]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-mips.c
Remove use of alloca.
[thirdparty/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
24
25 #include "as.h"
26 #include "config.h"
27 #include "subsegs.h"
28 #include "safe-ctype.h"
29
30 #include "opcode/mips.h"
31 #include "itbl-ops.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
34
35 /* Check assumptions made in this file. */
36 typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37 typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
39 #ifdef DEBUG
40 #define DBG(x) printf x
41 #else
42 #define DBG(x)
43 #endif
44
45 #define streq(a, b) (strcmp (a, b) == 0)
46
47 #define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
50 /* Clean up namespace so we can include obj-elf.h too. */
51 static int mips_output_flavor (void);
52 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
53 #undef OBJ_PROCESS_STAB
54 #undef OUTPUT_FLAVOR
55 #undef S_GET_ALIGN
56 #undef S_GET_SIZE
57 #undef S_SET_ALIGN
58 #undef S_SET_SIZE
59 #undef obj_frob_file
60 #undef obj_frob_file_after_relocs
61 #undef obj_frob_symbol
62 #undef obj_pop_insert
63 #undef obj_sec_sym_ok_for_reloc
64 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66 #include "obj-elf.h"
67 /* Fix any of them that we actually care about. */
68 #undef OUTPUT_FLAVOR
69 #define OUTPUT_FLAVOR mips_output_flavor()
70
71 #include "elf/mips.h"
72
73 #ifndef ECOFF_DEBUGGING
74 #define NO_ECOFF_DEBUGGING
75 #define ECOFF_DEBUGGING 0
76 #endif
77
78 int mips_flag_mdebug = -1;
79
80 /* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83 #ifdef TE_IRIX
84 int mips_flag_pdr = FALSE;
85 #else
86 int mips_flag_pdr = TRUE;
87 #endif
88
89 #include "ecoff.h"
90
91 static char *mips_regmask_frag;
92 static char *mips_flags_frag;
93
94 #define ZERO 0
95 #define ATREG 1
96 #define S0 16
97 #define S7 23
98 #define TREG 24
99 #define PIC_CALL_REG 25
100 #define KT0 26
101 #define KT1 27
102 #define GP 28
103 #define SP 29
104 #define FP 30
105 #define RA 31
106
107 #define ILLEGAL_REG (32)
108
109 #define AT mips_opts.at
110
111 extern int target_big_endian;
112
113 /* The name of the readonly data section. */
114 #define RDATA_SECTION_NAME ".rodata"
115
116 /* Ways in which an instruction can be "appended" to the output. */
117 enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129 };
130
131 /* Information about an instruction, including its format, operands
132 and fixups. */
133 struct mips_cl_insn
134 {
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
155
156 /* True if this instruction occurred in a .set noreorder block. */
157 unsigned int noreorder_p : 1;
158
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
168 };
169
170 /* The ABI to use. */
171 enum mips_abi_level
172 {
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179 };
180
181 /* MIPS ABI we are using for this output file. */
182 static enum mips_abi_level mips_abi = NO_ABI;
183
184 /* Whether or not we have code that can call pic code. */
185 int mips_abicalls = FALSE;
186
187 /* Whether or not we have code which can be put into a shared
188 library. */
189 static bfd_boolean mips_in_shared = TRUE;
190
191 /* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
195 struct mips_set_options
196 {
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
245 int gp;
246 int fp;
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
265 };
266
267 /* Specifies whether module level options have been checked yet. */
268 static bfd_boolean file_mips_opts_checked = FALSE;
269
270 /* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274 static int mips_nan2008 = -1;
275
276 /* This is the struct we use to hold the module level set of options.
277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
278 fp fields to -1 to indicate that they have not been initialized. */
279
280 static struct mips_set_options file_mips_opts =
281 {
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
287 };
288
289 /* This is similar to file_mips_opts, but for the current set of options. */
290
291 static struct mips_set_options mips_opts =
292 {
293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
298 };
299
300 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
301 static unsigned int file_ase_explicit;
302
303 /* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306 unsigned long mips_gprmask;
307 unsigned long mips_cprmask[4];
308
309 /* True if any MIPS16 code was produced. */
310 static int file_ase_mips16;
311
312 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
316 || mips_opts.isa == ISA_MIPS64 \
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
320
321 /* True if any microMIPS code was produced. */
322 static int file_ase_micromips;
323
324 /* True if we want to create R_MIPS_JALR for jalr $25. */
325 #ifdef TE_IRIX
326 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
327 #else
328 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331 #define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
334 #endif
335
336 /* The argument of the -march= flag. The architecture we are assembling. */
337 static const char *mips_arch_string;
338
339 /* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341 static int mips_tune = CPU_UNKNOWN;
342 static const char *mips_tune_string;
343
344 /* True when generating 32-bit code for a 64-bit processor. */
345 static int mips_32bitmode = 0;
346
347 /* True if the given ABI requires 32-bit registers. */
348 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350 /* Likewise 64-bit registers. */
351 #define ABI_NEEDS_64BIT_REGS(ABI) \
352 ((ABI) == N32_ABI \
353 || (ABI) == N64_ABI \
354 || (ABI) == O64_ABI)
355
356 #define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
360 /* Return true if ISA supports 64 bit wide gp registers. */
361 #define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
370
371 /* Return true if ISA supports 64 bit wide float registers. */
372 #define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
379 || (ISA) == ISA_MIPS32R6 \
380 || (ISA) == ISA_MIPS64 \
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
385
386 /* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
388 #define ISA_HAS_DROR(ISA) \
389 ((ISA) == ISA_MIPS64R2 \
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
392 || (ISA) == ISA_MIPS64R6 \
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
396
397 /* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
399 #define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
403 || (ISA) == ISA_MIPS32R6 \
404 || (ISA) == ISA_MIPS64R2 \
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
407 || (ISA) == ISA_MIPS64R6 \
408 || (mips_opts.ase & ASE_SMARTMIPS) \
409 || mips_opts.micromips \
410 )
411
412 /* Return true if ISA supports single-precision floats in odd registers. */
413 #define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
418 || (ISA) == ISA_MIPS32R6 \
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
423 || (ISA) == ISA_MIPS64R6 \
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
426
427 /* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429 #define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
438
439 /* Return true if ISA supports legacy NAN. */
440 #define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
454
455 #define GPR_SIZE \
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
457 ? 32 \
458 : mips_opts.gp)
459
460 #define FPR_SIZE \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
462 ? 32 \
463 : mips_opts.fp)
464
465 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
466
467 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
468
469 /* True if relocations are stored in-place. */
470 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
471
472 /* The ABI-derived address size. */
473 #define HAVE_64BIT_ADDRESSES \
474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
475 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
476
477 /* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479 #define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
482
483 /* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
486 #define ADDRESS_ADD_INSN \
487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
488
489 #define ADDRESS_ADDI_INSN \
490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
491
492 #define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
494
495 #define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
497
498 /* Return true if the given CPU supports the MIPS16 ASE. */
499 #define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
502
503 /* Return true if the given CPU supports the microMIPS ASE. */
504 #define CPU_HAS_MICROMIPS(cpu) 0
505
506 /* True if CPU has a dror instruction. */
507 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
508
509 /* True if CPU has a ror instruction. */
510 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
511
512 /* True if CPU is in the Octeon family */
513 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
515
516 /* True if CPU has seq/sne and seqi/snei instructions. */
517 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
518
519 /* True, if CPU has support for ldc1 and sdc1. */
520 #define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
522
523 /* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
525
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535 #define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
540 || mips_opts.isa == ISA_MIPS32R6 \
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
545 || mips_opts.isa == ISA_MIPS64R6 \
546 || mips_opts.arch == CPU_R4010 \
547 || mips_opts.arch == CPU_R5900 \
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
552 || mips_opts.arch == CPU_RM7000 \
553 || mips_opts.arch == CPU_VR5500 \
554 || mips_opts.micromips \
555 )
556
557 /* Whether the processor uses hardware interlocks to protect reads
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
561 level I and microMIPS mode instructions are always interlocked. */
562 #define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
565 || mips_opts.arch == CPU_R5900 \
566 || mips_opts.micromips \
567 )
568
569 /* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
575 levels I, II, and III and microMIPS mode instructions are always
576 interlocked. */
577 /* Itbl support may require additional care here. */
578 #define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
583 || mips_opts.micromips \
584 )
585
586 /* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592 #define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
595 )
596
597 /* Is this a mfhi or mflo instruction? */
598 #define MF_HILO_INSN(PINFO) \
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
600
601 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604 #define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
606
607 /* The minimum and maximum signed values that can be stored in a GPR. */
608 #define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
609 #define GPR_SMIN (-GPR_SMAX - 1)
610
611 /* MIPS PIC level. */
612
613 enum mips_pic_level mips_pic;
614
615 /* 1 if we should generate 32 bit offsets from the $gp register in
616 SVR4_PIC mode. Currently has no meaning in other modes. */
617 static int mips_big_got = 0;
618
619 /* 1 if trap instructions should used for overflow rather than break
620 instructions. */
621 static int mips_trap = 0;
622
623 /* 1 if double width floating point constants should not be constructed
624 by assembling two single width halves into two single width floating
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
627 in the status register, and the setting of this bit cannot be determined
628 automatically at assemble time. */
629 static int mips_disable_float_construction;
630
631 /* Non-zero if any .set noreorder directives were used. */
632
633 static int mips_any_noreorder;
634
635 /* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637 static int mips_7000_hilo_fix;
638
639 /* The size of objects in the small data section. */
640 static unsigned int g_switch_value = 8;
641 /* Whether the -G option was used. */
642 static int g_switch_seen = 0;
643
644 #define N_RMASK 0xc4
645 #define N_VFP 0xd4
646
647 /* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
650 better.
651
652 This function can only provide a guess, but it seems to work for
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
655 delay slot.
656
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
659 static int nopic_need_relax (symbolS *, int);
660
661 /* handle of the OPCODE hash table */
662 static struct hash_control *op_hash = NULL;
663
664 /* The opcode hash table we use for the mips16. */
665 static struct hash_control *mips16_op_hash = NULL;
666
667 /* The opcode hash table we use for the microMIPS ASE. */
668 static struct hash_control *micromips_op_hash = NULL;
669
670 /* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672 const char comment_chars[] = "#";
673
674 /* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677 /* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
679 #NO_APP at the beginning of its output. */
680 /* Also note that C style comments are always supported. */
681 const char line_comment_chars[] = "#";
682
683 /* This array holds machine specific line separator characters. */
684 const char line_separator_chars[] = ";";
685
686 /* Chars that can be used to separate mant from exp in floating point nums */
687 const char EXP_CHARS[] = "eE";
688
689 /* Chars that mean this number is a floating point constant */
690 /* As in 0f12.456 */
691 /* or 0d1.2345e12 */
692 const char FLT_CHARS[] = "rRsSfFdDxXpP";
693
694 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
697 */
698
699 /* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701 enum mips_insn_error_format {
702 ERR_FMT_PLAIN,
703 ERR_FMT_I,
704 ERR_FMT_SS,
705 };
706
707 /* Information about an error that was found while assembling the current
708 instruction. */
709 struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
719
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
722 a whole. */
723 int min_argnum;
724
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
727 const char *msg;
728 union {
729 int i;
730 const char *ss[2];
731 } u;
732 };
733
734 /* The error that should be reported for the current instruction. */
735 static struct mips_insn_error insn_error;
736
737 static int auto_align = 1;
738
739 /* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
742 variable. */
743 static offsetT mips_cprestore_offset = -1;
744
745 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
746 more optimizations, it can use a register value instead of a memory-saved
747 offset and even an other register than $gp as global pointer. */
748 static offsetT mips_cpreturn_offset = -1;
749 static int mips_cpreturn_register = -1;
750 static int mips_gp_register = GP;
751 static int mips_gprel_offset = 0;
752
753 /* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755 static int mips_cprestore_valid = 0;
756
757 /* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759 static int mips_frame_reg = SP;
760
761 /* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763 static int mips_frame_reg_valid = 0;
764
765 /* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
767
768 /* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
771 insert NOPs. */
772 static int mips_optimize = 2;
773
774 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776 static int mips_debug = 0;
777
778 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779 #define MAX_VR4130_NOPS 4
780
781 /* The maximum number of NOPs needed to fill delay slots. */
782 #define MAX_DELAY_NOPS 2
783
784 /* The maximum number of NOPs needed for any purpose. */
785 #define MAX_NOPS 4
786
787 /* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792 static struct mips_cl_insn history[1 + MAX_NOPS];
793
794 /* Arrays of operands for each instruction. */
795 #define MAX_OPERANDS 6
796 struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
798 };
799 static struct mips_operand_array *mips_operands;
800 static struct mips_operand_array *mips16_operands;
801 static struct mips_operand_array *micromips_operands;
802
803 /* Nop instructions used by emit_nop. */
804 static struct mips_cl_insn nop_insn;
805 static struct mips_cl_insn mips16_nop_insn;
806 static struct mips_cl_insn micromips_nop16_insn;
807 static struct mips_cl_insn micromips_nop32_insn;
808
809 /* The appropriate nop for the current mode. */
810 #define NOP_INSN (mips_opts.mips16 \
811 ? &mips16_nop_insn \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? &micromips_nop32_insn \
815 : &micromips_nop16_insn) \
816 : &nop_insn))
817
818 /* The size of NOP_INSN in bytes. */
819 #define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
821 ? 2 : 4)
822
823 /* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
826 decreased. */
827 static fragS *prev_nop_frag;
828
829 /* The number of nop instructions we created in prev_nop_frag. */
830 static int prev_nop_frag_holds;
831
832 /* The number of nop instructions that we know we need in
833 prev_nop_frag. */
834 static int prev_nop_frag_required;
835
836 /* The number of instructions we've seen since prev_nop_frag. */
837 static int prev_nop_frag_since;
838
839 /* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
845
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
848 corresponding LO relocation. */
849
850 struct mips_hi_fixup
851 {
852 /* Next HI fixup. */
853 struct mips_hi_fixup *next;
854 /* This fixup. */
855 fixS *fixp;
856 /* The section this fixup is in. */
857 segT seg;
858 };
859
860 /* The list of unmatched HI relocs. */
861
862 static struct mips_hi_fixup *mips_hi_fixup_list;
863
864 /* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
866
867 static fragS *prev_reloc_op_frag;
868
869 /* Map mips16 register numbers to normal MIPS register numbers. */
870
871 static const unsigned int mips16_to_32_reg_map[] =
872 {
873 16, 17, 2, 3, 4, 5, 6, 7
874 };
875
876 /* Map microMIPS register numbers to normal MIPS register numbers. */
877
878 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
879
880 /* The microMIPS registers with type h. */
881 static const unsigned int micromips_to_32_reg_h_map1[] =
882 {
883 5, 5, 6, 4, 4, 4, 4, 4
884 };
885 static const unsigned int micromips_to_32_reg_h_map2[] =
886 {
887 6, 7, 7, 21, 22, 5, 6, 7
888 };
889
890 /* The microMIPS registers with type m. */
891 static const unsigned int micromips_to_32_reg_m_map[] =
892 {
893 0, 17, 2, 3, 16, 18, 19, 20
894 };
895
896 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
897
898 /* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
900 enum fix_vr4120_class
901 {
902 FIX_VR4120_MACC,
903 FIX_VR4120_DMACC,
904 FIX_VR4120_MULT,
905 FIX_VR4120_DMULT,
906 FIX_VR4120_DIV,
907 FIX_VR4120_MTHILO,
908 NUM_FIX_VR4120_CLASSES
909 };
910
911 /* ...likewise -mfix-loongson2f-jump. */
912 static bfd_boolean mips_fix_loongson2f_jump;
913
914 /* ...likewise -mfix-loongson2f-nop. */
915 static bfd_boolean mips_fix_loongson2f_nop;
916
917 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918 static bfd_boolean mips_fix_loongson2f;
919
920 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
924
925 /* True if -mfix-vr4120 is in force. */
926 static int mips_fix_vr4120;
927
928 /* ...likewise -mfix-vr4130. */
929 static int mips_fix_vr4130;
930
931 /* ...likewise -mfix-24k. */
932 static int mips_fix_24k;
933
934 /* ...likewise -mfix-rm7000 */
935 static int mips_fix_rm7000;
936
937 /* ...likewise -mfix-cn63xxp1 */
938 static bfd_boolean mips_fix_cn63xxp1;
939
940 /* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
944
945 static int mips_relax_branch;
946 \f
947 /* The expansion of many macros depends on the type of symbol that
948 they refer to. For example, when generating position-dependent code,
949 a macro that refers to a symbol may have two different expansions,
950 one which uses GP-relative addresses and one which uses absolute
951 addresses. When generating SVR4-style PIC, a macro may have
952 different expansions for local and global symbols.
953
954 We handle these situations by generating both sequences and putting
955 them in variant frags. In position-dependent code, the first sequence
956 will be the GP-relative one and the second sequence will be the
957 absolute one. In SVR4 PIC, the first sequence will be for global
958 symbols and the second will be for local symbols.
959
960 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
961 SECOND are the lengths of the two sequences in bytes. These fields
962 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
963 the subtype has the following flags:
964
965 RELAX_USE_SECOND
966 Set if it has been decided that we should use the second
967 sequence instead of the first.
968
969 RELAX_SECOND_LONGER
970 Set in the first variant frag if the macro's second implementation
971 is longer than its first. This refers to the macro as a whole,
972 not an individual relaxation.
973
974 RELAX_NOMACRO
975 Set in the first variant frag if the macro appeared in a .set nomacro
976 block and if one alternative requires a warning but the other does not.
977
978 RELAX_DELAY_SLOT
979 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
980 delay slot.
981
982 RELAX_DELAY_SLOT_16BIT
983 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
984 16-bit instruction.
985
986 RELAX_DELAY_SLOT_SIZE_FIRST
987 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
988 the macro is of the wrong size for the branch delay slot.
989
990 RELAX_DELAY_SLOT_SIZE_SECOND
991 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
992 the macro is of the wrong size for the branch delay slot.
993
994 The frag's "opcode" points to the first fixup for relaxable code.
995
996 Relaxable macros are generated using a sequence such as:
997
998 relax_start (SYMBOL);
999 ... generate first expansion ...
1000 relax_switch ();
1001 ... generate second expansion ...
1002 relax_end ();
1003
1004 The code and fixups for the unwanted alternative are discarded
1005 by md_convert_frag. */
1006 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
1007
1008 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1009 #define RELAX_SECOND(X) ((X) & 0xff)
1010 #define RELAX_USE_SECOND 0x10000
1011 #define RELAX_SECOND_LONGER 0x20000
1012 #define RELAX_NOMACRO 0x40000
1013 #define RELAX_DELAY_SLOT 0x80000
1014 #define RELAX_DELAY_SLOT_16BIT 0x100000
1015 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1016 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
1017
1018 /* Branch without likely bit. If label is out of range, we turn:
1019
1020 beq reg1, reg2, label
1021 delay slot
1022
1023 into
1024
1025 bne reg1, reg2, 0f
1026 nop
1027 j label
1028 0: delay slot
1029
1030 with the following opcode replacements:
1031
1032 beq <-> bne
1033 blez <-> bgtz
1034 bltz <-> bgez
1035 bc1f <-> bc1t
1036
1037 bltzal <-> bgezal (with jal label instead of j label)
1038
1039 Even though keeping the delay slot instruction in the delay slot of
1040 the branch would be more efficient, it would be very tricky to do
1041 correctly, because we'd have to introduce a variable frag *after*
1042 the delay slot instruction, and expand that instead. Let's do it
1043 the easy way for now, even if the branch-not-taken case now costs
1044 one additional instruction. Out-of-range branches are not supposed
1045 to be common, anyway.
1046
1047 Branch likely. If label is out of range, we turn:
1048
1049 beql reg1, reg2, label
1050 delay slot (annulled if branch not taken)
1051
1052 into
1053
1054 beql reg1, reg2, 1f
1055 nop
1056 beql $0, $0, 2f
1057 nop
1058 1: j[al] label
1059 delay slot (executed only if branch taken)
1060 2:
1061
1062 It would be possible to generate a shorter sequence by losing the
1063 likely bit, generating something like:
1064
1065 bne reg1, reg2, 0f
1066 nop
1067 j[al] label
1068 delay slot (executed only if branch taken)
1069 0:
1070
1071 beql -> bne
1072 bnel -> beq
1073 blezl -> bgtz
1074 bgtzl -> blez
1075 bltzl -> bgez
1076 bgezl -> bltz
1077 bc1fl -> bc1t
1078 bc1tl -> bc1f
1079
1080 bltzall -> bgezal (with jal label instead of j label)
1081 bgezall -> bltzal (ditto)
1082
1083
1084 but it's not clear that it would actually improve performance. */
1085 #define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1086 ((relax_substateT) \
1087 (0xc0000000 \
1088 | ((at) & 0x1f) \
1089 | ((toofar) ? 0x20 : 0) \
1090 | ((link) ? 0x40 : 0) \
1091 | ((likely) ? 0x80 : 0) \
1092 | ((uncond) ? 0x100 : 0)))
1093 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1094 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1095 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1096 #define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1097 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1098 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1099
1100 /* For mips16 code, we use an entirely different form of relaxation.
1101 mips16 supports two versions of most instructions which take
1102 immediate values: a small one which takes some small value, and a
1103 larger one which takes a 16 bit value. Since branches also follow
1104 this pattern, relaxing these values is required.
1105
1106 We can assemble both mips16 and normal MIPS code in a single
1107 object. Therefore, we need to support this type of relaxation at
1108 the same time that we support the relaxation described above. We
1109 use the high bit of the subtype field to distinguish these cases.
1110
1111 The information we store for this type of relaxation is the
1112 argument code found in the opcode file for this relocation, whether
1113 the user explicitly requested a small or extended form, and whether
1114 the relocation is in a jump or jal delay slot. That tells us the
1115 size of the value, and how it should be stored. We also store
1116 whether the fragment is considered to be extended or not. We also
1117 store whether this is known to be a branch to a different section,
1118 whether we have tried to relax this frag yet, and whether we have
1119 ever extended a PC relative fragment because of a shift count. */
1120 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1121 (0x80000000 \
1122 | ((type) & 0xff) \
1123 | ((small) ? 0x100 : 0) \
1124 | ((ext) ? 0x200 : 0) \
1125 | ((dslot) ? 0x400 : 0) \
1126 | ((jal_dslot) ? 0x800 : 0))
1127 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1128 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1129 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1130 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1131 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1132 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1133 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1134 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1135 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1136 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1137 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1138 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
1139
1140 /* For microMIPS code, we use relaxation similar to one we use for
1141 MIPS16 code. Some instructions that take immediate values support
1142 two encodings: a small one which takes some small value, and a
1143 larger one which takes a 16 bit value. As some branches also follow
1144 this pattern, relaxing these values is required.
1145
1146 We can assemble both microMIPS and normal MIPS code in a single
1147 object. Therefore, we need to support this type of relaxation at
1148 the same time that we support the relaxation described above. We
1149 use one of the high bits of the subtype field to distinguish these
1150 cases.
1151
1152 The information we store for this type of relaxation is the argument
1153 code found in the opcode file for this relocation, the register
1154 selected as the assembler temporary, whether the branch is
1155 unconditional, whether it is compact, whether it stores the link
1156 address implicitly in $ra, whether relaxation of out-of-range 32-bit
1157 branches to a sequence of instructions is enabled, and whether the
1158 displacement of a branch is too large to fit as an immediate argument
1159 of a 16-bit and a 32-bit branch, respectively. */
1160 #define RELAX_MICROMIPS_ENCODE(type, at, uncond, compact, link, \
1161 relax32, toofar16, toofar32) \
1162 (0x40000000 \
1163 | ((type) & 0xff) \
1164 | (((at) & 0x1f) << 8) \
1165 | ((uncond) ? 0x2000 : 0) \
1166 | ((compact) ? 0x4000 : 0) \
1167 | ((link) ? 0x8000 : 0) \
1168 | ((relax32) ? 0x10000 : 0) \
1169 | ((toofar16) ? 0x20000 : 0) \
1170 | ((toofar32) ? 0x40000 : 0))
1171 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1172 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1173 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1174 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x2000) != 0)
1175 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x4000) != 0)
1176 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x8000) != 0)
1177 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x10000) != 0)
1178
1179 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x20000) != 0)
1180 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x20000)
1181 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x20000)
1182 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x40000) != 0)
1183 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x40000)
1184 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x40000)
1185
1186 /* Sign-extend 16-bit value X. */
1187 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1188
1189 /* Is the given value a sign-extended 32-bit value? */
1190 #define IS_SEXT_32BIT_NUM(x) \
1191 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1192 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1193
1194 /* Is the given value a sign-extended 16-bit value? */
1195 #define IS_SEXT_16BIT_NUM(x) \
1196 (((x) &~ (offsetT) 0x7fff) == 0 \
1197 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1198
1199 /* Is the given value a sign-extended 12-bit value? */
1200 #define IS_SEXT_12BIT_NUM(x) \
1201 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1202
1203 /* Is the given value a sign-extended 9-bit value? */
1204 #define IS_SEXT_9BIT_NUM(x) \
1205 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1206
1207 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1208 #define IS_ZEXT_32BIT_NUM(x) \
1209 (((x) &~ (offsetT) 0xffffffff) == 0 \
1210 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1211
1212 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1213 SHIFT places. */
1214 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1215 (((STRUCT) >> (SHIFT)) & (MASK))
1216
1217 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1218 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1219 (!(MICROMIPS) \
1220 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1221 : EXTRACT_BITS ((INSN).insn_opcode, \
1222 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1223 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1224 EXTRACT_BITS ((INSN).insn_opcode, \
1225 MIPS16OP_MASK_##FIELD, \
1226 MIPS16OP_SH_##FIELD)
1227
1228 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1229 #define MIPS16_EXTEND (0xf000U << 16)
1230 \f
1231 /* Whether or not we are emitting a branch-likely macro. */
1232 static bfd_boolean emit_branch_likely_macro = FALSE;
1233
1234 /* Global variables used when generating relaxable macros. See the
1235 comment above RELAX_ENCODE for more details about how relaxation
1236 is used. */
1237 static struct {
1238 /* 0 if we're not emitting a relaxable macro.
1239 1 if we're emitting the first of the two relaxation alternatives.
1240 2 if we're emitting the second alternative. */
1241 int sequence;
1242
1243 /* The first relaxable fixup in the current frag. (In other words,
1244 the first fixup that refers to relaxable code.) */
1245 fixS *first_fixup;
1246
1247 /* sizes[0] says how many bytes of the first alternative are stored in
1248 the current frag. Likewise sizes[1] for the second alternative. */
1249 unsigned int sizes[2];
1250
1251 /* The symbol on which the choice of sequence depends. */
1252 symbolS *symbol;
1253 } mips_relax;
1254 \f
1255 /* Global variables used to decide whether a macro needs a warning. */
1256 static struct {
1257 /* True if the macro is in a branch delay slot. */
1258 bfd_boolean delay_slot_p;
1259
1260 /* Set to the length in bytes required if the macro is in a delay slot
1261 that requires a specific length of instruction, otherwise zero. */
1262 unsigned int delay_slot_length;
1263
1264 /* For relaxable macros, sizes[0] is the length of the first alternative
1265 in bytes and sizes[1] is the length of the second alternative.
1266 For non-relaxable macros, both elements give the length of the
1267 macro in bytes. */
1268 unsigned int sizes[2];
1269
1270 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1271 instruction of the first alternative in bytes and first_insn_sizes[1]
1272 is the length of the first instruction of the second alternative.
1273 For non-relaxable macros, both elements give the length of the first
1274 instruction in bytes.
1275
1276 Set to zero if we haven't yet seen the first instruction. */
1277 unsigned int first_insn_sizes[2];
1278
1279 /* For relaxable macros, insns[0] is the number of instructions for the
1280 first alternative and insns[1] is the number of instructions for the
1281 second alternative.
1282
1283 For non-relaxable macros, both elements give the number of
1284 instructions for the macro. */
1285 unsigned int insns[2];
1286
1287 /* The first variant frag for this macro. */
1288 fragS *first_frag;
1289 } mips_macro_warning;
1290 \f
1291 /* Prototypes for static functions. */
1292
1293 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1294
1295 static void append_insn
1296 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1297 bfd_boolean expansionp);
1298 static void mips_no_prev_insn (void);
1299 static void macro_build (expressionS *, const char *, const char *, ...);
1300 static void mips16_macro_build
1301 (expressionS *, const char *, const char *, va_list *);
1302 static void load_register (int, expressionS *, int);
1303 static void macro_start (void);
1304 static void macro_end (void);
1305 static void macro (struct mips_cl_insn *ip, char *str);
1306 static void mips16_macro (struct mips_cl_insn * ip);
1307 static void mips_ip (char *str, struct mips_cl_insn * ip);
1308 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1309 static void mips16_immed
1310 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1311 unsigned int, unsigned long *);
1312 static size_t my_getSmallExpression
1313 (expressionS *, bfd_reloc_code_real_type *, char *);
1314 static void my_getExpression (expressionS *, char *);
1315 static void s_align (int);
1316 static void s_change_sec (int);
1317 static void s_change_section (int);
1318 static void s_cons (int);
1319 static void s_float_cons (int);
1320 static void s_mips_globl (int);
1321 static void s_option (int);
1322 static void s_mipsset (int);
1323 static void s_abicalls (int);
1324 static void s_cpload (int);
1325 static void s_cpsetup (int);
1326 static void s_cplocal (int);
1327 static void s_cprestore (int);
1328 static void s_cpreturn (int);
1329 static void s_dtprelword (int);
1330 static void s_dtpreldword (int);
1331 static void s_tprelword (int);
1332 static void s_tpreldword (int);
1333 static void s_gpvalue (int);
1334 static void s_gpword (int);
1335 static void s_gpdword (int);
1336 static void s_ehword (int);
1337 static void s_cpadd (int);
1338 static void s_insn (int);
1339 static void s_nan (int);
1340 static void s_module (int);
1341 static void s_mips_ent (int);
1342 static void s_mips_end (int);
1343 static void s_mips_frame (int);
1344 static void s_mips_mask (int reg_type);
1345 static void s_mips_stab (int);
1346 static void s_mips_weakext (int);
1347 static void s_mips_file (int);
1348 static void s_mips_loc (int);
1349 static bfd_boolean pic_need_relax (symbolS *, asection *);
1350 static int relaxed_branch_length (fragS *, asection *, int);
1351 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1352 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1353 static void file_mips_check_options (void);
1354
1355 /* Table and functions used to map between CPU/ISA names, and
1356 ISA levels, and CPU numbers. */
1357
1358 struct mips_cpu_info
1359 {
1360 const char *name; /* CPU or ISA name. */
1361 int flags; /* MIPS_CPU_* flags. */
1362 int ase; /* Set of ASEs implemented by the CPU. */
1363 int isa; /* ISA level. */
1364 int cpu; /* CPU number (default CPU if ISA). */
1365 };
1366
1367 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1368
1369 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1370 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1371 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1372 \f
1373 /* Command-line options. */
1374 const char *md_shortopts = "O::g::G:";
1375
1376 enum options
1377 {
1378 OPTION_MARCH = OPTION_MD_BASE,
1379 OPTION_MTUNE,
1380 OPTION_MIPS1,
1381 OPTION_MIPS2,
1382 OPTION_MIPS3,
1383 OPTION_MIPS4,
1384 OPTION_MIPS5,
1385 OPTION_MIPS32,
1386 OPTION_MIPS64,
1387 OPTION_MIPS32R2,
1388 OPTION_MIPS32R3,
1389 OPTION_MIPS32R5,
1390 OPTION_MIPS32R6,
1391 OPTION_MIPS64R2,
1392 OPTION_MIPS64R3,
1393 OPTION_MIPS64R5,
1394 OPTION_MIPS64R6,
1395 OPTION_MIPS16,
1396 OPTION_NO_MIPS16,
1397 OPTION_MIPS3D,
1398 OPTION_NO_MIPS3D,
1399 OPTION_MDMX,
1400 OPTION_NO_MDMX,
1401 OPTION_DSP,
1402 OPTION_NO_DSP,
1403 OPTION_MT,
1404 OPTION_NO_MT,
1405 OPTION_VIRT,
1406 OPTION_NO_VIRT,
1407 OPTION_MSA,
1408 OPTION_NO_MSA,
1409 OPTION_SMARTMIPS,
1410 OPTION_NO_SMARTMIPS,
1411 OPTION_DSPR2,
1412 OPTION_NO_DSPR2,
1413 OPTION_EVA,
1414 OPTION_NO_EVA,
1415 OPTION_XPA,
1416 OPTION_NO_XPA,
1417 OPTION_MICROMIPS,
1418 OPTION_NO_MICROMIPS,
1419 OPTION_MCU,
1420 OPTION_NO_MCU,
1421 OPTION_COMPAT_ARCH_BASE,
1422 OPTION_M4650,
1423 OPTION_NO_M4650,
1424 OPTION_M4010,
1425 OPTION_NO_M4010,
1426 OPTION_M4100,
1427 OPTION_NO_M4100,
1428 OPTION_M3900,
1429 OPTION_NO_M3900,
1430 OPTION_M7000_HILO_FIX,
1431 OPTION_MNO_7000_HILO_FIX,
1432 OPTION_FIX_24K,
1433 OPTION_NO_FIX_24K,
1434 OPTION_FIX_RM7000,
1435 OPTION_NO_FIX_RM7000,
1436 OPTION_FIX_LOONGSON2F_JUMP,
1437 OPTION_NO_FIX_LOONGSON2F_JUMP,
1438 OPTION_FIX_LOONGSON2F_NOP,
1439 OPTION_NO_FIX_LOONGSON2F_NOP,
1440 OPTION_FIX_VR4120,
1441 OPTION_NO_FIX_VR4120,
1442 OPTION_FIX_VR4130,
1443 OPTION_NO_FIX_VR4130,
1444 OPTION_FIX_CN63XXP1,
1445 OPTION_NO_FIX_CN63XXP1,
1446 OPTION_TRAP,
1447 OPTION_BREAK,
1448 OPTION_EB,
1449 OPTION_EL,
1450 OPTION_FP32,
1451 OPTION_GP32,
1452 OPTION_CONSTRUCT_FLOATS,
1453 OPTION_NO_CONSTRUCT_FLOATS,
1454 OPTION_FP64,
1455 OPTION_FPXX,
1456 OPTION_GP64,
1457 OPTION_RELAX_BRANCH,
1458 OPTION_NO_RELAX_BRANCH,
1459 OPTION_INSN32,
1460 OPTION_NO_INSN32,
1461 OPTION_MSHARED,
1462 OPTION_MNO_SHARED,
1463 OPTION_MSYM32,
1464 OPTION_MNO_SYM32,
1465 OPTION_SOFT_FLOAT,
1466 OPTION_HARD_FLOAT,
1467 OPTION_SINGLE_FLOAT,
1468 OPTION_DOUBLE_FLOAT,
1469 OPTION_32,
1470 OPTION_CALL_SHARED,
1471 OPTION_CALL_NONPIC,
1472 OPTION_NON_SHARED,
1473 OPTION_XGOT,
1474 OPTION_MABI,
1475 OPTION_N32,
1476 OPTION_64,
1477 OPTION_MDEBUG,
1478 OPTION_NO_MDEBUG,
1479 OPTION_PDR,
1480 OPTION_NO_PDR,
1481 OPTION_MVXWORKS_PIC,
1482 OPTION_NAN,
1483 OPTION_ODD_SPREG,
1484 OPTION_NO_ODD_SPREG,
1485 OPTION_END_OF_ENUM
1486 };
1487
1488 struct option md_longopts[] =
1489 {
1490 /* Options which specify architecture. */
1491 {"march", required_argument, NULL, OPTION_MARCH},
1492 {"mtune", required_argument, NULL, OPTION_MTUNE},
1493 {"mips0", no_argument, NULL, OPTION_MIPS1},
1494 {"mips1", no_argument, NULL, OPTION_MIPS1},
1495 {"mips2", no_argument, NULL, OPTION_MIPS2},
1496 {"mips3", no_argument, NULL, OPTION_MIPS3},
1497 {"mips4", no_argument, NULL, OPTION_MIPS4},
1498 {"mips5", no_argument, NULL, OPTION_MIPS5},
1499 {"mips32", no_argument, NULL, OPTION_MIPS32},
1500 {"mips64", no_argument, NULL, OPTION_MIPS64},
1501 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1502 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1503 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
1504 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
1505 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1506 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1507 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
1508 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
1509
1510 /* Options which specify Application Specific Extensions (ASEs). */
1511 {"mips16", no_argument, NULL, OPTION_MIPS16},
1512 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1513 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1514 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1515 {"mdmx", no_argument, NULL, OPTION_MDMX},
1516 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1517 {"mdsp", no_argument, NULL, OPTION_DSP},
1518 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1519 {"mmt", no_argument, NULL, OPTION_MT},
1520 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1521 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1522 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1523 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1524 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1525 {"meva", no_argument, NULL, OPTION_EVA},
1526 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1527 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1528 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1529 {"mmcu", no_argument, NULL, OPTION_MCU},
1530 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1531 {"mvirt", no_argument, NULL, OPTION_VIRT},
1532 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1533 {"mmsa", no_argument, NULL, OPTION_MSA},
1534 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
1535 {"mxpa", no_argument, NULL, OPTION_XPA},
1536 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
1537
1538 /* Old-style architecture options. Don't add more of these. */
1539 {"m4650", no_argument, NULL, OPTION_M4650},
1540 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1541 {"m4010", no_argument, NULL, OPTION_M4010},
1542 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1543 {"m4100", no_argument, NULL, OPTION_M4100},
1544 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1545 {"m3900", no_argument, NULL, OPTION_M3900},
1546 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1547
1548 /* Options which enable bug fixes. */
1549 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1550 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1551 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1552 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1553 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1554 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1555 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1556 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1557 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1558 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1559 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1560 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1561 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1562 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1563 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
1564 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1565 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1566
1567 /* Miscellaneous options. */
1568 {"trap", no_argument, NULL, OPTION_TRAP},
1569 {"no-break", no_argument, NULL, OPTION_TRAP},
1570 {"break", no_argument, NULL, OPTION_BREAK},
1571 {"no-trap", no_argument, NULL, OPTION_BREAK},
1572 {"EB", no_argument, NULL, OPTION_EB},
1573 {"EL", no_argument, NULL, OPTION_EL},
1574 {"mfp32", no_argument, NULL, OPTION_FP32},
1575 {"mgp32", no_argument, NULL, OPTION_GP32},
1576 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1577 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1578 {"mfp64", no_argument, NULL, OPTION_FP64},
1579 {"mfpxx", no_argument, NULL, OPTION_FPXX},
1580 {"mgp64", no_argument, NULL, OPTION_GP64},
1581 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1582 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1583 {"minsn32", no_argument, NULL, OPTION_INSN32},
1584 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
1585 {"mshared", no_argument, NULL, OPTION_MSHARED},
1586 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1587 {"msym32", no_argument, NULL, OPTION_MSYM32},
1588 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1589 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1590 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1591 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1592 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1593 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1594 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
1595
1596 /* Strictly speaking this next option is ELF specific,
1597 but we allow it for other ports as well in order to
1598 make testing easier. */
1599 {"32", no_argument, NULL, OPTION_32},
1600
1601 /* ELF-specific options. */
1602 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1603 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1604 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1605 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1606 {"xgot", no_argument, NULL, OPTION_XGOT},
1607 {"mabi", required_argument, NULL, OPTION_MABI},
1608 {"n32", no_argument, NULL, OPTION_N32},
1609 {"64", no_argument, NULL, OPTION_64},
1610 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1611 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1612 {"mpdr", no_argument, NULL, OPTION_PDR},
1613 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1614 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1615 {"mnan", required_argument, NULL, OPTION_NAN},
1616
1617 {NULL, no_argument, NULL, 0}
1618 };
1619 size_t md_longopts_size = sizeof (md_longopts);
1620 \f
1621 /* Information about either an Application Specific Extension or an
1622 optional architecture feature that, for simplicity, we treat in the
1623 same way as an ASE. */
1624 struct mips_ase
1625 {
1626 /* The name of the ASE, used in both the command-line and .set options. */
1627 const char *name;
1628
1629 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1630 and 64-bit architectures, the flags here refer to the subset that
1631 is available on both. */
1632 unsigned int flags;
1633
1634 /* The ASE_* flag used for instructions that are available on 64-bit
1635 architectures but that are not included in FLAGS. */
1636 unsigned int flags64;
1637
1638 /* The command-line options that turn the ASE on and off. */
1639 int option_on;
1640 int option_off;
1641
1642 /* The minimum required architecture revisions for MIPS32, MIPS64,
1643 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1644 int mips32_rev;
1645 int mips64_rev;
1646 int micromips32_rev;
1647 int micromips64_rev;
1648
1649 /* The architecture where the ASE was removed or -1 if the extension has not
1650 been removed. */
1651 int rem_rev;
1652 };
1653
1654 /* A table of all supported ASEs. */
1655 static const struct mips_ase mips_ases[] = {
1656 { "dsp", ASE_DSP, ASE_DSP64,
1657 OPTION_DSP, OPTION_NO_DSP,
1658 2, 2, 2, 2,
1659 -1 },
1660
1661 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1662 OPTION_DSPR2, OPTION_NO_DSPR2,
1663 2, 2, 2, 2,
1664 -1 },
1665
1666 { "eva", ASE_EVA, 0,
1667 OPTION_EVA, OPTION_NO_EVA,
1668 2, 2, 2, 2,
1669 -1 },
1670
1671 { "mcu", ASE_MCU, 0,
1672 OPTION_MCU, OPTION_NO_MCU,
1673 2, 2, 2, 2,
1674 -1 },
1675
1676 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1677 { "mdmx", ASE_MDMX, 0,
1678 OPTION_MDMX, OPTION_NO_MDMX,
1679 -1, 1, -1, -1,
1680 6 },
1681
1682 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1683 { "mips3d", ASE_MIPS3D, 0,
1684 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1685 2, 1, -1, -1,
1686 6 },
1687
1688 { "mt", ASE_MT, 0,
1689 OPTION_MT, OPTION_NO_MT,
1690 2, 2, -1, -1,
1691 -1 },
1692
1693 { "smartmips", ASE_SMARTMIPS, 0,
1694 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1695 1, -1, -1, -1,
1696 6 },
1697
1698 { "virt", ASE_VIRT, ASE_VIRT64,
1699 OPTION_VIRT, OPTION_NO_VIRT,
1700 2, 2, 2, 2,
1701 -1 },
1702
1703 { "msa", ASE_MSA, ASE_MSA64,
1704 OPTION_MSA, OPTION_NO_MSA,
1705 2, 2, 2, 2,
1706 -1 },
1707
1708 { "xpa", ASE_XPA, 0,
1709 OPTION_XPA, OPTION_NO_XPA,
1710 2, 2, -1, -1,
1711 -1 },
1712 };
1713
1714 /* The set of ASEs that require -mfp64. */
1715 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
1716
1717 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1718 static const unsigned int mips_ase_groups[] = {
1719 ASE_DSP | ASE_DSPR2
1720 };
1721 \f
1722 /* Pseudo-op table.
1723
1724 The following pseudo-ops from the Kane and Heinrich MIPS book
1725 should be defined here, but are currently unsupported: .alias,
1726 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1727
1728 The following pseudo-ops from the Kane and Heinrich MIPS book are
1729 specific to the type of debugging information being generated, and
1730 should be defined by the object format: .aent, .begin, .bend,
1731 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1732 .vreg.
1733
1734 The following pseudo-ops from the Kane and Heinrich MIPS book are
1735 not MIPS CPU specific, but are also not specific to the object file
1736 format. This file is probably the best place to define them, but
1737 they are not currently supported: .asm0, .endr, .lab, .struct. */
1738
1739 static const pseudo_typeS mips_pseudo_table[] =
1740 {
1741 /* MIPS specific pseudo-ops. */
1742 {"option", s_option, 0},
1743 {"set", s_mipsset, 0},
1744 {"rdata", s_change_sec, 'r'},
1745 {"sdata", s_change_sec, 's'},
1746 {"livereg", s_ignore, 0},
1747 {"abicalls", s_abicalls, 0},
1748 {"cpload", s_cpload, 0},
1749 {"cpsetup", s_cpsetup, 0},
1750 {"cplocal", s_cplocal, 0},
1751 {"cprestore", s_cprestore, 0},
1752 {"cpreturn", s_cpreturn, 0},
1753 {"dtprelword", s_dtprelword, 0},
1754 {"dtpreldword", s_dtpreldword, 0},
1755 {"tprelword", s_tprelword, 0},
1756 {"tpreldword", s_tpreldword, 0},
1757 {"gpvalue", s_gpvalue, 0},
1758 {"gpword", s_gpword, 0},
1759 {"gpdword", s_gpdword, 0},
1760 {"ehword", s_ehword, 0},
1761 {"cpadd", s_cpadd, 0},
1762 {"insn", s_insn, 0},
1763 {"nan", s_nan, 0},
1764 {"module", s_module, 0},
1765
1766 /* Relatively generic pseudo-ops that happen to be used on MIPS
1767 chips. */
1768 {"asciiz", stringer, 8 + 1},
1769 {"bss", s_change_sec, 'b'},
1770 {"err", s_err, 0},
1771 {"half", s_cons, 1},
1772 {"dword", s_cons, 3},
1773 {"weakext", s_mips_weakext, 0},
1774 {"origin", s_org, 0},
1775 {"repeat", s_rept, 0},
1776
1777 /* For MIPS this is non-standard, but we define it for consistency. */
1778 {"sbss", s_change_sec, 'B'},
1779
1780 /* These pseudo-ops are defined in read.c, but must be overridden
1781 here for one reason or another. */
1782 {"align", s_align, 0},
1783 {"byte", s_cons, 0},
1784 {"data", s_change_sec, 'd'},
1785 {"double", s_float_cons, 'd'},
1786 {"float", s_float_cons, 'f'},
1787 {"globl", s_mips_globl, 0},
1788 {"global", s_mips_globl, 0},
1789 {"hword", s_cons, 1},
1790 {"int", s_cons, 2},
1791 {"long", s_cons, 2},
1792 {"octa", s_cons, 4},
1793 {"quad", s_cons, 3},
1794 {"section", s_change_section, 0},
1795 {"short", s_cons, 1},
1796 {"single", s_float_cons, 'f'},
1797 {"stabd", s_mips_stab, 'd'},
1798 {"stabn", s_mips_stab, 'n'},
1799 {"stabs", s_mips_stab, 's'},
1800 {"text", s_change_sec, 't'},
1801 {"word", s_cons, 2},
1802
1803 { "extern", ecoff_directive_extern, 0},
1804
1805 { NULL, NULL, 0 },
1806 };
1807
1808 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1809 {
1810 /* These pseudo-ops should be defined by the object file format.
1811 However, a.out doesn't support them, so we have versions here. */
1812 {"aent", s_mips_ent, 1},
1813 {"bgnb", s_ignore, 0},
1814 {"end", s_mips_end, 0},
1815 {"endb", s_ignore, 0},
1816 {"ent", s_mips_ent, 0},
1817 {"file", s_mips_file, 0},
1818 {"fmask", s_mips_mask, 'F'},
1819 {"frame", s_mips_frame, 0},
1820 {"loc", s_mips_loc, 0},
1821 {"mask", s_mips_mask, 'R'},
1822 {"verstamp", s_ignore, 0},
1823 { NULL, NULL, 0 },
1824 };
1825
1826 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1827 purpose of the `.dc.a' internal pseudo-op. */
1828
1829 int
1830 mips_address_bytes (void)
1831 {
1832 file_mips_check_options ();
1833 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1834 }
1835
1836 extern void pop_insert (const pseudo_typeS *);
1837
1838 void
1839 mips_pop_insert (void)
1840 {
1841 pop_insert (mips_pseudo_table);
1842 if (! ECOFF_DEBUGGING)
1843 pop_insert (mips_nonecoff_pseudo_table);
1844 }
1845 \f
1846 /* Symbols labelling the current insn. */
1847
1848 struct insn_label_list
1849 {
1850 struct insn_label_list *next;
1851 symbolS *label;
1852 };
1853
1854 static struct insn_label_list *free_insn_labels;
1855 #define label_list tc_segment_info_data.labels
1856
1857 static void mips_clear_insn_labels (void);
1858 static void mips_mark_labels (void);
1859 static void mips_compressed_mark_labels (void);
1860
1861 static inline void
1862 mips_clear_insn_labels (void)
1863 {
1864 struct insn_label_list **pl;
1865 segment_info_type *si;
1866
1867 if (now_seg)
1868 {
1869 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1870 ;
1871
1872 si = seg_info (now_seg);
1873 *pl = si->label_list;
1874 si->label_list = NULL;
1875 }
1876 }
1877
1878 /* Mark instruction labels in MIPS16/microMIPS mode. */
1879
1880 static inline void
1881 mips_mark_labels (void)
1882 {
1883 if (HAVE_CODE_COMPRESSION)
1884 mips_compressed_mark_labels ();
1885 }
1886 \f
1887 static char *expr_end;
1888
1889 /* An expression in a macro instruction. This is set by mips_ip and
1890 mips16_ip and when populated is always an O_constant. */
1891
1892 static expressionS imm_expr;
1893
1894 /* The relocatable field in an instruction and the relocs associated
1895 with it. These variables are used for instructions like LUI and
1896 JAL as well as true offsets. They are also used for address
1897 operands in macros. */
1898
1899 static expressionS offset_expr;
1900 static bfd_reloc_code_real_type offset_reloc[3]
1901 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1902
1903 /* This is set to the resulting size of the instruction to be produced
1904 by mips16_ip if an explicit extension is used or by mips_ip if an
1905 explicit size is supplied. */
1906
1907 static unsigned int forced_insn_length;
1908
1909 /* True if we are assembling an instruction. All dot symbols defined during
1910 this time should be treated as code labels. */
1911
1912 static bfd_boolean mips_assembling_insn;
1913
1914 /* The pdr segment for per procedure frame/regmask info. Not used for
1915 ECOFF debugging. */
1916
1917 static segT pdr_seg;
1918
1919 /* The default target format to use. */
1920
1921 #if defined (TE_FreeBSD)
1922 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1923 #elif defined (TE_TMIPS)
1924 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1925 #else
1926 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1927 #endif
1928
1929 const char *
1930 mips_target_format (void)
1931 {
1932 switch (OUTPUT_FLAVOR)
1933 {
1934 case bfd_target_elf_flavour:
1935 #ifdef TE_VXWORKS
1936 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1937 return (target_big_endian
1938 ? "elf32-bigmips-vxworks"
1939 : "elf32-littlemips-vxworks");
1940 #endif
1941 return (target_big_endian
1942 ? (HAVE_64BIT_OBJECTS
1943 ? ELF_TARGET ("elf64-", "big")
1944 : (HAVE_NEWABI
1945 ? ELF_TARGET ("elf32-n", "big")
1946 : ELF_TARGET ("elf32-", "big")))
1947 : (HAVE_64BIT_OBJECTS
1948 ? ELF_TARGET ("elf64-", "little")
1949 : (HAVE_NEWABI
1950 ? ELF_TARGET ("elf32-n", "little")
1951 : ELF_TARGET ("elf32-", "little"))));
1952 default:
1953 abort ();
1954 return NULL;
1955 }
1956 }
1957
1958 /* Return the ISA revision that is currently in use, or 0 if we are
1959 generating code for MIPS V or below. */
1960
1961 static int
1962 mips_isa_rev (void)
1963 {
1964 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1965 return 2;
1966
1967 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
1968 return 3;
1969
1970 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
1971 return 5;
1972
1973 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
1974 return 6;
1975
1976 /* microMIPS implies revision 2 or above. */
1977 if (mips_opts.micromips)
1978 return 2;
1979
1980 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
1981 return 1;
1982
1983 return 0;
1984 }
1985
1986 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
1987
1988 static unsigned int
1989 mips_ase_mask (unsigned int flags)
1990 {
1991 unsigned int i;
1992
1993 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
1994 if (flags & mips_ase_groups[i])
1995 flags |= mips_ase_groups[i];
1996 return flags;
1997 }
1998
1999 /* Check whether the current ISA supports ASE. Issue a warning if
2000 appropriate. */
2001
2002 static void
2003 mips_check_isa_supports_ase (const struct mips_ase *ase)
2004 {
2005 const char *base;
2006 int min_rev, size;
2007 static unsigned int warned_isa;
2008 static unsigned int warned_fp32;
2009
2010 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2011 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2012 else
2013 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2014 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2015 && (warned_isa & ase->flags) != ase->flags)
2016 {
2017 warned_isa |= ase->flags;
2018 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2019 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2020 if (min_rev < 0)
2021 as_warn (_("the %d-bit %s architecture does not support the"
2022 " `%s' extension"), size, base, ase->name);
2023 else
2024 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
2025 ase->name, base, size, min_rev);
2026 }
2027 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2028 && (warned_isa & ase->flags) != ase->flags)
2029 {
2030 warned_isa |= ase->flags;
2031 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2032 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2033 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2034 ase->name, base, size, ase->rem_rev);
2035 }
2036
2037 if ((ase->flags & FP64_ASES)
2038 && mips_opts.fp != 64
2039 && (warned_fp32 & ase->flags) != ase->flags)
2040 {
2041 warned_fp32 |= ase->flags;
2042 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
2043 }
2044 }
2045
2046 /* Check all enabled ASEs to see whether they are supported by the
2047 chosen architecture. */
2048
2049 static void
2050 mips_check_isa_supports_ases (void)
2051 {
2052 unsigned int i, mask;
2053
2054 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2055 {
2056 mask = mips_ase_mask (mips_ases[i].flags);
2057 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2058 mips_check_isa_supports_ase (&mips_ases[i]);
2059 }
2060 }
2061
2062 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2063 that were affected. */
2064
2065 static unsigned int
2066 mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2067 bfd_boolean enabled_p)
2068 {
2069 unsigned int mask;
2070
2071 mask = mips_ase_mask (ase->flags);
2072 opts->ase &= ~mask;
2073 if (enabled_p)
2074 opts->ase |= ase->flags;
2075 return mask;
2076 }
2077
2078 /* Return the ASE called NAME, or null if none. */
2079
2080 static const struct mips_ase *
2081 mips_lookup_ase (const char *name)
2082 {
2083 unsigned int i;
2084
2085 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2086 if (strcmp (name, mips_ases[i].name) == 0)
2087 return &mips_ases[i];
2088 return NULL;
2089 }
2090
2091 /* Return the length of a microMIPS instruction in bytes. If bits of
2092 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2093 otherwise it is a 32-bit instruction. */
2094
2095 static inline unsigned int
2096 micromips_insn_length (const struct mips_opcode *mo)
2097 {
2098 return (mo->mask >> 16) == 0 ? 2 : 4;
2099 }
2100
2101 /* Return the length of MIPS16 instruction OPCODE. */
2102
2103 static inline unsigned int
2104 mips16_opcode_length (unsigned long opcode)
2105 {
2106 return (opcode >> 16) == 0 ? 2 : 4;
2107 }
2108
2109 /* Return the length of instruction INSN. */
2110
2111 static inline unsigned int
2112 insn_length (const struct mips_cl_insn *insn)
2113 {
2114 if (mips_opts.micromips)
2115 return micromips_insn_length (insn->insn_mo);
2116 else if (mips_opts.mips16)
2117 return mips16_opcode_length (insn->insn_opcode);
2118 else
2119 return 4;
2120 }
2121
2122 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2123
2124 static void
2125 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2126 {
2127 size_t i;
2128
2129 insn->insn_mo = mo;
2130 insn->insn_opcode = mo->match;
2131 insn->frag = NULL;
2132 insn->where = 0;
2133 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2134 insn->fixp[i] = NULL;
2135 insn->fixed_p = (mips_opts.noreorder > 0);
2136 insn->noreorder_p = (mips_opts.noreorder > 0);
2137 insn->mips16_absolute_jump_p = 0;
2138 insn->complete_p = 0;
2139 insn->cleared_p = 0;
2140 }
2141
2142 /* Get a list of all the operands in INSN. */
2143
2144 static const struct mips_operand_array *
2145 insn_operands (const struct mips_cl_insn *insn)
2146 {
2147 if (insn->insn_mo >= &mips_opcodes[0]
2148 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2149 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2150
2151 if (insn->insn_mo >= &mips16_opcodes[0]
2152 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2153 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2154
2155 if (insn->insn_mo >= &micromips_opcodes[0]
2156 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2157 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2158
2159 abort ();
2160 }
2161
2162 /* Get a description of operand OPNO of INSN. */
2163
2164 static const struct mips_operand *
2165 insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2166 {
2167 const struct mips_operand_array *operands;
2168
2169 operands = insn_operands (insn);
2170 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2171 abort ();
2172 return operands->operand[opno];
2173 }
2174
2175 /* Install UVAL as the value of OPERAND in INSN. */
2176
2177 static inline void
2178 insn_insert_operand (struct mips_cl_insn *insn,
2179 const struct mips_operand *operand, unsigned int uval)
2180 {
2181 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2182 }
2183
2184 /* Extract the value of OPERAND from INSN. */
2185
2186 static inline unsigned
2187 insn_extract_operand (const struct mips_cl_insn *insn,
2188 const struct mips_operand *operand)
2189 {
2190 return mips_extract_operand (operand, insn->insn_opcode);
2191 }
2192
2193 /* Record the current MIPS16/microMIPS mode in now_seg. */
2194
2195 static void
2196 mips_record_compressed_mode (void)
2197 {
2198 segment_info_type *si;
2199
2200 si = seg_info (now_seg);
2201 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2202 si->tc_segment_info_data.mips16 = mips_opts.mips16;
2203 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2204 si->tc_segment_info_data.micromips = mips_opts.micromips;
2205 }
2206
2207 /* Read a standard MIPS instruction from BUF. */
2208
2209 static unsigned long
2210 read_insn (char *buf)
2211 {
2212 if (target_big_endian)
2213 return bfd_getb32 ((bfd_byte *) buf);
2214 else
2215 return bfd_getl32 ((bfd_byte *) buf);
2216 }
2217
2218 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2219 the next byte. */
2220
2221 static char *
2222 write_insn (char *buf, unsigned int insn)
2223 {
2224 md_number_to_chars (buf, insn, 4);
2225 return buf + 4;
2226 }
2227
2228 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2229 has length LENGTH. */
2230
2231 static unsigned long
2232 read_compressed_insn (char *buf, unsigned int length)
2233 {
2234 unsigned long insn;
2235 unsigned int i;
2236
2237 insn = 0;
2238 for (i = 0; i < length; i += 2)
2239 {
2240 insn <<= 16;
2241 if (target_big_endian)
2242 insn |= bfd_getb16 ((char *) buf);
2243 else
2244 insn |= bfd_getl16 ((char *) buf);
2245 buf += 2;
2246 }
2247 return insn;
2248 }
2249
2250 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2251 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2252
2253 static char *
2254 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2255 {
2256 unsigned int i;
2257
2258 for (i = 0; i < length; i += 2)
2259 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2260 return buf + length;
2261 }
2262
2263 /* Install INSN at the location specified by its "frag" and "where" fields. */
2264
2265 static void
2266 install_insn (const struct mips_cl_insn *insn)
2267 {
2268 char *f = insn->frag->fr_literal + insn->where;
2269 if (HAVE_CODE_COMPRESSION)
2270 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
2271 else
2272 write_insn (f, insn->insn_opcode);
2273 mips_record_compressed_mode ();
2274 }
2275
2276 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2277 and install the opcode in the new location. */
2278
2279 static void
2280 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2281 {
2282 size_t i;
2283
2284 insn->frag = frag;
2285 insn->where = where;
2286 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2287 if (insn->fixp[i] != NULL)
2288 {
2289 insn->fixp[i]->fx_frag = frag;
2290 insn->fixp[i]->fx_where = where;
2291 }
2292 install_insn (insn);
2293 }
2294
2295 /* Add INSN to the end of the output. */
2296
2297 static void
2298 add_fixed_insn (struct mips_cl_insn *insn)
2299 {
2300 char *f = frag_more (insn_length (insn));
2301 move_insn (insn, frag_now, f - frag_now->fr_literal);
2302 }
2303
2304 /* Start a variant frag and move INSN to the start of the variant part,
2305 marking it as fixed. The other arguments are as for frag_var. */
2306
2307 static void
2308 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2309 relax_substateT subtype, symbolS *symbol, offsetT offset)
2310 {
2311 frag_grow (max_chars);
2312 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2313 insn->fixed_p = 1;
2314 frag_var (rs_machine_dependent, max_chars, var,
2315 subtype, symbol, offset, NULL);
2316 }
2317
2318 /* Insert N copies of INSN into the history buffer, starting at
2319 position FIRST. Neither FIRST nor N need to be clipped. */
2320
2321 static void
2322 insert_into_history (unsigned int first, unsigned int n,
2323 const struct mips_cl_insn *insn)
2324 {
2325 if (mips_relax.sequence != 2)
2326 {
2327 unsigned int i;
2328
2329 for (i = ARRAY_SIZE (history); i-- > first;)
2330 if (i >= first + n)
2331 history[i] = history[i - n];
2332 else
2333 history[i] = *insn;
2334 }
2335 }
2336
2337 /* Clear the error in insn_error. */
2338
2339 static void
2340 clear_insn_error (void)
2341 {
2342 memset (&insn_error, 0, sizeof (insn_error));
2343 }
2344
2345 /* Possibly record error message MSG for the current instruction.
2346 If the error is about a particular argument, ARGNUM is the 1-based
2347 number of that argument, otherwise it is 0. FORMAT is the format
2348 of MSG. Return true if MSG was used, false if the current message
2349 was kept. */
2350
2351 static bfd_boolean
2352 set_insn_error_format (int argnum, enum mips_insn_error_format format,
2353 const char *msg)
2354 {
2355 if (argnum == 0)
2356 {
2357 /* Give priority to errors against specific arguments, and to
2358 the first whole-instruction message. */
2359 if (insn_error.msg)
2360 return FALSE;
2361 }
2362 else
2363 {
2364 /* Keep insn_error if it is against a later argument. */
2365 if (argnum < insn_error.min_argnum)
2366 return FALSE;
2367
2368 /* If both errors are against the same argument but are different,
2369 give up on reporting a specific error for this argument.
2370 See the comment about mips_insn_error for details. */
2371 if (argnum == insn_error.min_argnum
2372 && insn_error.msg
2373 && strcmp (insn_error.msg, msg) != 0)
2374 {
2375 insn_error.msg = 0;
2376 insn_error.min_argnum += 1;
2377 return FALSE;
2378 }
2379 }
2380 insn_error.min_argnum = argnum;
2381 insn_error.format = format;
2382 insn_error.msg = msg;
2383 return TRUE;
2384 }
2385
2386 /* Record an instruction error with no % format fields. ARGNUM and MSG are
2387 as for set_insn_error_format. */
2388
2389 static void
2390 set_insn_error (int argnum, const char *msg)
2391 {
2392 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2393 }
2394
2395 /* Record an instruction error with one %d field I. ARGNUM and MSG are
2396 as for set_insn_error_format. */
2397
2398 static void
2399 set_insn_error_i (int argnum, const char *msg, int i)
2400 {
2401 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2402 insn_error.u.i = i;
2403 }
2404
2405 /* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2406 are as for set_insn_error_format. */
2407
2408 static void
2409 set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2410 {
2411 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2412 {
2413 insn_error.u.ss[0] = s1;
2414 insn_error.u.ss[1] = s2;
2415 }
2416 }
2417
2418 /* Report the error in insn_error, which is against assembly code STR. */
2419
2420 static void
2421 report_insn_error (const char *str)
2422 {
2423 const char *msg = concat (insn_error.msg, " `%s'", NULL);
2424
2425 switch (insn_error.format)
2426 {
2427 case ERR_FMT_PLAIN:
2428 as_bad (msg, str);
2429 break;
2430
2431 case ERR_FMT_I:
2432 as_bad (msg, insn_error.u.i, str);
2433 break;
2434
2435 case ERR_FMT_SS:
2436 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2437 break;
2438 }
2439
2440 free ((char *) msg);
2441 }
2442
2443 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2444 the idea is to make it obvious at a glance that each errata is
2445 included. */
2446
2447 static void
2448 init_vr4120_conflicts (void)
2449 {
2450 #define CONFLICT(FIRST, SECOND) \
2451 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2452
2453 /* Errata 21 - [D]DIV[U] after [D]MACC */
2454 CONFLICT (MACC, DIV);
2455 CONFLICT (DMACC, DIV);
2456
2457 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2458 CONFLICT (DMULT, DMULT);
2459 CONFLICT (DMULT, DMACC);
2460 CONFLICT (DMACC, DMULT);
2461 CONFLICT (DMACC, DMACC);
2462
2463 /* Errata 24 - MT{LO,HI} after [D]MACC */
2464 CONFLICT (MACC, MTHILO);
2465 CONFLICT (DMACC, MTHILO);
2466
2467 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2468 instruction is executed immediately after a MACC or DMACC
2469 instruction, the result of [either instruction] is incorrect." */
2470 CONFLICT (MACC, MULT);
2471 CONFLICT (MACC, DMULT);
2472 CONFLICT (DMACC, MULT);
2473 CONFLICT (DMACC, DMULT);
2474
2475 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2476 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2477 DDIV or DDIVU instruction, the result of the MACC or
2478 DMACC instruction is incorrect.". */
2479 CONFLICT (DMULT, MACC);
2480 CONFLICT (DMULT, DMACC);
2481 CONFLICT (DIV, MACC);
2482 CONFLICT (DIV, DMACC);
2483
2484 #undef CONFLICT
2485 }
2486
2487 struct regname {
2488 const char *name;
2489 unsigned int num;
2490 };
2491
2492 #define RNUM_MASK 0x00000ff
2493 #define RTYPE_MASK 0x0ffff00
2494 #define RTYPE_NUM 0x0000100
2495 #define RTYPE_FPU 0x0000200
2496 #define RTYPE_FCC 0x0000400
2497 #define RTYPE_VEC 0x0000800
2498 #define RTYPE_GP 0x0001000
2499 #define RTYPE_CP0 0x0002000
2500 #define RTYPE_PC 0x0004000
2501 #define RTYPE_ACC 0x0008000
2502 #define RTYPE_CCC 0x0010000
2503 #define RTYPE_VI 0x0020000
2504 #define RTYPE_VF 0x0040000
2505 #define RTYPE_R5900_I 0x0080000
2506 #define RTYPE_R5900_Q 0x0100000
2507 #define RTYPE_R5900_R 0x0200000
2508 #define RTYPE_R5900_ACC 0x0400000
2509 #define RTYPE_MSA 0x0800000
2510 #define RWARN 0x8000000
2511
2512 #define GENERIC_REGISTER_NUMBERS \
2513 {"$0", RTYPE_NUM | 0}, \
2514 {"$1", RTYPE_NUM | 1}, \
2515 {"$2", RTYPE_NUM | 2}, \
2516 {"$3", RTYPE_NUM | 3}, \
2517 {"$4", RTYPE_NUM | 4}, \
2518 {"$5", RTYPE_NUM | 5}, \
2519 {"$6", RTYPE_NUM | 6}, \
2520 {"$7", RTYPE_NUM | 7}, \
2521 {"$8", RTYPE_NUM | 8}, \
2522 {"$9", RTYPE_NUM | 9}, \
2523 {"$10", RTYPE_NUM | 10}, \
2524 {"$11", RTYPE_NUM | 11}, \
2525 {"$12", RTYPE_NUM | 12}, \
2526 {"$13", RTYPE_NUM | 13}, \
2527 {"$14", RTYPE_NUM | 14}, \
2528 {"$15", RTYPE_NUM | 15}, \
2529 {"$16", RTYPE_NUM | 16}, \
2530 {"$17", RTYPE_NUM | 17}, \
2531 {"$18", RTYPE_NUM | 18}, \
2532 {"$19", RTYPE_NUM | 19}, \
2533 {"$20", RTYPE_NUM | 20}, \
2534 {"$21", RTYPE_NUM | 21}, \
2535 {"$22", RTYPE_NUM | 22}, \
2536 {"$23", RTYPE_NUM | 23}, \
2537 {"$24", RTYPE_NUM | 24}, \
2538 {"$25", RTYPE_NUM | 25}, \
2539 {"$26", RTYPE_NUM | 26}, \
2540 {"$27", RTYPE_NUM | 27}, \
2541 {"$28", RTYPE_NUM | 28}, \
2542 {"$29", RTYPE_NUM | 29}, \
2543 {"$30", RTYPE_NUM | 30}, \
2544 {"$31", RTYPE_NUM | 31}
2545
2546 #define FPU_REGISTER_NAMES \
2547 {"$f0", RTYPE_FPU | 0}, \
2548 {"$f1", RTYPE_FPU | 1}, \
2549 {"$f2", RTYPE_FPU | 2}, \
2550 {"$f3", RTYPE_FPU | 3}, \
2551 {"$f4", RTYPE_FPU | 4}, \
2552 {"$f5", RTYPE_FPU | 5}, \
2553 {"$f6", RTYPE_FPU | 6}, \
2554 {"$f7", RTYPE_FPU | 7}, \
2555 {"$f8", RTYPE_FPU | 8}, \
2556 {"$f9", RTYPE_FPU | 9}, \
2557 {"$f10", RTYPE_FPU | 10}, \
2558 {"$f11", RTYPE_FPU | 11}, \
2559 {"$f12", RTYPE_FPU | 12}, \
2560 {"$f13", RTYPE_FPU | 13}, \
2561 {"$f14", RTYPE_FPU | 14}, \
2562 {"$f15", RTYPE_FPU | 15}, \
2563 {"$f16", RTYPE_FPU | 16}, \
2564 {"$f17", RTYPE_FPU | 17}, \
2565 {"$f18", RTYPE_FPU | 18}, \
2566 {"$f19", RTYPE_FPU | 19}, \
2567 {"$f20", RTYPE_FPU | 20}, \
2568 {"$f21", RTYPE_FPU | 21}, \
2569 {"$f22", RTYPE_FPU | 22}, \
2570 {"$f23", RTYPE_FPU | 23}, \
2571 {"$f24", RTYPE_FPU | 24}, \
2572 {"$f25", RTYPE_FPU | 25}, \
2573 {"$f26", RTYPE_FPU | 26}, \
2574 {"$f27", RTYPE_FPU | 27}, \
2575 {"$f28", RTYPE_FPU | 28}, \
2576 {"$f29", RTYPE_FPU | 29}, \
2577 {"$f30", RTYPE_FPU | 30}, \
2578 {"$f31", RTYPE_FPU | 31}
2579
2580 #define FPU_CONDITION_CODE_NAMES \
2581 {"$fcc0", RTYPE_FCC | 0}, \
2582 {"$fcc1", RTYPE_FCC | 1}, \
2583 {"$fcc2", RTYPE_FCC | 2}, \
2584 {"$fcc3", RTYPE_FCC | 3}, \
2585 {"$fcc4", RTYPE_FCC | 4}, \
2586 {"$fcc5", RTYPE_FCC | 5}, \
2587 {"$fcc6", RTYPE_FCC | 6}, \
2588 {"$fcc7", RTYPE_FCC | 7}
2589
2590 #define COPROC_CONDITION_CODE_NAMES \
2591 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2592 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2593 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2594 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2595 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2596 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2597 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2598 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2599
2600 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2601 {"$a4", RTYPE_GP | 8}, \
2602 {"$a5", RTYPE_GP | 9}, \
2603 {"$a6", RTYPE_GP | 10}, \
2604 {"$a7", RTYPE_GP | 11}, \
2605 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2606 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2607 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2608 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2609 {"$t0", RTYPE_GP | 12}, \
2610 {"$t1", RTYPE_GP | 13}, \
2611 {"$t2", RTYPE_GP | 14}, \
2612 {"$t3", RTYPE_GP | 15}
2613
2614 #define O32_SYMBOLIC_REGISTER_NAMES \
2615 {"$t0", RTYPE_GP | 8}, \
2616 {"$t1", RTYPE_GP | 9}, \
2617 {"$t2", RTYPE_GP | 10}, \
2618 {"$t3", RTYPE_GP | 11}, \
2619 {"$t4", RTYPE_GP | 12}, \
2620 {"$t5", RTYPE_GP | 13}, \
2621 {"$t6", RTYPE_GP | 14}, \
2622 {"$t7", RTYPE_GP | 15}, \
2623 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2624 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2625 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2626 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2627
2628 /* Remaining symbolic register names */
2629 #define SYMBOLIC_REGISTER_NAMES \
2630 {"$zero", RTYPE_GP | 0}, \
2631 {"$at", RTYPE_GP | 1}, \
2632 {"$AT", RTYPE_GP | 1}, \
2633 {"$v0", RTYPE_GP | 2}, \
2634 {"$v1", RTYPE_GP | 3}, \
2635 {"$a0", RTYPE_GP | 4}, \
2636 {"$a1", RTYPE_GP | 5}, \
2637 {"$a2", RTYPE_GP | 6}, \
2638 {"$a3", RTYPE_GP | 7}, \
2639 {"$s0", RTYPE_GP | 16}, \
2640 {"$s1", RTYPE_GP | 17}, \
2641 {"$s2", RTYPE_GP | 18}, \
2642 {"$s3", RTYPE_GP | 19}, \
2643 {"$s4", RTYPE_GP | 20}, \
2644 {"$s5", RTYPE_GP | 21}, \
2645 {"$s6", RTYPE_GP | 22}, \
2646 {"$s7", RTYPE_GP | 23}, \
2647 {"$t8", RTYPE_GP | 24}, \
2648 {"$t9", RTYPE_GP | 25}, \
2649 {"$k0", RTYPE_GP | 26}, \
2650 {"$kt0", RTYPE_GP | 26}, \
2651 {"$k1", RTYPE_GP | 27}, \
2652 {"$kt1", RTYPE_GP | 27}, \
2653 {"$gp", RTYPE_GP | 28}, \
2654 {"$sp", RTYPE_GP | 29}, \
2655 {"$s8", RTYPE_GP | 30}, \
2656 {"$fp", RTYPE_GP | 30}, \
2657 {"$ra", RTYPE_GP | 31}
2658
2659 #define MIPS16_SPECIAL_REGISTER_NAMES \
2660 {"$pc", RTYPE_PC | 0}
2661
2662 #define MDMX_VECTOR_REGISTER_NAMES \
2663 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2664 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2665 {"$v2", RTYPE_VEC | 2}, \
2666 {"$v3", RTYPE_VEC | 3}, \
2667 {"$v4", RTYPE_VEC | 4}, \
2668 {"$v5", RTYPE_VEC | 5}, \
2669 {"$v6", RTYPE_VEC | 6}, \
2670 {"$v7", RTYPE_VEC | 7}, \
2671 {"$v8", RTYPE_VEC | 8}, \
2672 {"$v9", RTYPE_VEC | 9}, \
2673 {"$v10", RTYPE_VEC | 10}, \
2674 {"$v11", RTYPE_VEC | 11}, \
2675 {"$v12", RTYPE_VEC | 12}, \
2676 {"$v13", RTYPE_VEC | 13}, \
2677 {"$v14", RTYPE_VEC | 14}, \
2678 {"$v15", RTYPE_VEC | 15}, \
2679 {"$v16", RTYPE_VEC | 16}, \
2680 {"$v17", RTYPE_VEC | 17}, \
2681 {"$v18", RTYPE_VEC | 18}, \
2682 {"$v19", RTYPE_VEC | 19}, \
2683 {"$v20", RTYPE_VEC | 20}, \
2684 {"$v21", RTYPE_VEC | 21}, \
2685 {"$v22", RTYPE_VEC | 22}, \
2686 {"$v23", RTYPE_VEC | 23}, \
2687 {"$v24", RTYPE_VEC | 24}, \
2688 {"$v25", RTYPE_VEC | 25}, \
2689 {"$v26", RTYPE_VEC | 26}, \
2690 {"$v27", RTYPE_VEC | 27}, \
2691 {"$v28", RTYPE_VEC | 28}, \
2692 {"$v29", RTYPE_VEC | 29}, \
2693 {"$v30", RTYPE_VEC | 30}, \
2694 {"$v31", RTYPE_VEC | 31}
2695
2696 #define R5900_I_NAMES \
2697 {"$I", RTYPE_R5900_I | 0}
2698
2699 #define R5900_Q_NAMES \
2700 {"$Q", RTYPE_R5900_Q | 0}
2701
2702 #define R5900_R_NAMES \
2703 {"$R", RTYPE_R5900_R | 0}
2704
2705 #define R5900_ACC_NAMES \
2706 {"$ACC", RTYPE_R5900_ACC | 0 }
2707
2708 #define MIPS_DSP_ACCUMULATOR_NAMES \
2709 {"$ac0", RTYPE_ACC | 0}, \
2710 {"$ac1", RTYPE_ACC | 1}, \
2711 {"$ac2", RTYPE_ACC | 2}, \
2712 {"$ac3", RTYPE_ACC | 3}
2713
2714 static const struct regname reg_names[] = {
2715 GENERIC_REGISTER_NUMBERS,
2716 FPU_REGISTER_NAMES,
2717 FPU_CONDITION_CODE_NAMES,
2718 COPROC_CONDITION_CODE_NAMES,
2719
2720 /* The $txx registers depends on the abi,
2721 these will be added later into the symbol table from
2722 one of the tables below once mips_abi is set after
2723 parsing of arguments from the command line. */
2724 SYMBOLIC_REGISTER_NAMES,
2725
2726 MIPS16_SPECIAL_REGISTER_NAMES,
2727 MDMX_VECTOR_REGISTER_NAMES,
2728 R5900_I_NAMES,
2729 R5900_Q_NAMES,
2730 R5900_R_NAMES,
2731 R5900_ACC_NAMES,
2732 MIPS_DSP_ACCUMULATOR_NAMES,
2733 {0, 0}
2734 };
2735
2736 static const struct regname reg_names_o32[] = {
2737 O32_SYMBOLIC_REGISTER_NAMES,
2738 {0, 0}
2739 };
2740
2741 static const struct regname reg_names_n32n64[] = {
2742 N32N64_SYMBOLIC_REGISTER_NAMES,
2743 {0, 0}
2744 };
2745
2746 /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2747 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2748 of these register symbols, return the associated vector register,
2749 otherwise return SYMVAL itself. */
2750
2751 static unsigned int
2752 mips_prefer_vec_regno (unsigned int symval)
2753 {
2754 if ((symval & -2) == (RTYPE_GP | 2))
2755 return RTYPE_VEC | (symval & 1);
2756 return symval;
2757 }
2758
2759 /* Return true if string [S, E) is a valid register name, storing its
2760 symbol value in *SYMVAL_PTR if so. */
2761
2762 static bfd_boolean
2763 mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
2764 {
2765 char save_c;
2766 symbolS *symbol;
2767
2768 /* Terminate name. */
2769 save_c = *e;
2770 *e = '\0';
2771
2772 /* Look up the name. */
2773 symbol = symbol_find (s);
2774 *e = save_c;
2775
2776 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2777 return FALSE;
2778
2779 *symval_ptr = S_GET_VALUE (symbol);
2780 return TRUE;
2781 }
2782
2783 /* Return true if the string at *SPTR is a valid register name. Allow it
2784 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2785 is nonnull.
2786
2787 When returning true, move *SPTR past the register, store the
2788 register's symbol value in *SYMVAL_PTR and the channel mask in
2789 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2790 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2791 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2792
2793 static bfd_boolean
2794 mips_parse_register (char **sptr, unsigned int *symval_ptr,
2795 unsigned int *channels_ptr)
2796 {
2797 char *s, *e, *m;
2798 const char *q;
2799 unsigned int channels, symval, bit;
2800
2801 /* Find end of name. */
2802 s = e = *sptr;
2803 if (is_name_beginner (*e))
2804 ++e;
2805 while (is_part_of_name (*e))
2806 ++e;
2807
2808 channels = 0;
2809 if (!mips_parse_register_1 (s, e, &symval))
2810 {
2811 if (!channels_ptr)
2812 return FALSE;
2813
2814 /* Eat characters from the end of the string that are valid
2815 channel suffixes. The preceding register must be $ACC or
2816 end with a digit, so there is no ambiguity. */
2817 bit = 1;
2818 m = e;
2819 for (q = "wzyx"; *q; q++, bit <<= 1)
2820 if (m > s && m[-1] == *q)
2821 {
2822 --m;
2823 channels |= bit;
2824 }
2825
2826 if (channels == 0
2827 || !mips_parse_register_1 (s, m, &symval)
2828 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2829 return FALSE;
2830 }
2831
2832 *sptr = e;
2833 *symval_ptr = symval;
2834 if (channels_ptr)
2835 *channels_ptr = channels;
2836 return TRUE;
2837 }
2838
2839 /* Check if SPTR points at a valid register specifier according to TYPES.
2840 If so, then return 1, advance S to consume the specifier and store
2841 the register's number in REGNOP, otherwise return 0. */
2842
2843 static int
2844 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2845 {
2846 unsigned int regno;
2847
2848 if (mips_parse_register (s, &regno, NULL))
2849 {
2850 if (types & RTYPE_VEC)
2851 regno = mips_prefer_vec_regno (regno);
2852 if (regno & types)
2853 regno &= RNUM_MASK;
2854 else
2855 regno = ~0;
2856 }
2857 else
2858 {
2859 if (types & RWARN)
2860 as_warn (_("unrecognized register name `%s'"), *s);
2861 regno = ~0;
2862 }
2863 if (regnop)
2864 *regnop = regno;
2865 return regno <= RNUM_MASK;
2866 }
2867
2868 /* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2869 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2870
2871 static char *
2872 mips_parse_vu0_channels (char *s, unsigned int *channels)
2873 {
2874 unsigned int i;
2875
2876 *channels = 0;
2877 for (i = 0; i < 4; i++)
2878 if (*s == "xyzw"[i])
2879 {
2880 *channels |= 1 << (3 - i);
2881 ++s;
2882 }
2883 return s;
2884 }
2885
2886 /* Token types for parsed operand lists. */
2887 enum mips_operand_token_type {
2888 /* A plain register, e.g. $f2. */
2889 OT_REG,
2890
2891 /* A 4-bit XYZW channel mask. */
2892 OT_CHANNELS,
2893
2894 /* A constant vector index, e.g. [1]. */
2895 OT_INTEGER_INDEX,
2896
2897 /* A register vector index, e.g. [$2]. */
2898 OT_REG_INDEX,
2899
2900 /* A continuous range of registers, e.g. $s0-$s4. */
2901 OT_REG_RANGE,
2902
2903 /* A (possibly relocated) expression. */
2904 OT_INTEGER,
2905
2906 /* A floating-point value. */
2907 OT_FLOAT,
2908
2909 /* A single character. This can be '(', ')' or ',', but '(' only appears
2910 before OT_REGs. */
2911 OT_CHAR,
2912
2913 /* A doubled character, either "--" or "++". */
2914 OT_DOUBLE_CHAR,
2915
2916 /* The end of the operand list. */
2917 OT_END
2918 };
2919
2920 /* A parsed operand token. */
2921 struct mips_operand_token
2922 {
2923 /* The type of token. */
2924 enum mips_operand_token_type type;
2925 union
2926 {
2927 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
2928 unsigned int regno;
2929
2930 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2931 unsigned int channels;
2932
2933 /* The integer value of an OT_INTEGER_INDEX. */
2934 addressT index;
2935
2936 /* The two register symbol values involved in an OT_REG_RANGE. */
2937 struct {
2938 unsigned int regno1;
2939 unsigned int regno2;
2940 } reg_range;
2941
2942 /* The value of an OT_INTEGER. The value is represented as an
2943 expression and the relocation operators that were applied to
2944 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2945 relocation operators were used. */
2946 struct {
2947 expressionS value;
2948 bfd_reloc_code_real_type relocs[3];
2949 } integer;
2950
2951 /* The binary data for an OT_FLOAT constant, and the number of bytes
2952 in the constant. */
2953 struct {
2954 unsigned char data[8];
2955 int length;
2956 } flt;
2957
2958 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
2959 char ch;
2960 } u;
2961 };
2962
2963 /* An obstack used to construct lists of mips_operand_tokens. */
2964 static struct obstack mips_operand_tokens;
2965
2966 /* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2967
2968 static void
2969 mips_add_token (struct mips_operand_token *token,
2970 enum mips_operand_token_type type)
2971 {
2972 token->type = type;
2973 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
2974 }
2975
2976 /* Check whether S is '(' followed by a register name. Add OT_CHAR
2977 and OT_REG tokens for them if so, and return a pointer to the first
2978 unconsumed character. Return null otherwise. */
2979
2980 static char *
2981 mips_parse_base_start (char *s)
2982 {
2983 struct mips_operand_token token;
2984 unsigned int regno, channels;
2985 bfd_boolean decrement_p;
2986
2987 if (*s != '(')
2988 return 0;
2989
2990 ++s;
2991 SKIP_SPACE_TABS (s);
2992
2993 /* Only match "--" as part of a base expression. In other contexts "--X"
2994 is a double negative. */
2995 decrement_p = (s[0] == '-' && s[1] == '-');
2996 if (decrement_p)
2997 {
2998 s += 2;
2999 SKIP_SPACE_TABS (s);
3000 }
3001
3002 /* Allow a channel specifier because that leads to better error messages
3003 than treating something like "$vf0x++" as an expression. */
3004 if (!mips_parse_register (&s, &regno, &channels))
3005 return 0;
3006
3007 token.u.ch = '(';
3008 mips_add_token (&token, OT_CHAR);
3009
3010 if (decrement_p)
3011 {
3012 token.u.ch = '-';
3013 mips_add_token (&token, OT_DOUBLE_CHAR);
3014 }
3015
3016 token.u.regno = regno;
3017 mips_add_token (&token, OT_REG);
3018
3019 if (channels)
3020 {
3021 token.u.channels = channels;
3022 mips_add_token (&token, OT_CHANNELS);
3023 }
3024
3025 /* For consistency, only match "++" as part of base expressions too. */
3026 SKIP_SPACE_TABS (s);
3027 if (s[0] == '+' && s[1] == '+')
3028 {
3029 s += 2;
3030 token.u.ch = '+';
3031 mips_add_token (&token, OT_DOUBLE_CHAR);
3032 }
3033
3034 return s;
3035 }
3036
3037 /* Parse one or more tokens from S. Return a pointer to the first
3038 unconsumed character on success. Return null if an error was found
3039 and store the error text in insn_error. FLOAT_FORMAT is as for
3040 mips_parse_arguments. */
3041
3042 static char *
3043 mips_parse_argument_token (char *s, char float_format)
3044 {
3045 char *end, *save_in, *err;
3046 unsigned int regno1, regno2, channels;
3047 struct mips_operand_token token;
3048
3049 /* First look for "($reg", since we want to treat that as an
3050 OT_CHAR and OT_REG rather than an expression. */
3051 end = mips_parse_base_start (s);
3052 if (end)
3053 return end;
3054
3055 /* Handle other characters that end up as OT_CHARs. */
3056 if (*s == ')' || *s == ',')
3057 {
3058 token.u.ch = *s;
3059 mips_add_token (&token, OT_CHAR);
3060 ++s;
3061 return s;
3062 }
3063
3064 /* Handle tokens that start with a register. */
3065 if (mips_parse_register (&s, &regno1, &channels))
3066 {
3067 if (channels)
3068 {
3069 /* A register and a VU0 channel suffix. */
3070 token.u.regno = regno1;
3071 mips_add_token (&token, OT_REG);
3072
3073 token.u.channels = channels;
3074 mips_add_token (&token, OT_CHANNELS);
3075 return s;
3076 }
3077
3078 SKIP_SPACE_TABS (s);
3079 if (*s == '-')
3080 {
3081 /* A register range. */
3082 ++s;
3083 SKIP_SPACE_TABS (s);
3084 if (!mips_parse_register (&s, &regno2, NULL))
3085 {
3086 set_insn_error (0, _("invalid register range"));
3087 return 0;
3088 }
3089
3090 token.u.reg_range.regno1 = regno1;
3091 token.u.reg_range.regno2 = regno2;
3092 mips_add_token (&token, OT_REG_RANGE);
3093 return s;
3094 }
3095
3096 /* Add the register itself. */
3097 token.u.regno = regno1;
3098 mips_add_token (&token, OT_REG);
3099
3100 /* Check for a vector index. */
3101 if (*s == '[')
3102 {
3103 ++s;
3104 SKIP_SPACE_TABS (s);
3105 if (mips_parse_register (&s, &token.u.regno, NULL))
3106 mips_add_token (&token, OT_REG_INDEX);
3107 else
3108 {
3109 expressionS element;
3110
3111 my_getExpression (&element, s);
3112 if (element.X_op != O_constant)
3113 {
3114 set_insn_error (0, _("vector element must be constant"));
3115 return 0;
3116 }
3117 s = expr_end;
3118 token.u.index = element.X_add_number;
3119 mips_add_token (&token, OT_INTEGER_INDEX);
3120 }
3121 SKIP_SPACE_TABS (s);
3122 if (*s != ']')
3123 {
3124 set_insn_error (0, _("missing `]'"));
3125 return 0;
3126 }
3127 ++s;
3128 }
3129 return s;
3130 }
3131
3132 if (float_format)
3133 {
3134 /* First try to treat expressions as floats. */
3135 save_in = input_line_pointer;
3136 input_line_pointer = s;
3137 err = md_atof (float_format, (char *) token.u.flt.data,
3138 &token.u.flt.length);
3139 end = input_line_pointer;
3140 input_line_pointer = save_in;
3141 if (err && *err)
3142 {
3143 set_insn_error (0, err);
3144 return 0;
3145 }
3146 if (s != end)
3147 {
3148 mips_add_token (&token, OT_FLOAT);
3149 return end;
3150 }
3151 }
3152
3153 /* Treat everything else as an integer expression. */
3154 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3155 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3156 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3157 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3158 s = expr_end;
3159 mips_add_token (&token, OT_INTEGER);
3160 return s;
3161 }
3162
3163 /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3164 if expressions should be treated as 32-bit floating-point constants,
3165 'd' if they should be treated as 64-bit floating-point constants,
3166 or 0 if they should be treated as integer expressions (the usual case).
3167
3168 Return a list of tokens on success, otherwise return 0. The caller
3169 must obstack_free the list after use. */
3170
3171 static struct mips_operand_token *
3172 mips_parse_arguments (char *s, char float_format)
3173 {
3174 struct mips_operand_token token;
3175
3176 SKIP_SPACE_TABS (s);
3177 while (*s)
3178 {
3179 s = mips_parse_argument_token (s, float_format);
3180 if (!s)
3181 {
3182 obstack_free (&mips_operand_tokens,
3183 obstack_finish (&mips_operand_tokens));
3184 return 0;
3185 }
3186 SKIP_SPACE_TABS (s);
3187 }
3188 mips_add_token (&token, OT_END);
3189 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
3190 }
3191
3192 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3193 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
3194
3195 static bfd_boolean
3196 is_opcode_valid (const struct mips_opcode *mo)
3197 {
3198 int isa = mips_opts.isa;
3199 int ase = mips_opts.ase;
3200 int fp_s, fp_d;
3201 unsigned int i;
3202
3203 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
3204 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3205 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3206 ase |= mips_ases[i].flags64;
3207
3208 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
3209 return FALSE;
3210
3211 /* Check whether the instruction or macro requires single-precision or
3212 double-precision floating-point support. Note that this information is
3213 stored differently in the opcode table for insns and macros. */
3214 if (mo->pinfo == INSN_MACRO)
3215 {
3216 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3217 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3218 }
3219 else
3220 {
3221 fp_s = mo->pinfo & FP_S;
3222 fp_d = mo->pinfo & FP_D;
3223 }
3224
3225 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3226 return FALSE;
3227
3228 if (fp_s && mips_opts.soft_float)
3229 return FALSE;
3230
3231 return TRUE;
3232 }
3233
3234 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
3235 selected ISA and architecture. */
3236
3237 static bfd_boolean
3238 is_opcode_valid_16 (const struct mips_opcode *mo)
3239 {
3240 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
3241 }
3242
3243 /* Return TRUE if the size of the microMIPS opcode MO matches one
3244 explicitly requested. Always TRUE in the standard MIPS mode. */
3245
3246 static bfd_boolean
3247 is_size_valid (const struct mips_opcode *mo)
3248 {
3249 if (!mips_opts.micromips)
3250 return TRUE;
3251
3252 if (mips_opts.insn32)
3253 {
3254 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3255 return FALSE;
3256 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3257 return FALSE;
3258 }
3259 if (!forced_insn_length)
3260 return TRUE;
3261 if (mo->pinfo == INSN_MACRO)
3262 return FALSE;
3263 return forced_insn_length == micromips_insn_length (mo);
3264 }
3265
3266 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
3267 of the preceding instruction. Always TRUE in the standard MIPS mode.
3268
3269 We don't accept macros in 16-bit delay slots to avoid a case where
3270 a macro expansion fails because it relies on a preceding 32-bit real
3271 instruction to have matched and does not handle the operands correctly.
3272 The only macros that may expand to 16-bit instructions are JAL that
3273 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3274 and BGT (that likewise cannot be placed in a delay slot) that decay to
3275 a NOP. In all these cases the macros precede any corresponding real
3276 instruction definitions in the opcode table, so they will match in the
3277 second pass where the size of the delay slot is ignored and therefore
3278 produce correct code. */
3279
3280 static bfd_boolean
3281 is_delay_slot_valid (const struct mips_opcode *mo)
3282 {
3283 if (!mips_opts.micromips)
3284 return TRUE;
3285
3286 if (mo->pinfo == INSN_MACRO)
3287 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
3288 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3289 && micromips_insn_length (mo) != 4)
3290 return FALSE;
3291 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3292 && micromips_insn_length (mo) != 2)
3293 return FALSE;
3294
3295 return TRUE;
3296 }
3297
3298 /* For consistency checking, verify that all bits of OPCODE are specified
3299 either by the match/mask part of the instruction definition, or by the
3300 operand list. Also build up a list of operands in OPERANDS.
3301
3302 INSN_BITS says which bits of the instruction are significant.
3303 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3304 provides the mips_operand description of each operand. DECODE_OPERAND
3305 is null for MIPS16 instructions. */
3306
3307 static int
3308 validate_mips_insn (const struct mips_opcode *opcode,
3309 unsigned long insn_bits,
3310 const struct mips_operand *(*decode_operand) (const char *),
3311 struct mips_operand_array *operands)
3312 {
3313 const char *s;
3314 unsigned long used_bits, doubled, undefined, opno, mask;
3315 const struct mips_operand *operand;
3316
3317 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3318 if ((mask & opcode->match) != opcode->match)
3319 {
3320 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3321 opcode->name, opcode->args);
3322 return 0;
3323 }
3324 used_bits = 0;
3325 opno = 0;
3326 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3327 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
3328 for (s = opcode->args; *s; ++s)
3329 switch (*s)
3330 {
3331 case ',':
3332 case '(':
3333 case ')':
3334 break;
3335
3336 case '#':
3337 s++;
3338 break;
3339
3340 default:
3341 if (!decode_operand)
3342 operand = decode_mips16_operand (*s, FALSE);
3343 else
3344 operand = decode_operand (s);
3345 if (!operand && opcode->pinfo != INSN_MACRO)
3346 {
3347 as_bad (_("internal: unknown operand type: %s %s"),
3348 opcode->name, opcode->args);
3349 return 0;
3350 }
3351 gas_assert (opno < MAX_OPERANDS);
3352 operands->operand[opno] = operand;
3353 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
3354 {
3355 used_bits = mips_insert_operand (operand, used_bits, -1);
3356 if (operand->type == OP_MDMX_IMM_REG)
3357 /* Bit 5 is the format selector (OB vs QH). The opcode table
3358 has separate entries for each format. */
3359 used_bits &= ~(1 << (operand->lsb + 5));
3360 if (operand->type == OP_ENTRY_EXIT_LIST)
3361 used_bits &= ~(mask & 0x700);
3362 }
3363 /* Skip prefix characters. */
3364 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
3365 ++s;
3366 opno += 1;
3367 break;
3368 }
3369 doubled = used_bits & mask & insn_bits;
3370 if (doubled)
3371 {
3372 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3373 " %s %s"), doubled, opcode->name, opcode->args);
3374 return 0;
3375 }
3376 used_bits |= mask;
3377 undefined = ~used_bits & insn_bits;
3378 if (opcode->pinfo != INSN_MACRO && undefined)
3379 {
3380 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3381 undefined, opcode->name, opcode->args);
3382 return 0;
3383 }
3384 used_bits &= ~insn_bits;
3385 if (used_bits)
3386 {
3387 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3388 used_bits, opcode->name, opcode->args);
3389 return 0;
3390 }
3391 return 1;
3392 }
3393
3394 /* The MIPS16 version of validate_mips_insn. */
3395
3396 static int
3397 validate_mips16_insn (const struct mips_opcode *opcode,
3398 struct mips_operand_array *operands)
3399 {
3400 if (opcode->args[0] == 'a' || opcode->args[0] == 'i')
3401 {
3402 /* In this case OPCODE defines the first 16 bits in a 32-bit jump
3403 instruction. Use TMP to describe the full instruction. */
3404 struct mips_opcode tmp;
3405
3406 tmp = *opcode;
3407 tmp.match <<= 16;
3408 tmp.mask <<= 16;
3409 return validate_mips_insn (&tmp, 0xffffffff, 0, operands);
3410 }
3411 return validate_mips_insn (opcode, 0xffff, 0, operands);
3412 }
3413
3414 /* The microMIPS version of validate_mips_insn. */
3415
3416 static int
3417 validate_micromips_insn (const struct mips_opcode *opc,
3418 struct mips_operand_array *operands)
3419 {
3420 unsigned long insn_bits;
3421 unsigned long major;
3422 unsigned int length;
3423
3424 if (opc->pinfo == INSN_MACRO)
3425 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3426 operands);
3427
3428 length = micromips_insn_length (opc);
3429 if (length != 2 && length != 4)
3430 {
3431 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
3432 "%s %s"), length, opc->name, opc->args);
3433 return 0;
3434 }
3435 major = opc->match >> (10 + 8 * (length - 2));
3436 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3437 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3438 {
3439 as_bad (_("internal error: bad microMIPS opcode "
3440 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3441 return 0;
3442 }
3443
3444 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3445 insn_bits = 1 << 4 * length;
3446 insn_bits <<= 4 * length;
3447 insn_bits -= 1;
3448 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3449 operands);
3450 }
3451
3452 /* This function is called once, at assembler startup time. It should set up
3453 all the tables, etc. that the MD part of the assembler will need. */
3454
3455 void
3456 md_begin (void)
3457 {
3458 const char *retval = NULL;
3459 int i = 0;
3460 int broken = 0;
3461
3462 if (mips_pic != NO_PIC)
3463 {
3464 if (g_switch_seen && g_switch_value != 0)
3465 as_bad (_("-G may not be used in position-independent code"));
3466 g_switch_value = 0;
3467 }
3468 else if (mips_abicalls)
3469 {
3470 if (g_switch_seen && g_switch_value != 0)
3471 as_bad (_("-G may not be used with abicalls"));
3472 g_switch_value = 0;
3473 }
3474
3475 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3476 as_warn (_("could not set architecture and machine"));
3477
3478 op_hash = hash_new ();
3479
3480 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
3481 for (i = 0; i < NUMOPCODES;)
3482 {
3483 const char *name = mips_opcodes[i].name;
3484
3485 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
3486 if (retval != NULL)
3487 {
3488 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3489 mips_opcodes[i].name, retval);
3490 /* Probably a memory allocation problem? Give up now. */
3491 as_fatal (_("broken assembler, no assembly attempted"));
3492 }
3493 do
3494 {
3495 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3496 decode_mips_operand, &mips_operands[i]))
3497 broken = 1;
3498 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3499 {
3500 create_insn (&nop_insn, mips_opcodes + i);
3501 if (mips_fix_loongson2f_nop)
3502 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3503 nop_insn.fixed_p = 1;
3504 }
3505 ++i;
3506 }
3507 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3508 }
3509
3510 mips16_op_hash = hash_new ();
3511 mips16_operands = XCNEWVEC (struct mips_operand_array,
3512 bfd_mips16_num_opcodes);
3513
3514 i = 0;
3515 while (i < bfd_mips16_num_opcodes)
3516 {
3517 const char *name = mips16_opcodes[i].name;
3518
3519 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
3520 if (retval != NULL)
3521 as_fatal (_("internal: can't hash `%s': %s"),
3522 mips16_opcodes[i].name, retval);
3523 do
3524 {
3525 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3526 broken = 1;
3527 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3528 {
3529 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3530 mips16_nop_insn.fixed_p = 1;
3531 }
3532 ++i;
3533 }
3534 while (i < bfd_mips16_num_opcodes
3535 && strcmp (mips16_opcodes[i].name, name) == 0);
3536 }
3537
3538 micromips_op_hash = hash_new ();
3539 micromips_operands = XCNEWVEC (struct mips_operand_array,
3540 bfd_micromips_num_opcodes);
3541
3542 i = 0;
3543 while (i < bfd_micromips_num_opcodes)
3544 {
3545 const char *name = micromips_opcodes[i].name;
3546
3547 retval = hash_insert (micromips_op_hash, name,
3548 (void *) &micromips_opcodes[i]);
3549 if (retval != NULL)
3550 as_fatal (_("internal: can't hash `%s': %s"),
3551 micromips_opcodes[i].name, retval);
3552 do
3553 {
3554 struct mips_cl_insn *micromips_nop_insn;
3555
3556 if (!validate_micromips_insn (&micromips_opcodes[i],
3557 &micromips_operands[i]))
3558 broken = 1;
3559
3560 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3561 {
3562 if (micromips_insn_length (micromips_opcodes + i) == 2)
3563 micromips_nop_insn = &micromips_nop16_insn;
3564 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3565 micromips_nop_insn = &micromips_nop32_insn;
3566 else
3567 continue;
3568
3569 if (micromips_nop_insn->insn_mo == NULL
3570 && strcmp (name, "nop") == 0)
3571 {
3572 create_insn (micromips_nop_insn, micromips_opcodes + i);
3573 micromips_nop_insn->fixed_p = 1;
3574 }
3575 }
3576 }
3577 while (++i < bfd_micromips_num_opcodes
3578 && strcmp (micromips_opcodes[i].name, name) == 0);
3579 }
3580
3581 if (broken)
3582 as_fatal (_("broken assembler, no assembly attempted"));
3583
3584 /* We add all the general register names to the symbol table. This
3585 helps us detect invalid uses of them. */
3586 for (i = 0; reg_names[i].name; i++)
3587 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
3588 reg_names[i].num, /* & RNUM_MASK, */
3589 &zero_address_frag));
3590 if (HAVE_NEWABI)
3591 for (i = 0; reg_names_n32n64[i].name; i++)
3592 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
3593 reg_names_n32n64[i].num, /* & RNUM_MASK, */
3594 &zero_address_frag));
3595 else
3596 for (i = 0; reg_names_o32[i].name; i++)
3597 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
3598 reg_names_o32[i].num, /* & RNUM_MASK, */
3599 &zero_address_frag));
3600
3601 for (i = 0; i < 32; i++)
3602 {
3603 char regname[7];
3604
3605 /* R5900 VU0 floating-point register. */
3606 regname[sizeof (rename) - 1] = 0;
3607 snprintf (regname, sizeof (regname) - 1, "$vf%d", i);
3608 symbol_table_insert (symbol_new (regname, reg_section,
3609 RTYPE_VF | i, &zero_address_frag));
3610
3611 /* R5900 VU0 integer register. */
3612 snprintf (regname, sizeof (regname) - 1, "$vi%d", i);
3613 symbol_table_insert (symbol_new (regname, reg_section,
3614 RTYPE_VI | i, &zero_address_frag));
3615
3616 /* MSA register. */
3617 snprintf (regname, sizeof (regname) - 1, "$w%d", i);
3618 symbol_table_insert (symbol_new (regname, reg_section,
3619 RTYPE_MSA | i, &zero_address_frag));
3620 }
3621
3622 obstack_init (&mips_operand_tokens);
3623
3624 mips_no_prev_insn ();
3625
3626 mips_gprmask = 0;
3627 mips_cprmask[0] = 0;
3628 mips_cprmask[1] = 0;
3629 mips_cprmask[2] = 0;
3630 mips_cprmask[3] = 0;
3631
3632 /* set the default alignment for the text section (2**2) */
3633 record_alignment (text_section, 2);
3634
3635 bfd_set_gp_size (stdoutput, g_switch_value);
3636
3637 /* On a native system other than VxWorks, sections must be aligned
3638 to 16 byte boundaries. When configured for an embedded ELF
3639 target, we don't bother. */
3640 if (strncmp (TARGET_OS, "elf", 3) != 0
3641 && strncmp (TARGET_OS, "vxworks", 7) != 0)
3642 {
3643 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3644 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3645 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3646 }
3647
3648 /* Create a .reginfo section for register masks and a .mdebug
3649 section for debugging information. */
3650 {
3651 segT seg;
3652 subsegT subseg;
3653 flagword flags;
3654 segT sec;
3655
3656 seg = now_seg;
3657 subseg = now_subseg;
3658
3659 /* The ABI says this section should be loaded so that the
3660 running program can access it. However, we don't load it
3661 if we are configured for an embedded target */
3662 flags = SEC_READONLY | SEC_DATA;
3663 if (strncmp (TARGET_OS, "elf", 3) != 0)
3664 flags |= SEC_ALLOC | SEC_LOAD;
3665
3666 if (mips_abi != N64_ABI)
3667 {
3668 sec = subseg_new (".reginfo", (subsegT) 0);
3669
3670 bfd_set_section_flags (stdoutput, sec, flags);
3671 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
3672
3673 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3674 }
3675 else
3676 {
3677 /* The 64-bit ABI uses a .MIPS.options section rather than
3678 .reginfo section. */
3679 sec = subseg_new (".MIPS.options", (subsegT) 0);
3680 bfd_set_section_flags (stdoutput, sec, flags);
3681 bfd_set_section_alignment (stdoutput, sec, 3);
3682
3683 /* Set up the option header. */
3684 {
3685 Elf_Internal_Options opthdr;
3686 char *f;
3687
3688 opthdr.kind = ODK_REGINFO;
3689 opthdr.size = (sizeof (Elf_External_Options)
3690 + sizeof (Elf64_External_RegInfo));
3691 opthdr.section = 0;
3692 opthdr.info = 0;
3693 f = frag_more (sizeof (Elf_External_Options));
3694 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3695 (Elf_External_Options *) f);
3696
3697 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3698 }
3699 }
3700
3701 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3702 bfd_set_section_flags (stdoutput, sec,
3703 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3704 bfd_set_section_alignment (stdoutput, sec, 3);
3705 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3706
3707 if (ECOFF_DEBUGGING)
3708 {
3709 sec = subseg_new (".mdebug", (subsegT) 0);
3710 (void) bfd_set_section_flags (stdoutput, sec,
3711 SEC_HAS_CONTENTS | SEC_READONLY);
3712 (void) bfd_set_section_alignment (stdoutput, sec, 2);
3713 }
3714 else if (mips_flag_pdr)
3715 {
3716 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3717 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3718 SEC_READONLY | SEC_RELOC
3719 | SEC_DEBUGGING);
3720 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3721 }
3722
3723 subseg_set (seg, subseg);
3724 }
3725
3726 if (mips_fix_vr4120)
3727 init_vr4120_conflicts ();
3728 }
3729
3730 static inline void
3731 fpabi_incompatible_with (int fpabi, const char *what)
3732 {
3733 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3734 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3735 }
3736
3737 static inline void
3738 fpabi_requires (int fpabi, const char *what)
3739 {
3740 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3741 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3742 }
3743
3744 /* Check -mabi and register sizes against the specified FP ABI. */
3745 static void
3746 check_fpabi (int fpabi)
3747 {
3748 switch (fpabi)
3749 {
3750 case Val_GNU_MIPS_ABI_FP_DOUBLE:
3751 if (file_mips_opts.soft_float)
3752 fpabi_incompatible_with (fpabi, "softfloat");
3753 else if (file_mips_opts.single_float)
3754 fpabi_incompatible_with (fpabi, "singlefloat");
3755 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3756 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3757 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3758 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
3759 break;
3760
3761 case Val_GNU_MIPS_ABI_FP_XX:
3762 if (mips_abi != O32_ABI)
3763 fpabi_requires (fpabi, "-mabi=32");
3764 else if (file_mips_opts.soft_float)
3765 fpabi_incompatible_with (fpabi, "softfloat");
3766 else if (file_mips_opts.single_float)
3767 fpabi_incompatible_with (fpabi, "singlefloat");
3768 else if (file_mips_opts.fp != 0)
3769 fpabi_requires (fpabi, "fp=xx");
3770 break;
3771
3772 case Val_GNU_MIPS_ABI_FP_64A:
3773 case Val_GNU_MIPS_ABI_FP_64:
3774 if (mips_abi != O32_ABI)
3775 fpabi_requires (fpabi, "-mabi=32");
3776 else if (file_mips_opts.soft_float)
3777 fpabi_incompatible_with (fpabi, "softfloat");
3778 else if (file_mips_opts.single_float)
3779 fpabi_incompatible_with (fpabi, "singlefloat");
3780 else if (file_mips_opts.fp != 64)
3781 fpabi_requires (fpabi, "fp=64");
3782 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3783 fpabi_incompatible_with (fpabi, "nooddspreg");
3784 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3785 fpabi_requires (fpabi, "nooddspreg");
3786 break;
3787
3788 case Val_GNU_MIPS_ABI_FP_SINGLE:
3789 if (file_mips_opts.soft_float)
3790 fpabi_incompatible_with (fpabi, "softfloat");
3791 else if (!file_mips_opts.single_float)
3792 fpabi_requires (fpabi, "singlefloat");
3793 break;
3794
3795 case Val_GNU_MIPS_ABI_FP_SOFT:
3796 if (!file_mips_opts.soft_float)
3797 fpabi_requires (fpabi, "softfloat");
3798 break;
3799
3800 case Val_GNU_MIPS_ABI_FP_OLD_64:
3801 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3802 Tag_GNU_MIPS_ABI_FP, fpabi);
3803 break;
3804
3805 case Val_GNU_MIPS_ABI_FP_NAN2008:
3806 /* Silently ignore compatibility value. */
3807 break;
3808
3809 default:
3810 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3811 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3812 break;
3813 }
3814 }
3815
3816 /* Perform consistency checks on the current options. */
3817
3818 static void
3819 mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3820 {
3821 /* Check the size of integer registers agrees with the ABI and ISA. */
3822 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3823 as_bad (_("`gp=64' used with a 32-bit processor"));
3824 else if (abi_checks
3825 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3826 as_bad (_("`gp=32' used with a 64-bit ABI"));
3827 else if (abi_checks
3828 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3829 as_bad (_("`gp=64' used with a 32-bit ABI"));
3830
3831 /* Check the size of the float registers agrees with the ABI and ISA. */
3832 switch (opts->fp)
3833 {
3834 case 0:
3835 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3836 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3837 else if (opts->single_float == 1)
3838 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3839 break;
3840 case 64:
3841 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3842 as_bad (_("`fp=64' used with a 32-bit fpu"));
3843 else if (abi_checks
3844 && ABI_NEEDS_32BIT_REGS (mips_abi)
3845 && !ISA_HAS_MXHC1 (opts->isa))
3846 as_warn (_("`fp=64' used with a 32-bit ABI"));
3847 break;
3848 case 32:
3849 if (abi_checks
3850 && ABI_NEEDS_64BIT_REGS (mips_abi))
3851 as_warn (_("`fp=32' used with a 64-bit ABI"));
3852 if (ISA_IS_R6 (mips_opts.isa) && opts->single_float == 0)
3853 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
3854 break;
3855 default:
3856 as_bad (_("Unknown size of floating point registers"));
3857 break;
3858 }
3859
3860 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3861 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3862
3863 if (opts->micromips == 1 && opts->mips16 == 1)
3864 as_bad (_("`mips16' cannot be used with `micromips'"));
3865 else if (ISA_IS_R6 (mips_opts.isa)
3866 && (opts->micromips == 1
3867 || opts->mips16 == 1))
3868 as_fatal (_("`%s' can not be used with `%s'"),
3869 opts->micromips ? "micromips" : "mips16",
3870 mips_cpu_info_from_isa (mips_opts.isa)->name);
3871
3872 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3873 as_fatal (_("branch relaxation is not supported in `%s'"),
3874 mips_cpu_info_from_isa (opts->isa)->name);
3875 }
3876
3877 /* Perform consistency checks on the module level options exactly once.
3878 This is a deferred check that happens:
3879 at the first .set directive
3880 or, at the first pseudo op that generates code (inc .dc.a)
3881 or, at the first instruction
3882 or, at the end. */
3883
3884 static void
3885 file_mips_check_options (void)
3886 {
3887 const struct mips_cpu_info *arch_info = 0;
3888
3889 if (file_mips_opts_checked)
3890 return;
3891
3892 /* The following code determines the register size.
3893 Similar code was added to GCC 3.3 (see override_options() in
3894 config/mips/mips.c). The GAS and GCC code should be kept in sync
3895 as much as possible. */
3896
3897 if (file_mips_opts.gp < 0)
3898 {
3899 /* Infer the integer register size from the ABI and processor.
3900 Restrict ourselves to 32-bit registers if that's all the
3901 processor has, or if the ABI cannot handle 64-bit registers. */
3902 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
3903 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
3904 ? 32 : 64;
3905 }
3906
3907 if (file_mips_opts.fp < 0)
3908 {
3909 /* No user specified float register size.
3910 ??? GAS treats single-float processors as though they had 64-bit
3911 float registers (although it complains when double-precision
3912 instructions are used). As things stand, saying they have 32-bit
3913 registers would lead to spurious "register must be even" messages.
3914 So here we assume float registers are never smaller than the
3915 integer ones. */
3916 if (file_mips_opts.gp == 64)
3917 /* 64-bit integer registers implies 64-bit float registers. */
3918 file_mips_opts.fp = 64;
3919 else if ((file_mips_opts.ase & FP64_ASES)
3920 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
3921 /* Handle ASEs that require 64-bit float registers, if possible. */
3922 file_mips_opts.fp = 64;
3923 else if (ISA_IS_R6 (mips_opts.isa))
3924 /* R6 implies 64-bit float registers. */
3925 file_mips_opts.fp = 64;
3926 else
3927 /* 32-bit float registers. */
3928 file_mips_opts.fp = 32;
3929 }
3930
3931 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
3932
3933 /* Disable operations on odd-numbered floating-point registers by default
3934 when using the FPXX ABI. */
3935 if (file_mips_opts.oddspreg < 0)
3936 {
3937 if (file_mips_opts.fp == 0)
3938 file_mips_opts.oddspreg = 0;
3939 else
3940 file_mips_opts.oddspreg = 1;
3941 }
3942
3943 /* End of GCC-shared inference code. */
3944
3945 /* This flag is set when we have a 64-bit capable CPU but use only
3946 32-bit wide registers. Note that EABI does not use it. */
3947 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
3948 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
3949 || mips_abi == O32_ABI))
3950 mips_32bitmode = 1;
3951
3952 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
3953 as_bad (_("trap exception not supported at ISA 1"));
3954
3955 /* If the selected architecture includes support for ASEs, enable
3956 generation of code for them. */
3957 if (file_mips_opts.mips16 == -1)
3958 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
3959 if (file_mips_opts.micromips == -1)
3960 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
3961 ? 1 : 0;
3962
3963 if (mips_nan2008 == -1)
3964 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
3965 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
3966 as_fatal (_("`%s' does not support legacy NaN"),
3967 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
3968
3969 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
3970 being selected implicitly. */
3971 if (file_mips_opts.fp != 64)
3972 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
3973
3974 /* If the user didn't explicitly select or deselect a particular ASE,
3975 use the default setting for the CPU. */
3976 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
3977
3978 /* Set up the current options. These may change throughout assembly. */
3979 mips_opts = file_mips_opts;
3980
3981 mips_check_isa_supports_ases ();
3982 mips_check_options (&file_mips_opts, TRUE);
3983 file_mips_opts_checked = TRUE;
3984
3985 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3986 as_warn (_("could not set architecture and machine"));
3987 }
3988
3989 void
3990 md_assemble (char *str)
3991 {
3992 struct mips_cl_insn insn;
3993 bfd_reloc_code_real_type unused_reloc[3]
3994 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3995
3996 file_mips_check_options ();
3997
3998 imm_expr.X_op = O_absent;
3999 offset_expr.X_op = O_absent;
4000 offset_reloc[0] = BFD_RELOC_UNUSED;
4001 offset_reloc[1] = BFD_RELOC_UNUSED;
4002 offset_reloc[2] = BFD_RELOC_UNUSED;
4003
4004 mips_mark_labels ();
4005 mips_assembling_insn = TRUE;
4006 clear_insn_error ();
4007
4008 if (mips_opts.mips16)
4009 mips16_ip (str, &insn);
4010 else
4011 {
4012 mips_ip (str, &insn);
4013 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4014 str, insn.insn_opcode));
4015 }
4016
4017 if (insn_error.msg)
4018 report_insn_error (str);
4019 else if (insn.insn_mo->pinfo == INSN_MACRO)
4020 {
4021 macro_start ();
4022 if (mips_opts.mips16)
4023 mips16_macro (&insn);
4024 else
4025 macro (&insn, str);
4026 macro_end ();
4027 }
4028 else
4029 {
4030 if (offset_expr.X_op != O_absent)
4031 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
4032 else
4033 append_insn (&insn, NULL, unused_reloc, FALSE);
4034 }
4035
4036 mips_assembling_insn = FALSE;
4037 }
4038
4039 /* Convenience functions for abstracting away the differences between
4040 MIPS16 and non-MIPS16 relocations. */
4041
4042 static inline bfd_boolean
4043 mips16_reloc_p (bfd_reloc_code_real_type reloc)
4044 {
4045 switch (reloc)
4046 {
4047 case BFD_RELOC_MIPS16_JMP:
4048 case BFD_RELOC_MIPS16_GPREL:
4049 case BFD_RELOC_MIPS16_GOT16:
4050 case BFD_RELOC_MIPS16_CALL16:
4051 case BFD_RELOC_MIPS16_HI16_S:
4052 case BFD_RELOC_MIPS16_HI16:
4053 case BFD_RELOC_MIPS16_LO16:
4054 return TRUE;
4055
4056 default:
4057 return FALSE;
4058 }
4059 }
4060
4061 static inline bfd_boolean
4062 micromips_reloc_p (bfd_reloc_code_real_type reloc)
4063 {
4064 switch (reloc)
4065 {
4066 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4067 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4068 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4069 case BFD_RELOC_MICROMIPS_GPREL16:
4070 case BFD_RELOC_MICROMIPS_JMP:
4071 case BFD_RELOC_MICROMIPS_HI16:
4072 case BFD_RELOC_MICROMIPS_HI16_S:
4073 case BFD_RELOC_MICROMIPS_LO16:
4074 case BFD_RELOC_MICROMIPS_LITERAL:
4075 case BFD_RELOC_MICROMIPS_GOT16:
4076 case BFD_RELOC_MICROMIPS_CALL16:
4077 case BFD_RELOC_MICROMIPS_GOT_HI16:
4078 case BFD_RELOC_MICROMIPS_GOT_LO16:
4079 case BFD_RELOC_MICROMIPS_CALL_HI16:
4080 case BFD_RELOC_MICROMIPS_CALL_LO16:
4081 case BFD_RELOC_MICROMIPS_SUB:
4082 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4083 case BFD_RELOC_MICROMIPS_GOT_OFST:
4084 case BFD_RELOC_MICROMIPS_GOT_DISP:
4085 case BFD_RELOC_MICROMIPS_HIGHEST:
4086 case BFD_RELOC_MICROMIPS_HIGHER:
4087 case BFD_RELOC_MICROMIPS_SCN_DISP:
4088 case BFD_RELOC_MICROMIPS_JALR:
4089 return TRUE;
4090
4091 default:
4092 return FALSE;
4093 }
4094 }
4095
4096 static inline bfd_boolean
4097 jmp_reloc_p (bfd_reloc_code_real_type reloc)
4098 {
4099 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4100 }
4101
4102 static inline bfd_boolean
4103 got16_reloc_p (bfd_reloc_code_real_type reloc)
4104 {
4105 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
4106 || reloc == BFD_RELOC_MICROMIPS_GOT16);
4107 }
4108
4109 static inline bfd_boolean
4110 hi16_reloc_p (bfd_reloc_code_real_type reloc)
4111 {
4112 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
4113 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
4114 }
4115
4116 static inline bfd_boolean
4117 lo16_reloc_p (bfd_reloc_code_real_type reloc)
4118 {
4119 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
4120 || reloc == BFD_RELOC_MICROMIPS_LO16);
4121 }
4122
4123 static inline bfd_boolean
4124 jalr_reloc_p (bfd_reloc_code_real_type reloc)
4125 {
4126 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
4127 }
4128
4129 static inline bfd_boolean
4130 gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4131 {
4132 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4133 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4134 }
4135
4136 /* Return true if RELOC is a PC-relative relocation that does not have
4137 full address range. */
4138
4139 static inline bfd_boolean
4140 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4141 {
4142 switch (reloc)
4143 {
4144 case BFD_RELOC_16_PCREL_S2:
4145 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4146 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4147 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4148 case BFD_RELOC_MIPS_21_PCREL_S2:
4149 case BFD_RELOC_MIPS_26_PCREL_S2:
4150 case BFD_RELOC_MIPS_18_PCREL_S3:
4151 case BFD_RELOC_MIPS_19_PCREL_S2:
4152 return TRUE;
4153
4154 case BFD_RELOC_32_PCREL:
4155 case BFD_RELOC_HI16_S_PCREL:
4156 case BFD_RELOC_LO16_PCREL:
4157 return HAVE_64BIT_ADDRESSES;
4158
4159 default:
4160 return FALSE;
4161 }
4162 }
4163
4164 /* Return true if the given relocation might need a matching %lo().
4165 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4166 need a matching %lo() when applied to local symbols. */
4167
4168 static inline bfd_boolean
4169 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
4170 {
4171 return (HAVE_IN_PLACE_ADDENDS
4172 && (hi16_reloc_p (reloc)
4173 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4174 all GOT16 relocations evaluate to "G". */
4175 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4176 }
4177
4178 /* Return the type of %lo() reloc needed by RELOC, given that
4179 reloc_needs_lo_p. */
4180
4181 static inline bfd_reloc_code_real_type
4182 matching_lo_reloc (bfd_reloc_code_real_type reloc)
4183 {
4184 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4185 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4186 : BFD_RELOC_LO16));
4187 }
4188
4189 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
4190 relocation. */
4191
4192 static inline bfd_boolean
4193 fixup_has_matching_lo_p (fixS *fixp)
4194 {
4195 return (fixp->fx_next != NULL
4196 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
4197 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4198 && fixp->fx_offset == fixp->fx_next->fx_offset);
4199 }
4200
4201 /* Move all labels in LABELS to the current insertion point. TEXT_P
4202 says whether the labels refer to text or data. */
4203
4204 static void
4205 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
4206 {
4207 struct insn_label_list *l;
4208 valueT val;
4209
4210 for (l = labels; l != NULL; l = l->next)
4211 {
4212 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
4213 symbol_set_frag (l->label, frag_now);
4214 val = (valueT) frag_now_fix ();
4215 /* MIPS16/microMIPS text labels are stored as odd. */
4216 if (text_p && HAVE_CODE_COMPRESSION)
4217 ++val;
4218 S_SET_VALUE (l->label, val);
4219 }
4220 }
4221
4222 /* Move all labels in insn_labels to the current insertion point
4223 and treat them as text labels. */
4224
4225 static void
4226 mips_move_text_labels (void)
4227 {
4228 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4229 }
4230
4231 static bfd_boolean
4232 s_is_linkonce (symbolS *sym, segT from_seg)
4233 {
4234 bfd_boolean linkonce = FALSE;
4235 segT symseg = S_GET_SEGMENT (sym);
4236
4237 if (symseg != from_seg && !S_IS_LOCAL (sym))
4238 {
4239 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4240 linkonce = TRUE;
4241 /* The GNU toolchain uses an extension for ELF: a section
4242 beginning with the magic string .gnu.linkonce is a
4243 linkonce section. */
4244 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4245 sizeof ".gnu.linkonce" - 1) == 0)
4246 linkonce = TRUE;
4247 }
4248 return linkonce;
4249 }
4250
4251 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
4252 linker to handle them specially, such as generating jalx instructions
4253 when needed. We also make them odd for the duration of the assembly,
4254 in order to generate the right sort of code. We will make them even
4255 in the adjust_symtab routine, while leaving them marked. This is
4256 convenient for the debugger and the disassembler. The linker knows
4257 to make them odd again. */
4258
4259 static void
4260 mips_compressed_mark_label (symbolS *label)
4261 {
4262 gas_assert (HAVE_CODE_COMPRESSION);
4263
4264 if (mips_opts.mips16)
4265 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4266 else
4267 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
4268 if ((S_GET_VALUE (label) & 1) == 0
4269 /* Don't adjust the address if the label is global or weak, or
4270 in a link-once section, since we'll be emitting symbol reloc
4271 references to it which will be patched up by the linker, and
4272 the final value of the symbol may or may not be MIPS16/microMIPS. */
4273 && !S_IS_WEAK (label)
4274 && !S_IS_EXTERNAL (label)
4275 && !s_is_linkonce (label, now_seg))
4276 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4277 }
4278
4279 /* Mark preceding MIPS16 or microMIPS instruction labels. */
4280
4281 static void
4282 mips_compressed_mark_labels (void)
4283 {
4284 struct insn_label_list *l;
4285
4286 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4287 mips_compressed_mark_label (l->label);
4288 }
4289
4290 /* End the current frag. Make it a variant frag and record the
4291 relaxation info. */
4292
4293 static void
4294 relax_close_frag (void)
4295 {
4296 mips_macro_warning.first_frag = frag_now;
4297 frag_var (rs_machine_dependent, 0, 0,
4298 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
4299 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4300
4301 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4302 mips_relax.first_fixup = 0;
4303 }
4304
4305 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
4306 See the comment above RELAX_ENCODE for more details. */
4307
4308 static void
4309 relax_start (symbolS *symbol)
4310 {
4311 gas_assert (mips_relax.sequence == 0);
4312 mips_relax.sequence = 1;
4313 mips_relax.symbol = symbol;
4314 }
4315
4316 /* Start generating the second version of a relaxable sequence.
4317 See the comment above RELAX_ENCODE for more details. */
4318
4319 static void
4320 relax_switch (void)
4321 {
4322 gas_assert (mips_relax.sequence == 1);
4323 mips_relax.sequence = 2;
4324 }
4325
4326 /* End the current relaxable sequence. */
4327
4328 static void
4329 relax_end (void)
4330 {
4331 gas_assert (mips_relax.sequence == 2);
4332 relax_close_frag ();
4333 mips_relax.sequence = 0;
4334 }
4335
4336 /* Return true if IP is a delayed branch or jump. */
4337
4338 static inline bfd_boolean
4339 delayed_branch_p (const struct mips_cl_insn *ip)
4340 {
4341 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4342 | INSN_COND_BRANCH_DELAY
4343 | INSN_COND_BRANCH_LIKELY)) != 0;
4344 }
4345
4346 /* Return true if IP is a compact branch or jump. */
4347
4348 static inline bfd_boolean
4349 compact_branch_p (const struct mips_cl_insn *ip)
4350 {
4351 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4352 | INSN2_COND_BRANCH)) != 0;
4353 }
4354
4355 /* Return true if IP is an unconditional branch or jump. */
4356
4357 static inline bfd_boolean
4358 uncond_branch_p (const struct mips_cl_insn *ip)
4359 {
4360 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
4361 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
4362 }
4363
4364 /* Return true if IP is a branch-likely instruction. */
4365
4366 static inline bfd_boolean
4367 branch_likely_p (const struct mips_cl_insn *ip)
4368 {
4369 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4370 }
4371
4372 /* Return the type of nop that should be used to fill the delay slot
4373 of delayed branch IP. */
4374
4375 static struct mips_cl_insn *
4376 get_delay_slot_nop (const struct mips_cl_insn *ip)
4377 {
4378 if (mips_opts.micromips
4379 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4380 return &micromips_nop32_insn;
4381 return NOP_INSN;
4382 }
4383
4384 /* Return a mask that has bit N set if OPCODE reads the register(s)
4385 in operand N. */
4386
4387 static unsigned int
4388 insn_read_mask (const struct mips_opcode *opcode)
4389 {
4390 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4391 }
4392
4393 /* Return a mask that has bit N set if OPCODE writes to the register(s)
4394 in operand N. */
4395
4396 static unsigned int
4397 insn_write_mask (const struct mips_opcode *opcode)
4398 {
4399 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4400 }
4401
4402 /* Return a mask of the registers specified by operand OPERAND of INSN.
4403 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4404 is set. */
4405
4406 static unsigned int
4407 operand_reg_mask (const struct mips_cl_insn *insn,
4408 const struct mips_operand *operand,
4409 unsigned int type_mask)
4410 {
4411 unsigned int uval, vsel;
4412
4413 switch (operand->type)
4414 {
4415 case OP_INT:
4416 case OP_MAPPED_INT:
4417 case OP_MSB:
4418 case OP_PCREL:
4419 case OP_PERF_REG:
4420 case OP_ADDIUSP_INT:
4421 case OP_ENTRY_EXIT_LIST:
4422 case OP_REPEAT_DEST_REG:
4423 case OP_REPEAT_PREV_REG:
4424 case OP_PC:
4425 case OP_VU0_SUFFIX:
4426 case OP_VU0_MATCH_SUFFIX:
4427 case OP_IMM_INDEX:
4428 abort ();
4429
4430 case OP_REG:
4431 case OP_OPTIONAL_REG:
4432 {
4433 const struct mips_reg_operand *reg_op;
4434
4435 reg_op = (const struct mips_reg_operand *) operand;
4436 if (!(type_mask & (1 << reg_op->reg_type)))
4437 return 0;
4438 uval = insn_extract_operand (insn, operand);
4439 return 1 << mips_decode_reg_operand (reg_op, uval);
4440 }
4441
4442 case OP_REG_PAIR:
4443 {
4444 const struct mips_reg_pair_operand *pair_op;
4445
4446 pair_op = (const struct mips_reg_pair_operand *) operand;
4447 if (!(type_mask & (1 << pair_op->reg_type)))
4448 return 0;
4449 uval = insn_extract_operand (insn, operand);
4450 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4451 }
4452
4453 case OP_CLO_CLZ_DEST:
4454 if (!(type_mask & (1 << OP_REG_GP)))
4455 return 0;
4456 uval = insn_extract_operand (insn, operand);
4457 return (1 << (uval & 31)) | (1 << (uval >> 5));
4458
4459 case OP_SAME_RS_RT:
4460 if (!(type_mask & (1 << OP_REG_GP)))
4461 return 0;
4462 uval = insn_extract_operand (insn, operand);
4463 gas_assert ((uval & 31) == (uval >> 5));
4464 return 1 << (uval & 31);
4465
4466 case OP_CHECK_PREV:
4467 case OP_NON_ZERO_REG:
4468 if (!(type_mask & (1 << OP_REG_GP)))
4469 return 0;
4470 uval = insn_extract_operand (insn, operand);
4471 return 1 << (uval & 31);
4472
4473 case OP_LWM_SWM_LIST:
4474 abort ();
4475
4476 case OP_SAVE_RESTORE_LIST:
4477 abort ();
4478
4479 case OP_MDMX_IMM_REG:
4480 if (!(type_mask & (1 << OP_REG_VEC)))
4481 return 0;
4482 uval = insn_extract_operand (insn, operand);
4483 vsel = uval >> 5;
4484 if ((vsel & 0x18) == 0x18)
4485 return 0;
4486 return 1 << (uval & 31);
4487
4488 case OP_REG_INDEX:
4489 if (!(type_mask & (1 << OP_REG_GP)))
4490 return 0;
4491 return 1 << insn_extract_operand (insn, operand);
4492 }
4493 abort ();
4494 }
4495
4496 /* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4497 where bit N of OPNO_MASK is set if operand N should be included.
4498 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4499 is set. */
4500
4501 static unsigned int
4502 insn_reg_mask (const struct mips_cl_insn *insn,
4503 unsigned int type_mask, unsigned int opno_mask)
4504 {
4505 unsigned int opno, reg_mask;
4506
4507 opno = 0;
4508 reg_mask = 0;
4509 while (opno_mask != 0)
4510 {
4511 if (opno_mask & 1)
4512 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4513 opno_mask >>= 1;
4514 opno += 1;
4515 }
4516 return reg_mask;
4517 }
4518
4519 /* Return the mask of core registers that IP reads. */
4520
4521 static unsigned int
4522 gpr_read_mask (const struct mips_cl_insn *ip)
4523 {
4524 unsigned long pinfo, pinfo2;
4525 unsigned int mask;
4526
4527 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4528 pinfo = ip->insn_mo->pinfo;
4529 pinfo2 = ip->insn_mo->pinfo2;
4530 if (pinfo & INSN_UDI)
4531 {
4532 /* UDI instructions have traditionally been assumed to read RS
4533 and RT. */
4534 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4535 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4536 }
4537 if (pinfo & INSN_READ_GPR_24)
4538 mask |= 1 << 24;
4539 if (pinfo2 & INSN2_READ_GPR_16)
4540 mask |= 1 << 16;
4541 if (pinfo2 & INSN2_READ_SP)
4542 mask |= 1 << SP;
4543 if (pinfo2 & INSN2_READ_GPR_31)
4544 mask |= 1 << 31;
4545 /* Don't include register 0. */
4546 return mask & ~1;
4547 }
4548
4549 /* Return the mask of core registers that IP writes. */
4550
4551 static unsigned int
4552 gpr_write_mask (const struct mips_cl_insn *ip)
4553 {
4554 unsigned long pinfo, pinfo2;
4555 unsigned int mask;
4556
4557 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4558 pinfo = ip->insn_mo->pinfo;
4559 pinfo2 = ip->insn_mo->pinfo2;
4560 if (pinfo & INSN_WRITE_GPR_24)
4561 mask |= 1 << 24;
4562 if (pinfo & INSN_WRITE_GPR_31)
4563 mask |= 1 << 31;
4564 if (pinfo & INSN_UDI)
4565 /* UDI instructions have traditionally been assumed to write to RD. */
4566 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4567 if (pinfo2 & INSN2_WRITE_SP)
4568 mask |= 1 << SP;
4569 /* Don't include register 0. */
4570 return mask & ~1;
4571 }
4572
4573 /* Return the mask of floating-point registers that IP reads. */
4574
4575 static unsigned int
4576 fpr_read_mask (const struct mips_cl_insn *ip)
4577 {
4578 unsigned long pinfo;
4579 unsigned int mask;
4580
4581 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4582 | (1 << OP_REG_MSA)),
4583 insn_read_mask (ip->insn_mo));
4584 pinfo = ip->insn_mo->pinfo;
4585 /* Conservatively treat all operands to an FP_D instruction are doubles.
4586 (This is overly pessimistic for things like cvt.d.s.) */
4587 if (FPR_SIZE != 64 && (pinfo & FP_D))
4588 mask |= mask << 1;
4589 return mask;
4590 }
4591
4592 /* Return the mask of floating-point registers that IP writes. */
4593
4594 static unsigned int
4595 fpr_write_mask (const struct mips_cl_insn *ip)
4596 {
4597 unsigned long pinfo;
4598 unsigned int mask;
4599
4600 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4601 | (1 << OP_REG_MSA)),
4602 insn_write_mask (ip->insn_mo));
4603 pinfo = ip->insn_mo->pinfo;
4604 /* Conservatively treat all operands to an FP_D instruction are doubles.
4605 (This is overly pessimistic for things like cvt.s.d.) */
4606 if (FPR_SIZE != 64 && (pinfo & FP_D))
4607 mask |= mask << 1;
4608 return mask;
4609 }
4610
4611 /* Operand OPNUM of INSN is an odd-numbered floating-point register.
4612 Check whether that is allowed. */
4613
4614 static bfd_boolean
4615 mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4616 {
4617 const char *s = insn->name;
4618 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4619 || FPR_SIZE == 64)
4620 && mips_opts.oddspreg;
4621
4622 if (insn->pinfo == INSN_MACRO)
4623 /* Let a macro pass, we'll catch it later when it is expanded. */
4624 return TRUE;
4625
4626 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4627 otherwise it depends on oddspreg. */
4628 if ((insn->pinfo & FP_S)
4629 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
4630 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
4631 return FPR_SIZE == 32 || oddspreg;
4632
4633 /* Allow odd registers for single-precision ops and double-precision if the
4634 floating-point registers are 64-bit wide. */
4635 switch (insn->pinfo & (FP_S | FP_D))
4636 {
4637 case FP_S:
4638 case 0:
4639 return oddspreg;
4640 case FP_D:
4641 return FPR_SIZE == 64;
4642 default:
4643 break;
4644 }
4645
4646 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4647 s = strchr (insn->name, '.');
4648 if (s != NULL && opnum == 2)
4649 s = strchr (s + 1, '.');
4650 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4651 return oddspreg;
4652
4653 return FPR_SIZE == 64;
4654 }
4655
4656 /* Information about an instruction argument that we're trying to match. */
4657 struct mips_arg_info
4658 {
4659 /* The instruction so far. */
4660 struct mips_cl_insn *insn;
4661
4662 /* The first unconsumed operand token. */
4663 struct mips_operand_token *token;
4664
4665 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4666 int opnum;
4667
4668 /* The 1-based argument number, for error reporting. This does not
4669 count elided optional registers, etc.. */
4670 int argnum;
4671
4672 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4673 unsigned int last_regno;
4674
4675 /* If the first operand was an OP_REG, this is the register that it
4676 specified, otherwise it is ILLEGAL_REG. */
4677 unsigned int dest_regno;
4678
4679 /* The value of the last OP_INT operand. Only used for OP_MSB,
4680 where it gives the lsb position. */
4681 unsigned int last_op_int;
4682
4683 /* If true, match routines should assume that no later instruction
4684 alternative matches and should therefore be as accomodating as
4685 possible. Match routines should not report errors if something
4686 is only invalid for !LAX_MATCH. */
4687 bfd_boolean lax_match;
4688
4689 /* True if a reference to the current AT register was seen. */
4690 bfd_boolean seen_at;
4691 };
4692
4693 /* Record that the argument is out of range. */
4694
4695 static void
4696 match_out_of_range (struct mips_arg_info *arg)
4697 {
4698 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4699 }
4700
4701 /* Record that the argument isn't constant but needs to be. */
4702
4703 static void
4704 match_not_constant (struct mips_arg_info *arg)
4705 {
4706 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4707 arg->argnum);
4708 }
4709
4710 /* Try to match an OT_CHAR token for character CH. Consume the token
4711 and return true on success, otherwise return false. */
4712
4713 static bfd_boolean
4714 match_char (struct mips_arg_info *arg, char ch)
4715 {
4716 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4717 {
4718 ++arg->token;
4719 if (ch == ',')
4720 arg->argnum += 1;
4721 return TRUE;
4722 }
4723 return FALSE;
4724 }
4725
4726 /* Try to get an expression from the next tokens in ARG. Consume the
4727 tokens and return true on success, storing the expression value in
4728 VALUE and relocation types in R. */
4729
4730 static bfd_boolean
4731 match_expression (struct mips_arg_info *arg, expressionS *value,
4732 bfd_reloc_code_real_type *r)
4733 {
4734 /* If the next token is a '(' that was parsed as being part of a base
4735 expression, assume we have an elided offset. The later match will fail
4736 if this turns out to be wrong. */
4737 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
4738 {
4739 value->X_op = O_constant;
4740 value->X_add_number = 0;
4741 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
4742 return TRUE;
4743 }
4744
4745 /* Reject register-based expressions such as "0+$2" and "(($2))".
4746 For plain registers the default error seems more appropriate. */
4747 if (arg->token->type == OT_INTEGER
4748 && arg->token->u.integer.value.X_op == O_register)
4749 {
4750 set_insn_error (arg->argnum, _("register value used as expression"));
4751 return FALSE;
4752 }
4753
4754 if (arg->token->type == OT_INTEGER)
4755 {
4756 *value = arg->token->u.integer.value;
4757 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4758 ++arg->token;
4759 return TRUE;
4760 }
4761
4762 set_insn_error_i
4763 (arg->argnum, _("operand %d must be an immediate expression"),
4764 arg->argnum);
4765 return FALSE;
4766 }
4767
4768 /* Try to get a constant expression from the next tokens in ARG. Consume
4769 the tokens and return return true on success, storing the constant value
4770 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4771 error. */
4772
4773 static bfd_boolean
4774 match_const_int (struct mips_arg_info *arg, offsetT *value)
4775 {
4776 expressionS ex;
4777 bfd_reloc_code_real_type r[3];
4778
4779 if (!match_expression (arg, &ex, r))
4780 return FALSE;
4781
4782 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
4783 *value = ex.X_add_number;
4784 else
4785 {
4786 match_not_constant (arg);
4787 return FALSE;
4788 }
4789 return TRUE;
4790 }
4791
4792 /* Return the RTYPE_* flags for a register operand of type TYPE that
4793 appears in instruction OPCODE. */
4794
4795 static unsigned int
4796 convert_reg_type (const struct mips_opcode *opcode,
4797 enum mips_reg_operand_type type)
4798 {
4799 switch (type)
4800 {
4801 case OP_REG_GP:
4802 return RTYPE_NUM | RTYPE_GP;
4803
4804 case OP_REG_FP:
4805 /* Allow vector register names for MDMX if the instruction is a 64-bit
4806 FPR load, store or move (including moves to and from GPRs). */
4807 if ((mips_opts.ase & ASE_MDMX)
4808 && (opcode->pinfo & FP_D)
4809 && (opcode->pinfo & (INSN_COPROC_MOVE
4810 | INSN_COPROC_MEMORY_DELAY
4811 | INSN_LOAD_COPROC
4812 | INSN_LOAD_MEMORY
4813 | INSN_STORE_MEMORY)))
4814 return RTYPE_FPU | RTYPE_VEC;
4815 return RTYPE_FPU;
4816
4817 case OP_REG_CCC:
4818 if (opcode->pinfo & (FP_D | FP_S))
4819 return RTYPE_CCC | RTYPE_FCC;
4820 return RTYPE_CCC;
4821
4822 case OP_REG_VEC:
4823 if (opcode->membership & INSN_5400)
4824 return RTYPE_FPU;
4825 return RTYPE_FPU | RTYPE_VEC;
4826
4827 case OP_REG_ACC:
4828 return RTYPE_ACC;
4829
4830 case OP_REG_COPRO:
4831 if (opcode->name[strlen (opcode->name) - 1] == '0')
4832 return RTYPE_NUM | RTYPE_CP0;
4833 return RTYPE_NUM;
4834
4835 case OP_REG_HW:
4836 return RTYPE_NUM;
4837
4838 case OP_REG_VI:
4839 return RTYPE_NUM | RTYPE_VI;
4840
4841 case OP_REG_VF:
4842 return RTYPE_NUM | RTYPE_VF;
4843
4844 case OP_REG_R5900_I:
4845 return RTYPE_R5900_I;
4846
4847 case OP_REG_R5900_Q:
4848 return RTYPE_R5900_Q;
4849
4850 case OP_REG_R5900_R:
4851 return RTYPE_R5900_R;
4852
4853 case OP_REG_R5900_ACC:
4854 return RTYPE_R5900_ACC;
4855
4856 case OP_REG_MSA:
4857 return RTYPE_MSA;
4858
4859 case OP_REG_MSA_CTRL:
4860 return RTYPE_NUM;
4861 }
4862 abort ();
4863 }
4864
4865 /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4866
4867 static void
4868 check_regno (struct mips_arg_info *arg,
4869 enum mips_reg_operand_type type, unsigned int regno)
4870 {
4871 if (AT && type == OP_REG_GP && regno == AT)
4872 arg->seen_at = TRUE;
4873
4874 if (type == OP_REG_FP
4875 && (regno & 1) != 0
4876 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
4877 {
4878 /* This was a warning prior to introducing O32 FPXX and FP64 support
4879 so maintain a warning for FP32 but raise an error for the new
4880 cases. */
4881 if (FPR_SIZE == 32)
4882 as_warn (_("float register should be even, was %d"), regno);
4883 else
4884 as_bad (_("float register should be even, was %d"), regno);
4885 }
4886
4887 if (type == OP_REG_CCC)
4888 {
4889 const char *name;
4890 size_t length;
4891
4892 name = arg->insn->insn_mo->name;
4893 length = strlen (name);
4894 if ((regno & 1) != 0
4895 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4896 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
4897 as_warn (_("condition code register should be even for %s, was %d"),
4898 name, regno);
4899
4900 if ((regno & 3) != 0
4901 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
4902 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
4903 name, regno);
4904 }
4905 }
4906
4907 /* ARG is a register with symbol value SYMVAL. Try to interpret it as
4908 a register of type TYPE. Return true on success, storing the register
4909 number in *REGNO and warning about any dubious uses. */
4910
4911 static bfd_boolean
4912 match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4913 unsigned int symval, unsigned int *regno)
4914 {
4915 if (type == OP_REG_VEC)
4916 symval = mips_prefer_vec_regno (symval);
4917 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4918 return FALSE;
4919
4920 *regno = symval & RNUM_MASK;
4921 check_regno (arg, type, *regno);
4922 return TRUE;
4923 }
4924
4925 /* Try to interpret the next token in ARG as a register of type TYPE.
4926 Consume the token and return true on success, storing the register
4927 number in *REGNO. Return false on failure. */
4928
4929 static bfd_boolean
4930 match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4931 unsigned int *regno)
4932 {
4933 if (arg->token->type == OT_REG
4934 && match_regno (arg, type, arg->token->u.regno, regno))
4935 {
4936 ++arg->token;
4937 return TRUE;
4938 }
4939 return FALSE;
4940 }
4941
4942 /* Try to interpret the next token in ARG as a range of registers of type TYPE.
4943 Consume the token and return true on success, storing the register numbers
4944 in *REGNO1 and *REGNO2. Return false on failure. */
4945
4946 static bfd_boolean
4947 match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4948 unsigned int *regno1, unsigned int *regno2)
4949 {
4950 if (match_reg (arg, type, regno1))
4951 {
4952 *regno2 = *regno1;
4953 return TRUE;
4954 }
4955 if (arg->token->type == OT_REG_RANGE
4956 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
4957 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
4958 && *regno1 <= *regno2)
4959 {
4960 ++arg->token;
4961 return TRUE;
4962 }
4963 return FALSE;
4964 }
4965
4966 /* OP_INT matcher. */
4967
4968 static bfd_boolean
4969 match_int_operand (struct mips_arg_info *arg,
4970 const struct mips_operand *operand_base)
4971 {
4972 const struct mips_int_operand *operand;
4973 unsigned int uval;
4974 int min_val, max_val, factor;
4975 offsetT sval;
4976
4977 operand = (const struct mips_int_operand *) operand_base;
4978 factor = 1 << operand->shift;
4979 min_val = mips_int_operand_min (operand);
4980 max_val = mips_int_operand_max (operand);
4981
4982 if (operand_base->lsb == 0
4983 && operand_base->size == 16
4984 && operand->shift == 0
4985 && operand->bias == 0
4986 && (operand->max_val == 32767 || operand->max_val == 65535))
4987 {
4988 /* The operand can be relocated. */
4989 if (!match_expression (arg, &offset_expr, offset_reloc))
4990 return FALSE;
4991
4992 if (offset_reloc[0] != BFD_RELOC_UNUSED)
4993 /* Relocation operators were used. Accept the arguent and
4994 leave the relocation value in offset_expr and offset_relocs
4995 for the caller to process. */
4996 return TRUE;
4997
4998 if (offset_expr.X_op != O_constant)
4999 {
5000 /* Accept non-constant operands if no later alternative matches,
5001 leaving it for the caller to process. */
5002 if (!arg->lax_match)
5003 return FALSE;
5004 offset_reloc[0] = BFD_RELOC_LO16;
5005 return TRUE;
5006 }
5007
5008 /* Clear the global state; we're going to install the operand
5009 ourselves. */
5010 sval = offset_expr.X_add_number;
5011 offset_expr.X_op = O_absent;
5012
5013 /* For compatibility with older assemblers, we accept
5014 0x8000-0xffff as signed 16-bit numbers when only
5015 signed numbers are allowed. */
5016 if (sval > max_val)
5017 {
5018 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5019 if (!arg->lax_match && sval <= max_val)
5020 return FALSE;
5021 }
5022 }
5023 else
5024 {
5025 if (!match_const_int (arg, &sval))
5026 return FALSE;
5027 }
5028
5029 arg->last_op_int = sval;
5030
5031 if (sval < min_val || sval > max_val || sval % factor)
5032 {
5033 match_out_of_range (arg);
5034 return FALSE;
5035 }
5036
5037 uval = (unsigned int) sval >> operand->shift;
5038 uval -= operand->bias;
5039
5040 /* Handle -mfix-cn63xxp1. */
5041 if (arg->opnum == 1
5042 && mips_fix_cn63xxp1
5043 && !mips_opts.micromips
5044 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5045 switch (uval)
5046 {
5047 case 5:
5048 case 25:
5049 case 26:
5050 case 27:
5051 case 28:
5052 case 29:
5053 case 30:
5054 case 31:
5055 /* These are ok. */
5056 break;
5057
5058 default:
5059 /* The rest must be changed to 28. */
5060 uval = 28;
5061 break;
5062 }
5063
5064 insn_insert_operand (arg->insn, operand_base, uval);
5065 return TRUE;
5066 }
5067
5068 /* OP_MAPPED_INT matcher. */
5069
5070 static bfd_boolean
5071 match_mapped_int_operand (struct mips_arg_info *arg,
5072 const struct mips_operand *operand_base)
5073 {
5074 const struct mips_mapped_int_operand *operand;
5075 unsigned int uval, num_vals;
5076 offsetT sval;
5077
5078 operand = (const struct mips_mapped_int_operand *) operand_base;
5079 if (!match_const_int (arg, &sval))
5080 return FALSE;
5081
5082 num_vals = 1 << operand_base->size;
5083 for (uval = 0; uval < num_vals; uval++)
5084 if (operand->int_map[uval] == sval)
5085 break;
5086 if (uval == num_vals)
5087 {
5088 match_out_of_range (arg);
5089 return FALSE;
5090 }
5091
5092 insn_insert_operand (arg->insn, operand_base, uval);
5093 return TRUE;
5094 }
5095
5096 /* OP_MSB matcher. */
5097
5098 static bfd_boolean
5099 match_msb_operand (struct mips_arg_info *arg,
5100 const struct mips_operand *operand_base)
5101 {
5102 const struct mips_msb_operand *operand;
5103 int min_val, max_val, max_high;
5104 offsetT size, sval, high;
5105
5106 operand = (const struct mips_msb_operand *) operand_base;
5107 min_val = operand->bias;
5108 max_val = min_val + (1 << operand_base->size) - 1;
5109 max_high = operand->opsize;
5110
5111 if (!match_const_int (arg, &size))
5112 return FALSE;
5113
5114 high = size + arg->last_op_int;
5115 sval = operand->add_lsb ? high : size;
5116
5117 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5118 {
5119 match_out_of_range (arg);
5120 return FALSE;
5121 }
5122 insn_insert_operand (arg->insn, operand_base, sval - min_val);
5123 return TRUE;
5124 }
5125
5126 /* OP_REG matcher. */
5127
5128 static bfd_boolean
5129 match_reg_operand (struct mips_arg_info *arg,
5130 const struct mips_operand *operand_base)
5131 {
5132 const struct mips_reg_operand *operand;
5133 unsigned int regno, uval, num_vals;
5134
5135 operand = (const struct mips_reg_operand *) operand_base;
5136 if (!match_reg (arg, operand->reg_type, &regno))
5137 return FALSE;
5138
5139 if (operand->reg_map)
5140 {
5141 num_vals = 1 << operand->root.size;
5142 for (uval = 0; uval < num_vals; uval++)
5143 if (operand->reg_map[uval] == regno)
5144 break;
5145 if (num_vals == uval)
5146 return FALSE;
5147 }
5148 else
5149 uval = regno;
5150
5151 arg->last_regno = regno;
5152 if (arg->opnum == 1)
5153 arg->dest_regno = regno;
5154 insn_insert_operand (arg->insn, operand_base, uval);
5155 return TRUE;
5156 }
5157
5158 /* OP_REG_PAIR matcher. */
5159
5160 static bfd_boolean
5161 match_reg_pair_operand (struct mips_arg_info *arg,
5162 const struct mips_operand *operand_base)
5163 {
5164 const struct mips_reg_pair_operand *operand;
5165 unsigned int regno1, regno2, uval, num_vals;
5166
5167 operand = (const struct mips_reg_pair_operand *) operand_base;
5168 if (!match_reg (arg, operand->reg_type, &regno1)
5169 || !match_char (arg, ',')
5170 || !match_reg (arg, operand->reg_type, &regno2))
5171 return FALSE;
5172
5173 num_vals = 1 << operand_base->size;
5174 for (uval = 0; uval < num_vals; uval++)
5175 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5176 break;
5177 if (uval == num_vals)
5178 return FALSE;
5179
5180 insn_insert_operand (arg->insn, operand_base, uval);
5181 return TRUE;
5182 }
5183
5184 /* OP_PCREL matcher. The caller chooses the relocation type. */
5185
5186 static bfd_boolean
5187 match_pcrel_operand (struct mips_arg_info *arg)
5188 {
5189 bfd_reloc_code_real_type r[3];
5190
5191 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
5192 }
5193
5194 /* OP_PERF_REG matcher. */
5195
5196 static bfd_boolean
5197 match_perf_reg_operand (struct mips_arg_info *arg,
5198 const struct mips_operand *operand)
5199 {
5200 offsetT sval;
5201
5202 if (!match_const_int (arg, &sval))
5203 return FALSE;
5204
5205 if (sval != 0
5206 && (sval != 1
5207 || (mips_opts.arch == CPU_R5900
5208 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5209 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5210 {
5211 set_insn_error (arg->argnum, _("invalid performance register"));
5212 return FALSE;
5213 }
5214
5215 insn_insert_operand (arg->insn, operand, sval);
5216 return TRUE;
5217 }
5218
5219 /* OP_ADDIUSP matcher. */
5220
5221 static bfd_boolean
5222 match_addiusp_operand (struct mips_arg_info *arg,
5223 const struct mips_operand *operand)
5224 {
5225 offsetT sval;
5226 unsigned int uval;
5227
5228 if (!match_const_int (arg, &sval))
5229 return FALSE;
5230
5231 if (sval % 4)
5232 {
5233 match_out_of_range (arg);
5234 return FALSE;
5235 }
5236
5237 sval /= 4;
5238 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
5239 {
5240 match_out_of_range (arg);
5241 return FALSE;
5242 }
5243
5244 uval = (unsigned int) sval;
5245 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5246 insn_insert_operand (arg->insn, operand, uval);
5247 return TRUE;
5248 }
5249
5250 /* OP_CLO_CLZ_DEST matcher. */
5251
5252 static bfd_boolean
5253 match_clo_clz_dest_operand (struct mips_arg_info *arg,
5254 const struct mips_operand *operand)
5255 {
5256 unsigned int regno;
5257
5258 if (!match_reg (arg, OP_REG_GP, &regno))
5259 return FALSE;
5260
5261 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5262 return TRUE;
5263 }
5264
5265 /* OP_CHECK_PREV matcher. */
5266
5267 static bfd_boolean
5268 match_check_prev_operand (struct mips_arg_info *arg,
5269 const struct mips_operand *operand_base)
5270 {
5271 const struct mips_check_prev_operand *operand;
5272 unsigned int regno;
5273
5274 operand = (const struct mips_check_prev_operand *) operand_base;
5275
5276 if (!match_reg (arg, OP_REG_GP, &regno))
5277 return FALSE;
5278
5279 if (!operand->zero_ok && regno == 0)
5280 return FALSE;
5281
5282 if ((operand->less_than_ok && regno < arg->last_regno)
5283 || (operand->greater_than_ok && regno > arg->last_regno)
5284 || (operand->equal_ok && regno == arg->last_regno))
5285 {
5286 arg->last_regno = regno;
5287 insn_insert_operand (arg->insn, operand_base, regno);
5288 return TRUE;
5289 }
5290
5291 return FALSE;
5292 }
5293
5294 /* OP_SAME_RS_RT matcher. */
5295
5296 static bfd_boolean
5297 match_same_rs_rt_operand (struct mips_arg_info *arg,
5298 const struct mips_operand *operand)
5299 {
5300 unsigned int regno;
5301
5302 if (!match_reg (arg, OP_REG_GP, &regno))
5303 return FALSE;
5304
5305 if (regno == 0)
5306 {
5307 set_insn_error (arg->argnum, _("the source register must not be $0"));
5308 return FALSE;
5309 }
5310
5311 arg->last_regno = regno;
5312
5313 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5314 return TRUE;
5315 }
5316
5317 /* OP_LWM_SWM_LIST matcher. */
5318
5319 static bfd_boolean
5320 match_lwm_swm_list_operand (struct mips_arg_info *arg,
5321 const struct mips_operand *operand)
5322 {
5323 unsigned int reglist, sregs, ra, regno1, regno2;
5324 struct mips_arg_info reset;
5325
5326 reglist = 0;
5327 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5328 return FALSE;
5329 do
5330 {
5331 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5332 {
5333 reglist |= 1 << FP;
5334 regno2 = S7;
5335 }
5336 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5337 reset = *arg;
5338 }
5339 while (match_char (arg, ',')
5340 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5341 *arg = reset;
5342
5343 if (operand->size == 2)
5344 {
5345 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5346
5347 s0, ra
5348 s0, s1, ra, s2, s3
5349 s0-s2, ra
5350
5351 and any permutations of these. */
5352 if ((reglist & 0xfff1ffff) != 0x80010000)
5353 return FALSE;
5354
5355 sregs = (reglist >> 17) & 7;
5356 ra = 0;
5357 }
5358 else
5359 {
5360 /* The list must include at least one of ra and s0-sN,
5361 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5362 which are $23 and $30 respectively.) E.g.:
5363
5364 ra
5365 s0
5366 ra, s0, s1, s2
5367 s0-s8
5368 s0-s5, ra
5369
5370 and any permutations of these. */
5371 if ((reglist & 0x3f00ffff) != 0)
5372 return FALSE;
5373
5374 ra = (reglist >> 27) & 0x10;
5375 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5376 }
5377 sregs += 1;
5378 if ((sregs & -sregs) != sregs)
5379 return FALSE;
5380
5381 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
5382 return TRUE;
5383 }
5384
5385 /* OP_ENTRY_EXIT_LIST matcher. */
5386
5387 static unsigned int
5388 match_entry_exit_operand (struct mips_arg_info *arg,
5389 const struct mips_operand *operand)
5390 {
5391 unsigned int mask;
5392 bfd_boolean is_exit;
5393
5394 /* The format is the same for both ENTRY and EXIT, but the constraints
5395 are different. */
5396 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5397 mask = (is_exit ? 7 << 3 : 0);
5398 do
5399 {
5400 unsigned int regno1, regno2;
5401 bfd_boolean is_freg;
5402
5403 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5404 is_freg = FALSE;
5405 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
5406 is_freg = TRUE;
5407 else
5408 return FALSE;
5409
5410 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5411 {
5412 mask &= ~(7 << 3);
5413 mask |= (5 + regno2) << 3;
5414 }
5415 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5416 mask |= (regno2 - 3) << 3;
5417 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5418 mask |= (regno2 - 15) << 1;
5419 else if (regno1 == RA && regno2 == RA)
5420 mask |= 1;
5421 else
5422 return FALSE;
5423 }
5424 while (match_char (arg, ','));
5425
5426 insn_insert_operand (arg->insn, operand, mask);
5427 return TRUE;
5428 }
5429
5430 /* OP_SAVE_RESTORE_LIST matcher. */
5431
5432 static bfd_boolean
5433 match_save_restore_list_operand (struct mips_arg_info *arg)
5434 {
5435 unsigned int opcode, args, statics, sregs;
5436 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
5437 offsetT frame_size;
5438
5439 opcode = arg->insn->insn_opcode;
5440 frame_size = 0;
5441 num_frame_sizes = 0;
5442 args = 0;
5443 statics = 0;
5444 sregs = 0;
5445 do
5446 {
5447 unsigned int regno1, regno2;
5448
5449 if (arg->token->type == OT_INTEGER)
5450 {
5451 /* Handle the frame size. */
5452 if (!match_const_int (arg, &frame_size))
5453 return FALSE;
5454 num_frame_sizes += 1;
5455 }
5456 else
5457 {
5458 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5459 return FALSE;
5460
5461 while (regno1 <= regno2)
5462 {
5463 if (regno1 >= 4 && regno1 <= 7)
5464 {
5465 if (num_frame_sizes == 0)
5466 /* args $a0-$a3 */
5467 args |= 1 << (regno1 - 4);
5468 else
5469 /* statics $a0-$a3 */
5470 statics |= 1 << (regno1 - 4);
5471 }
5472 else if (regno1 >= 16 && regno1 <= 23)
5473 /* $s0-$s7 */
5474 sregs |= 1 << (regno1 - 16);
5475 else if (regno1 == 30)
5476 /* $s8 */
5477 sregs |= 1 << 8;
5478 else if (regno1 == 31)
5479 /* Add $ra to insn. */
5480 opcode |= 0x40;
5481 else
5482 return FALSE;
5483 regno1 += 1;
5484 if (regno1 == 24)
5485 regno1 = 30;
5486 }
5487 }
5488 }
5489 while (match_char (arg, ','));
5490
5491 /* Encode args/statics combination. */
5492 if (args & statics)
5493 return FALSE;
5494 else if (args == 0xf)
5495 /* All $a0-$a3 are args. */
5496 opcode |= MIPS16_ALL_ARGS << 16;
5497 else if (statics == 0xf)
5498 /* All $a0-$a3 are statics. */
5499 opcode |= MIPS16_ALL_STATICS << 16;
5500 else
5501 {
5502 /* Count arg registers. */
5503 num_args = 0;
5504 while (args & 0x1)
5505 {
5506 args >>= 1;
5507 num_args += 1;
5508 }
5509 if (args != 0)
5510 return FALSE;
5511
5512 /* Count static registers. */
5513 num_statics = 0;
5514 while (statics & 0x8)
5515 {
5516 statics = (statics << 1) & 0xf;
5517 num_statics += 1;
5518 }
5519 if (statics != 0)
5520 return FALSE;
5521
5522 /* Encode args/statics. */
5523 opcode |= ((num_args << 2) | num_statics) << 16;
5524 }
5525
5526 /* Encode $s0/$s1. */
5527 if (sregs & (1 << 0)) /* $s0 */
5528 opcode |= 0x20;
5529 if (sregs & (1 << 1)) /* $s1 */
5530 opcode |= 0x10;
5531 sregs >>= 2;
5532
5533 /* Encode $s2-$s8. */
5534 num_sregs = 0;
5535 while (sregs & 1)
5536 {
5537 sregs >>= 1;
5538 num_sregs += 1;
5539 }
5540 if (sregs != 0)
5541 return FALSE;
5542 opcode |= num_sregs << 24;
5543
5544 /* Encode frame size. */
5545 if (num_frame_sizes == 0)
5546 {
5547 set_insn_error (arg->argnum, _("missing frame size"));
5548 return FALSE;
5549 }
5550 if (num_frame_sizes > 1)
5551 {
5552 set_insn_error (arg->argnum, _("frame size specified twice"));
5553 return FALSE;
5554 }
5555 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5556 {
5557 set_insn_error (arg->argnum, _("invalid frame size"));
5558 return FALSE;
5559 }
5560 if (frame_size != 128 || (opcode >> 16) != 0)
5561 {
5562 frame_size /= 8;
5563 opcode |= (((frame_size & 0xf0) << 16)
5564 | (frame_size & 0x0f));
5565 }
5566
5567 /* Finally build the instruction. */
5568 if ((opcode >> 16) != 0 || frame_size == 0)
5569 opcode |= MIPS16_EXTEND;
5570 arg->insn->insn_opcode = opcode;
5571 return TRUE;
5572 }
5573
5574 /* OP_MDMX_IMM_REG matcher. */
5575
5576 static bfd_boolean
5577 match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
5578 const struct mips_operand *operand)
5579 {
5580 unsigned int regno, uval;
5581 bfd_boolean is_qh;
5582 const struct mips_opcode *opcode;
5583
5584 /* The mips_opcode records whether this is an octobyte or quadhalf
5585 instruction. Start out with that bit in place. */
5586 opcode = arg->insn->insn_mo;
5587 uval = mips_extract_operand (operand, opcode->match);
5588 is_qh = (uval != 0);
5589
5590 if (arg->token->type == OT_REG)
5591 {
5592 if ((opcode->membership & INSN_5400)
5593 && strcmp (opcode->name, "rzu.ob") == 0)
5594 {
5595 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5596 arg->argnum);
5597 return FALSE;
5598 }
5599
5600 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5601 return FALSE;
5602 ++arg->token;
5603
5604 /* Check whether this is a vector register or a broadcast of
5605 a single element. */
5606 if (arg->token->type == OT_INTEGER_INDEX)
5607 {
5608 if (arg->token->u.index > (is_qh ? 3 : 7))
5609 {
5610 set_insn_error (arg->argnum, _("invalid element selector"));
5611 return FALSE;
5612 }
5613 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5614 ++arg->token;
5615 }
5616 else
5617 {
5618 /* A full vector. */
5619 if ((opcode->membership & INSN_5400)
5620 && (strcmp (opcode->name, "sll.ob") == 0
5621 || strcmp (opcode->name, "srl.ob") == 0))
5622 {
5623 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5624 arg->argnum);
5625 return FALSE;
5626 }
5627
5628 if (is_qh)
5629 uval |= MDMX_FMTSEL_VEC_QH << 5;
5630 else
5631 uval |= MDMX_FMTSEL_VEC_OB << 5;
5632 }
5633 uval |= regno;
5634 }
5635 else
5636 {
5637 offsetT sval;
5638
5639 if (!match_const_int (arg, &sval))
5640 return FALSE;
5641 if (sval < 0 || sval > 31)
5642 {
5643 match_out_of_range (arg);
5644 return FALSE;
5645 }
5646 uval |= (sval & 31);
5647 if (is_qh)
5648 uval |= MDMX_FMTSEL_IMM_QH << 5;
5649 else
5650 uval |= MDMX_FMTSEL_IMM_OB << 5;
5651 }
5652 insn_insert_operand (arg->insn, operand, uval);
5653 return TRUE;
5654 }
5655
5656 /* OP_IMM_INDEX matcher. */
5657
5658 static bfd_boolean
5659 match_imm_index_operand (struct mips_arg_info *arg,
5660 const struct mips_operand *operand)
5661 {
5662 unsigned int max_val;
5663
5664 if (arg->token->type != OT_INTEGER_INDEX)
5665 return FALSE;
5666
5667 max_val = (1 << operand->size) - 1;
5668 if (arg->token->u.index > max_val)
5669 {
5670 match_out_of_range (arg);
5671 return FALSE;
5672 }
5673 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5674 ++arg->token;
5675 return TRUE;
5676 }
5677
5678 /* OP_REG_INDEX matcher. */
5679
5680 static bfd_boolean
5681 match_reg_index_operand (struct mips_arg_info *arg,
5682 const struct mips_operand *operand)
5683 {
5684 unsigned int regno;
5685
5686 if (arg->token->type != OT_REG_INDEX)
5687 return FALSE;
5688
5689 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5690 return FALSE;
5691
5692 insn_insert_operand (arg->insn, operand, regno);
5693 ++arg->token;
5694 return TRUE;
5695 }
5696
5697 /* OP_PC matcher. */
5698
5699 static bfd_boolean
5700 match_pc_operand (struct mips_arg_info *arg)
5701 {
5702 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5703 {
5704 ++arg->token;
5705 return TRUE;
5706 }
5707 return FALSE;
5708 }
5709
5710 /* OP_NON_ZERO_REG matcher. */
5711
5712 static bfd_boolean
5713 match_non_zero_reg_operand (struct mips_arg_info *arg,
5714 const struct mips_operand *operand)
5715 {
5716 unsigned int regno;
5717
5718 if (!match_reg (arg, OP_REG_GP, &regno))
5719 return FALSE;
5720
5721 if (regno == 0)
5722 return FALSE;
5723
5724 arg->last_regno = regno;
5725 insn_insert_operand (arg->insn, operand, regno);
5726 return TRUE;
5727 }
5728
5729 /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5730 register that we need to match. */
5731
5732 static bfd_boolean
5733 match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
5734 {
5735 unsigned int regno;
5736
5737 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
5738 }
5739
5740 /* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5741 the length of the value in bytes (4 for float, 8 for double) and
5742 USING_GPRS says whether the destination is a GPR rather than an FPR.
5743
5744 Return the constant in IMM and OFFSET as follows:
5745
5746 - If the constant should be loaded via memory, set IMM to O_absent and
5747 OFFSET to the memory address.
5748
5749 - Otherwise, if the constant should be loaded into two 32-bit registers,
5750 set IMM to the O_constant to load into the high register and OFFSET
5751 to the corresponding value for the low register.
5752
5753 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5754
5755 These constants only appear as the last operand in an instruction,
5756 and every instruction that accepts them in any variant accepts them
5757 in all variants. This means we don't have to worry about backing out
5758 any changes if the instruction does not match. We just match
5759 unconditionally and report an error if the constant is invalid. */
5760
5761 static bfd_boolean
5762 match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5763 expressionS *offset, int length, bfd_boolean using_gprs)
5764 {
5765 char *p;
5766 segT seg, new_seg;
5767 subsegT subseg;
5768 const char *newname;
5769 unsigned char *data;
5770
5771 /* Where the constant is placed is based on how the MIPS assembler
5772 does things:
5773
5774 length == 4 && using_gprs -- immediate value only
5775 length == 8 && using_gprs -- .rdata or immediate value
5776 length == 4 && !using_gprs -- .lit4 or immediate value
5777 length == 8 && !using_gprs -- .lit8 or immediate value
5778
5779 The .lit4 and .lit8 sections are only used if permitted by the
5780 -G argument. */
5781 if (arg->token->type != OT_FLOAT)
5782 {
5783 set_insn_error (arg->argnum, _("floating-point expression required"));
5784 return FALSE;
5785 }
5786
5787 gas_assert (arg->token->u.flt.length == length);
5788 data = arg->token->u.flt.data;
5789 ++arg->token;
5790
5791 /* Handle 32-bit constants for which an immediate value is best. */
5792 if (length == 4
5793 && (using_gprs
5794 || g_switch_value < 4
5795 || (data[0] == 0 && data[1] == 0)
5796 || (data[2] == 0 && data[3] == 0)))
5797 {
5798 imm->X_op = O_constant;
5799 if (!target_big_endian)
5800 imm->X_add_number = bfd_getl32 (data);
5801 else
5802 imm->X_add_number = bfd_getb32 (data);
5803 offset->X_op = O_absent;
5804 return TRUE;
5805 }
5806
5807 /* Handle 64-bit constants for which an immediate value is best. */
5808 if (length == 8
5809 && !mips_disable_float_construction
5810 /* Constants can only be constructed in GPRs and copied to FPRs if the
5811 GPRs are at least as wide as the FPRs or MTHC1 is available.
5812 Unlike most tests for 32-bit floating-point registers this check
5813 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
5814 permit 64-bit moves without MXHC1.
5815 Force the constant into memory otherwise. */
5816 && (using_gprs
5817 || GPR_SIZE == 64
5818 || ISA_HAS_MXHC1 (mips_opts.isa)
5819 || FPR_SIZE == 32)
5820 && ((data[0] == 0 && data[1] == 0)
5821 || (data[2] == 0 && data[3] == 0))
5822 && ((data[4] == 0 && data[5] == 0)
5823 || (data[6] == 0 && data[7] == 0)))
5824 {
5825 /* The value is simple enough to load with a couple of instructions.
5826 If using 32-bit registers, set IMM to the high order 32 bits and
5827 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5828 64 bit constant. */
5829 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
5830 {
5831 imm->X_op = O_constant;
5832 offset->X_op = O_constant;
5833 if (!target_big_endian)
5834 {
5835 imm->X_add_number = bfd_getl32 (data + 4);
5836 offset->X_add_number = bfd_getl32 (data);
5837 }
5838 else
5839 {
5840 imm->X_add_number = bfd_getb32 (data);
5841 offset->X_add_number = bfd_getb32 (data + 4);
5842 }
5843 if (offset->X_add_number == 0)
5844 offset->X_op = O_absent;
5845 }
5846 else
5847 {
5848 imm->X_op = O_constant;
5849 if (!target_big_endian)
5850 imm->X_add_number = bfd_getl64 (data);
5851 else
5852 imm->X_add_number = bfd_getb64 (data);
5853 offset->X_op = O_absent;
5854 }
5855 return TRUE;
5856 }
5857
5858 /* Switch to the right section. */
5859 seg = now_seg;
5860 subseg = now_subseg;
5861 if (length == 4)
5862 {
5863 gas_assert (!using_gprs && g_switch_value >= 4);
5864 newname = ".lit4";
5865 }
5866 else
5867 {
5868 if (using_gprs || g_switch_value < 8)
5869 newname = RDATA_SECTION_NAME;
5870 else
5871 newname = ".lit8";
5872 }
5873
5874 new_seg = subseg_new (newname, (subsegT) 0);
5875 bfd_set_section_flags (stdoutput, new_seg,
5876 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5877 frag_align (length == 4 ? 2 : 3, 0, 0);
5878 if (strncmp (TARGET_OS, "elf", 3) != 0)
5879 record_alignment (new_seg, 4);
5880 else
5881 record_alignment (new_seg, length == 4 ? 2 : 3);
5882 if (seg == now_seg)
5883 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
5884
5885 /* Set the argument to the current address in the section. */
5886 imm->X_op = O_absent;
5887 offset->X_op = O_symbol;
5888 offset->X_add_symbol = symbol_temp_new_now ();
5889 offset->X_add_number = 0;
5890
5891 /* Put the floating point number into the section. */
5892 p = frag_more (length);
5893 memcpy (p, data, length);
5894
5895 /* Switch back to the original section. */
5896 subseg_set (seg, subseg);
5897 return TRUE;
5898 }
5899
5900 /* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5901 them. */
5902
5903 static bfd_boolean
5904 match_vu0_suffix_operand (struct mips_arg_info *arg,
5905 const struct mips_operand *operand,
5906 bfd_boolean match_p)
5907 {
5908 unsigned int uval;
5909
5910 /* The operand can be an XYZW mask or a single 2-bit channel index
5911 (with X being 0). */
5912 gas_assert (operand->size == 2 || operand->size == 4);
5913
5914 /* The suffix can be omitted when it is already part of the opcode. */
5915 if (arg->token->type != OT_CHANNELS)
5916 return match_p;
5917
5918 uval = arg->token->u.channels;
5919 if (operand->size == 2)
5920 {
5921 /* Check that a single bit is set and convert it into a 2-bit index. */
5922 if ((uval & -uval) != uval)
5923 return FALSE;
5924 uval = 4 - ffs (uval);
5925 }
5926
5927 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5928 return FALSE;
5929
5930 ++arg->token;
5931 if (!match_p)
5932 insn_insert_operand (arg->insn, operand, uval);
5933 return TRUE;
5934 }
5935
5936 /* S is the text seen for ARG. Match it against OPERAND. Return the end
5937 of the argument text if the match is successful, otherwise return null. */
5938
5939 static bfd_boolean
5940 match_operand (struct mips_arg_info *arg,
5941 const struct mips_operand *operand)
5942 {
5943 switch (operand->type)
5944 {
5945 case OP_INT:
5946 return match_int_operand (arg, operand);
5947
5948 case OP_MAPPED_INT:
5949 return match_mapped_int_operand (arg, operand);
5950
5951 case OP_MSB:
5952 return match_msb_operand (arg, operand);
5953
5954 case OP_REG:
5955 case OP_OPTIONAL_REG:
5956 return match_reg_operand (arg, operand);
5957
5958 case OP_REG_PAIR:
5959 return match_reg_pair_operand (arg, operand);
5960
5961 case OP_PCREL:
5962 return match_pcrel_operand (arg);
5963
5964 case OP_PERF_REG:
5965 return match_perf_reg_operand (arg, operand);
5966
5967 case OP_ADDIUSP_INT:
5968 return match_addiusp_operand (arg, operand);
5969
5970 case OP_CLO_CLZ_DEST:
5971 return match_clo_clz_dest_operand (arg, operand);
5972
5973 case OP_LWM_SWM_LIST:
5974 return match_lwm_swm_list_operand (arg, operand);
5975
5976 case OP_ENTRY_EXIT_LIST:
5977 return match_entry_exit_operand (arg, operand);
5978
5979 case OP_SAVE_RESTORE_LIST:
5980 return match_save_restore_list_operand (arg);
5981
5982 case OP_MDMX_IMM_REG:
5983 return match_mdmx_imm_reg_operand (arg, operand);
5984
5985 case OP_REPEAT_DEST_REG:
5986 return match_tied_reg_operand (arg, arg->dest_regno);
5987
5988 case OP_REPEAT_PREV_REG:
5989 return match_tied_reg_operand (arg, arg->last_regno);
5990
5991 case OP_PC:
5992 return match_pc_operand (arg);
5993
5994 case OP_VU0_SUFFIX:
5995 return match_vu0_suffix_operand (arg, operand, FALSE);
5996
5997 case OP_VU0_MATCH_SUFFIX:
5998 return match_vu0_suffix_operand (arg, operand, TRUE);
5999
6000 case OP_IMM_INDEX:
6001 return match_imm_index_operand (arg, operand);
6002
6003 case OP_REG_INDEX:
6004 return match_reg_index_operand (arg, operand);
6005
6006 case OP_SAME_RS_RT:
6007 return match_same_rs_rt_operand (arg, operand);
6008
6009 case OP_CHECK_PREV:
6010 return match_check_prev_operand (arg, operand);
6011
6012 case OP_NON_ZERO_REG:
6013 return match_non_zero_reg_operand (arg, operand);
6014 }
6015 abort ();
6016 }
6017
6018 /* ARG is the state after successfully matching an instruction.
6019 Issue any queued-up warnings. */
6020
6021 static void
6022 check_completed_insn (struct mips_arg_info *arg)
6023 {
6024 if (arg->seen_at)
6025 {
6026 if (AT == ATREG)
6027 as_warn (_("used $at without \".set noat\""));
6028 else
6029 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
6030 }
6031 }
6032
6033 /* Return true if modifying general-purpose register REG needs a delay. */
6034
6035 static bfd_boolean
6036 reg_needs_delay (unsigned int reg)
6037 {
6038 unsigned long prev_pinfo;
6039
6040 prev_pinfo = history[0].insn_mo->pinfo;
6041 if (!mips_opts.noreorder
6042 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
6043 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
6044 && (gpr_write_mask (&history[0]) & (1 << reg)))
6045 return TRUE;
6046
6047 return FALSE;
6048 }
6049
6050 /* Classify an instruction according to the FIX_VR4120_* enumeration.
6051 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6052 by VR4120 errata. */
6053
6054 static unsigned int
6055 classify_vr4120_insn (const char *name)
6056 {
6057 if (strncmp (name, "macc", 4) == 0)
6058 return FIX_VR4120_MACC;
6059 if (strncmp (name, "dmacc", 5) == 0)
6060 return FIX_VR4120_DMACC;
6061 if (strncmp (name, "mult", 4) == 0)
6062 return FIX_VR4120_MULT;
6063 if (strncmp (name, "dmult", 5) == 0)
6064 return FIX_VR4120_DMULT;
6065 if (strstr (name, "div"))
6066 return FIX_VR4120_DIV;
6067 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6068 return FIX_VR4120_MTHILO;
6069 return NUM_FIX_VR4120_CLASSES;
6070 }
6071
6072 #define INSN_ERET 0x42000018
6073 #define INSN_DERET 0x4200001f
6074 #define INSN_DMULT 0x1c
6075 #define INSN_DMULTU 0x1d
6076
6077 /* Return the number of instructions that must separate INSN1 and INSN2,
6078 where INSN1 is the earlier instruction. Return the worst-case value
6079 for any INSN2 if INSN2 is null. */
6080
6081 static unsigned int
6082 insns_between (const struct mips_cl_insn *insn1,
6083 const struct mips_cl_insn *insn2)
6084 {
6085 unsigned long pinfo1, pinfo2;
6086 unsigned int mask;
6087
6088 /* If INFO2 is null, pessimistically assume that all flags are set for
6089 the second instruction. */
6090 pinfo1 = insn1->insn_mo->pinfo;
6091 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
6092
6093 /* For most targets, write-after-read dependencies on the HI and LO
6094 registers must be separated by at least two instructions. */
6095 if (!hilo_interlocks)
6096 {
6097 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6098 return 2;
6099 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6100 return 2;
6101 }
6102
6103 /* If we're working around r7000 errata, there must be two instructions
6104 between an mfhi or mflo and any instruction that uses the result. */
6105 if (mips_7000_hilo_fix
6106 && !mips_opts.micromips
6107 && MF_HILO_INSN (pinfo1)
6108 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
6109 return 2;
6110
6111 /* If we're working around 24K errata, one instruction is required
6112 if an ERET or DERET is followed by a branch instruction. */
6113 if (mips_fix_24k && !mips_opts.micromips)
6114 {
6115 if (insn1->insn_opcode == INSN_ERET
6116 || insn1->insn_opcode == INSN_DERET)
6117 {
6118 if (insn2 == NULL
6119 || insn2->insn_opcode == INSN_ERET
6120 || insn2->insn_opcode == INSN_DERET
6121 || delayed_branch_p (insn2))
6122 return 1;
6123 }
6124 }
6125
6126 /* If we're working around PMC RM7000 errata, there must be three
6127 nops between a dmult and a load instruction. */
6128 if (mips_fix_rm7000 && !mips_opts.micromips)
6129 {
6130 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6131 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6132 {
6133 if (pinfo2 & INSN_LOAD_MEMORY)
6134 return 3;
6135 }
6136 }
6137
6138 /* If working around VR4120 errata, check for combinations that need
6139 a single intervening instruction. */
6140 if (mips_fix_vr4120 && !mips_opts.micromips)
6141 {
6142 unsigned int class1, class2;
6143
6144 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6145 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
6146 {
6147 if (insn2 == NULL)
6148 return 1;
6149 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6150 if (vr4120_conflicts[class1] & (1 << class2))
6151 return 1;
6152 }
6153 }
6154
6155 if (!HAVE_CODE_COMPRESSION)
6156 {
6157 /* Check for GPR or coprocessor load delays. All such delays
6158 are on the RT register. */
6159 /* Itbl support may require additional care here. */
6160 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
6161 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
6162 {
6163 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
6164 return 1;
6165 }
6166
6167 /* Check for generic coprocessor hazards.
6168
6169 This case is not handled very well. There is no special
6170 knowledge of CP0 handling, and the coprocessors other than
6171 the floating point unit are not distinguished at all. */
6172 /* Itbl support may require additional care here. FIXME!
6173 Need to modify this to include knowledge about
6174 user specified delays! */
6175 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
6176 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6177 {
6178 /* Handle cases where INSN1 writes to a known general coprocessor
6179 register. There must be a one instruction delay before INSN2
6180 if INSN2 reads that register, otherwise no delay is needed. */
6181 mask = fpr_write_mask (insn1);
6182 if (mask != 0)
6183 {
6184 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
6185 return 1;
6186 }
6187 else
6188 {
6189 /* Read-after-write dependencies on the control registers
6190 require a two-instruction gap. */
6191 if ((pinfo1 & INSN_WRITE_COND_CODE)
6192 && (pinfo2 & INSN_READ_COND_CODE))
6193 return 2;
6194
6195 /* We don't know exactly what INSN1 does. If INSN2 is
6196 also a coprocessor instruction, assume there must be
6197 a one instruction gap. */
6198 if (pinfo2 & INSN_COP)
6199 return 1;
6200 }
6201 }
6202
6203 /* Check for read-after-write dependencies on the coprocessor
6204 control registers in cases where INSN1 does not need a general
6205 coprocessor delay. This means that INSN1 is a floating point
6206 comparison instruction. */
6207 /* Itbl support may require additional care here. */
6208 else if (!cop_interlocks
6209 && (pinfo1 & INSN_WRITE_COND_CODE)
6210 && (pinfo2 & INSN_READ_COND_CODE))
6211 return 1;
6212 }
6213
6214 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6215 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6216 and pause. */
6217 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6218 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6219 || (insn2 && delayed_branch_p (insn2))))
6220 return 1;
6221
6222 return 0;
6223 }
6224
6225 /* Return the number of nops that would be needed to work around the
6226 VR4130 mflo/mfhi errata if instruction INSN immediately followed
6227 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6228 that are contained within the first IGNORE instructions of HIST. */
6229
6230 static int
6231 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
6232 const struct mips_cl_insn *insn)
6233 {
6234 int i, j;
6235 unsigned int mask;
6236
6237 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6238 are not affected by the errata. */
6239 if (insn != 0
6240 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6241 || strcmp (insn->insn_mo->name, "mtlo") == 0
6242 || strcmp (insn->insn_mo->name, "mthi") == 0))
6243 return 0;
6244
6245 /* Search for the first MFLO or MFHI. */
6246 for (i = 0; i < MAX_VR4130_NOPS; i++)
6247 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
6248 {
6249 /* Extract the destination register. */
6250 mask = gpr_write_mask (&hist[i]);
6251
6252 /* No nops are needed if INSN reads that register. */
6253 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
6254 return 0;
6255
6256 /* ...or if any of the intervening instructions do. */
6257 for (j = 0; j < i; j++)
6258 if (gpr_read_mask (&hist[j]) & mask)
6259 return 0;
6260
6261 if (i >= ignore)
6262 return MAX_VR4130_NOPS - i;
6263 }
6264 return 0;
6265 }
6266
6267 #define BASE_REG_EQ(INSN1, INSN2) \
6268 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6269 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6270
6271 /* Return the minimum alignment for this store instruction. */
6272
6273 static int
6274 fix_24k_align_to (const struct mips_opcode *mo)
6275 {
6276 if (strcmp (mo->name, "sh") == 0)
6277 return 2;
6278
6279 if (strcmp (mo->name, "swc1") == 0
6280 || strcmp (mo->name, "swc2") == 0
6281 || strcmp (mo->name, "sw") == 0
6282 || strcmp (mo->name, "sc") == 0
6283 || strcmp (mo->name, "s.s") == 0)
6284 return 4;
6285
6286 if (strcmp (mo->name, "sdc1") == 0
6287 || strcmp (mo->name, "sdc2") == 0
6288 || strcmp (mo->name, "s.d") == 0)
6289 return 8;
6290
6291 /* sb, swl, swr */
6292 return 1;
6293 }
6294
6295 struct fix_24k_store_info
6296 {
6297 /* Immediate offset, if any, for this store instruction. */
6298 short off;
6299 /* Alignment required by this store instruction. */
6300 int align_to;
6301 /* True for register offsets. */
6302 int register_offset;
6303 };
6304
6305 /* Comparison function used by qsort. */
6306
6307 static int
6308 fix_24k_sort (const void *a, const void *b)
6309 {
6310 const struct fix_24k_store_info *pos1 = a;
6311 const struct fix_24k_store_info *pos2 = b;
6312
6313 return (pos1->off - pos2->off);
6314 }
6315
6316 /* INSN is a store instruction. Try to record the store information
6317 in STINFO. Return false if the information isn't known. */
6318
6319 static bfd_boolean
6320 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
6321 const struct mips_cl_insn *insn)
6322 {
6323 /* The instruction must have a known offset. */
6324 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6325 return FALSE;
6326
6327 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6328 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6329 return TRUE;
6330 }
6331
6332 /* Return the number of nops that would be needed to work around the 24k
6333 "lost data on stores during refill" errata if instruction INSN
6334 immediately followed the 2 instructions described by HIST.
6335 Ignore hazards that are contained within the first IGNORE
6336 instructions of HIST.
6337
6338 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6339 for the data cache refills and store data. The following describes
6340 the scenario where the store data could be lost.
6341
6342 * A data cache miss, due to either a load or a store, causing fill
6343 data to be supplied by the memory subsystem
6344 * The first three doublewords of fill data are returned and written
6345 into the cache
6346 * A sequence of four stores occurs in consecutive cycles around the
6347 final doubleword of the fill:
6348 * Store A
6349 * Store B
6350 * Store C
6351 * Zero, One or more instructions
6352 * Store D
6353
6354 The four stores A-D must be to different doublewords of the line that
6355 is being filled. The fourth instruction in the sequence above permits
6356 the fill of the final doubleword to be transferred from the FSB into
6357 the cache. In the sequence above, the stores may be either integer
6358 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6359 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6360 different doublewords on the line. If the floating point unit is
6361 running in 1:2 mode, it is not possible to create the sequence above
6362 using only floating point store instructions.
6363
6364 In this case, the cache line being filled is incorrectly marked
6365 invalid, thereby losing the data from any store to the line that
6366 occurs between the original miss and the completion of the five
6367 cycle sequence shown above.
6368
6369 The workarounds are:
6370
6371 * Run the data cache in write-through mode.
6372 * Insert a non-store instruction between
6373 Store A and Store B or Store B and Store C. */
6374
6375 static int
6376 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
6377 const struct mips_cl_insn *insn)
6378 {
6379 struct fix_24k_store_info pos[3];
6380 int align, i, base_offset;
6381
6382 if (ignore >= 2)
6383 return 0;
6384
6385 /* If the previous instruction wasn't a store, there's nothing to
6386 worry about. */
6387 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6388 return 0;
6389
6390 /* If the instructions after the previous one are unknown, we have
6391 to assume the worst. */
6392 if (!insn)
6393 return 1;
6394
6395 /* Check whether we are dealing with three consecutive stores. */
6396 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6397 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6398 return 0;
6399
6400 /* If we don't know the relationship between the store addresses,
6401 assume the worst. */
6402 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
6403 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6404 return 1;
6405
6406 if (!fix_24k_record_store_info (&pos[0], insn)
6407 || !fix_24k_record_store_info (&pos[1], &hist[0])
6408 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6409 return 1;
6410
6411 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6412
6413 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6414 X bytes and such that the base register + X is known to be aligned
6415 to align bytes. */
6416
6417 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6418 align = 8;
6419 else
6420 {
6421 align = pos[0].align_to;
6422 base_offset = pos[0].off;
6423 for (i = 1; i < 3; i++)
6424 if (align < pos[i].align_to)
6425 {
6426 align = pos[i].align_to;
6427 base_offset = pos[i].off;
6428 }
6429 for (i = 0; i < 3; i++)
6430 pos[i].off -= base_offset;
6431 }
6432
6433 pos[0].off &= ~align + 1;
6434 pos[1].off &= ~align + 1;
6435 pos[2].off &= ~align + 1;
6436
6437 /* If any two stores write to the same chunk, they also write to the
6438 same doubleword. The offsets are still sorted at this point. */
6439 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6440 return 0;
6441
6442 /* A range of at least 9 bytes is needed for the stores to be in
6443 non-overlapping doublewords. */
6444 if (pos[2].off - pos[0].off <= 8)
6445 return 0;
6446
6447 if (pos[2].off - pos[1].off >= 24
6448 || pos[1].off - pos[0].off >= 24
6449 || pos[2].off - pos[0].off >= 32)
6450 return 0;
6451
6452 return 1;
6453 }
6454
6455 /* Return the number of nops that would be needed if instruction INSN
6456 immediately followed the MAX_NOPS instructions given by HIST,
6457 where HIST[0] is the most recent instruction. Ignore hazards
6458 between INSN and the first IGNORE instructions in HIST.
6459
6460 If INSN is null, return the worse-case number of nops for any
6461 instruction. */
6462
6463 static int
6464 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
6465 const struct mips_cl_insn *insn)
6466 {
6467 int i, nops, tmp_nops;
6468
6469 nops = 0;
6470 for (i = ignore; i < MAX_DELAY_NOPS; i++)
6471 {
6472 tmp_nops = insns_between (hist + i, insn) - i;
6473 if (tmp_nops > nops)
6474 nops = tmp_nops;
6475 }
6476
6477 if (mips_fix_vr4130 && !mips_opts.micromips)
6478 {
6479 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
6480 if (tmp_nops > nops)
6481 nops = tmp_nops;
6482 }
6483
6484 if (mips_fix_24k && !mips_opts.micromips)
6485 {
6486 tmp_nops = nops_for_24k (ignore, hist, insn);
6487 if (tmp_nops > nops)
6488 nops = tmp_nops;
6489 }
6490
6491 return nops;
6492 }
6493
6494 /* The variable arguments provide NUM_INSNS extra instructions that
6495 might be added to HIST. Return the largest number of nops that
6496 would be needed after the extended sequence, ignoring hazards
6497 in the first IGNORE instructions. */
6498
6499 static int
6500 nops_for_sequence (int num_insns, int ignore,
6501 const struct mips_cl_insn *hist, ...)
6502 {
6503 va_list args;
6504 struct mips_cl_insn buffer[MAX_NOPS];
6505 struct mips_cl_insn *cursor;
6506 int nops;
6507
6508 va_start (args, hist);
6509 cursor = buffer + num_insns;
6510 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
6511 while (cursor > buffer)
6512 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6513
6514 nops = nops_for_insn (ignore, buffer, NULL);
6515 va_end (args);
6516 return nops;
6517 }
6518
6519 /* Like nops_for_insn, but if INSN is a branch, take into account the
6520 worst-case delay for the branch target. */
6521
6522 static int
6523 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
6524 const struct mips_cl_insn *insn)
6525 {
6526 int nops, tmp_nops;
6527
6528 nops = nops_for_insn (ignore, hist, insn);
6529 if (delayed_branch_p (insn))
6530 {
6531 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
6532 hist, insn, get_delay_slot_nop (insn));
6533 if (tmp_nops > nops)
6534 nops = tmp_nops;
6535 }
6536 else if (compact_branch_p (insn))
6537 {
6538 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
6539 if (tmp_nops > nops)
6540 nops = tmp_nops;
6541 }
6542 return nops;
6543 }
6544
6545 /* Fix NOP issue: Replace nops by "or at,at,zero". */
6546
6547 static void
6548 fix_loongson2f_nop (struct mips_cl_insn * ip)
6549 {
6550 gas_assert (!HAVE_CODE_COMPRESSION);
6551 if (strcmp (ip->insn_mo->name, "nop") == 0)
6552 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6553 }
6554
6555 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6556 jr target pc &= 'hffff_ffff_cfff_ffff. */
6557
6558 static void
6559 fix_loongson2f_jump (struct mips_cl_insn * ip)
6560 {
6561 gas_assert (!HAVE_CODE_COMPRESSION);
6562 if (strcmp (ip->insn_mo->name, "j") == 0
6563 || strcmp (ip->insn_mo->name, "jr") == 0
6564 || strcmp (ip->insn_mo->name, "jalr") == 0)
6565 {
6566 int sreg;
6567 expressionS ep;
6568
6569 if (! mips_opts.at)
6570 return;
6571
6572 sreg = EXTRACT_OPERAND (0, RS, *ip);
6573 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6574 return;
6575
6576 ep.X_op = O_constant;
6577 ep.X_add_number = 0xcfff0000;
6578 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6579 ep.X_add_number = 0xffff;
6580 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6581 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6582 }
6583 }
6584
6585 static void
6586 fix_loongson2f (struct mips_cl_insn * ip)
6587 {
6588 if (mips_fix_loongson2f_nop)
6589 fix_loongson2f_nop (ip);
6590
6591 if (mips_fix_loongson2f_jump)
6592 fix_loongson2f_jump (ip);
6593 }
6594
6595 /* IP is a branch that has a delay slot, and we need to fill it
6596 automatically. Return true if we can do that by swapping IP
6597 with the previous instruction.
6598 ADDRESS_EXPR is an operand of the instruction to be used with
6599 RELOC_TYPE. */
6600
6601 static bfd_boolean
6602 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
6603 bfd_reloc_code_real_type *reloc_type)
6604 {
6605 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
6606 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
6607 unsigned int fpr_read, prev_fpr_write;
6608
6609 /* -O2 and above is required for this optimization. */
6610 if (mips_optimize < 2)
6611 return FALSE;
6612
6613 /* If we have seen .set volatile or .set nomove, don't optimize. */
6614 if (mips_opts.nomove)
6615 return FALSE;
6616
6617 /* We can't swap if the previous instruction's position is fixed. */
6618 if (history[0].fixed_p)
6619 return FALSE;
6620
6621 /* If the previous previous insn was in a .set noreorder, we can't
6622 swap. Actually, the MIPS assembler will swap in this situation.
6623 However, gcc configured -with-gnu-as will generate code like
6624
6625 .set noreorder
6626 lw $4,XXX
6627 .set reorder
6628 INSN
6629 bne $4,$0,foo
6630
6631 in which we can not swap the bne and INSN. If gcc is not configured
6632 -with-gnu-as, it does not output the .set pseudo-ops. */
6633 if (history[1].noreorder_p)
6634 return FALSE;
6635
6636 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6637 This means that the previous instruction was a 4-byte one anyhow. */
6638 if (mips_opts.mips16 && history[0].fixp[0])
6639 return FALSE;
6640
6641 /* If the branch is itself the target of a branch, we can not swap.
6642 We cheat on this; all we check for is whether there is a label on
6643 this instruction. If there are any branches to anything other than
6644 a label, users must use .set noreorder. */
6645 if (seg_info (now_seg)->label_list)
6646 return FALSE;
6647
6648 /* If the previous instruction is in a variant frag other than this
6649 branch's one, we cannot do the swap. This does not apply to
6650 MIPS16 code, which uses variant frags for different purposes. */
6651 if (!mips_opts.mips16
6652 && history[0].frag
6653 && history[0].frag->fr_type == rs_machine_dependent)
6654 return FALSE;
6655
6656 /* We do not swap with instructions that cannot architecturally
6657 be placed in a branch delay slot, such as SYNC or ERET. We
6658 also refrain from swapping with a trap instruction, since it
6659 complicates trap handlers to have the trap instruction be in
6660 a delay slot. */
6661 prev_pinfo = history[0].insn_mo->pinfo;
6662 if (prev_pinfo & INSN_NO_DELAY_SLOT)
6663 return FALSE;
6664
6665 /* Check for conflicts between the branch and the instructions
6666 before the candidate delay slot. */
6667 if (nops_for_insn (0, history + 1, ip) > 0)
6668 return FALSE;
6669
6670 /* Check for conflicts between the swapped sequence and the
6671 target of the branch. */
6672 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6673 return FALSE;
6674
6675 /* If the branch reads a register that the previous
6676 instruction sets, we can not swap. */
6677 gpr_read = gpr_read_mask (ip);
6678 prev_gpr_write = gpr_write_mask (&history[0]);
6679 if (gpr_read & prev_gpr_write)
6680 return FALSE;
6681
6682 fpr_read = fpr_read_mask (ip);
6683 prev_fpr_write = fpr_write_mask (&history[0]);
6684 if (fpr_read & prev_fpr_write)
6685 return FALSE;
6686
6687 /* If the branch writes a register that the previous
6688 instruction sets, we can not swap. */
6689 gpr_write = gpr_write_mask (ip);
6690 if (gpr_write & prev_gpr_write)
6691 return FALSE;
6692
6693 /* If the branch writes a register that the previous
6694 instruction reads, we can not swap. */
6695 prev_gpr_read = gpr_read_mask (&history[0]);
6696 if (gpr_write & prev_gpr_read)
6697 return FALSE;
6698
6699 /* If one instruction sets a condition code and the
6700 other one uses a condition code, we can not swap. */
6701 pinfo = ip->insn_mo->pinfo;
6702 if ((pinfo & INSN_READ_COND_CODE)
6703 && (prev_pinfo & INSN_WRITE_COND_CODE))
6704 return FALSE;
6705 if ((pinfo & INSN_WRITE_COND_CODE)
6706 && (prev_pinfo & INSN_READ_COND_CODE))
6707 return FALSE;
6708
6709 /* If the previous instruction uses the PC, we can not swap. */
6710 prev_pinfo2 = history[0].insn_mo->pinfo2;
6711 if (prev_pinfo2 & INSN2_READ_PC)
6712 return FALSE;
6713
6714 /* If the previous instruction has an incorrect size for a fixed
6715 branch delay slot in microMIPS mode, we cannot swap. */
6716 pinfo2 = ip->insn_mo->pinfo2;
6717 if (mips_opts.micromips
6718 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6719 && insn_length (history) != 2)
6720 return FALSE;
6721 if (mips_opts.micromips
6722 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6723 && insn_length (history) != 4)
6724 return FALSE;
6725
6726 /* On R5900 short loops need to be fixed by inserting a nop in
6727 the branch delay slots.
6728 A short loop can be terminated too early. */
6729 if (mips_opts.arch == CPU_R5900
6730 /* Check if instruction has a parameter, ignore "j $31". */
6731 && (address_expr != NULL)
6732 /* Parameter must be 16 bit. */
6733 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6734 /* Branch to same segment. */
6735 && (S_GET_SEGMENT(address_expr->X_add_symbol) == now_seg)
6736 /* Branch to same code fragment. */
6737 && (symbol_get_frag(address_expr->X_add_symbol) == frag_now)
6738 /* Can only calculate branch offset if value is known. */
6739 && symbol_constant_p(address_expr->X_add_symbol)
6740 /* Check if branch is really conditional. */
6741 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6742 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6743 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6744 {
6745 int distance;
6746 /* Check if loop is shorter than 6 instructions including
6747 branch and delay slot. */
6748 distance = frag_now_fix() - S_GET_VALUE(address_expr->X_add_symbol);
6749 if (distance <= 20)
6750 {
6751 int i;
6752 int rv;
6753
6754 rv = FALSE;
6755 /* When the loop includes branches or jumps,
6756 it is not a short loop. */
6757 for (i = 0; i < (distance / 4); i++)
6758 {
6759 if ((history[i].cleared_p)
6760 || delayed_branch_p(&history[i]))
6761 {
6762 rv = TRUE;
6763 break;
6764 }
6765 }
6766 if (rv == FALSE)
6767 {
6768 /* Insert nop after branch to fix short loop. */
6769 return FALSE;
6770 }
6771 }
6772 }
6773
6774 return TRUE;
6775 }
6776
6777 /* Decide how we should add IP to the instruction stream.
6778 ADDRESS_EXPR is an operand of the instruction to be used with
6779 RELOC_TYPE. */
6780
6781 static enum append_method
6782 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
6783 bfd_reloc_code_real_type *reloc_type)
6784 {
6785 /* The relaxed version of a macro sequence must be inherently
6786 hazard-free. */
6787 if (mips_relax.sequence == 2)
6788 return APPEND_ADD;
6789
6790 /* We must not dabble with instructions in a ".set norerorder" block. */
6791 if (mips_opts.noreorder)
6792 return APPEND_ADD;
6793
6794 /* Otherwise, it's our responsibility to fill branch delay slots. */
6795 if (delayed_branch_p (ip))
6796 {
6797 if (!branch_likely_p (ip)
6798 && can_swap_branch_p (ip, address_expr, reloc_type))
6799 return APPEND_SWAP;
6800
6801 if (mips_opts.mips16
6802 && ISA_SUPPORTS_MIPS16E
6803 && gpr_read_mask (ip) != 0)
6804 return APPEND_ADD_COMPACT;
6805
6806 return APPEND_ADD_WITH_NOP;
6807 }
6808
6809 return APPEND_ADD;
6810 }
6811
6812 /* IP is a MIPS16 instruction whose opcode we have just changed.
6813 Point IP->insn_mo to the new opcode's definition. */
6814
6815 static void
6816 find_altered_mips16_opcode (struct mips_cl_insn *ip)
6817 {
6818 const struct mips_opcode *mo, *end;
6819
6820 end = &mips16_opcodes[bfd_mips16_num_opcodes];
6821 for (mo = ip->insn_mo; mo < end; mo++)
6822 if ((ip->insn_opcode & mo->mask) == mo->match)
6823 {
6824 ip->insn_mo = mo;
6825 return;
6826 }
6827 abort ();
6828 }
6829
6830 /* For microMIPS macros, we need to generate a local number label
6831 as the target of branches. */
6832 #define MICROMIPS_LABEL_CHAR '\037'
6833 static unsigned long micromips_target_label;
6834 static char micromips_target_name[32];
6835
6836 static char *
6837 micromips_label_name (void)
6838 {
6839 char *p = micromips_target_name;
6840 char symbol_name_temporary[24];
6841 unsigned long l;
6842 int i;
6843
6844 if (*p)
6845 return p;
6846
6847 i = 0;
6848 l = micromips_target_label;
6849 #ifdef LOCAL_LABEL_PREFIX
6850 *p++ = LOCAL_LABEL_PREFIX;
6851 #endif
6852 *p++ = 'L';
6853 *p++ = MICROMIPS_LABEL_CHAR;
6854 do
6855 {
6856 symbol_name_temporary[i++] = l % 10 + '0';
6857 l /= 10;
6858 }
6859 while (l != 0);
6860 while (i > 0)
6861 *p++ = symbol_name_temporary[--i];
6862 *p = '\0';
6863
6864 return micromips_target_name;
6865 }
6866
6867 static void
6868 micromips_label_expr (expressionS *label_expr)
6869 {
6870 label_expr->X_op = O_symbol;
6871 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6872 label_expr->X_add_number = 0;
6873 }
6874
6875 static void
6876 micromips_label_inc (void)
6877 {
6878 micromips_target_label++;
6879 *micromips_target_name = '\0';
6880 }
6881
6882 static void
6883 micromips_add_label (void)
6884 {
6885 symbolS *s;
6886
6887 s = colon (micromips_label_name ());
6888 micromips_label_inc ();
6889 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
6890 }
6891
6892 /* If assembling microMIPS code, then return the microMIPS reloc
6893 corresponding to the requested one if any. Otherwise return
6894 the reloc unchanged. */
6895
6896 static bfd_reloc_code_real_type
6897 micromips_map_reloc (bfd_reloc_code_real_type reloc)
6898 {
6899 static const bfd_reloc_code_real_type relocs[][2] =
6900 {
6901 /* Keep sorted incrementally by the left-hand key. */
6902 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
6903 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
6904 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
6905 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
6906 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
6907 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
6908 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
6909 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
6910 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
6911 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
6912 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
6913 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
6914 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
6915 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
6916 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
6917 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
6918 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
6919 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
6920 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
6921 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
6922 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
6923 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
6924 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
6925 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
6926 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
6927 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
6928 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
6929 };
6930 bfd_reloc_code_real_type r;
6931 size_t i;
6932
6933 if (!mips_opts.micromips)
6934 return reloc;
6935 for (i = 0; i < ARRAY_SIZE (relocs); i++)
6936 {
6937 r = relocs[i][0];
6938 if (r > reloc)
6939 return reloc;
6940 if (r == reloc)
6941 return relocs[i][1];
6942 }
6943 return reloc;
6944 }
6945
6946 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
6947 Return true on success, storing the resolved value in RESULT. */
6948
6949 static bfd_boolean
6950 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
6951 offsetT *result)
6952 {
6953 switch (reloc)
6954 {
6955 case BFD_RELOC_MIPS_HIGHEST:
6956 case BFD_RELOC_MICROMIPS_HIGHEST:
6957 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
6958 return TRUE;
6959
6960 case BFD_RELOC_MIPS_HIGHER:
6961 case BFD_RELOC_MICROMIPS_HIGHER:
6962 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
6963 return TRUE;
6964
6965 case BFD_RELOC_HI16_S:
6966 case BFD_RELOC_MICROMIPS_HI16_S:
6967 case BFD_RELOC_MIPS16_HI16_S:
6968 *result = ((operand + 0x8000) >> 16) & 0xffff;
6969 return TRUE;
6970
6971 case BFD_RELOC_HI16:
6972 case BFD_RELOC_MICROMIPS_HI16:
6973 case BFD_RELOC_MIPS16_HI16:
6974 *result = (operand >> 16) & 0xffff;
6975 return TRUE;
6976
6977 case BFD_RELOC_LO16:
6978 case BFD_RELOC_MICROMIPS_LO16:
6979 case BFD_RELOC_MIPS16_LO16:
6980 *result = operand & 0xffff;
6981 return TRUE;
6982
6983 case BFD_RELOC_UNUSED:
6984 *result = operand;
6985 return TRUE;
6986
6987 default:
6988 return FALSE;
6989 }
6990 }
6991
6992 /* Output an instruction. IP is the instruction information.
6993 ADDRESS_EXPR is an operand of the instruction to be used with
6994 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
6995 a macro expansion. */
6996
6997 static void
6998 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
6999 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
7000 {
7001 unsigned long prev_pinfo2, pinfo;
7002 bfd_boolean relaxed_branch = FALSE;
7003 enum append_method method;
7004 bfd_boolean relax32;
7005 int branch_disp;
7006
7007 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
7008 fix_loongson2f (ip);
7009
7010 file_ase_mips16 |= mips_opts.mips16;
7011 file_ase_micromips |= mips_opts.micromips;
7012
7013 prev_pinfo2 = history[0].insn_mo->pinfo2;
7014 pinfo = ip->insn_mo->pinfo;
7015
7016 if (mips_opts.micromips
7017 && !expansionp
7018 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7019 && micromips_insn_length (ip->insn_mo) != 2)
7020 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7021 && micromips_insn_length (ip->insn_mo) != 4)))
7022 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
7023 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
7024
7025 if (address_expr == NULL)
7026 ip->complete_p = 1;
7027 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7028 && reloc_type[1] == BFD_RELOC_UNUSED
7029 && reloc_type[2] == BFD_RELOC_UNUSED
7030 && address_expr->X_op == O_constant)
7031 {
7032 switch (*reloc_type)
7033 {
7034 case BFD_RELOC_MIPS_JMP:
7035 {
7036 int shift;
7037
7038 shift = mips_opts.micromips ? 1 : 2;
7039 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7040 as_bad (_("jump to misaligned address (0x%lx)"),
7041 (unsigned long) address_expr->X_add_number);
7042 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7043 & 0x3ffffff);
7044 ip->complete_p = 1;
7045 }
7046 break;
7047
7048 case BFD_RELOC_MIPS16_JMP:
7049 if ((address_expr->X_add_number & 3) != 0)
7050 as_bad (_("jump to misaligned address (0x%lx)"),
7051 (unsigned long) address_expr->X_add_number);
7052 ip->insn_opcode |=
7053 (((address_expr->X_add_number & 0x7c0000) << 3)
7054 | ((address_expr->X_add_number & 0xf800000) >> 7)
7055 | ((address_expr->X_add_number & 0x3fffc) >> 2));
7056 ip->complete_p = 1;
7057 break;
7058
7059 case BFD_RELOC_16_PCREL_S2:
7060 {
7061 int shift;
7062
7063 shift = mips_opts.micromips ? 1 : 2;
7064 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7065 as_bad (_("branch to misaligned address (0x%lx)"),
7066 (unsigned long) address_expr->X_add_number);
7067 if (!mips_relax_branch)
7068 {
7069 if ((address_expr->X_add_number + (1 << (shift + 15)))
7070 & ~((1 << (shift + 16)) - 1))
7071 as_bad (_("branch address range overflow (0x%lx)"),
7072 (unsigned long) address_expr->X_add_number);
7073 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7074 & 0xffff);
7075 }
7076 }
7077 break;
7078
7079 case BFD_RELOC_MIPS_21_PCREL_S2:
7080 {
7081 int shift;
7082
7083 shift = 2;
7084 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7085 as_bad (_("branch to misaligned address (0x%lx)"),
7086 (unsigned long) address_expr->X_add_number);
7087 if ((address_expr->X_add_number + (1 << (shift + 20)))
7088 & ~((1 << (shift + 21)) - 1))
7089 as_bad (_("branch address range overflow (0x%lx)"),
7090 (unsigned long) address_expr->X_add_number);
7091 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7092 & 0x1fffff);
7093 }
7094 break;
7095
7096 case BFD_RELOC_MIPS_26_PCREL_S2:
7097 {
7098 int shift;
7099
7100 shift = 2;
7101 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7102 as_bad (_("branch to misaligned address (0x%lx)"),
7103 (unsigned long) address_expr->X_add_number);
7104 if ((address_expr->X_add_number + (1 << (shift + 25)))
7105 & ~((1 << (shift + 26)) - 1))
7106 as_bad (_("branch address range overflow (0x%lx)"),
7107 (unsigned long) address_expr->X_add_number);
7108 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7109 & 0x3ffffff);
7110 }
7111 break;
7112
7113 default:
7114 {
7115 offsetT value;
7116
7117 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7118 &value))
7119 {
7120 ip->insn_opcode |= value & 0xffff;
7121 ip->complete_p = 1;
7122 }
7123 }
7124 break;
7125 }
7126 }
7127
7128 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7129 {
7130 /* There are a lot of optimizations we could do that we don't.
7131 In particular, we do not, in general, reorder instructions.
7132 If you use gcc with optimization, it will reorder
7133 instructions and generally do much more optimization then we
7134 do here; repeating all that work in the assembler would only
7135 benefit hand written assembly code, and does not seem worth
7136 it. */
7137 int nops = (mips_optimize == 0
7138 ? nops_for_insn (0, history, NULL)
7139 : nops_for_insn_or_target (0, history, ip));
7140 if (nops > 0)
7141 {
7142 fragS *old_frag;
7143 unsigned long old_frag_offset;
7144 int i;
7145
7146 old_frag = frag_now;
7147 old_frag_offset = frag_now_fix ();
7148
7149 for (i = 0; i < nops; i++)
7150 add_fixed_insn (NOP_INSN);
7151 insert_into_history (0, nops, NOP_INSN);
7152
7153 if (listing)
7154 {
7155 listing_prev_line ();
7156 /* We may be at the start of a variant frag. In case we
7157 are, make sure there is enough space for the frag
7158 after the frags created by listing_prev_line. The
7159 argument to frag_grow here must be at least as large
7160 as the argument to all other calls to frag_grow in
7161 this file. We don't have to worry about being in the
7162 middle of a variant frag, because the variants insert
7163 all needed nop instructions themselves. */
7164 frag_grow (40);
7165 }
7166
7167 mips_move_text_labels ();
7168
7169 #ifndef NO_ECOFF_DEBUGGING
7170 if (ECOFF_DEBUGGING)
7171 ecoff_fix_loc (old_frag, old_frag_offset);
7172 #endif
7173 }
7174 }
7175 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7176 {
7177 int nops;
7178
7179 /* Work out how many nops in prev_nop_frag are needed by IP,
7180 ignoring hazards generated by the first prev_nop_frag_since
7181 instructions. */
7182 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
7183 gas_assert (nops <= prev_nop_frag_holds);
7184
7185 /* Enforce NOPS as a minimum. */
7186 if (nops > prev_nop_frag_required)
7187 prev_nop_frag_required = nops;
7188
7189 if (prev_nop_frag_holds == prev_nop_frag_required)
7190 {
7191 /* Settle for the current number of nops. Update the history
7192 accordingly (for the benefit of any future .set reorder code). */
7193 prev_nop_frag = NULL;
7194 insert_into_history (prev_nop_frag_since,
7195 prev_nop_frag_holds, NOP_INSN);
7196 }
7197 else
7198 {
7199 /* Allow this instruction to replace one of the nops that was
7200 tentatively added to prev_nop_frag. */
7201 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
7202 prev_nop_frag_holds--;
7203 prev_nop_frag_since++;
7204 }
7205 }
7206
7207 method = get_append_method (ip, address_expr, reloc_type);
7208 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
7209
7210 dwarf2_emit_insn (0);
7211 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7212 so "move" the instruction address accordingly.
7213
7214 Also, it doesn't seem appropriate for the assembler to reorder .loc
7215 entries. If this instruction is a branch that we are going to swap
7216 with the previous instruction, the two instructions should be
7217 treated as a unit, and the debug information for both instructions
7218 should refer to the start of the branch sequence. Using the
7219 current position is certainly wrong when swapping a 32-bit branch
7220 and a 16-bit delay slot, since the current position would then be
7221 in the middle of a branch. */
7222 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
7223
7224 relax32 = (mips_relax_branch
7225 /* Don't try branch relaxation within .set nomacro, or within
7226 .set noat if we use $at for PIC computations. If it turns
7227 out that the branch was out-of-range, we'll get an error. */
7228 && !mips_opts.warn_about_macros
7229 && (mips_opts.at || mips_pic == NO_PIC)
7230 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7231 as they have no complementing branches. */
7232 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
7233
7234 if (!HAVE_CODE_COMPRESSION
7235 && address_expr
7236 && relax32
7237 && *reloc_type == BFD_RELOC_16_PCREL_S2
7238 && delayed_branch_p (ip))
7239 {
7240 relaxed_branch = TRUE;
7241 add_relaxed_insn (ip, (relaxed_branch_length
7242 (NULL, NULL,
7243 uncond_branch_p (ip) ? -1
7244 : branch_likely_p (ip) ? 1
7245 : 0)), 4,
7246 RELAX_BRANCH_ENCODE
7247 (AT,
7248 uncond_branch_p (ip),
7249 branch_likely_p (ip),
7250 pinfo & INSN_WRITE_GPR_31,
7251 0),
7252 address_expr->X_add_symbol,
7253 address_expr->X_add_number);
7254 *reloc_type = BFD_RELOC_UNUSED;
7255 }
7256 else if (mips_opts.micromips
7257 && address_expr
7258 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7259 || *reloc_type > BFD_RELOC_UNUSED)
7260 && (delayed_branch_p (ip) || compact_branch_p (ip))
7261 /* Don't try branch relaxation when users specify
7262 16-bit/32-bit instructions. */
7263 && !forced_insn_length)
7264 {
7265 bfd_boolean relax16 = *reloc_type > BFD_RELOC_UNUSED;
7266 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
7267 int uncond = uncond_branch_p (ip) ? -1 : 0;
7268 int compact = compact_branch_p (ip);
7269 int al = pinfo & INSN_WRITE_GPR_31;
7270 int length32;
7271
7272 gas_assert (address_expr != NULL);
7273 gas_assert (!mips_relax.sequence);
7274
7275 relaxed_branch = TRUE;
7276 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7277 add_relaxed_insn (ip, relax32 ? length32 : 4, relax16 ? 2 : 4,
7278 RELAX_MICROMIPS_ENCODE (type, AT, uncond, compact, al,
7279 relax32, 0, 0),
7280 address_expr->X_add_symbol,
7281 address_expr->X_add_number);
7282 *reloc_type = BFD_RELOC_UNUSED;
7283 }
7284 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
7285 {
7286 /* We need to set up a variant frag. */
7287 gas_assert (address_expr != NULL);
7288 add_relaxed_insn (ip, 4, 0,
7289 RELAX_MIPS16_ENCODE
7290 (*reloc_type - BFD_RELOC_UNUSED,
7291 forced_insn_length == 2, forced_insn_length == 4,
7292 delayed_branch_p (&history[0]),
7293 history[0].mips16_absolute_jump_p),
7294 make_expr_symbol (address_expr), 0);
7295 }
7296 else if (mips_opts.mips16 && insn_length (ip) == 2)
7297 {
7298 if (!delayed_branch_p (ip))
7299 /* Make sure there is enough room to swap this instruction with
7300 a following jump instruction. */
7301 frag_grow (6);
7302 add_fixed_insn (ip);
7303 }
7304 else
7305 {
7306 if (mips_opts.mips16
7307 && mips_opts.noreorder
7308 && delayed_branch_p (&history[0]))
7309 as_warn (_("extended instruction in delay slot"));
7310
7311 if (mips_relax.sequence)
7312 {
7313 /* If we've reached the end of this frag, turn it into a variant
7314 frag and record the information for the instructions we've
7315 written so far. */
7316 if (frag_room () < 4)
7317 relax_close_frag ();
7318 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
7319 }
7320
7321 if (mips_relax.sequence != 2)
7322 {
7323 if (mips_macro_warning.first_insn_sizes[0] == 0)
7324 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7325 mips_macro_warning.sizes[0] += insn_length (ip);
7326 mips_macro_warning.insns[0]++;
7327 }
7328 if (mips_relax.sequence != 1)
7329 {
7330 if (mips_macro_warning.first_insn_sizes[1] == 0)
7331 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7332 mips_macro_warning.sizes[1] += insn_length (ip);
7333 mips_macro_warning.insns[1]++;
7334 }
7335
7336 if (mips_opts.mips16)
7337 {
7338 ip->fixed_p = 1;
7339 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7340 }
7341 add_fixed_insn (ip);
7342 }
7343
7344 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
7345 {
7346 bfd_reloc_code_real_type final_type[3];
7347 reloc_howto_type *howto0;
7348 reloc_howto_type *howto;
7349 int i;
7350
7351 /* Perform any necessary conversion to microMIPS relocations
7352 and find out how many relocations there actually are. */
7353 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7354 final_type[i] = micromips_map_reloc (reloc_type[i]);
7355
7356 /* In a compound relocation, it is the final (outermost)
7357 operator that determines the relocated field. */
7358 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
7359 if (!howto)
7360 abort ();
7361
7362 if (i > 1)
7363 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
7364 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7365 bfd_get_reloc_size (howto),
7366 address_expr,
7367 howto0 && howto0->pc_relative,
7368 final_type[0]);
7369
7370 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
7371 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
7372 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7373
7374 /* These relocations can have an addend that won't fit in
7375 4 octets for 64bit assembly. */
7376 if (GPR_SIZE == 64
7377 && ! howto->partial_inplace
7378 && (reloc_type[0] == BFD_RELOC_16
7379 || reloc_type[0] == BFD_RELOC_32
7380 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7381 || reloc_type[0] == BFD_RELOC_GPREL16
7382 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7383 || reloc_type[0] == BFD_RELOC_GPREL32
7384 || reloc_type[0] == BFD_RELOC_64
7385 || reloc_type[0] == BFD_RELOC_CTOR
7386 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7387 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7388 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7389 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7390 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7391 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7392 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7393 || hi16_reloc_p (reloc_type[0])
7394 || lo16_reloc_p (reloc_type[0])))
7395 ip->fixp[0]->fx_no_overflow = 1;
7396
7397 /* These relocations can have an addend that won't fit in 2 octets. */
7398 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7399 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7400 ip->fixp[0]->fx_no_overflow = 1;
7401
7402 if (mips_relax.sequence)
7403 {
7404 if (mips_relax.first_fixup == 0)
7405 mips_relax.first_fixup = ip->fixp[0];
7406 }
7407 else if (reloc_needs_lo_p (*reloc_type))
7408 {
7409 struct mips_hi_fixup *hi_fixup;
7410
7411 /* Reuse the last entry if it already has a matching %lo. */
7412 hi_fixup = mips_hi_fixup_list;
7413 if (hi_fixup == 0
7414 || !fixup_has_matching_lo_p (hi_fixup->fixp))
7415 {
7416 hi_fixup = ((struct mips_hi_fixup *)
7417 xmalloc (sizeof (struct mips_hi_fixup)));
7418 hi_fixup->next = mips_hi_fixup_list;
7419 mips_hi_fixup_list = hi_fixup;
7420 }
7421 hi_fixup->fixp = ip->fixp[0];
7422 hi_fixup->seg = now_seg;
7423 }
7424
7425 /* Add fixups for the second and third relocations, if given.
7426 Note that the ABI allows the second relocation to be
7427 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7428 moment we only use RSS_UNDEF, but we could add support
7429 for the others if it ever becomes necessary. */
7430 for (i = 1; i < 3; i++)
7431 if (reloc_type[i] != BFD_RELOC_UNUSED)
7432 {
7433 ip->fixp[i] = fix_new (ip->frag, ip->where,
7434 ip->fixp[0]->fx_size, NULL, 0,
7435 FALSE, final_type[i]);
7436
7437 /* Use fx_tcbit to mark compound relocs. */
7438 ip->fixp[0]->fx_tcbit = 1;
7439 ip->fixp[i]->fx_tcbit = 1;
7440 }
7441 }
7442 install_insn (ip);
7443
7444 /* Update the register mask information. */
7445 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7446 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
7447
7448 switch (method)
7449 {
7450 case APPEND_ADD:
7451 insert_into_history (0, 1, ip);
7452 break;
7453
7454 case APPEND_ADD_WITH_NOP:
7455 {
7456 struct mips_cl_insn *nop;
7457
7458 insert_into_history (0, 1, ip);
7459 nop = get_delay_slot_nop (ip);
7460 add_fixed_insn (nop);
7461 insert_into_history (0, 1, nop);
7462 if (mips_relax.sequence)
7463 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7464 }
7465 break;
7466
7467 case APPEND_ADD_COMPACT:
7468 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7469 gas_assert (mips_opts.mips16);
7470 ip->insn_opcode |= 0x0080;
7471 find_altered_mips16_opcode (ip);
7472 install_insn (ip);
7473 insert_into_history (0, 1, ip);
7474 break;
7475
7476 case APPEND_SWAP:
7477 {
7478 struct mips_cl_insn delay = history[0];
7479 if (mips_opts.mips16)
7480 {
7481 know (delay.frag == ip->frag);
7482 move_insn (ip, delay.frag, delay.where);
7483 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
7484 }
7485 else if (relaxed_branch || delay.frag != ip->frag)
7486 {
7487 /* Add the delay slot instruction to the end of the
7488 current frag and shrink the fixed part of the
7489 original frag. If the branch occupies the tail of
7490 the latter, move it backwards to cover the gap. */
7491 delay.frag->fr_fix -= branch_disp;
7492 if (delay.frag == ip->frag)
7493 move_insn (ip, ip->frag, ip->where - branch_disp);
7494 add_fixed_insn (&delay);
7495 }
7496 else
7497 {
7498 move_insn (&delay, ip->frag,
7499 ip->where - branch_disp + insn_length (ip));
7500 move_insn (ip, history[0].frag, history[0].where);
7501 }
7502 history[0] = *ip;
7503 delay.fixed_p = 1;
7504 insert_into_history (0, 1, &delay);
7505 }
7506 break;
7507 }
7508
7509 /* If we have just completed an unconditional branch, clear the history. */
7510 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7511 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
7512 {
7513 unsigned int i;
7514
7515 mips_no_prev_insn ();
7516
7517 for (i = 0; i < ARRAY_SIZE (history); i++)
7518 history[i].cleared_p = 1;
7519 }
7520
7521 /* We need to emit a label at the end of branch-likely macros. */
7522 if (emit_branch_likely_macro)
7523 {
7524 emit_branch_likely_macro = FALSE;
7525 micromips_add_label ();
7526 }
7527
7528 /* We just output an insn, so the next one doesn't have a label. */
7529 mips_clear_insn_labels ();
7530 }
7531
7532 /* Forget that there was any previous instruction or label.
7533 When BRANCH is true, the branch history is also flushed. */
7534
7535 static void
7536 mips_no_prev_insn (void)
7537 {
7538 prev_nop_frag = NULL;
7539 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
7540 mips_clear_insn_labels ();
7541 }
7542
7543 /* This function must be called before we emit something other than
7544 instructions. It is like mips_no_prev_insn except that it inserts
7545 any NOPS that might be needed by previous instructions. */
7546
7547 void
7548 mips_emit_delays (void)
7549 {
7550 if (! mips_opts.noreorder)
7551 {
7552 int nops = nops_for_insn (0, history, NULL);
7553 if (nops > 0)
7554 {
7555 while (nops-- > 0)
7556 add_fixed_insn (NOP_INSN);
7557 mips_move_text_labels ();
7558 }
7559 }
7560 mips_no_prev_insn ();
7561 }
7562
7563 /* Start a (possibly nested) noreorder block. */
7564
7565 static void
7566 start_noreorder (void)
7567 {
7568 if (mips_opts.noreorder == 0)
7569 {
7570 unsigned int i;
7571 int nops;
7572
7573 /* None of the instructions before the .set noreorder can be moved. */
7574 for (i = 0; i < ARRAY_SIZE (history); i++)
7575 history[i].fixed_p = 1;
7576
7577 /* Insert any nops that might be needed between the .set noreorder
7578 block and the previous instructions. We will later remove any
7579 nops that turn out not to be needed. */
7580 nops = nops_for_insn (0, history, NULL);
7581 if (nops > 0)
7582 {
7583 if (mips_optimize != 0)
7584 {
7585 /* Record the frag which holds the nop instructions, so
7586 that we can remove them if we don't need them. */
7587 frag_grow (nops * NOP_INSN_SIZE);
7588 prev_nop_frag = frag_now;
7589 prev_nop_frag_holds = nops;
7590 prev_nop_frag_required = 0;
7591 prev_nop_frag_since = 0;
7592 }
7593
7594 for (; nops > 0; --nops)
7595 add_fixed_insn (NOP_INSN);
7596
7597 /* Move on to a new frag, so that it is safe to simply
7598 decrease the size of prev_nop_frag. */
7599 frag_wane (frag_now);
7600 frag_new (0);
7601 mips_move_text_labels ();
7602 }
7603 mips_mark_labels ();
7604 mips_clear_insn_labels ();
7605 }
7606 mips_opts.noreorder++;
7607 mips_any_noreorder = 1;
7608 }
7609
7610 /* End a nested noreorder block. */
7611
7612 static void
7613 end_noreorder (void)
7614 {
7615 mips_opts.noreorder--;
7616 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7617 {
7618 /* Commit to inserting prev_nop_frag_required nops and go back to
7619 handling nop insertion the .set reorder way. */
7620 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
7621 * NOP_INSN_SIZE);
7622 insert_into_history (prev_nop_frag_since,
7623 prev_nop_frag_required, NOP_INSN);
7624 prev_nop_frag = NULL;
7625 }
7626 }
7627
7628 /* Sign-extend 32-bit mode constants that have bit 31 set and all
7629 higher bits unset. */
7630
7631 static void
7632 normalize_constant_expr (expressionS *ex)
7633 {
7634 if (ex->X_op == O_constant
7635 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7636 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7637 - 0x80000000);
7638 }
7639
7640 /* Sign-extend 32-bit mode address offsets that have bit 31 set and
7641 all higher bits unset. */
7642
7643 static void
7644 normalize_address_expr (expressionS *ex)
7645 {
7646 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7647 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7648 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7649 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7650 - 0x80000000);
7651 }
7652
7653 /* Try to match TOKENS against OPCODE, storing the result in INSN.
7654 Return true if the match was successful.
7655
7656 OPCODE_EXTRA is a value that should be ORed into the opcode
7657 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7658 there are more alternatives after OPCODE and SOFT_MATCH is
7659 as for mips_arg_info. */
7660
7661 static bfd_boolean
7662 match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7663 struct mips_operand_token *tokens, unsigned int opcode_extra,
7664 bfd_boolean lax_match, bfd_boolean complete_p)
7665 {
7666 const char *args;
7667 struct mips_arg_info arg;
7668 const struct mips_operand *operand;
7669 char c;
7670
7671 imm_expr.X_op = O_absent;
7672 offset_expr.X_op = O_absent;
7673 offset_reloc[0] = BFD_RELOC_UNUSED;
7674 offset_reloc[1] = BFD_RELOC_UNUSED;
7675 offset_reloc[2] = BFD_RELOC_UNUSED;
7676
7677 create_insn (insn, opcode);
7678 /* When no opcode suffix is specified, assume ".xyzw". */
7679 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7680 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7681 else
7682 insn->insn_opcode |= opcode_extra;
7683 memset (&arg, 0, sizeof (arg));
7684 arg.insn = insn;
7685 arg.token = tokens;
7686 arg.argnum = 1;
7687 arg.last_regno = ILLEGAL_REG;
7688 arg.dest_regno = ILLEGAL_REG;
7689 arg.lax_match = lax_match;
7690 for (args = opcode->args;; ++args)
7691 {
7692 if (arg.token->type == OT_END)
7693 {
7694 /* Handle unary instructions in which only one operand is given.
7695 The source is then the same as the destination. */
7696 if (arg.opnum == 1 && *args == ',')
7697 {
7698 operand = (mips_opts.micromips
7699 ? decode_micromips_operand (args + 1)
7700 : decode_mips_operand (args + 1));
7701 if (operand && mips_optional_operand_p (operand))
7702 {
7703 arg.token = tokens;
7704 arg.argnum = 1;
7705 continue;
7706 }
7707 }
7708
7709 /* Treat elided base registers as $0. */
7710 if (strcmp (args, "(b)") == 0)
7711 args += 3;
7712
7713 if (args[0] == '+')
7714 switch (args[1])
7715 {
7716 case 'K':
7717 case 'N':
7718 /* The register suffix is optional. */
7719 args += 2;
7720 break;
7721 }
7722
7723 /* Fail the match if there were too few operands. */
7724 if (*args)
7725 return FALSE;
7726
7727 /* Successful match. */
7728 if (!complete_p)
7729 return TRUE;
7730 clear_insn_error ();
7731 if (arg.dest_regno == arg.last_regno
7732 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7733 {
7734 if (arg.opnum == 2)
7735 set_insn_error
7736 (0, _("source and destination must be different"));
7737 else if (arg.last_regno == 31)
7738 set_insn_error
7739 (0, _("a destination register must be supplied"));
7740 }
7741 else if (arg.last_regno == 31
7742 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7743 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7744 set_insn_error (0, _("the source register must not be $31"));
7745 check_completed_insn (&arg);
7746 return TRUE;
7747 }
7748
7749 /* Fail the match if the line has too many operands. */
7750 if (*args == 0)
7751 return FALSE;
7752
7753 /* Handle characters that need to match exactly. */
7754 if (*args == '(' || *args == ')' || *args == ',')
7755 {
7756 if (match_char (&arg, *args))
7757 continue;
7758 return FALSE;
7759 }
7760 if (*args == '#')
7761 {
7762 ++args;
7763 if (arg.token->type == OT_DOUBLE_CHAR
7764 && arg.token->u.ch == *args)
7765 {
7766 ++arg.token;
7767 continue;
7768 }
7769 return FALSE;
7770 }
7771
7772 /* Handle special macro operands. Work out the properties of
7773 other operands. */
7774 arg.opnum += 1;
7775 switch (*args)
7776 {
7777 case '-':
7778 switch (args[1])
7779 {
7780 case 'A':
7781 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
7782 break;
7783
7784 case 'B':
7785 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
7786 break;
7787 }
7788 break;
7789
7790 case '+':
7791 switch (args[1])
7792 {
7793 case 'i':
7794 *offset_reloc = BFD_RELOC_MIPS_JMP;
7795 break;
7796
7797 case '\'':
7798 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
7799 break;
7800
7801 case '\"':
7802 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
7803 break;
7804 }
7805 break;
7806
7807 case 'I':
7808 if (!match_const_int (&arg, &imm_expr.X_add_number))
7809 return FALSE;
7810 imm_expr.X_op = O_constant;
7811 if (GPR_SIZE == 32)
7812 normalize_constant_expr (&imm_expr);
7813 continue;
7814
7815 case 'A':
7816 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7817 {
7818 /* Assume that the offset has been elided and that what
7819 we saw was a base register. The match will fail later
7820 if that assumption turns out to be wrong. */
7821 offset_expr.X_op = O_constant;
7822 offset_expr.X_add_number = 0;
7823 }
7824 else
7825 {
7826 if (!match_expression (&arg, &offset_expr, offset_reloc))
7827 return FALSE;
7828 normalize_address_expr (&offset_expr);
7829 }
7830 continue;
7831
7832 case 'F':
7833 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7834 8, TRUE))
7835 return FALSE;
7836 continue;
7837
7838 case 'L':
7839 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7840 8, FALSE))
7841 return FALSE;
7842 continue;
7843
7844 case 'f':
7845 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7846 4, TRUE))
7847 return FALSE;
7848 continue;
7849
7850 case 'l':
7851 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7852 4, FALSE))
7853 return FALSE;
7854 continue;
7855
7856 case 'p':
7857 *offset_reloc = BFD_RELOC_16_PCREL_S2;
7858 break;
7859
7860 case 'a':
7861 *offset_reloc = BFD_RELOC_MIPS_JMP;
7862 break;
7863
7864 case 'm':
7865 gas_assert (mips_opts.micromips);
7866 c = args[1];
7867 switch (c)
7868 {
7869 case 'D':
7870 case 'E':
7871 if (!forced_insn_length)
7872 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
7873 else if (c == 'D')
7874 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
7875 else
7876 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
7877 break;
7878 }
7879 break;
7880 }
7881
7882 operand = (mips_opts.micromips
7883 ? decode_micromips_operand (args)
7884 : decode_mips_operand (args));
7885 if (!operand)
7886 abort ();
7887
7888 /* Skip prefixes. */
7889 if (*args == '+' || *args == 'm' || *args == '-')
7890 args++;
7891
7892 if (mips_optional_operand_p (operand)
7893 && args[1] == ','
7894 && (arg.token[0].type != OT_REG
7895 || arg.token[1].type == OT_END))
7896 {
7897 /* Assume that the register has been elided and is the
7898 same as the first operand. */
7899 arg.token = tokens;
7900 arg.argnum = 1;
7901 }
7902
7903 if (!match_operand (&arg, operand))
7904 return FALSE;
7905 }
7906 }
7907
7908 /* Like match_insn, but for MIPS16. */
7909
7910 static bfd_boolean
7911 match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7912 struct mips_operand_token *tokens)
7913 {
7914 const char *args;
7915 const struct mips_operand *operand;
7916 const struct mips_operand *ext_operand;
7917 struct mips_arg_info arg;
7918 int relax_char;
7919
7920 create_insn (insn, opcode);
7921 imm_expr.X_op = O_absent;
7922 offset_expr.X_op = O_absent;
7923 offset_reloc[0] = BFD_RELOC_UNUSED;
7924 offset_reloc[1] = BFD_RELOC_UNUSED;
7925 offset_reloc[2] = BFD_RELOC_UNUSED;
7926 relax_char = 0;
7927
7928 memset (&arg, 0, sizeof (arg));
7929 arg.insn = insn;
7930 arg.token = tokens;
7931 arg.argnum = 1;
7932 arg.last_regno = ILLEGAL_REG;
7933 arg.dest_regno = ILLEGAL_REG;
7934 relax_char = 0;
7935 for (args = opcode->args;; ++args)
7936 {
7937 int c;
7938
7939 if (arg.token->type == OT_END)
7940 {
7941 offsetT value;
7942
7943 /* Handle unary instructions in which only one operand is given.
7944 The source is then the same as the destination. */
7945 if (arg.opnum == 1 && *args == ',')
7946 {
7947 operand = decode_mips16_operand (args[1], FALSE);
7948 if (operand && mips_optional_operand_p (operand))
7949 {
7950 arg.token = tokens;
7951 arg.argnum = 1;
7952 continue;
7953 }
7954 }
7955
7956 /* Fail the match if there were too few operands. */
7957 if (*args)
7958 return FALSE;
7959
7960 /* Successful match. Stuff the immediate value in now, if
7961 we can. */
7962 clear_insn_error ();
7963 if (opcode->pinfo == INSN_MACRO)
7964 {
7965 gas_assert (relax_char == 0 || relax_char == 'p');
7966 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
7967 }
7968 else if (relax_char
7969 && offset_expr.X_op == O_constant
7970 && calculate_reloc (*offset_reloc,
7971 offset_expr.X_add_number,
7972 &value))
7973 {
7974 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
7975 forced_insn_length, &insn->insn_opcode);
7976 offset_expr.X_op = O_absent;
7977 *offset_reloc = BFD_RELOC_UNUSED;
7978 }
7979 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
7980 {
7981 if (forced_insn_length == 2)
7982 set_insn_error (0, _("invalid unextended operand value"));
7983 forced_insn_length = 4;
7984 insn->insn_opcode |= MIPS16_EXTEND;
7985 }
7986 else if (relax_char)
7987 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
7988
7989 check_completed_insn (&arg);
7990 return TRUE;
7991 }
7992
7993 /* Fail the match if the line has too many operands. */
7994 if (*args == 0)
7995 return FALSE;
7996
7997 /* Handle characters that need to match exactly. */
7998 if (*args == '(' || *args == ')' || *args == ',')
7999 {
8000 if (match_char (&arg, *args))
8001 continue;
8002 return FALSE;
8003 }
8004
8005 arg.opnum += 1;
8006 c = *args;
8007 switch (c)
8008 {
8009 case 'p':
8010 case 'q':
8011 case 'A':
8012 case 'B':
8013 case 'E':
8014 relax_char = c;
8015 break;
8016
8017 case 'I':
8018 if (!match_const_int (&arg, &imm_expr.X_add_number))
8019 return FALSE;
8020 imm_expr.X_op = O_constant;
8021 if (GPR_SIZE == 32)
8022 normalize_constant_expr (&imm_expr);
8023 continue;
8024
8025 case 'a':
8026 case 'i':
8027 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8028 insn->insn_opcode <<= 16;
8029 break;
8030 }
8031
8032 operand = decode_mips16_operand (c, FALSE);
8033 if (!operand)
8034 abort ();
8035
8036 /* '6' is a special case. It is used for BREAK and SDBBP,
8037 whose operands are only meaningful to the software that decodes
8038 them. This means that there is no architectural reason why
8039 they cannot be prefixed by EXTEND, but in practice,
8040 exception handlers will only look at the instruction
8041 itself. We therefore allow '6' to be extended when
8042 disassembling but not when assembling. */
8043 if (operand->type != OP_PCREL && c != '6')
8044 {
8045 ext_operand = decode_mips16_operand (c, TRUE);
8046 if (operand != ext_operand)
8047 {
8048 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8049 {
8050 offset_expr.X_op = O_constant;
8051 offset_expr.X_add_number = 0;
8052 relax_char = c;
8053 continue;
8054 }
8055
8056 /* We need the OT_INTEGER check because some MIPS16
8057 immediate variants are listed before the register ones. */
8058 if (arg.token->type != OT_INTEGER
8059 || !match_expression (&arg, &offset_expr, offset_reloc))
8060 return FALSE;
8061
8062 /* '8' is used for SLTI(U) and has traditionally not
8063 been allowed to take relocation operators. */
8064 if (offset_reloc[0] != BFD_RELOC_UNUSED
8065 && (ext_operand->size != 16 || c == '8'))
8066 return FALSE;
8067
8068 relax_char = c;
8069 continue;
8070 }
8071 }
8072
8073 if (mips_optional_operand_p (operand)
8074 && args[1] == ','
8075 && (arg.token[0].type != OT_REG
8076 || arg.token[1].type == OT_END))
8077 {
8078 /* Assume that the register has been elided and is the
8079 same as the first operand. */
8080 arg.token = tokens;
8081 arg.argnum = 1;
8082 }
8083
8084 if (!match_operand (&arg, operand))
8085 return FALSE;
8086 }
8087 }
8088
8089 /* Record that the current instruction is invalid for the current ISA. */
8090
8091 static void
8092 match_invalid_for_isa (void)
8093 {
8094 set_insn_error_ss
8095 (0, _("opcode not supported on this processor: %s (%s)"),
8096 mips_cpu_info_from_arch (mips_opts.arch)->name,
8097 mips_cpu_info_from_isa (mips_opts.isa)->name);
8098 }
8099
8100 /* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8101 Return true if a definite match or failure was found, storing any match
8102 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8103 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8104 tried and failed to match under normal conditions and now want to try a
8105 more relaxed match. */
8106
8107 static bfd_boolean
8108 match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8109 const struct mips_opcode *past, struct mips_operand_token *tokens,
8110 int opcode_extra, bfd_boolean lax_match)
8111 {
8112 const struct mips_opcode *opcode;
8113 const struct mips_opcode *invalid_delay_slot;
8114 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8115
8116 /* Search for a match, ignoring alternatives that don't satisfy the
8117 current ISA or forced_length. */
8118 invalid_delay_slot = 0;
8119 seen_valid_for_isa = FALSE;
8120 seen_valid_for_size = FALSE;
8121 opcode = first;
8122 do
8123 {
8124 gas_assert (strcmp (opcode->name, first->name) == 0);
8125 if (is_opcode_valid (opcode))
8126 {
8127 seen_valid_for_isa = TRUE;
8128 if (is_size_valid (opcode))
8129 {
8130 bfd_boolean delay_slot_ok;
8131
8132 seen_valid_for_size = TRUE;
8133 delay_slot_ok = is_delay_slot_valid (opcode);
8134 if (match_insn (insn, opcode, tokens, opcode_extra,
8135 lax_match, delay_slot_ok))
8136 {
8137 if (!delay_slot_ok)
8138 {
8139 if (!invalid_delay_slot)
8140 invalid_delay_slot = opcode;
8141 }
8142 else
8143 return TRUE;
8144 }
8145 }
8146 }
8147 ++opcode;
8148 }
8149 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8150
8151 /* If the only matches we found had the wrong length for the delay slot,
8152 pick the first such match. We'll issue an appropriate warning later. */
8153 if (invalid_delay_slot)
8154 {
8155 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8156 lax_match, TRUE))
8157 return TRUE;
8158 abort ();
8159 }
8160
8161 /* Handle the case where we didn't try to match an instruction because
8162 all the alternatives were incompatible with the current ISA. */
8163 if (!seen_valid_for_isa)
8164 {
8165 match_invalid_for_isa ();
8166 return TRUE;
8167 }
8168
8169 /* Handle the case where we didn't try to match an instruction because
8170 all the alternatives were of the wrong size. */
8171 if (!seen_valid_for_size)
8172 {
8173 if (mips_opts.insn32)
8174 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
8175 else
8176 set_insn_error_i
8177 (0, _("unrecognized %d-bit version of microMIPS opcode"),
8178 8 * forced_insn_length);
8179 return TRUE;
8180 }
8181
8182 return FALSE;
8183 }
8184
8185 /* Like match_insns, but for MIPS16. */
8186
8187 static bfd_boolean
8188 match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8189 struct mips_operand_token *tokens)
8190 {
8191 const struct mips_opcode *opcode;
8192 bfd_boolean seen_valid_for_isa;
8193
8194 /* Search for a match, ignoring alternatives that don't satisfy the
8195 current ISA. There are no separate entries for extended forms so
8196 we deal with forced_length later. */
8197 seen_valid_for_isa = FALSE;
8198 opcode = first;
8199 do
8200 {
8201 gas_assert (strcmp (opcode->name, first->name) == 0);
8202 if (is_opcode_valid_16 (opcode))
8203 {
8204 seen_valid_for_isa = TRUE;
8205 if (match_mips16_insn (insn, opcode, tokens))
8206 return TRUE;
8207 }
8208 ++opcode;
8209 }
8210 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8211 && strcmp (opcode->name, first->name) == 0);
8212
8213 /* Handle the case where we didn't try to match an instruction because
8214 all the alternatives were incompatible with the current ISA. */
8215 if (!seen_valid_for_isa)
8216 {
8217 match_invalid_for_isa ();
8218 return TRUE;
8219 }
8220
8221 return FALSE;
8222 }
8223
8224 /* Set up global variables for the start of a new macro. */
8225
8226 static void
8227 macro_start (void)
8228 {
8229 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
8230 memset (&mips_macro_warning.first_insn_sizes, 0,
8231 sizeof (mips_macro_warning.first_insn_sizes));
8232 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
8233 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
8234 && delayed_branch_p (&history[0]));
8235 switch (history[0].insn_mo->pinfo2
8236 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8237 {
8238 case INSN2_BRANCH_DELAY_32BIT:
8239 mips_macro_warning.delay_slot_length = 4;
8240 break;
8241 case INSN2_BRANCH_DELAY_16BIT:
8242 mips_macro_warning.delay_slot_length = 2;
8243 break;
8244 default:
8245 mips_macro_warning.delay_slot_length = 0;
8246 break;
8247 }
8248 mips_macro_warning.first_frag = NULL;
8249 }
8250
8251 /* Given that a macro is longer than one instruction or of the wrong size,
8252 return the appropriate warning for it. Return null if no warning is
8253 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8254 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8255 and RELAX_NOMACRO. */
8256
8257 static const char *
8258 macro_warning (relax_substateT subtype)
8259 {
8260 if (subtype & RELAX_DELAY_SLOT)
8261 return _("macro instruction expanded into multiple instructions"
8262 " in a branch delay slot");
8263 else if (subtype & RELAX_NOMACRO)
8264 return _("macro instruction expanded into multiple instructions");
8265 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8266 | RELAX_DELAY_SLOT_SIZE_SECOND))
8267 return ((subtype & RELAX_DELAY_SLOT_16BIT)
8268 ? _("macro instruction expanded into a wrong size instruction"
8269 " in a 16-bit branch delay slot")
8270 : _("macro instruction expanded into a wrong size instruction"
8271 " in a 32-bit branch delay slot"));
8272 else
8273 return 0;
8274 }
8275
8276 /* Finish up a macro. Emit warnings as appropriate. */
8277
8278 static void
8279 macro_end (void)
8280 {
8281 /* Relaxation warning flags. */
8282 relax_substateT subtype = 0;
8283
8284 /* Check delay slot size requirements. */
8285 if (mips_macro_warning.delay_slot_length == 2)
8286 subtype |= RELAX_DELAY_SLOT_16BIT;
8287 if (mips_macro_warning.delay_slot_length != 0)
8288 {
8289 if (mips_macro_warning.delay_slot_length
8290 != mips_macro_warning.first_insn_sizes[0])
8291 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8292 if (mips_macro_warning.delay_slot_length
8293 != mips_macro_warning.first_insn_sizes[1])
8294 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8295 }
8296
8297 /* Check instruction count requirements. */
8298 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8299 {
8300 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
8301 subtype |= RELAX_SECOND_LONGER;
8302 if (mips_opts.warn_about_macros)
8303 subtype |= RELAX_NOMACRO;
8304 if (mips_macro_warning.delay_slot_p)
8305 subtype |= RELAX_DELAY_SLOT;
8306 }
8307
8308 /* If both alternatives fail to fill a delay slot correctly,
8309 emit the warning now. */
8310 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8311 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8312 {
8313 relax_substateT s;
8314 const char *msg;
8315
8316 s = subtype & (RELAX_DELAY_SLOT_16BIT
8317 | RELAX_DELAY_SLOT_SIZE_FIRST
8318 | RELAX_DELAY_SLOT_SIZE_SECOND);
8319 msg = macro_warning (s);
8320 if (msg != NULL)
8321 as_warn ("%s", msg);
8322 subtype &= ~s;
8323 }
8324
8325 /* If both implementations are longer than 1 instruction, then emit the
8326 warning now. */
8327 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8328 {
8329 relax_substateT s;
8330 const char *msg;
8331
8332 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8333 msg = macro_warning (s);
8334 if (msg != NULL)
8335 as_warn ("%s", msg);
8336 subtype &= ~s;
8337 }
8338
8339 /* If any flags still set, then one implementation might need a warning
8340 and the other either will need one of a different kind or none at all.
8341 Pass any remaining flags over to relaxation. */
8342 if (mips_macro_warning.first_frag != NULL)
8343 mips_macro_warning.first_frag->fr_subtype |= subtype;
8344 }
8345
8346 /* Instruction operand formats used in macros that vary between
8347 standard MIPS and microMIPS code. */
8348
8349 static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
8350 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8351 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8352 static const char * const lui_fmt[2] = { "t,u", "s,u" };
8353 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
8354 static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
8355 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8356 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8357
8358 #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
8359 #define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8360 : cop12_fmt[mips_opts.micromips])
8361 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
8362 #define LUI_FMT (lui_fmt[mips_opts.micromips])
8363 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
8364 #define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8365 : mem12_fmt[mips_opts.micromips])
8366 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
8367 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
8368 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
8369
8370 /* Read a macro's relocation codes from *ARGS and store them in *R.
8371 The first argument in *ARGS will be either the code for a single
8372 relocation or -1 followed by the three codes that make up a
8373 composite relocation. */
8374
8375 static void
8376 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8377 {
8378 int i, next;
8379
8380 next = va_arg (*args, int);
8381 if (next >= 0)
8382 r[0] = (bfd_reloc_code_real_type) next;
8383 else
8384 {
8385 for (i = 0; i < 3; i++)
8386 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8387 /* This function is only used for 16-bit relocation fields.
8388 To make the macro code simpler, treat an unrelocated value
8389 in the same way as BFD_RELOC_LO16. */
8390 if (r[0] == BFD_RELOC_UNUSED)
8391 r[0] = BFD_RELOC_LO16;
8392 }
8393 }
8394
8395 /* Build an instruction created by a macro expansion. This is passed
8396 a pointer to the count of instructions created so far, an
8397 expression, the name of the instruction to build, an operand format
8398 string, and corresponding arguments. */
8399
8400 static void
8401 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
8402 {
8403 const struct mips_opcode *mo = NULL;
8404 bfd_reloc_code_real_type r[3];
8405 const struct mips_opcode *amo;
8406 const struct mips_operand *operand;
8407 struct hash_control *hash;
8408 struct mips_cl_insn insn;
8409 va_list args;
8410 unsigned int uval;
8411
8412 va_start (args, fmt);
8413
8414 if (mips_opts.mips16)
8415 {
8416 mips16_macro_build (ep, name, fmt, &args);
8417 va_end (args);
8418 return;
8419 }
8420
8421 r[0] = BFD_RELOC_UNUSED;
8422 r[1] = BFD_RELOC_UNUSED;
8423 r[2] = BFD_RELOC_UNUSED;
8424 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8425 amo = (struct mips_opcode *) hash_find (hash, name);
8426 gas_assert (amo);
8427 gas_assert (strcmp (name, amo->name) == 0);
8428
8429 do
8430 {
8431 /* Search until we get a match for NAME. It is assumed here that
8432 macros will never generate MDMX, MIPS-3D, or MT instructions.
8433 We try to match an instruction that fulfils the branch delay
8434 slot instruction length requirement (if any) of the previous
8435 instruction. While doing this we record the first instruction
8436 seen that matches all the other conditions and use it anyway
8437 if the requirement cannot be met; we will issue an appropriate
8438 warning later on. */
8439 if (strcmp (fmt, amo->args) == 0
8440 && amo->pinfo != INSN_MACRO
8441 && is_opcode_valid (amo)
8442 && is_size_valid (amo))
8443 {
8444 if (is_delay_slot_valid (amo))
8445 {
8446 mo = amo;
8447 break;
8448 }
8449 else if (!mo)
8450 mo = amo;
8451 }
8452
8453 ++amo;
8454 gas_assert (amo->name);
8455 }
8456 while (strcmp (name, amo->name) == 0);
8457
8458 gas_assert (mo);
8459 create_insn (&insn, mo);
8460 for (; *fmt; ++fmt)
8461 {
8462 switch (*fmt)
8463 {
8464 case ',':
8465 case '(':
8466 case ')':
8467 case 'z':
8468 break;
8469
8470 case 'i':
8471 case 'j':
8472 macro_read_relocs (&args, r);
8473 gas_assert (*r == BFD_RELOC_GPREL16
8474 || *r == BFD_RELOC_MIPS_HIGHER
8475 || *r == BFD_RELOC_HI16_S
8476 || *r == BFD_RELOC_LO16
8477 || *r == BFD_RELOC_MIPS_GOT_OFST);
8478 break;
8479
8480 case 'o':
8481 macro_read_relocs (&args, r);
8482 break;
8483
8484 case 'u':
8485 macro_read_relocs (&args, r);
8486 gas_assert (ep != NULL
8487 && (ep->X_op == O_constant
8488 || (ep->X_op == O_symbol
8489 && (*r == BFD_RELOC_MIPS_HIGHEST
8490 || *r == BFD_RELOC_HI16_S
8491 || *r == BFD_RELOC_HI16
8492 || *r == BFD_RELOC_GPREL16
8493 || *r == BFD_RELOC_MIPS_GOT_HI16
8494 || *r == BFD_RELOC_MIPS_CALL_HI16))));
8495 break;
8496
8497 case 'p':
8498 gas_assert (ep != NULL);
8499
8500 /*
8501 * This allows macro() to pass an immediate expression for
8502 * creating short branches without creating a symbol.
8503 *
8504 * We don't allow branch relaxation for these branches, as
8505 * they should only appear in ".set nomacro" anyway.
8506 */
8507 if (ep->X_op == O_constant)
8508 {
8509 /* For microMIPS we always use relocations for branches.
8510 So we should not resolve immediate values. */
8511 gas_assert (!mips_opts.micromips);
8512
8513 if ((ep->X_add_number & 3) != 0)
8514 as_bad (_("branch to misaligned address (0x%lx)"),
8515 (unsigned long) ep->X_add_number);
8516 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8517 as_bad (_("branch address range overflow (0x%lx)"),
8518 (unsigned long) ep->X_add_number);
8519 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8520 ep = NULL;
8521 }
8522 else
8523 *r = BFD_RELOC_16_PCREL_S2;
8524 break;
8525
8526 case 'a':
8527 gas_assert (ep != NULL);
8528 *r = BFD_RELOC_MIPS_JMP;
8529 break;
8530
8531 default:
8532 operand = (mips_opts.micromips
8533 ? decode_micromips_operand (fmt)
8534 : decode_mips_operand (fmt));
8535 if (!operand)
8536 abort ();
8537
8538 uval = va_arg (args, int);
8539 if (operand->type == OP_CLO_CLZ_DEST)
8540 uval |= (uval << 5);
8541 insn_insert_operand (&insn, operand, uval);
8542
8543 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
8544 ++fmt;
8545 break;
8546 }
8547 }
8548 va_end (args);
8549 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8550
8551 append_insn (&insn, ep, r, TRUE);
8552 }
8553
8554 static void
8555 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
8556 va_list *args)
8557 {
8558 struct mips_opcode *mo;
8559 struct mips_cl_insn insn;
8560 const struct mips_operand *operand;
8561 bfd_reloc_code_real_type r[3]
8562 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
8563
8564 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
8565 gas_assert (mo);
8566 gas_assert (strcmp (name, mo->name) == 0);
8567
8568 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
8569 {
8570 ++mo;
8571 gas_assert (mo->name);
8572 gas_assert (strcmp (name, mo->name) == 0);
8573 }
8574
8575 create_insn (&insn, mo);
8576 for (; *fmt; ++fmt)
8577 {
8578 int c;
8579
8580 c = *fmt;
8581 switch (c)
8582 {
8583 case ',':
8584 case '(':
8585 case ')':
8586 break;
8587
8588 case '0':
8589 case 'S':
8590 case 'P':
8591 case 'R':
8592 break;
8593
8594 case '<':
8595 case '>':
8596 case '4':
8597 case '5':
8598 case 'H':
8599 case 'W':
8600 case 'D':
8601 case 'j':
8602 case '8':
8603 case 'V':
8604 case 'C':
8605 case 'U':
8606 case 'k':
8607 case 'K':
8608 case 'p':
8609 case 'q':
8610 {
8611 offsetT value;
8612
8613 gas_assert (ep != NULL);
8614
8615 if (ep->X_op != O_constant)
8616 *r = (int) BFD_RELOC_UNUSED + c;
8617 else if (calculate_reloc (*r, ep->X_add_number, &value))
8618 {
8619 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
8620 ep = NULL;
8621 *r = BFD_RELOC_UNUSED;
8622 }
8623 }
8624 break;
8625
8626 default:
8627 operand = decode_mips16_operand (c, FALSE);
8628 if (!operand)
8629 abort ();
8630
8631 insn_insert_operand (&insn, operand, va_arg (*args, int));
8632 break;
8633 }
8634 }
8635
8636 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8637
8638 append_insn (&insn, ep, r, TRUE);
8639 }
8640
8641 /*
8642 * Generate a "jalr" instruction with a relocation hint to the called
8643 * function. This occurs in NewABI PIC code.
8644 */
8645 static void
8646 macro_build_jalr (expressionS *ep, int cprestore)
8647 {
8648 static const bfd_reloc_code_real_type jalr_relocs[2]
8649 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8650 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8651 const char *jalr;
8652 char *f = NULL;
8653
8654 if (MIPS_JALR_HINT_P (ep))
8655 {
8656 frag_grow (8);
8657 f = frag_more (0);
8658 }
8659 if (mips_opts.micromips)
8660 {
8661 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8662 ? "jalr" : "jalrs");
8663 if (MIPS_JALR_HINT_P (ep)
8664 || mips_opts.insn32
8665 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
8666 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8667 else
8668 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8669 }
8670 else
8671 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
8672 if (MIPS_JALR_HINT_P (ep))
8673 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
8674 }
8675
8676 /*
8677 * Generate a "lui" instruction.
8678 */
8679 static void
8680 macro_build_lui (expressionS *ep, int regnum)
8681 {
8682 gas_assert (! mips_opts.mips16);
8683
8684 if (ep->X_op != O_constant)
8685 {
8686 gas_assert (ep->X_op == O_symbol);
8687 /* _gp_disp is a special case, used from s_cpload.
8688 __gnu_local_gp is used if mips_no_shared. */
8689 gas_assert (mips_pic == NO_PIC
8690 || (! HAVE_NEWABI
8691 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8692 || (! mips_in_shared
8693 && strcmp (S_GET_NAME (ep->X_add_symbol),
8694 "__gnu_local_gp") == 0));
8695 }
8696
8697 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
8698 }
8699
8700 /* Generate a sequence of instructions to do a load or store from a constant
8701 offset off of a base register (breg) into/from a target register (treg),
8702 using AT if necessary. */
8703 static void
8704 macro_build_ldst_constoffset (expressionS *ep, const char *op,
8705 int treg, int breg, int dbl)
8706 {
8707 gas_assert (ep->X_op == O_constant);
8708
8709 /* Sign-extending 32-bit constants makes their handling easier. */
8710 if (!dbl)
8711 normalize_constant_expr (ep);
8712
8713 /* Right now, this routine can only handle signed 32-bit constants. */
8714 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
8715 as_warn (_("operand overflow"));
8716
8717 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8718 {
8719 /* Signed 16-bit offset will fit in the op. Easy! */
8720 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8721 }
8722 else
8723 {
8724 /* 32-bit offset, need multiple instructions and AT, like:
8725 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8726 addu $tempreg,$tempreg,$breg
8727 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8728 to handle the complete offset. */
8729 macro_build_lui (ep, AT);
8730 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8731 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8732
8733 if (!mips_opts.at)
8734 as_bad (_("macro used $at after \".set noat\""));
8735 }
8736 }
8737
8738 /* set_at()
8739 * Generates code to set the $at register to true (one)
8740 * if reg is less than the immediate expression.
8741 */
8742 static void
8743 set_at (int reg, int unsignedp)
8744 {
8745 if (imm_expr.X_add_number >= -0x8000
8746 && imm_expr.X_add_number < 0x8000)
8747 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8748 AT, reg, BFD_RELOC_LO16);
8749 else
8750 {
8751 load_register (AT, &imm_expr, GPR_SIZE == 64);
8752 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
8753 }
8754 }
8755
8756 /* Count the leading zeroes by performing a binary chop. This is a
8757 bulky bit of source, but performance is a LOT better for the
8758 majority of values than a simple loop to count the bits:
8759 for (lcnt = 0; (lcnt < 32); lcnt++)
8760 if ((v) & (1 << (31 - lcnt)))
8761 break;
8762 However it is not code size friendly, and the gain will drop a bit
8763 on certain cached systems.
8764 */
8765 #define COUNT_TOP_ZEROES(v) \
8766 (((v) & ~0xffff) == 0 \
8767 ? ((v) & ~0xff) == 0 \
8768 ? ((v) & ~0xf) == 0 \
8769 ? ((v) & ~0x3) == 0 \
8770 ? ((v) & ~0x1) == 0 \
8771 ? !(v) \
8772 ? 32 \
8773 : 31 \
8774 : 30 \
8775 : ((v) & ~0x7) == 0 \
8776 ? 29 \
8777 : 28 \
8778 : ((v) & ~0x3f) == 0 \
8779 ? ((v) & ~0x1f) == 0 \
8780 ? 27 \
8781 : 26 \
8782 : ((v) & ~0x7f) == 0 \
8783 ? 25 \
8784 : 24 \
8785 : ((v) & ~0xfff) == 0 \
8786 ? ((v) & ~0x3ff) == 0 \
8787 ? ((v) & ~0x1ff) == 0 \
8788 ? 23 \
8789 : 22 \
8790 : ((v) & ~0x7ff) == 0 \
8791 ? 21 \
8792 : 20 \
8793 : ((v) & ~0x3fff) == 0 \
8794 ? ((v) & ~0x1fff) == 0 \
8795 ? 19 \
8796 : 18 \
8797 : ((v) & ~0x7fff) == 0 \
8798 ? 17 \
8799 : 16 \
8800 : ((v) & ~0xffffff) == 0 \
8801 ? ((v) & ~0xfffff) == 0 \
8802 ? ((v) & ~0x3ffff) == 0 \
8803 ? ((v) & ~0x1ffff) == 0 \
8804 ? 15 \
8805 : 14 \
8806 : ((v) & ~0x7ffff) == 0 \
8807 ? 13 \
8808 : 12 \
8809 : ((v) & ~0x3fffff) == 0 \
8810 ? ((v) & ~0x1fffff) == 0 \
8811 ? 11 \
8812 : 10 \
8813 : ((v) & ~0x7fffff) == 0 \
8814 ? 9 \
8815 : 8 \
8816 : ((v) & ~0xfffffff) == 0 \
8817 ? ((v) & ~0x3ffffff) == 0 \
8818 ? ((v) & ~0x1ffffff) == 0 \
8819 ? 7 \
8820 : 6 \
8821 : ((v) & ~0x7ffffff) == 0 \
8822 ? 5 \
8823 : 4 \
8824 : ((v) & ~0x3fffffff) == 0 \
8825 ? ((v) & ~0x1fffffff) == 0 \
8826 ? 3 \
8827 : 2 \
8828 : ((v) & ~0x7fffffff) == 0 \
8829 ? 1 \
8830 : 0)
8831
8832 /* load_register()
8833 * This routine generates the least number of instructions necessary to load
8834 * an absolute expression value into a register.
8835 */
8836 static void
8837 load_register (int reg, expressionS *ep, int dbl)
8838 {
8839 int freg;
8840 expressionS hi32, lo32;
8841
8842 if (ep->X_op != O_big)
8843 {
8844 gas_assert (ep->X_op == O_constant);
8845
8846 /* Sign-extending 32-bit constants makes their handling easier. */
8847 if (!dbl)
8848 normalize_constant_expr (ep);
8849
8850 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
8851 {
8852 /* We can handle 16 bit signed values with an addiu to
8853 $zero. No need to ever use daddiu here, since $zero and
8854 the result are always correct in 32 bit mode. */
8855 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8856 return;
8857 }
8858 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
8859 {
8860 /* We can handle 16 bit unsigned values with an ori to
8861 $zero. */
8862 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
8863 return;
8864 }
8865 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
8866 {
8867 /* 32 bit values require an lui. */
8868 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8869 if ((ep->X_add_number & 0xffff) != 0)
8870 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
8871 return;
8872 }
8873 }
8874
8875 /* The value is larger than 32 bits. */
8876
8877 if (!dbl || GPR_SIZE == 32)
8878 {
8879 char value[32];
8880
8881 sprintf_vma (value, ep->X_add_number);
8882 as_bad (_("number (0x%s) larger than 32 bits"), value);
8883 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8884 return;
8885 }
8886
8887 if (ep->X_op != O_big)
8888 {
8889 hi32 = *ep;
8890 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8891 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8892 hi32.X_add_number &= 0xffffffff;
8893 lo32 = *ep;
8894 lo32.X_add_number &= 0xffffffff;
8895 }
8896 else
8897 {
8898 gas_assert (ep->X_add_number > 2);
8899 if (ep->X_add_number == 3)
8900 generic_bignum[3] = 0;
8901 else if (ep->X_add_number > 4)
8902 as_bad (_("number larger than 64 bits"));
8903 lo32.X_op = O_constant;
8904 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
8905 hi32.X_op = O_constant;
8906 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
8907 }
8908
8909 if (hi32.X_add_number == 0)
8910 freg = 0;
8911 else
8912 {
8913 int shift, bit;
8914 unsigned long hi, lo;
8915
8916 if (hi32.X_add_number == (offsetT) 0xffffffff)
8917 {
8918 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
8919 {
8920 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8921 return;
8922 }
8923 if (lo32.X_add_number & 0x80000000)
8924 {
8925 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8926 if (lo32.X_add_number & 0xffff)
8927 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
8928 return;
8929 }
8930 }
8931
8932 /* Check for 16bit shifted constant. We know that hi32 is
8933 non-zero, so start the mask on the first bit of the hi32
8934 value. */
8935 shift = 17;
8936 do
8937 {
8938 unsigned long himask, lomask;
8939
8940 if (shift < 32)
8941 {
8942 himask = 0xffff >> (32 - shift);
8943 lomask = (0xffff << shift) & 0xffffffff;
8944 }
8945 else
8946 {
8947 himask = 0xffff << (shift - 32);
8948 lomask = 0;
8949 }
8950 if ((hi32.X_add_number & ~(offsetT) himask) == 0
8951 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
8952 {
8953 expressionS tmp;
8954
8955 tmp.X_op = O_constant;
8956 if (shift < 32)
8957 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
8958 | (lo32.X_add_number >> shift));
8959 else
8960 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
8961 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
8962 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
8963 reg, reg, (shift >= 32) ? shift - 32 : shift);
8964 return;
8965 }
8966 ++shift;
8967 }
8968 while (shift <= (64 - 16));
8969
8970 /* Find the bit number of the lowest one bit, and store the
8971 shifted value in hi/lo. */
8972 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
8973 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
8974 if (lo != 0)
8975 {
8976 bit = 0;
8977 while ((lo & 1) == 0)
8978 {
8979 lo >>= 1;
8980 ++bit;
8981 }
8982 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
8983 hi >>= bit;
8984 }
8985 else
8986 {
8987 bit = 32;
8988 while ((hi & 1) == 0)
8989 {
8990 hi >>= 1;
8991 ++bit;
8992 }
8993 lo = hi;
8994 hi = 0;
8995 }
8996
8997 /* Optimize if the shifted value is a (power of 2) - 1. */
8998 if ((hi == 0 && ((lo + 1) & lo) == 0)
8999 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
9000 {
9001 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
9002 if (shift != 0)
9003 {
9004 expressionS tmp;
9005
9006 /* This instruction will set the register to be all
9007 ones. */
9008 tmp.X_op = O_constant;
9009 tmp.X_add_number = (offsetT) -1;
9010 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9011 if (bit != 0)
9012 {
9013 bit += shift;
9014 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9015 reg, reg, (bit >= 32) ? bit - 32 : bit);
9016 }
9017 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
9018 reg, reg, (shift >= 32) ? shift - 32 : shift);
9019 return;
9020 }
9021 }
9022
9023 /* Sign extend hi32 before calling load_register, because we can
9024 generally get better code when we load a sign extended value. */
9025 if ((hi32.X_add_number & 0x80000000) != 0)
9026 hi32.X_add_number |= ~(offsetT) 0xffffffff;
9027 load_register (reg, &hi32, 0);
9028 freg = reg;
9029 }
9030 if ((lo32.X_add_number & 0xffff0000) == 0)
9031 {
9032 if (freg != 0)
9033 {
9034 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
9035 freg = reg;
9036 }
9037 }
9038 else
9039 {
9040 expressionS mid16;
9041
9042 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
9043 {
9044 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9045 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
9046 return;
9047 }
9048
9049 if (freg != 0)
9050 {
9051 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
9052 freg = reg;
9053 }
9054 mid16 = lo32;
9055 mid16.X_add_number >>= 16;
9056 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9057 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9058 freg = reg;
9059 }
9060 if ((lo32.X_add_number & 0xffff) != 0)
9061 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9062 }
9063
9064 static inline void
9065 load_delay_nop (void)
9066 {
9067 if (!gpr_interlocks)
9068 macro_build (NULL, "nop", "");
9069 }
9070
9071 /* Load an address into a register. */
9072
9073 static void
9074 load_address (int reg, expressionS *ep, int *used_at)
9075 {
9076 if (ep->X_op != O_constant
9077 && ep->X_op != O_symbol)
9078 {
9079 as_bad (_("expression too complex"));
9080 ep->X_op = O_constant;
9081 }
9082
9083 if (ep->X_op == O_constant)
9084 {
9085 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
9086 return;
9087 }
9088
9089 if (mips_pic == NO_PIC)
9090 {
9091 /* If this is a reference to a GP relative symbol, we want
9092 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
9093 Otherwise we want
9094 lui $reg,<sym> (BFD_RELOC_HI16_S)
9095 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9096 If we have an addend, we always use the latter form.
9097
9098 With 64bit address space and a usable $at we want
9099 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9100 lui $at,<sym> (BFD_RELOC_HI16_S)
9101 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9102 daddiu $at,<sym> (BFD_RELOC_LO16)
9103 dsll32 $reg,0
9104 daddu $reg,$reg,$at
9105
9106 If $at is already in use, we use a path which is suboptimal
9107 on superscalar processors.
9108 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9109 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9110 dsll $reg,16
9111 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9112 dsll $reg,16
9113 daddiu $reg,<sym> (BFD_RELOC_LO16)
9114
9115 For GP relative symbols in 64bit address space we can use
9116 the same sequence as in 32bit address space. */
9117 if (HAVE_64BIT_SYMBOLS)
9118 {
9119 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9120 && !nopic_need_relax (ep->X_add_symbol, 1))
9121 {
9122 relax_start (ep->X_add_symbol);
9123 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9124 mips_gp_register, BFD_RELOC_GPREL16);
9125 relax_switch ();
9126 }
9127
9128 if (*used_at == 0 && mips_opts.at)
9129 {
9130 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9131 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
9132 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9133 BFD_RELOC_MIPS_HIGHER);
9134 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
9135 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
9136 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
9137 *used_at = 1;
9138 }
9139 else
9140 {
9141 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9142 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9143 BFD_RELOC_MIPS_HIGHER);
9144 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9145 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
9146 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9147 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
9148 }
9149
9150 if (mips_relax.sequence)
9151 relax_end ();
9152 }
9153 else
9154 {
9155 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9156 && !nopic_need_relax (ep->X_add_symbol, 1))
9157 {
9158 relax_start (ep->X_add_symbol);
9159 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9160 mips_gp_register, BFD_RELOC_GPREL16);
9161 relax_switch ();
9162 }
9163 macro_build_lui (ep, reg);
9164 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9165 reg, reg, BFD_RELOC_LO16);
9166 if (mips_relax.sequence)
9167 relax_end ();
9168 }
9169 }
9170 else if (!mips_big_got)
9171 {
9172 expressionS ex;
9173
9174 /* If this is a reference to an external symbol, we want
9175 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9176 Otherwise we want
9177 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9178 nop
9179 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9180 If there is a constant, it must be added in after.
9181
9182 If we have NewABI, we want
9183 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9184 unless we're referencing a global symbol with a non-zero
9185 offset, in which case cst must be added separately. */
9186 if (HAVE_NEWABI)
9187 {
9188 if (ep->X_add_number)
9189 {
9190 ex.X_add_number = ep->X_add_number;
9191 ep->X_add_number = 0;
9192 relax_start (ep->X_add_symbol);
9193 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9194 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9195 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9196 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9197 ex.X_op = O_constant;
9198 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9199 reg, reg, BFD_RELOC_LO16);
9200 ep->X_add_number = ex.X_add_number;
9201 relax_switch ();
9202 }
9203 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9204 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9205 if (mips_relax.sequence)
9206 relax_end ();
9207 }
9208 else
9209 {
9210 ex.X_add_number = ep->X_add_number;
9211 ep->X_add_number = 0;
9212 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9213 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9214 load_delay_nop ();
9215 relax_start (ep->X_add_symbol);
9216 relax_switch ();
9217 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9218 BFD_RELOC_LO16);
9219 relax_end ();
9220
9221 if (ex.X_add_number != 0)
9222 {
9223 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9224 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9225 ex.X_op = O_constant;
9226 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9227 reg, reg, BFD_RELOC_LO16);
9228 }
9229 }
9230 }
9231 else if (mips_big_got)
9232 {
9233 expressionS ex;
9234
9235 /* This is the large GOT case. If this is a reference to an
9236 external symbol, we want
9237 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9238 addu $reg,$reg,$gp
9239 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
9240
9241 Otherwise, for a reference to a local symbol in old ABI, we want
9242 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9243 nop
9244 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9245 If there is a constant, it must be added in after.
9246
9247 In the NewABI, for local symbols, with or without offsets, we want:
9248 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9249 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
9250 */
9251 if (HAVE_NEWABI)
9252 {
9253 ex.X_add_number = ep->X_add_number;
9254 ep->X_add_number = 0;
9255 relax_start (ep->X_add_symbol);
9256 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9257 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9258 reg, reg, mips_gp_register);
9259 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9260 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9261 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9262 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9263 else if (ex.X_add_number)
9264 {
9265 ex.X_op = O_constant;
9266 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9267 BFD_RELOC_LO16);
9268 }
9269
9270 ep->X_add_number = ex.X_add_number;
9271 relax_switch ();
9272 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9273 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9274 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9275 BFD_RELOC_MIPS_GOT_OFST);
9276 relax_end ();
9277 }
9278 else
9279 {
9280 ex.X_add_number = ep->X_add_number;
9281 ep->X_add_number = 0;
9282 relax_start (ep->X_add_symbol);
9283 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9284 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9285 reg, reg, mips_gp_register);
9286 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9287 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9288 relax_switch ();
9289 if (reg_needs_delay (mips_gp_register))
9290 {
9291 /* We need a nop before loading from $gp. This special
9292 check is required because the lui which starts the main
9293 instruction stream does not refer to $gp, and so will not
9294 insert the nop which may be required. */
9295 macro_build (NULL, "nop", "");
9296 }
9297 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9298 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9299 load_delay_nop ();
9300 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9301 BFD_RELOC_LO16);
9302 relax_end ();
9303
9304 if (ex.X_add_number != 0)
9305 {
9306 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9307 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9308 ex.X_op = O_constant;
9309 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9310 BFD_RELOC_LO16);
9311 }
9312 }
9313 }
9314 else
9315 abort ();
9316
9317 if (!mips_opts.at && *used_at == 1)
9318 as_bad (_("macro used $at after \".set noat\""));
9319 }
9320
9321 /* Move the contents of register SOURCE into register DEST. */
9322
9323 static void
9324 move_register (int dest, int source)
9325 {
9326 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9327 instruction specifically requires a 32-bit one. */
9328 if (mips_opts.micromips
9329 && !mips_opts.insn32
9330 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9331 macro_build (NULL, "move", "mp,mj", dest, source);
9332 else
9333 macro_build (NULL, "or", "d,v,t", dest, source, 0);
9334 }
9335
9336 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
9337 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9338 The two alternatives are:
9339
9340 Global symbol Local sybmol
9341 ------------- ------------
9342 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9343 ... ...
9344 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9345
9346 load_got_offset emits the first instruction and add_got_offset
9347 emits the second for a 16-bit offset or add_got_offset_hilo emits
9348 a sequence to add a 32-bit offset using a scratch register. */
9349
9350 static void
9351 load_got_offset (int dest, expressionS *local)
9352 {
9353 expressionS global;
9354
9355 global = *local;
9356 global.X_add_number = 0;
9357
9358 relax_start (local->X_add_symbol);
9359 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9360 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9361 relax_switch ();
9362 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9363 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9364 relax_end ();
9365 }
9366
9367 static void
9368 add_got_offset (int dest, expressionS *local)
9369 {
9370 expressionS global;
9371
9372 global.X_op = O_constant;
9373 global.X_op_symbol = NULL;
9374 global.X_add_symbol = NULL;
9375 global.X_add_number = local->X_add_number;
9376
9377 relax_start (local->X_add_symbol);
9378 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
9379 dest, dest, BFD_RELOC_LO16);
9380 relax_switch ();
9381 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
9382 relax_end ();
9383 }
9384
9385 static void
9386 add_got_offset_hilo (int dest, expressionS *local, int tmp)
9387 {
9388 expressionS global;
9389 int hold_mips_optimize;
9390
9391 global.X_op = O_constant;
9392 global.X_op_symbol = NULL;
9393 global.X_add_symbol = NULL;
9394 global.X_add_number = local->X_add_number;
9395
9396 relax_start (local->X_add_symbol);
9397 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9398 relax_switch ();
9399 /* Set mips_optimize around the lui instruction to avoid
9400 inserting an unnecessary nop after the lw. */
9401 hold_mips_optimize = mips_optimize;
9402 mips_optimize = 2;
9403 macro_build_lui (&global, tmp);
9404 mips_optimize = hold_mips_optimize;
9405 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9406 relax_end ();
9407
9408 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9409 }
9410
9411 /* Emit a sequence of instructions to emulate a branch likely operation.
9412 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9413 is its complementing branch with the original condition negated.
9414 CALL is set if the original branch specified the link operation.
9415 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9416
9417 Code like this is produced in the noreorder mode:
9418
9419 BRNEG <args>, 1f
9420 nop
9421 b <sym>
9422 delay slot (executed only if branch taken)
9423 1:
9424
9425 or, if CALL is set:
9426
9427 BRNEG <args>, 1f
9428 nop
9429 bal <sym>
9430 delay slot (executed only if branch taken)
9431 1:
9432
9433 In the reorder mode the delay slot would be filled with a nop anyway,
9434 so code produced is simply:
9435
9436 BR <args>, <sym>
9437 nop
9438
9439 This function is used when producing code for the microMIPS ASE that
9440 does not implement branch likely instructions in hardware. */
9441
9442 static void
9443 macro_build_branch_likely (const char *br, const char *brneg,
9444 int call, expressionS *ep, const char *fmt,
9445 unsigned int sreg, unsigned int treg)
9446 {
9447 int noreorder = mips_opts.noreorder;
9448 expressionS expr1;
9449
9450 gas_assert (mips_opts.micromips);
9451 start_noreorder ();
9452 if (noreorder)
9453 {
9454 micromips_label_expr (&expr1);
9455 macro_build (&expr1, brneg, fmt, sreg, treg);
9456 macro_build (NULL, "nop", "");
9457 macro_build (ep, call ? "bal" : "b", "p");
9458
9459 /* Set to true so that append_insn adds a label. */
9460 emit_branch_likely_macro = TRUE;
9461 }
9462 else
9463 {
9464 macro_build (ep, br, fmt, sreg, treg);
9465 macro_build (NULL, "nop", "");
9466 }
9467 end_noreorder ();
9468 }
9469
9470 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9471 the condition code tested. EP specifies the branch target. */
9472
9473 static void
9474 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9475 {
9476 const int call = 0;
9477 const char *brneg;
9478 const char *br;
9479
9480 switch (type)
9481 {
9482 case M_BC1FL:
9483 br = "bc1f";
9484 brneg = "bc1t";
9485 break;
9486 case M_BC1TL:
9487 br = "bc1t";
9488 brneg = "bc1f";
9489 break;
9490 case M_BC2FL:
9491 br = "bc2f";
9492 brneg = "bc2t";
9493 break;
9494 case M_BC2TL:
9495 br = "bc2t";
9496 brneg = "bc2f";
9497 break;
9498 default:
9499 abort ();
9500 }
9501 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9502 }
9503
9504 /* Emit a two-argument branch macro specified by TYPE, using SREG as
9505 the register tested. EP specifies the branch target. */
9506
9507 static void
9508 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9509 {
9510 const char *brneg = NULL;
9511 const char *br;
9512 int call = 0;
9513
9514 switch (type)
9515 {
9516 case M_BGEZ:
9517 br = "bgez";
9518 break;
9519 case M_BGEZL:
9520 br = mips_opts.micromips ? "bgez" : "bgezl";
9521 brneg = "bltz";
9522 break;
9523 case M_BGEZALL:
9524 gas_assert (mips_opts.micromips);
9525 br = mips_opts.insn32 ? "bgezal" : "bgezals";
9526 brneg = "bltz";
9527 call = 1;
9528 break;
9529 case M_BGTZ:
9530 br = "bgtz";
9531 break;
9532 case M_BGTZL:
9533 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9534 brneg = "blez";
9535 break;
9536 case M_BLEZ:
9537 br = "blez";
9538 break;
9539 case M_BLEZL:
9540 br = mips_opts.micromips ? "blez" : "blezl";
9541 brneg = "bgtz";
9542 break;
9543 case M_BLTZ:
9544 br = "bltz";
9545 break;
9546 case M_BLTZL:
9547 br = mips_opts.micromips ? "bltz" : "bltzl";
9548 brneg = "bgez";
9549 break;
9550 case M_BLTZALL:
9551 gas_assert (mips_opts.micromips);
9552 br = mips_opts.insn32 ? "bltzal" : "bltzals";
9553 brneg = "bgez";
9554 call = 1;
9555 break;
9556 default:
9557 abort ();
9558 }
9559 if (mips_opts.micromips && brneg)
9560 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9561 else
9562 macro_build (ep, br, "s,p", sreg);
9563 }
9564
9565 /* Emit a three-argument branch macro specified by TYPE, using SREG and
9566 TREG as the registers tested. EP specifies the branch target. */
9567
9568 static void
9569 macro_build_branch_rsrt (int type, expressionS *ep,
9570 unsigned int sreg, unsigned int treg)
9571 {
9572 const char *brneg = NULL;
9573 const int call = 0;
9574 const char *br;
9575
9576 switch (type)
9577 {
9578 case M_BEQ:
9579 case M_BEQ_I:
9580 br = "beq";
9581 break;
9582 case M_BEQL:
9583 case M_BEQL_I:
9584 br = mips_opts.micromips ? "beq" : "beql";
9585 brneg = "bne";
9586 break;
9587 case M_BNE:
9588 case M_BNE_I:
9589 br = "bne";
9590 break;
9591 case M_BNEL:
9592 case M_BNEL_I:
9593 br = mips_opts.micromips ? "bne" : "bnel";
9594 brneg = "beq";
9595 break;
9596 default:
9597 abort ();
9598 }
9599 if (mips_opts.micromips && brneg)
9600 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9601 else
9602 macro_build (ep, br, "s,t,p", sreg, treg);
9603 }
9604
9605 /* Return the high part that should be loaded in order to make the low
9606 part of VALUE accessible using an offset of OFFBITS bits. */
9607
9608 static offsetT
9609 offset_high_part (offsetT value, unsigned int offbits)
9610 {
9611 offsetT bias;
9612 addressT low_mask;
9613
9614 if (offbits == 0)
9615 return value;
9616 bias = 1 << (offbits - 1);
9617 low_mask = bias * 2 - 1;
9618 return (value + bias) & ~low_mask;
9619 }
9620
9621 /* Return true if the value stored in offset_expr and offset_reloc
9622 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9623 amount that the caller wants to add without inducing overflow
9624 and ALIGN is the known alignment of the value in bytes. */
9625
9626 static bfd_boolean
9627 small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9628 {
9629 if (offbits == 16)
9630 {
9631 /* Accept any relocation operator if overflow isn't a concern. */
9632 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9633 return TRUE;
9634
9635 /* These relocations are guaranteed not to overflow in correct links. */
9636 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9637 || gprel16_reloc_p (*offset_reloc))
9638 return TRUE;
9639 }
9640 if (offset_expr.X_op == O_constant
9641 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9642 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9643 return TRUE;
9644 return FALSE;
9645 }
9646
9647 /*
9648 * Build macros
9649 * This routine implements the seemingly endless macro or synthesized
9650 * instructions and addressing modes in the mips assembly language. Many
9651 * of these macros are simple and are similar to each other. These could
9652 * probably be handled by some kind of table or grammar approach instead of
9653 * this verbose method. Others are not simple macros but are more like
9654 * optimizing code generation.
9655 * One interesting optimization is when several store macros appear
9656 * consecutively that would load AT with the upper half of the same address.
9657 * The ensuing load upper instructions are ommited. This implies some kind
9658 * of global optimization. We currently only optimize within a single macro.
9659 * For many of the load and store macros if the address is specified as a
9660 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9661 * first load register 'at' with zero and use it as the base register. The
9662 * mips assembler simply uses register $zero. Just one tiny optimization
9663 * we're missing.
9664 */
9665 static void
9666 macro (struct mips_cl_insn *ip, char *str)
9667 {
9668 const struct mips_operand_array *operands;
9669 unsigned int breg, i;
9670 unsigned int tempreg;
9671 int mask;
9672 int used_at = 0;
9673 expressionS label_expr;
9674 expressionS expr1;
9675 expressionS *ep;
9676 const char *s;
9677 const char *s2;
9678 const char *fmt;
9679 int likely = 0;
9680 int coproc = 0;
9681 int offbits = 16;
9682 int call = 0;
9683 int jals = 0;
9684 int dbl = 0;
9685 int imm = 0;
9686 int ust = 0;
9687 int lp = 0;
9688 bfd_boolean large_offset;
9689 int off;
9690 int hold_mips_optimize;
9691 unsigned int align;
9692 unsigned int op[MAX_OPERANDS];
9693
9694 gas_assert (! mips_opts.mips16);
9695
9696 operands = insn_operands (ip);
9697 for (i = 0; i < MAX_OPERANDS; i++)
9698 if (operands->operand[i])
9699 op[i] = insn_extract_operand (ip, operands->operand[i]);
9700 else
9701 op[i] = -1;
9702
9703 mask = ip->insn_mo->mask;
9704
9705 label_expr.X_op = O_constant;
9706 label_expr.X_op_symbol = NULL;
9707 label_expr.X_add_symbol = NULL;
9708 label_expr.X_add_number = 0;
9709
9710 expr1.X_op = O_constant;
9711 expr1.X_op_symbol = NULL;
9712 expr1.X_add_symbol = NULL;
9713 expr1.X_add_number = 1;
9714 align = 1;
9715
9716 switch (mask)
9717 {
9718 case M_DABS:
9719 dbl = 1;
9720 case M_ABS:
9721 /* bgez $a0,1f
9722 move v0,$a0
9723 sub v0,$zero,$a0
9724 1:
9725 */
9726
9727 start_noreorder ();
9728
9729 if (mips_opts.micromips)
9730 micromips_label_expr (&label_expr);
9731 else
9732 label_expr.X_add_number = 8;
9733 macro_build (&label_expr, "bgez", "s,p", op[1]);
9734 if (op[0] == op[1])
9735 macro_build (NULL, "nop", "");
9736 else
9737 move_register (op[0], op[1]);
9738 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
9739 if (mips_opts.micromips)
9740 micromips_add_label ();
9741
9742 end_noreorder ();
9743 break;
9744
9745 case M_ADD_I:
9746 s = "addi";
9747 s2 = "add";
9748 goto do_addi;
9749 case M_ADDU_I:
9750 s = "addiu";
9751 s2 = "addu";
9752 goto do_addi;
9753 case M_DADD_I:
9754 dbl = 1;
9755 s = "daddi";
9756 s2 = "dadd";
9757 if (!mips_opts.micromips)
9758 goto do_addi;
9759 if (imm_expr.X_add_number >= -0x200
9760 && imm_expr.X_add_number < 0x200)
9761 {
9762 macro_build (NULL, s, "t,r,.", op[0], op[1],
9763 (int) imm_expr.X_add_number);
9764 break;
9765 }
9766 goto do_addi_i;
9767 case M_DADDU_I:
9768 dbl = 1;
9769 s = "daddiu";
9770 s2 = "daddu";
9771 do_addi:
9772 if (imm_expr.X_add_number >= -0x8000
9773 && imm_expr.X_add_number < 0x8000)
9774 {
9775 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
9776 break;
9777 }
9778 do_addi_i:
9779 used_at = 1;
9780 load_register (AT, &imm_expr, dbl);
9781 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9782 break;
9783
9784 case M_AND_I:
9785 s = "andi";
9786 s2 = "and";
9787 goto do_bit;
9788 case M_OR_I:
9789 s = "ori";
9790 s2 = "or";
9791 goto do_bit;
9792 case M_NOR_I:
9793 s = "";
9794 s2 = "nor";
9795 goto do_bit;
9796 case M_XOR_I:
9797 s = "xori";
9798 s2 = "xor";
9799 do_bit:
9800 if (imm_expr.X_add_number >= 0
9801 && imm_expr.X_add_number < 0x10000)
9802 {
9803 if (mask != M_NOR_I)
9804 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
9805 else
9806 {
9807 macro_build (&imm_expr, "ori", "t,r,i",
9808 op[0], op[1], BFD_RELOC_LO16);
9809 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
9810 }
9811 break;
9812 }
9813
9814 used_at = 1;
9815 load_register (AT, &imm_expr, GPR_SIZE == 64);
9816 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9817 break;
9818
9819 case M_BALIGN:
9820 switch (imm_expr.X_add_number)
9821 {
9822 case 0:
9823 macro_build (NULL, "nop", "");
9824 break;
9825 case 2:
9826 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
9827 break;
9828 case 1:
9829 case 3:
9830 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
9831 (int) imm_expr.X_add_number);
9832 break;
9833 default:
9834 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
9835 (unsigned long) imm_expr.X_add_number);
9836 break;
9837 }
9838 break;
9839
9840 case M_BC1FL:
9841 case M_BC1TL:
9842 case M_BC2FL:
9843 case M_BC2TL:
9844 gas_assert (mips_opts.micromips);
9845 macro_build_branch_ccl (mask, &offset_expr,
9846 EXTRACT_OPERAND (1, BCC, *ip));
9847 break;
9848
9849 case M_BEQ_I:
9850 case M_BEQL_I:
9851 case M_BNE_I:
9852 case M_BNEL_I:
9853 if (imm_expr.X_add_number == 0)
9854 op[1] = 0;
9855 else
9856 {
9857 op[1] = AT;
9858 used_at = 1;
9859 load_register (op[1], &imm_expr, GPR_SIZE == 64);
9860 }
9861 /* Fall through. */
9862 case M_BEQL:
9863 case M_BNEL:
9864 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
9865 break;
9866
9867 case M_BGEL:
9868 likely = 1;
9869 case M_BGE:
9870 if (op[1] == 0)
9871 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
9872 else if (op[0] == 0)
9873 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
9874 else
9875 {
9876 used_at = 1;
9877 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
9878 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9879 &offset_expr, AT, ZERO);
9880 }
9881 break;
9882
9883 case M_BGEZL:
9884 case M_BGEZALL:
9885 case M_BGTZL:
9886 case M_BLEZL:
9887 case M_BLTZL:
9888 case M_BLTZALL:
9889 macro_build_branch_rs (mask, &offset_expr, op[0]);
9890 break;
9891
9892 case M_BGTL_I:
9893 likely = 1;
9894 case M_BGT_I:
9895 /* Check for > max integer. */
9896 if (imm_expr.X_add_number >= GPR_SMAX)
9897 {
9898 do_false:
9899 /* Result is always false. */
9900 if (! likely)
9901 macro_build (NULL, "nop", "");
9902 else
9903 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
9904 break;
9905 }
9906 ++imm_expr.X_add_number;
9907 /* FALLTHROUGH */
9908 case M_BGE_I:
9909 case M_BGEL_I:
9910 if (mask == M_BGEL_I)
9911 likely = 1;
9912 if (imm_expr.X_add_number == 0)
9913 {
9914 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
9915 &offset_expr, op[0]);
9916 break;
9917 }
9918 if (imm_expr.X_add_number == 1)
9919 {
9920 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
9921 &offset_expr, op[0]);
9922 break;
9923 }
9924 if (imm_expr.X_add_number <= GPR_SMIN)
9925 {
9926 do_true:
9927 /* result is always true */
9928 as_warn (_("branch %s is always true"), ip->insn_mo->name);
9929 macro_build (&offset_expr, "b", "p");
9930 break;
9931 }
9932 used_at = 1;
9933 set_at (op[0], 0);
9934 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9935 &offset_expr, AT, ZERO);
9936 break;
9937
9938 case M_BGEUL:
9939 likely = 1;
9940 case M_BGEU:
9941 if (op[1] == 0)
9942 goto do_true;
9943 else if (op[0] == 0)
9944 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9945 &offset_expr, ZERO, op[1]);
9946 else
9947 {
9948 used_at = 1;
9949 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
9950 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9951 &offset_expr, AT, ZERO);
9952 }
9953 break;
9954
9955 case M_BGTUL_I:
9956 likely = 1;
9957 case M_BGTU_I:
9958 if (op[0] == 0
9959 || (GPR_SIZE == 32
9960 && imm_expr.X_add_number == -1))
9961 goto do_false;
9962 ++imm_expr.X_add_number;
9963 /* FALLTHROUGH */
9964 case M_BGEU_I:
9965 case M_BGEUL_I:
9966 if (mask == M_BGEUL_I)
9967 likely = 1;
9968 if (imm_expr.X_add_number == 0)
9969 goto do_true;
9970 else if (imm_expr.X_add_number == 1)
9971 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9972 &offset_expr, op[0], ZERO);
9973 else
9974 {
9975 used_at = 1;
9976 set_at (op[0], 1);
9977 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9978 &offset_expr, AT, ZERO);
9979 }
9980 break;
9981
9982 case M_BGTL:
9983 likely = 1;
9984 case M_BGT:
9985 if (op[1] == 0)
9986 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
9987 else if (op[0] == 0)
9988 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
9989 else
9990 {
9991 used_at = 1;
9992 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
9993 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9994 &offset_expr, AT, ZERO);
9995 }
9996 break;
9997
9998 case M_BGTUL:
9999 likely = 1;
10000 case M_BGTU:
10001 if (op[1] == 0)
10002 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10003 &offset_expr, op[0], ZERO);
10004 else if (op[0] == 0)
10005 goto do_false;
10006 else
10007 {
10008 used_at = 1;
10009 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10010 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10011 &offset_expr, AT, ZERO);
10012 }
10013 break;
10014
10015 case M_BLEL:
10016 likely = 1;
10017 case M_BLE:
10018 if (op[1] == 0)
10019 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10020 else if (op[0] == 0)
10021 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
10022 else
10023 {
10024 used_at = 1;
10025 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10026 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10027 &offset_expr, AT, ZERO);
10028 }
10029 break;
10030
10031 case M_BLEL_I:
10032 likely = 1;
10033 case M_BLE_I:
10034 if (imm_expr.X_add_number >= GPR_SMAX)
10035 goto do_true;
10036 ++imm_expr.X_add_number;
10037 /* FALLTHROUGH */
10038 case M_BLT_I:
10039 case M_BLTL_I:
10040 if (mask == M_BLTL_I)
10041 likely = 1;
10042 if (imm_expr.X_add_number == 0)
10043 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10044 else if (imm_expr.X_add_number == 1)
10045 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10046 else
10047 {
10048 used_at = 1;
10049 set_at (op[0], 0);
10050 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10051 &offset_expr, AT, ZERO);
10052 }
10053 break;
10054
10055 case M_BLEUL:
10056 likely = 1;
10057 case M_BLEU:
10058 if (op[1] == 0)
10059 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10060 &offset_expr, op[0], ZERO);
10061 else if (op[0] == 0)
10062 goto do_true;
10063 else
10064 {
10065 used_at = 1;
10066 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10067 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10068 &offset_expr, AT, ZERO);
10069 }
10070 break;
10071
10072 case M_BLEUL_I:
10073 likely = 1;
10074 case M_BLEU_I:
10075 if (op[0] == 0
10076 || (GPR_SIZE == 32
10077 && imm_expr.X_add_number == -1))
10078 goto do_true;
10079 ++imm_expr.X_add_number;
10080 /* FALLTHROUGH */
10081 case M_BLTU_I:
10082 case M_BLTUL_I:
10083 if (mask == M_BLTUL_I)
10084 likely = 1;
10085 if (imm_expr.X_add_number == 0)
10086 goto do_false;
10087 else if (imm_expr.X_add_number == 1)
10088 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10089 &offset_expr, op[0], ZERO);
10090 else
10091 {
10092 used_at = 1;
10093 set_at (op[0], 1);
10094 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10095 &offset_expr, AT, ZERO);
10096 }
10097 break;
10098
10099 case M_BLTL:
10100 likely = 1;
10101 case M_BLT:
10102 if (op[1] == 0)
10103 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10104 else if (op[0] == 0)
10105 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
10106 else
10107 {
10108 used_at = 1;
10109 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10110 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10111 &offset_expr, AT, ZERO);
10112 }
10113 break;
10114
10115 case M_BLTUL:
10116 likely = 1;
10117 case M_BLTU:
10118 if (op[1] == 0)
10119 goto do_false;
10120 else if (op[0] == 0)
10121 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10122 &offset_expr, ZERO, op[1]);
10123 else
10124 {
10125 used_at = 1;
10126 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10127 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10128 &offset_expr, AT, ZERO);
10129 }
10130 break;
10131
10132 case M_DDIV_3:
10133 dbl = 1;
10134 case M_DIV_3:
10135 s = "mflo";
10136 goto do_div3;
10137 case M_DREM_3:
10138 dbl = 1;
10139 case M_REM_3:
10140 s = "mfhi";
10141 do_div3:
10142 if (op[2] == 0)
10143 {
10144 as_warn (_("divide by zero"));
10145 if (mips_trap)
10146 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10147 else
10148 macro_build (NULL, "break", BRK_FMT, 7);
10149 break;
10150 }
10151
10152 start_noreorder ();
10153 if (mips_trap)
10154 {
10155 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10156 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10157 }
10158 else
10159 {
10160 if (mips_opts.micromips)
10161 micromips_label_expr (&label_expr);
10162 else
10163 label_expr.X_add_number = 8;
10164 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10165 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10166 macro_build (NULL, "break", BRK_FMT, 7);
10167 if (mips_opts.micromips)
10168 micromips_add_label ();
10169 }
10170 expr1.X_add_number = -1;
10171 used_at = 1;
10172 load_register (AT, &expr1, dbl);
10173 if (mips_opts.micromips)
10174 micromips_label_expr (&label_expr);
10175 else
10176 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
10177 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
10178 if (dbl)
10179 {
10180 expr1.X_add_number = 1;
10181 load_register (AT, &expr1, dbl);
10182 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
10183 }
10184 else
10185 {
10186 expr1.X_add_number = 0x80000000;
10187 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
10188 }
10189 if (mips_trap)
10190 {
10191 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
10192 /* We want to close the noreorder block as soon as possible, so
10193 that later insns are available for delay slot filling. */
10194 end_noreorder ();
10195 }
10196 else
10197 {
10198 if (mips_opts.micromips)
10199 micromips_label_expr (&label_expr);
10200 else
10201 label_expr.X_add_number = 8;
10202 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
10203 macro_build (NULL, "nop", "");
10204
10205 /* We want to close the noreorder block as soon as possible, so
10206 that later insns are available for delay slot filling. */
10207 end_noreorder ();
10208
10209 macro_build (NULL, "break", BRK_FMT, 6);
10210 }
10211 if (mips_opts.micromips)
10212 micromips_add_label ();
10213 macro_build (NULL, s, MFHL_FMT, op[0]);
10214 break;
10215
10216 case M_DIV_3I:
10217 s = "div";
10218 s2 = "mflo";
10219 goto do_divi;
10220 case M_DIVU_3I:
10221 s = "divu";
10222 s2 = "mflo";
10223 goto do_divi;
10224 case M_REM_3I:
10225 s = "div";
10226 s2 = "mfhi";
10227 goto do_divi;
10228 case M_REMU_3I:
10229 s = "divu";
10230 s2 = "mfhi";
10231 goto do_divi;
10232 case M_DDIV_3I:
10233 dbl = 1;
10234 s = "ddiv";
10235 s2 = "mflo";
10236 goto do_divi;
10237 case M_DDIVU_3I:
10238 dbl = 1;
10239 s = "ddivu";
10240 s2 = "mflo";
10241 goto do_divi;
10242 case M_DREM_3I:
10243 dbl = 1;
10244 s = "ddiv";
10245 s2 = "mfhi";
10246 goto do_divi;
10247 case M_DREMU_3I:
10248 dbl = 1;
10249 s = "ddivu";
10250 s2 = "mfhi";
10251 do_divi:
10252 if (imm_expr.X_add_number == 0)
10253 {
10254 as_warn (_("divide by zero"));
10255 if (mips_trap)
10256 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10257 else
10258 macro_build (NULL, "break", BRK_FMT, 7);
10259 break;
10260 }
10261 if (imm_expr.X_add_number == 1)
10262 {
10263 if (strcmp (s2, "mflo") == 0)
10264 move_register (op[0], op[1]);
10265 else
10266 move_register (op[0], ZERO);
10267 break;
10268 }
10269 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
10270 {
10271 if (strcmp (s2, "mflo") == 0)
10272 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
10273 else
10274 move_register (op[0], ZERO);
10275 break;
10276 }
10277
10278 used_at = 1;
10279 load_register (AT, &imm_expr, dbl);
10280 macro_build (NULL, s, "z,s,t", op[1], AT);
10281 macro_build (NULL, s2, MFHL_FMT, op[0]);
10282 break;
10283
10284 case M_DIVU_3:
10285 s = "divu";
10286 s2 = "mflo";
10287 goto do_divu3;
10288 case M_REMU_3:
10289 s = "divu";
10290 s2 = "mfhi";
10291 goto do_divu3;
10292 case M_DDIVU_3:
10293 s = "ddivu";
10294 s2 = "mflo";
10295 goto do_divu3;
10296 case M_DREMU_3:
10297 s = "ddivu";
10298 s2 = "mfhi";
10299 do_divu3:
10300 start_noreorder ();
10301 if (mips_trap)
10302 {
10303 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10304 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10305 /* We want to close the noreorder block as soon as possible, so
10306 that later insns are available for delay slot filling. */
10307 end_noreorder ();
10308 }
10309 else
10310 {
10311 if (mips_opts.micromips)
10312 micromips_label_expr (&label_expr);
10313 else
10314 label_expr.X_add_number = 8;
10315 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10316 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10317
10318 /* We want to close the noreorder block as soon as possible, so
10319 that later insns are available for delay slot filling. */
10320 end_noreorder ();
10321 macro_build (NULL, "break", BRK_FMT, 7);
10322 if (mips_opts.micromips)
10323 micromips_add_label ();
10324 }
10325 macro_build (NULL, s2, MFHL_FMT, op[0]);
10326 break;
10327
10328 case M_DLCA_AB:
10329 dbl = 1;
10330 case M_LCA_AB:
10331 call = 1;
10332 goto do_la;
10333 case M_DLA_AB:
10334 dbl = 1;
10335 case M_LA_AB:
10336 do_la:
10337 /* Load the address of a symbol into a register. If breg is not
10338 zero, we then add a base register to it. */
10339
10340 breg = op[2];
10341 if (dbl && GPR_SIZE == 32)
10342 as_warn (_("dla used to load 32-bit register; recommend using la "
10343 "instead"));
10344
10345 if (!dbl && HAVE_64BIT_OBJECTS)
10346 as_warn (_("la used to load 64-bit address; recommend using dla "
10347 "instead"));
10348
10349 if (small_offset_p (0, align, 16))
10350 {
10351 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
10352 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
10353 break;
10354 }
10355
10356 if (mips_opts.at && (op[0] == breg))
10357 {
10358 tempreg = AT;
10359 used_at = 1;
10360 }
10361 else
10362 tempreg = op[0];
10363
10364 if (offset_expr.X_op != O_symbol
10365 && offset_expr.X_op != O_constant)
10366 {
10367 as_bad (_("expression too complex"));
10368 offset_expr.X_op = O_constant;
10369 }
10370
10371 if (offset_expr.X_op == O_constant)
10372 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
10373 else if (mips_pic == NO_PIC)
10374 {
10375 /* If this is a reference to a GP relative symbol, we want
10376 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
10377 Otherwise we want
10378 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10379 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10380 If we have a constant, we need two instructions anyhow,
10381 so we may as well always use the latter form.
10382
10383 With 64bit address space and a usable $at we want
10384 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10385 lui $at,<sym> (BFD_RELOC_HI16_S)
10386 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10387 daddiu $at,<sym> (BFD_RELOC_LO16)
10388 dsll32 $tempreg,0
10389 daddu $tempreg,$tempreg,$at
10390
10391 If $at is already in use, we use a path which is suboptimal
10392 on superscalar processors.
10393 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10394 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10395 dsll $tempreg,16
10396 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10397 dsll $tempreg,16
10398 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10399
10400 For GP relative symbols in 64bit address space we can use
10401 the same sequence as in 32bit address space. */
10402 if (HAVE_64BIT_SYMBOLS)
10403 {
10404 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10405 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10406 {
10407 relax_start (offset_expr.X_add_symbol);
10408 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10409 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10410 relax_switch ();
10411 }
10412
10413 if (used_at == 0 && mips_opts.at)
10414 {
10415 macro_build (&offset_expr, "lui", LUI_FMT,
10416 tempreg, BFD_RELOC_MIPS_HIGHEST);
10417 macro_build (&offset_expr, "lui", LUI_FMT,
10418 AT, BFD_RELOC_HI16_S);
10419 macro_build (&offset_expr, "daddiu", "t,r,j",
10420 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10421 macro_build (&offset_expr, "daddiu", "t,r,j",
10422 AT, AT, BFD_RELOC_LO16);
10423 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
10424 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
10425 used_at = 1;
10426 }
10427 else
10428 {
10429 macro_build (&offset_expr, "lui", LUI_FMT,
10430 tempreg, BFD_RELOC_MIPS_HIGHEST);
10431 macro_build (&offset_expr, "daddiu", "t,r,j",
10432 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10433 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10434 macro_build (&offset_expr, "daddiu", "t,r,j",
10435 tempreg, tempreg, BFD_RELOC_HI16_S);
10436 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10437 macro_build (&offset_expr, "daddiu", "t,r,j",
10438 tempreg, tempreg, BFD_RELOC_LO16);
10439 }
10440
10441 if (mips_relax.sequence)
10442 relax_end ();
10443 }
10444 else
10445 {
10446 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10447 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10448 {
10449 relax_start (offset_expr.X_add_symbol);
10450 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10451 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10452 relax_switch ();
10453 }
10454 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
10455 as_bad (_("offset too large"));
10456 macro_build_lui (&offset_expr, tempreg);
10457 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10458 tempreg, tempreg, BFD_RELOC_LO16);
10459 if (mips_relax.sequence)
10460 relax_end ();
10461 }
10462 }
10463 else if (!mips_big_got && !HAVE_NEWABI)
10464 {
10465 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10466
10467 /* If this is a reference to an external symbol, and there
10468 is no constant, we want
10469 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10470 or for lca or if tempreg is PIC_CALL_REG
10471 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10472 For a local symbol, we want
10473 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10474 nop
10475 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10476
10477 If we have a small constant, and this is a reference to
10478 an external symbol, we want
10479 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10480 nop
10481 addiu $tempreg,$tempreg,<constant>
10482 For a local symbol, we want the same instruction
10483 sequence, but we output a BFD_RELOC_LO16 reloc on the
10484 addiu instruction.
10485
10486 If we have a large constant, and this is a reference to
10487 an external symbol, we want
10488 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10489 lui $at,<hiconstant>
10490 addiu $at,$at,<loconstant>
10491 addu $tempreg,$tempreg,$at
10492 For a local symbol, we want the same instruction
10493 sequence, but we output a BFD_RELOC_LO16 reloc on the
10494 addiu instruction.
10495 */
10496
10497 if (offset_expr.X_add_number == 0)
10498 {
10499 if (mips_pic == SVR4_PIC
10500 && breg == 0
10501 && (call || tempreg == PIC_CALL_REG))
10502 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10503
10504 relax_start (offset_expr.X_add_symbol);
10505 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10506 lw_reloc_type, mips_gp_register);
10507 if (breg != 0)
10508 {
10509 /* We're going to put in an addu instruction using
10510 tempreg, so we may as well insert the nop right
10511 now. */
10512 load_delay_nop ();
10513 }
10514 relax_switch ();
10515 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10516 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
10517 load_delay_nop ();
10518 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10519 tempreg, tempreg, BFD_RELOC_LO16);
10520 relax_end ();
10521 /* FIXME: If breg == 0, and the next instruction uses
10522 $tempreg, then if this variant case is used an extra
10523 nop will be generated. */
10524 }
10525 else if (offset_expr.X_add_number >= -0x8000
10526 && offset_expr.X_add_number < 0x8000)
10527 {
10528 load_got_offset (tempreg, &offset_expr);
10529 load_delay_nop ();
10530 add_got_offset (tempreg, &offset_expr);
10531 }
10532 else
10533 {
10534 expr1.X_add_number = offset_expr.X_add_number;
10535 offset_expr.X_add_number =
10536 SEXT_16BIT (offset_expr.X_add_number);
10537 load_got_offset (tempreg, &offset_expr);
10538 offset_expr.X_add_number = expr1.X_add_number;
10539 /* If we are going to add in a base register, and the
10540 target register and the base register are the same,
10541 then we are using AT as a temporary register. Since
10542 we want to load the constant into AT, we add our
10543 current AT (from the global offset table) and the
10544 register into the register now, and pretend we were
10545 not using a base register. */
10546 if (breg == op[0])
10547 {
10548 load_delay_nop ();
10549 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10550 op[0], AT, breg);
10551 breg = 0;
10552 tempreg = op[0];
10553 }
10554 add_got_offset_hilo (tempreg, &offset_expr, AT);
10555 used_at = 1;
10556 }
10557 }
10558 else if (!mips_big_got && HAVE_NEWABI)
10559 {
10560 int add_breg_early = 0;
10561
10562 /* If this is a reference to an external, and there is no
10563 constant, or local symbol (*), with or without a
10564 constant, we want
10565 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10566 or for lca or if tempreg is PIC_CALL_REG
10567 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10568
10569 If we have a small constant, and this is a reference to
10570 an external symbol, we want
10571 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10572 addiu $tempreg,$tempreg,<constant>
10573
10574 If we have a large constant, and this is a reference to
10575 an external symbol, we want
10576 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10577 lui $at,<hiconstant>
10578 addiu $at,$at,<loconstant>
10579 addu $tempreg,$tempreg,$at
10580
10581 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10582 local symbols, even though it introduces an additional
10583 instruction. */
10584
10585 if (offset_expr.X_add_number)
10586 {
10587 expr1.X_add_number = offset_expr.X_add_number;
10588 offset_expr.X_add_number = 0;
10589
10590 relax_start (offset_expr.X_add_symbol);
10591 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10592 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10593
10594 if (expr1.X_add_number >= -0x8000
10595 && expr1.X_add_number < 0x8000)
10596 {
10597 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10598 tempreg, tempreg, BFD_RELOC_LO16);
10599 }
10600 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10601 {
10602 unsigned int dreg;
10603
10604 /* If we are going to add in a base register, and the
10605 target register and the base register are the same,
10606 then we are using AT as a temporary register. Since
10607 we want to load the constant into AT, we add our
10608 current AT (from the global offset table) and the
10609 register into the register now, and pretend we were
10610 not using a base register. */
10611 if (breg != op[0])
10612 dreg = tempreg;
10613 else
10614 {
10615 gas_assert (tempreg == AT);
10616 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10617 op[0], AT, breg);
10618 dreg = op[0];
10619 add_breg_early = 1;
10620 }
10621
10622 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10623 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10624 dreg, dreg, AT);
10625
10626 used_at = 1;
10627 }
10628 else
10629 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10630
10631 relax_switch ();
10632 offset_expr.X_add_number = expr1.X_add_number;
10633
10634 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10635 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10636 if (add_breg_early)
10637 {
10638 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10639 op[0], tempreg, breg);
10640 breg = 0;
10641 tempreg = op[0];
10642 }
10643 relax_end ();
10644 }
10645 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
10646 {
10647 relax_start (offset_expr.X_add_symbol);
10648 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10649 BFD_RELOC_MIPS_CALL16, mips_gp_register);
10650 relax_switch ();
10651 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10652 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10653 relax_end ();
10654 }
10655 else
10656 {
10657 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10658 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10659 }
10660 }
10661 else if (mips_big_got && !HAVE_NEWABI)
10662 {
10663 int gpdelay;
10664 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10665 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10666 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10667
10668 /* This is the large GOT case. If this is a reference to an
10669 external symbol, and there is no constant, we want
10670 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10671 addu $tempreg,$tempreg,$gp
10672 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10673 or for lca or if tempreg is PIC_CALL_REG
10674 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10675 addu $tempreg,$tempreg,$gp
10676 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10677 For a local symbol, we want
10678 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10679 nop
10680 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10681
10682 If we have a small constant, and this is a reference to
10683 an external symbol, we want
10684 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10685 addu $tempreg,$tempreg,$gp
10686 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10687 nop
10688 addiu $tempreg,$tempreg,<constant>
10689 For a local symbol, we want
10690 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10691 nop
10692 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10693
10694 If we have a large constant, and this is a reference to
10695 an external symbol, we want
10696 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10697 addu $tempreg,$tempreg,$gp
10698 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10699 lui $at,<hiconstant>
10700 addiu $at,$at,<loconstant>
10701 addu $tempreg,$tempreg,$at
10702 For a local symbol, we want
10703 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10704 lui $at,<hiconstant>
10705 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10706 addu $tempreg,$tempreg,$at
10707 */
10708
10709 expr1.X_add_number = offset_expr.X_add_number;
10710 offset_expr.X_add_number = 0;
10711 relax_start (offset_expr.X_add_symbol);
10712 gpdelay = reg_needs_delay (mips_gp_register);
10713 if (expr1.X_add_number == 0 && breg == 0
10714 && (call || tempreg == PIC_CALL_REG))
10715 {
10716 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10717 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10718 }
10719 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10720 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10721 tempreg, tempreg, mips_gp_register);
10722 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10723 tempreg, lw_reloc_type, tempreg);
10724 if (expr1.X_add_number == 0)
10725 {
10726 if (breg != 0)
10727 {
10728 /* We're going to put in an addu instruction using
10729 tempreg, so we may as well insert the nop right
10730 now. */
10731 load_delay_nop ();
10732 }
10733 }
10734 else if (expr1.X_add_number >= -0x8000
10735 && expr1.X_add_number < 0x8000)
10736 {
10737 load_delay_nop ();
10738 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10739 tempreg, tempreg, BFD_RELOC_LO16);
10740 }
10741 else
10742 {
10743 unsigned int dreg;
10744
10745 /* If we are going to add in a base register, and the
10746 target register and the base register are the same,
10747 then we are using AT as a temporary register. Since
10748 we want to load the constant into AT, we add our
10749 current AT (from the global offset table) and the
10750 register into the register now, and pretend we were
10751 not using a base register. */
10752 if (breg != op[0])
10753 dreg = tempreg;
10754 else
10755 {
10756 gas_assert (tempreg == AT);
10757 load_delay_nop ();
10758 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10759 op[0], AT, breg);
10760 dreg = op[0];
10761 }
10762
10763 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10764 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10765
10766 used_at = 1;
10767 }
10768 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
10769 relax_switch ();
10770
10771 if (gpdelay)
10772 {
10773 /* This is needed because this instruction uses $gp, but
10774 the first instruction on the main stream does not. */
10775 macro_build (NULL, "nop", "");
10776 }
10777
10778 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10779 local_reloc_type, mips_gp_register);
10780 if (expr1.X_add_number >= -0x8000
10781 && expr1.X_add_number < 0x8000)
10782 {
10783 load_delay_nop ();
10784 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10785 tempreg, tempreg, BFD_RELOC_LO16);
10786 /* FIXME: If add_number is 0, and there was no base
10787 register, the external symbol case ended with a load,
10788 so if the symbol turns out to not be external, and
10789 the next instruction uses tempreg, an unnecessary nop
10790 will be inserted. */
10791 }
10792 else
10793 {
10794 if (breg == op[0])
10795 {
10796 /* We must add in the base register now, as in the
10797 external symbol case. */
10798 gas_assert (tempreg == AT);
10799 load_delay_nop ();
10800 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10801 op[0], AT, breg);
10802 tempreg = op[0];
10803 /* We set breg to 0 because we have arranged to add
10804 it in in both cases. */
10805 breg = 0;
10806 }
10807
10808 macro_build_lui (&expr1, AT);
10809 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10810 AT, AT, BFD_RELOC_LO16);
10811 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10812 tempreg, tempreg, AT);
10813 used_at = 1;
10814 }
10815 relax_end ();
10816 }
10817 else if (mips_big_got && HAVE_NEWABI)
10818 {
10819 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10820 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10821 int add_breg_early = 0;
10822
10823 /* This is the large GOT case. If this is a reference to an
10824 external symbol, and there is no constant, we want
10825 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10826 add $tempreg,$tempreg,$gp
10827 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10828 or for lca or if tempreg is PIC_CALL_REG
10829 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10830 add $tempreg,$tempreg,$gp
10831 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10832
10833 If we have a small constant, and this is a reference to
10834 an external symbol, we want
10835 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10836 add $tempreg,$tempreg,$gp
10837 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10838 addi $tempreg,$tempreg,<constant>
10839
10840 If we have a large constant, and this is a reference to
10841 an external symbol, we want
10842 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10843 addu $tempreg,$tempreg,$gp
10844 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10845 lui $at,<hiconstant>
10846 addi $at,$at,<loconstant>
10847 add $tempreg,$tempreg,$at
10848
10849 If we have NewABI, and we know it's a local symbol, we want
10850 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
10851 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
10852 otherwise we have to resort to GOT_HI16/GOT_LO16. */
10853
10854 relax_start (offset_expr.X_add_symbol);
10855
10856 expr1.X_add_number = offset_expr.X_add_number;
10857 offset_expr.X_add_number = 0;
10858
10859 if (expr1.X_add_number == 0 && breg == 0
10860 && (call || tempreg == PIC_CALL_REG))
10861 {
10862 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10863 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10864 }
10865 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10866 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10867 tempreg, tempreg, mips_gp_register);
10868 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10869 tempreg, lw_reloc_type, tempreg);
10870
10871 if (expr1.X_add_number == 0)
10872 ;
10873 else if (expr1.X_add_number >= -0x8000
10874 && expr1.X_add_number < 0x8000)
10875 {
10876 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10877 tempreg, tempreg, BFD_RELOC_LO16);
10878 }
10879 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10880 {
10881 unsigned int dreg;
10882
10883 /* If we are going to add in a base register, and the
10884 target register and the base register are the same,
10885 then we are using AT as a temporary register. Since
10886 we want to load the constant into AT, we add our
10887 current AT (from the global offset table) and the
10888 register into the register now, and pretend we were
10889 not using a base register. */
10890 if (breg != op[0])
10891 dreg = tempreg;
10892 else
10893 {
10894 gas_assert (tempreg == AT);
10895 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10896 op[0], AT, breg);
10897 dreg = op[0];
10898 add_breg_early = 1;
10899 }
10900
10901 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10902 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10903
10904 used_at = 1;
10905 }
10906 else
10907 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10908
10909 relax_switch ();
10910 offset_expr.X_add_number = expr1.X_add_number;
10911 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10912 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
10913 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
10914 tempreg, BFD_RELOC_MIPS_GOT_OFST);
10915 if (add_breg_early)
10916 {
10917 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10918 op[0], tempreg, breg);
10919 breg = 0;
10920 tempreg = op[0];
10921 }
10922 relax_end ();
10923 }
10924 else
10925 abort ();
10926
10927 if (breg != 0)
10928 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
10929 break;
10930
10931 case M_MSGSND:
10932 gas_assert (!mips_opts.micromips);
10933 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
10934 break;
10935
10936 case M_MSGLD:
10937 gas_assert (!mips_opts.micromips);
10938 macro_build (NULL, "c2", "C", 0x02);
10939 break;
10940
10941 case M_MSGLD_T:
10942 gas_assert (!mips_opts.micromips);
10943 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
10944 break;
10945
10946 case M_MSGWAIT:
10947 gas_assert (!mips_opts.micromips);
10948 macro_build (NULL, "c2", "C", 3);
10949 break;
10950
10951 case M_MSGWAIT_T:
10952 gas_assert (!mips_opts.micromips);
10953 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
10954 break;
10955
10956 case M_J_A:
10957 /* The j instruction may not be used in PIC code, since it
10958 requires an absolute address. We convert it to a b
10959 instruction. */
10960 if (mips_pic == NO_PIC)
10961 macro_build (&offset_expr, "j", "a");
10962 else
10963 macro_build (&offset_expr, "b", "p");
10964 break;
10965
10966 /* The jal instructions must be handled as macros because when
10967 generating PIC code they expand to multi-instruction
10968 sequences. Normally they are simple instructions. */
10969 case M_JALS_1:
10970 op[1] = op[0];
10971 op[0] = RA;
10972 /* Fall through. */
10973 case M_JALS_2:
10974 gas_assert (mips_opts.micromips);
10975 if (mips_opts.insn32)
10976 {
10977 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
10978 break;
10979 }
10980 jals = 1;
10981 goto jal;
10982 case M_JAL_1:
10983 op[1] = op[0];
10984 op[0] = RA;
10985 /* Fall through. */
10986 case M_JAL_2:
10987 jal:
10988 if (mips_pic == NO_PIC)
10989 {
10990 s = jals ? "jalrs" : "jalr";
10991 if (mips_opts.micromips
10992 && !mips_opts.insn32
10993 && op[0] == RA
10994 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
10995 macro_build (NULL, s, "mj", op[1]);
10996 else
10997 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
10998 }
10999 else
11000 {
11001 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11002 && mips_cprestore_offset >= 0);
11003
11004 if (op[1] != PIC_CALL_REG)
11005 as_warn (_("MIPS PIC call to register other than $25"));
11006
11007 s = ((mips_opts.micromips
11008 && !mips_opts.insn32
11009 && (!mips_opts.noreorder || cprestore))
11010 ? "jalrs" : "jalr");
11011 if (mips_opts.micromips
11012 && !mips_opts.insn32
11013 && op[0] == RA
11014 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11015 macro_build (NULL, s, "mj", op[1]);
11016 else
11017 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11018 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
11019 {
11020 if (mips_cprestore_offset < 0)
11021 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11022 else
11023 {
11024 if (!mips_frame_reg_valid)
11025 {
11026 as_warn (_("no .frame pseudo-op used in PIC code"));
11027 /* Quiet this warning. */
11028 mips_frame_reg_valid = 1;
11029 }
11030 if (!mips_cprestore_valid)
11031 {
11032 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11033 /* Quiet this warning. */
11034 mips_cprestore_valid = 1;
11035 }
11036 if (mips_opts.noreorder)
11037 macro_build (NULL, "nop", "");
11038 expr1.X_add_number = mips_cprestore_offset;
11039 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11040 mips_gp_register,
11041 mips_frame_reg,
11042 HAVE_64BIT_ADDRESSES);
11043 }
11044 }
11045 }
11046
11047 break;
11048
11049 case M_JALS_A:
11050 gas_assert (mips_opts.micromips);
11051 if (mips_opts.insn32)
11052 {
11053 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11054 break;
11055 }
11056 jals = 1;
11057 /* Fall through. */
11058 case M_JAL_A:
11059 if (mips_pic == NO_PIC)
11060 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
11061 else if (mips_pic == SVR4_PIC)
11062 {
11063 /* If this is a reference to an external symbol, and we are
11064 using a small GOT, we want
11065 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11066 nop
11067 jalr $ra,$25
11068 nop
11069 lw $gp,cprestore($sp)
11070 The cprestore value is set using the .cprestore
11071 pseudo-op. If we are using a big GOT, we want
11072 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11073 addu $25,$25,$gp
11074 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11075 nop
11076 jalr $ra,$25
11077 nop
11078 lw $gp,cprestore($sp)
11079 If the symbol is not external, we want
11080 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11081 nop
11082 addiu $25,$25,<sym> (BFD_RELOC_LO16)
11083 jalr $ra,$25
11084 nop
11085 lw $gp,cprestore($sp)
11086
11087 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11088 sequences above, minus nops, unless the symbol is local,
11089 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11090 GOT_DISP. */
11091 if (HAVE_NEWABI)
11092 {
11093 if (!mips_big_got)
11094 {
11095 relax_start (offset_expr.X_add_symbol);
11096 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11097 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11098 mips_gp_register);
11099 relax_switch ();
11100 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11101 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
11102 mips_gp_register);
11103 relax_end ();
11104 }
11105 else
11106 {
11107 relax_start (offset_expr.X_add_symbol);
11108 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11109 BFD_RELOC_MIPS_CALL_HI16);
11110 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11111 PIC_CALL_REG, mips_gp_register);
11112 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11113 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11114 PIC_CALL_REG);
11115 relax_switch ();
11116 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11117 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11118 mips_gp_register);
11119 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11120 PIC_CALL_REG, PIC_CALL_REG,
11121 BFD_RELOC_MIPS_GOT_OFST);
11122 relax_end ();
11123 }
11124
11125 macro_build_jalr (&offset_expr, 0);
11126 }
11127 else
11128 {
11129 relax_start (offset_expr.X_add_symbol);
11130 if (!mips_big_got)
11131 {
11132 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11133 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11134 mips_gp_register);
11135 load_delay_nop ();
11136 relax_switch ();
11137 }
11138 else
11139 {
11140 int gpdelay;
11141
11142 gpdelay = reg_needs_delay (mips_gp_register);
11143 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11144 BFD_RELOC_MIPS_CALL_HI16);
11145 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11146 PIC_CALL_REG, mips_gp_register);
11147 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11148 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11149 PIC_CALL_REG);
11150 load_delay_nop ();
11151 relax_switch ();
11152 if (gpdelay)
11153 macro_build (NULL, "nop", "");
11154 }
11155 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11156 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
11157 mips_gp_register);
11158 load_delay_nop ();
11159 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11160 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
11161 relax_end ();
11162 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
11163
11164 if (mips_cprestore_offset < 0)
11165 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11166 else
11167 {
11168 if (!mips_frame_reg_valid)
11169 {
11170 as_warn (_("no .frame pseudo-op used in PIC code"));
11171 /* Quiet this warning. */
11172 mips_frame_reg_valid = 1;
11173 }
11174 if (!mips_cprestore_valid)
11175 {
11176 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11177 /* Quiet this warning. */
11178 mips_cprestore_valid = 1;
11179 }
11180 if (mips_opts.noreorder)
11181 macro_build (NULL, "nop", "");
11182 expr1.X_add_number = mips_cprestore_offset;
11183 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11184 mips_gp_register,
11185 mips_frame_reg,
11186 HAVE_64BIT_ADDRESSES);
11187 }
11188 }
11189 }
11190 else if (mips_pic == VXWORKS_PIC)
11191 as_bad (_("non-PIC jump used in PIC library"));
11192 else
11193 abort ();
11194
11195 break;
11196
11197 case M_LBUE_AB:
11198 s = "lbue";
11199 fmt = "t,+j(b)";
11200 offbits = 9;
11201 goto ld_st;
11202 case M_LHUE_AB:
11203 s = "lhue";
11204 fmt = "t,+j(b)";
11205 offbits = 9;
11206 goto ld_st;
11207 case M_LBE_AB:
11208 s = "lbe";
11209 fmt = "t,+j(b)";
11210 offbits = 9;
11211 goto ld_st;
11212 case M_LHE_AB:
11213 s = "lhe";
11214 fmt = "t,+j(b)";
11215 offbits = 9;
11216 goto ld_st;
11217 case M_LLE_AB:
11218 s = "lle";
11219 fmt = "t,+j(b)";
11220 offbits = 9;
11221 goto ld_st;
11222 case M_LWE_AB:
11223 s = "lwe";
11224 fmt = "t,+j(b)";
11225 offbits = 9;
11226 goto ld_st;
11227 case M_LWLE_AB:
11228 s = "lwle";
11229 fmt = "t,+j(b)";
11230 offbits = 9;
11231 goto ld_st;
11232 case M_LWRE_AB:
11233 s = "lwre";
11234 fmt = "t,+j(b)";
11235 offbits = 9;
11236 goto ld_st;
11237 case M_SBE_AB:
11238 s = "sbe";
11239 fmt = "t,+j(b)";
11240 offbits = 9;
11241 goto ld_st;
11242 case M_SCE_AB:
11243 s = "sce";
11244 fmt = "t,+j(b)";
11245 offbits = 9;
11246 goto ld_st;
11247 case M_SHE_AB:
11248 s = "she";
11249 fmt = "t,+j(b)";
11250 offbits = 9;
11251 goto ld_st;
11252 case M_SWE_AB:
11253 s = "swe";
11254 fmt = "t,+j(b)";
11255 offbits = 9;
11256 goto ld_st;
11257 case M_SWLE_AB:
11258 s = "swle";
11259 fmt = "t,+j(b)";
11260 offbits = 9;
11261 goto ld_st;
11262 case M_SWRE_AB:
11263 s = "swre";
11264 fmt = "t,+j(b)";
11265 offbits = 9;
11266 goto ld_st;
11267 case M_ACLR_AB:
11268 s = "aclr";
11269 fmt = "\\,~(b)";
11270 offbits = 12;
11271 goto ld_st;
11272 case M_ASET_AB:
11273 s = "aset";
11274 fmt = "\\,~(b)";
11275 offbits = 12;
11276 goto ld_st;
11277 case M_LB_AB:
11278 s = "lb";
11279 fmt = "t,o(b)";
11280 goto ld;
11281 case M_LBU_AB:
11282 s = "lbu";
11283 fmt = "t,o(b)";
11284 goto ld;
11285 case M_LH_AB:
11286 s = "lh";
11287 fmt = "t,o(b)";
11288 goto ld;
11289 case M_LHU_AB:
11290 s = "lhu";
11291 fmt = "t,o(b)";
11292 goto ld;
11293 case M_LW_AB:
11294 s = "lw";
11295 fmt = "t,o(b)";
11296 goto ld;
11297 case M_LWC0_AB:
11298 gas_assert (!mips_opts.micromips);
11299 s = "lwc0";
11300 fmt = "E,o(b)";
11301 /* Itbl support may require additional care here. */
11302 coproc = 1;
11303 goto ld_st;
11304 case M_LWC1_AB:
11305 s = "lwc1";
11306 fmt = "T,o(b)";
11307 /* Itbl support may require additional care here. */
11308 coproc = 1;
11309 goto ld_st;
11310 case M_LWC2_AB:
11311 s = "lwc2";
11312 fmt = COP12_FMT;
11313 offbits = (mips_opts.micromips ? 12
11314 : ISA_IS_R6 (mips_opts.isa) ? 11
11315 : 16);
11316 /* Itbl support may require additional care here. */
11317 coproc = 1;
11318 goto ld_st;
11319 case M_LWC3_AB:
11320 gas_assert (!mips_opts.micromips);
11321 s = "lwc3";
11322 fmt = "E,o(b)";
11323 /* Itbl support may require additional care here. */
11324 coproc = 1;
11325 goto ld_st;
11326 case M_LWL_AB:
11327 s = "lwl";
11328 fmt = MEM12_FMT;
11329 offbits = (mips_opts.micromips ? 12 : 16);
11330 goto ld_st;
11331 case M_LWR_AB:
11332 s = "lwr";
11333 fmt = MEM12_FMT;
11334 offbits = (mips_opts.micromips ? 12 : 16);
11335 goto ld_st;
11336 case M_LDC1_AB:
11337 s = "ldc1";
11338 fmt = "T,o(b)";
11339 /* Itbl support may require additional care here. */
11340 coproc = 1;
11341 goto ld_st;
11342 case M_LDC2_AB:
11343 s = "ldc2";
11344 fmt = COP12_FMT;
11345 offbits = (mips_opts.micromips ? 12
11346 : ISA_IS_R6 (mips_opts.isa) ? 11
11347 : 16);
11348 /* Itbl support may require additional care here. */
11349 coproc = 1;
11350 goto ld_st;
11351 case M_LQC2_AB:
11352 s = "lqc2";
11353 fmt = "+7,o(b)";
11354 /* Itbl support may require additional care here. */
11355 coproc = 1;
11356 goto ld_st;
11357 case M_LDC3_AB:
11358 s = "ldc3";
11359 fmt = "E,o(b)";
11360 /* Itbl support may require additional care here. */
11361 coproc = 1;
11362 goto ld_st;
11363 case M_LDL_AB:
11364 s = "ldl";
11365 fmt = MEM12_FMT;
11366 offbits = (mips_opts.micromips ? 12 : 16);
11367 goto ld_st;
11368 case M_LDR_AB:
11369 s = "ldr";
11370 fmt = MEM12_FMT;
11371 offbits = (mips_opts.micromips ? 12 : 16);
11372 goto ld_st;
11373 case M_LL_AB:
11374 s = "ll";
11375 fmt = LL_SC_FMT;
11376 offbits = (mips_opts.micromips ? 12
11377 : ISA_IS_R6 (mips_opts.isa) ? 9
11378 : 16);
11379 goto ld;
11380 case M_LLD_AB:
11381 s = "lld";
11382 fmt = LL_SC_FMT;
11383 offbits = (mips_opts.micromips ? 12
11384 : ISA_IS_R6 (mips_opts.isa) ? 9
11385 : 16);
11386 goto ld;
11387 case M_LWU_AB:
11388 s = "lwu";
11389 fmt = MEM12_FMT;
11390 offbits = (mips_opts.micromips ? 12 : 16);
11391 goto ld;
11392 case M_LWP_AB:
11393 gas_assert (mips_opts.micromips);
11394 s = "lwp";
11395 fmt = "t,~(b)";
11396 offbits = 12;
11397 lp = 1;
11398 goto ld;
11399 case M_LDP_AB:
11400 gas_assert (mips_opts.micromips);
11401 s = "ldp";
11402 fmt = "t,~(b)";
11403 offbits = 12;
11404 lp = 1;
11405 goto ld;
11406 case M_LWM_AB:
11407 gas_assert (mips_opts.micromips);
11408 s = "lwm";
11409 fmt = "n,~(b)";
11410 offbits = 12;
11411 goto ld_st;
11412 case M_LDM_AB:
11413 gas_assert (mips_opts.micromips);
11414 s = "ldm";
11415 fmt = "n,~(b)";
11416 offbits = 12;
11417 goto ld_st;
11418
11419 ld:
11420 /* We don't want to use $0 as tempreg. */
11421 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
11422 goto ld_st;
11423 else
11424 tempreg = op[0] + lp;
11425 goto ld_noat;
11426
11427 case M_SB_AB:
11428 s = "sb";
11429 fmt = "t,o(b)";
11430 goto ld_st;
11431 case M_SH_AB:
11432 s = "sh";
11433 fmt = "t,o(b)";
11434 goto ld_st;
11435 case M_SW_AB:
11436 s = "sw";
11437 fmt = "t,o(b)";
11438 goto ld_st;
11439 case M_SWC0_AB:
11440 gas_assert (!mips_opts.micromips);
11441 s = "swc0";
11442 fmt = "E,o(b)";
11443 /* Itbl support may require additional care here. */
11444 coproc = 1;
11445 goto ld_st;
11446 case M_SWC1_AB:
11447 s = "swc1";
11448 fmt = "T,o(b)";
11449 /* Itbl support may require additional care here. */
11450 coproc = 1;
11451 goto ld_st;
11452 case M_SWC2_AB:
11453 s = "swc2";
11454 fmt = COP12_FMT;
11455 offbits = (mips_opts.micromips ? 12
11456 : ISA_IS_R6 (mips_opts.isa) ? 11
11457 : 16);
11458 /* Itbl support may require additional care here. */
11459 coproc = 1;
11460 goto ld_st;
11461 case M_SWC3_AB:
11462 gas_assert (!mips_opts.micromips);
11463 s = "swc3";
11464 fmt = "E,o(b)";
11465 /* Itbl support may require additional care here. */
11466 coproc = 1;
11467 goto ld_st;
11468 case M_SWL_AB:
11469 s = "swl";
11470 fmt = MEM12_FMT;
11471 offbits = (mips_opts.micromips ? 12 : 16);
11472 goto ld_st;
11473 case M_SWR_AB:
11474 s = "swr";
11475 fmt = MEM12_FMT;
11476 offbits = (mips_opts.micromips ? 12 : 16);
11477 goto ld_st;
11478 case M_SC_AB:
11479 s = "sc";
11480 fmt = LL_SC_FMT;
11481 offbits = (mips_opts.micromips ? 12
11482 : ISA_IS_R6 (mips_opts.isa) ? 9
11483 : 16);
11484 goto ld_st;
11485 case M_SCD_AB:
11486 s = "scd";
11487 fmt = LL_SC_FMT;
11488 offbits = (mips_opts.micromips ? 12
11489 : ISA_IS_R6 (mips_opts.isa) ? 9
11490 : 16);
11491 goto ld_st;
11492 case M_CACHE_AB:
11493 s = "cache";
11494 fmt = (mips_opts.micromips ? "k,~(b)"
11495 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11496 : "k,o(b)");
11497 offbits = (mips_opts.micromips ? 12
11498 : ISA_IS_R6 (mips_opts.isa) ? 9
11499 : 16);
11500 goto ld_st;
11501 case M_CACHEE_AB:
11502 s = "cachee";
11503 fmt = "k,+j(b)";
11504 offbits = 9;
11505 goto ld_st;
11506 case M_PREF_AB:
11507 s = "pref";
11508 fmt = (mips_opts.micromips ? "k,~(b)"
11509 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11510 : "k,o(b)");
11511 offbits = (mips_opts.micromips ? 12
11512 : ISA_IS_R6 (mips_opts.isa) ? 9
11513 : 16);
11514 goto ld_st;
11515 case M_PREFE_AB:
11516 s = "prefe";
11517 fmt = "k,+j(b)";
11518 offbits = 9;
11519 goto ld_st;
11520 case M_SDC1_AB:
11521 s = "sdc1";
11522 fmt = "T,o(b)";
11523 coproc = 1;
11524 /* Itbl support may require additional care here. */
11525 goto ld_st;
11526 case M_SDC2_AB:
11527 s = "sdc2";
11528 fmt = COP12_FMT;
11529 offbits = (mips_opts.micromips ? 12
11530 : ISA_IS_R6 (mips_opts.isa) ? 11
11531 : 16);
11532 /* Itbl support may require additional care here. */
11533 coproc = 1;
11534 goto ld_st;
11535 case M_SQC2_AB:
11536 s = "sqc2";
11537 fmt = "+7,o(b)";
11538 /* Itbl support may require additional care here. */
11539 coproc = 1;
11540 goto ld_st;
11541 case M_SDC3_AB:
11542 gas_assert (!mips_opts.micromips);
11543 s = "sdc3";
11544 fmt = "E,o(b)";
11545 /* Itbl support may require additional care here. */
11546 coproc = 1;
11547 goto ld_st;
11548 case M_SDL_AB:
11549 s = "sdl";
11550 fmt = MEM12_FMT;
11551 offbits = (mips_opts.micromips ? 12 : 16);
11552 goto ld_st;
11553 case M_SDR_AB:
11554 s = "sdr";
11555 fmt = MEM12_FMT;
11556 offbits = (mips_opts.micromips ? 12 : 16);
11557 goto ld_st;
11558 case M_SWP_AB:
11559 gas_assert (mips_opts.micromips);
11560 s = "swp";
11561 fmt = "t,~(b)";
11562 offbits = 12;
11563 goto ld_st;
11564 case M_SDP_AB:
11565 gas_assert (mips_opts.micromips);
11566 s = "sdp";
11567 fmt = "t,~(b)";
11568 offbits = 12;
11569 goto ld_st;
11570 case M_SWM_AB:
11571 gas_assert (mips_opts.micromips);
11572 s = "swm";
11573 fmt = "n,~(b)";
11574 offbits = 12;
11575 goto ld_st;
11576 case M_SDM_AB:
11577 gas_assert (mips_opts.micromips);
11578 s = "sdm";
11579 fmt = "n,~(b)";
11580 offbits = 12;
11581
11582 ld_st:
11583 tempreg = AT;
11584 ld_noat:
11585 breg = op[2];
11586 if (small_offset_p (0, align, 16))
11587 {
11588 /* The first case exists for M_LD_AB and M_SD_AB, which are
11589 macros for o32 but which should act like normal instructions
11590 otherwise. */
11591 if (offbits == 16)
11592 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
11593 offset_reloc[1], offset_reloc[2], breg);
11594 else if (small_offset_p (0, align, offbits))
11595 {
11596 if (offbits == 0)
11597 macro_build (NULL, s, fmt, op[0], breg);
11598 else
11599 macro_build (NULL, s, fmt, op[0],
11600 (int) offset_expr.X_add_number, breg);
11601 }
11602 else
11603 {
11604 if (tempreg == AT)
11605 used_at = 1;
11606 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11607 tempreg, breg, -1, offset_reloc[0],
11608 offset_reloc[1], offset_reloc[2]);
11609 if (offbits == 0)
11610 macro_build (NULL, s, fmt, op[0], tempreg);
11611 else
11612 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11613 }
11614 break;
11615 }
11616
11617 if (tempreg == AT)
11618 used_at = 1;
11619
11620 if (offset_expr.X_op != O_constant
11621 && offset_expr.X_op != O_symbol)
11622 {
11623 as_bad (_("expression too complex"));
11624 offset_expr.X_op = O_constant;
11625 }
11626
11627 if (HAVE_32BIT_ADDRESSES
11628 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
11629 {
11630 char value [32];
11631
11632 sprintf_vma (value, offset_expr.X_add_number);
11633 as_bad (_("number (0x%s) larger than 32 bits"), value);
11634 }
11635
11636 /* A constant expression in PIC code can be handled just as it
11637 is in non PIC code. */
11638 if (offset_expr.X_op == O_constant)
11639 {
11640 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11641 offbits == 0 ? 16 : offbits);
11642 offset_expr.X_add_number -= expr1.X_add_number;
11643
11644 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11645 if (breg != 0)
11646 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11647 tempreg, tempreg, breg);
11648 if (offbits == 0)
11649 {
11650 if (offset_expr.X_add_number != 0)
11651 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
11652 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
11653 macro_build (NULL, s, fmt, op[0], tempreg);
11654 }
11655 else if (offbits == 16)
11656 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11657 else
11658 macro_build (NULL, s, fmt, op[0],
11659 (int) offset_expr.X_add_number, tempreg);
11660 }
11661 else if (offbits != 16)
11662 {
11663 /* The offset field is too narrow to be used for a low-part
11664 relocation, so load the whole address into the auxillary
11665 register. */
11666 load_address (tempreg, &offset_expr, &used_at);
11667 if (breg != 0)
11668 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11669 tempreg, tempreg, breg);
11670 if (offbits == 0)
11671 macro_build (NULL, s, fmt, op[0], tempreg);
11672 else
11673 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11674 }
11675 else if (mips_pic == NO_PIC)
11676 {
11677 /* If this is a reference to a GP relative symbol, and there
11678 is no base register, we want
11679 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
11680 Otherwise, if there is no base register, we want
11681 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11682 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11683 If we have a constant, we need two instructions anyhow,
11684 so we always use the latter form.
11685
11686 If we have a base register, and this is a reference to a
11687 GP relative symbol, we want
11688 addu $tempreg,$breg,$gp
11689 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
11690 Otherwise we want
11691 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11692 addu $tempreg,$tempreg,$breg
11693 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11694 With a constant we always use the latter case.
11695
11696 With 64bit address space and no base register and $at usable,
11697 we want
11698 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11699 lui $at,<sym> (BFD_RELOC_HI16_S)
11700 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11701 dsll32 $tempreg,0
11702 daddu $tempreg,$at
11703 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11704 If we have a base register, we want
11705 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11706 lui $at,<sym> (BFD_RELOC_HI16_S)
11707 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11708 daddu $at,$breg
11709 dsll32 $tempreg,0
11710 daddu $tempreg,$at
11711 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11712
11713 Without $at we can't generate the optimal path for superscalar
11714 processors here since this would require two temporary registers.
11715 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11716 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11717 dsll $tempreg,16
11718 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11719 dsll $tempreg,16
11720 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11721 If we have a base register, we want
11722 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11723 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11724 dsll $tempreg,16
11725 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11726 dsll $tempreg,16
11727 daddu $tempreg,$tempreg,$breg
11728 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11729
11730 For GP relative symbols in 64bit address space we can use
11731 the same sequence as in 32bit address space. */
11732 if (HAVE_64BIT_SYMBOLS)
11733 {
11734 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11735 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11736 {
11737 relax_start (offset_expr.X_add_symbol);
11738 if (breg == 0)
11739 {
11740 macro_build (&offset_expr, s, fmt, op[0],
11741 BFD_RELOC_GPREL16, mips_gp_register);
11742 }
11743 else
11744 {
11745 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11746 tempreg, breg, mips_gp_register);
11747 macro_build (&offset_expr, s, fmt, op[0],
11748 BFD_RELOC_GPREL16, tempreg);
11749 }
11750 relax_switch ();
11751 }
11752
11753 if (used_at == 0 && mips_opts.at)
11754 {
11755 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11756 BFD_RELOC_MIPS_HIGHEST);
11757 macro_build (&offset_expr, "lui", LUI_FMT, AT,
11758 BFD_RELOC_HI16_S);
11759 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11760 tempreg, BFD_RELOC_MIPS_HIGHER);
11761 if (breg != 0)
11762 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
11763 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
11764 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
11765 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
11766 tempreg);
11767 used_at = 1;
11768 }
11769 else
11770 {
11771 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11772 BFD_RELOC_MIPS_HIGHEST);
11773 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11774 tempreg, BFD_RELOC_MIPS_HIGHER);
11775 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11776 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11777 tempreg, BFD_RELOC_HI16_S);
11778 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11779 if (breg != 0)
11780 macro_build (NULL, "daddu", "d,v,t",
11781 tempreg, tempreg, breg);
11782 macro_build (&offset_expr, s, fmt, op[0],
11783 BFD_RELOC_LO16, tempreg);
11784 }
11785
11786 if (mips_relax.sequence)
11787 relax_end ();
11788 break;
11789 }
11790
11791 if (breg == 0)
11792 {
11793 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11794 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11795 {
11796 relax_start (offset_expr.X_add_symbol);
11797 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
11798 mips_gp_register);
11799 relax_switch ();
11800 }
11801 macro_build_lui (&offset_expr, tempreg);
11802 macro_build (&offset_expr, s, fmt, op[0],
11803 BFD_RELOC_LO16, tempreg);
11804 if (mips_relax.sequence)
11805 relax_end ();
11806 }
11807 else
11808 {
11809 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11810 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11811 {
11812 relax_start (offset_expr.X_add_symbol);
11813 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11814 tempreg, breg, mips_gp_register);
11815 macro_build (&offset_expr, s, fmt, op[0],
11816 BFD_RELOC_GPREL16, tempreg);
11817 relax_switch ();
11818 }
11819 macro_build_lui (&offset_expr, tempreg);
11820 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11821 tempreg, tempreg, breg);
11822 macro_build (&offset_expr, s, fmt, op[0],
11823 BFD_RELOC_LO16, tempreg);
11824 if (mips_relax.sequence)
11825 relax_end ();
11826 }
11827 }
11828 else if (!mips_big_got)
11829 {
11830 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
11831
11832 /* If this is a reference to an external symbol, we want
11833 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11834 nop
11835 <op> op[0],0($tempreg)
11836 Otherwise we want
11837 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11838 nop
11839 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11840 <op> op[0],0($tempreg)
11841
11842 For NewABI, we want
11843 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11844 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
11845
11846 If there is a base register, we add it to $tempreg before
11847 the <op>. If there is a constant, we stick it in the
11848 <op> instruction. We don't handle constants larger than
11849 16 bits, because we have no way to load the upper 16 bits
11850 (actually, we could handle them for the subset of cases
11851 in which we are not using $at). */
11852 gas_assert (offset_expr.X_op == O_symbol);
11853 if (HAVE_NEWABI)
11854 {
11855 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11856 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11857 if (breg != 0)
11858 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11859 tempreg, tempreg, breg);
11860 macro_build (&offset_expr, s, fmt, op[0],
11861 BFD_RELOC_MIPS_GOT_OFST, tempreg);
11862 break;
11863 }
11864 expr1.X_add_number = offset_expr.X_add_number;
11865 offset_expr.X_add_number = 0;
11866 if (expr1.X_add_number < -0x8000
11867 || expr1.X_add_number >= 0x8000)
11868 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11869 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11870 lw_reloc_type, mips_gp_register);
11871 load_delay_nop ();
11872 relax_start (offset_expr.X_add_symbol);
11873 relax_switch ();
11874 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11875 tempreg, BFD_RELOC_LO16);
11876 relax_end ();
11877 if (breg != 0)
11878 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11879 tempreg, tempreg, breg);
11880 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11881 }
11882 else if (mips_big_got && !HAVE_NEWABI)
11883 {
11884 int gpdelay;
11885
11886 /* If this is a reference to an external symbol, we want
11887 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11888 addu $tempreg,$tempreg,$gp
11889 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11890 <op> op[0],0($tempreg)
11891 Otherwise we want
11892 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11893 nop
11894 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11895 <op> op[0],0($tempreg)
11896 If there is a base register, we add it to $tempreg before
11897 the <op>. If there is a constant, we stick it in the
11898 <op> instruction. We don't handle constants larger than
11899 16 bits, because we have no way to load the upper 16 bits
11900 (actually, we could handle them for the subset of cases
11901 in which we are not using $at). */
11902 gas_assert (offset_expr.X_op == O_symbol);
11903 expr1.X_add_number = offset_expr.X_add_number;
11904 offset_expr.X_add_number = 0;
11905 if (expr1.X_add_number < -0x8000
11906 || expr1.X_add_number >= 0x8000)
11907 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11908 gpdelay = reg_needs_delay (mips_gp_register);
11909 relax_start (offset_expr.X_add_symbol);
11910 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11911 BFD_RELOC_MIPS_GOT_HI16);
11912 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11913 mips_gp_register);
11914 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11915 BFD_RELOC_MIPS_GOT_LO16, tempreg);
11916 relax_switch ();
11917 if (gpdelay)
11918 macro_build (NULL, "nop", "");
11919 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11920 BFD_RELOC_MIPS_GOT16, mips_gp_register);
11921 load_delay_nop ();
11922 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11923 tempreg, BFD_RELOC_LO16);
11924 relax_end ();
11925
11926 if (breg != 0)
11927 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11928 tempreg, tempreg, breg);
11929 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11930 }
11931 else if (mips_big_got && HAVE_NEWABI)
11932 {
11933 /* If this is a reference to an external symbol, we want
11934 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11935 add $tempreg,$tempreg,$gp
11936 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11937 <op> op[0],<ofst>($tempreg)
11938 Otherwise, for local symbols, we want:
11939 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11940 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
11941 gas_assert (offset_expr.X_op == O_symbol);
11942 expr1.X_add_number = offset_expr.X_add_number;
11943 offset_expr.X_add_number = 0;
11944 if (expr1.X_add_number < -0x8000
11945 || expr1.X_add_number >= 0x8000)
11946 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11947 relax_start (offset_expr.X_add_symbol);
11948 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11949 BFD_RELOC_MIPS_GOT_HI16);
11950 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11951 mips_gp_register);
11952 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11953 BFD_RELOC_MIPS_GOT_LO16, tempreg);
11954 if (breg != 0)
11955 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11956 tempreg, tempreg, breg);
11957 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11958
11959 relax_switch ();
11960 offset_expr.X_add_number = expr1.X_add_number;
11961 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11962 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11963 if (breg != 0)
11964 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11965 tempreg, tempreg, breg);
11966 macro_build (&offset_expr, s, fmt, op[0],
11967 BFD_RELOC_MIPS_GOT_OFST, tempreg);
11968 relax_end ();
11969 }
11970 else
11971 abort ();
11972
11973 break;
11974
11975 case M_JRADDIUSP:
11976 gas_assert (mips_opts.micromips);
11977 gas_assert (mips_opts.insn32);
11978 start_noreorder ();
11979 macro_build (NULL, "jr", "s", RA);
11980 expr1.X_add_number = op[0] << 2;
11981 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
11982 end_noreorder ();
11983 break;
11984
11985 case M_JRC:
11986 gas_assert (mips_opts.micromips);
11987 gas_assert (mips_opts.insn32);
11988 macro_build (NULL, "jr", "s", op[0]);
11989 if (mips_opts.noreorder)
11990 macro_build (NULL, "nop", "");
11991 break;
11992
11993 case M_LI:
11994 case M_LI_S:
11995 load_register (op[0], &imm_expr, 0);
11996 break;
11997
11998 case M_DLI:
11999 load_register (op[0], &imm_expr, 1);
12000 break;
12001
12002 case M_LI_SS:
12003 if (imm_expr.X_op == O_constant)
12004 {
12005 used_at = 1;
12006 load_register (AT, &imm_expr, 0);
12007 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12008 break;
12009 }
12010 else
12011 {
12012 gas_assert (imm_expr.X_op == O_absent
12013 && offset_expr.X_op == O_symbol
12014 && strcmp (segment_name (S_GET_SEGMENT
12015 (offset_expr.X_add_symbol)),
12016 ".lit4") == 0
12017 && offset_expr.X_add_number == 0);
12018 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
12019 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
12020 break;
12021 }
12022
12023 case M_LI_D:
12024 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12025 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12026 order 32 bits of the value and the low order 32 bits are either
12027 zero or in OFFSET_EXPR. */
12028 if (imm_expr.X_op == O_constant)
12029 {
12030 if (GPR_SIZE == 64)
12031 load_register (op[0], &imm_expr, 1);
12032 else
12033 {
12034 int hreg, lreg;
12035
12036 if (target_big_endian)
12037 {
12038 hreg = op[0];
12039 lreg = op[0] + 1;
12040 }
12041 else
12042 {
12043 hreg = op[0] + 1;
12044 lreg = op[0];
12045 }
12046
12047 if (hreg <= 31)
12048 load_register (hreg, &imm_expr, 0);
12049 if (lreg <= 31)
12050 {
12051 if (offset_expr.X_op == O_absent)
12052 move_register (lreg, 0);
12053 else
12054 {
12055 gas_assert (offset_expr.X_op == O_constant);
12056 load_register (lreg, &offset_expr, 0);
12057 }
12058 }
12059 }
12060 break;
12061 }
12062 gas_assert (imm_expr.X_op == O_absent);
12063
12064 /* We know that sym is in the .rdata section. First we get the
12065 upper 16 bits of the address. */
12066 if (mips_pic == NO_PIC)
12067 {
12068 macro_build_lui (&offset_expr, AT);
12069 used_at = 1;
12070 }
12071 else
12072 {
12073 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12074 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12075 used_at = 1;
12076 }
12077
12078 /* Now we load the register(s). */
12079 if (GPR_SIZE == 64)
12080 {
12081 used_at = 1;
12082 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12083 BFD_RELOC_LO16, AT);
12084 }
12085 else
12086 {
12087 used_at = 1;
12088 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12089 BFD_RELOC_LO16, AT);
12090 if (op[0] != RA)
12091 {
12092 /* FIXME: How in the world do we deal with the possible
12093 overflow here? */
12094 offset_expr.X_add_number += 4;
12095 macro_build (&offset_expr, "lw", "t,o(b)",
12096 op[0] + 1, BFD_RELOC_LO16, AT);
12097 }
12098 }
12099 break;
12100
12101 case M_LI_DD:
12102 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12103 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12104 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12105 the value and the low order 32 bits are either zero or in
12106 OFFSET_EXPR. */
12107 if (imm_expr.X_op == O_constant)
12108 {
12109 used_at = 1;
12110 load_register (AT, &imm_expr, FPR_SIZE == 64);
12111 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12112 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
12113 else
12114 {
12115 if (ISA_HAS_MXHC1 (mips_opts.isa))
12116 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12117 else if (FPR_SIZE != 32)
12118 as_bad (_("Unable to generate `%s' compliant code "
12119 "without mthc1"),
12120 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12121 else
12122 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
12123 if (offset_expr.X_op == O_absent)
12124 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
12125 else
12126 {
12127 gas_assert (offset_expr.X_op == O_constant);
12128 load_register (AT, &offset_expr, 0);
12129 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12130 }
12131 }
12132 break;
12133 }
12134
12135 gas_assert (imm_expr.X_op == O_absent
12136 && offset_expr.X_op == O_symbol
12137 && offset_expr.X_add_number == 0);
12138 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12139 if (strcmp (s, ".lit8") == 0)
12140 {
12141 op[2] = mips_gp_register;
12142 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12143 offset_reloc[1] = BFD_RELOC_UNUSED;
12144 offset_reloc[2] = BFD_RELOC_UNUSED;
12145 }
12146 else
12147 {
12148 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
12149 used_at = 1;
12150 if (mips_pic != NO_PIC)
12151 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12152 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12153 else
12154 {
12155 /* FIXME: This won't work for a 64 bit address. */
12156 macro_build_lui (&offset_expr, AT);
12157 }
12158
12159 op[2] = AT;
12160 offset_reloc[0] = BFD_RELOC_LO16;
12161 offset_reloc[1] = BFD_RELOC_UNUSED;
12162 offset_reloc[2] = BFD_RELOC_UNUSED;
12163 }
12164 align = 8;
12165 /* Fall through */
12166
12167 case M_L_DAB:
12168 /*
12169 * The MIPS assembler seems to check for X_add_number not
12170 * being double aligned and generating:
12171 * lui at,%hi(foo+1)
12172 * addu at,at,v1
12173 * addiu at,at,%lo(foo+1)
12174 * lwc1 f2,0(at)
12175 * lwc1 f3,4(at)
12176 * But, the resulting address is the same after relocation so why
12177 * generate the extra instruction?
12178 */
12179 /* Itbl support may require additional care here. */
12180 coproc = 1;
12181 fmt = "T,o(b)";
12182 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12183 {
12184 s = "ldc1";
12185 goto ld_st;
12186 }
12187 s = "lwc1";
12188 goto ldd_std;
12189
12190 case M_S_DAB:
12191 gas_assert (!mips_opts.micromips);
12192 /* Itbl support may require additional care here. */
12193 coproc = 1;
12194 fmt = "T,o(b)";
12195 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12196 {
12197 s = "sdc1";
12198 goto ld_st;
12199 }
12200 s = "swc1";
12201 goto ldd_std;
12202
12203 case M_LQ_AB:
12204 fmt = "t,o(b)";
12205 s = "lq";
12206 goto ld;
12207
12208 case M_SQ_AB:
12209 fmt = "t,o(b)";
12210 s = "sq";
12211 goto ld_st;
12212
12213 case M_LD_AB:
12214 fmt = "t,o(b)";
12215 if (GPR_SIZE == 64)
12216 {
12217 s = "ld";
12218 goto ld;
12219 }
12220 s = "lw";
12221 goto ldd_std;
12222
12223 case M_SD_AB:
12224 fmt = "t,o(b)";
12225 if (GPR_SIZE == 64)
12226 {
12227 s = "sd";
12228 goto ld_st;
12229 }
12230 s = "sw";
12231
12232 ldd_std:
12233 /* Even on a big endian machine $fn comes before $fn+1. We have
12234 to adjust when loading from memory. We set coproc if we must
12235 load $fn+1 first. */
12236 /* Itbl support may require additional care here. */
12237 if (!target_big_endian)
12238 coproc = 0;
12239
12240 breg = op[2];
12241 if (small_offset_p (0, align, 16))
12242 {
12243 ep = &offset_expr;
12244 if (!small_offset_p (4, align, 16))
12245 {
12246 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12247 -1, offset_reloc[0], offset_reloc[1],
12248 offset_reloc[2]);
12249 expr1.X_add_number = 0;
12250 ep = &expr1;
12251 breg = AT;
12252 used_at = 1;
12253 offset_reloc[0] = BFD_RELOC_LO16;
12254 offset_reloc[1] = BFD_RELOC_UNUSED;
12255 offset_reloc[2] = BFD_RELOC_UNUSED;
12256 }
12257 if (strcmp (s, "lw") == 0 && op[0] == breg)
12258 {
12259 ep->X_add_number += 4;
12260 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
12261 offset_reloc[1], offset_reloc[2], breg);
12262 ep->X_add_number -= 4;
12263 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
12264 offset_reloc[1], offset_reloc[2], breg);
12265 }
12266 else
12267 {
12268 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
12269 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12270 breg);
12271 ep->X_add_number += 4;
12272 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
12273 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12274 breg);
12275 }
12276 break;
12277 }
12278
12279 if (offset_expr.X_op != O_symbol
12280 && offset_expr.X_op != O_constant)
12281 {
12282 as_bad (_("expression too complex"));
12283 offset_expr.X_op = O_constant;
12284 }
12285
12286 if (HAVE_32BIT_ADDRESSES
12287 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12288 {
12289 char value [32];
12290
12291 sprintf_vma (value, offset_expr.X_add_number);
12292 as_bad (_("number (0x%s) larger than 32 bits"), value);
12293 }
12294
12295 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
12296 {
12297 /* If this is a reference to a GP relative symbol, we want
12298 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12299 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
12300 If we have a base register, we use this
12301 addu $at,$breg,$gp
12302 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12303 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
12304 If this is not a GP relative symbol, we want
12305 lui $at,<sym> (BFD_RELOC_HI16_S)
12306 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12307 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12308 If there is a base register, we add it to $at after the
12309 lui instruction. If there is a constant, we always use
12310 the last case. */
12311 if (offset_expr.X_op == O_symbol
12312 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12313 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12314 {
12315 relax_start (offset_expr.X_add_symbol);
12316 if (breg == 0)
12317 {
12318 tempreg = mips_gp_register;
12319 }
12320 else
12321 {
12322 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12323 AT, breg, mips_gp_register);
12324 tempreg = AT;
12325 used_at = 1;
12326 }
12327
12328 /* Itbl support may require additional care here. */
12329 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12330 BFD_RELOC_GPREL16, tempreg);
12331 offset_expr.X_add_number += 4;
12332
12333 /* Set mips_optimize to 2 to avoid inserting an
12334 undesired nop. */
12335 hold_mips_optimize = mips_optimize;
12336 mips_optimize = 2;
12337 /* Itbl support may require additional care here. */
12338 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12339 BFD_RELOC_GPREL16, tempreg);
12340 mips_optimize = hold_mips_optimize;
12341
12342 relax_switch ();
12343
12344 offset_expr.X_add_number -= 4;
12345 }
12346 used_at = 1;
12347 if (offset_high_part (offset_expr.X_add_number, 16)
12348 != offset_high_part (offset_expr.X_add_number + 4, 16))
12349 {
12350 load_address (AT, &offset_expr, &used_at);
12351 offset_expr.X_op = O_constant;
12352 offset_expr.X_add_number = 0;
12353 }
12354 else
12355 macro_build_lui (&offset_expr, AT);
12356 if (breg != 0)
12357 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12358 /* Itbl support may require additional care here. */
12359 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12360 BFD_RELOC_LO16, AT);
12361 /* FIXME: How do we handle overflow here? */
12362 offset_expr.X_add_number += 4;
12363 /* Itbl support may require additional care here. */
12364 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12365 BFD_RELOC_LO16, AT);
12366 if (mips_relax.sequence)
12367 relax_end ();
12368 }
12369 else if (!mips_big_got)
12370 {
12371 /* If this is a reference to an external symbol, we want
12372 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12373 nop
12374 <op> op[0],0($at)
12375 <op> op[0]+1,4($at)
12376 Otherwise we want
12377 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12378 nop
12379 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12380 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12381 If there is a base register we add it to $at before the
12382 lwc1 instructions. If there is a constant we include it
12383 in the lwc1 instructions. */
12384 used_at = 1;
12385 expr1.X_add_number = offset_expr.X_add_number;
12386 if (expr1.X_add_number < -0x8000
12387 || expr1.X_add_number >= 0x8000 - 4)
12388 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12389 load_got_offset (AT, &offset_expr);
12390 load_delay_nop ();
12391 if (breg != 0)
12392 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12393
12394 /* Set mips_optimize to 2 to avoid inserting an undesired
12395 nop. */
12396 hold_mips_optimize = mips_optimize;
12397 mips_optimize = 2;
12398
12399 /* Itbl support may require additional care here. */
12400 relax_start (offset_expr.X_add_symbol);
12401 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12402 BFD_RELOC_LO16, AT);
12403 expr1.X_add_number += 4;
12404 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12405 BFD_RELOC_LO16, AT);
12406 relax_switch ();
12407 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12408 BFD_RELOC_LO16, AT);
12409 offset_expr.X_add_number += 4;
12410 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12411 BFD_RELOC_LO16, AT);
12412 relax_end ();
12413
12414 mips_optimize = hold_mips_optimize;
12415 }
12416 else if (mips_big_got)
12417 {
12418 int gpdelay;
12419
12420 /* If this is a reference to an external symbol, we want
12421 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12422 addu $at,$at,$gp
12423 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12424 nop
12425 <op> op[0],0($at)
12426 <op> op[0]+1,4($at)
12427 Otherwise we want
12428 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12429 nop
12430 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12431 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12432 If there is a base register we add it to $at before the
12433 lwc1 instructions. If there is a constant we include it
12434 in the lwc1 instructions. */
12435 used_at = 1;
12436 expr1.X_add_number = offset_expr.X_add_number;
12437 offset_expr.X_add_number = 0;
12438 if (expr1.X_add_number < -0x8000
12439 || expr1.X_add_number >= 0x8000 - 4)
12440 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12441 gpdelay = reg_needs_delay (mips_gp_register);
12442 relax_start (offset_expr.X_add_symbol);
12443 macro_build (&offset_expr, "lui", LUI_FMT,
12444 AT, BFD_RELOC_MIPS_GOT_HI16);
12445 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12446 AT, AT, mips_gp_register);
12447 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
12448 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
12449 load_delay_nop ();
12450 if (breg != 0)
12451 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12452 /* Itbl support may require additional care here. */
12453 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12454 BFD_RELOC_LO16, AT);
12455 expr1.X_add_number += 4;
12456
12457 /* Set mips_optimize to 2 to avoid inserting an undesired
12458 nop. */
12459 hold_mips_optimize = mips_optimize;
12460 mips_optimize = 2;
12461 /* Itbl support may require additional care here. */
12462 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12463 BFD_RELOC_LO16, AT);
12464 mips_optimize = hold_mips_optimize;
12465 expr1.X_add_number -= 4;
12466
12467 relax_switch ();
12468 offset_expr.X_add_number = expr1.X_add_number;
12469 if (gpdelay)
12470 macro_build (NULL, "nop", "");
12471 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12472 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12473 load_delay_nop ();
12474 if (breg != 0)
12475 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12476 /* Itbl support may require additional care here. */
12477 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12478 BFD_RELOC_LO16, AT);
12479 offset_expr.X_add_number += 4;
12480
12481 /* Set mips_optimize to 2 to avoid inserting an undesired
12482 nop. */
12483 hold_mips_optimize = mips_optimize;
12484 mips_optimize = 2;
12485 /* Itbl support may require additional care here. */
12486 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12487 BFD_RELOC_LO16, AT);
12488 mips_optimize = hold_mips_optimize;
12489 relax_end ();
12490 }
12491 else
12492 abort ();
12493
12494 break;
12495
12496 case M_SAA_AB:
12497 s = "saa";
12498 goto saa_saad;
12499 case M_SAAD_AB:
12500 s = "saad";
12501 saa_saad:
12502 gas_assert (!mips_opts.micromips);
12503 offbits = 0;
12504 fmt = "t,(b)";
12505 goto ld_st;
12506
12507 /* New code added to support COPZ instructions.
12508 This code builds table entries out of the macros in mip_opcodes.
12509 R4000 uses interlocks to handle coproc delays.
12510 Other chips (like the R3000) require nops to be inserted for delays.
12511
12512 FIXME: Currently, we require that the user handle delays.
12513 In order to fill delay slots for non-interlocked chips,
12514 we must have a way to specify delays based on the coprocessor.
12515 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12516 What are the side-effects of the cop instruction?
12517 What cache support might we have and what are its effects?
12518 Both coprocessor & memory require delays. how long???
12519 What registers are read/set/modified?
12520
12521 If an itbl is provided to interpret cop instructions,
12522 this knowledge can be encoded in the itbl spec. */
12523
12524 case M_COP0:
12525 s = "c0";
12526 goto copz;
12527 case M_COP1:
12528 s = "c1";
12529 goto copz;
12530 case M_COP2:
12531 s = "c2";
12532 goto copz;
12533 case M_COP3:
12534 s = "c3";
12535 copz:
12536 gas_assert (!mips_opts.micromips);
12537 /* For now we just do C (same as Cz). The parameter will be
12538 stored in insn_opcode by mips_ip. */
12539 macro_build (NULL, s, "C", (int) ip->insn_opcode);
12540 break;
12541
12542 case M_MOVE:
12543 move_register (op[0], op[1]);
12544 break;
12545
12546 case M_MOVEP:
12547 gas_assert (mips_opts.micromips);
12548 gas_assert (mips_opts.insn32);
12549 move_register (micromips_to_32_reg_h_map1[op[0]],
12550 micromips_to_32_reg_m_map[op[1]]);
12551 move_register (micromips_to_32_reg_h_map2[op[0]],
12552 micromips_to_32_reg_n_map[op[2]]);
12553 break;
12554
12555 case M_DMUL:
12556 dbl = 1;
12557 case M_MUL:
12558 if (mips_opts.arch == CPU_R5900)
12559 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12560 op[2]);
12561 else
12562 {
12563 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12564 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12565 }
12566 break;
12567
12568 case M_DMUL_I:
12569 dbl = 1;
12570 case M_MUL_I:
12571 /* The MIPS assembler some times generates shifts and adds. I'm
12572 not trying to be that fancy. GCC should do this for us
12573 anyway. */
12574 used_at = 1;
12575 load_register (AT, &imm_expr, dbl);
12576 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12577 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12578 break;
12579
12580 case M_DMULO_I:
12581 dbl = 1;
12582 case M_MULO_I:
12583 imm = 1;
12584 goto do_mulo;
12585
12586 case M_DMULO:
12587 dbl = 1;
12588 case M_MULO:
12589 do_mulo:
12590 start_noreorder ();
12591 used_at = 1;
12592 if (imm)
12593 load_register (AT, &imm_expr, dbl);
12594 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12595 op[1], imm ? AT : op[2]);
12596 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12597 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
12598 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12599 if (mips_trap)
12600 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
12601 else
12602 {
12603 if (mips_opts.micromips)
12604 micromips_label_expr (&label_expr);
12605 else
12606 label_expr.X_add_number = 8;
12607 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
12608 macro_build (NULL, "nop", "");
12609 macro_build (NULL, "break", BRK_FMT, 6);
12610 if (mips_opts.micromips)
12611 micromips_add_label ();
12612 }
12613 end_noreorder ();
12614 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12615 break;
12616
12617 case M_DMULOU_I:
12618 dbl = 1;
12619 case M_MULOU_I:
12620 imm = 1;
12621 goto do_mulou;
12622
12623 case M_DMULOU:
12624 dbl = 1;
12625 case M_MULOU:
12626 do_mulou:
12627 start_noreorder ();
12628 used_at = 1;
12629 if (imm)
12630 load_register (AT, &imm_expr, dbl);
12631 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
12632 op[1], imm ? AT : op[2]);
12633 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12634 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12635 if (mips_trap)
12636 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
12637 else
12638 {
12639 if (mips_opts.micromips)
12640 micromips_label_expr (&label_expr);
12641 else
12642 label_expr.X_add_number = 8;
12643 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
12644 macro_build (NULL, "nop", "");
12645 macro_build (NULL, "break", BRK_FMT, 6);
12646 if (mips_opts.micromips)
12647 micromips_add_label ();
12648 }
12649 end_noreorder ();
12650 break;
12651
12652 case M_DROL:
12653 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12654 {
12655 if (op[0] == op[1])
12656 {
12657 tempreg = AT;
12658 used_at = 1;
12659 }
12660 else
12661 tempreg = op[0];
12662 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12663 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
12664 break;
12665 }
12666 used_at = 1;
12667 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12668 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12669 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12670 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12671 break;
12672
12673 case M_ROL:
12674 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12675 {
12676 if (op[0] == op[1])
12677 {
12678 tempreg = AT;
12679 used_at = 1;
12680 }
12681 else
12682 tempreg = op[0];
12683 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12684 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
12685 break;
12686 }
12687 used_at = 1;
12688 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12689 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12690 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12691 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12692 break;
12693
12694 case M_DROL_I:
12695 {
12696 unsigned int rot;
12697 const char *l;
12698 const char *rr;
12699
12700 rot = imm_expr.X_add_number & 0x3f;
12701 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12702 {
12703 rot = (64 - rot) & 0x3f;
12704 if (rot >= 32)
12705 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12706 else
12707 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12708 break;
12709 }
12710 if (rot == 0)
12711 {
12712 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12713 break;
12714 }
12715 l = (rot < 0x20) ? "dsll" : "dsll32";
12716 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
12717 rot &= 0x1f;
12718 used_at = 1;
12719 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12720 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12721 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12722 }
12723 break;
12724
12725 case M_ROL_I:
12726 {
12727 unsigned int rot;
12728
12729 rot = imm_expr.X_add_number & 0x1f;
12730 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12731 {
12732 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12733 (32 - rot) & 0x1f);
12734 break;
12735 }
12736 if (rot == 0)
12737 {
12738 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12739 break;
12740 }
12741 used_at = 1;
12742 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12743 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12744 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12745 }
12746 break;
12747
12748 case M_DROR:
12749 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12750 {
12751 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
12752 break;
12753 }
12754 used_at = 1;
12755 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12756 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
12757 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
12758 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12759 break;
12760
12761 case M_ROR:
12762 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12763 {
12764 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
12765 break;
12766 }
12767 used_at = 1;
12768 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12769 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
12770 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
12771 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12772 break;
12773
12774 case M_DROR_I:
12775 {
12776 unsigned int rot;
12777 const char *l;
12778 const char *rr;
12779
12780 rot = imm_expr.X_add_number & 0x3f;
12781 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12782 {
12783 if (rot >= 32)
12784 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12785 else
12786 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12787 break;
12788 }
12789 if (rot == 0)
12790 {
12791 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12792 break;
12793 }
12794 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
12795 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
12796 rot &= 0x1f;
12797 used_at = 1;
12798 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
12799 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12800 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12801 }
12802 break;
12803
12804 case M_ROR_I:
12805 {
12806 unsigned int rot;
12807
12808 rot = imm_expr.X_add_number & 0x1f;
12809 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12810 {
12811 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
12812 break;
12813 }
12814 if (rot == 0)
12815 {
12816 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12817 break;
12818 }
12819 used_at = 1;
12820 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
12821 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12822 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12823 }
12824 break;
12825
12826 case M_SEQ:
12827 if (op[1] == 0)
12828 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
12829 else if (op[2] == 0)
12830 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12831 else
12832 {
12833 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12834 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12835 }
12836 break;
12837
12838 case M_SEQ_I:
12839 if (imm_expr.X_add_number == 0)
12840 {
12841 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12842 break;
12843 }
12844 if (op[1] == 0)
12845 {
12846 as_warn (_("instruction %s: result is always false"),
12847 ip->insn_mo->name);
12848 move_register (op[0], 0);
12849 break;
12850 }
12851 if (CPU_HAS_SEQ (mips_opts.arch)
12852 && -512 <= imm_expr.X_add_number
12853 && imm_expr.X_add_number < 512)
12854 {
12855 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
12856 (int) imm_expr.X_add_number);
12857 break;
12858 }
12859 if (imm_expr.X_add_number >= 0
12860 && imm_expr.X_add_number < 0x10000)
12861 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
12862 else if (imm_expr.X_add_number > -0x8000
12863 && imm_expr.X_add_number < 0)
12864 {
12865 imm_expr.X_add_number = -imm_expr.X_add_number;
12866 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
12867 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12868 }
12869 else if (CPU_HAS_SEQ (mips_opts.arch))
12870 {
12871 used_at = 1;
12872 load_register (AT, &imm_expr, GPR_SIZE == 64);
12873 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
12874 break;
12875 }
12876 else
12877 {
12878 load_register (AT, &imm_expr, GPR_SIZE == 64);
12879 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
12880 used_at = 1;
12881 }
12882 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12883 break;
12884
12885 case M_SGE: /* X >= Y <==> not (X < Y) */
12886 s = "slt";
12887 goto sge;
12888 case M_SGEU:
12889 s = "sltu";
12890 sge:
12891 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
12892 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12893 break;
12894
12895 case M_SGE_I: /* X >= I <==> not (X < I) */
12896 case M_SGEU_I:
12897 if (imm_expr.X_add_number >= -0x8000
12898 && imm_expr.X_add_number < 0x8000)
12899 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
12900 op[0], op[1], BFD_RELOC_LO16);
12901 else
12902 {
12903 load_register (AT, &imm_expr, GPR_SIZE == 64);
12904 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
12905 op[0], op[1], AT);
12906 used_at = 1;
12907 }
12908 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12909 break;
12910
12911 case M_SGT: /* X > Y <==> Y < X */
12912 s = "slt";
12913 goto sgt;
12914 case M_SGTU:
12915 s = "sltu";
12916 sgt:
12917 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12918 break;
12919
12920 case M_SGT_I: /* X > I <==> I < X */
12921 s = "slt";
12922 goto sgti;
12923 case M_SGTU_I:
12924 s = "sltu";
12925 sgti:
12926 used_at = 1;
12927 load_register (AT, &imm_expr, GPR_SIZE == 64);
12928 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12929 break;
12930
12931 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
12932 s = "slt";
12933 goto sle;
12934 case M_SLEU:
12935 s = "sltu";
12936 sle:
12937 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12938 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12939 break;
12940
12941 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
12942 s = "slt";
12943 goto slei;
12944 case M_SLEU_I:
12945 s = "sltu";
12946 slei:
12947 used_at = 1;
12948 load_register (AT, &imm_expr, GPR_SIZE == 64);
12949 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12950 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12951 break;
12952
12953 case M_SLT_I:
12954 if (imm_expr.X_add_number >= -0x8000
12955 && imm_expr.X_add_number < 0x8000)
12956 {
12957 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
12958 BFD_RELOC_LO16);
12959 break;
12960 }
12961 used_at = 1;
12962 load_register (AT, &imm_expr, GPR_SIZE == 64);
12963 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
12964 break;
12965
12966 case M_SLTU_I:
12967 if (imm_expr.X_add_number >= -0x8000
12968 && imm_expr.X_add_number < 0x8000)
12969 {
12970 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
12971 BFD_RELOC_LO16);
12972 break;
12973 }
12974 used_at = 1;
12975 load_register (AT, &imm_expr, GPR_SIZE == 64);
12976 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
12977 break;
12978
12979 case M_SNE:
12980 if (op[1] == 0)
12981 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
12982 else if (op[2] == 0)
12983 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
12984 else
12985 {
12986 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12987 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
12988 }
12989 break;
12990
12991 case M_SNE_I:
12992 if (imm_expr.X_add_number == 0)
12993 {
12994 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
12995 break;
12996 }
12997 if (op[1] == 0)
12998 {
12999 as_warn (_("instruction %s: result is always true"),
13000 ip->insn_mo->name);
13001 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
13002 op[0], 0, BFD_RELOC_LO16);
13003 break;
13004 }
13005 if (CPU_HAS_SEQ (mips_opts.arch)
13006 && -512 <= imm_expr.X_add_number
13007 && imm_expr.X_add_number < 512)
13008 {
13009 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
13010 (int) imm_expr.X_add_number);
13011 break;
13012 }
13013 if (imm_expr.X_add_number >= 0
13014 && imm_expr.X_add_number < 0x10000)
13015 {
13016 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13017 BFD_RELOC_LO16);
13018 }
13019 else if (imm_expr.X_add_number > -0x8000
13020 && imm_expr.X_add_number < 0)
13021 {
13022 imm_expr.X_add_number = -imm_expr.X_add_number;
13023 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13024 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13025 }
13026 else if (CPU_HAS_SEQ (mips_opts.arch))
13027 {
13028 used_at = 1;
13029 load_register (AT, &imm_expr, GPR_SIZE == 64);
13030 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
13031 break;
13032 }
13033 else
13034 {
13035 load_register (AT, &imm_expr, GPR_SIZE == 64);
13036 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13037 used_at = 1;
13038 }
13039 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13040 break;
13041
13042 case M_SUB_I:
13043 s = "addi";
13044 s2 = "sub";
13045 goto do_subi;
13046 case M_SUBU_I:
13047 s = "addiu";
13048 s2 = "subu";
13049 goto do_subi;
13050 case M_DSUB_I:
13051 dbl = 1;
13052 s = "daddi";
13053 s2 = "dsub";
13054 if (!mips_opts.micromips)
13055 goto do_subi;
13056 if (imm_expr.X_add_number > -0x200
13057 && imm_expr.X_add_number <= 0x200)
13058 {
13059 macro_build (NULL, s, "t,r,.", op[0], op[1],
13060 (int) -imm_expr.X_add_number);
13061 break;
13062 }
13063 goto do_subi_i;
13064 case M_DSUBU_I:
13065 dbl = 1;
13066 s = "daddiu";
13067 s2 = "dsubu";
13068 do_subi:
13069 if (imm_expr.X_add_number > -0x8000
13070 && imm_expr.X_add_number <= 0x8000)
13071 {
13072 imm_expr.X_add_number = -imm_expr.X_add_number;
13073 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13074 break;
13075 }
13076 do_subi_i:
13077 used_at = 1;
13078 load_register (AT, &imm_expr, dbl);
13079 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
13080 break;
13081
13082 case M_TEQ_I:
13083 s = "teq";
13084 goto trap;
13085 case M_TGE_I:
13086 s = "tge";
13087 goto trap;
13088 case M_TGEU_I:
13089 s = "tgeu";
13090 goto trap;
13091 case M_TLT_I:
13092 s = "tlt";
13093 goto trap;
13094 case M_TLTU_I:
13095 s = "tltu";
13096 goto trap;
13097 case M_TNE_I:
13098 s = "tne";
13099 trap:
13100 used_at = 1;
13101 load_register (AT, &imm_expr, GPR_SIZE == 64);
13102 macro_build (NULL, s, "s,t", op[0], AT);
13103 break;
13104
13105 case M_TRUNCWS:
13106 case M_TRUNCWD:
13107 gas_assert (!mips_opts.micromips);
13108 gas_assert (mips_opts.isa == ISA_MIPS1);
13109 used_at = 1;
13110
13111 /*
13112 * Is the double cfc1 instruction a bug in the mips assembler;
13113 * or is there a reason for it?
13114 */
13115 start_noreorder ();
13116 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13117 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13118 macro_build (NULL, "nop", "");
13119 expr1.X_add_number = 3;
13120 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
13121 expr1.X_add_number = 2;
13122 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13123 macro_build (NULL, "ctc1", "t,G", AT, RA);
13124 macro_build (NULL, "nop", "");
13125 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
13126 op[0], op[1]);
13127 macro_build (NULL, "ctc1", "t,G", op[2], RA);
13128 macro_build (NULL, "nop", "");
13129 end_noreorder ();
13130 break;
13131
13132 case M_ULH_AB:
13133 s = "lb";
13134 s2 = "lbu";
13135 off = 1;
13136 goto uld_st;
13137 case M_ULHU_AB:
13138 s = "lbu";
13139 s2 = "lbu";
13140 off = 1;
13141 goto uld_st;
13142 case M_ULW_AB:
13143 s = "lwl";
13144 s2 = "lwr";
13145 offbits = (mips_opts.micromips ? 12 : 16);
13146 off = 3;
13147 goto uld_st;
13148 case M_ULD_AB:
13149 s = "ldl";
13150 s2 = "ldr";
13151 offbits = (mips_opts.micromips ? 12 : 16);
13152 off = 7;
13153 goto uld_st;
13154 case M_USH_AB:
13155 s = "sb";
13156 s2 = "sb";
13157 off = 1;
13158 ust = 1;
13159 goto uld_st;
13160 case M_USW_AB:
13161 s = "swl";
13162 s2 = "swr";
13163 offbits = (mips_opts.micromips ? 12 : 16);
13164 off = 3;
13165 ust = 1;
13166 goto uld_st;
13167 case M_USD_AB:
13168 s = "sdl";
13169 s2 = "sdr";
13170 offbits = (mips_opts.micromips ? 12 : 16);
13171 off = 7;
13172 ust = 1;
13173
13174 uld_st:
13175 breg = op[2];
13176 large_offset = !small_offset_p (off, align, offbits);
13177 ep = &offset_expr;
13178 expr1.X_add_number = 0;
13179 if (large_offset)
13180 {
13181 used_at = 1;
13182 tempreg = AT;
13183 if (small_offset_p (0, align, 16))
13184 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13185 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13186 else
13187 {
13188 load_address (tempreg, ep, &used_at);
13189 if (breg != 0)
13190 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13191 tempreg, tempreg, breg);
13192 }
13193 offset_reloc[0] = BFD_RELOC_LO16;
13194 offset_reloc[1] = BFD_RELOC_UNUSED;
13195 offset_reloc[2] = BFD_RELOC_UNUSED;
13196 breg = tempreg;
13197 tempreg = op[0];
13198 ep = &expr1;
13199 }
13200 else if (!ust && op[0] == breg)
13201 {
13202 used_at = 1;
13203 tempreg = AT;
13204 }
13205 else
13206 tempreg = op[0];
13207
13208 if (off == 1)
13209 goto ulh_sh;
13210
13211 if (!target_big_endian)
13212 ep->X_add_number += off;
13213 if (offbits == 12)
13214 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
13215 else
13216 macro_build (ep, s, "t,o(b)", tempreg, -1,
13217 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13218
13219 if (!target_big_endian)
13220 ep->X_add_number -= off;
13221 else
13222 ep->X_add_number += off;
13223 if (offbits == 12)
13224 macro_build (NULL, s2, "t,~(b)",
13225 tempreg, (int) ep->X_add_number, breg);
13226 else
13227 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13228 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13229
13230 /* If necessary, move the result in tempreg to the final destination. */
13231 if (!ust && op[0] != tempreg)
13232 {
13233 /* Protect second load's delay slot. */
13234 load_delay_nop ();
13235 move_register (op[0], tempreg);
13236 }
13237 break;
13238
13239 ulh_sh:
13240 used_at = 1;
13241 if (target_big_endian == ust)
13242 ep->X_add_number += off;
13243 tempreg = ust || large_offset ? op[0] : AT;
13244 macro_build (ep, s, "t,o(b)", tempreg, -1,
13245 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13246
13247 /* For halfword transfers we need a temporary register to shuffle
13248 bytes. Unfortunately for M_USH_A we have none available before
13249 the next store as AT holds the base address. We deal with this
13250 case by clobbering TREG and then restoring it as with ULH. */
13251 tempreg = ust == large_offset ? op[0] : AT;
13252 if (ust)
13253 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
13254
13255 if (target_big_endian == ust)
13256 ep->X_add_number -= off;
13257 else
13258 ep->X_add_number += off;
13259 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13260 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13261
13262 /* For M_USH_A re-retrieve the LSB. */
13263 if (ust && large_offset)
13264 {
13265 if (target_big_endian)
13266 ep->X_add_number += off;
13267 else
13268 ep->X_add_number -= off;
13269 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13270 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
13271 }
13272 /* For ULH and M_USH_A OR the LSB in. */
13273 if (!ust || large_offset)
13274 {
13275 tempreg = !large_offset ? AT : op[0];
13276 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
13277 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13278 }
13279 break;
13280
13281 default:
13282 /* FIXME: Check if this is one of the itbl macros, since they
13283 are added dynamically. */
13284 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
13285 break;
13286 }
13287 if (!mips_opts.at && used_at)
13288 as_bad (_("macro used $at after \".set noat\""));
13289 }
13290
13291 /* Implement macros in mips16 mode. */
13292
13293 static void
13294 mips16_macro (struct mips_cl_insn *ip)
13295 {
13296 const struct mips_operand_array *operands;
13297 int mask;
13298 int tmp;
13299 expressionS expr1;
13300 int dbl;
13301 const char *s, *s2, *s3;
13302 unsigned int op[MAX_OPERANDS];
13303 unsigned int i;
13304
13305 mask = ip->insn_mo->mask;
13306
13307 operands = insn_operands (ip);
13308 for (i = 0; i < MAX_OPERANDS; i++)
13309 if (operands->operand[i])
13310 op[i] = insn_extract_operand (ip, operands->operand[i]);
13311 else
13312 op[i] = -1;
13313
13314 expr1.X_op = O_constant;
13315 expr1.X_op_symbol = NULL;
13316 expr1.X_add_symbol = NULL;
13317 expr1.X_add_number = 1;
13318
13319 dbl = 0;
13320
13321 switch (mask)
13322 {
13323 default:
13324 abort ();
13325
13326 case M_DDIV_3:
13327 dbl = 1;
13328 case M_DIV_3:
13329 s = "mflo";
13330 goto do_div3;
13331 case M_DREM_3:
13332 dbl = 1;
13333 case M_REM_3:
13334 s = "mfhi";
13335 do_div3:
13336 start_noreorder ();
13337 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", op[1], op[2]);
13338 expr1.X_add_number = 2;
13339 macro_build (&expr1, "bnez", "x,p", op[2]);
13340 macro_build (NULL, "break", "6", 7);
13341
13342 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13343 since that causes an overflow. We should do that as well,
13344 but I don't see how to do the comparisons without a temporary
13345 register. */
13346 end_noreorder ();
13347 macro_build (NULL, s, "x", op[0]);
13348 break;
13349
13350 case M_DIVU_3:
13351 s = "divu";
13352 s2 = "mflo";
13353 goto do_divu3;
13354 case M_REMU_3:
13355 s = "divu";
13356 s2 = "mfhi";
13357 goto do_divu3;
13358 case M_DDIVU_3:
13359 s = "ddivu";
13360 s2 = "mflo";
13361 goto do_divu3;
13362 case M_DREMU_3:
13363 s = "ddivu";
13364 s2 = "mfhi";
13365 do_divu3:
13366 start_noreorder ();
13367 macro_build (NULL, s, "0,x,y", op[1], op[2]);
13368 expr1.X_add_number = 2;
13369 macro_build (&expr1, "bnez", "x,p", op[2]);
13370 macro_build (NULL, "break", "6", 7);
13371 end_noreorder ();
13372 macro_build (NULL, s2, "x", op[0]);
13373 break;
13374
13375 case M_DMUL:
13376 dbl = 1;
13377 case M_MUL:
13378 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13379 macro_build (NULL, "mflo", "x", op[0]);
13380 break;
13381
13382 case M_DSUBU_I:
13383 dbl = 1;
13384 goto do_subu;
13385 case M_SUBU_I:
13386 do_subu:
13387 imm_expr.X_add_number = -imm_expr.X_add_number;
13388 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", op[0], op[1]);
13389 break;
13390
13391 case M_SUBU_I_2:
13392 imm_expr.X_add_number = -imm_expr.X_add_number;
13393 macro_build (&imm_expr, "addiu", "x,k", op[0]);
13394 break;
13395
13396 case M_DSUBU_I_2:
13397 imm_expr.X_add_number = -imm_expr.X_add_number;
13398 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
13399 break;
13400
13401 case M_BEQ:
13402 s = "cmp";
13403 s2 = "bteqz";
13404 goto do_branch;
13405 case M_BNE:
13406 s = "cmp";
13407 s2 = "btnez";
13408 goto do_branch;
13409 case M_BLT:
13410 s = "slt";
13411 s2 = "btnez";
13412 goto do_branch;
13413 case M_BLTU:
13414 s = "sltu";
13415 s2 = "btnez";
13416 goto do_branch;
13417 case M_BLE:
13418 s = "slt";
13419 s2 = "bteqz";
13420 goto do_reverse_branch;
13421 case M_BLEU:
13422 s = "sltu";
13423 s2 = "bteqz";
13424 goto do_reverse_branch;
13425 case M_BGE:
13426 s = "slt";
13427 s2 = "bteqz";
13428 goto do_branch;
13429 case M_BGEU:
13430 s = "sltu";
13431 s2 = "bteqz";
13432 goto do_branch;
13433 case M_BGT:
13434 s = "slt";
13435 s2 = "btnez";
13436 goto do_reverse_branch;
13437 case M_BGTU:
13438 s = "sltu";
13439 s2 = "btnez";
13440
13441 do_reverse_branch:
13442 tmp = op[1];
13443 op[1] = op[0];
13444 op[0] = tmp;
13445
13446 do_branch:
13447 macro_build (NULL, s, "x,y", op[0], op[1]);
13448 macro_build (&offset_expr, s2, "p");
13449 break;
13450
13451 case M_BEQ_I:
13452 s = "cmpi";
13453 s2 = "bteqz";
13454 s3 = "x,U";
13455 goto do_branch_i;
13456 case M_BNE_I:
13457 s = "cmpi";
13458 s2 = "btnez";
13459 s3 = "x,U";
13460 goto do_branch_i;
13461 case M_BLT_I:
13462 s = "slti";
13463 s2 = "btnez";
13464 s3 = "x,8";
13465 goto do_branch_i;
13466 case M_BLTU_I:
13467 s = "sltiu";
13468 s2 = "btnez";
13469 s3 = "x,8";
13470 goto do_branch_i;
13471 case M_BLE_I:
13472 s = "slti";
13473 s2 = "btnez";
13474 s3 = "x,8";
13475 goto do_addone_branch_i;
13476 case M_BLEU_I:
13477 s = "sltiu";
13478 s2 = "btnez";
13479 s3 = "x,8";
13480 goto do_addone_branch_i;
13481 case M_BGE_I:
13482 s = "slti";
13483 s2 = "bteqz";
13484 s3 = "x,8";
13485 goto do_branch_i;
13486 case M_BGEU_I:
13487 s = "sltiu";
13488 s2 = "bteqz";
13489 s3 = "x,8";
13490 goto do_branch_i;
13491 case M_BGT_I:
13492 s = "slti";
13493 s2 = "bteqz";
13494 s3 = "x,8";
13495 goto do_addone_branch_i;
13496 case M_BGTU_I:
13497 s = "sltiu";
13498 s2 = "bteqz";
13499 s3 = "x,8";
13500
13501 do_addone_branch_i:
13502 ++imm_expr.X_add_number;
13503
13504 do_branch_i:
13505 macro_build (&imm_expr, s, s3, op[0]);
13506 macro_build (&offset_expr, s2, "p");
13507 break;
13508
13509 case M_ABS:
13510 expr1.X_add_number = 0;
13511 macro_build (&expr1, "slti", "x,8", op[1]);
13512 if (op[0] != op[1])
13513 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
13514 expr1.X_add_number = 2;
13515 macro_build (&expr1, "bteqz", "p");
13516 macro_build (NULL, "neg", "x,w", op[0], op[0]);
13517 break;
13518 }
13519 }
13520
13521 /* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13522 opcode bits in *OPCODE_EXTRA. */
13523
13524 static struct mips_opcode *
13525 mips_lookup_insn (struct hash_control *hash, const char *start,
13526 ssize_t length, unsigned int *opcode_extra)
13527 {
13528 char *name, *dot, *p;
13529 unsigned int mask, suffix;
13530 ssize_t opend;
13531 struct mips_opcode *insn;
13532
13533 /* Make a copy of the instruction so that we can fiddle with it. */
13534 name = xmalloc (length + 1);
13535 memcpy (name, start, length);
13536 name[length] = '\0';
13537
13538 /* Look up the instruction as-is. */
13539 insn = (struct mips_opcode *) hash_find (hash, name);
13540 if (insn)
13541 goto end;
13542
13543 dot = strchr (name, '.');
13544 if (dot && dot[1])
13545 {
13546 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13547 p = mips_parse_vu0_channels (dot + 1, &mask);
13548 if (*p == 0 && mask != 0)
13549 {
13550 *dot = 0;
13551 insn = (struct mips_opcode *) hash_find (hash, name);
13552 *dot = '.';
13553 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13554 {
13555 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
13556 goto end;
13557 }
13558 }
13559 }
13560
13561 if (mips_opts.micromips)
13562 {
13563 /* See if there's an instruction size override suffix,
13564 either `16' or `32', at the end of the mnemonic proper,
13565 that defines the operation, i.e. before the first `.'
13566 character if any. Strip it and retry. */
13567 opend = dot != NULL ? dot - name : length;
13568 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13569 suffix = 2;
13570 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13571 suffix = 4;
13572 else
13573 suffix = 0;
13574 if (suffix)
13575 {
13576 memcpy (name + opend - 2, name + opend, length - opend + 1);
13577 insn = (struct mips_opcode *) hash_find (hash, name);
13578 if (insn)
13579 {
13580 forced_insn_length = suffix;
13581 goto end;
13582 }
13583 }
13584 }
13585
13586 insn = NULL;
13587 end:
13588 free (name);
13589 return insn;
13590 }
13591
13592 /* Assemble an instruction into its binary format. If the instruction
13593 is a macro, set imm_expr and offset_expr to the values associated
13594 with "I" and "A" operands respectively. Otherwise store the value
13595 of the relocatable field (if any) in offset_expr. In both cases
13596 set offset_reloc to the relocation operators applied to offset_expr. */
13597
13598 static void
13599 mips_ip (char *str, struct mips_cl_insn *insn)
13600 {
13601 const struct mips_opcode *first, *past;
13602 struct hash_control *hash;
13603 char format;
13604 size_t end;
13605 struct mips_operand_token *tokens;
13606 unsigned int opcode_extra;
13607
13608 if (mips_opts.micromips)
13609 {
13610 hash = micromips_op_hash;
13611 past = &micromips_opcodes[bfd_micromips_num_opcodes];
13612 }
13613 else
13614 {
13615 hash = op_hash;
13616 past = &mips_opcodes[NUMOPCODES];
13617 }
13618 forced_insn_length = 0;
13619 opcode_extra = 0;
13620
13621 /* We first try to match an instruction up to a space or to the end. */
13622 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13623 continue;
13624
13625 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13626 if (first == NULL)
13627 {
13628 set_insn_error (0, _("unrecognized opcode"));
13629 return;
13630 }
13631
13632 if (strcmp (first->name, "li.s") == 0)
13633 format = 'f';
13634 else if (strcmp (first->name, "li.d") == 0)
13635 format = 'd';
13636 else
13637 format = 0;
13638 tokens = mips_parse_arguments (str + end, format);
13639 if (!tokens)
13640 return;
13641
13642 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13643 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
13644 set_insn_error (0, _("invalid operands"));
13645
13646 obstack_free (&mips_operand_tokens, tokens);
13647 }
13648
13649 /* As for mips_ip, but used when assembling MIPS16 code.
13650 Also set forced_insn_length to the resulting instruction size in
13651 bytes if the user explicitly requested a small or extended instruction. */
13652
13653 static void
13654 mips16_ip (char *str, struct mips_cl_insn *insn)
13655 {
13656 char *end, *s, c;
13657 struct mips_opcode *first;
13658 struct mips_operand_token *tokens;
13659
13660 forced_insn_length = 0;
13661
13662 for (s = str; ISLOWER (*s); ++s)
13663 ;
13664 end = s;
13665 c = *end;
13666 switch (c)
13667 {
13668 case '\0':
13669 break;
13670
13671 case ' ':
13672 s++;
13673 break;
13674
13675 case '.':
13676 if (s[1] == 't' && s[2] == ' ')
13677 {
13678 forced_insn_length = 2;
13679 s += 3;
13680 break;
13681 }
13682 else if (s[1] == 'e' && s[2] == ' ')
13683 {
13684 forced_insn_length = 4;
13685 s += 3;
13686 break;
13687 }
13688 /* Fall through. */
13689 default:
13690 set_insn_error (0, _("unrecognized opcode"));
13691 return;
13692 }
13693
13694 if (mips_opts.noautoextend && !forced_insn_length)
13695 forced_insn_length = 2;
13696
13697 *end = 0;
13698 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
13699 *end = c;
13700
13701 if (!first)
13702 {
13703 set_insn_error (0, _("unrecognized opcode"));
13704 return;
13705 }
13706
13707 tokens = mips_parse_arguments (s, 0);
13708 if (!tokens)
13709 return;
13710
13711 if (!match_mips16_insns (insn, first, tokens))
13712 set_insn_error (0, _("invalid operands"));
13713
13714 obstack_free (&mips_operand_tokens, tokens);
13715 }
13716
13717 /* Marshal immediate value VAL for an extended MIPS16 instruction.
13718 NBITS is the number of significant bits in VAL. */
13719
13720 static unsigned long
13721 mips16_immed_extend (offsetT val, unsigned int nbits)
13722 {
13723 int extval;
13724 if (nbits == 16)
13725 {
13726 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13727 val &= 0x1f;
13728 }
13729 else if (nbits == 15)
13730 {
13731 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13732 val &= 0xf;
13733 }
13734 else
13735 {
13736 extval = ((val & 0x1f) << 6) | (val & 0x20);
13737 val = 0;
13738 }
13739 return (extval << 16) | val;
13740 }
13741
13742 /* Like decode_mips16_operand, but require the operand to be defined and
13743 require it to be an integer. */
13744
13745 static const struct mips_int_operand *
13746 mips16_immed_operand (int type, bfd_boolean extended_p)
13747 {
13748 const struct mips_operand *operand;
13749
13750 operand = decode_mips16_operand (type, extended_p);
13751 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13752 abort ();
13753 return (const struct mips_int_operand *) operand;
13754 }
13755
13756 /* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13757
13758 static bfd_boolean
13759 mips16_immed_in_range_p (const struct mips_int_operand *operand,
13760 bfd_reloc_code_real_type reloc, offsetT sval)
13761 {
13762 int min_val, max_val;
13763
13764 min_val = mips_int_operand_min (operand);
13765 max_val = mips_int_operand_max (operand);
13766 if (reloc != BFD_RELOC_UNUSED)
13767 {
13768 if (min_val < 0)
13769 sval = SEXT_16BIT (sval);
13770 else
13771 sval &= 0xffff;
13772 }
13773
13774 return (sval >= min_val
13775 && sval <= max_val
13776 && (sval & ((1 << operand->shift) - 1)) == 0);
13777 }
13778
13779 /* Install immediate value VAL into MIPS16 instruction *INSN,
13780 extending it if necessary. The instruction in *INSN may
13781 already be extended.
13782
13783 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13784 if none. In the former case, VAL is a 16-bit number with no
13785 defined signedness.
13786
13787 TYPE is the type of the immediate field. USER_INSN_LENGTH
13788 is the length that the user requested, or 0 if none. */
13789
13790 static void
13791 mips16_immed (const char *file, unsigned int line, int type,
13792 bfd_reloc_code_real_type reloc, offsetT val,
13793 unsigned int user_insn_length, unsigned long *insn)
13794 {
13795 const struct mips_int_operand *operand;
13796 unsigned int uval, length;
13797
13798 operand = mips16_immed_operand (type, FALSE);
13799 if (!mips16_immed_in_range_p (operand, reloc, val))
13800 {
13801 /* We need an extended instruction. */
13802 if (user_insn_length == 2)
13803 as_bad_where (file, line, _("invalid unextended operand value"));
13804 else
13805 *insn |= MIPS16_EXTEND;
13806 }
13807 else if (user_insn_length == 4)
13808 {
13809 /* The operand doesn't force an unextended instruction to be extended.
13810 Warn if the user wanted an extended instruction anyway. */
13811 *insn |= MIPS16_EXTEND;
13812 as_warn_where (file, line,
13813 _("extended operand requested but not required"));
13814 }
13815
13816 length = mips16_opcode_length (*insn);
13817 if (length == 4)
13818 {
13819 operand = mips16_immed_operand (type, TRUE);
13820 if (!mips16_immed_in_range_p (operand, reloc, val))
13821 as_bad_where (file, line,
13822 _("operand value out of range for instruction"));
13823 }
13824 uval = ((unsigned int) val >> operand->shift) - operand->bias;
13825 if (length == 2)
13826 *insn = mips_insert_operand (&operand->root, *insn, uval);
13827 else
13828 *insn |= mips16_immed_extend (uval, operand->root.size);
13829 }
13830 \f
13831 struct percent_op_match
13832 {
13833 const char *str;
13834 bfd_reloc_code_real_type reloc;
13835 };
13836
13837 static const struct percent_op_match mips_percent_op[] =
13838 {
13839 {"%lo", BFD_RELOC_LO16},
13840 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
13841 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
13842 {"%call16", BFD_RELOC_MIPS_CALL16},
13843 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
13844 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
13845 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
13846 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
13847 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
13848 {"%got", BFD_RELOC_MIPS_GOT16},
13849 {"%gp_rel", BFD_RELOC_GPREL16},
13850 {"%half", BFD_RELOC_16},
13851 {"%highest", BFD_RELOC_MIPS_HIGHEST},
13852 {"%higher", BFD_RELOC_MIPS_HIGHER},
13853 {"%neg", BFD_RELOC_MIPS_SUB},
13854 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
13855 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
13856 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
13857 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
13858 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
13859 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
13860 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
13861 {"%hi", BFD_RELOC_HI16_S},
13862 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
13863 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
13864 };
13865
13866 static const struct percent_op_match mips16_percent_op[] =
13867 {
13868 {"%lo", BFD_RELOC_MIPS16_LO16},
13869 {"%gprel", BFD_RELOC_MIPS16_GPREL},
13870 {"%got", BFD_RELOC_MIPS16_GOT16},
13871 {"%call16", BFD_RELOC_MIPS16_CALL16},
13872 {"%hi", BFD_RELOC_MIPS16_HI16_S},
13873 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
13874 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
13875 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
13876 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
13877 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
13878 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
13879 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
13880 };
13881
13882
13883 /* Return true if *STR points to a relocation operator. When returning true,
13884 move *STR over the operator and store its relocation code in *RELOC.
13885 Leave both *STR and *RELOC alone when returning false. */
13886
13887 static bfd_boolean
13888 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
13889 {
13890 const struct percent_op_match *percent_op;
13891 size_t limit, i;
13892
13893 if (mips_opts.mips16)
13894 {
13895 percent_op = mips16_percent_op;
13896 limit = ARRAY_SIZE (mips16_percent_op);
13897 }
13898 else
13899 {
13900 percent_op = mips_percent_op;
13901 limit = ARRAY_SIZE (mips_percent_op);
13902 }
13903
13904 for (i = 0; i < limit; i++)
13905 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
13906 {
13907 int len = strlen (percent_op[i].str);
13908
13909 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
13910 continue;
13911
13912 *str += strlen (percent_op[i].str);
13913 *reloc = percent_op[i].reloc;
13914
13915 /* Check whether the output BFD supports this relocation.
13916 If not, issue an error and fall back on something safe. */
13917 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
13918 {
13919 as_bad (_("relocation %s isn't supported by the current ABI"),
13920 percent_op[i].str);
13921 *reloc = BFD_RELOC_UNUSED;
13922 }
13923 return TRUE;
13924 }
13925 return FALSE;
13926 }
13927
13928
13929 /* Parse string STR as a 16-bit relocatable operand. Store the
13930 expression in *EP and the relocations in the array starting
13931 at RELOC. Return the number of relocation operators used.
13932
13933 On exit, EXPR_END points to the first character after the expression. */
13934
13935 static size_t
13936 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
13937 char *str)
13938 {
13939 bfd_reloc_code_real_type reversed_reloc[3];
13940 size_t reloc_index, i;
13941 int crux_depth, str_depth;
13942 char *crux;
13943
13944 /* Search for the start of the main expression, recoding relocations
13945 in REVERSED_RELOC. End the loop with CRUX pointing to the start
13946 of the main expression and with CRUX_DEPTH containing the number
13947 of open brackets at that point. */
13948 reloc_index = -1;
13949 str_depth = 0;
13950 do
13951 {
13952 reloc_index++;
13953 crux = str;
13954 crux_depth = str_depth;
13955
13956 /* Skip over whitespace and brackets, keeping count of the number
13957 of brackets. */
13958 while (*str == ' ' || *str == '\t' || *str == '(')
13959 if (*str++ == '(')
13960 str_depth++;
13961 }
13962 while (*str == '%'
13963 && reloc_index < (HAVE_NEWABI ? 3 : 1)
13964 && parse_relocation (&str, &reversed_reloc[reloc_index]));
13965
13966 my_getExpression (ep, crux);
13967 str = expr_end;
13968
13969 /* Match every open bracket. */
13970 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
13971 if (*str++ == ')')
13972 crux_depth--;
13973
13974 if (crux_depth > 0)
13975 as_bad (_("unclosed '('"));
13976
13977 expr_end = str;
13978
13979 if (reloc_index != 0)
13980 {
13981 prev_reloc_op_frag = frag_now;
13982 for (i = 0; i < reloc_index; i++)
13983 reloc[i] = reversed_reloc[reloc_index - 1 - i];
13984 }
13985
13986 return reloc_index;
13987 }
13988
13989 static void
13990 my_getExpression (expressionS *ep, char *str)
13991 {
13992 char *save_in;
13993
13994 save_in = input_line_pointer;
13995 input_line_pointer = str;
13996 expression (ep);
13997 expr_end = input_line_pointer;
13998 input_line_pointer = save_in;
13999 }
14000
14001 char *
14002 md_atof (int type, char *litP, int *sizeP)
14003 {
14004 return ieee_md_atof (type, litP, sizeP, target_big_endian);
14005 }
14006
14007 void
14008 md_number_to_chars (char *buf, valueT val, int n)
14009 {
14010 if (target_big_endian)
14011 number_to_chars_bigendian (buf, val, n);
14012 else
14013 number_to_chars_littleendian (buf, val, n);
14014 }
14015 \f
14016 static int support_64bit_objects(void)
14017 {
14018 const char **list, **l;
14019 int yes;
14020
14021 list = bfd_target_list ();
14022 for (l = list; *l != NULL; l++)
14023 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14024 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14025 break;
14026 yes = (*l != NULL);
14027 free (list);
14028 return yes;
14029 }
14030
14031 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14032 NEW_VALUE. Warn if another value was already specified. Note:
14033 we have to defer parsing the -march and -mtune arguments in order
14034 to handle 'from-abi' correctly, since the ABI might be specified
14035 in a later argument. */
14036
14037 static void
14038 mips_set_option_string (const char **string_ptr, const char *new_value)
14039 {
14040 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14041 as_warn (_("a different %s was already specified, is now %s"),
14042 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14043 new_value);
14044
14045 *string_ptr = new_value;
14046 }
14047
14048 int
14049 md_parse_option (int c, char *arg)
14050 {
14051 unsigned int i;
14052
14053 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14054 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14055 {
14056 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
14057 c == mips_ases[i].option_on);
14058 return 1;
14059 }
14060
14061 switch (c)
14062 {
14063 case OPTION_CONSTRUCT_FLOATS:
14064 mips_disable_float_construction = 0;
14065 break;
14066
14067 case OPTION_NO_CONSTRUCT_FLOATS:
14068 mips_disable_float_construction = 1;
14069 break;
14070
14071 case OPTION_TRAP:
14072 mips_trap = 1;
14073 break;
14074
14075 case OPTION_BREAK:
14076 mips_trap = 0;
14077 break;
14078
14079 case OPTION_EB:
14080 target_big_endian = 1;
14081 break;
14082
14083 case OPTION_EL:
14084 target_big_endian = 0;
14085 break;
14086
14087 case 'O':
14088 if (arg == NULL)
14089 mips_optimize = 1;
14090 else if (arg[0] == '0')
14091 mips_optimize = 0;
14092 else if (arg[0] == '1')
14093 mips_optimize = 1;
14094 else
14095 mips_optimize = 2;
14096 break;
14097
14098 case 'g':
14099 if (arg == NULL)
14100 mips_debug = 2;
14101 else
14102 mips_debug = atoi (arg);
14103 break;
14104
14105 case OPTION_MIPS1:
14106 file_mips_opts.isa = ISA_MIPS1;
14107 break;
14108
14109 case OPTION_MIPS2:
14110 file_mips_opts.isa = ISA_MIPS2;
14111 break;
14112
14113 case OPTION_MIPS3:
14114 file_mips_opts.isa = ISA_MIPS3;
14115 break;
14116
14117 case OPTION_MIPS4:
14118 file_mips_opts.isa = ISA_MIPS4;
14119 break;
14120
14121 case OPTION_MIPS5:
14122 file_mips_opts.isa = ISA_MIPS5;
14123 break;
14124
14125 case OPTION_MIPS32:
14126 file_mips_opts.isa = ISA_MIPS32;
14127 break;
14128
14129 case OPTION_MIPS32R2:
14130 file_mips_opts.isa = ISA_MIPS32R2;
14131 break;
14132
14133 case OPTION_MIPS32R3:
14134 file_mips_opts.isa = ISA_MIPS32R3;
14135 break;
14136
14137 case OPTION_MIPS32R5:
14138 file_mips_opts.isa = ISA_MIPS32R5;
14139 break;
14140
14141 case OPTION_MIPS32R6:
14142 file_mips_opts.isa = ISA_MIPS32R6;
14143 break;
14144
14145 case OPTION_MIPS64R2:
14146 file_mips_opts.isa = ISA_MIPS64R2;
14147 break;
14148
14149 case OPTION_MIPS64R3:
14150 file_mips_opts.isa = ISA_MIPS64R3;
14151 break;
14152
14153 case OPTION_MIPS64R5:
14154 file_mips_opts.isa = ISA_MIPS64R5;
14155 break;
14156
14157 case OPTION_MIPS64R6:
14158 file_mips_opts.isa = ISA_MIPS64R6;
14159 break;
14160
14161 case OPTION_MIPS64:
14162 file_mips_opts.isa = ISA_MIPS64;
14163 break;
14164
14165 case OPTION_MTUNE:
14166 mips_set_option_string (&mips_tune_string, arg);
14167 break;
14168
14169 case OPTION_MARCH:
14170 mips_set_option_string (&mips_arch_string, arg);
14171 break;
14172
14173 case OPTION_M4650:
14174 mips_set_option_string (&mips_arch_string, "4650");
14175 mips_set_option_string (&mips_tune_string, "4650");
14176 break;
14177
14178 case OPTION_NO_M4650:
14179 break;
14180
14181 case OPTION_M4010:
14182 mips_set_option_string (&mips_arch_string, "4010");
14183 mips_set_option_string (&mips_tune_string, "4010");
14184 break;
14185
14186 case OPTION_NO_M4010:
14187 break;
14188
14189 case OPTION_M4100:
14190 mips_set_option_string (&mips_arch_string, "4100");
14191 mips_set_option_string (&mips_tune_string, "4100");
14192 break;
14193
14194 case OPTION_NO_M4100:
14195 break;
14196
14197 case OPTION_M3900:
14198 mips_set_option_string (&mips_arch_string, "3900");
14199 mips_set_option_string (&mips_tune_string, "3900");
14200 break;
14201
14202 case OPTION_NO_M3900:
14203 break;
14204
14205 case OPTION_MICROMIPS:
14206 if (file_mips_opts.mips16 == 1)
14207 {
14208 as_bad (_("-mmicromips cannot be used with -mips16"));
14209 return 0;
14210 }
14211 file_mips_opts.micromips = 1;
14212 mips_no_prev_insn ();
14213 break;
14214
14215 case OPTION_NO_MICROMIPS:
14216 file_mips_opts.micromips = 0;
14217 mips_no_prev_insn ();
14218 break;
14219
14220 case OPTION_MIPS16:
14221 if (file_mips_opts.micromips == 1)
14222 {
14223 as_bad (_("-mips16 cannot be used with -micromips"));
14224 return 0;
14225 }
14226 file_mips_opts.mips16 = 1;
14227 mips_no_prev_insn ();
14228 break;
14229
14230 case OPTION_NO_MIPS16:
14231 file_mips_opts.mips16 = 0;
14232 mips_no_prev_insn ();
14233 break;
14234
14235 case OPTION_FIX_24K:
14236 mips_fix_24k = 1;
14237 break;
14238
14239 case OPTION_NO_FIX_24K:
14240 mips_fix_24k = 0;
14241 break;
14242
14243 case OPTION_FIX_RM7000:
14244 mips_fix_rm7000 = 1;
14245 break;
14246
14247 case OPTION_NO_FIX_RM7000:
14248 mips_fix_rm7000 = 0;
14249 break;
14250
14251 case OPTION_FIX_LOONGSON2F_JUMP:
14252 mips_fix_loongson2f_jump = TRUE;
14253 break;
14254
14255 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14256 mips_fix_loongson2f_jump = FALSE;
14257 break;
14258
14259 case OPTION_FIX_LOONGSON2F_NOP:
14260 mips_fix_loongson2f_nop = TRUE;
14261 break;
14262
14263 case OPTION_NO_FIX_LOONGSON2F_NOP:
14264 mips_fix_loongson2f_nop = FALSE;
14265 break;
14266
14267 case OPTION_FIX_VR4120:
14268 mips_fix_vr4120 = 1;
14269 break;
14270
14271 case OPTION_NO_FIX_VR4120:
14272 mips_fix_vr4120 = 0;
14273 break;
14274
14275 case OPTION_FIX_VR4130:
14276 mips_fix_vr4130 = 1;
14277 break;
14278
14279 case OPTION_NO_FIX_VR4130:
14280 mips_fix_vr4130 = 0;
14281 break;
14282
14283 case OPTION_FIX_CN63XXP1:
14284 mips_fix_cn63xxp1 = TRUE;
14285 break;
14286
14287 case OPTION_NO_FIX_CN63XXP1:
14288 mips_fix_cn63xxp1 = FALSE;
14289 break;
14290
14291 case OPTION_RELAX_BRANCH:
14292 mips_relax_branch = 1;
14293 break;
14294
14295 case OPTION_NO_RELAX_BRANCH:
14296 mips_relax_branch = 0;
14297 break;
14298
14299 case OPTION_INSN32:
14300 file_mips_opts.insn32 = TRUE;
14301 break;
14302
14303 case OPTION_NO_INSN32:
14304 file_mips_opts.insn32 = FALSE;
14305 break;
14306
14307 case OPTION_MSHARED:
14308 mips_in_shared = TRUE;
14309 break;
14310
14311 case OPTION_MNO_SHARED:
14312 mips_in_shared = FALSE;
14313 break;
14314
14315 case OPTION_MSYM32:
14316 file_mips_opts.sym32 = TRUE;
14317 break;
14318
14319 case OPTION_MNO_SYM32:
14320 file_mips_opts.sym32 = FALSE;
14321 break;
14322
14323 /* When generating ELF code, we permit -KPIC and -call_shared to
14324 select SVR4_PIC, and -non_shared to select no PIC. This is
14325 intended to be compatible with Irix 5. */
14326 case OPTION_CALL_SHARED:
14327 mips_pic = SVR4_PIC;
14328 mips_abicalls = TRUE;
14329 break;
14330
14331 case OPTION_CALL_NONPIC:
14332 mips_pic = NO_PIC;
14333 mips_abicalls = TRUE;
14334 break;
14335
14336 case OPTION_NON_SHARED:
14337 mips_pic = NO_PIC;
14338 mips_abicalls = FALSE;
14339 break;
14340
14341 /* The -xgot option tells the assembler to use 32 bit offsets
14342 when accessing the got in SVR4_PIC mode. It is for Irix
14343 compatibility. */
14344 case OPTION_XGOT:
14345 mips_big_got = 1;
14346 break;
14347
14348 case 'G':
14349 g_switch_value = atoi (arg);
14350 g_switch_seen = 1;
14351 break;
14352
14353 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14354 and -mabi=64. */
14355 case OPTION_32:
14356 mips_abi = O32_ABI;
14357 break;
14358
14359 case OPTION_N32:
14360 mips_abi = N32_ABI;
14361 break;
14362
14363 case OPTION_64:
14364 mips_abi = N64_ABI;
14365 if (!support_64bit_objects())
14366 as_fatal (_("no compiled in support for 64 bit object file format"));
14367 break;
14368
14369 case OPTION_GP32:
14370 file_mips_opts.gp = 32;
14371 break;
14372
14373 case OPTION_GP64:
14374 file_mips_opts.gp = 64;
14375 break;
14376
14377 case OPTION_FP32:
14378 file_mips_opts.fp = 32;
14379 break;
14380
14381 case OPTION_FPXX:
14382 file_mips_opts.fp = 0;
14383 break;
14384
14385 case OPTION_FP64:
14386 file_mips_opts.fp = 64;
14387 break;
14388
14389 case OPTION_ODD_SPREG:
14390 file_mips_opts.oddspreg = 1;
14391 break;
14392
14393 case OPTION_NO_ODD_SPREG:
14394 file_mips_opts.oddspreg = 0;
14395 break;
14396
14397 case OPTION_SINGLE_FLOAT:
14398 file_mips_opts.single_float = 1;
14399 break;
14400
14401 case OPTION_DOUBLE_FLOAT:
14402 file_mips_opts.single_float = 0;
14403 break;
14404
14405 case OPTION_SOFT_FLOAT:
14406 file_mips_opts.soft_float = 1;
14407 break;
14408
14409 case OPTION_HARD_FLOAT:
14410 file_mips_opts.soft_float = 0;
14411 break;
14412
14413 case OPTION_MABI:
14414 if (strcmp (arg, "32") == 0)
14415 mips_abi = O32_ABI;
14416 else if (strcmp (arg, "o64") == 0)
14417 mips_abi = O64_ABI;
14418 else if (strcmp (arg, "n32") == 0)
14419 mips_abi = N32_ABI;
14420 else if (strcmp (arg, "64") == 0)
14421 {
14422 mips_abi = N64_ABI;
14423 if (! support_64bit_objects())
14424 as_fatal (_("no compiled in support for 64 bit object file "
14425 "format"));
14426 }
14427 else if (strcmp (arg, "eabi") == 0)
14428 mips_abi = EABI_ABI;
14429 else
14430 {
14431 as_fatal (_("invalid abi -mabi=%s"), arg);
14432 return 0;
14433 }
14434 break;
14435
14436 case OPTION_M7000_HILO_FIX:
14437 mips_7000_hilo_fix = TRUE;
14438 break;
14439
14440 case OPTION_MNO_7000_HILO_FIX:
14441 mips_7000_hilo_fix = FALSE;
14442 break;
14443
14444 case OPTION_MDEBUG:
14445 mips_flag_mdebug = TRUE;
14446 break;
14447
14448 case OPTION_NO_MDEBUG:
14449 mips_flag_mdebug = FALSE;
14450 break;
14451
14452 case OPTION_PDR:
14453 mips_flag_pdr = TRUE;
14454 break;
14455
14456 case OPTION_NO_PDR:
14457 mips_flag_pdr = FALSE;
14458 break;
14459
14460 case OPTION_MVXWORKS_PIC:
14461 mips_pic = VXWORKS_PIC;
14462 break;
14463
14464 case OPTION_NAN:
14465 if (strcmp (arg, "2008") == 0)
14466 mips_nan2008 = 1;
14467 else if (strcmp (arg, "legacy") == 0)
14468 mips_nan2008 = 0;
14469 else
14470 {
14471 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
14472 return 0;
14473 }
14474 break;
14475
14476 default:
14477 return 0;
14478 }
14479
14480 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14481
14482 return 1;
14483 }
14484 \f
14485 /* Set up globals to tune for the ISA or processor described by INFO. */
14486
14487 static void
14488 mips_set_tune (const struct mips_cpu_info *info)
14489 {
14490 if (info != 0)
14491 mips_tune = info->cpu;
14492 }
14493
14494
14495 void
14496 mips_after_parse_args (void)
14497 {
14498 const struct mips_cpu_info *arch_info = 0;
14499 const struct mips_cpu_info *tune_info = 0;
14500
14501 /* GP relative stuff not working for PE */
14502 if (strncmp (TARGET_OS, "pe", 2) == 0)
14503 {
14504 if (g_switch_seen && g_switch_value != 0)
14505 as_bad (_("-G not supported in this configuration"));
14506 g_switch_value = 0;
14507 }
14508
14509 if (mips_abi == NO_ABI)
14510 mips_abi = MIPS_DEFAULT_ABI;
14511
14512 /* The following code determines the architecture.
14513 Similar code was added to GCC 3.3 (see override_options() in
14514 config/mips/mips.c). The GAS and GCC code should be kept in sync
14515 as much as possible. */
14516
14517 if (mips_arch_string != 0)
14518 arch_info = mips_parse_cpu ("-march", mips_arch_string);
14519
14520 if (file_mips_opts.isa != ISA_UNKNOWN)
14521 {
14522 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
14523 ISA level specified by -mipsN, while arch_info->isa contains
14524 the -march selection (if any). */
14525 if (arch_info != 0)
14526 {
14527 /* -march takes precedence over -mipsN, since it is more descriptive.
14528 There's no harm in specifying both as long as the ISA levels
14529 are the same. */
14530 if (file_mips_opts.isa != arch_info->isa)
14531 as_bad (_("-%s conflicts with the other architecture options,"
14532 " which imply -%s"),
14533 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
14534 mips_cpu_info_from_isa (arch_info->isa)->name);
14535 }
14536 else
14537 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
14538 }
14539
14540 if (arch_info == 0)
14541 {
14542 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14543 gas_assert (arch_info);
14544 }
14545
14546 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
14547 as_bad (_("-march=%s is not compatible with the selected ABI"),
14548 arch_info->name);
14549
14550 file_mips_opts.arch = arch_info->cpu;
14551 file_mips_opts.isa = arch_info->isa;
14552
14553 /* Set up initial mips_opts state. */
14554 mips_opts = file_mips_opts;
14555
14556 /* The register size inference code is now placed in
14557 file_mips_check_options. */
14558
14559 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14560 processor. */
14561 if (mips_tune_string != 0)
14562 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
14563
14564 if (tune_info == 0)
14565 mips_set_tune (arch_info);
14566 else
14567 mips_set_tune (tune_info);
14568
14569 if (mips_flag_mdebug < 0)
14570 mips_flag_mdebug = 0;
14571 }
14572 \f
14573 void
14574 mips_init_after_args (void)
14575 {
14576 /* initialize opcodes */
14577 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
14578 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
14579 }
14580
14581 long
14582 md_pcrel_from (fixS *fixP)
14583 {
14584 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14585 switch (fixP->fx_r_type)
14586 {
14587 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14588 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14589 /* Return the address of the delay slot. */
14590 return addr + 2;
14591
14592 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14593 case BFD_RELOC_MICROMIPS_JMP:
14594 case BFD_RELOC_16_PCREL_S2:
14595 case BFD_RELOC_MIPS_21_PCREL_S2:
14596 case BFD_RELOC_MIPS_26_PCREL_S2:
14597 case BFD_RELOC_MIPS_JMP:
14598 /* Return the address of the delay slot. */
14599 return addr + 4;
14600
14601 default:
14602 return addr;
14603 }
14604 }
14605
14606 /* This is called before the symbol table is processed. In order to
14607 work with gcc when using mips-tfile, we must keep all local labels.
14608 However, in other cases, we want to discard them. If we were
14609 called with -g, but we didn't see any debugging information, it may
14610 mean that gcc is smuggling debugging information through to
14611 mips-tfile, in which case we must generate all local labels. */
14612
14613 void
14614 mips_frob_file_before_adjust (void)
14615 {
14616 #ifndef NO_ECOFF_DEBUGGING
14617 if (ECOFF_DEBUGGING
14618 && mips_debug != 0
14619 && ! ecoff_debugging_seen)
14620 flag_keep_locals = 1;
14621 #endif
14622 }
14623
14624 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
14625 the corresponding LO16 reloc. This is called before md_apply_fix and
14626 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14627 relocation operators.
14628
14629 For our purposes, a %lo() expression matches a %got() or %hi()
14630 expression if:
14631
14632 (a) it refers to the same symbol; and
14633 (b) the offset applied in the %lo() expression is no lower than
14634 the offset applied in the %got() or %hi().
14635
14636 (b) allows us to cope with code like:
14637
14638 lui $4,%hi(foo)
14639 lh $4,%lo(foo+2)($4)
14640
14641 ...which is legal on RELA targets, and has a well-defined behaviour
14642 if the user knows that adding 2 to "foo" will not induce a carry to
14643 the high 16 bits.
14644
14645 When several %lo()s match a particular %got() or %hi(), we use the
14646 following rules to distinguish them:
14647
14648 (1) %lo()s with smaller offsets are a better match than %lo()s with
14649 higher offsets.
14650
14651 (2) %lo()s with no matching %got() or %hi() are better than those
14652 that already have a matching %got() or %hi().
14653
14654 (3) later %lo()s are better than earlier %lo()s.
14655
14656 These rules are applied in order.
14657
14658 (1) means, among other things, that %lo()s with identical offsets are
14659 chosen if they exist.
14660
14661 (2) means that we won't associate several high-part relocations with
14662 the same low-part relocation unless there's no alternative. Having
14663 several high parts for the same low part is a GNU extension; this rule
14664 allows careful users to avoid it.
14665
14666 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14667 with the last high-part relocation being at the front of the list.
14668 It therefore makes sense to choose the last matching low-part
14669 relocation, all other things being equal. It's also easier
14670 to code that way. */
14671
14672 void
14673 mips_frob_file (void)
14674 {
14675 struct mips_hi_fixup *l;
14676 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
14677
14678 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14679 {
14680 segment_info_type *seginfo;
14681 bfd_boolean matched_lo_p;
14682 fixS **hi_pos, **lo_pos, **pos;
14683
14684 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
14685
14686 /* If a GOT16 relocation turns out to be against a global symbol,
14687 there isn't supposed to be a matching LO. Ignore %gots against
14688 constants; we'll report an error for those later. */
14689 if (got16_reloc_p (l->fixp->fx_r_type)
14690 && !(l->fixp->fx_addsy
14691 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
14692 continue;
14693
14694 /* Check quickly whether the next fixup happens to be a matching %lo. */
14695 if (fixup_has_matching_lo_p (l->fixp))
14696 continue;
14697
14698 seginfo = seg_info (l->seg);
14699
14700 /* Set HI_POS to the position of this relocation in the chain.
14701 Set LO_POS to the position of the chosen low-part relocation.
14702 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14703 relocation that matches an immediately-preceding high-part
14704 relocation. */
14705 hi_pos = NULL;
14706 lo_pos = NULL;
14707 matched_lo_p = FALSE;
14708 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
14709
14710 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14711 {
14712 if (*pos == l->fixp)
14713 hi_pos = pos;
14714
14715 if ((*pos)->fx_r_type == looking_for_rtype
14716 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
14717 && (*pos)->fx_offset >= l->fixp->fx_offset
14718 && (lo_pos == NULL
14719 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14720 || (!matched_lo_p
14721 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14722 lo_pos = pos;
14723
14724 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14725 && fixup_has_matching_lo_p (*pos));
14726 }
14727
14728 /* If we found a match, remove the high-part relocation from its
14729 current position and insert it before the low-part relocation.
14730 Make the offsets match so that fixup_has_matching_lo_p()
14731 will return true.
14732
14733 We don't warn about unmatched high-part relocations since some
14734 versions of gcc have been known to emit dead "lui ...%hi(...)"
14735 instructions. */
14736 if (lo_pos != NULL)
14737 {
14738 l->fixp->fx_offset = (*lo_pos)->fx_offset;
14739 if (l->fixp->fx_next != *lo_pos)
14740 {
14741 *hi_pos = l->fixp->fx_next;
14742 l->fixp->fx_next = *lo_pos;
14743 *lo_pos = l->fixp;
14744 }
14745 }
14746 }
14747 }
14748
14749 int
14750 mips_force_relocation (fixS *fixp)
14751 {
14752 if (generic_force_reloc (fixp))
14753 return 1;
14754
14755 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14756 so that the linker relaxation can update targets. */
14757 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14758 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14759 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
14760 return 1;
14761
14762 /* We want all PC-relative relocations to be kept for R6 relaxation. */
14763 if (ISA_IS_R6 (mips_opts.isa)
14764 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14765 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14766 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
14767 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
14768 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
14769 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
14770 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
14771 return 1;
14772
14773 return 0;
14774 }
14775
14776 /* Read the instruction associated with RELOC from BUF. */
14777
14778 static unsigned int
14779 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
14780 {
14781 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14782 return read_compressed_insn (buf, 4);
14783 else
14784 return read_insn (buf);
14785 }
14786
14787 /* Write instruction INSN to BUF, given that it has been relocated
14788 by RELOC. */
14789
14790 static void
14791 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
14792 unsigned long insn)
14793 {
14794 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14795 write_compressed_insn (buf, insn, 4);
14796 else
14797 write_insn (buf, insn);
14798 }
14799
14800 /* Apply a fixup to the object file. */
14801
14802 void
14803 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
14804 {
14805 char *buf;
14806 unsigned long insn;
14807 reloc_howto_type *howto;
14808
14809 if (fixP->fx_pcrel)
14810 switch (fixP->fx_r_type)
14811 {
14812 case BFD_RELOC_16_PCREL_S2:
14813 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14814 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14815 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14816 case BFD_RELOC_32_PCREL:
14817 case BFD_RELOC_MIPS_21_PCREL_S2:
14818 case BFD_RELOC_MIPS_26_PCREL_S2:
14819 case BFD_RELOC_MIPS_18_PCREL_S3:
14820 case BFD_RELOC_MIPS_19_PCREL_S2:
14821 case BFD_RELOC_HI16_S_PCREL:
14822 case BFD_RELOC_LO16_PCREL:
14823 break;
14824
14825 case BFD_RELOC_32:
14826 fixP->fx_r_type = BFD_RELOC_32_PCREL;
14827 break;
14828
14829 default:
14830 as_bad_where (fixP->fx_file, fixP->fx_line,
14831 _("PC-relative reference to a different section"));
14832 break;
14833 }
14834
14835 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
14836 that have no MIPS ELF equivalent. */
14837 if (fixP->fx_r_type != BFD_RELOC_8)
14838 {
14839 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
14840 if (!howto)
14841 return;
14842 }
14843
14844 gas_assert (fixP->fx_size == 2
14845 || fixP->fx_size == 4
14846 || fixP->fx_r_type == BFD_RELOC_8
14847 || fixP->fx_r_type == BFD_RELOC_16
14848 || fixP->fx_r_type == BFD_RELOC_64
14849 || fixP->fx_r_type == BFD_RELOC_CTOR
14850 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
14851 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
14852 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14853 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
14854 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
14855 || fixP->fx_r_type == BFD_RELOC_NONE);
14856
14857 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
14858
14859 /* Don't treat parts of a composite relocation as done. There are two
14860 reasons for this:
14861
14862 (1) The second and third parts will be against 0 (RSS_UNDEF) but
14863 should nevertheless be emitted if the first part is.
14864
14865 (2) In normal usage, composite relocations are never assembly-time
14866 constants. The easiest way of dealing with the pathological
14867 exceptions is to generate a relocation against STN_UNDEF and
14868 leave everything up to the linker. */
14869 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
14870 fixP->fx_done = 1;
14871
14872 switch (fixP->fx_r_type)
14873 {
14874 case BFD_RELOC_MIPS_TLS_GD:
14875 case BFD_RELOC_MIPS_TLS_LDM:
14876 case BFD_RELOC_MIPS_TLS_DTPREL32:
14877 case BFD_RELOC_MIPS_TLS_DTPREL64:
14878 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
14879 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
14880 case BFD_RELOC_MIPS_TLS_GOTTPREL:
14881 case BFD_RELOC_MIPS_TLS_TPREL32:
14882 case BFD_RELOC_MIPS_TLS_TPREL64:
14883 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
14884 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
14885 case BFD_RELOC_MICROMIPS_TLS_GD:
14886 case BFD_RELOC_MICROMIPS_TLS_LDM:
14887 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
14888 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
14889 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
14890 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
14891 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
14892 case BFD_RELOC_MIPS16_TLS_GD:
14893 case BFD_RELOC_MIPS16_TLS_LDM:
14894 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
14895 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
14896 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
14897 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
14898 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
14899 if (!fixP->fx_addsy)
14900 {
14901 as_bad_where (fixP->fx_file, fixP->fx_line,
14902 _("TLS relocation against a constant"));
14903 break;
14904 }
14905 S_SET_THREAD_LOCAL (fixP->fx_addsy);
14906 /* fall through */
14907
14908 case BFD_RELOC_MIPS_JMP:
14909 case BFD_RELOC_MIPS_SHIFT5:
14910 case BFD_RELOC_MIPS_SHIFT6:
14911 case BFD_RELOC_MIPS_GOT_DISP:
14912 case BFD_RELOC_MIPS_GOT_PAGE:
14913 case BFD_RELOC_MIPS_GOT_OFST:
14914 case BFD_RELOC_MIPS_SUB:
14915 case BFD_RELOC_MIPS_INSERT_A:
14916 case BFD_RELOC_MIPS_INSERT_B:
14917 case BFD_RELOC_MIPS_DELETE:
14918 case BFD_RELOC_MIPS_HIGHEST:
14919 case BFD_RELOC_MIPS_HIGHER:
14920 case BFD_RELOC_MIPS_SCN_DISP:
14921 case BFD_RELOC_MIPS_REL16:
14922 case BFD_RELOC_MIPS_RELGOT:
14923 case BFD_RELOC_MIPS_JALR:
14924 case BFD_RELOC_HI16:
14925 case BFD_RELOC_HI16_S:
14926 case BFD_RELOC_LO16:
14927 case BFD_RELOC_GPREL16:
14928 case BFD_RELOC_MIPS_LITERAL:
14929 case BFD_RELOC_MIPS_CALL16:
14930 case BFD_RELOC_MIPS_GOT16:
14931 case BFD_RELOC_GPREL32:
14932 case BFD_RELOC_MIPS_GOT_HI16:
14933 case BFD_RELOC_MIPS_GOT_LO16:
14934 case BFD_RELOC_MIPS_CALL_HI16:
14935 case BFD_RELOC_MIPS_CALL_LO16:
14936 case BFD_RELOC_MIPS16_GPREL:
14937 case BFD_RELOC_MIPS16_GOT16:
14938 case BFD_RELOC_MIPS16_CALL16:
14939 case BFD_RELOC_MIPS16_HI16:
14940 case BFD_RELOC_MIPS16_HI16_S:
14941 case BFD_RELOC_MIPS16_LO16:
14942 case BFD_RELOC_MIPS16_JMP:
14943 case BFD_RELOC_MICROMIPS_JMP:
14944 case BFD_RELOC_MICROMIPS_GOT_DISP:
14945 case BFD_RELOC_MICROMIPS_GOT_PAGE:
14946 case BFD_RELOC_MICROMIPS_GOT_OFST:
14947 case BFD_RELOC_MICROMIPS_SUB:
14948 case BFD_RELOC_MICROMIPS_HIGHEST:
14949 case BFD_RELOC_MICROMIPS_HIGHER:
14950 case BFD_RELOC_MICROMIPS_SCN_DISP:
14951 case BFD_RELOC_MICROMIPS_JALR:
14952 case BFD_RELOC_MICROMIPS_HI16:
14953 case BFD_RELOC_MICROMIPS_HI16_S:
14954 case BFD_RELOC_MICROMIPS_LO16:
14955 case BFD_RELOC_MICROMIPS_GPREL16:
14956 case BFD_RELOC_MICROMIPS_LITERAL:
14957 case BFD_RELOC_MICROMIPS_CALL16:
14958 case BFD_RELOC_MICROMIPS_GOT16:
14959 case BFD_RELOC_MICROMIPS_GOT_HI16:
14960 case BFD_RELOC_MICROMIPS_GOT_LO16:
14961 case BFD_RELOC_MICROMIPS_CALL_HI16:
14962 case BFD_RELOC_MICROMIPS_CALL_LO16:
14963 case BFD_RELOC_MIPS_EH:
14964 if (fixP->fx_done)
14965 {
14966 offsetT value;
14967
14968 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
14969 {
14970 insn = read_reloc_insn (buf, fixP->fx_r_type);
14971 if (mips16_reloc_p (fixP->fx_r_type))
14972 insn |= mips16_immed_extend (value, 16);
14973 else
14974 insn |= (value & 0xffff);
14975 write_reloc_insn (buf, fixP->fx_r_type, insn);
14976 }
14977 else
14978 as_bad_where (fixP->fx_file, fixP->fx_line,
14979 _("unsupported constant in relocation"));
14980 }
14981 break;
14982
14983 case BFD_RELOC_64:
14984 /* This is handled like BFD_RELOC_32, but we output a sign
14985 extended value if we are only 32 bits. */
14986 if (fixP->fx_done)
14987 {
14988 if (8 <= sizeof (valueT))
14989 md_number_to_chars (buf, *valP, 8);
14990 else
14991 {
14992 valueT hiv;
14993
14994 if ((*valP & 0x80000000) != 0)
14995 hiv = 0xffffffff;
14996 else
14997 hiv = 0;
14998 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
14999 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
15000 }
15001 }
15002 break;
15003
15004 case BFD_RELOC_RVA:
15005 case BFD_RELOC_32:
15006 case BFD_RELOC_32_PCREL:
15007 case BFD_RELOC_16:
15008 case BFD_RELOC_8:
15009 /* If we are deleting this reloc entry, we must fill in the
15010 value now. This can happen if we have a .word which is not
15011 resolved when it appears but is later defined. */
15012 if (fixP->fx_done)
15013 md_number_to_chars (buf, *valP, fixP->fx_size);
15014 break;
15015
15016 case BFD_RELOC_MIPS_21_PCREL_S2:
15017 case BFD_RELOC_MIPS_26_PCREL_S2:
15018 if ((*valP & 0x3) != 0)
15019 as_bad_where (fixP->fx_file, fixP->fx_line,
15020 _("branch to misaligned address (%lx)"), (long) *valP);
15021
15022 gas_assert (!fixP->fx_done);
15023 break;
15024
15025 case BFD_RELOC_MIPS_18_PCREL_S3:
15026 if ((S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
15027 as_bad_where (fixP->fx_file, fixP->fx_line,
15028 _("PC-relative access using misaligned symbol (%lx)"),
15029 (long) S_GET_VALUE (fixP->fx_addsy));
15030 if ((fixP->fx_offset & 0x7) != 0)
15031 as_bad_where (fixP->fx_file, fixP->fx_line,
15032 _("PC-relative access using misaligned offset (%lx)"),
15033 (long) fixP->fx_offset);
15034
15035 gas_assert (!fixP->fx_done);
15036 break;
15037
15038 case BFD_RELOC_MIPS_19_PCREL_S2:
15039 if ((*valP & 0x3) != 0)
15040 as_bad_where (fixP->fx_file, fixP->fx_line,
15041 _("PC-relative access to misaligned address (%lx)"),
15042 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15043
15044 gas_assert (!fixP->fx_done);
15045 break;
15046
15047 case BFD_RELOC_HI16_S_PCREL:
15048 case BFD_RELOC_LO16_PCREL:
15049 gas_assert (!fixP->fx_done);
15050 break;
15051
15052 case BFD_RELOC_16_PCREL_S2:
15053 if ((*valP & 0x3) != 0)
15054 as_bad_where (fixP->fx_file, fixP->fx_line,
15055 _("branch to misaligned address (%lx)"), (long) *valP);
15056
15057 /* We need to save the bits in the instruction since fixup_segment()
15058 might be deleting the relocation entry (i.e., a branch within
15059 the current segment). */
15060 if (! fixP->fx_done)
15061 break;
15062
15063 /* Update old instruction data. */
15064 insn = read_insn (buf);
15065
15066 if (*valP + 0x20000 <= 0x3ffff)
15067 {
15068 insn |= (*valP >> 2) & 0xffff;
15069 write_insn (buf, insn);
15070 }
15071 else if (mips_pic == NO_PIC
15072 && fixP->fx_done
15073 && fixP->fx_frag->fr_address >= text_section->vma
15074 && (fixP->fx_frag->fr_address
15075 < text_section->vma + bfd_get_section_size (text_section))
15076 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15077 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15078 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
15079 {
15080 /* The branch offset is too large. If this is an
15081 unconditional branch, and we are not generating PIC code,
15082 we can convert it to an absolute jump instruction. */
15083 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15084 insn = 0x0c000000; /* jal */
15085 else
15086 insn = 0x08000000; /* j */
15087 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15088 fixP->fx_done = 0;
15089 fixP->fx_addsy = section_symbol (text_section);
15090 *valP += md_pcrel_from (fixP);
15091 write_insn (buf, insn);
15092 }
15093 else
15094 {
15095 /* If we got here, we have branch-relaxation disabled,
15096 and there's nothing we can do to fix this instruction
15097 without turning it into a longer sequence. */
15098 as_bad_where (fixP->fx_file, fixP->fx_line,
15099 _("branch out of range"));
15100 }
15101 break;
15102
15103 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15104 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15105 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15106 /* We adjust the offset back to even. */
15107 if ((*valP & 0x1) != 0)
15108 --(*valP);
15109
15110 if (! fixP->fx_done)
15111 break;
15112
15113 /* Should never visit here, because we keep the relocation. */
15114 abort ();
15115 break;
15116
15117 case BFD_RELOC_VTABLE_INHERIT:
15118 fixP->fx_done = 0;
15119 if (fixP->fx_addsy
15120 && !S_IS_DEFINED (fixP->fx_addsy)
15121 && !S_IS_WEAK (fixP->fx_addsy))
15122 S_SET_WEAK (fixP->fx_addsy);
15123 break;
15124
15125 case BFD_RELOC_NONE:
15126 case BFD_RELOC_VTABLE_ENTRY:
15127 fixP->fx_done = 0;
15128 break;
15129
15130 default:
15131 abort ();
15132 }
15133
15134 /* Remember value for tc_gen_reloc. */
15135 fixP->fx_addnumber = *valP;
15136 }
15137
15138 static symbolS *
15139 get_symbol (void)
15140 {
15141 int c;
15142 char *name;
15143 symbolS *p;
15144
15145 c = get_symbol_name (&name);
15146 p = (symbolS *) symbol_find_or_make (name);
15147 (void) restore_line_pointer (c);
15148 return p;
15149 }
15150
15151 /* Align the current frag to a given power of two. If a particular
15152 fill byte should be used, FILL points to an integer that contains
15153 that byte, otherwise FILL is null.
15154
15155 This function used to have the comment:
15156
15157 The MIPS assembler also automatically adjusts any preceding label.
15158
15159 The implementation therefore applied the adjustment to a maximum of
15160 one label. However, other label adjustments are applied to batches
15161 of labels, and adjusting just one caused problems when new labels
15162 were added for the sake of debugging or unwind information.
15163 We therefore adjust all preceding labels (given as LABELS) instead. */
15164
15165 static void
15166 mips_align (int to, int *fill, struct insn_label_list *labels)
15167 {
15168 mips_emit_delays ();
15169 mips_record_compressed_mode ();
15170 if (fill == NULL && subseg_text_p (now_seg))
15171 frag_align_code (to, 0);
15172 else
15173 frag_align (to, fill ? *fill : 0, 0);
15174 record_alignment (now_seg, to);
15175 mips_move_labels (labels, FALSE);
15176 }
15177
15178 /* Align to a given power of two. .align 0 turns off the automatic
15179 alignment used by the data creating pseudo-ops. */
15180
15181 static void
15182 s_align (int x ATTRIBUTE_UNUSED)
15183 {
15184 int temp, fill_value, *fill_ptr;
15185 long max_alignment = 28;
15186
15187 /* o Note that the assembler pulls down any immediately preceding label
15188 to the aligned address.
15189 o It's not documented but auto alignment is reinstated by
15190 a .align pseudo instruction.
15191 o Note also that after auto alignment is turned off the mips assembler
15192 issues an error on attempt to assemble an improperly aligned data item.
15193 We don't. */
15194
15195 temp = get_absolute_expression ();
15196 if (temp > max_alignment)
15197 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
15198 else if (temp < 0)
15199 {
15200 as_warn (_("alignment negative, 0 assumed"));
15201 temp = 0;
15202 }
15203 if (*input_line_pointer == ',')
15204 {
15205 ++input_line_pointer;
15206 fill_value = get_absolute_expression ();
15207 fill_ptr = &fill_value;
15208 }
15209 else
15210 fill_ptr = 0;
15211 if (temp)
15212 {
15213 segment_info_type *si = seg_info (now_seg);
15214 struct insn_label_list *l = si->label_list;
15215 /* Auto alignment should be switched on by next section change. */
15216 auto_align = 1;
15217 mips_align (temp, fill_ptr, l);
15218 }
15219 else
15220 {
15221 auto_align = 0;
15222 }
15223
15224 demand_empty_rest_of_line ();
15225 }
15226
15227 static void
15228 s_change_sec (int sec)
15229 {
15230 segT seg;
15231
15232 /* The ELF backend needs to know that we are changing sections, so
15233 that .previous works correctly. We could do something like check
15234 for an obj_section_change_hook macro, but that might be confusing
15235 as it would not be appropriate to use it in the section changing
15236 functions in read.c, since obj-elf.c intercepts those. FIXME:
15237 This should be cleaner, somehow. */
15238 obj_elf_section_change_hook ();
15239
15240 mips_emit_delays ();
15241
15242 switch (sec)
15243 {
15244 case 't':
15245 s_text (0);
15246 break;
15247 case 'd':
15248 s_data (0);
15249 break;
15250 case 'b':
15251 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15252 demand_empty_rest_of_line ();
15253 break;
15254
15255 case 'r':
15256 seg = subseg_new (RDATA_SECTION_NAME,
15257 (subsegT) get_absolute_expression ());
15258 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15259 | SEC_READONLY | SEC_RELOC
15260 | SEC_DATA));
15261 if (strncmp (TARGET_OS, "elf", 3) != 0)
15262 record_alignment (seg, 4);
15263 demand_empty_rest_of_line ();
15264 break;
15265
15266 case 's':
15267 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
15268 bfd_set_section_flags (stdoutput, seg,
15269 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15270 if (strncmp (TARGET_OS, "elf", 3) != 0)
15271 record_alignment (seg, 4);
15272 demand_empty_rest_of_line ();
15273 break;
15274
15275 case 'B':
15276 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
15277 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15278 if (strncmp (TARGET_OS, "elf", 3) != 0)
15279 record_alignment (seg, 4);
15280 demand_empty_rest_of_line ();
15281 break;
15282 }
15283
15284 auto_align = 1;
15285 }
15286
15287 void
15288 s_change_section (int ignore ATTRIBUTE_UNUSED)
15289 {
15290 char *saved_ilp;
15291 char *section_name;
15292 char c, endc;
15293 char next_c = 0;
15294 int section_type;
15295 int section_flag;
15296 int section_entry_size;
15297 int section_alignment;
15298
15299 saved_ilp = input_line_pointer;
15300 endc = get_symbol_name (&section_name);
15301 c = (endc == '"' ? input_line_pointer[1] : endc);
15302 if (c)
15303 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
15304
15305 /* Do we have .section Name<,"flags">? */
15306 if (c != ',' || (c == ',' && next_c == '"'))
15307 {
15308 /* Just after name is now '\0'. */
15309 (void) restore_line_pointer (endc);
15310 input_line_pointer = saved_ilp;
15311 obj_elf_section (ignore);
15312 return;
15313 }
15314
15315 section_name = xstrdup (section_name);
15316 c = restore_line_pointer (endc);
15317
15318 input_line_pointer++;
15319
15320 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15321 if (c == ',')
15322 section_type = get_absolute_expression ();
15323 else
15324 section_type = 0;
15325
15326 if (*input_line_pointer++ == ',')
15327 section_flag = get_absolute_expression ();
15328 else
15329 section_flag = 0;
15330
15331 if (*input_line_pointer++ == ',')
15332 section_entry_size = get_absolute_expression ();
15333 else
15334 section_entry_size = 0;
15335
15336 if (*input_line_pointer++ == ',')
15337 section_alignment = get_absolute_expression ();
15338 else
15339 section_alignment = 0;
15340
15341 /* FIXME: really ignore? */
15342 (void) section_alignment;
15343
15344 /* When using the generic form of .section (as implemented by obj-elf.c),
15345 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15346 traditionally had to fall back on the more common @progbits instead.
15347
15348 There's nothing really harmful in this, since bfd will correct
15349 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
15350 means that, for backwards compatibility, the special_section entries
15351 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15352
15353 Even so, we shouldn't force users of the MIPS .section syntax to
15354 incorrectly label the sections as SHT_PROGBITS. The best compromise
15355 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15356 generic type-checking code. */
15357 if (section_type == SHT_MIPS_DWARF)
15358 section_type = SHT_PROGBITS;
15359
15360 obj_elf_change_section (section_name, section_type, section_flag,
15361 section_entry_size, 0, 0, 0);
15362
15363 if (now_seg->name != section_name)
15364 free (section_name);
15365 }
15366
15367 void
15368 mips_enable_auto_align (void)
15369 {
15370 auto_align = 1;
15371 }
15372
15373 static void
15374 s_cons (int log_size)
15375 {
15376 segment_info_type *si = seg_info (now_seg);
15377 struct insn_label_list *l = si->label_list;
15378
15379 mips_emit_delays ();
15380 if (log_size > 0 && auto_align)
15381 mips_align (log_size, 0, l);
15382 cons (1 << log_size);
15383 mips_clear_insn_labels ();
15384 }
15385
15386 static void
15387 s_float_cons (int type)
15388 {
15389 segment_info_type *si = seg_info (now_seg);
15390 struct insn_label_list *l = si->label_list;
15391
15392 mips_emit_delays ();
15393
15394 if (auto_align)
15395 {
15396 if (type == 'd')
15397 mips_align (3, 0, l);
15398 else
15399 mips_align (2, 0, l);
15400 }
15401
15402 float_cons (type);
15403 mips_clear_insn_labels ();
15404 }
15405
15406 /* Handle .globl. We need to override it because on Irix 5 you are
15407 permitted to say
15408 .globl foo .text
15409 where foo is an undefined symbol, to mean that foo should be
15410 considered to be the address of a function. */
15411
15412 static void
15413 s_mips_globl (int x ATTRIBUTE_UNUSED)
15414 {
15415 char *name;
15416 int c;
15417 symbolS *symbolP;
15418 flagword flag;
15419
15420 do
15421 {
15422 c = get_symbol_name (&name);
15423 symbolP = symbol_find_or_make (name);
15424 S_SET_EXTERNAL (symbolP);
15425
15426 *input_line_pointer = c;
15427 SKIP_WHITESPACE_AFTER_NAME ();
15428
15429 /* On Irix 5, every global symbol that is not explicitly labelled as
15430 being a function is apparently labelled as being an object. */
15431 flag = BSF_OBJECT;
15432
15433 if (!is_end_of_line[(unsigned char) *input_line_pointer]
15434 && (*input_line_pointer != ','))
15435 {
15436 char *secname;
15437 asection *sec;
15438
15439 c = get_symbol_name (&secname);
15440 sec = bfd_get_section_by_name (stdoutput, secname);
15441 if (sec == NULL)
15442 as_bad (_("%s: no such section"), secname);
15443 (void) restore_line_pointer (c);
15444
15445 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
15446 flag = BSF_FUNCTION;
15447 }
15448
15449 symbol_get_bfdsym (symbolP)->flags |= flag;
15450
15451 c = *input_line_pointer;
15452 if (c == ',')
15453 {
15454 input_line_pointer++;
15455 SKIP_WHITESPACE ();
15456 if (is_end_of_line[(unsigned char) *input_line_pointer])
15457 c = '\n';
15458 }
15459 }
15460 while (c == ',');
15461
15462 demand_empty_rest_of_line ();
15463 }
15464
15465 static void
15466 s_option (int x ATTRIBUTE_UNUSED)
15467 {
15468 char *opt;
15469 char c;
15470
15471 c = get_symbol_name (&opt);
15472
15473 if (*opt == 'O')
15474 {
15475 /* FIXME: What does this mean? */
15476 }
15477 else if (strncmp (opt, "pic", 3) == 0)
15478 {
15479 int i;
15480
15481 i = atoi (opt + 3);
15482 if (i == 0)
15483 mips_pic = NO_PIC;
15484 else if (i == 2)
15485 {
15486 mips_pic = SVR4_PIC;
15487 mips_abicalls = TRUE;
15488 }
15489 else
15490 as_bad (_(".option pic%d not supported"), i);
15491
15492 if (mips_pic == SVR4_PIC)
15493 {
15494 if (g_switch_seen && g_switch_value != 0)
15495 as_warn (_("-G may not be used with SVR4 PIC code"));
15496 g_switch_value = 0;
15497 bfd_set_gp_size (stdoutput, 0);
15498 }
15499 }
15500 else
15501 as_warn (_("unrecognized option \"%s\""), opt);
15502
15503 (void) restore_line_pointer (c);
15504 demand_empty_rest_of_line ();
15505 }
15506
15507 /* This structure is used to hold a stack of .set values. */
15508
15509 struct mips_option_stack
15510 {
15511 struct mips_option_stack *next;
15512 struct mips_set_options options;
15513 };
15514
15515 static struct mips_option_stack *mips_opts_stack;
15516
15517 static bfd_boolean
15518 parse_code_option (char * name)
15519 {
15520 const struct mips_ase *ase;
15521 if (strncmp (name, "at=", 3) == 0)
15522 {
15523 char *s = name + 3;
15524
15525 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
15526 as_bad (_("unrecognized register name `%s'"), s);
15527 }
15528 else if (strcmp (name, "at") == 0)
15529 mips_opts.at = ATREG;
15530 else if (strcmp (name, "noat") == 0)
15531 mips_opts.at = ZERO;
15532 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
15533 mips_opts.nomove = 0;
15534 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
15535 mips_opts.nomove = 1;
15536 else if (strcmp (name, "bopt") == 0)
15537 mips_opts.nobopt = 0;
15538 else if (strcmp (name, "nobopt") == 0)
15539 mips_opts.nobopt = 1;
15540 else if (strcmp (name, "gp=32") == 0)
15541 mips_opts.gp = 32;
15542 else if (strcmp (name, "gp=64") == 0)
15543 mips_opts.gp = 64;
15544 else if (strcmp (name, "fp=32") == 0)
15545 mips_opts.fp = 32;
15546 else if (strcmp (name, "fp=xx") == 0)
15547 mips_opts.fp = 0;
15548 else if (strcmp (name, "fp=64") == 0)
15549 mips_opts.fp = 64;
15550 else if (strcmp (name, "softfloat") == 0)
15551 mips_opts.soft_float = 1;
15552 else if (strcmp (name, "hardfloat") == 0)
15553 mips_opts.soft_float = 0;
15554 else if (strcmp (name, "singlefloat") == 0)
15555 mips_opts.single_float = 1;
15556 else if (strcmp (name, "doublefloat") == 0)
15557 mips_opts.single_float = 0;
15558 else if (strcmp (name, "nooddspreg") == 0)
15559 mips_opts.oddspreg = 0;
15560 else if (strcmp (name, "oddspreg") == 0)
15561 mips_opts.oddspreg = 1;
15562 else if (strcmp (name, "mips16") == 0
15563 || strcmp (name, "MIPS-16") == 0)
15564 mips_opts.mips16 = 1;
15565 else if (strcmp (name, "nomips16") == 0
15566 || strcmp (name, "noMIPS-16") == 0)
15567 mips_opts.mips16 = 0;
15568 else if (strcmp (name, "micromips") == 0)
15569 mips_opts.micromips = 1;
15570 else if (strcmp (name, "nomicromips") == 0)
15571 mips_opts.micromips = 0;
15572 else if (name[0] == 'n'
15573 && name[1] == 'o'
15574 && (ase = mips_lookup_ase (name + 2)))
15575 mips_set_ase (ase, &mips_opts, FALSE);
15576 else if ((ase = mips_lookup_ase (name)))
15577 mips_set_ase (ase, &mips_opts, TRUE);
15578 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
15579 {
15580 /* Permit the user to change the ISA and architecture on the fly.
15581 Needless to say, misuse can cause serious problems. */
15582 if (strncmp (name, "arch=", 5) == 0)
15583 {
15584 const struct mips_cpu_info *p;
15585
15586 p = mips_parse_cpu ("internal use", name + 5);
15587 if (!p)
15588 as_bad (_("unknown architecture %s"), name + 5);
15589 else
15590 {
15591 mips_opts.arch = p->cpu;
15592 mips_opts.isa = p->isa;
15593 }
15594 }
15595 else if (strncmp (name, "mips", 4) == 0)
15596 {
15597 const struct mips_cpu_info *p;
15598
15599 p = mips_parse_cpu ("internal use", name);
15600 if (!p)
15601 as_bad (_("unknown ISA level %s"), name + 4);
15602 else
15603 {
15604 mips_opts.arch = p->cpu;
15605 mips_opts.isa = p->isa;
15606 }
15607 }
15608 else
15609 as_bad (_("unknown ISA or architecture %s"), name);
15610 }
15611 else if (strcmp (name, "autoextend") == 0)
15612 mips_opts.noautoextend = 0;
15613 else if (strcmp (name, "noautoextend") == 0)
15614 mips_opts.noautoextend = 1;
15615 else if (strcmp (name, "insn32") == 0)
15616 mips_opts.insn32 = TRUE;
15617 else if (strcmp (name, "noinsn32") == 0)
15618 mips_opts.insn32 = FALSE;
15619 else if (strcmp (name, "sym32") == 0)
15620 mips_opts.sym32 = TRUE;
15621 else if (strcmp (name, "nosym32") == 0)
15622 mips_opts.sym32 = FALSE;
15623 else
15624 return FALSE;
15625 return TRUE;
15626 }
15627
15628 /* Handle the .set pseudo-op. */
15629
15630 static void
15631 s_mipsset (int x ATTRIBUTE_UNUSED)
15632 {
15633 char *name = input_line_pointer, ch;
15634 int prev_isa = mips_opts.isa;
15635
15636 file_mips_check_options ();
15637
15638 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15639 ++input_line_pointer;
15640 ch = *input_line_pointer;
15641 *input_line_pointer = '\0';
15642
15643 if (strchr (name, ','))
15644 {
15645 /* Generic ".set" directive; use the generic handler. */
15646 *input_line_pointer = ch;
15647 input_line_pointer = name;
15648 s_set (0);
15649 return;
15650 }
15651
15652 if (strcmp (name, "reorder") == 0)
15653 {
15654 if (mips_opts.noreorder)
15655 end_noreorder ();
15656 }
15657 else if (strcmp (name, "noreorder") == 0)
15658 {
15659 if (!mips_opts.noreorder)
15660 start_noreorder ();
15661 }
15662 else if (strcmp (name, "macro") == 0)
15663 mips_opts.warn_about_macros = 0;
15664 else if (strcmp (name, "nomacro") == 0)
15665 {
15666 if (mips_opts.noreorder == 0)
15667 as_bad (_("`noreorder' must be set before `nomacro'"));
15668 mips_opts.warn_about_macros = 1;
15669 }
15670 else if (strcmp (name, "gp=default") == 0)
15671 mips_opts.gp = file_mips_opts.gp;
15672 else if (strcmp (name, "fp=default") == 0)
15673 mips_opts.fp = file_mips_opts.fp;
15674 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
15675 {
15676 mips_opts.isa = file_mips_opts.isa;
15677 mips_opts.arch = file_mips_opts.arch;
15678 mips_opts.gp = file_mips_opts.gp;
15679 mips_opts.fp = file_mips_opts.fp;
15680 }
15681 else if (strcmp (name, "push") == 0)
15682 {
15683 struct mips_option_stack *s;
15684
15685 s = (struct mips_option_stack *) xmalloc (sizeof *s);
15686 s->next = mips_opts_stack;
15687 s->options = mips_opts;
15688 mips_opts_stack = s;
15689 }
15690 else if (strcmp (name, "pop") == 0)
15691 {
15692 struct mips_option_stack *s;
15693
15694 s = mips_opts_stack;
15695 if (s == NULL)
15696 as_bad (_(".set pop with no .set push"));
15697 else
15698 {
15699 /* If we're changing the reorder mode we need to handle
15700 delay slots correctly. */
15701 if (s->options.noreorder && ! mips_opts.noreorder)
15702 start_noreorder ();
15703 else if (! s->options.noreorder && mips_opts.noreorder)
15704 end_noreorder ();
15705
15706 mips_opts = s->options;
15707 mips_opts_stack = s->next;
15708 free (s);
15709 }
15710 }
15711 else if (!parse_code_option (name))
15712 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
15713
15714 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
15715 registers based on what is supported by the arch/cpu. */
15716 if (mips_opts.isa != prev_isa)
15717 {
15718 switch (mips_opts.isa)
15719 {
15720 case 0:
15721 break;
15722 case ISA_MIPS1:
15723 /* MIPS I cannot support FPXX. */
15724 mips_opts.fp = 32;
15725 /* fall-through. */
15726 case ISA_MIPS2:
15727 case ISA_MIPS32:
15728 case ISA_MIPS32R2:
15729 case ISA_MIPS32R3:
15730 case ISA_MIPS32R5:
15731 mips_opts.gp = 32;
15732 if (mips_opts.fp != 0)
15733 mips_opts.fp = 32;
15734 break;
15735 case ISA_MIPS32R6:
15736 mips_opts.gp = 32;
15737 mips_opts.fp = 64;
15738 break;
15739 case ISA_MIPS3:
15740 case ISA_MIPS4:
15741 case ISA_MIPS5:
15742 case ISA_MIPS64:
15743 case ISA_MIPS64R2:
15744 case ISA_MIPS64R3:
15745 case ISA_MIPS64R5:
15746 case ISA_MIPS64R6:
15747 mips_opts.gp = 64;
15748 if (mips_opts.fp != 0)
15749 {
15750 if (mips_opts.arch == CPU_R5900)
15751 mips_opts.fp = 32;
15752 else
15753 mips_opts.fp = 64;
15754 }
15755 break;
15756 default:
15757 as_bad (_("unknown ISA level %s"), name + 4);
15758 break;
15759 }
15760 }
15761
15762 mips_check_options (&mips_opts, FALSE);
15763
15764 mips_check_isa_supports_ases ();
15765 *input_line_pointer = ch;
15766 demand_empty_rest_of_line ();
15767 }
15768
15769 /* Handle the .module pseudo-op. */
15770
15771 static void
15772 s_module (int ignore ATTRIBUTE_UNUSED)
15773 {
15774 char *name = input_line_pointer, ch;
15775
15776 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15777 ++input_line_pointer;
15778 ch = *input_line_pointer;
15779 *input_line_pointer = '\0';
15780
15781 if (!file_mips_opts_checked)
15782 {
15783 if (!parse_code_option (name))
15784 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
15785
15786 /* Update module level settings from mips_opts. */
15787 file_mips_opts = mips_opts;
15788 }
15789 else
15790 as_bad (_(".module is not permitted after generating code"));
15791
15792 *input_line_pointer = ch;
15793 demand_empty_rest_of_line ();
15794 }
15795
15796 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
15797 .option pic2. It means to generate SVR4 PIC calls. */
15798
15799 static void
15800 s_abicalls (int ignore ATTRIBUTE_UNUSED)
15801 {
15802 mips_pic = SVR4_PIC;
15803 mips_abicalls = TRUE;
15804
15805 if (g_switch_seen && g_switch_value != 0)
15806 as_warn (_("-G may not be used with SVR4 PIC code"));
15807 g_switch_value = 0;
15808
15809 bfd_set_gp_size (stdoutput, 0);
15810 demand_empty_rest_of_line ();
15811 }
15812
15813 /* Handle the .cpload pseudo-op. This is used when generating SVR4
15814 PIC code. It sets the $gp register for the function based on the
15815 function address, which is in the register named in the argument.
15816 This uses a relocation against _gp_disp, which is handled specially
15817 by the linker. The result is:
15818 lui $gp,%hi(_gp_disp)
15819 addiu $gp,$gp,%lo(_gp_disp)
15820 addu $gp,$gp,.cpload argument
15821 The .cpload argument is normally $25 == $t9.
15822
15823 The -mno-shared option changes this to:
15824 lui $gp,%hi(__gnu_local_gp)
15825 addiu $gp,$gp,%lo(__gnu_local_gp)
15826 and the argument is ignored. This saves an instruction, but the
15827 resulting code is not position independent; it uses an absolute
15828 address for __gnu_local_gp. Thus code assembled with -mno-shared
15829 can go into an ordinary executable, but not into a shared library. */
15830
15831 static void
15832 s_cpload (int ignore ATTRIBUTE_UNUSED)
15833 {
15834 expressionS ex;
15835 int reg;
15836 int in_shared;
15837
15838 file_mips_check_options ();
15839
15840 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
15841 .cpload is ignored. */
15842 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
15843 {
15844 s_ignore (0);
15845 return;
15846 }
15847
15848 if (mips_opts.mips16)
15849 {
15850 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
15851 ignore_rest_of_line ();
15852 return;
15853 }
15854
15855 /* .cpload should be in a .set noreorder section. */
15856 if (mips_opts.noreorder == 0)
15857 as_warn (_(".cpload not in noreorder section"));
15858
15859 reg = tc_get_register (0);
15860
15861 /* If we need to produce a 64-bit address, we are better off using
15862 the default instruction sequence. */
15863 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
15864
15865 ex.X_op = O_symbol;
15866 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
15867 "__gnu_local_gp");
15868 ex.X_op_symbol = NULL;
15869 ex.X_add_number = 0;
15870
15871 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
15872 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
15873
15874 mips_mark_labels ();
15875 mips_assembling_insn = TRUE;
15876
15877 macro_start ();
15878 macro_build_lui (&ex, mips_gp_register);
15879 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
15880 mips_gp_register, BFD_RELOC_LO16);
15881 if (in_shared)
15882 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
15883 mips_gp_register, reg);
15884 macro_end ();
15885
15886 mips_assembling_insn = FALSE;
15887 demand_empty_rest_of_line ();
15888 }
15889
15890 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
15891 .cpsetup $reg1, offset|$reg2, label
15892
15893 If offset is given, this results in:
15894 sd $gp, offset($sp)
15895 lui $gp, %hi(%neg(%gp_rel(label)))
15896 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15897 daddu $gp, $gp, $reg1
15898
15899 If $reg2 is given, this results in:
15900 or $reg2, $gp, $0
15901 lui $gp, %hi(%neg(%gp_rel(label)))
15902 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15903 daddu $gp, $gp, $reg1
15904 $reg1 is normally $25 == $t9.
15905
15906 The -mno-shared option replaces the last three instructions with
15907 lui $gp,%hi(_gp)
15908 addiu $gp,$gp,%lo(_gp) */
15909
15910 static void
15911 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
15912 {
15913 expressionS ex_off;
15914 expressionS ex_sym;
15915 int reg1;
15916
15917 file_mips_check_options ();
15918
15919 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
15920 We also need NewABI support. */
15921 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
15922 {
15923 s_ignore (0);
15924 return;
15925 }
15926
15927 if (mips_opts.mips16)
15928 {
15929 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
15930 ignore_rest_of_line ();
15931 return;
15932 }
15933
15934 reg1 = tc_get_register (0);
15935 SKIP_WHITESPACE ();
15936 if (*input_line_pointer != ',')
15937 {
15938 as_bad (_("missing argument separator ',' for .cpsetup"));
15939 return;
15940 }
15941 else
15942 ++input_line_pointer;
15943 SKIP_WHITESPACE ();
15944 if (*input_line_pointer == '$')
15945 {
15946 mips_cpreturn_register = tc_get_register (0);
15947 mips_cpreturn_offset = -1;
15948 }
15949 else
15950 {
15951 mips_cpreturn_offset = get_absolute_expression ();
15952 mips_cpreturn_register = -1;
15953 }
15954 SKIP_WHITESPACE ();
15955 if (*input_line_pointer != ',')
15956 {
15957 as_bad (_("missing argument separator ',' for .cpsetup"));
15958 return;
15959 }
15960 else
15961 ++input_line_pointer;
15962 SKIP_WHITESPACE ();
15963 expression (&ex_sym);
15964
15965 mips_mark_labels ();
15966 mips_assembling_insn = TRUE;
15967
15968 macro_start ();
15969 if (mips_cpreturn_register == -1)
15970 {
15971 ex_off.X_op = O_constant;
15972 ex_off.X_add_symbol = NULL;
15973 ex_off.X_op_symbol = NULL;
15974 ex_off.X_add_number = mips_cpreturn_offset;
15975
15976 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
15977 BFD_RELOC_LO16, SP);
15978 }
15979 else
15980 move_register (mips_cpreturn_register, mips_gp_register);
15981
15982 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
15983 {
15984 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
15985 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
15986 BFD_RELOC_HI16_S);
15987
15988 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
15989 mips_gp_register, -1, BFD_RELOC_GPREL16,
15990 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
15991
15992 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
15993 mips_gp_register, reg1);
15994 }
15995 else
15996 {
15997 expressionS ex;
15998
15999 ex.X_op = O_symbol;
16000 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
16001 ex.X_op_symbol = NULL;
16002 ex.X_add_number = 0;
16003
16004 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16005 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16006
16007 macro_build_lui (&ex, mips_gp_register);
16008 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16009 mips_gp_register, BFD_RELOC_LO16);
16010 }
16011
16012 macro_end ();
16013
16014 mips_assembling_insn = FALSE;
16015 demand_empty_rest_of_line ();
16016 }
16017
16018 static void
16019 s_cplocal (int ignore ATTRIBUTE_UNUSED)
16020 {
16021 file_mips_check_options ();
16022
16023 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
16024 .cplocal is ignored. */
16025 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16026 {
16027 s_ignore (0);
16028 return;
16029 }
16030
16031 if (mips_opts.mips16)
16032 {
16033 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16034 ignore_rest_of_line ();
16035 return;
16036 }
16037
16038 mips_gp_register = tc_get_register (0);
16039 demand_empty_rest_of_line ();
16040 }
16041
16042 /* Handle the .cprestore pseudo-op. This stores $gp into a given
16043 offset from $sp. The offset is remembered, and after making a PIC
16044 call $gp is restored from that location. */
16045
16046 static void
16047 s_cprestore (int ignore ATTRIBUTE_UNUSED)
16048 {
16049 expressionS ex;
16050
16051 file_mips_check_options ();
16052
16053 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16054 .cprestore is ignored. */
16055 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16056 {
16057 s_ignore (0);
16058 return;
16059 }
16060
16061 if (mips_opts.mips16)
16062 {
16063 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16064 ignore_rest_of_line ();
16065 return;
16066 }
16067
16068 mips_cprestore_offset = get_absolute_expression ();
16069 mips_cprestore_valid = 1;
16070
16071 ex.X_op = O_constant;
16072 ex.X_add_symbol = NULL;
16073 ex.X_op_symbol = NULL;
16074 ex.X_add_number = mips_cprestore_offset;
16075
16076 mips_mark_labels ();
16077 mips_assembling_insn = TRUE;
16078
16079 macro_start ();
16080 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16081 SP, HAVE_64BIT_ADDRESSES);
16082 macro_end ();
16083
16084 mips_assembling_insn = FALSE;
16085 demand_empty_rest_of_line ();
16086 }
16087
16088 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
16089 was given in the preceding .cpsetup, it results in:
16090 ld $gp, offset($sp)
16091
16092 If a register $reg2 was given there, it results in:
16093 or $gp, $reg2, $0 */
16094
16095 static void
16096 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
16097 {
16098 expressionS ex;
16099
16100 file_mips_check_options ();
16101
16102 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16103 We also need NewABI support. */
16104 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16105 {
16106 s_ignore (0);
16107 return;
16108 }
16109
16110 if (mips_opts.mips16)
16111 {
16112 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16113 ignore_rest_of_line ();
16114 return;
16115 }
16116
16117 mips_mark_labels ();
16118 mips_assembling_insn = TRUE;
16119
16120 macro_start ();
16121 if (mips_cpreturn_register == -1)
16122 {
16123 ex.X_op = O_constant;
16124 ex.X_add_symbol = NULL;
16125 ex.X_op_symbol = NULL;
16126 ex.X_add_number = mips_cpreturn_offset;
16127
16128 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
16129 }
16130 else
16131 move_register (mips_gp_register, mips_cpreturn_register);
16132
16133 macro_end ();
16134
16135 mips_assembling_insn = FALSE;
16136 demand_empty_rest_of_line ();
16137 }
16138
16139 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16140 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16141 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16142 debug information or MIPS16 TLS. */
16143
16144 static void
16145 s_tls_rel_directive (const size_t bytes, const char *dirstr,
16146 bfd_reloc_code_real_type rtype)
16147 {
16148 expressionS ex;
16149 char *p;
16150
16151 expression (&ex);
16152
16153 if (ex.X_op != O_symbol)
16154 {
16155 as_bad (_("unsupported use of %s"), dirstr);
16156 ignore_rest_of_line ();
16157 }
16158
16159 p = frag_more (bytes);
16160 md_number_to_chars (p, 0, bytes);
16161 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
16162 demand_empty_rest_of_line ();
16163 mips_clear_insn_labels ();
16164 }
16165
16166 /* Handle .dtprelword. */
16167
16168 static void
16169 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16170 {
16171 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
16172 }
16173
16174 /* Handle .dtpreldword. */
16175
16176 static void
16177 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16178 {
16179 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16180 }
16181
16182 /* Handle .tprelword. */
16183
16184 static void
16185 s_tprelword (int ignore ATTRIBUTE_UNUSED)
16186 {
16187 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16188 }
16189
16190 /* Handle .tpreldword. */
16191
16192 static void
16193 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16194 {
16195 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
16196 }
16197
16198 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16199 code. It sets the offset to use in gp_rel relocations. */
16200
16201 static void
16202 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
16203 {
16204 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16205 We also need NewABI support. */
16206 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16207 {
16208 s_ignore (0);
16209 return;
16210 }
16211
16212 mips_gprel_offset = get_absolute_expression ();
16213
16214 demand_empty_rest_of_line ();
16215 }
16216
16217 /* Handle the .gpword pseudo-op. This is used when generating PIC
16218 code. It generates a 32 bit GP relative reloc. */
16219
16220 static void
16221 s_gpword (int ignore ATTRIBUTE_UNUSED)
16222 {
16223 segment_info_type *si;
16224 struct insn_label_list *l;
16225 expressionS ex;
16226 char *p;
16227
16228 /* When not generating PIC code, this is treated as .word. */
16229 if (mips_pic != SVR4_PIC)
16230 {
16231 s_cons (2);
16232 return;
16233 }
16234
16235 si = seg_info (now_seg);
16236 l = si->label_list;
16237 mips_emit_delays ();
16238 if (auto_align)
16239 mips_align (2, 0, l);
16240
16241 expression (&ex);
16242 mips_clear_insn_labels ();
16243
16244 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16245 {
16246 as_bad (_("unsupported use of .gpword"));
16247 ignore_rest_of_line ();
16248 }
16249
16250 p = frag_more (4);
16251 md_number_to_chars (p, 0, 4);
16252 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16253 BFD_RELOC_GPREL32);
16254
16255 demand_empty_rest_of_line ();
16256 }
16257
16258 static void
16259 s_gpdword (int ignore ATTRIBUTE_UNUSED)
16260 {
16261 segment_info_type *si;
16262 struct insn_label_list *l;
16263 expressionS ex;
16264 char *p;
16265
16266 /* When not generating PIC code, this is treated as .dword. */
16267 if (mips_pic != SVR4_PIC)
16268 {
16269 s_cons (3);
16270 return;
16271 }
16272
16273 si = seg_info (now_seg);
16274 l = si->label_list;
16275 mips_emit_delays ();
16276 if (auto_align)
16277 mips_align (3, 0, l);
16278
16279 expression (&ex);
16280 mips_clear_insn_labels ();
16281
16282 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16283 {
16284 as_bad (_("unsupported use of .gpdword"));
16285 ignore_rest_of_line ();
16286 }
16287
16288 p = frag_more (8);
16289 md_number_to_chars (p, 0, 8);
16290 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16291 BFD_RELOC_GPREL32)->fx_tcbit = 1;
16292
16293 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
16294 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16295 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
16296
16297 demand_empty_rest_of_line ();
16298 }
16299
16300 /* Handle the .ehword pseudo-op. This is used when generating unwinding
16301 tables. It generates a R_MIPS_EH reloc. */
16302
16303 static void
16304 s_ehword (int ignore ATTRIBUTE_UNUSED)
16305 {
16306 expressionS ex;
16307 char *p;
16308
16309 mips_emit_delays ();
16310
16311 expression (&ex);
16312 mips_clear_insn_labels ();
16313
16314 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16315 {
16316 as_bad (_("unsupported use of .ehword"));
16317 ignore_rest_of_line ();
16318 }
16319
16320 p = frag_more (4);
16321 md_number_to_chars (p, 0, 4);
16322 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16323 BFD_RELOC_32_PCREL);
16324
16325 demand_empty_rest_of_line ();
16326 }
16327
16328 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
16329 tables in SVR4 PIC code. */
16330
16331 static void
16332 s_cpadd (int ignore ATTRIBUTE_UNUSED)
16333 {
16334 int reg;
16335
16336 file_mips_check_options ();
16337
16338 /* This is ignored when not generating SVR4 PIC code. */
16339 if (mips_pic != SVR4_PIC)
16340 {
16341 s_ignore (0);
16342 return;
16343 }
16344
16345 mips_mark_labels ();
16346 mips_assembling_insn = TRUE;
16347
16348 /* Add $gp to the register named as an argument. */
16349 macro_start ();
16350 reg = tc_get_register (0);
16351 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
16352 macro_end ();
16353
16354 mips_assembling_insn = FALSE;
16355 demand_empty_rest_of_line ();
16356 }
16357
16358 /* Handle the .insn pseudo-op. This marks instruction labels in
16359 mips16/micromips mode. This permits the linker to handle them specially,
16360 such as generating jalx instructions when needed. We also make
16361 them odd for the duration of the assembly, in order to generate the
16362 right sort of code. We will make them even in the adjust_symtab
16363 routine, while leaving them marked. This is convenient for the
16364 debugger and the disassembler. The linker knows to make them odd
16365 again. */
16366
16367 static void
16368 s_insn (int ignore ATTRIBUTE_UNUSED)
16369 {
16370 file_mips_check_options ();
16371 file_ase_mips16 |= mips_opts.mips16;
16372 file_ase_micromips |= mips_opts.micromips;
16373
16374 mips_mark_labels ();
16375
16376 demand_empty_rest_of_line ();
16377 }
16378
16379 /* Handle the .nan pseudo-op. */
16380
16381 static void
16382 s_nan (int ignore ATTRIBUTE_UNUSED)
16383 {
16384 static const char str_legacy[] = "legacy";
16385 static const char str_2008[] = "2008";
16386 size_t i;
16387
16388 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
16389
16390 if (i == sizeof (str_2008) - 1
16391 && memcmp (input_line_pointer, str_2008, i) == 0)
16392 mips_nan2008 = 1;
16393 else if (i == sizeof (str_legacy) - 1
16394 && memcmp (input_line_pointer, str_legacy, i) == 0)
16395 {
16396 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
16397 mips_nan2008 = 0;
16398 else
16399 as_bad (_("`%s' does not support legacy NaN"),
16400 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
16401 }
16402 else
16403 as_bad (_("bad .nan directive"));
16404
16405 input_line_pointer += i;
16406 demand_empty_rest_of_line ();
16407 }
16408
16409 /* Handle a .stab[snd] directive. Ideally these directives would be
16410 implemented in a transparent way, so that removing them would not
16411 have any effect on the generated instructions. However, s_stab
16412 internally changes the section, so in practice we need to decide
16413 now whether the preceding label marks compressed code. We do not
16414 support changing the compression mode of a label after a .stab*
16415 directive, such as in:
16416
16417 foo:
16418 .stabs ...
16419 .set mips16
16420
16421 so the current mode wins. */
16422
16423 static void
16424 s_mips_stab (int type)
16425 {
16426 mips_mark_labels ();
16427 s_stab (type);
16428 }
16429
16430 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
16431
16432 static void
16433 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
16434 {
16435 char *name;
16436 int c;
16437 symbolS *symbolP;
16438 expressionS exp;
16439
16440 c = get_symbol_name (&name);
16441 symbolP = symbol_find_or_make (name);
16442 S_SET_WEAK (symbolP);
16443 *input_line_pointer = c;
16444
16445 SKIP_WHITESPACE_AFTER_NAME ();
16446
16447 if (! is_end_of_line[(unsigned char) *input_line_pointer])
16448 {
16449 if (S_IS_DEFINED (symbolP))
16450 {
16451 as_bad (_("ignoring attempt to redefine symbol %s"),
16452 S_GET_NAME (symbolP));
16453 ignore_rest_of_line ();
16454 return;
16455 }
16456
16457 if (*input_line_pointer == ',')
16458 {
16459 ++input_line_pointer;
16460 SKIP_WHITESPACE ();
16461 }
16462
16463 expression (&exp);
16464 if (exp.X_op != O_symbol)
16465 {
16466 as_bad (_("bad .weakext directive"));
16467 ignore_rest_of_line ();
16468 return;
16469 }
16470 symbol_set_value_expression (symbolP, &exp);
16471 }
16472
16473 demand_empty_rest_of_line ();
16474 }
16475
16476 /* Parse a register string into a number. Called from the ECOFF code
16477 to parse .frame. The argument is non-zero if this is the frame
16478 register, so that we can record it in mips_frame_reg. */
16479
16480 int
16481 tc_get_register (int frame)
16482 {
16483 unsigned int reg;
16484
16485 SKIP_WHITESPACE ();
16486 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
16487 reg = 0;
16488 if (frame)
16489 {
16490 mips_frame_reg = reg != 0 ? reg : SP;
16491 mips_frame_reg_valid = 1;
16492 mips_cprestore_valid = 0;
16493 }
16494 return reg;
16495 }
16496
16497 valueT
16498 md_section_align (asection *seg, valueT addr)
16499 {
16500 int align = bfd_get_section_alignment (stdoutput, seg);
16501
16502 /* We don't need to align ELF sections to the full alignment.
16503 However, Irix 5 may prefer that we align them at least to a 16
16504 byte boundary. We don't bother to align the sections if we
16505 are targeted for an embedded system. */
16506 if (strncmp (TARGET_OS, "elf", 3) == 0)
16507 return addr;
16508 if (align > 4)
16509 align = 4;
16510
16511 return ((addr + (1 << align) - 1) & -(1 << align));
16512 }
16513
16514 /* Utility routine, called from above as well. If called while the
16515 input file is still being read, it's only an approximation. (For
16516 example, a symbol may later become defined which appeared to be
16517 undefined earlier.) */
16518
16519 static int
16520 nopic_need_relax (symbolS *sym, int before_relaxing)
16521 {
16522 if (sym == 0)
16523 return 0;
16524
16525 if (g_switch_value > 0)
16526 {
16527 const char *symname;
16528 int change;
16529
16530 /* Find out whether this symbol can be referenced off the $gp
16531 register. It can be if it is smaller than the -G size or if
16532 it is in the .sdata or .sbss section. Certain symbols can
16533 not be referenced off the $gp, although it appears as though
16534 they can. */
16535 symname = S_GET_NAME (sym);
16536 if (symname != (const char *) NULL
16537 && (strcmp (symname, "eprol") == 0
16538 || strcmp (symname, "etext") == 0
16539 || strcmp (symname, "_gp") == 0
16540 || strcmp (symname, "edata") == 0
16541 || strcmp (symname, "_fbss") == 0
16542 || strcmp (symname, "_fdata") == 0
16543 || strcmp (symname, "_ftext") == 0
16544 || strcmp (symname, "end") == 0
16545 || strcmp (symname, "_gp_disp") == 0))
16546 change = 1;
16547 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
16548 && (0
16549 #ifndef NO_ECOFF_DEBUGGING
16550 || (symbol_get_obj (sym)->ecoff_extern_size != 0
16551 && (symbol_get_obj (sym)->ecoff_extern_size
16552 <= g_switch_value))
16553 #endif
16554 /* We must defer this decision until after the whole
16555 file has been read, since there might be a .extern
16556 after the first use of this symbol. */
16557 || (before_relaxing
16558 #ifndef NO_ECOFF_DEBUGGING
16559 && symbol_get_obj (sym)->ecoff_extern_size == 0
16560 #endif
16561 && S_GET_VALUE (sym) == 0)
16562 || (S_GET_VALUE (sym) != 0
16563 && S_GET_VALUE (sym) <= g_switch_value)))
16564 change = 0;
16565 else
16566 {
16567 const char *segname;
16568
16569 segname = segment_name (S_GET_SEGMENT (sym));
16570 gas_assert (strcmp (segname, ".lit8") != 0
16571 && strcmp (segname, ".lit4") != 0);
16572 change = (strcmp (segname, ".sdata") != 0
16573 && strcmp (segname, ".sbss") != 0
16574 && strncmp (segname, ".sdata.", 7) != 0
16575 && strncmp (segname, ".sbss.", 6) != 0
16576 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
16577 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
16578 }
16579 return change;
16580 }
16581 else
16582 /* We are not optimizing for the $gp register. */
16583 return 1;
16584 }
16585
16586
16587 /* Return true if the given symbol should be considered local for SVR4 PIC. */
16588
16589 static bfd_boolean
16590 pic_need_relax (symbolS *sym, asection *segtype)
16591 {
16592 asection *symsec;
16593
16594 /* Handle the case of a symbol equated to another symbol. */
16595 while (symbol_equated_reloc_p (sym))
16596 {
16597 symbolS *n;
16598
16599 /* It's possible to get a loop here in a badly written program. */
16600 n = symbol_get_value_expression (sym)->X_add_symbol;
16601 if (n == sym)
16602 break;
16603 sym = n;
16604 }
16605
16606 if (symbol_section_p (sym))
16607 return TRUE;
16608
16609 symsec = S_GET_SEGMENT (sym);
16610
16611 /* This must duplicate the test in adjust_reloc_syms. */
16612 return (!bfd_is_und_section (symsec)
16613 && !bfd_is_abs_section (symsec)
16614 && !bfd_is_com_section (symsec)
16615 && !s_is_linkonce (sym, segtype)
16616 /* A global or weak symbol is treated as external. */
16617 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
16618 }
16619
16620
16621 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
16622 extended opcode. SEC is the section the frag is in. */
16623
16624 static int
16625 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
16626 {
16627 int type;
16628 const struct mips_int_operand *operand;
16629 offsetT val;
16630 segT symsec;
16631 fragS *sym_frag;
16632
16633 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
16634 return 0;
16635 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
16636 return 1;
16637
16638 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
16639 operand = mips16_immed_operand (type, FALSE);
16640
16641 sym_frag = symbol_get_frag (fragp->fr_symbol);
16642 val = S_GET_VALUE (fragp->fr_symbol);
16643 symsec = S_GET_SEGMENT (fragp->fr_symbol);
16644
16645 if (operand->root.type == OP_PCREL)
16646 {
16647 const struct mips_pcrel_operand *pcrel_op;
16648 addressT addr;
16649 offsetT maxtiny;
16650
16651 /* We won't have the section when we are called from
16652 mips_relax_frag. However, we will always have been called
16653 from md_estimate_size_before_relax first. If this is a
16654 branch to a different section, we mark it as such. If SEC is
16655 NULL, and the frag is not marked, then it must be a branch to
16656 the same section. */
16657 pcrel_op = (const struct mips_pcrel_operand *) operand;
16658 if (sec == NULL)
16659 {
16660 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
16661 return 1;
16662 }
16663 else
16664 {
16665 /* Must have been called from md_estimate_size_before_relax. */
16666 if (symsec != sec)
16667 {
16668 fragp->fr_subtype =
16669 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16670
16671 /* FIXME: We should support this, and let the linker
16672 catch branches and loads that are out of range. */
16673 as_bad_where (fragp->fr_file, fragp->fr_line,
16674 _("unsupported PC relative reference to different section"));
16675
16676 return 1;
16677 }
16678 if (fragp != sym_frag && sym_frag->fr_address == 0)
16679 /* Assume non-extended on the first relaxation pass.
16680 The address we have calculated will be bogus if this is
16681 a forward branch to another frag, as the forward frag
16682 will have fr_address == 0. */
16683 return 0;
16684 }
16685
16686 /* In this case, we know for sure that the symbol fragment is in
16687 the same section. If the relax_marker of the symbol fragment
16688 differs from the relax_marker of this fragment, we have not
16689 yet adjusted the symbol fragment fr_address. We want to add
16690 in STRETCH in order to get a better estimate of the address.
16691 This particularly matters because of the shift bits. */
16692 if (stretch != 0
16693 && sym_frag->relax_marker != fragp->relax_marker)
16694 {
16695 fragS *f;
16696
16697 /* Adjust stretch for any alignment frag. Note that if have
16698 been expanding the earlier code, the symbol may be
16699 defined in what appears to be an earlier frag. FIXME:
16700 This doesn't handle the fr_subtype field, which specifies
16701 a maximum number of bytes to skip when doing an
16702 alignment. */
16703 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
16704 {
16705 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
16706 {
16707 if (stretch < 0)
16708 stretch = - ((- stretch)
16709 & ~ ((1 << (int) f->fr_offset) - 1));
16710 else
16711 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
16712 if (stretch == 0)
16713 break;
16714 }
16715 }
16716 if (f != NULL)
16717 val += stretch;
16718 }
16719
16720 addr = fragp->fr_address + fragp->fr_fix;
16721
16722 /* The base address rules are complicated. The base address of
16723 a branch is the following instruction. The base address of a
16724 PC relative load or add is the instruction itself, but if it
16725 is in a delay slot (in which case it can not be extended) use
16726 the address of the instruction whose delay slot it is in. */
16727 if (pcrel_op->include_isa_bit)
16728 {
16729 addr += 2;
16730
16731 /* If we are currently assuming that this frag should be
16732 extended, then, the current address is two bytes
16733 higher. */
16734 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
16735 addr += 2;
16736
16737 /* Ignore the low bit in the target, since it will be set
16738 for a text label. */
16739 val &= -2;
16740 }
16741 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
16742 addr -= 4;
16743 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
16744 addr -= 2;
16745
16746 val -= addr & -(1 << pcrel_op->align_log2);
16747
16748 /* If any of the shifted bits are set, we must use an extended
16749 opcode. If the address depends on the size of this
16750 instruction, this can lead to a loop, so we arrange to always
16751 use an extended opcode. We only check this when we are in
16752 the main relaxation loop, when SEC is NULL. */
16753 if ((val & ((1 << operand->shift) - 1)) != 0 && sec == NULL)
16754 {
16755 fragp->fr_subtype =
16756 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16757 return 1;
16758 }
16759
16760 /* If we are about to mark a frag as extended because the value
16761 is precisely the next value above maxtiny, then there is a
16762 chance of an infinite loop as in the following code:
16763 la $4,foo
16764 .skip 1020
16765 .align 2
16766 foo:
16767 In this case when the la is extended, foo is 0x3fc bytes
16768 away, so the la can be shrunk, but then foo is 0x400 away, so
16769 the la must be extended. To avoid this loop, we mark the
16770 frag as extended if it was small, and is about to become
16771 extended with the next value above maxtiny. */
16772 maxtiny = mips_int_operand_max (operand);
16773 if (val == maxtiny + (1 << operand->shift)
16774 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
16775 && sec == NULL)
16776 {
16777 fragp->fr_subtype =
16778 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16779 return 1;
16780 }
16781 }
16782 else if (symsec != absolute_section && sec != NULL)
16783 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
16784
16785 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
16786 }
16787
16788 /* Compute the length of a branch sequence, and adjust the
16789 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
16790 worst-case length is computed, with UPDATE being used to indicate
16791 whether an unconditional (-1), branch-likely (+1) or regular (0)
16792 branch is to be computed. */
16793 static int
16794 relaxed_branch_length (fragS *fragp, asection *sec, int update)
16795 {
16796 bfd_boolean toofar;
16797 int length;
16798
16799 if (fragp
16800 && S_IS_DEFINED (fragp->fr_symbol)
16801 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16802 {
16803 addressT addr;
16804 offsetT val;
16805
16806 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16807
16808 addr = fragp->fr_address + fragp->fr_fix + 4;
16809
16810 val -= addr;
16811
16812 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
16813 }
16814 else if (fragp)
16815 /* If the symbol is not defined or it's in a different segment,
16816 assume the user knows what's going on and emit a short
16817 branch. */
16818 toofar = FALSE;
16819 else
16820 toofar = TRUE;
16821
16822 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
16823 fragp->fr_subtype
16824 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
16825 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
16826 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
16827 RELAX_BRANCH_LINK (fragp->fr_subtype),
16828 toofar);
16829
16830 length = 4;
16831 if (toofar)
16832 {
16833 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
16834 length += 8;
16835
16836 if (mips_pic != NO_PIC)
16837 {
16838 /* Additional space for PIC loading of target address. */
16839 length += 8;
16840 if (mips_opts.isa == ISA_MIPS1)
16841 /* Additional space for $at-stabilizing nop. */
16842 length += 4;
16843 }
16844
16845 /* If branch is conditional. */
16846 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
16847 length += 8;
16848 }
16849
16850 return length;
16851 }
16852
16853 /* Compute the length of a branch sequence, and adjust the
16854 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
16855 worst-case length is computed, with UPDATE being used to indicate
16856 whether an unconditional (-1), or regular (0) branch is to be
16857 computed. */
16858
16859 static int
16860 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
16861 {
16862 bfd_boolean toofar;
16863 int length;
16864
16865 if (fragp
16866 && S_IS_DEFINED (fragp->fr_symbol)
16867 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16868 {
16869 addressT addr;
16870 offsetT val;
16871
16872 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16873 /* Ignore the low bit in the target, since it will be set
16874 for a text label. */
16875 if ((val & 1) != 0)
16876 --val;
16877
16878 addr = fragp->fr_address + fragp->fr_fix + 4;
16879
16880 val -= addr;
16881
16882 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
16883 }
16884 else if (fragp)
16885 /* If the symbol is not defined or it's in a different segment,
16886 assume the user knows what's going on and emit a short
16887 branch. */
16888 toofar = FALSE;
16889 else
16890 toofar = TRUE;
16891
16892 if (fragp && update
16893 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
16894 fragp->fr_subtype = (toofar
16895 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
16896 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
16897
16898 length = 4;
16899 if (toofar)
16900 {
16901 bfd_boolean compact_known = fragp != NULL;
16902 bfd_boolean compact = FALSE;
16903 bfd_boolean uncond;
16904
16905 if (compact_known)
16906 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
16907 if (fragp)
16908 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
16909 else
16910 uncond = update < 0;
16911
16912 /* If label is out of range, we turn branch <br>:
16913
16914 <br> label # 4 bytes
16915 0:
16916
16917 into:
16918
16919 j label # 4 bytes
16920 nop # 2 bytes if compact && !PIC
16921 0:
16922 */
16923 if (mips_pic == NO_PIC && (!compact_known || compact))
16924 length += 2;
16925
16926 /* If assembling PIC code, we further turn:
16927
16928 j label # 4 bytes
16929
16930 into:
16931
16932 lw/ld at, %got(label)(gp) # 4 bytes
16933 d/addiu at, %lo(label) # 4 bytes
16934 jr/c at # 2 bytes
16935 */
16936 if (mips_pic != NO_PIC)
16937 length += 6;
16938
16939 /* If branch <br> is conditional, we prepend negated branch <brneg>:
16940
16941 <brneg> 0f # 4 bytes
16942 nop # 2 bytes if !compact
16943 */
16944 if (!uncond)
16945 length += (compact_known && compact) ? 4 : 6;
16946 }
16947
16948 return length;
16949 }
16950
16951 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
16952 bit accordingly. */
16953
16954 static int
16955 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
16956 {
16957 bfd_boolean toofar;
16958
16959 if (fragp
16960 && S_IS_DEFINED (fragp->fr_symbol)
16961 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16962 {
16963 addressT addr;
16964 offsetT val;
16965 int type;
16966
16967 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16968 /* Ignore the low bit in the target, since it will be set
16969 for a text label. */
16970 if ((val & 1) != 0)
16971 --val;
16972
16973 /* Assume this is a 2-byte branch. */
16974 addr = fragp->fr_address + fragp->fr_fix + 2;
16975
16976 /* We try to avoid the infinite loop by not adding 2 more bytes for
16977 long branches. */
16978
16979 val -= addr;
16980
16981 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
16982 if (type == 'D')
16983 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
16984 else if (type == 'E')
16985 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
16986 else
16987 abort ();
16988 }
16989 else
16990 /* If the symbol is not defined or it's in a different segment,
16991 we emit a normal 32-bit branch. */
16992 toofar = TRUE;
16993
16994 if (fragp && update
16995 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
16996 fragp->fr_subtype
16997 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
16998 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
16999
17000 if (toofar)
17001 return 4;
17002
17003 return 2;
17004 }
17005
17006 /* Estimate the size of a frag before relaxing. Unless this is the
17007 mips16, we are not really relaxing here, and the final size is
17008 encoded in the subtype information. For the mips16, we have to
17009 decide whether we are using an extended opcode or not. */
17010
17011 int
17012 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
17013 {
17014 int change;
17015
17016 if (RELAX_BRANCH_P (fragp->fr_subtype))
17017 {
17018
17019 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17020
17021 return fragp->fr_var;
17022 }
17023
17024 if (RELAX_MIPS16_P (fragp->fr_subtype))
17025 /* We don't want to modify the EXTENDED bit here; it might get us
17026 into infinite loops. We change it only in mips_relax_frag(). */
17027 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
17028
17029 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17030 {
17031 int length = 4;
17032
17033 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17034 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17035 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17036 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17037 fragp->fr_var = length;
17038
17039 return length;
17040 }
17041
17042 if (mips_pic == NO_PIC)
17043 change = nopic_need_relax (fragp->fr_symbol, 0);
17044 else if (mips_pic == SVR4_PIC)
17045 change = pic_need_relax (fragp->fr_symbol, segtype);
17046 else if (mips_pic == VXWORKS_PIC)
17047 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17048 change = 0;
17049 else
17050 abort ();
17051
17052 if (change)
17053 {
17054 fragp->fr_subtype |= RELAX_USE_SECOND;
17055 return -RELAX_FIRST (fragp->fr_subtype);
17056 }
17057 else
17058 return -RELAX_SECOND (fragp->fr_subtype);
17059 }
17060
17061 /* This is called to see whether a reloc against a defined symbol
17062 should be converted into a reloc against a section. */
17063
17064 int
17065 mips_fix_adjustable (fixS *fixp)
17066 {
17067 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17068 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17069 return 0;
17070
17071 if (fixp->fx_addsy == NULL)
17072 return 1;
17073
17074 /* Allow relocs used for EH tables. */
17075 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17076 return 1;
17077
17078 /* If symbol SYM is in a mergeable section, relocations of the form
17079 SYM + 0 can usually be made section-relative. The mergeable data
17080 is then identified by the section offset rather than by the symbol.
17081
17082 However, if we're generating REL LO16 relocations, the offset is split
17083 between the LO16 and parterning high part relocation. The linker will
17084 need to recalculate the complete offset in order to correctly identify
17085 the merge data.
17086
17087 The linker has traditionally not looked for the parterning high part
17088 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17089 placed anywhere. Rather than break backwards compatibility by changing
17090 this, it seems better not to force the issue, and instead keep the
17091 original symbol. This will work with either linker behavior. */
17092 if ((lo16_reloc_p (fixp->fx_r_type)
17093 || reloc_needs_lo_p (fixp->fx_r_type))
17094 && HAVE_IN_PLACE_ADDENDS
17095 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17096 return 0;
17097
17098 /* There is no place to store an in-place offset for JALR relocations.
17099 Likewise an in-range offset of limited PC-relative relocations may
17100 overflow the in-place relocatable field if recalculated against the
17101 start address of the symbol's containing section.
17102
17103 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17104 section relative to allow linker relaxations to be performed later on. */
17105 if ((HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (mips_opts.isa))
17106 && (limited_pcrel_reloc_p (fixp->fx_r_type)
17107 || jalr_reloc_p (fixp->fx_r_type)))
17108 return 0;
17109
17110 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17111 to a floating-point stub. The same is true for non-R_MIPS16_26
17112 relocations against MIPS16 functions; in this case, the stub becomes
17113 the function's canonical address.
17114
17115 Floating-point stubs are stored in unique .mips16.call.* or
17116 .mips16.fn.* sections. If a stub T for function F is in section S,
17117 the first relocation in section S must be against F; this is how the
17118 linker determines the target function. All relocations that might
17119 resolve to T must also be against F. We therefore have the following
17120 restrictions, which are given in an intentionally-redundant way:
17121
17122 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17123 symbols.
17124
17125 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17126 if that stub might be used.
17127
17128 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17129 symbols.
17130
17131 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17132 that stub might be used.
17133
17134 There is a further restriction:
17135
17136 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
17137 R_MICROMIPS_26_S1) against MIPS16 or microMIPS symbols on
17138 targets with in-place addends; the relocation field cannot
17139 encode the low bit.
17140
17141 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17142 against a MIPS16 symbol. We deal with (5) by by not reducing any
17143 such relocations on REL targets.
17144
17145 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17146 relocation against some symbol R, no relocation against R may be
17147 reduced. (Note that this deals with (2) as well as (1) because
17148 relocations against global symbols will never be reduced on ELF
17149 targets.) This approach is a little simpler than trying to detect
17150 stub sections, and gives the "all or nothing" per-symbol consistency
17151 that we have for MIPS16 symbols. */
17152 if (fixp->fx_subsy == NULL
17153 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
17154 || *symbol_get_tc (fixp->fx_addsy)
17155 || (HAVE_IN_PLACE_ADDENDS
17156 && ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17157 && jmp_reloc_p (fixp->fx_r_type))))
17158 return 0;
17159
17160 return 1;
17161 }
17162
17163 /* Translate internal representation of relocation info to BFD target
17164 format. */
17165
17166 arelent **
17167 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
17168 {
17169 static arelent *retval[4];
17170 arelent *reloc;
17171 bfd_reloc_code_real_type code;
17172
17173 memset (retval, 0, sizeof(retval));
17174 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
17175 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
17176 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
17177 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17178
17179 if (fixp->fx_pcrel)
17180 {
17181 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
17182 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17183 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
17184 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
17185 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17186 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17187 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17188 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17189 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17190 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17191 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
17192
17193 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17194 Relocations want only the symbol offset. */
17195 reloc->addend = fixp->fx_addnumber + reloc->address;
17196 }
17197 else
17198 reloc->addend = fixp->fx_addnumber;
17199
17200 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17201 entry to be used in the relocation's section offset. */
17202 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17203 {
17204 reloc->address = reloc->addend;
17205 reloc->addend = 0;
17206 }
17207
17208 code = fixp->fx_r_type;
17209
17210 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
17211 if (reloc->howto == NULL)
17212 {
17213 as_bad_where (fixp->fx_file, fixp->fx_line,
17214 _("cannot represent %s relocation in this object file"
17215 " format"),
17216 bfd_get_reloc_code_name (code));
17217 retval[0] = NULL;
17218 }
17219
17220 return retval;
17221 }
17222
17223 /* Relax a machine dependent frag. This returns the amount by which
17224 the current size of the frag should change. */
17225
17226 int
17227 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
17228 {
17229 if (RELAX_BRANCH_P (fragp->fr_subtype))
17230 {
17231 offsetT old_var = fragp->fr_var;
17232
17233 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
17234
17235 return fragp->fr_var - old_var;
17236 }
17237
17238 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17239 {
17240 offsetT old_var = fragp->fr_var;
17241 offsetT new_var = 4;
17242
17243 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17244 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17245 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17246 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17247 fragp->fr_var = new_var;
17248
17249 return new_var - old_var;
17250 }
17251
17252 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17253 return 0;
17254
17255 if (mips16_extended_frag (fragp, NULL, stretch))
17256 {
17257 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17258 return 0;
17259 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17260 return 2;
17261 }
17262 else
17263 {
17264 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17265 return 0;
17266 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17267 return -2;
17268 }
17269
17270 return 0;
17271 }
17272
17273 /* Convert a machine dependent frag. */
17274
17275 void
17276 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
17277 {
17278 if (RELAX_BRANCH_P (fragp->fr_subtype))
17279 {
17280 char *buf;
17281 unsigned long insn;
17282 expressionS exp;
17283 fixS *fixp;
17284
17285 buf = fragp->fr_literal + fragp->fr_fix;
17286 insn = read_insn (buf);
17287
17288 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17289 {
17290 /* We generate a fixup instead of applying it right now
17291 because, if there are linker relaxations, we're going to
17292 need the relocations. */
17293 exp.X_op = O_symbol;
17294 exp.X_add_symbol = fragp->fr_symbol;
17295 exp.X_add_number = fragp->fr_offset;
17296
17297 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17298 BFD_RELOC_16_PCREL_S2);
17299 fixp->fx_file = fragp->fr_file;
17300 fixp->fx_line = fragp->fr_line;
17301
17302 buf = write_insn (buf, insn);
17303 }
17304 else
17305 {
17306 int i;
17307
17308 as_warn_where (fragp->fr_file, fragp->fr_line,
17309 _("relaxed out-of-range branch into a jump"));
17310
17311 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
17312 goto uncond;
17313
17314 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17315 {
17316 /* Reverse the branch. */
17317 switch ((insn >> 28) & 0xf)
17318 {
17319 case 4:
17320 if ((insn & 0xff000000) == 0x47000000
17321 || (insn & 0xff600000) == 0x45600000)
17322 {
17323 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
17324 reversed by tweaking bit 23. */
17325 insn ^= 0x00800000;
17326 }
17327 else
17328 {
17329 /* bc[0-3][tf]l? instructions can have the condition
17330 reversed by tweaking a single TF bit, and their
17331 opcodes all have 0x4???????. */
17332 gas_assert ((insn & 0xf3e00000) == 0x41000000);
17333 insn ^= 0x00010000;
17334 }
17335 break;
17336
17337 case 0:
17338 /* bltz 0x04000000 bgez 0x04010000
17339 bltzal 0x04100000 bgezal 0x04110000 */
17340 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
17341 insn ^= 0x00010000;
17342 break;
17343
17344 case 1:
17345 /* beq 0x10000000 bne 0x14000000
17346 blez 0x18000000 bgtz 0x1c000000 */
17347 insn ^= 0x04000000;
17348 break;
17349
17350 default:
17351 abort ();
17352 }
17353 }
17354
17355 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17356 {
17357 /* Clear the and-link bit. */
17358 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
17359
17360 /* bltzal 0x04100000 bgezal 0x04110000
17361 bltzall 0x04120000 bgezall 0x04130000 */
17362 insn &= ~0x00100000;
17363 }
17364
17365 /* Branch over the branch (if the branch was likely) or the
17366 full jump (not likely case). Compute the offset from the
17367 current instruction to branch to. */
17368 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17369 i = 16;
17370 else
17371 {
17372 /* How many bytes in instructions we've already emitted? */
17373 i = buf - fragp->fr_literal - fragp->fr_fix;
17374 /* How many bytes in instructions from here to the end? */
17375 i = fragp->fr_var - i;
17376 }
17377 /* Convert to instruction count. */
17378 i >>= 2;
17379 /* Branch counts from the next instruction. */
17380 i--;
17381 insn |= i;
17382 /* Branch over the jump. */
17383 buf = write_insn (buf, insn);
17384
17385 /* nop */
17386 buf = write_insn (buf, 0);
17387
17388 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17389 {
17390 /* beql $0, $0, 2f */
17391 insn = 0x50000000;
17392 /* Compute the PC offset from the current instruction to
17393 the end of the variable frag. */
17394 /* How many bytes in instructions we've already emitted? */
17395 i = buf - fragp->fr_literal - fragp->fr_fix;
17396 /* How many bytes in instructions from here to the end? */
17397 i = fragp->fr_var - i;
17398 /* Convert to instruction count. */
17399 i >>= 2;
17400 /* Don't decrement i, because we want to branch over the
17401 delay slot. */
17402 insn |= i;
17403
17404 buf = write_insn (buf, insn);
17405 buf = write_insn (buf, 0);
17406 }
17407
17408 uncond:
17409 if (mips_pic == NO_PIC)
17410 {
17411 /* j or jal. */
17412 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
17413 ? 0x0c000000 : 0x08000000);
17414 exp.X_op = O_symbol;
17415 exp.X_add_symbol = fragp->fr_symbol;
17416 exp.X_add_number = fragp->fr_offset;
17417
17418 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17419 FALSE, BFD_RELOC_MIPS_JMP);
17420 fixp->fx_file = fragp->fr_file;
17421 fixp->fx_line = fragp->fr_line;
17422
17423 buf = write_insn (buf, insn);
17424 }
17425 else
17426 {
17427 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
17428
17429 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
17430 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
17431 insn |= at << OP_SH_RT;
17432 exp.X_op = O_symbol;
17433 exp.X_add_symbol = fragp->fr_symbol;
17434 exp.X_add_number = fragp->fr_offset;
17435
17436 if (fragp->fr_offset)
17437 {
17438 exp.X_add_symbol = make_expr_symbol (&exp);
17439 exp.X_add_number = 0;
17440 }
17441
17442 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17443 FALSE, BFD_RELOC_MIPS_GOT16);
17444 fixp->fx_file = fragp->fr_file;
17445 fixp->fx_line = fragp->fr_line;
17446
17447 buf = write_insn (buf, insn);
17448
17449 if (mips_opts.isa == ISA_MIPS1)
17450 /* nop */
17451 buf = write_insn (buf, 0);
17452
17453 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
17454 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
17455 insn |= at << OP_SH_RS | at << OP_SH_RT;
17456
17457 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17458 FALSE, BFD_RELOC_LO16);
17459 fixp->fx_file = fragp->fr_file;
17460 fixp->fx_line = fragp->fr_line;
17461
17462 buf = write_insn (buf, insn);
17463
17464 /* j(al)r $at. */
17465 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17466 insn = 0x0000f809;
17467 else
17468 insn = 0x00000008;
17469 insn |= at << OP_SH_RS;
17470
17471 buf = write_insn (buf, insn);
17472 }
17473 }
17474
17475 fragp->fr_fix += fragp->fr_var;
17476 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17477 return;
17478 }
17479
17480 /* Relax microMIPS branches. */
17481 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17482 {
17483 char *buf = fragp->fr_literal + fragp->fr_fix;
17484 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17485 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17486 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17487 bfd_boolean short_ds;
17488 unsigned long insn;
17489 expressionS exp;
17490 fixS *fixp;
17491
17492 exp.X_op = O_symbol;
17493 exp.X_add_symbol = fragp->fr_symbol;
17494 exp.X_add_number = fragp->fr_offset;
17495
17496 fragp->fr_fix += fragp->fr_var;
17497
17498 /* Handle 16-bit branches that fit or are forced to fit. */
17499 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17500 {
17501 /* We generate a fixup instead of applying it right now,
17502 because if there is linker relaxation, we're going to
17503 need the relocations. */
17504 if (type == 'D')
17505 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
17506 BFD_RELOC_MICROMIPS_10_PCREL_S1);
17507 else if (type == 'E')
17508 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
17509 BFD_RELOC_MICROMIPS_7_PCREL_S1);
17510 else
17511 abort ();
17512
17513 fixp->fx_file = fragp->fr_file;
17514 fixp->fx_line = fragp->fr_line;
17515
17516 /* These relocations can have an addend that won't fit in
17517 2 octets. */
17518 fixp->fx_no_overflow = 1;
17519
17520 return;
17521 }
17522
17523 /* Handle 32-bit branches that fit or are forced to fit. */
17524 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17525 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17526 {
17527 /* We generate a fixup instead of applying it right now,
17528 because if there is linker relaxation, we're going to
17529 need the relocations. */
17530 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17531 BFD_RELOC_MICROMIPS_16_PCREL_S1);
17532 fixp->fx_file = fragp->fr_file;
17533 fixp->fx_line = fragp->fr_line;
17534
17535 if (type == 0)
17536 return;
17537 }
17538
17539 /* Relax 16-bit branches to 32-bit branches. */
17540 if (type != 0)
17541 {
17542 insn = read_compressed_insn (buf, 2);
17543
17544 if ((insn & 0xfc00) == 0xcc00) /* b16 */
17545 insn = 0x94000000; /* beq */
17546 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
17547 {
17548 unsigned long regno;
17549
17550 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
17551 regno = micromips_to_32_reg_d_map [regno];
17552 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
17553 insn |= regno << MICROMIPSOP_SH_RS;
17554 }
17555 else
17556 abort ();
17557
17558 /* Nothing else to do, just write it out. */
17559 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17560 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17561 {
17562 buf = write_compressed_insn (buf, insn, 4);
17563 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17564 return;
17565 }
17566 }
17567 else
17568 insn = read_compressed_insn (buf, 4);
17569
17570 /* Relax 32-bit branches to a sequence of instructions. */
17571 as_warn_where (fragp->fr_file, fragp->fr_line,
17572 _("relaxed out-of-range branch into a jump"));
17573
17574 /* Set the short-delay-slot bit. */
17575 short_ds = al && (insn & 0x02000000) != 0;
17576
17577 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
17578 {
17579 symbolS *l;
17580
17581 /* Reverse the branch. */
17582 if ((insn & 0xfc000000) == 0x94000000 /* beq */
17583 || (insn & 0xfc000000) == 0xb4000000) /* bne */
17584 insn ^= 0x20000000;
17585 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
17586 || (insn & 0xffe00000) == 0x40400000 /* bgez */
17587 || (insn & 0xffe00000) == 0x40800000 /* blez */
17588 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
17589 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
17590 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
17591 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
17592 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
17593 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
17594 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
17595 insn ^= 0x00400000;
17596 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
17597 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
17598 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
17599 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
17600 insn ^= 0x00200000;
17601 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
17602 BNZ.df */
17603 || (insn & 0xff600000) == 0x81600000) /* BZ.V
17604 BNZ.V */
17605 insn ^= 0x00800000;
17606 else
17607 abort ();
17608
17609 if (al)
17610 {
17611 /* Clear the and-link and short-delay-slot bits. */
17612 gas_assert ((insn & 0xfda00000) == 0x40200000);
17613
17614 /* bltzal 0x40200000 bgezal 0x40600000 */
17615 /* bltzals 0x42200000 bgezals 0x42600000 */
17616 insn &= ~0x02200000;
17617 }
17618
17619 /* Make a label at the end for use with the branch. */
17620 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
17621 micromips_label_inc ();
17622 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
17623
17624 /* Refer to it. */
17625 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
17626 BFD_RELOC_MICROMIPS_16_PCREL_S1);
17627 fixp->fx_file = fragp->fr_file;
17628 fixp->fx_line = fragp->fr_line;
17629
17630 /* Branch over the jump. */
17631 buf = write_compressed_insn (buf, insn, 4);
17632 if (!compact)
17633 /* nop */
17634 buf = write_compressed_insn (buf, 0x0c00, 2);
17635 }
17636
17637 if (mips_pic == NO_PIC)
17638 {
17639 unsigned long jal = short_ds ? 0x74000000 : 0xf4000000; /* jal/s */
17640
17641 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
17642 insn = al ? jal : 0xd4000000;
17643
17644 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17645 BFD_RELOC_MICROMIPS_JMP);
17646 fixp->fx_file = fragp->fr_file;
17647 fixp->fx_line = fragp->fr_line;
17648
17649 buf = write_compressed_insn (buf, insn, 4);
17650 if (compact)
17651 /* nop */
17652 buf = write_compressed_insn (buf, 0x0c00, 2);
17653 }
17654 else
17655 {
17656 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
17657 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
17658 unsigned long jr = compact ? 0x45a0 : 0x4580; /* jr/c */
17659
17660 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
17661 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
17662 insn |= at << MICROMIPSOP_SH_RT;
17663
17664 if (exp.X_add_number)
17665 {
17666 exp.X_add_symbol = make_expr_symbol (&exp);
17667 exp.X_add_number = 0;
17668 }
17669
17670 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17671 BFD_RELOC_MICROMIPS_GOT16);
17672 fixp->fx_file = fragp->fr_file;
17673 fixp->fx_line = fragp->fr_line;
17674
17675 buf = write_compressed_insn (buf, insn, 4);
17676
17677 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
17678 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
17679 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
17680
17681 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17682 BFD_RELOC_MICROMIPS_LO16);
17683 fixp->fx_file = fragp->fr_file;
17684 fixp->fx_line = fragp->fr_line;
17685
17686 buf = write_compressed_insn (buf, insn, 4);
17687
17688 /* jr/jrc/jalr/jalrs $at */
17689 insn = al ? jalr : jr;
17690 insn |= at << MICROMIPSOP_SH_MJ;
17691
17692 buf = write_compressed_insn (buf, insn, 2);
17693 }
17694
17695 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17696 return;
17697 }
17698
17699 if (RELAX_MIPS16_P (fragp->fr_subtype))
17700 {
17701 int type;
17702 const struct mips_int_operand *operand;
17703 offsetT val;
17704 char *buf;
17705 unsigned int user_length, length;
17706 unsigned long insn;
17707 bfd_boolean ext;
17708
17709 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17710 operand = mips16_immed_operand (type, FALSE);
17711
17712 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
17713 val = resolve_symbol_value (fragp->fr_symbol);
17714 if (operand->root.type == OP_PCREL)
17715 {
17716 const struct mips_pcrel_operand *pcrel_op;
17717 addressT addr;
17718
17719 pcrel_op = (const struct mips_pcrel_operand *) operand;
17720 addr = fragp->fr_address + fragp->fr_fix;
17721
17722 /* The rules for the base address of a PC relative reloc are
17723 complicated; see mips16_extended_frag. */
17724 if (pcrel_op->include_isa_bit)
17725 {
17726 addr += 2;
17727 if (ext)
17728 addr += 2;
17729 /* Ignore the low bit in the target, since it will be
17730 set for a text label. */
17731 val &= -2;
17732 }
17733 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17734 addr -= 4;
17735 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17736 addr -= 2;
17737
17738 addr &= -(1 << pcrel_op->align_log2);
17739 val -= addr;
17740
17741 /* Make sure the section winds up with the alignment we have
17742 assumed. */
17743 if (operand->shift > 0)
17744 record_alignment (asec, operand->shift);
17745 }
17746
17747 if (ext
17748 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
17749 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
17750 as_warn_where (fragp->fr_file, fragp->fr_line,
17751 _("extended instruction in delay slot"));
17752
17753 buf = fragp->fr_literal + fragp->fr_fix;
17754
17755 insn = read_compressed_insn (buf, 2);
17756 if (ext)
17757 insn |= MIPS16_EXTEND;
17758
17759 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17760 user_length = 4;
17761 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17762 user_length = 2;
17763 else
17764 user_length = 0;
17765
17766 mips16_immed (fragp->fr_file, fragp->fr_line, type,
17767 BFD_RELOC_UNUSED, val, user_length, &insn);
17768
17769 length = (ext ? 4 : 2);
17770 gas_assert (mips16_opcode_length (insn) == length);
17771 write_compressed_insn (buf, insn, length);
17772 fragp->fr_fix += length;
17773 }
17774 else
17775 {
17776 relax_substateT subtype = fragp->fr_subtype;
17777 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
17778 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
17779 int first, second;
17780 fixS *fixp;
17781
17782 first = RELAX_FIRST (subtype);
17783 second = RELAX_SECOND (subtype);
17784 fixp = (fixS *) fragp->fr_opcode;
17785
17786 /* If the delay slot chosen does not match the size of the instruction,
17787 then emit a warning. */
17788 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
17789 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
17790 {
17791 relax_substateT s;
17792 const char *msg;
17793
17794 s = subtype & (RELAX_DELAY_SLOT_16BIT
17795 | RELAX_DELAY_SLOT_SIZE_FIRST
17796 | RELAX_DELAY_SLOT_SIZE_SECOND);
17797 msg = macro_warning (s);
17798 if (msg != NULL)
17799 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
17800 subtype &= ~s;
17801 }
17802
17803 /* Possibly emit a warning if we've chosen the longer option. */
17804 if (use_second == second_longer)
17805 {
17806 relax_substateT s;
17807 const char *msg;
17808
17809 s = (subtype
17810 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
17811 msg = macro_warning (s);
17812 if (msg != NULL)
17813 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
17814 subtype &= ~s;
17815 }
17816
17817 /* Go through all the fixups for the first sequence. Disable them
17818 (by marking them as done) if we're going to use the second
17819 sequence instead. */
17820 while (fixp
17821 && fixp->fx_frag == fragp
17822 && fixp->fx_where < fragp->fr_fix - second)
17823 {
17824 if (subtype & RELAX_USE_SECOND)
17825 fixp->fx_done = 1;
17826 fixp = fixp->fx_next;
17827 }
17828
17829 /* Go through the fixups for the second sequence. Disable them if
17830 we're going to use the first sequence, otherwise adjust their
17831 addresses to account for the relaxation. */
17832 while (fixp && fixp->fx_frag == fragp)
17833 {
17834 if (subtype & RELAX_USE_SECOND)
17835 fixp->fx_where -= first;
17836 else
17837 fixp->fx_done = 1;
17838 fixp = fixp->fx_next;
17839 }
17840
17841 /* Now modify the frag contents. */
17842 if (subtype & RELAX_USE_SECOND)
17843 {
17844 char *start;
17845
17846 start = fragp->fr_literal + fragp->fr_fix - first - second;
17847 memmove (start, start + first, second);
17848 fragp->fr_fix -= first;
17849 }
17850 else
17851 fragp->fr_fix -= second;
17852 }
17853 }
17854
17855 /* This function is called after the relocs have been generated.
17856 We've been storing mips16 text labels as odd. Here we convert them
17857 back to even for the convenience of the debugger. */
17858
17859 void
17860 mips_frob_file_after_relocs (void)
17861 {
17862 asymbol **syms;
17863 unsigned int count, i;
17864
17865 syms = bfd_get_outsymbols (stdoutput);
17866 count = bfd_get_symcount (stdoutput);
17867 for (i = 0; i < count; i++, syms++)
17868 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
17869 && ((*syms)->value & 1) != 0)
17870 {
17871 (*syms)->value &= ~1;
17872 /* If the symbol has an odd size, it was probably computed
17873 incorrectly, so adjust that as well. */
17874 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
17875 ++elf_symbol (*syms)->internal_elf_sym.st_size;
17876 }
17877 }
17878
17879 /* This function is called whenever a label is defined, including fake
17880 labels instantiated off the dot special symbol. It is used when
17881 handling branch delays; if a branch has a label, we assume we cannot
17882 move it. This also bumps the value of the symbol by 1 in compressed
17883 code. */
17884
17885 static void
17886 mips_record_label (symbolS *sym)
17887 {
17888 segment_info_type *si = seg_info (now_seg);
17889 struct insn_label_list *l;
17890
17891 if (free_insn_labels == NULL)
17892 l = (struct insn_label_list *) xmalloc (sizeof *l);
17893 else
17894 {
17895 l = free_insn_labels;
17896 free_insn_labels = l->next;
17897 }
17898
17899 l->label = sym;
17900 l->next = si->label_list;
17901 si->label_list = l;
17902 }
17903
17904 /* This function is called as tc_frob_label() whenever a label is defined
17905 and adds a DWARF-2 record we only want for true labels. */
17906
17907 void
17908 mips_define_label (symbolS *sym)
17909 {
17910 mips_record_label (sym);
17911 dwarf2_emit_label (sym);
17912 }
17913
17914 /* This function is called by tc_new_dot_label whenever a new dot symbol
17915 is defined. */
17916
17917 void
17918 mips_add_dot_label (symbolS *sym)
17919 {
17920 mips_record_label (sym);
17921 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
17922 mips_compressed_mark_label (sym);
17923 }
17924 \f
17925 /* Converting ASE flags from internal to .MIPS.abiflags values. */
17926 static unsigned int
17927 mips_convert_ase_flags (int ase)
17928 {
17929 unsigned int ext_ases = 0;
17930
17931 if (ase & ASE_DSP)
17932 ext_ases |= AFL_ASE_DSP;
17933 if (ase & ASE_DSPR2)
17934 ext_ases |= AFL_ASE_DSPR2;
17935 if (ase & ASE_EVA)
17936 ext_ases |= AFL_ASE_EVA;
17937 if (ase & ASE_MCU)
17938 ext_ases |= AFL_ASE_MCU;
17939 if (ase & ASE_MDMX)
17940 ext_ases |= AFL_ASE_MDMX;
17941 if (ase & ASE_MIPS3D)
17942 ext_ases |= AFL_ASE_MIPS3D;
17943 if (ase & ASE_MT)
17944 ext_ases |= AFL_ASE_MT;
17945 if (ase & ASE_SMARTMIPS)
17946 ext_ases |= AFL_ASE_SMARTMIPS;
17947 if (ase & ASE_VIRT)
17948 ext_ases |= AFL_ASE_VIRT;
17949 if (ase & ASE_MSA)
17950 ext_ases |= AFL_ASE_MSA;
17951 if (ase & ASE_XPA)
17952 ext_ases |= AFL_ASE_XPA;
17953
17954 return ext_ases;
17955 }
17956 /* Some special processing for a MIPS ELF file. */
17957
17958 void
17959 mips_elf_final_processing (void)
17960 {
17961 int fpabi;
17962 Elf_Internal_ABIFlags_v0 flags;
17963
17964 flags.version = 0;
17965 flags.isa_rev = 0;
17966 switch (file_mips_opts.isa)
17967 {
17968 case INSN_ISA1:
17969 flags.isa_level = 1;
17970 break;
17971 case INSN_ISA2:
17972 flags.isa_level = 2;
17973 break;
17974 case INSN_ISA3:
17975 flags.isa_level = 3;
17976 break;
17977 case INSN_ISA4:
17978 flags.isa_level = 4;
17979 break;
17980 case INSN_ISA5:
17981 flags.isa_level = 5;
17982 break;
17983 case INSN_ISA32:
17984 flags.isa_level = 32;
17985 flags.isa_rev = 1;
17986 break;
17987 case INSN_ISA32R2:
17988 flags.isa_level = 32;
17989 flags.isa_rev = 2;
17990 break;
17991 case INSN_ISA32R3:
17992 flags.isa_level = 32;
17993 flags.isa_rev = 3;
17994 break;
17995 case INSN_ISA32R5:
17996 flags.isa_level = 32;
17997 flags.isa_rev = 5;
17998 break;
17999 case INSN_ISA32R6:
18000 flags.isa_level = 32;
18001 flags.isa_rev = 6;
18002 break;
18003 case INSN_ISA64:
18004 flags.isa_level = 64;
18005 flags.isa_rev = 1;
18006 break;
18007 case INSN_ISA64R2:
18008 flags.isa_level = 64;
18009 flags.isa_rev = 2;
18010 break;
18011 case INSN_ISA64R3:
18012 flags.isa_level = 64;
18013 flags.isa_rev = 3;
18014 break;
18015 case INSN_ISA64R5:
18016 flags.isa_level = 64;
18017 flags.isa_rev = 5;
18018 break;
18019 case INSN_ISA64R6:
18020 flags.isa_level = 64;
18021 flags.isa_rev = 6;
18022 break;
18023 }
18024
18025 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
18026 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
18027 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
18028 : (file_mips_opts.fp == 64) ? AFL_REG_64
18029 : AFL_REG_32;
18030 flags.cpr2_size = AFL_REG_NONE;
18031 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18032 Tag_GNU_MIPS_ABI_FP);
18033 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
18034 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
18035 if (file_ase_mips16)
18036 flags.ases |= AFL_ASE_MIPS16;
18037 if (file_ase_micromips)
18038 flags.ases |= AFL_ASE_MICROMIPS;
18039 flags.flags1 = 0;
18040 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
18041 || file_mips_opts.fp == 64)
18042 && file_mips_opts.oddspreg)
18043 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
18044 flags.flags2 = 0;
18045
18046 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
18047 ((Elf_External_ABIFlags_v0 *)
18048 mips_flags_frag));
18049
18050 /* Write out the register information. */
18051 if (mips_abi != N64_ABI)
18052 {
18053 Elf32_RegInfo s;
18054
18055 s.ri_gprmask = mips_gprmask;
18056 s.ri_cprmask[0] = mips_cprmask[0];
18057 s.ri_cprmask[1] = mips_cprmask[1];
18058 s.ri_cprmask[2] = mips_cprmask[2];
18059 s.ri_cprmask[3] = mips_cprmask[3];
18060 /* The gp_value field is set by the MIPS ELF backend. */
18061
18062 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18063 ((Elf32_External_RegInfo *)
18064 mips_regmask_frag));
18065 }
18066 else
18067 {
18068 Elf64_Internal_RegInfo s;
18069
18070 s.ri_gprmask = mips_gprmask;
18071 s.ri_pad = 0;
18072 s.ri_cprmask[0] = mips_cprmask[0];
18073 s.ri_cprmask[1] = mips_cprmask[1];
18074 s.ri_cprmask[2] = mips_cprmask[2];
18075 s.ri_cprmask[3] = mips_cprmask[3];
18076 /* The gp_value field is set by the MIPS ELF backend. */
18077
18078 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18079 ((Elf64_External_RegInfo *)
18080 mips_regmask_frag));
18081 }
18082
18083 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18084 sort of BFD interface for this. */
18085 if (mips_any_noreorder)
18086 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18087 if (mips_pic != NO_PIC)
18088 {
18089 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
18090 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18091 }
18092 if (mips_abicalls)
18093 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18094
18095 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18096 defined at present; this might need to change in future. */
18097 if (file_ase_mips16)
18098 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
18099 if (file_ase_micromips)
18100 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
18101 if (file_mips_opts.ase & ASE_MDMX)
18102 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
18103
18104 /* Set the MIPS ELF ABI flags. */
18105 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
18106 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
18107 else if (mips_abi == O64_ABI)
18108 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
18109 else if (mips_abi == EABI_ABI)
18110 {
18111 if (file_mips_opts.gp == 64)
18112 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18113 else
18114 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18115 }
18116 else if (mips_abi == N32_ABI)
18117 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18118
18119 /* Nothing to do for N64_ABI. */
18120
18121 if (mips_32bitmode)
18122 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
18123
18124 if (mips_nan2008 == 1)
18125 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
18126
18127 /* 32 bit code with 64 bit FP registers. */
18128 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18129 Tag_GNU_MIPS_ABI_FP);
18130 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
18131 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
18132 }
18133 \f
18134 typedef struct proc {
18135 symbolS *func_sym;
18136 symbolS *func_end_sym;
18137 unsigned long reg_mask;
18138 unsigned long reg_offset;
18139 unsigned long fpreg_mask;
18140 unsigned long fpreg_offset;
18141 unsigned long frame_offset;
18142 unsigned long frame_reg;
18143 unsigned long pc_reg;
18144 } procS;
18145
18146 static procS cur_proc;
18147 static procS *cur_proc_ptr;
18148 static int numprocs;
18149
18150 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18151 as "2", and a normal nop as "0". */
18152
18153 #define NOP_OPCODE_MIPS 0
18154 #define NOP_OPCODE_MIPS16 1
18155 #define NOP_OPCODE_MICROMIPS 2
18156
18157 char
18158 mips_nop_opcode (void)
18159 {
18160 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18161 return NOP_OPCODE_MICROMIPS;
18162 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18163 return NOP_OPCODE_MIPS16;
18164 else
18165 return NOP_OPCODE_MIPS;
18166 }
18167
18168 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18169 32-bit microMIPS NOPs here (if applicable). */
18170
18171 void
18172 mips_handle_align (fragS *fragp)
18173 {
18174 char nop_opcode;
18175 char *p;
18176 int bytes, size, excess;
18177 valueT opcode;
18178
18179 if (fragp->fr_type != rs_align_code)
18180 return;
18181
18182 p = fragp->fr_literal + fragp->fr_fix;
18183 nop_opcode = *p;
18184 switch (nop_opcode)
18185 {
18186 case NOP_OPCODE_MICROMIPS:
18187 opcode = micromips_nop32_insn.insn_opcode;
18188 size = 4;
18189 break;
18190 case NOP_OPCODE_MIPS16:
18191 opcode = mips16_nop_insn.insn_opcode;
18192 size = 2;
18193 break;
18194 case NOP_OPCODE_MIPS:
18195 default:
18196 opcode = nop_insn.insn_opcode;
18197 size = 4;
18198 break;
18199 }
18200
18201 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18202 excess = bytes % size;
18203
18204 /* Handle the leading part if we're not inserting a whole number of
18205 instructions, and make it the end of the fixed part of the frag.
18206 Try to fit in a short microMIPS NOP if applicable and possible,
18207 and use zeroes otherwise. */
18208 gas_assert (excess < 4);
18209 fragp->fr_fix += excess;
18210 switch (excess)
18211 {
18212 case 3:
18213 *p++ = '\0';
18214 /* Fall through. */
18215 case 2:
18216 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
18217 {
18218 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
18219 break;
18220 }
18221 *p++ = '\0';
18222 /* Fall through. */
18223 case 1:
18224 *p++ = '\0';
18225 /* Fall through. */
18226 case 0:
18227 break;
18228 }
18229
18230 md_number_to_chars (p, opcode, size);
18231 fragp->fr_var = size;
18232 }
18233
18234 static long
18235 get_number (void)
18236 {
18237 int negative = 0;
18238 long val = 0;
18239
18240 if (*input_line_pointer == '-')
18241 {
18242 ++input_line_pointer;
18243 negative = 1;
18244 }
18245 if (!ISDIGIT (*input_line_pointer))
18246 as_bad (_("expected simple number"));
18247 if (input_line_pointer[0] == '0')
18248 {
18249 if (input_line_pointer[1] == 'x')
18250 {
18251 input_line_pointer += 2;
18252 while (ISXDIGIT (*input_line_pointer))
18253 {
18254 val <<= 4;
18255 val |= hex_value (*input_line_pointer++);
18256 }
18257 return negative ? -val : val;
18258 }
18259 else
18260 {
18261 ++input_line_pointer;
18262 while (ISDIGIT (*input_line_pointer))
18263 {
18264 val <<= 3;
18265 val |= *input_line_pointer++ - '0';
18266 }
18267 return negative ? -val : val;
18268 }
18269 }
18270 if (!ISDIGIT (*input_line_pointer))
18271 {
18272 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18273 *input_line_pointer, *input_line_pointer);
18274 as_warn (_("invalid number"));
18275 return -1;
18276 }
18277 while (ISDIGIT (*input_line_pointer))
18278 {
18279 val *= 10;
18280 val += *input_line_pointer++ - '0';
18281 }
18282 return negative ? -val : val;
18283 }
18284
18285 /* The .file directive; just like the usual .file directive, but there
18286 is an initial number which is the ECOFF file index. In the non-ECOFF
18287 case .file implies DWARF-2. */
18288
18289 static void
18290 s_mips_file (int x ATTRIBUTE_UNUSED)
18291 {
18292 static int first_file_directive = 0;
18293
18294 if (ECOFF_DEBUGGING)
18295 {
18296 get_number ();
18297 s_app_file (0);
18298 }
18299 else
18300 {
18301 char *filename;
18302
18303 filename = dwarf2_directive_file (0);
18304
18305 /* Versions of GCC up to 3.1 start files with a ".file"
18306 directive even for stabs output. Make sure that this
18307 ".file" is handled. Note that you need a version of GCC
18308 after 3.1 in order to support DWARF-2 on MIPS. */
18309 if (filename != NULL && ! first_file_directive)
18310 {
18311 (void) new_logical_line (filename, -1);
18312 s_app_file_string (filename, 0);
18313 }
18314 first_file_directive = 1;
18315 }
18316 }
18317
18318 /* The .loc directive, implying DWARF-2. */
18319
18320 static void
18321 s_mips_loc (int x ATTRIBUTE_UNUSED)
18322 {
18323 if (!ECOFF_DEBUGGING)
18324 dwarf2_directive_loc (0);
18325 }
18326
18327 /* The .end directive. */
18328
18329 static void
18330 s_mips_end (int x ATTRIBUTE_UNUSED)
18331 {
18332 symbolS *p;
18333
18334 /* Following functions need their own .frame and .cprestore directives. */
18335 mips_frame_reg_valid = 0;
18336 mips_cprestore_valid = 0;
18337
18338 if (!is_end_of_line[(unsigned char) *input_line_pointer])
18339 {
18340 p = get_symbol ();
18341 demand_empty_rest_of_line ();
18342 }
18343 else
18344 p = NULL;
18345
18346 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18347 as_warn (_(".end not in text section"));
18348
18349 if (!cur_proc_ptr)
18350 {
18351 as_warn (_(".end directive without a preceding .ent directive"));
18352 demand_empty_rest_of_line ();
18353 return;
18354 }
18355
18356 if (p != NULL)
18357 {
18358 gas_assert (S_GET_NAME (p));
18359 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
18360 as_warn (_(".end symbol does not match .ent symbol"));
18361
18362 if (debug_type == DEBUG_STABS)
18363 stabs_generate_asm_endfunc (S_GET_NAME (p),
18364 S_GET_NAME (p));
18365 }
18366 else
18367 as_warn (_(".end directive missing or unknown symbol"));
18368
18369 /* Create an expression to calculate the size of the function. */
18370 if (p && cur_proc_ptr)
18371 {
18372 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
18373 expressionS *exp = xmalloc (sizeof (expressionS));
18374
18375 obj->size = exp;
18376 exp->X_op = O_subtract;
18377 exp->X_add_symbol = symbol_temp_new_now ();
18378 exp->X_op_symbol = p;
18379 exp->X_add_number = 0;
18380
18381 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
18382 }
18383
18384 /* Generate a .pdr section. */
18385 if (!ECOFF_DEBUGGING && mips_flag_pdr)
18386 {
18387 segT saved_seg = now_seg;
18388 subsegT saved_subseg = now_subseg;
18389 expressionS exp;
18390 char *fragp;
18391
18392 #ifdef md_flush_pending_output
18393 md_flush_pending_output ();
18394 #endif
18395
18396 gas_assert (pdr_seg);
18397 subseg_set (pdr_seg, 0);
18398
18399 /* Write the symbol. */
18400 exp.X_op = O_symbol;
18401 exp.X_add_symbol = p;
18402 exp.X_add_number = 0;
18403 emit_expr (&exp, 4);
18404
18405 fragp = frag_more (7 * 4);
18406
18407 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
18408 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
18409 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
18410 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
18411 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
18412 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
18413 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
18414
18415 subseg_set (saved_seg, saved_subseg);
18416 }
18417
18418 cur_proc_ptr = NULL;
18419 }
18420
18421 /* The .aent and .ent directives. */
18422
18423 static void
18424 s_mips_ent (int aent)
18425 {
18426 symbolS *symbolP;
18427
18428 symbolP = get_symbol ();
18429 if (*input_line_pointer == ',')
18430 ++input_line_pointer;
18431 SKIP_WHITESPACE ();
18432 if (ISDIGIT (*input_line_pointer)
18433 || *input_line_pointer == '-')
18434 get_number ();
18435
18436 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18437 as_warn (_(".ent or .aent not in text section"));
18438
18439 if (!aent && cur_proc_ptr)
18440 as_warn (_("missing .end"));
18441
18442 if (!aent)
18443 {
18444 /* This function needs its own .frame and .cprestore directives. */
18445 mips_frame_reg_valid = 0;
18446 mips_cprestore_valid = 0;
18447
18448 cur_proc_ptr = &cur_proc;
18449 memset (cur_proc_ptr, '\0', sizeof (procS));
18450
18451 cur_proc_ptr->func_sym = symbolP;
18452
18453 ++numprocs;
18454
18455 if (debug_type == DEBUG_STABS)
18456 stabs_generate_asm_func (S_GET_NAME (symbolP),
18457 S_GET_NAME (symbolP));
18458 }
18459
18460 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
18461
18462 demand_empty_rest_of_line ();
18463 }
18464
18465 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
18466 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
18467 s_mips_frame is used so that we can set the PDR information correctly.
18468 We can't use the ecoff routines because they make reference to the ecoff
18469 symbol table (in the mdebug section). */
18470
18471 static void
18472 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
18473 {
18474 if (ECOFF_DEBUGGING)
18475 s_ignore (ignore);
18476 else
18477 {
18478 long val;
18479
18480 if (cur_proc_ptr == (procS *) NULL)
18481 {
18482 as_warn (_(".frame outside of .ent"));
18483 demand_empty_rest_of_line ();
18484 return;
18485 }
18486
18487 cur_proc_ptr->frame_reg = tc_get_register (1);
18488
18489 SKIP_WHITESPACE ();
18490 if (*input_line_pointer++ != ','
18491 || get_absolute_expression_and_terminator (&val) != ',')
18492 {
18493 as_warn (_("bad .frame directive"));
18494 --input_line_pointer;
18495 demand_empty_rest_of_line ();
18496 return;
18497 }
18498
18499 cur_proc_ptr->frame_offset = val;
18500 cur_proc_ptr->pc_reg = tc_get_register (0);
18501
18502 demand_empty_rest_of_line ();
18503 }
18504 }
18505
18506 /* The .fmask and .mask directives. If the mdebug section is present
18507 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
18508 embedded targets, s_mips_mask is used so that we can set the PDR
18509 information correctly. We can't use the ecoff routines because they
18510 make reference to the ecoff symbol table (in the mdebug section). */
18511
18512 static void
18513 s_mips_mask (int reg_type)
18514 {
18515 if (ECOFF_DEBUGGING)
18516 s_ignore (reg_type);
18517 else
18518 {
18519 long mask, off;
18520
18521 if (cur_proc_ptr == (procS *) NULL)
18522 {
18523 as_warn (_(".mask/.fmask outside of .ent"));
18524 demand_empty_rest_of_line ();
18525 return;
18526 }
18527
18528 if (get_absolute_expression_and_terminator (&mask) != ',')
18529 {
18530 as_warn (_("bad .mask/.fmask directive"));
18531 --input_line_pointer;
18532 demand_empty_rest_of_line ();
18533 return;
18534 }
18535
18536 off = get_absolute_expression ();
18537
18538 if (reg_type == 'F')
18539 {
18540 cur_proc_ptr->fpreg_mask = mask;
18541 cur_proc_ptr->fpreg_offset = off;
18542 }
18543 else
18544 {
18545 cur_proc_ptr->reg_mask = mask;
18546 cur_proc_ptr->reg_offset = off;
18547 }
18548
18549 demand_empty_rest_of_line ();
18550 }
18551 }
18552
18553 /* A table describing all the processors gas knows about. Names are
18554 matched in the order listed.
18555
18556 To ease comparison, please keep this table in the same order as
18557 gcc's mips_cpu_info_table[]. */
18558 static const struct mips_cpu_info mips_cpu_info_table[] =
18559 {
18560 /* Entries for generic ISAs */
18561 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
18562 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
18563 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
18564 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
18565 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
18566 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
18567 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18568 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
18569 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
18570 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
18571 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
18572 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
18573 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
18574 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
18575 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
18576
18577 /* MIPS I */
18578 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
18579 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
18580 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
18581
18582 /* MIPS II */
18583 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
18584
18585 /* MIPS III */
18586 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
18587 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
18588 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
18589 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
18590 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
18591 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
18592 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
18593 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
18594 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
18595 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
18596 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
18597 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
18598 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
18599 /* ST Microelectronics Loongson 2E and 2F cores */
18600 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
18601 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
18602
18603 /* MIPS IV */
18604 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
18605 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
18606 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
18607 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
18608 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
18609 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
18610 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
18611 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
18612 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
18613 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
18614 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
18615 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
18616 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
18617 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
18618 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
18619
18620 /* MIPS 32 */
18621 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18622 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18623 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18624 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
18625
18626 /* MIPS 32 Release 2 */
18627 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18628 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18629 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18630 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
18631 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18632 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18633 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18634 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18635 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18636 ISA_MIPS32R2, CPU_MIPS32R2 },
18637 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18638 ISA_MIPS32R2, CPU_MIPS32R2 },
18639 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18640 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18641 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18642 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18643 /* Deprecated forms of the above. */
18644 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18645 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18646 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
18647 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18648 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18649 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18650 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18651 /* Deprecated forms of the above. */
18652 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18653 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18654 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
18655 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18656 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18657 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18658 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18659 /* Deprecated forms of the above. */
18660 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18661 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18662 /* 34Kn is a 34kc without DSP. */
18663 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18664 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
18665 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18666 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18667 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18668 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18669 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18670 /* Deprecated forms of the above. */
18671 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18672 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18673 /* 1004K cores are multiprocessor versions of the 34K. */
18674 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18675 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18676 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18677 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18678 /* interaptiv is the new name for 1004kf */
18679 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18680 /* M5100 family */
18681 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
18682 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
18683 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
18684 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
18685
18686 /* MIPS 64 */
18687 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18688 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18689 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
18690 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
18691
18692 /* Broadcom SB-1 CPU core */
18693 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
18694 /* Broadcom SB-1A CPU core */
18695 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
18696
18697 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
18698
18699 /* MIPS 64 Release 2 */
18700
18701 /* Cavium Networks Octeon CPU core */
18702 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
18703 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
18704 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
18705 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
18706
18707 /* RMI Xlr */
18708 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
18709
18710 /* Broadcom XLP.
18711 XLP is mostly like XLR, with the prominent exception that it is
18712 MIPS64R2 rather than MIPS64. */
18713 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
18714
18715 /* i6400. */
18716 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
18717
18718 /* End marker */
18719 { NULL, 0, 0, 0, 0 }
18720 };
18721
18722
18723 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
18724 with a final "000" replaced by "k". Ignore case.
18725
18726 Note: this function is shared between GCC and GAS. */
18727
18728 static bfd_boolean
18729 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
18730 {
18731 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
18732 given++, canonical++;
18733
18734 return ((*given == 0 && *canonical == 0)
18735 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
18736 }
18737
18738
18739 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
18740 CPU name. We've traditionally allowed a lot of variation here.
18741
18742 Note: this function is shared between GCC and GAS. */
18743
18744 static bfd_boolean
18745 mips_matching_cpu_name_p (const char *canonical, const char *given)
18746 {
18747 /* First see if the name matches exactly, or with a final "000"
18748 turned into "k". */
18749 if (mips_strict_matching_cpu_name_p (canonical, given))
18750 return TRUE;
18751
18752 /* If not, try comparing based on numerical designation alone.
18753 See if GIVEN is an unadorned number, or 'r' followed by a number. */
18754 if (TOLOWER (*given) == 'r')
18755 given++;
18756 if (!ISDIGIT (*given))
18757 return FALSE;
18758
18759 /* Skip over some well-known prefixes in the canonical name,
18760 hoping to find a number there too. */
18761 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
18762 canonical += 2;
18763 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
18764 canonical += 2;
18765 else if (TOLOWER (canonical[0]) == 'r')
18766 canonical += 1;
18767
18768 return mips_strict_matching_cpu_name_p (canonical, given);
18769 }
18770
18771
18772 /* Parse an option that takes the name of a processor as its argument.
18773 OPTION is the name of the option and CPU_STRING is the argument.
18774 Return the corresponding processor enumeration if the CPU_STRING is
18775 recognized, otherwise report an error and return null.
18776
18777 A similar function exists in GCC. */
18778
18779 static const struct mips_cpu_info *
18780 mips_parse_cpu (const char *option, const char *cpu_string)
18781 {
18782 const struct mips_cpu_info *p;
18783
18784 /* 'from-abi' selects the most compatible architecture for the given
18785 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
18786 EABIs, we have to decide whether we're using the 32-bit or 64-bit
18787 version. Look first at the -mgp options, if given, otherwise base
18788 the choice on MIPS_DEFAULT_64BIT.
18789
18790 Treat NO_ABI like the EABIs. One reason to do this is that the
18791 plain 'mips' and 'mips64' configs have 'from-abi' as their default
18792 architecture. This code picks MIPS I for 'mips' and MIPS III for
18793 'mips64', just as we did in the days before 'from-abi'. */
18794 if (strcasecmp (cpu_string, "from-abi") == 0)
18795 {
18796 if (ABI_NEEDS_32BIT_REGS (mips_abi))
18797 return mips_cpu_info_from_isa (ISA_MIPS1);
18798
18799 if (ABI_NEEDS_64BIT_REGS (mips_abi))
18800 return mips_cpu_info_from_isa (ISA_MIPS3);
18801
18802 if (file_mips_opts.gp >= 0)
18803 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
18804 ? ISA_MIPS1 : ISA_MIPS3);
18805
18806 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
18807 ? ISA_MIPS3
18808 : ISA_MIPS1);
18809 }
18810
18811 /* 'default' has traditionally been a no-op. Probably not very useful. */
18812 if (strcasecmp (cpu_string, "default") == 0)
18813 return 0;
18814
18815 for (p = mips_cpu_info_table; p->name != 0; p++)
18816 if (mips_matching_cpu_name_p (p->name, cpu_string))
18817 return p;
18818
18819 as_bad (_("bad value (%s) for %s"), cpu_string, option);
18820 return 0;
18821 }
18822
18823 /* Return the canonical processor information for ISA (a member of the
18824 ISA_MIPS* enumeration). */
18825
18826 static const struct mips_cpu_info *
18827 mips_cpu_info_from_isa (int isa)
18828 {
18829 int i;
18830
18831 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18832 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
18833 && isa == mips_cpu_info_table[i].isa)
18834 return (&mips_cpu_info_table[i]);
18835
18836 return NULL;
18837 }
18838
18839 static const struct mips_cpu_info *
18840 mips_cpu_info_from_arch (int arch)
18841 {
18842 int i;
18843
18844 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18845 if (arch == mips_cpu_info_table[i].cpu)
18846 return (&mips_cpu_info_table[i]);
18847
18848 return NULL;
18849 }
18850 \f
18851 static void
18852 show (FILE *stream, const char *string, int *col_p, int *first_p)
18853 {
18854 if (*first_p)
18855 {
18856 fprintf (stream, "%24s", "");
18857 *col_p = 24;
18858 }
18859 else
18860 {
18861 fprintf (stream, ", ");
18862 *col_p += 2;
18863 }
18864
18865 if (*col_p + strlen (string) > 72)
18866 {
18867 fprintf (stream, "\n%24s", "");
18868 *col_p = 24;
18869 }
18870
18871 fprintf (stream, "%s", string);
18872 *col_p += strlen (string);
18873
18874 *first_p = 0;
18875 }
18876
18877 void
18878 md_show_usage (FILE *stream)
18879 {
18880 int column, first;
18881 size_t i;
18882
18883 fprintf (stream, _("\
18884 MIPS options:\n\
18885 -EB generate big endian output\n\
18886 -EL generate little endian output\n\
18887 -g, -g2 do not remove unneeded NOPs or swap branches\n\
18888 -G NUM allow referencing objects up to NUM bytes\n\
18889 implicitly with the gp register [default 8]\n"));
18890 fprintf (stream, _("\
18891 -mips1 generate MIPS ISA I instructions\n\
18892 -mips2 generate MIPS ISA II instructions\n\
18893 -mips3 generate MIPS ISA III instructions\n\
18894 -mips4 generate MIPS ISA IV instructions\n\
18895 -mips5 generate MIPS ISA V instructions\n\
18896 -mips32 generate MIPS32 ISA instructions\n\
18897 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
18898 -mips32r3 generate MIPS32 release 3 ISA instructions\n\
18899 -mips32r5 generate MIPS32 release 5 ISA instructions\n\
18900 -mips32r6 generate MIPS32 release 6 ISA instructions\n\
18901 -mips64 generate MIPS64 ISA instructions\n\
18902 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
18903 -mips64r3 generate MIPS64 release 3 ISA instructions\n\
18904 -mips64r5 generate MIPS64 release 5 ISA instructions\n\
18905 -mips64r6 generate MIPS64 release 6 ISA instructions\n\
18906 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
18907
18908 first = 1;
18909
18910 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18911 show (stream, mips_cpu_info_table[i].name, &column, &first);
18912 show (stream, "from-abi", &column, &first);
18913 fputc ('\n', stream);
18914
18915 fprintf (stream, _("\
18916 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
18917 -no-mCPU don't generate code specific to CPU.\n\
18918 For -mCPU and -no-mCPU, CPU must be one of:\n"));
18919
18920 first = 1;
18921
18922 show (stream, "3900", &column, &first);
18923 show (stream, "4010", &column, &first);
18924 show (stream, "4100", &column, &first);
18925 show (stream, "4650", &column, &first);
18926 fputc ('\n', stream);
18927
18928 fprintf (stream, _("\
18929 -mips16 generate mips16 instructions\n\
18930 -no-mips16 do not generate mips16 instructions\n"));
18931 fprintf (stream, _("\
18932 -mmicromips generate microMIPS instructions\n\
18933 -mno-micromips do not generate microMIPS instructions\n"));
18934 fprintf (stream, _("\
18935 -msmartmips generate smartmips instructions\n\
18936 -mno-smartmips do not generate smartmips instructions\n"));
18937 fprintf (stream, _("\
18938 -mdsp generate DSP instructions\n\
18939 -mno-dsp do not generate DSP instructions\n"));
18940 fprintf (stream, _("\
18941 -mdspr2 generate DSP R2 instructions\n\
18942 -mno-dspr2 do not generate DSP R2 instructions\n"));
18943 fprintf (stream, _("\
18944 -mmt generate MT instructions\n\
18945 -mno-mt do not generate MT instructions\n"));
18946 fprintf (stream, _("\
18947 -mmcu generate MCU instructions\n\
18948 -mno-mcu do not generate MCU instructions\n"));
18949 fprintf (stream, _("\
18950 -mmsa generate MSA instructions\n\
18951 -mno-msa do not generate MSA instructions\n"));
18952 fprintf (stream, _("\
18953 -mxpa generate eXtended Physical Address (XPA) instructions\n\
18954 -mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
18955 fprintf (stream, _("\
18956 -mvirt generate Virtualization instructions\n\
18957 -mno-virt do not generate Virtualization instructions\n"));
18958 fprintf (stream, _("\
18959 -minsn32 only generate 32-bit microMIPS instructions\n\
18960 -mno-insn32 generate all microMIPS instructions\n"));
18961 fprintf (stream, _("\
18962 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
18963 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
18964 -mfix-vr4120 work around certain VR4120 errata\n\
18965 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
18966 -mfix-24k insert a nop after ERET and DERET instructions\n\
18967 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
18968 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
18969 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
18970 -msym32 assume all symbols have 32-bit values\n\
18971 -O0 remove unneeded NOPs, do not swap branches\n\
18972 -O remove unneeded NOPs and swap branches\n\
18973 --trap, --no-break trap exception on div by 0 and mult overflow\n\
18974 --break, --no-trap break exception on div by 0 and mult overflow\n"));
18975 fprintf (stream, _("\
18976 -mhard-float allow floating-point instructions\n\
18977 -msoft-float do not allow floating-point instructions\n\
18978 -msingle-float only allow 32-bit floating-point operations\n\
18979 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
18980 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
18981 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
18982 -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
18983
18984 first = 1;
18985
18986 show (stream, "legacy", &column, &first);
18987 show (stream, "2008", &column, &first);
18988
18989 fputc ('\n', stream);
18990
18991 fprintf (stream, _("\
18992 -KPIC, -call_shared generate SVR4 position independent code\n\
18993 -call_nonpic generate non-PIC code that can operate with DSOs\n\
18994 -mvxworks-pic generate VxWorks position independent code\n\
18995 -non_shared do not generate code that can operate with DSOs\n\
18996 -xgot assume a 32 bit GOT\n\
18997 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
18998 -mshared, -mno-shared disable/enable .cpload optimization for\n\
18999 position dependent (non shared) code\n\
19000 -mabi=ABI create ABI conformant object file for:\n"));
19001
19002 first = 1;
19003
19004 show (stream, "32", &column, &first);
19005 show (stream, "o64", &column, &first);
19006 show (stream, "n32", &column, &first);
19007 show (stream, "64", &column, &first);
19008 show (stream, "eabi", &column, &first);
19009
19010 fputc ('\n', stream);
19011
19012 fprintf (stream, _("\
19013 -32 create o32 ABI object file (default)\n\
19014 -n32 create n32 ABI object file\n\
19015 -64 create 64 ABI object file\n"));
19016 }
19017
19018 #ifdef TE_IRIX
19019 enum dwarf2_format
19020 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
19021 {
19022 if (HAVE_64BIT_SYMBOLS)
19023 return dwarf2_format_64bit_irix;
19024 else
19025 return dwarf2_format_32bit;
19026 }
19027 #endif
19028
19029 int
19030 mips_dwarf2_addr_size (void)
19031 {
19032 if (HAVE_64BIT_OBJECTS)
19033 return 8;
19034 else
19035 return 4;
19036 }
19037
19038 /* Standard calling conventions leave the CFA at SP on entry. */
19039 void
19040 mips_cfi_frame_initial_instructions (void)
19041 {
19042 cfi_add_CFA_def_cfa_register (SP);
19043 }
19044
19045 int
19046 tc_mips_regname_to_dw2regnum (char *regname)
19047 {
19048 unsigned int regnum = -1;
19049 unsigned int reg;
19050
19051 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
19052 regnum = reg;
19053
19054 return regnum;
19055 }
19056
19057 /* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
19058 Given a symbolic attribute NAME, return the proper integer value.
19059 Returns -1 if the attribute is not known. */
19060
19061 int
19062 mips_convert_symbolic_attribute (const char *name)
19063 {
19064 static const struct
19065 {
19066 const char * name;
19067 const int tag;
19068 }
19069 attribute_table[] =
19070 {
19071 #define T(tag) {#tag, tag}
19072 T (Tag_GNU_MIPS_ABI_FP),
19073 T (Tag_GNU_MIPS_ABI_MSA),
19074 #undef T
19075 };
19076 unsigned int i;
19077
19078 if (name == NULL)
19079 return -1;
19080
19081 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
19082 if (streq (name, attribute_table[i].name))
19083 return attribute_table[i].tag;
19084
19085 return -1;
19086 }
19087
19088 void
19089 md_mips_end (void)
19090 {
19091 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
19092
19093 mips_emit_delays ();
19094 if (cur_proc_ptr)
19095 as_warn (_("missing .end at end of assembly"));
19096
19097 /* Just in case no code was emitted, do the consistency check. */
19098 file_mips_check_options ();
19099
19100 /* Set a floating-point ABI if the user did not. */
19101 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
19102 {
19103 /* Perform consistency checks on the floating-point ABI. */
19104 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19105 Tag_GNU_MIPS_ABI_FP);
19106 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
19107 check_fpabi (fpabi);
19108 }
19109 else
19110 {
19111 /* Soft-float gets precedence over single-float, the two options should
19112 not be used together so this should not matter. */
19113 if (file_mips_opts.soft_float == 1)
19114 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
19115 /* Single-float gets precedence over all double_float cases. */
19116 else if (file_mips_opts.single_float == 1)
19117 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
19118 else
19119 {
19120 switch (file_mips_opts.fp)
19121 {
19122 case 32:
19123 if (file_mips_opts.gp == 32)
19124 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19125 break;
19126 case 0:
19127 fpabi = Val_GNU_MIPS_ABI_FP_XX;
19128 break;
19129 case 64:
19130 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
19131 fpabi = Val_GNU_MIPS_ABI_FP_64A;
19132 else if (file_mips_opts.gp == 32)
19133 fpabi = Val_GNU_MIPS_ABI_FP_64;
19134 else
19135 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19136 break;
19137 }
19138 }
19139
19140 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19141 Tag_GNU_MIPS_ABI_FP, fpabi);
19142 }
19143 }
19144
19145 /* Returns the relocation type required for a particular CFI encoding. */
19146
19147 bfd_reloc_code_real_type
19148 mips_cfi_reloc_for_encoding (int encoding)
19149 {
19150 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
19151 return BFD_RELOC_32_PCREL;
19152 else return BFD_RELOC_NONE;
19153 }