]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-ia64.c
Update copyright years
[thirdparty/binutils-gdb.git] / gas / config / tc-ia64.c
1 /* tc-ia64.c -- Assembler for the HP/Intel IA-64 architecture.
2 Copyright (C) 1998-2014 Free Software Foundation, Inc.
3 Contributed by David Mosberger-Tang <davidm@hpl.hp.com>
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street - Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 /*
23 TODO:
24
25 - optional operands
26 - directives:
27 .eb
28 .estate
29 .lb
30 .popsection
31 .previous
32 .psr
33 .pushsection
34 - labels are wrong if automatic alignment is introduced
35 (e.g., checkout the second real10 definition in test-data.s)
36 - DV-related stuff:
37 <reg>.safe_across_calls and any other DV-related directives I don't
38 have documentation for.
39 verify mod-sched-brs reads/writes are checked/marked (and other
40 notes)
41
42 */
43
44 #include "as.h"
45 #include "safe-ctype.h"
46 #include "dwarf2dbg.h"
47 #include "subsegs.h"
48
49 #include "opcode/ia64.h"
50
51 #include "elf/ia64.h"
52 #include "bfdver.h"
53 #include <time.h>
54
55 #ifdef HAVE_LIMITS_H
56 #include <limits.h>
57 #endif
58
59 #define NELEMS(a) ((int) (sizeof (a)/sizeof ((a)[0])))
60
61 /* Some systems define MIN in, e.g., param.h. */
62 #undef MIN
63 #define MIN(a,b) ((a) < (b) ? (a) : (b))
64
65 #define NUM_SLOTS 4
66 #define PREV_SLOT md.slot[(md.curr_slot + NUM_SLOTS - 1) % NUM_SLOTS]
67 #define CURR_SLOT md.slot[md.curr_slot]
68
69 #define O_pseudo_fixup (O_max + 1)
70
71 enum special_section
72 {
73 /* IA-64 ABI section pseudo-ops. */
74 SPECIAL_SECTION_BSS = 0,
75 SPECIAL_SECTION_SBSS,
76 SPECIAL_SECTION_SDATA,
77 SPECIAL_SECTION_RODATA,
78 SPECIAL_SECTION_COMMENT,
79 SPECIAL_SECTION_UNWIND,
80 SPECIAL_SECTION_UNWIND_INFO,
81 /* HPUX specific section pseudo-ops. */
82 SPECIAL_SECTION_INIT_ARRAY,
83 SPECIAL_SECTION_FINI_ARRAY,
84 };
85
86 enum reloc_func
87 {
88 FUNC_DTP_MODULE,
89 FUNC_DTP_RELATIVE,
90 FUNC_FPTR_RELATIVE,
91 FUNC_GP_RELATIVE,
92 FUNC_LT_RELATIVE,
93 FUNC_LT_RELATIVE_X,
94 FUNC_PC_RELATIVE,
95 FUNC_PLT_RELATIVE,
96 FUNC_SEC_RELATIVE,
97 FUNC_SEG_RELATIVE,
98 FUNC_TP_RELATIVE,
99 FUNC_LTV_RELATIVE,
100 FUNC_LT_FPTR_RELATIVE,
101 FUNC_LT_DTP_MODULE,
102 FUNC_LT_DTP_RELATIVE,
103 FUNC_LT_TP_RELATIVE,
104 FUNC_IPLT_RELOC,
105 #ifdef TE_VMS
106 FUNC_SLOTCOUNT_RELOC,
107 #endif
108 };
109
110 enum reg_symbol
111 {
112 REG_GR = 0,
113 REG_FR = (REG_GR + 128),
114 REG_AR = (REG_FR + 128),
115 REG_CR = (REG_AR + 128),
116 REG_DAHR = (REG_CR + 128),
117 REG_P = (REG_DAHR + 8),
118 REG_BR = (REG_P + 64),
119 REG_IP = (REG_BR + 8),
120 REG_CFM,
121 REG_PR,
122 REG_PR_ROT,
123 REG_PSR,
124 REG_PSR_L,
125 REG_PSR_UM,
126 /* The following are pseudo-registers for use by gas only. */
127 IND_CPUID,
128 IND_DBR,
129 IND_DTR,
130 IND_ITR,
131 IND_IBR,
132 IND_MSR,
133 IND_PKR,
134 IND_PMC,
135 IND_PMD,
136 IND_DAHR,
137 IND_RR,
138 /* The following pseudo-registers are used for unwind directives only: */
139 REG_PSP,
140 REG_PRIUNAT,
141 REG_NUM
142 };
143
144 enum dynreg_type
145 {
146 DYNREG_GR = 0, /* dynamic general purpose register */
147 DYNREG_FR, /* dynamic floating point register */
148 DYNREG_PR, /* dynamic predicate register */
149 DYNREG_NUM_TYPES
150 };
151
152 enum operand_match_result
153 {
154 OPERAND_MATCH,
155 OPERAND_OUT_OF_RANGE,
156 OPERAND_MISMATCH
157 };
158
159 /* On the ia64, we can't know the address of a text label until the
160 instructions are packed into a bundle. To handle this, we keep
161 track of the list of labels that appear in front of each
162 instruction. */
163 struct label_fix
164 {
165 struct label_fix *next;
166 struct symbol *sym;
167 bfd_boolean dw2_mark_labels;
168 };
169
170 #ifdef TE_VMS
171 /* An internally used relocation. */
172 #define DUMMY_RELOC_IA64_SLOTCOUNT (BFD_RELOC_UNUSED + 1)
173 #endif
174
175 /* This is the endianness of the current section. */
176 extern int target_big_endian;
177
178 /* This is the default endianness. */
179 static int default_big_endian = TARGET_BYTES_BIG_ENDIAN;
180
181 void (*ia64_number_to_chars) (char *, valueT, int);
182
183 static void ia64_float_to_chars_bigendian (char *, LITTLENUM_TYPE *, int);
184 static void ia64_float_to_chars_littleendian (char *, LITTLENUM_TYPE *, int);
185
186 static void (*ia64_float_to_chars) (char *, LITTLENUM_TYPE *, int);
187
188 static struct hash_control *alias_hash;
189 static struct hash_control *alias_name_hash;
190 static struct hash_control *secalias_hash;
191 static struct hash_control *secalias_name_hash;
192
193 /* List of chars besides those in app.c:symbol_chars that can start an
194 operand. Used to prevent the scrubber eating vital white-space. */
195 const char ia64_symbol_chars[] = "@?";
196
197 /* Characters which always start a comment. */
198 const char comment_chars[] = "";
199
200 /* Characters which start a comment at the beginning of a line. */
201 const char line_comment_chars[] = "#";
202
203 /* Characters which may be used to separate multiple commands on a
204 single line. */
205 const char line_separator_chars[] = ";{}";
206
207 /* Characters which are used to indicate an exponent in a floating
208 point number. */
209 const char EXP_CHARS[] = "eE";
210
211 /* Characters which mean that a number is a floating point constant,
212 as in 0d1.0. */
213 const char FLT_CHARS[] = "rRsSfFdDxXpP";
214
215 /* ia64-specific option processing: */
216
217 const char *md_shortopts = "m:N:x::";
218
219 struct option md_longopts[] =
220 {
221 #define OPTION_MCONSTANT_GP (OPTION_MD_BASE + 1)
222 {"mconstant-gp", no_argument, NULL, OPTION_MCONSTANT_GP},
223 #define OPTION_MAUTO_PIC (OPTION_MD_BASE + 2)
224 {"mauto-pic", no_argument, NULL, OPTION_MAUTO_PIC}
225 };
226
227 size_t md_longopts_size = sizeof (md_longopts);
228
229 static struct
230 {
231 struct hash_control *pseudo_hash; /* pseudo opcode hash table */
232 struct hash_control *reg_hash; /* register name hash table */
233 struct hash_control *dynreg_hash; /* dynamic register hash table */
234 struct hash_control *const_hash; /* constant hash table */
235 struct hash_control *entry_hash; /* code entry hint hash table */
236
237 /* If X_op is != O_absent, the registername for the instruction's
238 qualifying predicate. If NULL, p0 is assumed for instructions
239 that are predictable. */
240 expressionS qp;
241
242 /* Optimize for which CPU. */
243 enum
244 {
245 itanium1,
246 itanium2
247 } tune;
248
249 /* What to do when hint.b is used. */
250 enum
251 {
252 hint_b_error,
253 hint_b_warning,
254 hint_b_ok
255 } hint_b;
256
257 unsigned int
258 manual_bundling : 1,
259 debug_dv: 1,
260 detect_dv: 1,
261 explicit_mode : 1, /* which mode we're in */
262 default_explicit_mode : 1, /* which mode is the default */
263 mode_explicitly_set : 1, /* was the current mode explicitly set? */
264 auto_align : 1,
265 keep_pending_output : 1;
266
267 /* What to do when something is wrong with unwind directives. */
268 enum
269 {
270 unwind_check_warning,
271 unwind_check_error
272 } unwind_check;
273
274 /* Each bundle consists of up to three instructions. We keep
275 track of four most recent instructions so we can correctly set
276 the end_of_insn_group for the last instruction in a bundle. */
277 int curr_slot;
278 int num_slots_in_use;
279 struct slot
280 {
281 unsigned int
282 end_of_insn_group : 1,
283 manual_bundling_on : 1,
284 manual_bundling_off : 1,
285 loc_directive_seen : 1;
286 signed char user_template; /* user-selected template, if any */
287 unsigned char qp_regno; /* qualifying predicate */
288 /* This duplicates a good fraction of "struct fix" but we
289 can't use a "struct fix" instead since we can't call
290 fix_new_exp() until we know the address of the instruction. */
291 int num_fixups;
292 struct insn_fix
293 {
294 bfd_reloc_code_real_type code;
295 enum ia64_opnd opnd; /* type of operand in need of fix */
296 unsigned int is_pcrel : 1; /* is operand pc-relative? */
297 expressionS expr; /* the value to be inserted */
298 }
299 fixup[2]; /* at most two fixups per insn */
300 struct ia64_opcode *idesc;
301 struct label_fix *label_fixups;
302 struct label_fix *tag_fixups;
303 struct unw_rec_list *unwind_record; /* Unwind directive. */
304 expressionS opnd[6];
305 char *src_file;
306 unsigned int src_line;
307 struct dwarf2_line_info debug_line;
308 }
309 slot[NUM_SLOTS];
310
311 segT last_text_seg;
312
313 struct dynreg
314 {
315 struct dynreg *next; /* next dynamic register */
316 const char *name;
317 unsigned short base; /* the base register number */
318 unsigned short num_regs; /* # of registers in this set */
319 }
320 *dynreg[DYNREG_NUM_TYPES], in, loc, out, rot;
321
322 flagword flags; /* ELF-header flags */
323
324 struct mem_offset {
325 unsigned hint:1; /* is this hint currently valid? */
326 bfd_vma offset; /* mem.offset offset */
327 bfd_vma base; /* mem.offset base */
328 } mem_offset;
329
330 int path; /* number of alt. entry points seen */
331 const char **entry_labels; /* labels of all alternate paths in
332 the current DV-checking block. */
333 int maxpaths; /* size currently allocated for
334 entry_labels */
335
336 int pointer_size; /* size in bytes of a pointer */
337 int pointer_size_shift; /* shift size of a pointer for alignment */
338
339 symbolS *indregsym[IND_RR - IND_CPUID + 1];
340 }
341 md;
342
343 /* These are not const, because they are modified to MMI for non-itanium1
344 targets below. */
345 /* MFI bundle of nops. */
346 static unsigned char le_nop[16] =
347 {
348 0x0c, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
349 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00
350 };
351 /* MFI bundle of nops with stop-bit. */
352 static unsigned char le_nop_stop[16] =
353 {
354 0x0d, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
355 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00
356 };
357
358 /* application registers: */
359
360 #define AR_K0 0
361 #define AR_K7 7
362 #define AR_RSC 16
363 #define AR_BSP 17
364 #define AR_BSPSTORE 18
365 #define AR_RNAT 19
366 #define AR_FCR 21
367 #define AR_EFLAG 24
368 #define AR_CSD 25
369 #define AR_SSD 26
370 #define AR_CFLG 27
371 #define AR_FSR 28
372 #define AR_FIR 29
373 #define AR_FDR 30
374 #define AR_CCV 32
375 #define AR_UNAT 36
376 #define AR_FPSR 40
377 #define AR_ITC 44
378 #define AR_RUC 45
379 #define AR_PFS 64
380 #define AR_LC 65
381 #define AR_EC 66
382
383 static const struct
384 {
385 const char *name;
386 unsigned int regnum;
387 }
388 ar[] =
389 {
390 {"ar.k0", AR_K0}, {"ar.k1", AR_K0 + 1},
391 {"ar.k2", AR_K0 + 2}, {"ar.k3", AR_K0 + 3},
392 {"ar.k4", AR_K0 + 4}, {"ar.k5", AR_K0 + 5},
393 {"ar.k6", AR_K0 + 6}, {"ar.k7", AR_K7},
394 {"ar.rsc", AR_RSC}, {"ar.bsp", AR_BSP},
395 {"ar.bspstore", AR_BSPSTORE}, {"ar.rnat", AR_RNAT},
396 {"ar.fcr", AR_FCR}, {"ar.eflag", AR_EFLAG},
397 {"ar.csd", AR_CSD}, {"ar.ssd", AR_SSD},
398 {"ar.cflg", AR_CFLG}, {"ar.fsr", AR_FSR},
399 {"ar.fir", AR_FIR}, {"ar.fdr", AR_FDR},
400 {"ar.ccv", AR_CCV}, {"ar.unat", AR_UNAT},
401 {"ar.fpsr", AR_FPSR}, {"ar.itc", AR_ITC},
402 {"ar.ruc", AR_RUC}, {"ar.pfs", AR_PFS},
403 {"ar.lc", AR_LC}, {"ar.ec", AR_EC},
404 };
405
406 /* control registers: */
407
408 #define CR_DCR 0
409 #define CR_ITM 1
410 #define CR_IVA 2
411 #define CR_PTA 8
412 #define CR_GPTA 9
413 #define CR_IPSR 16
414 #define CR_ISR 17
415 #define CR_IIP 19
416 #define CR_IFA 20
417 #define CR_ITIR 21
418 #define CR_IIPA 22
419 #define CR_IFS 23
420 #define CR_IIM 24
421 #define CR_IHA 25
422 #define CR_IIB0 26
423 #define CR_IIB1 27
424 #define CR_LID 64
425 #define CR_IVR 65
426 #define CR_TPR 66
427 #define CR_EOI 67
428 #define CR_IRR0 68
429 #define CR_IRR3 71
430 #define CR_ITV 72
431 #define CR_PMV 73
432 #define CR_CMCV 74
433 #define CR_LRR0 80
434 #define CR_LRR1 81
435
436 static const struct
437 {
438 const char *name;
439 unsigned int regnum;
440 }
441 cr[] =
442 {
443 {"cr.dcr", CR_DCR},
444 {"cr.itm", CR_ITM},
445 {"cr.iva", CR_IVA},
446 {"cr.pta", CR_PTA},
447 {"cr.gpta", CR_GPTA},
448 {"cr.ipsr", CR_IPSR},
449 {"cr.isr", CR_ISR},
450 {"cr.iip", CR_IIP},
451 {"cr.ifa", CR_IFA},
452 {"cr.itir", CR_ITIR},
453 {"cr.iipa", CR_IIPA},
454 {"cr.ifs", CR_IFS},
455 {"cr.iim", CR_IIM},
456 {"cr.iha", CR_IHA},
457 {"cr.iib0", CR_IIB0},
458 {"cr.iib1", CR_IIB1},
459 {"cr.lid", CR_LID},
460 {"cr.ivr", CR_IVR},
461 {"cr.tpr", CR_TPR},
462 {"cr.eoi", CR_EOI},
463 {"cr.irr0", CR_IRR0},
464 {"cr.irr1", CR_IRR0 + 1},
465 {"cr.irr2", CR_IRR0 + 2},
466 {"cr.irr3", CR_IRR3},
467 {"cr.itv", CR_ITV},
468 {"cr.pmv", CR_PMV},
469 {"cr.cmcv", CR_CMCV},
470 {"cr.lrr0", CR_LRR0},
471 {"cr.lrr1", CR_LRR1}
472 };
473
474 #define PSR_MFL 4
475 #define PSR_IC 13
476 #define PSR_DFL 18
477 #define PSR_CPL 32
478
479 static const struct const_desc
480 {
481 const char *name;
482 valueT value;
483 }
484 const_bits[] =
485 {
486 /* PSR constant masks: */
487
488 /* 0: reserved */
489 {"psr.be", ((valueT) 1) << 1},
490 {"psr.up", ((valueT) 1) << 2},
491 {"psr.ac", ((valueT) 1) << 3},
492 {"psr.mfl", ((valueT) 1) << 4},
493 {"psr.mfh", ((valueT) 1) << 5},
494 /* 6-12: reserved */
495 {"psr.ic", ((valueT) 1) << 13},
496 {"psr.i", ((valueT) 1) << 14},
497 {"psr.pk", ((valueT) 1) << 15},
498 /* 16: reserved */
499 {"psr.dt", ((valueT) 1) << 17},
500 {"psr.dfl", ((valueT) 1) << 18},
501 {"psr.dfh", ((valueT) 1) << 19},
502 {"psr.sp", ((valueT) 1) << 20},
503 {"psr.pp", ((valueT) 1) << 21},
504 {"psr.di", ((valueT) 1) << 22},
505 {"psr.si", ((valueT) 1) << 23},
506 {"psr.db", ((valueT) 1) << 24},
507 {"psr.lp", ((valueT) 1) << 25},
508 {"psr.tb", ((valueT) 1) << 26},
509 {"psr.rt", ((valueT) 1) << 27},
510 /* 28-31: reserved */
511 /* 32-33: cpl (current privilege level) */
512 {"psr.is", ((valueT) 1) << 34},
513 {"psr.mc", ((valueT) 1) << 35},
514 {"psr.it", ((valueT) 1) << 36},
515 {"psr.id", ((valueT) 1) << 37},
516 {"psr.da", ((valueT) 1) << 38},
517 {"psr.dd", ((valueT) 1) << 39},
518 {"psr.ss", ((valueT) 1) << 40},
519 /* 41-42: ri (restart instruction) */
520 {"psr.ed", ((valueT) 1) << 43},
521 {"psr.bn", ((valueT) 1) << 44},
522 };
523
524 /* indirect register-sets/memory: */
525
526 static const struct
527 {
528 const char *name;
529 unsigned int regnum;
530 }
531 indirect_reg[] =
532 {
533 { "CPUID", IND_CPUID },
534 { "cpuid", IND_CPUID },
535 { "dbr", IND_DBR },
536 { "dtr", IND_DTR },
537 { "itr", IND_ITR },
538 { "ibr", IND_IBR },
539 { "msr", IND_MSR },
540 { "pkr", IND_PKR },
541 { "pmc", IND_PMC },
542 { "pmd", IND_PMD },
543 { "dahr", IND_DAHR },
544 { "rr", IND_RR },
545 };
546
547 /* Pseudo functions used to indicate relocation types (these functions
548 start with an at sign (@). */
549 static struct
550 {
551 const char *name;
552 enum pseudo_type
553 {
554 PSEUDO_FUNC_NONE,
555 PSEUDO_FUNC_RELOC,
556 PSEUDO_FUNC_CONST,
557 PSEUDO_FUNC_REG,
558 PSEUDO_FUNC_FLOAT
559 }
560 type;
561 union
562 {
563 unsigned long ival;
564 symbolS *sym;
565 }
566 u;
567 }
568 pseudo_func[] =
569 {
570 /* reloc pseudo functions (these must come first!): */
571 { "dtpmod", PSEUDO_FUNC_RELOC, { 0 } },
572 { "dtprel", PSEUDO_FUNC_RELOC, { 0 } },
573 { "fptr", PSEUDO_FUNC_RELOC, { 0 } },
574 { "gprel", PSEUDO_FUNC_RELOC, { 0 } },
575 { "ltoff", PSEUDO_FUNC_RELOC, { 0 } },
576 { "ltoffx", PSEUDO_FUNC_RELOC, { 0 } },
577 { "pcrel", PSEUDO_FUNC_RELOC, { 0 } },
578 { "pltoff", PSEUDO_FUNC_RELOC, { 0 } },
579 { "secrel", PSEUDO_FUNC_RELOC, { 0 } },
580 { "segrel", PSEUDO_FUNC_RELOC, { 0 } },
581 { "tprel", PSEUDO_FUNC_RELOC, { 0 } },
582 { "ltv", PSEUDO_FUNC_RELOC, { 0 } },
583 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_FPTR_RELATIVE */
584 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_DTP_MODULE */
585 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_DTP_RELATIVE */
586 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_TP_RELATIVE */
587 { "iplt", PSEUDO_FUNC_RELOC, { 0 } },
588 #ifdef TE_VMS
589 { "slotcount", PSEUDO_FUNC_RELOC, { 0 } },
590 #endif
591
592 /* mbtype4 constants: */
593 { "alt", PSEUDO_FUNC_CONST, { 0xa } },
594 { "brcst", PSEUDO_FUNC_CONST, { 0x0 } },
595 { "mix", PSEUDO_FUNC_CONST, { 0x8 } },
596 { "rev", PSEUDO_FUNC_CONST, { 0xb } },
597 { "shuf", PSEUDO_FUNC_CONST, { 0x9 } },
598
599 /* fclass constants: */
600 { "nat", PSEUDO_FUNC_CONST, { 0x100 } },
601 { "qnan", PSEUDO_FUNC_CONST, { 0x080 } },
602 { "snan", PSEUDO_FUNC_CONST, { 0x040 } },
603 { "pos", PSEUDO_FUNC_CONST, { 0x001 } },
604 { "neg", PSEUDO_FUNC_CONST, { 0x002 } },
605 { "zero", PSEUDO_FUNC_CONST, { 0x004 } },
606 { "unorm", PSEUDO_FUNC_CONST, { 0x008 } },
607 { "norm", PSEUDO_FUNC_CONST, { 0x010 } },
608 { "inf", PSEUDO_FUNC_CONST, { 0x020 } },
609
610 { "natval", PSEUDO_FUNC_CONST, { 0x100 } }, /* old usage */
611
612 /* hint constants: */
613 { "pause", PSEUDO_FUNC_CONST, { 0x0 } },
614 { "priority", PSEUDO_FUNC_CONST, { 0x1 } },
615
616 /* tf constants: */
617 { "clz", PSEUDO_FUNC_CONST, { 32 } },
618 { "mpy", PSEUDO_FUNC_CONST, { 33 } },
619 { "datahints", PSEUDO_FUNC_CONST, { 34 } },
620
621 /* unwind-related constants: */
622 { "svr4", PSEUDO_FUNC_CONST, { ELFOSABI_NONE } },
623 { "hpux", PSEUDO_FUNC_CONST, { ELFOSABI_HPUX } },
624 { "nt", PSEUDO_FUNC_CONST, { 2 } }, /* conflicts w/ELFOSABI_NETBSD */
625 { "linux", PSEUDO_FUNC_CONST, { ELFOSABI_GNU } },
626 { "freebsd", PSEUDO_FUNC_CONST, { ELFOSABI_FREEBSD } },
627 { "openvms", PSEUDO_FUNC_CONST, { ELFOSABI_OPENVMS } },
628 { "nsk", PSEUDO_FUNC_CONST, { ELFOSABI_NSK } },
629
630 /* unwind-related registers: */
631 { "priunat",PSEUDO_FUNC_REG, { REG_PRIUNAT } }
632 };
633
634 /* 41-bit nop opcodes (one per unit): */
635 static const bfd_vma nop[IA64_NUM_UNITS] =
636 {
637 0x0000000000LL, /* NIL => break 0 */
638 0x0008000000LL, /* I-unit nop */
639 0x0008000000LL, /* M-unit nop */
640 0x4000000000LL, /* B-unit nop */
641 0x0008000000LL, /* F-unit nop */
642 0x0000000000LL, /* L-"unit" nop immediate */
643 0x0008000000LL, /* X-unit nop */
644 };
645
646 /* Can't be `const' as it's passed to input routines (which have the
647 habit of setting temporary sentinels. */
648 static char special_section_name[][20] =
649 {
650 {".bss"}, {".sbss"}, {".sdata"}, {".rodata"}, {".comment"},
651 {".IA_64.unwind"}, {".IA_64.unwind_info"},
652 {".init_array"}, {".fini_array"}
653 };
654
655 /* The best template for a particular sequence of up to three
656 instructions: */
657 #define N IA64_NUM_TYPES
658 static unsigned char best_template[N][N][N];
659 #undef N
660
661 /* Resource dependencies currently in effect */
662 static struct rsrc {
663 int depind; /* dependency index */
664 const struct ia64_dependency *dependency; /* actual dependency */
665 unsigned specific:1, /* is this a specific bit/regno? */
666 link_to_qp_branch:1; /* will a branch on the same QP clear it?*/
667 int index; /* specific regno/bit within dependency */
668 int note; /* optional qualifying note (0 if none) */
669 #define STATE_NONE 0
670 #define STATE_STOP 1
671 #define STATE_SRLZ 2
672 int insn_srlz; /* current insn serialization state */
673 int data_srlz; /* current data serialization state */
674 int qp_regno; /* qualifying predicate for this usage */
675 char *file; /* what file marked this dependency */
676 unsigned int line; /* what line marked this dependency */
677 struct mem_offset mem_offset; /* optional memory offset hint */
678 enum { CMP_NONE, CMP_OR, CMP_AND } cmp_type; /* OR or AND compare? */
679 int path; /* corresponding code entry index */
680 } *regdeps = NULL;
681 static int regdepslen = 0;
682 static int regdepstotlen = 0;
683 static const char *dv_mode[] = { "RAW", "WAW", "WAR" };
684 static const char *dv_sem[] = { "none", "implied", "impliedf",
685 "data", "instr", "specific", "stop", "other" };
686 static const char *dv_cmp_type[] = { "none", "OR", "AND" };
687
688 /* Current state of PR mutexation */
689 static struct qpmutex {
690 valueT prmask;
691 int path;
692 } *qp_mutexes = NULL; /* QP mutex bitmasks */
693 static int qp_mutexeslen = 0;
694 static int qp_mutexestotlen = 0;
695 static valueT qp_safe_across_calls = 0;
696
697 /* Current state of PR implications */
698 static struct qp_imply {
699 unsigned p1:6;
700 unsigned p2:6;
701 unsigned p2_branched:1;
702 int path;
703 } *qp_implies = NULL;
704 static int qp_implieslen = 0;
705 static int qp_impliestotlen = 0;
706
707 /* Keep track of static GR values so that indirect register usage can
708 sometimes be tracked. */
709 static struct gr {
710 unsigned known:1;
711 int path;
712 valueT value;
713 } gr_values[128] = {
714 {
715 1,
716 #ifdef INT_MAX
717 INT_MAX,
718 #else
719 (((1 << (8 * sizeof(gr_values->path) - 2)) - 1) << 1) + 1,
720 #endif
721 0
722 }
723 };
724
725 /* Remember the alignment frag. */
726 static fragS *align_frag;
727
728 /* These are the routines required to output the various types of
729 unwind records. */
730
731 /* A slot_number is a frag address plus the slot index (0-2). We use the
732 frag address here so that if there is a section switch in the middle of
733 a function, then instructions emitted to a different section are not
734 counted. Since there may be more than one frag for a function, this
735 means we also need to keep track of which frag this address belongs to
736 so we can compute inter-frag distances. This also nicely solves the
737 problem with nops emitted for align directives, which can't easily be
738 counted, but can easily be derived from frag sizes. */
739
740 typedef struct unw_rec_list {
741 unwind_record r;
742 unsigned long slot_number;
743 fragS *slot_frag;
744 struct unw_rec_list *next;
745 } unw_rec_list;
746
747 #define SLOT_NUM_NOT_SET (unsigned)-1
748
749 /* Linked list of saved prologue counts. A very poor
750 implementation of a map from label numbers to prologue counts. */
751 typedef struct label_prologue_count
752 {
753 struct label_prologue_count *next;
754 unsigned long label_number;
755 unsigned int prologue_count;
756 } label_prologue_count;
757
758 typedef struct proc_pending
759 {
760 symbolS *sym;
761 struct proc_pending *next;
762 } proc_pending;
763
764 static struct
765 {
766 /* Maintain a list of unwind entries for the current function. */
767 unw_rec_list *list;
768 unw_rec_list *tail;
769
770 /* Any unwind entries that should be attached to the current slot
771 that an insn is being constructed for. */
772 unw_rec_list *current_entry;
773
774 /* These are used to create the unwind table entry for this function. */
775 proc_pending proc_pending;
776 symbolS *info; /* pointer to unwind info */
777 symbolS *personality_routine;
778 segT saved_text_seg;
779 subsegT saved_text_subseg;
780 unsigned int force_unwind_entry : 1; /* force generation of unwind entry? */
781
782 /* TRUE if processing unwind directives in a prologue region. */
783 unsigned int prologue : 1;
784 unsigned int prologue_mask : 4;
785 unsigned int prologue_gr : 7;
786 unsigned int body : 1;
787 unsigned int insn : 1;
788 unsigned int prologue_count; /* number of .prologues seen so far */
789 /* Prologue counts at previous .label_state directives. */
790 struct label_prologue_count * saved_prologue_counts;
791
792 /* List of split up .save-s. */
793 unw_p_record *pending_saves;
794 } unwind;
795
796 /* The input value is a negated offset from psp, and specifies an address
797 psp - offset. The encoded value is psp + 16 - (4 * offset). Thus we
798 must add 16 and divide by 4 to get the encoded value. */
799
800 #define ENCODED_PSP_OFFSET(OFFSET) (((OFFSET) + 16) / 4)
801
802 typedef void (*vbyte_func) (int, char *, char *);
803
804 /* Forward declarations: */
805 static void dot_alias (int);
806 static int parse_operand_and_eval (expressionS *, int);
807 static void emit_one_bundle (void);
808 static bfd_reloc_code_real_type ia64_gen_real_reloc_type (struct symbol *,
809 bfd_reloc_code_real_type);
810 static void insn_group_break (int, int, int);
811 static void add_qp_mutex (valueT);
812 static void add_qp_imply (int, int);
813 static void clear_qp_mutex (valueT);
814 static void clear_qp_implies (valueT, valueT);
815 static void print_dependency (const char *, int);
816 static void instruction_serialization (void);
817 static void data_serialization (void);
818 static void output_R3_format (vbyte_func, unw_record_type, unsigned long);
819 static void output_B3_format (vbyte_func, unsigned long, unsigned long);
820 static void output_B4_format (vbyte_func, unw_record_type, unsigned long);
821 static void free_saved_prologue_counts (void);
822
823 /* Determine if application register REGNUM resides only in the integer
824 unit (as opposed to the memory unit). */
825 static int
826 ar_is_only_in_integer_unit (int reg)
827 {
828 reg -= REG_AR;
829 return reg >= 64 && reg <= 111;
830 }
831
832 /* Determine if application register REGNUM resides only in the memory
833 unit (as opposed to the integer unit). */
834 static int
835 ar_is_only_in_memory_unit (int reg)
836 {
837 reg -= REG_AR;
838 return reg >= 0 && reg <= 47;
839 }
840
841 /* Switch to section NAME and create section if necessary. It's
842 rather ugly that we have to manipulate input_line_pointer but I
843 don't see any other way to accomplish the same thing without
844 changing obj-elf.c (which may be the Right Thing, in the end). */
845 static void
846 set_section (char *name)
847 {
848 char *saved_input_line_pointer;
849
850 saved_input_line_pointer = input_line_pointer;
851 input_line_pointer = name;
852 obj_elf_section (0);
853 input_line_pointer = saved_input_line_pointer;
854 }
855
856 /* Map 's' to SHF_IA_64_SHORT. */
857
858 bfd_vma
859 ia64_elf_section_letter (int letter, char **ptr_msg)
860 {
861 if (letter == 's')
862 return SHF_IA_64_SHORT;
863 else if (letter == 'o')
864 return SHF_LINK_ORDER;
865 #ifdef TE_VMS
866 else if (letter == 'O')
867 return SHF_IA_64_VMS_OVERLAID;
868 else if (letter == 'g')
869 return SHF_IA_64_VMS_GLOBAL;
870 #endif
871
872 *ptr_msg = _("bad .section directive: want a,o,s,w,x,M,S,G,T in string");
873 return -1;
874 }
875
876 /* Map SHF_IA_64_SHORT to SEC_SMALL_DATA. */
877
878 flagword
879 ia64_elf_section_flags (flagword flags,
880 bfd_vma attr,
881 int type ATTRIBUTE_UNUSED)
882 {
883 if (attr & SHF_IA_64_SHORT)
884 flags |= SEC_SMALL_DATA;
885 return flags;
886 }
887
888 int
889 ia64_elf_section_type (const char *str, size_t len)
890 {
891 #define STREQ(s) ((len == sizeof (s) - 1) && (strncmp (str, s, sizeof (s) - 1) == 0))
892
893 if (STREQ (ELF_STRING_ia64_unwind_info))
894 return SHT_PROGBITS;
895
896 if (STREQ (ELF_STRING_ia64_unwind_info_once))
897 return SHT_PROGBITS;
898
899 if (STREQ (ELF_STRING_ia64_unwind))
900 return SHT_IA_64_UNWIND;
901
902 if (STREQ (ELF_STRING_ia64_unwind_once))
903 return SHT_IA_64_UNWIND;
904
905 if (STREQ ("unwind"))
906 return SHT_IA_64_UNWIND;
907
908 return -1;
909 #undef STREQ
910 }
911
912 static unsigned int
913 set_regstack (unsigned int ins,
914 unsigned int locs,
915 unsigned int outs,
916 unsigned int rots)
917 {
918 /* Size of frame. */
919 unsigned int sof;
920
921 sof = ins + locs + outs;
922 if (sof > 96)
923 {
924 as_bad (_("Size of frame exceeds maximum of 96 registers"));
925 return 0;
926 }
927 if (rots > sof)
928 {
929 as_warn (_("Size of rotating registers exceeds frame size"));
930 return 0;
931 }
932 md.in.base = REG_GR + 32;
933 md.loc.base = md.in.base + ins;
934 md.out.base = md.loc.base + locs;
935
936 md.in.num_regs = ins;
937 md.loc.num_regs = locs;
938 md.out.num_regs = outs;
939 md.rot.num_regs = rots;
940 return sof;
941 }
942
943 void
944 ia64_flush_insns (void)
945 {
946 struct label_fix *lfix;
947 segT saved_seg;
948 subsegT saved_subseg;
949 unw_rec_list *ptr;
950 bfd_boolean mark;
951
952 if (!md.last_text_seg)
953 return;
954
955 saved_seg = now_seg;
956 saved_subseg = now_subseg;
957
958 subseg_set (md.last_text_seg, 0);
959
960 while (md.num_slots_in_use > 0)
961 emit_one_bundle (); /* force out queued instructions */
962
963 /* In case there are labels following the last instruction, resolve
964 those now. */
965 mark = FALSE;
966 for (lfix = CURR_SLOT.label_fixups; lfix; lfix = lfix->next)
967 {
968 symbol_set_value_now (lfix->sym);
969 mark |= lfix->dw2_mark_labels;
970 }
971 if (mark)
972 {
973 dwarf2_where (&CURR_SLOT.debug_line);
974 CURR_SLOT.debug_line.flags |= DWARF2_FLAG_BASIC_BLOCK;
975 dwarf2_gen_line_info (frag_now_fix (), &CURR_SLOT.debug_line);
976 dwarf2_consume_line_info ();
977 }
978 CURR_SLOT.label_fixups = 0;
979
980 for (lfix = CURR_SLOT.tag_fixups; lfix; lfix = lfix->next)
981 symbol_set_value_now (lfix->sym);
982 CURR_SLOT.tag_fixups = 0;
983
984 /* In case there are unwind directives following the last instruction,
985 resolve those now. We only handle prologue, body, and endp directives
986 here. Give an error for others. */
987 for (ptr = unwind.current_entry; ptr; ptr = ptr->next)
988 {
989 switch (ptr->r.type)
990 {
991 case prologue:
992 case prologue_gr:
993 case body:
994 case endp:
995 ptr->slot_number = (unsigned long) frag_more (0);
996 ptr->slot_frag = frag_now;
997 break;
998
999 /* Allow any record which doesn't have a "t" field (i.e.,
1000 doesn't relate to a particular instruction). */
1001 case unwabi:
1002 case br_gr:
1003 case copy_state:
1004 case fr_mem:
1005 case frgr_mem:
1006 case gr_gr:
1007 case gr_mem:
1008 case label_state:
1009 case rp_br:
1010 case spill_base:
1011 case spill_mask:
1012 /* nothing */
1013 break;
1014
1015 default:
1016 as_bad (_("Unwind directive not followed by an instruction."));
1017 break;
1018 }
1019 }
1020 unwind.current_entry = NULL;
1021
1022 subseg_set (saved_seg, saved_subseg);
1023
1024 if (md.qp.X_op == O_register)
1025 as_bad (_("qualifying predicate not followed by instruction"));
1026 }
1027
1028 static void
1029 ia64_do_align (int nbytes)
1030 {
1031 char *saved_input_line_pointer = input_line_pointer;
1032
1033 input_line_pointer = "";
1034 s_align_bytes (nbytes);
1035 input_line_pointer = saved_input_line_pointer;
1036 }
1037
1038 void
1039 ia64_cons_align (int nbytes)
1040 {
1041 if (md.auto_align)
1042 {
1043 char *saved_input_line_pointer = input_line_pointer;
1044 input_line_pointer = "";
1045 s_align_bytes (nbytes);
1046 input_line_pointer = saved_input_line_pointer;
1047 }
1048 }
1049
1050 #ifdef TE_VMS
1051
1052 /* .vms_common section, symbol, size, alignment */
1053
1054 static void
1055 obj_elf_vms_common (int ignore ATTRIBUTE_UNUSED)
1056 {
1057 char *sec_name;
1058 char *sym_name;
1059 char c;
1060 offsetT size;
1061 offsetT cur_size;
1062 offsetT temp;
1063 symbolS *symbolP;
1064 segT current_seg = now_seg;
1065 subsegT current_subseg = now_subseg;
1066 offsetT log_align;
1067
1068 /* Section name. */
1069 sec_name = obj_elf_section_name ();
1070 if (sec_name == NULL)
1071 return;
1072
1073 /* Symbol name. */
1074 SKIP_WHITESPACE ();
1075 if (*input_line_pointer == ',')
1076 {
1077 input_line_pointer++;
1078 SKIP_WHITESPACE ();
1079 }
1080 else
1081 {
1082 as_bad (_("expected ',' after section name"));
1083 ignore_rest_of_line ();
1084 return;
1085 }
1086
1087 sym_name = input_line_pointer;
1088 c = get_symbol_end ();
1089
1090 if (input_line_pointer == sym_name)
1091 {
1092 *input_line_pointer = c;
1093 as_bad (_("expected symbol name"));
1094 ignore_rest_of_line ();
1095 return;
1096 }
1097
1098 symbolP = symbol_find_or_make (sym_name);
1099 *input_line_pointer = c;
1100
1101 if ((S_IS_DEFINED (symbolP) || symbol_equated_p (symbolP))
1102 && !S_IS_COMMON (symbolP))
1103 {
1104 as_bad (_("Ignoring attempt to re-define symbol"));
1105 ignore_rest_of_line ();
1106 return;
1107 }
1108
1109 /* Symbol size. */
1110 SKIP_WHITESPACE ();
1111 if (*input_line_pointer == ',')
1112 {
1113 input_line_pointer++;
1114 SKIP_WHITESPACE ();
1115 }
1116 else
1117 {
1118 as_bad (_("expected ',' after symbol name"));
1119 ignore_rest_of_line ();
1120 return;
1121 }
1122
1123 temp = get_absolute_expression ();
1124 size = temp;
1125 size &= ((offsetT) 2 << (stdoutput->arch_info->bits_per_address - 1)) - 1;
1126 if (temp != size)
1127 {
1128 as_warn (_("size (%ld) out of range, ignored"), (long) temp);
1129 ignore_rest_of_line ();
1130 return;
1131 }
1132
1133 /* Alignment. */
1134 SKIP_WHITESPACE ();
1135 if (*input_line_pointer == ',')
1136 {
1137 input_line_pointer++;
1138 SKIP_WHITESPACE ();
1139 }
1140 else
1141 {
1142 as_bad (_("expected ',' after symbol size"));
1143 ignore_rest_of_line ();
1144 return;
1145 }
1146
1147 log_align = get_absolute_expression ();
1148
1149 demand_empty_rest_of_line ();
1150
1151 obj_elf_change_section
1152 (sec_name, SHT_NOBITS,
1153 SHF_ALLOC | SHF_WRITE | SHF_IA_64_VMS_OVERLAID | SHF_IA_64_VMS_GLOBAL,
1154 0, NULL, 1, 0);
1155
1156 S_SET_VALUE (symbolP, 0);
1157 S_SET_SIZE (symbolP, size);
1158 S_SET_EXTERNAL (symbolP);
1159 S_SET_SEGMENT (symbolP, now_seg);
1160
1161 symbol_get_bfdsym (symbolP)->flags |= BSF_OBJECT;
1162
1163 record_alignment (now_seg, log_align);
1164
1165 cur_size = bfd_section_size (stdoutput, now_seg);
1166 if ((int) size > cur_size)
1167 {
1168 char *pfrag
1169 = frag_var (rs_fill, 1, 1, (relax_substateT)0, NULL,
1170 (valueT)size - (valueT)cur_size, NULL);
1171 *pfrag = 0;
1172 bfd_section_size (stdoutput, now_seg) = size;
1173 }
1174
1175 /* Switch back to current segment. */
1176 subseg_set (current_seg, current_subseg);
1177
1178 #ifdef md_elf_section_change_hook
1179 md_elf_section_change_hook ();
1180 #endif
1181 }
1182
1183 #endif /* TE_VMS */
1184
1185 /* Output COUNT bytes to a memory location. */
1186 static char *vbyte_mem_ptr = NULL;
1187
1188 static void
1189 output_vbyte_mem (int count, char *ptr, char *comment ATTRIBUTE_UNUSED)
1190 {
1191 int x;
1192 if (vbyte_mem_ptr == NULL)
1193 abort ();
1194
1195 if (count == 0)
1196 return;
1197 for (x = 0; x < count; x++)
1198 *(vbyte_mem_ptr++) = ptr[x];
1199 }
1200
1201 /* Count the number of bytes required for records. */
1202 static int vbyte_count = 0;
1203 static void
1204 count_output (int count,
1205 char *ptr ATTRIBUTE_UNUSED,
1206 char *comment ATTRIBUTE_UNUSED)
1207 {
1208 vbyte_count += count;
1209 }
1210
1211 static void
1212 output_R1_format (vbyte_func f, unw_record_type rtype, int rlen)
1213 {
1214 int r = 0;
1215 char byte;
1216 if (rlen > 0x1f)
1217 {
1218 output_R3_format (f, rtype, rlen);
1219 return;
1220 }
1221
1222 if (rtype == body)
1223 r = 1;
1224 else if (rtype != prologue)
1225 as_bad (_("record type is not valid"));
1226
1227 byte = UNW_R1 | (r << 5) | (rlen & 0x1f);
1228 (*f) (1, &byte, NULL);
1229 }
1230
1231 static void
1232 output_R2_format (vbyte_func f, int mask, int grsave, unsigned long rlen)
1233 {
1234 char bytes[20];
1235 int count = 2;
1236 mask = (mask & 0x0f);
1237 grsave = (grsave & 0x7f);
1238
1239 bytes[0] = (UNW_R2 | (mask >> 1));
1240 bytes[1] = (((mask & 0x01) << 7) | grsave);
1241 count += output_leb128 (bytes + 2, rlen, 0);
1242 (*f) (count, bytes, NULL);
1243 }
1244
1245 static void
1246 output_R3_format (vbyte_func f, unw_record_type rtype, unsigned long rlen)
1247 {
1248 int r = 0, count;
1249 char bytes[20];
1250 if (rlen <= 0x1f)
1251 {
1252 output_R1_format (f, rtype, rlen);
1253 return;
1254 }
1255
1256 if (rtype == body)
1257 r = 1;
1258 else if (rtype != prologue)
1259 as_bad (_("record type is not valid"));
1260 bytes[0] = (UNW_R3 | r);
1261 count = output_leb128 (bytes + 1, rlen, 0);
1262 (*f) (count + 1, bytes, NULL);
1263 }
1264
1265 static void
1266 output_P1_format (vbyte_func f, int brmask)
1267 {
1268 char byte;
1269 byte = UNW_P1 | (brmask & 0x1f);
1270 (*f) (1, &byte, NULL);
1271 }
1272
1273 static void
1274 output_P2_format (vbyte_func f, int brmask, int gr)
1275 {
1276 char bytes[2];
1277 brmask = (brmask & 0x1f);
1278 bytes[0] = UNW_P2 | (brmask >> 1);
1279 bytes[1] = (((brmask & 1) << 7) | gr);
1280 (*f) (2, bytes, NULL);
1281 }
1282
1283 static void
1284 output_P3_format (vbyte_func f, unw_record_type rtype, int reg)
1285 {
1286 char bytes[2];
1287 int r = 0;
1288 reg = (reg & 0x7f);
1289 switch (rtype)
1290 {
1291 case psp_gr:
1292 r = 0;
1293 break;
1294 case rp_gr:
1295 r = 1;
1296 break;
1297 case pfs_gr:
1298 r = 2;
1299 break;
1300 case preds_gr:
1301 r = 3;
1302 break;
1303 case unat_gr:
1304 r = 4;
1305 break;
1306 case lc_gr:
1307 r = 5;
1308 break;
1309 case rp_br:
1310 r = 6;
1311 break;
1312 case rnat_gr:
1313 r = 7;
1314 break;
1315 case bsp_gr:
1316 r = 8;
1317 break;
1318 case bspstore_gr:
1319 r = 9;
1320 break;
1321 case fpsr_gr:
1322 r = 10;
1323 break;
1324 case priunat_gr:
1325 r = 11;
1326 break;
1327 default:
1328 as_bad (_("Invalid record type for P3 format."));
1329 }
1330 bytes[0] = (UNW_P3 | (r >> 1));
1331 bytes[1] = (((r & 1) << 7) | reg);
1332 (*f) (2, bytes, NULL);
1333 }
1334
1335 static void
1336 output_P4_format (vbyte_func f, unsigned char *imask, unsigned long imask_size)
1337 {
1338 imask[0] = UNW_P4;
1339 (*f) (imask_size, (char *) imask, NULL);
1340 }
1341
1342 static void
1343 output_P5_format (vbyte_func f, int grmask, unsigned long frmask)
1344 {
1345 char bytes[4];
1346 grmask = (grmask & 0x0f);
1347
1348 bytes[0] = UNW_P5;
1349 bytes[1] = ((grmask << 4) | ((frmask & 0x000f0000) >> 16));
1350 bytes[2] = ((frmask & 0x0000ff00) >> 8);
1351 bytes[3] = (frmask & 0x000000ff);
1352 (*f) (4, bytes, NULL);
1353 }
1354
1355 static void
1356 output_P6_format (vbyte_func f, unw_record_type rtype, int rmask)
1357 {
1358 char byte;
1359 int r = 0;
1360
1361 if (rtype == gr_mem)
1362 r = 1;
1363 else if (rtype != fr_mem)
1364 as_bad (_("Invalid record type for format P6"));
1365 byte = (UNW_P6 | (r << 4) | (rmask & 0x0f));
1366 (*f) (1, &byte, NULL);
1367 }
1368
1369 static void
1370 output_P7_format (vbyte_func f,
1371 unw_record_type rtype,
1372 unsigned long w1,
1373 unsigned long w2)
1374 {
1375 char bytes[20];
1376 int count = 1;
1377 int r = 0;
1378 count += output_leb128 (bytes + 1, w1, 0);
1379 switch (rtype)
1380 {
1381 case mem_stack_f:
1382 r = 0;
1383 count += output_leb128 (bytes + count, w2 >> 4, 0);
1384 break;
1385 case mem_stack_v:
1386 r = 1;
1387 break;
1388 case spill_base:
1389 r = 2;
1390 break;
1391 case psp_sprel:
1392 r = 3;
1393 break;
1394 case rp_when:
1395 r = 4;
1396 break;
1397 case rp_psprel:
1398 r = 5;
1399 break;
1400 case pfs_when:
1401 r = 6;
1402 break;
1403 case pfs_psprel:
1404 r = 7;
1405 break;
1406 case preds_when:
1407 r = 8;
1408 break;
1409 case preds_psprel:
1410 r = 9;
1411 break;
1412 case lc_when:
1413 r = 10;
1414 break;
1415 case lc_psprel:
1416 r = 11;
1417 break;
1418 case unat_when:
1419 r = 12;
1420 break;
1421 case unat_psprel:
1422 r = 13;
1423 break;
1424 case fpsr_when:
1425 r = 14;
1426 break;
1427 case fpsr_psprel:
1428 r = 15;
1429 break;
1430 default:
1431 break;
1432 }
1433 bytes[0] = (UNW_P7 | r);
1434 (*f) (count, bytes, NULL);
1435 }
1436
1437 static void
1438 output_P8_format (vbyte_func f, unw_record_type rtype, unsigned long t)
1439 {
1440 char bytes[20];
1441 int r = 0;
1442 int count = 2;
1443 bytes[0] = UNW_P8;
1444 switch (rtype)
1445 {
1446 case rp_sprel:
1447 r = 1;
1448 break;
1449 case pfs_sprel:
1450 r = 2;
1451 break;
1452 case preds_sprel:
1453 r = 3;
1454 break;
1455 case lc_sprel:
1456 r = 4;
1457 break;
1458 case unat_sprel:
1459 r = 5;
1460 break;
1461 case fpsr_sprel:
1462 r = 6;
1463 break;
1464 case bsp_when:
1465 r = 7;
1466 break;
1467 case bsp_psprel:
1468 r = 8;
1469 break;
1470 case bsp_sprel:
1471 r = 9;
1472 break;
1473 case bspstore_when:
1474 r = 10;
1475 break;
1476 case bspstore_psprel:
1477 r = 11;
1478 break;
1479 case bspstore_sprel:
1480 r = 12;
1481 break;
1482 case rnat_when:
1483 r = 13;
1484 break;
1485 case rnat_psprel:
1486 r = 14;
1487 break;
1488 case rnat_sprel:
1489 r = 15;
1490 break;
1491 case priunat_when_gr:
1492 r = 16;
1493 break;
1494 case priunat_psprel:
1495 r = 17;
1496 break;
1497 case priunat_sprel:
1498 r = 18;
1499 break;
1500 case priunat_when_mem:
1501 r = 19;
1502 break;
1503 default:
1504 break;
1505 }
1506 bytes[1] = r;
1507 count += output_leb128 (bytes + 2, t, 0);
1508 (*f) (count, bytes, NULL);
1509 }
1510
1511 static void
1512 output_P9_format (vbyte_func f, int grmask, int gr)
1513 {
1514 char bytes[3];
1515 bytes[0] = UNW_P9;
1516 bytes[1] = (grmask & 0x0f);
1517 bytes[2] = (gr & 0x7f);
1518 (*f) (3, bytes, NULL);
1519 }
1520
1521 static void
1522 output_P10_format (vbyte_func f, int abi, int context)
1523 {
1524 char bytes[3];
1525 bytes[0] = UNW_P10;
1526 bytes[1] = (abi & 0xff);
1527 bytes[2] = (context & 0xff);
1528 (*f) (3, bytes, NULL);
1529 }
1530
1531 static void
1532 output_B1_format (vbyte_func f, unw_record_type rtype, unsigned long label)
1533 {
1534 char byte;
1535 int r = 0;
1536 if (label > 0x1f)
1537 {
1538 output_B4_format (f, rtype, label);
1539 return;
1540 }
1541 if (rtype == copy_state)
1542 r = 1;
1543 else if (rtype != label_state)
1544 as_bad (_("Invalid record type for format B1"));
1545
1546 byte = (UNW_B1 | (r << 5) | (label & 0x1f));
1547 (*f) (1, &byte, NULL);
1548 }
1549
1550 static void
1551 output_B2_format (vbyte_func f, unsigned long ecount, unsigned long t)
1552 {
1553 char bytes[20];
1554 int count = 1;
1555 if (ecount > 0x1f)
1556 {
1557 output_B3_format (f, ecount, t);
1558 return;
1559 }
1560 bytes[0] = (UNW_B2 | (ecount & 0x1f));
1561 count += output_leb128 (bytes + 1, t, 0);
1562 (*f) (count, bytes, NULL);
1563 }
1564
1565 static void
1566 output_B3_format (vbyte_func f, unsigned long ecount, unsigned long t)
1567 {
1568 char bytes[20];
1569 int count = 1;
1570 if (ecount <= 0x1f)
1571 {
1572 output_B2_format (f, ecount, t);
1573 return;
1574 }
1575 bytes[0] = UNW_B3;
1576 count += output_leb128 (bytes + 1, t, 0);
1577 count += output_leb128 (bytes + count, ecount, 0);
1578 (*f) (count, bytes, NULL);
1579 }
1580
1581 static void
1582 output_B4_format (vbyte_func f, unw_record_type rtype, unsigned long label)
1583 {
1584 char bytes[20];
1585 int r = 0;
1586 int count = 1;
1587 if (label <= 0x1f)
1588 {
1589 output_B1_format (f, rtype, label);
1590 return;
1591 }
1592
1593 if (rtype == copy_state)
1594 r = 1;
1595 else if (rtype != label_state)
1596 as_bad (_("Invalid record type for format B1"));
1597
1598 bytes[0] = (UNW_B4 | (r << 3));
1599 count += output_leb128 (bytes + 1, label, 0);
1600 (*f) (count, bytes, NULL);
1601 }
1602
1603 static char
1604 format_ab_reg (int ab, int reg)
1605 {
1606 int ret;
1607 ab = (ab & 3);
1608 reg = (reg & 0x1f);
1609 ret = (ab << 5) | reg;
1610 return ret;
1611 }
1612
1613 static void
1614 output_X1_format (vbyte_func f,
1615 unw_record_type rtype,
1616 int ab,
1617 int reg,
1618 unsigned long t,
1619 unsigned long w1)
1620 {
1621 char bytes[20];
1622 int r = 0;
1623 int count = 2;
1624 bytes[0] = UNW_X1;
1625
1626 if (rtype == spill_sprel)
1627 r = 1;
1628 else if (rtype != spill_psprel)
1629 as_bad (_("Invalid record type for format X1"));
1630 bytes[1] = ((r << 7) | format_ab_reg (ab, reg));
1631 count += output_leb128 (bytes + 2, t, 0);
1632 count += output_leb128 (bytes + count, w1, 0);
1633 (*f) (count, bytes, NULL);
1634 }
1635
1636 static void
1637 output_X2_format (vbyte_func f,
1638 int ab,
1639 int reg,
1640 int x,
1641 int y,
1642 int treg,
1643 unsigned long t)
1644 {
1645 char bytes[20];
1646 int count = 3;
1647 bytes[0] = UNW_X2;
1648 bytes[1] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1649 bytes[2] = (((y & 1) << 7) | (treg & 0x7f));
1650 count += output_leb128 (bytes + 3, t, 0);
1651 (*f) (count, bytes, NULL);
1652 }
1653
1654 static void
1655 output_X3_format (vbyte_func f,
1656 unw_record_type rtype,
1657 int qp,
1658 int ab,
1659 int reg,
1660 unsigned long t,
1661 unsigned long w1)
1662 {
1663 char bytes[20];
1664 int r = 0;
1665 int count = 3;
1666 bytes[0] = UNW_X3;
1667
1668 if (rtype == spill_sprel_p)
1669 r = 1;
1670 else if (rtype != spill_psprel_p)
1671 as_bad (_("Invalid record type for format X3"));
1672 bytes[1] = ((r << 7) | (qp & 0x3f));
1673 bytes[2] = format_ab_reg (ab, reg);
1674 count += output_leb128 (bytes + 3, t, 0);
1675 count += output_leb128 (bytes + count, w1, 0);
1676 (*f) (count, bytes, NULL);
1677 }
1678
1679 static void
1680 output_X4_format (vbyte_func f,
1681 int qp,
1682 int ab,
1683 int reg,
1684 int x,
1685 int y,
1686 int treg,
1687 unsigned long t)
1688 {
1689 char bytes[20];
1690 int count = 4;
1691 bytes[0] = UNW_X4;
1692 bytes[1] = (qp & 0x3f);
1693 bytes[2] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1694 bytes[3] = (((y & 1) << 7) | (treg & 0x7f));
1695 count += output_leb128 (bytes + 4, t, 0);
1696 (*f) (count, bytes, NULL);
1697 }
1698
1699 /* This function checks whether there are any outstanding .save-s and
1700 discards them if so. */
1701
1702 static void
1703 check_pending_save (void)
1704 {
1705 if (unwind.pending_saves)
1706 {
1707 unw_rec_list *cur, *prev;
1708
1709 as_warn (_("Previous .save incomplete"));
1710 for (cur = unwind.list, prev = NULL; cur; )
1711 if (&cur->r.record.p == unwind.pending_saves)
1712 {
1713 if (prev)
1714 prev->next = cur->next;
1715 else
1716 unwind.list = cur->next;
1717 if (cur == unwind.tail)
1718 unwind.tail = prev;
1719 if (cur == unwind.current_entry)
1720 unwind.current_entry = cur->next;
1721 /* Don't free the first discarded record, it's being used as
1722 terminator for (currently) br_gr and gr_gr processing, and
1723 also prevents leaving a dangling pointer to it in its
1724 predecessor. */
1725 cur->r.record.p.grmask = 0;
1726 cur->r.record.p.brmask = 0;
1727 cur->r.record.p.frmask = 0;
1728 prev = cur->r.record.p.next;
1729 cur->r.record.p.next = NULL;
1730 cur = prev;
1731 break;
1732 }
1733 else
1734 {
1735 prev = cur;
1736 cur = cur->next;
1737 }
1738 while (cur)
1739 {
1740 prev = cur;
1741 cur = cur->r.record.p.next;
1742 free (prev);
1743 }
1744 unwind.pending_saves = NULL;
1745 }
1746 }
1747
1748 /* This function allocates a record list structure, and initializes fields. */
1749
1750 static unw_rec_list *
1751 alloc_record (unw_record_type t)
1752 {
1753 unw_rec_list *ptr;
1754 ptr = xmalloc (sizeof (*ptr));
1755 memset (ptr, 0, sizeof (*ptr));
1756 ptr->slot_number = SLOT_NUM_NOT_SET;
1757 ptr->r.type = t;
1758 return ptr;
1759 }
1760
1761 /* Dummy unwind record used for calculating the length of the last prologue or
1762 body region. */
1763
1764 static unw_rec_list *
1765 output_endp (void)
1766 {
1767 unw_rec_list *ptr = alloc_record (endp);
1768 return ptr;
1769 }
1770
1771 static unw_rec_list *
1772 output_prologue (void)
1773 {
1774 unw_rec_list *ptr = alloc_record (prologue);
1775 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1776 return ptr;
1777 }
1778
1779 static unw_rec_list *
1780 output_prologue_gr (unsigned int saved_mask, unsigned int reg)
1781 {
1782 unw_rec_list *ptr = alloc_record (prologue_gr);
1783 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1784 ptr->r.record.r.grmask = saved_mask;
1785 ptr->r.record.r.grsave = reg;
1786 return ptr;
1787 }
1788
1789 static unw_rec_list *
1790 output_body (void)
1791 {
1792 unw_rec_list *ptr = alloc_record (body);
1793 return ptr;
1794 }
1795
1796 static unw_rec_list *
1797 output_mem_stack_f (unsigned int size)
1798 {
1799 unw_rec_list *ptr = alloc_record (mem_stack_f);
1800 ptr->r.record.p.size = size;
1801 return ptr;
1802 }
1803
1804 static unw_rec_list *
1805 output_mem_stack_v (void)
1806 {
1807 unw_rec_list *ptr = alloc_record (mem_stack_v);
1808 return ptr;
1809 }
1810
1811 static unw_rec_list *
1812 output_psp_gr (unsigned int gr)
1813 {
1814 unw_rec_list *ptr = alloc_record (psp_gr);
1815 ptr->r.record.p.r.gr = gr;
1816 return ptr;
1817 }
1818
1819 static unw_rec_list *
1820 output_psp_sprel (unsigned int offset)
1821 {
1822 unw_rec_list *ptr = alloc_record (psp_sprel);
1823 ptr->r.record.p.off.sp = offset / 4;
1824 return ptr;
1825 }
1826
1827 static unw_rec_list *
1828 output_rp_when (void)
1829 {
1830 unw_rec_list *ptr = alloc_record (rp_when);
1831 return ptr;
1832 }
1833
1834 static unw_rec_list *
1835 output_rp_gr (unsigned int gr)
1836 {
1837 unw_rec_list *ptr = alloc_record (rp_gr);
1838 ptr->r.record.p.r.gr = gr;
1839 return ptr;
1840 }
1841
1842 static unw_rec_list *
1843 output_rp_br (unsigned int br)
1844 {
1845 unw_rec_list *ptr = alloc_record (rp_br);
1846 ptr->r.record.p.r.br = br;
1847 return ptr;
1848 }
1849
1850 static unw_rec_list *
1851 output_rp_psprel (unsigned int offset)
1852 {
1853 unw_rec_list *ptr = alloc_record (rp_psprel);
1854 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
1855 return ptr;
1856 }
1857
1858 static unw_rec_list *
1859 output_rp_sprel (unsigned int offset)
1860 {
1861 unw_rec_list *ptr = alloc_record (rp_sprel);
1862 ptr->r.record.p.off.sp = offset / 4;
1863 return ptr;
1864 }
1865
1866 static unw_rec_list *
1867 output_pfs_when (void)
1868 {
1869 unw_rec_list *ptr = alloc_record (pfs_when);
1870 return ptr;
1871 }
1872
1873 static unw_rec_list *
1874 output_pfs_gr (unsigned int gr)
1875 {
1876 unw_rec_list *ptr = alloc_record (pfs_gr);
1877 ptr->r.record.p.r.gr = gr;
1878 return ptr;
1879 }
1880
1881 static unw_rec_list *
1882 output_pfs_psprel (unsigned int offset)
1883 {
1884 unw_rec_list *ptr = alloc_record (pfs_psprel);
1885 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
1886 return ptr;
1887 }
1888
1889 static unw_rec_list *
1890 output_pfs_sprel (unsigned int offset)
1891 {
1892 unw_rec_list *ptr = alloc_record (pfs_sprel);
1893 ptr->r.record.p.off.sp = offset / 4;
1894 return ptr;
1895 }
1896
1897 static unw_rec_list *
1898 output_preds_when (void)
1899 {
1900 unw_rec_list *ptr = alloc_record (preds_when);
1901 return ptr;
1902 }
1903
1904 static unw_rec_list *
1905 output_preds_gr (unsigned int gr)
1906 {
1907 unw_rec_list *ptr = alloc_record (preds_gr);
1908 ptr->r.record.p.r.gr = gr;
1909 return ptr;
1910 }
1911
1912 static unw_rec_list *
1913 output_preds_psprel (unsigned int offset)
1914 {
1915 unw_rec_list *ptr = alloc_record (preds_psprel);
1916 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
1917 return ptr;
1918 }
1919
1920 static unw_rec_list *
1921 output_preds_sprel (unsigned int offset)
1922 {
1923 unw_rec_list *ptr = alloc_record (preds_sprel);
1924 ptr->r.record.p.off.sp = offset / 4;
1925 return ptr;
1926 }
1927
1928 static unw_rec_list *
1929 output_fr_mem (unsigned int mask)
1930 {
1931 unw_rec_list *ptr = alloc_record (fr_mem);
1932 unw_rec_list *cur = ptr;
1933
1934 ptr->r.record.p.frmask = mask;
1935 unwind.pending_saves = &ptr->r.record.p;
1936 for (;;)
1937 {
1938 unw_rec_list *prev = cur;
1939
1940 /* Clear least significant set bit. */
1941 mask &= ~(mask & (~mask + 1));
1942 if (!mask)
1943 return ptr;
1944 cur = alloc_record (fr_mem);
1945 cur->r.record.p.frmask = mask;
1946 /* Retain only least significant bit. */
1947 prev->r.record.p.frmask ^= mask;
1948 prev->r.record.p.next = cur;
1949 }
1950 }
1951
1952 static unw_rec_list *
1953 output_frgr_mem (unsigned int gr_mask, unsigned int fr_mask)
1954 {
1955 unw_rec_list *ptr = alloc_record (frgr_mem);
1956 unw_rec_list *cur = ptr;
1957
1958 unwind.pending_saves = &cur->r.record.p;
1959 cur->r.record.p.frmask = fr_mask;
1960 while (fr_mask)
1961 {
1962 unw_rec_list *prev = cur;
1963
1964 /* Clear least significant set bit. */
1965 fr_mask &= ~(fr_mask & (~fr_mask + 1));
1966 if (!gr_mask && !fr_mask)
1967 return ptr;
1968 cur = alloc_record (frgr_mem);
1969 cur->r.record.p.frmask = fr_mask;
1970 /* Retain only least significant bit. */
1971 prev->r.record.p.frmask ^= fr_mask;
1972 prev->r.record.p.next = cur;
1973 }
1974 cur->r.record.p.grmask = gr_mask;
1975 for (;;)
1976 {
1977 unw_rec_list *prev = cur;
1978
1979 /* Clear least significant set bit. */
1980 gr_mask &= ~(gr_mask & (~gr_mask + 1));
1981 if (!gr_mask)
1982 return ptr;
1983 cur = alloc_record (frgr_mem);
1984 cur->r.record.p.grmask = gr_mask;
1985 /* Retain only least significant bit. */
1986 prev->r.record.p.grmask ^= gr_mask;
1987 prev->r.record.p.next = cur;
1988 }
1989 }
1990
1991 static unw_rec_list *
1992 output_gr_gr (unsigned int mask, unsigned int reg)
1993 {
1994 unw_rec_list *ptr = alloc_record (gr_gr);
1995 unw_rec_list *cur = ptr;
1996
1997 ptr->r.record.p.grmask = mask;
1998 ptr->r.record.p.r.gr = reg;
1999 unwind.pending_saves = &ptr->r.record.p;
2000 for (;;)
2001 {
2002 unw_rec_list *prev = cur;
2003
2004 /* Clear least significant set bit. */
2005 mask &= ~(mask & (~mask + 1));
2006 if (!mask)
2007 return ptr;
2008 cur = alloc_record (gr_gr);
2009 cur->r.record.p.grmask = mask;
2010 /* Indicate this record shouldn't be output. */
2011 cur->r.record.p.r.gr = REG_NUM;
2012 /* Retain only least significant bit. */
2013 prev->r.record.p.grmask ^= mask;
2014 prev->r.record.p.next = cur;
2015 }
2016 }
2017
2018 static unw_rec_list *
2019 output_gr_mem (unsigned int mask)
2020 {
2021 unw_rec_list *ptr = alloc_record (gr_mem);
2022 unw_rec_list *cur = ptr;
2023
2024 ptr->r.record.p.grmask = mask;
2025 unwind.pending_saves = &ptr->r.record.p;
2026 for (;;)
2027 {
2028 unw_rec_list *prev = cur;
2029
2030 /* Clear least significant set bit. */
2031 mask &= ~(mask & (~mask + 1));
2032 if (!mask)
2033 return ptr;
2034 cur = alloc_record (gr_mem);
2035 cur->r.record.p.grmask = mask;
2036 /* Retain only least significant bit. */
2037 prev->r.record.p.grmask ^= mask;
2038 prev->r.record.p.next = cur;
2039 }
2040 }
2041
2042 static unw_rec_list *
2043 output_br_mem (unsigned int mask)
2044 {
2045 unw_rec_list *ptr = alloc_record (br_mem);
2046 unw_rec_list *cur = ptr;
2047
2048 ptr->r.record.p.brmask = mask;
2049 unwind.pending_saves = &ptr->r.record.p;
2050 for (;;)
2051 {
2052 unw_rec_list *prev = cur;
2053
2054 /* Clear least significant set bit. */
2055 mask &= ~(mask & (~mask + 1));
2056 if (!mask)
2057 return ptr;
2058 cur = alloc_record (br_mem);
2059 cur->r.record.p.brmask = mask;
2060 /* Retain only least significant bit. */
2061 prev->r.record.p.brmask ^= mask;
2062 prev->r.record.p.next = cur;
2063 }
2064 }
2065
2066 static unw_rec_list *
2067 output_br_gr (unsigned int mask, unsigned int reg)
2068 {
2069 unw_rec_list *ptr = alloc_record (br_gr);
2070 unw_rec_list *cur = ptr;
2071
2072 ptr->r.record.p.brmask = mask;
2073 ptr->r.record.p.r.gr = reg;
2074 unwind.pending_saves = &ptr->r.record.p;
2075 for (;;)
2076 {
2077 unw_rec_list *prev = cur;
2078
2079 /* Clear least significant set bit. */
2080 mask &= ~(mask & (~mask + 1));
2081 if (!mask)
2082 return ptr;
2083 cur = alloc_record (br_gr);
2084 cur->r.record.p.brmask = mask;
2085 /* Indicate this record shouldn't be output. */
2086 cur->r.record.p.r.gr = REG_NUM;
2087 /* Retain only least significant bit. */
2088 prev->r.record.p.brmask ^= mask;
2089 prev->r.record.p.next = cur;
2090 }
2091 }
2092
2093 static unw_rec_list *
2094 output_spill_base (unsigned int offset)
2095 {
2096 unw_rec_list *ptr = alloc_record (spill_base);
2097 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2098 return ptr;
2099 }
2100
2101 static unw_rec_list *
2102 output_unat_when (void)
2103 {
2104 unw_rec_list *ptr = alloc_record (unat_when);
2105 return ptr;
2106 }
2107
2108 static unw_rec_list *
2109 output_unat_gr (unsigned int gr)
2110 {
2111 unw_rec_list *ptr = alloc_record (unat_gr);
2112 ptr->r.record.p.r.gr = gr;
2113 return ptr;
2114 }
2115
2116 static unw_rec_list *
2117 output_unat_psprel (unsigned int offset)
2118 {
2119 unw_rec_list *ptr = alloc_record (unat_psprel);
2120 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2121 return ptr;
2122 }
2123
2124 static unw_rec_list *
2125 output_unat_sprel (unsigned int offset)
2126 {
2127 unw_rec_list *ptr = alloc_record (unat_sprel);
2128 ptr->r.record.p.off.sp = offset / 4;
2129 return ptr;
2130 }
2131
2132 static unw_rec_list *
2133 output_lc_when (void)
2134 {
2135 unw_rec_list *ptr = alloc_record (lc_when);
2136 return ptr;
2137 }
2138
2139 static unw_rec_list *
2140 output_lc_gr (unsigned int gr)
2141 {
2142 unw_rec_list *ptr = alloc_record (lc_gr);
2143 ptr->r.record.p.r.gr = gr;
2144 return ptr;
2145 }
2146
2147 static unw_rec_list *
2148 output_lc_psprel (unsigned int offset)
2149 {
2150 unw_rec_list *ptr = alloc_record (lc_psprel);
2151 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2152 return ptr;
2153 }
2154
2155 static unw_rec_list *
2156 output_lc_sprel (unsigned int offset)
2157 {
2158 unw_rec_list *ptr = alloc_record (lc_sprel);
2159 ptr->r.record.p.off.sp = offset / 4;
2160 return ptr;
2161 }
2162
2163 static unw_rec_list *
2164 output_fpsr_when (void)
2165 {
2166 unw_rec_list *ptr = alloc_record (fpsr_when);
2167 return ptr;
2168 }
2169
2170 static unw_rec_list *
2171 output_fpsr_gr (unsigned int gr)
2172 {
2173 unw_rec_list *ptr = alloc_record (fpsr_gr);
2174 ptr->r.record.p.r.gr = gr;
2175 return ptr;
2176 }
2177
2178 static unw_rec_list *
2179 output_fpsr_psprel (unsigned int offset)
2180 {
2181 unw_rec_list *ptr = alloc_record (fpsr_psprel);
2182 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2183 return ptr;
2184 }
2185
2186 static unw_rec_list *
2187 output_fpsr_sprel (unsigned int offset)
2188 {
2189 unw_rec_list *ptr = alloc_record (fpsr_sprel);
2190 ptr->r.record.p.off.sp = offset / 4;
2191 return ptr;
2192 }
2193
2194 static unw_rec_list *
2195 output_priunat_when_gr (void)
2196 {
2197 unw_rec_list *ptr = alloc_record (priunat_when_gr);
2198 return ptr;
2199 }
2200
2201 static unw_rec_list *
2202 output_priunat_when_mem (void)
2203 {
2204 unw_rec_list *ptr = alloc_record (priunat_when_mem);
2205 return ptr;
2206 }
2207
2208 static unw_rec_list *
2209 output_priunat_gr (unsigned int gr)
2210 {
2211 unw_rec_list *ptr = alloc_record (priunat_gr);
2212 ptr->r.record.p.r.gr = gr;
2213 return ptr;
2214 }
2215
2216 static unw_rec_list *
2217 output_priunat_psprel (unsigned int offset)
2218 {
2219 unw_rec_list *ptr = alloc_record (priunat_psprel);
2220 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2221 return ptr;
2222 }
2223
2224 static unw_rec_list *
2225 output_priunat_sprel (unsigned int offset)
2226 {
2227 unw_rec_list *ptr = alloc_record (priunat_sprel);
2228 ptr->r.record.p.off.sp = offset / 4;
2229 return ptr;
2230 }
2231
2232 static unw_rec_list *
2233 output_bsp_when (void)
2234 {
2235 unw_rec_list *ptr = alloc_record (bsp_when);
2236 return ptr;
2237 }
2238
2239 static unw_rec_list *
2240 output_bsp_gr (unsigned int gr)
2241 {
2242 unw_rec_list *ptr = alloc_record (bsp_gr);
2243 ptr->r.record.p.r.gr = gr;
2244 return ptr;
2245 }
2246
2247 static unw_rec_list *
2248 output_bsp_psprel (unsigned int offset)
2249 {
2250 unw_rec_list *ptr = alloc_record (bsp_psprel);
2251 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2252 return ptr;
2253 }
2254
2255 static unw_rec_list *
2256 output_bsp_sprel (unsigned int offset)
2257 {
2258 unw_rec_list *ptr = alloc_record (bsp_sprel);
2259 ptr->r.record.p.off.sp = offset / 4;
2260 return ptr;
2261 }
2262
2263 static unw_rec_list *
2264 output_bspstore_when (void)
2265 {
2266 unw_rec_list *ptr = alloc_record (bspstore_when);
2267 return ptr;
2268 }
2269
2270 static unw_rec_list *
2271 output_bspstore_gr (unsigned int gr)
2272 {
2273 unw_rec_list *ptr = alloc_record (bspstore_gr);
2274 ptr->r.record.p.r.gr = gr;
2275 return ptr;
2276 }
2277
2278 static unw_rec_list *
2279 output_bspstore_psprel (unsigned int offset)
2280 {
2281 unw_rec_list *ptr = alloc_record (bspstore_psprel);
2282 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2283 return ptr;
2284 }
2285
2286 static unw_rec_list *
2287 output_bspstore_sprel (unsigned int offset)
2288 {
2289 unw_rec_list *ptr = alloc_record (bspstore_sprel);
2290 ptr->r.record.p.off.sp = offset / 4;
2291 return ptr;
2292 }
2293
2294 static unw_rec_list *
2295 output_rnat_when (void)
2296 {
2297 unw_rec_list *ptr = alloc_record (rnat_when);
2298 return ptr;
2299 }
2300
2301 static unw_rec_list *
2302 output_rnat_gr (unsigned int gr)
2303 {
2304 unw_rec_list *ptr = alloc_record (rnat_gr);
2305 ptr->r.record.p.r.gr = gr;
2306 return ptr;
2307 }
2308
2309 static unw_rec_list *
2310 output_rnat_psprel (unsigned int offset)
2311 {
2312 unw_rec_list *ptr = alloc_record (rnat_psprel);
2313 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2314 return ptr;
2315 }
2316
2317 static unw_rec_list *
2318 output_rnat_sprel (unsigned int offset)
2319 {
2320 unw_rec_list *ptr = alloc_record (rnat_sprel);
2321 ptr->r.record.p.off.sp = offset / 4;
2322 return ptr;
2323 }
2324
2325 static unw_rec_list *
2326 output_unwabi (unsigned long abi, unsigned long context)
2327 {
2328 unw_rec_list *ptr = alloc_record (unwabi);
2329 ptr->r.record.p.abi = abi;
2330 ptr->r.record.p.context = context;
2331 return ptr;
2332 }
2333
2334 static unw_rec_list *
2335 output_epilogue (unsigned long ecount)
2336 {
2337 unw_rec_list *ptr = alloc_record (epilogue);
2338 ptr->r.record.b.ecount = ecount;
2339 return ptr;
2340 }
2341
2342 static unw_rec_list *
2343 output_label_state (unsigned long label)
2344 {
2345 unw_rec_list *ptr = alloc_record (label_state);
2346 ptr->r.record.b.label = label;
2347 return ptr;
2348 }
2349
2350 static unw_rec_list *
2351 output_copy_state (unsigned long label)
2352 {
2353 unw_rec_list *ptr = alloc_record (copy_state);
2354 ptr->r.record.b.label = label;
2355 return ptr;
2356 }
2357
2358 static unw_rec_list *
2359 output_spill_psprel (unsigned int ab,
2360 unsigned int reg,
2361 unsigned int offset,
2362 unsigned int predicate)
2363 {
2364 unw_rec_list *ptr = alloc_record (predicate ? spill_psprel_p : spill_psprel);
2365 ptr->r.record.x.ab = ab;
2366 ptr->r.record.x.reg = reg;
2367 ptr->r.record.x.where.pspoff = ENCODED_PSP_OFFSET (offset);
2368 ptr->r.record.x.qp = predicate;
2369 return ptr;
2370 }
2371
2372 static unw_rec_list *
2373 output_spill_sprel (unsigned int ab,
2374 unsigned int reg,
2375 unsigned int offset,
2376 unsigned int predicate)
2377 {
2378 unw_rec_list *ptr = alloc_record (predicate ? spill_sprel_p : spill_sprel);
2379 ptr->r.record.x.ab = ab;
2380 ptr->r.record.x.reg = reg;
2381 ptr->r.record.x.where.spoff = offset / 4;
2382 ptr->r.record.x.qp = predicate;
2383 return ptr;
2384 }
2385
2386 static unw_rec_list *
2387 output_spill_reg (unsigned int ab,
2388 unsigned int reg,
2389 unsigned int targ_reg,
2390 unsigned int xy,
2391 unsigned int predicate)
2392 {
2393 unw_rec_list *ptr = alloc_record (predicate ? spill_reg_p : spill_reg);
2394 ptr->r.record.x.ab = ab;
2395 ptr->r.record.x.reg = reg;
2396 ptr->r.record.x.where.reg = targ_reg;
2397 ptr->r.record.x.xy = xy;
2398 ptr->r.record.x.qp = predicate;
2399 return ptr;
2400 }
2401
2402 /* Given a unw_rec_list process the correct format with the
2403 specified function. */
2404
2405 static void
2406 process_one_record (unw_rec_list *ptr, vbyte_func f)
2407 {
2408 unsigned int fr_mask, gr_mask;
2409
2410 switch (ptr->r.type)
2411 {
2412 /* This is a dummy record that takes up no space in the output. */
2413 case endp:
2414 break;
2415
2416 case gr_mem:
2417 case fr_mem:
2418 case br_mem:
2419 case frgr_mem:
2420 /* These are taken care of by prologue/prologue_gr. */
2421 break;
2422
2423 case prologue_gr:
2424 case prologue:
2425 if (ptr->r.type == prologue_gr)
2426 output_R2_format (f, ptr->r.record.r.grmask,
2427 ptr->r.record.r.grsave, ptr->r.record.r.rlen);
2428 else
2429 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2430
2431 /* Output descriptor(s) for union of register spills (if any). */
2432 gr_mask = ptr->r.record.r.mask.gr_mem;
2433 fr_mask = ptr->r.record.r.mask.fr_mem;
2434 if (fr_mask)
2435 {
2436 if ((fr_mask & ~0xfUL) == 0)
2437 output_P6_format (f, fr_mem, fr_mask);
2438 else
2439 {
2440 output_P5_format (f, gr_mask, fr_mask);
2441 gr_mask = 0;
2442 }
2443 }
2444 if (gr_mask)
2445 output_P6_format (f, gr_mem, gr_mask);
2446 if (ptr->r.record.r.mask.br_mem)
2447 output_P1_format (f, ptr->r.record.r.mask.br_mem);
2448
2449 /* output imask descriptor if necessary: */
2450 if (ptr->r.record.r.mask.i)
2451 output_P4_format (f, ptr->r.record.r.mask.i,
2452 ptr->r.record.r.imask_size);
2453 break;
2454
2455 case body:
2456 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2457 break;
2458 case mem_stack_f:
2459 case mem_stack_v:
2460 output_P7_format (f, ptr->r.type, ptr->r.record.p.t,
2461 ptr->r.record.p.size);
2462 break;
2463 case psp_gr:
2464 case rp_gr:
2465 case pfs_gr:
2466 case preds_gr:
2467 case unat_gr:
2468 case lc_gr:
2469 case fpsr_gr:
2470 case priunat_gr:
2471 case bsp_gr:
2472 case bspstore_gr:
2473 case rnat_gr:
2474 output_P3_format (f, ptr->r.type, ptr->r.record.p.r.gr);
2475 break;
2476 case rp_br:
2477 output_P3_format (f, rp_br, ptr->r.record.p.r.br);
2478 break;
2479 case psp_sprel:
2480 output_P7_format (f, psp_sprel, ptr->r.record.p.off.sp, 0);
2481 break;
2482 case rp_when:
2483 case pfs_when:
2484 case preds_when:
2485 case unat_when:
2486 case lc_when:
2487 case fpsr_when:
2488 output_P7_format (f, ptr->r.type, ptr->r.record.p.t, 0);
2489 break;
2490 case rp_psprel:
2491 case pfs_psprel:
2492 case preds_psprel:
2493 case unat_psprel:
2494 case lc_psprel:
2495 case fpsr_psprel:
2496 case spill_base:
2497 output_P7_format (f, ptr->r.type, ptr->r.record.p.off.psp, 0);
2498 break;
2499 case rp_sprel:
2500 case pfs_sprel:
2501 case preds_sprel:
2502 case unat_sprel:
2503 case lc_sprel:
2504 case fpsr_sprel:
2505 case priunat_sprel:
2506 case bsp_sprel:
2507 case bspstore_sprel:
2508 case rnat_sprel:
2509 output_P8_format (f, ptr->r.type, ptr->r.record.p.off.sp);
2510 break;
2511 case gr_gr:
2512 if (ptr->r.record.p.r.gr < REG_NUM)
2513 {
2514 const unw_rec_list *cur = ptr;
2515
2516 gr_mask = cur->r.record.p.grmask;
2517 while ((cur = cur->r.record.p.next) != NULL)
2518 gr_mask |= cur->r.record.p.grmask;
2519 output_P9_format (f, gr_mask, ptr->r.record.p.r.gr);
2520 }
2521 break;
2522 case br_gr:
2523 if (ptr->r.record.p.r.gr < REG_NUM)
2524 {
2525 const unw_rec_list *cur = ptr;
2526
2527 gr_mask = cur->r.record.p.brmask;
2528 while ((cur = cur->r.record.p.next) != NULL)
2529 gr_mask |= cur->r.record.p.brmask;
2530 output_P2_format (f, gr_mask, ptr->r.record.p.r.gr);
2531 }
2532 break;
2533 case spill_mask:
2534 as_bad (_("spill_mask record unimplemented."));
2535 break;
2536 case priunat_when_gr:
2537 case priunat_when_mem:
2538 case bsp_when:
2539 case bspstore_when:
2540 case rnat_when:
2541 output_P8_format (f, ptr->r.type, ptr->r.record.p.t);
2542 break;
2543 case priunat_psprel:
2544 case bsp_psprel:
2545 case bspstore_psprel:
2546 case rnat_psprel:
2547 output_P8_format (f, ptr->r.type, ptr->r.record.p.off.psp);
2548 break;
2549 case unwabi:
2550 output_P10_format (f, ptr->r.record.p.abi, ptr->r.record.p.context);
2551 break;
2552 case epilogue:
2553 output_B3_format (f, ptr->r.record.b.ecount, ptr->r.record.b.t);
2554 break;
2555 case label_state:
2556 case copy_state:
2557 output_B4_format (f, ptr->r.type, ptr->r.record.b.label);
2558 break;
2559 case spill_psprel:
2560 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2561 ptr->r.record.x.reg, ptr->r.record.x.t,
2562 ptr->r.record.x.where.pspoff);
2563 break;
2564 case spill_sprel:
2565 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2566 ptr->r.record.x.reg, ptr->r.record.x.t,
2567 ptr->r.record.x.where.spoff);
2568 break;
2569 case spill_reg:
2570 output_X2_format (f, ptr->r.record.x.ab, ptr->r.record.x.reg,
2571 ptr->r.record.x.xy >> 1, ptr->r.record.x.xy,
2572 ptr->r.record.x.where.reg, ptr->r.record.x.t);
2573 break;
2574 case spill_psprel_p:
2575 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2576 ptr->r.record.x.ab, ptr->r.record.x.reg,
2577 ptr->r.record.x.t, ptr->r.record.x.where.pspoff);
2578 break;
2579 case spill_sprel_p:
2580 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2581 ptr->r.record.x.ab, ptr->r.record.x.reg,
2582 ptr->r.record.x.t, ptr->r.record.x.where.spoff);
2583 break;
2584 case spill_reg_p:
2585 output_X4_format (f, ptr->r.record.x.qp, ptr->r.record.x.ab,
2586 ptr->r.record.x.reg, ptr->r.record.x.xy >> 1,
2587 ptr->r.record.x.xy, ptr->r.record.x.where.reg,
2588 ptr->r.record.x.t);
2589 break;
2590 default:
2591 as_bad (_("record_type_not_valid"));
2592 break;
2593 }
2594 }
2595
2596 /* Given a unw_rec_list list, process all the records with
2597 the specified function. */
2598 static void
2599 process_unw_records (unw_rec_list *list, vbyte_func f)
2600 {
2601 unw_rec_list *ptr;
2602 for (ptr = list; ptr; ptr = ptr->next)
2603 process_one_record (ptr, f);
2604 }
2605
2606 /* Determine the size of a record list in bytes. */
2607 static int
2608 calc_record_size (unw_rec_list *list)
2609 {
2610 vbyte_count = 0;
2611 process_unw_records (list, count_output);
2612 return vbyte_count;
2613 }
2614
2615 /* Return the number of bits set in the input value.
2616 Perhaps this has a better place... */
2617 #if __GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)
2618 # define popcount __builtin_popcount
2619 #else
2620 static int
2621 popcount (unsigned x)
2622 {
2623 static const unsigned char popcnt[16] =
2624 {
2625 0, 1, 1, 2,
2626 1, 2, 2, 3,
2627 1, 2, 2, 3,
2628 2, 3, 3, 4
2629 };
2630
2631 if (x < NELEMS (popcnt))
2632 return popcnt[x];
2633 return popcnt[x % NELEMS (popcnt)] + popcount (x / NELEMS (popcnt));
2634 }
2635 #endif
2636
2637 /* Update IMASK bitmask to reflect the fact that one or more registers
2638 of type TYPE are saved starting at instruction with index T. If N
2639 bits are set in REGMASK, it is assumed that instructions T through
2640 T+N-1 save these registers.
2641
2642 TYPE values:
2643 0: no save
2644 1: instruction saves next fp reg
2645 2: instruction saves next general reg
2646 3: instruction saves next branch reg */
2647 static void
2648 set_imask (unw_rec_list *region,
2649 unsigned long regmask,
2650 unsigned long t,
2651 unsigned int type)
2652 {
2653 unsigned char *imask;
2654 unsigned long imask_size;
2655 unsigned int i;
2656 int pos;
2657
2658 imask = region->r.record.r.mask.i;
2659 imask_size = region->r.record.r.imask_size;
2660 if (!imask)
2661 {
2662 imask_size = (region->r.record.r.rlen * 2 + 7) / 8 + 1;
2663 imask = xmalloc (imask_size);
2664 memset (imask, 0, imask_size);
2665
2666 region->r.record.r.imask_size = imask_size;
2667 region->r.record.r.mask.i = imask;
2668 }
2669
2670 i = (t / 4) + 1;
2671 pos = 2 * (3 - t % 4);
2672 while (regmask)
2673 {
2674 if (i >= imask_size)
2675 {
2676 as_bad (_("Ignoring attempt to spill beyond end of region"));
2677 return;
2678 }
2679
2680 imask[i] |= (type & 0x3) << pos;
2681
2682 regmask &= (regmask - 1);
2683 pos -= 2;
2684 if (pos < 0)
2685 {
2686 pos = 0;
2687 ++i;
2688 }
2689 }
2690 }
2691
2692 /* Return the number of instruction slots from FIRST_ADDR to SLOT_ADDR.
2693 SLOT_FRAG is the frag containing SLOT_ADDR, and FIRST_FRAG is the frag
2694 containing FIRST_ADDR. If BEFORE_RELAX, then we use worst-case estimates
2695 for frag sizes. */
2696
2697 static unsigned long
2698 slot_index (unsigned long slot_addr,
2699 fragS *slot_frag,
2700 unsigned long first_addr,
2701 fragS *first_frag,
2702 int before_relax)
2703 {
2704 unsigned long s_index = 0;
2705
2706 /* First time we are called, the initial address and frag are invalid. */
2707 if (first_addr == 0)
2708 return 0;
2709
2710 /* If the two addresses are in different frags, then we need to add in
2711 the remaining size of this frag, and then the entire size of intermediate
2712 frags. */
2713 while (slot_frag != first_frag)
2714 {
2715 unsigned long start_addr = (unsigned long) &first_frag->fr_literal;
2716
2717 if (! before_relax)
2718 {
2719 /* We can get the final addresses only during and after
2720 relaxation. */
2721 if (first_frag->fr_next && first_frag->fr_next->fr_address)
2722 s_index += 3 * ((first_frag->fr_next->fr_address
2723 - first_frag->fr_address
2724 - first_frag->fr_fix) >> 4);
2725 }
2726 else
2727 /* We don't know what the final addresses will be. We try our
2728 best to estimate. */
2729 switch (first_frag->fr_type)
2730 {
2731 default:
2732 break;
2733
2734 case rs_space:
2735 as_fatal (_("Only constant space allocation is supported"));
2736 break;
2737
2738 case rs_align:
2739 case rs_align_code:
2740 case rs_align_test:
2741 /* Take alignment into account. Assume the worst case
2742 before relaxation. */
2743 s_index += 3 * ((1 << first_frag->fr_offset) >> 4);
2744 break;
2745
2746 case rs_org:
2747 if (first_frag->fr_symbol)
2748 {
2749 as_fatal (_("Only constant offsets are supported"));
2750 break;
2751 }
2752 case rs_fill:
2753 s_index += 3 * (first_frag->fr_offset >> 4);
2754 break;
2755 }
2756
2757 /* Add in the full size of the frag converted to instruction slots. */
2758 s_index += 3 * (first_frag->fr_fix >> 4);
2759 /* Subtract away the initial part before first_addr. */
2760 s_index -= (3 * ((first_addr >> 4) - (start_addr >> 4))
2761 + ((first_addr & 0x3) - (start_addr & 0x3)));
2762
2763 /* Move to the beginning of the next frag. */
2764 first_frag = first_frag->fr_next;
2765 first_addr = (unsigned long) &first_frag->fr_literal;
2766
2767 /* This can happen if there is section switching in the middle of a
2768 function, causing the frag chain for the function to be broken.
2769 It is too difficult to recover safely from this problem, so we just
2770 exit with an error. */
2771 if (first_frag == NULL)
2772 as_fatal (_("Section switching in code is not supported."));
2773 }
2774
2775 /* Add in the used part of the last frag. */
2776 s_index += (3 * ((slot_addr >> 4) - (first_addr >> 4))
2777 + ((slot_addr & 0x3) - (first_addr & 0x3)));
2778 return s_index;
2779 }
2780
2781 /* Optimize unwind record directives. */
2782
2783 static unw_rec_list *
2784 optimize_unw_records (unw_rec_list *list)
2785 {
2786 if (!list)
2787 return NULL;
2788
2789 /* If the only unwind record is ".prologue" or ".prologue" followed
2790 by ".body", then we can optimize the unwind directives away. */
2791 if (list->r.type == prologue
2792 && (list->next->r.type == endp
2793 || (list->next->r.type == body && list->next->next->r.type == endp)))
2794 return NULL;
2795
2796 return list;
2797 }
2798
2799 /* Given a complete record list, process any records which have
2800 unresolved fields, (ie length counts for a prologue). After
2801 this has been run, all necessary information should be available
2802 within each record to generate an image. */
2803
2804 static void
2805 fixup_unw_records (unw_rec_list *list, int before_relax)
2806 {
2807 unw_rec_list *ptr, *region = 0;
2808 unsigned long first_addr = 0, rlen = 0, t;
2809 fragS *first_frag = 0;
2810
2811 for (ptr = list; ptr; ptr = ptr->next)
2812 {
2813 if (ptr->slot_number == SLOT_NUM_NOT_SET)
2814 as_bad (_(" Insn slot not set in unwind record."));
2815 t = slot_index (ptr->slot_number, ptr->slot_frag,
2816 first_addr, first_frag, before_relax);
2817 switch (ptr->r.type)
2818 {
2819 case prologue:
2820 case prologue_gr:
2821 case body:
2822 {
2823 unw_rec_list *last;
2824 int size;
2825 unsigned long last_addr = 0;
2826 fragS *last_frag = NULL;
2827
2828 first_addr = ptr->slot_number;
2829 first_frag = ptr->slot_frag;
2830 /* Find either the next body/prologue start, or the end of
2831 the function, and determine the size of the region. */
2832 for (last = ptr->next; last != NULL; last = last->next)
2833 if (last->r.type == prologue || last->r.type == prologue_gr
2834 || last->r.type == body || last->r.type == endp)
2835 {
2836 last_addr = last->slot_number;
2837 last_frag = last->slot_frag;
2838 break;
2839 }
2840 size = slot_index (last_addr, last_frag, first_addr, first_frag,
2841 before_relax);
2842 rlen = ptr->r.record.r.rlen = size;
2843 if (ptr->r.type == body)
2844 /* End of region. */
2845 region = 0;
2846 else
2847 region = ptr;
2848 break;
2849 }
2850 case epilogue:
2851 if (t < rlen)
2852 ptr->r.record.b.t = rlen - 1 - t;
2853 else
2854 /* This happens when a memory-stack-less procedure uses a
2855 ".restore sp" directive at the end of a region to pop
2856 the frame state. */
2857 ptr->r.record.b.t = 0;
2858 break;
2859
2860 case mem_stack_f:
2861 case mem_stack_v:
2862 case rp_when:
2863 case pfs_when:
2864 case preds_when:
2865 case unat_when:
2866 case lc_when:
2867 case fpsr_when:
2868 case priunat_when_gr:
2869 case priunat_when_mem:
2870 case bsp_when:
2871 case bspstore_when:
2872 case rnat_when:
2873 ptr->r.record.p.t = t;
2874 break;
2875
2876 case spill_reg:
2877 case spill_sprel:
2878 case spill_psprel:
2879 case spill_reg_p:
2880 case spill_sprel_p:
2881 case spill_psprel_p:
2882 ptr->r.record.x.t = t;
2883 break;
2884
2885 case frgr_mem:
2886 if (!region)
2887 {
2888 as_bad (_("frgr_mem record before region record!"));
2889 return;
2890 }
2891 region->r.record.r.mask.fr_mem |= ptr->r.record.p.frmask;
2892 region->r.record.r.mask.gr_mem |= ptr->r.record.p.grmask;
2893 set_imask (region, ptr->r.record.p.frmask, t, 1);
2894 set_imask (region, ptr->r.record.p.grmask, t, 2);
2895 break;
2896 case fr_mem:
2897 if (!region)
2898 {
2899 as_bad (_("fr_mem record before region record!"));
2900 return;
2901 }
2902 region->r.record.r.mask.fr_mem |= ptr->r.record.p.frmask;
2903 set_imask (region, ptr->r.record.p.frmask, t, 1);
2904 break;
2905 case gr_mem:
2906 if (!region)
2907 {
2908 as_bad (_("gr_mem record before region record!"));
2909 return;
2910 }
2911 region->r.record.r.mask.gr_mem |= ptr->r.record.p.grmask;
2912 set_imask (region, ptr->r.record.p.grmask, t, 2);
2913 break;
2914 case br_mem:
2915 if (!region)
2916 {
2917 as_bad (_("br_mem record before region record!"));
2918 return;
2919 }
2920 region->r.record.r.mask.br_mem |= ptr->r.record.p.brmask;
2921 set_imask (region, ptr->r.record.p.brmask, t, 3);
2922 break;
2923
2924 case gr_gr:
2925 if (!region)
2926 {
2927 as_bad (_("gr_gr record before region record!"));
2928 return;
2929 }
2930 set_imask (region, ptr->r.record.p.grmask, t, 2);
2931 break;
2932 case br_gr:
2933 if (!region)
2934 {
2935 as_bad (_("br_gr record before region record!"));
2936 return;
2937 }
2938 set_imask (region, ptr->r.record.p.brmask, t, 3);
2939 break;
2940
2941 default:
2942 break;
2943 }
2944 }
2945 }
2946
2947 /* Estimate the size of a frag before relaxing. We only have one type of frag
2948 to handle here, which is the unwind info frag. */
2949
2950 int
2951 ia64_estimate_size_before_relax (fragS *frag,
2952 asection *segtype ATTRIBUTE_UNUSED)
2953 {
2954 unw_rec_list *list;
2955 int len, size, pad;
2956
2957 /* ??? This code is identical to the first part of ia64_convert_frag. */
2958 list = (unw_rec_list *) frag->fr_opcode;
2959 fixup_unw_records (list, 0);
2960
2961 len = calc_record_size (list);
2962 /* pad to pointer-size boundary. */
2963 pad = len % md.pointer_size;
2964 if (pad != 0)
2965 len += md.pointer_size - pad;
2966 /* Add 8 for the header. */
2967 size = len + 8;
2968 /* Add a pointer for the personality offset. */
2969 if (frag->fr_offset)
2970 size += md.pointer_size;
2971
2972 /* fr_var carries the max_chars that we created the fragment with.
2973 We must, of course, have allocated enough memory earlier. */
2974 gas_assert (frag->fr_var >= size);
2975
2976 return frag->fr_fix + size;
2977 }
2978
2979 /* This function converts a rs_machine_dependent variant frag into a
2980 normal fill frag with the unwind image from the record list. */
2981 void
2982 ia64_convert_frag (fragS *frag)
2983 {
2984 unw_rec_list *list;
2985 int len, size, pad;
2986 valueT flag_value;
2987
2988 /* ??? This code is identical to ia64_estimate_size_before_relax. */
2989 list = (unw_rec_list *) frag->fr_opcode;
2990 fixup_unw_records (list, 0);
2991
2992 len = calc_record_size (list);
2993 /* pad to pointer-size boundary. */
2994 pad = len % md.pointer_size;
2995 if (pad != 0)
2996 len += md.pointer_size - pad;
2997 /* Add 8 for the header. */
2998 size = len + 8;
2999 /* Add a pointer for the personality offset. */
3000 if (frag->fr_offset)
3001 size += md.pointer_size;
3002
3003 /* fr_var carries the max_chars that we created the fragment with.
3004 We must, of course, have allocated enough memory earlier. */
3005 gas_assert (frag->fr_var >= size);
3006
3007 /* Initialize the header area. fr_offset is initialized with
3008 unwind.personality_routine. */
3009 if (frag->fr_offset)
3010 {
3011 if (md.flags & EF_IA_64_ABI64)
3012 flag_value = (bfd_vma) 3 << 32;
3013 else
3014 /* 32-bit unwind info block. */
3015 flag_value = (bfd_vma) 0x1003 << 32;
3016 }
3017 else
3018 flag_value = 0;
3019
3020 md_number_to_chars (frag->fr_literal,
3021 (((bfd_vma) 1 << 48) /* Version. */
3022 | flag_value /* U & E handler flags. */
3023 | (len / md.pointer_size)), /* Length. */
3024 8);
3025
3026 /* Skip the header. */
3027 vbyte_mem_ptr = frag->fr_literal + 8;
3028 process_unw_records (list, output_vbyte_mem);
3029
3030 /* Fill the padding bytes with zeros. */
3031 if (pad != 0)
3032 md_number_to_chars (frag->fr_literal + len + 8 - md.pointer_size + pad, 0,
3033 md.pointer_size - pad);
3034 /* Fill the unwind personality with zeros. */
3035 if (frag->fr_offset)
3036 md_number_to_chars (frag->fr_literal + size - md.pointer_size, 0,
3037 md.pointer_size);
3038
3039 frag->fr_fix += size;
3040 frag->fr_type = rs_fill;
3041 frag->fr_var = 0;
3042 frag->fr_offset = 0;
3043 }
3044
3045 static int
3046 parse_predicate_and_operand (expressionS *e, unsigned *qp, const char *po)
3047 {
3048 int sep = parse_operand_and_eval (e, ',');
3049
3050 *qp = e->X_add_number - REG_P;
3051 if (e->X_op != O_register || *qp > 63)
3052 {
3053 as_bad (_("First operand to .%s must be a predicate"), po);
3054 *qp = 0;
3055 }
3056 else if (*qp == 0)
3057 as_warn (_("Pointless use of p0 as first operand to .%s"), po);
3058 if (sep == ',')
3059 sep = parse_operand_and_eval (e, ',');
3060 else
3061 e->X_op = O_absent;
3062 return sep;
3063 }
3064
3065 static void
3066 convert_expr_to_ab_reg (const expressionS *e,
3067 unsigned int *ab,
3068 unsigned int *regp,
3069 const char *po,
3070 int n)
3071 {
3072 unsigned int reg = e->X_add_number;
3073
3074 *ab = *regp = 0; /* Anything valid is good here. */
3075
3076 if (e->X_op != O_register)
3077 reg = REG_GR; /* Anything invalid is good here. */
3078
3079 if (reg >= (REG_GR + 4) && reg <= (REG_GR + 7))
3080 {
3081 *ab = 0;
3082 *regp = reg - REG_GR;
3083 }
3084 else if ((reg >= (REG_FR + 2) && reg <= (REG_FR + 5))
3085 || (reg >= (REG_FR + 16) && reg <= (REG_FR + 31)))
3086 {
3087 *ab = 1;
3088 *regp = reg - REG_FR;
3089 }
3090 else if (reg >= (REG_BR + 1) && reg <= (REG_BR + 5))
3091 {
3092 *ab = 2;
3093 *regp = reg - REG_BR;
3094 }
3095 else
3096 {
3097 *ab = 3;
3098 switch (reg)
3099 {
3100 case REG_PR: *regp = 0; break;
3101 case REG_PSP: *regp = 1; break;
3102 case REG_PRIUNAT: *regp = 2; break;
3103 case REG_BR + 0: *regp = 3; break;
3104 case REG_AR + AR_BSP: *regp = 4; break;
3105 case REG_AR + AR_BSPSTORE: *regp = 5; break;
3106 case REG_AR + AR_RNAT: *regp = 6; break;
3107 case REG_AR + AR_UNAT: *regp = 7; break;
3108 case REG_AR + AR_FPSR: *regp = 8; break;
3109 case REG_AR + AR_PFS: *regp = 9; break;
3110 case REG_AR + AR_LC: *regp = 10; break;
3111
3112 default:
3113 as_bad (_("Operand %d to .%s must be a preserved register"), n, po);
3114 break;
3115 }
3116 }
3117 }
3118
3119 static void
3120 convert_expr_to_xy_reg (const expressionS *e,
3121 unsigned int *xy,
3122 unsigned int *regp,
3123 const char *po,
3124 int n)
3125 {
3126 unsigned int reg = e->X_add_number;
3127
3128 *xy = *regp = 0; /* Anything valid is good here. */
3129
3130 if (e->X_op != O_register)
3131 reg = REG_GR; /* Anything invalid is good here. */
3132
3133 if (reg >= (REG_GR + 1) && reg <= (REG_GR + 127))
3134 {
3135 *xy = 0;
3136 *regp = reg - REG_GR;
3137 }
3138 else if (reg >= (REG_FR + 2) && reg <= (REG_FR + 127))
3139 {
3140 *xy = 1;
3141 *regp = reg - REG_FR;
3142 }
3143 else if (reg >= REG_BR && reg <= (REG_BR + 7))
3144 {
3145 *xy = 2;
3146 *regp = reg - REG_BR;
3147 }
3148 else
3149 as_bad (_("Operand %d to .%s must be a writable register"), n, po);
3150 }
3151
3152 static void
3153 dot_align (int arg)
3154 {
3155 /* The current frag is an alignment frag. */
3156 align_frag = frag_now;
3157 s_align_bytes (arg);
3158 }
3159
3160 static void
3161 dot_radix (int dummy ATTRIBUTE_UNUSED)
3162 {
3163 char *radix;
3164 int ch;
3165
3166 SKIP_WHITESPACE ();
3167
3168 if (is_it_end_of_statement ())
3169 return;
3170 radix = input_line_pointer;
3171 ch = get_symbol_end ();
3172 ia64_canonicalize_symbol_name (radix);
3173 if (strcasecmp (radix, "C"))
3174 as_bad (_("Radix `%s' unsupported or invalid"), radix);
3175 *input_line_pointer = ch;
3176 demand_empty_rest_of_line ();
3177 }
3178
3179 /* Helper function for .loc directives. If the assembler is not generating
3180 line number info, then we need to remember which instructions have a .loc
3181 directive, and only call dwarf2_gen_line_info for those instructions. */
3182
3183 static void
3184 dot_loc (int x)
3185 {
3186 CURR_SLOT.loc_directive_seen = 1;
3187 dwarf2_directive_loc (x);
3188 }
3189
3190 /* .sbss, .bss etc. are macros that expand into ".section SECNAME". */
3191 static void
3192 dot_special_section (int which)
3193 {
3194 set_section ((char *) special_section_name[which]);
3195 }
3196
3197 /* Return -1 for warning and 0 for error. */
3198
3199 static int
3200 unwind_diagnostic (const char * region, const char *directive)
3201 {
3202 if (md.unwind_check == unwind_check_warning)
3203 {
3204 as_warn (_(".%s outside of %s"), directive, region);
3205 return -1;
3206 }
3207 else
3208 {
3209 as_bad (_(".%s outside of %s"), directive, region);
3210 ignore_rest_of_line ();
3211 return 0;
3212 }
3213 }
3214
3215 /* Return 1 if a directive is in a procedure, -1 if a directive isn't in
3216 a procedure but the unwind directive check is set to warning, 0 if
3217 a directive isn't in a procedure and the unwind directive check is set
3218 to error. */
3219
3220 static int
3221 in_procedure (const char *directive)
3222 {
3223 if (unwind.proc_pending.sym
3224 && (!unwind.saved_text_seg || strcmp (directive, "endp") == 0))
3225 return 1;
3226 return unwind_diagnostic ("procedure", directive);
3227 }
3228
3229 /* Return 1 if a directive is in a prologue, -1 if a directive isn't in
3230 a prologue but the unwind directive check is set to warning, 0 if
3231 a directive isn't in a prologue and the unwind directive check is set
3232 to error. */
3233
3234 static int
3235 in_prologue (const char *directive)
3236 {
3237 int in = in_procedure (directive);
3238
3239 if (in > 0 && !unwind.prologue)
3240 in = unwind_diagnostic ("prologue", directive);
3241 check_pending_save ();
3242 return in;
3243 }
3244
3245 /* Return 1 if a directive is in a body, -1 if a directive isn't in
3246 a body but the unwind directive check is set to warning, 0 if
3247 a directive isn't in a body and the unwind directive check is set
3248 to error. */
3249
3250 static int
3251 in_body (const char *directive)
3252 {
3253 int in = in_procedure (directive);
3254
3255 if (in > 0 && !unwind.body)
3256 in = unwind_diagnostic ("body region", directive);
3257 return in;
3258 }
3259
3260 static void
3261 add_unwind_entry (unw_rec_list *ptr, int sep)
3262 {
3263 if (ptr)
3264 {
3265 if (unwind.tail)
3266 unwind.tail->next = ptr;
3267 else
3268 unwind.list = ptr;
3269 unwind.tail = ptr;
3270
3271 /* The current entry can in fact be a chain of unwind entries. */
3272 if (unwind.current_entry == NULL)
3273 unwind.current_entry = ptr;
3274 }
3275
3276 /* The current entry can in fact be a chain of unwind entries. */
3277 if (unwind.current_entry == NULL)
3278 unwind.current_entry = ptr;
3279
3280 if (sep == ',')
3281 {
3282 /* Parse a tag permitted for the current directive. */
3283 int ch;
3284
3285 SKIP_WHITESPACE ();
3286 ch = get_symbol_end ();
3287 /* FIXME: For now, just issue a warning that this isn't implemented. */
3288 {
3289 static int warned;
3290
3291 if (!warned)
3292 {
3293 warned = 1;
3294 as_warn (_("Tags on unwind pseudo-ops aren't supported, yet"));
3295 }
3296 }
3297 *input_line_pointer = ch;
3298 }
3299 if (sep != NOT_A_CHAR)
3300 demand_empty_rest_of_line ();
3301 }
3302
3303 static void
3304 dot_fframe (int dummy ATTRIBUTE_UNUSED)
3305 {
3306 expressionS e;
3307 int sep;
3308
3309 if (!in_prologue ("fframe"))
3310 return;
3311
3312 sep = parse_operand_and_eval (&e, ',');
3313
3314 if (e.X_op != O_constant)
3315 {
3316 as_bad (_("First operand to .fframe must be a constant"));
3317 e.X_add_number = 0;
3318 }
3319 add_unwind_entry (output_mem_stack_f (e.X_add_number), sep);
3320 }
3321
3322 static void
3323 dot_vframe (int dummy ATTRIBUTE_UNUSED)
3324 {
3325 expressionS e;
3326 unsigned reg;
3327 int sep;
3328
3329 if (!in_prologue ("vframe"))
3330 return;
3331
3332 sep = parse_operand_and_eval (&e, ',');
3333 reg = e.X_add_number - REG_GR;
3334 if (e.X_op != O_register || reg > 127)
3335 {
3336 as_bad (_("First operand to .vframe must be a general register"));
3337 reg = 0;
3338 }
3339 add_unwind_entry (output_mem_stack_v (), sep);
3340 if (! (unwind.prologue_mask & 2))
3341 add_unwind_entry (output_psp_gr (reg), NOT_A_CHAR);
3342 else if (reg != unwind.prologue_gr
3343 + (unsigned) popcount (unwind.prologue_mask & (-2 << 1)))
3344 as_warn (_("Operand of .vframe contradicts .prologue"));
3345 }
3346
3347 static void
3348 dot_vframesp (int psp)
3349 {
3350 expressionS e;
3351 int sep;
3352
3353 if (psp)
3354 as_warn (_(".vframepsp is meaningless, assuming .vframesp was meant"));
3355
3356 if (!in_prologue ("vframesp"))
3357 return;
3358
3359 sep = parse_operand_and_eval (&e, ',');
3360 if (e.X_op != O_constant)
3361 {
3362 as_bad (_("Operand to .vframesp must be a constant (sp-relative offset)"));
3363 e.X_add_number = 0;
3364 }
3365 add_unwind_entry (output_mem_stack_v (), sep);
3366 add_unwind_entry (output_psp_sprel (e.X_add_number), NOT_A_CHAR);
3367 }
3368
3369 static void
3370 dot_save (int dummy ATTRIBUTE_UNUSED)
3371 {
3372 expressionS e1, e2;
3373 unsigned reg1, reg2;
3374 int sep;
3375
3376 if (!in_prologue ("save"))
3377 return;
3378
3379 sep = parse_operand_and_eval (&e1, ',');
3380 if (sep == ',')
3381 sep = parse_operand_and_eval (&e2, ',');
3382 else
3383 e2.X_op = O_absent;
3384
3385 reg1 = e1.X_add_number;
3386 /* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
3387 if (e1.X_op != O_register)
3388 {
3389 as_bad (_("First operand to .save not a register"));
3390 reg1 = REG_PR; /* Anything valid is good here. */
3391 }
3392 reg2 = e2.X_add_number - REG_GR;
3393 if (e2.X_op != O_register || reg2 > 127)
3394 {
3395 as_bad (_("Second operand to .save not a valid register"));
3396 reg2 = 0;
3397 }
3398 switch (reg1)
3399 {
3400 case REG_AR + AR_BSP:
3401 add_unwind_entry (output_bsp_when (), sep);
3402 add_unwind_entry (output_bsp_gr (reg2), NOT_A_CHAR);
3403 break;
3404 case REG_AR + AR_BSPSTORE:
3405 add_unwind_entry (output_bspstore_when (), sep);
3406 add_unwind_entry (output_bspstore_gr (reg2), NOT_A_CHAR);
3407 break;
3408 case REG_AR + AR_RNAT:
3409 add_unwind_entry (output_rnat_when (), sep);
3410 add_unwind_entry (output_rnat_gr (reg2), NOT_A_CHAR);
3411 break;
3412 case REG_AR + AR_UNAT:
3413 add_unwind_entry (output_unat_when (), sep);
3414 add_unwind_entry (output_unat_gr (reg2), NOT_A_CHAR);
3415 break;
3416 case REG_AR + AR_FPSR:
3417 add_unwind_entry (output_fpsr_when (), sep);
3418 add_unwind_entry (output_fpsr_gr (reg2), NOT_A_CHAR);
3419 break;
3420 case REG_AR + AR_PFS:
3421 add_unwind_entry (output_pfs_when (), sep);
3422 if (! (unwind.prologue_mask & 4))
3423 add_unwind_entry (output_pfs_gr (reg2), NOT_A_CHAR);
3424 else if (reg2 != unwind.prologue_gr
3425 + (unsigned) popcount (unwind.prologue_mask & (-4 << 1)))
3426 as_warn (_("Second operand of .save contradicts .prologue"));
3427 break;
3428 case REG_AR + AR_LC:
3429 add_unwind_entry (output_lc_when (), sep);
3430 add_unwind_entry (output_lc_gr (reg2), NOT_A_CHAR);
3431 break;
3432 case REG_BR:
3433 add_unwind_entry (output_rp_when (), sep);
3434 if (! (unwind.prologue_mask & 8))
3435 add_unwind_entry (output_rp_gr (reg2), NOT_A_CHAR);
3436 else if (reg2 != unwind.prologue_gr)
3437 as_warn (_("Second operand of .save contradicts .prologue"));
3438 break;
3439 case REG_PR:
3440 add_unwind_entry (output_preds_when (), sep);
3441 if (! (unwind.prologue_mask & 1))
3442 add_unwind_entry (output_preds_gr (reg2), NOT_A_CHAR);
3443 else if (reg2 != unwind.prologue_gr
3444 + (unsigned) popcount (unwind.prologue_mask & (-1 << 1)))
3445 as_warn (_("Second operand of .save contradicts .prologue"));
3446 break;
3447 case REG_PRIUNAT:
3448 add_unwind_entry (output_priunat_when_gr (), sep);
3449 add_unwind_entry (output_priunat_gr (reg2), NOT_A_CHAR);
3450 break;
3451 default:
3452 as_bad (_("First operand to .save not a valid register"));
3453 add_unwind_entry (NULL, sep);
3454 break;
3455 }
3456 }
3457
3458 static void
3459 dot_restore (int dummy ATTRIBUTE_UNUSED)
3460 {
3461 expressionS e1;
3462 unsigned long ecount; /* # of _additional_ regions to pop */
3463 int sep;
3464
3465 if (!in_body ("restore"))
3466 return;
3467
3468 sep = parse_operand_and_eval (&e1, ',');
3469 if (e1.X_op != O_register || e1.X_add_number != REG_GR + 12)
3470 as_bad (_("First operand to .restore must be stack pointer (sp)"));
3471
3472 if (sep == ',')
3473 {
3474 expressionS e2;
3475
3476 sep = parse_operand_and_eval (&e2, ',');
3477 if (e2.X_op != O_constant || e2.X_add_number < 0)
3478 {
3479 as_bad (_("Second operand to .restore must be a constant >= 0"));
3480 e2.X_add_number = 0;
3481 }
3482 ecount = e2.X_add_number;
3483 }
3484 else
3485 ecount = unwind.prologue_count - 1;
3486
3487 if (ecount >= unwind.prologue_count)
3488 {
3489 as_bad (_("Epilogue count of %lu exceeds number of nested prologues (%u)"),
3490 ecount + 1, unwind.prologue_count);
3491 ecount = 0;
3492 }
3493
3494 add_unwind_entry (output_epilogue (ecount), sep);
3495
3496 if (ecount < unwind.prologue_count)
3497 unwind.prologue_count -= ecount + 1;
3498 else
3499 unwind.prologue_count = 0;
3500 }
3501
3502 static void
3503 dot_restorereg (int pred)
3504 {
3505 unsigned int qp, ab, reg;
3506 expressionS e;
3507 int sep;
3508 const char * const po = pred ? "restorereg.p" : "restorereg";
3509
3510 if (!in_procedure (po))
3511 return;
3512
3513 if (pred)
3514 sep = parse_predicate_and_operand (&e, &qp, po);
3515 else
3516 {
3517 sep = parse_operand_and_eval (&e, ',');
3518 qp = 0;
3519 }
3520 convert_expr_to_ab_reg (&e, &ab, &reg, po, 1 + pred);
3521
3522 add_unwind_entry (output_spill_reg (ab, reg, 0, 0, qp), sep);
3523 }
3524
3525 static char *special_linkonce_name[] =
3526 {
3527 ".gnu.linkonce.ia64unw.", ".gnu.linkonce.ia64unwi."
3528 };
3529
3530 static void
3531 start_unwind_section (const segT text_seg, int sec_index)
3532 {
3533 /*
3534 Use a slightly ugly scheme to derive the unwind section names from
3535 the text section name:
3536
3537 text sect. unwind table sect.
3538 name: name: comments:
3539 ---------- ----------------- --------------------------------
3540 .text .IA_64.unwind
3541 .text.foo .IA_64.unwind.text.foo
3542 .foo .IA_64.unwind.foo
3543 .gnu.linkonce.t.foo
3544 .gnu.linkonce.ia64unw.foo
3545 _info .IA_64.unwind_info gas issues error message (ditto)
3546 _infoFOO .IA_64.unwind_infoFOO gas issues error message (ditto)
3547
3548 This mapping is done so that:
3549
3550 (a) An object file with unwind info only in .text will use
3551 unwind section names .IA_64.unwind and .IA_64.unwind_info.
3552 This follows the letter of the ABI and also ensures backwards
3553 compatibility with older toolchains.
3554
3555 (b) An object file with unwind info in multiple text sections
3556 will use separate unwind sections for each text section.
3557 This allows us to properly set the "sh_info" and "sh_link"
3558 fields in SHT_IA_64_UNWIND as required by the ABI and also
3559 lets GNU ld support programs with multiple segments
3560 containing unwind info (as might be the case for certain
3561 embedded applications).
3562
3563 (c) An error is issued if there would be a name clash.
3564 */
3565
3566 const char *text_name, *sec_text_name;
3567 char *sec_name;
3568 const char *prefix = special_section_name [sec_index];
3569 const char *suffix;
3570 size_t prefix_len, suffix_len, sec_name_len;
3571
3572 sec_text_name = segment_name (text_seg);
3573 text_name = sec_text_name;
3574 if (strncmp (text_name, "_info", 5) == 0)
3575 {
3576 as_bad (_("Illegal section name `%s' (causes unwind section name clash)"),
3577 text_name);
3578 ignore_rest_of_line ();
3579 return;
3580 }
3581 if (strcmp (text_name, ".text") == 0)
3582 text_name = "";
3583
3584 /* Build the unwind section name by appending the (possibly stripped)
3585 text section name to the unwind prefix. */
3586 suffix = text_name;
3587 if (strncmp (text_name, ".gnu.linkonce.t.",
3588 sizeof (".gnu.linkonce.t.") - 1) == 0)
3589 {
3590 prefix = special_linkonce_name [sec_index - SPECIAL_SECTION_UNWIND];
3591 suffix += sizeof (".gnu.linkonce.t.") - 1;
3592 }
3593
3594 prefix_len = strlen (prefix);
3595 suffix_len = strlen (suffix);
3596 sec_name_len = prefix_len + suffix_len;
3597 sec_name = alloca (sec_name_len + 1);
3598 memcpy (sec_name, prefix, prefix_len);
3599 memcpy (sec_name + prefix_len, suffix, suffix_len);
3600 sec_name [sec_name_len] = '\0';
3601
3602 /* Handle COMDAT group. */
3603 if ((text_seg->flags & SEC_LINK_ONCE) != 0
3604 && (elf_section_flags (text_seg) & SHF_GROUP) != 0)
3605 {
3606 char *section;
3607 size_t len, group_name_len;
3608 const char *group_name = elf_group_name (text_seg);
3609
3610 if (group_name == NULL)
3611 {
3612 as_bad (_("Group section `%s' has no group signature"),
3613 sec_text_name);
3614 ignore_rest_of_line ();
3615 return;
3616 }
3617 /* We have to construct a fake section directive. */
3618 group_name_len = strlen (group_name);
3619 len = (sec_name_len
3620 + 16 /* ,"aG",@progbits, */
3621 + group_name_len /* ,group_name */
3622 + 7); /* ,comdat */
3623
3624 section = alloca (len + 1);
3625 memcpy (section, sec_name, sec_name_len);
3626 memcpy (section + sec_name_len, ",\"aG\",@progbits,", 16);
3627 memcpy (section + sec_name_len + 16, group_name, group_name_len);
3628 memcpy (section + len - 7, ",comdat", 7);
3629 section [len] = '\0';
3630 set_section (section);
3631 }
3632 else
3633 {
3634 set_section (sec_name);
3635 bfd_set_section_flags (stdoutput, now_seg,
3636 SEC_LOAD | SEC_ALLOC | SEC_READONLY);
3637 }
3638
3639 elf_linked_to_section (now_seg) = text_seg;
3640 }
3641
3642 static void
3643 generate_unwind_image (const segT text_seg)
3644 {
3645 int size, pad;
3646 unw_rec_list *list;
3647
3648 /* Mark the end of the unwind info, so that we can compute the size of the
3649 last unwind region. */
3650 add_unwind_entry (output_endp (), NOT_A_CHAR);
3651
3652 /* Force out pending instructions, to make sure all unwind records have
3653 a valid slot_number field. */
3654 ia64_flush_insns ();
3655
3656 /* Generate the unwind record. */
3657 list = optimize_unw_records (unwind.list);
3658 fixup_unw_records (list, 1);
3659 size = calc_record_size (list);
3660
3661 if (size > 0 || unwind.force_unwind_entry)
3662 {
3663 unwind.force_unwind_entry = 0;
3664 /* pad to pointer-size boundary. */
3665 pad = size % md.pointer_size;
3666 if (pad != 0)
3667 size += md.pointer_size - pad;
3668 /* Add 8 for the header. */
3669 size += 8;
3670 /* Add a pointer for the personality offset. */
3671 if (unwind.personality_routine)
3672 size += md.pointer_size;
3673 }
3674
3675 /* If there are unwind records, switch sections, and output the info. */
3676 if (size != 0)
3677 {
3678 expressionS exp;
3679 bfd_reloc_code_real_type reloc;
3680
3681 start_unwind_section (text_seg, SPECIAL_SECTION_UNWIND_INFO);
3682
3683 /* Make sure the section has 4 byte alignment for ILP32 and
3684 8 byte alignment for LP64. */
3685 frag_align (md.pointer_size_shift, 0, 0);
3686 record_alignment (now_seg, md.pointer_size_shift);
3687
3688 /* Set expression which points to start of unwind descriptor area. */
3689 unwind.info = expr_build_dot ();
3690
3691 frag_var (rs_machine_dependent, size, size, 0, 0,
3692 (offsetT) (long) unwind.personality_routine,
3693 (char *) list);
3694
3695 /* Add the personality address to the image. */
3696 if (unwind.personality_routine != 0)
3697 {
3698 exp.X_op = O_symbol;
3699 exp.X_add_symbol = unwind.personality_routine;
3700 exp.X_add_number = 0;
3701
3702 if (md.flags & EF_IA_64_BE)
3703 {
3704 if (md.flags & EF_IA_64_ABI64)
3705 reloc = BFD_RELOC_IA64_LTOFF_FPTR64MSB;
3706 else
3707 reloc = BFD_RELOC_IA64_LTOFF_FPTR32MSB;
3708 }
3709 else
3710 {
3711 if (md.flags & EF_IA_64_ABI64)
3712 reloc = BFD_RELOC_IA64_LTOFF_FPTR64LSB;
3713 else
3714 reloc = BFD_RELOC_IA64_LTOFF_FPTR32LSB;
3715 }
3716
3717 fix_new_exp (frag_now, frag_now_fix () - md.pointer_size,
3718 md.pointer_size, &exp, 0, reloc);
3719 unwind.personality_routine = 0;
3720 }
3721 }
3722
3723 free_saved_prologue_counts ();
3724 unwind.list = unwind.tail = unwind.current_entry = NULL;
3725 }
3726
3727 static void
3728 dot_handlerdata (int dummy ATTRIBUTE_UNUSED)
3729 {
3730 if (!in_procedure ("handlerdata"))
3731 return;
3732 unwind.force_unwind_entry = 1;
3733
3734 /* Remember which segment we're in so we can switch back after .endp */
3735 unwind.saved_text_seg = now_seg;
3736 unwind.saved_text_subseg = now_subseg;
3737
3738 /* Generate unwind info into unwind-info section and then leave that
3739 section as the currently active one so dataXX directives go into
3740 the language specific data area of the unwind info block. */
3741 generate_unwind_image (now_seg);
3742 demand_empty_rest_of_line ();
3743 }
3744
3745 static void
3746 dot_unwentry (int dummy ATTRIBUTE_UNUSED)
3747 {
3748 if (!in_procedure ("unwentry"))
3749 return;
3750 unwind.force_unwind_entry = 1;
3751 demand_empty_rest_of_line ();
3752 }
3753
3754 static void
3755 dot_altrp (int dummy ATTRIBUTE_UNUSED)
3756 {
3757 expressionS e;
3758 unsigned reg;
3759
3760 if (!in_prologue ("altrp"))
3761 return;
3762
3763 parse_operand_and_eval (&e, 0);
3764 reg = e.X_add_number - REG_BR;
3765 if (e.X_op != O_register || reg > 7)
3766 {
3767 as_bad (_("First operand to .altrp not a valid branch register"));
3768 reg = 0;
3769 }
3770 add_unwind_entry (output_rp_br (reg), 0);
3771 }
3772
3773 static void
3774 dot_savemem (int psprel)
3775 {
3776 expressionS e1, e2;
3777 int sep;
3778 int reg1, val;
3779 const char * const po = psprel ? "savepsp" : "savesp";
3780
3781 if (!in_prologue (po))
3782 return;
3783
3784 sep = parse_operand_and_eval (&e1, ',');
3785 if (sep == ',')
3786 sep = parse_operand_and_eval (&e2, ',');
3787 else
3788 e2.X_op = O_absent;
3789
3790 reg1 = e1.X_add_number;
3791 val = e2.X_add_number;
3792
3793 /* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
3794 if (e1.X_op != O_register)
3795 {
3796 as_bad (_("First operand to .%s not a register"), po);
3797 reg1 = REG_PR; /* Anything valid is good here. */
3798 }
3799 if (e2.X_op != O_constant)
3800 {
3801 as_bad (_("Second operand to .%s not a constant"), po);
3802 val = 0;
3803 }
3804
3805 switch (reg1)
3806 {
3807 case REG_AR + AR_BSP:
3808 add_unwind_entry (output_bsp_when (), sep);
3809 add_unwind_entry ((psprel
3810 ? output_bsp_psprel
3811 : output_bsp_sprel) (val), NOT_A_CHAR);
3812 break;
3813 case REG_AR + AR_BSPSTORE:
3814 add_unwind_entry (output_bspstore_when (), sep);
3815 add_unwind_entry ((psprel
3816 ? output_bspstore_psprel
3817 : output_bspstore_sprel) (val), NOT_A_CHAR);
3818 break;
3819 case REG_AR + AR_RNAT:
3820 add_unwind_entry (output_rnat_when (), sep);
3821 add_unwind_entry ((psprel
3822 ? output_rnat_psprel
3823 : output_rnat_sprel) (val), NOT_A_CHAR);
3824 break;
3825 case REG_AR + AR_UNAT:
3826 add_unwind_entry (output_unat_when (), sep);
3827 add_unwind_entry ((psprel
3828 ? output_unat_psprel
3829 : output_unat_sprel) (val), NOT_A_CHAR);
3830 break;
3831 case REG_AR + AR_FPSR:
3832 add_unwind_entry (output_fpsr_when (), sep);
3833 add_unwind_entry ((psprel
3834 ? output_fpsr_psprel
3835 : output_fpsr_sprel) (val), NOT_A_CHAR);
3836 break;
3837 case REG_AR + AR_PFS:
3838 add_unwind_entry (output_pfs_when (), sep);
3839 add_unwind_entry ((psprel
3840 ? output_pfs_psprel
3841 : output_pfs_sprel) (val), NOT_A_CHAR);
3842 break;
3843 case REG_AR + AR_LC:
3844 add_unwind_entry (output_lc_when (), sep);
3845 add_unwind_entry ((psprel
3846 ? output_lc_psprel
3847 : output_lc_sprel) (val), NOT_A_CHAR);
3848 break;
3849 case REG_BR:
3850 add_unwind_entry (output_rp_when (), sep);
3851 add_unwind_entry ((psprel
3852 ? output_rp_psprel
3853 : output_rp_sprel) (val), NOT_A_CHAR);
3854 break;
3855 case REG_PR:
3856 add_unwind_entry (output_preds_when (), sep);
3857 add_unwind_entry ((psprel
3858 ? output_preds_psprel
3859 : output_preds_sprel) (val), NOT_A_CHAR);
3860 break;
3861 case REG_PRIUNAT:
3862 add_unwind_entry (output_priunat_when_mem (), sep);
3863 add_unwind_entry ((psprel
3864 ? output_priunat_psprel
3865 : output_priunat_sprel) (val), NOT_A_CHAR);
3866 break;
3867 default:
3868 as_bad (_("First operand to .%s not a valid register"), po);
3869 add_unwind_entry (NULL, sep);
3870 break;
3871 }
3872 }
3873
3874 static void
3875 dot_saveg (int dummy ATTRIBUTE_UNUSED)
3876 {
3877 expressionS e;
3878 unsigned grmask;
3879 int sep;
3880
3881 if (!in_prologue ("save.g"))
3882 return;
3883
3884 sep = parse_operand_and_eval (&e, ',');
3885
3886 grmask = e.X_add_number;
3887 if (e.X_op != O_constant
3888 || e.X_add_number <= 0
3889 || e.X_add_number > 0xf)
3890 {
3891 as_bad (_("First operand to .save.g must be a positive 4-bit constant"));
3892 grmask = 0;
3893 }
3894
3895 if (sep == ',')
3896 {
3897 unsigned reg;
3898 int n = popcount (grmask);
3899
3900 parse_operand_and_eval (&e, 0);
3901 reg = e.X_add_number - REG_GR;
3902 if (e.X_op != O_register || reg > 127)
3903 {
3904 as_bad (_("Second operand to .save.g must be a general register"));
3905 reg = 0;
3906 }
3907 else if (reg > 128U - n)
3908 {
3909 as_bad (_("Second operand to .save.g must be the first of %d general registers"), n);
3910 reg = 0;
3911 }
3912 add_unwind_entry (output_gr_gr (grmask, reg), 0);
3913 }
3914 else
3915 add_unwind_entry (output_gr_mem (grmask), 0);
3916 }
3917
3918 static void
3919 dot_savef (int dummy ATTRIBUTE_UNUSED)
3920 {
3921 expressionS e;
3922
3923 if (!in_prologue ("save.f"))
3924 return;
3925
3926 parse_operand_and_eval (&e, 0);
3927
3928 if (e.X_op != O_constant
3929 || e.X_add_number <= 0
3930 || e.X_add_number > 0xfffff)
3931 {
3932 as_bad (_("Operand to .save.f must be a positive 20-bit constant"));
3933 e.X_add_number = 0;
3934 }
3935 add_unwind_entry (output_fr_mem (e.X_add_number), 0);
3936 }
3937
3938 static void
3939 dot_saveb (int dummy ATTRIBUTE_UNUSED)
3940 {
3941 expressionS e;
3942 unsigned brmask;
3943 int sep;
3944
3945 if (!in_prologue ("save.b"))
3946 return;
3947
3948 sep = parse_operand_and_eval (&e, ',');
3949
3950 brmask = e.X_add_number;
3951 if (e.X_op != O_constant
3952 || e.X_add_number <= 0
3953 || e.X_add_number > 0x1f)
3954 {
3955 as_bad (_("First operand to .save.b must be a positive 5-bit constant"));
3956 brmask = 0;
3957 }
3958
3959 if (sep == ',')
3960 {
3961 unsigned reg;
3962 int n = popcount (brmask);
3963
3964 parse_operand_and_eval (&e, 0);
3965 reg = e.X_add_number - REG_GR;
3966 if (e.X_op != O_register || reg > 127)
3967 {
3968 as_bad (_("Second operand to .save.b must be a general register"));
3969 reg = 0;
3970 }
3971 else if (reg > 128U - n)
3972 {
3973 as_bad (_("Second operand to .save.b must be the first of %d general registers"), n);
3974 reg = 0;
3975 }
3976 add_unwind_entry (output_br_gr (brmask, reg), 0);
3977 }
3978 else
3979 add_unwind_entry (output_br_mem (brmask), 0);
3980 }
3981
3982 static void
3983 dot_savegf (int dummy ATTRIBUTE_UNUSED)
3984 {
3985 expressionS e1, e2;
3986
3987 if (!in_prologue ("save.gf"))
3988 return;
3989
3990 if (parse_operand_and_eval (&e1, ',') == ',')
3991 parse_operand_and_eval (&e2, 0);
3992 else
3993 e2.X_op = O_absent;
3994
3995 if (e1.X_op != O_constant
3996 || e1.X_add_number < 0
3997 || e1.X_add_number > 0xf)
3998 {
3999 as_bad (_("First operand to .save.gf must be a non-negative 4-bit constant"));
4000 e1.X_op = O_absent;
4001 e1.X_add_number = 0;
4002 }
4003 if (e2.X_op != O_constant
4004 || e2.X_add_number < 0
4005 || e2.X_add_number > 0xfffff)
4006 {
4007 as_bad (_("Second operand to .save.gf must be a non-negative 20-bit constant"));
4008 e2.X_op = O_absent;
4009 e2.X_add_number = 0;
4010 }
4011 if (e1.X_op == O_constant
4012 && e2.X_op == O_constant
4013 && e1.X_add_number == 0
4014 && e2.X_add_number == 0)
4015 as_bad (_("Operands to .save.gf may not be both zero"));
4016
4017 add_unwind_entry (output_frgr_mem (e1.X_add_number, e2.X_add_number), 0);
4018 }
4019
4020 static void
4021 dot_spill (int dummy ATTRIBUTE_UNUSED)
4022 {
4023 expressionS e;
4024
4025 if (!in_prologue ("spill"))
4026 return;
4027
4028 parse_operand_and_eval (&e, 0);
4029
4030 if (e.X_op != O_constant)
4031 {
4032 as_bad (_("Operand to .spill must be a constant"));
4033 e.X_add_number = 0;
4034 }
4035 add_unwind_entry (output_spill_base (e.X_add_number), 0);
4036 }
4037
4038 static void
4039 dot_spillreg (int pred)
4040 {
4041 int sep;
4042 unsigned int qp, ab, xy, reg, treg;
4043 expressionS e;
4044 const char * const po = pred ? "spillreg.p" : "spillreg";
4045
4046 if (!in_procedure (po))
4047 return;
4048
4049 if (pred)
4050 sep = parse_predicate_and_operand (&e, &qp, po);
4051 else
4052 {
4053 sep = parse_operand_and_eval (&e, ',');
4054 qp = 0;
4055 }
4056 convert_expr_to_ab_reg (&e, &ab, &reg, po, 1 + pred);
4057
4058 if (sep == ',')
4059 sep = parse_operand_and_eval (&e, ',');
4060 else
4061 e.X_op = O_absent;
4062 convert_expr_to_xy_reg (&e, &xy, &treg, po, 2 + pred);
4063
4064 add_unwind_entry (output_spill_reg (ab, reg, treg, xy, qp), sep);
4065 }
4066
4067 static void
4068 dot_spillmem (int psprel)
4069 {
4070 expressionS e;
4071 int pred = (psprel < 0), sep;
4072 unsigned int qp, ab, reg;
4073 const char * po;
4074
4075 if (pred)
4076 {
4077 psprel = ~psprel;
4078 po = psprel ? "spillpsp.p" : "spillsp.p";
4079 }
4080 else
4081 po = psprel ? "spillpsp" : "spillsp";
4082
4083 if (!in_procedure (po))
4084 return;
4085
4086 if (pred)
4087 sep = parse_predicate_and_operand (&e, &qp, po);
4088 else
4089 {
4090 sep = parse_operand_and_eval (&e, ',');
4091 qp = 0;
4092 }
4093 convert_expr_to_ab_reg (&e, &ab, &reg, po, 1 + pred);
4094
4095 if (sep == ',')
4096 sep = parse_operand_and_eval (&e, ',');
4097 else
4098 e.X_op = O_absent;
4099 if (e.X_op != O_constant)
4100 {
4101 as_bad (_("Operand %d to .%s must be a constant"), 2 + pred, po);
4102 e.X_add_number = 0;
4103 }
4104
4105 if (psprel)
4106 add_unwind_entry (output_spill_psprel (ab, reg, e.X_add_number, qp), sep);
4107 else
4108 add_unwind_entry (output_spill_sprel (ab, reg, e.X_add_number, qp), sep);
4109 }
4110
4111 static unsigned int
4112 get_saved_prologue_count (unsigned long lbl)
4113 {
4114 label_prologue_count *lpc = unwind.saved_prologue_counts;
4115
4116 while (lpc != NULL && lpc->label_number != lbl)
4117 lpc = lpc->next;
4118
4119 if (lpc != NULL)
4120 return lpc->prologue_count;
4121
4122 as_bad (_("Missing .label_state %ld"), lbl);
4123 return 1;
4124 }
4125
4126 static void
4127 save_prologue_count (unsigned long lbl, unsigned int count)
4128 {
4129 label_prologue_count *lpc = unwind.saved_prologue_counts;
4130
4131 while (lpc != NULL && lpc->label_number != lbl)
4132 lpc = lpc->next;
4133
4134 if (lpc != NULL)
4135 lpc->prologue_count = count;
4136 else
4137 {
4138 label_prologue_count *new_lpc = xmalloc (sizeof (* new_lpc));
4139
4140 new_lpc->next = unwind.saved_prologue_counts;
4141 new_lpc->label_number = lbl;
4142 new_lpc->prologue_count = count;
4143 unwind.saved_prologue_counts = new_lpc;
4144 }
4145 }
4146
4147 static void
4148 free_saved_prologue_counts ()
4149 {
4150 label_prologue_count *lpc = unwind.saved_prologue_counts;
4151 label_prologue_count *next;
4152
4153 while (lpc != NULL)
4154 {
4155 next = lpc->next;
4156 free (lpc);
4157 lpc = next;
4158 }
4159
4160 unwind.saved_prologue_counts = NULL;
4161 }
4162
4163 static void
4164 dot_label_state (int dummy ATTRIBUTE_UNUSED)
4165 {
4166 expressionS e;
4167
4168 if (!in_body ("label_state"))
4169 return;
4170
4171 parse_operand_and_eval (&e, 0);
4172 if (e.X_op == O_constant)
4173 save_prologue_count (e.X_add_number, unwind.prologue_count);
4174 else
4175 {
4176 as_bad (_("Operand to .label_state must be a constant"));
4177 e.X_add_number = 0;
4178 }
4179 add_unwind_entry (output_label_state (e.X_add_number), 0);
4180 }
4181
4182 static void
4183 dot_copy_state (int dummy ATTRIBUTE_UNUSED)
4184 {
4185 expressionS e;
4186
4187 if (!in_body ("copy_state"))
4188 return;
4189
4190 parse_operand_and_eval (&e, 0);
4191 if (e.X_op == O_constant)
4192 unwind.prologue_count = get_saved_prologue_count (e.X_add_number);
4193 else
4194 {
4195 as_bad (_("Operand to .copy_state must be a constant"));
4196 e.X_add_number = 0;
4197 }
4198 add_unwind_entry (output_copy_state (e.X_add_number), 0);
4199 }
4200
4201 static void
4202 dot_unwabi (int dummy ATTRIBUTE_UNUSED)
4203 {
4204 expressionS e1, e2;
4205 unsigned char sep;
4206
4207 if (!in_prologue ("unwabi"))
4208 return;
4209
4210 sep = parse_operand_and_eval (&e1, ',');
4211 if (sep == ',')
4212 parse_operand_and_eval (&e2, 0);
4213 else
4214 e2.X_op = O_absent;
4215
4216 if (e1.X_op != O_constant)
4217 {
4218 as_bad (_("First operand to .unwabi must be a constant"));
4219 e1.X_add_number = 0;
4220 }
4221
4222 if (e2.X_op != O_constant)
4223 {
4224 as_bad (_("Second operand to .unwabi must be a constant"));
4225 e2.X_add_number = 0;
4226 }
4227
4228 add_unwind_entry (output_unwabi (e1.X_add_number, e2.X_add_number), 0);
4229 }
4230
4231 static void
4232 dot_personality (int dummy ATTRIBUTE_UNUSED)
4233 {
4234 char *name, *p, c;
4235 if (!in_procedure ("personality"))
4236 return;
4237 SKIP_WHITESPACE ();
4238 name = input_line_pointer;
4239 c = get_symbol_end ();
4240 p = input_line_pointer;
4241 unwind.personality_routine = symbol_find_or_make (name);
4242 unwind.force_unwind_entry = 1;
4243 *p = c;
4244 SKIP_WHITESPACE ();
4245 demand_empty_rest_of_line ();
4246 }
4247
4248 static void
4249 dot_proc (int dummy ATTRIBUTE_UNUSED)
4250 {
4251 char *name, *p, c;
4252 symbolS *sym;
4253 proc_pending *pending, *last_pending;
4254
4255 if (unwind.proc_pending.sym)
4256 {
4257 (md.unwind_check == unwind_check_warning
4258 ? as_warn
4259 : as_bad) (_("Missing .endp after previous .proc"));
4260 while (unwind.proc_pending.next)
4261 {
4262 pending = unwind.proc_pending.next;
4263 unwind.proc_pending.next = pending->next;
4264 free (pending);
4265 }
4266 }
4267 last_pending = NULL;
4268
4269 /* Parse names of main and alternate entry points and mark them as
4270 function symbols: */
4271 while (1)
4272 {
4273 SKIP_WHITESPACE ();
4274 name = input_line_pointer;
4275 c = get_symbol_end ();
4276 p = input_line_pointer;
4277 if (!*name)
4278 as_bad (_("Empty argument of .proc"));
4279 else
4280 {
4281 sym = symbol_find_or_make (name);
4282 if (S_IS_DEFINED (sym))
4283 as_bad (_("`%s' was already defined"), name);
4284 else if (!last_pending)
4285 {
4286 unwind.proc_pending.sym = sym;
4287 last_pending = &unwind.proc_pending;
4288 }
4289 else
4290 {
4291 pending = xmalloc (sizeof (*pending));
4292 pending->sym = sym;
4293 last_pending = last_pending->next = pending;
4294 }
4295 symbol_get_bfdsym (sym)->flags |= BSF_FUNCTION;
4296 }
4297 *p = c;
4298 SKIP_WHITESPACE ();
4299 if (*input_line_pointer != ',')
4300 break;
4301 ++input_line_pointer;
4302 }
4303 if (!last_pending)
4304 {
4305 unwind.proc_pending.sym = expr_build_dot ();
4306 last_pending = &unwind.proc_pending;
4307 }
4308 last_pending->next = NULL;
4309 demand_empty_rest_of_line ();
4310 ia64_do_align (16);
4311
4312 unwind.prologue = 0;
4313 unwind.prologue_count = 0;
4314 unwind.body = 0;
4315 unwind.insn = 0;
4316 unwind.list = unwind.tail = unwind.current_entry = NULL;
4317 unwind.personality_routine = 0;
4318 }
4319
4320 static void
4321 dot_body (int dummy ATTRIBUTE_UNUSED)
4322 {
4323 if (!in_procedure ("body"))
4324 return;
4325 if (!unwind.prologue && !unwind.body && unwind.insn)
4326 as_warn (_("Initial .body should precede any instructions"));
4327 check_pending_save ();
4328
4329 unwind.prologue = 0;
4330 unwind.prologue_mask = 0;
4331 unwind.body = 1;
4332
4333 add_unwind_entry (output_body (), 0);
4334 }
4335
4336 static void
4337 dot_prologue (int dummy ATTRIBUTE_UNUSED)
4338 {
4339 unsigned mask = 0, grsave = 0;
4340
4341 if (!in_procedure ("prologue"))
4342 return;
4343 if (unwind.prologue)
4344 {
4345 as_bad (_(".prologue within prologue"));
4346 ignore_rest_of_line ();
4347 return;
4348 }
4349 if (!unwind.body && unwind.insn)
4350 as_warn (_("Initial .prologue should precede any instructions"));
4351
4352 if (!is_it_end_of_statement ())
4353 {
4354 expressionS e;
4355 int n, sep = parse_operand_and_eval (&e, ',');
4356
4357 if (e.X_op != O_constant
4358 || e.X_add_number < 0
4359 || e.X_add_number > 0xf)
4360 as_bad (_("First operand to .prologue must be a positive 4-bit constant"));
4361 else if (e.X_add_number == 0)
4362 as_warn (_("Pointless use of zero first operand to .prologue"));
4363 else
4364 mask = e.X_add_number;
4365 n = popcount (mask);
4366
4367 if (sep == ',')
4368 parse_operand_and_eval (&e, 0);
4369 else
4370 e.X_op = O_absent;
4371 if (e.X_op == O_constant
4372 && e.X_add_number >= 0
4373 && e.X_add_number < 128)
4374 {
4375 if (md.unwind_check == unwind_check_error)
4376 as_warn (_("Using a constant as second operand to .prologue is deprecated"));
4377 grsave = e.X_add_number;
4378 }
4379 else if (e.X_op != O_register
4380 || (grsave = e.X_add_number - REG_GR) > 127)
4381 {
4382 as_bad (_("Second operand to .prologue must be a general register"));
4383 grsave = 0;
4384 }
4385 else if (grsave > 128U - n)
4386 {
4387 as_bad (_("Second operand to .prologue must be the first of %d general registers"), n);
4388 grsave = 0;
4389 }
4390
4391 }
4392
4393 if (mask)
4394 add_unwind_entry (output_prologue_gr (mask, grsave), 0);
4395 else
4396 add_unwind_entry (output_prologue (), 0);
4397
4398 unwind.prologue = 1;
4399 unwind.prologue_mask = mask;
4400 unwind.prologue_gr = grsave;
4401 unwind.body = 0;
4402 ++unwind.prologue_count;
4403 }
4404
4405 static void
4406 dot_endp (int dummy ATTRIBUTE_UNUSED)
4407 {
4408 expressionS e;
4409 int bytes_per_address;
4410 long where;
4411 segT saved_seg;
4412 subsegT saved_subseg;
4413 proc_pending *pending;
4414 int unwind_check = md.unwind_check;
4415
4416 md.unwind_check = unwind_check_error;
4417 if (!in_procedure ("endp"))
4418 return;
4419 md.unwind_check = unwind_check;
4420
4421 if (unwind.saved_text_seg)
4422 {
4423 saved_seg = unwind.saved_text_seg;
4424 saved_subseg = unwind.saved_text_subseg;
4425 unwind.saved_text_seg = NULL;
4426 }
4427 else
4428 {
4429 saved_seg = now_seg;
4430 saved_subseg = now_subseg;
4431 }
4432
4433 insn_group_break (1, 0, 0);
4434
4435 /* If there wasn't a .handlerdata, we haven't generated an image yet. */
4436 if (!unwind.info)
4437 generate_unwind_image (saved_seg);
4438
4439 if (unwind.info || unwind.force_unwind_entry)
4440 {
4441 symbolS *proc_end;
4442
4443 subseg_set (md.last_text_seg, 0);
4444 proc_end = expr_build_dot ();
4445
4446 start_unwind_section (saved_seg, SPECIAL_SECTION_UNWIND);
4447
4448 /* Make sure that section has 4 byte alignment for ILP32 and
4449 8 byte alignment for LP64. */
4450 record_alignment (now_seg, md.pointer_size_shift);
4451
4452 /* Need space for 3 pointers for procedure start, procedure end,
4453 and unwind info. */
4454 memset (frag_more (3 * md.pointer_size), 0, 3 * md.pointer_size);
4455 where = frag_now_fix () - (3 * md.pointer_size);
4456 bytes_per_address = bfd_arch_bits_per_address (stdoutput) / 8;
4457
4458 /* Issue the values of a) Proc Begin, b) Proc End, c) Unwind Record. */
4459 e.X_op = O_pseudo_fixup;
4460 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4461 e.X_add_number = 0;
4462 if (!S_IS_LOCAL (unwind.proc_pending.sym)
4463 && S_IS_DEFINED (unwind.proc_pending.sym))
4464 e.X_add_symbol = symbol_temp_new (S_GET_SEGMENT (unwind.proc_pending.sym),
4465 S_GET_VALUE (unwind.proc_pending.sym),
4466 symbol_get_frag (unwind.proc_pending.sym));
4467 else
4468 e.X_add_symbol = unwind.proc_pending.sym;
4469 ia64_cons_fix_new (frag_now, where, bytes_per_address, &e);
4470
4471 e.X_op = O_pseudo_fixup;
4472 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4473 e.X_add_number = 0;
4474 e.X_add_symbol = proc_end;
4475 ia64_cons_fix_new (frag_now, where + bytes_per_address,
4476 bytes_per_address, &e);
4477
4478 if (unwind.info)
4479 {
4480 e.X_op = O_pseudo_fixup;
4481 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4482 e.X_add_number = 0;
4483 e.X_add_symbol = unwind.info;
4484 ia64_cons_fix_new (frag_now, where + (bytes_per_address * 2),
4485 bytes_per_address, &e);
4486 }
4487 }
4488 subseg_set (saved_seg, saved_subseg);
4489
4490 /* Set symbol sizes. */
4491 pending = &unwind.proc_pending;
4492 if (S_GET_NAME (pending->sym))
4493 {
4494 do
4495 {
4496 symbolS *sym = pending->sym;
4497
4498 if (!S_IS_DEFINED (sym))
4499 as_bad (_("`%s' was not defined within procedure"), S_GET_NAME (sym));
4500 else if (S_GET_SIZE (sym) == 0
4501 && symbol_get_obj (sym)->size == NULL)
4502 {
4503 fragS *frag = symbol_get_frag (sym);
4504
4505 if (frag)
4506 {
4507 if (frag == frag_now && SEG_NORMAL (now_seg))
4508 S_SET_SIZE (sym, frag_now_fix () - S_GET_VALUE (sym));
4509 else
4510 {
4511 symbol_get_obj (sym)->size =
4512 (expressionS *) xmalloc (sizeof (expressionS));
4513 symbol_get_obj (sym)->size->X_op = O_subtract;
4514 symbol_get_obj (sym)->size->X_add_symbol
4515 = symbol_new (FAKE_LABEL_NAME, now_seg,
4516 frag_now_fix (), frag_now);
4517 symbol_get_obj (sym)->size->X_op_symbol = sym;
4518 symbol_get_obj (sym)->size->X_add_number = 0;
4519 }
4520 }
4521 }
4522 } while ((pending = pending->next) != NULL);
4523 }
4524
4525 /* Parse names of main and alternate entry points. */
4526 while (1)
4527 {
4528 char *name, *p, c;
4529
4530 SKIP_WHITESPACE ();
4531 name = input_line_pointer;
4532 c = get_symbol_end ();
4533 p = input_line_pointer;
4534 if (!*name)
4535 (md.unwind_check == unwind_check_warning
4536 ? as_warn
4537 : as_bad) (_("Empty argument of .endp"));
4538 else
4539 {
4540 symbolS *sym = symbol_find (name);
4541
4542 for (pending = &unwind.proc_pending; pending; pending = pending->next)
4543 {
4544 if (sym == pending->sym)
4545 {
4546 pending->sym = NULL;
4547 break;
4548 }
4549 }
4550 if (!sym || !pending)
4551 as_warn (_("`%s' was not specified with previous .proc"), name);
4552 }
4553 *p = c;
4554 SKIP_WHITESPACE ();
4555 if (*input_line_pointer != ',')
4556 break;
4557 ++input_line_pointer;
4558 }
4559 demand_empty_rest_of_line ();
4560
4561 /* Deliberately only checking for the main entry point here; the
4562 language spec even says all arguments to .endp are ignored. */
4563 if (unwind.proc_pending.sym
4564 && S_GET_NAME (unwind.proc_pending.sym)
4565 && strcmp (S_GET_NAME (unwind.proc_pending.sym), FAKE_LABEL_NAME))
4566 as_warn (_("`%s' should be an operand to this .endp"),
4567 S_GET_NAME (unwind.proc_pending.sym));
4568 while (unwind.proc_pending.next)
4569 {
4570 pending = unwind.proc_pending.next;
4571 unwind.proc_pending.next = pending->next;
4572 free (pending);
4573 }
4574 unwind.proc_pending.sym = unwind.info = NULL;
4575 }
4576
4577 static void
4578 dot_template (int template_val)
4579 {
4580 CURR_SLOT.user_template = template_val;
4581 }
4582
4583 static void
4584 dot_regstk (int dummy ATTRIBUTE_UNUSED)
4585 {
4586 int ins, locs, outs, rots;
4587
4588 if (is_it_end_of_statement ())
4589 ins = locs = outs = rots = 0;
4590 else
4591 {
4592 ins = get_absolute_expression ();
4593 if (*input_line_pointer++ != ',')
4594 goto err;
4595 locs = get_absolute_expression ();
4596 if (*input_line_pointer++ != ',')
4597 goto err;
4598 outs = get_absolute_expression ();
4599 if (*input_line_pointer++ != ',')
4600 goto err;
4601 rots = get_absolute_expression ();
4602 }
4603 set_regstack (ins, locs, outs, rots);
4604 return;
4605
4606 err:
4607 as_bad (_("Comma expected"));
4608 ignore_rest_of_line ();
4609 }
4610
4611 static void
4612 dot_rot (int type)
4613 {
4614 offsetT num_regs;
4615 valueT num_alloced = 0;
4616 struct dynreg **drpp, *dr;
4617 int ch, base_reg = 0;
4618 char *name, *start;
4619 size_t len;
4620
4621 switch (type)
4622 {
4623 case DYNREG_GR: base_reg = REG_GR + 32; break;
4624 case DYNREG_FR: base_reg = REG_FR + 32; break;
4625 case DYNREG_PR: base_reg = REG_P + 16; break;
4626 default: break;
4627 }
4628
4629 /* First, remove existing names from hash table. */
4630 for (dr = md.dynreg[type]; dr && dr->num_regs; dr = dr->next)
4631 {
4632 hash_delete (md.dynreg_hash, dr->name, FALSE);
4633 /* FIXME: Free dr->name. */
4634 dr->num_regs = 0;
4635 }
4636
4637 drpp = &md.dynreg[type];
4638 while (1)
4639 {
4640 start = input_line_pointer;
4641 ch = get_symbol_end ();
4642 len = strlen (ia64_canonicalize_symbol_name (start));
4643 *input_line_pointer = ch;
4644
4645 SKIP_WHITESPACE ();
4646 if (*input_line_pointer != '[')
4647 {
4648 as_bad (_("Expected '['"));
4649 goto err;
4650 }
4651 ++input_line_pointer; /* skip '[' */
4652
4653 num_regs = get_absolute_expression ();
4654
4655 if (*input_line_pointer++ != ']')
4656 {
4657 as_bad (_("Expected ']'"));
4658 goto err;
4659 }
4660 if (num_regs <= 0)
4661 {
4662 as_bad (_("Number of elements must be positive"));
4663 goto err;
4664 }
4665 SKIP_WHITESPACE ();
4666
4667 num_alloced += num_regs;
4668 switch (type)
4669 {
4670 case DYNREG_GR:
4671 if (num_alloced > md.rot.num_regs)
4672 {
4673 as_bad (_("Used more than the declared %d rotating registers"),
4674 md.rot.num_regs);
4675 goto err;
4676 }
4677 break;
4678 case DYNREG_FR:
4679 if (num_alloced > 96)
4680 {
4681 as_bad (_("Used more than the available 96 rotating registers"));
4682 goto err;
4683 }
4684 break;
4685 case DYNREG_PR:
4686 if (num_alloced > 48)
4687 {
4688 as_bad (_("Used more than the available 48 rotating registers"));
4689 goto err;
4690 }
4691 break;
4692
4693 default:
4694 break;
4695 }
4696
4697 if (!*drpp)
4698 {
4699 *drpp = obstack_alloc (&notes, sizeof (*dr));
4700 memset (*drpp, 0, sizeof (*dr));
4701 }
4702
4703 name = obstack_alloc (&notes, len + 1);
4704 memcpy (name, start, len);
4705 name[len] = '\0';
4706
4707 dr = *drpp;
4708 dr->name = name;
4709 dr->num_regs = num_regs;
4710 dr->base = base_reg;
4711 drpp = &dr->next;
4712 base_reg += num_regs;
4713
4714 if (hash_insert (md.dynreg_hash, name, dr))
4715 {
4716 as_bad (_("Attempt to redefine register set `%s'"), name);
4717 obstack_free (&notes, name);
4718 goto err;
4719 }
4720
4721 if (*input_line_pointer != ',')
4722 break;
4723 ++input_line_pointer; /* skip comma */
4724 SKIP_WHITESPACE ();
4725 }
4726 demand_empty_rest_of_line ();
4727 return;
4728
4729 err:
4730 ignore_rest_of_line ();
4731 }
4732
4733 static void
4734 dot_byteorder (int byteorder)
4735 {
4736 segment_info_type *seginfo = seg_info (now_seg);
4737
4738 if (byteorder == -1)
4739 {
4740 if (seginfo->tc_segment_info_data.endian == 0)
4741 seginfo->tc_segment_info_data.endian = default_big_endian ? 1 : 2;
4742 byteorder = seginfo->tc_segment_info_data.endian == 1;
4743 }
4744 else
4745 seginfo->tc_segment_info_data.endian = byteorder ? 1 : 2;
4746
4747 if (target_big_endian != byteorder)
4748 {
4749 target_big_endian = byteorder;
4750 if (target_big_endian)
4751 {
4752 ia64_number_to_chars = number_to_chars_bigendian;
4753 ia64_float_to_chars = ia64_float_to_chars_bigendian;
4754 }
4755 else
4756 {
4757 ia64_number_to_chars = number_to_chars_littleendian;
4758 ia64_float_to_chars = ia64_float_to_chars_littleendian;
4759 }
4760 }
4761 }
4762
4763 static void
4764 dot_psr (int dummy ATTRIBUTE_UNUSED)
4765 {
4766 char *option;
4767 int ch;
4768
4769 while (1)
4770 {
4771 option = input_line_pointer;
4772 ch = get_symbol_end ();
4773 if (strcmp (option, "lsb") == 0)
4774 md.flags &= ~EF_IA_64_BE;
4775 else if (strcmp (option, "msb") == 0)
4776 md.flags |= EF_IA_64_BE;
4777 else if (strcmp (option, "abi32") == 0)
4778 md.flags &= ~EF_IA_64_ABI64;
4779 else if (strcmp (option, "abi64") == 0)
4780 md.flags |= EF_IA_64_ABI64;
4781 else
4782 as_bad (_("Unknown psr option `%s'"), option);
4783 *input_line_pointer = ch;
4784
4785 SKIP_WHITESPACE ();
4786 if (*input_line_pointer != ',')
4787 break;
4788
4789 ++input_line_pointer;
4790 SKIP_WHITESPACE ();
4791 }
4792 demand_empty_rest_of_line ();
4793 }
4794
4795 static void
4796 dot_ln (int dummy ATTRIBUTE_UNUSED)
4797 {
4798 new_logical_line (0, get_absolute_expression ());
4799 demand_empty_rest_of_line ();
4800 }
4801
4802 static void
4803 cross_section (int ref, void (*builder) (int), int ua)
4804 {
4805 char *start, *end;
4806 int saved_auto_align;
4807 unsigned int section_count;
4808
4809 SKIP_WHITESPACE ();
4810 start = input_line_pointer;
4811 if (*start == '"')
4812 {
4813 int len;
4814 char *name;
4815
4816 name = demand_copy_C_string (&len);
4817 obstack_free(&notes, name);
4818 if (!name)
4819 {
4820 ignore_rest_of_line ();
4821 return;
4822 }
4823 }
4824 else
4825 {
4826 char c = get_symbol_end ();
4827
4828 if (input_line_pointer == start)
4829 {
4830 as_bad (_("Missing section name"));
4831 ignore_rest_of_line ();
4832 return;
4833 }
4834 *input_line_pointer = c;
4835 }
4836 end = input_line_pointer;
4837 SKIP_WHITESPACE ();
4838 if (*input_line_pointer != ',')
4839 {
4840 as_bad (_("Comma expected after section name"));
4841 ignore_rest_of_line ();
4842 return;
4843 }
4844 *end = '\0';
4845 end = input_line_pointer + 1; /* skip comma */
4846 input_line_pointer = start;
4847 md.keep_pending_output = 1;
4848 section_count = bfd_count_sections (stdoutput);
4849 obj_elf_section (0);
4850 if (section_count != bfd_count_sections (stdoutput))
4851 as_warn (_("Creating sections with .xdataN/.xrealN/.xstringZ is deprecated."));
4852 input_line_pointer = end;
4853 saved_auto_align = md.auto_align;
4854 if (ua)
4855 md.auto_align = 0;
4856 (*builder) (ref);
4857 if (ua)
4858 md.auto_align = saved_auto_align;
4859 obj_elf_previous (0);
4860 md.keep_pending_output = 0;
4861 }
4862
4863 static void
4864 dot_xdata (int size)
4865 {
4866 cross_section (size, cons, 0);
4867 }
4868
4869 /* Why doesn't float_cons() call md_cons_align() the way cons() does? */
4870
4871 static void
4872 stmt_float_cons (int kind)
4873 {
4874 size_t alignment;
4875
4876 switch (kind)
4877 {
4878 case 'd':
4879 alignment = 8;
4880 break;
4881
4882 case 'x':
4883 case 'X':
4884 alignment = 16;
4885 break;
4886
4887 case 'f':
4888 default:
4889 alignment = 4;
4890 break;
4891 }
4892 ia64_do_align (alignment);
4893 float_cons (kind);
4894 }
4895
4896 static void
4897 stmt_cons_ua (int size)
4898 {
4899 int saved_auto_align = md.auto_align;
4900
4901 md.auto_align = 0;
4902 cons (size);
4903 md.auto_align = saved_auto_align;
4904 }
4905
4906 static void
4907 dot_xfloat_cons (int kind)
4908 {
4909 cross_section (kind, stmt_float_cons, 0);
4910 }
4911
4912 static void
4913 dot_xstringer (int zero)
4914 {
4915 cross_section (zero, stringer, 0);
4916 }
4917
4918 static void
4919 dot_xdata_ua (int size)
4920 {
4921 cross_section (size, cons, 1);
4922 }
4923
4924 static void
4925 dot_xfloat_cons_ua (int kind)
4926 {
4927 cross_section (kind, float_cons, 1);
4928 }
4929
4930 /* .reg.val <regname>,value */
4931
4932 static void
4933 dot_reg_val (int dummy ATTRIBUTE_UNUSED)
4934 {
4935 expressionS reg;
4936
4937 expression_and_evaluate (&reg);
4938 if (reg.X_op != O_register)
4939 {
4940 as_bad (_("Register name expected"));
4941 ignore_rest_of_line ();
4942 }
4943 else if (*input_line_pointer++ != ',')
4944 {
4945 as_bad (_("Comma expected"));
4946 ignore_rest_of_line ();
4947 }
4948 else
4949 {
4950 valueT value = get_absolute_expression ();
4951 int regno = reg.X_add_number;
4952 if (regno <= REG_GR || regno > REG_GR + 127)
4953 as_warn (_("Register value annotation ignored"));
4954 else
4955 {
4956 gr_values[regno - REG_GR].known = 1;
4957 gr_values[regno - REG_GR].value = value;
4958 gr_values[regno - REG_GR].path = md.path;
4959 }
4960 }
4961 demand_empty_rest_of_line ();
4962 }
4963
4964 /*
4965 .serialize.data
4966 .serialize.instruction
4967 */
4968 static void
4969 dot_serialize (int type)
4970 {
4971 insn_group_break (0, 0, 0);
4972 if (type)
4973 instruction_serialization ();
4974 else
4975 data_serialization ();
4976 insn_group_break (0, 0, 0);
4977 demand_empty_rest_of_line ();
4978 }
4979
4980 /* select dv checking mode
4981 .auto
4982 .explicit
4983 .default
4984
4985 A stop is inserted when changing modes
4986 */
4987
4988 static void
4989 dot_dv_mode (int type)
4990 {
4991 if (md.manual_bundling)
4992 as_warn (_("Directive invalid within a bundle"));
4993
4994 if (type == 'E' || type == 'A')
4995 md.mode_explicitly_set = 0;
4996 else
4997 md.mode_explicitly_set = 1;
4998
4999 md.detect_dv = 1;
5000 switch (type)
5001 {
5002 case 'A':
5003 case 'a':
5004 if (md.explicit_mode)
5005 insn_group_break (1, 0, 0);
5006 md.explicit_mode = 0;
5007 break;
5008 case 'E':
5009 case 'e':
5010 if (!md.explicit_mode)
5011 insn_group_break (1, 0, 0);
5012 md.explicit_mode = 1;
5013 break;
5014 default:
5015 case 'd':
5016 if (md.explicit_mode != md.default_explicit_mode)
5017 insn_group_break (1, 0, 0);
5018 md.explicit_mode = md.default_explicit_mode;
5019 md.mode_explicitly_set = 0;
5020 break;
5021 }
5022 }
5023
5024 static void
5025 print_prmask (valueT mask)
5026 {
5027 int regno;
5028 char *comma = "";
5029 for (regno = 0; regno < 64; regno++)
5030 {
5031 if (mask & ((valueT) 1 << regno))
5032 {
5033 fprintf (stderr, "%s p%d", comma, regno);
5034 comma = ",";
5035 }
5036 }
5037 }
5038
5039 /*
5040 .pred.rel.clear [p1 [,p2 [,...]]] (also .pred.rel "clear" or @clear)
5041 .pred.rel.imply p1, p2 (also .pred.rel "imply" or @imply)
5042 .pred.rel.mutex p1, p2 [,...] (also .pred.rel "mutex" or @mutex)
5043 .pred.safe_across_calls p1 [, p2 [,...]]
5044 */
5045
5046 static void
5047 dot_pred_rel (int type)
5048 {
5049 valueT mask = 0;
5050 int count = 0;
5051 int p1 = -1, p2 = -1;
5052
5053 if (type == 0)
5054 {
5055 if (*input_line_pointer == '"')
5056 {
5057 int len;
5058 char *form = demand_copy_C_string (&len);
5059
5060 if (strcmp (form, "mutex") == 0)
5061 type = 'm';
5062 else if (strcmp (form, "clear") == 0)
5063 type = 'c';
5064 else if (strcmp (form, "imply") == 0)
5065 type = 'i';
5066 obstack_free (&notes, form);
5067 }
5068 else if (*input_line_pointer == '@')
5069 {
5070 char *form = ++input_line_pointer;
5071 char c = get_symbol_end();
5072
5073 if (strcmp (form, "mutex") == 0)
5074 type = 'm';
5075 else if (strcmp (form, "clear") == 0)
5076 type = 'c';
5077 else if (strcmp (form, "imply") == 0)
5078 type = 'i';
5079 *input_line_pointer = c;
5080 }
5081 else
5082 {
5083 as_bad (_("Missing predicate relation type"));
5084 ignore_rest_of_line ();
5085 return;
5086 }
5087 if (type == 0)
5088 {
5089 as_bad (_("Unrecognized predicate relation type"));
5090 ignore_rest_of_line ();
5091 return;
5092 }
5093 if (*input_line_pointer == ',')
5094 ++input_line_pointer;
5095 SKIP_WHITESPACE ();
5096 }
5097
5098 while (1)
5099 {
5100 valueT bits = 1;
5101 int sep, regno;
5102 expressionS pr, *pr1, *pr2;
5103
5104 sep = parse_operand_and_eval (&pr, ',');
5105 if (pr.X_op == O_register
5106 && pr.X_add_number >= REG_P
5107 && pr.X_add_number <= REG_P + 63)
5108 {
5109 regno = pr.X_add_number - REG_P;
5110 bits <<= regno;
5111 count++;
5112 if (p1 == -1)
5113 p1 = regno;
5114 else if (p2 == -1)
5115 p2 = regno;
5116 }
5117 else if (type != 'i'
5118 && pr.X_op == O_subtract
5119 && (pr1 = symbol_get_value_expression (pr.X_add_symbol))
5120 && pr1->X_op == O_register
5121 && pr1->X_add_number >= REG_P
5122 && pr1->X_add_number <= REG_P + 63
5123 && (pr2 = symbol_get_value_expression (pr.X_op_symbol))
5124 && pr2->X_op == O_register
5125 && pr2->X_add_number >= REG_P
5126 && pr2->X_add_number <= REG_P + 63)
5127 {
5128 /* It's a range. */
5129 int stop;
5130
5131 regno = pr1->X_add_number - REG_P;
5132 stop = pr2->X_add_number - REG_P;
5133 if (regno >= stop)
5134 {
5135 as_bad (_("Bad register range"));
5136 ignore_rest_of_line ();
5137 return;
5138 }
5139 bits = ((bits << stop) << 1) - (bits << regno);
5140 count += stop - regno + 1;
5141 }
5142 else
5143 {
5144 as_bad (_("Predicate register expected"));
5145 ignore_rest_of_line ();
5146 return;
5147 }
5148 if (mask & bits)
5149 as_warn (_("Duplicate predicate register ignored"));
5150 mask |= bits;
5151 if (sep != ',')
5152 break;
5153 }
5154
5155 switch (type)
5156 {
5157 case 'c':
5158 if (count == 0)
5159 mask = ~(valueT) 0;
5160 clear_qp_mutex (mask);
5161 clear_qp_implies (mask, (valueT) 0);
5162 break;
5163 case 'i':
5164 if (count != 2 || p1 == -1 || p2 == -1)
5165 as_bad (_("Predicate source and target required"));
5166 else if (p1 == 0 || p2 == 0)
5167 as_bad (_("Use of p0 is not valid in this context"));
5168 else
5169 add_qp_imply (p1, p2);
5170 break;
5171 case 'm':
5172 if (count < 2)
5173 {
5174 as_bad (_("At least two PR arguments expected"));
5175 break;
5176 }
5177 else if (mask & 1)
5178 {
5179 as_bad (_("Use of p0 is not valid in this context"));
5180 break;
5181 }
5182 add_qp_mutex (mask);
5183 break;
5184 case 's':
5185 /* note that we don't override any existing relations */
5186 if (count == 0)
5187 {
5188 as_bad (_("At least one PR argument expected"));
5189 break;
5190 }
5191 if (md.debug_dv)
5192 {
5193 fprintf (stderr, "Safe across calls: ");
5194 print_prmask (mask);
5195 fprintf (stderr, "\n");
5196 }
5197 qp_safe_across_calls = mask;
5198 break;
5199 }
5200 demand_empty_rest_of_line ();
5201 }
5202
5203 /* .entry label [, label [, ...]]
5204 Hint to DV code that the given labels are to be considered entry points.
5205 Otherwise, only global labels are considered entry points. */
5206
5207 static void
5208 dot_entry (int dummy ATTRIBUTE_UNUSED)
5209 {
5210 const char *err;
5211 char *name;
5212 int c;
5213 symbolS *symbolP;
5214
5215 do
5216 {
5217 name = input_line_pointer;
5218 c = get_symbol_end ();
5219 symbolP = symbol_find_or_make (name);
5220
5221 err = hash_insert (md.entry_hash, S_GET_NAME (symbolP), (void *) symbolP);
5222 if (err)
5223 as_fatal (_("Inserting \"%s\" into entry hint table failed: %s"),
5224 name, err);
5225
5226 *input_line_pointer = c;
5227 SKIP_WHITESPACE ();
5228 c = *input_line_pointer;
5229 if (c == ',')
5230 {
5231 input_line_pointer++;
5232 SKIP_WHITESPACE ();
5233 if (*input_line_pointer == '\n')
5234 c = '\n';
5235 }
5236 }
5237 while (c == ',');
5238
5239 demand_empty_rest_of_line ();
5240 }
5241
5242 /* .mem.offset offset, base
5243 "base" is used to distinguish between offsets from a different base. */
5244
5245 static void
5246 dot_mem_offset (int dummy ATTRIBUTE_UNUSED)
5247 {
5248 md.mem_offset.hint = 1;
5249 md.mem_offset.offset = get_absolute_expression ();
5250 if (*input_line_pointer != ',')
5251 {
5252 as_bad (_("Comma expected"));
5253 ignore_rest_of_line ();
5254 return;
5255 }
5256 ++input_line_pointer;
5257 md.mem_offset.base = get_absolute_expression ();
5258 demand_empty_rest_of_line ();
5259 }
5260
5261 /* ia64-specific pseudo-ops: */
5262 const pseudo_typeS md_pseudo_table[] =
5263 {
5264 { "radix", dot_radix, 0 },
5265 { "lcomm", s_lcomm_bytes, 1 },
5266 { "loc", dot_loc, 0 },
5267 { "bss", dot_special_section, SPECIAL_SECTION_BSS },
5268 { "sbss", dot_special_section, SPECIAL_SECTION_SBSS },
5269 { "sdata", dot_special_section, SPECIAL_SECTION_SDATA },
5270 { "rodata", dot_special_section, SPECIAL_SECTION_RODATA },
5271 { "comment", dot_special_section, SPECIAL_SECTION_COMMENT },
5272 { "ia_64.unwind", dot_special_section, SPECIAL_SECTION_UNWIND },
5273 { "ia_64.unwind_info", dot_special_section, SPECIAL_SECTION_UNWIND_INFO },
5274 { "init_array", dot_special_section, SPECIAL_SECTION_INIT_ARRAY },
5275 { "fini_array", dot_special_section, SPECIAL_SECTION_FINI_ARRAY },
5276 { "proc", dot_proc, 0 },
5277 { "body", dot_body, 0 },
5278 { "prologue", dot_prologue, 0 },
5279 { "endp", dot_endp, 0 },
5280
5281 { "fframe", dot_fframe, 0 },
5282 { "vframe", dot_vframe, 0 },
5283 { "vframesp", dot_vframesp, 0 },
5284 { "vframepsp", dot_vframesp, 1 },
5285 { "save", dot_save, 0 },
5286 { "restore", dot_restore, 0 },
5287 { "restorereg", dot_restorereg, 0 },
5288 { "restorereg.p", dot_restorereg, 1 },
5289 { "handlerdata", dot_handlerdata, 0 },
5290 { "unwentry", dot_unwentry, 0 },
5291 { "altrp", dot_altrp, 0 },
5292 { "savesp", dot_savemem, 0 },
5293 { "savepsp", dot_savemem, 1 },
5294 { "save.g", dot_saveg, 0 },
5295 { "save.f", dot_savef, 0 },
5296 { "save.b", dot_saveb, 0 },
5297 { "save.gf", dot_savegf, 0 },
5298 { "spill", dot_spill, 0 },
5299 { "spillreg", dot_spillreg, 0 },
5300 { "spillsp", dot_spillmem, 0 },
5301 { "spillpsp", dot_spillmem, 1 },
5302 { "spillreg.p", dot_spillreg, 1 },
5303 { "spillsp.p", dot_spillmem, ~0 },
5304 { "spillpsp.p", dot_spillmem, ~1 },
5305 { "label_state", dot_label_state, 0 },
5306 { "copy_state", dot_copy_state, 0 },
5307 { "unwabi", dot_unwabi, 0 },
5308 { "personality", dot_personality, 0 },
5309 { "mii", dot_template, 0x0 },
5310 { "mli", dot_template, 0x2 }, /* old format, for compatibility */
5311 { "mlx", dot_template, 0x2 },
5312 { "mmi", dot_template, 0x4 },
5313 { "mfi", dot_template, 0x6 },
5314 { "mmf", dot_template, 0x7 },
5315 { "mib", dot_template, 0x8 },
5316 { "mbb", dot_template, 0x9 },
5317 { "bbb", dot_template, 0xb },
5318 { "mmb", dot_template, 0xc },
5319 { "mfb", dot_template, 0xe },
5320 { "align", dot_align, 0 },
5321 { "regstk", dot_regstk, 0 },
5322 { "rotr", dot_rot, DYNREG_GR },
5323 { "rotf", dot_rot, DYNREG_FR },
5324 { "rotp", dot_rot, DYNREG_PR },
5325 { "lsb", dot_byteorder, 0 },
5326 { "msb", dot_byteorder, 1 },
5327 { "psr", dot_psr, 0 },
5328 { "alias", dot_alias, 0 },
5329 { "secalias", dot_alias, 1 },
5330 { "ln", dot_ln, 0 }, /* source line info (for debugging) */
5331
5332 { "xdata1", dot_xdata, 1 },
5333 { "xdata2", dot_xdata, 2 },
5334 { "xdata4", dot_xdata, 4 },
5335 { "xdata8", dot_xdata, 8 },
5336 { "xdata16", dot_xdata, 16 },
5337 { "xreal4", dot_xfloat_cons, 'f' },
5338 { "xreal8", dot_xfloat_cons, 'd' },
5339 { "xreal10", dot_xfloat_cons, 'x' },
5340 { "xreal16", dot_xfloat_cons, 'X' },
5341 { "xstring", dot_xstringer, 8 + 0 },
5342 { "xstringz", dot_xstringer, 8 + 1 },
5343
5344 /* unaligned versions: */
5345 { "xdata2.ua", dot_xdata_ua, 2 },
5346 { "xdata4.ua", dot_xdata_ua, 4 },
5347 { "xdata8.ua", dot_xdata_ua, 8 },
5348 { "xdata16.ua", dot_xdata_ua, 16 },
5349 { "xreal4.ua", dot_xfloat_cons_ua, 'f' },
5350 { "xreal8.ua", dot_xfloat_cons_ua, 'd' },
5351 { "xreal10.ua", dot_xfloat_cons_ua, 'x' },
5352 { "xreal16.ua", dot_xfloat_cons_ua, 'X' },
5353
5354 /* annotations/DV checking support */
5355 { "entry", dot_entry, 0 },
5356 { "mem.offset", dot_mem_offset, 0 },
5357 { "pred.rel", dot_pred_rel, 0 },
5358 { "pred.rel.clear", dot_pred_rel, 'c' },
5359 { "pred.rel.imply", dot_pred_rel, 'i' },
5360 { "pred.rel.mutex", dot_pred_rel, 'm' },
5361 { "pred.safe_across_calls", dot_pred_rel, 's' },
5362 { "reg.val", dot_reg_val, 0 },
5363 { "serialize.data", dot_serialize, 0 },
5364 { "serialize.instruction", dot_serialize, 1 },
5365 { "auto", dot_dv_mode, 'a' },
5366 { "explicit", dot_dv_mode, 'e' },
5367 { "default", dot_dv_mode, 'd' },
5368
5369 /* ??? These are needed to make gas/testsuite/gas/elf/ehopt.s work.
5370 IA-64 aligns data allocation pseudo-ops by default, so we have to
5371 tell it that these ones are supposed to be unaligned. Long term,
5372 should rewrite so that only IA-64 specific data allocation pseudo-ops
5373 are aligned by default. */
5374 {"2byte", stmt_cons_ua, 2},
5375 {"4byte", stmt_cons_ua, 4},
5376 {"8byte", stmt_cons_ua, 8},
5377
5378 #ifdef TE_VMS
5379 {"vms_common", obj_elf_vms_common, 0},
5380 #endif
5381
5382 { NULL, 0, 0 }
5383 };
5384
5385 static const struct pseudo_opcode
5386 {
5387 const char *name;
5388 void (*handler) (int);
5389 int arg;
5390 }
5391 pseudo_opcode[] =
5392 {
5393 /* these are more like pseudo-ops, but don't start with a dot */
5394 { "data1", cons, 1 },
5395 { "data2", cons, 2 },
5396 { "data4", cons, 4 },
5397 { "data8", cons, 8 },
5398 { "data16", cons, 16 },
5399 { "real4", stmt_float_cons, 'f' },
5400 { "real8", stmt_float_cons, 'd' },
5401 { "real10", stmt_float_cons, 'x' },
5402 { "real16", stmt_float_cons, 'X' },
5403 { "string", stringer, 8 + 0 },
5404 { "stringz", stringer, 8 + 1 },
5405
5406 /* unaligned versions: */
5407 { "data2.ua", stmt_cons_ua, 2 },
5408 { "data4.ua", stmt_cons_ua, 4 },
5409 { "data8.ua", stmt_cons_ua, 8 },
5410 { "data16.ua", stmt_cons_ua, 16 },
5411 { "real4.ua", float_cons, 'f' },
5412 { "real8.ua", float_cons, 'd' },
5413 { "real10.ua", float_cons, 'x' },
5414 { "real16.ua", float_cons, 'X' },
5415 };
5416
5417 /* Declare a register by creating a symbol for it and entering it in
5418 the symbol table. */
5419
5420 static symbolS *
5421 declare_register (const char *name, unsigned int regnum)
5422 {
5423 const char *err;
5424 symbolS *sym;
5425
5426 sym = symbol_create (name, reg_section, regnum, &zero_address_frag);
5427
5428 err = hash_insert (md.reg_hash, S_GET_NAME (sym), (void *) sym);
5429 if (err)
5430 as_fatal ("Inserting \"%s\" into register table failed: %s",
5431 name, err);
5432
5433 return sym;
5434 }
5435
5436 static void
5437 declare_register_set (const char *prefix,
5438 unsigned int num_regs,
5439 unsigned int base_regnum)
5440 {
5441 char name[8];
5442 unsigned int i;
5443
5444 for (i = 0; i < num_regs; ++i)
5445 {
5446 snprintf (name, sizeof (name), "%s%u", prefix, i);
5447 declare_register (name, base_regnum + i);
5448 }
5449 }
5450
5451 static unsigned int
5452 operand_width (enum ia64_opnd opnd)
5453 {
5454 const struct ia64_operand *odesc = &elf64_ia64_operands[opnd];
5455 unsigned int bits = 0;
5456 int i;
5457
5458 bits = 0;
5459 for (i = 0; i < NELEMS (odesc->field) && odesc->field[i].bits; ++i)
5460 bits += odesc->field[i].bits;
5461
5462 return bits;
5463 }
5464
5465 static enum operand_match_result
5466 operand_match (const struct ia64_opcode *idesc, int res_index, expressionS *e)
5467 {
5468 enum ia64_opnd opnd = idesc->operands[res_index];
5469 int bits, relocatable = 0;
5470 struct insn_fix *fix;
5471 bfd_signed_vma val;
5472
5473 switch (opnd)
5474 {
5475 /* constants: */
5476
5477 case IA64_OPND_AR_CCV:
5478 if (e->X_op == O_register && e->X_add_number == REG_AR + 32)
5479 return OPERAND_MATCH;
5480 break;
5481
5482 case IA64_OPND_AR_CSD:
5483 if (e->X_op == O_register && e->X_add_number == REG_AR + 25)
5484 return OPERAND_MATCH;
5485 break;
5486
5487 case IA64_OPND_AR_PFS:
5488 if (e->X_op == O_register && e->X_add_number == REG_AR + 64)
5489 return OPERAND_MATCH;
5490 break;
5491
5492 case IA64_OPND_GR0:
5493 if (e->X_op == O_register && e->X_add_number == REG_GR + 0)
5494 return OPERAND_MATCH;
5495 break;
5496
5497 case IA64_OPND_IP:
5498 if (e->X_op == O_register && e->X_add_number == REG_IP)
5499 return OPERAND_MATCH;
5500 break;
5501
5502 case IA64_OPND_PR:
5503 if (e->X_op == O_register && e->X_add_number == REG_PR)
5504 return OPERAND_MATCH;
5505 break;
5506
5507 case IA64_OPND_PR_ROT:
5508 if (e->X_op == O_register && e->X_add_number == REG_PR_ROT)
5509 return OPERAND_MATCH;
5510 break;
5511
5512 case IA64_OPND_PSR:
5513 if (e->X_op == O_register && e->X_add_number == REG_PSR)
5514 return OPERAND_MATCH;
5515 break;
5516
5517 case IA64_OPND_PSR_L:
5518 if (e->X_op == O_register && e->X_add_number == REG_PSR_L)
5519 return OPERAND_MATCH;
5520 break;
5521
5522 case IA64_OPND_PSR_UM:
5523 if (e->X_op == O_register && e->X_add_number == REG_PSR_UM)
5524 return OPERAND_MATCH;
5525 break;
5526
5527 case IA64_OPND_C1:
5528 if (e->X_op == O_constant)
5529 {
5530 if (e->X_add_number == 1)
5531 return OPERAND_MATCH;
5532 else
5533 return OPERAND_OUT_OF_RANGE;
5534 }
5535 break;
5536
5537 case IA64_OPND_C8:
5538 if (e->X_op == O_constant)
5539 {
5540 if (e->X_add_number == 8)
5541 return OPERAND_MATCH;
5542 else
5543 return OPERAND_OUT_OF_RANGE;
5544 }
5545 break;
5546
5547 case IA64_OPND_C16:
5548 if (e->X_op == O_constant)
5549 {
5550 if (e->X_add_number == 16)
5551 return OPERAND_MATCH;
5552 else
5553 return OPERAND_OUT_OF_RANGE;
5554 }
5555 break;
5556
5557 /* register operands: */
5558
5559 case IA64_OPND_AR3:
5560 if (e->X_op == O_register && e->X_add_number >= REG_AR
5561 && e->X_add_number < REG_AR + 128)
5562 return OPERAND_MATCH;
5563 break;
5564
5565 case IA64_OPND_B1:
5566 case IA64_OPND_B2:
5567 if (e->X_op == O_register && e->X_add_number >= REG_BR
5568 && e->X_add_number < REG_BR + 8)
5569 return OPERAND_MATCH;
5570 break;
5571
5572 case IA64_OPND_CR3:
5573 if (e->X_op == O_register && e->X_add_number >= REG_CR
5574 && e->X_add_number < REG_CR + 128)
5575 return OPERAND_MATCH;
5576 break;
5577
5578 case IA64_OPND_DAHR3:
5579 if (e->X_op == O_register && e->X_add_number >= REG_DAHR
5580 && e->X_add_number < REG_DAHR + 8)
5581 return OPERAND_MATCH;
5582 break;
5583
5584 case IA64_OPND_F1:
5585 case IA64_OPND_F2:
5586 case IA64_OPND_F3:
5587 case IA64_OPND_F4:
5588 if (e->X_op == O_register && e->X_add_number >= REG_FR
5589 && e->X_add_number < REG_FR + 128)
5590 return OPERAND_MATCH;
5591 break;
5592
5593 case IA64_OPND_P1:
5594 case IA64_OPND_P2:
5595 if (e->X_op == O_register && e->X_add_number >= REG_P
5596 && e->X_add_number < REG_P + 64)
5597 return OPERAND_MATCH;
5598 break;
5599
5600 case IA64_OPND_R1:
5601 case IA64_OPND_R2:
5602 case IA64_OPND_R3:
5603 if (e->X_op == O_register && e->X_add_number >= REG_GR
5604 && e->X_add_number < REG_GR + 128)
5605 return OPERAND_MATCH;
5606 break;
5607
5608 case IA64_OPND_R3_2:
5609 if (e->X_op == O_register && e->X_add_number >= REG_GR)
5610 {
5611 if (e->X_add_number < REG_GR + 4)
5612 return OPERAND_MATCH;
5613 else if (e->X_add_number < REG_GR + 128)
5614 return OPERAND_OUT_OF_RANGE;
5615 }
5616 break;
5617
5618 /* indirect operands: */
5619 case IA64_OPND_CPUID_R3:
5620 case IA64_OPND_DBR_R3:
5621 case IA64_OPND_DTR_R3:
5622 case IA64_OPND_ITR_R3:
5623 case IA64_OPND_IBR_R3:
5624 case IA64_OPND_MSR_R3:
5625 case IA64_OPND_PKR_R3:
5626 case IA64_OPND_PMC_R3:
5627 case IA64_OPND_PMD_R3:
5628 case IA64_OPND_DAHR_R3:
5629 case IA64_OPND_RR_R3:
5630 if (e->X_op == O_index && e->X_op_symbol
5631 && (S_GET_VALUE (e->X_op_symbol) - IND_CPUID
5632 == opnd - IA64_OPND_CPUID_R3))
5633 return OPERAND_MATCH;
5634 break;
5635
5636 case IA64_OPND_MR3:
5637 if (e->X_op == O_index && !e->X_op_symbol)
5638 return OPERAND_MATCH;
5639 break;
5640
5641 /* immediate operands: */
5642 case IA64_OPND_CNT2a:
5643 case IA64_OPND_LEN4:
5644 case IA64_OPND_LEN6:
5645 bits = operand_width (idesc->operands[res_index]);
5646 if (e->X_op == O_constant)
5647 {
5648 if ((bfd_vma) (e->X_add_number - 1) < ((bfd_vma) 1 << bits))
5649 return OPERAND_MATCH;
5650 else
5651 return OPERAND_OUT_OF_RANGE;
5652 }
5653 break;
5654
5655 case IA64_OPND_CNT2b:
5656 if (e->X_op == O_constant)
5657 {
5658 if ((bfd_vma) (e->X_add_number - 1) < 3)
5659 return OPERAND_MATCH;
5660 else
5661 return OPERAND_OUT_OF_RANGE;
5662 }
5663 break;
5664
5665 case IA64_OPND_CNT2c:
5666 val = e->X_add_number;
5667 if (e->X_op == O_constant)
5668 {
5669 if ((val == 0 || val == 7 || val == 15 || val == 16))
5670 return OPERAND_MATCH;
5671 else
5672 return OPERAND_OUT_OF_RANGE;
5673 }
5674 break;
5675
5676 case IA64_OPND_SOR:
5677 /* SOR must be an integer multiple of 8 */
5678 if (e->X_op == O_constant && e->X_add_number & 0x7)
5679 return OPERAND_OUT_OF_RANGE;
5680 case IA64_OPND_SOF:
5681 case IA64_OPND_SOL:
5682 if (e->X_op == O_constant)
5683 {
5684 if ((bfd_vma) e->X_add_number <= 96)
5685 return OPERAND_MATCH;
5686 else
5687 return OPERAND_OUT_OF_RANGE;
5688 }
5689 break;
5690
5691 case IA64_OPND_IMMU62:
5692 if (e->X_op == O_constant)
5693 {
5694 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << 62))
5695 return OPERAND_MATCH;
5696 else
5697 return OPERAND_OUT_OF_RANGE;
5698 }
5699 else
5700 {
5701 /* FIXME -- need 62-bit relocation type */
5702 as_bad (_("62-bit relocation not yet implemented"));
5703 }
5704 break;
5705
5706 case IA64_OPND_IMMU64:
5707 if (e->X_op == O_symbol || e->X_op == O_pseudo_fixup
5708 || e->X_op == O_subtract)
5709 {
5710 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5711 fix->code = BFD_RELOC_IA64_IMM64;
5712 if (e->X_op != O_subtract)
5713 {
5714 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5715 if (e->X_op == O_pseudo_fixup)
5716 e->X_op = O_symbol;
5717 }
5718
5719 fix->opnd = idesc->operands[res_index];
5720 fix->expr = *e;
5721 fix->is_pcrel = 0;
5722 ++CURR_SLOT.num_fixups;
5723 return OPERAND_MATCH;
5724 }
5725 else if (e->X_op == O_constant)
5726 return OPERAND_MATCH;
5727 break;
5728
5729 case IA64_OPND_IMMU5b:
5730 if (e->X_op == O_constant)
5731 {
5732 val = e->X_add_number;
5733 if (val >= 32 && val <= 63)
5734 return OPERAND_MATCH;
5735 else
5736 return OPERAND_OUT_OF_RANGE;
5737 }
5738 break;
5739
5740 case IA64_OPND_CCNT5:
5741 case IA64_OPND_CNT5:
5742 case IA64_OPND_CNT6:
5743 case IA64_OPND_CPOS6a:
5744 case IA64_OPND_CPOS6b:
5745 case IA64_OPND_CPOS6c:
5746 case IA64_OPND_IMMU2:
5747 case IA64_OPND_IMMU7a:
5748 case IA64_OPND_IMMU7b:
5749 case IA64_OPND_IMMU16:
5750 case IA64_OPND_IMMU19:
5751 case IA64_OPND_IMMU21:
5752 case IA64_OPND_IMMU24:
5753 case IA64_OPND_MBTYPE4:
5754 case IA64_OPND_MHTYPE8:
5755 case IA64_OPND_POS6:
5756 bits = operand_width (idesc->operands[res_index]);
5757 if (e->X_op == O_constant)
5758 {
5759 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
5760 return OPERAND_MATCH;
5761 else
5762 return OPERAND_OUT_OF_RANGE;
5763 }
5764 break;
5765
5766 case IA64_OPND_IMMU9:
5767 bits = operand_width (idesc->operands[res_index]);
5768 if (e->X_op == O_constant)
5769 {
5770 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
5771 {
5772 int lobits = e->X_add_number & 0x3;
5773 if (((bfd_vma) e->X_add_number & 0x3C) != 0 && lobits == 0)
5774 e->X_add_number |= (bfd_vma) 0x3;
5775 return OPERAND_MATCH;
5776 }
5777 else
5778 return OPERAND_OUT_OF_RANGE;
5779 }
5780 break;
5781
5782 case IA64_OPND_IMM44:
5783 /* least 16 bits must be zero */
5784 if ((e->X_add_number & 0xffff) != 0)
5785 /* XXX technically, this is wrong: we should not be issuing warning
5786 messages until we're sure this instruction pattern is going to
5787 be used! */
5788 as_warn (_("lower 16 bits of mask ignored"));
5789
5790 if (e->X_op == O_constant)
5791 {
5792 if (((e->X_add_number >= 0
5793 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 44))
5794 || (e->X_add_number < 0
5795 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 44))))
5796 {
5797 /* sign-extend */
5798 if (e->X_add_number >= 0
5799 && (e->X_add_number & ((bfd_vma) 1 << 43)) != 0)
5800 {
5801 e->X_add_number |= ~(((bfd_vma) 1 << 44) - 1);
5802 }
5803 return OPERAND_MATCH;
5804 }
5805 else
5806 return OPERAND_OUT_OF_RANGE;
5807 }
5808 break;
5809
5810 case IA64_OPND_IMM17:
5811 /* bit 0 is a don't care (pr0 is hardwired to 1) */
5812 if (e->X_op == O_constant)
5813 {
5814 if (((e->X_add_number >= 0
5815 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 17))
5816 || (e->X_add_number < 0
5817 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 17))))
5818 {
5819 /* sign-extend */
5820 if (e->X_add_number >= 0
5821 && (e->X_add_number & ((bfd_vma) 1 << 16)) != 0)
5822 {
5823 e->X_add_number |= ~(((bfd_vma) 1 << 17) - 1);
5824 }
5825 return OPERAND_MATCH;
5826 }
5827 else
5828 return OPERAND_OUT_OF_RANGE;
5829 }
5830 break;
5831
5832 case IA64_OPND_IMM14:
5833 case IA64_OPND_IMM22:
5834 relocatable = 1;
5835 case IA64_OPND_IMM1:
5836 case IA64_OPND_IMM8:
5837 case IA64_OPND_IMM8U4:
5838 case IA64_OPND_IMM8M1:
5839 case IA64_OPND_IMM8M1U4:
5840 case IA64_OPND_IMM8M1U8:
5841 case IA64_OPND_IMM9a:
5842 case IA64_OPND_IMM9b:
5843 bits = operand_width (idesc->operands[res_index]);
5844 if (relocatable && (e->X_op == O_symbol
5845 || e->X_op == O_subtract
5846 || e->X_op == O_pseudo_fixup))
5847 {
5848 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5849
5850 if (idesc->operands[res_index] == IA64_OPND_IMM14)
5851 fix->code = BFD_RELOC_IA64_IMM14;
5852 else
5853 fix->code = BFD_RELOC_IA64_IMM22;
5854
5855 if (e->X_op != O_subtract)
5856 {
5857 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5858 if (e->X_op == O_pseudo_fixup)
5859 e->X_op = O_symbol;
5860 }
5861
5862 fix->opnd = idesc->operands[res_index];
5863 fix->expr = *e;
5864 fix->is_pcrel = 0;
5865 ++CURR_SLOT.num_fixups;
5866 return OPERAND_MATCH;
5867 }
5868 else if (e->X_op != O_constant
5869 && ! (e->X_op == O_big && opnd == IA64_OPND_IMM8M1U8))
5870 return OPERAND_MISMATCH;
5871
5872 if (opnd == IA64_OPND_IMM8M1U4)
5873 {
5874 /* Zero is not valid for unsigned compares that take an adjusted
5875 constant immediate range. */
5876 if (e->X_add_number == 0)
5877 return OPERAND_OUT_OF_RANGE;
5878
5879 /* Sign-extend 32-bit unsigned numbers, so that the following range
5880 checks will work. */
5881 val = e->X_add_number;
5882 if (((val & (~(bfd_vma) 0 << 32)) == 0)
5883 && ((val & ((bfd_vma) 1 << 31)) != 0))
5884 val = ((val << 32) >> 32);
5885
5886 /* Check for 0x100000000. This is valid because
5887 0x100000000-1 is the same as ((uint32_t) -1). */
5888 if (val == ((bfd_signed_vma) 1 << 32))
5889 return OPERAND_MATCH;
5890
5891 val = val - 1;
5892 }
5893 else if (opnd == IA64_OPND_IMM8M1U8)
5894 {
5895 /* Zero is not valid for unsigned compares that take an adjusted
5896 constant immediate range. */
5897 if (e->X_add_number == 0)
5898 return OPERAND_OUT_OF_RANGE;
5899
5900 /* Check for 0x10000000000000000. */
5901 if (e->X_op == O_big)
5902 {
5903 if (generic_bignum[0] == 0
5904 && generic_bignum[1] == 0
5905 && generic_bignum[2] == 0
5906 && generic_bignum[3] == 0
5907 && generic_bignum[4] == 1)
5908 return OPERAND_MATCH;
5909 else
5910 return OPERAND_OUT_OF_RANGE;
5911 }
5912 else
5913 val = e->X_add_number - 1;
5914 }
5915 else if (opnd == IA64_OPND_IMM8M1)
5916 val = e->X_add_number - 1;
5917 else if (opnd == IA64_OPND_IMM8U4)
5918 {
5919 /* Sign-extend 32-bit unsigned numbers, so that the following range
5920 checks will work. */
5921 val = e->X_add_number;
5922 if (((val & (~(bfd_vma) 0 << 32)) == 0)
5923 && ((val & ((bfd_vma) 1 << 31)) != 0))
5924 val = ((val << 32) >> 32);
5925 }
5926 else
5927 val = e->X_add_number;
5928
5929 if ((val >= 0 && (bfd_vma) val < ((bfd_vma) 1 << (bits - 1)))
5930 || (val < 0 && (bfd_vma) -val <= ((bfd_vma) 1 << (bits - 1))))
5931 return OPERAND_MATCH;
5932 else
5933 return OPERAND_OUT_OF_RANGE;
5934
5935 case IA64_OPND_INC3:
5936 /* +/- 1, 4, 8, 16 */
5937 val = e->X_add_number;
5938 if (val < 0)
5939 val = -val;
5940 if (e->X_op == O_constant)
5941 {
5942 if ((val == 1 || val == 4 || val == 8 || val == 16))
5943 return OPERAND_MATCH;
5944 else
5945 return OPERAND_OUT_OF_RANGE;
5946 }
5947 break;
5948
5949 case IA64_OPND_TGT25:
5950 case IA64_OPND_TGT25b:
5951 case IA64_OPND_TGT25c:
5952 case IA64_OPND_TGT64:
5953 if (e->X_op == O_symbol)
5954 {
5955 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5956 if (opnd == IA64_OPND_TGT25)
5957 fix->code = BFD_RELOC_IA64_PCREL21F;
5958 else if (opnd == IA64_OPND_TGT25b)
5959 fix->code = BFD_RELOC_IA64_PCREL21M;
5960 else if (opnd == IA64_OPND_TGT25c)
5961 fix->code = BFD_RELOC_IA64_PCREL21B;
5962 else if (opnd == IA64_OPND_TGT64)
5963 fix->code = BFD_RELOC_IA64_PCREL60B;
5964 else
5965 abort ();
5966
5967 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5968 fix->opnd = idesc->operands[res_index];
5969 fix->expr = *e;
5970 fix->is_pcrel = 1;
5971 ++CURR_SLOT.num_fixups;
5972 return OPERAND_MATCH;
5973 }
5974 case IA64_OPND_TAG13:
5975 case IA64_OPND_TAG13b:
5976 switch (e->X_op)
5977 {
5978 case O_constant:
5979 return OPERAND_MATCH;
5980
5981 case O_symbol:
5982 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5983 /* There are no external relocs for TAG13/TAG13b fields, so we
5984 create a dummy reloc. This will not live past md_apply_fix. */
5985 fix->code = BFD_RELOC_UNUSED;
5986 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5987 fix->opnd = idesc->operands[res_index];
5988 fix->expr = *e;
5989 fix->is_pcrel = 1;
5990 ++CURR_SLOT.num_fixups;
5991 return OPERAND_MATCH;
5992
5993 default:
5994 break;
5995 }
5996 break;
5997
5998 case IA64_OPND_LDXMOV:
5999 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
6000 fix->code = BFD_RELOC_IA64_LDXMOV;
6001 fix->opnd = idesc->operands[res_index];
6002 fix->expr = *e;
6003 fix->is_pcrel = 0;
6004 ++CURR_SLOT.num_fixups;
6005 return OPERAND_MATCH;
6006
6007 case IA64_OPND_STRD5b:
6008 if (e->X_op == O_constant)
6009 {
6010 /* 5-bit signed scaled by 64 */
6011 if ((e->X_add_number <= ( 0xf << 6 ))
6012 && (e->X_add_number >= -( 0x10 << 6 )))
6013 {
6014
6015 /* Must be a multiple of 64 */
6016 if ((e->X_add_number & 0x3f) != 0)
6017 as_warn (_("stride must be a multiple of 64; lower 6 bits ignored"));
6018
6019 e->X_add_number &= ~ 0x3f;
6020 return OPERAND_MATCH;
6021 }
6022 else
6023 return OPERAND_OUT_OF_RANGE;
6024 }
6025 break;
6026 case IA64_OPND_CNT6a:
6027 if (e->X_op == O_constant)
6028 {
6029 /* 6-bit unsigned biased by 1 -- count 0 is meaningless */
6030 if ((e->X_add_number <= 64)
6031 && (e->X_add_number > 0) )
6032 {
6033 return OPERAND_MATCH;
6034 }
6035 else
6036 return OPERAND_OUT_OF_RANGE;
6037 }
6038 break;
6039
6040 default:
6041 break;
6042 }
6043 return OPERAND_MISMATCH;
6044 }
6045
6046 static int
6047 parse_operand (expressionS *e, int more)
6048 {
6049 int sep = '\0';
6050
6051 memset (e, 0, sizeof (*e));
6052 e->X_op = O_absent;
6053 SKIP_WHITESPACE ();
6054 expression (e);
6055 sep = *input_line_pointer;
6056 if (more && (sep == ',' || sep == more))
6057 ++input_line_pointer;
6058 return sep;
6059 }
6060
6061 static int
6062 parse_operand_and_eval (expressionS *e, int more)
6063 {
6064 int sep = parse_operand (e, more);
6065 resolve_expression (e);
6066 return sep;
6067 }
6068
6069 static int
6070 parse_operand_maybe_eval (expressionS *e, int more, enum ia64_opnd op)
6071 {
6072 int sep = parse_operand (e, more);
6073 switch (op)
6074 {
6075 case IA64_OPND_IMM14:
6076 case IA64_OPND_IMM22:
6077 case IA64_OPND_IMMU64:
6078 case IA64_OPND_TGT25:
6079 case IA64_OPND_TGT25b:
6080 case IA64_OPND_TGT25c:
6081 case IA64_OPND_TGT64:
6082 case IA64_OPND_TAG13:
6083 case IA64_OPND_TAG13b:
6084 case IA64_OPND_LDXMOV:
6085 break;
6086 default:
6087 resolve_expression (e);
6088 break;
6089 }
6090 return sep;
6091 }
6092
6093 /* Returns the next entry in the opcode table that matches the one in
6094 IDESC, and frees the entry in IDESC. If no matching entry is
6095 found, NULL is returned instead. */
6096
6097 static struct ia64_opcode *
6098 get_next_opcode (struct ia64_opcode *idesc)
6099 {
6100 struct ia64_opcode *next = ia64_find_next_opcode (idesc);
6101 ia64_free_opcode (idesc);
6102 return next;
6103 }
6104
6105 /* Parse the operands for the opcode and find the opcode variant that
6106 matches the specified operands, or NULL if no match is possible. */
6107
6108 static struct ia64_opcode *
6109 parse_operands (struct ia64_opcode *idesc)
6110 {
6111 int i = 0, highest_unmatched_operand, num_operands = 0, num_outputs = 0;
6112 int error_pos, out_of_range_pos, curr_out_of_range_pos, sep = 0;
6113 int reg1, reg2;
6114 char reg_class;
6115 enum ia64_opnd expected_operand = IA64_OPND_NIL;
6116 enum operand_match_result result;
6117 char mnemonic[129];
6118 char *first_arg = 0, *end, *saved_input_pointer;
6119 unsigned int sof;
6120
6121 gas_assert (strlen (idesc->name) <= 128);
6122
6123 strcpy (mnemonic, idesc->name);
6124 if (idesc->operands[2] == IA64_OPND_SOF
6125 || idesc->operands[1] == IA64_OPND_SOF)
6126 {
6127 /* To make the common idiom "alloc loc?=ar.pfs,0,1,0,0" work, we
6128 can't parse the first operand until we have parsed the
6129 remaining operands of the "alloc" instruction. */
6130 SKIP_WHITESPACE ();
6131 first_arg = input_line_pointer;
6132 end = strchr (input_line_pointer, '=');
6133 if (!end)
6134 {
6135 as_bad (_("Expected separator `='"));
6136 return 0;
6137 }
6138 input_line_pointer = end + 1;
6139 ++i;
6140 ++num_outputs;
6141 }
6142
6143 for (; ; ++i)
6144 {
6145 if (i < NELEMS (CURR_SLOT.opnd))
6146 {
6147 sep = parse_operand_maybe_eval (CURR_SLOT.opnd + i, '=',
6148 idesc->operands[i]);
6149 if (CURR_SLOT.opnd[i].X_op == O_absent)
6150 break;
6151 }
6152 else
6153 {
6154 expressionS dummy;
6155
6156 sep = parse_operand (&dummy, '=');
6157 if (dummy.X_op == O_absent)
6158 break;
6159 }
6160
6161 ++num_operands;
6162
6163 if (sep != '=' && sep != ',')
6164 break;
6165
6166 if (sep == '=')
6167 {
6168 if (num_outputs > 0)
6169 as_bad (_("Duplicate equal sign (=) in instruction"));
6170 else
6171 num_outputs = i + 1;
6172 }
6173 }
6174 if (sep != '\0')
6175 {
6176 as_bad (_("Illegal operand separator `%c'"), sep);
6177 return 0;
6178 }
6179
6180 if (idesc->operands[2] == IA64_OPND_SOF
6181 || idesc->operands[1] == IA64_OPND_SOF)
6182 {
6183 /* Map alloc r1=ar.pfs,i,l,o,r to alloc r1=ar.pfs,(i+l+o),(i+l),r.
6184 Note, however, that due to that mapping operand numbers in error
6185 messages for any of the constant operands will not be correct. */
6186 know (strcmp (idesc->name, "alloc") == 0);
6187 /* The first operand hasn't been parsed/initialized, yet (but
6188 num_operands intentionally doesn't account for that). */
6189 i = num_operands > 4 ? 2 : 1;
6190 #define FORCE_CONST(n) (CURR_SLOT.opnd[n].X_op == O_constant \
6191 ? CURR_SLOT.opnd[n].X_add_number \
6192 : 0)
6193 sof = set_regstack (FORCE_CONST(i),
6194 FORCE_CONST(i + 1),
6195 FORCE_CONST(i + 2),
6196 FORCE_CONST(i + 3));
6197 #undef FORCE_CONST
6198
6199 /* now we can parse the first arg: */
6200 saved_input_pointer = input_line_pointer;
6201 input_line_pointer = first_arg;
6202 sep = parse_operand_maybe_eval (CURR_SLOT.opnd + 0, '=',
6203 idesc->operands[0]);
6204 if (sep != '=')
6205 --num_outputs; /* force error */
6206 input_line_pointer = saved_input_pointer;
6207
6208 CURR_SLOT.opnd[i].X_add_number = sof;
6209 if (CURR_SLOT.opnd[i + 1].X_op == O_constant
6210 && CURR_SLOT.opnd[i + 2].X_op == O_constant)
6211 CURR_SLOT.opnd[i + 1].X_add_number
6212 = sof - CURR_SLOT.opnd[i + 2].X_add_number;
6213 else
6214 CURR_SLOT.opnd[i + 1].X_op = O_illegal;
6215 CURR_SLOT.opnd[i + 2] = CURR_SLOT.opnd[i + 3];
6216 }
6217
6218 highest_unmatched_operand = -4;
6219 curr_out_of_range_pos = -1;
6220 error_pos = 0;
6221 for (; idesc; idesc = get_next_opcode (idesc))
6222 {
6223 if (num_outputs != idesc->num_outputs)
6224 continue; /* mismatch in # of outputs */
6225 if (highest_unmatched_operand < 0)
6226 highest_unmatched_operand |= 1;
6227 if (num_operands > NELEMS (idesc->operands)
6228 || (num_operands < NELEMS (idesc->operands)
6229 && idesc->operands[num_operands])
6230 || (num_operands > 0 && !idesc->operands[num_operands - 1]))
6231 continue; /* mismatch in number of arguments */
6232 if (highest_unmatched_operand < 0)
6233 highest_unmatched_operand |= 2;
6234
6235 CURR_SLOT.num_fixups = 0;
6236
6237 /* Try to match all operands. If we see an out-of-range operand,
6238 then continue trying to match the rest of the operands, since if
6239 the rest match, then this idesc will give the best error message. */
6240
6241 out_of_range_pos = -1;
6242 for (i = 0; i < num_operands && idesc->operands[i]; ++i)
6243 {
6244 result = operand_match (idesc, i, CURR_SLOT.opnd + i);
6245 if (result != OPERAND_MATCH)
6246 {
6247 if (result != OPERAND_OUT_OF_RANGE)
6248 break;
6249 if (out_of_range_pos < 0)
6250 /* remember position of the first out-of-range operand: */
6251 out_of_range_pos = i;
6252 }
6253 }
6254
6255 /* If we did not match all operands, or if at least one operand was
6256 out-of-range, then this idesc does not match. Keep track of which
6257 idesc matched the most operands before failing. If we have two
6258 idescs that failed at the same position, and one had an out-of-range
6259 operand, then prefer the out-of-range operand. Thus if we have
6260 "add r0=0x1000000,r1" we get an error saying the constant is out
6261 of range instead of an error saying that the constant should have been
6262 a register. */
6263
6264 if (i != num_operands || out_of_range_pos >= 0)
6265 {
6266 if (i > highest_unmatched_operand
6267 || (i == highest_unmatched_operand
6268 && out_of_range_pos > curr_out_of_range_pos))
6269 {
6270 highest_unmatched_operand = i;
6271 if (out_of_range_pos >= 0)
6272 {
6273 expected_operand = idesc->operands[out_of_range_pos];
6274 error_pos = out_of_range_pos;
6275 }
6276 else
6277 {
6278 expected_operand = idesc->operands[i];
6279 error_pos = i;
6280 }
6281 curr_out_of_range_pos = out_of_range_pos;
6282 }
6283 continue;
6284 }
6285
6286 break;
6287 }
6288 if (!idesc)
6289 {
6290 if (expected_operand)
6291 as_bad (_("Operand %u of `%s' should be %s"),
6292 error_pos + 1, mnemonic,
6293 elf64_ia64_operands[expected_operand].desc);
6294 else if (highest_unmatched_operand < 0 && !(highest_unmatched_operand & 1))
6295 as_bad (_("Wrong number of output operands"));
6296 else if (highest_unmatched_operand < 0 && !(highest_unmatched_operand & 2))
6297 as_bad (_("Wrong number of input operands"));
6298 else
6299 as_bad (_("Operand mismatch"));
6300 return 0;
6301 }
6302
6303 /* Check that the instruction doesn't use
6304 - r0, f0, or f1 as output operands
6305 - the same predicate twice as output operands
6306 - r0 as address of a base update load or store
6307 - the same GR as output and address of a base update load
6308 - two even- or two odd-numbered FRs as output operands of a floating
6309 point parallel load.
6310 At most two (conflicting) output (or output-like) operands can exist,
6311 (floating point parallel loads have three outputs, but the base register,
6312 if updated, cannot conflict with the actual outputs). */
6313 reg2 = reg1 = -1;
6314 for (i = 0; i < num_operands; ++i)
6315 {
6316 int regno = 0;
6317
6318 reg_class = 0;
6319 switch (idesc->operands[i])
6320 {
6321 case IA64_OPND_R1:
6322 case IA64_OPND_R2:
6323 case IA64_OPND_R3:
6324 if (i < num_outputs)
6325 {
6326 if (CURR_SLOT.opnd[i].X_add_number == REG_GR)
6327 reg_class = 'r';
6328 else if (reg1 < 0)
6329 reg1 = CURR_SLOT.opnd[i].X_add_number;
6330 else if (reg2 < 0)
6331 reg2 = CURR_SLOT.opnd[i].X_add_number;
6332 }
6333 break;
6334 case IA64_OPND_P1:
6335 case IA64_OPND_P2:
6336 if (i < num_outputs)
6337 {
6338 if (reg1 < 0)
6339 reg1 = CURR_SLOT.opnd[i].X_add_number;
6340 else if (reg2 < 0)
6341 reg2 = CURR_SLOT.opnd[i].X_add_number;
6342 }
6343 break;
6344 case IA64_OPND_F1:
6345 case IA64_OPND_F2:
6346 case IA64_OPND_F3:
6347 case IA64_OPND_F4:
6348 if (i < num_outputs)
6349 {
6350 if (CURR_SLOT.opnd[i].X_add_number >= REG_FR
6351 && CURR_SLOT.opnd[i].X_add_number <= REG_FR + 1)
6352 {
6353 reg_class = 'f';
6354 regno = CURR_SLOT.opnd[i].X_add_number - REG_FR;
6355 }
6356 else if (reg1 < 0)
6357 reg1 = CURR_SLOT.opnd[i].X_add_number;
6358 else if (reg2 < 0)
6359 reg2 = CURR_SLOT.opnd[i].X_add_number;
6360 }
6361 break;
6362 case IA64_OPND_MR3:
6363 if (idesc->flags & IA64_OPCODE_POSTINC)
6364 {
6365 if (CURR_SLOT.opnd[i].X_add_number == REG_GR)
6366 reg_class = 'm';
6367 else if (reg1 < 0)
6368 reg1 = CURR_SLOT.opnd[i].X_add_number;
6369 else if (reg2 < 0)
6370 reg2 = CURR_SLOT.opnd[i].X_add_number;
6371 }
6372 break;
6373 default:
6374 break;
6375 }
6376 switch (reg_class)
6377 {
6378 case 0:
6379 break;
6380 default:
6381 as_warn (_("Invalid use of `%c%d' as output operand"), reg_class, regno);
6382 break;
6383 case 'm':
6384 as_warn (_("Invalid use of `r%d' as base update address operand"), regno);
6385 break;
6386 }
6387 }
6388 if (reg1 == reg2)
6389 {
6390 if (reg1 >= REG_GR && reg1 <= REG_GR + 127)
6391 {
6392 reg1 -= REG_GR;
6393 reg_class = 'r';
6394 }
6395 else if (reg1 >= REG_P && reg1 <= REG_P + 63)
6396 {
6397 reg1 -= REG_P;
6398 reg_class = 'p';
6399 }
6400 else if (reg1 >= REG_FR && reg1 <= REG_FR + 127)
6401 {
6402 reg1 -= REG_FR;
6403 reg_class = 'f';
6404 }
6405 else
6406 reg_class = 0;
6407 if (reg_class)
6408 as_warn (_("Invalid duplicate use of `%c%d'"), reg_class, reg1);
6409 }
6410 else if (((reg1 >= REG_FR && reg1 <= REG_FR + 31
6411 && reg2 >= REG_FR && reg2 <= REG_FR + 31)
6412 || (reg1 >= REG_FR + 32 && reg1 <= REG_FR + 127
6413 && reg2 >= REG_FR + 32 && reg2 <= REG_FR + 127))
6414 && ! ((reg1 ^ reg2) & 1))
6415 as_warn (_("Invalid simultaneous use of `f%d' and `f%d'"),
6416 reg1 - REG_FR, reg2 - REG_FR);
6417 else if ((reg1 >= REG_FR && reg1 <= REG_FR + 31
6418 && reg2 >= REG_FR + 32 && reg2 <= REG_FR + 127)
6419 || (reg1 >= REG_FR + 32 && reg1 <= REG_FR + 127
6420 && reg2 >= REG_FR && reg2 <= REG_FR + 31))
6421 as_warn (_("Dangerous simultaneous use of `f%d' and `f%d'"),
6422 reg1 - REG_FR, reg2 - REG_FR);
6423 return idesc;
6424 }
6425
6426 static void
6427 build_insn (struct slot *slot, bfd_vma *insnp)
6428 {
6429 const struct ia64_operand *odesc, *o2desc;
6430 struct ia64_opcode *idesc = slot->idesc;
6431 bfd_vma insn;
6432 bfd_signed_vma val;
6433 const char *err;
6434 int i;
6435
6436 insn = idesc->opcode | slot->qp_regno;
6437
6438 for (i = 0; i < NELEMS (idesc->operands) && idesc->operands[i]; ++i)
6439 {
6440 if (slot->opnd[i].X_op == O_register
6441 || slot->opnd[i].X_op == O_constant
6442 || slot->opnd[i].X_op == O_index)
6443 val = slot->opnd[i].X_add_number;
6444 else if (slot->opnd[i].X_op == O_big)
6445 {
6446 /* This must be the value 0x10000000000000000. */
6447 gas_assert (idesc->operands[i] == IA64_OPND_IMM8M1U8);
6448 val = 0;
6449 }
6450 else
6451 val = 0;
6452
6453 switch (idesc->operands[i])
6454 {
6455 case IA64_OPND_IMMU64:
6456 *insnp++ = (val >> 22) & 0x1ffffffffffLL;
6457 insn |= (((val & 0x7f) << 13) | (((val >> 7) & 0x1ff) << 27)
6458 | (((val >> 16) & 0x1f) << 22) | (((val >> 21) & 0x1) << 21)
6459 | (((val >> 63) & 0x1) << 36));
6460 continue;
6461
6462 case IA64_OPND_IMMU62:
6463 val &= 0x3fffffffffffffffULL;
6464 if (val != slot->opnd[i].X_add_number)
6465 as_warn (_("Value truncated to 62 bits"));
6466 *insnp++ = (val >> 21) & 0x1ffffffffffLL;
6467 insn |= (((val & 0xfffff) << 6) | (((val >> 20) & 0x1) << 36));
6468 continue;
6469
6470 case IA64_OPND_TGT64:
6471 val >>= 4;
6472 *insnp++ = ((val >> 20) & 0x7fffffffffLL) << 2;
6473 insn |= ((((val >> 59) & 0x1) << 36)
6474 | (((val >> 0) & 0xfffff) << 13));
6475 continue;
6476
6477 case IA64_OPND_AR3:
6478 val -= REG_AR;
6479 break;
6480
6481 case IA64_OPND_B1:
6482 case IA64_OPND_B2:
6483 val -= REG_BR;
6484 break;
6485
6486 case IA64_OPND_CR3:
6487 val -= REG_CR;
6488 break;
6489
6490 case IA64_OPND_DAHR3:
6491 val -= REG_DAHR;
6492 break;
6493
6494 case IA64_OPND_F1:
6495 case IA64_OPND_F2:
6496 case IA64_OPND_F3:
6497 case IA64_OPND_F4:
6498 val -= REG_FR;
6499 break;
6500
6501 case IA64_OPND_P1:
6502 case IA64_OPND_P2:
6503 val -= REG_P;
6504 break;
6505
6506 case IA64_OPND_R1:
6507 case IA64_OPND_R2:
6508 case IA64_OPND_R3:
6509 case IA64_OPND_R3_2:
6510 case IA64_OPND_CPUID_R3:
6511 case IA64_OPND_DBR_R3:
6512 case IA64_OPND_DTR_R3:
6513 case IA64_OPND_ITR_R3:
6514 case IA64_OPND_IBR_R3:
6515 case IA64_OPND_MR3:
6516 case IA64_OPND_MSR_R3:
6517 case IA64_OPND_PKR_R3:
6518 case IA64_OPND_PMC_R3:
6519 case IA64_OPND_PMD_R3:
6520 case IA64_OPND_DAHR_R3:
6521 case IA64_OPND_RR_R3:
6522 val -= REG_GR;
6523 break;
6524
6525 default:
6526 break;
6527 }
6528
6529 odesc = elf64_ia64_operands + idesc->operands[i];
6530 err = (*odesc->insert) (odesc, val, &insn);
6531 if (err)
6532 as_bad_where (slot->src_file, slot->src_line,
6533 _("Bad operand value: %s"), err);
6534 if (idesc->flags & IA64_OPCODE_PSEUDO)
6535 {
6536 if ((idesc->flags & IA64_OPCODE_F2_EQ_F3)
6537 && odesc == elf64_ia64_operands + IA64_OPND_F3)
6538 {
6539 o2desc = elf64_ia64_operands + IA64_OPND_F2;
6540 (*o2desc->insert) (o2desc, val, &insn);
6541 }
6542 if ((idesc->flags & IA64_OPCODE_LEN_EQ_64MCNT)
6543 && (odesc == elf64_ia64_operands + IA64_OPND_CPOS6a
6544 || odesc == elf64_ia64_operands + IA64_OPND_POS6))
6545 {
6546 o2desc = elf64_ia64_operands + IA64_OPND_LEN6;
6547 (*o2desc->insert) (o2desc, 64 - val, &insn);
6548 }
6549 }
6550 }
6551 *insnp = insn;
6552 }
6553
6554 static void
6555 emit_one_bundle (void)
6556 {
6557 int manual_bundling_off = 0, manual_bundling = 0;
6558 enum ia64_unit required_unit, insn_unit = 0;
6559 enum ia64_insn_type type[3], insn_type;
6560 unsigned int template_val, orig_template;
6561 bfd_vma insn[3] = { -1, -1, -1 };
6562 struct ia64_opcode *idesc;
6563 int end_of_insn_group = 0, user_template = -1;
6564 int n, i, j, first, curr, last_slot;
6565 bfd_vma t0 = 0, t1 = 0;
6566 struct label_fix *lfix;
6567 bfd_boolean mark_label;
6568 struct insn_fix *ifix;
6569 char mnemonic[16];
6570 fixS *fix;
6571 char *f;
6572 int addr_mod;
6573
6574 first = (md.curr_slot + NUM_SLOTS - md.num_slots_in_use) % NUM_SLOTS;
6575 know (first >= 0 && first < NUM_SLOTS);
6576 n = MIN (3, md.num_slots_in_use);
6577
6578 /* Determine template: user user_template if specified, best match
6579 otherwise: */
6580
6581 if (md.slot[first].user_template >= 0)
6582 user_template = template_val = md.slot[first].user_template;
6583 else
6584 {
6585 /* Auto select appropriate template. */
6586 memset (type, 0, sizeof (type));
6587 curr = first;
6588 for (i = 0; i < n; ++i)
6589 {
6590 if (md.slot[curr].label_fixups && i != 0)
6591 break;
6592 type[i] = md.slot[curr].idesc->type;
6593 curr = (curr + 1) % NUM_SLOTS;
6594 }
6595 template_val = best_template[type[0]][type[1]][type[2]];
6596 }
6597
6598 /* initialize instructions with appropriate nops: */
6599 for (i = 0; i < 3; ++i)
6600 insn[i] = nop[ia64_templ_desc[template_val].exec_unit[i]];
6601
6602 f = frag_more (16);
6603
6604 /* Check to see if this bundle is at an offset that is a multiple of 16-bytes
6605 from the start of the frag. */
6606 addr_mod = frag_now_fix () & 15;
6607 if (frag_now->has_code && frag_now->insn_addr != addr_mod)
6608 as_bad (_("instruction address is not a multiple of 16"));
6609 frag_now->insn_addr = addr_mod;
6610 frag_now->has_code = 1;
6611
6612 /* now fill in slots with as many insns as possible: */
6613 curr = first;
6614 idesc = md.slot[curr].idesc;
6615 end_of_insn_group = 0;
6616 last_slot = -1;
6617 for (i = 0; i < 3 && md.num_slots_in_use > 0; ++i)
6618 {
6619 /* If we have unwind records, we may need to update some now. */
6620 unw_rec_list *ptr = md.slot[curr].unwind_record;
6621 unw_rec_list *end_ptr = NULL;
6622
6623 if (ptr)
6624 {
6625 /* Find the last prologue/body record in the list for the current
6626 insn, and set the slot number for all records up to that point.
6627 This needs to be done now, because prologue/body records refer to
6628 the current point, not the point after the instruction has been
6629 issued. This matters because there may have been nops emitted
6630 meanwhile. Any non-prologue non-body record followed by a
6631 prologue/body record must also refer to the current point. */
6632 unw_rec_list *last_ptr;
6633
6634 for (j = 1; end_ptr == NULL && j < md.num_slots_in_use; ++j)
6635 end_ptr = md.slot[(curr + j) % NUM_SLOTS].unwind_record;
6636 for (last_ptr = NULL; ptr != end_ptr; ptr = ptr->next)
6637 if (ptr->r.type == prologue || ptr->r.type == prologue_gr
6638 || ptr->r.type == body)
6639 last_ptr = ptr;
6640 if (last_ptr)
6641 {
6642 /* Make last_ptr point one after the last prologue/body
6643 record. */
6644 last_ptr = last_ptr->next;
6645 for (ptr = md.slot[curr].unwind_record; ptr != last_ptr;
6646 ptr = ptr->next)
6647 {
6648 ptr->slot_number = (unsigned long) f + i;
6649 ptr->slot_frag = frag_now;
6650 }
6651 /* Remove the initialized records, so that we won't accidentally
6652 update them again if we insert a nop and continue. */
6653 md.slot[curr].unwind_record = last_ptr;
6654 }
6655 }
6656
6657 manual_bundling_off = md.slot[curr].manual_bundling_off;
6658 if (md.slot[curr].manual_bundling_on)
6659 {
6660 if (curr == first)
6661 manual_bundling = 1;
6662 else
6663 break; /* Need to start a new bundle. */
6664 }
6665
6666 /* If this instruction specifies a template, then it must be the first
6667 instruction of a bundle. */
6668 if (curr != first && md.slot[curr].user_template >= 0)
6669 break;
6670
6671 if (idesc->flags & IA64_OPCODE_SLOT2)
6672 {
6673 if (manual_bundling && !manual_bundling_off)
6674 {
6675 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6676 _("`%s' must be last in bundle"), idesc->name);
6677 if (i < 2)
6678 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6679 }
6680 i = 2;
6681 }
6682 if (idesc->flags & IA64_OPCODE_LAST)
6683 {
6684 int required_slot;
6685 unsigned int required_template;
6686
6687 /* If we need a stop bit after an M slot, our only choice is
6688 template 5 (M;;MI). If we need a stop bit after a B
6689 slot, our only choice is to place it at the end of the
6690 bundle, because the only available templates are MIB,
6691 MBB, BBB, MMB, and MFB. We don't handle anything other
6692 than M and B slots because these are the only kind of
6693 instructions that can have the IA64_OPCODE_LAST bit set. */
6694 required_template = template_val;
6695 switch (idesc->type)
6696 {
6697 case IA64_TYPE_M:
6698 required_slot = 0;
6699 required_template = 5;
6700 break;
6701
6702 case IA64_TYPE_B:
6703 required_slot = 2;
6704 break;
6705
6706 default:
6707 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6708 _("Internal error: don't know how to force %s to end of instruction group"),
6709 idesc->name);
6710 required_slot = i;
6711 break;
6712 }
6713 if (manual_bundling
6714 && (i > required_slot
6715 || (required_slot == 2 && !manual_bundling_off)
6716 || (user_template >= 0
6717 /* Changing from MMI to M;MI is OK. */
6718 && (template_val ^ required_template) > 1)))
6719 {
6720 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6721 _("`%s' must be last in instruction group"),
6722 idesc->name);
6723 if (i < 2 && required_slot == 2 && !manual_bundling_off)
6724 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6725 }
6726 if (required_slot < i)
6727 /* Can't fit this instruction. */
6728 break;
6729
6730 i = required_slot;
6731 if (required_template != template_val)
6732 {
6733 /* If we switch the template, we need to reset the NOPs
6734 after slot i. The slot-types of the instructions ahead
6735 of i never change, so we don't need to worry about
6736 changing NOPs in front of this slot. */
6737 for (j = i; j < 3; ++j)
6738 insn[j] = nop[ia64_templ_desc[required_template].exec_unit[j]];
6739
6740 /* We just picked a template that includes the stop bit in the
6741 middle, so we don't need another one emitted later. */
6742 md.slot[curr].end_of_insn_group = 0;
6743 }
6744 template_val = required_template;
6745 }
6746 if (curr != first && md.slot[curr].label_fixups)
6747 {
6748 if (manual_bundling)
6749 {
6750 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6751 _("Label must be first in a bundle"));
6752 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6753 }
6754 /* This insn must go into the first slot of a bundle. */
6755 break;
6756 }
6757
6758 if (end_of_insn_group && md.num_slots_in_use >= 1)
6759 {
6760 /* We need an instruction group boundary in the middle of a
6761 bundle. See if we can switch to an other template with
6762 an appropriate boundary. */
6763
6764 orig_template = template_val;
6765 if (i == 1 && (user_template == 4
6766 || (user_template < 0
6767 && (ia64_templ_desc[template_val].exec_unit[0]
6768 == IA64_UNIT_M))))
6769 {
6770 template_val = 5;
6771 end_of_insn_group = 0;
6772 }
6773 else if (i == 2 && (user_template == 0
6774 || (user_template < 0
6775 && (ia64_templ_desc[template_val].exec_unit[1]
6776 == IA64_UNIT_I)))
6777 /* This test makes sure we don't switch the template if
6778 the next instruction is one that needs to be first in
6779 an instruction group. Since all those instructions are
6780 in the M group, there is no way such an instruction can
6781 fit in this bundle even if we switch the template. The
6782 reason we have to check for this is that otherwise we
6783 may end up generating "MI;;I M.." which has the deadly
6784 effect that the second M instruction is no longer the
6785 first in the group! --davidm 99/12/16 */
6786 && (idesc->flags & IA64_OPCODE_FIRST) == 0)
6787 {
6788 template_val = 1;
6789 end_of_insn_group = 0;
6790 }
6791 else if (i == 1
6792 && user_template == 0
6793 && !(idesc->flags & IA64_OPCODE_FIRST))
6794 /* Use the next slot. */
6795 continue;
6796 else if (curr != first)
6797 /* can't fit this insn */
6798 break;
6799
6800 if (template_val != orig_template)
6801 /* if we switch the template, we need to reset the NOPs
6802 after slot i. The slot-types of the instructions ahead
6803 of i never change, so we don't need to worry about
6804 changing NOPs in front of this slot. */
6805 for (j = i; j < 3; ++j)
6806 insn[j] = nop[ia64_templ_desc[template_val].exec_unit[j]];
6807 }
6808 required_unit = ia64_templ_desc[template_val].exec_unit[i];
6809
6810 /* resolve dynamic opcodes such as "break", "hint", and "nop": */
6811 if (idesc->type == IA64_TYPE_DYN)
6812 {
6813 enum ia64_opnd opnd1, opnd2;
6814
6815 if ((strcmp (idesc->name, "nop") == 0)
6816 || (strcmp (idesc->name, "break") == 0))
6817 insn_unit = required_unit;
6818 else if (strcmp (idesc->name, "hint") == 0)
6819 {
6820 insn_unit = required_unit;
6821 if (required_unit == IA64_UNIT_B)
6822 {
6823 switch (md.hint_b)
6824 {
6825 case hint_b_ok:
6826 break;
6827 case hint_b_warning:
6828 as_warn (_("hint in B unit may be treated as nop"));
6829 break;
6830 case hint_b_error:
6831 /* When manual bundling is off and there is no
6832 user template, we choose a different unit so
6833 that hint won't go into the current slot. We
6834 will fill the current bundle with nops and
6835 try to put hint into the next bundle. */
6836 if (!manual_bundling && user_template < 0)
6837 insn_unit = IA64_UNIT_I;
6838 else
6839 as_bad (_("hint in B unit can't be used"));
6840 break;
6841 }
6842 }
6843 }
6844 else if (strcmp (idesc->name, "chk.s") == 0
6845 || strcmp (idesc->name, "mov") == 0)
6846 {
6847 insn_unit = IA64_UNIT_M;
6848 if (required_unit == IA64_UNIT_I
6849 || (required_unit == IA64_UNIT_F && template_val == 6))
6850 insn_unit = IA64_UNIT_I;
6851 }
6852 else
6853 as_fatal (_("emit_one_bundle: unexpected dynamic op"));
6854
6855 snprintf (mnemonic, sizeof (mnemonic), "%s.%c",
6856 idesc->name, "?imbfxx"[insn_unit]);
6857 opnd1 = idesc->operands[0];
6858 opnd2 = idesc->operands[1];
6859 ia64_free_opcode (idesc);
6860 idesc = ia64_find_opcode (mnemonic);
6861 /* moves to/from ARs have collisions */
6862 if (opnd1 == IA64_OPND_AR3 || opnd2 == IA64_OPND_AR3)
6863 {
6864 while (idesc != NULL
6865 && (idesc->operands[0] != opnd1
6866 || idesc->operands[1] != opnd2))
6867 idesc = get_next_opcode (idesc);
6868 }
6869 md.slot[curr].idesc = idesc;
6870 }
6871 else
6872 {
6873 insn_type = idesc->type;
6874 insn_unit = IA64_UNIT_NIL;
6875 switch (insn_type)
6876 {
6877 case IA64_TYPE_A:
6878 if (required_unit == IA64_UNIT_I || required_unit == IA64_UNIT_M)
6879 insn_unit = required_unit;
6880 break;
6881 case IA64_TYPE_X: insn_unit = IA64_UNIT_L; break;
6882 case IA64_TYPE_I: insn_unit = IA64_UNIT_I; break;
6883 case IA64_TYPE_M: insn_unit = IA64_UNIT_M; break;
6884 case IA64_TYPE_B: insn_unit = IA64_UNIT_B; break;
6885 case IA64_TYPE_F: insn_unit = IA64_UNIT_F; break;
6886 default: break;
6887 }
6888 }
6889
6890 if (insn_unit != required_unit)
6891 continue; /* Try next slot. */
6892
6893 /* Now is a good time to fix up the labels for this insn. */
6894 mark_label = FALSE;
6895 for (lfix = md.slot[curr].label_fixups; lfix; lfix = lfix->next)
6896 {
6897 S_SET_VALUE (lfix->sym, frag_now_fix () - 16);
6898 symbol_set_frag (lfix->sym, frag_now);
6899 mark_label |= lfix->dw2_mark_labels;
6900 }
6901 for (lfix = md.slot[curr].tag_fixups; lfix; lfix = lfix->next)
6902 {
6903 S_SET_VALUE (lfix->sym, frag_now_fix () - 16 + i);
6904 symbol_set_frag (lfix->sym, frag_now);
6905 }
6906
6907 if (debug_type == DEBUG_DWARF2
6908 || md.slot[curr].loc_directive_seen
6909 || mark_label)
6910 {
6911 bfd_vma addr = frag_now->fr_address + frag_now_fix () - 16 + i;
6912
6913 md.slot[curr].loc_directive_seen = 0;
6914 if (mark_label)
6915 md.slot[curr].debug_line.flags |= DWARF2_FLAG_BASIC_BLOCK;
6916
6917 dwarf2_gen_line_info (addr, &md.slot[curr].debug_line);
6918 }
6919
6920 build_insn (md.slot + curr, insn + i);
6921
6922 ptr = md.slot[curr].unwind_record;
6923 if (ptr)
6924 {
6925 /* Set slot numbers for all remaining unwind records belonging to the
6926 current insn. There can not be any prologue/body unwind records
6927 here. */
6928 for (; ptr != end_ptr; ptr = ptr->next)
6929 {
6930 ptr->slot_number = (unsigned long) f + i;
6931 ptr->slot_frag = frag_now;
6932 }
6933 md.slot[curr].unwind_record = NULL;
6934 }
6935
6936 for (j = 0; j < md.slot[curr].num_fixups; ++j)
6937 {
6938 ifix = md.slot[curr].fixup + j;
6939 fix = fix_new_exp (frag_now, frag_now_fix () - 16 + i, 8,
6940 &ifix->expr, ifix->is_pcrel, ifix->code);
6941 fix->tc_fix_data.opnd = ifix->opnd;
6942 fix->fx_file = md.slot[curr].src_file;
6943 fix->fx_line = md.slot[curr].src_line;
6944 }
6945
6946 end_of_insn_group = md.slot[curr].end_of_insn_group;
6947
6948 /* This adjustment to "i" must occur after the fix, otherwise the fix
6949 is assigned to the wrong slot, and the VMS linker complains. */
6950 if (required_unit == IA64_UNIT_L)
6951 {
6952 know (i == 1);
6953 /* skip one slot for long/X-unit instructions */
6954 ++i;
6955 }
6956 --md.num_slots_in_use;
6957 last_slot = i;
6958
6959 /* clear slot: */
6960 ia64_free_opcode (md.slot[curr].idesc);
6961 memset (md.slot + curr, 0, sizeof (md.slot[curr]));
6962 md.slot[curr].user_template = -1;
6963
6964 if (manual_bundling_off)
6965 {
6966 manual_bundling = 0;
6967 break;
6968 }
6969 curr = (curr + 1) % NUM_SLOTS;
6970 idesc = md.slot[curr].idesc;
6971 }
6972
6973 /* A user template was specified, but the first following instruction did
6974 not fit. This can happen with or without manual bundling. */
6975 if (md.num_slots_in_use > 0 && last_slot < 0)
6976 {
6977 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6978 _("`%s' does not fit into %s template"),
6979 idesc->name, ia64_templ_desc[template_val].name);
6980 /* Drop first insn so we don't livelock. */
6981 --md.num_slots_in_use;
6982 know (curr == first);
6983 ia64_free_opcode (md.slot[curr].idesc);
6984 memset (md.slot + curr, 0, sizeof (md.slot[curr]));
6985 md.slot[curr].user_template = -1;
6986 }
6987 else if (manual_bundling > 0)
6988 {
6989 if (md.num_slots_in_use > 0)
6990 {
6991 if (last_slot >= 2)
6992 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6993 _("`%s' does not fit into bundle"), idesc->name);
6994 else
6995 {
6996 const char *where;
6997
6998 if (template_val == 2)
6999 where = "X slot";
7000 else if (last_slot == 0)
7001 where = "slots 2 or 3";
7002 else
7003 where = "slot 3";
7004 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
7005 _("`%s' can't go in %s of %s template"),
7006 idesc->name, where, ia64_templ_desc[template_val].name);
7007 }
7008 }
7009 else
7010 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
7011 _("Missing '}' at end of file"));
7012 }
7013
7014 know (md.num_slots_in_use < NUM_SLOTS);
7015
7016 t0 = end_of_insn_group | (template_val << 1) | (insn[0] << 5) | (insn[1] << 46);
7017 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
7018
7019 number_to_chars_littleendian (f + 0, t0, 8);
7020 number_to_chars_littleendian (f + 8, t1, 8);
7021 }
7022
7023 int
7024 md_parse_option (int c, char *arg)
7025 {
7026
7027 switch (c)
7028 {
7029 /* Switches from the Intel assembler. */
7030 case 'm':
7031 if (strcmp (arg, "ilp64") == 0
7032 || strcmp (arg, "lp64") == 0
7033 || strcmp (arg, "p64") == 0)
7034 {
7035 md.flags |= EF_IA_64_ABI64;
7036 }
7037 else if (strcmp (arg, "ilp32") == 0)
7038 {
7039 md.flags &= ~EF_IA_64_ABI64;
7040 }
7041 else if (strcmp (arg, "le") == 0)
7042 {
7043 md.flags &= ~EF_IA_64_BE;
7044 default_big_endian = 0;
7045 }
7046 else if (strcmp (arg, "be") == 0)
7047 {
7048 md.flags |= EF_IA_64_BE;
7049 default_big_endian = 1;
7050 }
7051 else if (strncmp (arg, "unwind-check=", 13) == 0)
7052 {
7053 arg += 13;
7054 if (strcmp (arg, "warning") == 0)
7055 md.unwind_check = unwind_check_warning;
7056 else if (strcmp (arg, "error") == 0)
7057 md.unwind_check = unwind_check_error;
7058 else
7059 return 0;
7060 }
7061 else if (strncmp (arg, "hint.b=", 7) == 0)
7062 {
7063 arg += 7;
7064 if (strcmp (arg, "ok") == 0)
7065 md.hint_b = hint_b_ok;
7066 else if (strcmp (arg, "warning") == 0)
7067 md.hint_b = hint_b_warning;
7068 else if (strcmp (arg, "error") == 0)
7069 md.hint_b = hint_b_error;
7070 else
7071 return 0;
7072 }
7073 else if (strncmp (arg, "tune=", 5) == 0)
7074 {
7075 arg += 5;
7076 if (strcmp (arg, "itanium1") == 0)
7077 md.tune = itanium1;
7078 else if (strcmp (arg, "itanium2") == 0)
7079 md.tune = itanium2;
7080 else
7081 return 0;
7082 }
7083 else
7084 return 0;
7085 break;
7086
7087 case 'N':
7088 if (strcmp (arg, "so") == 0)
7089 {
7090 /* Suppress signon message. */
7091 }
7092 else if (strcmp (arg, "pi") == 0)
7093 {
7094 /* Reject privileged instructions. FIXME */
7095 }
7096 else if (strcmp (arg, "us") == 0)
7097 {
7098 /* Allow union of signed and unsigned range. FIXME */
7099 }
7100 else if (strcmp (arg, "close_fcalls") == 0)
7101 {
7102 /* Do not resolve global function calls. */
7103 }
7104 else
7105 return 0;
7106 break;
7107
7108 case 'C':
7109 /* temp[="prefix"] Insert temporary labels into the object file
7110 symbol table prefixed by "prefix".
7111 Default prefix is ":temp:".
7112 */
7113 break;
7114
7115 case 'a':
7116 /* indirect=<tgt> Assume unannotated indirect branches behavior
7117 according to <tgt> --
7118 exit: branch out from the current context (default)
7119 labels: all labels in context may be branch targets
7120 */
7121 if (strncmp (arg, "indirect=", 9) != 0)
7122 return 0;
7123 break;
7124
7125 case 'x':
7126 /* -X conflicts with an ignored option, use -x instead */
7127 md.detect_dv = 1;
7128 if (!arg || strcmp (arg, "explicit") == 0)
7129 {
7130 /* set default mode to explicit */
7131 md.default_explicit_mode = 1;
7132 break;
7133 }
7134 else if (strcmp (arg, "auto") == 0)
7135 {
7136 md.default_explicit_mode = 0;
7137 }
7138 else if (strcmp (arg, "none") == 0)
7139 {
7140 md.detect_dv = 0;
7141 }
7142 else if (strcmp (arg, "debug") == 0)
7143 {
7144 md.debug_dv = 1;
7145 }
7146 else if (strcmp (arg, "debugx") == 0)
7147 {
7148 md.default_explicit_mode = 1;
7149 md.debug_dv = 1;
7150 }
7151 else if (strcmp (arg, "debugn") == 0)
7152 {
7153 md.debug_dv = 1;
7154 md.detect_dv = 0;
7155 }
7156 else
7157 {
7158 as_bad (_("Unrecognized option '-x%s'"), arg);
7159 }
7160 break;
7161
7162 case 'S':
7163 /* nops Print nops statistics. */
7164 break;
7165
7166 /* GNU specific switches for gcc. */
7167 case OPTION_MCONSTANT_GP:
7168 md.flags |= EF_IA_64_CONS_GP;
7169 break;
7170
7171 case OPTION_MAUTO_PIC:
7172 md.flags |= EF_IA_64_NOFUNCDESC_CONS_GP;
7173 break;
7174
7175 default:
7176 return 0;
7177 }
7178
7179 return 1;
7180 }
7181
7182 void
7183 md_show_usage (FILE *stream)
7184 {
7185 fputs (_("\
7186 IA-64 options:\n\
7187 --mconstant-gp mark output file as using the constant-GP model\n\
7188 (sets ELF header flag EF_IA_64_CONS_GP)\n\
7189 --mauto-pic mark output file as using the constant-GP model\n\
7190 without function descriptors (sets ELF header flag\n\
7191 EF_IA_64_NOFUNCDESC_CONS_GP)\n\
7192 -milp32|-milp64|-mlp64|-mp64 select data model (default -mlp64)\n\
7193 -mle | -mbe select little- or big-endian byte order (default -mle)\n\
7194 -mtune=[itanium1|itanium2]\n\
7195 tune for a specific CPU (default -mtune=itanium2)\n\
7196 -munwind-check=[warning|error]\n\
7197 unwind directive check (default -munwind-check=warning)\n\
7198 -mhint.b=[ok|warning|error]\n\
7199 hint.b check (default -mhint.b=error)\n\
7200 -x | -xexplicit turn on dependency violation checking\n"), stream);
7201 /* Note for translators: "automagically" can be translated as "automatically" here. */
7202 fputs (_("\
7203 -xauto automagically remove dependency violations (default)\n\
7204 -xnone turn off dependency violation checking\n\
7205 -xdebug debug dependency violation checker\n\
7206 -xdebugn debug dependency violation checker but turn off\n\
7207 dependency violation checking\n\
7208 -xdebugx debug dependency violation checker and turn on\n\
7209 dependency violation checking\n"),
7210 stream);
7211 }
7212
7213 void
7214 ia64_after_parse_args (void)
7215 {
7216 if (debug_type == DEBUG_STABS)
7217 as_fatal (_("--gstabs is not supported for ia64"));
7218 }
7219
7220 /* Return true if TYPE fits in TEMPL at SLOT. */
7221
7222 static int
7223 match (int templ, int type, int slot)
7224 {
7225 enum ia64_unit unit;
7226 int result;
7227
7228 unit = ia64_templ_desc[templ].exec_unit[slot];
7229 switch (type)
7230 {
7231 case IA64_TYPE_DYN: result = 1; break; /* for nop and break */
7232 case IA64_TYPE_A:
7233 result = (unit == IA64_UNIT_I || unit == IA64_UNIT_M);
7234 break;
7235 case IA64_TYPE_X: result = (unit == IA64_UNIT_L); break;
7236 case IA64_TYPE_I: result = (unit == IA64_UNIT_I); break;
7237 case IA64_TYPE_M: result = (unit == IA64_UNIT_M); break;
7238 case IA64_TYPE_B: result = (unit == IA64_UNIT_B); break;
7239 case IA64_TYPE_F: result = (unit == IA64_UNIT_F); break;
7240 default: result = 0; break;
7241 }
7242 return result;
7243 }
7244
7245 /* For Itanium 1, add a bit of extra goodness if a nop of type F or B would fit
7246 in TEMPL at SLOT. For Itanium 2, add a bit of extra goodness if a nop of
7247 type M or I would fit in TEMPL at SLOT. */
7248
7249 static inline int
7250 extra_goodness (int templ, int slot)
7251 {
7252 switch (md.tune)
7253 {
7254 case itanium1:
7255 if (slot == 1 && match (templ, IA64_TYPE_F, slot))
7256 return 2;
7257 else if (slot == 2 && match (templ, IA64_TYPE_B, slot))
7258 return 1;
7259 else
7260 return 0;
7261 break;
7262 case itanium2:
7263 if (match (templ, IA64_TYPE_M, slot)
7264 || match (templ, IA64_TYPE_I, slot))
7265 /* Favor M- and I-unit NOPs. We definitely want to avoid
7266 F-unit and B-unit may cause split-issue or less-than-optimal
7267 branch-prediction. */
7268 return 2;
7269 else
7270 return 0;
7271 break;
7272 default:
7273 abort ();
7274 return 0;
7275 }
7276 }
7277
7278 /* This function is called once, at assembler startup time. It sets
7279 up all the tables, etc. that the MD part of the assembler will need
7280 that can be determined before arguments are parsed. */
7281 void
7282 md_begin (void)
7283 {
7284 int i, j, k, t, goodness, best, ok;
7285 const char *err;
7286 char name[8];
7287
7288 md.auto_align = 1;
7289 md.explicit_mode = md.default_explicit_mode;
7290
7291 bfd_set_section_alignment (stdoutput, text_section, 4);
7292
7293 /* Make sure function pointers get initialized. */
7294 target_big_endian = -1;
7295 dot_byteorder (default_big_endian);
7296
7297 alias_hash = hash_new ();
7298 alias_name_hash = hash_new ();
7299 secalias_hash = hash_new ();
7300 secalias_name_hash = hash_new ();
7301
7302 pseudo_func[FUNC_DTP_MODULE].u.sym =
7303 symbol_new (".<dtpmod>", undefined_section, FUNC_DTP_MODULE,
7304 &zero_address_frag);
7305
7306 pseudo_func[FUNC_DTP_RELATIVE].u.sym =
7307 symbol_new (".<dtprel>", undefined_section, FUNC_DTP_RELATIVE,
7308 &zero_address_frag);
7309
7310 pseudo_func[FUNC_FPTR_RELATIVE].u.sym =
7311 symbol_new (".<fptr>", undefined_section, FUNC_FPTR_RELATIVE,
7312 &zero_address_frag);
7313
7314 pseudo_func[FUNC_GP_RELATIVE].u.sym =
7315 symbol_new (".<gprel>", undefined_section, FUNC_GP_RELATIVE,
7316 &zero_address_frag);
7317
7318 pseudo_func[FUNC_LT_RELATIVE].u.sym =
7319 symbol_new (".<ltoff>", undefined_section, FUNC_LT_RELATIVE,
7320 &zero_address_frag);
7321
7322 pseudo_func[FUNC_LT_RELATIVE_X].u.sym =
7323 symbol_new (".<ltoffx>", undefined_section, FUNC_LT_RELATIVE_X,
7324 &zero_address_frag);
7325
7326 pseudo_func[FUNC_PC_RELATIVE].u.sym =
7327 symbol_new (".<pcrel>", undefined_section, FUNC_PC_RELATIVE,
7328 &zero_address_frag);
7329
7330 pseudo_func[FUNC_PLT_RELATIVE].u.sym =
7331 symbol_new (".<pltoff>", undefined_section, FUNC_PLT_RELATIVE,
7332 &zero_address_frag);
7333
7334 pseudo_func[FUNC_SEC_RELATIVE].u.sym =
7335 symbol_new (".<secrel>", undefined_section, FUNC_SEC_RELATIVE,
7336 &zero_address_frag);
7337
7338 pseudo_func[FUNC_SEG_RELATIVE].u.sym =
7339 symbol_new (".<segrel>", undefined_section, FUNC_SEG_RELATIVE,
7340 &zero_address_frag);
7341
7342 pseudo_func[FUNC_TP_RELATIVE].u.sym =
7343 symbol_new (".<tprel>", undefined_section, FUNC_TP_RELATIVE,
7344 &zero_address_frag);
7345
7346 pseudo_func[FUNC_LTV_RELATIVE].u.sym =
7347 symbol_new (".<ltv>", undefined_section, FUNC_LTV_RELATIVE,
7348 &zero_address_frag);
7349
7350 pseudo_func[FUNC_LT_FPTR_RELATIVE].u.sym =
7351 symbol_new (".<ltoff.fptr>", undefined_section, FUNC_LT_FPTR_RELATIVE,
7352 &zero_address_frag);
7353
7354 pseudo_func[FUNC_LT_DTP_MODULE].u.sym =
7355 symbol_new (".<ltoff.dtpmod>", undefined_section, FUNC_LT_DTP_MODULE,
7356 &zero_address_frag);
7357
7358 pseudo_func[FUNC_LT_DTP_RELATIVE].u.sym =
7359 symbol_new (".<ltoff.dptrel>", undefined_section, FUNC_LT_DTP_RELATIVE,
7360 &zero_address_frag);
7361
7362 pseudo_func[FUNC_LT_TP_RELATIVE].u.sym =
7363 symbol_new (".<ltoff.tprel>", undefined_section, FUNC_LT_TP_RELATIVE,
7364 &zero_address_frag);
7365
7366 pseudo_func[FUNC_IPLT_RELOC].u.sym =
7367 symbol_new (".<iplt>", undefined_section, FUNC_IPLT_RELOC,
7368 &zero_address_frag);
7369
7370 #ifdef TE_VMS
7371 pseudo_func[FUNC_SLOTCOUNT_RELOC].u.sym =
7372 symbol_new (".<slotcount>", undefined_section, FUNC_SLOTCOUNT_RELOC,
7373 &zero_address_frag);
7374 #endif
7375
7376 if (md.tune != itanium1)
7377 {
7378 /* Convert MFI NOPs bundles into MMI NOPs bundles. */
7379 le_nop[0] = 0x8;
7380 le_nop_stop[0] = 0x9;
7381 }
7382
7383 /* Compute the table of best templates. We compute goodness as a
7384 base 4 value, in which each match counts for 3. Match-failures
7385 result in NOPs and we use extra_goodness() to pick the execution
7386 units that are best suited for issuing the NOP. */
7387 for (i = 0; i < IA64_NUM_TYPES; ++i)
7388 for (j = 0; j < IA64_NUM_TYPES; ++j)
7389 for (k = 0; k < IA64_NUM_TYPES; ++k)
7390 {
7391 best = 0;
7392 for (t = 0; t < NELEMS (ia64_templ_desc); ++t)
7393 {
7394 goodness = 0;
7395 if (match (t, i, 0))
7396 {
7397 if (match (t, j, 1))
7398 {
7399 if ((t == 2 && j == IA64_TYPE_X) || match (t, k, 2))
7400 goodness = 3 + 3 + 3;
7401 else
7402 goodness = 3 + 3 + extra_goodness (t, 2);
7403 }
7404 else if (match (t, j, 2))
7405 goodness = 3 + 3 + extra_goodness (t, 1);
7406 else
7407 {
7408 goodness = 3;
7409 goodness += extra_goodness (t, 1);
7410 goodness += extra_goodness (t, 2);
7411 }
7412 }
7413 else if (match (t, i, 1))
7414 {
7415 if ((t == 2 && i == IA64_TYPE_X) || match (t, j, 2))
7416 goodness = 3 + 3;
7417 else
7418 goodness = 3 + extra_goodness (t, 2);
7419 }
7420 else if (match (t, i, 2))
7421 goodness = 3 + extra_goodness (t, 1);
7422
7423 if (goodness > best)
7424 {
7425 best = goodness;
7426 best_template[i][j][k] = t;
7427 }
7428 }
7429 }
7430
7431 #ifdef DEBUG_TEMPLATES
7432 /* For debugging changes to the best_template calculations. We don't care
7433 about combinations with invalid instructions, so start the loops at 1. */
7434 for (i = 0; i < IA64_NUM_TYPES; ++i)
7435 for (j = 0; j < IA64_NUM_TYPES; ++j)
7436 for (k = 0; k < IA64_NUM_TYPES; ++k)
7437 {
7438 char type_letter[IA64_NUM_TYPES] = { 'n', 'a', 'i', 'm', 'b', 'f',
7439 'x', 'd' };
7440 fprintf (stderr, "%c%c%c %s\n", type_letter[i], type_letter[j],
7441 type_letter[k],
7442 ia64_templ_desc[best_template[i][j][k]].name);
7443 }
7444 #endif
7445
7446 for (i = 0; i < NUM_SLOTS; ++i)
7447 md.slot[i].user_template = -1;
7448
7449 md.pseudo_hash = hash_new ();
7450 for (i = 0; i < NELEMS (pseudo_opcode); ++i)
7451 {
7452 err = hash_insert (md.pseudo_hash, pseudo_opcode[i].name,
7453 (void *) (pseudo_opcode + i));
7454 if (err)
7455 as_fatal (_("ia64.md_begin: can't hash `%s': %s"),
7456 pseudo_opcode[i].name, err);
7457 }
7458
7459 md.reg_hash = hash_new ();
7460 md.dynreg_hash = hash_new ();
7461 md.const_hash = hash_new ();
7462 md.entry_hash = hash_new ();
7463
7464 /* general registers: */
7465 declare_register_set ("r", 128, REG_GR);
7466 declare_register ("gp", REG_GR + 1);
7467 declare_register ("sp", REG_GR + 12);
7468 declare_register ("tp", REG_GR + 13);
7469 declare_register_set ("ret", 4, REG_GR + 8);
7470
7471 /* floating point registers: */
7472 declare_register_set ("f", 128, REG_FR);
7473 declare_register_set ("farg", 8, REG_FR + 8);
7474 declare_register_set ("fret", 8, REG_FR + 8);
7475
7476 /* branch registers: */
7477 declare_register_set ("b", 8, REG_BR);
7478 declare_register ("rp", REG_BR + 0);
7479
7480 /* predicate registers: */
7481 declare_register_set ("p", 64, REG_P);
7482 declare_register ("pr", REG_PR);
7483 declare_register ("pr.rot", REG_PR_ROT);
7484
7485 /* application registers: */
7486 declare_register_set ("ar", 128, REG_AR);
7487 for (i = 0; i < NELEMS (ar); ++i)
7488 declare_register (ar[i].name, REG_AR + ar[i].regnum);
7489
7490 /* control registers: */
7491 declare_register_set ("cr", 128, REG_CR);
7492 for (i = 0; i < NELEMS (cr); ++i)
7493 declare_register (cr[i].name, REG_CR + cr[i].regnum);
7494
7495 /* dahr registers: */
7496 declare_register_set ("dahr", 8, REG_DAHR);
7497
7498 declare_register ("ip", REG_IP);
7499 declare_register ("cfm", REG_CFM);
7500 declare_register ("psr", REG_PSR);
7501 declare_register ("psr.l", REG_PSR_L);
7502 declare_register ("psr.um", REG_PSR_UM);
7503
7504 for (i = 0; i < NELEMS (indirect_reg); ++i)
7505 {
7506 unsigned int regnum = indirect_reg[i].regnum;
7507
7508 md.indregsym[regnum - IND_CPUID] = declare_register (indirect_reg[i].name, regnum);
7509 }
7510
7511 /* pseudo-registers used to specify unwind info: */
7512 declare_register ("psp", REG_PSP);
7513
7514 for (i = 0; i < NELEMS (const_bits); ++i)
7515 {
7516 err = hash_insert (md.const_hash, const_bits[i].name,
7517 (void *) (const_bits + i));
7518 if (err)
7519 as_fatal (_("Inserting \"%s\" into constant hash table failed: %s"),
7520 name, err);
7521 }
7522
7523 /* Set the architecture and machine depending on defaults and command line
7524 options. */
7525 if (md.flags & EF_IA_64_ABI64)
7526 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf64);
7527 else
7528 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf32);
7529
7530 if (! ok)
7531 as_warn (_("Could not set architecture and machine"));
7532
7533 /* Set the pointer size and pointer shift size depending on md.flags */
7534
7535 if (md.flags & EF_IA_64_ABI64)
7536 {
7537 md.pointer_size = 8; /* pointers are 8 bytes */
7538 md.pointer_size_shift = 3; /* alignment is 8 bytes = 2^2 */
7539 }
7540 else
7541 {
7542 md.pointer_size = 4; /* pointers are 4 bytes */
7543 md.pointer_size_shift = 2; /* alignment is 4 bytes = 2^2 */
7544 }
7545
7546 md.mem_offset.hint = 0;
7547 md.path = 0;
7548 md.maxpaths = 0;
7549 md.entry_labels = NULL;
7550 }
7551
7552 /* Set the default options in md. Cannot do this in md_begin because
7553 that is called after md_parse_option which is where we set the
7554 options in md based on command line options. */
7555
7556 void
7557 ia64_init (int argc ATTRIBUTE_UNUSED, char **argv ATTRIBUTE_UNUSED)
7558 {
7559 md.flags = MD_FLAGS_DEFAULT;
7560 #ifndef TE_VMS
7561 /* Don't turn on dependency checking for VMS, doesn't work. */
7562 md.detect_dv = 1;
7563 #endif
7564 /* FIXME: We should change it to unwind_check_error someday. */
7565 md.unwind_check = unwind_check_warning;
7566 md.hint_b = hint_b_error;
7567 md.tune = itanium2;
7568 }
7569
7570 /* Return a string for the target object file format. */
7571
7572 const char *
7573 ia64_target_format (void)
7574 {
7575 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
7576 {
7577 if (md.flags & EF_IA_64_BE)
7578 {
7579 if (md.flags & EF_IA_64_ABI64)
7580 #if defined(TE_AIX50)
7581 return "elf64-ia64-aix-big";
7582 #elif defined(TE_HPUX)
7583 return "elf64-ia64-hpux-big";
7584 #else
7585 return "elf64-ia64-big";
7586 #endif
7587 else
7588 #if defined(TE_AIX50)
7589 return "elf32-ia64-aix-big";
7590 #elif defined(TE_HPUX)
7591 return "elf32-ia64-hpux-big";
7592 #else
7593 return "elf32-ia64-big";
7594 #endif
7595 }
7596 else
7597 {
7598 if (md.flags & EF_IA_64_ABI64)
7599 #if defined (TE_AIX50)
7600 return "elf64-ia64-aix-little";
7601 #elif defined (TE_VMS)
7602 {
7603 md.flags |= EF_IA_64_ARCHVER_1;
7604 return "elf64-ia64-vms";
7605 }
7606 #else
7607 return "elf64-ia64-little";
7608 #endif
7609 else
7610 #ifdef TE_AIX50
7611 return "elf32-ia64-aix-little";
7612 #else
7613 return "elf32-ia64-little";
7614 #endif
7615 }
7616 }
7617 else
7618 return "unknown-format";
7619 }
7620
7621 void
7622 ia64_end_of_source (void)
7623 {
7624 /* terminate insn group upon reaching end of file: */
7625 insn_group_break (1, 0, 0);
7626
7627 /* emits slots we haven't written yet: */
7628 ia64_flush_insns ();
7629
7630 bfd_set_private_flags (stdoutput, md.flags);
7631
7632 md.mem_offset.hint = 0;
7633 }
7634
7635 void
7636 ia64_start_line (void)
7637 {
7638 static int first;
7639
7640 if (!first) {
7641 /* Make sure we don't reference input_line_pointer[-1] when that's
7642 not valid. */
7643 first = 1;
7644 return;
7645 }
7646
7647 if (md.qp.X_op == O_register)
7648 as_bad (_("qualifying predicate not followed by instruction"));
7649 md.qp.X_op = O_absent;
7650
7651 if (ignore_input ())
7652 return;
7653
7654 if (input_line_pointer[0] == ';' && input_line_pointer[-1] == ';')
7655 {
7656 if (md.detect_dv && !md.explicit_mode)
7657 {
7658 static int warned;
7659
7660 if (!warned)
7661 {
7662 warned = 1;
7663 as_warn (_("Explicit stops are ignored in auto mode"));
7664 }
7665 }
7666 else
7667 insn_group_break (1, 0, 0);
7668 }
7669 else if (input_line_pointer[-1] == '{')
7670 {
7671 if (md.manual_bundling)
7672 as_warn (_("Found '{' when manual bundling is already turned on"));
7673 else
7674 CURR_SLOT.manual_bundling_on = 1;
7675 md.manual_bundling = 1;
7676
7677 /* Bundling is only acceptable in explicit mode
7678 or when in default automatic mode. */
7679 if (md.detect_dv && !md.explicit_mode)
7680 {
7681 if (!md.mode_explicitly_set
7682 && !md.default_explicit_mode)
7683 dot_dv_mode ('E');
7684 else
7685 as_warn (_("Found '{' after explicit switch to automatic mode"));
7686 }
7687 }
7688 else if (input_line_pointer[-1] == '}')
7689 {
7690 if (!md.manual_bundling)
7691 as_warn (_("Found '}' when manual bundling is off"));
7692 else
7693 PREV_SLOT.manual_bundling_off = 1;
7694 md.manual_bundling = 0;
7695
7696 /* switch back to automatic mode, if applicable */
7697 if (md.detect_dv
7698 && md.explicit_mode
7699 && !md.mode_explicitly_set
7700 && !md.default_explicit_mode)
7701 dot_dv_mode ('A');
7702 }
7703 }
7704
7705 /* This is a hook for ia64_frob_label, so that it can distinguish tags from
7706 labels. */
7707 static int defining_tag = 0;
7708
7709 int
7710 ia64_unrecognized_line (int ch)
7711 {
7712 switch (ch)
7713 {
7714 case '(':
7715 expression_and_evaluate (&md.qp);
7716 if (*input_line_pointer++ != ')')
7717 {
7718 as_bad (_("Expected ')'"));
7719 return 0;
7720 }
7721 if (md.qp.X_op != O_register)
7722 {
7723 as_bad (_("Qualifying predicate expected"));
7724 return 0;
7725 }
7726 if (md.qp.X_add_number < REG_P || md.qp.X_add_number >= REG_P + 64)
7727 {
7728 as_bad (_("Predicate register expected"));
7729 return 0;
7730 }
7731 return 1;
7732
7733 case '[':
7734 {
7735 char *s;
7736 char c;
7737 symbolS *tag;
7738 int temp;
7739
7740 if (md.qp.X_op == O_register)
7741 {
7742 as_bad (_("Tag must come before qualifying predicate."));
7743 return 0;
7744 }
7745
7746 /* This implements just enough of read_a_source_file in read.c to
7747 recognize labels. */
7748 if (is_name_beginner (*input_line_pointer))
7749 {
7750 s = input_line_pointer;
7751 c = get_symbol_end ();
7752 }
7753 else if (LOCAL_LABELS_FB
7754 && ISDIGIT (*input_line_pointer))
7755 {
7756 temp = 0;
7757 while (ISDIGIT (*input_line_pointer))
7758 temp = (temp * 10) + *input_line_pointer++ - '0';
7759 fb_label_instance_inc (temp);
7760 s = fb_label_name (temp, 0);
7761 c = *input_line_pointer;
7762 }
7763 else
7764 {
7765 s = NULL;
7766 c = '\0';
7767 }
7768 if (c != ':')
7769 {
7770 /* Put ':' back for error messages' sake. */
7771 *input_line_pointer++ = ':';
7772 as_bad (_("Expected ':'"));
7773 return 0;
7774 }
7775
7776 defining_tag = 1;
7777 tag = colon (s);
7778 defining_tag = 0;
7779 /* Put ':' back for error messages' sake. */
7780 *input_line_pointer++ = ':';
7781 if (*input_line_pointer++ != ']')
7782 {
7783 as_bad (_("Expected ']'"));
7784 return 0;
7785 }
7786 if (! tag)
7787 {
7788 as_bad (_("Tag name expected"));
7789 return 0;
7790 }
7791 return 1;
7792 }
7793
7794 default:
7795 break;
7796 }
7797
7798 /* Not a valid line. */
7799 return 0;
7800 }
7801
7802 void
7803 ia64_frob_label (struct symbol *sym)
7804 {
7805 struct label_fix *fix;
7806
7807 /* Tags need special handling since they are not bundle breaks like
7808 labels. */
7809 if (defining_tag)
7810 {
7811 fix = obstack_alloc (&notes, sizeof (*fix));
7812 fix->sym = sym;
7813 fix->next = CURR_SLOT.tag_fixups;
7814 fix->dw2_mark_labels = FALSE;
7815 CURR_SLOT.tag_fixups = fix;
7816
7817 return;
7818 }
7819
7820 if (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
7821 {
7822 md.last_text_seg = now_seg;
7823 fix = obstack_alloc (&notes, sizeof (*fix));
7824 fix->sym = sym;
7825 fix->next = CURR_SLOT.label_fixups;
7826 fix->dw2_mark_labels = dwarf2_loc_mark_labels;
7827 CURR_SLOT.label_fixups = fix;
7828
7829 /* Keep track of how many code entry points we've seen. */
7830 if (md.path == md.maxpaths)
7831 {
7832 md.maxpaths += 20;
7833 md.entry_labels = (const char **)
7834 xrealloc ((void *) md.entry_labels,
7835 md.maxpaths * sizeof (char *));
7836 }
7837 md.entry_labels[md.path++] = S_GET_NAME (sym);
7838 }
7839 }
7840
7841 #ifdef TE_HPUX
7842 /* The HP-UX linker will give unresolved symbol errors for symbols
7843 that are declared but unused. This routine removes declared,
7844 unused symbols from an object. */
7845 int
7846 ia64_frob_symbol (struct symbol *sym)
7847 {
7848 if ((S_GET_SEGMENT (sym) == bfd_und_section_ptr && ! symbol_used_p (sym) &&
7849 ELF_ST_VISIBILITY (S_GET_OTHER (sym)) == STV_DEFAULT)
7850 || (S_GET_SEGMENT (sym) == bfd_abs_section_ptr
7851 && ! S_IS_EXTERNAL (sym)))
7852 return 1;
7853 return 0;
7854 }
7855 #endif
7856
7857 void
7858 ia64_flush_pending_output (void)
7859 {
7860 if (!md.keep_pending_output
7861 && bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
7862 {
7863 /* ??? This causes many unnecessary stop bits to be emitted.
7864 Unfortunately, it isn't clear if it is safe to remove this. */
7865 insn_group_break (1, 0, 0);
7866 ia64_flush_insns ();
7867 }
7868 }
7869
7870 /* Do ia64-specific expression optimization. All that's done here is
7871 to transform index expressions that are either due to the indexing
7872 of rotating registers or due to the indexing of indirect register
7873 sets. */
7874 int
7875 ia64_optimize_expr (expressionS *l, operatorT op, expressionS *r)
7876 {
7877 if (op != O_index)
7878 return 0;
7879 resolve_expression (l);
7880 if (l->X_op == O_register)
7881 {
7882 unsigned num_regs = l->X_add_number >> 16;
7883
7884 resolve_expression (r);
7885 if (num_regs)
7886 {
7887 /* Left side is a .rotX-allocated register. */
7888 if (r->X_op != O_constant)
7889 {
7890 as_bad (_("Rotating register index must be a non-negative constant"));
7891 r->X_add_number = 0;
7892 }
7893 else if ((valueT) r->X_add_number >= num_regs)
7894 {
7895 as_bad (_("Index out of range 0..%u"), num_regs - 1);
7896 r->X_add_number = 0;
7897 }
7898 l->X_add_number = (l->X_add_number & 0xffff) + r->X_add_number;
7899 return 1;
7900 }
7901 else if (l->X_add_number >= IND_CPUID && l->X_add_number <= IND_RR)
7902 {
7903 if (r->X_op != O_register
7904 || r->X_add_number < REG_GR
7905 || r->X_add_number > REG_GR + 127)
7906 {
7907 as_bad (_("Indirect register index must be a general register"));
7908 r->X_add_number = REG_GR;
7909 }
7910 l->X_op = O_index;
7911 l->X_op_symbol = md.indregsym[l->X_add_number - IND_CPUID];
7912 l->X_add_number = r->X_add_number;
7913 return 1;
7914 }
7915 }
7916 as_bad (_("Index can only be applied to rotating or indirect registers"));
7917 /* Fall back to some register use of which has as little as possible
7918 side effects, to minimize subsequent error messages. */
7919 l->X_op = O_register;
7920 l->X_add_number = REG_GR + 3;
7921 return 1;
7922 }
7923
7924 int
7925 ia64_parse_name (char *name, expressionS *e, char *nextcharP)
7926 {
7927 struct const_desc *cdesc;
7928 struct dynreg *dr = 0;
7929 unsigned int idx;
7930 struct symbol *sym;
7931 char *end;
7932
7933 if (*name == '@')
7934 {
7935 enum pseudo_type pseudo_type = PSEUDO_FUNC_NONE;
7936
7937 /* Find what relocation pseudo-function we're dealing with. */
7938 for (idx = 0; idx < NELEMS (pseudo_func); ++idx)
7939 if (pseudo_func[idx].name
7940 && pseudo_func[idx].name[0] == name[1]
7941 && strcmp (pseudo_func[idx].name + 1, name + 2) == 0)
7942 {
7943 pseudo_type = pseudo_func[idx].type;
7944 break;
7945 }
7946 switch (pseudo_type)
7947 {
7948 case PSEUDO_FUNC_RELOC:
7949 end = input_line_pointer;
7950 if (*nextcharP != '(')
7951 {
7952 as_bad (_("Expected '('"));
7953 break;
7954 }
7955 /* Skip '('. */
7956 ++input_line_pointer;
7957 expression (e);
7958 if (*input_line_pointer != ')')
7959 {
7960 as_bad (_("Missing ')'"));
7961 goto done;
7962 }
7963 /* Skip ')'. */
7964 ++input_line_pointer;
7965 #ifdef TE_VMS
7966 if (idx == FUNC_SLOTCOUNT_RELOC)
7967 {
7968 /* @slotcount can accept any expression. Canonicalize. */
7969 e->X_add_symbol = make_expr_symbol (e);
7970 e->X_op = O_symbol;
7971 e->X_add_number = 0;
7972 }
7973 #endif
7974 if (e->X_op != O_symbol)
7975 {
7976 if (e->X_op != O_pseudo_fixup)
7977 {
7978 as_bad (_("Not a symbolic expression"));
7979 goto done;
7980 }
7981 if (idx != FUNC_LT_RELATIVE)
7982 {
7983 as_bad (_("Illegal combination of relocation functions"));
7984 goto done;
7985 }
7986 switch (S_GET_VALUE (e->X_op_symbol))
7987 {
7988 case FUNC_FPTR_RELATIVE:
7989 idx = FUNC_LT_FPTR_RELATIVE; break;
7990 case FUNC_DTP_MODULE:
7991 idx = FUNC_LT_DTP_MODULE; break;
7992 case FUNC_DTP_RELATIVE:
7993 idx = FUNC_LT_DTP_RELATIVE; break;
7994 case FUNC_TP_RELATIVE:
7995 idx = FUNC_LT_TP_RELATIVE; break;
7996 default:
7997 as_bad (_("Illegal combination of relocation functions"));
7998 goto done;
7999 }
8000 }
8001 /* Make sure gas doesn't get rid of local symbols that are used
8002 in relocs. */
8003 e->X_op = O_pseudo_fixup;
8004 e->X_op_symbol = pseudo_func[idx].u.sym;
8005 done:
8006 *nextcharP = *input_line_pointer;
8007 break;
8008
8009 case PSEUDO_FUNC_CONST:
8010 e->X_op = O_constant;
8011 e->X_add_number = pseudo_func[idx].u.ival;
8012 break;
8013
8014 case PSEUDO_FUNC_REG:
8015 e->X_op = O_register;
8016 e->X_add_number = pseudo_func[idx].u.ival;
8017 break;
8018
8019 default:
8020 return 0;
8021 }
8022 return 1;
8023 }
8024
8025 /* first see if NAME is a known register name: */
8026 sym = hash_find (md.reg_hash, name);
8027 if (sym)
8028 {
8029 e->X_op = O_register;
8030 e->X_add_number = S_GET_VALUE (sym);
8031 return 1;
8032 }
8033
8034 cdesc = hash_find (md.const_hash, name);
8035 if (cdesc)
8036 {
8037 e->X_op = O_constant;
8038 e->X_add_number = cdesc->value;
8039 return 1;
8040 }
8041
8042 /* check for inN, locN, or outN: */
8043 idx = 0;
8044 switch (name[0])
8045 {
8046 case 'i':
8047 if (name[1] == 'n' && ISDIGIT (name[2]))
8048 {
8049 dr = &md.in;
8050 idx = 2;
8051 }
8052 break;
8053
8054 case 'l':
8055 if (name[1] == 'o' && name[2] == 'c' && ISDIGIT (name[3]))
8056 {
8057 dr = &md.loc;
8058 idx = 3;
8059 }
8060 break;
8061
8062 case 'o':
8063 if (name[1] == 'u' && name[2] == 't' && ISDIGIT (name[3]))
8064 {
8065 dr = &md.out;
8066 idx = 3;
8067 }
8068 break;
8069
8070 default:
8071 break;
8072 }
8073
8074 /* Ignore register numbers with leading zeroes, except zero itself. */
8075 if (dr && (name[idx] != '0' || name[idx + 1] == '\0'))
8076 {
8077 unsigned long regnum;
8078
8079 /* The name is inN, locN, or outN; parse the register number. */
8080 regnum = strtoul (name + idx, &end, 10);
8081 if (end > name + idx && *end == '\0' && regnum < 96)
8082 {
8083 if (regnum >= dr->num_regs)
8084 {
8085 if (!dr->num_regs)
8086 as_bad (_("No current frame"));
8087 else
8088 as_bad (_("Register number out of range 0..%u"),
8089 dr->num_regs - 1);
8090 regnum = 0;
8091 }
8092 e->X_op = O_register;
8093 e->X_add_number = dr->base + regnum;
8094 return 1;
8095 }
8096 }
8097
8098 end = alloca (strlen (name) + 1);
8099 strcpy (end, name);
8100 name = ia64_canonicalize_symbol_name (end);
8101 if ((dr = hash_find (md.dynreg_hash, name)))
8102 {
8103 /* We've got ourselves the name of a rotating register set.
8104 Store the base register number in the low 16 bits of
8105 X_add_number and the size of the register set in the top 16
8106 bits. */
8107 e->X_op = O_register;
8108 e->X_add_number = dr->base | (dr->num_regs << 16);
8109 return 1;
8110 }
8111 return 0;
8112 }
8113
8114 /* Remove the '#' suffix that indicates a symbol as opposed to a register. */
8115
8116 char *
8117 ia64_canonicalize_symbol_name (char *name)
8118 {
8119 size_t len = strlen (name), full = len;
8120
8121 while (len > 0 && name[len - 1] == '#')
8122 --len;
8123 if (len <= 0)
8124 {
8125 if (full > 0)
8126 as_bad (_("Standalone `#' is illegal"));
8127 }
8128 else if (len < full - 1)
8129 as_warn (_("Redundant `#' suffix operators"));
8130 name[len] = '\0';
8131 return name;
8132 }
8133
8134 /* Return true if idesc is a conditional branch instruction. This excludes
8135 the modulo scheduled branches, and br.ia. Mod-sched branches are excluded
8136 because they always read/write resources regardless of the value of the
8137 qualifying predicate. br.ia must always use p0, and hence is always
8138 taken. Thus this function returns true for branches which can fall
8139 through, and which use no resources if they do fall through. */
8140
8141 static int
8142 is_conditional_branch (struct ia64_opcode *idesc)
8143 {
8144 /* br is a conditional branch. Everything that starts with br. except
8145 br.ia, br.c{loop,top,exit}, and br.w{top,exit} is a conditional branch.
8146 Everything that starts with brl is a conditional branch. */
8147 return (idesc->name[0] == 'b' && idesc->name[1] == 'r'
8148 && (idesc->name[2] == '\0'
8149 || (idesc->name[2] == '.' && idesc->name[3] != 'i'
8150 && idesc->name[3] != 'c' && idesc->name[3] != 'w')
8151 || idesc->name[2] == 'l'
8152 /* br.cond, br.call, br.clr */
8153 || (idesc->name[2] == '.' && idesc->name[3] == 'c'
8154 && (idesc->name[4] == 'a' || idesc->name[4] == 'o'
8155 || (idesc->name[4] == 'l' && idesc->name[5] == 'r')))));
8156 }
8157
8158 /* Return whether the given opcode is a taken branch. If there's any doubt,
8159 returns zero. */
8160
8161 static int
8162 is_taken_branch (struct ia64_opcode *idesc)
8163 {
8164 return ((is_conditional_branch (idesc) && CURR_SLOT.qp_regno == 0)
8165 || strncmp (idesc->name, "br.ia", 5) == 0);
8166 }
8167
8168 /* Return whether the given opcode is an interruption or rfi. If there's any
8169 doubt, returns zero. */
8170
8171 static int
8172 is_interruption_or_rfi (struct ia64_opcode *idesc)
8173 {
8174 if (strcmp (idesc->name, "rfi") == 0)
8175 return 1;
8176 return 0;
8177 }
8178
8179 /* Returns the index of the given dependency in the opcode's list of chks, or
8180 -1 if there is no dependency. */
8181
8182 static int
8183 depends_on (int depind, struct ia64_opcode *idesc)
8184 {
8185 int i;
8186 const struct ia64_opcode_dependency *dep = idesc->dependencies;
8187 for (i = 0; i < dep->nchks; i++)
8188 {
8189 if (depind == DEP (dep->chks[i]))
8190 return i;
8191 }
8192 return -1;
8193 }
8194
8195 /* Determine a set of specific resources used for a particular resource
8196 class. Returns the number of specific resources identified For those
8197 cases which are not determinable statically, the resource returned is
8198 marked nonspecific.
8199
8200 Meanings of value in 'NOTE':
8201 1) only read/write when the register number is explicitly encoded in the
8202 insn.
8203 2) only read CFM when accessing a rotating GR, FR, or PR. mov pr only
8204 accesses CFM when qualifying predicate is in the rotating region.
8205 3) general register value is used to specify an indirect register; not
8206 determinable statically.
8207 4) only read the given resource when bits 7:0 of the indirect index
8208 register value does not match the register number of the resource; not
8209 determinable statically.
8210 5) all rules are implementation specific.
8211 6) only when both the index specified by the reader and the index specified
8212 by the writer have the same value in bits 63:61; not determinable
8213 statically.
8214 7) only access the specified resource when the corresponding mask bit is
8215 set
8216 8) PSR.dfh is only read when these insns reference FR32-127. PSR.dfl is
8217 only read when these insns reference FR2-31
8218 9) PSR.mfl is only written when these insns write FR2-31. PSR.mfh is only
8219 written when these insns write FR32-127
8220 10) The PSR.bn bit is only accessed when one of GR16-31 is specified in the
8221 instruction
8222 11) The target predicates are written independently of PR[qp], but source
8223 registers are only read if PR[qp] is true. Since the state of PR[qp]
8224 cannot statically be determined, all source registers are marked used.
8225 12) This insn only reads the specified predicate register when that
8226 register is the PR[qp].
8227 13) This reference to ld-c only applies to the GR whose value is loaded
8228 with data returned from memory, not the post-incremented address register.
8229 14) The RSE resource includes the implementation-specific RSE internal
8230 state resources. At least one (and possibly more) of these resources are
8231 read by each instruction listed in IC:rse-readers. At least one (and
8232 possibly more) of these resources are written by each insn listed in
8233 IC:rse-writers.
8234 15+16) Represents reserved instructions, which the assembler does not
8235 generate.
8236 17) CR[TPR] has a RAW dependency only between mov-to-CR-TPR and
8237 mov-to-PSR-l or ssm instructions that set PSR.i, PSR.pp or PSR.up.
8238
8239 Memory resources (i.e. locations in memory) are *not* marked or tracked by
8240 this code; there are no dependency violations based on memory access.
8241 */
8242
8243 #define MAX_SPECS 256
8244 #define DV_CHK 1
8245 #define DV_REG 0
8246
8247 static int
8248 specify_resource (const struct ia64_dependency *dep,
8249 struct ia64_opcode *idesc,
8250 /* is this a DV chk or a DV reg? */
8251 int type,
8252 /* returned specific resources */
8253 struct rsrc specs[MAX_SPECS],
8254 /* resource note for this insn's usage */
8255 int note,
8256 /* which execution path to examine */
8257 int path)
8258 {
8259 int count = 0;
8260 int i;
8261 int rsrc_write = 0;
8262 struct rsrc tmpl;
8263
8264 if (dep->mode == IA64_DV_WAW
8265 || (dep->mode == IA64_DV_RAW && type == DV_REG)
8266 || (dep->mode == IA64_DV_WAR && type == DV_CHK))
8267 rsrc_write = 1;
8268
8269 /* template for any resources we identify */
8270 tmpl.dependency = dep;
8271 tmpl.note = note;
8272 tmpl.insn_srlz = tmpl.data_srlz = 0;
8273 tmpl.qp_regno = CURR_SLOT.qp_regno;
8274 tmpl.link_to_qp_branch = 1;
8275 tmpl.mem_offset.hint = 0;
8276 tmpl.mem_offset.offset = 0;
8277 tmpl.mem_offset.base = 0;
8278 tmpl.specific = 1;
8279 tmpl.index = -1;
8280 tmpl.cmp_type = CMP_NONE;
8281 tmpl.depind = 0;
8282 tmpl.file = NULL;
8283 tmpl.line = 0;
8284 tmpl.path = 0;
8285
8286 #define UNHANDLED \
8287 as_warn (_("Unhandled dependency %s for %s (%s), note %d"), \
8288 dep->name, idesc->name, (rsrc_write?"write":"read"), note)
8289 #define KNOWN(REG) (gr_values[REG].known && gr_values[REG].path >= path)
8290
8291 /* we don't need to track these */
8292 if (dep->semantics == IA64_DVS_NONE)
8293 return 0;
8294
8295 switch (dep->specifier)
8296 {
8297 case IA64_RS_AR_K:
8298 if (note == 1)
8299 {
8300 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8301 {
8302 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8303 if (regno >= 0 && regno <= 7)
8304 {
8305 specs[count] = tmpl;
8306 specs[count++].index = regno;
8307 }
8308 }
8309 }
8310 else if (note == 0)
8311 {
8312 for (i = 0; i < 8; i++)
8313 {
8314 specs[count] = tmpl;
8315 specs[count++].index = i;
8316 }
8317 }
8318 else
8319 {
8320 UNHANDLED;
8321 }
8322 break;
8323
8324 case IA64_RS_AR_UNAT:
8325 /* This is a mov =AR or mov AR= instruction. */
8326 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8327 {
8328 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8329 if (regno == AR_UNAT)
8330 {
8331 specs[count++] = tmpl;
8332 }
8333 }
8334 else
8335 {
8336 /* This is a spill/fill, or other instruction that modifies the
8337 unat register. */
8338
8339 /* Unless we can determine the specific bits used, mark the whole
8340 thing; bits 8:3 of the memory address indicate the bit used in
8341 UNAT. The .mem.offset hint may be used to eliminate a small
8342 subset of conflicts. */
8343 specs[count] = tmpl;
8344 if (md.mem_offset.hint)
8345 {
8346 if (md.debug_dv)
8347 fprintf (stderr, " Using hint for spill/fill\n");
8348 /* The index isn't actually used, just set it to something
8349 approximating the bit index. */
8350 specs[count].index = (md.mem_offset.offset >> 3) & 0x3F;
8351 specs[count].mem_offset.hint = 1;
8352 specs[count].mem_offset.offset = md.mem_offset.offset;
8353 specs[count++].mem_offset.base = md.mem_offset.base;
8354 }
8355 else
8356 {
8357 specs[count++].specific = 0;
8358 }
8359 }
8360 break;
8361
8362 case IA64_RS_AR:
8363 if (note == 1)
8364 {
8365 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8366 {
8367 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8368 if ((regno >= 8 && regno <= 15)
8369 || (regno >= 20 && regno <= 23)
8370 || (regno >= 31 && regno <= 39)
8371 || (regno >= 41 && regno <= 47)
8372 || (regno >= 67 && regno <= 111))
8373 {
8374 specs[count] = tmpl;
8375 specs[count++].index = regno;
8376 }
8377 }
8378 }
8379 else
8380 {
8381 UNHANDLED;
8382 }
8383 break;
8384
8385 case IA64_RS_ARb:
8386 if (note == 1)
8387 {
8388 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8389 {
8390 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8391 if ((regno >= 48 && regno <= 63)
8392 || (regno >= 112 && regno <= 127))
8393 {
8394 specs[count] = tmpl;
8395 specs[count++].index = regno;
8396 }
8397 }
8398 }
8399 else if (note == 0)
8400 {
8401 for (i = 48; i < 64; i++)
8402 {
8403 specs[count] = tmpl;
8404 specs[count++].index = i;
8405 }
8406 for (i = 112; i < 128; i++)
8407 {
8408 specs[count] = tmpl;
8409 specs[count++].index = i;
8410 }
8411 }
8412 else
8413 {
8414 UNHANDLED;
8415 }
8416 break;
8417
8418 case IA64_RS_BR:
8419 if (note != 1)
8420 {
8421 UNHANDLED;
8422 }
8423 else
8424 {
8425 if (rsrc_write)
8426 {
8427 for (i = 0; i < idesc->num_outputs; i++)
8428 if (idesc->operands[i] == IA64_OPND_B1
8429 || idesc->operands[i] == IA64_OPND_B2)
8430 {
8431 specs[count] = tmpl;
8432 specs[count++].index =
8433 CURR_SLOT.opnd[i].X_add_number - REG_BR;
8434 }
8435 }
8436 else
8437 {
8438 for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
8439 if (idesc->operands[i] == IA64_OPND_B1
8440 || idesc->operands[i] == IA64_OPND_B2)
8441 {
8442 specs[count] = tmpl;
8443 specs[count++].index =
8444 CURR_SLOT.opnd[i].X_add_number - REG_BR;
8445 }
8446 }
8447 }
8448 break;
8449
8450 case IA64_RS_CPUID: /* four or more registers */
8451 if (note == 3)
8452 {
8453 if (idesc->operands[!rsrc_write] == IA64_OPND_CPUID_R3)
8454 {
8455 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8456 if (regno >= 0 && regno < NELEMS (gr_values)
8457 && KNOWN (regno))
8458 {
8459 specs[count] = tmpl;
8460 specs[count++].index = gr_values[regno].value & 0xFF;
8461 }
8462 else
8463 {
8464 specs[count] = tmpl;
8465 specs[count++].specific = 0;
8466 }
8467 }
8468 }
8469 else
8470 {
8471 UNHANDLED;
8472 }
8473 break;
8474
8475 case IA64_RS_DBR: /* four or more registers */
8476 if (note == 3)
8477 {
8478 if (idesc->operands[!rsrc_write] == IA64_OPND_DBR_R3)
8479 {
8480 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8481 if (regno >= 0 && regno < NELEMS (gr_values)
8482 && KNOWN (regno))
8483 {
8484 specs[count] = tmpl;
8485 specs[count++].index = gr_values[regno].value & 0xFF;
8486 }
8487 else
8488 {
8489 specs[count] = tmpl;
8490 specs[count++].specific = 0;
8491 }
8492 }
8493 }
8494 else if (note == 0 && !rsrc_write)
8495 {
8496 specs[count] = tmpl;
8497 specs[count++].specific = 0;
8498 }
8499 else
8500 {
8501 UNHANDLED;
8502 }
8503 break;
8504
8505 case IA64_RS_IBR: /* four or more registers */
8506 if (note == 3)
8507 {
8508 if (idesc->operands[!rsrc_write] == IA64_OPND_IBR_R3)
8509 {
8510 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8511 if (regno >= 0 && regno < NELEMS (gr_values)
8512 && KNOWN (regno))
8513 {
8514 specs[count] = tmpl;
8515 specs[count++].index = gr_values[regno].value & 0xFF;
8516 }
8517 else
8518 {
8519 specs[count] = tmpl;
8520 specs[count++].specific = 0;
8521 }
8522 }
8523 }
8524 else
8525 {
8526 UNHANDLED;
8527 }
8528 break;
8529
8530 case IA64_RS_MSR:
8531 if (note == 5)
8532 {
8533 /* These are implementation specific. Force all references to
8534 conflict with all other references. */
8535 specs[count] = tmpl;
8536 specs[count++].specific = 0;
8537 }
8538 else
8539 {
8540 UNHANDLED;
8541 }
8542 break;
8543
8544 case IA64_RS_PKR: /* 16 or more registers */
8545 if (note == 3 || note == 4)
8546 {
8547 if (idesc->operands[!rsrc_write] == IA64_OPND_PKR_R3)
8548 {
8549 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8550 if (regno >= 0 && regno < NELEMS (gr_values)
8551 && KNOWN (regno))
8552 {
8553 if (note == 3)
8554 {
8555 specs[count] = tmpl;
8556 specs[count++].index = gr_values[regno].value & 0xFF;
8557 }
8558 else
8559 for (i = 0; i < NELEMS (gr_values); i++)
8560 {
8561 /* Uses all registers *except* the one in R3. */
8562 if ((unsigned)i != (gr_values[regno].value & 0xFF))
8563 {
8564 specs[count] = tmpl;
8565 specs[count++].index = i;
8566 }
8567 }
8568 }
8569 else
8570 {
8571 specs[count] = tmpl;
8572 specs[count++].specific = 0;
8573 }
8574 }
8575 }
8576 else if (note == 0)
8577 {
8578 /* probe et al. */
8579 specs[count] = tmpl;
8580 specs[count++].specific = 0;
8581 }
8582 break;
8583
8584 case IA64_RS_PMC: /* four or more registers */
8585 if (note == 3)
8586 {
8587 if (idesc->operands[!rsrc_write] == IA64_OPND_PMC_R3
8588 || (!rsrc_write && idesc->operands[1] == IA64_OPND_PMD_R3))
8589
8590 {
8591 int reg_index = ((idesc->operands[1] == IA64_OPND_R3 && !rsrc_write)
8592 ? 1 : !rsrc_write);
8593 int regno = CURR_SLOT.opnd[reg_index].X_add_number - REG_GR;
8594 if (regno >= 0 && regno < NELEMS (gr_values)
8595 && KNOWN (regno))
8596 {
8597 specs[count] = tmpl;
8598 specs[count++].index = gr_values[regno].value & 0xFF;
8599 }
8600 else
8601 {
8602 specs[count] = tmpl;
8603 specs[count++].specific = 0;
8604 }
8605 }
8606 }
8607 else
8608 {
8609 UNHANDLED;
8610 }
8611 break;
8612
8613 case IA64_RS_PMD: /* four or more registers */
8614 if (note == 3)
8615 {
8616 if (idesc->operands[!rsrc_write] == IA64_OPND_PMD_R3)
8617 {
8618 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8619 if (regno >= 0 && regno < NELEMS (gr_values)
8620 && KNOWN (regno))
8621 {
8622 specs[count] = tmpl;
8623 specs[count++].index = gr_values[regno].value & 0xFF;
8624 }
8625 else
8626 {
8627 specs[count] = tmpl;
8628 specs[count++].specific = 0;
8629 }
8630 }
8631 }
8632 else
8633 {
8634 UNHANDLED;
8635 }
8636 break;
8637
8638 case IA64_RS_RR: /* eight registers */
8639 if (note == 6)
8640 {
8641 if (idesc->operands[!rsrc_write] == IA64_OPND_RR_R3)
8642 {
8643 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8644 if (regno >= 0 && regno < NELEMS (gr_values)
8645 && KNOWN (regno))
8646 {
8647 specs[count] = tmpl;
8648 specs[count++].index = (gr_values[regno].value >> 61) & 0x7;
8649 }
8650 else
8651 {
8652 specs[count] = tmpl;
8653 specs[count++].specific = 0;
8654 }
8655 }
8656 }
8657 else if (note == 0 && !rsrc_write)
8658 {
8659 specs[count] = tmpl;
8660 specs[count++].specific = 0;
8661 }
8662 else
8663 {
8664 UNHANDLED;
8665 }
8666 break;
8667
8668 case IA64_RS_CR_IRR:
8669 if (note == 0)
8670 {
8671 /* handle mov-from-CR-IVR; it's a read that writes CR[IRR] */
8672 int regno = CURR_SLOT.opnd[1].X_add_number - REG_CR;
8673 if (rsrc_write
8674 && idesc->operands[1] == IA64_OPND_CR3
8675 && regno == CR_IVR)
8676 {
8677 for (i = 0; i < 4; i++)
8678 {
8679 specs[count] = tmpl;
8680 specs[count++].index = CR_IRR0 + i;
8681 }
8682 }
8683 }
8684 else if (note == 1)
8685 {
8686 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8687 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
8688 && regno >= CR_IRR0
8689 && regno <= CR_IRR3)
8690 {
8691 specs[count] = tmpl;
8692 specs[count++].index = regno;
8693 }
8694 }
8695 else
8696 {
8697 UNHANDLED;
8698 }
8699 break;
8700
8701 case IA64_RS_CR_IIB:
8702 if (note != 0)
8703 {
8704 UNHANDLED;
8705 }
8706 else
8707 {
8708 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8709 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
8710 && (regno == CR_IIB0 || regno == CR_IIB1))
8711 {
8712 specs[count] = tmpl;
8713 specs[count++].index = regno;
8714 }
8715 }
8716 break;
8717
8718 case IA64_RS_CR_LRR:
8719 if (note != 1)
8720 {
8721 UNHANDLED;
8722 }
8723 else
8724 {
8725 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8726 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
8727 && (regno == CR_LRR0 || regno == CR_LRR1))
8728 {
8729 specs[count] = tmpl;
8730 specs[count++].index = regno;
8731 }
8732 }
8733 break;
8734
8735 case IA64_RS_CR:
8736 if (note == 1)
8737 {
8738 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
8739 {
8740 specs[count] = tmpl;
8741 specs[count++].index =
8742 CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8743 }
8744 }
8745 else
8746 {
8747 UNHANDLED;
8748 }
8749 break;
8750
8751 case IA64_RS_DAHR:
8752 if (note == 0)
8753 {
8754 if (idesc->operands[!rsrc_write] == IA64_OPND_DAHR3)
8755 {
8756 specs[count] = tmpl;
8757 specs[count++].index =
8758 CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_DAHR;
8759 }
8760 }
8761 else
8762 {
8763 UNHANDLED;
8764 }
8765 break;
8766
8767 case IA64_RS_FR:
8768 case IA64_RS_FRb:
8769 if (note != 1)
8770 {
8771 UNHANDLED;
8772 }
8773 else if (rsrc_write)
8774 {
8775 if (dep->specifier == IA64_RS_FRb
8776 && idesc->operands[0] == IA64_OPND_F1)
8777 {
8778 specs[count] = tmpl;
8779 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_FR;
8780 }
8781 }
8782 else
8783 {
8784 for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
8785 {
8786 if (idesc->operands[i] == IA64_OPND_F2
8787 || idesc->operands[i] == IA64_OPND_F3
8788 || idesc->operands[i] == IA64_OPND_F4)
8789 {
8790 specs[count] = tmpl;
8791 specs[count++].index =
8792 CURR_SLOT.opnd[i].X_add_number - REG_FR;
8793 }
8794 }
8795 }
8796 break;
8797
8798 case IA64_RS_GR:
8799 if (note == 13)
8800 {
8801 /* This reference applies only to the GR whose value is loaded with
8802 data returned from memory. */
8803 specs[count] = tmpl;
8804 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_GR;
8805 }
8806 else if (note == 1)
8807 {
8808 if (rsrc_write)
8809 {
8810 for (i = 0; i < idesc->num_outputs; i++)
8811 if (idesc->operands[i] == IA64_OPND_R1
8812 || idesc->operands[i] == IA64_OPND_R2
8813 || idesc->operands[i] == IA64_OPND_R3)
8814 {
8815 specs[count] = tmpl;
8816 specs[count++].index =
8817 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8818 }
8819 if (idesc->flags & IA64_OPCODE_POSTINC)
8820 for (i = 0; i < NELEMS (idesc->operands); i++)
8821 if (idesc->operands[i] == IA64_OPND_MR3)
8822 {
8823 specs[count] = tmpl;
8824 specs[count++].index =
8825 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8826 }
8827 }
8828 else
8829 {
8830 /* Look for anything that reads a GR. */
8831 for (i = 0; i < NELEMS (idesc->operands); i++)
8832 {
8833 if (idesc->operands[i] == IA64_OPND_MR3
8834 || idesc->operands[i] == IA64_OPND_CPUID_R3
8835 || idesc->operands[i] == IA64_OPND_DBR_R3
8836 || idesc->operands[i] == IA64_OPND_IBR_R3
8837 || idesc->operands[i] == IA64_OPND_MSR_R3
8838 || idesc->operands[i] == IA64_OPND_PKR_R3
8839 || idesc->operands[i] == IA64_OPND_PMC_R3
8840 || idesc->operands[i] == IA64_OPND_PMD_R3
8841 || idesc->operands[i] == IA64_OPND_DAHR_R3
8842 || idesc->operands[i] == IA64_OPND_RR_R3
8843 || ((i >= idesc->num_outputs)
8844 && (idesc->operands[i] == IA64_OPND_R1
8845 || idesc->operands[i] == IA64_OPND_R2
8846 || idesc->operands[i] == IA64_OPND_R3
8847 /* addl source register. */
8848 || idesc->operands[i] == IA64_OPND_R3_2)))
8849 {
8850 specs[count] = tmpl;
8851 specs[count++].index =
8852 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8853 }
8854 }
8855 }
8856 }
8857 else
8858 {
8859 UNHANDLED;
8860 }
8861 break;
8862
8863 /* This is the same as IA64_RS_PRr, except that the register range is
8864 from 1 - 15, and there are no rotating register reads/writes here. */
8865 case IA64_RS_PR:
8866 if (note == 0)
8867 {
8868 for (i = 1; i < 16; i++)
8869 {
8870 specs[count] = tmpl;
8871 specs[count++].index = i;
8872 }
8873 }
8874 else if (note == 7)
8875 {
8876 valueT mask = 0;
8877 /* Mark only those registers indicated by the mask. */
8878 if (rsrc_write)
8879 {
8880 mask = CURR_SLOT.opnd[2].X_add_number;
8881 for (i = 1; i < 16; i++)
8882 if (mask & ((valueT) 1 << i))
8883 {
8884 specs[count] = tmpl;
8885 specs[count++].index = i;
8886 }
8887 }
8888 else
8889 {
8890 UNHANDLED;
8891 }
8892 }
8893 else if (note == 11) /* note 11 implies note 1 as well */
8894 {
8895 if (rsrc_write)
8896 {
8897 for (i = 0; i < idesc->num_outputs; i++)
8898 {
8899 if (idesc->operands[i] == IA64_OPND_P1
8900 || idesc->operands[i] == IA64_OPND_P2)
8901 {
8902 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
8903 if (regno >= 1 && regno < 16)
8904 {
8905 specs[count] = tmpl;
8906 specs[count++].index = regno;
8907 }
8908 }
8909 }
8910 }
8911 else
8912 {
8913 UNHANDLED;
8914 }
8915 }
8916 else if (note == 12)
8917 {
8918 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
8919 {
8920 specs[count] = tmpl;
8921 specs[count++].index = CURR_SLOT.qp_regno;
8922 }
8923 }
8924 else if (note == 1)
8925 {
8926 if (rsrc_write)
8927 {
8928 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
8929 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
8930 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
8931 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
8932
8933 if ((idesc->operands[0] == IA64_OPND_P1
8934 || idesc->operands[0] == IA64_OPND_P2)
8935 && p1 >= 1 && p1 < 16)
8936 {
8937 specs[count] = tmpl;
8938 specs[count].cmp_type =
8939 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
8940 specs[count++].index = p1;
8941 }
8942 if ((idesc->operands[1] == IA64_OPND_P1
8943 || idesc->operands[1] == IA64_OPND_P2)
8944 && p2 >= 1 && p2 < 16)
8945 {
8946 specs[count] = tmpl;
8947 specs[count].cmp_type =
8948 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
8949 specs[count++].index = p2;
8950 }
8951 }
8952 else
8953 {
8954 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
8955 {
8956 specs[count] = tmpl;
8957 specs[count++].index = CURR_SLOT.qp_regno;
8958 }
8959 if (idesc->operands[1] == IA64_OPND_PR)
8960 {
8961 for (i = 1; i < 16; i++)
8962 {
8963 specs[count] = tmpl;
8964 specs[count++].index = i;
8965 }
8966 }
8967 }
8968 }
8969 else
8970 {
8971 UNHANDLED;
8972 }
8973 break;
8974
8975 /* This is the general case for PRs. IA64_RS_PR and IA64_RS_PR63 are
8976 simplified cases of this. */
8977 case IA64_RS_PRr:
8978 if (note == 0)
8979 {
8980 for (i = 16; i < 63; i++)
8981 {
8982 specs[count] = tmpl;
8983 specs[count++].index = i;
8984 }
8985 }
8986 else if (note == 7)
8987 {
8988 valueT mask = 0;
8989 /* Mark only those registers indicated by the mask. */
8990 if (rsrc_write
8991 && idesc->operands[0] == IA64_OPND_PR)
8992 {
8993 mask = CURR_SLOT.opnd[2].X_add_number;
8994 if (mask & ((valueT) 1 << 16))
8995 for (i = 16; i < 63; i++)
8996 {
8997 specs[count] = tmpl;
8998 specs[count++].index = i;
8999 }
9000 }
9001 else if (rsrc_write
9002 && idesc->operands[0] == IA64_OPND_PR_ROT)
9003 {
9004 for (i = 16; i < 63; i++)
9005 {
9006 specs[count] = tmpl;
9007 specs[count++].index = i;
9008 }
9009 }
9010 else
9011 {
9012 UNHANDLED;
9013 }
9014 }
9015 else if (note == 11) /* note 11 implies note 1 as well */
9016 {
9017 if (rsrc_write)
9018 {
9019 for (i = 0; i < idesc->num_outputs; i++)
9020 {
9021 if (idesc->operands[i] == IA64_OPND_P1
9022 || idesc->operands[i] == IA64_OPND_P2)
9023 {
9024 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
9025 if (regno >= 16 && regno < 63)
9026 {
9027 specs[count] = tmpl;
9028 specs[count++].index = regno;
9029 }
9030 }
9031 }
9032 }
9033 else
9034 {
9035 UNHANDLED;
9036 }
9037 }
9038 else if (note == 12)
9039 {
9040 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
9041 {
9042 specs[count] = tmpl;
9043 specs[count++].index = CURR_SLOT.qp_regno;
9044 }
9045 }
9046 else if (note == 1)
9047 {
9048 if (rsrc_write)
9049 {
9050 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
9051 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
9052 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
9053 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
9054
9055 if ((idesc->operands[0] == IA64_OPND_P1
9056 || idesc->operands[0] == IA64_OPND_P2)
9057 && p1 >= 16 && p1 < 63)
9058 {
9059 specs[count] = tmpl;
9060 specs[count].cmp_type =
9061 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
9062 specs[count++].index = p1;
9063 }
9064 if ((idesc->operands[1] == IA64_OPND_P1
9065 || idesc->operands[1] == IA64_OPND_P2)
9066 && p2 >= 16 && p2 < 63)
9067 {
9068 specs[count] = tmpl;
9069 specs[count].cmp_type =
9070 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
9071 specs[count++].index = p2;
9072 }
9073 }
9074 else
9075 {
9076 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
9077 {
9078 specs[count] = tmpl;
9079 specs[count++].index = CURR_SLOT.qp_regno;
9080 }
9081 if (idesc->operands[1] == IA64_OPND_PR)
9082 {
9083 for (i = 16; i < 63; i++)
9084 {
9085 specs[count] = tmpl;
9086 specs[count++].index = i;
9087 }
9088 }
9089 }
9090 }
9091 else
9092 {
9093 UNHANDLED;
9094 }
9095 break;
9096
9097 case IA64_RS_PSR:
9098 /* Verify that the instruction is using the PSR bit indicated in
9099 dep->regindex. */
9100 if (note == 0)
9101 {
9102 if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_UM)
9103 {
9104 if (dep->regindex < 6)
9105 {
9106 specs[count++] = tmpl;
9107 }
9108 }
9109 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR)
9110 {
9111 if (dep->regindex < 32
9112 || dep->regindex == 35
9113 || dep->regindex == 36
9114 || (!rsrc_write && dep->regindex == PSR_CPL))
9115 {
9116 specs[count++] = tmpl;
9117 }
9118 }
9119 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_L)
9120 {
9121 if (dep->regindex < 32
9122 || dep->regindex == 35
9123 || dep->regindex == 36
9124 || (rsrc_write && dep->regindex == PSR_CPL))
9125 {
9126 specs[count++] = tmpl;
9127 }
9128 }
9129 else
9130 {
9131 /* Several PSR bits have very specific dependencies. */
9132 switch (dep->regindex)
9133 {
9134 default:
9135 specs[count++] = tmpl;
9136 break;
9137 case PSR_IC:
9138 if (rsrc_write)
9139 {
9140 specs[count++] = tmpl;
9141 }
9142 else
9143 {
9144 /* Only certain CR accesses use PSR.ic */
9145 if (idesc->operands[0] == IA64_OPND_CR3
9146 || idesc->operands[1] == IA64_OPND_CR3)
9147 {
9148 int reg_index =
9149 ((idesc->operands[0] == IA64_OPND_CR3)
9150 ? 0 : 1);
9151 int regno =
9152 CURR_SLOT.opnd[reg_index].X_add_number - REG_CR;
9153
9154 switch (regno)
9155 {
9156 default:
9157 break;
9158 case CR_ITIR:
9159 case CR_IFS:
9160 case CR_IIM:
9161 case CR_IIP:
9162 case CR_IPSR:
9163 case CR_ISR:
9164 case CR_IFA:
9165 case CR_IHA:
9166 case CR_IIB0:
9167 case CR_IIB1:
9168 case CR_IIPA:
9169 specs[count++] = tmpl;
9170 break;
9171 }
9172 }
9173 }
9174 break;
9175 case PSR_CPL:
9176 if (rsrc_write)
9177 {
9178 specs[count++] = tmpl;
9179 }
9180 else
9181 {
9182 /* Only some AR accesses use cpl */
9183 if (idesc->operands[0] == IA64_OPND_AR3
9184 || idesc->operands[1] == IA64_OPND_AR3)
9185 {
9186 int reg_index =
9187 ((idesc->operands[0] == IA64_OPND_AR3)
9188 ? 0 : 1);
9189 int regno =
9190 CURR_SLOT.opnd[reg_index].X_add_number - REG_AR;
9191
9192 if (regno == AR_ITC
9193 || regno == AR_RUC
9194 || (reg_index == 0
9195 && (regno == AR_RSC
9196 || (regno >= AR_K0
9197 && regno <= AR_K7))))
9198 {
9199 specs[count++] = tmpl;
9200 }
9201 }
9202 else
9203 {
9204 specs[count++] = tmpl;
9205 }
9206 break;
9207 }
9208 }
9209 }
9210 }
9211 else if (note == 7)
9212 {
9213 valueT mask = 0;
9214 if (idesc->operands[0] == IA64_OPND_IMMU24)
9215 {
9216 mask = CURR_SLOT.opnd[0].X_add_number;
9217 }
9218 else
9219 {
9220 UNHANDLED;
9221 }
9222 if (mask & ((valueT) 1 << dep->regindex))
9223 {
9224 specs[count++] = tmpl;
9225 }
9226 }
9227 else if (note == 8)
9228 {
9229 int min = dep->regindex == PSR_DFL ? 2 : 32;
9230 int max = dep->regindex == PSR_DFL ? 31 : 127;
9231 /* dfh is read on FR32-127; dfl is read on FR2-31 */
9232 for (i = 0; i < NELEMS (idesc->operands); i++)
9233 {
9234 if (idesc->operands[i] == IA64_OPND_F1
9235 || idesc->operands[i] == IA64_OPND_F2
9236 || idesc->operands[i] == IA64_OPND_F3
9237 || idesc->operands[i] == IA64_OPND_F4)
9238 {
9239 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9240 if (reg >= min && reg <= max)
9241 {
9242 specs[count++] = tmpl;
9243 }
9244 }
9245 }
9246 }
9247 else if (note == 9)
9248 {
9249 int min = dep->regindex == PSR_MFL ? 2 : 32;
9250 int max = dep->regindex == PSR_MFL ? 31 : 127;
9251 /* mfh is read on writes to FR32-127; mfl is read on writes to
9252 FR2-31 */
9253 for (i = 0; i < idesc->num_outputs; i++)
9254 {
9255 if (idesc->operands[i] == IA64_OPND_F1)
9256 {
9257 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9258 if (reg >= min && reg <= max)
9259 {
9260 specs[count++] = tmpl;
9261 }
9262 }
9263 }
9264 }
9265 else if (note == 10)
9266 {
9267 for (i = 0; i < NELEMS (idesc->operands); i++)
9268 {
9269 if (idesc->operands[i] == IA64_OPND_R1
9270 || idesc->operands[i] == IA64_OPND_R2
9271 || idesc->operands[i] == IA64_OPND_R3)
9272 {
9273 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9274 if (regno >= 16 && regno <= 31)
9275 {
9276 specs[count++] = tmpl;
9277 }
9278 }
9279 }
9280 }
9281 else
9282 {
9283 UNHANDLED;
9284 }
9285 break;
9286
9287 case IA64_RS_AR_FPSR:
9288 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
9289 {
9290 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
9291 if (regno == AR_FPSR)
9292 {
9293 specs[count++] = tmpl;
9294 }
9295 }
9296 else
9297 {
9298 specs[count++] = tmpl;
9299 }
9300 break;
9301
9302 case IA64_RS_ARX:
9303 /* Handle all AR[REG] resources */
9304 if (note == 0 || note == 1)
9305 {
9306 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
9307 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3
9308 && regno == dep->regindex)
9309 {
9310 specs[count++] = tmpl;
9311 }
9312 /* other AR[REG] resources may be affected by AR accesses */
9313 else if (idesc->operands[0] == IA64_OPND_AR3)
9314 {
9315 /* AR[] writes */
9316 regno = CURR_SLOT.opnd[0].X_add_number - REG_AR;
9317 switch (dep->regindex)
9318 {
9319 default:
9320 break;
9321 case AR_BSP:
9322 case AR_RNAT:
9323 if (regno == AR_BSPSTORE)
9324 {
9325 specs[count++] = tmpl;
9326 }
9327 case AR_RSC:
9328 if (!rsrc_write &&
9329 (regno == AR_BSPSTORE
9330 || regno == AR_RNAT))
9331 {
9332 specs[count++] = tmpl;
9333 }
9334 break;
9335 }
9336 }
9337 else if (idesc->operands[1] == IA64_OPND_AR3)
9338 {
9339 /* AR[] reads */
9340 regno = CURR_SLOT.opnd[1].X_add_number - REG_AR;
9341 switch (dep->regindex)
9342 {
9343 default:
9344 break;
9345 case AR_RSC:
9346 if (regno == AR_BSPSTORE || regno == AR_RNAT)
9347 {
9348 specs[count++] = tmpl;
9349 }
9350 break;
9351 }
9352 }
9353 else
9354 {
9355 specs[count++] = tmpl;
9356 }
9357 }
9358 else
9359 {
9360 UNHANDLED;
9361 }
9362 break;
9363
9364 case IA64_RS_CRX:
9365 /* Handle all CR[REG] resources.
9366 ??? FIXME: The rule 17 isn't really handled correctly. */
9367 if (note == 0 || note == 1 || note == 17)
9368 {
9369 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
9370 {
9371 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
9372 if (regno == dep->regindex)
9373 {
9374 specs[count++] = tmpl;
9375 }
9376 else if (!rsrc_write)
9377 {
9378 /* Reads from CR[IVR] affect other resources. */
9379 if (regno == CR_IVR)
9380 {
9381 if ((dep->regindex >= CR_IRR0
9382 && dep->regindex <= CR_IRR3)
9383 || dep->regindex == CR_TPR)
9384 {
9385 specs[count++] = tmpl;
9386 }
9387 }
9388 }
9389 }
9390 else
9391 {
9392 specs[count++] = tmpl;
9393 }
9394 }
9395 else
9396 {
9397 UNHANDLED;
9398 }
9399 break;
9400
9401 case IA64_RS_INSERVICE:
9402 /* look for write of EOI (67) or read of IVR (65) */
9403 if ((idesc->operands[0] == IA64_OPND_CR3
9404 && CURR_SLOT.opnd[0].X_add_number - REG_CR == CR_EOI)
9405 || (idesc->operands[1] == IA64_OPND_CR3
9406 && CURR_SLOT.opnd[1].X_add_number - REG_CR == CR_IVR))
9407 {
9408 specs[count++] = tmpl;
9409 }
9410 break;
9411
9412 case IA64_RS_GR0:
9413 if (note == 1)
9414 {
9415 specs[count++] = tmpl;
9416 }
9417 else
9418 {
9419 UNHANDLED;
9420 }
9421 break;
9422
9423 case IA64_RS_CFM:
9424 if (note != 2)
9425 {
9426 specs[count++] = tmpl;
9427 }
9428 else
9429 {
9430 /* Check if any of the registers accessed are in the rotating region.
9431 mov to/from pr accesses CFM only when qp_regno is in the rotating
9432 region */
9433 for (i = 0; i < NELEMS (idesc->operands); i++)
9434 {
9435 if (idesc->operands[i] == IA64_OPND_R1
9436 || idesc->operands[i] == IA64_OPND_R2
9437 || idesc->operands[i] == IA64_OPND_R3)
9438 {
9439 int num = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9440 /* Assumes that md.rot.num_regs is always valid */
9441 if (md.rot.num_regs > 0
9442 && num > 31
9443 && num < 31 + md.rot.num_regs)
9444 {
9445 specs[count] = tmpl;
9446 specs[count++].specific = 0;
9447 }
9448 }
9449 else if (idesc->operands[i] == IA64_OPND_F1
9450 || idesc->operands[i] == IA64_OPND_F2
9451 || idesc->operands[i] == IA64_OPND_F3
9452 || idesc->operands[i] == IA64_OPND_F4)
9453 {
9454 int num = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9455 if (num > 31)
9456 {
9457 specs[count] = tmpl;
9458 specs[count++].specific = 0;
9459 }
9460 }
9461 else if (idesc->operands[i] == IA64_OPND_P1
9462 || idesc->operands[i] == IA64_OPND_P2)
9463 {
9464 int num = CURR_SLOT.opnd[i].X_add_number - REG_P;
9465 if (num > 15)
9466 {
9467 specs[count] = tmpl;
9468 specs[count++].specific = 0;
9469 }
9470 }
9471 }
9472 if (CURR_SLOT.qp_regno > 15)
9473 {
9474 specs[count] = tmpl;
9475 specs[count++].specific = 0;
9476 }
9477 }
9478 break;
9479
9480 /* This is the same as IA64_RS_PRr, except simplified to account for
9481 the fact that there is only one register. */
9482 case IA64_RS_PR63:
9483 if (note == 0)
9484 {
9485 specs[count++] = tmpl;
9486 }
9487 else if (note == 7)
9488 {
9489 valueT mask = 0;
9490 if (idesc->operands[2] == IA64_OPND_IMM17)
9491 mask = CURR_SLOT.opnd[2].X_add_number;
9492 if (mask & ((valueT) 1 << 63))
9493 specs[count++] = tmpl;
9494 }
9495 else if (note == 11)
9496 {
9497 if ((idesc->operands[0] == IA64_OPND_P1
9498 && CURR_SLOT.opnd[0].X_add_number - REG_P == 63)
9499 || (idesc->operands[1] == IA64_OPND_P2
9500 && CURR_SLOT.opnd[1].X_add_number - REG_P == 63))
9501 {
9502 specs[count++] = tmpl;
9503 }
9504 }
9505 else if (note == 12)
9506 {
9507 if (CURR_SLOT.qp_regno == 63)
9508 {
9509 specs[count++] = tmpl;
9510 }
9511 }
9512 else if (note == 1)
9513 {
9514 if (rsrc_write)
9515 {
9516 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
9517 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
9518 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
9519 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
9520
9521 if (p1 == 63
9522 && (idesc->operands[0] == IA64_OPND_P1
9523 || idesc->operands[0] == IA64_OPND_P2))
9524 {
9525 specs[count] = tmpl;
9526 specs[count++].cmp_type =
9527 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
9528 }
9529 if (p2 == 63
9530 && (idesc->operands[1] == IA64_OPND_P1
9531 || idesc->operands[1] == IA64_OPND_P2))
9532 {
9533 specs[count] = tmpl;
9534 specs[count++].cmp_type =
9535 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
9536 }
9537 }
9538 else
9539 {
9540 if (CURR_SLOT.qp_regno == 63)
9541 {
9542 specs[count++] = tmpl;
9543 }
9544 }
9545 }
9546 else
9547 {
9548 UNHANDLED;
9549 }
9550 break;
9551
9552 case IA64_RS_RSE:
9553 /* FIXME we can identify some individual RSE written resources, but RSE
9554 read resources have not yet been completely identified, so for now
9555 treat RSE as a single resource */
9556 if (strncmp (idesc->name, "mov", 3) == 0)
9557 {
9558 if (rsrc_write)
9559 {
9560 if (idesc->operands[0] == IA64_OPND_AR3
9561 && CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE)
9562 {
9563 specs[count++] = tmpl;
9564 }
9565 }
9566 else
9567 {
9568 if (idesc->operands[0] == IA64_OPND_AR3)
9569 {
9570 if (CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE
9571 || CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_RNAT)
9572 {
9573 specs[count++] = tmpl;
9574 }
9575 }
9576 else if (idesc->operands[1] == IA64_OPND_AR3)
9577 {
9578 if (CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSP
9579 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSPSTORE
9580 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_RNAT)
9581 {
9582 specs[count++] = tmpl;
9583 }
9584 }
9585 }
9586 }
9587 else
9588 {
9589 specs[count++] = tmpl;
9590 }
9591 break;
9592
9593 case IA64_RS_ANY:
9594 /* FIXME -- do any of these need to be non-specific? */
9595 specs[count++] = tmpl;
9596 break;
9597
9598 default:
9599 as_bad (_("Unrecognized dependency specifier %d\n"), dep->specifier);
9600 break;
9601 }
9602
9603 return count;
9604 }
9605
9606 /* Clear branch flags on marked resources. This breaks the link between the
9607 QP of the marking instruction and a subsequent branch on the same QP. */
9608
9609 static void
9610 clear_qp_branch_flag (valueT mask)
9611 {
9612 int i;
9613 for (i = 0; i < regdepslen; i++)
9614 {
9615 valueT bit = ((valueT) 1 << regdeps[i].qp_regno);
9616 if ((bit & mask) != 0)
9617 {
9618 regdeps[i].link_to_qp_branch = 0;
9619 }
9620 }
9621 }
9622
9623 /* MASK contains 2 and only 2 PRs which are mutually exclusive. Remove
9624 any mutexes which contain one of the PRs and create new ones when
9625 needed. */
9626
9627 static int
9628 update_qp_mutex (valueT mask)
9629 {
9630 int i;
9631 int add = 0;
9632
9633 i = 0;
9634 while (i < qp_mutexeslen)
9635 {
9636 if ((qp_mutexes[i].prmask & mask) != 0)
9637 {
9638 /* If it destroys and creates the same mutex, do nothing. */
9639 if (qp_mutexes[i].prmask == mask
9640 && qp_mutexes[i].path == md.path)
9641 {
9642 i++;
9643 add = -1;
9644 }
9645 else
9646 {
9647 int keep = 0;
9648
9649 if (md.debug_dv)
9650 {
9651 fprintf (stderr, " Clearing mutex relation");
9652 print_prmask (qp_mutexes[i].prmask);
9653 fprintf (stderr, "\n");
9654 }
9655
9656 /* Deal with the old mutex with more than 3+ PRs only if
9657 the new mutex on the same execution path with it.
9658
9659 FIXME: The 3+ mutex support is incomplete.
9660 dot_pred_rel () may be a better place to fix it. */
9661 if (qp_mutexes[i].path == md.path)
9662 {
9663 /* If it is a proper subset of the mutex, create a
9664 new mutex. */
9665 if (add == 0
9666 && (qp_mutexes[i].prmask & mask) == mask)
9667 add = 1;
9668
9669 qp_mutexes[i].prmask &= ~mask;
9670 if (qp_mutexes[i].prmask & (qp_mutexes[i].prmask - 1))
9671 {
9672 /* Modify the mutex if there are more than one
9673 PR left. */
9674 keep = 1;
9675 i++;
9676 }
9677 }
9678
9679 if (keep == 0)
9680 /* Remove the mutex. */
9681 qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
9682 }
9683 }
9684 else
9685 ++i;
9686 }
9687
9688 if (add == 1)
9689 add_qp_mutex (mask);
9690
9691 return add;
9692 }
9693
9694 /* Remove any mutexes which contain any of the PRs indicated in the mask.
9695
9696 Any changes to a PR clears the mutex relations which include that PR. */
9697
9698 static void
9699 clear_qp_mutex (valueT mask)
9700 {
9701 int i;
9702
9703 i = 0;
9704 while (i < qp_mutexeslen)
9705 {
9706 if ((qp_mutexes[i].prmask & mask) != 0)
9707 {
9708 if (md.debug_dv)
9709 {
9710 fprintf (stderr, " Clearing mutex relation");
9711 print_prmask (qp_mutexes[i].prmask);
9712 fprintf (stderr, "\n");
9713 }
9714 qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
9715 }
9716 else
9717 ++i;
9718 }
9719 }
9720
9721 /* Clear implies relations which contain PRs in the given masks.
9722 P1_MASK indicates the source of the implies relation, while P2_MASK
9723 indicates the implied PR. */
9724
9725 static void
9726 clear_qp_implies (valueT p1_mask, valueT p2_mask)
9727 {
9728 int i;
9729
9730 i = 0;
9731 while (i < qp_implieslen)
9732 {
9733 if ((((valueT) 1 << qp_implies[i].p1) & p1_mask) != 0
9734 || (((valueT) 1 << qp_implies[i].p2) & p2_mask) != 0)
9735 {
9736 if (md.debug_dv)
9737 fprintf (stderr, "Clearing implied relation PR%d->PR%d\n",
9738 qp_implies[i].p1, qp_implies[i].p2);
9739 qp_implies[i] = qp_implies[--qp_implieslen];
9740 }
9741 else
9742 ++i;
9743 }
9744 }
9745
9746 /* Add the PRs specified to the list of implied relations. */
9747
9748 static void
9749 add_qp_imply (int p1, int p2)
9750 {
9751 valueT mask;
9752 valueT bit;
9753 int i;
9754
9755 /* p0 is not meaningful here. */
9756 if (p1 == 0 || p2 == 0)
9757 abort ();
9758
9759 if (p1 == p2)
9760 return;
9761
9762 /* If it exists already, ignore it. */
9763 for (i = 0; i < qp_implieslen; i++)
9764 {
9765 if (qp_implies[i].p1 == p1
9766 && qp_implies[i].p2 == p2
9767 && qp_implies[i].path == md.path
9768 && !qp_implies[i].p2_branched)
9769 return;
9770 }
9771
9772 if (qp_implieslen == qp_impliestotlen)
9773 {
9774 qp_impliestotlen += 20;
9775 qp_implies = (struct qp_imply *)
9776 xrealloc ((void *) qp_implies,
9777 qp_impliestotlen * sizeof (struct qp_imply));
9778 }
9779 if (md.debug_dv)
9780 fprintf (stderr, " Registering PR%d implies PR%d\n", p1, p2);
9781 qp_implies[qp_implieslen].p1 = p1;
9782 qp_implies[qp_implieslen].p2 = p2;
9783 qp_implies[qp_implieslen].path = md.path;
9784 qp_implies[qp_implieslen++].p2_branched = 0;
9785
9786 /* Add in the implied transitive relations; for everything that p2 implies,
9787 make p1 imply that, too; for everything that implies p1, make it imply p2
9788 as well. */
9789 for (i = 0; i < qp_implieslen; i++)
9790 {
9791 if (qp_implies[i].p1 == p2)
9792 add_qp_imply (p1, qp_implies[i].p2);
9793 if (qp_implies[i].p2 == p1)
9794 add_qp_imply (qp_implies[i].p1, p2);
9795 }
9796 /* Add in mutex relations implied by this implies relation; for each mutex
9797 relation containing p2, duplicate it and replace p2 with p1. */
9798 bit = (valueT) 1 << p1;
9799 mask = (valueT) 1 << p2;
9800 for (i = 0; i < qp_mutexeslen; i++)
9801 {
9802 if (qp_mutexes[i].prmask & mask)
9803 add_qp_mutex ((qp_mutexes[i].prmask & ~mask) | bit);
9804 }
9805 }
9806
9807 /* Add the PRs specified in the mask to the mutex list; this means that only
9808 one of the PRs can be true at any time. PR0 should never be included in
9809 the mask. */
9810
9811 static void
9812 add_qp_mutex (valueT mask)
9813 {
9814 if (mask & 0x1)
9815 abort ();
9816
9817 if (qp_mutexeslen == qp_mutexestotlen)
9818 {
9819 qp_mutexestotlen += 20;
9820 qp_mutexes = (struct qpmutex *)
9821 xrealloc ((void *) qp_mutexes,
9822 qp_mutexestotlen * sizeof (struct qpmutex));
9823 }
9824 if (md.debug_dv)
9825 {
9826 fprintf (stderr, " Registering mutex on");
9827 print_prmask (mask);
9828 fprintf (stderr, "\n");
9829 }
9830 qp_mutexes[qp_mutexeslen].path = md.path;
9831 qp_mutexes[qp_mutexeslen++].prmask = mask;
9832 }
9833
9834 static int
9835 has_suffix_p (const char *name, const char *suffix)
9836 {
9837 size_t namelen = strlen (name);
9838 size_t sufflen = strlen (suffix);
9839
9840 if (namelen <= sufflen)
9841 return 0;
9842 return strcmp (name + namelen - sufflen, suffix) == 0;
9843 }
9844
9845 static void
9846 clear_register_values (void)
9847 {
9848 int i;
9849 if (md.debug_dv)
9850 fprintf (stderr, " Clearing register values\n");
9851 for (i = 1; i < NELEMS (gr_values); i++)
9852 gr_values[i].known = 0;
9853 }
9854
9855 /* Keep track of register values/changes which affect DV tracking.
9856
9857 optimization note: should add a flag to classes of insns where otherwise we
9858 have to examine a group of strings to identify them. */
9859
9860 static void
9861 note_register_values (struct ia64_opcode *idesc)
9862 {
9863 valueT qp_changemask = 0;
9864 int i;
9865
9866 /* Invalidate values for registers being written to. */
9867 for (i = 0; i < idesc->num_outputs; i++)
9868 {
9869 if (idesc->operands[i] == IA64_OPND_R1
9870 || idesc->operands[i] == IA64_OPND_R2
9871 || idesc->operands[i] == IA64_OPND_R3)
9872 {
9873 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9874 if (regno > 0 && regno < NELEMS (gr_values))
9875 gr_values[regno].known = 0;
9876 }
9877 else if (idesc->operands[i] == IA64_OPND_R3_2)
9878 {
9879 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9880 if (regno > 0 && regno < 4)
9881 gr_values[regno].known = 0;
9882 }
9883 else if (idesc->operands[i] == IA64_OPND_P1
9884 || idesc->operands[i] == IA64_OPND_P2)
9885 {
9886 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
9887 qp_changemask |= (valueT) 1 << regno;
9888 }
9889 else if (idesc->operands[i] == IA64_OPND_PR)
9890 {
9891 if (idesc->operands[2] & (valueT) 0x10000)
9892 qp_changemask = ~(valueT) 0x1FFFF | idesc->operands[2];
9893 else
9894 qp_changemask = idesc->operands[2];
9895 break;
9896 }
9897 else if (idesc->operands[i] == IA64_OPND_PR_ROT)
9898 {
9899 if (idesc->operands[1] & ((valueT) 1 << 43))
9900 qp_changemask = -((valueT) 1 << 44) | idesc->operands[1];
9901 else
9902 qp_changemask = idesc->operands[1];
9903 qp_changemask &= ~(valueT) 0xFFFF;
9904 break;
9905 }
9906 }
9907
9908 /* Always clear qp branch flags on any PR change. */
9909 /* FIXME there may be exceptions for certain compares. */
9910 clear_qp_branch_flag (qp_changemask);
9911
9912 /* Invalidate rotating registers on insns which affect RRBs in CFM. */
9913 if (idesc->flags & IA64_OPCODE_MOD_RRBS)
9914 {
9915 qp_changemask |= ~(valueT) 0xFFFF;
9916 if (strcmp (idesc->name, "clrrrb.pr") != 0)
9917 {
9918 for (i = 32; i < 32 + md.rot.num_regs; i++)
9919 gr_values[i].known = 0;
9920 }
9921 clear_qp_mutex (qp_changemask);
9922 clear_qp_implies (qp_changemask, qp_changemask);
9923 }
9924 /* After a call, all register values are undefined, except those marked
9925 as "safe". */
9926 else if (strncmp (idesc->name, "br.call", 6) == 0
9927 || strncmp (idesc->name, "brl.call", 7) == 0)
9928 {
9929 /* FIXME keep GR values which are marked as "safe_across_calls" */
9930 clear_register_values ();
9931 clear_qp_mutex (~qp_safe_across_calls);
9932 clear_qp_implies (~qp_safe_across_calls, ~qp_safe_across_calls);
9933 clear_qp_branch_flag (~qp_safe_across_calls);
9934 }
9935 else if (is_interruption_or_rfi (idesc)
9936 || is_taken_branch (idesc))
9937 {
9938 clear_register_values ();
9939 clear_qp_mutex (~(valueT) 0);
9940 clear_qp_implies (~(valueT) 0, ~(valueT) 0);
9941 }
9942 /* Look for mutex and implies relations. */
9943 else if ((idesc->operands[0] == IA64_OPND_P1
9944 || idesc->operands[0] == IA64_OPND_P2)
9945 && (idesc->operands[1] == IA64_OPND_P1
9946 || idesc->operands[1] == IA64_OPND_P2))
9947 {
9948 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
9949 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
9950 valueT p1mask = (p1 != 0) ? (valueT) 1 << p1 : 0;
9951 valueT p2mask = (p2 != 0) ? (valueT) 1 << p2 : 0;
9952
9953 /* If both PRs are PR0, we can't really do anything. */
9954 if (p1 == 0 && p2 == 0)
9955 {
9956 if (md.debug_dv)
9957 fprintf (stderr, " Ignoring PRs due to inclusion of p0\n");
9958 }
9959 /* In general, clear mutexes and implies which include P1 or P2,
9960 with the following exceptions. */
9961 else if (has_suffix_p (idesc->name, ".or.andcm")
9962 || has_suffix_p (idesc->name, ".and.orcm"))
9963 {
9964 clear_qp_implies (p2mask, p1mask);
9965 }
9966 else if (has_suffix_p (idesc->name, ".andcm")
9967 || has_suffix_p (idesc->name, ".and"))
9968 {
9969 clear_qp_implies (0, p1mask | p2mask);
9970 }
9971 else if (has_suffix_p (idesc->name, ".orcm")
9972 || has_suffix_p (idesc->name, ".or"))
9973 {
9974 clear_qp_mutex (p1mask | p2mask);
9975 clear_qp_implies (p1mask | p2mask, 0);
9976 }
9977 else
9978 {
9979 int added = 0;
9980
9981 clear_qp_implies (p1mask | p2mask, p1mask | p2mask);
9982
9983 /* If one of the PRs is PR0, we call clear_qp_mutex. */
9984 if (p1 == 0 || p2 == 0)
9985 clear_qp_mutex (p1mask | p2mask);
9986 else
9987 added = update_qp_mutex (p1mask | p2mask);
9988
9989 if (CURR_SLOT.qp_regno == 0
9990 || has_suffix_p (idesc->name, ".unc"))
9991 {
9992 if (added == 0 && p1 && p2)
9993 add_qp_mutex (p1mask | p2mask);
9994 if (CURR_SLOT.qp_regno != 0)
9995 {
9996 if (p1)
9997 add_qp_imply (p1, CURR_SLOT.qp_regno);
9998 if (p2)
9999 add_qp_imply (p2, CURR_SLOT.qp_regno);
10000 }
10001 }
10002 }
10003 }
10004 /* Look for mov imm insns into GRs. */
10005 else if (idesc->operands[0] == IA64_OPND_R1
10006 && (idesc->operands[1] == IA64_OPND_IMM22
10007 || idesc->operands[1] == IA64_OPND_IMMU64)
10008 && CURR_SLOT.opnd[1].X_op == O_constant
10009 && (strcmp (idesc->name, "mov") == 0
10010 || strcmp (idesc->name, "movl") == 0))
10011 {
10012 int regno = CURR_SLOT.opnd[0].X_add_number - REG_GR;
10013 if (regno > 0 && regno < NELEMS (gr_values))
10014 {
10015 gr_values[regno].known = 1;
10016 gr_values[regno].value = CURR_SLOT.opnd[1].X_add_number;
10017 gr_values[regno].path = md.path;
10018 if (md.debug_dv)
10019 {
10020 fprintf (stderr, " Know gr%d = ", regno);
10021 fprintf_vma (stderr, gr_values[regno].value);
10022 fputs ("\n", stderr);
10023 }
10024 }
10025 }
10026 /* Look for dep.z imm insns. */
10027 else if (idesc->operands[0] == IA64_OPND_R1
10028 && idesc->operands[1] == IA64_OPND_IMM8
10029 && strcmp (idesc->name, "dep.z") == 0)
10030 {
10031 int regno = CURR_SLOT.opnd[0].X_add_number - REG_GR;
10032 if (regno > 0 && regno < NELEMS (gr_values))
10033 {
10034 valueT value = CURR_SLOT.opnd[1].X_add_number;
10035
10036 if (CURR_SLOT.opnd[3].X_add_number < 64)
10037 value &= ((valueT)1 << CURR_SLOT.opnd[3].X_add_number) - 1;
10038 value <<= CURR_SLOT.opnd[2].X_add_number;
10039 gr_values[regno].known = 1;
10040 gr_values[regno].value = value;
10041 gr_values[regno].path = md.path;
10042 if (md.debug_dv)
10043 {
10044 fprintf (stderr, " Know gr%d = ", regno);
10045 fprintf_vma (stderr, gr_values[regno].value);
10046 fputs ("\n", stderr);
10047 }
10048 }
10049 }
10050 else
10051 {
10052 clear_qp_mutex (qp_changemask);
10053 clear_qp_implies (qp_changemask, qp_changemask);
10054 }
10055 }
10056
10057 /* Return whether the given predicate registers are currently mutex. */
10058
10059 static int
10060 qp_mutex (int p1, int p2, int path)
10061 {
10062 int i;
10063 valueT mask;
10064
10065 if (p1 != p2)
10066 {
10067 mask = ((valueT) 1 << p1) | (valueT) 1 << p2;
10068 for (i = 0; i < qp_mutexeslen; i++)
10069 {
10070 if (qp_mutexes[i].path >= path
10071 && (qp_mutexes[i].prmask & mask) == mask)
10072 return 1;
10073 }
10074 }
10075 return 0;
10076 }
10077
10078 /* Return whether the given resource is in the given insn's list of chks
10079 Return 1 if the conflict is absolutely determined, 2 if it's a potential
10080 conflict. */
10081
10082 static int
10083 resources_match (struct rsrc *rs,
10084 struct ia64_opcode *idesc,
10085 int note,
10086 int qp_regno,
10087 int path)
10088 {
10089 struct rsrc specs[MAX_SPECS];
10090 int count;
10091
10092 /* If the marked resource's qp_regno and the given qp_regno are mutex,
10093 we don't need to check. One exception is note 11, which indicates that
10094 target predicates are written regardless of PR[qp]. */
10095 if (qp_mutex (rs->qp_regno, qp_regno, path)
10096 && note != 11)
10097 return 0;
10098
10099 count = specify_resource (rs->dependency, idesc, DV_CHK, specs, note, path);
10100 while (count-- > 0)
10101 {
10102 /* UNAT checking is a bit more specific than other resources */
10103 if (rs->dependency->specifier == IA64_RS_AR_UNAT
10104 && specs[count].mem_offset.hint
10105 && rs->mem_offset.hint)
10106 {
10107 if (rs->mem_offset.base == specs[count].mem_offset.base)
10108 {
10109 if (((rs->mem_offset.offset >> 3) & 0x3F) ==
10110 ((specs[count].mem_offset.offset >> 3) & 0x3F))
10111 return 1;
10112 else
10113 continue;
10114 }
10115 }
10116
10117 /* Skip apparent PR write conflicts where both writes are an AND or both
10118 writes are an OR. */
10119 if (rs->dependency->specifier == IA64_RS_PR
10120 || rs->dependency->specifier == IA64_RS_PRr
10121 || rs->dependency->specifier == IA64_RS_PR63)
10122 {
10123 if (specs[count].cmp_type != CMP_NONE
10124 && specs[count].cmp_type == rs->cmp_type)
10125 {
10126 if (md.debug_dv)
10127 fprintf (stderr, " %s on parallel compare allowed (PR%d)\n",
10128 dv_mode[rs->dependency->mode],
10129 rs->dependency->specifier != IA64_RS_PR63 ?
10130 specs[count].index : 63);
10131 continue;
10132 }
10133 if (md.debug_dv)
10134 fprintf (stderr,
10135 " %s on parallel compare conflict %s vs %s on PR%d\n",
10136 dv_mode[rs->dependency->mode],
10137 dv_cmp_type[rs->cmp_type],
10138 dv_cmp_type[specs[count].cmp_type],
10139 rs->dependency->specifier != IA64_RS_PR63 ?
10140 specs[count].index : 63);
10141
10142 }
10143
10144 /* If either resource is not specific, conservatively assume a conflict
10145 */
10146 if (!specs[count].specific || !rs->specific)
10147 return 2;
10148 else if (specs[count].index == rs->index)
10149 return 1;
10150 }
10151
10152 return 0;
10153 }
10154
10155 /* Indicate an instruction group break; if INSERT_STOP is non-zero, then
10156 insert a stop to create the break. Update all resource dependencies
10157 appropriately. If QP_REGNO is non-zero, only apply the break to resources
10158 which use the same QP_REGNO and have the link_to_qp_branch flag set.
10159 If SAVE_CURRENT is non-zero, don't affect resources marked by the current
10160 instruction. */
10161
10162 static void
10163 insn_group_break (int insert_stop, int qp_regno, int save_current)
10164 {
10165 int i;
10166
10167 if (insert_stop && md.num_slots_in_use > 0)
10168 PREV_SLOT.end_of_insn_group = 1;
10169
10170 if (md.debug_dv)
10171 {
10172 fprintf (stderr, " Insn group break%s",
10173 (insert_stop ? " (w/stop)" : ""));
10174 if (qp_regno != 0)
10175 fprintf (stderr, " effective for QP=%d", qp_regno);
10176 fprintf (stderr, "\n");
10177 }
10178
10179 i = 0;
10180 while (i < regdepslen)
10181 {
10182 const struct ia64_dependency *dep = regdeps[i].dependency;
10183
10184 if (qp_regno != 0
10185 && regdeps[i].qp_regno != qp_regno)
10186 {
10187 ++i;
10188 continue;
10189 }
10190
10191 if (save_current
10192 && CURR_SLOT.src_file == regdeps[i].file
10193 && CURR_SLOT.src_line == regdeps[i].line)
10194 {
10195 ++i;
10196 continue;
10197 }
10198
10199 /* clear dependencies which are automatically cleared by a stop, or
10200 those that have reached the appropriate state of insn serialization */
10201 if (dep->semantics == IA64_DVS_IMPLIED
10202 || dep->semantics == IA64_DVS_IMPLIEDF
10203 || regdeps[i].insn_srlz == STATE_SRLZ)
10204 {
10205 print_dependency ("Removing", i);
10206 regdeps[i] = regdeps[--regdepslen];
10207 }
10208 else
10209 {
10210 if (dep->semantics == IA64_DVS_DATA
10211 || dep->semantics == IA64_DVS_INSTR
10212 || dep->semantics == IA64_DVS_SPECIFIC)
10213 {
10214 if (regdeps[i].insn_srlz == STATE_NONE)
10215 regdeps[i].insn_srlz = STATE_STOP;
10216 if (regdeps[i].data_srlz == STATE_NONE)
10217 regdeps[i].data_srlz = STATE_STOP;
10218 }
10219 ++i;
10220 }
10221 }
10222 }
10223
10224 /* Add the given resource usage spec to the list of active dependencies. */
10225
10226 static void
10227 mark_resource (struct ia64_opcode *idesc ATTRIBUTE_UNUSED,
10228 const struct ia64_dependency *dep ATTRIBUTE_UNUSED,
10229 struct rsrc *spec,
10230 int depind,
10231 int path)
10232 {
10233 if (regdepslen == regdepstotlen)
10234 {
10235 regdepstotlen += 20;
10236 regdeps = (struct rsrc *)
10237 xrealloc ((void *) regdeps,
10238 regdepstotlen * sizeof (struct rsrc));
10239 }
10240
10241 regdeps[regdepslen] = *spec;
10242 regdeps[regdepslen].depind = depind;
10243 regdeps[regdepslen].path = path;
10244 regdeps[regdepslen].file = CURR_SLOT.src_file;
10245 regdeps[regdepslen].line = CURR_SLOT.src_line;
10246
10247 print_dependency ("Adding", regdepslen);
10248
10249 ++regdepslen;
10250 }
10251
10252 static void
10253 print_dependency (const char *action, int depind)
10254 {
10255 if (md.debug_dv)
10256 {
10257 fprintf (stderr, " %s %s '%s'",
10258 action, dv_mode[(regdeps[depind].dependency)->mode],
10259 (regdeps[depind].dependency)->name);
10260 if (regdeps[depind].specific && regdeps[depind].index >= 0)
10261 fprintf (stderr, " (%d)", regdeps[depind].index);
10262 if (regdeps[depind].mem_offset.hint)
10263 {
10264 fputs (" ", stderr);
10265 fprintf_vma (stderr, regdeps[depind].mem_offset.base);
10266 fputs ("+", stderr);
10267 fprintf_vma (stderr, regdeps[depind].mem_offset.offset);
10268 }
10269 fprintf (stderr, "\n");
10270 }
10271 }
10272
10273 static void
10274 instruction_serialization (void)
10275 {
10276 int i;
10277 if (md.debug_dv)
10278 fprintf (stderr, " Instruction serialization\n");
10279 for (i = 0; i < regdepslen; i++)
10280 if (regdeps[i].insn_srlz == STATE_STOP)
10281 regdeps[i].insn_srlz = STATE_SRLZ;
10282 }
10283
10284 static void
10285 data_serialization (void)
10286 {
10287 int i = 0;
10288 if (md.debug_dv)
10289 fprintf (stderr, " Data serialization\n");
10290 while (i < regdepslen)
10291 {
10292 if (regdeps[i].data_srlz == STATE_STOP
10293 /* Note: as of 991210, all "other" dependencies are cleared by a
10294 data serialization. This might change with new tables */
10295 || (regdeps[i].dependency)->semantics == IA64_DVS_OTHER)
10296 {
10297 print_dependency ("Removing", i);
10298 regdeps[i] = regdeps[--regdepslen];
10299 }
10300 else
10301 ++i;
10302 }
10303 }
10304
10305 /* Insert stops and serializations as needed to avoid DVs. */
10306
10307 static void
10308 remove_marked_resource (struct rsrc *rs)
10309 {
10310 switch (rs->dependency->semantics)
10311 {
10312 case IA64_DVS_SPECIFIC:
10313 if (md.debug_dv)
10314 fprintf (stderr, "Implementation-specific, assume worst case...\n");
10315 /* ...fall through... */
10316 case IA64_DVS_INSTR:
10317 if (md.debug_dv)
10318 fprintf (stderr, "Inserting instr serialization\n");
10319 if (rs->insn_srlz < STATE_STOP)
10320 insn_group_break (1, 0, 0);
10321 if (rs->insn_srlz < STATE_SRLZ)
10322 {
10323 struct slot oldslot = CURR_SLOT;
10324 /* Manually jam a srlz.i insn into the stream */
10325 memset (&CURR_SLOT, 0, sizeof (CURR_SLOT));
10326 CURR_SLOT.user_template = -1;
10327 CURR_SLOT.idesc = ia64_find_opcode ("srlz.i");
10328 instruction_serialization ();
10329 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10330 if (++md.num_slots_in_use >= NUM_SLOTS)
10331 emit_one_bundle ();
10332 CURR_SLOT = oldslot;
10333 }
10334 insn_group_break (1, 0, 0);
10335 break;
10336 case IA64_DVS_OTHER: /* as of rev2 (991220) of the DV tables, all
10337 "other" types of DV are eliminated
10338 by a data serialization */
10339 case IA64_DVS_DATA:
10340 if (md.debug_dv)
10341 fprintf (stderr, "Inserting data serialization\n");
10342 if (rs->data_srlz < STATE_STOP)
10343 insn_group_break (1, 0, 0);
10344 {
10345 struct slot oldslot = CURR_SLOT;
10346 /* Manually jam a srlz.d insn into the stream */
10347 memset (&CURR_SLOT, 0, sizeof (CURR_SLOT));
10348 CURR_SLOT.user_template = -1;
10349 CURR_SLOT.idesc = ia64_find_opcode ("srlz.d");
10350 data_serialization ();
10351 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10352 if (++md.num_slots_in_use >= NUM_SLOTS)
10353 emit_one_bundle ();
10354 CURR_SLOT = oldslot;
10355 }
10356 break;
10357 case IA64_DVS_IMPLIED:
10358 case IA64_DVS_IMPLIEDF:
10359 if (md.debug_dv)
10360 fprintf (stderr, "Inserting stop\n");
10361 insn_group_break (1, 0, 0);
10362 break;
10363 default:
10364 break;
10365 }
10366 }
10367
10368 /* Check the resources used by the given opcode against the current dependency
10369 list.
10370
10371 The check is run once for each execution path encountered. In this case,
10372 a unique execution path is the sequence of instructions following a code
10373 entry point, e.g. the following has three execution paths, one starting
10374 at L0, one at L1, and one at L2.
10375
10376 L0: nop
10377 L1: add
10378 L2: add
10379 br.ret
10380 */
10381
10382 static void
10383 check_dependencies (struct ia64_opcode *idesc)
10384 {
10385 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
10386 int path;
10387 int i;
10388
10389 /* Note that the number of marked resources may change within the
10390 loop if in auto mode. */
10391 i = 0;
10392 while (i < regdepslen)
10393 {
10394 struct rsrc *rs = &regdeps[i];
10395 const struct ia64_dependency *dep = rs->dependency;
10396 int chkind;
10397 int note;
10398 int start_over = 0;
10399
10400 if (dep->semantics == IA64_DVS_NONE
10401 || (chkind = depends_on (rs->depind, idesc)) == -1)
10402 {
10403 ++i;
10404 continue;
10405 }
10406
10407 note = NOTE (opdeps->chks[chkind]);
10408
10409 /* Check this resource against each execution path seen thus far. */
10410 for (path = 0; path <= md.path; path++)
10411 {
10412 int matchtype;
10413
10414 /* If the dependency wasn't on the path being checked, ignore it. */
10415 if (rs->path < path)
10416 continue;
10417
10418 /* If the QP for this insn implies a QP which has branched, don't
10419 bother checking. Ed. NOTE: I don't think this check is terribly
10420 useful; what's the point of generating code which will only be
10421 reached if its QP is zero?
10422 This code was specifically inserted to handle the following code,
10423 based on notes from Intel's DV checking code, where p1 implies p2.
10424
10425 mov r4 = 2
10426 (p2) br.cond L
10427 (p1) mov r4 = 7
10428 */
10429 if (CURR_SLOT.qp_regno != 0)
10430 {
10431 int skip = 0;
10432 int implies;
10433 for (implies = 0; implies < qp_implieslen; implies++)
10434 {
10435 if (qp_implies[implies].path >= path
10436 && qp_implies[implies].p1 == CURR_SLOT.qp_regno
10437 && qp_implies[implies].p2_branched)
10438 {
10439 skip = 1;
10440 break;
10441 }
10442 }
10443 if (skip)
10444 continue;
10445 }
10446
10447 if ((matchtype = resources_match (rs, idesc, note,
10448 CURR_SLOT.qp_regno, path)) != 0)
10449 {
10450 char msg[1024];
10451 char pathmsg[256] = "";
10452 char indexmsg[256] = "";
10453 int certain = (matchtype == 1 && CURR_SLOT.qp_regno == 0);
10454
10455 if (path != 0)
10456 snprintf (pathmsg, sizeof (pathmsg),
10457 " when entry is at label '%s'",
10458 md.entry_labels[path - 1]);
10459 if (matchtype == 1 && rs->index >= 0)
10460 snprintf (indexmsg, sizeof (indexmsg),
10461 ", specific resource number is %d",
10462 rs->index);
10463 snprintf (msg, sizeof (msg),
10464 "Use of '%s' %s %s dependency '%s' (%s)%s%s",
10465 idesc->name,
10466 (certain ? "violates" : "may violate"),
10467 dv_mode[dep->mode], dep->name,
10468 dv_sem[dep->semantics],
10469 pathmsg, indexmsg);
10470
10471 if (md.explicit_mode)
10472 {
10473 as_warn ("%s", msg);
10474 if (path < md.path)
10475 as_warn (_("Only the first path encountering the conflict is reported"));
10476 as_warn_where (rs->file, rs->line,
10477 _("This is the location of the conflicting usage"));
10478 /* Don't bother checking other paths, to avoid duplicating
10479 the same warning */
10480 break;
10481 }
10482 else
10483 {
10484 if (md.debug_dv)
10485 fprintf (stderr, "%s @ %s:%d\n", msg, rs->file, rs->line);
10486
10487 remove_marked_resource (rs);
10488
10489 /* since the set of dependencies has changed, start over */
10490 /* FIXME -- since we're removing dvs as we go, we
10491 probably don't really need to start over... */
10492 start_over = 1;
10493 break;
10494 }
10495 }
10496 }
10497 if (start_over)
10498 i = 0;
10499 else
10500 ++i;
10501 }
10502 }
10503
10504 /* Register new dependencies based on the given opcode. */
10505
10506 static void
10507 mark_resources (struct ia64_opcode *idesc)
10508 {
10509 int i;
10510 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
10511 int add_only_qp_reads = 0;
10512
10513 /* A conditional branch only uses its resources if it is taken; if it is
10514 taken, we stop following that path. The other branch types effectively
10515 *always* write their resources. If it's not taken, register only QP
10516 reads. */
10517 if (is_conditional_branch (idesc) || is_interruption_or_rfi (idesc))
10518 {
10519 add_only_qp_reads = 1;
10520 }
10521
10522 if (md.debug_dv)
10523 fprintf (stderr, "Registering '%s' resource usage\n", idesc->name);
10524
10525 for (i = 0; i < opdeps->nregs; i++)
10526 {
10527 const struct ia64_dependency *dep;
10528 struct rsrc specs[MAX_SPECS];
10529 int note;
10530 int path;
10531 int count;
10532
10533 dep = ia64_find_dependency (opdeps->regs[i]);
10534 note = NOTE (opdeps->regs[i]);
10535
10536 if (add_only_qp_reads
10537 && !(dep->mode == IA64_DV_WAR
10538 && (dep->specifier == IA64_RS_PR
10539 || dep->specifier == IA64_RS_PRr
10540 || dep->specifier == IA64_RS_PR63)))
10541 continue;
10542
10543 count = specify_resource (dep, idesc, DV_REG, specs, note, md.path);
10544
10545 while (count-- > 0)
10546 {
10547 mark_resource (idesc, dep, &specs[count],
10548 DEP (opdeps->regs[i]), md.path);
10549 }
10550
10551 /* The execution path may affect register values, which may in turn
10552 affect which indirect-access resources are accessed. */
10553 switch (dep->specifier)
10554 {
10555 default:
10556 break;
10557 case IA64_RS_CPUID:
10558 case IA64_RS_DBR:
10559 case IA64_RS_IBR:
10560 case IA64_RS_MSR:
10561 case IA64_RS_PKR:
10562 case IA64_RS_PMC:
10563 case IA64_RS_PMD:
10564 case IA64_RS_RR:
10565 for (path = 0; path < md.path; path++)
10566 {
10567 count = specify_resource (dep, idesc, DV_REG, specs, note, path);
10568 while (count-- > 0)
10569 mark_resource (idesc, dep, &specs[count],
10570 DEP (opdeps->regs[i]), path);
10571 }
10572 break;
10573 }
10574 }
10575 }
10576
10577 /* Remove dependencies when they no longer apply. */
10578
10579 static void
10580 update_dependencies (struct ia64_opcode *idesc)
10581 {
10582 int i;
10583
10584 if (strcmp (idesc->name, "srlz.i") == 0)
10585 {
10586 instruction_serialization ();
10587 }
10588 else if (strcmp (idesc->name, "srlz.d") == 0)
10589 {
10590 data_serialization ();
10591 }
10592 else if (is_interruption_or_rfi (idesc)
10593 || is_taken_branch (idesc))
10594 {
10595 /* Although technically the taken branch doesn't clear dependencies
10596 which require a srlz.[id], we don't follow the branch; the next
10597 instruction is assumed to start with a clean slate. */
10598 regdepslen = 0;
10599 md.path = 0;
10600 }
10601 else if (is_conditional_branch (idesc)
10602 && CURR_SLOT.qp_regno != 0)
10603 {
10604 int is_call = strstr (idesc->name, ".call") != NULL;
10605
10606 for (i = 0; i < qp_implieslen; i++)
10607 {
10608 /* If the conditional branch's predicate is implied by the predicate
10609 in an existing dependency, remove that dependency. */
10610 if (qp_implies[i].p2 == CURR_SLOT.qp_regno)
10611 {
10612 int depind = 0;
10613 /* Note that this implied predicate takes a branch so that if
10614 a later insn generates a DV but its predicate implies this
10615 one, we can avoid the false DV warning. */
10616 qp_implies[i].p2_branched = 1;
10617 while (depind < regdepslen)
10618 {
10619 if (regdeps[depind].qp_regno == qp_implies[i].p1)
10620 {
10621 print_dependency ("Removing", depind);
10622 regdeps[depind] = regdeps[--regdepslen];
10623 }
10624 else
10625 ++depind;
10626 }
10627 }
10628 }
10629 /* Any marked resources which have this same predicate should be
10630 cleared, provided that the QP hasn't been modified between the
10631 marking instruction and the branch. */
10632 if (is_call)
10633 {
10634 insn_group_break (0, CURR_SLOT.qp_regno, 1);
10635 }
10636 else
10637 {
10638 i = 0;
10639 while (i < regdepslen)
10640 {
10641 if (regdeps[i].qp_regno == CURR_SLOT.qp_regno
10642 && regdeps[i].link_to_qp_branch
10643 && (regdeps[i].file != CURR_SLOT.src_file
10644 || regdeps[i].line != CURR_SLOT.src_line))
10645 {
10646 /* Treat like a taken branch */
10647 print_dependency ("Removing", i);
10648 regdeps[i] = regdeps[--regdepslen];
10649 }
10650 else
10651 ++i;
10652 }
10653 }
10654 }
10655 }
10656
10657 /* Examine the current instruction for dependency violations. */
10658
10659 static int
10660 check_dv (struct ia64_opcode *idesc)
10661 {
10662 if (md.debug_dv)
10663 {
10664 fprintf (stderr, "Checking %s for violations (line %d, %d/%d)\n",
10665 idesc->name, CURR_SLOT.src_line,
10666 idesc->dependencies->nchks,
10667 idesc->dependencies->nregs);
10668 }
10669
10670 /* Look through the list of currently marked resources; if the current
10671 instruction has the dependency in its chks list which uses that resource,
10672 check against the specific resources used. */
10673 check_dependencies (idesc);
10674
10675 /* Look up the instruction's regdeps (RAW writes, WAW writes, and WAR reads),
10676 then add them to the list of marked resources. */
10677 mark_resources (idesc);
10678
10679 /* There are several types of dependency semantics, and each has its own
10680 requirements for being cleared
10681
10682 Instruction serialization (insns separated by interruption, rfi, or
10683 writer + srlz.i + reader, all in separate groups) clears DVS_INSTR.
10684
10685 Data serialization (instruction serialization, or writer + srlz.d +
10686 reader, where writer and srlz.d are in separate groups) clears
10687 DVS_DATA. (This also clears DVS_OTHER, but that is not guaranteed to
10688 always be the case).
10689
10690 Instruction group break (groups separated by stop, taken branch,
10691 interruption or rfi) clears DVS_IMPLIED and DVS_IMPLIEDF.
10692 */
10693 update_dependencies (idesc);
10694
10695 /* Sometimes, knowing a register value allows us to avoid giving a false DV
10696 warning. Keep track of as many as possible that are useful. */
10697 note_register_values (idesc);
10698
10699 /* We don't need or want this anymore. */
10700 md.mem_offset.hint = 0;
10701
10702 return 0;
10703 }
10704
10705 /* Translate one line of assembly. Pseudo ops and labels do not show
10706 here. */
10707 void
10708 md_assemble (char *str)
10709 {
10710 char *saved_input_line_pointer, *mnemonic;
10711 const struct pseudo_opcode *pdesc;
10712 struct ia64_opcode *idesc;
10713 unsigned char qp_regno;
10714 unsigned int flags;
10715 int ch;
10716
10717 saved_input_line_pointer = input_line_pointer;
10718 input_line_pointer = str;
10719
10720 /* extract the opcode (mnemonic): */
10721
10722 mnemonic = input_line_pointer;
10723 ch = get_symbol_end ();
10724 pdesc = (struct pseudo_opcode *) hash_find (md.pseudo_hash, mnemonic);
10725 if (pdesc)
10726 {
10727 *input_line_pointer = ch;
10728 (*pdesc->handler) (pdesc->arg);
10729 goto done;
10730 }
10731
10732 /* Find the instruction descriptor matching the arguments. */
10733
10734 idesc = ia64_find_opcode (mnemonic);
10735 *input_line_pointer = ch;
10736 if (!idesc)
10737 {
10738 as_bad (_("Unknown opcode `%s'"), mnemonic);
10739 goto done;
10740 }
10741
10742 idesc = parse_operands (idesc);
10743 if (!idesc)
10744 goto done;
10745
10746 /* Handle the dynamic ops we can handle now: */
10747 if (idesc->type == IA64_TYPE_DYN)
10748 {
10749 if (strcmp (idesc->name, "add") == 0)
10750 {
10751 if (CURR_SLOT.opnd[2].X_op == O_register
10752 && CURR_SLOT.opnd[2].X_add_number < 4)
10753 mnemonic = "addl";
10754 else
10755 mnemonic = "adds";
10756 ia64_free_opcode (idesc);
10757 idesc = ia64_find_opcode (mnemonic);
10758 }
10759 else if (strcmp (idesc->name, "mov") == 0)
10760 {
10761 enum ia64_opnd opnd1, opnd2;
10762 int rop;
10763
10764 opnd1 = idesc->operands[0];
10765 opnd2 = idesc->operands[1];
10766 if (opnd1 == IA64_OPND_AR3)
10767 rop = 0;
10768 else if (opnd2 == IA64_OPND_AR3)
10769 rop = 1;
10770 else
10771 abort ();
10772 if (CURR_SLOT.opnd[rop].X_op == O_register)
10773 {
10774 if (ar_is_only_in_integer_unit (CURR_SLOT.opnd[rop].X_add_number))
10775 mnemonic = "mov.i";
10776 else if (ar_is_only_in_memory_unit (CURR_SLOT.opnd[rop].X_add_number))
10777 mnemonic = "mov.m";
10778 else
10779 rop = -1;
10780 }
10781 else
10782 abort ();
10783 if (rop >= 0)
10784 {
10785 ia64_free_opcode (idesc);
10786 idesc = ia64_find_opcode (mnemonic);
10787 while (idesc != NULL
10788 && (idesc->operands[0] != opnd1
10789 || idesc->operands[1] != opnd2))
10790 idesc = get_next_opcode (idesc);
10791 }
10792 }
10793 }
10794 else if (strcmp (idesc->name, "mov.i") == 0
10795 || strcmp (idesc->name, "mov.m") == 0)
10796 {
10797 enum ia64_opnd opnd1, opnd2;
10798 int rop;
10799
10800 opnd1 = idesc->operands[0];
10801 opnd2 = idesc->operands[1];
10802 if (opnd1 == IA64_OPND_AR3)
10803 rop = 0;
10804 else if (opnd2 == IA64_OPND_AR3)
10805 rop = 1;
10806 else
10807 abort ();
10808 if (CURR_SLOT.opnd[rop].X_op == O_register)
10809 {
10810 char unit = 'a';
10811 if (ar_is_only_in_integer_unit (CURR_SLOT.opnd[rop].X_add_number))
10812 unit = 'i';
10813 else if (ar_is_only_in_memory_unit (CURR_SLOT.opnd[rop].X_add_number))
10814 unit = 'm';
10815 if (unit != 'a' && unit != idesc->name [4])
10816 as_bad (_("AR %d can only be accessed by %c-unit"),
10817 (int) (CURR_SLOT.opnd[rop].X_add_number - REG_AR),
10818 TOUPPER (unit));
10819 }
10820 }
10821 else if (strcmp (idesc->name, "hint.b") == 0)
10822 {
10823 switch (md.hint_b)
10824 {
10825 case hint_b_ok:
10826 break;
10827 case hint_b_warning:
10828 as_warn (_("hint.b may be treated as nop"));
10829 break;
10830 case hint_b_error:
10831 as_bad (_("hint.b shouldn't be used"));
10832 break;
10833 }
10834 }
10835
10836 qp_regno = 0;
10837 if (md.qp.X_op == O_register)
10838 {
10839 qp_regno = md.qp.X_add_number - REG_P;
10840 md.qp.X_op = O_absent;
10841 }
10842
10843 flags = idesc->flags;
10844
10845 if ((flags & IA64_OPCODE_FIRST) != 0)
10846 {
10847 /* The alignment frag has to end with a stop bit only if the
10848 next instruction after the alignment directive has to be
10849 the first instruction in an instruction group. */
10850 if (align_frag)
10851 {
10852 while (align_frag->fr_type != rs_align_code)
10853 {
10854 align_frag = align_frag->fr_next;
10855 if (!align_frag)
10856 break;
10857 }
10858 /* align_frag can be NULL if there are directives in
10859 between. */
10860 if (align_frag && align_frag->fr_next == frag_now)
10861 align_frag->tc_frag_data = 1;
10862 }
10863
10864 insn_group_break (1, 0, 0);
10865 }
10866 align_frag = NULL;
10867
10868 if ((flags & IA64_OPCODE_NO_PRED) != 0 && qp_regno != 0)
10869 {
10870 as_bad (_("`%s' cannot be predicated"), idesc->name);
10871 goto done;
10872 }
10873
10874 /* Build the instruction. */
10875 CURR_SLOT.qp_regno = qp_regno;
10876 CURR_SLOT.idesc = idesc;
10877 as_where (&CURR_SLOT.src_file, &CURR_SLOT.src_line);
10878 dwarf2_where (&CURR_SLOT.debug_line);
10879 dwarf2_consume_line_info ();
10880
10881 /* Add unwind entries, if there are any. */
10882 if (unwind.current_entry)
10883 {
10884 CURR_SLOT.unwind_record = unwind.current_entry;
10885 unwind.current_entry = NULL;
10886 }
10887 if (unwind.pending_saves)
10888 {
10889 if (unwind.pending_saves->next)
10890 {
10891 /* Attach the next pending save to the next slot so that its
10892 slot number will get set correctly. */
10893 add_unwind_entry (unwind.pending_saves->next, NOT_A_CHAR);
10894 unwind.pending_saves = &unwind.pending_saves->next->r.record.p;
10895 }
10896 else
10897 unwind.pending_saves = NULL;
10898 }
10899 if (unwind.proc_pending.sym && S_IS_DEFINED (unwind.proc_pending.sym))
10900 unwind.insn = 1;
10901
10902 /* Check for dependency violations. */
10903 if (md.detect_dv)
10904 check_dv (idesc);
10905
10906 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10907 if (++md.num_slots_in_use >= NUM_SLOTS)
10908 emit_one_bundle ();
10909
10910 if ((flags & IA64_OPCODE_LAST) != 0)
10911 insn_group_break (1, 0, 0);
10912
10913 md.last_text_seg = now_seg;
10914
10915 done:
10916 input_line_pointer = saved_input_line_pointer;
10917 }
10918
10919 /* Called when symbol NAME cannot be found in the symbol table.
10920 Should be used for dynamic valued symbols only. */
10921
10922 symbolS *
10923 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
10924 {
10925 return 0;
10926 }
10927
10928 /* Called for any expression that can not be recognized. When the
10929 function is called, `input_line_pointer' will point to the start of
10930 the expression. */
10931
10932 void
10933 md_operand (expressionS *e)
10934 {
10935 switch (*input_line_pointer)
10936 {
10937 case '[':
10938 ++input_line_pointer;
10939 expression_and_evaluate (e);
10940 if (*input_line_pointer != ']')
10941 {
10942 as_bad (_("Closing bracket missing"));
10943 goto err;
10944 }
10945 else
10946 {
10947 if (e->X_op != O_register
10948 || e->X_add_number < REG_GR
10949 || e->X_add_number > REG_GR + 127)
10950 {
10951 as_bad (_("Index must be a general register"));
10952 e->X_add_number = REG_GR;
10953 }
10954
10955 ++input_line_pointer;
10956 e->X_op = O_index;
10957 }
10958 break;
10959
10960 default:
10961 break;
10962 }
10963 return;
10964
10965 err:
10966 ignore_rest_of_line ();
10967 }
10968
10969 /* Return 1 if it's OK to adjust a reloc by replacing the symbol with
10970 a section symbol plus some offset. For relocs involving @fptr(),
10971 directives we don't want such adjustments since we need to have the
10972 original symbol's name in the reloc. */
10973 int
10974 ia64_fix_adjustable (fixS *fix)
10975 {
10976 /* Prevent all adjustments to global symbols */
10977 if (S_IS_EXTERNAL (fix->fx_addsy) || S_IS_WEAK (fix->fx_addsy))
10978 return 0;
10979
10980 switch (fix->fx_r_type)
10981 {
10982 case BFD_RELOC_IA64_FPTR64I:
10983 case BFD_RELOC_IA64_FPTR32MSB:
10984 case BFD_RELOC_IA64_FPTR32LSB:
10985 case BFD_RELOC_IA64_FPTR64MSB:
10986 case BFD_RELOC_IA64_FPTR64LSB:
10987 case BFD_RELOC_IA64_LTOFF_FPTR22:
10988 case BFD_RELOC_IA64_LTOFF_FPTR64I:
10989 return 0;
10990 default:
10991 break;
10992 }
10993
10994 return 1;
10995 }
10996
10997 int
10998 ia64_force_relocation (fixS *fix)
10999 {
11000 switch (fix->fx_r_type)
11001 {
11002 case BFD_RELOC_IA64_FPTR64I:
11003 case BFD_RELOC_IA64_FPTR32MSB:
11004 case BFD_RELOC_IA64_FPTR32LSB:
11005 case BFD_RELOC_IA64_FPTR64MSB:
11006 case BFD_RELOC_IA64_FPTR64LSB:
11007
11008 case BFD_RELOC_IA64_LTOFF22:
11009 case BFD_RELOC_IA64_LTOFF64I:
11010 case BFD_RELOC_IA64_LTOFF_FPTR22:
11011 case BFD_RELOC_IA64_LTOFF_FPTR64I:
11012 case BFD_RELOC_IA64_PLTOFF22:
11013 case BFD_RELOC_IA64_PLTOFF64I:
11014 case BFD_RELOC_IA64_PLTOFF64MSB:
11015 case BFD_RELOC_IA64_PLTOFF64LSB:
11016
11017 case BFD_RELOC_IA64_LTOFF22X:
11018 case BFD_RELOC_IA64_LDXMOV:
11019 return 1;
11020
11021 default:
11022 break;
11023 }
11024
11025 return generic_force_reloc (fix);
11026 }
11027
11028 /* Decide from what point a pc-relative relocation is relative to,
11029 relative to the pc-relative fixup. Er, relatively speaking. */
11030 long
11031 ia64_pcrel_from_section (fixS *fix, segT sec)
11032 {
11033 unsigned long off = fix->fx_frag->fr_address + fix->fx_where;
11034
11035 if (bfd_get_section_flags (stdoutput, sec) & SEC_CODE)
11036 off &= ~0xfUL;
11037
11038 return off;
11039 }
11040
11041
11042 /* Used to emit section-relative relocs for the dwarf2 debug data. */
11043 void
11044 ia64_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11045 {
11046 expressionS exp;
11047
11048 exp.X_op = O_pseudo_fixup;
11049 exp.X_op_symbol = pseudo_func[FUNC_SEC_RELATIVE].u.sym;
11050 exp.X_add_number = 0;
11051 exp.X_add_symbol = symbol;
11052 emit_expr (&exp, size);
11053 }
11054
11055 /* This is called whenever some data item (not an instruction) needs a
11056 fixup. We pick the right reloc code depending on the byteorder
11057 currently in effect. */
11058 void
11059 ia64_cons_fix_new (fragS *f, int where, int nbytes, expressionS *exp)
11060 {
11061 bfd_reloc_code_real_type code;
11062 fixS *fix;
11063
11064 switch (nbytes)
11065 {
11066 /* There are no reloc for 8 and 16 bit quantities, but we allow
11067 them here since they will work fine as long as the expression
11068 is fully defined at the end of the pass over the source file. */
11069 case 1: code = BFD_RELOC_8; break;
11070 case 2: code = BFD_RELOC_16; break;
11071 case 4:
11072 if (target_big_endian)
11073 code = BFD_RELOC_IA64_DIR32MSB;
11074 else
11075 code = BFD_RELOC_IA64_DIR32LSB;
11076 break;
11077
11078 case 8:
11079 /* In 32-bit mode, data8 could mean function descriptors too. */
11080 if (exp->X_op == O_pseudo_fixup
11081 && exp->X_op_symbol
11082 && S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC
11083 && !(md.flags & EF_IA_64_ABI64))
11084 {
11085 if (target_big_endian)
11086 code = BFD_RELOC_IA64_IPLTMSB;
11087 else
11088 code = BFD_RELOC_IA64_IPLTLSB;
11089 exp->X_op = O_symbol;
11090 break;
11091 }
11092 else
11093 {
11094 if (target_big_endian)
11095 code = BFD_RELOC_IA64_DIR64MSB;
11096 else
11097 code = BFD_RELOC_IA64_DIR64LSB;
11098 break;
11099 }
11100
11101 case 16:
11102 if (exp->X_op == O_pseudo_fixup
11103 && exp->X_op_symbol
11104 && S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC)
11105 {
11106 if (target_big_endian)
11107 code = BFD_RELOC_IA64_IPLTMSB;
11108 else
11109 code = BFD_RELOC_IA64_IPLTLSB;
11110 exp->X_op = O_symbol;
11111 break;
11112 }
11113 /* FALLTHRU */
11114
11115 default:
11116 as_bad (_("Unsupported fixup size %d"), nbytes);
11117 ignore_rest_of_line ();
11118 return;
11119 }
11120
11121 if (exp->X_op == O_pseudo_fixup)
11122 {
11123 exp->X_op = O_symbol;
11124 code = ia64_gen_real_reloc_type (exp->X_op_symbol, code);
11125 /* ??? If code unchanged, unsupported. */
11126 }
11127
11128 fix = fix_new_exp (f, where, nbytes, exp, 0, code);
11129 /* We need to store the byte order in effect in case we're going
11130 to fix an 8 or 16 bit relocation (for which there no real
11131 relocs available). See md_apply_fix(). */
11132 fix->tc_fix_data.bigendian = target_big_endian;
11133 }
11134
11135 /* Return the actual relocation we wish to associate with the pseudo
11136 reloc described by SYM and R_TYPE. SYM should be one of the
11137 symbols in the pseudo_func array, or NULL. */
11138
11139 static bfd_reloc_code_real_type
11140 ia64_gen_real_reloc_type (struct symbol *sym, bfd_reloc_code_real_type r_type)
11141 {
11142 bfd_reloc_code_real_type newr = 0;
11143 const char *type = NULL, *suffix = "";
11144
11145 if (sym == NULL)
11146 {
11147 return r_type;
11148 }
11149
11150 switch (S_GET_VALUE (sym))
11151 {
11152 case FUNC_FPTR_RELATIVE:
11153 switch (r_type)
11154 {
11155 case BFD_RELOC_IA64_IMM64: newr = BFD_RELOC_IA64_FPTR64I; break;
11156 case BFD_RELOC_IA64_DIR32MSB: newr = BFD_RELOC_IA64_FPTR32MSB; break;
11157 case BFD_RELOC_IA64_DIR32LSB: newr = BFD_RELOC_IA64_FPTR32LSB; break;
11158 case BFD_RELOC_IA64_DIR64MSB: newr = BFD_RELOC_IA64_FPTR64MSB; break;
11159 case BFD_RELOC_IA64_DIR64LSB: newr = BFD_RELOC_IA64_FPTR64LSB; break;
11160 default: type = "FPTR"; break;
11161 }
11162 break;
11163
11164 case FUNC_GP_RELATIVE:
11165 switch (r_type)
11166 {
11167 case BFD_RELOC_IA64_IMM22: newr = BFD_RELOC_IA64_GPREL22; break;
11168 case BFD_RELOC_IA64_IMM64: newr = BFD_RELOC_IA64_GPREL64I; break;
11169 case BFD_RELOC_IA64_DIR32MSB: newr = BFD_RELOC_IA64_GPREL32MSB; break;
11170 case BFD_RELOC_IA64_DIR32LSB: newr = BFD_RELOC_IA64_GPREL32LSB; break;
11171 case BFD_RELOC_IA64_DIR64MSB: newr = BFD_RELOC_IA64_GPREL64MSB; break;
11172 case BFD_RELOC_IA64_DIR64LSB: newr = BFD_RELOC_IA64_GPREL64LSB; break;
11173 default: type = "GPREL"; break;
11174 }
11175 break;
11176
11177 case FUNC_LT_RELATIVE:
11178 switch (r_type)
11179 {
11180 case BFD_RELOC_IA64_IMM22: newr = BFD_RELOC_IA64_LTOFF22; break;
11181 case BFD_RELOC_IA64_IMM64: newr = BFD_RELOC_IA64_LTOFF64I; break;
11182 default: type = "LTOFF"; break;
11183 }
11184 break;
11185
11186 case FUNC_LT_RELATIVE_X:
11187 switch (r_type)
11188 {
11189 case BFD_RELOC_IA64_IMM22: newr = BFD_RELOC_IA64_LTOFF22X; break;
11190 default: type = "LTOFF"; suffix = "X"; break;
11191 }
11192 break;
11193
11194 case FUNC_PC_RELATIVE:
11195 switch (r_type)
11196 {
11197 case BFD_RELOC_IA64_IMM22: newr = BFD_RELOC_IA64_PCREL22; break;
11198 case BFD_RELOC_IA64_IMM64: newr = BFD_RELOC_IA64_PCREL64I; break;
11199 case BFD_RELOC_IA64_DIR32MSB: newr = BFD_RELOC_IA64_PCREL32MSB; break;
11200 case BFD_RELOC_IA64_DIR32LSB: newr = BFD_RELOC_IA64_PCREL32LSB; break;
11201 case BFD_RELOC_IA64_DIR64MSB: newr = BFD_RELOC_IA64_PCREL64MSB; break;
11202 case BFD_RELOC_IA64_DIR64LSB: newr = BFD_RELOC_IA64_PCREL64LSB; break;
11203 default: type = "PCREL"; break;
11204 }
11205 break;
11206
11207 case FUNC_PLT_RELATIVE:
11208 switch (r_type)
11209 {
11210 case BFD_RELOC_IA64_IMM22: newr = BFD_RELOC_IA64_PLTOFF22; break;
11211 case BFD_RELOC_IA64_IMM64: newr = BFD_RELOC_IA64_PLTOFF64I; break;
11212 case BFD_RELOC_IA64_DIR64MSB: newr = BFD_RELOC_IA64_PLTOFF64MSB;break;
11213 case BFD_RELOC_IA64_DIR64LSB: newr = BFD_RELOC_IA64_PLTOFF64LSB;break;
11214 default: type = "PLTOFF"; break;
11215 }
11216 break;
11217
11218 case FUNC_SEC_RELATIVE:
11219 switch (r_type)
11220 {
11221 case BFD_RELOC_IA64_DIR32MSB: newr = BFD_RELOC_IA64_SECREL32MSB;break;
11222 case BFD_RELOC_IA64_DIR32LSB: newr = BFD_RELOC_IA64_SECREL32LSB;break;
11223 case BFD_RELOC_IA64_DIR64MSB: newr = BFD_RELOC_IA64_SECREL64MSB;break;
11224 case BFD_RELOC_IA64_DIR64LSB: newr = BFD_RELOC_IA64_SECREL64LSB;break;
11225 default: type = "SECREL"; break;
11226 }
11227 break;
11228
11229 case FUNC_SEG_RELATIVE:
11230 switch (r_type)
11231 {
11232 case BFD_RELOC_IA64_DIR32MSB: newr = BFD_RELOC_IA64_SEGREL32MSB;break;
11233 case BFD_RELOC_IA64_DIR32LSB: newr = BFD_RELOC_IA64_SEGREL32LSB;break;
11234 case BFD_RELOC_IA64_DIR64MSB: newr = BFD_RELOC_IA64_SEGREL64MSB;break;
11235 case BFD_RELOC_IA64_DIR64LSB: newr = BFD_RELOC_IA64_SEGREL64LSB;break;
11236 default: type = "SEGREL"; break;
11237 }
11238 break;
11239
11240 case FUNC_LTV_RELATIVE:
11241 switch (r_type)
11242 {
11243 case BFD_RELOC_IA64_DIR32MSB: newr = BFD_RELOC_IA64_LTV32MSB; break;
11244 case BFD_RELOC_IA64_DIR32LSB: newr = BFD_RELOC_IA64_LTV32LSB; break;
11245 case BFD_RELOC_IA64_DIR64MSB: newr = BFD_RELOC_IA64_LTV64MSB; break;
11246 case BFD_RELOC_IA64_DIR64LSB: newr = BFD_RELOC_IA64_LTV64LSB; break;
11247 default: type = "LTV"; break;
11248 }
11249 break;
11250
11251 case FUNC_LT_FPTR_RELATIVE:
11252 switch (r_type)
11253 {
11254 case BFD_RELOC_IA64_IMM22:
11255 newr = BFD_RELOC_IA64_LTOFF_FPTR22; break;
11256 case BFD_RELOC_IA64_IMM64:
11257 newr = BFD_RELOC_IA64_LTOFF_FPTR64I; break;
11258 case BFD_RELOC_IA64_DIR32MSB:
11259 newr = BFD_RELOC_IA64_LTOFF_FPTR32MSB; break;
11260 case BFD_RELOC_IA64_DIR32LSB:
11261 newr = BFD_RELOC_IA64_LTOFF_FPTR32LSB; break;
11262 case BFD_RELOC_IA64_DIR64MSB:
11263 newr = BFD_RELOC_IA64_LTOFF_FPTR64MSB; break;
11264 case BFD_RELOC_IA64_DIR64LSB:
11265 newr = BFD_RELOC_IA64_LTOFF_FPTR64LSB; break;
11266 default:
11267 type = "LTOFF_FPTR"; break;
11268 }
11269 break;
11270
11271 case FUNC_TP_RELATIVE:
11272 switch (r_type)
11273 {
11274 case BFD_RELOC_IA64_IMM14: newr = BFD_RELOC_IA64_TPREL14; break;
11275 case BFD_RELOC_IA64_IMM22: newr = BFD_RELOC_IA64_TPREL22; break;
11276 case BFD_RELOC_IA64_IMM64: newr = BFD_RELOC_IA64_TPREL64I; break;
11277 case BFD_RELOC_IA64_DIR64MSB: newr = BFD_RELOC_IA64_TPREL64MSB; break;
11278 case BFD_RELOC_IA64_DIR64LSB: newr = BFD_RELOC_IA64_TPREL64LSB; break;
11279 default: type = "TPREL"; break;
11280 }
11281 break;
11282
11283 case FUNC_LT_TP_RELATIVE:
11284 switch (r_type)
11285 {
11286 case BFD_RELOC_IA64_IMM22:
11287 newr = BFD_RELOC_IA64_LTOFF_TPREL22; break;
11288 default:
11289 type = "LTOFF_TPREL"; break;
11290 }
11291 break;
11292
11293 case FUNC_DTP_MODULE:
11294 switch (r_type)
11295 {
11296 case BFD_RELOC_IA64_DIR64MSB:
11297 newr = BFD_RELOC_IA64_DTPMOD64MSB; break;
11298 case BFD_RELOC_IA64_DIR64LSB:
11299 newr = BFD_RELOC_IA64_DTPMOD64LSB; break;
11300 default:
11301 type = "DTPMOD"; break;
11302 }
11303 break;
11304
11305 case FUNC_LT_DTP_MODULE:
11306 switch (r_type)
11307 {
11308 case BFD_RELOC_IA64_IMM22:
11309 newr = BFD_RELOC_IA64_LTOFF_DTPMOD22; break;
11310 default:
11311 type = "LTOFF_DTPMOD"; break;
11312 }
11313 break;
11314
11315 case FUNC_DTP_RELATIVE:
11316 switch (r_type)
11317 {
11318 case BFD_RELOC_IA64_DIR32MSB:
11319 newr = BFD_RELOC_IA64_DTPREL32MSB; break;
11320 case BFD_RELOC_IA64_DIR32LSB:
11321 newr = BFD_RELOC_IA64_DTPREL32LSB; break;
11322 case BFD_RELOC_IA64_DIR64MSB:
11323 newr = BFD_RELOC_IA64_DTPREL64MSB; break;
11324 case BFD_RELOC_IA64_DIR64LSB:
11325 newr = BFD_RELOC_IA64_DTPREL64LSB; break;
11326 case BFD_RELOC_IA64_IMM14:
11327 newr = BFD_RELOC_IA64_DTPREL14; break;
11328 case BFD_RELOC_IA64_IMM22:
11329 newr = BFD_RELOC_IA64_DTPREL22; break;
11330 case BFD_RELOC_IA64_IMM64:
11331 newr = BFD_RELOC_IA64_DTPREL64I; break;
11332 default:
11333 type = "DTPREL"; break;
11334 }
11335 break;
11336
11337 case FUNC_LT_DTP_RELATIVE:
11338 switch (r_type)
11339 {
11340 case BFD_RELOC_IA64_IMM22:
11341 newr = BFD_RELOC_IA64_LTOFF_DTPREL22; break;
11342 default:
11343 type = "LTOFF_DTPREL"; break;
11344 }
11345 break;
11346
11347 case FUNC_IPLT_RELOC:
11348 switch (r_type)
11349 {
11350 case BFD_RELOC_IA64_IPLTMSB: return r_type;
11351 case BFD_RELOC_IA64_IPLTLSB: return r_type;
11352 default: type = "IPLT"; break;
11353 }
11354 break;
11355
11356 #ifdef TE_VMS
11357 case FUNC_SLOTCOUNT_RELOC:
11358 return DUMMY_RELOC_IA64_SLOTCOUNT;
11359 #endif
11360
11361 default:
11362 abort ();
11363 }
11364
11365 if (newr)
11366 return newr;
11367 else
11368 {
11369 int width;
11370
11371 if (!type)
11372 abort ();
11373 switch (r_type)
11374 {
11375 case BFD_RELOC_IA64_DIR32MSB: width = 32; suffix = "MSB"; break;
11376 case BFD_RELOC_IA64_DIR32LSB: width = 32; suffix = "LSB"; break;
11377 case BFD_RELOC_IA64_DIR64MSB: width = 64; suffix = "MSB"; break;
11378 case BFD_RELOC_IA64_DIR64LSB: width = 64; suffix = "LSB"; break;
11379 case BFD_RELOC_UNUSED: width = 13; break;
11380 case BFD_RELOC_IA64_IMM14: width = 14; break;
11381 case BFD_RELOC_IA64_IMM22: width = 22; break;
11382 case BFD_RELOC_IA64_IMM64: width = 64; suffix = "I"; break;
11383 default: abort ();
11384 }
11385
11386 /* This should be an error, but since previously there wasn't any
11387 diagnostic here, don't make it fail because of this for now. */
11388 as_warn (_("Cannot express %s%d%s relocation"), type, width, suffix);
11389 return r_type;
11390 }
11391 }
11392
11393 /* Here is where generate the appropriate reloc for pseudo relocation
11394 functions. */
11395 void
11396 ia64_validate_fix (fixS *fix)
11397 {
11398 switch (fix->fx_r_type)
11399 {
11400 case BFD_RELOC_IA64_FPTR64I:
11401 case BFD_RELOC_IA64_FPTR32MSB:
11402 case BFD_RELOC_IA64_FPTR64LSB:
11403 case BFD_RELOC_IA64_LTOFF_FPTR22:
11404 case BFD_RELOC_IA64_LTOFF_FPTR64I:
11405 if (fix->fx_offset != 0)
11406 as_bad_where (fix->fx_file, fix->fx_line,
11407 _("No addend allowed in @fptr() relocation"));
11408 break;
11409 default:
11410 break;
11411 }
11412 }
11413
11414 static void
11415 fix_insn (fixS *fix, const struct ia64_operand *odesc, valueT value)
11416 {
11417 bfd_vma insn[3], t0, t1, control_bits;
11418 const char *err;
11419 char *fixpos;
11420 long slot;
11421
11422 slot = fix->fx_where & 0x3;
11423 fixpos = fix->fx_frag->fr_literal + (fix->fx_where - slot);
11424
11425 /* Bundles are always in little-endian byte order */
11426 t0 = bfd_getl64 (fixpos);
11427 t1 = bfd_getl64 (fixpos + 8);
11428 control_bits = t0 & 0x1f;
11429 insn[0] = (t0 >> 5) & 0x1ffffffffffLL;
11430 insn[1] = ((t0 >> 46) & 0x3ffff) | ((t1 & 0x7fffff) << 18);
11431 insn[2] = (t1 >> 23) & 0x1ffffffffffLL;
11432
11433 err = NULL;
11434 if (odesc - elf64_ia64_operands == IA64_OPND_IMMU64)
11435 {
11436 insn[1] = (value >> 22) & 0x1ffffffffffLL;
11437 insn[2] |= (((value & 0x7f) << 13)
11438 | (((value >> 7) & 0x1ff) << 27)
11439 | (((value >> 16) & 0x1f) << 22)
11440 | (((value >> 21) & 0x1) << 21)
11441 | (((value >> 63) & 0x1) << 36));
11442 }
11443 else if (odesc - elf64_ia64_operands == IA64_OPND_IMMU62)
11444 {
11445 if (value & ~0x3fffffffffffffffULL)
11446 err = _("integer operand out of range");
11447 insn[1] = (value >> 21) & 0x1ffffffffffLL;
11448 insn[2] |= (((value & 0xfffff) << 6) | (((value >> 20) & 0x1) << 36));
11449 }
11450 else if (odesc - elf64_ia64_operands == IA64_OPND_TGT64)
11451 {
11452 value >>= 4;
11453 insn[1] = ((value >> 20) & 0x7fffffffffLL) << 2;
11454 insn[2] |= ((((value >> 59) & 0x1) << 36)
11455 | (((value >> 0) & 0xfffff) << 13));
11456 }
11457 else
11458 err = (*odesc->insert) (odesc, value, insn + slot);
11459
11460 if (err)
11461 as_bad_where (fix->fx_file, fix->fx_line, "%s", err);
11462
11463 t0 = control_bits | (insn[0] << 5) | (insn[1] << 46);
11464 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
11465 number_to_chars_littleendian (fixpos + 0, t0, 8);
11466 number_to_chars_littleendian (fixpos + 8, t1, 8);
11467 }
11468
11469 /* Attempt to simplify or even eliminate a fixup. The return value is
11470 ignored; perhaps it was once meaningful, but now it is historical.
11471 To indicate that a fixup has been eliminated, set FIXP->FX_DONE.
11472
11473 If fixp->fx_addsy is non-NULL, we'll have to generate a reloc entry
11474 (if possible). */
11475
11476 void
11477 md_apply_fix (fixS *fix, valueT *valP, segT seg ATTRIBUTE_UNUSED)
11478 {
11479 char *fixpos;
11480 valueT value = *valP;
11481
11482 fixpos = fix->fx_frag->fr_literal + fix->fx_where;
11483
11484 if (fix->fx_pcrel)
11485 {
11486 switch (fix->fx_r_type)
11487 {
11488 case BFD_RELOC_IA64_PCREL21B: break;
11489 case BFD_RELOC_IA64_PCREL21BI: break;
11490 case BFD_RELOC_IA64_PCREL21F: break;
11491 case BFD_RELOC_IA64_PCREL21M: break;
11492 case BFD_RELOC_IA64_PCREL60B: break;
11493 case BFD_RELOC_IA64_PCREL22: break;
11494 case BFD_RELOC_IA64_PCREL64I: break;
11495 case BFD_RELOC_IA64_PCREL32MSB: break;
11496 case BFD_RELOC_IA64_PCREL32LSB: break;
11497 case BFD_RELOC_IA64_PCREL64MSB: break;
11498 case BFD_RELOC_IA64_PCREL64LSB: break;
11499 default:
11500 fix->fx_r_type = ia64_gen_real_reloc_type (pseudo_func[FUNC_PC_RELATIVE].u.sym,
11501 fix->fx_r_type);
11502 break;
11503 }
11504 }
11505 if (fix->fx_addsy)
11506 {
11507 switch ((unsigned) fix->fx_r_type)
11508 {
11509 case BFD_RELOC_UNUSED:
11510 /* This must be a TAG13 or TAG13b operand. There are no external
11511 relocs defined for them, so we must give an error. */
11512 as_bad_where (fix->fx_file, fix->fx_line,
11513 _("%s must have a constant value"),
11514 elf64_ia64_operands[fix->tc_fix_data.opnd].desc);
11515 fix->fx_done = 1;
11516 return;
11517
11518 case BFD_RELOC_IA64_TPREL14:
11519 case BFD_RELOC_IA64_TPREL22:
11520 case BFD_RELOC_IA64_TPREL64I:
11521 case BFD_RELOC_IA64_LTOFF_TPREL22:
11522 case BFD_RELOC_IA64_LTOFF_DTPMOD22:
11523 case BFD_RELOC_IA64_DTPREL14:
11524 case BFD_RELOC_IA64_DTPREL22:
11525 case BFD_RELOC_IA64_DTPREL64I:
11526 case BFD_RELOC_IA64_LTOFF_DTPREL22:
11527 S_SET_THREAD_LOCAL (fix->fx_addsy);
11528 break;
11529
11530 #ifdef TE_VMS
11531 case DUMMY_RELOC_IA64_SLOTCOUNT:
11532 as_bad_where (fix->fx_file, fix->fx_line,
11533 _("cannot resolve @slotcount parameter"));
11534 fix->fx_done = 1;
11535 return;
11536 #endif
11537
11538 default:
11539 break;
11540 }
11541 }
11542 else if (fix->tc_fix_data.opnd == IA64_OPND_NIL)
11543 {
11544 #ifdef TE_VMS
11545 if (fix->fx_r_type == DUMMY_RELOC_IA64_SLOTCOUNT)
11546 {
11547 /* For @slotcount, convert an addresses difference to a slots
11548 difference. */
11549 valueT v;
11550
11551 v = (value >> 4) * 3;
11552 switch (value & 0x0f)
11553 {
11554 case 0:
11555 case 1:
11556 case 2:
11557 v += value & 0x0f;
11558 break;
11559 case 0x0f:
11560 v += 2;
11561 break;
11562 case 0x0e:
11563 v += 1;
11564 break;
11565 default:
11566 as_bad (_("invalid @slotcount value"));
11567 }
11568 value = v;
11569 }
11570 #endif
11571
11572 if (fix->tc_fix_data.bigendian)
11573 number_to_chars_bigendian (fixpos, value, fix->fx_size);
11574 else
11575 number_to_chars_littleendian (fixpos, value, fix->fx_size);
11576 fix->fx_done = 1;
11577 }
11578 else
11579 {
11580 fix_insn (fix, elf64_ia64_operands + fix->tc_fix_data.opnd, value);
11581 fix->fx_done = 1;
11582 }
11583 }
11584
11585 /* Generate the BFD reloc to be stuck in the object file from the
11586 fixup used internally in the assembler. */
11587
11588 arelent *
11589 tc_gen_reloc (asection *sec ATTRIBUTE_UNUSED, fixS *fixp)
11590 {
11591 arelent *reloc;
11592
11593 reloc = xmalloc (sizeof (*reloc));
11594 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
11595 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11596 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
11597 reloc->addend = fixp->fx_offset;
11598 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
11599
11600 if (!reloc->howto)
11601 {
11602 as_bad_where (fixp->fx_file, fixp->fx_line,
11603 _("Cannot represent %s relocation in object file"),
11604 bfd_get_reloc_code_name (fixp->fx_r_type));
11605 free (reloc);
11606 return NULL;
11607 }
11608 return reloc;
11609 }
11610
11611 /* Turn a string in input_line_pointer into a floating point constant
11612 of type TYPE, and store the appropriate bytes in *LIT. The number
11613 of LITTLENUMS emitted is stored in *SIZE. An error message is
11614 returned, or NULL on OK. */
11615
11616 #define MAX_LITTLENUMS 5
11617
11618 char *
11619 md_atof (int type, char *lit, int *size)
11620 {
11621 LITTLENUM_TYPE words[MAX_LITTLENUMS];
11622 char *t;
11623 int prec;
11624
11625 switch (type)
11626 {
11627 /* IEEE floats */
11628 case 'f':
11629 case 'F':
11630 case 's':
11631 case 'S':
11632 prec = 2;
11633 break;
11634
11635 case 'd':
11636 case 'D':
11637 case 'r':
11638 case 'R':
11639 prec = 4;
11640 break;
11641
11642 case 'x':
11643 case 'X':
11644 case 'p':
11645 case 'P':
11646 prec = 5;
11647 break;
11648
11649 default:
11650 *size = 0;
11651 return _("Unrecognized or unsupported floating point constant");
11652 }
11653 t = atof_ieee (input_line_pointer, type, words);
11654 if (t)
11655 input_line_pointer = t;
11656
11657 (*ia64_float_to_chars) (lit, words, prec);
11658
11659 if (type == 'X')
11660 {
11661 /* It is 10 byte floating point with 6 byte padding. */
11662 memset (&lit [10], 0, 6);
11663 *size = 8 * sizeof (LITTLENUM_TYPE);
11664 }
11665 else
11666 *size = prec * sizeof (LITTLENUM_TYPE);
11667
11668 return NULL;
11669 }
11670
11671 /* Handle ia64 specific semantics of the align directive. */
11672
11673 void
11674 ia64_md_do_align (int n ATTRIBUTE_UNUSED,
11675 const char *fill ATTRIBUTE_UNUSED,
11676 int len ATTRIBUTE_UNUSED,
11677 int max ATTRIBUTE_UNUSED)
11678 {
11679 if (subseg_text_p (now_seg))
11680 ia64_flush_insns ();
11681 }
11682
11683 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
11684 of an rs_align_code fragment. */
11685
11686 void
11687 ia64_handle_align (fragS *fragp)
11688 {
11689 int bytes;
11690 char *p;
11691 const unsigned char *nop_type;
11692
11693 if (fragp->fr_type != rs_align_code)
11694 return;
11695
11696 /* Check if this frag has to end with a stop bit. */
11697 nop_type = fragp->tc_frag_data ? le_nop_stop : le_nop;
11698
11699 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
11700 p = fragp->fr_literal + fragp->fr_fix;
11701
11702 /* If no paddings are needed, we check if we need a stop bit. */
11703 if (!bytes && fragp->tc_frag_data)
11704 {
11705 if (fragp->fr_fix < 16)
11706 #if 1
11707 /* FIXME: It won't work with
11708 .align 16
11709 alloc r32=ar.pfs,1,2,4,0
11710 */
11711 ;
11712 #else
11713 as_bad_where (fragp->fr_file, fragp->fr_line,
11714 _("Can't add stop bit to mark end of instruction group"));
11715 #endif
11716 else
11717 /* Bundles are always in little-endian byte order. Make sure
11718 the previous bundle has the stop bit. */
11719 *(p - 16) |= 1;
11720 }
11721
11722 /* Make sure we are on a 16-byte boundary, in case someone has been
11723 putting data into a text section. */
11724 if (bytes & 15)
11725 {
11726 int fix = bytes & 15;
11727 memset (p, 0, fix);
11728 p += fix;
11729 bytes -= fix;
11730 fragp->fr_fix += fix;
11731 }
11732
11733 /* Instruction bundles are always little-endian. */
11734 memcpy (p, nop_type, 16);
11735 fragp->fr_var = 16;
11736 }
11737
11738 static void
11739 ia64_float_to_chars_bigendian (char *lit, LITTLENUM_TYPE *words,
11740 int prec)
11741 {
11742 while (prec--)
11743 {
11744 number_to_chars_bigendian (lit, (long) (*words++),
11745 sizeof (LITTLENUM_TYPE));
11746 lit += sizeof (LITTLENUM_TYPE);
11747 }
11748 }
11749
11750 static void
11751 ia64_float_to_chars_littleendian (char *lit, LITTLENUM_TYPE *words,
11752 int prec)
11753 {
11754 while (prec--)
11755 {
11756 number_to_chars_littleendian (lit, (long) (words[prec]),
11757 sizeof (LITTLENUM_TYPE));
11758 lit += sizeof (LITTLENUM_TYPE);
11759 }
11760 }
11761
11762 void
11763 ia64_elf_section_change_hook (void)
11764 {
11765 if (elf_section_type (now_seg) == SHT_IA_64_UNWIND
11766 && elf_linked_to_section (now_seg) == NULL)
11767 elf_linked_to_section (now_seg) = text_section;
11768 dot_byteorder (-1);
11769 }
11770
11771 /* Check if a label should be made global. */
11772 void
11773 ia64_check_label (symbolS *label)
11774 {
11775 if (*input_line_pointer == ':')
11776 {
11777 S_SET_EXTERNAL (label);
11778 input_line_pointer++;
11779 }
11780 }
11781
11782 /* Used to remember where .alias and .secalias directives are seen. We
11783 will rename symbol and section names when we are about to output
11784 the relocatable file. */
11785 struct alias
11786 {
11787 char *file; /* The file where the directive is seen. */
11788 unsigned int line; /* The line number the directive is at. */
11789 const char *name; /* The original name of the symbol. */
11790 };
11791
11792 /* Called for .alias and .secalias directives. If SECTION is 1, it is
11793 .secalias. Otherwise, it is .alias. */
11794 static void
11795 dot_alias (int section)
11796 {
11797 char *name, *alias;
11798 char delim;
11799 char *end_name;
11800 int len;
11801 const char *error_string;
11802 struct alias *h;
11803 const char *a;
11804 struct hash_control *ahash, *nhash;
11805 const char *kind;
11806
11807 name = input_line_pointer;
11808 delim = get_symbol_end ();
11809 end_name = input_line_pointer;
11810 *end_name = delim;
11811
11812 if (name == end_name)
11813 {
11814 as_bad (_("expected symbol name"));
11815 ignore_rest_of_line ();
11816 return;
11817 }
11818
11819 SKIP_WHITESPACE ();
11820
11821 if (*input_line_pointer != ',')
11822 {
11823 *end_name = 0;
11824 as_bad (_("expected comma after \"%s\""), name);
11825 *end_name = delim;
11826 ignore_rest_of_line ();
11827 return;
11828 }
11829
11830 input_line_pointer++;
11831 *end_name = 0;
11832 ia64_canonicalize_symbol_name (name);
11833
11834 /* We call demand_copy_C_string to check if alias string is valid.
11835 There should be a closing `"' and no `\0' in the string. */
11836 alias = demand_copy_C_string (&len);
11837 if (alias == NULL)
11838 {
11839 ignore_rest_of_line ();
11840 return;
11841 }
11842
11843 /* Make a copy of name string. */
11844 len = strlen (name) + 1;
11845 obstack_grow (&notes, name, len);
11846 name = obstack_finish (&notes);
11847
11848 if (section)
11849 {
11850 kind = "section";
11851 ahash = secalias_hash;
11852 nhash = secalias_name_hash;
11853 }
11854 else
11855 {
11856 kind = "symbol";
11857 ahash = alias_hash;
11858 nhash = alias_name_hash;
11859 }
11860
11861 /* Check if alias has been used before. */
11862 h = (struct alias *) hash_find (ahash, alias);
11863 if (h)
11864 {
11865 if (strcmp (h->name, name))
11866 as_bad (_("`%s' is already the alias of %s `%s'"),
11867 alias, kind, h->name);
11868 goto out;
11869 }
11870
11871 /* Check if name already has an alias. */
11872 a = (const char *) hash_find (nhash, name);
11873 if (a)
11874 {
11875 if (strcmp (a, alias))
11876 as_bad (_("%s `%s' already has an alias `%s'"), kind, name, a);
11877 goto out;
11878 }
11879
11880 h = (struct alias *) xmalloc (sizeof (struct alias));
11881 as_where (&h->file, &h->line);
11882 h->name = name;
11883
11884 error_string = hash_jam (ahash, alias, (void *) h);
11885 if (error_string)
11886 {
11887 as_fatal (_("inserting \"%s\" into %s alias hash table failed: %s"),
11888 alias, kind, error_string);
11889 goto out;
11890 }
11891
11892 error_string = hash_jam (nhash, name, (void *) alias);
11893 if (error_string)
11894 {
11895 as_fatal (_("inserting \"%s\" into %s name hash table failed: %s"),
11896 alias, kind, error_string);
11897 out:
11898 obstack_free (&notes, name);
11899 obstack_free (&notes, alias);
11900 }
11901
11902 demand_empty_rest_of_line ();
11903 }
11904
11905 /* It renames the original symbol name to its alias. */
11906 static void
11907 do_alias (const char *alias, void *value)
11908 {
11909 struct alias *h = (struct alias *) value;
11910 symbolS *sym = symbol_find (h->name);
11911
11912 if (sym == NULL)
11913 {
11914 #ifdef TE_VMS
11915 /* Uses .alias extensively to alias CRTL functions to same with
11916 decc$ prefix. Sometimes function gets optimized away and a
11917 warning results, which should be suppressed. */
11918 if (strncmp (alias, "decc$", 5) != 0)
11919 #endif
11920 as_warn_where (h->file, h->line,
11921 _("symbol `%s' aliased to `%s' is not used"),
11922 h->name, alias);
11923 }
11924 else
11925 S_SET_NAME (sym, (char *) alias);
11926 }
11927
11928 /* Called from write_object_file. */
11929 void
11930 ia64_adjust_symtab (void)
11931 {
11932 hash_traverse (alias_hash, do_alias);
11933 }
11934
11935 /* It renames the original section name to its alias. */
11936 static void
11937 do_secalias (const char *alias, void *value)
11938 {
11939 struct alias *h = (struct alias *) value;
11940 segT sec = bfd_get_section_by_name (stdoutput, h->name);
11941
11942 if (sec == NULL)
11943 as_warn_where (h->file, h->line,
11944 _("section `%s' aliased to `%s' is not used"),
11945 h->name, alias);
11946 else
11947 sec->name = alias;
11948 }
11949
11950 /* Called from write_object_file. */
11951 void
11952 ia64_frob_file (void)
11953 {
11954 hash_traverse (secalias_hash, do_secalias);
11955 }
11956
11957 #ifdef TE_VMS
11958 #define NT_VMS_MHD 1
11959 #define NT_VMS_LNM 2
11960
11961 /* Integrity VMS 8.x identifies it's ELF modules with a standard ELF
11962 .note section. */
11963
11964 /* Manufacture a VMS-like time string. */
11965 static void
11966 get_vms_time (char *Now)
11967 {
11968 char *pnt;
11969 time_t timeb;
11970
11971 time (&timeb);
11972 pnt = ctime (&timeb);
11973 pnt[3] = 0;
11974 pnt[7] = 0;
11975 pnt[10] = 0;
11976 pnt[16] = 0;
11977 pnt[24] = 0;
11978 sprintf (Now, "%2s-%3s-%s %s", pnt + 8, pnt + 4, pnt + 20, pnt + 11);
11979 }
11980
11981 void
11982 ia64_vms_note (void)
11983 {
11984 char *p;
11985 asection *seg = now_seg;
11986 subsegT subseg = now_subseg;
11987 asection *secp = NULL;
11988 char *bname;
11989 char buf [256];
11990 symbolS *sym;
11991
11992 /* Create the .note section. */
11993
11994 secp = subseg_new (".note", 0);
11995 bfd_set_section_flags (stdoutput,
11996 secp,
11997 SEC_HAS_CONTENTS | SEC_READONLY);
11998
11999 /* Module header note (MHD). */
12000 bname = xstrdup (lbasename (out_file_name));
12001 if ((p = strrchr (bname, '.')))
12002 *p = '\0';
12003
12004 /* VMS note header is 24 bytes long. */
12005 p = frag_more (8 + 8 + 8);
12006 number_to_chars_littleendian (p + 0, 8, 8);
12007 number_to_chars_littleendian (p + 8, 40 + strlen (bname), 8);
12008 number_to_chars_littleendian (p + 16, NT_VMS_MHD, 8);
12009
12010 p = frag_more (8);
12011 strcpy (p, "IPF/VMS");
12012
12013 p = frag_more (17 + 17 + strlen (bname) + 1 + 5);
12014 get_vms_time (p);
12015 strcpy (p + 17, "24-FEB-2005 15:00");
12016 p += 17 + 17;
12017 strcpy (p, bname);
12018 p += strlen (bname) + 1;
12019 free (bname);
12020 strcpy (p, "V1.0");
12021
12022 frag_align (3, 0, 0);
12023
12024 /* Language processor name note. */
12025 sprintf (buf, "GNU assembler version %s (%s) using BFD version %s",
12026 VERSION, TARGET_ALIAS, BFD_VERSION_STRING);
12027
12028 p = frag_more (8 + 8 + 8);
12029 number_to_chars_littleendian (p + 0, 8, 8);
12030 number_to_chars_littleendian (p + 8, strlen (buf) + 1, 8);
12031 number_to_chars_littleendian (p + 16, NT_VMS_LNM, 8);
12032
12033 p = frag_more (8);
12034 strcpy (p, "IPF/VMS");
12035
12036 p = frag_more (strlen (buf) + 1);
12037 strcpy (p, buf);
12038
12039 frag_align (3, 0, 0);
12040
12041 secp = subseg_new (".vms_display_name_info", 0);
12042 bfd_set_section_flags (stdoutput,
12043 secp,
12044 SEC_HAS_CONTENTS | SEC_READONLY);
12045
12046 /* This symbol should be passed on the command line and be variable
12047 according to language. */
12048 sym = symbol_new ("__gnat_vms_display_name@gnat_demangler_rtl",
12049 absolute_section, 0, &zero_address_frag);
12050 symbol_table_insert (sym);
12051 symbol_get_bfdsym (sym)->flags |= BSF_DEBUGGING | BSF_DYNAMIC;
12052
12053 p = frag_more (4);
12054 /* Format 3 of VMS demangler Spec. */
12055 number_to_chars_littleendian (p, 3, 4);
12056
12057 p = frag_more (4);
12058 /* Place holder for symbol table index of above symbol. */
12059 number_to_chars_littleendian (p, -1, 4);
12060
12061 frag_align (3, 0, 0);
12062
12063 /* We probably can't restore the current segment, for there likely
12064 isn't one yet... */
12065 if (seg && subseg)
12066 subseg_set (seg, subseg);
12067 }
12068
12069 #endif /* TE_VMS */