]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-ia64.c
PR26513, 629310abec breaks assembling PowerPC Linux kernels
[thirdparty/binutils-gdb.git] / gas / config / tc-ia64.c
1 /* tc-ia64.c -- Assembler for the HP/Intel IA-64 architecture.
2 Copyright (C) 1998-2020 Free Software Foundation, Inc.
3 Contributed by David Mosberger-Tang <davidm@hpl.hp.com>
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street - Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 /*
23 TODO:
24
25 - optional operands
26 - directives:
27 .eb
28 .estate
29 .lb
30 .popsection
31 .previous
32 .psr
33 .pushsection
34 - labels are wrong if automatic alignment is introduced
35 (e.g., checkout the second real10 definition in test-data.s)
36 - DV-related stuff:
37 <reg>.safe_across_calls and any other DV-related directives I don't
38 have documentation for.
39 verify mod-sched-brs reads/writes are checked/marked (and other
40 notes)
41
42 */
43
44 #include "as.h"
45 #include "safe-ctype.h"
46 #include "dwarf2dbg.h"
47 #include "subsegs.h"
48
49 #include "opcode/ia64.h"
50
51 #include "elf/ia64.h"
52 #include "bfdver.h"
53 #include <time.h>
54
55 #ifdef HAVE_LIMITS_H
56 #include <limits.h>
57 #endif
58
59 #define NELEMS(a) ((int) (sizeof (a)/sizeof ((a)[0])))
60
61 /* Some systems define MIN in, e.g., param.h. */
62 #undef MIN
63 #define MIN(a,b) ((a) < (b) ? (a) : (b))
64
65 #define NUM_SLOTS 4
66 #define PREV_SLOT md.slot[(md.curr_slot + NUM_SLOTS - 1) % NUM_SLOTS]
67 #define CURR_SLOT md.slot[md.curr_slot]
68
69 #define O_pseudo_fixup (O_max + 1)
70
71 enum special_section
72 {
73 /* IA-64 ABI section pseudo-ops. */
74 SPECIAL_SECTION_BSS = 0,
75 SPECIAL_SECTION_SBSS,
76 SPECIAL_SECTION_SDATA,
77 SPECIAL_SECTION_RODATA,
78 SPECIAL_SECTION_COMMENT,
79 SPECIAL_SECTION_UNWIND,
80 SPECIAL_SECTION_UNWIND_INFO,
81 /* HPUX specific section pseudo-ops. */
82 SPECIAL_SECTION_INIT_ARRAY,
83 SPECIAL_SECTION_FINI_ARRAY,
84 };
85
86 enum reloc_func
87 {
88 FUNC_DTP_MODULE,
89 FUNC_DTP_RELATIVE,
90 FUNC_FPTR_RELATIVE,
91 FUNC_GP_RELATIVE,
92 FUNC_LT_RELATIVE,
93 FUNC_LT_RELATIVE_X,
94 FUNC_PC_RELATIVE,
95 FUNC_PLT_RELATIVE,
96 FUNC_SEC_RELATIVE,
97 FUNC_SEG_RELATIVE,
98 FUNC_TP_RELATIVE,
99 FUNC_LTV_RELATIVE,
100 FUNC_LT_FPTR_RELATIVE,
101 FUNC_LT_DTP_MODULE,
102 FUNC_LT_DTP_RELATIVE,
103 FUNC_LT_TP_RELATIVE,
104 FUNC_IPLT_RELOC,
105 #ifdef TE_VMS
106 FUNC_SLOTCOUNT_RELOC,
107 #endif
108 };
109
110 enum reg_symbol
111 {
112 REG_GR = 0,
113 REG_FR = (REG_GR + 128),
114 REG_AR = (REG_FR + 128),
115 REG_CR = (REG_AR + 128),
116 REG_DAHR = (REG_CR + 128),
117 REG_P = (REG_DAHR + 8),
118 REG_BR = (REG_P + 64),
119 REG_IP = (REG_BR + 8),
120 REG_CFM,
121 REG_PR,
122 REG_PR_ROT,
123 REG_PSR,
124 REG_PSR_L,
125 REG_PSR_UM,
126 /* The following are pseudo-registers for use by gas only. */
127 IND_CPUID,
128 IND_DBR,
129 IND_DTR,
130 IND_ITR,
131 IND_IBR,
132 IND_MSR,
133 IND_PKR,
134 IND_PMC,
135 IND_PMD,
136 IND_DAHR,
137 IND_RR,
138 /* The following pseudo-registers are used for unwind directives only: */
139 REG_PSP,
140 REG_PRIUNAT,
141 REG_NUM
142 };
143
144 enum dynreg_type
145 {
146 DYNREG_GR = 0, /* dynamic general purpose register */
147 DYNREG_FR, /* dynamic floating point register */
148 DYNREG_PR, /* dynamic predicate register */
149 DYNREG_NUM_TYPES
150 };
151
152 enum operand_match_result
153 {
154 OPERAND_MATCH,
155 OPERAND_OUT_OF_RANGE,
156 OPERAND_MISMATCH
157 };
158
159 /* On the ia64, we can't know the address of a text label until the
160 instructions are packed into a bundle. To handle this, we keep
161 track of the list of labels that appear in front of each
162 instruction. */
163 struct label_fix
164 {
165 struct label_fix *next;
166 struct symbol *sym;
167 bfd_boolean dw2_mark_labels;
168 };
169
170 #ifdef TE_VMS
171 /* An internally used relocation. */
172 #define DUMMY_RELOC_IA64_SLOTCOUNT (BFD_RELOC_UNUSED + 1)
173 #endif
174
175 /* This is the endianness of the current section. */
176 extern int target_big_endian;
177
178 /* This is the default endianness. */
179 static int default_big_endian = TARGET_BYTES_BIG_ENDIAN;
180
181 void (*ia64_number_to_chars) (char *, valueT, int);
182
183 static void ia64_float_to_chars_bigendian (char *, LITTLENUM_TYPE *, int);
184 static void ia64_float_to_chars_littleendian (char *, LITTLENUM_TYPE *, int);
185
186 static void (*ia64_float_to_chars) (char *, LITTLENUM_TYPE *, int);
187
188 static htab_t alias_hash;
189 static htab_t alias_name_hash;
190 static htab_t secalias_hash;
191 static htab_t secalias_name_hash;
192
193 /* List of chars besides those in app.c:symbol_chars that can start an
194 operand. Used to prevent the scrubber eating vital white-space. */
195 const char ia64_symbol_chars[] = "@?";
196
197 /* Characters which always start a comment. */
198 const char comment_chars[] = "";
199
200 /* Characters which start a comment at the beginning of a line. */
201 const char line_comment_chars[] = "#";
202
203 /* Characters which may be used to separate multiple commands on a
204 single line. */
205 const char line_separator_chars[] = ";{}";
206
207 /* Characters which are used to indicate an exponent in a floating
208 point number. */
209 const char EXP_CHARS[] = "eE";
210
211 /* Characters which mean that a number is a floating point constant,
212 as in 0d1.0. */
213 const char FLT_CHARS[] = "rRsSfFdDxXpP";
214
215 /* ia64-specific option processing: */
216
217 const char *md_shortopts = "m:N:x::";
218
219 struct option md_longopts[] =
220 {
221 #define OPTION_MCONSTANT_GP (OPTION_MD_BASE + 1)
222 {"mconstant-gp", no_argument, NULL, OPTION_MCONSTANT_GP},
223 #define OPTION_MAUTO_PIC (OPTION_MD_BASE + 2)
224 {"mauto-pic", no_argument, NULL, OPTION_MAUTO_PIC}
225 };
226
227 size_t md_longopts_size = sizeof (md_longopts);
228
229 static struct
230 {
231 htab_t pseudo_hash; /* pseudo opcode hash table */
232 htab_t reg_hash; /* register name hash table */
233 htab_t dynreg_hash; /* dynamic register hash table */
234 htab_t const_hash; /* constant hash table */
235 htab_t entry_hash; /* code entry hint hash table */
236
237 /* If X_op is != O_absent, the register name for the instruction's
238 qualifying predicate. If NULL, p0 is assumed for instructions
239 that are predictable. */
240 expressionS qp;
241
242 /* Optimize for which CPU. */
243 enum
244 {
245 itanium1,
246 itanium2
247 } tune;
248
249 /* What to do when hint.b is used. */
250 enum
251 {
252 hint_b_error,
253 hint_b_warning,
254 hint_b_ok
255 } hint_b;
256
257 unsigned int
258 manual_bundling : 1,
259 debug_dv: 1,
260 detect_dv: 1,
261 explicit_mode : 1, /* which mode we're in */
262 default_explicit_mode : 1, /* which mode is the default */
263 mode_explicitly_set : 1, /* was the current mode explicitly set? */
264 auto_align : 1,
265 keep_pending_output : 1;
266
267 /* What to do when something is wrong with unwind directives. */
268 enum
269 {
270 unwind_check_warning,
271 unwind_check_error
272 } unwind_check;
273
274 /* Each bundle consists of up to three instructions. We keep
275 track of four most recent instructions so we can correctly set
276 the end_of_insn_group for the last instruction in a bundle. */
277 int curr_slot;
278 int num_slots_in_use;
279 struct slot
280 {
281 unsigned int
282 end_of_insn_group : 1,
283 manual_bundling_on : 1,
284 manual_bundling_off : 1,
285 loc_directive_seen : 1;
286 signed char user_template; /* user-selected template, if any */
287 unsigned char qp_regno; /* qualifying predicate */
288 /* This duplicates a good fraction of "struct fix" but we
289 can't use a "struct fix" instead since we can't call
290 fix_new_exp() until we know the address of the instruction. */
291 int num_fixups;
292 struct insn_fix
293 {
294 bfd_reloc_code_real_type code;
295 enum ia64_opnd opnd; /* type of operand in need of fix */
296 unsigned int is_pcrel : 1; /* is operand pc-relative? */
297 expressionS expr; /* the value to be inserted */
298 }
299 fixup[2]; /* at most two fixups per insn */
300 struct ia64_opcode *idesc;
301 struct label_fix *label_fixups;
302 struct label_fix *tag_fixups;
303 struct unw_rec_list *unwind_record; /* Unwind directive. */
304 expressionS opnd[6];
305 const char *src_file;
306 unsigned int src_line;
307 struct dwarf2_line_info debug_line;
308 }
309 slot[NUM_SLOTS];
310
311 segT last_text_seg;
312
313 struct dynreg
314 {
315 struct dynreg *next; /* next dynamic register */
316 const char *name;
317 unsigned short base; /* the base register number */
318 unsigned short num_regs; /* # of registers in this set */
319 }
320 *dynreg[DYNREG_NUM_TYPES], in, loc, out, rot;
321
322 flagword flags; /* ELF-header flags */
323
324 struct mem_offset {
325 unsigned hint:1; /* is this hint currently valid? */
326 bfd_vma offset; /* mem.offset offset */
327 bfd_vma base; /* mem.offset base */
328 } mem_offset;
329
330 int path; /* number of alt. entry points seen */
331 const char **entry_labels; /* labels of all alternate paths in
332 the current DV-checking block. */
333 int maxpaths; /* size currently allocated for
334 entry_labels */
335
336 int pointer_size; /* size in bytes of a pointer */
337 int pointer_size_shift; /* shift size of a pointer for alignment */
338
339 symbolS *indregsym[IND_RR - IND_CPUID + 1];
340 }
341 md;
342
343 /* These are not const, because they are modified to MMI for non-itanium1
344 targets below. */
345 /* MFI bundle of nops. */
346 static unsigned char le_nop[16] =
347 {
348 0x0c, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
349 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00
350 };
351 /* MFI bundle of nops with stop-bit. */
352 static unsigned char le_nop_stop[16] =
353 {
354 0x0d, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
355 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00
356 };
357
358 /* application registers: */
359
360 #define AR_K0 0
361 #define AR_K7 7
362 #define AR_RSC 16
363 #define AR_BSP 17
364 #define AR_BSPSTORE 18
365 #define AR_RNAT 19
366 #define AR_FCR 21
367 #define AR_EFLAG 24
368 #define AR_CSD 25
369 #define AR_SSD 26
370 #define AR_CFLG 27
371 #define AR_FSR 28
372 #define AR_FIR 29
373 #define AR_FDR 30
374 #define AR_CCV 32
375 #define AR_UNAT 36
376 #define AR_FPSR 40
377 #define AR_ITC 44
378 #define AR_RUC 45
379 #define AR_PFS 64
380 #define AR_LC 65
381 #define AR_EC 66
382
383 static const struct
384 {
385 const char *name;
386 unsigned int regnum;
387 }
388 ar[] =
389 {
390 {"ar.k0", AR_K0}, {"ar.k1", AR_K0 + 1},
391 {"ar.k2", AR_K0 + 2}, {"ar.k3", AR_K0 + 3},
392 {"ar.k4", AR_K0 + 4}, {"ar.k5", AR_K0 + 5},
393 {"ar.k6", AR_K0 + 6}, {"ar.k7", AR_K7},
394 {"ar.rsc", AR_RSC}, {"ar.bsp", AR_BSP},
395 {"ar.bspstore", AR_BSPSTORE}, {"ar.rnat", AR_RNAT},
396 {"ar.fcr", AR_FCR}, {"ar.eflag", AR_EFLAG},
397 {"ar.csd", AR_CSD}, {"ar.ssd", AR_SSD},
398 {"ar.cflg", AR_CFLG}, {"ar.fsr", AR_FSR},
399 {"ar.fir", AR_FIR}, {"ar.fdr", AR_FDR},
400 {"ar.ccv", AR_CCV}, {"ar.unat", AR_UNAT},
401 {"ar.fpsr", AR_FPSR}, {"ar.itc", AR_ITC},
402 {"ar.ruc", AR_RUC}, {"ar.pfs", AR_PFS},
403 {"ar.lc", AR_LC}, {"ar.ec", AR_EC},
404 };
405
406 /* control registers: */
407
408 #define CR_DCR 0
409 #define CR_ITM 1
410 #define CR_IVA 2
411 #define CR_PTA 8
412 #define CR_GPTA 9
413 #define CR_IPSR 16
414 #define CR_ISR 17
415 #define CR_IIP 19
416 #define CR_IFA 20
417 #define CR_ITIR 21
418 #define CR_IIPA 22
419 #define CR_IFS 23
420 #define CR_IIM 24
421 #define CR_IHA 25
422 #define CR_IIB0 26
423 #define CR_IIB1 27
424 #define CR_LID 64
425 #define CR_IVR 65
426 #define CR_TPR 66
427 #define CR_EOI 67
428 #define CR_IRR0 68
429 #define CR_IRR3 71
430 #define CR_ITV 72
431 #define CR_PMV 73
432 #define CR_CMCV 74
433 #define CR_LRR0 80
434 #define CR_LRR1 81
435
436 static const struct
437 {
438 const char *name;
439 unsigned int regnum;
440 }
441 cr[] =
442 {
443 {"cr.dcr", CR_DCR},
444 {"cr.itm", CR_ITM},
445 {"cr.iva", CR_IVA},
446 {"cr.pta", CR_PTA},
447 {"cr.gpta", CR_GPTA},
448 {"cr.ipsr", CR_IPSR},
449 {"cr.isr", CR_ISR},
450 {"cr.iip", CR_IIP},
451 {"cr.ifa", CR_IFA},
452 {"cr.itir", CR_ITIR},
453 {"cr.iipa", CR_IIPA},
454 {"cr.ifs", CR_IFS},
455 {"cr.iim", CR_IIM},
456 {"cr.iha", CR_IHA},
457 {"cr.iib0", CR_IIB0},
458 {"cr.iib1", CR_IIB1},
459 {"cr.lid", CR_LID},
460 {"cr.ivr", CR_IVR},
461 {"cr.tpr", CR_TPR},
462 {"cr.eoi", CR_EOI},
463 {"cr.irr0", CR_IRR0},
464 {"cr.irr1", CR_IRR0 + 1},
465 {"cr.irr2", CR_IRR0 + 2},
466 {"cr.irr3", CR_IRR3},
467 {"cr.itv", CR_ITV},
468 {"cr.pmv", CR_PMV},
469 {"cr.cmcv", CR_CMCV},
470 {"cr.lrr0", CR_LRR0},
471 {"cr.lrr1", CR_LRR1}
472 };
473
474 #define PSR_MFL 4
475 #define PSR_IC 13
476 #define PSR_DFL 18
477 #define PSR_CPL 32
478
479 static const struct const_desc
480 {
481 const char *name;
482 valueT value;
483 }
484 const_bits[] =
485 {
486 /* PSR constant masks: */
487
488 /* 0: reserved */
489 {"psr.be", ((valueT) 1) << 1},
490 {"psr.up", ((valueT) 1) << 2},
491 {"psr.ac", ((valueT) 1) << 3},
492 {"psr.mfl", ((valueT) 1) << 4},
493 {"psr.mfh", ((valueT) 1) << 5},
494 /* 6-12: reserved */
495 {"psr.ic", ((valueT) 1) << 13},
496 {"psr.i", ((valueT) 1) << 14},
497 {"psr.pk", ((valueT) 1) << 15},
498 /* 16: reserved */
499 {"psr.dt", ((valueT) 1) << 17},
500 {"psr.dfl", ((valueT) 1) << 18},
501 {"psr.dfh", ((valueT) 1) << 19},
502 {"psr.sp", ((valueT) 1) << 20},
503 {"psr.pp", ((valueT) 1) << 21},
504 {"psr.di", ((valueT) 1) << 22},
505 {"psr.si", ((valueT) 1) << 23},
506 {"psr.db", ((valueT) 1) << 24},
507 {"psr.lp", ((valueT) 1) << 25},
508 {"psr.tb", ((valueT) 1) << 26},
509 {"psr.rt", ((valueT) 1) << 27},
510 /* 28-31: reserved */
511 /* 32-33: cpl (current privilege level) */
512 {"psr.is", ((valueT) 1) << 34},
513 {"psr.mc", ((valueT) 1) << 35},
514 {"psr.it", ((valueT) 1) << 36},
515 {"psr.id", ((valueT) 1) << 37},
516 {"psr.da", ((valueT) 1) << 38},
517 {"psr.dd", ((valueT) 1) << 39},
518 {"psr.ss", ((valueT) 1) << 40},
519 /* 41-42: ri (restart instruction) */
520 {"psr.ed", ((valueT) 1) << 43},
521 {"psr.bn", ((valueT) 1) << 44},
522 };
523
524 /* indirect register-sets/memory: */
525
526 static const struct
527 {
528 const char *name;
529 unsigned int regnum;
530 }
531 indirect_reg[] =
532 {
533 { "CPUID", IND_CPUID },
534 { "cpuid", IND_CPUID },
535 { "dbr", IND_DBR },
536 { "dtr", IND_DTR },
537 { "itr", IND_ITR },
538 { "ibr", IND_IBR },
539 { "msr", IND_MSR },
540 { "pkr", IND_PKR },
541 { "pmc", IND_PMC },
542 { "pmd", IND_PMD },
543 { "dahr", IND_DAHR },
544 { "rr", IND_RR },
545 };
546
547 /* Pseudo functions used to indicate relocation types (these functions
548 start with an at sign (@). */
549 static struct
550 {
551 const char *name;
552 enum pseudo_type
553 {
554 PSEUDO_FUNC_NONE,
555 PSEUDO_FUNC_RELOC,
556 PSEUDO_FUNC_CONST,
557 PSEUDO_FUNC_REG,
558 PSEUDO_FUNC_FLOAT
559 }
560 type;
561 union
562 {
563 unsigned long ival;
564 symbolS *sym;
565 }
566 u;
567 }
568 pseudo_func[] =
569 {
570 /* reloc pseudo functions (these must come first!): */
571 { "dtpmod", PSEUDO_FUNC_RELOC, { 0 } },
572 { "dtprel", PSEUDO_FUNC_RELOC, { 0 } },
573 { "fptr", PSEUDO_FUNC_RELOC, { 0 } },
574 { "gprel", PSEUDO_FUNC_RELOC, { 0 } },
575 { "ltoff", PSEUDO_FUNC_RELOC, { 0 } },
576 { "ltoffx", PSEUDO_FUNC_RELOC, { 0 } },
577 { "pcrel", PSEUDO_FUNC_RELOC, { 0 } },
578 { "pltoff", PSEUDO_FUNC_RELOC, { 0 } },
579 { "secrel", PSEUDO_FUNC_RELOC, { 0 } },
580 { "segrel", PSEUDO_FUNC_RELOC, { 0 } },
581 { "tprel", PSEUDO_FUNC_RELOC, { 0 } },
582 { "ltv", PSEUDO_FUNC_RELOC, { 0 } },
583 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_FPTR_RELATIVE */
584 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_DTP_MODULE */
585 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_DTP_RELATIVE */
586 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_TP_RELATIVE */
587 { "iplt", PSEUDO_FUNC_RELOC, { 0 } },
588 #ifdef TE_VMS
589 { "slotcount", PSEUDO_FUNC_RELOC, { 0 } },
590 #endif
591
592 /* mbtype4 constants: */
593 { "alt", PSEUDO_FUNC_CONST, { 0xa } },
594 { "brcst", PSEUDO_FUNC_CONST, { 0x0 } },
595 { "mix", PSEUDO_FUNC_CONST, { 0x8 } },
596 { "rev", PSEUDO_FUNC_CONST, { 0xb } },
597 { "shuf", PSEUDO_FUNC_CONST, { 0x9 } },
598
599 /* fclass constants: */
600 { "nat", PSEUDO_FUNC_CONST, { 0x100 } },
601 { "qnan", PSEUDO_FUNC_CONST, { 0x080 } },
602 { "snan", PSEUDO_FUNC_CONST, { 0x040 } },
603 { "pos", PSEUDO_FUNC_CONST, { 0x001 } },
604 { "neg", PSEUDO_FUNC_CONST, { 0x002 } },
605 { "zero", PSEUDO_FUNC_CONST, { 0x004 } },
606 { "unorm", PSEUDO_FUNC_CONST, { 0x008 } },
607 { "norm", PSEUDO_FUNC_CONST, { 0x010 } },
608 { "inf", PSEUDO_FUNC_CONST, { 0x020 } },
609
610 { "natval", PSEUDO_FUNC_CONST, { 0x100 } }, /* old usage */
611
612 /* hint constants: */
613 { "pause", PSEUDO_FUNC_CONST, { 0x0 } },
614 { "priority", PSEUDO_FUNC_CONST, { 0x1 } },
615
616 /* tf constants: */
617 { "clz", PSEUDO_FUNC_CONST, { 32 } },
618 { "mpy", PSEUDO_FUNC_CONST, { 33 } },
619 { "datahints", PSEUDO_FUNC_CONST, { 34 } },
620
621 /* unwind-related constants: */
622 { "svr4", PSEUDO_FUNC_CONST, { ELFOSABI_NONE } },
623 { "hpux", PSEUDO_FUNC_CONST, { ELFOSABI_HPUX } },
624 { "nt", PSEUDO_FUNC_CONST, { 2 } }, /* conflicts w/ELFOSABI_NETBSD */
625 { "linux", PSEUDO_FUNC_CONST, { ELFOSABI_GNU } },
626 { "freebsd", PSEUDO_FUNC_CONST, { ELFOSABI_FREEBSD } },
627 { "openvms", PSEUDO_FUNC_CONST, { ELFOSABI_OPENVMS } },
628 { "nsk", PSEUDO_FUNC_CONST, { ELFOSABI_NSK } },
629
630 /* unwind-related registers: */
631 { "priunat",PSEUDO_FUNC_REG, { REG_PRIUNAT } }
632 };
633
634 /* 41-bit nop opcodes (one per unit): */
635 static const bfd_vma nop[IA64_NUM_UNITS] =
636 {
637 0x0000000000LL, /* NIL => break 0 */
638 0x0008000000LL, /* I-unit nop */
639 0x0008000000LL, /* M-unit nop */
640 0x4000000000LL, /* B-unit nop */
641 0x0008000000LL, /* F-unit nop */
642 0x0000000000LL, /* L-"unit" nop immediate */
643 0x0008000000LL, /* X-unit nop */
644 };
645
646 /* Can't be `const' as it's passed to input routines (which have the
647 habit of setting temporary sentinels. */
648 static char special_section_name[][20] =
649 {
650 {".bss"}, {".sbss"}, {".sdata"}, {".rodata"}, {".comment"},
651 {".IA_64.unwind"}, {".IA_64.unwind_info"},
652 {".init_array"}, {".fini_array"}
653 };
654
655 /* The best template for a particular sequence of up to three
656 instructions: */
657 #define N IA64_NUM_TYPES
658 static unsigned char best_template[N][N][N];
659 #undef N
660
661 /* Resource dependencies currently in effect */
662 static struct rsrc {
663 int depind; /* dependency index */
664 const struct ia64_dependency *dependency; /* actual dependency */
665 unsigned specific:1, /* is this a specific bit/regno? */
666 link_to_qp_branch:1; /* will a branch on the same QP clear it?*/
667 int index; /* specific regno/bit within dependency */
668 int note; /* optional qualifying note (0 if none) */
669 #define STATE_NONE 0
670 #define STATE_STOP 1
671 #define STATE_SRLZ 2
672 int insn_srlz; /* current insn serialization state */
673 int data_srlz; /* current data serialization state */
674 int qp_regno; /* qualifying predicate for this usage */
675 const char *file; /* what file marked this dependency */
676 unsigned int line; /* what line marked this dependency */
677 struct mem_offset mem_offset; /* optional memory offset hint */
678 enum { CMP_NONE, CMP_OR, CMP_AND } cmp_type; /* OR or AND compare? */
679 int path; /* corresponding code entry index */
680 } *regdeps = NULL;
681 static int regdepslen = 0;
682 static int regdepstotlen = 0;
683 static const char *dv_mode[] = { "RAW", "WAW", "WAR" };
684 static const char *dv_sem[] = { "none", "implied", "impliedf",
685 "data", "instr", "specific", "stop", "other" };
686 static const char *dv_cmp_type[] = { "none", "OR", "AND" };
687
688 /* Current state of PR mutexation */
689 static struct qpmutex {
690 valueT prmask;
691 int path;
692 } *qp_mutexes = NULL; /* QP mutex bitmasks */
693 static int qp_mutexeslen = 0;
694 static int qp_mutexestotlen = 0;
695 static valueT qp_safe_across_calls = 0;
696
697 /* Current state of PR implications */
698 static struct qp_imply {
699 unsigned p1:6;
700 unsigned p2:6;
701 unsigned p2_branched:1;
702 int path;
703 } *qp_implies = NULL;
704 static int qp_implieslen = 0;
705 static int qp_impliestotlen = 0;
706
707 /* Keep track of static GR values so that indirect register usage can
708 sometimes be tracked. */
709 static struct gr {
710 unsigned known:1;
711 int path;
712 valueT value;
713 } gr_values[128] = {
714 {
715 1,
716 #ifdef INT_MAX
717 INT_MAX,
718 #else
719 (((1 << (8 * sizeof(gr_values->path) - 2)) - 1) << 1) + 1,
720 #endif
721 0
722 }
723 };
724
725 /* Remember the alignment frag. */
726 static fragS *align_frag;
727
728 /* These are the routines required to output the various types of
729 unwind records. */
730
731 /* A slot_number is a frag address plus the slot index (0-2). We use the
732 frag address here so that if there is a section switch in the middle of
733 a function, then instructions emitted to a different section are not
734 counted. Since there may be more than one frag for a function, this
735 means we also need to keep track of which frag this address belongs to
736 so we can compute inter-frag distances. This also nicely solves the
737 problem with nops emitted for align directives, which can't easily be
738 counted, but can easily be derived from frag sizes. */
739
740 typedef struct unw_rec_list {
741 unwind_record r;
742 unsigned long slot_number;
743 fragS *slot_frag;
744 struct unw_rec_list *next;
745 } unw_rec_list;
746
747 #define SLOT_NUM_NOT_SET (unsigned)-1
748
749 /* Linked list of saved prologue counts. A very poor
750 implementation of a map from label numbers to prologue counts. */
751 typedef struct label_prologue_count
752 {
753 struct label_prologue_count *next;
754 unsigned long label_number;
755 unsigned int prologue_count;
756 } label_prologue_count;
757
758 typedef struct proc_pending
759 {
760 symbolS *sym;
761 struct proc_pending *next;
762 } proc_pending;
763
764 static struct
765 {
766 /* Maintain a list of unwind entries for the current function. */
767 unw_rec_list *list;
768 unw_rec_list *tail;
769
770 /* Any unwind entries that should be attached to the current slot
771 that an insn is being constructed for. */
772 unw_rec_list *current_entry;
773
774 /* These are used to create the unwind table entry for this function. */
775 proc_pending proc_pending;
776 symbolS *info; /* pointer to unwind info */
777 symbolS *personality_routine;
778 segT saved_text_seg;
779 subsegT saved_text_subseg;
780 unsigned int force_unwind_entry : 1; /* force generation of unwind entry? */
781
782 /* TRUE if processing unwind directives in a prologue region. */
783 unsigned int prologue : 1;
784 unsigned int prologue_mask : 4;
785 unsigned int prologue_gr : 7;
786 unsigned int body : 1;
787 unsigned int insn : 1;
788 unsigned int prologue_count; /* number of .prologues seen so far */
789 /* Prologue counts at previous .label_state directives. */
790 struct label_prologue_count * saved_prologue_counts;
791
792 /* List of split up .save-s. */
793 unw_p_record *pending_saves;
794 } unwind;
795
796 /* The input value is a negated offset from psp, and specifies an address
797 psp - offset. The encoded value is psp + 16 - (4 * offset). Thus we
798 must add 16 and divide by 4 to get the encoded value. */
799
800 #define ENCODED_PSP_OFFSET(OFFSET) (((OFFSET) + 16) / 4)
801
802 typedef void (*vbyte_func) (int, char *, char *);
803
804 /* Forward declarations: */
805 static void dot_alias (int);
806 static int parse_operand_and_eval (expressionS *, int);
807 static void emit_one_bundle (void);
808 static bfd_reloc_code_real_type ia64_gen_real_reloc_type (struct symbol *,
809 bfd_reloc_code_real_type);
810 static void insn_group_break (int, int, int);
811 static void add_qp_mutex (valueT);
812 static void add_qp_imply (int, int);
813 static void clear_qp_mutex (valueT);
814 static void clear_qp_implies (valueT, valueT);
815 static void print_dependency (const char *, int);
816 static void instruction_serialization (void);
817 static void data_serialization (void);
818 static void output_R3_format (vbyte_func, unw_record_type, unsigned long);
819 static void output_B3_format (vbyte_func, unsigned long, unsigned long);
820 static void output_B4_format (vbyte_func, unw_record_type, unsigned long);
821 static void free_saved_prologue_counts (void);
822
823 /* Determine if application register REGNUM resides only in the integer
824 unit (as opposed to the memory unit). */
825 static int
826 ar_is_only_in_integer_unit (int reg)
827 {
828 reg -= REG_AR;
829 return reg >= 64 && reg <= 111;
830 }
831
832 /* Determine if application register REGNUM resides only in the memory
833 unit (as opposed to the integer unit). */
834 static int
835 ar_is_only_in_memory_unit (int reg)
836 {
837 reg -= REG_AR;
838 return reg >= 0 && reg <= 47;
839 }
840
841 /* Switch to section NAME and create section if necessary. It's
842 rather ugly that we have to manipulate input_line_pointer but I
843 don't see any other way to accomplish the same thing without
844 changing obj-elf.c (which may be the Right Thing, in the end). */
845 static void
846 set_section (char *name)
847 {
848 char *saved_input_line_pointer;
849
850 saved_input_line_pointer = input_line_pointer;
851 input_line_pointer = name;
852 obj_elf_section (0);
853 input_line_pointer = saved_input_line_pointer;
854 }
855
856 /* Map 's' to SHF_IA_64_SHORT. */
857
858 bfd_vma
859 ia64_elf_section_letter (int letter, const char **ptr_msg)
860 {
861 if (letter == 's')
862 return SHF_IA_64_SHORT;
863 else if (letter == 'o')
864 return SHF_LINK_ORDER;
865 #ifdef TE_VMS
866 else if (letter == 'O')
867 return SHF_IA_64_VMS_OVERLAID;
868 else if (letter == 'g')
869 return SHF_IA_64_VMS_GLOBAL;
870 #endif
871
872 *ptr_msg = _("bad .section directive: want a,o,s,w,x,M,S,G,T in string");
873 return -1;
874 }
875
876 /* Map SHF_IA_64_SHORT to SEC_SMALL_DATA. */
877
878 flagword
879 ia64_elf_section_flags (flagword flags,
880 bfd_vma attr,
881 int type ATTRIBUTE_UNUSED)
882 {
883 if (attr & SHF_IA_64_SHORT)
884 flags |= SEC_SMALL_DATA;
885 return flags;
886 }
887
888 int
889 ia64_elf_section_type (const char *str, size_t len)
890 {
891 #define STREQ(s) ((len == sizeof (s) - 1) && (strncmp (str, s, sizeof (s) - 1) == 0))
892
893 if (STREQ (ELF_STRING_ia64_unwind_info))
894 return SHT_PROGBITS;
895
896 if (STREQ (ELF_STRING_ia64_unwind_info_once))
897 return SHT_PROGBITS;
898
899 if (STREQ (ELF_STRING_ia64_unwind))
900 return SHT_IA_64_UNWIND;
901
902 if (STREQ (ELF_STRING_ia64_unwind_once))
903 return SHT_IA_64_UNWIND;
904
905 if (STREQ ("unwind"))
906 return SHT_IA_64_UNWIND;
907
908 return -1;
909 #undef STREQ
910 }
911
912 static unsigned int
913 set_regstack (unsigned int ins,
914 unsigned int locs,
915 unsigned int outs,
916 unsigned int rots)
917 {
918 /* Size of frame. */
919 unsigned int sof;
920
921 sof = ins + locs + outs;
922 if (sof > 96)
923 {
924 as_bad (_("Size of frame exceeds maximum of 96 registers"));
925 return 0;
926 }
927 if (rots > sof)
928 {
929 as_warn (_("Size of rotating registers exceeds frame size"));
930 return 0;
931 }
932 md.in.base = REG_GR + 32;
933 md.loc.base = md.in.base + ins;
934 md.out.base = md.loc.base + locs;
935
936 md.in.num_regs = ins;
937 md.loc.num_regs = locs;
938 md.out.num_regs = outs;
939 md.rot.num_regs = rots;
940 return sof;
941 }
942
943 void
944 ia64_flush_insns (void)
945 {
946 struct label_fix *lfix;
947 segT saved_seg;
948 subsegT saved_subseg;
949 unw_rec_list *ptr;
950 bfd_boolean mark;
951
952 if (!md.last_text_seg)
953 return;
954
955 saved_seg = now_seg;
956 saved_subseg = now_subseg;
957
958 subseg_set (md.last_text_seg, 0);
959
960 while (md.num_slots_in_use > 0)
961 emit_one_bundle (); /* force out queued instructions */
962
963 /* In case there are labels following the last instruction, resolve
964 those now. */
965 mark = FALSE;
966 for (lfix = CURR_SLOT.label_fixups; lfix; lfix = lfix->next)
967 {
968 symbol_set_value_now (lfix->sym);
969 mark |= lfix->dw2_mark_labels;
970 }
971 if (mark)
972 {
973 dwarf2_where (&CURR_SLOT.debug_line);
974 CURR_SLOT.debug_line.flags |= DWARF2_FLAG_BASIC_BLOCK;
975 dwarf2_gen_line_info (frag_now_fix (), &CURR_SLOT.debug_line);
976 dwarf2_consume_line_info ();
977 }
978 CURR_SLOT.label_fixups = 0;
979
980 for (lfix = CURR_SLOT.tag_fixups; lfix; lfix = lfix->next)
981 symbol_set_value_now (lfix->sym);
982 CURR_SLOT.tag_fixups = 0;
983
984 /* In case there are unwind directives following the last instruction,
985 resolve those now. We only handle prologue, body, and endp directives
986 here. Give an error for others. */
987 for (ptr = unwind.current_entry; ptr; ptr = ptr->next)
988 {
989 switch (ptr->r.type)
990 {
991 case prologue:
992 case prologue_gr:
993 case body:
994 case endp:
995 ptr->slot_number = (unsigned long) frag_more (0);
996 ptr->slot_frag = frag_now;
997 break;
998
999 /* Allow any record which doesn't have a "t" field (i.e.,
1000 doesn't relate to a particular instruction). */
1001 case unwabi:
1002 case br_gr:
1003 case copy_state:
1004 case fr_mem:
1005 case frgr_mem:
1006 case gr_gr:
1007 case gr_mem:
1008 case label_state:
1009 case rp_br:
1010 case spill_base:
1011 case spill_mask:
1012 /* nothing */
1013 break;
1014
1015 default:
1016 as_bad (_("Unwind directive not followed by an instruction."));
1017 break;
1018 }
1019 }
1020 unwind.current_entry = NULL;
1021
1022 subseg_set (saved_seg, saved_subseg);
1023
1024 if (md.qp.X_op == O_register)
1025 as_bad (_("qualifying predicate not followed by instruction"));
1026 }
1027
1028 void
1029 ia64_cons_align (int nbytes)
1030 {
1031 if (md.auto_align)
1032 {
1033 int log;
1034 for (log = 0; (nbytes & 1) != 1; nbytes >>= 1)
1035 log++;
1036
1037 do_align (log, NULL, 0, 0);
1038 }
1039 }
1040
1041 #ifdef TE_VMS
1042
1043 /* .vms_common section, symbol, size, alignment */
1044
1045 static void
1046 obj_elf_vms_common (int ignore ATTRIBUTE_UNUSED)
1047 {
1048 const char *sec_name;
1049 char *sym_name;
1050 char c;
1051 offsetT size;
1052 offsetT cur_size;
1053 offsetT temp;
1054 symbolS *symbolP;
1055 segT current_seg = now_seg;
1056 subsegT current_subseg = now_subseg;
1057 offsetT log_align;
1058
1059 /* Section name. */
1060 sec_name = obj_elf_section_name ();
1061 if (sec_name == NULL)
1062 return;
1063
1064 /* Symbol name. */
1065 SKIP_WHITESPACE ();
1066 if (*input_line_pointer == ',')
1067 {
1068 input_line_pointer++;
1069 SKIP_WHITESPACE ();
1070 }
1071 else
1072 {
1073 as_bad (_("expected ',' after section name"));
1074 ignore_rest_of_line ();
1075 return;
1076 }
1077
1078 c = get_symbol_name (&sym_name);
1079
1080 if (input_line_pointer == sym_name)
1081 {
1082 (void) restore_line_pointer (c);
1083 as_bad (_("expected symbol name"));
1084 ignore_rest_of_line ();
1085 return;
1086 }
1087
1088 symbolP = symbol_find_or_make (sym_name);
1089 (void) restore_line_pointer (c);
1090
1091 if ((S_IS_DEFINED (symbolP) || symbol_equated_p (symbolP))
1092 && !S_IS_COMMON (symbolP))
1093 {
1094 as_bad (_("Ignoring attempt to re-define symbol"));
1095 ignore_rest_of_line ();
1096 return;
1097 }
1098
1099 /* Symbol size. */
1100 SKIP_WHITESPACE ();
1101 if (*input_line_pointer == ',')
1102 {
1103 input_line_pointer++;
1104 SKIP_WHITESPACE ();
1105 }
1106 else
1107 {
1108 as_bad (_("expected ',' after symbol name"));
1109 ignore_rest_of_line ();
1110 return;
1111 }
1112
1113 temp = get_absolute_expression ();
1114 size = temp;
1115 size &= ((offsetT) 2 << (stdoutput->arch_info->bits_per_address - 1)) - 1;
1116 if (temp != size)
1117 {
1118 as_warn (_("size (%ld) out of range, ignored"), (long) temp);
1119 ignore_rest_of_line ();
1120 return;
1121 }
1122
1123 /* Alignment. */
1124 SKIP_WHITESPACE ();
1125 if (*input_line_pointer == ',')
1126 {
1127 input_line_pointer++;
1128 SKIP_WHITESPACE ();
1129 }
1130 else
1131 {
1132 as_bad (_("expected ',' after symbol size"));
1133 ignore_rest_of_line ();
1134 return;
1135 }
1136
1137 log_align = get_absolute_expression ();
1138
1139 demand_empty_rest_of_line ();
1140
1141 obj_elf_change_section
1142 (sec_name, SHT_NOBITS,
1143 SHF_ALLOC | SHF_WRITE | SHF_IA_64_VMS_OVERLAID | SHF_IA_64_VMS_GLOBAL,
1144 0, NULL, 1, 0);
1145
1146 S_SET_VALUE (symbolP, 0);
1147 S_SET_SIZE (symbolP, size);
1148 S_SET_EXTERNAL (symbolP);
1149 S_SET_SEGMENT (symbolP, now_seg);
1150
1151 symbol_get_bfdsym (symbolP)->flags |= BSF_OBJECT;
1152
1153 record_alignment (now_seg, log_align);
1154
1155 cur_size = bfd_section_size (now_seg);
1156 if ((int) size > cur_size)
1157 {
1158 char *pfrag
1159 = frag_var (rs_fill, 1, 1, (relax_substateT)0, NULL,
1160 (valueT)size - (valueT)cur_size, NULL);
1161 *pfrag = 0;
1162 bfd_set_section_size (now_seg, size);
1163 }
1164
1165 /* Switch back to current segment. */
1166 subseg_set (current_seg, current_subseg);
1167
1168 #ifdef md_elf_section_change_hook
1169 md_elf_section_change_hook ();
1170 #endif
1171 }
1172
1173 #endif /* TE_VMS */
1174
1175 /* Output COUNT bytes to a memory location. */
1176 static char *vbyte_mem_ptr = NULL;
1177
1178 static void
1179 output_vbyte_mem (int count, char *ptr, char *comment ATTRIBUTE_UNUSED)
1180 {
1181 int x;
1182 if (vbyte_mem_ptr == NULL)
1183 abort ();
1184
1185 if (count == 0)
1186 return;
1187 for (x = 0; x < count; x++)
1188 *(vbyte_mem_ptr++) = ptr[x];
1189 }
1190
1191 /* Count the number of bytes required for records. */
1192 static int vbyte_count = 0;
1193 static void
1194 count_output (int count,
1195 char *ptr ATTRIBUTE_UNUSED,
1196 char *comment ATTRIBUTE_UNUSED)
1197 {
1198 vbyte_count += count;
1199 }
1200
1201 static void
1202 output_R1_format (vbyte_func f, unw_record_type rtype, int rlen)
1203 {
1204 int r = 0;
1205 char byte;
1206 if (rlen > 0x1f)
1207 {
1208 output_R3_format (f, rtype, rlen);
1209 return;
1210 }
1211
1212 if (rtype == body)
1213 r = 1;
1214 else if (rtype != prologue)
1215 as_bad (_("record type is not valid"));
1216
1217 byte = UNW_R1 | (r << 5) | (rlen & 0x1f);
1218 (*f) (1, &byte, NULL);
1219 }
1220
1221 static void
1222 output_R2_format (vbyte_func f, int mask, int grsave, unsigned long rlen)
1223 {
1224 char bytes[20];
1225 int count = 2;
1226 mask = (mask & 0x0f);
1227 grsave = (grsave & 0x7f);
1228
1229 bytes[0] = (UNW_R2 | (mask >> 1));
1230 bytes[1] = (((mask & 0x01) << 7) | grsave);
1231 count += output_leb128 (bytes + 2, rlen, 0);
1232 (*f) (count, bytes, NULL);
1233 }
1234
1235 static void
1236 output_R3_format (vbyte_func f, unw_record_type rtype, unsigned long rlen)
1237 {
1238 int r = 0, count;
1239 char bytes[20];
1240 if (rlen <= 0x1f)
1241 {
1242 output_R1_format (f, rtype, rlen);
1243 return;
1244 }
1245
1246 if (rtype == body)
1247 r = 1;
1248 else if (rtype != prologue)
1249 as_bad (_("record type is not valid"));
1250 bytes[0] = (UNW_R3 | r);
1251 count = output_leb128 (bytes + 1, rlen, 0);
1252 (*f) (count + 1, bytes, NULL);
1253 }
1254
1255 static void
1256 output_P1_format (vbyte_func f, int brmask)
1257 {
1258 char byte;
1259 byte = UNW_P1 | (brmask & 0x1f);
1260 (*f) (1, &byte, NULL);
1261 }
1262
1263 static void
1264 output_P2_format (vbyte_func f, int brmask, int gr)
1265 {
1266 char bytes[2];
1267 brmask = (brmask & 0x1f);
1268 bytes[0] = UNW_P2 | (brmask >> 1);
1269 bytes[1] = (((brmask & 1) << 7) | gr);
1270 (*f) (2, bytes, NULL);
1271 }
1272
1273 static void
1274 output_P3_format (vbyte_func f, unw_record_type rtype, int reg)
1275 {
1276 char bytes[2];
1277 int r = 0;
1278 reg = (reg & 0x7f);
1279 switch (rtype)
1280 {
1281 case psp_gr:
1282 r = 0;
1283 break;
1284 case rp_gr:
1285 r = 1;
1286 break;
1287 case pfs_gr:
1288 r = 2;
1289 break;
1290 case preds_gr:
1291 r = 3;
1292 break;
1293 case unat_gr:
1294 r = 4;
1295 break;
1296 case lc_gr:
1297 r = 5;
1298 break;
1299 case rp_br:
1300 r = 6;
1301 break;
1302 case rnat_gr:
1303 r = 7;
1304 break;
1305 case bsp_gr:
1306 r = 8;
1307 break;
1308 case bspstore_gr:
1309 r = 9;
1310 break;
1311 case fpsr_gr:
1312 r = 10;
1313 break;
1314 case priunat_gr:
1315 r = 11;
1316 break;
1317 default:
1318 as_bad (_("Invalid record type for P3 format."));
1319 }
1320 bytes[0] = (UNW_P3 | (r >> 1));
1321 bytes[1] = (((r & 1) << 7) | reg);
1322 (*f) (2, bytes, NULL);
1323 }
1324
1325 static void
1326 output_P4_format (vbyte_func f, unsigned char *imask, unsigned long imask_size)
1327 {
1328 imask[0] = UNW_P4;
1329 (*f) (imask_size, (char *) imask, NULL);
1330 }
1331
1332 static void
1333 output_P5_format (vbyte_func f, int grmask, unsigned long frmask)
1334 {
1335 char bytes[4];
1336 grmask = (grmask & 0x0f);
1337
1338 bytes[0] = UNW_P5;
1339 bytes[1] = ((grmask << 4) | ((frmask & 0x000f0000) >> 16));
1340 bytes[2] = ((frmask & 0x0000ff00) >> 8);
1341 bytes[3] = (frmask & 0x000000ff);
1342 (*f) (4, bytes, NULL);
1343 }
1344
1345 static void
1346 output_P6_format (vbyte_func f, unw_record_type rtype, int rmask)
1347 {
1348 char byte;
1349 int r = 0;
1350
1351 if (rtype == gr_mem)
1352 r = 1;
1353 else if (rtype != fr_mem)
1354 as_bad (_("Invalid record type for format P6"));
1355 byte = (UNW_P6 | (r << 4) | (rmask & 0x0f));
1356 (*f) (1, &byte, NULL);
1357 }
1358
1359 static void
1360 output_P7_format (vbyte_func f,
1361 unw_record_type rtype,
1362 unsigned long w1,
1363 unsigned long w2)
1364 {
1365 char bytes[20];
1366 int count = 1;
1367 int r = 0;
1368 count += output_leb128 (bytes + 1, w1, 0);
1369 switch (rtype)
1370 {
1371 case mem_stack_f:
1372 r = 0;
1373 count += output_leb128 (bytes + count, w2 >> 4, 0);
1374 break;
1375 case mem_stack_v:
1376 r = 1;
1377 break;
1378 case spill_base:
1379 r = 2;
1380 break;
1381 case psp_sprel:
1382 r = 3;
1383 break;
1384 case rp_when:
1385 r = 4;
1386 break;
1387 case rp_psprel:
1388 r = 5;
1389 break;
1390 case pfs_when:
1391 r = 6;
1392 break;
1393 case pfs_psprel:
1394 r = 7;
1395 break;
1396 case preds_when:
1397 r = 8;
1398 break;
1399 case preds_psprel:
1400 r = 9;
1401 break;
1402 case lc_when:
1403 r = 10;
1404 break;
1405 case lc_psprel:
1406 r = 11;
1407 break;
1408 case unat_when:
1409 r = 12;
1410 break;
1411 case unat_psprel:
1412 r = 13;
1413 break;
1414 case fpsr_when:
1415 r = 14;
1416 break;
1417 case fpsr_psprel:
1418 r = 15;
1419 break;
1420 default:
1421 break;
1422 }
1423 bytes[0] = (UNW_P7 | r);
1424 (*f) (count, bytes, NULL);
1425 }
1426
1427 static void
1428 output_P8_format (vbyte_func f, unw_record_type rtype, unsigned long t)
1429 {
1430 char bytes[20];
1431 int r = 0;
1432 int count = 2;
1433 bytes[0] = UNW_P8;
1434 switch (rtype)
1435 {
1436 case rp_sprel:
1437 r = 1;
1438 break;
1439 case pfs_sprel:
1440 r = 2;
1441 break;
1442 case preds_sprel:
1443 r = 3;
1444 break;
1445 case lc_sprel:
1446 r = 4;
1447 break;
1448 case unat_sprel:
1449 r = 5;
1450 break;
1451 case fpsr_sprel:
1452 r = 6;
1453 break;
1454 case bsp_when:
1455 r = 7;
1456 break;
1457 case bsp_psprel:
1458 r = 8;
1459 break;
1460 case bsp_sprel:
1461 r = 9;
1462 break;
1463 case bspstore_when:
1464 r = 10;
1465 break;
1466 case bspstore_psprel:
1467 r = 11;
1468 break;
1469 case bspstore_sprel:
1470 r = 12;
1471 break;
1472 case rnat_when:
1473 r = 13;
1474 break;
1475 case rnat_psprel:
1476 r = 14;
1477 break;
1478 case rnat_sprel:
1479 r = 15;
1480 break;
1481 case priunat_when_gr:
1482 r = 16;
1483 break;
1484 case priunat_psprel:
1485 r = 17;
1486 break;
1487 case priunat_sprel:
1488 r = 18;
1489 break;
1490 case priunat_when_mem:
1491 r = 19;
1492 break;
1493 default:
1494 break;
1495 }
1496 bytes[1] = r;
1497 count += output_leb128 (bytes + 2, t, 0);
1498 (*f) (count, bytes, NULL);
1499 }
1500
1501 static void
1502 output_P9_format (vbyte_func f, int grmask, int gr)
1503 {
1504 char bytes[3];
1505 bytes[0] = UNW_P9;
1506 bytes[1] = (grmask & 0x0f);
1507 bytes[2] = (gr & 0x7f);
1508 (*f) (3, bytes, NULL);
1509 }
1510
1511 static void
1512 output_P10_format (vbyte_func f, int abi, int context)
1513 {
1514 char bytes[3];
1515 bytes[0] = UNW_P10;
1516 bytes[1] = (abi & 0xff);
1517 bytes[2] = (context & 0xff);
1518 (*f) (3, bytes, NULL);
1519 }
1520
1521 static void
1522 output_B1_format (vbyte_func f, unw_record_type rtype, unsigned long label)
1523 {
1524 char byte;
1525 int r = 0;
1526 if (label > 0x1f)
1527 {
1528 output_B4_format (f, rtype, label);
1529 return;
1530 }
1531 if (rtype == copy_state)
1532 r = 1;
1533 else if (rtype != label_state)
1534 as_bad (_("Invalid record type for format B1"));
1535
1536 byte = (UNW_B1 | (r << 5) | (label & 0x1f));
1537 (*f) (1, &byte, NULL);
1538 }
1539
1540 static void
1541 output_B2_format (vbyte_func f, unsigned long ecount, unsigned long t)
1542 {
1543 char bytes[20];
1544 int count = 1;
1545 if (ecount > 0x1f)
1546 {
1547 output_B3_format (f, ecount, t);
1548 return;
1549 }
1550 bytes[0] = (UNW_B2 | (ecount & 0x1f));
1551 count += output_leb128 (bytes + 1, t, 0);
1552 (*f) (count, bytes, NULL);
1553 }
1554
1555 static void
1556 output_B3_format (vbyte_func f, unsigned long ecount, unsigned long t)
1557 {
1558 char bytes[20];
1559 int count = 1;
1560 if (ecount <= 0x1f)
1561 {
1562 output_B2_format (f, ecount, t);
1563 return;
1564 }
1565 bytes[0] = UNW_B3;
1566 count += output_leb128 (bytes + 1, t, 0);
1567 count += output_leb128 (bytes + count, ecount, 0);
1568 (*f) (count, bytes, NULL);
1569 }
1570
1571 static void
1572 output_B4_format (vbyte_func f, unw_record_type rtype, unsigned long label)
1573 {
1574 char bytes[20];
1575 int r = 0;
1576 int count = 1;
1577 if (label <= 0x1f)
1578 {
1579 output_B1_format (f, rtype, label);
1580 return;
1581 }
1582
1583 if (rtype == copy_state)
1584 r = 1;
1585 else if (rtype != label_state)
1586 as_bad (_("Invalid record type for format B1"));
1587
1588 bytes[0] = (UNW_B4 | (r << 3));
1589 count += output_leb128 (bytes + 1, label, 0);
1590 (*f) (count, bytes, NULL);
1591 }
1592
1593 static char
1594 format_ab_reg (int ab, int reg)
1595 {
1596 int ret;
1597 ab = (ab & 3);
1598 reg = (reg & 0x1f);
1599 ret = (ab << 5) | reg;
1600 return ret;
1601 }
1602
1603 static void
1604 output_X1_format (vbyte_func f,
1605 unw_record_type rtype,
1606 int ab,
1607 int reg,
1608 unsigned long t,
1609 unsigned long w1)
1610 {
1611 char bytes[20];
1612 int r = 0;
1613 int count = 2;
1614 bytes[0] = UNW_X1;
1615
1616 if (rtype == spill_sprel)
1617 r = 1;
1618 else if (rtype != spill_psprel)
1619 as_bad (_("Invalid record type for format X1"));
1620 bytes[1] = ((r << 7) | format_ab_reg (ab, reg));
1621 count += output_leb128 (bytes + 2, t, 0);
1622 count += output_leb128 (bytes + count, w1, 0);
1623 (*f) (count, bytes, NULL);
1624 }
1625
1626 static void
1627 output_X2_format (vbyte_func f,
1628 int ab,
1629 int reg,
1630 int x,
1631 int y,
1632 int treg,
1633 unsigned long t)
1634 {
1635 char bytes[20];
1636 int count = 3;
1637 bytes[0] = UNW_X2;
1638 bytes[1] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1639 bytes[2] = (((y & 1) << 7) | (treg & 0x7f));
1640 count += output_leb128 (bytes + 3, t, 0);
1641 (*f) (count, bytes, NULL);
1642 }
1643
1644 static void
1645 output_X3_format (vbyte_func f,
1646 unw_record_type rtype,
1647 int qp,
1648 int ab,
1649 int reg,
1650 unsigned long t,
1651 unsigned long w1)
1652 {
1653 char bytes[20];
1654 int r = 0;
1655 int count = 3;
1656 bytes[0] = UNW_X3;
1657
1658 if (rtype == spill_sprel_p)
1659 r = 1;
1660 else if (rtype != spill_psprel_p)
1661 as_bad (_("Invalid record type for format X3"));
1662 bytes[1] = ((r << 7) | (qp & 0x3f));
1663 bytes[2] = format_ab_reg (ab, reg);
1664 count += output_leb128 (bytes + 3, t, 0);
1665 count += output_leb128 (bytes + count, w1, 0);
1666 (*f) (count, bytes, NULL);
1667 }
1668
1669 static void
1670 output_X4_format (vbyte_func f,
1671 int qp,
1672 int ab,
1673 int reg,
1674 int x,
1675 int y,
1676 int treg,
1677 unsigned long t)
1678 {
1679 char bytes[20];
1680 int count = 4;
1681 bytes[0] = UNW_X4;
1682 bytes[1] = (qp & 0x3f);
1683 bytes[2] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1684 bytes[3] = (((y & 1) << 7) | (treg & 0x7f));
1685 count += output_leb128 (bytes + 4, t, 0);
1686 (*f) (count, bytes, NULL);
1687 }
1688
1689 /* This function checks whether there are any outstanding .save-s and
1690 discards them if so. */
1691
1692 static void
1693 check_pending_save (void)
1694 {
1695 if (unwind.pending_saves)
1696 {
1697 unw_rec_list *cur, *prev;
1698
1699 as_warn (_("Previous .save incomplete"));
1700 for (cur = unwind.list, prev = NULL; cur; )
1701 if (&cur->r.record.p == unwind.pending_saves)
1702 {
1703 if (prev)
1704 prev->next = cur->next;
1705 else
1706 unwind.list = cur->next;
1707 if (cur == unwind.tail)
1708 unwind.tail = prev;
1709 if (cur == unwind.current_entry)
1710 unwind.current_entry = cur->next;
1711 /* Don't free the first discarded record, it's being used as
1712 terminator for (currently) br_gr and gr_gr processing, and
1713 also prevents leaving a dangling pointer to it in its
1714 predecessor. */
1715 cur->r.record.p.grmask = 0;
1716 cur->r.record.p.brmask = 0;
1717 cur->r.record.p.frmask = 0;
1718 prev = cur->r.record.p.next;
1719 cur->r.record.p.next = NULL;
1720 cur = prev;
1721 break;
1722 }
1723 else
1724 {
1725 prev = cur;
1726 cur = cur->next;
1727 }
1728 while (cur)
1729 {
1730 prev = cur;
1731 cur = cur->r.record.p.next;
1732 free (prev);
1733 }
1734 unwind.pending_saves = NULL;
1735 }
1736 }
1737
1738 /* This function allocates a record list structure, and initializes fields. */
1739
1740 static unw_rec_list *
1741 alloc_record (unw_record_type t)
1742 {
1743 unw_rec_list *ptr;
1744 ptr = XNEW (unw_rec_list);
1745 memset (ptr, 0, sizeof (*ptr));
1746 ptr->slot_number = SLOT_NUM_NOT_SET;
1747 ptr->r.type = t;
1748 return ptr;
1749 }
1750
1751 /* Dummy unwind record used for calculating the length of the last prologue or
1752 body region. */
1753
1754 static unw_rec_list *
1755 output_endp (void)
1756 {
1757 unw_rec_list *ptr = alloc_record (endp);
1758 return ptr;
1759 }
1760
1761 static unw_rec_list *
1762 output_prologue (void)
1763 {
1764 unw_rec_list *ptr = alloc_record (prologue);
1765 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1766 return ptr;
1767 }
1768
1769 static unw_rec_list *
1770 output_prologue_gr (unsigned int saved_mask, unsigned int reg)
1771 {
1772 unw_rec_list *ptr = alloc_record (prologue_gr);
1773 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1774 ptr->r.record.r.grmask = saved_mask;
1775 ptr->r.record.r.grsave = reg;
1776 return ptr;
1777 }
1778
1779 static unw_rec_list *
1780 output_body (void)
1781 {
1782 unw_rec_list *ptr = alloc_record (body);
1783 return ptr;
1784 }
1785
1786 static unw_rec_list *
1787 output_mem_stack_f (unsigned int size)
1788 {
1789 unw_rec_list *ptr = alloc_record (mem_stack_f);
1790 ptr->r.record.p.size = size;
1791 return ptr;
1792 }
1793
1794 static unw_rec_list *
1795 output_mem_stack_v (void)
1796 {
1797 unw_rec_list *ptr = alloc_record (mem_stack_v);
1798 return ptr;
1799 }
1800
1801 static unw_rec_list *
1802 output_psp_gr (unsigned int gr)
1803 {
1804 unw_rec_list *ptr = alloc_record (psp_gr);
1805 ptr->r.record.p.r.gr = gr;
1806 return ptr;
1807 }
1808
1809 static unw_rec_list *
1810 output_psp_sprel (unsigned int offset)
1811 {
1812 unw_rec_list *ptr = alloc_record (psp_sprel);
1813 ptr->r.record.p.off.sp = offset / 4;
1814 return ptr;
1815 }
1816
1817 static unw_rec_list *
1818 output_rp_when (void)
1819 {
1820 unw_rec_list *ptr = alloc_record (rp_when);
1821 return ptr;
1822 }
1823
1824 static unw_rec_list *
1825 output_rp_gr (unsigned int gr)
1826 {
1827 unw_rec_list *ptr = alloc_record (rp_gr);
1828 ptr->r.record.p.r.gr = gr;
1829 return ptr;
1830 }
1831
1832 static unw_rec_list *
1833 output_rp_br (unsigned int br)
1834 {
1835 unw_rec_list *ptr = alloc_record (rp_br);
1836 ptr->r.record.p.r.br = br;
1837 return ptr;
1838 }
1839
1840 static unw_rec_list *
1841 output_rp_psprel (unsigned int offset)
1842 {
1843 unw_rec_list *ptr = alloc_record (rp_psprel);
1844 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
1845 return ptr;
1846 }
1847
1848 static unw_rec_list *
1849 output_rp_sprel (unsigned int offset)
1850 {
1851 unw_rec_list *ptr = alloc_record (rp_sprel);
1852 ptr->r.record.p.off.sp = offset / 4;
1853 return ptr;
1854 }
1855
1856 static unw_rec_list *
1857 output_pfs_when (void)
1858 {
1859 unw_rec_list *ptr = alloc_record (pfs_when);
1860 return ptr;
1861 }
1862
1863 static unw_rec_list *
1864 output_pfs_gr (unsigned int gr)
1865 {
1866 unw_rec_list *ptr = alloc_record (pfs_gr);
1867 ptr->r.record.p.r.gr = gr;
1868 return ptr;
1869 }
1870
1871 static unw_rec_list *
1872 output_pfs_psprel (unsigned int offset)
1873 {
1874 unw_rec_list *ptr = alloc_record (pfs_psprel);
1875 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
1876 return ptr;
1877 }
1878
1879 static unw_rec_list *
1880 output_pfs_sprel (unsigned int offset)
1881 {
1882 unw_rec_list *ptr = alloc_record (pfs_sprel);
1883 ptr->r.record.p.off.sp = offset / 4;
1884 return ptr;
1885 }
1886
1887 static unw_rec_list *
1888 output_preds_when (void)
1889 {
1890 unw_rec_list *ptr = alloc_record (preds_when);
1891 return ptr;
1892 }
1893
1894 static unw_rec_list *
1895 output_preds_gr (unsigned int gr)
1896 {
1897 unw_rec_list *ptr = alloc_record (preds_gr);
1898 ptr->r.record.p.r.gr = gr;
1899 return ptr;
1900 }
1901
1902 static unw_rec_list *
1903 output_preds_psprel (unsigned int offset)
1904 {
1905 unw_rec_list *ptr = alloc_record (preds_psprel);
1906 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
1907 return ptr;
1908 }
1909
1910 static unw_rec_list *
1911 output_preds_sprel (unsigned int offset)
1912 {
1913 unw_rec_list *ptr = alloc_record (preds_sprel);
1914 ptr->r.record.p.off.sp = offset / 4;
1915 return ptr;
1916 }
1917
1918 static unw_rec_list *
1919 output_fr_mem (unsigned int mask)
1920 {
1921 unw_rec_list *ptr = alloc_record (fr_mem);
1922 unw_rec_list *cur = ptr;
1923
1924 ptr->r.record.p.frmask = mask;
1925 unwind.pending_saves = &ptr->r.record.p;
1926 for (;;)
1927 {
1928 unw_rec_list *prev = cur;
1929
1930 /* Clear least significant set bit. */
1931 mask &= ~(mask & (~mask + 1));
1932 if (!mask)
1933 return ptr;
1934 cur = alloc_record (fr_mem);
1935 cur->r.record.p.frmask = mask;
1936 /* Retain only least significant bit. */
1937 prev->r.record.p.frmask ^= mask;
1938 prev->r.record.p.next = cur;
1939 }
1940 }
1941
1942 static unw_rec_list *
1943 output_frgr_mem (unsigned int gr_mask, unsigned int fr_mask)
1944 {
1945 unw_rec_list *ptr = alloc_record (frgr_mem);
1946 unw_rec_list *cur = ptr;
1947
1948 unwind.pending_saves = &cur->r.record.p;
1949 cur->r.record.p.frmask = fr_mask;
1950 while (fr_mask)
1951 {
1952 unw_rec_list *prev = cur;
1953
1954 /* Clear least significant set bit. */
1955 fr_mask &= ~(fr_mask & (~fr_mask + 1));
1956 if (!gr_mask && !fr_mask)
1957 return ptr;
1958 cur = alloc_record (frgr_mem);
1959 cur->r.record.p.frmask = fr_mask;
1960 /* Retain only least significant bit. */
1961 prev->r.record.p.frmask ^= fr_mask;
1962 prev->r.record.p.next = cur;
1963 }
1964 cur->r.record.p.grmask = gr_mask;
1965 for (;;)
1966 {
1967 unw_rec_list *prev = cur;
1968
1969 /* Clear least significant set bit. */
1970 gr_mask &= ~(gr_mask & (~gr_mask + 1));
1971 if (!gr_mask)
1972 return ptr;
1973 cur = alloc_record (frgr_mem);
1974 cur->r.record.p.grmask = gr_mask;
1975 /* Retain only least significant bit. */
1976 prev->r.record.p.grmask ^= gr_mask;
1977 prev->r.record.p.next = cur;
1978 }
1979 }
1980
1981 static unw_rec_list *
1982 output_gr_gr (unsigned int mask, unsigned int reg)
1983 {
1984 unw_rec_list *ptr = alloc_record (gr_gr);
1985 unw_rec_list *cur = ptr;
1986
1987 ptr->r.record.p.grmask = mask;
1988 ptr->r.record.p.r.gr = reg;
1989 unwind.pending_saves = &ptr->r.record.p;
1990 for (;;)
1991 {
1992 unw_rec_list *prev = cur;
1993
1994 /* Clear least significant set bit. */
1995 mask &= ~(mask & (~mask + 1));
1996 if (!mask)
1997 return ptr;
1998 cur = alloc_record (gr_gr);
1999 cur->r.record.p.grmask = mask;
2000 /* Indicate this record shouldn't be output. */
2001 cur->r.record.p.r.gr = REG_NUM;
2002 /* Retain only least significant bit. */
2003 prev->r.record.p.grmask ^= mask;
2004 prev->r.record.p.next = cur;
2005 }
2006 }
2007
2008 static unw_rec_list *
2009 output_gr_mem (unsigned int mask)
2010 {
2011 unw_rec_list *ptr = alloc_record (gr_mem);
2012 unw_rec_list *cur = ptr;
2013
2014 ptr->r.record.p.grmask = mask;
2015 unwind.pending_saves = &ptr->r.record.p;
2016 for (;;)
2017 {
2018 unw_rec_list *prev = cur;
2019
2020 /* Clear least significant set bit. */
2021 mask &= ~(mask & (~mask + 1));
2022 if (!mask)
2023 return ptr;
2024 cur = alloc_record (gr_mem);
2025 cur->r.record.p.grmask = mask;
2026 /* Retain only least significant bit. */
2027 prev->r.record.p.grmask ^= mask;
2028 prev->r.record.p.next = cur;
2029 }
2030 }
2031
2032 static unw_rec_list *
2033 output_br_mem (unsigned int mask)
2034 {
2035 unw_rec_list *ptr = alloc_record (br_mem);
2036 unw_rec_list *cur = ptr;
2037
2038 ptr->r.record.p.brmask = mask;
2039 unwind.pending_saves = &ptr->r.record.p;
2040 for (;;)
2041 {
2042 unw_rec_list *prev = cur;
2043
2044 /* Clear least significant set bit. */
2045 mask &= ~(mask & (~mask + 1));
2046 if (!mask)
2047 return ptr;
2048 cur = alloc_record (br_mem);
2049 cur->r.record.p.brmask = mask;
2050 /* Retain only least significant bit. */
2051 prev->r.record.p.brmask ^= mask;
2052 prev->r.record.p.next = cur;
2053 }
2054 }
2055
2056 static unw_rec_list *
2057 output_br_gr (unsigned int mask, unsigned int reg)
2058 {
2059 unw_rec_list *ptr = alloc_record (br_gr);
2060 unw_rec_list *cur = ptr;
2061
2062 ptr->r.record.p.brmask = mask;
2063 ptr->r.record.p.r.gr = reg;
2064 unwind.pending_saves = &ptr->r.record.p;
2065 for (;;)
2066 {
2067 unw_rec_list *prev = cur;
2068
2069 /* Clear least significant set bit. */
2070 mask &= ~(mask & (~mask + 1));
2071 if (!mask)
2072 return ptr;
2073 cur = alloc_record (br_gr);
2074 cur->r.record.p.brmask = mask;
2075 /* Indicate this record shouldn't be output. */
2076 cur->r.record.p.r.gr = REG_NUM;
2077 /* Retain only least significant bit. */
2078 prev->r.record.p.brmask ^= mask;
2079 prev->r.record.p.next = cur;
2080 }
2081 }
2082
2083 static unw_rec_list *
2084 output_spill_base (unsigned int offset)
2085 {
2086 unw_rec_list *ptr = alloc_record (spill_base);
2087 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2088 return ptr;
2089 }
2090
2091 static unw_rec_list *
2092 output_unat_when (void)
2093 {
2094 unw_rec_list *ptr = alloc_record (unat_when);
2095 return ptr;
2096 }
2097
2098 static unw_rec_list *
2099 output_unat_gr (unsigned int gr)
2100 {
2101 unw_rec_list *ptr = alloc_record (unat_gr);
2102 ptr->r.record.p.r.gr = gr;
2103 return ptr;
2104 }
2105
2106 static unw_rec_list *
2107 output_unat_psprel (unsigned int offset)
2108 {
2109 unw_rec_list *ptr = alloc_record (unat_psprel);
2110 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2111 return ptr;
2112 }
2113
2114 static unw_rec_list *
2115 output_unat_sprel (unsigned int offset)
2116 {
2117 unw_rec_list *ptr = alloc_record (unat_sprel);
2118 ptr->r.record.p.off.sp = offset / 4;
2119 return ptr;
2120 }
2121
2122 static unw_rec_list *
2123 output_lc_when (void)
2124 {
2125 unw_rec_list *ptr = alloc_record (lc_when);
2126 return ptr;
2127 }
2128
2129 static unw_rec_list *
2130 output_lc_gr (unsigned int gr)
2131 {
2132 unw_rec_list *ptr = alloc_record (lc_gr);
2133 ptr->r.record.p.r.gr = gr;
2134 return ptr;
2135 }
2136
2137 static unw_rec_list *
2138 output_lc_psprel (unsigned int offset)
2139 {
2140 unw_rec_list *ptr = alloc_record (lc_psprel);
2141 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2142 return ptr;
2143 }
2144
2145 static unw_rec_list *
2146 output_lc_sprel (unsigned int offset)
2147 {
2148 unw_rec_list *ptr = alloc_record (lc_sprel);
2149 ptr->r.record.p.off.sp = offset / 4;
2150 return ptr;
2151 }
2152
2153 static unw_rec_list *
2154 output_fpsr_when (void)
2155 {
2156 unw_rec_list *ptr = alloc_record (fpsr_when);
2157 return ptr;
2158 }
2159
2160 static unw_rec_list *
2161 output_fpsr_gr (unsigned int gr)
2162 {
2163 unw_rec_list *ptr = alloc_record (fpsr_gr);
2164 ptr->r.record.p.r.gr = gr;
2165 return ptr;
2166 }
2167
2168 static unw_rec_list *
2169 output_fpsr_psprel (unsigned int offset)
2170 {
2171 unw_rec_list *ptr = alloc_record (fpsr_psprel);
2172 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2173 return ptr;
2174 }
2175
2176 static unw_rec_list *
2177 output_fpsr_sprel (unsigned int offset)
2178 {
2179 unw_rec_list *ptr = alloc_record (fpsr_sprel);
2180 ptr->r.record.p.off.sp = offset / 4;
2181 return ptr;
2182 }
2183
2184 static unw_rec_list *
2185 output_priunat_when_gr (void)
2186 {
2187 unw_rec_list *ptr = alloc_record (priunat_when_gr);
2188 return ptr;
2189 }
2190
2191 static unw_rec_list *
2192 output_priunat_when_mem (void)
2193 {
2194 unw_rec_list *ptr = alloc_record (priunat_when_mem);
2195 return ptr;
2196 }
2197
2198 static unw_rec_list *
2199 output_priunat_gr (unsigned int gr)
2200 {
2201 unw_rec_list *ptr = alloc_record (priunat_gr);
2202 ptr->r.record.p.r.gr = gr;
2203 return ptr;
2204 }
2205
2206 static unw_rec_list *
2207 output_priunat_psprel (unsigned int offset)
2208 {
2209 unw_rec_list *ptr = alloc_record (priunat_psprel);
2210 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2211 return ptr;
2212 }
2213
2214 static unw_rec_list *
2215 output_priunat_sprel (unsigned int offset)
2216 {
2217 unw_rec_list *ptr = alloc_record (priunat_sprel);
2218 ptr->r.record.p.off.sp = offset / 4;
2219 return ptr;
2220 }
2221
2222 static unw_rec_list *
2223 output_bsp_when (void)
2224 {
2225 unw_rec_list *ptr = alloc_record (bsp_when);
2226 return ptr;
2227 }
2228
2229 static unw_rec_list *
2230 output_bsp_gr (unsigned int gr)
2231 {
2232 unw_rec_list *ptr = alloc_record (bsp_gr);
2233 ptr->r.record.p.r.gr = gr;
2234 return ptr;
2235 }
2236
2237 static unw_rec_list *
2238 output_bsp_psprel (unsigned int offset)
2239 {
2240 unw_rec_list *ptr = alloc_record (bsp_psprel);
2241 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2242 return ptr;
2243 }
2244
2245 static unw_rec_list *
2246 output_bsp_sprel (unsigned int offset)
2247 {
2248 unw_rec_list *ptr = alloc_record (bsp_sprel);
2249 ptr->r.record.p.off.sp = offset / 4;
2250 return ptr;
2251 }
2252
2253 static unw_rec_list *
2254 output_bspstore_when (void)
2255 {
2256 unw_rec_list *ptr = alloc_record (bspstore_when);
2257 return ptr;
2258 }
2259
2260 static unw_rec_list *
2261 output_bspstore_gr (unsigned int gr)
2262 {
2263 unw_rec_list *ptr = alloc_record (bspstore_gr);
2264 ptr->r.record.p.r.gr = gr;
2265 return ptr;
2266 }
2267
2268 static unw_rec_list *
2269 output_bspstore_psprel (unsigned int offset)
2270 {
2271 unw_rec_list *ptr = alloc_record (bspstore_psprel);
2272 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2273 return ptr;
2274 }
2275
2276 static unw_rec_list *
2277 output_bspstore_sprel (unsigned int offset)
2278 {
2279 unw_rec_list *ptr = alloc_record (bspstore_sprel);
2280 ptr->r.record.p.off.sp = offset / 4;
2281 return ptr;
2282 }
2283
2284 static unw_rec_list *
2285 output_rnat_when (void)
2286 {
2287 unw_rec_list *ptr = alloc_record (rnat_when);
2288 return ptr;
2289 }
2290
2291 static unw_rec_list *
2292 output_rnat_gr (unsigned int gr)
2293 {
2294 unw_rec_list *ptr = alloc_record (rnat_gr);
2295 ptr->r.record.p.r.gr = gr;
2296 return ptr;
2297 }
2298
2299 static unw_rec_list *
2300 output_rnat_psprel (unsigned int offset)
2301 {
2302 unw_rec_list *ptr = alloc_record (rnat_psprel);
2303 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2304 return ptr;
2305 }
2306
2307 static unw_rec_list *
2308 output_rnat_sprel (unsigned int offset)
2309 {
2310 unw_rec_list *ptr = alloc_record (rnat_sprel);
2311 ptr->r.record.p.off.sp = offset / 4;
2312 return ptr;
2313 }
2314
2315 static unw_rec_list *
2316 output_unwabi (unsigned long abi, unsigned long context)
2317 {
2318 unw_rec_list *ptr = alloc_record (unwabi);
2319 ptr->r.record.p.abi = abi;
2320 ptr->r.record.p.context = context;
2321 return ptr;
2322 }
2323
2324 static unw_rec_list *
2325 output_epilogue (unsigned long ecount)
2326 {
2327 unw_rec_list *ptr = alloc_record (epilogue);
2328 ptr->r.record.b.ecount = ecount;
2329 return ptr;
2330 }
2331
2332 static unw_rec_list *
2333 output_label_state (unsigned long label)
2334 {
2335 unw_rec_list *ptr = alloc_record (label_state);
2336 ptr->r.record.b.label = label;
2337 return ptr;
2338 }
2339
2340 static unw_rec_list *
2341 output_copy_state (unsigned long label)
2342 {
2343 unw_rec_list *ptr = alloc_record (copy_state);
2344 ptr->r.record.b.label = label;
2345 return ptr;
2346 }
2347
2348 static unw_rec_list *
2349 output_spill_psprel (unsigned int ab,
2350 unsigned int reg,
2351 unsigned int offset,
2352 unsigned int predicate)
2353 {
2354 unw_rec_list *ptr = alloc_record (predicate ? spill_psprel_p : spill_psprel);
2355 ptr->r.record.x.ab = ab;
2356 ptr->r.record.x.reg = reg;
2357 ptr->r.record.x.where.pspoff = ENCODED_PSP_OFFSET (offset);
2358 ptr->r.record.x.qp = predicate;
2359 return ptr;
2360 }
2361
2362 static unw_rec_list *
2363 output_spill_sprel (unsigned int ab,
2364 unsigned int reg,
2365 unsigned int offset,
2366 unsigned int predicate)
2367 {
2368 unw_rec_list *ptr = alloc_record (predicate ? spill_sprel_p : spill_sprel);
2369 ptr->r.record.x.ab = ab;
2370 ptr->r.record.x.reg = reg;
2371 ptr->r.record.x.where.spoff = offset / 4;
2372 ptr->r.record.x.qp = predicate;
2373 return ptr;
2374 }
2375
2376 static unw_rec_list *
2377 output_spill_reg (unsigned int ab,
2378 unsigned int reg,
2379 unsigned int targ_reg,
2380 unsigned int xy,
2381 unsigned int predicate)
2382 {
2383 unw_rec_list *ptr = alloc_record (predicate ? spill_reg_p : spill_reg);
2384 ptr->r.record.x.ab = ab;
2385 ptr->r.record.x.reg = reg;
2386 ptr->r.record.x.where.reg = targ_reg;
2387 ptr->r.record.x.xy = xy;
2388 ptr->r.record.x.qp = predicate;
2389 return ptr;
2390 }
2391
2392 /* Given a unw_rec_list process the correct format with the
2393 specified function. */
2394
2395 static void
2396 process_one_record (unw_rec_list *ptr, vbyte_func f)
2397 {
2398 unsigned int fr_mask, gr_mask;
2399
2400 switch (ptr->r.type)
2401 {
2402 /* This is a dummy record that takes up no space in the output. */
2403 case endp:
2404 break;
2405
2406 case gr_mem:
2407 case fr_mem:
2408 case br_mem:
2409 case frgr_mem:
2410 /* These are taken care of by prologue/prologue_gr. */
2411 break;
2412
2413 case prologue_gr:
2414 case prologue:
2415 if (ptr->r.type == prologue_gr)
2416 output_R2_format (f, ptr->r.record.r.grmask,
2417 ptr->r.record.r.grsave, ptr->r.record.r.rlen);
2418 else
2419 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2420
2421 /* Output descriptor(s) for union of register spills (if any). */
2422 gr_mask = ptr->r.record.r.mask.gr_mem;
2423 fr_mask = ptr->r.record.r.mask.fr_mem;
2424 if (fr_mask)
2425 {
2426 if ((fr_mask & ~0xfUL) == 0)
2427 output_P6_format (f, fr_mem, fr_mask);
2428 else
2429 {
2430 output_P5_format (f, gr_mask, fr_mask);
2431 gr_mask = 0;
2432 }
2433 }
2434 if (gr_mask)
2435 output_P6_format (f, gr_mem, gr_mask);
2436 if (ptr->r.record.r.mask.br_mem)
2437 output_P1_format (f, ptr->r.record.r.mask.br_mem);
2438
2439 /* output imask descriptor if necessary: */
2440 if (ptr->r.record.r.mask.i)
2441 output_P4_format (f, ptr->r.record.r.mask.i,
2442 ptr->r.record.r.imask_size);
2443 break;
2444
2445 case body:
2446 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2447 break;
2448 case mem_stack_f:
2449 case mem_stack_v:
2450 output_P7_format (f, ptr->r.type, ptr->r.record.p.t,
2451 ptr->r.record.p.size);
2452 break;
2453 case psp_gr:
2454 case rp_gr:
2455 case pfs_gr:
2456 case preds_gr:
2457 case unat_gr:
2458 case lc_gr:
2459 case fpsr_gr:
2460 case priunat_gr:
2461 case bsp_gr:
2462 case bspstore_gr:
2463 case rnat_gr:
2464 output_P3_format (f, ptr->r.type, ptr->r.record.p.r.gr);
2465 break;
2466 case rp_br:
2467 output_P3_format (f, rp_br, ptr->r.record.p.r.br);
2468 break;
2469 case psp_sprel:
2470 output_P7_format (f, psp_sprel, ptr->r.record.p.off.sp, 0);
2471 break;
2472 case rp_when:
2473 case pfs_when:
2474 case preds_when:
2475 case unat_when:
2476 case lc_when:
2477 case fpsr_when:
2478 output_P7_format (f, ptr->r.type, ptr->r.record.p.t, 0);
2479 break;
2480 case rp_psprel:
2481 case pfs_psprel:
2482 case preds_psprel:
2483 case unat_psprel:
2484 case lc_psprel:
2485 case fpsr_psprel:
2486 case spill_base:
2487 output_P7_format (f, ptr->r.type, ptr->r.record.p.off.psp, 0);
2488 break;
2489 case rp_sprel:
2490 case pfs_sprel:
2491 case preds_sprel:
2492 case unat_sprel:
2493 case lc_sprel:
2494 case fpsr_sprel:
2495 case priunat_sprel:
2496 case bsp_sprel:
2497 case bspstore_sprel:
2498 case rnat_sprel:
2499 output_P8_format (f, ptr->r.type, ptr->r.record.p.off.sp);
2500 break;
2501 case gr_gr:
2502 if (ptr->r.record.p.r.gr < REG_NUM)
2503 {
2504 const unw_rec_list *cur = ptr;
2505
2506 gr_mask = cur->r.record.p.grmask;
2507 while ((cur = cur->r.record.p.next) != NULL)
2508 gr_mask |= cur->r.record.p.grmask;
2509 output_P9_format (f, gr_mask, ptr->r.record.p.r.gr);
2510 }
2511 break;
2512 case br_gr:
2513 if (ptr->r.record.p.r.gr < REG_NUM)
2514 {
2515 const unw_rec_list *cur = ptr;
2516
2517 gr_mask = cur->r.record.p.brmask;
2518 while ((cur = cur->r.record.p.next) != NULL)
2519 gr_mask |= cur->r.record.p.brmask;
2520 output_P2_format (f, gr_mask, ptr->r.record.p.r.gr);
2521 }
2522 break;
2523 case spill_mask:
2524 as_bad (_("spill_mask record unimplemented."));
2525 break;
2526 case priunat_when_gr:
2527 case priunat_when_mem:
2528 case bsp_when:
2529 case bspstore_when:
2530 case rnat_when:
2531 output_P8_format (f, ptr->r.type, ptr->r.record.p.t);
2532 break;
2533 case priunat_psprel:
2534 case bsp_psprel:
2535 case bspstore_psprel:
2536 case rnat_psprel:
2537 output_P8_format (f, ptr->r.type, ptr->r.record.p.off.psp);
2538 break;
2539 case unwabi:
2540 output_P10_format (f, ptr->r.record.p.abi, ptr->r.record.p.context);
2541 break;
2542 case epilogue:
2543 output_B3_format (f, ptr->r.record.b.ecount, ptr->r.record.b.t);
2544 break;
2545 case label_state:
2546 case copy_state:
2547 output_B4_format (f, ptr->r.type, ptr->r.record.b.label);
2548 break;
2549 case spill_psprel:
2550 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2551 ptr->r.record.x.reg, ptr->r.record.x.t,
2552 ptr->r.record.x.where.pspoff);
2553 break;
2554 case spill_sprel:
2555 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2556 ptr->r.record.x.reg, ptr->r.record.x.t,
2557 ptr->r.record.x.where.spoff);
2558 break;
2559 case spill_reg:
2560 output_X2_format (f, ptr->r.record.x.ab, ptr->r.record.x.reg,
2561 ptr->r.record.x.xy >> 1, ptr->r.record.x.xy,
2562 ptr->r.record.x.where.reg, ptr->r.record.x.t);
2563 break;
2564 case spill_psprel_p:
2565 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2566 ptr->r.record.x.ab, ptr->r.record.x.reg,
2567 ptr->r.record.x.t, ptr->r.record.x.where.pspoff);
2568 break;
2569 case spill_sprel_p:
2570 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2571 ptr->r.record.x.ab, ptr->r.record.x.reg,
2572 ptr->r.record.x.t, ptr->r.record.x.where.spoff);
2573 break;
2574 case spill_reg_p:
2575 output_X4_format (f, ptr->r.record.x.qp, ptr->r.record.x.ab,
2576 ptr->r.record.x.reg, ptr->r.record.x.xy >> 1,
2577 ptr->r.record.x.xy, ptr->r.record.x.where.reg,
2578 ptr->r.record.x.t);
2579 break;
2580 default:
2581 as_bad (_("record_type_not_valid"));
2582 break;
2583 }
2584 }
2585
2586 /* Given a unw_rec_list list, process all the records with
2587 the specified function. */
2588 static void
2589 process_unw_records (unw_rec_list *list, vbyte_func f)
2590 {
2591 unw_rec_list *ptr;
2592 for (ptr = list; ptr; ptr = ptr->next)
2593 process_one_record (ptr, f);
2594 }
2595
2596 /* Determine the size of a record list in bytes. */
2597 static int
2598 calc_record_size (unw_rec_list *list)
2599 {
2600 vbyte_count = 0;
2601 process_unw_records (list, count_output);
2602 return vbyte_count;
2603 }
2604
2605 /* Return the number of bits set in the input value.
2606 Perhaps this has a better place... */
2607 #if __GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)
2608 # define popcount __builtin_popcount
2609 #else
2610 static int
2611 popcount (unsigned x)
2612 {
2613 static const unsigned char popcnt[16] =
2614 {
2615 0, 1, 1, 2,
2616 1, 2, 2, 3,
2617 1, 2, 2, 3,
2618 2, 3, 3, 4
2619 };
2620
2621 if (x < NELEMS (popcnt))
2622 return popcnt[x];
2623 return popcnt[x % NELEMS (popcnt)] + popcount (x / NELEMS (popcnt));
2624 }
2625 #endif
2626
2627 /* Update IMASK bitmask to reflect the fact that one or more registers
2628 of type TYPE are saved starting at instruction with index T. If N
2629 bits are set in REGMASK, it is assumed that instructions T through
2630 T+N-1 save these registers.
2631
2632 TYPE values:
2633 0: no save
2634 1: instruction saves next fp reg
2635 2: instruction saves next general reg
2636 3: instruction saves next branch reg */
2637 static void
2638 set_imask (unw_rec_list *region,
2639 unsigned long regmask,
2640 unsigned long t,
2641 unsigned int type)
2642 {
2643 unsigned char *imask;
2644 unsigned long imask_size;
2645 unsigned int i;
2646 int pos;
2647
2648 imask = region->r.record.r.mask.i;
2649 imask_size = region->r.record.r.imask_size;
2650 if (!imask)
2651 {
2652 imask_size = (region->r.record.r.rlen * 2 + 7) / 8 + 1;
2653 imask = XCNEWVEC (unsigned char, imask_size);
2654
2655 region->r.record.r.imask_size = imask_size;
2656 region->r.record.r.mask.i = imask;
2657 }
2658
2659 i = (t / 4) + 1;
2660 pos = 2 * (3 - t % 4);
2661 while (regmask)
2662 {
2663 if (i >= imask_size)
2664 {
2665 as_bad (_("Ignoring attempt to spill beyond end of region"));
2666 return;
2667 }
2668
2669 imask[i] |= (type & 0x3) << pos;
2670
2671 regmask &= (regmask - 1);
2672 pos -= 2;
2673 if (pos < 0)
2674 {
2675 pos = 0;
2676 ++i;
2677 }
2678 }
2679 }
2680
2681 /* Return the number of instruction slots from FIRST_ADDR to SLOT_ADDR.
2682 SLOT_FRAG is the frag containing SLOT_ADDR, and FIRST_FRAG is the frag
2683 containing FIRST_ADDR. If BEFORE_RELAX, then we use worst-case estimates
2684 for frag sizes. */
2685
2686 static unsigned long
2687 slot_index (unsigned long slot_addr,
2688 fragS *slot_frag,
2689 unsigned long first_addr,
2690 fragS *first_frag,
2691 int before_relax)
2692 {
2693 unsigned long s_index = 0;
2694
2695 /* First time we are called, the initial address and frag are invalid. */
2696 if (first_addr == 0)
2697 return 0;
2698
2699 /* If the two addresses are in different frags, then we need to add in
2700 the remaining size of this frag, and then the entire size of intermediate
2701 frags. */
2702 while (slot_frag != first_frag)
2703 {
2704 unsigned long start_addr = (unsigned long) &first_frag->fr_literal;
2705
2706 if (! before_relax)
2707 {
2708 /* We can get the final addresses only during and after
2709 relaxation. */
2710 if (first_frag->fr_next && first_frag->fr_next->fr_address)
2711 s_index += 3 * ((first_frag->fr_next->fr_address
2712 - first_frag->fr_address
2713 - first_frag->fr_fix) >> 4);
2714 }
2715 else
2716 /* We don't know what the final addresses will be. We try our
2717 best to estimate. */
2718 switch (first_frag->fr_type)
2719 {
2720 default:
2721 break;
2722
2723 case rs_space:
2724 as_fatal (_("Only constant space allocation is supported"));
2725 break;
2726
2727 case rs_align:
2728 case rs_align_code:
2729 case rs_align_test:
2730 /* Take alignment into account. Assume the worst case
2731 before relaxation. */
2732 s_index += 3 * ((1 << first_frag->fr_offset) >> 4);
2733 break;
2734
2735 case rs_org:
2736 if (first_frag->fr_symbol)
2737 {
2738 as_fatal (_("Only constant offsets are supported"));
2739 break;
2740 }
2741 /* Fall through. */
2742 case rs_fill:
2743 s_index += 3 * (first_frag->fr_offset >> 4);
2744 break;
2745 }
2746
2747 /* Add in the full size of the frag converted to instruction slots. */
2748 s_index += 3 * (first_frag->fr_fix >> 4);
2749 /* Subtract away the initial part before first_addr. */
2750 s_index -= (3 * ((first_addr >> 4) - (start_addr >> 4))
2751 + ((first_addr & 0x3) - (start_addr & 0x3)));
2752
2753 /* Move to the beginning of the next frag. */
2754 first_frag = first_frag->fr_next;
2755 first_addr = (unsigned long) &first_frag->fr_literal;
2756
2757 /* This can happen if there is section switching in the middle of a
2758 function, causing the frag chain for the function to be broken.
2759 It is too difficult to recover safely from this problem, so we just
2760 exit with an error. */
2761 if (first_frag == NULL)
2762 as_fatal (_("Section switching in code is not supported."));
2763 }
2764
2765 /* Add in the used part of the last frag. */
2766 s_index += (3 * ((slot_addr >> 4) - (first_addr >> 4))
2767 + ((slot_addr & 0x3) - (first_addr & 0x3)));
2768 return s_index;
2769 }
2770
2771 /* Optimize unwind record directives. */
2772
2773 static unw_rec_list *
2774 optimize_unw_records (unw_rec_list *list)
2775 {
2776 if (!list)
2777 return NULL;
2778
2779 /* If the only unwind record is ".prologue" or ".prologue" followed
2780 by ".body", then we can optimize the unwind directives away. */
2781 if (list->r.type == prologue
2782 && (list->next->r.type == endp
2783 || (list->next->r.type == body && list->next->next->r.type == endp)))
2784 return NULL;
2785
2786 return list;
2787 }
2788
2789 /* Given a complete record list, process any records which have
2790 unresolved fields, (ie length counts for a prologue). After
2791 this has been run, all necessary information should be available
2792 within each record to generate an image. */
2793
2794 static void
2795 fixup_unw_records (unw_rec_list *list, int before_relax)
2796 {
2797 unw_rec_list *ptr, *region = 0;
2798 unsigned long first_addr = 0, rlen = 0, t;
2799 fragS *first_frag = 0;
2800
2801 for (ptr = list; ptr; ptr = ptr->next)
2802 {
2803 if (ptr->slot_number == SLOT_NUM_NOT_SET)
2804 as_bad (_("Insn slot not set in unwind record."));
2805 t = slot_index (ptr->slot_number, ptr->slot_frag,
2806 first_addr, first_frag, before_relax);
2807 switch (ptr->r.type)
2808 {
2809 case prologue:
2810 case prologue_gr:
2811 case body:
2812 {
2813 unw_rec_list *last;
2814 int size;
2815 unsigned long last_addr = 0;
2816 fragS *last_frag = NULL;
2817
2818 first_addr = ptr->slot_number;
2819 first_frag = ptr->slot_frag;
2820 /* Find either the next body/prologue start, or the end of
2821 the function, and determine the size of the region. */
2822 for (last = ptr->next; last != NULL; last = last->next)
2823 if (last->r.type == prologue || last->r.type == prologue_gr
2824 || last->r.type == body || last->r.type == endp)
2825 {
2826 last_addr = last->slot_number;
2827 last_frag = last->slot_frag;
2828 break;
2829 }
2830 size = slot_index (last_addr, last_frag, first_addr, first_frag,
2831 before_relax);
2832 rlen = ptr->r.record.r.rlen = size;
2833 if (ptr->r.type == body)
2834 /* End of region. */
2835 region = 0;
2836 else
2837 region = ptr;
2838 break;
2839 }
2840 case epilogue:
2841 if (t < rlen)
2842 ptr->r.record.b.t = rlen - 1 - t;
2843 else
2844 /* This happens when a memory-stack-less procedure uses a
2845 ".restore sp" directive at the end of a region to pop
2846 the frame state. */
2847 ptr->r.record.b.t = 0;
2848 break;
2849
2850 case mem_stack_f:
2851 case mem_stack_v:
2852 case rp_when:
2853 case pfs_when:
2854 case preds_when:
2855 case unat_when:
2856 case lc_when:
2857 case fpsr_when:
2858 case priunat_when_gr:
2859 case priunat_when_mem:
2860 case bsp_when:
2861 case bspstore_when:
2862 case rnat_when:
2863 ptr->r.record.p.t = t;
2864 break;
2865
2866 case spill_reg:
2867 case spill_sprel:
2868 case spill_psprel:
2869 case spill_reg_p:
2870 case spill_sprel_p:
2871 case spill_psprel_p:
2872 ptr->r.record.x.t = t;
2873 break;
2874
2875 case frgr_mem:
2876 if (!region)
2877 {
2878 as_bad (_("frgr_mem record before region record!"));
2879 return;
2880 }
2881 region->r.record.r.mask.fr_mem |= ptr->r.record.p.frmask;
2882 region->r.record.r.mask.gr_mem |= ptr->r.record.p.grmask;
2883 set_imask (region, ptr->r.record.p.frmask, t, 1);
2884 set_imask (region, ptr->r.record.p.grmask, t, 2);
2885 break;
2886 case fr_mem:
2887 if (!region)
2888 {
2889 as_bad (_("fr_mem record before region record!"));
2890 return;
2891 }
2892 region->r.record.r.mask.fr_mem |= ptr->r.record.p.frmask;
2893 set_imask (region, ptr->r.record.p.frmask, t, 1);
2894 break;
2895 case gr_mem:
2896 if (!region)
2897 {
2898 as_bad (_("gr_mem record before region record!"));
2899 return;
2900 }
2901 region->r.record.r.mask.gr_mem |= ptr->r.record.p.grmask;
2902 set_imask (region, ptr->r.record.p.grmask, t, 2);
2903 break;
2904 case br_mem:
2905 if (!region)
2906 {
2907 as_bad (_("br_mem record before region record!"));
2908 return;
2909 }
2910 region->r.record.r.mask.br_mem |= ptr->r.record.p.brmask;
2911 set_imask (region, ptr->r.record.p.brmask, t, 3);
2912 break;
2913
2914 case gr_gr:
2915 if (!region)
2916 {
2917 as_bad (_("gr_gr record before region record!"));
2918 return;
2919 }
2920 set_imask (region, ptr->r.record.p.grmask, t, 2);
2921 break;
2922 case br_gr:
2923 if (!region)
2924 {
2925 as_bad (_("br_gr record before region record!"));
2926 return;
2927 }
2928 set_imask (region, ptr->r.record.p.brmask, t, 3);
2929 break;
2930
2931 default:
2932 break;
2933 }
2934 }
2935 }
2936
2937 /* Estimate the size of a frag before relaxing. We only have one type of frag
2938 to handle here, which is the unwind info frag. */
2939
2940 int
2941 ia64_estimate_size_before_relax (fragS *frag,
2942 asection *segtype ATTRIBUTE_UNUSED)
2943 {
2944 unw_rec_list *list;
2945 int len, size, pad;
2946
2947 /* ??? This code is identical to the first part of ia64_convert_frag. */
2948 list = (unw_rec_list *) frag->fr_opcode;
2949 fixup_unw_records (list, 0);
2950
2951 len = calc_record_size (list);
2952 /* pad to pointer-size boundary. */
2953 pad = len % md.pointer_size;
2954 if (pad != 0)
2955 len += md.pointer_size - pad;
2956 /* Add 8 for the header. */
2957 size = len + 8;
2958 /* Add a pointer for the personality offset. */
2959 if (frag->fr_offset)
2960 size += md.pointer_size;
2961
2962 /* fr_var carries the max_chars that we created the fragment with.
2963 We must, of course, have allocated enough memory earlier. */
2964 gas_assert (frag->fr_var >= size);
2965
2966 return frag->fr_fix + size;
2967 }
2968
2969 /* This function converts a rs_machine_dependent variant frag into a
2970 normal fill frag with the unwind image from the record list. */
2971 void
2972 ia64_convert_frag (fragS *frag)
2973 {
2974 unw_rec_list *list;
2975 int len, size, pad;
2976 valueT flag_value;
2977
2978 /* ??? This code is identical to ia64_estimate_size_before_relax. */
2979 list = (unw_rec_list *) frag->fr_opcode;
2980 fixup_unw_records (list, 0);
2981
2982 len = calc_record_size (list);
2983 /* pad to pointer-size boundary. */
2984 pad = len % md.pointer_size;
2985 if (pad != 0)
2986 len += md.pointer_size - pad;
2987 /* Add 8 for the header. */
2988 size = len + 8;
2989 /* Add a pointer for the personality offset. */
2990 if (frag->fr_offset)
2991 size += md.pointer_size;
2992
2993 /* fr_var carries the max_chars that we created the fragment with.
2994 We must, of course, have allocated enough memory earlier. */
2995 gas_assert (frag->fr_var >= size);
2996
2997 /* Initialize the header area. fr_offset is initialized with
2998 unwind.personality_routine. */
2999 if (frag->fr_offset)
3000 {
3001 if (md.flags & EF_IA_64_ABI64)
3002 flag_value = (bfd_vma) 3 << 32;
3003 else
3004 /* 32-bit unwind info block. */
3005 flag_value = (bfd_vma) 0x1003 << 32;
3006 }
3007 else
3008 flag_value = 0;
3009
3010 md_number_to_chars (frag->fr_literal,
3011 (((bfd_vma) 1 << 48) /* Version. */
3012 | flag_value /* U & E handler flags. */
3013 | (len / md.pointer_size)), /* Length. */
3014 8);
3015
3016 /* Skip the header. */
3017 vbyte_mem_ptr = frag->fr_literal + 8;
3018 process_unw_records (list, output_vbyte_mem);
3019
3020 /* Fill the padding bytes with zeros. */
3021 if (pad != 0)
3022 md_number_to_chars (frag->fr_literal + len + 8 - md.pointer_size + pad, 0,
3023 md.pointer_size - pad);
3024 /* Fill the unwind personality with zeros. */
3025 if (frag->fr_offset)
3026 md_number_to_chars (frag->fr_literal + size - md.pointer_size, 0,
3027 md.pointer_size);
3028
3029 frag->fr_fix += size;
3030 frag->fr_type = rs_fill;
3031 frag->fr_var = 0;
3032 frag->fr_offset = 0;
3033 }
3034
3035 static int
3036 parse_predicate_and_operand (expressionS *e, unsigned *qp, const char *po)
3037 {
3038 int sep = parse_operand_and_eval (e, ',');
3039
3040 *qp = e->X_add_number - REG_P;
3041 if (e->X_op != O_register || *qp > 63)
3042 {
3043 as_bad (_("First operand to .%s must be a predicate"), po);
3044 *qp = 0;
3045 }
3046 else if (*qp == 0)
3047 as_warn (_("Pointless use of p0 as first operand to .%s"), po);
3048 if (sep == ',')
3049 sep = parse_operand_and_eval (e, ',');
3050 else
3051 e->X_op = O_absent;
3052 return sep;
3053 }
3054
3055 static void
3056 convert_expr_to_ab_reg (const expressionS *e,
3057 unsigned int *ab,
3058 unsigned int *regp,
3059 const char *po,
3060 int n)
3061 {
3062 unsigned int reg = e->X_add_number;
3063
3064 *ab = *regp = 0; /* Anything valid is good here. */
3065
3066 if (e->X_op != O_register)
3067 reg = REG_GR; /* Anything invalid is good here. */
3068
3069 if (reg >= (REG_GR + 4) && reg <= (REG_GR + 7))
3070 {
3071 *ab = 0;
3072 *regp = reg - REG_GR;
3073 }
3074 else if ((reg >= (REG_FR + 2) && reg <= (REG_FR + 5))
3075 || (reg >= (REG_FR + 16) && reg <= (REG_FR + 31)))
3076 {
3077 *ab = 1;
3078 *regp = reg - REG_FR;
3079 }
3080 else if (reg >= (REG_BR + 1) && reg <= (REG_BR + 5))
3081 {
3082 *ab = 2;
3083 *regp = reg - REG_BR;
3084 }
3085 else
3086 {
3087 *ab = 3;
3088 switch (reg)
3089 {
3090 case REG_PR: *regp = 0; break;
3091 case REG_PSP: *regp = 1; break;
3092 case REG_PRIUNAT: *regp = 2; break;
3093 case REG_BR + 0: *regp = 3; break;
3094 case REG_AR + AR_BSP: *regp = 4; break;
3095 case REG_AR + AR_BSPSTORE: *regp = 5; break;
3096 case REG_AR + AR_RNAT: *regp = 6; break;
3097 case REG_AR + AR_UNAT: *regp = 7; break;
3098 case REG_AR + AR_FPSR: *regp = 8; break;
3099 case REG_AR + AR_PFS: *regp = 9; break;
3100 case REG_AR + AR_LC: *regp = 10; break;
3101
3102 default:
3103 as_bad (_("Operand %d to .%s must be a preserved register"), n, po);
3104 break;
3105 }
3106 }
3107 }
3108
3109 static void
3110 convert_expr_to_xy_reg (const expressionS *e,
3111 unsigned int *xy,
3112 unsigned int *regp,
3113 const char *po,
3114 int n)
3115 {
3116 unsigned int reg = e->X_add_number;
3117
3118 *xy = *regp = 0; /* Anything valid is good here. */
3119
3120 if (e->X_op != O_register)
3121 reg = REG_GR; /* Anything invalid is good here. */
3122
3123 if (reg >= (REG_GR + 1) && reg <= (REG_GR + 127))
3124 {
3125 *xy = 0;
3126 *regp = reg - REG_GR;
3127 }
3128 else if (reg >= (REG_FR + 2) && reg <= (REG_FR + 127))
3129 {
3130 *xy = 1;
3131 *regp = reg - REG_FR;
3132 }
3133 else if (reg >= REG_BR && reg <= (REG_BR + 7))
3134 {
3135 *xy = 2;
3136 *regp = reg - REG_BR;
3137 }
3138 else
3139 as_bad (_("Operand %d to .%s must be a writable register"), n, po);
3140 }
3141
3142 static void
3143 dot_align (int arg)
3144 {
3145 /* The current frag is an alignment frag. */
3146 align_frag = frag_now;
3147 s_align_bytes (arg);
3148 }
3149
3150 static void
3151 dot_radix (int dummy ATTRIBUTE_UNUSED)
3152 {
3153 char *radix;
3154 int ch;
3155
3156 SKIP_WHITESPACE ();
3157
3158 if (is_it_end_of_statement ())
3159 return;
3160 ch = get_symbol_name (&radix);
3161 ia64_canonicalize_symbol_name (radix);
3162 if (strcasecmp (radix, "C"))
3163 as_bad (_("Radix `%s' unsupported or invalid"), radix);
3164 (void) restore_line_pointer (ch);
3165 demand_empty_rest_of_line ();
3166 }
3167
3168 /* Helper function for .loc directives. If the assembler is not generating
3169 line number info, then we need to remember which instructions have a .loc
3170 directive, and only call dwarf2_gen_line_info for those instructions. */
3171
3172 static void
3173 dot_loc (int x)
3174 {
3175 CURR_SLOT.loc_directive_seen = 1;
3176 dwarf2_directive_loc (x);
3177 }
3178
3179 /* .sbss, .bss etc. are macros that expand into ".section SECNAME". */
3180 static void
3181 dot_special_section (int which)
3182 {
3183 set_section ((char *) special_section_name[which]);
3184 }
3185
3186 /* Return -1 for warning and 0 for error. */
3187
3188 static int
3189 unwind_diagnostic (const char * region, const char *directive)
3190 {
3191 if (md.unwind_check == unwind_check_warning)
3192 {
3193 as_warn (_(".%s outside of %s"), directive, region);
3194 return -1;
3195 }
3196 else
3197 {
3198 as_bad (_(".%s outside of %s"), directive, region);
3199 ignore_rest_of_line ();
3200 return 0;
3201 }
3202 }
3203
3204 /* Return 1 if a directive is in a procedure, -1 if a directive isn't in
3205 a procedure but the unwind directive check is set to warning, 0 if
3206 a directive isn't in a procedure and the unwind directive check is set
3207 to error. */
3208
3209 static int
3210 in_procedure (const char *directive)
3211 {
3212 if (unwind.proc_pending.sym
3213 && (!unwind.saved_text_seg || strcmp (directive, "endp") == 0))
3214 return 1;
3215 return unwind_diagnostic ("procedure", directive);
3216 }
3217
3218 /* Return 1 if a directive is in a prologue, -1 if a directive isn't in
3219 a prologue but the unwind directive check is set to warning, 0 if
3220 a directive isn't in a prologue and the unwind directive check is set
3221 to error. */
3222
3223 static int
3224 in_prologue (const char *directive)
3225 {
3226 int in = in_procedure (directive);
3227
3228 if (in > 0 && !unwind.prologue)
3229 in = unwind_diagnostic ("prologue", directive);
3230 check_pending_save ();
3231 return in;
3232 }
3233
3234 /* Return 1 if a directive is in a body, -1 if a directive isn't in
3235 a body but the unwind directive check is set to warning, 0 if
3236 a directive isn't in a body and the unwind directive check is set
3237 to error. */
3238
3239 static int
3240 in_body (const char *directive)
3241 {
3242 int in = in_procedure (directive);
3243
3244 if (in > 0 && !unwind.body)
3245 in = unwind_diagnostic ("body region", directive);
3246 return in;
3247 }
3248
3249 static void
3250 add_unwind_entry (unw_rec_list *ptr, int sep)
3251 {
3252 if (ptr)
3253 {
3254 if (unwind.tail)
3255 unwind.tail->next = ptr;
3256 else
3257 unwind.list = ptr;
3258 unwind.tail = ptr;
3259
3260 /* The current entry can in fact be a chain of unwind entries. */
3261 if (unwind.current_entry == NULL)
3262 unwind.current_entry = ptr;
3263 }
3264
3265 /* The current entry can in fact be a chain of unwind entries. */
3266 if (unwind.current_entry == NULL)
3267 unwind.current_entry = ptr;
3268
3269 if (sep == ',')
3270 {
3271 char *name;
3272 /* Parse a tag permitted for the current directive. */
3273 int ch;
3274
3275 SKIP_WHITESPACE ();
3276 ch = get_symbol_name (&name);
3277 /* FIXME: For now, just issue a warning that this isn't implemented. */
3278 {
3279 static int warned;
3280
3281 if (!warned)
3282 {
3283 warned = 1;
3284 as_warn (_("Tags on unwind pseudo-ops aren't supported, yet"));
3285 }
3286 }
3287 (void) restore_line_pointer (ch);
3288 }
3289 if (sep != NOT_A_CHAR)
3290 demand_empty_rest_of_line ();
3291 }
3292
3293 static void
3294 dot_fframe (int dummy ATTRIBUTE_UNUSED)
3295 {
3296 expressionS e;
3297 int sep;
3298
3299 if (!in_prologue ("fframe"))
3300 return;
3301
3302 sep = parse_operand_and_eval (&e, ',');
3303
3304 if (e.X_op != O_constant)
3305 {
3306 as_bad (_("First operand to .fframe must be a constant"));
3307 e.X_add_number = 0;
3308 }
3309 add_unwind_entry (output_mem_stack_f (e.X_add_number), sep);
3310 }
3311
3312 static void
3313 dot_vframe (int dummy ATTRIBUTE_UNUSED)
3314 {
3315 expressionS e;
3316 unsigned reg;
3317 int sep;
3318
3319 if (!in_prologue ("vframe"))
3320 return;
3321
3322 sep = parse_operand_and_eval (&e, ',');
3323 reg = e.X_add_number - REG_GR;
3324 if (e.X_op != O_register || reg > 127)
3325 {
3326 as_bad (_("First operand to .vframe must be a general register"));
3327 reg = 0;
3328 }
3329 add_unwind_entry (output_mem_stack_v (), sep);
3330 if (! (unwind.prologue_mask & 2))
3331 add_unwind_entry (output_psp_gr (reg), NOT_A_CHAR);
3332 else if (reg != unwind.prologue_gr
3333 + (unsigned) popcount (unwind.prologue_mask & -(2 << 1)))
3334 as_warn (_("Operand of .vframe contradicts .prologue"));
3335 }
3336
3337 static void
3338 dot_vframesp (int psp)
3339 {
3340 expressionS e;
3341 int sep;
3342
3343 if (psp)
3344 as_warn (_(".vframepsp is meaningless, assuming .vframesp was meant"));
3345
3346 if (!in_prologue ("vframesp"))
3347 return;
3348
3349 sep = parse_operand_and_eval (&e, ',');
3350 if (e.X_op != O_constant)
3351 {
3352 as_bad (_("Operand to .vframesp must be a constant (sp-relative offset)"));
3353 e.X_add_number = 0;
3354 }
3355 add_unwind_entry (output_mem_stack_v (), sep);
3356 add_unwind_entry (output_psp_sprel (e.X_add_number), NOT_A_CHAR);
3357 }
3358
3359 static void
3360 dot_save (int dummy ATTRIBUTE_UNUSED)
3361 {
3362 expressionS e1, e2;
3363 unsigned reg1, reg2;
3364 int sep;
3365
3366 if (!in_prologue ("save"))
3367 return;
3368
3369 sep = parse_operand_and_eval (&e1, ',');
3370 if (sep == ',')
3371 sep = parse_operand_and_eval (&e2, ',');
3372 else
3373 e2.X_op = O_absent;
3374
3375 reg1 = e1.X_add_number;
3376 /* Make sure it's a valid ar.xxx reg, OR its br0, aka 'rp'. */
3377 if (e1.X_op != O_register)
3378 {
3379 as_bad (_("First operand to .save not a register"));
3380 reg1 = REG_PR; /* Anything valid is good here. */
3381 }
3382 reg2 = e2.X_add_number - REG_GR;
3383 if (e2.X_op != O_register || reg2 > 127)
3384 {
3385 as_bad (_("Second operand to .save not a valid register"));
3386 reg2 = 0;
3387 }
3388 switch (reg1)
3389 {
3390 case REG_AR + AR_BSP:
3391 add_unwind_entry (output_bsp_when (), sep);
3392 add_unwind_entry (output_bsp_gr (reg2), NOT_A_CHAR);
3393 break;
3394 case REG_AR + AR_BSPSTORE:
3395 add_unwind_entry (output_bspstore_when (), sep);
3396 add_unwind_entry (output_bspstore_gr (reg2), NOT_A_CHAR);
3397 break;
3398 case REG_AR + AR_RNAT:
3399 add_unwind_entry (output_rnat_when (), sep);
3400 add_unwind_entry (output_rnat_gr (reg2), NOT_A_CHAR);
3401 break;
3402 case REG_AR + AR_UNAT:
3403 add_unwind_entry (output_unat_when (), sep);
3404 add_unwind_entry (output_unat_gr (reg2), NOT_A_CHAR);
3405 break;
3406 case REG_AR + AR_FPSR:
3407 add_unwind_entry (output_fpsr_when (), sep);
3408 add_unwind_entry (output_fpsr_gr (reg2), NOT_A_CHAR);
3409 break;
3410 case REG_AR + AR_PFS:
3411 add_unwind_entry (output_pfs_when (), sep);
3412 if (! (unwind.prologue_mask & 4))
3413 add_unwind_entry (output_pfs_gr (reg2), NOT_A_CHAR);
3414 else if (reg2 != unwind.prologue_gr
3415 + (unsigned) popcount (unwind.prologue_mask & -(4 << 1)))
3416 as_warn (_("Second operand of .save contradicts .prologue"));
3417 break;
3418 case REG_AR + AR_LC:
3419 add_unwind_entry (output_lc_when (), sep);
3420 add_unwind_entry (output_lc_gr (reg2), NOT_A_CHAR);
3421 break;
3422 case REG_BR:
3423 add_unwind_entry (output_rp_when (), sep);
3424 if (! (unwind.prologue_mask & 8))
3425 add_unwind_entry (output_rp_gr (reg2), NOT_A_CHAR);
3426 else if (reg2 != unwind.prologue_gr)
3427 as_warn (_("Second operand of .save contradicts .prologue"));
3428 break;
3429 case REG_PR:
3430 add_unwind_entry (output_preds_when (), sep);
3431 if (! (unwind.prologue_mask & 1))
3432 add_unwind_entry (output_preds_gr (reg2), NOT_A_CHAR);
3433 else if (reg2 != unwind.prologue_gr
3434 + (unsigned) popcount (unwind.prologue_mask & -(1 << 1)))
3435 as_warn (_("Second operand of .save contradicts .prologue"));
3436 break;
3437 case REG_PRIUNAT:
3438 add_unwind_entry (output_priunat_when_gr (), sep);
3439 add_unwind_entry (output_priunat_gr (reg2), NOT_A_CHAR);
3440 break;
3441 default:
3442 as_bad (_("First operand to .save not a valid register"));
3443 add_unwind_entry (NULL, sep);
3444 break;
3445 }
3446 }
3447
3448 static void
3449 dot_restore (int dummy ATTRIBUTE_UNUSED)
3450 {
3451 expressionS e1;
3452 unsigned long ecount; /* # of _additional_ regions to pop */
3453 int sep;
3454
3455 if (!in_body ("restore"))
3456 return;
3457
3458 sep = parse_operand_and_eval (&e1, ',');
3459 if (e1.X_op != O_register || e1.X_add_number != REG_GR + 12)
3460 as_bad (_("First operand to .restore must be stack pointer (sp)"));
3461
3462 if (sep == ',')
3463 {
3464 expressionS e2;
3465
3466 sep = parse_operand_and_eval (&e2, ',');
3467 if (e2.X_op != O_constant || e2.X_add_number < 0)
3468 {
3469 as_bad (_("Second operand to .restore must be a constant >= 0"));
3470 e2.X_add_number = 0;
3471 }
3472 ecount = e2.X_add_number;
3473 }
3474 else
3475 ecount = unwind.prologue_count - 1;
3476
3477 if (ecount >= unwind.prologue_count)
3478 {
3479 as_bad (_("Epilogue count of %lu exceeds number of nested prologues (%u)"),
3480 ecount + 1, unwind.prologue_count);
3481 ecount = 0;
3482 }
3483
3484 add_unwind_entry (output_epilogue (ecount), sep);
3485
3486 if (ecount < unwind.prologue_count)
3487 unwind.prologue_count -= ecount + 1;
3488 else
3489 unwind.prologue_count = 0;
3490 }
3491
3492 static void
3493 dot_restorereg (int pred)
3494 {
3495 unsigned int qp, ab, reg;
3496 expressionS e;
3497 int sep;
3498 const char * const po = pred ? "restorereg.p" : "restorereg";
3499
3500 if (!in_procedure (po))
3501 return;
3502
3503 if (pred)
3504 sep = parse_predicate_and_operand (&e, &qp, po);
3505 else
3506 {
3507 sep = parse_operand_and_eval (&e, ',');
3508 qp = 0;
3509 }
3510 convert_expr_to_ab_reg (&e, &ab, &reg, po, 1 + pred);
3511
3512 add_unwind_entry (output_spill_reg (ab, reg, 0, 0, qp), sep);
3513 }
3514
3515 static const char *special_linkonce_name[] =
3516 {
3517 ".gnu.linkonce.ia64unw.", ".gnu.linkonce.ia64unwi."
3518 };
3519
3520 static void
3521 start_unwind_section (const segT text_seg, int sec_index)
3522 {
3523 /*
3524 Use a slightly ugly scheme to derive the unwind section names from
3525 the text section name:
3526
3527 text sect. unwind table sect.
3528 name: name: comments:
3529 ---------- ----------------- --------------------------------
3530 .text .IA_64.unwind
3531 .text.foo .IA_64.unwind.text.foo
3532 .foo .IA_64.unwind.foo
3533 .gnu.linkonce.t.foo
3534 .gnu.linkonce.ia64unw.foo
3535 _info .IA_64.unwind_info gas issues error message (ditto)
3536 _infoFOO .IA_64.unwind_infoFOO gas issues error message (ditto)
3537
3538 This mapping is done so that:
3539
3540 (a) An object file with unwind info only in .text will use
3541 unwind section names .IA_64.unwind and .IA_64.unwind_info.
3542 This follows the letter of the ABI and also ensures backwards
3543 compatibility with older toolchains.
3544
3545 (b) An object file with unwind info in multiple text sections
3546 will use separate unwind sections for each text section.
3547 This allows us to properly set the "sh_info" and "sh_link"
3548 fields in SHT_IA_64_UNWIND as required by the ABI and also
3549 lets GNU ld support programs with multiple segments
3550 containing unwind info (as might be the case for certain
3551 embedded applications).
3552
3553 (c) An error is issued if there would be a name clash.
3554 */
3555
3556 const char *text_name, *sec_text_name;
3557 char *sec_name;
3558 const char *prefix = special_section_name [sec_index];
3559 const char *suffix;
3560
3561 sec_text_name = segment_name (text_seg);
3562 text_name = sec_text_name;
3563 if (strncmp (text_name, "_info", 5) == 0)
3564 {
3565 as_bad (_("Illegal section name `%s' (causes unwind section name clash)"),
3566 text_name);
3567 ignore_rest_of_line ();
3568 return;
3569 }
3570 if (strcmp (text_name, ".text") == 0)
3571 text_name = "";
3572
3573 /* Build the unwind section name by appending the (possibly stripped)
3574 text section name to the unwind prefix. */
3575 suffix = text_name;
3576 if (strncmp (text_name, ".gnu.linkonce.t.",
3577 sizeof (".gnu.linkonce.t.") - 1) == 0)
3578 {
3579 prefix = special_linkonce_name [sec_index - SPECIAL_SECTION_UNWIND];
3580 suffix += sizeof (".gnu.linkonce.t.") - 1;
3581 }
3582
3583 sec_name = concat (prefix, suffix, NULL);
3584
3585 /* Handle COMDAT group. */
3586 if ((text_seg->flags & SEC_LINK_ONCE) != 0
3587 && (elf_section_flags (text_seg) & SHF_GROUP) != 0)
3588 {
3589 char *section;
3590 const char *group_name = elf_group_name (text_seg);
3591
3592 if (group_name == NULL)
3593 {
3594 as_bad (_("Group section `%s' has no group signature"),
3595 sec_text_name);
3596 ignore_rest_of_line ();
3597 free (sec_name);
3598 return;
3599 }
3600
3601 /* We have to construct a fake section directive. */
3602 section = concat (sec_name, ",\"aG\",@progbits,", group_name, ",comdat", NULL);
3603 set_section (section);
3604 free (section);
3605 }
3606 else
3607 {
3608 set_section (sec_name);
3609 bfd_set_section_flags (now_seg, SEC_LOAD | SEC_ALLOC | SEC_READONLY);
3610 }
3611
3612 elf_linked_to_section (now_seg) = text_seg;
3613 free (sec_name);
3614 }
3615
3616 static void
3617 generate_unwind_image (const segT text_seg)
3618 {
3619 int size, pad;
3620 unw_rec_list *list;
3621
3622 /* Mark the end of the unwind info, so that we can compute the size of the
3623 last unwind region. */
3624 add_unwind_entry (output_endp (), NOT_A_CHAR);
3625
3626 /* Force out pending instructions, to make sure all unwind records have
3627 a valid slot_number field. */
3628 ia64_flush_insns ();
3629
3630 /* Generate the unwind record. */
3631 list = optimize_unw_records (unwind.list);
3632 fixup_unw_records (list, 1);
3633 size = calc_record_size (list);
3634
3635 if (size > 0 || unwind.force_unwind_entry)
3636 {
3637 unwind.force_unwind_entry = 0;
3638 /* pad to pointer-size boundary. */
3639 pad = size % md.pointer_size;
3640 if (pad != 0)
3641 size += md.pointer_size - pad;
3642 /* Add 8 for the header. */
3643 size += 8;
3644 /* Add a pointer for the personality offset. */
3645 if (unwind.personality_routine)
3646 size += md.pointer_size;
3647 }
3648
3649 /* If there are unwind records, switch sections, and output the info. */
3650 if (size != 0)
3651 {
3652 expressionS exp;
3653 bfd_reloc_code_real_type reloc;
3654
3655 start_unwind_section (text_seg, SPECIAL_SECTION_UNWIND_INFO);
3656
3657 /* Make sure the section has 4 byte alignment for ILP32 and
3658 8 byte alignment for LP64. */
3659 frag_align (md.pointer_size_shift, 0, 0);
3660 record_alignment (now_seg, md.pointer_size_shift);
3661
3662 /* Set expression which points to start of unwind descriptor area. */
3663 unwind.info = expr_build_dot ();
3664
3665 frag_var (rs_machine_dependent, size, size, 0, 0,
3666 (offsetT) (long) unwind.personality_routine,
3667 (char *) list);
3668
3669 /* Add the personality address to the image. */
3670 if (unwind.personality_routine != 0)
3671 {
3672 exp.X_op = O_symbol;
3673 exp.X_add_symbol = unwind.personality_routine;
3674 exp.X_add_number = 0;
3675
3676 if (md.flags & EF_IA_64_BE)
3677 {
3678 if (md.flags & EF_IA_64_ABI64)
3679 reloc = BFD_RELOC_IA64_LTOFF_FPTR64MSB;
3680 else
3681 reloc = BFD_RELOC_IA64_LTOFF_FPTR32MSB;
3682 }
3683 else
3684 {
3685 if (md.flags & EF_IA_64_ABI64)
3686 reloc = BFD_RELOC_IA64_LTOFF_FPTR64LSB;
3687 else
3688 reloc = BFD_RELOC_IA64_LTOFF_FPTR32LSB;
3689 }
3690
3691 fix_new_exp (frag_now, frag_now_fix () - md.pointer_size,
3692 md.pointer_size, &exp, 0, reloc);
3693 unwind.personality_routine = 0;
3694 }
3695 }
3696
3697 free_saved_prologue_counts ();
3698 unwind.list = unwind.tail = unwind.current_entry = NULL;
3699 }
3700
3701 static void
3702 dot_handlerdata (int dummy ATTRIBUTE_UNUSED)
3703 {
3704 if (!in_procedure ("handlerdata"))
3705 return;
3706 unwind.force_unwind_entry = 1;
3707
3708 /* Remember which segment we're in so we can switch back after .endp */
3709 unwind.saved_text_seg = now_seg;
3710 unwind.saved_text_subseg = now_subseg;
3711
3712 /* Generate unwind info into unwind-info section and then leave that
3713 section as the currently active one so dataXX directives go into
3714 the language specific data area of the unwind info block. */
3715 generate_unwind_image (now_seg);
3716 demand_empty_rest_of_line ();
3717 }
3718
3719 static void
3720 dot_unwentry (int dummy ATTRIBUTE_UNUSED)
3721 {
3722 if (!in_procedure ("unwentry"))
3723 return;
3724 unwind.force_unwind_entry = 1;
3725 demand_empty_rest_of_line ();
3726 }
3727
3728 static void
3729 dot_altrp (int dummy ATTRIBUTE_UNUSED)
3730 {
3731 expressionS e;
3732 unsigned reg;
3733
3734 if (!in_prologue ("altrp"))
3735 return;
3736
3737 parse_operand_and_eval (&e, 0);
3738 reg = e.X_add_number - REG_BR;
3739 if (e.X_op != O_register || reg > 7)
3740 {
3741 as_bad (_("First operand to .altrp not a valid branch register"));
3742 reg = 0;
3743 }
3744 add_unwind_entry (output_rp_br (reg), 0);
3745 }
3746
3747 static void
3748 dot_savemem (int psprel)
3749 {
3750 expressionS e1, e2;
3751 int sep;
3752 int reg1, val;
3753 const char * const po = psprel ? "savepsp" : "savesp";
3754
3755 if (!in_prologue (po))
3756 return;
3757
3758 sep = parse_operand_and_eval (&e1, ',');
3759 if (sep == ',')
3760 sep = parse_operand_and_eval (&e2, ',');
3761 else
3762 e2.X_op = O_absent;
3763
3764 reg1 = e1.X_add_number;
3765 val = e2.X_add_number;
3766
3767 /* Make sure it's a valid ar.xxx reg, OR its br0, aka 'rp'. */
3768 if (e1.X_op != O_register)
3769 {
3770 as_bad (_("First operand to .%s not a register"), po);
3771 reg1 = REG_PR; /* Anything valid is good here. */
3772 }
3773 if (e2.X_op != O_constant)
3774 {
3775 as_bad (_("Second operand to .%s not a constant"), po);
3776 val = 0;
3777 }
3778
3779 switch (reg1)
3780 {
3781 case REG_AR + AR_BSP:
3782 add_unwind_entry (output_bsp_when (), sep);
3783 add_unwind_entry ((psprel
3784 ? output_bsp_psprel
3785 : output_bsp_sprel) (val), NOT_A_CHAR);
3786 break;
3787 case REG_AR + AR_BSPSTORE:
3788 add_unwind_entry (output_bspstore_when (), sep);
3789 add_unwind_entry ((psprel
3790 ? output_bspstore_psprel
3791 : output_bspstore_sprel) (val), NOT_A_CHAR);
3792 break;
3793 case REG_AR + AR_RNAT:
3794 add_unwind_entry (output_rnat_when (), sep);
3795 add_unwind_entry ((psprel
3796 ? output_rnat_psprel
3797 : output_rnat_sprel) (val), NOT_A_CHAR);
3798 break;
3799 case REG_AR + AR_UNAT:
3800 add_unwind_entry (output_unat_when (), sep);
3801 add_unwind_entry ((psprel
3802 ? output_unat_psprel
3803 : output_unat_sprel) (val), NOT_A_CHAR);
3804 break;
3805 case REG_AR + AR_FPSR:
3806 add_unwind_entry (output_fpsr_when (), sep);
3807 add_unwind_entry ((psprel
3808 ? output_fpsr_psprel
3809 : output_fpsr_sprel) (val), NOT_A_CHAR);
3810 break;
3811 case REG_AR + AR_PFS:
3812 add_unwind_entry (output_pfs_when (), sep);
3813 add_unwind_entry ((psprel
3814 ? output_pfs_psprel
3815 : output_pfs_sprel) (val), NOT_A_CHAR);
3816 break;
3817 case REG_AR + AR_LC:
3818 add_unwind_entry (output_lc_when (), sep);
3819 add_unwind_entry ((psprel
3820 ? output_lc_psprel
3821 : output_lc_sprel) (val), NOT_A_CHAR);
3822 break;
3823 case REG_BR:
3824 add_unwind_entry (output_rp_when (), sep);
3825 add_unwind_entry ((psprel
3826 ? output_rp_psprel
3827 : output_rp_sprel) (val), NOT_A_CHAR);
3828 break;
3829 case REG_PR:
3830 add_unwind_entry (output_preds_when (), sep);
3831 add_unwind_entry ((psprel
3832 ? output_preds_psprel
3833 : output_preds_sprel) (val), NOT_A_CHAR);
3834 break;
3835 case REG_PRIUNAT:
3836 add_unwind_entry (output_priunat_when_mem (), sep);
3837 add_unwind_entry ((psprel
3838 ? output_priunat_psprel
3839 : output_priunat_sprel) (val), NOT_A_CHAR);
3840 break;
3841 default:
3842 as_bad (_("First operand to .%s not a valid register"), po);
3843 add_unwind_entry (NULL, sep);
3844 break;
3845 }
3846 }
3847
3848 static void
3849 dot_saveg (int dummy ATTRIBUTE_UNUSED)
3850 {
3851 expressionS e;
3852 unsigned grmask;
3853 int sep;
3854
3855 if (!in_prologue ("save.g"))
3856 return;
3857
3858 sep = parse_operand_and_eval (&e, ',');
3859
3860 grmask = e.X_add_number;
3861 if (e.X_op != O_constant
3862 || e.X_add_number <= 0
3863 || e.X_add_number > 0xf)
3864 {
3865 as_bad (_("First operand to .save.g must be a positive 4-bit constant"));
3866 grmask = 0;
3867 }
3868
3869 if (sep == ',')
3870 {
3871 unsigned reg;
3872 int n = popcount (grmask);
3873
3874 parse_operand_and_eval (&e, 0);
3875 reg = e.X_add_number - REG_GR;
3876 if (e.X_op != O_register || reg > 127)
3877 {
3878 as_bad (_("Second operand to .save.g must be a general register"));
3879 reg = 0;
3880 }
3881 else if (reg > 128U - n)
3882 {
3883 as_bad (_("Second operand to .save.g must be the first of %d general registers"), n);
3884 reg = 0;
3885 }
3886 add_unwind_entry (output_gr_gr (grmask, reg), 0);
3887 }
3888 else
3889 add_unwind_entry (output_gr_mem (grmask), 0);
3890 }
3891
3892 static void
3893 dot_savef (int dummy ATTRIBUTE_UNUSED)
3894 {
3895 expressionS e;
3896
3897 if (!in_prologue ("save.f"))
3898 return;
3899
3900 parse_operand_and_eval (&e, 0);
3901
3902 if (e.X_op != O_constant
3903 || e.X_add_number <= 0
3904 || e.X_add_number > 0xfffff)
3905 {
3906 as_bad (_("Operand to .save.f must be a positive 20-bit constant"));
3907 e.X_add_number = 0;
3908 }
3909 add_unwind_entry (output_fr_mem (e.X_add_number), 0);
3910 }
3911
3912 static void
3913 dot_saveb (int dummy ATTRIBUTE_UNUSED)
3914 {
3915 expressionS e;
3916 unsigned brmask;
3917 int sep;
3918
3919 if (!in_prologue ("save.b"))
3920 return;
3921
3922 sep = parse_operand_and_eval (&e, ',');
3923
3924 brmask = e.X_add_number;
3925 if (e.X_op != O_constant
3926 || e.X_add_number <= 0
3927 || e.X_add_number > 0x1f)
3928 {
3929 as_bad (_("First operand to .save.b must be a positive 5-bit constant"));
3930 brmask = 0;
3931 }
3932
3933 if (sep == ',')
3934 {
3935 unsigned reg;
3936 int n = popcount (brmask);
3937
3938 parse_operand_and_eval (&e, 0);
3939 reg = e.X_add_number - REG_GR;
3940 if (e.X_op != O_register || reg > 127)
3941 {
3942 as_bad (_("Second operand to .save.b must be a general register"));
3943 reg = 0;
3944 }
3945 else if (reg > 128U - n)
3946 {
3947 as_bad (_("Second operand to .save.b must be the first of %d general registers"), n);
3948 reg = 0;
3949 }
3950 add_unwind_entry (output_br_gr (brmask, reg), 0);
3951 }
3952 else
3953 add_unwind_entry (output_br_mem (brmask), 0);
3954 }
3955
3956 static void
3957 dot_savegf (int dummy ATTRIBUTE_UNUSED)
3958 {
3959 expressionS e1, e2;
3960
3961 if (!in_prologue ("save.gf"))
3962 return;
3963
3964 if (parse_operand_and_eval (&e1, ',') == ',')
3965 parse_operand_and_eval (&e2, 0);
3966 else
3967 e2.X_op = O_absent;
3968
3969 if (e1.X_op != O_constant
3970 || e1.X_add_number < 0
3971 || e1.X_add_number > 0xf)
3972 {
3973 as_bad (_("First operand to .save.gf must be a non-negative 4-bit constant"));
3974 e1.X_op = O_absent;
3975 e1.X_add_number = 0;
3976 }
3977 if (e2.X_op != O_constant
3978 || e2.X_add_number < 0
3979 || e2.X_add_number > 0xfffff)
3980 {
3981 as_bad (_("Second operand to .save.gf must be a non-negative 20-bit constant"));
3982 e2.X_op = O_absent;
3983 e2.X_add_number = 0;
3984 }
3985 if (e1.X_op == O_constant
3986 && e2.X_op == O_constant
3987 && e1.X_add_number == 0
3988 && e2.X_add_number == 0)
3989 as_bad (_("Operands to .save.gf may not be both zero"));
3990
3991 add_unwind_entry (output_frgr_mem (e1.X_add_number, e2.X_add_number), 0);
3992 }
3993
3994 static void
3995 dot_spill (int dummy ATTRIBUTE_UNUSED)
3996 {
3997 expressionS e;
3998
3999 if (!in_prologue ("spill"))
4000 return;
4001
4002 parse_operand_and_eval (&e, 0);
4003
4004 if (e.X_op != O_constant)
4005 {
4006 as_bad (_("Operand to .spill must be a constant"));
4007 e.X_add_number = 0;
4008 }
4009 add_unwind_entry (output_spill_base (e.X_add_number), 0);
4010 }
4011
4012 static void
4013 dot_spillreg (int pred)
4014 {
4015 int sep;
4016 unsigned int qp, ab, xy, reg, treg;
4017 expressionS e;
4018 const char * const po = pred ? "spillreg.p" : "spillreg";
4019
4020 if (!in_procedure (po))
4021 return;
4022
4023 if (pred)
4024 sep = parse_predicate_and_operand (&e, &qp, po);
4025 else
4026 {
4027 sep = parse_operand_and_eval (&e, ',');
4028 qp = 0;
4029 }
4030 convert_expr_to_ab_reg (&e, &ab, &reg, po, 1 + pred);
4031
4032 if (sep == ',')
4033 sep = parse_operand_and_eval (&e, ',');
4034 else
4035 e.X_op = O_absent;
4036 convert_expr_to_xy_reg (&e, &xy, &treg, po, 2 + pred);
4037
4038 add_unwind_entry (output_spill_reg (ab, reg, treg, xy, qp), sep);
4039 }
4040
4041 static void
4042 dot_spillmem (int psprel)
4043 {
4044 expressionS e;
4045 int pred = (psprel < 0), sep;
4046 unsigned int qp, ab, reg;
4047 const char * po;
4048
4049 if (pred)
4050 {
4051 psprel = ~psprel;
4052 po = psprel ? "spillpsp.p" : "spillsp.p";
4053 }
4054 else
4055 po = psprel ? "spillpsp" : "spillsp";
4056
4057 if (!in_procedure (po))
4058 return;
4059
4060 if (pred)
4061 sep = parse_predicate_and_operand (&e, &qp, po);
4062 else
4063 {
4064 sep = parse_operand_and_eval (&e, ',');
4065 qp = 0;
4066 }
4067 convert_expr_to_ab_reg (&e, &ab, &reg, po, 1 + pred);
4068
4069 if (sep == ',')
4070 sep = parse_operand_and_eval (&e, ',');
4071 else
4072 e.X_op = O_absent;
4073 if (e.X_op != O_constant)
4074 {
4075 as_bad (_("Operand %d to .%s must be a constant"), 2 + pred, po);
4076 e.X_add_number = 0;
4077 }
4078
4079 if (psprel)
4080 add_unwind_entry (output_spill_psprel (ab, reg, e.X_add_number, qp), sep);
4081 else
4082 add_unwind_entry (output_spill_sprel (ab, reg, e.X_add_number, qp), sep);
4083 }
4084
4085 static unsigned int
4086 get_saved_prologue_count (unsigned long lbl)
4087 {
4088 label_prologue_count *lpc = unwind.saved_prologue_counts;
4089
4090 while (lpc != NULL && lpc->label_number != lbl)
4091 lpc = lpc->next;
4092
4093 if (lpc != NULL)
4094 return lpc->prologue_count;
4095
4096 as_bad (_("Missing .label_state %ld"), lbl);
4097 return 1;
4098 }
4099
4100 static void
4101 save_prologue_count (unsigned long lbl, unsigned int count)
4102 {
4103 label_prologue_count *lpc = unwind.saved_prologue_counts;
4104
4105 while (lpc != NULL && lpc->label_number != lbl)
4106 lpc = lpc->next;
4107
4108 if (lpc != NULL)
4109 lpc->prologue_count = count;
4110 else
4111 {
4112 label_prologue_count *new_lpc = XNEW (label_prologue_count);
4113
4114 new_lpc->next = unwind.saved_prologue_counts;
4115 new_lpc->label_number = lbl;
4116 new_lpc->prologue_count = count;
4117 unwind.saved_prologue_counts = new_lpc;
4118 }
4119 }
4120
4121 static void
4122 free_saved_prologue_counts (void)
4123 {
4124 label_prologue_count *lpc = unwind.saved_prologue_counts;
4125 label_prologue_count *next;
4126
4127 while (lpc != NULL)
4128 {
4129 next = lpc->next;
4130 free (lpc);
4131 lpc = next;
4132 }
4133
4134 unwind.saved_prologue_counts = NULL;
4135 }
4136
4137 static void
4138 dot_label_state (int dummy ATTRIBUTE_UNUSED)
4139 {
4140 expressionS e;
4141
4142 if (!in_body ("label_state"))
4143 return;
4144
4145 parse_operand_and_eval (&e, 0);
4146 if (e.X_op == O_constant)
4147 save_prologue_count (e.X_add_number, unwind.prologue_count);
4148 else
4149 {
4150 as_bad (_("Operand to .label_state must be a constant"));
4151 e.X_add_number = 0;
4152 }
4153 add_unwind_entry (output_label_state (e.X_add_number), 0);
4154 }
4155
4156 static void
4157 dot_copy_state (int dummy ATTRIBUTE_UNUSED)
4158 {
4159 expressionS e;
4160
4161 if (!in_body ("copy_state"))
4162 return;
4163
4164 parse_operand_and_eval (&e, 0);
4165 if (e.X_op == O_constant)
4166 unwind.prologue_count = get_saved_prologue_count (e.X_add_number);
4167 else
4168 {
4169 as_bad (_("Operand to .copy_state must be a constant"));
4170 e.X_add_number = 0;
4171 }
4172 add_unwind_entry (output_copy_state (e.X_add_number), 0);
4173 }
4174
4175 static void
4176 dot_unwabi (int dummy ATTRIBUTE_UNUSED)
4177 {
4178 expressionS e1, e2;
4179 unsigned char sep;
4180
4181 if (!in_prologue ("unwabi"))
4182 return;
4183
4184 sep = parse_operand_and_eval (&e1, ',');
4185 if (sep == ',')
4186 parse_operand_and_eval (&e2, 0);
4187 else
4188 e2.X_op = O_absent;
4189
4190 if (e1.X_op != O_constant)
4191 {
4192 as_bad (_("First operand to .unwabi must be a constant"));
4193 e1.X_add_number = 0;
4194 }
4195
4196 if (e2.X_op != O_constant)
4197 {
4198 as_bad (_("Second operand to .unwabi must be a constant"));
4199 e2.X_add_number = 0;
4200 }
4201
4202 add_unwind_entry (output_unwabi (e1.X_add_number, e2.X_add_number), 0);
4203 }
4204
4205 static void
4206 dot_personality (int dummy ATTRIBUTE_UNUSED)
4207 {
4208 char *name, *p, c;
4209
4210 if (!in_procedure ("personality"))
4211 return;
4212 SKIP_WHITESPACE ();
4213 c = get_symbol_name (&name);
4214 p = input_line_pointer;
4215 unwind.personality_routine = symbol_find_or_make (name);
4216 unwind.force_unwind_entry = 1;
4217 *p = c;
4218 SKIP_WHITESPACE_AFTER_NAME ();
4219 demand_empty_rest_of_line ();
4220 }
4221
4222 static void
4223 dot_proc (int dummy ATTRIBUTE_UNUSED)
4224 {
4225 char *name, *p, c;
4226 symbolS *sym;
4227 proc_pending *pending, *last_pending;
4228
4229 if (unwind.proc_pending.sym)
4230 {
4231 (md.unwind_check == unwind_check_warning
4232 ? as_warn
4233 : as_bad) (_("Missing .endp after previous .proc"));
4234 while (unwind.proc_pending.next)
4235 {
4236 pending = unwind.proc_pending.next;
4237 unwind.proc_pending.next = pending->next;
4238 free (pending);
4239 }
4240 }
4241 last_pending = NULL;
4242
4243 /* Parse names of main and alternate entry points and mark them as
4244 function symbols: */
4245 while (1)
4246 {
4247 SKIP_WHITESPACE ();
4248 c = get_symbol_name (&name);
4249 p = input_line_pointer;
4250 if (!*name)
4251 as_bad (_("Empty argument of .proc"));
4252 else
4253 {
4254 sym = symbol_find_or_make (name);
4255 if (S_IS_DEFINED (sym))
4256 as_bad (_("`%s' was already defined"), name);
4257 else if (!last_pending)
4258 {
4259 unwind.proc_pending.sym = sym;
4260 last_pending = &unwind.proc_pending;
4261 }
4262 else
4263 {
4264 pending = XNEW (proc_pending);
4265 pending->sym = sym;
4266 last_pending = last_pending->next = pending;
4267 }
4268 symbol_get_bfdsym (sym)->flags |= BSF_FUNCTION;
4269 }
4270 *p = c;
4271 SKIP_WHITESPACE_AFTER_NAME ();
4272 if (*input_line_pointer != ',')
4273 break;
4274 ++input_line_pointer;
4275 }
4276 if (!last_pending)
4277 {
4278 unwind.proc_pending.sym = expr_build_dot ();
4279 last_pending = &unwind.proc_pending;
4280 }
4281 last_pending->next = NULL;
4282 demand_empty_rest_of_line ();
4283 do_align (4, NULL, 0, 0);
4284
4285 unwind.prologue = 0;
4286 unwind.prologue_count = 0;
4287 unwind.body = 0;
4288 unwind.insn = 0;
4289 unwind.list = unwind.tail = unwind.current_entry = NULL;
4290 unwind.personality_routine = 0;
4291 }
4292
4293 static void
4294 dot_body (int dummy ATTRIBUTE_UNUSED)
4295 {
4296 if (!in_procedure ("body"))
4297 return;
4298 if (!unwind.prologue && !unwind.body && unwind.insn)
4299 as_warn (_("Initial .body should precede any instructions"));
4300 check_pending_save ();
4301
4302 unwind.prologue = 0;
4303 unwind.prologue_mask = 0;
4304 unwind.body = 1;
4305
4306 add_unwind_entry (output_body (), 0);
4307 }
4308
4309 static void
4310 dot_prologue (int dummy ATTRIBUTE_UNUSED)
4311 {
4312 unsigned mask = 0, grsave = 0;
4313
4314 if (!in_procedure ("prologue"))
4315 return;
4316 if (unwind.prologue)
4317 {
4318 as_bad (_(".prologue within prologue"));
4319 ignore_rest_of_line ();
4320 return;
4321 }
4322 if (!unwind.body && unwind.insn)
4323 as_warn (_("Initial .prologue should precede any instructions"));
4324
4325 if (!is_it_end_of_statement ())
4326 {
4327 expressionS e;
4328 int n, sep = parse_operand_and_eval (&e, ',');
4329
4330 if (e.X_op != O_constant
4331 || e.X_add_number < 0
4332 || e.X_add_number > 0xf)
4333 as_bad (_("First operand to .prologue must be a positive 4-bit constant"));
4334 else if (e.X_add_number == 0)
4335 as_warn (_("Pointless use of zero first operand to .prologue"));
4336 else
4337 mask = e.X_add_number;
4338
4339 n = popcount (mask);
4340
4341 if (sep == ',')
4342 parse_operand_and_eval (&e, 0);
4343 else
4344 e.X_op = O_absent;
4345
4346 if (e.X_op == O_constant
4347 && e.X_add_number >= 0
4348 && e.X_add_number < 128)
4349 {
4350 if (md.unwind_check == unwind_check_error)
4351 as_warn (_("Using a constant as second operand to .prologue is deprecated"));
4352 grsave = e.X_add_number;
4353 }
4354 else if (e.X_op != O_register
4355 || (grsave = e.X_add_number - REG_GR) > 127)
4356 {
4357 as_bad (_("Second operand to .prologue must be a general register"));
4358 grsave = 0;
4359 }
4360 else if (grsave > 128U - n)
4361 {
4362 as_bad (_("Second operand to .prologue must be the first of %d general registers"), n);
4363 grsave = 0;
4364 }
4365 }
4366
4367 if (mask)
4368 add_unwind_entry (output_prologue_gr (mask, grsave), 0);
4369 else
4370 add_unwind_entry (output_prologue (), 0);
4371
4372 unwind.prologue = 1;
4373 unwind.prologue_mask = mask;
4374 unwind.prologue_gr = grsave;
4375 unwind.body = 0;
4376 ++unwind.prologue_count;
4377 }
4378
4379 static void
4380 dot_endp (int dummy ATTRIBUTE_UNUSED)
4381 {
4382 expressionS e;
4383 int bytes_per_address;
4384 long where;
4385 segT saved_seg;
4386 subsegT saved_subseg;
4387 proc_pending *pending;
4388 int unwind_check = md.unwind_check;
4389
4390 md.unwind_check = unwind_check_error;
4391 if (!in_procedure ("endp"))
4392 return;
4393 md.unwind_check = unwind_check;
4394
4395 if (unwind.saved_text_seg)
4396 {
4397 saved_seg = unwind.saved_text_seg;
4398 saved_subseg = unwind.saved_text_subseg;
4399 unwind.saved_text_seg = NULL;
4400 }
4401 else
4402 {
4403 saved_seg = now_seg;
4404 saved_subseg = now_subseg;
4405 }
4406
4407 insn_group_break (1, 0, 0);
4408
4409 /* If there wasn't a .handlerdata, we haven't generated an image yet. */
4410 if (!unwind.info)
4411 generate_unwind_image (saved_seg);
4412
4413 if (unwind.info || unwind.force_unwind_entry)
4414 {
4415 symbolS *proc_end;
4416
4417 subseg_set (md.last_text_seg, 0);
4418 proc_end = expr_build_dot ();
4419
4420 start_unwind_section (saved_seg, SPECIAL_SECTION_UNWIND);
4421
4422 /* Make sure that section has 4 byte alignment for ILP32 and
4423 8 byte alignment for LP64. */
4424 record_alignment (now_seg, md.pointer_size_shift);
4425
4426 /* Need space for 3 pointers for procedure start, procedure end,
4427 and unwind info. */
4428 memset (frag_more (3 * md.pointer_size), 0, 3 * md.pointer_size);
4429 where = frag_now_fix () - (3 * md.pointer_size);
4430 bytes_per_address = bfd_arch_bits_per_address (stdoutput) / 8;
4431
4432 /* Issue the values of a) Proc Begin, b) Proc End, c) Unwind Record. */
4433 e.X_op = O_pseudo_fixup;
4434 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4435 e.X_add_number = 0;
4436 if (!S_IS_LOCAL (unwind.proc_pending.sym)
4437 && S_IS_DEFINED (unwind.proc_pending.sym))
4438 e.X_add_symbol
4439 = symbol_temp_new (S_GET_SEGMENT (unwind.proc_pending.sym),
4440 symbol_get_frag (unwind.proc_pending.sym),
4441 S_GET_VALUE (unwind.proc_pending.sym));
4442 else
4443 e.X_add_symbol = unwind.proc_pending.sym;
4444 ia64_cons_fix_new (frag_now, where, bytes_per_address, &e,
4445 BFD_RELOC_NONE);
4446
4447 e.X_op = O_pseudo_fixup;
4448 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4449 e.X_add_number = 0;
4450 e.X_add_symbol = proc_end;
4451 ia64_cons_fix_new (frag_now, where + bytes_per_address,
4452 bytes_per_address, &e, BFD_RELOC_NONE);
4453
4454 if (unwind.info)
4455 {
4456 e.X_op = O_pseudo_fixup;
4457 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4458 e.X_add_number = 0;
4459 e.X_add_symbol = unwind.info;
4460 ia64_cons_fix_new (frag_now, where + (bytes_per_address * 2),
4461 bytes_per_address, &e, BFD_RELOC_NONE);
4462 }
4463 }
4464 subseg_set (saved_seg, saved_subseg);
4465
4466 /* Set symbol sizes. */
4467 pending = &unwind.proc_pending;
4468 if (S_GET_NAME (pending->sym))
4469 {
4470 do
4471 {
4472 symbolS *sym = pending->sym;
4473
4474 if (!S_IS_DEFINED (sym))
4475 as_bad (_("`%s' was not defined within procedure"), S_GET_NAME (sym));
4476 else if (S_GET_SIZE (sym) == 0
4477 && symbol_get_obj (sym)->size == NULL)
4478 {
4479 fragS *frag = symbol_get_frag (sym);
4480
4481 if (frag)
4482 {
4483 if (frag == frag_now && SEG_NORMAL (now_seg))
4484 S_SET_SIZE (sym, frag_now_fix () - S_GET_VALUE (sym));
4485 else
4486 {
4487 symbol_get_obj (sym)->size = XNEW (expressionS);
4488 symbol_get_obj (sym)->size->X_op = O_subtract;
4489 symbol_get_obj (sym)->size->X_add_symbol
4490 = symbol_new (FAKE_LABEL_NAME, now_seg,
4491 frag_now, frag_now_fix ());
4492 symbol_get_obj (sym)->size->X_op_symbol = sym;
4493 symbol_get_obj (sym)->size->X_add_number = 0;
4494 }
4495 }
4496 }
4497 } while ((pending = pending->next) != NULL);
4498 }
4499
4500 /* Parse names of main and alternate entry points. */
4501 while (1)
4502 {
4503 char *name, *p, c;
4504
4505 SKIP_WHITESPACE ();
4506 c = get_symbol_name (&name);
4507 p = input_line_pointer;
4508 if (!*name)
4509 (md.unwind_check == unwind_check_warning
4510 ? as_warn
4511 : as_bad) (_("Empty argument of .endp"));
4512 else
4513 {
4514 symbolS *sym = symbol_find (name);
4515
4516 for (pending = &unwind.proc_pending; pending; pending = pending->next)
4517 {
4518 if (sym == pending->sym)
4519 {
4520 pending->sym = NULL;
4521 break;
4522 }
4523 }
4524 if (!sym || !pending)
4525 as_warn (_("`%s' was not specified with previous .proc"), name);
4526 }
4527 *p = c;
4528 SKIP_WHITESPACE_AFTER_NAME ();
4529 if (*input_line_pointer != ',')
4530 break;
4531 ++input_line_pointer;
4532 }
4533 demand_empty_rest_of_line ();
4534
4535 /* Deliberately only checking for the main entry point here; the
4536 language spec even says all arguments to .endp are ignored. */
4537 if (unwind.proc_pending.sym
4538 && S_GET_NAME (unwind.proc_pending.sym)
4539 && strcmp (S_GET_NAME (unwind.proc_pending.sym), FAKE_LABEL_NAME))
4540 as_warn (_("`%s' should be an operand to this .endp"),
4541 S_GET_NAME (unwind.proc_pending.sym));
4542 while (unwind.proc_pending.next)
4543 {
4544 pending = unwind.proc_pending.next;
4545 unwind.proc_pending.next = pending->next;
4546 free (pending);
4547 }
4548 unwind.proc_pending.sym = unwind.info = NULL;
4549 }
4550
4551 static void
4552 dot_template (int template_val)
4553 {
4554 CURR_SLOT.user_template = template_val;
4555 }
4556
4557 static void
4558 dot_regstk (int dummy ATTRIBUTE_UNUSED)
4559 {
4560 int ins, locs, outs, rots;
4561
4562 if (is_it_end_of_statement ())
4563 ins = locs = outs = rots = 0;
4564 else
4565 {
4566 ins = get_absolute_expression ();
4567 if (*input_line_pointer++ != ',')
4568 goto err;
4569 locs = get_absolute_expression ();
4570 if (*input_line_pointer++ != ',')
4571 goto err;
4572 outs = get_absolute_expression ();
4573 if (*input_line_pointer++ != ',')
4574 goto err;
4575 rots = get_absolute_expression ();
4576 }
4577 set_regstack (ins, locs, outs, rots);
4578 return;
4579
4580 err:
4581 as_bad (_("Comma expected"));
4582 ignore_rest_of_line ();
4583 }
4584
4585 static void
4586 dot_rot (int type)
4587 {
4588 offsetT num_regs;
4589 valueT num_alloced = 0;
4590 struct dynreg **drpp, *dr;
4591 int ch, base_reg = 0;
4592 char *name, *start;
4593 size_t len;
4594
4595 switch (type)
4596 {
4597 case DYNREG_GR: base_reg = REG_GR + 32; break;
4598 case DYNREG_FR: base_reg = REG_FR + 32; break;
4599 case DYNREG_PR: base_reg = REG_P + 16; break;
4600 default: break;
4601 }
4602
4603 /* First, remove existing names from hash table. */
4604 for (dr = md.dynreg[type]; dr && dr->num_regs; dr = dr->next)
4605 {
4606 str_hash_delete (md.dynreg_hash, dr->name);
4607 /* FIXME: Free dr->name. */
4608 dr->num_regs = 0;
4609 }
4610
4611 drpp = &md.dynreg[type];
4612 while (1)
4613 {
4614 ch = get_symbol_name (&start);
4615 len = strlen (ia64_canonicalize_symbol_name (start));
4616 *input_line_pointer = ch;
4617
4618 SKIP_WHITESPACE_AFTER_NAME ();
4619 if (*input_line_pointer != '[')
4620 {
4621 as_bad (_("Expected '['"));
4622 goto err;
4623 }
4624 ++input_line_pointer; /* skip '[' */
4625
4626 num_regs = get_absolute_expression ();
4627
4628 if (*input_line_pointer++ != ']')
4629 {
4630 as_bad (_("Expected ']'"));
4631 goto err;
4632 }
4633 if (num_regs <= 0)
4634 {
4635 as_bad (_("Number of elements must be positive"));
4636 goto err;
4637 }
4638 SKIP_WHITESPACE ();
4639
4640 num_alloced += num_regs;
4641 switch (type)
4642 {
4643 case DYNREG_GR:
4644 if (num_alloced > md.rot.num_regs)
4645 {
4646 as_bad (_("Used more than the declared %d rotating registers"),
4647 md.rot.num_regs);
4648 goto err;
4649 }
4650 break;
4651 case DYNREG_FR:
4652 if (num_alloced > 96)
4653 {
4654 as_bad (_("Used more than the available 96 rotating registers"));
4655 goto err;
4656 }
4657 break;
4658 case DYNREG_PR:
4659 if (num_alloced > 48)
4660 {
4661 as_bad (_("Used more than the available 48 rotating registers"));
4662 goto err;
4663 }
4664 break;
4665
4666 default:
4667 break;
4668 }
4669
4670 if (!*drpp)
4671 {
4672 *drpp = XOBNEW (&notes, struct dynreg);
4673 memset (*drpp, 0, sizeof (*dr));
4674 }
4675
4676 name = XOBNEWVEC (&notes, char, len + 1);
4677 memcpy (name, start, len);
4678 name[len] = '\0';
4679
4680 dr = *drpp;
4681 dr->name = name;
4682 dr->num_regs = num_regs;
4683 dr->base = base_reg;
4684 drpp = &dr->next;
4685 base_reg += num_regs;
4686
4687 if (str_hash_insert (md.dynreg_hash, name, dr, 0) != NULL)
4688 {
4689 as_bad (_("Attempt to redefine register set `%s'"), name);
4690 obstack_free (&notes, name);
4691 goto err;
4692 }
4693
4694 if (*input_line_pointer != ',')
4695 break;
4696 ++input_line_pointer; /* skip comma */
4697 SKIP_WHITESPACE ();
4698 }
4699 demand_empty_rest_of_line ();
4700 return;
4701
4702 err:
4703 ignore_rest_of_line ();
4704 }
4705
4706 static void
4707 dot_byteorder (int byteorder)
4708 {
4709 segment_info_type *seginfo = seg_info (now_seg);
4710
4711 if (byteorder == -1)
4712 {
4713 if (seginfo->tc_segment_info_data.endian == 0)
4714 seginfo->tc_segment_info_data.endian = default_big_endian ? 1 : 2;
4715 byteorder = seginfo->tc_segment_info_data.endian == 1;
4716 }
4717 else
4718 seginfo->tc_segment_info_data.endian = byteorder ? 1 : 2;
4719
4720 if (target_big_endian != byteorder)
4721 {
4722 target_big_endian = byteorder;
4723 if (target_big_endian)
4724 {
4725 ia64_number_to_chars = number_to_chars_bigendian;
4726 ia64_float_to_chars = ia64_float_to_chars_bigendian;
4727 }
4728 else
4729 {
4730 ia64_number_to_chars = number_to_chars_littleendian;
4731 ia64_float_to_chars = ia64_float_to_chars_littleendian;
4732 }
4733 }
4734 }
4735
4736 static void
4737 dot_psr (int dummy ATTRIBUTE_UNUSED)
4738 {
4739 char *option;
4740 int ch;
4741
4742 while (1)
4743 {
4744 ch = get_symbol_name (&option);
4745 if (strcmp (option, "lsb") == 0)
4746 md.flags &= ~EF_IA_64_BE;
4747 else if (strcmp (option, "msb") == 0)
4748 md.flags |= EF_IA_64_BE;
4749 else if (strcmp (option, "abi32") == 0)
4750 md.flags &= ~EF_IA_64_ABI64;
4751 else if (strcmp (option, "abi64") == 0)
4752 md.flags |= EF_IA_64_ABI64;
4753 else
4754 as_bad (_("Unknown psr option `%s'"), option);
4755 *input_line_pointer = ch;
4756
4757 SKIP_WHITESPACE_AFTER_NAME ();
4758 if (*input_line_pointer != ',')
4759 break;
4760
4761 ++input_line_pointer;
4762 SKIP_WHITESPACE ();
4763 }
4764 demand_empty_rest_of_line ();
4765 }
4766
4767 static void
4768 dot_ln (int dummy ATTRIBUTE_UNUSED)
4769 {
4770 new_logical_line (0, get_absolute_expression ());
4771 demand_empty_rest_of_line ();
4772 }
4773
4774 static void
4775 cross_section (int ref, void (*builder) (int), int ua)
4776 {
4777 char *start, *end;
4778 int saved_auto_align;
4779 unsigned int section_count;
4780 char *name;
4781 char c;
4782
4783 SKIP_WHITESPACE ();
4784 start = input_line_pointer;
4785 c = get_symbol_name (&name);
4786 if (input_line_pointer == start)
4787 {
4788 as_bad (_("Missing section name"));
4789 ignore_rest_of_line ();
4790 return;
4791 }
4792 * input_line_pointer = c;
4793 SKIP_WHITESPACE_AFTER_NAME ();
4794 end = input_line_pointer;
4795 if (*input_line_pointer != ',')
4796 {
4797 as_bad (_("Comma expected after section name"));
4798 ignore_rest_of_line ();
4799 return;
4800 }
4801 *end = '\0';
4802 end = input_line_pointer + 1; /* skip comma */
4803 input_line_pointer = start;
4804 md.keep_pending_output = 1;
4805 section_count = bfd_count_sections (stdoutput);
4806 obj_elf_section (0);
4807 if (section_count != bfd_count_sections (stdoutput))
4808 as_warn (_("Creating sections with .xdataN/.xrealN/.xstringZ is deprecated."));
4809 input_line_pointer = end;
4810 saved_auto_align = md.auto_align;
4811 if (ua)
4812 md.auto_align = 0;
4813 (*builder) (ref);
4814 if (ua)
4815 md.auto_align = saved_auto_align;
4816 obj_elf_previous (0);
4817 md.keep_pending_output = 0;
4818 }
4819
4820 static void
4821 dot_xdata (int size)
4822 {
4823 cross_section (size, cons, 0);
4824 }
4825
4826 /* Why doesn't float_cons() call md_cons_align() the way cons() does? */
4827
4828 static void
4829 stmt_float_cons (int kind)
4830 {
4831 size_t alignment;
4832
4833 switch (kind)
4834 {
4835 case 'd':
4836 alignment = 3;
4837 break;
4838
4839 case 'x':
4840 case 'X':
4841 alignment = 4;
4842 break;
4843
4844 case 'f':
4845 default:
4846 alignment = 2;
4847 break;
4848 }
4849 do_align (alignment, NULL, 0, 0);
4850 float_cons (kind);
4851 }
4852
4853 static void
4854 stmt_cons_ua (int size)
4855 {
4856 int saved_auto_align = md.auto_align;
4857
4858 md.auto_align = 0;
4859 cons (size);
4860 md.auto_align = saved_auto_align;
4861 }
4862
4863 static void
4864 dot_xfloat_cons (int kind)
4865 {
4866 cross_section (kind, stmt_float_cons, 0);
4867 }
4868
4869 static void
4870 dot_xstringer (int zero)
4871 {
4872 cross_section (zero, stringer, 0);
4873 }
4874
4875 static void
4876 dot_xdata_ua (int size)
4877 {
4878 cross_section (size, cons, 1);
4879 }
4880
4881 static void
4882 dot_xfloat_cons_ua (int kind)
4883 {
4884 cross_section (kind, float_cons, 1);
4885 }
4886
4887 /* .reg.val <regname>,value */
4888
4889 static void
4890 dot_reg_val (int dummy ATTRIBUTE_UNUSED)
4891 {
4892 expressionS reg;
4893
4894 expression_and_evaluate (&reg);
4895 if (reg.X_op != O_register)
4896 {
4897 as_bad (_("Register name expected"));
4898 ignore_rest_of_line ();
4899 }
4900 else if (*input_line_pointer++ != ',')
4901 {
4902 as_bad (_("Comma expected"));
4903 ignore_rest_of_line ();
4904 }
4905 else
4906 {
4907 valueT value = get_absolute_expression ();
4908 int regno = reg.X_add_number;
4909 if (regno <= REG_GR || regno > REG_GR + 127)
4910 as_warn (_("Register value annotation ignored"));
4911 else
4912 {
4913 gr_values[regno - REG_GR].known = 1;
4914 gr_values[regno - REG_GR].value = value;
4915 gr_values[regno - REG_GR].path = md.path;
4916 }
4917 }
4918 demand_empty_rest_of_line ();
4919 }
4920
4921 /*
4922 .serialize.data
4923 .serialize.instruction
4924 */
4925 static void
4926 dot_serialize (int type)
4927 {
4928 insn_group_break (0, 0, 0);
4929 if (type)
4930 instruction_serialization ();
4931 else
4932 data_serialization ();
4933 insn_group_break (0, 0, 0);
4934 demand_empty_rest_of_line ();
4935 }
4936
4937 /* select dv checking mode
4938 .auto
4939 .explicit
4940 .default
4941
4942 A stop is inserted when changing modes
4943 */
4944
4945 static void
4946 dot_dv_mode (int type)
4947 {
4948 if (md.manual_bundling)
4949 as_warn (_("Directive invalid within a bundle"));
4950
4951 if (type == 'E' || type == 'A')
4952 md.mode_explicitly_set = 0;
4953 else
4954 md.mode_explicitly_set = 1;
4955
4956 md.detect_dv = 1;
4957 switch (type)
4958 {
4959 case 'A':
4960 case 'a':
4961 if (md.explicit_mode)
4962 insn_group_break (1, 0, 0);
4963 md.explicit_mode = 0;
4964 break;
4965 case 'E':
4966 case 'e':
4967 if (!md.explicit_mode)
4968 insn_group_break (1, 0, 0);
4969 md.explicit_mode = 1;
4970 break;
4971 default:
4972 case 'd':
4973 if (md.explicit_mode != md.default_explicit_mode)
4974 insn_group_break (1, 0, 0);
4975 md.explicit_mode = md.default_explicit_mode;
4976 md.mode_explicitly_set = 0;
4977 break;
4978 }
4979 }
4980
4981 static void
4982 print_prmask (valueT mask)
4983 {
4984 int regno;
4985 const char *comma = "";
4986 for (regno = 0; regno < 64; regno++)
4987 {
4988 if (mask & ((valueT) 1 << regno))
4989 {
4990 fprintf (stderr, "%s p%d", comma, regno);
4991 comma = ",";
4992 }
4993 }
4994 }
4995
4996 /*
4997 .pred.rel.clear [p1 [,p2 [,...]]] (also .pred.rel "clear" or @clear)
4998 .pred.rel.imply p1, p2 (also .pred.rel "imply" or @imply)
4999 .pred.rel.mutex p1, p2 [,...] (also .pred.rel "mutex" or @mutex)
5000 .pred.safe_across_calls p1 [, p2 [,...]]
5001 */
5002
5003 static void
5004 dot_pred_rel (int type)
5005 {
5006 valueT mask = 0;
5007 int count = 0;
5008 int p1 = -1, p2 = -1;
5009
5010 if (type == 0)
5011 {
5012 if (*input_line_pointer == '"')
5013 {
5014 int len;
5015 char *form = demand_copy_C_string (&len);
5016
5017 if (strcmp (form, "mutex") == 0)
5018 type = 'm';
5019 else if (strcmp (form, "clear") == 0)
5020 type = 'c';
5021 else if (strcmp (form, "imply") == 0)
5022 type = 'i';
5023 obstack_free (&notes, form);
5024 }
5025 else if (*input_line_pointer == '@')
5026 {
5027 char *form;
5028 char c;
5029
5030 ++input_line_pointer;
5031 c = get_symbol_name (&form);
5032
5033 if (strcmp (form, "mutex") == 0)
5034 type = 'm';
5035 else if (strcmp (form, "clear") == 0)
5036 type = 'c';
5037 else if (strcmp (form, "imply") == 0)
5038 type = 'i';
5039 (void) restore_line_pointer (c);
5040 }
5041 else
5042 {
5043 as_bad (_("Missing predicate relation type"));
5044 ignore_rest_of_line ();
5045 return;
5046 }
5047 if (type == 0)
5048 {
5049 as_bad (_("Unrecognized predicate relation type"));
5050 ignore_rest_of_line ();
5051 return;
5052 }
5053 if (*input_line_pointer == ',')
5054 ++input_line_pointer;
5055 SKIP_WHITESPACE ();
5056 }
5057
5058 while (1)
5059 {
5060 valueT bits = 1;
5061 int sep, regno;
5062 expressionS pr, *pr1, *pr2;
5063
5064 sep = parse_operand_and_eval (&pr, ',');
5065 if (pr.X_op == O_register
5066 && pr.X_add_number >= REG_P
5067 && pr.X_add_number <= REG_P + 63)
5068 {
5069 regno = pr.X_add_number - REG_P;
5070 bits <<= regno;
5071 count++;
5072 if (p1 == -1)
5073 p1 = regno;
5074 else if (p2 == -1)
5075 p2 = regno;
5076 }
5077 else if (type != 'i'
5078 && pr.X_op == O_subtract
5079 && (pr1 = symbol_get_value_expression (pr.X_add_symbol))
5080 && pr1->X_op == O_register
5081 && pr1->X_add_number >= REG_P
5082 && pr1->X_add_number <= REG_P + 63
5083 && (pr2 = symbol_get_value_expression (pr.X_op_symbol))
5084 && pr2->X_op == O_register
5085 && pr2->X_add_number >= REG_P
5086 && pr2->X_add_number <= REG_P + 63)
5087 {
5088 /* It's a range. */
5089 int stop;
5090
5091 regno = pr1->X_add_number - REG_P;
5092 stop = pr2->X_add_number - REG_P;
5093 if (regno >= stop)
5094 {
5095 as_bad (_("Bad register range"));
5096 ignore_rest_of_line ();
5097 return;
5098 }
5099 bits = ((bits << stop) << 1) - (bits << regno);
5100 count += stop - regno + 1;
5101 }
5102 else
5103 {
5104 as_bad (_("Predicate register expected"));
5105 ignore_rest_of_line ();
5106 return;
5107 }
5108 if (mask & bits)
5109 as_warn (_("Duplicate predicate register ignored"));
5110 mask |= bits;
5111 if (sep != ',')
5112 break;
5113 }
5114
5115 switch (type)
5116 {
5117 case 'c':
5118 if (count == 0)
5119 mask = ~(valueT) 0;
5120 clear_qp_mutex (mask);
5121 clear_qp_implies (mask, (valueT) 0);
5122 break;
5123 case 'i':
5124 if (count != 2 || p1 == -1 || p2 == -1)
5125 as_bad (_("Predicate source and target required"));
5126 else if (p1 == 0 || p2 == 0)
5127 as_bad (_("Use of p0 is not valid in this context"));
5128 else
5129 add_qp_imply (p1, p2);
5130 break;
5131 case 'm':
5132 if (count < 2)
5133 {
5134 as_bad (_("At least two PR arguments expected"));
5135 break;
5136 }
5137 else if (mask & 1)
5138 {
5139 as_bad (_("Use of p0 is not valid in this context"));
5140 break;
5141 }
5142 add_qp_mutex (mask);
5143 break;
5144 case 's':
5145 /* note that we don't override any existing relations */
5146 if (count == 0)
5147 {
5148 as_bad (_("At least one PR argument expected"));
5149 break;
5150 }
5151 if (md.debug_dv)
5152 {
5153 fprintf (stderr, "Safe across calls: ");
5154 print_prmask (mask);
5155 fprintf (stderr, "\n");
5156 }
5157 qp_safe_across_calls = mask;
5158 break;
5159 }
5160 demand_empty_rest_of_line ();
5161 }
5162
5163 /* .entry label [, label [, ...]]
5164 Hint to DV code that the given labels are to be considered entry points.
5165 Otherwise, only global labels are considered entry points. */
5166
5167 static void
5168 dot_entry (int dummy ATTRIBUTE_UNUSED)
5169 {
5170 char *name;
5171 int c;
5172 symbolS *symbolP;
5173
5174 do
5175 {
5176 c = get_symbol_name (&name);
5177 symbolP = symbol_find_or_make (name);
5178
5179 if (str_hash_insert (md.entry_hash, S_GET_NAME (symbolP), symbolP, 0))
5180 as_bad (_("duplicate entry hint %s"), name);
5181
5182 *input_line_pointer = c;
5183 SKIP_WHITESPACE_AFTER_NAME ();
5184 c = *input_line_pointer;
5185 if (c == ',')
5186 {
5187 input_line_pointer++;
5188 SKIP_WHITESPACE ();
5189 if (*input_line_pointer == '\n')
5190 c = '\n';
5191 }
5192 }
5193 while (c == ',');
5194
5195 demand_empty_rest_of_line ();
5196 }
5197
5198 /* .mem.offset offset, base
5199 "base" is used to distinguish between offsets from a different base. */
5200
5201 static void
5202 dot_mem_offset (int dummy ATTRIBUTE_UNUSED)
5203 {
5204 md.mem_offset.hint = 1;
5205 md.mem_offset.offset = get_absolute_expression ();
5206 if (*input_line_pointer != ',')
5207 {
5208 as_bad (_("Comma expected"));
5209 ignore_rest_of_line ();
5210 return;
5211 }
5212 ++input_line_pointer;
5213 md.mem_offset.base = get_absolute_expression ();
5214 demand_empty_rest_of_line ();
5215 }
5216
5217 /* ia64-specific pseudo-ops: */
5218 const pseudo_typeS md_pseudo_table[] =
5219 {
5220 { "radix", dot_radix, 0 },
5221 { "lcomm", s_lcomm_bytes, 1 },
5222 { "loc", dot_loc, 0 },
5223 { "bss", dot_special_section, SPECIAL_SECTION_BSS },
5224 { "sbss", dot_special_section, SPECIAL_SECTION_SBSS },
5225 { "sdata", dot_special_section, SPECIAL_SECTION_SDATA },
5226 { "rodata", dot_special_section, SPECIAL_SECTION_RODATA },
5227 { "comment", dot_special_section, SPECIAL_SECTION_COMMENT },
5228 { "ia_64.unwind", dot_special_section, SPECIAL_SECTION_UNWIND },
5229 { "ia_64.unwind_info", dot_special_section, SPECIAL_SECTION_UNWIND_INFO },
5230 { "init_array", dot_special_section, SPECIAL_SECTION_INIT_ARRAY },
5231 { "fini_array", dot_special_section, SPECIAL_SECTION_FINI_ARRAY },
5232 { "proc", dot_proc, 0 },
5233 { "body", dot_body, 0 },
5234 { "prologue", dot_prologue, 0 },
5235 { "endp", dot_endp, 0 },
5236
5237 { "fframe", dot_fframe, 0 },
5238 { "vframe", dot_vframe, 0 },
5239 { "vframesp", dot_vframesp, 0 },
5240 { "vframepsp", dot_vframesp, 1 },
5241 { "save", dot_save, 0 },
5242 { "restore", dot_restore, 0 },
5243 { "restorereg", dot_restorereg, 0 },
5244 { "restorereg.p", dot_restorereg, 1 },
5245 { "handlerdata", dot_handlerdata, 0 },
5246 { "unwentry", dot_unwentry, 0 },
5247 { "altrp", dot_altrp, 0 },
5248 { "savesp", dot_savemem, 0 },
5249 { "savepsp", dot_savemem, 1 },
5250 { "save.g", dot_saveg, 0 },
5251 { "save.f", dot_savef, 0 },
5252 { "save.b", dot_saveb, 0 },
5253 { "save.gf", dot_savegf, 0 },
5254 { "spill", dot_spill, 0 },
5255 { "spillreg", dot_spillreg, 0 },
5256 { "spillsp", dot_spillmem, 0 },
5257 { "spillpsp", dot_spillmem, 1 },
5258 { "spillreg.p", dot_spillreg, 1 },
5259 { "spillsp.p", dot_spillmem, ~0 },
5260 { "spillpsp.p", dot_spillmem, ~1 },
5261 { "label_state", dot_label_state, 0 },
5262 { "copy_state", dot_copy_state, 0 },
5263 { "unwabi", dot_unwabi, 0 },
5264 { "personality", dot_personality, 0 },
5265 { "mii", dot_template, 0x0 },
5266 { "mli", dot_template, 0x2 }, /* old format, for compatibility */
5267 { "mlx", dot_template, 0x2 },
5268 { "mmi", dot_template, 0x4 },
5269 { "mfi", dot_template, 0x6 },
5270 { "mmf", dot_template, 0x7 },
5271 { "mib", dot_template, 0x8 },
5272 { "mbb", dot_template, 0x9 },
5273 { "bbb", dot_template, 0xb },
5274 { "mmb", dot_template, 0xc },
5275 { "mfb", dot_template, 0xe },
5276 { "align", dot_align, 0 },
5277 { "regstk", dot_regstk, 0 },
5278 { "rotr", dot_rot, DYNREG_GR },
5279 { "rotf", dot_rot, DYNREG_FR },
5280 { "rotp", dot_rot, DYNREG_PR },
5281 { "lsb", dot_byteorder, 0 },
5282 { "msb", dot_byteorder, 1 },
5283 { "psr", dot_psr, 0 },
5284 { "alias", dot_alias, 0 },
5285 { "secalias", dot_alias, 1 },
5286 { "ln", dot_ln, 0 }, /* source line info (for debugging) */
5287
5288 { "xdata1", dot_xdata, 1 },
5289 { "xdata2", dot_xdata, 2 },
5290 { "xdata4", dot_xdata, 4 },
5291 { "xdata8", dot_xdata, 8 },
5292 { "xdata16", dot_xdata, 16 },
5293 { "xreal4", dot_xfloat_cons, 'f' },
5294 { "xreal8", dot_xfloat_cons, 'd' },
5295 { "xreal10", dot_xfloat_cons, 'x' },
5296 { "xreal16", dot_xfloat_cons, 'X' },
5297 { "xstring", dot_xstringer, 8 + 0 },
5298 { "xstringz", dot_xstringer, 8 + 1 },
5299
5300 /* unaligned versions: */
5301 { "xdata2.ua", dot_xdata_ua, 2 },
5302 { "xdata4.ua", dot_xdata_ua, 4 },
5303 { "xdata8.ua", dot_xdata_ua, 8 },
5304 { "xdata16.ua", dot_xdata_ua, 16 },
5305 { "xreal4.ua", dot_xfloat_cons_ua, 'f' },
5306 { "xreal8.ua", dot_xfloat_cons_ua, 'd' },
5307 { "xreal10.ua", dot_xfloat_cons_ua, 'x' },
5308 { "xreal16.ua", dot_xfloat_cons_ua, 'X' },
5309
5310 /* annotations/DV checking support */
5311 { "entry", dot_entry, 0 },
5312 { "mem.offset", dot_mem_offset, 0 },
5313 { "pred.rel", dot_pred_rel, 0 },
5314 { "pred.rel.clear", dot_pred_rel, 'c' },
5315 { "pred.rel.imply", dot_pred_rel, 'i' },
5316 { "pred.rel.mutex", dot_pred_rel, 'm' },
5317 { "pred.safe_across_calls", dot_pred_rel, 's' },
5318 { "reg.val", dot_reg_val, 0 },
5319 { "serialize.data", dot_serialize, 0 },
5320 { "serialize.instruction", dot_serialize, 1 },
5321 { "auto", dot_dv_mode, 'a' },
5322 { "explicit", dot_dv_mode, 'e' },
5323 { "default", dot_dv_mode, 'd' },
5324
5325 /* ??? These are needed to make gas/testsuite/gas/elf/ehopt.s work.
5326 IA-64 aligns data allocation pseudo-ops by default, so we have to
5327 tell it that these ones are supposed to be unaligned. Long term,
5328 should rewrite so that only IA-64 specific data allocation pseudo-ops
5329 are aligned by default. */
5330 {"2byte", stmt_cons_ua, 2},
5331 {"4byte", stmt_cons_ua, 4},
5332 {"8byte", stmt_cons_ua, 8},
5333
5334 #ifdef TE_VMS
5335 {"vms_common", obj_elf_vms_common, 0},
5336 #endif
5337
5338 { NULL, 0, 0 }
5339 };
5340
5341 static const struct pseudo_opcode
5342 {
5343 const char *name;
5344 void (*handler) (int);
5345 int arg;
5346 }
5347 pseudo_opcode[] =
5348 {
5349 /* these are more like pseudo-ops, but don't start with a dot */
5350 { "data1", cons, 1 },
5351 { "data2", cons, 2 },
5352 { "data4", cons, 4 },
5353 { "data8", cons, 8 },
5354 { "data16", cons, 16 },
5355 { "real4", stmt_float_cons, 'f' },
5356 { "real8", stmt_float_cons, 'd' },
5357 { "real10", stmt_float_cons, 'x' },
5358 { "real16", stmt_float_cons, 'X' },
5359 { "string", stringer, 8 + 0 },
5360 { "stringz", stringer, 8 + 1 },
5361
5362 /* unaligned versions: */
5363 { "data2.ua", stmt_cons_ua, 2 },
5364 { "data4.ua", stmt_cons_ua, 4 },
5365 { "data8.ua", stmt_cons_ua, 8 },
5366 { "data16.ua", stmt_cons_ua, 16 },
5367 { "real4.ua", float_cons, 'f' },
5368 { "real8.ua", float_cons, 'd' },
5369 { "real10.ua", float_cons, 'x' },
5370 { "real16.ua", float_cons, 'X' },
5371 };
5372
5373 /* Declare a register by creating a symbol for it and entering it in
5374 the symbol table. */
5375
5376 static symbolS *
5377 declare_register (const char *name, unsigned int regnum)
5378 {
5379 symbolS *sym;
5380
5381 sym = symbol_create (name, reg_section, &zero_address_frag, regnum);
5382
5383 if (str_hash_insert (md.reg_hash, S_GET_NAME (sym), sym, 0) != NULL)
5384 as_fatal (_("duplicate %s"), name);
5385
5386 return sym;
5387 }
5388
5389 static void
5390 declare_register_set (const char *prefix,
5391 unsigned int num_regs,
5392 unsigned int base_regnum)
5393 {
5394 char name[8];
5395 unsigned int i;
5396
5397 for (i = 0; i < num_regs; ++i)
5398 {
5399 snprintf (name, sizeof (name), "%s%u", prefix, i);
5400 declare_register (name, base_regnum + i);
5401 }
5402 }
5403
5404 static unsigned int
5405 operand_width (enum ia64_opnd opnd)
5406 {
5407 const struct ia64_operand *odesc = &elf64_ia64_operands[opnd];
5408 unsigned int bits = 0;
5409 int i;
5410
5411 bits = 0;
5412 for (i = 0; i < NELEMS (odesc->field) && odesc->field[i].bits; ++i)
5413 bits += odesc->field[i].bits;
5414
5415 return bits;
5416 }
5417
5418 static enum operand_match_result
5419 operand_match (const struct ia64_opcode *idesc, int res_index, expressionS *e)
5420 {
5421 enum ia64_opnd opnd = idesc->operands[res_index];
5422 int bits, relocatable = 0;
5423 struct insn_fix *fix;
5424 bfd_signed_vma val;
5425
5426 switch (opnd)
5427 {
5428 /* constants: */
5429
5430 case IA64_OPND_AR_CCV:
5431 if (e->X_op == O_register && e->X_add_number == REG_AR + 32)
5432 return OPERAND_MATCH;
5433 break;
5434
5435 case IA64_OPND_AR_CSD:
5436 if (e->X_op == O_register && e->X_add_number == REG_AR + 25)
5437 return OPERAND_MATCH;
5438 break;
5439
5440 case IA64_OPND_AR_PFS:
5441 if (e->X_op == O_register && e->X_add_number == REG_AR + 64)
5442 return OPERAND_MATCH;
5443 break;
5444
5445 case IA64_OPND_GR0:
5446 if (e->X_op == O_register && e->X_add_number == REG_GR + 0)
5447 return OPERAND_MATCH;
5448 break;
5449
5450 case IA64_OPND_IP:
5451 if (e->X_op == O_register && e->X_add_number == REG_IP)
5452 return OPERAND_MATCH;
5453 break;
5454
5455 case IA64_OPND_PR:
5456 if (e->X_op == O_register && e->X_add_number == REG_PR)
5457 return OPERAND_MATCH;
5458 break;
5459
5460 case IA64_OPND_PR_ROT:
5461 if (e->X_op == O_register && e->X_add_number == REG_PR_ROT)
5462 return OPERAND_MATCH;
5463 break;
5464
5465 case IA64_OPND_PSR:
5466 if (e->X_op == O_register && e->X_add_number == REG_PSR)
5467 return OPERAND_MATCH;
5468 break;
5469
5470 case IA64_OPND_PSR_L:
5471 if (e->X_op == O_register && e->X_add_number == REG_PSR_L)
5472 return OPERAND_MATCH;
5473 break;
5474
5475 case IA64_OPND_PSR_UM:
5476 if (e->X_op == O_register && e->X_add_number == REG_PSR_UM)
5477 return OPERAND_MATCH;
5478 break;
5479
5480 case IA64_OPND_C1:
5481 if (e->X_op == O_constant)
5482 {
5483 if (e->X_add_number == 1)
5484 return OPERAND_MATCH;
5485 else
5486 return OPERAND_OUT_OF_RANGE;
5487 }
5488 break;
5489
5490 case IA64_OPND_C8:
5491 if (e->X_op == O_constant)
5492 {
5493 if (e->X_add_number == 8)
5494 return OPERAND_MATCH;
5495 else
5496 return OPERAND_OUT_OF_RANGE;
5497 }
5498 break;
5499
5500 case IA64_OPND_C16:
5501 if (e->X_op == O_constant)
5502 {
5503 if (e->X_add_number == 16)
5504 return OPERAND_MATCH;
5505 else
5506 return OPERAND_OUT_OF_RANGE;
5507 }
5508 break;
5509
5510 /* register operands: */
5511
5512 case IA64_OPND_AR3:
5513 if (e->X_op == O_register && e->X_add_number >= REG_AR
5514 && e->X_add_number < REG_AR + 128)
5515 return OPERAND_MATCH;
5516 break;
5517
5518 case IA64_OPND_B1:
5519 case IA64_OPND_B2:
5520 if (e->X_op == O_register && e->X_add_number >= REG_BR
5521 && e->X_add_number < REG_BR + 8)
5522 return OPERAND_MATCH;
5523 break;
5524
5525 case IA64_OPND_CR3:
5526 if (e->X_op == O_register && e->X_add_number >= REG_CR
5527 && e->X_add_number < REG_CR + 128)
5528 return OPERAND_MATCH;
5529 break;
5530
5531 case IA64_OPND_DAHR3:
5532 if (e->X_op == O_register && e->X_add_number >= REG_DAHR
5533 && e->X_add_number < REG_DAHR + 8)
5534 return OPERAND_MATCH;
5535 break;
5536
5537 case IA64_OPND_F1:
5538 case IA64_OPND_F2:
5539 case IA64_OPND_F3:
5540 case IA64_OPND_F4:
5541 if (e->X_op == O_register && e->X_add_number >= REG_FR
5542 && e->X_add_number < REG_FR + 128)
5543 return OPERAND_MATCH;
5544 break;
5545
5546 case IA64_OPND_P1:
5547 case IA64_OPND_P2:
5548 if (e->X_op == O_register && e->X_add_number >= REG_P
5549 && e->X_add_number < REG_P + 64)
5550 return OPERAND_MATCH;
5551 break;
5552
5553 case IA64_OPND_R1:
5554 case IA64_OPND_R2:
5555 case IA64_OPND_R3:
5556 if (e->X_op == O_register && e->X_add_number >= REG_GR
5557 && e->X_add_number < REG_GR + 128)
5558 return OPERAND_MATCH;
5559 break;
5560
5561 case IA64_OPND_R3_2:
5562 if (e->X_op == O_register && e->X_add_number >= REG_GR)
5563 {
5564 if (e->X_add_number < REG_GR + 4)
5565 return OPERAND_MATCH;
5566 else if (e->X_add_number < REG_GR + 128)
5567 return OPERAND_OUT_OF_RANGE;
5568 }
5569 break;
5570
5571 /* indirect operands: */
5572 case IA64_OPND_CPUID_R3:
5573 case IA64_OPND_DBR_R3:
5574 case IA64_OPND_DTR_R3:
5575 case IA64_OPND_ITR_R3:
5576 case IA64_OPND_IBR_R3:
5577 case IA64_OPND_MSR_R3:
5578 case IA64_OPND_PKR_R3:
5579 case IA64_OPND_PMC_R3:
5580 case IA64_OPND_PMD_R3:
5581 case IA64_OPND_DAHR_R3:
5582 case IA64_OPND_RR_R3:
5583 if (e->X_op == O_index && e->X_op_symbol
5584 && (S_GET_VALUE (e->X_op_symbol) - IND_CPUID
5585 == opnd - IA64_OPND_CPUID_R3))
5586 return OPERAND_MATCH;
5587 break;
5588
5589 case IA64_OPND_MR3:
5590 if (e->X_op == O_index && !e->X_op_symbol)
5591 return OPERAND_MATCH;
5592 break;
5593
5594 /* immediate operands: */
5595 case IA64_OPND_CNT2a:
5596 case IA64_OPND_LEN4:
5597 case IA64_OPND_LEN6:
5598 bits = operand_width (idesc->operands[res_index]);
5599 if (e->X_op == O_constant)
5600 {
5601 if ((bfd_vma) (e->X_add_number - 1) < ((bfd_vma) 1 << bits))
5602 return OPERAND_MATCH;
5603 else
5604 return OPERAND_OUT_OF_RANGE;
5605 }
5606 break;
5607
5608 case IA64_OPND_CNT2b:
5609 if (e->X_op == O_constant)
5610 {
5611 if ((bfd_vma) (e->X_add_number - 1) < 3)
5612 return OPERAND_MATCH;
5613 else
5614 return OPERAND_OUT_OF_RANGE;
5615 }
5616 break;
5617
5618 case IA64_OPND_CNT2c:
5619 val = e->X_add_number;
5620 if (e->X_op == O_constant)
5621 {
5622 if ((val == 0 || val == 7 || val == 15 || val == 16))
5623 return OPERAND_MATCH;
5624 else
5625 return OPERAND_OUT_OF_RANGE;
5626 }
5627 break;
5628
5629 case IA64_OPND_SOR:
5630 /* SOR must be an integer multiple of 8 */
5631 if (e->X_op == O_constant && e->X_add_number & 0x7)
5632 return OPERAND_OUT_OF_RANGE;
5633 /* Fall through. */
5634 case IA64_OPND_SOF:
5635 case IA64_OPND_SOL:
5636 if (e->X_op == O_constant)
5637 {
5638 if ((bfd_vma) e->X_add_number <= 96)
5639 return OPERAND_MATCH;
5640 else
5641 return OPERAND_OUT_OF_RANGE;
5642 }
5643 break;
5644
5645 case IA64_OPND_IMMU62:
5646 if (e->X_op == O_constant)
5647 {
5648 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << 62))
5649 return OPERAND_MATCH;
5650 else
5651 return OPERAND_OUT_OF_RANGE;
5652 }
5653 else
5654 {
5655 /* FIXME -- need 62-bit relocation type */
5656 as_bad (_("62-bit relocation not yet implemented"));
5657 }
5658 break;
5659
5660 case IA64_OPND_IMMU64:
5661 if (e->X_op == O_symbol || e->X_op == O_pseudo_fixup
5662 || e->X_op == O_subtract)
5663 {
5664 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5665 fix->code = BFD_RELOC_IA64_IMM64;
5666 if (e->X_op != O_subtract)
5667 {
5668 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5669 if (e->X_op == O_pseudo_fixup)
5670 e->X_op = O_symbol;
5671 }
5672
5673 fix->opnd = idesc->operands[res_index];
5674 fix->expr = *e;
5675 fix->is_pcrel = 0;
5676 ++CURR_SLOT.num_fixups;
5677 return OPERAND_MATCH;
5678 }
5679 else if (e->X_op == O_constant)
5680 return OPERAND_MATCH;
5681 break;
5682
5683 case IA64_OPND_IMMU5b:
5684 if (e->X_op == O_constant)
5685 {
5686 val = e->X_add_number;
5687 if (val >= 32 && val <= 63)
5688 return OPERAND_MATCH;
5689 else
5690 return OPERAND_OUT_OF_RANGE;
5691 }
5692 break;
5693
5694 case IA64_OPND_CCNT5:
5695 case IA64_OPND_CNT5:
5696 case IA64_OPND_CNT6:
5697 case IA64_OPND_CPOS6a:
5698 case IA64_OPND_CPOS6b:
5699 case IA64_OPND_CPOS6c:
5700 case IA64_OPND_IMMU2:
5701 case IA64_OPND_IMMU7a:
5702 case IA64_OPND_IMMU7b:
5703 case IA64_OPND_IMMU16:
5704 case IA64_OPND_IMMU19:
5705 case IA64_OPND_IMMU21:
5706 case IA64_OPND_IMMU24:
5707 case IA64_OPND_MBTYPE4:
5708 case IA64_OPND_MHTYPE8:
5709 case IA64_OPND_POS6:
5710 bits = operand_width (idesc->operands[res_index]);
5711 if (e->X_op == O_constant)
5712 {
5713 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
5714 return OPERAND_MATCH;
5715 else
5716 return OPERAND_OUT_OF_RANGE;
5717 }
5718 break;
5719
5720 case IA64_OPND_IMMU9:
5721 bits = operand_width (idesc->operands[res_index]);
5722 if (e->X_op == O_constant)
5723 {
5724 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
5725 {
5726 int lobits = e->X_add_number & 0x3;
5727 if (((bfd_vma) e->X_add_number & 0x3C) != 0 && lobits == 0)
5728 e->X_add_number |= (bfd_vma) 0x3;
5729 return OPERAND_MATCH;
5730 }
5731 else
5732 return OPERAND_OUT_OF_RANGE;
5733 }
5734 break;
5735
5736 case IA64_OPND_IMM44:
5737 /* least 16 bits must be zero */
5738 if ((e->X_add_number & 0xffff) != 0)
5739 /* XXX technically, this is wrong: we should not be issuing warning
5740 messages until we're sure this instruction pattern is going to
5741 be used! */
5742 as_warn (_("lower 16 bits of mask ignored"));
5743
5744 if (e->X_op == O_constant)
5745 {
5746 if (((e->X_add_number >= 0
5747 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 44))
5748 || (e->X_add_number < 0
5749 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 44))))
5750 {
5751 /* sign-extend */
5752 if (e->X_add_number >= 0
5753 && (e->X_add_number & ((bfd_vma) 1 << 43)) != 0)
5754 {
5755 e->X_add_number |= ~(((bfd_vma) 1 << 44) - 1);
5756 }
5757 return OPERAND_MATCH;
5758 }
5759 else
5760 return OPERAND_OUT_OF_RANGE;
5761 }
5762 break;
5763
5764 case IA64_OPND_IMM17:
5765 /* bit 0 is a don't care (pr0 is hardwired to 1) */
5766 if (e->X_op == O_constant)
5767 {
5768 if (((e->X_add_number >= 0
5769 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 17))
5770 || (e->X_add_number < 0
5771 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 17))))
5772 {
5773 /* sign-extend */
5774 if (e->X_add_number >= 0
5775 && (e->X_add_number & ((bfd_vma) 1 << 16)) != 0)
5776 {
5777 e->X_add_number |= ~(((bfd_vma) 1 << 17) - 1);
5778 }
5779 return OPERAND_MATCH;
5780 }
5781 else
5782 return OPERAND_OUT_OF_RANGE;
5783 }
5784 break;
5785
5786 case IA64_OPND_IMM14:
5787 case IA64_OPND_IMM22:
5788 relocatable = 1;
5789 /* Fall through. */
5790 case IA64_OPND_IMM1:
5791 case IA64_OPND_IMM8:
5792 case IA64_OPND_IMM8U4:
5793 case IA64_OPND_IMM8M1:
5794 case IA64_OPND_IMM8M1U4:
5795 case IA64_OPND_IMM8M1U8:
5796 case IA64_OPND_IMM9a:
5797 case IA64_OPND_IMM9b:
5798 bits = operand_width (idesc->operands[res_index]);
5799 if (relocatable && (e->X_op == O_symbol
5800 || e->X_op == O_subtract
5801 || e->X_op == O_pseudo_fixup))
5802 {
5803 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5804
5805 if (idesc->operands[res_index] == IA64_OPND_IMM14)
5806 fix->code = BFD_RELOC_IA64_IMM14;
5807 else
5808 fix->code = BFD_RELOC_IA64_IMM22;
5809
5810 if (e->X_op != O_subtract)
5811 {
5812 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5813 if (e->X_op == O_pseudo_fixup)
5814 e->X_op = O_symbol;
5815 }
5816
5817 fix->opnd = idesc->operands[res_index];
5818 fix->expr = *e;
5819 fix->is_pcrel = 0;
5820 ++CURR_SLOT.num_fixups;
5821 return OPERAND_MATCH;
5822 }
5823 else if (e->X_op != O_constant
5824 && ! (e->X_op == O_big && opnd == IA64_OPND_IMM8M1U8))
5825 return OPERAND_MISMATCH;
5826
5827 if (opnd == IA64_OPND_IMM8M1U4)
5828 {
5829 /* Zero is not valid for unsigned compares that take an adjusted
5830 constant immediate range. */
5831 if (e->X_add_number == 0)
5832 return OPERAND_OUT_OF_RANGE;
5833
5834 /* Sign-extend 32-bit unsigned numbers, so that the following range
5835 checks will work. */
5836 val = e->X_add_number;
5837 if ((val & (~(bfd_vma) 0 << 32)) == 0)
5838 val = (val ^ ((bfd_vma) 1 << 31)) - ((bfd_vma) 1 << 31);
5839
5840 /* Check for 0x100000000. This is valid because
5841 0x100000000-1 is the same as ((uint32_t) -1). */
5842 if (val == ((bfd_signed_vma) 1 << 32))
5843 return OPERAND_MATCH;
5844
5845 val = val - 1;
5846 }
5847 else if (opnd == IA64_OPND_IMM8M1U8)
5848 {
5849 /* Zero is not valid for unsigned compares that take an adjusted
5850 constant immediate range. */
5851 if (e->X_add_number == 0)
5852 return OPERAND_OUT_OF_RANGE;
5853
5854 /* Check for 0x10000000000000000. */
5855 if (e->X_op == O_big)
5856 {
5857 if (generic_bignum[0] == 0
5858 && generic_bignum[1] == 0
5859 && generic_bignum[2] == 0
5860 && generic_bignum[3] == 0
5861 && generic_bignum[4] == 1)
5862 return OPERAND_MATCH;
5863 else
5864 return OPERAND_OUT_OF_RANGE;
5865 }
5866 else
5867 val = e->X_add_number - 1;
5868 }
5869 else if (opnd == IA64_OPND_IMM8M1)
5870 val = e->X_add_number - 1;
5871 else if (opnd == IA64_OPND_IMM8U4)
5872 {
5873 /* Sign-extend 32-bit unsigned numbers, so that the following range
5874 checks will work. */
5875 val = e->X_add_number;
5876 if ((val & (~(bfd_vma) 0 << 32)) == 0)
5877 val = (val ^ ((bfd_vma) 1 << 31)) - ((bfd_vma) 1 << 31);
5878 }
5879 else
5880 val = e->X_add_number;
5881
5882 if ((val >= 0 && (bfd_vma) val < ((bfd_vma) 1 << (bits - 1)))
5883 || (val < 0 && (bfd_vma) -val <= ((bfd_vma) 1 << (bits - 1))))
5884 return OPERAND_MATCH;
5885 else
5886 return OPERAND_OUT_OF_RANGE;
5887
5888 case IA64_OPND_INC3:
5889 /* +/- 1, 4, 8, 16 */
5890 val = e->X_add_number;
5891 if (val < 0)
5892 val = -val;
5893 if (e->X_op == O_constant)
5894 {
5895 if ((val == 1 || val == 4 || val == 8 || val == 16))
5896 return OPERAND_MATCH;
5897 else
5898 return OPERAND_OUT_OF_RANGE;
5899 }
5900 break;
5901
5902 case IA64_OPND_TGT25:
5903 case IA64_OPND_TGT25b:
5904 case IA64_OPND_TGT25c:
5905 case IA64_OPND_TGT64:
5906 if (e->X_op == O_symbol)
5907 {
5908 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5909 if (opnd == IA64_OPND_TGT25)
5910 fix->code = BFD_RELOC_IA64_PCREL21F;
5911 else if (opnd == IA64_OPND_TGT25b)
5912 fix->code = BFD_RELOC_IA64_PCREL21M;
5913 else if (opnd == IA64_OPND_TGT25c)
5914 fix->code = BFD_RELOC_IA64_PCREL21B;
5915 else if (opnd == IA64_OPND_TGT64)
5916 fix->code = BFD_RELOC_IA64_PCREL60B;
5917 else
5918 abort ();
5919
5920 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5921 fix->opnd = idesc->operands[res_index];
5922 fix->expr = *e;
5923 fix->is_pcrel = 1;
5924 ++CURR_SLOT.num_fixups;
5925 return OPERAND_MATCH;
5926 }
5927 /* Fall through. */
5928 case IA64_OPND_TAG13:
5929 case IA64_OPND_TAG13b:
5930 switch (e->X_op)
5931 {
5932 case O_constant:
5933 return OPERAND_MATCH;
5934
5935 case O_symbol:
5936 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5937 /* There are no external relocs for TAG13/TAG13b fields, so we
5938 create a dummy reloc. This will not live past md_apply_fix. */
5939 fix->code = BFD_RELOC_UNUSED;
5940 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5941 fix->opnd = idesc->operands[res_index];
5942 fix->expr = *e;
5943 fix->is_pcrel = 1;
5944 ++CURR_SLOT.num_fixups;
5945 return OPERAND_MATCH;
5946
5947 default:
5948 break;
5949 }
5950 break;
5951
5952 case IA64_OPND_LDXMOV:
5953 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5954 fix->code = BFD_RELOC_IA64_LDXMOV;
5955 fix->opnd = idesc->operands[res_index];
5956 fix->expr = *e;
5957 fix->is_pcrel = 0;
5958 ++CURR_SLOT.num_fixups;
5959 return OPERAND_MATCH;
5960
5961 case IA64_OPND_STRD5b:
5962 if (e->X_op == O_constant)
5963 {
5964 /* 5-bit signed scaled by 64 */
5965 if ((e->X_add_number <= ( 0xf << 6 ))
5966 && (e->X_add_number >= -( 0x10 << 6 )))
5967 {
5968
5969 /* Must be a multiple of 64 */
5970 if ((e->X_add_number & 0x3f) != 0)
5971 as_warn (_("stride must be a multiple of 64; lower 6 bits ignored"));
5972
5973 e->X_add_number &= ~ 0x3f;
5974 return OPERAND_MATCH;
5975 }
5976 else
5977 return OPERAND_OUT_OF_RANGE;
5978 }
5979 break;
5980 case IA64_OPND_CNT6a:
5981 if (e->X_op == O_constant)
5982 {
5983 /* 6-bit unsigned biased by 1 -- count 0 is meaningless */
5984 if ((e->X_add_number <= 64)
5985 && (e->X_add_number > 0) )
5986 {
5987 return OPERAND_MATCH;
5988 }
5989 else
5990 return OPERAND_OUT_OF_RANGE;
5991 }
5992 break;
5993
5994 default:
5995 break;
5996 }
5997 return OPERAND_MISMATCH;
5998 }
5999
6000 static int
6001 parse_operand (expressionS *e, int more)
6002 {
6003 int sep = '\0';
6004
6005 memset (e, 0, sizeof (*e));
6006 e->X_op = O_absent;
6007 SKIP_WHITESPACE ();
6008 expression (e);
6009 sep = *input_line_pointer;
6010 if (more && (sep == ',' || sep == more))
6011 ++input_line_pointer;
6012 return sep;
6013 }
6014
6015 static int
6016 parse_operand_and_eval (expressionS *e, int more)
6017 {
6018 int sep = parse_operand (e, more);
6019 resolve_expression (e);
6020 return sep;
6021 }
6022
6023 static int
6024 parse_operand_maybe_eval (expressionS *e, int more, enum ia64_opnd op)
6025 {
6026 int sep = parse_operand (e, more);
6027 switch (op)
6028 {
6029 case IA64_OPND_IMM14:
6030 case IA64_OPND_IMM22:
6031 case IA64_OPND_IMMU64:
6032 case IA64_OPND_TGT25:
6033 case IA64_OPND_TGT25b:
6034 case IA64_OPND_TGT25c:
6035 case IA64_OPND_TGT64:
6036 case IA64_OPND_TAG13:
6037 case IA64_OPND_TAG13b:
6038 case IA64_OPND_LDXMOV:
6039 break;
6040 default:
6041 resolve_expression (e);
6042 break;
6043 }
6044 return sep;
6045 }
6046
6047 /* Returns the next entry in the opcode table that matches the one in
6048 IDESC, and frees the entry in IDESC. If no matching entry is
6049 found, NULL is returned instead. */
6050
6051 static struct ia64_opcode *
6052 get_next_opcode (struct ia64_opcode *idesc)
6053 {
6054 struct ia64_opcode *next = ia64_find_next_opcode (idesc);
6055 ia64_free_opcode (idesc);
6056 return next;
6057 }
6058
6059 /* Parse the operands for the opcode and find the opcode variant that
6060 matches the specified operands, or NULL if no match is possible. */
6061
6062 static struct ia64_opcode *
6063 parse_operands (struct ia64_opcode *idesc)
6064 {
6065 int i = 0, highest_unmatched_operand, num_operands = 0, num_outputs = 0;
6066 int error_pos, out_of_range_pos, curr_out_of_range_pos, sep = 0;
6067 int reg1, reg2;
6068 char reg_class;
6069 enum ia64_opnd expected_operand = IA64_OPND_NIL;
6070 enum operand_match_result result;
6071 char mnemonic[129];
6072 char *first_arg = 0, *end, *saved_input_pointer;
6073 unsigned int sof;
6074
6075 gas_assert (strlen (idesc->name) <= 128);
6076
6077 strcpy (mnemonic, idesc->name);
6078 if (idesc->operands[2] == IA64_OPND_SOF
6079 || idesc->operands[1] == IA64_OPND_SOF)
6080 {
6081 /* To make the common idiom "alloc loc?=ar.pfs,0,1,0,0" work, we
6082 can't parse the first operand until we have parsed the
6083 remaining operands of the "alloc" instruction. */
6084 SKIP_WHITESPACE ();
6085 first_arg = input_line_pointer;
6086 end = strchr (input_line_pointer, '=');
6087 if (!end)
6088 {
6089 as_bad (_("Expected separator `='"));
6090 return 0;
6091 }
6092 input_line_pointer = end + 1;
6093 ++i;
6094 ++num_outputs;
6095 }
6096
6097 for (; ; ++i)
6098 {
6099 if (i < NELEMS (CURR_SLOT.opnd))
6100 {
6101 sep = parse_operand_maybe_eval (CURR_SLOT.opnd + i, '=',
6102 idesc->operands[i]);
6103 if (CURR_SLOT.opnd[i].X_op == O_absent)
6104 break;
6105 }
6106 else
6107 {
6108 expressionS dummy;
6109
6110 sep = parse_operand (&dummy, '=');
6111 if (dummy.X_op == O_absent)
6112 break;
6113 }
6114
6115 ++num_operands;
6116
6117 if (sep != '=' && sep != ',')
6118 break;
6119
6120 if (sep == '=')
6121 {
6122 if (num_outputs > 0)
6123 as_bad (_("Duplicate equal sign (=) in instruction"));
6124 else
6125 num_outputs = i + 1;
6126 }
6127 }
6128 if (sep != '\0')
6129 {
6130 as_bad (_("Illegal operand separator `%c'"), sep);
6131 return 0;
6132 }
6133
6134 if (idesc->operands[2] == IA64_OPND_SOF
6135 || idesc->operands[1] == IA64_OPND_SOF)
6136 {
6137 /* Map alloc r1=ar.pfs,i,l,o,r to alloc r1=ar.pfs,(i+l+o),(i+l),r.
6138 Note, however, that due to that mapping operand numbers in error
6139 messages for any of the constant operands will not be correct. */
6140 know (strcmp (idesc->name, "alloc") == 0);
6141 /* The first operand hasn't been parsed/initialized, yet (but
6142 num_operands intentionally doesn't account for that). */
6143 i = num_operands > 4 ? 2 : 1;
6144 #define FORCE_CONST(n) (CURR_SLOT.opnd[n].X_op == O_constant \
6145 ? CURR_SLOT.opnd[n].X_add_number \
6146 : 0)
6147 sof = set_regstack (FORCE_CONST(i),
6148 FORCE_CONST(i + 1),
6149 FORCE_CONST(i + 2),
6150 FORCE_CONST(i + 3));
6151 #undef FORCE_CONST
6152
6153 /* now we can parse the first arg: */
6154 saved_input_pointer = input_line_pointer;
6155 input_line_pointer = first_arg;
6156 sep = parse_operand_maybe_eval (CURR_SLOT.opnd + 0, '=',
6157 idesc->operands[0]);
6158 if (sep != '=')
6159 --num_outputs; /* force error */
6160 input_line_pointer = saved_input_pointer;
6161
6162 CURR_SLOT.opnd[i].X_add_number = sof;
6163 if (CURR_SLOT.opnd[i + 1].X_op == O_constant
6164 && CURR_SLOT.opnd[i + 2].X_op == O_constant)
6165 CURR_SLOT.opnd[i + 1].X_add_number
6166 = sof - CURR_SLOT.opnd[i + 2].X_add_number;
6167 else
6168 CURR_SLOT.opnd[i + 1].X_op = O_illegal;
6169 CURR_SLOT.opnd[i + 2] = CURR_SLOT.opnd[i + 3];
6170 }
6171
6172 highest_unmatched_operand = -4;
6173 curr_out_of_range_pos = -1;
6174 error_pos = 0;
6175 for (; idesc; idesc = get_next_opcode (idesc))
6176 {
6177 if (num_outputs != idesc->num_outputs)
6178 continue; /* mismatch in # of outputs */
6179 if (highest_unmatched_operand < 0)
6180 highest_unmatched_operand |= 1;
6181 if (num_operands > NELEMS (idesc->operands)
6182 || (num_operands < NELEMS (idesc->operands)
6183 && idesc->operands[num_operands])
6184 || (num_operands > 0 && !idesc->operands[num_operands - 1]))
6185 continue; /* mismatch in number of arguments */
6186 if (highest_unmatched_operand < 0)
6187 highest_unmatched_operand |= 2;
6188
6189 CURR_SLOT.num_fixups = 0;
6190
6191 /* Try to match all operands. If we see an out-of-range operand,
6192 then continue trying to match the rest of the operands, since if
6193 the rest match, then this idesc will give the best error message. */
6194
6195 out_of_range_pos = -1;
6196 for (i = 0; i < num_operands && idesc->operands[i]; ++i)
6197 {
6198 result = operand_match (idesc, i, CURR_SLOT.opnd + i);
6199 if (result != OPERAND_MATCH)
6200 {
6201 if (result != OPERAND_OUT_OF_RANGE)
6202 break;
6203 if (out_of_range_pos < 0)
6204 /* remember position of the first out-of-range operand: */
6205 out_of_range_pos = i;
6206 }
6207 }
6208
6209 /* If we did not match all operands, or if at least one operand was
6210 out-of-range, then this idesc does not match. Keep track of which
6211 idesc matched the most operands before failing. If we have two
6212 idescs that failed at the same position, and one had an out-of-range
6213 operand, then prefer the out-of-range operand. Thus if we have
6214 "add r0=0x1000000,r1" we get an error saying the constant is out
6215 of range instead of an error saying that the constant should have been
6216 a register. */
6217
6218 if (i != num_operands || out_of_range_pos >= 0)
6219 {
6220 if (i > highest_unmatched_operand
6221 || (i == highest_unmatched_operand
6222 && out_of_range_pos > curr_out_of_range_pos))
6223 {
6224 highest_unmatched_operand = i;
6225 if (out_of_range_pos >= 0)
6226 {
6227 expected_operand = idesc->operands[out_of_range_pos];
6228 error_pos = out_of_range_pos;
6229 }
6230 else
6231 {
6232 expected_operand = idesc->operands[i];
6233 error_pos = i;
6234 }
6235 curr_out_of_range_pos = out_of_range_pos;
6236 }
6237 continue;
6238 }
6239
6240 break;
6241 }
6242 if (!idesc)
6243 {
6244 if (expected_operand)
6245 as_bad (_("Operand %u of `%s' should be %s"),
6246 error_pos + 1, mnemonic,
6247 elf64_ia64_operands[expected_operand].desc);
6248 else if (highest_unmatched_operand < 0 && !(highest_unmatched_operand & 1))
6249 as_bad (_("Wrong number of output operands"));
6250 else if (highest_unmatched_operand < 0 && !(highest_unmatched_operand & 2))
6251 as_bad (_("Wrong number of input operands"));
6252 else
6253 as_bad (_("Operand mismatch"));
6254 return 0;
6255 }
6256
6257 /* Check that the instruction doesn't use
6258 - r0, f0, or f1 as output operands
6259 - the same predicate twice as output operands
6260 - r0 as address of a base update load or store
6261 - the same GR as output and address of a base update load
6262 - two even- or two odd-numbered FRs as output operands of a floating
6263 point parallel load.
6264 At most two (conflicting) output (or output-like) operands can exist,
6265 (floating point parallel loads have three outputs, but the base register,
6266 if updated, cannot conflict with the actual outputs). */
6267 reg2 = reg1 = -1;
6268 for (i = 0; i < num_operands; ++i)
6269 {
6270 int regno = 0;
6271
6272 reg_class = 0;
6273 switch (idesc->operands[i])
6274 {
6275 case IA64_OPND_R1:
6276 case IA64_OPND_R2:
6277 case IA64_OPND_R3:
6278 if (i < num_outputs)
6279 {
6280 if (CURR_SLOT.opnd[i].X_add_number == REG_GR)
6281 reg_class = 'r';
6282 else if (reg1 < 0)
6283 reg1 = CURR_SLOT.opnd[i].X_add_number;
6284 else if (reg2 < 0)
6285 reg2 = CURR_SLOT.opnd[i].X_add_number;
6286 }
6287 break;
6288 case IA64_OPND_P1:
6289 case IA64_OPND_P2:
6290 if (i < num_outputs)
6291 {
6292 if (reg1 < 0)
6293 reg1 = CURR_SLOT.opnd[i].X_add_number;
6294 else if (reg2 < 0)
6295 reg2 = CURR_SLOT.opnd[i].X_add_number;
6296 }
6297 break;
6298 case IA64_OPND_F1:
6299 case IA64_OPND_F2:
6300 case IA64_OPND_F3:
6301 case IA64_OPND_F4:
6302 if (i < num_outputs)
6303 {
6304 if (CURR_SLOT.opnd[i].X_add_number >= REG_FR
6305 && CURR_SLOT.opnd[i].X_add_number <= REG_FR + 1)
6306 {
6307 reg_class = 'f';
6308 regno = CURR_SLOT.opnd[i].X_add_number - REG_FR;
6309 }
6310 else if (reg1 < 0)
6311 reg1 = CURR_SLOT.opnd[i].X_add_number;
6312 else if (reg2 < 0)
6313 reg2 = CURR_SLOT.opnd[i].X_add_number;
6314 }
6315 break;
6316 case IA64_OPND_MR3:
6317 if (idesc->flags & IA64_OPCODE_POSTINC)
6318 {
6319 if (CURR_SLOT.opnd[i].X_add_number == REG_GR)
6320 reg_class = 'm';
6321 else if (reg1 < 0)
6322 reg1 = CURR_SLOT.opnd[i].X_add_number;
6323 else if (reg2 < 0)
6324 reg2 = CURR_SLOT.opnd[i].X_add_number;
6325 }
6326 break;
6327 default:
6328 break;
6329 }
6330 switch (reg_class)
6331 {
6332 case 0:
6333 break;
6334 default:
6335 as_warn (_("Invalid use of `%c%d' as output operand"), reg_class, regno);
6336 break;
6337 case 'm':
6338 as_warn (_("Invalid use of `r%d' as base update address operand"), regno);
6339 break;
6340 }
6341 }
6342 if (reg1 == reg2)
6343 {
6344 if (reg1 >= REG_GR && reg1 <= REG_GR + 127)
6345 {
6346 reg1 -= REG_GR;
6347 reg_class = 'r';
6348 }
6349 else if (reg1 >= REG_P && reg1 <= REG_P + 63)
6350 {
6351 reg1 -= REG_P;
6352 reg_class = 'p';
6353 }
6354 else if (reg1 >= REG_FR && reg1 <= REG_FR + 127)
6355 {
6356 reg1 -= REG_FR;
6357 reg_class = 'f';
6358 }
6359 else
6360 reg_class = 0;
6361 if (reg_class)
6362 as_warn (_("Invalid duplicate use of `%c%d'"), reg_class, reg1);
6363 }
6364 else if (((reg1 >= REG_FR && reg1 <= REG_FR + 31
6365 && reg2 >= REG_FR && reg2 <= REG_FR + 31)
6366 || (reg1 >= REG_FR + 32 && reg1 <= REG_FR + 127
6367 && reg2 >= REG_FR + 32 && reg2 <= REG_FR + 127))
6368 && ! ((reg1 ^ reg2) & 1))
6369 as_warn (_("Invalid simultaneous use of `f%d' and `f%d'"),
6370 reg1 - REG_FR, reg2 - REG_FR);
6371 else if ((reg1 >= REG_FR && reg1 <= REG_FR + 31
6372 && reg2 >= REG_FR + 32 && reg2 <= REG_FR + 127)
6373 || (reg1 >= REG_FR + 32 && reg1 <= REG_FR + 127
6374 && reg2 >= REG_FR && reg2 <= REG_FR + 31))
6375 as_warn (_("Dangerous simultaneous use of `f%d' and `f%d'"),
6376 reg1 - REG_FR, reg2 - REG_FR);
6377 return idesc;
6378 }
6379
6380 static void
6381 build_insn (struct slot *slot, bfd_vma *insnp)
6382 {
6383 const struct ia64_operand *odesc, *o2desc;
6384 struct ia64_opcode *idesc = slot->idesc;
6385 bfd_vma insn;
6386 bfd_signed_vma val;
6387 const char *err;
6388 int i;
6389
6390 insn = idesc->opcode | slot->qp_regno;
6391
6392 for (i = 0; i < NELEMS (idesc->operands) && idesc->operands[i]; ++i)
6393 {
6394 if (slot->opnd[i].X_op == O_register
6395 || slot->opnd[i].X_op == O_constant
6396 || slot->opnd[i].X_op == O_index)
6397 val = slot->opnd[i].X_add_number;
6398 else if (slot->opnd[i].X_op == O_big)
6399 {
6400 /* This must be the value 0x10000000000000000. */
6401 gas_assert (idesc->operands[i] == IA64_OPND_IMM8M1U8);
6402 val = 0;
6403 }
6404 else
6405 val = 0;
6406
6407 switch (idesc->operands[i])
6408 {
6409 case IA64_OPND_IMMU64:
6410 *insnp++ = (val >> 22) & 0x1ffffffffffLL;
6411 insn |= (((val & 0x7f) << 13) | (((val >> 7) & 0x1ff) << 27)
6412 | (((val >> 16) & 0x1f) << 22) | (((val >> 21) & 0x1) << 21)
6413 | (((val >> 63) & 0x1) << 36));
6414 continue;
6415
6416 case IA64_OPND_IMMU62:
6417 val &= 0x3fffffffffffffffULL;
6418 if (val != slot->opnd[i].X_add_number)
6419 as_warn (_("Value truncated to 62 bits"));
6420 *insnp++ = (val >> 21) & 0x1ffffffffffLL;
6421 insn |= (((val & 0xfffff) << 6) | (((val >> 20) & 0x1) << 36));
6422 continue;
6423
6424 case IA64_OPND_TGT64:
6425 val >>= 4;
6426 *insnp++ = ((val >> 20) & 0x7fffffffffLL) << 2;
6427 insn |= ((((val >> 59) & 0x1) << 36)
6428 | (((val >> 0) & 0xfffff) << 13));
6429 continue;
6430
6431 case IA64_OPND_AR3:
6432 val -= REG_AR;
6433 break;
6434
6435 case IA64_OPND_B1:
6436 case IA64_OPND_B2:
6437 val -= REG_BR;
6438 break;
6439
6440 case IA64_OPND_CR3:
6441 val -= REG_CR;
6442 break;
6443
6444 case IA64_OPND_DAHR3:
6445 val -= REG_DAHR;
6446 break;
6447
6448 case IA64_OPND_F1:
6449 case IA64_OPND_F2:
6450 case IA64_OPND_F3:
6451 case IA64_OPND_F4:
6452 val -= REG_FR;
6453 break;
6454
6455 case IA64_OPND_P1:
6456 case IA64_OPND_P2:
6457 val -= REG_P;
6458 break;
6459
6460 case IA64_OPND_R1:
6461 case IA64_OPND_R2:
6462 case IA64_OPND_R3:
6463 case IA64_OPND_R3_2:
6464 case IA64_OPND_CPUID_R3:
6465 case IA64_OPND_DBR_R3:
6466 case IA64_OPND_DTR_R3:
6467 case IA64_OPND_ITR_R3:
6468 case IA64_OPND_IBR_R3:
6469 case IA64_OPND_MR3:
6470 case IA64_OPND_MSR_R3:
6471 case IA64_OPND_PKR_R3:
6472 case IA64_OPND_PMC_R3:
6473 case IA64_OPND_PMD_R3:
6474 case IA64_OPND_DAHR_R3:
6475 case IA64_OPND_RR_R3:
6476 val -= REG_GR;
6477 break;
6478
6479 default:
6480 break;
6481 }
6482
6483 odesc = elf64_ia64_operands + idesc->operands[i];
6484 err = (*odesc->insert) (odesc, val, &insn);
6485 if (err)
6486 as_bad_where (slot->src_file, slot->src_line,
6487 _("Bad operand value: %s"), err);
6488 if (idesc->flags & IA64_OPCODE_PSEUDO)
6489 {
6490 if ((idesc->flags & IA64_OPCODE_F2_EQ_F3)
6491 && odesc == elf64_ia64_operands + IA64_OPND_F3)
6492 {
6493 o2desc = elf64_ia64_operands + IA64_OPND_F2;
6494 (*o2desc->insert) (o2desc, val, &insn);
6495 }
6496 if ((idesc->flags & IA64_OPCODE_LEN_EQ_64MCNT)
6497 && (odesc == elf64_ia64_operands + IA64_OPND_CPOS6a
6498 || odesc == elf64_ia64_operands + IA64_OPND_POS6))
6499 {
6500 o2desc = elf64_ia64_operands + IA64_OPND_LEN6;
6501 (*o2desc->insert) (o2desc, 64 - val, &insn);
6502 }
6503 }
6504 }
6505 *insnp = insn;
6506 }
6507
6508 static void
6509 emit_one_bundle (void)
6510 {
6511 int manual_bundling_off = 0, manual_bundling = 0;
6512 enum ia64_unit required_unit, insn_unit = 0;
6513 enum ia64_insn_type type[3], insn_type;
6514 unsigned int template_val, orig_template;
6515 bfd_vma insn[3] = { -1, -1, -1 };
6516 struct ia64_opcode *idesc;
6517 int end_of_insn_group = 0, user_template = -1;
6518 int n, i, j, first, curr, last_slot;
6519 bfd_vma t0 = 0, t1 = 0;
6520 struct label_fix *lfix;
6521 bfd_boolean mark_label;
6522 struct insn_fix *ifix;
6523 char mnemonic[16];
6524 fixS *fix;
6525 char *f;
6526 int addr_mod;
6527
6528 first = (md.curr_slot + NUM_SLOTS - md.num_slots_in_use) % NUM_SLOTS;
6529 know (first >= 0 && first < NUM_SLOTS);
6530 n = MIN (3, md.num_slots_in_use);
6531
6532 /* Determine template: user user_template if specified, best match
6533 otherwise: */
6534
6535 if (md.slot[first].user_template >= 0)
6536 user_template = template_val = md.slot[first].user_template;
6537 else
6538 {
6539 /* Auto select appropriate template. */
6540 memset (type, 0, sizeof (type));
6541 curr = first;
6542 for (i = 0; i < n; ++i)
6543 {
6544 if (md.slot[curr].label_fixups && i != 0)
6545 break;
6546 type[i] = md.slot[curr].idesc->type;
6547 curr = (curr + 1) % NUM_SLOTS;
6548 }
6549 template_val = best_template[type[0]][type[1]][type[2]];
6550 }
6551
6552 /* initialize instructions with appropriate nops: */
6553 for (i = 0; i < 3; ++i)
6554 insn[i] = nop[ia64_templ_desc[template_val].exec_unit[i]];
6555
6556 f = frag_more (16);
6557
6558 /* Check to see if this bundle is at an offset that is a multiple of 16-bytes
6559 from the start of the frag. */
6560 addr_mod = frag_now_fix () & 15;
6561 if (frag_now->has_code && frag_now->insn_addr != addr_mod)
6562 as_bad (_("instruction address is not a multiple of 16"));
6563 frag_now->insn_addr = addr_mod;
6564 frag_now->has_code = 1;
6565
6566 /* now fill in slots with as many insns as possible: */
6567 curr = first;
6568 idesc = md.slot[curr].idesc;
6569 end_of_insn_group = 0;
6570 last_slot = -1;
6571 for (i = 0; i < 3 && md.num_slots_in_use > 0; ++i)
6572 {
6573 /* If we have unwind records, we may need to update some now. */
6574 unw_rec_list *ptr = md.slot[curr].unwind_record;
6575 unw_rec_list *end_ptr = NULL;
6576
6577 if (ptr)
6578 {
6579 /* Find the last prologue/body record in the list for the current
6580 insn, and set the slot number for all records up to that point.
6581 This needs to be done now, because prologue/body records refer to
6582 the current point, not the point after the instruction has been
6583 issued. This matters because there may have been nops emitted
6584 meanwhile. Any non-prologue non-body record followed by a
6585 prologue/body record must also refer to the current point. */
6586 unw_rec_list *last_ptr;
6587
6588 for (j = 1; end_ptr == NULL && j < md.num_slots_in_use; ++j)
6589 end_ptr = md.slot[(curr + j) % NUM_SLOTS].unwind_record;
6590 for (last_ptr = NULL; ptr != end_ptr; ptr = ptr->next)
6591 if (ptr->r.type == prologue || ptr->r.type == prologue_gr
6592 || ptr->r.type == body)
6593 last_ptr = ptr;
6594 if (last_ptr)
6595 {
6596 /* Make last_ptr point one after the last prologue/body
6597 record. */
6598 last_ptr = last_ptr->next;
6599 for (ptr = md.slot[curr].unwind_record; ptr != last_ptr;
6600 ptr = ptr->next)
6601 {
6602 ptr->slot_number = (unsigned long) f + i;
6603 ptr->slot_frag = frag_now;
6604 }
6605 /* Remove the initialized records, so that we won't accidentally
6606 update them again if we insert a nop and continue. */
6607 md.slot[curr].unwind_record = last_ptr;
6608 }
6609 }
6610
6611 manual_bundling_off = md.slot[curr].manual_bundling_off;
6612 if (md.slot[curr].manual_bundling_on)
6613 {
6614 if (curr == first)
6615 manual_bundling = 1;
6616 else
6617 break; /* Need to start a new bundle. */
6618 }
6619
6620 /* If this instruction specifies a template, then it must be the first
6621 instruction of a bundle. */
6622 if (curr != first && md.slot[curr].user_template >= 0)
6623 break;
6624
6625 if (idesc->flags & IA64_OPCODE_SLOT2)
6626 {
6627 if (manual_bundling && !manual_bundling_off)
6628 {
6629 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6630 _("`%s' must be last in bundle"), idesc->name);
6631 if (i < 2)
6632 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6633 }
6634 i = 2;
6635 }
6636 if (idesc->flags & IA64_OPCODE_LAST)
6637 {
6638 int required_slot;
6639 unsigned int required_template;
6640
6641 /* If we need a stop bit after an M slot, our only choice is
6642 template 5 (M;;MI). If we need a stop bit after a B
6643 slot, our only choice is to place it at the end of the
6644 bundle, because the only available templates are MIB,
6645 MBB, BBB, MMB, and MFB. We don't handle anything other
6646 than M and B slots because these are the only kind of
6647 instructions that can have the IA64_OPCODE_LAST bit set. */
6648 required_template = template_val;
6649 switch (idesc->type)
6650 {
6651 case IA64_TYPE_M:
6652 required_slot = 0;
6653 required_template = 5;
6654 break;
6655
6656 case IA64_TYPE_B:
6657 required_slot = 2;
6658 break;
6659
6660 default:
6661 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6662 _("Internal error: don't know how to force %s to end of instruction group"),
6663 idesc->name);
6664 required_slot = i;
6665 break;
6666 }
6667 if (manual_bundling
6668 && (i > required_slot
6669 || (required_slot == 2 && !manual_bundling_off)
6670 || (user_template >= 0
6671 /* Changing from MMI to M;MI is OK. */
6672 && (template_val ^ required_template) > 1)))
6673 {
6674 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6675 _("`%s' must be last in instruction group"),
6676 idesc->name);
6677 if (i < 2 && required_slot == 2 && !manual_bundling_off)
6678 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6679 }
6680 if (required_slot < i)
6681 /* Can't fit this instruction. */
6682 break;
6683
6684 i = required_slot;
6685 if (required_template != template_val)
6686 {
6687 /* If we switch the template, we need to reset the NOPs
6688 after slot i. The slot-types of the instructions ahead
6689 of i never change, so we don't need to worry about
6690 changing NOPs in front of this slot. */
6691 for (j = i; j < 3; ++j)
6692 insn[j] = nop[ia64_templ_desc[required_template].exec_unit[j]];
6693
6694 /* We just picked a template that includes the stop bit in the
6695 middle, so we don't need another one emitted later. */
6696 md.slot[curr].end_of_insn_group = 0;
6697 }
6698 template_val = required_template;
6699 }
6700 if (curr != first && md.slot[curr].label_fixups)
6701 {
6702 if (manual_bundling)
6703 {
6704 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6705 _("Label must be first in a bundle"));
6706 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6707 }
6708 /* This insn must go into the first slot of a bundle. */
6709 break;
6710 }
6711
6712 if (end_of_insn_group && md.num_slots_in_use >= 1)
6713 {
6714 /* We need an instruction group boundary in the middle of a
6715 bundle. See if we can switch to an other template with
6716 an appropriate boundary. */
6717
6718 orig_template = template_val;
6719 if (i == 1 && (user_template == 4
6720 || (user_template < 0
6721 && (ia64_templ_desc[template_val].exec_unit[0]
6722 == IA64_UNIT_M))))
6723 {
6724 template_val = 5;
6725 end_of_insn_group = 0;
6726 }
6727 else if (i == 2 && (user_template == 0
6728 || (user_template < 0
6729 && (ia64_templ_desc[template_val].exec_unit[1]
6730 == IA64_UNIT_I)))
6731 /* This test makes sure we don't switch the template if
6732 the next instruction is one that needs to be first in
6733 an instruction group. Since all those instructions are
6734 in the M group, there is no way such an instruction can
6735 fit in this bundle even if we switch the template. The
6736 reason we have to check for this is that otherwise we
6737 may end up generating "MI;;I M.." which has the deadly
6738 effect that the second M instruction is no longer the
6739 first in the group! --davidm 99/12/16 */
6740 && (idesc->flags & IA64_OPCODE_FIRST) == 0)
6741 {
6742 template_val = 1;
6743 end_of_insn_group = 0;
6744 }
6745 else if (i == 1
6746 && user_template == 0
6747 && !(idesc->flags & IA64_OPCODE_FIRST))
6748 /* Use the next slot. */
6749 continue;
6750 else if (curr != first)
6751 /* can't fit this insn */
6752 break;
6753
6754 if (template_val != orig_template)
6755 /* if we switch the template, we need to reset the NOPs
6756 after slot i. The slot-types of the instructions ahead
6757 of i never change, so we don't need to worry about
6758 changing NOPs in front of this slot. */
6759 for (j = i; j < 3; ++j)
6760 insn[j] = nop[ia64_templ_desc[template_val].exec_unit[j]];
6761 }
6762 required_unit = ia64_templ_desc[template_val].exec_unit[i];
6763
6764 /* resolve dynamic opcodes such as "break", "hint", and "nop": */
6765 if (idesc->type == IA64_TYPE_DYN)
6766 {
6767 enum ia64_opnd opnd1, opnd2;
6768
6769 if ((strcmp (idesc->name, "nop") == 0)
6770 || (strcmp (idesc->name, "break") == 0))
6771 insn_unit = required_unit;
6772 else if (strcmp (idesc->name, "hint") == 0)
6773 {
6774 insn_unit = required_unit;
6775 if (required_unit == IA64_UNIT_B)
6776 {
6777 switch (md.hint_b)
6778 {
6779 case hint_b_ok:
6780 break;
6781 case hint_b_warning:
6782 as_warn (_("hint in B unit may be treated as nop"));
6783 break;
6784 case hint_b_error:
6785 /* When manual bundling is off and there is no
6786 user template, we choose a different unit so
6787 that hint won't go into the current slot. We
6788 will fill the current bundle with nops and
6789 try to put hint into the next bundle. */
6790 if (!manual_bundling && user_template < 0)
6791 insn_unit = IA64_UNIT_I;
6792 else
6793 as_bad (_("hint in B unit can't be used"));
6794 break;
6795 }
6796 }
6797 }
6798 else if (strcmp (idesc->name, "chk.s") == 0
6799 || strcmp (idesc->name, "mov") == 0)
6800 {
6801 insn_unit = IA64_UNIT_M;
6802 if (required_unit == IA64_UNIT_I
6803 || (required_unit == IA64_UNIT_F && template_val == 6))
6804 insn_unit = IA64_UNIT_I;
6805 }
6806 else
6807 as_fatal (_("emit_one_bundle: unexpected dynamic op"));
6808
6809 snprintf (mnemonic, sizeof (mnemonic), "%s.%c",
6810 idesc->name, "?imbfxx"[insn_unit]);
6811 opnd1 = idesc->operands[0];
6812 opnd2 = idesc->operands[1];
6813 ia64_free_opcode (idesc);
6814 idesc = ia64_find_opcode (mnemonic);
6815 /* moves to/from ARs have collisions */
6816 if (opnd1 == IA64_OPND_AR3 || opnd2 == IA64_OPND_AR3)
6817 {
6818 while (idesc != NULL
6819 && (idesc->operands[0] != opnd1
6820 || idesc->operands[1] != opnd2))
6821 idesc = get_next_opcode (idesc);
6822 }
6823 md.slot[curr].idesc = idesc;
6824 }
6825 else
6826 {
6827 insn_type = idesc->type;
6828 insn_unit = IA64_UNIT_NIL;
6829 switch (insn_type)
6830 {
6831 case IA64_TYPE_A:
6832 if (required_unit == IA64_UNIT_I || required_unit == IA64_UNIT_M)
6833 insn_unit = required_unit;
6834 break;
6835 case IA64_TYPE_X: insn_unit = IA64_UNIT_L; break;
6836 case IA64_TYPE_I: insn_unit = IA64_UNIT_I; break;
6837 case IA64_TYPE_M: insn_unit = IA64_UNIT_M; break;
6838 case IA64_TYPE_B: insn_unit = IA64_UNIT_B; break;
6839 case IA64_TYPE_F: insn_unit = IA64_UNIT_F; break;
6840 default: break;
6841 }
6842 }
6843
6844 if (insn_unit != required_unit)
6845 continue; /* Try next slot. */
6846
6847 /* Now is a good time to fix up the labels for this insn. */
6848 mark_label = FALSE;
6849 for (lfix = md.slot[curr].label_fixups; lfix; lfix = lfix->next)
6850 {
6851 S_SET_VALUE (lfix->sym, frag_now_fix () - 16);
6852 symbol_set_frag (lfix->sym, frag_now);
6853 mark_label |= lfix->dw2_mark_labels;
6854 }
6855 for (lfix = md.slot[curr].tag_fixups; lfix; lfix = lfix->next)
6856 {
6857 S_SET_VALUE (lfix->sym, frag_now_fix () - 16 + i);
6858 symbol_set_frag (lfix->sym, frag_now);
6859 }
6860
6861 if (debug_type == DEBUG_DWARF2
6862 || md.slot[curr].loc_directive_seen
6863 || mark_label)
6864 {
6865 bfd_vma addr = frag_now->fr_address + frag_now_fix () - 16 + i;
6866
6867 md.slot[curr].loc_directive_seen = 0;
6868 if (mark_label)
6869 md.slot[curr].debug_line.flags |= DWARF2_FLAG_BASIC_BLOCK;
6870
6871 dwarf2_gen_line_info (addr, &md.slot[curr].debug_line);
6872 }
6873
6874 build_insn (md.slot + curr, insn + i);
6875
6876 ptr = md.slot[curr].unwind_record;
6877 if (ptr)
6878 {
6879 /* Set slot numbers for all remaining unwind records belonging to the
6880 current insn. There can not be any prologue/body unwind records
6881 here. */
6882 for (; ptr != end_ptr; ptr = ptr->next)
6883 {
6884 ptr->slot_number = (unsigned long) f + i;
6885 ptr->slot_frag = frag_now;
6886 }
6887 md.slot[curr].unwind_record = NULL;
6888 }
6889
6890 for (j = 0; j < md.slot[curr].num_fixups; ++j)
6891 {
6892 ifix = md.slot[curr].fixup + j;
6893 fix = fix_new_exp (frag_now, frag_now_fix () - 16 + i, 8,
6894 &ifix->expr, ifix->is_pcrel, ifix->code);
6895 fix->tc_fix_data.opnd = ifix->opnd;
6896 fix->fx_file = md.slot[curr].src_file;
6897 fix->fx_line = md.slot[curr].src_line;
6898 }
6899
6900 end_of_insn_group = md.slot[curr].end_of_insn_group;
6901
6902 /* This adjustment to "i" must occur after the fix, otherwise the fix
6903 is assigned to the wrong slot, and the VMS linker complains. */
6904 if (required_unit == IA64_UNIT_L)
6905 {
6906 know (i == 1);
6907 /* skip one slot for long/X-unit instructions */
6908 ++i;
6909 }
6910 --md.num_slots_in_use;
6911 last_slot = i;
6912
6913 /* clear slot: */
6914 ia64_free_opcode (md.slot[curr].idesc);
6915 memset (md.slot + curr, 0, sizeof (md.slot[curr]));
6916 md.slot[curr].user_template = -1;
6917
6918 if (manual_bundling_off)
6919 {
6920 manual_bundling = 0;
6921 break;
6922 }
6923 curr = (curr + 1) % NUM_SLOTS;
6924 idesc = md.slot[curr].idesc;
6925 }
6926
6927 /* A user template was specified, but the first following instruction did
6928 not fit. This can happen with or without manual bundling. */
6929 if (md.num_slots_in_use > 0 && last_slot < 0)
6930 {
6931 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6932 _("`%s' does not fit into %s template"),
6933 idesc->name, ia64_templ_desc[template_val].name);
6934 /* Drop first insn so we don't livelock. */
6935 --md.num_slots_in_use;
6936 know (curr == first);
6937 ia64_free_opcode (md.slot[curr].idesc);
6938 memset (md.slot + curr, 0, sizeof (md.slot[curr]));
6939 md.slot[curr].user_template = -1;
6940 }
6941 else if (manual_bundling > 0)
6942 {
6943 if (md.num_slots_in_use > 0)
6944 {
6945 if (last_slot >= 2)
6946 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6947 _("`%s' does not fit into bundle"), idesc->name);
6948 else
6949 {
6950 const char *where;
6951
6952 if (template_val == 2)
6953 where = "X slot";
6954 else if (last_slot == 0)
6955 where = "slots 2 or 3";
6956 else
6957 where = "slot 3";
6958 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6959 _("`%s' can't go in %s of %s template"),
6960 idesc->name, where, ia64_templ_desc[template_val].name);
6961 }
6962 }
6963 else
6964 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6965 _("Missing '}' at end of file"));
6966 }
6967
6968 know (md.num_slots_in_use < NUM_SLOTS);
6969
6970 t0 = end_of_insn_group | (template_val << 1) | (insn[0] << 5) | (insn[1] << 46);
6971 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
6972
6973 number_to_chars_littleendian (f + 0, t0, 8);
6974 number_to_chars_littleendian (f + 8, t1, 8);
6975 }
6976
6977 int
6978 md_parse_option (int c, const char *arg)
6979 {
6980
6981 switch (c)
6982 {
6983 /* Switches from the Intel assembler. */
6984 case 'm':
6985 if (strcmp (arg, "ilp64") == 0
6986 || strcmp (arg, "lp64") == 0
6987 || strcmp (arg, "p64") == 0)
6988 {
6989 md.flags |= EF_IA_64_ABI64;
6990 }
6991 else if (strcmp (arg, "ilp32") == 0)
6992 {
6993 md.flags &= ~EF_IA_64_ABI64;
6994 }
6995 else if (strcmp (arg, "le") == 0)
6996 {
6997 md.flags &= ~EF_IA_64_BE;
6998 default_big_endian = 0;
6999 }
7000 else if (strcmp (arg, "be") == 0)
7001 {
7002 md.flags |= EF_IA_64_BE;
7003 default_big_endian = 1;
7004 }
7005 else if (strncmp (arg, "unwind-check=", 13) == 0)
7006 {
7007 arg += 13;
7008 if (strcmp (arg, "warning") == 0)
7009 md.unwind_check = unwind_check_warning;
7010 else if (strcmp (arg, "error") == 0)
7011 md.unwind_check = unwind_check_error;
7012 else
7013 return 0;
7014 }
7015 else if (strncmp (arg, "hint.b=", 7) == 0)
7016 {
7017 arg += 7;
7018 if (strcmp (arg, "ok") == 0)
7019 md.hint_b = hint_b_ok;
7020 else if (strcmp (arg, "warning") == 0)
7021 md.hint_b = hint_b_warning;
7022 else if (strcmp (arg, "error") == 0)
7023 md.hint_b = hint_b_error;
7024 else
7025 return 0;
7026 }
7027 else if (strncmp (arg, "tune=", 5) == 0)
7028 {
7029 arg += 5;
7030 if (strcmp (arg, "itanium1") == 0)
7031 md.tune = itanium1;
7032 else if (strcmp (arg, "itanium2") == 0)
7033 md.tune = itanium2;
7034 else
7035 return 0;
7036 }
7037 else
7038 return 0;
7039 break;
7040
7041 case 'N':
7042 if (strcmp (arg, "so") == 0)
7043 {
7044 /* Suppress signon message. */
7045 }
7046 else if (strcmp (arg, "pi") == 0)
7047 {
7048 /* Reject privileged instructions. FIXME */
7049 }
7050 else if (strcmp (arg, "us") == 0)
7051 {
7052 /* Allow union of signed and unsigned range. FIXME */
7053 }
7054 else if (strcmp (arg, "close_fcalls") == 0)
7055 {
7056 /* Do not resolve global function calls. */
7057 }
7058 else
7059 return 0;
7060 break;
7061
7062 case 'C':
7063 /* temp[="prefix"] Insert temporary labels into the object file
7064 symbol table prefixed by "prefix".
7065 Default prefix is ":temp:".
7066 */
7067 break;
7068
7069 case 'a':
7070 /* indirect=<tgt> Assume unannotated indirect branches behavior
7071 according to <tgt> --
7072 exit: branch out from the current context (default)
7073 labels: all labels in context may be branch targets
7074 */
7075 if (strncmp (arg, "indirect=", 9) != 0)
7076 return 0;
7077 break;
7078
7079 case 'x':
7080 /* -X conflicts with an ignored option, use -x instead */
7081 md.detect_dv = 1;
7082 if (!arg || strcmp (arg, "explicit") == 0)
7083 {
7084 /* set default mode to explicit */
7085 md.default_explicit_mode = 1;
7086 break;
7087 }
7088 else if (strcmp (arg, "auto") == 0)
7089 {
7090 md.default_explicit_mode = 0;
7091 }
7092 else if (strcmp (arg, "none") == 0)
7093 {
7094 md.detect_dv = 0;
7095 }
7096 else if (strcmp (arg, "debug") == 0)
7097 {
7098 md.debug_dv = 1;
7099 }
7100 else if (strcmp (arg, "debugx") == 0)
7101 {
7102 md.default_explicit_mode = 1;
7103 md.debug_dv = 1;
7104 }
7105 else if (strcmp (arg, "debugn") == 0)
7106 {
7107 md.debug_dv = 1;
7108 md.detect_dv = 0;
7109 }
7110 else
7111 {
7112 as_bad (_("Unrecognized option '-x%s'"), arg);
7113 }
7114 break;
7115
7116 case 'S':
7117 /* nops Print nops statistics. */
7118 break;
7119
7120 /* GNU specific switches for gcc. */
7121 case OPTION_MCONSTANT_GP:
7122 md.flags |= EF_IA_64_CONS_GP;
7123 break;
7124
7125 case OPTION_MAUTO_PIC:
7126 md.flags |= EF_IA_64_NOFUNCDESC_CONS_GP;
7127 break;
7128
7129 default:
7130 return 0;
7131 }
7132
7133 return 1;
7134 }
7135
7136 void
7137 md_show_usage (FILE *stream)
7138 {
7139 fputs (_("\
7140 IA-64 options:\n\
7141 --mconstant-gp mark output file as using the constant-GP model\n\
7142 (sets ELF header flag EF_IA_64_CONS_GP)\n\
7143 --mauto-pic mark output file as using the constant-GP model\n\
7144 without function descriptors (sets ELF header flag\n\
7145 EF_IA_64_NOFUNCDESC_CONS_GP)\n\
7146 -milp32|-milp64|-mlp64|-mp64 select data model (default -mlp64)\n\
7147 -mle | -mbe select little- or big-endian byte order (default -mle)\n\
7148 -mtune=[itanium1|itanium2]\n\
7149 tune for a specific CPU (default -mtune=itanium2)\n\
7150 -munwind-check=[warning|error]\n\
7151 unwind directive check (default -munwind-check=warning)\n\
7152 -mhint.b=[ok|warning|error]\n\
7153 hint.b check (default -mhint.b=error)\n\
7154 -x | -xexplicit turn on dependency violation checking\n"), stream);
7155 /* Note for translators: "automagically" can be translated as "automatically" here. */
7156 fputs (_("\
7157 -xauto automagically remove dependency violations (default)\n\
7158 -xnone turn off dependency violation checking\n\
7159 -xdebug debug dependency violation checker\n\
7160 -xdebugn debug dependency violation checker but turn off\n\
7161 dependency violation checking\n\
7162 -xdebugx debug dependency violation checker and turn on\n\
7163 dependency violation checking\n"),
7164 stream);
7165 }
7166
7167 void
7168 ia64_after_parse_args (void)
7169 {
7170 if (debug_type == DEBUG_STABS)
7171 as_fatal (_("--gstabs is not supported for ia64"));
7172 }
7173
7174 /* Return true if TYPE fits in TEMPL at SLOT. */
7175
7176 static int
7177 match (int templ, int type, int slot)
7178 {
7179 enum ia64_unit unit;
7180 int result;
7181
7182 unit = ia64_templ_desc[templ].exec_unit[slot];
7183 switch (type)
7184 {
7185 case IA64_TYPE_DYN: result = 1; break; /* for nop and break */
7186 case IA64_TYPE_A:
7187 result = (unit == IA64_UNIT_I || unit == IA64_UNIT_M);
7188 break;
7189 case IA64_TYPE_X: result = (unit == IA64_UNIT_L); break;
7190 case IA64_TYPE_I: result = (unit == IA64_UNIT_I); break;
7191 case IA64_TYPE_M: result = (unit == IA64_UNIT_M); break;
7192 case IA64_TYPE_B: result = (unit == IA64_UNIT_B); break;
7193 case IA64_TYPE_F: result = (unit == IA64_UNIT_F); break;
7194 default: result = 0; break;
7195 }
7196 return result;
7197 }
7198
7199 /* For Itanium 1, add a bit of extra goodness if a nop of type F or B would fit
7200 in TEMPL at SLOT. For Itanium 2, add a bit of extra goodness if a nop of
7201 type M or I would fit in TEMPL at SLOT. */
7202
7203 static inline int
7204 extra_goodness (int templ, int slot)
7205 {
7206 switch (md.tune)
7207 {
7208 case itanium1:
7209 if (slot == 1 && match (templ, IA64_TYPE_F, slot))
7210 return 2;
7211 else if (slot == 2 && match (templ, IA64_TYPE_B, slot))
7212 return 1;
7213 else
7214 return 0;
7215 break;
7216 case itanium2:
7217 if (match (templ, IA64_TYPE_M, slot)
7218 || match (templ, IA64_TYPE_I, slot))
7219 /* Favor M- and I-unit NOPs. We definitely want to avoid
7220 F-unit and B-unit may cause split-issue or less-than-optimal
7221 branch-prediction. */
7222 return 2;
7223 else
7224 return 0;
7225 break;
7226 default:
7227 abort ();
7228 return 0;
7229 }
7230 }
7231
7232 /* This function is called once, at assembler startup time. It sets
7233 up all the tables, etc. that the MD part of the assembler will need
7234 that can be determined before arguments are parsed. */
7235 void
7236 md_begin (void)
7237 {
7238 int i, j, k, t, goodness, best, ok;
7239
7240 md.auto_align = 1;
7241 md.explicit_mode = md.default_explicit_mode;
7242
7243 bfd_set_section_alignment (text_section, 4);
7244
7245 /* Make sure function pointers get initialized. */
7246 target_big_endian = -1;
7247 dot_byteorder (default_big_endian);
7248
7249 alias_hash = str_htab_create ();
7250 alias_name_hash = str_htab_create ();
7251 secalias_hash = str_htab_create ();
7252 secalias_name_hash = str_htab_create ();
7253
7254 pseudo_func[FUNC_DTP_MODULE].u.sym =
7255 symbol_new (".<dtpmod>", undefined_section,
7256 &zero_address_frag, FUNC_DTP_MODULE);
7257
7258 pseudo_func[FUNC_DTP_RELATIVE].u.sym =
7259 symbol_new (".<dtprel>", undefined_section,
7260 &zero_address_frag, FUNC_DTP_RELATIVE);
7261
7262 pseudo_func[FUNC_FPTR_RELATIVE].u.sym =
7263 symbol_new (".<fptr>", undefined_section,
7264 &zero_address_frag, FUNC_FPTR_RELATIVE);
7265
7266 pseudo_func[FUNC_GP_RELATIVE].u.sym =
7267 symbol_new (".<gprel>", undefined_section,
7268 &zero_address_frag, FUNC_GP_RELATIVE);
7269
7270 pseudo_func[FUNC_LT_RELATIVE].u.sym =
7271 symbol_new (".<ltoff>", undefined_section,
7272 &zero_address_frag, FUNC_LT_RELATIVE);
7273
7274 pseudo_func[FUNC_LT_RELATIVE_X].u.sym =
7275 symbol_new (".<ltoffx>", undefined_section,
7276 &zero_address_frag, FUNC_LT_RELATIVE_X);
7277
7278 pseudo_func[FUNC_PC_RELATIVE].u.sym =
7279 symbol_new (".<pcrel>", undefined_section,
7280 &zero_address_frag, FUNC_PC_RELATIVE);
7281
7282 pseudo_func[FUNC_PLT_RELATIVE].u.sym =
7283 symbol_new (".<pltoff>", undefined_section,
7284 &zero_address_frag, FUNC_PLT_RELATIVE);
7285
7286 pseudo_func[FUNC_SEC_RELATIVE].u.sym =
7287 symbol_new (".<secrel>", undefined_section,
7288 &zero_address_frag, FUNC_SEC_RELATIVE);
7289
7290 pseudo_func[FUNC_SEG_RELATIVE].u.sym =
7291 symbol_new (".<segrel>", undefined_section,
7292 &zero_address_frag, FUNC_SEG_RELATIVE);
7293
7294 pseudo_func[FUNC_TP_RELATIVE].u.sym =
7295 symbol_new (".<tprel>", undefined_section,
7296 &zero_address_frag, FUNC_TP_RELATIVE);
7297
7298 pseudo_func[FUNC_LTV_RELATIVE].u.sym =
7299 symbol_new (".<ltv>", undefined_section,
7300 &zero_address_frag, FUNC_LTV_RELATIVE);
7301
7302 pseudo_func[FUNC_LT_FPTR_RELATIVE].u.sym =
7303 symbol_new (".<ltoff.fptr>", undefined_section,
7304 &zero_address_frag, FUNC_LT_FPTR_RELATIVE);
7305
7306 pseudo_func[FUNC_LT_DTP_MODULE].u.sym =
7307 symbol_new (".<ltoff.dtpmod>", undefined_section,
7308 &zero_address_frag, FUNC_LT_DTP_MODULE);
7309
7310 pseudo_func[FUNC_LT_DTP_RELATIVE].u.sym =
7311 symbol_new (".<ltoff.dptrel>", undefined_section,
7312 &zero_address_frag, FUNC_LT_DTP_RELATIVE);
7313
7314 pseudo_func[FUNC_LT_TP_RELATIVE].u.sym =
7315 symbol_new (".<ltoff.tprel>", undefined_section,
7316 &zero_address_frag, FUNC_LT_TP_RELATIVE);
7317
7318 pseudo_func[FUNC_IPLT_RELOC].u.sym =
7319 symbol_new (".<iplt>", undefined_section,
7320 &zero_address_frag, FUNC_IPLT_RELOC);
7321
7322 #ifdef TE_VMS
7323 pseudo_func[FUNC_SLOTCOUNT_RELOC].u.sym =
7324 symbol_new (".<slotcount>", undefined_section,
7325 &zero_address_frag, FUNC_SLOTCOUNT_RELOC);
7326 #endif
7327
7328 if (md.tune != itanium1)
7329 {
7330 /* Convert MFI NOPs bundles into MMI NOPs bundles. */
7331 le_nop[0] = 0x8;
7332 le_nop_stop[0] = 0x9;
7333 }
7334
7335 /* Compute the table of best templates. We compute goodness as a
7336 base 4 value, in which each match counts for 3. Match-failures
7337 result in NOPs and we use extra_goodness() to pick the execution
7338 units that are best suited for issuing the NOP. */
7339 for (i = 0; i < IA64_NUM_TYPES; ++i)
7340 for (j = 0; j < IA64_NUM_TYPES; ++j)
7341 for (k = 0; k < IA64_NUM_TYPES; ++k)
7342 {
7343 best = 0;
7344 for (t = 0; t < NELEMS (ia64_templ_desc); ++t)
7345 {
7346 goodness = 0;
7347 if (match (t, i, 0))
7348 {
7349 if (match (t, j, 1))
7350 {
7351 if ((t == 2 && j == IA64_TYPE_X) || match (t, k, 2))
7352 goodness = 3 + 3 + 3;
7353 else
7354 goodness = 3 + 3 + extra_goodness (t, 2);
7355 }
7356 else if (match (t, j, 2))
7357 goodness = 3 + 3 + extra_goodness (t, 1);
7358 else
7359 {
7360 goodness = 3;
7361 goodness += extra_goodness (t, 1);
7362 goodness += extra_goodness (t, 2);
7363 }
7364 }
7365 else if (match (t, i, 1))
7366 {
7367 if ((t == 2 && i == IA64_TYPE_X) || match (t, j, 2))
7368 goodness = 3 + 3;
7369 else
7370 goodness = 3 + extra_goodness (t, 2);
7371 }
7372 else if (match (t, i, 2))
7373 goodness = 3 + extra_goodness (t, 1);
7374
7375 if (goodness > best)
7376 {
7377 best = goodness;
7378 best_template[i][j][k] = t;
7379 }
7380 }
7381 }
7382
7383 #ifdef DEBUG_TEMPLATES
7384 /* For debugging changes to the best_template calculations. We don't care
7385 about combinations with invalid instructions, so start the loops at 1. */
7386 for (i = 0; i < IA64_NUM_TYPES; ++i)
7387 for (j = 0; j < IA64_NUM_TYPES; ++j)
7388 for (k = 0; k < IA64_NUM_TYPES; ++k)
7389 {
7390 char type_letter[IA64_NUM_TYPES] = { 'n', 'a', 'i', 'm', 'b', 'f',
7391 'x', 'd' };
7392 fprintf (stderr, "%c%c%c %s\n", type_letter[i], type_letter[j],
7393 type_letter[k],
7394 ia64_templ_desc[best_template[i][j][k]].name);
7395 }
7396 #endif
7397
7398 for (i = 0; i < NUM_SLOTS; ++i)
7399 md.slot[i].user_template = -1;
7400
7401 md.pseudo_hash = str_htab_create ();
7402 for (i = 0; i < NELEMS (pseudo_opcode); ++i)
7403 if (str_hash_insert (md.pseudo_hash, pseudo_opcode[i].name,
7404 pseudo_opcode + i, 0) != NULL)
7405 as_fatal (_("duplicate %s"), pseudo_opcode[i].name);
7406
7407 md.reg_hash = str_htab_create ();
7408 md.dynreg_hash = str_htab_create ();
7409 md.const_hash = str_htab_create ();
7410 md.entry_hash = str_htab_create ();
7411
7412 /* general registers: */
7413 declare_register_set ("r", 128, REG_GR);
7414 declare_register ("gp", REG_GR + 1);
7415 declare_register ("sp", REG_GR + 12);
7416 declare_register ("tp", REG_GR + 13);
7417 declare_register_set ("ret", 4, REG_GR + 8);
7418
7419 /* floating point registers: */
7420 declare_register_set ("f", 128, REG_FR);
7421 declare_register_set ("farg", 8, REG_FR + 8);
7422 declare_register_set ("fret", 8, REG_FR + 8);
7423
7424 /* branch registers: */
7425 declare_register_set ("b", 8, REG_BR);
7426 declare_register ("rp", REG_BR + 0);
7427
7428 /* predicate registers: */
7429 declare_register_set ("p", 64, REG_P);
7430 declare_register ("pr", REG_PR);
7431 declare_register ("pr.rot", REG_PR_ROT);
7432
7433 /* application registers: */
7434 declare_register_set ("ar", 128, REG_AR);
7435 for (i = 0; i < NELEMS (ar); ++i)
7436 declare_register (ar[i].name, REG_AR + ar[i].regnum);
7437
7438 /* control registers: */
7439 declare_register_set ("cr", 128, REG_CR);
7440 for (i = 0; i < NELEMS (cr); ++i)
7441 declare_register (cr[i].name, REG_CR + cr[i].regnum);
7442
7443 /* dahr registers: */
7444 declare_register_set ("dahr", 8, REG_DAHR);
7445
7446 declare_register ("ip", REG_IP);
7447 declare_register ("cfm", REG_CFM);
7448 declare_register ("psr", REG_PSR);
7449 declare_register ("psr.l", REG_PSR_L);
7450 declare_register ("psr.um", REG_PSR_UM);
7451
7452 for (i = 0; i < NELEMS (indirect_reg); ++i)
7453 {
7454 unsigned int regnum = indirect_reg[i].regnum;
7455
7456 md.indregsym[regnum - IND_CPUID] = declare_register (indirect_reg[i].name, regnum);
7457 }
7458
7459 /* pseudo-registers used to specify unwind info: */
7460 declare_register ("psp", REG_PSP);
7461
7462 for (i = 0; i < NELEMS (const_bits); ++i)
7463 if (str_hash_insert (md.const_hash, const_bits[i].name, const_bits + i, 0))
7464 as_fatal (_("duplicate %s"), const_bits[i].name);
7465
7466 /* Set the architecture and machine depending on defaults and command line
7467 options. */
7468 if (md.flags & EF_IA_64_ABI64)
7469 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf64);
7470 else
7471 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf32);
7472
7473 if (! ok)
7474 as_warn (_("Could not set architecture and machine"));
7475
7476 /* Set the pointer size and pointer shift size depending on md.flags */
7477
7478 if (md.flags & EF_IA_64_ABI64)
7479 {
7480 md.pointer_size = 8; /* pointers are 8 bytes */
7481 md.pointer_size_shift = 3; /* alignment is 8 bytes = 2^2 */
7482 }
7483 else
7484 {
7485 md.pointer_size = 4; /* pointers are 4 bytes */
7486 md.pointer_size_shift = 2; /* alignment is 4 bytes = 2^2 */
7487 }
7488
7489 md.mem_offset.hint = 0;
7490 md.path = 0;
7491 md.maxpaths = 0;
7492 md.entry_labels = NULL;
7493 }
7494
7495 /* Set the default options in md. Cannot do this in md_begin because
7496 that is called after md_parse_option which is where we set the
7497 options in md based on command line options. */
7498
7499 void
7500 ia64_init (int argc ATTRIBUTE_UNUSED, char **argv ATTRIBUTE_UNUSED)
7501 {
7502 md.flags = MD_FLAGS_DEFAULT;
7503 #ifndef TE_VMS
7504 /* Don't turn on dependency checking for VMS, doesn't work. */
7505 md.detect_dv = 1;
7506 #endif
7507 /* FIXME: We should change it to unwind_check_error someday. */
7508 md.unwind_check = unwind_check_warning;
7509 md.hint_b = hint_b_error;
7510 md.tune = itanium2;
7511 }
7512
7513 /* Return a string for the target object file format. */
7514
7515 const char *
7516 ia64_target_format (void)
7517 {
7518 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
7519 {
7520 if (md.flags & EF_IA_64_BE)
7521 {
7522 if (md.flags & EF_IA_64_ABI64)
7523 #if defined(TE_AIX50)
7524 return "elf64-ia64-aix-big";
7525 #elif defined(TE_HPUX)
7526 return "elf64-ia64-hpux-big";
7527 #else
7528 return "elf64-ia64-big";
7529 #endif
7530 else
7531 #if defined(TE_AIX50)
7532 return "elf32-ia64-aix-big";
7533 #elif defined(TE_HPUX)
7534 return "elf32-ia64-hpux-big";
7535 #else
7536 return "elf32-ia64-big";
7537 #endif
7538 }
7539 else
7540 {
7541 if (md.flags & EF_IA_64_ABI64)
7542 #if defined (TE_AIX50)
7543 return "elf64-ia64-aix-little";
7544 #elif defined (TE_VMS)
7545 {
7546 md.flags |= EF_IA_64_ARCHVER_1;
7547 return "elf64-ia64-vms";
7548 }
7549 #else
7550 return "elf64-ia64-little";
7551 #endif
7552 else
7553 #ifdef TE_AIX50
7554 return "elf32-ia64-aix-little";
7555 #else
7556 return "elf32-ia64-little";
7557 #endif
7558 }
7559 }
7560 else
7561 return "unknown-format";
7562 }
7563
7564 void
7565 ia64_end_of_source (void)
7566 {
7567 /* terminate insn group upon reaching end of file: */
7568 insn_group_break (1, 0, 0);
7569
7570 /* emits slots we haven't written yet: */
7571 ia64_flush_insns ();
7572
7573 bfd_set_private_flags (stdoutput, md.flags);
7574
7575 md.mem_offset.hint = 0;
7576 }
7577
7578 void
7579 ia64_start_line (void)
7580 {
7581 static int first;
7582
7583 if (!first) {
7584 /* Make sure we don't reference input_line_pointer[-1] when that's
7585 not valid. */
7586 first = 1;
7587 return;
7588 }
7589
7590 if (md.qp.X_op == O_register)
7591 as_bad (_("qualifying predicate not followed by instruction"));
7592 md.qp.X_op = O_absent;
7593
7594 if (ignore_input ())
7595 return;
7596
7597 if (input_line_pointer[0] == ';' && input_line_pointer[-1] == ';')
7598 {
7599 if (md.detect_dv && !md.explicit_mode)
7600 {
7601 static int warned;
7602
7603 if (!warned)
7604 {
7605 warned = 1;
7606 as_warn (_("Explicit stops are ignored in auto mode"));
7607 }
7608 }
7609 else
7610 insn_group_break (1, 0, 0);
7611 }
7612 else if (input_line_pointer[-1] == '{')
7613 {
7614 if (md.manual_bundling)
7615 as_warn (_("Found '{' when manual bundling is already turned on"));
7616 else
7617 CURR_SLOT.manual_bundling_on = 1;
7618 md.manual_bundling = 1;
7619
7620 /* Bundling is only acceptable in explicit mode
7621 or when in default automatic mode. */
7622 if (md.detect_dv && !md.explicit_mode)
7623 {
7624 if (!md.mode_explicitly_set
7625 && !md.default_explicit_mode)
7626 dot_dv_mode ('E');
7627 else
7628 as_warn (_("Found '{' after explicit switch to automatic mode"));
7629 }
7630 }
7631 else if (input_line_pointer[-1] == '}')
7632 {
7633 if (!md.manual_bundling)
7634 as_warn (_("Found '}' when manual bundling is off"));
7635 else
7636 PREV_SLOT.manual_bundling_off = 1;
7637 md.manual_bundling = 0;
7638
7639 /* switch back to automatic mode, if applicable */
7640 if (md.detect_dv
7641 && md.explicit_mode
7642 && !md.mode_explicitly_set
7643 && !md.default_explicit_mode)
7644 dot_dv_mode ('A');
7645 }
7646 }
7647
7648 /* This is a hook for ia64_frob_label, so that it can distinguish tags from
7649 labels. */
7650 static int defining_tag = 0;
7651
7652 int
7653 ia64_unrecognized_line (int ch)
7654 {
7655 switch (ch)
7656 {
7657 case '(':
7658 expression_and_evaluate (&md.qp);
7659 if (*input_line_pointer++ != ')')
7660 {
7661 as_bad (_("Expected ')'"));
7662 return 0;
7663 }
7664 if (md.qp.X_op != O_register)
7665 {
7666 as_bad (_("Qualifying predicate expected"));
7667 return 0;
7668 }
7669 if (md.qp.X_add_number < REG_P || md.qp.X_add_number >= REG_P + 64)
7670 {
7671 as_bad (_("Predicate register expected"));
7672 return 0;
7673 }
7674 return 1;
7675
7676 case '[':
7677 {
7678 char *s;
7679 char c;
7680 symbolS *tag;
7681 int temp;
7682
7683 if (md.qp.X_op == O_register)
7684 {
7685 as_bad (_("Tag must come before qualifying predicate."));
7686 return 0;
7687 }
7688
7689 /* This implements just enough of read_a_source_file in read.c to
7690 recognize labels. */
7691 if (is_name_beginner (*input_line_pointer))
7692 {
7693 c = get_symbol_name (&s);
7694 }
7695 else if (LOCAL_LABELS_FB
7696 && ISDIGIT (*input_line_pointer))
7697 {
7698 temp = 0;
7699 while (ISDIGIT (*input_line_pointer))
7700 temp = (temp * 10) + *input_line_pointer++ - '0';
7701 fb_label_instance_inc (temp);
7702 s = fb_label_name (temp, 0);
7703 c = *input_line_pointer;
7704 }
7705 else
7706 {
7707 s = NULL;
7708 c = '\0';
7709 }
7710 if (c != ':')
7711 {
7712 /* Put ':' back for error messages' sake. */
7713 *input_line_pointer++ = ':';
7714 as_bad (_("Expected ':'"));
7715 return 0;
7716 }
7717
7718 defining_tag = 1;
7719 tag = colon (s);
7720 defining_tag = 0;
7721 /* Put ':' back for error messages' sake. */
7722 *input_line_pointer++ = ':';
7723 if (*input_line_pointer++ != ']')
7724 {
7725 as_bad (_("Expected ']'"));
7726 return 0;
7727 }
7728 if (! tag)
7729 {
7730 as_bad (_("Tag name expected"));
7731 return 0;
7732 }
7733 return 1;
7734 }
7735
7736 default:
7737 break;
7738 }
7739
7740 /* Not a valid line. */
7741 return 0;
7742 }
7743
7744 void
7745 ia64_frob_label (struct symbol *sym)
7746 {
7747 struct label_fix *fix;
7748
7749 /* Tags need special handling since they are not bundle breaks like
7750 labels. */
7751 if (defining_tag)
7752 {
7753 fix = XOBNEW (&notes, struct label_fix);
7754 fix->sym = sym;
7755 fix->next = CURR_SLOT.tag_fixups;
7756 fix->dw2_mark_labels = FALSE;
7757 CURR_SLOT.tag_fixups = fix;
7758
7759 return;
7760 }
7761
7762 if (bfd_section_flags (now_seg) & SEC_CODE)
7763 {
7764 md.last_text_seg = now_seg;
7765 fix = XOBNEW (&notes, struct label_fix);
7766 fix->sym = sym;
7767 fix->next = CURR_SLOT.label_fixups;
7768 fix->dw2_mark_labels = dwarf2_loc_mark_labels;
7769 CURR_SLOT.label_fixups = fix;
7770
7771 /* Keep track of how many code entry points we've seen. */
7772 if (md.path == md.maxpaths)
7773 {
7774 md.maxpaths += 20;
7775 md.entry_labels = XRESIZEVEC (const char *, md.entry_labels,
7776 md.maxpaths);
7777 }
7778 md.entry_labels[md.path++] = S_GET_NAME (sym);
7779 }
7780 }
7781
7782 #ifdef TE_HPUX
7783 /* The HP-UX linker will give unresolved symbol errors for symbols
7784 that are declared but unused. This routine removes declared,
7785 unused symbols from an object. */
7786 int
7787 ia64_frob_symbol (struct symbol *sym)
7788 {
7789 if ((S_GET_SEGMENT (sym) == bfd_und_section_ptr && ! symbol_used_p (sym) &&
7790 ELF_ST_VISIBILITY (S_GET_OTHER (sym)) == STV_DEFAULT)
7791 || (S_GET_SEGMENT (sym) == bfd_abs_section_ptr
7792 && ! S_IS_EXTERNAL (sym)))
7793 return 1;
7794 return 0;
7795 }
7796 #endif
7797
7798 void
7799 ia64_flush_pending_output (void)
7800 {
7801 if (!md.keep_pending_output
7802 && bfd_section_flags (now_seg) & SEC_CODE)
7803 {
7804 /* ??? This causes many unnecessary stop bits to be emitted.
7805 Unfortunately, it isn't clear if it is safe to remove this. */
7806 insn_group_break (1, 0, 0);
7807 ia64_flush_insns ();
7808 }
7809 }
7810
7811 /* Do ia64-specific expression optimization. All that's done here is
7812 to transform index expressions that are either due to the indexing
7813 of rotating registers or due to the indexing of indirect register
7814 sets. */
7815 int
7816 ia64_optimize_expr (expressionS *l, operatorT op, expressionS *r)
7817 {
7818 if (op != O_index)
7819 return 0;
7820 resolve_expression (l);
7821 if (l->X_op == O_register)
7822 {
7823 unsigned num_regs = l->X_add_number >> 16;
7824
7825 resolve_expression (r);
7826 if (num_regs)
7827 {
7828 /* Left side is a .rotX-allocated register. */
7829 if (r->X_op != O_constant)
7830 {
7831 as_bad (_("Rotating register index must be a non-negative constant"));
7832 r->X_add_number = 0;
7833 }
7834 else if ((valueT) r->X_add_number >= num_regs)
7835 {
7836 as_bad (_("Index out of range 0..%u"), num_regs - 1);
7837 r->X_add_number = 0;
7838 }
7839 l->X_add_number = (l->X_add_number & 0xffff) + r->X_add_number;
7840 return 1;
7841 }
7842 else if (l->X_add_number >= IND_CPUID && l->X_add_number <= IND_RR)
7843 {
7844 if (r->X_op != O_register
7845 || r->X_add_number < REG_GR
7846 || r->X_add_number > REG_GR + 127)
7847 {
7848 as_bad (_("Indirect register index must be a general register"));
7849 r->X_add_number = REG_GR;
7850 }
7851 l->X_op = O_index;
7852 l->X_op_symbol = md.indregsym[l->X_add_number - IND_CPUID];
7853 l->X_add_number = r->X_add_number;
7854 return 1;
7855 }
7856 }
7857 as_bad (_("Index can only be applied to rotating or indirect registers"));
7858 /* Fall back to some register use of which has as little as possible
7859 side effects, to minimize subsequent error messages. */
7860 l->X_op = O_register;
7861 l->X_add_number = REG_GR + 3;
7862 return 1;
7863 }
7864
7865 int
7866 ia64_parse_name (char *name, expressionS *e, char *nextcharP)
7867 {
7868 struct const_desc *cdesc;
7869 struct dynreg *dr = 0;
7870 unsigned int idx;
7871 struct symbol *sym;
7872 char *end;
7873
7874 if (*name == '@')
7875 {
7876 enum pseudo_type pseudo_type = PSEUDO_FUNC_NONE;
7877
7878 /* Find what relocation pseudo-function we're dealing with. */
7879 for (idx = 0; idx < NELEMS (pseudo_func); ++idx)
7880 if (pseudo_func[idx].name
7881 && pseudo_func[idx].name[0] == name[1]
7882 && strcmp (pseudo_func[idx].name + 1, name + 2) == 0)
7883 {
7884 pseudo_type = pseudo_func[idx].type;
7885 break;
7886 }
7887 switch (pseudo_type)
7888 {
7889 case PSEUDO_FUNC_RELOC:
7890 end = input_line_pointer;
7891 if (*nextcharP != '(')
7892 {
7893 as_bad (_("Expected '('"));
7894 break;
7895 }
7896 /* Skip '('. */
7897 ++input_line_pointer;
7898 expression (e);
7899 if (*input_line_pointer != ')')
7900 {
7901 as_bad (_("Missing ')'"));
7902 goto done;
7903 }
7904 /* Skip ')'. */
7905 ++input_line_pointer;
7906 #ifdef TE_VMS
7907 if (idx == FUNC_SLOTCOUNT_RELOC)
7908 {
7909 /* @slotcount can accept any expression. Canonicalize. */
7910 e->X_add_symbol = make_expr_symbol (e);
7911 e->X_op = O_symbol;
7912 e->X_add_number = 0;
7913 }
7914 #endif
7915 if (e->X_op != O_symbol)
7916 {
7917 if (e->X_op != O_pseudo_fixup)
7918 {
7919 as_bad (_("Not a symbolic expression"));
7920 goto done;
7921 }
7922 if (idx != FUNC_LT_RELATIVE)
7923 {
7924 as_bad (_("Illegal combination of relocation functions"));
7925 goto done;
7926 }
7927 switch (S_GET_VALUE (e->X_op_symbol))
7928 {
7929 case FUNC_FPTR_RELATIVE:
7930 idx = FUNC_LT_FPTR_RELATIVE; break;
7931 case FUNC_DTP_MODULE:
7932 idx = FUNC_LT_DTP_MODULE; break;
7933 case FUNC_DTP_RELATIVE:
7934 idx = FUNC_LT_DTP_RELATIVE; break;
7935 case FUNC_TP_RELATIVE:
7936 idx = FUNC_LT_TP_RELATIVE; break;
7937 default:
7938 as_bad (_("Illegal combination of relocation functions"));
7939 goto done;
7940 }
7941 }
7942 /* Make sure gas doesn't get rid of local symbols that are used
7943 in relocs. */
7944 e->X_op = O_pseudo_fixup;
7945 e->X_op_symbol = pseudo_func[idx].u.sym;
7946 done:
7947 *nextcharP = *input_line_pointer;
7948 break;
7949
7950 case PSEUDO_FUNC_CONST:
7951 e->X_op = O_constant;
7952 e->X_add_number = pseudo_func[idx].u.ival;
7953 break;
7954
7955 case PSEUDO_FUNC_REG:
7956 e->X_op = O_register;
7957 e->X_add_number = pseudo_func[idx].u.ival;
7958 break;
7959
7960 default:
7961 return 0;
7962 }
7963 return 1;
7964 }
7965
7966 /* first see if NAME is a known register name: */
7967 sym = str_hash_find (md.reg_hash, name);
7968 if (sym)
7969 {
7970 e->X_op = O_register;
7971 e->X_add_number = S_GET_VALUE (sym);
7972 return 1;
7973 }
7974
7975 cdesc = str_hash_find (md.const_hash, name);
7976 if (cdesc)
7977 {
7978 e->X_op = O_constant;
7979 e->X_add_number = cdesc->value;
7980 return 1;
7981 }
7982
7983 /* check for inN, locN, or outN: */
7984 idx = 0;
7985 switch (name[0])
7986 {
7987 case 'i':
7988 if (name[1] == 'n' && ISDIGIT (name[2]))
7989 {
7990 dr = &md.in;
7991 idx = 2;
7992 }
7993 break;
7994
7995 case 'l':
7996 if (name[1] == 'o' && name[2] == 'c' && ISDIGIT (name[3]))
7997 {
7998 dr = &md.loc;
7999 idx = 3;
8000 }
8001 break;
8002
8003 case 'o':
8004 if (name[1] == 'u' && name[2] == 't' && ISDIGIT (name[3]))
8005 {
8006 dr = &md.out;
8007 idx = 3;
8008 }
8009 break;
8010
8011 default:
8012 break;
8013 }
8014
8015 /* Ignore register numbers with leading zeroes, except zero itself. */
8016 if (dr && (name[idx] != '0' || name[idx + 1] == '\0'))
8017 {
8018 unsigned long regnum;
8019
8020 /* The name is inN, locN, or outN; parse the register number. */
8021 regnum = strtoul (name + idx, &end, 10);
8022 if (end > name + idx && *end == '\0' && regnum < 96)
8023 {
8024 if (regnum >= dr->num_regs)
8025 {
8026 if (!dr->num_regs)
8027 as_bad (_("No current frame"));
8028 else
8029 as_bad (_("Register number out of range 0..%u"),
8030 dr->num_regs - 1);
8031 regnum = 0;
8032 }
8033 e->X_op = O_register;
8034 e->X_add_number = dr->base + regnum;
8035 return 1;
8036 }
8037 }
8038
8039 end = xstrdup (name);
8040 name = ia64_canonicalize_symbol_name (end);
8041 if ((dr = str_hash_find (md.dynreg_hash, name)))
8042 {
8043 /* We've got ourselves the name of a rotating register set.
8044 Store the base register number in the low 16 bits of
8045 X_add_number and the size of the register set in the top 16
8046 bits. */
8047 e->X_op = O_register;
8048 e->X_add_number = dr->base | (dr->num_regs << 16);
8049 free (end);
8050 return 1;
8051 }
8052 free (end);
8053 return 0;
8054 }
8055
8056 /* Remove the '#' suffix that indicates a symbol as opposed to a register. */
8057
8058 char *
8059 ia64_canonicalize_symbol_name (char *name)
8060 {
8061 size_t len = strlen (name), full = len;
8062
8063 while (len > 0 && name[len - 1] == '#')
8064 --len;
8065 if (len <= 0)
8066 {
8067 if (full > 0)
8068 as_bad (_("Standalone `#' is illegal"));
8069 }
8070 else if (len < full - 1)
8071 as_warn (_("Redundant `#' suffix operators"));
8072 name[len] = '\0';
8073 return name;
8074 }
8075
8076 /* Return true if idesc is a conditional branch instruction. This excludes
8077 the modulo scheduled branches, and br.ia. Mod-sched branches are excluded
8078 because they always read/write resources regardless of the value of the
8079 qualifying predicate. br.ia must always use p0, and hence is always
8080 taken. Thus this function returns true for branches which can fall
8081 through, and which use no resources if they do fall through. */
8082
8083 static int
8084 is_conditional_branch (struct ia64_opcode *idesc)
8085 {
8086 /* br is a conditional branch. Everything that starts with br. except
8087 br.ia, br.c{loop,top,exit}, and br.w{top,exit} is a conditional branch.
8088 Everything that starts with brl is a conditional branch. */
8089 return (idesc->name[0] == 'b' && idesc->name[1] == 'r'
8090 && (idesc->name[2] == '\0'
8091 || (idesc->name[2] == '.' && idesc->name[3] != 'i'
8092 && idesc->name[3] != 'c' && idesc->name[3] != 'w')
8093 || idesc->name[2] == 'l'
8094 /* br.cond, br.call, br.clr */
8095 || (idesc->name[2] == '.' && idesc->name[3] == 'c'
8096 && (idesc->name[4] == 'a' || idesc->name[4] == 'o'
8097 || (idesc->name[4] == 'l' && idesc->name[5] == 'r')))));
8098 }
8099
8100 /* Return whether the given opcode is a taken branch. If there's any doubt,
8101 returns zero. */
8102
8103 static int
8104 is_taken_branch (struct ia64_opcode *idesc)
8105 {
8106 return ((is_conditional_branch (idesc) && CURR_SLOT.qp_regno == 0)
8107 || strncmp (idesc->name, "br.ia", 5) == 0);
8108 }
8109
8110 /* Return whether the given opcode is an interruption or rfi. If there's any
8111 doubt, returns zero. */
8112
8113 static int
8114 is_interruption_or_rfi (struct ia64_opcode *idesc)
8115 {
8116 if (strcmp (idesc->name, "rfi") == 0)
8117 return 1;
8118 return 0;
8119 }
8120
8121 /* Returns the index of the given dependency in the opcode's list of chks, or
8122 -1 if there is no dependency. */
8123
8124 static int
8125 depends_on (int depind, struct ia64_opcode *idesc)
8126 {
8127 int i;
8128 const struct ia64_opcode_dependency *dep = idesc->dependencies;
8129 for (i = 0; i < dep->nchks; i++)
8130 {
8131 if (depind == DEP (dep->chks[i]))
8132 return i;
8133 }
8134 return -1;
8135 }
8136
8137 /* Determine a set of specific resources used for a particular resource
8138 class. Returns the number of specific resources identified For those
8139 cases which are not determinable statically, the resource returned is
8140 marked nonspecific.
8141
8142 Meanings of value in 'NOTE':
8143 1) only read/write when the register number is explicitly encoded in the
8144 insn.
8145 2) only read CFM when accessing a rotating GR, FR, or PR. mov pr only
8146 accesses CFM when qualifying predicate is in the rotating region.
8147 3) general register value is used to specify an indirect register; not
8148 determinable statically.
8149 4) only read the given resource when bits 7:0 of the indirect index
8150 register value does not match the register number of the resource; not
8151 determinable statically.
8152 5) all rules are implementation specific.
8153 6) only when both the index specified by the reader and the index specified
8154 by the writer have the same value in bits 63:61; not determinable
8155 statically.
8156 7) only access the specified resource when the corresponding mask bit is
8157 set
8158 8) PSR.dfh is only read when these insns reference FR32-127. PSR.dfl is
8159 only read when these insns reference FR2-31
8160 9) PSR.mfl is only written when these insns write FR2-31. PSR.mfh is only
8161 written when these insns write FR32-127
8162 10) The PSR.bn bit is only accessed when one of GR16-31 is specified in the
8163 instruction
8164 11) The target predicates are written independently of PR[qp], but source
8165 registers are only read if PR[qp] is true. Since the state of PR[qp]
8166 cannot statically be determined, all source registers are marked used.
8167 12) This insn only reads the specified predicate register when that
8168 register is the PR[qp].
8169 13) This reference to ld-c only applies to the GR whose value is loaded
8170 with data returned from memory, not the post-incremented address register.
8171 14) The RSE resource includes the implementation-specific RSE internal
8172 state resources. At least one (and possibly more) of these resources are
8173 read by each instruction listed in IC:rse-readers. At least one (and
8174 possibly more) of these resources are written by each insn listed in
8175 IC:rse-writers.
8176 15+16) Represents reserved instructions, which the assembler does not
8177 generate.
8178 17) CR[TPR] has a RAW dependency only between mov-to-CR-TPR and
8179 mov-to-PSR-l or ssm instructions that set PSR.i, PSR.pp or PSR.up.
8180
8181 Memory resources (i.e. locations in memory) are *not* marked or tracked by
8182 this code; there are no dependency violations based on memory access.
8183 */
8184
8185 #define MAX_SPECS 256
8186 #define DV_CHK 1
8187 #define DV_REG 0
8188
8189 static int
8190 specify_resource (const struct ia64_dependency *dep,
8191 struct ia64_opcode *idesc,
8192 /* is this a DV chk or a DV reg? */
8193 int type,
8194 /* returned specific resources */
8195 struct rsrc specs[MAX_SPECS],
8196 /* resource note for this insn's usage */
8197 int note,
8198 /* which execution path to examine */
8199 int path)
8200 {
8201 int count = 0;
8202 int i;
8203 int rsrc_write = 0;
8204 struct rsrc tmpl;
8205
8206 if (dep->mode == IA64_DV_WAW
8207 || (dep->mode == IA64_DV_RAW && type == DV_REG)
8208 || (dep->mode == IA64_DV_WAR && type == DV_CHK))
8209 rsrc_write = 1;
8210
8211 /* template for any resources we identify */
8212 tmpl.dependency = dep;
8213 tmpl.note = note;
8214 tmpl.insn_srlz = tmpl.data_srlz = 0;
8215 tmpl.qp_regno = CURR_SLOT.qp_regno;
8216 tmpl.link_to_qp_branch = 1;
8217 tmpl.mem_offset.hint = 0;
8218 tmpl.mem_offset.offset = 0;
8219 tmpl.mem_offset.base = 0;
8220 tmpl.specific = 1;
8221 tmpl.index = -1;
8222 tmpl.cmp_type = CMP_NONE;
8223 tmpl.depind = 0;
8224 tmpl.file = NULL;
8225 tmpl.line = 0;
8226 tmpl.path = 0;
8227
8228 #define UNHANDLED \
8229 as_warn (_("Unhandled dependency %s for %s (%s), note %d"), \
8230 dep->name, idesc->name, (rsrc_write?"write":"read"), note)
8231 #define KNOWN(REG) (gr_values[REG].known && gr_values[REG].path >= path)
8232
8233 /* we don't need to track these */
8234 if (dep->semantics == IA64_DVS_NONE)
8235 return 0;
8236
8237 switch (dep->specifier)
8238 {
8239 case IA64_RS_AR_K:
8240 if (note == 1)
8241 {
8242 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8243 {
8244 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8245 if (regno >= 0 && regno <= 7)
8246 {
8247 specs[count] = tmpl;
8248 specs[count++].index = regno;
8249 }
8250 }
8251 }
8252 else if (note == 0)
8253 {
8254 for (i = 0; i < 8; i++)
8255 {
8256 specs[count] = tmpl;
8257 specs[count++].index = i;
8258 }
8259 }
8260 else
8261 {
8262 UNHANDLED;
8263 }
8264 break;
8265
8266 case IA64_RS_AR_UNAT:
8267 /* This is a mov =AR or mov AR= instruction. */
8268 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8269 {
8270 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8271 if (regno == AR_UNAT)
8272 {
8273 specs[count++] = tmpl;
8274 }
8275 }
8276 else
8277 {
8278 /* This is a spill/fill, or other instruction that modifies the
8279 unat register. */
8280
8281 /* Unless we can determine the specific bits used, mark the whole
8282 thing; bits 8:3 of the memory address indicate the bit used in
8283 UNAT. The .mem.offset hint may be used to eliminate a small
8284 subset of conflicts. */
8285 specs[count] = tmpl;
8286 if (md.mem_offset.hint)
8287 {
8288 if (md.debug_dv)
8289 fprintf (stderr, " Using hint for spill/fill\n");
8290 /* The index isn't actually used, just set it to something
8291 approximating the bit index. */
8292 specs[count].index = (md.mem_offset.offset >> 3) & 0x3F;
8293 specs[count].mem_offset.hint = 1;
8294 specs[count].mem_offset.offset = md.mem_offset.offset;
8295 specs[count++].mem_offset.base = md.mem_offset.base;
8296 }
8297 else
8298 {
8299 specs[count++].specific = 0;
8300 }
8301 }
8302 break;
8303
8304 case IA64_RS_AR:
8305 if (note == 1)
8306 {
8307 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8308 {
8309 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8310 if ((regno >= 8 && regno <= 15)
8311 || (regno >= 20 && regno <= 23)
8312 || (regno >= 31 && regno <= 39)
8313 || (regno >= 41 && regno <= 47)
8314 || (regno >= 67 && regno <= 111))
8315 {
8316 specs[count] = tmpl;
8317 specs[count++].index = regno;
8318 }
8319 }
8320 }
8321 else
8322 {
8323 UNHANDLED;
8324 }
8325 break;
8326
8327 case IA64_RS_ARb:
8328 if (note == 1)
8329 {
8330 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8331 {
8332 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8333 if ((regno >= 48 && regno <= 63)
8334 || (regno >= 112 && regno <= 127))
8335 {
8336 specs[count] = tmpl;
8337 specs[count++].index = regno;
8338 }
8339 }
8340 }
8341 else if (note == 0)
8342 {
8343 for (i = 48; i < 64; i++)
8344 {
8345 specs[count] = tmpl;
8346 specs[count++].index = i;
8347 }
8348 for (i = 112; i < 128; i++)
8349 {
8350 specs[count] = tmpl;
8351 specs[count++].index = i;
8352 }
8353 }
8354 else
8355 {
8356 UNHANDLED;
8357 }
8358 break;
8359
8360 case IA64_RS_BR:
8361 if (note != 1)
8362 {
8363 UNHANDLED;
8364 }
8365 else
8366 {
8367 if (rsrc_write)
8368 {
8369 for (i = 0; i < idesc->num_outputs; i++)
8370 if (idesc->operands[i] == IA64_OPND_B1
8371 || idesc->operands[i] == IA64_OPND_B2)
8372 {
8373 specs[count] = tmpl;
8374 specs[count++].index =
8375 CURR_SLOT.opnd[i].X_add_number - REG_BR;
8376 }
8377 }
8378 else
8379 {
8380 for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
8381 if (idesc->operands[i] == IA64_OPND_B1
8382 || idesc->operands[i] == IA64_OPND_B2)
8383 {
8384 specs[count] = tmpl;
8385 specs[count++].index =
8386 CURR_SLOT.opnd[i].X_add_number - REG_BR;
8387 }
8388 }
8389 }
8390 break;
8391
8392 case IA64_RS_CPUID: /* four or more registers */
8393 if (note == 3)
8394 {
8395 if (idesc->operands[!rsrc_write] == IA64_OPND_CPUID_R3)
8396 {
8397 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8398 if (regno >= 0 && regno < NELEMS (gr_values)
8399 && KNOWN (regno))
8400 {
8401 specs[count] = tmpl;
8402 specs[count++].index = gr_values[regno].value & 0xFF;
8403 }
8404 else
8405 {
8406 specs[count] = tmpl;
8407 specs[count++].specific = 0;
8408 }
8409 }
8410 }
8411 else
8412 {
8413 UNHANDLED;
8414 }
8415 break;
8416
8417 case IA64_RS_DBR: /* four or more registers */
8418 if (note == 3)
8419 {
8420 if (idesc->operands[!rsrc_write] == IA64_OPND_DBR_R3)
8421 {
8422 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8423 if (regno >= 0 && regno < NELEMS (gr_values)
8424 && KNOWN (regno))
8425 {
8426 specs[count] = tmpl;
8427 specs[count++].index = gr_values[regno].value & 0xFF;
8428 }
8429 else
8430 {
8431 specs[count] = tmpl;
8432 specs[count++].specific = 0;
8433 }
8434 }
8435 }
8436 else if (note == 0 && !rsrc_write)
8437 {
8438 specs[count] = tmpl;
8439 specs[count++].specific = 0;
8440 }
8441 else
8442 {
8443 UNHANDLED;
8444 }
8445 break;
8446
8447 case IA64_RS_IBR: /* four or more registers */
8448 if (note == 3)
8449 {
8450 if (idesc->operands[!rsrc_write] == IA64_OPND_IBR_R3)
8451 {
8452 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8453 if (regno >= 0 && regno < NELEMS (gr_values)
8454 && KNOWN (regno))
8455 {
8456 specs[count] = tmpl;
8457 specs[count++].index = gr_values[regno].value & 0xFF;
8458 }
8459 else
8460 {
8461 specs[count] = tmpl;
8462 specs[count++].specific = 0;
8463 }
8464 }
8465 }
8466 else
8467 {
8468 UNHANDLED;
8469 }
8470 break;
8471
8472 case IA64_RS_MSR:
8473 if (note == 5)
8474 {
8475 /* These are implementation specific. Force all references to
8476 conflict with all other references. */
8477 specs[count] = tmpl;
8478 specs[count++].specific = 0;
8479 }
8480 else
8481 {
8482 UNHANDLED;
8483 }
8484 break;
8485
8486 case IA64_RS_PKR: /* 16 or more registers */
8487 if (note == 3 || note == 4)
8488 {
8489 if (idesc->operands[!rsrc_write] == IA64_OPND_PKR_R3)
8490 {
8491 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8492 if (regno >= 0 && regno < NELEMS (gr_values)
8493 && KNOWN (regno))
8494 {
8495 if (note == 3)
8496 {
8497 specs[count] = tmpl;
8498 specs[count++].index = gr_values[regno].value & 0xFF;
8499 }
8500 else
8501 for (i = 0; i < NELEMS (gr_values); i++)
8502 {
8503 /* Uses all registers *except* the one in R3. */
8504 if ((unsigned)i != (gr_values[regno].value & 0xFF))
8505 {
8506 specs[count] = tmpl;
8507 specs[count++].index = i;
8508 }
8509 }
8510 }
8511 else
8512 {
8513 specs[count] = tmpl;
8514 specs[count++].specific = 0;
8515 }
8516 }
8517 }
8518 else if (note == 0)
8519 {
8520 /* probe et al. */
8521 specs[count] = tmpl;
8522 specs[count++].specific = 0;
8523 }
8524 break;
8525
8526 case IA64_RS_PMC: /* four or more registers */
8527 if (note == 3)
8528 {
8529 if (idesc->operands[!rsrc_write] == IA64_OPND_PMC_R3
8530 || (!rsrc_write && idesc->operands[1] == IA64_OPND_PMD_R3))
8531
8532 {
8533 int reg_index = ((idesc->operands[1] == IA64_OPND_R3 && !rsrc_write)
8534 ? 1 : !rsrc_write);
8535 int regno = CURR_SLOT.opnd[reg_index].X_add_number - REG_GR;
8536 if (regno >= 0 && regno < NELEMS (gr_values)
8537 && KNOWN (regno))
8538 {
8539 specs[count] = tmpl;
8540 specs[count++].index = gr_values[regno].value & 0xFF;
8541 }
8542 else
8543 {
8544 specs[count] = tmpl;
8545 specs[count++].specific = 0;
8546 }
8547 }
8548 }
8549 else
8550 {
8551 UNHANDLED;
8552 }
8553 break;
8554
8555 case IA64_RS_PMD: /* four or more registers */
8556 if (note == 3)
8557 {
8558 if (idesc->operands[!rsrc_write] == IA64_OPND_PMD_R3)
8559 {
8560 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8561 if (regno >= 0 && regno < NELEMS (gr_values)
8562 && KNOWN (regno))
8563 {
8564 specs[count] = tmpl;
8565 specs[count++].index = gr_values[regno].value & 0xFF;
8566 }
8567 else
8568 {
8569 specs[count] = tmpl;
8570 specs[count++].specific = 0;
8571 }
8572 }
8573 }
8574 else
8575 {
8576 UNHANDLED;
8577 }
8578 break;
8579
8580 case IA64_RS_RR: /* eight registers */
8581 if (note == 6)
8582 {
8583 if (idesc->operands[!rsrc_write] == IA64_OPND_RR_R3)
8584 {
8585 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8586 if (regno >= 0 && regno < NELEMS (gr_values)
8587 && KNOWN (regno))
8588 {
8589 specs[count] = tmpl;
8590 specs[count++].index = (gr_values[regno].value >> 61) & 0x7;
8591 }
8592 else
8593 {
8594 specs[count] = tmpl;
8595 specs[count++].specific = 0;
8596 }
8597 }
8598 }
8599 else if (note == 0 && !rsrc_write)
8600 {
8601 specs[count] = tmpl;
8602 specs[count++].specific = 0;
8603 }
8604 else
8605 {
8606 UNHANDLED;
8607 }
8608 break;
8609
8610 case IA64_RS_CR_IRR:
8611 if (note == 0)
8612 {
8613 /* handle mov-from-CR-IVR; it's a read that writes CR[IRR] */
8614 int regno = CURR_SLOT.opnd[1].X_add_number - REG_CR;
8615 if (rsrc_write
8616 && idesc->operands[1] == IA64_OPND_CR3
8617 && regno == CR_IVR)
8618 {
8619 for (i = 0; i < 4; i++)
8620 {
8621 specs[count] = tmpl;
8622 specs[count++].index = CR_IRR0 + i;
8623 }
8624 }
8625 }
8626 else if (note == 1)
8627 {
8628 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8629 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
8630 && regno >= CR_IRR0
8631 && regno <= CR_IRR3)
8632 {
8633 specs[count] = tmpl;
8634 specs[count++].index = regno;
8635 }
8636 }
8637 else
8638 {
8639 UNHANDLED;
8640 }
8641 break;
8642
8643 case IA64_RS_CR_IIB:
8644 if (note != 0)
8645 {
8646 UNHANDLED;
8647 }
8648 else
8649 {
8650 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8651 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
8652 && (regno == CR_IIB0 || regno == CR_IIB1))
8653 {
8654 specs[count] = tmpl;
8655 specs[count++].index = regno;
8656 }
8657 }
8658 break;
8659
8660 case IA64_RS_CR_LRR:
8661 if (note != 1)
8662 {
8663 UNHANDLED;
8664 }
8665 else
8666 {
8667 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8668 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
8669 && (regno == CR_LRR0 || regno == CR_LRR1))
8670 {
8671 specs[count] = tmpl;
8672 specs[count++].index = regno;
8673 }
8674 }
8675 break;
8676
8677 case IA64_RS_CR:
8678 if (note == 1)
8679 {
8680 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
8681 {
8682 specs[count] = tmpl;
8683 specs[count++].index =
8684 CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8685 }
8686 }
8687 else
8688 {
8689 UNHANDLED;
8690 }
8691 break;
8692
8693 case IA64_RS_DAHR:
8694 if (note == 0)
8695 {
8696 if (idesc->operands[!rsrc_write] == IA64_OPND_DAHR3)
8697 {
8698 specs[count] = tmpl;
8699 specs[count++].index =
8700 CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_DAHR;
8701 }
8702 }
8703 else
8704 {
8705 UNHANDLED;
8706 }
8707 break;
8708
8709 case IA64_RS_FR:
8710 case IA64_RS_FRb:
8711 if (note != 1)
8712 {
8713 UNHANDLED;
8714 }
8715 else if (rsrc_write)
8716 {
8717 if (dep->specifier == IA64_RS_FRb
8718 && idesc->operands[0] == IA64_OPND_F1)
8719 {
8720 specs[count] = tmpl;
8721 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_FR;
8722 }
8723 }
8724 else
8725 {
8726 for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
8727 {
8728 if (idesc->operands[i] == IA64_OPND_F2
8729 || idesc->operands[i] == IA64_OPND_F3
8730 || idesc->operands[i] == IA64_OPND_F4)
8731 {
8732 specs[count] = tmpl;
8733 specs[count++].index =
8734 CURR_SLOT.opnd[i].X_add_number - REG_FR;
8735 }
8736 }
8737 }
8738 break;
8739
8740 case IA64_RS_GR:
8741 if (note == 13)
8742 {
8743 /* This reference applies only to the GR whose value is loaded with
8744 data returned from memory. */
8745 specs[count] = tmpl;
8746 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_GR;
8747 }
8748 else if (note == 1)
8749 {
8750 if (rsrc_write)
8751 {
8752 for (i = 0; i < idesc->num_outputs; i++)
8753 if (idesc->operands[i] == IA64_OPND_R1
8754 || idesc->operands[i] == IA64_OPND_R2
8755 || idesc->operands[i] == IA64_OPND_R3)
8756 {
8757 specs[count] = tmpl;
8758 specs[count++].index =
8759 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8760 }
8761 if (idesc->flags & IA64_OPCODE_POSTINC)
8762 for (i = 0; i < NELEMS (idesc->operands); i++)
8763 if (idesc->operands[i] == IA64_OPND_MR3)
8764 {
8765 specs[count] = tmpl;
8766 specs[count++].index =
8767 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8768 }
8769 }
8770 else
8771 {
8772 /* Look for anything that reads a GR. */
8773 for (i = 0; i < NELEMS (idesc->operands); i++)
8774 {
8775 if (idesc->operands[i] == IA64_OPND_MR3
8776 || idesc->operands[i] == IA64_OPND_CPUID_R3
8777 || idesc->operands[i] == IA64_OPND_DBR_R3
8778 || idesc->operands[i] == IA64_OPND_IBR_R3
8779 || idesc->operands[i] == IA64_OPND_MSR_R3
8780 || idesc->operands[i] == IA64_OPND_PKR_R3
8781 || idesc->operands[i] == IA64_OPND_PMC_R3
8782 || idesc->operands[i] == IA64_OPND_PMD_R3
8783 || idesc->operands[i] == IA64_OPND_DAHR_R3
8784 || idesc->operands[i] == IA64_OPND_RR_R3
8785 || ((i >= idesc->num_outputs)
8786 && (idesc->operands[i] == IA64_OPND_R1
8787 || idesc->operands[i] == IA64_OPND_R2
8788 || idesc->operands[i] == IA64_OPND_R3
8789 /* addl source register. */
8790 || idesc->operands[i] == IA64_OPND_R3_2)))
8791 {
8792 specs[count] = tmpl;
8793 specs[count++].index =
8794 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8795 }
8796 }
8797 }
8798 }
8799 else
8800 {
8801 UNHANDLED;
8802 }
8803 break;
8804
8805 /* This is the same as IA64_RS_PRr, except that the register range is
8806 from 1 - 15, and there are no rotating register reads/writes here. */
8807 case IA64_RS_PR:
8808 if (note == 0)
8809 {
8810 for (i = 1; i < 16; i++)
8811 {
8812 specs[count] = tmpl;
8813 specs[count++].index = i;
8814 }
8815 }
8816 else if (note == 7)
8817 {
8818 valueT mask = 0;
8819 /* Mark only those registers indicated by the mask. */
8820 if (rsrc_write)
8821 {
8822 mask = CURR_SLOT.opnd[2].X_add_number;
8823 for (i = 1; i < 16; i++)
8824 if (mask & ((valueT) 1 << i))
8825 {
8826 specs[count] = tmpl;
8827 specs[count++].index = i;
8828 }
8829 }
8830 else
8831 {
8832 UNHANDLED;
8833 }
8834 }
8835 else if (note == 11) /* note 11 implies note 1 as well */
8836 {
8837 if (rsrc_write)
8838 {
8839 for (i = 0; i < idesc->num_outputs; i++)
8840 {
8841 if (idesc->operands[i] == IA64_OPND_P1
8842 || idesc->operands[i] == IA64_OPND_P2)
8843 {
8844 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
8845 if (regno >= 1 && regno < 16)
8846 {
8847 specs[count] = tmpl;
8848 specs[count++].index = regno;
8849 }
8850 }
8851 }
8852 }
8853 else
8854 {
8855 UNHANDLED;
8856 }
8857 }
8858 else if (note == 12)
8859 {
8860 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
8861 {
8862 specs[count] = tmpl;
8863 specs[count++].index = CURR_SLOT.qp_regno;
8864 }
8865 }
8866 else if (note == 1)
8867 {
8868 if (rsrc_write)
8869 {
8870 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
8871 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
8872 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
8873 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
8874
8875 if ((idesc->operands[0] == IA64_OPND_P1
8876 || idesc->operands[0] == IA64_OPND_P2)
8877 && p1 >= 1 && p1 < 16)
8878 {
8879 specs[count] = tmpl;
8880 specs[count].cmp_type =
8881 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
8882 specs[count++].index = p1;
8883 }
8884 if ((idesc->operands[1] == IA64_OPND_P1
8885 || idesc->operands[1] == IA64_OPND_P2)
8886 && p2 >= 1 && p2 < 16)
8887 {
8888 specs[count] = tmpl;
8889 specs[count].cmp_type =
8890 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
8891 specs[count++].index = p2;
8892 }
8893 }
8894 else
8895 {
8896 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
8897 {
8898 specs[count] = tmpl;
8899 specs[count++].index = CURR_SLOT.qp_regno;
8900 }
8901 if (idesc->operands[1] == IA64_OPND_PR)
8902 {
8903 for (i = 1; i < 16; i++)
8904 {
8905 specs[count] = tmpl;
8906 specs[count++].index = i;
8907 }
8908 }
8909 }
8910 }
8911 else
8912 {
8913 UNHANDLED;
8914 }
8915 break;
8916
8917 /* This is the general case for PRs. IA64_RS_PR and IA64_RS_PR63 are
8918 simplified cases of this. */
8919 case IA64_RS_PRr:
8920 if (note == 0)
8921 {
8922 for (i = 16; i < 63; i++)
8923 {
8924 specs[count] = tmpl;
8925 specs[count++].index = i;
8926 }
8927 }
8928 else if (note == 7)
8929 {
8930 valueT mask = 0;
8931 /* Mark only those registers indicated by the mask. */
8932 if (rsrc_write
8933 && idesc->operands[0] == IA64_OPND_PR)
8934 {
8935 mask = CURR_SLOT.opnd[2].X_add_number;
8936 if (mask & ((valueT) 1 << 16))
8937 for (i = 16; i < 63; i++)
8938 {
8939 specs[count] = tmpl;
8940 specs[count++].index = i;
8941 }
8942 }
8943 else if (rsrc_write
8944 && idesc->operands[0] == IA64_OPND_PR_ROT)
8945 {
8946 for (i = 16; i < 63; i++)
8947 {
8948 specs[count] = tmpl;
8949 specs[count++].index = i;
8950 }
8951 }
8952 else
8953 {
8954 UNHANDLED;
8955 }
8956 }
8957 else if (note == 11) /* note 11 implies note 1 as well */
8958 {
8959 if (rsrc_write)
8960 {
8961 for (i = 0; i < idesc->num_outputs; i++)
8962 {
8963 if (idesc->operands[i] == IA64_OPND_P1
8964 || idesc->operands[i] == IA64_OPND_P2)
8965 {
8966 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
8967 if (regno >= 16 && regno < 63)
8968 {
8969 specs[count] = tmpl;
8970 specs[count++].index = regno;
8971 }
8972 }
8973 }
8974 }
8975 else
8976 {
8977 UNHANDLED;
8978 }
8979 }
8980 else if (note == 12)
8981 {
8982 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
8983 {
8984 specs[count] = tmpl;
8985 specs[count++].index = CURR_SLOT.qp_regno;
8986 }
8987 }
8988 else if (note == 1)
8989 {
8990 if (rsrc_write)
8991 {
8992 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
8993 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
8994 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
8995 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
8996
8997 if ((idesc->operands[0] == IA64_OPND_P1
8998 || idesc->operands[0] == IA64_OPND_P2)
8999 && p1 >= 16 && p1 < 63)
9000 {
9001 specs[count] = tmpl;
9002 specs[count].cmp_type =
9003 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
9004 specs[count++].index = p1;
9005 }
9006 if ((idesc->operands[1] == IA64_OPND_P1
9007 || idesc->operands[1] == IA64_OPND_P2)
9008 && p2 >= 16 && p2 < 63)
9009 {
9010 specs[count] = tmpl;
9011 specs[count].cmp_type =
9012 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
9013 specs[count++].index = p2;
9014 }
9015 }
9016 else
9017 {
9018 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
9019 {
9020 specs[count] = tmpl;
9021 specs[count++].index = CURR_SLOT.qp_regno;
9022 }
9023 if (idesc->operands[1] == IA64_OPND_PR)
9024 {
9025 for (i = 16; i < 63; i++)
9026 {
9027 specs[count] = tmpl;
9028 specs[count++].index = i;
9029 }
9030 }
9031 }
9032 }
9033 else
9034 {
9035 UNHANDLED;
9036 }
9037 break;
9038
9039 case IA64_RS_PSR:
9040 /* Verify that the instruction is using the PSR bit indicated in
9041 dep->regindex. */
9042 if (note == 0)
9043 {
9044 if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_UM)
9045 {
9046 if (dep->regindex < 6)
9047 {
9048 specs[count++] = tmpl;
9049 }
9050 }
9051 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR)
9052 {
9053 if (dep->regindex < 32
9054 || dep->regindex == 35
9055 || dep->regindex == 36
9056 || (!rsrc_write && dep->regindex == PSR_CPL))
9057 {
9058 specs[count++] = tmpl;
9059 }
9060 }
9061 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_L)
9062 {
9063 if (dep->regindex < 32
9064 || dep->regindex == 35
9065 || dep->regindex == 36
9066 || (rsrc_write && dep->regindex == PSR_CPL))
9067 {
9068 specs[count++] = tmpl;
9069 }
9070 }
9071 else
9072 {
9073 /* Several PSR bits have very specific dependencies. */
9074 switch (dep->regindex)
9075 {
9076 default:
9077 specs[count++] = tmpl;
9078 break;
9079 case PSR_IC:
9080 if (rsrc_write)
9081 {
9082 specs[count++] = tmpl;
9083 }
9084 else
9085 {
9086 /* Only certain CR accesses use PSR.ic */
9087 if (idesc->operands[0] == IA64_OPND_CR3
9088 || idesc->operands[1] == IA64_OPND_CR3)
9089 {
9090 int reg_index =
9091 ((idesc->operands[0] == IA64_OPND_CR3)
9092 ? 0 : 1);
9093 int regno =
9094 CURR_SLOT.opnd[reg_index].X_add_number - REG_CR;
9095
9096 switch (regno)
9097 {
9098 default:
9099 break;
9100 case CR_ITIR:
9101 case CR_IFS:
9102 case CR_IIM:
9103 case CR_IIP:
9104 case CR_IPSR:
9105 case CR_ISR:
9106 case CR_IFA:
9107 case CR_IHA:
9108 case CR_IIB0:
9109 case CR_IIB1:
9110 case CR_IIPA:
9111 specs[count++] = tmpl;
9112 break;
9113 }
9114 }
9115 }
9116 break;
9117 case PSR_CPL:
9118 if (rsrc_write)
9119 {
9120 specs[count++] = tmpl;
9121 }
9122 else
9123 {
9124 /* Only some AR accesses use cpl */
9125 if (idesc->operands[0] == IA64_OPND_AR3
9126 || idesc->operands[1] == IA64_OPND_AR3)
9127 {
9128 int reg_index =
9129 ((idesc->operands[0] == IA64_OPND_AR3)
9130 ? 0 : 1);
9131 int regno =
9132 CURR_SLOT.opnd[reg_index].X_add_number - REG_AR;
9133
9134 if (regno == AR_ITC
9135 || regno == AR_RUC
9136 || (reg_index == 0
9137 && (regno == AR_RSC
9138 || (regno >= AR_K0
9139 && regno <= AR_K7))))
9140 {
9141 specs[count++] = tmpl;
9142 }
9143 }
9144 else
9145 {
9146 specs[count++] = tmpl;
9147 }
9148 break;
9149 }
9150 }
9151 }
9152 }
9153 else if (note == 7)
9154 {
9155 valueT mask = 0;
9156 if (idesc->operands[0] == IA64_OPND_IMMU24)
9157 {
9158 mask = CURR_SLOT.opnd[0].X_add_number;
9159 }
9160 else
9161 {
9162 UNHANDLED;
9163 }
9164 if (mask & ((valueT) 1 << dep->regindex))
9165 {
9166 specs[count++] = tmpl;
9167 }
9168 }
9169 else if (note == 8)
9170 {
9171 int min = dep->regindex == PSR_DFL ? 2 : 32;
9172 int max = dep->regindex == PSR_DFL ? 31 : 127;
9173 /* dfh is read on FR32-127; dfl is read on FR2-31 */
9174 for (i = 0; i < NELEMS (idesc->operands); i++)
9175 {
9176 if (idesc->operands[i] == IA64_OPND_F1
9177 || idesc->operands[i] == IA64_OPND_F2
9178 || idesc->operands[i] == IA64_OPND_F3
9179 || idesc->operands[i] == IA64_OPND_F4)
9180 {
9181 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9182 if (reg >= min && reg <= max)
9183 {
9184 specs[count++] = tmpl;
9185 }
9186 }
9187 }
9188 }
9189 else if (note == 9)
9190 {
9191 int min = dep->regindex == PSR_MFL ? 2 : 32;
9192 int max = dep->regindex == PSR_MFL ? 31 : 127;
9193 /* mfh is read on writes to FR32-127; mfl is read on writes to
9194 FR2-31 */
9195 for (i = 0; i < idesc->num_outputs; i++)
9196 {
9197 if (idesc->operands[i] == IA64_OPND_F1)
9198 {
9199 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9200 if (reg >= min && reg <= max)
9201 {
9202 specs[count++] = tmpl;
9203 }
9204 }
9205 }
9206 }
9207 else if (note == 10)
9208 {
9209 for (i = 0; i < NELEMS (idesc->operands); i++)
9210 {
9211 if (idesc->operands[i] == IA64_OPND_R1
9212 || idesc->operands[i] == IA64_OPND_R2
9213 || idesc->operands[i] == IA64_OPND_R3)
9214 {
9215 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9216 if (regno >= 16 && regno <= 31)
9217 {
9218 specs[count++] = tmpl;
9219 }
9220 }
9221 }
9222 }
9223 else
9224 {
9225 UNHANDLED;
9226 }
9227 break;
9228
9229 case IA64_RS_AR_FPSR:
9230 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
9231 {
9232 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
9233 if (regno == AR_FPSR)
9234 {
9235 specs[count++] = tmpl;
9236 }
9237 }
9238 else
9239 {
9240 specs[count++] = tmpl;
9241 }
9242 break;
9243
9244 case IA64_RS_ARX:
9245 /* Handle all AR[REG] resources */
9246 if (note == 0 || note == 1)
9247 {
9248 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
9249 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3
9250 && regno == dep->regindex)
9251 {
9252 specs[count++] = tmpl;
9253 }
9254 /* other AR[REG] resources may be affected by AR accesses */
9255 else if (idesc->operands[0] == IA64_OPND_AR3)
9256 {
9257 /* AR[] writes */
9258 regno = CURR_SLOT.opnd[0].X_add_number - REG_AR;
9259 switch (dep->regindex)
9260 {
9261 default:
9262 break;
9263 case AR_BSP:
9264 case AR_RNAT:
9265 if (regno == AR_BSPSTORE)
9266 {
9267 specs[count++] = tmpl;
9268 }
9269 /* Fall through. */
9270 case AR_RSC:
9271 if (!rsrc_write &&
9272 (regno == AR_BSPSTORE
9273 || regno == AR_RNAT))
9274 {
9275 specs[count++] = tmpl;
9276 }
9277 break;
9278 }
9279 }
9280 else if (idesc->operands[1] == IA64_OPND_AR3)
9281 {
9282 /* AR[] reads */
9283 regno = CURR_SLOT.opnd[1].X_add_number - REG_AR;
9284 switch (dep->regindex)
9285 {
9286 default:
9287 break;
9288 case AR_RSC:
9289 if (regno == AR_BSPSTORE || regno == AR_RNAT)
9290 {
9291 specs[count++] = tmpl;
9292 }
9293 break;
9294 }
9295 }
9296 else
9297 {
9298 specs[count++] = tmpl;
9299 }
9300 }
9301 else
9302 {
9303 UNHANDLED;
9304 }
9305 break;
9306
9307 case IA64_RS_CRX:
9308 /* Handle all CR[REG] resources.
9309 ??? FIXME: The rule 17 isn't really handled correctly. */
9310 if (note == 0 || note == 1 || note == 17)
9311 {
9312 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
9313 {
9314 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
9315 if (regno == dep->regindex)
9316 {
9317 specs[count++] = tmpl;
9318 }
9319 else if (!rsrc_write)
9320 {
9321 /* Reads from CR[IVR] affect other resources. */
9322 if (regno == CR_IVR)
9323 {
9324 if ((dep->regindex >= CR_IRR0
9325 && dep->regindex <= CR_IRR3)
9326 || dep->regindex == CR_TPR)
9327 {
9328 specs[count++] = tmpl;
9329 }
9330 }
9331 }
9332 }
9333 else
9334 {
9335 specs[count++] = tmpl;
9336 }
9337 }
9338 else
9339 {
9340 UNHANDLED;
9341 }
9342 break;
9343
9344 case IA64_RS_INSERVICE:
9345 /* look for write of EOI (67) or read of IVR (65) */
9346 if ((idesc->operands[0] == IA64_OPND_CR3
9347 && CURR_SLOT.opnd[0].X_add_number - REG_CR == CR_EOI)
9348 || (idesc->operands[1] == IA64_OPND_CR3
9349 && CURR_SLOT.opnd[1].X_add_number - REG_CR == CR_IVR))
9350 {
9351 specs[count++] = tmpl;
9352 }
9353 break;
9354
9355 case IA64_RS_GR0:
9356 if (note == 1)
9357 {
9358 specs[count++] = tmpl;
9359 }
9360 else
9361 {
9362 UNHANDLED;
9363 }
9364 break;
9365
9366 case IA64_RS_CFM:
9367 if (note != 2)
9368 {
9369 specs[count++] = tmpl;
9370 }
9371 else
9372 {
9373 /* Check if any of the registers accessed are in the rotating region.
9374 mov to/from pr accesses CFM only when qp_regno is in the rotating
9375 region */
9376 for (i = 0; i < NELEMS (idesc->operands); i++)
9377 {
9378 if (idesc->operands[i] == IA64_OPND_R1
9379 || idesc->operands[i] == IA64_OPND_R2
9380 || idesc->operands[i] == IA64_OPND_R3)
9381 {
9382 int num = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9383 /* Assumes that md.rot.num_regs is always valid */
9384 if (md.rot.num_regs > 0
9385 && num > 31
9386 && num < 31 + md.rot.num_regs)
9387 {
9388 specs[count] = tmpl;
9389 specs[count++].specific = 0;
9390 }
9391 }
9392 else if (idesc->operands[i] == IA64_OPND_F1
9393 || idesc->operands[i] == IA64_OPND_F2
9394 || idesc->operands[i] == IA64_OPND_F3
9395 || idesc->operands[i] == IA64_OPND_F4)
9396 {
9397 int num = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9398 if (num > 31)
9399 {
9400 specs[count] = tmpl;
9401 specs[count++].specific = 0;
9402 }
9403 }
9404 else if (idesc->operands[i] == IA64_OPND_P1
9405 || idesc->operands[i] == IA64_OPND_P2)
9406 {
9407 int num = CURR_SLOT.opnd[i].X_add_number - REG_P;
9408 if (num > 15)
9409 {
9410 specs[count] = tmpl;
9411 specs[count++].specific = 0;
9412 }
9413 }
9414 }
9415 if (CURR_SLOT.qp_regno > 15)
9416 {
9417 specs[count] = tmpl;
9418 specs[count++].specific = 0;
9419 }
9420 }
9421 break;
9422
9423 /* This is the same as IA64_RS_PRr, except simplified to account for
9424 the fact that there is only one register. */
9425 case IA64_RS_PR63:
9426 if (note == 0)
9427 {
9428 specs[count++] = tmpl;
9429 }
9430 else if (note == 7)
9431 {
9432 valueT mask = 0;
9433 if (idesc->operands[2] == IA64_OPND_IMM17)
9434 mask = CURR_SLOT.opnd[2].X_add_number;
9435 if (mask & ((valueT) 1 << 63))
9436 specs[count++] = tmpl;
9437 }
9438 else if (note == 11)
9439 {
9440 if ((idesc->operands[0] == IA64_OPND_P1
9441 && CURR_SLOT.opnd[0].X_add_number - REG_P == 63)
9442 || (idesc->operands[1] == IA64_OPND_P2
9443 && CURR_SLOT.opnd[1].X_add_number - REG_P == 63))
9444 {
9445 specs[count++] = tmpl;
9446 }
9447 }
9448 else if (note == 12)
9449 {
9450 if (CURR_SLOT.qp_regno == 63)
9451 {
9452 specs[count++] = tmpl;
9453 }
9454 }
9455 else if (note == 1)
9456 {
9457 if (rsrc_write)
9458 {
9459 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
9460 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
9461 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
9462 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
9463
9464 if (p1 == 63
9465 && (idesc->operands[0] == IA64_OPND_P1
9466 || idesc->operands[0] == IA64_OPND_P2))
9467 {
9468 specs[count] = tmpl;
9469 specs[count++].cmp_type =
9470 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
9471 }
9472 if (p2 == 63
9473 && (idesc->operands[1] == IA64_OPND_P1
9474 || idesc->operands[1] == IA64_OPND_P2))
9475 {
9476 specs[count] = tmpl;
9477 specs[count++].cmp_type =
9478 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
9479 }
9480 }
9481 else
9482 {
9483 if (CURR_SLOT.qp_regno == 63)
9484 {
9485 specs[count++] = tmpl;
9486 }
9487 }
9488 }
9489 else
9490 {
9491 UNHANDLED;
9492 }
9493 break;
9494
9495 case IA64_RS_RSE:
9496 /* FIXME we can identify some individual RSE written resources, but RSE
9497 read resources have not yet been completely identified, so for now
9498 treat RSE as a single resource */
9499 if (strncmp (idesc->name, "mov", 3) == 0)
9500 {
9501 if (rsrc_write)
9502 {
9503 if (idesc->operands[0] == IA64_OPND_AR3
9504 && CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE)
9505 {
9506 specs[count++] = tmpl;
9507 }
9508 }
9509 else
9510 {
9511 if (idesc->operands[0] == IA64_OPND_AR3)
9512 {
9513 if (CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE
9514 || CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_RNAT)
9515 {
9516 specs[count++] = tmpl;
9517 }
9518 }
9519 else if (idesc->operands[1] == IA64_OPND_AR3)
9520 {
9521 if (CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSP
9522 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSPSTORE
9523 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_RNAT)
9524 {
9525 specs[count++] = tmpl;
9526 }
9527 }
9528 }
9529 }
9530 else
9531 {
9532 specs[count++] = tmpl;
9533 }
9534 break;
9535
9536 case IA64_RS_ANY:
9537 /* FIXME -- do any of these need to be non-specific? */
9538 specs[count++] = tmpl;
9539 break;
9540
9541 default:
9542 as_bad (_("Unrecognized dependency specifier %d\n"), dep->specifier);
9543 break;
9544 }
9545
9546 return count;
9547 }
9548
9549 /* Clear branch flags on marked resources. This breaks the link between the
9550 QP of the marking instruction and a subsequent branch on the same QP. */
9551
9552 static void
9553 clear_qp_branch_flag (valueT mask)
9554 {
9555 int i;
9556 for (i = 0; i < regdepslen; i++)
9557 {
9558 valueT bit = ((valueT) 1 << regdeps[i].qp_regno);
9559 if ((bit & mask) != 0)
9560 {
9561 regdeps[i].link_to_qp_branch = 0;
9562 }
9563 }
9564 }
9565
9566 /* MASK contains 2 and only 2 PRs which are mutually exclusive. Remove
9567 any mutexes which contain one of the PRs and create new ones when
9568 needed. */
9569
9570 static int
9571 update_qp_mutex (valueT mask)
9572 {
9573 int i;
9574 int add = 0;
9575
9576 i = 0;
9577 while (i < qp_mutexeslen)
9578 {
9579 if ((qp_mutexes[i].prmask & mask) != 0)
9580 {
9581 /* If it destroys and creates the same mutex, do nothing. */
9582 if (qp_mutexes[i].prmask == mask
9583 && qp_mutexes[i].path == md.path)
9584 {
9585 i++;
9586 add = -1;
9587 }
9588 else
9589 {
9590 int keep = 0;
9591
9592 if (md.debug_dv)
9593 {
9594 fprintf (stderr, " Clearing mutex relation");
9595 print_prmask (qp_mutexes[i].prmask);
9596 fprintf (stderr, "\n");
9597 }
9598
9599 /* Deal with the old mutex with more than 3+ PRs only if
9600 the new mutex on the same execution path with it.
9601
9602 FIXME: The 3+ mutex support is incomplete.
9603 dot_pred_rel () may be a better place to fix it. */
9604 if (qp_mutexes[i].path == md.path)
9605 {
9606 /* If it is a proper subset of the mutex, create a
9607 new mutex. */
9608 if (add == 0
9609 && (qp_mutexes[i].prmask & mask) == mask)
9610 add = 1;
9611
9612 qp_mutexes[i].prmask &= ~mask;
9613 if (qp_mutexes[i].prmask & (qp_mutexes[i].prmask - 1))
9614 {
9615 /* Modify the mutex if there are more than one
9616 PR left. */
9617 keep = 1;
9618 i++;
9619 }
9620 }
9621
9622 if (keep == 0)
9623 /* Remove the mutex. */
9624 qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
9625 }
9626 }
9627 else
9628 ++i;
9629 }
9630
9631 if (add == 1)
9632 add_qp_mutex (mask);
9633
9634 return add;
9635 }
9636
9637 /* Remove any mutexes which contain any of the PRs indicated in the mask.
9638
9639 Any changes to a PR clears the mutex relations which include that PR. */
9640
9641 static void
9642 clear_qp_mutex (valueT mask)
9643 {
9644 int i;
9645
9646 i = 0;
9647 while (i < qp_mutexeslen)
9648 {
9649 if ((qp_mutexes[i].prmask & mask) != 0)
9650 {
9651 if (md.debug_dv)
9652 {
9653 fprintf (stderr, " Clearing mutex relation");
9654 print_prmask (qp_mutexes[i].prmask);
9655 fprintf (stderr, "\n");
9656 }
9657 qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
9658 }
9659 else
9660 ++i;
9661 }
9662 }
9663
9664 /* Clear implies relations which contain PRs in the given masks.
9665 P1_MASK indicates the source of the implies relation, while P2_MASK
9666 indicates the implied PR. */
9667
9668 static void
9669 clear_qp_implies (valueT p1_mask, valueT p2_mask)
9670 {
9671 int i;
9672
9673 i = 0;
9674 while (i < qp_implieslen)
9675 {
9676 if ((((valueT) 1 << qp_implies[i].p1) & p1_mask) != 0
9677 || (((valueT) 1 << qp_implies[i].p2) & p2_mask) != 0)
9678 {
9679 if (md.debug_dv)
9680 fprintf (stderr, "Clearing implied relation PR%d->PR%d\n",
9681 qp_implies[i].p1, qp_implies[i].p2);
9682 qp_implies[i] = qp_implies[--qp_implieslen];
9683 }
9684 else
9685 ++i;
9686 }
9687 }
9688
9689 /* Add the PRs specified to the list of implied relations. */
9690
9691 static void
9692 add_qp_imply (int p1, int p2)
9693 {
9694 valueT mask;
9695 valueT bit;
9696 int i;
9697
9698 /* p0 is not meaningful here. */
9699 if (p1 == 0 || p2 == 0)
9700 abort ();
9701
9702 if (p1 == p2)
9703 return;
9704
9705 /* If it exists already, ignore it. */
9706 for (i = 0; i < qp_implieslen; i++)
9707 {
9708 if (qp_implies[i].p1 == p1
9709 && qp_implies[i].p2 == p2
9710 && qp_implies[i].path == md.path
9711 && !qp_implies[i].p2_branched)
9712 return;
9713 }
9714
9715 if (qp_implieslen == qp_impliestotlen)
9716 {
9717 qp_impliestotlen += 20;
9718 qp_implies = XRESIZEVEC (struct qp_imply, qp_implies, qp_impliestotlen);
9719 }
9720 if (md.debug_dv)
9721 fprintf (stderr, " Registering PR%d implies PR%d\n", p1, p2);
9722 qp_implies[qp_implieslen].p1 = p1;
9723 qp_implies[qp_implieslen].p2 = p2;
9724 qp_implies[qp_implieslen].path = md.path;
9725 qp_implies[qp_implieslen++].p2_branched = 0;
9726
9727 /* Add in the implied transitive relations; for everything that p2 implies,
9728 make p1 imply that, too; for everything that implies p1, make it imply p2
9729 as well. */
9730 for (i = 0; i < qp_implieslen; i++)
9731 {
9732 if (qp_implies[i].p1 == p2)
9733 add_qp_imply (p1, qp_implies[i].p2);
9734 if (qp_implies[i].p2 == p1)
9735 add_qp_imply (qp_implies[i].p1, p2);
9736 }
9737 /* Add in mutex relations implied by this implies relation; for each mutex
9738 relation containing p2, duplicate it and replace p2 with p1. */
9739 bit = (valueT) 1 << p1;
9740 mask = (valueT) 1 << p2;
9741 for (i = 0; i < qp_mutexeslen; i++)
9742 {
9743 if (qp_mutexes[i].prmask & mask)
9744 add_qp_mutex ((qp_mutexes[i].prmask & ~mask) | bit);
9745 }
9746 }
9747
9748 /* Add the PRs specified in the mask to the mutex list; this means that only
9749 one of the PRs can be true at any time. PR0 should never be included in
9750 the mask. */
9751
9752 static void
9753 add_qp_mutex (valueT mask)
9754 {
9755 if (mask & 0x1)
9756 abort ();
9757
9758 if (qp_mutexeslen == qp_mutexestotlen)
9759 {
9760 qp_mutexestotlen += 20;
9761 qp_mutexes = XRESIZEVEC (struct qpmutex, qp_mutexes, qp_mutexestotlen);
9762 }
9763 if (md.debug_dv)
9764 {
9765 fprintf (stderr, " Registering mutex on");
9766 print_prmask (mask);
9767 fprintf (stderr, "\n");
9768 }
9769 qp_mutexes[qp_mutexeslen].path = md.path;
9770 qp_mutexes[qp_mutexeslen++].prmask = mask;
9771 }
9772
9773 static int
9774 has_suffix_p (const char *name, const char *suffix)
9775 {
9776 size_t namelen = strlen (name);
9777 size_t sufflen = strlen (suffix);
9778
9779 if (namelen <= sufflen)
9780 return 0;
9781 return strcmp (name + namelen - sufflen, suffix) == 0;
9782 }
9783
9784 static void
9785 clear_register_values (void)
9786 {
9787 int i;
9788 if (md.debug_dv)
9789 fprintf (stderr, " Clearing register values\n");
9790 for (i = 1; i < NELEMS (gr_values); i++)
9791 gr_values[i].known = 0;
9792 }
9793
9794 /* Keep track of register values/changes which affect DV tracking.
9795
9796 optimization note: should add a flag to classes of insns where otherwise we
9797 have to examine a group of strings to identify them. */
9798
9799 static void
9800 note_register_values (struct ia64_opcode *idesc)
9801 {
9802 valueT qp_changemask = 0;
9803 int i;
9804
9805 /* Invalidate values for registers being written to. */
9806 for (i = 0; i < idesc->num_outputs; i++)
9807 {
9808 if (idesc->operands[i] == IA64_OPND_R1
9809 || idesc->operands[i] == IA64_OPND_R2
9810 || idesc->operands[i] == IA64_OPND_R3)
9811 {
9812 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9813 if (regno > 0 && regno < NELEMS (gr_values))
9814 gr_values[regno].known = 0;
9815 }
9816 else if (idesc->operands[i] == IA64_OPND_R3_2)
9817 {
9818 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9819 if (regno > 0 && regno < 4)
9820 gr_values[regno].known = 0;
9821 }
9822 else if (idesc->operands[i] == IA64_OPND_P1
9823 || idesc->operands[i] == IA64_OPND_P2)
9824 {
9825 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
9826 qp_changemask |= (valueT) 1 << regno;
9827 }
9828 else if (idesc->operands[i] == IA64_OPND_PR)
9829 {
9830 if (idesc->operands[2] & (valueT) 0x10000)
9831 qp_changemask = ~(valueT) 0x1FFFF | idesc->operands[2];
9832 else
9833 qp_changemask = idesc->operands[2];
9834 break;
9835 }
9836 else if (idesc->operands[i] == IA64_OPND_PR_ROT)
9837 {
9838 if (idesc->operands[1] & ((valueT) 1 << 43))
9839 qp_changemask = -((valueT) 1 << 44) | idesc->operands[1];
9840 else
9841 qp_changemask = idesc->operands[1];
9842 qp_changemask &= ~(valueT) 0xFFFF;
9843 break;
9844 }
9845 }
9846
9847 /* Always clear qp branch flags on any PR change. */
9848 /* FIXME there may be exceptions for certain compares. */
9849 clear_qp_branch_flag (qp_changemask);
9850
9851 /* Invalidate rotating registers on insns which affect RRBs in CFM. */
9852 if (idesc->flags & IA64_OPCODE_MOD_RRBS)
9853 {
9854 qp_changemask |= ~(valueT) 0xFFFF;
9855 if (strcmp (idesc->name, "clrrrb.pr") != 0)
9856 {
9857 for (i = 32; i < 32 + md.rot.num_regs; i++)
9858 gr_values[i].known = 0;
9859 }
9860 clear_qp_mutex (qp_changemask);
9861 clear_qp_implies (qp_changemask, qp_changemask);
9862 }
9863 /* After a call, all register values are undefined, except those marked
9864 as "safe". */
9865 else if (strncmp (idesc->name, "br.call", 6) == 0
9866 || strncmp (idesc->name, "brl.call", 7) == 0)
9867 {
9868 /* FIXME keep GR values which are marked as "safe_across_calls" */
9869 clear_register_values ();
9870 clear_qp_mutex (~qp_safe_across_calls);
9871 clear_qp_implies (~qp_safe_across_calls, ~qp_safe_across_calls);
9872 clear_qp_branch_flag (~qp_safe_across_calls);
9873 }
9874 else if (is_interruption_or_rfi (idesc)
9875 || is_taken_branch (idesc))
9876 {
9877 clear_register_values ();
9878 clear_qp_mutex (~(valueT) 0);
9879 clear_qp_implies (~(valueT) 0, ~(valueT) 0);
9880 }
9881 /* Look for mutex and implies relations. */
9882 else if ((idesc->operands[0] == IA64_OPND_P1
9883 || idesc->operands[0] == IA64_OPND_P2)
9884 && (idesc->operands[1] == IA64_OPND_P1
9885 || idesc->operands[1] == IA64_OPND_P2))
9886 {
9887 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
9888 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
9889 valueT p1mask = (p1 != 0) ? (valueT) 1 << p1 : 0;
9890 valueT p2mask = (p2 != 0) ? (valueT) 1 << p2 : 0;
9891
9892 /* If both PRs are PR0, we can't really do anything. */
9893 if (p1 == 0 && p2 == 0)
9894 {
9895 if (md.debug_dv)
9896 fprintf (stderr, " Ignoring PRs due to inclusion of p0\n");
9897 }
9898 /* In general, clear mutexes and implies which include P1 or P2,
9899 with the following exceptions. */
9900 else if (has_suffix_p (idesc->name, ".or.andcm")
9901 || has_suffix_p (idesc->name, ".and.orcm"))
9902 {
9903 clear_qp_implies (p2mask, p1mask);
9904 }
9905 else if (has_suffix_p (idesc->name, ".andcm")
9906 || has_suffix_p (idesc->name, ".and"))
9907 {
9908 clear_qp_implies (0, p1mask | p2mask);
9909 }
9910 else if (has_suffix_p (idesc->name, ".orcm")
9911 || has_suffix_p (idesc->name, ".or"))
9912 {
9913 clear_qp_mutex (p1mask | p2mask);
9914 clear_qp_implies (p1mask | p2mask, 0);
9915 }
9916 else
9917 {
9918 int added = 0;
9919
9920 clear_qp_implies (p1mask | p2mask, p1mask | p2mask);
9921
9922 /* If one of the PRs is PR0, we call clear_qp_mutex. */
9923 if (p1 == 0 || p2 == 0)
9924 clear_qp_mutex (p1mask | p2mask);
9925 else
9926 added = update_qp_mutex (p1mask | p2mask);
9927
9928 if (CURR_SLOT.qp_regno == 0
9929 || has_suffix_p (idesc->name, ".unc"))
9930 {
9931 if (added == 0 && p1 && p2)
9932 add_qp_mutex (p1mask | p2mask);
9933 if (CURR_SLOT.qp_regno != 0)
9934 {
9935 if (p1)
9936 add_qp_imply (p1, CURR_SLOT.qp_regno);
9937 if (p2)
9938 add_qp_imply (p2, CURR_SLOT.qp_regno);
9939 }
9940 }
9941 }
9942 }
9943 /* Look for mov imm insns into GRs. */
9944 else if (idesc->operands[0] == IA64_OPND_R1
9945 && (idesc->operands[1] == IA64_OPND_IMM22
9946 || idesc->operands[1] == IA64_OPND_IMMU64)
9947 && CURR_SLOT.opnd[1].X_op == O_constant
9948 && (strcmp (idesc->name, "mov") == 0
9949 || strcmp (idesc->name, "movl") == 0))
9950 {
9951 int regno = CURR_SLOT.opnd[0].X_add_number - REG_GR;
9952 if (regno > 0 && regno < NELEMS (gr_values))
9953 {
9954 gr_values[regno].known = 1;
9955 gr_values[regno].value = CURR_SLOT.opnd[1].X_add_number;
9956 gr_values[regno].path = md.path;
9957 if (md.debug_dv)
9958 {
9959 fprintf (stderr, " Know gr%d = ", regno);
9960 fprintf_vma (stderr, gr_values[regno].value);
9961 fputs ("\n", stderr);
9962 }
9963 }
9964 }
9965 /* Look for dep.z imm insns. */
9966 else if (idesc->operands[0] == IA64_OPND_R1
9967 && idesc->operands[1] == IA64_OPND_IMM8
9968 && strcmp (idesc->name, "dep.z") == 0)
9969 {
9970 int regno = CURR_SLOT.opnd[0].X_add_number - REG_GR;
9971 if (regno > 0 && regno < NELEMS (gr_values))
9972 {
9973 valueT value = CURR_SLOT.opnd[1].X_add_number;
9974
9975 if (CURR_SLOT.opnd[3].X_add_number < 64)
9976 value &= ((valueT)1 << CURR_SLOT.opnd[3].X_add_number) - 1;
9977 value <<= CURR_SLOT.opnd[2].X_add_number;
9978 gr_values[regno].known = 1;
9979 gr_values[regno].value = value;
9980 gr_values[regno].path = md.path;
9981 if (md.debug_dv)
9982 {
9983 fprintf (stderr, " Know gr%d = ", regno);
9984 fprintf_vma (stderr, gr_values[regno].value);
9985 fputs ("\n", stderr);
9986 }
9987 }
9988 }
9989 else
9990 {
9991 clear_qp_mutex (qp_changemask);
9992 clear_qp_implies (qp_changemask, qp_changemask);
9993 }
9994 }
9995
9996 /* Return whether the given predicate registers are currently mutex. */
9997
9998 static int
9999 qp_mutex (int p1, int p2, int path)
10000 {
10001 int i;
10002 valueT mask;
10003
10004 if (p1 != p2)
10005 {
10006 mask = ((valueT) 1 << p1) | (valueT) 1 << p2;
10007 for (i = 0; i < qp_mutexeslen; i++)
10008 {
10009 if (qp_mutexes[i].path >= path
10010 && (qp_mutexes[i].prmask & mask) == mask)
10011 return 1;
10012 }
10013 }
10014 return 0;
10015 }
10016
10017 /* Return whether the given resource is in the given insn's list of chks
10018 Return 1 if the conflict is absolutely determined, 2 if it's a potential
10019 conflict. */
10020
10021 static int
10022 resources_match (struct rsrc *rs,
10023 struct ia64_opcode *idesc,
10024 int note,
10025 int qp_regno,
10026 int path)
10027 {
10028 struct rsrc specs[MAX_SPECS];
10029 int count;
10030
10031 /* If the marked resource's qp_regno and the given qp_regno are mutex,
10032 we don't need to check. One exception is note 11, which indicates that
10033 target predicates are written regardless of PR[qp]. */
10034 if (qp_mutex (rs->qp_regno, qp_regno, path)
10035 && note != 11)
10036 return 0;
10037
10038 count = specify_resource (rs->dependency, idesc, DV_CHK, specs, note, path);
10039 while (count-- > 0)
10040 {
10041 /* UNAT checking is a bit more specific than other resources */
10042 if (rs->dependency->specifier == IA64_RS_AR_UNAT
10043 && specs[count].mem_offset.hint
10044 && rs->mem_offset.hint)
10045 {
10046 if (rs->mem_offset.base == specs[count].mem_offset.base)
10047 {
10048 if (((rs->mem_offset.offset >> 3) & 0x3F) ==
10049 ((specs[count].mem_offset.offset >> 3) & 0x3F))
10050 return 1;
10051 else
10052 continue;
10053 }
10054 }
10055
10056 /* Skip apparent PR write conflicts where both writes are an AND or both
10057 writes are an OR. */
10058 if (rs->dependency->specifier == IA64_RS_PR
10059 || rs->dependency->specifier == IA64_RS_PRr
10060 || rs->dependency->specifier == IA64_RS_PR63)
10061 {
10062 if (specs[count].cmp_type != CMP_NONE
10063 && specs[count].cmp_type == rs->cmp_type)
10064 {
10065 if (md.debug_dv)
10066 fprintf (stderr, " %s on parallel compare allowed (PR%d)\n",
10067 dv_mode[rs->dependency->mode],
10068 rs->dependency->specifier != IA64_RS_PR63 ?
10069 specs[count].index : 63);
10070 continue;
10071 }
10072 if (md.debug_dv)
10073 fprintf (stderr,
10074 " %s on parallel compare conflict %s vs %s on PR%d\n",
10075 dv_mode[rs->dependency->mode],
10076 dv_cmp_type[rs->cmp_type],
10077 dv_cmp_type[specs[count].cmp_type],
10078 rs->dependency->specifier != IA64_RS_PR63 ?
10079 specs[count].index : 63);
10080
10081 }
10082
10083 /* If either resource is not specific, conservatively assume a conflict
10084 */
10085 if (!specs[count].specific || !rs->specific)
10086 return 2;
10087 else if (specs[count].index == rs->index)
10088 return 1;
10089 }
10090
10091 return 0;
10092 }
10093
10094 /* Indicate an instruction group break; if INSERT_STOP is non-zero, then
10095 insert a stop to create the break. Update all resource dependencies
10096 appropriately. If QP_REGNO is non-zero, only apply the break to resources
10097 which use the same QP_REGNO and have the link_to_qp_branch flag set.
10098 If SAVE_CURRENT is non-zero, don't affect resources marked by the current
10099 instruction. */
10100
10101 static void
10102 insn_group_break (int insert_stop, int qp_regno, int save_current)
10103 {
10104 int i;
10105
10106 if (insert_stop && md.num_slots_in_use > 0)
10107 PREV_SLOT.end_of_insn_group = 1;
10108
10109 if (md.debug_dv)
10110 {
10111 fprintf (stderr, " Insn group break%s",
10112 (insert_stop ? " (w/stop)" : ""));
10113 if (qp_regno != 0)
10114 fprintf (stderr, " effective for QP=%d", qp_regno);
10115 fprintf (stderr, "\n");
10116 }
10117
10118 i = 0;
10119 while (i < regdepslen)
10120 {
10121 const struct ia64_dependency *dep = regdeps[i].dependency;
10122
10123 if (qp_regno != 0
10124 && regdeps[i].qp_regno != qp_regno)
10125 {
10126 ++i;
10127 continue;
10128 }
10129
10130 if (save_current
10131 && CURR_SLOT.src_file == regdeps[i].file
10132 && CURR_SLOT.src_line == regdeps[i].line)
10133 {
10134 ++i;
10135 continue;
10136 }
10137
10138 /* clear dependencies which are automatically cleared by a stop, or
10139 those that have reached the appropriate state of insn serialization */
10140 if (dep->semantics == IA64_DVS_IMPLIED
10141 || dep->semantics == IA64_DVS_IMPLIEDF
10142 || regdeps[i].insn_srlz == STATE_SRLZ)
10143 {
10144 print_dependency ("Removing", i);
10145 regdeps[i] = regdeps[--regdepslen];
10146 }
10147 else
10148 {
10149 if (dep->semantics == IA64_DVS_DATA
10150 || dep->semantics == IA64_DVS_INSTR
10151 || dep->semantics == IA64_DVS_SPECIFIC)
10152 {
10153 if (regdeps[i].insn_srlz == STATE_NONE)
10154 regdeps[i].insn_srlz = STATE_STOP;
10155 if (regdeps[i].data_srlz == STATE_NONE)
10156 regdeps[i].data_srlz = STATE_STOP;
10157 }
10158 ++i;
10159 }
10160 }
10161 }
10162
10163 /* Add the given resource usage spec to the list of active dependencies. */
10164
10165 static void
10166 mark_resource (struct ia64_opcode *idesc ATTRIBUTE_UNUSED,
10167 const struct ia64_dependency *dep ATTRIBUTE_UNUSED,
10168 struct rsrc *spec,
10169 int depind,
10170 int path)
10171 {
10172 if (regdepslen == regdepstotlen)
10173 {
10174 regdepstotlen += 20;
10175 regdeps = XRESIZEVEC (struct rsrc, regdeps, regdepstotlen);
10176 }
10177
10178 regdeps[regdepslen] = *spec;
10179 regdeps[regdepslen].depind = depind;
10180 regdeps[regdepslen].path = path;
10181 regdeps[regdepslen].file = CURR_SLOT.src_file;
10182 regdeps[regdepslen].line = CURR_SLOT.src_line;
10183
10184 print_dependency ("Adding", regdepslen);
10185
10186 ++regdepslen;
10187 }
10188
10189 static void
10190 print_dependency (const char *action, int depind)
10191 {
10192 if (md.debug_dv)
10193 {
10194 fprintf (stderr, " %s %s '%s'",
10195 action, dv_mode[(regdeps[depind].dependency)->mode],
10196 (regdeps[depind].dependency)->name);
10197 if (regdeps[depind].specific && regdeps[depind].index >= 0)
10198 fprintf (stderr, " (%d)", regdeps[depind].index);
10199 if (regdeps[depind].mem_offset.hint)
10200 {
10201 fputs (" ", stderr);
10202 fprintf_vma (stderr, regdeps[depind].mem_offset.base);
10203 fputs ("+", stderr);
10204 fprintf_vma (stderr, regdeps[depind].mem_offset.offset);
10205 }
10206 fprintf (stderr, "\n");
10207 }
10208 }
10209
10210 static void
10211 instruction_serialization (void)
10212 {
10213 int i;
10214 if (md.debug_dv)
10215 fprintf (stderr, " Instruction serialization\n");
10216 for (i = 0; i < regdepslen; i++)
10217 if (regdeps[i].insn_srlz == STATE_STOP)
10218 regdeps[i].insn_srlz = STATE_SRLZ;
10219 }
10220
10221 static void
10222 data_serialization (void)
10223 {
10224 int i = 0;
10225 if (md.debug_dv)
10226 fprintf (stderr, " Data serialization\n");
10227 while (i < regdepslen)
10228 {
10229 if (regdeps[i].data_srlz == STATE_STOP
10230 /* Note: as of 991210, all "other" dependencies are cleared by a
10231 data serialization. This might change with new tables */
10232 || (regdeps[i].dependency)->semantics == IA64_DVS_OTHER)
10233 {
10234 print_dependency ("Removing", i);
10235 regdeps[i] = regdeps[--regdepslen];
10236 }
10237 else
10238 ++i;
10239 }
10240 }
10241
10242 /* Insert stops and serializations as needed to avoid DVs. */
10243
10244 static void
10245 remove_marked_resource (struct rsrc *rs)
10246 {
10247 switch (rs->dependency->semantics)
10248 {
10249 case IA64_DVS_SPECIFIC:
10250 if (md.debug_dv)
10251 fprintf (stderr, "Implementation-specific, assume worst case...\n");
10252 /* Fall through. */
10253 case IA64_DVS_INSTR:
10254 if (md.debug_dv)
10255 fprintf (stderr, "Inserting instr serialization\n");
10256 if (rs->insn_srlz < STATE_STOP)
10257 insn_group_break (1, 0, 0);
10258 if (rs->insn_srlz < STATE_SRLZ)
10259 {
10260 struct slot oldslot = CURR_SLOT;
10261 /* Manually jam a srlz.i insn into the stream */
10262 memset (&CURR_SLOT, 0, sizeof (CURR_SLOT));
10263 CURR_SLOT.user_template = -1;
10264 CURR_SLOT.idesc = ia64_find_opcode ("srlz.i");
10265 instruction_serialization ();
10266 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10267 if (++md.num_slots_in_use >= NUM_SLOTS)
10268 emit_one_bundle ();
10269 CURR_SLOT = oldslot;
10270 }
10271 insn_group_break (1, 0, 0);
10272 break;
10273 case IA64_DVS_OTHER: /* as of rev2 (991220) of the DV tables, all
10274 "other" types of DV are eliminated
10275 by a data serialization */
10276 case IA64_DVS_DATA:
10277 if (md.debug_dv)
10278 fprintf (stderr, "Inserting data serialization\n");
10279 if (rs->data_srlz < STATE_STOP)
10280 insn_group_break (1, 0, 0);
10281 {
10282 struct slot oldslot = CURR_SLOT;
10283 /* Manually jam a srlz.d insn into the stream */
10284 memset (&CURR_SLOT, 0, sizeof (CURR_SLOT));
10285 CURR_SLOT.user_template = -1;
10286 CURR_SLOT.idesc = ia64_find_opcode ("srlz.d");
10287 data_serialization ();
10288 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10289 if (++md.num_slots_in_use >= NUM_SLOTS)
10290 emit_one_bundle ();
10291 CURR_SLOT = oldslot;
10292 }
10293 break;
10294 case IA64_DVS_IMPLIED:
10295 case IA64_DVS_IMPLIEDF:
10296 if (md.debug_dv)
10297 fprintf (stderr, "Inserting stop\n");
10298 insn_group_break (1, 0, 0);
10299 break;
10300 default:
10301 break;
10302 }
10303 }
10304
10305 /* Check the resources used by the given opcode against the current dependency
10306 list.
10307
10308 The check is run once for each execution path encountered. In this case,
10309 a unique execution path is the sequence of instructions following a code
10310 entry point, e.g. the following has three execution paths, one starting
10311 at L0, one at L1, and one at L2.
10312
10313 L0: nop
10314 L1: add
10315 L2: add
10316 br.ret
10317 */
10318
10319 static void
10320 check_dependencies (struct ia64_opcode *idesc)
10321 {
10322 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
10323 int path;
10324 int i;
10325
10326 /* Note that the number of marked resources may change within the
10327 loop if in auto mode. */
10328 i = 0;
10329 while (i < regdepslen)
10330 {
10331 struct rsrc *rs = &regdeps[i];
10332 const struct ia64_dependency *dep = rs->dependency;
10333 int chkind;
10334 int note;
10335 int start_over = 0;
10336
10337 if (dep->semantics == IA64_DVS_NONE
10338 || (chkind = depends_on (rs->depind, idesc)) == -1)
10339 {
10340 ++i;
10341 continue;
10342 }
10343
10344 note = NOTE (opdeps->chks[chkind]);
10345
10346 /* Check this resource against each execution path seen thus far. */
10347 for (path = 0; path <= md.path; path++)
10348 {
10349 int matchtype;
10350
10351 /* If the dependency wasn't on the path being checked, ignore it. */
10352 if (rs->path < path)
10353 continue;
10354
10355 /* If the QP for this insn implies a QP which has branched, don't
10356 bother checking. Ed. NOTE: I don't think this check is terribly
10357 useful; what's the point of generating code which will only be
10358 reached if its QP is zero?
10359 This code was specifically inserted to handle the following code,
10360 based on notes from Intel's DV checking code, where p1 implies p2.
10361
10362 mov r4 = 2
10363 (p2) br.cond L
10364 (p1) mov r4 = 7
10365 */
10366 if (CURR_SLOT.qp_regno != 0)
10367 {
10368 int skip = 0;
10369 int implies;
10370 for (implies = 0; implies < qp_implieslen; implies++)
10371 {
10372 if (qp_implies[implies].path >= path
10373 && qp_implies[implies].p1 == CURR_SLOT.qp_regno
10374 && qp_implies[implies].p2_branched)
10375 {
10376 skip = 1;
10377 break;
10378 }
10379 }
10380 if (skip)
10381 continue;
10382 }
10383
10384 if ((matchtype = resources_match (rs, idesc, note,
10385 CURR_SLOT.qp_regno, path)) != 0)
10386 {
10387 char msg[1024];
10388 char pathmsg[256] = "";
10389 char indexmsg[256] = "";
10390 int certain = (matchtype == 1 && CURR_SLOT.qp_regno == 0);
10391
10392 if (path != 0)
10393 snprintf (pathmsg, sizeof (pathmsg),
10394 " when entry is at label '%s'",
10395 md.entry_labels[path - 1]);
10396 if (matchtype == 1 && rs->index >= 0)
10397 snprintf (indexmsg, sizeof (indexmsg),
10398 ", specific resource number is %d",
10399 rs->index);
10400 snprintf (msg, sizeof (msg),
10401 "Use of '%s' %s %s dependency '%s' (%s)%s%s",
10402 idesc->name,
10403 (certain ? "violates" : "may violate"),
10404 dv_mode[dep->mode], dep->name,
10405 dv_sem[dep->semantics],
10406 pathmsg, indexmsg);
10407
10408 if (md.explicit_mode)
10409 {
10410 as_warn ("%s", msg);
10411 if (path < md.path)
10412 as_warn (_("Only the first path encountering the conflict is reported"));
10413 as_warn_where (rs->file, rs->line,
10414 _("This is the location of the conflicting usage"));
10415 /* Don't bother checking other paths, to avoid duplicating
10416 the same warning */
10417 break;
10418 }
10419 else
10420 {
10421 if (md.debug_dv)
10422 fprintf (stderr, "%s @ %s:%d\n", msg, rs->file, rs->line);
10423
10424 remove_marked_resource (rs);
10425
10426 /* since the set of dependencies has changed, start over */
10427 /* FIXME -- since we're removing dvs as we go, we
10428 probably don't really need to start over... */
10429 start_over = 1;
10430 break;
10431 }
10432 }
10433 }
10434 if (start_over)
10435 i = 0;
10436 else
10437 ++i;
10438 }
10439 }
10440
10441 /* Register new dependencies based on the given opcode. */
10442
10443 static void
10444 mark_resources (struct ia64_opcode *idesc)
10445 {
10446 int i;
10447 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
10448 int add_only_qp_reads = 0;
10449
10450 /* A conditional branch only uses its resources if it is taken; if it is
10451 taken, we stop following that path. The other branch types effectively
10452 *always* write their resources. If it's not taken, register only QP
10453 reads. */
10454 if (is_conditional_branch (idesc) || is_interruption_or_rfi (idesc))
10455 {
10456 add_only_qp_reads = 1;
10457 }
10458
10459 if (md.debug_dv)
10460 fprintf (stderr, "Registering '%s' resource usage\n", idesc->name);
10461
10462 for (i = 0; i < opdeps->nregs; i++)
10463 {
10464 const struct ia64_dependency *dep;
10465 struct rsrc specs[MAX_SPECS];
10466 int note;
10467 int path;
10468 int count;
10469
10470 dep = ia64_find_dependency (opdeps->regs[i]);
10471 note = NOTE (opdeps->regs[i]);
10472
10473 if (add_only_qp_reads
10474 && !(dep->mode == IA64_DV_WAR
10475 && (dep->specifier == IA64_RS_PR
10476 || dep->specifier == IA64_RS_PRr
10477 || dep->specifier == IA64_RS_PR63)))
10478 continue;
10479
10480 count = specify_resource (dep, idesc, DV_REG, specs, note, md.path);
10481
10482 while (count-- > 0)
10483 {
10484 mark_resource (idesc, dep, &specs[count],
10485 DEP (opdeps->regs[i]), md.path);
10486 }
10487
10488 /* The execution path may affect register values, which may in turn
10489 affect which indirect-access resources are accessed. */
10490 switch (dep->specifier)
10491 {
10492 default:
10493 break;
10494 case IA64_RS_CPUID:
10495 case IA64_RS_DBR:
10496 case IA64_RS_IBR:
10497 case IA64_RS_MSR:
10498 case IA64_RS_PKR:
10499 case IA64_RS_PMC:
10500 case IA64_RS_PMD:
10501 case IA64_RS_RR:
10502 for (path = 0; path < md.path; path++)
10503 {
10504 count = specify_resource (dep, idesc, DV_REG, specs, note, path);
10505 while (count-- > 0)
10506 mark_resource (idesc, dep, &specs[count],
10507 DEP (opdeps->regs[i]), path);
10508 }
10509 break;
10510 }
10511 }
10512 }
10513
10514 /* Remove dependencies when they no longer apply. */
10515
10516 static void
10517 update_dependencies (struct ia64_opcode *idesc)
10518 {
10519 int i;
10520
10521 if (strcmp (idesc->name, "srlz.i") == 0)
10522 {
10523 instruction_serialization ();
10524 }
10525 else if (strcmp (idesc->name, "srlz.d") == 0)
10526 {
10527 data_serialization ();
10528 }
10529 else if (is_interruption_or_rfi (idesc)
10530 || is_taken_branch (idesc))
10531 {
10532 /* Although technically the taken branch doesn't clear dependencies
10533 which require a srlz.[id], we don't follow the branch; the next
10534 instruction is assumed to start with a clean slate. */
10535 regdepslen = 0;
10536 md.path = 0;
10537 }
10538 else if (is_conditional_branch (idesc)
10539 && CURR_SLOT.qp_regno != 0)
10540 {
10541 int is_call = strstr (idesc->name, ".call") != NULL;
10542
10543 for (i = 0; i < qp_implieslen; i++)
10544 {
10545 /* If the conditional branch's predicate is implied by the predicate
10546 in an existing dependency, remove that dependency. */
10547 if (qp_implies[i].p2 == CURR_SLOT.qp_regno)
10548 {
10549 int depind = 0;
10550 /* Note that this implied predicate takes a branch so that if
10551 a later insn generates a DV but its predicate implies this
10552 one, we can avoid the false DV warning. */
10553 qp_implies[i].p2_branched = 1;
10554 while (depind < regdepslen)
10555 {
10556 if (regdeps[depind].qp_regno == qp_implies[i].p1)
10557 {
10558 print_dependency ("Removing", depind);
10559 regdeps[depind] = regdeps[--regdepslen];
10560 }
10561 else
10562 ++depind;
10563 }
10564 }
10565 }
10566 /* Any marked resources which have this same predicate should be
10567 cleared, provided that the QP hasn't been modified between the
10568 marking instruction and the branch. */
10569 if (is_call)
10570 {
10571 insn_group_break (0, CURR_SLOT.qp_regno, 1);
10572 }
10573 else
10574 {
10575 i = 0;
10576 while (i < regdepslen)
10577 {
10578 if (regdeps[i].qp_regno == CURR_SLOT.qp_regno
10579 && regdeps[i].link_to_qp_branch
10580 && (regdeps[i].file != CURR_SLOT.src_file
10581 || regdeps[i].line != CURR_SLOT.src_line))
10582 {
10583 /* Treat like a taken branch */
10584 print_dependency ("Removing", i);
10585 regdeps[i] = regdeps[--regdepslen];
10586 }
10587 else
10588 ++i;
10589 }
10590 }
10591 }
10592 }
10593
10594 /* Examine the current instruction for dependency violations. */
10595
10596 static int
10597 check_dv (struct ia64_opcode *idesc)
10598 {
10599 if (md.debug_dv)
10600 {
10601 fprintf (stderr, "Checking %s for violations (line %d, %d/%d)\n",
10602 idesc->name, CURR_SLOT.src_line,
10603 idesc->dependencies->nchks,
10604 idesc->dependencies->nregs);
10605 }
10606
10607 /* Look through the list of currently marked resources; if the current
10608 instruction has the dependency in its chks list which uses that resource,
10609 check against the specific resources used. */
10610 check_dependencies (idesc);
10611
10612 /* Look up the instruction's regdeps (RAW writes, WAW writes, and WAR reads),
10613 then add them to the list of marked resources. */
10614 mark_resources (idesc);
10615
10616 /* There are several types of dependency semantics, and each has its own
10617 requirements for being cleared
10618
10619 Instruction serialization (insns separated by interruption, rfi, or
10620 writer + srlz.i + reader, all in separate groups) clears DVS_INSTR.
10621
10622 Data serialization (instruction serialization, or writer + srlz.d +
10623 reader, where writer and srlz.d are in separate groups) clears
10624 DVS_DATA. (This also clears DVS_OTHER, but that is not guaranteed to
10625 always be the case).
10626
10627 Instruction group break (groups separated by stop, taken branch,
10628 interruption or rfi) clears DVS_IMPLIED and DVS_IMPLIEDF.
10629 */
10630 update_dependencies (idesc);
10631
10632 /* Sometimes, knowing a register value allows us to avoid giving a false DV
10633 warning. Keep track of as many as possible that are useful. */
10634 note_register_values (idesc);
10635
10636 /* We don't need or want this anymore. */
10637 md.mem_offset.hint = 0;
10638
10639 return 0;
10640 }
10641
10642 /* Translate one line of assembly. Pseudo ops and labels do not show
10643 here. */
10644 void
10645 md_assemble (char *str)
10646 {
10647 char *saved_input_line_pointer, *temp;
10648 const char *mnemonic;
10649 const struct pseudo_opcode *pdesc;
10650 struct ia64_opcode *idesc;
10651 unsigned char qp_regno;
10652 unsigned int flags;
10653 int ch;
10654
10655 saved_input_line_pointer = input_line_pointer;
10656 input_line_pointer = str;
10657
10658 /* extract the opcode (mnemonic): */
10659
10660 ch = get_symbol_name (&temp);
10661 mnemonic = temp;
10662 pdesc = (struct pseudo_opcode *) str_hash_find (md.pseudo_hash, mnemonic);
10663 if (pdesc)
10664 {
10665 (void) restore_line_pointer (ch);
10666 (*pdesc->handler) (pdesc->arg);
10667 goto done;
10668 }
10669
10670 /* Find the instruction descriptor matching the arguments. */
10671
10672 idesc = ia64_find_opcode (mnemonic);
10673 (void) restore_line_pointer (ch);
10674 if (!idesc)
10675 {
10676 as_bad (_("Unknown opcode `%s'"), mnemonic);
10677 goto done;
10678 }
10679
10680 idesc = parse_operands (idesc);
10681 if (!idesc)
10682 goto done;
10683
10684 /* Handle the dynamic ops we can handle now: */
10685 if (idesc->type == IA64_TYPE_DYN)
10686 {
10687 if (strcmp (idesc->name, "add") == 0)
10688 {
10689 if (CURR_SLOT.opnd[2].X_op == O_register
10690 && CURR_SLOT.opnd[2].X_add_number < 4)
10691 mnemonic = "addl";
10692 else
10693 mnemonic = "adds";
10694 ia64_free_opcode (idesc);
10695 idesc = ia64_find_opcode (mnemonic);
10696 }
10697 else if (strcmp (idesc->name, "mov") == 0)
10698 {
10699 enum ia64_opnd opnd1, opnd2;
10700 int rop;
10701
10702 opnd1 = idesc->operands[0];
10703 opnd2 = idesc->operands[1];
10704 if (opnd1 == IA64_OPND_AR3)
10705 rop = 0;
10706 else if (opnd2 == IA64_OPND_AR3)
10707 rop = 1;
10708 else
10709 abort ();
10710 if (CURR_SLOT.opnd[rop].X_op == O_register)
10711 {
10712 if (ar_is_only_in_integer_unit (CURR_SLOT.opnd[rop].X_add_number))
10713 mnemonic = "mov.i";
10714 else if (ar_is_only_in_memory_unit (CURR_SLOT.opnd[rop].X_add_number))
10715 mnemonic = "mov.m";
10716 else
10717 rop = -1;
10718 }
10719 else
10720 abort ();
10721 if (rop >= 0)
10722 {
10723 ia64_free_opcode (idesc);
10724 idesc = ia64_find_opcode (mnemonic);
10725 while (idesc != NULL
10726 && (idesc->operands[0] != opnd1
10727 || idesc->operands[1] != opnd2))
10728 idesc = get_next_opcode (idesc);
10729 }
10730 }
10731 }
10732 else if (strcmp (idesc->name, "mov.i") == 0
10733 || strcmp (idesc->name, "mov.m") == 0)
10734 {
10735 enum ia64_opnd opnd1, opnd2;
10736 int rop;
10737
10738 opnd1 = idesc->operands[0];
10739 opnd2 = idesc->operands[1];
10740 if (opnd1 == IA64_OPND_AR3)
10741 rop = 0;
10742 else if (opnd2 == IA64_OPND_AR3)
10743 rop = 1;
10744 else
10745 abort ();
10746 if (CURR_SLOT.opnd[rop].X_op == O_register)
10747 {
10748 char unit = 'a';
10749 if (ar_is_only_in_integer_unit (CURR_SLOT.opnd[rop].X_add_number))
10750 unit = 'i';
10751 else if (ar_is_only_in_memory_unit (CURR_SLOT.opnd[rop].X_add_number))
10752 unit = 'm';
10753 if (unit != 'a' && unit != idesc->name [4])
10754 as_bad (_("AR %d can only be accessed by %c-unit"),
10755 (int) (CURR_SLOT.opnd[rop].X_add_number - REG_AR),
10756 TOUPPER (unit));
10757 }
10758 }
10759 else if (strcmp (idesc->name, "hint.b") == 0)
10760 {
10761 switch (md.hint_b)
10762 {
10763 case hint_b_ok:
10764 break;
10765 case hint_b_warning:
10766 as_warn (_("hint.b may be treated as nop"));
10767 break;
10768 case hint_b_error:
10769 as_bad (_("hint.b shouldn't be used"));
10770 break;
10771 }
10772 }
10773
10774 qp_regno = 0;
10775 if (md.qp.X_op == O_register)
10776 {
10777 qp_regno = md.qp.X_add_number - REG_P;
10778 md.qp.X_op = O_absent;
10779 }
10780
10781 flags = idesc->flags;
10782
10783 if ((flags & IA64_OPCODE_FIRST) != 0)
10784 {
10785 /* The alignment frag has to end with a stop bit only if the
10786 next instruction after the alignment directive has to be
10787 the first instruction in an instruction group. */
10788 if (align_frag)
10789 {
10790 while (align_frag->fr_type != rs_align_code)
10791 {
10792 align_frag = align_frag->fr_next;
10793 if (!align_frag)
10794 break;
10795 }
10796 /* align_frag can be NULL if there are directives in
10797 between. */
10798 if (align_frag && align_frag->fr_next == frag_now)
10799 align_frag->tc_frag_data = 1;
10800 }
10801
10802 insn_group_break (1, 0, 0);
10803 }
10804 align_frag = NULL;
10805
10806 if ((flags & IA64_OPCODE_NO_PRED) != 0 && qp_regno != 0)
10807 {
10808 as_bad (_("`%s' cannot be predicated"), idesc->name);
10809 goto done;
10810 }
10811
10812 /* Build the instruction. */
10813 CURR_SLOT.qp_regno = qp_regno;
10814 CURR_SLOT.idesc = idesc;
10815 CURR_SLOT.src_file = as_where (&CURR_SLOT.src_line);
10816 dwarf2_where (&CURR_SLOT.debug_line);
10817 dwarf2_consume_line_info ();
10818
10819 /* Add unwind entries, if there are any. */
10820 if (unwind.current_entry)
10821 {
10822 CURR_SLOT.unwind_record = unwind.current_entry;
10823 unwind.current_entry = NULL;
10824 }
10825 if (unwind.pending_saves)
10826 {
10827 if (unwind.pending_saves->next)
10828 {
10829 /* Attach the next pending save to the next slot so that its
10830 slot number will get set correctly. */
10831 add_unwind_entry (unwind.pending_saves->next, NOT_A_CHAR);
10832 unwind.pending_saves = &unwind.pending_saves->next->r.record.p;
10833 }
10834 else
10835 unwind.pending_saves = NULL;
10836 }
10837 if (unwind.proc_pending.sym && S_IS_DEFINED (unwind.proc_pending.sym))
10838 unwind.insn = 1;
10839
10840 /* Check for dependency violations. */
10841 if (md.detect_dv)
10842 check_dv (idesc);
10843
10844 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10845 if (++md.num_slots_in_use >= NUM_SLOTS)
10846 emit_one_bundle ();
10847
10848 if ((flags & IA64_OPCODE_LAST) != 0)
10849 insn_group_break (1, 0, 0);
10850
10851 md.last_text_seg = now_seg;
10852
10853 done:
10854 input_line_pointer = saved_input_line_pointer;
10855 }
10856
10857 /* Called when symbol NAME cannot be found in the symbol table.
10858 Should be used for dynamic valued symbols only. */
10859
10860 symbolS *
10861 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
10862 {
10863 return 0;
10864 }
10865
10866 /* Called for any expression that can not be recognized. When the
10867 function is called, `input_line_pointer' will point to the start of
10868 the expression. */
10869
10870 void
10871 md_operand (expressionS *e)
10872 {
10873 switch (*input_line_pointer)
10874 {
10875 case '[':
10876 ++input_line_pointer;
10877 expression_and_evaluate (e);
10878 if (*input_line_pointer != ']')
10879 {
10880 as_bad (_("Closing bracket missing"));
10881 goto err;
10882 }
10883 else
10884 {
10885 if (e->X_op != O_register
10886 || e->X_add_number < REG_GR
10887 || e->X_add_number > REG_GR + 127)
10888 {
10889 as_bad (_("Index must be a general register"));
10890 e->X_add_number = REG_GR;
10891 }
10892
10893 ++input_line_pointer;
10894 e->X_op = O_index;
10895 }
10896 break;
10897
10898 default:
10899 break;
10900 }
10901 return;
10902
10903 err:
10904 ignore_rest_of_line ();
10905 }
10906
10907 /* Return 1 if it's OK to adjust a reloc by replacing the symbol with
10908 a section symbol plus some offset. For relocs involving @fptr(),
10909 directives we don't want such adjustments since we need to have the
10910 original symbol's name in the reloc. */
10911 int
10912 ia64_fix_adjustable (fixS *fix)
10913 {
10914 /* Prevent all adjustments to global symbols */
10915 if (S_IS_EXTERNAL (fix->fx_addsy) || S_IS_WEAK (fix->fx_addsy))
10916 return 0;
10917
10918 switch (fix->fx_r_type)
10919 {
10920 case BFD_RELOC_IA64_FPTR64I:
10921 case BFD_RELOC_IA64_FPTR32MSB:
10922 case BFD_RELOC_IA64_FPTR32LSB:
10923 case BFD_RELOC_IA64_FPTR64MSB:
10924 case BFD_RELOC_IA64_FPTR64LSB:
10925 case BFD_RELOC_IA64_LTOFF_FPTR22:
10926 case BFD_RELOC_IA64_LTOFF_FPTR64I:
10927 return 0;
10928 default:
10929 break;
10930 }
10931
10932 return 1;
10933 }
10934
10935 int
10936 ia64_force_relocation (fixS *fix)
10937 {
10938 switch (fix->fx_r_type)
10939 {
10940 case BFD_RELOC_IA64_FPTR64I:
10941 case BFD_RELOC_IA64_FPTR32MSB:
10942 case BFD_RELOC_IA64_FPTR32LSB:
10943 case BFD_RELOC_IA64_FPTR64MSB:
10944 case BFD_RELOC_IA64_FPTR64LSB:
10945
10946 case BFD_RELOC_IA64_LTOFF22:
10947 case BFD_RELOC_IA64_LTOFF64I:
10948 case BFD_RELOC_IA64_LTOFF_FPTR22:
10949 case BFD_RELOC_IA64_LTOFF_FPTR64I:
10950 case BFD_RELOC_IA64_PLTOFF22:
10951 case BFD_RELOC_IA64_PLTOFF64I:
10952 case BFD_RELOC_IA64_PLTOFF64MSB:
10953 case BFD_RELOC_IA64_PLTOFF64LSB:
10954
10955 case BFD_RELOC_IA64_LTOFF22X:
10956 case BFD_RELOC_IA64_LDXMOV:
10957 return 1;
10958
10959 default:
10960 break;
10961 }
10962
10963 return generic_force_reloc (fix);
10964 }
10965
10966 /* Decide from what point a pc-relative relocation is relative to,
10967 relative to the pc-relative fixup. Er, relatively speaking. */
10968 long
10969 ia64_pcrel_from_section (fixS *fix, segT sec)
10970 {
10971 unsigned long off = fix->fx_frag->fr_address + fix->fx_where;
10972
10973 if (bfd_section_flags (sec) & SEC_CODE)
10974 off &= ~0xfUL;
10975
10976 return off;
10977 }
10978
10979
10980 /* Used to emit section-relative relocs for the dwarf2 debug data. */
10981 void
10982 ia64_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
10983 {
10984 expressionS exp;
10985
10986 exp.X_op = O_pseudo_fixup;
10987 exp.X_op_symbol = pseudo_func[FUNC_SEC_RELATIVE].u.sym;
10988 exp.X_add_number = 0;
10989 exp.X_add_symbol = symbol;
10990 emit_expr (&exp, size);
10991 }
10992
10993 /* This is called whenever some data item (not an instruction) needs a
10994 fixup. We pick the right reloc code depending on the byteorder
10995 currently in effect. */
10996 void
10997 ia64_cons_fix_new (fragS *f, int where, int nbytes, expressionS *exp,
10998 bfd_reloc_code_real_type code)
10999 {
11000 fixS *fix;
11001
11002 switch (nbytes)
11003 {
11004 /* There are no reloc for 8 and 16 bit quantities, but we allow
11005 them here since they will work fine as long as the expression
11006 is fully defined at the end of the pass over the source file. */
11007 case 1: code = BFD_RELOC_8; break;
11008 case 2: code = BFD_RELOC_16; break;
11009 case 4:
11010 if (target_big_endian)
11011 code = BFD_RELOC_IA64_DIR32MSB;
11012 else
11013 code = BFD_RELOC_IA64_DIR32LSB;
11014 break;
11015
11016 case 8:
11017 /* In 32-bit mode, data8 could mean function descriptors too. */
11018 if (exp->X_op == O_pseudo_fixup
11019 && exp->X_op_symbol
11020 && S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC
11021 && !(md.flags & EF_IA_64_ABI64))
11022 {
11023 if (target_big_endian)
11024 code = BFD_RELOC_IA64_IPLTMSB;
11025 else
11026 code = BFD_RELOC_IA64_IPLTLSB;
11027 exp->X_op = O_symbol;
11028 break;
11029 }
11030 else
11031 {
11032 if (target_big_endian)
11033 code = BFD_RELOC_IA64_DIR64MSB;
11034 else
11035 code = BFD_RELOC_IA64_DIR64LSB;
11036 break;
11037 }
11038
11039 case 16:
11040 if (exp->X_op == O_pseudo_fixup
11041 && exp->X_op_symbol
11042 && S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC)
11043 {
11044 if (target_big_endian)
11045 code = BFD_RELOC_IA64_IPLTMSB;
11046 else
11047 code = BFD_RELOC_IA64_IPLTLSB;
11048 exp->X_op = O_symbol;
11049 break;
11050 }
11051 /* FALLTHRU */
11052
11053 default:
11054 as_bad (_("Unsupported fixup size %d"), nbytes);
11055 ignore_rest_of_line ();
11056 return;
11057 }
11058
11059 if (exp->X_op == O_pseudo_fixup)
11060 {
11061 exp->X_op = O_symbol;
11062 code = ia64_gen_real_reloc_type (exp->X_op_symbol, code);
11063 /* ??? If code unchanged, unsupported. */
11064 }
11065
11066 fix = fix_new_exp (f, where, nbytes, exp, 0, code);
11067 /* We need to store the byte order in effect in case we're going
11068 to fix an 8 or 16 bit relocation (for which there no real
11069 relocs available). See md_apply_fix(). */
11070 fix->tc_fix_data.bigendian = target_big_endian;
11071 }
11072
11073 /* Return the actual relocation we wish to associate with the pseudo
11074 reloc described by SYM and R_TYPE. SYM should be one of the
11075 symbols in the pseudo_func array, or NULL. */
11076
11077 static bfd_reloc_code_real_type
11078 ia64_gen_real_reloc_type (struct symbol *sym, bfd_reloc_code_real_type r_type)
11079 {
11080 bfd_reloc_code_real_type newr = 0;
11081 const char *type = NULL, *suffix = "";
11082
11083 if (sym == NULL)
11084 {
11085 return r_type;
11086 }
11087
11088 switch (S_GET_VALUE (sym))
11089 {
11090 case FUNC_FPTR_RELATIVE:
11091 switch (r_type)
11092 {
11093 case BFD_RELOC_IA64_IMM64: newr = BFD_RELOC_IA64_FPTR64I; break;
11094 case BFD_RELOC_IA64_DIR32MSB: newr = BFD_RELOC_IA64_FPTR32MSB; break;
11095 case BFD_RELOC_IA64_DIR32LSB: newr = BFD_RELOC_IA64_FPTR32LSB; break;
11096 case BFD_RELOC_IA64_DIR64MSB: newr = BFD_RELOC_IA64_FPTR64MSB; break;
11097 case BFD_RELOC_IA64_DIR64LSB: newr = BFD_RELOC_IA64_FPTR64LSB; break;
11098 default: type = "FPTR"; break;
11099 }
11100 break;
11101
11102 case FUNC_GP_RELATIVE:
11103 switch (r_type)
11104 {
11105 case BFD_RELOC_IA64_IMM22: newr = BFD_RELOC_IA64_GPREL22; break;
11106 case BFD_RELOC_IA64_IMM64: newr = BFD_RELOC_IA64_GPREL64I; break;
11107 case BFD_RELOC_IA64_DIR32MSB: newr = BFD_RELOC_IA64_GPREL32MSB; break;
11108 case BFD_RELOC_IA64_DIR32LSB: newr = BFD_RELOC_IA64_GPREL32LSB; break;
11109 case BFD_RELOC_IA64_DIR64MSB: newr = BFD_RELOC_IA64_GPREL64MSB; break;
11110 case BFD_RELOC_IA64_DIR64LSB: newr = BFD_RELOC_IA64_GPREL64LSB; break;
11111 default: type = "GPREL"; break;
11112 }
11113 break;
11114
11115 case FUNC_LT_RELATIVE:
11116 switch (r_type)
11117 {
11118 case BFD_RELOC_IA64_IMM22: newr = BFD_RELOC_IA64_LTOFF22; break;
11119 case BFD_RELOC_IA64_IMM64: newr = BFD_RELOC_IA64_LTOFF64I; break;
11120 default: type = "LTOFF"; break;
11121 }
11122 break;
11123
11124 case FUNC_LT_RELATIVE_X:
11125 switch (r_type)
11126 {
11127 case BFD_RELOC_IA64_IMM22: newr = BFD_RELOC_IA64_LTOFF22X; break;
11128 default: type = "LTOFF"; suffix = "X"; break;
11129 }
11130 break;
11131
11132 case FUNC_PC_RELATIVE:
11133 switch (r_type)
11134 {
11135 case BFD_RELOC_IA64_IMM22: newr = BFD_RELOC_IA64_PCREL22; break;
11136 case BFD_RELOC_IA64_IMM64: newr = BFD_RELOC_IA64_PCREL64I; break;
11137 case BFD_RELOC_IA64_DIR32MSB: newr = BFD_RELOC_IA64_PCREL32MSB; break;
11138 case BFD_RELOC_IA64_DIR32LSB: newr = BFD_RELOC_IA64_PCREL32LSB; break;
11139 case BFD_RELOC_IA64_DIR64MSB: newr = BFD_RELOC_IA64_PCREL64MSB; break;
11140 case BFD_RELOC_IA64_DIR64LSB: newr = BFD_RELOC_IA64_PCREL64LSB; break;
11141 default: type = "PCREL"; break;
11142 }
11143 break;
11144
11145 case FUNC_PLT_RELATIVE:
11146 switch (r_type)
11147 {
11148 case BFD_RELOC_IA64_IMM22: newr = BFD_RELOC_IA64_PLTOFF22; break;
11149 case BFD_RELOC_IA64_IMM64: newr = BFD_RELOC_IA64_PLTOFF64I; break;
11150 case BFD_RELOC_IA64_DIR64MSB: newr = BFD_RELOC_IA64_PLTOFF64MSB;break;
11151 case BFD_RELOC_IA64_DIR64LSB: newr = BFD_RELOC_IA64_PLTOFF64LSB;break;
11152 default: type = "PLTOFF"; break;
11153 }
11154 break;
11155
11156 case FUNC_SEC_RELATIVE:
11157 switch (r_type)
11158 {
11159 case BFD_RELOC_IA64_DIR32MSB: newr = BFD_RELOC_IA64_SECREL32MSB;break;
11160 case BFD_RELOC_IA64_DIR32LSB: newr = BFD_RELOC_IA64_SECREL32LSB;break;
11161 case BFD_RELOC_IA64_DIR64MSB: newr = BFD_RELOC_IA64_SECREL64MSB;break;
11162 case BFD_RELOC_IA64_DIR64LSB: newr = BFD_RELOC_IA64_SECREL64LSB;break;
11163 default: type = "SECREL"; break;
11164 }
11165 break;
11166
11167 case FUNC_SEG_RELATIVE:
11168 switch (r_type)
11169 {
11170 case BFD_RELOC_IA64_DIR32MSB: newr = BFD_RELOC_IA64_SEGREL32MSB;break;
11171 case BFD_RELOC_IA64_DIR32LSB: newr = BFD_RELOC_IA64_SEGREL32LSB;break;
11172 case BFD_RELOC_IA64_DIR64MSB: newr = BFD_RELOC_IA64_SEGREL64MSB;break;
11173 case BFD_RELOC_IA64_DIR64LSB: newr = BFD_RELOC_IA64_SEGREL64LSB;break;
11174 default: type = "SEGREL"; break;
11175 }
11176 break;
11177
11178 case FUNC_LTV_RELATIVE:
11179 switch (r_type)
11180 {
11181 case BFD_RELOC_IA64_DIR32MSB: newr = BFD_RELOC_IA64_LTV32MSB; break;
11182 case BFD_RELOC_IA64_DIR32LSB: newr = BFD_RELOC_IA64_LTV32LSB; break;
11183 case BFD_RELOC_IA64_DIR64MSB: newr = BFD_RELOC_IA64_LTV64MSB; break;
11184 case BFD_RELOC_IA64_DIR64LSB: newr = BFD_RELOC_IA64_LTV64LSB; break;
11185 default: type = "LTV"; break;
11186 }
11187 break;
11188
11189 case FUNC_LT_FPTR_RELATIVE:
11190 switch (r_type)
11191 {
11192 case BFD_RELOC_IA64_IMM22:
11193 newr = BFD_RELOC_IA64_LTOFF_FPTR22; break;
11194 case BFD_RELOC_IA64_IMM64:
11195 newr = BFD_RELOC_IA64_LTOFF_FPTR64I; break;
11196 case BFD_RELOC_IA64_DIR32MSB:
11197 newr = BFD_RELOC_IA64_LTOFF_FPTR32MSB; break;
11198 case BFD_RELOC_IA64_DIR32LSB:
11199 newr = BFD_RELOC_IA64_LTOFF_FPTR32LSB; break;
11200 case BFD_RELOC_IA64_DIR64MSB:
11201 newr = BFD_RELOC_IA64_LTOFF_FPTR64MSB; break;
11202 case BFD_RELOC_IA64_DIR64LSB:
11203 newr = BFD_RELOC_IA64_LTOFF_FPTR64LSB; break;
11204 default:
11205 type = "LTOFF_FPTR"; break;
11206 }
11207 break;
11208
11209 case FUNC_TP_RELATIVE:
11210 switch (r_type)
11211 {
11212 case BFD_RELOC_IA64_IMM14: newr = BFD_RELOC_IA64_TPREL14; break;
11213 case BFD_RELOC_IA64_IMM22: newr = BFD_RELOC_IA64_TPREL22; break;
11214 case BFD_RELOC_IA64_IMM64: newr = BFD_RELOC_IA64_TPREL64I; break;
11215 case BFD_RELOC_IA64_DIR64MSB: newr = BFD_RELOC_IA64_TPREL64MSB; break;
11216 case BFD_RELOC_IA64_DIR64LSB: newr = BFD_RELOC_IA64_TPREL64LSB; break;
11217 default: type = "TPREL"; break;
11218 }
11219 break;
11220
11221 case FUNC_LT_TP_RELATIVE:
11222 switch (r_type)
11223 {
11224 case BFD_RELOC_IA64_IMM22:
11225 newr = BFD_RELOC_IA64_LTOFF_TPREL22; break;
11226 default:
11227 type = "LTOFF_TPREL"; break;
11228 }
11229 break;
11230
11231 case FUNC_DTP_MODULE:
11232 switch (r_type)
11233 {
11234 case BFD_RELOC_IA64_DIR64MSB:
11235 newr = BFD_RELOC_IA64_DTPMOD64MSB; break;
11236 case BFD_RELOC_IA64_DIR64LSB:
11237 newr = BFD_RELOC_IA64_DTPMOD64LSB; break;
11238 default:
11239 type = "DTPMOD"; break;
11240 }
11241 break;
11242
11243 case FUNC_LT_DTP_MODULE:
11244 switch (r_type)
11245 {
11246 case BFD_RELOC_IA64_IMM22:
11247 newr = BFD_RELOC_IA64_LTOFF_DTPMOD22; break;
11248 default:
11249 type = "LTOFF_DTPMOD"; break;
11250 }
11251 break;
11252
11253 case FUNC_DTP_RELATIVE:
11254 switch (r_type)
11255 {
11256 case BFD_RELOC_IA64_DIR32MSB:
11257 newr = BFD_RELOC_IA64_DTPREL32MSB; break;
11258 case BFD_RELOC_IA64_DIR32LSB:
11259 newr = BFD_RELOC_IA64_DTPREL32LSB; break;
11260 case BFD_RELOC_IA64_DIR64MSB:
11261 newr = BFD_RELOC_IA64_DTPREL64MSB; break;
11262 case BFD_RELOC_IA64_DIR64LSB:
11263 newr = BFD_RELOC_IA64_DTPREL64LSB; break;
11264 case BFD_RELOC_IA64_IMM14:
11265 newr = BFD_RELOC_IA64_DTPREL14; break;
11266 case BFD_RELOC_IA64_IMM22:
11267 newr = BFD_RELOC_IA64_DTPREL22; break;
11268 case BFD_RELOC_IA64_IMM64:
11269 newr = BFD_RELOC_IA64_DTPREL64I; break;
11270 default:
11271 type = "DTPREL"; break;
11272 }
11273 break;
11274
11275 case FUNC_LT_DTP_RELATIVE:
11276 switch (r_type)
11277 {
11278 case BFD_RELOC_IA64_IMM22:
11279 newr = BFD_RELOC_IA64_LTOFF_DTPREL22; break;
11280 default:
11281 type = "LTOFF_DTPREL"; break;
11282 }
11283 break;
11284
11285 case FUNC_IPLT_RELOC:
11286 switch (r_type)
11287 {
11288 case BFD_RELOC_IA64_IPLTMSB: return r_type;
11289 case BFD_RELOC_IA64_IPLTLSB: return r_type;
11290 default: type = "IPLT"; break;
11291 }
11292 break;
11293
11294 #ifdef TE_VMS
11295 case FUNC_SLOTCOUNT_RELOC:
11296 return DUMMY_RELOC_IA64_SLOTCOUNT;
11297 #endif
11298
11299 default:
11300 abort ();
11301 }
11302
11303 if (newr)
11304 return newr;
11305 else
11306 {
11307 int width;
11308
11309 if (!type)
11310 abort ();
11311 switch (r_type)
11312 {
11313 case BFD_RELOC_IA64_DIR32MSB: width = 32; suffix = "MSB"; break;
11314 case BFD_RELOC_IA64_DIR32LSB: width = 32; suffix = "LSB"; break;
11315 case BFD_RELOC_IA64_DIR64MSB: width = 64; suffix = "MSB"; break;
11316 case BFD_RELOC_IA64_DIR64LSB: width = 64; suffix = "LSB"; break;
11317 case BFD_RELOC_UNUSED: width = 13; break;
11318 case BFD_RELOC_IA64_IMM14: width = 14; break;
11319 case BFD_RELOC_IA64_IMM22: width = 22; break;
11320 case BFD_RELOC_IA64_IMM64: width = 64; suffix = "I"; break;
11321 default: abort ();
11322 }
11323
11324 /* This should be an error, but since previously there wasn't any
11325 diagnostic here, don't make it fail because of this for now. */
11326 as_warn (_("Cannot express %s%d%s relocation"), type, width, suffix);
11327 return r_type;
11328 }
11329 }
11330
11331 /* Here is where generate the appropriate reloc for pseudo relocation
11332 functions. */
11333 void
11334 ia64_validate_fix (fixS *fix)
11335 {
11336 switch (fix->fx_r_type)
11337 {
11338 case BFD_RELOC_IA64_FPTR64I:
11339 case BFD_RELOC_IA64_FPTR32MSB:
11340 case BFD_RELOC_IA64_FPTR64LSB:
11341 case BFD_RELOC_IA64_LTOFF_FPTR22:
11342 case BFD_RELOC_IA64_LTOFF_FPTR64I:
11343 if (fix->fx_offset != 0)
11344 as_bad_where (fix->fx_file, fix->fx_line,
11345 _("No addend allowed in @fptr() relocation"));
11346 break;
11347 default:
11348 break;
11349 }
11350 }
11351
11352 static void
11353 fix_insn (fixS *fix, const struct ia64_operand *odesc, valueT value)
11354 {
11355 bfd_vma insn[3], t0, t1, control_bits;
11356 const char *err;
11357 char *fixpos;
11358 long slot;
11359
11360 slot = fix->fx_where & 0x3;
11361 fixpos = fix->fx_frag->fr_literal + (fix->fx_where - slot);
11362
11363 /* Bundles are always in little-endian byte order */
11364 t0 = bfd_getl64 (fixpos);
11365 t1 = bfd_getl64 (fixpos + 8);
11366 control_bits = t0 & 0x1f;
11367 insn[0] = (t0 >> 5) & 0x1ffffffffffLL;
11368 insn[1] = ((t0 >> 46) & 0x3ffff) | ((t1 & 0x7fffff) << 18);
11369 insn[2] = (t1 >> 23) & 0x1ffffffffffLL;
11370
11371 err = NULL;
11372 if (odesc - elf64_ia64_operands == IA64_OPND_IMMU64)
11373 {
11374 insn[1] = (value >> 22) & 0x1ffffffffffLL;
11375 insn[2] |= (((value & 0x7f) << 13)
11376 | (((value >> 7) & 0x1ff) << 27)
11377 | (((value >> 16) & 0x1f) << 22)
11378 | (((value >> 21) & 0x1) << 21)
11379 | (((value >> 63) & 0x1) << 36));
11380 }
11381 else if (odesc - elf64_ia64_operands == IA64_OPND_IMMU62)
11382 {
11383 if (value & ~0x3fffffffffffffffULL)
11384 err = _("integer operand out of range");
11385 insn[1] = (value >> 21) & 0x1ffffffffffLL;
11386 insn[2] |= (((value & 0xfffff) << 6) | (((value >> 20) & 0x1) << 36));
11387 }
11388 else if (odesc - elf64_ia64_operands == IA64_OPND_TGT64)
11389 {
11390 value >>= 4;
11391 insn[1] = ((value >> 20) & 0x7fffffffffLL) << 2;
11392 insn[2] |= ((((value >> 59) & 0x1) << 36)
11393 | (((value >> 0) & 0xfffff) << 13));
11394 }
11395 else
11396 err = (*odesc->insert) (odesc, value, insn + slot);
11397
11398 if (err)
11399 as_bad_where (fix->fx_file, fix->fx_line, "%s", err);
11400
11401 t0 = control_bits | (insn[0] << 5) | (insn[1] << 46);
11402 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
11403 number_to_chars_littleendian (fixpos + 0, t0, 8);
11404 number_to_chars_littleendian (fixpos + 8, t1, 8);
11405 }
11406
11407 /* Attempt to simplify or even eliminate a fixup. The return value is
11408 ignored; perhaps it was once meaningful, but now it is historical.
11409 To indicate that a fixup has been eliminated, set FIXP->FX_DONE.
11410
11411 If fixp->fx_addsy is non-NULL, we'll have to generate a reloc entry
11412 (if possible). */
11413
11414 void
11415 md_apply_fix (fixS *fix, valueT *valP, segT seg ATTRIBUTE_UNUSED)
11416 {
11417 char *fixpos;
11418 valueT value = *valP;
11419
11420 fixpos = fix->fx_frag->fr_literal + fix->fx_where;
11421
11422 if (fix->fx_pcrel)
11423 {
11424 switch (fix->fx_r_type)
11425 {
11426 case BFD_RELOC_IA64_PCREL21B: break;
11427 case BFD_RELOC_IA64_PCREL21BI: break;
11428 case BFD_RELOC_IA64_PCREL21F: break;
11429 case BFD_RELOC_IA64_PCREL21M: break;
11430 case BFD_RELOC_IA64_PCREL60B: break;
11431 case BFD_RELOC_IA64_PCREL22: break;
11432 case BFD_RELOC_IA64_PCREL64I: break;
11433 case BFD_RELOC_IA64_PCREL32MSB: break;
11434 case BFD_RELOC_IA64_PCREL32LSB: break;
11435 case BFD_RELOC_IA64_PCREL64MSB: break;
11436 case BFD_RELOC_IA64_PCREL64LSB: break;
11437 default:
11438 fix->fx_r_type = ia64_gen_real_reloc_type (pseudo_func[FUNC_PC_RELATIVE].u.sym,
11439 fix->fx_r_type);
11440 break;
11441 }
11442 }
11443 if (fix->fx_addsy)
11444 {
11445 switch ((unsigned) fix->fx_r_type)
11446 {
11447 case BFD_RELOC_UNUSED:
11448 /* This must be a TAG13 or TAG13b operand. There are no external
11449 relocs defined for them, so we must give an error. */
11450 as_bad_where (fix->fx_file, fix->fx_line,
11451 _("%s must have a constant value"),
11452 elf64_ia64_operands[fix->tc_fix_data.opnd].desc);
11453 fix->fx_done = 1;
11454 return;
11455
11456 case BFD_RELOC_IA64_TPREL14:
11457 case BFD_RELOC_IA64_TPREL22:
11458 case BFD_RELOC_IA64_TPREL64I:
11459 case BFD_RELOC_IA64_LTOFF_TPREL22:
11460 case BFD_RELOC_IA64_LTOFF_DTPMOD22:
11461 case BFD_RELOC_IA64_DTPREL14:
11462 case BFD_RELOC_IA64_DTPREL22:
11463 case BFD_RELOC_IA64_DTPREL64I:
11464 case BFD_RELOC_IA64_LTOFF_DTPREL22:
11465 S_SET_THREAD_LOCAL (fix->fx_addsy);
11466 break;
11467
11468 #ifdef TE_VMS
11469 case DUMMY_RELOC_IA64_SLOTCOUNT:
11470 as_bad_where (fix->fx_file, fix->fx_line,
11471 _("cannot resolve @slotcount parameter"));
11472 fix->fx_done = 1;
11473 return;
11474 #endif
11475
11476 default:
11477 break;
11478 }
11479 }
11480 else if (fix->tc_fix_data.opnd == IA64_OPND_NIL)
11481 {
11482 #ifdef TE_VMS
11483 if (fix->fx_r_type == DUMMY_RELOC_IA64_SLOTCOUNT)
11484 {
11485 /* For @slotcount, convert an addresses difference to a slots
11486 difference. */
11487 valueT v;
11488
11489 v = (value >> 4) * 3;
11490 switch (value & 0x0f)
11491 {
11492 case 0:
11493 case 1:
11494 case 2:
11495 v += value & 0x0f;
11496 break;
11497 case 0x0f:
11498 v += 2;
11499 break;
11500 case 0x0e:
11501 v += 1;
11502 break;
11503 default:
11504 as_bad (_("invalid @slotcount value"));
11505 }
11506 value = v;
11507 }
11508 #endif
11509
11510 if (fix->tc_fix_data.bigendian)
11511 number_to_chars_bigendian (fixpos, value, fix->fx_size);
11512 else
11513 number_to_chars_littleendian (fixpos, value, fix->fx_size);
11514 fix->fx_done = 1;
11515 }
11516 else
11517 {
11518 fix_insn (fix, elf64_ia64_operands + fix->tc_fix_data.opnd, value);
11519 fix->fx_done = 1;
11520 }
11521 }
11522
11523 /* Generate the BFD reloc to be stuck in the object file from the
11524 fixup used internally in the assembler. */
11525
11526 arelent *
11527 tc_gen_reloc (asection *sec ATTRIBUTE_UNUSED, fixS *fixp)
11528 {
11529 arelent *reloc;
11530
11531 reloc = XNEW (arelent);
11532 reloc->sym_ptr_ptr = XNEW (asymbol *);
11533 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11534 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
11535 reloc->addend = fixp->fx_offset;
11536 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
11537
11538 if (!reloc->howto)
11539 {
11540 as_bad_where (fixp->fx_file, fixp->fx_line,
11541 _("Cannot represent %s relocation in object file"),
11542 bfd_get_reloc_code_name (fixp->fx_r_type));
11543 free (reloc);
11544 return NULL;
11545 }
11546 return reloc;
11547 }
11548
11549 /* Turn a string in input_line_pointer into a floating point constant
11550 of type TYPE, and store the appropriate bytes in *LIT. The number
11551 of LITTLENUMS emitted is stored in *SIZE. An error message is
11552 returned, or NULL on OK. */
11553
11554 const char *
11555 md_atof (int type, char *lit, int *size)
11556 {
11557 LITTLENUM_TYPE words[MAX_LITTLENUMS];
11558 char *t;
11559 int prec;
11560
11561 switch (type)
11562 {
11563 /* IEEE floats */
11564 case 'f':
11565 case 'F':
11566 case 's':
11567 case 'S':
11568 prec = 2;
11569 break;
11570
11571 case 'd':
11572 case 'D':
11573 case 'r':
11574 case 'R':
11575 prec = 4;
11576 break;
11577
11578 case 'x':
11579 case 'X':
11580 case 'p':
11581 case 'P':
11582 prec = 5;
11583 break;
11584
11585 default:
11586 *size = 0;
11587 return _("Unrecognized or unsupported floating point constant");
11588 }
11589 t = atof_ieee (input_line_pointer, type, words);
11590 if (t)
11591 input_line_pointer = t;
11592
11593 (*ia64_float_to_chars) (lit, words, prec);
11594
11595 if (type == 'X')
11596 {
11597 /* It is 10 byte floating point with 6 byte padding. */
11598 memset (&lit [10], 0, 6);
11599 *size = 8 * sizeof (LITTLENUM_TYPE);
11600 }
11601 else
11602 *size = prec * sizeof (LITTLENUM_TYPE);
11603
11604 return NULL;
11605 }
11606
11607 /* Handle ia64 specific semantics of the align directive. */
11608
11609 void
11610 ia64_md_do_align (int n ATTRIBUTE_UNUSED,
11611 const char *fill ATTRIBUTE_UNUSED,
11612 int len ATTRIBUTE_UNUSED,
11613 int max ATTRIBUTE_UNUSED)
11614 {
11615 if (subseg_text_p (now_seg))
11616 ia64_flush_insns ();
11617 }
11618
11619 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
11620 of an rs_align_code fragment. */
11621
11622 void
11623 ia64_handle_align (fragS *fragp)
11624 {
11625 int bytes;
11626 char *p;
11627 const unsigned char *nop_type;
11628
11629 if (fragp->fr_type != rs_align_code)
11630 return;
11631
11632 /* Check if this frag has to end with a stop bit. */
11633 nop_type = fragp->tc_frag_data ? le_nop_stop : le_nop;
11634
11635 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
11636 p = fragp->fr_literal + fragp->fr_fix;
11637
11638 /* If no paddings are needed, we check if we need a stop bit. */
11639 if (!bytes && fragp->tc_frag_data)
11640 {
11641 if (fragp->fr_fix < 16)
11642 #if 1
11643 /* FIXME: It won't work with
11644 .align 16
11645 alloc r32=ar.pfs,1,2,4,0
11646 */
11647 ;
11648 #else
11649 as_bad_where (fragp->fr_file, fragp->fr_line,
11650 _("Can't add stop bit to mark end of instruction group"));
11651 #endif
11652 else
11653 /* Bundles are always in little-endian byte order. Make sure
11654 the previous bundle has the stop bit. */
11655 *(p - 16) |= 1;
11656 }
11657
11658 /* Make sure we are on a 16-byte boundary, in case someone has been
11659 putting data into a text section. */
11660 if (bytes & 15)
11661 {
11662 int fix = bytes & 15;
11663 memset (p, 0, fix);
11664 p += fix;
11665 bytes -= fix;
11666 fragp->fr_fix += fix;
11667 }
11668
11669 /* Instruction bundles are always little-endian. */
11670 memcpy (p, nop_type, 16);
11671 fragp->fr_var = 16;
11672 }
11673
11674 static void
11675 ia64_float_to_chars_bigendian (char *lit, LITTLENUM_TYPE *words,
11676 int prec)
11677 {
11678 while (prec--)
11679 {
11680 number_to_chars_bigendian (lit, (long) (*words++),
11681 sizeof (LITTLENUM_TYPE));
11682 lit += sizeof (LITTLENUM_TYPE);
11683 }
11684 }
11685
11686 static void
11687 ia64_float_to_chars_littleendian (char *lit, LITTLENUM_TYPE *words,
11688 int prec)
11689 {
11690 while (prec--)
11691 {
11692 number_to_chars_littleendian (lit, (long) (words[prec]),
11693 sizeof (LITTLENUM_TYPE));
11694 lit += sizeof (LITTLENUM_TYPE);
11695 }
11696 }
11697
11698 void
11699 ia64_elf_section_change_hook (void)
11700 {
11701 if (elf_section_type (now_seg) == SHT_IA_64_UNWIND
11702 && elf_linked_to_section (now_seg) == NULL)
11703 elf_linked_to_section (now_seg) = text_section;
11704 dot_byteorder (-1);
11705 }
11706
11707 /* Check if a label should be made global. */
11708 void
11709 ia64_check_label (symbolS *label)
11710 {
11711 if (*input_line_pointer == ':')
11712 {
11713 S_SET_EXTERNAL (label);
11714 input_line_pointer++;
11715 }
11716 }
11717
11718 /* Used to remember where .alias and .secalias directives are seen. We
11719 will rename symbol and section names when we are about to output
11720 the relocatable file. */
11721 struct alias
11722 {
11723 const char *file; /* The file where the directive is seen. */
11724 unsigned int line; /* The line number the directive is at. */
11725 const char *name; /* The original name of the symbol. */
11726 };
11727
11728 /* Called for .alias and .secalias directives. If SECTION is 1, it is
11729 .secalias. Otherwise, it is .alias. */
11730 static void
11731 dot_alias (int section)
11732 {
11733 char *name, *alias;
11734 char delim;
11735 char *end_name;
11736 int len;
11737 struct alias *h;
11738 const char *a;
11739 htab_t ahash, nhash;
11740 const char *kind;
11741
11742 delim = get_symbol_name (&name);
11743 end_name = input_line_pointer;
11744 *end_name = delim;
11745
11746 if (name == end_name)
11747 {
11748 as_bad (_("expected symbol name"));
11749 ignore_rest_of_line ();
11750 return;
11751 }
11752
11753 SKIP_WHITESPACE_AFTER_NAME ();
11754
11755 if (*input_line_pointer != ',')
11756 {
11757 *end_name = 0;
11758 as_bad (_("expected comma after \"%s\""), name);
11759 *end_name = delim;
11760 ignore_rest_of_line ();
11761 return;
11762 }
11763
11764 input_line_pointer++;
11765 *end_name = 0;
11766 ia64_canonicalize_symbol_name (name);
11767
11768 /* We call demand_copy_C_string to check if alias string is valid.
11769 There should be a closing `"' and no `\0' in the string. */
11770 alias = demand_copy_C_string (&len);
11771 if (alias == NULL)
11772 {
11773 ignore_rest_of_line ();
11774 return;
11775 }
11776
11777 /* Make a copy of name string. */
11778 len = strlen (name) + 1;
11779 obstack_grow (&notes, name, len);
11780 name = obstack_finish (&notes);
11781
11782 if (section)
11783 {
11784 kind = "section";
11785 ahash = secalias_hash;
11786 nhash = secalias_name_hash;
11787 }
11788 else
11789 {
11790 kind = "symbol";
11791 ahash = alias_hash;
11792 nhash = alias_name_hash;
11793 }
11794
11795 /* Check if alias has been used before. */
11796
11797 h = (struct alias *) str_hash_find (ahash, alias);
11798 if (h)
11799 {
11800 if (strcmp (h->name, name))
11801 as_bad (_("`%s' is already the alias of %s `%s'"),
11802 alias, kind, h->name);
11803 obstack_free (&notes, name);
11804 obstack_free (&notes, alias);
11805 goto out;
11806 }
11807
11808 /* Check if name already has an alias. */
11809 a = (const char *) str_hash_find (nhash, name);
11810 if (a)
11811 {
11812 if (strcmp (a, alias))
11813 as_bad (_("%s `%s' already has an alias `%s'"), kind, name, a);
11814 obstack_free (&notes, name);
11815 obstack_free (&notes, alias);
11816 goto out;
11817 }
11818
11819 h = XNEW (struct alias);
11820 h->file = as_where (&h->line);
11821 h->name = name;
11822
11823 str_hash_insert (ahash, alias, h, 0);
11824 str_hash_insert (nhash, name, alias, 0);
11825
11826 out:
11827 demand_empty_rest_of_line ();
11828 }
11829
11830 /* It renames the original symbol name to its alias. */
11831 static int
11832 do_alias (void **slot, void *arg ATTRIBUTE_UNUSED)
11833 {
11834 string_tuple_t *tuple = *((string_tuple_t **) slot);
11835 struct alias *h = (struct alias *) tuple->value;
11836 symbolS *sym = symbol_find (h->name);
11837
11838 if (sym == NULL)
11839 {
11840 #ifdef TE_VMS
11841 /* Uses .alias extensively to alias CRTL functions to same with
11842 decc$ prefix. Sometimes function gets optimized away and a
11843 warning results, which should be suppressed. */
11844 if (strncmp (tuple->key, "decc$", 5) != 0)
11845 #endif
11846 as_warn_where (h->file, h->line,
11847 _("symbol `%s' aliased to `%s' is not used"),
11848 h->name, tuple->key);
11849 }
11850 else
11851 S_SET_NAME (sym, (char *) tuple->key);
11852
11853 return 1;
11854 }
11855
11856 /* Called from write_object_file. */
11857 void
11858 ia64_adjust_symtab (void)
11859 {
11860 htab_traverse (alias_hash, do_alias, NULL);
11861 }
11862
11863 /* It renames the original section name to its alias. */
11864 static int
11865 do_secalias (void **slot, void *arg ATTRIBUTE_UNUSED)
11866 {
11867 string_tuple_t *tuple = *((string_tuple_t **) slot);
11868 struct alias *h = (struct alias *) tuple->value;
11869 segT sec = bfd_get_section_by_name (stdoutput, h->name);
11870
11871 if (sec == NULL)
11872 as_warn_where (h->file, h->line,
11873 _("section `%s' aliased to `%s' is not used"),
11874 h->name, tuple->key);
11875 else
11876 sec->name = tuple->key;
11877
11878 return 1;
11879 }
11880
11881 /* Called from write_object_file. */
11882 void
11883 ia64_frob_file (void)
11884 {
11885 htab_traverse (secalias_hash, do_secalias, NULL);
11886 }
11887
11888 #ifdef TE_VMS
11889 #define NT_VMS_MHD 1
11890 #define NT_VMS_LNM 2
11891
11892 /* Integrity VMS 8.x identifies it's ELF modules with a standard ELF
11893 .note section. */
11894
11895 /* Manufacture a VMS-like time string. */
11896 static void
11897 get_vms_time (char *Now)
11898 {
11899 char *pnt;
11900 time_t timeb;
11901
11902 time (&timeb);
11903 pnt = ctime (&timeb);
11904 pnt[3] = 0;
11905 pnt[7] = 0;
11906 pnt[10] = 0;
11907 pnt[16] = 0;
11908 pnt[24] = 0;
11909 sprintf (Now, "%2s-%3s-%s %s", pnt + 8, pnt + 4, pnt + 20, pnt + 11);
11910 }
11911
11912 void
11913 ia64_vms_note (void)
11914 {
11915 char *p;
11916 asection *seg = now_seg;
11917 subsegT subseg = now_subseg;
11918 asection *secp = NULL;
11919 char *bname;
11920 char buf [256];
11921 symbolS *sym;
11922
11923 /* Create the .note section. */
11924
11925 secp = subseg_new (".note", 0);
11926 bfd_set_section_flags (secp, SEC_HAS_CONTENTS | SEC_READONLY);
11927
11928 /* Module header note (MHD). */
11929 bname = xstrdup (lbasename (out_file_name));
11930 if ((p = strrchr (bname, '.')))
11931 *p = '\0';
11932
11933 /* VMS note header is 24 bytes long. */
11934 p = frag_more (8 + 8 + 8);
11935 number_to_chars_littleendian (p + 0, 8, 8);
11936 number_to_chars_littleendian (p + 8, 40 + strlen (bname), 8);
11937 number_to_chars_littleendian (p + 16, NT_VMS_MHD, 8);
11938
11939 p = frag_more (8);
11940 strcpy (p, "IPF/VMS");
11941
11942 p = frag_more (17 + 17 + strlen (bname) + 1 + 5);
11943 get_vms_time (p);
11944 strcpy (p + 17, "24-FEB-2005 15:00");
11945 p += 17 + 17;
11946 strcpy (p, bname);
11947 p += strlen (bname) + 1;
11948 free (bname);
11949 strcpy (p, "V1.0");
11950
11951 frag_align (3, 0, 0);
11952
11953 /* Language processor name note. */
11954 sprintf (buf, "GNU assembler version %s (%s) using BFD version %s",
11955 VERSION, TARGET_ALIAS, BFD_VERSION_STRING);
11956
11957 p = frag_more (8 + 8 + 8);
11958 number_to_chars_littleendian (p + 0, 8, 8);
11959 number_to_chars_littleendian (p + 8, strlen (buf) + 1, 8);
11960 number_to_chars_littleendian (p + 16, NT_VMS_LNM, 8);
11961
11962 p = frag_more (8);
11963 strcpy (p, "IPF/VMS");
11964
11965 p = frag_more (strlen (buf) + 1);
11966 strcpy (p, buf);
11967
11968 frag_align (3, 0, 0);
11969
11970 secp = subseg_new (".vms_display_name_info", 0);
11971 bfd_set_section_flags (secp, SEC_HAS_CONTENTS | SEC_READONLY);
11972
11973 /* This symbol should be passed on the command line and be variable
11974 according to language. */
11975 sym = symbol_new ("__gnat_vms_display_name@gnat_demangler_rtl",
11976 absolute_section, &zero_address_frag, 0);
11977 symbol_table_insert (sym);
11978 symbol_get_bfdsym (sym)->flags |= BSF_DEBUGGING | BSF_DYNAMIC;
11979
11980 p = frag_more (4);
11981 /* Format 3 of VMS demangler Spec. */
11982 number_to_chars_littleendian (p, 3, 4);
11983
11984 p = frag_more (4);
11985 /* Place holder for symbol table index of above symbol. */
11986 number_to_chars_littleendian (p, -1, 4);
11987
11988 frag_align (3, 0, 0);
11989
11990 /* We probably can't restore the current segment, for there likely
11991 isn't one yet... */
11992 if (seg && subseg)
11993 subseg_set (seg, subseg);
11994 }
11995
11996 #endif /* TE_VMS */