]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-ia64.c
gas/
[thirdparty/binutils-gdb.git] / gas / config / tc-ia64.c
1 /* tc-ia64.c -- Assembler for the HP/Intel IA-64 architecture.
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4 Contributed by David Mosberger-Tang <davidm@hpl.hp.com>
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to
20 the Free Software Foundation, 51 Franklin Street - Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 /*
24 TODO:
25
26 - optional operands
27 - directives:
28 .eb
29 .estate
30 .lb
31 .popsection
32 .previous
33 .psr
34 .pushsection
35 - labels are wrong if automatic alignment is introduced
36 (e.g., checkout the second real10 definition in test-data.s)
37 - DV-related stuff:
38 <reg>.safe_across_calls and any other DV-related directives I don't
39 have documentation for.
40 verify mod-sched-brs reads/writes are checked/marked (and other
41 notes)
42
43 */
44
45 #include "as.h"
46 #include "safe-ctype.h"
47 #include "dwarf2dbg.h"
48 #include "subsegs.h"
49
50 #include "opcode/ia64.h"
51
52 #include "elf/ia64.h"
53
54 #ifdef HAVE_LIMITS_H
55 #include <limits.h>
56 #endif
57
58 #define NELEMS(a) ((int) (sizeof (a)/sizeof ((a)[0])))
59
60 /* Some systems define MIN in, e.g., param.h. */
61 #undef MIN
62 #define MIN(a,b) ((a) < (b) ? (a) : (b))
63
64 #define NUM_SLOTS 4
65 #define PREV_SLOT md.slot[(md.curr_slot + NUM_SLOTS - 1) % NUM_SLOTS]
66 #define CURR_SLOT md.slot[md.curr_slot]
67
68 #define O_pseudo_fixup (O_max + 1)
69
70 enum special_section
71 {
72 /* IA-64 ABI section pseudo-ops. */
73 SPECIAL_SECTION_BSS = 0,
74 SPECIAL_SECTION_SBSS,
75 SPECIAL_SECTION_SDATA,
76 SPECIAL_SECTION_RODATA,
77 SPECIAL_SECTION_COMMENT,
78 SPECIAL_SECTION_UNWIND,
79 SPECIAL_SECTION_UNWIND_INFO,
80 /* HPUX specific section pseudo-ops. */
81 SPECIAL_SECTION_INIT_ARRAY,
82 SPECIAL_SECTION_FINI_ARRAY,
83 };
84
85 enum reloc_func
86 {
87 FUNC_DTP_MODULE,
88 FUNC_DTP_RELATIVE,
89 FUNC_FPTR_RELATIVE,
90 FUNC_GP_RELATIVE,
91 FUNC_LT_RELATIVE,
92 FUNC_LT_RELATIVE_X,
93 FUNC_PC_RELATIVE,
94 FUNC_PLT_RELATIVE,
95 FUNC_SEC_RELATIVE,
96 FUNC_SEG_RELATIVE,
97 FUNC_TP_RELATIVE,
98 FUNC_LTV_RELATIVE,
99 FUNC_LT_FPTR_RELATIVE,
100 FUNC_LT_DTP_MODULE,
101 FUNC_LT_DTP_RELATIVE,
102 FUNC_LT_TP_RELATIVE,
103 FUNC_IPLT_RELOC,
104 };
105
106 enum reg_symbol
107 {
108 REG_GR = 0,
109 REG_FR = (REG_GR + 128),
110 REG_AR = (REG_FR + 128),
111 REG_CR = (REG_AR + 128),
112 REG_P = (REG_CR + 128),
113 REG_BR = (REG_P + 64),
114 REG_IP = (REG_BR + 8),
115 REG_CFM,
116 REG_PR,
117 REG_PR_ROT,
118 REG_PSR,
119 REG_PSR_L,
120 REG_PSR_UM,
121 /* The following are pseudo-registers for use by gas only. */
122 IND_CPUID,
123 IND_DBR,
124 IND_DTR,
125 IND_ITR,
126 IND_IBR,
127 IND_MSR,
128 IND_PKR,
129 IND_PMC,
130 IND_PMD,
131 IND_RR,
132 /* The following pseudo-registers are used for unwind directives only: */
133 REG_PSP,
134 REG_PRIUNAT,
135 REG_NUM
136 };
137
138 enum dynreg_type
139 {
140 DYNREG_GR = 0, /* dynamic general purpose register */
141 DYNREG_FR, /* dynamic floating point register */
142 DYNREG_PR, /* dynamic predicate register */
143 DYNREG_NUM_TYPES
144 };
145
146 enum operand_match_result
147 {
148 OPERAND_MATCH,
149 OPERAND_OUT_OF_RANGE,
150 OPERAND_MISMATCH
151 };
152
153 /* On the ia64, we can't know the address of a text label until the
154 instructions are packed into a bundle. To handle this, we keep
155 track of the list of labels that appear in front of each
156 instruction. */
157 struct label_fix
158 {
159 struct label_fix *next;
160 struct symbol *sym;
161 bfd_boolean dw2_mark_labels;
162 };
163
164 /* This is the endianness of the current section. */
165 extern int target_big_endian;
166
167 /* This is the default endianness. */
168 static int default_big_endian = TARGET_BYTES_BIG_ENDIAN;
169
170 void (*ia64_number_to_chars) PARAMS ((char *, valueT, int));
171
172 static void ia64_float_to_chars_bigendian
173 PARAMS ((char *, LITTLENUM_TYPE *, int));
174 static void ia64_float_to_chars_littleendian
175 PARAMS ((char *, LITTLENUM_TYPE *, int));
176 static void (*ia64_float_to_chars)
177 PARAMS ((char *, LITTLENUM_TYPE *, int));
178
179 static struct hash_control *alias_hash;
180 static struct hash_control *alias_name_hash;
181 static struct hash_control *secalias_hash;
182 static struct hash_control *secalias_name_hash;
183
184 /* List of chars besides those in app.c:symbol_chars that can start an
185 operand. Used to prevent the scrubber eating vital white-space. */
186 const char ia64_symbol_chars[] = "@?";
187
188 /* Characters which always start a comment. */
189 const char comment_chars[] = "";
190
191 /* Characters which start a comment at the beginning of a line. */
192 const char line_comment_chars[] = "#";
193
194 /* Characters which may be used to separate multiple commands on a
195 single line. */
196 const char line_separator_chars[] = ";{}";
197
198 /* Characters which are used to indicate an exponent in a floating
199 point number. */
200 const char EXP_CHARS[] = "eE";
201
202 /* Characters which mean that a number is a floating point constant,
203 as in 0d1.0. */
204 const char FLT_CHARS[] = "rRsSfFdDxXpP";
205
206 /* ia64-specific option processing: */
207
208 const char *md_shortopts = "m:N:x::";
209
210 struct option md_longopts[] =
211 {
212 #define OPTION_MCONSTANT_GP (OPTION_MD_BASE + 1)
213 {"mconstant-gp", no_argument, NULL, OPTION_MCONSTANT_GP},
214 #define OPTION_MAUTO_PIC (OPTION_MD_BASE + 2)
215 {"mauto-pic", no_argument, NULL, OPTION_MAUTO_PIC}
216 };
217
218 size_t md_longopts_size = sizeof (md_longopts);
219
220 static struct
221 {
222 struct hash_control *pseudo_hash; /* pseudo opcode hash table */
223 struct hash_control *reg_hash; /* register name hash table */
224 struct hash_control *dynreg_hash; /* dynamic register hash table */
225 struct hash_control *const_hash; /* constant hash table */
226 struct hash_control *entry_hash; /* code entry hint hash table */
227
228 /* If X_op is != O_absent, the registername for the instruction's
229 qualifying predicate. If NULL, p0 is assumed for instructions
230 that are predicatable. */
231 expressionS qp;
232
233 /* Optimize for which CPU. */
234 enum
235 {
236 itanium1,
237 itanium2
238 } tune;
239
240 /* What to do when hint.b is used. */
241 enum
242 {
243 hint_b_error,
244 hint_b_warning,
245 hint_b_ok
246 } hint_b;
247
248 unsigned int
249 manual_bundling : 1,
250 debug_dv: 1,
251 detect_dv: 1,
252 explicit_mode : 1, /* which mode we're in */
253 default_explicit_mode : 1, /* which mode is the default */
254 mode_explicitly_set : 1, /* was the current mode explicitly set? */
255 auto_align : 1,
256 keep_pending_output : 1;
257
258 /* What to do when something is wrong with unwind directives. */
259 enum
260 {
261 unwind_check_warning,
262 unwind_check_error
263 } unwind_check;
264
265 /* Each bundle consists of up to three instructions. We keep
266 track of four most recent instructions so we can correctly set
267 the end_of_insn_group for the last instruction in a bundle. */
268 int curr_slot;
269 int num_slots_in_use;
270 struct slot
271 {
272 unsigned int
273 end_of_insn_group : 1,
274 manual_bundling_on : 1,
275 manual_bundling_off : 1,
276 loc_directive_seen : 1;
277 signed char user_template; /* user-selected template, if any */
278 unsigned char qp_regno; /* qualifying predicate */
279 /* This duplicates a good fraction of "struct fix" but we
280 can't use a "struct fix" instead since we can't call
281 fix_new_exp() until we know the address of the instruction. */
282 int num_fixups;
283 struct insn_fix
284 {
285 bfd_reloc_code_real_type code;
286 enum ia64_opnd opnd; /* type of operand in need of fix */
287 unsigned int is_pcrel : 1; /* is operand pc-relative? */
288 expressionS expr; /* the value to be inserted */
289 }
290 fixup[2]; /* at most two fixups per insn */
291 struct ia64_opcode *idesc;
292 struct label_fix *label_fixups;
293 struct label_fix *tag_fixups;
294 struct unw_rec_list *unwind_record; /* Unwind directive. */
295 expressionS opnd[6];
296 char *src_file;
297 unsigned int src_line;
298 struct dwarf2_line_info debug_line;
299 }
300 slot[NUM_SLOTS];
301
302 segT last_text_seg;
303
304 struct dynreg
305 {
306 struct dynreg *next; /* next dynamic register */
307 const char *name;
308 unsigned short base; /* the base register number */
309 unsigned short num_regs; /* # of registers in this set */
310 }
311 *dynreg[DYNREG_NUM_TYPES], in, loc, out, rot;
312
313 flagword flags; /* ELF-header flags */
314
315 struct mem_offset {
316 unsigned hint:1; /* is this hint currently valid? */
317 bfd_vma offset; /* mem.offset offset */
318 bfd_vma base; /* mem.offset base */
319 } mem_offset;
320
321 int path; /* number of alt. entry points seen */
322 const char **entry_labels; /* labels of all alternate paths in
323 the current DV-checking block. */
324 int maxpaths; /* size currently allocated for
325 entry_labels */
326
327 int pointer_size; /* size in bytes of a pointer */
328 int pointer_size_shift; /* shift size of a pointer for alignment */
329
330 symbolS *indregsym[IND_RR - IND_CPUID + 1];
331 }
332 md;
333
334 /* These are not const, because they are modified to MMI for non-itanium1
335 targets below. */
336 /* MFI bundle of nops. */
337 static unsigned char le_nop[16] =
338 {
339 0x0c, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
340 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00
341 };
342 /* MFI bundle of nops with stop-bit. */
343 static unsigned char le_nop_stop[16] =
344 {
345 0x0d, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
346 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00
347 };
348
349 /* application registers: */
350
351 #define AR_K0 0
352 #define AR_K7 7
353 #define AR_RSC 16
354 #define AR_BSP 17
355 #define AR_BSPSTORE 18
356 #define AR_RNAT 19
357 #define AR_FCR 21
358 #define AR_EFLAG 24
359 #define AR_CSD 25
360 #define AR_SSD 26
361 #define AR_CFLG 27
362 #define AR_FSR 28
363 #define AR_FIR 29
364 #define AR_FDR 30
365 #define AR_CCV 32
366 #define AR_UNAT 36
367 #define AR_FPSR 40
368 #define AR_ITC 44
369 #define AR_PFS 64
370 #define AR_LC 65
371 #define AR_EC 66
372
373 static const struct
374 {
375 const char *name;
376 unsigned int regnum;
377 }
378 ar[] =
379 {
380 {"ar.k0", AR_K0}, {"ar.k1", AR_K0 + 1},
381 {"ar.k2", AR_K0 + 2}, {"ar.k3", AR_K0 + 3},
382 {"ar.k4", AR_K0 + 4}, {"ar.k5", AR_K0 + 5},
383 {"ar.k6", AR_K0 + 6}, {"ar.k7", AR_K7},
384 {"ar.rsc", AR_RSC}, {"ar.bsp", AR_BSP},
385 {"ar.bspstore", AR_BSPSTORE}, {"ar.rnat", AR_RNAT},
386 {"ar.fcr", AR_FCR}, {"ar.eflag", AR_EFLAG},
387 {"ar.csd", AR_CSD}, {"ar.ssd", AR_SSD},
388 {"ar.cflg", AR_CFLG}, {"ar.fsr", AR_FSR},
389 {"ar.fir", AR_FIR}, {"ar.fdr", AR_FDR},
390 {"ar.ccv", AR_CCV}, {"ar.unat", AR_UNAT},
391 {"ar.fpsr", AR_FPSR}, {"ar.itc", AR_ITC},
392 {"ar.pfs", AR_PFS}, {"ar.lc", AR_LC},
393 {"ar.ec", AR_EC},
394 };
395
396 /* control registers: */
397
398 #define CR_DCR 0
399 #define CR_ITM 1
400 #define CR_IVA 2
401 #define CR_PTA 8
402 #define CR_GPTA 9
403 #define CR_IPSR 16
404 #define CR_ISR 17
405 #define CR_IIP 19
406 #define CR_IFA 20
407 #define CR_ITIR 21
408 #define CR_IIPA 22
409 #define CR_IFS 23
410 #define CR_IIM 24
411 #define CR_IHA 25
412 #define CR_LID 64
413 #define CR_IVR 65
414 #define CR_TPR 66
415 #define CR_EOI 67
416 #define CR_IRR0 68
417 #define CR_IRR3 71
418 #define CR_ITV 72
419 #define CR_PMV 73
420 #define CR_CMCV 74
421 #define CR_LRR0 80
422 #define CR_LRR1 81
423
424 static const struct
425 {
426 const char *name;
427 unsigned int regnum;
428 }
429 cr[] =
430 {
431 {"cr.dcr", CR_DCR},
432 {"cr.itm", CR_ITM},
433 {"cr.iva", CR_IVA},
434 {"cr.pta", CR_PTA},
435 {"cr.gpta", CR_GPTA},
436 {"cr.ipsr", CR_IPSR},
437 {"cr.isr", CR_ISR},
438 {"cr.iip", CR_IIP},
439 {"cr.ifa", CR_IFA},
440 {"cr.itir", CR_ITIR},
441 {"cr.iipa", CR_IIPA},
442 {"cr.ifs", CR_IFS},
443 {"cr.iim", CR_IIM},
444 {"cr.iha", CR_IHA},
445 {"cr.lid", CR_LID},
446 {"cr.ivr", CR_IVR},
447 {"cr.tpr", CR_TPR},
448 {"cr.eoi", CR_EOI},
449 {"cr.irr0", CR_IRR0},
450 {"cr.irr1", CR_IRR0 + 1},
451 {"cr.irr2", CR_IRR0 + 2},
452 {"cr.irr3", CR_IRR3},
453 {"cr.itv", CR_ITV},
454 {"cr.pmv", CR_PMV},
455 {"cr.cmcv", CR_CMCV},
456 {"cr.lrr0", CR_LRR0},
457 {"cr.lrr1", CR_LRR1}
458 };
459
460 #define PSR_MFL 4
461 #define PSR_IC 13
462 #define PSR_DFL 18
463 #define PSR_CPL 32
464
465 static const struct const_desc
466 {
467 const char *name;
468 valueT value;
469 }
470 const_bits[] =
471 {
472 /* PSR constant masks: */
473
474 /* 0: reserved */
475 {"psr.be", ((valueT) 1) << 1},
476 {"psr.up", ((valueT) 1) << 2},
477 {"psr.ac", ((valueT) 1) << 3},
478 {"psr.mfl", ((valueT) 1) << 4},
479 {"psr.mfh", ((valueT) 1) << 5},
480 /* 6-12: reserved */
481 {"psr.ic", ((valueT) 1) << 13},
482 {"psr.i", ((valueT) 1) << 14},
483 {"psr.pk", ((valueT) 1) << 15},
484 /* 16: reserved */
485 {"psr.dt", ((valueT) 1) << 17},
486 {"psr.dfl", ((valueT) 1) << 18},
487 {"psr.dfh", ((valueT) 1) << 19},
488 {"psr.sp", ((valueT) 1) << 20},
489 {"psr.pp", ((valueT) 1) << 21},
490 {"psr.di", ((valueT) 1) << 22},
491 {"psr.si", ((valueT) 1) << 23},
492 {"psr.db", ((valueT) 1) << 24},
493 {"psr.lp", ((valueT) 1) << 25},
494 {"psr.tb", ((valueT) 1) << 26},
495 {"psr.rt", ((valueT) 1) << 27},
496 /* 28-31: reserved */
497 /* 32-33: cpl (current privilege level) */
498 {"psr.is", ((valueT) 1) << 34},
499 {"psr.mc", ((valueT) 1) << 35},
500 {"psr.it", ((valueT) 1) << 36},
501 {"psr.id", ((valueT) 1) << 37},
502 {"psr.da", ((valueT) 1) << 38},
503 {"psr.dd", ((valueT) 1) << 39},
504 {"psr.ss", ((valueT) 1) << 40},
505 /* 41-42: ri (restart instruction) */
506 {"psr.ed", ((valueT) 1) << 43},
507 {"psr.bn", ((valueT) 1) << 44},
508 };
509
510 /* indirect register-sets/memory: */
511
512 static const struct
513 {
514 const char *name;
515 unsigned int regnum;
516 }
517 indirect_reg[] =
518 {
519 { "CPUID", IND_CPUID },
520 { "cpuid", IND_CPUID },
521 { "dbr", IND_DBR },
522 { "dtr", IND_DTR },
523 { "itr", IND_ITR },
524 { "ibr", IND_IBR },
525 { "msr", IND_MSR },
526 { "pkr", IND_PKR },
527 { "pmc", IND_PMC },
528 { "pmd", IND_PMD },
529 { "rr", IND_RR },
530 };
531
532 /* Pseudo functions used to indicate relocation types (these functions
533 start with an at sign (@). */
534 static struct
535 {
536 const char *name;
537 enum pseudo_type
538 {
539 PSEUDO_FUNC_NONE,
540 PSEUDO_FUNC_RELOC,
541 PSEUDO_FUNC_CONST,
542 PSEUDO_FUNC_REG,
543 PSEUDO_FUNC_FLOAT
544 }
545 type;
546 union
547 {
548 unsigned long ival;
549 symbolS *sym;
550 }
551 u;
552 }
553 pseudo_func[] =
554 {
555 /* reloc pseudo functions (these must come first!): */
556 { "dtpmod", PSEUDO_FUNC_RELOC, { 0 } },
557 { "dtprel", PSEUDO_FUNC_RELOC, { 0 } },
558 { "fptr", PSEUDO_FUNC_RELOC, { 0 } },
559 { "gprel", PSEUDO_FUNC_RELOC, { 0 } },
560 { "ltoff", PSEUDO_FUNC_RELOC, { 0 } },
561 { "ltoffx", PSEUDO_FUNC_RELOC, { 0 } },
562 { "pcrel", PSEUDO_FUNC_RELOC, { 0 } },
563 { "pltoff", PSEUDO_FUNC_RELOC, { 0 } },
564 { "secrel", PSEUDO_FUNC_RELOC, { 0 } },
565 { "segrel", PSEUDO_FUNC_RELOC, { 0 } },
566 { "tprel", PSEUDO_FUNC_RELOC, { 0 } },
567 { "ltv", PSEUDO_FUNC_RELOC, { 0 } },
568 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_FPTR_RELATIVE */
569 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_DTP_MODULE */
570 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_DTP_RELATIVE */
571 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_TP_RELATIVE */
572 { "iplt", PSEUDO_FUNC_RELOC, { 0 } },
573
574 /* mbtype4 constants: */
575 { "alt", PSEUDO_FUNC_CONST, { 0xa } },
576 { "brcst", PSEUDO_FUNC_CONST, { 0x0 } },
577 { "mix", PSEUDO_FUNC_CONST, { 0x8 } },
578 { "rev", PSEUDO_FUNC_CONST, { 0xb } },
579 { "shuf", PSEUDO_FUNC_CONST, { 0x9 } },
580
581 /* fclass constants: */
582 { "nat", PSEUDO_FUNC_CONST, { 0x100 } },
583 { "qnan", PSEUDO_FUNC_CONST, { 0x080 } },
584 { "snan", PSEUDO_FUNC_CONST, { 0x040 } },
585 { "pos", PSEUDO_FUNC_CONST, { 0x001 } },
586 { "neg", PSEUDO_FUNC_CONST, { 0x002 } },
587 { "zero", PSEUDO_FUNC_CONST, { 0x004 } },
588 { "unorm", PSEUDO_FUNC_CONST, { 0x008 } },
589 { "norm", PSEUDO_FUNC_CONST, { 0x010 } },
590 { "inf", PSEUDO_FUNC_CONST, { 0x020 } },
591
592 { "natval", PSEUDO_FUNC_CONST, { 0x100 } }, /* old usage */
593
594 /* hint constants: */
595 { "pause", PSEUDO_FUNC_CONST, { 0x0 } },
596
597 /* unwind-related constants: */
598 { "svr4", PSEUDO_FUNC_CONST, { ELFOSABI_NONE } },
599 { "hpux", PSEUDO_FUNC_CONST, { ELFOSABI_HPUX } },
600 { "nt", PSEUDO_FUNC_CONST, { 2 } }, /* conflicts w/ELFOSABI_NETBSD */
601 { "linux", PSEUDO_FUNC_CONST, { ELFOSABI_LINUX } },
602 { "freebsd", PSEUDO_FUNC_CONST, { ELFOSABI_FREEBSD } },
603 { "openvms", PSEUDO_FUNC_CONST, { ELFOSABI_OPENVMS } },
604 { "nsk", PSEUDO_FUNC_CONST, { ELFOSABI_NSK } },
605
606 /* unwind-related registers: */
607 { "priunat",PSEUDO_FUNC_REG, { REG_PRIUNAT } }
608 };
609
610 /* 41-bit nop opcodes (one per unit): */
611 static const bfd_vma nop[IA64_NUM_UNITS] =
612 {
613 0x0000000000LL, /* NIL => break 0 */
614 0x0008000000LL, /* I-unit nop */
615 0x0008000000LL, /* M-unit nop */
616 0x4000000000LL, /* B-unit nop */
617 0x0008000000LL, /* F-unit nop */
618 0x0000000000LL, /* L-"unit" nop immediate */
619 0x0008000000LL, /* X-unit nop */
620 };
621
622 /* Can't be `const' as it's passed to input routines (which have the
623 habit of setting temporary sentinels. */
624 static char special_section_name[][20] =
625 {
626 {".bss"}, {".sbss"}, {".sdata"}, {".rodata"}, {".comment"},
627 {".IA_64.unwind"}, {".IA_64.unwind_info"},
628 {".init_array"}, {".fini_array"}
629 };
630
631 /* The best template for a particular sequence of up to three
632 instructions: */
633 #define N IA64_NUM_TYPES
634 static unsigned char best_template[N][N][N];
635 #undef N
636
637 /* Resource dependencies currently in effect */
638 static struct rsrc {
639 int depind; /* dependency index */
640 const struct ia64_dependency *dependency; /* actual dependency */
641 unsigned specific:1, /* is this a specific bit/regno? */
642 link_to_qp_branch:1; /* will a branch on the same QP clear it?*/
643 int index; /* specific regno/bit within dependency */
644 int note; /* optional qualifying note (0 if none) */
645 #define STATE_NONE 0
646 #define STATE_STOP 1
647 #define STATE_SRLZ 2
648 int insn_srlz; /* current insn serialization state */
649 int data_srlz; /* current data serialization state */
650 int qp_regno; /* qualifying predicate for this usage */
651 char *file; /* what file marked this dependency */
652 unsigned int line; /* what line marked this dependency */
653 struct mem_offset mem_offset; /* optional memory offset hint */
654 enum { CMP_NONE, CMP_OR, CMP_AND } cmp_type; /* OR or AND compare? */
655 int path; /* corresponding code entry index */
656 } *regdeps = NULL;
657 static int regdepslen = 0;
658 static int regdepstotlen = 0;
659 static const char *dv_mode[] = { "RAW", "WAW", "WAR" };
660 static const char *dv_sem[] = { "none", "implied", "impliedf",
661 "data", "instr", "specific", "stop", "other" };
662 static const char *dv_cmp_type[] = { "none", "OR", "AND" };
663
664 /* Current state of PR mutexation */
665 static struct qpmutex {
666 valueT prmask;
667 int path;
668 } *qp_mutexes = NULL; /* QP mutex bitmasks */
669 static int qp_mutexeslen = 0;
670 static int qp_mutexestotlen = 0;
671 static valueT qp_safe_across_calls = 0;
672
673 /* Current state of PR implications */
674 static struct qp_imply {
675 unsigned p1:6;
676 unsigned p2:6;
677 unsigned p2_branched:1;
678 int path;
679 } *qp_implies = NULL;
680 static int qp_implieslen = 0;
681 static int qp_impliestotlen = 0;
682
683 /* Keep track of static GR values so that indirect register usage can
684 sometimes be tracked. */
685 static struct gr {
686 unsigned known:1;
687 int path;
688 valueT value;
689 } gr_values[128] = {
690 {
691 1,
692 #ifdef INT_MAX
693 INT_MAX,
694 #else
695 (((1 << (8 * sizeof(gr_values->path) - 2)) - 1) << 1) + 1,
696 #endif
697 0
698 }
699 };
700
701 /* Remember the alignment frag. */
702 static fragS *align_frag;
703
704 /* These are the routines required to output the various types of
705 unwind records. */
706
707 /* A slot_number is a frag address plus the slot index (0-2). We use the
708 frag address here so that if there is a section switch in the middle of
709 a function, then instructions emitted to a different section are not
710 counted. Since there may be more than one frag for a function, this
711 means we also need to keep track of which frag this address belongs to
712 so we can compute inter-frag distances. This also nicely solves the
713 problem with nops emitted for align directives, which can't easily be
714 counted, but can easily be derived from frag sizes. */
715
716 typedef struct unw_rec_list {
717 unwind_record r;
718 unsigned long slot_number;
719 fragS *slot_frag;
720 struct unw_rec_list *next;
721 } unw_rec_list;
722
723 #define SLOT_NUM_NOT_SET (unsigned)-1
724
725 /* Linked list of saved prologue counts. A very poor
726 implementation of a map from label numbers to prologue counts. */
727 typedef struct label_prologue_count
728 {
729 struct label_prologue_count *next;
730 unsigned long label_number;
731 unsigned int prologue_count;
732 } label_prologue_count;
733
734 typedef struct proc_pending
735 {
736 symbolS *sym;
737 struct proc_pending *next;
738 } proc_pending;
739
740 static struct
741 {
742 /* Maintain a list of unwind entries for the current function. */
743 unw_rec_list *list;
744 unw_rec_list *tail;
745
746 /* Any unwind entires that should be attached to the current slot
747 that an insn is being constructed for. */
748 unw_rec_list *current_entry;
749
750 /* These are used to create the unwind table entry for this function. */
751 proc_pending proc_pending;
752 symbolS *info; /* pointer to unwind info */
753 symbolS *personality_routine;
754 segT saved_text_seg;
755 subsegT saved_text_subseg;
756 unsigned int force_unwind_entry : 1; /* force generation of unwind entry? */
757
758 /* TRUE if processing unwind directives in a prologue region. */
759 unsigned int prologue : 1;
760 unsigned int prologue_mask : 4;
761 unsigned int prologue_gr : 7;
762 unsigned int body : 1;
763 unsigned int insn : 1;
764 unsigned int prologue_count; /* number of .prologues seen so far */
765 /* Prologue counts at previous .label_state directives. */
766 struct label_prologue_count * saved_prologue_counts;
767
768 /* List of split up .save-s. */
769 unw_p_record *pending_saves;
770 } unwind;
771
772 /* The input value is a negated offset from psp, and specifies an address
773 psp - offset. The encoded value is psp + 16 - (4 * offset). Thus we
774 must add 16 and divide by 4 to get the encoded value. */
775
776 #define ENCODED_PSP_OFFSET(OFFSET) (((OFFSET) + 16) / 4)
777
778 typedef void (*vbyte_func) PARAMS ((int, char *, char *));
779
780 /* Forward declarations: */
781 static void set_section PARAMS ((char *name));
782 static unsigned int set_regstack PARAMS ((unsigned int, unsigned int,
783 unsigned int, unsigned int));
784 static void dot_align (int);
785 static void dot_radix PARAMS ((int));
786 static void dot_special_section PARAMS ((int));
787 static void dot_proc PARAMS ((int));
788 static void dot_fframe PARAMS ((int));
789 static void dot_vframe PARAMS ((int));
790 static void dot_vframesp PARAMS ((int));
791 static void dot_save PARAMS ((int));
792 static void dot_restore PARAMS ((int));
793 static void dot_restorereg PARAMS ((int));
794 static void dot_handlerdata PARAMS ((int));
795 static void dot_unwentry PARAMS ((int));
796 static void dot_altrp PARAMS ((int));
797 static void dot_savemem PARAMS ((int));
798 static void dot_saveg PARAMS ((int));
799 static void dot_savef PARAMS ((int));
800 static void dot_saveb PARAMS ((int));
801 static void dot_savegf PARAMS ((int));
802 static void dot_spill PARAMS ((int));
803 static void dot_spillreg PARAMS ((int));
804 static void dot_spillmem PARAMS ((int));
805 static void dot_label_state PARAMS ((int));
806 static void dot_copy_state PARAMS ((int));
807 static void dot_unwabi PARAMS ((int));
808 static void dot_personality PARAMS ((int));
809 static void dot_body PARAMS ((int));
810 static void dot_prologue PARAMS ((int));
811 static void dot_endp PARAMS ((int));
812 static void dot_template PARAMS ((int));
813 static void dot_regstk PARAMS ((int));
814 static void dot_rot PARAMS ((int));
815 static void dot_byteorder PARAMS ((int));
816 static void dot_psr PARAMS ((int));
817 static void dot_alias PARAMS ((int));
818 static void dot_ln PARAMS ((int));
819 static void cross_section PARAMS ((int ref, void (*cons) PARAMS((int)), int ua));
820 static void dot_xdata PARAMS ((int));
821 static void stmt_float_cons PARAMS ((int));
822 static void stmt_cons_ua PARAMS ((int));
823 static void dot_xfloat_cons PARAMS ((int));
824 static void dot_xstringer PARAMS ((int));
825 static void dot_xdata_ua PARAMS ((int));
826 static void dot_xfloat_cons_ua PARAMS ((int));
827 static void print_prmask PARAMS ((valueT mask));
828 static void dot_pred_rel PARAMS ((int));
829 static void dot_reg_val PARAMS ((int));
830 static void dot_serialize PARAMS ((int));
831 static void dot_dv_mode PARAMS ((int));
832 static void dot_entry PARAMS ((int));
833 static void dot_mem_offset PARAMS ((int));
834 static void add_unwind_entry PARAMS((unw_rec_list *, int));
835 static symbolS *declare_register PARAMS ((const char *name, unsigned int regnum));
836 static void declare_register_set PARAMS ((const char *, unsigned int, unsigned int));
837 static unsigned int operand_width PARAMS ((enum ia64_opnd));
838 static enum operand_match_result operand_match PARAMS ((const struct ia64_opcode *idesc,
839 int index,
840 expressionS *e));
841 static int parse_operand PARAMS ((expressionS *, int));
842 static struct ia64_opcode * parse_operands PARAMS ((struct ia64_opcode *));
843 static void build_insn PARAMS ((struct slot *, bfd_vma *));
844 static void emit_one_bundle PARAMS ((void));
845 static void fix_insn PARAMS ((fixS *, const struct ia64_operand *, valueT));
846 static bfd_reloc_code_real_type ia64_gen_real_reloc_type PARAMS ((struct symbol *sym,
847 bfd_reloc_code_real_type r_type));
848 static void insn_group_break PARAMS ((int, int, int));
849 static void mark_resource PARAMS ((struct ia64_opcode *, const struct ia64_dependency *,
850 struct rsrc *, int depind, int path));
851 static void add_qp_mutex PARAMS((valueT mask));
852 static void add_qp_imply PARAMS((int p1, int p2));
853 static void clear_qp_branch_flag PARAMS((valueT mask));
854 static void clear_qp_mutex PARAMS((valueT mask));
855 static void clear_qp_implies PARAMS((valueT p1_mask, valueT p2_mask));
856 static int has_suffix_p PARAMS((const char *, const char *));
857 static void clear_register_values PARAMS ((void));
858 static void print_dependency PARAMS ((const char *action, int depind));
859 static void instruction_serialization PARAMS ((void));
860 static void data_serialization PARAMS ((void));
861 static void remove_marked_resource PARAMS ((struct rsrc *));
862 static int is_conditional_branch PARAMS ((struct ia64_opcode *));
863 static int is_taken_branch PARAMS ((struct ia64_opcode *));
864 static int is_interruption_or_rfi PARAMS ((struct ia64_opcode *));
865 static int depends_on PARAMS ((int, struct ia64_opcode *));
866 static int specify_resource PARAMS ((const struct ia64_dependency *,
867 struct ia64_opcode *, int, struct rsrc [], int, int));
868 static int check_dv PARAMS((struct ia64_opcode *idesc));
869 static void check_dependencies PARAMS((struct ia64_opcode *));
870 static void mark_resources PARAMS((struct ia64_opcode *));
871 static void update_dependencies PARAMS((struct ia64_opcode *));
872 static void note_register_values PARAMS((struct ia64_opcode *));
873 static int qp_mutex PARAMS ((int, int, int));
874 static int resources_match PARAMS ((struct rsrc *, struct ia64_opcode *, int, int, int));
875 static void output_vbyte_mem PARAMS ((int, char *, char *));
876 static void count_output PARAMS ((int, char *, char *));
877 static void output_R1_format PARAMS ((vbyte_func, unw_record_type, int));
878 static void output_R2_format PARAMS ((vbyte_func, int, int, unsigned long));
879 static void output_R3_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
880 static void output_P1_format PARAMS ((vbyte_func, int));
881 static void output_P2_format PARAMS ((vbyte_func, int, int));
882 static void output_P3_format PARAMS ((vbyte_func, unw_record_type, int));
883 static void output_P4_format PARAMS ((vbyte_func, unsigned char *, unsigned long));
884 static void output_P5_format PARAMS ((vbyte_func, int, unsigned long));
885 static void output_P6_format PARAMS ((vbyte_func, unw_record_type, int));
886 static void output_P7_format PARAMS ((vbyte_func, unw_record_type, unsigned long, unsigned long));
887 static void output_P8_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
888 static void output_P9_format PARAMS ((vbyte_func, int, int));
889 static void output_P10_format PARAMS ((vbyte_func, int, int));
890 static void output_B1_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
891 static void output_B2_format PARAMS ((vbyte_func, unsigned long, unsigned long));
892 static void output_B3_format PARAMS ((vbyte_func, unsigned long, unsigned long));
893 static void output_B4_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
894 static char format_ab_reg PARAMS ((int, int));
895 static void output_X1_format PARAMS ((vbyte_func, unw_record_type, int, int, unsigned long,
896 unsigned long));
897 static void output_X2_format PARAMS ((vbyte_func, int, int, int, int, int, unsigned long));
898 static void output_X3_format PARAMS ((vbyte_func, unw_record_type, int, int, int, unsigned long,
899 unsigned long));
900 static void output_X4_format PARAMS ((vbyte_func, int, int, int, int, int, int, unsigned long));
901 static unw_rec_list *output_endp PARAMS ((void));
902 static unw_rec_list *output_prologue PARAMS ((void));
903 static unw_rec_list *output_prologue_gr PARAMS ((unsigned int, unsigned int));
904 static unw_rec_list *output_body PARAMS ((void));
905 static unw_rec_list *output_mem_stack_f PARAMS ((unsigned int));
906 static unw_rec_list *output_mem_stack_v PARAMS ((void));
907 static unw_rec_list *output_psp_gr PARAMS ((unsigned int));
908 static unw_rec_list *output_psp_sprel PARAMS ((unsigned int));
909 static unw_rec_list *output_rp_when PARAMS ((void));
910 static unw_rec_list *output_rp_gr PARAMS ((unsigned int));
911 static unw_rec_list *output_rp_br PARAMS ((unsigned int));
912 static unw_rec_list *output_rp_psprel PARAMS ((unsigned int));
913 static unw_rec_list *output_rp_sprel PARAMS ((unsigned int));
914 static unw_rec_list *output_pfs_when PARAMS ((void));
915 static unw_rec_list *output_pfs_gr PARAMS ((unsigned int));
916 static unw_rec_list *output_pfs_psprel PARAMS ((unsigned int));
917 static unw_rec_list *output_pfs_sprel PARAMS ((unsigned int));
918 static unw_rec_list *output_preds_when PARAMS ((void));
919 static unw_rec_list *output_preds_gr PARAMS ((unsigned int));
920 static unw_rec_list *output_preds_psprel PARAMS ((unsigned int));
921 static unw_rec_list *output_preds_sprel PARAMS ((unsigned int));
922 static unw_rec_list *output_fr_mem PARAMS ((unsigned int));
923 static unw_rec_list *output_frgr_mem PARAMS ((unsigned int, unsigned int));
924 static unw_rec_list *output_gr_gr PARAMS ((unsigned int, unsigned int));
925 static unw_rec_list *output_gr_mem PARAMS ((unsigned int));
926 static unw_rec_list *output_br_mem PARAMS ((unsigned int));
927 static unw_rec_list *output_br_gr PARAMS ((unsigned int, unsigned int));
928 static unw_rec_list *output_spill_base PARAMS ((unsigned int));
929 static unw_rec_list *output_unat_when PARAMS ((void));
930 static unw_rec_list *output_unat_gr PARAMS ((unsigned int));
931 static unw_rec_list *output_unat_psprel PARAMS ((unsigned int));
932 static unw_rec_list *output_unat_sprel PARAMS ((unsigned int));
933 static unw_rec_list *output_lc_when PARAMS ((void));
934 static unw_rec_list *output_lc_gr PARAMS ((unsigned int));
935 static unw_rec_list *output_lc_psprel PARAMS ((unsigned int));
936 static unw_rec_list *output_lc_sprel PARAMS ((unsigned int));
937 static unw_rec_list *output_fpsr_when PARAMS ((void));
938 static unw_rec_list *output_fpsr_gr PARAMS ((unsigned int));
939 static unw_rec_list *output_fpsr_psprel PARAMS ((unsigned int));
940 static unw_rec_list *output_fpsr_sprel PARAMS ((unsigned int));
941 static unw_rec_list *output_priunat_when_gr PARAMS ((void));
942 static unw_rec_list *output_priunat_when_mem PARAMS ((void));
943 static unw_rec_list *output_priunat_gr PARAMS ((unsigned int));
944 static unw_rec_list *output_priunat_psprel PARAMS ((unsigned int));
945 static unw_rec_list *output_priunat_sprel PARAMS ((unsigned int));
946 static unw_rec_list *output_bsp_when PARAMS ((void));
947 static unw_rec_list *output_bsp_gr PARAMS ((unsigned int));
948 static unw_rec_list *output_bsp_psprel PARAMS ((unsigned int));
949 static unw_rec_list *output_bsp_sprel PARAMS ((unsigned int));
950 static unw_rec_list *output_bspstore_when PARAMS ((void));
951 static unw_rec_list *output_bspstore_gr PARAMS ((unsigned int));
952 static unw_rec_list *output_bspstore_psprel PARAMS ((unsigned int));
953 static unw_rec_list *output_bspstore_sprel PARAMS ((unsigned int));
954 static unw_rec_list *output_rnat_when PARAMS ((void));
955 static unw_rec_list *output_rnat_gr PARAMS ((unsigned int));
956 static unw_rec_list *output_rnat_psprel PARAMS ((unsigned int));
957 static unw_rec_list *output_rnat_sprel PARAMS ((unsigned int));
958 static unw_rec_list *output_unwabi PARAMS ((unsigned long, unsigned long));
959 static unw_rec_list *output_epilogue PARAMS ((unsigned long));
960 static unw_rec_list *output_label_state PARAMS ((unsigned long));
961 static unw_rec_list *output_copy_state PARAMS ((unsigned long));
962 static unw_rec_list *output_spill_psprel PARAMS ((unsigned int, unsigned int, unsigned int,
963 unsigned int));
964 static unw_rec_list *output_spill_sprel PARAMS ((unsigned int, unsigned int, unsigned int,
965 unsigned int));
966 static unw_rec_list *output_spill_reg PARAMS ((unsigned int, unsigned int, unsigned int,
967 unsigned int, unsigned int));
968 static void process_one_record PARAMS ((unw_rec_list *, vbyte_func));
969 static void process_unw_records PARAMS ((unw_rec_list *, vbyte_func));
970 static int calc_record_size PARAMS ((unw_rec_list *));
971 static void set_imask PARAMS ((unw_rec_list *, unsigned long, unsigned long, unsigned int));
972 static unsigned long slot_index PARAMS ((unsigned long, fragS *,
973 unsigned long, fragS *,
974 int));
975 static unw_rec_list *optimize_unw_records PARAMS ((unw_rec_list *));
976 static void fixup_unw_records PARAMS ((unw_rec_list *, int));
977 static int parse_predicate_and_operand PARAMS ((expressionS *, unsigned *, const char *));
978 static void convert_expr_to_ab_reg PARAMS ((const expressionS *, unsigned int *, unsigned int *, const char *, int));
979 static void convert_expr_to_xy_reg PARAMS ((const expressionS *, unsigned int *, unsigned int *, const char *, int));
980 static unsigned int get_saved_prologue_count PARAMS ((unsigned long));
981 static void save_prologue_count PARAMS ((unsigned long, unsigned int));
982 static void free_saved_prologue_counts PARAMS ((void));
983
984 /* Determine if application register REGNUM resides only in the integer
985 unit (as opposed to the memory unit). */
986 static int
987 ar_is_only_in_integer_unit (int reg)
988 {
989 reg -= REG_AR;
990 return reg >= 64 && reg <= 111;
991 }
992
993 /* Determine if application register REGNUM resides only in the memory
994 unit (as opposed to the integer unit). */
995 static int
996 ar_is_only_in_memory_unit (int reg)
997 {
998 reg -= REG_AR;
999 return reg >= 0 && reg <= 47;
1000 }
1001
1002 /* Switch to section NAME and create section if necessary. It's
1003 rather ugly that we have to manipulate input_line_pointer but I
1004 don't see any other way to accomplish the same thing without
1005 changing obj-elf.c (which may be the Right Thing, in the end). */
1006 static void
1007 set_section (name)
1008 char *name;
1009 {
1010 char *saved_input_line_pointer;
1011
1012 saved_input_line_pointer = input_line_pointer;
1013 input_line_pointer = name;
1014 obj_elf_section (0);
1015 input_line_pointer = saved_input_line_pointer;
1016 }
1017
1018 /* Map 's' to SHF_IA_64_SHORT. */
1019
1020 int
1021 ia64_elf_section_letter (letter, ptr_msg)
1022 int letter;
1023 char **ptr_msg;
1024 {
1025 if (letter == 's')
1026 return SHF_IA_64_SHORT;
1027 else if (letter == 'o')
1028 return SHF_LINK_ORDER;
1029
1030 *ptr_msg = _("Bad .section directive: want a,o,s,w,x,M,S,G,T in string");
1031 return -1;
1032 }
1033
1034 /* Map SHF_IA_64_SHORT to SEC_SMALL_DATA. */
1035
1036 flagword
1037 ia64_elf_section_flags (flags, attr, type)
1038 flagword flags;
1039 int attr, type ATTRIBUTE_UNUSED;
1040 {
1041 if (attr & SHF_IA_64_SHORT)
1042 flags |= SEC_SMALL_DATA;
1043 return flags;
1044 }
1045
1046 int
1047 ia64_elf_section_type (str, len)
1048 const char *str;
1049 size_t len;
1050 {
1051 #define STREQ(s) ((len == sizeof (s) - 1) && (strncmp (str, s, sizeof (s) - 1) == 0))
1052
1053 if (STREQ (ELF_STRING_ia64_unwind_info))
1054 return SHT_PROGBITS;
1055
1056 if (STREQ (ELF_STRING_ia64_unwind_info_once))
1057 return SHT_PROGBITS;
1058
1059 if (STREQ (ELF_STRING_ia64_unwind))
1060 return SHT_IA_64_UNWIND;
1061
1062 if (STREQ (ELF_STRING_ia64_unwind_once))
1063 return SHT_IA_64_UNWIND;
1064
1065 if (STREQ ("unwind"))
1066 return SHT_IA_64_UNWIND;
1067
1068 return -1;
1069 #undef STREQ
1070 }
1071
1072 static unsigned int
1073 set_regstack (ins, locs, outs, rots)
1074 unsigned int ins, locs, outs, rots;
1075 {
1076 /* Size of frame. */
1077 unsigned int sof;
1078
1079 sof = ins + locs + outs;
1080 if (sof > 96)
1081 {
1082 as_bad ("Size of frame exceeds maximum of 96 registers");
1083 return 0;
1084 }
1085 if (rots > sof)
1086 {
1087 as_warn ("Size of rotating registers exceeds frame size");
1088 return 0;
1089 }
1090 md.in.base = REG_GR + 32;
1091 md.loc.base = md.in.base + ins;
1092 md.out.base = md.loc.base + locs;
1093
1094 md.in.num_regs = ins;
1095 md.loc.num_regs = locs;
1096 md.out.num_regs = outs;
1097 md.rot.num_regs = rots;
1098 return sof;
1099 }
1100
1101 void
1102 ia64_flush_insns ()
1103 {
1104 struct label_fix *lfix;
1105 segT saved_seg;
1106 subsegT saved_subseg;
1107 unw_rec_list *ptr;
1108 bfd_boolean mark;
1109
1110 if (!md.last_text_seg)
1111 return;
1112
1113 saved_seg = now_seg;
1114 saved_subseg = now_subseg;
1115
1116 subseg_set (md.last_text_seg, 0);
1117
1118 while (md.num_slots_in_use > 0)
1119 emit_one_bundle (); /* force out queued instructions */
1120
1121 /* In case there are labels following the last instruction, resolve
1122 those now. */
1123 mark = FALSE;
1124 for (lfix = CURR_SLOT.label_fixups; lfix; lfix = lfix->next)
1125 {
1126 symbol_set_value_now (lfix->sym);
1127 mark |= lfix->dw2_mark_labels;
1128 }
1129 if (mark)
1130 {
1131 dwarf2_where (&CURR_SLOT.debug_line);
1132 CURR_SLOT.debug_line.flags |= DWARF2_FLAG_BASIC_BLOCK;
1133 dwarf2_gen_line_info (frag_now_fix (), &CURR_SLOT.debug_line);
1134 }
1135 CURR_SLOT.label_fixups = 0;
1136
1137 for (lfix = CURR_SLOT.tag_fixups; lfix; lfix = lfix->next)
1138 symbol_set_value_now (lfix->sym);
1139 CURR_SLOT.tag_fixups = 0;
1140
1141 /* In case there are unwind directives following the last instruction,
1142 resolve those now. We only handle prologue, body, and endp directives
1143 here. Give an error for others. */
1144 for (ptr = unwind.current_entry; ptr; ptr = ptr->next)
1145 {
1146 switch (ptr->r.type)
1147 {
1148 case prologue:
1149 case prologue_gr:
1150 case body:
1151 case endp:
1152 ptr->slot_number = (unsigned long) frag_more (0);
1153 ptr->slot_frag = frag_now;
1154 break;
1155
1156 /* Allow any record which doesn't have a "t" field (i.e.,
1157 doesn't relate to a particular instruction). */
1158 case unwabi:
1159 case br_gr:
1160 case copy_state:
1161 case fr_mem:
1162 case frgr_mem:
1163 case gr_gr:
1164 case gr_mem:
1165 case label_state:
1166 case rp_br:
1167 case spill_base:
1168 case spill_mask:
1169 /* nothing */
1170 break;
1171
1172 default:
1173 as_bad (_("Unwind directive not followed by an instruction."));
1174 break;
1175 }
1176 }
1177 unwind.current_entry = NULL;
1178
1179 subseg_set (saved_seg, saved_subseg);
1180
1181 if (md.qp.X_op == O_register)
1182 as_bad ("qualifying predicate not followed by instruction");
1183 }
1184
1185 static void
1186 ia64_do_align (int nbytes)
1187 {
1188 char *saved_input_line_pointer = input_line_pointer;
1189
1190 input_line_pointer = "";
1191 s_align_bytes (nbytes);
1192 input_line_pointer = saved_input_line_pointer;
1193 }
1194
1195 void
1196 ia64_cons_align (nbytes)
1197 int nbytes;
1198 {
1199 if (md.auto_align)
1200 {
1201 char *saved_input_line_pointer = input_line_pointer;
1202 input_line_pointer = "";
1203 s_align_bytes (nbytes);
1204 input_line_pointer = saved_input_line_pointer;
1205 }
1206 }
1207
1208 /* Output COUNT bytes to a memory location. */
1209 static char *vbyte_mem_ptr = NULL;
1210
1211 void
1212 output_vbyte_mem (count, ptr, comment)
1213 int count;
1214 char *ptr;
1215 char *comment ATTRIBUTE_UNUSED;
1216 {
1217 int x;
1218 if (vbyte_mem_ptr == NULL)
1219 abort ();
1220
1221 if (count == 0)
1222 return;
1223 for (x = 0; x < count; x++)
1224 *(vbyte_mem_ptr++) = ptr[x];
1225 }
1226
1227 /* Count the number of bytes required for records. */
1228 static int vbyte_count = 0;
1229 void
1230 count_output (count, ptr, comment)
1231 int count;
1232 char *ptr ATTRIBUTE_UNUSED;
1233 char *comment ATTRIBUTE_UNUSED;
1234 {
1235 vbyte_count += count;
1236 }
1237
1238 static void
1239 output_R1_format (f, rtype, rlen)
1240 vbyte_func f;
1241 unw_record_type rtype;
1242 int rlen;
1243 {
1244 int r = 0;
1245 char byte;
1246 if (rlen > 0x1f)
1247 {
1248 output_R3_format (f, rtype, rlen);
1249 return;
1250 }
1251
1252 if (rtype == body)
1253 r = 1;
1254 else if (rtype != prologue)
1255 as_bad ("record type is not valid");
1256
1257 byte = UNW_R1 | (r << 5) | (rlen & 0x1f);
1258 (*f) (1, &byte, NULL);
1259 }
1260
1261 static void
1262 output_R2_format (f, mask, grsave, rlen)
1263 vbyte_func f;
1264 int mask, grsave;
1265 unsigned long rlen;
1266 {
1267 char bytes[20];
1268 int count = 2;
1269 mask = (mask & 0x0f);
1270 grsave = (grsave & 0x7f);
1271
1272 bytes[0] = (UNW_R2 | (mask >> 1));
1273 bytes[1] = (((mask & 0x01) << 7) | grsave);
1274 count += output_leb128 (bytes + 2, rlen, 0);
1275 (*f) (count, bytes, NULL);
1276 }
1277
1278 static void
1279 output_R3_format (f, rtype, rlen)
1280 vbyte_func f;
1281 unw_record_type rtype;
1282 unsigned long rlen;
1283 {
1284 int r = 0, count;
1285 char bytes[20];
1286 if (rlen <= 0x1f)
1287 {
1288 output_R1_format (f, rtype, rlen);
1289 return;
1290 }
1291
1292 if (rtype == body)
1293 r = 1;
1294 else if (rtype != prologue)
1295 as_bad ("record type is not valid");
1296 bytes[0] = (UNW_R3 | r);
1297 count = output_leb128 (bytes + 1, rlen, 0);
1298 (*f) (count + 1, bytes, NULL);
1299 }
1300
1301 static void
1302 output_P1_format (f, brmask)
1303 vbyte_func f;
1304 int brmask;
1305 {
1306 char byte;
1307 byte = UNW_P1 | (brmask & 0x1f);
1308 (*f) (1, &byte, NULL);
1309 }
1310
1311 static void
1312 output_P2_format (f, brmask, gr)
1313 vbyte_func f;
1314 int brmask;
1315 int gr;
1316 {
1317 char bytes[2];
1318 brmask = (brmask & 0x1f);
1319 bytes[0] = UNW_P2 | (brmask >> 1);
1320 bytes[1] = (((brmask & 1) << 7) | gr);
1321 (*f) (2, bytes, NULL);
1322 }
1323
1324 static void
1325 output_P3_format (f, rtype, reg)
1326 vbyte_func f;
1327 unw_record_type rtype;
1328 int reg;
1329 {
1330 char bytes[2];
1331 int r = 0;
1332 reg = (reg & 0x7f);
1333 switch (rtype)
1334 {
1335 case psp_gr:
1336 r = 0;
1337 break;
1338 case rp_gr:
1339 r = 1;
1340 break;
1341 case pfs_gr:
1342 r = 2;
1343 break;
1344 case preds_gr:
1345 r = 3;
1346 break;
1347 case unat_gr:
1348 r = 4;
1349 break;
1350 case lc_gr:
1351 r = 5;
1352 break;
1353 case rp_br:
1354 r = 6;
1355 break;
1356 case rnat_gr:
1357 r = 7;
1358 break;
1359 case bsp_gr:
1360 r = 8;
1361 break;
1362 case bspstore_gr:
1363 r = 9;
1364 break;
1365 case fpsr_gr:
1366 r = 10;
1367 break;
1368 case priunat_gr:
1369 r = 11;
1370 break;
1371 default:
1372 as_bad ("Invalid record type for P3 format.");
1373 }
1374 bytes[0] = (UNW_P3 | (r >> 1));
1375 bytes[1] = (((r & 1) << 7) | reg);
1376 (*f) (2, bytes, NULL);
1377 }
1378
1379 static void
1380 output_P4_format (f, imask, imask_size)
1381 vbyte_func f;
1382 unsigned char *imask;
1383 unsigned long imask_size;
1384 {
1385 imask[0] = UNW_P4;
1386 (*f) (imask_size, (char *) imask, NULL);
1387 }
1388
1389 static void
1390 output_P5_format (f, grmask, frmask)
1391 vbyte_func f;
1392 int grmask;
1393 unsigned long frmask;
1394 {
1395 char bytes[4];
1396 grmask = (grmask & 0x0f);
1397
1398 bytes[0] = UNW_P5;
1399 bytes[1] = ((grmask << 4) | ((frmask & 0x000f0000) >> 16));
1400 bytes[2] = ((frmask & 0x0000ff00) >> 8);
1401 bytes[3] = (frmask & 0x000000ff);
1402 (*f) (4, bytes, NULL);
1403 }
1404
1405 static void
1406 output_P6_format (f, rtype, rmask)
1407 vbyte_func f;
1408 unw_record_type rtype;
1409 int rmask;
1410 {
1411 char byte;
1412 int r = 0;
1413
1414 if (rtype == gr_mem)
1415 r = 1;
1416 else if (rtype != fr_mem)
1417 as_bad ("Invalid record type for format P6");
1418 byte = (UNW_P6 | (r << 4) | (rmask & 0x0f));
1419 (*f) (1, &byte, NULL);
1420 }
1421
1422 static void
1423 output_P7_format (f, rtype, w1, w2)
1424 vbyte_func f;
1425 unw_record_type rtype;
1426 unsigned long w1;
1427 unsigned long w2;
1428 {
1429 char bytes[20];
1430 int count = 1;
1431 int r = 0;
1432 count += output_leb128 (bytes + 1, w1, 0);
1433 switch (rtype)
1434 {
1435 case mem_stack_f:
1436 r = 0;
1437 count += output_leb128 (bytes + count, w2 >> 4, 0);
1438 break;
1439 case mem_stack_v:
1440 r = 1;
1441 break;
1442 case spill_base:
1443 r = 2;
1444 break;
1445 case psp_sprel:
1446 r = 3;
1447 break;
1448 case rp_when:
1449 r = 4;
1450 break;
1451 case rp_psprel:
1452 r = 5;
1453 break;
1454 case pfs_when:
1455 r = 6;
1456 break;
1457 case pfs_psprel:
1458 r = 7;
1459 break;
1460 case preds_when:
1461 r = 8;
1462 break;
1463 case preds_psprel:
1464 r = 9;
1465 break;
1466 case lc_when:
1467 r = 10;
1468 break;
1469 case lc_psprel:
1470 r = 11;
1471 break;
1472 case unat_when:
1473 r = 12;
1474 break;
1475 case unat_psprel:
1476 r = 13;
1477 break;
1478 case fpsr_when:
1479 r = 14;
1480 break;
1481 case fpsr_psprel:
1482 r = 15;
1483 break;
1484 default:
1485 break;
1486 }
1487 bytes[0] = (UNW_P7 | r);
1488 (*f) (count, bytes, NULL);
1489 }
1490
1491 static void
1492 output_P8_format (f, rtype, t)
1493 vbyte_func f;
1494 unw_record_type rtype;
1495 unsigned long t;
1496 {
1497 char bytes[20];
1498 int r = 0;
1499 int count = 2;
1500 bytes[0] = UNW_P8;
1501 switch (rtype)
1502 {
1503 case rp_sprel:
1504 r = 1;
1505 break;
1506 case pfs_sprel:
1507 r = 2;
1508 break;
1509 case preds_sprel:
1510 r = 3;
1511 break;
1512 case lc_sprel:
1513 r = 4;
1514 break;
1515 case unat_sprel:
1516 r = 5;
1517 break;
1518 case fpsr_sprel:
1519 r = 6;
1520 break;
1521 case bsp_when:
1522 r = 7;
1523 break;
1524 case bsp_psprel:
1525 r = 8;
1526 break;
1527 case bsp_sprel:
1528 r = 9;
1529 break;
1530 case bspstore_when:
1531 r = 10;
1532 break;
1533 case bspstore_psprel:
1534 r = 11;
1535 break;
1536 case bspstore_sprel:
1537 r = 12;
1538 break;
1539 case rnat_when:
1540 r = 13;
1541 break;
1542 case rnat_psprel:
1543 r = 14;
1544 break;
1545 case rnat_sprel:
1546 r = 15;
1547 break;
1548 case priunat_when_gr:
1549 r = 16;
1550 break;
1551 case priunat_psprel:
1552 r = 17;
1553 break;
1554 case priunat_sprel:
1555 r = 18;
1556 break;
1557 case priunat_when_mem:
1558 r = 19;
1559 break;
1560 default:
1561 break;
1562 }
1563 bytes[1] = r;
1564 count += output_leb128 (bytes + 2, t, 0);
1565 (*f) (count, bytes, NULL);
1566 }
1567
1568 static void
1569 output_P9_format (f, grmask, gr)
1570 vbyte_func f;
1571 int grmask;
1572 int gr;
1573 {
1574 char bytes[3];
1575 bytes[0] = UNW_P9;
1576 bytes[1] = (grmask & 0x0f);
1577 bytes[2] = (gr & 0x7f);
1578 (*f) (3, bytes, NULL);
1579 }
1580
1581 static void
1582 output_P10_format (f, abi, context)
1583 vbyte_func f;
1584 int abi;
1585 int context;
1586 {
1587 char bytes[3];
1588 bytes[0] = UNW_P10;
1589 bytes[1] = (abi & 0xff);
1590 bytes[2] = (context & 0xff);
1591 (*f) (3, bytes, NULL);
1592 }
1593
1594 static void
1595 output_B1_format (f, rtype, label)
1596 vbyte_func f;
1597 unw_record_type rtype;
1598 unsigned long label;
1599 {
1600 char byte;
1601 int r = 0;
1602 if (label > 0x1f)
1603 {
1604 output_B4_format (f, rtype, label);
1605 return;
1606 }
1607 if (rtype == copy_state)
1608 r = 1;
1609 else if (rtype != label_state)
1610 as_bad ("Invalid record type for format B1");
1611
1612 byte = (UNW_B1 | (r << 5) | (label & 0x1f));
1613 (*f) (1, &byte, NULL);
1614 }
1615
1616 static void
1617 output_B2_format (f, ecount, t)
1618 vbyte_func f;
1619 unsigned long ecount;
1620 unsigned long t;
1621 {
1622 char bytes[20];
1623 int count = 1;
1624 if (ecount > 0x1f)
1625 {
1626 output_B3_format (f, ecount, t);
1627 return;
1628 }
1629 bytes[0] = (UNW_B2 | (ecount & 0x1f));
1630 count += output_leb128 (bytes + 1, t, 0);
1631 (*f) (count, bytes, NULL);
1632 }
1633
1634 static void
1635 output_B3_format (f, ecount, t)
1636 vbyte_func f;
1637 unsigned long ecount;
1638 unsigned long t;
1639 {
1640 char bytes[20];
1641 int count = 1;
1642 if (ecount <= 0x1f)
1643 {
1644 output_B2_format (f, ecount, t);
1645 return;
1646 }
1647 bytes[0] = UNW_B3;
1648 count += output_leb128 (bytes + 1, t, 0);
1649 count += output_leb128 (bytes + count, ecount, 0);
1650 (*f) (count, bytes, NULL);
1651 }
1652
1653 static void
1654 output_B4_format (f, rtype, label)
1655 vbyte_func f;
1656 unw_record_type rtype;
1657 unsigned long label;
1658 {
1659 char bytes[20];
1660 int r = 0;
1661 int count = 1;
1662 if (label <= 0x1f)
1663 {
1664 output_B1_format (f, rtype, label);
1665 return;
1666 }
1667
1668 if (rtype == copy_state)
1669 r = 1;
1670 else if (rtype != label_state)
1671 as_bad ("Invalid record type for format B1");
1672
1673 bytes[0] = (UNW_B4 | (r << 3));
1674 count += output_leb128 (bytes + 1, label, 0);
1675 (*f) (count, bytes, NULL);
1676 }
1677
1678 static char
1679 format_ab_reg (ab, reg)
1680 int ab;
1681 int reg;
1682 {
1683 int ret;
1684 ab = (ab & 3);
1685 reg = (reg & 0x1f);
1686 ret = (ab << 5) | reg;
1687 return ret;
1688 }
1689
1690 static void
1691 output_X1_format (f, rtype, ab, reg, t, w1)
1692 vbyte_func f;
1693 unw_record_type rtype;
1694 int ab, reg;
1695 unsigned long t;
1696 unsigned long w1;
1697 {
1698 char bytes[20];
1699 int r = 0;
1700 int count = 2;
1701 bytes[0] = UNW_X1;
1702
1703 if (rtype == spill_sprel)
1704 r = 1;
1705 else if (rtype != spill_psprel)
1706 as_bad ("Invalid record type for format X1");
1707 bytes[1] = ((r << 7) | format_ab_reg (ab, reg));
1708 count += output_leb128 (bytes + 2, t, 0);
1709 count += output_leb128 (bytes + count, w1, 0);
1710 (*f) (count, bytes, NULL);
1711 }
1712
1713 static void
1714 output_X2_format (f, ab, reg, x, y, treg, t)
1715 vbyte_func f;
1716 int ab, reg;
1717 int x, y, treg;
1718 unsigned long t;
1719 {
1720 char bytes[20];
1721 int count = 3;
1722 bytes[0] = UNW_X2;
1723 bytes[1] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1724 bytes[2] = (((y & 1) << 7) | (treg & 0x7f));
1725 count += output_leb128 (bytes + 3, t, 0);
1726 (*f) (count, bytes, NULL);
1727 }
1728
1729 static void
1730 output_X3_format (f, rtype, qp, ab, reg, t, w1)
1731 vbyte_func f;
1732 unw_record_type rtype;
1733 int qp;
1734 int ab, reg;
1735 unsigned long t;
1736 unsigned long w1;
1737 {
1738 char bytes[20];
1739 int r = 0;
1740 int count = 3;
1741 bytes[0] = UNW_X3;
1742
1743 if (rtype == spill_sprel_p)
1744 r = 1;
1745 else if (rtype != spill_psprel_p)
1746 as_bad ("Invalid record type for format X3");
1747 bytes[1] = ((r << 7) | (qp & 0x3f));
1748 bytes[2] = format_ab_reg (ab, reg);
1749 count += output_leb128 (bytes + 3, t, 0);
1750 count += output_leb128 (bytes + count, w1, 0);
1751 (*f) (count, bytes, NULL);
1752 }
1753
1754 static void
1755 output_X4_format (f, qp, ab, reg, x, y, treg, t)
1756 vbyte_func f;
1757 int qp;
1758 int ab, reg;
1759 int x, y, treg;
1760 unsigned long t;
1761 {
1762 char bytes[20];
1763 int count = 4;
1764 bytes[0] = UNW_X4;
1765 bytes[1] = (qp & 0x3f);
1766 bytes[2] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1767 bytes[3] = (((y & 1) << 7) | (treg & 0x7f));
1768 count += output_leb128 (bytes + 4, t, 0);
1769 (*f) (count, bytes, NULL);
1770 }
1771
1772 /* This function checks whether there are any outstanding .save-s and
1773 discards them if so. */
1774
1775 static void
1776 check_pending_save (void)
1777 {
1778 if (unwind.pending_saves)
1779 {
1780 unw_rec_list *cur, *prev;
1781
1782 as_warn ("Previous .save incomplete");
1783 for (cur = unwind.list, prev = NULL; cur; )
1784 if (&cur->r.record.p == unwind.pending_saves)
1785 {
1786 if (prev)
1787 prev->next = cur->next;
1788 else
1789 unwind.list = cur->next;
1790 if (cur == unwind.tail)
1791 unwind.tail = prev;
1792 if (cur == unwind.current_entry)
1793 unwind.current_entry = cur->next;
1794 /* Don't free the first discarded record, it's being used as
1795 terminator for (currently) br_gr and gr_gr processing, and
1796 also prevents leaving a dangling pointer to it in its
1797 predecessor. */
1798 cur->r.record.p.grmask = 0;
1799 cur->r.record.p.brmask = 0;
1800 cur->r.record.p.frmask = 0;
1801 prev = cur->r.record.p.next;
1802 cur->r.record.p.next = NULL;
1803 cur = prev;
1804 break;
1805 }
1806 else
1807 {
1808 prev = cur;
1809 cur = cur->next;
1810 }
1811 while (cur)
1812 {
1813 prev = cur;
1814 cur = cur->r.record.p.next;
1815 free (prev);
1816 }
1817 unwind.pending_saves = NULL;
1818 }
1819 }
1820
1821 /* This function allocates a record list structure, and initializes fields. */
1822
1823 static unw_rec_list *
1824 alloc_record (unw_record_type t)
1825 {
1826 unw_rec_list *ptr;
1827 ptr = xmalloc (sizeof (*ptr));
1828 memset (ptr, 0, sizeof (*ptr));
1829 ptr->slot_number = SLOT_NUM_NOT_SET;
1830 ptr->r.type = t;
1831 return ptr;
1832 }
1833
1834 /* Dummy unwind record used for calculating the length of the last prologue or
1835 body region. */
1836
1837 static unw_rec_list *
1838 output_endp ()
1839 {
1840 unw_rec_list *ptr = alloc_record (endp);
1841 return ptr;
1842 }
1843
1844 static unw_rec_list *
1845 output_prologue ()
1846 {
1847 unw_rec_list *ptr = alloc_record (prologue);
1848 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1849 return ptr;
1850 }
1851
1852 static unw_rec_list *
1853 output_prologue_gr (saved_mask, reg)
1854 unsigned int saved_mask;
1855 unsigned int reg;
1856 {
1857 unw_rec_list *ptr = alloc_record (prologue_gr);
1858 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1859 ptr->r.record.r.grmask = saved_mask;
1860 ptr->r.record.r.grsave = reg;
1861 return ptr;
1862 }
1863
1864 static unw_rec_list *
1865 output_body ()
1866 {
1867 unw_rec_list *ptr = alloc_record (body);
1868 return ptr;
1869 }
1870
1871 static unw_rec_list *
1872 output_mem_stack_f (size)
1873 unsigned int size;
1874 {
1875 unw_rec_list *ptr = alloc_record (mem_stack_f);
1876 ptr->r.record.p.size = size;
1877 return ptr;
1878 }
1879
1880 static unw_rec_list *
1881 output_mem_stack_v ()
1882 {
1883 unw_rec_list *ptr = alloc_record (mem_stack_v);
1884 return ptr;
1885 }
1886
1887 static unw_rec_list *
1888 output_psp_gr (gr)
1889 unsigned int gr;
1890 {
1891 unw_rec_list *ptr = alloc_record (psp_gr);
1892 ptr->r.record.p.r.gr = gr;
1893 return ptr;
1894 }
1895
1896 static unw_rec_list *
1897 output_psp_sprel (offset)
1898 unsigned int offset;
1899 {
1900 unw_rec_list *ptr = alloc_record (psp_sprel);
1901 ptr->r.record.p.off.sp = offset / 4;
1902 return ptr;
1903 }
1904
1905 static unw_rec_list *
1906 output_rp_when ()
1907 {
1908 unw_rec_list *ptr = alloc_record (rp_when);
1909 return ptr;
1910 }
1911
1912 static unw_rec_list *
1913 output_rp_gr (gr)
1914 unsigned int gr;
1915 {
1916 unw_rec_list *ptr = alloc_record (rp_gr);
1917 ptr->r.record.p.r.gr = gr;
1918 return ptr;
1919 }
1920
1921 static unw_rec_list *
1922 output_rp_br (br)
1923 unsigned int br;
1924 {
1925 unw_rec_list *ptr = alloc_record (rp_br);
1926 ptr->r.record.p.r.br = br;
1927 return ptr;
1928 }
1929
1930 static unw_rec_list *
1931 output_rp_psprel (offset)
1932 unsigned int offset;
1933 {
1934 unw_rec_list *ptr = alloc_record (rp_psprel);
1935 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
1936 return ptr;
1937 }
1938
1939 static unw_rec_list *
1940 output_rp_sprel (offset)
1941 unsigned int offset;
1942 {
1943 unw_rec_list *ptr = alloc_record (rp_sprel);
1944 ptr->r.record.p.off.sp = offset / 4;
1945 return ptr;
1946 }
1947
1948 static unw_rec_list *
1949 output_pfs_when ()
1950 {
1951 unw_rec_list *ptr = alloc_record (pfs_when);
1952 return ptr;
1953 }
1954
1955 static unw_rec_list *
1956 output_pfs_gr (gr)
1957 unsigned int gr;
1958 {
1959 unw_rec_list *ptr = alloc_record (pfs_gr);
1960 ptr->r.record.p.r.gr = gr;
1961 return ptr;
1962 }
1963
1964 static unw_rec_list *
1965 output_pfs_psprel (offset)
1966 unsigned int offset;
1967 {
1968 unw_rec_list *ptr = alloc_record (pfs_psprel);
1969 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
1970 return ptr;
1971 }
1972
1973 static unw_rec_list *
1974 output_pfs_sprel (offset)
1975 unsigned int offset;
1976 {
1977 unw_rec_list *ptr = alloc_record (pfs_sprel);
1978 ptr->r.record.p.off.sp = offset / 4;
1979 return ptr;
1980 }
1981
1982 static unw_rec_list *
1983 output_preds_when ()
1984 {
1985 unw_rec_list *ptr = alloc_record (preds_when);
1986 return ptr;
1987 }
1988
1989 static unw_rec_list *
1990 output_preds_gr (gr)
1991 unsigned int gr;
1992 {
1993 unw_rec_list *ptr = alloc_record (preds_gr);
1994 ptr->r.record.p.r.gr = gr;
1995 return ptr;
1996 }
1997
1998 static unw_rec_list *
1999 output_preds_psprel (offset)
2000 unsigned int offset;
2001 {
2002 unw_rec_list *ptr = alloc_record (preds_psprel);
2003 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2004 return ptr;
2005 }
2006
2007 static unw_rec_list *
2008 output_preds_sprel (offset)
2009 unsigned int offset;
2010 {
2011 unw_rec_list *ptr = alloc_record (preds_sprel);
2012 ptr->r.record.p.off.sp = offset / 4;
2013 return ptr;
2014 }
2015
2016 static unw_rec_list *
2017 output_fr_mem (mask)
2018 unsigned int mask;
2019 {
2020 unw_rec_list *ptr = alloc_record (fr_mem);
2021 unw_rec_list *cur = ptr;
2022
2023 ptr->r.record.p.frmask = mask;
2024 unwind.pending_saves = &ptr->r.record.p;
2025 for (;;)
2026 {
2027 unw_rec_list *prev = cur;
2028
2029 /* Clear least significant set bit. */
2030 mask &= ~(mask & (~mask + 1));
2031 if (!mask)
2032 return ptr;
2033 cur = alloc_record (fr_mem);
2034 cur->r.record.p.frmask = mask;
2035 /* Retain only least significant bit. */
2036 prev->r.record.p.frmask ^= mask;
2037 prev->r.record.p.next = cur;
2038 }
2039 }
2040
2041 static unw_rec_list *
2042 output_frgr_mem (gr_mask, fr_mask)
2043 unsigned int gr_mask;
2044 unsigned int fr_mask;
2045 {
2046 unw_rec_list *ptr = alloc_record (frgr_mem);
2047 unw_rec_list *cur = ptr;
2048
2049 unwind.pending_saves = &cur->r.record.p;
2050 cur->r.record.p.frmask = fr_mask;
2051 while (fr_mask)
2052 {
2053 unw_rec_list *prev = cur;
2054
2055 /* Clear least significant set bit. */
2056 fr_mask &= ~(fr_mask & (~fr_mask + 1));
2057 if (!gr_mask && !fr_mask)
2058 return ptr;
2059 cur = alloc_record (frgr_mem);
2060 cur->r.record.p.frmask = fr_mask;
2061 /* Retain only least significant bit. */
2062 prev->r.record.p.frmask ^= fr_mask;
2063 prev->r.record.p.next = cur;
2064 }
2065 cur->r.record.p.grmask = gr_mask;
2066 for (;;)
2067 {
2068 unw_rec_list *prev = cur;
2069
2070 /* Clear least significant set bit. */
2071 gr_mask &= ~(gr_mask & (~gr_mask + 1));
2072 if (!gr_mask)
2073 return ptr;
2074 cur = alloc_record (frgr_mem);
2075 cur->r.record.p.grmask = gr_mask;
2076 /* Retain only least significant bit. */
2077 prev->r.record.p.grmask ^= gr_mask;
2078 prev->r.record.p.next = cur;
2079 }
2080 }
2081
2082 static unw_rec_list *
2083 output_gr_gr (mask, reg)
2084 unsigned int mask;
2085 unsigned int reg;
2086 {
2087 unw_rec_list *ptr = alloc_record (gr_gr);
2088 unw_rec_list *cur = ptr;
2089
2090 ptr->r.record.p.grmask = mask;
2091 ptr->r.record.p.r.gr = reg;
2092 unwind.pending_saves = &ptr->r.record.p;
2093 for (;;)
2094 {
2095 unw_rec_list *prev = cur;
2096
2097 /* Clear least significant set bit. */
2098 mask &= ~(mask & (~mask + 1));
2099 if (!mask)
2100 return ptr;
2101 cur = alloc_record (gr_gr);
2102 cur->r.record.p.grmask = mask;
2103 /* Indicate this record shouldn't be output. */
2104 cur->r.record.p.r.gr = REG_NUM;
2105 /* Retain only least significant bit. */
2106 prev->r.record.p.grmask ^= mask;
2107 prev->r.record.p.next = cur;
2108 }
2109 }
2110
2111 static unw_rec_list *
2112 output_gr_mem (mask)
2113 unsigned int mask;
2114 {
2115 unw_rec_list *ptr = alloc_record (gr_mem);
2116 unw_rec_list *cur = ptr;
2117
2118 ptr->r.record.p.grmask = mask;
2119 unwind.pending_saves = &ptr->r.record.p;
2120 for (;;)
2121 {
2122 unw_rec_list *prev = cur;
2123
2124 /* Clear least significant set bit. */
2125 mask &= ~(mask & (~mask + 1));
2126 if (!mask)
2127 return ptr;
2128 cur = alloc_record (gr_mem);
2129 cur->r.record.p.grmask = mask;
2130 /* Retain only least significant bit. */
2131 prev->r.record.p.grmask ^= mask;
2132 prev->r.record.p.next = cur;
2133 }
2134 }
2135
2136 static unw_rec_list *
2137 output_br_mem (unsigned int mask)
2138 {
2139 unw_rec_list *ptr = alloc_record (br_mem);
2140 unw_rec_list *cur = ptr;
2141
2142 ptr->r.record.p.brmask = mask;
2143 unwind.pending_saves = &ptr->r.record.p;
2144 for (;;)
2145 {
2146 unw_rec_list *prev = cur;
2147
2148 /* Clear least significant set bit. */
2149 mask &= ~(mask & (~mask + 1));
2150 if (!mask)
2151 return ptr;
2152 cur = alloc_record (br_mem);
2153 cur->r.record.p.brmask = mask;
2154 /* Retain only least significant bit. */
2155 prev->r.record.p.brmask ^= mask;
2156 prev->r.record.p.next = cur;
2157 }
2158 }
2159
2160 static unw_rec_list *
2161 output_br_gr (mask, reg)
2162 unsigned int mask;
2163 unsigned int reg;
2164 {
2165 unw_rec_list *ptr = alloc_record (br_gr);
2166 unw_rec_list *cur = ptr;
2167
2168 ptr->r.record.p.brmask = mask;
2169 ptr->r.record.p.r.gr = reg;
2170 unwind.pending_saves = &ptr->r.record.p;
2171 for (;;)
2172 {
2173 unw_rec_list *prev = cur;
2174
2175 /* Clear least significant set bit. */
2176 mask &= ~(mask & (~mask + 1));
2177 if (!mask)
2178 return ptr;
2179 cur = alloc_record (br_gr);
2180 cur->r.record.p.brmask = mask;
2181 /* Indicate this record shouldn't be output. */
2182 cur->r.record.p.r.gr = REG_NUM;
2183 /* Retain only least significant bit. */
2184 prev->r.record.p.brmask ^= mask;
2185 prev->r.record.p.next = cur;
2186 }
2187 }
2188
2189 static unw_rec_list *
2190 output_spill_base (offset)
2191 unsigned int offset;
2192 {
2193 unw_rec_list *ptr = alloc_record (spill_base);
2194 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2195 return ptr;
2196 }
2197
2198 static unw_rec_list *
2199 output_unat_when ()
2200 {
2201 unw_rec_list *ptr = alloc_record (unat_when);
2202 return ptr;
2203 }
2204
2205 static unw_rec_list *
2206 output_unat_gr (gr)
2207 unsigned int gr;
2208 {
2209 unw_rec_list *ptr = alloc_record (unat_gr);
2210 ptr->r.record.p.r.gr = gr;
2211 return ptr;
2212 }
2213
2214 static unw_rec_list *
2215 output_unat_psprel (offset)
2216 unsigned int offset;
2217 {
2218 unw_rec_list *ptr = alloc_record (unat_psprel);
2219 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2220 return ptr;
2221 }
2222
2223 static unw_rec_list *
2224 output_unat_sprel (offset)
2225 unsigned int offset;
2226 {
2227 unw_rec_list *ptr = alloc_record (unat_sprel);
2228 ptr->r.record.p.off.sp = offset / 4;
2229 return ptr;
2230 }
2231
2232 static unw_rec_list *
2233 output_lc_when ()
2234 {
2235 unw_rec_list *ptr = alloc_record (lc_when);
2236 return ptr;
2237 }
2238
2239 static unw_rec_list *
2240 output_lc_gr (gr)
2241 unsigned int gr;
2242 {
2243 unw_rec_list *ptr = alloc_record (lc_gr);
2244 ptr->r.record.p.r.gr = gr;
2245 return ptr;
2246 }
2247
2248 static unw_rec_list *
2249 output_lc_psprel (offset)
2250 unsigned int offset;
2251 {
2252 unw_rec_list *ptr = alloc_record (lc_psprel);
2253 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2254 return ptr;
2255 }
2256
2257 static unw_rec_list *
2258 output_lc_sprel (offset)
2259 unsigned int offset;
2260 {
2261 unw_rec_list *ptr = alloc_record (lc_sprel);
2262 ptr->r.record.p.off.sp = offset / 4;
2263 return ptr;
2264 }
2265
2266 static unw_rec_list *
2267 output_fpsr_when ()
2268 {
2269 unw_rec_list *ptr = alloc_record (fpsr_when);
2270 return ptr;
2271 }
2272
2273 static unw_rec_list *
2274 output_fpsr_gr (gr)
2275 unsigned int gr;
2276 {
2277 unw_rec_list *ptr = alloc_record (fpsr_gr);
2278 ptr->r.record.p.r.gr = gr;
2279 return ptr;
2280 }
2281
2282 static unw_rec_list *
2283 output_fpsr_psprel (offset)
2284 unsigned int offset;
2285 {
2286 unw_rec_list *ptr = alloc_record (fpsr_psprel);
2287 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2288 return ptr;
2289 }
2290
2291 static unw_rec_list *
2292 output_fpsr_sprel (offset)
2293 unsigned int offset;
2294 {
2295 unw_rec_list *ptr = alloc_record (fpsr_sprel);
2296 ptr->r.record.p.off.sp = offset / 4;
2297 return ptr;
2298 }
2299
2300 static unw_rec_list *
2301 output_priunat_when_gr ()
2302 {
2303 unw_rec_list *ptr = alloc_record (priunat_when_gr);
2304 return ptr;
2305 }
2306
2307 static unw_rec_list *
2308 output_priunat_when_mem ()
2309 {
2310 unw_rec_list *ptr = alloc_record (priunat_when_mem);
2311 return ptr;
2312 }
2313
2314 static unw_rec_list *
2315 output_priunat_gr (gr)
2316 unsigned int gr;
2317 {
2318 unw_rec_list *ptr = alloc_record (priunat_gr);
2319 ptr->r.record.p.r.gr = gr;
2320 return ptr;
2321 }
2322
2323 static unw_rec_list *
2324 output_priunat_psprel (offset)
2325 unsigned int offset;
2326 {
2327 unw_rec_list *ptr = alloc_record (priunat_psprel);
2328 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2329 return ptr;
2330 }
2331
2332 static unw_rec_list *
2333 output_priunat_sprel (offset)
2334 unsigned int offset;
2335 {
2336 unw_rec_list *ptr = alloc_record (priunat_sprel);
2337 ptr->r.record.p.off.sp = offset / 4;
2338 return ptr;
2339 }
2340
2341 static unw_rec_list *
2342 output_bsp_when ()
2343 {
2344 unw_rec_list *ptr = alloc_record (bsp_when);
2345 return ptr;
2346 }
2347
2348 static unw_rec_list *
2349 output_bsp_gr (gr)
2350 unsigned int gr;
2351 {
2352 unw_rec_list *ptr = alloc_record (bsp_gr);
2353 ptr->r.record.p.r.gr = gr;
2354 return ptr;
2355 }
2356
2357 static unw_rec_list *
2358 output_bsp_psprel (offset)
2359 unsigned int offset;
2360 {
2361 unw_rec_list *ptr = alloc_record (bsp_psprel);
2362 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2363 return ptr;
2364 }
2365
2366 static unw_rec_list *
2367 output_bsp_sprel (offset)
2368 unsigned int offset;
2369 {
2370 unw_rec_list *ptr = alloc_record (bsp_sprel);
2371 ptr->r.record.p.off.sp = offset / 4;
2372 return ptr;
2373 }
2374
2375 static unw_rec_list *
2376 output_bspstore_when ()
2377 {
2378 unw_rec_list *ptr = alloc_record (bspstore_when);
2379 return ptr;
2380 }
2381
2382 static unw_rec_list *
2383 output_bspstore_gr (gr)
2384 unsigned int gr;
2385 {
2386 unw_rec_list *ptr = alloc_record (bspstore_gr);
2387 ptr->r.record.p.r.gr = gr;
2388 return ptr;
2389 }
2390
2391 static unw_rec_list *
2392 output_bspstore_psprel (offset)
2393 unsigned int offset;
2394 {
2395 unw_rec_list *ptr = alloc_record (bspstore_psprel);
2396 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2397 return ptr;
2398 }
2399
2400 static unw_rec_list *
2401 output_bspstore_sprel (offset)
2402 unsigned int offset;
2403 {
2404 unw_rec_list *ptr = alloc_record (bspstore_sprel);
2405 ptr->r.record.p.off.sp = offset / 4;
2406 return ptr;
2407 }
2408
2409 static unw_rec_list *
2410 output_rnat_when ()
2411 {
2412 unw_rec_list *ptr = alloc_record (rnat_when);
2413 return ptr;
2414 }
2415
2416 static unw_rec_list *
2417 output_rnat_gr (gr)
2418 unsigned int gr;
2419 {
2420 unw_rec_list *ptr = alloc_record (rnat_gr);
2421 ptr->r.record.p.r.gr = gr;
2422 return ptr;
2423 }
2424
2425 static unw_rec_list *
2426 output_rnat_psprel (offset)
2427 unsigned int offset;
2428 {
2429 unw_rec_list *ptr = alloc_record (rnat_psprel);
2430 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2431 return ptr;
2432 }
2433
2434 static unw_rec_list *
2435 output_rnat_sprel (offset)
2436 unsigned int offset;
2437 {
2438 unw_rec_list *ptr = alloc_record (rnat_sprel);
2439 ptr->r.record.p.off.sp = offset / 4;
2440 return ptr;
2441 }
2442
2443 static unw_rec_list *
2444 output_unwabi (abi, context)
2445 unsigned long abi;
2446 unsigned long context;
2447 {
2448 unw_rec_list *ptr = alloc_record (unwabi);
2449 ptr->r.record.p.abi = abi;
2450 ptr->r.record.p.context = context;
2451 return ptr;
2452 }
2453
2454 static unw_rec_list *
2455 output_epilogue (unsigned long ecount)
2456 {
2457 unw_rec_list *ptr = alloc_record (epilogue);
2458 ptr->r.record.b.ecount = ecount;
2459 return ptr;
2460 }
2461
2462 static unw_rec_list *
2463 output_label_state (unsigned long label)
2464 {
2465 unw_rec_list *ptr = alloc_record (label_state);
2466 ptr->r.record.b.label = label;
2467 return ptr;
2468 }
2469
2470 static unw_rec_list *
2471 output_copy_state (unsigned long label)
2472 {
2473 unw_rec_list *ptr = alloc_record (copy_state);
2474 ptr->r.record.b.label = label;
2475 return ptr;
2476 }
2477
2478 static unw_rec_list *
2479 output_spill_psprel (ab, reg, offset, predicate)
2480 unsigned int ab;
2481 unsigned int reg;
2482 unsigned int offset;
2483 unsigned int predicate;
2484 {
2485 unw_rec_list *ptr = alloc_record (predicate ? spill_psprel_p : spill_psprel);
2486 ptr->r.record.x.ab = ab;
2487 ptr->r.record.x.reg = reg;
2488 ptr->r.record.x.where.pspoff = ENCODED_PSP_OFFSET (offset);
2489 ptr->r.record.x.qp = predicate;
2490 return ptr;
2491 }
2492
2493 static unw_rec_list *
2494 output_spill_sprel (ab, reg, offset, predicate)
2495 unsigned int ab;
2496 unsigned int reg;
2497 unsigned int offset;
2498 unsigned int predicate;
2499 {
2500 unw_rec_list *ptr = alloc_record (predicate ? spill_sprel_p : spill_sprel);
2501 ptr->r.record.x.ab = ab;
2502 ptr->r.record.x.reg = reg;
2503 ptr->r.record.x.where.spoff = offset / 4;
2504 ptr->r.record.x.qp = predicate;
2505 return ptr;
2506 }
2507
2508 static unw_rec_list *
2509 output_spill_reg (ab, reg, targ_reg, xy, predicate)
2510 unsigned int ab;
2511 unsigned int reg;
2512 unsigned int targ_reg;
2513 unsigned int xy;
2514 unsigned int predicate;
2515 {
2516 unw_rec_list *ptr = alloc_record (predicate ? spill_reg_p : spill_reg);
2517 ptr->r.record.x.ab = ab;
2518 ptr->r.record.x.reg = reg;
2519 ptr->r.record.x.where.reg = targ_reg;
2520 ptr->r.record.x.xy = xy;
2521 ptr->r.record.x.qp = predicate;
2522 return ptr;
2523 }
2524
2525 /* Given a unw_rec_list process the correct format with the
2526 specified function. */
2527
2528 static void
2529 process_one_record (ptr, f)
2530 unw_rec_list *ptr;
2531 vbyte_func f;
2532 {
2533 unsigned int fr_mask, gr_mask;
2534
2535 switch (ptr->r.type)
2536 {
2537 /* This is a dummy record that takes up no space in the output. */
2538 case endp:
2539 break;
2540
2541 case gr_mem:
2542 case fr_mem:
2543 case br_mem:
2544 case frgr_mem:
2545 /* These are taken care of by prologue/prologue_gr. */
2546 break;
2547
2548 case prologue_gr:
2549 case prologue:
2550 if (ptr->r.type == prologue_gr)
2551 output_R2_format (f, ptr->r.record.r.grmask,
2552 ptr->r.record.r.grsave, ptr->r.record.r.rlen);
2553 else
2554 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2555
2556 /* Output descriptor(s) for union of register spills (if any). */
2557 gr_mask = ptr->r.record.r.mask.gr_mem;
2558 fr_mask = ptr->r.record.r.mask.fr_mem;
2559 if (fr_mask)
2560 {
2561 if ((fr_mask & ~0xfUL) == 0)
2562 output_P6_format (f, fr_mem, fr_mask);
2563 else
2564 {
2565 output_P5_format (f, gr_mask, fr_mask);
2566 gr_mask = 0;
2567 }
2568 }
2569 if (gr_mask)
2570 output_P6_format (f, gr_mem, gr_mask);
2571 if (ptr->r.record.r.mask.br_mem)
2572 output_P1_format (f, ptr->r.record.r.mask.br_mem);
2573
2574 /* output imask descriptor if necessary: */
2575 if (ptr->r.record.r.mask.i)
2576 output_P4_format (f, ptr->r.record.r.mask.i,
2577 ptr->r.record.r.imask_size);
2578 break;
2579
2580 case body:
2581 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2582 break;
2583 case mem_stack_f:
2584 case mem_stack_v:
2585 output_P7_format (f, ptr->r.type, ptr->r.record.p.t,
2586 ptr->r.record.p.size);
2587 break;
2588 case psp_gr:
2589 case rp_gr:
2590 case pfs_gr:
2591 case preds_gr:
2592 case unat_gr:
2593 case lc_gr:
2594 case fpsr_gr:
2595 case priunat_gr:
2596 case bsp_gr:
2597 case bspstore_gr:
2598 case rnat_gr:
2599 output_P3_format (f, ptr->r.type, ptr->r.record.p.r.gr);
2600 break;
2601 case rp_br:
2602 output_P3_format (f, rp_br, ptr->r.record.p.r.br);
2603 break;
2604 case psp_sprel:
2605 output_P7_format (f, psp_sprel, ptr->r.record.p.off.sp, 0);
2606 break;
2607 case rp_when:
2608 case pfs_when:
2609 case preds_when:
2610 case unat_when:
2611 case lc_when:
2612 case fpsr_when:
2613 output_P7_format (f, ptr->r.type, ptr->r.record.p.t, 0);
2614 break;
2615 case rp_psprel:
2616 case pfs_psprel:
2617 case preds_psprel:
2618 case unat_psprel:
2619 case lc_psprel:
2620 case fpsr_psprel:
2621 case spill_base:
2622 output_P7_format (f, ptr->r.type, ptr->r.record.p.off.psp, 0);
2623 break;
2624 case rp_sprel:
2625 case pfs_sprel:
2626 case preds_sprel:
2627 case unat_sprel:
2628 case lc_sprel:
2629 case fpsr_sprel:
2630 case priunat_sprel:
2631 case bsp_sprel:
2632 case bspstore_sprel:
2633 case rnat_sprel:
2634 output_P8_format (f, ptr->r.type, ptr->r.record.p.off.sp);
2635 break;
2636 case gr_gr:
2637 if (ptr->r.record.p.r.gr < REG_NUM)
2638 {
2639 const unw_rec_list *cur = ptr;
2640
2641 gr_mask = cur->r.record.p.grmask;
2642 while ((cur = cur->r.record.p.next) != NULL)
2643 gr_mask |= cur->r.record.p.grmask;
2644 output_P9_format (f, gr_mask, ptr->r.record.p.r.gr);
2645 }
2646 break;
2647 case br_gr:
2648 if (ptr->r.record.p.r.gr < REG_NUM)
2649 {
2650 const unw_rec_list *cur = ptr;
2651
2652 gr_mask = cur->r.record.p.brmask;
2653 while ((cur = cur->r.record.p.next) != NULL)
2654 gr_mask |= cur->r.record.p.brmask;
2655 output_P2_format (f, gr_mask, ptr->r.record.p.r.gr);
2656 }
2657 break;
2658 case spill_mask:
2659 as_bad ("spill_mask record unimplemented.");
2660 break;
2661 case priunat_when_gr:
2662 case priunat_when_mem:
2663 case bsp_when:
2664 case bspstore_when:
2665 case rnat_when:
2666 output_P8_format (f, ptr->r.type, ptr->r.record.p.t);
2667 break;
2668 case priunat_psprel:
2669 case bsp_psprel:
2670 case bspstore_psprel:
2671 case rnat_psprel:
2672 output_P8_format (f, ptr->r.type, ptr->r.record.p.off.psp);
2673 break;
2674 case unwabi:
2675 output_P10_format (f, ptr->r.record.p.abi, ptr->r.record.p.context);
2676 break;
2677 case epilogue:
2678 output_B3_format (f, ptr->r.record.b.ecount, ptr->r.record.b.t);
2679 break;
2680 case label_state:
2681 case copy_state:
2682 output_B4_format (f, ptr->r.type, ptr->r.record.b.label);
2683 break;
2684 case spill_psprel:
2685 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2686 ptr->r.record.x.reg, ptr->r.record.x.t,
2687 ptr->r.record.x.where.pspoff);
2688 break;
2689 case spill_sprel:
2690 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2691 ptr->r.record.x.reg, ptr->r.record.x.t,
2692 ptr->r.record.x.where.spoff);
2693 break;
2694 case spill_reg:
2695 output_X2_format (f, ptr->r.record.x.ab, ptr->r.record.x.reg,
2696 ptr->r.record.x.xy >> 1, ptr->r.record.x.xy,
2697 ptr->r.record.x.where.reg, ptr->r.record.x.t);
2698 break;
2699 case spill_psprel_p:
2700 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2701 ptr->r.record.x.ab, ptr->r.record.x.reg,
2702 ptr->r.record.x.t, ptr->r.record.x.where.pspoff);
2703 break;
2704 case spill_sprel_p:
2705 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2706 ptr->r.record.x.ab, ptr->r.record.x.reg,
2707 ptr->r.record.x.t, ptr->r.record.x.where.spoff);
2708 break;
2709 case spill_reg_p:
2710 output_X4_format (f, ptr->r.record.x.qp, ptr->r.record.x.ab,
2711 ptr->r.record.x.reg, ptr->r.record.x.xy >> 1,
2712 ptr->r.record.x.xy, ptr->r.record.x.where.reg,
2713 ptr->r.record.x.t);
2714 break;
2715 default:
2716 as_bad ("record_type_not_valid");
2717 break;
2718 }
2719 }
2720
2721 /* Given a unw_rec_list list, process all the records with
2722 the specified function. */
2723 static void
2724 process_unw_records (list, f)
2725 unw_rec_list *list;
2726 vbyte_func f;
2727 {
2728 unw_rec_list *ptr;
2729 for (ptr = list; ptr; ptr = ptr->next)
2730 process_one_record (ptr, f);
2731 }
2732
2733 /* Determine the size of a record list in bytes. */
2734 static int
2735 calc_record_size (list)
2736 unw_rec_list *list;
2737 {
2738 vbyte_count = 0;
2739 process_unw_records (list, count_output);
2740 return vbyte_count;
2741 }
2742
2743 /* Return the number of bits set in the input value.
2744 Perhaps this has a better place... */
2745 #if __GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)
2746 # define popcount __builtin_popcount
2747 #else
2748 static int
2749 popcount (unsigned x)
2750 {
2751 static const unsigned char popcnt[16] =
2752 {
2753 0, 1, 1, 2,
2754 1, 2, 2, 3,
2755 1, 2, 2, 3,
2756 2, 3, 3, 4
2757 };
2758
2759 if (x < NELEMS (popcnt))
2760 return popcnt[x];
2761 return popcnt[x % NELEMS (popcnt)] + popcount (x / NELEMS (popcnt));
2762 }
2763 #endif
2764
2765 /* Update IMASK bitmask to reflect the fact that one or more registers
2766 of type TYPE are saved starting at instruction with index T. If N
2767 bits are set in REGMASK, it is assumed that instructions T through
2768 T+N-1 save these registers.
2769
2770 TYPE values:
2771 0: no save
2772 1: instruction saves next fp reg
2773 2: instruction saves next general reg
2774 3: instruction saves next branch reg */
2775 static void
2776 set_imask (region, regmask, t, type)
2777 unw_rec_list *region;
2778 unsigned long regmask;
2779 unsigned long t;
2780 unsigned int type;
2781 {
2782 unsigned char *imask;
2783 unsigned long imask_size;
2784 unsigned int i;
2785 int pos;
2786
2787 imask = region->r.record.r.mask.i;
2788 imask_size = region->r.record.r.imask_size;
2789 if (!imask)
2790 {
2791 imask_size = (region->r.record.r.rlen * 2 + 7) / 8 + 1;
2792 imask = xmalloc (imask_size);
2793 memset (imask, 0, imask_size);
2794
2795 region->r.record.r.imask_size = imask_size;
2796 region->r.record.r.mask.i = imask;
2797 }
2798
2799 i = (t / 4) + 1;
2800 pos = 2 * (3 - t % 4);
2801 while (regmask)
2802 {
2803 if (i >= imask_size)
2804 {
2805 as_bad ("Ignoring attempt to spill beyond end of region");
2806 return;
2807 }
2808
2809 imask[i] |= (type & 0x3) << pos;
2810
2811 regmask &= (regmask - 1);
2812 pos -= 2;
2813 if (pos < 0)
2814 {
2815 pos = 0;
2816 ++i;
2817 }
2818 }
2819 }
2820
2821 /* Return the number of instruction slots from FIRST_ADDR to SLOT_ADDR.
2822 SLOT_FRAG is the frag containing SLOT_ADDR, and FIRST_FRAG is the frag
2823 containing FIRST_ADDR. If BEFORE_RELAX, then we use worst-case estimates
2824 for frag sizes. */
2825
2826 unsigned long
2827 slot_index (slot_addr, slot_frag, first_addr, first_frag, before_relax)
2828 unsigned long slot_addr;
2829 fragS *slot_frag;
2830 unsigned long first_addr;
2831 fragS *first_frag;
2832 int before_relax;
2833 {
2834 unsigned long index = 0;
2835
2836 /* First time we are called, the initial address and frag are invalid. */
2837 if (first_addr == 0)
2838 return 0;
2839
2840 /* If the two addresses are in different frags, then we need to add in
2841 the remaining size of this frag, and then the entire size of intermediate
2842 frags. */
2843 while (slot_frag != first_frag)
2844 {
2845 unsigned long start_addr = (unsigned long) &first_frag->fr_literal;
2846
2847 if (! before_relax)
2848 {
2849 /* We can get the final addresses only during and after
2850 relaxation. */
2851 if (first_frag->fr_next && first_frag->fr_next->fr_address)
2852 index += 3 * ((first_frag->fr_next->fr_address
2853 - first_frag->fr_address
2854 - first_frag->fr_fix) >> 4);
2855 }
2856 else
2857 /* We don't know what the final addresses will be. We try our
2858 best to estimate. */
2859 switch (first_frag->fr_type)
2860 {
2861 default:
2862 break;
2863
2864 case rs_space:
2865 as_fatal ("only constant space allocation is supported");
2866 break;
2867
2868 case rs_align:
2869 case rs_align_code:
2870 case rs_align_test:
2871 /* Take alignment into account. Assume the worst case
2872 before relaxation. */
2873 index += 3 * ((1 << first_frag->fr_offset) >> 4);
2874 break;
2875
2876 case rs_org:
2877 if (first_frag->fr_symbol)
2878 {
2879 as_fatal ("only constant offsets are supported");
2880 break;
2881 }
2882 case rs_fill:
2883 index += 3 * (first_frag->fr_offset >> 4);
2884 break;
2885 }
2886
2887 /* Add in the full size of the frag converted to instruction slots. */
2888 index += 3 * (first_frag->fr_fix >> 4);
2889 /* Subtract away the initial part before first_addr. */
2890 index -= (3 * ((first_addr >> 4) - (start_addr >> 4))
2891 + ((first_addr & 0x3) - (start_addr & 0x3)));
2892
2893 /* Move to the beginning of the next frag. */
2894 first_frag = first_frag->fr_next;
2895 first_addr = (unsigned long) &first_frag->fr_literal;
2896
2897 /* This can happen if there is section switching in the middle of a
2898 function, causing the frag chain for the function to be broken.
2899 It is too difficult to recover safely from this problem, so we just
2900 exit with an error. */
2901 if (first_frag == NULL)
2902 as_fatal ("Section switching in code is not supported.");
2903 }
2904
2905 /* Add in the used part of the last frag. */
2906 index += (3 * ((slot_addr >> 4) - (first_addr >> 4))
2907 + ((slot_addr & 0x3) - (first_addr & 0x3)));
2908 return index;
2909 }
2910
2911 /* Optimize unwind record directives. */
2912
2913 static unw_rec_list *
2914 optimize_unw_records (list)
2915 unw_rec_list *list;
2916 {
2917 if (!list)
2918 return NULL;
2919
2920 /* If the only unwind record is ".prologue" or ".prologue" followed
2921 by ".body", then we can optimize the unwind directives away. */
2922 if (list->r.type == prologue
2923 && (list->next->r.type == endp
2924 || (list->next->r.type == body && list->next->next->r.type == endp)))
2925 return NULL;
2926
2927 return list;
2928 }
2929
2930 /* Given a complete record list, process any records which have
2931 unresolved fields, (ie length counts for a prologue). After
2932 this has been run, all necessary information should be available
2933 within each record to generate an image. */
2934
2935 static void
2936 fixup_unw_records (list, before_relax)
2937 unw_rec_list *list;
2938 int before_relax;
2939 {
2940 unw_rec_list *ptr, *region = 0;
2941 unsigned long first_addr = 0, rlen = 0, t;
2942 fragS *first_frag = 0;
2943
2944 for (ptr = list; ptr; ptr = ptr->next)
2945 {
2946 if (ptr->slot_number == SLOT_NUM_NOT_SET)
2947 as_bad (" Insn slot not set in unwind record.");
2948 t = slot_index (ptr->slot_number, ptr->slot_frag,
2949 first_addr, first_frag, before_relax);
2950 switch (ptr->r.type)
2951 {
2952 case prologue:
2953 case prologue_gr:
2954 case body:
2955 {
2956 unw_rec_list *last;
2957 int size;
2958 unsigned long last_addr = 0;
2959 fragS *last_frag = NULL;
2960
2961 first_addr = ptr->slot_number;
2962 first_frag = ptr->slot_frag;
2963 /* Find either the next body/prologue start, or the end of
2964 the function, and determine the size of the region. */
2965 for (last = ptr->next; last != NULL; last = last->next)
2966 if (last->r.type == prologue || last->r.type == prologue_gr
2967 || last->r.type == body || last->r.type == endp)
2968 {
2969 last_addr = last->slot_number;
2970 last_frag = last->slot_frag;
2971 break;
2972 }
2973 size = slot_index (last_addr, last_frag, first_addr, first_frag,
2974 before_relax);
2975 rlen = ptr->r.record.r.rlen = size;
2976 if (ptr->r.type == body)
2977 /* End of region. */
2978 region = 0;
2979 else
2980 region = ptr;
2981 break;
2982 }
2983 case epilogue:
2984 if (t < rlen)
2985 ptr->r.record.b.t = rlen - 1 - t;
2986 else
2987 /* This happens when a memory-stack-less procedure uses a
2988 ".restore sp" directive at the end of a region to pop
2989 the frame state. */
2990 ptr->r.record.b.t = 0;
2991 break;
2992
2993 case mem_stack_f:
2994 case mem_stack_v:
2995 case rp_when:
2996 case pfs_when:
2997 case preds_when:
2998 case unat_when:
2999 case lc_when:
3000 case fpsr_when:
3001 case priunat_when_gr:
3002 case priunat_when_mem:
3003 case bsp_when:
3004 case bspstore_when:
3005 case rnat_when:
3006 ptr->r.record.p.t = t;
3007 break;
3008
3009 case spill_reg:
3010 case spill_sprel:
3011 case spill_psprel:
3012 case spill_reg_p:
3013 case spill_sprel_p:
3014 case spill_psprel_p:
3015 ptr->r.record.x.t = t;
3016 break;
3017
3018 case frgr_mem:
3019 if (!region)
3020 {
3021 as_bad ("frgr_mem record before region record!");
3022 return;
3023 }
3024 region->r.record.r.mask.fr_mem |= ptr->r.record.p.frmask;
3025 region->r.record.r.mask.gr_mem |= ptr->r.record.p.grmask;
3026 set_imask (region, ptr->r.record.p.frmask, t, 1);
3027 set_imask (region, ptr->r.record.p.grmask, t, 2);
3028 break;
3029 case fr_mem:
3030 if (!region)
3031 {
3032 as_bad ("fr_mem record before region record!");
3033 return;
3034 }
3035 region->r.record.r.mask.fr_mem |= ptr->r.record.p.frmask;
3036 set_imask (region, ptr->r.record.p.frmask, t, 1);
3037 break;
3038 case gr_mem:
3039 if (!region)
3040 {
3041 as_bad ("gr_mem record before region record!");
3042 return;
3043 }
3044 region->r.record.r.mask.gr_mem |= ptr->r.record.p.grmask;
3045 set_imask (region, ptr->r.record.p.grmask, t, 2);
3046 break;
3047 case br_mem:
3048 if (!region)
3049 {
3050 as_bad ("br_mem record before region record!");
3051 return;
3052 }
3053 region->r.record.r.mask.br_mem |= ptr->r.record.p.brmask;
3054 set_imask (region, ptr->r.record.p.brmask, t, 3);
3055 break;
3056
3057 case gr_gr:
3058 if (!region)
3059 {
3060 as_bad ("gr_gr record before region record!");
3061 return;
3062 }
3063 set_imask (region, ptr->r.record.p.grmask, t, 2);
3064 break;
3065 case br_gr:
3066 if (!region)
3067 {
3068 as_bad ("br_gr record before region record!");
3069 return;
3070 }
3071 set_imask (region, ptr->r.record.p.brmask, t, 3);
3072 break;
3073
3074 default:
3075 break;
3076 }
3077 }
3078 }
3079
3080 /* Estimate the size of a frag before relaxing. We only have one type of frag
3081 to handle here, which is the unwind info frag. */
3082
3083 int
3084 ia64_estimate_size_before_relax (fragS *frag,
3085 asection *segtype ATTRIBUTE_UNUSED)
3086 {
3087 unw_rec_list *list;
3088 int len, size, pad;
3089
3090 /* ??? This code is identical to the first part of ia64_convert_frag. */
3091 list = (unw_rec_list *) frag->fr_opcode;
3092 fixup_unw_records (list, 0);
3093
3094 len = calc_record_size (list);
3095 /* pad to pointer-size boundary. */
3096 pad = len % md.pointer_size;
3097 if (pad != 0)
3098 len += md.pointer_size - pad;
3099 /* Add 8 for the header. */
3100 size = len + 8;
3101 /* Add a pointer for the personality offset. */
3102 if (frag->fr_offset)
3103 size += md.pointer_size;
3104
3105 /* fr_var carries the max_chars that we created the fragment with.
3106 We must, of course, have allocated enough memory earlier. */
3107 assert (frag->fr_var >= size);
3108
3109 return frag->fr_fix + size;
3110 }
3111
3112 /* This function converts a rs_machine_dependent variant frag into a
3113 normal fill frag with the unwind image from the the record list. */
3114 void
3115 ia64_convert_frag (fragS *frag)
3116 {
3117 unw_rec_list *list;
3118 int len, size, pad;
3119 valueT flag_value;
3120
3121 /* ??? This code is identical to ia64_estimate_size_before_relax. */
3122 list = (unw_rec_list *) frag->fr_opcode;
3123 fixup_unw_records (list, 0);
3124
3125 len = calc_record_size (list);
3126 /* pad to pointer-size boundary. */
3127 pad = len % md.pointer_size;
3128 if (pad != 0)
3129 len += md.pointer_size - pad;
3130 /* Add 8 for the header. */
3131 size = len + 8;
3132 /* Add a pointer for the personality offset. */
3133 if (frag->fr_offset)
3134 size += md.pointer_size;
3135
3136 /* fr_var carries the max_chars that we created the fragment with.
3137 We must, of course, have allocated enough memory earlier. */
3138 assert (frag->fr_var >= size);
3139
3140 /* Initialize the header area. fr_offset is initialized with
3141 unwind.personality_routine. */
3142 if (frag->fr_offset)
3143 {
3144 if (md.flags & EF_IA_64_ABI64)
3145 flag_value = (bfd_vma) 3 << 32;
3146 else
3147 /* 32-bit unwind info block. */
3148 flag_value = (bfd_vma) 0x1003 << 32;
3149 }
3150 else
3151 flag_value = 0;
3152
3153 md_number_to_chars (frag->fr_literal,
3154 (((bfd_vma) 1 << 48) /* Version. */
3155 | flag_value /* U & E handler flags. */
3156 | (len / md.pointer_size)), /* Length. */
3157 8);
3158
3159 /* Skip the header. */
3160 vbyte_mem_ptr = frag->fr_literal + 8;
3161 process_unw_records (list, output_vbyte_mem);
3162
3163 /* Fill the padding bytes with zeros. */
3164 if (pad != 0)
3165 md_number_to_chars (frag->fr_literal + len + 8 - md.pointer_size + pad, 0,
3166 md.pointer_size - pad);
3167
3168 frag->fr_fix += size;
3169 frag->fr_type = rs_fill;
3170 frag->fr_var = 0;
3171 frag->fr_offset = 0;
3172 }
3173
3174 static int
3175 parse_predicate_and_operand (e, qp, po)
3176 expressionS * e;
3177 unsigned * qp;
3178 const char * po;
3179 {
3180 int sep = parse_operand (e, ',');
3181
3182 *qp = e->X_add_number - REG_P;
3183 if (e->X_op != O_register || *qp > 63)
3184 {
3185 as_bad ("First operand to .%s must be a predicate", po);
3186 *qp = 0;
3187 }
3188 else if (*qp == 0)
3189 as_warn ("Pointless use of p0 as first operand to .%s", po);
3190 if (sep == ',')
3191 sep = parse_operand (e, ',');
3192 else
3193 e->X_op = O_absent;
3194 return sep;
3195 }
3196
3197 static void
3198 convert_expr_to_ab_reg (e, ab, regp, po, n)
3199 const expressionS *e;
3200 unsigned int *ab;
3201 unsigned int *regp;
3202 const char * po;
3203 int n;
3204 {
3205 unsigned int reg = e->X_add_number;
3206
3207 *ab = *regp = 0; /* Anything valid is good here. */
3208
3209 if (e->X_op != O_register)
3210 reg = REG_GR; /* Anything invalid is good here. */
3211
3212 if (reg >= (REG_GR + 4) && reg <= (REG_GR + 7))
3213 {
3214 *ab = 0;
3215 *regp = reg - REG_GR;
3216 }
3217 else if ((reg >= (REG_FR + 2) && reg <= (REG_FR + 5))
3218 || (reg >= (REG_FR + 16) && reg <= (REG_FR + 31)))
3219 {
3220 *ab = 1;
3221 *regp = reg - REG_FR;
3222 }
3223 else if (reg >= (REG_BR + 1) && reg <= (REG_BR + 5))
3224 {
3225 *ab = 2;
3226 *regp = reg - REG_BR;
3227 }
3228 else
3229 {
3230 *ab = 3;
3231 switch (reg)
3232 {
3233 case REG_PR: *regp = 0; break;
3234 case REG_PSP: *regp = 1; break;
3235 case REG_PRIUNAT: *regp = 2; break;
3236 case REG_BR + 0: *regp = 3; break;
3237 case REG_AR + AR_BSP: *regp = 4; break;
3238 case REG_AR + AR_BSPSTORE: *regp = 5; break;
3239 case REG_AR + AR_RNAT: *regp = 6; break;
3240 case REG_AR + AR_UNAT: *regp = 7; break;
3241 case REG_AR + AR_FPSR: *regp = 8; break;
3242 case REG_AR + AR_PFS: *regp = 9; break;
3243 case REG_AR + AR_LC: *regp = 10; break;
3244
3245 default:
3246 as_bad ("Operand %d to .%s must be a preserved register", n, po);
3247 break;
3248 }
3249 }
3250 }
3251
3252 static void
3253 convert_expr_to_xy_reg (e, xy, regp, po, n)
3254 const expressionS *e;
3255 unsigned int *xy;
3256 unsigned int *regp;
3257 const char * po;
3258 int n;
3259 {
3260 unsigned int reg = e->X_add_number;
3261
3262 *xy = *regp = 0; /* Anything valid is good here. */
3263
3264 if (e->X_op != O_register)
3265 reg = REG_GR; /* Anything invalid is good here. */
3266
3267 if (reg >= (REG_GR + 1) && reg <= (REG_GR + 127))
3268 {
3269 *xy = 0;
3270 *regp = reg - REG_GR;
3271 }
3272 else if (reg >= (REG_FR + 2) && reg <= (REG_FR + 127))
3273 {
3274 *xy = 1;
3275 *regp = reg - REG_FR;
3276 }
3277 else if (reg >= REG_BR && reg <= (REG_BR + 7))
3278 {
3279 *xy = 2;
3280 *regp = reg - REG_BR;
3281 }
3282 else
3283 as_bad ("Operand %d to .%s must be a writable register", n, po);
3284 }
3285
3286 static void
3287 dot_align (int arg)
3288 {
3289 /* The current frag is an alignment frag. */
3290 align_frag = frag_now;
3291 s_align_bytes (arg);
3292 }
3293
3294 static void
3295 dot_radix (dummy)
3296 int dummy ATTRIBUTE_UNUSED;
3297 {
3298 char *radix;
3299 int ch;
3300
3301 SKIP_WHITESPACE ();
3302
3303 if (is_it_end_of_statement ())
3304 return;
3305 radix = input_line_pointer;
3306 ch = get_symbol_end ();
3307 ia64_canonicalize_symbol_name (radix);
3308 if (strcasecmp (radix, "C"))
3309 as_bad ("Radix `%s' unsupported or invalid", radix);
3310 *input_line_pointer = ch;
3311 demand_empty_rest_of_line ();
3312 }
3313
3314 /* Helper function for .loc directives. If the assembler is not generating
3315 line number info, then we need to remember which instructions have a .loc
3316 directive, and only call dwarf2_gen_line_info for those instructions. */
3317
3318 static void
3319 dot_loc (int x)
3320 {
3321 CURR_SLOT.loc_directive_seen = 1;
3322 dwarf2_directive_loc (x);
3323 }
3324
3325 /* .sbss, .bss etc. are macros that expand into ".section SECNAME". */
3326 static void
3327 dot_special_section (which)
3328 int which;
3329 {
3330 set_section ((char *) special_section_name[which]);
3331 }
3332
3333 /* Return -1 for warning and 0 for error. */
3334
3335 static int
3336 unwind_diagnostic (const char * region, const char *directive)
3337 {
3338 if (md.unwind_check == unwind_check_warning)
3339 {
3340 as_warn (".%s outside of %s", directive, region);
3341 return -1;
3342 }
3343 else
3344 {
3345 as_bad (".%s outside of %s", directive, region);
3346 ignore_rest_of_line ();
3347 return 0;
3348 }
3349 }
3350
3351 /* Return 1 if a directive is in a procedure, -1 if a directive isn't in
3352 a procedure but the unwind directive check is set to warning, 0 if
3353 a directive isn't in a procedure and the unwind directive check is set
3354 to error. */
3355
3356 static int
3357 in_procedure (const char *directive)
3358 {
3359 if (unwind.proc_pending.sym
3360 && (!unwind.saved_text_seg || strcmp (directive, "endp") == 0))
3361 return 1;
3362 return unwind_diagnostic ("procedure", directive);
3363 }
3364
3365 /* Return 1 if a directive is in a prologue, -1 if a directive isn't in
3366 a prologue but the unwind directive check is set to warning, 0 if
3367 a directive isn't in a prologue and the unwind directive check is set
3368 to error. */
3369
3370 static int
3371 in_prologue (const char *directive)
3372 {
3373 int in = in_procedure (directive);
3374
3375 if (in > 0 && !unwind.prologue)
3376 in = unwind_diagnostic ("prologue", directive);
3377 check_pending_save ();
3378 return in;
3379 }
3380
3381 /* Return 1 if a directive is in a body, -1 if a directive isn't in
3382 a body but the unwind directive check is set to warning, 0 if
3383 a directive isn't in a body and the unwind directive check is set
3384 to error. */
3385
3386 static int
3387 in_body (const char *directive)
3388 {
3389 int in = in_procedure (directive);
3390
3391 if (in > 0 && !unwind.body)
3392 in = unwind_diagnostic ("body region", directive);
3393 return in;
3394 }
3395
3396 static void
3397 add_unwind_entry (ptr, sep)
3398 unw_rec_list *ptr;
3399 int sep;
3400 {
3401 if (ptr)
3402 {
3403 if (unwind.tail)
3404 unwind.tail->next = ptr;
3405 else
3406 unwind.list = ptr;
3407 unwind.tail = ptr;
3408
3409 /* The current entry can in fact be a chain of unwind entries. */
3410 if (unwind.current_entry == NULL)
3411 unwind.current_entry = ptr;
3412 }
3413
3414 /* The current entry can in fact be a chain of unwind entries. */
3415 if (unwind.current_entry == NULL)
3416 unwind.current_entry = ptr;
3417
3418 if (sep == ',')
3419 {
3420 /* Parse a tag permitted for the current directive. */
3421 int ch;
3422
3423 SKIP_WHITESPACE ();
3424 ch = get_symbol_end ();
3425 /* FIXME: For now, just issue a warning that this isn't implemented. */
3426 {
3427 static int warned;
3428
3429 if (!warned)
3430 {
3431 warned = 1;
3432 as_warn ("Tags on unwind pseudo-ops aren't supported, yet");
3433 }
3434 }
3435 *input_line_pointer = ch;
3436 }
3437 if (sep != NOT_A_CHAR)
3438 demand_empty_rest_of_line ();
3439 }
3440
3441 static void
3442 dot_fframe (dummy)
3443 int dummy ATTRIBUTE_UNUSED;
3444 {
3445 expressionS e;
3446 int sep;
3447
3448 if (!in_prologue ("fframe"))
3449 return;
3450
3451 sep = parse_operand (&e, ',');
3452
3453 if (e.X_op != O_constant)
3454 {
3455 as_bad ("First operand to .fframe must be a constant");
3456 e.X_add_number = 0;
3457 }
3458 add_unwind_entry (output_mem_stack_f (e.X_add_number), sep);
3459 }
3460
3461 static void
3462 dot_vframe (dummy)
3463 int dummy ATTRIBUTE_UNUSED;
3464 {
3465 expressionS e;
3466 unsigned reg;
3467 int sep;
3468
3469 if (!in_prologue ("vframe"))
3470 return;
3471
3472 sep = parse_operand (&e, ',');
3473 reg = e.X_add_number - REG_GR;
3474 if (e.X_op != O_register || reg > 127)
3475 {
3476 as_bad ("First operand to .vframe must be a general register");
3477 reg = 0;
3478 }
3479 add_unwind_entry (output_mem_stack_v (), sep);
3480 if (! (unwind.prologue_mask & 2))
3481 add_unwind_entry (output_psp_gr (reg), NOT_A_CHAR);
3482 else if (reg != unwind.prologue_gr
3483 + (unsigned) popcount (unwind.prologue_mask & (-2 << 1)))
3484 as_warn ("Operand of .vframe contradicts .prologue");
3485 }
3486
3487 static void
3488 dot_vframesp (psp)
3489 int psp;
3490 {
3491 expressionS e;
3492 int sep;
3493
3494 if (psp)
3495 as_warn (".vframepsp is meaningless, assuming .vframesp was meant");
3496
3497 if (!in_prologue ("vframesp"))
3498 return;
3499
3500 sep = parse_operand (&e, ',');
3501 if (e.X_op != O_constant)
3502 {
3503 as_bad ("Operand to .vframesp must be a constant (sp-relative offset)");
3504 e.X_add_number = 0;
3505 }
3506 add_unwind_entry (output_mem_stack_v (), sep);
3507 add_unwind_entry (output_psp_sprel (e.X_add_number), NOT_A_CHAR);
3508 }
3509
3510 static void
3511 dot_save (dummy)
3512 int dummy ATTRIBUTE_UNUSED;
3513 {
3514 expressionS e1, e2;
3515 unsigned reg1, reg2;
3516 int sep;
3517
3518 if (!in_prologue ("save"))
3519 return;
3520
3521 sep = parse_operand (&e1, ',');
3522 if (sep == ',')
3523 sep = parse_operand (&e2, ',');
3524 else
3525 e2.X_op = O_absent;
3526
3527 reg1 = e1.X_add_number;
3528 /* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
3529 if (e1.X_op != O_register)
3530 {
3531 as_bad ("First operand to .save not a register");
3532 reg1 = REG_PR; /* Anything valid is good here. */
3533 }
3534 reg2 = e2.X_add_number - REG_GR;
3535 if (e2.X_op != O_register || reg2 > 127)
3536 {
3537 as_bad ("Second operand to .save not a valid register");
3538 reg2 = 0;
3539 }
3540 switch (reg1)
3541 {
3542 case REG_AR + AR_BSP:
3543 add_unwind_entry (output_bsp_when (), sep);
3544 add_unwind_entry (output_bsp_gr (reg2), NOT_A_CHAR);
3545 break;
3546 case REG_AR + AR_BSPSTORE:
3547 add_unwind_entry (output_bspstore_when (), sep);
3548 add_unwind_entry (output_bspstore_gr (reg2), NOT_A_CHAR);
3549 break;
3550 case REG_AR + AR_RNAT:
3551 add_unwind_entry (output_rnat_when (), sep);
3552 add_unwind_entry (output_rnat_gr (reg2), NOT_A_CHAR);
3553 break;
3554 case REG_AR + AR_UNAT:
3555 add_unwind_entry (output_unat_when (), sep);
3556 add_unwind_entry (output_unat_gr (reg2), NOT_A_CHAR);
3557 break;
3558 case REG_AR + AR_FPSR:
3559 add_unwind_entry (output_fpsr_when (), sep);
3560 add_unwind_entry (output_fpsr_gr (reg2), NOT_A_CHAR);
3561 break;
3562 case REG_AR + AR_PFS:
3563 add_unwind_entry (output_pfs_when (), sep);
3564 if (! (unwind.prologue_mask & 4))
3565 add_unwind_entry (output_pfs_gr (reg2), NOT_A_CHAR);
3566 else if (reg2 != unwind.prologue_gr
3567 + (unsigned) popcount (unwind.prologue_mask & (-4 << 1)))
3568 as_warn ("Second operand of .save contradicts .prologue");
3569 break;
3570 case REG_AR + AR_LC:
3571 add_unwind_entry (output_lc_when (), sep);
3572 add_unwind_entry (output_lc_gr (reg2), NOT_A_CHAR);
3573 break;
3574 case REG_BR:
3575 add_unwind_entry (output_rp_when (), sep);
3576 if (! (unwind.prologue_mask & 8))
3577 add_unwind_entry (output_rp_gr (reg2), NOT_A_CHAR);
3578 else if (reg2 != unwind.prologue_gr)
3579 as_warn ("Second operand of .save contradicts .prologue");
3580 break;
3581 case REG_PR:
3582 add_unwind_entry (output_preds_when (), sep);
3583 if (! (unwind.prologue_mask & 1))
3584 add_unwind_entry (output_preds_gr (reg2), NOT_A_CHAR);
3585 else if (reg2 != unwind.prologue_gr
3586 + (unsigned) popcount (unwind.prologue_mask & (-1 << 1)))
3587 as_warn ("Second operand of .save contradicts .prologue");
3588 break;
3589 case REG_PRIUNAT:
3590 add_unwind_entry (output_priunat_when_gr (), sep);
3591 add_unwind_entry (output_priunat_gr (reg2), NOT_A_CHAR);
3592 break;
3593 default:
3594 as_bad ("First operand to .save not a valid register");
3595 add_unwind_entry (NULL, sep);
3596 break;
3597 }
3598 }
3599
3600 static void
3601 dot_restore (dummy)
3602 int dummy ATTRIBUTE_UNUSED;
3603 {
3604 expressionS e1;
3605 unsigned long ecount; /* # of _additional_ regions to pop */
3606 int sep;
3607
3608 if (!in_body ("restore"))
3609 return;
3610
3611 sep = parse_operand (&e1, ',');
3612 if (e1.X_op != O_register || e1.X_add_number != REG_GR + 12)
3613 as_bad ("First operand to .restore must be stack pointer (sp)");
3614
3615 if (sep == ',')
3616 {
3617 expressionS e2;
3618
3619 sep = parse_operand (&e2, ',');
3620 if (e2.X_op != O_constant || e2.X_add_number < 0)
3621 {
3622 as_bad ("Second operand to .restore must be a constant >= 0");
3623 e2.X_add_number = 0;
3624 }
3625 ecount = e2.X_add_number;
3626 }
3627 else
3628 ecount = unwind.prologue_count - 1;
3629
3630 if (ecount >= unwind.prologue_count)
3631 {
3632 as_bad ("Epilogue count of %lu exceeds number of nested prologues (%u)",
3633 ecount + 1, unwind.prologue_count);
3634 ecount = 0;
3635 }
3636
3637 add_unwind_entry (output_epilogue (ecount), sep);
3638
3639 if (ecount < unwind.prologue_count)
3640 unwind.prologue_count -= ecount + 1;
3641 else
3642 unwind.prologue_count = 0;
3643 }
3644
3645 static void
3646 dot_restorereg (pred)
3647 int pred;
3648 {
3649 unsigned int qp, ab, reg;
3650 expressionS e;
3651 int sep;
3652 const char * const po = pred ? "restorereg.p" : "restorereg";
3653
3654 if (!in_procedure (po))
3655 return;
3656
3657 if (pred)
3658 sep = parse_predicate_and_operand (&e, &qp, po);
3659 else
3660 {
3661 sep = parse_operand (&e, ',');
3662 qp = 0;
3663 }
3664 convert_expr_to_ab_reg (&e, &ab, &reg, po, 1 + pred);
3665
3666 add_unwind_entry (output_spill_reg (ab, reg, 0, 0, qp), sep);
3667 }
3668
3669 static char *special_linkonce_name[] =
3670 {
3671 ".gnu.linkonce.ia64unw.", ".gnu.linkonce.ia64unwi."
3672 };
3673
3674 static void
3675 start_unwind_section (const segT text_seg, int sec_index)
3676 {
3677 /*
3678 Use a slightly ugly scheme to derive the unwind section names from
3679 the text section name:
3680
3681 text sect. unwind table sect.
3682 name: name: comments:
3683 ---------- ----------------- --------------------------------
3684 .text .IA_64.unwind
3685 .text.foo .IA_64.unwind.text.foo
3686 .foo .IA_64.unwind.foo
3687 .gnu.linkonce.t.foo
3688 .gnu.linkonce.ia64unw.foo
3689 _info .IA_64.unwind_info gas issues error message (ditto)
3690 _infoFOO .IA_64.unwind_infoFOO gas issues error message (ditto)
3691
3692 This mapping is done so that:
3693
3694 (a) An object file with unwind info only in .text will use
3695 unwind section names .IA_64.unwind and .IA_64.unwind_info.
3696 This follows the letter of the ABI and also ensures backwards
3697 compatibility with older toolchains.
3698
3699 (b) An object file with unwind info in multiple text sections
3700 will use separate unwind sections for each text section.
3701 This allows us to properly set the "sh_info" and "sh_link"
3702 fields in SHT_IA_64_UNWIND as required by the ABI and also
3703 lets GNU ld support programs with multiple segments
3704 containing unwind info (as might be the case for certain
3705 embedded applications).
3706
3707 (c) An error is issued if there would be a name clash.
3708 */
3709
3710 const char *text_name, *sec_text_name;
3711 char *sec_name;
3712 const char *prefix = special_section_name [sec_index];
3713 const char *suffix;
3714 size_t prefix_len, suffix_len, sec_name_len;
3715
3716 sec_text_name = segment_name (text_seg);
3717 text_name = sec_text_name;
3718 if (strncmp (text_name, "_info", 5) == 0)
3719 {
3720 as_bad ("Illegal section name `%s' (causes unwind section name clash)",
3721 text_name);
3722 ignore_rest_of_line ();
3723 return;
3724 }
3725 if (strcmp (text_name, ".text") == 0)
3726 text_name = "";
3727
3728 /* Build the unwind section name by appending the (possibly stripped)
3729 text section name to the unwind prefix. */
3730 suffix = text_name;
3731 if (strncmp (text_name, ".gnu.linkonce.t.",
3732 sizeof (".gnu.linkonce.t.") - 1) == 0)
3733 {
3734 prefix = special_linkonce_name [sec_index - SPECIAL_SECTION_UNWIND];
3735 suffix += sizeof (".gnu.linkonce.t.") - 1;
3736 }
3737
3738 prefix_len = strlen (prefix);
3739 suffix_len = strlen (suffix);
3740 sec_name_len = prefix_len + suffix_len;
3741 sec_name = alloca (sec_name_len + 1);
3742 memcpy (sec_name, prefix, prefix_len);
3743 memcpy (sec_name + prefix_len, suffix, suffix_len);
3744 sec_name [sec_name_len] = '\0';
3745
3746 /* Handle COMDAT group. */
3747 if ((text_seg->flags & SEC_LINK_ONCE) != 0
3748 && (elf_section_flags (text_seg) & SHF_GROUP) != 0)
3749 {
3750 char *section;
3751 size_t len, group_name_len;
3752 const char *group_name = elf_group_name (text_seg);
3753
3754 if (group_name == NULL)
3755 {
3756 as_bad ("Group section `%s' has no group signature",
3757 sec_text_name);
3758 ignore_rest_of_line ();
3759 return;
3760 }
3761 /* We have to construct a fake section directive. */
3762 group_name_len = strlen (group_name);
3763 len = (sec_name_len
3764 + 16 /* ,"aG",@progbits, */
3765 + group_name_len /* ,group_name */
3766 + 7); /* ,comdat */
3767
3768 section = alloca (len + 1);
3769 memcpy (section, sec_name, sec_name_len);
3770 memcpy (section + sec_name_len, ",\"aG\",@progbits,", 16);
3771 memcpy (section + sec_name_len + 16, group_name, group_name_len);
3772 memcpy (section + len - 7, ",comdat", 7);
3773 section [len] = '\0';
3774 set_section (section);
3775 }
3776 else
3777 {
3778 set_section (sec_name);
3779 bfd_set_section_flags (stdoutput, now_seg,
3780 SEC_LOAD | SEC_ALLOC | SEC_READONLY);
3781 }
3782
3783 elf_linked_to_section (now_seg) = text_seg;
3784 }
3785
3786 static void
3787 generate_unwind_image (const segT text_seg)
3788 {
3789 int size, pad;
3790 unw_rec_list *list;
3791
3792 /* Mark the end of the unwind info, so that we can compute the size of the
3793 last unwind region. */
3794 add_unwind_entry (output_endp (), NOT_A_CHAR);
3795
3796 /* Force out pending instructions, to make sure all unwind records have
3797 a valid slot_number field. */
3798 ia64_flush_insns ();
3799
3800 /* Generate the unwind record. */
3801 list = optimize_unw_records (unwind.list);
3802 fixup_unw_records (list, 1);
3803 size = calc_record_size (list);
3804
3805 if (size > 0 || unwind.force_unwind_entry)
3806 {
3807 unwind.force_unwind_entry = 0;
3808 /* pad to pointer-size boundary. */
3809 pad = size % md.pointer_size;
3810 if (pad != 0)
3811 size += md.pointer_size - pad;
3812 /* Add 8 for the header. */
3813 size += 8;
3814 /* Add a pointer for the personality offset. */
3815 if (unwind.personality_routine)
3816 size += md.pointer_size;
3817 }
3818
3819 /* If there are unwind records, switch sections, and output the info. */
3820 if (size != 0)
3821 {
3822 expressionS exp;
3823 bfd_reloc_code_real_type reloc;
3824
3825 start_unwind_section (text_seg, SPECIAL_SECTION_UNWIND_INFO);
3826
3827 /* Make sure the section has 4 byte alignment for ILP32 and
3828 8 byte alignment for LP64. */
3829 frag_align (md.pointer_size_shift, 0, 0);
3830 record_alignment (now_seg, md.pointer_size_shift);
3831
3832 /* Set expression which points to start of unwind descriptor area. */
3833 unwind.info = expr_build_dot ();
3834
3835 frag_var (rs_machine_dependent, size, size, 0, 0,
3836 (offsetT) (long) unwind.personality_routine,
3837 (char *) list);
3838
3839 /* Add the personality address to the image. */
3840 if (unwind.personality_routine != 0)
3841 {
3842 exp.X_op = O_symbol;
3843 exp.X_add_symbol = unwind.personality_routine;
3844 exp.X_add_number = 0;
3845
3846 if (md.flags & EF_IA_64_BE)
3847 {
3848 if (md.flags & EF_IA_64_ABI64)
3849 reloc = BFD_RELOC_IA64_LTOFF_FPTR64MSB;
3850 else
3851 reloc = BFD_RELOC_IA64_LTOFF_FPTR32MSB;
3852 }
3853 else
3854 {
3855 if (md.flags & EF_IA_64_ABI64)
3856 reloc = BFD_RELOC_IA64_LTOFF_FPTR64LSB;
3857 else
3858 reloc = BFD_RELOC_IA64_LTOFF_FPTR32LSB;
3859 }
3860
3861 fix_new_exp (frag_now, frag_now_fix () - md.pointer_size,
3862 md.pointer_size, &exp, 0, reloc);
3863 unwind.personality_routine = 0;
3864 }
3865 }
3866
3867 free_saved_prologue_counts ();
3868 unwind.list = unwind.tail = unwind.current_entry = NULL;
3869 }
3870
3871 static void
3872 dot_handlerdata (dummy)
3873 int dummy ATTRIBUTE_UNUSED;
3874 {
3875 if (!in_procedure ("handlerdata"))
3876 return;
3877 unwind.force_unwind_entry = 1;
3878
3879 /* Remember which segment we're in so we can switch back after .endp */
3880 unwind.saved_text_seg = now_seg;
3881 unwind.saved_text_subseg = now_subseg;
3882
3883 /* Generate unwind info into unwind-info section and then leave that
3884 section as the currently active one so dataXX directives go into
3885 the language specific data area of the unwind info block. */
3886 generate_unwind_image (now_seg);
3887 demand_empty_rest_of_line ();
3888 }
3889
3890 static void
3891 dot_unwentry (dummy)
3892 int dummy ATTRIBUTE_UNUSED;
3893 {
3894 if (!in_procedure ("unwentry"))
3895 return;
3896 unwind.force_unwind_entry = 1;
3897 demand_empty_rest_of_line ();
3898 }
3899
3900 static void
3901 dot_altrp (dummy)
3902 int dummy ATTRIBUTE_UNUSED;
3903 {
3904 expressionS e;
3905 unsigned reg;
3906
3907 if (!in_prologue ("altrp"))
3908 return;
3909
3910 parse_operand (&e, 0);
3911 reg = e.X_add_number - REG_BR;
3912 if (e.X_op != O_register || reg > 7)
3913 {
3914 as_bad ("First operand to .altrp not a valid branch register");
3915 reg = 0;
3916 }
3917 add_unwind_entry (output_rp_br (reg), 0);
3918 }
3919
3920 static void
3921 dot_savemem (psprel)
3922 int psprel;
3923 {
3924 expressionS e1, e2;
3925 int sep;
3926 int reg1, val;
3927 const char * const po = psprel ? "savepsp" : "savesp";
3928
3929 if (!in_prologue (po))
3930 return;
3931
3932 sep = parse_operand (&e1, ',');
3933 if (sep == ',')
3934 sep = parse_operand (&e2, ',');
3935 else
3936 e2.X_op = O_absent;
3937
3938 reg1 = e1.X_add_number;
3939 val = e2.X_add_number;
3940
3941 /* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
3942 if (e1.X_op != O_register)
3943 {
3944 as_bad ("First operand to .%s not a register", po);
3945 reg1 = REG_PR; /* Anything valid is good here. */
3946 }
3947 if (e2.X_op != O_constant)
3948 {
3949 as_bad ("Second operand to .%s not a constant", po);
3950 val = 0;
3951 }
3952
3953 switch (reg1)
3954 {
3955 case REG_AR + AR_BSP:
3956 add_unwind_entry (output_bsp_when (), sep);
3957 add_unwind_entry ((psprel
3958 ? output_bsp_psprel
3959 : output_bsp_sprel) (val), NOT_A_CHAR);
3960 break;
3961 case REG_AR + AR_BSPSTORE:
3962 add_unwind_entry (output_bspstore_when (), sep);
3963 add_unwind_entry ((psprel
3964 ? output_bspstore_psprel
3965 : output_bspstore_sprel) (val), NOT_A_CHAR);
3966 break;
3967 case REG_AR + AR_RNAT:
3968 add_unwind_entry (output_rnat_when (), sep);
3969 add_unwind_entry ((psprel
3970 ? output_rnat_psprel
3971 : output_rnat_sprel) (val), NOT_A_CHAR);
3972 break;
3973 case REG_AR + AR_UNAT:
3974 add_unwind_entry (output_unat_when (), sep);
3975 add_unwind_entry ((psprel
3976 ? output_unat_psprel
3977 : output_unat_sprel) (val), NOT_A_CHAR);
3978 break;
3979 case REG_AR + AR_FPSR:
3980 add_unwind_entry (output_fpsr_when (), sep);
3981 add_unwind_entry ((psprel
3982 ? output_fpsr_psprel
3983 : output_fpsr_sprel) (val), NOT_A_CHAR);
3984 break;
3985 case REG_AR + AR_PFS:
3986 add_unwind_entry (output_pfs_when (), sep);
3987 add_unwind_entry ((psprel
3988 ? output_pfs_psprel
3989 : output_pfs_sprel) (val), NOT_A_CHAR);
3990 break;
3991 case REG_AR + AR_LC:
3992 add_unwind_entry (output_lc_when (), sep);
3993 add_unwind_entry ((psprel
3994 ? output_lc_psprel
3995 : output_lc_sprel) (val), NOT_A_CHAR);
3996 break;
3997 case REG_BR:
3998 add_unwind_entry (output_rp_when (), sep);
3999 add_unwind_entry ((psprel
4000 ? output_rp_psprel
4001 : output_rp_sprel) (val), NOT_A_CHAR);
4002 break;
4003 case REG_PR:
4004 add_unwind_entry (output_preds_when (), sep);
4005 add_unwind_entry ((psprel
4006 ? output_preds_psprel
4007 : output_preds_sprel) (val), NOT_A_CHAR);
4008 break;
4009 case REG_PRIUNAT:
4010 add_unwind_entry (output_priunat_when_mem (), sep);
4011 add_unwind_entry ((psprel
4012 ? output_priunat_psprel
4013 : output_priunat_sprel) (val), NOT_A_CHAR);
4014 break;
4015 default:
4016 as_bad ("First operand to .%s not a valid register", po);
4017 add_unwind_entry (NULL, sep);
4018 break;
4019 }
4020 }
4021
4022 static void
4023 dot_saveg (dummy)
4024 int dummy ATTRIBUTE_UNUSED;
4025 {
4026 expressionS e;
4027 unsigned grmask;
4028 int sep;
4029
4030 if (!in_prologue ("save.g"))
4031 return;
4032
4033 sep = parse_operand (&e, ',');
4034
4035 grmask = e.X_add_number;
4036 if (e.X_op != O_constant
4037 || e.X_add_number <= 0
4038 || e.X_add_number > 0xf)
4039 {
4040 as_bad ("First operand to .save.g must be a positive 4-bit constant");
4041 grmask = 0;
4042 }
4043
4044 if (sep == ',')
4045 {
4046 unsigned reg;
4047 int n = popcount (grmask);
4048
4049 parse_operand (&e, 0);
4050 reg = e.X_add_number - REG_GR;
4051 if (e.X_op != O_register || reg > 127)
4052 {
4053 as_bad ("Second operand to .save.g must be a general register");
4054 reg = 0;
4055 }
4056 else if (reg > 128U - n)
4057 {
4058 as_bad ("Second operand to .save.g must be the first of %d general registers", n);
4059 reg = 0;
4060 }
4061 add_unwind_entry (output_gr_gr (grmask, reg), 0);
4062 }
4063 else
4064 add_unwind_entry (output_gr_mem (grmask), 0);
4065 }
4066
4067 static void
4068 dot_savef (dummy)
4069 int dummy ATTRIBUTE_UNUSED;
4070 {
4071 expressionS e;
4072
4073 if (!in_prologue ("save.f"))
4074 return;
4075
4076 parse_operand (&e, 0);
4077
4078 if (e.X_op != O_constant
4079 || e.X_add_number <= 0
4080 || e.X_add_number > 0xfffff)
4081 {
4082 as_bad ("Operand to .save.f must be a positive 20-bit constant");
4083 e.X_add_number = 0;
4084 }
4085 add_unwind_entry (output_fr_mem (e.X_add_number), 0);
4086 }
4087
4088 static void
4089 dot_saveb (dummy)
4090 int dummy ATTRIBUTE_UNUSED;
4091 {
4092 expressionS e;
4093 unsigned brmask;
4094 int sep;
4095
4096 if (!in_prologue ("save.b"))
4097 return;
4098
4099 sep = parse_operand (&e, ',');
4100
4101 brmask = e.X_add_number;
4102 if (e.X_op != O_constant
4103 || e.X_add_number <= 0
4104 || e.X_add_number > 0x1f)
4105 {
4106 as_bad ("First operand to .save.b must be a positive 5-bit constant");
4107 brmask = 0;
4108 }
4109
4110 if (sep == ',')
4111 {
4112 unsigned reg;
4113 int n = popcount (brmask);
4114
4115 parse_operand (&e, 0);
4116 reg = e.X_add_number - REG_GR;
4117 if (e.X_op != O_register || reg > 127)
4118 {
4119 as_bad ("Second operand to .save.b must be a general register");
4120 reg = 0;
4121 }
4122 else if (reg > 128U - n)
4123 {
4124 as_bad ("Second operand to .save.b must be the first of %d general registers", n);
4125 reg = 0;
4126 }
4127 add_unwind_entry (output_br_gr (brmask, reg), 0);
4128 }
4129 else
4130 add_unwind_entry (output_br_mem (brmask), 0);
4131 }
4132
4133 static void
4134 dot_savegf (dummy)
4135 int dummy ATTRIBUTE_UNUSED;
4136 {
4137 expressionS e1, e2;
4138
4139 if (!in_prologue ("save.gf"))
4140 return;
4141
4142 if (parse_operand (&e1, ',') == ',')
4143 parse_operand (&e2, 0);
4144 else
4145 e2.X_op = O_absent;
4146
4147 if (e1.X_op != O_constant
4148 || e1.X_add_number < 0
4149 || e1.X_add_number > 0xf)
4150 {
4151 as_bad ("First operand to .save.gf must be a non-negative 4-bit constant");
4152 e1.X_op = O_absent;
4153 e1.X_add_number = 0;
4154 }
4155 if (e2.X_op != O_constant
4156 || e2.X_add_number < 0
4157 || e2.X_add_number > 0xfffff)
4158 {
4159 as_bad ("Second operand to .save.gf must be a non-negative 20-bit constant");
4160 e2.X_op = O_absent;
4161 e2.X_add_number = 0;
4162 }
4163 if (e1.X_op == O_constant
4164 && e2.X_op == O_constant
4165 && e1.X_add_number == 0
4166 && e2.X_add_number == 0)
4167 as_bad ("Operands to .save.gf may not be both zero");
4168
4169 add_unwind_entry (output_frgr_mem (e1.X_add_number, e2.X_add_number), 0);
4170 }
4171
4172 static void
4173 dot_spill (dummy)
4174 int dummy ATTRIBUTE_UNUSED;
4175 {
4176 expressionS e;
4177
4178 if (!in_prologue ("spill"))
4179 return;
4180
4181 parse_operand (&e, 0);
4182
4183 if (e.X_op != O_constant)
4184 {
4185 as_bad ("Operand to .spill must be a constant");
4186 e.X_add_number = 0;
4187 }
4188 add_unwind_entry (output_spill_base (e.X_add_number), 0);
4189 }
4190
4191 static void
4192 dot_spillreg (pred)
4193 int pred;
4194 {
4195 int sep;
4196 unsigned int qp, ab, xy, reg, treg;
4197 expressionS e;
4198 const char * const po = pred ? "spillreg.p" : "spillreg";
4199
4200 if (!in_procedure (po))
4201 return;
4202
4203 if (pred)
4204 sep = parse_predicate_and_operand (&e, &qp, po);
4205 else
4206 {
4207 sep = parse_operand (&e, ',');
4208 qp = 0;
4209 }
4210 convert_expr_to_ab_reg (&e, &ab, &reg, po, 1 + pred);
4211
4212 if (sep == ',')
4213 sep = parse_operand (&e, ',');
4214 else
4215 e.X_op = O_absent;
4216 convert_expr_to_xy_reg (&e, &xy, &treg, po, 2 + pred);
4217
4218 add_unwind_entry (output_spill_reg (ab, reg, treg, xy, qp), sep);
4219 }
4220
4221 static void
4222 dot_spillmem (psprel)
4223 int psprel;
4224 {
4225 expressionS e;
4226 int pred = (psprel < 0), sep;
4227 unsigned int qp, ab, reg;
4228 const char * po;
4229
4230 if (pred)
4231 {
4232 psprel = ~psprel;
4233 po = psprel ? "spillpsp.p" : "spillsp.p";
4234 }
4235 else
4236 po = psprel ? "spillpsp" : "spillsp";
4237
4238 if (!in_procedure (po))
4239 return;
4240
4241 if (pred)
4242 sep = parse_predicate_and_operand (&e, &qp, po);
4243 else
4244 {
4245 sep = parse_operand (&e, ',');
4246 qp = 0;
4247 }
4248 convert_expr_to_ab_reg (&e, &ab, &reg, po, 1 + pred);
4249
4250 if (sep == ',')
4251 sep = parse_operand (&e, ',');
4252 else
4253 e.X_op = O_absent;
4254 if (e.X_op != O_constant)
4255 {
4256 as_bad ("Operand %d to .%s must be a constant", 2 + pred, po);
4257 e.X_add_number = 0;
4258 }
4259
4260 if (psprel)
4261 add_unwind_entry (output_spill_psprel (ab, reg, e.X_add_number, qp), sep);
4262 else
4263 add_unwind_entry (output_spill_sprel (ab, reg, e.X_add_number, qp), sep);
4264 }
4265
4266 static unsigned int
4267 get_saved_prologue_count (lbl)
4268 unsigned long lbl;
4269 {
4270 label_prologue_count *lpc = unwind.saved_prologue_counts;
4271
4272 while (lpc != NULL && lpc->label_number != lbl)
4273 lpc = lpc->next;
4274
4275 if (lpc != NULL)
4276 return lpc->prologue_count;
4277
4278 as_bad ("Missing .label_state %ld", lbl);
4279 return 1;
4280 }
4281
4282 static void
4283 save_prologue_count (lbl, count)
4284 unsigned long lbl;
4285 unsigned int count;
4286 {
4287 label_prologue_count *lpc = unwind.saved_prologue_counts;
4288
4289 while (lpc != NULL && lpc->label_number != lbl)
4290 lpc = lpc->next;
4291
4292 if (lpc != NULL)
4293 lpc->prologue_count = count;
4294 else
4295 {
4296 label_prologue_count *new_lpc = xmalloc (sizeof (* new_lpc));
4297
4298 new_lpc->next = unwind.saved_prologue_counts;
4299 new_lpc->label_number = lbl;
4300 new_lpc->prologue_count = count;
4301 unwind.saved_prologue_counts = new_lpc;
4302 }
4303 }
4304
4305 static void
4306 free_saved_prologue_counts ()
4307 {
4308 label_prologue_count *lpc = unwind.saved_prologue_counts;
4309 label_prologue_count *next;
4310
4311 while (lpc != NULL)
4312 {
4313 next = lpc->next;
4314 free (lpc);
4315 lpc = next;
4316 }
4317
4318 unwind.saved_prologue_counts = NULL;
4319 }
4320
4321 static void
4322 dot_label_state (dummy)
4323 int dummy ATTRIBUTE_UNUSED;
4324 {
4325 expressionS e;
4326
4327 if (!in_body ("label_state"))
4328 return;
4329
4330 parse_operand (&e, 0);
4331 if (e.X_op == O_constant)
4332 save_prologue_count (e.X_add_number, unwind.prologue_count);
4333 else
4334 {
4335 as_bad ("Operand to .label_state must be a constant");
4336 e.X_add_number = 0;
4337 }
4338 add_unwind_entry (output_label_state (e.X_add_number), 0);
4339 }
4340
4341 static void
4342 dot_copy_state (dummy)
4343 int dummy ATTRIBUTE_UNUSED;
4344 {
4345 expressionS e;
4346
4347 if (!in_body ("copy_state"))
4348 return;
4349
4350 parse_operand (&e, 0);
4351 if (e.X_op == O_constant)
4352 unwind.prologue_count = get_saved_prologue_count (e.X_add_number);
4353 else
4354 {
4355 as_bad ("Operand to .copy_state must be a constant");
4356 e.X_add_number = 0;
4357 }
4358 add_unwind_entry (output_copy_state (e.X_add_number), 0);
4359 }
4360
4361 static void
4362 dot_unwabi (dummy)
4363 int dummy ATTRIBUTE_UNUSED;
4364 {
4365 expressionS e1, e2;
4366 unsigned char sep;
4367
4368 if (!in_prologue ("unwabi"))
4369 return;
4370
4371 sep = parse_operand (&e1, ',');
4372 if (sep == ',')
4373 parse_operand (&e2, 0);
4374 else
4375 e2.X_op = O_absent;
4376
4377 if (e1.X_op != O_constant)
4378 {
4379 as_bad ("First operand to .unwabi must be a constant");
4380 e1.X_add_number = 0;
4381 }
4382
4383 if (e2.X_op != O_constant)
4384 {
4385 as_bad ("Second operand to .unwabi must be a constant");
4386 e2.X_add_number = 0;
4387 }
4388
4389 add_unwind_entry (output_unwabi (e1.X_add_number, e2.X_add_number), 0);
4390 }
4391
4392 static void
4393 dot_personality (dummy)
4394 int dummy ATTRIBUTE_UNUSED;
4395 {
4396 char *name, *p, c;
4397 if (!in_procedure ("personality"))
4398 return;
4399 SKIP_WHITESPACE ();
4400 name = input_line_pointer;
4401 c = get_symbol_end ();
4402 p = input_line_pointer;
4403 unwind.personality_routine = symbol_find_or_make (name);
4404 unwind.force_unwind_entry = 1;
4405 *p = c;
4406 SKIP_WHITESPACE ();
4407 demand_empty_rest_of_line ();
4408 }
4409
4410 static void
4411 dot_proc (dummy)
4412 int dummy ATTRIBUTE_UNUSED;
4413 {
4414 char *name, *p, c;
4415 symbolS *sym;
4416 proc_pending *pending, *last_pending;
4417
4418 if (unwind.proc_pending.sym)
4419 {
4420 (md.unwind_check == unwind_check_warning
4421 ? as_warn
4422 : as_bad) ("Missing .endp after previous .proc");
4423 while (unwind.proc_pending.next)
4424 {
4425 pending = unwind.proc_pending.next;
4426 unwind.proc_pending.next = pending->next;
4427 free (pending);
4428 }
4429 }
4430 last_pending = NULL;
4431
4432 /* Parse names of main and alternate entry points and mark them as
4433 function symbols: */
4434 while (1)
4435 {
4436 SKIP_WHITESPACE ();
4437 name = input_line_pointer;
4438 c = get_symbol_end ();
4439 p = input_line_pointer;
4440 if (!*name)
4441 as_bad ("Empty argument of .proc");
4442 else
4443 {
4444 sym = symbol_find_or_make (name);
4445 if (S_IS_DEFINED (sym))
4446 as_bad ("`%s' was already defined", name);
4447 else if (!last_pending)
4448 {
4449 unwind.proc_pending.sym = sym;
4450 last_pending = &unwind.proc_pending;
4451 }
4452 else
4453 {
4454 pending = xmalloc (sizeof (*pending));
4455 pending->sym = sym;
4456 last_pending = last_pending->next = pending;
4457 }
4458 symbol_get_bfdsym (sym)->flags |= BSF_FUNCTION;
4459 }
4460 *p = c;
4461 SKIP_WHITESPACE ();
4462 if (*input_line_pointer != ',')
4463 break;
4464 ++input_line_pointer;
4465 }
4466 if (!last_pending)
4467 {
4468 unwind.proc_pending.sym = expr_build_dot ();
4469 last_pending = &unwind.proc_pending;
4470 }
4471 last_pending->next = NULL;
4472 demand_empty_rest_of_line ();
4473 ia64_do_align (16);
4474
4475 unwind.prologue = 0;
4476 unwind.prologue_count = 0;
4477 unwind.body = 0;
4478 unwind.insn = 0;
4479 unwind.list = unwind.tail = unwind.current_entry = NULL;
4480 unwind.personality_routine = 0;
4481 }
4482
4483 static void
4484 dot_body (dummy)
4485 int dummy ATTRIBUTE_UNUSED;
4486 {
4487 if (!in_procedure ("body"))
4488 return;
4489 if (!unwind.prologue && !unwind.body && unwind.insn)
4490 as_warn ("Initial .body should precede any instructions");
4491 check_pending_save ();
4492
4493 unwind.prologue = 0;
4494 unwind.prologue_mask = 0;
4495 unwind.body = 1;
4496
4497 add_unwind_entry (output_body (), 0);
4498 }
4499
4500 static void
4501 dot_prologue (dummy)
4502 int dummy ATTRIBUTE_UNUSED;
4503 {
4504 unsigned mask = 0, grsave = 0;
4505
4506 if (!in_procedure ("prologue"))
4507 return;
4508 if (unwind.prologue)
4509 {
4510 as_bad (".prologue within prologue");
4511 ignore_rest_of_line ();
4512 return;
4513 }
4514 if (!unwind.body && unwind.insn)
4515 as_warn ("Initial .prologue should precede any instructions");
4516
4517 if (!is_it_end_of_statement ())
4518 {
4519 expressionS e;
4520 int n, sep = parse_operand (&e, ',');
4521
4522 if (e.X_op != O_constant
4523 || e.X_add_number < 0
4524 || e.X_add_number > 0xf)
4525 as_bad ("First operand to .prologue must be a positive 4-bit constant");
4526 else if (e.X_add_number == 0)
4527 as_warn ("Pointless use of zero first operand to .prologue");
4528 else
4529 mask = e.X_add_number;
4530 n = popcount (mask);
4531
4532 if (sep == ',')
4533 parse_operand (&e, 0);
4534 else
4535 e.X_op = O_absent;
4536 if (e.X_op == O_constant
4537 && e.X_add_number >= 0
4538 && e.X_add_number < 128)
4539 {
4540 if (md.unwind_check == unwind_check_error)
4541 as_warn ("Using a constant as second operand to .prologue is deprecated");
4542 grsave = e.X_add_number;
4543 }
4544 else if (e.X_op != O_register
4545 || (grsave = e.X_add_number - REG_GR) > 127)
4546 {
4547 as_bad ("Second operand to .prologue must be a general register");
4548 grsave = 0;
4549 }
4550 else if (grsave > 128U - n)
4551 {
4552 as_bad ("Second operand to .prologue must be the first of %d general registers", n);
4553 grsave = 0;
4554 }
4555
4556 }
4557
4558 if (mask)
4559 add_unwind_entry (output_prologue_gr (mask, grsave), 0);
4560 else
4561 add_unwind_entry (output_prologue (), 0);
4562
4563 unwind.prologue = 1;
4564 unwind.prologue_mask = mask;
4565 unwind.prologue_gr = grsave;
4566 unwind.body = 0;
4567 ++unwind.prologue_count;
4568 }
4569
4570 static void
4571 dot_endp (dummy)
4572 int dummy ATTRIBUTE_UNUSED;
4573 {
4574 expressionS e;
4575 int bytes_per_address;
4576 long where;
4577 segT saved_seg;
4578 subsegT saved_subseg;
4579 proc_pending *pending;
4580 int unwind_check = md.unwind_check;
4581
4582 md.unwind_check = unwind_check_error;
4583 if (!in_procedure ("endp"))
4584 return;
4585 md.unwind_check = unwind_check;
4586
4587 if (unwind.saved_text_seg)
4588 {
4589 saved_seg = unwind.saved_text_seg;
4590 saved_subseg = unwind.saved_text_subseg;
4591 unwind.saved_text_seg = NULL;
4592 }
4593 else
4594 {
4595 saved_seg = now_seg;
4596 saved_subseg = now_subseg;
4597 }
4598
4599 insn_group_break (1, 0, 0);
4600
4601 /* If there wasn't a .handlerdata, we haven't generated an image yet. */
4602 if (!unwind.info)
4603 generate_unwind_image (saved_seg);
4604
4605 if (unwind.info || unwind.force_unwind_entry)
4606 {
4607 symbolS *proc_end;
4608
4609 subseg_set (md.last_text_seg, 0);
4610 proc_end = expr_build_dot ();
4611
4612 start_unwind_section (saved_seg, SPECIAL_SECTION_UNWIND);
4613
4614 /* Make sure that section has 4 byte alignment for ILP32 and
4615 8 byte alignment for LP64. */
4616 record_alignment (now_seg, md.pointer_size_shift);
4617
4618 /* Need space for 3 pointers for procedure start, procedure end,
4619 and unwind info. */
4620 memset (frag_more (3 * md.pointer_size), 0, 3 * md.pointer_size);
4621 where = frag_now_fix () - (3 * md.pointer_size);
4622 bytes_per_address = bfd_arch_bits_per_address (stdoutput) / 8;
4623
4624 /* Issue the values of a) Proc Begin, b) Proc End, c) Unwind Record. */
4625 e.X_op = O_pseudo_fixup;
4626 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4627 e.X_add_number = 0;
4628 if (!S_IS_LOCAL (unwind.proc_pending.sym)
4629 && S_IS_DEFINED (unwind.proc_pending.sym))
4630 e.X_add_symbol = symbol_temp_new (S_GET_SEGMENT (unwind.proc_pending.sym),
4631 S_GET_VALUE (unwind.proc_pending.sym),
4632 symbol_get_frag (unwind.proc_pending.sym));
4633 else
4634 e.X_add_symbol = unwind.proc_pending.sym;
4635 ia64_cons_fix_new (frag_now, where, bytes_per_address, &e);
4636
4637 e.X_op = O_pseudo_fixup;
4638 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4639 e.X_add_number = 0;
4640 e.X_add_symbol = proc_end;
4641 ia64_cons_fix_new (frag_now, where + bytes_per_address,
4642 bytes_per_address, &e);
4643
4644 if (unwind.info)
4645 {
4646 e.X_op = O_pseudo_fixup;
4647 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4648 e.X_add_number = 0;
4649 e.X_add_symbol = unwind.info;
4650 ia64_cons_fix_new (frag_now, where + (bytes_per_address * 2),
4651 bytes_per_address, &e);
4652 }
4653 }
4654 subseg_set (saved_seg, saved_subseg);
4655
4656 /* Set symbol sizes. */
4657 pending = &unwind.proc_pending;
4658 if (S_GET_NAME (pending->sym))
4659 {
4660 do
4661 {
4662 symbolS *sym = pending->sym;
4663
4664 if (!S_IS_DEFINED (sym))
4665 as_bad ("`%s' was not defined within procedure", S_GET_NAME (sym));
4666 else if (S_GET_SIZE (sym) == 0
4667 && symbol_get_obj (sym)->size == NULL)
4668 {
4669 fragS *frag = symbol_get_frag (sym);
4670
4671 if (frag)
4672 {
4673 if (frag == frag_now && SEG_NORMAL (now_seg))
4674 S_SET_SIZE (sym, frag_now_fix () - S_GET_VALUE (sym));
4675 else
4676 {
4677 symbol_get_obj (sym)->size =
4678 (expressionS *) xmalloc (sizeof (expressionS));
4679 symbol_get_obj (sym)->size->X_op = O_subtract;
4680 symbol_get_obj (sym)->size->X_add_symbol
4681 = symbol_new (FAKE_LABEL_NAME, now_seg,
4682 frag_now_fix (), frag_now);
4683 symbol_get_obj (sym)->size->X_op_symbol = sym;
4684 symbol_get_obj (sym)->size->X_add_number = 0;
4685 }
4686 }
4687 }
4688 } while ((pending = pending->next) != NULL);
4689 }
4690
4691 /* Parse names of main and alternate entry points. */
4692 while (1)
4693 {
4694 char *name, *p, c;
4695
4696 SKIP_WHITESPACE ();
4697 name = input_line_pointer;
4698 c = get_symbol_end ();
4699 p = input_line_pointer;
4700 if (!*name)
4701 (md.unwind_check == unwind_check_warning
4702 ? as_warn
4703 : as_bad) ("Empty argument of .endp");
4704 else
4705 {
4706 symbolS *sym = symbol_find (name);
4707
4708 for (pending = &unwind.proc_pending; pending; pending = pending->next)
4709 {
4710 if (sym == pending->sym)
4711 {
4712 pending->sym = NULL;
4713 break;
4714 }
4715 }
4716 if (!sym || !pending)
4717 as_warn ("`%s' was not specified with previous .proc", name);
4718 }
4719 *p = c;
4720 SKIP_WHITESPACE ();
4721 if (*input_line_pointer != ',')
4722 break;
4723 ++input_line_pointer;
4724 }
4725 demand_empty_rest_of_line ();
4726
4727 /* Deliberately only checking for the main entry point here; the
4728 language spec even says all arguments to .endp are ignored. */
4729 if (unwind.proc_pending.sym
4730 && S_GET_NAME (unwind.proc_pending.sym)
4731 && strcmp (S_GET_NAME (unwind.proc_pending.sym), FAKE_LABEL_NAME))
4732 as_warn ("`%s' should be an operand to this .endp",
4733 S_GET_NAME (unwind.proc_pending.sym));
4734 while (unwind.proc_pending.next)
4735 {
4736 pending = unwind.proc_pending.next;
4737 unwind.proc_pending.next = pending->next;
4738 free (pending);
4739 }
4740 unwind.proc_pending.sym = unwind.info = NULL;
4741 }
4742
4743 static void
4744 dot_template (template)
4745 int template;
4746 {
4747 CURR_SLOT.user_template = template;
4748 }
4749
4750 static void
4751 dot_regstk (dummy)
4752 int dummy ATTRIBUTE_UNUSED;
4753 {
4754 int ins, locs, outs, rots;
4755
4756 if (is_it_end_of_statement ())
4757 ins = locs = outs = rots = 0;
4758 else
4759 {
4760 ins = get_absolute_expression ();
4761 if (*input_line_pointer++ != ',')
4762 goto err;
4763 locs = get_absolute_expression ();
4764 if (*input_line_pointer++ != ',')
4765 goto err;
4766 outs = get_absolute_expression ();
4767 if (*input_line_pointer++ != ',')
4768 goto err;
4769 rots = get_absolute_expression ();
4770 }
4771 set_regstack (ins, locs, outs, rots);
4772 return;
4773
4774 err:
4775 as_bad ("Comma expected");
4776 ignore_rest_of_line ();
4777 }
4778
4779 static void
4780 dot_rot (type)
4781 int type;
4782 {
4783 offsetT num_regs;
4784 valueT num_alloced = 0;
4785 struct dynreg **drpp, *dr;
4786 int ch, base_reg = 0;
4787 char *name, *start;
4788 size_t len;
4789
4790 switch (type)
4791 {
4792 case DYNREG_GR: base_reg = REG_GR + 32; break;
4793 case DYNREG_FR: base_reg = REG_FR + 32; break;
4794 case DYNREG_PR: base_reg = REG_P + 16; break;
4795 default: break;
4796 }
4797
4798 /* First, remove existing names from hash table. */
4799 for (dr = md.dynreg[type]; dr && dr->num_regs; dr = dr->next)
4800 {
4801 hash_delete (md.dynreg_hash, dr->name);
4802 /* FIXME: Free dr->name. */
4803 dr->num_regs = 0;
4804 }
4805
4806 drpp = &md.dynreg[type];
4807 while (1)
4808 {
4809 start = input_line_pointer;
4810 ch = get_symbol_end ();
4811 len = strlen (ia64_canonicalize_symbol_name (start));
4812 *input_line_pointer = ch;
4813
4814 SKIP_WHITESPACE ();
4815 if (*input_line_pointer != '[')
4816 {
4817 as_bad ("Expected '['");
4818 goto err;
4819 }
4820 ++input_line_pointer; /* skip '[' */
4821
4822 num_regs = get_absolute_expression ();
4823
4824 if (*input_line_pointer++ != ']')
4825 {
4826 as_bad ("Expected ']'");
4827 goto err;
4828 }
4829 if (num_regs <= 0)
4830 {
4831 as_bad ("Number of elements must be positive");
4832 goto err;
4833 }
4834 SKIP_WHITESPACE ();
4835
4836 num_alloced += num_regs;
4837 switch (type)
4838 {
4839 case DYNREG_GR:
4840 if (num_alloced > md.rot.num_regs)
4841 {
4842 as_bad ("Used more than the declared %d rotating registers",
4843 md.rot.num_regs);
4844 goto err;
4845 }
4846 break;
4847 case DYNREG_FR:
4848 if (num_alloced > 96)
4849 {
4850 as_bad ("Used more than the available 96 rotating registers");
4851 goto err;
4852 }
4853 break;
4854 case DYNREG_PR:
4855 if (num_alloced > 48)
4856 {
4857 as_bad ("Used more than the available 48 rotating registers");
4858 goto err;
4859 }
4860 break;
4861
4862 default:
4863 break;
4864 }
4865
4866 if (!*drpp)
4867 {
4868 *drpp = obstack_alloc (&notes, sizeof (*dr));
4869 memset (*drpp, 0, sizeof (*dr));
4870 }
4871
4872 name = obstack_alloc (&notes, len + 1);
4873 memcpy (name, start, len);
4874 name[len] = '\0';
4875
4876 dr = *drpp;
4877 dr->name = name;
4878 dr->num_regs = num_regs;
4879 dr->base = base_reg;
4880 drpp = &dr->next;
4881 base_reg += num_regs;
4882
4883 if (hash_insert (md.dynreg_hash, name, dr))
4884 {
4885 as_bad ("Attempt to redefine register set `%s'", name);
4886 obstack_free (&notes, name);
4887 goto err;
4888 }
4889
4890 if (*input_line_pointer != ',')
4891 break;
4892 ++input_line_pointer; /* skip comma */
4893 SKIP_WHITESPACE ();
4894 }
4895 demand_empty_rest_of_line ();
4896 return;
4897
4898 err:
4899 ignore_rest_of_line ();
4900 }
4901
4902 static void
4903 dot_byteorder (byteorder)
4904 int byteorder;
4905 {
4906 segment_info_type *seginfo = seg_info (now_seg);
4907
4908 if (byteorder == -1)
4909 {
4910 if (seginfo->tc_segment_info_data.endian == 0)
4911 seginfo->tc_segment_info_data.endian = default_big_endian ? 1 : 2;
4912 byteorder = seginfo->tc_segment_info_data.endian == 1;
4913 }
4914 else
4915 seginfo->tc_segment_info_data.endian = byteorder ? 1 : 2;
4916
4917 if (target_big_endian != byteorder)
4918 {
4919 target_big_endian = byteorder;
4920 if (target_big_endian)
4921 {
4922 ia64_number_to_chars = number_to_chars_bigendian;
4923 ia64_float_to_chars = ia64_float_to_chars_bigendian;
4924 }
4925 else
4926 {
4927 ia64_number_to_chars = number_to_chars_littleendian;
4928 ia64_float_to_chars = ia64_float_to_chars_littleendian;
4929 }
4930 }
4931 }
4932
4933 static void
4934 dot_psr (dummy)
4935 int dummy ATTRIBUTE_UNUSED;
4936 {
4937 char *option;
4938 int ch;
4939
4940 while (1)
4941 {
4942 option = input_line_pointer;
4943 ch = get_symbol_end ();
4944 if (strcmp (option, "lsb") == 0)
4945 md.flags &= ~EF_IA_64_BE;
4946 else if (strcmp (option, "msb") == 0)
4947 md.flags |= EF_IA_64_BE;
4948 else if (strcmp (option, "abi32") == 0)
4949 md.flags &= ~EF_IA_64_ABI64;
4950 else if (strcmp (option, "abi64") == 0)
4951 md.flags |= EF_IA_64_ABI64;
4952 else
4953 as_bad ("Unknown psr option `%s'", option);
4954 *input_line_pointer = ch;
4955
4956 SKIP_WHITESPACE ();
4957 if (*input_line_pointer != ',')
4958 break;
4959
4960 ++input_line_pointer;
4961 SKIP_WHITESPACE ();
4962 }
4963 demand_empty_rest_of_line ();
4964 }
4965
4966 static void
4967 dot_ln (dummy)
4968 int dummy ATTRIBUTE_UNUSED;
4969 {
4970 new_logical_line (0, get_absolute_expression ());
4971 demand_empty_rest_of_line ();
4972 }
4973
4974 static void
4975 cross_section (ref, cons, ua)
4976 int ref;
4977 void (*cons) PARAMS((int));
4978 int ua;
4979 {
4980 char *start, *end;
4981 int saved_auto_align;
4982 unsigned int section_count;
4983
4984 SKIP_WHITESPACE ();
4985 start = input_line_pointer;
4986 if (*start == '"')
4987 {
4988 int len;
4989 char *name;
4990
4991 name = demand_copy_C_string (&len);
4992 obstack_free(&notes, name);
4993 if (!name)
4994 {
4995 ignore_rest_of_line ();
4996 return;
4997 }
4998 }
4999 else
5000 {
5001 char c = get_symbol_end ();
5002
5003 if (input_line_pointer == start)
5004 {
5005 as_bad ("Missing section name");
5006 ignore_rest_of_line ();
5007 return;
5008 }
5009 *input_line_pointer = c;
5010 }
5011 end = input_line_pointer;
5012 SKIP_WHITESPACE ();
5013 if (*input_line_pointer != ',')
5014 {
5015 as_bad ("Comma expected after section name");
5016 ignore_rest_of_line ();
5017 return;
5018 }
5019 *end = '\0';
5020 end = input_line_pointer + 1; /* skip comma */
5021 input_line_pointer = start;
5022 md.keep_pending_output = 1;
5023 section_count = bfd_count_sections(stdoutput);
5024 obj_elf_section (0);
5025 if (section_count != bfd_count_sections(stdoutput))
5026 as_warn ("Creating sections with .xdataN/.xrealN/.xstringZ is deprecated.");
5027 input_line_pointer = end;
5028 saved_auto_align = md.auto_align;
5029 if (ua)
5030 md.auto_align = 0;
5031 (*cons) (ref);
5032 if (ua)
5033 md.auto_align = saved_auto_align;
5034 obj_elf_previous (0);
5035 md.keep_pending_output = 0;
5036 }
5037
5038 static void
5039 dot_xdata (size)
5040 int size;
5041 {
5042 cross_section (size, cons, 0);
5043 }
5044
5045 /* Why doesn't float_cons() call md_cons_align() the way cons() does? */
5046
5047 static void
5048 stmt_float_cons (kind)
5049 int kind;
5050 {
5051 size_t alignment;
5052
5053 switch (kind)
5054 {
5055 case 'd':
5056 alignment = 8;
5057 break;
5058
5059 case 'x':
5060 case 'X':
5061 alignment = 16;
5062 break;
5063
5064 case 'f':
5065 default:
5066 alignment = 4;
5067 break;
5068 }
5069 ia64_do_align (alignment);
5070 float_cons (kind);
5071 }
5072
5073 static void
5074 stmt_cons_ua (size)
5075 int size;
5076 {
5077 int saved_auto_align = md.auto_align;
5078
5079 md.auto_align = 0;
5080 cons (size);
5081 md.auto_align = saved_auto_align;
5082 }
5083
5084 static void
5085 dot_xfloat_cons (kind)
5086 int kind;
5087 {
5088 cross_section (kind, stmt_float_cons, 0);
5089 }
5090
5091 static void
5092 dot_xstringer (zero)
5093 int zero;
5094 {
5095 cross_section (zero, stringer, 0);
5096 }
5097
5098 static void
5099 dot_xdata_ua (size)
5100 int size;
5101 {
5102 cross_section (size, cons, 1);
5103 }
5104
5105 static void
5106 dot_xfloat_cons_ua (kind)
5107 int kind;
5108 {
5109 cross_section (kind, float_cons, 1);
5110 }
5111
5112 /* .reg.val <regname>,value */
5113
5114 static void
5115 dot_reg_val (dummy)
5116 int dummy ATTRIBUTE_UNUSED;
5117 {
5118 expressionS reg;
5119
5120 expression_and_evaluate (&reg);
5121 if (reg.X_op != O_register)
5122 {
5123 as_bad (_("Register name expected"));
5124 ignore_rest_of_line ();
5125 }
5126 else if (*input_line_pointer++ != ',')
5127 {
5128 as_bad (_("Comma expected"));
5129 ignore_rest_of_line ();
5130 }
5131 else
5132 {
5133 valueT value = get_absolute_expression ();
5134 int regno = reg.X_add_number;
5135 if (regno <= REG_GR || regno > REG_GR + 127)
5136 as_warn (_("Register value annotation ignored"));
5137 else
5138 {
5139 gr_values[regno - REG_GR].known = 1;
5140 gr_values[regno - REG_GR].value = value;
5141 gr_values[regno - REG_GR].path = md.path;
5142 }
5143 }
5144 demand_empty_rest_of_line ();
5145 }
5146
5147 /*
5148 .serialize.data
5149 .serialize.instruction
5150 */
5151 static void
5152 dot_serialize (type)
5153 int type;
5154 {
5155 insn_group_break (0, 0, 0);
5156 if (type)
5157 instruction_serialization ();
5158 else
5159 data_serialization ();
5160 insn_group_break (0, 0, 0);
5161 demand_empty_rest_of_line ();
5162 }
5163
5164 /* select dv checking mode
5165 .auto
5166 .explicit
5167 .default
5168
5169 A stop is inserted when changing modes
5170 */
5171
5172 static void
5173 dot_dv_mode (type)
5174 int type;
5175 {
5176 if (md.manual_bundling)
5177 as_warn (_("Directive invalid within a bundle"));
5178
5179 if (type == 'E' || type == 'A')
5180 md.mode_explicitly_set = 0;
5181 else
5182 md.mode_explicitly_set = 1;
5183
5184 md.detect_dv = 1;
5185 switch (type)
5186 {
5187 case 'A':
5188 case 'a':
5189 if (md.explicit_mode)
5190 insn_group_break (1, 0, 0);
5191 md.explicit_mode = 0;
5192 break;
5193 case 'E':
5194 case 'e':
5195 if (!md.explicit_mode)
5196 insn_group_break (1, 0, 0);
5197 md.explicit_mode = 1;
5198 break;
5199 default:
5200 case 'd':
5201 if (md.explicit_mode != md.default_explicit_mode)
5202 insn_group_break (1, 0, 0);
5203 md.explicit_mode = md.default_explicit_mode;
5204 md.mode_explicitly_set = 0;
5205 break;
5206 }
5207 }
5208
5209 static void
5210 print_prmask (mask)
5211 valueT mask;
5212 {
5213 int regno;
5214 char *comma = "";
5215 for (regno = 0; regno < 64; regno++)
5216 {
5217 if (mask & ((valueT) 1 << regno))
5218 {
5219 fprintf (stderr, "%s p%d", comma, regno);
5220 comma = ",";
5221 }
5222 }
5223 }
5224
5225 /*
5226 .pred.rel.clear [p1 [,p2 [,...]]] (also .pred.rel "clear" or @clear)
5227 .pred.rel.imply p1, p2 (also .pred.rel "imply" or @imply)
5228 .pred.rel.mutex p1, p2 [,...] (also .pred.rel "mutex" or @mutex)
5229 .pred.safe_across_calls p1 [, p2 [,...]]
5230 */
5231
5232 static void
5233 dot_pred_rel (type)
5234 int type;
5235 {
5236 valueT mask = 0;
5237 int count = 0;
5238 int p1 = -1, p2 = -1;
5239
5240 if (type == 0)
5241 {
5242 if (*input_line_pointer == '"')
5243 {
5244 int len;
5245 char *form = demand_copy_C_string (&len);
5246
5247 if (strcmp (form, "mutex") == 0)
5248 type = 'm';
5249 else if (strcmp (form, "clear") == 0)
5250 type = 'c';
5251 else if (strcmp (form, "imply") == 0)
5252 type = 'i';
5253 obstack_free (&notes, form);
5254 }
5255 else if (*input_line_pointer == '@')
5256 {
5257 char *form = ++input_line_pointer;
5258 char c = get_symbol_end();
5259
5260 if (strcmp (form, "mutex") == 0)
5261 type = 'm';
5262 else if (strcmp (form, "clear") == 0)
5263 type = 'c';
5264 else if (strcmp (form, "imply") == 0)
5265 type = 'i';
5266 *input_line_pointer = c;
5267 }
5268 else
5269 {
5270 as_bad (_("Missing predicate relation type"));
5271 ignore_rest_of_line ();
5272 return;
5273 }
5274 if (type == 0)
5275 {
5276 as_bad (_("Unrecognized predicate relation type"));
5277 ignore_rest_of_line ();
5278 return;
5279 }
5280 if (*input_line_pointer == ',')
5281 ++input_line_pointer;
5282 SKIP_WHITESPACE ();
5283 }
5284
5285 while (1)
5286 {
5287 valueT bits = 1;
5288 int sep, regno;
5289 expressionS pr, *pr1, *pr2;
5290
5291 sep = parse_operand (&pr, ',');
5292 if (pr.X_op == O_register
5293 && pr.X_add_number >= REG_P
5294 && pr.X_add_number <= REG_P + 63)
5295 {
5296 regno = pr.X_add_number - REG_P;
5297 bits <<= regno;
5298 count++;
5299 if (p1 == -1)
5300 p1 = regno;
5301 else if (p2 == -1)
5302 p2 = regno;
5303 }
5304 else if (type != 'i'
5305 && pr.X_op == O_subtract
5306 && (pr1 = symbol_get_value_expression (pr.X_add_symbol))
5307 && pr1->X_op == O_register
5308 && pr1->X_add_number >= REG_P
5309 && pr1->X_add_number <= REG_P + 63
5310 && (pr2 = symbol_get_value_expression (pr.X_op_symbol))
5311 && pr2->X_op == O_register
5312 && pr2->X_add_number >= REG_P
5313 && pr2->X_add_number <= REG_P + 63)
5314 {
5315 /* It's a range. */
5316 int stop;
5317
5318 regno = pr1->X_add_number - REG_P;
5319 stop = pr2->X_add_number - REG_P;
5320 if (regno >= stop)
5321 {
5322 as_bad (_("Bad register range"));
5323 ignore_rest_of_line ();
5324 return;
5325 }
5326 bits = ((bits << stop) << 1) - (bits << regno);
5327 count += stop - regno + 1;
5328 }
5329 else
5330 {
5331 as_bad (_("Predicate register expected"));
5332 ignore_rest_of_line ();
5333 return;
5334 }
5335 if (mask & bits)
5336 as_warn (_("Duplicate predicate register ignored"));
5337 mask |= bits;
5338 if (sep != ',')
5339 break;
5340 }
5341
5342 switch (type)
5343 {
5344 case 'c':
5345 if (count == 0)
5346 mask = ~(valueT) 0;
5347 clear_qp_mutex (mask);
5348 clear_qp_implies (mask, (valueT) 0);
5349 break;
5350 case 'i':
5351 if (count != 2 || p1 == -1 || p2 == -1)
5352 as_bad (_("Predicate source and target required"));
5353 else if (p1 == 0 || p2 == 0)
5354 as_bad (_("Use of p0 is not valid in this context"));
5355 else
5356 add_qp_imply (p1, p2);
5357 break;
5358 case 'm':
5359 if (count < 2)
5360 {
5361 as_bad (_("At least two PR arguments expected"));
5362 break;
5363 }
5364 else if (mask & 1)
5365 {
5366 as_bad (_("Use of p0 is not valid in this context"));
5367 break;
5368 }
5369 add_qp_mutex (mask);
5370 break;
5371 case 's':
5372 /* note that we don't override any existing relations */
5373 if (count == 0)
5374 {
5375 as_bad (_("At least one PR argument expected"));
5376 break;
5377 }
5378 if (md.debug_dv)
5379 {
5380 fprintf (stderr, "Safe across calls: ");
5381 print_prmask (mask);
5382 fprintf (stderr, "\n");
5383 }
5384 qp_safe_across_calls = mask;
5385 break;
5386 }
5387 demand_empty_rest_of_line ();
5388 }
5389
5390 /* .entry label [, label [, ...]]
5391 Hint to DV code that the given labels are to be considered entry points.
5392 Otherwise, only global labels are considered entry points. */
5393
5394 static void
5395 dot_entry (dummy)
5396 int dummy ATTRIBUTE_UNUSED;
5397 {
5398 const char *err;
5399 char *name;
5400 int c;
5401 symbolS *symbolP;
5402
5403 do
5404 {
5405 name = input_line_pointer;
5406 c = get_symbol_end ();
5407 symbolP = symbol_find_or_make (name);
5408
5409 err = hash_insert (md.entry_hash, S_GET_NAME (symbolP), (PTR) symbolP);
5410 if (err)
5411 as_fatal (_("Inserting \"%s\" into entry hint table failed: %s"),
5412 name, err);
5413
5414 *input_line_pointer = c;
5415 SKIP_WHITESPACE ();
5416 c = *input_line_pointer;
5417 if (c == ',')
5418 {
5419 input_line_pointer++;
5420 SKIP_WHITESPACE ();
5421 if (*input_line_pointer == '\n')
5422 c = '\n';
5423 }
5424 }
5425 while (c == ',');
5426
5427 demand_empty_rest_of_line ();
5428 }
5429
5430 /* .mem.offset offset, base
5431 "base" is used to distinguish between offsets from a different base. */
5432
5433 static void
5434 dot_mem_offset (dummy)
5435 int dummy ATTRIBUTE_UNUSED;
5436 {
5437 md.mem_offset.hint = 1;
5438 md.mem_offset.offset = get_absolute_expression ();
5439 if (*input_line_pointer != ',')
5440 {
5441 as_bad (_("Comma expected"));
5442 ignore_rest_of_line ();
5443 return;
5444 }
5445 ++input_line_pointer;
5446 md.mem_offset.base = get_absolute_expression ();
5447 demand_empty_rest_of_line ();
5448 }
5449
5450 /* ia64-specific pseudo-ops: */
5451 const pseudo_typeS md_pseudo_table[] =
5452 {
5453 { "radix", dot_radix, 0 },
5454 { "lcomm", s_lcomm_bytes, 1 },
5455 { "loc", dot_loc, 0 },
5456 { "bss", dot_special_section, SPECIAL_SECTION_BSS },
5457 { "sbss", dot_special_section, SPECIAL_SECTION_SBSS },
5458 { "sdata", dot_special_section, SPECIAL_SECTION_SDATA },
5459 { "rodata", dot_special_section, SPECIAL_SECTION_RODATA },
5460 { "comment", dot_special_section, SPECIAL_SECTION_COMMENT },
5461 { "ia_64.unwind", dot_special_section, SPECIAL_SECTION_UNWIND },
5462 { "ia_64.unwind_info", dot_special_section, SPECIAL_SECTION_UNWIND_INFO },
5463 { "init_array", dot_special_section, SPECIAL_SECTION_INIT_ARRAY },
5464 { "fini_array", dot_special_section, SPECIAL_SECTION_FINI_ARRAY },
5465 { "proc", dot_proc, 0 },
5466 { "body", dot_body, 0 },
5467 { "prologue", dot_prologue, 0 },
5468 { "endp", dot_endp, 0 },
5469
5470 { "fframe", dot_fframe, 0 },
5471 { "vframe", dot_vframe, 0 },
5472 { "vframesp", dot_vframesp, 0 },
5473 { "vframepsp", dot_vframesp, 1 },
5474 { "save", dot_save, 0 },
5475 { "restore", dot_restore, 0 },
5476 { "restorereg", dot_restorereg, 0 },
5477 { "restorereg.p", dot_restorereg, 1 },
5478 { "handlerdata", dot_handlerdata, 0 },
5479 { "unwentry", dot_unwentry, 0 },
5480 { "altrp", dot_altrp, 0 },
5481 { "savesp", dot_savemem, 0 },
5482 { "savepsp", dot_savemem, 1 },
5483 { "save.g", dot_saveg, 0 },
5484 { "save.f", dot_savef, 0 },
5485 { "save.b", dot_saveb, 0 },
5486 { "save.gf", dot_savegf, 0 },
5487 { "spill", dot_spill, 0 },
5488 { "spillreg", dot_spillreg, 0 },
5489 { "spillsp", dot_spillmem, 0 },
5490 { "spillpsp", dot_spillmem, 1 },
5491 { "spillreg.p", dot_spillreg, 1 },
5492 { "spillsp.p", dot_spillmem, ~0 },
5493 { "spillpsp.p", dot_spillmem, ~1 },
5494 { "label_state", dot_label_state, 0 },
5495 { "copy_state", dot_copy_state, 0 },
5496 { "unwabi", dot_unwabi, 0 },
5497 { "personality", dot_personality, 0 },
5498 { "mii", dot_template, 0x0 },
5499 { "mli", dot_template, 0x2 }, /* old format, for compatibility */
5500 { "mlx", dot_template, 0x2 },
5501 { "mmi", dot_template, 0x4 },
5502 { "mfi", dot_template, 0x6 },
5503 { "mmf", dot_template, 0x7 },
5504 { "mib", dot_template, 0x8 },
5505 { "mbb", dot_template, 0x9 },
5506 { "bbb", dot_template, 0xb },
5507 { "mmb", dot_template, 0xc },
5508 { "mfb", dot_template, 0xe },
5509 { "align", dot_align, 0 },
5510 { "regstk", dot_regstk, 0 },
5511 { "rotr", dot_rot, DYNREG_GR },
5512 { "rotf", dot_rot, DYNREG_FR },
5513 { "rotp", dot_rot, DYNREG_PR },
5514 { "lsb", dot_byteorder, 0 },
5515 { "msb", dot_byteorder, 1 },
5516 { "psr", dot_psr, 0 },
5517 { "alias", dot_alias, 0 },
5518 { "secalias", dot_alias, 1 },
5519 { "ln", dot_ln, 0 }, /* source line info (for debugging) */
5520
5521 { "xdata1", dot_xdata, 1 },
5522 { "xdata2", dot_xdata, 2 },
5523 { "xdata4", dot_xdata, 4 },
5524 { "xdata8", dot_xdata, 8 },
5525 { "xdata16", dot_xdata, 16 },
5526 { "xreal4", dot_xfloat_cons, 'f' },
5527 { "xreal8", dot_xfloat_cons, 'd' },
5528 { "xreal10", dot_xfloat_cons, 'x' },
5529 { "xreal16", dot_xfloat_cons, 'X' },
5530 { "xstring", dot_xstringer, 0 },
5531 { "xstringz", dot_xstringer, 1 },
5532
5533 /* unaligned versions: */
5534 { "xdata2.ua", dot_xdata_ua, 2 },
5535 { "xdata4.ua", dot_xdata_ua, 4 },
5536 { "xdata8.ua", dot_xdata_ua, 8 },
5537 { "xdata16.ua", dot_xdata_ua, 16 },
5538 { "xreal4.ua", dot_xfloat_cons_ua, 'f' },
5539 { "xreal8.ua", dot_xfloat_cons_ua, 'd' },
5540 { "xreal10.ua", dot_xfloat_cons_ua, 'x' },
5541 { "xreal16.ua", dot_xfloat_cons_ua, 'X' },
5542
5543 /* annotations/DV checking support */
5544 { "entry", dot_entry, 0 },
5545 { "mem.offset", dot_mem_offset, 0 },
5546 { "pred.rel", dot_pred_rel, 0 },
5547 { "pred.rel.clear", dot_pred_rel, 'c' },
5548 { "pred.rel.imply", dot_pred_rel, 'i' },
5549 { "pred.rel.mutex", dot_pred_rel, 'm' },
5550 { "pred.safe_across_calls", dot_pred_rel, 's' },
5551 { "reg.val", dot_reg_val, 0 },
5552 { "serialize.data", dot_serialize, 0 },
5553 { "serialize.instruction", dot_serialize, 1 },
5554 { "auto", dot_dv_mode, 'a' },
5555 { "explicit", dot_dv_mode, 'e' },
5556 { "default", dot_dv_mode, 'd' },
5557
5558 /* ??? These are needed to make gas/testsuite/gas/elf/ehopt.s work.
5559 IA-64 aligns data allocation pseudo-ops by default, so we have to
5560 tell it that these ones are supposed to be unaligned. Long term,
5561 should rewrite so that only IA-64 specific data allocation pseudo-ops
5562 are aligned by default. */
5563 {"2byte", stmt_cons_ua, 2},
5564 {"4byte", stmt_cons_ua, 4},
5565 {"8byte", stmt_cons_ua, 8},
5566
5567 { NULL, 0, 0 }
5568 };
5569
5570 static const struct pseudo_opcode
5571 {
5572 const char *name;
5573 void (*handler) (int);
5574 int arg;
5575 }
5576 pseudo_opcode[] =
5577 {
5578 /* these are more like pseudo-ops, but don't start with a dot */
5579 { "data1", cons, 1 },
5580 { "data2", cons, 2 },
5581 { "data4", cons, 4 },
5582 { "data8", cons, 8 },
5583 { "data16", cons, 16 },
5584 { "real4", stmt_float_cons, 'f' },
5585 { "real8", stmt_float_cons, 'd' },
5586 { "real10", stmt_float_cons, 'x' },
5587 { "real16", stmt_float_cons, 'X' },
5588 { "string", stringer, 0 },
5589 { "stringz", stringer, 1 },
5590
5591 /* unaligned versions: */
5592 { "data2.ua", stmt_cons_ua, 2 },
5593 { "data4.ua", stmt_cons_ua, 4 },
5594 { "data8.ua", stmt_cons_ua, 8 },
5595 { "data16.ua", stmt_cons_ua, 16 },
5596 { "real4.ua", float_cons, 'f' },
5597 { "real8.ua", float_cons, 'd' },
5598 { "real10.ua", float_cons, 'x' },
5599 { "real16.ua", float_cons, 'X' },
5600 };
5601
5602 /* Declare a register by creating a symbol for it and entering it in
5603 the symbol table. */
5604
5605 static symbolS *
5606 declare_register (name, regnum)
5607 const char *name;
5608 unsigned int regnum;
5609 {
5610 const char *err;
5611 symbolS *sym;
5612
5613 sym = symbol_create (name, reg_section, regnum, &zero_address_frag);
5614
5615 err = hash_insert (md.reg_hash, S_GET_NAME (sym), (PTR) sym);
5616 if (err)
5617 as_fatal ("Inserting \"%s\" into register table failed: %s",
5618 name, err);
5619
5620 return sym;
5621 }
5622
5623 static void
5624 declare_register_set (prefix, num_regs, base_regnum)
5625 const char *prefix;
5626 unsigned int num_regs;
5627 unsigned int base_regnum;
5628 {
5629 char name[8];
5630 unsigned int i;
5631
5632 for (i = 0; i < num_regs; ++i)
5633 {
5634 snprintf (name, sizeof (name), "%s%u", prefix, i);
5635 declare_register (name, base_regnum + i);
5636 }
5637 }
5638
5639 static unsigned int
5640 operand_width (opnd)
5641 enum ia64_opnd opnd;
5642 {
5643 const struct ia64_operand *odesc = &elf64_ia64_operands[opnd];
5644 unsigned int bits = 0;
5645 int i;
5646
5647 bits = 0;
5648 for (i = 0; i < NELEMS (odesc->field) && odesc->field[i].bits; ++i)
5649 bits += odesc->field[i].bits;
5650
5651 return bits;
5652 }
5653
5654 static enum operand_match_result
5655 operand_match (idesc, index, e)
5656 const struct ia64_opcode *idesc;
5657 int index;
5658 expressionS *e;
5659 {
5660 enum ia64_opnd opnd = idesc->operands[index];
5661 int bits, relocatable = 0;
5662 struct insn_fix *fix;
5663 bfd_signed_vma val;
5664
5665 switch (opnd)
5666 {
5667 /* constants: */
5668
5669 case IA64_OPND_AR_CCV:
5670 if (e->X_op == O_register && e->X_add_number == REG_AR + 32)
5671 return OPERAND_MATCH;
5672 break;
5673
5674 case IA64_OPND_AR_CSD:
5675 if (e->X_op == O_register && e->X_add_number == REG_AR + 25)
5676 return OPERAND_MATCH;
5677 break;
5678
5679 case IA64_OPND_AR_PFS:
5680 if (e->X_op == O_register && e->X_add_number == REG_AR + 64)
5681 return OPERAND_MATCH;
5682 break;
5683
5684 case IA64_OPND_GR0:
5685 if (e->X_op == O_register && e->X_add_number == REG_GR + 0)
5686 return OPERAND_MATCH;
5687 break;
5688
5689 case IA64_OPND_IP:
5690 if (e->X_op == O_register && e->X_add_number == REG_IP)
5691 return OPERAND_MATCH;
5692 break;
5693
5694 case IA64_OPND_PR:
5695 if (e->X_op == O_register && e->X_add_number == REG_PR)
5696 return OPERAND_MATCH;
5697 break;
5698
5699 case IA64_OPND_PR_ROT:
5700 if (e->X_op == O_register && e->X_add_number == REG_PR_ROT)
5701 return OPERAND_MATCH;
5702 break;
5703
5704 case IA64_OPND_PSR:
5705 if (e->X_op == O_register && e->X_add_number == REG_PSR)
5706 return OPERAND_MATCH;
5707 break;
5708
5709 case IA64_OPND_PSR_L:
5710 if (e->X_op == O_register && e->X_add_number == REG_PSR_L)
5711 return OPERAND_MATCH;
5712 break;
5713
5714 case IA64_OPND_PSR_UM:
5715 if (e->X_op == O_register && e->X_add_number == REG_PSR_UM)
5716 return OPERAND_MATCH;
5717 break;
5718
5719 case IA64_OPND_C1:
5720 if (e->X_op == O_constant)
5721 {
5722 if (e->X_add_number == 1)
5723 return OPERAND_MATCH;
5724 else
5725 return OPERAND_OUT_OF_RANGE;
5726 }
5727 break;
5728
5729 case IA64_OPND_C8:
5730 if (e->X_op == O_constant)
5731 {
5732 if (e->X_add_number == 8)
5733 return OPERAND_MATCH;
5734 else
5735 return OPERAND_OUT_OF_RANGE;
5736 }
5737 break;
5738
5739 case IA64_OPND_C16:
5740 if (e->X_op == O_constant)
5741 {
5742 if (e->X_add_number == 16)
5743 return OPERAND_MATCH;
5744 else
5745 return OPERAND_OUT_OF_RANGE;
5746 }
5747 break;
5748
5749 /* register operands: */
5750
5751 case IA64_OPND_AR3:
5752 if (e->X_op == O_register && e->X_add_number >= REG_AR
5753 && e->X_add_number < REG_AR + 128)
5754 return OPERAND_MATCH;
5755 break;
5756
5757 case IA64_OPND_B1:
5758 case IA64_OPND_B2:
5759 if (e->X_op == O_register && e->X_add_number >= REG_BR
5760 && e->X_add_number < REG_BR + 8)
5761 return OPERAND_MATCH;
5762 break;
5763
5764 case IA64_OPND_CR3:
5765 if (e->X_op == O_register && e->X_add_number >= REG_CR
5766 && e->X_add_number < REG_CR + 128)
5767 return OPERAND_MATCH;
5768 break;
5769
5770 case IA64_OPND_F1:
5771 case IA64_OPND_F2:
5772 case IA64_OPND_F3:
5773 case IA64_OPND_F4:
5774 if (e->X_op == O_register && e->X_add_number >= REG_FR
5775 && e->X_add_number < REG_FR + 128)
5776 return OPERAND_MATCH;
5777 break;
5778
5779 case IA64_OPND_P1:
5780 case IA64_OPND_P2:
5781 if (e->X_op == O_register && e->X_add_number >= REG_P
5782 && e->X_add_number < REG_P + 64)
5783 return OPERAND_MATCH;
5784 break;
5785
5786 case IA64_OPND_R1:
5787 case IA64_OPND_R2:
5788 case IA64_OPND_R3:
5789 if (e->X_op == O_register && e->X_add_number >= REG_GR
5790 && e->X_add_number < REG_GR + 128)
5791 return OPERAND_MATCH;
5792 break;
5793
5794 case IA64_OPND_R3_2:
5795 if (e->X_op == O_register && e->X_add_number >= REG_GR)
5796 {
5797 if (e->X_add_number < REG_GR + 4)
5798 return OPERAND_MATCH;
5799 else if (e->X_add_number < REG_GR + 128)
5800 return OPERAND_OUT_OF_RANGE;
5801 }
5802 break;
5803
5804 /* indirect operands: */
5805 case IA64_OPND_CPUID_R3:
5806 case IA64_OPND_DBR_R3:
5807 case IA64_OPND_DTR_R3:
5808 case IA64_OPND_ITR_R3:
5809 case IA64_OPND_IBR_R3:
5810 case IA64_OPND_MSR_R3:
5811 case IA64_OPND_PKR_R3:
5812 case IA64_OPND_PMC_R3:
5813 case IA64_OPND_PMD_R3:
5814 case IA64_OPND_RR_R3:
5815 if (e->X_op == O_index && e->X_op_symbol
5816 && (S_GET_VALUE (e->X_op_symbol) - IND_CPUID
5817 == opnd - IA64_OPND_CPUID_R3))
5818 return OPERAND_MATCH;
5819 break;
5820
5821 case IA64_OPND_MR3:
5822 if (e->X_op == O_index && !e->X_op_symbol)
5823 return OPERAND_MATCH;
5824 break;
5825
5826 /* immediate operands: */
5827 case IA64_OPND_CNT2a:
5828 case IA64_OPND_LEN4:
5829 case IA64_OPND_LEN6:
5830 bits = operand_width (idesc->operands[index]);
5831 if (e->X_op == O_constant)
5832 {
5833 if ((bfd_vma) (e->X_add_number - 1) < ((bfd_vma) 1 << bits))
5834 return OPERAND_MATCH;
5835 else
5836 return OPERAND_OUT_OF_RANGE;
5837 }
5838 break;
5839
5840 case IA64_OPND_CNT2b:
5841 if (e->X_op == O_constant)
5842 {
5843 if ((bfd_vma) (e->X_add_number - 1) < 3)
5844 return OPERAND_MATCH;
5845 else
5846 return OPERAND_OUT_OF_RANGE;
5847 }
5848 break;
5849
5850 case IA64_OPND_CNT2c:
5851 val = e->X_add_number;
5852 if (e->X_op == O_constant)
5853 {
5854 if ((val == 0 || val == 7 || val == 15 || val == 16))
5855 return OPERAND_MATCH;
5856 else
5857 return OPERAND_OUT_OF_RANGE;
5858 }
5859 break;
5860
5861 case IA64_OPND_SOR:
5862 /* SOR must be an integer multiple of 8 */
5863 if (e->X_op == O_constant && e->X_add_number & 0x7)
5864 return OPERAND_OUT_OF_RANGE;
5865 case IA64_OPND_SOF:
5866 case IA64_OPND_SOL:
5867 if (e->X_op == O_constant)
5868 {
5869 if ((bfd_vma) e->X_add_number <= 96)
5870 return OPERAND_MATCH;
5871 else
5872 return OPERAND_OUT_OF_RANGE;
5873 }
5874 break;
5875
5876 case IA64_OPND_IMMU62:
5877 if (e->X_op == O_constant)
5878 {
5879 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << 62))
5880 return OPERAND_MATCH;
5881 else
5882 return OPERAND_OUT_OF_RANGE;
5883 }
5884 else
5885 {
5886 /* FIXME -- need 62-bit relocation type */
5887 as_bad (_("62-bit relocation not yet implemented"));
5888 }
5889 break;
5890
5891 case IA64_OPND_IMMU64:
5892 if (e->X_op == O_symbol || e->X_op == O_pseudo_fixup
5893 || e->X_op == O_subtract)
5894 {
5895 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5896 fix->code = BFD_RELOC_IA64_IMM64;
5897 if (e->X_op != O_subtract)
5898 {
5899 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5900 if (e->X_op == O_pseudo_fixup)
5901 e->X_op = O_symbol;
5902 }
5903
5904 fix->opnd = idesc->operands[index];
5905 fix->expr = *e;
5906 fix->is_pcrel = 0;
5907 ++CURR_SLOT.num_fixups;
5908 return OPERAND_MATCH;
5909 }
5910 else if (e->X_op == O_constant)
5911 return OPERAND_MATCH;
5912 break;
5913
5914 case IA64_OPND_IMMU5b:
5915 if (e->X_op == O_constant)
5916 {
5917 val = e->X_add_number;
5918 if (val >= 32 && val <= 63)
5919 return OPERAND_MATCH;
5920 else
5921 return OPERAND_OUT_OF_RANGE;
5922 }
5923 break;
5924
5925 case IA64_OPND_CCNT5:
5926 case IA64_OPND_CNT5:
5927 case IA64_OPND_CNT6:
5928 case IA64_OPND_CPOS6a:
5929 case IA64_OPND_CPOS6b:
5930 case IA64_OPND_CPOS6c:
5931 case IA64_OPND_IMMU2:
5932 case IA64_OPND_IMMU7a:
5933 case IA64_OPND_IMMU7b:
5934 case IA64_OPND_IMMU21:
5935 case IA64_OPND_IMMU24:
5936 case IA64_OPND_MBTYPE4:
5937 case IA64_OPND_MHTYPE8:
5938 case IA64_OPND_POS6:
5939 bits = operand_width (idesc->operands[index]);
5940 if (e->X_op == O_constant)
5941 {
5942 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
5943 return OPERAND_MATCH;
5944 else
5945 return OPERAND_OUT_OF_RANGE;
5946 }
5947 break;
5948
5949 case IA64_OPND_IMMU9:
5950 bits = operand_width (idesc->operands[index]);
5951 if (e->X_op == O_constant)
5952 {
5953 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
5954 {
5955 int lobits = e->X_add_number & 0x3;
5956 if (((bfd_vma) e->X_add_number & 0x3C) != 0 && lobits == 0)
5957 e->X_add_number |= (bfd_vma) 0x3;
5958 return OPERAND_MATCH;
5959 }
5960 else
5961 return OPERAND_OUT_OF_RANGE;
5962 }
5963 break;
5964
5965 case IA64_OPND_IMM44:
5966 /* least 16 bits must be zero */
5967 if ((e->X_add_number & 0xffff) != 0)
5968 /* XXX technically, this is wrong: we should not be issuing warning
5969 messages until we're sure this instruction pattern is going to
5970 be used! */
5971 as_warn (_("lower 16 bits of mask ignored"));
5972
5973 if (e->X_op == O_constant)
5974 {
5975 if (((e->X_add_number >= 0
5976 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 44))
5977 || (e->X_add_number < 0
5978 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 44))))
5979 {
5980 /* sign-extend */
5981 if (e->X_add_number >= 0
5982 && (e->X_add_number & ((bfd_vma) 1 << 43)) != 0)
5983 {
5984 e->X_add_number |= ~(((bfd_vma) 1 << 44) - 1);
5985 }
5986 return OPERAND_MATCH;
5987 }
5988 else
5989 return OPERAND_OUT_OF_RANGE;
5990 }
5991 break;
5992
5993 case IA64_OPND_IMM17:
5994 /* bit 0 is a don't care (pr0 is hardwired to 1) */
5995 if (e->X_op == O_constant)
5996 {
5997 if (((e->X_add_number >= 0
5998 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 17))
5999 || (e->X_add_number < 0
6000 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 17))))
6001 {
6002 /* sign-extend */
6003 if (e->X_add_number >= 0
6004 && (e->X_add_number & ((bfd_vma) 1 << 16)) != 0)
6005 {
6006 e->X_add_number |= ~(((bfd_vma) 1 << 17) - 1);
6007 }
6008 return OPERAND_MATCH;
6009 }
6010 else
6011 return OPERAND_OUT_OF_RANGE;
6012 }
6013 break;
6014
6015 case IA64_OPND_IMM14:
6016 case IA64_OPND_IMM22:
6017 relocatable = 1;
6018 case IA64_OPND_IMM1:
6019 case IA64_OPND_IMM8:
6020 case IA64_OPND_IMM8U4:
6021 case IA64_OPND_IMM8M1:
6022 case IA64_OPND_IMM8M1U4:
6023 case IA64_OPND_IMM8M1U8:
6024 case IA64_OPND_IMM9a:
6025 case IA64_OPND_IMM9b:
6026 bits = operand_width (idesc->operands[index]);
6027 if (relocatable && (e->X_op == O_symbol
6028 || e->X_op == O_subtract
6029 || e->X_op == O_pseudo_fixup))
6030 {
6031 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
6032
6033 if (idesc->operands[index] == IA64_OPND_IMM14)
6034 fix->code = BFD_RELOC_IA64_IMM14;
6035 else
6036 fix->code = BFD_RELOC_IA64_IMM22;
6037
6038 if (e->X_op != O_subtract)
6039 {
6040 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
6041 if (e->X_op == O_pseudo_fixup)
6042 e->X_op = O_symbol;
6043 }
6044
6045 fix->opnd = idesc->operands[index];
6046 fix->expr = *e;
6047 fix->is_pcrel = 0;
6048 ++CURR_SLOT.num_fixups;
6049 return OPERAND_MATCH;
6050 }
6051 else if (e->X_op != O_constant
6052 && ! (e->X_op == O_big && opnd == IA64_OPND_IMM8M1U8))
6053 return OPERAND_MISMATCH;
6054
6055 if (opnd == IA64_OPND_IMM8M1U4)
6056 {
6057 /* Zero is not valid for unsigned compares that take an adjusted
6058 constant immediate range. */
6059 if (e->X_add_number == 0)
6060 return OPERAND_OUT_OF_RANGE;
6061
6062 /* Sign-extend 32-bit unsigned numbers, so that the following range
6063 checks will work. */
6064 val = e->X_add_number;
6065 if (((val & (~(bfd_vma) 0 << 32)) == 0)
6066 && ((val & ((bfd_vma) 1 << 31)) != 0))
6067 val = ((val << 32) >> 32);
6068
6069 /* Check for 0x100000000. This is valid because
6070 0x100000000-1 is the same as ((uint32_t) -1). */
6071 if (val == ((bfd_signed_vma) 1 << 32))
6072 return OPERAND_MATCH;
6073
6074 val = val - 1;
6075 }
6076 else if (opnd == IA64_OPND_IMM8M1U8)
6077 {
6078 /* Zero is not valid for unsigned compares that take an adjusted
6079 constant immediate range. */
6080 if (e->X_add_number == 0)
6081 return OPERAND_OUT_OF_RANGE;
6082
6083 /* Check for 0x10000000000000000. */
6084 if (e->X_op == O_big)
6085 {
6086 if (generic_bignum[0] == 0
6087 && generic_bignum[1] == 0
6088 && generic_bignum[2] == 0
6089 && generic_bignum[3] == 0
6090 && generic_bignum[4] == 1)
6091 return OPERAND_MATCH;
6092 else
6093 return OPERAND_OUT_OF_RANGE;
6094 }
6095 else
6096 val = e->X_add_number - 1;
6097 }
6098 else if (opnd == IA64_OPND_IMM8M1)
6099 val = e->X_add_number - 1;
6100 else if (opnd == IA64_OPND_IMM8U4)
6101 {
6102 /* Sign-extend 32-bit unsigned numbers, so that the following range
6103 checks will work. */
6104 val = e->X_add_number;
6105 if (((val & (~(bfd_vma) 0 << 32)) == 0)
6106 && ((val & ((bfd_vma) 1 << 31)) != 0))
6107 val = ((val << 32) >> 32);
6108 }
6109 else
6110 val = e->X_add_number;
6111
6112 if ((val >= 0 && (bfd_vma) val < ((bfd_vma) 1 << (bits - 1)))
6113 || (val < 0 && (bfd_vma) -val <= ((bfd_vma) 1 << (bits - 1))))
6114 return OPERAND_MATCH;
6115 else
6116 return OPERAND_OUT_OF_RANGE;
6117
6118 case IA64_OPND_INC3:
6119 /* +/- 1, 4, 8, 16 */
6120 val = e->X_add_number;
6121 if (val < 0)
6122 val = -val;
6123 if (e->X_op == O_constant)
6124 {
6125 if ((val == 1 || val == 4 || val == 8 || val == 16))
6126 return OPERAND_MATCH;
6127 else
6128 return OPERAND_OUT_OF_RANGE;
6129 }
6130 break;
6131
6132 case IA64_OPND_TGT25:
6133 case IA64_OPND_TGT25b:
6134 case IA64_OPND_TGT25c:
6135 case IA64_OPND_TGT64:
6136 if (e->X_op == O_symbol)
6137 {
6138 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
6139 if (opnd == IA64_OPND_TGT25)
6140 fix->code = BFD_RELOC_IA64_PCREL21F;
6141 else if (opnd == IA64_OPND_TGT25b)
6142 fix->code = BFD_RELOC_IA64_PCREL21M;
6143 else if (opnd == IA64_OPND_TGT25c)
6144 fix->code = BFD_RELOC_IA64_PCREL21B;
6145 else if (opnd == IA64_OPND_TGT64)
6146 fix->code = BFD_RELOC_IA64_PCREL60B;
6147 else
6148 abort ();
6149
6150 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
6151 fix->opnd = idesc->operands[index];
6152 fix->expr = *e;
6153 fix->is_pcrel = 1;
6154 ++CURR_SLOT.num_fixups;
6155 return OPERAND_MATCH;
6156 }
6157 case IA64_OPND_TAG13:
6158 case IA64_OPND_TAG13b:
6159 switch (e->X_op)
6160 {
6161 case O_constant:
6162 return OPERAND_MATCH;
6163
6164 case O_symbol:
6165 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
6166 /* There are no external relocs for TAG13/TAG13b fields, so we
6167 create a dummy reloc. This will not live past md_apply_fix. */
6168 fix->code = BFD_RELOC_UNUSED;
6169 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
6170 fix->opnd = idesc->operands[index];
6171 fix->expr = *e;
6172 fix->is_pcrel = 1;
6173 ++CURR_SLOT.num_fixups;
6174 return OPERAND_MATCH;
6175
6176 default:
6177 break;
6178 }
6179 break;
6180
6181 case IA64_OPND_LDXMOV:
6182 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
6183 fix->code = BFD_RELOC_IA64_LDXMOV;
6184 fix->opnd = idesc->operands[index];
6185 fix->expr = *e;
6186 fix->is_pcrel = 0;
6187 ++CURR_SLOT.num_fixups;
6188 return OPERAND_MATCH;
6189
6190 default:
6191 break;
6192 }
6193 return OPERAND_MISMATCH;
6194 }
6195
6196 static int
6197 parse_operand (e, more)
6198 expressionS *e;
6199 int more;
6200 {
6201 int sep = '\0';
6202
6203 memset (e, 0, sizeof (*e));
6204 e->X_op = O_absent;
6205 SKIP_WHITESPACE ();
6206 expression_and_evaluate (e);
6207 sep = *input_line_pointer;
6208 if (more && (sep == ',' || sep == more))
6209 ++input_line_pointer;
6210 return sep;
6211 }
6212
6213 /* Returns the next entry in the opcode table that matches the one in
6214 IDESC, and frees the entry in IDESC. If no matching entry is
6215 found, NULL is returned instead. */
6216
6217 static struct ia64_opcode *
6218 get_next_opcode (struct ia64_opcode *idesc)
6219 {
6220 struct ia64_opcode *next = ia64_find_next_opcode (idesc);
6221 ia64_free_opcode (idesc);
6222 return next;
6223 }
6224
6225 /* Parse the operands for the opcode and find the opcode variant that
6226 matches the specified operands, or NULL if no match is possible. */
6227
6228 static struct ia64_opcode *
6229 parse_operands (idesc)
6230 struct ia64_opcode *idesc;
6231 {
6232 int i = 0, highest_unmatched_operand, num_operands = 0, num_outputs = 0;
6233 int error_pos, out_of_range_pos, curr_out_of_range_pos, sep = 0;
6234 int reg1, reg2;
6235 char reg_class;
6236 enum ia64_opnd expected_operand = IA64_OPND_NIL;
6237 enum operand_match_result result;
6238 char mnemonic[129];
6239 char *first_arg = 0, *end, *saved_input_pointer;
6240 unsigned int sof;
6241
6242 assert (strlen (idesc->name) <= 128);
6243
6244 strcpy (mnemonic, idesc->name);
6245 if (idesc->operands[2] == IA64_OPND_SOF
6246 || idesc->operands[1] == IA64_OPND_SOF)
6247 {
6248 /* To make the common idiom "alloc loc?=ar.pfs,0,1,0,0" work, we
6249 can't parse the first operand until we have parsed the
6250 remaining operands of the "alloc" instruction. */
6251 SKIP_WHITESPACE ();
6252 first_arg = input_line_pointer;
6253 end = strchr (input_line_pointer, '=');
6254 if (!end)
6255 {
6256 as_bad ("Expected separator `='");
6257 return 0;
6258 }
6259 input_line_pointer = end + 1;
6260 ++i;
6261 ++num_outputs;
6262 }
6263
6264 for (; ; ++i)
6265 {
6266 if (i < NELEMS (CURR_SLOT.opnd))
6267 {
6268 sep = parse_operand (CURR_SLOT.opnd + i, '=');
6269 if (CURR_SLOT.opnd[i].X_op == O_absent)
6270 break;
6271 }
6272 else
6273 {
6274 expressionS dummy;
6275
6276 sep = parse_operand (&dummy, '=');
6277 if (dummy.X_op == O_absent)
6278 break;
6279 }
6280
6281 ++num_operands;
6282
6283 if (sep != '=' && sep != ',')
6284 break;
6285
6286 if (sep == '=')
6287 {
6288 if (num_outputs > 0)
6289 as_bad ("Duplicate equal sign (=) in instruction");
6290 else
6291 num_outputs = i + 1;
6292 }
6293 }
6294 if (sep != '\0')
6295 {
6296 as_bad ("Illegal operand separator `%c'", sep);
6297 return 0;
6298 }
6299
6300 if (idesc->operands[2] == IA64_OPND_SOF
6301 || idesc->operands[1] == IA64_OPND_SOF)
6302 {
6303 /* Map alloc r1=ar.pfs,i,l,o,r to alloc r1=ar.pfs,(i+l+o),(i+l),r.
6304 Note, however, that due to that mapping operand numbers in error
6305 messages for any of the constant operands will not be correct. */
6306 know (strcmp (idesc->name, "alloc") == 0);
6307 /* The first operand hasn't been parsed/initialized, yet (but
6308 num_operands intentionally doesn't account for that). */
6309 i = num_operands > 4 ? 2 : 1;
6310 #define FORCE_CONST(n) (CURR_SLOT.opnd[n].X_op == O_constant \
6311 ? CURR_SLOT.opnd[n].X_add_number \
6312 : 0)
6313 sof = set_regstack (FORCE_CONST(i),
6314 FORCE_CONST(i + 1),
6315 FORCE_CONST(i + 2),
6316 FORCE_CONST(i + 3));
6317 #undef FORCE_CONST
6318
6319 /* now we can parse the first arg: */
6320 saved_input_pointer = input_line_pointer;
6321 input_line_pointer = first_arg;
6322 sep = parse_operand (CURR_SLOT.opnd + 0, '=');
6323 if (sep != '=')
6324 --num_outputs; /* force error */
6325 input_line_pointer = saved_input_pointer;
6326
6327 CURR_SLOT.opnd[i].X_add_number = sof;
6328 if (CURR_SLOT.opnd[i + 1].X_op == O_constant
6329 && CURR_SLOT.opnd[i + 2].X_op == O_constant)
6330 CURR_SLOT.opnd[i + 1].X_add_number
6331 = sof - CURR_SLOT.opnd[i + 2].X_add_number;
6332 else
6333 CURR_SLOT.opnd[i + 1].X_op = O_illegal;
6334 CURR_SLOT.opnd[i + 2] = CURR_SLOT.opnd[i + 3];
6335 }
6336
6337 highest_unmatched_operand = -4;
6338 curr_out_of_range_pos = -1;
6339 error_pos = 0;
6340 for (; idesc; idesc = get_next_opcode (idesc))
6341 {
6342 if (num_outputs != idesc->num_outputs)
6343 continue; /* mismatch in # of outputs */
6344 if (highest_unmatched_operand < 0)
6345 highest_unmatched_operand |= 1;
6346 if (num_operands > NELEMS (idesc->operands)
6347 || (num_operands < NELEMS (idesc->operands)
6348 && idesc->operands[num_operands])
6349 || (num_operands > 0 && !idesc->operands[num_operands - 1]))
6350 continue; /* mismatch in number of arguments */
6351 if (highest_unmatched_operand < 0)
6352 highest_unmatched_operand |= 2;
6353
6354 CURR_SLOT.num_fixups = 0;
6355
6356 /* Try to match all operands. If we see an out-of-range operand,
6357 then continue trying to match the rest of the operands, since if
6358 the rest match, then this idesc will give the best error message. */
6359
6360 out_of_range_pos = -1;
6361 for (i = 0; i < num_operands && idesc->operands[i]; ++i)
6362 {
6363 result = operand_match (idesc, i, CURR_SLOT.opnd + i);
6364 if (result != OPERAND_MATCH)
6365 {
6366 if (result != OPERAND_OUT_OF_RANGE)
6367 break;
6368 if (out_of_range_pos < 0)
6369 /* remember position of the first out-of-range operand: */
6370 out_of_range_pos = i;
6371 }
6372 }
6373
6374 /* If we did not match all operands, or if at least one operand was
6375 out-of-range, then this idesc does not match. Keep track of which
6376 idesc matched the most operands before failing. If we have two
6377 idescs that failed at the same position, and one had an out-of-range
6378 operand, then prefer the out-of-range operand. Thus if we have
6379 "add r0=0x1000000,r1" we get an error saying the constant is out
6380 of range instead of an error saying that the constant should have been
6381 a register. */
6382
6383 if (i != num_operands || out_of_range_pos >= 0)
6384 {
6385 if (i > highest_unmatched_operand
6386 || (i == highest_unmatched_operand
6387 && out_of_range_pos > curr_out_of_range_pos))
6388 {
6389 highest_unmatched_operand = i;
6390 if (out_of_range_pos >= 0)
6391 {
6392 expected_operand = idesc->operands[out_of_range_pos];
6393 error_pos = out_of_range_pos;
6394 }
6395 else
6396 {
6397 expected_operand = idesc->operands[i];
6398 error_pos = i;
6399 }
6400 curr_out_of_range_pos = out_of_range_pos;
6401 }
6402 continue;
6403 }
6404
6405 break;
6406 }
6407 if (!idesc)
6408 {
6409 if (expected_operand)
6410 as_bad ("Operand %u of `%s' should be %s",
6411 error_pos + 1, mnemonic,
6412 elf64_ia64_operands[expected_operand].desc);
6413 else if (highest_unmatched_operand < 0 && !(highest_unmatched_operand & 1))
6414 as_bad ("Wrong number of output operands");
6415 else if (highest_unmatched_operand < 0 && !(highest_unmatched_operand & 2))
6416 as_bad ("Wrong number of input operands");
6417 else
6418 as_bad ("Operand mismatch");
6419 return 0;
6420 }
6421
6422 /* Check that the instruction doesn't use
6423 - r0, f0, or f1 as output operands
6424 - the same predicate twice as output operands
6425 - r0 as address of a base update load or store
6426 - the same GR as output and address of a base update load
6427 - two even- or two odd-numbered FRs as output operands of a floating
6428 point parallel load.
6429 At most two (conflicting) output (or output-like) operands can exist,
6430 (floating point parallel loads have three outputs, but the base register,
6431 if updated, cannot conflict with the actual outputs). */
6432 reg2 = reg1 = -1;
6433 for (i = 0; i < num_operands; ++i)
6434 {
6435 int regno = 0;
6436
6437 reg_class = 0;
6438 switch (idesc->operands[i])
6439 {
6440 case IA64_OPND_R1:
6441 case IA64_OPND_R2:
6442 case IA64_OPND_R3:
6443 if (i < num_outputs)
6444 {
6445 if (CURR_SLOT.opnd[i].X_add_number == REG_GR)
6446 reg_class = 'r';
6447 else if (reg1 < 0)
6448 reg1 = CURR_SLOT.opnd[i].X_add_number;
6449 else if (reg2 < 0)
6450 reg2 = CURR_SLOT.opnd[i].X_add_number;
6451 }
6452 break;
6453 case IA64_OPND_P1:
6454 case IA64_OPND_P2:
6455 if (i < num_outputs)
6456 {
6457 if (reg1 < 0)
6458 reg1 = CURR_SLOT.opnd[i].X_add_number;
6459 else if (reg2 < 0)
6460 reg2 = CURR_SLOT.opnd[i].X_add_number;
6461 }
6462 break;
6463 case IA64_OPND_F1:
6464 case IA64_OPND_F2:
6465 case IA64_OPND_F3:
6466 case IA64_OPND_F4:
6467 if (i < num_outputs)
6468 {
6469 if (CURR_SLOT.opnd[i].X_add_number >= REG_FR
6470 && CURR_SLOT.opnd[i].X_add_number <= REG_FR + 1)
6471 {
6472 reg_class = 'f';
6473 regno = CURR_SLOT.opnd[i].X_add_number - REG_FR;
6474 }
6475 else if (reg1 < 0)
6476 reg1 = CURR_SLOT.opnd[i].X_add_number;
6477 else if (reg2 < 0)
6478 reg2 = CURR_SLOT.opnd[i].X_add_number;
6479 }
6480 break;
6481 case IA64_OPND_MR3:
6482 if (idesc->flags & IA64_OPCODE_POSTINC)
6483 {
6484 if (CURR_SLOT.opnd[i].X_add_number == REG_GR)
6485 reg_class = 'm';
6486 else if (reg1 < 0)
6487 reg1 = CURR_SLOT.opnd[i].X_add_number;
6488 else if (reg2 < 0)
6489 reg2 = CURR_SLOT.opnd[i].X_add_number;
6490 }
6491 break;
6492 default:
6493 break;
6494 }
6495 switch (reg_class)
6496 {
6497 case 0:
6498 break;
6499 default:
6500 as_warn ("Invalid use of `%c%d' as output operand", reg_class, regno);
6501 break;
6502 case 'm':
6503 as_warn ("Invalid use of `r%d' as base update address operand", regno);
6504 break;
6505 }
6506 }
6507 if (reg1 == reg2)
6508 {
6509 if (reg1 >= REG_GR && reg1 <= REG_GR + 127)
6510 {
6511 reg1 -= REG_GR;
6512 reg_class = 'r';
6513 }
6514 else if (reg1 >= REG_P && reg1 <= REG_P + 63)
6515 {
6516 reg1 -= REG_P;
6517 reg_class = 'p';
6518 }
6519 else if (reg1 >= REG_FR && reg1 <= REG_FR + 127)
6520 {
6521 reg1 -= REG_FR;
6522 reg_class = 'f';
6523 }
6524 else
6525 reg_class = 0;
6526 if (reg_class)
6527 as_warn ("Invalid duplicate use of `%c%d'", reg_class, reg1);
6528 }
6529 else if (((reg1 >= REG_FR && reg1 <= REG_FR + 31
6530 && reg2 >= REG_FR && reg2 <= REG_FR + 31)
6531 || (reg1 >= REG_FR + 32 && reg1 <= REG_FR + 127
6532 && reg2 >= REG_FR + 32 && reg2 <= REG_FR + 127))
6533 && ! ((reg1 ^ reg2) & 1))
6534 as_warn ("Invalid simultaneous use of `f%d' and `f%d'",
6535 reg1 - REG_FR, reg2 - REG_FR);
6536 else if ((reg1 >= REG_FR && reg1 <= REG_FR + 31
6537 && reg2 >= REG_FR + 32 && reg2 <= REG_FR + 127)
6538 || (reg1 >= REG_FR + 32 && reg1 <= REG_FR + 127
6539 && reg2 >= REG_FR && reg2 <= REG_FR + 31))
6540 as_warn ("Dangerous simultaneous use of `f%d' and `f%d'",
6541 reg1 - REG_FR, reg2 - REG_FR);
6542 return idesc;
6543 }
6544
6545 static void
6546 build_insn (slot, insnp)
6547 struct slot *slot;
6548 bfd_vma *insnp;
6549 {
6550 const struct ia64_operand *odesc, *o2desc;
6551 struct ia64_opcode *idesc = slot->idesc;
6552 bfd_vma insn;
6553 bfd_signed_vma val;
6554 const char *err;
6555 int i;
6556
6557 insn = idesc->opcode | slot->qp_regno;
6558
6559 for (i = 0; i < NELEMS (idesc->operands) && idesc->operands[i]; ++i)
6560 {
6561 if (slot->opnd[i].X_op == O_register
6562 || slot->opnd[i].X_op == O_constant
6563 || slot->opnd[i].X_op == O_index)
6564 val = slot->opnd[i].X_add_number;
6565 else if (slot->opnd[i].X_op == O_big)
6566 {
6567 /* This must be the value 0x10000000000000000. */
6568 assert (idesc->operands[i] == IA64_OPND_IMM8M1U8);
6569 val = 0;
6570 }
6571 else
6572 val = 0;
6573
6574 switch (idesc->operands[i])
6575 {
6576 case IA64_OPND_IMMU64:
6577 *insnp++ = (val >> 22) & 0x1ffffffffffLL;
6578 insn |= (((val & 0x7f) << 13) | (((val >> 7) & 0x1ff) << 27)
6579 | (((val >> 16) & 0x1f) << 22) | (((val >> 21) & 0x1) << 21)
6580 | (((val >> 63) & 0x1) << 36));
6581 continue;
6582
6583 case IA64_OPND_IMMU62:
6584 val &= 0x3fffffffffffffffULL;
6585 if (val != slot->opnd[i].X_add_number)
6586 as_warn (_("Value truncated to 62 bits"));
6587 *insnp++ = (val >> 21) & 0x1ffffffffffLL;
6588 insn |= (((val & 0xfffff) << 6) | (((val >> 20) & 0x1) << 36));
6589 continue;
6590
6591 case IA64_OPND_TGT64:
6592 val >>= 4;
6593 *insnp++ = ((val >> 20) & 0x7fffffffffLL) << 2;
6594 insn |= ((((val >> 59) & 0x1) << 36)
6595 | (((val >> 0) & 0xfffff) << 13));
6596 continue;
6597
6598 case IA64_OPND_AR3:
6599 val -= REG_AR;
6600 break;
6601
6602 case IA64_OPND_B1:
6603 case IA64_OPND_B2:
6604 val -= REG_BR;
6605 break;
6606
6607 case IA64_OPND_CR3:
6608 val -= REG_CR;
6609 break;
6610
6611 case IA64_OPND_F1:
6612 case IA64_OPND_F2:
6613 case IA64_OPND_F3:
6614 case IA64_OPND_F4:
6615 val -= REG_FR;
6616 break;
6617
6618 case IA64_OPND_P1:
6619 case IA64_OPND_P2:
6620 val -= REG_P;
6621 break;
6622
6623 case IA64_OPND_R1:
6624 case IA64_OPND_R2:
6625 case IA64_OPND_R3:
6626 case IA64_OPND_R3_2:
6627 case IA64_OPND_CPUID_R3:
6628 case IA64_OPND_DBR_R3:
6629 case IA64_OPND_DTR_R3:
6630 case IA64_OPND_ITR_R3:
6631 case IA64_OPND_IBR_R3:
6632 case IA64_OPND_MR3:
6633 case IA64_OPND_MSR_R3:
6634 case IA64_OPND_PKR_R3:
6635 case IA64_OPND_PMC_R3:
6636 case IA64_OPND_PMD_R3:
6637 case IA64_OPND_RR_R3:
6638 val -= REG_GR;
6639 break;
6640
6641 default:
6642 break;
6643 }
6644
6645 odesc = elf64_ia64_operands + idesc->operands[i];
6646 err = (*odesc->insert) (odesc, val, &insn);
6647 if (err)
6648 as_bad_where (slot->src_file, slot->src_line,
6649 "Bad operand value: %s", err);
6650 if (idesc->flags & IA64_OPCODE_PSEUDO)
6651 {
6652 if ((idesc->flags & IA64_OPCODE_F2_EQ_F3)
6653 && odesc == elf64_ia64_operands + IA64_OPND_F3)
6654 {
6655 o2desc = elf64_ia64_operands + IA64_OPND_F2;
6656 (*o2desc->insert) (o2desc, val, &insn);
6657 }
6658 if ((idesc->flags & IA64_OPCODE_LEN_EQ_64MCNT)
6659 && (odesc == elf64_ia64_operands + IA64_OPND_CPOS6a
6660 || odesc == elf64_ia64_operands + IA64_OPND_POS6))
6661 {
6662 o2desc = elf64_ia64_operands + IA64_OPND_LEN6;
6663 (*o2desc->insert) (o2desc, 64 - val, &insn);
6664 }
6665 }
6666 }
6667 *insnp = insn;
6668 }
6669
6670 static void
6671 emit_one_bundle ()
6672 {
6673 int manual_bundling_off = 0, manual_bundling = 0;
6674 enum ia64_unit required_unit, insn_unit = 0;
6675 enum ia64_insn_type type[3], insn_type;
6676 unsigned int template, orig_template;
6677 bfd_vma insn[3] = { -1, -1, -1 };
6678 struct ia64_opcode *idesc;
6679 int end_of_insn_group = 0, user_template = -1;
6680 int n, i, j, first, curr, last_slot;
6681 bfd_vma t0 = 0, t1 = 0;
6682 struct label_fix *lfix;
6683 bfd_boolean mark_label;
6684 struct insn_fix *ifix;
6685 char mnemonic[16];
6686 fixS *fix;
6687 char *f;
6688 int addr_mod;
6689
6690 first = (md.curr_slot + NUM_SLOTS - md.num_slots_in_use) % NUM_SLOTS;
6691 know (first >= 0 && first < NUM_SLOTS);
6692 n = MIN (3, md.num_slots_in_use);
6693
6694 /* Determine template: user user_template if specified, best match
6695 otherwise: */
6696
6697 if (md.slot[first].user_template >= 0)
6698 user_template = template = md.slot[first].user_template;
6699 else
6700 {
6701 /* Auto select appropriate template. */
6702 memset (type, 0, sizeof (type));
6703 curr = first;
6704 for (i = 0; i < n; ++i)
6705 {
6706 if (md.slot[curr].label_fixups && i != 0)
6707 break;
6708 type[i] = md.slot[curr].idesc->type;
6709 curr = (curr + 1) % NUM_SLOTS;
6710 }
6711 template = best_template[type[0]][type[1]][type[2]];
6712 }
6713
6714 /* initialize instructions with appropriate nops: */
6715 for (i = 0; i < 3; ++i)
6716 insn[i] = nop[ia64_templ_desc[template].exec_unit[i]];
6717
6718 f = frag_more (16);
6719
6720 /* Check to see if this bundle is at an offset that is a multiple of 16-bytes
6721 from the start of the frag. */
6722 addr_mod = frag_now_fix () & 15;
6723 if (frag_now->has_code && frag_now->insn_addr != addr_mod)
6724 as_bad (_("instruction address is not a multiple of 16"));
6725 frag_now->insn_addr = addr_mod;
6726 frag_now->has_code = 1;
6727
6728 /* now fill in slots with as many insns as possible: */
6729 curr = first;
6730 idesc = md.slot[curr].idesc;
6731 end_of_insn_group = 0;
6732 last_slot = -1;
6733 for (i = 0; i < 3 && md.num_slots_in_use > 0; ++i)
6734 {
6735 /* If we have unwind records, we may need to update some now. */
6736 unw_rec_list *ptr = md.slot[curr].unwind_record;
6737 unw_rec_list *end_ptr = NULL;
6738
6739 if (ptr)
6740 {
6741 /* Find the last prologue/body record in the list for the current
6742 insn, and set the slot number for all records up to that point.
6743 This needs to be done now, because prologue/body records refer to
6744 the current point, not the point after the instruction has been
6745 issued. This matters because there may have been nops emitted
6746 meanwhile. Any non-prologue non-body record followed by a
6747 prologue/body record must also refer to the current point. */
6748 unw_rec_list *last_ptr;
6749
6750 for (j = 1; end_ptr == NULL && j < md.num_slots_in_use; ++j)
6751 end_ptr = md.slot[(curr + j) % NUM_SLOTS].unwind_record;
6752 for (last_ptr = NULL; ptr != end_ptr; ptr = ptr->next)
6753 if (ptr->r.type == prologue || ptr->r.type == prologue_gr
6754 || ptr->r.type == body)
6755 last_ptr = ptr;
6756 if (last_ptr)
6757 {
6758 /* Make last_ptr point one after the last prologue/body
6759 record. */
6760 last_ptr = last_ptr->next;
6761 for (ptr = md.slot[curr].unwind_record; ptr != last_ptr;
6762 ptr = ptr->next)
6763 {
6764 ptr->slot_number = (unsigned long) f + i;
6765 ptr->slot_frag = frag_now;
6766 }
6767 /* Remove the initialized records, so that we won't accidentally
6768 update them again if we insert a nop and continue. */
6769 md.slot[curr].unwind_record = last_ptr;
6770 }
6771 }
6772
6773 manual_bundling_off = md.slot[curr].manual_bundling_off;
6774 if (md.slot[curr].manual_bundling_on)
6775 {
6776 if (curr == first)
6777 manual_bundling = 1;
6778 else
6779 break; /* Need to start a new bundle. */
6780 }
6781
6782 /* If this instruction specifies a template, then it must be the first
6783 instruction of a bundle. */
6784 if (curr != first && md.slot[curr].user_template >= 0)
6785 break;
6786
6787 if (idesc->flags & IA64_OPCODE_SLOT2)
6788 {
6789 if (manual_bundling && !manual_bundling_off)
6790 {
6791 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6792 "`%s' must be last in bundle", idesc->name);
6793 if (i < 2)
6794 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6795 }
6796 i = 2;
6797 }
6798 if (idesc->flags & IA64_OPCODE_LAST)
6799 {
6800 int required_slot;
6801 unsigned int required_template;
6802
6803 /* If we need a stop bit after an M slot, our only choice is
6804 template 5 (M;;MI). If we need a stop bit after a B
6805 slot, our only choice is to place it at the end of the
6806 bundle, because the only available templates are MIB,
6807 MBB, BBB, MMB, and MFB. We don't handle anything other
6808 than M and B slots because these are the only kind of
6809 instructions that can have the IA64_OPCODE_LAST bit set. */
6810 required_template = template;
6811 switch (idesc->type)
6812 {
6813 case IA64_TYPE_M:
6814 required_slot = 0;
6815 required_template = 5;
6816 break;
6817
6818 case IA64_TYPE_B:
6819 required_slot = 2;
6820 break;
6821
6822 default:
6823 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6824 "Internal error: don't know how to force %s to end"
6825 "of instruction group", idesc->name);
6826 required_slot = i;
6827 break;
6828 }
6829 if (manual_bundling
6830 && (i > required_slot
6831 || (required_slot == 2 && !manual_bundling_off)
6832 || (user_template >= 0
6833 /* Changing from MMI to M;MI is OK. */
6834 && (template ^ required_template) > 1)))
6835 {
6836 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6837 "`%s' must be last in instruction group",
6838 idesc->name);
6839 if (i < 2 && required_slot == 2 && !manual_bundling_off)
6840 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6841 }
6842 if (required_slot < i)
6843 /* Can't fit this instruction. */
6844 break;
6845
6846 i = required_slot;
6847 if (required_template != template)
6848 {
6849 /* If we switch the template, we need to reset the NOPs
6850 after slot i. The slot-types of the instructions ahead
6851 of i never change, so we don't need to worry about
6852 changing NOPs in front of this slot. */
6853 for (j = i; j < 3; ++j)
6854 insn[j] = nop[ia64_templ_desc[required_template].exec_unit[j]];
6855
6856 /* We just picked a template that includes the stop bit in the
6857 middle, so we don't need another one emitted later. */
6858 md.slot[curr].end_of_insn_group = 0;
6859 }
6860 template = required_template;
6861 }
6862 if (curr != first && md.slot[curr].label_fixups)
6863 {
6864 if (manual_bundling)
6865 {
6866 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6867 "Label must be first in a bundle");
6868 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6869 }
6870 /* This insn must go into the first slot of a bundle. */
6871 break;
6872 }
6873
6874 if (end_of_insn_group && md.num_slots_in_use >= 1)
6875 {
6876 /* We need an instruction group boundary in the middle of a
6877 bundle. See if we can switch to an other template with
6878 an appropriate boundary. */
6879
6880 orig_template = template;
6881 if (i == 1 && (user_template == 4
6882 || (user_template < 0
6883 && (ia64_templ_desc[template].exec_unit[0]
6884 == IA64_UNIT_M))))
6885 {
6886 template = 5;
6887 end_of_insn_group = 0;
6888 }
6889 else if (i == 2 && (user_template == 0
6890 || (user_template < 0
6891 && (ia64_templ_desc[template].exec_unit[1]
6892 == IA64_UNIT_I)))
6893 /* This test makes sure we don't switch the template if
6894 the next instruction is one that needs to be first in
6895 an instruction group. Since all those instructions are
6896 in the M group, there is no way such an instruction can
6897 fit in this bundle even if we switch the template. The
6898 reason we have to check for this is that otherwise we
6899 may end up generating "MI;;I M.." which has the deadly
6900 effect that the second M instruction is no longer the
6901 first in the group! --davidm 99/12/16 */
6902 && (idesc->flags & IA64_OPCODE_FIRST) == 0)
6903 {
6904 template = 1;
6905 end_of_insn_group = 0;
6906 }
6907 else if (i == 1
6908 && user_template == 0
6909 && !(idesc->flags & IA64_OPCODE_FIRST))
6910 /* Use the next slot. */
6911 continue;
6912 else if (curr != first)
6913 /* can't fit this insn */
6914 break;
6915
6916 if (template != orig_template)
6917 /* if we switch the template, we need to reset the NOPs
6918 after slot i. The slot-types of the instructions ahead
6919 of i never change, so we don't need to worry about
6920 changing NOPs in front of this slot. */
6921 for (j = i; j < 3; ++j)
6922 insn[j] = nop[ia64_templ_desc[template].exec_unit[j]];
6923 }
6924 required_unit = ia64_templ_desc[template].exec_unit[i];
6925
6926 /* resolve dynamic opcodes such as "break", "hint", and "nop": */
6927 if (idesc->type == IA64_TYPE_DYN)
6928 {
6929 enum ia64_opnd opnd1, opnd2;
6930
6931 if ((strcmp (idesc->name, "nop") == 0)
6932 || (strcmp (idesc->name, "break") == 0))
6933 insn_unit = required_unit;
6934 else if (strcmp (idesc->name, "hint") == 0)
6935 {
6936 insn_unit = required_unit;
6937 if (required_unit == IA64_UNIT_B)
6938 {
6939 switch (md.hint_b)
6940 {
6941 case hint_b_ok:
6942 break;
6943 case hint_b_warning:
6944 as_warn ("hint in B unit may be treated as nop");
6945 break;
6946 case hint_b_error:
6947 /* When manual bundling is off and there is no
6948 user template, we choose a different unit so
6949 that hint won't go into the current slot. We
6950 will fill the current bundle with nops and
6951 try to put hint into the next bundle. */
6952 if (!manual_bundling && user_template < 0)
6953 insn_unit = IA64_UNIT_I;
6954 else
6955 as_bad ("hint in B unit can't be used");
6956 break;
6957 }
6958 }
6959 }
6960 else if (strcmp (idesc->name, "chk.s") == 0
6961 || strcmp (idesc->name, "mov") == 0)
6962 {
6963 insn_unit = IA64_UNIT_M;
6964 if (required_unit == IA64_UNIT_I
6965 || (required_unit == IA64_UNIT_F && template == 6))
6966 insn_unit = IA64_UNIT_I;
6967 }
6968 else
6969 as_fatal ("emit_one_bundle: unexpected dynamic op");
6970
6971 snprintf (mnemonic, sizeof (mnemonic), "%s.%c",
6972 idesc->name, "?imbfxx"[insn_unit]);
6973 opnd1 = idesc->operands[0];
6974 opnd2 = idesc->operands[1];
6975 ia64_free_opcode (idesc);
6976 idesc = ia64_find_opcode (mnemonic);
6977 /* moves to/from ARs have collisions */
6978 if (opnd1 == IA64_OPND_AR3 || opnd2 == IA64_OPND_AR3)
6979 {
6980 while (idesc != NULL
6981 && (idesc->operands[0] != opnd1
6982 || idesc->operands[1] != opnd2))
6983 idesc = get_next_opcode (idesc);
6984 }
6985 md.slot[curr].idesc = idesc;
6986 }
6987 else
6988 {
6989 insn_type = idesc->type;
6990 insn_unit = IA64_UNIT_NIL;
6991 switch (insn_type)
6992 {
6993 case IA64_TYPE_A:
6994 if (required_unit == IA64_UNIT_I || required_unit == IA64_UNIT_M)
6995 insn_unit = required_unit;
6996 break;
6997 case IA64_TYPE_X: insn_unit = IA64_UNIT_L; break;
6998 case IA64_TYPE_I: insn_unit = IA64_UNIT_I; break;
6999 case IA64_TYPE_M: insn_unit = IA64_UNIT_M; break;
7000 case IA64_TYPE_B: insn_unit = IA64_UNIT_B; break;
7001 case IA64_TYPE_F: insn_unit = IA64_UNIT_F; break;
7002 default: break;
7003 }
7004 }
7005
7006 if (insn_unit != required_unit)
7007 continue; /* Try next slot. */
7008
7009 /* Now is a good time to fix up the labels for this insn. */
7010 mark_label = FALSE;
7011 for (lfix = md.slot[curr].label_fixups; lfix; lfix = lfix->next)
7012 {
7013 S_SET_VALUE (lfix->sym, frag_now_fix () - 16);
7014 symbol_set_frag (lfix->sym, frag_now);
7015 mark_label |= lfix->dw2_mark_labels;
7016 }
7017 for (lfix = md.slot[curr].tag_fixups; lfix; lfix = lfix->next)
7018 {
7019 S_SET_VALUE (lfix->sym, frag_now_fix () - 16 + i);
7020 symbol_set_frag (lfix->sym, frag_now);
7021 }
7022
7023 if (debug_type == DEBUG_DWARF2
7024 || md.slot[curr].loc_directive_seen
7025 || mark_label)
7026 {
7027 bfd_vma addr = frag_now->fr_address + frag_now_fix () - 16 + i;
7028
7029 md.slot[curr].loc_directive_seen = 0;
7030 if (mark_label)
7031 md.slot[curr].debug_line.flags |= DWARF2_FLAG_BASIC_BLOCK;
7032
7033 dwarf2_gen_line_info (addr, &md.slot[curr].debug_line);
7034 }
7035
7036 build_insn (md.slot + curr, insn + i);
7037
7038 ptr = md.slot[curr].unwind_record;
7039 if (ptr)
7040 {
7041 /* Set slot numbers for all remaining unwind records belonging to the
7042 current insn. There can not be any prologue/body unwind records
7043 here. */
7044 for (; ptr != end_ptr; ptr = ptr->next)
7045 {
7046 ptr->slot_number = (unsigned long) f + i;
7047 ptr->slot_frag = frag_now;
7048 }
7049 md.slot[curr].unwind_record = NULL;
7050 }
7051
7052 if (required_unit == IA64_UNIT_L)
7053 {
7054 know (i == 1);
7055 /* skip one slot for long/X-unit instructions */
7056 ++i;
7057 }
7058 --md.num_slots_in_use;
7059 last_slot = i;
7060
7061 for (j = 0; j < md.slot[curr].num_fixups; ++j)
7062 {
7063 ifix = md.slot[curr].fixup + j;
7064 fix = fix_new_exp (frag_now, frag_now_fix () - 16 + i, 8,
7065 &ifix->expr, ifix->is_pcrel, ifix->code);
7066 fix->tc_fix_data.opnd = ifix->opnd;
7067 fix->fx_file = md.slot[curr].src_file;
7068 fix->fx_line = md.slot[curr].src_line;
7069 }
7070
7071 end_of_insn_group = md.slot[curr].end_of_insn_group;
7072
7073 /* clear slot: */
7074 ia64_free_opcode (md.slot[curr].idesc);
7075 memset (md.slot + curr, 0, sizeof (md.slot[curr]));
7076 md.slot[curr].user_template = -1;
7077
7078 if (manual_bundling_off)
7079 {
7080 manual_bundling = 0;
7081 break;
7082 }
7083 curr = (curr + 1) % NUM_SLOTS;
7084 idesc = md.slot[curr].idesc;
7085 }
7086
7087 /* A user template was specified, but the first following instruction did
7088 not fit. This can happen with or without manual bundling. */
7089 if (md.num_slots_in_use > 0 && last_slot < 0)
7090 {
7091 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
7092 "`%s' does not fit into %s template",
7093 idesc->name, ia64_templ_desc[template].name);
7094 /* Drop first insn so we don't livelock. */
7095 --md.num_slots_in_use;
7096 know (curr == first);
7097 ia64_free_opcode (md.slot[curr].idesc);
7098 memset (md.slot + curr, 0, sizeof (md.slot[curr]));
7099 md.slot[curr].user_template = -1;
7100 }
7101 else if (manual_bundling > 0)
7102 {
7103 if (md.num_slots_in_use > 0)
7104 {
7105 if (last_slot >= 2)
7106 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
7107 "`%s' does not fit into bundle", idesc->name);
7108 else
7109 {
7110 const char *where;
7111
7112 if (template == 2)
7113 where = "X slot";
7114 else if (last_slot == 0)
7115 where = "slots 2 or 3";
7116 else
7117 where = "slot 3";
7118 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
7119 "`%s' can't go in %s of %s template",
7120 idesc->name, where, ia64_templ_desc[template].name);
7121 }
7122 }
7123 else
7124 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
7125 "Missing '}' at end of file");
7126 }
7127
7128 know (md.num_slots_in_use < NUM_SLOTS);
7129
7130 t0 = end_of_insn_group | (template << 1) | (insn[0] << 5) | (insn[1] << 46);
7131 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
7132
7133 number_to_chars_littleendian (f + 0, t0, 8);
7134 number_to_chars_littleendian (f + 8, t1, 8);
7135 }
7136
7137 int
7138 md_parse_option (c, arg)
7139 int c;
7140 char *arg;
7141 {
7142
7143 switch (c)
7144 {
7145 /* Switches from the Intel assembler. */
7146 case 'm':
7147 if (strcmp (arg, "ilp64") == 0
7148 || strcmp (arg, "lp64") == 0
7149 || strcmp (arg, "p64") == 0)
7150 {
7151 md.flags |= EF_IA_64_ABI64;
7152 }
7153 else if (strcmp (arg, "ilp32") == 0)
7154 {
7155 md.flags &= ~EF_IA_64_ABI64;
7156 }
7157 else if (strcmp (arg, "le") == 0)
7158 {
7159 md.flags &= ~EF_IA_64_BE;
7160 default_big_endian = 0;
7161 }
7162 else if (strcmp (arg, "be") == 0)
7163 {
7164 md.flags |= EF_IA_64_BE;
7165 default_big_endian = 1;
7166 }
7167 else if (strncmp (arg, "unwind-check=", 13) == 0)
7168 {
7169 arg += 13;
7170 if (strcmp (arg, "warning") == 0)
7171 md.unwind_check = unwind_check_warning;
7172 else if (strcmp (arg, "error") == 0)
7173 md.unwind_check = unwind_check_error;
7174 else
7175 return 0;
7176 }
7177 else if (strncmp (arg, "hint.b=", 7) == 0)
7178 {
7179 arg += 7;
7180 if (strcmp (arg, "ok") == 0)
7181 md.hint_b = hint_b_ok;
7182 else if (strcmp (arg, "warning") == 0)
7183 md.hint_b = hint_b_warning;
7184 else if (strcmp (arg, "error") == 0)
7185 md.hint_b = hint_b_error;
7186 else
7187 return 0;
7188 }
7189 else if (strncmp (arg, "tune=", 5) == 0)
7190 {
7191 arg += 5;
7192 if (strcmp (arg, "itanium1") == 0)
7193 md.tune = itanium1;
7194 else if (strcmp (arg, "itanium2") == 0)
7195 md.tune = itanium2;
7196 else
7197 return 0;
7198 }
7199 else
7200 return 0;
7201 break;
7202
7203 case 'N':
7204 if (strcmp (arg, "so") == 0)
7205 {
7206 /* Suppress signon message. */
7207 }
7208 else if (strcmp (arg, "pi") == 0)
7209 {
7210 /* Reject privileged instructions. FIXME */
7211 }
7212 else if (strcmp (arg, "us") == 0)
7213 {
7214 /* Allow union of signed and unsigned range. FIXME */
7215 }
7216 else if (strcmp (arg, "close_fcalls") == 0)
7217 {
7218 /* Do not resolve global function calls. */
7219 }
7220 else
7221 return 0;
7222 break;
7223
7224 case 'C':
7225 /* temp[="prefix"] Insert temporary labels into the object file
7226 symbol table prefixed by "prefix".
7227 Default prefix is ":temp:".
7228 */
7229 break;
7230
7231 case 'a':
7232 /* indirect=<tgt> Assume unannotated indirect branches behavior
7233 according to <tgt> --
7234 exit: branch out from the current context (default)
7235 labels: all labels in context may be branch targets
7236 */
7237 if (strncmp (arg, "indirect=", 9) != 0)
7238 return 0;
7239 break;
7240
7241 case 'x':
7242 /* -X conflicts with an ignored option, use -x instead */
7243 md.detect_dv = 1;
7244 if (!arg || strcmp (arg, "explicit") == 0)
7245 {
7246 /* set default mode to explicit */
7247 md.default_explicit_mode = 1;
7248 break;
7249 }
7250 else if (strcmp (arg, "auto") == 0)
7251 {
7252 md.default_explicit_mode = 0;
7253 }
7254 else if (strcmp (arg, "none") == 0)
7255 {
7256 md.detect_dv = 0;
7257 }
7258 else if (strcmp (arg, "debug") == 0)
7259 {
7260 md.debug_dv = 1;
7261 }
7262 else if (strcmp (arg, "debugx") == 0)
7263 {
7264 md.default_explicit_mode = 1;
7265 md.debug_dv = 1;
7266 }
7267 else if (strcmp (arg, "debugn") == 0)
7268 {
7269 md.debug_dv = 1;
7270 md.detect_dv = 0;
7271 }
7272 else
7273 {
7274 as_bad (_("Unrecognized option '-x%s'"), arg);
7275 }
7276 break;
7277
7278 case 'S':
7279 /* nops Print nops statistics. */
7280 break;
7281
7282 /* GNU specific switches for gcc. */
7283 case OPTION_MCONSTANT_GP:
7284 md.flags |= EF_IA_64_CONS_GP;
7285 break;
7286
7287 case OPTION_MAUTO_PIC:
7288 md.flags |= EF_IA_64_NOFUNCDESC_CONS_GP;
7289 break;
7290
7291 default:
7292 return 0;
7293 }
7294
7295 return 1;
7296 }
7297
7298 void
7299 md_show_usage (stream)
7300 FILE *stream;
7301 {
7302 fputs (_("\
7303 IA-64 options:\n\
7304 --mconstant-gp mark output file as using the constant-GP model\n\
7305 (sets ELF header flag EF_IA_64_CONS_GP)\n\
7306 --mauto-pic mark output file as using the constant-GP model\n\
7307 without function descriptors (sets ELF header flag\n\
7308 EF_IA_64_NOFUNCDESC_CONS_GP)\n\
7309 -milp32|-milp64|-mlp64|-mp64 select data model (default -mlp64)\n\
7310 -mle | -mbe select little- or big-endian byte order (default -mle)\n\
7311 -mtune=[itanium1|itanium2]\n\
7312 tune for a specific CPU (default -mtune=itanium2)\n\
7313 -munwind-check=[warning|error]\n\
7314 unwind directive check (default -munwind-check=warning)\n\
7315 -mhint.b=[ok|warning|error]\n\
7316 hint.b check (default -mhint.b=error)\n\
7317 -x | -xexplicit turn on dependency violation checking\n\
7318 -xauto automagically remove dependency violations (default)\n\
7319 -xnone turn off dependency violation checking\n\
7320 -xdebug debug dependency violation checker\n\
7321 -xdebugn debug dependency violation checker but turn off\n\
7322 dependency violation checking\n\
7323 -xdebugx debug dependency violation checker and turn on\n\
7324 dependency violation checking\n"),
7325 stream);
7326 }
7327
7328 void
7329 ia64_after_parse_args ()
7330 {
7331 if (debug_type == DEBUG_STABS)
7332 as_fatal (_("--gstabs is not supported for ia64"));
7333 }
7334
7335 /* Return true if TYPE fits in TEMPL at SLOT. */
7336
7337 static int
7338 match (int templ, int type, int slot)
7339 {
7340 enum ia64_unit unit;
7341 int result;
7342
7343 unit = ia64_templ_desc[templ].exec_unit[slot];
7344 switch (type)
7345 {
7346 case IA64_TYPE_DYN: result = 1; break; /* for nop and break */
7347 case IA64_TYPE_A:
7348 result = (unit == IA64_UNIT_I || unit == IA64_UNIT_M);
7349 break;
7350 case IA64_TYPE_X: result = (unit == IA64_UNIT_L); break;
7351 case IA64_TYPE_I: result = (unit == IA64_UNIT_I); break;
7352 case IA64_TYPE_M: result = (unit == IA64_UNIT_M); break;
7353 case IA64_TYPE_B: result = (unit == IA64_UNIT_B); break;
7354 case IA64_TYPE_F: result = (unit == IA64_UNIT_F); break;
7355 default: result = 0; break;
7356 }
7357 return result;
7358 }
7359
7360 /* For Itanium 1, add a bit of extra goodness if a nop of type F or B would fit
7361 in TEMPL at SLOT. For Itanium 2, add a bit of extra goodness if a nop of
7362 type M or I would fit in TEMPL at SLOT. */
7363
7364 static inline int
7365 extra_goodness (int templ, int slot)
7366 {
7367 switch (md.tune)
7368 {
7369 case itanium1:
7370 if (slot == 1 && match (templ, IA64_TYPE_F, slot))
7371 return 2;
7372 else if (slot == 2 && match (templ, IA64_TYPE_B, slot))
7373 return 1;
7374 else
7375 return 0;
7376 break;
7377 case itanium2:
7378 if (match (templ, IA64_TYPE_M, slot)
7379 || match (templ, IA64_TYPE_I, slot))
7380 /* Favor M- and I-unit NOPs. We definitely want to avoid
7381 F-unit and B-unit may cause split-issue or less-than-optimal
7382 branch-prediction. */
7383 return 2;
7384 else
7385 return 0;
7386 break;
7387 default:
7388 abort ();
7389 return 0;
7390 }
7391 }
7392
7393 /* This function is called once, at assembler startup time. It sets
7394 up all the tables, etc. that the MD part of the assembler will need
7395 that can be determined before arguments are parsed. */
7396 void
7397 md_begin ()
7398 {
7399 int i, j, k, t, goodness, best, ok;
7400 const char *err;
7401 char name[8];
7402
7403 md.auto_align = 1;
7404 md.explicit_mode = md.default_explicit_mode;
7405
7406 bfd_set_section_alignment (stdoutput, text_section, 4);
7407
7408 /* Make sure function pointers get initialized. */
7409 target_big_endian = -1;
7410 dot_byteorder (default_big_endian);
7411
7412 alias_hash = hash_new ();
7413 alias_name_hash = hash_new ();
7414 secalias_hash = hash_new ();
7415 secalias_name_hash = hash_new ();
7416
7417 pseudo_func[FUNC_DTP_MODULE].u.sym =
7418 symbol_new (".<dtpmod>", undefined_section, FUNC_DTP_MODULE,
7419 &zero_address_frag);
7420
7421 pseudo_func[FUNC_DTP_RELATIVE].u.sym =
7422 symbol_new (".<dtprel>", undefined_section, FUNC_DTP_RELATIVE,
7423 &zero_address_frag);
7424
7425 pseudo_func[FUNC_FPTR_RELATIVE].u.sym =
7426 symbol_new (".<fptr>", undefined_section, FUNC_FPTR_RELATIVE,
7427 &zero_address_frag);
7428
7429 pseudo_func[FUNC_GP_RELATIVE].u.sym =
7430 symbol_new (".<gprel>", undefined_section, FUNC_GP_RELATIVE,
7431 &zero_address_frag);
7432
7433 pseudo_func[FUNC_LT_RELATIVE].u.sym =
7434 symbol_new (".<ltoff>", undefined_section, FUNC_LT_RELATIVE,
7435 &zero_address_frag);
7436
7437 pseudo_func[FUNC_LT_RELATIVE_X].u.sym =
7438 symbol_new (".<ltoffx>", undefined_section, FUNC_LT_RELATIVE_X,
7439 &zero_address_frag);
7440
7441 pseudo_func[FUNC_PC_RELATIVE].u.sym =
7442 symbol_new (".<pcrel>", undefined_section, FUNC_PC_RELATIVE,
7443 &zero_address_frag);
7444
7445 pseudo_func[FUNC_PLT_RELATIVE].u.sym =
7446 symbol_new (".<pltoff>", undefined_section, FUNC_PLT_RELATIVE,
7447 &zero_address_frag);
7448
7449 pseudo_func[FUNC_SEC_RELATIVE].u.sym =
7450 symbol_new (".<secrel>", undefined_section, FUNC_SEC_RELATIVE,
7451 &zero_address_frag);
7452
7453 pseudo_func[FUNC_SEG_RELATIVE].u.sym =
7454 symbol_new (".<segrel>", undefined_section, FUNC_SEG_RELATIVE,
7455 &zero_address_frag);
7456
7457 pseudo_func[FUNC_TP_RELATIVE].u.sym =
7458 symbol_new (".<tprel>", undefined_section, FUNC_TP_RELATIVE,
7459 &zero_address_frag);
7460
7461 pseudo_func[FUNC_LTV_RELATIVE].u.sym =
7462 symbol_new (".<ltv>", undefined_section, FUNC_LTV_RELATIVE,
7463 &zero_address_frag);
7464
7465 pseudo_func[FUNC_LT_FPTR_RELATIVE].u.sym =
7466 symbol_new (".<ltoff.fptr>", undefined_section, FUNC_LT_FPTR_RELATIVE,
7467 &zero_address_frag);
7468
7469 pseudo_func[FUNC_LT_DTP_MODULE].u.sym =
7470 symbol_new (".<ltoff.dtpmod>", undefined_section, FUNC_LT_DTP_MODULE,
7471 &zero_address_frag);
7472
7473 pseudo_func[FUNC_LT_DTP_RELATIVE].u.sym =
7474 symbol_new (".<ltoff.dptrel>", undefined_section, FUNC_LT_DTP_RELATIVE,
7475 &zero_address_frag);
7476
7477 pseudo_func[FUNC_LT_TP_RELATIVE].u.sym =
7478 symbol_new (".<ltoff.tprel>", undefined_section, FUNC_LT_TP_RELATIVE,
7479 &zero_address_frag);
7480
7481 pseudo_func[FUNC_IPLT_RELOC].u.sym =
7482 symbol_new (".<iplt>", undefined_section, FUNC_IPLT_RELOC,
7483 &zero_address_frag);
7484
7485 if (md.tune != itanium1)
7486 {
7487 /* Convert MFI NOPs bundles into MMI NOPs bundles. */
7488 le_nop[0] = 0x8;
7489 le_nop_stop[0] = 0x9;
7490 }
7491
7492 /* Compute the table of best templates. We compute goodness as a
7493 base 4 value, in which each match counts for 3. Match-failures
7494 result in NOPs and we use extra_goodness() to pick the execution
7495 units that are best suited for issuing the NOP. */
7496 for (i = 0; i < IA64_NUM_TYPES; ++i)
7497 for (j = 0; j < IA64_NUM_TYPES; ++j)
7498 for (k = 0; k < IA64_NUM_TYPES; ++k)
7499 {
7500 best = 0;
7501 for (t = 0; t < NELEMS (ia64_templ_desc); ++t)
7502 {
7503 goodness = 0;
7504 if (match (t, i, 0))
7505 {
7506 if (match (t, j, 1))
7507 {
7508 if ((t == 2 && j == IA64_TYPE_X) || match (t, k, 2))
7509 goodness = 3 + 3 + 3;
7510 else
7511 goodness = 3 + 3 + extra_goodness (t, 2);
7512 }
7513 else if (match (t, j, 2))
7514 goodness = 3 + 3 + extra_goodness (t, 1);
7515 else
7516 {
7517 goodness = 3;
7518 goodness += extra_goodness (t, 1);
7519 goodness += extra_goodness (t, 2);
7520 }
7521 }
7522 else if (match (t, i, 1))
7523 {
7524 if ((t == 2 && i == IA64_TYPE_X) || match (t, j, 2))
7525 goodness = 3 + 3;
7526 else
7527 goodness = 3 + extra_goodness (t, 2);
7528 }
7529 else if (match (t, i, 2))
7530 goodness = 3 + extra_goodness (t, 1);
7531
7532 if (goodness > best)
7533 {
7534 best = goodness;
7535 best_template[i][j][k] = t;
7536 }
7537 }
7538 }
7539
7540 #ifdef DEBUG_TEMPLATES
7541 /* For debugging changes to the best_template calculations. We don't care
7542 about combinations with invalid instructions, so start the loops at 1. */
7543 for (i = 0; i < IA64_NUM_TYPES; ++i)
7544 for (j = 0; j < IA64_NUM_TYPES; ++j)
7545 for (k = 0; k < IA64_NUM_TYPES; ++k)
7546 {
7547 char type_letter[IA64_NUM_TYPES] = { 'n', 'a', 'i', 'm', 'b', 'f',
7548 'x', 'd' };
7549 fprintf (stderr, "%c%c%c %s\n", type_letter[i], type_letter[j],
7550 type_letter[k],
7551 ia64_templ_desc[best_template[i][j][k]].name);
7552 }
7553 #endif
7554
7555 for (i = 0; i < NUM_SLOTS; ++i)
7556 md.slot[i].user_template = -1;
7557
7558 md.pseudo_hash = hash_new ();
7559 for (i = 0; i < NELEMS (pseudo_opcode); ++i)
7560 {
7561 err = hash_insert (md.pseudo_hash, pseudo_opcode[i].name,
7562 (void *) (pseudo_opcode + i));
7563 if (err)
7564 as_fatal ("ia64.md_begin: can't hash `%s': %s",
7565 pseudo_opcode[i].name, err);
7566 }
7567
7568 md.reg_hash = hash_new ();
7569 md.dynreg_hash = hash_new ();
7570 md.const_hash = hash_new ();
7571 md.entry_hash = hash_new ();
7572
7573 /* general registers: */
7574 declare_register_set ("r", 128, REG_GR);
7575 declare_register ("gp", REG_GR + 1);
7576 declare_register ("sp", REG_GR + 12);
7577 declare_register ("tp", REG_GR + 13);
7578 declare_register_set ("ret", 4, REG_GR + 8);
7579
7580 /* floating point registers: */
7581 declare_register_set ("f", 128, REG_FR);
7582 declare_register_set ("farg", 8, REG_FR + 8);
7583 declare_register_set ("fret", 8, REG_FR + 8);
7584
7585 /* branch registers: */
7586 declare_register_set ("b", 8, REG_BR);
7587 declare_register ("rp", REG_BR + 0);
7588
7589 /* predicate registers: */
7590 declare_register_set ("p", 64, REG_P);
7591 declare_register ("pr", REG_PR);
7592 declare_register ("pr.rot", REG_PR_ROT);
7593
7594 /* application registers: */
7595 declare_register_set ("ar", 128, REG_AR);
7596 for (i = 0; i < NELEMS (ar); ++i)
7597 declare_register (ar[i].name, REG_AR + ar[i].regnum);
7598
7599 /* control registers: */
7600 declare_register_set ("cr", 128, REG_CR);
7601 for (i = 0; i < NELEMS (cr); ++i)
7602 declare_register (cr[i].name, REG_CR + cr[i].regnum);
7603
7604 declare_register ("ip", REG_IP);
7605 declare_register ("cfm", REG_CFM);
7606 declare_register ("psr", REG_PSR);
7607 declare_register ("psr.l", REG_PSR_L);
7608 declare_register ("psr.um", REG_PSR_UM);
7609
7610 for (i = 0; i < NELEMS (indirect_reg); ++i)
7611 {
7612 unsigned int regnum = indirect_reg[i].regnum;
7613
7614 md.indregsym[regnum - IND_CPUID] = declare_register (indirect_reg[i].name, regnum);
7615 }
7616
7617 /* pseudo-registers used to specify unwind info: */
7618 declare_register ("psp", REG_PSP);
7619
7620 for (i = 0; i < NELEMS (const_bits); ++i)
7621 {
7622 err = hash_insert (md.const_hash, const_bits[i].name,
7623 (PTR) (const_bits + i));
7624 if (err)
7625 as_fatal ("Inserting \"%s\" into constant hash table failed: %s",
7626 name, err);
7627 }
7628
7629 /* Set the architecture and machine depending on defaults and command line
7630 options. */
7631 if (md.flags & EF_IA_64_ABI64)
7632 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf64);
7633 else
7634 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf32);
7635
7636 if (! ok)
7637 as_warn (_("Could not set architecture and machine"));
7638
7639 /* Set the pointer size and pointer shift size depending on md.flags */
7640
7641 if (md.flags & EF_IA_64_ABI64)
7642 {
7643 md.pointer_size = 8; /* pointers are 8 bytes */
7644 md.pointer_size_shift = 3; /* alignment is 8 bytes = 2^2 */
7645 }
7646 else
7647 {
7648 md.pointer_size = 4; /* pointers are 4 bytes */
7649 md.pointer_size_shift = 2; /* alignment is 4 bytes = 2^2 */
7650 }
7651
7652 md.mem_offset.hint = 0;
7653 md.path = 0;
7654 md.maxpaths = 0;
7655 md.entry_labels = NULL;
7656 }
7657
7658 /* Set the default options in md. Cannot do this in md_begin because
7659 that is called after md_parse_option which is where we set the
7660 options in md based on command line options. */
7661
7662 void
7663 ia64_init (argc, argv)
7664 int argc ATTRIBUTE_UNUSED;
7665 char **argv ATTRIBUTE_UNUSED;
7666 {
7667 md.flags = MD_FLAGS_DEFAULT;
7668 md.detect_dv = 1;
7669 /* FIXME: We should change it to unwind_check_error someday. */
7670 md.unwind_check = unwind_check_warning;
7671 md.hint_b = hint_b_error;
7672 md.tune = itanium2;
7673 }
7674
7675 /* Return a string for the target object file format. */
7676
7677 const char *
7678 ia64_target_format ()
7679 {
7680 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
7681 {
7682 if (md.flags & EF_IA_64_BE)
7683 {
7684 if (md.flags & EF_IA_64_ABI64)
7685 #if defined(TE_AIX50)
7686 return "elf64-ia64-aix-big";
7687 #elif defined(TE_HPUX)
7688 return "elf64-ia64-hpux-big";
7689 #else
7690 return "elf64-ia64-big";
7691 #endif
7692 else
7693 #if defined(TE_AIX50)
7694 return "elf32-ia64-aix-big";
7695 #elif defined(TE_HPUX)
7696 return "elf32-ia64-hpux-big";
7697 #else
7698 return "elf32-ia64-big";
7699 #endif
7700 }
7701 else
7702 {
7703 if (md.flags & EF_IA_64_ABI64)
7704 #ifdef TE_AIX50
7705 return "elf64-ia64-aix-little";
7706 #else
7707 return "elf64-ia64-little";
7708 #endif
7709 else
7710 #ifdef TE_AIX50
7711 return "elf32-ia64-aix-little";
7712 #else
7713 return "elf32-ia64-little";
7714 #endif
7715 }
7716 }
7717 else
7718 return "unknown-format";
7719 }
7720
7721 void
7722 ia64_end_of_source ()
7723 {
7724 /* terminate insn group upon reaching end of file: */
7725 insn_group_break (1, 0, 0);
7726
7727 /* emits slots we haven't written yet: */
7728 ia64_flush_insns ();
7729
7730 bfd_set_private_flags (stdoutput, md.flags);
7731
7732 md.mem_offset.hint = 0;
7733 }
7734
7735 void
7736 ia64_start_line ()
7737 {
7738 static int first;
7739
7740 if (!first) {
7741 /* Make sure we don't reference input_line_pointer[-1] when that's
7742 not valid. */
7743 first = 1;
7744 return;
7745 }
7746
7747 if (md.qp.X_op == O_register)
7748 as_bad ("qualifying predicate not followed by instruction");
7749 md.qp.X_op = O_absent;
7750
7751 if (ignore_input ())
7752 return;
7753
7754 if (input_line_pointer[0] == ';' && input_line_pointer[-1] == ';')
7755 {
7756 if (md.detect_dv && !md.explicit_mode)
7757 {
7758 static int warned;
7759
7760 if (!warned)
7761 {
7762 warned = 1;
7763 as_warn (_("Explicit stops are ignored in auto mode"));
7764 }
7765 }
7766 else
7767 insn_group_break (1, 0, 0);
7768 }
7769 else if (input_line_pointer[-1] == '{')
7770 {
7771 if (md.manual_bundling)
7772 as_warn ("Found '{' when manual bundling is already turned on");
7773 else
7774 CURR_SLOT.manual_bundling_on = 1;
7775 md.manual_bundling = 1;
7776
7777 /* Bundling is only acceptable in explicit mode
7778 or when in default automatic mode. */
7779 if (md.detect_dv && !md.explicit_mode)
7780 {
7781 if (!md.mode_explicitly_set
7782 && !md.default_explicit_mode)
7783 dot_dv_mode ('E');
7784 else
7785 as_warn (_("Found '{' after explicit switch to automatic mode"));
7786 }
7787 }
7788 else if (input_line_pointer[-1] == '}')
7789 {
7790 if (!md.manual_bundling)
7791 as_warn ("Found '}' when manual bundling is off");
7792 else
7793 PREV_SLOT.manual_bundling_off = 1;
7794 md.manual_bundling = 0;
7795
7796 /* switch back to automatic mode, if applicable */
7797 if (md.detect_dv
7798 && md.explicit_mode
7799 && !md.mode_explicitly_set
7800 && !md.default_explicit_mode)
7801 dot_dv_mode ('A');
7802 }
7803 }
7804
7805 /* This is a hook for ia64_frob_label, so that it can distinguish tags from
7806 labels. */
7807 static int defining_tag = 0;
7808
7809 int
7810 ia64_unrecognized_line (ch)
7811 int ch;
7812 {
7813 switch (ch)
7814 {
7815 case '(':
7816 expression_and_evaluate (&md.qp);
7817 if (*input_line_pointer++ != ')')
7818 {
7819 as_bad ("Expected ')'");
7820 return 0;
7821 }
7822 if (md.qp.X_op != O_register)
7823 {
7824 as_bad ("Qualifying predicate expected");
7825 return 0;
7826 }
7827 if (md.qp.X_add_number < REG_P || md.qp.X_add_number >= REG_P + 64)
7828 {
7829 as_bad ("Predicate register expected");
7830 return 0;
7831 }
7832 return 1;
7833
7834 case '[':
7835 {
7836 char *s;
7837 char c;
7838 symbolS *tag;
7839 int temp;
7840
7841 if (md.qp.X_op == O_register)
7842 {
7843 as_bad ("Tag must come before qualifying predicate.");
7844 return 0;
7845 }
7846
7847 /* This implements just enough of read_a_source_file in read.c to
7848 recognize labels. */
7849 if (is_name_beginner (*input_line_pointer))
7850 {
7851 s = input_line_pointer;
7852 c = get_symbol_end ();
7853 }
7854 else if (LOCAL_LABELS_FB
7855 && ISDIGIT (*input_line_pointer))
7856 {
7857 temp = 0;
7858 while (ISDIGIT (*input_line_pointer))
7859 temp = (temp * 10) + *input_line_pointer++ - '0';
7860 fb_label_instance_inc (temp);
7861 s = fb_label_name (temp, 0);
7862 c = *input_line_pointer;
7863 }
7864 else
7865 {
7866 s = NULL;
7867 c = '\0';
7868 }
7869 if (c != ':')
7870 {
7871 /* Put ':' back for error messages' sake. */
7872 *input_line_pointer++ = ':';
7873 as_bad ("Expected ':'");
7874 return 0;
7875 }
7876
7877 defining_tag = 1;
7878 tag = colon (s);
7879 defining_tag = 0;
7880 /* Put ':' back for error messages' sake. */
7881 *input_line_pointer++ = ':';
7882 if (*input_line_pointer++ != ']')
7883 {
7884 as_bad ("Expected ']'");
7885 return 0;
7886 }
7887 if (! tag)
7888 {
7889 as_bad ("Tag name expected");
7890 return 0;
7891 }
7892 return 1;
7893 }
7894
7895 default:
7896 break;
7897 }
7898
7899 /* Not a valid line. */
7900 return 0;
7901 }
7902
7903 void
7904 ia64_frob_label (sym)
7905 struct symbol *sym;
7906 {
7907 struct label_fix *fix;
7908
7909 /* Tags need special handling since they are not bundle breaks like
7910 labels. */
7911 if (defining_tag)
7912 {
7913 fix = obstack_alloc (&notes, sizeof (*fix));
7914 fix->sym = sym;
7915 fix->next = CURR_SLOT.tag_fixups;
7916 fix->dw2_mark_labels = FALSE;
7917 CURR_SLOT.tag_fixups = fix;
7918
7919 return;
7920 }
7921
7922 if (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
7923 {
7924 md.last_text_seg = now_seg;
7925 fix = obstack_alloc (&notes, sizeof (*fix));
7926 fix->sym = sym;
7927 fix->next = CURR_SLOT.label_fixups;
7928 fix->dw2_mark_labels = dwarf2_loc_mark_labels;
7929 CURR_SLOT.label_fixups = fix;
7930
7931 /* Keep track of how many code entry points we've seen. */
7932 if (md.path == md.maxpaths)
7933 {
7934 md.maxpaths += 20;
7935 md.entry_labels = (const char **)
7936 xrealloc ((void *) md.entry_labels,
7937 md.maxpaths * sizeof (char *));
7938 }
7939 md.entry_labels[md.path++] = S_GET_NAME (sym);
7940 }
7941 }
7942
7943 #ifdef TE_HPUX
7944 /* The HP-UX linker will give unresolved symbol errors for symbols
7945 that are declared but unused. This routine removes declared,
7946 unused symbols from an object. */
7947 int
7948 ia64_frob_symbol (sym)
7949 struct symbol *sym;
7950 {
7951 if ((S_GET_SEGMENT (sym) == &bfd_und_section && ! symbol_used_p (sym) &&
7952 ELF_ST_VISIBILITY (S_GET_OTHER (sym)) == STV_DEFAULT)
7953 || (S_GET_SEGMENT (sym) == &bfd_abs_section
7954 && ! S_IS_EXTERNAL (sym)))
7955 return 1;
7956 return 0;
7957 }
7958 #endif
7959
7960 void
7961 ia64_flush_pending_output ()
7962 {
7963 if (!md.keep_pending_output
7964 && bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
7965 {
7966 /* ??? This causes many unnecessary stop bits to be emitted.
7967 Unfortunately, it isn't clear if it is safe to remove this. */
7968 insn_group_break (1, 0, 0);
7969 ia64_flush_insns ();
7970 }
7971 }
7972
7973 /* Do ia64-specific expression optimization. All that's done here is
7974 to transform index expressions that are either due to the indexing
7975 of rotating registers or due to the indexing of indirect register
7976 sets. */
7977 int
7978 ia64_optimize_expr (l, op, r)
7979 expressionS *l;
7980 operatorT op;
7981 expressionS *r;
7982 {
7983 if (op != O_index)
7984 return 0;
7985 resolve_expression (l);
7986 if (l->X_op == O_register)
7987 {
7988 unsigned num_regs = l->X_add_number >> 16;
7989
7990 resolve_expression (r);
7991 if (num_regs)
7992 {
7993 /* Left side is a .rotX-allocated register. */
7994 if (r->X_op != O_constant)
7995 {
7996 as_bad ("Rotating register index must be a non-negative constant");
7997 r->X_add_number = 0;
7998 }
7999 else if ((valueT) r->X_add_number >= num_regs)
8000 {
8001 as_bad ("Index out of range 0..%u", num_regs - 1);
8002 r->X_add_number = 0;
8003 }
8004 l->X_add_number = (l->X_add_number & 0xffff) + r->X_add_number;
8005 return 1;
8006 }
8007 else if (l->X_add_number >= IND_CPUID && l->X_add_number <= IND_RR)
8008 {
8009 if (r->X_op != O_register
8010 || r->X_add_number < REG_GR
8011 || r->X_add_number > REG_GR + 127)
8012 {
8013 as_bad ("Indirect register index must be a general register");
8014 r->X_add_number = REG_GR;
8015 }
8016 l->X_op = O_index;
8017 l->X_op_symbol = md.indregsym[l->X_add_number - IND_CPUID];
8018 l->X_add_number = r->X_add_number;
8019 return 1;
8020 }
8021 }
8022 as_bad ("Index can only be applied to rotating or indirect registers");
8023 /* Fall back to some register use of which has as little as possible
8024 side effects, to minimize subsequent error messages. */
8025 l->X_op = O_register;
8026 l->X_add_number = REG_GR + 3;
8027 return 1;
8028 }
8029
8030 int
8031 ia64_parse_name (name, e, nextcharP)
8032 char *name;
8033 expressionS *e;
8034 char *nextcharP;
8035 {
8036 struct const_desc *cdesc;
8037 struct dynreg *dr = 0;
8038 unsigned int idx;
8039 struct symbol *sym;
8040 char *end;
8041
8042 if (*name == '@')
8043 {
8044 enum pseudo_type pseudo_type = PSEUDO_FUNC_NONE;
8045
8046 /* Find what relocation pseudo-function we're dealing with. */
8047 for (idx = 0; idx < NELEMS (pseudo_func); ++idx)
8048 if (pseudo_func[idx].name
8049 && pseudo_func[idx].name[0] == name[1]
8050 && strcmp (pseudo_func[idx].name + 1, name + 2) == 0)
8051 {
8052 pseudo_type = pseudo_func[idx].type;
8053 break;
8054 }
8055 switch (pseudo_type)
8056 {
8057 case PSEUDO_FUNC_RELOC:
8058 end = input_line_pointer;
8059 if (*nextcharP != '(')
8060 {
8061 as_bad ("Expected '('");
8062 break;
8063 }
8064 /* Skip '('. */
8065 ++input_line_pointer;
8066 expression (e);
8067 if (*input_line_pointer != ')')
8068 {
8069 as_bad ("Missing ')'");
8070 goto done;
8071 }
8072 /* Skip ')'. */
8073 ++input_line_pointer;
8074 if (e->X_op != O_symbol)
8075 {
8076 if (e->X_op != O_pseudo_fixup)
8077 {
8078 as_bad ("Not a symbolic expression");
8079 goto done;
8080 }
8081 if (idx != FUNC_LT_RELATIVE)
8082 {
8083 as_bad ("Illegal combination of relocation functions");
8084 goto done;
8085 }
8086 switch (S_GET_VALUE (e->X_op_symbol))
8087 {
8088 case FUNC_FPTR_RELATIVE:
8089 idx = FUNC_LT_FPTR_RELATIVE; break;
8090 case FUNC_DTP_MODULE:
8091 idx = FUNC_LT_DTP_MODULE; break;
8092 case FUNC_DTP_RELATIVE:
8093 idx = FUNC_LT_DTP_RELATIVE; break;
8094 case FUNC_TP_RELATIVE:
8095 idx = FUNC_LT_TP_RELATIVE; break;
8096 default:
8097 as_bad ("Illegal combination of relocation functions");
8098 goto done;
8099 }
8100 }
8101 /* Make sure gas doesn't get rid of local symbols that are used
8102 in relocs. */
8103 e->X_op = O_pseudo_fixup;
8104 e->X_op_symbol = pseudo_func[idx].u.sym;
8105 done:
8106 *nextcharP = *input_line_pointer;
8107 break;
8108
8109 case PSEUDO_FUNC_CONST:
8110 e->X_op = O_constant;
8111 e->X_add_number = pseudo_func[idx].u.ival;
8112 break;
8113
8114 case PSEUDO_FUNC_REG:
8115 e->X_op = O_register;
8116 e->X_add_number = pseudo_func[idx].u.ival;
8117 break;
8118
8119 default:
8120 return 0;
8121 }
8122 return 1;
8123 }
8124
8125 /* first see if NAME is a known register name: */
8126 sym = hash_find (md.reg_hash, name);
8127 if (sym)
8128 {
8129 e->X_op = O_register;
8130 e->X_add_number = S_GET_VALUE (sym);
8131 return 1;
8132 }
8133
8134 cdesc = hash_find (md.const_hash, name);
8135 if (cdesc)
8136 {
8137 e->X_op = O_constant;
8138 e->X_add_number = cdesc->value;
8139 return 1;
8140 }
8141
8142 /* check for inN, locN, or outN: */
8143 idx = 0;
8144 switch (name[0])
8145 {
8146 case 'i':
8147 if (name[1] == 'n' && ISDIGIT (name[2]))
8148 {
8149 dr = &md.in;
8150 idx = 2;
8151 }
8152 break;
8153
8154 case 'l':
8155 if (name[1] == 'o' && name[2] == 'c' && ISDIGIT (name[3]))
8156 {
8157 dr = &md.loc;
8158 idx = 3;
8159 }
8160 break;
8161
8162 case 'o':
8163 if (name[1] == 'u' && name[2] == 't' && ISDIGIT (name[3]))
8164 {
8165 dr = &md.out;
8166 idx = 3;
8167 }
8168 break;
8169
8170 default:
8171 break;
8172 }
8173
8174 /* Ignore register numbers with leading zeroes, except zero itself. */
8175 if (dr && (name[idx] != '0' || name[idx + 1] == '\0'))
8176 {
8177 unsigned long regnum;
8178
8179 /* The name is inN, locN, or outN; parse the register number. */
8180 regnum = strtoul (name + idx, &end, 10);
8181 if (end > name + idx && *end == '\0' && regnum < 96)
8182 {
8183 if (regnum >= dr->num_regs)
8184 {
8185 if (!dr->num_regs)
8186 as_bad ("No current frame");
8187 else
8188 as_bad ("Register number out of range 0..%u",
8189 dr->num_regs - 1);
8190 regnum = 0;
8191 }
8192 e->X_op = O_register;
8193 e->X_add_number = dr->base + regnum;
8194 return 1;
8195 }
8196 }
8197
8198 end = alloca (strlen (name) + 1);
8199 strcpy (end, name);
8200 name = ia64_canonicalize_symbol_name (end);
8201 if ((dr = hash_find (md.dynreg_hash, name)))
8202 {
8203 /* We've got ourselves the name of a rotating register set.
8204 Store the base register number in the low 16 bits of
8205 X_add_number and the size of the register set in the top 16
8206 bits. */
8207 e->X_op = O_register;
8208 e->X_add_number = dr->base | (dr->num_regs << 16);
8209 return 1;
8210 }
8211 return 0;
8212 }
8213
8214 /* Remove the '#' suffix that indicates a symbol as opposed to a register. */
8215
8216 char *
8217 ia64_canonicalize_symbol_name (name)
8218 char *name;
8219 {
8220 size_t len = strlen (name), full = len;
8221
8222 while (len > 0 && name[len - 1] == '#')
8223 --len;
8224 if (len <= 0)
8225 {
8226 if (full > 0)
8227 as_bad ("Standalone `#' is illegal");
8228 }
8229 else if (len < full - 1)
8230 as_warn ("Redundant `#' suffix operators");
8231 name[len] = '\0';
8232 return name;
8233 }
8234
8235 /* Return true if idesc is a conditional branch instruction. This excludes
8236 the modulo scheduled branches, and br.ia. Mod-sched branches are excluded
8237 because they always read/write resources regardless of the value of the
8238 qualifying predicate. br.ia must always use p0, and hence is always
8239 taken. Thus this function returns true for branches which can fall
8240 through, and which use no resources if they do fall through. */
8241
8242 static int
8243 is_conditional_branch (idesc)
8244 struct ia64_opcode *idesc;
8245 {
8246 /* br is a conditional branch. Everything that starts with br. except
8247 br.ia, br.c{loop,top,exit}, and br.w{top,exit} is a conditional branch.
8248 Everything that starts with brl is a conditional branch. */
8249 return (idesc->name[0] == 'b' && idesc->name[1] == 'r'
8250 && (idesc->name[2] == '\0'
8251 || (idesc->name[2] == '.' && idesc->name[3] != 'i'
8252 && idesc->name[3] != 'c' && idesc->name[3] != 'w')
8253 || idesc->name[2] == 'l'
8254 /* br.cond, br.call, br.clr */
8255 || (idesc->name[2] == '.' && idesc->name[3] == 'c'
8256 && (idesc->name[4] == 'a' || idesc->name[4] == 'o'
8257 || (idesc->name[4] == 'l' && idesc->name[5] == 'r')))));
8258 }
8259
8260 /* Return whether the given opcode is a taken branch. If there's any doubt,
8261 returns zero. */
8262
8263 static int
8264 is_taken_branch (idesc)
8265 struct ia64_opcode *idesc;
8266 {
8267 return ((is_conditional_branch (idesc) && CURR_SLOT.qp_regno == 0)
8268 || strncmp (idesc->name, "br.ia", 5) == 0);
8269 }
8270
8271 /* Return whether the given opcode is an interruption or rfi. If there's any
8272 doubt, returns zero. */
8273
8274 static int
8275 is_interruption_or_rfi (idesc)
8276 struct ia64_opcode *idesc;
8277 {
8278 if (strcmp (idesc->name, "rfi") == 0)
8279 return 1;
8280 return 0;
8281 }
8282
8283 /* Returns the index of the given dependency in the opcode's list of chks, or
8284 -1 if there is no dependency. */
8285
8286 static int
8287 depends_on (depind, idesc)
8288 int depind;
8289 struct ia64_opcode *idesc;
8290 {
8291 int i;
8292 const struct ia64_opcode_dependency *dep = idesc->dependencies;
8293 for (i = 0; i < dep->nchks; i++)
8294 {
8295 if (depind == DEP (dep->chks[i]))
8296 return i;
8297 }
8298 return -1;
8299 }
8300
8301 /* Determine a set of specific resources used for a particular resource
8302 class. Returns the number of specific resources identified For those
8303 cases which are not determinable statically, the resource returned is
8304 marked nonspecific.
8305
8306 Meanings of value in 'NOTE':
8307 1) only read/write when the register number is explicitly encoded in the
8308 insn.
8309 2) only read CFM when accessing a rotating GR, FR, or PR. mov pr only
8310 accesses CFM when qualifying predicate is in the rotating region.
8311 3) general register value is used to specify an indirect register; not
8312 determinable statically.
8313 4) only read the given resource when bits 7:0 of the indirect index
8314 register value does not match the register number of the resource; not
8315 determinable statically.
8316 5) all rules are implementation specific.
8317 6) only when both the index specified by the reader and the index specified
8318 by the writer have the same value in bits 63:61; not determinable
8319 statically.
8320 7) only access the specified resource when the corresponding mask bit is
8321 set
8322 8) PSR.dfh is only read when these insns reference FR32-127. PSR.dfl is
8323 only read when these insns reference FR2-31
8324 9) PSR.mfl is only written when these insns write FR2-31. PSR.mfh is only
8325 written when these insns write FR32-127
8326 10) The PSR.bn bit is only accessed when one of GR16-31 is specified in the
8327 instruction
8328 11) The target predicates are written independently of PR[qp], but source
8329 registers are only read if PR[qp] is true. Since the state of PR[qp]
8330 cannot statically be determined, all source registers are marked used.
8331 12) This insn only reads the specified predicate register when that
8332 register is the PR[qp].
8333 13) This reference to ld-c only applies to teh GR whose value is loaded
8334 with data returned from memory, not the post-incremented address register.
8335 14) The RSE resource includes the implementation-specific RSE internal
8336 state resources. At least one (and possibly more) of these resources are
8337 read by each instruction listed in IC:rse-readers. At least one (and
8338 possibly more) of these resources are written by each insn listed in
8339 IC:rse-writers.
8340 15+16) Represents reserved instructions, which the assembler does not
8341 generate.
8342 17) CR[TPR] has a RAW dependency only between mov-to-CR-TPR and
8343 mov-to-PSR-l or ssm instructions that set PSR.i, PSR.pp or PSR.up.
8344
8345 Memory resources (i.e. locations in memory) are *not* marked or tracked by
8346 this code; there are no dependency violations based on memory access.
8347 */
8348
8349 #define MAX_SPECS 256
8350 #define DV_CHK 1
8351 #define DV_REG 0
8352
8353 static int
8354 specify_resource (dep, idesc, type, specs, note, path)
8355 const struct ia64_dependency *dep;
8356 struct ia64_opcode *idesc;
8357 int type; /* is this a DV chk or a DV reg? */
8358 struct rsrc specs[MAX_SPECS]; /* returned specific resources */
8359 int note; /* resource note for this insn's usage */
8360 int path; /* which execution path to examine */
8361 {
8362 int count = 0;
8363 int i;
8364 int rsrc_write = 0;
8365 struct rsrc tmpl;
8366
8367 if (dep->mode == IA64_DV_WAW
8368 || (dep->mode == IA64_DV_RAW && type == DV_REG)
8369 || (dep->mode == IA64_DV_WAR && type == DV_CHK))
8370 rsrc_write = 1;
8371
8372 /* template for any resources we identify */
8373 tmpl.dependency = dep;
8374 tmpl.note = note;
8375 tmpl.insn_srlz = tmpl.data_srlz = 0;
8376 tmpl.qp_regno = CURR_SLOT.qp_regno;
8377 tmpl.link_to_qp_branch = 1;
8378 tmpl.mem_offset.hint = 0;
8379 tmpl.mem_offset.offset = 0;
8380 tmpl.mem_offset.base = 0;
8381 tmpl.specific = 1;
8382 tmpl.index = -1;
8383 tmpl.cmp_type = CMP_NONE;
8384 tmpl.depind = 0;
8385 tmpl.file = NULL;
8386 tmpl.line = 0;
8387 tmpl.path = 0;
8388
8389 #define UNHANDLED \
8390 as_warn (_("Unhandled dependency %s for %s (%s), note %d"), \
8391 dep->name, idesc->name, (rsrc_write?"write":"read"), note)
8392 #define KNOWN(REG) (gr_values[REG].known && gr_values[REG].path >= path)
8393
8394 /* we don't need to track these */
8395 if (dep->semantics == IA64_DVS_NONE)
8396 return 0;
8397
8398 switch (dep->specifier)
8399 {
8400 case IA64_RS_AR_K:
8401 if (note == 1)
8402 {
8403 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8404 {
8405 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8406 if (regno >= 0 && regno <= 7)
8407 {
8408 specs[count] = tmpl;
8409 specs[count++].index = regno;
8410 }
8411 }
8412 }
8413 else if (note == 0)
8414 {
8415 for (i = 0; i < 8; i++)
8416 {
8417 specs[count] = tmpl;
8418 specs[count++].index = i;
8419 }
8420 }
8421 else
8422 {
8423 UNHANDLED;
8424 }
8425 break;
8426
8427 case IA64_RS_AR_UNAT:
8428 /* This is a mov =AR or mov AR= instruction. */
8429 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8430 {
8431 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8432 if (regno == AR_UNAT)
8433 {
8434 specs[count++] = tmpl;
8435 }
8436 }
8437 else
8438 {
8439 /* This is a spill/fill, or other instruction that modifies the
8440 unat register. */
8441
8442 /* Unless we can determine the specific bits used, mark the whole
8443 thing; bits 8:3 of the memory address indicate the bit used in
8444 UNAT. The .mem.offset hint may be used to eliminate a small
8445 subset of conflicts. */
8446 specs[count] = tmpl;
8447 if (md.mem_offset.hint)
8448 {
8449 if (md.debug_dv)
8450 fprintf (stderr, " Using hint for spill/fill\n");
8451 /* The index isn't actually used, just set it to something
8452 approximating the bit index. */
8453 specs[count].index = (md.mem_offset.offset >> 3) & 0x3F;
8454 specs[count].mem_offset.hint = 1;
8455 specs[count].mem_offset.offset = md.mem_offset.offset;
8456 specs[count++].mem_offset.base = md.mem_offset.base;
8457 }
8458 else
8459 {
8460 specs[count++].specific = 0;
8461 }
8462 }
8463 break;
8464
8465 case IA64_RS_AR:
8466 if (note == 1)
8467 {
8468 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8469 {
8470 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8471 if ((regno >= 8 && regno <= 15)
8472 || (regno >= 20 && regno <= 23)
8473 || (regno >= 31 && regno <= 39)
8474 || (regno >= 41 && regno <= 47)
8475 || (regno >= 67 && regno <= 111))
8476 {
8477 specs[count] = tmpl;
8478 specs[count++].index = regno;
8479 }
8480 }
8481 }
8482 else
8483 {
8484 UNHANDLED;
8485 }
8486 break;
8487
8488 case IA64_RS_ARb:
8489 if (note == 1)
8490 {
8491 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8492 {
8493 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8494 if ((regno >= 48 && regno <= 63)
8495 || (regno >= 112 && regno <= 127))
8496 {
8497 specs[count] = tmpl;
8498 specs[count++].index = regno;
8499 }
8500 }
8501 }
8502 else if (note == 0)
8503 {
8504 for (i = 48; i < 64; i++)
8505 {
8506 specs[count] = tmpl;
8507 specs[count++].index = i;
8508 }
8509 for (i = 112; i < 128; i++)
8510 {
8511 specs[count] = tmpl;
8512 specs[count++].index = i;
8513 }
8514 }
8515 else
8516 {
8517 UNHANDLED;
8518 }
8519 break;
8520
8521 case IA64_RS_BR:
8522 if (note != 1)
8523 {
8524 UNHANDLED;
8525 }
8526 else
8527 {
8528 if (rsrc_write)
8529 {
8530 for (i = 0; i < idesc->num_outputs; i++)
8531 if (idesc->operands[i] == IA64_OPND_B1
8532 || idesc->operands[i] == IA64_OPND_B2)
8533 {
8534 specs[count] = tmpl;
8535 specs[count++].index =
8536 CURR_SLOT.opnd[i].X_add_number - REG_BR;
8537 }
8538 }
8539 else
8540 {
8541 for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
8542 if (idesc->operands[i] == IA64_OPND_B1
8543 || idesc->operands[i] == IA64_OPND_B2)
8544 {
8545 specs[count] = tmpl;
8546 specs[count++].index =
8547 CURR_SLOT.opnd[i].X_add_number - REG_BR;
8548 }
8549 }
8550 }
8551 break;
8552
8553 case IA64_RS_CPUID: /* four or more registers */
8554 if (note == 3)
8555 {
8556 if (idesc->operands[!rsrc_write] == IA64_OPND_CPUID_R3)
8557 {
8558 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8559 if (regno >= 0 && regno < NELEMS (gr_values)
8560 && KNOWN (regno))
8561 {
8562 specs[count] = tmpl;
8563 specs[count++].index = gr_values[regno].value & 0xFF;
8564 }
8565 else
8566 {
8567 specs[count] = tmpl;
8568 specs[count++].specific = 0;
8569 }
8570 }
8571 }
8572 else
8573 {
8574 UNHANDLED;
8575 }
8576 break;
8577
8578 case IA64_RS_DBR: /* four or more registers */
8579 if (note == 3)
8580 {
8581 if (idesc->operands[!rsrc_write] == IA64_OPND_DBR_R3)
8582 {
8583 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8584 if (regno >= 0 && regno < NELEMS (gr_values)
8585 && KNOWN (regno))
8586 {
8587 specs[count] = tmpl;
8588 specs[count++].index = gr_values[regno].value & 0xFF;
8589 }
8590 else
8591 {
8592 specs[count] = tmpl;
8593 specs[count++].specific = 0;
8594 }
8595 }
8596 }
8597 else if (note == 0 && !rsrc_write)
8598 {
8599 specs[count] = tmpl;
8600 specs[count++].specific = 0;
8601 }
8602 else
8603 {
8604 UNHANDLED;
8605 }
8606 break;
8607
8608 case IA64_RS_IBR: /* four or more registers */
8609 if (note == 3)
8610 {
8611 if (idesc->operands[!rsrc_write] == IA64_OPND_IBR_R3)
8612 {
8613 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8614 if (regno >= 0 && regno < NELEMS (gr_values)
8615 && KNOWN (regno))
8616 {
8617 specs[count] = tmpl;
8618 specs[count++].index = gr_values[regno].value & 0xFF;
8619 }
8620 else
8621 {
8622 specs[count] = tmpl;
8623 specs[count++].specific = 0;
8624 }
8625 }
8626 }
8627 else
8628 {
8629 UNHANDLED;
8630 }
8631 break;
8632
8633 case IA64_RS_MSR:
8634 if (note == 5)
8635 {
8636 /* These are implementation specific. Force all references to
8637 conflict with all other references. */
8638 specs[count] = tmpl;
8639 specs[count++].specific = 0;
8640 }
8641 else
8642 {
8643 UNHANDLED;
8644 }
8645 break;
8646
8647 case IA64_RS_PKR: /* 16 or more registers */
8648 if (note == 3 || note == 4)
8649 {
8650 if (idesc->operands[!rsrc_write] == IA64_OPND_PKR_R3)
8651 {
8652 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8653 if (regno >= 0 && regno < NELEMS (gr_values)
8654 && KNOWN (regno))
8655 {
8656 if (note == 3)
8657 {
8658 specs[count] = tmpl;
8659 specs[count++].index = gr_values[regno].value & 0xFF;
8660 }
8661 else
8662 for (i = 0; i < NELEMS (gr_values); i++)
8663 {
8664 /* Uses all registers *except* the one in R3. */
8665 if ((unsigned)i != (gr_values[regno].value & 0xFF))
8666 {
8667 specs[count] = tmpl;
8668 specs[count++].index = i;
8669 }
8670 }
8671 }
8672 else
8673 {
8674 specs[count] = tmpl;
8675 specs[count++].specific = 0;
8676 }
8677 }
8678 }
8679 else if (note == 0)
8680 {
8681 /* probe et al. */
8682 specs[count] = tmpl;
8683 specs[count++].specific = 0;
8684 }
8685 break;
8686
8687 case IA64_RS_PMC: /* four or more registers */
8688 if (note == 3)
8689 {
8690 if (idesc->operands[!rsrc_write] == IA64_OPND_PMC_R3
8691 || (!rsrc_write && idesc->operands[1] == IA64_OPND_PMD_R3))
8692
8693 {
8694 int index = ((idesc->operands[1] == IA64_OPND_R3 && !rsrc_write)
8695 ? 1 : !rsrc_write);
8696 int regno = CURR_SLOT.opnd[index].X_add_number - REG_GR;
8697 if (regno >= 0 && regno < NELEMS (gr_values)
8698 && KNOWN (regno))
8699 {
8700 specs[count] = tmpl;
8701 specs[count++].index = gr_values[regno].value & 0xFF;
8702 }
8703 else
8704 {
8705 specs[count] = tmpl;
8706 specs[count++].specific = 0;
8707 }
8708 }
8709 }
8710 else
8711 {
8712 UNHANDLED;
8713 }
8714 break;
8715
8716 case IA64_RS_PMD: /* four or more registers */
8717 if (note == 3)
8718 {
8719 if (idesc->operands[!rsrc_write] == IA64_OPND_PMD_R3)
8720 {
8721 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8722 if (regno >= 0 && regno < NELEMS (gr_values)
8723 && KNOWN (regno))
8724 {
8725 specs[count] = tmpl;
8726 specs[count++].index = gr_values[regno].value & 0xFF;
8727 }
8728 else
8729 {
8730 specs[count] = tmpl;
8731 specs[count++].specific = 0;
8732 }
8733 }
8734 }
8735 else
8736 {
8737 UNHANDLED;
8738 }
8739 break;
8740
8741 case IA64_RS_RR: /* eight registers */
8742 if (note == 6)
8743 {
8744 if (idesc->operands[!rsrc_write] == IA64_OPND_RR_R3)
8745 {
8746 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8747 if (regno >= 0 && regno < NELEMS (gr_values)
8748 && KNOWN (regno))
8749 {
8750 specs[count] = tmpl;
8751 specs[count++].index = (gr_values[regno].value >> 61) & 0x7;
8752 }
8753 else
8754 {
8755 specs[count] = tmpl;
8756 specs[count++].specific = 0;
8757 }
8758 }
8759 }
8760 else if (note == 0 && !rsrc_write)
8761 {
8762 specs[count] = tmpl;
8763 specs[count++].specific = 0;
8764 }
8765 else
8766 {
8767 UNHANDLED;
8768 }
8769 break;
8770
8771 case IA64_RS_CR_IRR:
8772 if (note == 0)
8773 {
8774 /* handle mov-from-CR-IVR; it's a read that writes CR[IRR] */
8775 int regno = CURR_SLOT.opnd[1].X_add_number - REG_CR;
8776 if (rsrc_write
8777 && idesc->operands[1] == IA64_OPND_CR3
8778 && regno == CR_IVR)
8779 {
8780 for (i = 0; i < 4; i++)
8781 {
8782 specs[count] = tmpl;
8783 specs[count++].index = CR_IRR0 + i;
8784 }
8785 }
8786 }
8787 else if (note == 1)
8788 {
8789 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8790 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
8791 && regno >= CR_IRR0
8792 && regno <= CR_IRR3)
8793 {
8794 specs[count] = tmpl;
8795 specs[count++].index = regno;
8796 }
8797 }
8798 else
8799 {
8800 UNHANDLED;
8801 }
8802 break;
8803
8804 case IA64_RS_CR_LRR:
8805 if (note != 1)
8806 {
8807 UNHANDLED;
8808 }
8809 else
8810 {
8811 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8812 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
8813 && (regno == CR_LRR0 || regno == CR_LRR1))
8814 {
8815 specs[count] = tmpl;
8816 specs[count++].index = regno;
8817 }
8818 }
8819 break;
8820
8821 case IA64_RS_CR:
8822 if (note == 1)
8823 {
8824 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
8825 {
8826 specs[count] = tmpl;
8827 specs[count++].index =
8828 CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8829 }
8830 }
8831 else
8832 {
8833 UNHANDLED;
8834 }
8835 break;
8836
8837 case IA64_RS_FR:
8838 case IA64_RS_FRb:
8839 if (note != 1)
8840 {
8841 UNHANDLED;
8842 }
8843 else if (rsrc_write)
8844 {
8845 if (dep->specifier == IA64_RS_FRb
8846 && idesc->operands[0] == IA64_OPND_F1)
8847 {
8848 specs[count] = tmpl;
8849 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_FR;
8850 }
8851 }
8852 else
8853 {
8854 for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
8855 {
8856 if (idesc->operands[i] == IA64_OPND_F2
8857 || idesc->operands[i] == IA64_OPND_F3
8858 || idesc->operands[i] == IA64_OPND_F4)
8859 {
8860 specs[count] = tmpl;
8861 specs[count++].index =
8862 CURR_SLOT.opnd[i].X_add_number - REG_FR;
8863 }
8864 }
8865 }
8866 break;
8867
8868 case IA64_RS_GR:
8869 if (note == 13)
8870 {
8871 /* This reference applies only to the GR whose value is loaded with
8872 data returned from memory. */
8873 specs[count] = tmpl;
8874 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_GR;
8875 }
8876 else if (note == 1)
8877 {
8878 if (rsrc_write)
8879 {
8880 for (i = 0; i < idesc->num_outputs; i++)
8881 if (idesc->operands[i] == IA64_OPND_R1
8882 || idesc->operands[i] == IA64_OPND_R2
8883 || idesc->operands[i] == IA64_OPND_R3)
8884 {
8885 specs[count] = tmpl;
8886 specs[count++].index =
8887 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8888 }
8889 if (idesc->flags & IA64_OPCODE_POSTINC)
8890 for (i = 0; i < NELEMS (idesc->operands); i++)
8891 if (idesc->operands[i] == IA64_OPND_MR3)
8892 {
8893 specs[count] = tmpl;
8894 specs[count++].index =
8895 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8896 }
8897 }
8898 else
8899 {
8900 /* Look for anything that reads a GR. */
8901 for (i = 0; i < NELEMS (idesc->operands); i++)
8902 {
8903 if (idesc->operands[i] == IA64_OPND_MR3
8904 || idesc->operands[i] == IA64_OPND_CPUID_R3
8905 || idesc->operands[i] == IA64_OPND_DBR_R3
8906 || idesc->operands[i] == IA64_OPND_IBR_R3
8907 || idesc->operands[i] == IA64_OPND_MSR_R3
8908 || idesc->operands[i] == IA64_OPND_PKR_R3
8909 || idesc->operands[i] == IA64_OPND_PMC_R3
8910 || idesc->operands[i] == IA64_OPND_PMD_R3
8911 || idesc->operands[i] == IA64_OPND_RR_R3
8912 || ((i >= idesc->num_outputs)
8913 && (idesc->operands[i] == IA64_OPND_R1
8914 || idesc->operands[i] == IA64_OPND_R2
8915 || idesc->operands[i] == IA64_OPND_R3
8916 /* addl source register. */
8917 || idesc->operands[i] == IA64_OPND_R3_2)))
8918 {
8919 specs[count] = tmpl;
8920 specs[count++].index =
8921 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8922 }
8923 }
8924 }
8925 }
8926 else
8927 {
8928 UNHANDLED;
8929 }
8930 break;
8931
8932 /* This is the same as IA64_RS_PRr, except that the register range is
8933 from 1 - 15, and there are no rotating register reads/writes here. */
8934 case IA64_RS_PR:
8935 if (note == 0)
8936 {
8937 for (i = 1; i < 16; i++)
8938 {
8939 specs[count] = tmpl;
8940 specs[count++].index = i;
8941 }
8942 }
8943 else if (note == 7)
8944 {
8945 valueT mask = 0;
8946 /* Mark only those registers indicated by the mask. */
8947 if (rsrc_write)
8948 {
8949 mask = CURR_SLOT.opnd[2].X_add_number;
8950 for (i = 1; i < 16; i++)
8951 if (mask & ((valueT) 1 << i))
8952 {
8953 specs[count] = tmpl;
8954 specs[count++].index = i;
8955 }
8956 }
8957 else
8958 {
8959 UNHANDLED;
8960 }
8961 }
8962 else if (note == 11) /* note 11 implies note 1 as well */
8963 {
8964 if (rsrc_write)
8965 {
8966 for (i = 0; i < idesc->num_outputs; i++)
8967 {
8968 if (idesc->operands[i] == IA64_OPND_P1
8969 || idesc->operands[i] == IA64_OPND_P2)
8970 {
8971 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
8972 if (regno >= 1 && regno < 16)
8973 {
8974 specs[count] = tmpl;
8975 specs[count++].index = regno;
8976 }
8977 }
8978 }
8979 }
8980 else
8981 {
8982 UNHANDLED;
8983 }
8984 }
8985 else if (note == 12)
8986 {
8987 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
8988 {
8989 specs[count] = tmpl;
8990 specs[count++].index = CURR_SLOT.qp_regno;
8991 }
8992 }
8993 else if (note == 1)
8994 {
8995 if (rsrc_write)
8996 {
8997 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
8998 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
8999 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
9000 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
9001
9002 if ((idesc->operands[0] == IA64_OPND_P1
9003 || idesc->operands[0] == IA64_OPND_P2)
9004 && p1 >= 1 && p1 < 16)
9005 {
9006 specs[count] = tmpl;
9007 specs[count].cmp_type =
9008 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
9009 specs[count++].index = p1;
9010 }
9011 if ((idesc->operands[1] == IA64_OPND_P1
9012 || idesc->operands[1] == IA64_OPND_P2)
9013 && p2 >= 1 && p2 < 16)
9014 {
9015 specs[count] = tmpl;
9016 specs[count].cmp_type =
9017 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
9018 specs[count++].index = p2;
9019 }
9020 }
9021 else
9022 {
9023 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
9024 {
9025 specs[count] = tmpl;
9026 specs[count++].index = CURR_SLOT.qp_regno;
9027 }
9028 if (idesc->operands[1] == IA64_OPND_PR)
9029 {
9030 for (i = 1; i < 16; i++)
9031 {
9032 specs[count] = tmpl;
9033 specs[count++].index = i;
9034 }
9035 }
9036 }
9037 }
9038 else
9039 {
9040 UNHANDLED;
9041 }
9042 break;
9043
9044 /* This is the general case for PRs. IA64_RS_PR and IA64_RS_PR63 are
9045 simplified cases of this. */
9046 case IA64_RS_PRr:
9047 if (note == 0)
9048 {
9049 for (i = 16; i < 63; i++)
9050 {
9051 specs[count] = tmpl;
9052 specs[count++].index = i;
9053 }
9054 }
9055 else if (note == 7)
9056 {
9057 valueT mask = 0;
9058 /* Mark only those registers indicated by the mask. */
9059 if (rsrc_write
9060 && idesc->operands[0] == IA64_OPND_PR)
9061 {
9062 mask = CURR_SLOT.opnd[2].X_add_number;
9063 if (mask & ((valueT) 1 << 16))
9064 for (i = 16; i < 63; i++)
9065 {
9066 specs[count] = tmpl;
9067 specs[count++].index = i;
9068 }
9069 }
9070 else if (rsrc_write
9071 && idesc->operands[0] == IA64_OPND_PR_ROT)
9072 {
9073 for (i = 16; i < 63; i++)
9074 {
9075 specs[count] = tmpl;
9076 specs[count++].index = i;
9077 }
9078 }
9079 else
9080 {
9081 UNHANDLED;
9082 }
9083 }
9084 else if (note == 11) /* note 11 implies note 1 as well */
9085 {
9086 if (rsrc_write)
9087 {
9088 for (i = 0; i < idesc->num_outputs; i++)
9089 {
9090 if (idesc->operands[i] == IA64_OPND_P1
9091 || idesc->operands[i] == IA64_OPND_P2)
9092 {
9093 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
9094 if (regno >= 16 && regno < 63)
9095 {
9096 specs[count] = tmpl;
9097 specs[count++].index = regno;
9098 }
9099 }
9100 }
9101 }
9102 else
9103 {
9104 UNHANDLED;
9105 }
9106 }
9107 else if (note == 12)
9108 {
9109 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
9110 {
9111 specs[count] = tmpl;
9112 specs[count++].index = CURR_SLOT.qp_regno;
9113 }
9114 }
9115 else if (note == 1)
9116 {
9117 if (rsrc_write)
9118 {
9119 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
9120 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
9121 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
9122 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
9123
9124 if ((idesc->operands[0] == IA64_OPND_P1
9125 || idesc->operands[0] == IA64_OPND_P2)
9126 && p1 >= 16 && p1 < 63)
9127 {
9128 specs[count] = tmpl;
9129 specs[count].cmp_type =
9130 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
9131 specs[count++].index = p1;
9132 }
9133 if ((idesc->operands[1] == IA64_OPND_P1
9134 || idesc->operands[1] == IA64_OPND_P2)
9135 && p2 >= 16 && p2 < 63)
9136 {
9137 specs[count] = tmpl;
9138 specs[count].cmp_type =
9139 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
9140 specs[count++].index = p2;
9141 }
9142 }
9143 else
9144 {
9145 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
9146 {
9147 specs[count] = tmpl;
9148 specs[count++].index = CURR_SLOT.qp_regno;
9149 }
9150 if (idesc->operands[1] == IA64_OPND_PR)
9151 {
9152 for (i = 16; i < 63; i++)
9153 {
9154 specs[count] = tmpl;
9155 specs[count++].index = i;
9156 }
9157 }
9158 }
9159 }
9160 else
9161 {
9162 UNHANDLED;
9163 }
9164 break;
9165
9166 case IA64_RS_PSR:
9167 /* Verify that the instruction is using the PSR bit indicated in
9168 dep->regindex. */
9169 if (note == 0)
9170 {
9171 if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_UM)
9172 {
9173 if (dep->regindex < 6)
9174 {
9175 specs[count++] = tmpl;
9176 }
9177 }
9178 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR)
9179 {
9180 if (dep->regindex < 32
9181 || dep->regindex == 35
9182 || dep->regindex == 36
9183 || (!rsrc_write && dep->regindex == PSR_CPL))
9184 {
9185 specs[count++] = tmpl;
9186 }
9187 }
9188 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_L)
9189 {
9190 if (dep->regindex < 32
9191 || dep->regindex == 35
9192 || dep->regindex == 36
9193 || (rsrc_write && dep->regindex == PSR_CPL))
9194 {
9195 specs[count++] = tmpl;
9196 }
9197 }
9198 else
9199 {
9200 /* Several PSR bits have very specific dependencies. */
9201 switch (dep->regindex)
9202 {
9203 default:
9204 specs[count++] = tmpl;
9205 break;
9206 case PSR_IC:
9207 if (rsrc_write)
9208 {
9209 specs[count++] = tmpl;
9210 }
9211 else
9212 {
9213 /* Only certain CR accesses use PSR.ic */
9214 if (idesc->operands[0] == IA64_OPND_CR3
9215 || idesc->operands[1] == IA64_OPND_CR3)
9216 {
9217 int index =
9218 ((idesc->operands[0] == IA64_OPND_CR3)
9219 ? 0 : 1);
9220 int regno =
9221 CURR_SLOT.opnd[index].X_add_number - REG_CR;
9222
9223 switch (regno)
9224 {
9225 default:
9226 break;
9227 case CR_ITIR:
9228 case CR_IFS:
9229 case CR_IIM:
9230 case CR_IIP:
9231 case CR_IPSR:
9232 case CR_ISR:
9233 case CR_IFA:
9234 case CR_IHA:
9235 case CR_IIPA:
9236 specs[count++] = tmpl;
9237 break;
9238 }
9239 }
9240 }
9241 break;
9242 case PSR_CPL:
9243 if (rsrc_write)
9244 {
9245 specs[count++] = tmpl;
9246 }
9247 else
9248 {
9249 /* Only some AR accesses use cpl */
9250 if (idesc->operands[0] == IA64_OPND_AR3
9251 || idesc->operands[1] == IA64_OPND_AR3)
9252 {
9253 int index =
9254 ((idesc->operands[0] == IA64_OPND_AR3)
9255 ? 0 : 1);
9256 int regno =
9257 CURR_SLOT.opnd[index].X_add_number - REG_AR;
9258
9259 if (regno == AR_ITC
9260 || (index == 0
9261 && (regno == AR_ITC
9262 || regno == AR_RSC
9263 || (regno >= AR_K0
9264 && regno <= AR_K7))))
9265 {
9266 specs[count++] = tmpl;
9267 }
9268 }
9269 else
9270 {
9271 specs[count++] = tmpl;
9272 }
9273 break;
9274 }
9275 }
9276 }
9277 }
9278 else if (note == 7)
9279 {
9280 valueT mask = 0;
9281 if (idesc->operands[0] == IA64_OPND_IMMU24)
9282 {
9283 mask = CURR_SLOT.opnd[0].X_add_number;
9284 }
9285 else
9286 {
9287 UNHANDLED;
9288 }
9289 if (mask & ((valueT) 1 << dep->regindex))
9290 {
9291 specs[count++] = tmpl;
9292 }
9293 }
9294 else if (note == 8)
9295 {
9296 int min = dep->regindex == PSR_DFL ? 2 : 32;
9297 int max = dep->regindex == PSR_DFL ? 31 : 127;
9298 /* dfh is read on FR32-127; dfl is read on FR2-31 */
9299 for (i = 0; i < NELEMS (idesc->operands); i++)
9300 {
9301 if (idesc->operands[i] == IA64_OPND_F1
9302 || idesc->operands[i] == IA64_OPND_F2
9303 || idesc->operands[i] == IA64_OPND_F3
9304 || idesc->operands[i] == IA64_OPND_F4)
9305 {
9306 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9307 if (reg >= min && reg <= max)
9308 {
9309 specs[count++] = tmpl;
9310 }
9311 }
9312 }
9313 }
9314 else if (note == 9)
9315 {
9316 int min = dep->regindex == PSR_MFL ? 2 : 32;
9317 int max = dep->regindex == PSR_MFL ? 31 : 127;
9318 /* mfh is read on writes to FR32-127; mfl is read on writes to
9319 FR2-31 */
9320 for (i = 0; i < idesc->num_outputs; i++)
9321 {
9322 if (idesc->operands[i] == IA64_OPND_F1)
9323 {
9324 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9325 if (reg >= min && reg <= max)
9326 {
9327 specs[count++] = tmpl;
9328 }
9329 }
9330 }
9331 }
9332 else if (note == 10)
9333 {
9334 for (i = 0; i < NELEMS (idesc->operands); i++)
9335 {
9336 if (idesc->operands[i] == IA64_OPND_R1
9337 || idesc->operands[i] == IA64_OPND_R2
9338 || idesc->operands[i] == IA64_OPND_R3)
9339 {
9340 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9341 if (regno >= 16 && regno <= 31)
9342 {
9343 specs[count++] = tmpl;
9344 }
9345 }
9346 }
9347 }
9348 else
9349 {
9350 UNHANDLED;
9351 }
9352 break;
9353
9354 case IA64_RS_AR_FPSR:
9355 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
9356 {
9357 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
9358 if (regno == AR_FPSR)
9359 {
9360 specs[count++] = tmpl;
9361 }
9362 }
9363 else
9364 {
9365 specs[count++] = tmpl;
9366 }
9367 break;
9368
9369 case IA64_RS_ARX:
9370 /* Handle all AR[REG] resources */
9371 if (note == 0 || note == 1)
9372 {
9373 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
9374 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3
9375 && regno == dep->regindex)
9376 {
9377 specs[count++] = tmpl;
9378 }
9379 /* other AR[REG] resources may be affected by AR accesses */
9380 else if (idesc->operands[0] == IA64_OPND_AR3)
9381 {
9382 /* AR[] writes */
9383 regno = CURR_SLOT.opnd[0].X_add_number - REG_AR;
9384 switch (dep->regindex)
9385 {
9386 default:
9387 break;
9388 case AR_BSP:
9389 case AR_RNAT:
9390 if (regno == AR_BSPSTORE)
9391 {
9392 specs[count++] = tmpl;
9393 }
9394 case AR_RSC:
9395 if (!rsrc_write &&
9396 (regno == AR_BSPSTORE
9397 || regno == AR_RNAT))
9398 {
9399 specs[count++] = tmpl;
9400 }
9401 break;
9402 }
9403 }
9404 else if (idesc->operands[1] == IA64_OPND_AR3)
9405 {
9406 /* AR[] reads */
9407 regno = CURR_SLOT.opnd[1].X_add_number - REG_AR;
9408 switch (dep->regindex)
9409 {
9410 default:
9411 break;
9412 case AR_RSC:
9413 if (regno == AR_BSPSTORE || regno == AR_RNAT)
9414 {
9415 specs[count++] = tmpl;
9416 }
9417 break;
9418 }
9419 }
9420 else
9421 {
9422 specs[count++] = tmpl;
9423 }
9424 }
9425 else
9426 {
9427 UNHANDLED;
9428 }
9429 break;
9430
9431 case IA64_RS_CRX:
9432 /* Handle all CR[REG] resources.
9433 ??? FIXME: The rule 17 isn't really handled correctly. */
9434 if (note == 0 || note == 1 || note == 17)
9435 {
9436 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
9437 {
9438 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
9439 if (regno == dep->regindex)
9440 {
9441 specs[count++] = tmpl;
9442 }
9443 else if (!rsrc_write)
9444 {
9445 /* Reads from CR[IVR] affect other resources. */
9446 if (regno == CR_IVR)
9447 {
9448 if ((dep->regindex >= CR_IRR0
9449 && dep->regindex <= CR_IRR3)
9450 || dep->regindex == CR_TPR)
9451 {
9452 specs[count++] = tmpl;
9453 }
9454 }
9455 }
9456 }
9457 else
9458 {
9459 specs[count++] = tmpl;
9460 }
9461 }
9462 else
9463 {
9464 UNHANDLED;
9465 }
9466 break;
9467
9468 case IA64_RS_INSERVICE:
9469 /* look for write of EOI (67) or read of IVR (65) */
9470 if ((idesc->operands[0] == IA64_OPND_CR3
9471 && CURR_SLOT.opnd[0].X_add_number - REG_CR == CR_EOI)
9472 || (idesc->operands[1] == IA64_OPND_CR3
9473 && CURR_SLOT.opnd[1].X_add_number - REG_CR == CR_IVR))
9474 {
9475 specs[count++] = tmpl;
9476 }
9477 break;
9478
9479 case IA64_RS_GR0:
9480 if (note == 1)
9481 {
9482 specs[count++] = tmpl;
9483 }
9484 else
9485 {
9486 UNHANDLED;
9487 }
9488 break;
9489
9490 case IA64_RS_CFM:
9491 if (note != 2)
9492 {
9493 specs[count++] = tmpl;
9494 }
9495 else
9496 {
9497 /* Check if any of the registers accessed are in the rotating region.
9498 mov to/from pr accesses CFM only when qp_regno is in the rotating
9499 region */
9500 for (i = 0; i < NELEMS (idesc->operands); i++)
9501 {
9502 if (idesc->operands[i] == IA64_OPND_R1
9503 || idesc->operands[i] == IA64_OPND_R2
9504 || idesc->operands[i] == IA64_OPND_R3)
9505 {
9506 int num = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9507 /* Assumes that md.rot.num_regs is always valid */
9508 if (md.rot.num_regs > 0
9509 && num > 31
9510 && num < 31 + md.rot.num_regs)
9511 {
9512 specs[count] = tmpl;
9513 specs[count++].specific = 0;
9514 }
9515 }
9516 else if (idesc->operands[i] == IA64_OPND_F1
9517 || idesc->operands[i] == IA64_OPND_F2
9518 || idesc->operands[i] == IA64_OPND_F3
9519 || idesc->operands[i] == IA64_OPND_F4)
9520 {
9521 int num = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9522 if (num > 31)
9523 {
9524 specs[count] = tmpl;
9525 specs[count++].specific = 0;
9526 }
9527 }
9528 else if (idesc->operands[i] == IA64_OPND_P1
9529 || idesc->operands[i] == IA64_OPND_P2)
9530 {
9531 int num = CURR_SLOT.opnd[i].X_add_number - REG_P;
9532 if (num > 15)
9533 {
9534 specs[count] = tmpl;
9535 specs[count++].specific = 0;
9536 }
9537 }
9538 }
9539 if (CURR_SLOT.qp_regno > 15)
9540 {
9541 specs[count] = tmpl;
9542 specs[count++].specific = 0;
9543 }
9544 }
9545 break;
9546
9547 /* This is the same as IA64_RS_PRr, except simplified to account for
9548 the fact that there is only one register. */
9549 case IA64_RS_PR63:
9550 if (note == 0)
9551 {
9552 specs[count++] = tmpl;
9553 }
9554 else if (note == 7)
9555 {
9556 valueT mask = 0;
9557 if (idesc->operands[2] == IA64_OPND_IMM17)
9558 mask = CURR_SLOT.opnd[2].X_add_number;
9559 if (mask & ((valueT) 1 << 63))
9560 specs[count++] = tmpl;
9561 }
9562 else if (note == 11)
9563 {
9564 if ((idesc->operands[0] == IA64_OPND_P1
9565 && CURR_SLOT.opnd[0].X_add_number - REG_P == 63)
9566 || (idesc->operands[1] == IA64_OPND_P2
9567 && CURR_SLOT.opnd[1].X_add_number - REG_P == 63))
9568 {
9569 specs[count++] = tmpl;
9570 }
9571 }
9572 else if (note == 12)
9573 {
9574 if (CURR_SLOT.qp_regno == 63)
9575 {
9576 specs[count++] = tmpl;
9577 }
9578 }
9579 else if (note == 1)
9580 {
9581 if (rsrc_write)
9582 {
9583 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
9584 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
9585 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
9586 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
9587
9588 if (p1 == 63
9589 && (idesc->operands[0] == IA64_OPND_P1
9590 || idesc->operands[0] == IA64_OPND_P2))
9591 {
9592 specs[count] = tmpl;
9593 specs[count++].cmp_type =
9594 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
9595 }
9596 if (p2 == 63
9597 && (idesc->operands[1] == IA64_OPND_P1
9598 || idesc->operands[1] == IA64_OPND_P2))
9599 {
9600 specs[count] = tmpl;
9601 specs[count++].cmp_type =
9602 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
9603 }
9604 }
9605 else
9606 {
9607 if (CURR_SLOT.qp_regno == 63)
9608 {
9609 specs[count++] = tmpl;
9610 }
9611 }
9612 }
9613 else
9614 {
9615 UNHANDLED;
9616 }
9617 break;
9618
9619 case IA64_RS_RSE:
9620 /* FIXME we can identify some individual RSE written resources, but RSE
9621 read resources have not yet been completely identified, so for now
9622 treat RSE as a single resource */
9623 if (strncmp (idesc->name, "mov", 3) == 0)
9624 {
9625 if (rsrc_write)
9626 {
9627 if (idesc->operands[0] == IA64_OPND_AR3
9628 && CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE)
9629 {
9630 specs[count++] = tmpl;
9631 }
9632 }
9633 else
9634 {
9635 if (idesc->operands[0] == IA64_OPND_AR3)
9636 {
9637 if (CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE
9638 || CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_RNAT)
9639 {
9640 specs[count++] = tmpl;
9641 }
9642 }
9643 else if (idesc->operands[1] == IA64_OPND_AR3)
9644 {
9645 if (CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSP
9646 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSPSTORE
9647 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_RNAT)
9648 {
9649 specs[count++] = tmpl;
9650 }
9651 }
9652 }
9653 }
9654 else
9655 {
9656 specs[count++] = tmpl;
9657 }
9658 break;
9659
9660 case IA64_RS_ANY:
9661 /* FIXME -- do any of these need to be non-specific? */
9662 specs[count++] = tmpl;
9663 break;
9664
9665 default:
9666 as_bad (_("Unrecognized dependency specifier %d\n"), dep->specifier);
9667 break;
9668 }
9669
9670 return count;
9671 }
9672
9673 /* Clear branch flags on marked resources. This breaks the link between the
9674 QP of the marking instruction and a subsequent branch on the same QP. */
9675
9676 static void
9677 clear_qp_branch_flag (mask)
9678 valueT mask;
9679 {
9680 int i;
9681 for (i = 0; i < regdepslen; i++)
9682 {
9683 valueT bit = ((valueT) 1 << regdeps[i].qp_regno);
9684 if ((bit & mask) != 0)
9685 {
9686 regdeps[i].link_to_qp_branch = 0;
9687 }
9688 }
9689 }
9690
9691 /* MASK contains 2 and only 2 PRs which are mutually exclusive. Remove
9692 any mutexes which contain one of the PRs and create new ones when
9693 needed. */
9694
9695 static int
9696 update_qp_mutex (valueT mask)
9697 {
9698 int i;
9699 int add = 0;
9700
9701 i = 0;
9702 while (i < qp_mutexeslen)
9703 {
9704 if ((qp_mutexes[i].prmask & mask) != 0)
9705 {
9706 /* If it destroys and creates the same mutex, do nothing. */
9707 if (qp_mutexes[i].prmask == mask
9708 && qp_mutexes[i].path == md.path)
9709 {
9710 i++;
9711 add = -1;
9712 }
9713 else
9714 {
9715 int keep = 0;
9716
9717 if (md.debug_dv)
9718 {
9719 fprintf (stderr, " Clearing mutex relation");
9720 print_prmask (qp_mutexes[i].prmask);
9721 fprintf (stderr, "\n");
9722 }
9723
9724 /* Deal with the old mutex with more than 3+ PRs only if
9725 the new mutex on the same execution path with it.
9726
9727 FIXME: The 3+ mutex support is incomplete.
9728 dot_pred_rel () may be a better place to fix it. */
9729 if (qp_mutexes[i].path == md.path)
9730 {
9731 /* If it is a proper subset of the mutex, create a
9732 new mutex. */
9733 if (add == 0
9734 && (qp_mutexes[i].prmask & mask) == mask)
9735 add = 1;
9736
9737 qp_mutexes[i].prmask &= ~mask;
9738 if (qp_mutexes[i].prmask & (qp_mutexes[i].prmask - 1))
9739 {
9740 /* Modify the mutex if there are more than one
9741 PR left. */
9742 keep = 1;
9743 i++;
9744 }
9745 }
9746
9747 if (keep == 0)
9748 /* Remove the mutex. */
9749 qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
9750 }
9751 }
9752 else
9753 ++i;
9754 }
9755
9756 if (add == 1)
9757 add_qp_mutex (mask);
9758
9759 return add;
9760 }
9761
9762 /* Remove any mutexes which contain any of the PRs indicated in the mask.
9763
9764 Any changes to a PR clears the mutex relations which include that PR. */
9765
9766 static void
9767 clear_qp_mutex (mask)
9768 valueT mask;
9769 {
9770 int i;
9771
9772 i = 0;
9773 while (i < qp_mutexeslen)
9774 {
9775 if ((qp_mutexes[i].prmask & mask) != 0)
9776 {
9777 if (md.debug_dv)
9778 {
9779 fprintf (stderr, " Clearing mutex relation");
9780 print_prmask (qp_mutexes[i].prmask);
9781 fprintf (stderr, "\n");
9782 }
9783 qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
9784 }
9785 else
9786 ++i;
9787 }
9788 }
9789
9790 /* Clear implies relations which contain PRs in the given masks.
9791 P1_MASK indicates the source of the implies relation, while P2_MASK
9792 indicates the implied PR. */
9793
9794 static void
9795 clear_qp_implies (p1_mask, p2_mask)
9796 valueT p1_mask;
9797 valueT p2_mask;
9798 {
9799 int i;
9800
9801 i = 0;
9802 while (i < qp_implieslen)
9803 {
9804 if ((((valueT) 1 << qp_implies[i].p1) & p1_mask) != 0
9805 || (((valueT) 1 << qp_implies[i].p2) & p2_mask) != 0)
9806 {
9807 if (md.debug_dv)
9808 fprintf (stderr, "Clearing implied relation PR%d->PR%d\n",
9809 qp_implies[i].p1, qp_implies[i].p2);
9810 qp_implies[i] = qp_implies[--qp_implieslen];
9811 }
9812 else
9813 ++i;
9814 }
9815 }
9816
9817 /* Add the PRs specified to the list of implied relations. */
9818
9819 static void
9820 add_qp_imply (p1, p2)
9821 int p1, p2;
9822 {
9823 valueT mask;
9824 valueT bit;
9825 int i;
9826
9827 /* p0 is not meaningful here. */
9828 if (p1 == 0 || p2 == 0)
9829 abort ();
9830
9831 if (p1 == p2)
9832 return;
9833
9834 /* If it exists already, ignore it. */
9835 for (i = 0; i < qp_implieslen; i++)
9836 {
9837 if (qp_implies[i].p1 == p1
9838 && qp_implies[i].p2 == p2
9839 && qp_implies[i].path == md.path
9840 && !qp_implies[i].p2_branched)
9841 return;
9842 }
9843
9844 if (qp_implieslen == qp_impliestotlen)
9845 {
9846 qp_impliestotlen += 20;
9847 qp_implies = (struct qp_imply *)
9848 xrealloc ((void *) qp_implies,
9849 qp_impliestotlen * sizeof (struct qp_imply));
9850 }
9851 if (md.debug_dv)
9852 fprintf (stderr, " Registering PR%d implies PR%d\n", p1, p2);
9853 qp_implies[qp_implieslen].p1 = p1;
9854 qp_implies[qp_implieslen].p2 = p2;
9855 qp_implies[qp_implieslen].path = md.path;
9856 qp_implies[qp_implieslen++].p2_branched = 0;
9857
9858 /* Add in the implied transitive relations; for everything that p2 implies,
9859 make p1 imply that, too; for everything that implies p1, make it imply p2
9860 as well. */
9861 for (i = 0; i < qp_implieslen; i++)
9862 {
9863 if (qp_implies[i].p1 == p2)
9864 add_qp_imply (p1, qp_implies[i].p2);
9865 if (qp_implies[i].p2 == p1)
9866 add_qp_imply (qp_implies[i].p1, p2);
9867 }
9868 /* Add in mutex relations implied by this implies relation; for each mutex
9869 relation containing p2, duplicate it and replace p2 with p1. */
9870 bit = (valueT) 1 << p1;
9871 mask = (valueT) 1 << p2;
9872 for (i = 0; i < qp_mutexeslen; i++)
9873 {
9874 if (qp_mutexes[i].prmask & mask)
9875 add_qp_mutex ((qp_mutexes[i].prmask & ~mask) | bit);
9876 }
9877 }
9878
9879 /* Add the PRs specified in the mask to the mutex list; this means that only
9880 one of the PRs can be true at any time. PR0 should never be included in
9881 the mask. */
9882
9883 static void
9884 add_qp_mutex (mask)
9885 valueT mask;
9886 {
9887 if (mask & 0x1)
9888 abort ();
9889
9890 if (qp_mutexeslen == qp_mutexestotlen)
9891 {
9892 qp_mutexestotlen += 20;
9893 qp_mutexes = (struct qpmutex *)
9894 xrealloc ((void *) qp_mutexes,
9895 qp_mutexestotlen * sizeof (struct qpmutex));
9896 }
9897 if (md.debug_dv)
9898 {
9899 fprintf (stderr, " Registering mutex on");
9900 print_prmask (mask);
9901 fprintf (stderr, "\n");
9902 }
9903 qp_mutexes[qp_mutexeslen].path = md.path;
9904 qp_mutexes[qp_mutexeslen++].prmask = mask;
9905 }
9906
9907 static int
9908 has_suffix_p (name, suffix)
9909 const char *name;
9910 const char *suffix;
9911 {
9912 size_t namelen = strlen (name);
9913 size_t sufflen = strlen (suffix);
9914
9915 if (namelen <= sufflen)
9916 return 0;
9917 return strcmp (name + namelen - sufflen, suffix) == 0;
9918 }
9919
9920 static void
9921 clear_register_values ()
9922 {
9923 int i;
9924 if (md.debug_dv)
9925 fprintf (stderr, " Clearing register values\n");
9926 for (i = 1; i < NELEMS (gr_values); i++)
9927 gr_values[i].known = 0;
9928 }
9929
9930 /* Keep track of register values/changes which affect DV tracking.
9931
9932 optimization note: should add a flag to classes of insns where otherwise we
9933 have to examine a group of strings to identify them. */
9934
9935 static void
9936 note_register_values (idesc)
9937 struct ia64_opcode *idesc;
9938 {
9939 valueT qp_changemask = 0;
9940 int i;
9941
9942 /* Invalidate values for registers being written to. */
9943 for (i = 0; i < idesc->num_outputs; i++)
9944 {
9945 if (idesc->operands[i] == IA64_OPND_R1
9946 || idesc->operands[i] == IA64_OPND_R2
9947 || idesc->operands[i] == IA64_OPND_R3)
9948 {
9949 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9950 if (regno > 0 && regno < NELEMS (gr_values))
9951 gr_values[regno].known = 0;
9952 }
9953 else if (idesc->operands[i] == IA64_OPND_R3_2)
9954 {
9955 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9956 if (regno > 0 && regno < 4)
9957 gr_values[regno].known = 0;
9958 }
9959 else if (idesc->operands[i] == IA64_OPND_P1
9960 || idesc->operands[i] == IA64_OPND_P2)
9961 {
9962 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
9963 qp_changemask |= (valueT) 1 << regno;
9964 }
9965 else if (idesc->operands[i] == IA64_OPND_PR)
9966 {
9967 if (idesc->operands[2] & (valueT) 0x10000)
9968 qp_changemask = ~(valueT) 0x1FFFF | idesc->operands[2];
9969 else
9970 qp_changemask = idesc->operands[2];
9971 break;
9972 }
9973 else if (idesc->operands[i] == IA64_OPND_PR_ROT)
9974 {
9975 if (idesc->operands[1] & ((valueT) 1 << 43))
9976 qp_changemask = -((valueT) 1 << 44) | idesc->operands[1];
9977 else
9978 qp_changemask = idesc->operands[1];
9979 qp_changemask &= ~(valueT) 0xFFFF;
9980 break;
9981 }
9982 }
9983
9984 /* Always clear qp branch flags on any PR change. */
9985 /* FIXME there may be exceptions for certain compares. */
9986 clear_qp_branch_flag (qp_changemask);
9987
9988 /* Invalidate rotating registers on insns which affect RRBs in CFM. */
9989 if (idesc->flags & IA64_OPCODE_MOD_RRBS)
9990 {
9991 qp_changemask |= ~(valueT) 0xFFFF;
9992 if (strcmp (idesc->name, "clrrrb.pr") != 0)
9993 {
9994 for (i = 32; i < 32 + md.rot.num_regs; i++)
9995 gr_values[i].known = 0;
9996 }
9997 clear_qp_mutex (qp_changemask);
9998 clear_qp_implies (qp_changemask, qp_changemask);
9999 }
10000 /* After a call, all register values are undefined, except those marked
10001 as "safe". */
10002 else if (strncmp (idesc->name, "br.call", 6) == 0
10003 || strncmp (idesc->name, "brl.call", 7) == 0)
10004 {
10005 /* FIXME keep GR values which are marked as "safe_across_calls" */
10006 clear_register_values ();
10007 clear_qp_mutex (~qp_safe_across_calls);
10008 clear_qp_implies (~qp_safe_across_calls, ~qp_safe_across_calls);
10009 clear_qp_branch_flag (~qp_safe_across_calls);
10010 }
10011 else if (is_interruption_or_rfi (idesc)
10012 || is_taken_branch (idesc))
10013 {
10014 clear_register_values ();
10015 clear_qp_mutex (~(valueT) 0);
10016 clear_qp_implies (~(valueT) 0, ~(valueT) 0);
10017 }
10018 /* Look for mutex and implies relations. */
10019 else if ((idesc->operands[0] == IA64_OPND_P1
10020 || idesc->operands[0] == IA64_OPND_P2)
10021 && (idesc->operands[1] == IA64_OPND_P1
10022 || idesc->operands[1] == IA64_OPND_P2))
10023 {
10024 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
10025 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
10026 valueT p1mask = (p1 != 0) ? (valueT) 1 << p1 : 0;
10027 valueT p2mask = (p2 != 0) ? (valueT) 1 << p2 : 0;
10028
10029 /* If both PRs are PR0, we can't really do anything. */
10030 if (p1 == 0 && p2 == 0)
10031 {
10032 if (md.debug_dv)
10033 fprintf (stderr, " Ignoring PRs due to inclusion of p0\n");
10034 }
10035 /* In general, clear mutexes and implies which include P1 or P2,
10036 with the following exceptions. */
10037 else if (has_suffix_p (idesc->name, ".or.andcm")
10038 || has_suffix_p (idesc->name, ".and.orcm"))
10039 {
10040 clear_qp_implies (p2mask, p1mask);
10041 }
10042 else if (has_suffix_p (idesc->name, ".andcm")
10043 || has_suffix_p (idesc->name, ".and"))
10044 {
10045 clear_qp_implies (0, p1mask | p2mask);
10046 }
10047 else if (has_suffix_p (idesc->name, ".orcm")
10048 || has_suffix_p (idesc->name, ".or"))
10049 {
10050 clear_qp_mutex (p1mask | p2mask);
10051 clear_qp_implies (p1mask | p2mask, 0);
10052 }
10053 else
10054 {
10055 int added = 0;
10056
10057 clear_qp_implies (p1mask | p2mask, p1mask | p2mask);
10058
10059 /* If one of the PRs is PR0, we call clear_qp_mutex. */
10060 if (p1 == 0 || p2 == 0)
10061 clear_qp_mutex (p1mask | p2mask);
10062 else
10063 added = update_qp_mutex (p1mask | p2mask);
10064
10065 if (CURR_SLOT.qp_regno == 0
10066 || has_suffix_p (idesc->name, ".unc"))
10067 {
10068 if (added == 0 && p1 && p2)
10069 add_qp_mutex (p1mask | p2mask);
10070 if (CURR_SLOT.qp_regno != 0)
10071 {
10072 if (p1)
10073 add_qp_imply (p1, CURR_SLOT.qp_regno);
10074 if (p2)
10075 add_qp_imply (p2, CURR_SLOT.qp_regno);
10076 }
10077 }
10078 }
10079 }
10080 /* Look for mov imm insns into GRs. */
10081 else if (idesc->operands[0] == IA64_OPND_R1
10082 && (idesc->operands[1] == IA64_OPND_IMM22
10083 || idesc->operands[1] == IA64_OPND_IMMU64)
10084 && CURR_SLOT.opnd[1].X_op == O_constant
10085 && (strcmp (idesc->name, "mov") == 0
10086 || strcmp (idesc->name, "movl") == 0))
10087 {
10088 int regno = CURR_SLOT.opnd[0].X_add_number - REG_GR;
10089 if (regno > 0 && regno < NELEMS (gr_values))
10090 {
10091 gr_values[regno].known = 1;
10092 gr_values[regno].value = CURR_SLOT.opnd[1].X_add_number;
10093 gr_values[regno].path = md.path;
10094 if (md.debug_dv)
10095 {
10096 fprintf (stderr, " Know gr%d = ", regno);
10097 fprintf_vma (stderr, gr_values[regno].value);
10098 fputs ("\n", stderr);
10099 }
10100 }
10101 }
10102 /* Look for dep.z imm insns. */
10103 else if (idesc->operands[0] == IA64_OPND_R1
10104 && idesc->operands[1] == IA64_OPND_IMM8
10105 && strcmp (idesc->name, "dep.z") == 0)
10106 {
10107 int regno = CURR_SLOT.opnd[0].X_add_number - REG_GR;
10108 if (regno > 0 && regno < NELEMS (gr_values))
10109 {
10110 valueT value = CURR_SLOT.opnd[1].X_add_number;
10111
10112 if (CURR_SLOT.opnd[3].X_add_number < 64)
10113 value &= ((valueT)1 << CURR_SLOT.opnd[3].X_add_number) - 1;
10114 value <<= CURR_SLOT.opnd[2].X_add_number;
10115 gr_values[regno].known = 1;
10116 gr_values[regno].value = value;
10117 gr_values[regno].path = md.path;
10118 if (md.debug_dv)
10119 {
10120 fprintf (stderr, " Know gr%d = ", regno);
10121 fprintf_vma (stderr, gr_values[regno].value);
10122 fputs ("\n", stderr);
10123 }
10124 }
10125 }
10126 else
10127 {
10128 clear_qp_mutex (qp_changemask);
10129 clear_qp_implies (qp_changemask, qp_changemask);
10130 }
10131 }
10132
10133 /* Return whether the given predicate registers are currently mutex. */
10134
10135 static int
10136 qp_mutex (p1, p2, path)
10137 int p1;
10138 int p2;
10139 int path;
10140 {
10141 int i;
10142 valueT mask;
10143
10144 if (p1 != p2)
10145 {
10146 mask = ((valueT) 1 << p1) | (valueT) 1 << p2;
10147 for (i = 0; i < qp_mutexeslen; i++)
10148 {
10149 if (qp_mutexes[i].path >= path
10150 && (qp_mutexes[i].prmask & mask) == mask)
10151 return 1;
10152 }
10153 }
10154 return 0;
10155 }
10156
10157 /* Return whether the given resource is in the given insn's list of chks
10158 Return 1 if the conflict is absolutely determined, 2 if it's a potential
10159 conflict. */
10160
10161 static int
10162 resources_match (rs, idesc, note, qp_regno, path)
10163 struct rsrc *rs;
10164 struct ia64_opcode *idesc;
10165 int note;
10166 int qp_regno;
10167 int path;
10168 {
10169 struct rsrc specs[MAX_SPECS];
10170 int count;
10171
10172 /* If the marked resource's qp_regno and the given qp_regno are mutex,
10173 we don't need to check. One exception is note 11, which indicates that
10174 target predicates are written regardless of PR[qp]. */
10175 if (qp_mutex (rs->qp_regno, qp_regno, path)
10176 && note != 11)
10177 return 0;
10178
10179 count = specify_resource (rs->dependency, idesc, DV_CHK, specs, note, path);
10180 while (count-- > 0)
10181 {
10182 /* UNAT checking is a bit more specific than other resources */
10183 if (rs->dependency->specifier == IA64_RS_AR_UNAT
10184 && specs[count].mem_offset.hint
10185 && rs->mem_offset.hint)
10186 {
10187 if (rs->mem_offset.base == specs[count].mem_offset.base)
10188 {
10189 if (((rs->mem_offset.offset >> 3) & 0x3F) ==
10190 ((specs[count].mem_offset.offset >> 3) & 0x3F))
10191 return 1;
10192 else
10193 continue;
10194 }
10195 }
10196
10197 /* Skip apparent PR write conflicts where both writes are an AND or both
10198 writes are an OR. */
10199 if (rs->dependency->specifier == IA64_RS_PR
10200 || rs->dependency->specifier == IA64_RS_PRr
10201 || rs->dependency->specifier == IA64_RS_PR63)
10202 {
10203 if (specs[count].cmp_type != CMP_NONE
10204 && specs[count].cmp_type == rs->cmp_type)
10205 {
10206 if (md.debug_dv)
10207 fprintf (stderr, " %s on parallel compare allowed (PR%d)\n",
10208 dv_mode[rs->dependency->mode],
10209 rs->dependency->specifier != IA64_RS_PR63 ?
10210 specs[count].index : 63);
10211 continue;
10212 }
10213 if (md.debug_dv)
10214 fprintf (stderr,
10215 " %s on parallel compare conflict %s vs %s on PR%d\n",
10216 dv_mode[rs->dependency->mode],
10217 dv_cmp_type[rs->cmp_type],
10218 dv_cmp_type[specs[count].cmp_type],
10219 rs->dependency->specifier != IA64_RS_PR63 ?
10220 specs[count].index : 63);
10221
10222 }
10223
10224 /* If either resource is not specific, conservatively assume a conflict
10225 */
10226 if (!specs[count].specific || !rs->specific)
10227 return 2;
10228 else if (specs[count].index == rs->index)
10229 return 1;
10230 }
10231
10232 return 0;
10233 }
10234
10235 /* Indicate an instruction group break; if INSERT_STOP is non-zero, then
10236 insert a stop to create the break. Update all resource dependencies
10237 appropriately. If QP_REGNO is non-zero, only apply the break to resources
10238 which use the same QP_REGNO and have the link_to_qp_branch flag set.
10239 If SAVE_CURRENT is non-zero, don't affect resources marked by the current
10240 instruction. */
10241
10242 static void
10243 insn_group_break (insert_stop, qp_regno, save_current)
10244 int insert_stop;
10245 int qp_regno;
10246 int save_current;
10247 {
10248 int i;
10249
10250 if (insert_stop && md.num_slots_in_use > 0)
10251 PREV_SLOT.end_of_insn_group = 1;
10252
10253 if (md.debug_dv)
10254 {
10255 fprintf (stderr, " Insn group break%s",
10256 (insert_stop ? " (w/stop)" : ""));
10257 if (qp_regno != 0)
10258 fprintf (stderr, " effective for QP=%d", qp_regno);
10259 fprintf (stderr, "\n");
10260 }
10261
10262 i = 0;
10263 while (i < regdepslen)
10264 {
10265 const struct ia64_dependency *dep = regdeps[i].dependency;
10266
10267 if (qp_regno != 0
10268 && regdeps[i].qp_regno != qp_regno)
10269 {
10270 ++i;
10271 continue;
10272 }
10273
10274 if (save_current
10275 && CURR_SLOT.src_file == regdeps[i].file
10276 && CURR_SLOT.src_line == regdeps[i].line)
10277 {
10278 ++i;
10279 continue;
10280 }
10281
10282 /* clear dependencies which are automatically cleared by a stop, or
10283 those that have reached the appropriate state of insn serialization */
10284 if (dep->semantics == IA64_DVS_IMPLIED
10285 || dep->semantics == IA64_DVS_IMPLIEDF
10286 || regdeps[i].insn_srlz == STATE_SRLZ)
10287 {
10288 print_dependency ("Removing", i);
10289 regdeps[i] = regdeps[--regdepslen];
10290 }
10291 else
10292 {
10293 if (dep->semantics == IA64_DVS_DATA
10294 || dep->semantics == IA64_DVS_INSTR
10295 || dep->semantics == IA64_DVS_SPECIFIC)
10296 {
10297 if (regdeps[i].insn_srlz == STATE_NONE)
10298 regdeps[i].insn_srlz = STATE_STOP;
10299 if (regdeps[i].data_srlz == STATE_NONE)
10300 regdeps[i].data_srlz = STATE_STOP;
10301 }
10302 ++i;
10303 }
10304 }
10305 }
10306
10307 /* Add the given resource usage spec to the list of active dependencies. */
10308
10309 static void
10310 mark_resource (idesc, dep, spec, depind, path)
10311 struct ia64_opcode *idesc ATTRIBUTE_UNUSED;
10312 const struct ia64_dependency *dep ATTRIBUTE_UNUSED;
10313 struct rsrc *spec;
10314 int depind;
10315 int path;
10316 {
10317 if (regdepslen == regdepstotlen)
10318 {
10319 regdepstotlen += 20;
10320 regdeps = (struct rsrc *)
10321 xrealloc ((void *) regdeps,
10322 regdepstotlen * sizeof (struct rsrc));
10323 }
10324
10325 regdeps[regdepslen] = *spec;
10326 regdeps[regdepslen].depind = depind;
10327 regdeps[regdepslen].path = path;
10328 regdeps[regdepslen].file = CURR_SLOT.src_file;
10329 regdeps[regdepslen].line = CURR_SLOT.src_line;
10330
10331 print_dependency ("Adding", regdepslen);
10332
10333 ++regdepslen;
10334 }
10335
10336 static void
10337 print_dependency (action, depind)
10338 const char *action;
10339 int depind;
10340 {
10341 if (md.debug_dv)
10342 {
10343 fprintf (stderr, " %s %s '%s'",
10344 action, dv_mode[(regdeps[depind].dependency)->mode],
10345 (regdeps[depind].dependency)->name);
10346 if (regdeps[depind].specific && regdeps[depind].index >= 0)
10347 fprintf (stderr, " (%d)", regdeps[depind].index);
10348 if (regdeps[depind].mem_offset.hint)
10349 {
10350 fputs (" ", stderr);
10351 fprintf_vma (stderr, regdeps[depind].mem_offset.base);
10352 fputs ("+", stderr);
10353 fprintf_vma (stderr, regdeps[depind].mem_offset.offset);
10354 }
10355 fprintf (stderr, "\n");
10356 }
10357 }
10358
10359 static void
10360 instruction_serialization ()
10361 {
10362 int i;
10363 if (md.debug_dv)
10364 fprintf (stderr, " Instruction serialization\n");
10365 for (i = 0; i < regdepslen; i++)
10366 if (regdeps[i].insn_srlz == STATE_STOP)
10367 regdeps[i].insn_srlz = STATE_SRLZ;
10368 }
10369
10370 static void
10371 data_serialization ()
10372 {
10373 int i = 0;
10374 if (md.debug_dv)
10375 fprintf (stderr, " Data serialization\n");
10376 while (i < regdepslen)
10377 {
10378 if (regdeps[i].data_srlz == STATE_STOP
10379 /* Note: as of 991210, all "other" dependencies are cleared by a
10380 data serialization. This might change with new tables */
10381 || (regdeps[i].dependency)->semantics == IA64_DVS_OTHER)
10382 {
10383 print_dependency ("Removing", i);
10384 regdeps[i] = regdeps[--regdepslen];
10385 }
10386 else
10387 ++i;
10388 }
10389 }
10390
10391 /* Insert stops and serializations as needed to avoid DVs. */
10392
10393 static void
10394 remove_marked_resource (rs)
10395 struct rsrc *rs;
10396 {
10397 switch (rs->dependency->semantics)
10398 {
10399 case IA64_DVS_SPECIFIC:
10400 if (md.debug_dv)
10401 fprintf (stderr, "Implementation-specific, assume worst case...\n");
10402 /* ...fall through... */
10403 case IA64_DVS_INSTR:
10404 if (md.debug_dv)
10405 fprintf (stderr, "Inserting instr serialization\n");
10406 if (rs->insn_srlz < STATE_STOP)
10407 insn_group_break (1, 0, 0);
10408 if (rs->insn_srlz < STATE_SRLZ)
10409 {
10410 struct slot oldslot = CURR_SLOT;
10411 /* Manually jam a srlz.i insn into the stream */
10412 memset (&CURR_SLOT, 0, sizeof (CURR_SLOT));
10413 CURR_SLOT.user_template = -1;
10414 CURR_SLOT.idesc = ia64_find_opcode ("srlz.i");
10415 instruction_serialization ();
10416 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10417 if (++md.num_slots_in_use >= NUM_SLOTS)
10418 emit_one_bundle ();
10419 CURR_SLOT = oldslot;
10420 }
10421 insn_group_break (1, 0, 0);
10422 break;
10423 case IA64_DVS_OTHER: /* as of rev2 (991220) of the DV tables, all
10424 "other" types of DV are eliminated
10425 by a data serialization */
10426 case IA64_DVS_DATA:
10427 if (md.debug_dv)
10428 fprintf (stderr, "Inserting data serialization\n");
10429 if (rs->data_srlz < STATE_STOP)
10430 insn_group_break (1, 0, 0);
10431 {
10432 struct slot oldslot = CURR_SLOT;
10433 /* Manually jam a srlz.d insn into the stream */
10434 memset (&CURR_SLOT, 0, sizeof (CURR_SLOT));
10435 CURR_SLOT.user_template = -1;
10436 CURR_SLOT.idesc = ia64_find_opcode ("srlz.d");
10437 data_serialization ();
10438 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10439 if (++md.num_slots_in_use >= NUM_SLOTS)
10440 emit_one_bundle ();
10441 CURR_SLOT = oldslot;
10442 }
10443 break;
10444 case IA64_DVS_IMPLIED:
10445 case IA64_DVS_IMPLIEDF:
10446 if (md.debug_dv)
10447 fprintf (stderr, "Inserting stop\n");
10448 insn_group_break (1, 0, 0);
10449 break;
10450 default:
10451 break;
10452 }
10453 }
10454
10455 /* Check the resources used by the given opcode against the current dependency
10456 list.
10457
10458 The check is run once for each execution path encountered. In this case,
10459 a unique execution path is the sequence of instructions following a code
10460 entry point, e.g. the following has three execution paths, one starting
10461 at L0, one at L1, and one at L2.
10462
10463 L0: nop
10464 L1: add
10465 L2: add
10466 br.ret
10467 */
10468
10469 static void
10470 check_dependencies (idesc)
10471 struct ia64_opcode *idesc;
10472 {
10473 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
10474 int path;
10475 int i;
10476
10477 /* Note that the number of marked resources may change within the
10478 loop if in auto mode. */
10479 i = 0;
10480 while (i < regdepslen)
10481 {
10482 struct rsrc *rs = &regdeps[i];
10483 const struct ia64_dependency *dep = rs->dependency;
10484 int chkind;
10485 int note;
10486 int start_over = 0;
10487
10488 if (dep->semantics == IA64_DVS_NONE
10489 || (chkind = depends_on (rs->depind, idesc)) == -1)
10490 {
10491 ++i;
10492 continue;
10493 }
10494
10495 note = NOTE (opdeps->chks[chkind]);
10496
10497 /* Check this resource against each execution path seen thus far. */
10498 for (path = 0; path <= md.path; path++)
10499 {
10500 int matchtype;
10501
10502 /* If the dependency wasn't on the path being checked, ignore it. */
10503 if (rs->path < path)
10504 continue;
10505
10506 /* If the QP for this insn implies a QP which has branched, don't
10507 bother checking. Ed. NOTE: I don't think this check is terribly
10508 useful; what's the point of generating code which will only be
10509 reached if its QP is zero?
10510 This code was specifically inserted to handle the following code,
10511 based on notes from Intel's DV checking code, where p1 implies p2.
10512
10513 mov r4 = 2
10514 (p2) br.cond L
10515 (p1) mov r4 = 7
10516 */
10517 if (CURR_SLOT.qp_regno != 0)
10518 {
10519 int skip = 0;
10520 int implies;
10521 for (implies = 0; implies < qp_implieslen; implies++)
10522 {
10523 if (qp_implies[implies].path >= path
10524 && qp_implies[implies].p1 == CURR_SLOT.qp_regno
10525 && qp_implies[implies].p2_branched)
10526 {
10527 skip = 1;
10528 break;
10529 }
10530 }
10531 if (skip)
10532 continue;
10533 }
10534
10535 if ((matchtype = resources_match (rs, idesc, note,
10536 CURR_SLOT.qp_regno, path)) != 0)
10537 {
10538 char msg[1024];
10539 char pathmsg[256] = "";
10540 char indexmsg[256] = "";
10541 int certain = (matchtype == 1 && CURR_SLOT.qp_regno == 0);
10542
10543 if (path != 0)
10544 snprintf (pathmsg, sizeof (pathmsg),
10545 " when entry is at label '%s'",
10546 md.entry_labels[path - 1]);
10547 if (matchtype == 1 && rs->index >= 0)
10548 snprintf (indexmsg, sizeof (indexmsg),
10549 ", specific resource number is %d",
10550 rs->index);
10551 snprintf (msg, sizeof (msg),
10552 "Use of '%s' %s %s dependency '%s' (%s)%s%s",
10553 idesc->name,
10554 (certain ? "violates" : "may violate"),
10555 dv_mode[dep->mode], dep->name,
10556 dv_sem[dep->semantics],
10557 pathmsg, indexmsg);
10558
10559 if (md.explicit_mode)
10560 {
10561 as_warn ("%s", msg);
10562 if (path < md.path)
10563 as_warn (_("Only the first path encountering the conflict "
10564 "is reported"));
10565 as_warn_where (rs->file, rs->line,
10566 _("This is the location of the "
10567 "conflicting usage"));
10568 /* Don't bother checking other paths, to avoid duplicating
10569 the same warning */
10570 break;
10571 }
10572 else
10573 {
10574 if (md.debug_dv)
10575 fprintf (stderr, "%s @ %s:%d\n", msg, rs->file, rs->line);
10576
10577 remove_marked_resource (rs);
10578
10579 /* since the set of dependencies has changed, start over */
10580 /* FIXME -- since we're removing dvs as we go, we
10581 probably don't really need to start over... */
10582 start_over = 1;
10583 break;
10584 }
10585 }
10586 }
10587 if (start_over)
10588 i = 0;
10589 else
10590 ++i;
10591 }
10592 }
10593
10594 /* Register new dependencies based on the given opcode. */
10595
10596 static void
10597 mark_resources (idesc)
10598 struct ia64_opcode *idesc;
10599 {
10600 int i;
10601 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
10602 int add_only_qp_reads = 0;
10603
10604 /* A conditional branch only uses its resources if it is taken; if it is
10605 taken, we stop following that path. The other branch types effectively
10606 *always* write their resources. If it's not taken, register only QP
10607 reads. */
10608 if (is_conditional_branch (idesc) || is_interruption_or_rfi (idesc))
10609 {
10610 add_only_qp_reads = 1;
10611 }
10612
10613 if (md.debug_dv)
10614 fprintf (stderr, "Registering '%s' resource usage\n", idesc->name);
10615
10616 for (i = 0; i < opdeps->nregs; i++)
10617 {
10618 const struct ia64_dependency *dep;
10619 struct rsrc specs[MAX_SPECS];
10620 int note;
10621 int path;
10622 int count;
10623
10624 dep = ia64_find_dependency (opdeps->regs[i]);
10625 note = NOTE (opdeps->regs[i]);
10626
10627 if (add_only_qp_reads
10628 && !(dep->mode == IA64_DV_WAR
10629 && (dep->specifier == IA64_RS_PR
10630 || dep->specifier == IA64_RS_PRr
10631 || dep->specifier == IA64_RS_PR63)))
10632 continue;
10633
10634 count = specify_resource (dep, idesc, DV_REG, specs, note, md.path);
10635
10636 while (count-- > 0)
10637 {
10638 mark_resource (idesc, dep, &specs[count],
10639 DEP (opdeps->regs[i]), md.path);
10640 }
10641
10642 /* The execution path may affect register values, which may in turn
10643 affect which indirect-access resources are accessed. */
10644 switch (dep->specifier)
10645 {
10646 default:
10647 break;
10648 case IA64_RS_CPUID:
10649 case IA64_RS_DBR:
10650 case IA64_RS_IBR:
10651 case IA64_RS_MSR:
10652 case IA64_RS_PKR:
10653 case IA64_RS_PMC:
10654 case IA64_RS_PMD:
10655 case IA64_RS_RR:
10656 for (path = 0; path < md.path; path++)
10657 {
10658 count = specify_resource (dep, idesc, DV_REG, specs, note, path);
10659 while (count-- > 0)
10660 mark_resource (idesc, dep, &specs[count],
10661 DEP (opdeps->regs[i]), path);
10662 }
10663 break;
10664 }
10665 }
10666 }
10667
10668 /* Remove dependencies when they no longer apply. */
10669
10670 static void
10671 update_dependencies (idesc)
10672 struct ia64_opcode *idesc;
10673 {
10674 int i;
10675
10676 if (strcmp (idesc->name, "srlz.i") == 0)
10677 {
10678 instruction_serialization ();
10679 }
10680 else if (strcmp (idesc->name, "srlz.d") == 0)
10681 {
10682 data_serialization ();
10683 }
10684 else if (is_interruption_or_rfi (idesc)
10685 || is_taken_branch (idesc))
10686 {
10687 /* Although technically the taken branch doesn't clear dependencies
10688 which require a srlz.[id], we don't follow the branch; the next
10689 instruction is assumed to start with a clean slate. */
10690 regdepslen = 0;
10691 md.path = 0;
10692 }
10693 else if (is_conditional_branch (idesc)
10694 && CURR_SLOT.qp_regno != 0)
10695 {
10696 int is_call = strstr (idesc->name, ".call") != NULL;
10697
10698 for (i = 0; i < qp_implieslen; i++)
10699 {
10700 /* If the conditional branch's predicate is implied by the predicate
10701 in an existing dependency, remove that dependency. */
10702 if (qp_implies[i].p2 == CURR_SLOT.qp_regno)
10703 {
10704 int depind = 0;
10705 /* Note that this implied predicate takes a branch so that if
10706 a later insn generates a DV but its predicate implies this
10707 one, we can avoid the false DV warning. */
10708 qp_implies[i].p2_branched = 1;
10709 while (depind < regdepslen)
10710 {
10711 if (regdeps[depind].qp_regno == qp_implies[i].p1)
10712 {
10713 print_dependency ("Removing", depind);
10714 regdeps[depind] = regdeps[--regdepslen];
10715 }
10716 else
10717 ++depind;
10718 }
10719 }
10720 }
10721 /* Any marked resources which have this same predicate should be
10722 cleared, provided that the QP hasn't been modified between the
10723 marking instruction and the branch. */
10724 if (is_call)
10725 {
10726 insn_group_break (0, CURR_SLOT.qp_regno, 1);
10727 }
10728 else
10729 {
10730 i = 0;
10731 while (i < regdepslen)
10732 {
10733 if (regdeps[i].qp_regno == CURR_SLOT.qp_regno
10734 && regdeps[i].link_to_qp_branch
10735 && (regdeps[i].file != CURR_SLOT.src_file
10736 || regdeps[i].line != CURR_SLOT.src_line))
10737 {
10738 /* Treat like a taken branch */
10739 print_dependency ("Removing", i);
10740 regdeps[i] = regdeps[--regdepslen];
10741 }
10742 else
10743 ++i;
10744 }
10745 }
10746 }
10747 }
10748
10749 /* Examine the current instruction for dependency violations. */
10750
10751 static int
10752 check_dv (idesc)
10753 struct ia64_opcode *idesc;
10754 {
10755 if (md.debug_dv)
10756 {
10757 fprintf (stderr, "Checking %s for violations (line %d, %d/%d)\n",
10758 idesc->name, CURR_SLOT.src_line,
10759 idesc->dependencies->nchks,
10760 idesc->dependencies->nregs);
10761 }
10762
10763 /* Look through the list of currently marked resources; if the current
10764 instruction has the dependency in its chks list which uses that resource,
10765 check against the specific resources used. */
10766 check_dependencies (idesc);
10767
10768 /* Look up the instruction's regdeps (RAW writes, WAW writes, and WAR reads),
10769 then add them to the list of marked resources. */
10770 mark_resources (idesc);
10771
10772 /* There are several types of dependency semantics, and each has its own
10773 requirements for being cleared
10774
10775 Instruction serialization (insns separated by interruption, rfi, or
10776 writer + srlz.i + reader, all in separate groups) clears DVS_INSTR.
10777
10778 Data serialization (instruction serialization, or writer + srlz.d +
10779 reader, where writer and srlz.d are in separate groups) clears
10780 DVS_DATA. (This also clears DVS_OTHER, but that is not guaranteed to
10781 always be the case).
10782
10783 Instruction group break (groups separated by stop, taken branch,
10784 interruption or rfi) clears DVS_IMPLIED and DVS_IMPLIEDF.
10785 */
10786 update_dependencies (idesc);
10787
10788 /* Sometimes, knowing a register value allows us to avoid giving a false DV
10789 warning. Keep track of as many as possible that are useful. */
10790 note_register_values (idesc);
10791
10792 /* We don't need or want this anymore. */
10793 md.mem_offset.hint = 0;
10794
10795 return 0;
10796 }
10797
10798 /* Translate one line of assembly. Pseudo ops and labels do not show
10799 here. */
10800 void
10801 md_assemble (str)
10802 char *str;
10803 {
10804 char *saved_input_line_pointer, *mnemonic;
10805 const struct pseudo_opcode *pdesc;
10806 struct ia64_opcode *idesc;
10807 unsigned char qp_regno;
10808 unsigned int flags;
10809 int ch;
10810
10811 saved_input_line_pointer = input_line_pointer;
10812 input_line_pointer = str;
10813
10814 /* extract the opcode (mnemonic): */
10815
10816 mnemonic = input_line_pointer;
10817 ch = get_symbol_end ();
10818 pdesc = (struct pseudo_opcode *) hash_find (md.pseudo_hash, mnemonic);
10819 if (pdesc)
10820 {
10821 *input_line_pointer = ch;
10822 (*pdesc->handler) (pdesc->arg);
10823 goto done;
10824 }
10825
10826 /* Find the instruction descriptor matching the arguments. */
10827
10828 idesc = ia64_find_opcode (mnemonic);
10829 *input_line_pointer = ch;
10830 if (!idesc)
10831 {
10832 as_bad ("Unknown opcode `%s'", mnemonic);
10833 goto done;
10834 }
10835
10836 idesc = parse_operands (idesc);
10837 if (!idesc)
10838 goto done;
10839
10840 /* Handle the dynamic ops we can handle now: */
10841 if (idesc->type == IA64_TYPE_DYN)
10842 {
10843 if (strcmp (idesc->name, "add") == 0)
10844 {
10845 if (CURR_SLOT.opnd[2].X_op == O_register
10846 && CURR_SLOT.opnd[2].X_add_number < 4)
10847 mnemonic = "addl";
10848 else
10849 mnemonic = "adds";
10850 ia64_free_opcode (idesc);
10851 idesc = ia64_find_opcode (mnemonic);
10852 }
10853 else if (strcmp (idesc->name, "mov") == 0)
10854 {
10855 enum ia64_opnd opnd1, opnd2;
10856 int rop;
10857
10858 opnd1 = idesc->operands[0];
10859 opnd2 = idesc->operands[1];
10860 if (opnd1 == IA64_OPND_AR3)
10861 rop = 0;
10862 else if (opnd2 == IA64_OPND_AR3)
10863 rop = 1;
10864 else
10865 abort ();
10866 if (CURR_SLOT.opnd[rop].X_op == O_register)
10867 {
10868 if (ar_is_only_in_integer_unit (CURR_SLOT.opnd[rop].X_add_number))
10869 mnemonic = "mov.i";
10870 else if (ar_is_only_in_memory_unit (CURR_SLOT.opnd[rop].X_add_number))
10871 mnemonic = "mov.m";
10872 else
10873 rop = -1;
10874 }
10875 else
10876 abort ();
10877 if (rop >= 0)
10878 {
10879 ia64_free_opcode (idesc);
10880 idesc = ia64_find_opcode (mnemonic);
10881 while (idesc != NULL
10882 && (idesc->operands[0] != opnd1
10883 || idesc->operands[1] != opnd2))
10884 idesc = get_next_opcode (idesc);
10885 }
10886 }
10887 }
10888 else if (strcmp (idesc->name, "mov.i") == 0
10889 || strcmp (idesc->name, "mov.m") == 0)
10890 {
10891 enum ia64_opnd opnd1, opnd2;
10892 int rop;
10893
10894 opnd1 = idesc->operands[0];
10895 opnd2 = idesc->operands[1];
10896 if (opnd1 == IA64_OPND_AR3)
10897 rop = 0;
10898 else if (opnd2 == IA64_OPND_AR3)
10899 rop = 1;
10900 else
10901 abort ();
10902 if (CURR_SLOT.opnd[rop].X_op == O_register)
10903 {
10904 char unit = 'a';
10905 if (ar_is_only_in_integer_unit (CURR_SLOT.opnd[rop].X_add_number))
10906 unit = 'i';
10907 else if (ar_is_only_in_memory_unit (CURR_SLOT.opnd[rop].X_add_number))
10908 unit = 'm';
10909 if (unit != 'a' && unit != idesc->name [4])
10910 as_bad ("AR %d can only be accessed by %c-unit",
10911 (int) (CURR_SLOT.opnd[rop].X_add_number - REG_AR),
10912 TOUPPER (unit));
10913 }
10914 }
10915 else if (strcmp (idesc->name, "hint.b") == 0)
10916 {
10917 switch (md.hint_b)
10918 {
10919 case hint_b_ok:
10920 break;
10921 case hint_b_warning:
10922 as_warn ("hint.b may be treated as nop");
10923 break;
10924 case hint_b_error:
10925 as_bad ("hint.b shouldn't be used");
10926 break;
10927 }
10928 }
10929
10930 qp_regno = 0;
10931 if (md.qp.X_op == O_register)
10932 {
10933 qp_regno = md.qp.X_add_number - REG_P;
10934 md.qp.X_op = O_absent;
10935 }
10936
10937 flags = idesc->flags;
10938
10939 if ((flags & IA64_OPCODE_FIRST) != 0)
10940 {
10941 /* The alignment frag has to end with a stop bit only if the
10942 next instruction after the alignment directive has to be
10943 the first instruction in an instruction group. */
10944 if (align_frag)
10945 {
10946 while (align_frag->fr_type != rs_align_code)
10947 {
10948 align_frag = align_frag->fr_next;
10949 if (!align_frag)
10950 break;
10951 }
10952 /* align_frag can be NULL if there are directives in
10953 between. */
10954 if (align_frag && align_frag->fr_next == frag_now)
10955 align_frag->tc_frag_data = 1;
10956 }
10957
10958 insn_group_break (1, 0, 0);
10959 }
10960 align_frag = NULL;
10961
10962 if ((flags & IA64_OPCODE_NO_PRED) != 0 && qp_regno != 0)
10963 {
10964 as_bad ("`%s' cannot be predicated", idesc->name);
10965 goto done;
10966 }
10967
10968 /* Build the instruction. */
10969 CURR_SLOT.qp_regno = qp_regno;
10970 CURR_SLOT.idesc = idesc;
10971 as_where (&CURR_SLOT.src_file, &CURR_SLOT.src_line);
10972 dwarf2_where (&CURR_SLOT.debug_line);
10973
10974 /* Add unwind entries, if there are any. */
10975 if (unwind.current_entry)
10976 {
10977 CURR_SLOT.unwind_record = unwind.current_entry;
10978 unwind.current_entry = NULL;
10979 }
10980 if (unwind.pending_saves)
10981 {
10982 if (unwind.pending_saves->next)
10983 {
10984 /* Attach the next pending save to the next slot so that its
10985 slot number will get set correctly. */
10986 add_unwind_entry (unwind.pending_saves->next, NOT_A_CHAR);
10987 unwind.pending_saves = &unwind.pending_saves->next->r.record.p;
10988 }
10989 else
10990 unwind.pending_saves = NULL;
10991 }
10992 if (unwind.proc_pending.sym && S_IS_DEFINED (unwind.proc_pending.sym))
10993 unwind.insn = 1;
10994
10995 /* Check for dependency violations. */
10996 if (md.detect_dv)
10997 check_dv (idesc);
10998
10999 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
11000 if (++md.num_slots_in_use >= NUM_SLOTS)
11001 emit_one_bundle ();
11002
11003 if ((flags & IA64_OPCODE_LAST) != 0)
11004 insn_group_break (1, 0, 0);
11005
11006 md.last_text_seg = now_seg;
11007
11008 done:
11009 input_line_pointer = saved_input_line_pointer;
11010 }
11011
11012 /* Called when symbol NAME cannot be found in the symbol table.
11013 Should be used for dynamic valued symbols only. */
11014
11015 symbolS *
11016 md_undefined_symbol (name)
11017 char *name ATTRIBUTE_UNUSED;
11018 {
11019 return 0;
11020 }
11021
11022 /* Called for any expression that can not be recognized. When the
11023 function is called, `input_line_pointer' will point to the start of
11024 the expression. */
11025
11026 void
11027 md_operand (e)
11028 expressionS *e;
11029 {
11030 switch (*input_line_pointer)
11031 {
11032 case '[':
11033 ++input_line_pointer;
11034 expression_and_evaluate (e);
11035 if (*input_line_pointer != ']')
11036 {
11037 as_bad ("Closing bracket missing");
11038 goto err;
11039 }
11040 else
11041 {
11042 if (e->X_op != O_register
11043 || e->X_add_number < REG_GR
11044 || e->X_add_number > REG_GR + 127)
11045 {
11046 as_bad ("Index must be a general register");
11047 e->X_add_number = REG_GR;
11048 }
11049
11050 ++input_line_pointer;
11051 e->X_op = O_index;
11052 }
11053 break;
11054
11055 default:
11056 break;
11057 }
11058 return;
11059
11060 err:
11061 ignore_rest_of_line ();
11062 }
11063
11064 /* Return 1 if it's OK to adjust a reloc by replacing the symbol with
11065 a section symbol plus some offset. For relocs involving @fptr(),
11066 directives we don't want such adjustments since we need to have the
11067 original symbol's name in the reloc. */
11068 int
11069 ia64_fix_adjustable (fix)
11070 fixS *fix;
11071 {
11072 /* Prevent all adjustments to global symbols */
11073 if (S_IS_EXTERNAL (fix->fx_addsy) || S_IS_WEAK (fix->fx_addsy))
11074 return 0;
11075
11076 switch (fix->fx_r_type)
11077 {
11078 case BFD_RELOC_IA64_FPTR64I:
11079 case BFD_RELOC_IA64_FPTR32MSB:
11080 case BFD_RELOC_IA64_FPTR32LSB:
11081 case BFD_RELOC_IA64_FPTR64MSB:
11082 case BFD_RELOC_IA64_FPTR64LSB:
11083 case BFD_RELOC_IA64_LTOFF_FPTR22:
11084 case BFD_RELOC_IA64_LTOFF_FPTR64I:
11085 return 0;
11086 default:
11087 break;
11088 }
11089
11090 return 1;
11091 }
11092
11093 int
11094 ia64_force_relocation (fix)
11095 fixS *fix;
11096 {
11097 switch (fix->fx_r_type)
11098 {
11099 case BFD_RELOC_IA64_FPTR64I:
11100 case BFD_RELOC_IA64_FPTR32MSB:
11101 case BFD_RELOC_IA64_FPTR32LSB:
11102 case BFD_RELOC_IA64_FPTR64MSB:
11103 case BFD_RELOC_IA64_FPTR64LSB:
11104
11105 case BFD_RELOC_IA64_LTOFF22:
11106 case BFD_RELOC_IA64_LTOFF64I:
11107 case BFD_RELOC_IA64_LTOFF_FPTR22:
11108 case BFD_RELOC_IA64_LTOFF_FPTR64I:
11109 case BFD_RELOC_IA64_PLTOFF22:
11110 case BFD_RELOC_IA64_PLTOFF64I:
11111 case BFD_RELOC_IA64_PLTOFF64MSB:
11112 case BFD_RELOC_IA64_PLTOFF64LSB:
11113
11114 case BFD_RELOC_IA64_LTOFF22X:
11115 case BFD_RELOC_IA64_LDXMOV:
11116 return 1;
11117
11118 default:
11119 break;
11120 }
11121
11122 return generic_force_reloc (fix);
11123 }
11124
11125 /* Decide from what point a pc-relative relocation is relative to,
11126 relative to the pc-relative fixup. Er, relatively speaking. */
11127 long
11128 ia64_pcrel_from_section (fix, sec)
11129 fixS *fix;
11130 segT sec;
11131 {
11132 unsigned long off = fix->fx_frag->fr_address + fix->fx_where;
11133
11134 if (bfd_get_section_flags (stdoutput, sec) & SEC_CODE)
11135 off &= ~0xfUL;
11136
11137 return off;
11138 }
11139
11140
11141 /* Used to emit section-relative relocs for the dwarf2 debug data. */
11142 void
11143 ia64_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11144 {
11145 expressionS expr;
11146
11147 expr.X_op = O_pseudo_fixup;
11148 expr.X_op_symbol = pseudo_func[FUNC_SEC_RELATIVE].u.sym;
11149 expr.X_add_number = 0;
11150 expr.X_add_symbol = symbol;
11151 emit_expr (&expr, size);
11152 }
11153
11154 /* This is called whenever some data item (not an instruction) needs a
11155 fixup. We pick the right reloc code depending on the byteorder
11156 currently in effect. */
11157 void
11158 ia64_cons_fix_new (f, where, nbytes, exp)
11159 fragS *f;
11160 int where;
11161 int nbytes;
11162 expressionS *exp;
11163 {
11164 bfd_reloc_code_real_type code;
11165 fixS *fix;
11166
11167 switch (nbytes)
11168 {
11169 /* There are no reloc for 8 and 16 bit quantities, but we allow
11170 them here since they will work fine as long as the expression
11171 is fully defined at the end of the pass over the source file. */
11172 case 1: code = BFD_RELOC_8; break;
11173 case 2: code = BFD_RELOC_16; break;
11174 case 4:
11175 if (target_big_endian)
11176 code = BFD_RELOC_IA64_DIR32MSB;
11177 else
11178 code = BFD_RELOC_IA64_DIR32LSB;
11179 break;
11180
11181 case 8:
11182 /* In 32-bit mode, data8 could mean function descriptors too. */
11183 if (exp->X_op == O_pseudo_fixup
11184 && exp->X_op_symbol
11185 && S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC
11186 && !(md.flags & EF_IA_64_ABI64))
11187 {
11188 if (target_big_endian)
11189 code = BFD_RELOC_IA64_IPLTMSB;
11190 else
11191 code = BFD_RELOC_IA64_IPLTLSB;
11192 exp->X_op = O_symbol;
11193 break;
11194 }
11195 else
11196 {
11197 if (target_big_endian)
11198 code = BFD_RELOC_IA64_DIR64MSB;
11199 else
11200 code = BFD_RELOC_IA64_DIR64LSB;
11201 break;
11202 }
11203
11204 case 16:
11205 if (exp->X_op == O_pseudo_fixup
11206 && exp->X_op_symbol
11207 && S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC)
11208 {
11209 if (target_big_endian)
11210 code = BFD_RELOC_IA64_IPLTMSB;
11211 else
11212 code = BFD_RELOC_IA64_IPLTLSB;
11213 exp->X_op = O_symbol;
11214 break;
11215 }
11216 /* FALLTHRU */
11217
11218 default:
11219 as_bad ("Unsupported fixup size %d", nbytes);
11220 ignore_rest_of_line ();
11221 return;
11222 }
11223
11224 if (exp->X_op == O_pseudo_fixup)
11225 {
11226 exp->X_op = O_symbol;
11227 code = ia64_gen_real_reloc_type (exp->X_op_symbol, code);
11228 /* ??? If code unchanged, unsupported. */
11229 }
11230
11231 fix = fix_new_exp (f, where, nbytes, exp, 0, code);
11232 /* We need to store the byte order in effect in case we're going
11233 to fix an 8 or 16 bit relocation (for which there no real
11234 relocs available). See md_apply_fix(). */
11235 fix->tc_fix_data.bigendian = target_big_endian;
11236 }
11237
11238 /* Return the actual relocation we wish to associate with the pseudo
11239 reloc described by SYM and R_TYPE. SYM should be one of the
11240 symbols in the pseudo_func array, or NULL. */
11241
11242 static bfd_reloc_code_real_type
11243 ia64_gen_real_reloc_type (sym, r_type)
11244 struct symbol *sym;
11245 bfd_reloc_code_real_type r_type;
11246 {
11247 bfd_reloc_code_real_type new = 0;
11248 const char *type = NULL, *suffix = "";
11249
11250 if (sym == NULL)
11251 {
11252 return r_type;
11253 }
11254
11255 switch (S_GET_VALUE (sym))
11256 {
11257 case FUNC_FPTR_RELATIVE:
11258 switch (r_type)
11259 {
11260 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_FPTR64I; break;
11261 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_FPTR32MSB; break;
11262 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_FPTR32LSB; break;
11263 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_FPTR64MSB; break;
11264 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_FPTR64LSB; break;
11265 default: type = "FPTR"; break;
11266 }
11267 break;
11268
11269 case FUNC_GP_RELATIVE:
11270 switch (r_type)
11271 {
11272 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_GPREL22; break;
11273 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_GPREL64I; break;
11274 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_GPREL32MSB; break;
11275 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_GPREL32LSB; break;
11276 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_GPREL64MSB; break;
11277 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_GPREL64LSB; break;
11278 default: type = "GPREL"; break;
11279 }
11280 break;
11281
11282 case FUNC_LT_RELATIVE:
11283 switch (r_type)
11284 {
11285 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_LTOFF22; break;
11286 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_LTOFF64I; break;
11287 default: type = "LTOFF"; break;
11288 }
11289 break;
11290
11291 case FUNC_LT_RELATIVE_X:
11292 switch (r_type)
11293 {
11294 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_LTOFF22X; break;
11295 default: type = "LTOFF"; suffix = "X"; break;
11296 }
11297 break;
11298
11299 case FUNC_PC_RELATIVE:
11300 switch (r_type)
11301 {
11302 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_PCREL22; break;
11303 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_PCREL64I; break;
11304 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_PCREL32MSB; break;
11305 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_PCREL32LSB; break;
11306 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_PCREL64MSB; break;
11307 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_PCREL64LSB; break;
11308 default: type = "PCREL"; break;
11309 }
11310 break;
11311
11312 case FUNC_PLT_RELATIVE:
11313 switch (r_type)
11314 {
11315 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_PLTOFF22; break;
11316 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_PLTOFF64I; break;
11317 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_PLTOFF64MSB;break;
11318 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_PLTOFF64LSB;break;
11319 default: type = "PLTOFF"; break;
11320 }
11321 break;
11322
11323 case FUNC_SEC_RELATIVE:
11324 switch (r_type)
11325 {
11326 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_SECREL32MSB;break;
11327 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_SECREL32LSB;break;
11328 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_SECREL64MSB;break;
11329 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_SECREL64LSB;break;
11330 default: type = "SECREL"; break;
11331 }
11332 break;
11333
11334 case FUNC_SEG_RELATIVE:
11335 switch (r_type)
11336 {
11337 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_SEGREL32MSB;break;
11338 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_SEGREL32LSB;break;
11339 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_SEGREL64MSB;break;
11340 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_SEGREL64LSB;break;
11341 default: type = "SEGREL"; break;
11342 }
11343 break;
11344
11345 case FUNC_LTV_RELATIVE:
11346 switch (r_type)
11347 {
11348 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_LTV32MSB; break;
11349 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_LTV32LSB; break;
11350 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_LTV64MSB; break;
11351 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_LTV64LSB; break;
11352 default: type = "LTV"; break;
11353 }
11354 break;
11355
11356 case FUNC_LT_FPTR_RELATIVE:
11357 switch (r_type)
11358 {
11359 case BFD_RELOC_IA64_IMM22:
11360 new = BFD_RELOC_IA64_LTOFF_FPTR22; break;
11361 case BFD_RELOC_IA64_IMM64:
11362 new = BFD_RELOC_IA64_LTOFF_FPTR64I; break;
11363 case BFD_RELOC_IA64_DIR32MSB:
11364 new = BFD_RELOC_IA64_LTOFF_FPTR32MSB; break;
11365 case BFD_RELOC_IA64_DIR32LSB:
11366 new = BFD_RELOC_IA64_LTOFF_FPTR32LSB; break;
11367 case BFD_RELOC_IA64_DIR64MSB:
11368 new = BFD_RELOC_IA64_LTOFF_FPTR64MSB; break;
11369 case BFD_RELOC_IA64_DIR64LSB:
11370 new = BFD_RELOC_IA64_LTOFF_FPTR64LSB; break;
11371 default:
11372 type = "LTOFF_FPTR"; break;
11373 }
11374 break;
11375
11376 case FUNC_TP_RELATIVE:
11377 switch (r_type)
11378 {
11379 case BFD_RELOC_IA64_IMM14: new = BFD_RELOC_IA64_TPREL14; break;
11380 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_TPREL22; break;
11381 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_TPREL64I; break;
11382 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_TPREL64MSB; break;
11383 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_TPREL64LSB; break;
11384 default: type = "TPREL"; break;
11385 }
11386 break;
11387
11388 case FUNC_LT_TP_RELATIVE:
11389 switch (r_type)
11390 {
11391 case BFD_RELOC_IA64_IMM22:
11392 new = BFD_RELOC_IA64_LTOFF_TPREL22; break;
11393 default:
11394 type = "LTOFF_TPREL"; break;
11395 }
11396 break;
11397
11398 case FUNC_DTP_MODULE:
11399 switch (r_type)
11400 {
11401 case BFD_RELOC_IA64_DIR64MSB:
11402 new = BFD_RELOC_IA64_DTPMOD64MSB; break;
11403 case BFD_RELOC_IA64_DIR64LSB:
11404 new = BFD_RELOC_IA64_DTPMOD64LSB; break;
11405 default:
11406 type = "DTPMOD"; break;
11407 }
11408 break;
11409
11410 case FUNC_LT_DTP_MODULE:
11411 switch (r_type)
11412 {
11413 case BFD_RELOC_IA64_IMM22:
11414 new = BFD_RELOC_IA64_LTOFF_DTPMOD22; break;
11415 default:
11416 type = "LTOFF_DTPMOD"; break;
11417 }
11418 break;
11419
11420 case FUNC_DTP_RELATIVE:
11421 switch (r_type)
11422 {
11423 case BFD_RELOC_IA64_DIR32MSB:
11424 new = BFD_RELOC_IA64_DTPREL32MSB; break;
11425 case BFD_RELOC_IA64_DIR32LSB:
11426 new = BFD_RELOC_IA64_DTPREL32LSB; break;
11427 case BFD_RELOC_IA64_DIR64MSB:
11428 new = BFD_RELOC_IA64_DTPREL64MSB; break;
11429 case BFD_RELOC_IA64_DIR64LSB:
11430 new = BFD_RELOC_IA64_DTPREL64LSB; break;
11431 case BFD_RELOC_IA64_IMM14:
11432 new = BFD_RELOC_IA64_DTPREL14; break;
11433 case BFD_RELOC_IA64_IMM22:
11434 new = BFD_RELOC_IA64_DTPREL22; break;
11435 case BFD_RELOC_IA64_IMM64:
11436 new = BFD_RELOC_IA64_DTPREL64I; break;
11437 default:
11438 type = "DTPREL"; break;
11439 }
11440 break;
11441
11442 case FUNC_LT_DTP_RELATIVE:
11443 switch (r_type)
11444 {
11445 case BFD_RELOC_IA64_IMM22:
11446 new = BFD_RELOC_IA64_LTOFF_DTPREL22; break;
11447 default:
11448 type = "LTOFF_DTPREL"; break;
11449 }
11450 break;
11451
11452 case FUNC_IPLT_RELOC:
11453 switch (r_type)
11454 {
11455 case BFD_RELOC_IA64_IPLTMSB: return r_type;
11456 case BFD_RELOC_IA64_IPLTLSB: return r_type;
11457 default: type = "IPLT"; break;
11458 }
11459 break;
11460
11461 default:
11462 abort ();
11463 }
11464
11465 if (new)
11466 return new;
11467 else
11468 {
11469 int width;
11470
11471 if (!type)
11472 abort ();
11473 switch (r_type)
11474 {
11475 case BFD_RELOC_IA64_DIR32MSB: width = 32; suffix = "MSB"; break;
11476 case BFD_RELOC_IA64_DIR32LSB: width = 32; suffix = "LSB"; break;
11477 case BFD_RELOC_IA64_DIR64MSB: width = 64; suffix = "MSB"; break;
11478 case BFD_RELOC_IA64_DIR64LSB: width = 64; suffix = "LSB"; break;
11479 case BFD_RELOC_UNUSED: width = 13; break;
11480 case BFD_RELOC_IA64_IMM14: width = 14; break;
11481 case BFD_RELOC_IA64_IMM22: width = 22; break;
11482 case BFD_RELOC_IA64_IMM64: width = 64; suffix = "I"; break;
11483 default: abort ();
11484 }
11485
11486 /* This should be an error, but since previously there wasn't any
11487 diagnostic here, dont't make it fail because of this for now. */
11488 as_warn ("Cannot express %s%d%s relocation", type, width, suffix);
11489 return r_type;
11490 }
11491 }
11492
11493 /* Here is where generate the appropriate reloc for pseudo relocation
11494 functions. */
11495 void
11496 ia64_validate_fix (fix)
11497 fixS *fix;
11498 {
11499 switch (fix->fx_r_type)
11500 {
11501 case BFD_RELOC_IA64_FPTR64I:
11502 case BFD_RELOC_IA64_FPTR32MSB:
11503 case BFD_RELOC_IA64_FPTR64LSB:
11504 case BFD_RELOC_IA64_LTOFF_FPTR22:
11505 case BFD_RELOC_IA64_LTOFF_FPTR64I:
11506 if (fix->fx_offset != 0)
11507 as_bad_where (fix->fx_file, fix->fx_line,
11508 "No addend allowed in @fptr() relocation");
11509 break;
11510 default:
11511 break;
11512 }
11513 }
11514
11515 static void
11516 fix_insn (fix, odesc, value)
11517 fixS *fix;
11518 const struct ia64_operand *odesc;
11519 valueT value;
11520 {
11521 bfd_vma insn[3], t0, t1, control_bits;
11522 const char *err;
11523 char *fixpos;
11524 long slot;
11525
11526 slot = fix->fx_where & 0x3;
11527 fixpos = fix->fx_frag->fr_literal + (fix->fx_where - slot);
11528
11529 /* Bundles are always in little-endian byte order */
11530 t0 = bfd_getl64 (fixpos);
11531 t1 = bfd_getl64 (fixpos + 8);
11532 control_bits = t0 & 0x1f;
11533 insn[0] = (t0 >> 5) & 0x1ffffffffffLL;
11534 insn[1] = ((t0 >> 46) & 0x3ffff) | ((t1 & 0x7fffff) << 18);
11535 insn[2] = (t1 >> 23) & 0x1ffffffffffLL;
11536
11537 err = NULL;
11538 if (odesc - elf64_ia64_operands == IA64_OPND_IMMU64)
11539 {
11540 insn[1] = (value >> 22) & 0x1ffffffffffLL;
11541 insn[2] |= (((value & 0x7f) << 13)
11542 | (((value >> 7) & 0x1ff) << 27)
11543 | (((value >> 16) & 0x1f) << 22)
11544 | (((value >> 21) & 0x1) << 21)
11545 | (((value >> 63) & 0x1) << 36));
11546 }
11547 else if (odesc - elf64_ia64_operands == IA64_OPND_IMMU62)
11548 {
11549 if (value & ~0x3fffffffffffffffULL)
11550 err = "integer operand out of range";
11551 insn[1] = (value >> 21) & 0x1ffffffffffLL;
11552 insn[2] |= (((value & 0xfffff) << 6) | (((value >> 20) & 0x1) << 36));
11553 }
11554 else if (odesc - elf64_ia64_operands == IA64_OPND_TGT64)
11555 {
11556 value >>= 4;
11557 insn[1] = ((value >> 20) & 0x7fffffffffLL) << 2;
11558 insn[2] |= ((((value >> 59) & 0x1) << 36)
11559 | (((value >> 0) & 0xfffff) << 13));
11560 }
11561 else
11562 err = (*odesc->insert) (odesc, value, insn + slot);
11563
11564 if (err)
11565 as_bad_where (fix->fx_file, fix->fx_line, err);
11566
11567 t0 = control_bits | (insn[0] << 5) | (insn[1] << 46);
11568 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
11569 number_to_chars_littleendian (fixpos + 0, t0, 8);
11570 number_to_chars_littleendian (fixpos + 8, t1, 8);
11571 }
11572
11573 /* Attempt to simplify or even eliminate a fixup. The return value is
11574 ignored; perhaps it was once meaningful, but now it is historical.
11575 To indicate that a fixup has been eliminated, set FIXP->FX_DONE.
11576
11577 If fixp->fx_addsy is non-NULL, we'll have to generate a reloc entry
11578 (if possible). */
11579
11580 void
11581 md_apply_fix (fix, valP, seg)
11582 fixS *fix;
11583 valueT *valP;
11584 segT seg ATTRIBUTE_UNUSED;
11585 {
11586 char *fixpos;
11587 valueT value = *valP;
11588
11589 fixpos = fix->fx_frag->fr_literal + fix->fx_where;
11590
11591 if (fix->fx_pcrel)
11592 {
11593 switch (fix->fx_r_type)
11594 {
11595 case BFD_RELOC_IA64_PCREL21B: break;
11596 case BFD_RELOC_IA64_PCREL21BI: break;
11597 case BFD_RELOC_IA64_PCREL21F: break;
11598 case BFD_RELOC_IA64_PCREL21M: break;
11599 case BFD_RELOC_IA64_PCREL60B: break;
11600 case BFD_RELOC_IA64_PCREL22: break;
11601 case BFD_RELOC_IA64_PCREL64I: break;
11602 case BFD_RELOC_IA64_PCREL32MSB: break;
11603 case BFD_RELOC_IA64_PCREL32LSB: break;
11604 case BFD_RELOC_IA64_PCREL64MSB: break;
11605 case BFD_RELOC_IA64_PCREL64LSB: break;
11606 default:
11607 fix->fx_r_type = ia64_gen_real_reloc_type (pseudo_func[FUNC_PC_RELATIVE].u.sym,
11608 fix->fx_r_type);
11609 break;
11610 }
11611 }
11612 if (fix->fx_addsy)
11613 {
11614 switch (fix->fx_r_type)
11615 {
11616 case BFD_RELOC_UNUSED:
11617 /* This must be a TAG13 or TAG13b operand. There are no external
11618 relocs defined for them, so we must give an error. */
11619 as_bad_where (fix->fx_file, fix->fx_line,
11620 "%s must have a constant value",
11621 elf64_ia64_operands[fix->tc_fix_data.opnd].desc);
11622 fix->fx_done = 1;
11623 return;
11624
11625 case BFD_RELOC_IA64_TPREL14:
11626 case BFD_RELOC_IA64_TPREL22:
11627 case BFD_RELOC_IA64_TPREL64I:
11628 case BFD_RELOC_IA64_LTOFF_TPREL22:
11629 case BFD_RELOC_IA64_LTOFF_DTPMOD22:
11630 case BFD_RELOC_IA64_DTPREL14:
11631 case BFD_RELOC_IA64_DTPREL22:
11632 case BFD_RELOC_IA64_DTPREL64I:
11633 case BFD_RELOC_IA64_LTOFF_DTPREL22:
11634 S_SET_THREAD_LOCAL (fix->fx_addsy);
11635 break;
11636
11637 default:
11638 break;
11639 }
11640 }
11641 else if (fix->tc_fix_data.opnd == IA64_OPND_NIL)
11642 {
11643 if (fix->tc_fix_data.bigendian)
11644 number_to_chars_bigendian (fixpos, value, fix->fx_size);
11645 else
11646 number_to_chars_littleendian (fixpos, value, fix->fx_size);
11647 fix->fx_done = 1;
11648 }
11649 else
11650 {
11651 fix_insn (fix, elf64_ia64_operands + fix->tc_fix_data.opnd, value);
11652 fix->fx_done = 1;
11653 }
11654 }
11655
11656 /* Generate the BFD reloc to be stuck in the object file from the
11657 fixup used internally in the assembler. */
11658
11659 arelent *
11660 tc_gen_reloc (sec, fixp)
11661 asection *sec ATTRIBUTE_UNUSED;
11662 fixS *fixp;
11663 {
11664 arelent *reloc;
11665
11666 reloc = xmalloc (sizeof (*reloc));
11667 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
11668 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11669 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
11670 reloc->addend = fixp->fx_offset;
11671 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
11672
11673 if (!reloc->howto)
11674 {
11675 as_bad_where (fixp->fx_file, fixp->fx_line,
11676 "Cannot represent %s relocation in object file",
11677 bfd_get_reloc_code_name (fixp->fx_r_type));
11678 free (reloc);
11679 return NULL;
11680 }
11681 return reloc;
11682 }
11683
11684 /* Turn a string in input_line_pointer into a floating point constant
11685 of type TYPE, and store the appropriate bytes in *LIT. The number
11686 of LITTLENUMS emitted is stored in *SIZE. An error message is
11687 returned, or NULL on OK. */
11688
11689 #define MAX_LITTLENUMS 5
11690
11691 char *
11692 md_atof (type, lit, size)
11693 int type;
11694 char *lit;
11695 int *size;
11696 {
11697 LITTLENUM_TYPE words[MAX_LITTLENUMS];
11698 char *t;
11699 int prec;
11700
11701 switch (type)
11702 {
11703 /* IEEE floats */
11704 case 'f':
11705 case 'F':
11706 case 's':
11707 case 'S':
11708 prec = 2;
11709 break;
11710
11711 case 'd':
11712 case 'D':
11713 case 'r':
11714 case 'R':
11715 prec = 4;
11716 break;
11717
11718 case 'x':
11719 case 'X':
11720 case 'p':
11721 case 'P':
11722 prec = 5;
11723 break;
11724
11725 default:
11726 *size = 0;
11727 return "Bad call to MD_ATOF()";
11728 }
11729 t = atof_ieee (input_line_pointer, type, words);
11730 if (t)
11731 input_line_pointer = t;
11732
11733 (*ia64_float_to_chars) (lit, words, prec);
11734
11735 if (type == 'X')
11736 {
11737 /* It is 10 byte floating point with 6 byte padding. */
11738 memset (&lit [10], 0, 6);
11739 *size = 8 * sizeof (LITTLENUM_TYPE);
11740 }
11741 else
11742 *size = prec * sizeof (LITTLENUM_TYPE);
11743
11744 return 0;
11745 }
11746
11747 /* Handle ia64 specific semantics of the align directive. */
11748
11749 void
11750 ia64_md_do_align (n, fill, len, max)
11751 int n ATTRIBUTE_UNUSED;
11752 const char *fill ATTRIBUTE_UNUSED;
11753 int len ATTRIBUTE_UNUSED;
11754 int max ATTRIBUTE_UNUSED;
11755 {
11756 if (subseg_text_p (now_seg))
11757 ia64_flush_insns ();
11758 }
11759
11760 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
11761 of an rs_align_code fragment. */
11762
11763 void
11764 ia64_handle_align (fragp)
11765 fragS *fragp;
11766 {
11767 int bytes;
11768 char *p;
11769 const unsigned char *nop;
11770
11771 if (fragp->fr_type != rs_align_code)
11772 return;
11773
11774 /* Check if this frag has to end with a stop bit. */
11775 nop = fragp->tc_frag_data ? le_nop_stop : le_nop;
11776
11777 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
11778 p = fragp->fr_literal + fragp->fr_fix;
11779
11780 /* If no paddings are needed, we check if we need a stop bit. */
11781 if (!bytes && fragp->tc_frag_data)
11782 {
11783 if (fragp->fr_fix < 16)
11784 #if 1
11785 /* FIXME: It won't work with
11786 .align 16
11787 alloc r32=ar.pfs,1,2,4,0
11788 */
11789 ;
11790 #else
11791 as_bad_where (fragp->fr_file, fragp->fr_line,
11792 _("Can't add stop bit to mark end of instruction group"));
11793 #endif
11794 else
11795 /* Bundles are always in little-endian byte order. Make sure
11796 the previous bundle has the stop bit. */
11797 *(p - 16) |= 1;
11798 }
11799
11800 /* Make sure we are on a 16-byte boundary, in case someone has been
11801 putting data into a text section. */
11802 if (bytes & 15)
11803 {
11804 int fix = bytes & 15;
11805 memset (p, 0, fix);
11806 p += fix;
11807 bytes -= fix;
11808 fragp->fr_fix += fix;
11809 }
11810
11811 /* Instruction bundles are always little-endian. */
11812 memcpy (p, nop, 16);
11813 fragp->fr_var = 16;
11814 }
11815
11816 static void
11817 ia64_float_to_chars_bigendian (char *lit, LITTLENUM_TYPE *words,
11818 int prec)
11819 {
11820 while (prec--)
11821 {
11822 number_to_chars_bigendian (lit, (long) (*words++),
11823 sizeof (LITTLENUM_TYPE));
11824 lit += sizeof (LITTLENUM_TYPE);
11825 }
11826 }
11827
11828 static void
11829 ia64_float_to_chars_littleendian (char *lit, LITTLENUM_TYPE *words,
11830 int prec)
11831 {
11832 while (prec--)
11833 {
11834 number_to_chars_littleendian (lit, (long) (words[prec]),
11835 sizeof (LITTLENUM_TYPE));
11836 lit += sizeof (LITTLENUM_TYPE);
11837 }
11838 }
11839
11840 void
11841 ia64_elf_section_change_hook (void)
11842 {
11843 if (elf_section_type (now_seg) == SHT_IA_64_UNWIND
11844 && elf_linked_to_section (now_seg) == NULL)
11845 elf_linked_to_section (now_seg) = text_section;
11846 dot_byteorder (-1);
11847 }
11848
11849 /* Check if a label should be made global. */
11850 void
11851 ia64_check_label (symbolS *label)
11852 {
11853 if (*input_line_pointer == ':')
11854 {
11855 S_SET_EXTERNAL (label);
11856 input_line_pointer++;
11857 }
11858 }
11859
11860 /* Used to remember where .alias and .secalias directives are seen. We
11861 will rename symbol and section names when we are about to output
11862 the relocatable file. */
11863 struct alias
11864 {
11865 char *file; /* The file where the directive is seen. */
11866 unsigned int line; /* The line number the directive is at. */
11867 const char *name; /* The original name of the symbol. */
11868 };
11869
11870 /* Called for .alias and .secalias directives. If SECTION is 1, it is
11871 .secalias. Otherwise, it is .alias. */
11872 static void
11873 dot_alias (int section)
11874 {
11875 char *name, *alias;
11876 char delim;
11877 char *end_name;
11878 int len;
11879 const char *error_string;
11880 struct alias *h;
11881 const char *a;
11882 struct hash_control *ahash, *nhash;
11883 const char *kind;
11884
11885 name = input_line_pointer;
11886 delim = get_symbol_end ();
11887 end_name = input_line_pointer;
11888 *end_name = delim;
11889
11890 if (name == end_name)
11891 {
11892 as_bad (_("expected symbol name"));
11893 ignore_rest_of_line ();
11894 return;
11895 }
11896
11897 SKIP_WHITESPACE ();
11898
11899 if (*input_line_pointer != ',')
11900 {
11901 *end_name = 0;
11902 as_bad (_("expected comma after \"%s\""), name);
11903 *end_name = delim;
11904 ignore_rest_of_line ();
11905 return;
11906 }
11907
11908 input_line_pointer++;
11909 *end_name = 0;
11910 ia64_canonicalize_symbol_name (name);
11911
11912 /* We call demand_copy_C_string to check if alias string is valid.
11913 There should be a closing `"' and no `\0' in the string. */
11914 alias = demand_copy_C_string (&len);
11915 if (alias == NULL)
11916 {
11917 ignore_rest_of_line ();
11918 return;
11919 }
11920
11921 /* Make a copy of name string. */
11922 len = strlen (name) + 1;
11923 obstack_grow (&notes, name, len);
11924 name = obstack_finish (&notes);
11925
11926 if (section)
11927 {
11928 kind = "section";
11929 ahash = secalias_hash;
11930 nhash = secalias_name_hash;
11931 }
11932 else
11933 {
11934 kind = "symbol";
11935 ahash = alias_hash;
11936 nhash = alias_name_hash;
11937 }
11938
11939 /* Check if alias has been used before. */
11940 h = (struct alias *) hash_find (ahash, alias);
11941 if (h)
11942 {
11943 if (strcmp (h->name, name))
11944 as_bad (_("`%s' is already the alias of %s `%s'"),
11945 alias, kind, h->name);
11946 goto out;
11947 }
11948
11949 /* Check if name already has an alias. */
11950 a = (const char *) hash_find (nhash, name);
11951 if (a)
11952 {
11953 if (strcmp (a, alias))
11954 as_bad (_("%s `%s' already has an alias `%s'"), kind, name, a);
11955 goto out;
11956 }
11957
11958 h = (struct alias *) xmalloc (sizeof (struct alias));
11959 as_where (&h->file, &h->line);
11960 h->name = name;
11961
11962 error_string = hash_jam (ahash, alias, (PTR) h);
11963 if (error_string)
11964 {
11965 as_fatal (_("inserting \"%s\" into %s alias hash table failed: %s"),
11966 alias, kind, error_string);
11967 goto out;
11968 }
11969
11970 error_string = hash_jam (nhash, name, (PTR) alias);
11971 if (error_string)
11972 {
11973 as_fatal (_("inserting \"%s\" into %s name hash table failed: %s"),
11974 alias, kind, error_string);
11975 out:
11976 obstack_free (&notes, name);
11977 obstack_free (&notes, alias);
11978 }
11979
11980 demand_empty_rest_of_line ();
11981 }
11982
11983 /* It renames the original symbol name to its alias. */
11984 static void
11985 do_alias (const char *alias, PTR value)
11986 {
11987 struct alias *h = (struct alias *) value;
11988 symbolS *sym = symbol_find (h->name);
11989
11990 if (sym == NULL)
11991 as_warn_where (h->file, h->line,
11992 _("symbol `%s' aliased to `%s' is not used"),
11993 h->name, alias);
11994 else
11995 S_SET_NAME (sym, (char *) alias);
11996 }
11997
11998 /* Called from write_object_file. */
11999 void
12000 ia64_adjust_symtab (void)
12001 {
12002 hash_traverse (alias_hash, do_alias);
12003 }
12004
12005 /* It renames the original section name to its alias. */
12006 static void
12007 do_secalias (const char *alias, PTR value)
12008 {
12009 struct alias *h = (struct alias *) value;
12010 segT sec = bfd_get_section_by_name (stdoutput, h->name);
12011
12012 if (sec == NULL)
12013 as_warn_where (h->file, h->line,
12014 _("section `%s' aliased to `%s' is not used"),
12015 h->name, alias);
12016 else
12017 sec->name = alias;
12018 }
12019
12020 /* Called from write_object_file. */
12021 void
12022 ia64_frob_file (void)
12023 {
12024 hash_traverse (secalias_hash, do_secalias);
12025 }