.types[op].bitfield.word
6269 && (i.tm.operand_types[op].bitfield.reg
6270 || i.tm.operand_types[op].bitfield.acc)
6271 && i.tm.operand_types[op].bitfield.dword)
6272 {
6273 /* Prohibit these changes in the 64bit mode, since the
6274 lowering is more complicated. */
6275 if (flag_code == CODE_64BIT)
6276 {
6277 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6278 register_prefix, i.op[op].regs->reg_name,
6279 i.suffix);
6280 return 0;
6281 }
6282 #if REGISTER_WARNINGS
6283 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6284 register_prefix,
6285 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6286 register_prefix, i.op[op].regs->reg_name, i.suffix);
6287 #endif
6288 }
6289 /* Warn if the r prefix on a general reg is present. */
6290 else if (i.types[op].bitfield.qword
6291 && (i.tm.operand_types[op].bitfield.reg
6292 || i.tm.operand_types[op].bitfield.acc)
6293 && i.tm.operand_types[op].bitfield.dword)
6294 {
6295 if (intel_syntax
6296 && i.tm.opcode_modifier.toqword
6297 && !i.types[0].bitfield.regsimd)
6298 {
6299 /* Convert to QWORD. We want REX byte. */
6300 i.suffix = QWORD_MNEM_SUFFIX;
6301 }
6302 else
6303 {
6304 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6305 register_prefix, i.op[op].regs->reg_name,
6306 i.suffix);
6307 return 0;
6308 }
6309 }
6310 return 1;
6311 }
6312
6313 static int
6314 check_qword_reg (void)
6315 {
6316 int op;
6317
6318 for (op = i.operands; --op >= 0; )
6319 /* Skip non-register operands. */
6320 if (!i.types[op].bitfield.reg)
6321 continue;
6322 /* Reject eight bit registers, except where the template requires
6323 them. (eg. movzb) */
6324 else if (i.types[op].bitfield.byte
6325 && (i.tm.operand_types[op].bitfield.reg
6326 || i.tm.operand_types[op].bitfield.acc)
6327 && (i.tm.operand_types[op].bitfield.word
6328 || i.tm.operand_types[op].bitfield.dword))
6329 {
6330 as_bad (_("`%s%s' not allowed with `%s%c'"),
6331 register_prefix,
6332 i.op[op].regs->reg_name,
6333 i.tm.name,
6334 i.suffix);
6335 return 0;
6336 }
6337 /* Warn if the r prefix on a general reg is missing. */
6338 else if ((i.types[op].bitfield.word
6339 || i.types[op].bitfield.dword)
6340 && (i.tm.operand_types[op].bitfield.reg
6341 || i.tm.operand_types[op].bitfield.acc)
6342 && i.tm.operand_types[op].bitfield.qword)
6343 {
6344 /* Prohibit these changes in the 64bit mode, since the
6345 lowering is more complicated. */
6346 if (intel_syntax
6347 && i.tm.opcode_modifier.todword
6348 && !i.types[0].bitfield.regsimd)
6349 {
6350 /* Convert to DWORD. We don't want REX byte. */
6351 i.suffix = LONG_MNEM_SUFFIX;
6352 }
6353 else
6354 {
6355 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6356 register_prefix, i.op[op].regs->reg_name,
6357 i.suffix);
6358 return 0;
6359 }
6360 }
6361 return 1;
6362 }
6363
6364 static int
6365 check_word_reg (void)
6366 {
6367 int op;
6368 for (op = i.operands; --op >= 0;)
6369 /* Skip non-register operands. */
6370 if (!i.types[op].bitfield.reg)
6371 continue;
6372 /* Reject eight bit registers, except where the template requires
6373 them. (eg. movzb) */
6374 else if (i.types[op].bitfield.byte
6375 && (i.tm.operand_types[op].bitfield.reg
6376 || i.tm.operand_types[op].bitfield.acc)
6377 && (i.tm.operand_types[op].bitfield.word
6378 || i.tm.operand_types[op].bitfield.dword))
6379 {
6380 as_bad (_("`%s%s' not allowed with `%s%c'"),
6381 register_prefix,
6382 i.op[op].regs->reg_name,
6383 i.tm.name,
6384 i.suffix);
6385 return 0;
6386 }
6387 /* Warn if the e or r prefix on a general reg is present. */
6388 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6389 && (i.types[op].bitfield.dword
6390 || i.types[op].bitfield.qword)
6391 && (i.tm.operand_types[op].bitfield.reg
6392 || i.tm.operand_types[op].bitfield.acc)
6393 && i.tm.operand_types[op].bitfield.word)
6394 {
6395 /* Prohibit these changes in the 64bit mode, since the
6396 lowering is more complicated. */
6397 if (flag_code == CODE_64BIT)
6398 {
6399 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6400 register_prefix, i.op[op].regs->reg_name,
6401 i.suffix);
6402 return 0;
6403 }
6404 #if REGISTER_WARNINGS
6405 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6406 register_prefix,
6407 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6408 register_prefix, i.op[op].regs->reg_name, i.suffix);
6409 #endif
6410 }
6411 return 1;
6412 }
6413
6414 static int
6415 update_imm (unsigned int j)
6416 {
6417 i386_operand_type overlap = i.types[j];
6418 if ((overlap.bitfield.imm8
6419 || overlap.bitfield.imm8s
6420 || overlap.bitfield.imm16
6421 || overlap.bitfield.imm32
6422 || overlap.bitfield.imm32s
6423 || overlap.bitfield.imm64)
6424 && !operand_type_equal (&overlap, &imm8)
6425 && !operand_type_equal (&overlap, &imm8s)
6426 && !operand_type_equal (&overlap, &imm16)
6427 && !operand_type_equal (&overlap, &imm32)
6428 && !operand_type_equal (&overlap, &imm32s)
6429 && !operand_type_equal (&overlap, &imm64))
6430 {
6431 if (i.suffix)
6432 {
6433 i386_operand_type temp;
6434
6435 operand_type_set (&temp, 0);
6436 if (i.suffix == BYTE_MNEM_SUFFIX)
6437 {
6438 temp.bitfield.imm8 = overlap.bitfield.imm8;
6439 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6440 }
6441 else if (i.suffix == WORD_MNEM_SUFFIX)
6442 temp.bitfield.imm16 = overlap.bitfield.imm16;
6443 else if (i.suffix == QWORD_MNEM_SUFFIX)
6444 {
6445 temp.bitfield.imm64 = overlap.bitfield.imm64;
6446 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6447 }
6448 else
6449 temp.bitfield.imm32 = overlap.bitfield.imm32;
6450 overlap = temp;
6451 }
6452 else if (operand_type_equal (&overlap, &imm16_32_32s)
6453 || operand_type_equal (&overlap, &imm16_32)
6454 || operand_type_equal (&overlap, &imm16_32s))
6455 {
6456 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6457 overlap = imm16;
6458 else
6459 overlap = imm32s;
6460 }
6461 if (!operand_type_equal (&overlap, &imm8)
6462 && !operand_type_equal (&overlap, &imm8s)
6463 && !operand_type_equal (&overlap, &imm16)
6464 && !operand_type_equal (&overlap, &imm32)
6465 && !operand_type_equal (&overlap, &imm32s)
6466 && !operand_type_equal (&overlap, &imm64))
6467 {
6468 as_bad (_("no instruction mnemonic suffix given; "
6469 "can't determine immediate size"));
6470 return 0;
6471 }
6472 }
6473 i.types[j] = overlap;
6474
6475 return 1;
6476 }
6477
6478 static int
6479 finalize_imm (void)
6480 {
6481 unsigned int j, n;
6482
6483 /* Update the first 2 immediate operands. */
6484 n = i.operands > 2 ? 2 : i.operands;
6485 if (n)
6486 {
6487 for (j = 0; j < n; j++)
6488 if (update_imm (j) == 0)
6489 return 0;
6490
6491 /* The 3rd operand can't be immediate operand. */
6492 gas_assert (operand_type_check (i.types[2], imm) == 0);
6493 }
6494
6495 return 1;
6496 }
6497
6498 static int
6499 process_operands (void)
6500 {
6501 /* Default segment register this instruction will use for memory
6502 accesses. 0 means unknown. This is only for optimizing out
6503 unnecessary segment overrides. */
6504 const seg_entry *default_seg = 0;
6505
6506 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6507 {
6508 unsigned int dupl = i.operands;
6509 unsigned int dest = dupl - 1;
6510 unsigned int j;
6511
6512 /* The destination must be an xmm register. */
6513 gas_assert (i.reg_operands
6514 && MAX_OPERANDS > dupl
6515 && operand_type_equal (&i.types[dest], &regxmm));
6516
6517 if (i.tm.operand_types[0].bitfield.acc
6518 && i.tm.operand_types[0].bitfield.xmmword)
6519 {
6520 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6521 {
6522 /* Keep xmm0 for instructions with VEX prefix and 3
6523 sources. */
6524 i.tm.operand_types[0].bitfield.acc = 0;
6525 i.tm.operand_types[0].bitfield.regsimd = 1;
6526 goto duplicate;
6527 }
6528 else
6529 {
6530 /* We remove the first xmm0 and keep the number of
6531 operands unchanged, which in fact duplicates the
6532 destination. */
6533 for (j = 1; j < i.operands; j++)
6534 {
6535 i.op[j - 1] = i.op[j];
6536 i.types[j - 1] = i.types[j];
6537 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6538 }
6539 }
6540 }
6541 else if (i.tm.opcode_modifier.implicit1stxmm0)
6542 {
6543 gas_assert ((MAX_OPERANDS - 1) > dupl
6544 && (i.tm.opcode_modifier.vexsources
6545 == VEX3SOURCES));
6546
6547 /* Add the implicit xmm0 for instructions with VEX prefix
6548 and 3 sources. */
6549 for (j = i.operands; j > 0; j--)
6550 {
6551 i.op[j] = i.op[j - 1];
6552 i.types[j] = i.types[j - 1];
6553 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6554 }
6555 i.op[0].regs
6556 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6557 i.types[0] = regxmm;
6558 i.tm.operand_types[0] = regxmm;
6559
6560 i.operands += 2;
6561 i.reg_operands += 2;
6562 i.tm.operands += 2;
6563
6564 dupl++;
6565 dest++;
6566 i.op[dupl] = i.op[dest];
6567 i.types[dupl] = i.types[dest];
6568 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6569 }
6570 else
6571 {
6572 duplicate:
6573 i.operands++;
6574 i.reg_operands++;
6575 i.tm.operands++;
6576
6577 i.op[dupl] = i.op[dest];
6578 i.types[dupl] = i.types[dest];
6579 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6580 }
6581
6582 if (i.tm.opcode_modifier.immext)
6583 process_immext ();
6584 }
6585 else if (i.tm.operand_types[0].bitfield.acc
6586 && i.tm.operand_types[0].bitfield.xmmword)
6587 {
6588 unsigned int j;
6589
6590 for (j = 1; j < i.operands; j++)
6591 {
6592 i.op[j - 1] = i.op[j];
6593 i.types[j - 1] = i.types[j];
6594
6595 /* We need to adjust fields in i.tm since they are used by
6596 build_modrm_byte. */
6597 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6598 }
6599
6600 i.operands--;
6601 i.reg_operands--;
6602 i.tm.operands--;
6603 }
6604 else if (i.tm.opcode_modifier.implicitquadgroup)
6605 {
6606 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6607
6608 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6609 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
6610 regnum = register_number (i.op[1].regs);
6611 first_reg_in_group = regnum & ~3;
6612 last_reg_in_group = first_reg_in_group + 3;
6613 if (regnum != first_reg_in_group)
6614 as_warn (_("source register `%s%s' implicitly denotes"
6615 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6616 register_prefix, i.op[1].regs->reg_name,
6617 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6618 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6619 i.tm.name);
6620 }
6621 else if (i.tm.opcode_modifier.regkludge)
6622 {
6623 /* The imul $imm, %reg instruction is converted into
6624 imul $imm, %reg, %reg, and the clr %reg instruction
6625 is converted into xor %reg, %reg. */
6626
6627 unsigned int first_reg_op;
6628
6629 if (operand_type_check (i.types[0], reg))
6630 first_reg_op = 0;
6631 else
6632 first_reg_op = 1;
6633 /* Pretend we saw the extra register operand. */
6634 gas_assert (i.reg_operands == 1
6635 && i.op[first_reg_op + 1].regs == 0);
6636 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6637 i.types[first_reg_op + 1] = i.types[first_reg_op];
6638 i.operands++;
6639 i.reg_operands++;
6640 }
6641
6642 if (i.tm.opcode_modifier.shortform)
6643 {
6644 if (i.types[0].bitfield.sreg2
6645 || i.types[0].bitfield.sreg3)
6646 {
6647 if (i.tm.base_opcode == POP_SEG_SHORT
6648 && i.op[0].regs->reg_num == 1)
6649 {
6650 as_bad (_("you can't `pop %scs'"), register_prefix);
6651 return 0;
6652 }
6653 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6654 if ((i.op[0].regs->reg_flags & RegRex) != 0)
6655 i.rex |= REX_B;
6656 }
6657 else
6658 {
6659 /* The register or float register operand is in operand
6660 0 or 1. */
6661 unsigned int op;
6662
6663 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
6664 || operand_type_check (i.types[0], reg))
6665 op = 0;
6666 else
6667 op = 1;
6668 /* Register goes in low 3 bits of opcode. */
6669 i.tm.base_opcode |= i.op[op].regs->reg_num;
6670 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6671 i.rex |= REX_B;
6672 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6673 {
6674 /* Warn about some common errors, but press on regardless.
6675 The first case can be generated by gcc (<= 2.8.1). */
6676 if (i.operands == 2)
6677 {
6678 /* Reversed arguments on faddp, fsubp, etc. */
6679 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6680 register_prefix, i.op[!intel_syntax].regs->reg_name,
6681 register_prefix, i.op[intel_syntax].regs->reg_name);
6682 }
6683 else
6684 {
6685 /* Extraneous `l' suffix on fp insn. */
6686 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6687 register_prefix, i.op[0].regs->reg_name);
6688 }
6689 }
6690 }
6691 }
6692 else if (i.tm.opcode_modifier.modrm)
6693 {
6694 /* The opcode is completed (modulo i.tm.extension_opcode which
6695 must be put into the modrm byte). Now, we make the modrm and
6696 index base bytes based on all the info we've collected. */
6697
6698 default_seg = build_modrm_byte ();
6699 }
6700 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6701 {
6702 default_seg = &ds;
6703 }
6704 else if (i.tm.opcode_modifier.isstring)
6705 {
6706 /* For the string instructions that allow a segment override
6707 on one of their operands, the default segment is ds. */
6708 default_seg = &ds;
6709 }
6710
6711 if (i.tm.base_opcode == 0x8d /* lea */
6712 && i.seg[0]
6713 && !quiet_warnings)
6714 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6715
6716 /* If a segment was explicitly specified, and the specified segment
6717 is not the default, use an opcode prefix to select it. If we
6718 never figured out what the default segment is, then default_seg
6719 will be zero at this point, and the specified segment prefix will
6720 always be used. */
6721 if ((i.seg[0]) && (i.seg[0] != default_seg))
6722 {
6723 if (!add_prefix (i.seg[0]->seg_prefix))
6724 return 0;
6725 }
6726 return 1;
6727 }
6728
6729 static const seg_entry *
6730 build_modrm_byte (void)
6731 {
6732 const seg_entry *default_seg = 0;
6733 unsigned int source, dest;
6734 int vex_3_sources;
6735
6736 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
6737 if (vex_3_sources)
6738 {
6739 unsigned int nds, reg_slot;
6740 expressionS *exp;
6741
6742 dest = i.operands - 1;
6743 nds = dest - 1;
6744
6745 /* There are 2 kinds of instructions:
6746 1. 5 operands: 4 register operands or 3 register operands
6747 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6748 VexW0 or VexW1. The destination must be either XMM, YMM or
6749 ZMM register.
6750 2. 4 operands: 4 register operands or 3 register operands
6751 plus 1 memory operand, with VexXDS. */
6752 gas_assert ((i.reg_operands == 4
6753 || (i.reg_operands == 3 && i.mem_operands == 1))
6754 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6755 && i.tm.opcode_modifier.vexw
6756 && i.tm.operand_types[dest].bitfield.regsimd);
6757
6758 /* If VexW1 is set, the first non-immediate operand is the source and
6759 the second non-immediate one is encoded in the immediate operand. */
6760 if (i.tm.opcode_modifier.vexw == VEXW1)
6761 {
6762 source = i.imm_operands;
6763 reg_slot = i.imm_operands + 1;
6764 }
6765 else
6766 {
6767 source = i.imm_operands + 1;
6768 reg_slot = i.imm_operands;
6769 }
6770
6771 if (i.imm_operands == 0)
6772 {
6773 /* When there is no immediate operand, generate an 8bit
6774 immediate operand to encode the first operand. */
6775 exp = &im_expressions[i.imm_operands++];
6776 i.op[i.operands].imms = exp;
6777 i.types[i.operands] = imm8;
6778 i.operands++;
6779
6780 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6781 exp->X_op = O_constant;
6782 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6783 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6784 }
6785 else
6786 {
6787 unsigned int imm_slot;
6788
6789 gas_assert (i.imm_operands == 1 && i.types[0].bitfield.vec_imm4);
6790
6791 if (i.tm.opcode_modifier.immext)
6792 {
6793 /* When ImmExt is set, the immediate byte is the last
6794 operand. */
6795 imm_slot = i.operands - 1;
6796 source--;
6797 reg_slot--;
6798 }
6799 else
6800 {
6801 imm_slot = 0;
6802
6803 /* Turn on Imm8 so that output_imm will generate it. */
6804 i.types[imm_slot].bitfield.imm8 = 1;
6805 }
6806
6807 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6808 i.op[imm_slot].imms->X_add_number
6809 |= register_number (i.op[reg_slot].regs) << 4;
6810 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6811 }
6812
6813 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
6814 i.vex.register_specifier = i.op[nds].regs;
6815 }
6816 else
6817 source = dest = 0;
6818
6819 /* i.reg_operands MUST be the number of real register operands;
6820 implicit registers do not count. If there are 3 register
6821 operands, it must be a instruction with VexNDS. For a
6822 instruction with VexNDD, the destination register is encoded
6823 in VEX prefix. If there are 4 register operands, it must be
6824 a instruction with VEX prefix and 3 sources. */
6825 if (i.mem_operands == 0
6826 && ((i.reg_operands == 2
6827 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6828 || (i.reg_operands == 3
6829 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6830 || (i.reg_operands == 4 && vex_3_sources)))
6831 {
6832 switch (i.operands)
6833 {
6834 case 2:
6835 source = 0;
6836 break;
6837 case 3:
6838 /* When there are 3 operands, one of them may be immediate,
6839 which may be the first or the last operand. Otherwise,
6840 the first operand must be shift count register (cl) or it
6841 is an instruction with VexNDS. */
6842 gas_assert (i.imm_operands == 1
6843 || (i.imm_operands == 0
6844 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6845 || i.types[0].bitfield.shiftcount)));
6846 if (operand_type_check (i.types[0], imm)
6847 || i.types[0].bitfield.shiftcount)
6848 source = 1;
6849 else
6850 source = 0;
6851 break;
6852 case 4:
6853 /* When there are 4 operands, the first two must be 8bit
6854 immediate operands. The source operand will be the 3rd
6855 one.
6856
6857 For instructions with VexNDS, if the first operand
6858 an imm8, the source operand is the 2nd one. If the last
6859 operand is imm8, the source operand is the first one. */
6860 gas_assert ((i.imm_operands == 2
6861 && i.types[0].bitfield.imm8
6862 && i.types[1].bitfield.imm8)
6863 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6864 && i.imm_operands == 1
6865 && (i.types[0].bitfield.imm8
6866 || i.types[i.operands - 1].bitfield.imm8
6867 || i.rounding)));
6868 if (i.imm_operands == 2)
6869 source = 2;
6870 else
6871 {
6872 if (i.types[0].bitfield.imm8)
6873 source = 1;
6874 else
6875 source = 0;
6876 }
6877 break;
6878 case 5:
6879 if (is_evex_encoding (&i.tm))
6880 {
6881 /* For EVEX instructions, when there are 5 operands, the
6882 first one must be immediate operand. If the second one
6883 is immediate operand, the source operand is the 3th
6884 one. If the last one is immediate operand, the source
6885 operand is the 2nd one. */
6886 gas_assert (i.imm_operands == 2
6887 && i.tm.opcode_modifier.sae
6888 && operand_type_check (i.types[0], imm));
6889 if (operand_type_check (i.types[1], imm))
6890 source = 2;
6891 else if (operand_type_check (i.types[4], imm))
6892 source = 1;
6893 else
6894 abort ();
6895 }
6896 break;
6897 default:
6898 abort ();
6899 }
6900
6901 if (!vex_3_sources)
6902 {
6903 dest = source + 1;
6904
6905 /* RC/SAE operand could be between DEST and SRC. That happens
6906 when one operand is GPR and the other one is XMM/YMM/ZMM
6907 register. */
6908 if (i.rounding && i.rounding->operand == (int) dest)
6909 dest++;
6910
6911 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6912 {
6913 /* For instructions with VexNDS, the register-only source
6914 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
6915 register. It is encoded in VEX prefix. We need to
6916 clear RegMem bit before calling operand_type_equal. */
6917
6918 i386_operand_type op;
6919 unsigned int vvvv;
6920
6921 /* Check register-only source operand when two source
6922 operands are swapped. */
6923 if (!i.tm.operand_types[source].bitfield.baseindex
6924 && i.tm.operand_types[dest].bitfield.baseindex)
6925 {
6926 vvvv = source;
6927 source = dest;
6928 }
6929 else
6930 vvvv = dest;
6931
6932 op = i.tm.operand_types[vvvv];
6933 op.bitfield.regmem = 0;
6934 if ((dest + 1) >= i.operands
6935 || ((!op.bitfield.reg
6936 || (!op.bitfield.dword && !op.bitfield.qword))
6937 && !op.bitfield.regsimd
6938 && !operand_type_equal (&op, &regmask)))
6939 abort ();
6940 i.vex.register_specifier = i.op[vvvv].regs;
6941 dest++;
6942 }
6943 }
6944
6945 i.rm.mode = 3;
6946 /* One of the register operands will be encoded in the i.tm.reg
6947 field, the other in the combined i.tm.mode and i.tm.regmem
6948 fields. If no form of this instruction supports a memory
6949 destination operand, then we assume the source operand may
6950 sometimes be a memory operand and so we need to store the
6951 destination in the i.rm.reg field. */
6952 if (!i.tm.operand_types[dest].bitfield.regmem
6953 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6954 {
6955 i.rm.reg = i.op[dest].regs->reg_num;
6956 i.rm.regmem = i.op[source].regs->reg_num;
6957 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6958 i.rex |= REX_R;
6959 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6960 i.vrex |= REX_R;
6961 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6962 i.rex |= REX_B;
6963 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6964 i.vrex |= REX_B;
6965 }
6966 else
6967 {
6968 i.rm.reg = i.op[source].regs->reg_num;
6969 i.rm.regmem = i.op[dest].regs->reg_num;
6970 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6971 i.rex |= REX_B;
6972 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6973 i.vrex |= REX_B;
6974 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6975 i.rex |= REX_R;
6976 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6977 i.vrex |= REX_R;
6978 }
6979 if (flag_code != CODE_64BIT && (i.rex & REX_R))
6980 {
6981 if (!i.types[i.tm.operand_types[0].bitfield.regmem].bitfield.control)
6982 abort ();
6983 i.rex &= ~REX_R;
6984 add_prefix (LOCK_PREFIX_OPCODE);
6985 }
6986 }
6987 else
6988 { /* If it's not 2 reg operands... */
6989 unsigned int mem;
6990
6991 if (i.mem_operands)
6992 {
6993 unsigned int fake_zero_displacement = 0;
6994 unsigned int op;
6995
6996 for (op = 0; op < i.operands; op++)
6997 if (operand_type_check (i.types[op], anymem))
6998 break;
6999 gas_assert (op < i.operands);
7000
7001 if (i.tm.opcode_modifier.vecsib)
7002 {
7003 if (i.index_reg->reg_num == RegEiz
7004 || i.index_reg->reg_num == RegRiz)
7005 abort ();
7006
7007 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7008 if (!i.base_reg)
7009 {
7010 i.sib.base = NO_BASE_REGISTER;
7011 i.sib.scale = i.log2_scale_factor;
7012 i.types[op].bitfield.disp8 = 0;
7013 i.types[op].bitfield.disp16 = 0;
7014 i.types[op].bitfield.disp64 = 0;
7015 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7016 {
7017 /* Must be 32 bit */
7018 i.types[op].bitfield.disp32 = 1;
7019 i.types[op].bitfield.disp32s = 0;
7020 }
7021 else
7022 {
7023 i.types[op].bitfield.disp32 = 0;
7024 i.types[op].bitfield.disp32s = 1;
7025 }
7026 }
7027 i.sib.index = i.index_reg->reg_num;
7028 if ((i.index_reg->reg_flags & RegRex) != 0)
7029 i.rex |= REX_X;
7030 if ((i.index_reg->reg_flags & RegVRex) != 0)
7031 i.vrex |= REX_X;
7032 }
7033
7034 default_seg = &ds;
7035
7036 if (i.base_reg == 0)
7037 {
7038 i.rm.mode = 0;
7039 if (!i.disp_operands)
7040 fake_zero_displacement = 1;
7041 if (i.index_reg == 0)
7042 {
7043 i386_operand_type newdisp;
7044
7045 gas_assert (!i.tm.opcode_modifier.vecsib);
7046 /* Operand is just <disp> */
7047 if (flag_code == CODE_64BIT)
7048 {
7049 /* 64bit mode overwrites the 32bit absolute
7050 addressing by RIP relative addressing and
7051 absolute addressing is encoded by one of the
7052 redundant SIB forms. */
7053 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7054 i.sib.base = NO_BASE_REGISTER;
7055 i.sib.index = NO_INDEX_REGISTER;
7056 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7057 }
7058 else if ((flag_code == CODE_16BIT)
7059 ^ (i.prefix[ADDR_PREFIX] != 0))
7060 {
7061 i.rm.regmem = NO_BASE_REGISTER_16;
7062 newdisp = disp16;
7063 }
7064 else
7065 {
7066 i.rm.regmem = NO_BASE_REGISTER;
7067 newdisp = disp32;
7068 }
7069 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7070 i.types[op] = operand_type_or (i.types[op], newdisp);
7071 }
7072 else if (!i.tm.opcode_modifier.vecsib)
7073 {
7074 /* !i.base_reg && i.index_reg */
7075 if (i.index_reg->reg_num == RegEiz
7076 || i.index_reg->reg_num == RegRiz)
7077 i.sib.index = NO_INDEX_REGISTER;
7078 else
7079 i.sib.index = i.index_reg->reg_num;
7080 i.sib.base = NO_BASE_REGISTER;
7081 i.sib.scale = i.log2_scale_factor;
7082 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7083 i.types[op].bitfield.disp8 = 0;
7084 i.types[op].bitfield.disp16 = 0;
7085 i.types[op].bitfield.disp64 = 0;
7086 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7087 {
7088 /* Must be 32 bit */
7089 i.types[op].bitfield.disp32 = 1;
7090 i.types[op].bitfield.disp32s = 0;
7091 }
7092 else
7093 {
7094 i.types[op].bitfield.disp32 = 0;
7095 i.types[op].bitfield.disp32s = 1;
7096 }
7097 if ((i.index_reg->reg_flags & RegRex) != 0)
7098 i.rex |= REX_X;
7099 }
7100 }
7101 /* RIP addressing for 64bit mode. */
7102 else if (i.base_reg->reg_num == RegRip ||
7103 i.base_reg->reg_num == RegEip)
7104 {
7105 gas_assert (!i.tm.opcode_modifier.vecsib);
7106 i.rm.regmem = NO_BASE_REGISTER;
7107 i.types[op].bitfield.disp8 = 0;
7108 i.types[op].bitfield.disp16 = 0;
7109 i.types[op].bitfield.disp32 = 0;
7110 i.types[op].bitfield.disp32s = 1;
7111 i.types[op].bitfield.disp64 = 0;
7112 i.flags[op] |= Operand_PCrel;
7113 if (! i.disp_operands)
7114 fake_zero_displacement = 1;
7115 }
7116 else if (i.base_reg->reg_type.bitfield.word)
7117 {
7118 gas_assert (!i.tm.opcode_modifier.vecsib);
7119 switch (i.base_reg->reg_num)
7120 {
7121 case 3: /* (%bx) */
7122 if (i.index_reg == 0)
7123 i.rm.regmem = 7;
7124 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7125 i.rm.regmem = i.index_reg->reg_num - 6;
7126 break;
7127 case 5: /* (%bp) */
7128 default_seg = &ss;
7129 if (i.index_reg == 0)
7130 {
7131 i.rm.regmem = 6;
7132 if (operand_type_check (i.types[op], disp) == 0)
7133 {
7134 /* fake (%bp) into 0(%bp) */
7135 i.types[op].bitfield.disp8 = 1;
7136 fake_zero_displacement = 1;
7137 }
7138 }
7139 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7140 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7141 break;
7142 default: /* (%si) -> 4 or (%di) -> 5 */
7143 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7144 }
7145 i.rm.mode = mode_from_disp_size (i.types[op]);
7146 }
7147 else /* i.base_reg and 32/64 bit mode */
7148 {
7149 if (flag_code == CODE_64BIT
7150 && operand_type_check (i.types[op], disp))
7151 {
7152 i.types[op].bitfield.disp16 = 0;
7153 i.types[op].bitfield.disp64 = 0;
7154 if (i.prefix[ADDR_PREFIX] == 0)
7155 {
7156 i.types[op].bitfield.disp32 = 0;
7157 i.types[op].bitfield.disp32s = 1;
7158 }
7159 else
7160 {
7161 i.types[op].bitfield.disp32 = 1;
7162 i.types[op].bitfield.disp32s = 0;
7163 }
7164 }
7165
7166 if (!i.tm.opcode_modifier.vecsib)
7167 i.rm.regmem = i.base_reg->reg_num;
7168 if ((i.base_reg->reg_flags & RegRex) != 0)
7169 i.rex |= REX_B;
7170 i.sib.base = i.base_reg->reg_num;
7171 /* x86-64 ignores REX prefix bit here to avoid decoder
7172 complications. */
7173 if (!(i.base_reg->reg_flags & RegRex)
7174 && (i.base_reg->reg_num == EBP_REG_NUM
7175 || i.base_reg->reg_num == ESP_REG_NUM))
7176 default_seg = &ss;
7177 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7178 {
7179 fake_zero_displacement = 1;
7180 i.types[op].bitfield.disp8 = 1;
7181 }
7182 i.sib.scale = i.log2_scale_factor;
7183 if (i.index_reg == 0)
7184 {
7185 gas_assert (!i.tm.opcode_modifier.vecsib);
7186 /* <disp>(%esp) becomes two byte modrm with no index
7187 register. We've already stored the code for esp
7188 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7189 Any base register besides %esp will not use the
7190 extra modrm byte. */
7191 i.sib.index = NO_INDEX_REGISTER;
7192 }
7193 else if (!i.tm.opcode_modifier.vecsib)
7194 {
7195 if (i.index_reg->reg_num == RegEiz
7196 || i.index_reg->reg_num == RegRiz)
7197 i.sib.index = NO_INDEX_REGISTER;
7198 else
7199 i.sib.index = i.index_reg->reg_num;
7200 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7201 if ((i.index_reg->reg_flags & RegRex) != 0)
7202 i.rex |= REX_X;
7203 }
7204
7205 if (i.disp_operands
7206 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7207 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7208 i.rm.mode = 0;
7209 else
7210 {
7211 if (!fake_zero_displacement
7212 && !i.disp_operands
7213 && i.disp_encoding)
7214 {
7215 fake_zero_displacement = 1;
7216 if (i.disp_encoding == disp_encoding_8bit)
7217 i.types[op].bitfield.disp8 = 1;
7218 else
7219 i.types[op].bitfield.disp32 = 1;
7220 }
7221 i.rm.mode = mode_from_disp_size (i.types[op]);
7222 }
7223 }
7224
7225 if (fake_zero_displacement)
7226 {
7227 /* Fakes a zero displacement assuming that i.types[op]
7228 holds the correct displacement size. */
7229 expressionS *exp;
7230
7231 gas_assert (i.op[op].disps == 0);
7232 exp = &disp_expressions[i.disp_operands++];
7233 i.op[op].disps = exp;
7234 exp->X_op = O_constant;
7235 exp->X_add_number = 0;
7236 exp->X_add_symbol = (symbolS *) 0;
7237 exp->X_op_symbol = (symbolS *) 0;
7238 }
7239
7240 mem = op;
7241 }
7242 else
7243 mem = ~0;
7244
7245 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7246 {
7247 if (operand_type_check (i.types[0], imm))
7248 i.vex.register_specifier = NULL;
7249 else
7250 {
7251 /* VEX.vvvv encodes one of the sources when the first
7252 operand is not an immediate. */
7253 if (i.tm.opcode_modifier.vexw == VEXW0)
7254 i.vex.register_specifier = i.op[0].regs;
7255 else
7256 i.vex.register_specifier = i.op[1].regs;
7257 }
7258
7259 /* Destination is a XMM register encoded in the ModRM.reg
7260 and VEX.R bit. */
7261 i.rm.reg = i.op[2].regs->reg_num;
7262 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7263 i.rex |= REX_R;
7264
7265 /* ModRM.rm and VEX.B encodes the other source. */
7266 if (!i.mem_operands)
7267 {
7268 i.rm.mode = 3;
7269
7270 if (i.tm.opcode_modifier.vexw == VEXW0)
7271 i.rm.regmem = i.op[1].regs->reg_num;
7272 else
7273 i.rm.regmem = i.op[0].regs->reg_num;
7274
7275 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7276 i.rex |= REX_B;
7277 }
7278 }
7279 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7280 {
7281 i.vex.register_specifier = i.op[2].regs;
7282 if (!i.mem_operands)
7283 {
7284 i.rm.mode = 3;
7285 i.rm.regmem = i.op[1].regs->reg_num;
7286 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7287 i.rex |= REX_B;
7288 }
7289 }
7290 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7291 (if any) based on i.tm.extension_opcode. Again, we must be
7292 careful to make sure that segment/control/debug/test/MMX
7293 registers are coded into the i.rm.reg field. */
7294 else if (i.reg_operands)
7295 {
7296 unsigned int op;
7297 unsigned int vex_reg = ~0;
7298
7299 for (op = 0; op < i.operands; op++)
7300 if (i.types[op].bitfield.reg
7301 || i.types[op].bitfield.regmmx
7302 || i.types[op].bitfield.regsimd
7303 || i.types[op].bitfield.regbnd
7304 || i.types[op].bitfield.regmask
7305 || i.types[op].bitfield.sreg2
7306 || i.types[op].bitfield.sreg3
7307 || i.types[op].bitfield.control
7308 || i.types[op].bitfield.debug
7309 || i.types[op].bitfield.test)
7310 break;
7311
7312 if (vex_3_sources)
7313 op = dest;
7314 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7315 {
7316 /* For instructions with VexNDS, the register-only
7317 source operand is encoded in VEX prefix. */
7318 gas_assert (mem != (unsigned int) ~0);
7319
7320 if (op > mem)
7321 {
7322 vex_reg = op++;
7323 gas_assert (op < i.operands);
7324 }
7325 else
7326 {
7327 /* Check register-only source operand when two source
7328 operands are swapped. */
7329 if (!i.tm.operand_types[op].bitfield.baseindex
7330 && i.tm.operand_types[op + 1].bitfield.baseindex)
7331 {
7332 vex_reg = op;
7333 op += 2;
7334 gas_assert (mem == (vex_reg + 1)
7335 && op < i.operands);
7336 }
7337 else
7338 {
7339 vex_reg = op + 1;
7340 gas_assert (vex_reg < i.operands);
7341 }
7342 }
7343 }
7344 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7345 {
7346 /* For instructions with VexNDD, the register destination
7347 is encoded in VEX prefix. */
7348 if (i.mem_operands == 0)
7349 {
7350 /* There is no memory operand. */
7351 gas_assert ((op + 2) == i.operands);
7352 vex_reg = op + 1;
7353 }
7354 else
7355 {
7356 /* There are only 2 non-immediate operands. */
7357 gas_assert (op < i.imm_operands + 2
7358 && i.operands == i.imm_operands + 2);
7359 vex_reg = i.imm_operands + 1;
7360 }
7361 }
7362 else
7363 gas_assert (op < i.operands);
7364
7365 if (vex_reg != (unsigned int) ~0)
7366 {
7367 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7368
7369 if ((!type->bitfield.reg
7370 || (!type->bitfield.dword && !type->bitfield.qword))
7371 && !type->bitfield.regsimd
7372 && !operand_type_equal (type, &regmask))
7373 abort ();
7374
7375 i.vex.register_specifier = i.op[vex_reg].regs;
7376 }
7377
7378 /* Don't set OP operand twice. */
7379 if (vex_reg != op)
7380 {
7381 /* If there is an extension opcode to put here, the
7382 register number must be put into the regmem field. */
7383 if (i.tm.extension_opcode != None)
7384 {
7385 i.rm.regmem = i.op[op].regs->reg_num;
7386 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7387 i.rex |= REX_B;
7388 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7389 i.vrex |= REX_B;
7390 }
7391 else
7392 {
7393 i.rm.reg = i.op[op].regs->reg_num;
7394 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7395 i.rex |= REX_R;
7396 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7397 i.vrex |= REX_R;
7398 }
7399 }
7400
7401 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7402 must set it to 3 to indicate this is a register operand
7403 in the regmem field. */
7404 if (!i.mem_operands)
7405 i.rm.mode = 3;
7406 }
7407
7408 /* Fill in i.rm.reg field with extension opcode (if any). */
7409 if (i.tm.extension_opcode != None)
7410 i.rm.reg = i.tm.extension_opcode;
7411 }
7412 return default_seg;
7413 }
7414
7415 static void
7416 output_branch (void)
7417 {
7418 char *p;
7419 int size;
7420 int code16;
7421 int prefix;
7422 relax_substateT subtype;
7423 symbolS *sym;
7424 offsetT off;
7425
7426 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7427 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7428
7429 prefix = 0;
7430 if (i.prefix[DATA_PREFIX] != 0)
7431 {
7432 prefix = 1;
7433 i.prefixes -= 1;
7434 code16 ^= CODE16;
7435 }
7436 /* Pentium4 branch hints. */
7437 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7438 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7439 {
7440 prefix++;
7441 i.prefixes--;
7442 }
7443 if (i.prefix[REX_PREFIX] != 0)
7444 {
7445 prefix++;
7446 i.prefixes--;
7447 }
7448
7449 /* BND prefixed jump. */
7450 if (i.prefix[BND_PREFIX] != 0)
7451 {
7452 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7453 i.prefixes -= 1;
7454 }
7455
7456 if (i.prefixes != 0 && !intel_syntax)
7457 as_warn (_("skipping prefixes on this instruction"));
7458
7459 /* It's always a symbol; End frag & setup for relax.
7460 Make sure there is enough room in this frag for the largest
7461 instruction we may generate in md_convert_frag. This is 2
7462 bytes for the opcode and room for the prefix and largest
7463 displacement. */
7464 frag_grow (prefix + 2 + 4);
7465 /* Prefix and 1 opcode byte go in fr_fix. */
7466 p = frag_more (prefix + 1);
7467 if (i.prefix[DATA_PREFIX] != 0)
7468 *p++ = DATA_PREFIX_OPCODE;
7469 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7470 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7471 *p++ = i.prefix[SEG_PREFIX];
7472 if (i.prefix[REX_PREFIX] != 0)
7473 *p++ = i.prefix[REX_PREFIX];
7474 *p = i.tm.base_opcode;
7475
7476 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7477 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7478 else if (cpu_arch_flags.bitfield.cpui386)
7479 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7480 else
7481 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7482 subtype |= code16;
7483
7484 sym = i.op[0].disps->X_add_symbol;
7485 off = i.op[0].disps->X_add_number;
7486
7487 if (i.op[0].disps->X_op != O_constant
7488 && i.op[0].disps->X_op != O_symbol)
7489 {
7490 /* Handle complex expressions. */
7491 sym = make_expr_symbol (i.op[0].disps);
7492 off = 0;
7493 }
7494
7495 /* 1 possible extra opcode + 4 byte displacement go in var part.
7496 Pass reloc in fr_var. */
7497 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7498 }
7499
7500 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7501 /* Return TRUE iff PLT32 relocation should be used for branching to
7502 symbol S. */
7503
7504 static bfd_boolean
7505 need_plt32_p (symbolS *s)
7506 {
7507 /* PLT32 relocation is ELF only. */
7508 if (!IS_ELF)
7509 return FALSE;
7510
7511 /* Since there is no need to prepare for PLT branch on x86-64, we
7512 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7513 be used as a marker for 32-bit PC-relative branches. */
7514 if (!object_64bit)
7515 return FALSE;
7516
7517 /* Weak or undefined symbol need PLT32 relocation. */
7518 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7519 return TRUE;
7520
7521 /* Non-global symbol doesn't need PLT32 relocation. */
7522 if (! S_IS_EXTERNAL (s))
7523 return FALSE;
7524
7525 /* Other global symbols need PLT32 relocation. NB: Symbol with
7526 non-default visibilities are treated as normal global symbol
7527 so that PLT32 relocation can be used as a marker for 32-bit
7528 PC-relative branches. It is useful for linker relaxation. */
7529 return TRUE;
7530 }
7531 #endif
7532
7533 static void
7534 output_jump (void)
7535 {
7536 char *p;
7537 int size;
7538 fixS *fixP;
7539 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7540
7541 if (i.tm.opcode_modifier.jumpbyte)
7542 {
7543 /* This is a loop or jecxz type instruction. */
7544 size = 1;
7545 if (i.prefix[ADDR_PREFIX] != 0)
7546 {
7547 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7548 i.prefixes -= 1;
7549 }
7550 /* Pentium4 branch hints. */
7551 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7552 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7553 {
7554 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7555 i.prefixes--;
7556 }
7557 }
7558 else
7559 {
7560 int code16;
7561
7562 code16 = 0;
7563 if (flag_code == CODE_16BIT)
7564 code16 = CODE16;
7565
7566 if (i.prefix[DATA_PREFIX] != 0)
7567 {
7568 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7569 i.prefixes -= 1;
7570 code16 ^= CODE16;
7571 }
7572
7573 size = 4;
7574 if (code16)
7575 size = 2;
7576 }
7577
7578 if (i.prefix[REX_PREFIX] != 0)
7579 {
7580 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7581 i.prefixes -= 1;
7582 }
7583
7584 /* BND prefixed jump. */
7585 if (i.prefix[BND_PREFIX] != 0)
7586 {
7587 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7588 i.prefixes -= 1;
7589 }
7590
7591 if (i.prefixes != 0 && !intel_syntax)
7592 as_warn (_("skipping prefixes on this instruction"));
7593
7594 p = frag_more (i.tm.opcode_length + size);
7595 switch (i.tm.opcode_length)
7596 {
7597 case 2:
7598 *p++ = i.tm.base_opcode >> 8;
7599 /* Fall through. */
7600 case 1:
7601 *p++ = i.tm.base_opcode;
7602 break;
7603 default:
7604 abort ();
7605 }
7606
7607 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7608 if (size == 4
7609 && jump_reloc == NO_RELOC
7610 && need_plt32_p (i.op[0].disps->X_add_symbol))
7611 jump_reloc = BFD_RELOC_X86_64_PLT32;
7612 #endif
7613
7614 jump_reloc = reloc (size, 1, 1, jump_reloc);
7615
7616 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7617 i.op[0].disps, 1, jump_reloc);
7618
7619 /* All jumps handled here are signed, but don't use a signed limit
7620 check for 32 and 16 bit jumps as we want to allow wrap around at
7621 4G and 64k respectively. */
7622 if (size == 1)
7623 fixP->fx_signed = 1;
7624 }
7625
7626 static void
7627 output_interseg_jump (void)
7628 {
7629 char *p;
7630 int size;
7631 int prefix;
7632 int code16;
7633
7634 code16 = 0;
7635 if (flag_code == CODE_16BIT)
7636 code16 = CODE16;
7637
7638 prefix = 0;
7639 if (i.prefix[DATA_PREFIX] != 0)
7640 {
7641 prefix = 1;
7642 i.prefixes -= 1;
7643 code16 ^= CODE16;
7644 }
7645 if (i.prefix[REX_PREFIX] != 0)
7646 {
7647 prefix++;
7648 i.prefixes -= 1;
7649 }
7650
7651 size = 4;
7652 if (code16)
7653 size = 2;
7654
7655 if (i.prefixes != 0 && !intel_syntax)
7656 as_warn (_("skipping prefixes on this instruction"));
7657
7658 /* 1 opcode; 2 segment; offset */
7659 p = frag_more (prefix + 1 + 2 + size);
7660
7661 if (i.prefix[DATA_PREFIX] != 0)
7662 *p++ = DATA_PREFIX_OPCODE;
7663
7664 if (i.prefix[REX_PREFIX] != 0)
7665 *p++ = i.prefix[REX_PREFIX];
7666
7667 *p++ = i.tm.base_opcode;
7668 if (i.op[1].imms->X_op == O_constant)
7669 {
7670 offsetT n = i.op[1].imms->X_add_number;
7671
7672 if (size == 2
7673 && !fits_in_unsigned_word (n)
7674 && !fits_in_signed_word (n))
7675 {
7676 as_bad (_("16-bit jump out of range"));
7677 return;
7678 }
7679 md_number_to_chars (p, n, size);
7680 }
7681 else
7682 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7683 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7684 if (i.op[0].imms->X_op != O_constant)
7685 as_bad (_("can't handle non absolute segment in `%s'"),
7686 i.tm.name);
7687 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7688 }
7689
7690 static void
7691 output_insn (void)
7692 {
7693 fragS *insn_start_frag;
7694 offsetT insn_start_off;
7695
7696 /* Tie dwarf2 debug info to the address at the start of the insn.
7697 We can't do this after the insn has been output as the current
7698 frag may have been closed off. eg. by frag_var. */
7699 dwarf2_emit_insn (0);
7700
7701 insn_start_frag = frag_now;
7702 insn_start_off = frag_now_fix ();
7703
7704 /* Output jumps. */
7705 if (i.tm.opcode_modifier.jump)
7706 output_branch ();
7707 else if (i.tm.opcode_modifier.jumpbyte
7708 || i.tm.opcode_modifier.jumpdword)
7709 output_jump ();
7710 else if (i.tm.opcode_modifier.jumpintersegment)
7711 output_interseg_jump ();
7712 else
7713 {
7714 /* Output normal instructions here. */
7715 char *p;
7716 unsigned char *q;
7717 unsigned int j;
7718 unsigned int prefix;
7719
7720 if (avoid_fence
7721 && i.tm.base_opcode == 0xfae
7722 && i.operands == 1
7723 && i.imm_operands == 1
7724 && (i.op[0].imms->X_add_number == 0xe8
7725 || i.op[0].imms->X_add_number == 0xf0
7726 || i.op[0].imms->X_add_number == 0xf8))
7727 {
7728 /* Encode lfence, mfence, and sfence as
7729 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7730 offsetT val = 0x240483f0ULL;
7731 p = frag_more (5);
7732 md_number_to_chars (p, val, 5);
7733 return;
7734 }
7735
7736 /* Some processors fail on LOCK prefix. This options makes
7737 assembler ignore LOCK prefix and serves as a workaround. */
7738 if (omit_lock_prefix)
7739 {
7740 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7741 return;
7742 i.prefix[LOCK_PREFIX] = 0;
7743 }
7744
7745 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7746 don't need the explicit prefix. */
7747 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
7748 {
7749 switch (i.tm.opcode_length)
7750 {
7751 case 3:
7752 if (i.tm.base_opcode & 0xff000000)
7753 {
7754 prefix = (i.tm.base_opcode >> 24) & 0xff;
7755 add_prefix (prefix);
7756 }
7757 break;
7758 case 2:
7759 if ((i.tm.base_opcode & 0xff0000) != 0)
7760 {
7761 prefix = (i.tm.base_opcode >> 16) & 0xff;
7762 if (!i.tm.cpu_flags.bitfield.cpupadlock
7763 || prefix != REPE_PREFIX_OPCODE
7764 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
7765 add_prefix (prefix);
7766 }
7767 break;
7768 case 1:
7769 break;
7770 case 0:
7771 /* Check for pseudo prefixes. */
7772 as_bad_where (insn_start_frag->fr_file,
7773 insn_start_frag->fr_line,
7774 _("pseudo prefix without instruction"));
7775 return;
7776 default:
7777 abort ();
7778 }
7779
7780 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7781 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7782 R_X86_64_GOTTPOFF relocation so that linker can safely
7783 perform IE->LE optimization. */
7784 if (x86_elf_abi == X86_64_X32_ABI
7785 && i.operands == 2
7786 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7787 && i.prefix[REX_PREFIX] == 0)
7788 add_prefix (REX_OPCODE);
7789 #endif
7790
7791 /* The prefix bytes. */
7792 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7793 if (*q)
7794 FRAG_APPEND_1_CHAR (*q);
7795 }
7796 else
7797 {
7798 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7799 if (*q)
7800 switch (j)
7801 {
7802 case REX_PREFIX:
7803 /* REX byte is encoded in VEX prefix. */
7804 break;
7805 case SEG_PREFIX:
7806 case ADDR_PREFIX:
7807 FRAG_APPEND_1_CHAR (*q);
7808 break;
7809 default:
7810 /* There should be no other prefixes for instructions
7811 with VEX prefix. */
7812 abort ();
7813 }
7814
7815 /* For EVEX instructions i.vrex should become 0 after
7816 build_evex_prefix. For VEX instructions upper 16 registers
7817 aren't available, so VREX should be 0. */
7818 if (i.vrex)
7819 abort ();
7820 /* Now the VEX prefix. */
7821 p = frag_more (i.vex.length);
7822 for (j = 0; j < i.vex.length; j++)
7823 p[j] = i.vex.bytes[j];
7824 }
7825
7826 /* Now the opcode; be careful about word order here! */
7827 if (i.tm.opcode_length == 1)
7828 {
7829 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7830 }
7831 else
7832 {
7833 switch (i.tm.opcode_length)
7834 {
7835 case 4:
7836 p = frag_more (4);
7837 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7838 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7839 break;
7840 case 3:
7841 p = frag_more (3);
7842 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7843 break;
7844 case 2:
7845 p = frag_more (2);
7846 break;
7847 default:
7848 abort ();
7849 break;
7850 }
7851
7852 /* Put out high byte first: can't use md_number_to_chars! */
7853 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7854 *p = i.tm.base_opcode & 0xff;
7855 }
7856
7857 /* Now the modrm byte and sib byte (if present). */
7858 if (i.tm.opcode_modifier.modrm)
7859 {
7860 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7861 | i.rm.reg << 3
7862 | i.rm.mode << 6));
7863 /* If i.rm.regmem == ESP (4)
7864 && i.rm.mode != (Register mode)
7865 && not 16 bit
7866 ==> need second modrm byte. */
7867 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7868 && i.rm.mode != 3
7869 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
7870 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7871 | i.sib.index << 3
7872 | i.sib.scale << 6));
7873 }
7874
7875 if (i.disp_operands)
7876 output_disp (insn_start_frag, insn_start_off);
7877
7878 if (i.imm_operands)
7879 output_imm (insn_start_frag, insn_start_off);
7880 }
7881
7882 #ifdef DEBUG386
7883 if (flag_debug)
7884 {
7885 pi ("" /*line*/, &i);
7886 }
7887 #endif /* DEBUG386 */
7888 }
7889
7890 /* Return the size of the displacement operand N. */
7891
7892 static int
7893 disp_size (unsigned int n)
7894 {
7895 int size = 4;
7896
7897 if (i.types[n].bitfield.disp64)
7898 size = 8;
7899 else if (i.types[n].bitfield.disp8)
7900 size = 1;
7901 else if (i.types[n].bitfield.disp16)
7902 size = 2;
7903 return size;
7904 }
7905
7906 /* Return the size of the immediate operand N. */
7907
7908 static int
7909 imm_size (unsigned int n)
7910 {
7911 int size = 4;
7912 if (i.types[n].bitfield.imm64)
7913 size = 8;
7914 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7915 size = 1;
7916 else if (i.types[n].bitfield.imm16)
7917 size = 2;
7918 return size;
7919 }
7920
7921 static void
7922 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7923 {
7924 char *p;
7925 unsigned int n;
7926
7927 for (n = 0; n < i.operands; n++)
7928 {
7929 if (operand_type_check (i.types[n], disp))
7930 {
7931 if (i.op[n].disps->X_op == O_constant)
7932 {
7933 int size = disp_size (n);
7934 offsetT val = i.op[n].disps->X_add_number;
7935
7936 val = offset_in_range (val >> i.memshift, size);
7937 p = frag_more (size);
7938 md_number_to_chars (p, val, size);
7939 }
7940 else
7941 {
7942 enum bfd_reloc_code_real reloc_type;
7943 int size = disp_size (n);
7944 int sign = i.types[n].bitfield.disp32s;
7945 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7946 fixS *fixP;
7947
7948 /* We can't have 8 bit displacement here. */
7949 gas_assert (!i.types[n].bitfield.disp8);
7950
7951 /* The PC relative address is computed relative
7952 to the instruction boundary, so in case immediate
7953 fields follows, we need to adjust the value. */
7954 if (pcrel && i.imm_operands)
7955 {
7956 unsigned int n1;
7957 int sz = 0;
7958
7959 for (n1 = 0; n1 < i.operands; n1++)
7960 if (operand_type_check (i.types[n1], imm))
7961 {
7962 /* Only one immediate is allowed for PC
7963 relative address. */
7964 gas_assert (sz == 0);
7965 sz = imm_size (n1);
7966 i.op[n].disps->X_add_number -= sz;
7967 }
7968 /* We should find the immediate. */
7969 gas_assert (sz != 0);
7970 }
7971
7972 p = frag_more (size);
7973 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
7974 if (GOT_symbol
7975 && GOT_symbol == i.op[n].disps->X_add_symbol
7976 && (((reloc_type == BFD_RELOC_32
7977 || reloc_type == BFD_RELOC_X86_64_32S
7978 || (reloc_type == BFD_RELOC_64
7979 && object_64bit))
7980 && (i.op[n].disps->X_op == O_symbol
7981 || (i.op[n].disps->X_op == O_add
7982 && ((symbol_get_value_expression
7983 (i.op[n].disps->X_op_symbol)->X_op)
7984 == O_subtract))))
7985 || reloc_type == BFD_RELOC_32_PCREL))
7986 {
7987 offsetT add;
7988
7989 if (insn_start_frag == frag_now)
7990 add = (p - frag_now->fr_literal) - insn_start_off;
7991 else
7992 {
7993 fragS *fr;
7994
7995 add = insn_start_frag->fr_fix - insn_start_off;
7996 for (fr = insn_start_frag->fr_next;
7997 fr && fr != frag_now; fr = fr->fr_next)
7998 add += fr->fr_fix;
7999 add += p - frag_now->fr_literal;
8000 }
8001
8002 if (!object_64bit)
8003 {
8004 reloc_type = BFD_RELOC_386_GOTPC;
8005 i.op[n].imms->X_add_number += add;
8006 }
8007 else if (reloc_type == BFD_RELOC_64)
8008 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8009 else
8010 /* Don't do the adjustment for x86-64, as there
8011 the pcrel addressing is relative to the _next_
8012 insn, and that is taken care of in other code. */
8013 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8014 }
8015 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8016 size, i.op[n].disps, pcrel,
8017 reloc_type);
8018 /* Check for "call/jmp *mem", "mov mem, %reg",
8019 "test %reg, mem" and "binop mem, %reg" where binop
8020 is one of adc, add, and, cmp, or, sbb, sub, xor
8021 instructions. Always generate R_386_GOT32X for
8022 "sym*GOT" operand in 32-bit mode. */
8023 if ((generate_relax_relocations
8024 || (!object_64bit
8025 && i.rm.mode == 0
8026 && i.rm.regmem == 5))
8027 && (i.rm.mode == 2
8028 || (i.rm.mode == 0 && i.rm.regmem == 5))
8029 && ((i.operands == 1
8030 && i.tm.base_opcode == 0xff
8031 && (i.rm.reg == 2 || i.rm.reg == 4))
8032 || (i.operands == 2
8033 && (i.tm.base_opcode == 0x8b
8034 || i.tm.base_opcode == 0x85
8035 || (i.tm.base_opcode & 0xc7) == 0x03))))
8036 {
8037 if (object_64bit)
8038 {
8039 fixP->fx_tcbit = i.rex != 0;
8040 if (i.base_reg
8041 && (i.base_reg->reg_num == RegRip
8042 || i.base_reg->reg_num == RegEip))
8043 fixP->fx_tcbit2 = 1;
8044 }
8045 else
8046 fixP->fx_tcbit2 = 1;
8047 }
8048 }
8049 }
8050 }
8051 }
8052
8053 static void
8054 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
8055 {
8056 char *p;
8057 unsigned int n;
8058
8059 for (n = 0; n < i.operands; n++)
8060 {
8061 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8062 if (i.rounding && (int) n == i.rounding->operand)
8063 continue;
8064
8065 if (operand_type_check (i.types[n], imm))
8066 {
8067 if (i.op[n].imms->X_op == O_constant)
8068 {
8069 int size = imm_size (n);
8070 offsetT val;
8071
8072 val = offset_in_range (i.op[n].imms->X_add_number,
8073 size);
8074 p = frag_more (size);
8075 md_number_to_chars (p, val, size);
8076 }
8077 else
8078 {
8079 /* Not absolute_section.
8080 Need a 32-bit fixup (don't support 8bit
8081 non-absolute imms). Try to support other
8082 sizes ... */
8083 enum bfd_reloc_code_real reloc_type;
8084 int size = imm_size (n);
8085 int sign;
8086
8087 if (i.types[n].bitfield.imm32s
8088 && (i.suffix == QWORD_MNEM_SUFFIX
8089 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
8090 sign = 1;
8091 else
8092 sign = 0;
8093
8094 p = frag_more (size);
8095 reloc_type = reloc (size, 0, sign, i.reloc[n]);
8096
8097 /* This is tough to explain. We end up with this one if we
8098 * have operands that look like
8099 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8100 * obtain the absolute address of the GOT, and it is strongly
8101 * preferable from a performance point of view to avoid using
8102 * a runtime relocation for this. The actual sequence of
8103 * instructions often look something like:
8104 *
8105 * call .L66
8106 * .L66:
8107 * popl %ebx
8108 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8109 *
8110 * The call and pop essentially return the absolute address
8111 * of the label .L66 and store it in %ebx. The linker itself
8112 * will ultimately change the first operand of the addl so
8113 * that %ebx points to the GOT, but to keep things simple, the
8114 * .o file must have this operand set so that it generates not
8115 * the absolute address of .L66, but the absolute address of
8116 * itself. This allows the linker itself simply treat a GOTPC
8117 * relocation as asking for a pcrel offset to the GOT to be
8118 * added in, and the addend of the relocation is stored in the
8119 * operand field for the instruction itself.
8120 *
8121 * Our job here is to fix the operand so that it would add
8122 * the correct offset so that %ebx would point to itself. The
8123 * thing that is tricky is that .-.L66 will point to the
8124 * beginning of the instruction, so we need to further modify
8125 * the operand so that it will point to itself. There are
8126 * other cases where you have something like:
8127 *
8128 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8129 *
8130 * and here no correction would be required. Internally in
8131 * the assembler we treat operands of this form as not being
8132 * pcrel since the '.' is explicitly mentioned, and I wonder
8133 * whether it would simplify matters to do it this way. Who
8134 * knows. In earlier versions of the PIC patches, the
8135 * pcrel_adjust field was used to store the correction, but
8136 * since the expression is not pcrel, I felt it would be
8137 * confusing to do it this way. */
8138
8139 if ((reloc_type == BFD_RELOC_32
8140 || reloc_type == BFD_RELOC_X86_64_32S
8141 || reloc_type == BFD_RELOC_64)
8142 && GOT_symbol
8143 && GOT_symbol == i.op[n].imms->X_add_symbol
8144 && (i.op[n].imms->X_op == O_symbol
8145 || (i.op[n].imms->X_op == O_add
8146 && ((symbol_get_value_expression
8147 (i.op[n].imms->X_op_symbol)->X_op)
8148 == O_subtract))))
8149 {
8150 offsetT add;
8151
8152 if (insn_start_frag == frag_now)
8153 add = (p - frag_now->fr_literal) - insn_start_off;
8154 else
8155 {
8156 fragS *fr;
8157
8158 add = insn_start_frag->fr_fix - insn_start_off;
8159 for (fr = insn_start_frag->fr_next;
8160 fr && fr != frag_now; fr = fr->fr_next)
8161 add += fr->fr_fix;
8162 add += p - frag_now->fr_literal;
8163 }
8164
8165 if (!object_64bit)
8166 reloc_type = BFD_RELOC_386_GOTPC;
8167 else if (size == 4)
8168 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8169 else if (size == 8)
8170 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8171 i.op[n].imms->X_add_number += add;
8172 }
8173 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8174 i.op[n].imms, 0, reloc_type);
8175 }
8176 }
8177 }
8178 }
8179 \f
8180 /* x86_cons_fix_new is called via the expression parsing code when a
8181 reloc is needed. We use this hook to get the correct .got reloc. */
8182 static int cons_sign = -1;
8183
8184 void
8185 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
8186 expressionS *exp, bfd_reloc_code_real_type r)
8187 {
8188 r = reloc (len, 0, cons_sign, r);
8189
8190 #ifdef TE_PE
8191 if (exp->X_op == O_secrel)
8192 {
8193 exp->X_op = O_symbol;
8194 r = BFD_RELOC_32_SECREL;
8195 }
8196 #endif
8197
8198 fix_new_exp (frag, off, len, exp, 0, r);
8199 }
8200
8201 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8202 purpose of the `.dc.a' internal pseudo-op. */
8203
8204 int
8205 x86_address_bytes (void)
8206 {
8207 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8208 return 4;
8209 return stdoutput->arch_info->bits_per_address / 8;
8210 }
8211
8212 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8213 || defined (LEX_AT)
8214 # define lex_got(reloc, adjust, types) NULL
8215 #else
8216 /* Parse operands of the form
8217 <symbol>@GOTOFF+<nnn>
8218 and similar .plt or .got references.
8219
8220 If we find one, set up the correct relocation in RELOC and copy the
8221 input string, minus the `@GOTOFF' into a malloc'd buffer for
8222 parsing by the calling routine. Return this buffer, and if ADJUST
8223 is non-null set it to the length of the string we removed from the
8224 input line. Otherwise return NULL. */
8225 static char *
8226 lex_got (enum bfd_reloc_code_real *rel,
8227 int *adjust,
8228 i386_operand_type *types)
8229 {
8230 /* Some of the relocations depend on the size of what field is to
8231 be relocated. But in our callers i386_immediate and i386_displacement
8232 we don't yet know the operand size (this will be set by insn
8233 matching). Hence we record the word32 relocation here,
8234 and adjust the reloc according to the real size in reloc(). */
8235 static const struct {
8236 const char *str;
8237 int len;
8238 const enum bfd_reloc_code_real rel[2];
8239 const i386_operand_type types64;
8240 } gotrel[] = {
8241 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8242 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8243 BFD_RELOC_SIZE32 },
8244 OPERAND_TYPE_IMM32_64 },
8245 #endif
8246 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8247 BFD_RELOC_X86_64_PLTOFF64 },
8248 OPERAND_TYPE_IMM64 },
8249 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8250 BFD_RELOC_X86_64_PLT32 },
8251 OPERAND_TYPE_IMM32_32S_DISP32 },
8252 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8253 BFD_RELOC_X86_64_GOTPLT64 },
8254 OPERAND_TYPE_IMM64_DISP64 },
8255 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8256 BFD_RELOC_X86_64_GOTOFF64 },
8257 OPERAND_TYPE_IMM64_DISP64 },
8258 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8259 BFD_RELOC_X86_64_GOTPCREL },
8260 OPERAND_TYPE_IMM32_32S_DISP32 },
8261 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8262 BFD_RELOC_X86_64_TLSGD },
8263 OPERAND_TYPE_IMM32_32S_DISP32 },
8264 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8265 _dummy_first_bfd_reloc_code_real },
8266 OPERAND_TYPE_NONE },
8267 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8268 BFD_RELOC_X86_64_TLSLD },
8269 OPERAND_TYPE_IMM32_32S_DISP32 },
8270 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8271 BFD_RELOC_X86_64_GOTTPOFF },
8272 OPERAND_TYPE_IMM32_32S_DISP32 },
8273 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8274 BFD_RELOC_X86_64_TPOFF32 },
8275 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8276 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8277 _dummy_first_bfd_reloc_code_real },
8278 OPERAND_TYPE_NONE },
8279 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8280 BFD_RELOC_X86_64_DTPOFF32 },
8281 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8282 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8283 _dummy_first_bfd_reloc_code_real },
8284 OPERAND_TYPE_NONE },
8285 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8286 _dummy_first_bfd_reloc_code_real },
8287 OPERAND_TYPE_NONE },
8288 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8289 BFD_RELOC_X86_64_GOT32 },
8290 OPERAND_TYPE_IMM32_32S_64_DISP32 },
8291 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8292 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
8293 OPERAND_TYPE_IMM32_32S_DISP32 },
8294 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8295 BFD_RELOC_X86_64_TLSDESC_CALL },
8296 OPERAND_TYPE_IMM32_32S_DISP32 },
8297 };
8298 char *cp;
8299 unsigned int j;
8300
8301 #if defined (OBJ_MAYBE_ELF)
8302 if (!IS_ELF)
8303 return NULL;
8304 #endif
8305
8306 for (cp = input_line_pointer; *cp != '@'; cp++)
8307 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8308 return NULL;
8309
8310 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8311 {
8312 int len = gotrel[j].len;
8313 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8314 {
8315 if (gotrel[j].rel[object_64bit] != 0)
8316 {
8317 int first, second;
8318 char *tmpbuf, *past_reloc;
8319
8320 *rel = gotrel[j].rel[object_64bit];
8321
8322 if (types)
8323 {
8324 if (flag_code != CODE_64BIT)
8325 {
8326 types->bitfield.imm32 = 1;
8327 types->bitfield.disp32 = 1;
8328 }
8329 else
8330 *types = gotrel[j].types64;
8331 }
8332
8333 if (j != 0 && GOT_symbol == NULL)
8334 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8335
8336 /* The length of the first part of our input line. */
8337 first = cp - input_line_pointer;
8338
8339 /* The second part goes from after the reloc token until
8340 (and including) an end_of_line char or comma. */
8341 past_reloc = cp + 1 + len;
8342 cp = past_reloc;
8343 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8344 ++cp;
8345 second = cp + 1 - past_reloc;
8346
8347 /* Allocate and copy string. The trailing NUL shouldn't
8348 be necessary, but be safe. */
8349 tmpbuf = XNEWVEC (char, first + second + 2);
8350 memcpy (tmpbuf, input_line_pointer, first);
8351 if (second != 0 && *past_reloc != ' ')
8352 /* Replace the relocation token with ' ', so that
8353 errors like foo@GOTOFF1 will be detected. */
8354 tmpbuf[first++] = ' ';
8355 else
8356 /* Increment length by 1 if the relocation token is
8357 removed. */
8358 len++;
8359 if (adjust)
8360 *adjust = len;
8361 memcpy (tmpbuf + first, past_reloc, second);
8362 tmpbuf[first + second] = '\0';
8363 return tmpbuf;
8364 }
8365
8366 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8367 gotrel[j].str, 1 << (5 + object_64bit));
8368 return NULL;
8369 }
8370 }
8371
8372 /* Might be a symbol version string. Don't as_bad here. */
8373 return NULL;
8374 }
8375 #endif
8376
8377 #ifdef TE_PE
8378 #ifdef lex_got
8379 #undef lex_got
8380 #endif
8381 /* Parse operands of the form
8382 <symbol>@SECREL32+<nnn>
8383
8384 If we find one, set up the correct relocation in RELOC and copy the
8385 input string, minus the `@SECREL32' into a malloc'd buffer for
8386 parsing by the calling routine. Return this buffer, and if ADJUST
8387 is non-null set it to the length of the string we removed from the
8388 input line. Otherwise return NULL.
8389
8390 This function is copied from the ELF version above adjusted for PE targets. */
8391
8392 static char *
8393 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8394 int *adjust ATTRIBUTE_UNUSED,
8395 i386_operand_type *types)
8396 {
8397 static const struct
8398 {
8399 const char *str;
8400 int len;
8401 const enum bfd_reloc_code_real rel[2];
8402 const i386_operand_type types64;
8403 }
8404 gotrel[] =
8405 {
8406 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8407 BFD_RELOC_32_SECREL },
8408 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8409 };
8410
8411 char *cp;
8412 unsigned j;
8413
8414 for (cp = input_line_pointer; *cp != '@'; cp++)
8415 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8416 return NULL;
8417
8418 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8419 {
8420 int len = gotrel[j].len;
8421
8422 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8423 {
8424 if (gotrel[j].rel[object_64bit] != 0)
8425 {
8426 int first, second;
8427 char *tmpbuf, *past_reloc;
8428
8429 *rel = gotrel[j].rel[object_64bit];
8430 if (adjust)
8431 *adjust = len;
8432
8433 if (types)
8434 {
8435 if (flag_code != CODE_64BIT)
8436 {
8437 types->bitfield.imm32 = 1;
8438 types->bitfield.disp32 = 1;
8439 }
8440 else
8441 *types = gotrel[j].types64;
8442 }
8443
8444 /* The length of the first part of our input line. */
8445 first = cp - input_line_pointer;
8446
8447 /* The second part goes from after the reloc token until
8448 (and including) an end_of_line char or comma. */
8449 past_reloc = cp + 1 + len;
8450 cp = past_reloc;
8451 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8452 ++cp;
8453 second = cp + 1 - past_reloc;
8454
8455 /* Allocate and copy string. The trailing NUL shouldn't
8456 be necessary, but be safe. */
8457 tmpbuf = XNEWVEC (char, first + second + 2);
8458 memcpy (tmpbuf, input_line_pointer, first);
8459 if (second != 0 && *past_reloc != ' ')
8460 /* Replace the relocation token with ' ', so that
8461 errors like foo@SECLREL321 will be detected. */
8462 tmpbuf[first++] = ' ';
8463 memcpy (tmpbuf + first, past_reloc, second);
8464 tmpbuf[first + second] = '\0';
8465 return tmpbuf;
8466 }
8467
8468 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8469 gotrel[j].str, 1 << (5 + object_64bit));
8470 return NULL;
8471 }
8472 }
8473
8474 /* Might be a symbol version string. Don't as_bad here. */
8475 return NULL;
8476 }
8477
8478 #endif /* TE_PE */
8479
8480 bfd_reloc_code_real_type
8481 x86_cons (expressionS *exp, int size)
8482 {
8483 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8484
8485 intel_syntax = -intel_syntax;
8486
8487 exp->X_md = 0;
8488 if (size == 4 || (object_64bit && size == 8))
8489 {
8490 /* Handle @GOTOFF and the like in an expression. */
8491 char *save;
8492 char *gotfree_input_line;
8493 int adjust = 0;
8494
8495 save = input_line_pointer;
8496 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
8497 if (gotfree_input_line)
8498 input_line_pointer = gotfree_input_line;
8499
8500 expression (exp);
8501
8502 if (gotfree_input_line)
8503 {
8504 /* expression () has merrily parsed up to the end of line,
8505 or a comma - in the wrong buffer. Transfer how far
8506 input_line_pointer has moved to the right buffer. */
8507 input_line_pointer = (save
8508 + (input_line_pointer - gotfree_input_line)
8509 + adjust);
8510 free (gotfree_input_line);
8511 if (exp->X_op == O_constant
8512 || exp->X_op == O_absent
8513 || exp->X_op == O_illegal
8514 || exp->X_op == O_register
8515 || exp->X_op == O_big)
8516 {
8517 char c = *input_line_pointer;
8518 *input_line_pointer = 0;
8519 as_bad (_("missing or invalid expression `%s'"), save);
8520 *input_line_pointer = c;
8521 }
8522 }
8523 }
8524 else
8525 expression (exp);
8526
8527 intel_syntax = -intel_syntax;
8528
8529 if (intel_syntax)
8530 i386_intel_simplify (exp);
8531
8532 return got_reloc;
8533 }
8534
8535 static void
8536 signed_cons (int size)
8537 {
8538 if (flag_code == CODE_64BIT)
8539 cons_sign = 1;
8540 cons (size);
8541 cons_sign = -1;
8542 }
8543
8544 #ifdef TE_PE
8545 static void
8546 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
8547 {
8548 expressionS exp;
8549
8550 do
8551 {
8552 expression (&exp);
8553 if (exp.X_op == O_symbol)
8554 exp.X_op = O_secrel;
8555
8556 emit_expr (&exp, 4);
8557 }
8558 while (*input_line_pointer++ == ',');
8559
8560 input_line_pointer--;
8561 demand_empty_rest_of_line ();
8562 }
8563 #endif
8564
8565 /* Handle Vector operations. */
8566
8567 static char *
8568 check_VecOperations (char *op_string, char *op_end)
8569 {
8570 const reg_entry *mask;
8571 const char *saved;
8572 char *end_op;
8573
8574 while (*op_string
8575 && (op_end == NULL || op_string < op_end))
8576 {
8577 saved = op_string;
8578 if (*op_string == '{')
8579 {
8580 op_string++;
8581
8582 /* Check broadcasts. */
8583 if (strncmp (op_string, "1to", 3) == 0)
8584 {
8585 int bcst_type;
8586
8587 if (i.broadcast)
8588 goto duplicated_vec_op;
8589
8590 op_string += 3;
8591 if (*op_string == '8')
8592 bcst_type = 8;
8593 else if (*op_string == '4')
8594 bcst_type = 4;
8595 else if (*op_string == '2')
8596 bcst_type = 2;
8597 else if (*op_string == '1'
8598 && *(op_string+1) == '6')
8599 {
8600 bcst_type = 16;
8601 op_string++;
8602 }
8603 else
8604 {
8605 as_bad (_("Unsupported broadcast: `%s'"), saved);
8606 return NULL;
8607 }
8608 op_string++;
8609
8610 broadcast_op.type = bcst_type;
8611 broadcast_op.operand = this_operand;
8612 i.broadcast = &broadcast_op;
8613 }
8614 /* Check masking operation. */
8615 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8616 {
8617 /* k0 can't be used for write mask. */
8618 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
8619 {
8620 as_bad (_("`%s%s' can't be used for write mask"),
8621 register_prefix, mask->reg_name);
8622 return NULL;
8623 }
8624
8625 if (!i.mask)
8626 {
8627 mask_op.mask = mask;
8628 mask_op.zeroing = 0;
8629 mask_op.operand = this_operand;
8630 i.mask = &mask_op;
8631 }
8632 else
8633 {
8634 if (i.mask->mask)
8635 goto duplicated_vec_op;
8636
8637 i.mask->mask = mask;
8638
8639 /* Only "{z}" is allowed here. No need to check
8640 zeroing mask explicitly. */
8641 if (i.mask->operand != this_operand)
8642 {
8643 as_bad (_("invalid write mask `%s'"), saved);
8644 return NULL;
8645 }
8646 }
8647
8648 op_string = end_op;
8649 }
8650 /* Check zeroing-flag for masking operation. */
8651 else if (*op_string == 'z')
8652 {
8653 if (!i.mask)
8654 {
8655 mask_op.mask = NULL;
8656 mask_op.zeroing = 1;
8657 mask_op.operand = this_operand;
8658 i.mask = &mask_op;
8659 }
8660 else
8661 {
8662 if (i.mask->zeroing)
8663 {
8664 duplicated_vec_op:
8665 as_bad (_("duplicated `%s'"), saved);
8666 return NULL;
8667 }
8668
8669 i.mask->zeroing = 1;
8670
8671 /* Only "{%k}" is allowed here. No need to check mask
8672 register explicitly. */
8673 if (i.mask->operand != this_operand)
8674 {
8675 as_bad (_("invalid zeroing-masking `%s'"),
8676 saved);
8677 return NULL;
8678 }
8679 }
8680
8681 op_string++;
8682 }
8683 else
8684 goto unknown_vec_op;
8685
8686 if (*op_string != '}')
8687 {
8688 as_bad (_("missing `}' in `%s'"), saved);
8689 return NULL;
8690 }
8691 op_string++;
8692
8693 /* Strip whitespace since the addition of pseudo prefixes
8694 changed how the scrubber treats '{'. */
8695 if (is_space_char (*op_string))
8696 ++op_string;
8697
8698 continue;
8699 }
8700 unknown_vec_op:
8701 /* We don't know this one. */
8702 as_bad (_("unknown vector operation: `%s'"), saved);
8703 return NULL;
8704 }
8705
8706 if (i.mask && i.mask->zeroing && !i.mask->mask)
8707 {
8708 as_bad (_("zeroing-masking only allowed with write mask"));
8709 return NULL;
8710 }
8711
8712 return op_string;
8713 }
8714
8715 static int
8716 i386_immediate (char *imm_start)
8717 {
8718 char *save_input_line_pointer;
8719 char *gotfree_input_line;
8720 segT exp_seg = 0;
8721 expressionS *exp;
8722 i386_operand_type types;
8723
8724 operand_type_set (&types, ~0);
8725
8726 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8727 {
8728 as_bad (_("at most %d immediate operands are allowed"),
8729 MAX_IMMEDIATE_OPERANDS);
8730 return 0;
8731 }
8732
8733 exp = &im_expressions[i.imm_operands++];
8734 i.op[this_operand].imms = exp;
8735
8736 if (is_space_char (*imm_start))
8737 ++imm_start;
8738
8739 save_input_line_pointer = input_line_pointer;
8740 input_line_pointer = imm_start;
8741
8742 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8743 if (gotfree_input_line)
8744 input_line_pointer = gotfree_input_line;
8745
8746 exp_seg = expression (exp);
8747
8748 SKIP_WHITESPACE ();
8749
8750 /* Handle vector operations. */
8751 if (*input_line_pointer == '{')
8752 {
8753 input_line_pointer = check_VecOperations (input_line_pointer,
8754 NULL);
8755 if (input_line_pointer == NULL)
8756 return 0;
8757 }
8758
8759 if (*input_line_pointer)
8760 as_bad (_("junk `%s' after expression"), input_line_pointer);
8761
8762 input_line_pointer = save_input_line_pointer;
8763 if (gotfree_input_line)
8764 {
8765 free (gotfree_input_line);
8766
8767 if (exp->X_op == O_constant || exp->X_op == O_register)
8768 exp->X_op = O_illegal;
8769 }
8770
8771 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8772 }
8773
8774 static int
8775 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8776 i386_operand_type types, const char *imm_start)
8777 {
8778 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
8779 {
8780 if (imm_start)
8781 as_bad (_("missing or invalid immediate expression `%s'"),
8782 imm_start);
8783 return 0;
8784 }
8785 else if (exp->X_op == O_constant)
8786 {
8787 /* Size it properly later. */
8788 i.types[this_operand].bitfield.imm64 = 1;
8789 /* If not 64bit, sign extend val. */
8790 if (flag_code != CODE_64BIT
8791 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8792 exp->X_add_number
8793 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
8794 }
8795 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8796 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
8797 && exp_seg != absolute_section
8798 && exp_seg != text_section
8799 && exp_seg != data_section
8800 && exp_seg != bss_section
8801 && exp_seg != undefined_section
8802 && !bfd_is_com_section (exp_seg))
8803 {
8804 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8805 return 0;
8806 }
8807 #endif
8808 else if (!intel_syntax && exp_seg == reg_section)
8809 {
8810 if (imm_start)
8811 as_bad (_("illegal immediate register operand %s"), imm_start);
8812 return 0;
8813 }
8814 else
8815 {
8816 /* This is an address. The size of the address will be
8817 determined later, depending on destination register,
8818 suffix, or the default for the section. */
8819 i.types[this_operand].bitfield.imm8 = 1;
8820 i.types[this_operand].bitfield.imm16 = 1;
8821 i.types[this_operand].bitfield.imm32 = 1;
8822 i.types[this_operand].bitfield.imm32s = 1;
8823 i.types[this_operand].bitfield.imm64 = 1;
8824 i.types[this_operand] = operand_type_and (i.types[this_operand],
8825 types);
8826 }
8827
8828 return 1;
8829 }
8830
8831 static char *
8832 i386_scale (char *scale)
8833 {
8834 offsetT val;
8835 char *save = input_line_pointer;
8836
8837 input_line_pointer = scale;
8838 val = get_absolute_expression ();
8839
8840 switch (val)
8841 {
8842 case 1:
8843 i.log2_scale_factor = 0;
8844 break;
8845 case 2:
8846 i.log2_scale_factor = 1;
8847 break;
8848 case 4:
8849 i.log2_scale_factor = 2;
8850 break;
8851 case 8:
8852 i.log2_scale_factor = 3;
8853 break;
8854 default:
8855 {
8856 char sep = *input_line_pointer;
8857
8858 *input_line_pointer = '\0';
8859 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8860 scale);
8861 *input_line_pointer = sep;
8862 input_line_pointer = save;
8863 return NULL;
8864 }
8865 }
8866 if (i.log2_scale_factor != 0 && i.index_reg == 0)
8867 {
8868 as_warn (_("scale factor of %d without an index register"),
8869 1 << i.log2_scale_factor);
8870 i.log2_scale_factor = 0;
8871 }
8872 scale = input_line_pointer;
8873 input_line_pointer = save;
8874 return scale;
8875 }
8876
8877 static int
8878 i386_displacement (char *disp_start, char *disp_end)
8879 {
8880 expressionS *exp;
8881 segT exp_seg = 0;
8882 char *save_input_line_pointer;
8883 char *gotfree_input_line;
8884 int override;
8885 i386_operand_type bigdisp, types = anydisp;
8886 int ret;
8887
8888 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8889 {
8890 as_bad (_("at most %d displacement operands are allowed"),
8891 MAX_MEMORY_OPERANDS);
8892 return 0;
8893 }
8894
8895 operand_type_set (&bigdisp, 0);
8896 if ((i.types[this_operand].bitfield.jumpabsolute)
8897 || (!current_templates->start->opcode_modifier.jump
8898 && !current_templates->start->opcode_modifier.jumpdword))
8899 {
8900 bigdisp.bitfield.disp32 = 1;
8901 override = (i.prefix[ADDR_PREFIX] != 0);
8902 if (flag_code == CODE_64BIT)
8903 {
8904 if (!override)
8905 {
8906 bigdisp.bitfield.disp32s = 1;
8907 bigdisp.bitfield.disp64 = 1;
8908 }
8909 }
8910 else if ((flag_code == CODE_16BIT) ^ override)
8911 {
8912 bigdisp.bitfield.disp32 = 0;
8913 bigdisp.bitfield.disp16 = 1;
8914 }
8915 }
8916 else
8917 {
8918 /* For PC-relative branches, the width of the displacement
8919 is dependent upon data size, not address size. */
8920 override = (i.prefix[DATA_PREFIX] != 0);
8921 if (flag_code == CODE_64BIT)
8922 {
8923 if (override || i.suffix == WORD_MNEM_SUFFIX)
8924 bigdisp.bitfield.disp16 = 1;
8925 else
8926 {
8927 bigdisp.bitfield.disp32 = 1;
8928 bigdisp.bitfield.disp32s = 1;
8929 }
8930 }
8931 else
8932 {
8933 if (!override)
8934 override = (i.suffix == (flag_code != CODE_16BIT
8935 ? WORD_MNEM_SUFFIX
8936 : LONG_MNEM_SUFFIX));
8937 bigdisp.bitfield.disp32 = 1;
8938 if ((flag_code == CODE_16BIT) ^ override)
8939 {
8940 bigdisp.bitfield.disp32 = 0;
8941 bigdisp.bitfield.disp16 = 1;
8942 }
8943 }
8944 }
8945 i.types[this_operand] = operand_type_or (i.types[this_operand],
8946 bigdisp);
8947
8948 exp = &disp_expressions[i.disp_operands];
8949 i.op[this_operand].disps = exp;
8950 i.disp_operands++;
8951 save_input_line_pointer = input_line_pointer;
8952 input_line_pointer = disp_start;
8953 END_STRING_AND_SAVE (disp_end);
8954
8955 #ifndef GCC_ASM_O_HACK
8956 #define GCC_ASM_O_HACK 0
8957 #endif
8958 #if GCC_ASM_O_HACK
8959 END_STRING_AND_SAVE (disp_end + 1);
8960 if (i.types[this_operand].bitfield.baseIndex
8961 && displacement_string_end[-1] == '+')
8962 {
8963 /* This hack is to avoid a warning when using the "o"
8964 constraint within gcc asm statements.
8965 For instance:
8966
8967 #define _set_tssldt_desc(n,addr,limit,type) \
8968 __asm__ __volatile__ ( \
8969 "movw %w2,%0\n\t" \
8970 "movw %w1,2+%0\n\t" \
8971 "rorl $16,%1\n\t" \
8972 "movb %b1,4+%0\n\t" \
8973 "movb %4,5+%0\n\t" \
8974 "movb $0,6+%0\n\t" \
8975 "movb %h1,7+%0\n\t" \
8976 "rorl $16,%1" \
8977 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8978
8979 This works great except that the output assembler ends
8980 up looking a bit weird if it turns out that there is
8981 no offset. You end up producing code that looks like:
8982
8983 #APP
8984 movw $235,(%eax)
8985 movw %dx,2+(%eax)
8986 rorl $16,%edx
8987 movb %dl,4+(%eax)
8988 movb $137,5+(%eax)
8989 movb $0,6+(%eax)
8990 movb %dh,7+(%eax)
8991 rorl $16,%edx
8992 #NO_APP
8993
8994 So here we provide the missing zero. */
8995
8996 *displacement_string_end = '0';
8997 }
8998 #endif
8999 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9000 if (gotfree_input_line)
9001 input_line_pointer = gotfree_input_line;
9002
9003 exp_seg = expression (exp);
9004
9005 SKIP_WHITESPACE ();
9006 if (*input_line_pointer)
9007 as_bad (_("junk `%s' after expression"), input_line_pointer);
9008 #if GCC_ASM_O_HACK
9009 RESTORE_END_STRING (disp_end + 1);
9010 #endif
9011 input_line_pointer = save_input_line_pointer;
9012 if (gotfree_input_line)
9013 {
9014 free (gotfree_input_line);
9015
9016 if (exp->X_op == O_constant || exp->X_op == O_register)
9017 exp->X_op = O_illegal;
9018 }
9019
9020 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9021
9022 RESTORE_END_STRING (disp_end);
9023
9024 return ret;
9025 }
9026
9027 static int
9028 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9029 i386_operand_type types, const char *disp_start)
9030 {
9031 i386_operand_type bigdisp;
9032 int ret = 1;
9033
9034 /* We do this to make sure that the section symbol is in
9035 the symbol table. We will ultimately change the relocation
9036 to be relative to the beginning of the section. */
9037 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
9038 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9039 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9040 {
9041 if (exp->X_op != O_symbol)
9042 goto inv_disp;
9043
9044 if (S_IS_LOCAL (exp->X_add_symbol)
9045 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9046 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
9047 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
9048 exp->X_op = O_subtract;
9049 exp->X_op_symbol = GOT_symbol;
9050 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
9051 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
9052 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9053 i.reloc[this_operand] = BFD_RELOC_64;
9054 else
9055 i.reloc[this_operand] = BFD_RELOC_32;
9056 }
9057
9058 else if (exp->X_op == O_absent
9059 || exp->X_op == O_illegal
9060 || exp->X_op == O_big)
9061 {
9062 inv_disp:
9063 as_bad (_("missing or invalid displacement expression `%s'"),
9064 disp_start);
9065 ret = 0;
9066 }
9067
9068 else if (flag_code == CODE_64BIT
9069 && !i.prefix[ADDR_PREFIX]
9070 && exp->X_op == O_constant)
9071 {
9072 /* Since displacement is signed extended to 64bit, don't allow
9073 disp32 and turn off disp32s if they are out of range. */
9074 i.types[this_operand].bitfield.disp32 = 0;
9075 if (!fits_in_signed_long (exp->X_add_number))
9076 {
9077 i.types[this_operand].bitfield.disp32s = 0;
9078 if (i.types[this_operand].bitfield.baseindex)
9079 {
9080 as_bad (_("0x%lx out range of signed 32bit displacement"),
9081 (long) exp->X_add_number);
9082 ret = 0;
9083 }
9084 }
9085 }
9086
9087 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9088 else if (exp->X_op != O_constant
9089 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9090 && exp_seg != absolute_section
9091 && exp_seg != text_section
9092 && exp_seg != data_section
9093 && exp_seg != bss_section
9094 && exp_seg != undefined_section
9095 && !bfd_is_com_section (exp_seg))
9096 {
9097 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9098 ret = 0;
9099 }
9100 #endif
9101
9102 /* Check if this is a displacement only operand. */
9103 bigdisp = i.types[this_operand];
9104 bigdisp.bitfield.disp8 = 0;
9105 bigdisp.bitfield.disp16 = 0;
9106 bigdisp.bitfield.disp32 = 0;
9107 bigdisp.bitfield.disp32s = 0;
9108 bigdisp.bitfield.disp64 = 0;
9109 if (operand_type_all_zero (&bigdisp))
9110 i.types[this_operand] = operand_type_and (i.types[this_operand],
9111 types);
9112
9113 return ret;
9114 }
9115
9116 /* Return the active addressing mode, taking address override and
9117 registers forming the address into consideration. Update the
9118 address override prefix if necessary. */
9119
9120 static enum flag_code
9121 i386_addressing_mode (void)
9122 {
9123 enum flag_code addr_mode;
9124
9125 if (i.prefix[ADDR_PREFIX])
9126 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9127 else
9128 {
9129 addr_mode = flag_code;
9130
9131 #if INFER_ADDR_PREFIX
9132 if (i.mem_operands == 0)
9133 {
9134 /* Infer address prefix from the first memory operand. */
9135 const reg_entry *addr_reg = i.base_reg;
9136
9137 if (addr_reg == NULL)
9138 addr_reg = i.index_reg;
9139
9140 if (addr_reg)
9141 {
9142 if (addr_reg->reg_num == RegEip
9143 || addr_reg->reg_num == RegEiz
9144 || addr_reg->reg_type.bitfield.dword)
9145 addr_mode = CODE_32BIT;
9146 else if (flag_code != CODE_64BIT
9147 && addr_reg->reg_type.bitfield.word)
9148 addr_mode = CODE_16BIT;
9149
9150 if (addr_mode != flag_code)
9151 {
9152 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9153 i.prefixes += 1;
9154 /* Change the size of any displacement too. At most one
9155 of Disp16 or Disp32 is set.
9156 FIXME. There doesn't seem to be any real need for
9157 separate Disp16 and Disp32 flags. The same goes for
9158 Imm16 and Imm32. Removing them would probably clean
9159 up the code quite a lot. */
9160 if (flag_code != CODE_64BIT
9161 && (i.types[this_operand].bitfield.disp16
9162 || i.types[this_operand].bitfield.disp32))
9163 i.types[this_operand]
9164 = operand_type_xor (i.types[this_operand], disp16_32);
9165 }
9166 }
9167 }
9168 #endif
9169 }
9170
9171 return addr_mode;
9172 }
9173
9174 /* Make sure the memory operand we've been dealt is valid.
9175 Return 1 on success, 0 on a failure. */
9176
9177 static int
9178 i386_index_check (const char *operand_string)
9179 {
9180 const char *kind = "base/index";
9181 enum flag_code addr_mode = i386_addressing_mode ();
9182
9183 if (current_templates->start->opcode_modifier.isstring
9184 && !current_templates->start->opcode_modifier.immext
9185 && (current_templates->end[-1].opcode_modifier.isstring
9186 || i.mem_operands))
9187 {
9188 /* Memory operands of string insns are special in that they only allow
9189 a single register (rDI, rSI, or rBX) as their memory address. */
9190 const reg_entry *expected_reg;
9191 static const char *di_si[][2] =
9192 {
9193 { "esi", "edi" },
9194 { "si", "di" },
9195 { "rsi", "rdi" }
9196 };
9197 static const char *bx[] = { "ebx", "bx", "rbx" };
9198
9199 kind = "string address";
9200
9201 if (current_templates->start->opcode_modifier.repprefixok)
9202 {
9203 i386_operand_type type = current_templates->end[-1].operand_types[0];
9204
9205 if (!type.bitfield.baseindex
9206 || ((!i.mem_operands != !intel_syntax)
9207 && current_templates->end[-1].operand_types[1]
9208 .bitfield.baseindex))
9209 type = current_templates->end[-1].operand_types[1];
9210 expected_reg = hash_find (reg_hash,
9211 di_si[addr_mode][type.bitfield.esseg]);
9212
9213 }
9214 else
9215 expected_reg = hash_find (reg_hash, bx[addr_mode]);
9216
9217 if (i.base_reg != expected_reg
9218 || i.index_reg
9219 || operand_type_check (i.types[this_operand], disp))
9220 {
9221 /* The second memory operand must have the same size as
9222 the first one. */
9223 if (i.mem_operands
9224 && i.base_reg
9225 && !((addr_mode == CODE_64BIT
9226 && i.base_reg->reg_type.bitfield.qword)
9227 || (addr_mode == CODE_32BIT
9228 ? i.base_reg->reg_type.bitfield.dword
9229 : i.base_reg->reg_type.bitfield.word)))
9230 goto bad_address;
9231
9232 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9233 operand_string,
9234 intel_syntax ? '[' : '(',
9235 register_prefix,
9236 expected_reg->reg_name,
9237 intel_syntax ? ']' : ')');
9238 return 1;
9239 }
9240 else
9241 return 1;
9242
9243 bad_address:
9244 as_bad (_("`%s' is not a valid %s expression"),
9245 operand_string, kind);
9246 return 0;
9247 }
9248 else
9249 {
9250 if (addr_mode != CODE_16BIT)
9251 {
9252 /* 32-bit/64-bit checks. */
9253 if ((i.base_reg
9254 && (addr_mode == CODE_64BIT
9255 ? !i.base_reg->reg_type.bitfield.qword
9256 : !i.base_reg->reg_type.bitfield.dword)
9257 && (i.index_reg
9258 || (i.base_reg->reg_num
9259 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
9260 || (i.index_reg
9261 && !i.index_reg->reg_type.bitfield.xmmword
9262 && !i.index_reg->reg_type.bitfield.ymmword
9263 && !i.index_reg->reg_type.bitfield.zmmword
9264 && ((addr_mode == CODE_64BIT
9265 ? !(i.index_reg->reg_type.bitfield.qword
9266 || i.index_reg->reg_num == RegRiz)
9267 : !(i.index_reg->reg_type.bitfield.dword
9268 || i.index_reg->reg_num == RegEiz))
9269 || !i.index_reg->reg_type.bitfield.baseindex)))
9270 goto bad_address;
9271
9272 /* bndmk, bndldx, and bndstx have special restrictions. */
9273 if (current_templates->start->base_opcode == 0xf30f1b
9274 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9275 {
9276 /* They cannot use RIP-relative addressing. */
9277 if (i.base_reg && i.base_reg->reg_num == RegRip)
9278 {
9279 as_bad (_("`%s' cannot be used here"), operand_string);
9280 return 0;
9281 }
9282
9283 /* bndldx and bndstx ignore their scale factor. */
9284 if (current_templates->start->base_opcode != 0xf30f1b
9285 && i.log2_scale_factor)
9286 as_warn (_("register scaling is being ignored here"));
9287 }
9288 }
9289 else
9290 {
9291 /* 16-bit checks. */
9292 if ((i.base_reg
9293 && (!i.base_reg->reg_type.bitfield.word
9294 || !i.base_reg->reg_type.bitfield.baseindex))
9295 || (i.index_reg
9296 && (!i.index_reg->reg_type.bitfield.word
9297 || !i.index_reg->reg_type.bitfield.baseindex
9298 || !(i.base_reg
9299 && i.base_reg->reg_num < 6
9300 && i.index_reg->reg_num >= 6
9301 && i.log2_scale_factor == 0))))
9302 goto bad_address;
9303 }
9304 }
9305 return 1;
9306 }
9307
9308 /* Handle vector immediates. */
9309
9310 static int
9311 RC_SAE_immediate (const char *imm_start)
9312 {
9313 unsigned int match_found, j;
9314 const char *pstr = imm_start;
9315 expressionS *exp;
9316
9317 if (*pstr != '{')
9318 return 0;
9319
9320 pstr++;
9321 match_found = 0;
9322 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9323 {
9324 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9325 {
9326 if (!i.rounding)
9327 {
9328 rc_op.type = RC_NamesTable[j].type;
9329 rc_op.operand = this_operand;
9330 i.rounding = &rc_op;
9331 }
9332 else
9333 {
9334 as_bad (_("duplicated `%s'"), imm_start);
9335 return 0;
9336 }
9337 pstr += RC_NamesTable[j].len;
9338 match_found = 1;
9339 break;
9340 }
9341 }
9342 if (!match_found)
9343 return 0;
9344
9345 if (*pstr++ != '}')
9346 {
9347 as_bad (_("Missing '}': '%s'"), imm_start);
9348 return 0;
9349 }
9350 /* RC/SAE immediate string should contain nothing more. */;
9351 if (*pstr != 0)
9352 {
9353 as_bad (_("Junk after '}': '%s'"), imm_start);
9354 return 0;
9355 }
9356
9357 exp = &im_expressions[i.imm_operands++];
9358 i.op[this_operand].imms = exp;
9359
9360 exp->X_op = O_constant;
9361 exp->X_add_number = 0;
9362 exp->X_add_symbol = (symbolS *) 0;
9363 exp->X_op_symbol = (symbolS *) 0;
9364
9365 i.types[this_operand].bitfield.imm8 = 1;
9366 return 1;
9367 }
9368
9369 /* Only string instructions can have a second memory operand, so
9370 reduce current_templates to just those if it contains any. */
9371 static int
9372 maybe_adjust_templates (void)
9373 {
9374 const insn_template *t;
9375
9376 gas_assert (i.mem_operands == 1);
9377
9378 for (t = current_templates->start; t < current_templates->end; ++t)
9379 if (t->opcode_modifier.isstring)
9380 break;
9381
9382 if (t < current_templates->end)
9383 {
9384 static templates aux_templates;
9385 bfd_boolean recheck;
9386
9387 aux_templates.start = t;
9388 for (; t < current_templates->end; ++t)
9389 if (!t->opcode_modifier.isstring)
9390 break;
9391 aux_templates.end = t;
9392
9393 /* Determine whether to re-check the first memory operand. */
9394 recheck = (aux_templates.start != current_templates->start
9395 || t != current_templates->end);
9396
9397 current_templates = &aux_templates;
9398
9399 if (recheck)
9400 {
9401 i.mem_operands = 0;
9402 if (i.memop1_string != NULL
9403 && i386_index_check (i.memop1_string) == 0)
9404 return 0;
9405 i.mem_operands = 1;
9406 }
9407 }
9408
9409 return 1;
9410 }
9411
9412 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
9413 on error. */
9414
9415 static int
9416 i386_att_operand (char *operand_string)
9417 {
9418 const reg_entry *r;
9419 char *end_op;
9420 char *op_string = operand_string;
9421
9422 if (is_space_char (*op_string))
9423 ++op_string;
9424
9425 /* We check for an absolute prefix (differentiating,
9426 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
9427 if (*op_string == ABSOLUTE_PREFIX)
9428 {
9429 ++op_string;
9430 if (is_space_char (*op_string))
9431 ++op_string;
9432 i.types[this_operand].bitfield.jumpabsolute = 1;
9433 }
9434
9435 /* Check if operand is a register. */
9436 if ((r = parse_register (op_string, &end_op)) != NULL)
9437 {
9438 i386_operand_type temp;
9439
9440 /* Check for a segment override by searching for ':' after a
9441 segment register. */
9442 op_string = end_op;
9443 if (is_space_char (*op_string))
9444 ++op_string;
9445 if (*op_string == ':'
9446 && (r->reg_type.bitfield.sreg2
9447 || r->reg_type.bitfield.sreg3))
9448 {
9449 switch (r->reg_num)
9450 {
9451 case 0:
9452 i.seg[i.mem_operands] = &es;
9453 break;
9454 case 1:
9455 i.seg[i.mem_operands] = &cs;
9456 break;
9457 case 2:
9458 i.seg[i.mem_operands] = &ss;
9459 break;
9460 case 3:
9461 i.seg[i.mem_operands] = &ds;
9462 break;
9463 case 4:
9464 i.seg[i.mem_operands] = &fs;
9465 break;
9466 case 5:
9467 i.seg[i.mem_operands] = &gs;
9468 break;
9469 }
9470
9471 /* Skip the ':' and whitespace. */
9472 ++op_string;
9473 if (is_space_char (*op_string))
9474 ++op_string;
9475
9476 if (!is_digit_char (*op_string)
9477 && !is_identifier_char (*op_string)
9478 && *op_string != '('
9479 && *op_string != ABSOLUTE_PREFIX)
9480 {
9481 as_bad (_("bad memory operand `%s'"), op_string);
9482 return 0;
9483 }
9484 /* Handle case of %es:*foo. */
9485 if (*op_string == ABSOLUTE_PREFIX)
9486 {
9487 ++op_string;
9488 if (is_space_char (*op_string))
9489 ++op_string;
9490 i.types[this_operand].bitfield.jumpabsolute = 1;
9491 }
9492 goto do_memory_reference;
9493 }
9494
9495 /* Handle vector operations. */
9496 if (*op_string == '{')
9497 {
9498 op_string = check_VecOperations (op_string, NULL);
9499 if (op_string == NULL)
9500 return 0;
9501 }
9502
9503 if (*op_string)
9504 {
9505 as_bad (_("junk `%s' after register"), op_string);
9506 return 0;
9507 }
9508 temp = r->reg_type;
9509 temp.bitfield.baseindex = 0;
9510 i.types[this_operand] = operand_type_or (i.types[this_operand],
9511 temp);
9512 i.types[this_operand].bitfield.unspecified = 0;
9513 i.op[this_operand].regs = r;
9514 i.reg_operands++;
9515 }
9516 else if (*op_string == REGISTER_PREFIX)
9517 {
9518 as_bad (_("bad register name `%s'"), op_string);
9519 return 0;
9520 }
9521 else if (*op_string == IMMEDIATE_PREFIX)
9522 {
9523 ++op_string;
9524 if (i.types[this_operand].bitfield.jumpabsolute)
9525 {
9526 as_bad (_("immediate operand illegal with absolute jump"));
9527 return 0;
9528 }
9529 if (!i386_immediate (op_string))
9530 return 0;
9531 }
9532 else if (RC_SAE_immediate (operand_string))
9533 {
9534 /* If it is a RC or SAE immediate, do nothing. */
9535 ;
9536 }
9537 else if (is_digit_char (*op_string)
9538 || is_identifier_char (*op_string)
9539 || *op_string == '"'
9540 || *op_string == '(')
9541 {
9542 /* This is a memory reference of some sort. */
9543 char *base_string;
9544
9545 /* Start and end of displacement string expression (if found). */
9546 char *displacement_string_start;
9547 char *displacement_string_end;
9548 char *vop_start;
9549
9550 do_memory_reference:
9551 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9552 return 0;
9553 if ((i.mem_operands == 1
9554 && !current_templates->start->opcode_modifier.isstring)
9555 || i.mem_operands == 2)
9556 {
9557 as_bad (_("too many memory references for `%s'"),
9558 current_templates->start->name);
9559 return 0;
9560 }
9561
9562 /* Check for base index form. We detect the base index form by
9563 looking for an ')' at the end of the operand, searching
9564 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9565 after the '('. */
9566 base_string = op_string + strlen (op_string);
9567
9568 /* Handle vector operations. */
9569 vop_start = strchr (op_string, '{');
9570 if (vop_start && vop_start < base_string)
9571 {
9572 if (check_VecOperations (vop_start, base_string) == NULL)
9573 return 0;
9574 base_string = vop_start;
9575 }
9576
9577 --base_string;
9578 if (is_space_char (*base_string))
9579 --base_string;
9580
9581 /* If we only have a displacement, set-up for it to be parsed later. */
9582 displacement_string_start = op_string;
9583 displacement_string_end = base_string + 1;
9584
9585 if (*base_string == ')')
9586 {
9587 char *temp_string;
9588 unsigned int parens_balanced = 1;
9589 /* We've already checked that the number of left & right ()'s are
9590 equal, so this loop will not be infinite. */
9591 do
9592 {
9593 base_string--;
9594 if (*base_string == ')')
9595 parens_balanced++;
9596 if (*base_string == '(')
9597 parens_balanced--;
9598 }
9599 while (parens_balanced);
9600
9601 temp_string = base_string;
9602
9603 /* Skip past '(' and whitespace. */
9604 ++base_string;
9605 if (is_space_char (*base_string))
9606 ++base_string;
9607
9608 if (*base_string == ','
9609 || ((i.base_reg = parse_register (base_string, &end_op))
9610 != NULL))
9611 {
9612 displacement_string_end = temp_string;
9613
9614 i.types[this_operand].bitfield.baseindex = 1;
9615
9616 if (i.base_reg)
9617 {
9618 base_string = end_op;
9619 if (is_space_char (*base_string))
9620 ++base_string;
9621 }
9622
9623 /* There may be an index reg or scale factor here. */
9624 if (*base_string == ',')
9625 {
9626 ++base_string;
9627 if (is_space_char (*base_string))
9628 ++base_string;
9629
9630 if ((i.index_reg = parse_register (base_string, &end_op))
9631 != NULL)
9632 {
9633 base_string = end_op;
9634 if (is_space_char (*base_string))
9635 ++base_string;
9636 if (*base_string == ',')
9637 {
9638 ++base_string;
9639 if (is_space_char (*base_string))
9640 ++base_string;
9641 }
9642 else if (*base_string != ')')
9643 {
9644 as_bad (_("expecting `,' or `)' "
9645 "after index register in `%s'"),
9646 operand_string);
9647 return 0;
9648 }
9649 }
9650 else if (*base_string == REGISTER_PREFIX)
9651 {
9652 end_op = strchr (base_string, ',');
9653 if (end_op)
9654 *end_op = '\0';
9655 as_bad (_("bad register name `%s'"), base_string);
9656 return 0;
9657 }
9658
9659 /* Check for scale factor. */
9660 if (*base_string != ')')
9661 {
9662 char *end_scale = i386_scale (base_string);
9663
9664 if (!end_scale)
9665 return 0;
9666
9667 base_string = end_scale;
9668 if (is_space_char (*base_string))
9669 ++base_string;
9670 if (*base_string != ')')
9671 {
9672 as_bad (_("expecting `)' "
9673 "after scale factor in `%s'"),
9674 operand_string);
9675 return 0;
9676 }
9677 }
9678 else if (!i.index_reg)
9679 {
9680 as_bad (_("expecting index register or scale factor "
9681 "after `,'; got '%c'"),
9682 *base_string);
9683 return 0;
9684 }
9685 }
9686 else if (*base_string != ')')
9687 {
9688 as_bad (_("expecting `,' or `)' "
9689 "after base register in `%s'"),
9690 operand_string);
9691 return 0;
9692 }
9693 }
9694 else if (*base_string == REGISTER_PREFIX)
9695 {
9696 end_op = strchr (base_string, ',');
9697 if (end_op)
9698 *end_op = '\0';
9699 as_bad (_("bad register name `%s'"), base_string);
9700 return 0;
9701 }
9702 }
9703
9704 /* If there's an expression beginning the operand, parse it,
9705 assuming displacement_string_start and
9706 displacement_string_end are meaningful. */
9707 if (displacement_string_start != displacement_string_end)
9708 {
9709 if (!i386_displacement (displacement_string_start,
9710 displacement_string_end))
9711 return 0;
9712 }
9713
9714 /* Special case for (%dx) while doing input/output op. */
9715 if (i.base_reg
9716 && i.base_reg->reg_type.bitfield.inoutportreg
9717 && i.index_reg == 0
9718 && i.log2_scale_factor == 0
9719 && i.seg[i.mem_operands] == 0
9720 && !operand_type_check (i.types[this_operand], disp))
9721 {
9722 i.types[this_operand] = i.base_reg->reg_type;
9723 return 1;
9724 }
9725
9726 if (i386_index_check (operand_string) == 0)
9727 return 0;
9728 i.types[this_operand].bitfield.mem = 1;
9729 if (i.mem_operands == 0)
9730 i.memop1_string = xstrdup (operand_string);
9731 i.mem_operands++;
9732 }
9733 else
9734 {
9735 /* It's not a memory operand; argh! */
9736 as_bad (_("invalid char %s beginning operand %d `%s'"),
9737 output_invalid (*op_string),
9738 this_operand + 1,
9739 op_string);
9740 return 0;
9741 }
9742 return 1; /* Normal return. */
9743 }
9744 \f
9745 /* Calculate the maximum variable size (i.e., excluding fr_fix)
9746 that an rs_machine_dependent frag may reach. */
9747
9748 unsigned int
9749 i386_frag_max_var (fragS *frag)
9750 {
9751 /* The only relaxable frags are for jumps.
9752 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9753 gas_assert (frag->fr_type == rs_machine_dependent);
9754 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9755 }
9756
9757 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9758 static int
9759 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
9760 {
9761 /* STT_GNU_IFUNC symbol must go through PLT. */
9762 if ((symbol_get_bfdsym (fr_symbol)->flags
9763 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9764 return 0;
9765
9766 if (!S_IS_EXTERNAL (fr_symbol))
9767 /* Symbol may be weak or local. */
9768 return !S_IS_WEAK (fr_symbol);
9769
9770 /* Global symbols with non-default visibility can't be preempted. */
9771 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9772 return 1;
9773
9774 if (fr_var != NO_RELOC)
9775 switch ((enum bfd_reloc_code_real) fr_var)
9776 {
9777 case BFD_RELOC_386_PLT32:
9778 case BFD_RELOC_X86_64_PLT32:
9779 /* Symbol with PLT relocation may be preempted. */
9780 return 0;
9781 default:
9782 abort ();
9783 }
9784
9785 /* Global symbols with default visibility in a shared library may be
9786 preempted by another definition. */
9787 return !shared;
9788 }
9789 #endif
9790
9791 /* md_estimate_size_before_relax()
9792
9793 Called just before relax() for rs_machine_dependent frags. The x86
9794 assembler uses these frags to handle variable size jump
9795 instructions.
9796
9797 Any symbol that is now undefined will not become defined.
9798 Return the correct fr_subtype in the frag.
9799 Return the initial "guess for variable size of frag" to caller.
9800 The guess is actually the growth beyond the fixed part. Whatever
9801 we do to grow the fixed or variable part contributes to our
9802 returned value. */
9803
9804 int
9805 md_estimate_size_before_relax (fragS *fragP, segT segment)
9806 {
9807 /* We've already got fragP->fr_subtype right; all we have to do is
9808 check for un-relaxable symbols. On an ELF system, we can't relax
9809 an externally visible symbol, because it may be overridden by a
9810 shared library. */
9811 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
9812 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9813 || (IS_ELF
9814 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9815 fragP->fr_var))
9816 #endif
9817 #if defined (OBJ_COFF) && defined (TE_PE)
9818 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
9819 && S_IS_WEAK (fragP->fr_symbol))
9820 #endif
9821 )
9822 {
9823 /* Symbol is undefined in this segment, or we need to keep a
9824 reloc so that weak symbols can be overridden. */
9825 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
9826 enum bfd_reloc_code_real reloc_type;
9827 unsigned char *opcode;
9828 int old_fr_fix;
9829
9830 if (fragP->fr_var != NO_RELOC)
9831 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
9832 else if (size == 2)
9833 reloc_type = BFD_RELOC_16_PCREL;
9834 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9835 else if (need_plt32_p (fragP->fr_symbol))
9836 reloc_type = BFD_RELOC_X86_64_PLT32;
9837 #endif
9838 else
9839 reloc_type = BFD_RELOC_32_PCREL;
9840
9841 old_fr_fix = fragP->fr_fix;
9842 opcode = (unsigned char *) fragP->fr_opcode;
9843
9844 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
9845 {
9846 case UNCOND_JUMP:
9847 /* Make jmp (0xeb) a (d)word displacement jump. */
9848 opcode[0] = 0xe9;
9849 fragP->fr_fix += size;
9850 fix_new (fragP, old_fr_fix, size,
9851 fragP->fr_symbol,
9852 fragP->fr_offset, 1,
9853 reloc_type);
9854 break;
9855
9856 case COND_JUMP86:
9857 if (size == 2
9858 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
9859 {
9860 /* Negate the condition, and branch past an
9861 unconditional jump. */
9862 opcode[0] ^= 1;
9863 opcode[1] = 3;
9864 /* Insert an unconditional jump. */
9865 opcode[2] = 0xe9;
9866 /* We added two extra opcode bytes, and have a two byte
9867 offset. */
9868 fragP->fr_fix += 2 + 2;
9869 fix_new (fragP, old_fr_fix + 2, 2,
9870 fragP->fr_symbol,
9871 fragP->fr_offset, 1,
9872 reloc_type);
9873 break;
9874 }
9875 /* Fall through. */
9876
9877 case COND_JUMP:
9878 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9879 {
9880 fixS *fixP;
9881
9882 fragP->fr_fix += 1;
9883 fixP = fix_new (fragP, old_fr_fix, 1,
9884 fragP->fr_symbol,
9885 fragP->fr_offset, 1,
9886 BFD_RELOC_8_PCREL);
9887 fixP->fx_signed = 1;
9888 break;
9889 }
9890
9891 /* This changes the byte-displacement jump 0x7N
9892 to the (d)word-displacement jump 0x0f,0x8N. */
9893 opcode[1] = opcode[0] + 0x10;
9894 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9895 /* We've added an opcode byte. */
9896 fragP->fr_fix += 1 + size;
9897 fix_new (fragP, old_fr_fix + 1, size,
9898 fragP->fr_symbol,
9899 fragP->fr_offset, 1,
9900 reloc_type);
9901 break;
9902
9903 default:
9904 BAD_CASE (fragP->fr_subtype);
9905 break;
9906 }
9907 frag_wane (fragP);
9908 return fragP->fr_fix - old_fr_fix;
9909 }
9910
9911 /* Guess size depending on current relax state. Initially the relax
9912 state will correspond to a short jump and we return 1, because
9913 the variable part of the frag (the branch offset) is one byte
9914 long. However, we can relax a section more than once and in that
9915 case we must either set fr_subtype back to the unrelaxed state,
9916 or return the value for the appropriate branch. */
9917 return md_relax_table[fragP->fr_subtype].rlx_length;
9918 }
9919
9920 /* Called after relax() is finished.
9921
9922 In: Address of frag.
9923 fr_type == rs_machine_dependent.
9924 fr_subtype is what the address relaxed to.
9925
9926 Out: Any fixSs and constants are set up.
9927 Caller will turn frag into a ".space 0". */
9928
9929 void
9930 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9931 fragS *fragP)
9932 {
9933 unsigned char *opcode;
9934 unsigned char *where_to_put_displacement = NULL;
9935 offsetT target_address;
9936 offsetT opcode_address;
9937 unsigned int extension = 0;
9938 offsetT displacement_from_opcode_start;
9939
9940 opcode = (unsigned char *) fragP->fr_opcode;
9941
9942 /* Address we want to reach in file space. */
9943 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
9944
9945 /* Address opcode resides at in file space. */
9946 opcode_address = fragP->fr_address + fragP->fr_fix;
9947
9948 /* Displacement from opcode start to fill into instruction. */
9949 displacement_from_opcode_start = target_address - opcode_address;
9950
9951 if ((fragP->fr_subtype & BIG) == 0)
9952 {
9953 /* Don't have to change opcode. */
9954 extension = 1; /* 1 opcode + 1 displacement */
9955 where_to_put_displacement = &opcode[1];
9956 }
9957 else
9958 {
9959 if (no_cond_jump_promotion
9960 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
9961 as_warn_where (fragP->fr_file, fragP->fr_line,
9962 _("long jump required"));
9963
9964 switch (fragP->fr_subtype)
9965 {
9966 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9967 extension = 4; /* 1 opcode + 4 displacement */
9968 opcode[0] = 0xe9;
9969 where_to_put_displacement = &opcode[1];
9970 break;
9971
9972 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9973 extension = 2; /* 1 opcode + 2 displacement */
9974 opcode[0] = 0xe9;
9975 where_to_put_displacement = &opcode[1];
9976 break;
9977
9978 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9979 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9980 extension = 5; /* 2 opcode + 4 displacement */
9981 opcode[1] = opcode[0] + 0x10;
9982 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9983 where_to_put_displacement = &opcode[2];
9984 break;
9985
9986 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9987 extension = 3; /* 2 opcode + 2 displacement */
9988 opcode[1] = opcode[0] + 0x10;
9989 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9990 where_to_put_displacement = &opcode[2];
9991 break;
9992
9993 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9994 extension = 4;
9995 opcode[0] ^= 1;
9996 opcode[1] = 3;
9997 opcode[2] = 0xe9;
9998 where_to_put_displacement = &opcode[3];
9999 break;
10000
10001 default:
10002 BAD_CASE (fragP->fr_subtype);
10003 break;
10004 }
10005 }
10006
10007 /* If size if less then four we are sure that the operand fits,
10008 but if it's 4, then it could be that the displacement is larger
10009 then -/+ 2GB. */
10010 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10011 && object_64bit
10012 && ((addressT) (displacement_from_opcode_start - extension
10013 + ((addressT) 1 << 31))
10014 > (((addressT) 2 << 31) - 1)))
10015 {
10016 as_bad_where (fragP->fr_file, fragP->fr_line,
10017 _("jump target out of range"));
10018 /* Make us emit 0. */
10019 displacement_from_opcode_start = extension;
10020 }
10021 /* Now put displacement after opcode. */
10022 md_number_to_chars ((char *) where_to_put_displacement,
10023 (valueT) (displacement_from_opcode_start - extension),
10024 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
10025 fragP->fr_fix += extension;
10026 }
10027 \f
10028 /* Apply a fixup (fixP) to segment data, once it has been determined
10029 by our caller that we have all the info we need to fix it up.
10030
10031 Parameter valP is the pointer to the value of the bits.
10032
10033 On the 386, immediates, displacements, and data pointers are all in
10034 the same (little-endian) format, so we don't need to care about which
10035 we are handling. */
10036
10037 void
10038 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
10039 {
10040 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
10041 valueT value = *valP;
10042
10043 #if !defined (TE_Mach)
10044 if (fixP->fx_pcrel)
10045 {
10046 switch (fixP->fx_r_type)
10047 {
10048 default:
10049 break;
10050
10051 case BFD_RELOC_64:
10052 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10053 break;
10054 case BFD_RELOC_32:
10055 case BFD_RELOC_X86_64_32S:
10056 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10057 break;
10058 case BFD_RELOC_16:
10059 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10060 break;
10061 case BFD_RELOC_8:
10062 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10063 break;
10064 }
10065 }
10066
10067 if (fixP->fx_addsy != NULL
10068 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
10069 || fixP->fx_r_type == BFD_RELOC_64_PCREL
10070 || fixP->fx_r_type == BFD_RELOC_16_PCREL
10071 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
10072 && !use_rela_relocations)
10073 {
10074 /* This is a hack. There should be a better way to handle this.
10075 This covers for the fact that bfd_install_relocation will
10076 subtract the current location (for partial_inplace, PC relative
10077 relocations); see more below. */
10078 #ifndef OBJ_AOUT
10079 if (IS_ELF
10080 #ifdef TE_PE
10081 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10082 #endif
10083 )
10084 value += fixP->fx_where + fixP->fx_frag->fr_address;
10085 #endif
10086 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10087 if (IS_ELF)
10088 {
10089 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
10090
10091 if ((sym_seg == seg
10092 || (symbol_section_p (fixP->fx_addsy)
10093 && sym_seg != absolute_section))
10094 && !generic_force_reloc (fixP))
10095 {
10096 /* Yes, we add the values in twice. This is because
10097 bfd_install_relocation subtracts them out again. I think
10098 bfd_install_relocation is broken, but I don't dare change
10099 it. FIXME. */
10100 value += fixP->fx_where + fixP->fx_frag->fr_address;
10101 }
10102 }
10103 #endif
10104 #if defined (OBJ_COFF) && defined (TE_PE)
10105 /* For some reason, the PE format does not store a
10106 section address offset for a PC relative symbol. */
10107 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
10108 || S_IS_WEAK (fixP->fx_addsy))
10109 value += md_pcrel_from (fixP);
10110 #endif
10111 }
10112 #if defined (OBJ_COFF) && defined (TE_PE)
10113 if (fixP->fx_addsy != NULL
10114 && S_IS_WEAK (fixP->fx_addsy)
10115 /* PR 16858: Do not modify weak function references. */
10116 && ! fixP->fx_pcrel)
10117 {
10118 #if !defined (TE_PEP)
10119 /* For x86 PE weak function symbols are neither PC-relative
10120 nor do they set S_IS_FUNCTION. So the only reliable way
10121 to detect them is to check the flags of their containing
10122 section. */
10123 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10124 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10125 ;
10126 else
10127 #endif
10128 value -= S_GET_VALUE (fixP->fx_addsy);
10129 }
10130 #endif
10131
10132 /* Fix a few things - the dynamic linker expects certain values here,
10133 and we must not disappoint it. */
10134 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10135 if (IS_ELF && fixP->fx_addsy)
10136 switch (fixP->fx_r_type)
10137 {
10138 case BFD_RELOC_386_PLT32:
10139 case BFD_RELOC_X86_64_PLT32:
10140 /* Make the jump instruction point to the address of the operand. At
10141 runtime we merely add the offset to the actual PLT entry. */
10142 value = -4;
10143 break;
10144
10145 case BFD_RELOC_386_TLS_GD:
10146 case BFD_RELOC_386_TLS_LDM:
10147 case BFD_RELOC_386_TLS_IE_32:
10148 case BFD_RELOC_386_TLS_IE:
10149 case BFD_RELOC_386_TLS_GOTIE:
10150 case BFD_RELOC_386_TLS_GOTDESC:
10151 case BFD_RELOC_X86_64_TLSGD:
10152 case BFD_RELOC_X86_64_TLSLD:
10153 case BFD_RELOC_X86_64_GOTTPOFF:
10154 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10155 value = 0; /* Fully resolved at runtime. No addend. */
10156 /* Fallthrough */
10157 case BFD_RELOC_386_TLS_LE:
10158 case BFD_RELOC_386_TLS_LDO_32:
10159 case BFD_RELOC_386_TLS_LE_32:
10160 case BFD_RELOC_X86_64_DTPOFF32:
10161 case BFD_RELOC_X86_64_DTPOFF64:
10162 case BFD_RELOC_X86_64_TPOFF32:
10163 case BFD_RELOC_X86_64_TPOFF64:
10164 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10165 break;
10166
10167 case BFD_RELOC_386_TLS_DESC_CALL:
10168 case BFD_RELOC_X86_64_TLSDESC_CALL:
10169 value = 0; /* Fully resolved at runtime. No addend. */
10170 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10171 fixP->fx_done = 0;
10172 return;
10173
10174 case BFD_RELOC_VTABLE_INHERIT:
10175 case BFD_RELOC_VTABLE_ENTRY:
10176 fixP->fx_done = 0;
10177 return;
10178
10179 default:
10180 break;
10181 }
10182 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
10183 *valP = value;
10184 #endif /* !defined (TE_Mach) */
10185
10186 /* Are we finished with this relocation now? */
10187 if (fixP->fx_addsy == NULL)
10188 fixP->fx_done = 1;
10189 #if defined (OBJ_COFF) && defined (TE_PE)
10190 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10191 {
10192 fixP->fx_done = 0;
10193 /* Remember value for tc_gen_reloc. */
10194 fixP->fx_addnumber = value;
10195 /* Clear out the frag for now. */
10196 value = 0;
10197 }
10198 #endif
10199 else if (use_rela_relocations)
10200 {
10201 fixP->fx_no_overflow = 1;
10202 /* Remember value for tc_gen_reloc. */
10203 fixP->fx_addnumber = value;
10204 value = 0;
10205 }
10206
10207 md_number_to_chars (p, value, fixP->fx_size);
10208 }
10209 \f
10210 const char *
10211 md_atof (int type, char *litP, int *sizeP)
10212 {
10213 /* This outputs the LITTLENUMs in REVERSE order;
10214 in accord with the bigendian 386. */
10215 return ieee_md_atof (type, litP, sizeP, FALSE);
10216 }
10217 \f
10218 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
10219
10220 static char *
10221 output_invalid (int c)
10222 {
10223 if (ISPRINT (c))
10224 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10225 "'%c'", c);
10226 else
10227 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10228 "(0x%x)", (unsigned char) c);
10229 return output_invalid_buf;
10230 }
10231
10232 /* REG_STRING starts *before* REGISTER_PREFIX. */
10233
10234 static const reg_entry *
10235 parse_real_register (char *reg_string, char **end_op)
10236 {
10237 char *s = reg_string;
10238 char *p;
10239 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10240 const reg_entry *r;
10241
10242 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10243 if (*s == REGISTER_PREFIX)
10244 ++s;
10245
10246 if (is_space_char (*s))
10247 ++s;
10248
10249 p = reg_name_given;
10250 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
10251 {
10252 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
10253 return (const reg_entry *) NULL;
10254 s++;
10255 }
10256
10257 /* For naked regs, make sure that we are not dealing with an identifier.
10258 This prevents confusing an identifier like `eax_var' with register
10259 `eax'. */
10260 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10261 return (const reg_entry *) NULL;
10262
10263 *end_op = s;
10264
10265 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10266
10267 /* Handle floating point regs, allowing spaces in the (i) part. */
10268 if (r == i386_regtab /* %st is first entry of table */)
10269 {
10270 if (!cpu_arch_flags.bitfield.cpu8087
10271 && !cpu_arch_flags.bitfield.cpu287
10272 && !cpu_arch_flags.bitfield.cpu387)
10273 return (const reg_entry *) NULL;
10274
10275 if (is_space_char (*s))
10276 ++s;
10277 if (*s == '(')
10278 {
10279 ++s;
10280 if (is_space_char (*s))
10281 ++s;
10282 if (*s >= '0' && *s <= '7')
10283 {
10284 int fpr = *s - '0';
10285 ++s;
10286 if (is_space_char (*s))
10287 ++s;
10288 if (*s == ')')
10289 {
10290 *end_op = s + 1;
10291 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
10292 know (r);
10293 return r + fpr;
10294 }
10295 }
10296 /* We have "%st(" then garbage. */
10297 return (const reg_entry *) NULL;
10298 }
10299 }
10300
10301 if (r == NULL || allow_pseudo_reg)
10302 return r;
10303
10304 if (operand_type_all_zero (&r->reg_type))
10305 return (const reg_entry *) NULL;
10306
10307 if ((r->reg_type.bitfield.dword
10308 || r->reg_type.bitfield.sreg3
10309 || r->reg_type.bitfield.control
10310 || r->reg_type.bitfield.debug
10311 || r->reg_type.bitfield.test)
10312 && !cpu_arch_flags.bitfield.cpui386)
10313 return (const reg_entry *) NULL;
10314
10315 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
10316 return (const reg_entry *) NULL;
10317
10318 if (!cpu_arch_flags.bitfield.cpuavx512f)
10319 {
10320 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10321 return (const reg_entry *) NULL;
10322
10323 if (!cpu_arch_flags.bitfield.cpuavx)
10324 {
10325 if (r->reg_type.bitfield.ymmword)
10326 return (const reg_entry *) NULL;
10327
10328 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10329 return (const reg_entry *) NULL;
10330 }
10331 }
10332
10333 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10334 return (const reg_entry *) NULL;
10335
10336 /* Don't allow fake index register unless allow_index_reg isn't 0. */
10337 if (!allow_index_reg
10338 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
10339 return (const reg_entry *) NULL;
10340
10341 /* Upper 16 vector registers are only available with VREX in 64bit
10342 mode, and require EVEX encoding. */
10343 if (r->reg_flags & RegVRex)
10344 {
10345 if (!cpu_arch_flags.bitfield.cpuvrex
10346 || flag_code != CODE_64BIT)
10347 return (const reg_entry *) NULL;
10348
10349 i.vec_encoding = vex_encoding_evex;
10350 }
10351
10352 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10353 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
10354 && flag_code != CODE_64BIT)
10355 return (const reg_entry *) NULL;
10356
10357 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10358 return (const reg_entry *) NULL;
10359
10360 return r;
10361 }
10362
10363 /* REG_STRING starts *before* REGISTER_PREFIX. */
10364
10365 static const reg_entry *
10366 parse_register (char *reg_string, char **end_op)
10367 {
10368 const reg_entry *r;
10369
10370 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10371 r = parse_real_register (reg_string, end_op);
10372 else
10373 r = NULL;
10374 if (!r)
10375 {
10376 char *save = input_line_pointer;
10377 char c;
10378 symbolS *symbolP;
10379
10380 input_line_pointer = reg_string;
10381 c = get_symbol_name (&reg_string);
10382 symbolP = symbol_find (reg_string);
10383 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10384 {
10385 const expressionS *e = symbol_get_value_expression (symbolP);
10386
10387 know (e->X_op == O_register);
10388 know (e->X_add_number >= 0
10389 && (valueT) e->X_add_number < i386_regtab_size);
10390 r = i386_regtab + e->X_add_number;
10391 if ((r->reg_flags & RegVRex))
10392 i.vec_encoding = vex_encoding_evex;
10393 *end_op = input_line_pointer;
10394 }
10395 *input_line_pointer = c;
10396 input_line_pointer = save;
10397 }
10398 return r;
10399 }
10400
10401 int
10402 i386_parse_name (char *name, expressionS *e, char *nextcharP)
10403 {
10404 const reg_entry *r;
10405 char *end = input_line_pointer;
10406
10407 *end = *nextcharP;
10408 r = parse_register (name, &input_line_pointer);
10409 if (r && end <= input_line_pointer)
10410 {
10411 *nextcharP = *input_line_pointer;
10412 *input_line_pointer = 0;
10413 e->X_op = O_register;
10414 e->X_add_number = r - i386_regtab;
10415 return 1;
10416 }
10417 input_line_pointer = end;
10418 *end = 0;
10419 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
10420 }
10421
10422 void
10423 md_operand (expressionS *e)
10424 {
10425 char *end;
10426 const reg_entry *r;
10427
10428 switch (*input_line_pointer)
10429 {
10430 case REGISTER_PREFIX:
10431 r = parse_real_register (input_line_pointer, &end);
10432 if (r)
10433 {
10434 e->X_op = O_register;
10435 e->X_add_number = r - i386_regtab;
10436 input_line_pointer = end;
10437 }
10438 break;
10439
10440 case '[':
10441 gas_assert (intel_syntax);
10442 end = input_line_pointer++;
10443 expression (e);
10444 if (*input_line_pointer == ']')
10445 {
10446 ++input_line_pointer;
10447 e->X_op_symbol = make_expr_symbol (e);
10448 e->X_add_symbol = NULL;
10449 e->X_add_number = 0;
10450 e->X_op = O_index;
10451 }
10452 else
10453 {
10454 e->X_op = O_absent;
10455 input_line_pointer = end;
10456 }
10457 break;
10458 }
10459 }
10460
10461 \f
10462 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10463 const char *md_shortopts = "kVQ:sqnO::";
10464 #else
10465 const char *md_shortopts = "qnO::";
10466 #endif
10467
10468 #define OPTION_32 (OPTION_MD_BASE + 0)
10469 #define OPTION_64 (OPTION_MD_BASE + 1)
10470 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
10471 #define OPTION_MARCH (OPTION_MD_BASE + 3)
10472 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
10473 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10474 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10475 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10476 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
10477 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
10478 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
10479 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
10480 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10481 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10482 #define OPTION_X32 (OPTION_MD_BASE + 14)
10483 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
10484 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10485 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
10486 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
10487 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
10488 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
10489 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
10490 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10491 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
10492 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
10493
10494 struct option md_longopts[] =
10495 {
10496 {"32", no_argument, NULL, OPTION_32},
10497 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10498 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10499 {"64", no_argument, NULL, OPTION_64},
10500 #endif
10501 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10502 {"x32", no_argument, NULL, OPTION_X32},
10503 {"mshared", no_argument, NULL, OPTION_MSHARED},
10504 #endif
10505 {"divide", no_argument, NULL, OPTION_DIVIDE},
10506 {"march", required_argument, NULL, OPTION_MARCH},
10507 {"mtune", required_argument, NULL, OPTION_MTUNE},
10508 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10509 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10510 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10511 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
10512 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
10513 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
10514 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
10515 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
10516 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
10517 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10518 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
10519 # if defined (TE_PE) || defined (TE_PEP)
10520 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10521 #endif
10522 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
10523 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
10524 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
10525 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
10526 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10527 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
10528 {NULL, no_argument, NULL, 0}
10529 };
10530 size_t md_longopts_size = sizeof (md_longopts);
10531
10532 int
10533 md_parse_option (int c, const char *arg)
10534 {
10535 unsigned int j;
10536 char *arch, *next, *saved;
10537
10538 switch (c)
10539 {
10540 case 'n':
10541 optimize_align_code = 0;
10542 break;
10543
10544 case 'q':
10545 quiet_warnings = 1;
10546 break;
10547
10548 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10549 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10550 should be emitted or not. FIXME: Not implemented. */
10551 case 'Q':
10552 break;
10553
10554 /* -V: SVR4 argument to print version ID. */
10555 case 'V':
10556 print_version_id ();
10557 break;
10558
10559 /* -k: Ignore for FreeBSD compatibility. */
10560 case 'k':
10561 break;
10562
10563 case 's':
10564 /* -s: On i386 Solaris, this tells the native assembler to use
10565 .stab instead of .stab.excl. We always use .stab anyhow. */
10566 break;
10567
10568 case OPTION_MSHARED:
10569 shared = 1;
10570 break;
10571 #endif
10572 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10573 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10574 case OPTION_64:
10575 {
10576 const char **list, **l;
10577
10578 list = bfd_target_list ();
10579 for (l = list; *l != NULL; l++)
10580 if (CONST_STRNEQ (*l, "elf64-x86-64")
10581 || strcmp (*l, "coff-x86-64") == 0
10582 || strcmp (*l, "pe-x86-64") == 0
10583 || strcmp (*l, "pei-x86-64") == 0
10584 || strcmp (*l, "mach-o-x86-64") == 0)
10585 {
10586 default_arch = "x86_64";
10587 break;
10588 }
10589 if (*l == NULL)
10590 as_fatal (_("no compiled in support for x86_64"));
10591 free (list);
10592 }
10593 break;
10594 #endif
10595
10596 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10597 case OPTION_X32:
10598 if (IS_ELF)
10599 {
10600 const char **list, **l;
10601
10602 list = bfd_target_list ();
10603 for (l = list; *l != NULL; l++)
10604 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10605 {
10606 default_arch = "x86_64:32";
10607 break;
10608 }
10609 if (*l == NULL)
10610 as_fatal (_("no compiled in support for 32bit x86_64"));
10611 free (list);
10612 }
10613 else
10614 as_fatal (_("32bit x86_64 is only supported for ELF"));
10615 break;
10616 #endif
10617
10618 case OPTION_32:
10619 default_arch = "i386";
10620 break;
10621
10622 case OPTION_DIVIDE:
10623 #ifdef SVR4_COMMENT_CHARS
10624 {
10625 char *n, *t;
10626 const char *s;
10627
10628 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
10629 t = n;
10630 for (s = i386_comment_chars; *s != '\0'; s++)
10631 if (*s != '/')
10632 *t++ = *s;
10633 *t = '\0';
10634 i386_comment_chars = n;
10635 }
10636 #endif
10637 break;
10638
10639 case OPTION_MARCH:
10640 saved = xstrdup (arg);
10641 arch = saved;
10642 /* Allow -march=+nosse. */
10643 if (*arch == '+')
10644 arch++;
10645 do
10646 {
10647 if (*arch == '.')
10648 as_fatal (_("invalid -march= option: `%s'"), arg);
10649 next = strchr (arch, '+');
10650 if (next)
10651 *next++ = '\0';
10652 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10653 {
10654 if (strcmp (arch, cpu_arch [j].name) == 0)
10655 {
10656 /* Processor. */
10657 if (! cpu_arch[j].flags.bitfield.cpui386)
10658 continue;
10659
10660 cpu_arch_name = cpu_arch[j].name;
10661 cpu_sub_arch_name = NULL;
10662 cpu_arch_flags = cpu_arch[j].flags;
10663 cpu_arch_isa = cpu_arch[j].type;
10664 cpu_arch_isa_flags = cpu_arch[j].flags;
10665 if (!cpu_arch_tune_set)
10666 {
10667 cpu_arch_tune = cpu_arch_isa;
10668 cpu_arch_tune_flags = cpu_arch_isa_flags;
10669 }
10670 break;
10671 }
10672 else if (*cpu_arch [j].name == '.'
10673 && strcmp (arch, cpu_arch [j].name + 1) == 0)
10674 {
10675 /* ISA extension. */
10676 i386_cpu_flags flags;
10677
10678 flags = cpu_flags_or (cpu_arch_flags,
10679 cpu_arch[j].flags);
10680
10681 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10682 {
10683 if (cpu_sub_arch_name)
10684 {
10685 char *name = cpu_sub_arch_name;
10686 cpu_sub_arch_name = concat (name,
10687 cpu_arch[j].name,
10688 (const char *) NULL);
10689 free (name);
10690 }
10691 else
10692 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
10693 cpu_arch_flags = flags;
10694 cpu_arch_isa_flags = flags;
10695 }
10696 else
10697 cpu_arch_isa_flags
10698 = cpu_flags_or (cpu_arch_isa_flags,
10699 cpu_arch[j].flags);
10700 break;
10701 }
10702 }
10703
10704 if (j >= ARRAY_SIZE (cpu_arch))
10705 {
10706 /* Disable an ISA extension. */
10707 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10708 if (strcmp (arch, cpu_noarch [j].name) == 0)
10709 {
10710 i386_cpu_flags flags;
10711
10712 flags = cpu_flags_and_not (cpu_arch_flags,
10713 cpu_noarch[j].flags);
10714 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10715 {
10716 if (cpu_sub_arch_name)
10717 {
10718 char *name = cpu_sub_arch_name;
10719 cpu_sub_arch_name = concat (arch,
10720 (const char *) NULL);
10721 free (name);
10722 }
10723 else
10724 cpu_sub_arch_name = xstrdup (arch);
10725 cpu_arch_flags = flags;
10726 cpu_arch_isa_flags = flags;
10727 }
10728 break;
10729 }
10730
10731 if (j >= ARRAY_SIZE (cpu_noarch))
10732 j = ARRAY_SIZE (cpu_arch);
10733 }
10734
10735 if (j >= ARRAY_SIZE (cpu_arch))
10736 as_fatal (_("invalid -march= option: `%s'"), arg);
10737
10738 arch = next;
10739 }
10740 while (next != NULL);
10741 free (saved);
10742 break;
10743
10744 case OPTION_MTUNE:
10745 if (*arg == '.')
10746 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10747 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10748 {
10749 if (strcmp (arg, cpu_arch [j].name) == 0)
10750 {
10751 cpu_arch_tune_set = 1;
10752 cpu_arch_tune = cpu_arch [j].type;
10753 cpu_arch_tune_flags = cpu_arch[j].flags;
10754 break;
10755 }
10756 }
10757 if (j >= ARRAY_SIZE (cpu_arch))
10758 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10759 break;
10760
10761 case OPTION_MMNEMONIC:
10762 if (strcasecmp (arg, "att") == 0)
10763 intel_mnemonic = 0;
10764 else if (strcasecmp (arg, "intel") == 0)
10765 intel_mnemonic = 1;
10766 else
10767 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
10768 break;
10769
10770 case OPTION_MSYNTAX:
10771 if (strcasecmp (arg, "att") == 0)
10772 intel_syntax = 0;
10773 else if (strcasecmp (arg, "intel") == 0)
10774 intel_syntax = 1;
10775 else
10776 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
10777 break;
10778
10779 case OPTION_MINDEX_REG:
10780 allow_index_reg = 1;
10781 break;
10782
10783 case OPTION_MNAKED_REG:
10784 allow_naked_reg = 1;
10785 break;
10786
10787 case OPTION_MSSE2AVX:
10788 sse2avx = 1;
10789 break;
10790
10791 case OPTION_MSSE_CHECK:
10792 if (strcasecmp (arg, "error") == 0)
10793 sse_check = check_error;
10794 else if (strcasecmp (arg, "warning") == 0)
10795 sse_check = check_warning;
10796 else if (strcasecmp (arg, "none") == 0)
10797 sse_check = check_none;
10798 else
10799 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
10800 break;
10801
10802 case OPTION_MOPERAND_CHECK:
10803 if (strcasecmp (arg, "error") == 0)
10804 operand_check = check_error;
10805 else if (strcasecmp (arg, "warning") == 0)
10806 operand_check = check_warning;
10807 else if (strcasecmp (arg, "none") == 0)
10808 operand_check = check_none;
10809 else
10810 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10811 break;
10812
10813 case OPTION_MAVXSCALAR:
10814 if (strcasecmp (arg, "128") == 0)
10815 avxscalar = vex128;
10816 else if (strcasecmp (arg, "256") == 0)
10817 avxscalar = vex256;
10818 else
10819 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
10820 break;
10821
10822 case OPTION_MADD_BND_PREFIX:
10823 add_bnd_prefix = 1;
10824 break;
10825
10826 case OPTION_MEVEXLIG:
10827 if (strcmp (arg, "128") == 0)
10828 evexlig = evexl128;
10829 else if (strcmp (arg, "256") == 0)
10830 evexlig = evexl256;
10831 else if (strcmp (arg, "512") == 0)
10832 evexlig = evexl512;
10833 else
10834 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10835 break;
10836
10837 case OPTION_MEVEXRCIG:
10838 if (strcmp (arg, "rne") == 0)
10839 evexrcig = rne;
10840 else if (strcmp (arg, "rd") == 0)
10841 evexrcig = rd;
10842 else if (strcmp (arg, "ru") == 0)
10843 evexrcig = ru;
10844 else if (strcmp (arg, "rz") == 0)
10845 evexrcig = rz;
10846 else
10847 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10848 break;
10849
10850 case OPTION_MEVEXWIG:
10851 if (strcmp (arg, "0") == 0)
10852 evexwig = evexw0;
10853 else if (strcmp (arg, "1") == 0)
10854 evexwig = evexw1;
10855 else
10856 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10857 break;
10858
10859 # if defined (TE_PE) || defined (TE_PEP)
10860 case OPTION_MBIG_OBJ:
10861 use_big_obj = 1;
10862 break;
10863 #endif
10864
10865 case OPTION_MOMIT_LOCK_PREFIX:
10866 if (strcasecmp (arg, "yes") == 0)
10867 omit_lock_prefix = 1;
10868 else if (strcasecmp (arg, "no") == 0)
10869 omit_lock_prefix = 0;
10870 else
10871 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10872 break;
10873
10874 case OPTION_MFENCE_AS_LOCK_ADD:
10875 if (strcasecmp (arg, "yes") == 0)
10876 avoid_fence = 1;
10877 else if (strcasecmp (arg, "no") == 0)
10878 avoid_fence = 0;
10879 else
10880 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10881 break;
10882
10883 case OPTION_MRELAX_RELOCATIONS:
10884 if (strcasecmp (arg, "yes") == 0)
10885 generate_relax_relocations = 1;
10886 else if (strcasecmp (arg, "no") == 0)
10887 generate_relax_relocations = 0;
10888 else
10889 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10890 break;
10891
10892 case OPTION_MAMD64:
10893 intel64 = 0;
10894 break;
10895
10896 case OPTION_MINTEL64:
10897 intel64 = 1;
10898 break;
10899
10900 case 'O':
10901 if (arg == NULL)
10902 {
10903 optimize = 1;
10904 /* Turn off -Os. */
10905 optimize_for_space = 0;
10906 }
10907 else if (*arg == 's')
10908 {
10909 optimize_for_space = 1;
10910 /* Turn on all encoding optimizations. */
10911 optimize = -1;
10912 }
10913 else
10914 {
10915 optimize = atoi (arg);
10916 /* Turn off -Os. */
10917 optimize_for_space = 0;
10918 }
10919 break;
10920
10921 default:
10922 return 0;
10923 }
10924 return 1;
10925 }
10926
10927 #define MESSAGE_TEMPLATE \
10928 " "
10929
10930 static char *
10931 output_message (FILE *stream, char *p, char *message, char *start,
10932 int *left_p, const char *name, int len)
10933 {
10934 int size = sizeof (MESSAGE_TEMPLATE);
10935 int left = *left_p;
10936
10937 /* Reserve 2 spaces for ", " or ",\0" */
10938 left -= len + 2;
10939
10940 /* Check if there is any room. */
10941 if (left >= 0)
10942 {
10943 if (p != start)
10944 {
10945 *p++ = ',';
10946 *p++ = ' ';
10947 }
10948 p = mempcpy (p, name, len);
10949 }
10950 else
10951 {
10952 /* Output the current message now and start a new one. */
10953 *p++ = ',';
10954 *p = '\0';
10955 fprintf (stream, "%s\n", message);
10956 p = start;
10957 left = size - (start - message) - len - 2;
10958
10959 gas_assert (left >= 0);
10960
10961 p = mempcpy (p, name, len);
10962 }
10963
10964 *left_p = left;
10965 return p;
10966 }
10967
10968 static void
10969 show_arch (FILE *stream, int ext, int check)
10970 {
10971 static char message[] = MESSAGE_TEMPLATE;
10972 char *start = message + 27;
10973 char *p;
10974 int size = sizeof (MESSAGE_TEMPLATE);
10975 int left;
10976 const char *name;
10977 int len;
10978 unsigned int j;
10979
10980 p = start;
10981 left = size - (start - message);
10982 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10983 {
10984 /* Should it be skipped? */
10985 if (cpu_arch [j].skip)
10986 continue;
10987
10988 name = cpu_arch [j].name;
10989 len = cpu_arch [j].len;
10990 if (*name == '.')
10991 {
10992 /* It is an extension. Skip if we aren't asked to show it. */
10993 if (ext)
10994 {
10995 name++;
10996 len--;
10997 }
10998 else
10999 continue;
11000 }
11001 else if (ext)
11002 {
11003 /* It is an processor. Skip if we show only extension. */
11004 continue;
11005 }
11006 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11007 {
11008 /* It is an impossible processor - skip. */
11009 continue;
11010 }
11011
11012 p = output_message (stream, p, message, start, &left, name, len);
11013 }
11014
11015 /* Display disabled extensions. */
11016 if (ext)
11017 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11018 {
11019 name = cpu_noarch [j].name;
11020 len = cpu_noarch [j].len;
11021 p = output_message (stream, p, message, start, &left, name,
11022 len);
11023 }
11024
11025 *p = '\0';
11026 fprintf (stream, "%s\n", message);
11027 }
11028
11029 void
11030 md_show_usage (FILE *stream)
11031 {
11032 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11033 fprintf (stream, _("\
11034 -Q ignored\n\
11035 -V print assembler version number\n\
11036 -k ignored\n"));
11037 #endif
11038 fprintf (stream, _("\
11039 -n Do not optimize code alignment\n\
11040 -q quieten some warnings\n"));
11041 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11042 fprintf (stream, _("\
11043 -s ignored\n"));
11044 #endif
11045 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11046 || defined (TE_PE) || defined (TE_PEP))
11047 fprintf (stream, _("\
11048 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
11049 #endif
11050 #ifdef SVR4_COMMENT_CHARS
11051 fprintf (stream, _("\
11052 --divide do not treat `/' as a comment character\n"));
11053 #else
11054 fprintf (stream, _("\
11055 --divide ignored\n"));
11056 #endif
11057 fprintf (stream, _("\
11058 -march=CPU[,+EXTENSION...]\n\
11059 generate code for CPU and EXTENSION, CPU is one of:\n"));
11060 show_arch (stream, 0, 1);
11061 fprintf (stream, _("\
11062 EXTENSION is combination of:\n"));
11063 show_arch (stream, 1, 0);
11064 fprintf (stream, _("\
11065 -mtune=CPU optimize for CPU, CPU is one of:\n"));
11066 show_arch (stream, 0, 0);
11067 fprintf (stream, _("\
11068 -msse2avx encode SSE instructions with VEX prefix\n"));
11069 fprintf (stream, _("\
11070 -msse-check=[none|error|warning]\n\
11071 check SSE instructions\n"));
11072 fprintf (stream, _("\
11073 -moperand-check=[none|error|warning]\n\
11074 check operand combinations for validity\n"));
11075 fprintf (stream, _("\
11076 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
11077 length\n"));
11078 fprintf (stream, _("\
11079 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
11080 length\n"));
11081 fprintf (stream, _("\
11082 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
11083 for EVEX.W bit ignored instructions\n"));
11084 fprintf (stream, _("\
11085 -mevexrcig=[rne|rd|ru|rz]\n\
11086 encode EVEX instructions with specific EVEX.RC value\n\
11087 for SAE-only ignored instructions\n"));
11088 fprintf (stream, _("\
11089 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
11090 fprintf (stream, _("\
11091 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
11092 fprintf (stream, _("\
11093 -mindex-reg support pseudo index registers\n"));
11094 fprintf (stream, _("\
11095 -mnaked-reg don't require `%%' prefix for registers\n"));
11096 fprintf (stream, _("\
11097 -madd-bnd-prefix add BND prefix for all valid branches\n"));
11098 fprintf (stream, _("\
11099 -mshared disable branch optimization for shared code\n"));
11100 # if defined (TE_PE) || defined (TE_PEP)
11101 fprintf (stream, _("\
11102 -mbig-obj generate big object files\n"));
11103 #endif
11104 fprintf (stream, _("\
11105 -momit-lock-prefix=[no|yes]\n\
11106 strip all lock prefixes\n"));
11107 fprintf (stream, _("\
11108 -mfence-as-lock-add=[no|yes]\n\
11109 encode lfence, mfence and sfence as\n\
11110 lock addl $0x0, (%%{re}sp)\n"));
11111 fprintf (stream, _("\
11112 -mrelax-relocations=[no|yes]\n\
11113 generate relax relocations\n"));
11114 fprintf (stream, _("\
11115 -mamd64 accept only AMD64 ISA\n"));
11116 fprintf (stream, _("\
11117 -mintel64 accept only Intel64 ISA\n"));
11118 }
11119
11120 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
11121 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11122 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11123
11124 /* Pick the target format to use. */
11125
11126 const char *
11127 i386_target_format (void)
11128 {
11129 if (!strncmp (default_arch, "x86_64", 6))
11130 {
11131 update_code_flag (CODE_64BIT, 1);
11132 if (default_arch[6] == '\0')
11133 x86_elf_abi = X86_64_ABI;
11134 else
11135 x86_elf_abi = X86_64_X32_ABI;
11136 }
11137 else if (!strcmp (default_arch, "i386"))
11138 update_code_flag (CODE_32BIT, 1);
11139 else if (!strcmp (default_arch, "iamcu"))
11140 {
11141 update_code_flag (CODE_32BIT, 1);
11142 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11143 {
11144 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11145 cpu_arch_name = "iamcu";
11146 cpu_sub_arch_name = NULL;
11147 cpu_arch_flags = iamcu_flags;
11148 cpu_arch_isa = PROCESSOR_IAMCU;
11149 cpu_arch_isa_flags = iamcu_flags;
11150 if (!cpu_arch_tune_set)
11151 {
11152 cpu_arch_tune = cpu_arch_isa;
11153 cpu_arch_tune_flags = cpu_arch_isa_flags;
11154 }
11155 }
11156 else if (cpu_arch_isa != PROCESSOR_IAMCU)
11157 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11158 cpu_arch_name);
11159 }
11160 else
11161 as_fatal (_("unknown architecture"));
11162
11163 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11164 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11165 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11166 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11167
11168 switch (OUTPUT_FLAVOR)
11169 {
11170 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
11171 case bfd_target_aout_flavour:
11172 return AOUT_TARGET_FORMAT;
11173 #endif
11174 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11175 # if defined (TE_PE) || defined (TE_PEP)
11176 case bfd_target_coff_flavour:
11177 if (flag_code == CODE_64BIT)
11178 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11179 else
11180 return "pe-i386";
11181 # elif defined (TE_GO32)
11182 case bfd_target_coff_flavour:
11183 return "coff-go32";
11184 # else
11185 case bfd_target_coff_flavour:
11186 return "coff-i386";
11187 # endif
11188 #endif
11189 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11190 case bfd_target_elf_flavour:
11191 {
11192 const char *format;
11193
11194 switch (x86_elf_abi)
11195 {
11196 default:
11197 format = ELF_TARGET_FORMAT;
11198 break;
11199 case X86_64_ABI:
11200 use_rela_relocations = 1;
11201 object_64bit = 1;
11202 format = ELF_TARGET_FORMAT64;
11203 break;
11204 case X86_64_X32_ABI:
11205 use_rela_relocations = 1;
11206 object_64bit = 1;
11207 disallow_64bit_reloc = 1;
11208 format = ELF_TARGET_FORMAT32;
11209 break;
11210 }
11211 if (cpu_arch_isa == PROCESSOR_L1OM)
11212 {
11213 if (x86_elf_abi != X86_64_ABI)
11214 as_fatal (_("Intel L1OM is 64bit only"));
11215 return ELF_TARGET_L1OM_FORMAT;
11216 }
11217 else if (cpu_arch_isa == PROCESSOR_K1OM)
11218 {
11219 if (x86_elf_abi != X86_64_ABI)
11220 as_fatal (_("Intel K1OM is 64bit only"));
11221 return ELF_TARGET_K1OM_FORMAT;
11222 }
11223 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11224 {
11225 if (x86_elf_abi != I386_ABI)
11226 as_fatal (_("Intel MCU is 32bit only"));
11227 return ELF_TARGET_IAMCU_FORMAT;
11228 }
11229 else
11230 return format;
11231 }
11232 #endif
11233 #if defined (OBJ_MACH_O)
11234 case bfd_target_mach_o_flavour:
11235 if (flag_code == CODE_64BIT)
11236 {
11237 use_rela_relocations = 1;
11238 object_64bit = 1;
11239 return "mach-o-x86-64";
11240 }
11241 else
11242 return "mach-o-i386";
11243 #endif
11244 default:
11245 abort ();
11246 return NULL;
11247 }
11248 }
11249
11250 #endif /* OBJ_MAYBE_ more than one */
11251 \f
11252 symbolS *
11253 md_undefined_symbol (char *name)
11254 {
11255 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11256 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11257 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11258 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
11259 {
11260 if (!GOT_symbol)
11261 {
11262 if (symbol_find (name))
11263 as_bad (_("GOT already in symbol table"));
11264 GOT_symbol = symbol_new (name, undefined_section,
11265 (valueT) 0, &zero_address_frag);
11266 };
11267 return GOT_symbol;
11268 }
11269 return 0;
11270 }
11271
11272 /* Round up a section size to the appropriate boundary. */
11273
11274 valueT
11275 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
11276 {
11277 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11278 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11279 {
11280 /* For a.out, force the section size to be aligned. If we don't do
11281 this, BFD will align it for us, but it will not write out the
11282 final bytes of the section. This may be a bug in BFD, but it is
11283 easier to fix it here since that is how the other a.out targets
11284 work. */
11285 int align;
11286
11287 align = bfd_get_section_alignment (stdoutput, segment);
11288 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
11289 }
11290 #endif
11291
11292 return size;
11293 }
11294
11295 /* On the i386, PC-relative offsets are relative to the start of the
11296 next instruction. That is, the address of the offset, plus its
11297 size, since the offset is always the last part of the insn. */
11298
11299 long
11300 md_pcrel_from (fixS *fixP)
11301 {
11302 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11303 }
11304
11305 #ifndef I386COFF
11306
11307 static void
11308 s_bss (int ignore ATTRIBUTE_UNUSED)
11309 {
11310 int temp;
11311
11312 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11313 if (IS_ELF)
11314 obj_elf_section_change_hook ();
11315 #endif
11316 temp = get_absolute_expression ();
11317 subseg_set (bss_section, (subsegT) temp);
11318 demand_empty_rest_of_line ();
11319 }
11320
11321 #endif
11322
11323 void
11324 i386_validate_fix (fixS *fixp)
11325 {
11326 if (fixp->fx_subsy)
11327 {
11328 if (fixp->fx_subsy == GOT_symbol)
11329 {
11330 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11331 {
11332 if (!object_64bit)
11333 abort ();
11334 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11335 if (fixp->fx_tcbit2)
11336 fixp->fx_r_type = (fixp->fx_tcbit
11337 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11338 : BFD_RELOC_X86_64_GOTPCRELX);
11339 else
11340 #endif
11341 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11342 }
11343 else
11344 {
11345 if (!object_64bit)
11346 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11347 else
11348 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11349 }
11350 fixp->fx_subsy = 0;
11351 }
11352 }
11353 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11354 else if (!object_64bit)
11355 {
11356 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11357 && fixp->fx_tcbit2)
11358 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11359 }
11360 #endif
11361 }
11362
11363 arelent *
11364 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
11365 {
11366 arelent *rel;
11367 bfd_reloc_code_real_type code;
11368
11369 switch (fixp->fx_r_type)
11370 {
11371 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11372 case BFD_RELOC_SIZE32:
11373 case BFD_RELOC_SIZE64:
11374 if (S_IS_DEFINED (fixp->fx_addsy)
11375 && !S_IS_EXTERNAL (fixp->fx_addsy))
11376 {
11377 /* Resolve size relocation against local symbol to size of
11378 the symbol plus addend. */
11379 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11380 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11381 && !fits_in_unsigned_long (value))
11382 as_bad_where (fixp->fx_file, fixp->fx_line,
11383 _("symbol size computation overflow"));
11384 fixp->fx_addsy = NULL;
11385 fixp->fx_subsy = NULL;
11386 md_apply_fix (fixp, (valueT *) &value, NULL);
11387 return NULL;
11388 }
11389 #endif
11390 /* Fall through. */
11391
11392 case BFD_RELOC_X86_64_PLT32:
11393 case BFD_RELOC_X86_64_GOT32:
11394 case BFD_RELOC_X86_64_GOTPCREL:
11395 case BFD_RELOC_X86_64_GOTPCRELX:
11396 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11397 case BFD_RELOC_386_PLT32:
11398 case BFD_RELOC_386_GOT32:
11399 case BFD_RELOC_386_GOT32X:
11400 case BFD_RELOC_386_GOTOFF:
11401 case BFD_RELOC_386_GOTPC:
11402 case BFD_RELOC_386_TLS_GD:
11403 case BFD_RELOC_386_TLS_LDM:
11404 case BFD_RELOC_386_TLS_LDO_32:
11405 case BFD_RELOC_386_TLS_IE_32:
11406 case BFD_RELOC_386_TLS_IE:
11407 case BFD_RELOC_386_TLS_GOTIE:
11408 case BFD_RELOC_386_TLS_LE_32:
11409 case BFD_RELOC_386_TLS_LE:
11410 case BFD_RELOC_386_TLS_GOTDESC:
11411 case BFD_RELOC_386_TLS_DESC_CALL:
11412 case BFD_RELOC_X86_64_TLSGD:
11413 case BFD_RELOC_X86_64_TLSLD:
11414 case BFD_RELOC_X86_64_DTPOFF32:
11415 case BFD_RELOC_X86_64_DTPOFF64:
11416 case BFD_RELOC_X86_64_GOTTPOFF:
11417 case BFD_RELOC_X86_64_TPOFF32:
11418 case BFD_RELOC_X86_64_TPOFF64:
11419 case BFD_RELOC_X86_64_GOTOFF64:
11420 case BFD_RELOC_X86_64_GOTPC32:
11421 case BFD_RELOC_X86_64_GOT64:
11422 case BFD_RELOC_X86_64_GOTPCREL64:
11423 case BFD_RELOC_X86_64_GOTPC64:
11424 case BFD_RELOC_X86_64_GOTPLT64:
11425 case BFD_RELOC_X86_64_PLTOFF64:
11426 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11427 case BFD_RELOC_X86_64_TLSDESC_CALL:
11428 case BFD_RELOC_RVA:
11429 case BFD_RELOC_VTABLE_ENTRY:
11430 case BFD_RELOC_VTABLE_INHERIT:
11431 #ifdef TE_PE
11432 case BFD_RELOC_32_SECREL:
11433 #endif
11434 code = fixp->fx_r_type;
11435 break;
11436 case BFD_RELOC_X86_64_32S:
11437 if (!fixp->fx_pcrel)
11438 {
11439 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11440 code = fixp->fx_r_type;
11441 break;
11442 }
11443 /* Fall through. */
11444 default:
11445 if (fixp->fx_pcrel)
11446 {
11447 switch (fixp->fx_size)
11448 {
11449 default:
11450 as_bad_where (fixp->fx_file, fixp->fx_line,
11451 _("can not do %d byte pc-relative relocation"),
11452 fixp->fx_size);
11453 code = BFD_RELOC_32_PCREL;
11454 break;
11455 case 1: code = BFD_RELOC_8_PCREL; break;
11456 case 2: code = BFD_RELOC_16_PCREL; break;
11457 case 4: code = BFD_RELOC_32_PCREL; break;
11458 #ifdef BFD64
11459 case 8: code = BFD_RELOC_64_PCREL; break;
11460 #endif
11461 }
11462 }
11463 else
11464 {
11465 switch (fixp->fx_size)
11466 {
11467 default:
11468 as_bad_where (fixp->fx_file, fixp->fx_line,
11469 _("can not do %d byte relocation"),
11470 fixp->fx_size);
11471 code = BFD_RELOC_32;
11472 break;
11473 case 1: code = BFD_RELOC_8; break;
11474 case 2: code = BFD_RELOC_16; break;
11475 case 4: code = BFD_RELOC_32; break;
11476 #ifdef BFD64
11477 case 8: code = BFD_RELOC_64; break;
11478 #endif
11479 }
11480 }
11481 break;
11482 }
11483
11484 if ((code == BFD_RELOC_32
11485 || code == BFD_RELOC_32_PCREL
11486 || code == BFD_RELOC_X86_64_32S)
11487 && GOT_symbol
11488 && fixp->fx_addsy == GOT_symbol)
11489 {
11490 if (!object_64bit)
11491 code = BFD_RELOC_386_GOTPC;
11492 else
11493 code = BFD_RELOC_X86_64_GOTPC32;
11494 }
11495 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11496 && GOT_symbol
11497 && fixp->fx_addsy == GOT_symbol)
11498 {
11499 code = BFD_RELOC_X86_64_GOTPC64;
11500 }
11501
11502 rel = XNEW (arelent);
11503 rel->sym_ptr_ptr = XNEW (asymbol *);
11504 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11505
11506 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
11507
11508 if (!use_rela_relocations)
11509 {
11510 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11511 vtable entry to be used in the relocation's section offset. */
11512 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11513 rel->address = fixp->fx_offset;
11514 #if defined (OBJ_COFF) && defined (TE_PE)
11515 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11516 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11517 else
11518 #endif
11519 rel->addend = 0;
11520 }
11521 /* Use the rela in 64bit mode. */
11522 else
11523 {
11524 if (disallow_64bit_reloc)
11525 switch (code)
11526 {
11527 case BFD_RELOC_X86_64_DTPOFF64:
11528 case BFD_RELOC_X86_64_TPOFF64:
11529 case BFD_RELOC_64_PCREL:
11530 case BFD_RELOC_X86_64_GOTOFF64:
11531 case BFD_RELOC_X86_64_GOT64:
11532 case BFD_RELOC_X86_64_GOTPCREL64:
11533 case BFD_RELOC_X86_64_GOTPC64:
11534 case BFD_RELOC_X86_64_GOTPLT64:
11535 case BFD_RELOC_X86_64_PLTOFF64:
11536 as_bad_where (fixp->fx_file, fixp->fx_line,
11537 _("cannot represent relocation type %s in x32 mode"),
11538 bfd_get_reloc_code_name (code));
11539 break;
11540 default:
11541 break;
11542 }
11543
11544 if (!fixp->fx_pcrel)
11545 rel->addend = fixp->fx_offset;
11546 else
11547 switch (code)
11548 {
11549 case BFD_RELOC_X86_64_PLT32:
11550 case BFD_RELOC_X86_64_GOT32:
11551 case BFD_RELOC_X86_64_GOTPCREL:
11552 case BFD_RELOC_X86_64_GOTPCRELX:
11553 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11554 case BFD_RELOC_X86_64_TLSGD:
11555 case BFD_RELOC_X86_64_TLSLD:
11556 case BFD_RELOC_X86_64_GOTTPOFF:
11557 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11558 case BFD_RELOC_X86_64_TLSDESC_CALL:
11559 rel->addend = fixp->fx_offset - fixp->fx_size;
11560 break;
11561 default:
11562 rel->addend = (section->vma
11563 - fixp->fx_size
11564 + fixp->fx_addnumber
11565 + md_pcrel_from (fixp));
11566 break;
11567 }
11568 }
11569
11570 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11571 if (rel->howto == NULL)
11572 {
11573 as_bad_where (fixp->fx_file, fixp->fx_line,
11574 _("cannot represent relocation type %s"),
11575 bfd_get_reloc_code_name (code));
11576 /* Set howto to a garbage value so that we can keep going. */
11577 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
11578 gas_assert (rel->howto != NULL);
11579 }
11580
11581 return rel;
11582 }
11583
11584 #include "tc-i386-intel.c"
11585
11586 void
11587 tc_x86_parse_to_dw2regnum (expressionS *exp)
11588 {
11589 int saved_naked_reg;
11590 char saved_register_dot;
11591
11592 saved_naked_reg = allow_naked_reg;
11593 allow_naked_reg = 1;
11594 saved_register_dot = register_chars['.'];
11595 register_chars['.'] = '.';
11596 allow_pseudo_reg = 1;
11597 expression_and_evaluate (exp);
11598 allow_pseudo_reg = 0;
11599 register_chars['.'] = saved_register_dot;
11600 allow_naked_reg = saved_naked_reg;
11601
11602 if (exp->X_op == O_register && exp->X_add_number >= 0)
11603 {
11604 if ((addressT) exp->X_add_number < i386_regtab_size)
11605 {
11606 exp->X_op = O_constant;
11607 exp->X_add_number = i386_regtab[exp->X_add_number]
11608 .dw2_regnum[flag_code >> 1];
11609 }
11610 else
11611 exp->X_op = O_illegal;
11612 }
11613 }
11614
11615 void
11616 tc_x86_frame_initial_instructions (void)
11617 {
11618 static unsigned int sp_regno[2];
11619
11620 if (!sp_regno[flag_code >> 1])
11621 {
11622 char *saved_input = input_line_pointer;
11623 char sp[][4] = {"esp", "rsp"};
11624 expressionS exp;
11625
11626 input_line_pointer = sp[flag_code >> 1];
11627 tc_x86_parse_to_dw2regnum (&exp);
11628 gas_assert (exp.X_op == O_constant);
11629 sp_regno[flag_code >> 1] = exp.X_add_number;
11630 input_line_pointer = saved_input;
11631 }
11632
11633 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11634 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
11635 }
11636
11637 int
11638 x86_dwarf2_addr_size (void)
11639 {
11640 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11641 if (x86_elf_abi == X86_64_X32_ABI)
11642 return 4;
11643 #endif
11644 return bfd_arch_bits_per_address (stdoutput) / 8;
11645 }
11646
11647 int
11648 i386_elf_section_type (const char *str, size_t len)
11649 {
11650 if (flag_code == CODE_64BIT
11651 && len == sizeof ("unwind") - 1
11652 && strncmp (str, "unwind", 6) == 0)
11653 return SHT_X86_64_UNWIND;
11654
11655 return -1;
11656 }
11657
11658 #ifdef TE_SOLARIS
11659 void
11660 i386_solaris_fix_up_eh_frame (segT sec)
11661 {
11662 if (flag_code == CODE_64BIT)
11663 elf_section_type (sec) = SHT_X86_64_UNWIND;
11664 }
11665 #endif
11666
11667 #ifdef TE_PE
11668 void
11669 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11670 {
11671 expressionS exp;
11672
11673 exp.X_op = O_secrel;
11674 exp.X_add_symbol = symbol;
11675 exp.X_add_number = 0;
11676 emit_expr (&exp, size);
11677 }
11678 #endif
11679
11680 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11681 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11682
11683 bfd_vma
11684 x86_64_section_letter (int letter, const char **ptr_msg)
11685 {
11686 if (flag_code == CODE_64BIT)
11687 {
11688 if (letter == 'l')
11689 return SHF_X86_64_LARGE;
11690
11691 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
11692 }
11693 else
11694 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
11695 return -1;
11696 }
11697
11698 bfd_vma
11699 x86_64_section_word (char *str, size_t len)
11700 {
11701 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
11702 return SHF_X86_64_LARGE;
11703
11704 return -1;
11705 }
11706
11707 static void
11708 handle_large_common (int small ATTRIBUTE_UNUSED)
11709 {
11710 if (flag_code != CODE_64BIT)
11711 {
11712 s_comm_internal (0, elf_common_parse);
11713 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11714 }
11715 else
11716 {
11717 static segT lbss_section;
11718 asection *saved_com_section_ptr = elf_com_section_ptr;
11719 asection *saved_bss_section = bss_section;
11720
11721 if (lbss_section == NULL)
11722 {
11723 flagword applicable;
11724 segT seg = now_seg;
11725 subsegT subseg = now_subseg;
11726
11727 /* The .lbss section is for local .largecomm symbols. */
11728 lbss_section = subseg_new (".lbss", 0);
11729 applicable = bfd_applicable_section_flags (stdoutput);
11730 bfd_set_section_flags (stdoutput, lbss_section,
11731 applicable & SEC_ALLOC);
11732 seg_info (lbss_section)->bss = 1;
11733
11734 subseg_set (seg, subseg);
11735 }
11736
11737 elf_com_section_ptr = &_bfd_elf_large_com_section;
11738 bss_section = lbss_section;
11739
11740 s_comm_internal (0, elf_common_parse);
11741
11742 elf_com_section_ptr = saved_com_section_ptr;
11743 bss_section = saved_bss_section;
11744 }
11745 }
11746 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */