]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-i960.c
Initial revision
[thirdparty/binutils-gdb.git] / gas / config / tc-i960.c
1 /* i960.c - All the i80960-specific stuff
2 Copyright (C) 1989, 1990, 1991 Free Software Foundation, Inc.
3
4 This file is part of GAS.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 1, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 /* $Id$ */
21
22 /* See comment on md_parse_option for 80960-specific invocation options. */
23
24 /******************************************************************************
25 * i80690 NOTE!!!:
26 * Header, symbol, and relocation info will be used on the host machine
27 * only -- only executable code is actually downloaded to the i80960.
28 * Therefore, leave all such information in host byte order.
29 *
30 * (That's a slight lie -- we DO download some header information, but
31 * the downloader converts the file format and corrects the byte-ordering
32 * of the relevant fields while doing so.)
33 *
34 ***************************************************************************** */
35
36 /* There are 4 different lengths of (potentially) symbol-based displacements
37 * in the 80960 instruction set, each of which could require address fix-ups
38 * and (in the case of external symbols) emission of relocation directives:
39 *
40 * 32-bit (MEMB)
41 * This is a standard length for the base assembler and requires no
42 * special action.
43 *
44 * 13-bit (COBR)
45 * This is a non-standard length, but the base assembler has a hook for
46 * bit field address fixups: the fixS structure can point to a descriptor
47 * of the field, in which case our md_number_to_field() routine gets called
48 * to process it.
49 *
50 * I made the hook a little cleaner by having fix_new() (in the base
51 * assembler) return a pointer to the fixS in question. And I made it a
52 * little simpler by storing the field size (in this case 13) instead of
53 * of a pointer to another structure: 80960 displacements are ALWAYS
54 * stored in the low-order bits of a 4-byte word.
55 *
56 * Since the target of a COBR cannot be external, no relocation directives
57 * for this size displacement have to be generated. But the base assembler
58 * had to be modified to issue error messages if the symbol did turn out
59 * to be external.
60 *
61 * 24-bit (CTRL)
62 * Fixups are handled as for the 13-bit case (except that 24 is stored
63 * in the fixS).
64 *
65 * The relocation directive generated is the same as that for the 32-bit
66 * displacement, except that it's PC-relative (the 32-bit displacement
67 * never is). The i80960 version of the linker needs a mod to
68 * distinguish and handle the 24-bit case.
69 *
70 * 12-bit (MEMA)
71 * MEMA formats are always promoted to MEMB (32-bit) if the displacement
72 * is based on a symbol, because it could be relocated at link time.
73 * The only time we use the 12-bit format is if an absolute value of
74 * less than 4096 is specified, in which case we need neither a fixup nor
75 * a relocation directive.
76 */
77
78 #include <stdio.h>
79 #include <ctype.h>
80
81 #include "as.h"
82
83 #include "obstack.h"
84
85 #include "i960-opcode.h"
86
87 extern char *input_line_pointer;
88 extern struct hash_control *po_hash;
89 extern unsigned char nbytes_r_length[];
90 extern char *next_object_file_charP;
91
92 #ifdef OBJ_COFF
93 int md_reloc_size = sizeof(struct reloc);
94 #else /* OBJ_COFF */
95 int md_reloc_size = sizeof(struct relocation_info);
96 #endif /* OBJ_COFF */
97
98 #if defined(OBJ_AOUT) | defined(OBJ_BOUT)
99 #ifdef __STDC__
100
101 static void emit_machine_reloc(fixS *fixP, relax_addressT segment_address_in_file);
102
103 #else /* __STDC__ */
104
105 static void emit_machine_reloc();
106
107 #endif /* __STDC__ */
108
109 void (*md_emit_relocations)() = emit_machine_reloc;
110 #endif /* OBJ_AOUT or OBJ_BOUT */
111
112 /***************************
113 * Local i80960 routines *
114 ************************** */
115
116 static void brcnt_emit(); /* Emit branch-prediction instrumentation code */
117 static char * brlab_next(); /* Return next branch local label */
118 void brtab_emit(); /* Emit br-predict instrumentation table */
119 static void cobr_fmt(); /* Generate COBR instruction */
120 static void ctrl_fmt(); /* Generate CTRL instruction */
121 static char * emit(); /* Emit (internally) binary */
122 static int get_args(); /* Break arguments out of comma-separated list */
123 static void get_cdisp(); /* Handle COBR or CTRL displacement */
124 static char * get_ispec(); /* Find index specification string */
125 static int get_regnum(); /* Translate text to register number */
126 static int i_scan(); /* Lexical scan of instruction source */
127 static void mem_fmt(); /* Generate MEMA or MEMB instruction */
128 static void mema_to_memb(); /* Convert MEMA instruction to MEMB format */
129 static segT parse_expr(); /* Parse an expression */
130 static int parse_ldconst();/* Parse and replace a 'ldconst' pseudo-op */
131 static void parse_memop(); /* Parse a memory operand */
132 static void parse_po(); /* Parse machine-dependent pseudo-op */
133 static void parse_regop(); /* Parse a register operand */
134 static void reg_fmt(); /* Generate a REG format instruction */
135 void reloc_callj(); /* Relocate a 'callj' instruction */
136 static void relax_cobr(); /* "De-optimize" cobr into compare/branch */
137 static void s_leafproc(); /* Process '.leafproc' pseudo-op */
138 static void s_sysproc(); /* Process '.sysproc' pseudo-op */
139 static int shift_ok(); /* Will a 'shlo' substiture for a 'ldconst'? */
140 static void syntax(); /* Give syntax error */
141 static int targ_has_sfr(); /* Target chip supports spec-func register? */
142 static int targ_has_iclass();/* Target chip supports instruction set? */
143 /* static void unlink_sym(); */ /* Remove a symbol from the symbol list */
144
145 /* See md_parse_option() for meanings of these options */
146 static char norelax = 0; /* True if -norelax switch seen */
147 static char instrument_branches = 0; /* True if -b switch seen */
148
149 /* Characters that always start a comment.
150 * If the pre-processor is disabled, these aren't very useful.
151 */
152 char comment_chars[] = "#";
153
154 /* Characters that only start a comment at the beginning of
155 * a line. If the line seems to have the form '# 123 filename'
156 * .line and .file directives will appear in the pre-processed output.
157 *
158 * Note that input_file.c hand checks for '#' at the beginning of the
159 * first line of the input file. This is because the compiler outputs
160 * #NO_APP at the beginning of its output.
161 */
162
163 /* Also note that comments started like this one will always work. */
164
165 char line_comment_chars[] = "";
166
167 /* Chars that can be used to separate mant from exp in floating point nums */
168 char EXP_CHARS[] = "eE";
169
170 /* Chars that mean this number is a floating point constant,
171 * as in 0f12.456 or 0d1.2345e12
172 */
173 char FLT_CHARS[] = "fFdDtT";
174
175
176 /* Table used by base assembler to relax addresses based on varying length
177 * instructions. The fields are:
178 * 1) most positive reach of this state,
179 * 2) most negative reach of this state,
180 * 3) how many bytes this mode will add to the size of the current frag
181 * 4) which index into the table to try if we can't fit into this one.
182 *
183 * For i80960, the only application is the (de-)optimization of cobr
184 * instructions into separate compare and branch instructions when a 13-bit
185 * displacement won't hack it.
186 */
187 const relax_typeS
188 md_relax_table[] = {
189 {0, 0, 0,0}, /* State 0 => no more relaxation possible */
190 {4088, -4096, 0,2}, /* State 1: conditional branch (cobr) */
191 {0x800000-8,-0x800000,4,0}, /* State 2: compare (reg) & branch (ctrl) */
192 };
193
194
195 /* These are the machine dependent pseudo-ops.
196 *
197 * This table describes all the machine specific pseudo-ops the assembler
198 * has to support. The fields are:
199 * pseudo-op name without dot
200 * function to call to execute this pseudo-op
201 * integer arg to pass to the function
202 */
203 #define S_LEAFPROC 1
204 #define S_SYSPROC 2
205
206 const pseudo_typeS
207 md_pseudo_table[] = {
208
209 { "bss", s_lcomm, 1 },
210 { "extended", float_cons, 't' },
211 { "leafproc", parse_po, S_LEAFPROC },
212 { "sysproc", parse_po, S_SYSPROC },
213
214 { "word", cons, 4 },
215 { "quad", big_cons, 16 },
216
217 { 0, 0, 0 }
218 };
219 \f
220 /* Macros to extract info from an 'expressionS' structure 'e' */
221 #define adds(e) e.X_add_symbol
222 #define subs(e) e.X_subtract_symbol
223 #define offs(e) e.X_add_number
224 #define segs(e) e.X_seg
225
226
227 /* Branch-prediction bits for CTRL/COBR format opcodes */
228 #define BP_MASK 0x00000002 /* Mask for branch-prediction bit */
229 #define BP_TAKEN 0x00000000 /* Value to OR in to predict branch */
230 #define BP_NOT_TAKEN 0x00000002 /* Value to OR in to predict no branch */
231
232
233 /* Some instruction opcodes that we need explicitly */
234 #define BE 0x12000000
235 #define BG 0x11000000
236 #define BGE 0x13000000
237 #define BL 0x14000000
238 #define BLE 0x16000000
239 #define BNE 0x15000000
240 #define BNO 0x10000000
241 #define BO 0x17000000
242 #define CHKBIT 0x5a002700
243 #define CMPI 0x5a002080
244 #define CMPO 0x5a002000
245
246 #define B 0x08000000
247 #define BAL 0x0b000000
248 #define CALL 0x09000000
249 #define CALLS 0x66003800
250 #define RET 0x0a000000
251
252
253 /* These masks are used to build up a set of MEMB mode bits. */
254 #define A_BIT 0x0400
255 #define I_BIT 0x0800
256 #define MEMB_BIT 0x1000
257 #define D_BIT 0x2000
258
259
260 /* Mask for the only mode bit in a MEMA instruction (if set, abase reg is used) */
261 #define MEMA_ABASE 0x2000
262
263 /* Info from which a MEMA or MEMB format instruction can be generated */
264 typedef struct {
265 long opcode; /* (First) 32 bits of instruction */
266 int disp; /* 0-(none), 12- or, 32-bit displacement needed */
267 char *e; /* The expression in the source instruction from
268 * which the displacement should be determined
269 */
270 } memS;
271
272
273 /* The two pieces of info we need to generate a register operand */
274 struct regop {
275 int mode; /* 0 =>local/global/spec reg; 1=> literal or fp reg */
276 int special; /* 0 =>not a sfr; 1=> is a sfr (not valid w/mode=0) */
277 int n; /* Register number or literal value */
278 };
279
280
281 /* Number and assembler mnemonic for all registers that can appear in operands */
282 static struct {
283 char *reg_name;
284 int reg_num;
285 } regnames[] = {
286 { "pfp", 0 }, { "sp", 1 }, { "rip", 2 }, { "r3", 3 },
287 { "r4", 4 }, { "r5", 5 }, { "r6", 6 }, { "r7", 7 },
288 { "r8", 8 }, { "r9", 9 }, { "r10", 10 }, { "r11", 11 },
289 { "r12", 12 }, { "r13", 13 }, { "r14", 14 }, { "r15", 15 },
290 { "g0", 16 }, { "g1", 17 }, { "g2", 18 }, { "g3", 19 },
291 { "g4", 20 }, { "g5", 21 }, { "g6", 22 }, { "g7", 23 },
292 { "g8", 24 }, { "g9", 25 }, { "g10", 26 }, { "g11", 27 },
293 { "g12", 28 }, { "g13", 29 }, { "g14", 30 }, { "fp", 31 },
294
295 /* Numbers for special-function registers are for assembler internal
296 * use only: they are scaled back to range [0-31] for binary output.
297 */
298 # define SF0 32
299
300 { "sf0", 32 }, { "sf1", 33 }, { "sf2", 34 }, { "sf3", 35 },
301 { "sf4", 36 }, { "sf5", 37 }, { "sf6", 38 }, { "sf7", 39 },
302 { "sf8", 40 }, { "sf9", 41 }, { "sf10",42 }, { "sf11",43 },
303 { "sf12",44 }, { "sf13",45 }, { "sf14",46 }, { "sf15",47 },
304 { "sf16",48 }, { "sf17",49 }, { "sf18",50 }, { "sf19",51 },
305 { "sf20",52 }, { "sf21",53 }, { "sf22",54 }, { "sf23",55 },
306 { "sf24",56 }, { "sf25",57 }, { "sf26",58 }, { "sf27",59 },
307 { "sf28",60 }, { "sf29",61 }, { "sf30",62 }, { "sf31",63 },
308
309 /* Numbers for floating point registers are for assembler internal use
310 * only: they are scaled back to [0-3] for binary output.
311 */
312 # define FP0 64
313
314 { "fp0", 64 }, { "fp1", 65 }, { "fp2", 66 }, { "fp3", 67 },
315
316 { NULL, 0 }, /* END OF LIST */
317 };
318
319 #define IS_RG_REG(n) ((0 <= (n)) && ((n) < SF0))
320 #define IS_SF_REG(n) ((SF0 <= (n)) && ((n) < FP0))
321 #define IS_FP_REG(n) ((n) >= FP0)
322
323 /* Number and assembler mnemonic for all registers that can appear as 'abase'
324 * (indirect addressing) registers.
325 */
326 static struct {
327 char *areg_name;
328 int areg_num;
329 } aregs[] = {
330 { "(pfp)", 0 }, { "(sp)", 1 }, { "(rip)", 2 }, { "(r3)", 3 },
331 { "(r4)", 4 }, { "(r5)", 5 }, { "(r6)", 6 }, { "(r7)", 7 },
332 { "(r8)", 8 }, { "(r9)", 9 }, { "(r10)", 10 }, { "(r11)", 11 },
333 { "(r12)", 12 }, { "(r13)", 13 }, { "(r14)", 14 }, { "(r15)", 15 },
334 { "(g0)", 16 }, { "(g1)", 17 }, { "(g2)", 18 }, { "(g3)", 19 },
335 { "(g4)", 20 }, { "(g5)", 21 }, { "(g6)", 22 }, { "(g7)", 23 },
336 { "(g8)", 24 }, { "(g9)", 25 }, { "(g10)", 26 }, { "(g11)", 27 },
337 { "(g12)", 28 }, { "(g13)", 29 }, { "(g14)", 30 }, { "(fp)", 31 },
338
339 # define IPREL 32
340 /* for assembler internal use only: this number never appears in binary
341 * output.
342 */
343 { "(ip)", IPREL },
344
345 { NULL, 0 }, /* END OF LIST */
346 };
347
348
349 /* Hash tables */
350 static struct hash_control *op_hash = NULL; /* Opcode mnemonics */
351 static struct hash_control *reg_hash = NULL; /* Register name hash table */
352 static struct hash_control *areg_hash = NULL; /* Abase register hash table */
353
354
355 /* Architecture for which we are assembling */
356 #define ARCH_ANY 0 /* Default: no architecture checking done */
357 #define ARCH_KA 1
358 #define ARCH_KB 2
359 #define ARCH_MC 3
360 #define ARCH_CA 4
361 int architecture = ARCH_ANY; /* Architecture requested on invocation line */
362 int iclasses_seen = 0; /* OR of instruction classes (I_* constants)
363 * for which we've actually assembled
364 * instructions.
365 */
366
367
368 /* BRANCH-PREDICTION INSTRUMENTATION
369 *
370 * The following supports generation of branch-prediction instrumentation
371 * (turned on by -b switch). The instrumentation collects counts
372 * of branches taken/not-taken for later input to a utility that will
373 * set the branch prediction bits of the instructions in accordance with
374 * the behavior observed. (Note that the KX series does not have
375 * brach-prediction.)
376 *
377 * The instrumentation consists of:
378 *
379 * (1) before and after each conditional branch, a call to an external
380 * routine that increments and steps over an inline counter. The
381 * counter itself, initialized to 0, immediately follows the call
382 * instruction. For each branch, the counter following the branch
383 * is the number of times the branch was not taken, and the difference
384 * between the counters is the number of times it was taken. An
385 * example of an instrumented conditional branch:
386 *
387 * call BR_CNT_FUNC
388 * .word 0
389 * LBRANCH23: be label
390 * call BR_CNT_FUNC
391 * .word 0
392 *
393 * (2) a table of pointers to the instrumented branches, so that an
394 * external postprocessing routine can locate all of the counters.
395 * the table begins with a 2-word header: a pointer to the next in
396 * a linked list of such tables (initialized to 0); and a count
397 * of the number of entries in the table (exclusive of the header.
398 *
399 * Note that input source code is expected to already contain calls
400 * an external routine that will link the branch local table into a
401 * list of such tables.
402 */
403
404 static int br_cnt = 0; /* Number of branches instrumented so far.
405 * Also used to generate unique local labels
406 * for each instrumented branch
407 */
408
409 #define BR_LABEL_BASE "LBRANCH"
410 /* Basename of local labels on instrumented
411 * branches, to avoid conflict with compiler-
412 * generated local labels.
413 */
414
415 #define BR_CNT_FUNC "__inc_branch"
416 /* Name of the external routine that will
417 * increment (and step over) an inline counter.
418 */
419
420 #define BR_TAB_NAME "__BRANCH_TABLE__"
421 /* Name of the table of pointers to branches.
422 * A local (i.e., non-external) symbol.
423 */
424 \f
425 /*****************************************************************************
426 * md_begin: One-time initialization.
427 *
428 * Set up hash tables.
429 *
430 **************************************************************************** */
431 void
432 md_begin()
433 {
434 int i; /* Loop counter */
435 const struct i960_opcode *oP; /* Pointer into opcode table */
436 char *retval; /* Value returned by hash functions */
437
438 if (((op_hash = hash_new()) == 0)
439 || ((reg_hash = hash_new()) == 0)
440 || ((areg_hash = hash_new()) == 0)) {
441 as_fatal("virtual memory exceeded");
442 }
443
444 retval = ""; /* For some reason, the base assembler uses an empty
445 * string for "no error message", instead of a NULL
446 * pointer.
447 */
448
449 for (oP=i960_opcodes; oP->name && !*retval; oP++) {
450 retval = hash_insert(op_hash, oP->name, oP);
451 }
452
453 for (i=0; regnames[i].reg_name && !*retval; i++) {
454 retval = hash_insert(reg_hash, regnames[i].reg_name,
455 &regnames[i].reg_num);
456 }
457
458 for (i=0; aregs[i].areg_name && !*retval; i++){
459 retval = hash_insert(areg_hash, aregs[i].areg_name,
460 &aregs[i].areg_num);
461 }
462
463 if (*retval) {
464 as_fatal("Hashing returned \"%s\".", retval);
465 }
466 } /* md_begin() */
467
468 /*****************************************************************************
469 * md_end: One-time final cleanup
470 *
471 * None necessary
472 *
473 **************************************************************************** */
474 void
475 md_end()
476 {
477 }
478
479 /*****************************************************************************
480 * md_assemble: Assemble an instruction
481 *
482 * Assumptions about the passed-in text:
483 * - all comments, labels removed
484 * - text is an instruction
485 * - all white space compressed to single blanks
486 * - all character constants have been replaced with decimal
487 *
488 **************************************************************************** */
489 void
490 md_assemble(textP)
491 char *textP; /* Source text of instruction */
492 {
493 char *args[4]; /* Parsed instruction text, containing NO whitespace:
494 * arg[0]->opcode mnemonic
495 * arg[1-3]->operands, with char constants
496 * replaced by decimal numbers
497 */
498 int n_ops; /* Number of instruction operands */
499
500 struct i960_opcode *oP;
501 /* Pointer to instruction description */
502 int branch_predict;
503 /* TRUE iff opcode mnemonic included branch-prediction
504 * suffix (".f" or ".t")
505 */
506 long bp_bits; /* Setting of branch-prediction bit(s) to be OR'd
507 * into instruction opcode of CTRL/COBR format
508 * instructions.
509 */
510 int n; /* Offset of last character in opcode mnemonic */
511
512 static const char bp_error_msg[] = "branch prediction invalid on this opcode";
513
514
515 /* Parse instruction into opcode and operands */
516 bzero(args, sizeof(args));
517 n_ops = i_scan(textP, args);
518 if (n_ops == -1){
519 return; /* Error message already issued */
520 }
521
522 /* Do "macro substitution" (sort of) on 'ldconst' pseudo-instruction */
523 if (!strcmp(args[0],"ldconst")){
524 n_ops = parse_ldconst(args);
525 if (n_ops == -1){
526 return;
527 }
528 }
529
530 /* Check for branch-prediction suffix on opcode mnemonic, strip it off */
531 n = strlen(args[0]) - 1;
532 branch_predict = 0;
533 bp_bits = 0;
534 if (args[0][n-1] == '.' && (args[0][n] == 't' || args[0][n] == 'f')){
535 /* We could check here to see if the target architecture
536 * supports branch prediction, but why bother? The bit
537 * will just be ignored by processors that don't use it.
538 */
539 branch_predict = 1;
540 bp_bits = (args[0][n] == 't') ? BP_TAKEN : BP_NOT_TAKEN;
541 args[0][n-1] = '\0'; /* Strip suffix from opcode mnemonic */
542 }
543
544 /* Look up opcode mnemonic in table and check number of operands.
545 * Check that opcode is legal for the target architecture.
546 * If all looks good, assemble instruction.
547 */
548 oP = (struct i960_opcode *) hash_find(op_hash, args[0]);
549 if (!oP || !targ_has_iclass(oP->iclass)) {
550 as_bad("invalid opcode, \"%s\".", args[0]);
551
552 } else if (n_ops != oP->num_ops) {
553 as_bad("improper number of operands. expecting %d, got %d", oP->num_ops, n_ops);
554
555 } else {
556 switch (oP->format){
557 case FBRA:
558 case CTRL:
559 ctrl_fmt(args[1], oP->opcode | bp_bits, oP->num_ops);
560 if (oP->format == FBRA){
561 /* Now generate a 'bno' to same arg */
562 ctrl_fmt(args[1], BNO | bp_bits, 1);
563 }
564 break;
565 case COBR:
566 case COJ:
567 cobr_fmt(args, oP->opcode | bp_bits, oP);
568 break;
569 case REG:
570 if (branch_predict){
571 as_warn(bp_error_msg);
572 }
573 reg_fmt(args, oP);
574 break;
575 case MEM1:
576 case MEM2:
577 case MEM4:
578 case MEM8:
579 case MEM12:
580 case MEM16:
581 if (branch_predict){
582 as_warn(bp_error_msg);
583 }
584 mem_fmt(args, oP);
585 break;
586 case CALLJ:
587 if (branch_predict){
588 as_warn(bp_error_msg);
589 }
590 /* Output opcode & set up "fixup" (relocation);
591 * flag relocation as 'callj' type.
592 */
593 know(oP->num_ops == 1);
594 get_cdisp(args[1], "CTRL", oP->opcode, 24, 0, 1);
595 break;
596 default:
597 BAD_CASE(oP->format);
598 break;
599 }
600 }
601 } /* md_assemble() */
602
603 /*****************************************************************************
604 * md_number_to_chars: convert a number to target byte order
605 *
606 **************************************************************************** */
607 void
608 md_number_to_chars(buf, value, n)
609 char *buf; /* Put output here */
610 long value; /* The integer to be converted */
611 int n; /* Number of bytes to output (significant bytes
612 * in 'value')
613 */
614 {
615 while (n--){
616 *buf++ = value;
617 value >>= 8;
618 }
619
620 /* XXX line number probably botched for this warning message. */
621 if (value != 0 && value != -1){
622 as_bad("Displacement too long for instruction field length.");
623 }
624 } /* md_number_to_chars() */
625
626 /*****************************************************************************
627 * md_chars_to_number: convert from target byte order to host byte order.
628 *
629 **************************************************************************** */
630 int
631 md_chars_to_number(val, n)
632 unsigned char *val; /* Value in target byte order */
633 int n; /* Number of bytes in the input */
634 {
635 int retval;
636
637 for (retval=0; n--;){
638 retval <<= 8;
639 retval |= val[n];
640 }
641 return retval;
642 }
643
644
645 #define MAX_LITTLENUMS 6
646 #define LNUM_SIZE sizeof(LITTLENUM_TYPE)
647
648 /*****************************************************************************
649 * md_atof: convert ascii to floating point
650 *
651 * Turn a string at input_line_pointer into a floating point constant of type
652 * 'type', and store the appropriate bytes at *litP. The number of LITTLENUMS
653 * emitted is returned at 'sizeP'. An error message is returned, or a pointer
654 * to an empty message if OK.
655 *
656 * Note we call the i386 floating point routine, rather than complicating
657 * things with more files or symbolic links.
658 *
659 **************************************************************************** */
660 char * md_atof(type, litP, sizeP)
661 int type;
662 char *litP;
663 int *sizeP;
664 {
665 LITTLENUM_TYPE words[MAX_LITTLENUMS];
666 LITTLENUM_TYPE *wordP;
667 int prec;
668 char *t;
669 char *atof_ieee();
670
671 switch(type) {
672 case 'f':
673 case 'F':
674 prec = 2;
675 break;
676
677 case 'd':
678 case 'D':
679 prec = 4;
680 break;
681
682 case 't':
683 case 'T':
684 prec = 5;
685 type = 'x'; /* That's what atof_ieee() understands */
686 break;
687
688 default:
689 *sizeP=0;
690 return "Bad call to md_atof()";
691 }
692
693 t = atof_ieee(input_line_pointer, type, words);
694 if (t){
695 input_line_pointer = t;
696 }
697
698 *sizeP = prec * LNUM_SIZE;
699
700 /* Output the LITTLENUMs in REVERSE order in accord with i80960
701 * word-order. (Dunno why atof_ieee doesn't do it in the right
702 * order in the first place -- probably because it's a hack of
703 * atof_m68k.)
704 */
705
706 for(wordP = words + prec - 1; prec--;){
707 md_number_to_chars(litP, (long) (*wordP--), LNUM_SIZE);
708 litP += sizeof(LITTLENUM_TYPE);
709 }
710
711 return ""; /* Someone should teach Dean about null pointers */
712 }
713
714
715 /*****************************************************************************
716 * md_number_to_imm
717 *
718 **************************************************************************** */
719 void
720 md_number_to_imm(buf, val, n)
721 char *buf;
722 long val;
723 int n;
724 {
725 md_number_to_chars(buf, val, n);
726 }
727
728
729 /*****************************************************************************
730 * md_number_to_disp
731 *
732 **************************************************************************** */
733 void
734 md_number_to_disp(buf, val, n)
735 char *buf;
736 long val;
737 int n;
738 {
739 md_number_to_chars(buf, val, n);
740 }
741
742 /*****************************************************************************
743 * md_number_to_field:
744 *
745 * Stick a value (an address fixup) into a bit field of
746 * previously-generated instruction.
747 *
748 **************************************************************************** */
749 void
750 md_number_to_field(instrP, val, bfixP)
751 char *instrP; /* Pointer to instruction to be fixed */
752 long val; /* Address fixup value */
753 bit_fixS *bfixP; /* Description of bit field to be fixed up */
754 {
755 int numbits; /* Length of bit field to be fixed */
756 long instr; /* 32-bit instruction to be fixed-up */
757 long sign; /* 0 or -1, according to sign bit of 'val' */
758
759 /* Convert instruction back to host byte order
760 */
761 instr = md_chars_to_number(instrP, 4);
762
763 /* Surprise! -- we stored the number of bits
764 * to be modified rather than a pointer to a structure.
765 */
766 numbits = (int)bfixP;
767 if (numbits == 1){
768 /* This is a no-op, stuck here by reloc_callj() */
769 return;
770 }
771
772 know ((numbits==13) || (numbits==24));
773
774 /* Propagate sign bit of 'val' for the given number of bits.
775 * Result should be all 0 or all 1
776 */
777 sign = val >> ((int)numbits - 1);
778 if (((val < 0) && (sign != -1))
779 || ((val > 0) && (sign != 0))){
780 as_bad("Fixup of %d too large for field width of %d",
781 val, numbits);
782 } else {
783 /* Put bit field into instruction and write back in target
784 * byte order.
785 */
786 val &= ~(-1 << (int)numbits); /* Clear unused sign bits */
787 instr |= val;
788 md_number_to_chars(instrP, instr, 4);
789 }
790 } /* md_number_to_field() */
791
792
793 /*****************************************************************************
794 * md_parse_option
795 * Invocation line includes a switch not recognized by the base assembler.
796 * See if it's a processor-specific option. For the 960, these are:
797 *
798 * -norelax:
799 * Conditional branch instructions that require displacements
800 * greater than 13 bits (or that have external targets) should
801 * generate errors. The default is to replace each such
802 * instruction with the corresponding compare (or chkbit) and
803 * branch instructions. Note that the Intel "j" cobr directives
804 * are ALWAYS "de-optimized" in this way when necessary,
805 * regardless of the setting of this option.
806 *
807 * -b:
808 * Add code to collect information about branches taken, for
809 * later optimization of branch prediction bits by a separate
810 * tool. COBR and CNTL format instructions have branch
811 * prediction bits (in the CX architecture); if "BR" represents
812 * an instruction in one of these classes, the following rep-
813 * resents the code generated by the assembler:
814 *
815 * call <increment routine>
816 * .word 0 # pre-counter
817 * Label: BR
818 * call <increment routine>
819 * .word 0 # post-counter
820 *
821 * A table of all such "Labels" is also generated.
822 *
823 *
824 * -AKA, -AKB, -AKC, -ASA, -ASB, -AMC, -ACA:
825 * Select the 80960 architecture. Instructions or features not
826 * supported by the selected architecture cause fatal errors.
827 * The default is to generate code for any instruction or feature
828 * that is supported by SOME version of the 960 (even if this
829 * means mixing architectures!).
830 *
831 **************************************************************************** */
832 int
833 md_parse_option(argP, cntP, vecP)
834 char **argP;
835 int *cntP;
836 char ***vecP;
837 {
838 char *p;
839 struct tabentry { char *flag; int arch; };
840 static struct tabentry arch_tab[] = {
841 "KA", ARCH_KA,
842 "KB", ARCH_KB,
843 "SA", ARCH_KA, /* Synonym for KA */
844 "SB", ARCH_KB, /* Synonym for KB */
845 "KC", ARCH_MC, /* Synonym for MC */
846 "MC", ARCH_MC,
847 "CA", ARCH_CA,
848 NULL, 0
849 };
850 struct tabentry *tp;
851
852 if (!strcmp(*argP,"norelax")){
853 norelax = 1;
854
855 } else if (**argP == 'b'){
856 instrument_branches = 1;
857
858 } else if (**argP == 'A'){
859 p = (*argP) + 1;
860
861 for (tp = arch_tab; tp->flag != NULL; tp++){
862 if (!strcmp(p,tp->flag)){
863 break;
864 }
865 }
866
867 if (tp->flag == NULL){
868 as_bad("unknown architecture: %s", p);
869 } else {
870 architecture = tp->arch;
871 }
872 } else {
873 /* Unknown option */
874 (*argP)++;
875 return 0;
876 }
877 **argP = '\0'; /* Done parsing this switch */
878 return 1;
879 }
880
881 /*****************************************************************************
882 * md_convert_frag:
883 * Called by base assembler after address relaxation is finished: modify
884 * variable fragments according to how much relaxation was done.
885 *
886 * If the fragment substate is still 1, a 13-bit displacement was enough
887 * to reach the symbol in question. Set up an address fixup, but otherwise
888 * leave the cobr instruction alone.
889 *
890 * If the fragment substate is 2, a 13-bit displacement was not enough.
891 * Replace the cobr with a two instructions (a compare and a branch).
892 *
893 **************************************************************************** */
894 void
895 md_convert_frag(fragP)
896 fragS * fragP;
897 {
898 fixS *fixP; /* Structure describing needed address fix */
899
900 switch (fragP->fr_subtype){
901 case 1:
902 /* LEAVE SINGLE COBR INSTRUCTION */
903 fixP = fix_new(fragP,
904 fragP->fr_opcode-fragP->fr_literal,
905 4,
906 fragP->fr_symbol,
907 0,
908 fragP->fr_offset,
909 1,
910 0);
911
912 fixP->fx_bit_fixP = (bit_fixS *) 13; /* size of bit field */
913 break;
914 case 2:
915 /* REPLACE COBR WITH COMPARE/BRANCH INSTRUCTIONS */
916 relax_cobr(fragP);
917 break;
918 default:
919 BAD_CASE(fragP->fr_subtype);
920 break;
921 }
922 }
923
924 /*****************************************************************************
925 * md_estimate_size_before_relax: How much does it look like *fragP will grow?
926 *
927 * Called by base assembler just before address relaxation.
928 * Return the amount by which the fragment will grow.
929 *
930 * Any symbol that is now undefined will not become defined; cobr's
931 * based on undefined symbols will have to be replaced with a compare
932 * instruction and a branch instruction, and the code fragment will grow
933 * by 4 bytes.
934 *
935 **************************************************************************** */
936 int
937 md_estimate_size_before_relax(fragP, segment_type)
938 register fragS *fragP;
939 register segT segment_type;
940 {
941 /* If symbol is undefined in this segment, go to "relaxed" state
942 * (compare and branch instructions instead of cobr) right now.
943 */
944 if (S_GET_SEGMENT(fragP->fr_symbol) != segment_type) {
945 relax_cobr(fragP);
946 return 4;
947 }
948 return 0;
949 } /* md_estimate_size_before_relax() */
950
951
952 /*****************************************************************************
953 * md_ri_to_chars:
954 * This routine exists in order to overcome machine byte-order problems
955 * when dealing with bit-field entries in the relocation_info struct.
956 *
957 * But relocation info will be used on the host machine only (only
958 * executable code is actually downloaded to the i80960). Therefore,
959 * we leave it in host byte order.
960 *
961 **************************************************************************** */
962 void md_ri_to_chars(the_bytes, ri)
963 char *the_bytes;
964 struct reloc_info_generic *ri;
965 {
966 struct relocation_info br;
967
968 (void) bzero(&br, sizeof(br));
969
970 br.r_address = ri->r_address;
971 br.r_index = ri->r_index;
972 br.r_pcrel = ri->r_pcrel;
973 br.r_length = ri->r_length;
974 br.r_extern = ri->r_extern;
975 br.r_bsr = ri->r_bsr;
976 br.r_disp = ri->r_disp;
977 br.r_callj = ri->r_callj;
978
979 *((struct relocation_info *) the_bytes) = br;
980 } /* md_ri_to_chars() */
981
982
983 #ifndef WORKING_DOT_WORD
984
985 int md_short_jump_size = 0;
986 int md_long_jump_size = 0;
987
988 void md_create_short_jump(ptr, from_addr, to_addr, frag, to_symbol)
989 char *ptr;
990 long from_addr;
991 long to_addr;
992 fragS *frag;
993 symbolS *to_symbol;
994 {
995 abort();
996 }
997
998 void
999 md_create_long_jump(ptr,from_addr,to_addr,frag,to_symbol)
1000 char *ptr;
1001 long from_addr, to_addr;
1002 fragS *frag;
1003 symbolS *to_symbol;
1004 {
1005 abort();
1006 }
1007 #endif
1008 \f
1009 /*************************************************************
1010 * *
1011 * FOLLOWING ARE THE LOCAL ROUTINES, IN ALPHABETICAL ORDER *
1012 * *
1013 ************************************************************ */
1014
1015
1016
1017 /*****************************************************************************
1018 * brcnt_emit: Emit code to increment inline branch counter.
1019 *
1020 * See the comments above the declaration of 'br_cnt' for details on
1021 * branch-prediction instrumentation.
1022 **************************************************************************** */
1023 static void
1024 brcnt_emit()
1025 {
1026 ctrl_fmt(BR_CNT_FUNC,CALL,1);/* Emit call to "increment" routine */
1027 emit(0); /* Emit inline counter to be incremented */
1028 }
1029
1030 /*****************************************************************************
1031 * brlab_next: generate the next branch local label
1032 *
1033 * See the comments above the declaration of 'br_cnt' for details on
1034 * branch-prediction instrumentation.
1035 **************************************************************************** */
1036 static char *
1037 brlab_next()
1038 {
1039 static char buf[20];
1040
1041 sprintf(buf, "%s%d", BR_LABEL_BASE, br_cnt++);
1042 return buf;
1043 }
1044
1045 /*****************************************************************************
1046 * brtab_emit: generate the fetch-prediction branch table.
1047 *
1048 * See the comments above the declaration of 'br_cnt' for details on
1049 * branch-prediction instrumentation.
1050 *
1051 * The code emitted here would be functionally equivalent to the following
1052 * example assembler source.
1053 *
1054 * .data
1055 * .align 2
1056 * BR_TAB_NAME:
1057 * .word 0 # link to next table
1058 * .word 3 # length of table
1059 * .word LBRANCH0 # 1st entry in table proper
1060 * .word LBRANCH1
1061 * .word LBRANCH2
1062 ***************************************************************************** */
1063 void
1064 brtab_emit()
1065 {
1066 int i;
1067 char buf[20];
1068 char *p; /* Where the binary was output to */
1069 fixS *fixP; /*->description of deferred address fixup */
1070
1071 if (!instrument_branches){
1072 return;
1073 }
1074
1075 subseg_new(SEG_DATA,0); /* .data */
1076 frag_align(2,0); /* .align 2 */
1077 record_alignment(now_seg,2);
1078 colon(BR_TAB_NAME); /* BR_TAB_NAME: */
1079 emit(0); /* .word 0 #link to next table */
1080 emit(br_cnt); /* .word n #length of table */
1081
1082 for (i=0; i<br_cnt; i++){
1083 sprintf(buf, "%s%d", BR_LABEL_BASE, i);
1084 p = emit(0);
1085 fixP = fix_new(frag_now,
1086 p - frag_now->fr_literal,
1087 4,
1088 symbol_find(buf),
1089 0,
1090 0,
1091 0,
1092 0);
1093 fixP->fx_im_disp = 2; /* 32-bit displacement fix */
1094 }
1095 }
1096
1097 /*****************************************************************************
1098 * cobr_fmt: generate a COBR-format instruction
1099 *
1100 **************************************************************************** */
1101 static
1102 void
1103 cobr_fmt(arg, opcode, oP)
1104 char *arg[]; /* arg[0]->opcode mnemonic, arg[1-3]->operands (ascii) */
1105 long opcode; /* Opcode, with branch-prediction bits already set
1106 * if necessary.
1107 */
1108 struct i960_opcode *oP;
1109 /*->description of instruction */
1110 {
1111 long instr; /* 32-bit instruction */
1112 struct regop regop; /* Description of register operand */
1113 int n; /* Number of operands */
1114 int var_frag; /* 1 if varying length code fragment should
1115 * be emitted; 0 if an address fix
1116 * should be emitted.
1117 */
1118
1119 instr = opcode;
1120 n = oP->num_ops;
1121
1122 if (n >= 1) {
1123 /* First operand (if any) of a COBR is always a register
1124 * operand. Parse it.
1125 */
1126 parse_regop(&regop, arg[1], oP->operand[0]);
1127 instr |= (regop.n << 19) | (regop.mode << 13);
1128 }
1129 if (n >= 2) {
1130 /* Second operand (if any) of a COBR is always a register
1131 * operand. Parse it.
1132 */
1133 parse_regop(&regop, arg[2], oP->operand[1]);
1134 instr |= (regop.n << 14) | regop.special;
1135 }
1136
1137
1138 if (n < 3){
1139 emit(instr);
1140
1141 } else {
1142 if (instrument_branches){
1143 brcnt_emit();
1144 colon(brlab_next());
1145 }
1146
1147 /* A third operand to a COBR is always a displacement.
1148 * Parse it; if it's relaxable (a cobr "j" directive, or any
1149 * cobr other than bbs/bbc when the "-norelax" option is not in
1150 * use) set up a variable code fragment; otherwise set up an
1151 * address fix.
1152 */
1153 var_frag = !norelax || (oP->format == COJ); /* TRUE or FALSE */
1154 get_cdisp(arg[3], "COBR", instr, 13, var_frag, 0);
1155
1156 if (instrument_branches){
1157 brcnt_emit();
1158 }
1159 }
1160 } /* cobr_fmt() */
1161
1162
1163 /*****************************************************************************
1164 * ctrl_fmt: generate a CTRL-format instruction
1165 *
1166 **************************************************************************** */
1167 static
1168 void
1169 ctrl_fmt(targP, opcode, num_ops)
1170 char *targP; /* Pointer to text of lone operand (if any) */
1171 long opcode; /* Template of instruction */
1172 int num_ops; /* Number of operands */
1173 {
1174 int instrument; /* TRUE iff we should add instrumentation to track
1175 * how often the branch is taken
1176 */
1177
1178
1179 if (num_ops == 0){
1180 emit(opcode); /* Output opcode */
1181 } else {
1182
1183 instrument = instrument_branches && (opcode!=CALL)
1184 && (opcode!=B) && (opcode!=RET) && (opcode!=BAL);
1185
1186 if (instrument){
1187 brcnt_emit();
1188 colon(brlab_next());
1189 }
1190
1191 /* The operand MUST be an ip-relative displacment. Parse it
1192 * and set up address fix for the instruction we just output.
1193 */
1194 get_cdisp(targP, "CTRL", opcode, 24, 0, 0);
1195
1196 if (instrument){
1197 brcnt_emit();
1198 }
1199 }
1200
1201 }
1202
1203
1204 /*****************************************************************************
1205 * emit: output instruction binary
1206 *
1207 * Output instruction binary, in target byte order, 4 bytes at a time.
1208 * Return pointer to where it was placed.
1209 *
1210 **************************************************************************** */
1211 static
1212 char *
1213 emit(instr)
1214 long instr; /* Word to be output, host byte order */
1215 {
1216 char *toP; /* Where to output it */
1217
1218 toP = frag_more(4); /* Allocate storage */
1219 md_number_to_chars(toP, instr, 4); /* Convert to target byte order */
1220 return toP;
1221 }
1222
1223
1224 /*****************************************************************************
1225 * get_args: break individual arguments out of comma-separated list
1226 *
1227 * Input assumptions:
1228 * - all comments and labels have been removed
1229 * - all strings of whitespace have been collapsed to a single blank.
1230 * - all character constants ('x') have been replaced with decimal
1231 *
1232 * Output:
1233 * args[0] is untouched. args[1] points to first operand, etc. All args:
1234 * - are NULL-terminated
1235 * - contain no whitespace
1236 *
1237 * Return value:
1238 * Number of operands (0,1,2, or 3) or -1 on error.
1239 *
1240 **************************************************************************** */
1241 static int get_args(p, args)
1242 register char *p; /* Pointer to comma-separated operands; MUCKED BY US */
1243 char *args[]; /* Output arg: pointers to operands placed in args[1-3].
1244 * MUST ACCOMMODATE 4 ENTRIES (args[0-3]).
1245 */
1246 {
1247 register int n; /* Number of operands */
1248 register char *to;
1249 /* char buf[4]; */
1250 /* int len; */
1251
1252
1253 /* Skip lead white space */
1254 while (*p == ' '){
1255 p++;
1256 }
1257
1258 if (*p == '\0'){
1259 return 0;
1260 }
1261
1262 n = 1;
1263 args[1] = p;
1264
1265 /* Squeze blanks out by moving non-blanks toward start of string.
1266 * Isolate operands, whenever comma is found.
1267 */
1268 to = p;
1269 while (*p != '\0'){
1270
1271 if (*p == ' '){
1272 p++;
1273
1274 } else if (*p == ','){
1275
1276 /* Start of operand */
1277 if (n == 3){
1278 as_bad("too many operands");
1279 return -1;
1280 }
1281 *to++ = '\0'; /* Terminate argument */
1282 args[++n] = to; /* Start next argument */
1283 p++;
1284
1285 } else {
1286 *to++ = *p++;
1287 }
1288 }
1289 *to = '\0';
1290 return n;
1291 }
1292
1293
1294 /*****************************************************************************
1295 * get_cdisp: handle displacement for a COBR or CTRL instruction.
1296 *
1297 * Parse displacement for a COBR or CTRL instruction.
1298 *
1299 * If successful, output the instruction opcode and set up for it,
1300 * depending on the arg 'var_frag', either:
1301 * o an address fixup to be done when all symbol values are known, or
1302 * o a varying length code fragment, with address fixup info. This
1303 * will be done for cobr instructions that may have to be relaxed
1304 * in to compare/branch instructions (8 bytes) if the final address
1305 * displacement is greater than 13 bits.
1306 *
1307 **************************************************************************** */
1308 static
1309 void
1310 get_cdisp(dispP, ifmtP, instr, numbits, var_frag, callj)
1311 char *dispP; /*->displacement as specified in source instruction */
1312 char *ifmtP; /*->"COBR" or "CTRL" (for use in error message) */
1313 long instr; /* Instruction needing the displacement */
1314 int numbits; /* # bits of displacement (13 for COBR, 24 for CTRL) */
1315 int var_frag; /* 1 if varying length code fragment should be emitted;
1316 * 0 if an address fix should be emitted.
1317 */
1318 int callj; /* 1 if callj relocation should be done; else 0 */
1319 {
1320 expressionS e; /* Parsed expression */
1321 fixS *fixP; /* Structure describing needed address fix */
1322 char *outP; /* Where instruction binary is output to */
1323
1324 fixP = NULL;
1325
1326 switch (parse_expr(dispP,&e)) {
1327
1328 case SEG_GOOF:
1329 as_bad("expression syntax error");
1330 break;
1331
1332 case SEG_TEXT:
1333 case SEG_UNKNOWN:
1334 if (var_frag) {
1335 outP = frag_more(8); /* Allocate worst-case storage */
1336 md_number_to_chars(outP, instr, 4);
1337 frag_variant(rs_machine_dependent, 4, 4, 1,
1338 adds(e), offs(e), outP, 0, 0);
1339 } else {
1340 /* Set up a new fix structure, so address can be updated
1341 * when all symbol values are known.
1342 */
1343 outP = emit(instr);
1344 fixP = fix_new(frag_now,
1345 outP - frag_now->fr_literal,
1346 4,
1347 adds(e),
1348 0,
1349 offs(e),
1350 1,
1351 0);
1352
1353 fixP->fx_callj = callj;
1354
1355 /* We want to modify a bit field when the address is
1356 * known. But we don't need all the garbage in the
1357 * bit_fix structure. So we're going to lie and store
1358 * the number of bits affected instead of a pointer.
1359 */
1360 fixP->fx_bit_fixP = (bit_fixS *) numbits;
1361 }
1362 break;
1363
1364 case SEG_DATA:
1365 case SEG_BSS:
1366 as_bad("attempt to branch into different segment");
1367 break;
1368
1369 default:
1370 as_bad("target of %s instruction must be a label", ifmtP);
1371 break;
1372 }
1373 }
1374
1375
1376 /*****************************************************************************
1377 * get_ispec: parse a memory operand for an index specification
1378 *
1379 * Here, an "index specification" is taken to be anything surrounded
1380 * by square brackets and NOT followed by anything else.
1381 *
1382 * If it's found, detach it from the input string, remove the surrounding
1383 * square brackets, and return a pointer to it. Otherwise, return NULL.
1384 *
1385 **************************************************************************** */
1386 static
1387 char *
1388 get_ispec(textP)
1389 char *textP; /*->memory operand from source instruction, no white space */
1390 {
1391 char *start; /*->start of index specification */
1392 char *end; /*->end of index specification */
1393
1394 /* Find opening square bracket, if any
1395 */
1396 start = index(textP, '[');
1397
1398 if (start != NULL){
1399
1400 /* Eliminate '[', detach from rest of operand */
1401 *start++ = '\0';
1402
1403 end = index(start, ']');
1404
1405 if (end == NULL){
1406 as_bad("unmatched '['");
1407
1408 } else {
1409 /* Eliminate ']' and make sure it was the last thing
1410 * in the string.
1411 */
1412 *end = '\0';
1413 if (*(end+1) != '\0'){
1414 as_bad("garbage after index spec ignored");
1415 }
1416 }
1417 }
1418 return start;
1419 }
1420
1421 /*****************************************************************************
1422 * get_regnum:
1423 *
1424 * Look up a (suspected) register name in the register table and return the
1425 * associated register number (or -1 if not found).
1426 *
1427 **************************************************************************** */
1428 static
1429 int
1430 get_regnum(regname)
1431 char *regname; /* Suspected register name */
1432 {
1433 int *rP;
1434
1435 rP = (int *) hash_find(reg_hash, regname);
1436 return (rP == NULL) ? -1 : *rP;
1437 }
1438
1439
1440 /*****************************************************************************
1441 * i_scan: perform lexical scan of ascii assembler instruction.
1442 *
1443 * Input assumptions:
1444 * - input string is an i80960 instruction (not a pseudo-op)
1445 * - all comments and labels have been removed
1446 * - all strings of whitespace have been collapsed to a single blank.
1447 *
1448 * Output:
1449 * args[0] points to opcode, other entries point to operands. All strings:
1450 * - are NULL-terminated
1451 * - contain no whitespace
1452 * - have character constants ('x') replaced with a decimal number
1453 *
1454 * Return value:
1455 * Number of operands (0,1,2, or 3) or -1 on error.
1456 *
1457 **************************************************************************** */
1458 static int i_scan(iP, args)
1459 register char *iP; /* Pointer to ascii instruction; MUCKED BY US. */
1460 char *args[]; /* Output arg: pointers to opcode and operands placed
1461 * here. MUST ACCOMMODATE 4 ENTRIES.
1462 */
1463 {
1464
1465 /* Isolate opcode */
1466 if (*(iP) == ' ') {
1467 iP++;
1468 } /* Skip lead space, if any */
1469 args[0] = iP;
1470 for (; *iP != ' '; iP++) {
1471 if (*iP == '\0') {
1472 /* There are no operands */
1473 if (args[0] == iP) {
1474 /* We never moved: there was no opcode either! */
1475 as_bad("missing opcode");
1476 return -1;
1477 }
1478 return 0;
1479 }
1480 }
1481 *iP++ = '\0'; /* Terminate opcode */
1482 return(get_args(iP, args));
1483 } /* i_scan() */
1484
1485
1486 /*****************************************************************************
1487 * mem_fmt: generate a MEMA- or MEMB-format instruction
1488 *
1489 **************************************************************************** */
1490 static void mem_fmt(args, oP)
1491 char *args[]; /* args[0]->opcode mnemonic, args[1-3]->operands */
1492 struct i960_opcode *oP; /* Pointer to description of instruction */
1493 {
1494 int i; /* Loop counter */
1495 struct regop regop; /* Description of register operand */
1496 char opdesc; /* Operand descriptor byte */
1497 memS instr; /* Description of binary to be output */
1498 char *outP; /* Where the binary was output to */
1499 expressionS expr; /* Parsed expression */
1500 fixS *fixP; /*->description of deferred address fixup */
1501
1502 bzero(&instr, sizeof(memS));
1503 instr.opcode = oP->opcode;
1504
1505 /* Process operands. */
1506 for (i = 1; i <= oP->num_ops; i++){
1507 opdesc = oP->operand[i-1];
1508
1509 if (MEMOP(opdesc)){
1510 parse_memop(&instr, args[i], oP->format);
1511 } else {
1512 parse_regop(&regop, args[i], opdesc);
1513 instr.opcode |= regop.n << 19;
1514 }
1515 }
1516
1517 /* Output opcode */
1518 outP = emit(instr.opcode);
1519
1520 if (instr.disp == 0){
1521 return;
1522 }
1523
1524 /* Parse and process the displacement */
1525 switch (parse_expr(instr.e,&expr)){
1526
1527 case SEG_GOOF:
1528 as_bad("expression syntax error");
1529 break;
1530
1531 case SEG_ABSOLUTE:
1532 if (instr.disp == 32){
1533 (void) emit(offs(expr)); /* Output displacement */
1534 } else {
1535 /* 12-bit displacement */
1536 if (offs(expr) & ~0xfff){
1537 /* Won't fit in 12 bits: convert already-output
1538 * instruction to MEMB format, output
1539 * displacement.
1540 */
1541 mema_to_memb(outP);
1542 (void) emit(offs(expr));
1543 } else {
1544 /* WILL fit in 12 bits: OR into opcode and
1545 * overwrite the binary we already put out
1546 */
1547 instr.opcode |= offs(expr);
1548 md_number_to_chars(outP, instr.opcode, 4);
1549 }
1550 }
1551 break;
1552
1553 case SEG_DIFFERENCE:
1554 case SEG_TEXT:
1555 case SEG_DATA:
1556 case SEG_BSS:
1557 case SEG_UNKNOWN:
1558 if (instr.disp == 12){
1559 /* Displacement is dependent on a symbol, whose value
1560 * may change at link time. We HAVE to reserve 32 bits.
1561 * Convert already-output opcode to MEMB format.
1562 */
1563 mema_to_memb(outP);
1564 }
1565
1566 /* Output 0 displacement and set up address fixup for when
1567 * this symbol's value becomes known.
1568 */
1569 outP = emit((long) 0);
1570 fixP = fix_new(frag_now,
1571 outP - frag_now->fr_literal,
1572 4,
1573 adds(expr),
1574 subs(expr),
1575 offs(expr),
1576 0,
1577 0);
1578 fixP->fx_im_disp = 2; /* 32-bit displacement fix */
1579 break;
1580
1581 default:
1582 BAD_CASE(segs(expr));
1583 break;
1584 }
1585 } /* memfmt() */
1586
1587
1588 /*****************************************************************************
1589 * mema_to_memb: convert a MEMA-format opcode to a MEMB-format opcode.
1590 *
1591 * There are 2 possible MEMA formats:
1592 * - displacement only
1593 * - displacement + abase
1594 *
1595 * They are distinguished by the setting of the MEMA_ABASE bit.
1596 *
1597 **************************************************************************** */
1598 static void mema_to_memb(opcodeP)
1599 char *opcodeP; /* Where to find the opcode, in target byte order */
1600 {
1601 long opcode; /* Opcode in host byte order */
1602 long mode; /* Mode bits for MEMB instruction */
1603
1604 opcode = md_chars_to_number(opcodeP, 4);
1605 know(!(opcode & MEMB_BIT));
1606
1607 mode = MEMB_BIT | D_BIT;
1608 if (opcode & MEMA_ABASE){
1609 mode |= A_BIT;
1610 }
1611
1612 opcode &= 0xffffc000; /* Clear MEMA offset and mode bits */
1613 opcode |= mode; /* Set MEMB mode bits */
1614
1615 md_number_to_chars(opcodeP, opcode, 4);
1616 } /* mema_to_memb() */
1617
1618
1619 /*****************************************************************************
1620 * parse_expr: parse an expression
1621 *
1622 * Use base assembler's expression parser to parse an expression.
1623 * It, unfortunately, runs off a global which we have to save/restore
1624 * in order to make it work for us.
1625 *
1626 * An empty expression string is treated as an absolute 0.
1627 *
1628 * Return "segment" to which the expression evaluates.
1629 * Return SEG_GOOF regardless of expression evaluation if entire input
1630 * string is not consumed in the evaluation -- tolerate no dangling junk!
1631 *
1632 **************************************************************************** */
1633 static
1634 segT
1635 parse_expr(textP, expP)
1636 char *textP; /* Text of expression to be parsed */
1637 expressionS *expP; /* Where to put the results of parsing */
1638 {
1639 char *save_in; /* Save global here */
1640 segT seg; /* Segment to which expression evaluates */
1641 symbolS *symP;
1642
1643 know(textP);
1644
1645 if (*textP == '\0') {
1646 /* Treat empty string as absolute 0 */
1647 expP->X_add_symbol = expP->X_subtract_symbol = NULL;
1648 expP->X_add_number = 0;
1649 seg = expP->X_seg = SEG_ABSOLUTE;
1650
1651 } else {
1652 save_in = input_line_pointer; /* Save global */
1653 input_line_pointer = textP; /* Make parser work for us */
1654
1655 seg = expression(expP);
1656 if (input_line_pointer - textP != strlen(textP)) {
1657 /* Did not consume all of the input */
1658 seg = SEG_GOOF;
1659 }
1660 symP = expP->X_add_symbol;
1661 if (symP && (hash_find(reg_hash, S_GET_NAME(symP)))) {
1662 /* Register name in an expression */
1663 seg = SEG_GOOF;
1664 }
1665
1666 input_line_pointer = save_in; /* Restore global */
1667 }
1668 return seg;
1669 }
1670
1671
1672 /*****************************************************************************
1673 * parse_ldcont:
1674 * Parse and replace a 'ldconst' pseudo-instruction with an appropriate
1675 * i80960 instruction.
1676 *
1677 * Assumes the input consists of:
1678 * arg[0] opcode mnemonic ('ldconst')
1679 * arg[1] first operand (constant)
1680 * arg[2] name of register to be loaded
1681 *
1682 * Replaces opcode and/or operands as appropriate.
1683 *
1684 * Returns the new number of arguments, or -1 on failure.
1685 *
1686 **************************************************************************** */
1687 static
1688 int
1689 parse_ldconst(arg)
1690 char *arg[]; /* See above */
1691 {
1692 int n; /* Constant to be loaded */
1693 int shift; /* Shift count for "shlo" instruction */
1694 static char buf[5]; /* Literal for first operand */
1695 static char buf2[5]; /* Literal for second operand */
1696 expressionS e; /* Parsed expression */
1697
1698
1699 arg[3] = NULL; /* So we can tell at the end if it got used or not */
1700
1701 switch(parse_expr(arg[1],&e)){
1702
1703 case SEG_TEXT:
1704 case SEG_DATA:
1705 case SEG_BSS:
1706 case SEG_UNKNOWN:
1707 case SEG_DIFFERENCE:
1708 /* We're dependent on one or more symbols -- use "lda" */
1709 arg[0] = "lda";
1710 break;
1711
1712 case SEG_ABSOLUTE:
1713 /* Try the following mappings:
1714 * ldconst 0,<reg> ->mov 0,<reg>
1715 * ldconst 31,<reg> ->mov 31,<reg>
1716 * ldconst 32,<reg> ->addo 1,31,<reg>
1717 * ldconst 62,<reg> ->addo 31,31,<reg>
1718 * ldconst 64,<reg> ->shlo 8,3,<reg>
1719 * ldconst -1,<reg> ->subo 1,0,<reg>
1720 * ldconst -31,<reg>->subo 31,0,<reg>
1721 *
1722 * anthing else becomes:
1723 * lda xxx,<reg>
1724 */
1725 n = offs(e);
1726 if ((0 <= n) && (n <= 31)){
1727 arg[0] = "mov";
1728
1729 } else if ((-31 <= n) && (n <= -1)){
1730 arg[0] = "subo";
1731 arg[3] = arg[2];
1732 sprintf(buf, "%d", -n);
1733 arg[1] = buf;
1734 arg[2] = "0";
1735
1736 } else if ((32 <= n) && (n <= 62)){
1737 arg[0] = "addo";
1738 arg[3] = arg[2];
1739 arg[1] = "31";
1740 sprintf(buf, "%d", n-31);
1741 arg[2] = buf;
1742
1743 } else if ((shift = shift_ok(n)) != 0){
1744 arg[0] = "shlo";
1745 arg[3] = arg[2];
1746 sprintf(buf, "%d", shift);
1747 arg[1] = buf;
1748 sprintf(buf2, "%d", n >> shift);
1749 arg[2] = buf2;
1750
1751 } else {
1752 arg[0] = "lda";
1753 }
1754 break;
1755
1756 default:
1757 as_bad("invalid constant");
1758 return -1;
1759 break;
1760 }
1761 return (arg[3] == 0) ? 2: 3;
1762 }
1763
1764 /*****************************************************************************
1765 * parse_memop: parse a memory operand
1766 *
1767 * This routine is based on the observation that the 4 mode bits of the
1768 * MEMB format, taken individually, have fairly consistent meaning:
1769 *
1770 * M3 (bit 13): 1 if displacement is present (D_BIT)
1771 * M2 (bit 12): 1 for MEMB instructions (MEMB_BIT)
1772 * M1 (bit 11): 1 if index is present (I_BIT)
1773 * M0 (bit 10): 1 if abase is present (A_BIT)
1774 *
1775 * So we parse the memory operand and set bits in the mode as we find
1776 * things. Then at the end, if we go to MEMB format, we need only set
1777 * the MEMB bit (M2) and our mode is built for us.
1778 *
1779 * Unfortunately, I said "fairly consistent". The exceptions:
1780 *
1781 * DBIA
1782 * 0100 Would seem illegal, but means "abase-only".
1783 *
1784 * 0101 Would seem to mean "abase-only" -- it means IP-relative.
1785 * Must be converted to 0100.
1786 *
1787 * 0110 Would seem to mean "index-only", but is reserved.
1788 * We turn on the D bit and provide a 0 displacement.
1789 *
1790 * The other thing to observe is that we parse from the right, peeling
1791 * things * off as we go: first any index spec, then any abase, then
1792 * the displacement.
1793 *
1794 **************************************************************************** */
1795 static
1796 void
1797 parse_memop(memP, argP, optype)
1798 memS *memP; /* Where to put the results */
1799 char *argP; /* Text of the operand to be parsed */
1800 int optype; /* MEM1, MEM2, MEM4, MEM8, MEM12, or MEM16 */
1801 {
1802 char *indexP; /* Pointer to index specification with "[]" removed */
1803 char *p; /* Temp char pointer */
1804 char iprel_flag;/* True if this is an IP-relative operand */
1805 int regnum; /* Register number */
1806 int scale; /* Scale factor: 1,2,4,8, or 16. Later converted
1807 * to internal format (0,1,2,3,4 respectively).
1808 */
1809 int mode; /* MEMB mode bits */
1810 int *intP; /* Pointer to register number */
1811
1812 /* The following table contains the default scale factors for each
1813 * type of memory instruction. It is accessed using (optype-MEM1)
1814 * as an index -- thus it assumes the 'optype' constants are assigned
1815 * consecutive values, in the order they appear in this table
1816 */
1817 static int def_scale[] = {
1818 1, /* MEM1 */
1819 2, /* MEM2 */
1820 4, /* MEM4 */
1821 8, /* MEM8 */
1822 -1, /* MEM12 -- no valid default */
1823 16 /* MEM16 */
1824 };
1825
1826
1827 iprel_flag = mode = 0;
1828
1829 /* Any index present? */
1830 indexP = get_ispec(argP);
1831 if (indexP) {
1832 p = strchr(indexP, '*');
1833 if (p == NULL) {
1834 /* No explicit scale -- use default for this
1835 *instruction type.
1836 */
1837 scale = def_scale[ optype - MEM1 ];
1838 } else {
1839 *p++ = '\0'; /* Eliminate '*' */
1840
1841 /* Now indexP->a '\0'-terminated register name,
1842 * and p->a scale factor.
1843 */
1844
1845 if (!strcmp(p,"16")){
1846 scale = 16;
1847 } else if (strchr("1248",*p) && (p[1] == '\0')){
1848 scale = *p - '0';
1849 } else {
1850 scale = -1;
1851 }
1852 }
1853
1854 regnum = get_regnum(indexP); /* Get index reg. # */
1855 if (!IS_RG_REG(regnum)){
1856 as_bad("invalid index register");
1857 return;
1858 }
1859
1860 /* Convert scale to its binary encoding */
1861 switch (scale){
1862 case 1: scale = 0 << 7; break;
1863 case 2: scale = 1 << 7; break;
1864 case 4: scale = 2 << 7; break;
1865 case 8: scale = 3 << 7; break;
1866 case 16: scale = 4 << 7; break;
1867 default: as_bad("invalid scale factor"); return;
1868 };
1869
1870 memP->opcode |= scale | regnum; /* Set index bits in opcode */
1871 mode |= I_BIT; /* Found a valid index spec */
1872 }
1873
1874 /* Any abase (Register Indirect) specification present? */
1875 if ((p = strrchr(argP,'(')) != NULL) {
1876 /* "(" is there -- does it start a legal abase spec?
1877 * (If not it could be part of a displacement expression.)
1878 */
1879 intP = (int *) hash_find(areg_hash, p);
1880 if (intP != NULL){
1881 /* Got an abase here */
1882 regnum = *intP;
1883 *p = '\0'; /* discard register spec */
1884 if (regnum == IPREL){
1885 /* We have to specialcase ip-rel mode */
1886 iprel_flag = 1;
1887 } else {
1888 memP->opcode |= regnum << 14;
1889 mode |= A_BIT;
1890 }
1891 }
1892 }
1893
1894 /* Any expression present? */
1895 memP->e = argP;
1896 if (*argP != '\0'){
1897 mode |= D_BIT;
1898 }
1899
1900 /* Special-case ip-relative addressing */
1901 if (iprel_flag){
1902 if (mode & I_BIT){
1903 syntax();
1904 } else {
1905 memP->opcode |= 5 << 10; /* IP-relative mode */
1906 memP->disp = 32;
1907 }
1908 return;
1909 }
1910
1911 /* Handle all other modes */
1912 switch (mode){
1913 case D_BIT | A_BIT:
1914 /* Go with MEMA instruction format for now (grow to MEMB later
1915 * if 12 bits is not enough for the displacement).
1916 * MEMA format has a single mode bit: set it to indicate
1917 * that abase is present.
1918 */
1919 memP->opcode |= MEMA_ABASE;
1920 memP->disp = 12;
1921 break;
1922
1923 case D_BIT:
1924 /* Go with MEMA instruction format for now (grow to MEMB later
1925 * if 12 bits is not enough for the displacement).
1926 */
1927 memP->disp = 12;
1928 break;
1929
1930 case A_BIT:
1931 /* For some reason, the bit string for this mode is not
1932 * consistent: it should be 0 (exclusive of the MEMB bit),
1933 * so we set it "by hand" here.
1934 */
1935 memP->opcode |= MEMB_BIT;
1936 break;
1937
1938 case A_BIT | I_BIT:
1939 /* set MEMB bit in mode, and OR in mode bits */
1940 memP->opcode |= mode | MEMB_BIT;
1941 break;
1942
1943 case I_BIT:
1944 /* Treat missing displacement as displacement of 0 */
1945 mode |= D_BIT;
1946 /***********************
1947 * Fall into next case *
1948 ********************** */
1949 case D_BIT | A_BIT | I_BIT:
1950 case D_BIT | I_BIT:
1951 /* set MEMB bit in mode, and OR in mode bits */
1952 memP->opcode |= mode | MEMB_BIT;
1953 memP->disp = 32;
1954 break;
1955
1956 default:
1957 syntax();
1958 break;
1959 }
1960 }
1961
1962 /*****************************************************************************
1963 * parse_po: parse machine-dependent pseudo-op
1964 *
1965 * This is a top-level routine for machine-dependent pseudo-ops. It slurps
1966 * up the rest of the input line, breaks out the individual arguments,
1967 * and dispatches them to the correct handler.
1968 **************************************************************************** */
1969 static
1970 void
1971 parse_po(po_num)
1972 int po_num; /* Pseudo-op number: currently S_LEAFPROC or S_SYSPROC */
1973 {
1974 char *args[4]; /* Pointers operands, with no embedded whitespace.
1975 * arg[0] unused.
1976 * arg[1-3]->operands
1977 */
1978 int n_ops; /* Number of operands */
1979 char *p; /* Pointer to beginning of unparsed argument string */
1980 char eol; /* Character that indicated end of line */
1981
1982 extern char is_end_of_line[];
1983
1984 /* Advance input pointer to end of line. */
1985 p = input_line_pointer;
1986 while (!is_end_of_line[ *input_line_pointer ]){
1987 input_line_pointer++;
1988 }
1989 eol = *input_line_pointer; /* Save end-of-line char */
1990 *input_line_pointer = '\0'; /* Terminate argument list */
1991
1992 /* Parse out operands */
1993 n_ops = get_args(p, args);
1994 if (n_ops == -1){
1995 return;
1996 }
1997
1998 /* Dispatch to correct handler */
1999 switch(po_num){
2000 case S_SYSPROC: s_sysproc(n_ops, args); break;
2001 case S_LEAFPROC: s_leafproc(n_ops, args); break;
2002 default: BAD_CASE(po_num); break;
2003 }
2004
2005 /* Restore eol, so line numbers get updated correctly. Base assembler
2006 * assumes we leave input pointer pointing at char following the eol.
2007 */
2008 *input_line_pointer++ = eol;
2009 }
2010
2011 /*****************************************************************************
2012 * parse_regop: parse a register operand.
2013 *
2014 * In case of illegal operand, issue a message and return some valid
2015 * information so instruction processing can continue.
2016 **************************************************************************** */
2017 static
2018 void
2019 parse_regop(regopP, optext, opdesc)
2020 struct regop *regopP; /* Where to put description of register operand */
2021 char *optext; /* Text of operand */
2022 char opdesc; /* Descriptor byte: what's legal for this operand */
2023 {
2024 int n; /* Register number */
2025 expressionS e; /* Parsed expression */
2026
2027 /* See if operand is a register */
2028 n = get_regnum(optext);
2029 if (n >= 0){
2030 if (IS_RG_REG(n)){
2031 /* global or local register */
2032 if (!REG_ALIGN(opdesc,n)){
2033 as_bad("unaligned register");
2034 }
2035 regopP->n = n;
2036 regopP->mode = 0;
2037 regopP->special = 0;
2038 return;
2039 } else if (IS_FP_REG(n) && FP_OK(opdesc)){
2040 /* Floating point register, and it's allowed */
2041 regopP->n = n - FP0;
2042 regopP->mode = 1;
2043 regopP->special = 0;
2044 return;
2045 } else if (IS_SF_REG(n) && SFR_OK(opdesc)){
2046 /* Special-function register, and it's allowed */
2047 regopP->n = n - SF0;
2048 regopP->mode = 0;
2049 regopP->special = 1;
2050 if (!targ_has_sfr(regopP->n)){
2051 as_bad("no such sfr in this architecture");
2052 }
2053 return;
2054 }
2055 } else if (LIT_OK(opdesc)){
2056 /*
2057 * How about a literal?
2058 */
2059 regopP->mode = 1;
2060 regopP->special = 0;
2061 if (FP_OK(opdesc)){ /* floating point literal acceptable */
2062 /* Skip over 0f, 0d, or 0e prefix */
2063 if ( (optext[0] == '0')
2064 && (optext[1] >= 'd')
2065 && (optext[1] <= 'f') ){
2066 optext += 2;
2067 }
2068
2069 if (!strcmp(optext,"0.0") || !strcmp(optext,"0") ){
2070 regopP->n = 0x10;
2071 return;
2072 }
2073 if (!strcmp(optext,"1.0") || !strcmp(optext,"1") ){
2074 regopP->n = 0x16;
2075 return;
2076 }
2077
2078 } else { /* fixed point literal acceptable */
2079 if ((parse_expr(optext,&e) != SEG_ABSOLUTE)
2080 || (offs(e) < 0) || (offs(e) > 31)){
2081 as_bad("illegal literal");
2082 offs(e) = 0;
2083 }
2084 regopP->n = offs(e);
2085 return;
2086 }
2087 }
2088
2089 /* Nothing worked */
2090 syntax();
2091 regopP->mode = 0; /* Register r0 is always a good one */
2092 regopP->n = 0;
2093 regopP->special = 0;
2094 } /* parse_regop() */
2095
2096 /*****************************************************************************
2097 * reg_fmt: generate a REG-format instruction
2098 *
2099 **************************************************************************** */
2100 static void reg_fmt(args, oP)
2101 char *args[]; /* args[0]->opcode mnemonic, args[1-3]->operands */
2102 struct i960_opcode *oP; /* Pointer to description of instruction */
2103 {
2104 long instr; /* Binary to be output */
2105 struct regop regop; /* Description of register operand */
2106 int n_ops; /* Number of operands */
2107
2108
2109 instr = oP->opcode;
2110 n_ops = oP->num_ops;
2111
2112 if (n_ops >= 1){
2113 parse_regop(&regop, args[1], oP->operand[0]);
2114
2115 if ((n_ops == 1) && !(instr & M3)){
2116 /* 1-operand instruction in which the dst field should
2117 * be used (instead of src1).
2118 */
2119 regop.n <<= 19;
2120 if (regop.special){
2121 regop.mode = regop.special;
2122 }
2123 regop.mode <<= 13;
2124 regop.special = 0;
2125 } else {
2126 /* regop.n goes in bit 0, needs no shifting */
2127 regop.mode <<= 11;
2128 regop.special <<= 5;
2129 }
2130 instr |= regop.n | regop.mode | regop.special;
2131 }
2132
2133 if (n_ops >= 2) {
2134 parse_regop(&regop, args[2], oP->operand[1]);
2135
2136 if ((n_ops == 2) && !(instr & M3)){
2137 /* 2-operand instruction in which the dst field should
2138 * be used instead of src2).
2139 */
2140 regop.n <<= 19;
2141 if (regop.special){
2142 regop.mode = regop.special;
2143 }
2144 regop.mode <<= 13;
2145 regop.special = 0;
2146 } else {
2147 regop.n <<= 14;
2148 regop.mode <<= 12;
2149 regop.special <<= 6;
2150 }
2151 instr |= regop.n | regop.mode | regop.special;
2152 }
2153 if (n_ops == 3){
2154 parse_regop(&regop, args[3], oP->operand[2]);
2155 if (regop.special){
2156 regop.mode = regop.special;
2157 }
2158 instr |= (regop.n <<= 19) | (regop.mode <<= 13);
2159 }
2160 emit(instr);
2161 }
2162
2163
2164 /*****************************************************************************
2165 * relax_cobr:
2166 * Replace cobr instruction in a code fragment with equivalent branch and
2167 * compare instructions, so it can reach beyond a 13-bit displacement.
2168 * Set up an address fix/relocation for the new branch instruction.
2169 *
2170 **************************************************************************** */
2171
2172 /* This "conditional jump" table maps cobr instructions into equivalent
2173 * compare and branch opcodes.
2174 */
2175 static
2176 struct {
2177 long compare;
2178 long branch;
2179 } coj[] = { /* COBR OPCODE: */
2180 CHKBIT, BNO, /* 0x30 - bbc */
2181 CMPO, BG, /* 0x31 - cmpobg */
2182 CMPO, BE, /* 0x32 - cmpobe */
2183 CMPO, BGE, /* 0x33 - cmpobge */
2184 CMPO, BL, /* 0x34 - cmpobl */
2185 CMPO, BNE, /* 0x35 - cmpobne */
2186 CMPO, BLE, /* 0x36 - cmpoble */
2187 CHKBIT, BO, /* 0x37 - bbs */
2188 CMPI, BNO, /* 0x38 - cmpibno */
2189 CMPI, BG, /* 0x39 - cmpibg */
2190 CMPI, BE, /* 0x3a - cmpibe */
2191 CMPI, BGE, /* 0x3b - cmpibge */
2192 CMPI, BL, /* 0x3c - cmpibl */
2193 CMPI, BNE, /* 0x3d - cmpibne */
2194 CMPI, BLE, /* 0x3e - cmpible */
2195 CMPI, BO, /* 0x3f - cmpibo */
2196 };
2197
2198 static
2199 void
2200 relax_cobr(fragP)
2201 register fragS *fragP; /* fragP->fr_opcode is assumed to point to
2202 * the cobr instruction, which comes at the
2203 * end of the code fragment.
2204 */
2205 {
2206 int opcode, src1, src2, m1, s2;
2207 /* Bit fields from cobr instruction */
2208 long bp_bits; /* Branch prediction bits from cobr instruction */
2209 long instr; /* A single i960 instruction */
2210 char *iP; /*->instruction to be replaced */
2211 fixS *fixP; /* Relocation that can be done at assembly time */
2212
2213 /* PICK UP & PARSE COBR INSTRUCTION */
2214 iP = fragP->fr_opcode;
2215 instr = md_chars_to_number(iP, 4);
2216 opcode = ((instr >> 24) & 0xff) - 0x30; /* "-0x30" for table index */
2217 src1 = (instr >> 19) & 0x1f;
2218 m1 = (instr >> 13) & 1;
2219 s2 = instr & 1;
2220 src2 = (instr >> 14) & 0x1f;
2221 bp_bits= instr & BP_MASK;
2222
2223 /* GENERATE AND OUTPUT COMPARE INSTRUCTION */
2224 instr = coj[opcode].compare
2225 | src1 | (m1 << 11) | (s2 << 6) | (src2 << 14);
2226 md_number_to_chars(iP, instr, 4);
2227
2228 /* OUTPUT BRANCH INSTRUCTION */
2229 md_number_to_chars(iP+4, coj[opcode].branch | bp_bits, 4);
2230
2231 /* SET UP ADDRESS FIXUP/RELOCATION */
2232 fixP = fix_new(fragP,
2233 iP+4 - fragP->fr_literal,
2234 4,
2235 fragP->fr_symbol,
2236 0,
2237 fragP->fr_offset,
2238 1,
2239 0);
2240
2241 fixP->fx_bit_fixP = (bit_fixS *) 24; /* Store size of bit field */
2242
2243 fragP->fr_fix += 4;
2244 frag_wane(fragP);
2245 }
2246
2247
2248 /*****************************************************************************
2249 * reloc_callj: Relocate a 'callj' instruction
2250 *
2251 * This is a "non-(GNU)-standard" machine-dependent hook. The base
2252 * assembler calls it when it decides it can relocate an address at
2253 * assembly time instead of emitting a relocation directive.
2254 *
2255 * Check to see if the relocation involves a 'callj' instruction to a:
2256 * sysproc: Replace the default 'call' instruction with a 'calls'
2257 * leafproc: Replace the default 'call' instruction with a 'bal'.
2258 * other proc: Do nothing.
2259 *
2260 * See b.out.h for details on the 'n_other' field in a symbol structure.
2261 *
2262 * IMPORTANT!:
2263 * Assumes the caller has already figured out, in the case of a leafproc,
2264 * to use the 'bal' entry point, and has substituted that symbol into the
2265 * passed fixup structure.
2266 *
2267 **************************************************************************** */
2268 void reloc_callj(fixP)
2269 fixS *fixP; /* Relocation that can be done at assembly time */
2270 {
2271 char *where; /*->the binary for the instruction being relocated */
2272
2273 if (!fixP->fx_callj) {
2274 return;
2275 } /* This wasn't a callj instruction in the first place */
2276
2277 where = fixP->fx_frag->fr_literal + fixP->fx_where;
2278
2279 if (TC_S_IS_SYSPROC(fixP->fx_addsy)) {
2280 /* Symbol is a .sysproc: replace 'call' with 'calls'.
2281 * System procedure number is (other-1).
2282 */
2283 md_number_to_chars(where, CALLS|TC_S_GET_SYSPROC(fixP->fx_addsy), 4);
2284
2285 /* Nothing else needs to be done for this instruction.
2286 * Make sure 'md_number_to_field()' will perform a no-op.
2287 */
2288 fixP->fx_bit_fixP = (bit_fixS *) 1;
2289
2290 } else if (TC_S_IS_CALLNAME(fixP->fx_addsy)) {
2291 /* Should not happen: see block comment above */
2292 as_fatal("Trying to 'bal' to %s", S_GET_NAME(fixP->fx_addsy));
2293
2294 } else if (TC_S_IS_BALNAME(fixP->fx_addsy)) {
2295 /* Replace 'call' with 'bal'; both instructions have
2296 * the same format, so calling code should complete
2297 * relocation as if nothing happened here.
2298 */
2299 md_number_to_chars(where, BAL, 4);
2300 } else if (TC_S_IS_BADPROC(fixP->fx_addsy)) {
2301 as_bad("Looks like a proc, but can't tell what kind.\n");
2302 } /* switch on proc type */
2303
2304 /* else Symbol is neither a sysproc nor a leafproc */
2305
2306 return;
2307 } /* reloc_callj() */
2308
2309
2310 /*****************************************************************************
2311 * s_leafproc: process .leafproc pseudo-op
2312 *
2313 * .leafproc takes two arguments, the second one is optional:
2314 * arg[1]: name of 'call' entry point to leaf procedure
2315 * arg[2]: name of 'bal' entry point to leaf procedure
2316 *
2317 * If the two arguments are identical, or if the second one is missing,
2318 * the first argument is taken to be the 'bal' entry point.
2319 *
2320 * If there are 2 distinct arguments, we must make sure that the 'bal'
2321 * entry point immediately follows the 'call' entry point in the linked
2322 * list of symbols.
2323 *
2324 **************************************************************************** */
2325 static void s_leafproc(n_ops, args)
2326 int n_ops; /* Number of operands */
2327 char *args[]; /* args[1]->1st operand, args[2]->2nd operand */
2328 {
2329 symbolS *callP; /* Pointer to leafproc 'call' entry point symbol */
2330 symbolS *balP; /* Pointer to leafproc 'bal' entry point symbol */
2331
2332 if ((n_ops != 1) && (n_ops != 2)) {
2333 as_bad("should have 1 or 2 operands");
2334 return;
2335 } /* Check number of arguments */
2336
2337 /* Find or create symbol for 'call' entry point. */
2338 callP = symbol_find_or_make(args[1]);
2339
2340 if (TC_S_IS_CALLNAME(callP)) {
2341 as_warn("Redefining leafproc %s", S_GET_NAME(callP));
2342 } /* is leafproc */
2343
2344 /* If that was the only argument, use it as the 'bal' entry point.
2345 * Otherwise, mark it as the 'call' entry point and find or create
2346 * another symbol for the 'bal' entry point.
2347 */
2348 if ((n_ops == 1) || !strcmp(args[1],args[2])) {
2349 TC_S_FORCE_TO_BALNAME(callP);
2350
2351 } else {
2352 TC_S_FORCE_TO_CALLNAME(callP);
2353
2354 balP = symbol_find_or_make(args[2]);
2355 if (TC_S_IS_CALLNAME(balP)) {
2356 as_warn("Redefining leafproc %s", S_GET_NAME(balP));
2357 }
2358 TC_S_FORCE_TO_BALNAME(balP);
2359
2360 tc_set_bal_of_call(callP, balP);
2361 } /* if only one arg, or the args are the same */
2362
2363 return;
2364 } /* s_leafproc() */
2365
2366
2367 /*
2368 * s_sysproc: process .sysproc pseudo-op
2369 *
2370 * .sysproc takes two arguments:
2371 * arg[1]: name of entry point to system procedure
2372 * arg[2]: 'entry_num' (index) of system procedure in the range
2373 * [0,31] inclusive.
2374 *
2375 * For [ab].out, we store the 'entrynum' in the 'n_other' field of
2376 * the symbol. Since that entry is normally 0, we bias 'entrynum'
2377 * by adding 1 to it. It must be unbiased before it is used.
2378 */
2379 static void s_sysproc(n_ops, args)
2380 int n_ops; /* Number of operands */
2381 char *args[]; /* args[1]->1st operand, args[2]->2nd operand */
2382 {
2383 expressionS exp;
2384 symbolS *symP;
2385
2386 if (n_ops != 2) {
2387 as_bad("should have two operands");
2388 return;
2389 } /* bad arg count */
2390
2391 /* Parse "entry_num" argument and check it for validity. */
2392 if ((parse_expr(args[2],&exp) != SEG_ABSOLUTE)
2393 || (offs(exp) < 0)
2394 || (offs(exp) > 31)) {
2395 as_bad("'entry_num' must be absolute number in [0,31]");
2396 return;
2397 }
2398
2399 /* Find/make symbol and stick entry number (biased by +1) into it */
2400 symP = symbol_find_or_make(args[1]);
2401
2402 if (TC_S_IS_SYSPROC(symP)) {
2403 as_warn("Redefining entrynum for sysproc %s", S_GET_NAME(symP));
2404 } /* redefining */
2405
2406 TC_S_SET_SYSPROC(symP, offs(exp)); /* encode entry number */
2407 TC_S_FORCE_TO_SYSPROC(symP);
2408
2409 return;
2410 } /* s_sysproc() */
2411
2412
2413 /*****************************************************************************
2414 * shift_ok:
2415 * Determine if a "shlo" instruction can be used to implement a "ldconst".
2416 * This means that some number X < 32 can be shifted left to produce the
2417 * constant of interest.
2418 *
2419 * Return the shift count, or 0 if we can't do it.
2420 * Caller calculates X by shifting original constant right 'shift' places.
2421 *
2422 **************************************************************************** */
2423 static
2424 int
2425 shift_ok(n)
2426 int n; /* The constant of interest */
2427 {
2428 int shift; /* The shift count */
2429
2430 if (n <= 0){
2431 /* Can't do it for negative numbers */
2432 return 0;
2433 }
2434
2435 /* Shift 'n' right until a 1 is about to be lost */
2436 for (shift = 0; (n & 1) == 0; shift++){
2437 n >>= 1;
2438 }
2439
2440 if (n >= 32){
2441 return 0;
2442 }
2443 return shift;
2444 }
2445
2446
2447 /*****************************************************************************
2448 * syntax: issue syntax error
2449 *
2450 **************************************************************************** */
2451 static void syntax() {
2452 as_bad("syntax error");
2453 } /* syntax() */
2454
2455
2456 /*****************************************************************************
2457 * targ_has_sfr:
2458 * Return TRUE iff the target architecture supports the specified
2459 * special-function register (sfr).
2460 *
2461 **************************************************************************** */
2462 static
2463 int
2464 targ_has_sfr(n)
2465 int n; /* Number (0-31) of sfr */
2466 {
2467 switch (architecture){
2468 case ARCH_KA:
2469 case ARCH_KB:
2470 case ARCH_MC:
2471 return 0;
2472 case ARCH_CA:
2473 default:
2474 return ((0<=n) && (n<=2));
2475 }
2476 }
2477
2478
2479 /*****************************************************************************
2480 * targ_has_iclass:
2481 * Return TRUE iff the target architecture supports the indicated
2482 * class of instructions.
2483 *
2484 **************************************************************************** */
2485 static
2486 int
2487 targ_has_iclass(ic)
2488 int ic; /* Instruction class; one of:
2489 * I_BASE, I_CX, I_DEC, I_KX, I_FP, I_MIL, I_CASIM
2490 */
2491 {
2492 iclasses_seen |= ic;
2493 switch (architecture){
2494 case ARCH_KA: return ic & (I_BASE | I_KX);
2495 case ARCH_KB: return ic & (I_BASE | I_KX | I_FP | I_DEC);
2496 case ARCH_MC: return ic & (I_BASE | I_KX | I_FP | I_DEC | I_MIL);
2497 case ARCH_CA: return ic & (I_BASE | I_CX | I_CASIM);
2498 default:
2499 if ((iclasses_seen & (I_KX|I_FP|I_DEC|I_MIL))
2500 && (iclasses_seen & I_CX)){
2501 as_warn("architecture of opcode conflicts with that of earlier instruction(s)");
2502 iclasses_seen &= ~ic;
2503 }
2504 return 1;
2505 }
2506 }
2507
2508
2509 /* Parse an operand that is machine-specific.
2510 We just return without modifying the expression if we have nothing
2511 to do. */
2512
2513 /* ARGSUSED */
2514 void
2515 md_operand (expressionP)
2516 expressionS *expressionP;
2517 {
2518 }
2519
2520 /* We have no need to default values of symbols. */
2521
2522 /* ARGSUSED */
2523 symbolS *md_undefined_symbol(name)
2524 char *name;
2525 {
2526 return 0;
2527 } /* md_undefined_symbol() */
2528
2529 /* Exactly what point is a PC-relative offset relative TO?
2530 On the i960, they're relative to the address of the instruction,
2531 which we have set up as the address of the fixup too. */
2532 long
2533 md_pcrel_from (fixP)
2534 fixS *fixP;
2535 {
2536 return fixP->fx_where + fixP->fx_frag->fr_address;
2537 }
2538
2539 void
2540 md_apply_fix(fixP, val)
2541 fixS *fixP;
2542 long val;
2543 {
2544 char *place = fixP->fx_where + fixP->fx_frag->fr_literal;
2545
2546 if (!fixP->fx_bit_fixP) {
2547
2548 switch (fixP->fx_im_disp) {
2549 case 0:
2550 fixP->fx_addnumber = val;
2551 md_number_to_imm(place, val, fixP->fx_size, fixP);
2552 break;
2553 case 1:
2554 md_number_to_disp(place,
2555 fixP->fx_pcrel ? val + fixP->fx_pcrel_adjust : val,
2556 fixP->fx_size);
2557 break;
2558 case 2: /* fix requested for .long .word etc */
2559 md_number_to_chars(place, val, fixP->fx_size);
2560 break;
2561 default:
2562 as_fatal("Internal error in md_apply_fix() in file \"%s\"", __FILE__);
2563 } /* OVE: maybe one ought to put _imm _disp _chars in one md-func */
2564 } else {
2565 md_number_to_field(place, val, fixP->fx_bit_fixP);
2566 }
2567
2568 return;
2569 } /* md_apply_fix() */
2570
2571 #if defined(OBJ_AOUT) | defined(OBJ_BOUT)
2572 /*
2573 * emit_relocations()
2574 *
2575 * Crawl along a fixS chain. Emit the segment's relocations.
2576 */
2577 static void
2578 emit_machine_reloc (fixP, segment_address_in_file)
2579 register fixS * fixP; /* Fixup chain for this segment. */
2580 relax_addressT segment_address_in_file;
2581 {
2582 struct reloc_info_generic ri;
2583 register symbolS * symbolP;
2584
2585 /* JF this is for paranoia */
2586 bzero((char *)&ri,sizeof(ri));
2587 for (; fixP; fixP = fixP->fx_next)
2588 {
2589 if ((symbolP = fixP->fx_addsy) != 0)
2590 {
2591 /* These two 'cuz of NS32K */
2592 ri . r_bsr = fixP->fx_bsr;
2593 ri . r_disp = fixP->fx_im_disp;
2594
2595 ri . r_callj = fixP->fx_callj;
2596
2597 ri . r_length = nbytes_r_length [fixP->fx_size];
2598 ri . r_pcrel = fixP->fx_pcrel;
2599 ri . r_address = fixP->fx_frag->fr_address
2600 + fixP->fx_where
2601 - segment_address_in_file;
2602 if (!S_IS_DEFINED(symbolP))
2603 {
2604 ri . r_extern = 1;
2605 ri . r_symbolnum = symbolP->sy_number;
2606 }
2607 else
2608 {
2609 ri . r_extern = 0;
2610 ri . r_symbolnum = S_GET_TYPE(symbolP);
2611 }
2612
2613 /* Output the relocation information in machine-dependent form. */
2614 md_ri_to_chars(next_object_file_charP, &ri);
2615 next_object_file_charP += sizeof(struct relocation_info);
2616 }
2617 }
2618
2619 } /* emit_machine_reloc() */
2620 #endif /* OBJ_AOUT or OBJ_BOUT */
2621
2622 /* Align an address by rounding it up to the specified boundary.
2623 */
2624 long md_section_align(seg, addr)
2625 segT seg;
2626 long addr; /* Address to be rounded up */
2627 {
2628 return((addr + (1 << section_alignment[(int) seg]) - 1) & (-1 << section_alignment[(int) seg]));
2629 } /* md_section_align() */
2630
2631 #ifdef OBJ_COFF
2632 void tc_headers_hook(headers)
2633 object_headers *headers;
2634 {
2635 unsigned short arch_flag = 0;
2636
2637 if (iclasses_seen == I_BASE){
2638 headers->filehdr.f_flags |= F_I960CORE;
2639 } else if (iclasses_seen & I_CX){
2640 headers->filehdr.f_flags |= F_I960CA;
2641 } else if (iclasses_seen & I_MIL){
2642 headers->filehdr.f_flags |= F_I960MC;
2643 } else if (iclasses_seen & (I_DEC|I_FP)){
2644 headers->filehdr.f_flags |= F_I960KB;
2645 } else {
2646 headers->filehdr.f_flags |= F_I960KA;
2647 } /* set arch flag */
2648
2649 if (flagseen['R']) {
2650 headers->filehdr.f_magic = I960RWMAGIC;
2651 headers->aouthdr.magic = OMAGIC;
2652 } else {
2653 headers->filehdr.f_magic = I960ROMAGIC;
2654 headers->aouthdr.magic = NMAGIC;
2655 } /* set magic numbers */
2656
2657 return;
2658 } /* tc_headers_hook() */
2659 #endif /* OBJ_COFF */
2660
2661 /*
2662 * Things going on here:
2663 *
2664 * For bout, We need to assure a couple of simplifying
2665 * assumptions about leafprocs for the linker: the leafproc
2666 * entry symbols will be defined in the same assembly in
2667 * which they're declared with the '.leafproc' directive;
2668 * and if a leafproc has both 'call' and 'bal' entry points
2669 * they are both global or both local.
2670 *
2671 * For coff, the call symbol has a second aux entry that
2672 * contains the bal entry point. The bal symbol becomes a
2673 * label.
2674 *
2675 * For coff representation, the call symbol has a second aux entry that
2676 * contains the bal entry point. The bal symbol becomes a label.
2677 *
2678 */
2679
2680 void tc_crawl_symbol_chain(headers)
2681 object_headers *headers;
2682 {
2683 symbolS *symbolP;
2684
2685 for (symbolP = symbol_rootP; symbolP; symbolP = symbol_next(symbolP)) {
2686 #ifdef OBJ_COFF
2687 if (TC_S_IS_SYSPROC(symbolP)) {
2688 /* second aux entry already contains the sysproc number */
2689 S_SET_NUMBER_AUXILIARY(symbolP, 2);
2690 S_SET_STORAGE_CLASS(symbolP, C_SCALL);
2691 S_SET_DATA_TYPE(symbolP, S_GET_DATA_TYPE(symbolP) | (DT_FCN << N_BTSHFT));
2692 continue;
2693 } /* rewrite sysproc */
2694 #endif /* OBJ_COFF */
2695
2696 if (!TC_S_IS_BALNAME(symbolP) && !TC_S_IS_CALLNAME(symbolP)) {
2697 continue;
2698 } /* Not a leafproc symbol */
2699
2700 if (!S_IS_DEFINED(symbolP)) {
2701 as_bad("leafproc symbol '%s' undefined", S_GET_NAME(symbolP));
2702 } /* undefined leaf */
2703
2704 if (TC_S_IS_CALLNAME(symbolP)) {
2705 symbolS *balP = tc_get_bal_of_call(symbolP);
2706 if (S_IS_EXTERNAL(symbolP) != S_IS_EXTERNAL(balP)) {
2707 S_SET_EXTERNAL(symbolP);
2708 S_SET_EXTERNAL(balP);
2709 as_warn("Warning: making leafproc entries %s and %s both global\n",
2710 S_GET_NAME(symbolP), S_GET_NAME(balP));
2711 } /* externality mismatch */
2712 } /* if callname */
2713 } /* walk the symbol chain */
2714
2715 return;
2716 } /* tc_crawl_symbol_chain() */
2717
2718 /*
2719 * For aout or bout, the bal immediately follows the call.
2720 *
2721 * For coff, we cheat and store a pointer to the bal symbol
2722 * in the second aux entry of the call.
2723 */
2724
2725 void tc_set_bal_of_call(callP, balP)
2726 symbolS *callP;
2727 symbolS *balP;
2728 {
2729 know(TC_S_IS_CALLNAME(callP));
2730 know(TC_S_IS_BALNAME(balP));
2731
2732 #ifdef OBJ_COFF
2733
2734 callP->sy_symbol.ost_auxent[1].x_bal.x_balntry = (int) balP;
2735 S_SET_NUMBER_AUXILIARY(callP,2);
2736
2737 #elif defined(OBJ_AOUT) || defined(OBJ_BOUT)
2738
2739 /* If the 'bal' entry doesn't immediately follow the 'call'
2740 * symbol, unlink it from the symbol list and re-insert it.
2741 */
2742 if (symbol_next(callP) != balP) {
2743 symbol_remove(balP, &symbol_rootP, &symbol_lastP);
2744 symbol_append(balP, callP, &symbol_rootP, &symbol_lastP);
2745 } /* if not in order */
2746
2747 #else
2748 (as yet unwritten.);
2749 #endif /* switch on OBJ_FORMAT */
2750
2751 return;
2752 } /* tc_set_bal_of_call() */
2753
2754 char *_tc_get_bal_of_call(callP)
2755 symbolS *callP;
2756 {
2757 symbolS *retval;
2758
2759 know(TC_S_IS_CALLNAME(callP));
2760
2761 #ifdef OBJ_COFF
2762 retval = (symbolS *) (callP->sy_symbol.ost_auxent[1].x_bal.x_balntry);
2763 #elif defined(OBJ_AOUT) || defined(OBJ_BOUT)
2764 retval = symbol_next(callP);
2765 #else
2766 (as yet unwritten.);
2767 #endif /* switch on OBJ_FORMAT */
2768
2769 know(TC_S_IS_BALNAME(retval));
2770 return((char *) retval);
2771 } /* _tc_get_bal_of_call() */
2772
2773 void tc_coff_symbol_emit_hook(symbolP)
2774 symbolS *symbolP;
2775 {
2776 if (TC_S_IS_CALLNAME(symbolP)) {
2777 #ifdef OBJ_COFF
2778 symbolS *balP = tc_get_bal_of_call(symbolP);
2779
2780 /* second aux entry contains the bal entry point */
2781 /* S_SET_NUMBER_AUXILIARY(symbolP, 2); */
2782 symbolP->sy_symbol.ost_auxent[1].x_bal.x_balntry = S_GET_VALUE(balP);
2783 S_SET_STORAGE_CLASS(symbolP, (!SF_GET_LOCAL(symbolP) ? C_LEAFEXT : C_LEAFSTAT));
2784 S_SET_DATA_TYPE(symbolP, S_GET_DATA_TYPE(symbolP) | (DT_FCN << N_BTSHFT));
2785 /* fix up the bal symbol */
2786 S_SET_STORAGE_CLASS(balP, C_LABEL);
2787 #endif /* OBJ_COFF */
2788 } /* only on calls */
2789
2790 return;
2791 } /* tc_coff_symbol_emit_hook() */
2792
2793 /*
2794 * Local Variables:
2795 * comment-column: 0
2796 * fill-column: 131
2797 * End:
2798 */
2799
2800 /* end of i960.c */