]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-i960.c
* Extensive changes to permit symbols to contain any expression
[thirdparty/binutils-gdb.git] / gas / config / tc-i960.c
1 /* tc-i960.c - All the i80960-specific stuff
2 Copyright (C) 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
3
4 This file is part of GAS.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 /* See comment on md_parse_option for 80960-specific invocation options. */
21
22 /******************************************************************************
23 * i80690 NOTE!!!:
24 * Header, symbol, and relocation info will be used on the host machine
25 * only -- only executable code is actually downloaded to the i80960.
26 * Therefore, leave all such information in host byte order.
27 *
28 * (That's a slight lie -- we DO download some header information, but
29 * the downloader converts the file format and corrects the byte-ordering
30 * of the relevant fields while doing so.)
31 *
32 * ==> THIS IS NO LONGER TRUE USING BFD. WE CAN GENERATE ANY BYTE ORDER
33 * FOR THE HEADER, AND READ ANY BYTE ORDER. PREFERENCE WOULD BE TO
34 * USE LITTLE-ENDIAN BYTE ORDER THROUGHOUT, REGARDLESS OF HOST. <==
35 *
36 ***************************************************************************** */
37
38 /* There are 4 different lengths of (potentially) symbol-based displacements
39 * in the 80960 instruction set, each of which could require address fix-ups
40 * and (in the case of external symbols) emission of relocation directives:
41 *
42 * 32-bit (MEMB)
43 * This is a standard length for the base assembler and requires no
44 * special action.
45 *
46 * 13-bit (COBR)
47 * This is a non-standard length, but the base assembler has a hook for
48 * bit field address fixups: the fixS structure can point to a descriptor
49 * of the field, in which case our md_number_to_field() routine gets called
50 * to process it.
51 *
52 * I made the hook a little cleaner by having fix_new() (in the base
53 * assembler) return a pointer to the fixS in question. And I made it a
54 * little simpler by storing the field size (in this case 13) instead of
55 * of a pointer to another structure: 80960 displacements are ALWAYS
56 * stored in the low-order bits of a 4-byte word.
57 *
58 * Since the target of a COBR cannot be external, no relocation directives
59 * for this size displacement have to be generated. But the base assembler
60 * had to be modified to issue error messages if the symbol did turn out
61 * to be external.
62 *
63 * 24-bit (CTRL)
64 * Fixups are handled as for the 13-bit case (except that 24 is stored
65 * in the fixS).
66 *
67 * The relocation directive generated is the same as that for the 32-bit
68 * displacement, except that it's PC-relative (the 32-bit displacement
69 * never is). The i80960 version of the linker needs a mod to
70 * distinguish and handle the 24-bit case.
71 *
72 * 12-bit (MEMA)
73 * MEMA formats are always promoted to MEMB (32-bit) if the displacement
74 * is based on a symbol, because it could be relocated at link time.
75 * The only time we use the 12-bit format is if an absolute value of
76 * less than 4096 is specified, in which case we need neither a fixup nor
77 * a relocation directive.
78 */
79
80 #include <stdio.h>
81 #include <ctype.h>
82
83 #include "as.h"
84
85 #include "obstack.h"
86
87 #include "opcode/i960.h"
88
89 extern char *input_line_pointer;
90 extern struct hash_control *po_hash;
91 extern char *next_object_file_charP;
92
93 #ifdef OBJ_COFF
94 const int md_reloc_size = sizeof (struct reloc);
95 #else /* OBJ_COFF */
96 const int md_reloc_size = sizeof (struct relocation_info);
97 #endif /* OBJ_COFF */
98
99 /***************************
100 * Local i80960 routines *
101 ************************** */
102
103 static void brcnt_emit (); /* Emit branch-prediction instrumentation code */
104 static char *brlab_next (); /* Return next branch local label */
105 void brtab_emit (); /* Emit br-predict instrumentation table */
106 static void cobr_fmt (); /* Generate COBR instruction */
107 static void ctrl_fmt (); /* Generate CTRL instruction */
108 static char *emit (); /* Emit (internally) binary */
109 static int get_args (); /* Break arguments out of comma-separated list */
110 static void get_cdisp (); /* Handle COBR or CTRL displacement */
111 static char *get_ispec (); /* Find index specification string */
112 static int get_regnum (); /* Translate text to register number */
113 static int i_scan (); /* Lexical scan of instruction source */
114 static void mem_fmt (); /* Generate MEMA or MEMB instruction */
115 static void mema_to_memb (); /* Convert MEMA instruction to MEMB format */
116 static void parse_expr (); /* Parse an expression */
117 static int parse_ldconst (); /* Parse and replace a 'ldconst' pseudo-op */
118 static void parse_memop (); /* Parse a memory operand */
119 static void parse_po (); /* Parse machine-dependent pseudo-op */
120 static void parse_regop (); /* Parse a register operand */
121 static void reg_fmt (); /* Generate a REG format instruction */
122 void reloc_callj (); /* Relocate a 'callj' instruction */
123 static void relax_cobr (); /* "De-optimize" cobr into compare/branch */
124 static void s_leafproc (); /* Process '.leafproc' pseudo-op */
125 static void s_sysproc (); /* Process '.sysproc' pseudo-op */
126 static int shift_ok (); /* Will a 'shlo' substiture for a 'ldconst'? */
127 static void syntax (); /* Give syntax error */
128 static int targ_has_sfr (); /* Target chip supports spec-func register? */
129 static int targ_has_iclass (); /* Target chip supports instruction set? */
130 /* static void unlink_sym(); *//* Remove a symbol from the symbol list */
131
132 /* See md_parse_option() for meanings of these options */
133 static char norelax; /* True if -norelax switch seen */
134 static char instrument_branches;/* True if -b switch seen */
135
136 /* Characters that always start a comment.
137 * If the pre-processor is disabled, these aren't very useful.
138 */
139 const char comment_chars[] = "#";
140
141 /* Characters that only start a comment at the beginning of
142 * a line. If the line seems to have the form '# 123 filename'
143 * .line and .file directives will appear in the pre-processed output.
144 *
145 * Note that input_file.c hand checks for '#' at the beginning of the
146 * first line of the input file. This is because the compiler outputs
147 * #NO_APP at the beginning of its output.
148 */
149
150 /* Also note that comments started like this one will always work. */
151
152 const char line_comment_chars[1];
153
154 const char line_separator_chars[1];
155
156 /* Chars that can be used to separate mant from exp in floating point nums */
157 const char EXP_CHARS[] = "eE";
158
159 /* Chars that mean this number is a floating point constant,
160 * as in 0f12.456 or 0d1.2345e12
161 */
162 const char FLT_CHARS[] = "fFdDtT";
163
164
165 /* Table used by base assembler to relax addresses based on varying length
166 * instructions. The fields are:
167 * 1) most positive reach of this state,
168 * 2) most negative reach of this state,
169 * 3) how many bytes this mode will add to the size of the current frag
170 * 4) which index into the table to try if we can't fit into this one.
171 *
172 * For i80960, the only application is the (de-)optimization of cobr
173 * instructions into separate compare and branch instructions when a 13-bit
174 * displacement won't hack it.
175 */
176 const relax_typeS
177 md_relax_table[] =
178 {
179 {0, 0, 0, 0}, /* State 0 => no more relaxation possible */
180 {4088, -4096, 0, 2}, /* State 1: conditional branch (cobr) */
181 {0x800000 - 8, -0x800000, 4, 0}, /* State 2: compare (reg) & branch (ctrl) */
182 };
183
184
185 /* These are the machine dependent pseudo-ops.
186 *
187 * This table describes all the machine specific pseudo-ops the assembler
188 * has to support. The fields are:
189 * pseudo-op name without dot
190 * function to call to execute this pseudo-op
191 * integer arg to pass to the function
192 */
193 #define S_LEAFPROC 1
194 #define S_SYSPROC 2
195
196 const pseudo_typeS md_pseudo_table[] =
197 {
198 {"bss", s_lcomm, 1},
199 {"extended", float_cons, 't'},
200 {"leafproc", parse_po, S_LEAFPROC},
201 {"sysproc", parse_po, S_SYSPROC},
202
203 {"word", cons, 4},
204 {"quad", big_cons, 16},
205
206 {0, 0, 0}
207 };
208 \f
209 /* Macros to extract info from an 'expressionS' structure 'e' */
210 #define adds(e) e.X_add_symbol
211 #define offs(e) e.X_add_number
212
213
214 /* Branch-prediction bits for CTRL/COBR format opcodes */
215 #define BP_MASK 0x00000002 /* Mask for branch-prediction bit */
216 #define BP_TAKEN 0x00000000 /* Value to OR in to predict branch */
217 #define BP_NOT_TAKEN 0x00000002 /* Value to OR in to predict no branch */
218
219
220 /* Some instruction opcodes that we need explicitly */
221 #define BE 0x12000000
222 #define BG 0x11000000
223 #define BGE 0x13000000
224 #define BL 0x14000000
225 #define BLE 0x16000000
226 #define BNE 0x15000000
227 #define BNO 0x10000000
228 #define BO 0x17000000
229 #define CHKBIT 0x5a002700
230 #define CMPI 0x5a002080
231 #define CMPO 0x5a002000
232
233 #define B 0x08000000
234 #define BAL 0x0b000000
235 #define CALL 0x09000000
236 #define CALLS 0x66003800
237 #define RET 0x0a000000
238
239
240 /* These masks are used to build up a set of MEMB mode bits. */
241 #define A_BIT 0x0400
242 #define I_BIT 0x0800
243 #define MEMB_BIT 0x1000
244 #define D_BIT 0x2000
245
246
247 /* Mask for the only mode bit in a MEMA instruction (if set, abase reg is
248 used). */
249 #define MEMA_ABASE 0x2000
250
251 /* Info from which a MEMA or MEMB format instruction can be generated */
252 typedef struct
253 {
254 /* (First) 32 bits of instruction */
255 long opcode;
256 /* 0-(none), 12- or, 32-bit displacement needed */
257 int disp;
258 /* The expression in the source instruction from which the
259 displacement should be determined. */
260 char *e;
261 }
262
263 memS;
264
265
266 /* The two pieces of info we need to generate a register operand */
267 struct regop
268 {
269 int mode; /* 0 =>local/global/spec reg; 1=> literal or fp reg */
270 int special; /* 0 =>not a sfr; 1=> is a sfr (not valid w/mode=0) */
271 int n; /* Register number or literal value */
272 };
273
274
275 /* Number and assembler mnemonic for all registers that can appear in operands */
276 static struct
277 {
278 char *reg_name;
279 int reg_num;
280 }
281
282 regnames[] =
283 {
284 { "pfp", 0 },
285 { "sp", 1 },
286 { "rip", 2 },
287 { "r3", 3 },
288 { "r4", 4 },
289 { "r5", 5 },
290 { "r6", 6 },
291 { "r7", 7 },
292 { "r8", 8 },
293 { "r9", 9 },
294 { "r10", 10 },
295 { "r11", 11 },
296 { "r12", 12 },
297 { "r13", 13 },
298 { "r14", 14 },
299 { "r15", 15 },
300 { "g0", 16 },
301 { "g1", 17 },
302 { "g2", 18 },
303 { "g3", 19 },
304 { "g4", 20 },
305 { "g5", 21 },
306 { "g6", 22 },
307 { "g7", 23 },
308 { "g8", 24 },
309 { "g9", 25 },
310 { "g10", 26 },
311 { "g11", 27 },
312 { "g12", 28 },
313 { "g13", 29 },
314 { "g14", 30 },
315 { "fp", 31 },
316
317 /* Numbers for special-function registers are for assembler internal
318 use only: they are scaled back to range [0-31] for binary output. */
319 #define SF0 32
320
321 { "sf0", 32 },
322 { "sf1", 33 },
323 { "sf2", 34 },
324 { "sf3", 35 },
325 { "sf4", 36 },
326 { "sf5", 37 },
327 { "sf6", 38 },
328 { "sf7", 39 },
329 { "sf8", 40 },
330 { "sf9", 41 },
331 { "sf10", 42 },
332 { "sf11", 43 },
333 { "sf12", 44 },
334 { "sf13", 45 },
335 { "sf14", 46 },
336 { "sf15", 47 },
337 { "sf16", 48 },
338 { "sf17", 49 },
339 { "sf18", 50 },
340 { "sf19", 51 },
341 { "sf20", 52 },
342 { "sf21", 53 },
343 { "sf22", 54 },
344 { "sf23", 55 },
345 { "sf24", 56 },
346 { "sf25", 57 },
347 { "sf26", 58 },
348 { "sf27", 59 },
349 { "sf28", 60 },
350 { "sf29", 61 },
351 { "sf30", 62 },
352 { "sf31", 63 },
353
354 /* Numbers for floating point registers are for assembler internal use
355 * only: they are scaled back to [0-3] for binary output.
356 */
357 #define FP0 64
358
359 { "fp0", 64 },
360 { "fp1", 65 },
361 { "fp2", 66 },
362 { "fp3", 67 },
363
364 { NULL, 0 }, /* END OF LIST */
365 };
366
367 #define IS_RG_REG(n) ((0 <= (n)) && ((n) < SF0))
368 #define IS_SF_REG(n) ((SF0 <= (n)) && ((n) < FP0))
369 #define IS_FP_REG(n) ((n) >= FP0)
370
371 /* Number and assembler mnemonic for all registers that can appear as 'abase'
372 * (indirect addressing) registers.
373 */
374 static struct
375 {
376 char *areg_name;
377 int areg_num;
378 }
379
380 aregs[] =
381 {
382 { "(pfp)", 0 },
383 { "(sp)", 1 },
384 { "(rip)", 2 },
385 { "(r3)", 3 },
386 { "(r4)", 4 },
387 { "(r5)", 5 },
388 { "(r6)", 6 },
389 { "(r7)", 7 },
390 { "(r8)", 8 },
391 { "(r9)", 9 },
392 { "(r10)", 10 },
393 { "(r11)", 11 },
394 { "(r12)", 12 },
395 { "(r13)", 13 },
396 { "(r14)", 14 },
397 { "(r15)", 15 },
398 { "(g0)", 16 },
399 { "(g1)", 17 },
400 { "(g2)", 18 },
401 { "(g3)", 19 },
402 { "(g4)", 20 },
403 { "(g5)", 21 },
404 { "(g6)", 22 },
405 { "(g7)", 23 },
406 { "(g8)", 24 },
407 { "(g9)", 25 },
408 { "(g10)", 26 },
409 { "(g11)", 27 },
410 { "(g12)", 28 },
411 { "(g13)", 29 },
412 { "(g14)", 30 },
413 { "(fp)", 31 },
414
415 #define IPREL 32
416 /* For assembler internal use only: this number never appears in binary
417 output. */
418 { "(ip)", IPREL },
419
420 { NULL, 0 }, /* END OF LIST */
421 };
422
423
424 /* Hash tables */
425 static struct hash_control *op_hash; /* Opcode mnemonics */
426 static struct hash_control *reg_hash; /* Register name hash table */
427 static struct hash_control *areg_hash; /* Abase register hash table */
428
429
430 /* Architecture for which we are assembling */
431 #define ARCH_ANY 0 /* Default: no architecture checking done */
432 #define ARCH_KA 1
433 #define ARCH_KB 2
434 #define ARCH_MC 3
435 #define ARCH_CA 4
436 int architecture = ARCH_ANY; /* Architecture requested on invocation line */
437 int iclasses_seen; /* OR of instruction classes (I_* constants)
438 * for which we've actually assembled
439 * instructions.
440 */
441
442
443 /* BRANCH-PREDICTION INSTRUMENTATION
444 *
445 * The following supports generation of branch-prediction instrumentation
446 * (turned on by -b switch). The instrumentation collects counts
447 * of branches taken/not-taken for later input to a utility that will
448 * set the branch prediction bits of the instructions in accordance with
449 * the behavior observed. (Note that the KX series does not have
450 * brach-prediction.)
451 *
452 * The instrumentation consists of:
453 *
454 * (1) before and after each conditional branch, a call to an external
455 * routine that increments and steps over an inline counter. The
456 * counter itself, initialized to 0, immediately follows the call
457 * instruction. For each branch, the counter following the branch
458 * is the number of times the branch was not taken, and the difference
459 * between the counters is the number of times it was taken. An
460 * example of an instrumented conditional branch:
461 *
462 * call BR_CNT_FUNC
463 * .word 0
464 * LBRANCH23: be label
465 * call BR_CNT_FUNC
466 * .word 0
467 *
468 * (2) a table of pointers to the instrumented branches, so that an
469 * external postprocessing routine can locate all of the counters.
470 * the table begins with a 2-word header: a pointer to the next in
471 * a linked list of such tables (initialized to 0); and a count
472 * of the number of entries in the table (exclusive of the header.
473 *
474 * Note that input source code is expected to already contain calls
475 * an external routine that will link the branch local table into a
476 * list of such tables.
477 */
478
479 static int br_cnt; /* Number of branches instrumented so far.
480 * Also used to generate unique local labels
481 * for each instrumented branch
482 */
483
484 #define BR_LABEL_BASE "LBRANCH"
485 /* Basename of local labels on instrumented
486 * branches, to avoid conflict with compiler-
487 * generated local labels.
488 */
489
490 #define BR_CNT_FUNC "__inc_branch"
491 /* Name of the external routine that will
492 * increment (and step over) an inline counter.
493 */
494
495 #define BR_TAB_NAME "__BRANCH_TABLE__"
496 /* Name of the table of pointers to branches.
497 * A local (i.e., non-external) symbol.
498 */
499 \f
500 /*****************************************************************************
501 * md_begin: One-time initialization.
502 *
503 * Set up hash tables.
504 *
505 **************************************************************************** */
506 void
507 md_begin ()
508 {
509 int i; /* Loop counter */
510 const struct i960_opcode *oP; /* Pointer into opcode table */
511 char *retval; /* Value returned by hash functions */
512
513 if (((op_hash = hash_new ()) == 0)
514 || ((reg_hash = hash_new ()) == 0)
515 || ((areg_hash = hash_new ()) == 0))
516 {
517 as_fatal ("virtual memory exceeded");
518 }
519
520 /* For some reason, the base assembler uses an empty string for "no
521 error message", instead of a NULL pointer. */
522 retval = "";
523
524 for (oP = i960_opcodes; oP->name && !*retval; oP++)
525 {
526 retval = hash_insert (op_hash, oP->name, oP);
527 }
528
529 for (i = 0; regnames[i].reg_name && !*retval; i++)
530 {
531 retval = hash_insert (reg_hash, regnames[i].reg_name,
532 &regnames[i].reg_num);
533 }
534
535 for (i = 0; aregs[i].areg_name && !*retval; i++)
536 {
537 retval = hash_insert (areg_hash, aregs[i].areg_name,
538 &aregs[i].areg_num);
539 }
540
541 if (*retval)
542 {
543 as_fatal ("Hashing returned \"%s\".", retval);
544 }
545 } /* md_begin() */
546
547 /*****************************************************************************
548 * md_end: One-time final cleanup
549 *
550 * None necessary
551 *
552 **************************************************************************** */
553 void
554 md_end ()
555 {
556 }
557
558 /*****************************************************************************
559 * md_assemble: Assemble an instruction
560 *
561 * Assumptions about the passed-in text:
562 * - all comments, labels removed
563 * - text is an instruction
564 * - all white space compressed to single blanks
565 * - all character constants have been replaced with decimal
566 *
567 **************************************************************************** */
568 void
569 md_assemble (textP)
570 char *textP; /* Source text of instruction */
571 {
572 /* Parsed instruction text, containing NO whitespace:
573 * arg[0]->opcode mnemonic
574 * arg[1-3]->operands, with char constants
575 * replaced by decimal numbers
576 */
577 char *args[4];
578
579 int n_ops; /* Number of instruction operands */
580 int callx;
581 /* Pointer to instruction description */
582 struct i960_opcode *oP;
583 /* TRUE iff opcode mnemonic included branch-prediction
584 * suffix (".f" or ".t")
585 */
586 int branch_predict;
587 /* Setting of branch-prediction bit(s) to be OR'd
588 * into instruction opcode of CTRL/COBR format
589 * instructions.
590 */
591 long bp_bits;
592
593 int n; /* Offset of last character in opcode mnemonic */
594
595 static const char bp_error_msg[] = "branch prediction invalid on this opcode";
596
597
598 /* Parse instruction into opcode and operands */
599 memset (args, '\0', sizeof (args));
600 n_ops = i_scan (textP, args);
601 if (n_ops == -1)
602 {
603 return; /* Error message already issued */
604 }
605
606 /* Do "macro substitution" (sort of) on 'ldconst' pseudo-instruction */
607 if (!strcmp (args[0], "ldconst"))
608 {
609 n_ops = parse_ldconst (args);
610 if (n_ops == -1)
611 {
612 return;
613 }
614 }
615
616
617
618 /* Check for branch-prediction suffix on opcode mnemonic, strip it off */
619 n = strlen (args[0]) - 1;
620 branch_predict = 0;
621 bp_bits = 0;
622 if (args[0][n - 1] == '.' && (args[0][n] == 't' || args[0][n] == 'f'))
623 {
624 /* We could check here to see if the target architecture
625 * supports branch prediction, but why bother? The bit
626 * will just be ignored by processors that don't use it.
627 */
628 branch_predict = 1;
629 bp_bits = (args[0][n] == 't') ? BP_TAKEN : BP_NOT_TAKEN;
630 args[0][n - 1] = '\0'; /* Strip suffix from opcode mnemonic */
631 }
632
633 /* Look up opcode mnemonic in table and check number of operands.
634 * Check that opcode is legal for the target architecture.
635 * If all looks good, assemble instruction.
636 */
637 oP = (struct i960_opcode *) hash_find (op_hash, args[0]);
638 if (!oP || !targ_has_iclass (oP->iclass))
639 {
640 as_bad ("invalid opcode, \"%s\".", args[0]);
641
642 }
643 else if (n_ops != oP->num_ops)
644 {
645 as_bad ("improper number of operands. expecting %d, got %d",
646 oP->num_ops, n_ops);
647 }
648 else
649 {
650 switch (oP->format)
651 {
652 case FBRA:
653 case CTRL:
654 ctrl_fmt (args[1], oP->opcode | bp_bits, oP->num_ops);
655 if (oP->format == FBRA)
656 {
657 /* Now generate a 'bno' to same arg */
658 ctrl_fmt (args[1], BNO | bp_bits, 1);
659 }
660 break;
661 case COBR:
662 case COJ:
663 cobr_fmt (args, oP->opcode | bp_bits, oP);
664 break;
665 case REG:
666 if (branch_predict)
667 {
668 as_warn (bp_error_msg);
669 }
670 reg_fmt (args, oP);
671 break;
672 case MEM1:
673 if (args[0][0] == 'c' && args[0][1] == 'a')
674 {
675 if (branch_predict)
676 {
677 as_warn (bp_error_msg);
678 }
679 mem_fmt (args, oP, 1);
680 break;
681 }
682 case MEM2:
683 case MEM4:
684 case MEM8:
685 case MEM12:
686 case MEM16:
687 if (branch_predict)
688 {
689 as_warn (bp_error_msg);
690 }
691 mem_fmt (args, oP, 0);
692 break;
693 case CALLJ:
694 if (branch_predict)
695 {
696 as_warn (bp_error_msg);
697 }
698 /* Output opcode & set up "fixup" (relocation);
699 * flag relocation as 'callj' type.
700 */
701 know (oP->num_ops == 1);
702 get_cdisp (args[1], "CTRL", oP->opcode, 24, 0, 1);
703 break;
704 default:
705 BAD_CASE (oP->format);
706 break;
707 }
708 }
709 } /* md_assemble() */
710
711 /*****************************************************************************
712 * md_number_to_chars: convert a number to target byte order
713 *
714 **************************************************************************** */
715 void
716 md_number_to_chars (buf, value, n)
717 char *buf; /* Put output here */
718 valueT value; /* The integer to be converted */
719 int n; /* Number of bytes to output (significant bytes
720 * in 'value')
721 */
722 {
723 while (n--)
724 {
725 *buf++ = value;
726 value >>= 8;
727 }
728
729 /* XXX line number probably botched for this warning message. */
730 if (value != 0 && value != -1)
731 {
732 as_bad ("Displacement too long for instruction field length.");
733 }
734
735 return;
736 } /* md_number_to_chars() */
737
738 /*****************************************************************************
739 * md_chars_to_number: convert from target byte order to host byte order.
740 *
741 **************************************************************************** */
742 int
743 md_chars_to_number (val, n)
744 unsigned char *val; /* Value in target byte order */
745 int n; /* Number of bytes in the input */
746 {
747 int retval;
748
749 for (retval = 0; n--;)
750 {
751 retval <<= 8;
752 retval |= val[n];
753 }
754 return retval;
755 }
756
757
758 #define MAX_LITTLENUMS 6
759 #define LNUM_SIZE sizeof(LITTLENUM_TYPE)
760
761 /*****************************************************************************
762 * md_atof: convert ascii to floating point
763 *
764 * Turn a string at input_line_pointer into a floating point constant of type
765 * 'type', and store the appropriate bytes at *litP. The number of LITTLENUMS
766 * emitted is returned at 'sizeP'. An error message is returned, or a pointer
767 * to an empty message if OK.
768 *
769 * Note we call the i386 floating point routine, rather than complicating
770 * things with more files or symbolic links.
771 *
772 **************************************************************************** */
773 char *
774 md_atof (type, litP, sizeP)
775 int type;
776 char *litP;
777 int *sizeP;
778 {
779 LITTLENUM_TYPE words[MAX_LITTLENUMS];
780 LITTLENUM_TYPE *wordP;
781 int prec;
782 char *t;
783 char *atof_ieee ();
784
785 switch (type)
786 {
787 case 'f':
788 case 'F':
789 prec = 2;
790 break;
791
792 case 'd':
793 case 'D':
794 prec = 4;
795 break;
796
797 case 't':
798 case 'T':
799 prec = 5;
800 type = 'x'; /* That's what atof_ieee() understands */
801 break;
802
803 default:
804 *sizeP = 0;
805 return "Bad call to md_atof()";
806 }
807
808 t = atof_ieee (input_line_pointer, type, words);
809 if (t)
810 {
811 input_line_pointer = t;
812 }
813
814 *sizeP = prec * LNUM_SIZE;
815
816 /* Output the LITTLENUMs in REVERSE order in accord with i80960
817 * word-order. (Dunno why atof_ieee doesn't do it in the right
818 * order in the first place -- probably because it's a hack of
819 * atof_m68k.)
820 */
821
822 for (wordP = words + prec - 1; prec--;)
823 {
824 md_number_to_chars (litP, (long) (*wordP--), LNUM_SIZE);
825 litP += sizeof (LITTLENUM_TYPE);
826 }
827
828 return ""; /* Someone should teach Dean about null pointers */
829 }
830
831
832 /*****************************************************************************
833 * md_number_to_imm
834 *
835 **************************************************************************** */
836 void
837 md_number_to_imm (buf, val, n)
838 char *buf;
839 long val;
840 int n;
841 {
842 md_number_to_chars (buf, val, n);
843 }
844
845
846 /*****************************************************************************
847 * md_number_to_disp
848 *
849 **************************************************************************** */
850 void
851 md_number_to_disp (buf, val, n)
852 char *buf;
853 long val;
854 int n;
855 {
856 md_number_to_chars (buf, val, n);
857 }
858
859 /*****************************************************************************
860 * md_number_to_field:
861 *
862 * Stick a value (an address fixup) into a bit field of
863 * previously-generated instruction.
864 *
865 **************************************************************************** */
866 void
867 md_number_to_field (instrP, val, bfixP)
868 char *instrP; /* Pointer to instruction to be fixed */
869 long val; /* Address fixup value */
870 bit_fixS *bfixP; /* Description of bit field to be fixed up */
871 {
872 int numbits; /* Length of bit field to be fixed */
873 long instr; /* 32-bit instruction to be fixed-up */
874 long sign; /* 0 or -1, according to sign bit of 'val' */
875
876 /* Convert instruction back to host byte order
877 */
878 instr = md_chars_to_number (instrP, 4);
879
880 /* Surprise! -- we stored the number of bits
881 * to be modified rather than a pointer to a structure.
882 */
883 numbits = (int) bfixP;
884 if (numbits == 1)
885 {
886 /* This is a no-op, stuck here by reloc_callj() */
887 return;
888 }
889
890 know ((numbits == 13) || (numbits == 24));
891
892 /* Propagate sign bit of 'val' for the given number of bits.
893 * Result should be all 0 or all 1
894 */
895 sign = val >> ((int) numbits - 1);
896 if (((val < 0) && (sign != -1))
897 || ((val > 0) && (sign != 0)))
898 {
899 as_bad ("Fixup of %d too large for field width of %d",
900 val, numbits);
901 }
902 else
903 {
904 /* Put bit field into instruction and write back in target
905 * byte order.
906 */
907 val &= ~(-1 << (int) numbits); /* Clear unused sign bits */
908 instr |= val;
909 md_number_to_chars (instrP, instr, 4);
910 }
911 } /* md_number_to_field() */
912
913
914 /*****************************************************************************
915 * md_parse_option
916 * Invocation line includes a switch not recognized by the base assembler.
917 * See if it's a processor-specific option. For the 960, these are:
918 *
919 * -norelax:
920 * Conditional branch instructions that require displacements
921 * greater than 13 bits (or that have external targets) should
922 * generate errors. The default is to replace each such
923 * instruction with the corresponding compare (or chkbit) and
924 * branch instructions. Note that the Intel "j" cobr directives
925 * are ALWAYS "de-optimized" in this way when necessary,
926 * regardless of the setting of this option.
927 *
928 * -b:
929 * Add code to collect information about branches taken, for
930 * later optimization of branch prediction bits by a separate
931 * tool. COBR and CNTL format instructions have branch
932 * prediction bits (in the CX architecture); if "BR" represents
933 * an instruction in one of these classes, the following rep-
934 * resents the code generated by the assembler:
935 *
936 * call <increment routine>
937 * .word 0 # pre-counter
938 * Label: BR
939 * call <increment routine>
940 * .word 0 # post-counter
941 *
942 * A table of all such "Labels" is also generated.
943 *
944 *
945 * -AKA, -AKB, -AKC, -ASA, -ASB, -AMC, -ACA:
946 * Select the 80960 architecture. Instructions or features not
947 * supported by the selected architecture cause fatal errors.
948 * The default is to generate code for any instruction or feature
949 * that is supported by SOME version of the 960 (even if this
950 * means mixing architectures!).
951 *
952 **************************************************************************** */
953 int
954 md_parse_option (argP, cntP, vecP)
955 char **argP;
956 int *cntP;
957 char ***vecP;
958 {
959 char *p;
960 struct tabentry
961 {
962 char *flag;
963 int arch;
964 };
965 static struct tabentry arch_tab[] =
966 {
967 "KA", ARCH_KA,
968 "KB", ARCH_KB,
969 "SA", ARCH_KA, /* Synonym for KA */
970 "SB", ARCH_KB, /* Synonym for KB */
971 "KC", ARCH_MC, /* Synonym for MC */
972 "MC", ARCH_MC,
973 "CA", ARCH_CA,
974 NULL, 0
975 };
976 struct tabentry *tp;
977 if (!strcmp (*argP, "linkrelax"))
978 {
979 linkrelax = 1;
980 flagseen['L'] = 1;
981 }
982 else if (!strcmp (*argP, "norelax"))
983 {
984 norelax = 1;
985
986 }
987 else if (**argP == 'b')
988 {
989 instrument_branches = 1;
990
991 }
992 else if (**argP == 'A')
993 {
994 p = (*argP) + 1;
995
996 for (tp = arch_tab; tp->flag != NULL; tp++)
997 {
998 if (!strcmp (p, tp->flag))
999 {
1000 break;
1001 }
1002 }
1003
1004 if (tp->flag == NULL)
1005 {
1006 as_bad ("unknown architecture: %s", p);
1007 }
1008 else
1009 {
1010 architecture = tp->arch;
1011 }
1012 }
1013 else
1014 {
1015 /* Unknown option */
1016 (*argP)++;
1017 return 0;
1018 }
1019 **argP = '\0'; /* Done parsing this switch */
1020 return 1;
1021 }
1022
1023 /*****************************************************************************
1024 * md_convert_frag:
1025 * Called by base assembler after address relaxation is finished: modify
1026 * variable fragments according to how much relaxation was done.
1027 *
1028 * If the fragment substate is still 1, a 13-bit displacement was enough
1029 * to reach the symbol in question. Set up an address fixup, but otherwise
1030 * leave the cobr instruction alone.
1031 *
1032 * If the fragment substate is 2, a 13-bit displacement was not enough.
1033 * Replace the cobr with a two instructions (a compare and a branch).
1034 *
1035 **************************************************************************** */
1036 void
1037 md_convert_frag (headers, fragP)
1038 object_headers *headers;
1039 fragS *fragP;
1040 {
1041 fixS *fixP; /* Structure describing needed address fix */
1042
1043 switch (fragP->fr_subtype)
1044 {
1045 case 1:
1046 /* LEAVE SINGLE COBR INSTRUCTION */
1047 fixP = fix_new (fragP,
1048 fragP->fr_opcode - fragP->fr_literal,
1049 4,
1050 fragP->fr_symbol,
1051 fragP->fr_offset,
1052 1,
1053 NO_RELOC);
1054
1055 fixP->fx_bit_fixP = (bit_fixS *) 13; /* size of bit field */
1056 break;
1057 case 2:
1058 /* REPLACE COBR WITH COMPARE/BRANCH INSTRUCTIONS */
1059 relax_cobr (fragP);
1060 break;
1061 default:
1062 BAD_CASE (fragP->fr_subtype);
1063 break;
1064 }
1065 }
1066
1067 /*****************************************************************************
1068 * md_estimate_size_before_relax: How much does it look like *fragP will grow?
1069 *
1070 * Called by base assembler just before address relaxation.
1071 * Return the amount by which the fragment will grow.
1072 *
1073 * Any symbol that is now undefined will not become defined; cobr's
1074 * based on undefined symbols will have to be replaced with a compare
1075 * instruction and a branch instruction, and the code fragment will grow
1076 * by 4 bytes.
1077 *
1078 **************************************************************************** */
1079 int
1080 md_estimate_size_before_relax (fragP, segment_type)
1081 register fragS *fragP;
1082 register segT segment_type;
1083 {
1084 /* If symbol is undefined in this segment, go to "relaxed" state
1085 * (compare and branch instructions instead of cobr) right now.
1086 */
1087 if (S_GET_SEGMENT (fragP->fr_symbol) != segment_type)
1088 {
1089 relax_cobr (fragP);
1090 return 4;
1091 }
1092 return 0;
1093 } /* md_estimate_size_before_relax() */
1094
1095
1096 /*****************************************************************************
1097 * md_ri_to_chars:
1098 * This routine exists in order to overcome machine byte-order problems
1099 * when dealing with bit-field entries in the relocation_info struct.
1100 *
1101 * But relocation info will be used on the host machine only (only
1102 * executable code is actually downloaded to the i80960). Therefore,
1103 * we leave it in host byte order.
1104 *
1105 * The above comment is no longer true. This routine now really
1106 * does do the reordering (Ian Taylor 28 Aug 92).
1107 *
1108 **************************************************************************** */
1109 void
1110 md_ri_to_chars (where, ri)
1111 char *where;
1112 struct relocation_info *ri;
1113 {
1114 md_number_to_chars (where, ri->r_address,
1115 sizeof (ri->r_address));
1116 where[4] = ri->r_index & 0x0ff;
1117 where[5] = (ri->r_index >> 8) & 0x0ff;
1118 where[6] = (ri->r_index >> 16) & 0x0ff;
1119 where[7] = ((ri->r_pcrel << 0)
1120 | (ri->r_length << 1)
1121 | (ri->r_extern << 3)
1122 | (ri->r_bsr << 4)
1123 | (ri->r_disp << 5)
1124 | (ri->r_callj << 6));
1125 } /* md_ri_to_chars() */
1126
1127 #ifndef WORKING_DOT_WORD
1128
1129 int md_short_jump_size = 0;
1130 int md_long_jump_size = 0;
1131
1132 void
1133 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
1134 char *ptr;
1135 addressT from_addr;
1136 addressT to_addr;
1137 fragS *frag;
1138 symbolS *to_symbol;
1139 {
1140 as_fatal ("failed sanity check.");
1141 }
1142
1143 void
1144 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
1145 char *ptr;
1146 addressT from_addr, to_addr;
1147 fragS *frag;
1148 symbolS *to_symbol;
1149 {
1150 as_fatal ("failed sanity check.");
1151 }
1152
1153 #endif
1154 \f
1155 /*************************************************************
1156 * *
1157 * FOLLOWING ARE THE LOCAL ROUTINES, IN ALPHABETICAL ORDER *
1158 * *
1159 ************************************************************ */
1160
1161
1162
1163 /*****************************************************************************
1164 * brcnt_emit: Emit code to increment inline branch counter.
1165 *
1166 * See the comments above the declaration of 'br_cnt' for details on
1167 * branch-prediction instrumentation.
1168 **************************************************************************** */
1169 static void
1170 brcnt_emit ()
1171 {
1172 ctrl_fmt (BR_CNT_FUNC, CALL, 1); /* Emit call to "increment" routine */
1173 emit (0); /* Emit inline counter to be incremented */
1174 }
1175
1176 /*****************************************************************************
1177 * brlab_next: generate the next branch local label
1178 *
1179 * See the comments above the declaration of 'br_cnt' for details on
1180 * branch-prediction instrumentation.
1181 **************************************************************************** */
1182 static char *
1183 brlab_next ()
1184 {
1185 static char buf[20];
1186
1187 sprintf (buf, "%s%d", BR_LABEL_BASE, br_cnt++);
1188 return buf;
1189 }
1190
1191 /*****************************************************************************
1192 * brtab_emit: generate the fetch-prediction branch table.
1193 *
1194 * See the comments above the declaration of 'br_cnt' for details on
1195 * branch-prediction instrumentation.
1196 *
1197 * The code emitted here would be functionally equivalent to the following
1198 * example assembler source.
1199 *
1200 * .data
1201 * .align 2
1202 * BR_TAB_NAME:
1203 * .word 0 # link to next table
1204 * .word 3 # length of table
1205 * .word LBRANCH0 # 1st entry in table proper
1206 * .word LBRANCH1
1207 * .word LBRANCH2
1208 ***************************************************************************** */
1209 void
1210 brtab_emit ()
1211 {
1212 int i;
1213 char buf[20];
1214 char *p; /* Where the binary was output to */
1215 fixS *fixP; /*->description of deferred address fixup */
1216
1217 if (!instrument_branches)
1218 {
1219 return;
1220 }
1221
1222 subseg_new (SEG_DATA, 0); /* .data */
1223 frag_align (2, 0); /* .align 2 */
1224 record_alignment (now_seg, 2);
1225 colon (BR_TAB_NAME); /* BR_TAB_NAME: */
1226 emit (0); /* .word 0 #link to next table */
1227 emit (br_cnt); /* .word n #length of table */
1228
1229 for (i = 0; i < br_cnt; i++)
1230 {
1231 sprintf (buf, "%s%d", BR_LABEL_BASE, i);
1232 p = emit (0);
1233 fixP = fix_new (frag_now,
1234 p - frag_now->fr_literal,
1235 4,
1236 symbol_find (buf),
1237 0,
1238 0,
1239 NO_RELOC);
1240 fixP->fx_im_disp = 2; /* 32-bit displacement fix */
1241 }
1242 }
1243
1244 /*****************************************************************************
1245 * cobr_fmt: generate a COBR-format instruction
1246 *
1247 **************************************************************************** */
1248 static
1249 void
1250 cobr_fmt (arg, opcode, oP)
1251 char *arg[]; /* arg[0]->opcode mnemonic, arg[1-3]->operands (ascii) */
1252 long opcode; /* Opcode, with branch-prediction bits already set
1253 * if necessary.
1254 */
1255 struct i960_opcode *oP;
1256 /*->description of instruction */
1257 {
1258 long instr; /* 32-bit instruction */
1259 struct regop regop; /* Description of register operand */
1260 int n; /* Number of operands */
1261 int var_frag; /* 1 if varying length code fragment should
1262 * be emitted; 0 if an address fix
1263 * should be emitted.
1264 */
1265
1266 instr = opcode;
1267 n = oP->num_ops;
1268
1269 if (n >= 1)
1270 {
1271 /* First operand (if any) of a COBR is always a register
1272 * operand. Parse it.
1273 */
1274 parse_regop (&regop, arg[1], oP->operand[0]);
1275 instr |= (regop.n << 19) | (regop.mode << 13);
1276 }
1277 if (n >= 2)
1278 {
1279 /* Second operand (if any) of a COBR is always a register
1280 * operand. Parse it.
1281 */
1282 parse_regop (&regop, arg[2], oP->operand[1]);
1283 instr |= (regop.n << 14) | regop.special;
1284 }
1285
1286
1287 if (n < 3)
1288 {
1289 emit (instr);
1290
1291 }
1292 else
1293 {
1294 if (instrument_branches)
1295 {
1296 brcnt_emit ();
1297 colon (brlab_next ());
1298 }
1299
1300 /* A third operand to a COBR is always a displacement.
1301 * Parse it; if it's relaxable (a cobr "j" directive, or any
1302 * cobr other than bbs/bbc when the "-norelax" option is not in
1303 * use) set up a variable code fragment; otherwise set up an
1304 * address fix.
1305 */
1306 var_frag = !norelax || (oP->format == COJ); /* TRUE or FALSE */
1307 get_cdisp (arg[3], "COBR", instr, 13, var_frag, 0);
1308
1309 if (instrument_branches)
1310 {
1311 brcnt_emit ();
1312 }
1313 }
1314 } /* cobr_fmt() */
1315
1316
1317 /*****************************************************************************
1318 * ctrl_fmt: generate a CTRL-format instruction
1319 *
1320 **************************************************************************** */
1321 static
1322 void
1323 ctrl_fmt (targP, opcode, num_ops)
1324 char *targP; /* Pointer to text of lone operand (if any) */
1325 long opcode; /* Template of instruction */
1326 int num_ops; /* Number of operands */
1327 {
1328 int instrument; /* TRUE iff we should add instrumentation to track
1329 * how often the branch is taken
1330 */
1331
1332
1333 if (num_ops == 0)
1334 {
1335 emit (opcode); /* Output opcode */
1336 }
1337 else
1338 {
1339
1340 instrument = instrument_branches && (opcode != CALL)
1341 && (opcode != B) && (opcode != RET) && (opcode != BAL);
1342
1343 if (instrument)
1344 {
1345 brcnt_emit ();
1346 colon (brlab_next ());
1347 }
1348
1349 /* The operand MUST be an ip-relative displacment. Parse it
1350 * and set up address fix for the instruction we just output.
1351 */
1352 get_cdisp (targP, "CTRL", opcode, 24, 0, 0);
1353
1354 if (instrument)
1355 {
1356 brcnt_emit ();
1357 }
1358 }
1359
1360 }
1361
1362
1363 /*****************************************************************************
1364 * emit: output instruction binary
1365 *
1366 * Output instruction binary, in target byte order, 4 bytes at a time.
1367 * Return pointer to where it was placed.
1368 *
1369 **************************************************************************** */
1370 static
1371 char *
1372 emit (instr)
1373 long instr; /* Word to be output, host byte order */
1374 {
1375 char *toP; /* Where to output it */
1376
1377 toP = frag_more (4); /* Allocate storage */
1378 md_number_to_chars (toP, instr, 4); /* Convert to target byte order */
1379 return toP;
1380 }
1381
1382
1383 /*****************************************************************************
1384 * get_args: break individual arguments out of comma-separated list
1385 *
1386 * Input assumptions:
1387 * - all comments and labels have been removed
1388 * - all strings of whitespace have been collapsed to a single blank.
1389 * - all character constants ('x') have been replaced with decimal
1390 *
1391 * Output:
1392 * args[0] is untouched. args[1] points to first operand, etc. All args:
1393 * - are NULL-terminated
1394 * - contain no whitespace
1395 *
1396 * Return value:
1397 * Number of operands (0,1,2, or 3) or -1 on error.
1398 *
1399 **************************************************************************** */
1400 static int
1401 get_args (p, args)
1402 register char *p; /* Pointer to comma-separated operands; MUCKED BY US */
1403 char *args[]; /* Output arg: pointers to operands placed in args[1-3].
1404 * MUST ACCOMMODATE 4 ENTRIES (args[0-3]).
1405 */
1406 {
1407 register int n; /* Number of operands */
1408 register char *to;
1409 /* char buf[4]; */
1410 /* int len; */
1411
1412
1413 /* Skip lead white space */
1414 while (*p == ' ')
1415 {
1416 p++;
1417 }
1418
1419 if (*p == '\0')
1420 {
1421 return 0;
1422 }
1423
1424 n = 1;
1425 args[1] = p;
1426
1427 /* Squeze blanks out by moving non-blanks toward start of string.
1428 * Isolate operands, whenever comma is found.
1429 */
1430 to = p;
1431 while (*p != '\0')
1432 {
1433
1434 if (*p == ' ')
1435 {
1436 p++;
1437
1438 }
1439 else if (*p == ',')
1440 {
1441
1442 /* Start of operand */
1443 if (n == 3)
1444 {
1445 as_bad ("too many operands");
1446 return -1;
1447 }
1448 *to++ = '\0'; /* Terminate argument */
1449 args[++n] = to; /* Start next argument */
1450 p++;
1451
1452 }
1453 else
1454 {
1455 *to++ = *p++;
1456 }
1457 }
1458 *to = '\0';
1459 return n;
1460 }
1461
1462
1463 /*****************************************************************************
1464 * get_cdisp: handle displacement for a COBR or CTRL instruction.
1465 *
1466 * Parse displacement for a COBR or CTRL instruction.
1467 *
1468 * If successful, output the instruction opcode and set up for it,
1469 * depending on the arg 'var_frag', either:
1470 * o an address fixup to be done when all symbol values are known, or
1471 * o a varying length code fragment, with address fixup info. This
1472 * will be done for cobr instructions that may have to be relaxed
1473 * in to compare/branch instructions (8 bytes) if the final
1474 * address displacement is greater than 13 bits.
1475 *
1476 *****************************************************************************/
1477 static
1478 void
1479 get_cdisp (dispP, ifmtP, instr, numbits, var_frag, callj)
1480 /* displacement as specified in source instruction */
1481 char *dispP;
1482 /* "COBR" or "CTRL" (for use in error message) */
1483 char *ifmtP;
1484 /* Instruction needing the displacement */
1485 long instr;
1486 /* # bits of displacement (13 for COBR, 24 for CTRL) */
1487 int numbits;
1488 /* 1 if varying length code fragment should be emitted;
1489 * 0 if an address fix should be emitted.
1490 */
1491 int var_frag;
1492 /* 1 if callj relocation should be done; else 0 */
1493 int callj;
1494 {
1495 expressionS e; /* Parsed expression */
1496 fixS *fixP; /* Structure describing needed address fix */
1497 char *outP; /* Where instruction binary is output to */
1498
1499 fixP = NULL;
1500
1501 parse_expr (dispP, &e);
1502 switch (e.X_op)
1503 {
1504 case O_illegal:
1505 as_bad ("expression syntax error");
1506
1507 case O_symbol:
1508 if (S_GET_SEGMENT (e.X_add_symbol) == text_section
1509 || S_GET_SEGMENT (e.X_add_symbol) == undefined_section)
1510 {
1511 if (var_frag)
1512 {
1513 outP = frag_more (8); /* Allocate worst-case storage */
1514 md_number_to_chars (outP, instr, 4);
1515 frag_variant (rs_machine_dependent, 4, 4, 1,
1516 adds (e), offs (e), outP, 0, 0);
1517 }
1518 else
1519 {
1520 /* Set up a new fix structure, so address can be updated
1521 * when all symbol values are known.
1522 */
1523 outP = emit (instr);
1524 fixP = fix_new (frag_now,
1525 outP - frag_now->fr_literal,
1526 4,
1527 adds (e),
1528 offs (e),
1529 1,
1530 NO_RELOC);
1531
1532 fixP->fx_callj = callj;
1533
1534 /* We want to modify a bit field when the address is
1535 * known. But we don't need all the garbage in the
1536 * bit_fix structure. So we're going to lie and store
1537 * the number of bits affected instead of a pointer.
1538 */
1539 fixP->fx_bit_fixP = (bit_fixS *) numbits;
1540 }
1541 }
1542 else
1543 as_bad ("attempt to branch into different segment");
1544 break;
1545
1546 default:
1547 as_bad ("target of %s instruction must be a label", ifmtP);
1548 break;
1549 }
1550 }
1551
1552
1553 /*****************************************************************************
1554 * get_ispec: parse a memory operand for an index specification
1555 *
1556 * Here, an "index specification" is taken to be anything surrounded
1557 * by square brackets and NOT followed by anything else.
1558 *
1559 * If it's found, detach it from the input string, remove the surrounding
1560 * square brackets, and return a pointer to it. Otherwise, return NULL.
1561 *
1562 **************************************************************************** */
1563 static
1564 char *
1565 get_ispec (textP)
1566 char *textP; /*->memory operand from source instruction, no white space */
1567 {
1568 char *start; /*->start of index specification */
1569 char *end; /*->end of index specification */
1570
1571 /* Find opening square bracket, if any
1572 */
1573 start = strchr (textP, '[');
1574
1575 if (start != NULL)
1576 {
1577
1578 /* Eliminate '[', detach from rest of operand */
1579 *start++ = '\0';
1580
1581 end = strchr (start, ']');
1582
1583 if (end == NULL)
1584 {
1585 as_bad ("unmatched '['");
1586
1587 }
1588 else
1589 {
1590 /* Eliminate ']' and make sure it was the last thing
1591 * in the string.
1592 */
1593 *end = '\0';
1594 if (*(end + 1) != '\0')
1595 {
1596 as_bad ("garbage after index spec ignored");
1597 }
1598 }
1599 }
1600 return start;
1601 }
1602
1603 /*****************************************************************************
1604 * get_regnum:
1605 *
1606 * Look up a (suspected) register name in the register table and return the
1607 * associated register number (or -1 if not found).
1608 *
1609 **************************************************************************** */
1610 static
1611 int
1612 get_regnum (regname)
1613 char *regname; /* Suspected register name */
1614 {
1615 int *rP;
1616
1617 rP = (int *) hash_find (reg_hash, regname);
1618 return (rP == NULL) ? -1 : *rP;
1619 }
1620
1621
1622 /*****************************************************************************
1623 * i_scan: perform lexical scan of ascii assembler instruction.
1624 *
1625 * Input assumptions:
1626 * - input string is an i80960 instruction (not a pseudo-op)
1627 * - all comments and labels have been removed
1628 * - all strings of whitespace have been collapsed to a single blank.
1629 *
1630 * Output:
1631 * args[0] points to opcode, other entries point to operands. All strings:
1632 * - are NULL-terminated
1633 * - contain no whitespace
1634 * - have character constants ('x') replaced with a decimal number
1635 *
1636 * Return value:
1637 * Number of operands (0,1,2, or 3) or -1 on error.
1638 *
1639 **************************************************************************** */
1640 static int
1641 i_scan (iP, args)
1642 register char *iP; /* Pointer to ascii instruction; MUCKED BY US. */
1643 char *args[]; /* Output arg: pointers to opcode and operands placed
1644 * here. MUST ACCOMMODATE 4 ENTRIES.
1645 */
1646 {
1647
1648 /* Isolate opcode */
1649 if (*(iP) == ' ')
1650 {
1651 iP++;
1652 } /* Skip lead space, if any */
1653 args[0] = iP;
1654 for (; *iP != ' '; iP++)
1655 {
1656 if (*iP == '\0')
1657 {
1658 /* There are no operands */
1659 if (args[0] == iP)
1660 {
1661 /* We never moved: there was no opcode either! */
1662 as_bad ("missing opcode");
1663 return -1;
1664 }
1665 return 0;
1666 }
1667 }
1668 *iP++ = '\0'; /* Terminate opcode */
1669 return (get_args (iP, args));
1670 } /* i_scan() */
1671
1672
1673 /*****************************************************************************
1674 * mem_fmt: generate a MEMA- or MEMB-format instruction
1675 *
1676 **************************************************************************** */
1677 static void
1678 mem_fmt (args, oP, callx)
1679 char *args[]; /* args[0]->opcode mnemonic, args[1-3]->operands */
1680 struct i960_opcode *oP; /* Pointer to description of instruction */
1681 int callx; /* Is this a callx opcode */
1682 {
1683 int i; /* Loop counter */
1684 struct regop regop; /* Description of register operand */
1685 char opdesc; /* Operand descriptor byte */
1686 memS instr; /* Description of binary to be output */
1687 char *outP; /* Where the binary was output to */
1688 expressionS expr; /* Parsed expression */
1689 fixS *fixP; /*->description of deferred address fixup */
1690
1691 memset (&instr, '\0', sizeof (memS));
1692 instr.opcode = oP->opcode;
1693
1694 /* Process operands. */
1695 for (i = 1; i <= oP->num_ops; i++)
1696 {
1697 opdesc = oP->operand[i - 1];
1698
1699 if (MEMOP (opdesc))
1700 {
1701 parse_memop (&instr, args[i], oP->format);
1702 }
1703 else
1704 {
1705 parse_regop (&regop, args[i], opdesc);
1706 instr.opcode |= regop.n << 19;
1707 }
1708 }
1709
1710 /* Output opcode */
1711 outP = emit (instr.opcode);
1712
1713 if (instr.disp == 0)
1714 {
1715 return;
1716 }
1717
1718 /* Parse and process the displacement */
1719 parse_expr (instr.e, &expr);
1720 switch (expr.X_op)
1721 {
1722 case O_illegal:
1723 as_bad ("expression syntax error");
1724 break;
1725
1726 case O_constant:
1727 if (instr.disp == 32)
1728 {
1729 (void) emit (offs (expr)); /* Output displacement */
1730 }
1731 else
1732 {
1733 /* 12-bit displacement */
1734 if (offs (expr) & ~0xfff)
1735 {
1736 /* Won't fit in 12 bits: convert already-output
1737 * instruction to MEMB format, output
1738 * displacement.
1739 */
1740 mema_to_memb (outP);
1741 (void) emit (offs (expr));
1742 }
1743 else
1744 {
1745 /* WILL fit in 12 bits: OR into opcode and
1746 * overwrite the binary we already put out
1747 */
1748 instr.opcode |= offs (expr);
1749 md_number_to_chars (outP, instr.opcode, 4);
1750 }
1751 }
1752 break;
1753
1754 default:
1755 if (instr.disp == 12)
1756 {
1757 /* Displacement is dependent on a symbol, whose value
1758 * may change at link time. We HAVE to reserve 32 bits.
1759 * Convert already-output opcode to MEMB format.
1760 */
1761 mema_to_memb (outP);
1762 }
1763
1764 /* Output 0 displacement and set up address fixup for when
1765 * this symbol's value becomes known.
1766 */
1767 outP = emit ((long) 0);
1768 fixP = fix_new_exp (frag_now,
1769 outP - frag_now->fr_literal,
1770 4,
1771 &expr,
1772 0,
1773 NO_RELOC);
1774 fixP->fx_im_disp = 2; /* 32-bit displacement fix */
1775 fixP->fx_bsr = callx; /*SAC LD RELAX HACK *//* Mark reloc as being in i stream */
1776 break;
1777 }
1778 } /* memfmt() */
1779
1780
1781 /*****************************************************************************
1782 * mema_to_memb: convert a MEMA-format opcode to a MEMB-format opcode.
1783 *
1784 * There are 2 possible MEMA formats:
1785 * - displacement only
1786 * - displacement + abase
1787 *
1788 * They are distinguished by the setting of the MEMA_ABASE bit.
1789 *
1790 **************************************************************************** */
1791 static void
1792 mema_to_memb (opcodeP)
1793 char *opcodeP; /* Where to find the opcode, in target byte order */
1794 {
1795 long opcode; /* Opcode in host byte order */
1796 long mode; /* Mode bits for MEMB instruction */
1797
1798 opcode = md_chars_to_number (opcodeP, 4);
1799 know (!(opcode & MEMB_BIT));
1800
1801 mode = MEMB_BIT | D_BIT;
1802 if (opcode & MEMA_ABASE)
1803 {
1804 mode |= A_BIT;
1805 }
1806
1807 opcode &= 0xffffc000; /* Clear MEMA offset and mode bits */
1808 opcode |= mode; /* Set MEMB mode bits */
1809
1810 md_number_to_chars (opcodeP, opcode, 4);
1811 } /* mema_to_memb() */
1812
1813
1814 /*****************************************************************************
1815 * parse_expr: parse an expression
1816 *
1817 * Use base assembler's expression parser to parse an expression.
1818 * It, unfortunately, runs off a global which we have to save/restore
1819 * in order to make it work for us.
1820 *
1821 * An empty expression string is treated as an absolute 0.
1822 *
1823 * Sets O_illegal regardless of expression evaluation if entire input
1824 * string is not consumed in the evaluation -- tolerate no dangling junk!
1825 *
1826 **************************************************************************** */
1827 static void
1828 parse_expr (textP, expP)
1829 char *textP; /* Text of expression to be parsed */
1830 expressionS *expP; /* Where to put the results of parsing */
1831 {
1832 char *save_in; /* Save global here */
1833 symbolS *symP;
1834
1835 know (textP);
1836
1837 if (*textP == '\0')
1838 {
1839 /* Treat empty string as absolute 0 */
1840 expP->X_add_symbol = expP->X_op_symbol = NULL;
1841 expP->X_add_number = 0;
1842 exp->X_op = O_constant;
1843 }
1844 else
1845 {
1846 save_in = input_line_pointer; /* Save global */
1847 input_line_pointer = textP; /* Make parser work for us */
1848
1849 seg = expression (expP);
1850 if (input_line_pointer - textP != strlen (textP))
1851 {
1852 /* Did not consume all of the input */
1853 expP->X_op = O_illegal;
1854 }
1855 symP = expP->X_add_symbol;
1856 if (symP && (hash_find (reg_hash, S_GET_NAME (symP))))
1857 {
1858 /* Register name in an expression */
1859 /* FIXME: this isn't much of a check any more. */
1860 expP->X_op = O_illegal;
1861 }
1862
1863 input_line_pointer = save_in; /* Restore global */
1864 }
1865 return seg;
1866 }
1867
1868
1869 /*****************************************************************************
1870 * parse_ldcont:
1871 * Parse and replace a 'ldconst' pseudo-instruction with an appropriate
1872 * i80960 instruction.
1873 *
1874 * Assumes the input consists of:
1875 * arg[0] opcode mnemonic ('ldconst')
1876 * arg[1] first operand (constant)
1877 * arg[2] name of register to be loaded
1878 *
1879 * Replaces opcode and/or operands as appropriate.
1880 *
1881 * Returns the new number of arguments, or -1 on failure.
1882 *
1883 **************************************************************************** */
1884 static
1885 int
1886 parse_ldconst (arg)
1887 char *arg[]; /* See above */
1888 {
1889 int n; /* Constant to be loaded */
1890 int shift; /* Shift count for "shlo" instruction */
1891 static char buf[5]; /* Literal for first operand */
1892 static char buf2[5]; /* Literal for second operand */
1893 expressionS e; /* Parsed expression */
1894
1895
1896 arg[3] = NULL; /* So we can tell at the end if it got used or not */
1897
1898 parse_expr (arg[1], &e);
1899 switch (e.X_op)
1900 {
1901 default:
1902 /* We're dependent on one or more symbols -- use "lda" */
1903 arg[0] = "lda";
1904 break;
1905
1906 case O_constant:
1907 /* Try the following mappings:
1908 * ldconst 0,<reg> ->mov 0,<reg>
1909 * ldconst 31,<reg> ->mov 31,<reg>
1910 * ldconst 32,<reg> ->addo 1,31,<reg>
1911 * ldconst 62,<reg> ->addo 31,31,<reg>
1912 * ldconst 64,<reg> ->shlo 8,3,<reg>
1913 * ldconst -1,<reg> ->subo 1,0,<reg>
1914 * ldconst -31,<reg>->subo 31,0,<reg>
1915 *
1916 * anthing else becomes:
1917 * lda xxx,<reg>
1918 */
1919 n = offs (e);
1920 if ((0 <= n) && (n <= 31))
1921 {
1922 arg[0] = "mov";
1923
1924 }
1925 else if ((-31 <= n) && (n <= -1))
1926 {
1927 arg[0] = "subo";
1928 arg[3] = arg[2];
1929 sprintf (buf, "%d", -n);
1930 arg[1] = buf;
1931 arg[2] = "0";
1932
1933 }
1934 else if ((32 <= n) && (n <= 62))
1935 {
1936 arg[0] = "addo";
1937 arg[3] = arg[2];
1938 arg[1] = "31";
1939 sprintf (buf, "%d", n - 31);
1940 arg[2] = buf;
1941
1942 }
1943 else if ((shift = shift_ok (n)) != 0)
1944 {
1945 arg[0] = "shlo";
1946 arg[3] = arg[2];
1947 sprintf (buf, "%d", shift);
1948 arg[1] = buf;
1949 sprintf (buf2, "%d", n >> shift);
1950 arg[2] = buf2;
1951
1952 }
1953 else
1954 {
1955 arg[0] = "lda";
1956 }
1957 break;
1958
1959 case O_illegal:
1960 as_bad ("invalid constant");
1961 return -1;
1962 break;
1963 }
1964 return (arg[3] == 0) ? 2 : 3;
1965 }
1966
1967 /*****************************************************************************
1968 * parse_memop: parse a memory operand
1969 *
1970 * This routine is based on the observation that the 4 mode bits of the
1971 * MEMB format, taken individually, have fairly consistent meaning:
1972 *
1973 * M3 (bit 13): 1 if displacement is present (D_BIT)
1974 * M2 (bit 12): 1 for MEMB instructions (MEMB_BIT)
1975 * M1 (bit 11): 1 if index is present (I_BIT)
1976 * M0 (bit 10): 1 if abase is present (A_BIT)
1977 *
1978 * So we parse the memory operand and set bits in the mode as we find
1979 * things. Then at the end, if we go to MEMB format, we need only set
1980 * the MEMB bit (M2) and our mode is built for us.
1981 *
1982 * Unfortunately, I said "fairly consistent". The exceptions:
1983 *
1984 * DBIA
1985 * 0100 Would seem illegal, but means "abase-only".
1986 *
1987 * 0101 Would seem to mean "abase-only" -- it means IP-relative.
1988 * Must be converted to 0100.
1989 *
1990 * 0110 Would seem to mean "index-only", but is reserved.
1991 * We turn on the D bit and provide a 0 displacement.
1992 *
1993 * The other thing to observe is that we parse from the right, peeling
1994 * things * off as we go: first any index spec, then any abase, then
1995 * the displacement.
1996 *
1997 **************************************************************************** */
1998 static
1999 void
2000 parse_memop (memP, argP, optype)
2001 memS *memP; /* Where to put the results */
2002 char *argP; /* Text of the operand to be parsed */
2003 int optype; /* MEM1, MEM2, MEM4, MEM8, MEM12, or MEM16 */
2004 {
2005 char *indexP; /* Pointer to index specification with "[]" removed */
2006 char *p; /* Temp char pointer */
2007 char iprel_flag; /* True if this is an IP-relative operand */
2008 int regnum; /* Register number */
2009 int scale; /* Scale factor: 1,2,4,8, or 16. Later converted
2010 * to internal format (0,1,2,3,4 respectively).
2011 */
2012 int mode; /* MEMB mode bits */
2013 int *intP; /* Pointer to register number */
2014
2015 /* The following table contains the default scale factors for each
2016 * type of memory instruction. It is accessed using (optype-MEM1)
2017 * as an index -- thus it assumes the 'optype' constants are assigned
2018 * consecutive values, in the order they appear in this table
2019 */
2020 static int def_scale[] =
2021 {
2022 1, /* MEM1 */
2023 2, /* MEM2 */
2024 4, /* MEM4 */
2025 8, /* MEM8 */
2026 -1, /* MEM12 -- no valid default */
2027 16 /* MEM16 */
2028 };
2029
2030
2031 iprel_flag = mode = 0;
2032
2033 /* Any index present? */
2034 indexP = get_ispec (argP);
2035 if (indexP)
2036 {
2037 p = strchr (indexP, '*');
2038 if (p == NULL)
2039 {
2040 /* No explicit scale -- use default for this
2041 *instruction type.
2042 */
2043 scale = def_scale[optype - MEM1];
2044 }
2045 else
2046 {
2047 *p++ = '\0'; /* Eliminate '*' */
2048
2049 /* Now indexP->a '\0'-terminated register name,
2050 * and p->a scale factor.
2051 */
2052
2053 if (!strcmp (p, "16"))
2054 {
2055 scale = 16;
2056 }
2057 else if (strchr ("1248", *p) && (p[1] == '\0'))
2058 {
2059 scale = *p - '0';
2060 }
2061 else
2062 {
2063 scale = -1;
2064 }
2065 }
2066
2067 regnum = get_regnum (indexP); /* Get index reg. # */
2068 if (!IS_RG_REG (regnum))
2069 {
2070 as_bad ("invalid index register");
2071 return;
2072 }
2073
2074 /* Convert scale to its binary encoding */
2075 switch (scale)
2076 {
2077 case 1:
2078 scale = 0 << 7;
2079 break;
2080 case 2:
2081 scale = 1 << 7;
2082 break;
2083 case 4:
2084 scale = 2 << 7;
2085 break;
2086 case 8:
2087 scale = 3 << 7;
2088 break;
2089 case 16:
2090 scale = 4 << 7;
2091 break;
2092 default:
2093 as_bad ("invalid scale factor");
2094 return;
2095 };
2096
2097 memP->opcode |= scale | regnum; /* Set index bits in opcode */
2098 mode |= I_BIT; /* Found a valid index spec */
2099 }
2100
2101 /* Any abase (Register Indirect) specification present? */
2102 if ((p = strrchr (argP, '(')) != NULL)
2103 {
2104 /* "(" is there -- does it start a legal abase spec?
2105 * (If not it could be part of a displacement expression.)
2106 */
2107 intP = (int *) hash_find (areg_hash, p);
2108 if (intP != NULL)
2109 {
2110 /* Got an abase here */
2111 regnum = *intP;
2112 *p = '\0'; /* discard register spec */
2113 if (regnum == IPREL)
2114 {
2115 /* We have to specialcase ip-rel mode */
2116 iprel_flag = 1;
2117 }
2118 else
2119 {
2120 memP->opcode |= regnum << 14;
2121 mode |= A_BIT;
2122 }
2123 }
2124 }
2125
2126 /* Any expression present? */
2127 memP->e = argP;
2128 if (*argP != '\0')
2129 {
2130 mode |= D_BIT;
2131 }
2132
2133 /* Special-case ip-relative addressing */
2134 if (iprel_flag)
2135 {
2136 if (mode & I_BIT)
2137 {
2138 syntax ();
2139 }
2140 else
2141 {
2142 memP->opcode |= 5 << 10; /* IP-relative mode */
2143 memP->disp = 32;
2144 }
2145 return;
2146 }
2147
2148 /* Handle all other modes */
2149 switch (mode)
2150 {
2151 case D_BIT | A_BIT:
2152 /* Go with MEMA instruction format for now (grow to MEMB later
2153 * if 12 bits is not enough for the displacement).
2154 * MEMA format has a single mode bit: set it to indicate
2155 * that abase is present.
2156 */
2157 memP->opcode |= MEMA_ABASE;
2158 memP->disp = 12;
2159 break;
2160
2161 case D_BIT:
2162 /* Go with MEMA instruction format for now (grow to MEMB later
2163 * if 12 bits is not enough for the displacement).
2164 */
2165 memP->disp = 12;
2166 break;
2167
2168 case A_BIT:
2169 /* For some reason, the bit string for this mode is not
2170 * consistent: it should be 0 (exclusive of the MEMB bit),
2171 * so we set it "by hand" here.
2172 */
2173 memP->opcode |= MEMB_BIT;
2174 break;
2175
2176 case A_BIT | I_BIT:
2177 /* set MEMB bit in mode, and OR in mode bits */
2178 memP->opcode |= mode | MEMB_BIT;
2179 break;
2180
2181 case I_BIT:
2182 /* Treat missing displacement as displacement of 0 */
2183 mode |= D_BIT;
2184 /***********************
2185 * Fall into next case *
2186 ********************** */
2187 case D_BIT | A_BIT | I_BIT:
2188 case D_BIT | I_BIT:
2189 /* set MEMB bit in mode, and OR in mode bits */
2190 memP->opcode |= mode | MEMB_BIT;
2191 memP->disp = 32;
2192 break;
2193
2194 default:
2195 syntax ();
2196 break;
2197 }
2198 }
2199
2200 /*****************************************************************************
2201 * parse_po: parse machine-dependent pseudo-op
2202 *
2203 * This is a top-level routine for machine-dependent pseudo-ops. It slurps
2204 * up the rest of the input line, breaks out the individual arguments,
2205 * and dispatches them to the correct handler.
2206 **************************************************************************** */
2207 static
2208 void
2209 parse_po (po_num)
2210 int po_num; /* Pseudo-op number: currently S_LEAFPROC or S_SYSPROC */
2211 {
2212 char *args[4]; /* Pointers operands, with no embedded whitespace.
2213 * arg[0] unused.
2214 * arg[1-3]->operands
2215 */
2216 int n_ops; /* Number of operands */
2217 char *p; /* Pointer to beginning of unparsed argument string */
2218 char eol; /* Character that indicated end of line */
2219
2220 extern char is_end_of_line[];
2221
2222 /* Advance input pointer to end of line. */
2223 p = input_line_pointer;
2224 while (!is_end_of_line[*input_line_pointer])
2225 {
2226 input_line_pointer++;
2227 }
2228 eol = *input_line_pointer; /* Save end-of-line char */
2229 *input_line_pointer = '\0'; /* Terminate argument list */
2230
2231 /* Parse out operands */
2232 n_ops = get_args (p, args);
2233 if (n_ops == -1)
2234 {
2235 return;
2236 }
2237
2238 /* Dispatch to correct handler */
2239 switch (po_num)
2240 {
2241 case S_SYSPROC:
2242 s_sysproc (n_ops, args);
2243 break;
2244 case S_LEAFPROC:
2245 s_leafproc (n_ops, args);
2246 break;
2247 default:
2248 BAD_CASE (po_num);
2249 break;
2250 }
2251
2252 /* Restore eol, so line numbers get updated correctly. Base assembler
2253 * assumes we leave input pointer pointing at char following the eol.
2254 */
2255 *input_line_pointer++ = eol;
2256 }
2257
2258 /*****************************************************************************
2259 * parse_regop: parse a register operand.
2260 *
2261 * In case of illegal operand, issue a message and return some valid
2262 * information so instruction processing can continue.
2263 **************************************************************************** */
2264 static
2265 void
2266 parse_regop (regopP, optext, opdesc)
2267 struct regop *regopP; /* Where to put description of register operand */
2268 char *optext; /* Text of operand */
2269 char opdesc; /* Descriptor byte: what's legal for this operand */
2270 {
2271 int n; /* Register number */
2272 expressionS e; /* Parsed expression */
2273
2274 /* See if operand is a register */
2275 n = get_regnum (optext);
2276 if (n >= 0)
2277 {
2278 if (IS_RG_REG (n))
2279 {
2280 /* global or local register */
2281 if (!REG_ALIGN (opdesc, n))
2282 {
2283 as_bad ("unaligned register");
2284 }
2285 regopP->n = n;
2286 regopP->mode = 0;
2287 regopP->special = 0;
2288 return;
2289 }
2290 else if (IS_FP_REG (n) && FP_OK (opdesc))
2291 {
2292 /* Floating point register, and it's allowed */
2293 regopP->n = n - FP0;
2294 regopP->mode = 1;
2295 regopP->special = 0;
2296 return;
2297 }
2298 else if (IS_SF_REG (n) && SFR_OK (opdesc))
2299 {
2300 /* Special-function register, and it's allowed */
2301 regopP->n = n - SF0;
2302 regopP->mode = 0;
2303 regopP->special = 1;
2304 if (!targ_has_sfr (regopP->n))
2305 {
2306 as_bad ("no such sfr in this architecture");
2307 }
2308 return;
2309 }
2310 }
2311 else if (LIT_OK (opdesc))
2312 {
2313 /*
2314 * How about a literal?
2315 */
2316 regopP->mode = 1;
2317 regopP->special = 0;
2318 if (FP_OK (opdesc))
2319 { /* floating point literal acceptable */
2320 /* Skip over 0f, 0d, or 0e prefix */
2321 if ((optext[0] == '0')
2322 && (optext[1] >= 'd')
2323 && (optext[1] <= 'f'))
2324 {
2325 optext += 2;
2326 }
2327
2328 if (!strcmp (optext, "0.0") || !strcmp (optext, "0"))
2329 {
2330 regopP->n = 0x10;
2331 return;
2332 }
2333 if (!strcmp (optext, "1.0") || !strcmp (optext, "1"))
2334 {
2335 regopP->n = 0x16;
2336 return;
2337 }
2338
2339 }
2340 else
2341 { /* fixed point literal acceptable */
2342 parse_expr (optext, &e);
2343 if (e.X_op != O_constant
2344 || (offs (e) < 0) || (offs (e) > 31))
2345 {
2346 as_bad ("illegal literal");
2347 offs (e) = 0;
2348 }
2349 regopP->n = offs (e);
2350 return;
2351 }
2352 }
2353
2354 /* Nothing worked */
2355 syntax ();
2356 regopP->mode = 0; /* Register r0 is always a good one */
2357 regopP->n = 0;
2358 regopP->special = 0;
2359 } /* parse_regop() */
2360
2361 /*****************************************************************************
2362 * reg_fmt: generate a REG-format instruction
2363 *
2364 **************************************************************************** */
2365 static void
2366 reg_fmt (args, oP)
2367 char *args[]; /* args[0]->opcode mnemonic, args[1-3]->operands */
2368 struct i960_opcode *oP; /* Pointer to description of instruction */
2369 {
2370 long instr; /* Binary to be output */
2371 struct regop regop; /* Description of register operand */
2372 int n_ops; /* Number of operands */
2373
2374
2375 instr = oP->opcode;
2376 n_ops = oP->num_ops;
2377
2378 if (n_ops >= 1)
2379 {
2380 parse_regop (&regop, args[1], oP->operand[0]);
2381
2382 if ((n_ops == 1) && !(instr & M3))
2383 {
2384 /* 1-operand instruction in which the dst field should
2385 * be used (instead of src1).
2386 */
2387 regop.n <<= 19;
2388 if (regop.special)
2389 {
2390 regop.mode = regop.special;
2391 }
2392 regop.mode <<= 13;
2393 regop.special = 0;
2394 }
2395 else
2396 {
2397 /* regop.n goes in bit 0, needs no shifting */
2398 regop.mode <<= 11;
2399 regop.special <<= 5;
2400 }
2401 instr |= regop.n | regop.mode | regop.special;
2402 }
2403
2404 if (n_ops >= 2)
2405 {
2406 parse_regop (&regop, args[2], oP->operand[1]);
2407
2408 if ((n_ops == 2) && !(instr & M3))
2409 {
2410 /* 2-operand instruction in which the dst field should
2411 * be used instead of src2).
2412 */
2413 regop.n <<= 19;
2414 if (regop.special)
2415 {
2416 regop.mode = regop.special;
2417 }
2418 regop.mode <<= 13;
2419 regop.special = 0;
2420 }
2421 else
2422 {
2423 regop.n <<= 14;
2424 regop.mode <<= 12;
2425 regop.special <<= 6;
2426 }
2427 instr |= regop.n | regop.mode | regop.special;
2428 }
2429 if (n_ops == 3)
2430 {
2431 parse_regop (&regop, args[3], oP->operand[2]);
2432 if (regop.special)
2433 {
2434 regop.mode = regop.special;
2435 }
2436 instr |= (regop.n <<= 19) | (regop.mode <<= 13);
2437 }
2438 emit (instr);
2439 }
2440
2441
2442 /*****************************************************************************
2443 * relax_cobr:
2444 * Replace cobr instruction in a code fragment with equivalent branch and
2445 * compare instructions, so it can reach beyond a 13-bit displacement.
2446 * Set up an address fix/relocation for the new branch instruction.
2447 *
2448 **************************************************************************** */
2449
2450 /* This "conditional jump" table maps cobr instructions into equivalent
2451 * compare and branch opcodes.
2452 */
2453 static
2454 struct
2455 {
2456 long compare;
2457 long branch;
2458 }
2459
2460 coj[] =
2461 { /* COBR OPCODE: */
2462 CHKBIT, BNO, /* 0x30 - bbc */
2463 CMPO, BG, /* 0x31 - cmpobg */
2464 CMPO, BE, /* 0x32 - cmpobe */
2465 CMPO, BGE, /* 0x33 - cmpobge */
2466 CMPO, BL, /* 0x34 - cmpobl */
2467 CMPO, BNE, /* 0x35 - cmpobne */
2468 CMPO, BLE, /* 0x36 - cmpoble */
2469 CHKBIT, BO, /* 0x37 - bbs */
2470 CMPI, BNO, /* 0x38 - cmpibno */
2471 CMPI, BG, /* 0x39 - cmpibg */
2472 CMPI, BE, /* 0x3a - cmpibe */
2473 CMPI, BGE, /* 0x3b - cmpibge */
2474 CMPI, BL, /* 0x3c - cmpibl */
2475 CMPI, BNE, /* 0x3d - cmpibne */
2476 CMPI, BLE, /* 0x3e - cmpible */
2477 CMPI, BO, /* 0x3f - cmpibo */
2478 };
2479
2480 static
2481 void
2482 relax_cobr (fragP)
2483 register fragS *fragP; /* fragP->fr_opcode is assumed to point to
2484 * the cobr instruction, which comes at the
2485 * end of the code fragment.
2486 */
2487 {
2488 int opcode, src1, src2, m1, s2;
2489 /* Bit fields from cobr instruction */
2490 long bp_bits; /* Branch prediction bits from cobr instruction */
2491 long instr; /* A single i960 instruction */
2492 char *iP; /*->instruction to be replaced */
2493 fixS *fixP; /* Relocation that can be done at assembly time */
2494
2495 /* PICK UP & PARSE COBR INSTRUCTION */
2496 iP = fragP->fr_opcode;
2497 instr = md_chars_to_number (iP, 4);
2498 opcode = ((instr >> 24) & 0xff) - 0x30; /* "-0x30" for table index */
2499 src1 = (instr >> 19) & 0x1f;
2500 m1 = (instr >> 13) & 1;
2501 s2 = instr & 1;
2502 src2 = (instr >> 14) & 0x1f;
2503 bp_bits = instr & BP_MASK;
2504
2505 /* GENERATE AND OUTPUT COMPARE INSTRUCTION */
2506 instr = coj[opcode].compare
2507 | src1 | (m1 << 11) | (s2 << 6) | (src2 << 14);
2508 md_number_to_chars (iP, instr, 4);
2509
2510 /* OUTPUT BRANCH INSTRUCTION */
2511 md_number_to_chars (iP + 4, coj[opcode].branch | bp_bits, 4);
2512
2513 /* SET UP ADDRESS FIXUP/RELOCATION */
2514 fixP = fix_new (fragP,
2515 iP + 4 - fragP->fr_literal,
2516 4,
2517 fragP->fr_symbol,
2518 fragP->fr_offset,
2519 1,
2520 NO_RELOC);
2521
2522 fixP->fx_bit_fixP = (bit_fixS *) 24; /* Store size of bit field */
2523
2524 fragP->fr_fix += 4;
2525 frag_wane (fragP);
2526 }
2527
2528
2529 /*****************************************************************************
2530 * reloc_callj: Relocate a 'callj' instruction
2531 *
2532 * This is a "non-(GNU)-standard" machine-dependent hook. The base
2533 * assembler calls it when it decides it can relocate an address at
2534 * assembly time instead of emitting a relocation directive.
2535 *
2536 * Check to see if the relocation involves a 'callj' instruction to a:
2537 * sysproc: Replace the default 'call' instruction with a 'calls'
2538 * leafproc: Replace the default 'call' instruction with a 'bal'.
2539 * other proc: Do nothing.
2540 *
2541 * See b.out.h for details on the 'n_other' field in a symbol structure.
2542 *
2543 * IMPORTANT!:
2544 * Assumes the caller has already figured out, in the case of a leafproc,
2545 * to use the 'bal' entry point, and has substituted that symbol into the
2546 * passed fixup structure.
2547 *
2548 **************************************************************************** */
2549 void
2550 reloc_callj (fixP)
2551 fixS *fixP; /* Relocation that can be done at assembly time */
2552 {
2553 char *where; /*->the binary for the instruction being relocated */
2554
2555 if (!fixP->fx_callj)
2556 {
2557 return;
2558 } /* This wasn't a callj instruction in the first place */
2559
2560 where = fixP->fx_frag->fr_literal + fixP->fx_where;
2561
2562 if (TC_S_IS_SYSPROC (fixP->fx_addsy))
2563 {
2564 /* Symbol is a .sysproc: replace 'call' with 'calls'.
2565 * System procedure number is (other-1).
2566 */
2567 md_number_to_chars (where, CALLS | TC_S_GET_SYSPROC (fixP->fx_addsy), 4);
2568
2569 /* Nothing else needs to be done for this instruction.
2570 * Make sure 'md_number_to_field()' will perform a no-op.
2571 */
2572 fixP->fx_bit_fixP = (bit_fixS *) 1;
2573
2574 }
2575 else if (TC_S_IS_CALLNAME (fixP->fx_addsy))
2576 {
2577 /* Should not happen: see block comment above */
2578 as_fatal ("Trying to 'bal' to %s", S_GET_NAME (fixP->fx_addsy));
2579
2580 }
2581 else if (TC_S_IS_BALNAME (fixP->fx_addsy))
2582 {
2583 /* Replace 'call' with 'bal'; both instructions have
2584 * the same format, so calling code should complete
2585 * relocation as if nothing happened here.
2586 */
2587 md_number_to_chars (where, BAL, 4);
2588 }
2589 else if (TC_S_IS_BADPROC (fixP->fx_addsy))
2590 {
2591 as_bad ("Looks like a proc, but can't tell what kind.\n");
2592 } /* switch on proc type */
2593
2594 /* else Symbol is neither a sysproc nor a leafproc */
2595
2596 return;
2597 } /* reloc_callj() */
2598
2599
2600 /*****************************************************************************
2601 * s_leafproc: process .leafproc pseudo-op
2602 *
2603 * .leafproc takes two arguments, the second one is optional:
2604 * arg[1]: name of 'call' entry point to leaf procedure
2605 * arg[2]: name of 'bal' entry point to leaf procedure
2606 *
2607 * If the two arguments are identical, or if the second one is missing,
2608 * the first argument is taken to be the 'bal' entry point.
2609 *
2610 * If there are 2 distinct arguments, we must make sure that the 'bal'
2611 * entry point immediately follows the 'call' entry point in the linked
2612 * list of symbols.
2613 *
2614 **************************************************************************** */
2615 static void
2616 s_leafproc (n_ops, args)
2617 int n_ops; /* Number of operands */
2618 char *args[]; /* args[1]->1st operand, args[2]->2nd operand */
2619 {
2620 symbolS *callP; /* Pointer to leafproc 'call' entry point symbol */
2621 symbolS *balP; /* Pointer to leafproc 'bal' entry point symbol */
2622
2623 if ((n_ops != 1) && (n_ops != 2))
2624 {
2625 as_bad ("should have 1 or 2 operands");
2626 return;
2627 } /* Check number of arguments */
2628
2629 /* Find or create symbol for 'call' entry point. */
2630 callP = symbol_find_or_make (args[1]);
2631
2632 if (TC_S_IS_CALLNAME (callP))
2633 {
2634 as_warn ("Redefining leafproc %s", S_GET_NAME (callP));
2635 } /* is leafproc */
2636
2637 /* If that was the only argument, use it as the 'bal' entry point.
2638 * Otherwise, mark it as the 'call' entry point and find or create
2639 * another symbol for the 'bal' entry point.
2640 */
2641 if ((n_ops == 1) || !strcmp (args[1], args[2]))
2642 {
2643 TC_S_FORCE_TO_BALNAME (callP);
2644
2645 }
2646 else
2647 {
2648 TC_S_FORCE_TO_CALLNAME (callP);
2649
2650 balP = symbol_find_or_make (args[2]);
2651 if (TC_S_IS_CALLNAME (balP))
2652 {
2653 as_warn ("Redefining leafproc %s", S_GET_NAME (balP));
2654 }
2655 TC_S_FORCE_TO_BALNAME (balP);
2656
2657 tc_set_bal_of_call (callP, balP);
2658 } /* if only one arg, or the args are the same */
2659
2660 return;
2661 } /* s_leafproc() */
2662
2663
2664 /*
2665 * s_sysproc: process .sysproc pseudo-op
2666 *
2667 * .sysproc takes two arguments:
2668 * arg[1]: name of entry point to system procedure
2669 * arg[2]: 'entry_num' (index) of system procedure in the range
2670 * [0,31] inclusive.
2671 *
2672 * For [ab].out, we store the 'entrynum' in the 'n_other' field of
2673 * the symbol. Since that entry is normally 0, we bias 'entrynum'
2674 * by adding 1 to it. It must be unbiased before it is used.
2675 */
2676 static void
2677 s_sysproc (n_ops, args)
2678 int n_ops; /* Number of operands */
2679 char *args[]; /* args[1]->1st operand, args[2]->2nd operand */
2680 {
2681 expressionS exp;
2682 symbolS *symP;
2683
2684 if (n_ops != 2)
2685 {
2686 as_bad ("should have two operands");
2687 return;
2688 } /* bad arg count */
2689
2690 /* Parse "entry_num" argument and check it for validity. */
2691 parse_expr (args[2], &exp);
2692 if (exp.X_op != O_constant
2693 || (offs (exp) < 0)
2694 || (offs (exp) > 31))
2695 {
2696 as_bad ("'entry_num' must be absolute number in [0,31]");
2697 return;
2698 }
2699
2700 /* Find/make symbol and stick entry number (biased by +1) into it */
2701 symP = symbol_find_or_make (args[1]);
2702
2703 if (TC_S_IS_SYSPROC (symP))
2704 {
2705 as_warn ("Redefining entrynum for sysproc %s", S_GET_NAME (symP));
2706 } /* redefining */
2707
2708 TC_S_SET_SYSPROC (symP, offs (exp)); /* encode entry number */
2709 TC_S_FORCE_TO_SYSPROC (symP);
2710
2711 return;
2712 } /* s_sysproc() */
2713
2714
2715 /*****************************************************************************
2716 * shift_ok:
2717 * Determine if a "shlo" instruction can be used to implement a "ldconst".
2718 * This means that some number X < 32 can be shifted left to produce the
2719 * constant of interest.
2720 *
2721 * Return the shift count, or 0 if we can't do it.
2722 * Caller calculates X by shifting original constant right 'shift' places.
2723 *
2724 **************************************************************************** */
2725 static
2726 int
2727 shift_ok (n)
2728 int n; /* The constant of interest */
2729 {
2730 int shift; /* The shift count */
2731
2732 if (n <= 0)
2733 {
2734 /* Can't do it for negative numbers */
2735 return 0;
2736 }
2737
2738 /* Shift 'n' right until a 1 is about to be lost */
2739 for (shift = 0; (n & 1) == 0; shift++)
2740 {
2741 n >>= 1;
2742 }
2743
2744 if (n >= 32)
2745 {
2746 return 0;
2747 }
2748 return shift;
2749 }
2750
2751
2752 /*****************************************************************************
2753 * syntax: issue syntax error
2754 *
2755 **************************************************************************** */
2756 static void
2757 syntax ()
2758 {
2759 as_bad ("syntax error");
2760 } /* syntax() */
2761
2762
2763 /*****************************************************************************
2764 * targ_has_sfr:
2765 * Return TRUE iff the target architecture supports the specified
2766 * special-function register (sfr).
2767 *
2768 **************************************************************************** */
2769 static
2770 int
2771 targ_has_sfr (n)
2772 int n; /* Number (0-31) of sfr */
2773 {
2774 switch (architecture)
2775 {
2776 case ARCH_KA:
2777 case ARCH_KB:
2778 case ARCH_MC:
2779 return 0;
2780 case ARCH_CA:
2781 default:
2782 return ((0 <= n) && (n <= 2));
2783 }
2784 }
2785
2786
2787 /*****************************************************************************
2788 * targ_has_iclass:
2789 * Return TRUE iff the target architecture supports the indicated
2790 * class of instructions.
2791 *
2792 **************************************************************************** */
2793 static
2794 int
2795 targ_has_iclass (ic)
2796 int ic; /* Instruction class; one of:
2797 * I_BASE, I_CX, I_DEC, I_KX, I_FP, I_MIL, I_CASIM
2798 */
2799 {
2800 iclasses_seen |= ic;
2801 switch (architecture)
2802 {
2803 case ARCH_KA:
2804 return ic & (I_BASE | I_KX);
2805 case ARCH_KB:
2806 return ic & (I_BASE | I_KX | I_FP | I_DEC);
2807 case ARCH_MC:
2808 return ic & (I_BASE | I_KX | I_FP | I_DEC | I_MIL);
2809 case ARCH_CA:
2810 return ic & (I_BASE | I_CX | I_CASIM);
2811 default:
2812 if ((iclasses_seen & (I_KX | I_FP | I_DEC | I_MIL))
2813 && (iclasses_seen & I_CX))
2814 {
2815 as_warn ("architecture of opcode conflicts with that of earlier instruction(s)");
2816 iclasses_seen &= ~ic;
2817 }
2818 return 1;
2819 }
2820 }
2821
2822
2823 /* Parse an operand that is machine-specific.
2824 We just return without modifying the expression if we have nothing
2825 to do. */
2826
2827 /* ARGSUSED */
2828 void
2829 md_operand (expressionP)
2830 expressionS *expressionP;
2831 {
2832 }
2833
2834 /* We have no need to default values of symbols. */
2835
2836 /* ARGSUSED */
2837 symbolS *
2838 md_undefined_symbol (name)
2839 char *name;
2840 {
2841 return 0;
2842 } /* md_undefined_symbol() */
2843
2844 /* Exactly what point is a PC-relative offset relative TO?
2845 On the i960, they're relative to the address of the instruction,
2846 which we have set up as the address of the fixup too. */
2847 long
2848 md_pcrel_from (fixP)
2849 fixS *fixP;
2850 {
2851 return fixP->fx_where + fixP->fx_frag->fr_address;
2852 }
2853
2854 void
2855 md_apply_fix (fixP, val)
2856 fixS *fixP;
2857 long val;
2858 {
2859 char *place = fixP->fx_where + fixP->fx_frag->fr_literal;
2860
2861 if (!fixP->fx_bit_fixP)
2862 {
2863
2864 switch (fixP->fx_im_disp)
2865 {
2866 case 0:
2867 fixP->fx_addnumber = val;
2868 md_number_to_imm (place, val, fixP->fx_size, fixP);
2869 break;
2870 case 1:
2871 md_number_to_disp (place,
2872 (fixP->fx_pcrel
2873 ? val + fixP->fx_pcrel_adjust
2874 : val),
2875 fixP->fx_size);
2876 break;
2877 case 2: /* fix requested for .long .word etc */
2878 md_number_to_chars (place, val, fixP->fx_size);
2879 break;
2880 default:
2881 as_fatal ("Internal error in md_apply_fix() in file \"%s\"",
2882 __FILE__);
2883 }
2884 }
2885 else
2886 {
2887 md_number_to_field (place, val, fixP->fx_bit_fixP);
2888 }
2889
2890 return;
2891 } /* md_apply_fix() */
2892
2893 #if defined(OBJ_AOUT) | defined(OBJ_BOUT)
2894 void
2895 tc_bout_fix_to_chars (where, fixP, segment_address_in_file)
2896 char *where;
2897 fixS *fixP;
2898 relax_addressT segment_address_in_file;
2899 {
2900 static unsigned char nbytes_r_length[] =
2901 {42, 0, 1, 42, 2};
2902 struct relocation_info ri;
2903 symbolS *symbolP;
2904
2905 /* JF this is for paranoia */
2906 memset ((char *) &ri, '\0', sizeof (ri));
2907 symbolP = fixP->fx_addsy;
2908 know (symbolP != 0 || fixP->fx_r_type != NO_RELOC);
2909 ri.r_bsr = fixP->fx_bsr; /*SAC LD RELAX HACK */
2910 /* These two 'cuz of NS32K */
2911 ri.r_callj = fixP->fx_callj;
2912 if (fixP->fx_bit_fixP)
2913 {
2914 ri.r_length = 2;
2915 }
2916 else
2917 {
2918 ri.r_length = nbytes_r_length[fixP->fx_size];
2919 }
2920 ri.r_pcrel = fixP->fx_pcrel;
2921 ri.r_address = fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file;
2922
2923 if (fixP->fx_r_type != NO_RELOC)
2924 {
2925 switch (fixP->fx_r_type)
2926 {
2927 case rs_align:
2928 ri.r_index = -2;
2929 ri.r_pcrel = 1;
2930 ri.r_length = fixP->fx_size - 1;
2931 break;
2932 case rs_org:
2933 ri.r_index = -2;
2934 ri.r_pcrel = 0;
2935 break;
2936 case rs_fill:
2937 ri.r_index = -1;
2938 break;
2939 default:
2940 abort ();
2941 }
2942 ri.r_extern = 0;
2943 }
2944 else if (linkrelax || !S_IS_DEFINED (symbolP))
2945 {
2946 ri.r_extern = 1;
2947 ri.r_index = symbolP->sy_number;
2948 }
2949 else
2950 {
2951 ri.r_extern = 0;
2952 ri.r_index = S_GET_TYPE (symbolP);
2953 }
2954
2955 /* Output the relocation information in machine-dependent form. */
2956 md_ri_to_chars (where, &ri);
2957
2958 return;
2959 } /* tc_bout_fix_to_chars() */
2960
2961 #endif /* OBJ_AOUT or OBJ_BOUT */
2962
2963 /* Align an address by rounding it up to the specified boundary.
2964 */
2965 valueT
2966 md_section_align (seg, addr)
2967 segT seg;
2968 valueT addr; /* Address to be rounded up */
2969 {
2970 return ((addr + (1 << section_alignment[(int) seg]) - 1) & (-1 << section_alignment[(int) seg]));
2971 } /* md_section_align() */
2972
2973 #ifdef OBJ_COFF
2974 void
2975 tc_headers_hook (headers)
2976 object_headers *headers;
2977 {
2978 /* FIXME: remove this line *//* unsigned short arch_flag = 0; */
2979
2980 if (iclasses_seen == I_BASE)
2981 {
2982 headers->filehdr.f_flags |= F_I960CORE;
2983 }
2984 else if (iclasses_seen & I_CX)
2985 {
2986 headers->filehdr.f_flags |= F_I960CA;
2987 }
2988 else if (iclasses_seen & I_MIL)
2989 {
2990 headers->filehdr.f_flags |= F_I960MC;
2991 }
2992 else if (iclasses_seen & (I_DEC | I_FP))
2993 {
2994 headers->filehdr.f_flags |= F_I960KB;
2995 }
2996 else
2997 {
2998 headers->filehdr.f_flags |= F_I960KA;
2999 } /* set arch flag */
3000
3001 if (flagseen['R'])
3002 {
3003 headers->filehdr.f_magic = I960RWMAGIC;
3004 headers->aouthdr.magic = OMAGIC;
3005 }
3006 else
3007 {
3008 headers->filehdr.f_magic = I960ROMAGIC;
3009 headers->aouthdr.magic = NMAGIC;
3010 } /* set magic numbers */
3011
3012 return;
3013 } /* tc_headers_hook() */
3014
3015 #endif /* OBJ_COFF */
3016
3017 /*
3018 * Things going on here:
3019 *
3020 * For bout, We need to assure a couple of simplifying
3021 * assumptions about leafprocs for the linker: the leafproc
3022 * entry symbols will be defined in the same assembly in
3023 * which they're declared with the '.leafproc' directive;
3024 * and if a leafproc has both 'call' and 'bal' entry points
3025 * they are both global or both local.
3026 *
3027 * For coff, the call symbol has a second aux entry that
3028 * contains the bal entry point. The bal symbol becomes a
3029 * label.
3030 *
3031 * For coff representation, the call symbol has a second aux entry that
3032 * contains the bal entry point. The bal symbol becomes a label.
3033 *
3034 */
3035
3036 void
3037 tc_crawl_symbol_chain (headers)
3038 object_headers *headers;
3039 {
3040 symbolS *symbolP;
3041
3042 for (symbolP = symbol_rootP; symbolP; symbolP = symbol_next (symbolP))
3043 {
3044 #ifdef OBJ_COFF
3045 if (TC_S_IS_SYSPROC (symbolP))
3046 {
3047 /* second aux entry already contains the sysproc number */
3048 S_SET_NUMBER_AUXILIARY (symbolP, 2);
3049 S_SET_STORAGE_CLASS (symbolP, C_SCALL);
3050 S_SET_DATA_TYPE (symbolP, S_GET_DATA_TYPE (symbolP) | (DT_FCN << N_BTSHFT));
3051 continue;
3052 } /* rewrite sysproc */
3053 #endif /* OBJ_COFF */
3054
3055 if (!TC_S_IS_BALNAME (symbolP) && !TC_S_IS_CALLNAME (symbolP))
3056 {
3057 continue;
3058 } /* Not a leafproc symbol */
3059
3060 if (!S_IS_DEFINED (symbolP))
3061 {
3062 as_bad ("leafproc symbol '%s' undefined", S_GET_NAME (symbolP));
3063 } /* undefined leaf */
3064
3065 if (TC_S_IS_CALLNAME (symbolP))
3066 {
3067 symbolS *balP = tc_get_bal_of_call (symbolP);
3068 if (S_IS_EXTERNAL (symbolP) != S_IS_EXTERNAL (balP))
3069 {
3070 S_SET_EXTERNAL (symbolP);
3071 S_SET_EXTERNAL (balP);
3072 as_warn ("Warning: making leafproc entries %s and %s both global\n",
3073 S_GET_NAME (symbolP), S_GET_NAME (balP));
3074 } /* externality mismatch */
3075 } /* if callname */
3076 } /* walk the symbol chain */
3077
3078 return;
3079 } /* tc_crawl_symbol_chain() */
3080
3081 /*
3082 * For aout or bout, the bal immediately follows the call.
3083 *
3084 * For coff, we cheat and store a pointer to the bal symbol
3085 * in the second aux entry of the call.
3086 */
3087
3088 #undef OBJ_ABOUT
3089 #ifdef OBJ_AOUT
3090 #define OBJ_ABOUT
3091 #endif
3092 #ifdef OBJ_BOUT
3093 #define OBJ_ABOUT
3094 #endif
3095
3096 void
3097 tc_set_bal_of_call (callP, balP)
3098 symbolS *callP;
3099 symbolS *balP;
3100 {
3101 know (TC_S_IS_CALLNAME (callP));
3102 know (TC_S_IS_BALNAME (balP));
3103
3104 #ifdef OBJ_COFF
3105
3106 callP->sy_symbol.ost_auxent[1].x_bal.x_balntry = (int) balP;
3107 S_SET_NUMBER_AUXILIARY (callP, 2);
3108
3109 #else /* ! OBJ_COFF */
3110 #ifdef OBJ_ABOUT
3111
3112 /* If the 'bal' entry doesn't immediately follow the 'call'
3113 * symbol, unlink it from the symbol list and re-insert it.
3114 */
3115 if (symbol_next (callP) != balP)
3116 {
3117 symbol_remove (balP, &symbol_rootP, &symbol_lastP);
3118 symbol_append (balP, callP, &symbol_rootP, &symbol_lastP);
3119 } /* if not in order */
3120
3121 #else /* ! OBJ_ABOUT */
3122 (as yet unwritten.);
3123 #endif /* ! OBJ_ABOUT */
3124 #endif /* ! OBJ_COFF */
3125
3126 return;
3127 } /* tc_set_bal_of_call() */
3128
3129 char *
3130 _tc_get_bal_of_call (callP)
3131 symbolS *callP;
3132 {
3133 symbolS *retval;
3134
3135 know (TC_S_IS_CALLNAME (callP));
3136
3137 #ifdef OBJ_COFF
3138 retval = (symbolS *) (callP->sy_symbol.ost_auxent[1].x_bal.x_balntry);
3139 #else
3140 #ifdef OBJ_ABOUT
3141 retval = symbol_next (callP);
3142 #else
3143 (as yet unwritten.);
3144 #endif /* ! OBJ_ABOUT */
3145 #endif /* ! OBJ_COFF */
3146
3147 know (TC_S_IS_BALNAME (retval));
3148 return ((char *) retval);
3149 } /* _tc_get_bal_of_call() */
3150
3151 void
3152 tc_coff_symbol_emit_hook (symbolP)
3153 symbolS *symbolP;
3154 {
3155 if (TC_S_IS_CALLNAME (symbolP))
3156 {
3157 #ifdef OBJ_COFF
3158 symbolS *balP = tc_get_bal_of_call (symbolP);
3159
3160 /* second aux entry contains the bal entry point */
3161 /* S_SET_NUMBER_AUXILIARY(symbolP, 2); */
3162 symbolP->sy_symbol.ost_auxent[1].x_bal.x_balntry = S_GET_VALUE (balP);
3163 S_SET_STORAGE_CLASS (symbolP, (!SF_GET_LOCAL (symbolP) ? C_LEAFEXT : C_LEAFSTAT));
3164 S_SET_DATA_TYPE (symbolP, S_GET_DATA_TYPE (symbolP) | (DT_FCN << N_BTSHFT));
3165 /* fix up the bal symbol */
3166 S_SET_STORAGE_CLASS (balP, C_LABEL);
3167 #endif /* OBJ_COFF */
3168 } /* only on calls */
3169
3170 return;
3171 } /* tc_coff_symbol_emit_hook() */
3172
3173 void
3174 i960_handle_align (fragp)
3175 fragS *fragp;
3176 {
3177 fixS *fixp;
3178 segT old_seg = now_seg, this_seg;
3179 int old_subseg = now_subseg;
3180 int pad_size;
3181 extern struct frag *text_last_frag, *data_last_frag;
3182
3183 if (!linkrelax)
3184 return;
3185
3186 /* The text section "ends" with another alignment reloc, to which we
3187 aren't adding padding. */
3188 if (fragp->fr_next == text_last_frag
3189 || fragp->fr_next == data_last_frag)
3190 {
3191 return;
3192 }
3193
3194 /* alignment directive */
3195 fixp = fix_new (fragp, fragp->fr_fix, fragp->fr_offset, 0, 0, 0,
3196 (int) fragp->fr_type);
3197 }
3198
3199 /* end of tc-i960.c */